From dac8194788869c4c64319e7f7133fa8aef61ebb4 Mon Sep 17 00:00:00 2001 From: Rok Garbas Date: Wed, 9 Oct 2024 17:36:45 +0200 Subject: [PATCH] Initial commit --- .github/dependabot.yml | 17 + .github/workflows/auto-label.yml | 19 + .github/workflows/ci.yml | 220 +++++ .github/workflows/update.yml | 85 ++ .gitignore | 6 + 1password/.flox/.gitignore | 3 + 1password/.flox/env.json | 4 + 1password/.flox/env/manifest.lock | 136 +++ 1password/.flox/env/manifest.toml | 34 + 1password/manifest-comments.toml | 80 ++ LICENSE | 339 ++++++++ README.md | 29 + anthropic/.flox/.gitignore | 3 + anthropic/.flox/env.json | 4 + anthropic/.flox/env/manifest.lock | 397 +++++++++ anthropic/.flox/env/manifest.toml | 87 ++ anthropic/claude.py | 100 +++ anthropic/manifest.toml | 88 ++ cassandra/.flox/.gitignore | 4 + cassandra/.flox/env.json | 4 + cassandra/.flox/env/manifest.lock | 1 + cassandra/.flox/env/manifest.toml | 96 +++ cassandra/test.sh | 42 + direnv/.flox/.gitignore | 3 + direnv/.flox/env.json | 4 + direnv/.flox/env/manifest.lock | 169 ++++ direnv/.flox/env/manifest.toml | 110 +++ direnv/manifest.toml | 111 +++ elasticsearch/.flox/.gitignore | 4 + elasticsearch/.flox/env.json | 4 + elasticsearch/.flox/env/manifest.lock | 1 + elasticsearch/.flox/env/manifest.toml | 107 +++ elasticsearch/test.sh | 23 + flaim/.flox/.gitignore | 3 + flaim/.flox/env.json | 4 + flaim/.flox/env/manifest.lock | 785 ++++++++++++++++++ flaim/.flox/env/manifest.toml | 123 +++ flaim/.gitignore | 3 + flaim/flab/.gitignore | 5 + flaim/flab/flab.ipynb | 248 ++++++ flaim/flab/flab.py | 222 +++++ flaim/flab/requirements.txt | 5 + flaim/flapt/test.py | 14 + flaim/image/image.py | 28 + flaim/lab/anim/.gitignore | 1 + flaim/lab/anim/anim.ipynb | 79 ++ flaim/lab/anim/anim.py | 37 + flaim/lab/answer/answer.ipynb | 125 +++ flaim/lab/answer/answer.py | 28 + flaim/lab/aya.ipynb | 129 +++ flaim/lab/bark.ipynb | 81 ++ flaim/lab/llm/finish.ipynb | 123 +++ flaim/lab/llm/llm.py | 18 + flaim/lab/proteus.py | 74 ++ flaim/lab/refiner.ipynb | 196 +++++ flaim/lab/refiner.py | 76 ++ flaim/lab/roberta.ipynb | 97 +++ flaim/lab/sd3.ipynb | 456 ++++++++++ flaim/lab/song/song.py | 111 +++ flaim/lab/whisper.ipynb | 142 ++++ flaim/minify-steps.sh | 10 + flaim/sd3/.envrc | 1 + flaim/sd3/.gitignore | 1 + flaim/sd3/requirements.txt | 5 + flaim/sd3/sd3.ipynb | 143 ++++ flaim/sd3/sd3.py | 41 + flake.lock | 272 ++++++ flake.nix | 120 +++ fooocus/.flox/.gitignore | 3 + fooocus/.flox/env.json | 4 + fooocus/.flox/env/manifest.lock | 490 +++++++++++ fooocus/.flox/env/manifest.toml | 121 +++ metabase/.flox/.gitignore | 3 + metabase/.flox/env.json | 4 + metabase/.flox/env/manifest.lock | 159 ++++ metabase/.flox/env/manifest.toml | 25 + metabase/.gitignore | 3 + mysql/.envrc | 43 + mysql/.flox/.gitignore | 4 + mysql/.flox/env.json | 4 + mysql/.flox/env/manifest.lock | 1 + mysql/.flox/env/manifest.toml | 271 ++++++ mysql/test.sh | 52 ++ nb/.flox/.gitignore | 3 + nb/.flox/env.json | 4 + nb/.flox/env/manifest.lock | 1 + nb/.flox/env/manifest.toml | 64 ++ nb/.gitignore | 1 + nb/README.md | 7 + nb/barcode_demo.ipynb | 72 ++ nb/barcode_demo.py | 45 + nb/test.sh | 7 + nb/tricontour_demo.ipynb | 158 ++++ nb/tricontour_demo.py | 161 ++++ ollama/.flox/.gitignore | 3 + ollama/.flox/env.json | 4 + ollama/.flox/env/manifest.lock | 158 ++++ ollama/.flox/env/manifest.toml | 28 + openai/.flox/.gitignore | 2 + openai/.flox/env.json | 1 + openai/.flox/env.lock | 5 + openai/.flox/env/manifest.lock | 219 +++++ openai/.flox/env/manifest.toml | 55 ++ openai/.flox/pip.ini | 2 + openai/gpt.ipynb | 83 ++ openai/manifest.toml | 54 ++ playground/dune-for-dos/.flox/.gitignore | 2 + playground/dune-for-dos/.flox/env.json | 1 + playground/dune-for-dos/.flox/env.lock | 5 + .../dune-for-dos/.flox/env/manifest.lock | 156 ++++ .../dune-for-dos/.flox/env/manifest.toml | 31 + playground/instructor/.envrc | 1 + playground/instructor/.flox/.gitignore | 2 + playground/instructor/.flox/env.json | 4 + playground/instructor/.flox/env/manifest.lock | 463 +++++++++++ playground/instructor/.flox/env/manifest.toml | 84 ++ playground/instructor/knowledge_graph.gv | 3 + playground/instructor/knowledge_graph.gv.pdf | Bin 0 -> 952 bytes playground/instructor/makeusers.ipynb | 346 ++++++++ playground/minikube/.flox/.gitignore | 2 + playground/minikube/.flox/env.json | 4 + playground/minikube/.flox/env/manifest.lock | 765 +++++++++++++++++ playground/minikube/.flox/env/manifest.toml | 65 ++ playground/ollamamux/.flox/.gitignore | 3 + playground/ollamamux/.flox/env.json | 1 + playground/ollamamux/.flox/env.lock | 5 + playground/ollamamux/.flox/env/manifest.lock | 416 ++++++++++ playground/ollamamux/.flox/env/manifest.toml | 126 +++ playground/ollamamux/manifest.toml | 126 +++ playground/sdxl/.flox/.gitignore | 1 + playground/sdxl/.flox/env.json | 1 + playground/sdxl/.flox/env.lock | 5 + playground/sdxl/.flox/env/manifest.lock | 315 +++++++ playground/sdxl/.flox/env/manifest.toml | 57 ++ playground/sdxl/.flox/pip.ini | 2 + playground/sdxl/.gitignore | 1 + playground/sdxl/manifest.toml | 58 ++ playground/sdxl/minify-steps | 6 + playground/sdxl/sdxl.py | 30 + playground/vscode/.flox/.gitignore | 4 + playground/vscode/.flox/env.json | 4 + playground/vscode/.flox/env/manifest.lock | 276 ++++++ playground/vscode/.flox/env/manifest.toml | 22 + playground/xquartz/.flox/.gitignore | 3 + playground/xquartz/.flox/env.json | 4 + playground/xquartz/.flox/env/manifest.lock | 214 +++++ playground/xquartz/.flox/env/manifest.toml | 17 + playground/xquartz/manifest.toml | 34 + podman/.flox/.gitignore | 2 + podman/.flox/env.json | 1 + podman/.flox/env.lock | 5 + podman/.flox/env/manifest.lock | 714 ++++++++++++++++ podman/.flox/env/manifest.toml | 70 ++ podman/hook.sh | 44 + podman/manifest.toml | 70 ++ postgres/.flox/.gitignore | 4 + postgres/.flox/env.json | 4 + postgres/.flox/env/manifest.lock | 1 + postgres/.flox/env/manifest.toml | 112 +++ postgres/.gitignore | 3 + postgres/test.sh | 41 + redis/.flox/.gitignore | 4 + redis/.flox/env.json | 4 + redis/.flox/env/manifest.lock | 1 + redis/.flox/env/manifest.toml | 65 ++ redis/test.sh | 22 + verba/.flox/.gitignore | 4 + verba/.flox/env.json | 4 + verba/.flox/env.lock | 5 + verba/.flox/env/manifest.lock | 593 +++++++++++++ verba/.flox/env/manifest.toml | 160 ++++ verba/.gitignore | 1 + 172 files changed, 14063 insertions(+) create mode 100644 .github/dependabot.yml create mode 100644 .github/workflows/auto-label.yml create mode 100644 .github/workflows/ci.yml create mode 100644 .github/workflows/update.yml create mode 100644 .gitignore create mode 100644 1password/.flox/.gitignore create mode 100644 1password/.flox/env.json create mode 100644 1password/.flox/env/manifest.lock create mode 100644 1password/.flox/env/manifest.toml create mode 100644 1password/manifest-comments.toml create mode 100644 LICENSE create mode 100644 README.md create mode 100644 anthropic/.flox/.gitignore create mode 100644 anthropic/.flox/env.json create mode 100644 anthropic/.flox/env/manifest.lock create mode 100644 anthropic/.flox/env/manifest.toml create mode 100755 anthropic/claude.py create mode 100644 anthropic/manifest.toml create mode 100644 cassandra/.flox/.gitignore create mode 100644 cassandra/.flox/env.json create mode 100644 cassandra/.flox/env/manifest.lock create mode 100644 cassandra/.flox/env/manifest.toml create mode 100755 cassandra/test.sh create mode 100644 direnv/.flox/.gitignore create mode 100644 direnv/.flox/env.json create mode 100644 direnv/.flox/env/manifest.lock create mode 100644 direnv/.flox/env/manifest.toml create mode 100644 direnv/manifest.toml create mode 100644 elasticsearch/.flox/.gitignore create mode 100644 elasticsearch/.flox/env.json create mode 100644 elasticsearch/.flox/env/manifest.lock create mode 100644 elasticsearch/.flox/env/manifest.toml create mode 100755 elasticsearch/test.sh create mode 100644 flaim/.flox/.gitignore create mode 100644 flaim/.flox/env.json create mode 100644 flaim/.flox/env/manifest.lock create mode 100644 flaim/.flox/env/manifest.toml create mode 100644 flaim/.gitignore create mode 100644 flaim/flab/.gitignore create mode 100644 flaim/flab/flab.ipynb create mode 100755 flaim/flab/flab.py create mode 100644 flaim/flab/requirements.txt create mode 100755 flaim/flapt/test.py create mode 100755 flaim/image/image.py create mode 100644 flaim/lab/anim/.gitignore create mode 100644 flaim/lab/anim/anim.ipynb create mode 100755 flaim/lab/anim/anim.py create mode 100644 flaim/lab/answer/answer.ipynb create mode 100755 flaim/lab/answer/answer.py create mode 100644 flaim/lab/aya.ipynb create mode 100644 flaim/lab/bark.ipynb create mode 100644 flaim/lab/llm/finish.ipynb create mode 100755 flaim/lab/llm/llm.py create mode 100755 flaim/lab/proteus.py create mode 100644 flaim/lab/refiner.ipynb create mode 100755 flaim/lab/refiner.py create mode 100644 flaim/lab/roberta.ipynb create mode 100644 flaim/lab/sd3.ipynb create mode 100755 flaim/lab/song/song.py create mode 100644 flaim/lab/whisper.ipynb create mode 100755 flaim/minify-steps.sh create mode 100644 flaim/sd3/.envrc create mode 100644 flaim/sd3/.gitignore create mode 100644 flaim/sd3/requirements.txt create mode 100644 flaim/sd3/sd3.ipynb create mode 100755 flaim/sd3/sd3.py create mode 100644 flake.lock create mode 100644 flake.nix create mode 100644 fooocus/.flox/.gitignore create mode 100644 fooocus/.flox/env.json create mode 100644 fooocus/.flox/env/manifest.lock create mode 100644 fooocus/.flox/env/manifest.toml create mode 100644 metabase/.flox/.gitignore create mode 100644 metabase/.flox/env.json create mode 100644 metabase/.flox/env/manifest.lock create mode 100644 metabase/.flox/env/manifest.toml create mode 100644 metabase/.gitignore create mode 100644 mysql/.envrc create mode 100644 mysql/.flox/.gitignore create mode 100644 mysql/.flox/env.json create mode 100644 mysql/.flox/env/manifest.lock create mode 100644 mysql/.flox/env/manifest.toml create mode 100755 mysql/test.sh create mode 100644 nb/.flox/.gitignore create mode 100644 nb/.flox/env.json create mode 100644 nb/.flox/env/manifest.lock create mode 100644 nb/.flox/env/manifest.toml create mode 100644 nb/.gitignore create mode 100644 nb/README.md create mode 100644 nb/barcode_demo.ipynb create mode 100644 nb/barcode_demo.py create mode 100755 nb/test.sh create mode 100644 nb/tricontour_demo.ipynb create mode 100644 nb/tricontour_demo.py create mode 100644 ollama/.flox/.gitignore create mode 100644 ollama/.flox/env.json create mode 100644 ollama/.flox/env/manifest.lock create mode 100644 ollama/.flox/env/manifest.toml create mode 100644 openai/.flox/.gitignore create mode 100644 openai/.flox/env.json create mode 100644 openai/.flox/env.lock create mode 100644 openai/.flox/env/manifest.lock create mode 100644 openai/.flox/env/manifest.toml create mode 100644 openai/.flox/pip.ini create mode 100644 openai/gpt.ipynb create mode 100644 openai/manifest.toml create mode 100644 playground/dune-for-dos/.flox/.gitignore create mode 100644 playground/dune-for-dos/.flox/env.json create mode 100644 playground/dune-for-dos/.flox/env.lock create mode 100644 playground/dune-for-dos/.flox/env/manifest.lock create mode 100644 playground/dune-for-dos/.flox/env/manifest.toml create mode 100644 playground/instructor/.envrc create mode 100644 playground/instructor/.flox/.gitignore create mode 100644 playground/instructor/.flox/env.json create mode 100644 playground/instructor/.flox/env/manifest.lock create mode 100644 playground/instructor/.flox/env/manifest.toml create mode 100644 playground/instructor/knowledge_graph.gv create mode 100644 playground/instructor/knowledge_graph.gv.pdf create mode 100644 playground/instructor/makeusers.ipynb create mode 100644 playground/minikube/.flox/.gitignore create mode 100644 playground/minikube/.flox/env.json create mode 100644 playground/minikube/.flox/env/manifest.lock create mode 100644 playground/minikube/.flox/env/manifest.toml create mode 100644 playground/ollamamux/.flox/.gitignore create mode 100644 playground/ollamamux/.flox/env.json create mode 100644 playground/ollamamux/.flox/env.lock create mode 100644 playground/ollamamux/.flox/env/manifest.lock create mode 100644 playground/ollamamux/.flox/env/manifest.toml create mode 100644 playground/ollamamux/manifest.toml create mode 100644 playground/sdxl/.flox/.gitignore create mode 100644 playground/sdxl/.flox/env.json create mode 100644 playground/sdxl/.flox/env.lock create mode 100644 playground/sdxl/.flox/env/manifest.lock create mode 100644 playground/sdxl/.flox/env/manifest.toml create mode 100644 playground/sdxl/.flox/pip.ini create mode 100644 playground/sdxl/.gitignore create mode 100644 playground/sdxl/manifest.toml create mode 100644 playground/sdxl/minify-steps create mode 100755 playground/sdxl/sdxl.py create mode 100644 playground/vscode/.flox/.gitignore create mode 100644 playground/vscode/.flox/env.json create mode 100644 playground/vscode/.flox/env/manifest.lock create mode 100644 playground/vscode/.flox/env/manifest.toml create mode 100644 playground/xquartz/.flox/.gitignore create mode 100644 playground/xquartz/.flox/env.json create mode 100644 playground/xquartz/.flox/env/manifest.lock create mode 100644 playground/xquartz/.flox/env/manifest.toml create mode 100644 playground/xquartz/manifest.toml create mode 100644 podman/.flox/.gitignore create mode 100644 podman/.flox/env.json create mode 100644 podman/.flox/env.lock create mode 100644 podman/.flox/env/manifest.lock create mode 100644 podman/.flox/env/manifest.toml create mode 100755 podman/hook.sh create mode 100644 podman/manifest.toml create mode 100644 postgres/.flox/.gitignore create mode 100644 postgres/.flox/env.json create mode 100644 postgres/.flox/env/manifest.lock create mode 100644 postgres/.flox/env/manifest.toml create mode 100644 postgres/.gitignore create mode 100755 postgres/test.sh create mode 100644 redis/.flox/.gitignore create mode 100644 redis/.flox/env.json create mode 100644 redis/.flox/env/manifest.lock create mode 100644 redis/.flox/env/manifest.toml create mode 100755 redis/test.sh create mode 100644 verba/.flox/.gitignore create mode 100644 verba/.flox/env.json create mode 100644 verba/.flox/env.lock create mode 100644 verba/.flox/env/manifest.lock create mode 100644 verba/.flox/env/manifest.toml create mode 100644 verba/.gitignore diff --git a/.github/dependabot.yml b/.github/dependabot.yml new file mode 100644 index 0000000..2370ee8 --- /dev/null +++ b/.github/dependabot.yml @@ -0,0 +1,17 @@ +version: 2 +updates: + +- package-ecosystem: github-actions + directory: "/" + schedule: + interval: weekly + labels: + - "team-developer-support" + open-pull-requests-limit: 1 + commit-message: + prefix: "chore" + include: "scope" + groups: + all: + patterns: + - "*" diff --git a/.github/workflows/auto-label.yml b/.github/workflows/auto-label.yml new file mode 100644 index 0000000..4ad7862 --- /dev/null +++ b/.github/workflows/auto-label.yml @@ -0,0 +1,19 @@ +name: Apply label to new issues and PRs + +on: + issues: + types: [opened] + pull_request: + types: [opened] + +jobs: + add-label: + runs-on: ubuntu-latest + steps: + - name: Add team label automatically to new issues and PRs + uses: actions-ecosystem/action-add-labels@v1 + with: + github_token: "${{ secrets.MANAGED_FLOXBOT_GITHUB_ACCESS_TOKEN_REPO_SCOPE }}" + labels: "team-content" + + diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml new file mode 100644 index 0000000..594a869 --- /dev/null +++ b/.github/workflows/ci.yml @@ -0,0 +1,220 @@ +name: "CI" + +on: + workflow_dispatch: + push: + branches: + - "main" + pull_request: + schedule: + - cron: "0 0 * * *" + + +jobs: + + envs: + name: "Find environments" + runs-on: "ubuntu-latest" + + outputs: + envs_test: "${{ steps.envs.outputs.envs_test }}" + envs_push: "${{ steps.envs.outputs.envs_push }}" + + steps: + - name: "Checkout" + uses: "actions/checkout@v4" + with: + fetch-depth: 5 + + - name: "Find environment" + id: "envs" + run: | + envs_test="[" + envs_push="[" + + update_all= + git diff + git diff --name-only HEAD~1 HEAD -- + if git diff --name-only HEAD~1 HEAD -- | grep -E "flake.nix|flake.lock|.github" ; then + echo detected major change + update_all=true + fi + while IFS= read path; do + rel_env_path=$(realpath $(dirname $path)/../..) + env_path=$(realpath -s $(dirname $path)/../..) + if [ -f "$env_path/test.sh" ]; then + name=$(basename $env_path) + + if [ "$update_all" != "true" ] && ( git diff --name-only HEAD~1 HEAD | grep -v "$rel_env_path" ; ) ; then + continue + fi + + num_of_services=$(yq -oy '.services | length' $path) + start_services="true" + if [ "$num_of_services" -eq 0 ]; then + start_services="false" + fi + + readarray systems < <(yq e -o=j -I=0 '.options.systems[]' $path) + comma_test="" + if [ "$envs_test" != "[" ]; then comma_test=","; fi + for system in "${systems[@]}"; do + system=$(echo $system | xargs) + envs_test="$envs_test$comma_test{\"example\":\"$name\",\"system\":\"$system\",\"start_services\":$start_services}" + comma_test="," + done + + comma_push="" + if [ "$envs_push" != "[" ]; then comma_push=","; fi + envs_push="$envs_push$comma_push{\"example\":\"$name\"}" + fi + done <<< "$(find ./ -name manifest.toml)" + envs_test="$envs_test]" + envs_push="$envs_push]" + + echo "-- ENVS_TEST ---------------" + echo "$envs_test" | jq + echo "----------------------------" + + echo "-- ENVS_PUSH ---------------" + echo "$envs_push" | jq + echo "----------------------------" + + echo "envs_test=$envs_test" >> "$GITHUB_OUTPUT" + echo "envs_push=$envs_push" >> "$GITHUB_OUTPUT" + + test: + name: "Test '${{ matrix.example }}' example on '${{ matrix.system }}'" + runs-on: "ubuntu-latest" + + needs: + - "envs" + + strategy: + fail-fast: false + matrix: + include: ${{ fromJSON(needs.envs.outputs.envs_test ) }} + + steps: + - name: "Setup SSH" + uses: "webfactory/ssh-agent@v0.9.0" + with: + ssh-private-key: "${{ secrets.MANAGED_FLOXBOT_SSH_KEY }}" + + - name: "Setup Tailscale" + uses: "tailscale/github-action@v2" + with: + args: "--timeout 30s --login-server ${{ vars.MANAGED_TAILSCALE_URL }}" + tags: "tag:ci" + authkey: "${{ secrets.MANAGED_TAILSCALE_AUTH_KEY }}" + + - name: "Find remote server to run tests on" + run: | + set -eo pipefail + echo "${{ vars.MANAGED_REMOTE_BUILDERS }}" > machines + export REMOTE_SERVER=$(cat machines | grep ${{ matrix.system }} | cut -f1 -d' ' | cut -f3 -d'/' | head -1 | sed 's/nixbld@//' ; ) + export REMOTE_SERVER_USER_KNOWN_HOSTS_FILE=$(mktemp) + export REMOTE_PUBLIC_HOST_KEY=$(cat machines | grep ${{ matrix.system }} | tr -s ' ' | cut -f8 -d' ' | base64 -d ; ) + printf "%s %s\n" "$REMOTE_SERVER" "$REMOTE_PUBLIC_HOST_KEY" > "$REMOTE_SERVER_USER_KNOWN_HOSTS_FILE" + echo "REMOTE_SERVER: $REMOTE_SERVER" + echo "REMOTE_SERVER_USER_KNOWN_HOSTS_FILE: $REMOTE_SERVER_USER_KNOWN_HOSTS_FILE" + cat $REMOTE_SERVER_USER_KNOWN_HOSTS_FILE + echo "REMOTE_SERVER=$REMOTE_SERVER" >> $GITHUB_ENV + echo "REMOTE_SERVER_USER_KNOWN_HOSTS_FILE=$REMOTE_SERVER_USER_KNOWN_HOSTS_FILE" >> $GITHUB_ENV + + - name: "Test environment" + run: | + ssh github@$REMOTE_SERVER \ + -oUserKnownHostsFile=$REMOTE_SERVER_USER_KNOWN_HOSTS_FILE \ + nix run \ + --accept-flake-config \ + --extra-experimental-features '"nix-command flakes"' \ + --option access-tokens "github.com=${{ secrets.MANAGED_FLOXBOT_GITHUB_ACCESS_TOKEN_REPO_SCOPE }}" \ + github:flox/floxenvs/${{ github.sha }}#apps.${{ matrix.system }}.test-${{ matrix.example }} -- ${{ matrix.start_services }} + + push: + name: "Sync '${{ matrix.example }}' manifest" + runs-on: "ubuntu-latest" + + if: (github.event_name == 'push' && github.ref_name == 'main') || github.event_name == 'workflow_dispatch' || github.event_name == 'schedule' + + needs: + - "envs" + - "test" + + env: + FLOX_BIN: "flox -vvv" + FLOX_REMOTE_OWNER: "flox" + FLOX_AUTH0_URL: "https://auth.flox.dev" + + strategy: + matrix: + include: ${{ fromJSON(needs.envs.outputs.envs_push ) }} + + steps: + - name: "Checkout" + uses: "actions/checkout@v4" + + - name: "Install flox" + uses: "flox/install-flox-action@main" + + - name: "Get FloxHub token" + run: | + echo "FLOX_FLOXHUB_TOKEN=$( + curl --request POST \ + --url $FLOX_AUTH0_URL/oauth/token \ + --header 'content-type: application/x-www-form-urlencoded' \ + --data "client_id=${{ secrets.MANAGED_FLOXENVS_AUTH0_CLIENT_ID }}" \ + --data "audience=https://hub.flox.dev/api" \ + --data "grant_type=client_credentials" \ + --data "client_secret=${{ secrets.MANAGED_FLOXENVS_AUTH0_CLIENT_SECRET }}" \ + | jq .access_token -r)" >> $GITHUB_ENV + + - name: "Pull or Create remote environment" + run: | + pushd ./${{ matrix.example }} + if flox list --config --remote "$FLOX_REMOTE_OWNER/${{ matrix.example }}" >/dev/null; then + $FLOX_BIN pull --remote "$FLOX_REMOTE_OWNER/${{ matrix.example }}" --dir "remote" + else + echo "WARN: No environment $FLOX_REMOTE_OWNER/${{ matrix.example }} found on FloxHub" + echo "WARN: Creating a new environment ${{ matrix.example }}" + $FLOX_BIN init --name ${{ matrix.example }} --dir "remote" + $FLOX_BIN push --dir "remote" + fi + popd + + - name: "Sync to remote environment" + run: | + pushd ./${{ matrix.example }} + cp -rf .flox/env/* remote/.flox/env/ + $FLOX_BIN edit --sync --dir "remote" + popd + + - name: "Push to remote environment" + run: | + pushd ./${{ matrix.example }} + $FLOX_BIN push --dir "remote" + popd + + + report-failure: + name: "Report Failure" + runs-on: "ubuntu-latest" + + if: ${{ failure() && github.ref == 'refs/heads/main' && (github.event_name == 'push' || github.event_name == 'schedule') }} + + needs: + - "test" + - "push" + + steps: + - name: "Slack Notification" + uses: "rtCamp/action-slack-notify@v2" + env: + SLACK_TITLE: "Something broke CI for floxenvs" + SLACK_FOOTER: "Thank you for caring" + SLACK_WEBHOOK: "${{ secrets.MANAGED_SLACK_WEBHOOK }}" + SLACK_USERNAME: "GitHub" + SLACK_ICON_EMOJI: ":poop:" + SLACK_COLOR: "#ff2800" # ferrari red -> https://encycolorpedia.com/ff2800 + SLACK_LINK_NAMES: true diff --git a/.github/workflows/update.yml b/.github/workflows/update.yml new file mode 100644 index 0000000..c3b26c4 --- /dev/null +++ b/.github/workflows/update.yml @@ -0,0 +1,85 @@ +name: "Update flox environments manifests" + +on: + workflow_dispatch: + schedule: + - cron: "30 0 * * 1" + +jobs: + + envs: + name: "Find environments" + runs-on: "ubuntu-latest" + + outputs: + envs: "${{ steps.envs.outputs.envs }}" + + steps: + - name: "Checkout" + uses: "actions/checkout@v4" + + - name: "Find environment" + id: "envs" + run: | + set -x + envs="[" + while IFS= read path; do + env_path=$(realpath -s $(dirname $path)/../..) + if [ -f "$env_path/test.sh" ]; then + name=$(basename $env_path) + num_of_services=$(yq -oy '.services | length' $path) + start_services="true" + if [ "$num_of_services" -eq 0 ]; then + start_services="false" + fi + + comma="" + if [ "$envs" != "[" ]; then comma=","; fi + envs="$envs$comma{\"example\":\"$name\"}" + fi + done <<< "$(find ./ -name manifest.toml)" + envs="$envs]" + + echo "-- ENVS --------------------" + echo "$envs " | jq + echo "----------------------------" + + echo "envs=$envs" >> "$GITHUB_OUTPUT" + + upgrade: + name: "Upgrade '${{ matrix.example }}' manifest" + runs-on: "ubuntu-latest" + + needs: + - "envs" + + strategy: + matrix: + include: ${{ fromJSON(needs.envs.outputs.envs) }} + + steps: + - name: "Checkout" + uses: "actions/checkout@v4" + + - name: "Install flox" + uses: "flox/install-flox-action@main" + + - name: "Run upgrade" + run: | + pushd ./${{ matrix.example }} + flox -vvv upgrade + popd + + - name: "Create Pull Request" + uses: "peter-evans/create-pull-request@v7" + with: + token: "${{ secrets.MANAGED_FLOXBOT_GITHUB_ACCESS_TOKEN_REPO_SCOPE }}" + add-paths: "${{ matrix.example }}/.flox" + commit-message: "chore: Update manifest of `${{ matrix.example }}` environment" + commiter: "FloxBot " + author: "FloxBot " + branch: "chore-update-${{ matrix.example }}-environment" + delete-branch: true + title: "chore: Update manifest of `${{ matrix.example }}` flox environment" + body: "This PR was automatically created by [Update workflow](https://github.com/flox/floxenvs/actions/workflows/update.yml)." + labels: "team-developer-support" diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..5cc2bc0 --- /dev/null +++ b/.gitignore @@ -0,0 +1,6 @@ +.DS_Store +/.direnv/ +/result +/*/.flox/cache +/*/.flox/log +/*/.flox/run diff --git a/1password/.flox/.gitignore b/1password/.flox/.gitignore new file mode 100644 index 0000000..3ed9fa4 --- /dev/null +++ b/1password/.flox/.gitignore @@ -0,0 +1,3 @@ +run/ +cache/ +lib/ diff --git a/1password/.flox/env.json b/1password/.flox/env.json new file mode 100644 index 0000000..56d8ee9 --- /dev/null +++ b/1password/.flox/env.json @@ -0,0 +1,4 @@ +{ + "name": "op-inject-manifest", + "version": 1 +} \ No newline at end of file diff --git a/1password/.flox/env/manifest.lock b/1password/.flox/env/manifest.lock new file mode 100644 index 0000000..03f99ee --- /dev/null +++ b/1password/.flox/env/manifest.lock @@ -0,0 +1,136 @@ +{ + "lockfile-version": 1, + "manifest": { + "version": 1, + "install": { + "op": { + "pkg-path": "_1password" + } + }, + "vars": {}, + "hook": { + "on-activate": "\n # Start OP injection code\n if ! op vault list >/dev/null 2>&1; then\n CACHE=\"$HOME/.cache/op-session\"\n OP_TOKEN=$( [[ -f \"$CACHE\" ]] && cat \"$CACHE\" || op signin --raw 2>&1 )\n if op whoami --session \"${OP_TOKEN}\" >/dev/null 2>&1; then\n mkdir -p dirname \"$CACHE\" 2>/dev/null && echo \"${OP_TOKEN}\" > \"$CACHE\"\n chmod 600 \"$CACHE\"\n else\n echo \"op auth failed!\" && return 1\n fi\n fi\n export op_token=$( [[ \"$OP_TOKEN\" ]] && echo \"--session $OP_TOKEN\" )\n # End OP injection code\n\n export ANTHROPIC_API_KEY=$(op $op_token item get \"Anthropic\" --field \"credential\")\n export TAILSCALE_TOKEN=$(op $op_token item get \"Tailscale\" --field \"token\")\n" + }, + "profile": { + "common": " alias op=\"op $op_token\"\n" + }, + "options": { + "systems": [ + "aarch64-darwin", + "aarch64-linux", + "x86_64-darwin", + "x86_64-linux" + ], + "allow": { + "licenses": [] + }, + "semver": {} + } + }, + "packages": [ + { + "attr_path": "_1password", + "broken": false, + "derivation": "/nix/store/wrczsqr7571hc7wfzivq6lab4kv4w4dc-1password-cli-2.29.0.drv", + "description": "1Password command-line tool", + "install_id": "op", + "license": "Unfree", + "locked_url": "https://github.com/flox/nixpkgs?rev=dc14ed91132ee3a26255d01d8fd0c1f5bff27b2f", + "name": "1password-cli-2.29.0", + "pname": "_1password", + "rev": "dc14ed91132ee3a26255d01d8fd0c1f5bff27b2f", + "rev_count": 656713, + "rev_date": "2024-07-23T13:58:26Z", + "scrape_date": "2024-07-26T01:12:46Z", + "unfree": true, + "version": "1password-cli-2.29.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/7nryd83rwmlq62rhnvyq0irhvqlhn89s-1password-cli-2.29.0" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "_1password", + "broken": false, + "derivation": "/nix/store/fvk6j301z6rjqam27jy719bd2dxqmhdm-1password-cli-2.29.0.drv", + "description": "1Password command-line tool", + "install_id": "op", + "license": "Unfree", + "locked_url": "https://github.com/flox/nixpkgs?rev=dc14ed91132ee3a26255d01d8fd0c1f5bff27b2f", + "name": "1password-cli-2.29.0", + "pname": "_1password", + "rev": "dc14ed91132ee3a26255d01d8fd0c1f5bff27b2f", + "rev_count": 656713, + "rev_date": "2024-07-23T13:58:26Z", + "scrape_date": "2024-07-26T01:12:46Z", + "unfree": true, + "version": "1password-cli-2.29.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/jagd73vis56fqd36z950xwwj5si7n853-1password-cli-2.29.0" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "_1password", + "broken": false, + "derivation": "/nix/store/i59b4h37423vwy1hbv75c4979f1840z5-1password-cli-2.29.0.drv", + "description": "1Password command-line tool", + "install_id": "op", + "license": "Unfree", + "locked_url": "https://github.com/flox/nixpkgs?rev=dc14ed91132ee3a26255d01d8fd0c1f5bff27b2f", + "name": "1password-cli-2.29.0", + "pname": "_1password", + "rev": "dc14ed91132ee3a26255d01d8fd0c1f5bff27b2f", + "rev_count": 656713, + "rev_date": "2024-07-23T13:58:26Z", + "scrape_date": "2024-07-26T01:12:46Z", + "unfree": true, + "version": "1password-cli-2.29.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/gmxr4dlnhmjksqhfix2sa0r0l3zj6pbr-1password-cli-2.29.0" + }, + "system": "x86_64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "_1password", + "broken": false, + "derivation": "/nix/store/9xivnlw8fbc6yj0r970wn42227wjw9h8-1password-cli-2.29.0.drv", + "description": "1Password command-line tool", + "install_id": "op", + "license": "Unfree", + "locked_url": "https://github.com/flox/nixpkgs?rev=dc14ed91132ee3a26255d01d8fd0c1f5bff27b2f", + "name": "1password-cli-2.29.0", + "pname": "_1password", + "rev": "dc14ed91132ee3a26255d01d8fd0c1f5bff27b2f", + "rev_count": 656713, + "rev_date": "2024-07-23T13:58:26Z", + "scrape_date": "2024-07-26T01:12:46Z", + "unfree": true, + "version": "1password-cli-2.29.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/2pmwg2c84wyhbhr1gvj6gd308w2fnqi8-1password-cli-2.29.0" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + } + ] +} \ No newline at end of file diff --git a/1password/.flox/env/manifest.toml b/1password/.flox/env/manifest.toml new file mode 100644 index 0000000..e72f91f --- /dev/null +++ b/1password/.flox/env/manifest.toml @@ -0,0 +1,34 @@ +version = 1 + +[install] +op.pkg-path = "_1password" + +[hook] +on-activate = ''' + + # Start OP injection code + if ! op vault list >/dev/null 2>&1; then + CACHE="$HOME/.cache/op-session" + OP_TOKEN=$( [[ -f "$CACHE" ]] && cat "$CACHE" || op signin --raw 2>&1 ) + if op whoami --session "${OP_TOKEN}" >/dev/null 2>&1; then + mkdir -p dirname "$CACHE" 2>/dev/null && echo "${OP_TOKEN}" > "$CACHE" + chmod 600 "$CACHE" + else + echo "op auth failed!" && return 1 + fi + fi + export op_token=$( [[ "$OP_TOKEN" ]] && echo "--session $OP_TOKEN" ) + # End OP injection code + + export ANTHROPIC_API_KEY=$(op $op_token item get "Anthropic" --field "credential") + export TAILSCALE_TOKEN=$(op $op_token item get "Tailscale" --field "token") +''' + +[profile] +common = ''' + alias op="op $op_token" +''' + +[options] +systems = ["aarch64-darwin", "aarch64-linux", "x86_64-darwin", "x86_64-linux"] + diff --git a/1password/manifest-comments.toml b/1password/manifest-comments.toml new file mode 100644 index 0000000..cc59ca3 --- /dev/null +++ b/1password/manifest-comments.toml @@ -0,0 +1,80 @@ +# +# This is a Flox environment manifest. +# Visit flox.dev/docs/concepts/manifest/ +# or see flox-edit(1), manifest.toml(5) for more information. +# +version = 1 + +[install] +# Packages in Nix can't start with numbers +op.pkg-path = "_1password" + +[hook] +on-activate = ''' + + # We want something that works whether we have the CLI/GUI + # integration turned on or not, so let's make a function + # that sets an env variable from op and passes a token if we + # have one + + op_inject() { + local sessionstring secret_value + + [ "$OP_TOKEN" ] && sessionstring="--session $OP_TOKEN" + secret_value=$(op $sessionstring item get "$2" --field "$3") + + if [ "$secret_value" ]; then + export "$1=$secret_value" + echo "op '$2' -> '$1'" + else + echo "op '$2' -> not set" + return 1 + fi + } + + # If we have the 1Password CLI installed and the "CLI + # integtation" is enabled, the following command will cause + # it to create a new session and return successfully + # + # If not, cache the 1Password session token so we don't + # have to re-authenticate every time + + if ! op vault list >/dev/null 2>&1; then + # The location of a file where we store our op session + OP_CACHE="$HOME/.cache/op-session" + + # Read the token from our cache file - it'll be called OP_TOKEN + [[ -f "$OP_CACHE" ]] && OP_TOKEN=$(cat "$OP_CACHE") + + if ! op whoami --session "${OP_TOKEN}" >/dev/null 2>&1; then + # The token in the cache is not good, get a new one + OP_TOKEN=$(op signin --raw 2>&1) + + if [[ $? -eq 0 ]]; then + # That worked, persist our token into the cache file + mkdir -p ~/.cache/ && echo "${OP_TOKEN}" > "$OP_CACHE" + chmod 600 "$OP_CACHE" + export OP_TOKEN + else + # It did not work, let's say something. + echo "op auth failed!" && return 1 + fi + fi + fi + + # We can now use our function to load secrets! + # Exported variables in 'hook.on-activate' will be picked up + # by Flox and made available to the user's shell + + op_inject "ANTHROPIC_API_KEY" "Anthropic" "credential" + op_inject "MAILCHIMP_PASS" "Mailchimp" "password" +''' + +[profile] +common = ''' + alias op="op $op_token" +''' + +[options] +systems = ["aarch64-darwin", "aarch64-linux", "x86_64-darwin", "x86_64-linux"] + diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000..d159169 --- /dev/null +++ b/LICENSE @@ -0,0 +1,339 @@ + GNU GENERAL PUBLIC LICENSE + Version 2, June 1991 + + Copyright (C) 1989, 1991 Free Software Foundation, Inc., + 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The licenses for most software are designed to take away your +freedom to share and change it. By contrast, the GNU General Public +License is intended to guarantee your freedom to share and change free +software--to make sure the software is free for all its users. This +General Public License applies to most of the Free Software +Foundation's software and to any other program whose authors commit to +using it. (Some other Free Software Foundation software is covered by +the GNU Lesser General Public License instead.) You can apply it to +your programs, too. + + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +this service if you wish), that you receive source code or can get it +if you want it, that you can change the software or use pieces of it +in new free programs; and that you know you can do these things. + + To protect your rights, we need to make restrictions that forbid +anyone to deny you these rights or to ask you to surrender the rights. +These restrictions translate to certain responsibilities for you if you +distribute copies of the software, or if you modify it. + + For example, if you distribute copies of such a program, whether +gratis or for a fee, you must give the recipients all the rights that +you have. You must make sure that they, too, receive or can get the +source code. And you must show them these terms so they know their +rights. + + We protect your rights with two steps: (1) copyright the software, and +(2) offer you this license which gives you legal permission to copy, +distribute and/or modify the software. + + Also, for each author's protection and ours, we want to make certain +that everyone understands that there is no warranty for this free +software. If the software is modified by someone else and passed on, we +want its recipients to know that what they have is not the original, so +that any problems introduced by others will not reflect on the original +authors' reputations. + + Finally, any free program is threatened constantly by software +patents. We wish to avoid the danger that redistributors of a free +program will individually obtain patent licenses, in effect making the +program proprietary. To prevent this, we have made it clear that any +patent must be licensed for everyone's free use or not licensed at all. + + The precise terms and conditions for copying, distribution and +modification follow. + + GNU GENERAL PUBLIC LICENSE + TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION + + 0. This License applies to any program or other work which contains +a notice placed by the copyright holder saying it may be distributed +under the terms of this General Public License. The "Program", below, +refers to any such program or work, and a "work based on the Program" +means either the Program or any derivative work under copyright law: +that is to say, a work containing the Program or a portion of it, +either verbatim or with modifications and/or translated into another +language. (Hereinafter, translation is included without limitation in +the term "modification".) Each licensee is addressed as "you". + +Activities other than copying, distribution and modification are not +covered by this License; they are outside its scope. The act of +running the Program is not restricted, and the output from the Program +is covered only if its contents constitute a work based on the +Program (independent of having been made by running the Program). +Whether that is true depends on what the Program does. + + 1. You may copy and distribute verbatim copies of the Program's +source code as you receive it, in any medium, provided that you +conspicuously and appropriately publish on each copy an appropriate +copyright notice and disclaimer of warranty; keep intact all the +notices that refer to this License and to the absence of any warranty; +and give any other recipients of the Program a copy of this License +along with the Program. + +You may charge a fee for the physical act of transferring a copy, and +you may at your option offer warranty protection in exchange for a fee. + + 2. You may modify your copy or copies of the Program or any portion +of it, thus forming a work based on the Program, and copy and +distribute such modifications or work under the terms of Section 1 +above, provided that you also meet all of these conditions: + + a) You must cause the modified files to carry prominent notices + stating that you changed the files and the date of any change. + + b) You must cause any work that you distribute or publish, that in + whole or in part contains or is derived from the Program or any + part thereof, to be licensed as a whole at no charge to all third + parties under the terms of this License. + + c) If the modified program normally reads commands interactively + when run, you must cause it, when started running for such + interactive use in the most ordinary way, to print or display an + announcement including an appropriate copyright notice and a + notice that there is no warranty (or else, saying that you provide + a warranty) and that users may redistribute the program under + these conditions, and telling the user how to view a copy of this + License. (Exception: if the Program itself is interactive but + does not normally print such an announcement, your work based on + the Program is not required to print an announcement.) + +These requirements apply to the modified work as a whole. If +identifiable sections of that work are not derived from the Program, +and can be reasonably considered independent and separate works in +themselves, then this License, and its terms, do not apply to those +sections when you distribute them as separate works. But when you +distribute the same sections as part of a whole which is a work based +on the Program, the distribution of the whole must be on the terms of +this License, whose permissions for other licensees extend to the +entire whole, and thus to each and every part regardless of who wrote it. + +Thus, it is not the intent of this section to claim rights or contest +your rights to work written entirely by you; rather, the intent is to +exercise the right to control the distribution of derivative or +collective works based on the Program. + +In addition, mere aggregation of another work not based on the Program +with the Program (or with a work based on the Program) on a volume of +a storage or distribution medium does not bring the other work under +the scope of this License. + + 3. You may copy and distribute the Program (or a work based on it, +under Section 2) in object code or executable form under the terms of +Sections 1 and 2 above provided that you also do one of the following: + + a) Accompany it with the complete corresponding machine-readable + source code, which must be distributed under the terms of Sections + 1 and 2 above on a medium customarily used for software interchange; or, + + b) Accompany it with a written offer, valid for at least three + years, to give any third party, for a charge no more than your + cost of physically performing source distribution, a complete + machine-readable copy of the corresponding source code, to be + distributed under the terms of Sections 1 and 2 above on a medium + customarily used for software interchange; or, + + c) Accompany it with the information you received as to the offer + to distribute corresponding source code. (This alternative is + allowed only for noncommercial distribution and only if you + received the program in object code or executable form with such + an offer, in accord with Subsection b above.) + +The source code for a work means the preferred form of the work for +making modifications to it. For an executable work, complete source +code means all the source code for all modules it contains, plus any +associated interface definition files, plus the scripts used to +control compilation and installation of the executable. However, as a +special exception, the source code distributed need not include +anything that is normally distributed (in either source or binary +form) with the major components (compiler, kernel, and so on) of the +operating system on which the executable runs, unless that component +itself accompanies the executable. + +If distribution of executable or object code is made by offering +access to copy from a designated place, then offering equivalent +access to copy the source code from the same place counts as +distribution of the source code, even though third parties are not +compelled to copy the source along with the object code. + + 4. You may not copy, modify, sublicense, or distribute the Program +except as expressly provided under this License. Any attempt +otherwise to copy, modify, sublicense or distribute the Program is +void, and will automatically terminate your rights under this License. +However, parties who have received copies, or rights, from you under +this License will not have their licenses terminated so long as such +parties remain in full compliance. + + 5. You are not required to accept this License, since you have not +signed it. However, nothing else grants you permission to modify or +distribute the Program or its derivative works. These actions are +prohibited by law if you do not accept this License. Therefore, by +modifying or distributing the Program (or any work based on the +Program), you indicate your acceptance of this License to do so, and +all its terms and conditions for copying, distributing or modifying +the Program or works based on it. + + 6. Each time you redistribute the Program (or any work based on the +Program), the recipient automatically receives a license from the +original licensor to copy, distribute or modify the Program subject to +these terms and conditions. You may not impose any further +restrictions on the recipients' exercise of the rights granted herein. +You are not responsible for enforcing compliance by third parties to +this License. + + 7. If, as a consequence of a court judgment or allegation of patent +infringement or for any other reason (not limited to patent issues), +conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot +distribute so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you +may not distribute the Program at all. For example, if a patent +license would not permit royalty-free redistribution of the Program by +all those who receive copies directly or indirectly through you, then +the only way you could satisfy both it and this License would be to +refrain entirely from distribution of the Program. + +If any portion of this section is held invalid or unenforceable under +any particular circumstance, the balance of the section is intended to +apply and the section as a whole is intended to apply in other +circumstances. + +It is not the purpose of this section to induce you to infringe any +patents or other property right claims or to contest validity of any +such claims; this section has the sole purpose of protecting the +integrity of the free software distribution system, which is +implemented by public license practices. Many people have made +generous contributions to the wide range of software distributed +through that system in reliance on consistent application of that +system; it is up to the author/donor to decide if he or she is willing +to distribute software through any other system and a licensee cannot +impose that choice. + +This section is intended to make thoroughly clear what is believed to +be a consequence of the rest of this License. + + 8. If the distribution and/or use of the Program is restricted in +certain countries either by patents or by copyrighted interfaces, the +original copyright holder who places the Program under this License +may add an explicit geographical distribution limitation excluding +those countries, so that distribution is permitted only in or among +countries not thus excluded. In such case, this License incorporates +the limitation as if written in the body of this License. + + 9. The Free Software Foundation may publish revised and/or new versions +of the General Public License from time to time. Such new versions will +be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + +Each version is given a distinguishing version number. If the Program +specifies a version number of this License which applies to it and "any +later version", you have the option of following the terms and conditions +either of that version or of any later version published by the Free +Software Foundation. If the Program does not specify a version number of +this License, you may choose any version ever published by the Free Software +Foundation. + + 10. If you wish to incorporate parts of the Program into other free +programs whose distribution conditions are different, write to the author +to ask for permission. For software which is copyrighted by the Free +Software Foundation, write to the Free Software Foundation; we sometimes +make exceptions for this. Our decision will be guided by the two goals +of preserving the free status of all derivatives of our free software and +of promoting the sharing and reuse of software generally. + + NO WARRANTY + + 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY +FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN +OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES +PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED +OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF +MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS +TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE +PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, +REPAIR OR CORRECTION. + + 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR +REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, +INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING +OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED +TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY +YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER +PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE +POSSIBILITY OF SUCH DAMAGES. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it +free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest +to attach them to the start of each source file to most effectively +convey the exclusion of warranty; and each file should have at least +the "copyright" line and a pointer to where the full notice is found. + + + Copyright (C) + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License along + with this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + +Also add information on how to contact you by electronic and paper mail. + +If the program is interactive, make it output a short notice like this +when it starts in an interactive mode: + + Gnomovision version 69, Copyright (C) year name of author + Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. + This is free software, and you are welcome to redistribute it + under certain conditions; type `show c' for details. + +The hypothetical commands `show w' and `show c' should show the appropriate +parts of the General Public License. Of course, the commands you use may +be called something other than `show w' and `show c'; they could even be +mouse-clicks or menu items--whatever suits your program. + +You should also get your employer (if you work as a programmer) or your +school, if any, to sign a "copyright disclaimer" for the program, if +necessary. Here is a sample; alter the names: + + Yoyodyne, Inc., hereby disclaims all copyright interest in the program + `Gnomovision' (which makes passes at compilers) written by James Hacker. + + , 1 April 1989 + Ty Coon, President of Vice + +This General Public License does not permit incorporating your program into +proprietary programs. If your program is a subroutine library, you may +consider it more useful to permit linking proprietary applications with the +library. If this is what you want to do, use the GNU Lesser General +Public License instead of this License. diff --git a/README.md b/README.md new file mode 100644 index 0000000..9b1f067 --- /dev/null +++ b/README.md @@ -0,0 +1,29 @@ + + +## Environments + +| | Updated | Tested | FloxHub | Description | +| :--- | :-----: | :----: | :-----: | :---------- | +| | +| **Databases:** | +| `postgres` | ✅ | ✅ | ✅ | | +| `redis` | ✅ | ✅ | ✅ | | +| `cassandra` | ✅ | ✅ | ✅ | | +| `elasticsearch` | ✅ | ✅ | ✅ | | +| `mysql` | ✅ | ✅ | ✅ | | +| | +| **Applications:** | +| `nb` | ✅ | ✅ | ✅ | IPython notebook | +| `1password` | | | | | +| `anthropic` | | | | | +| `direnv` | | | | | +| `flaim` | | | | | +| `fooocus` | | | | | +| `metabase` | | | | | +| `ollama` | | | | | +| `openai` | | | | | +| `podman` | | | | | +| `verba` | | | | | + + +See more examples in `./playground/` folder. diff --git a/anthropic/.flox/.gitignore b/anthropic/.flox/.gitignore new file mode 100644 index 0000000..3ed9fa4 --- /dev/null +++ b/anthropic/.flox/.gitignore @@ -0,0 +1,3 @@ +run/ +cache/ +lib/ diff --git a/anthropic/.flox/env.json b/anthropic/.flox/env.json new file mode 100644 index 0000000..950e374 --- /dev/null +++ b/anthropic/.flox/env.json @@ -0,0 +1,4 @@ +{ + "name": "anthropic", + "version": 1 +} \ No newline at end of file diff --git a/anthropic/.flox/env/manifest.lock b/anthropic/.flox/env/manifest.lock new file mode 100644 index 0000000..8205081 --- /dev/null +++ b/anthropic/.flox/env/manifest.lock @@ -0,0 +1,397 @@ +{ + "lockfile-version": 1, + "manifest": { + "version": 1, + "install": { + "anthropic": { + "pkg-path": "python312Packages.anthropic" + }, + "click": { + "pkg-path": "python312Packages.click" + }, + "gum": { + "pkg-path": "gum" + } + }, + "vars": { + "claude_script": "[(importlib := __import__('importlib')), (click := importlib.import_module('click')), (os := importlib.import_module('os')), (anthropic := importlib.import_module('anthropic')), (__ol_mod_kfhxdqofiu := __import__('pathlib', globals(), locals(), ['Path'], 0)), (Path := __ol_mod_kfhxdqofiu.Path), (claude := click.command()(click.option('--model', '-m', default='claude-3-5-sonnet-20240620', help='The Claude model to use (sonnet3.5, opus3, sonnet3, haiku3, or full model name)', metavar='')(click.option('--temperature', '-t', default=0.0, help='The temperature (0.0 to 1.0) for response generation', metavar='')(click.option('--max-tokens', '-x', default=1000, help='The maximum number of tokens in the response', metavar='')(click.option('--infile', '-i', help='File to read input from', metavar='')(click.option('--outfile', '-o', help='File to write the response to', metavar='')(click.argument('prompt')(lambda model, temperature, max_tokens, infile, outfile, prompt: [(__ol_retv_ddeknbkqsh := None), (model_fullname := 'claude-3-5-sonnet-20240620') if model == 'sonnet3.5' else (model_fullname := 'claude-3-opus-20240229') if model == 'opus3' else (model_fullname := 'claude-3-sonnet-20240229') if model == 'sonnet3' else (model_fullname := 'claude-3-haiku-20240307') if model == 'haiku3' else (model_fullname := model), [(size := os.path.getsize(infile)), [print('Error: input file size exceeds 16kb limit.'), exit(1)] if size > 16383 else ..., (file_path := Path(infile)), (inputfilecontent := file_path.read_text()), (fullprompt := (inputfilecontent + ' ' + prompt).strip())] if infile else (fullprompt := prompt.strip()), (client := anthropic.Anthropic()), (message := client.messages.create(model=model_fullname, max_tokens=max_tokens, temperature=temperature, messages=[{'role': 'user', 'content': fullprompt}])), (content := message.content[0].text), [(write_file := open(outfile, 'w')), write_file.write(content), write_file.close(), print('Output saved to', outfile)] if outfile else print(content), [], __ol_retv_ddeknbkqsh][-1])))))))), claude(auto_envvar_prefix='CLAUDE') if __name__ == '__main__' else ...]" + }, + "hook": { + "on-activate": " # Bootstrap ANTHROPIC_API_KEY setup\n bootstrap_anthropic_config() {\n local config_file=\"$HOME/.config/flox/anthropic.session\"\n local config_dir=\"$(dirname \"$config_file\")\"\n\n # Check if exists ANTHROPIC_API_KEY as an env variable\n if [ -n \"$ANTHROPIC_API_KEY\" ]; then\n echo \"Anthropic API key is already set as an environment variable.\"\n return 0\n fi\n\n # Check if exists ~/.config/flox/anthropic and if exists valid API key\n if [ -f \"$config_file\" ]; then\n source \"$config_file\"\n if [ -n \"$ANTHROPIC_API_KEY\" ]; then\n echo \"Anthropic API key loaded from config file.\"\n export ANTHROPIC_API_KEY\n return 0\n fi\n fi\n\n\n # If we've reached this point, it's time to prompt you for your API key\n mkdir -p \"$config_dir\"\n\n echo \"Please enter your Anthropic API key:\"\n ANTHROPIC_API_KEY=$(gum input --password)\n\n\t# If the user has said \"no\" to persisting the key previously, let's stop here\n\tif [ \"$ANTHROPIC_KEY_PERSISTENCE\" == \"false\" ]; then\n echo \"Not storing key based on setting in $config_file\"\n return 0\n fi\n\n echo \"# Anthropic API configuration\" > \"$config_file\"\n echo \"# You can enable/disable key persistence by setting ANTHROPIC_KEY_PERSISTENCE to true/false\" >> \"$config_file\"\n\n # Here we ask you if you want to persist your API key\n\n if gum confirm \"Do you want to persist your Anthropic API key?\" --affirmative=\"Yes\" --negative=\"No\"; then\n # If user sez Yes save API key\n echo \"ANTHROPIC_API_KEY=$ANTHROPIC_API_KEY\" >> \"$config_file\"\n echo \"ANTHROPIC_KEY_PERSISTENCE=true\" >> \"$config_file\"\n echo \"API key saved to config file and persistence enabled: $config_file\"\n else\n # If user sez No do not save API key\n echo \"ANTHROPIC_KEY_PERSISTENCE=false\" >> \"$config_file\"\n echo \"API key not saved to file. It will only be available for this session.\"\n fi\n\n export ANTHROPIC_API_KEY\n echo \"Anthropic API key set for this session.\"\n echo \"Configuration file location: $config_file\"\n }\n\n # Call the bootstrapping wizard\n bootstrap_anthropic_config\n" + }, + "profile": { + "bash": " alias claude=\"python3 -c \\\"$claude_script\\\"\"\n", + "zsh": " alias claude=\"python3 -c \\\"$claude_script\\\"\"\n" + }, + "options": { + "systems": [ + "aarch64-darwin", + "aarch64-linux", + "x86_64-darwin", + "x86_64-linux" + ], + "allow": { + "licenses": [] + }, + "semver": {} + } + }, + "packages": [ + { + "attr_path": "python312Packages.anthropic", + "broken": false, + "derivation": "/nix/store/6n6x89jknzv55qiggq39z2070b2byym4-python3.12-anthropic-0.28.1.drv", + "description": "Anthropic's safety-first language model APIs", + "install_id": "anthropic", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=693bc46d169f5af9c992095736e82c3488bf7dbb", + "name": "python3.12-anthropic-0.28.1", + "pname": "anthropic", + "rev": "693bc46d169f5af9c992095736e82c3488bf7dbb", + "rev_count": 652902, + "rev_date": "2024-07-14T11:43:13Z", + "scrape_date": "2024-07-16T03:03:37Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.12-anthropic-0.28.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/24as89zcx84js82kgmfnchnwdvapc4kb-python3.12-anthropic-0.28.1-dist", + "out": "/nix/store/yn4a93qxvvavpkzi0ymd64g639y859jd-python3.12-anthropic-0.28.1" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python312Packages.anthropic", + "broken": false, + "derivation": "/nix/store/qpm2mg892xmajmmsz0j6fa71rsgi5cqp-python3.12-anthropic-0.28.1.drv", + "description": "Anthropic's safety-first language model APIs", + "install_id": "anthropic", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=693bc46d169f5af9c992095736e82c3488bf7dbb", + "name": "python3.12-anthropic-0.28.1", + "pname": "anthropic", + "rev": "693bc46d169f5af9c992095736e82c3488bf7dbb", + "rev_count": 652902, + "rev_date": "2024-07-14T11:43:13Z", + "scrape_date": "2024-07-16T03:03:37Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.12-anthropic-0.28.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/8n0gzdbbxab47q0348i2zy1cahf5gbag-python3.12-anthropic-0.28.1-dist", + "out": "/nix/store/qqpllncy3agdh8b5lgsl0d391dylzqic-python3.12-anthropic-0.28.1" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python312Packages.anthropic", + "broken": false, + "derivation": "/nix/store/67537820w4cdvcgad9gn4v4bmhkb6hmm-python3.12-anthropic-0.28.1.drv", + "description": "Anthropic's safety-first language model APIs", + "install_id": "anthropic", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=693bc46d169f5af9c992095736e82c3488bf7dbb", + "name": "python3.12-anthropic-0.28.1", + "pname": "anthropic", + "rev": "693bc46d169f5af9c992095736e82c3488bf7dbb", + "rev_count": 652902, + "rev_date": "2024-07-14T11:43:13Z", + "scrape_date": "2024-07-16T03:03:37Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.12-anthropic-0.28.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/57wc89fl0f9bapxq12l18iqflqwy866h-python3.12-anthropic-0.28.1-dist", + "out": "/nix/store/bybnad800ykh47jwfc4q3ljfgnim07cq-python3.12-anthropic-0.28.1" + }, + "system": "x86_64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python312Packages.anthropic", + "broken": false, + "derivation": "/nix/store/bkni33xviif6pwrbl0gypa0xvq8hnnhq-python3.12-anthropic-0.28.1.drv", + "description": "Anthropic's safety-first language model APIs", + "install_id": "anthropic", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=693bc46d169f5af9c992095736e82c3488bf7dbb", + "name": "python3.12-anthropic-0.28.1", + "pname": "anthropic", + "rev": "693bc46d169f5af9c992095736e82c3488bf7dbb", + "rev_count": 652902, + "rev_date": "2024-07-14T11:43:13Z", + "scrape_date": "2024-07-16T03:03:37Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.12-anthropic-0.28.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/q27panzq7rcni0kp8zs51k1lpk34ih6n-python3.12-anthropic-0.28.1-dist", + "out": "/nix/store/f0z6cn3gikja6by98qvnv8z57id4pvmq-python3.12-anthropic-0.28.1" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python312Packages.click", + "broken": false, + "derivation": "/nix/store/nxfk8nb4nriw9r6qg80gy4l9vqfz957b-python3.12-click-8.1.7.drv", + "description": "Create beautiful command line interfaces in Python", + "install_id": "click", + "license": "BSD-3-Clause", + "locked_url": "https://github.com/flox/nixpkgs?rev=693bc46d169f5af9c992095736e82c3488bf7dbb", + "name": "python3.12-click-8.1.7", + "pname": "click", + "rev": "693bc46d169f5af9c992095736e82c3488bf7dbb", + "rev_count": 652902, + "rev_date": "2024-07-14T11:43:13Z", + "scrape_date": "2024-07-16T03:03:37Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.12-click-8.1.7", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/adjvc1kv0ldq3nx88s6c7a23z9g86zmi-python3.12-click-8.1.7-dist", + "out": "/nix/store/frzdh6avkfwz290zdzq208fzzm9r6b1s-python3.12-click-8.1.7" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python312Packages.click", + "broken": false, + "derivation": "/nix/store/yanh95p3v831792il8dlgvjd58hs56sh-python3.12-click-8.1.7.drv", + "description": "Create beautiful command line interfaces in Python", + "install_id": "click", + "license": "BSD-3-Clause", + "locked_url": "https://github.com/flox/nixpkgs?rev=693bc46d169f5af9c992095736e82c3488bf7dbb", + "name": "python3.12-click-8.1.7", + "pname": "click", + "rev": "693bc46d169f5af9c992095736e82c3488bf7dbb", + "rev_count": 652902, + "rev_date": "2024-07-14T11:43:13Z", + "scrape_date": "2024-07-16T03:03:37Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.12-click-8.1.7", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/v6xrc8yg8jp6f2qxm7066v897gx7dwpw-python3.12-click-8.1.7-dist", + "out": "/nix/store/58psp7vbpvx9dyd9zl7vx4pzgk1g7y45-python3.12-click-8.1.7" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python312Packages.click", + "broken": false, + "derivation": "/nix/store/symfwm01l64i1hxp65cnqbi5di2nqk22-python3.12-click-8.1.7.drv", + "description": "Create beautiful command line interfaces in Python", + "install_id": "click", + "license": "BSD-3-Clause", + "locked_url": "https://github.com/flox/nixpkgs?rev=693bc46d169f5af9c992095736e82c3488bf7dbb", + "name": "python3.12-click-8.1.7", + "pname": "click", + "rev": "693bc46d169f5af9c992095736e82c3488bf7dbb", + "rev_count": 652902, + "rev_date": "2024-07-14T11:43:13Z", + "scrape_date": "2024-07-16T03:03:37Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.12-click-8.1.7", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/vrf5vj79xnjih8l0090ww0qxd2v2liqw-python3.12-click-8.1.7-dist", + "out": "/nix/store/i23rgnflskws9wqnzgzzrmryrw6s1m60-python3.12-click-8.1.7" + }, + "system": "x86_64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python312Packages.click", + "broken": false, + "derivation": "/nix/store/b7c06dzmaqvb0zwaa60lxw031nz9ci20-python3.12-click-8.1.7.drv", + "description": "Create beautiful command line interfaces in Python", + "install_id": "click", + "license": "BSD-3-Clause", + "locked_url": "https://github.com/flox/nixpkgs?rev=693bc46d169f5af9c992095736e82c3488bf7dbb", + "name": "python3.12-click-8.1.7", + "pname": "click", + "rev": "693bc46d169f5af9c992095736e82c3488bf7dbb", + "rev_count": 652902, + "rev_date": "2024-07-14T11:43:13Z", + "scrape_date": "2024-07-16T03:03:37Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.12-click-8.1.7", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/glpfcpa70jr8a0xzsjjbbz32wpcf997a-python3.12-click-8.1.7-dist", + "out": "/nix/store/km5k1j2wffwn6wbyxnibd0w0yl2rcabw-python3.12-click-8.1.7" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "gum", + "broken": false, + "derivation": "/nix/store/9j6a33883ya6b3c89i28nv7s2m53b65s-gum-0.14.1.drv", + "description": "Tasty Bubble Gum for your shell", + "install_id": "gum", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=693bc46d169f5af9c992095736e82c3488bf7dbb", + "name": "gum-0.14.1", + "pname": "gum", + "rev": "693bc46d169f5af9c992095736e82c3488bf7dbb", + "rev_count": 652902, + "rev_date": "2024-07-14T11:43:13Z", + "scrape_date": "2024-07-16T03:03:37Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.14.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/hi946camicx98bv9y9nz6jx2fyxcc9kk-gum-0.14.1" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "gum", + "broken": false, + "derivation": "/nix/store/vz1ssxa54qj3gxfyx2rkys370m0xdpqh-gum-0.14.1.drv", + "description": "Tasty Bubble Gum for your shell", + "install_id": "gum", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=693bc46d169f5af9c992095736e82c3488bf7dbb", + "name": "gum-0.14.1", + "pname": "gum", + "rev": "693bc46d169f5af9c992095736e82c3488bf7dbb", + "rev_count": 652902, + "rev_date": "2024-07-14T11:43:13Z", + "scrape_date": "2024-07-16T03:03:37Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.14.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/3z1lqas4yni9hzvx2kpbmd108fs7qr0r-gum-0.14.1" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "gum", + "broken": false, + "derivation": "/nix/store/s339azrz2q6vynb5g4x08z9wnsgfs14a-gum-0.14.1.drv", + "description": "Tasty Bubble Gum for your shell", + "install_id": "gum", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=693bc46d169f5af9c992095736e82c3488bf7dbb", + "name": "gum-0.14.1", + "pname": "gum", + "rev": "693bc46d169f5af9c992095736e82c3488bf7dbb", + "rev_count": 652902, + "rev_date": "2024-07-14T11:43:13Z", + "scrape_date": "2024-07-16T03:03:37Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.14.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/hxfw2r39malghnmrm20d23qvf3p1lwdg-gum-0.14.1" + }, + "system": "x86_64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "gum", + "broken": false, + "derivation": "/nix/store/cbgkdgp6kz31szqsn2hi1y0nnp0lizwr-gum-0.14.1.drv", + "description": "Tasty Bubble Gum for your shell", + "install_id": "gum", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=693bc46d169f5af9c992095736e82c3488bf7dbb", + "name": "gum-0.14.1", + "pname": "gum", + "rev": "693bc46d169f5af9c992095736e82c3488bf7dbb", + "rev_count": 652902, + "rev_date": "2024-07-14T11:43:13Z", + "scrape_date": "2024-07-16T03:03:37Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.14.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/js1fcw5brznb0lcw55l5b3ad4rwfj4mf-gum-0.14.1" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + } + ] +} \ No newline at end of file diff --git a/anthropic/.flox/env/manifest.toml b/anthropic/.flox/env/manifest.toml new file mode 100644 index 0000000..5c7e6fa --- /dev/null +++ b/anthropic/.flox/env/manifest.toml @@ -0,0 +1,87 @@ +# +# This is a Flox environment manifest. +# Visit flox.dev/docs/concepts/manifest/ +# or see flox-edit(1), manifest.toml(5) for more information. +# +version = 1 + +[install] +anthropic.pkg-path = "python312Packages.anthropic" +click.pkg-path = "python312Packages.click" +gum.pkg-path = "gum" + +[vars] +claude_script="[(importlib := __import__('importlib')), (click := importlib.import_module('click')), (os := importlib.import_module('os')), (anthropic := importlib.import_module('anthropic')), (__ol_mod_kfhxdqofiu := __import__('pathlib', globals(), locals(), ['Path'], 0)), (Path := __ol_mod_kfhxdqofiu.Path), (claude := click.command()(click.option('--model', '-m', default='claude-3-5-sonnet-20240620', help='The Claude model to use (sonnet3.5, opus3, sonnet3, haiku3, or full model name)', metavar='')(click.option('--temperature', '-t', default=0.0, help='The temperature (0.0 to 1.0) for response generation', metavar='')(click.option('--max-tokens', '-x', default=1000, help='The maximum number of tokens in the response', metavar='')(click.option('--infile', '-i', help='File to read input from', metavar='')(click.option('--outfile', '-o', help='File to write the response to', metavar='')(click.argument('prompt')(lambda model, temperature, max_tokens, infile, outfile, prompt: [(__ol_retv_ddeknbkqsh := None), (model_fullname := 'claude-3-5-sonnet-20240620') if model == 'sonnet3.5' else (model_fullname := 'claude-3-opus-20240229') if model == 'opus3' else (model_fullname := 'claude-3-sonnet-20240229') if model == 'sonnet3' else (model_fullname := 'claude-3-haiku-20240307') if model == 'haiku3' else (model_fullname := model), [(size := os.path.getsize(infile)), [print('Error: input file size exceeds 16kb limit.'), exit(1)] if size > 16383 else ..., (file_path := Path(infile)), (inputfilecontent := file_path.read_text()), (fullprompt := (inputfilecontent + ' ' + prompt).strip())] if infile else (fullprompt := prompt.strip()), (client := anthropic.Anthropic()), (message := client.messages.create(model=model_fullname, max_tokens=max_tokens, temperature=temperature, messages=[{'role': 'user', 'content': fullprompt}])), (content := message.content[0].text), [(write_file := open(outfile, 'w')), write_file.write(content), write_file.close(), print('Output saved to', outfile)] if outfile else print(content), [], __ol_retv_ddeknbkqsh][-1])))))))), claude(auto_envvar_prefix='CLAUDE') if __name__ == '__main__' else ...]" + +[hook] +on-activate = ''' + # Bootstrap ANTHROPIC_API_KEY setup + bootstrap_anthropic_config() { + local config_file="$HOME/.config/flox/anthropic.session" + local config_dir="$(dirname "$config_file")" + + # Check if exists ANTHROPIC_API_KEY as an env variable + if [ -n "$ANTHROPIC_API_KEY" ]; then + echo "Anthropic API key is already set as an environment variable." + return 0 + fi + + # Check if exists ~/.config/flox/anthropic and if exists valid API key + if [ -f "$config_file" ]; then + source "$config_file" + if [ -n "$ANTHROPIC_API_KEY" ]; then + echo "Anthropic API key loaded from config file." + export ANTHROPIC_API_KEY + return 0 + fi + fi + + + # If we've reached this point, it's time to prompt you for your API key + mkdir -p "$config_dir" + + echo "Please enter your Anthropic API key:" + ANTHROPIC_API_KEY=$(gum input --password) + + # If the user has said "no" to persisting the key previously, let's stop here + if [ "$ANTHROPIC_KEY_PERSISTENCE" == "false" ]; then + echo "Not storing key based on setting in $config_file" + return 0 + fi + + echo "# Anthropic API configuration" > "$config_file" + echo "# You can enable/disable key persistence by setting ANTHROPIC_KEY_PERSISTENCE to true/false" >> "$config_file" + + # Here we ask you if you want to persist your API key + + if gum confirm "Do you want to persist your Anthropic API key?" --affirmative="Yes" --negative="No"; then + # If user sez Yes save API key + echo "ANTHROPIC_API_KEY=$ANTHROPIC_API_KEY" >> "$config_file" + echo "ANTHROPIC_KEY_PERSISTENCE=true" >> "$config_file" + echo "API key saved to config file and persistence enabled: $config_file" + else + # If user sez No do not save API key + echo "ANTHROPIC_KEY_PERSISTENCE=false" >> "$config_file" + echo "API key not saved to file. It will only be available for this session." + fi + + export ANTHROPIC_API_KEY + echo "Anthropic API key set for this session." + echo "Configuration file location: $config_file" + } + + # Call the bootstrapping wizard + bootstrap_anthropic_config +''' + +[profile] +bash = ''' + alias claude="python3 -c \"$claude_script\"" +''' + +zsh = ''' + alias claude="python3 -c \"$claude_script\"" +''' + +[options] +systems = ["aarch64-darwin", "aarch64-linux", "x86_64-darwin", "x86_64-linux"] diff --git a/anthropic/claude.py b/anthropic/claude.py new file mode 100755 index 0000000..67266ef --- /dev/null +++ b/anthropic/claude.py @@ -0,0 +1,100 @@ +#!/usr/bin/env python3 + +import click +import os +import anthropic +from pathlib import Path + +@click.command() +@click.option( + "--model", + "-m", + default="claude-3-5-sonnet-20240620", + help="The Claude model to use (sonnet3.5, opus3, sonnet3, haiku3, or full model name)", + metavar="", +) +@click.option( + "--temperature", + "-t", + default=0.0, + help="The temperature (0.0 to 1.0) for response generation", + metavar="", +) +@click.option( + "--max-tokens", + "-x", + default=1000, + help="The maximum number of tokens in the response", + metavar="", +) +@click.option( + "--infile", + "-i", + help="File to read input from", + metavar="", +) +@click.option( + "--outfile", + "-o", + help="File to write the response to", + metavar="", +) +@click.argument("prompt") +def claude(model, temperature, max_tokens, infile, outfile, prompt): + + if model == "sonnet3.5": + model_fullname = "claude-3-5-sonnet-20240620" + elif model == "opus3": + model_fullname = "claude-3-opus-20240229" + elif model == "sonnet3": + model_fullname = "claude-3-sonnet-20240229" + elif model == "haiku3": + model_fullname = "claude-3-haiku-20240307" + else: + model_fullname = model + + if infile: + # try: + size = os.path.getsize(infile) + # except: + # print("Error: could not open", infile) + # exit(1) + + if size > 16383: + print("Error: input file size exceeds 16kb limit.") + exit(1) + + file_path = Path(infile) + inputfilecontent = file_path.read_text() + + fullprompt = (inputfilecontent + " " + prompt).strip() + else: + fullprompt = prompt.strip() + + # try: + client = anthropic.Anthropic() + message = client.messages.create( + model=model_fullname, + max_tokens=max_tokens, + temperature=temperature, + messages=[{"role": "user", "content": fullprompt}], + ) + # except anthropic.BadRequestError as ex: + # print(ex.body["error"]["message"]) + # exit(1) + + content = message.content[0].text + + if outfile: + write_file = open(outfile, "w") + write_file.write(content) + write_file.close() + print("Output saved to", outfile) + else: + print(content) + return + + +if __name__ == "__main__": + claude(auto_envvar_prefix="CLAUDE") + diff --git a/anthropic/manifest.toml b/anthropic/manifest.toml new file mode 100644 index 0000000..920bf50 --- /dev/null +++ b/anthropic/manifest.toml @@ -0,0 +1,88 @@ +# +# This is a Flox environment manifest. +# Visit flox.dev/docs/concepts/manifest/ +# or see flox-edit(1), manifest.toml(5) for more information. +# +version = 1 + +[install] +anthropic.pkg-path = "python312Packages.anthropic" +click.pkg-path = "python312Packages.click" +gum.pkg-path = "gum" + +[vars] +claude_script="[(importlib := __import__('importlib')), (click := importlib.import_module('click')), (os := importlib.import_module('os')), (anthropic := importlib.import_module('anthropic')), (__ol_mod_znnivfqyig := __import__('pathlib', globals(), locals(), ['Path'], 0)), (Path := __ol_mod_znnivfqyig.Path), (claude := click.command()(click.option('--model', '-m', default='claude-3-5-sonnet-20240620', help='The Claude model to use (sonnet3.5, opus3, sonnet3, haiku3, or full model name)', metavar='')(click.option('--temperature', '-t', default=0.0, help='The temperature (0.0 to 1.0) for response generation', metavar='')(click.option('--max-tokens', '-x', default=1000, help='The maximum number of tokens in the response', metavar='')(click.option('--infile', '-i', help='File to read input from', metavar='')(click.option('--outfile', '-o', help='File to write the response to', metavar='')(click.argument('prompt')(lambda model, temperature, max_tokens, infile, outfile, prompt: [(__ol_retv_ewemytjeia := None), (model_fullname := 'claude-3-5-sonnet-20240620') if model == 'sonnet3.5' else (model_fullname := 'claude-3-opus-20240229') if model == 'opus3' else (model_fullname := 'claude-3-sonnet-20240229') if model == 'sonnet3' else (model_fullname := 'claude-3-haiku-20240307') if model == 'haiku3' else (model_fullname := model), [(size := os.path.getsize(infile)), [print('Error: input file size exceeds 16kb limit.'), exit(1)] if size > 16383 else ..., (file_path := Path(infile)), (inputfilecontent := file_path.read_text()), (fullprompt := (inputfilecontent + ' ' + prompt).strip())] if infile else (fullprompt := prompt.strip()), (client := anthropic.Anthropic()), (message := client.messages.create(model=model, max_tokens=max_tokens, temperature=temperature, messages=[{'role': 'user', 'content': fullprompt}])), (content := message.content[0].text), [(write_file := open(outfile, 'w')), write_file.write(content), write_file.close(), print('Output saved to', outfile)] if outfile else print(content), [], __ol_retv_ewemytjeia][-1])))))))), claude(auto_envvar_prefix='CLAUDE') if __name__ == '__main__' else ..., (main := click.group()(lambda: [(__ol_retv_ckoahrmehp := None), ..., __ol_retv_ckoahrmehp][-1]))]" + +[hook] +on-activate = ''' + # Bootstrap ANTHROPIC_API_KEY setup + bootstrap_anthropic_config() { + local config_file="$HOME/.config/flox/anthropic.session" + local config_dir="$(dirname "$config_file")" + + # Check if exists ANTHROPIC_API_KEY as an env variable + if [ -n "$ANTHROPIC_API_KEY" ]; then + echo "Anthropic API key is already set as an environment variable." + return 0 + fi + + # Check if exists ~/.config/flox/anthropic and if exists valid API key + if [ -f "$config_file" ]; then + source "$config_file" + if [ -n "$ANTHROPIC_API_KEY" ]; then + echo "Anthropic API key loaded from config file." + export ANTHROPIC_API_KEY + return 0 + fi + fi + + + # If we've reached this point, it's time to prompt you for your API key + mkdir -p "$config_dir" + + echo "Please enter your Anthropic API key:" + ANTHROPIC_API_KEY=$(gum input --password) + + # If the user has said "no" to persisting the key previously, let's stop here + if [ "$ANTHROPIC_KEY_PERSISTENCE" == "false" ]; then + echo "Not storing key based on setting in $config_file" + return 0 + fi + + echo "# Anthropic API configuration" > "$config_file" + echo "# You can enable/disable key persistence by setting ANTHROPIC_KEY_PERSISTENCE to true/false" >> "$config_file" + + # Here we ask you if you want to persist your API key + + if gum confirm "Do you want to persist your Anthropic API key?" --affirmative="Yes" --negative="No"; then + # If user sez Yes save API key + echo "ANTHROPIC_API_KEY=$ANTHROPIC_API_KEY" >> "$config_file" + echo "ANTHROPIC_KEY_PERSISTENCE=true" >> "$config_file" + echo "API key saved to config file and persistence enabled: $config_file" + else + # If user sez No do not save API key + echo "ANTHROPIC_KEY_PERSISTENCE=false" >> "$config_file" + echo "API key not saved to file. It will only be available for this session." + fi + + export ANTHROPIC_API_KEY + echo "Anthropic API key set for this session." + echo "Configuration file location: $config_file" + } + + # Call the bootstrapping wizard + bootstrap_anthropic_config +''' + +[profile] +bash = ''' + alias claude="python3 -c \"$claude_script\"" +''' + +zsh = ''' + alias claude="python3 -c \"$claude_script\"" +''' + +[options] +systems = ["aarch64-darwin", "aarch64-linux", "x86_64-darwin", "x86_64-linux"] + diff --git a/cassandra/.flox/.gitignore b/cassandra/.flox/.gitignore new file mode 100644 index 0000000..15d71a1 --- /dev/null +++ b/cassandra/.flox/.gitignore @@ -0,0 +1,4 @@ +run/ +cache/ +lib/ +log/ diff --git a/cassandra/.flox/env.json b/cassandra/.flox/env.json new file mode 100644 index 0000000..ce970a8 --- /dev/null +++ b/cassandra/.flox/env.json @@ -0,0 +1,4 @@ +{ + "name": "cassandra", + "version": 1 +} \ No newline at end of file diff --git a/cassandra/.flox/env/manifest.lock b/cassandra/.flox/env/manifest.lock new file mode 100644 index 0000000..252c490 --- /dev/null +++ b/cassandra/.flox/env/manifest.lock @@ -0,0 +1 @@ +{"lockfile-version":1,"manifest":{"hook":{"on-activate":"\nexport CASSANDRA_CACHE=\"$FLOX_ENV_CACHE/cassandra\"\nexport CASSANDRA_CONFIG_FILE=\"$CASSANDRA_CACHE/cassandra.yaml\"\n\nif [[ ! -d \"$CASSANDRA_CACHE\" ]]; then\n mkdir -p \"$CASSANDRA_CACHE\"\nfi\n\nCASSANDRA_PATH=\"$(realpath $(which cassandra))\"\nCASSANDRA_VERSION=\"${CASSANDRA_PATH:54:-14}\"\n# Only for cassandra >=4.0.0\nif [[ \"$(semver compare \"$CASSANDRA_VERSION\" \"4.0.0\")\" != \"-1\" ]]; then\n JVM_OPTS=\"$JVM_OPTS -Xlog:gc=warning,heap*=warning,age*=warning,safepoint=warning,promotion*=warning\"\nfi\n\nif [[ ! -f \"$CASSANDRA_CONFIG_FILE\" ]]; then\n\n tee -a $CASSANDRA_CONFIG_FILE > /dev/null << EOF\nlisten_address: \"$CASSANDRA_HOST\"\nnative_transport_port: \"$CASSANDRA_PORT\"\nstart_native_transport: \"$CASSANDRA_ALLOW_CLIENTS\"\ncluster_name: \"$CASSANDRA_CLUSTER_NAME\"\ndata_file_directories:\n - \"$CASSANDRA_CACHE/data\"\ncommitlog_directory: \"$CASSANDRA_CACHE/commitlog\"\nsaved_caches_directory: \"$CASSANDRA_CACHE/saved_caches\"\nhints_directory: \"$CASSANDRA_CACHE/hints\"\nseed_provider:\n - class_name: \"org.apache.cassandra.locator.SimpleSeedProvider\"\n parameters:\n - seeds: \"$CASSANDRA_SEED_ADDRS\"\ncommitlog_sync: \"batch\"\ncommitlog_sync_batch_window_in_ms: 2\npartitioner: \"org.apache.cassandra.dht.Murmur3Partitioner\"\nendpoint_snitch: \"SimpleSnitch\"\nEOF\n\nfi\n"},"install":{"cassandra":{"pkg-path":"cassandra_4"},"coreutils":{"pkg-path":"coreutils"},"semver-tool":{"pkg-path":"semver-tool"},"which":{"pkg-path":"which"}},"options":{"allow":{"licenses":[]},"semver":{},"systems":["aarch64-darwin","aarch64-linux","x86_64-darwin","x86_64-linux"]},"profile":{"common":"echo \"\"\necho \" ╔═══════════════════════════════════════════════╗\"\necho \" ║ ║\"\necho \" ║ Start Cassandra in the background: ║\"\necho \" ║ 👉 flox services start ║\"\necho \" ║ 👉 flox activate --start-services ║\"\necho \" ║ ║\"\necho \" ║ Try to connect to Cassandra: ║\"\necho \" ║ 👉 cqlsh \\$CASSANDRA_HOST \\$CASSANDRA_PORT \\ ║\"\necho \" ║ -e \\\"SELECT ...;\\\" ║\"\necho \" ║ ║\"\necho \" ╚═══════════════════════════════════════════════╝\"\necho \"\"\n"},"services":{"cassandra":{"command":"cassandra -Dcassandra.config=file://$CASSANDRA_CONFIG_FILE -f","is-daemon":null,"shutdown":null,"systems":null,"vars":null}},"vars":{"CASSANDRA_ALLOW_CLIENTS":"true","CASSANDRA_CLUSTER_NAME":"My Cluster","CASSANDRA_HOST":"127.0.0.1","CASSANDRA_PORT":"19042","CASSANDRA_SEED_ADDRS":"127.0.0.1","JVM_OPTS":""},"version":1},"packages":[{"attr_path":"cassandra_4","broken":false,"derivation":"/nix/store/2ickq19d2jyp1dm0ryn5bxj9ydrp68qi-cassandra-4.1.2.drv","description":"Massively scalable open source NoSQL database","group":"toplevel","install_id":"cassandra","license":"Apache-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"cassandra-4.1.2","outputs":{"out":"/nix/store/39nsy2v8gfm49gvxpxz8l3rkwhp9al3s-cassandra-4.1.2"},"outputs_to_install":["out"],"pname":"cassandra_4","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":false,"version":"cassandra-4.1.2"},{"attr_path":"cassandra_4","broken":false,"derivation":"/nix/store/wchfjlhax8lw8knpdf78j6splbwvki08-cassandra-4.1.2.drv","description":"Massively scalable open source NoSQL database","group":"toplevel","install_id":"cassandra","license":"Apache-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"cassandra-4.1.2","outputs":{"out":"/nix/store/h5hrx66fhh6fblxql37vi91xgyvzkcjv-cassandra-4.1.2"},"outputs_to_install":["out"],"pname":"cassandra_4","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":false,"version":"cassandra-4.1.2"},{"attr_path":"cassandra_4","broken":false,"derivation":"/nix/store/41ipbvwy9xiypgzicbm40n3ik7l2g535-cassandra-4.1.2.drv","description":"Massively scalable open source NoSQL database","group":"toplevel","install_id":"cassandra","license":"Apache-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"cassandra-4.1.2","outputs":{"out":"/nix/store/8ip2jxh8y2n2ich1wqaxxv81f1m5ipr4-cassandra-4.1.2"},"outputs_to_install":["out"],"pname":"cassandra_4","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":false,"version":"cassandra-4.1.2"},{"attr_path":"cassandra_4","broken":false,"derivation":"/nix/store/qkhqrhq2is5fmqv94261kr4p9h4pg8h9-cassandra-4.1.2.drv","description":"Massively scalable open source NoSQL database","group":"toplevel","install_id":"cassandra","license":"Apache-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"cassandra-4.1.2","outputs":{"out":"/nix/store/vf320gr32hq6d25648ly9iv9ic3993gd-cassandra-4.1.2"},"outputs_to_install":["out"],"pname":"cassandra_4","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":false,"version":"cassandra-4.1.2"},{"attr_path":"coreutils","broken":false,"derivation":"/nix/store/55ms78kc0r5ncpa13wbpya7cgi6i6zx0-coreutils-9.5.drv","description":"GNU Core Utilities","group":"toplevel","install_id":"coreutils","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"coreutils-9.5","outputs":{"info":"/nix/store/ps81dqzr6fxafmxih1834v545dh4apjm-coreutils-9.5-info","out":"/nix/store/1l41471x6rlf7l544s1bxkqqgpprd28m-coreutils-9.5"},"outputs_to_install":["out"],"pname":"coreutils","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":false,"version":"9.5"},{"attr_path":"coreutils","broken":false,"derivation":"/nix/store/fbnqx9d9skgp22g0xkc53jgqy0804afb-coreutils-9.5.drv","description":"GNU Core Utilities","group":"toplevel","install_id":"coreutils","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"coreutils-9.5","outputs":{"debug":"/nix/store/g66h1ajc1wx18milg2290yylbivq2jhd-coreutils-9.5-debug","info":"/nix/store/y311wv5dlqakkq6hr3yl6zmiiprxb3v5-coreutils-9.5-info","out":"/nix/store/ssqdazslv2wjpybnk0pjwnpq0dfpa6q2-coreutils-9.5"},"outputs_to_install":["out"],"pname":"coreutils","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":false,"version":"9.5"},{"attr_path":"coreutils","broken":false,"derivation":"/nix/store/r3vjhg84a2d0ydf52038pic8wibaxbpr-coreutils-9.5.drv","description":"GNU Core Utilities","group":"toplevel","install_id":"coreutils","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"coreutils-9.5","outputs":{"info":"/nix/store/jgslj3bb2rs55xaaxarqwsg7bppfxg8p-coreutils-9.5-info","out":"/nix/store/mw0amk6q5v2401y3s8zg7hxa2v0ia6vw-coreutils-9.5"},"outputs_to_install":["out"],"pname":"coreutils","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":false,"version":"9.5"},{"attr_path":"coreutils","broken":false,"derivation":"/nix/store/57hlz5fnvfgljivf7p18fmcl1yp6d29z-coreutils-9.5.drv","description":"GNU Core Utilities","group":"toplevel","install_id":"coreutils","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"coreutils-9.5","outputs":{"debug":"/nix/store/73i7cdbz2w862wx1gfxxvyrw95rmmwl3-coreutils-9.5-debug","info":"/nix/store/p1mj9zdizsa605xsy3jjx4db4ya1wnix-coreutils-9.5-info","out":"/nix/store/0kg70swgpg45ipcz3pr2siidq9fn6d77-coreutils-9.5"},"outputs_to_install":["out"],"pname":"coreutils","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":false,"version":"9.5"},{"attr_path":"semver-tool","broken":false,"derivation":"/nix/store/96ycr8hy606finy8slal0112gm0l3my6-semver-tool-3.4.0.drv","description":"semver bash implementation","group":"toplevel","install_id":"semver-tool","license":"Apache-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"semver-tool-3.4.0","outputs":{"out":"/nix/store/14yvvzc2ss3bdxg89zhlwa2nbfabkfmr-semver-tool-3.4.0"},"outputs_to_install":["out"],"pname":"semver-tool","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":false,"version":"3.4.0"},{"attr_path":"semver-tool","broken":false,"derivation":"/nix/store/r58gj8dpcqffcdq47bpzb2fw2l04c5x3-semver-tool-3.4.0.drv","description":"semver bash implementation","group":"toplevel","install_id":"semver-tool","license":"Apache-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"semver-tool-3.4.0","outputs":{"out":"/nix/store/agygw4y0sckzyyhrzi2b0g1k92l2bqp3-semver-tool-3.4.0"},"outputs_to_install":["out"],"pname":"semver-tool","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":false,"version":"3.4.0"},{"attr_path":"semver-tool","broken":false,"derivation":"/nix/store/6fv8frsrg3dvwvy5ryx42cbcilggv3gi-semver-tool-3.4.0.drv","description":"semver bash implementation","group":"toplevel","install_id":"semver-tool","license":"Apache-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"semver-tool-3.4.0","outputs":{"out":"/nix/store/nipg5a52v8z4mxbpgjjq6ylncvjpv51j-semver-tool-3.4.0"},"outputs_to_install":["out"],"pname":"semver-tool","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":false,"version":"3.4.0"},{"attr_path":"semver-tool","broken":false,"derivation":"/nix/store/l6z949vly86if915vikq695q43zvn5rm-semver-tool-3.4.0.drv","description":"semver bash implementation","group":"toplevel","install_id":"semver-tool","license":"Apache-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"semver-tool-3.4.0","outputs":{"out":"/nix/store/z6vg6rkx1nsqrfq11hdqyfjzlpxc9db1-semver-tool-3.4.0"},"outputs_to_install":["out"],"pname":"semver-tool","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":false,"version":"3.4.0"},{"attr_path":"which","broken":false,"derivation":"/nix/store/mda6wiyy8dx8272z259y8yv47s6lg1bi-which-2.21.drv","description":"Shows the full path of (shell) commands","group":"toplevel","install_id":"which","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"which-2.21","outputs":{"out":"/nix/store/cj0cxx9nz9wzfb11p4cgx1a1igppplvw-which-2.21"},"outputs_to_install":["out"],"pname":"which","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":false,"version":"2.21"},{"attr_path":"which","broken":false,"derivation":"/nix/store/6knb8pgd2vnsdbrxisnzybg3annx5cic-which-2.21.drv","description":"Shows the full path of (shell) commands","group":"toplevel","install_id":"which","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"which-2.21","outputs":{"out":"/nix/store/6dijyk860kpfbsipk147sz177aa2qjwc-which-2.21"},"outputs_to_install":["out"],"pname":"which","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":false,"version":"2.21"},{"attr_path":"which","broken":false,"derivation":"/nix/store/0cf3hhdivb0bbwb9nksqdnkpgrdlxw65-which-2.21.drv","description":"Shows the full path of (shell) commands","group":"toplevel","install_id":"which","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"which-2.21","outputs":{"out":"/nix/store/5zvkxaqr0ihiic42ngnjb9cy44120pi9-which-2.21"},"outputs_to_install":["out"],"pname":"which","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":false,"version":"2.21"},{"attr_path":"which","broken":false,"derivation":"/nix/store/7rpzsplw6amzhrxbipx7yf6yhqays7an-which-2.21.drv","description":"Shows the full path of (shell) commands","group":"toplevel","install_id":"which","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"which-2.21","outputs":{"out":"/nix/store/8wgpy20nx6ainhjnirb044k9chv0bbkj-which-2.21"},"outputs_to_install":["out"],"pname":"which","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":false,"version":"2.21"}]} \ No newline at end of file diff --git a/cassandra/.flox/env/manifest.toml b/cassandra/.flox/env/manifest.toml new file mode 100644 index 0000000..db5a8ed --- /dev/null +++ b/cassandra/.flox/env/manifest.toml @@ -0,0 +1,96 @@ +version = 1 + + +[install] +coreutils.pkg-path = "coreutils" +which.pkg-path = "which" +semver-tool.pkg-path = "semver-tool" + +# Cassandra +cassandra.pkg-path = "cassandra_4" +#cassandra.pkg-path = "cassandra_3_0" +#cassandra.pkg-path = "cassandra_2_2" +#cassandra.pkg-path = "cassandra_2_1" +#cassandra.pkg-path = "cassandra_3_11" + + +[vars] +CASSANDRA_HOST="127.0.0.1" +CASSANDRA_PORT="19042" +CASSANDRA_SEED_ADDRS = "127.0.0.1" # comma separated +CASSANDRA_CLUSTER_NAME = "My Cluster" +CASSANDRA_ALLOW_CLIENTS = "true" +JVM_OPTS= "" + + +[hook] +on-activate = ''' + +export CASSANDRA_CACHE="$FLOX_ENV_CACHE/cassandra" +export CASSANDRA_CONFIG_FILE="$CASSANDRA_CACHE/cassandra.yaml" + +if [[ ! -d "$CASSANDRA_CACHE" ]]; then + mkdir -p "$CASSANDRA_CACHE" +fi + +CASSANDRA_PATH="$(realpath $(which cassandra))" +CASSANDRA_VERSION="${CASSANDRA_PATH:54:-14}" +# Only for cassandra >=4.0.0 +if [[ "$(semver compare "$CASSANDRA_VERSION" "4.0.0")" != "-1" ]]; then + JVM_OPTS="$JVM_OPTS -Xlog:gc=warning,heap*=warning,age*=warning,safepoint=warning,promotion*=warning" +fi + +if [[ ! -f "$CASSANDRA_CONFIG_FILE" ]]; then + + tee -a $CASSANDRA_CONFIG_FILE > /dev/null << EOF +listen_address: "$CASSANDRA_HOST" +native_transport_port: "$CASSANDRA_PORT" +start_native_transport: "$CASSANDRA_ALLOW_CLIENTS" +cluster_name: "$CASSANDRA_CLUSTER_NAME" +data_file_directories: + - "$CASSANDRA_CACHE/data" +commitlog_directory: "$CASSANDRA_CACHE/commitlog" +saved_caches_directory: "$CASSANDRA_CACHE/saved_caches" +hints_directory: "$CASSANDRA_CACHE/hints" +seed_provider: + - class_name: "org.apache.cassandra.locator.SimpleSeedProvider" + parameters: + - seeds: "$CASSANDRA_SEED_ADDRS" +commitlog_sync: "batch" +commitlog_sync_batch_window_in_ms: 2 +partitioner: "org.apache.cassandra.dht.Murmur3Partitioner" +endpoint_snitch: "SimpleSnitch" +EOF + +fi +''' + + +[profile] +common = ''' +echo "" +echo " ╔═══════════════════════════════════════════════╗" +echo " ║ ║" +echo " ║ Start Cassandra in the background: ║" +echo " ║ 👉 flox services start ║" +echo " ║ 👉 flox activate --start-services ║" +echo " ║ ║" +echo " ║ Try to connect to Cassandra: ║" +echo " ║ 👉 cqlsh \$CASSANDRA_HOST \$CASSANDRA_PORT \ ║" +echo " ║ -e \"SELECT ...;\" ║" +echo " ║ ║" +echo " ╚═══════════════════════════════════════════════╝" +echo "" +''' + +[services] +cassandra.command = "cassandra -Dcassandra.config=file://$CASSANDRA_CONFIG_FILE -f" + + +[options] +systems = [ + "aarch64-darwin", + "aarch64-linux", + "x86_64-darwin", + "x86_64-linux", +] diff --git a/cassandra/test.sh b/cassandra/test.sh new file mode 100755 index 0000000..c5da715 --- /dev/null +++ b/cassandra/test.sh @@ -0,0 +1,42 @@ +#!/usr/bin/env bash + +set -eo pipefail + +if ! command -v cqlsh 2>&1 >/dev/null +then + echo "Error: 'cqlsh' command could not be found." + exit 1 +fi + +if ! command -v nodetool 2>&1 >/dev/null +then + echo "Error: 'nodetool' command could not be found." + exit 1 +fi + +is_cassandra_up() { + nodetool status > /dev/null 2>&1 +} + +# Wait until Cassandra is up +echo -n "Waiting for Cassandra to start .." +until is_cassandra_up; do + echo -n ".." + sleep 1 +done +echo -n "\n" + + +echo ">>> flox services status" +flox services status + +echo ">>> flox services logs cassandra" +flox services logs cassandra + +if cqlsh -e "SELECT now() FROM system.local;" $CASSANDRA_HOST $CASSANDRA_PORT; then + echo + echo ">>> Cassandra is running." +else + echo "Error: Something went wrong." + exit 1 +fi diff --git a/direnv/.flox/.gitignore b/direnv/.flox/.gitignore new file mode 100644 index 0000000..3ed9fa4 --- /dev/null +++ b/direnv/.flox/.gitignore @@ -0,0 +1,3 @@ +run/ +cache/ +lib/ diff --git a/direnv/.flox/env.json b/direnv/.flox/env.json new file mode 100644 index 0000000..f2f3aa1 --- /dev/null +++ b/direnv/.flox/env.json @@ -0,0 +1,4 @@ +{ + "name": "direnv", + "version": 1 +} \ No newline at end of file diff --git a/direnv/.flox/env/manifest.lock b/direnv/.flox/env/manifest.lock new file mode 100644 index 0000000..583a272 --- /dev/null +++ b/direnv/.flox/env/manifest.lock @@ -0,0 +1,169 @@ +{ + "lockfile-version": 1, + "manifest": { + "version": 1, + "install": { + "direnv": { + "pkg-path": "direnv", + "pkg-group": null, + "priority": null, + "version": null, + "systems": null + }, + "gum": { + "pkg-path": "gum", + "pkg-group": null, + "priority": null, + "version": null, + "systems": null + } + }, + "vars": { + "DIRENV_LOG_FORMAT": "", + "FLOX_DIRENV_EXT_HASH": "0awwzi4k3v1wvfaiyd6vlcc68ixq0fw03apbdm6vf1x8wrv2wpdp", + "FLOX_DIRENV_EXT_URL": "https://raw.githubusercontent.com/flox/flox-direnv/v1.1.0/direnv.rc" + }, + "hook": { + "on-activate": " #\n # Make sure the flox-direnv extension is installed\n #\n\n temp_location=$(mktemp)\n target_location=\"$HOME/.config/direnv/lib/flox-direnv.sh\"\n\n # If it's installed and matches the hash, return from the hook and continue shell init\n if [ -f \"$target_location\" ] && [ \"$(nix-hash --type sha256 --base32 $target_location)\" == \"$FLOX_DIRENV_EXT_HASH\" ]; then\n echo \"🤖 This shell now has direnv enabled.\"\n return\n fi\n\n # Grab the extension script into a temp file and check the hash\n gum spin --spinner dot --title \"Downloading extension\" -- curl -so \"$temp_location\" \"$FLOX_DIRENV_EXT_URL\"\n hash=$(nix-hash --type sha256 --base32 \"$temp_location\")\n\n # If what we downloaded matches the hash, put it into place\n if [ \"$hash\" == \"$FLOX_DIRENV_EXT_HASH\" ]; then\n mkdir -p $(dirname \"$target_location\")\n cat $temp_location > $target_location\n echo \"✅ Extension installed in ~/.config/direnv/lib/\"\n else\n echo \"🚨 Could not validate downloaded extension\"\n return\n fi\n echo \"🤖 direnv enabled\"\n" + }, + "profile": { + "common": null, + "bash": " eval \"$(direnv hook bash)\"\n", + "zsh": " eval \"$(direnv hook zsh)\"\n\n # TODO: Figure out how to get this working across all the shells\n floxit() {\n\n #\n # If we are in a directory with a .flox, let's make a matching\n # .envrc that activates it and add to the direnv allowlist.\n #\n # (Asking on each step, of course!)\n #\n\n if [ -d \".flox\" ]; then # TODO: better way to validate?\n FILE=\".envrc\"\n LINE='use flox'\n \n echo\n if [ -f $FILE ] && grep -qxF \"$LINE\" \"$FILE\"; then\n echo \"This directory is already configured for direnv ✨\"\n else\n echo \"This directory has a Flox environment, lucky you! 🌟\"\n echo\n\n # Ask whether to add the line, in case this was run accidentally\n if gum confirm \"Add Flox activation to .envrc?\" --default=true --affirmative \"Yep!\" --negative \"Not now\"; then\n if [ -f $FILE ]; then\n echo \"$LINE\" >> \"$FILE\"\n else\n echo \"$LINE\" > \"$FILE\"\n fi\n echo \"✅ Added Flox activation to .envrc\"\n\n # Ask whether to add to allowlist, we want this explicit\n if gum confirm \"Add this directory to direnv's allowlist?\" --default=true --affirmative \"Yes\" --negative \"Not now\"; then\n $FLOX_ENV/bin/direnv allow .\n echo \"✅ Added this directory to the direnv allowlist\"\n fi\n fi\n fi\n else\n echo \"This directory does not contain a Flox environment.\"\n fi\n echo\n }\n", + "fish": "direnv hook fish | source", + "tcsh": "eval `direnv hook tcsh`" + }, + "options": { + "systems": [ + "x86_64-linux", + "aarch64-darwin" + ], + "allow": { + "unfree": null, + "broken": null, + "licenses": [] + }, + "semver": { + "allow-pre-releases": null + } + } + }, + "packages": [ + { + "attr_path": "direnv", + "broken": false, + "derivation": "/nix/store/0k7knzscb3g84nnsvp8g6nl3l5q989as-direnv-2.34.0.drv", + "description": "Shell extension that manages your environment", + "install_id": "direnv", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=00d80d13810dbfea8ab4ed1009b09100cca86ba8", + "name": "direnv-2.34.0", + "pname": "direnv", + "rev": "00d80d13810dbfea8ab4ed1009b09100cca86ba8", + "rev_count": 646099, + "rev_date": "2024-07-01T15:47:52Z", + "scrape_date": "2024-07-03T00:14:18Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "2.34.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/q161ialkxk9anr9z7adbi9qwc43s7819-direnv-2.34.0" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "direnv", + "broken": false, + "derivation": "/nix/store/39hl9fhip29wmdf4hsn0b15s9mm6fvfx-direnv-2.34.0.drv", + "description": "Shell extension that manages your environment", + "install_id": "direnv", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=00d80d13810dbfea8ab4ed1009b09100cca86ba8", + "name": "direnv-2.34.0", + "pname": "direnv", + "rev": "00d80d13810dbfea8ab4ed1009b09100cca86ba8", + "rev_count": 646099, + "rev_date": "2024-07-01T15:47:52Z", + "scrape_date": "2024-07-03T00:14:18Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "2.34.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/q71rzcnj4kpv6pp7alasws5si5dp216c-direnv-2.34.0" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "gum", + "broken": false, + "derivation": "/nix/store/j3iqzlix25py9141hlnnvj397244gsrw-gum-0.14.1.drv", + "description": "Tasty Bubble Gum for your shell", + "install_id": "gum", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=00d80d13810dbfea8ab4ed1009b09100cca86ba8", + "name": "gum-0.14.1", + "pname": "gum", + "rev": "00d80d13810dbfea8ab4ed1009b09100cca86ba8", + "rev_count": 646099, + "rev_date": "2024-07-01T15:47:52Z", + "scrape_date": "2024-07-03T00:14:18Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.14.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/kdlpj359v1bzjya79j8iwapg0swzm8mh-gum-0.14.1" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "gum", + "broken": false, + "derivation": "/nix/store/r3nxwiiq30rljqj31x16kbxdplvsyv4j-gum-0.14.1.drv", + "description": "Tasty Bubble Gum for your shell", + "install_id": "gum", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=00d80d13810dbfea8ab4ed1009b09100cca86ba8", + "name": "gum-0.14.1", + "pname": "gum", + "rev": "00d80d13810dbfea8ab4ed1009b09100cca86ba8", + "rev_count": 646099, + "rev_date": "2024-07-01T15:47:52Z", + "scrape_date": "2024-07-03T00:14:18Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.14.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/wrwq2wp1b37aab7g84mwfjrck5qmbdwq-gum-0.14.1" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + } + ] +} \ No newline at end of file diff --git a/direnv/.flox/env/manifest.toml b/direnv/.flox/env/manifest.toml new file mode 100644 index 0000000..707ae57 --- /dev/null +++ b/direnv/.flox/env/manifest.toml @@ -0,0 +1,110 @@ +# +# This is a flox environment manifest. +# Visit flox.dev/docs/concepts/manifest/ +# or see flox-edit(1) for more information +# +version = 1 + +[install] +direnv.pkg-path = "direnv" +gum.pkg-path = "gum" + +[vars] +# It would be better if there were a way to have *less* output +# instead of *no* output, but this is still unresolved in direnv +DIRENV_LOG_FORMAT="" + +# The location of the flox-direnv extension to be installed +FLOX_DIRENV_EXT_URL="https://raw.githubusercontent.com/flox/flox-direnv/v1.1.0/direnv.rc" +FLOX_DIRENV_EXT_HASH="0awwzi4k3v1wvfaiyd6vlcc68ixq0fw03apbdm6vf1x8wrv2wpdp" + +[hook] +on-activate = ''' + # + # Make sure the flox-direnv extension is installed + # + + temp_location=$(mktemp) + target_location="$HOME/.config/direnv/lib/flox-direnv.sh" + + # If it's installed and matches the hash, return from the hook and continue shell init + if [ -f "$target_location" ] && [ "$(nix-hash --type sha256 --base32 $target_location)" == "$FLOX_DIRENV_EXT_HASH" ]; then + echo "🤖 This shell now has direnv enabled." + return + fi + + # Grab the extension script into a temp file and check the hash + gum spin --spinner dot --title "Downloading extension" -- curl -so "$temp_location" "$FLOX_DIRENV_EXT_URL" + hash=$(nix-hash --type sha256 --base32 "$temp_location") + + # If what we downloaded matches the hash, put it into place + if [ "$hash" == "$FLOX_DIRENV_EXT_HASH" ]; then + mkdir -p $(dirname "$target_location") + cat $temp_location > $target_location + echo "✅ Extension installed in ~/.config/direnv/lib/" + else + echo "🚨 Could not validate downloaded extension" + return + fi + echo "🤖 direnv enabled" +''' + +[profile] +fish = "direnv hook fish | source" +tcsh = "eval `direnv hook tcsh`" + +bash = """ + eval "$(direnv hook bash)" +""" + +zsh = """ + eval "$(direnv hook zsh)" + + # TODO: Figure out how to get this working across all the shells + floxit() { + + # + # If we are in a directory with a .flox, let's make a matching + # .envrc that activates it and add to the direnv allowlist. + # + # (Asking on each step, of course!) + # + + if [ -d ".flox" ]; then # TODO: better way to validate? + FILE=".envrc" + LINE='use flox' + + echo + if [ -f $FILE ] && grep -qxF "$LINE" "$FILE"; then + echo "This directory is already configured for direnv ✨" + else + echo "This directory has a Flox environment, lucky you! 🌟" + echo + + # Ask whether to add the line, in case this was run accidentally + if gum confirm "Add Flox activation to .envrc?" --default=true --affirmative "Yep!" --negative "Not now"; then + if [ -f $FILE ]; then + echo "$LINE" >> "$FILE" + else + echo "$LINE" > "$FILE" + fi + echo "✅ Added Flox activation to .envrc" + + # Ask whether to add to allowlist, we want this explicit + if gum confirm "Add this directory to direnv's allowlist?" --default=true --affirmative "Yes" --negative "Not now"; then + $FLOX_ENV/bin/direnv allow . + echo "✅ Added this directory to the direnv allowlist" + fi + fi + fi + else + echo "This directory does not contain a Flox environment." + fi + echo + } +""" + +[options] +systems = ["x86_64-linux", "aarch64-darwin"] + + diff --git a/direnv/manifest.toml b/direnv/manifest.toml new file mode 100644 index 0000000..aa1c044 --- /dev/null +++ b/direnv/manifest.toml @@ -0,0 +1,111 @@ +# +# This is a flox environment manifest. +# Visit flox.dev/docs/concepts/manifest/ +# or see flox-edit(1) for more information +# +version = 1 + +[install] +direnv.pkg-path = "direnv" +gum.pkg-path = "gum" + +[vars] +# It would be better if there were a way to have *less* output +# instead of *no* output, but this is still unresolved in direnv +DIRENV_LOG_FORMAT="" + +# The location of the flox-direnv extension to be installed +FLOX_DIRENV_EXT_URL="https://raw.githubusercontent.com/flox/flox-direnv/v1.1.0/direnv.rc" +FLOX_DIRENV_EXT_HASH="0awwzi4k3v1wvfaiyd6vlcc68ixq0fw03apbdm6vf1x8wrv2wpdp" + +[hook] +on-activate = ''' + # + # Make sure the flox-direnv extension is installed + # + + temp_location=$(mktemp) + target_location="$HOME/.config/direnv/lib/flox-direnv.sh" + + # If it's installed and matches the hash, return from the hook and continue shell init + if [ -f "$target_location" ] && [ "$(nix-hash --type sha256 --base32 $target_location)" == "$FLOX_DIRENV_EXT_HASH" ]; then + echo "🤖 This shell now has direnv enabled." + return + fi + + # Grab the extension script into a temp file and check the hash + gum spin --spinner dot --title "Downloading extension" -- curl -so "$temp_location" "$FLOX_DIRENV_EXT_URL" + hash=$(nix-hash --type sha256 --base32 "$temp_location") + + # If what we downloaded matches the hash, put it into place + if [ "$hash" == "$FLOX_DIRENV_EXT_HASH" ]; then + mkdir -p $(dirname "$target_location") + cat $temp_location > $target_location + echo "✅ Extension installed in ~/.config/direnv/lib/" + else + echo "🚨 Could not validate downloaded extension" + return + fi + echo "🤖 direnv enabled" +''' + +[profile] +fish = "direnv hook fish | source" +tcsh = "eval `direnv hook tcsh`" + +bash = """ + eval "$(direnv hook bash)" +""" + +zsh = """ + eval "$(direnv hook zsh)" + + # TODO: Figure out how to get this working across all the shells + floxit() { + + # + # If we are in a directory with a .flox, let's make a matching + # .envrc that activates it and add to the direnv allowlist. + # + # (Asking on each step, of course!) + # + + if [ -d ".flox" ]; then # TODO: better way to validate? + FILE=".envrc" + LINE='use flox' + + echo + if [ -f $FILE ] && grep -qxF "$LINE" "$FILE"; then + echo "This directory is already configured for direnv ✨" + else + echo "This directory has a Flox environment, lucky you! 🌟" + echo + + # Ask whether to add the line, in case this was run accidentally + if gum confirm "Add Flox activation to .envrc?" --default=true --affirmative "Yep!" --negative "Not now"; then + if [ -f $FILE ]; then + echo "$LINE" >> "$FILE" + else + echo "$LINE" > "$FILE" + fi + echo "✅ Added Flox activation to .envrc" + + # Ask whether to add to allowlist, we want this explicit + if gum confirm "Add this directory to direnv's allowlist?" --default=true --affirmative "Yes" --negative "Not now"; then + $FLOX_ENV/bin/direnv allow . + echo "✅ Added this directory to the direnv allowlist" + fi + fi + fi + else + echo "This directory does not contain a Flox environment." + fi + echo + } +""" + +[options] +systems = ["x86_64-linux", "aarch64-darwin"] + + + diff --git a/elasticsearch/.flox/.gitignore b/elasticsearch/.flox/.gitignore new file mode 100644 index 0000000..15d71a1 --- /dev/null +++ b/elasticsearch/.flox/.gitignore @@ -0,0 +1,4 @@ +run/ +cache/ +lib/ +log/ diff --git a/elasticsearch/.flox/env.json b/elasticsearch/.flox/env.json new file mode 100644 index 0000000..dbf0c28 --- /dev/null +++ b/elasticsearch/.flox/env.json @@ -0,0 +1,4 @@ +{ + "name": "elasticsearch", + "version": 1 +} \ No newline at end of file diff --git a/elasticsearch/.flox/env/manifest.lock b/elasticsearch/.flox/env/manifest.lock new file mode 100644 index 0000000..54a3dab --- /dev/null +++ b/elasticsearch/.flox/env/manifest.lock @@ -0,0 +1 @@ +{"lockfile-version":1,"manifest":{"hook":{"on-activate":"\nexport ES_HOME=\"$FLOX_ENV_CACHE/elasticsearch\"\nexport ES_PATH_CONF=\"$ES_HOME/config\"\nexport ES_CONFIG_FILE=\"$ES_PATH_CONF/elasticsearch.yml\"\nexport ES_CONFIG_LOG_FILE=\"$ES_PATH_CONF/log4j2.properties\"\nexport ES_CONFIG_JVM_FILE=\"$ES_PATH_CONF/jvm.options\"\nexport ES_BIN=\"$(realpath $(which elasticsearch))\"\nexport ES_PKG=\"${ES_BIN::-17}\"\n\nif [[ ! -d \"$ES_HOME\" ]]; then\n mkdir -m 0700 -p \"$ES_HOME\"\nfi\n\nrm -f \"$ES_HOME/lib\" && ln -sf \"$ES_PKG/lib\" \"$ES_HOME/lib\"\nrm -f \"$ES_HOME/modules\" && ln -sf \"$ES_PKG/modules\" \"$ES_HOME/modules\"\n\n# Elasticsearch configuration\nmkdir -m 0700 -p \"$ES_HOME/config\"\nrm -f \"$ES_CONFIG_FILE\"\ntee -a \"$ES_CONFIG_FILE\" > /dev/null << EOF\nnetwork.host: \"$ES_ADDR\"\nhttp.port: $ES_PORT\ncluster.name: \"$ES_CLUSTER_NAME\"\ndiscovery.type: \"single-node\"\ntransport.port: $ES_TRANSPORT_PORT\nEOF\n\n# Logging configuration\nrm -f \"$ES_HOME/logging.yml\" \"$ES_CONFIG_LOG_FILE\"\ntee -a \"$ES_CONFIG_LOG_FILE\" > /dev/null << EOF\nlogger.action.name = org.elasticsearch.action\nlogger.action.level = info\nappender.console.type = Console\nappender.console.name = console\nappender.console.layout.type = PatternLayout\nappender.console.layout.pattern = [%d{ISO8601}][%-5p][%-25c{1.}] %marker%m%n\nrootLogger.level = info\nrootLogger.appenderRef.console.ref = console\ningest.geoip.downloader.enabled = false\nEOF\n\n# JVM configuration\nrm -f \"$ES_CONFIG_JVM_FILE\"\ncp \"$ES_PKG/config/jvm.options\" \"$ES_CONFIG_JVM_FILE\"\n\n# Scripts\nmkdir -p \"$ES_HOME/scripts\"\n\n# Plugins\nmkdir -p \"$ES_HOME/plugins\"\n\n# Create log dir\nmkdir -m 0700 -p \"$ES_HOME/logs\"\n"},"install":{"coreutils":{"pkg-path":"coreutils"},"curl":{"pkg-path":"curl"},"elasticsearch":{"pkg-path":"elasticsearch7"},"jq":{"pkg-path":"jq"},"which":{"pkg-path":"which"}},"options":{"allow":{"licenses":[]},"semver":{},"systems":["aarch64-darwin","aarch64-linux","x86_64-darwin","x86_64-linux"]},"profile":{"common":"echo \"\"\necho \" ╔═════════════════════════════════════════════╗\"\necho \" ║ ║\"\necho \" ║ Start Elasticsearch in the background: ║\"\necho \" ║ 👉 flox services start ║\"\necho \" ║ 👉 flox activate --start-services ║\"\necho \" ║ ║\"\necho \" ║ Point your Elasticsearch client to: ║\"\necho \" ║ 👉 http://\\$ES_ADDR:\\$ES_PORT ║\"\necho \" ║ ║\"\necho \" ╚═════════════════════════════════════════════╝\"\necho \"\"\n"},"services":{"elasticsearch":{"command":"elasticsearch","is-daemon":null,"shutdown":null,"systems":null,"vars":null}},"vars":{"ES_ADDR":"127.0.0.1","ES_CLUSTER_NAME":"elasticsearch","ES_JAVA_OPTS":"","ES_PORT":"19200","ES_TRANSPORT_PORT":"19300"},"version":1},"packages":[{"attr_path":"coreutils","broken":false,"derivation":"/nix/store/55ms78kc0r5ncpa13wbpya7cgi6i6zx0-coreutils-9.5.drv","description":"GNU Core Utilities","group":"toplevel","install_id":"coreutils","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"coreutils-9.5","outputs":{"info":"/nix/store/ps81dqzr6fxafmxih1834v545dh4apjm-coreutils-9.5-info","out":"/nix/store/1l41471x6rlf7l544s1bxkqqgpprd28m-coreutils-9.5"},"outputs_to_install":["out"],"pname":"coreutils","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":false,"version":"9.5"},{"attr_path":"coreutils","broken":false,"derivation":"/nix/store/fbnqx9d9skgp22g0xkc53jgqy0804afb-coreutils-9.5.drv","description":"GNU Core Utilities","group":"toplevel","install_id":"coreutils","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"coreutils-9.5","outputs":{"debug":"/nix/store/g66h1ajc1wx18milg2290yylbivq2jhd-coreutils-9.5-debug","info":"/nix/store/y311wv5dlqakkq6hr3yl6zmiiprxb3v5-coreutils-9.5-info","out":"/nix/store/ssqdazslv2wjpybnk0pjwnpq0dfpa6q2-coreutils-9.5"},"outputs_to_install":["out"],"pname":"coreutils","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":false,"version":"9.5"},{"attr_path":"coreutils","broken":false,"derivation":"/nix/store/r3vjhg84a2d0ydf52038pic8wibaxbpr-coreutils-9.5.drv","description":"GNU Core Utilities","group":"toplevel","install_id":"coreutils","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"coreutils-9.5","outputs":{"info":"/nix/store/jgslj3bb2rs55xaaxarqwsg7bppfxg8p-coreutils-9.5-info","out":"/nix/store/mw0amk6q5v2401y3s8zg7hxa2v0ia6vw-coreutils-9.5"},"outputs_to_install":["out"],"pname":"coreutils","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":false,"version":"9.5"},{"attr_path":"coreutils","broken":false,"derivation":"/nix/store/57hlz5fnvfgljivf7p18fmcl1yp6d29z-coreutils-9.5.drv","description":"GNU Core Utilities","group":"toplevel","install_id":"coreutils","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"coreutils-9.5","outputs":{"debug":"/nix/store/73i7cdbz2w862wx1gfxxvyrw95rmmwl3-coreutils-9.5-debug","info":"/nix/store/p1mj9zdizsa605xsy3jjx4db4ya1wnix-coreutils-9.5-info","out":"/nix/store/0kg70swgpg45ipcz3pr2siidq9fn6d77-coreutils-9.5"},"outputs_to_install":["out"],"pname":"coreutils","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":false,"version":"9.5"},{"attr_path":"curl","broken":false,"derivation":"/nix/store/f387f71iq7pd00mqllca6bwx8rrwyh08-curl-8.9.1.drv","description":"Command line tool for transferring files with URL syntax","group":"toplevel","install_id":"curl","license":"curl","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"curl-8.9.1","outputs":{"bin":"/nix/store/b9vcp70yhf5s0qadg2i1pdnzi7mfzkx4-curl-8.9.1-bin","dev":"/nix/store/g7iznpcciawm2alm7hn9qf2x2nz9gcld-curl-8.9.1-dev","devdoc":"/nix/store/g3rwsivls1y3b9iyzzgda5s3nb0pnvkg-curl-8.9.1-devdoc","man":"/nix/store/nlnz9711av6sb5mcx6slmkbngg5kd57r-curl-8.9.1-man","out":"/nix/store/dijbmwxxhizpgva2idb261ic4f0r47cq-curl-8.9.1"},"outputs_to_install":["bin","man"],"pname":"curl","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":false,"version":"8.9.1"},{"attr_path":"curl","broken":false,"derivation":"/nix/store/a6cfvi69wfq4kdl00b1b7k4vmjy8grsp-curl-8.9.1.drv","description":"Command line tool for transferring files with URL syntax","group":"toplevel","install_id":"curl","license":"curl","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"curl-8.9.1","outputs":{"bin":"/nix/store/jz56y8dn9vyp5qxc2gvs99isis3ql5ml-curl-8.9.1-bin","debug":"/nix/store/jvjycva14kpdk2yyj3b9hpyi0lgl1rf1-curl-8.9.1-debug","dev":"/nix/store/cgshc8z3alwlyh3yv7bp7lv7hj4ny8mp-curl-8.9.1-dev","devdoc":"/nix/store/b2nzf7rzlrkbw5ha3admbpp2pks3izf2-curl-8.9.1-devdoc","man":"/nix/store/cqdyp0jrflbjbr6xcd5dlb704qkzh2sm-curl-8.9.1-man","out":"/nix/store/w431gagkp4phpi8dn9i7d02xxgjvmfpx-curl-8.9.1"},"outputs_to_install":["bin","man"],"pname":"curl","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":false,"version":"8.9.1"},{"attr_path":"curl","broken":false,"derivation":"/nix/store/b635nq6l21k7r8gk38lf8gkh5rwja36r-curl-8.9.1.drv","description":"Command line tool for transferring files with URL syntax","group":"toplevel","install_id":"curl","license":"curl","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"curl-8.9.1","outputs":{"bin":"/nix/store/zzz5688jdq269a7mi18al2zbqnmrd7d6-curl-8.9.1-bin","dev":"/nix/store/iw3jwk48gfg0s0lsz0qpz89paig14fsy-curl-8.9.1-dev","devdoc":"/nix/store/rj4x8krz9n9d6s0ys0x20s6wd2fq29pw-curl-8.9.1-devdoc","man":"/nix/store/ap0q2b6i3kx3f3mys9r6rp9kcry17rqj-curl-8.9.1-man","out":"/nix/store/rl0lg5swlzlsrmhmw7cgi46kbxwxngkh-curl-8.9.1"},"outputs_to_install":["bin","man"],"pname":"curl","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":false,"version":"8.9.1"},{"attr_path":"curl","broken":false,"derivation":"/nix/store/i6bhkmlxb71wbrljipj1bjga1rbxs6wn-curl-8.9.1.drv","description":"Command line tool for transferring files with URL syntax","group":"toplevel","install_id":"curl","license":"curl","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"curl-8.9.1","outputs":{"bin":"/nix/store/6r0bn0dkvlvhicyvair205s07m92dpaz-curl-8.9.1-bin","debug":"/nix/store/hprnrdjjf4ybw74hf0w852842zzyxq11-curl-8.9.1-debug","dev":"/nix/store/a49si5nv16sy1jaabryasl015w3s52rr-curl-8.9.1-dev","devdoc":"/nix/store/3w9135g8l2fqxjcdcqdn400gjigf7w5x-curl-8.9.1-devdoc","man":"/nix/store/4ph78zm36yji16fypdk08bcj3agaqwh5-curl-8.9.1-man","out":"/nix/store/x6ssc2mmx1kb52gchksqbzg5c2y0z7lf-curl-8.9.1"},"outputs_to_install":["bin","man"],"pname":"curl","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":false,"version":"8.9.1"},{"attr_path":"elasticsearch7","broken":false,"derivation":"/nix/store/klgd3iwrxljyls5pw931m6fcm8lf1j74-elasticsearch-7.17.16.drv","description":"Open Source, Distributed, RESTful Search Engine","group":"toplevel","install_id":"elasticsearch","license":"Elastic-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"elasticsearch-7.17.16","outputs":{"out":"/nix/store/fhpyh1k4k5v84hbkd3bhjc7lcrbxnkx1-elasticsearch-7.17.16"},"outputs_to_install":["out"],"pname":"elasticsearch7","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":true,"version":"elasticsearch-7.17.16"},{"attr_path":"elasticsearch7","broken":false,"derivation":"/nix/store/kxk5imfjmxwdhw9c8rvvnj2s1g2ndnz0-elasticsearch-7.17.16.drv","description":"Open Source, Distributed, RESTful Search Engine","group":"toplevel","install_id":"elasticsearch","license":"Elastic-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"elasticsearch-7.17.16","outputs":{"out":"/nix/store/n2n1j3rkliyrh6ln5pzz9sl97msxpbx1-elasticsearch-7.17.16"},"outputs_to_install":["out"],"pname":"elasticsearch7","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":true,"version":"elasticsearch-7.17.16"},{"attr_path":"elasticsearch7","broken":false,"derivation":"/nix/store/58dfwz4pk1a7672rvjc3vqskv0y6h4hv-elasticsearch-7.17.16.drv","description":"Open Source, Distributed, RESTful Search Engine","group":"toplevel","install_id":"elasticsearch","license":"Elastic-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"elasticsearch-7.17.16","outputs":{"out":"/nix/store/8a4bnha9h7zizxdjjp8w08j5sah78c92-elasticsearch-7.17.16"},"outputs_to_install":["out"],"pname":"elasticsearch7","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":true,"version":"elasticsearch-7.17.16"},{"attr_path":"elasticsearch7","broken":false,"derivation":"/nix/store/padqz76jlbpajrb6j8psz0mpl3rqhjlb-elasticsearch-7.17.16.drv","description":"Open Source, Distributed, RESTful Search Engine","group":"toplevel","install_id":"elasticsearch","license":"Elastic-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"elasticsearch-7.17.16","outputs":{"out":"/nix/store/w6m4b3hkycgy18mcncxcnk31hwvklmv2-elasticsearch-7.17.16"},"outputs_to_install":["out"],"pname":"elasticsearch7","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":true,"version":"elasticsearch-7.17.16"},{"attr_path":"jq","broken":false,"derivation":"/nix/store/54vripjg2szw4n8yb2mprg1q0yfg0a97-jq-1.7.1.drv","description":"Lightweight and flexible command-line JSON processor","group":"toplevel","install_id":"jq","license":"MIT","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"jq-1.7.1","outputs":{"bin":"/nix/store/9h78n0xjxgjmmb37bi8ca6wyikx357fn-jq-1.7.1-bin","dev":"/nix/store/87lmnqwvgrbr4mymv790ysnp1fp9dbvc-jq-1.7.1-dev","doc":"/nix/store/dgrfyris3jajhimxw0p5qwpmdwsz0k6m-jq-1.7.1-doc","lib":"/nix/store/1xx96kscxipvqg02hg5zhkc3p6jg8dax-jq-1.7.1-lib","man":"/nix/store/gxakkni5fxplsxkhlpd1y39z848r9w1k-jq-1.7.1-man","out":"/nix/store/49pvp5zyzs3kqafdrvl5l8zrr5gxg2ha-jq-1.7.1"},"outputs_to_install":["bin","man"],"pname":"jq","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":false,"version":"1.7.1"},{"attr_path":"jq","broken":false,"derivation":"/nix/store/04m8x3cyjrssj00mnfc9qijzvyhaf881-jq-1.7.1.drv","description":"Lightweight and flexible command-line JSON processor","group":"toplevel","install_id":"jq","license":"MIT","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"jq-1.7.1","outputs":{"bin":"/nix/store/d53sa7n91q32bj4n3d8yfih66w0cnybk-jq-1.7.1-bin","dev":"/nix/store/xwy0g4wfzibz2hv9gnrcmg4hncncg0gx-jq-1.7.1-dev","doc":"/nix/store/3scw7wdaz3mnigbqpir7yd81lfx4vb4a-jq-1.7.1-doc","lib":"/nix/store/ffrivwacr1y18qq3fyk5gqz4h99hncza-jq-1.7.1-lib","man":"/nix/store/m2q5jyh2ifvyy71054kvdq12bq1kny0q-jq-1.7.1-man","out":"/nix/store/hsrxl3njwwhi8zcbdrradmzdhf8q8b2c-jq-1.7.1"},"outputs_to_install":["bin","man"],"pname":"jq","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":false,"version":"1.7.1"},{"attr_path":"jq","broken":false,"derivation":"/nix/store/8qnc0ms6sqy7ia66mm4547dn51lqg53r-jq-1.7.1.drv","description":"Lightweight and flexible command-line JSON processor","group":"toplevel","install_id":"jq","license":"MIT","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"jq-1.7.1","outputs":{"bin":"/nix/store/vprdq5a3dk284s7blbxgaciqn90j5vgy-jq-1.7.1-bin","dev":"/nix/store/mz2z5g6xiji538wkxclm7hxjqcji8kj0-jq-1.7.1-dev","doc":"/nix/store/71lp09p1kdcdhk4xvs97w31ik0sjjimr-jq-1.7.1-doc","lib":"/nix/store/0lg1w92gx3aam7b1h311ssmjq63p3kd4-jq-1.7.1-lib","man":"/nix/store/b7g1b4d9bkrii1l08h7jm42m346rch3n-jq-1.7.1-man","out":"/nix/store/m8y9qhibbih84af3vqs4wl72k9dpyiyj-jq-1.7.1"},"outputs_to_install":["bin","man"],"pname":"jq","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":false,"version":"1.7.1"},{"attr_path":"jq","broken":false,"derivation":"/nix/store/njpha4fwzqa2f4zv4fzwbz4vnmq4d6rc-jq-1.7.1.drv","description":"Lightweight and flexible command-line JSON processor","group":"toplevel","install_id":"jq","license":"MIT","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"jq-1.7.1","outputs":{"bin":"/nix/store/x8jzsy0y1zk30mcvav2rh6lrw1gbzzy3-jq-1.7.1-bin","dev":"/nix/store/04ca5xwvasz6s3jg0k7njz6rzi0d225w-jq-1.7.1-dev","doc":"/nix/store/yfc9bsy7n9k66238s3cy7vw3cw1l1ap8-jq-1.7.1-doc","lib":"/nix/store/n2vk1zmfzy726amnpr96jibk4zaya6qq-jq-1.7.1-lib","man":"/nix/store/0jpj9xq83imjwhldsrmiyn8pp8wjazp5-jq-1.7.1-man","out":"/nix/store/7sy12xv4fwii421d920jxqx63c0ai3w3-jq-1.7.1"},"outputs_to_install":["bin","man"],"pname":"jq","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":false,"version":"1.7.1"},{"attr_path":"which","broken":false,"derivation":"/nix/store/mda6wiyy8dx8272z259y8yv47s6lg1bi-which-2.21.drv","description":"Shows the full path of (shell) commands","group":"toplevel","install_id":"which","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"which-2.21","outputs":{"out":"/nix/store/cj0cxx9nz9wzfb11p4cgx1a1igppplvw-which-2.21"},"outputs_to_install":["out"],"pname":"which","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":false,"version":"2.21"},{"attr_path":"which","broken":false,"derivation":"/nix/store/6knb8pgd2vnsdbrxisnzybg3annx5cic-which-2.21.drv","description":"Shows the full path of (shell) commands","group":"toplevel","install_id":"which","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"which-2.21","outputs":{"out":"/nix/store/6dijyk860kpfbsipk147sz177aa2qjwc-which-2.21"},"outputs_to_install":["out"],"pname":"which","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":false,"version":"2.21"},{"attr_path":"which","broken":false,"derivation":"/nix/store/0cf3hhdivb0bbwb9nksqdnkpgrdlxw65-which-2.21.drv","description":"Shows the full path of (shell) commands","group":"toplevel","install_id":"which","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"which-2.21","outputs":{"out":"/nix/store/5zvkxaqr0ihiic42ngnjb9cy44120pi9-which-2.21"},"outputs_to_install":["out"],"pname":"which","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":false,"version":"2.21"},{"attr_path":"which","broken":false,"derivation":"/nix/store/7rpzsplw6amzhrxbipx7yf6yhqays7an-which-2.21.drv","description":"Shows the full path of (shell) commands","group":"toplevel","install_id":"which","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093","name":"which-2.21","outputs":{"out":"/nix/store/8wgpy20nx6ainhjnirb044k9chv0bbkj-which-2.21"},"outputs_to_install":["out"],"pname":"which","priority":5,"rev":"30439d93eb8b19861ccbe3e581abf97bdc91b093","rev_count":684846,"rev_date":"2024-09-23T20:13:18Z","scrape_date":"2024-09-27T03:18:01Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":false,"version":"2.21"}]} \ No newline at end of file diff --git a/elasticsearch/.flox/env/manifest.toml b/elasticsearch/.flox/env/manifest.toml new file mode 100644 index 0000000..e21e299 --- /dev/null +++ b/elasticsearch/.flox/env/manifest.toml @@ -0,0 +1,107 @@ +version = 1 + + +[install] +coreutils.pkg-path = "coreutils" +which.pkg-path = "which" +jq.pkg-path = "jq" +curl.pkg-path = "curl" + +# Elasticsearch / Opensearch +elasticsearch.pkg-path = "elasticsearch7" +#elasticsearch.pkg-path = "elasticsearch6" +#elasticsearch.pkg-path = "opensearch" + +[vars] +ES_ADDR = "127.0.0.1" +ES_PORT = "19200" +ES_TRANSPORT_PORT = "19300" +ES_CLUSTER_NAME = "elasticsearch" +ES_JAVA_OPTS = "" + + +[hook] +on-activate = ''' + +export ES_HOME="$FLOX_ENV_CACHE/elasticsearch" +export ES_PATH_CONF="$ES_HOME/config" +export ES_CONFIG_FILE="$ES_PATH_CONF/elasticsearch.yml" +export ES_CONFIG_LOG_FILE="$ES_PATH_CONF/log4j2.properties" +export ES_CONFIG_JVM_FILE="$ES_PATH_CONF/jvm.options" +export ES_BIN="$(realpath $(which elasticsearch))" +export ES_PKG="${ES_BIN::-17}" + +if [[ ! -d "$ES_HOME" ]]; then + mkdir -m 0700 -p "$ES_HOME" +fi + +rm -f "$ES_HOME/lib" && ln -sf "$ES_PKG/lib" "$ES_HOME/lib" +rm -f "$ES_HOME/modules" && ln -sf "$ES_PKG/modules" "$ES_HOME/modules" + +# Elasticsearch configuration +mkdir -m 0700 -p "$ES_HOME/config" +rm -f "$ES_CONFIG_FILE" +tee -a "$ES_CONFIG_FILE" > /dev/null << EOF +network.host: "$ES_ADDR" +http.port: $ES_PORT +cluster.name: "$ES_CLUSTER_NAME" +discovery.type: "single-node" +transport.port: $ES_TRANSPORT_PORT +EOF + +# Logging configuration +rm -f "$ES_HOME/logging.yml" "$ES_CONFIG_LOG_FILE" +tee -a "$ES_CONFIG_LOG_FILE" > /dev/null << EOF +logger.action.name = org.elasticsearch.action +logger.action.level = info +appender.console.type = Console +appender.console.name = console +appender.console.layout.type = PatternLayout +appender.console.layout.pattern = [%d{ISO8601}][%-5p][%-25c{1.}] %marker%m%n +rootLogger.level = info +rootLogger.appenderRef.console.ref = console +ingest.geoip.downloader.enabled = false +EOF + +# JVM configuration +rm -f "$ES_CONFIG_JVM_FILE" +cp "$ES_PKG/config/jvm.options" "$ES_CONFIG_JVM_FILE" + +# Scripts +mkdir -p "$ES_HOME/scripts" + +# Plugins +mkdir -p "$ES_HOME/plugins" + +# Create log dir +mkdir -m 0700 -p "$ES_HOME/logs" +''' + +[profile] +common = ''' +echo "" +echo " ╔═════════════════════════════════════════════╗" +echo " ║ ║" +echo " ║ Start Elasticsearch in the background: ║" +echo " ║ 👉 flox services start ║" +echo " ║ 👉 flox activate --start-services ║" +echo " ║ ║" +echo " ║ Point your Elasticsearch client to: ║" +echo " ║ 👉 http://\$ES_ADDR:\$ES_PORT ║" +echo " ║ ║" +echo " ╚═════════════════════════════════════════════╝" +echo "" +''' + + +[services] +elasticsearch.command = "elasticsearch" + + +[options] +systems = [ + "aarch64-darwin", + "aarch64-linux", + "x86_64-darwin", + "x86_64-linux", +] diff --git a/elasticsearch/test.sh b/elasticsearch/test.sh new file mode 100755 index 0000000..0405a50 --- /dev/null +++ b/elasticsearch/test.sh @@ -0,0 +1,23 @@ +#!/usr/bin/env bash + +set -eo pipefail + +echo -n ">>> Waiting for Elasticsearch to start .." +until [[ "$(curl -s http://$ES_ADDR:$ES_PORT/_cluster/health | jq -r '.status')" == "green" ]]; do + echo -n ".." + sleep 1 +done +echo -n " STARTED\n" + +echo ">>> flox services status" +flox services status + +echo ">>> flox services logs elasticsearch" +flox services logs elasticsearch + +CLUSTER_NAME=$(curl -fsk http://$ES_ADDR:$ES_PORT | jq -r '.cluster_name' | xargs) +if [ "$CLUSTER_NAME" != "elasticsearch" ]; then + echo "Error: Something went wrong." + exit 1 +fi +echo ">>> Elasticsearch cluster name is ... $CLUSTER_NAME" diff --git a/flaim/.flox/.gitignore b/flaim/.flox/.gitignore new file mode 100644 index 0000000..3ed9fa4 --- /dev/null +++ b/flaim/.flox/.gitignore @@ -0,0 +1,3 @@ +run/ +cache/ +lib/ diff --git a/flaim/.flox/env.json b/flaim/.flox/env.json new file mode 100644 index 0000000..2c3ca06 --- /dev/null +++ b/flaim/.flox/env.json @@ -0,0 +1,4 @@ +{ + "name": "flaim", + "version": 1 +} \ No newline at end of file diff --git a/flaim/.flox/env/manifest.lock b/flaim/.flox/env/manifest.lock new file mode 100644 index 0000000..fe75d16 --- /dev/null +++ b/flaim/.flox/env/manifest.lock @@ -0,0 +1,785 @@ +{ + "lockfile-version": 1, + "manifest": { + "version": 1, + "install": { + "accelerate": { + "pkg-path": "python311Packages.accelerate", + "version": "python3.11-accelerate-0.32.0" + }, + "diffusers": { + "pkg-path": "python311Packages.diffusers", + "version": "python3.11-diffusers-0.29.2" + }, + "figlet": { + "pkg-path": "toilet" + }, + "gum": { + "pkg-path": "gum" + }, + "jupyter": { + "pkg-path": "python311Packages.jupyter" + }, + "pytorch-bin": { + "pkg-path": "python311Packages.pytorch-bin", + "version": "python3.11-torch-2.3.1" + }, + "sentencepiece": { + "pkg-path": "python311Packages.sentencepiece", + "version": "python3.11-sentencepiece-0.2.0" + }, + "transformers": { + "pkg-path": "python311Packages.transformers", + "version": "python3.11-transformers-4.44.0" + } + }, + "vars": { + "JUPYTER_SERVER_TOKEN": "floxfan123456", + "VIRTUAL_ENV_DISABLE_PROMPT": "1", + "generate_image": "[(importlib := __import__('importlib')), (warnings := importlib.import_module('warnings')), warnings.filterwarnings('ignore'), (sys := importlib.import_module('sys')), (torch := importlib.import_module('torch')), (__ol_mod_cbtwjvbiot := __import__('imgcat', globals(), locals(), ['imgcat'], 0)), (imgcat := __ol_mod_cbtwjvbiot.imgcat), (__ol_mod_ambwamhbvl := __import__('diffusers', globals(), locals(), ['StableDiffusionPipeline'], 0)), (StableDiffusionPipeline := __ol_mod_ambwamhbvl.StableDiffusionPipeline), (__ol_mod_xshmfbhacj := __import__('diffusers', globals(), locals(), ['logging'], 0)), (logging := __ol_mod_xshmfbhacj.logging), logging.set_verbosity(50), logging.disable_progress_bar(), (pipe := StableDiffusionPipeline.from_pretrained('IDKiro/sdxs-512-0.9', torch_dtype=torch.float32)), pipe.to('cuda') if torch.cuda.is_available() else pipe.to('mps') if torch.backends.mps.is_available() else ..., (prompt := (sys.argv[1] if len(sys.argv) > 1 else 'a fox in a henhouse')), pipe.set_progress_bar_config(disable=True), (image := pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0).images[0]), image.save(f'{prompt}.png'), imgcat(image)]", + "test_acceleration": "[(importlib := __import__('importlib')), (warnings := importlib.import_module('warnings')), warnings.filterwarnings('ignore'), (torch := importlib.import_module('torch')), print('CUDA is available 🔥') if torch.cuda.is_available() else print('Metal is available 🍏') if torch.backends.mps.is_available() else print('I only see a CPU 😞')]" + }, + "hook": { + "on-activate": "\n # If there is a requirements.txt file in the current directory,\n # let's make our venv in the same place. Otherwise, in the cache.\n if [[ -f requirements.txt ]]; then\n export VENV_DIR='./.venv/'\n req_text=1\n else\n export VENV_DIR=\"$FLOX_ENV_CACHE/python\"\n req_text=0\n fi\n\n\n # Make the venv if it does not already exist\n if [ ! -d \"$VENV_DIR\" ]; then\n gum spin --spinner dot --title \"Creating python venv in $VENV_DIR\" -- python3 -m venv \"$VENV_DIR\"\n if [ \"$req_text\" == \"1\" ]; then\n echo \"✅ Virtual environment created in $VENV_DIR\"\n fi\n fi\n\n # Install or update packages in the venv\n (\n source \"$VENV_DIR/bin/activate\"\n gum spin --spinner dot --title \"Managing packages in $VENV_DIR\" -- pip3 install --quiet imgcat\n if [[ -f requirements.txt ]]; then\n gum spin --spinner dot --title \"Managing packages in $VENV_DIR\" -- pip3 install --quiet -r requirements.txt\n fi\n )\n\n toilet -f smmono9 --metal \"flaim\"\n echo \"\"\n $FLOX_ENV/bin/python3 -c \"$test_acceleration\"\n echo \"Run 'testaccel' to retest acceleration.\"\n echo \"Run 'genimg ' for an image.\"\n" + }, + "profile": { + "bash": " if [ -d \"$VENV_DIR\" ]; then\n source \"$VENV_DIR/bin/activate\"\n fi\n\n alias genimg=\"python3 -c \\\"$generate_image\\\"\"\n alias testaccel=\"python3 -c \\\"$test_acceleration\\\"\"\n\n if [ \"$FLOX_ACTIVATE_START_SERVICES\" == \"true\" ]; then\n echo\n jupyter-notebook list\n echo\n fi\n", + "zsh": " if [ -d \"$VENV_DIR\" ]; then\n source \"$VENV_DIR/bin/activate\"\n fi\n\n alias genimg=\"python3 -c \\\"$generate_image\\\"\"\n alias testaccel=\"python3 -c \\\"$test_acceleration\\\"\"\n\n if [[ \"$FLOX_ACTIVATE_START_SERVICES\" == \"true\" ]]; then\n echo\n jupyter-notebook list\n echo\n fi\n" + }, + "options": { + "systems": [ + "aarch64-darwin", + "aarch64-linux", + "x86_64-linux" + ], + "allow": { + "licenses": [] + }, + "semver": {} + }, + "services": { + "jupyter-server": { + "command": "jupyter-server --IdentityProvider.token=${JUPYTER_SERVER_TOKEN} --ip=0.0.0.0", + "vars": null, + "is-daemon": null, + "shutdown": null + } + } + }, + "packages": [ + { + "attr_path": "python311Packages.accelerate", + "broken": false, + "derivation": "/nix/store/95xv837a10rlhwdrr3krba44q1lc10hy-python3.11-accelerate-0.32.0.drv", + "description": "Simple way to train and use PyTorch models with multi-GPU, TPU, mixed-precision", + "install_id": "accelerate", + "license": "Apache-2.0", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "python3.11-accelerate-0.32.0", + "pname": "accelerate", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.11-accelerate-0.32.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/glwbww5llw0kh6w4cgcnfi2azb7cz0lp-python3.11-accelerate-0.32.0-dist", + "out": "/nix/store/2vgxa2av6gn0b6xd6h0jjwaqxay7iwbq-python3.11-accelerate-0.32.0" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python311Packages.accelerate", + "broken": false, + "derivation": "/nix/store/kpj8li343xm7dm378fmhzmddh5zy757z-python3.11-accelerate-0.32.0.drv", + "description": "Simple way to train and use PyTorch models with multi-GPU, TPU, mixed-precision", + "install_id": "accelerate", + "license": "Apache-2.0", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "python3.11-accelerate-0.32.0", + "pname": "accelerate", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.11-accelerate-0.32.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/kwq7x32b9g80jsig5x23ngl1wwpdy5j4-python3.11-accelerate-0.32.0-dist", + "out": "/nix/store/8jbd4gzz828qkqp07543ijqsbvm2zr9p-python3.11-accelerate-0.32.0" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python311Packages.accelerate", + "broken": false, + "derivation": "/nix/store/c3zg07mi9yq5l6hsvnwzv87n25bk24s6-python3.11-accelerate-0.32.0.drv", + "description": "Simple way to train and use PyTorch models with multi-GPU, TPU, mixed-precision", + "install_id": "accelerate", + "license": "Apache-2.0", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "python3.11-accelerate-0.32.0", + "pname": "accelerate", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.11-accelerate-0.32.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/ch5i095bm1ddlbzy0i8y25qqpwcxgq6c-python3.11-accelerate-0.32.0-dist", + "out": "/nix/store/0qpb05if6nr3f1npn82kazpiaxymvg96-python3.11-accelerate-0.32.0" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python311Packages.diffusers", + "broken": false, + "derivation": "/nix/store/r7wzdkyq8xsh3qjn67fcymd4q74khiha-python3.11-diffusers-0.29.2.drv", + "description": "State-of-the-art diffusion models for image and audio generation in PyTorch", + "install_id": "diffusers", + "license": "Apache-2.0", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "python3.11-diffusers-0.29.2", + "pname": "diffusers", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.11-diffusers-0.29.2", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/zb2mndh4bsg1nkz8f5qkd4qx62ik2yzp-python3.11-diffusers-0.29.2-dist", + "out": "/nix/store/px9xwyca426z7bcs9zm8mjr9973mw0k0-python3.11-diffusers-0.29.2" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python311Packages.diffusers", + "broken": false, + "derivation": "/nix/store/3y71j54csj6ijbkkzlx414cn8ihmjc35-python3.11-diffusers-0.29.2.drv", + "description": "State-of-the-art diffusion models for image and audio generation in PyTorch", + "install_id": "diffusers", + "license": "Apache-2.0", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "python3.11-diffusers-0.29.2", + "pname": "diffusers", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.11-diffusers-0.29.2", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/54gs77m39f9p8czyh9z45y63l0y2n8dp-python3.11-diffusers-0.29.2-dist", + "out": "/nix/store/8w9j10kf25qzjry0yc3jvp6wzqcf3x8k-python3.11-diffusers-0.29.2" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python311Packages.diffusers", + "broken": false, + "derivation": "/nix/store/cvkix89z1y41fsbis0fspi0k928356jl-python3.11-diffusers-0.29.2.drv", + "description": "State-of-the-art diffusion models for image and audio generation in PyTorch", + "install_id": "diffusers", + "license": "Apache-2.0", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "python3.11-diffusers-0.29.2", + "pname": "diffusers", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.11-diffusers-0.29.2", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/xvhlz9jpf455imghnpgpn37ianlb2vxs-python3.11-diffusers-0.29.2-dist", + "out": "/nix/store/pml93p5fwl1qcql05a7zqi4dm38zwmgv-python3.11-diffusers-0.29.2" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "toilet", + "broken": false, + "derivation": "/nix/store/w40pzvybrzqmkgv26v33hs9fivq82kpk-toilet-0.3.drv", + "description": "Display large colourful characters in text mode", + "install_id": "figlet", + "license": "WTFPL", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "toilet-0.3", + "pname": "toilet", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.3", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/4fly6l0xhhw31kjs8yzvy362skij5vbv-toilet-0.3" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "toilet", + "broken": false, + "derivation": "/nix/store/prlb2snr37g64wb2j2c0majxbnsd8gn3-toilet-0.3.drv", + "description": "Display large colourful characters in text mode", + "install_id": "figlet", + "license": "WTFPL", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "toilet-0.3", + "pname": "toilet", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.3", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/bkqdqfp34i44q8kfkwwi65fm5p05gg4m-toilet-0.3" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "toilet", + "broken": false, + "derivation": "/nix/store/72m90s0ccbb3rhw5788zhlw5lp45fiaa-toilet-0.3.drv", + "description": "Display large colourful characters in text mode", + "install_id": "figlet", + "license": "WTFPL", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "toilet-0.3", + "pname": "toilet", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.3", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/7gckyaq9dwgf8fpizv2nmbfghxr32g00-toilet-0.3" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "gum", + "broken": false, + "derivation": "/nix/store/sarvhaq958mwadmd26i1wn7nlr57ipi5-gum-0.14.3.drv", + "description": "Tasty Bubble Gum for your shell", + "install_id": "gum", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "gum-0.14.3", + "pname": "gum", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.14.3", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/nz6k85xrxacczcfnq0kigcsigxbfpwhk-gum-0.14.3" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "gum", + "broken": false, + "derivation": "/nix/store/nidddmjh6qkn34y0fvxs7zzy43dbb0h3-gum-0.14.3.drv", + "description": "Tasty Bubble Gum for your shell", + "install_id": "gum", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "gum-0.14.3", + "pname": "gum", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.14.3", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/81bzbzmm6ryr8319wr9vikrvxqlzhcdk-gum-0.14.3" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "gum", + "broken": false, + "derivation": "/nix/store/c989ar42jj8z7hsdj1xnbqwm5sagzqq7-gum-0.14.3.drv", + "description": "Tasty Bubble Gum for your shell", + "install_id": "gum", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "gum-0.14.3", + "pname": "gum", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.14.3", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/8d15pvy5v2r31izz0jgfjl3s4a5n66ag-gum-0.14.3" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python311Packages.jupyter", + "broken": false, + "derivation": "/nix/store/84xmz05fijgl1g4kzm1bqqwjwyyfv40n-python3.11-jupyter-1.0.0.drv", + "description": "Installs all the Jupyter components in one go", + "install_id": "jupyter", + "license": "BSD-3-Clause", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "python3.11-jupyter-1.0.0", + "pname": "jupyter", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.11-jupyter-1.0.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/1lfal6z0z7dkxc3iw00smbjw17kskxff-python3.11-jupyter-1.0.0-dist", + "out": "/nix/store/6233bliackcjhivdnxwplvcm2c8hinr6-python3.11-jupyter-1.0.0" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python311Packages.jupyter", + "broken": false, + "derivation": "/nix/store/kkmmna7rya4f87bkby89bcnpary4sriy-python3.11-jupyter-1.0.0.drv", + "description": "Installs all the Jupyter components in one go", + "install_id": "jupyter", + "license": "BSD-3-Clause", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "python3.11-jupyter-1.0.0", + "pname": "jupyter", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.11-jupyter-1.0.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/lndhmk6jsq2krjpdibkpn40lrxrs07i6-python3.11-jupyter-1.0.0-dist", + "out": "/nix/store/f6x4ngljsk1l89sc67nx2bimdbc3z4gd-python3.11-jupyter-1.0.0" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python311Packages.jupyter", + "broken": false, + "derivation": "/nix/store/f9if0q6z6p488n936gjmn40mfnkmwfyi-python3.11-jupyter-1.0.0.drv", + "description": "Installs all the Jupyter components in one go", + "install_id": "jupyter", + "license": "BSD-3-Clause", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "python3.11-jupyter-1.0.0", + "pname": "jupyter", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.11-jupyter-1.0.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/3vbfp6w053pw36mj59ww3afk8j15ybda-python3.11-jupyter-1.0.0-dist", + "out": "/nix/store/8g4dlxjwd1njs3bydfd7k6bckyqgzzvr-python3.11-jupyter-1.0.0" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python311Packages.pytorch-bin", + "broken": false, + "derivation": "/nix/store/53r25fqv228jrrri7simdjwl7fyhnm79-python3.11-torch-2.3.1.drv", + "description": "PyTorch: Tensors and Dynamic neural networks in Python with strong GPU acceleration", + "install_id": "pytorch-bin", + "license": "[ BSD-3-Clause, Intel Simplified Software License, Unfree redistributable ]", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "python3.11-torch-2.3.1", + "pname": "pytorch-bin", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": true, + "version": "python3.11-torch-2.3.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/fp48bj0sfp5577i3w3fb7a4gjasv7d8s-python3.11-torch-2.3.1-dist", + "out": "/nix/store/z32ycm1xc0qdb9igi972fc1kx0hivn4s-python3.11-torch-2.3.1" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python311Packages.pytorch-bin", + "broken": false, + "derivation": "/nix/store/qk896870yyp0gyg6vkiwaf2dzp0110bw-python3.11-torch-2.3.1.drv", + "description": "PyTorch: Tensors and Dynamic neural networks in Python with strong GPU acceleration", + "install_id": "pytorch-bin", + "license": "[ BSD-3-Clause, Intel Simplified Software License, Unfree redistributable ]", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "python3.11-torch-2.3.1", + "pname": "pytorch-bin", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": true, + "version": "python3.11-torch-2.3.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/5f8igp99li3adcgdy1jsxh7ddjbfhgp7-python3.11-torch-2.3.1-dist", + "out": "/nix/store/fh7l7lhgfjv5x9z7knikqf9bkap3c7fl-python3.11-torch-2.3.1" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python311Packages.pytorch-bin", + "broken": false, + "derivation": "/nix/store/yls6mnfiqmjslf4ga9al0236352d8hv8-python3.11-torch-2.3.1.drv", + "description": "PyTorch: Tensors and Dynamic neural networks in Python with strong GPU acceleration", + "install_id": "pytorch-bin", + "license": "[ BSD-3-Clause, Intel Simplified Software License, Unfree redistributable ]", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "python3.11-torch-2.3.1", + "pname": "pytorch-bin", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": true, + "version": "python3.11-torch-2.3.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/d1qk73p68washdkkr7h74jrgbkc873i7-python3.11-torch-2.3.1-dist", + "out": "/nix/store/sk8pqkjgvba0hcfwnnqklmjpvcm2x5s4-python3.11-torch-2.3.1" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python311Packages.sentencepiece", + "broken": false, + "derivation": "/nix/store/z55i5743zm6049vppxbmq27spagvjn35-python3.11-sentencepiece-0.2.0.drv", + "description": "Unsupervised text tokenizer for Neural Network-based text generation", + "install_id": "sentencepiece", + "license": "Apache-2.0", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "python3.11-sentencepiece-0.2.0", + "pname": "sentencepiece", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.11-sentencepiece-0.2.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/8l5v8vsyp7kr0kgha6j2kjc3iwys8dfx-python3.11-sentencepiece-0.2.0-dist", + "out": "/nix/store/n307adxapkz67wrwrj568b1n1zfbqg54-python3.11-sentencepiece-0.2.0" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python311Packages.sentencepiece", + "broken": false, + "derivation": "/nix/store/xzh17hcljf22ip9cvaw9bg1k8jdi5458-python3.11-sentencepiece-0.2.0.drv", + "description": "Unsupervised text tokenizer for Neural Network-based text generation", + "install_id": "sentencepiece", + "license": "Apache-2.0", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "python3.11-sentencepiece-0.2.0", + "pname": "sentencepiece", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.11-sentencepiece-0.2.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/vjh8xqr5cf251qxx7hfnqyaaqaw3p4gd-python3.11-sentencepiece-0.2.0-dist", + "out": "/nix/store/ixx3awhs45annhrg2f8xjx9dlq7fn9nv-python3.11-sentencepiece-0.2.0" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python311Packages.sentencepiece", + "broken": false, + "derivation": "/nix/store/3vxkz5x7gw8pfb34lrscc75ihgjznvw4-python3.11-sentencepiece-0.2.0.drv", + "description": "Unsupervised text tokenizer for Neural Network-based text generation", + "install_id": "sentencepiece", + "license": "Apache-2.0", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "python3.11-sentencepiece-0.2.0", + "pname": "sentencepiece", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.11-sentencepiece-0.2.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/9f54bjrg6kydxrs8ppkgbx293h8w464r-python3.11-sentencepiece-0.2.0-dist", + "out": "/nix/store/v1jix722dmwg64xlrrlvsxpi8ngxh0dq-python3.11-sentencepiece-0.2.0" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python311Packages.transformers", + "broken": false, + "derivation": "/nix/store/ginmzd22y3yqpy7crly96sixbqpafrbi-python3.11-transformers-4.44.0.drv", + "description": "Natural Language Processing for TensorFlow 2.0 and PyTorch", + "install_id": "transformers", + "license": "Apache-2.0", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "python3.11-transformers-4.44.0", + "pname": "transformers", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.11-transformers-4.44.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/mly0h0hzibfrwjs8k2ybimb8d49xyyhi-python3.11-transformers-4.44.0-dist", + "out": "/nix/store/fvid9w3wmw5czgfjs7b5jz7cr2lkbfmc-python3.11-transformers-4.44.0" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python311Packages.transformers", + "broken": false, + "derivation": "/nix/store/4llj4rchyv5zrj18ypbxx6wrsq9akajw-python3.11-transformers-4.44.0.drv", + "description": "Natural Language Processing for TensorFlow 2.0 and PyTorch", + "install_id": "transformers", + "license": "Apache-2.0", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "python3.11-transformers-4.44.0", + "pname": "transformers", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.11-transformers-4.44.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/k4iqxkm6dnk2mbqy1gcc8zchyamls201-python3.11-transformers-4.44.0-dist", + "out": "/nix/store/l0rh666j5v602l046rf0pkbr1ab8xiii-python3.11-transformers-4.44.0" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python311Packages.transformers", + "broken": false, + "derivation": "/nix/store/75fmra8ds6v3a98nsq3wd3dg2n45rgyy-python3.11-transformers-4.44.0.drv", + "description": "Natural Language Processing for TensorFlow 2.0 and PyTorch", + "install_id": "transformers", + "license": "Apache-2.0", + "locked_url": "https://github.com/flox/nixpkgs?rev=5e0ca22929f3342b19569b21b2f3462f053e497b", + "name": "python3.11-transformers-4.44.0", + "pname": "transformers", + "rev": "5e0ca22929f3342b19569b21b2f3462f053e497b", + "rev_count": 664135, + "rev_date": "2024-08-09T03:53:12Z", + "scrape_date": "2024-08-11T02:08:20Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.11-transformers-4.44.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/hk2lsi3568zlph3jcbb00kp865a4ssjr-python3.11-transformers-4.44.0-dist", + "out": "/nix/store/b787dsyrhmwbrzkwrb1zcnmhk3ns922k-python3.11-transformers-4.44.0" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + } + ] +} \ No newline at end of file diff --git a/flaim/.flox/env/manifest.toml b/flaim/.flox/env/manifest.toml new file mode 100644 index 0000000..ce4c55b --- /dev/null +++ b/flaim/.flox/env/manifest.toml @@ -0,0 +1,123 @@ + +# +# This is a flox environment manifest. +# Visit flox.dev/docs/concepts/manifest/ +# or see flox-edit(1), manifest.toml(1) for more information. +# + +version = 1 + +[install] + +pytorch-bin.pkg-path = "python311Packages.pytorch-bin" +pytorch-bin.version = "python3.11-torch-2.3.1" + +accelerate.pkg-path = "python311Packages.accelerate" +accelerate.version = "python3.11-accelerate-0.32.0" +transformers.pkg-path = "python311Packages.transformers" +transformers.version = "python3.11-transformers-4.44.0" + +sentencepiece.pkg-path = "python311Packages.sentencepiece" +sentencepiece.version = "python3.11-sentencepiece-0.2.0" + +diffusers.pkg-path = "python311Packages.diffusers" +diffusers.version = "python3.11-diffusers-0.29.2" + +gum.pkg-path = "gum" +figlet.pkg-path = "toilet" + +jupyter.pkg-path = "python311Packages.jupyter" + +[vars] +# Since we are managing our venv with Flox, there is no need to +# be told about it in our prompt +VIRTUAL_ENV_DISABLE_PROMPT="1" + +# These are example scripts that can be used later on to +# generate a sample image and test acceleration + +generate_image="[(importlib := __import__('importlib')), (warnings := importlib.import_module('warnings')), warnings.filterwarnings('ignore'), (sys := importlib.import_module('sys')), (torch := importlib.import_module('torch')), (__ol_mod_cbtwjvbiot := __import__('imgcat', globals(), locals(), ['imgcat'], 0)), (imgcat := __ol_mod_cbtwjvbiot.imgcat), (__ol_mod_ambwamhbvl := __import__('diffusers', globals(), locals(), ['StableDiffusionPipeline'], 0)), (StableDiffusionPipeline := __ol_mod_ambwamhbvl.StableDiffusionPipeline), (__ol_mod_xshmfbhacj := __import__('diffusers', globals(), locals(), ['logging'], 0)), (logging := __ol_mod_xshmfbhacj.logging), logging.set_verbosity(50), logging.disable_progress_bar(), (pipe := StableDiffusionPipeline.from_pretrained('IDKiro/sdxs-512-0.9', torch_dtype=torch.float32)), pipe.to('cuda') if torch.cuda.is_available() else pipe.to('mps') if torch.backends.mps.is_available() else ..., (prompt := (sys.argv[1] if len(sys.argv) > 1 else 'a fox in a henhouse')), pipe.set_progress_bar_config(disable=True), (image := pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0).images[0]), image.save(f'{prompt}.png'), imgcat(image)]" + +test_acceleration="[(importlib := __import__('importlib')), (warnings := importlib.import_module('warnings')), warnings.filterwarnings('ignore'), (torch := importlib.import_module('torch')), print('CUDA is available 🔥') if torch.cuda.is_available() else print('Metal is available 🍏') if torch.backends.mps.is_available() else print('I only see a CPU 😞')]" + +# This token will be used in the query string for our Jupyter +# server. When you clone this environment for your own uses, +# recommend using a proper Identity Provider. +JUPYTER_SERVER_TOKEN = "floxfan123456" + +[services.jupyter-server] +command = "jupyter-server --IdentityProvider.token=${JUPYTER_SERVER_TOKEN} --ip=0.0.0.0" + +[hook] +on-activate = ''' + + # If there is a requirements.txt file in the current directory, + # let's make our venv in the same place. Otherwise, in the cache. + if [[ -f requirements.txt ]]; then + export VENV_DIR='./.venv/' + req_text=1 + else + export VENV_DIR="$FLOX_ENV_CACHE/python" + req_text=0 + fi + + + # Make the venv if it does not already exist + if [ ! -d "$VENV_DIR" ]; then + gum spin --spinner dot --title "Creating python venv in $VENV_DIR" -- python3 -m venv "$VENV_DIR" + if [ "$req_text" == "1" ]; then + echo "✅ Virtual environment created in $VENV_DIR" + fi + fi + + # Install or update packages in the venv + ( + source "$VENV_DIR/bin/activate" + gum spin --spinner dot --title "Managing packages in $VENV_DIR" -- pip3 install --quiet imgcat + if [[ -f requirements.txt ]]; then + gum spin --spinner dot --title "Managing packages in $VENV_DIR" -- pip3 install --quiet -r requirements.txt + fi + ) + + toilet -f smmono9 --metal "flaim" + echo "" + $FLOX_ENV/bin/python3 -c "$test_acceleration" + echo "Run 'testaccel' to retest acceleration." + echo "Run 'genimg ' for an image." +''' + +[profile] +bash = ''' + if [ -d "$VENV_DIR" ]; then + source "$VENV_DIR/bin/activate" + fi + + alias genimg="python3 -c \"$generate_image\"" + alias testaccel="python3 -c \"$test_acceleration\"" + + if [ "$FLOX_ACTIVATE_START_SERVICES" == "true" ]; then + echo + jupyter-notebook list + echo + fi +''' + +zsh = ''' + if [ -d "$VENV_DIR" ]; then + source "$VENV_DIR/bin/activate" + fi + + alias genimg="python3 -c \"$generate_image\"" + alias testaccel="python3 -c \"$test_acceleration\"" + + if [[ "$FLOX_ACTIVATE_START_SERVICES" == "true" ]]; then + echo + jupyter-notebook list + echo + fi +''' + +[options] +systems = ["aarch64-darwin", "aarch64-linux", "x86_64-linux"] + + diff --git a/flaim/.gitignore b/flaim/.gitignore new file mode 100644 index 0000000..070ad80 --- /dev/null +++ b/flaim/.gitignore @@ -0,0 +1,3 @@ +*.png +flaim-venv +.venv diff --git a/flaim/flab/.gitignore b/flaim/flab/.gitignore new file mode 100644 index 0000000..665efd2 --- /dev/null +++ b/flaim/flab/.gitignore @@ -0,0 +1,5 @@ +*.png +*.webp +venv +.venv +flaim-venv diff --git a/flaim/flab/flab.ipynb b/flaim/flab/flab.ipynb new file mode 100644 index 0000000..74e20b0 --- /dev/null +++ b/flaim/flab/flab.ipynb @@ -0,0 +1,248 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import warnings\n", + "\n", + "from diffusers import (\n", + " StableDiffusionXLPipeline,\n", + " StableDiffusionLatentUpscalePipeline,\n", + " EulerAncestralDiscreteScheduler,\n", + " AutoencoderKL,\n", + " logging,\n", + " StableDiffusionInstructPix2PixPipeline,\n", + ")\n", + "\n", + "import torch\n", + "from PIL import Image\n", + "from imgcat import imgcat\n", + "import sys\n", + "import gc\n", + "from fancyInput import HorizontalOptionGroup, NumberOption\n", + "from rich import print\n", + "from rich.panel import Panel" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if torch.cuda.is_available():\n", + " device = \"cuda\"\n", + "elif torch.backends.mps.is_available():\n", + " device = \"mps\"\n", + "else:\n", + " device = \"\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "prompt = \"an aircraft hangar\"\n", + "\n", + "loaded_prompt = (\n", + " \"concept art\"\n", + " + prompt\n", + " + \", high quality, (magical), (nature), (futuristic), digital artwork, highly detailed\"\n", + ")\n", + "negative_prompt = \"nsfw, cartoon, bad quality, bad anatomy, worst quality, low quality, low resolutions, extra fingers, blur, blurry, ugly, wrong proportions, watermark, image artifacts, lowres, ugly, jpeg artifacts, deformed, noisy image\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Proteus" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "vae = AutoencoderKL.from_pretrained(\n", + " \"madebyollin/sdxl-vae-fp16-fix\", torch_dtype=torch.float16\n", + ")\n", + "\n", + "pipe = StableDiffusionXLPipeline.from_pretrained(\n", + " \"dataautogpt3/ProteusV0.4-Lightning\", vae=vae, torch_dtype=torch.float16\n", + ").to(device)\n", + "\n", + "pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "protoimages = pipe(\n", + " prompt,\n", + " negative_prompt=negative_prompt,\n", + " num_images_per_prompt=3,\n", + " width=1024,\n", + " height=1024,\n", + " guidance_scale=3.5,\n", + " num_inference_steps=8,\n", + ").images" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "protocomp = Image.new(\"RGB\", (3072, 600))\n", + "\n", + "x_offset = 0\n", + "for im in protoimages:\n", + " protocomp.paste(im, (x_offset, -212))\n", + " x_offset += im.size[0]\n", + "\n", + "protocomp" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Instruct pix2pix" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model_id = \"timbrooks/instruct-pix2pix\"\n", + "pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(\n", + " model_id, torch_dtype=torch.float16, safety_checker=None\n", + ")\n", + "pipe.to(device)\n", + "pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "prompt = \"amazing, high quality, dreamlike, futuristic, colorful, vibrant\"\n", + "# prompt = \"make image air brushed, painted, gradients\"\n", + "image = pipe(\n", + " prompt,\n", + " image=protoimages[2],\n", + " num_inference_steps=15,\n", + " image_guidance_scale=1,\n", + ").images[0]\n", + "\n", + "image" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Upscaler" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pipe = None\n", + "if device == \"cuda\":\n", + " torch.cuda.empty_cache()\n", + "if device == \"mps\":\n", + " torch.mps.empty_cache()\n", + " torch.mps.current_allocated_memory()\n", + "gc.collect()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(\n", + " \"stabilityai/sd-x2-latent-upscaler\", torch_dtype=torch.float16\n", + ").to(device)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "upscaled_image = upscaler(\n", + " prompt=loaded_prompt,\n", + " negative_prompt=negative_prompt,\n", + " image=image,\n", + " num_inference_steps=20,\n", + " guidance_scale=0,\n", + ").images[0]\n", + "\n", + "upscaled_image" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "cropped_image = upscaled_image.crop(\n", + " (24, 424, 2024, 1624)\n", + ") # from 2048/1024 to 2000/1200\n", + "\n", + "cropped_image" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/flaim/flab/flab.py b/flaim/flab/flab.py new file mode 100755 index 0000000..4655291 --- /dev/null +++ b/flaim/flab/flab.py @@ -0,0 +1,222 @@ +#!/usr/bin/env python3 + +# sssshhhhhhhhh if we wanna see you talk we'll run the notebook +import warnings + +warnings.filterwarnings("ignore") + +# we need a whole buncha diffuser tools +from diffusers import ( + StableDiffusionXLPipeline, + StableDiffusionLatentUpscalePipeline, + EulerAncestralDiscreteScheduler, + AutoencoderKL, + logging, # for more of the shutup + StableDiffusionInstructPix2PixPipeline, +) + +# we need torch as our diffuser backend +import torch + +# grab some image tools +from PIL import Image +from imgcat import imgcat +import sys +import gc + +# stuff for UI +from fancyInput import HorizontalOptionGroup, NumberOption +from rich import print +from rich.panel import Panel +from rich.prompt import Prompt + +# here's that more shutup we talked about +logging.set_verbosity(50) +logging.disable_progress_bar() + +# set our device and nope out if we don't have either CUDA or Metal +if torch.cuda.is_available(): + device = "cuda" +elif torch.backends.mps.is_available(): + device = "mps" +else: + print("GPU acceleration is required.") + exit(1) + + +# Grab ^C and be nice with it +try: + print("\n") + + # get the prompt from argv, or use a default + prompt = ( + sys.argv[1] + if len(sys.argv) > 1 + else Prompt.ask( + "What is your prompt?", + default="aircraft hanger with fish", + ) + ) + + # load up the prompt a bit with some opinions + loaded_prompt = ( + "concept art" + + prompt + + ", high quality, (magical), (nature), (futuristic), digital artwork" + ) + negative_prompt = "nsfw, cartoon, bad quality, bad anatomy, worst quality, low quality, low resolutions, extra fingers, blur, blurry, ugly, wrong proportions, watermark, image artifacts, lowres, ugly, jpeg artifacts, deformed, noisy image" + + print("\n") + print( + Panel( + "Conjuring [purple]proto image generator[/purple] :mag: from the ether..." + ) + ) + + # load up the autoencoder for SDXL + vae = AutoencoderKL.from_pretrained( + "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 + ) + + # load a SDXL autopipeline with the Proteus-Lightning model + pipe = StableDiffusionXLPipeline.from_pretrained( + "dataautogpt3/ProteusV0.4-Lightning", vae=vae, torch_dtype=torch.float16 + ).to(device) + + # use the Euler scheduler (suggestion from the model creator) + pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) + + chosenproto = -1 + + while chosenproto == -1: + print("\n") + print(Panel("Generating [blue]proto image selections[/blue] :dizzy: ...")) + + # make some prototype images + protoimages = pipe( + loaded_prompt, + negative_prompt=negative_prompt, + num_images_per_prompt=3, + width=1024, + height=1024, + guidance_scale=3.5, + num_inference_steps=8, + ).images + + print("\n") + + # make a quick comp of the proto images so the user can see them + # when we do this, crop the top and bottom so the image composition + # will be close to the final aspect ratio + protocomp = Image.new("RGB", (3072, 600)) + + x_offset = 0 + for im in protoimages: + protocomp.paste(im, (x_offset, -212)) + x_offset += im.size[0] + + # this requires an imgcat terminal to do anything, sadly + imgcat(protocomp) + print("\n") + + # ask the user to choose a proto + gr = HorizontalOptionGroup( + "What image should we refine?", + NumberOption("Start over!"), + NumberOption("Image 1"), + NumberOption("Image 2"), + NumberOption("Image 3"), + ) + gr.setMaxOptionPerUnit(4) + user_input = gr.ask() + + chosenproto = int(user_input.getOpt()) - 1 + + print("\n") + print( + Panel( + "Frambulating [red]Floxifier[/red] :slot_machine: to refine image " + + user_input.getOpt() + + " ..." + ) + ) + + # at this point I have found that we need to do some garbage collection; + # that instruct-pix2pix is no little thing + pipe = None + if device == "cuda": + torch.cuda.empty_cache() + if device == "mps": + torch.mps.empty_cache() + torch.mps.current_allocated_memory() + gc.collect() + + # Load the instruct pix2pix pipeline + pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained( + "timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None + ) + pipe.to(device) + pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) + + print("\n") + print(Panel("Floxifying with [pink]stupid abandon[/pink] :dizzy_face: ...")) + + # this is the magic prompt that makes it look like flox, ssh, don't tell anyone + instructprompt = "amazing, high quality, dreamlike, futuristic, colorful, vibrant" + image = pipe( + instructprompt, + image=protoimages[chosenproto], + num_inference_steps=15, + image_guidance_scale=1, + ).images[0] + + # make another comp that shows a left/right of the before and after images + refinercomp = Image.new("RGB", (2000, 600)) + refinercomp.paste(protoimages[chosenproto], (0, -212)) + refinercomp.paste(image, (1000, -212)) + + print("\n") + imgcat(refinercomp) + + # at this point I have found that we need to do some garbage collection; + # the refiner needs a lot of memory + pipe = None + if device == "cuda": + torch.cuda.empty_cache() + if device == "mps": + torch.mps.empty_cache() + torch.mps.current_allocated_memory() + gc.collect() + + print("\n") + print(Panel("Calling forth robotic upscaler :robot: ...")) + + # grab and run the stable diffusion 2x upscaler + upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained( + "stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16 + ).to(device) + + upscaled_image = upscaler( + prompt=loaded_prompt, + negative_prompt=negative_prompt, + image=image, + num_inference_steps=20, + guidance_scale=0, + ).images[0] + + # crop to our final dimensions + cropped_image = upscaled_image.crop( + (24, 424, 2024, 1624) + ) # from 2048/1024 to 2000/1200 + + print("\n") + imgcat(cropped_image) + print("\n") + + # export in two formats + cropped_image.save(f"{prompt}.webp", "webp", quality=50) + exit(0) + +except KeyboardInterrupt: + print("\nOkay bye bye!\n") + exit(1) diff --git a/flaim/flab/requirements.txt b/flaim/flab/requirements.txt new file mode 100644 index 0000000..abf4289 --- /dev/null +++ b/flaim/flab/requirements.txt @@ -0,0 +1,5 @@ +imgcat +fancyInput +rich +ipykernel +ipywidgets diff --git a/flaim/flapt/test.py b/flaim/flapt/test.py new file mode 100755 index 0000000..5dc4212 --- /dev/null +++ b/flaim/flapt/test.py @@ -0,0 +1,14 @@ +#!/usr/bin/env python + +import warnings +warnings.filterwarnings("ignore") + +import torch + +if torch.cuda.is_available(): + print("CUDA is available 🔥") +elif torch.backends.mps.is_available(): + print("Metal is available 🍏") +else: + print("I only see a CPU 😞") + diff --git a/flaim/image/image.py b/flaim/image/image.py new file mode 100755 index 0000000..ed46332 --- /dev/null +++ b/flaim/image/image.py @@ -0,0 +1,28 @@ +#!/usr/bin/env python + +import warnings +warnings.filterwarnings("ignore") + +import sys +import torch +from imgcat import imgcat +from diffusers import StableDiffusionPipeline +from diffusers import logging + +logging.set_verbosity(50) +logging.disable_progress_bar() + +pipe = StableDiffusionPipeline.from_pretrained("IDKiro/sdxs-512-0.9", torch_dtype=torch.float32) + +if torch.cuda.is_available(): + pipe.to("cuda") +elif torch.backends.mps.is_available(): + pipe.to("mps") + +prompt = sys.argv[1] if len(sys.argv) > 1 else "a fox in a henhouse" + +pipe.set_progress_bar_config(disable=True) + +image = pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0).images[0] +image.save(f"{prompt}.png") +imgcat(image) diff --git a/flaim/lab/anim/.gitignore b/flaim/lab/anim/.gitignore new file mode 100644 index 0000000..2d0c929 --- /dev/null +++ b/flaim/lab/anim/.gitignore @@ -0,0 +1 @@ +*.gif diff --git a/flaim/lab/anim/anim.ipynb b/flaim/lab/anim/anim.ipynb new file mode 100644 index 0000000..49f6adf --- /dev/null +++ b/flaim/lab/anim/anim.ipynb @@ -0,0 +1,79 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler\n", + "from diffusers.utils import export_to_gif\n", + "from huggingface_hub import hf_hub_download\n", + "from safetensors.torch import load_file\n", + "from IPython.display import Image\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "adapter = MotionAdapter().to(\"mps\", torch.float16)\n", + "adapter.load_state_dict(load_file(hf_hub_download(\"ByteDance/AnimateDiff-Lightning\", \"animatediff_lightning_2step_diffusers.safetensors\"), device=\"mps\"))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pipe = AnimateDiffPipeline.from_pretrained(\"SG161222/Realistic_Vision_V6.0_B1_noVAE\", motion_adapter=adapter, torch_dtype=torch.float16).to(\"mps\")\n", + "pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing=\"trailing\", beta_schedule=\"linear\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "output = pipe(prompt=\"a fox in a henhouse\", guidance_scale=1.0, num_inference_steps=3)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "export_to_gif(output.frames[0], \"animation.gif\")\n", + "from IPython.display import Image\n", + "Image(\"animation.gif\")\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/flaim/lab/anim/anim.py b/flaim/lab/anim/anim.py new file mode 100755 index 0000000..7ac7fcd --- /dev/null +++ b/flaim/lab/anim/anim.py @@ -0,0 +1,37 @@ +#!/usr/bin/env python + +import warnings +warnings.filterwarnings("ignore") + +import sys +import torch +from imgcat import imgcat +from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler +from diffusers.utils import export_to_gif +from huggingface_hub import hf_hub_download +from safetensors.torch import load_file +from diffusers import logging + +logging.set_verbosity(50) +logging.disable_progress_bar() + +if torch.cuda.is_available(): + device = "cuda" +elif torch.backends.mps.is_available(): + device = "mps" +else: + device = "cpu" + +adapter = MotionAdapter().to(device, torch.float16) +adapter.load_state_dict(load_file(hf_hub_download("ByteDance/AnimateDiff-Lightning","animatediff_lightning_2step_diffusers.safetensors"), device=device)) + +pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=adapter, torch_dtype=torch.float16).to(device) +pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") + +prompt = sys.argv[1] if len(sys.argv) > 1 else "a fox in a henhouse" + +#pipe.set_progress_bar_config(disable=True) +output = pipe(prompt=prompt, guidance_scale=1.0, num_inference_steps=3) + +export_to_gif(output.frames[0], f"{prompt}.gif") +imgcat(open(f"{prompt}.gif")) diff --git a/flaim/lab/answer/answer.ipynb b/flaim/lab/answer/answer.ipynb new file mode 100644 index 0000000..9088f78 --- /dev/null +++ b/flaim/lab/answer/answer.ipynb @@ -0,0 +1,125 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# pip install accelerate\n", + "import torch\n", + "from transformers import T5Tokenizer, T5ForConditionalGeneration\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n" + ] + } + ], + "source": [ + "\n", + "tokenizer = T5Tokenizer.from_pretrained(\"google/flan-t5-base\")\n", + "model = T5ForConditionalGeneration.from_pretrained(\"google/flan-t5-base\", device_map=\"auto\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/rturk/.cache/flaim/venv/lib/python3.12/site-packages/transformers/generation/utils.py:1132: UserWarning: Using the model-agnostic default `max_length` (=20) to control the generation length. We recommend setting `max_new_tokens` to control the maximum length of the generation.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Was ist?\n" + ] + } + ], + "source": [ + "\n", + "input_text = \"translate English to German: What time is it?\"\n", + "input_ids = tokenizer(input_text, return_tensors=\"pt\").input_ids.to(\"mps\")\n", + "\n", + "outputs = model.generate(input_ids)\n", + "print(tokenizer.decode(outputs[0]))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "' Was ist?'" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tokenizer.decode(outputs[0])" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([], device='mps:0', size=(0, 5), dtype=torch.int64)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "outputs[1:]" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/flaim/lab/answer/answer.py b/flaim/lab/answer/answer.py new file mode 100755 index 0000000..4f39e70 --- /dev/null +++ b/flaim/lab/answer/answer.py @@ -0,0 +1,28 @@ +#!/usr/bin/env python + +import warnings +warnings.filterwarnings("ignore") + +import sys +import torch +from imgcat import imgcat +from transformers import T5Tokenizer, T5ForConditionalGeneration +from transformers import logging + +logging.set_verbosity(50) +logging.disable_progress_bar() + +tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base") +model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base", device_map="auto", torch_dtype=torch.float16) + +prompt = sys.argv[1] if len(sys.argv) > 1 else "a fox in a henhouse" + +if torch.cuda.is_available(): + input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") +elif torch.backends.mps.is_available(): + input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("mps") +else: + input_ids = tokenizer(prompt, return_tensors="pt").input_ids + +outputs = model.generate(input_ids) +print(tokenizer.decode(outputs[0], skip_special_tokens=True)) diff --git a/flaim/lab/aya.ipynb b/flaim/lab/aya.ipynb new file mode 100644 index 0000000..a02afc8 --- /dev/null +++ b/flaim/lab/aya.ipynb @@ -0,0 +1,129 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "id": "43b067d9", + "metadata": { + "id": "43b067d9" + }, + "outputs": [], + "source": [ + "# pip install -q transformers\n", + "from transformers import AutoModelForSeq2SeqLM, AutoTokenizer\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "702467c2", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "13d7d44f85204e5ebc97fdf7e6b528c9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Loading checkpoint shards: 0%| | 0/11 [00:00 1\u001b[0m aya_model \u001b[38;5;241m=\u001b[39m \u001b[43maya_model\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmps\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/.cache/flaim/venv/lib/python3.12/site-packages/transformers/modeling_utils.py:2576\u001b[0m, in \u001b[0;36mPreTrainedModel.to\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 2571\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m dtype_present_in_args:\n\u001b[1;32m 2572\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 2573\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mYou cannot cast a GPTQ model in a new `dtype`. Make sure to load the model using `from_pretrained` using the desired\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 2574\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m `dtype` by passing the correct `torch_dtype` argument.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 2575\u001b[0m )\n\u001b[0;32m-> 2576\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/.cache/flaim/venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1168\u001b[0m, in \u001b[0;36mModule.to\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1165\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1166\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m\n\u001b[0;32m-> 1168\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_apply\u001b[49m\u001b[43m(\u001b[49m\u001b[43mconvert\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/.cache/flaim/venv/lib/python3.12/site-packages/torch/nn/modules/module.py:778\u001b[0m, in \u001b[0;36mModule._apply\u001b[0;34m(self, fn, recurse)\u001b[0m\n\u001b[1;32m 776\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m recurse:\n\u001b[1;32m 777\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m module \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mchildren():\n\u001b[0;32m--> 778\u001b[0m \u001b[43mmodule\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_apply\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfn\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 780\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcompute_should_use_set_data\u001b[39m(tensor, tensor_applied):\n\u001b[1;32m 781\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m torch\u001b[38;5;241m.\u001b[39m_has_compatible_shallow_copy_type(tensor, tensor_applied):\n\u001b[1;32m 782\u001b[0m \u001b[38;5;66;03m# If the new tensor has compatible tensor type as the existing tensor,\u001b[39;00m\n\u001b[1;32m 783\u001b[0m \u001b[38;5;66;03m# the current behavior is to change the tensor in-place using `.data =`,\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 788\u001b[0m \u001b[38;5;66;03m# global flag to let the user control whether they want the future\u001b[39;00m\n\u001b[1;32m 789\u001b[0m \u001b[38;5;66;03m# behavior of overwriting the existing tensor or not.\u001b[39;00m\n", + "File \u001b[0;32m~/.cache/flaim/venv/lib/python3.12/site-packages/torch/nn/modules/module.py:778\u001b[0m, in \u001b[0;36mModule._apply\u001b[0;34m(self, fn, recurse)\u001b[0m\n\u001b[1;32m 776\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m recurse:\n\u001b[1;32m 777\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m module \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mchildren():\n\u001b[0;32m--> 778\u001b[0m \u001b[43mmodule\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_apply\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfn\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 780\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcompute_should_use_set_data\u001b[39m(tensor, tensor_applied):\n\u001b[1;32m 781\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m torch\u001b[38;5;241m.\u001b[39m_has_compatible_shallow_copy_type(tensor, tensor_applied):\n\u001b[1;32m 782\u001b[0m \u001b[38;5;66;03m# If the new tensor has compatible tensor type as the existing tensor,\u001b[39;00m\n\u001b[1;32m 783\u001b[0m \u001b[38;5;66;03m# the current behavior is to change the tensor in-place using `.data =`,\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 788\u001b[0m \u001b[38;5;66;03m# global flag to let the user control whether they want the future\u001b[39;00m\n\u001b[1;32m 789\u001b[0m \u001b[38;5;66;03m# behavior of overwriting the existing tensor or not.\u001b[39;00m\n", + " \u001b[0;31m[... skipping similar frames: Module._apply at line 778 (4 times)]\u001b[0m\n", + "File \u001b[0;32m~/.cache/flaim/venv/lib/python3.12/site-packages/torch/nn/modules/module.py:778\u001b[0m, in \u001b[0;36mModule._apply\u001b[0;34m(self, fn, recurse)\u001b[0m\n\u001b[1;32m 776\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m recurse:\n\u001b[1;32m 777\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m module \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mchildren():\n\u001b[0;32m--> 778\u001b[0m \u001b[43mmodule\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_apply\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfn\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 780\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcompute_should_use_set_data\u001b[39m(tensor, tensor_applied):\n\u001b[1;32m 781\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m torch\u001b[38;5;241m.\u001b[39m_has_compatible_shallow_copy_type(tensor, tensor_applied):\n\u001b[1;32m 782\u001b[0m \u001b[38;5;66;03m# If the new tensor has compatible tensor type as the existing tensor,\u001b[39;00m\n\u001b[1;32m 783\u001b[0m \u001b[38;5;66;03m# the current behavior is to change the tensor in-place using `.data =`,\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 788\u001b[0m \u001b[38;5;66;03m# global flag to let the user control whether they want the future\u001b[39;00m\n\u001b[1;32m 789\u001b[0m \u001b[38;5;66;03m# behavior of overwriting the existing tensor or not.\u001b[39;00m\n", + "File \u001b[0;32m~/.cache/flaim/venv/lib/python3.12/site-packages/torch/nn/modules/module.py:803\u001b[0m, in \u001b[0;36mModule._apply\u001b[0;34m(self, fn, recurse)\u001b[0m\n\u001b[1;32m 799\u001b[0m \u001b[38;5;66;03m# Tensors stored in modules are graph leaves, and we don't want to\u001b[39;00m\n\u001b[1;32m 800\u001b[0m \u001b[38;5;66;03m# track autograd history of `param_applied`, so we have to use\u001b[39;00m\n\u001b[1;32m 801\u001b[0m \u001b[38;5;66;03m# `with torch.no_grad():`\u001b[39;00m\n\u001b[1;32m 802\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m torch\u001b[38;5;241m.\u001b[39mno_grad():\n\u001b[0;32m--> 803\u001b[0m param_applied \u001b[38;5;241m=\u001b[39m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[43mparam\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 804\u001b[0m p_should_use_set_data \u001b[38;5;241m=\u001b[39m compute_should_use_set_data(param, param_applied)\n\u001b[1;32m 805\u001b[0m param_grad \u001b[38;5;241m=\u001b[39m param\u001b[38;5;241m.\u001b[39mgrad\n", + "File \u001b[0;32m~/.cache/flaim/venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1154\u001b[0m, in \u001b[0;36mModule.to..convert\u001b[0;34m(t)\u001b[0m\n\u001b[1;32m 1147\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m convert_to_format \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m t\u001b[38;5;241m.\u001b[39mdim() \u001b[38;5;129;01min\u001b[39;00m (\u001b[38;5;241m4\u001b[39m, \u001b[38;5;241m5\u001b[39m):\n\u001b[1;32m 1148\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m t\u001b[38;5;241m.\u001b[39mto(\n\u001b[1;32m 1149\u001b[0m device,\n\u001b[1;32m 1150\u001b[0m dtype \u001b[38;5;28;01mif\u001b[39;00m t\u001b[38;5;241m.\u001b[39mis_floating_point() \u001b[38;5;129;01mor\u001b[39;00m t\u001b[38;5;241m.\u001b[39mis_complex() \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 1151\u001b[0m non_blocking,\n\u001b[1;32m 1152\u001b[0m memory_format\u001b[38;5;241m=\u001b[39mconvert_to_format,\n\u001b[1;32m 1153\u001b[0m )\n\u001b[0;32m-> 1154\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mt\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1155\u001b[0m \u001b[43m \u001b[49m\u001b[43mdevice\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1156\u001b[0m \u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mt\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mis_floating_point\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mt\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mis_complex\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 1157\u001b[0m \u001b[43m \u001b[49m\u001b[43mnon_blocking\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1158\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1159\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 1160\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mstr\u001b[39m(e) \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot copy out of meta tensor; no data!\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n", + "\u001b[0;31mRuntimeError\u001b[0m: MPS backend out of memory (MPS allocated: 36.26 GB, other allocations: 384.00 KB, max allowed: 36.27 GB). Tried to allocate 64.00 MB on private pool. Use PYTORCH_MPS_HIGH_WATERMARK_RATIO=0.0 to disable upper limit for memory allocations (may cause system failure)." + ] + } + ], + "source": [ + "aya_model = aya_model.to(\"mps\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "55391608", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# Turkish to English translation\n", + "tur_inputs = tokenizer.encode(\"Translate to English: Aya cok dilli bir dil modelidir.\", return_tensors=\"pt\")\n", + "tur_outputs = aya_model.generate(tur_inputs, max_new_tokens=128)\n", + "print(tokenizer.decode(tur_outputs[0]))\n", + "# Aya is a multi-lingual language model\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c23652f4", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# Q: Why are there so many languages in India?\n", + "hin_inputs = tokenizer.encode(\"भारत में इतनी सारी भाषाएँ क्यों हैं?\", return_tensors=\"pt\")\n", + "hin_outputs = aya_model.generate(hin_inputs, max_new_tokens=128)\n", + "print(tokenizer.decode(hin_outputs[0]))" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "python3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/flaim/lab/bark.ipynb b/flaim/lab/bark.ipynb new file mode 100644 index 0000000..0e747af --- /dev/null +++ b/flaim/lab/bark.ipynb @@ -0,0 +1,81 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from transformers import AutoProcessor, AutoModel\n", + "\n", + "processor = AutoProcessor.from_pretrained(\"suno/bark-small\")\n", + "model = AutoModel.from_pretrained(\"suno/bark-small\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = model.to(\"mps\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "inputs = processor(\n", + " text=[\"Hello, my name is Suno. [cough] Wassup\"],\n", + " return_tensors=\"pt\",\n", + ")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "speech_values = model.generate(**inputs, do_sample=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from IPython.display import Audio\n", + "\n", + "sampling_rate = model.generation_config.sample_rate\n", + "Audio(speech_values.cpu().numpy().squeeze(), rate=sampling_rate)\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/flaim/lab/llm/finish.ipynb b/flaim/lab/llm/finish.ipynb new file mode 100644 index 0000000..f49f177 --- /dev/null +++ b/flaim/lab/llm/finish.ipynb @@ -0,0 +1,123 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from ctransformers import AutoModelForCausalLM\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "66a7b403fb66499895459c9498c2c338", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Fetching 1 files: 0%| | 0/1 [00:00 1 else "Flox rocks because" +print(prompt + "...") + +model = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7b-Chat-GGUF") + +for text in model(prompt, stream=True): + print(text, end="", flush=True) diff --git a/flaim/lab/proteus.py b/flaim/lab/proteus.py new file mode 100755 index 0000000..2f5c6f9 --- /dev/null +++ b/flaim/lab/proteus.py @@ -0,0 +1,74 @@ +#!/usr/bin/env python3 + +import warnings +warnings.filterwarnings("ignore") + +from diffusers import ( + StableDiffusionXLPipeline, + KDPM2AncestralDiscreteScheduler, + StableDiffusionLatentUpscalePipeline, + AutoencoderKL, + EDMDPMSolverMultistepScheduler, +# logging, +) +import torch +import sys +from imgcat import imgcat + +#logging.set_verbosity(50) +#logging.disable_progress_bar() + +if torch.cuda.is_available(): + device = "cuda" +elif torch.backends.mps.is_available(): + device = "mps" +else: + device = "" + +prompt = sys.argv[1] if len(sys.argv) > 1 else "a computer lab filled with plants and vines" +loaded_prompt = ( + "concept art" + + prompt + + ", high quality, digital render, (magical), (nature), (futuristic), digital artwork, highly detailed" +) +negative_prompt = "nsfw, bad quality, bad anatomy, worst quality, low quality, low resolutions, extra fingers, blur, blurry, ugly, wrongs proportions, watermark, image artifacts, lowres, ugly, jpeg artifacts, deformed, noisy image" + +# Load VAE component +vae = AutoencoderKL.from_pretrained( + "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 +) + +# Configure the pipeline +pipe = StableDiffusionXLPipeline.from_pretrained( + "dataautogpt3/ProteusV0.4", vae=vae, torch_dtype=torch.float16 +) + +#pipe.set_progress_bar_config(disable=True) +pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config) +pipe.to(device) + +image = pipe( + prompt, + negative_prompt=negative_prompt, + width=1024, + height=1024, + guidance_scale=7.5, + num_inference_steps=50, +).images[0] + +upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained( + "stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16 +).to(device) +#upscaler.set_progress_bar_config(disable=True) + +upscaled_image = upscaler( + prompt=prompt, + image=image, + num_inference_steps=20, + guidance_scale=0, +).images[0] + +cropped_image = upscaled_image.crop((24, 350, 2024, 1550)) + +cropped_image.save(f"{prompt}.png") +imgcat(cropped_image) diff --git a/flaim/lab/refiner.ipynb b/flaim/lab/refiner.ipynb new file mode 100644 index 0000000..c405e87 --- /dev/null +++ b/flaim/lab/refiner.ipynb @@ -0,0 +1,196 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "#!/usr/bin/env python3\n", + "\n", + "from diffusers import DiffusionPipeline\n", + "from diffusers import StableDiffusionLatentUpscalePipeline\n", + "from diffusers import DPMSolverMultistepScheduler\n", + "from PIL import Image\n", + "\n", + "import torch\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Loading pipeline components...: 100%|██████████| 7/7 [00:00<00:00, 9.59it/s]\n" + ] + } + ], + "source": [ + "\n", + "base = DiffusionPipeline.from_pretrained(\n", + " \"stabilityai/stable-diffusion-xl-base-1.0\", torch_dtype=torch.float16, variant=\"fp16\", use_safetensors=True\n", + ").to(\"mps\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "base.scheduler = DPMSolverMultistepScheduler.from_config(base.scheduler.config)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 32/32 [03:21<00:00, 6.31s/it]\n" + ] + } + ], + "source": [ + "prompt = \"A majestic lion jumping from a big stone at night\"\n", + "\n", + "protoimages = base(\n", + " prompt=prompt,\n", + " num_inference_steps=40,\n", + " num_images_per_prompt=3,\n", + " denoising_end=0.8,\n", + " output_type=\"latent\",\n", + ").images\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "ename": "ValueError", + "evalue": "cannot determine region size; use 4-item box", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[13], line 5\u001b[0m\n\u001b[1;32m 3\u001b[0m x_offset \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m im \u001b[38;5;129;01min\u001b[39;00m protoimages:\n\u001b[0;32m----> 5\u001b[0m \u001b[43mprotocomp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpaste\u001b[49m\u001b[43m(\u001b[49m\u001b[43mim\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[43mx_offset\u001b[49m\u001b[43m,\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 6\u001b[0m x_offset \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m im\u001b[38;5;241m.\u001b[39msize[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 8\u001b[0m protocomp\n", + "File \u001b[0;32m~/.cache/flox/run/rossturk/flab.df49e6d8/lib/python3.11/site-packages/PIL/Image.py:1718\u001b[0m, in \u001b[0;36mImage.paste\u001b[0;34m(self, im, box, mask)\u001b[0m\n\u001b[1;32m 1715\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1716\u001b[0m \u001b[38;5;66;03m# FIXME: use self.size here?\u001b[39;00m\n\u001b[1;32m 1717\u001b[0m msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcannot determine region size; use 4-item box\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m-> 1718\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(msg)\n\u001b[1;32m 1719\u001b[0m box \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m (box[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;241m+\u001b[39m size[\u001b[38;5;241m0\u001b[39m], box[\u001b[38;5;241m1\u001b[39m] \u001b[38;5;241m+\u001b[39m size[\u001b[38;5;241m1\u001b[39m])\n\u001b[1;32m 1721\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(im, \u001b[38;5;28mstr\u001b[39m):\n", + "\u001b[0;31mValueError\u001b[0m: cannot determine region size; use 4-item box" + ] + } + ], + "source": [ + "\n", + "protocomp = Image.new('RGB', (3072, 1024))\n", + "\n", + "x_offset = 0\n", + "for im in protoimages:\n", + " protocomp.paste(im, (x_offset,0))\n", + " x_offset += im.size[0]\n", + "\n", + "protocomp" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Loading pipeline components...: 100%|██████████| 5/5 [00:00<00:00, 16.35it/s]\n" + ] + } + ], + "source": [ + "\n", + "refiner = DiffusionPipeline.from_pretrained(\n", + " \"stabilityai/stable-diffusion-xl-refiner-1.0\",\n", + " text_encoder_2=base.text_encoder_2,\n", + " vae=base.vae,\n", + " torch_dtype=torch.float16,\n", + " use_safetensors=True,\n", + " variant=\"fp16\"\n", + ").to(\"mps\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 8/8 [00:19<00:00, 2.47s/it]\n" + ] + } + ], + "source": [ + "\n", + "image = refiner(\n", + " prompt=prompt,\n", + " num_inference_steps=40,\n", + " denoising_start=0.8,\n", + " image=protoimages[2],\n", + ").images[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAQABAADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDzmjFOxRigoQCjFOxSgUANxS7T1xxTsUuKQDQKXFOxS4oGNxS4p4FGKQDcUYp+KXFAxm2lxT9tLtouBHilxT9tGKAGYoxT9tGKAGYoxT8UmKAG4oxT8cUbaAGYoxT9tGKAI8UYqTFBWgCPFJipMUmKBDMUmKk5xjtSYoAZSEU/FJimAwqRjPfmkxUmKTFAhmKTFPxRigBmKMU/FGKAI8UYp+KMUwGYoxTsUYoAZilxTsUYoEMxSgZNOxxRigY0Lk88UmKfikxQAyjFP245oxigBmKMU8jIpMUCGYoxT8UmKAG4op2M0YoAbS07FGKAG4oxT8UbaBjcUYp+KXFADMUYp+KNtADMUuKfigDByKAI8UYqTFJtoAjxS4p+2jbQBHijFSbaNtAEeKMVJto20gI8Ubak20YoAjxRipNtIRTAZikxUmKTFAiPFJT8UhFADKTFOxRimAzFFOPNJQA2jHanYpMUwEKkHmkp1GKBCYoxS0CkAmKMUuKKYDaKdikxQAhpKdijFADaWlpMUAJijFOpOtADcUuPrS0detIBuKMU6kxTAbijFOxSHJOT1oASilooATFGO9LSUAJRS0UAJikp1KSWJJ6mgBlLjFKRj6UlABRjPFLikoASiiigApKWkPWmIKOKKSgBaSjFFAGjilxTsUuKzNBoFKBTgKXFIBuKXFPApdtFx2GYp2KcBSgUgG7aXbTsUuKBjdtKFp+KXHFFwIwKdtpwWlxSuAzFGKkxRigCPHFJipCtGKAI8UYp+KMUANxRin4oxRcBmKNtPxRigCMjBoxxTyKTFMBmKTFPxRigCMijFPxRigRHikxUmKTFMCPFBU4zjin4owcY7UAR4oxUmCMikxQIZijFPxRigCPFGBipMUmKAGYoxT8UoBoAj20FafilxQBHt9qTbUm2jbQBHikxUm2jH1phYjIoxUhFJigBmM0mKfigigQwikxT8UYoAZijFPxSgUAMxRinYp2KAGYoxT8Uu3JoAZilxT9tLigZHtpcU/FLikAzFJtqXFG2i47Ee2jbUm2jbRcLEe2jbUm2jbRcLEW2l21Jto20XCxFtpdtSbaNtAEe2jbUmKTFFxEeKTFSEUmKAIyKaRUhFNIpiGEU0ipCKaRTAYR2PFNxTyKTFAhuKTFPxSYpgMxRinYooAZiinYoxQAlGO9LS4oAbSU7FKVxg+tAhmKMU7FFADcUYpaMUAJikp1JimA2inEDPB4+lFADcUUtFIBMUHml/CimAhAx3z3puKeRg02gBpFLS4pO/FACUUtFAAVIAOMA9KTrS0fSgBKSnhSQTxgDvTaACkpRycUpGAOaAG0lLSUAFJS0lABRRSUxAaKXFJQAUh+lFFAGtilApcUoFZGoAUoFKBTsUgEApcUuKXFAxMUoFOAHegCkAmKUCnAUoFACAUu2nAU4dDxSGMApcU7FOxQMjxS4p+OKMUXAjxSEVJijFAiLFLin49qTFADMUYp2KMUANxRilIoxQIbikp1FMBrYJ4GOKTFOxRQA3FJin0YoAZjik2mn4pMUwGY+lJipMUYoAjxRin4oxQIZijFSYpMUAMxRin4oxQAzbS7fan4pdtAEe2jbipAtLtzRcCLbRtqXFG2gZFtpNtT7aTbRcViErSFam20m2i4WICtJipitJtp3CxFikxUu2kxRcQzFGKfil20AR7aXFP20YoAbilxTgKXFFxjMUu2n4pQKQDNtKBT8UoWgYzbRipAtLtpAR7aNtSYpdtAEW2jbUu2k20XCxHto21JtoxQBHt9qTFSYpMUAR4pMVJikxTAjIppFSEU0imIjIpCKeaaaBDCKaRUmKaRTERkUYp1FMBmKTFPx3pMUCGYoxTsUYoAbikxTqKYDaMU6koATFJinUUANop2M96THNACY/SkxzTqDjAx170ANxRS0UANxRinYoxQIbijFLiigBKKUDNJigYlJTqbTEIRSUpoxx1oAbRSjg0Hkk+poASiloIxQAlFGCTikoAKM8Y7UUUAJ2pKU9aDjjGTxQAlJS0ZIGAetAhKKWkpgFJS0lABRSnGKSgDZpcUClArE1FAp2KQU4CgYAUuKXFLikAgp2KAKdigYgFKBxS4pwFIYAd6XFKBSgUgExS4pwFLigY3FGKfijFADCKTFSYpMUARkUmKlIpuKAI8UEVJimkUCGYpMU/FJimAzFJin4pMUCG4op2KMUAMxS4p2KMUAMxQRntin4oxTAZijFPxS4oER7aNtSgYpNtAyPbRtqXbmgrRcCLbS7ak20oX1ouFiPZxRtqXbS7aVwsRbaXbUm2l20ARbaNtS4o20AR7aTbUu2kxQBFtpCtTbaaVoAhK0m3ipttNxTFYi200rU2KQigCMAD1pMVJgUYoAZijbT8UYoAZilxT8UYoAbilAp2KXFADQKcBg5FOApwFIYzbS4p4FKFoGR7aXbUmKMUrgR4o21JtoxRcCIrSYqXbSYpiIttIRUuKaRQBGRTSKkIppFMRGRTSKkIppFMRGR6Uw1IabimIYaaRzTzSEUwGEc+1JinEUYyaBDaQinEYODSUwG0lOxRigBlFOx70bfyoENpKdikxQAgGaSnYooASkp2KMUANxxRinYoIoAbijFOxRigBuKMU7FGKAGYoxTiKCKYDKDS49qSgBtJTjSEUCG0lONIaYDaKU4wMde9JQAUUUUAJRQaKAEooooAKSiigBKO1KfakNMApKUelFAhKKKSgApKcF3HA702gDcApwpAKdWJqKKcBSCnCkMAKXFAp2KQwxmnAUYpQKAACnAUYpwFIYAUoFKBTgKQxAKdilApwWkMbijbUgWjbQBHtoxUu2kK0BYixSYqUrSFaLhYi20mKmK00igCIim4qUikK0xERFGKkIpuKYhmKTFPxRigBmKMU/FGKYDcUYp2KXFIBuKMU/FGKAG4oxT8UYoAZil20/bTgtFwIwtKFqXbmlC0XAj20u2pQtG38aVxkW2jbUu2jbRcLEO2jFSkcUmKLgRYo21JjmjFMRHtpNtTbaTbRcCErTStTFaQrRcCArSFam200rTEQkUYqTbSYoAZijFPxRtoAbijHpTwKMUANxSgU7FOAoCw0CnAUoWnAUrjGgU7FOC04LSGM20u2n7acFoAi20bal20m2gCLbSFalK00igCIimEYqYimEUxERFMPWpSKYaYiIimkZ4qQ0w0xEZFNNPIppFMQ002n0mKYhmKTFPpMUAMIoIqTFJimIjIBPGcUY4p5FGKAI8UY4p+KTFADMUmKkIpMUwGYoxT8UYoAZilHApcUuKAGYoxTsUuKAGYoxT8UYpAMxRin4ptMBNowTkf40ynkd6aaBDTSYyacaTpTAZSU40hoENpPpTsZpKYDTSGnUh9qAEoopKACkpe9JQAUUUUAJRjvS0lABQeaO/tRQAUlFFMBDRS0lAhKKKKAN0U4CkFKKxNhwpwpopwpAOApwFIKUUhigU4CkFOApDFAp4FNAp4FIYoFPAoAp4FIYgFOC04LUgWkMj207bUgSn7KVwINtJtqxspNlFwsVytIVqwUppWi4EBFNK1MVppWmBDikIqUimkU7iIitNIqUikIpiIiKMU/FGKAGYoxTsUYpgNxS4pcUoFACYoxTsUoFIBuKXbTsU4CgBgWnBaeFpwWkAwLTgtPApdtAxgFLipNvHvRt4pXAjK0hWpttNIyTRcdiIimEcZqfHTPTrUZBVvQfSi4rDCPSj69fSnkH0PI4PrUbDDHHT2FNMLDqMU1m4JweelKhz9e/1oEG3n0oK+1SKM556U/yzjpRcLFYr2phWrLJ0Hr0zUDDABx9aaYERHakK+lS7fakK8fjTuIixS4p5XBwetAGRmi4DMUuKeFpcUXAZtpwFOxTgtK4DAKdtpwX2pwX2oGNC04LTgtPC0hjAKXbTwtOxSAi20YqTbxSEUARFaaRUpFMIpgQkUwjmpiKYRTEQkVG1TMKjYUxERFMNSEU0iqJZERSEVIRSYpgRkUhUg81JtpNvc0XEMxRipNtJtp3AjxRipNtJj1oAjwaMVJikx6GgRHijFPx2ooAZim4FSYpMUAR7aXFPIzRigBmOaMU/FGKAGBaMU/FGKAGEUYp5FNxQA0immnmmGmIaelNpxpppgNNIacR3ptMQhpuKdSUANxR16UtJQIQ02nUlMBtFKetIaAEpKWgigBDRRSUALSgEnA5pKdHI0Th0Yqw6EHkUAMPpRSkknJOSaSgQlFKASeOaMelMBDSUppKACgDP86KKAN0U4UgpwrA2FFOFIKcKBiinAUAU4Uhi454pwFIKcKQDsfnT1FNAqRRUsocBUgWhRUqL7UrjEValVKciVYSPNS2OxEsdPEXtVlIvaplh9qm47FLyqQxVo+R7UhgpXCxmtF7VE0ftWm0OO1QPF7U0wsZ5SmFauNH7VCyVVxFYrTCKnIqMiqEREU0ipSKaRTER4pMU8ikIpiGYoxTsUUANxS4paXFACYpQKUCnAUgEApwFKBTwtAxoWnhacFp4WkAwLTgvtTwtOC57UhjAuaNtS7KNuTwScelFwsRYzn2705Ysk5B4Gc1OsWOScZNWood3YHPSoci0imLc8EnjHBqKaBkO4A4Of8A9Vb8VuXGCvI4x/8ArpHtOVU4APTI6VHOXyHMFfl+YH6AdDTJBjBHXrn0rVu7Io+SCe2QenvVBoWCnKkEckdiK0UrkOJRkA5wSMcMCafbLvYAng9T1pZcCT3OTnuRVqzt96M2egPtVOVkRy6kYj3TfdJzggCrnljaQP1FJAh3EsMEZ6dMdKezAKTgg4wOwz/kVNyrFaVAXAI7ZIFV5AAFBPynGc+tWirOuBjIbr696SaHadp9A3B/TFUmTYrGM7sNwD29KZs4wTyelXmhwuSO3T3x0qqMsN/IIB2mhMLFaQAMcelA5GenHFI+GbuM/jxTJJArgE59qskmHJpwx196rrJ8uTzu96kR8kIOooAmAp4WhPmA4qULSGR7acFqTbShaQDAtOC1IE9qcFpXGR7aXbUoWl20AQ7aaVqfbTStAFcrTStWCtRlaYFcimEVYK1GVpoRXIqNhVhlqNlpokrkUwipytMK1QiPFN21LijbRcLEW2jFS7fyo207iIsUbal20bfSgLEO2kK1LtoxxQBDijFS7aQrQFiPFNxUhFIRTERkUmKk203FADcUmKfjmlx+FADMUYp2KMUANx7UEY604000ANNNpxpppiGtTTTjzTTTENIppFONNpgIabT/AGppoENxSEUppM0wG0hpaSgQhpKWm0wCkpSMHBFJQAUlLQaAExSUtFACUtFFACUUtJQIKSndqSgYlJgZ7gUp5yaSgQlFLRTA36BSjHf07UAVgbCiniminCkMcKcKQU4CgY4U8CmingVIxwFSqKYoqZBUsaJFWp0SmItWo1qWUOjjq3HFSRR1fhiqGyhkcGe1WktvarMNvntV+O19qm4GYLb2prW3tW4LX2pr2vtSC5z0kGO1VJIcV0M1tjPFZ80OM8U7gYckdVnStWaPFUZEq0xFF1qFhVt1qBhVJiICKYRUpHWmEVQhmKbTyKQimIZRinYoxQAm3jNKBS4pwFACAU8LShacFpAIFp4WlC09VoGAWnhaAKcCvQHBxSANuBQMFse2fpS71yAcD6Go3cMPlkGegpAToV989aUAq2SQFPX0quhlJG5c47Vcj4XkEqT1PUGok7GkUTpGkqjG4HGduMVKqvG+JAWUDG7H86jVdmChLYGQAeauROskYAJxjvxWTkaKJo2qh0G5uvOe4FTvENmQB659R61TtCY5ARllI6e/9K02K7cZ49h0rJsozri0SSIdPy/KsO7tPLLcH5uhA6V0oJMhjJUdcEdKzr8fLnd8+MEj0pxnZg4nGXKDe/ByAQAPWtDRXWRTuI6YJ/z+FVr4Ym3jJ6E1FpVwIrwqSNrHIJrpesTFaSNmOPahJ4Gfmx3FUpuU2MedxP4dK05XBBZcfMccdBxk1RYI6O3AaNMMxPJP+c1nGRbRXtVywBOC2c/Tirk9tt4Y/K/zHb254A/CobUYlDnp/CMYyf8A9VWZJjcONoyFOTjucU3LUSjoRmLdll5VV6N3Pc1RaIkg4O3PfoMVt+S5t44tmHOckDoPWs2+kWCFiw4U4Xjpj+tOMricTEumEGSwUsc9eorPV8lnIGO+fSo7q5a4uThjjOee9RI7MD1Az0Hc11RVkYN6lrzC5+VsAcAVZjdQuBwzH1rP3FAMn94c5qaDcBzk+rD+lDEjbhwUBJ7cGrCjPB61n28g8rG87RzmrkL7hvORnms2WWAvanBaRCpFTKvFK4DQlOCVIFp+32pXGQhKXbUu2jbRcCHbTStWCtNK8UAVmWmMtWSvpTCvXimBVZajZasstRstO4iqy1GVqyy1EVqkIgK0wj/61TlcmmEUxEW2jbUm2l20xEO2l21LtpNtFwIsUEc1Lt9qTbQBERSbal20mKBEW2kIqXFNIphYixTcVKVpCKYERFJtqXFJtoER4pMVJj0pCKAI8UGnkDHvTDTAaaQ040w0CGmmGnGmmmIaaQ0pptMQhpM8UppppgIaQ0tIaBDTSGlpDTAbRS4702gQlAOM/SikpgIaKWkoASilpKACkpaKAEopaKAEAGeelB4paKAEoP5UtJ2oASjpyM8UUEUANopaSmI6AUoopRWBsKKcKQUopDHCniminikMcKkFMFSLSGPUVOgqJanSpZSJ4xVyJelVoxV2EdKhlItwJ0rTt4s4qnbr0rWtk6Vmxl22gzjitSC1z2qK0jGBW1bwiqirkSdiqtnx0pklpx0rbWEY6VHNCMVo4GfMcxcW+B0rIuYsZ4rqLqIDNYN2nWsmrGsXc5+dOtZ0y1sXC8msyYcmhFGdIOtVnFXZBVVxVoTK5phFSkdaZiqJIyKTHenkUmKYDMUuKdt4pQKAGgU8ClApwFACBaeFpQtPApAIFp4WlUU9RlsUhjGQkfdY/SoHt3Jz847itSKBiM8HPXmrP2ZSoz932FS52KUTnGhduCSueeORU8SnIJXK465NbRsUODjI9QOapy2jQvlDkDjYf6VLqJ6FKBXVMMGjPUHKZ61dhAUDKcntUQET4XGxuvy9RVwRKwUZ3nGQQeaxlI1jEdtG0MgOfSmQyCKUDJDeg6NTOUclt2zHIPGD71FcyFPmO5lJ6DnB9qS1GzcifcS4JAI5q19oEYUkjaRg45rBsbtmYIS5IHIx0qxcTqVaMfLuGcdOnpWb3sUlcuzz+XKOvHPHOT3qC+dQDJ/CTwOo5qjNcH7Ikzk8jnnJpt5d5swSpxtyT6UJDMDUSBKY95G0H/8AVWJ9pKzADHJ6k9Ku6nODIJAevPPWsGeYeccfd+ld9KN0cdV2Z29verLaAA4bbnp/n0ptsDMGRwAGOT79/wCtc9p12dkYJGCcH1ragugkXJ2lvlB7jpWUo8ppGXMh97eGNzEAMjpg9P8AOK0bKMyiOMAlpMbmH6Y/z3rlIy13qshHzBTjr2ruNChBdd2RngVnV91Fw11NWWFYbYFz8z8tg9uwrhNenLsyhyV9+9dVrd3sLqG4zz649K4PU7pn3q2N7Nk45xRh027iqOyMliR6ZbvS79i559ue9R5zOx3A7RUTNuc4PHavRscRYjYsSeCx9fSpXnKjaD3HANRRRsqHOeepFMRGkJIHQdfaloPUux3bspAXOSOemKtQ3LOwV5NoB9M1mAlY8D5Vz971+lOSQhCVBH1NKw7nURXKJgFjkcACtKGQMoz39K4yK4KuAc++DituwuzgZGB2rOUSkzolWn7agglyB3GOoq0BnvWZYzbRtqXbml20AQFaaVqcrTStAFcrUbCrDLUbCmBWZajYVYZajZaaEVmWomFWWFRlapElfGKbtqcrTdtO4iLbRtqXbRt46UXAi20m2pttJtouFiHbSbamxTSKLhYixxSbalIppFMCMimkVIRSYoEREU0ipcUhFMCLFJipMUh5/wD1UxEeKaRUmKYaaEMNMNPNRmmA0000pNNNMQ0000ppDTENNNpxpMc0CGmm04000wCmmlNIaYhpptONIcY96AG0hpxpCe2eKBDaDS0lMBDRS0lACUUtJQAYpKWigAooooASiiloAQ0YoooASg0tJQAlJS0UwN/FOA4pBSisDYUU4Ug606kA4U4U0U8UhjhUq9ajFSCkxolWp0qutWEqWUi1HV2GqEZq7E1Zso1bftWva9qxbdunNats/SoYzorMjit22IwK5m1mxiti3uQB1q4OxnJG6pGKimIxVVbsY61FNdAjrW3OrGXKVbxhzXP3jda07u4znmsS5kyTXPJ3Noozbg1mzGr079azpTmhFlSWqz1YkNV2q0JkJFNIqQim4piIyKTbUmKMUxEeKcBTselKB7UAIBTwKAtPAoAQLTsU4AUvHfpQAmMCnjggjtUZkTofTp60wzhD1HPSkykalvcocbyD7VpoVPKZOevY1y3nR53o3vjpmrsN/wDIBnrzkEGueon0NoHSLsKfKwJqrMkZAyuQR97tVFNRaF1BYn0IPUVZe7U4OeGHI9K5tUzdIpXNidu5OfXHGKpJK8RGCSR6HB/WthpUxg8juBWNflFcvnnsQauMr6MTVtS6kySEguMkdT39qn+yRSRZTBz2xwK5w3GwGRA3X5gP5/Wte2v0NqDnI6A4wR6E0STWwJplpovIQOEJCjPHYjr/APqqG/kDxiRGwfvqBxxVlZl+yvuUrhuV9PpWFfSoqOyNyFwUz09xSirsb0RKt15ltKnB2EH0yKqXV3/oDdSMc/lWVDeE70GSGBzg9ad55ms2hXGcc89eK6FTszFzujPupzJGSTnqKx2YsT7VekIFuSOmcHNZ3PPNd0FZHFUd2X7At5i+mcc1viBnlih3EkLluen0rl45WXYF/AVt6bcmNi5cbj3NZVYvc1pSWxpafbpbgBj++kyz/wCyP8c11Frdpp8TPwzdFXuBXL2FwkCNPPtZ2O7B7VDd60SG2MQM8e9ckoOcjpUlFF3Ur6YMZJtoLcqvpmuYuZN8h+bcMZJ96S4upLhy0jmqkkhb5QOtddKnynLUncaWyzEHipoYW2GRuPT3NSWtqXGW+6OpFatnpkl1IXKCOFO5PbrVzmkRGDZnlXlUJHknGWbsKaBJcHybeJjzjIHJrprXRPt5IRSsIOAV46c59zXRWWk2WkxKAmWI5Ynlj6Z/rXPLERj6myotnJW/h25KLLckhm4VMgUS6MEYq0nH94c/rXT3l5FKywwpvdv4QP51GIobVBJcNucnJyPlX8azVeb1Zp7KJyZgliJQBmGPTt+NSW8oDAv5jBuhHYe1aF9qrSB2QokO7AIAHNc/NfhXGw7lz17/AJ10wbluYTSWx1VnK7KMblHUFzWtDKBgZzx+dcNb3rthhIVA4wOT9K3bK9YIBvbGMk5xSlGwJnTLyM/yp+Ko292rgZ5J/Cr6MGAxzWZQ0rTCtT7aaVoArMtRFc5q0y1Ey0wKrLUZXParLLUbLTEVmWoytWStRlaYiuVpCtTlaTZTuBBtpdtS7aTbQBFtpCtTbaaVp3AhIphH5VMRTCOtAiIimkVIRTcUxDCKaRUmKaRTAYRTSKkIphoEMNNNPNMNMBhpjGnGo2qkIaajNONNNMkaaYaeaaaYDDSU40HpQIZSGnEUhpiGEU008000wGnmmmnGmmgQ00lOpKYDaSlpKBCUUUUwEpKeG2sCOoOeaaTk/WgBKSlooASiiigApKWgUAHeig8nJ5ooAKSiigApKWkoASgjHFFFAHQUtIKUVibDhThTRThSAcBT+KYKeKQx4p60zpj86eKQyVamQ1AKlU1LKLKGrcTVRQ1PG9SxmtC+K0YJcY5rDikq9DNjvUNFHQwXGMc1oRXXTmubjuMd6tJde9SFjohecdaZJecdaxftfHWmPde9Fxcpenuc55rMnmznmo5Lj3qnLNnNAxJpOtUpGp0knWqzvVIBjnJqJqVjTOtUISjFLSgUxDMUuKfjIo20AM20oWn7acFoAYBTwKdtpQtACYpQKUkL9aTdntQAjRgjB5zwabFYb+Qo2dCC1SoA0m0vyemDjNakVm7JjqV9Bwawq1OXRG9OF9zJ/sZTJvQKQB3PQ1EmkSI28HAz1U/5/KugWDB2sdmeoxTJoQFxkkdiOa5nVkbqCKAtGCHcq+X2I7VWIeA5JbZjqecVOszWs+0uzRkHhjyPpVmRopuUPzD06ZqeZ9SrGSb3yJDHyVY/LnpUV5MGTjkEZIPIpb+3Ij3pk+q9waxZb4IOCcdDnv8A/XreEebVGcpW3IpLkrLtJbp06Y/xp9vqAR2DkGNuqk9RWbdSrLkg57gjiqIlZW5Ndap3RyupZnaW+sAxtCz4ZACrA8n0rFvr7zGL5+b271kpclSOfmHT6U2SUM3B5PWiNFRdwlVujQspyZmIPJ7VeSzkt3BCkrJz+Z7Vk6fk3JVepGM57d66ozR/ZYJmb7uAoHYj1/OpqOz0HT1Rzep2rQym3UAMMHNY8o2ttA6d/wAa6LV5xLcSs2N2cAg9s1zjkGRsHNb0m2tTCra5KFBPHQVaWTEQOOnFQxf6g56Uzf8AeGeDVNXEnYna8blSxOe1RNNuOS1V2bJzQG+XGKagkLnZIxyOM1YsoVmuBuBKjqBVLcc9q0dMUNJljwvWiekQjrI6Zbe2W2jhQ7nOCQeFU/1rSs7Dzk3MQkIPzuWxuGayrKDe2d4Qg5AJx+NaU8MJyZLyVdx42+g/lXmzetrnfFaXL95rNrYJ5NpuZ0+UAdKxhqlzfsf3qkE4C5xuPp9O5xWZdpZxkhZHfBxjNV47kBQqERj+8ev0q40la5Lm72N06iunqyBlllbO91HBPoP/AK1ULq4uJz5ly5ZSfkgHBY+pFQwXNnE4ZpyxI5wDn6Ami51O0+7bRMOclucn6mrjGz0RLlfdlOaGaTBuCT3CL0FVJI8HGwKPTFWZJzhirEFucjiqxfI5OPx6VvG5jKwkR8ttjIGI9TVy2vmQfKoOD1Hb6VkyP+84P1xU0G+UhRk47Vq1damKep00N87NjzHI7ADAAroNNkZgDISe47CuW063djtYsBj7uev411WnRoMBS5HQZ71hOxtE2ByKCtLHwMk4zTytZFFcrUTLVplqNlpgVWXFRFatMvNRslO4FYrTClWStMK07iKxWmlaslfamFaAINtIVqbbTStMCIimMKmIxTCKBEJFMYVKRTCKYERFMIqUimGmIZTDTzTDTENNMNPNMamIYaYacaYaoQxjUbGpDUZpoQ0KW4A5+tMp5FNxTENNNxTyMUmKYhhFJTyMdDTSKAGkU00800jvTAYaYaeaYaYhppppxppoEIabS0lMBKSlpKBCUUGkNMAoPvRR3oASiiigAooooADzSUtFAARikpaKAEpKWkoAKSlNJgd6AEpKWkpgdDSim04VgajxSiminCkMcKeKYKeKQx4p4qMU8UhkgNPU1EDTgaQydTUytVYGnq+Kmwy6klWUl96zleplkqWikaiT1Mtx71lLL71IJamwzV+0e9NNx71nCagze9KwFx5veoHl461XaX3qNpM07ASPJULNTS+aYWqkhDiaKZmnCmIcKcBSCnigBAKcFpQKeFpDGhaXb7U8CnBaAGBfSnbaeFpQtAiIjsKYx6rs59c1Z2ZHvULxK3BJ3duTUtlR3JrVYzMob8WNbpgZFV1bIHTHOa5lFVJUwSQCNw711Pl7EQwqrfL64yK46250wIftTH/WxMV7ELj+fFRzXFk/AZUx1BGMVY8/qsjqvb1NKbeydcm33DuzjH9KwNTAvmtiMrKrem2sKa8lgk3QsEcnnnAYV01+dMjQ7YYyQeAO35Vyt9NByY/lrakrik7IJNReVCHXaR2z1+lY108buSABn8qinu8MypuIz3qlJO7feHX3rup0ranLUqJjJAAcg8+lV3c9TzTnfnrmnxQEnc2a6lpucjd3oRLvIyenanAHjjk96vrakrwM5qM27YyBwPai6CzIomkjYFOo5rajlK2Zh8wE9gfw5rOSE7SQD8vcDkVHuIUEHJ6HnrUSjzFxlyiXzM7k5BI+8RVEKSGOOlaEal/MYn5cHOaU2+y03ELk81SdtCGr6leIgwEfnULL+9PNTIrbjtHGK6Gw8OTGIzz25cFCdvTj1FDko6sai2cttJHSgrxyK07qJYpmQRYAGP8A9VUmJ3bVGR2q07kNWICCDVqzn8uQEtjPWm+XkeuaZsAII546UOzVgV07nSRXhVkcuWBHTtTpbyIOWEpdu2Txj3o0D7JNG0dzkSNwpz0/+tT9Q0ZPN8uHPK7gR3rhaipWZ2JtxujOupYJ03EBXPQqen4VTRvLxwrD1HNQXVtPazNGwPtnuKhWQjoSp9K6Ix00MHLXU0TftjA2gj1FV3vZuTjIPoahaWRRnIOaqNI5JyGHNXGCJlNlpp2ckOv5Ubs9Miq6qSQTkirCgdTVNJEptkOSrHPPNXLdiTgsV7cVRYjedtSRyMO9U1oSnqdRYqpZA05ZcY6dDXV2dmoXAkk9PY1wunSQNIPNbHGM/wBa7PTL2ONFUEtkZwDx9Otc00bxN+CDABJJ+tTlaignMqZHAPT3qxisTQhK1Gy1YIzTCtAisy0wpVkrTCtMCsVphSrJWmFaAKpWmFaslfaoytMCArTCMHipyKYVzQIgIqMipyKjIpgQsOKjYVMwqNhzgVQiIiozUpFMYZpiImqNhUpqNqYiM0xqeaYc9KpCGGmGnkdaaRTERmmkU8imkUxEZFNxUhFJtzTEMxTakxTcUAMNIRT6aaYDDTDUjfl7VGaBDDTcEgkdB1pxphqhDe/Smn2pTSGgQ2k7U6mmmAlIaWkpiEpKWigBKKWkoASlxRSliVC8YHPSgBKKKKAEoPalooATNJS0UAJRRRQAlJS0UANNJTjSUAb9LTQaUViajxThTKcDSGSCnCoxTxSGPBp4qMGnA0hjwacDTM0uaAJAacGqLNLmlYZOGqQMQarBqcGxSGWhJTvNPrVUNTt9Kw7lrzPejzPeq27NLuosFyffTS9RbvejNFguSbqM1GDThQA8U8UwdaeKQDxUi0wCpAKQD1p4FNUVIopDFAp4XmgCpAKAGhfSnBfanAU4CkAzbTJIyVyuMjvVnbSFMigaMh1IyQGLE8/Wuk067W7sFRlwwHNYl2MZ2HJA5Ws+HVHsZN43hX4IxWFSDktDaEkjpJXW3YlV2546c1lX99dgH58c8Dj+dPn1QTQ7x931BrEuZ3Mg+d2zxg8EGsIQbepu5WKt1NcSFiZlXt8zZrEuXXJJnZj9MV18OhtNERNIiSE8fNwo/rVa88P2doC8rO7AZyV2r+vNdUJxjoc84ylscW/zchWI9SahkPYGr9+yo5VNuM9AKpQR+dOqdMnH0ruhtc5J6OwRxsMZ71p2UXmtgd8Vv6Z4bjvbZ0kIRwwOW7Vsw+FYoEESHc8hBGO3tmspVolKmzP03S4JNpZ9qYPygZJI9PrVu40GF4wsaNt27iAn3T6ZrqdP0WJEETQrvGVLKM/l3/GtubT4PsvlRYDAYx6fl3rmdR30NlFdTyRrWKzVo2QhiDkHp1rB1CKPzCY+nUY6V3viPTzbq4GWJGWOcmvO7qYiQqea6KLctTOrZKxHDPsDxkfKw5PpirUMUt1sjiywC5PtWc4BX/aJ4xXdeH0ht47SEwia7m4VVPbGcn/PatKr5VdGVNczsyvpnhyR3Wd4/kPP4+hrpLLTJvscjvvkH3AAeee34f0rp4o7QwpasAZSN4XI5P0pbyG4somkSIsuACinAFcMqjkdSikedappKRJJtXaVIxgc7QK5g2gLPIOOOAPWvRLtV1OOQhlSOJSsjlucdgPzrm7pbGzud4Kyoi/u+epGOTXRTm9jOcVucvNA6vgK2Seaj8vGd2BjtV65vGlZyAFBPHaqTdRuzk+tdKv1MHYaJWjAZRjBrqbDVV1Sa3Q4zEMHIxvx2/KuWI3dhjsabDcSWkyyRMQw96mdNTXmOE3FnaarpiXFuJEUNG33T3/TrXI3FsbR2DgOmeMHH611Oh62XSNCgZQQm5mG4E9wK0dQ02G6D7ZAw5DBcYP+fauWM3TfLI6JRU1dHnjvasgCpKrY53kEVH5eACCDWnqWhvBl4cnjPlsfmH+NY43qfp2rsi1JaM5ZXT1LC8HBxTZJQBhepqEsemabnJq1ElyFzT1JHpTBSg+tUyUW42G7kkD2re06VlX93cNgcFPX6VzSnFXbOdopAynJ/KspRNIyPTdLnyi5DjjIY/y5rcQ5HOenevP9L1G43BWkI3dATkV2FlcB0Bd2J7E9PwrlkrM3TuaRFIVoEiH+IGn4yKkZEVphSrBXmmlaAKxWmMtWStRlaAKzLUTLVplqJlpgVmWo2FWGFRsKAK7LUbCp2FRsKoRXYdajYVOwqIimIhI6io25qZhUbCmBCf0qJqmI5qNhVIlkJppqRgMd80wiqEMIppFSEU0igCJuTk00ipSOaQj8KZJFjNIVqXFIRTAhIppFSkUw0wI2GKYakNRmgQw1G1SGo2qhMYaaacaaaYhhpKU0mPU0xDaSlpKBCUlOpKYCUlOpKAENFLRjvQAlFLRQAmKKWkoASiloxQAlJS0lABSUtJQAUlLSUAJSUtJQBuU4GmClFZGpIKcDUYp4pASA8U4VGDTgaQyQGlzn2pgNOzSGPzS5pgNANAx+ad2zn8KZmjNAEgNLmo80uaQEganZqMc0oNAyQGlBpgNOFIB+aUU0dKcKQxRTxTQKeKAHinrTQKeBSGPWpFpgqVRxntUjHrUqiolqZRSAeBTwKaoqRRSAUCngUAVIBSAQLQU4qQLTgtAzPmAQNgbc9+grC1IEKXYdOB2//VXVSQBxz061QuNPS4bYE+b0J/zxUN2ZcThIrm9inzAcR/7Rwtdb4d0XUdUaO7nVI4R3K9fzHNb+k+GbNXE9xEJHHTI+UVv3NylpAdoXA6dgKyqVU9EjSMWupm3FtZaTCZA2+THLtyf/AKw+leda9q/nO+2U7c9c1e8TeIfNkZElJHTk8fpXCySS3MpOCRyc1rh6DfvSIq1OVcqEZmmJkIGO2TWroun/AGi6Tedqn+IDj8aq21jcTuhCNjOcgZxXoHhzSV8kZCyK/OSMH6Y9K6qk+VWRzwjd3ZrafbnZGiLld2W2jhuP8a3RZgchWO7knrt9qntNO+zoFiHLHktwF9amvp0sbYRlwrKecnjb2x61wydjpjq9CS02LG8u5fk659R61yVx4zkk1swW2DGhKsNv9ateINdNp4fke3cP5n8SVwOiSlJvtbOynO4k85OaiK5lcu1nqdZrd0gti7FCG7nrXnlxJazSu0kS5OcNk81pa9qrXjunU44J7/SuamxHF8+Sx6c9K7aELLU5qstSCKESXWzdt6kE/wCetdj4OD3V6Z5UYGAZEwbHT+HHTBrlLaGCXALsJew7V6R4V2WtgYLlE6HDDGcH1q8RK0bGdGN3c7DTRbC6+1Sqyzv/AHsfKvYVb8S3ZXSXeMqWxnArk7rWre3mP73zFxgH/Gln1yG50zy2dQCOzc/WvP8Ae7HZypu5yV1fvcW8kECMPMcbtxzhs1j6lbzW7gu+5T3J6HuDTnne21bcjkjduC5rR1S9jvIdzqqn+6D+Zrui3Bq2xhJKSZzYBbHUnsaTvyDgHip2RCS0XbjbmoWO4dPoM10JpnO1YZsHoSfypjqSOe3alL8deDTSMdjVEjIpZLeVWjYgg9jXR6f4idYhE6RhSeTiudIJXtio1Gx/vEHse1ROEZrUqE3HY7OW7s7khWXgcgjAINYep2cb5kjH4jA/Oqccj7RtIb8elSG4fGGJ/CsowcXoaykpLUzHBGQRzUdXLgF8sOfXFVMV1Rd0c0lZgKcD6U3inCmIcD0p4/2TTBTxj8aTGWIpp0OVkYH610Wk3l8HCm5wvTld3FcwnHtW3pV2ySDgMvQj61nNaGkHqd9YNvVQ92zMDjgBQOPStqBdowM/jWHp0rmFfNRGzgAZ5xiugh27M5YfWuNm4/bSFakAzQVpAQFajK1YK0xloArMtRMtWWWomX2pgVmWomFWWWoWXrTArMKiYVZYVCwpgV2HNMcc/h3qZhUbCmIrkfSo2FTsKjYfWqEQMKjYVOR61GwqkIgK0wipWFNIFMRERTSKl6Zzg/jTDTEMxSbafijFADMU0jNSkcdaYadxWImFRtUrVG1NAyJqjYGpTUTU0SRmmGnmmGqERkU009jnrTCKYhppppxpuKYhtFONJQA3FGKWigQ2inUlMBKKXFFADaKdSYoASilpKACkpaSgBKSlozxigBKSlpKAEopaSgBDSUtJQBtU4U2nA1kaDgKUU2lFIZIDSg0ynZ4xQMeDS5qPNOBpASA0A0zNKDQMkBpc0wU7NIB4XIJyOKSm5pfegB+acDTBThSGPHrThTBTxQA8U4U1acKkoeKePpTBTxSAeoqQUwVItIY8fnUgqNakFIZItTLUS1KtJgSqKkWmLUopAOUVKopiipVFIBwFPC5pAM1KowR3J7UhjfJZ+dwC+9XLayUHcwOPTPWpLe3JILjLfyqW4mFuhGcVhUl0RrBCXFwY0IiUY9ScVymr3E84dPtO3JxhBkmp9Q1lEJy7enyrz+tc3damszFFEkmeis36YxU04Nu5q2kjEudLe8ujFAsjuOoJycevHSt3TPB4i8trkhWOCQ3b8qsWYe2i3Sq0b5yoyMD3+tamnp58hkJzuyS2c8+nHWumVSVrI51FXuXLLQ7ZZ1aJQoIOSO/4GujtraG2RWG1So4yenvVCziiujja2FyDzwaq+Krt7LSpJLcfOqkDPp6Vldso0L7xJZ2MTP5iMGLADdjp1615t4k8QrqMQeC9AJOSu7oCeBiuU1iPWLq1hv7uRjbs3l4BP7vHTd9c1JDYaA1os0l1cxSKmXi4JY/7JxXQqCVm3cy9tukjofDV/LcLcadeuzWcgz8q/Nu7Y/H+dLdRmIyQwQyEhgAzIc/nXP8AhnWZbDWrPd88JmCMjf3ScGvc7/Q7PT4jdhC7dBu561FSm4Sui4VeaNjzOx8LXV5H57o3BAUE471Br/hGa0gV1TLnr2H4V7FaWkENsoRFAxxjoao6laxTx8gggHDHkDt0qVVkncHFSVjw3QbBbrUgJNwRT8xHGPpXXaiI7eJoFYpg8sBgt9K2dD8Px2Vk87RhWklO0t2HbNYGvz/ZCYl/eAH77JjH0q5z556ChHkjqcneyuJDh+BwKit3uZBiOU4HamzytK5bGc81b0tQZCBjIPSum1omF7yKF5PNCwAxvbpiqaG5mkCM+T6scAVa1eYHVG2gYjwBUbXtuRny3z6dq1S02Mm9dwMjQKuSeemec/jUqyq4wDkn3pi2dxfq1xMPKt0HHbPtTYrVUG5M0WQJsfznBFJjqB+VKemByaUDg4PekUN59M5pSATjFISAfrzTSeMimIMBe31xQR6OacjYGMZqYIjjsKTZSVyrhx3zTHTnJG3+VWjFjpn8qQA45GRQmJxKJBHWjirEqL1H5VB9KtO5m1YUEU9aYKcM0MaJlxnirdt8rdSO2ex+tUlH/wBapkYrz0x3qGWjs9NeSN1Kq2SNw2kY9+K6+xeV1BLuwxx8oH+TXnGk6w1swDYIIxz/AJxXf6Tq6SxqiBDwCSMD9K5qkWjaLOgTJHIpcUyGYSrkdD096lrIojK0wipiKYRQBXZajYVYZajZaYFVhULL7VaYVCwoArMKhYVaZahZaaAqsKjYVYYVEwqhFdhUbCrDLgZqJhTEQEVGwqdhUbCmgIGFRsKmYVGRVEkJFNxUjCm980wG0daDRQIQ0w044ph6UwI2NRtUjVE1NCZG1Rk+tSNUTgqcEEEVSJI2php5pucVQhhptPY5JOAPpTcUxDCKQjHNPxRigRHikxUm2k20wGYpMVJijHFAEeKKfikxQA3FGKdikxQIbRS4ooGNxSYp1IaBDTSU40hOcCmA2iiigBKKKSgApDS0lACUlLSUCNkU4U3sD60oNZGo6lFNzSg0DH5pc0zNLSAeDS5pmaXNAD804GmU4UDHg0uaYDThSAcKWmilFAx4p61GKeKQx9OFNFOFIB608UwU8UhjxUgqMVIKQx4qQVGKeKkZKKeKjWpBQBKo4z2qVahWpVqRk61KtQrUy0gJVqVRUQqVaQEyg5AHU9BV61tskE/M3t2qvbQ72HHNbMKbVwB9TWc3ZFxQ2TEKHoPxrltY1MJuUOD9ADW1qk+2Mrk9O3QVwmrXIG4CIc9y5zWCXNI6FojJvbqSRyRwD/eNN06MmTzjIyKepY7Qfp3NVXPmNn5Qc+lRSXKxbSpBccA4rsjHSyMJS6ly4vj9rCnMnIGSeT/WutsLkC1jVZG3sM/N0UeuO1cBIf3qvlTj72PXsM10lnehI965bCdDxzTqR0REJaneaVOq28hWT5V454Jrn9VmfUb9LORk8t5PmGcnA71o6Hk6PliAXBJAPJrBsty+KJCWA3IQPbmudLV+Ro2R296thdyta+VPEB5ckTqNso6kFT1rorXwj4d8RWv2nS1Wzlxl4niDopPseR+Brlr+BV1dobN4yx++55zW/ol7PDq0MUbxgZCyShzjken58VspWREo3OP8VeC7jwpfW1491BOs0m5FhQptxz0r2Z7pbrQlnDZ3Rg9Pasvx3aWd34cdpmXKLlGIyc+lZek6pJe2EVnEC0EKKq46HjHNVOXMjOEbHRwT7bdAVw5HPzdKkdoyokk4XaRWabhYGXzZcyEYEZ/lUF5rClhCARIRyGGa5W9TdRH395H9jfy5MY4XacZrynxDLOsjrJIHGcZB5rutQM93lIFTYBhmJJz+VcZq+i3jI0m1Cw/gVsZrWg0pXYqifLockJQGwelSw3Rt5dwJ5qrMjJIwK4ZTyPSkLb1OSNwr0bI4biMDcXZJ/jbmujt/+EcsY1kYtNKByuzv+Nc7buEnBP505sPIxHeqauJM0dR1aTUXCInlW6/dQH+dVlUqvBOKSJQo55FTE/JgAjJxgVL00RSRHgYYd+1IOeM+/FTMCq8HnHAqPAJznj1qLlWIjzn060zGSR3qV+pH61EQD1qkJiqMd+P5VZRiBgYNVQDkYzUiHv0+lJoaZZwOR0ppUZ5B/CkHTIqRXOADUFkDxgc9DVN1wcVrbVcY/nVK6hK8jkVcJETiU/rTgeetJj86Xoa1MiVT681MvUdqrqe1WEb1zWbNESBWGMZArU064eJxiZgoP8PNZuM4O406JhuBJIPepeqHseoaLq0EqrFuy+B25ro0cMOOleaaTNNGoCyRbc8BXwfwrs7K8OAsjSA4z2xXNJWZstTapCKZHMrLksAKl+8M1IyIrUTDirBFRstICswqJlqyw61E60wKrLULLVphUDCgCswqFhVph171CwqgKzCoiKsMKiYUxELCo2FTkVGwqhFcr34qJhU7Co2FNCIGHao2HSpmHFRkYPT86oRGaO1KRTTkdcUANNMJpxpjGmIY1RMakNRtVIkjNRtzz3qQjNMNMRGaaRTyKQimIjxRipAuaNtMLEe2k21NjjFG2i4WIdtG2pdtBWi4WIdtIRUxWkIouIh25OKQipSKaRTAjI/OkIqQimkUCGGm08im0wGmkNOxSGgQ00lKaSmAlJS0UANopaSgBKQ0tJQAlJS0UAa2aXNJmiszQcDThTBTgaQDs0oNMzTgaAFzTgaZTqBjwaUUwU4Z60gH06mg5wOOKUdaQx4xSimilFAxwp4pgpwpASCnioxTxSGPFPFMFPWkMkFSL0qNaetIZIKkFRinipAkWpFqMVIKBki1KtRCpFpDJlqZahWpVqQJlqeP1A6VXWrEfr3pDNS0GAOx7mtGSQQxYPzPjp6VR05DIc5PFXblVWMgk+/PWsKhcTm9SaRyxd8A9hXF6pJDETjIJ7t3rrNXnLErGHY9goriNSsrqaT5kcA9sUqKTeptNtIyZLgu2VY4J6nmoWVQ25m3c1M9oYBhsD2zkn8qrSH3wMV3xt0OSV+oLMfPVxwqnoRwK1Lefy7UHdk55FYWeep61cSYsEXPTtVSiRFnp9if+JZBGp/1nbpge9YpMa+JQZ5GWNATuXr64q7pFz/oqAvu+XAx2qlqVs6qLqM5kZs/l2rjjpJo6HsVtVhaa6M0S4QNsQKPmY561e0VWt79RAQspXe3I2oB6+p4rXsrEXelLcJFh44gIxu6uerY9OKhi019LsWvGzjk4Hf0GMcCqb0sTbUZ4gvZNWMFlHI8jPtYkDAx3+lXLaWLToTbWu95epO3gH0qGzjMFm9zdMFnuDukk6FF7L7DFI7AwGVn8tGOUA4bHqc1jKXRGsY9WTuryOd7Zc/eao5YUjVkgmPmOM8NyPbPpVC6lmkJaIFQfQ4BpN3kQjbnzCeMHr+VLlHcss4W3ba5GfvM/Qfjisq9uoIIwBLGccg9yfXPasnWvEFzFcGKJwqjjk9a5y51B5nJDMMjkbsiuinQb1ZhOsloh2szR3N20gTZIScns3vWSQVb3qWSUuOe3AJpmNy4J6V3xVlY5JO7uM96lQng+lMUc89KcFIpiLadeOpq1Co65A+tVIycZXnjmrsJAAI6dzjrWUjSIkqgts4OKhI/d8j6nHSraLvzuBxTLhMAg9vSpT6FtdSg455qIg8etSsQeO2ODUbEYBzWiM2Bxtzn6ilUg5BFR54pyH5jnpTaEixG3r396nGQcbfpVaMZ6nB9zVhY9wAyQfY8VmzSJKACMFefahohIhB/WmYkjOCf0qZG3gYxmo2K3MiaExtg8+9RCtO9jDKTj5s1nYPpW8XdGElZigVImR2qMAZ64qQdR396GNEyvkFT0oVmcY3DOeM1GCQcijPzZ6fSlYdzRtJmicbt2R6Hr7V1el3iOo3PIM9Bg8flXF29w0ZBPTpgjiuo0zUAFXdGMjqTwCKymi4M7+x8vyw+4HA7GtIc/SsHS5i6qAFAA44z+VbqNxySfqK5zUUimMKlpjCkBAwqFxVhhUTCmBWYVCwqywqFhQBWYVC4qywqFhTQFZhUZHpVhhURFMRARxUbCrBWo2WmBWZajZasstRMtUmIrMtRMKssKhYU0IgIqM1MwqNhVCIj9ajNStUZpiIjTCKkIphFUSRkZppFSkUm2mBFto21LspdlFxEO2l2VLspdlFwsQ7aNtTbaNtFwsQ7aTbU230pCtFwIdtNIqYrTSKYWISKaRUxWmEUCsQkUw1MRUZFMRHjOabUhFMIpiGmkNONNNMBKaRTqTFAhppKcaaaYCUlLSUAJSU6koASkpTSUAatFJmlrMsUU6mCnCgYtOpopc0gHUoNNpaAHD608UwU4UhjhThTRThQMd6U4U2nCkA4U4U2nDgA0hjhTxTBThSGSCpBUQqRaQyRakFRipFpDJBUi1GKkHTtSAeKkFRinikMlWpFqMVItIZKtSqaiWpVqQJkqePJOBzVdat26lpF4ycgY9aQzf05PLtgT98+lOuSiD94Msf4R2qSI+XEB/EB2qrcyJGMnGT3Nc82aRRjX0pkBQfKPRRnH5Vi3FvEo+ZZJGP8K9/wFad5fHJVC2PZSMfjWDc3Eb586eVhjJQYVTURRsY2omGPcEhij55DHLVzdxgvnnn0GK2r6a3JxAnOfTJrCmyzEN19q76S0OWqyBuDUsJ55qEjHA/WnqcCuh7GC3O+0FWexGMbSM5xzW9DBFMyoVG0ocBuR9fr1rkfCF6jsbWRzkdMnjFd0YmiXz02txgDtiuGorSOmLvEm0K2la2S2csjMSRjqVq54ii854oYwBFCPMYduOBV+EKs0FyrBWkVFZR9O1Z10Wmupoi5Ilk2E9PlXk4/PFROWgQWpy0ktxe3ptScQxtvyByxzx+FWLkx53vuYDoD7d62P7OhiniIBJc4yo+7/wDqrPngja4eNGMhU4ZutZmpk3TtJGMbgpxgYrAubya03jPyd8ckV1F3lBsUZI746e9crqqGQtsUHJ6k1tStezM57aHMXc5ubgsSWGeM+lRPGMZHGK0pLZTF2D+3pUAiIyHA4713KS6HI49zLYHODxSqMnjJq29vuGRzzjiq7wsv3T+FacyZHK0NKjcMenNSJyQDUaAjr+tPA5yfrQCLEakMPl461eVGCgjJ45FRwRq6+x4H1qXBjKqFYE8HNZSdzZInhwFAORnkEVFcEZbpgD86k3AqTkZqnMw5OKhK7Kbsis2PTt0qs5wTipnfqarM2WreKMJMUHinrn9KYCPxqQEd+aGCJEXPIPNTqHXr8wqBcj6fTNWoWBxg4HtWbNEPSboGwQexFSbQPmU5X+VNeHcAVGR/npUcchUhSeDU27FX7iyHnaeA3Q1SlTa54/CrsxznGCR2qu/zrz1q4kS1K4UHnpRtIJweKeU6DsR6c0Yx3q7kWE3ECk68DrQevpSdBQA5c/X61fs7p4mAjfbnqGPFZ+eacrYPFDVwTsd7pGuPhEkhibA5YPggeorrbTV0dQNoTnAAGf1ryaxdA4LNx9a7jRLm3wAqYYcAqOD+Oa5Zwsbxlc7dJPMXJUj60pqC2ZjGN2D9DmrBrIojYVCwqc1EwoArsKiYVOwqJhTArsKhYVYYVEwoArsKYVqdhUZHWmBAV5qMrVgrTCKYFdlqFhVlhUTimIqsKiYVZZcgmoWFUhFZhUTCrDCo2FUhFdhUZFTstRlapEkBFJtJPFSlaUAg5GQR3p3EQbecUoWptmacEouFiDZS7KnCU7ZSuOxX2UbKsbKQpRcLFfZSbanKdqaVouKxCVppWpStNIpgREUwipSKYRTERkVGalYVG1MRGRUZFSGmGqEyMimGpDTDTJGmmkU40hpgNpKWkoEIRTadmm0wENNpxpDQAhpDRRQAlGTjHaikoEadLTaUVBY6lpopaQx1OzTBThQMcKUUg/KlFIBwpwptOFIY4U4U2nCgY4U4U0VIpwD7jFIAFOFIOtKKQxwpwpgp6kgEZ4PWgB61ItRCpBUjJRUi9aiWpFpFEop4pgp4pASLUgqMVIKQyRakWox1qRakZKtSLUa1KtICVRnitGzwjhj97tVBfUZ9qvWnMgUdSevpUsaNgyMsfPH1rKvHZ93lqTjue9XzyQvftVaZGm+QAHsBXPI2izmL6KWU/PISzcBU7/SqbaUkC+ddKxbHCHt9TXYi1SAZADy45c9vpWHqt35EZKBSQfvN3+lCb2Kvc47UVAyFiIX0Vaw5jgkLHye9bWoXdxMGYsSuehPGazY7Vp2LbSQO9dlPRanPPV6GcU5zxUbdu9WZk2uVHJ71AwK81umYtFjTr6TT72O4Q/dPPHavb9Kkh1HT4p0JaNwCTXg2DmvSvhtrYPmaXcSEbfmiGOvrWVeN1cunLoegWUEyy+YcCFAwUEdOP1NUo2IlgMigSSb2Ct0A/wAcVoX0hFnI67iApI2fSsf7NHdRWt3PLho4zI5Vuc/3Rz7VwyetjoitLnIw+LE8Oatqum6mHdUuGntzn7yv/D9OaqXHxCspbiRIYGtmzhWPIb61e8T+G4fEdst5bTD7VEgCyPwJB3B+n9a8w1DTLuwkK3EBj5IDdQfoa7qUadRX6nNUc4PyN698UX8k7YlwOQeKy5tVvZ1KGXr7YJrMikJ+Ruo6VZU7yO3rW/JGPQy5m+oGWdGJ8xsnrzThqLouGVW5ySetQXT+WwVTz3qmSSfU1oopq7IcmnoaMl6V+WFuCMt9adAGkt3c5JNQWlm8zjcGCdzitOUR28ezHPAAqJNLRFRTerKUaq6fMQO9PSPcM4yOlTLbZRdy9eS1OEbRcA7lOCGzUuRaiWrEfJgDitGWNDCDyDnOaq2SgKRkYPU1NcPhQgOT3NYvVmq0RRc9R19feqc8hxszVmZ9gwDWa75Ytmtooykxkr8Ypg9e1ITljTgcVqZAKeq56cmkULnkYqQID0NS2UkADDpxUqk9w31FChl96mQhuoH4VDZaRLDMchTgmpJotw3r+dMESsARz9O1WIW/5Zv9096h9y0UJCdo549qhJzz3q5dRFGPHFVMZGQfqK0iZyA89fmFJjnI/KjsMZo5zx+lMQ0jPUfSm9+M1J1HOaQge9MQwUfzpT0oHOec0AT20iqwLLuPbNdtoSWVztDr5b4wNpIJ+tcAThup9sVu6Nqk9tIFjkGM8hj1qKkbrQqDsz160QKmAxbHGT1qzWBpGoCeJQX+bHCgZ/Wt5TlcnP51yM3A1EwqU1G1ICFhULCp2FRNTAhYVEwqdhURFAEJFMIqYimEUwISOKjYVORTGFAFdhUTDNWGFQsKYiswqBxVpxVdqpCIGAqNhU7CoyKoRAy0zbVgrTdlO4rEBSjZU+ynBKdwsQBKcEqYJTtlK4WINlLsqfbSbaLgQlaaVqYrTSKAICtMYVMwqNqYiEimGpTUZqgIzUbVI1RNTJGMeMVGetOY1GTTQhpqMmlY0wmqRIhNMJoJppNUICaTNGRimE0CFzTSaCaTNMApKKKACm0tJQAUlGaQ0AFJRSUCNKlFNFOqCxRSjrSU6kMdnPYD6UopAM96UUAOFOFNFPHSkMUDvTgKaBT6QxRSikH5VJtIUHHBPFAwFOFICeOelOHpSGOxxRQDjkcUoFIBRThTe9OFIB4p4pgp4oGSLUi1GtPFSMlFSCoxUi0hki1IKjWpVpDHipV61EtTKKkZItSqKYoqVR7UgJF6Vcs8Bs+lVkHrVm3+UZ9aTGjUhXcSe3QfSnlQGIUcDqfU0kOQmQBnpUsq+VEM9e/pXPLc0RmahPshOTweiDqx/wAK5O7jnunZnLO3ZE6AV0k8RuZsHJz26ZHuaq3MsdhGSBvbsQOM+1KLsWcs2iTlfMn2xR5yASM/lVK8trp4/Kht9kP98nr+taV9Pc3Em+d2C5yEPH6Vj3EkjN1OOijrx610RuzORl3Nu8II8ly3949Pwqg2Scc5rTljhHLSysx6gAAfnmq7Rwt9xZc98uK6IsxkikQQMd/arWnXkmn38F1FgtEwYZ6Gk+zOxISBznuDn+VKLOfIHkSj0OKu6aIsz3+Fo77S4HVsCRQ3y+h6/hVW80Gwi01rZNoX5sHccnJ9c1Q8GNNqHhKKzjmMNxGTG5PLAdjjsMVrz+HXVII4JWkliBXzZmLY3dWA9a8+pF30OqEu7KOlW9lbh/3ihoMoVXnav/16z9Ti0m/8ywki84BSwXH5n2NXP+EWntw+L+Q+a3zj+8v5VdtNFgs7RVGS5G0vtyT+NKndbBU5Xrc8S8X+D5/D8i3UIZrKTlT3jz0Brn7ZixAJFe8eIYbefTp7Sc7onTZtbnHv9c/0rwWWFrW8khJ5Riua9Om3KNnucMvdehHIDPcNtycmtWx05Fw8q5brjOK09L8Ot9mE8g5PYn+VW7rSsRhuoHGeaU6nRFwh1ZnGNpHwg2oKpTWs8043FSoNXmguIZcdl4A/rSSPdEELGBzyfes02tjRpPcrm2lkmWMyny+pA4NK1ttkVXkcAfKMenvUrzXKf8stz7eoqSJ5xERJFvk6hhjBHpzRdgki0kYt4WyQfUg1Qlm25GTmrDy/uSSpQ5zz/UVkyygsSKIK4Tdhs8m7OCarOcDaOtSH+8elM25OSTmt1oYPUaEPpTwATgjFG1l5qRGDDGfzobBITbwMHIpQNoyRke1P2DPoT0I6U/afTmpuVYRefunr2qUAHAbr7VEBtOe3r6VMo49R7VLKRIgaIg84z2q0OSSB9arxjcNhIPoakjymM/SoZSJLlfMg56j0rL/iIJOBWrJzHjoCcGsuQYkPOMGqgTMYTk9OtAA55pSR7c80o5HJ6VoQNJ7+3akOMdjSkjHtQT8vuaYhuO2OKQjPXmnkc03tmgBrfdJ5pYZArAk/Sg4FR8buehpiO18O6t5ciRiRVyeT/XFejWt0k0WRKH45wK8WsPL81S7ZXpXomjSCGBHBQoODg8/XmuWrGzubwd0ddkGmmoYZC6BvXp7VP1rEsiYVGwqYimEUAV2FRsKnYVGwpgQkVGRUxFMIoAiIqNqmb6VGwpgQMKiYVO3eoWFMCu4qAqScCrLCoWHtVIRXIpu2pitG2mIh2UbKm20baLgQ7KULUu2jFFwIwtLtp+KKAGYppFSGmNxxQIjIqNqkY1ExpoBjVExqQmoWNUIY1RMaezVCzVSJYjGomNOZqhY00IRjUTGn8HOTjioGNWiWIxphNKxphpkiE00mgmmk0xATSGgmkNMANIaKQ0AFGaDSUAFJS0lABSUtJQAlJS0lAjRpwpBThUGgopaSnCkAtOFNpwoGOFOFNFOFIB4OQB2pRTadgj+dIY4U6minCkMUU8UzNOFADxSiminikMUU4UgpwFIY4U8U0CngUgHL9aeKaKeKQx61KtRqKlUUmMkXmpVqNRUqikxj1FTKKYoqVRUjJFFTKKYoqZRSAeo96njOGA6VEop4fZn8uaQzZsx5kgHGFpbwmQkYyB29fSotMbCM/px+NTSfeAPBPU1hJFxKpjEURbILNnJrDv0/dmQsUXPB6E/4Ct255AQjg8ke1YeouC/ChiT8oIzmpRaMB0+Z5JS53cAYrJvMyEoq4QnOP/r9a3J7Z5GYy+vGOlUZ41jJHLNjkD5R+Pf+VbRYmjnZLNgST8gP944qu9vGvDSpn2NacsEspOxUQf3sdfx61E1iFXE0gz6HJP5DmuiLMGjMCwK2AXYk/wAIq/a2snM6Q79uch5ETB+jd6uwaZKybljnEeOSzCIfj1I/GiGG2hmELTWvmkkAQW5uJD9M/wCNXcmx3PwwmtILm7tVlMtzKgZtsfChfVgff0HSu0v9RdBIIo2yO54DD2NcX4QEOk6okl1LcRGQFFW7nAdicdIlHH416HK0PmfvE6dAfWueqm9mVFpPVHIXGo6ncXUapAzjG0IAVBHfJrT/AOJkbJhOI0BAKjJ+Ug1cN0olkRIwZvvHbziq95O8MWZHDEnO3vxU00ObOe1S2XIM0jySgc46Z9K8x1zTYl8T2+3aFk+9j1Feh6hfbmZmAQZP+R/nvXmmq6uh8QwszB0iOGPHeuymmc8jrg6LEsTBcgcHbgH/AOvWdctdhjhlwc/eH9e9WIblZYgUK7H5Kmnsg2hQ2eOQeorOSsaxZlGSRiQ8QEg7g8H6VWeQ8tLEQc/w8gVoSqFTaAGyc/5NUZMAhirkjsKlGhELtWP3CVHG7HFKrNIwDxELn5XHQfX0pzoSOhVSOvrQbh7eNQqb16Zzg0egepBeSDzBHKGQY4dOQR7is+W12Auv7xOu5DnH1HarErO5IWUuhODHJwQar5MT/LvVx1Ddf/r1rFWMZO7KjHIHGP5Uq/MDjrVsvBKw8wFWP8QHWo2h8v5wd69mWruRYgC9Bz0pCvIOTmpmTdyAPpSdh7dR3ouMRXyACOD1xU6jIwxzjvVdh1I/GrEPzJ16jFJjQAE5BHNIhKsB2NSYG7P402QEcj1zmkUSj5G3Dpn8qskBlJ/HrVeP5lwani7qx6g1DKQffTn0rNkH71vftWgMjK5xkGqEmPMLdMjNVAiRGM5PrTuMjPfvTSefY0cVoQGCf85owDxz60uOw9KCOT0/xoATAC9aMc4zSgE9D060cY+tADCOPwqJhk471O3AFQPwQccU0SyWB2jP3cj0rpNGvkjmBRsHj5XyBn6iubicjnGRW7pbwtIiyopY8ZPH4VNTYuG56bpt150Kv8pyB91s8/WtQA981zul2SRFSkhx/DtbOPbngiuijDY+auJnQBFMYVMRTGFAiBhUTCp2HFRMKAISKjIqZhUbUwIWqNqlaompgRNULVM1QtTAhaoyKmYVGaYiIijFPIoxTAZijHFOxSUANopTTc0CA00mgmmE0wAmmMaVjUTNTARmqJmpzGoWamhCM1Qs1OZveoXYZOOKpEjWaomNKxqJmqkSwZqiY0pNRsaokaxqMmnE0w1QhpNMNOPNNNMQ00hpTmm0xBxg8fTmmmnUlACUlLRQA2j60tFACUlLRQAlJS02gApKWkoEadKKSlqDQUU4U0U4UgFFOFIAaUUDHinCmCnA0gH0opop1IY4UtNBp6jJxnGaQwFPFM6HFOXpQA/vinimgc08CkMcoqQCmipAKQwAp4FAFPAqRgBT1FAFPAoGKoqVRTVFSqKkByiplFMUVKopDHqKmQUxRU6CkMeoqZRTFFTIKQAflBJqNeSxLDnp7VOVyuM1GIgGG7J5z/8AWpAaemgkIp425P41NK2ZAQRk8AVXsGVI2bkEcc96eGDM7H3ArKW5pEimkHKg7sDNUPIC5diDI2etX0XKsSByQKgkVcmTPyr0NQWc5qUzRAojAAHlj/8AWrLtra4viXUfuwcAt3PoB3NW77ddXhTOFB5zxhe5rpNPhhS1G2Py1C4DNzx2H9a0TshMw/7HWE753IYjg/edvoO3+eaz5blbfcthbxgjrKzYA+r8fkPzNbupXkUBKBDNI5wFxkn/AHv8K5bU7xElLXLGWQfct4vuL9fSrhdkS0M+7uXmYPNNJcBeCeUgX+rfz+tTC7NvE5aeS1i6FbZfKzx64LE+x/MVjTalPLK0quFCdGCgbfZfT61QIa4m3FcDPYZx/ia61E53I6K015oruKOwia3i3gFozunkz234zk+igV7TbXL3trEEU7yoDZk3YI649cHivC7Z7fTlLOu6VeCqsRt/2M+v94joOBya6zwT4p+yXVwLu4JaVlEKY4x6DsBjtWdWF1oOErM9SkQQWzeU6x5xljxXOancxwB289yxyMscce3pVi+1uL7N5jnadxwG4PHcf415V4r8USTMYYJWLHhsHgD8KilC70HOVtxviTxONzWtm+7jazY/zzXFsC5LEnJ5pSrHLkE85JpwzgkAYA9K7lFJWRyt3epo6Zq0loyo7MVHRuuK6y0v47mIEsCwHWuEEeQozgntU9vdS2b5DbkHY1MoXLhOx3bszEgnKntVWeNsgABhVCx12KZQCwWTGME4qzdXcSxk+YGHvXK4NOx0qSaIJV5O6Ugemev4VRlut5MZUO3Tb6//AF6gn1BHkZVOR1NUTMzRBiQCDitY0+5nKfYvFiqeZGTJGeCG6j2Ip5w8ORueIdQ3LR/4iqAuSJS2fvdT1z9fWpRKYnDp07jrj29xVctiEyR0Iw27K44YDr9aiSQqBgjHQqe9SFlQB1GYW4Zf7h/z0qOVRkEHIIzkUAOB/iUkj37f/WoI5VvyOajXjIFSdRz0PUehoGIv+swR9amhG0gEd6jC4G4+napVPPXqKTGiVhyOetMPzRk4zzTz12+1NBwHHucCpKGxMUw3UdDVwfdDDtVMDCtnHBqzExKnrikxoJcbg3bqKoy43kE49Ktu6hNv4fSqc3KhueOxqokyIjz/ACoDdvfNNLc8cevNLkHP1rQzJMj2474xSY4pgyDnNLnn60gHjpjGR0zRye3Sk7en0pe3PNAw9agkHNTk59/cVCw5/CmhMdBjeAWIGa6Gys5CVCE/MMgqeGP9DXPxKWYbeWHYf0rtPDEkdyv2eZgrqAyAjGcdOaio7IuB0fh52TMLZJHVmAGa60DIrCtrMW7gA7wTjOOmf6VuxqAg4A+lcj1NgIpjCpSKYwpAQMKiYVOwqFu9AEDVE1TMKiamBC1RNUrVE1MCJqiapmqI0wImFRmpSKYRQIjIpKcaaaYCU00pphNAATTSaCaYTTACaYTQTTCaYgLVEzUrNUbGqQhGaoWanMahY00IazVEzUrGomNXYliMaiY04nNRk00SxrGmE0pNMJqiRpNNNKaaaYhKaaWkNMBKaadSUCEpKWkIpgJSGnUhFACUlLikoASkpTSUAIaSlpKAEopaTFAGlS0gpagscKdTaUUgHg46HFAptOFAxwpwpopwpAOFOFNFLSGP60opop4HNACinimqKkApDHKKkUU1RUoFJjFUVIopAtSKKllIVRUgWhRUgFSMQLTwKULUgFFwEUVIooC1Iq1IxVFSqKaoqZRSGOVanVaYoqZRSAeoqZRTFFTKKQChcmmStsJUdT0+v/1qmGAMmoJMFmZzhQOR7UASfaBFBgEZ6CnCQrEu5hnHIrMUtNcgD7oJ61aRt1wPm4Xn2qJI0iae3bbjjDH/APVVHUZfs+nnPHHFXgfMBA4BbH0ArF1vzLn90rYVeTWa3KOat99zdkEMwL4IB5IrqXYLFHDGTvA59gKzdLgSHLY+bG7JPQetTyzNCJJ8Yd2Ay3bv/n3qpO7Cxj6lK8RdEYqrE7m6H/P+ea5W9ZXYW8IXk/Me5+prY1e4PllvMJ3McD29awoi0O6Url2PyjvW9NdTKbKc8QMgiHCJ1bHHuafLILRAkQ2ytz7oP/ij+lOMg5cheD8o9/WqL/M56kk5JrpTMGhrEkD0HAFa1tp81/dRJZyKWdV2nONvAzn0xzWQwy1dz8PrE3V4txIzxwRNx820O2Ome/rim3ZXJOhPgzXNUsYYWnitkKDzJRuMjEd+3Wsu8+GI06HLOZ5SwGWPH1r2i0TEIJO7jiquoCPZtVCzkgD2/wAKnVLQL33Pn688Nlbpk5S3RcvJnII9hWXJpLwkPjcHyVBOOn6fhXrer2AWC4tzlpJm3O4HCqPSuNm04tAZJ23tCP3eT0Xtx+tUpicTkI7MPKyBHYgnGOv0NTR6dld+3cpOOOgPv6VviyCShOgYqS3pn0qwNOYuXRsEMN2OjD0NNzBRMQ+HY54N/lmN1+8D29we9ZmoaJfWqnazOnXb1NehRWu2MgBiOpGORUF1EoTbtD8cCpU3cfKeWpuRmyCD0OakBO0D3zWzrFtF5zMpCyDqCv8AWsatk7mbVhRViNgyhWPI6H+VQLx0p4BxxSY0TxMVyNuexFOJwpXJx7j8qjjPzg5PNS43Fh+IqGWgAAXilGTuH4005HPWpIx82exFIaJFGWwe9AzuFCjaQO/+FPxgvjsakoeflZPpRwGJ7ZpJc+WGA6U4/Mvrlc5qRjNv36kQ4APvikIxznqvNM3lIs8dOtPcNiGWUEZHY8ioy+5TUMj5Jwe9M3kVqomTkOJGfakzSEgnjPNKPamSPD+vSlHtjnsaYCO4p4/KkMevsKPxxScdelGcAfyoGKT71G3QetSZz/WmEcUIGSRBldT368HtXceHLeK6KFiqSrykkfBBx0NchY7Zv3TNhl5Q9q6jw0GiudgJR84aMng+/wDn1rKrsaUz0a2hOxQ65AGM4q6i7eM5FV7SYPGoyDx9f1q5xXMasYRUbVKajakBC1QtU7VC1AED1E3WpmqFqBkLVE1TNUTCmIiYVGRUxFRkUwIiKjIqZhUbCmBCaY1SGo2pgRmmk05qiamIQmmE0pNRsaYgJqNjQxpjGmhCM1RsaVjUbGqENY1Exp7GomqkSxjGomqRqiaqQhjVGakaozTJGEE5php5phpiGmmmnGmmmITFNp1IaYCYzmm4p1JQAmKSnYpKYhtJTqSgBKQ0tIaAENJS0lACUlLSUAJRS0lAjRFKKSlFQaC06kpRSAUDJ604UlKKBjhThTRThSAdSikFKKBjhTxTaeKQDgKlApiipVFSUPUVIopqipFpMY4CpVFMWpFqWUSKOlSKKYtSrUjHAU8CmipBSAUCpAKRRzUoFIYqiplWmqKlUUgHKKmUUxVqZRQA9RUqimKKlUUgEdgF9u9U7vdgjJ5xk4/QCre3LZIz6UzygX8yU/QdqAKiIsMXmk+30FRJIyuikkb2yT6CkvplHQnGSAM1ni4BkG1wcDr6mk1ctHUiTy7YYbLOMLVGaEshRjkn73vUscvmKq4+4gFTRoZHywGFOOO5rGxdytBZmKLcTg9OnT3+uKx9Tme4byogPLU9h/nmuovE/diPuB8x9fWuY1OZbWJsfVff3prcEctqBETEthpO/cL7Csh0aUbmzjPT1rVFvLe3JLHjryaS8tSrYC5boAO1dEZW0IkrmDKpHH51Aqc7vXpV+eItIYx0oS2OemR0FbKWhi4mf5QJIJwK7DwNcQ2uooTGJpSeCWwqe+D1NcrKmGIUZGfzNXNMu5NPl+0IAJOBu7r9Kq+hLR9HW92FRUeQvKw+6o6VBdSttYKyjJ4PpXldh42eONlMz4C/MzH5nYngewro4tdNzc20avlfI3uPqOKTZKRZ1OZWR4g27H3j6+lcu6I9zzyGDKf6fyrTurz90y5G+QbwfboP51kI4Cbt3OSBnv2qOYtIiADiJgOMdPT2/SplXypWyTz0AqG3ZS4z/fJ/Ci8uFSVSrckfyFF7hY1YZ4tvzEg47Vm6rKsClgC2Dk/4/WsW51pEi3KxwTggdRx/+qqd5qzz2LBm3SR8Z9RTSYm0VNXkiuwzI2cd+4/+tWBtwaldyz7s4JPOKb7d63Whk9RoFPHBFJSnjFMByeg9amGQc4681CgOR9asHoPyqWUhrDnGelTQ/cx1xUA5YfWrCfK4PbpUspCsMcnqDUgHzHjqBTXHUY461IuNgOe2KkoSf5Y+vANOiPC578U2f/U5HelhOVwOduaOgdRHPG32qncyjlR6ACp7mbbI7cfKMVmu5YfjVwiZykNLGkzSUZrUzHZINOBB+tR0oNFguTA09f8A9eBUQb1qQE96llIcCc07046jpTQcnt60H0BJpDHA5JyKQ8UD0PbtR69jQA6GVoJVeNsEGu70ny7xI7u3beQu1oyeQw9PeuB9zV/SNYn0e6WVPmjJG+Mng1E48y0KjKzPa9OX9wpViFx91u1aPPesDw/rNrrUHnW0ilh95DwyVvdq5GraG17iGo2p7Uw0hkbVC1StUTUARN0qFhU7VEwoGQsKiYVORUZFMCAimkVMRTCtMRAwqNhVhh7VEwoArsKiYVOwqFhVAQNUTVOwqFhTERNUZqRhzUbdaoRGTTDT2FMNMQw/Wo2qQiozTERtUZqUimMKokhNRtUxFRkU0IiIqM1KRTCKoREaYakIphFMQw0008imkUyRtJTsUmKYDaSn4pMUAMoNOIpMUANxSEU88im4oAbikIp1JimIbSU4ikoAbSU7FJigBtFLSUCNClFLilOO3pUGgAU4CkFLSAUUooFKKBjgpABxxSigUoFIBwXjPanAUgpw60higU8CkAp4pDHgVIopi1ItJjJFqRaYtSLUlDwDwakWmLUgpDHqKlWo1qQVIyRakWoxUi0gJFqZaiFSrSGSrUqiolqZaQEqj2qVRUa1KtICRRUoFRrUooAMhetVp34JbAUHrnrVggHg5x3rL1B8K+GOAcAY70DMe9uA8hIwBnCqKoxZJKBhycuRycDmluhgc5MrHk+lUlYl8Ic49+tWloK52NmzCIMWwW6fX/61bVhhiGH3FHGf5/59a40XxLxW6tx0yO3rXVWM6rbqp+8cZyf8+lYSVi7k2oS/IEA+d+T7Vx+qI07nJLY/Sumu5gyyMDyeFPvWGIfMZmOCueCe4H+RUotFDTrPbyQC78j/AGQKfd2QSNmIxn9B/ia2tPgXypJWwCOn0zUc1sZZCcfKp492p31A5GPTGeYsQMDqPekurMRRY4DP+g/xrsJLJYbVUIAY8E/59qw57YyyPIcbM/KPof8AP6VfOTY5N7cKxJGAOg9BVSZu2BgGtq/QR5FYUil2J5Cfzrog7mM1YiSVkcMmN2eD1Fdl4UulkuJJJJD+7jxkntgiuOZDuwBzV20vZLKJ0iI+cFc5/WtJaozirM6DV9a2aiFhb5FCp+FMiu2MsPOUIY/jmuVkdt5bJJzxWrY3IcFCfmXgfTvUONkUnqW5tVMdztVsLgLWfPqzStAc/dJyP0qjcMS7k9eapBgJRuPAPP0rSMERKTJnlO4hWypOajeVj0OMjBqMfhQASa1IFH4cUDoTQRnApT0pAIOWx7049qReMmpMYCikMco27fzp2793juKTI25pq/xCkUPj++M9BVkjn8c1XU9D3q0F4bPcZFSxoJSFVSadD/qjnHFQ3ZxGozTomIgfJ45pW0HfUdO+2GNR0PWorV8rwep4qG7k+aPB6DNMt5cKykgA1SjoS5ajbqTc7Yxyc1W6CnO25yabWqVjJu4lFFLTEFLSUooAcv61KPSohUgxjIqWUiTPrR2yKQDAPAFKcZHAqSg7cilzmkGAPalHagBO+O2KQehFOIzyc0nfpQInsr260y7S5tJmjlTkEHr7H1FeseFvGltrarbXW2C+H8Oflk+n+FeQcYGKAWRwykqy8gg4wamcFIpSaPoc0w1wPhPx2snl2GsSBX6R3B6N7N7+9d7kEAg5B5BFckouLszeMkxjVGwqUimEVIyIio2FTEU0rQBXIphWrBWmFaYyuVphWrBWmFaAKzLUbCrLLUTLQIqMKhYVbdagdaoCqwqFhVplqJlqkIrMKiIqyy1GVpiK5WmEVYKe1MK07iKxFNKcZxxU5WmMtUmIrkVGRVhlqJhTEQMKjYVOwqNhVCICKYRUzCoyKZJCRTSKlIpCtMRCVppFTbaTbTAhxSYqYrTStArEWKTFSkUmKYiPFNxUhFNxQAzFJinkU0imA2kpxFJQIYRSGnGkpgNNJTjTTQAlJTqSgDRopcUuKzLAUoFAFOxQMAKcBQBTgKQABThQBSikMcF4J7U4CkAp4HNAxQKeBTQKkFIYoHFSgUxRTxUjHj8qkFRipFpMZIKkFRipBUjJF+tSLUQqRaQyRalWohUoHekBKtSrUK1KtIZMtSqahWpV6Zz+FICdamWoFqZaQEw7VIvSo1qRaQxJDgY/WsjUUPlkn7x7CtlhketZWooH+UjO7v6YpoDmJo8qTnIzyx6fQVnyzCNyyAD6962LpN7FVJWNPSsK4YB87ed3CmtIkst2DgSM83zDvWxb6ozFEHXG5z0x/n+tc0ZNq4QhnPX0FOhuWSQKp3E9z39aJRuNOx21w7GJAfvMuMelNj/1ZU44AHHfNZMN+bgYD5CpwQKeLphsDHkg7sVg4miZ0lkd1sCf4vu49BV22tsqqkdPmOO/asrSp/PwnBAGDg9q6SNdkYyRnjNTbUGzG1NMyBUPUHGB+dZN7CIbVUA5PStmXEl3wcqBiqOqIflbHHX8aQ0cVqUW4YAzk/nWVPa+TGN3X+ddPJAGuxGecDOPWsvVo90z4AwOPxraMugpI50D5jjGW6nvRImz5TjpzU0KFpnPYf5FJJGTlz90fqa3vqYW0KhHzZOPl5NLbztFcBv7xwaJvvbQBj+dV3zuGOtarUzehPcHMrDuetUpF/e4J+tWSdzsRz0qJY985xyAaqOgnqIFJZVA608x7Rt7mrZtvJjXJy7enUD0pghZ13+vAxScgUSoF5z2FDDnOenSpXXa2wdR1pVjzLt5wOtFwsNROAD9ac+A2c1MExuPpVaQ7uB1z+lJO43ogX7oHvTvurzSouV46e9JKQABTESxDIx61ZJHTP5VWQhEBPU4prS7VP8Atc5qbXGnYbcy7n46ZpxkAh28jPeqm4+venSP8oGavlI5hsjF2Y9cmmhsAUh6UnpV2JuFFFFMQUUUUAFKKSigB4+lSLjpmou9PXNSxokGT1NO6nrSDBHPenDGR1x6VJYHOOv5UducZNKxx2pDgD/PNABwc8Ugxn69aXHHp70nfOKAD8f/AK9LjNB9c/WjPHU0ANIyPpXT+G/Gt5ohW2ugbmyHG0n5k/3T/Sua7+tNx14pNJqzBNrY9303VLLV7UXFlOsqdwOq+xHarZFeC2F/d6bcrcWU7wyjuDwfYjvXoug/EK2u9tvqyi3m6CUfcY+/pXPOk1qjWNRPc7MrTStSKVkQOjBlYZBU5BFBFYmhAVppWpyKYRQBARTCtTlajIpjK7ConWrLComFAiqwqFlq0y1Cy+1MCqy1GyVaK1GUpgVSlRlKtFKYUp3EVSlRlKtlKYyU7isU2Wo2WrbJUTLVXEVWWomWrTLUTLTTFYqsKjYVZZaiZapMRXK0wrU7LTCtUSQFaQrU22k20wIdtIVqbbSY9qBEBWm7anIppFMCAimlamIphFAiEimkVKRTSKYiPaTmmkVJyM4PXimGmIYaQ04000wGmkpxpKBDKQ06kNMBpFJTqSgDTxS4pcUAVmaBSgUoFKBSAUClxQKcBQMAKcBQBTgKQCgU4UgFPApDFAp4FIBT6QxRTxTQKeKQxy49MinrTRTwKQx4qQUxaeKkY8VIpqNakApDJBUi1GtSCkMlWpVqFalWkBKtTLUK1KtICZamWoVqZaQEy1KvNRLUq0gHHpWdejbGc8yNwMDpWjWZqEm1TjuMUDOdvX2DZvGF59vrXPSESy5BwDnk55rYuo3lfaCSSTzn2rPnh8tdhKgjBZvatokszZWC5WPcecGojKWdVDc42gZx+FNuXwGCZx796ZB8g85hnPcitLaEXNi3n+zIFZs9yaFvvNZmEmR057+9Ys8+8ldx256f0psV0V/h5zwB29KXJ1DnPQ/DVyPMEUpzI5BJx1HYfkK6yO5EwdsghRnI9eleYaHfGGYsTufBHXnJBrqIdVW0sZcsOnAz26VzzhqaJ3Roi55JJy7M3T0p+pMG8tVOR0H61zlnfmWeWYsMAbY1HP8AnnFaklyslrDKDyM8Hrx/+uocbFplW3jVrp3PTt+AzWPqif6PIcjjJz6mtq1YskyrggAgHvmsvWo9lovcdP0px3G3oYOnwb4Xc9+/tUdwFy20fIvQGtKCMR2QwcMw6envWfcMCuxfurn8hW63MuhmyoQvPUiqjcyhc4ycGtG6GIdx+nv6VlZJbI9a3hqYyJF++3oMirelwiR2LcAc5PSqRYAcD5ic1t2myOyOwnJGFHqcc0SdkEVdjPKM9yQVPPOM9qnlRbWF32gKnCE96kskZLaR+C54Vj1z/k1FqtwJLVFQjYvAHrgcn9ay3djTZXMq0iaad26k5NXBb7IvMPcnHqam0eHMJPRgpYnHTsP60+5cCbaCRHHzk+tU3rYUVoULjEUYjxz3qkq5O8nrVmZXuJdvAJPJPtTZE2kRjg9KpEManEOaql90uT0zU9y4VQo6jrVSriiJMlaQsT1A6YpjuSevSmk02rSJbDNKTnFN70tMQUUUUAFFFFABRRRQAUopKKAHinqOaYKetSykSL3+WpB19ajXr0p/p0/CpKQpHHBpOn405hnAB7elNOSDjPWgBBjFIaU9Pp2oNACj7vTvRnnjik9v0peuSaAEHQ8UDmnDGSOlIvzfhQA00hGc045Izn86BQI2dB8VajoDhEfzrXPzQOePwPavVNE8Q2GvW++1kxKB88LfeX/GvEce1Ot7ie0nSe2kaKVOQynBFZzpqRcZtHv5FNIrh/Dvj+O4KWur4jkPCzgfK319PrXb7gyhlIKkZBHeueUXHc2Uk9hhFRkVKaYakZCwqNhUzCoyKBkDLUTLVhhTCtAisVppWrBWmlaYFYpTClWStMK0AVStRstWmWo2WmBVZaiZatMtRstUhFNlqJlq2y1Cy1RJVZaiZatMtQstUmIrlajK1YZajIqhEJWk21KRTCKBEZWkIqQ00imIiIppFSGmmgCIimEVI1MNMRGRTCKlNMNUIiIppFSGmEVRJGaaRTzTTQA002n0mKAGUlONJTENpKdikoA1cUuKdijFZGggFKBS4pQKQwApwFAFKBQAoFOApAKeFzSGAFPA4pAKeBSGKBTgKAKcKQxQKcKQU8UhigU8U0U8UhjhTxTRTwKQxwqRaYBUg60gHrUq1GtSrSGOUVKtMUVKopAPUVMtRqKmUUgJFqZajUVKopASLUq0xakFAA2QvHJrHvgzliBknhfrWyRkVQlQCUMeSvXNAzElj8qHBALHuK53Ul8nOQS55C44rq70CONpSSoByK4y+ka6my33SePb61pAmRlMrSSF2xjOfrUUsmc4woHTHWrM/wAgK+nWqOxmOccdOvSt0ZMixgnJ55qVV3DrtUdT3qZIlByPvHnkdvWoJHVOgLHryOB/jVCsWY5/JIKZVmxjjr71qG7MiK+ScqAQe/8AnmsKMGU+dLnb/P2qSW5UZwcKB0P9KlxuNSsa0GoYuEC8KuATnJ9zW9Fdh1SEMNoU456jpXC2spEhfg8d62oLr95G3IG3HPQ+9ZzplQmdFa3gF2U7Mq9O3Uf4U3VJFnhT5vlPIx29v5Vgx3nl8o2cMVUn8KW61DFkgGBwePTtUez1L59B1xeMqqCw3SEjIHTHAFUY38yOQEjk7R7VRmuDJtBYnA5z3NXLZw0KZGP48+v+c1ry2RnzXZFesARGfocfzrOYED8c1anbzJWwcjrmo2j3gkHIA4q46IiWpHGheYcnPHIrahQ+Rg4xjbnsuP8A9VZcCbCoIO5v0rV3iFEUMSByAQMk0pjiPkMigRxthskYbr9f89Khu0XbHbqfujr68c1PbksGuJR3Jx7f/XpqqJXd5eMt8zZ6d6jYstWoW2tmlHG4Ac9hisl2aZ4bdWABJZiP8au6hOI4BGCOTlh6VSsyI5PNY7nY8Kf504rqJvoSOq26GQ4y/Ss4y4yR1zx7U+/lLTYzz3FVm+Tqfm9u1WkQ2RyMWOM803HGKOSaXvgc471oZjSe1Npx60lUIBRRRQAUUUUAFFFFABRRRQAUUUCgBy1IODnHFRr1qZRUspB0zUy/w80wrkA0+MZ5IwB6VJQNwoz0pOoweo/GhvvbR2pe3A/SgBD0I5680nBp2eQew9qTp+PSgBOnX8KXngU2lz9KAFHXrQR1PGBRjnBoPUjv1oAMZHA560mMHA6+lOwAoIHWmkY60gEPXpR/Ol75pMdj1pgNI5/pXTeG/GN1opW3uN09ln7pPzJ9P8K5s8gc02hpSVmCdtj3Kw1Sz1W3E1nOsq9wDyv1HarJrwq1u7iynWa1meKQdGU4rstJ+Icse2LVIPMX/ntGMH8R3rnlRa2NY1F1PQTTCKrafqtjqkXmWdykoxyAfmH1FWyKxasaXIiKaVqYrTSKAIStMK1OVppWgZXK0xhVhhUTCgRAwqJlqwwqMiqArkVEy1ZYVCwpoRXYVC4qw4qFqaEV3FQMKssKgaqQiFhUTCpmqJqtEkZFMNPNMNMQhpppTTDQA0800040w0xDDTCacab35qkIYaaadTTTEMNNNPNMNAhhppFPNNNMQ003FPptMBpFJinUmM0CG0mKdSUAbOKMU7FLisTYb1FGKfilAoAaBTgpPHelxSgYoAQCngUAU4CkMAKeBSAU/FIYAU4UAU4CkAoFOFAFOApDFAp4FIBTwKQwAp4FAWngUDFAp6ikAqRRSAVRUqimqKlUVIx6ipVWmqtTKKQCqKmVaaq1Mq0gFUVMopqipVWgBVFSAUAU8CgBMcVWkUGXB6d81c21BMAAxxmgDm9bJKMgb5VOTnvXLzphfMKgZ4AA/lXWalF5kpjJPPVv5/Sud1KLb8nOF7elXFgzn5kMjsMEgck0iwg552gc4q6sTZ/hyfUdP8ao3UuCEXI56d62RmyvcSAkqucd+xNRxwBlLORgfhn6VIkY6t25wOg/xplzPkEADH5Zq0QyOWUIOWBOflGOlU2csTnvzQ7EtljzT4oS8gBGT6VotCNyeIBIgxH1q+CMQKrbiBg/j/nFUZiHkEak49+KtW43kvvxjueMVEikE7FURVBGTnk81XuH3MFByRxj1pbiXdOMdBwB7VG6kbievQH1NCQNka/eC/nV7f5VtkcZGAD1FVIVLMTnrSXE28gDovFDVwTsh0YyrE/xcVYjRRvUkkdWx25pkMQHP90evc1YhjJibfkAnBNJsaIocKxlYjKnhfWrVvby3FwdxJwec/qKjiVNrz/LhThQQa0rJ1itWnxtycZ9h/8AXqWxpD5VClQ425+6nf6mqdxdRwHHDlTlU9/VqqXV3LJIyRlizNy+ck/4VRJIJAy7k8kdqIw7g5diaa53zZYbnJ4FOi3cl+T1J9qjii6M2QCccdabdTKgMUecHrV+SIv1ZEzkyNKxyxNRs2eeg7VGSTQTzV2JuLksQKC2Kbk5zQadhATzmkopaYgooooAKKKKACiiigAooooAKUUlKKAHDrUqAE4qMVMg96llIkUZHTHH50JgFuoHWnqPkP8AWmuBtyRgioKIwRjPTmngcHnpUQPqKlHvz2psEIeCKMdsnNLnr1FJySB+eBQAZ75pM49aU980cA0AA4PApf4hjv2powPz6049uBxSABzkHp9KQ888e9O74IyKQZ2/4UAN/lR+NKRg9jSY4PXHWmAhyT/Kmn3FO5zkUEeg6UAM60etGMCjFMQ+Cea2lWWCR45F5DKcGu40Lx8wZbfVxuXoLhRyP94VwlBxSlBS3GpNbHu8MsVzCs0MiyRsMqynINOxXjug+I73Q5x5Tb4GPzxMflP+Br0Gy8aaZcqv2gSWrN/fGV/MVyzpuJtGaZ0BFNIqKHULK5AMF3DJnptcZqY/pWZZEwqJqmaomoAhaom96laompgRtULVK1QsapCImqFqlaoWNNCImqFqleoWqkIiaoWqZqiaqJImphqRhURqgGmmE040xjnHGKZIhNMNKaaaYDTTDTjTTTENNNJpTTTTEIaaaUmmmmIaaaaeTxjH40w0CENNp1JTAbRS0lADaQ06m0CN7FKBS4pQKxNxuKdilxS4pAIBS4pwFKBQAgFOA96XbSgUhgBSgU4ClxQAAU4ClApwFIYAU8ClVakC0hjQtPApwWnhakY0CnhfzpwWnhaVxjQvtUgFKFqRVpACr6VKq0KtSqtIBVFTKtIq1Kq0gHKtSKtAFSKKBjlFSqtIq1Kq0hAFqQLQFqRVpgIF4qGZeM9utWgtMkj3D29KAOevlWKIyf8ALRjgADmucuoy7FyQFQ9OxJrrLmLzpd7DCA4A9feuV12UQfu4zls8D196qIHO31xgkR4znhcdKzVjLFmbJ/vNV57eR3AABZvm9gPWq9wGztVjtXqfWt0ZMrzS4TCgAA/erOdjI3H5CrDqzMevXgAUhXAOBtHGT3rVaGb1Io4jz0z6kdPerDMIIvkJO4emKbGCAWxkevXNIkbTOC7YHqe9ABbxNK5I5J4/xqxPMscSxIAcclqZLL5ahE6ex61XGZO4HvS3DYWMbnJxx9f1p7sZGCKpCChvkQD3xj1qPdtBQNhj94+1MBWfYnQDPHFRIC7/AI0jHeQAc1YtkxLuP8PJp7IW5dZQAqJyccZ/nTZpSVESZwACcmmudiM+7lj2PSoVDySbAcljzzUJFNlvkJDEoAyM/WtSw0rUPEE6WVhEzKoG9uiJ9TRo2kT63qiWVqxLnl5MfLGB1J9q9jsrG00LTksbRNqKOWyMu3ck+tYVavJ6msIcxxtp8M7G0hDarqRYnlkhwi/99Hn+VRXHh/wZH+4hNwJSMBvMPJ+uMVua/fRmArK4BztDBsn3IHauDkGlrLLdJfyvtwxjfqx5yQeaxhOc9WzRwjEll8Ctcxs+m6pFIFJAWT5ce2aib4U+IHUsJbLpnHmn8ulXRrCW8CzLcSSxnG7BAZfqAP510GneMLe4tvJS5MTkc+YeP89a0VSrEiUIPY4X/hWnibzxE1ki/wC35q7fzqdvhhrkWPMMGMfwEt/IV0lz4svLeR43cEE5DK/UfSq7ePZUwHJx22tx/Pir9pVeyJ9nBHOSeC/sqkXVwARwedvP0NZN1pNtExCTEkehyK6vUPFMeoQFZFBJzknmuPuifMLqW2sa0g5v4iJKK2KMtsU5U7l9ahxVoyEjGc1FIo6itkzNoioooqiQooooAKKKKACiiigAoFFFAEiHpU8YG/FV061aj+8p9qhlRJcjGM5INQM578noKkd9jjHPaoG5cj0pIpgvTjPPpUwPHvUK84z69alAzn+dDEhQOOSOKXryBk980gHHfHtS/wB7n8cUhiYxkYpP14pfXtSD1BPHegAwAD2FBPH0oPGffmg9ADTAfglcnNN70qn5fTjGaO+OmOOBSGByGIxzjFNxxTj15/nzSdsnIx2oAb34owecHNKcEk4o5IzimIjP/wBekxg+lPI4Pemkc9OKYhM+1FFH14oATpzVu0uhF8ko3Ien+zVSl7jihq4J2NZ49jZRsjtj/GrFpquoWrKILuVQOxbI/KsiOdo12NymenpVuGRC+5HBGePWs2tNS09TqrPxdfooFzFHP7j5W/wrTi8W2EoHmrLCT6jIH4iuQRJJD8wz3HYVKsAJIIAIHB7Vk4xNFc7mHUbS6/1FxG/sDz+VSMfrXnsluAoYg88jHGKnt9cv7BlBc3EPUq/b6GlyX2He252rGoWNVdP1a21SHfC2HA+ZD1WrDHrStYdyNjULGpGNQMaYhjGomNPY1ExqkIa1RNT2NRMaaJGNUZqQkdxkfWoiaoQw0w040w0xDTTTSk0wmmICaYaCaaTTEBphNKTTCaYgzTTQTTSaYAaSgmkoEJSGiimAUhopKACm0E0lAjohThSU4VgbigUoFApwpDEApwFAFPAoAQCnBacFp4WlcYwLTgtPC08LSuOwwLTwtPCU9VpXAaFqQLTgtSBKTY7DFWpAtPCU9VqbjGBKkCU8LTwtK4xipzT1SnhakVaAGBKlVaULUirSAFWplX2pFWplWgAValVM0KtSqtIQKtSqtCrUqrQAirUqrQq1Kq0xDdtI6DYamC0FelAGLfH7PAZeCwPA964m6tZZ5GlkxtbOT2Heu71CAzMBuA28jPT61i3FpHMzRbW8kYzj+L/P+FNOwzjrm32xBVA2vz7gepPvWRNGYouVzk4wRXdCyWWVmKnyk6EYGfoPauV1OPEjShdqMSFBbn61rFkNHPT8ZycuewqFFyfm+buRVmSIb8dST1BzxTdh2lV6Ac5re5lYhdmKc8LnhQetNy+CSMg8ZNTFsgtgEg/eP+FVnlPcksT0FNCYAZOO+O1POQvQRpnn1NRB3RTnAJ596TY0jcZJ9aYgaT5Tt79KaBhCSc5oZQOWOPahiMZx9BTEOjVgS+cEdT6VajKLH90AkZJJ7+lVVb5eAD356V1PhjwZqHiO5jKkxWvBknI4A9AO5qZNLVjXkc47lAC3L9cHtmtrw/4Z1fXrpUsoHEZOHuHGEUfX+g5r1u18I+HNBCCOwjnuMZMlx+8OfXB4FdNFMn2VXVdikfKAMYFc8sQlojVU31MPRPD1v4a077NbkvM+GlnPBc/0A7Co79g6fvZ3U9lU4Jp2r6xaWiHzpFZ+yg9DWKmoi+jeWNGAHCsVwBXDK8nc6o2ijPv1ht0cyKhJGdzHJ/8ArV5/qwVrh5FjKAnBwMCut1OdYz8iiRuoDDoc1yN9dNOzZHXrjua66CaMarTMss/KliR/SlDuCMMQO2DTD6dPSlHoOtdZzE32uYpsMjFR0yaj3nJIpvtmk/GiwxQ3cfjQ8ruMMSR70nPPPSk+hzTENIxSjkEGgn1FNHWgRF0JFFK/3utJVEiUUtFMBKKWkoAKKKKACiiloAUdanjbBANQDrT84we9SxofI3z5Bpo5FIxzg96eo7Uhijjk9qcM8nr70npSjj1pDHnG0d/QYoPXrmkyR2xSk9OPwoGHUnHej+IdqTknHelPPIGDSAbjIPXOaXtRjkDml44HSmAicHt64qQgdsHP6VGPWpCuVzikNCYBH04xScd8464zTsdhg5pOSTntQA33zSevX8qXrnA4NHQHoO/0oEJweQaaacevT60jZB680wGEe3Wkp/YjNN//AF0xCfzoB9aQml/CgBRSDcrBlPPWjPtij2xQBetdRaNgJfmHfNbUVwk6ht24Zx71yxwD7VJFcSQtlW/ColBPYqM7HVraCSVgytIMZB3YFJPp5MQBQgHqewqjp2sg5ilfbuOB/wDrrUmlzBiFiyY7dqwkpJ2N000cxL5+nXgkhcq6HOQa67RtaTVINr4W4T7y+vuK5S6jJyMElucGqdtcy2dyk8TYZD+ftW3LzLzMb8rPR2NRMeahtLxL60SdDww5HoaexrKxpcaxqJjTmNRsaYhrGoiacxqJjVIQhNRk0pNRk1QgJqMmlY1GTTJAmmE0E0wmmAE0wmgmmk0yQJppNITSUwAmmk0UhoEBNITQabTAUmkNJSZoELmkzRmkzTAM0maCabmgDp6cKMUoFc50CingUgGaeBSAAKeBQBTgKQxQKkApAKkAqRgFp4WgU8UhigU8LSAVIKQxVWpAKaBUgpAKFqQCkAqQCkMAtSBaAKkApDEC08LSgU4CkABalVaQCpFFAhVWpVWmqOamUUAKoqVRSKKlUUCFValVaRRUiigBVFSAUAU8CmIUCnbc0AU4UxFC6ty5YdQepI7VSnt/MxbopG/qwHIH+e1bMiFhgdT+lIIVQYA56UWC5z2pQpb2AjCkbuOnQf5/nXnOqB5p2Y7tvRBn73vXpXiB/Mj8kDluw6muPl0lnEaEEyN1Ydue1VF2Ha6ONeFkA7luetQS7WHAKgdvWtzVbCSBxHtIPXGc8fWsSZiARtG1T1PSt4u5m1Yovls44A6E1Hy33RgetTSOT8x4FQBpG5BOBWiMmKNi8sSxz0FNkck7Rx7AYoKkj2z3o3Kpwo3HpTENK4AAJJ7+1MKksAOWPQCn5IHXGTWt4Z0a41rX7S2twwO8O78YRQcluewpt2Qj1Xw58NtLsbS0udTj824EYLxnlS59foOMdO9dbd6laaXbCOFVjCjakaAY/ACq2o6jIX8m3QynG0Y4P1rMPh7VLuLekiW7y8lnPKfhXnyk5M6oxSWpFat/bGrBC8nlABpNrYCc8D6mtnV78W1u2zlV4GelR2NhD4esPLWRJ5icySMOSaxdX+26jIIkiKW5XJOeTz6elZuN9EWn1OX+zvrGsMxcGIHc247QRnuetT6lfC2hSzg+WNONw+7+NX4LJ7a0IbKCNvnfoGPYD1rjL6aa4u5RGXk+bGAOCO/FbwipMmUrEeoaiXYoW3vnqDwax5Js8FcEfzq7LZsqbnGAT+VUZOML37muiKS2MW2MWNGB3dagdWRsfr61MMjk5GKWRQVz3+tVcRXBz35xSY//AFZoIIPI5FL179fWmSNzmkzzQTzSe9MAJHcflTScUp7800k00Ia1Np1N6UyRaKKKYBRRRQAlFLRQAUlFFACjrTz1FNp+KQwxkVIvp3puOxpw4II6kVJSDgnI4FPDHNNAx6j8KXueKQC9unXtS8kcjpx1oU9DigDI/wDrUDDPHtRnHPHsaQk9xxnnFIcA+pNAC8dMd+1LyetN9vwp/QHIoAQcnPbHWpFwQR0/CmcZ9M09T0P6UmNC9Tk46fnTe/SnZGeQMGkOenrzxSAbngnuabn+dPPpwMc4zTOvemIM+v40dcnGPakIz14opgGcc/jTWAB/nTj1GDikI5/CgBn0o7EUuOM88U2mIUHn2o/H3pKU+9AAeRSdRzS5zxnNN7+1MQGrVrfy2xClsxnqtVaT8KTSejBNo1ru4jli3JwCOMVlMOv9Kep4AIpjcGlFW0HJ31NfQNQ+yXXkSHEUvH0NdWxrz3FdXouo/bLby5D+9jGPqPWpnHqVB9DSY1ExqRqiPSszQYxqJjUpx3qFqpEsY1Rk09qiNUIaTTCaUmmGmIQmoyacaaaYhpNNNKaaaYhOM89KaacaBwc0AMNIacabTEIaSlNJQIbRRSGmAZpDQaSgBDSUtJQB1gFOApBThXMdAop4popwpDHAU8UwelPFIY8U8UwU8UhkgpwpgNOBpASCpBUQNSLSGSrUgqIVItICUVIvSo1qQUhkgqRajFSCkA8U8CmipBSAcoqRaYKkWgCRRUq1GtSrQBItSqKjWpVoESKKlUVGtSrTEPUVIBmmKMnHem3V0trHxyT+tKUuVDSvoTEqvBNVp9Qit0LPkAcZJFcpquuywAsTnP8ADu6f/Xrm7vW5XjYO2S3QbulQpSexfIlud5N4kWPPlqhx1Jas2XxxbR8+bC2eqqp4ryy41GY7184lT69aorKxHzck8nNdMab6sxcl0PVv+Ex0+d2aUMO3mAZAFa1lPplzam7guIWCj5SCCV+o65rxUyOAqhjk9eaaszxsQkrjI5wcZqvZCcjp/EupK15LslD7m59sdBXLTSEqSQWb8gKDl1JLZI5qB92fmfp04rWMbIzk7jHbB5PNCYkkCtkAjsKbgEjufepYFO4L3NWQIsZkBB9eCTjFN2MFJyAKsEs0rEAY+mQK2/Dnhq71/UI4IonZc5dxwFH1pN2HYp6D4Y1DX71be0hYk/ec/dUepNe6+GvCmn+FtNMEJD3Mo/fTsAC3t7Cr2maXZ+HdLS1s0G4Ab37ufU1geKNbW1spAWYyHgKv9a551HLQ0jE27a6s21Fre2XLj5mbA5FSz3CBpJ5OEXsvGT71yHge4kvbfUb2SX5d4jT6kZOf0qLxZrstvbeRC6rn7x9T1rPlu7F36jNTvRLqzJJIBCckOmM59q0GuJ9L08TQKJVYbnkcnLY56V5pY6q1+ps5CN6tuRjx1Pr9a6S68VfZ7D7JIdzjAPPA+lVKm9gUkayPPrlm0kp8qIMfnU7d5P1rKuLKC0Od67+nHQ//AF6y5vGsgtzbQAKg6EDrWSl7c3867WYs33mB96agxXQur3WyVvLfuBz1471iF9w3MefWtG9iJlVT97HNZrrhiO3tW8djN7hjPbGKkj5XqM0gQkZxT0ToO/rSbKSGTRZzioNvHI5FXnKgDHJx0xVZh1PShMTRVbrxTDUzqQ2aiIrREMbTTTiKQ800IbSGlopiG0tFFMQUUUUAFFFJQAUUUooAdUijjoaYo4walUZqWUhccdMUoHTcM04Dj0pcYyKkoaQOKQH34p34dKXH8vrQADvkg0m4jn0oGT0FA9en0oATJ6np9OKQ9OeKU56Z5z2o6ZGMn2oAT8uacOnX/wDXTe3AzTwPmwSR7UABGfb37VIvPt3xTMU5eM4BPrmkMXGcZJIpSMjIyBRjJORj8KQ9xk+gxSGMIOD/AFppzxnin4J//VTSM5IpiG57/lQPQUYA46etA+vNMQpzn049Ka3bmnEAj9aaSO5oAb/KkPalPXFJ7UxCGlBpDyKUUAHakP8Ak0tBHHagBtBoNB7UxCjp70EfhSClPSkAnX8qnsrprO7SYdAcMPUVCB370h70wO5V1kjV1OVYZFNasXRdRVYjbzOBt5Vie3pWyHRhlWDfQ1g1ZmqdxjVE1TMKiYUwIWqNqlYVG1NCIjTDUhqM1Qhhphp5pppiGGkP60ppDTENpKcaQ0ANpDTjSGgQykNOpppgNpKU0mKYhKQ9aU02gBKSlNFAHXClFIKUVzHQO7076U0U4UhjhThTRThSGPFPFRing0gHipBUYNOBoGSA1ItRrzT1qWMlWpFqNakFICQVIvWo161IvOKQyVakWo1qQUgJVqQVGtSCkBIKkWoxUi0ASrUq1EtSrQIkWpVqJalWmBKtSrUK1MtAixEByT+ArM1QhEJZuM8KB1rVjwkZcnB6VzerSyXYeOFzjOM9qynqzSBx+uSwEncwDDnbXFXU4EjeTwM4xXfanZQWlqUk2788k9TmuIvrJAC8ZHJ5APSt6FiKrZmZ3Z5pwTbhs8d6VYuB/jSOSpxjiukwH4B59OtRsOc1IMHO0kH3p5j49e/0ovYLXKpBWmMc9asNHgEYqFlyTmqTE0QAAH61LF8sRPB7UjKQvFIGBQr0IOenWqJJY2AIyeK99+HVvHF4RguFtxE0xJPOS/bJrwvRrQX+owwOcKTlvoOte8+B5pZ/D7TSbVDOVhiU8RxjgAflWVV2KiWb+4G9pGDbUHTIG4+leU+JdQmuLllD57kDoK9C8V3ElvaGNMck5NcT4b0r+2/EsMU7Zjh/eOo7gHpWMNNTV9jq9Atl0bwfaRygpLOxnCn36Z/CuF8U3XmTzsZCTkoq/wBa7rxLrEct+LWJwggViflzzjAFeS6tc+ZduDyc4Jq6a1uTLYz7WVorkNnjHI9qmaXzpmYscVWk67h8vY4qSNcpkYNbPuZrsWpjCtsNg+Y8k1u+G/Ih024upj8/3FH8zXN+XnAzz2FXHmEVsIk+91J7VMldWKQs8wmuWPJU56/Wqsi5fjvUiFj1xk+1Tw25lcYBx/Ok3YpK5FGMAE8j6UgVh9wVoyRJGAnf25zTF255Xp3qOYvlKflMwyRj3pjxEcYrULW56tg0GON84IxS5h8phvHkVXdMe1bktrn3FUJbcjtWkZmcoGaRTcCrDx47VERg1omZNEZFJinkUYqrisRkUlPxSGncVhtFBopiEopaSgApwpAKcBzSYxy9alXHPtUYHP41MBng1LKQ9QCcUp5JPGB396VQSOn5UMo3Zx17VJQzHfoTRt/AinEc4xn196ToScZFACEZGelIeB607b+HGCKaQW5P40CExggk846UuCPTmlAwDgnNLt5OAfoT3pgIMg4FOx1H86QAEDggUp6Z/CkMQcjg5+lP4BOeMdxQB14zxn0xRjuOPwpAL2BPFIevUcntQMj0PHalPBwAOmKBjeMnjmmHHJ/yakyPfimHv2FMQwjk0uRjOKUkZGPyNN74PHemIAD0GDScA9ck0pPGcUntzmgBDTe1OxTaYgPTtQOntRSDpQAo/OlNHajigBpGKa3WnY5pp60xCil+tNFOoAUc0h4pe2KP0pAIOGB4xU6SPG25HKEehqA/hT1OV96GCNO31mRMLONw/vDrWtHKk8YeNtyn0rlT74qa1upLSQMpyvde1S432KUjo2qIinQzJcxCRDx3HpSkVJRCwqIipytRsKaEQmmmpCKaRTERGkNPIphpiGmkpxpKYDaQ0tIaBDTTTTjSf/qpgNpMUtBoAYaSnYpCKBDTSU6kpgdZnil9+1MBpwrmOgeDTxUYNOBpDJBThUYNOBNIY8GnA1H7frT+gB455oAkBp4NRCpAaQEynBzTxUSmpBz1pDJVqRfWolqQVIyVakWolNSrSGSrUq1EtSLSAlWpVqJakBoAlFSLUQqRaQEq1KtQqalWgRKtSrUKmpQaYEoqZOTxUCn86s24zICeg60CI9SkMcIjzj1HSsRo5Jcy7cIpxjH8q2bsMXDyIXb+BB/M1XuYppYSeI+eQg6VjY0TOT1G0iJ/fKz5ByRzg+/vXK3oNu7pGiqmOnfNd1I3lEl3XAHyljyf/r1yep2++M75VLE5255/OtqZEzjnVkmz+NTmIOpPfrVu4jhFvIrAtKSNrA8AVBCNqEHnHWuq5jYqBDG+DwKsxgkg9B6ikJDD1zUscZzjOfahsaGvD39e1VmiweRWsEDj1NV5UBIqFIpoy3j7YquwKuCBWm0fOOtVJohnritIyIlEueH3WLWYNwyC2Djjrx/Wvb/BzqbKWzViFhIAU9cf/rzXglq5hnDjqK9Z+HmoT3eoTSyLlJosSHPRwcjH15qKqvqETT8YMQxUMOexPAFcb4c1htK15lO3M4CbienzV0HjS5zOSjZ65U15lNIwu2Y/ePQmopq6Leh2fiWdneWSNRyW+buRXn0xJc8nOfzrYj1qY4W5/eBRgNjtWTM6ztI4HQ9K0gmtCZWZBuzwTT43I4A+Wm7OMkYpY5PLOCAQeua1ILMeWb605152rTN4jQuOc9KlgYSAHgYqGUi1aQ+bz6cU++v49MURx4eYjoO1ENwLaxlk4yBxk4rmpHaSQuxyWJJpQjzO7HKXKrIsS6jdSOWMpGfSn2+qTwsNzl0zyG9Ko0VtyrYx5n3OohMWoQtLByy9U7io/njbqcViWV3LZXCzREbh1B6EV18kMN9Zre2x3Aj50HO01zzXL6G8Jc3qUEuT0bp9akIjlHaqzwlTlc4JpEdk6VFuxd+4k9pwSKzpYtpNbAnyMEZFQzRrJkirjJrcmUb7GMy4OKaRVuWHHaoWTB9K1TMWiEimNUpWmFapEsiNGKeVpMVVxWG0opcZpdvai4WEAp4XihRmpMHB44qWykhqjnOKnUYXrTAPmqUDOQQcVLKSFXp+lJn5id3Snfxc55596aeoz/KkMMe/tik7HJpxySMnHGKOuR/KgRGTjnNAGRSk5BoHT6dqYCZ70uR7elA6ZOPwp3cjrQAm325x0pQp/u9RnFKDnpx3o6YOfpikADoT+tLkA+n1pBgr7D060ucN/wDWoGJgkdfxNKe3QccUDjGMHvS7eDxj8aAGN068imnrjODUhHGRn3qMnnk/jTQmN570dv8AGlznvijoM460CG4PpikwfenY9vqKQAY9KYCHknimjp708YpvpmgQ00Ae1LiimAdqKKD0oAaelM709jzim0xMUdaUD3pKUCgBeT7UuOtJ160v4UhiHkGkUgN7Up6etJ7UCH8UmKQH1paBk1pdNaTBhyp6j2roo3WaISIcqRXKkfSrumXxtpRG5/dt19qUlfUadjdK1Gy1YwCMjkGmMtQVYqstMIqwy+1MK07iK5FMIqcioyKYrEJGabUpWmkUxEZppqQimkUxDDTafim4pgNopaDQA2kIp1JQAykxT8UmKBHSg0oNMzSg1gdBIDTwaiBp4NICQGnA1GDT6QxwNPB5plOGaAHjjvUi1EKlXpSGSrUi1EtSLUjJlqRaiWpFqWMlWpFqNakWkBKvSpVqJalWkMlWpBUa1IKAHipFpgqRaQEi1ItRrUi0CJBUgqMVNDG0sgRBkmmBLCpdwoGSe1a8NtHCm5yCevPaqfyWKD5g0zcD2qSa5/0fy1JZiMs3YVNxCPIsszOOE6cnGaxNa1M2qfZ0wRn72etR6lqEgBLSDai9On+cVxGt6yCkm5g5GQpU5H1pxjcG7EGs68S20DOOSQeAfb0rmptQknlVS5IJ65qCeYy7pCQSx6dxVXJByOtdcYJGMpNm0WEluN38PGR3ql5vzEY68VELghcE5psbEnJ7+nai1h3uWNu0dM+tTxHHJqBQc49qnVeTzxjNS2WkSLLhCCKjaQbsYyKa7cdMj1Ham+W3ULxSsMVtrD5evWqzR5zkVP5bAkil2Ede9NOwrFJl54710vhjxBJpl5aR5AiEwZueueOfoKwmjGajA2yAg4+lVurE2seheL73zbt0OFIJxjuM9a4edS7e/rVk3sjhlYeYmMDfyRxgEVU80iKRiPu/xevNRGNkNsgMfUscGoHTa5PqKuJcRzhFCfPzu/xpZIQV3AcE4B9fpV3sK1zOJY5OKTb0yKtPaupGVZQeckVZtdLuLkt5Vu7FOTxTuhWZnqhxjGcVahUDgnaDz9K0RoN+QjiEruBcEjsOtUbrT7i3Yb43GRwDSumGxBe3AeIQKPlHJI71mMpBwfStF7dyquVwp4BHcgelL/Z8jxF9vQZ/z7VaaRLTZlkUlSPHt7UzFaXM7ApKtkdRW3o2qvYMoyGSRsOD6ViYp6HDA9CtTJXQ07M7q5tY5U+027h42A4XntWZJbnGQKz7PVZrFFVJG2Zyw9fara6tbXBOUZGz8xHQCufkkjoU09xpUq3GaPmHODVrG7BRlcH0pjAngryPXipuUVZIwwqq8XFXyoxyOKhZRjmqTE0UGj5pnl1daL+7TDHtxxitOYz5SmY6Z5eSfarwUE4Az9aRoR2FPmFylHZzzS7SBx1qyYj6HNNEfI/SnzC5SNE4p5XqMGpNuAPWmsCDSuOwigAY/GpMdsYINMAzyRTguQcce1IA65yOOlJ36fkKcTjJxmgenFACHAP/ANakIxwMnI6U7PNIBwenH8qYEZGMYzR7dPwp5GD06Un1xjqKYhCO3Q+1KMen6UdsY/CkGe4zikAv1JOD0pc/7Oc+3NAP0x70oBxigYAHOATxQemcdelGOOCDQVIPA5x0oAByT6/TrSrgj265o9QOKQHpzkUAB5z+VMbj0p5zzxnPSmuB6YxTQmMGc469qMY4/Og9Oe9GQKBCDBGMcUnbrTvbAweabnrigAOcHijHH1pCM07v15pgMPTryaTH50rY/rQBxTEIeMUh60H6Unb60ANNFLR1piAU7tSAZpwFIAx04paBx0OaMcdcUDExx6U2nGk9+MUACjOR6U76063wLhAehODVy9sWt3II9x9KTY0jPNNI4qQimEZpoTNrR77ev2eQ/MPuk1rFa49HaKVXU4KnNdXZ3C3Vusg69x71ElbUqLvoKy8VGy1ZK1GVqblWKzLUZWrJWmFaq4isVphWrBWoytO4rEBFMIqcrTCKZJCRTSKlIphFMQzFNIp+KQigBppKdikpgNpKdSUAb4NOFNFLWBsPBp4pgpyjJpDHinimCnikMcOtPzkDpxTQKeBSAUVKtNAqRRSGOWpUGTTAKlUUhj1FSKKYoqVRUjHipFpiipVpDHrUq1GtSCkBItSAUxakWkBIKkUUwCpFoAeKetNAp6igRIgJIA6mtJStpDt/jb7xqtaKu4ueo6Vn6pfsEcqTkkqgHUj1pPsAl5qcaK07MAQeDU8N+w0ETyADcCdvfj0rmdat2iWKFyeBubnv1NWbScjwzGdpOGYnPOPaq5dLiuc5qHiD7U7JLgbwQuDXEz3kgmcnJyeh54rY1lY4JnZGOC26Pn86yJY1lXzOATXVBJGMm2VWm3HOKTzCakMSL1NIu09BWpA6MEnPOMVZjHy5Haocce1Wo/ljORWcmXEfFKAM8ZqQ3EajIGT6VTJjIJA5z3qOTLZOKm1y7mrGY35DLg9B6VaWNNoJOa56ORkPWrMd46nrUuDGpo0pIwOh59qj2jPPFQi53YBOaf5vGB1pWKuDrgE4qAqTU7cgA0ADGBzTTFYhGdpU/gfSnR20l04iRTlv1NXbbTp7s4ijYnHpXbaD4aMKrPJFklcbccnI6Ck52CxiaZ4WMyAFPmcbckcfhXWWPg61giVTHuG5Wy3OD6AenSun0/S4rcD92FPfFaaQKM4AyO9Z6sLpHB6loayRpIY1dkcbgOOOmBV/S9GgMbkqoDAD0xgDAxXTy2qsJF2/eOTS20AQYKgHvj1osF9DAutGiitmQQqzNlQMfdGf0xxXIeI7JEt1aKPPynZuHOe7V6dcQ+YSCOxGfrXO63p3mWpB5JULx3PNGzBannlvopkjtVkUAYLE45x6Z/rVq80pba2IMaEImVY+nPHvXc6Zpy/Z1Zwsm1AoYjqOpFQarp2LF4TzuGM/3QP8/rRzMdkeMapZmFkUDqu4kHjNZYTPQdOa9C1/SAwMsaLtRFI46DnP8q5WPTsy+W3BIbH+e9dEJ6GUoamLjpmm96u3UBi2ll5IBHpVV1xzitU7mbQ0sSKAecDvSUqdf5UxFyK5eKIgMRkd6u21/JtZZF3Dtxms3hlGBg+lXLSLMT9zms5JWLi3c0UuoZQAGCn0pxiBztP1rKmjUSAK2MDkColkkiZfnIX61HJ2NOe25rGI5xTDH65zUcd+cAMByatJKsg4456mpaaKTTIPKz1FI2FOOpq4YiR90keo6UwQA54680uYdikynt3FMKhc8HNaBh2jH49KhaPg5pqRLiU8En5Rx603YM/N/Krhj7DkfSmFDz2P86pMViDHOcfWnBOo4xUvlncMcDrSGNgM8g0XCxHsHU/zoCD8fYVKYwOmaXYDxkke1FwsQbASMcH3puCMcd6sbPUUmznAOOO9FwsQ7fTn61GwzjIqzt+XoKYV+Xpn8KaYrFcrg57Uoy3b8qkZQO1M2cgYNO5NhPfI+uKUA+/t70uASOCPpTgvJyT0oAaBjgZPfpSkc4wOOKXBK5OcetHO4/rQA0A98e2KByeF49Kcc8ZHHakC4JIHPrTACOSKaxHpwaeQMZx9DTCOnqORxQBE3pQDknHFK/Hf8u9NGemTx3pkgMYpD1NOA5/pTT97jHPpTAO5ozgetIcE0h5OO9AAMk+woPT3pegxTWNADSfek60UUyQooHWlpgH1p1JjilHTikMXP4+tGPzFH1oz/OgA4P0pp6+lL+NIeaADOD15zXbSWy6jpUMwI3FATiuHrufDMwn0YJk5iYr/AFrOrorlU97HJ3dsYX6cH2qp7V2erWAkUsByeoFcncQ+VIQOlOErhKNiswrQ0i78i48tj8j8VQOMU0EqwI6irtdWI2Z2vWmkVW0y7F1agk/OvBq4RWOxtuQkVGVqYimkUxEBWoytTkU0incRWZajK1ZIqMrTuIrlaYVqwVphWncRARTcVMV9qaRVCIiKbipCKaRQIZikp+KTFMDcFOFIKcBWBsKKeKaBUgFIYoFPApFFSAUhigVIBSKKkApDFAzUij1pFFSqKljBRUqrSAU8CpuUOUVIox3pqipAKQDlFSKKatSKKAHKKkFNAqRRSAeoqVRTFFSgUgHAVItNAqRaAHCpFFNAqRRQBM2Y4GbJAZcD8zn+lZdjA15qwdiSkfQVo3bn7OkakHHGffrTLBha2T3LAbj1/lQhPY5zxZMDcMOQCcYHcVj6Vq7XNpc2jbQsR8xQOM1N4lvC7P5w2gk7QDXH2d79nvD86qG+Use1bxjeJm3Zj9XyJjKRuU5yvpWU0qMMKdvsa3r1VmU8kqo645J96564iCMccY7VrHYiW5GV5yTRkDpTeTQGA+tWSSocEZNWyyhMZyKqLk9etTqpxUMtA0Rcb1HI6+9MX5uCasRHGMnjvViSwaVfNhwSf4RU3HYzzH3FAjIPSri28u7Y0TAjtircWlXUzDyoJGyccpRzWHymdGhFWIomfAUFj6Cur03wPfTsjzr5SHjHFdppng7T7TaSgkkXufWs3PsVax5xYeHr695SM7c9SMV1+n+BooiJJjvI6j1ruorCOOMoEBB44GKspAqgcDAFRqwuYVtokNvtCRBR93jmteGyRQw2AYGBirnlAcgc+tPCjPvRYVyONSBgjkHn3qxj2poXHNOqkSJgE5pNgDZ9adRQBGyjOfSqN1B5wCjHX0rQIBpuwZzSY0VobdY4woAAx0xVW6gEr9Bwp/WtMioigJ6UrAmcpe6Yv2WVDGCSpQ59AOK4KXTfI1CA7Q4wR/8Aq/CvYLm3WReRXK6hpYRUZkDYk3ZNJaFp3PL/ABBpxgcHJI6kt64z+Vc5IOh9q9Q8TaeZImwAQG4A+nH415xcwGJQR0zjB9a6KUroznHqZ7DBpF4NSuoqIcMD6VuYkvIII7CrcHmIdyjIYc1DBEZZAqt944zWqwVYwV4K8dOtZyZpFFORGV9xAz1zUMo3JmrpfevzfnVKSQiTbt4oQMjRgwwetWInZc+/Tmq8iEHcvWnRtuAzxxTYkbFtcnbyxPrnrWnA8coAZcnHfiufhPOc4x3rShl+YHBIPXBrGUTWLNKSyJXfGc+xqlJESxBHI7Vowz5QAtgY6nvSSorksOvY1lsaLUyfLI5yRmhkwPQmrrRDqRx61GUy3ykEdDVXCxUCH0zShM8AcdfpVnysEZGfpSiP5sA8HtRcViv5WBgCozHV0xdznBqIoOmM+npQmFiqRg//AFqTZzUxjbPAPNMK+oIqrisRFSDxz7U0ruHIqUgfQ00rnmncViuVOR3FJtPpn6VOV9RmmleuGp3FYh9MDrRg9P6VJsIxkfpSFeoyc5zincViMA96aT3NSkE9ATj86aV59PrTuKwzbzyCfalHqQOvWnbT0z+VG3qM/rTEN2qBjrTW6jPPf61Mv5fhSMBt7fhQBVkxg/rUf9KnlX5RkVB0qkQxcD6/hTW+8DnmnEgdqb/EO9MAPagfTnr0pf4fx70nQdKAEPBpjGnHpmmU0JhjtS4pQOM4pcUAMHXNOpCMNTiKBCUDH0oooAX60ZOKAaPxzQMD2AFJ2pR7U3tQIQ10XhG9EN+9s7fLKOM+ornjnFOgna2uI5ozh0bcKJK6sNOzuejXMO7cck+grmNTtM5baQetdTBcpeWcU6nKuoNZ1/BvViDg+mK5ouzN2ro4h1KnBqM81o39v5bscYPvWea6U7mDVi5pV0ba7UE/I/Brqe2a4jociup0q6FzaAE/OnBqZrqVB9C4RTCKkNNNZlkZFMIqQ0mKYERWmEVMRTCKBEJWmFanIppWncRXK0wr7VYK0wrVXFYgK0wrU5WmladxWIStNIqYrTStFxWNcCnAUAU8DjP6VibABUgFIoqQCkxiqKkUUiipFFIYqipVFIoqRRU3GKoqRRQq1KFqblCAVIBQBTwKQxAKkApAKeBSAVakFNAp4oAeKlUVGKkFICRakWo1qUUAPFSrUYqRaQiRakFRipBQBieItQbTf3iZZD8wz2J9famWurRXGkRzK5K7vnwehHarev2IvdLlGMsoJHv7VxunCSxhvrbDGLasyjHQ9K1ik4mb0ZS8S3RnlL785PT0rl5STWte/wCkYYHk9QazHTBwa6IaIiSFj1GaNViYDZn5j3xUNxIsknyHIprKucPn2o2BarQnUZyBxyaVV9acFpwHGaGwSHIvtVjHFMjAIz2qZDjqM/Ws2WhVUevvW9pGnTzqHQkx5+ZfSsqzga4nVEUnJ7V6zoWkxQadGCgJ65FZzfQtIy7LQg4UseQQQyHpXU2+nhU2uik+oGKlihMbHavGfoavJgjpzWY2xkcCoQAD7Z5q0igUg6U8UyRdvI4p4FIDS5piHCgUlLTELRmkzRmkAuaM0maSmAtGaSigApppaKQxhANVLq38xcADr6VcNMYZFDA5fVdOjlt8sCduOF9e1ea6tpJeaRfLAyfkOMDPQ/yr2meFWU8c1ymuaV5qYVV2KMjA9BSTsVueJzwvDI67T1xjFVmUciuz1zSAtos3BcjnHb2rkXiZDnb9a6oSuZSjY0tCjjZnLkcY61oX0CKzBDlc8HtWNZSKkxG4jIwK1nkDQjAIx1qJ/FcuGxSKYU7eKrvGCc/hVgybXzjIPeo3wOmT9KEJoh2dqhMe2TI6HtVo8fSoHkGeKpEsnjBI6dKtQttB54zgVSSTjp+VTqwDdeaTKRppOAAefQ/WpEuugOfrWas4yOTjHNKZcjIJ/CocSkzUeUMM7ue+KqyTDt97vjvVMXOOM++agluDyelCgDkXftmw8scetTpcBwMN271iGX5T6GiKdkYc/LVOBKmdHHLuwHx9cVIyA/dOazLe4DjB5z2q7HJjAzlfXFZONjZSuKYzzjGPSmMp29BipWOcYJpm/rzzSAgMQPtio2jb2Pt61Zd8c+/5VF5ispXnIqhFZ0PcfhTec9atEjGDg00xq33TTuKxWORyRkdqb8v/ANapyjDjqO2aYUB7ZHt3p3FYj28cE+lGD1/Ol27TxkrSbuMkfpTEIUPOBk5oCcd/pTxnnrjtS5/Dj0ouKxGcDn16e1KACO+aXjpxTl69zincLFdkzkYxjoBVdkw3Q49KvsOpzVeWMDPHSqTJaK2OuKZ0PWpccmmYqiRuB3pp9acWph9KYmNp6JuOccUgUs2KfkqeKBIXZg0EVJu3KD+lRHJ44FIZGww1PP3aGGR2470gOVqhDfrSUd/Q0UCD607PHTik/CgCgA7d6CaWkoAQ8dM009Kd+lIRTA6jwpfkxyWbHlfmTP61uzAMCCK4LTbk2moQzA8BsN9K71myueMGsKkbO5tTd1YwdTtCULDJI61zcybHI7V286B0INczqFpsc8VVOXQU0ZNW9MuzaXakn5G4aqrAg02tbXMrnb5yARyDTTWdo9359t5TH50/UVo1g1Z2Nk7oQ000+kxQAwimkU8ikxTAjIppFSkUhFAiErTSKmIphFMRCVphFTkUwimBCRTStTEUyncRq4pwpcU4Dg9eaxNQUVKopgWplFIYqipVWkValUVNx2FValVaFFSKtTcpIVVqQLQoqQCpYxAKcBSgU7FIYgFOApQKXFAABTwKQCngUCHCniminigB61IKjWpFpASrUi1EtSLQBIKkFRipBQIVlDoVPQjFcpe239n6bfeaFxn5GPpXWjpWbrukjWNMkthIY3PKuOx96qLsxNXPI7ksZd6HOeaqsxP3hWpdaBrGnStDNZyOg6MgLA/QigaFqsgyunzsP9yunmRlZmUU3jFJt24DdOxrZj0DVN+1rGZR2ymK6LS/Ac15H5l6xgU9AByfek5pBynB7DnNGxjxiuy1TwNf6aDLbn7VAOpVfmUfTvWa3hzUwgYWMzKwyCqZzT50HKzCRCvGcfhVqGEyMFz+ta9v4Y1WZgFsJvqUx/Oux0DwUYCJr8AMDkKCD+dTKaKSI/CfhyMRpdSpl88egrvIY1jXCgKPTFNiiSJAqKABwMVMKxuMcAM1IKYKcDQBIDTwaiBpwNMRIDTgajBpc0CJM0uajzS5pgPzRmmZozQA/NGaZmjNAD80UzNLmgBc0UmaM0AIaSlpKAGsOKrTwLIpyASfWrRppFIZxuoaKrJIZIlb+LHTH0riNY8NXGDIo+U9eMAH2r2SWJWByufasu80xJkYFQq9SB3oTa2HvufPNxbS205RlZSvXirtreqwWN+M969M1fwfFcwSOg3Sv0yOQa831XQrjTLhkdDgdCK3U1PRmbi46oe6AHIwVPNRSFQOTzVMXMyrsPT3qNi79Tx6U+UObsOlnycKPxqMEA+ppdhz0pdmO1VoidRUJqRS2CM0zp/jTsjHpSYx25hQJWH0phakzntQMcT6YzTGPBpS1RsR25poTAnoM0hP86idueKAx71ViblyCbaOvPar6XQxjgHpWMOvDGnCQrg1LjcpSsbyXYwAcEd6eZc8hs/SsRLhfcfrU0c/uDzUOBSmaBmBHt9aiaQg5Bz6EetVmkDYwQaiMvVSOaFEHIs/afl59akW5bPUEe3as5pQWx702Ocq3JPvVcguc3I5EkUYI5GeTTWOOCCaoI3IZCR3A9aupOJfkb72ODUONi1K4uAcng5pmR0Iwc0GQKeeffFNdlbtz/OlYYpPOcfpTc5IyMU3d2yfxpCwI/8ArU7CFA+ntThkdDk1GMdc+9KGyP1oEPHI5GO9NkAI5HGKXcODSMARluvtTAqkHdzmmEAcCpWxyce1RnJyPTrVEEJxycYA96aAT0H51IVy2MnNWIbcgBmH4VV7CsMhixyR/wDWp0sQIyOPpU7xAjoai2EEA5x6CpuOxXQYBBpDzU7hT92owpIPHvVXFYYRxUI4JFWSuF46VXkGGpoTGmiikqiRaX8aTtS0gDrR2zRQaYCd6Tk5pe3FJ+tACe9d1p0wuNOgk77QD9a4bFdT4cl3WLxZ5Rv0NRUWhdN6mq4rPvLbzQenNaTVFIoIrFGrOMvIDDIcjBqoa6nUrLzYS4GW71zLoyMQeoreErowkrMks7lrW5WQdM8j1FdbG6yxq6nKkZFcXWzol9tb7NIeD9wntRON9RwfQ3KMU7FGKxNBuKTFPxRimBHikIqTFNIoAjIphqQjtTGpiIyKYaeaY1MQw00040w0xM2gtOC08LTwtYXN7DVWpVWhVqVVpXHYFWpVFIoqVRUtjsOVakApqipQKm4xQKeBSAU9RSGKBTsUAU8CkAgFKBTgKULQAgFOApQKcBQAgFPAoAp4FAgFSCmgU8UAOFSLTBTxQBIKeKjFSCgRIKcKYKeKAHAU8CminimIcBTwKYKeKAHYpcUgpaYhcUoFJS0AOFOFMzTgaYDgacDTBS5oESA04GowaXNAEgNOzUWaXNAiTNLmo80ZpgPzS5qPNGaAJM0ZqPNGaAJM0uajzS5oAkzRmmZozTEOzRTc0ZoAWikooADTGGRT6SkMzLu2llQheCfeufvvDtxdblldPKPJ46iuy2immNWBBAoHc83l8CWrwsdo3Y+Ur0/lWJf+BDAm9JcEdcngfjXsRhXGMVVnso5AQYwRVczQrJngVxpU8FwIlBkb/ZWqht5lPzRnHuK91n0SOaRWMYbA54xVWfw1amMM0Q3Doq+vtVe0FyniBXPUYphH5V6xqPgy1unX9z5eF4CH+ZNcpe+EGhEjJJjBwASMYqlUQcrOSwaULWjdaTcWhAdODyDzg1UMbAnKnIOKu9ybFdgfzqIrjireMjpUTIMU0xNFZhn60zHFTspphX0q0yLDAaXNGOc0nagBCPSgMV5BpPx/CkJpiJ1mIGQaVnyOlVwSPpTs+nT60rDuKxP40hPzHBpM0HvTEWY5vujmp1mw4OaoLwR7U8P82c55/OpcRpmm8u4Ang/1polzxnnFVhISARz60u7JyOvoKjlNOYsh/oaC3+RUAbinLSsO5Jkev404HpimgcjHWnYPGKQx4Izjr9KRsY60nbG39KBx/jQA3bx3NRu6IcswqO6udvyRn61nsxJyTmtIxuZylY0Vu4EbPU+uKmGoQc84rGoquRE87Nk30Gchzz1GKQXUUmACB2rHp2aORBzs2Gj4JHI61EVPQflUdld7WEchyh6e1aMluCNw54zms37rNFqimEz61XmXH/1quYKo2eKilUNHnGDTT1E1oUqSlPXmkrQzAUtIKWgBaDRSUgDp+NJSn0pKYBWz4cn2XrxE8OvH1FYxqexm+z30MnTawz9KUldDTszujTCOKk6jOeKaRXMbkWwM2D909RXOaxp5jdpFGRnrXSmobiMTx7GXPaqTs7iaujhiKQMVYMDgg8Vd1Gza0nII+U9MVRIroTujBqx1mmXovLYE/wCsXhhV6uOsLtrO5DjlTww9RXXxSLNEsinKkZrKcbM0jK46ilxRioLGEU00NKAxUKzEYzioTNI4AQJw3zZPb0+tAh7VG1VZpbpbjCg4I3KhAJIqt9qvOSyoM8gEc1aQmy+TUZqp9vcNteHr/dNS/aU/jDIe4YU7E3HmmGkM8OP9Yv50ZB6GmB1AWnBalCUoWuS502GKvrTwtOC08LSuOwgFSAUgWngUhjgKeKQCnqKQxwFPApBTwKQDgKeBTRTxQAoFOxQBTgKQhAKcBQBTwKYCAU4ClAp2KBCAU4ClApwFAABTxSAU4CgBwp4poFOFAh608UwU8UAPFPFMFOFADxThTBThTEPzS5plOoEOozTaXNMB2acDTM0ZoAkzSg1HmlBoAkBpc0zNGaBEmaXNR5pc0wH5pc1HmjNAEmaM0zNGaAH5pc1HmlzQA/NLmmZpc0APzRmmZpc0xD80ZpmaXNAD80ZpmaXNADs0U3NGaAHUUmaKAHUhGaKWgBMfjTTGM9KfRQBWmjz/AAgisebSIZpHeQFs87gOxroCMjFMKjPShoaZxmo6Os+yOFAuD6cDA7+9czq/h77PbRRD77PwMdD3r1N4EI6HPrWPf2QluUJXI5HHWhNoe55YNGZgyNHuHlgllH3eucflWTd6XJbqpx8rdMHrXrq6bGnnOikM25Rx0Gf/AK9Z11ocYtHGzJ2HGOhJPNNVGhOKZ5E0belRFepFdlqHhw72Kgrt4xkZFc3d2jQOVI74NbxmmZuLRnMvGaiYYPtVkoSwAOSegx1qWTSNQCB2s51VumUIzWl0jOzM4/rSVZksbmJgJYJEJ6BhioHjZDhhg1SaFYbmlBppozTEPo7Ck7U5cEYoASkBpSKaetAEoc4p4k59qgBoHtSsO5bVx/8AXqQOPp71RDEdKXzT2qeUrmL/AJmOhqVJQRjIyazPMb1pBI3Y0nAfOa5cEdR9c1Wnugq4Q5PeqRkfkZpmcihQBz7Dm5PPemEc08YxQwzV3II8UlPwaMU7iEA4pcUoBzUqR7h0pNjSIgDWvp17geTKfYE/yrP2Y9qNvfvUPUpaG1PDnJXoarNGQnIOcUlneHiKQ8HoauvGDyOhFZ7Gq1MGRfmNM7dKsTIRI31qvWyZiwoo/CgUxC0dqKKACko9aKAENLSUGgDuNKuRdabE5PzAbW+oq0RXPeGLnDy2xPX5l/rXRGueSszeLuiM0wjFPNNNICnfWq3dsykfMOQTXITRNFIyN1FdwevpWFrlkDi4QfWtISs7ETV1c58itXSNS+zOIpT+6bv6Vl0g4NatXRknY7wEEAg5z6VXvJxFFtD7XPT3rG0nVfKHkzt8gGVJ7e1SXEklyy/MT5vG0fwjsKx5bM2Uro0VKzIQshMYwxxx+HH0plyEigKwhw0mAFBxj2+vWnW6pHbAAMpQ/Nk8H04qlJJOoLFd2X6+/fA9alDZI06yxPG6j5UGWVcc+hqGTY1qhaUsud7DPOO3vURdLdQ7qxlbOQTyB7VWCrIyvIx9SO4rRIhsseYNg8qMgk8Yzxjr16VSecvliST7cZ+tSyzOIyiBVQtkNjBNVSApHO6qSJbFQAZJIyRxTi2wjDMDjscjNRYG7uKXH4YqhHp+yl21Nto215tzvsRBaULUm32o20XCwwCnAU/bShaLhYQCpBSYp4FACgU8UgFOFIB4pwpop4oAcKcBSCngUCACngUgFOApgKBTgOKAKcBQIAOacBQBTgKAACnAUAU4CkAAU4UAUoFMBRTxTRSigQ8U4U0U4UAOBpwpgpwoEOpRTaWmA6lptFMQ6lzTaKAHZpc03NGaAH5ozTc0ZoAfmlzTM0UwH5pc0zNLmgB+aM03NFADs0ZpKKAHA0uabS0CHZpc0yigB+aXNMzRmgB+aXNMzSg0AOpabS0wHUtNpaBC0tNpaAFopKKAFzSUmaM0AIearyxBuanJpDQBSCjzCuOX6VWuDEgMcj5ZR0Wny6raR3L28j7XCZxnk+1YT3sRnd48lhhi7HofSspN9DWK7la6iup71mgjRIz8zM0W4n254pl7bQ3tm6RwRNKg+YlFzmtiUm5tyY5SxGDzxxXLa3qMlvMTEyDtlfWiKbYNpHJx2jWuq7d0UbcjccdPx7068vphDsV3x18wsSXqrczNc3gdWLOx59hUxhU/vpG3MvUHtXW+7MU+xRd5TncwPH8VUiEdSxxx2FS3U6vI3HT9aqK2EIxzmtEjNsglUDkdD2qIipnOQ2OeairVGbDtT4+cimUqnFDEHWmnk0ufSkoAUUtNFOoGJRS0YoASjNJRQIcDQOlIBTgKBigY5pwwfpSgcClC88VJQzBBp6xlu341IBxVm1t5rqZYoIy7k9BUtjSKq27sRgda6nSPCU95AJJSY0YZUgcmtrQvCIjKXF4cuCCEHQH3rsFVY02qABWE6vRGsYdzyrVdBn0uUh/mU8hsVlNEOelevahZxX9q8MgHPQ+hrzHV9Ml0+5dGXAB4xThO+jCUbbGQy4ORWnp9z5qmJyNwHBNZbk96IpWilV16g5rVxujNSsy5dxYkY+9UHXBramAmjWQdGH5VmSpg96IsckVqSnsMc0w1oZhS/Wk/WgUAFIaX14pKAD0xRRSGgRc0qfyNShfOAWwfoa7cmvPFO1ww6g5rvYZPMt439VBrKouprTY80w04mmE1mWNNNljjmgaNxye/bFKTTSaYHH3ts1rcPG3TtVeui1q3EtuJh95DXO1vF3RhJWYq9RWnav8AvlbeSDhcHpjHSswHBq/ZuvmBnPHdcUS2HHc2WIS1CuxTs/Yn2pkyxGBcMx4LbQcYzQcNAi7vM3H19uKhmm8yZUbO1j8xPPA7isUasqOskm6Q84zjPGaZwIztLL/eNaNwhKpGeowTzyPxrPEbCVlYhtucrk4q0yGio5JwT361HnH86sXCqF3H5T0Ciq568VoiGKDnuST2oxjjPNC4HPOTQc9TjigR65to21JtpQteXc9Ij20u2pQtOCUXAh2UuypwlKI6LgQBacFqby6Xy6LiIQtOAqTZS7KAGAU8ClC04CgBQKcBQBTgKYhQKcBQBTgKBCgU4UmKcKBCilFApaAFFOFNp1ADqWkFKKAFpwptOFMBwpRSCloEOFLTacKBC0tJRTAdRSUUxDqKSigB1FIKWmAtFNpaAHUUlFADqWm0ooAdS00UtAC0tJS0AFLSUtABRRRQAUtFFAhaWkpaAFpaSigB1FJS0ALS5puaM0xC5ozSUmaAFzQTTc0maAFJxzUDyFYXlxkN93PpRcKZIxGOSzAY9qg1dWOmvFGeccEDpxSY0cbrQR7yW5iJHljlvr2qrZie7gXacE5yD1arN1bzPp8aynzByWHT9fas95ntLnILGMJhQDjFJK5pexum9a203ZLsG3jIGK8+1q6eWZ44n3ZbJ57e9aep6356EZGT09q5qSRV3c8nnNa0421Mpu5Em6E/Kct3NSTXrCIqDjNQ7uDhsiqssi5xnNbJXM27DJDnqeagZvSnSMO1Q1qkZtjw3HvTGOTmikpiCiilxTEJRS4pcUAIKd70YpwHFK47DKDTiMU00ANpRRS0AAFPUU0fWnDikNEgFOApBzU0UbSOqopJJ4AqWWiS1tpLmdIogS7HHFeo6BoMWlWillDTsMsSOlUvC3h4WMS3dwoMzD5QR0rpmNctSd9EbRjYTOKazUjNUbNWZQrNWbqenQ6jAUk4YfdcdqulqjJpoDzbVdGls5SHXHoR0NYzxlGII5r1q5t4rqIxyqGU/pXG6v4elt90kQ8yL2HI+tbwqdGZyhfYx9PcPE0TduRTZ0B57UyMNBKCvY1an2sMjoap73JW1jMdfWoWH5VdeP5c4quy9/zrRMhog4paUr37U3pzVEhSU6k6UAJSUtIaYgrsdJk8zTIT3AxXG10+gybrAp/dY1nUWhcNzWJppNBNNJrI1Amm0hNJngnOMc5piK1wnmsykkqBt2juT3rmLiLyZmT0PFdbcAtcRbD8owzjt2rHv7Y3Mbyr8zqT07iqhLUmcTFqxay4YL2NV+9KDg5HatmrmSN6Hm1YK2SMdTjio1kdZ4wGUrnuOvpVe2mEi4DHecA/hWhEq7yyoTtTOAMYPpWL0NVqEz7Gd03ZUDcCO/tWYXKO7ZIJ5yT/ACrRuZEKoRtIKce57k1k3MpkYY9OeKcRSZAx3HOfrSUuPlB7Z60ncHtWpmO4BB46dqNuFznmk/hDcmjq3J+tAHsoWnhaUCngV5J6QgWnhKcBTwKAGBKeEp4WnhaAItlGyrG2jZQIr7KTZVgrTStAEO2gLUu2jbQAwCnAUoFOApiEApQKXFKBTAMUooxgZJAHvTWkjQZMi/geTQSPp1V/tUeWCrKxHHC4/U01r6JByOe43Dt19hVcrFdFsUo61QfVbeMqOdzDhRznvSHWbVWALDB6d8/SjlYXRpClrKXWoXlaNWQleSeuB68U9tXjXC8b+mGBB/z9aORhzI1BThWS2rIHGW2L/u5/WmDWAMbnZd33crjP4dafIxcyNsCnAGudbXfvKguHC5y4G0fr3qNtfCxr5ltOxYA4+bOPXHpT5GLmOmxjrS9OtYSaj/FuB7t8o4OfXP8ASpF1JpGBSKRQBnLAc+wzRyBzG3j2P5UHjrx9axzfSOC+/wCQsMlVOcemexp4vfJBlucQr0WMNn8yPr0p8ormoXVRlmA7cmlDqc4OQPSsOTXIVj+RJGJbCjaf0PU/So49YiCglGkmIJXcuMnvxngU+UVzfEqNjaSc+gpWcr1wBnA75/KsltZUwBmdc52/KQSPXIqtLrcezKhGI7j5R+vWjlC5qXF9LCAIolkf+6W2/l61VTVb88yWMUYPrKOPb61z769Ejs0MfnzN/E/8Pbp2FTR6lOhUeX5hIyWUnC46nNPlC50EmpTxpu+zKMA53PUUWtySRo/2NmDf3Cf8K5xb4tHHK8wfc+AADj8BjqfWrhlvLkAPK0SbssyE847ZPb6UWC5vJrMLTCExSiQjO0AEj6+lWG1GBPv70OccqT/KuRS4umRh9piSBcr8oLZHYc9asrNc2ThFTz5CuQQx3gcZJPQD2pcoXOnGoWpz+96dcqeD6VMs8ZGQ3GM9DXNDVLiKMGWLcSc5BBB9R9PemnxDK0RZbWRYyxAbP3v90dTRyjudOtzA3SVD261IJIycCRCfTNcq/iGCONTJOYixwAwx+Y61m3epabO3+l3QJJyAEClueoxzRyiud/g0tcIut21qmILjy2B2lTIRj8Oe1K3i6QbTHfrtxzmIMf1xRysLndUtedv4/mikCrNBNg4b90QSPWnRfEC+Mjb4LLA/hLkMfTnOKORhzI9Cpa4OH4m2nll7iwdQOhikDZ/PFXoPiT4blcJJPNCcdXiJA/EZo5JdhcyOvxRWfZa9pGogG01K1lJ/hEgB/I81o4pFCUtFFIBaKM0UALRSUUALRmkzSZoAXNJmkzRmgBc00mjNNJoAq6hI6xIEYqzOF46806+JjgEePlxjOajvVzJbSZwEkH61DrNyUgcBhjbgHPWkM56/Pl2+wvkA4GecD0rj9TuZEQpvyvYmrd7rXlTFJMFezVz95fKwwX3A8getawjYUmUneRxyai8kv94k09n3c8AU3LHgcitTMbJGACFqs8KqOetWXdVB6k1Vdi5qkSyErzgUxlqYfKPemEY5PX0q0yLEQFGKkCe1KEp3CxHilC1Ls59KUJSuOxEF4pQue1TBf/10m00rjsR7eooA61JjmmMNrZoQhhphpzU2rRLEpaSloAUc06mCnDtSGTRjJx1Nd94R8PqVW9uFB7op5/Gub8N6WdQu1LAeWp55r1a3hWCFY1GAowK5qs+iOinHqSdBgcUxjTzUbGue5oMY1Cxp7GoWNMBC1MLUE0wmmIUmkODTc0Zpgc/rmhpNE1xboFkUZKjvXMwnehRjyOgr0Y81xeuWJsNR8+MfupDnHpWkHfQiS6mTIuGJ/HFVnX1FaUqhwGyMHpj1qk64PNaxZEkVGUfp1qMip2XAqLGBzj8KtGbRHRTiKb7VQhO/FIaU0lMQlbXh+bbLJFn7wyKxqsWE3kXsT9BnB+lTJXQ07M68mmk96M55ppNYmwhNBLbfl6njNNJ5pOvFAFVnMqEGQ7EyeB95vrTUmmlky0e2PaCQAeRSTzNHG0acEEbe+T/nFJHI7jY2fLHU5wTQBmalZmCQSqPkcZx6VRrohGs9uxciQsdoGOmfSsW7tWtpihwVPIIrWEuhnKNtSBHKsGU4NadndMzMNzBmGPSsv2pysVOR1qmrkp2NeSKXy9gX5uDnPSqFzgNtAGf6Uhu3ZFVixI757UwyoWyYgRjGCalJobaGtnofSmdOlO8z5NuPxpueegqyQ5Jx0NOyQCBSbgPek3H29KAPbBTxxUYNPBryT0iUVIKiU1ItAEoqQCo1qRaBDwKXFVZ9Ss7bIkmGR/COTVJvECbsJbSHJ2gscZ+gqlBslySNYimkVjya8VKjy41YjO0kkn6VBNrxUkNIeTwsajP/ANan7OQudG6R+FMaWJBlpEA/3qw/tEkkZkmRinVSCSOf69Kzhq4A2W8DzOOC7np+PQfSqVIl1DqzcQr/AB+/FMF3GxARSR/eY7R+tco+rbNgDO7EfMmOCfTHt7UwXpkcsxAJH7x1AAx2H/66pU0LnZ0smqkORHCSo/j2kqfpjrR9umYByhSP/eGf/wBX1rnJJJHG7ziEbAZlU4XjnGec9OlQLdRTOmx5GQZCuWOWP0H9arkRPMzoZbm1kUSSKZQ3yjJ3E/h0FNN7LHFiCAnBxvY7QD6ccVktN9mVW2CVm5Rh/CB3HYfrUL3M84X5ZDIf4lABz3wc9Penyhc0pL5y6tsaTCHgDKscduaja6YRjdGELDDbT1HXjHOe/PrWQ0v2dctM27J3rkHjnr3NQOkxDGIlFJx8nc1XKK5dkltmIZ43LbDvXecA/h1PtSiYrGgiyHPPltz654H8hVOC1niZWimYhTtyTgc9ev8ASpvJjhkDySmZuQAGAH1A70aAWl1KOCIIkTPcEb2BGF9+O1RRa5cSOY7eJFQknCg5J9uP16VFGLYu37sSY5LN8xZh/L8Ke1xdPtZYyIeoViP8M0WFctJeSBg11hGZeAOQvr83anfbcpsgXykLEs5IJzjnB9az1TzJd0s7NtBLEkbR6DFJG0UaiTeV3L9wIN3XpnsP/r0WHc1lmmSPaXZwwxlW/UZ43VKtyyp5X2d5mJHGdxb2Y/0rIiuGkiIEzRxgZZeue/fkCpobr5PLUht442bskf596VguaomuVmbZbJCWBChMAkDvz2qXzdRnEfmSIyjDE7TtHsMn8+1Z6mMyYSY4Xh5Aox7DOcilRlnCssrvtAUSB8ZweABRYDYhuWaU4Z5iBwxA2pj9KiuL9XImdHBbhYiPmbjJIb0qhJJJCpQy5ZyQkar0H4dfYGqst7slMa+fcMF2ksePqQOw9KLAacE29iwClZPmLbvmA9B14ocxCMIreWGXOAcYHv35qkpWNzkyyygANITgLnsKrm/SS5ZndUKcqjk8+hyP5UWC5cunihjy2Edcbyo3fgM9Oveueubx7pyEuMRlv4m4P+e9R3t1cXFz5aCRjJgsNvfocDtx61EqtJdKgWRFHBBOePWqSsJs0IiI5Uh+TkEqm7cWIHU+la8EMaqgWYM7DLblPyj/AD61kK0KyoIw0qE7CR1P4D9fyqy2tW9qwiSIzOh+Y/wj69hSaA2olijYh1eWbbkMCMj8Bwo5pxljaVf3kp2jhYz8zHuSfSuan8RyIxVfJjVzn9ycZHrn1pTq9zNGyxzfKWAZsYAA9jyf5UcrC6Oglvwyq8QjfgE+Y4AQ+gXnmql9qQe2XzZ/NZwP3MQxz39yfauXn1KF5ULhmUMfmZdw+uP84qFtXQO0kVvlxxvYk8Y9P4apQFzHVCaE3KlI5pplXG5pD8v17fgKbd3cEUYeQ3BldMeSz8nnnpyK5GXXbuWJFwihBhSEGRj0NVRqMyt99t5GCc5P09qfIxcx1ttLHIrP5ajen+ukc/L7Z6k1EXW3YPHMssjIcMWy+R3B/hFcv9ul2rlVVl4DYwfpTDc3AiIJJU8jJ5FPkFzHTfbLqSIHy1VP4ih2hmP+0RmoZVkaOSRCtuH5bL549T7ntWEJpyilVYKo4IPC+496a9zM6jz2fnJ6dfT/APXRyhzG1M1nao7faWmcgbiDtB/LtVOQ2Yds58vH8JyXOP0FUlzMhd8DHJIPP5HpQ2VAcr8hGADwT/hTSFcYTAMk7pCRkkjpVMt8xxz9auG4ZYGZVA/hDDjj2qiTk1aJY76HPetGz1zWLBcWmo3UQ64WU4rMz3pwfjpTauFzp4vH3idCANUZgBj540Of05qzH8QfEyHnUY35H3oF6e/FclvHr/8AWpQAT8rZ7fWo5I9h8zPR7T4qX68XWn28wHVo3KfzyK3LT4o6NMP9JgurY89VDD9K8hXJYIcHHGR2/OiRw7kmQ5wQcd6l0osrnZ7vaeNPDt7gRapApPaXKH9a3I5I5ow8Tq6HoykEGvmoxEKV2jPbNa3h/wATX3hy9WW2YtC3+tgZvlYf0PvUOj2Gp9z6AzSVm6Jr1j4gsRc2UmSP9ZGfvRn0P+NaRrBqxqhM0UUmaBhmkzSUmaQDJUEsZQ9+/pXG+INSNsxt7skP1U7Tgj2NdoaztX0m21ixe2uF4I+VwOVPqDQrX1A8g1J1lJPX3rHWEFiep9629a8N6lo0x3qWg/hccisokhOFUH1rpi9NCGMwBzjNMeZQv3ufQUxw7fePWlSMLgkZqiQALLkqBTSB6VJk9sUvls3UgewouFis4GPemeWc5NWWRF780zAzx0ppiaItv+TTgPenYoxj8aAsJjilxmlxS/jQA3b70Y7U/H4UnvQAwio2GRU9MIppiaKzKQcjpTdu7p19KsFeKhZdp46VaZDQwoR1BoxW3o+pWaHyNRgDxN/y0A+Yf411A8JadqEf2mwnV0PQDkVEqnLuXGHNseeqpY4FaFlpc91MihcBv4vSu7tPBsUUoLhSAMHt/kVs2uiQ2cxdIwo7YHSspV10NI0u5F4f0hNOtVUAFu7Y5rcxQiBVxTjXK3fc2sMaomqRqiagCJjULVMwqJhVARNTDUpFMI9KBEZpKcRTadwCqOrWou7CRCMkDIq9QeRQmFjz2F8FoHPTikliJBzVzxBZPZX3nof3b9P8KrI4nQNnkCujzRl5FBoznjIxULDirsq4OcfpVd1A96tMhorEUwipiMDnmoyKtMhjKSnHrTcUxCEUnIp3ammmI62xm8+zjfvjBqY1j6FPw8BPTkVsmsWrM2TuhhpKdikIpAUZ4QXOdxwM5zyKhT/VN5hLKQdp78dKvyjOBg/WqkaKd0S/My5C5GMDPJouBfgwVOAw2jI9vaq2pxLLGqMTlcZ45+vtVm32OAyK3ljkuwPI/wA9qjuolkjLBipbOc9gB/XioT1LexzM0DREgjjsfWoq25VEhjjG1t/BAA59x6VRurCSJmIUkA44/nW6l3MHG2xRopTSVZIZNFFFAC0UlLQB7UKeKYKcteUekSqalWoVqVaQiQusaM7kKqjJJ6AVzOqazPPK8FtKADwEX7xHqT2pfEWrtGGtIM4UZdwcc9lrlAZSCQrMT98sep9q6KdPqzGc+iNCSdSc+btK43gHGcdvemRTylCJBlT0bOOPbJ6/hVNdhkYjdkDOf7/0qwRuUHbhAdx39vx71sZkwvWgiZkCqrnkAkMPqTUkWorBCXmkxGCQCqkFuOeeorNlnjgHnBg7sPuHoOeKoSSzT3GZ1zwW2ZwPwpqNxXsac+tSXCouBtONpBw35VFJc5XYvycfLub7vv8A/WrMcoMBCvIxjrtFSRY5DBlwM8dT+NOyFc0454iQWVpztGW6KD/hT31C5jG0xgKCSoKZBI7+1Zov/KiPlNz1Bccj6VUmuGJ+aUtk889R6UKIrmh9su5N0s24hhu64yO+M0+KSdl8xZZFjQgg9D9Bis+Is0oMgZmYcByRV8zptYhmj4wT1BIHQD60NAmWAXWRR58zu33s8Kue2O5/KmT3T4EZu5JG6HccA49BVVnhlZd4PzD8Cfc4qSG5tLX7zLuznCcj6c/0osO5cikSKRWEczkEZd/4fw7UNchmP78ld/3eAW6HJrIur4SKzDkMSTkd6LeYpGyoCr92VgPyo5Rcxttc+aCd7BACAWxnjsPTmnLcKG3SEM7D+E5OOmOf51hK08zeWJDtIB2+oq0hNuCqbyCcfdwM/Tv2pOI7mnJdFhmMhIyeEbGD/Wl8xZpQW/eMq5YqeF9BWbGZdgc7nydpdmAA/CmTX4iXas2SrZ+6ACfX3o5QuajXyC3DBFCejLkk+3rj1qsb5pNg3+bMeQAnC/X/AArElu5ZAxZjjPPvU1vJmJ0VSGbgENzj0p8thcxvRXEbOpaZi275nbjI9AO9W96MHaRDJlgMZPAPTA9azbTzVGyAtkruLN29qn+3SiJQIVVCMglwcnvkd/oKloq5eSKNpSdjrGnVmXAI9gPfPNPluQCY4jvG7ITHBA9cDgVWWUxqArfMw+fjB9fyqxEMR/MxAK53LkdaQyJ55SjbYeDgnbkE8/jToSVRndiq8Elht/I+lKzwmJVALICR1zn1+p9qo3Wox/NsLOzNypPpx0otcCxd3IERXzSAzZ2gYY1lSBtxfMi5XaqqcVaiT5R5ir5jkqMHJP8AgKHkjtQyiYdR91ue/BNNCI4Rci2YEbgxBJC8/nTnidygjcqrA8Bc5A7e9RxXefnCr5eOAoIzj/PWrC3yx27vM4DYwMjacZ/lRqBXmEVsrQshaXOS+eAOvb+VZzzh8jczR53cqFOfrVkXckiys6j5lyXXA49MVnARsdxkKKw5ycn6VaRLY9WGxj5Z38FWB6evPemOWYqqI4OMnPU+pNKJY+T87Nu4Utnn1quzly26RsHr71VhXJCVkfBJGByR6e1MuHjYhYshc55JpGKgMyMcnqc9v61Eig4OcjOAB1NOxNxzBv7rYHQHrU6R/uiXG1AemcfrURzgqeDkd+QfTNW44WkBBUg55ZRnn+tJsaIyIwjc5bgkAY59BSDa0vGBxkn19qlk2Eg7yoX5sMOnsfemLKxJfjaB8oK/5xSGI8bI7MXYFRlTnt71BJcSL8rsHwcgnGRRPNjP7xmdslu3NVevPJ+lUkS2Tm4J3cfQ+n/16Z5mTkscj9aYcDp1/lQfbJ4p2EOaVmXBOQOB9KjpevbpSUwDPNHekpaAHDFKMdQaaDj3pe1AEoIZefzxTlCKeDgjuTwagzjoc05SAT1znqaVh3HsQ3UgfSk28fN+BPSjepC5wuPQdaaWXAzxjqaALmmare6RepdWMzQzD06MPQjuK9W8P/ErTtQVYdTxZXPA3HmNz9e34145kd+BSE9T/KplTUtxxk0fTKusiB0dXRhkMpyD+NFfPejeJ9X0J82N2yx5yYW+ZD+B/pXpWi/E7TL7ZDqUbWUx4L/ejJ+vUVzSpSWxrGaZ3JpDTI5oriISQyJJGejIwIP40pNZGguaaaKTNIZHNFHNG0ciK6NwQwyK5fVfA9hd7pLT/RpT6cqfwrqyaaaabQHjmp+GdQ0xz59uWT/nogytZRjwMZFe7MAwIIyD61mT+H9KuCxksYSW6kLg1aqdyeU8bMeO4qN8D+Ku817wNEiGbTIWb+9Hu/lXET2DwSbJY3jYdmGK1jJMlplXC0hGM+tSGBl6CoyCOtWSJjNGKcPpRn2oAbijFLmlxQA2j8OKdt9eKCPrQAzBNIaf+FGD6cUXERY545prLxjFTY56U1k5x3ppiZUZMHFXNO1W80ucSWszIe4zwfrUTKCMVEV5xir30ZOx6j4f8Y22qBYLvbBc/wDjr/T3rqQQehBHtXgqkqwKkhhyCDXp3gnWJr6xeC4fc8RABJ5Irlq0uVXRvTqX0Z1mMe1IaM00muY2EaomqQmmGmBEwqNhUxqMimBCRTCKmIqMincCIimGpWFMxQAw0lONJTEVb6zivrVoZRweh9DXB3MEmn3LxMTwa9FrE8QaYLu2M8YzLGPzFaU5WdmRON9TlCwYdz3qFxzxzSBihIJ47ZoJGfr6VvYyI2FQtVhx0FREY96pEsiIFNxxUjCmHr1qkSxlIadikqiSW0nNtcpJ2HX6V1cUizRCRTkEVxvStPSr77PKIZD+7boT2NRON9Sou2h0NJinYyOKMVkakTj5cjFVgw+05woMancT0JJ7elXHXcjIO4xVUmNJUKR5YsAPUjsaQy3AJIo44zIOcg9gOlQahdRxxnby7EjGen+cVNECYim/dhsMwP8AL6ZqlebRGvG1yCScfNj1/GktxvYoDcd/H3OrD3qeQ/aYixd9qKMDPf61VeOXzDFhiQenc1d83ykKSEOMgbQO3r9K0ZmjKubcI/ysWLcgbcVVKkHBGCK1btyzDA+fnBxzjPWoGIjTewB7EY6nFWpEtFCip3fIJwoA9qYuGcZxj06VVyCPtTkjaRtqgknoKtrDEvznb16EdqUSp5m84244TGM+ucdKLjseugU8CnbaUCvKPRACquq3JtNKuZlfYyrw2M4Jq5isPxXMItJVT0kkAPrgDNVBXkkTJ2Ry0jRhRMxK7m3Bnbp71RfUkJCxgsOi8cZqldzSyssjKAG4AHT0xUXRNoIU8Y4yfrmu9RONs0Y7hmJG5R8vzHGPwzTZb1Sqq7AgHLbiT07Cs/cgzksTn8qlib5yc/IMbiVxT5RXJGmBXzHUnJJAx0x6mkTzWR3kJ24IPOM/jTPNUgyFiig/Iv8AXmkGx4s7mznLH0FFgHxKPIJIJDY5zzRI6gksSR0BHVsUigbQCp2A569Kh3uxyWGemSOvsKAELK5yzkZHJ/pTlUnleemFxyaZgJx1x1HtUqpJNESuETux4piJlkW1j+diXPYHPFQGUzDJyEGc96Y0YSPduyWYgbeePWm7M8AhRu5YmiwrkgeN2yGZUA9e31pnmoFzgDJyABkCoMhcYOfajcx5ycg/lVWC5IJDg/MS3arUBjUhiGkYjqR0qkg+YnHTrVqJwgYDkg8ZXOf/ANVJgi/G0cURYuSzDtxjPp6/jUKTyGQysCU5UZ70xVLFmc477sdRSo/lxmQEbegzzjPWpsUPupkAWLEmR0QDAUf/AF6oO2D1bd3NBZXBcrgZ6dzSKCxJBAHQZHNUlYTYqqzHABwOtX7MeXGxVmwR1xj61WiTB6E5455+vFaltCm4bmBODnvt/wDr1MmNIkBZSGQklV6bvvcfyFX4Ubyy80ql2GeOPwFRAEqSrfKOqnge4oaQCRMqGYDLAYBx2+lZll9JRFCrpGpViMbTyT9e/WsyXUrlXmQON+Suxcn657dqmklYREuNqZ+U5z9T7H3rJe5ijiIhjPzMRkdSPr3ppCbLTSTSR7tjRLx905P0qDETK4ZiEUZ6HqO3v1qu9wQVWPeWXvjtjpVYzl1fn8TwfaqSFc0DcLFGQm5cHPXn6VXQq8xG7exHXOB/+uqm9nDOcdeR61PEoMiZyWbsq4NO1hXuaDXDlV2F/LUjAwOT6Z9qplvNbzJCfMbOCDx7mp5SrMUDsEHAB43e3+NIsg8lSWznrtHQUhlSdklG4IFAAHHGTUWQo+YqdvPBFXPMgjXlsleVUjP5nvVQKjv8ozkDjb09apCZEzkgnccE5561Hh2Qjkj1qeSHc5MYwgOOT/M0jQsMhTvGAeBimSQ4G3p7fWpWYbCAuP7pB/zzSMoLMxUgDrgYz6UqJ8ykuApGeoH4UwHwhgyiM7inPHrU8kj5dmJwDjDcZ9aQXEcEHyblLfMPlz+OT71TMrNwCSTzlj0qbXHsSeZvV3IxknkH9KieV2UgHAPWmsw46nFNJBPNVYVxCfXNABOAB70Dg+lKWHG2mIQ8Cj19KTtQc96ACgmiigBKKWkoAWlzmkooAB+tL0pPoaO/SgBfSjI6CjGOOKSgBc0gFHFJzQApGaQcGgUvWgDd8L+Kbvw1fBkLSWjn97Bngj1Hoa9t03U7XV7CO8s5A8Tj8VPofcV86Gtjw/4kvvD12JbV8xMf3kLH5XH9D71jVpc2q3NITtoz33NITWXoevWfiCwF1aPyOJIz95G9D/jWiTXG7p2Z0LUUmkzSE03NIY/NJmm5pM0APzVa5sbW8UrcQRyD/aWpt1G6mI5y88EaXcZMQkgJ/uNx+VYN18Opgc292jD0dcV6Duo3VSm0FkeX/wDCAapuwfLx9aX/AIQDUznmMfjXqGaN1P2khcqPL28Aaoi5BjY44ANZd34d1GyGZrdgO5AzXsuaZLFHNGUdQVPUU/aMOVHhbRMp5BqIj0r0rW/C6ANPAuQP4fauPudJaNQ3ZverVRMTj2MUGlwDUk1q8RwQc1ECQcEVp6EeoFSPrUbY71NwRUbD24poTIj0zn8KifnkVOw4x2qB+PrVohkddT4JmaPV9gJ2svI7Vy9dT4LiJ1Jn7KKmr8DHT+JHpm7ikLVHnApC1cB2DyaaTTd1NJoAcTTCaC1MJoACaYaC1NJpgIaYaUmmk0xCGmmgmmE0wHZpp5/+vSbqTNAjlNf0gxO1zCuY25YY6GudBPc16W4V1KsMg9Qa5PW9DMJNzbLlP4kx0renPozKceqMDPy8daZjinY446Un1rUyGEDvTD71MQQCexqMiqQmRkZppqQimEe1UiRtJS0dqYjpdIu/tFtsc/PHwfpWjiuU0y5+zXiMT8rcGusHIyOawmrM2g7ob39azpy63WUIyT0B7Y4rSIqnKojldsnL/KCeg/GpRTHWsiGMdduc7sdzn86pTSLNOpVjgE8ueo6/nU9xKywiFCru55Of88VAQY0KbQ8hXHTJOe/500hNiFwkjPIgOSQFx+efWoUfzPMlZcAHaCOw+n5VYRWAIYbgq4LfXHAqBo2VjCHwcYbPQDFNCGBozulyUwuEFUmA2Dtjr/TFWpoQqEA5YYJI7+1V9pkyM8Z6/wBatEMh56Yzz070w5HFTSEAnA+fNN2nknHqatEiFt2Mk7h37VLDD50mwA4z1xUJAVcZye4rUs4zFAGdiu4ZJ9qUnZDSuz17bQFqTbS7a8o9AjxXHeOJMtaQ79oAZyPU5AFdqVrzTxvI0muSodyqkSqOPvd+PzragrzM6rtE5+4mUzEq2MAAAHAP/wBaqocbAM4pjyFjkYHsKaT613pHE2TBj1yMD9KXcScMM9jUOc/Wnq5HIGOOPamBYcgq3yrhcZI7/n0p8MZchd4TIy2eMDj86rbiVKjnPrVuNAE2MSHP3sHORUsaJb4oZFCncicA468VTa4b7wAJxhTjp9KdNJ125VDwBnqKrhmUcHp+YppA2OLDI3Bs05pSzD+6OgXioSeOvelJO3Z6elOxI8u7DBA9RjimFTwCRmkJHck0gxzzigBTjjjGO1OQEtkDoc//AK6YOmOlSKFYgEcD3pgPClxzkgnrUysqoMqS3XbgcH3qHzAgBAxzTTM2BluOw9Kmwyw0oK7fNb5uWNRO5kJAY47ZNRDaAGb5ueRjpSlmYcDAzgACnYBxYkLGDjsaeBxsVsntg9/amJGTwM7sVftoUUEsWzjnA/Sk2CLVlCysMHdjkkD2/pV8RyQjYSSdpbOPu/n3+tV4pTG3PT+Dd3/xxRLcPKmBktznDZx6Vk9TRDZZyp2oSEGMDABwecD0NIty7B2dQI1H3cZ3e5qNYUSQKEYsU7nPb+dXoiHUu6gIOORkAUwKFyZ3ZAdzEDO0DAwB2qg4fJbaSWG4EHkCtGW4OPMU4QrgfN396z7iU+QcHap6AnJP/wBaqiSyA5EeAwCkZ9zUeCwxnkDn/PemHBAyaXlsDA9AKsgsxgs+c4AyfbFWLVCUd1dgMYOV6de9V1fYDjkAjIJ6H0qSNkZQvQZ+bHAP+NSykTyCOLCIxLbhk54/OkCxbyMkMBkEDv2A9ajAiCkoG56rj+VPK5PBYjv6t+VIYhkVohjO4ckFutI5IkKqg2gY4yfxzT2ALEEncO2Mg8dMVFPImxMYP8R7jPpQgGPgR+XGxJHUDvTGlAjYcFCc9entQ0cmG4zk8nHr6UyUNGFK8oR35596pCGO5IAI6jsetKZdpxjLeuP0qAk+tGTimSPeVnbLHoMYFJu+UrzzTetJ1pgLzRxR0ozxzQAE0UA0uPegBM0d6OvNFAB2o60UdT0oASilo/CgBPpS0maKADNL+lJR0oAXFFJS/UUAHSiikHt3oAWjpSYooAMUUUuM0AXtI1m90S+W6spCrdHX+Fx6GvbNC1y31/TI7uAgN0kjzyjdxXgvStfw1r8/h7U1uEy0D/LNGP4l/wARWVWnzK63LhPlep7qTTc1Ws72DULSO6tpA8UgyCKmJrhOpDt1JupuaTNAD91JmmZozTAfupd1RZo3UAS7qXdUOaXdQBMGpQ1QhqcGoAdKQY2zzxXHPGsm8Mo25Ndc7ZQj2rkpSFLMeu40MaMa7sBk5+6M4GK5+9tVjbI/SukvLph2zXPXW8uxcEZ7VpTuTNIzgCOOCaafzp56nn8aYfX9a6DEjY1A/wBamc9qhOTVIhjQM16H4Os/JsTOQMyHP4VwVvE01wkajJYgV6vp1v8AZbGKLGCFGayry0saUVrcv5pC1RlqaWrkOgkLU3dUZakLUxjy1NLVGWphegCQtTS1Rl6YXp2ESFqaW9KjL0wtTsBIWppamFqbup2ESE0maj3Um6mBJmmthhg8g03dSbqAOX1rSjbObiEfum+8MdKxCPTmvQZEWRCjjIIwQa47VNPaynO3/VN901tCV9GYzjbUzTzSFc08rzxTSeOBzWpmREUwipSKYRVIkjxSU40lMQneuj0a+E8XkSH94o49xXOHrxUkMrwyrIhwymlJXQ4uzO0NU7qPeFT3yR7VJa3K3Vusi+nP1qtOxeXCHcSeVHHHXmsOpsLMqQtEUjJkIAwexqqZXViefMYYGOp560+Zg/zqTyRkZxz/AJFRx/My4J2qMHvimhMegB2sGJUepz9TSDy4IDJ8ys/GCc0OQsaliFZvvAcdO1MuLd5EDO+ARuKr69qYipNxGvzblzkn3+veqvzMAAcnpgVNINuUVdwHQjvUW7HOOR1rRGbEYbQT3pgLYOM04hmfAJJp4h+Yh2wBgtjt/wDXpiHWkHnzgNu2D7xx2rRmO1wIwGYMOMZyfTFOt4o4bZs5UOA2Seh7fjTXjVZWkVwCPmAB6H61m3dmiVkex7aNtS7aNteZc7iLFcH8R7YpBaXihs7jEx7Y6/416ARWZr2ntqWh3dpGqmR0+Td03DkVpSlyzTIqRvFo8QYc+lJ0NSOjKxVlww4IPUEVHivVPPDPPNOU+pwKQA07oM4oAkQhSTuxx9atQfJBIV6spyxPT1qmq5br05pzgKqgdDyDUsaElbewCsSvbNNzhDwT75xTvLG0Fh+VMJ4z1GeAe1MQgGRzz60pB2+woxlPb1pD15pgJ260elJ3oHWgBcetHH60lL0+tAC4zwM0Ku7qPxpyJuOPzqfYAvAxjrnoKVwIhGeeo+oqVIGIGcgdRwfzqSNN0gAbgd++alClMP5oOCRgDt9KTY0hY08tQy7uSRxjj/PpU0D84xuBx16/h61Ei+ZtPPsAelStIuN2W252hSakoteYhBY9M4CkYzj3oWQbThiFxzjjn2qMYIGXKhRnC9B7ZoXJ7hVQcZXv7DvUlEjBwQC2cjHTGRVhYv3XLPkgcjuBVX7VEuGJONp+VV5JPrTpJyYD855GMEjj2oArXCKd+W2+3TIrLlLMwyT9KuXGd3DA7RtJHaqsjZU9cHotXEhkWzLHOc1LEvzn5huHIzSBcAf3c85NCyfMXwDn19P8apiJhFvAG4Ybk89/61bjjwNuQjNjC7s4Heq6sAVGTgDkE8k095ZJFOVJPUnkk+30qGUiX92yhGb5ck5z6evpSRtsjIj3AkdQwGf/AK9RFiy/KFdsjAHp9KfKNwTdFtGcYoASWQbGCg4XA9M57VHsBbJfgcbSMkce1DOsbsI2Y55OTjB/yarvLsj2pj3I700hXJd6KhWPLEn7v071WkbKdBzyMHp+FN81sYDcdPwpmfU5qkhXCg47fzopP0piClpKXGc4oAT60tFA9qACj8qPT1pcenPrQAnXPal7U3PtS0AB+tJS9+PSk9qAF70n0pepo/KgApKXHb+dHfrQAnSlowPrRj3oATmilzSUAFFFFABRRRQAUd+lGaKACjtS59KSgDpPCfimTQLkwzZeykPzL/cP94V61a3kF7bJcW8iyROMqy14D7Vu+GvEtxoF0BzJaOf3kWenuPesKtLm1W5rTqW0Z7OTSZqpZ31vqFpHc20geJxkEf1qcmuSx0D80maYTRuoGOzRmmbqN1AiTNGai3UuaBkoNLuqIGlBoEOkb923PaucFu9wW2qeM8+9dA+WRgOSeKhljS1QQLjsWb3pSZUTn57COFArjczDlq5nWolSU8j2wa6fUZj5i5BIUdK5HVpfMdiVIIrSmncmb0Mhid2R/KoifSnsevvUbHtmulHORt6Uwj/9dSY781paLpL6peqmCI15c+1U2kriSuzT8J6O0swvZlxGv3OOpruc4FRQwx28SxxqFVRgACnE1xzlzO51RjyqwpNNLU0tUZapsMeWphamlqjL07BckLUwtUZamF6dhEhamF6jLU0tTsBIWppaoy1NLUWFckL0haoy1N3U7AS7qN1Q7qN1FgJd1LuqHdRuosBLuqC8t0u4Gjcdeh9DTt1IWoA4+5t3tpmjfqOhqs3611WpWQu4srjzF6H19q5h1KsVYYI6iuiMrmElYhIpjVIRUZFWiGN4/Gkx6Uv40mKZI09aT6UpFJVCNLS53BkhH3WU/hV6UiCHylRjI3Jx+VZulLvvNuM5GMVdmVjdZOBtBA75HHU1lJe8aRegS7WVFYjBILEfTpTsrHAUIDsDk47fU+lU5ZDt25UgdwMYFMaQ4L7cH0zmjlC5dWSMyADLFRn7uADTbi5MiHIVVyM/Ny1Z3msNwyeajZyT3NPlFzEvmPv8wHB9jTWcE5x15JqPPpSgknnmrsSPVvkwAcnjNWrVQ8saMOCdzDNUx1wOPU1p2KxjO+TBk7jqAKmWxUdye7IjVNhAAPykfTpVMRMZFHVyORmrVzkSqowcAjB6D0/SoVfbmZRyMDawzk++foKhbFs9xK0mKmK00rXlncRFaaRU2KYRQI8P1yz+ya9fW2ThJmPTB55/rWcoG04XLV13xAsvI8RxzJ/y8xBiPccf4Vy7J97BI6Hjoa9WnK8UzgmrSaIwm4AhDj19aQKGYkYUAetWWAcKGPAGSM9KjIVPvNk5zjFXcmxEqEqfc09UJIKkFRzkj+dKMhCUGMjBJ6UkmxBtUbiRycUCGuFDHnHrz+lRgDGScUrMCuFHemHJ/wAKYhS/Jx9KZSkUBSRTASinhDTljJPTJ9KAGbTgZ4qRIwcD179aXAReOSfzp6gKBwGb/ZPSkBL8iABN2e9LvZl6dD6VAXCkkADnoKN7HljyPTrilYZZR1U7lbDY45qMgZADZDcEjpUIAJHUnr0zU4kAwFHIGMnr+VAyUZClQ2/2yeacgDjhiVySxxVdC6M2Rknv3wfSpVyo2K2CAMgf55qRk5dhEccLkHg/5xUKl269+goG0sBywxjj1pXIK8FmX0PU/wCFADknj3YaMMz9C3akndCS29SuMcDr+HpTREp2n5CSO54Gapygg4A+Ucc00hNj3b5l2kscdaawG8sDgZ7UxQfmA6UjBQoweOp9aoQ7aCc8YBpysRgqMd+BmoOMgjNLkZ6/hRYRZVhGMop5GPpUu9pU24JUcbQetUwwPHT8asxygAAn7nTHr/jSaKTJ2fy3xt3MTwDwBjpxQd43bsjjJ+vse1JEgCEncd3U+n40x7pViXBJPZSOB271IC+UBCdxVsgkHdis4nJqe4n3gDIJ9R/Kq5q0hMKOtJRVCF7UUlLSAWiijtQAdaM/lSUvtQAv1OKTI/8A11NFayy8gEKf4jWtp+iGc5I38Z64X86lySGk2YXfk0vWurks7S3zHKVDHgRKmc+/rUH9lwSRHMGxt2NzPj8aXOh8pzf60e1a8+kxq2I5huC5KHrVF7Rw2ByPUjFUpIVmVsUu3gnripDBMoJaNwvTJFNU4PI+lO4hApINJjpinfXr9KTqOpoAQ8deRScUpwehI+tJxQAUlL60lABRRRQAUUUUAFH40UUAFBoooASlpKKYjofCviN9EvRHKzGylOHXrtP94f1r1iOZJolkjcOjDKspyCK8G7V1/gvxI1jcLpt25NtIcRMf4G9Poa561K/vI2pztoz0zdSZqPdRurlOkk3Um6mbqM0ASbqN1RZpc0AS5pwNQg08GkBZgALF2+6gyayri4ZWL4DEnIBrWcBLEL0MvP4VhXnyqxGcj09andjRiahcyAud3J61y19LvJz1znNdDqCOFYkDnk1zF6fmbB5PrXRTRlNlNm/Coz6U89M55pg5NboyHxxtI6oo5JwK9I0XTU02wVQAZGGXNcj4ashc6orMMrH8xrvyccCsKsuhrTXURjUZNKTUbGsTUQmoyaVjUZNUAjNTGb3oY0wmmhCFqaTSE0wmnYQpamk00mmFwO9Owh5NNJqMzIP4hTfPj/vCnYVyXNJmoTcRj+IUCeM/xCiwXJc0ZpgcN0Ipc0WGLmlzTM0ZoAfnijNMzRmiwD81k6tpwmUzRj5x1961M0df/r0JtA1c4lwykgio+tbOr2QinLKPlbkVjsCDXRF3RzyVmMINJTj0ptUQBplP7U000Iu6VII70ZbbuUjNSysEjZcgqW4OeSKz43Mbq46qc1auX3YYHj+dS1qUnoR7y0YAHLHkmkmcFVQZ+XrTBwvIye1NPLc9+tOwhTjOcfQUmc9RmjJ6CkxTAXgmkI/GigDtQIePatmyiCxZdSoAGTVG0hAzI3RBkj0NXt37obJCWfqfSs5O5pEZITukYAqoPOeT+HpVbBUrltgIB+lTvHtDtGxZsjKnuKi2tKxUxltxGBjknHShDPfylNK1ZK0wrXkneVytRlasstRMKBHmnxGKtqdgi8vHGdwXqMnj+RriScMozknJwB09K6fx0ZP+EqudhOREn4DArmFdlVn4LHPzf0xXp0VaCOKo/eYH5EL5JLH5uajYZ537j7VKsakgk9OCDUZGCdoP/wBatTMaASOF6UNllyQAOMYoLFlwegHAAqRU3sMtuJH4fSmIgETOAVBx3NLsUAckn0Ap7sHzlwo6bQKb8o/iJH5UwGhQo+YAe3rS4J6D6mlD4HAByeB3oDuSPbpxx9aQAAAMgjkUoB4O7HFM5wST179qcqZyeTg9e1MAIUA8sBn8TSM37vA4XOcUbSxOcjPJ96a4wcZIP0oEG8DletKAT1zn+lIEyM44/lT+FHXknigB8fHqMDrilQxjBDfNjOT2pm7jAC5PVqYG2dR15AosMezbn3c9fzp2/C4C/U9Kh804PGfWm/O4zuO0GiwXLRuDjaAo756VH52SAXIUdAKgK8gnmgkYAHaiwXHmTI6H8/0prSZ5AwabwT9KPr+VMQu8gY7UF2xz0FJnijmgAJNFGKUYFABx+NODE96TGOp/Gkz60AWDcMwG45UcYJ4NRMfmORyR+lM/H8aQ9elKwAT8uBk+9Nx60/Pb0ppOTz1pgJ60ooAyaOfSgAoo+lAGaAClxmrFtZy3ThY1+pJ4Fbdnokan5mM0oONiocZ7VLkkNRbMW1sJ7uQJEpwTjd2rbtdDgT/WvvkPRdpHP+HvWv5ckSLGo+zBRltq5b8u1QJPLJIAsheTJIXBbaOx/LtWbm2WopD0tobLc867WA68EEHt9P1phluLoqqr5MOCvmEYJ91HaoZr21tmLSebJLnhmGfyHQVXl1C6niADpBFjJboW/wDr0kh3L5S3sLVJDkO/SVSCSD1PtVOW8e5/co3lwA/xHLNn+RqmzPJOrOGkDfKXHOf/AK1Nubx1ufl25HABXgDH86aQmy8Zool8uQhWHTYwwV9PaoI7qSQbIlVxtJUY5OfT2qgZXlDrjnpknk+3NWjvjMe1i05GSN3C/l2p2C5OyusA3mOM7uuSdo/PBqtJDGqliwJIKqRyxFWoo2US/aJEbC8s7DOPb0ppQw23yeX82MHrz6k0gKZjhEaheR1ZyduPY1QuVjBHlnB6Y9quXTQfcA4xwe3681nEcZ71oiWMzSUvWk9qokKOtFGKACijr2ooAPwooooAKKKKAD8aPpRRQAUfpR2pKYBR70UlAHrnh/UxeaDaTSyBpQm1znnI45q3JqMMZ65ry/QdT+xXXlSORBKefY+tdn8pwQc1yTp2Z0xndG0mqwscHI+tWFvYG6SCucIBpMY7mp5EVzHUCeM9HH50omQnhhXMZI/iP504SOp4Y0uQfMdQHHrU0I8yRVHc4rmI7ydf48/Wug8PSSXV0zOPljGc+9RKNtR3Na7HJBPCjisKYK0mc/LnpjpWxdvgHHOT3rJbKhmK/fPQ1ki+hzetNhWJINcbcnLkenSux1x1dcKpPHJPrXGTH94cV10tjCoRnr/hTQM0ud3NTW8ZkmRP7xrUzOy8KWvk2BnPWQ5/Ct4msO3vXt4UjUDaowKl/tRu6iueUW3c3i0lY02NRsazjqnqtNOqLz8lLkY+ZGgTUZNUDqg/ufrUUmqDHyrzT5GLnRok1GzAdxWQ+ozHPIqvJdSv95zVKDJc0a8txEnVhVSTUEGdozWaW9Tmm7xVqCJc2WnvJHPXFQmRj3NRb6C1VYm48t70wsfWkyKQt6U7CFyaTcaaWppeiwXJllZTwTVlL4KMMCaz91JkUOKY+ZmoL+M9QRTxeRE/erIzSZpciDnZsi5iP8Yp4lU9GH51h5NKGPqaXIPnN0OPUU7eB3rCDsP4jThK/wDeP50vZj9obF/D59qHGCQetcrcwmNz+VddpINxp9wGPINYWpwBJCOKmDs7Dkrq5hsKbUzqB0qI10IwY2kNOpppoQlSk5t/U5qLtTkI2kUMQrYBwCeKTr6cUhyRk0mfegBcjPSj2pMmimAfTmrFnF5k2SMqO3rVcetXrEkI5UlcEHdUy2Gty5Mg8oqVPLfM2fSljdhECowWzhAMn/8AVUKLJMCFGfmzjOOM96tyP5UeHZQxOAMcj3rM0IscOrZJI+bIxn6VFbgOrbxgLypJ5xSvJuTgkk5CjHoadlgAFCtgDgjqfTNAH0IRTStPJpjMK8o7SNhUTCnSTKo5IqjNqNvH96RR+NNIZ5P41la68V3keMCEhc+wArnckICDgsMjBrZ1+4F34k1C5Qq6mUhG9O39KzGVYmAPzMT93HT6V6kNIpHBLVtkUn7uNQep9DyaiJJUqp4qRwWfYCeRz7U+JV3gc4x261ZJEAOC/Xtn/Cnq+I2IGeME46ewqR2jIwAw+Y57/lTAuQHHAxgD07UAU8880cse9DAhiCDkUKScnOKokd0P1pUAyWI4puMDGT9aftLALngc+1AwGG5fOMdM0/ORgfkTim+Xg8k5B/KkJJzzSAVnyMDHPQYpjOS+44Ld6a2QuQMA96b+tMRLu3Ekj8M9abu5JOAc/Wo6OTTAcWJOfejtzwab/WigB2RkEil3cZ/U02k74oAXmk/zml/ClwOOev6UANpcd6cFHenbQc9AQO9ADAM8f5FGD1p+M8d849M0hXBAABbvigBo4H8qApLYHNLtIUnH1NKAF7DHvQA3jFOKj6e9KMnJI/HHSgrxkZzjkGkAw9jikyetWDASuegx09qYyhs8EDHH1ouMi9e1JjtTiCOCMcUmKYg/WlALH5RzUkEDzyBUGST+VbtvpqwoBg5J/i6MPp3qXKw0rmNBZT3BAjjY59BWnbaN8qtLtUs2B3z9O341vw25GML8uOu3ge2O9TpNBGg8tWJH3pHbkH09utZubNFFCWdrFZxBfIIDfMNxx+gqG5upHTZGX39TtwMfj/SnySOEbDgqWyw9u/Paq/2pkZtkhYbSBtGOfQD+tQUMWG4Lu8jlg/o20j2GaR5BHCY4xgFuWdsAfgOtU59Rk6PIkaYyShzn8KzJNUwwZEzjpvOcfhVqLZLkkaqx28m4qrYJwWXkt9c1WnSON1ZyMgYKqeTWXLqEsgIPrmoftEnPznnrVqLJckXWmU5KqQuMAAk1GDtVnyp5xkGqnmnHJJpy8r3GPyp2JuWw+GJGAgOMEZpI3BZpPMIHTnvUAy2MY46fSnNKQuBznse1Fh3Js7MPukLYwBnofU0xpHk+c4zj7xPAqIyEoODj+EY4zTQQ2CzNnBzRYBJXd23Oc5HWo/5jtQT+dJ196okCQTkUlB579qO1ABRmijrQAUUUUAFFFFABRSUUwFpKKKACiiigAoopKACup0DUjNH9mlb50HyknqK5anxSvBKskbFWU5BqZRuhxdmeheZSeZVGxvUvrVZVwD0ZfQ1YzWDRvcnEgpwcetVs0oNKwFtW5rttGgFnpIc8PLzXHaVbG8voohnbnJ+ldnfSBUWJeijAxWNR9C4le5l3tgjj+tZ92/lhvReDj0qTzMTrGF3MOoxwBVS/cKhBbJJyaySNDm9TfcWIyCc8VycxG84rotQlVi2GGAPzrm5CdxrrprQwmIvWtXSIt9yXPIUVlrXRaZB5NtuI+Z+TVslF0nimE0MajNSUBIphNBphFMQjNUZY08imEUxDCaYTUhFMIpiGE0maU000xC5pN1NzRmgBc0ZpuaTNACk0hNJmkpiFzSZpKKAFzRmkooAXNGaSigBwalBplOBoA6bw2AbW6GOT0/KsXVExK3XBPpWl4duNk0kJON4qrqi4mYZzk8+1c70mzZfCc5MOc1XI9au3KYOKpmt0Yy3GGm08immrRIhpY/v0UJw2aBA2cewplPZcHBNMwaAClxSUtMA/Grltkw7EPO7LVT7VZtMbgvPzMBSew1uX3bIVU3c4JAGKgkc4LYx9D39KRpjiQKQTnORTWJYrnpxnHQ1Fi7jolfzUBJjUc9c1YeTyyzq43qd2eOtQhQyqecjkY549KAVG4DOF5BxxSA9Yk8XTH/Vwj8TVSTxFfy9GVfoK5oajF6VJHqMGcE4rl9kl0Onn8zVkvbqb787n2zUODyWJ9eagF9CRwRVTU9UEFjI8TfvD8q4GcU1F7A5K1zmp23FiVUbXOR16+/rUQRiGkkJBK5zn+tKhfzME87sjP0oUMzZYZzyT7D+tdRyieUoBw/bORSsF8thsJAGQTwfxpgYojMV4PQ+n/wBehQWkRpVJXGcetMB6wmRly/yj9fpUkmyPdksCDjA70zzmlDfdUDABHXFR702lzHlduBz/AJ5oAhk/0g/IuWHQgdqiC8EHg1daTEYCxj2IOM/WqcrtIfMPfgmmiWJ1JI49ach5BOSPXFRZIGKN5x149KdhErOTnA5PcmmHryeRxTM9M/rSZzRYBSxPUmk7UZpKYC0UlLmgQfSjFFFAwpccE9aOMdafjBBPyigAXk8c+9AAYk4wOvSjIJAPAzSlt3yJ09TSAN+BkYz0zjpQNqk7zk/UU32I/EUowMg89unegBckg4J69KVR8+APbrRzkkNjIzkijbnIPGOpoAViQwRQcY+tO/5Zk4CgHGaTYwQsV4PSjauWBGNvU96Bj1buV4OQpPOKlQoFBVW69hyTSJEwBIJyeg9jT0hJOEVyoJyQQM1LGMCq78nDAZOO/t9aesHmEDIKlc4A5AqzHbMQcjaB146D6/1p3k7V35wXHCkjJ+lK47FJbFpFOz5m68Ht/WpINLZ1DOwUA5J7AfWtS3sX+RpSd4XqOi/59KuBREdkZJyNx8xcbcdMDv1pOQ1FFWG3S2zGiozE9QeF9+epq3E7tyCRtHLAct+fanRwvDErTne78gY5568f41FPMkmCCQCRkd2x3J71Ix7XbEjdKUj/AIUYYLVH58aRqX+Z2PCqvCDnv/Ws+7+z72k+YttwBjgH1qlLcvPGQWJQDrtwT9aaiDkakl/EJCTO7Y4G3px6D+tUptRkbcQ6hScgdC31rNaQmPG8c8+magZ930q1FEORNPcGT1ye+ar0UVaJCiiigApQcdaSigCZT3BJ7UKATgEn3qIEjgGlLe2KVgJGYdASOaYzZQDOMelMzRTAUk0fTmjPrSZoAKO9FFABR+NFFABSUUUALSUUtABzSd6WkoAKKKKYBRSUuKBBRSUUAFFFFAF3TL5rG5ySfKbhx/WutDB1DKcqeRiuFrc0S+P/AB7Oc45Q/wBKznHqaQl0N/NOQF2CgcnpV6y0ee4RZZD5MR6EjlvoK2tO023gYliWI657fWudzSNkhdIg/s+3NwRmWXhR6CtNwAhdxzuzn2rMvdSSKUc/dNMv76QQIQRtP5AVg02zRaEjTBWkmUnHQe9YWpajjMZxg8ZFWp75YbPOQVPfPJ965O7naWPcOMHuOtaQjcTkJduOVPXHJFZB5Oc1bnfcnJ5xVQEbSa6IqyMZO7LWnwfaLkZHyjk5rpOi46VmaRGEt/MJ5Y1olhSY0ITTDSs6+tMLigBDTSaQuPWmFx60xCmmmmmQetMMo7GiwrjyaYTTDJTC9Owh5NRk0hNNzTEOzSZppPvRmmAuaTNJmkzQAuaKSigAzRmkzRQAvNJmkzRQIXNGaSigBwNOFR4pQT0oA1dFONTiHbn+VTauP35x6/nUegxGXU0Iz8oJOKm1KMvckdFyaxl8ZtH4TAuEOzOKpMK1rpGKbQMn1rMcYyO/StIszkQkcU0inmmVZImKBwaKWmIlaMEfQfnUONwzjBHWpl+aMgnmkZRGdoxgjv60kMhC5z2pNp9c0/tz1pdg6Z5p3ER7eOtWLUn51XrjIP6VEQRx+tPhOHweMjHIoewLcnlZVdgEPqf8aRmKn3PY9Paonf5yeoz371IpJUu3HbNSMkXcI9g3HkEZFDE5JyOeM+1OXc6lcA9iepP40z5iGJXA5OM0hmlmgmmFwO9IZQO9IZJnHeoLqVTFs3YPr65oedFUbuR3FUGbzCznC89KaQNji5Chx04HTj3qUuHljyNpA6Z7VGzYKgewAPehmVd5IIBx360yR8rIHMjHcxbj0HpTS4Ys5Occdefp7UxZ3dw2AcEf/rp5+RkUr1529cUWAAQFGRj1I/z+lNJVUwCcn+GkZiwPyluxPrQpxG21OR3B5pgRHYTjnHqP6U1yONuSuOanIDoFAGSfcUkkcaAgMS2MjbTEVSMMQAfxpv8AKpJOv3tx78VHn1FMQlFFFMAooopAFFAFKKBBigDH1o57UuOxoGH40uTycUEYGaXseM4oAcqMwY8465pAhYcDAP480DcTk598U5FLDHO0fpSACEA2oCTzyaNgO7nHHenpCxjLgEA8dKelu7ocKQB1b1pXGRqhZ8kE4GRj0pVBLcKzZPGanEMrgn7g28nGM0/LsIwrEnoFGBmi4WIjGsYUHcXJ6fzFTQws6lhHnJwCeg/+vVuGxwytOXZjxtA7+mavLBsQAgJjAVQen41LkUkUEsXYgtGRtHOByauQ2aAj5uP4gy9OKtKA4UMnPRsd8VKmEUqI95A65AA/+vUNlWIfsalNpODgEnGSKnis0UFnGSx6Kfmwf5UwPJt2qmEP3nbufbFEjnygckpnJz6j1pDLBlit1KpuJzhUx7+lNWRt+6TCKBuIPOce5qtGyqgb5wWB+Yn/ADgVXkuioLbt2T3OeP6fWiwXJLqdQwBYn5vljBz+J9azri8k7ZJBzuAAJpk9x1UKBxkkHP1+prNlk3E8dTnrWiRDY6WV5OXOMeveoWfK7eBTGbkcU1mJ7k/WrsRcGPfOfrSUlFMBaKSigBaKSloASlpPpRQAUUUUAFFFHagApetJRQAUUfjRQAUUUUwD8aKKKADNFFFIQUUlFMBaSiigBaKSigAooooASloooAK7rwX4dQRjWb9f3Y/1EbfxH1P9K5/wzox1nVo4nB8hPmlPt6fjXpGrXYjVLaBdixjC49BXPWnb3UbUoX1Y291FGjMzsY0X+HOC309KzW1Y/ZGwqoZDnAPQdqz9QZVjUGRnwMk9iTWLNqHG0kYPbPSsowuauVi8967TqzPwDnGM1o3V2stnnedo4XJrmIZ2muF2ZYngVblSV9qPII41UkEf59atwJUhzXTSxiIOOOM1BK+6IRqNxx2HWrFtHHIhjt/3flj95Kwy3XoMd6fIxhnRbYnK5DnbhiO3NOxNzFdJsZ8qTnp8pqvIXHAUgjrWtLqF1IWUOVQdAD2qJrmZiYyEYHnk4/nWiIY6yvzb2yIy5A7g9atjUoWUEsVz2rP8kMoO1AxGRlhx+FI1sFQs67SDxzkUWQXZq+cGG4HIPQimlx61lIzAjypCR6EYH5VYWSZsnCEY6DrSsO5bLe9MJzUYaUpuMR/OnYc7SY2wehzQAH8TSGnFTjpUbHGaYCmmkimlu2aaTTEOJpuabmk3CgQ4mjNN3D2oyPWmAuaN1JRxSAM0ZopcUAJmjNLgUYoAQUuaMe9FABRRRQACncU2nCgZ1fhaNIrO4uGHJ+X8KjviGJYDGWo0CcnTpYypCjPPrUV45UbWK56jFc7+Jmy+Ex53G5gOwxmsu4G1qtTsRKfQ81TnOQTW0UZSICabRnNHarID6UuKBS0AOQ7WHpTnIV9p59KYBk4pZB0OTikMjxklugz0pcc8dfSkPB9iKFAI5+lUIMhc460vJ+vrSDg4xzT0AyRz+NAAwCMCeTjJFSYG1Tg8DNR8GMseoPrUh5jVQCD1PrSGPDJ8uCwx1P0pY/mkywO09jwKiUgK2OOxzU8YYBcAbgM4IBznvSY0Wgobs2B7Uwxg5z8uelSZT5QzYbp601nTbjr6KBUjKc0flru3Z3cVWIP/ANb1qzPuLIdp6c1EE4yDggZFWmSxzkfKc8AfSoT0AHJHT3qZ4/l45ZsE57CmMQcnGABx60CDduGB93uMUobapc8BjgAGoT0HX8aaxJPJ7dKdgJkbzMAsQAc/U1OH2nLHG05UY4/+vTIQqQFyGyT+lKIy2JGPfoaQCYkLEgDcerMOlMbuWbH1PWnOwjySxPse/wCFVXkLnvj600DEZtx6YFJSUtMkKKSimAtFJS0DFozSUUgF604cf0ptPAB+Y+tACY4608LvwAMe9LEAzkgHA54/+vViKOSRjkDkYJYfpSbGkMEa7d7NuJ6KB1qXyZHURkMzEAkL29qlUKSg3SDjOD94/wD1qnTeEO3JU/LgDOPxqGx2IxAXhUMcIDgAngf41O1u5hOAWBAw78fgB3qVHVIsbmMgIwcjOPpUbMWBzITlsk5xk+g9KVyrEckZkZcCRs9Qp5I/pVuKFYiNqkgr9/HA9vekiSQkFXJGOg71YWJQ6PJMQwGef4c/1pNgkRlIxiNG6fMzN1x7CpESPB35YnuBlj747U0T28JwoBYnCkHduqGS+ZQcDaOflA5Y/UUhl1HCkhCenU9c+npTWmAVJAyliOAq4P4VSN4zkHIOeMdPyFMaUOxV8jA5C9D+NFguW/OkZfmzgnPH9faoWuGlcyS/KoHy8ZFV5rhCFwxIIyF/xqpLMeRvJc9h/DVJCbLU12NoYSbgPfHPvWdNcvMR85Ax0pjkE8HPGSx6VEzj+EY7VaRLYrzMeCePTPFRZ9zR3pKokWkoooAKKKKYgo+lFFAwooooAKKSigBaKSigBaKSloEHeiijrQAfSiikoAWiiigYlFFFAhaSiigAooooAKKKKACiiigApKWkoAKUUlWtOtDfahBarx5jgE+g70noB3fgS3az0y4vJPlMx/dgjkgd81DrOr4kbbg4OMHvWvfXEGn2phiG0QxqiAe9cPeMGl3HknJOO1ciXNJyZ1P3Y2RNeai0sYU/eYfM3as6KGW7kbZwB1YjgU+C2af5sFYwcZHf2FaMQTyiipsA6YOMH3NarTYzbuIkcdtCUQONrfOyrkt/gKgaae/uBEHCq3bsPWny7XQIi4Cnk92PfJpdi2ttgspLnkq36UxFqS8S1TyLdBuBAABJzjvj1qkbmSVfLblf7vcn0pgB8ssHABOGI9/SmpM0UZC4OchRycDPWiwXFhEYlTchLKucjtjpwe1DzyTclMRsAAcZFQiQMWXaoJGSxOOaXBcAGTI6k9vpTERvGg6u3B4BHapreYhVUYcH8WA/pVWRfp9QeCKs20R+zk5baw7HANN7CW5oxiGViduB27ZH161IhhCAmMZ6YGen9apwII1B3PtAyRgLk/1qQ3RAOxRtJ4ycFqgu5ZLRpIdiF5TnnH9KbK6BsHhhwcHg+9UlllcEmMYYkZzS/MqMRlPU9Q39TRYLivKgYYZnAzkng49s1EbkHlcA9cN1qRpNised2R2zULsoO7eWlI5wBTQhftDMDtxjv7UhlI4YAEnj5qiMe9iBKfcjmoxGjH5SQAeTnFUIkaY5wF6e9G8lQRG/NMVRgYLHPQAUu9iSc4K9SKBDsjPUjjrSFh60yNmzhSGyOcnmp8suMx7SeRg8470AR7x25pd3fnHrUqIMZK7flz9R/ShVJOUPrxj9aLhYjDe9ODe9BGM4VW46jvUZOQcLii4E2aM1EknHPPvUgdSM5A+tADs0ZpAAenNLigYuaSiigBaUUgpRQBuaBcuJ/s3VWBI9j6069QKWJySc/gKb4eiPnzTY4RMfiaZqsjRYXqxNYte8aJ6GNckF8jgemaoSmrMr7smqbH3raJnIYeDSU48im1RI4CnUgpaQxyjmkYZyOv19aVWK9KaWIGQOaQDGIK++aVCAMfnTGGDTcmqEP3EnP60vAGO9MHHOMilzznH40CJAw2EAZOc9acpJi27T1GcHtUceMN6d/wDCnHCcKSTnGKQydE3rux0OBnpTpnEKbFX5+7EUGTartkHHTFU2cnkknihK472NGXaPmJIk68GowxKhgxVfryPpQUXazHIzzio2znjJAGcdKSAeWG3gnPYdyKaoyGZsgj0NP2t5e6RT7fSmttGQR0wTxQMUqG2H14INV3UocdSR254q0nIBDEH1PUVWkjdGwwyxPShCZG+DyD+NOWIFeTz1+lMcZYYHbgVYQsMFiFKDjjpVMQrISyLkZX17fWo5ZnQBdw9Rj+tNeZup5Dc4J/Wq5JPJJoSExWcscsST702iiqEFFFFABRRS0AJS+1FGKAClxxkUAVIse44wR9BSGMAJ6c1Iqbue/wCVSKgGCTweQPWphEWwM9e4FK40hIoQpBPJxkZ4FT7mdAQhCnv6/jTkjLLgH5SOg5P4VKibdrOSSOQO5+gqLlWGwRueTlT0yBwKkLbtqRMSgPQDp+NTFHJHBHf5+QPbFRvLGRjceOcYxz9KQxGgKN+8dWYrwDx/Kp0Ug5aMsAcAvwKrK8SOSsbDI5A+9T2Zs5OeOnf8fagCw7vg7MqufunpVeSdHY4y2D6cZ9MVC0quRvZzgckjgVA9yvybN+R0OehoSC5OwkIO4BPfHv8ApTAygHGeeBg9aqmYl+pweDzTWmOwhQQuaqxNy40/lKVKhccY6k/jVdpWKsEAUHrVcliO5579DTWJOcjP9KdguTM44G/dxz6VEZCVIGQOvvTcs525xxTWwMYJzjmnYVxGctikopKYgooopgFFJRQIWkoNFABS0UlAC0lLSUAFFFFABRRRQAUopKKAClpKWgBKWkpe9ACUtJRQAUUUUAFFFFABSUtJQAUtJRQAtFJRQAtJRRQAVqeHrpLLXLaaT7gOCfTIxWXUkUbSyKiDk/pSaurDWjO2167BnfLDDHIA7f5FYcVuZ/nk4QdicZ9PoKnhjeQCSRjIUAUFuOB/n6U17jy5B5QZn/iP8K/59awiraGrdxzFGyPunBBAHOP6UMVRQFzux91Wwo+tVt8h3BctkZY96Vt0IWOJGaQ9iP6etVYVyaJk88Eyg7cEkL1PbHaidRub58vkknrj2p6SPHGUKKMAHOKqSu8kZJTILfiTQAgLF1wA69QvQGkYNncSobdwB2/Co2OHxnOeMMOv40zcmfnI49Ofw9qoRKfl6uCSeDimOcqcbR1zg8k1BJIg5C+mMdqYTg5J5x0IxinYVyYphwrckgZH/wCqrihN6jeuF9ePwrOBZjjnHTAq1GGKkLu5HJ96TQIutKq7UOSfQHOT7+1Aul2jLEuBjpyfpVYZCkHJycZHU00zhUBXcAem7r+dTYdy092xUjyu/GRiomlkY/MDzzjPI/SqxmMgG0JlehFRvNtIBk3kdscU0hXLTTqq5I2H0I/zzUEbne21eCeo4xVYyjdx8p9QKb5gwBzgVVhXLhk2syxAsQOCTSEo2Pmyc85FU/MyfuinKVzjJosFy3yY9oTKk9mp3lKRlsk4yMjHH1qATER8ADnPTrStPvzhjyepPFKw7ljEZ2hTx044/CkZvLCnzMv0IFQNIWI9R0/z2poHUH5T357UWC5I0jcNzkcfXmphPvYiRQOOP/11TDMBxjHSk3HoOgzjmnYVzQDZQAkrn24xQDu2kY+u0g1VimdFwCfQZ71bW4CKC3PAwuMkVLRVx4tgcbmJHstDWy4JBOPTr+lL5xaMl12buuBjNNNyTGNqjAP3epzS1HoL9nVTn5zkdFHSjyygGTkY5PGBUD3BKn+InPPegXTxIFU9unXFPUWhP+7J+Vs8UwvGBndxnHNV2KO2eT3yOaYSB0Y89B7U7CuXRg9CDjtmngdqzDI5beTk/wC1zTvPlwAWYqDwO3/1qLBc7bTIRBp2GcBpG3tz0HYVj6zcICWLKOTgZrn9zEYyQD70Y5GQMd6lQ1uVz6WHtOpXk89ajKlwWAyKRfLBwy5z60M6gg8fl2qybjcE9jRtPofyp25ySVJ9KRm+YkjLfWmINjDGR9KXafYfWoy2R1x9KbnPeiwE6gFh0PtmgklsY6dcVCMAdT608MBxkYIpWC4fLjo3HSl2DrwPxpRMeTwcdPamDODkZz3JoAUR553YFBVVwS/6U05xnAwKDgH5jmmA4MoVh3zxgUzJ555oLDt/KkJz04zQIkdsqF3cjlueKYTntSdARjBzSE+9NAX5G2hBncOhI7//AF6eWCIz7QG6Ak9KgZmWQbfT5cHNIWG84wCOTk1Firkokfexcckdf8KYXGw4AweASO1M3eYzFm4+tIHCqcqc5GBTsFyzI3lwIflBOcd/8mq7sHyNuO596CV2hR1PUnoKRnPQZKjpntQkBGrgNuOefQ9KSSQk7hn5u9O2Ajkcn8MUxgGOAenemSR5Pc0lKRz1ptUIKKKKAFooooAKWilpDDA9acOOe9N6ninqAPvevSgBygnsBjqakUHBP5k/4UgU9SAoqVSp6jAA5/8ArVLGOjjCn5cszDn2qzGgjyxYgj04B/Gogf3eADtyB06f40rSDOY0Oc/eqWUWCdijB2Kwyd3+c0q3ABZwGI5G41VMiISZDk9B61C0jOMs2B6E4NFguXZLjJzvwo4OOM8dKh89Qo2gjuc9zVbzFzuPUfjSFmYnGPfIp2Fcstd/3cvxgZ/wqs1w7Y64746VEWy2ByPam7gMYXBHGKdhXJDISuABkcZoyDwTk+v9KiyeSaM898UxEofK4ztAHTvTcjvwR2pp9+TSZJ5oAUvnJ5H6U3dnHrSE85z+VFMBQxwQKTPPNJRQAtH40lFABSUtFAhKKKKYBRRRQAUUUUAFFFFABRS0lABS0UlAC0lFFABRRRQAZooooAKKKKACikooAWkoooAWikpaAEopaSgAopaSgAoopyI0jhV6mgBYo2lcIo5NbNvFFaxqMnezc5GOnf8ACoLdRChEe4MCMt0p5d9xdyU54BxzWb1LWhakklWHe2XwflY8D8qpvO+Hcnbycc81G8hnb52+YngUgJL4ZcheDihILk8YlaIjAAPAJ/n9adLcLFGDxvI5Gc1Wll+UZ3bc8ZPJ/GofvPy/bvwB7UWC5bmut/BYkAdM8k0wzYXc4K8cAd/pVc7VUqOvAyO9Mbduxz16GnYVxS5OGJOPrTD156+1ByCQetJkngD8aoQ7cV6cc8Uu/bxj5uuSaZuJXjgelOUYG7BwTjikBImRjAyx75xiphcNhTtGVOBxxVXcSmOSPejLHqQKLDuTGWRiXYnJOfamtuLbi2fcVFksfX607gZOWz60AKznaTyB06YqInPenfe6Y/GmlSDj1oEJjg96MH8aUrjr1peMZHHtTATt6UopvQcfjQc0AP6kc/maep74xjgcUxexJwKViOnPHrSAdkfw5980ZBHXGOetM/h/rij9CKAHcEfT0pONo7nr0pM47Cj6HrQBIsrLwOQetTwyKHyg5Ixtz0FVMEdSAKVcDgGhoaZddhv+9gCmnLcu2D169RTIV4YEH3zUvlouQGyMc+1TsMYilmOFLAdz60Fdmefw9alRDwVbJxnNR4VMgElvbnFADgvJxt9eOlQsMcBgR9aXG7PPTqR3o+6CqqQT3B5pgR5yMhSR9aPmOBjj2pSVxggk5GaduReWHOOMUCIuSfUjmkJ7gdKe2xvmUnPfNNDrng9O9MBMHGSetJyB060jEZ96TJ6ZpiHdOvAoZ+MD86aTkmm4oAMmjJx1opKAFzzRmkpccUwFBI6Uc4x+lAzjvilPvSAM545+tJ06nFGeaXjHAx3zQAmRScds0/p2696aTnFADc0vXnFBpM0xFkszHqeB+VPKjClQeeoA6VEAN/PIzTldolJHU+/SoKAZHB65/l61Hu3En+dPBJViRg+vrTAeDxxxmmA5uuT24PrSb8A7ePalYDaMHJz1poG7ocCgA3HHUHvz1xTdxXkd6dtHHJyf0pvXof8A69Ahh69cmkp7DHGOabg0xCYooopgFFFAoAUUuP1pQCeO1PVSAfSkMAgzhjT1UEcDHfNMUZz9OaUkDoNxPrSAfjOAWwPrT1cDBHPH1pmdoww5I6kdKa0m4EDgZ/OgZN5mRl+PQAUzzcqTnjOPeoyWcjOaUDOc9u47UWC47kjcx6dSaaTz1yc8AUFSVBJpC2QcAgUCHbvm5JLdsU1nLKFxj8KXG3IOBxUZI25oAGY/d4FNpKKYC9e9HWkpQcUAHQfWgmjHOKT8qAFx70n1oJ9KKACj8KKOKACijrRQIKSlzRQAhoopaYCUUUUAFFFFABRRRQAtFJRQAUUUUAFFFFABRRRQAUUlFAC0lFFABRRRQAUUUUAFFFFAC0lFFABRRSgZOB1NAAoLMAOSa0IINqheQWOCc4z7VFBGFxkZJP0zU/mhEVhww7CobKRI8piGcqGUkqOm0f1qq7nO53LM3PWkIdwXJ6nkmjywQx5Y9RxQAqnCmQg5I6k0wSGMNt5B65H9KkaJtpJUKT09ajMbdgBkZJ7UwGlnOSenTikVcgdz/Sjadw5z9KCcL0HJ9KYiQSqAQqjA6E9aiyTlvelVMgdgO+aVevAHPTmkMaB3A/PpSFu3btStgHbkHHpSZG3OPxpiEycc0pYnqe9BBxTdpPvQAvXqacB0LZxTcfnS8k8elAC7scCkLntxSZ496TPNAC96Mmk70lAC+ooPakoFABx9aUkdqSjNADlOAaO2KT9aUcn09KAFPJ6+2KT9aAOMd6UjB/pQAe2fxoPqeKQDJ6Ud8UAKpIzgZ/pTh04XJ9aaWAHHanb29uf0pAOU7XBHUfnVhGBVguScdQKqF8gLgD6CpUO7gvgDrjj9aGhpkxy4XowHXBwKQphecYJ4wetQyORhQdq9cA1GZGOMZ/OlYLllmXy/uqe2elI06AAFgfoKr7GPJz+dAXk5/A07BcmEpJKjHHrSEKOCc++OBUYk24wAfbHFODLk5Iz69aAFKqyfKNxHcCgBcH5VHfk0pKsAMY2jkCjdxwT9TSAQkZz8oHTFRsp6j8qkIyuUOQPbGKZ0GCP1pgN2knGKXYewxS5/AetGe+aBB5f+11pNnuKcGxk5FN3E96AE2ZPUUm0in5PrkUFu5XjNADO39aQg1J15IGDQFQjIDHFADAOeBS5PTH44pSRgcHFBA9fwpgIQT0B/GkOPXmlPTp0pO+DQAnJ7UcdelL19KQ0CJ0X5+mfal2nHmFSAegpc5GOw44p4TchLZHfPtUlEBOMgEkUm4g5Xp1GKlWIEg54HX/8AVTHwDgHjH1pgAHUc8jOOlOY/KQpOB61GDuGcAEdTQzYGc9Dxjt70ABB4Jx9TSFsHC0hO7qTSZ7dKBCUY/EkUewpeh56mmAmM5/nRilzx6Y70Y9aAG4pyoScYxTgAAe1OwR948H1NAB8q9TmmkkgEfnRuzwOvr600+pOaQDw/uMCkDADjOabkfSk3UwHZz160E57cCm7jSZxQBIW/TtS5wB3Oaj70oP4UgHnDYPTuTQSPX2wPSm9//rUEjFAAT+NNJPrQW9KbmmAdqOtFJTELS0lFABRmikoAWikooAWikpaACiiigApaSigAooooAKKKKACiiigAopKKAFopKKACiiigApaSigBaKSigAooooAKKKKACiiigAooooAKKKKACiiigBanijPPY+uOlNhQAh26Dr7VaVkEZOTnJ2g9qlsaQuzGNwwey+tGzdkOP3nUnrgUzzCFLHlieWzSZYq3zdueOv0pDHA5JXAUYyT1FBaQgjk9yRQMAAsBwOg4NMZyVIBwCc4oAUjkZY9OnTH1oIXJ3kYA6g0w8tkElsZJFPEZYYzk+meBQAm4DO3GPQjmo1A6lc54qVwgUYXOOxNNbcwwxwD0FMBGIGAG59+1AXeeSSMenNPSIDjJJPehmwT83Ht3oARtgTheeg9ajYnrgL/WnM5MfUY/U1DwR/hQhC9txHFJnOcfyoJz/AEFN4FMBSSaTrR3oPWgA60UlFAC0lFFMQUUUUAFLmkooGLmlU88dabS0gJMgA4Bz3Jpuc80bsY46e1GfWgAwcYpTkYHNICQc4FH6e9AAB1HcUu0jk/lQPoCaeBt9yf0oAEjzzg1KFXaSMZ9+lNBwvByOvWk3nGec9s1Ixzoi9Rzmml8L8q496jZye5+lN55zmnYQ4uzf0ppOOvU0oBY+v4Uu3jgEmmA3vzQODxTgpJwBk1IIlH3iCQcbRSAYgeQ4VSaeI3OckAAdacWbYQAI1ppG45Zz0+tAxG2jocnvTSwOeuDSErngUhPagQpIPQn8aDkcA5+lNJ/n2oBI6cUwFJ9+aXjucfQU3OAcgGgn8KAHHg/Lg0m72z60mfwozx0FADgR/EMmkLZ7c03PFHNADsnuTTeopcepFGPegAJJNJ2xSkUnUdhxQAcmjJ5o60nvQBawG3ZyBnnApxLEY525BPuKUAYBAI5wOaRdgOAxLnk56CpGIcByW4yOAeBUboN2QcjHFLIdy5zjB5z61DvwuB+NOwhwYp3HNM6daTOe9FMA/OjnvSUUAL0ozQOtLkCgAHXmlB4Pr603JPWjNAD88e56mkJz15phJPJooAXd6UmaSimIXr1ooooAKM0UUAKDijNJRSGLu60E02igQtJRRTAKKKKACiiigAooooAKKKKAClpKKAFopKWgAopKWgAopKKAFpKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKkiTc2ew60zqcVIMBdvfvikwHllZh1CjoKdnJUhj14GelRgfifapkAC4GWY8AL2pFDgFTlwWbPQHpQVLeu3qTjgU/ZwAdoOeABk/U1L9nbA+ck478YHrSuOxWKDblc5PY+ntTtgYhmbIx2/pU3lJ6Fjj1wKRwu0ZyCec9KVwGhSi56D0zTf4MBQF6nvzSgICeC+P4ug/KoywKgFdx60wA7QoxkD0PekxjAPJ/OgBueAAetKSNhAXg0CGMB/EcZ55prcdDknqM0/cFJ+bPrUZBxgHimAjDaRkDPpUfJyaVjzjv3ptMQUUGimIKKKSgBaKSigAooooAKWkox6UALRS7eKcqjGRj60gGhT34p+0AUZA5HBo259/pQMQ/5NHan7OMkZo25GeMUAM4x60uCeOfwqQRj0yP8APSkwTj060AIFJ6kU7auCNxppA78fjQBikA8gqRtI6Uwhjy36UYA6kYpcr3JP0oAZnOCe1LuyMHkU7cnQpk0pkwMBR+VACLknAHXuKf5LA5chR6GmBn28DA9aaZGzz2oAmBUZG0n3PemEsVwQcdqj3n3pQSwycfnRYBxPNIWGO5pueO1KT7jNMBOM4zxRgY60qkYJGaTG7sRQAbeM568UhHOM5pT2wKCx6YoATa3cYFGD6Uuc+/40h+vNAB0pCc9aD060UAANFLSUAKMDtmjJP0pP84o/CgBc4FG0evNB5pMmgAx+dBGOOaUZ9M0UCLTRSSLtTaRgZ9qbIVjG3IJUY4GM0hlBzwNuRkDgVBI+4/SkimIzbvYe1NpKKokWjFFFAB0ooooGFFLSY96AD8KKXqKSkIKSlxxmjFMBKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiinxrlumfagB0aZ5NSrEWAIXA9fWrEEW3DthieingfjT943sNm78eBUNlWIUVEP95vQdCacoY/eXAPJx1NPIJGGZVXOcdfypxaNTkklvft+FK4xQWABXGzPQdc0wykuSuT6leKiaUH72W98VG0jHIyMZ6UWC5M3m7cErzzxzTOFA3ZOe/vUe8KeN31zTS/Pygn69adhErMW6HAzjHekBBx1qI7iOVzS5OPu8Hv6U7ASFsPx8x9ccflTMM3LH8+Kbu2rnoOoHeguzEAj6CgB3CrlsdfzqIsTTi+BhRjP51GaaEJRRmimIKKKApPQE0AJRTxGx7UoiyfvCkBHRUojQDJJP0pdgxwn4nmi47ENKFJ6DNWAAv8P4AUY4zjj60XCxCIz3IFKEI78ntiplwBnHbqBil3EDt7E0rgR+Vnuc+gFP8AKAxubtS547AUzOe/FAxdqY/Xk0M2Px7UmcHJGPqaQMeeM0CF57jFJnNBLEdOO9HUfdFAB8x5559KDkDrye1LnGOfzpoJB4HJoAXt0z70dsgUYcjkUnJwCuaAAkZ9c0uDj5uKQBsfd69zQev+NMBcnAAwKAvHzH8BSZUds0uSfT8aQAQpPJxijd74pu7pzmlySDwPrTAdlSOn50hUZzg/hTc+uAKM0ALhT/F1pCqgfeNJkHqaXK+maADkDA5GaQ55+WlAzRjHU0AJnpkfhSl89uPSgsO9HUUAJmgLwDnrS8dhQVBPegBpA/CloOOmaMHsKAAUlGD6il/HNACUucjoPwpQuf8AGgqOOcUAJgCl/GjHHTP40h+lABnFBYnikx6n8qXPXFAC8k49aaR+lOJGPU03jHTnH5UAMNFL+FIaBBRQKKYC/SikoNAC0daSikAuaKKKYC5pCaKKQBiiiimAUlFFABRRRQAUUUUAFFFFABRRRQAUUUlAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRSUUAFFFFABRRRQAtFJS0AFSQ9Tzjio6Vc5yOtIC/wCZvYlSFA7Hinhowu0cknuapbyuACeO9IWY5BPWpsVcttOoz0HbjmoWm3DqcHsKhz7knPc8Umc96dguSEk/dzj0zSHhcqNv403scZx3pM9OM/jTEP655z7nvQG42gcfWmgjPPakDcHufXNAEmTjngelJ97kN0HWmjcwJwcdzThG5GQOPXpSAaD3waAxHGetSiJSOW3Y7LTmyF4wo9u9FwIfLcnpjPHNKIGP8S+/tT9u7nJJ9B0oOwfezxwBmgBnlLz83H0xSiNcfdJz3p2MD7ucikLnu2PagB2EXA6H2FBdR7/Tim7CTySM9sU4BVAPAPfPagYgy3TilK9Oc56DrRuBwQOB3NG9ick0AL5eDzgfjSccjJx6U0MAOhI9aMtjjgUAOwQOAefSjAPufWm59Mn8aTIPrQA773fHtRgCgDjA/wD1UfLkCgQ3qcGjquAM+9O+WkyMZxz60AHXoDn1pCe3X3NHJH90UYHU9umaADJJHBOPSghicEAUhfjr+FHU/eoAX5Rj1pNx/CgKOMn6mjPXbnHqKADJJ4HNL846jFBbsBSHnsfwFACncevH0NJzjGKQkDr1o+ppgL1H3aQ89qTPpRk0AGOaTFH40YoAWkJ9OfejijHvigA4pc/SkwKTj0oAXI9aM+gpOlFADsnHTrRzjlRTcnnk0ZPrQA7HrmgBhyCRTdx9aTNADz15OaN3tTM0UASbvpRu5wM1HS4NFgH7jg9qbu9qTpRmgBwAPUmkx6mgH8Pejr9aAF5PSkOfag9cUnWgAzg0maCaTNAgo70ZpKYC0UlFAC0UlFABS0lFAC0UlFAC0ZpKWgAzRmkooAWkoooAKKKKACiiigApaSloAKKKKACkoooAKWkpaACiiigBKWiigAopKWgAooooASiiigBaKSigBaKSloAKKKKACkpaKAEooooAKWkooAKWkpaACiiigApKWigBKKKKACiiigAoopKAFpyYzz0plKKTAeDkUppgABp3amMBz1PNBx9KTvR9KQBzRntSGkpiHA81JEhfJ6LQi7cHIz/KnmQAYAyfXtSGS5jQYBJPbI4zSeYCeVJP14qAtk5PPvSbjjAwBmlYLkxKng5wPSk+UY+XPPFQhj0zSh+3507BckLHvjH0pAxzlRTN3XnNGSe/FAD8H+LP0oyB0XHvTM88UZJ70ASFyB6k0mRxhefU03J/iP0oyeg4oAfkg5Y4P0pu4kjmk+tKDxgfnQAHHTBPrS8dwaTdRmgBTxzxQD6dKblaN30oAXJxgZP1pcNnngGm7j2pC3OSaAH/AE7evNN4H3uaaW9KTNADi3GKMgk80w0UCJNpPPX8aMY6g1GCRS7j6mgY7OaXd6HFNDD0zRu7igBckUe1NzSZoAd0pM+lJRmgQuaM02igBc0uaSigBeTSZopKYC5pKKSgBaKSigBc0UlFAC0UUUAGaXNNpaAFzRk0lLmgBe3SjOPSkzSE0hi0oxnrim5ozQIXgUmRSUE0wP/Z", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAIAAADwf7zUAAEAAElEQVR4AVz92bYcyZKt6SEABBDN3pk7Tz0NqwaLvOL7vwTJqzpNZsaOBgiA/zfFHJGDhgV3M1VppkwRVVMzt+Xru//z//a/f33z5uvXL1+/fmd7+6bd3r98+frGcX1vvKx775q/6tSl783Jtz8TGt589/Y7FinUnuzXt2+/+/NPAqn4Z8vqOpmo6evZpZvk27881HV2Xprffc1gMAbyQTEs5zHdKQD5YBhI+3NYdOFhEzovmarlwbzWuT+/E1sc4f/y5YsoXlswQvumN6A4ePv2DVxvQ60B+IQnMrwdHJAaSZDU7yj+7W3/mxSFsJ3yjP0VFyehPwPbR0uZiGrtBfAgEfnZgb/mOvMMCsxiZ2mJ9jrVdNP6+uVRTCD5Gj//+aUw+S38QRpo3enitip6+zbMCa+ikuRpTsT48AXtl7ffvf1TdLOuakCCdhosa2OnBuFMoIPDkHBK+B5FKX4Z4A4ZK7NaKDIA8puvKzCN52NO88JAcaU0U9xx7h9Il4X80kr4ryqaYbjE9eUAk5nqJDemgB/Dw8Pm27E0VMtWDhOZgV5V13GInm2jZv5h64j8xds+ACEbbv4fdyc6rSpDmtma7hhgW91mh0YGxHj2veqfrwGbzCKt8YviqW/GMmlvBUZgJgZCHjRzfhElyR2Zw0+VM0pzN4XRda2JKraDSEKyNh47+A4H0+Nmztr58ueX795d5Vy1JiE9XL19V+3R+K5CNSiEIfLDz89Z8CYR1Xzv/LIg1hTwNiRIZXYC7bx999br27d5uYJ89+67Pz+rwXfvUFZma3/7vrKDgtVeDQcmVirXo/1VCZNLAA2m7XkZDPEp4OgLJZ7aVfnG1xlPgKraJsMuO9QXIKdrVf+hrfeKvMNkAx3grwaIPDZmk08X2rP81HN6Wg7r89qxMAcEvIg6fmSfxZuFGpjIkedae3vXKWmbk5NtouzM8eIYfhZAzLK9/IlqQoHtX9BrnuuSkswqpp0nrih4BseyxukcztHJZL/G7SfDVRJSTNY/brcJVy1h179Ep3siWmXh7RPn0TW0JDfqZ/apjAEvIG5s4+BStSYzG3rKyEjLwviBlsFgXANUX5qZH/burPfKixpbFti8ggdpeD4bqyb2BcDmAyI0jh6EgOk6sQ6WvnoHAMBjCHGc4FBfbJzh6tnZH2vIM/s1fjvDLmovHN+seBbefv0zbGAsRHs2NnvV2I/dGc2NxJHQFcmfP/9ZV6EZj/W+c0JXR/5x1vtyNyV6YjiyH/xryyzF8F8sYyG/CzCNMTBmz3suWhFxN/kOyQIKK6dz3qHZw4RD7t3OF43BjuInxDSm3GEWslZQsCedkXdQobLOOcr7qNg7oWSeGZLMy8KQzmDn+hRkNkdmkibVZrAO1UP+lu4CSfpPJ3IRJE0nhC1HwNeWrHe8bjTnowlwDKwfjCglPyPh5ZELGlR503sCQ/86ylWdPE+oPTO22TxQT+kGzlq0EDhgU82PKFYvyAAOAeFHrFGTVFNiuAu/5kEiWRHlKWMvxjD/Vzhncr5omXP+wghwjFqwzWXH8Jth7IIk3KuKdep64XtkwrS6qd0yaC4oomHqTHKUoW+qbG8uZ4/YI/pAf5G8+A7Huc3ZaEs8UXpavCvHdmwcKTm72UdaM930bgbRf6Yf4QffFG9/trysdM8p36mZ6YpkUJOY+d6Rziel9nYaPwwvbbpT6G12xshMVR8Hm787PZyd2RuGzKb0ZOrFw4TCM5cAtD93svXiNiFsaIfAeHvtfsPDQr1pJefHBlUe2d8ASLftMTv5x/LIXfsEkvd+HgWZmYxE/nq8vHCeV9U8p8V+dk+9fYEcnF79RPzX99+/I6YXIeG0BUAMtubBYbZf+2xMpsPnfV1VbFPJGkku1ORfZupZ+I3SupspOtZyvmgwp6gG86W3OsKlzoFL9OpK46nXpM2hoBYOe+d9oTy7+CeMyCF7XteqQdD07W1aXI+m68iOnRf/A/aY2hw31VOH+qolJ9M6lF5vWtke2gN9bk/dTDqXDqc5A+VohzO2KCG5Wpn6Izsu5l3vtgMP0DCUKRafoA5bh1D82QzUCE/grcKYpKVGmP/8888MvnvXars15bukazSblutZs5sxb+2wf0eZfcEdgjztp+7nDDel+h6t3gorO/LkZHOlUr8QXpVmb2Eyv8q5nYeS2BIZ3QSV1dDA1dDIlHPYLNSjuphOSvjT7BCM+oblT2v8t42+ztSpxUA6GHihSp+j+ZqXgLJx7SMjjbkhOGkuGjWOzPKbzcw2/j3Zrks9nErvY1uMq88JDmN7fE33nAre5T3jIwojSrcoWbfVciauVnvN8raHMdRMiJIuRKrPczUDm6Gf/pNNjt8xTGEW65qX3mvzbwu4y6m+CUzUS56pTrcX0b2wsbz5Sic8C+9RohHP4V9V3Dn+jM9Y2JcXBvuHSG84yexG+CC9hCZ2LanQOjA3itEExNNFOGiYPkxmxRUMOYFPnIpD/3sdISwLaq6mP2P1Ti6SN85mIchnZwxf1mp7QZ6r8x+MFdL5qmNDPyOCnd92d0VFcNERvdGxwyE1vhgclrV4eXgWQr2uk3bVp4CRAKSu+ZoFh8lMN2P1XHBTR/5Aiy0Z8Ca5+n+IepqoZZZt1r+++fz5S3NTgBtGbc8k0B5Br5wuCEFRrZmT/2okl8Ta7sp1R9ruAsZ78jRMiMBbj24OZPI5Q53H8zGEGtpi2ZXJ0PDe1VCMbeoBpD32F/RDkYl3MOe0/EKnQm8guOIVElAuwMqA6BNu8z6cqdTThM5600HqWrjoJ6GBCpjDNdTbjn7ymzGuY+Cp1AnZrbkftjkFn1r/SWXtlcPtR1YWT6iG4UmuOwXkL/KX79o1+Sdw1lcthTj7s67bodAfiYSNOOqL0auCdGi/g5HWfM7sNYOcnwd/EJJcnDDaHzZ+0bXQVkvtjfKa251kqpyvgea217vmjM1QO3ol71xJX+A7x4JD5Ru6xE5rwjPbS5uoGd2tL2rZ/mZ9KX71Dzt/Ie7tr+3kDwv1DdTewwnCcQFn215fuGZxJbK+Dns3BtA4LtK9s6yKtSXB5DBBgAvv6dXIgly3/7Bci7UKkTbvh4epbe3Uz/guW/PO+C6v1+46WyRkWEhgLnezv9b5yug5qTexDFz7EZVePyyvPrboZxBUBpltf1wtBH2cZQsw3WdDyVy5aA9X+Z6l2m3nFz9T6ZWR4+RVbieZbJmPW2OHsbZlkP3DKZScgD0081FbRZYk5O/efe7GxQ7nfoFPOMVdHGfTOonF+c1QBk8EKzUuvN7ze3lf//AEbnbd2lAPC/D2EC7L7BuTTB0VlAxSd9SEog+T80OkmCV41XL3kx6+5iwN/1JJsuv7RVrjeBj5OjnN5pHDZkBO7c2b9+8xTmizRhbOdSrJaB+k6QyY0Cg/CNdPBGSbNJ3BpaOWb7X46LwkB5z+a0452AW8ETWjWeNr46X2y/HcdKQjm5DapbDyMCjEGLOakaM2IREsm3zr+v771rUqM/r1tOgnZd3flkw/XTR2f4jTDSrvKzb2336X2Lw1UK5UsEbtu3eMGlRPi3NLWy81DXBSA3rjqDtGF2zqBIfceJM7tNfOArQbC+3PIsDwCSslNWxutakroc3i4dQAXk2A2snFotARCcsgkMMTpZ8+9cnZn+2wFUV02mOIzKxl6V0fTVyLgAZljqtL7azH2KrocI/JNbOxf7g9tgOfOJX6SpyJbVROFLdpaqMoI8twx+Nc85xwN4S9hBbzs5qg2EPFTKcJ9wst42nNFwUyfnqHs56bct2Nm19cIHyyG3HbW/Fs77+spYBkrW2z63zV+ASuGZ5TK9RI7obleV34us7GwkDHJuXVRqY3387MBgKENQ75AomjBbLUuBu96uDoxdVCDdKCozMJApm9jIfhoWTTmvbQYGDITTUGwqlA2+5kKM7+hZj0U75EGi7PNbbQsvWy1/5g0s3Qg0HYPExSOKsvimWI3LpVCI4esY5uN4nkh+3Kg8D53V5iC3xnxKuQXpntZwWwQ16pbb7KeDvHQYBDcPan86T17hkRO1PM8VzinTUWTw3qYMG2e3Ep/1KyrZ4YlupKNlMLEP9ZhQ0EYYZufphNv33gzzFDHc6O8U6SWV432YxDCoKa7dlkwMZHHTsrkd94YRr0zTmV3dwNeUomN4OVuUU6qCAaWZ27njMUC+F4PtYw4SMzqW3tDfNKGjqcNC/NyPi5c8dsvn/3vl7Rccvz+GFB5c93kMcitFBuuGXNHDJO0gqwLua/vk8A9eYQMsK8aj9I3bPnEENYNdNg+pT1bO4ZA635DrHoEpGjRToW68sU+dHKTM72kVH9i5d91yUdYGAb3W3L5fae+yl5WcjCxwVWbHu7w2uh9Op6hOpAWI5y9VowSGi8PMJibFMrhHYKRuGI1cVRrxZarU/IKok/O7HExitGPrZ6WYMXUNVLu9OZOx3/9x4BAq/91XFZwo6NeHbiLjCbUvOXaOKyVDLW/sjMgr62b9oxv8NoDOAyzCyP7C9PSYzKGhJblxNMNrheBHO59Iu603CVfVnUz+D+cWukp4s4Jb7yaR3SzhmMprXzVTJ6hWZkfcMVajKXmFfrIC+6C1GtzC2QZQol7WRfZLTGgxeHmNCE5PmFDe3fBHYZdyYP4eN5bxk5e8XL0EzN2gb2zC7YLZu79TEkiy4HjQIz48zSXjYBayXfsF/XnX3l9za620LL+6Iblq8fvv/weRWXwWHBgKD2zEPYOFqhZ4Cv2x9oXaXXEzisp5jNuUAgERnnG5IbBvNOOvmFfzJVqhytJkNbVyRTRE4vuegWn+3RvewQvQuVkzSKcilB7fQG/+qclVxRH06ddjQ8VpM8fswdJcCUNLq3NKGfhg8cDc6q9qCwsdAyNWMLLNOLdKZHwCbH9lbPDyWnm2hi48mO/fofmAcu2ru59bCcu7Yw/LV1hIkCN6hGrAk6qWT1WEHeOl5VIwcZE52VkMO0dB8hWrJQaDXeBzvPmUOc82UpNocPExuPi6XuBZUppORuIVE0SAUwkDziVMdk8SB2AU73xjuMNc1PbzL1WCTksKeDzoXCIAeBt/vPX247KnXiLo+79s7aUcdDuJzFKLfXfYcMxV6SxARxi1RTRCvyd+/ffvzw8dd//pYGyPRyw2cK7U/rYOncIQu5ytQANId0UVTWzIRCHvDTAUkd4n89m2TSz8Uk6t3H92k9G/8LP5lAZo2vFz/JExVyibsyfjd7QOsbeL2u/caYfWoZyfJsOvMFILw6EOPErGWz0Pv3bl81opsfSHIoXQuwaerPcHUgVF0boediQR0tSYB0z6Q9kqGj9KQ7PIumgNhOuoYBa+UULXJ2qITF3swAf1GMiXqob/8Rg+1leaTgwdXgwj2tNE6E62doF9+4IvY4BEGyUhIq2U0y9asrJPP15Y35PGAhgPwyOLhJUg/SzikJdwT0trgyCR8Uvr6+f/9+6gAQXj3ktq6itmNaa2sX0ACdep0lUUeKL63tJum0wu8cZeflkPRYS8O/JLLA9+yj2hTB7DVmoW1I2Kw16xcamdQxVG0s1dDUuX3Nj/2zRox8/woBZZ3+vv/w/ac/PtVUmLUp2rnga2Dv5fE48LMKNyTLUZJBOd3DvYYslGF0mW06AawC5wWA1NuEfO1MsmloeBfdOVwgF+HXjx9/yNTvv/0R5tvSy9qifRjJYGa7fn5ylxd3HFhnZZhXP2LMjpti6yVT8RqDjlOvukB6TmHiDWW6Hz58+OOPP4qrhg6TYfbmDdOIjexogsdjw60B+9TFMF/fI2UUZL95bTxQGdJgJH/zuXRldalh9CVTRENE5XYQ1y75C3bPvEFdj1pxXmujoGzqOLpw/gAw7lhj4dkPcy1tm1pnbuNldZ7iKurgJTR8zvjmzOU9noYgt7EaX1Eva26rtge/ne0ugHOOUuGCYbY/UGQPofm8a7R3n/swC19Egnr7kigCIUzlpjK9yaH2DPXKdhA3GyZb9HGTdjFAsLOaCDYN1UIGO4pFN3MinTNityVzsu9bjT1N3ggzbpEW5yWgRrHleQ/8NTJry0MdLITHaJIqR69pms6ZYuHCD4KyTubquEN9WehO7T3GNT6qtsOZzYRlopXBAM8+7wlM1i4smNQAm5nmJT8Yj1Y9FXP3YgaJdDYWmotsO9CYDfxfaBcjNDs9l0c524BYvNnYMKz5poaxSgq8RACFAbjH/jFFI3+cgme3Fj/pHRtzi1hi5G4+Sn7cehntjBgVu74Qe5LHKhizv+geVutlcFIv4mhkJAuCz1kyNRkPx0aDy6p9doSUhfAbIkufw5eKTtXIUDJyvS2ZV9fCxe2crdx0PbMbslp5zGBzkzPAGTgPKQMj5JlsPg2jQ2Kom6MVFG6Pruz078JM7NtEd8JCEwKDIZlYtxZGfQcWdZtMcSNkBTPJ1FkmWLu2E5hMUuR7TZ1N1XIjhVvnHgpUJnnqvPe/UzfIUjuqWbKlcDkiRns1n1gHcmjLWr653LQABdsHcAF+cbPnbz//fCESrmxyaSAnXoAqisKCQsHpGyAhsiwOpMdYXwMHssSbwrScw+BABKmfx6B0GbGomBczQGY7peUk+L0eObUkcx5nkyljdqgyoub54obZuZhPxWknyzxzUS3YsfXA6J+MFIKqe9PvAPzzl1+B6aCGwn1FcfjDUE/ye/0yXLwmlqM7GdfrEn/8P/KbmMbJTSzIzUKh57m97DAy6lDEA4RCPgybrw6Y4DY/kFvhMbTy8/lMQlnovKZyfHSTmWzKbLHIwsXOX36v6yiajOmlTSyy0Kdndz2T1spjREE63lL8Br5qCE8t6mG60nb8D+E8StDWJcM8R/ldBkFKg8Et+NIVYfwEaAW/KB0wPF9ZI+6I016JJhDcDLG0i8k7nU0OD1sQ2EmM0Yd/4scgtlBp1K8GfAi24omYK9H5F2w6ixPhM8hzfpNcMSbAxYxDOLObzXY0qjR3dACSbb8tRbm+3Q06eNcb0rraHuM3eLPhh6l7T4CdnTUEJ5w2w5PfIBOffK+Piye5R0FyUBkj4+KleI1if81sZrVh8zo39bIfThVru3Cy9zAOvfZekuoop/UecY6ofm1VuvabKASXyOok1Q7PjbsjNe4YlM0bkJzZli7J3pVD7lqZTc8YMckP2+E8+yme4cq1nV4TytOH77+HGOZnQZX9eua6KHrismuE/DwkQ04AUPNrb+M8mRqJdYa9SS+HzSRjjwUZeVrSAjHtnXDr4bHPb7+N6JlFBJWvf/xu9V9qNgM0yS0fj8fbTw6W/qvhftOvy4gReAiRYphIX5FmoN7E+z/43LAqUjtNgKp+mFNMexHgvLBv3dj+E5T0/ZXAcamzqJ8w8/Tuu+8/vJfyXSydO/brGpnt347xuJYBHshd+Ujshu1JnlJuFg4kEC/vbM499nZQB7EdTzLBK7+OxM7OBp3wbfx629FkdmP9nWUMZp/U74r9NFbG5bSw00Tv2G5fojuvza5ok8fx7o3xmkToQF+R6dvEt1PpAbqWhFMfrPx/7VrkFRE4Bbg6U2qv8Fgu9sS07EZP5ockBaw4NWw3r9mefKE44ayYLYIZzLeyppve2Sglp5GA/G+iqFfMbIE6O+fRp/Y1Kqb9JsfHH3748PHDfzHIaePFq2dYOwRcPF+/3I0rx8cmKlKNBKgSqL3w2+8Tn7rGqBs2g4Pu/SeqVq85ayu24slYzOR6gkYC61YNxVBxLCB4Skg8Khcgl8Tc1ZpEYvI1WY5sGnm1WR/gfz7aD167BDpop1jqXNHV0O2i7l82kj31YYOkJLC5w97AS3Gjr/B93jdje1lCxT0Ke+8Dwe+7UdH8+3QdwixkD9ZmJJe5e8hkBX00ZuP992bYsMXoRRSw5ahkWdmnLJwt2f/883OyiwnDCWS/IZELka4+4TS/xzyD7e51POx+W+E05BNu52pPAApAYWQypxlLYYzdeHYTZV7u2olw/y/j8G94j77c0aQ8eto7AFjtwAB+qmteMFrqeyPfIB/gvPuFezdd3OpQbktK+2d7mRJyMFLh7Eql37JgTU+NYbtt5D93Get8VsMckmyLjW4I/eNf/+UWhXLW7Nr9p+5wvHv38ePHVRS3R0u9efB6Vw56MsxU75K+++Uy0L5CkI7N9A4iwiCiIUx28uQ+8ZyazfEdwNVFzexUuuly0hB6BVcJZRkap6i6BmLxD8vcmXaqlMdpQgDhT+Zmu7Qhuf+9i4JRO1dmF1cCmjtYgXX6aaLomO3nCuqqwkmRQRatJ3qNzKZ4qvlduNFyaPs14mxmJIXhAUE5sNLQ2CncpMFOCPKWZLbLxSIYh5eYJ0Hqgq/jwziyNG9yYdF/OBOB/HHF+23yuHBSP1RP4JexOsXL9cYmGnPHf2PneRTBaNqcGfP9Dklo+9/LvbaLnV6y1L9rvvXT2WlmNjlvy75yC9MGHVSr7bS4Zida7HuEYnG3K4q2xdj+RZ3MYRn8jZTFIhA8aE60ATJIJp8L99iE3wi3tbt3kTZvHN/dVnDucN0IMLOSBV7CURGftQc5PB3OY5LUlwsNIlqlhWSHPBbZRTQAOyNMMhdytKo90MuOeNkwigZzJ7KjKgA7zRgU33//vtGd90l5udRQr7wLfxh079STyTUsBLjlMWHhbLqOlsW4cMYog5tM5j10bqXXsyhFOnzHiXLocDx7dPD2e82p/Wxhd0/HSZMLRbfSUf1UC91MVizejufHDu3hz5Tekr1VYAZrwZcy6JaH01Eem5G0N7XczmG4gbPb4U0O95zeFcM+iimCNslSWaM6Rwcmt4H789PnT79/DslhDgeHnQh2VczUndd27putkcymrhu57QgCtctCMLUgqmhlPouVZlWndIz3juuso5+EJIKGfNU+Mx3a2GVC9llajq7xYhNZFK1qyMUbldkbBANQHlkJVB1kxkkrTPsJbB7jbt7yQjjMbHO6YtA5ko1sbotiOmEOjAu/IoNw02DdAAn8haceiv2va7GCSOxdX15iUOajfhc57TRCRxT1BTS/fN52aQjfx48fEqijV5RGyiLi/cqv3vHAEJsylWSvbQepmunzq1/+8xdnxzqezpntaIEgyM6Zoc1fHntvP0PFo5WDO+Tg8npcJF+/1m+BIM38q7Ftur2iw6LE2ktfE8FAFFwGbn9efB5UhjwZHGV7/j7pWqjjQl62hgyJdUzGgtQ7Bg6OHA65CDYMhj9hLD9j9Yx09Ew9GUm85M3KLaqynZKQfvvtt0+f/rD/NC0HeQEtX6gKwCHoeDsbFfqafRC4rYGZQQmro58OuGbWz5PIeNsWA+SlOWFmZg8ziWusb2k78dov9imSIeb8ZScCL1sTHgzq/R/gIVx+ATZ9ADiodPPs1/lbINfKZtt6Qfvy9fvuT8xFvUxKNxUM53iuacxLO0IeLULe3JHVend6qMvAPjHu4rD/zkka28tsitdi707JKF4jTWTd1lEGp3qDB3XZV5B0lcFhOPDhrgJ//vlv4Q5KkjlPhkkkGOBpFVQb47wxP5ww1M7iq9jSqn9O2BsqDNgs3JyA2k2hkdJOJLDwjBEuQtD/sDa207nNe9JctzsAaeNz41TDoo4TAxBLyc6CIVMUaUPAwMNJ5w8YxD1tzvoPfOd1B/IiBq73fEuHi0KOagnUuaokfvvt9//5v/5XHTGJZCpfPC326fP/+O//Y1aWVksiqlFLLM/7JYFMLRpUMgtS62NnZZMMx+0ZaM3/8sPKQYOjI9TlcjIdI4AZnsvjWgAm4SaQcq1bywJp4RVL+12OvGyB68IytFTmfi4z9IxTPjMyC7NSAwT2w5K17RiMZptq2LeL7PZGaq5nyaBAtPC3f/AMjW07dS3lcWDsyGBiLTJCfbRsxCz81/VP9R5DyWSDeQZ2xpKW3RaZx1pVzeIpC1ckspD3xZ20q/emiD4oQ9tG5d2gSTf/tBfCLAcpmW4NZCH5xYS+y2l4FywlwZr/3dVL6+MPH1uvm+fvtB2sKFxe5oOb/t9WLM/eE8UZBNU5+cam3OSa4EAycKm5nbtSDYbZb2cWqYy3OrTixU7czYTEDTOEr9JtPy0yC7Ud2KiYmtLLZ0cgPVgQNDbE006SVDqIi8r0z8/RJV2mVF0utptgG6cRbgOHDIxPfmu49uxAkzvewQVjeQJztSqJh3PE5LZ5YAjYBYamn6dxUbCjWlIF9rqymI2ffvqpa4CKPL3ULuvTVgxk6zBiQaeuYbHMTgTiZ9HVcWKlscaHVWMQPbXlV+vuIhPOwsyRLI1XkM+56Wa/RfQKykE4zbcz45pfEPWP8BnMk1DM+cPf7kAvDgY2rjtK7ATQwSww7fReMc+K6d0QHrA8XWN5N/dyYNJbFLjIGjjOCLJWfpm9i/+diajjKpVALyNjMmWBzFSv49Odl27KYDEVkRkRQsmmGDffJpp8v570+ROBydUwaY/KFEsCC5BOXUXfT42bo57EMbcMZuohjQlp0bE5Ob2PH7//xz/+VYcYxiTTy+7mZJc068oOxeHxup0LcwTHg+bVzvYmcvKLEeeNmlnfZM6nkEc3j90hCEgxwmPnSdN5JdwkQLxQEXOX24b8SOjtpx9/YpS2F4k7SL2upPWuXL65bWebDPz++6eYeShKH7ILwynY7hkv1sytc8b4KgVXw+BJoLkrFLmbIJVvvOXFD2LbqDuYYBHOUK0B2VxDbkXzzVBqL+WlVP1Wf/YPaJIvlcP55v3b97lPcPgasQmIKTup1BVqiN+8+Ze//8vffvppPAP2X5wmu80gUZHmBCjnzJnLwK2t9jW7zrMPGE6Y4tX+ZandtBWZm9Z6Ot/XJJxtrI+JCE03++kvFzvaxT2rY2Bmh2M3UWpncUu62CaT5lnjGMgk8rshZNlFoGZq9WGnXkdRx6H2Y3BzQceOFgvj8tWxmuuQxhQ6ePJy4QCGlgl3Lul41TmttCuL+k/LOiXfje1+KiiKs38slI8Eu1F20TWkuX+Qsh+TvTF3i5WM7Uu+slaLEM0dL3+7rwPOaSji24RYLNVzOHKaZk9q9vhEuvV1mveaxJyzahinBB4vj4G4ysa4UgXEDaEomCcvX998+PDxhx8/BCIY+cxqMomeXzr9oHcot7Lp4Dlrfvf1+/eVuq0IJ/is7F8km+uH+cnL3DMKvhhvxoezLTso4FLUWNu2Ri5Oxk2mZ+HyLC4P3mAoi8Ra/ScV4emm1o9Ur6/XJ1PmrBbifGh85MbAQmaIIv8X3Soii9/qthDMR4mtuq1L2g9Jo8DvvL572132Kxj4b0RUF7kentRV8paDdfYkY9hKQU7LuLLebIO+JGG8UbAPGw0H7cdnBsXplo9ft60ZTYKyba6/NAlLhpOIeGoot2+uXP0ERRQ1HjXX3dDI2gTWAYw8cZrwspgiU+YZfTzGT5ZDsvKruvCTPNKHbupaUmyfg1WU7oSkqX9uLnZMEStRaMjkg9SY6ZzXYfdeGZKibjFiOYAMbB6uyyZlzrIbTc5TVfKs7NTbGHHgVo5Xn/i97zIvFg77Il5dGfT9eKEAbv8TGzANDM7cWgOT5Fm269+nT58C4Hp1TtMstjNTyEGtPRqZ2aBIzdljPKSvtXb3Uz/zi6Ivnz8pgNnLlJ0ykt8K3oXlwcRJ6ODOZNergXE8d4mEqn12SOzk4oniW6Z89+WzzwMT2EQop0q9Q2BMN+Yleev/Ihrz5zrjMFdA7gVA0JgiOcxuc/ILuIoEoPBVDrMWNiTLb++T6Yg1b9cuLgWTat5tdW6HitHN/quF8EwSbA8Dl7jv3vRbKy0lk0/gfmhx5Rb4r7/+utwt+7V3Ybhb0dYiY/axGPqtToQsFiEjfzhrLIoLi+ttB4Od+oraZU+wYasrkcIID9V9KJZaXeG86Dbe96UOgV373kWdOsWbZ+rTK8VBfY6YAbx4ZnVdd1I7CRSZexlynsJnG1Rvvms9PWuu3PDIkTytciz0I7DPqFIt+qkEZiN0NaNlZfP+fffayH94//2HD99jQZZFfDL5qjc7g8EDmxvL1Z6ndMBbQW74tEZK9iJAfBp7nOhf/v73Rl+qxV1zSTkXc2i/toKjMcDnNDALuRBvq9O8J02srKonc2z09SE9qk5lI7EYVwvT3dxYf50DlmWx9DMy1Ly0ZrQIYtzLs2X8KbYaVttJXeIyMNovTRLRYeGkUk03eKF1prUghDi1PU7MEkfzF6Clj792mxNWCb/88gtWttFtm9jI0ZG+12FNZWSi8ownVhJB2gbXVOSEBN+l2mGlXxxl16zyZJPScn3ocqVl7hhibW1rroeNJVEfYdGtlA7la1UUyxAGtx2LIWSpuUsyGIxz9hpIjssNf1FcGV3kzU779Hl1AFNbPi+SJNP57rtff/3n73/8jqMVVsOgsVycuZa8lTvcoYirtGadtxuuGXTtWM89S+p+xgORCyS2jcChLM91Z3qTqCAyuHN56ERZPvKtnXeSw9BS1swzGDU1sI8PYzkJQR0nlBbZsYSUORZ9G9wcPaW84qtEHsL3aZs0p8JOzTv3j/+d7AeyzpKZrYlNnbSAC3bvdoQ6lif4taVVfgCSGXfrLwVXGRlIpZeU4qtiy0eNuYZur/tU/YkhWQlx1tpaxxN+lmux32mh5L33PAybhZBnA/gCBxUJtcBTt9sh82aBMiFGvjhLTysz//L3v3388eNWdeI6PIWhPqdRW3Q80V81alhCBV3GvfRfjLq0Vi3//Oev/+N//E/XPZIBWQLpidOiwfi8/WKJmWVEwiXFCVjNx1A7Wdd+Q5q607MY3TN4CmouhD8g+Gmbg15Ewh1W8bMr56A4qRgYIywZXTObNXYE06Vd36bnIQ0fqb158+nz5752ZiAHv/BG5kIzxu+nQ963rYqXLKncMHZRbSTepDa4w3IA1hVFpVdGoqdzf0kbgDA9odHnINZH/AYSPJ77cmvFnaaSotfoxW0L3EJuDdc5qbW+6DodVg8tFj9UWylUwAcdQ6vSXWt1ZFkmOz0iiTKWxt3Si2ZZUcClSKBFk7zMbqEGVWRqD9WWUD6Q9Dl1PbUnKSfOzcRCkbpjNhk6byse/TVlMUdC47F4n8TlwvYklKl+JOKbyguqRDy3fp9fvozmHhkJElRxBweze0smeq+l133iMABxgmmOKma3wXKWjXffv/vhxx9aN2ciZjKa2Rvjwnz33c9/+yEV+PofGDltt2EqImTKw9sv+0qKzRVjMakn6oU8wrQMQpYNvJ5VC5sKb8brMkAi2pqtE/CgVDLuVdf5erRDfYgWWxfXkp2iSSDcOxFkpOEQS0cwKLdozvImC0wMtj/RYMVsBc/dFAKwnPZZ2agsUszcaVGmb6zlK87wQCAyjxaWCnNAMxhf5pOM151ufeelXWMTxx4GWsLZCFAxJdZ+cS2Jymw1iaJ2srL4UQHkzrlkjMqv7z/0iM6HxuMRCHEIF8rwgJJ6zVHIRK8jJAu2a9qNUtWwwC4csU18z4I3TjuqO1OKm+KTRJnAgrFf37dST2QMUNkQU0LmkAz3sWFTStdjINDNuOhKRzrned+G2RXX9/I4UiHc3sAMzlzcIRKIgXAt7Qh8m8aauUMES/DNcY1j6Rod0RI9UZ2MhmyG2zctzMtEithv/7tozH7BAvW+Xz7+UI6EHNLNguetFs+vNcVJO0QZe/v925//9vPm1QUAnjF7xSJ74JT03lYweGrs9A3zRVSPswn7QhtMIcSnWNL5+NMP33uOPGmB9R/WkBsFtDpq6/2mL8zYNGbudfDdre/zIMb7GokJYcDM0G9A/XP1rbLTqn2s8JEnM3efP29SYtpWz7yhN7t8aW1bNmvoRPev//jXf/vHv1UzdTWURnJF1UE/y2ZzMslOI5Tz+utvvxWf6L/9w4QCDnnm8XQRprGu0Eo9DMwuHZmLgddsLjnDdorzla1kVhJy0Qb7Wi2LtgwreNaMkX3cR34fFW6s1t6WZQzky+F2hgoVNXFMbLvs5jzAXQbr5m5qauaQd+xbgP6PvUv46DAC0w1fBk0ibiAJsg1ZVVIW22s/CbF0Uu6X0t52eVf2iILCmeJ+zhJL3gZJXSY7lqZZozmxLZk6Hm1xKoj8fDOi4vtlYlf2L0zJWH/Qk6TPn5rr1TxzfBxyI0UbXKOCu1EMMGzZq+PFYRig8qZpoQLPUZZM994f68OShdkRMjfFfSUEXp8ugWfIHbcLEpiZsdOJJDc7RxgKaRVmRgs/n5icu2NI+Ds/LU1cJyNeFjrMIIchqbGIS1kTys9//+mX//ynj7oS+9MvMMyIM9MFG4Zu8qXVGXysusgJ95XmRVuDALlA6HYVNQLX4DJg1CVRb1NSQi1F9Ca2C/3e2s8vztdchp69VecqbTGe2jIHwPnklfHMxHPmV2kBQH6mOkTePB7VQSrkOoN91C3dlhRVeJY4Y3w4X/VyzBeR6fueWsmoIWqAnFLkVA8ALd8N6Zaw6qTcyaR2SWnjYzex2Gfhw8ePv//2ezIrLfAiHEgVJy8FZCIwr/uY/vBLh+0O0/CpzjcSMm2OAlKJdAsw+Tbl1ywztpUNI0weDxR2RgkxJkQJSZKBR/tDvd7IRBmhDtkJYS5k4YRrq5MX6SDnJxEfjsdnumNoXgJRsoAW0Q8//PD7778T5X1mK6HW37PWWaquH3/60JO7nz6HpC+lXSBxeKgyKVO78tkfqyrFmQJVuFZCOBh9YryDC6/X79788MPHT390IvsknGF6OmW8m75/WgMKNFNGZSyOQ3s6vrEajQhxygF+jo6TWtquenv94ePHvk9jM8CgsiQckWyYJ57ZqyuNy1q+bpxORt7gi8OlLz6qoGQytnPAJvNRJWhnsWe2OXjpFnPZGQem9PPSKxwDAPOS2fHITGnhqgJjRJ0nFObpFFH3jsPQh90CN442haYcVBdxaqKeJSKBKS4pVe9WJya0YR0Da2p1WGr4We31CF8gG+/5xNJqBsG8FHVz9aJZKgtlORqHCyrn0zLNRpRLx2Safvf3ocpcXoKXeyW0dKRXsJVx2BRJ6RC20+p08QCuJ1cVB13Va+ybCjdMNjFuyZ6QXy/xTEhRk+TLUshxxHbKk1M+ijkm606mhno51mLj1waJmY2hIdmlFJaG4WI5gzUO2GMhZfWzUV/ROnxMsrRtyRpE5ZZIFsiBEd5ex9KK/8lnfzjy87JDI2yviaLp9/0tGR/3eRSXh0963dwFH78r7sPAwl23b6HijHPT1Mhu0LHQx8VJIzN0Ka8s28O2AGsxjXe83GoUS/PS0q3biVJ4eyt37XK0EbGQFVYWor2tkuiVwgKsLdPJ3wfXedar/Dyq0Os8cKq5ojw7O3nNhnkjmxkp3iph2KdXS9EV2k4il+Bx/rCYZFGIfnNI7qYbAECfsdNvTFlnryZ1dAXemMIGYN/Onq/4BaaKc/psmZp04b5GQbfVv/9QjTVCgxdoAlhNiWKHba1G2hdv7YIXfSvVuqLrhAN/Fs7ZfElI4/7cJcaIXNPoOZIK6T/+45d95JWM5dd5bs5J9pLZ+zKIHDZ3TjwLHWbtsna9SXSdZlKaJUgmeoHsSCyPI914vEPOadUWmKh2woAYpvXEJOGJPzvOHckYjxt6pFdXmSm6XiHc+i0xQyDxeeRolmugO0+RINcdbdQnmtDAP2OcLDh8KsQ0h9HqM5pgYCivQul/cjW5H7MDXjfppFVX5+Z6i+t0Ea1qsxHd7J8dhBJbbM1tCyPnUmT6lpRw5H0iBVgZ0UWWqc0fHUqsz0iVtyl1OFL+8vWnnz8u333PFL/hIpL+iiz9Y6SGNgy2Of0IT6yjr8iB2NFKclKzU09O8zSTY1ZojvLVW8w5iSqmizcUas4Sbk/fFG9ihAFmp60YUwxDrgG+YJsBn8+aG5A+Su6HFl0uDz9WkTYQ68hDoXP6cN5T++am+7X9SqCuGyfijEYPz6a5+205ksprcCq/ufg8wtqsVCfNJrItB3ykTt2WkXSztoJpf+ekpJdBKyTqZpr23QohGUftVEId3Q9TxcvImbqPI5rTo0JZt+O+kn4pfgmLOmczxf5j7anwDkdUYEr9QjI5ZisA8koAyXutehgLsBJVwxzx1Mm19ox2quQld1taw59MVGdzHCjUQWLITrY3oM5bH4iK3qaIhXUShlWQdrjC+FzYlQs2r93khQcURCnjKhm+YMj9uoEh5Qfp+xEy6vvBgy0UvXAChr6hAm698gG5KES2l8VN/1nmVnWigGmTyQ7xySA5YzPlFfzemc2HCafj+fqjzwPv11UZXpYB5bH3bvs1ZbSgjIpOjgKXAgLOeTexrDZqKdosSxgkUPQ6frSvBgTXjxQLCoZ+maGzEWFdaDlTonNaEd1YzekiQ2GsHCcXENJqOzzzyzI7Ow2cV0yO/j7TgGqqvcRSLiQ7j7Uekgd5vp6tYSs6S8Niw2E7y50wc16IZhgGbAEoyqSm5St0JT9URkcFfo+LmJQkvR8goEpXvKkSz2CTMD4z2f1X76pLsAXkqIGJaqy2jN4KL+ed1Rp3tLwaUma/jKbLvvadDkITCZOEJE/56POHn3/64/fuMnmobElkJxVwzWnFCYsyaObsl1hAEEJvvTdHcaExLEFVAN1q1WXxzRFGAwQA43AY4p3ml7unXc3RNpGtAtNgdfNSJeqsl7VVNWsKQ4qCuDe9vvx0U8qoqCvYwhRGaIG5s2euCm++Nh2kXPBt5aAz5iYrw3ZJvL5EDluHs8Tkslq7c/SSOD9eAmOzm+egjiMZvLwLVvFElzD8X4YW49SENgsWH1knKafyG7K5WJVCfiXKUZI//PQR4eGc2Zlvd8PTUrvkfYPnpNYGwbaeSkq3uA5qBvZBQmJ/5lUQPIRhAhkKhwjnOlPKZFxAKEfsm3nC7jJ4GVtcfMpdcbW6ZbQft40MZ7p196Sri7WhvUTXQ3TxDoqyH1+tEDIFy2aeozfZdhRJen2y195BioU++rDeGVGNvl1lAavKbooC4WgBy7x+zoaghreNbv15OLGnEpx2ksn+spvjSmZReM0QxOLP+4HXwscITXs0eQvIn906dEZDhGtapduceTnDFcyjyByi4AfDGuOxn7i6dobigt39zAGihv/aI6udhEL27//rP/7zP38phrSv1wCxF5Ce6clv7aCANEC5Ft7VwOVxv/w28HKhKxLa2cQSEkzN6OzCeRY6XGIdbazMC+9txRsP9jLYz8V1JIsnBUvlGoLKwRMXSOPrCJmBxF4JvOHA8YVAlotDOekyUis7z1mPrqIhtu0G43ZF1j9MvSAyIrBhInT0KZJttWS+1+bNedealGExITqbXo8e1lbWqnw5SO7AnCNMz2PDo8/AUm7HUOHIjCyi8t2O9KCg9xBXah0WZlo9qrpiIqI3oc0RYVv1i3HXxAuWFjlFtGwkBtuiLjfSA5NKNfCS6RBRYrQGzTWJB0M3DudOYyJ6b4FY5tIaTdkYYFrzv/xEHT/jYzftuoXHe/8eDg33WkKCZ9XPXF7438ajLHkaSrzPCJnXN29+//0PEfWJ/Wn0mlDnoVUYzy87hdYWyAz0mUBvrKV6wUYV8nt6/r4uqTuu1hlpXWZjgACWJKgOiRDsjU+O+crooIWqFPSC4c3Fh6REk9xBM9ABDIMhzdsGQzVc0zN/iJ3Du0OfdRWW8Y3AeZvqLI6EAAtmrjPZDvEtRIZoUSjmOoNyl+Y+rlllWEKFpCQIcKSdvXhjSt8wLLlZUA/OfBWSbz5ubeRkMOGVEWGRZu7WH7wCSuqK7W4gcbM+6V+9rhLSkoKId35KcUHulWU0Z15twEBO7muvqILW8AmfxlKJBz6u4qFkLmFticRUvohFb1I33ZORl+yhIHNrvzxwlDh6DeYMppvf0OSlXbD+tBLV7oZC6zaPuOSLxzR6POCzr58Laq48M1qnpOIMwpLl9X7OsBljQRk+WU4gZBkZt1Bu0l/zwbrxBU2R9VZELRM9LbO46B+pvM8pISyE1agv3pTrrXsc5JbzsYXYOoqIS1HIQs/4Vgx1BCyMFiG5JuaZnCjhdVPfee+yof4ezWdrMFGfBiZ5zg6t71wx1si5N0IrcMhr6XrDvAt5DW2xtEId8kzNZq+r+crD4E00boLWhYTRkZ0VGMiZmOmnMYFVPed958YlCJD7mccsjDGE++W8DN7UV1kp/QL8+us/f/3p5x9iKTwZzJM5qHgD1NWyWnt4IK2F0E7epeCZo3hrOt03P3Vr9hbZGcjgSxv+L34Z16yV66X+aoaP/Pavp+t6rVMSJ5loenXf0B9+IdYr1G3eZKqn6j/8+ONHbcDnavNkulncsJrGJslT/dIiqcejUUrGm3NWWavxWnbV6vGRrGayT4cSyjwFnp50nP0OKo8tZ3URY1ISO2i/tkisZgswyHW+xkiAlTSbCx/6nUE28pZ6JtvAbJzWv9Eqp+JDMPMZ/+O3TkmmgKuYADEG11NUUGSImt0mjmvIY58T7jwOeTokZhYphp6cYugUIyEjUNdkUgKu7YnDbwxDQkjBz8sZ5L09PBhcU7xMMaYra1Ydm9aaHwIDvx669HC6W1dh26gvRDPJzJIL5ObnCTKotM1konY23/joMGvDneHx5lFP80dI8Cq0AtmAf2wGOKtobK/XHLX1Uus3HrTTTsDpIEtufstFlXkWEAeAiic9JuxoSaw5/32/zONPBJlSqj2gElWnOXNGUydzrfkKUyApcu2S7FJjuCVpez6loUtmRtMBf9N+O10/rIhaLuSKM+Q0HhcVJjcr5pHb8DjRjBHgDZDNJ1qSdG4yhgsh+YX83CUshU5tmpMjvf5pJRgDc3iqF+wTRDpTTBWy42X6u+m2X386rhJkOXPTKRDp3Tk6+4GveUG8RMjP9ZTO+ESiS3bOy3IXM2yzxlQKTVaS9F9sDlvSOHVuwIWoRGuNW+NCFUI/MfegcRpbrSgzBpFIb3PiVpCbsa98wTqp2SM/U4kPGJeymHGVurJovrazq/Pglf7gFEwYRdE58rt3//zPfzYvHGKWa51u76B3jKy27DgMX6+5SPaQjUHkGsn5MI2Ko7qtrMdmztylawNN/MpiZ2LuUkoBHoW/tIDdf6+YhM//m87KSLH362e5YKoehTynTLU/FyvW9uBe771fCoiFYVdNGRBXKCeMRoee1Z3bM8RLPSC5cLJcS28pNvWkFbdQ1rz7SNkUWrg2iI+0lfVqQAbvgY2Np4fh1Gs/LPbDPLNm/3SxaqAaWoUWjPWq6YV4VA1kY084j5Gh75dEP4c5FfmBtQOBy10fNC3XtfGVZvWsXK3P8LPtpRcVkrTcGZOW+PlyJWaJ2b4oeqJyOLOwAWLaqlcpiKYtpzZYcvG43eqN3IIyV7Znxqz/z08eZL/wZ0EIy5dCOKvtFKHLAoi2VpiTDi+W1mHZjMnbRgRKoJNtNZ+zdsfERcZWh732v3W3Dxmt+9fIhHTVk1qvfYHDjz/+ILSxMcN52IarpSwMrX0tZ0uN+6D929abvSMWMEaa6732rrCWxBzWmNEu0ldmz+8zFFvRZyKKWuNkytOcM1Jci2CB1O0O2X1xZHWwyHaeOBwQ7bCB/dS8iPADTIbO2sQufKwWnYXrziQLdtFsLAd4+DMyZ+ZAwFZ7s9aF3hZaYvTJZGJd5AD6/MzBboklylnFsdy1l/fWFdkpbiEoDbrtERTNTbCaDOclot3EMpXnTUXJqakS09YZ5fCfEb4sV0w4B7tUJJA1b9tAjP+tsycDPFA+BBh1W4mawLTN+4ZbJ1MlMfdZ6nn0LEVlvkRiNEG+ShghwyyKDTSdBPtWiaUnjZ7Meeynl3HzkVSSa0dR6ffb5407sw0HwwVzy5QXgHJRXL73aeMr96xZOC6D0rohbJ5/ZoN2MpXWJT3pfp79uYml+tCWTZ+mEl6gNxuURqwV/1Ztl0qBh/MYSTORXmWkt1XC8YPGWlTsSFFjnidJ/FJT4B9/8Guj93NGFJVcpsIReKzYyZFgX2xLRhLXfzOsLHN5HnU+ApvEjtUZrEzrGWOLd8MkwM2fG/V7alfpLkEBaG/P+qfS9g3bzK9vNxGCKNa4Cclm7wCr82APlVwsa2dRyGMY4szECPhNCMdYrpydsxjjCT68fX3TU3+hbRmfUvKqwud9RA+sMn5ShMfsZCMs7Lrc8tlUjU2jWQBh41V2MgDJxd5oXl05D1piJSZZ7ho8pniJvfpGbK/VxjxumEBjmmqrPVkL1rCanUDJ7AWdYPiSyFCjMHhtSRSINA4U6JmwDhQmKNEl7t7s854ERFkiVMhtGXga7HJQX/bLhtPopvpstp+tung5gwlfwSyu0IJwE2S8m6+Sd0JheCRoXPYXdb3kM1IgISSym7ODuyK5KKBtnbbJs76dTJWN2QGW+iHfXScxLKdZjsHJuN+RKy4UW0Z3bw7VCqDGYyZTdGMnqmf2LJMnVhxPdpLLGjZtXovo1PtzBN32qoGWV06P4Xayk3jYBnIamWXA/r3ia8bF/WSHABrblrUVA0zJLKtvvvs///f/g/HOFi34MEIcMqAXJ15EQghz/GUukQCFenCeIZp2hunuKfZpNJ8KbGm10lUK4WaxGmJuY3mqKsa/KmkwzMi7riAuMZWT7BTCYdzaHaIh5roOaGuIPgvBsZjNWiLh4o7SsTSWpy6+0DhrQjjvRQzbQ3Ji1vR6JwZ8SNoXSbhay87LdPMzMKo8z1wHpLdk7KQQS9VxRYyaXIlxurv6WtLxs9yBRuoZaUMbuNXE+MjmcgHlXF9hLYmb67XLsmhFMEiqf+lInaOdTh5yUARUfvvXCP/y2Xg+AhMW1Zi2z6SIBlHBNh9u+cVI282edSzURAFbZMvvrrXgvsUxv6LKatUwA9cwrXYNqlDxK+MrNl/oK4nuIIbkZg0Mh3kxh3McPDhjftMNX7wsTfUdCUHZFWCdStT1QIY2JhMo2jLZdEWRCA8XJsaWKilOse+xqYameDRyt+JMbC7ojkMVC+PGdngoIiWNELo4yW9M8gRVohSLohkwJJvfCV/ZJ4Tuqz2lEydIrYl8ctJ2BIrx+iqJ/JzldsKQwnrrnxJIWd2UZ31Q49jQ4pzayr3XJOZcnuS9I2UPrd/IRO8zDSXb8AzrzgKi6n8q4cxPYa4qUFA4ebt5MGqujLPJ+LytJlosmspEIZsqllH1yZR6McmDkUcwGHJJn8fOLXKRRSjutUOsXftVXg31ZS2qD9KJjhaDpcPMMqHOD5eZa1RkLWRimUfBUqcSnt0ISFVdr3F1HkFjKSC1PwM5K9iQg/6ZYTJUYYv9wT8kZaRLa6daqczdJNPGUG6VUMU226bKw1dHzkTf3gYjqsdDxVmMx6dXVxTzm3H8TsWCIHpPLIxGXJxc9SwLGSOpQqxUcl1lNpCBWvTHTxwrHpXQykzxwG2M7zQRgK08as9dHiR9DCAQTPF2GoqrGuYrb98W+rWJVHAGEbrHTFq7hvRtVK1sMtMWwref//Ccw5YdQZWn/sk2emy310VLAAoZ4VXhzt/JLKjKwthpP+XchRCGLUdmA89tAjBOk8MUZRoYSwyXAhTUhr+7ObGKB/bmOpltWXPlKc/9PJzPxSNwjb0eSHa5uJqsOTUozvW3wyq2WU6RJ76Pk1t1KWU0xE6wc9tit888u+AQ0sJ5AsxOzHTyUhuqS+7Y3EhcfTD0Ym8kGI95tPLrcfPOg+LdQJCG8ZN7nhQDwRp726cioEGWzYwwBWIwhk2ppHs3+C58fIztZDZ2hJ7x6Rp92R5PDSKjwlpgFPf5R6YqGLxsWmaaaMnv+fJY2jCfR2jTnWVrnlsYMAeblxsmtxruJsgW5bWHbQNt9/dcWW/0iVfksdp8mNgNllztE7aZZNN2pGGjJBksSFsC6x+sLcnK+8RTEL4oeCh2ZtphCky9s3zmtd/2+Fvl16JiXcM/uasleGenfZZ7O+ObIUdGxeNfFbLO+bPnp3/mzxtxmwFgxnlD+7H0aK3+wx9dh7l2rtVwAXgdgbXaz8KlvsP+CX/ALk52uNvY663ZbIM9TIkiqm1Alk1TedvxFsKmr5KiClbDL4Tc1GT9HAZbLRofz2BBlbwOw6wBJtd57MGN2vpAZj2qOp4vH2Fe4PQbQSkE2NxL9HjcKGK2hpV2zOIwvRYzu9YPRU+Kj/P8FSLj2FzMfWyLkRwEt972EwEtLhKc5dasLAqpntbWbfUkk5Ye7XtrZwN+d6Ib7Zzhayc8ryTNGg0KFkRx8/uyKGW7H+82lTX0WLPfCmDArDUAeRTdJcrisAlrgCUhX0IWU45ykSmzT/bB3WF92UFnt8dEJbp+2qktPifIfjuvrf7aJ9hM4faDKLLY61TqSpZYad58QnhetBtF0dwn7LvzrY9mVnjAeBb3f4l24ycw3a7YIGSnhnlMan5GSHYsLXnFT6SntdUj4zchBO9bWn3g25ST2G4z2MGDNVby/WwopWB/CJcLE7FGLlZml9kLKjzZSJoh1vpY2SVlbmpLPtPFEcrSIBfdSOhioCpS2AgPZ8HF/dQfLw22nZwyUO/scvOU39lp6uwLbXPbs8JnKm+KPRubLhsOSqVtyYRoeXQDSchOJOtVHlngTPPWOndSSeyirjer9S9xYr+arxYCqsu4UIFNf6zOmMFirLkaucydgWdqICYXrWzccCLsIpYLBSbtm6FigIPwr7DTyk2itfUvKZnzM5krvLdX3hD3w1EOLiXCLJRcb9zZDyK5PqSqr3HRa4CP1b4Q4x//+q/TEFRE9K2vRdrCIe8JC629jGZlEvxh1jMGNdzKJtpNgPtCMGvJeYF/wQKZx2kVWq0JZLCGwodvuYgApi032zEoTNCp5aYQ1Gr+4mEPzTfm3PPrRvgeEZz9ix3MTYDjNubz1ubiIDpzyp1gxFVjh6F3nuYdzx2WjlKxVZO4Ohkc/BKaQI6YFDNoKbIntSHsf7IdLX3th2AAcr6PCoUJ6mVz8WnBhpUrM0W7as/MyHQWmVHuys/cNicA0BaUXgskY/DchLpJ4+hVpWO7aar3hI+UKTLpBuoepGEZIZEQwpvhK3tMZKG2Mi700RiA9lTCSvrSXQiSFkbjxe9lzVdB+SzXeAbSaMpXB+GdR6hyIvAE9smPuprb5cWcpgqPcIHNMliwQoiF+seiOlYztWu2dumZhyaIEiIChgKZwO0HJgGlS7it9m0EoSDGPA3nsivRKpKLyTYDiixZKZrvpAu1/cfG7B8ivrclP9TDPe/JZ3+Jbrf+vSacyMqmHY42eWS+1pCDzW18WtOsPDAc2omXTf7QuHM3FdUiql4SCyp3pFQgsUXNaCVgjsdt1TI3Lg/4RtegKQPMqGRDtRHso4gaMyiMSXLRUAwqbJbjh9b5ZftZS+DyMmyqQsND6hiBEe58tVuvk+C85If9QA1Vum457UqgjtDmrpP5/K+i2ivMAU8smyJa+EdGFhJoSy1qC+/wQ8SHfwkM8smYCpaEBZzFCnsYkmdNjsA7sxmsUTxXdVbNCqBAemVdmtpgqzmMUtORJr1gt3Nv5r9XI5OnAtL5YLOyjNKr9hmvhcdZm+swMhfstlCnnDvjVgjqpB2mBqmWtLNfOmS/ruc3N8DqcAyLtyMGR4IQzQCQtZO1JbliftfDXdMTOFwPA3ILVi/DancAxH48JDGKhicbXGQj+Rzd1rEQes6nr71yf04Xdhi1BaQ42+kl+zoPjUbmrou1TfjpDf6gLiKCW3yegqxzMvkyohomMhyPV7PPhhAHVrHGQ5sqgewgMoNF7K/HzAXTZL0M33/ZAQ6a7G9z0E5YrOnvZDYRflp/JGoF4GfyW2wNQ8SW8SWpU8h750+PLW2usT/X7az6L23Qjn3NK+vEAuKgIhg2wMYfVMwEDUJwNi/j92W89moy8QzwebElHwkLJ49uS3ejd4XeYfsTlPUSgSubFPPit82qSDV9IQsAvoz3k6AZfNPlzhiaAT+pOLE092HiAG/my7Plk0ztJNcc5DP0mliMQLlub7cSKaZan8aHk4BeeiMvAS7nEf+YSQOkazScWhe+f98TrpfkqiHXeRjsYFiF1NhLo6sJcLSgppbZE1XLqVriJbtMf/fGwrGSCBfO9v2Pzrv5F/4lxS5WH1Mh39VLjXiTzF1hJxZyAe4k3HTfCaJGjxkkxPwyxeibPtu9XioGRRibF51OZcYkTjhZLCViXuJo9ZCsLZAi3H69R2MAHvogqzkjocjOlJIuyYB35yxZwxByETdrnzCNmV1repueXKdtEhwe4yJYfbcaU7kRlkvfkWD+HQPSfXAZFaZgCN8N42sRi+7aL/sENCF5IbTrxwrnyJzE5J132wkD7jyRMjDfve0Xf//9P/4jK9VGdRJ7f+7LKO+JtnOB0jno/mLvvKG01663rS0yXMYLoniFbIPzALWXhkvr6USjLMPZF0RevkkWpexs66G+wGS5tgk3zWApl9iRUwgMiUz/6a+invG0vy1PVyvBG50CgHsOl/3grqZTOZnLb5QaUy1qJX2kbB2237ED07w0ASYDPjC1JL21tSf7XzFu4G9iERakzqX228aGyJWl5wC1kPKKDF7Y7w0P2xxc+KT0JtauOa1JtQThdvO8ACvRasw83z70izojuqTMvcDAJ6Zra6M8+EJOGHoBsJ1K0ow6j143h2TvZNpRVLl2pfQAvlloN6QCJao5BY+Lk7Pc7xqvLhicUHwfqPtMLA5viulH3a73zF0ByNT8WJ10+EyVa42TkGgxapclswfFjC/eZj+ltzyKBT7uJo1t8S741ysoCC900w5BO2FAyYiauuvTzKZWTmYuaQizSbn2FX8ChbxUAtA2fvYLeA5TzYXCsG/CrLVkbfYxSmpwexIJy8J05mJeZrse/6KutzYk79y3QbpBtPHC/UjDichVtpJWgXPmJPVc22TkrAF2DhuFC+oi4tIwMcuhJjkFiIQzC8p8JEbxEr0CYHOmvDdwOmvMXBxylZrZRlXXHMpjXru7vAaXQPipX7x29oFVWChu+q5R9+stDMpzgyjp6iTFYY8EZ8NsOmbBfjsA5N32mFKx+rn2V8AEOxgSVcUakjkVlGwq+0zWOE7SdtOHAKKzpYoOUj6oDDGLwrfVmyRhB/YBW35DAtkQtpcjYjUR2BRNy0+MHWnpc7QL/unCeV7Saicr31r4eqF61DvmsAB3Vm792C3RN2/+7d/+ta8QgF1oO4/MKK6EMBwXwh3eTGFeAizu0NI2Bef87DsLqKt2DH+V0MZJqQxtO/HwWI3ZnUwZvpLwDgyZxdiog692vPlJOfs5YXCu6Ux4bMzEWuSFCnXV1V+i+KPfEftUZiUXqs4LfA3wQW1/IxenMJh6ivMk/vIH0M134cgbH1K4AmqHCrRmN4W9sZqkCtaMh3qSrKLpJpKrMZPbhleq/RgA4UtAL7XE98shz5SRqcpBJCZQH+keccdJNPXDNta0lZVadgItmra8OHMPrEByF0IzyWorSDW2NcU3WznxFkGQrx2KrLM8E7O4W3TZhUqlNWCYDZ6iEbLwr1Cyd4CDFDdDIgFp30Ewnr8jI0+GRewIKxPLXMtiaDYownKpXb6Bq1ZFYw71eevduibePad43DomNGm1UlHZ0Drli28gMLZDzGzSkYhiMyfsmjskaxkzrSx7apz2yjrnaCiyhsevv/4eje3Xjyly7WR+PyoBUTjC3lZRN+x3IcfoFItLwDv0stuivgTNveRuEmPUHeKdOdpvU0jtOLfFUSlw+aqo8lJ0G3FigoTrBiF2BOgUHT+yk+puh7TXPwO1NcouseQlbP2Kdko+3O/ulGzzWvM+MUDngp4HwPdRAHh1gN3Oqx7SI22MwIxxfFvD7b3LY2zkNyQJTuZEeH5QNR/Nygkc8wyvfFIqLKKjKEEO21S/MTc8T8EfLYS3es21W2Ir/Rrb4luszlU+7KIsxPJrmJ9MbbaNdPEctj653uViWQiKvBnmnTZ39a7Q2RxOteGSzCiI8Bqzcm7T8S0BimbnqvLTs7tBrCFonkAQqLM1+49vVMhjSgkGuAsPw2Dr1EZ72yCPMZY6aiIwp9m1CU54nlaqSti/q1/pEuHoTKyLycAGG4CCTXfmwQp7mefs5l82Rq4UYyOQ5O8GJ6cRYNVbFjjfrGKaI4aQjOZ3a9wtjmXHuGA/HMAT4LYE+WFkJIPVTpZrS6t9dmP7opvxkDjj+byezXQXjDjuZxPObO7GR3Cz0z+OhU6hHa4azk82+eswc2Q8f1GyLw053LZ2LtGosVfXZPzvZsdIEKNeS8yjSCkebzDbd77YF6k8ZoYFtHqp7qIFaWrSKWmtHiYE2fIofjJe2TXUd4SuBWWnXvNGb/ld5gWbLS21sXdfTCQx4FUd++aTCL+SnKcS3AbQasZOEE1ocOYij7HdL4z1TbidBuEHby72aRVBblcz9llryncrxF0goUiFLbWGl2JjeV4MkCogvqwRJ3cp2+6l8xRzqSTUcIPXBzuCXKIzWPZLdE3VX4/XVyn9teCsZiFHxTgjpjuhVYEffI63WLhtf6ZCcoBDaBJUU031jRPztqE0R1IcgAojuyJasRVAyhmbxXvDMusJLzsulXZNWNi8G1KLclLLTB7M7enfojwBs0hSqDqsnIfodFscdtyHxtaFm9A6nEDBTs/sZ1/jV+xFmAAXd8wUQttG4i1kzSWib9C08uQ92aucdhe86BGYzQyHbCRTaUvk0A7wNXW+MNuIof91I9UyLOlL0MJReBnOZY2bj0frtDJUCyzbcsagYBoEoxGk6bPClbXCSm5IyUuIXgna4GrXufg4qEMIusHeEmVK9HPfuYNvHhejK5cKr7paVJ0Legzm974efuvf2mhlb+Rnc8Af4/bXO6DiraPFIMCs9r8ABMbC4kFXW1h2P6t67LPrFydQR2sg++qCupjt/73ggvuGHrmsGi9bQE5gRhOXuIGaFOdghp8SrXrP8sytU7dONZa/NCOxlu5erJAoH+/P3IFRdyYe7cK0n2XA1Fm8Z2Wpgob+i/F8JRxFQ6zLLJaMUBV6plnCF4h1dvqMTFIqpim1ADpnWGtT98zFPPu1EueSelE8mk7MhLXLWe3ZBEaNcvNE34y8iKJip411WE6EyAixJjPkcjYl5tsp1vDjdxE8TI7AcY2EfsiIrX2utRyGMV9vsPCGSknKci1a1x4zWlY0zrXqJ8s9/+pXiIro0GiPw9SmSQltb02XkUalZWJ8id0n4GG2rroAeeBWgYVBaBGV7WA55dcqrvAv05YIYtEwg8JrVjKWyLrBybxhkAW65JsWhR9zvevafFp7lsuz7Ax88vPYQjoZ4Vc16VGNS3z6Mr6ZRW+fvc3YAvAESr/tHXzg+lHHK33MaMFLIXaN1M4YHBcX9VJc40s4d9WMp6KzHj7x7neYlMVOCWTXnhweOvRwdvVojSaq3Y4qhuTK8k0E5ntY0JC6iUBoliaFzORGDcDQ8C1xOxV1wq0h/6m39K89rykKVqvjTGctU6srZPEbgD5lsoZD6ri1nj4iEgHhje+Mr7skyniqO80kLHeu9yKWMgzcbaRAKY7yCIb+hKBfGvZ5zso+11VUvaPU8OnvSX3wi02X/PCkbb+SSh02pGZTBvQNQKbX7BSYsz///PS+P9eoylR1c32rACY7bs2h0gDh11QTTgSVwZi48qs365edlPKT2VmUgr6A31s2gXCC73A1jOF21rxvJdpwSX8s5TcgOU355grPa3XHRUgsTSwJ0RFpqw3aK7PXlJ1w3l+vDtIVny3qCw0PdSxoRkJWEWZz99QTpr6zm3sieUvDSWX5bVp5PBDqH2+qa4k+d4IwVIn+/PPPppFBmvc6xSJdbWDHf+aNTdPG1pT1dAB5liBPJsCZZ7mmbCYO/YrA+3Z67UdNlH2yYNRiRuwtgwIy9Dpup5aZr8tNVhElkwWATfhczmjlRFF5qKhLVZ3tC0M2lY2Mn9mxkJVjr/buHSp7QNIycpPnztmqPSesOvJnh9iwLdk8Mks+VfvzW8uQdiCj1UwS//8AECBRhO6uxHDHjEFd7Y4l/F84q5mMXFeeaUOleOYvBMCvEVj4DXBvbYN5Nda9Id/5ttOuKsTApKPFdCbRK2O5X9Ya6X2kvGAzaMBDYB4oa7n88l1/C8IfkO639iuDLIyQjMp7MVZOAqld6nYW69LCQwGutT784G+0bzYQ12C7zyWAQddk89r/RdQreJfsO910tNGxJX46hWbZfX4dBiAHV4fBh0dQ+VyClKXVJ8VGyptGyk/Npclw2mbQFaZa3VOOrkPEu+yklciToFX6Dl2U5agwt/X54RNTSU69bSeC8vT8Lo0cpmRWrTYYPJC9BSA5OQ2qgfPWt36bt7mWksAptkzsh4Vaw4m0gWow7FOvCo+NxLYj9up91cTAOvEhcAsXDY+IHNH0L5AJ2IYMOQGVZ1sKThabnJvYI6FT7WhWmYn97e9/66SWKttXikWQHgPl0Sxvd1PEABAztIs2tS0zclQWfvvnb7/+87crYJ4HALDUtp9i7QAv2JOIPSjNVHhux4h8bWuhDR/lrQlXHuxu5aMCpwhS878jowZJ84H/0cNI21mTr0jwLOitBCY+vBz6v9cpNJyf4GdiaC6sWTxhpZvK3//1X97vW9TSTzrXhl2wTpSBESJHtfYWpCcGIrFTz1gfhO3dS4YuU8J7EKXOSGnPLOM4fLxCsKDPULt8Jmm0kz1UMEyT2NIQ6JhmMLFpQSZVrmjL2W4RLaIU6baph7YBylCZNvUnDINiW/3PfiXWl1v/9JMvPAFp6mNihS3M7M1+g2tzQcfnoFZD0rk589VbATW4DQPhLN5MJVZ9rI/5g1En8DtT7ryDilkwHuodAZC26yrXEigESBszO3cqMpJY3rnq8mI61jrX6XaMKH/6u0pDRQ6cy59IEq0Rcfz0ansBuDzoKyRRrYyCYfWV5gJtp9rlchX4WAt7EaNVYcA9zmu+MX9VkFZz3HiSwMvhWLKu7dg89VhQyE19WQrq4huCOU0m7O3mLwAF4mh3UsPcQa3wSaMV1aVsCwM+XYwlv/iriobQsV9ul14TTyeVYz/5DAnzsnblveWRrjphMUmTY7M2lTeVLA02UH5KUMQUchXU4YtHT2Z3u6jq+sc//o7B8T/dq6JNo0Ge5dR1JaUmvs3chs0yYBSMxcgbGHfydp1/FrPuYvIOxqK7a30M0gAZ/9nesjjeikkGzb9T2PL04w990WHPyFtDWGgJBc6V6MNB0pGR1maojtQGZytsO2byzn8Z8MmV80TJ6qcoUuVUOMWH0/RoVt0Xu/MB47uDntQ+nmn+bU8htjzJfqvnT59bu1tGO9wTiaFoTwEUWkvBPI4JvW4558Lo0dW5300M412yrqQVQ05C+mRhoUBYgFGhDDLSZZ9SzEvCqasMlvb5G9kzl3Lbyob57QpUr0BOP2yZq41sc1F4+jdSC+1sUJ2dkfAM0iuqtH799dfWmQxYm7pNELtP0c5mxnJSGpkNx+4aALdH+5Z8J5U7tZ/M4ntoWZQ1g5zZuoJ+hj/90YLMBSo6DDu/fXR20iowwe7c+YpXPgo/I7U7MHDMq9UaxeTUPnKiIjet+ZLCUWUzufYJkUybsIcPT+BJ0k0AlJIJ6unGfVpcz3P6TG3rbYnZIrWbGoqK9U891db70VGaBzDZSgv+fkc/9E5kw82brRmg15x6FwSqG1P9InJwspbf7TzVn9A3y3WuPDa/1T7TF2YmZ17gMQHLAglANq/xCW3k5FqHOf9C+Cve1NtYWZrynsn+g7GfZpX2dydVbKO3/lHpQCX4Ep4x6FBVuAgJ0++/fuow05hpTN3Vwgs6SAk5VzRKzx02AlCR6mvXljVW22oTwk6x+WXTeUrH4puVGB4PuhDOUNup33T3qa9vy0rzYc2z2QGZm4gkQWpeqjGB1R0PoLKvIqVmMHmvodfEbj3eTlAx2xdOTCoXO3UXm2D54Cali5pCTpvy+gN83TrpuLTw07SgxvbjGQczmpP/pimMOD9Wqo19p7A23hfY9vayGgBoxS/hlf0uTiIqYKUUrNR26/YISYrBMc/u6mfGtUemvxXYNecelq67cLIfFO6Pk3iNkteUWFtO84SMvIrd/NC/1It0EDbkj2NjisMkE/AL61CAmWLjC326Jn0ulywqJFV+7+3BFji/nlfLkwD1ALYLkibSNjZKREYVmL8E16cQY2MYdNacFAtto+fJI5VjDDpXL0cDk+QOH61BcpjK7TuQcf+/CeQ3O7yUNV8E4i5V2M+fU45pESYL6PlgLqPgh4bthb0wmybqVj3AOw2YWiuvrBLN0yNff02mv53SlM1kLtoOUD8vKaxMaQ7b3cN2ZPqbZh4Xw3khVhq4uPvWAq9N1q3qRnDyl63RspnaQuUy0yIyAxV9IOmOtHHne4c+9wRVkCDea6XFftDDeIE7qdQJyW176NluU0BFUOCMa8gFfp2XHFYZW+irWVff8ZrplhB1wf9tTNYjvZDXPCYTqd9945auzU6loHVqYgmEdr42NQd8ZRpEN2W45eX0MRN75kipzMjWZzlTK22a7g5rlF6mjJzO0BKdWGAzmjnMjZPzMDpG6GYZtuY7e2JJX6Z2rlnSj6dN6xp76BppdD/1cdW+Wjl9Ti2J9jVtK7FnqMcga2mhyWf06XGRn+Iylcgp730K1EXFMSG85pCnMkPVUYLJbN0gLIEpj5OpYaPUmd2S6GJZbJIbG/Gv8ahI+3Fqror+Hz72eX0msRuEchWYUUKgrYJZ6a6ezvnE+trEjBq5A5NiFgLj4mTDKi1VNMRGK6JCIhsCX4olKIElop2VA8kJtLoW4yL6+re//XgrsIQriVKfzTr9/gDsuz/X39s2h1ZBW2groNYZS9OWmznNcmeX33/9rdYPfS9hb93jKYwNt04+/QwSEMC1rep69UlIvhtOPtToKj1F+fWb75ZZElcIBYcnlV9peGo5imq51ASuZCq3AvjypT/ue0QhpGx7dE2vSbm8bHyxpgKvStDTv+w5tyHUF6H2GINsudvX1uq5H0VVcq9yUuNihScd6q0foFZj0cZLInFS7PIZ0jXWwpoFXDacRdr2ygCGDHJ0kW9HhfjKCxZr3YAqcIc1bOE+DrhvjMzlps1I42hRTTH1x1fWVMjMrBjDdzGmnvfCRuh+Z+bApBgew6KANx4Nlm9Z3Zx84zR96TlaCm2Xl/uMKMx+SSDYTTK7g6N6R0tRUvIXuy6ATSAh9Dudx54qUE4ZTLdXktSFgThEXsHXKrq2GhsXBRsmvmiQrLHDwlQIG00GVJSbd3bLQKFIQZazI1EG4OYHnCpLVbrKPEkweeYu76x1DOVAVt7jLkc1sE7CNF76E3Wka4vK7A+tSmIA0dPqM7c+38dqXGnhZTdQfUmli6ubcPIFx/4PRfu2otC1LfVC6BjOTLHKSwIdGWcB29Co/cDXlMbEGGN5XUMupvg82/gHQEYGUu/gGBwxUb3pziOS+U7D8eY0M2etyj4lhDf0hnbTznzUWMfLakc73+2WWanoX/7uf6e5erOh2bLJACn7vG08VgftbrykYct5OP/4zV/hqN7AuO1i2InSKnAc6i3cpaxGXovCygGZO8PzXu5aMeQFBjTqTNWs0kdcaGoOfGo0cw2oeX2GCWpeKNR8X/X7x76WdGeXsYGxLHRWjat//ce//P3vf4OaJ/d0tiyGjuV87ieNC3D2iW5Vg5kiMuXuF0KC3QQryl2ekUt/+U2sMhoxKUtTb7K5/JKCoe1LT7U1wtoLjIy/e/vv//7vnQtiBEqnIQl1hNg7s6+iKK0sjYXEZtKFkIAhqaj4CWyGWNCokg8GgUQPXiEMz2Sekq7L9AIGX/PWAZx40Kq9w6Cxad5pJxd69ehDhS8NSzrVauzUR8AiZ5LNsAQGTn/s4o9UzQw6xkM7ZPy0pTKtbHIyZe2cbtXUeE2w5w+z2rfkHwP1loVt9opfzWUhGw2JvHWvrdouUxH+5MvE/Zp15vQcZ7ed6OYv6Q75BzAHzrsDq/HSuZo4sBs+hAU4tYzccAmVMLcFrEMqXj0JkFQ9kG3xNLIeaUN6SyIzBSRW2PVRZzxUfrXAKbYnRpaG+I6580es69d9q8xfWqPAYRZ2JmVS1YgRpj6/ImPE5qPeKK0ly+3bfHSuMBYmAXOKUZR6BgwSb5uJOiLgxGM++qnfXxn4SvpwZirRbCWDc6uOfQnMKCvGEpI1Xv2M0wr7EmGgSm5dJXTq1Io6S2E/QO20HO91IfRVYlUsPLZxKToD1clSLtINkNG1tY54yNb8XAvlK2ECtgGTi35a0+FsQ7CdfHY3LBit+rq0PxWowFy7ANGVsQovxR0WQSsb+iueBG41lgoX57eQW31Gm/JI1y0co7He7KeBkAAcvQy5e20awrZyuQJrzS7HDRZAIJPam182g2vN2v4Gc2IuZtDrR3bUPAViqyKMXBXkqzFSFXdnut/jEWR4XKQlkoEe/e2PIkH5clQHy1GZRB/Eu1NefxIxXMWy0GE7LF+kkwRmVy+4cpfOaeMgFR14zonNw/ucWKTalj0taS3ktz/sk3r5VgmBYXiTCiprDlvL7kKIx/pWS0ju+kMTcLWuNiQr6vrianrywotTVJwsxgZvXbRSuzHVLfydyQDw06Wsi2qznllr9+yT3GgxWhOKV1Bj9f4l+ijbSautnTvZZPFTV6X3kI+OvJXEyz0wbtX0XhSLsA4ojv9afEdZ42WPY+Emz8Qn4q3jyO9Qz8xXn8OmoSQ+ud5CiOVkerqia637JHOK8ZbtnflUUsEKM935SeXl2YTPRiD62YQQVBWaTJwbK1HcS6o32kkWRV6NhQ6IHAN6ZmmB7Hd4ZpLCjCSmAsPeceptc3uhmYI2russHPui2VwKUkEsUxZVzaKlUuer2gU677Xtr3Mw2rhrdJnGb4ZnQcsiqn8pWrzJcjYAuerujxV9gmHYvOFOZKXiawkEs0/AGpjtK7xMBmfzfLpuGL+mJiWLo7HXXv9UhNVV5GepuSTn3QFZKCbJ5fkpeMMBLUz0fyEu7vAuU70bC5twsraq89loo7vfFC8UVC+hRTdX4GFST5Vvx+SZiRVJ1vIlM3OYhZgpF6ljdDkqd3r/VJC1bTzqddhPTSTZl26KhcDGflsh1WZLXetpnZqtjm1mprnI6dZJEp1oJ0ndqlWi/vj0B3N2p5i+A77ymlmcbMuzhBt3yUql2GlJQTujyPwc4D0YuE/UUzOsmMqt20lu5DmjpTmtjGVQuGsw3C4GrdOCYpQgrUYR3TtkiyZznRN88UtRGw7m9jNjikNReI9BPfoym1q5hH4ZTOzGIHnDgmgvLS3ywnIHoX/avXXeS+lT/9xzd3lRI5W4Qqy3jDT5ZK3togvnasnpno9VddcSqTbv9enNL7/8s+Yrp7QGA4GL/ojRfNlRcBvIDYGY+eOPP5IwuXde3pgimsBOeAFc9qHMoKEg9nFdW0ddcaUr3sJ9KGuH4LbDI4u20Ws/a2ZBA3CTEips+alhLojbeWDf6FiYZFJ4ARDh+L/qUit1kuFUQsGf5cXgZaMAopwMlbfkRx6DF+8+yYxYhgBTFXQcJdSbnSVuDRtEZz8ZC5a43S23DnM6RGuxr/DZMqf3k+zXrx/6AtHKINNQS0w75aLGRKwP8rhhNsYfTCbqhDe1ScL57vAmAhE+5djpKOEkTKOrJDR7MKBNeiqySjMvB6r2EN5rZ6aO5leL6dj826gIa9fcVm9FVTgLFKMZNVO3tX8prA+f41v8N33AkCdE9EsbH/tzKvzKiHD9tGbsYMzzUmddjQ1Nrq2tnJ4KdDJCaofV9PYMD2Fq0b7wKaY+YyqdkUyPRn3mgi+//fqbu55mqlGXuKsX6TReL5StieYQ3BDVm9/6+4Oz+ajQz9mQR37hUw5J76iPh01DwcxOU5eJeKEBWWlE2tg4+4mViqyVrBirby1lx/RRO51cxtI4zQgMvj3WqZRKCk06EhhFSR0VaqApDDaIBdrJIPb43emzsg41eOZxjoszfg9tO4sI6JlcDMyE0XwXvI4aFOUCCUN5WQp2DfnR5eTBwtroxgByAZXWOF5paU/tYmBO8YunHbR+8fG3WJ1I1EBRVTYdZykvGFDMzlJapDUPG3QE3Bzt2ZUE1AXvlUEMA5kuNwuxnS5oWxEGSFyz+xe2lcROgkbEkCdjC1qmgtwJrzCvPtl1/loKLQmXLMgwOS15j4/2/+gTsxbcEWsIb/yO2+j6um/fG6WqJQZCW/mlBTcSzD9R048i77BSrMK/dIKpZVSuJJaD5XbrkERdwLk8kcUA9OO0oTgy3JPEbidHxe+//p5MDpN+zUjknXWqrl3l7CLBuSRMSTbEZERS4/HNh/ff1xx+DKvDWz4qxwCncoOlV+RIep/yGRTrS0YBx3EwemVycaXIgSGIt+gZLYZMdBtfyXO38RICxWkCSUtt2ZQkY2GmXnmzmBgKFJ2EcvSSqbsYkhnZTpUmsWTyaC7NReSsukwkivZShZSu4vYHB+UFEoZ4uZv0o+L+YFzVmpFzmkEYoMBHwBleqK2CUjeWdqlPwkmQbldAeZQ4WlvD1WcWigcBysQi7e2MGHUiax1vdJe9cdRvZH5vavXnGvcnAvGWhmGSfXaQX8OtRK8TmdlNLtkiP3co2u9wi1sxq5b00wVVWHIK5Nag89IEVR6x+uXr50qI4XGapPR+6bTrr6q3gZ+yqr5zohF3UNc/BkGqEVPFGMktZMKVoZpraWm5aFYwxgUfMiWfAm0bzxsvDQRZ0FnWTMebT4OIWBctK/2N3GzAA729UApY7OwPp+qtnOqiSKFbEo19GUkkgxpXAHWJHy2dnhIx1RMCT9X11msBroabDdhRrnhyHsX5a6tQs4PS06wCR1MNKdVGEHLOw3HqnG54oi5N3sVmjq3YcqPIcZGaYS58T7ydMamfRQQiVfiNyPMGnkNOew1fGx+RnFdGjK/T7XWh8JUdHDAdVG9shKeZ8/FXzzlmP0fF2HEuEr+Pg5Q1/K4ZMpVI2LuX99t//vrLv//i9+WC0F9g6BNR2IdEGua2ltjcbiM6zrObQ6C2dTdk/Rpykyh3p/4YEE3kHUq2tBvpMg1su0ZZrLaXYIN018j6swb2KlyoV2m7C5DiBcsE79gGbdv4pM7CSWC4RDiqV7sTYcey07bV0XZU0GBmMV6XiLPxWGJnvBfqrCXuOBrEkpIAuSswm1j2I7npXPuBnK/Uj/OnkqFybhqfOMBthmjL40PubDd1G/I5fxzNb2JtCXz65PdADnAyZ4GV9SZQARz41JnRMNZ6aKnuFfkK775rLK5tAzG2r9qS7GhEcCElpNrdqogHg8abkhPKZBTu+h5EHVgFZAiah98FrhYZIe7dS9BzMbGKKYfG6caUEbu81oQveIJCsf1Tqb8zZcCdjcXNWGINyy5yDoPJ6J24nqIgKIxE52qvC7Nf/bZmPQusjCI3EuzX/gC/gXpUcGhLfBNckv1FcWvTFlI1tmpMgFQxJrPVFWuhrr3KANUNuT7zte6ZtPgqAnNjx2YWudgG+6azQTYBhaulXTmpJwvFiUAfIPderMhN9UEPi7jy3uRY74fv3//40w/jpCJWXjngZScbxreFxIAYyUm4huyg7pzY0JgW2KbFnriY9FAmk96+9qdz2E271lJPnY+LQyhZWW+hwNx447ECOEfA1wWdWuVE0pf4nGyMPgv6OEinyG8ZsQLoIYp0m6h88UV6NcZ6QNjANsw3qus36vQAklPLUPaCNxdJzG8hl9hJ4fkYkI6dEpJC1xWfMJb0gtoFbVr9Y2eVj5Mu9kzlQul1vnfbDwNc34VZ/We/qrNkZ1hESXRYMPVXFbUPW7iUZ289HmOm3h8A4V3gMOeqOqyhzjcuYGet7pSyp5jd4OyNr23LuFFZY/VgJxrudL70R8JaAiXZtXV3s6QXfU7PRgc+6bBQsIZDgDySvvWCTBe22n5KYqi9VO3GDBxEeg1hr/0As+eJxm1DqEZVxFL/tnME1pRMDTfjV+8s7MPxBPvjBjG2wliRMFf23WMWCFMYILB0p7pRnLDWzBZmH+aYjLYv6noANimd9yH+7vORXlk2uEZ8NotTqQxzmpc7GBPuLky2Up6hEtROpFU5sWd057xeT2NJUgcVby9XQoptoAZNyG01NVOMUUW+nfkCl638Ll7TAoEr453hkqbQBjODo6gJQQnVevFtoBXKlkdBncHM42KvKfav/V6PNnv7nt/yLe6qWo3PFV8UspPRghWyKa4XeLJT+Ktf2FL26pk0I7TBRntiJ4mgSN1q+QBInDQi79uUo0g8dOE5tOxV/0d7zYtJNNmRnrAsj6lcHpLkQsUu6I5Dkp1RD07OBiNgDIx2AuBbA5IxUIJQLZgTjALq08y0+N0fUc8r71lqcngvhAwBAGq283Il0QGL5vy08QzjrWNWzMOjLXXJrY9HacpiIZuPN9qz0jaCPUjz+NI2mxQX6GCNhVs0tKvHpM10XpxQbO0fJCBFSmwjxYzd7NFSwMcjJcTQuqoowKiJOimwdq8Pb/No4IzarCmSOTnLLjaQuPkkHO2g42IW/WhakMWGAy1qshEKbXBxnM2sgAczJl1BReMrrnFZ0zKbCM0JZKcQxjFzGB4Ryn4PBu9bofYdG25OZdbpCYhnCjKWHQ7bLLjXo+JEUQUWspkBeJjm9tZaehWeV8CsgQKsKsSpsJndqBEIk1/+27/9b3/729/UTCogiz/YHWRKc281CVCaFmU7DA0jmz7QkHE8tI26Xm2mmizvZH0tc/Nf/AkBTsCy37lmNu5F9uwthO2c3cHiGuC/agwuXYFZowyipIZ2/eSow6kTHjMm/xDy8iCRhYTL+84LA9BLqsYdtCzz/s3mkNxxbQR2sJ0hYLymXrKARvvOdqpKHX/pouFTHLQSTWGKoUdzAr2ns9WYtUK9wO/0kDt9G298tBJo2Fh+tR2I+e7IySAROOrpfcOsUmi3Mi+79+3X+uTjSoqj/k+LX5azUCNwNbT5iw9WLo1txqNzOagn0QuBNXaOnRwVK+STZLN1QKv5umfhGURKPc2M32mVM6GK2GY2ZyHI7nMrRBoube+0K48rAiGA65VAVlvo9xrhm2q+zdR39VWAHCW/BcpOG8+Cxnrrhu7iFWMBHyCzDzwc1JGu3cjMTnKCA35AguL0b9oSo5rb7DYhgsrfDbD/QnXSaoa8ErxoII0f6tSsyPO4zt2zce7JY2aOGcSFboBaQUYaRw6Rk1wNFdtQUkleIKu03adcCvJapH2WJQRpfdfXcLVUjQGztBuxdqqLNG+Ej8DwpxErvGzglavA50dQ2p0C+16Uf/vHP9TMtoR7B7QoLc0WKnIjFMEFx9+2zq2CmnANmNofQ60pX0rXfTLPBdYDx1+yvIC3gTpj9ToEy6mlf6bIF9QN3qKbnewdhnrbfZmFqv4ajHT3NIPPpSG8EDpsU9RVIxcVYV35JJZul5pr0JKYRyy+/z4QDEI0F2kos1QUbT8JZ7IAEnAtNNOprA4sQW6YpKxiWnA2ybjhJLwtWINcKooRJKNr+cmCFXYBwVSTVs5XEgklEIi2FYaBsGFrdmJDlve2015gTMFGAIZR17QwqjMSV62Pix4kaVSK7SQ/sp/ZKXNxUMwR9ftvv3cbRUVsgOC4+rwVGJ7M4nKOyCLOmLH5eQMqIwV7H20XRV3kgfO+KrXM3AhR9MtKhjypYsrZ88TZHJ4t4lPbIjLIaqP1iQWQWi0WE4Ol2C6ewVDVwyanMRzsmK8tjd7aUTNXHqyx0w93voL6nm0wMAu6OTaJtBkQgzLIVzsnP7O62hZrSDrM0pAkHcUGoCzYxzh+kjdy9Zht5qeWnqVO4pDjKjpcEJJCmHB8TgNSbzxB3h9LFlGN+MhBR1QiCtQA66VTzyQXLzvbiC0mrmO+A/K26rjdbKaebpJp8dHxxix3Ow1xm0SFUVyjPKHSUYtPMDovf/++563b6R+ttqUyT6pj6E0LaPZ/XgS1/DcidpfHaNXWWw9gdAJKbKZ2kgK+Wuq1atz59JX9psYUcV7GkbxfJ3ULKfK7aERmdN4lo6JWV1bkERAcJ8bmhH36GjwwsUftEuSByVx/9133lVyZ3FVcsa+1SckTg4Vu6vaLeqk30HhcNY6QtN1vKnYUQNSrX7rrQ7xUa4C/Z1e6/+1XjfbwwJ2yFwayTs0c8G0gmHxkfeeO2eTgdhSzkX0hmdg3Gp4SXJ1RbLuUQRgVWV+mEh5G2WnHubImZWBoXhg1p56HsyD/ym/nkZqQYh7J5jztxRqMqfTieBk2NSTmijPGaiJYLp0RODVzir7B1NvCRVcjOrES0nbTdWqBOwqURMja5h0bVyT4MbJYPPQbIO3mK7Gad1nuNkffGJGgcq2qN0gXVKLCzm/trGwoDbY1SZ0meeScL5YVMy1n/zsMWofXzsVMS+ftMgtjx6VkLp25VrcbQYnxzMwiQnVNIq3l1cFYIFdeNQpvs+uh7bidREBZIL2kMu29EMgPmV4f4xvm9jEJGgvQGiYaCJ9Gr3Ctl8D51bqNj8yG4+Wohg37jstcpEW+Oqixn1zhhZNjp91i2rMo0PnMsQCE0r9UlwUUYOGgDhoxxQYQjsTwQBb/9GvNijN/53hz4nyCTEtRGyPDw5TcB7WysCDPWAobVIsU7uBwg85ByYDRtANUPlPG5mJSCTcjpJ5MDzQnvKo6G8+5tmtqC47DbNHjXAuhfhxZ3AALDqw3WThXZfm+CA+AnHz57DQs/LSa1/pWh10GyEJbL0skXKJOWGlW675llvHNsnHlnIOc6DXvYFnEMkLOsOfcWb9WC9za4zkfZb1eDjA7v3VNNxMBMGDqc+a7u92CZa0YB97JY0scGEwyGUkRHlW2EZip9pp/qzL/tgpiuoe8VZOW2G6ZzuGYy0vbZKENQfNS711ldVlahQJsaCfSro8FHNM3HfSx1+fPf/RZf04IFNH4TID5LYBEPCq4eZ7Pfg31cZXZkREf31nOVCjmtZ32+Lf99FN/7uyjahJilqqDo1MNIBIhtvYDk4lYGqtKQreH69RMk03IC7aWU4nGxW5kpVXcAMtw1qBvH9u8WJqYIV0lSg3LJuhnRdsV0Q8/fqw8AqCXkrJiIINK3Sx/y9Ds1TjAnMniSrFGg/6vT6WULoY3bZf15VdpcY7btswwlZ0NAb5qcBGhAq1sJCUgW3xPmGz/09K8Cas/HkDet3yaqtYMfl/u/Ee/+GgQoS1/2bS7ybHDSwqGc1AU02RoJOa99iDhze+X7+svrS7efjTKxJtBwViBOQzPeYmTnmooNZ6NuuGJ8pQkazkUeRJtd4pKrBYhZS2hqs6aD/yaGmXNLa2VlTeZprijVzJvyrYiEugS501QI5CAo747xf28xwKPQyAjExQxnsBirOYxHa+AZnFngZLe0UZTMmaLLeJJGP7kRNH/mZCdTG6cMpd1ccT6KjFs9crggA1SdpKKH6bqNTVNsRJzZ12uzE5HJYozkpc9CoguyDNoAZFHdeGfRuMlaBYTQkg48BloBHOa6cQEMt/t4TFh42v7AKoNR/toC3gQM5JkowloD7KikQPbcj9KKaadzXr7N7HFzhcW/rKvoZ9ZiHXp2Y9ACijpiY9Vs1x/mOLP7tC1EyGSDgARElHU8joqnsJTiJgCVkqyNZsbF2tOve/9ZOMVxZiNUsJSGI1PEW32SO6e06snT/4GSxN7Ozw5nuvWTue4hoKLAA7q2ndKB7csXBHixlQmaAaWuErgj99+77jeBLG9RGSsNC32PnvpnFJHnvkStbHh1U8d2Swdm4066oLBM60wNqidxT7+8OHT5z0gkZDmFXMWjgqnTrjA7l0g+L/eHZooigW4RVMOKtFJgFVEZoyN+l5jk+6ouqGt5O7hE07ndzNMxqw+XSU6X/RixKLC6btLlQ5KTV5VenP6PlyVjWcUZKrkCb6zRq0Ba8rlQkGgS524Arn5TU/uDl4HVcpuKW5YbaHf0qjeQOU6PyH0O8ux6cMW5cf1mzc//fyDBT2zRZYf1ACzrbfobDZm5Pk0g6NK6P/9//n//l//13/Hc0rUMvZwxfLOFNrbGBR1/dmp8erQ6ObFUAphqLhWlcaI8TvFWpK3z9XsGWjOAju+AZWS9A2PU/sjyWCxp6pgaszOWT3AzK0a1j5iyAZJFbKW3RvUJKxoNUypHY6mXir1p7nCW38e6ycE57ilO207LwTbP2AsXFUAfKdaIZDlbDtA1NRReC+l9dc1CSMwavSaY4Za0drfYfsLEXBlGmK6LzRVyDwaWrJVfQtLknKL9Apic9cZBK6f25o4dl7p6EpcEjdZpDz6gEzhoGJML2RNX3ryRSUxxT3LHSJPKGMnv04hS88VfcB+/e23xl+VaoRvHmds1Qm+J61XaqsklpzhNgM/pf8c5jOcA0nN+dvGZj+g2zEoXXs0qneCusT0gYBT1JKz6nyimeoG4WiZQV0GsEEhtMAM+EK+Ss1PWRlb2Wzwj5CIMQ1Uii09rmWYocKwwf++hdHts1msOQJRQfaMw0ayDvSoM8Oi15sKa2+Nn2wqrW+CFRuhBVT0RkU/u8EQi5nc5wyboEeRc3ZkJ50ukAN+jhbo+OATqd4kCsN5KLoo73BcQyHw3IZPfag9J7k2EdEMgUn7sUf3P/7jP375j1+aScVX4cF4V3oKOAMtuXK7zxmWVObE1ZYfKYXGAP7wVBQxaBEATPLDm7iB9leMIdpJAkeiBXXi4eOc8f7ZWg33vUDlkSiZXvdIj6cq+z2NvSZfdz+BgY81onnszf6AIUcGJev2ed8JjHVrCU+O9oLu/hPrHlsHlWCnhKKYObabMW/yckrbJkwk2yw0IHxt4GRi46gh0P3OR539fGJzAbrpGJjcUBjV7ZWcBrSaRBeG2/LmNdGZTfg10kU7GPWItBd56dKiR6L3oVyHhZInknXTqIpQ2padpfRZV1kt5SnHK6Thq16oLUts11kMGe9gLKCwIBLI2r7caQHlsI7YW5Uwab6yKMD33eBvT+heJWuxhCc9gCHVi4e2LVjXogekZORZ5/f9XRHu+jjSjP3MBixoOz6Z9ckMMr8VAzx4R07tUViSvnu/zy62ms1L/XU1+nJXBnuVl15c/aIu+0k0B3bRPuMP5jqWcDFELPCvn4rRKpOR7L5+Q9edAoYja+/KQKhbK8wEAxrYCZKF4HK7xmJxPoSn3vZSUYEDX/Dci5R2hjcTakusH2BGwgRmn2ftaTZLFHhG1JkPOpxV68sQdw+l8lF/Wr0u6HplKQHbvOwifBPLDs++sjLnFhAOs+O1cDbRMbugDZDuIn1v3o7bkP3XYC+KdMZbSuZ/BI20R362MutbDQCQ3v7loMOgCmlr5ToxV3T2Np9g4G2/ZNjlXixVsoZSQm1R5+wQKrOKO0PbkOyPima71rXvHgdqRRSHDy3q2disBmuCa7FLDSo8Fu+joRkyA/R7Qfv0wJKUhERwmUAa/fDQ4XYKMJUDuXiFzP0zE1QT+Wh0DNNKfbisHkyTeA5vdln3XkR2fbVx2NZjpNjt5xAsjAkokqulBR57CGwz3Aj3v63HDg1/uMs7L/0JJil+5ljMuB+R9xgxu7TcX/jt5K36L0yj+G6aJAT1YFFt3d/dMKPDJoDuaklxBpPcDO95qnUHw3VFWyYymPhRmmQy2Aum3/rw4czHjz/kqKCQPHJTB1Pjwtk8XJxxlOPUs3yOghMPWbstu5KV/k3d20kyZ7WEm+LUVy2BWuortHa1U5y8k5cdayQ7vWbMoSQFwyEvdsQipFpaYgGNkEvTUXjCfLSJ43jUOesYQdfpJBNxL4/Jz2nCdiKznXtNt96EOZf20oKfDnSZ0xTfFIVwoVByNGly7ZgRtKXb+2zOijRE32O9QVvny2LB18kdEMf41IEbmjJP09AarM1BOvF1yp05ADyzYCy2wKWSZMWThahRROjeTcSkm+hrWUAJKGtmu8FWa817pN4izCAZ/C3auhrOROqCWsEpqDS7qcCC20+zAFMzgFkLGZmsnmuruiRwWefGgwHObY9VptTEwWnhG/JmsTI7nszonPgU7gFfFJ39czPzmLgqfJiVSA7zvq8KoViXxSsS+s/g4T6iagpkr0aylS6Zpr9wx09hXrUYliqkSWIJIiXyfvC9DOV4BdQLb7nrrXgvKR2nqczXpdGpKzvN4Z4lC6owGZ7IjmflLCicwq+ZUHkAcWSzi7TVzg1pS80OyVljGakpakpjF/ch0TtUuYTspomi8KxnpZXwrvqQfL8nulu/8bPAlQJ21UagoBJsVMtp203oyf7nv//y+2+/ld9MJtyrrjosa+QrYGG81NSNOSg7aTCeFxX7BH71g6UU76de8bIs2ASXkI0ZxVA5SLEwb6hPuQZhzlLr/ptq98AxhFVFLgOStYJCZrF2OLS9texuf1BXwx292D6kIdko4Nr5zwx+IBRgfAWmsLNQ8jaUtDQV9kR8ANPmEBa5+/jjxz5H2flpZbMVWOaGcXGt9jNLhVk73Az/FY5sjQZ9Tml462SclQKEB/mUMnsWknMJo8FILGqr6u5Q+nTCeS4nda7IYb08URh1yfz8959bHekTL5RXNuot3c11k1fS2cluOMx4puT6s+Vk3HGKdq7AHM3gUgOGxV2jWOImVousdageslUIE+ZltTeQXGQp5mETjd4MNhdd1PkOBfidqDZd/PDTDxWVEBaW0t9UloVbJlHPl8abz826fWUChjPvQ1G/4dOTAqt1KENVbxZsG2WZwkN+/b5BKFq0vu0K9tPvfwRsqeYOBHJ8HTn1usIt5qrOOEMay0GyL93Y2LgQPt0FwReiUt6kpwvaoiYSD3gfSQKE0wezvjPxWWONv9pzpg5HdYfMh3LGuRMNSO1c1Fz2jwPKslCffx3zdVFks+5+zCHtMNsGGJtbr4iarumlLlGvWGBiutcGCH9JrklQtR9TxVKGeu1jhJJijJR2z4RwSGX4O5rnLgZbRXFSe3moQjq4c2dtC0H/BYQ9IY18Cm0OkRs5zTyf+qo3zw9/7gsD/KK5XlLngKW7SGii27hwV0WuOgyltwUCbdMd62Pmppg7YzJ5THu//+Ph2heY0+/cctjOFgYbEQ6kxOptu01WTvdZEnkvewitllDFm96NgmWq6oKQ4Dalt3NTJB/4GUk7kX2/0HDAwKl011WUHWy3ojoUXidSxZ8Py4Okj/lUtt51Iw9Ju/+SNckN4bzkM43ke2uwZ43cbOTlpsoFhPx4Zb5AWHPqAfoZwgZRgOpf+yLmC9a+s7KdNoTcFSYtpPSxlUp7PSC9u0GQdXuxk1R/CqCnCVISoJFyrhEFgtL6a5mRtdo1Z/lOfBpqSQ8naxYhGNYhD6SM1FgzQCuh8tgHQVmhfgMUSxYtyS3oeRO9f0WWrewcsVm/TWc/o5XY/eE28sbh4Un4+PyWX3jzPbbmbg0QDjmFx34dQslH3pkL79M1a7FtZOqCV5Jvp9fprutSRpEYaFVm0olP06dC1O4wvVFZGfP2oCHQbMJqgXVwhrzflaZZLPqS306GJ/XdV3/uocraOQxdKVynGpXmIXfyfshs0rBe6RtsNq0nvkkwRcH3Y1pAS//r4sZpKScs3yMTTXUh1RKZQ4KpxHv1diFOdbqRIrJjOMFbyyrKtGEMnkLZQHVhjxyh9IpHRjQ+8onxKrpbJHXQv21ohFxTA7iqeldVORNaE/i8NZu5E9EKormwFvIYWNZ4ryQGQNRKADHtmUPJkmxLJK2F0wjZaW+sKHeXzp3kUmknABFjjtjqxMpgIOsWlNBt7d+w0giS9lp6DcIai8OpbL3ocWthtR6MpDPb4SLAj/3UxmNRb5g5AWTPvr8Q1N9ZdP6DIojstmso1nS6Xjd9tAohRwYF5CcTvI5wazDy0mFSLeIjPoCwhQ4443YZrZQsF7JBNs0GTk8V7+5gy+tsaOQuhhOTYq+zfIQEO/u564qjk1o/EZLSbuYBEPLjvNdS0UNooMFg0ufV5jsNHwJyVe+CCjaXZ2VP3HawlE9tV0SYJLPEBSyW2hjPBPdurxfSHnY//Nk/ojoMycoPniBET3GmasU8gsd/5SqQMcF1xmeSnx8K6fum2lRcZDemr6s/V9kH8d24KjSkbeElFitCt9wSqy8wnTNkpjT0pdG77+U+vVlCV/C+7x5ykpv7FlxhHuCerXHrr4CP1cR4evL49m9//zl/TQnB6w5XFsSQcNdYW3lgqcGVr51P663985+ubzOCh1hQBot6E0QKAcNTZ+UeXFHtPWUU20Gz0PFW9y4y0fFKWCaQsAxiIQWjqkCSAYyT7972naSJjWFg1UrFlb3daebZFOd0OPCSVGC1CFI5yrV9L8S2KDeL6Z9bQdvgMTTS5jHxwNQYG5abAvOlveb8urKdWEASaHTUpj63VTmXL5YwmoSfy5oU7TdusybSVRprI104TVbZyaJZC7jzm4ELTUTFkqJcJ0Z1MLqYcI2Xko/CGuHAqiZ8sm9olkYc7ZlMQbrfZOy1YJ3huVvihC9IXGVhVHKUWDADgH8ntbmpCfNgF0VmhzOZ8X8JXRYQzS80Bfjhgz8eoic/OLetAEd+fXOYZDJIm/HeEovqXinvbZ4tXA4DczM9FlW1iG6Ze7yN4cqAi8K8Yilj0AokClvQ57T+wp2UWZHfQc5gHpY6c05t5dcsO0e9YPqWdyal0MJ2ocom/f2JmzQTrCXmfJjsl9cvrfUcURPBpiJBVrq1tYWV9m3bOVakTcd+km+Tr1sfN47ceFLSfcQ9sx25ejHQBzW9PToVMUauqDfx5iqpWuZGPqoXMY9VwJondr6o1NvZwn3BYsh2oUkeprLUh7chWZf4XHJ0UO/CsXa/+X/MW4LzXhEOawpNfeNWLqFv27VfRpqKg5ipdrLG5ZiTilVgUU3s+eR5bBsRuehziTawbhDlQ0/RAytOIHNhm5gCa4sJby/5XQmYZoG8gEUZLtkxEjatZU5yn4kkKztkFylyou3cz3Z0SFiRzB0x5+aERVrvbn4NI7kMaZ/B9HOa3GyqhHaGB6vXyDLpTSAPGMeSGwqem9Wc6QlpNC3wD8ab6iqJFSf56JqiiOudOk874ucv6hqkityWQFoC3L4Sg9lhbnhc3RzkOTn8DSbR6eWp9NRp692Ks9fDURNXFVNV/IxSh9wkm2Am8Cs20U9d918pMSMSePuuX4nLbfrONLuX/yCrUtm/4SdJf614lgN+tjblSXTCyEen6g8fKm5N4BfMbovK/KZ44HZuQ5OHHTsDrEhPBzRcnrsLJ2PAzyOpo6LCWxTINmfVDifjkyzkO8xIo5GRjm1eu90ybjJGSuUgZEHFSJY3XJlNftdg4Y+TjsZYaqksxE3rFdYRMYthyFqbqs2+STZLIQjbDXWLE5EycZNmxqEhMqg+Hj3AwiqP+ySkySULKYkEm+KZK4ZYww+Mec+ayPq/6+NES3o07YxFXGn9l7tZHShTRDQD7Rwy0kDMcMOjFfNo7SGkWkYmBFwsigzcMAxyS9Ulebhk20ki2I5FgBwUeYDScv+6qod+YXg0O5OB0j8TtlRAkV+s2q521D6ZgUBhzpDTexvwongWaoUcMZDZBiS7CRQuUcAWl9Zy5Gtj/BqcdKSoBlpazTyC+zFTZZ/qnU2bOnMyS9KULy4TlDindPtqY1RwWM6iXTvOthVap7wg6GTE/bbqqAEj/Fmj8NQVg2FzPo4Mq0Wuii8J2JRAgTnImMfb3rzpBs9vv/+mBvLrlNaqGNFpb8hIAkrSGl1MbniB5fnOfQKDgFLrwqmTxmqEVlaVoY33J+ebNGK2KIt0weoKPc6zOw4L1tTUhwB+fVZFQXKEKgeY9orS4uonHz2u8vsvf4S2IPhsW7ERuPoRDn0k7NYpcFJJfeI9SPZ+tcVj8CKnUwbC03TWzELbM7gy5F+c75qhU8sMqpssFmsLrCjruMQ1Q2B+n3fVi8y7AlxcYj+a9iqisRe2bsMrHG6LtOwnuWyyMuhuQiPlpMhJdWKv9BkhZNVvDwNZXiDuckNM77Z2TRAoqr3pIpmAdFMw48bvQkv0oX3ZVW8yq1YZLjRPMGJ642CjJXNhUnuw3sI0r+X69RcyhhYKVEScUu8LOhtUB/WiwAL8QTQl3hw747SaBKSkUHk5yVzU5bGNo6jORZeFomYJDPkGbJNUyu23HTNx1X5KrwunJyI8hwreFUbigphzb/l/1U9yNh9T5CvDyVWVUURh40KTeduGqpEcgOTrQXjyCsDwz9YAChfIeoFuf/PAZ+eOAVheXHXfLDRTBzvqniciCluo9BdmO5sPgVkYQIrxwUmorjm1aA6qp1KHoMY4HIyVAk1X8klltqO7PbT9sdrYMQd179AUTaJTw6br2lftzi8+b1uo2XdYX7/Cx3UTVy6+dvkdknQ11e7X0EwctFib6VVgfzrwv/23/+0plaz2a9wWLUvlCrg0bfyPQBVFZpYzu6NsdhwbIGFYjvJRxU5yCo/zhFJOPquL2j7l5f65SNwTjGmx+5y9LlyiMr7CEBaHzwoh+XzmXbSRIPCdNDXOZZJTweQmFMzsIie0Irk4FuNz5VPbHrvI1CYJfDZ2gH7zpl8E94cXzQydI/YR0EqiwBkEIXEcId65ydZtIsDSHwG1bK+iHU613ZmLUDsl6o8/fu9mzvYD2Q0CpxY2Wac7ns/aUzEoglBJExDdKkU5qfy27FQkWdA2NEmCtM9ACqeDkSkKygA3P/iUuIJMUfsaL0YS/W/LQdnc1pH3vd5u+zAN3oAtEw0w9kiWlAxNJARNfSIcdxV0/y6pkzsrCSi9W5j6FoChZAChTL6QOUnX2owvTzjattGrkgySmpvXCqEk6eVxgF1z7y6jOQhaVpvZuzblEUMCP0U+G0j9Uj8LKqY9ETLVm9es2PEzxiwaEkhS7s34trrmbPLUTfRattXfOy9LBhgz3lGwhUDD0rCfkyw3QLqDbl1SDtxd3sjpDTNHzB7qqKtPoGbeS9abacQy8wtqXNQVARWcWyA20gLxMHodsraIclXngIGXJN9QND25GRCfOcgRxcDUugueBWhuTJ1Aa/et/nOLLuovlRQAGG9AzMTrLkhatRRBn73UEeZIzuDAANxPgDPYa11dxSW1T3IEVUvqu4tp1YUJKz6+4tuTytz1s8AtBP0V5CSz5ww9VE7mG5NIKnhLNDUQ+d22qeH4cXt7gyUEHqxympnHXoYwIzVq2vYI7CQF5BXAMIcU+ueESn+lZf30zWwrg+3zbsJYrnN4Al79+vInSWvS9Hfo4lb6LPr7hUhr8Q0NpYj2pddugWHEn6r90GE4puEpUU/wuhZy/m6vLY4KUyEl9lpLhc3CpSCy5g/AWYFlvyO8Wf8wUHm8SH6KeGnhOgD7saiJZyMlT9RVzvnNmlpqHggVxIzk12ppFZ0WpXXVuyIBoJ0uF7KWIRcCR0mBZJeZPRm4v+/WgXpLNiObAAIiOWPgYlcaQJZIrA2DM9lrzMY0/bwp2t73AV0GnTZozPJdwmWal+cW4IqcWC0oyy8HGTDHBoTZ1Q9qFqk8bmAKVre/TNSNo85JfWTq0ugRYyiZMmDrD5y5+NoV2pbCXU2FPxNl7qIqCBHBveSFxYcDvd1k4nXw3NFICoDtnHpy4Z4vD41gcbSEIOjJxI18ve2znY81JQBXJpKUNMb7XXz8jIKm67R09NO2OS0DWUqytnhrUgoM3YK7aX/CQrjfTJhfUCeQmRp8SkyBzFV7Q/OwqWGWxLIC4gh096qBgOeUPQSi6Qp3sSiD5jEqTfg+f1rJLZtxEr0Eetu5rNfAmGK3hfkoOi/8LDUVxajG4Z0xt9CHElqhefoo/EIQJ8KOkIs6SfmqojrfrgdokWg3OthoMxjbz9gPH3/I3eWigjgASYD8TPjmOuVFl8doLeESsoz0mmXVM9sFm+UOo/J9f8P1KfiSADBX+/6ZIWlfZZK5E9wOmC37tbY1sOBNMUhOND/99LO52gVMPez1r+3jjx8A6Oros1GfZDgfI42ImyuuFDdYjrqZddcjp0tTO7eu3dBoet2pHNokzIOLsq/I/OSRd2Xuyg3JePVphqVOW66bEgPY/kqOblhbRPbxV/I91/bP335pVdl+8BJbwR0MWm1lusZMyZdTMMa07LCWKsT+m++649nhZBRbcoGVLbDRNJwzKrmGv18Zx53G5Pt6g3BK0laiCMn6PjDPbOiqvJFAuHYh8mO62aaM07KCr5GUvNQlPvwQrqF997+riM2Q16uP1oSNSGKW3P11DK+mOwIqAa6c+4nkrUyWFiemWnLRR2Q//1yl/JTxLGcKlF0QnpcDN0isoHRQ79ObEvePf/0H7haSWypv/Frjxw/9VWOFQ35jpAMNprTVmGW6DVeDkoFreRDyYqrptX9nh0DSe5ahYF3SHJWJYJgkYSJSn/+XzUVbf7HhFr1YneuT6fWi0MkP3RFFarGwW10KY24m5xEg9/56rV31hHbDoDJ7abLlxO+cN6/Dyk4YJzy4aVrysr6edpTUvnskycbMWKRke+s3z85IGrm+upRzNS3aAlH4zQ89yTP228+I4IPiJqDvgTpOdkZ+PNTYZtwWxc46N8RSUojj4LCHapxu5PAIfACWB4chCds0dnbxeIwhl2WT9IEpVDOJsNXi6nUHqMOHMxy3RQFAuyYjTNTdvqBT2AThBomgXCMmq6//y1EO08okXSn36TkPz1pq9dF6yGrJfJRqCB/P+93HGxgX8hWG84zU4D+Diyjn/mhO4BuEF2kGDVP8JPV4X/J3OIQAX3T7A4EYaBOO8Huj+LSGebZ2usp1ZLJ+sSU3KuborhhTN03XsbTCCXNHs5xiOyYkl0ms5OhcyZcLNueMY3UVaCVGIjsWUktlepXczuvDZ+REfa/YaG+zzLHH/xjONYNMJfNsGRFeje6LeEfvSmAv3Ebnnn8wbW18wZNYr1uBP8S6Ly/FmK/rIp7LbLNs8Fbn5fdGfEPIGXcDxrytYNLqe9YaMdg4MLABjMp9KsKENoGsLeNzbF3C9TBEZSPreVwHb4FYhHlspOSIzmoYRf2fKoOLPJMV3lPvmjac+bVemfO0AElqQafveQOibgUZCnqT3ecBDUQmlfq3Uxdajm1mF2m6wsnFVq6aqczv+LH/lI2uOgpu3MJTlFDNUzHGdK/98LKRQqEtX9xZwylXVGu+zIAyp93CbLcaMbeM9zrcoWhmK7weA3v/fX92+MOMnB0Z8DSQab3/PGPD8DStOzwv6iFrsJj6qqg0nWGa6xKGF+A6T0ZMWf74w/emmxZVzQZbnFVOstmido8KNCXVi8z9a3+TUk8zu3gW2V1vZHZTbkHnKO+5dZ3vyyJXNkSxh6ymSohAagaAuZtwu0NUX0HEiWUUAa7LSFsMbCfhPN9QsBcb9VeTs5m8fNEsikhTc1dsBQqJPOnvLciO76F/u+Vh66fWCs4yBIlmpy4gUjP/qNTtmmxn0c2/Hmu7oCxiNtwUAAF2wprBLEyB+pq3Y0HmjOzc1qqx2WBLoqyF8KoRhlr3EUHtSdYi2c0UYiQ578+Abg3bMrQWhMakGWYRzsj2hcfqhi1TW4TFwEiwHKHwmqaeQ8FEoeQekwkcYPHMOGCx5ME8KVsSrDjzz4hGxfbCRs0HcV+//N6zLFu53rIB2wA0QHwi2m5J68ZB39HcV7GlPnINt2zOcIPL+tHYvLGQDjC9MVSo40FQbcHIaDlSIZshOyE1UxRdP63WLn3p8fWkMsN++OsNfUevaCqOaK+hXyb65T9/qYXgBojwJ1mhJkp6ZlMBK0/gVVWbSw3ljlRLHQEJT7aqnRQX2pgUWgrONY3+uhwZ+CGZ+lqy+bG/25NDZekaOLHXqcfplfxWtwVcX9ts7dPm1Krk5oIJzEU+pEUIvPTW0Q4bqv1q774hmnshYuC0tBhfF6ijDYUOlW+L41qy2IfGv//xRyokb5yWjfkw1W8l/bef/6blFmnrTWIzqrPqE8IGYPILUFt3yjY/f/3nr/9sYoqoRlvDTcm4RnWTrgMgEIhnvLqj4R7QYixaiZCytQR5XfMioSrn4Ia/nSSz1mvFlotaqvPalLaC8ZqpmE8qVSfJFUaSmeqgsdA1T4FMQIVkcL108w7NtSh7W8Em0M4dcuJo76f5//p//j8IFkYTdBXD6WM0DqImq6lkx/Q63C6+91RrWqwTEGysMX6rvaVcI7PmzeFoELhHgrKDtFNvBhuNee4M0a/fpWWcGo2K+OhjNy1+AvP87brkMyX6ha/PCZSLHAmkrIQKPv4i48WRs0iyYau52Q+ewFiu5QVx7RSRncElZ5rgrq46jyckAPmMzGRT68RQ8/TuDOdTp1qOXSpGzuZ6l0gJg52HwcOYPzgF9aqqvay5JJC0PESXYn1tteSxAC0pZjlzuah9HqnnLxdywQfAd4uxmq4eZdG0IstkI8+KZyc87EIeDyZNe89Irljb5rrZ7UFV/1VmPIYnwJEhC1CYng6NOseBbWwbc+1ERjbTKkFZjsP2k2x8siQ6vkLT4ztc7ObKFclpHQNa8CXvh3kczOx+Ey4+6g3qhSxrHmo0yCPEDNgS0GMJUhqAG649o9MJPpP11qO9cdGaKfI3ffCGyWeZ0uEhwUDIRvQQaZcO4GZNWq0apek+ptgY5/ydL+RGjeUrQrLTjnqWKUFmv+xgp3aVFv5b5eRtPrSSZKHauHN8t89ct/cs/4BmTUOOg7Sy3FmhcRiszBz/40PWmjZz9/1HT8q26GEj41kYkBq/wWM/25Jh645+XVEnkprdf6118FaBUU8Xz089tJ961lMZGNVQFImZPUgjl0IHBgJH27QIbJOvx6uk65gMquqkHZGrt8wUZhoJcQRg2DrASZT3lvzLFTwdAMNxYMDrNLl4JxZqhKbXfMjTFRiPW4215sj60rfQCkF+vnSD6td//mpKvET3hhDnp+z1ejN2caXQYbCrKNCyx7jIcCuuep/7VcVSOzgDNcV+l0aBzWazqyFgqGZlnxY6HSKi/wUHvzWEfKG6Q0aaPDflZPnkivsmnEZTZ6+cGuM7p0zEr4T2Ha+Dzy6mjYLwFQBbKNPojmPPkpEJ9e4aImlEDSOpOsJsXpkSuKv2Xvm4j0RKYGFuqomHrl6yNnkoeEp48157ddDzS+HFZ7pIovwpj1bdndp2Hkwdz7XvW0pJHAWbHFYyOxcYaN0SjsltQixGQ6DdeOwwAMDsEYLCae+bQPvxl2YC8XA7ed0GUj1BKkyGX8NcIoyyYVagWHIqd+doA7Cx49fysf0C8gzzzByBMktVzXg1snABcJueHRX3JpbjoUxc4dULszEiQKKzU291lU0pUM8tf1BqIk1iVXA1OZWlEQY8bxHyrnuI2fvjt09DKnesHwyOVFw1XuWPNMu71QfjxmCDEZOCOhcBuRqrQ2wykrDd0Uiyeki8fC3YukVXXEbQJgHTLGYS3rTGNA+pGuZOshg3iLZN3RXL3Znu0RGzzCCxMEhBkH1+KkvjNjwGV5nuv+ku42lFnVhKeC5yZDTVNGFlsxNO+PLehwONhcBeORFjp7bOqivLBTvs4g1MozixxkLUWQ4tHTn6Fki6bfVGQDumhbLsEjE92xN1mg9mcSV7vXsVSwYvEWsxGxbIg7P55/mQfy66c9IfsG+TBSDtboQaQaITSw5k2ntR9JvHPesYF4KL+fTIDHCvSHYGV4fbAQcqtp8NpJ0vemUlx1OcJ1l5bKp5jjvGdq2bH4JWrqZV8PWU0EzwwNGFAZ4LkvS7QKk8+oDin7/8en6TsTOQ+OO/zTrEO/t/4a1hPBgMgA0VXF0A5CM0XI2OMvRU/wyKnL1NYXwkdSGhrJSUi6BsX3EvBA+RO9PNougeavQyOIsBMpZKmTlFJKi8bY4Sa+I1+2yr+FSARdtufYUkr0amWeOYFZh8IKTN4IhQOG/5mJebf5vWd9J6eSydDZ/ZY3+61O2PyLpKGOQyZN2ZD43x1uuwdCiKvdaQWIBlb6uN4MjKQruKL/R26O6PYPeZWUcNbPf//vy8fGR7XkYmotr+Si0RLbeK3X6Yq2xTzDgAFxfe247JdgJJ+byv5rr7FeJEMNNq+5kKCRWFU92dodkSpppdzWR/QfEQjYMny62nQ22ciGEf2po+ahjPm3fUIiQL5CkeRxq3tdMWJzW13LnbA25ChIqlRAtXXJVBXgQg4rEqc82SLVZeQEUTTpJTLr8JYYfWiCq0Z0+Yu7Lqjd4MW+MkkIhUvuo9zNJd7E12gRlqJ2yCy1ev2bizyKmv4F0jhecGuUKbMvYMVDTieXMFiKdZaiwZd57J6gKCOZxZcN2yeQHtQGalkVVFhdDoDiCxOpHca3ZxwoTWsZlfv+nV2eicRlMR0O008L1ffU7HSFQJtON4JiU4zK1AVv+6eHlmT/B4qS393etMbEc3nWmOky1QGmjGfmcb4Ji5s+90LeOMbgoR2GFRZX48X4BZbieeXcitGMphSAaeKgb8YzpgVzyZc7JRcsBeyjK1S819qD3mU0oykdt5TmymY07r2tpX9OlWGpVu1trrxlj3NzPd9Rr2LgPBsRXRM52u3mrIAL1i67XDjI3bpdhoDbW8MJDbPCWF4f0/qhjIl1uSgYmSsKXSSO/sl/zxTM2od9rLEUOBqApnCeCm2U4vWyVAslv7TJvWbCRXJJc+Bp5iu0rDZ2IwaDfhB6iTMQCbbGtuu3xFIzxbu8wyLEeHGiuP1jeiRXeyzibg82JOG6oNrrtNIKqEb+WBoXhL10UD3Y219KeeYM7dzi+zeZepFIoueIrN95fX6HRrHLCsf5NGOx1LRNKQdDflcsRL2519dO3UQHhzb8HmdBEpyDI1k3lOjf1jKfm2zB5aZC5fD+irh9SdCzZXrMjwRNAQCLLdTSM11wLqpp3e89VkexFxAVv4PaOFvyVuoSn+zlY7d4Q75Jyommzu3+1RdyuwQLAYadVSCtgz/AVWTxHpCjMsT/YJ8F61NLE99WnSf+NPvqSC85O/OyALvzs1fd1Rn/ui/gHETuhTgTKPfKreCOx9DFTVcyeQDE++qJGwWXhp1U4DnRcRW1m8U2Lvxlf0b2g0TXEDZKa5nTKW60gfE4ZnK7wG5m+//R4TZPJ4J7XqzXeUIT/JDYIz46/XBTsbtY+xdqMOsGdGyk6WVl3QyvXG1Pt31fYH34Hz3a+//d6ZATemlxrAkprtona5AHyjo51DXleSlceCZRmYjfG68CzGhbI1ySVLZMtjfmbc5aj5diMlpzflJnZLjCMNgVmbzAa+PGFBrMk6yH5EKddXhxZrIYCTcvd5RnrV1UntzXc//PhjhfTHH/uUbPwkWW+viQGZNhO2jMdMzmoP6s2O9SohTqLsanUDavnSulIReDvMMHmoU8hP1E07AlXFaKSHhCNw+FNB8kww89em57yo6f7N+gh5hti5O+QMqAVjo2LF5NlNISttm3ou/oiYNaQMJaTA3et/IXSamZVClWrb6DV7Nkcqji0lw2K2feKUfnezGr5tODoM4uyWZ8W37SjOvLR1SQ8NOnvPmrnB2WQ2IBMXcyKVtg6b8BLLEd0Du+ppv97aCI/dctxOClEwGNnT2et9IJivGddMMcnKoul72Jt0RDO32c1Qh/BNLSwois9k1Cqy3YXNmdNJY88Z0U3EkCHBu9lvM5dhetuYGdQ8LeSNwCAnScWrE0D7wZCpDZKzKoDaZ1mh95SIh8gtfbKGNL3MOvGr+TXhoRwZHm0EwFO4N9Lsu8Zrkp3cPqUpwr6lJRHRtGpUYOw4DYzV9vOUl+UV8WeZ0Nwmd3HFQ6pd4SQgwFjbQjAgXYsm7H9eNgMWnNU/X/Lrt40NTyT3I+dHVCWxQJKrZbdv0yoKcc2Up3WO+QS0cA1SW17OY0jamER+LGrnq2Pj/JJoIjvwdVzVy0wgow7ftE1TjCiVeqooc3TdDcY/4z8Z2FZ4+SSTUQ8P+XuZ/qyVWuuHVeXdp4fhMXkFfr8eGoyiOITpV4xLoiUI8O5Wfoa+vmVfpDbnhqNU9MjcLR9L3vvdxzAHZ8+PTaEBjomwhz+d8d9ODXf7YDC2UuGPjvMBwX7X3x+hTDs8tb9C7eFFz7u7E1SQafWvPWMcDcJOLRtj0UFbhToj5Te9ConWCq3muhO+r6I/74Prs+yuzEPuA6Khy5IiFMzcsGrUHBW0/JmwBjRojPYz/LUU0c40JsNmxWAsdexAPhjAgOOnkLvNmVYt/e5EdeoMp7fi1JtMVVdEgdhxSUyt/tUhg06oKeTryjzrhlJDeLNNRnYLzXKzoDZTZWBONpDjKGK57K6Hi4c0lEhmVe/rXF5bvlKEY6cMo6OmnvS0hPabkgcmgGpsTx42kLvOhD88WJIi3Ha8Qens4FCYtfz04w/5jUkkqYj773UJ5H7ZxbzOHGMPIuj6b/x6v3mjPHHZGFGjGOedeRnplltt/esrJKbtLn4CIWVi3hnbbi9lKiQsbWuntLS2ay1aNbbkqnnV4jGYXEx+otmUlMd7HlOYobzNwzjJeypaNpG105HkjtvgPC2zI8XZRlRrnVTmUlidVvuscyS/IpVlFzZV9Vb/wseG2XCrddZmBDNBjbZT2e9grMaotMV1Mue3d+48FNrHqgciq7VeWZLCL7/YSx4n4zOpG/UdOn9vWti+x3I649bbNnZkgFUeaC1NiHL8tHOTIb7Oo5KZhNeKBJOhzZaKyFP/as2G9qwZdEOoILXLNSnIZR+ltWCDW79DMgEOD95ipExw+cpjjU3vfR611T/BdBtH5pBSaQAWkLpt0sCn5sSaZAHPWj+rgeGf8XpD1hZzScBminDOqvHu8X/+48/+XHlFioCNyt4Cnwx1Y1yMWV4SI3ZZXyfM6BAs0sRkdueyyarLFSucfE/dafGGDDANBI4MFlNBo4PSJqvaszUP2UZ+5utsJwvbcf38YrvAsuf8WFfed5YM+yKXkb8sp95sw34gx3w5yVEkd4PgXLC1jaR7Nyazs3YeD3PCRVvg7OQVV7UV64UPbeoScCl+ZaTmLFDQryTMFaID+AbgweuQjYxMeG8HjS5fi6ImqbFlh0A+98bcLBA4UwDO10XZoeWn5N3rUMm99Y2p/UwxmjVTjxmKh2/D4HGlfxCInuJT3GIwIKNmLRQczqQD/U+5RA37vFY0u94drRms/BPLtNdmou7arOZ2JiHcgEu2pc/4VVjtnHA+gHa7ke3NZvIwY5yhZ5NOVFwYFhb2crqZblQehp2r6orcfAoqE6gcVKZKTJMVwywX4KCKARkr03ZycMwXncmtt17umd0ZSVEOUDcL0rKKEYLZUIqo9Oq0lMccDWQF8bYlIO+45Re345ARrupxzrMAafiZ5t78/nu/MNS7//UnD3nikkVkrBgtdecwABv6XCRSFgbJb//wlRlTCb8NywzIx/t3P/39p/cfPrgfmcTGb+M5hcTjWxxC2Yx505/2rAv2GIPcbblQwNUkMxfPL+rVxl+3V1solLiEWyo+d1vzWWOV4BZUEVkEmObcJGin7gwOySK+yDNiCC2QsGHGBMSp5YM5sd1E0q0l0YxZak9dDlYJZ3k58pRFNpuFLWsK+0hP1HyFhBkR4RPy/RbN0Q6mwutHIu4Cft4b0DvLBlGRGAJEMlLE5riYfiGP8nlZsrNUgOXNjG1MAgS+Kc5fqxFouxuq3MoPTowm613fy9Ett2wWzbh94AlBMIVVYjeBDPyyVqS+nyScehcROv0Y78HAcPs7eqrW6RDJy1oGn9lDppsKdxo73VwWstJbeLB5Ktf8W1fNnT7JyPuexOuvBb0+wMlFqgFb6gWQkhumcuL6s3lAa4cZxYgwez1FpxY/BmYykv7eBTbO69swr2ZcAyDCtWtbI4RJVN2YcthpJpnWTz2IIpwM5GuhZY2kj1sRGMSZCY711p2Y4ZHoWU7E3I6JnJy6lv0iozE8d1vMKIKcJFyF31o5nY6YyleDh0MGhwXqnPa67B9GcqbJK8N9VNtffvj40b3zUXaoLRQmyfTRSNP4VP8kXZu9L3c9Fox547GiMHDkb7/1tL1CVdUFmOcUizXJSqjXcinsei1LvJJq1wR7sYyTbOQUbTFkjCdSBrM5LmfBr1c62zgdlOGcNrstTI6WbhTgJ/sqMFsx4y1/frQvMjUTHlvy4m6kdLVPORktBbIRkcijvdSnP3ssUd3kFpb2K3vHLXiYedULfwmTLrO9NQRUXi3hBA0s/oxHZ6gsmKSM2V3G7cxVGPsofRYyHtwYzmkWaiua0Z7WpnZr9DJ2Xhq4yfj+dWVpy5n9Cz3HO0UCPUi9mR+AuiajD7awzgLQKhNgyPdrJ398+j2VPqURvgskK4TyxwqZIJJNeMaZxwLkuTE5C6fJx6NrDtB20W2nQ40Jbatt5p6ILpa61y6AJDsjZK3N0Nm1WSeBcU9qBpyRz5T2AwuI0/c9GqR7rssMEkZRwycsaHSRVj+gu01DlwFYGbGTJ+wlL2Wdo0GSoCdM42IotsCthmgpFn7ZsD83ac32wsSGcJKo1XZ929FiOnVXqAYxLBK7wPaukSw70o1XvtrcmxiKdc64XmgKZ+fcuUz/1Q5zOtlkL71T7ZWTMmDg7GT3pj/0mcADSUVZNjzbAZqpzF1jnU5JGyB7Pdj8XMjDUo+YYOBS7JXDIie/qKs2tyFOCzk7R1MX48Nq3Y39Q3iTwAaXPMbPuRHg3GU2bx1x9y3w2mp3OCmWH7ZXZOOo0humgXuVXrdmFjaEVM0SdrLOQj8vrTnQXePBv8gVdEzFXJo+gtn5Q16t7/Fg+VVNqKr+ZTm2M90n5o3odONa+jd9JKkc2tgcgkVEZ+utO7fVVkvR9t/paw+/Zr2zbIY+fXqe4V4WmxpYW2o7x7gZ9YwcMW5TsQD3lvOwBFzcWwXitHm/EdiEa/rQUWLKJah48rUq4Xf+3m9bPryNP2xm4M/uMLnVdD9Md1XqI/uxeY8Uj6I+w+JgJIwrBi7f2atZTjYIDeeYHBVJwJFAZ6BS0eFZuDNzxdxfVu+XgXddEV1ZmLqhxeZmh8rGKNxvyq83M7zXfU/mFF0tfXyxKHz/6aUqla4ZUkkyhn7+8ae+30FS5NH/TjAZvty1G/9zukJOB+DmhKlnUUORmunM6ZtWRlxuN2ZMWZVQUZk+gJx6Nh+BWHXCfjgRAqvbvhiobYHJgjB3Y92+/sVbmb7tey1dLPHuzK/ShoTQuN1JMermPWaYAz4pO8mHrd+8PMe1T8RvWa3fgm+xXsfOxBaLzk6hSAv+tgXSDJ6FHuRvUFUf/d7kn3/0q4h/dBva1x7l9qaDePF3BlpKVlpKuk3/hm2pqd9UnC37SG7wPJNMrYk5xeKNWPQahrCFJivgtKFDWDdbtSPZBrPAs3nn1FstdS7/8Ye+mqLvRa57M9rAMLiWUT5+XUl2vn6a69znuXItTWm1CallYh+X+6XnCyQARZ3xIAcUV7sVVM0p+D5LWIR9TY3lQugztdd2Ao7icVKwfiFVWBZnVQhT+YirKhZ8PoKCvQZCd5U63G3+pKrqPmeuS2lx0j81UA37QKy2/dxaNpEWB+JZqWwFxmNmm8X2jTowrRZ4rCtzgT1JpLxOV1cnWAN1+bpR04S5lXF5bycrW54mI5Je49CHD00i3f/2TWszsDCzk5K1bwYzfc+3XH+XSd0gMJyLlM7m12qAhYJqax2/wutSARt57/f9FMlmJwbbjjrluVOAZejqv9F2dyICWWrGT9wuFyvdNOPzluZLffa69Cq9mzYYL1/K78pV9rnbSHAyGmDZAdWFugFuW1V0CJ3LzpA+00uH11g87UfwtNPpTozSN8GxiOelxlxdsoZfYyzjZNulNcaEKmVJ0pKW1Qw7QLtUvu0eMJt4lum1BfMEJkuwbOZBKBs02sEw5Crr4WN5OxvvC7MWVbrVycTSm9gYKTzyGzXthPbc9x6ZNzg1EsmLq4iUfWP9vvDnuuozfKbb+0Gw82q/3k2Pz/IrRnKrPpegTQJ5392dddXbYfDcZzFGXLFDtOVRGYOtpYgyZUeCYGzPq6iTrk6SGGladhrajo+hjod6g5pWb80hBdjccHlRWSzV5JrcHuNxvjsrF/HaajExkpDZDs9Xiupi1KyvFyTjyJDHZ6I1VAMGgqkArnTIt+WxbjoF7W0NTWJx1x8P7q/4IcrSYipGx3DwekYO1gjSNTMZzq+CvXH+CBuSuQuKk0Q+8K265CLGNvlkovZ1X/qwlN8OBLvnVG92PeYz8YSzs17AxRbnHCiEM+VVtIpcOvgkSJ1rDAA3qGn5bCH2Bin5IOn18Xs2jJFVi55pZoojl8S7F5MszPPK8LoTbqeNCrKddBxpOImn/2TCmMD1PXzWtCEf7jiDcPnFzsqUlY1uvh67yk/3kIs7s+PKLExcDfR6YAJ0u1IUKsCSTnICr6STl4ycbZ0xYKLop/8VeXo17gbBOMrxKj+EI9kctKE/Ux3IigEV2o5YOHtLKCIge0bLYFOs8SioJnTjZRjuo88J3OgqiuWcW4VUHaDtCS1V3peW4zKiFYFSzclODF32V4M1JbqBQf2pZRRrFwdUvuNcsjbxanCQfCLuC7WI2YKlMlr9jwl3iQqShXnY2Hj/rl8OSyfXVywLpHRIaWLtpEQLbr+xnl824WSvbfvDNgAdNqTTqKeZhVfVQq4QpgGDBqtKpdZB1td4hcXdySBzQwigTZpzOFO3FNi0wtudfPprF75un3ryfblhSKKrIfU//8d///33Xw2h4GwhFaqC2MrfdCuGUQmkibtQIC/kwPtk4zUkCiSzKTTxURkVpLtf+OFdv+XcDd3NI0DVWFdGzAVEHKcSPpbD2bL4bQvEyIEZXYdkiKiqqG4buzDrom6dSms8ik6ZpJVq3vzs3NEi0yyBjATiPk5ueX9Uh0aMT/FrWxLSipb59gTCHqBil1uRboJrJ8AtocHOPu/cNxxKGU8rs0i4Cky+2BqjV8ZlgYNGIk8P0b0Vp5oxIqL32y9B5rkqF18rKqtnZ7X6x2XSe+7/SKv2WjXU1BDIY1DwCtDWMa23/GEgH1J98usuplp+8VNo9u/1jEPf3oCFdNlBabyZQ7Z6a2Rkvp9lpL882qfM2UiGouZVUOabwn3X/MAUDX3fAC3l7csxDa256H8GmrEad8+dsj732J+U4jFBF4depcCmWPH5sJqhmd300kGWey0F+S8bwc9+t/eekgvQxhzJXGfYIixxE+yKyh9VvepKJKcDEPZRN/uSj3kgaHHVz9Du1BjKGxdInEot+oV7N/Jz/swG4bnGjDT6s9aiQRn8peniJN0tQ62M5zODrifrqUbw7Av7fS6RWDLSlUfeJTd/HA3AWu9XTZolsCqUzXgp5iuGsOd301fAQcWaMIXMaXGbGXaN1jeK+ILdXOWRJb2jd7tloRYzuj+nYKbKws5ji/IZQezCx/yDfIMrVdNXnesvp1fzZz84Cdx5gNgzn2+E1248dKvItVa/93XPJ+wxD9n0Z/aKQDAK0rjjHVAQehU0HomE/Meej2qZXpwTyPhtwKFIxvoR9Fgah/AZBE5zj57u/u13mrN0czUpbiX6xfO31Cm2LheT2TCcyjqjfQR0gHclcTxylznXJMGrV2mN3H0uZwra+GqicBLt7AD9ajJbm7jE8RSbBMhBRLXNZA2PhbiNpMHJ2CasTMmazTJQgRnhsBlTN6kxl6lxmNXhB+Lrc8NCIHIyl9kv9nM9K8ntvH9kBzgqqvzEV3R1T3Eva0Fd8MWBGZY5awOwEq2v9PqUtXpqW8XNiloQ3xx7QeZzHvnaRcnq5HFH0wiykkmplXrrCZPD6orxG61byRgvMSNQaWq/vLSbDng2r5cpOPtXZqHxMlRAn6Coti0c9OfuRYP3/m9kKMWT5GiG0mwn723t4Cosd1LBD49VkQ1NlpcsTKy2w3mYXc6yRjwezF0hNYiMR8AdPcNhFjWdD2I742y6njBbT8gCvn8Lf05pwmTzmpeIDGFbqslcZy6ak2ucKklqG+LtJzexYUtlJAzWOL9wMtx2yZpD1v17XLC5sMeT1tVbN2laj2wAjN4cpWQlvZtYVR6CYivl6viYA5QrVZ7ZOjf1mGGNeWDHYgu4nTa/pUovmCI7am52VKM53fxuv8GEkeXGWtbl++VXjZo4VuJdaN4vrAjHVq9z2whMpcb9QFQgbleEwO0Wyc7gY9ONzOlnAYP262MtrRzur99lJEWpC/wrK6FNpVVAo5L84ShA7APZr/a0Uw6ju19ZD8pziryay2+iWcS66TKV7BTybSEEtXLfb+J2KB2U/Jxw8qc+BoTWtom7HjliWhPO/WhwtX02Yt3X+bknanQdVxm8yqMBIKBVSrvY4XtAek+hAth3DqQSbzxupqurbFQbRnaDucdE/vC93Vs9BmT3UawOittt7+wUaThzF7y2djI/9OqqtX4RWVwGIOZ3kkzs5c6aNd7++L3vvttHEJssspSzjHSRtXAAZnMTnDz3FxusCo2I/XiJu3AhbVsHBUFUDvhHFJJUUWynU44csOg3CJMKpNddLvpseY+ddFiEn3/3XQQytMOMDieurXhU8f5V7bteynCc8B2214I6kd1Oa+xwekYu0R0IUb4A0LecvqhDwn4AqDHe7KjSOFf/hWNyMEV0UhRWvSWpmSG7ydhxvfFwwt6C92jBxvI8Sz77kdyX/z61WuMXXxVXgp8natyS7z58JhbiZYiXy0A27nyQM7zoD86idjEg+OoaQSgUgpmg0bQiHPY0LGENg6NitGSscGqa67odusbDwYp51w+buwSy9PqLcrn/NmVxdB3wd2vNNds5HUpLmXamDnPY8tJhFdnfutvlo7CU/TkmvEANLkOihiKP8J9+/pGQKNzVPK2OPnyMv+eXVfDmTlUXq9/3esXRyd6s8vr0spl+mKWWp91uL/uD6SWqy39eqtvsrT7voUHUkwj/LoYLWnHOzwI4h3kG837aT+zhTSmNkxVG+5AoJIFJcKO7Fhn0QEuWy/4CXooToOIyVcnldycL1bXzcZdJYatTZt3yBz6ZeMzqMRes7K66YrdFpunapUpTUHZHoEGxcZS1Tfsd+VFaBvEeZbxCHCROdyiQr28+Nd1VMKIwirmGF2Bvfbm7IWDyzFFNWtfvOelNHXOzk6ZK1mcZ6xsjihkJvbZmzdGfn1SCFg7YyYJjQDtRNluKNtDnJjaaTpMb3jd9FteFvcCjp3r780tTYrGsIM8kLA7hKDiBbtyotKYCjvwCku/nSeiGRpQ2EHKqM4UBurHQ4TOfZQ4hoItrs26v7fstoArABLu1oDVrmJ+zcLUdpRcRDAreAGHsqO69OumltBhuygwGWYqcgrB/zmtQLUt049GyaHEn0V7tgmpE7I95BaworjRwLS5Pt/faloskt+/io50Kq2D1WXy/ChvMGo04kECJ0rtvdUPgzua7S+VXrptV3AFkYU4zcK5ze6sPYBZQgc4b3XFJpVxkIO3eS+VVCFPDugExEgCCp1B6S/+Y0WTBwzfjS03dt5ODw9/h7Alnws4UuYiTenrNn6pQXVgOb/u1G4MT410igNfOoCyV4ttZN2Qmi21iCaiSYjCxXiPzYstew7Dt/A5ho3gPymZgqYFoXvLYO5z7qZ3RV8iBdPDqzU3WRgyQweg4/2RgsBJ7ekvDIp2TESjjC424/10q4op5ZEYPG3NRYzJ8LRnHjEoz8fIpU3P7qihN6B3bGWlv6r0Qnpp6+NNo3iqRpyp2vrNLRzi29mthzpxjMXTDGA+AGVqLYRC2hwcxl2zQ+klmpoTSzpOM1d2VY24yA+nMPPwMg/T46b9bNaDC51fuamq3Ecugx28U8RVGUuxdgpNC2xxwBHLWvDV6Nq3k6tZSEgmF/F2hhDn7bhB08o6VTa+ptkVYx7W23wjO4GWu9gANZl0x1vllWQrcNAVhFF0yRFc7W82YG10F5F6pQ+z1qI550QOKftqoABpa0318//jjj2W1HYuMbbVvIceCwuqmVy5pnX/Pf9t3yHUyUn3Fh1obX220nmHWfjXQigEV41w/Cfxky2lypMyUxm9GGhSQDMJOHjQGthdT5PJMZhVEMYTVai0StOAptKReUoWfrJu7C6UXgI3Vj9/3K7Ce+S60Vkg9e9PlAXNO5M+z8h30DJj54pW7bJ+pJG+Wyh2CSqAcIKS0GS/OHFou+rjK004PtfUnSzz/AF2YR7PDPjnpI5FL9K2ENlMwuWn6bIWnw9ytwBA0PtTqAGxwuagoUlNq2b1RuYqUtavqFHPJ/36g2WXYEA3Ou+7s9mFCDPzZXxDrNSSB7Gzj6nbl1ev3H1t5lMfsAVbKsj9W2rHM2XweiJa1GUkDS11H2EvLQta1QRG1VwNgg1Rvk7s/vZTG1sFpqJDmmUysNb1U9hJZRd3duJwWtxmWVD+7rM0kigLkERubbKo3u8nr7jJ73zseF4VMXV25REzytlWxsk84GCnfBxemmaXY4jLLmFgWOjc8OR0/vGFgjAkss/afwY06qDuJaUUzUneVm3CjOLO5TiuxvcC536Izq6T+NI5fBLLIY71XCRk5DLWNAcMw1QIBiJEOzbp3cu1y7tieVKQl0CDyq8YPpTqcmfoJ1Swolf0wtv/PNSpS09xnO02klxK4tyFtoYcbSzunzKb98LpeC+RsBl7JqI2+pl0V9XlgXTsfw8/sM6u86WuCUwzU3m7XQrsMl7g67gwSwRGuexWTQ65Uk3+ulLrsfH5vREkJcsKvy6RgW6JpXH08sMdCsiJvIOz81PDLcvt5+NAf51IwM8jFhltNm8wTqFQXUPYskhxkzpnUCNoGCr81RqynRs11Hz58LLQVzpbXhMxy+Wp+g71Io5odF0UhXR79ue7+gKm0rKh2rwxWHNjy3GGdAxbPXBfC1FVRP30vzd1L2t1uazWKM6hOpmGyXsoyoK2fDqfNCZk137uOKVZF1WcSCRSTwfD2u98//VEYiRf+tdt/TRDJAM1mMBoFWRp7Wlaf6bx4TriPULKTaE+M+cVt97l3bg1DKmrJCejXX34tBdUG2MpW4MfNmDQBAL0JrcmvHZ7x7LqIZP/2YQDSkCrWuRCEs8ksShXl/G79ndWnvJUAI8zaJmP6Ei3aZydn5s/V9BSIPosWs4RFQtsmHzUxFG7tDDyCTZjmH3/vb8xkgNxwsb4DoQKzIJ/pB3ACs9D+LdKIF9w9NhyZW9VQ3Ik4K3UnbN47Ry78xDQ7ip9M0VnO7bCRYkQnLge3MyxOK5kVDfuZpdL+gT9iDRntaEFaZkcoxTUtxVBxPVqCl1j2dGV8hfEo12qGN9snvJKQFLcpGhoW97tz5tRpOLS1E8s5S1F5bxqs5QJJYCFJ58XSjv0XknsHY7ADdhSQgdPoBgMBa3sIOYNmH7HJ5lYYXXqkaLqZwUftkryJDH3poirjSGLVrButrtJylni+M9DWqCyqEz7Jm6A36s5xcT0GC6Mia0oqhvoEjBbWeoFqtcgOPnVFnl5iT6aF1GYh0qS59EgeCrLSG+ol23XjPlgsIvaZXfKihAGNdiw2sXabxUROibe3pKbYCbtDLZSaWUDPRr5yNcsR1bmMY3UQKcWYhPVoIRNJuK1pzm34tCu4GgcpYVW1oYuUeQkFxBsACTf13GxeXfa1Vp0c60XprhNWBrznOtPsx8jSF+xLWV5qC4OIZNK/b75qp3SBFzkzUGoUvP91pzydbFfsLvqbSF+TUI2m3WTQUkTuG/ma8+aXA3VTUjQwpS4hzQnvMfb27U8//+CD1PQXAYqi76ly3ydQdmK3xQ1OK4MuFL9+/aM/SrpnkFoxZCqKukfVsiSJCBGvz2f7FOSTimLNGWJ5LiyuEmMNUzseUcOA4ZQkfVtvk3Lo4uRZV331CDhl9aD0d8CFDY07SZ+LY1lXbCndc9f7cmSgDXYChVMkjDEdInQBZEhaKiXTid9jG+vVXrdyUrSSvl+oq7nv8t/FLeJjtVykyzejLp72U4OWiF02hZSdqi8hNZBaOTWxdPAqP0597UyiWZexuo6KMQHVrk+4a6/xXmBjhyMU8LKqMOStZ/IR/t0V9gV6oqrlqZbm3OG/iw3uxLwtMzeZVH1h3UgRFE1rCU/uJdD3ZH/u15p3Y9syblHD1GVDOvuox8AsmK0hRkPALItLWhdO1WA1BndRG1MI2ovSCn8voux1WunFcZuL2PV2g7O7sEJ8bafugnkBqZmytbGaqcjPAf7SP8ZehwXXD6TfeeKIm7+sPmPt7vh+6yAayXs83c6RNI73wmBtHBWCQaSiFv7I0FObkC6EY08oxRilzcSrqdQxLMHutki3x3IkOt2r4Q4v6TXKkxvqNwpc58g9fXz2uP/tw8N0/93dCmKIOjSjY50w+s3SLvsJKGwJBaCGDfgB2ajG6hNvwqO519W2QPSlFZBl9Vm71LFKnoc6CuC775oNejP6HMdG08c3xexIQvQGkt3AJ3XbiihvFaHli7n0hszxn+WmMQ+KJF54eTnvGd396Uwb9UWWgICydXUvhIW/goKG35BsLDcki6smOYNHoPRt4JoeDROZ3d3uMGhOrHWJOjTC07lZ8WIMCTtBrHqDuGFyqeE4a7o2diygm81YyIWyWr2l5XyhFPnKYz+pSOvuOj/xi4ZM7uaLuNK8AaKdckXlEnG/KzX5qWBQpI+PRMO5I9Yc3fwfKFfsub6EBYL9Ae6U1IkpG7DN2qK231ElVxTD74OXmgpWhDv1CxmGfTBFGtqz/Bh0oWrsOFS0ekfnuF3L4t18tVPSbDBbsnRtgm8ncpxQdtXaa8TUXaXFcF3JZ5nx2wRiZJ3T/N7gmoApo50jIWwYbCvUKwZBVBjmXHLqfLCJjDclymliiTTM20dR/6axdvBymgGFx5CTka7qvAtj2qylq+90c7H7RNkJ/No5zw06lNamiyuqhMhNbDGQKYQUNxroZNcwNwb5mB+yZqpWQj7qN8SxIezXuZXE83+BPWBW9lwEfSm6/Q4SplJHRlwwGD71LkyNwzmptbcnZeWoLsDABnd+74SpF6/3AZNEhIktIS8cJtYYiZUCWW6fWyOyko3BDa00zgcWspHpUY/TXD93N9e47kWVJ5UXrryb0O1hMZW8K/1di2NpW4bbVw+ApJ2TNo0WdjXdtGu6XzEF5LjcCExtJUs9UVPSDO8ZQZFntHR2WppfRab6CsSHyVXVoUIQ6SXmXgM+T0rkwA2nGcHNAGbzHBa1ouYAqKurAhr9NBSJ7gGDfnU4DMdhdrKd/xzdzFVLwDJScfWeLvyrjMyjXms/I3CBo2iDHFPjnDVUSw1ZdMjhTc0hNW0N4QISrRp4PfAd2izidhEVW3g3/pxqs9MSJgAb3cQKksxO5mkensZDnDTvgBEjMC6pSnBTQNYl5eun31ujJ0NAAFUdwWwCzEKn8Irwbt7QNjbEMuHGTGfH1k81FlfRZav9tj3lAk7qz4goP3oNjjD3Su6QoHfMehtjYOfvue0avCD1yw8C2dRp/toMHqTa7KOOfcRmpXPPrnzocpqgZ5abqvIObc5N5ehJraCqjSIqZLita4ErfTyZbmq7R4pbgT3XrrzXPr/JiL2S+/rl57/90H2vniZiaGzxEs5dP1RXpczAFGAXUZgISPQDLx9SIGSVQDPCYH0qp3ife66ir7dMLfDEF6zHjUK2bIyzitLgEgJmUZJ5F4305z9GcfXiMLbCKLYY+dP+qNpK7oUqawzdNiOh6LmZ5ajx3vWqR9QyUBhOJCoWlG5tQrHzotOh6S7Xxd/1LQ19N2NUbNH2tQSZK6ZlR+WUtVkeY6IICG/q03vsMRURS5y/J7pgR/IEKob8KlcxZLaJIhC0x0rdxpaJNKI2FvoGd+dOvuSmG5wFbFx7XGGZxMnko6fIMO61XlvDx/VGVz0F3iFrd/pEIMQVHv/KW9XOgK411q422iIZz6vShFix3aUjAhWYmTb8xmy+2u9ToY6jqIDoCsEXttbbJqEBbfb88jlceegGwcMgjzUABp1R7OYLJLukZ1GhZhJU1VcIxlNc+VS5aSQZ8kmis65nFduQSasNJxX+lmsdtpvPvNXeqxlptsuzoTofxRgPQc/y01i+TFnyyChS26kft5OBr/65cEYLngs2GfTpbhb3+BypoyYFk3OreXdMFFg/waAKYXqSJTW1H+nJrALyrIv/DPpvZ0TW1E9ajKwvSzFBIC1OY7CjwG6McERFcDG7ABm01U5vZoJHy9E29jZFxGc0knvkdV9v4nKHDFvWkPZcWPpu65w3Y5QKEDo6mB0BwxOVvjiojxc+/dnfnm0/wUKAE/kPyBxm5QKt62D3mk3Wt4JSz6oDBAWDVTHB2mPfiz/JfMZMNkoEC5iGPaFN0g2H0Ri9Jgf7CbXYy1cBjN5Z7LD3UbFEQz77zJFYdJur5i86zVi6MjWyAz/rZRNOdQsQCYU3nEXeL23/fjYbEOmywbnYhd8CatDzde5uHg57xqrSH378WF1At00aNurlbmji7JxuR4UGQxbcPAc5L1YlA99LZrKWnUVxVz7IsE1G+yK7yljzPJzHM/F6zVfy7JnHDP5Fh4Q2NeS1Ny+1mCEytgGyihoh+34U84A6UTxVXmH9/PPHn3762PdcFH3nF+18bSBvsCCwhiXrcZefwj8yL56FnNeE6+pdcMRGYHYEB9bG/iHXO+E6NuFIgP0nMBhU64QKe/kuyKwDG6CIeAomb0PtlNCumg1zJ6FGSLfRqhXsZMtMpDP09xUkHTS1PeoZeTlvb9PQIUNHqUorT7UXZ58ZVYk0DsxCXQ7kKW+ZSj5YN7RqkdBXwg/h5Sp0C6TulHoZjnZ2mGsdwmo2d6N3LWQVYh37nr5DXrx6U5jy4qJ9wpNxHy7F8CeU5ww0bCwmzJsmsqILfnYKo4+SF4uhIi5OzQ0ZmeuL7larBS7q2ZlgmVKs7+4Pj5saGm/u9WYgGq2qS9dUCoIem72Dm6HO+gZPMgV+xZQAm1hXgu1kooMEmyUv0NKejDNcvYX1TLJ4Q7+PVtong6gNZk53I6H3rmryUICFPxab+C7mMQ86lGCYQY6MS5q56bJ/BsN2ILO+VYh5VAGPSC4rxVsQL1hR+dl597LTWvGyTLh9H22QWZ1nod1cgGGiO7wz63ceeOs/ko2XvG0qFLY1qIwgsH6Rph7IiygJeQfmIoq6xFsEaDFklojMKCdQJ5w5K6SWo1ZhEw6eUrFkKRIA1wJydH3Zr6BAlUIfCw0MtNm5PzfXnNXqvj+o2ecnxVhScrUyH+5HASVBhiU2ZHbJGj9MVSohZ7NCsvoPzBapoeghKN81UWBBIBZnKuQpLaazvfNrfPZUtNAW5pz6zZMgLbQkk+XIO48ON4ikbKlfl7pDwfLTkLuTuqpKpSiOtMy0XkyqgZm1Wq+K6ld+85JOO+e9nXPJq8x6y1S6FQP+7WqMxvZaeSUJ8ymERj1LdLrZLS8s71+u99480EWWK/kDU/Rmj4EhrJZs89trD3BKK8eMN1fwUloXgp28ZC0NeQ/qfgvNBHsLi74pRbJ2G/Xrm59+6tv2f8gdFUyVKemIgx7fb7FkiBhTReBig8kNkM1t8lEi1t6S9P0PHzr3bzCNLqzESVcRWwFM1vILSfFWSM8M7HIRj/I3RzmrcPZ51UWhZLqS30QRPfjsfwr7ze+iLrqQM+tUtQdIxBJoE2kxjC7TkVnFWWCZAn6pz/PGJgPhHo6iHieVR1cIRkMjsS66u2bIf+rnOkS8VG9hmguGVgkB2J0Rfld738YUYMJ8wilkBsGWwcNs6HHR/4ErfVnpzobzS5MbCyShvq2hUZUuBDfIxjRrooa9nBI9EnolSbnktnGXskFAOHiqKPdASmhtTjjovUcQFcUs0wlP7WzQy1HYLGQP2vWyPKc1kjpnmxNqAa8WLDZ47M+clYD9d+9aZRbXS0soPCHiwjI26x14jamn0C891GQ0NgmEb2FWglWL9im3A/FUqpQUdRnyYAzp9By1Y/3XD5JZDq3RMg6c30MzC1GQKZMPNIYkgq/w+uyRLbPoWM8Q5korf/QVIffpLuNirCXx6iod0S+5rDQL+aL93oFP7aoimBkIQy1hXDiMgNPr7MuRMnieuB4q9st8MR4uBp18XcZPWeHVpCqy/OXLjz/99PNPP79069E34pynjJHeRmzu4q6WEw6tuI+KXWAXjlucmoM9zMI5qQ5XFZbOEpqPkIwN740RR5uBS1P7UZeL7B8thVy+hOP8e0M2G7FhvuJtq8n/H1N3ojTHkXTpGQRJEGiS3f+v5YbGxiSTSSaT7v8WJJlNN5sECC563uNZ4CQ+VGVGeLgfP+6x5FJVIKbueKtPxUYUvPnq83is0rKkGaQ5pdPPP//8+OnXxth9L+1C5mfs+jiWryrh71qTPdrPs0LjbxHJ4kaecduvarhHVJimOzfj8wYHkAIdy+3YLROItHbKVIxcE1nH+fFFF2b4r65Y1jCfU3TiM1J6oKFohWj7E4V1899dWyVbFJN+LFWiDX3aNj5SbEHZ4JGHOJWL0ndsJrpMVXOrzBpaPO17CQKSs/sP9gBrUoF/z1bHmKslSg1FdASpB9V+k2Ln63V1aPVYuIL3zdf/+T/85zFFYdn4GgdJVs7KE3EwyhVo+5q5ul8dmbwR5L72u3Rx0TQNGzLGCVOELlLAROaaUWfHIYUVVVrYQvhKBTizsoVFexHbbLpZrQX9FjS1xABrYZ4MYekS4rzqL915V8G8zxoHnULM8WDMOGvzFDv7dxmcAv/2R3S0oFVS9r0WzkkOeQwsx27cWRRo6/JShpHz9VsLRNiSnPuiwq7KrhokNUOvWeTE0F5d1qPdWxQtYWoyzTzXVRZijsWnimPDK09hPMeviiWzP2dhKydPZnYPdqiUC3KUikKSbXepslOpoAIsATz6/2DL/U7GqsKkC9VlXcMx6w16Yyo1+yzyo7DvyWkWgc3rYrcEy4k2ym1quwY8s2BMSWmtmswhy1Az07VKdomjz+aIUknVFFhHcBiTNCukQokqV4t5DU9t62uRY79FZLTbrZyV+Exgdyc6n7HhiQQSwlw3W2M/MqBVqCIEmfmvJpibHTsxwcAg5emcnEgTf+EbCZEJS2c3RNtlTu2ZYW5olbTWIVJ25cWUDM9SVVVszpXwzEI8UGh1AXuDTdR4yUc+gc9Bi4/iOVYd64tsz0SEzGDWlFb5KIYiAEjuhMfBqEi5bmuuaLwq9c0TY5DiMJd+l+rmTho27i3Z9NkIPref5LCyH0cRsyk24/nkDkVriPmS5bunQ6EQ//LLL5/8HCk52meCL4bQECAIeeV/dQrqQXaEcVcQTjsDqkr1lujdUSkHypnKUxLPu8ChFOolxlXEGHuLFNk8AmR3HTXqqkrLx9ZzGm65C0MXmLTqc5li0y9g9GWjI7MKknLUIb3hsBZcYpeqxadtTyqSvI/DhRJXnTeWjOrDNH7ny14clmND27dI4bMYmIDJlikVnb+VFBre6ks1ugloXak7gXHYVqxtiT/7LwUllXZpVBTzHvXsK61vUyoiT/PZ2v2BlBxE7rCtZiVUtanG9EtHR7ZU7XIJSV7MwXJBjQMlB0+z/BuYozfNDFjS5f7DzaychZIw7cAbH/rCCcsyp3DpzE5VIUjPMmzKYvLK5Zj+Ug5U0XiyNDCVx6qWIVvCHE6xMBwlbHzujtkAEJJJItFfc3fNbAnmpqQo5MK3jUJ+aktIqwtf7k3zIfFq3ksw/GGovL5TFt2WzOX5UTa9nMjyVNU1bV7LSVC6OhAzG+iUxFDUiQ5nNuIsmjpa4v/dvXr7VGiOH6A25F5/N/wO3vKfxmGruf/5mAfPiaJek5pxo8y++DiuX9RgTTaeXAZNVRqFCRmt1J3lfvPtv3/66V//+hc8CvNumc5MvS/vpo3Cs3Sq+Tl/Z6YX8jYO2a5wHA0VtWDlTCFLbmxoRDK7mz2BUQNa1ZUtexcxrSDpdv38InGtQOBsahszFrwJqC1kITQGVpWkr8vzbWMtS3xvnsH6a53HeP/zv33LsXuYrtJ+1Tck+8FYGO6sHgUtdTBdGkzf3ucu+CEpkvVriOOrJJyPeZHbt6my5dWJhctuNN6WhrVLg531xF0AbikZd+QaOtduJfSzEQh6BJVAZEw4dblaPini9kbhPX4DbmPcSCxaJY1/bCa6zjzzSz7ENMd34TDVLYuxGXbp60rU999/gIBoMlvzJbScMRSg79wkr6F2CSa7ofAYfPPGif6+CuNxc0EqhOr5O4/e/va5xLIvGv/66V9gr+dGi5IDz38YtLpOXcMtMRld040vaFwi/vLzL0rv4mV5vtMtBnRK5GlYFu7Nkv1IGIAbQxvdHAbjGRgaUCKTd9ysYdOjjXIXDM0ieilgC+DjSO1T0psQwSlLlrgBXuJu7ZUuVAjiXnrCmIabzA5joc/HVrpdUBSUAzblMQTSj3/7wVKeUJILTOGwLTu9VKsORENz+Zo7jiicXLYOg3Yw8I549PpnTrKe8OHdtLciyfSGrVjgPQd3bQ9WTRug3779dX1LaoRCtpx+wgsB2tdyI1ijPGP1mfrShlq1cLB/foDyeK26VIk1OMPssYTde4GNMEJMz0gbrcXo4OGGlVYKudPZmoEStJzU8tK4Puz3WVt3N0BAMEj0lhV5Um+yP3pitwmwqbThSqFKDekjaWUz9tovrGtbyV27XX7ISX4dJzVzVtZ0spOWuI+QsO3WjfeV9eKfWm3jNlYTFjbyF3qPs/vhJw3NV3vwRL3aWWdJO9/84yExBbsCDbz+wUV6rXByPT6P/4Ev5uXzQG7ouKvprY1aH3hb63hqxOhruDo1oMdZcqwRSEe9FezR5ChX4KHXW/TmT7yS4Ewrj0aqxsx8qA/6qzUpO0s0o16dMlXXA8iMWIVMiTXsLMmCTtTTc4+sKN5Gnl5Kdn0k00ZIE77/1ZfD3mDA3HAOqadkrAUHKboClWqNnJvYCY1CavcNPw2cU3hRAqxMalVcNrDptRmuQ5dGIqrQ75zBA+YM8RM50vzhb2ehyWe9s1Y73cPYMM7uTnEqPrs4EmU4u9FRf0BYsSjAmoa0nEE4mDbida5L5vWOq4grjcs3L92R6yqWZBap5ypPYZzChuW8GzlgAqv/skbgDLN6f8AbTmmmJAfzpq383kC3s7gu62S1J6nmbI3pX/JsqYJDZbaAHYdlfBBE0JTX2DEHevHtun6uexnIO5rbdGQajJB9EHkU7XXRLKY0FMSLYKZs++SJJ/4/W3YM/BzX3NfX0LIpOZalwfJLazjz8nmdu8sKCkqGzXp87Ps0C/IEId7YNEopmi7aN+7xVyTGfHlaVLQc7HKPzjhsXS5b6guAXeLUK+uAccMOJbjyj3gX7PlyV1V3+keITjQvmga6MnBezMGGX+52oZ3FIVebcqb70Nfnz2O4HCh1wGBM8PcVUv/4jx//9rf3GmoDQLq3MRGmMa/hBuINBa/sSkB5PjXUJNwqKwSjOU93FD8V0mdVqM9r0qfSm+kUqp2SJm6qbDHWeJJm+3pqGujKYLaGdjFWUzJGtaqsOKNYwxuplhp9dW/o0Jt8/e9yScSvLWHFrQxaP9RVuXOhOdf2ehZCHoAl9QRrwicfLyd2LqulrOGliZX8UUScnbUO6s2bHeYgoY3qeBuQ5VIDbOf5CW2bTP0aMQPUusJO7SkJVQ6qPCW8XorGT2wE7ORDmhwDCaXBd20bjjRo3YiL8pJGIm0kFJkhDu9h7hfWubhf6MGxqrAVtuT57pGzj790qaWBIkfZQXWkxWoYcocRfSYkl3cb/8NMKG2XG8072ouT74hz04U7pzF4Y+98dJihLERUR+uEmTkEWZIQdZ40rlvCBLXCPO2a6jXN9zjS0Px4FCvQJF4uR03tLdOLE8kaTCd9LtgUgJWEIWdMWhCVCSFUNM+HqJHOTpP6FtPEUvhaPg7T7CLOZEVFdJfSP//7FwFz+BcRVdoS2o67BHisl3Lx88dPJWanIhOKJqIRzQrW4zqy+seQmBlN2FaEoutL7K41xJlIer2RU7XdRkAVyUW9CsfGAKf3e6ATH1mNlzLTjkcVkVafzNQ0aeuOF083DhajTTFEOjtKTjjyIK6irJm7k71NrwPZaObP96PXdNEHtqp5PeQbgyroD5F1DP9vWs3Xt28+/fb519/7hSzaBI7lO0skT2AsfU55lHUYjBaOduMzB3mkNgX1ScjJtBWanOhr30Z45aVkhd7L0rzjL8ipSsOIXSFz7KhIeq7VbrkURQzqvXDYE2JLb+wAgyJEaGQLsDajxbv9cgXafUHKYGT7zJ0jUHGwUPNly3SJWTudIgnFbY3p4NHZ5ZN6CoFAtszCTvw5JplU5BDdWpCj0sVD0i31LPa6DUWVzhisQBK7Oz/SJXNnkQl6crbjfDBWcoHR2ri6URK3TJkGaHMDlKqx3dJNKyOmk5x8ri2RBTcdQP7edWVqGu5XoiGsCnNgkhYJa5yRwN4CsW+ONz2c2m7fBcnhkgGqxbDqsuTyJKhNnnpnq1t2gdjIQ345liOEnWzEZMmcgzxSSFEuwLABuqbxg8ZrW+9eGOpKarUZilIC7THpInoj1XK7xsUvh1zv6XQaY0Qu/4a5zO/mT5JbJZP+9rs+qH2IhmB1JR7B31341LKeWra3CLBHXnwPcNc4+Niq0kBBv5j2FYqqX90kdwg3M90Jxq5lTE/ew0BDia/9DYa77HKtElhoRkI+8lugtBmFOKm9pqcHORTVg14dVrnC4NYHYeVEq/bG3qId51RkvWtnMkdOprQrmXpfWfMwnEVa/BfxPcsk0VdUaYqEdCfzHS2xY1N/zfpaet9ySu1p86qoMUF9TsVku6FrBFtXbkpe1fTVJBGQiRWetllZ5p/wNCeUi61eUgtJJIdtOvr1km89ElBG1s8bG9OVMlv8FMfM2LJus4ObxEanY7nRemLcqJ/uPJVXf/STG53bE89EgzBGTS33kIMdp7ua94t4/gBYlln6d+J6Ac001zh+ka6clXgL5jgqhKM3pEtZeOwqy3IsuRr6e3cw7JLd6K2cd+0n23iS13HWhUX9yGrVR5xlhTtysU5LeoOKlSzOjGPNeo2/7hr1ufAKO5NZeZKZvfQlTVREAl9c+Gs00ecVtjCfKa/+AamA5Z2S1STbdfA0VDuCDhv8bu9FlAYFOtkyYE+prT+FWt3bb6sIjswnxukNzjFQ22aiJEsYjIK2xXxTQ7X0Vq9hc1a//3Pimp5TlCQlA+mLm/vVDgd1tJrvWliD6E2pbG3rvYaMLxs3+ikpNjneRTd5S0+pxH/J0LWDqODxnWIxyER66FxcblVEvnmnO8kl2El5n7Vha8l3WVHSJqBuhfQXwesj0Iyox52HP3PBLriUFinP7baif2/5wLG3b32LLkPvfNkR5fPuBIpmdP3pmxX/8Y9/DGIJvEa1ftTN32S3fFqUC0F0ZDiPdMoULQ+1pGWoywkmui5cb41Y8koGrbGUUece/jSJvZUQYW760n9JqY0e+O9///zLzz8f7CClP3MDUi/WavtfffW//9f/krFtBX7u3KG8SS4kqS/6ObkHwTXHPrBTf723brJRhi1VhSfsjfjKp8FrXWWHCp4d6k8VY2xpaPxqj7l1tal5kNXqNiaM1FtL3Jghl3SBxWYuhzo347pWVI6IYa5ul22MCI0C7DbhDWemcjA7FF7ffnhsBKGQymloGG0IyBvBA3vjHaN9EZumXLueEBI4hUEeEFbXCmDaOmw1bPwA9Al5eVe29zNMMzertSvLqBtWSCsnEBu99S8C82gB7bltVeQSzjXlIkIYpnrpM8BpqVxlJuDYkBq2qGrj6W6sNxHiOQTVkTzleQpD8VKzqrS/pvyGPcfx2VjWV1Kc9CE5Eue2RTLHabA5MawVM10rvRvHx9Ncr6tH39xJfv1nnQqAulKc2ICih90LdOSUljGiasMQti1I7TeykPRlKfpwSEwbZfUtDlRO16JWN8l4yo3Nm1wfROTHD0PXlSInJPXw7mZG20oyEV0j9vGWCGTKTGDfdgXrlmICdHdjrSyR41sse4Q9xrHKC/I7ah18OdUCocjGuvU69dLHk9n47zznOT04NqCLDh6qMnWJHQTXbSNnz7Z6JRXm5ypRzJSlWN/T5EHfWSg9OARuftCLpbFBgQTYd47hjDbL1mhB8taINempj856lSTg/xbKJhvCXeX9tovENkbnrLnEdaZldnfPnTl0i0/Ggkeh7kiDGcN1v2eMzVaJ4cTJnSI2NaYwS0uYomM42iMlld1//WKRm+m4lwjvP3ywQPGDU1RcKz5PB3IyfYWXOfNoHWxcI6dzfv7Dti9QUszEaIcqWA1TXXkqocQxLJe6y+H66L4sOKPzKH56lCjI1yON0qMzPoetm5NLQk06rxbxItTSoXFMcvhuLhdJG6OuMzYy53kgYrKOKQSWJg7TqfGmGYAFbqlVDAvEsTo0JdnyLC3B60Ug+n5jhveYiu5pDUsOJN4t986XVzLED3POH2TpuKB3WcJceiXU1z1oewmhazhlXVeooe1qzau4ljqUCcGGigtNPSICZ4jbfSVUKRpUdkDKDbP4m26bB7LT+PHQYX4xF6N297T3siZvbTK3IDu36cH9Z5VTu5KGTAQWSiPlhB0VhSaplRSU5iaqwB7ULnLbRJOwoc/r2CNTirq4Y2Xvuz47jtVk4dc2Qz2xG/pmsSqyXrdqLz2y3Q4dNVxkSMTNFHnfvJXay/Z5EXvJ7B8NXCh5qGsnhSH3ymRkFIga9v9mi5tTOlsuyoscmGFe2xo+64T8EfRefejIeZTf1mv7/ce//92pw88//0KJVsyx3lBpsCjEdXxbbrUXsOmvVw7YZlv8NBoFOOHN+yHZpI2FCkeFJpG5qvHGUIrhgiaxANJzVGxKmjQkpRA8TY+kY43KYWiEbKE174oUg4V1qmeaUxrosEZIp0n6hdalGSc7YVuIXQZtuENmyhfNVFwSFpCKXzHNdr2a7JzOwWSmkx6FRglPmv3w448fP3706OB/t5RqMqAoX9s0TfP6SAOsQ4ARUiYshxMgcZmfY3X8tY0/kjtb63qKECg/blMSbzeSP69mbY4n8xhuXp7+4Sjbl/PN3ROj/88/vnvnx+P9aKCv5yrrDmH8NqrdmioxB/qRyYvMl9OPZVHMET5beVKvSZm/JUCepnY6Y3e94Ezk/QYlkpKT2CWhFkpyeZE5z5lOOhPXFZf4K1NyiURD1YFfDmUuGmduzCioN6K50+LmA9q1kDDXMdRmYFCUEd05jci15G4rtcYpmMuShaYSYwcA5xWh0LDX6XL/0umkc/Pwk1uq++dMNJmBL8OuNrdrkg9rm4n+h/9Spog1V02tOXojbJr0xrrA2LlWsHMEgBystQgN6+AGMuZCqxFfXTgJwOMgZQFxTCCZudbgUqTbprnBsQsxbfm2ZlEHr/AyaECZq2WbYTfnvcXJiMq9gjeSqwfG2KpjB17LDQfzqE6Z9I0KC5kjPo89eg/XaYyIqersO7QbiTTeBJywTlVeJZdvEFVAeZ026qIjChaeu1Y3JlsKLCKp1aDuHQkZ3HghDrqxKtHhxlFTEElMw1YYief5ugpJ+Tn/gqFwdG1ejcxcZ8wOjLAViJo29drZjJJ2nRBtyonRoIi2LTwyDN7clQ11BGfbaO9VxRKv0ecysPUfD/zrcjJNOZQqc27C/mxWIUZGcsiMscIxuxlrbovSGpXk4Em6W0fF3C0dSk+Cfvl1/ixYAU19Uj363w201FS2+XgAIrDfli1kGxNLHjT2qaO89mVKnnjb4NT6uFSvENT2516LtihxGEC1B1Ur5eQaZZZpCq7fzUa0Z2KbfRzSoAQv/lG4rGiE8W85kPweg58b5Uy8zB0GqMpB0u8/vLur4A3uZzryRct0TtwjGXe9J9slUvylLVk7XUdsfwlJf3jUJrRMm+Scn9tXCzo1SguVl3lX010K0f2j5+3bTx8/WmScFM12aJP8s93rU3KjU5YaHqsN+vMEkbkNrMykP85vhHTI8sHQVPmTg0fmutHWamtTcrX4pqOALv2A5CRzkVFid0GU0rqgTHdkX+/9tm51i36mXb17WuVLV7AC3ANXtuiYobKeJ2FeStwRASkXYVo1LmW3cK+hVwL3V81GFeqoAEODbCXQim3R3CUhHWedlWWXDDU8DMV7k7ECjXLNPwlqrSDyTaYAeM4kXQtk9RpRkv46ymIRY60V5NS6XHFsQNOquLf+nmRitk6fQtkIQKT+NLTp7m9ex06ZmDdbhTAdfakuizbf1TyN3qgbsVLr1TQAV3hZsaMCSm14YAQlxFlM/yJV75elPWQX6bzqesF6PRlZxz74kbZzOQhrvk2VENBJv1KHXjGzyiPhQI0A+ps02xh7XZ3vkKNHWjiL50iInY0sqjcAskzz2CsLbF5UwaNBu8HwVsGYIyFwwTvphVUlX4qdriT+jXZvv/7pp59++fhLOkYZtbkzb685hTMUhs2JKUWUXFBTv3O4z9GGS2XjxuUxCP1LYEsrOzmyVpMsIjXaFr44aVwwHJ+2OxWxPxgyvzkU1EpioOi0M4Iv6LwcES8UsXSrxr7emgmB9npUjZn26+CyrZFHklw+mwg8KdYzbM7/L9wlVXYFrkRtjL50z8eyTUkCi0aXpf/889///sm6GUibxqeHz+2MmdT5j7Mp0EQBntYp7nZBbCjp/zan6+8/vCc230uDC/aG3HGRxmz69UPupXMuw9UktXDsXXmrQXrJUJ9O/G0Ka/9Z2fa9z33Zka6KzVPu9Rk5O2MsUiFcrGd8Ci9nHIebNpZyRADbbgyPzFVmz34HOREPNkcO7Eha/6K2CNsuW0J+Pbe2sZcwmLkp2TLUVsk+XUOm41cI7JKneu2UV8nk4+cUXYssqZOdZSlJ3YC1mc1Sub7BkVTRzFXl3ijBerBa7lRu8y59vMsjbSGoSOF9yr4gXbQym2OG0fWLs7lI1C1nKR/aWYZdgCnPMX425xHfhYqlnSOFSNJa+BGaP3xe+oqlApjD2HZrZcoAKJO419qIzWgdfVZUtQIngyRNeA74W/uB5CAMeJ07c436tDZSFAB4G1dK6EzT3ppYR0hKK69EmLYz59RrLBARtKG8Jya7sJZ3jQ5jrvE6b+qfqbAjiQIaoeUTi2CsCW1dGNPk3H/AUMQQEOwV0l41UnL+opE8RxzXo46WLTGLcjMvBxlNIIs3crG5u/yff+9XkGk/N608wkkyjkOYnaPkSlSaINsvu2Lm2ZLUAgdeNSSSebHL4XUqNcvvBq+S05i1tMxhfbJGrbc2LJAsIcPGIB/b68whHVkYGzSCWNnWFFYXPZ/gVy+1YDcMDYwDFLY/XA/u2KJmUxEl7OpDVORLUdeovN1Jkc6VHiIqLrH53k4WdcO3Pcu+uUfDDAVonnSUkOIC0ekHrjrNsm/Yl2rUeG9627LSlWYC7qRT1RKkxMv9/lC4jpmVJtnIjp/hHezWxE0loIZ2RjeBbX7ZUjLzLSWhajFX6ArxUm6BpuEJTUqyY2kuv3HsiDclxn6fqyztuO7D6T/+8OnqTs2Elab6YFQwHUC0PImUEgUlRI89FJsmBpzEfxklZZThp2Te3w2yqqbrhruCNOvhykSUF0GNK98IWVwj+cFAklnV8zpu82+NylCfNF3PNThRqJWyYW8wYXuxlU5dgNAorRzYKRnb3S6frpSbvTIUpQeJZA7b6r4JOmw2eoEf5n3kQ8P4gaEffddw+rqh37ll8PMcGsyzUieizkie63wCLIEIzqMSjN/SVNsNAHcOSTaiN2ZJyGDOtREiRgs/GHmxz9/nVLNsalTCtU84NMShJ8Cu77S4L76LVS/ruIuNTCIDzFed/ukL0BfxIVapkMvRwt7oI5wnCJnL8mGhpF6bXJ2Gvren8Xb+K+nkdncF6y9TQMeoebLDW7yN5PK1LSv+BWyBzu+NHurAIHVKynaG0xdy8hDaiezpZLrC9LJf35/+xpPCujMiElnbCaEbXx44hpmvhPtPNQba6Uh88/am7HX8+QTxECVld4Byop0UrLZOe4QaYtbFajNkMyVO2SmRonhTdn0x61QYyYNdpoTKVuFZGJ7sNtH7l2U9qPgmk/0jQno4UCAsNd4tU6oGYFTNZSVgeD1/W3CfG4vryWlOZ7odx4mWUfScOZ9j++kY5QZRgSEfRjsFsVnYTktGEuPRa+jSVt9cpk7vvfQ8gt+EzqcwTEyTpNcM3mDYWMrWZOdwhIc0le//9l4yWCFcZ9waopyhkBiuxLlsORI2F2gWyGDl9dAmhxkNXddQkcXbqCrTOhiClO+RQuDG2GacQD9xiUKSeWYTfRZQMycdRlFb42c5v31eOle5bEHf03hXmsbgWCnr4+rDh785pnB9l8p48seadwLTHXfZH7DcqyAuo3hrmFoFZKuIRsUOG2cACPaTJ5rE54VGeX2tpsDUPKM19AI2a8odc/gpSSi+g0URqWtY09SGcdGQ6VOu+ImLw2tVuQSQpes1Z0jdOsfO22fly0shpnS5TDjwNCDNmzbq1v2qqD/MB5YemBkdONIPX2lGhE0ZX4Z7/LdWfdxQbIsEBZNNIRA5fV5e45p/6f+Dmn6UJVTHJxAnQRXRLVunGQlJDBRVDLUAVSSrajR2HDJeDxgGdGvkqMYhHRkK/K2/00agDlwwyttU1x9SOa77Oryanft5mMIMNknrNIO0LgM5ST2sZR7fWb+ThKfvSYIG+sEoKVib9dTbNchYehnZKOMZFa6vML4zgdjzIEieBcz6kYbM1HMkDa5oURlJBbqj5SsFY7Qam8IbB9M4T2qOtAvTQtKYO3W4JezyNoXrCTWPS6ckcbwQG+ILls2gYEDy9+e7rxvgxD6mkQT5xXXNI6cIlite61k0Nco3Vnply4SRWiPFfMmroaVnvSgvCi7OnwErDMhicY5FICfKE+SgVC3ffbKizxKxXIzKjBHIEHEr/QZImxXqLpGm66u377555zTMB1VNqMIBXw+0h64VsPyRMLT1p7XykHUoAzqriZ+E8wa5+7BpX5eJrrAg8PECnD6tF7o5oenU0QNoiO+UZmeAKIq0iOymv9eRWoayH5ytPO7JdZZwdR8MRSS94ZbqGKOgHFCSI/ZzsNDAVu+IQ5YXSkoKRJ6W56IDQxz1OAHJfL+I2A9A1JQcGmXFtUbaouLWBPSX9GkMX21dWLzPuSoBO7dyyLqhU4GRGJ9aUOg93XlOjVxvGbQaVZ3+jTSSjuiuTxFxnENK15GZpMRjRfcrmFpdHLHOdj295Mp/L2kZfoeJDQlcTywxL0MSY0ijlgiH2UF6ppCOOgeK8l15hrRI3eX8TiwDsACvXVKDcZojAyeM9Jx0WdmNLzte6jXJWpf88e79u//8z3/wTrlQFtCeyf48UtMeVHeZ+lRJDlEZ6Tmbe+MoEWWqai5fQ/JX9FNSlRyoD+8MbT3JuLZfaVA+6igc81tgiTLS3Os5RudjmIOzUaWTP+7Q6Q5DYzX4DJW3Yym2SHM2vImUbUobrGKyKUmEj96kzReNmC3oSWsY8l0gYNhWScumjUEW1qdFM9LDlf9j1mE88Ev7AMVIJjxS9ZqS+KW7hw6eEwtCKdTwuJ21hSK22VA8mwxy9IY4LRNgShuFJNS1FrRl9vKnI1tyW/lpwe4J0KDJeCieMZbkRtfUn0shyNbiWxQO0qYtu2lHUS+5USzaaegQ9FzYq9ZrR2pTVO/pOgH76ymnJBK2PTvY8sdbYrmZgQaiyEd8fCbpf/UZ54IFQDpaV8zn6D0NWzBMRrsmgrWZAyHaEDfzabvOqEkjXoS/0pL1bm8qsdGW/lrl15CUNg2k6rLyTPTbqV+cXZIbGdQ+yoM0RCVIwZyeyeeyZnmXherCG3w2EA7Jzz/9wqLZuQlFBdHOKFbrUuCS88YiKig8WqZ5vNKU9ZTPL5S144KR1yTip24704VPSsACbK7Z5rC35XiT2cnXdGr3lCP1sPC0MmqzNrpmvszzTJHfMw1OKic3SW7i5aJQX/jzjTs8nduQKsdSxbS3M5cjjXsO/Q0Fc6S7ECBzRqWq5JZg3jYU0HituFL9YGRXaSI1PzZGnKxuvjhzB1hQWqq5V1nuFaNMyMkbtcIwkGMYNAqpXdtemMn9QIez40iuJkqJKCAvBLP8pND1KVBeG7mSYBrWau2zs160XMxBuVEfbwuY6tNQSyDqxkE6H2A1Uu/0aOfTpeZyAq8COUqysKRxJGaaj7wyHp5ERkSczqq+KpAMq2JoiJ8hMs8jKOWi23h3fTsboRoDiUARgD28uGv5inK4J6ZTYkuo16LSaskFL3wWv04YOlFemkR00vnuCtnOg1soN/lsK90dlv+tcwyxJYoh+ijN3wt868luOOxf+uZaNxDKVO6vM4jfjePZE9IhbDm1R6U5CYp14q6qYrihR8sA2ExKSooRLxvW09mkVkSHqADZzsr1YPVcFtKkRB+Y5UapP+n0mGB2CFP4+1moPu1N3nVYJf4euqadNkKVdrggWovsIz5zqzOxyZdO11gT/SR35U1WxkNKSoOCu9ldzcWd4sNCOBPyQdMt1zTagBPhpUqpj+RnMuAXyjhbgDDMd2m/XubqC23IC/5C6WIPMeq/25MnJQ0suBU/wRnV4R9jYe7majJ5x+59C6HM71ZNQ6dIlYE7FbyGSaYnBrf0J1hCNjaVdd1GYIr3sZkjfQ6yk1vmnHXAQbSpMcmE0tdSAFGaD2cnA7ApyXGlfSeGDJ83gLUT1SR8BLF9fxsBaKYDw5rAM/VR0Bi4VuAqra9tuu1sKGw7WZ369Q6sjrWl9YJeD/UXxumynyFu+LqYd3u0o0AdkQsWpUYh4DdqlxWjKHc7G/L4uN2GuTQS8zBQOdM+Nc4AyoWR7BUagrmV450tG8hI1qI24Dlf/V1KEvYV1u7kBGV5y9bDhq6zXia36eZPHiT2F1H0KwreddL6LzJykwX+Fo3XpipprZUBV+YvYU6kiwGNmUhrMHF+1LBBQ+EeMwbPeqWmuoByCtppadUkkdK0NlvIbV/0+c9//tNpVTr1nZTRSTzC2LIf1tq9RgPkNNIEMIedMy+IBxiwDJSZm8Ykqicn6WS0sxpKJXRgaWGnMbDFRJw4ZInyy4q7J0OV82jbcobM1sFxKM4bWpcwWhV6Z/B9IWlEh25Lgd0q2SXGKMrrMmT4ZSzh1DcUFEp+UxsqEuLiuJ5Yw+30CmSBo6Gt72PwdTGNkEUzF44rEOzzpQTsd3KcZZll3jlMwbN8mSqUablBINMjJxOUrsY+TTm1uNTFnk932N3Zb2mQhsK7K/0da34l8+L22Y2QgFI2ofXLdaDxHxPR5z9yCHEhpUFAOLaCMc96uoY7aj3xk9t0Oh6Zr2XxY6UkHKWp7toc4bb4fFArrlt5iwTM0rTgKNK0vCqNm56yOCv2OghbWdW7K0rnwppPn+jfuHGdomrKNBQX2vwjIBJruOist1THq6aPJu8MxURvV9VxvX66pnGBJd18RP6Y0qS8ytyorRtEb7GXHg600IbE/pNuVNE4cAjtT13Cp0CFqi8Ky9ine3JknSVrU4nhvmb4XD5iaSN/TUr53Z2eymVv1zvyWAnLAaOrcW0TR3JAtG9DTZOOpVFxCZyWla9VjaKgbVk0lzYW5VFZdD6qzyg9STLtuK1yItlLOCRpTCaFNZk8v+yrmdq8mCryazYzZdriUqpMT2NIy92Qp30u5/m50Pis08VAAgcs2KB2C30I6VcRmDN9+wfycH6RJEO5w/jJwxraHJ6qc7iijkNEIuZfHoff/9m8Jqsifo5qkv3pSXXp9Wx1KCi9pnaNE/Z/iTKpLMdgbNvs7NxoxZUEp7blMcVeuwJdN+OCnSBnP61lam8NGamD5LDqcobKiycDMxxismMnThbvNRlD2vKEHlVRET/hib9esxuALMdxWPrrRW3DejOm1ynWytg6WapmteWUYRwG06p6/zTwulHlsSVdzk1NjV+uitZPRnc8r7+bftATOaOu828ooibePRBOoCZhbpbGoT9OvDhcNOLZVvzqXcQXpih8bUryHy0REBk7zKG48SxgPLTdGDoQEWiHJKM5zsY13hsVCKtqFBMLyKzA3K6/gGcUU5GFAv0nubivBV+6clzJzNdzQrXwJb5nkaKDQHPMDb4LxG6nnp64bTlVHElit6abd/nEKEtIIxbOIb+ncSJt2TJHh2dXjsP+9dv/8X/8H3zLyrIx1w4NdNZArKQGBePW3jCH87alYVE7rI3huzTOkNMIlNjCEgNeWnPsnKehdkusnIZWbYA3oK9FrbhZYLZy0jCxSnSNTio0BDU+FU7YdwX6UsX6klWa91vS7StiyvV9hCZJC31fcteNpp0N7pn10fiCMSe5kOclR2fpvW2juamowQ609aztlK4ku3sz065u6Mu7deAkytwfOWMkHzjZI0CbanbOX07WosFhfefP+23EkO9yjjqWVVHCYDaBKPr7kJKWgUGFbPXpaIuPjTOLjWL2YPCohk5tHnz7rr7cNacpoqtrFotUJwm+NmkZkvfxWYwoWbHTpM8G3TK97OuOIiBZrn3jRneNmleCWt/R+jIfyHrEPGmdztPrIcSVR10U0OI4hmd/fsVtY1RuI4JaLSEgq3PdIAOB7cn/9JWVJeJxT12DQJhxXbzGuDf14U/eg0/3AZIsuTtX2/lOOUi506fPjZxNqPZPj0cLNKAiPvdHPVOL9YYygHfpsVMUK5md6kgK36FXHOdwwx7Glh6Hx+GShMZOPKp2j6BXoGaw1cB420kXMGS8KixdSp63PkayOzk01yUzN9Y5npbOVkD2T30ldoUFjWDR1rI1eLnl9TKca8wuIlXd8JKqaNC1RWg+zjOGlDYPTcm0YfqOiDGqfoZr1PjWu/Ro7sg7bat/pNYrB0c45K3a7973OUUrL3aip55BugeiIlBVZTPK7Lqi93I+wnKkt3XBmsMGKrESw4i62+bzQvYQVN1rmF7b8RN5YFPcdhqJpdBIvrkv0i6j8queFdSu5jTMqiVq50zQB+FNUZVVzETJTy3sF0Qukspi7MGsKqtcoRZU0lK0pDpzS+ZRGP6UzZkZCG2l2a7hZoQaUj6nusBfI9Uj1qs8S0CHWqdQq5AIi2I0SFUFKmLX5TTYWe4kXa9ZE76Rvi5vx+WM3YqJkmZVkWqUo0TUz0SMDKq39l/OzPGZcy1j8yZtJepXHmr3ZUHkwlumgfF43Juq5WQOE2oLD2vFvVQJwGNN8xV29naRLaYKQ3uNC8GlzWn0etYwk3EuzRcq7SrJwcJEU/ZpU+K/vFJeOnsLTgEkU+ac78urgxTtzwycspF2qmrpcOAWg3iOWB5gpL8cb2h9VE1+YPTiUVGMqocLqmEOFLiVr5aJqZyeyktcVfRT+6u7GD0JXEGOo+DcBQvchheaVDNyQ0fHZGYW0tupLIm/quLw2q6wvsYf4OmNxshrPz3Dk5giBq+44zdf/R//9b+QIe/gojIzL3bYyIvKzIT58DKjwHWaNcnq3Hteg6VN7Gb/tisI9JL+lB4STorihLMroDdg1fA80Fj5128/ffK9Me7ANu7TsAjOnycXlyKLqlrKNel7Yy7SG1vthknruVy6OAhw1hy6wA5MvJegpGiweqA0e4wtp+4LTJQUt837KTkSyDKlx4X95eFdfBL6s6VldbHx2hamxKsBvjSBR866lE0edSWjumXSaW7qvSysD2zYWqeiplXjcIdjbBjOTCIdIjHcYdHcu85J9assD+ZCi+zrdQWaR161HTgD1oIZyGCnYw+fZLpZPAd4c7qWEZl4OtLuOy9BojYuSh4d/4gO3JZNqpTn+67xxFuJzaGAeG3+Zm7f9kX4aTVP7APc6DBfLQoN64GqE+RLWVf0vua8aaO7ECHhlsLwj9rGOCW5GQleHV5/rrA+vFSxA49WZmIiORDvzj3W6wJR82cp2VH4+ZF3fJeoLSK1yXn14b+eNW3pWyGjNHtao7HPPiML3wwWiyUlRYcWhBYHHqx4nggKWpriMoBZ9AcAB2HAqFRhM3sjUAuHhTIkeV0SCvOQK1KQO1Tmu1nAWcfRniFVGam6RYZjGtK/jURBvFTs6dU/fKiLBpUgsVnObNhUko0lRnuQfH0fcyCcT6ktH1qZ0Ukgeb3Jasle/cei/+tPHz21JejhMphA6gteBrcJsi73WiohWLsfvv/xX//85+jPaW4wh7+z2PnwTTzlRahyv7XpONkKGDAORubRsqHJIQ0rrx10S8iW+wZB4I4E9ye37M7hnEcCDh3oDOF0XtSyiPCNXQmQbAE376lVPWayXvY3uQYSKrPa9a/yKHLd+rgdBkobP1cZCaKYzSdwOlUJ04wIJTHVFJJAbKJjwXuOL2mSKQ1s9ZHlQDgT3ihRc+FyQluHXic6BgJWr7+4RzGxLvlzsK9o9Kq/eqRN2tki5kUyO/Yv/SyyW2NRX2LUBBtOk4awDJSxAXtlUSKEtL9BpmzJwcy1NCq+bhwVhiQTt6m/3OOEhjlaKEpFTmlFvr7EnaiLcPQ2Lg221aEWgKHRGWwNiyZ3Wxzw8fsfPvz00799alNEM9eAYwroS5aWyL64zOesAp2RXVvFfGfoLCyrezBs6xKvLiUQ6+ObQZ0TwcqXHB3SVFGOuuKylVM18zuPA77u28peSgB/meBSxOrvCe84GlEaz1aZ2BICVt18gSj0VBNY5z2ShwNVe6gdAO40i71wYjTFDxURAiWZokyVMPFwrh3oXNvefGkwz5MlTI7fMFFoYkF/JBYdy+0kjRX5aMtNr0wrpkcDpbmwCdrOjaVkrgvQBkmtbkwoqmyWFVe+PgKutbvhcVm6vjsMA00+czWz5Wzvwbtqh/YZcsjQlS9EIXdYXDmZ2TmzUFRuTAZvXqcwvV+APRMTqbOVX7fwYEU3bOIu29V6tTXIv/pRQ8UiLhYGqPpyVRkegfk+r2IPbkmfdylrq9Y2l9XbPeV0rvwJ/UFTQl7VNGc3GqcgAUvHfU02tCdGnCTlNHME1DGQ7kF4AucYxErbYlX7KC7uXgjH6+Jb9Vkk6YqYV0OotmXFurPapfFmhHyPtNMfSP8zlP3H3u1tCp7N+uOrDbtPFp2eNVS5eXZwR1puziMvqbORZ+lWae36k5dbK1fLxlFzVWDVSWpW0uu3yh+VvXWkPF5LsAqIb6fXrkoS39n/lggPRycKYnXDhdoCPNcLhp1q6nVOpPagSDCkYDUzPTONfrfUY3sKG3NLU5gTDKSNSiV8ycKeNzD+XmfLocWTXfopHBgPhnaZ8OFIs/0pmb6yWLtRU4EdmbQkKN7MQOpCozGOI1taBO/oR7HHi797/24uxu0Cs50m6S6gBXh39Oo5OdmZQHQPiIKa3PHjojo9tuF45Ze4EDbv5H9ie0jDNexdrpPm1IRp12jP8axJrgrvB63ijBQlM9lhp+hx1sM21bWqaPBqIBvphBqMpt2rkADfXAINesO3+XuY0pB/TDZ2NxZjczRX3sW2VME1WjalTWTY6+pO1c67ModycSzx2nGF5dePv9rpAkzhwmX++u8uvkg1FeWrrbe5H1dByICgZVfdwaBWbZKNArXiKQEbEmb0FkMuHOSO1jRoQVngitqJj9cWW+14oQvoLNYqlmZeZSOykk7txM7DhSXm5N78+eH772DmnhYaUq/uVmPgseWX8CI2df55banUnjL4m5a6CMoWtVxQE5IN3wOWLSbsj4YcoYCRLvrb8Mo9ybCHztnEghbJELCGHFSvbcMda9uotmlMxKNYDN/01fKglfSMJmk3bvMM1IYpJPfdPrmc+TIrgTGZeyJYH+yuun3dsJWB3TlYqvXxlJxtiCRKeF+goQYb3334ztLkp5/+W7+0sBlxlBX0/Eh3mGy1vgzNzRVZ5e9uDKn1C+VV8Nreho3ajtXOl/DXI5Uu7hoOofErCn2Uu69LjxDNpLHmm3qp4j8MAsIjT2NqEs+FoFCSBGQhGkAaSqVmqqVHEXCY4AtneVvE166ANIJ9+y7qHoVKCAPfAvQYuFWC7pNzXgiEJE/zN+/agq/Cngn+Gdnq4IEnwkRQzdCzHpP7iHnfXMmcK8pJBBdqOudCO30tVF2nx6LYrXWwMzbhDMey7hn4HHy8FvBd0tNYCQwopyeG5UPuPV5TpdjdBa9UJJA39Zkcc7RB/hSreucj6t/uFvGkCERIDtWXpGIxq1S/yJFGLdupbHzIiFgoeKlvONLNnPNb/cuR+vUNMlnlYwrKnRiIm4ojADV53eo/8mLKOGnLF91n+2m4/3tVVfgerV2B1hIYGi9Q2++ew2iOiJrswnw4mrlSkRgonXzc/JLTFN8QMfsAdBOhkY3gEgYPwzlqDtW8K7ej4/QzsP3CseEixgKoueknDPuMXsyEoSFIjwEMKH/YXSrJijoShJqkcsxrNR87Fa8qBmMszH1M5dWLiasKw0zslOyaKo7qRTNtZUo8MM3gEAUcKpgwwLpirdp5JtlxeA4UjDYI6FCWNhtpGNBLpZ2UhLKqp7K5o5JzcA6oCsC87YIYKlaukJIxo0kSp8TOci1voyv9qY2a5YZWKx+IcNSLy8P5SQmdpXM4CxYzDglu22AVgI5ksD3K7YdzwOwPsFZtubjsmuBhNsOmMJuDbSdtha/Gga5gmue4g7xL3F6ewxyDiV+eJ9Jh3Itko4FX45UriX//+9+rWG1aG+4yZ0ixkwr/IMnR8jlrkVgTW8l825is+EwThfxiF7yNilM28VNF8ZB0/UAaxOy8TyR73TUqkYhlVcGScrYXO9bivwr516CQiowV8qAPTowE4QW6NNq5YOHc04TD/Yy5GoU9bAtz0WIiteH6y6RCY1lOzueLDZkk22r4mDzP01C5lMrFOpIte3SspA6gqNcV2U9w2nhR48vRInXTYCthGHxdrhar38TWI9cFYDQM1I1MVDA/VTIg862V844bQ9u3ua1dMGa5aJ33XhWierqbwsPTcOzrR37/rR/JK3f9oWk9J5WZ97YqlheUSJsSgaiSP1ihFx5DqWn4jCBRLZ6L6S1cUuCzQUloA6oCf8msz5AvJjWsAzc270sJWb7H0zfD5h1JTSCX7yzat76Kk379u+XCut3IqSwkVxvUIt85XtQspoyqzSmi6//kU7GLCrQvWXelIcB/tdW+JMDbZjVNLJi2hsgjm+UTWtKWrZyaqoCNRk1LoTIEMGKlU4NOx/notc8YJbPzrtTwQQiub0Zjyls3TxX9uLWP5G/9qOf6eZxnUrfsmxloVU7y7lrQEGk3gOVN/XH2iZTYbIWIzr1671yldAJK/21ItTNz91mL3GDvjFpCXfgKbec5fV4ZPM3J+Ot9o1sY/d1Vwz7P0GEgngnm1C5LxzovfFHDcr7OAZKVDwUPWm9SZTfuhPu60V1Ozv3nVDOeIcFrO9JIrnLwXes+RYVvfw72bNUu2K/HdRYnVkk9k6IdUD98cEr9zrdSIJbWuC2rN8245OkL4/Zk+cMbtd3xaDnLOl8woz/KZapdTP34y0e93KElHXWysnXg+tQG9+ZPGbG+X8cR4kEaci8WXuN2PrK8TrGul8Xy4lbATnJKVIDXMZ8ccIS3Lsl3VhbHG0m6RXMN9ZHTYmcJGgABAABJREFUGX1d38r41DbiUKW0QNeyzwT3hNZSWJcrcOt3rOInBRqnKAxK/NUfn2xvgEryWnXNrw81sTVUdc+uizNTHOvokoP9s6NY03WHAkF1sHHsuZ1+37cRYAC6cEWF9jeVbkCq14TVldcpUlVACdVrAEpZvTLjgYymuaK28W5DaKV5GbwRP0r9bMV+YVctbujCVZrXwaetK47gcYV1VdMdSSwftcAQiefy/a1vQzetXLiCUQfvyXsN/LuLFIHRfuyQgHHouvNmi2RXx2VaQA0XJV6fKTLqbrGoaeEaAyOn4xSufEiKuxhqojDJUgvJ8q3YQuIPzgg3Is2tE65qp0ORHE5HVaenKzulqtdN4k1AxeAZtxuvyBdNhexRjvzG5+ztRX9R8FxIolup8qJEXm/qc8x1q8Tbmgpq2Lj0u2zhCA5VsEXVasxQ3zjvIpRccIrYbVoR44idWxi92tavbQXU/5Kk4Wg6Q5/+latGphxzfq6Fw4Ky6hq62mr5hIYtoow+JcIluX46QGqXHRuTObOOo1tmHslrwJp98nReTPWpiOq7m5+UJWD/lLdTDvSX20vy3mJ6fzH/dO1Zz19VQ7/OTsBBboJQhnDKTvHcGSNl6higDqFqL/3M+5mubqY3P3Jl1GdAu0ttJRmYRwtJ1hWgN8BrHtgCcWkTJbfly7aa4HNjlIInAnl/yZOqR8PUvhQ8kVpVMmDBL3lyEmuznupix/d2VTh2+FIyBuaR7FnQ48dai8C1pfaybfpyMP7PXMu7W+okW5MYqVb9adjOl5J6aHWUzOW8PjDNjOFkq7qX1NM89SkE3+txNP3FrvLFV0+/lkwMow+Z/eUrQdqzV8dyGrppxu6h2+Hka13inpnraInBNFxBfAFUPo39xmEYybDcaB+zmgTgcdh+ym78IjcUYVF+zle/h3ELYBec5rOIrQ8sQnX/hlRVuyCkwbrM4zEExgHPGPhh5/zwN+UtPjZSY+oAUEQJvK7AXRjoJ4+Z9NdPSsobu1NVYCIg7ljvEan6CN5YXH2eXu4Nb/j3k+Ot5ud6ytmlBCp/3rb7OiOKq/KA8xcdVC9havLME5qEYEQvusQTg6171vOlCbNY3x+ppNeN8cOy8o3Sru5a4cn3+nbR21bUBoNO7fL6er3Stgdtw/zSLzjGd7FazuQCWgARoGa5v9Qi57WmUXjZlF+Dl9q8Ptes7Xr+O6iBKPWzN4/KFlEKy6oO9TDTVqIOTTSucOA8J7Mc9qqxqYJjhgLyBXEUBekmy9iKc4DLoW1rl6mr7Kb158+PQGV5DW450l2QPUsazpSrCr18CDSNfH3GR26S2tytrOh4k1HZgbIFQSPRT//8ySGKPRbf9e4t0ZZCaO5Z8NiWZuCeNhcPmMjXnNpWbzqnWGl9pob39bLNxyM/0iB0wa9unq+2YyOp3EuPJjyih4AmGV3ck7iQ0YbP58JhvZ5oT4Bo6X7fHmCjjAK34DLhyjiSlsyjsevrsWFS7CpglDL96aMnGn59912dr9rBO4i9krOg7xuf1j3j2Rqx/ITE6ovm5eMtU4JUAuCqx75RSOVcUrELXXjORqv8wFBjlECKKLzzGxE3WNW7d5EmsXxgNT68wjMMY1RVWUDnkEZyOHdHgvWwzh9CKqzAzjk5hqIL0UO+uSrdGqyFM5Gh71Ei27pzoc/MekGm2klPEY0QAijl82AMyp4NA28oD3gkQw0M+oNb8y3f72oRB0evch7n3PqvlS6KGlFL2nImKFuCJFJAE85jYKr0FnspcxbT8Dv/qpDHrUcN3OnaKX28lt7RoA0vbDhvIAIlnyCf6k7g+0Iz4U1jacnxkrwmnS6WHAtrMEhS28Bo8GmlGhBqU2qX4jEAwIayoXuMhokLGi7fQhgtnjYsLAA1KmZoXQSeMYPMkgQb+JmGRb9VdbwdAFgv/8mAneajIEiZCds4SYkNp3TttEeVlW1lmehko3Qd1wSukLC9PKJHw1N767wVUGson7Gcmn3CdbQSMZZoyKJa9eVw+9ciVu0zwn3sJowXaAa6LjiNzmG//+EHZpcb85TufRTBUBi1xNLTW4lUrtaLLxYKc7NhMJClh21Zx94Nqhf0cuky80yT3sqEK3bgHO32w1lE5wgnXDVIYFk2f5nuxyjGGEhhC95wnhJuOkT60rURL+H09gdJmSVXJ1YVoxepsjZg0zaS12vUJrXRj04erVGzDNsd7Vt07RfuVgQCHkWJTXSSoVZedaUF7r8rT/ggpaT2CrYIKZs3NTCTfjNUdNm3UcLQ8CueL/meVZ1OxPLly0RTJnK+FVTBZD4ShocTgYuKcFz5oE5P4Em+iMqDRvJRP0JS0gZEov3uoS0Fg02yIWVTWECXJOAg39Wlf//0s6Kaz+tpZW5gen+l1sKR+oQDcBqSYFXbeeOFd45ZTnQkHNTassTHGmiWrnHdF1E68g/KdHVQtYbHh50Yy0YNE9lYjrbZTVLLqvIzt7PtFUENlCxt0zp+tZpAVuzNGvUrL7CtReobbSHexphGp2ew6vZFxaC8ke7EvDYtHfrZnUfZDXknvn730wXHXSwMS6BCkitdFyHwt+8/cMQhRpQykqs5vgEx4do13F9hgIKqFML21z0mn6S2WjSCjIGJp4TgTJeydihjl86FapTObhVdfthgd64xkM7UzmIAhjljUKu4CeAZzReooWpd0iMBG+RqtaoDUOPBrcyFuMUNRIYuObStV4S7adUrPUo6Ds0om3WBoeScUrEYaZaBxDZeKI9ggt0nICJyGOiQx+dIvmD/gdXbBYEu/uoJCsTzulzZQmTmmhr73owu2xyOw9PhTBTvrQ8aWXIx5dECGw4ZWM6cQr7mb/FdLj0pYVSt1LQnuAT8N/ZQpHVjzSYzGoMUbirTk7lyvP7ikM7Tr6GdulVdcWuRGFu3Aq/9EmKxoOv+lv9KaTmeRntWlgn1kXZfmdaCtoVIyOXwAMzxwLHVxd2+3aWfkoVTLGLSuOb7bYw7Zkd5uPXcnhSnowfNDXiQjY3sUZ827sRHGta2gUlB+gtKXwNV9eakJ6+60tzoZlFeQ3ck/Hrx7odKiZCNQwxwCSGEs9CSot5k1/oLz8z72wy70o1CmhSahUCtJ6G/9YUqi/KsR1MW1ox1lwNd2kQqNmJw8S20fG6Ed/cyJhEfFsnU74jJJvPWvlxcE1RruZzRhEz4y62yKFsXIwV5US9SxB0jlED5FVLPK14OM1eejFcNpUcEezN3eyI2tWsY101+bWFsQQZTchtUvS702eK10XLpR+/64O+/daNpK90hIWZFCFGEKxcCiuCXJzST6TxRLgFfxubGIOl3tSvxBjP3wrScdym6J3Zu0KtEBXlIBjN6Lc5rXcR4ugW3vc3oOEpyl9Kt2ZwdgV5cydHT+QwwZJ5IjvBM+18IWqJp5YGZAkcINBiqXrcF4lwWTTtT1XCq4ZhIBYSkjaOdPR7RYWokT9sC1Gw1MaSl2zZbZygorgr1A8NxU7MRUi7hvxRaK6kyfiin7fJkmgLAJi3srOuVEk1ty1W1gA5OKW1kycKy/ZKs124nIuGYiTQCa6esLROToN+fao/7F69AFp4AzBHCdpjQZO32uqqIWR9BR0oXxLSRTAUrGd7LUpeeqdrkBc7mx/T92Vd7Rc+gj8dpTo3SlG/nWAJm4aO8Nvmy2VnCOrf/5d//3jyoMuSCWG670nrPly+DNOcSna0Y7De2l65XSGv+P1vJWVbCixkaM+h/wMCzOY46Je3cWnaEP7QP5E4mkd2MdidjA6CJQjolBtWqprDBR8dnwhZBd0bEko3BinMwAEUqSbvHRq+DH0tJN/vEefg7TrJRYmc+wAAwtS83H1XEoqWxcB570/Bly37A11LQByXCFVhBXRpw1WHmbNLqnIveWFPFzUvsgFW2/yvP9lKIFfeoa7+FIgOZqyq2M0jR5b8itS9YYyPTHEx6VSSTjsH+Z88xPZuvAdac8i9CgVc0nV4Ji5GhW5sFYklI0YKhpN3dj03vDvkR89tyeRPZhu5wYCBk6dr+Bp3zyzXxSEgLKhqmsllRLw0a2ts0dXwEZrxCzmV3iuWvghxxLF+WG1pcYcoqisxDnHV18TrX86m9qSDSssbE/JzG1WhpcdlG1cGCpCYjXd4lI5lILx3J0InKjPU/AYc2FfZtK65BvIcgQd7yR0nmoN6fAGvo89RIsa/JkzrpTluqdhpALA27BDKvompUbj20OZXw509O1BvBCVt5tFMI2l69Jcb96R6q7GkFVanDaEJti0GJG+Cey1QQs7Xi0yQzAWG9MW/sSFhdloPH1dxM2E5NhqadYt0rzVYV8FUT1JcSe8lvEbvhZhhhwWN6NCGdoWUD8XieBnEslEOr4LBRloyLqc1GKfsiTyDDmQ5We/pII9IAv3oaLGnL43yx77/pI11IW0eNpS2dz/Gd+E3hLrcLgfYX/VORqiXnkd/i/ythwmJ4m6QHrs6zUeOMemUxE0FIv/84gUHByhNQzqLcPORUHgnC5HdnNda5LuVInXwSkZvj9NguHY7t8z0SG5RbqK8hmK2TGqXxU8pBnrEW0yVxTxCqq0nP1UTwPvYQ7HNcUDa4NJOxNQ5jO1V95vV3F511W7VwcolySlqQRkWTAT2Olnjniz47oSL5lUvWXi0bUmqL9RKePovL8KdCQXSp7oGfRZ/sAlSbHg9oAdefDUXMGXazs4458nyDcNMhbU0l+4CQVxGMonh54+fV8rGTjT6nyIVqm1uzrk+Lm9pX6JsE2KQNuhK4reAS0ZShWOnywVCNeYAQ31T6+5+eGnKnJRtJaLHBuiByoG7OES2RF2MKy7bmuV31SOe6S6dAnz1V0VPakGzMXccBoHZc3gCidYohpNs2mzOqXEXzWXEsVg1A2tmra+RQTguxEkqq1BLEHKnVojOUajPb6Y1WqdqVbK8OuxeYg3a1n2QjxtTFy1NIYem+NE5bkcgvFEQ1YBbTW/JqdBf16Q9bAuHVNqVz6MxBGo2dNOrpwUFX3q2aG/Fj3OjLatMDgNjxSzI7QmZNlEiGFlvDN8F4Llg9gs8slkA1cYSZJSRkovvy60philjn/KgwYfVBYdai83jJR1X1dJAat9fEg2TLrkUjpkhUkEKgwqwkDgtoFTV3WMrVIzvsgk52ajmuSGye3nt4tEvRa5yZngAFIvW2bNkvBJzH7KOhjMVioV+/29k4thzGkVZe+O7CZ8zNr8DkQgxTpXYOxDYRWwJDPmz5kkc43Zkn5TuLTnu8Xbamq4/5auq/tWOBo0bpXCBJM38SDECYcXhgVpuABifz8ihZCMMWGTnh0MZMIZiPzgrIT+/R9XgX4iXSBh9498f4BvlXDyqaKWRqyFJkJyx5gHIEGD2CN1+o2clJo9DslTaxgVVCezBhrpTJLUtU9teQS6Z+YdvAVaoykHe6tvuHq5pTySwhi5ZmOxtcV7ghsZKMrkl43769L4/6Er61omOco6vzu2Nm416Y05GGAdSRH27nO7Rr26gSkd1ttm8nhYIQwijlSp2LOfpVxYPaRKulm8tDbtpK9WxOsJfh8FYixWdpcaeijYTTuVgn+RIntlli2OI6jFmsQd13x4tLEEKhHAwSHQ37gt5tdpvitC8hE76BYtDmiso0lIoq200VXatYicZF4UHjvSdUn7RPtNrilUcpCEfy05OG4K9YbTKTNIih/aCSB6bWRTsv6ukE97q4pLymD+FnqVvbFTs6zwnwBCEO/TNnaFDM5nqTauD+MoA5MflC35yZu6y1LumGcunLp7WkIFhFogQNzoanjWMRyBajj4y+p2TTYYQA1LlXzwNsLltr+Fndd/W4PJBq3WxoFYO3hnEpeebmdDbu7zoN13Xi0ccte6H9MjRrUPIp3ojW8N0cPw9pN0VlvU3X6/74rtDPKR6Rg+Q4aw1UpHO5HcC6XMRa50gjmJFjIDECZWtzVtYW6Z5BVKPY2FFoyU9hEnW8ftAUFScMVNQRmK003iASI0KTTdiOq3UUoX9usNCdmSq9aWC67QniUNUPn5SosoUOdx5hfbWu2tooGsvuyOzxqsLRHSd7xrI4IAqAr+akGriKLsvHwxpk3w4qar7dtP5RNLlZQWmfqodqJRDoDHtmg3/4U4SK0XUdNWEylETGTJi8NDwALSB86PzTZ1XWvgkxOjvN3XFfdHog1ST6zTff//A3RjzyEV8qSFLb5Prr5fOibBHDwQiyFLFIHOC6qEIw3eBScl/iMXtS7WaXMOtkHozZlRdSSmRvDD47462nG+cNc5d1BXBrPuUrSTHH27QHcmN0YdVmZ8JV1qxqyLRyAOO4UugCfNE0rCtCbAupV0ynNWzaqOVQ3afoRZ/CJVgYzH/KtS0p+x/3B6mdLEqpO2dWNz5x1Dyb15ZvF5NbES7fykn6bqVIic2VflHgpH5EoYbFx/jbQ/5SwjkHGJj5po58Z3oCC36I42HgShHym9qnZ8kGTnJLvr0XSkCP+RpT8uVvA0snBl2R3D39SGtRHg/7/iUDE/lLsxi+qycZiORDxF/o8iXKWHxWUeemAely43DNAp2dBJLN/fUWntW2+3b15TTWi+tNYd7wAlU83AlVvOUPFQTKltIedmykIdWFD7G/u5g3eBv6EFwmzU1e7NxSM5sVSU1yOE9JLUrAOovoO6CoFD7v2SVCs99JrUkM0zmmWtCvQ7aAkJMgD2poBXfLBT2rW75my2V8UbOz/Zi0HT9h4F2WC2oi6yFpsrc4KIdtF5tzKuEto+00zMyXGte6svkXe2dwiaSigY78zCUepHUTHOmH9QgLnfAY6luffUGS5ozSHaLwvG6ElgNrwtYt6Uo/2/qdBq1mbnAqoCUPFcjUgTmV5dhuuKahXtz5f0uu0mbCmZxMpuuJJcBed2EufakNHEX7az4nal9s/+jxCb0g6xkt7glHdVuRZSw1zTjBT03kkLDgUUK9xnaU1TQy00CMgF35RQUx2CdVa/aJlRLbxowWrX/SUVjzxL80hNc0avdqYQoKV/BUH6qd+Sf8u0BwOLvEk+RpWTrBDgiFFGlA+yDh7c5y4exD/4REp0QdjANFt45/bJBI0WZehbQ1lm4DtbCOd8L2FTvyGmqM/f77p0+fmC6kIWk2TOGzOEH1uuGeDARPFZ0FYuPwYaaQ1dD52ihn1LUuLnH0hee7ckdI+VXZe06Vu+Ef1CfADaTqFFHIr77GwHS2yUX5EiYiRZNHrixk7/FUC+ZnAMR1OlXUK86ews5timlNJMPmr7NYf4kZL+we1JvFcq1efM3XR6an1QI9WYycpcqGxBhZH+9tIwNY6zV1Gf7CzxAIkQREpJWZ8d+lIt8+MgGl/csjpnpTnmxQaLxNOZGDUcBWXaMgDcHZyhg90+h1pNBK4pAoe7Z6xDZ1TUJTQl1Nh3UOlDGUbMYf76VUKXKpljBxmZrvKafydFVSKMcdvSEj+3hGKck8qUWg+xuFHW/Lsbi4Jo3XvrSfkZ7iHcK1N852QUgy6RXsXVs69ph4mUusTGBuFxhUKXUYOTm8HZdL6xjDGVnCdEOPff2tjgSNTgTlOvA+wdYSykSVY/2jrCToL/3zDexy/xmI6Q/6+aU0n5fwmmR8tNRWsxJUYR2DBnvrRCf45u//+IGZJrZZsa+WjtpS0vvwKDtKHNUZYlmJ+dUOp5pEN3M4OFWZKuIts57EgMS4FyG5pmFENTG0UFBkn/U0UzVtIhqeHMoR2uwJDz0joGWZEj2/LxWZYGr0+eCctoVfkaG2j1w3IPqzFBuSLWc2XgvBhvyuK+dk4QtGR6ncLFHnTtWKemEUhk4kcqAhw4pH4aIcObxdpuWrXPLh1EglQfMbH6HbNyT+8UdPBPbdjDnYOaBm8V+wWrFtvWKc7zJ7TqTf7DaY4Snrikl1F+Uondittlm/vM7wAqGtXUrwoZbFOYrZzV5f3c+KUbokyCYNPIp5Mm1iMc71ZUbLr5yqsJONUO1qKW+GX4s8EYJNLa2ZIjkyfG1OC45dPONAfQGkOPXvAHQtgHaA4AxlALbEnFwUVdaDGVXlUR42H9Qrd17tBHvL5VaQgeJTc2rRWCLRSFnd6ja1RgloAW2xtcTr1Mhve31X5gZZXoXQyhUAXix5G9/iYikVDltnF0rTo1modtbaHgtmmr1PsF4PlUwliduteEIs2U5V3bm1TrOgvXhtkqiVrTxUVFaUFixkNES5cm6OxnW9aHg2uGL9tsvnWKqX0Z5eFF1oQGGzwXJEdAqqGT3RNXKVt/io/bQSADOOm0vqzsj3oWqpw4sQNt5uv0xJf+XTOp7buxS3p9dnrHXPc7LarzFaDS29ug/23LiY+wsSExpW79pKay9DREk4h6jW9Vq53jxVOdwGgbI3X9fcDEIwL22FwGufKoE9DckZaBAuUsNPlC3yohfgPCW5keTRUJRibkNrTubXBpkEA6LJ2RwhW+6txkKOfIEmtN6Ub8tfBBjoIgcM1UX2tpzpuEe87grxgGESjjNDZyApC9WWnZ1sR8JuOTKiio+zG5SDIWgQ6sp5k4KFZj2RUYV6uvJbZ8tqOsdhzami/XWYXWxe50vdJeGmD2mkVhPx8laqZCslrAOjMOyBa2ufZ+tK3gskxvKhf4giUMPGlhpOlraHqJJ5K6SViKO7LnZHyPCUGLnbMFL844aSXAtFU4/KPBLFzvrrN2WaAra8aiPg7de4uZVQ+KG5WEzBMnCJGCJ/DJ2LqS57l66pH4zHJgsbAYwJ0dGauJzhMnNGEq4rNRxFYEyNGYbnUyi7ZBCLHFefscarVg62ijvNmPgMwCaylVOseCOknalqLMq7PcGrkjmHtsUxmXnWZdWcixNNG8866jciXMScSNpPZBxe/3qdhNRSSu/KSGTUSXNNy4wdmtES5BwvQw5JeklE8pxYB1zDZKFXnJKilpUgT22w7JQtLYTocTSR9mybAUI2qUuwEmloC0cAlt7S0lqi5jfgXHtqSHjNXr8QrHjAg5yx+KRt6uMvp7JLaHDucM2zVqs8snts1xGOHeWl7jatzujtzNsaahUXzIWqqS94bN2QZOCgbrX1hCE/CkpBYtRRvHwQ4T4U1Xysv7XlTIs1Gl6bwiXoYrvxOiUl0CNR293of5UPDw83iJe1QebLAyYzane2N36ux9brGomqDIomJQ9XgtUqP3tjNu7g7HymXreymiVdgsZ+yb4wmpOpuq1FSVoS4aViu9edJlAFY40LXWPTdTvLZA4whig63sjZyVLbw5WSHM3TggT3VSuxHrVZP1D/y88flVM42kSEcy1nmZv7K1kXhSGdZ/RZer4WrMOWg+csiwOTo4w31hhk+hGfrl82VgcpZAMNWxy9PF1NyXqQi/46mNHN+tkkKg7LkByqVbXNu/RAmKaHiwYLpZWHxF66+bWlJAs9zbJaL41oSmjyP0crqZzjVo2eQKU4nqT382DG2X9R1GcYcraUbrI3qvazAClahlcaL6GK7YUmQE8HSoz2ioNRTM3ebFno+D0pklrlwwJP2ggTmkU/+vaHLjuZ2TpjaY+Eq5Ud9e1lRh96Ge8mov0QF3u0Fevctvfbr5/3xH77qjATFUalzbZAVhjzPp0fcKbpT5h4q699tYUewYk4mfyGzZehgD5bMWX8ellLXjiZuEhKSB44avQcjaehy/M1ai3IU5/Lr039dOZU7JBiCMSdVrwoxloStzqJrxJQVuRbJAfj2KYiA8PBXeZ85a7CsecKDd8LgUh12uZOzwDRfndjNHRX5+tvkRMLrMyzEb/OHk2sztiAPcgI21QdUHNz4JfPVLnws5g2GiYDgJ3cvbmk4U5J6eKvhdr9mHyDu62S8+vheD7mRxllCJpUERlj60c9qMNUJdCKNJ0OWNEqI8U3SaWZVTYTV63lBvJSC36exsorfJwVyloVk7zmh92FJWy0xevYI7Ofzt2wsDNYkGpK756bcqlvcDorluzPMLvOxzVqbxDO04E3fhx1U1MuFI7sPX05LZETNgzGaqtGl2xCiYcVjMPmkSxdUIpXsMOvnD/lYASdMGWd4C1SMVbVDCdVWHX5EhIeriWRJoNMEZfFyu3Qi1s7NpHrrFsgZnARqOOwa0DP1i7he5p/Pi271lm0LaDeGs/iBe6dwCsrhaCkIeiryvT11qL0DMiXNqtvzMG2LQbWAZVEQmuCan3V1t///sP0zC2VuN3i4WGrZKmFJqLRYIja+mKssrqoz//6d4VklQ9iL/Akk/oFjfJlhqJOdeJsMV1udMa4KNMjhTCm2qv0eJJ8Wn799Csr91vjLbinMAPaBnJzhpYbrz687zu6OxhgjttICqkSFhWfUUDYWrzAHqd7zZ0lVFeRBkDc87JZT+tSVFxmsGq3R8LAcRKXWkspuivwuTi5RMAIsLYKY5VMxsO50XH7yyILaJWERCpzXe/gbksR5u0sUcOj+YCdu+kJ+64LMBcamFfUTuvaPjW7/bm8UZTOvtLw7dt//Ifvyfx7vhdxZ4xWLQ9AyfCgbcSJK07RH5qjV9RYK4vRm3Hdx49pgYoCx21l0JQPWH1fY6Kl5zaSKWxsVxwxOVxnjMxOee5qjk7aYKFUQ0rLullNOuq6dOu1uIAXeVv/8Kt7QCaOrz98+CAZtNZLM78+Iky//arXd5aravaLJXD0D2unNwWtv23sj9uxseFrJOQqFcEh+8jACZSWhE/DiMmFR1lo0bcZs0cPKg7J6AUlVdZCK16TobS3eCzRY6YtYIPSgVPfJ4mjeDXHb052fJbWlRREt6KVcsCBQmMT7pSVf5WliSSvSGalkESLtkV3W82zcMoyZ7eBr7PxtqPv8O/csVEsnZRPYWRt4KtEtGoRseaDDbtdMmQ3JCponT2HNqogkg1fBhQipQvNN+VM3JhPORn6tY7nCuozCqoKkiuNJaq6vQIzIWNWCcrEcMK2oNCw60JkDTQwxBXm3BYXFy1pUpWKVkihGsiY7FRgCU3i+HMGrrhnM9I/tucghPGZZgvhqlphd/sy7ZTnCCTXLKg8D3/F8PevWvYmEuf2CQGzjUlDGzUETzydyM9AQvreQwUdSWgdQleedDAjI7kOI3Bb+V+JjUrDXBBsnDbK76NFw7wJJnoczbxXPdMhRwtfg6PdFPFe37KgXJ/fLFI4jD5vfIslMuOmS8XLbXO2Mwxu1rPSJ75HOUn4cTgSpGKXPKenYVcrAyhzEw6/QsvNzd9FnXDQg6tRfykktsemrYzefvvWpxT+8FNIDXONPEltmVvjFO6KbFd32te80gZigsaXnLcX+fWL7OkHhrXHeN2zpJ0fx0+uY4usV704im543dhKkzraetds6XQ8s+UzA2Ggo4UvAPW1jLL65o2z2fhaO8qhorwcGwen+fb5G93+hVyW9qCPy5E3RClMbauFfOSzgDql4Xvdqg745++/9rVIPUj2G1UFKOelTZ8tySgNmkd4ShphySsrCAvoBYhQ7jgooPUBeDTKjSVYCpLwV9uoXzocVpmvimTd/6KyhmKi4ZotE3bBG2yp4t/JS1GyMzR/KSrJL2Sxtk5X7iiMPRjWU5AA8b1qr9h/IpTlSRHv2fqJq6r5gNu3wVA6N6EviP3UNLuRYMSr70hGAhldqb0udL02VZ2pxWPghdir3fUgCXxQ6/X6eJxTMwwbJcrhwQw0Ucp3cyjtueiHFP7UQx10HJ6g1kFIhqjRZi1bBRp2asURCATOCN9qrHobbc9rCfwc0QTYIy8Elp1fvLtydgzwE0dMVNN8r4HHNbkCoVxxkFIK4QiZcFjRTPNh0Q7dmtvcdfzkd7teapUseg/A2BnEYlby0tQFr7M8Wt54stFFCSYV+svi+CmOKzlYO6M21s0LfeUWkRGeuj5C14N0lydU1ZJOsNnk4/KUvgdIoexgw6nUjZGm1HgujDko5q/mubNCmqIrN7VotGlTRdvQtm5zKKPzThJmZOq3SI3ZNehlQ5YkkRLUtt0zRVRskCRS3hk0uPnV249+L9C5+iLkhUeBDU4x5NCoXigNJeN7TBbT5MtqXNXHl4oxY1kY4QAmw4vN9QHPKC80oJ62bAW9tUSuGsfefPX+/bsPH3p2jgMozTs5Js+sZ+W5RilRXGewE+cVpuRVXkWD1fhji9OZjuTuchfGhogbE6485BfB9vRr9ytSkBVqaEYlFOx6cEv+//zx589//Nr9vIapo6j+hdzyJPmEKR3YgFel/EI8vZEyqrBkc17nlb3Kz5mFnsJULfD4oGfiK6wflZFNtQ8PWU4t7BF7t1AkQk+X5U2puCflolYa3+mZ4kul+osNBrGNWXrje91k/f2ZKkbLibJ8DhauQZ+d2lHyOBkHpejqUzxqg1RN5Wta8bl2picensRtmaoBFHEr/TrVefpN46dar8V9hRF6mU2FcGVPaNaxaSsqYai/GeZt0bAEvUBWcWfkC8b4UqBJyA6VJjmgsTmsxEmtBz1Ds4tJETHPGZqF4qNt04OKVR11RZcCJbxrmU7VQHFm3jt4LDdXdcro5EzVMcR5As+2hGtwLyE8AVVDq8bY6dOECHxifiQoYYoGYoFaHlP17Gw6HPucbfhmeu7UexGRZIvIJjzXwsu/Rr4DyY0HduDvIlZezgrenzVcRIzYfplr5D6Lpwi85UeD14k9shfN9d4H0rqR1ka0PlqnU7Y/vQoe+evfIi1o/fBhw99oarDgXf7kVGiHub1C03IfP8bPAIgO9iK5AMTVxsN10YTLBJoaJl+HRBT5CxKT86hla2yYzPykWr+rJwRBbsWTYGRtFslCC1OotyYslzMSUHDH84ymuQFadML2BLSqR6Z1cPm4qyCXD3zSoBHl/gBIqxZ1E/sVWz/Fy4Owuu4v9QO0UdAc2d0bupvgdz7Jpn1V5hsO1nW5PmbsYCYlZX7Xd5u83/R99uo//vKJ6KVq3SkObDk0FcXukAcpVKUu8ArLPcY8mbP1tGWZhht/C8d3LvDyE+DNNHBOz5zdmHCe0/b+u/f6MkjzQhba7eUhVl43qDS+2+yUPLp3MZ4551oun/zRwyQoGrCx1MJxy8lnrhW7RvNDNRcaB4E2XusgsrpL0jtrzZMFNFtLVSU2r91t2Gl2nXIZnSPblFDUiNKnLSxNmh50tJ3sLaBrXmdcj56PRAiWZGa3qbHbcLdRU8HqC1+nrKQpl3VrhtvCkn19fCHWsPYNJmnVOn9LhkrKnFnrMBWlkRdRWw9qnHFWVkCr3raI16prjaWI136pKrH1x2e0KLWusJ2e12qlvjzMOxpqO8ce63U9JryS7WKB8vWvQKkahHGzBbFBj/lDghzeNUgQK2UcbbQc57iqPGCd8ffDcFy6Zdklz+/GvTbNNlF0GiBoGrz3kfHSLNfAVqvXNHc1+KjviT6FXlucBKwBmSRadIcuam70EWGH3N+iJWwNFdt0JB76K2/FrrGFv9PeCmbnz/nU5Sdtim+9+L7nKsnvdl2ZyxrtL/9t9JQwbFHWqqUn2BSlM45Klx6Gbs++99RGd3FK87YnZ/T9VDV6cDNxSPmltwYmW23rUVPBaNk/uMzZeUwUp0GKjXAC8Psfvudqa7IBBqN7Mn+8/9uHH//+g9Y684J9PTROyTGnH/Ct6xejk6TL7PfpKRG4ayI3ZI0JUaB58GpWG8AyOWLFeskZKAWqcfX5108MrXP3a0UsscJE1qOizISXF/Qt/TLlP++XLV0AIjxHl8mNK+PimowowZ2q7MovhCCFDpofNFQ0KkaZ+Cwt656M9h8Y5Sr2x/dWIMLzzGiCeCccAcg1mf/VG99xfJ8/qWz9bvKUxHN2s7mxt70S9ZKlo2d7OoLgDgZFNQCmESyozb/FmyNjLMwtXZhormx849dscYqVYaAshBfYXz9+/tljsRoM/bJnjpIuBEWKEk39ja4cHPoOMwR8AbebX9j2yhw++fHDj+4+tVZJTSrz0h6VmEznmai20tgryHnkrwzIuynsuQaLhmaTttKexWgvJeoOm6emKDhzioBMo0Yv+/jxE1iGI4qnoRwL0+CJ/zAGT1v7hFXF2i4rZy4rgV55QGO3/73a9t5uPpxPw0PVHZ8MxSkh7x8xIHcpUyeqP0zZMZn/kdBzothtnEFB8KZvlXBAXOAfFjPZooEKqk+dqlejM5x9trT1hwVZxU6kmXIKgK6SDFVK++6uz4b73diaKoWqSkka2m/QYaKOOqVGGXsU5HynMsThbGVWm65QPq6wQvN5NdK7+JkQ7cs20nWzMkweU/ucpEbcBf4uaRymWoOQMxMwfMfPZWRVgwwPEaSSDCpj9lXpY1iuKdEaYh+qBQYhJHNhSHI0tS+W9qm4kqbmByIX7J3zO4vd+X83Qkvl6BvqohSGaG++edCqNTG0BEMRrY80wWQZXtDnRVxxJL/82yYieLMLjmk9j8q8VrphnnfrgKd6qddxVztqVfcO14iRYEbSxi/eEGU6btbt9WW85SU8yTtHlS2FOpuBDNKNQhdpVaEPWv2W7yMf4cm2pszXFIyWAQ5SAl63BqqqcYTxsTP7fWZLYcmf42TLZJI2RK1siuwK+LRhg4FG8vzqmk3FWw04P4krcQ9JgmkMpO7o1+jycpM9a2E7wg1VFfpyzxaySKutxjm0p0L1MiQnX1FLAZrxADlB8sRqsGjiSaVyxaap0aK+x59kW1IYthDZmsZBvMxcDHAmlW9cC/z18690MmitnOaBp+iY5qRWam2wFbUzGeZSNyqQaT1m61INIA07xX3Zay9tYvEaDWiB6tjwKgUetDKidg1T2lKHoSlXr3W9Bi3tlzyOizHQWK3CgXPg4Eq38ra7C0uGxbixhSM5O2lEcWqelrlzM97BU/6rczUAclPmRHtO5LytuSeui1fr3bzYCEDCvnKv4GxO3mI0igrY/O1SxRwqAaRQoVqwiPinh4ZDgJpjNgox6Rusf+0CpEEX0+qRAAcPFJ4XrKdnqWInN/fQnZ08ftyPRrGWJqW6lD09G8uYiaNIiK65S33rbSWwCg1HVCkcHVF7GOojmSt26dENfERnJ/w52DogpxVGxT7TS65sLesW+i1rspvlyqZJo2qHrcK6pOBGeUtMRg0seb1z42ykN5sD03EGO8eLBjUNEDqX4O0mBmzjJpuzWDJYE6xJPGhuo0gJ/smAWNGiJqfaCU7k65Q6uLL3narVy6dhd0sWhK0joRXA5hQxioGa27yGAU4P6vzw/fdWpxkGSA1all2b4sCvatA4nAiKvOKBZpIKG9VjZvFKTSnxsL2gauKxLtrJ/PKzn0H7Re5WuAckfvyPH286xZ8dv9mBRCQAfHnihoYxZOav5OAfEqY00DTmhy0r1xFgsDkMk9wbvw4FZhSs2h5NKWsLWLdvbxqqcF4XU38aRkU57TASNrSvpLicrR5Ayh4RtGNv13eipLLZs7NcUqlvwNfllkWKZsReMnufFqrLKKHhrHGNnhYj1/uAoMUMBxYZ1O0XG0q7jdh5txgxLSs6PaBuuDfZspAblEhXe1CwJTS1Wl4sxJ21SvW+Pdnvjok1tWVW8W60GOMnT+FqDQ7dxybYUFUGl1zJri841Ph1q3DJs7yiFI+anDtFNUPsL2kLMnhd41MAZ+45n9wXAxTczQK/fvpkaB3/8ZJjlZuRyzHyNfQ26ihEtX+Hv9fWEioz29tXb52vBtf/oqGkEcahfZLpbxtjcbgMkSJTke95kYFUGIK64pkeG24qnE6q9r4KABwj7euv3n/oSbNqU973WDS2hPAa1jojarmyqF0tXJqpHi01P0NJB7Llyg8//PA//0//M2YqXEcmo3n24f0//+t/sbP2I4WGemaiJeUWK1ziHrp5qHPBCUamUKOwzrkxqIzUMNUU2oPHIKh/p2GJsuompPJYH2v6iLLbciCHyqSMD+gKr74JqdoZtUM56zP0EEHVWuVCPoLUdNImvxkFI3noGOCJ0eTwb2CVvQWsQBu167YFtaliI+zwaCc+CIUyBheYDABEdQ7khWeaielRMLBEo5mmnc3HEVj/EaFdy9/qFt6VlEaUUcdKK8EGiAYdxiJ3VWm8jNma4NKCXWoPM8FhS/r2yRyZgXmewiqCw1dOD6d1SYw9dgYYBk1KkghR5XptNyJ/+eWjKyxJ0lF5qxMX3g1lVPECZEu6FH5RdzvFcSJjjLkI3wjlmqverqmhBH4RWXIOUCcwI7mxJnMxskgeRSQV0it2vZ1V3aPBrvPMQMWjpxI7exzAid2YpQIuy/o8baJI+UYEo5qr01DmUvlJme+y/FyOpBAvVWG++skAcHWj7iKI40PYIs+i0+34LlEXyWzN2cYyh1oZBwplzJjS8vY2aqGSGy5rbQpGOALCZB1TZDXeEhCShBsUCz1cx3No51kUddX8flItqjP8eKATtTxlNFd4XZ+u2Z352MmiGUvgCOxxC7EuASafty3gTDYP02rlP6xNorNix1rWOJW/Tgb6PEAP9HrUgQ4rwBAu5Rbsp99yxbRErOyKrnV2cf/KFN7chjBzAQC8C3FERGok5kpbgF19WCh5DQAHqTViPHEs3+TSgjv5ZDTXH0vOduGG99F8JDP25GEDXRb9BWGGeTRDFXPsjSej3nWfYfmvyj9dcsMjz7oywr6dDQWbcqZmtCym88bLvO6qGCc3ZtzokdWyDrbJrPW5v+WdftGIF0ChEQJUhWu4b3AYwzEkaUsPVUu24/aG8dJA1G9xtuEllkKzpGqea6TlNdZOg3fJ5RXt03pTzA43Jgf1CPS+VCbmfeTnVT3U0DJEPCh8C6i0k7fiwyn/WqJtQs3uQ0IZWGEAOxuJ5z53m35FGQ5VEUz9yvPOfiLouTf6iXaW1Q7tQG+0GZ7IhPaM6umCQCe73EnV1GH1/KLyxhxKpLFW3373rlt+DaHgGNXeutxYQHOw5Jn1v7RtpVnh5pHdyYG9LhwJwnMpx2m9LFc2fwGNOhHMk7l2CXwOKWCXg6vLcVK2djZTbj+FitZ9Sqd8iaFu9c/lr127zt/rNio3oSy9iVfqTYZo46Bhx5uRexNFnK4DB9QB1Tc5XliXb2j8+PFXl3i0Ve9EMsxTm+q/hq8i4rTq4XwuRAD4ikIVDdquX5ce2RSRy/+6Cf7Luj4r5fDA7FrA7KhdXt2cop30Q1fZgW8DTp20PnmpVfPmRyRfYhc7T1dFL0ZfY8jW9ZCpwGqNeNS0UCIVvpzONA7zGkfJMJUe2zFpJvDvSubjppLG3m4Bf96dT4ADN5e9al32nEWh6c5V1evyR1RLDvV5yM+NEmte9ytTAlJdVUV5Vx/sjeo8sSUU/tLVfrpaPdM8FbkTGDI3fYSqKkX5uCFX7dr9Nch8YYFH9hPfK22a6y8R1OjUzumnYgOzckEpNCEdG7wEiZGyW67SKQ2UdJwDAxiiZACeQMUBr9awg1D8hZlOw87XvrHj3Sf9WunOjbtEYjw5gQV3QV/7maHn2p7al+RZh2T2kmmfVuB/9dkMm0sGrWqGZrBW2fSQnC6cc8uvSs4xkZ2W8/C3zxzoksalSP7bn6m0zrYSwiKnqaldufpeS8cnodmSc5ES2nyncFlwsnYBPQcaUAgEQJEarInM5brDELbZ7dzpuYCULHI1uEX2cRHCReWQy+wsb5ho/64tzVARyCBT3GE2MP6GpD52kOmvObRTwh0P+NgVQgvEOxPVFlywJY6ch9xYrknTfOFIfwrvWnt07SrgLjmv/3ShkR01YWiQTIbdfNy0ZMffEKbR2qgWgd5LyZ30eaqWpsbXZTN1KyFJwOBVD0xhxKefcMM79cKdRY9G+CqwbgEnR7oVQ5Dip64i6MQ7kWpi6OAQE1nH6B0aXffyoYxq5dbVlIZm5/ds0WY0lEmFYj0h/HNMEaz2c4wXYyS4jS+ZngFH2mU9v0ZcY/yff/Qd9nm7izPTWUIZbkivqZbGd1/0qZgFucp/OtU7pHSzSxfOFfjXZBg0UmMshzOOddw6kphJTLsQOiRusAttY3o12SITwH6wCR7YMRPx+5JKXjCRd2/6EtKxh+GYJIl29eS5pTBa6kQLekTRps7gkjFknLCbRjHzAM6FLD6ZUHS0sYGorYYAw+kOPwzQmOCZi7YC1AJxhHGmk65WFbmgbQjp4JdyGgKxWy4Ngt0JAIyG1iXuhkd6/ERvi+zdYOX6nFrTbJUD5CGZQgVNTqOQjC9xiq4J2NvBkqcQNt12UtectBhiTEM48pa6utB0xWxxTNez5fn1xc2bdXYfONHypivt6hD10699FKVGC5w3wRP58oqVitOqxBsC49Du0n4o+roRCNeP+i5L+6unue9j1Rq2AXsY9pFlecuLbI53ubvYtoIhzzdt+Y4XJrPbDFpecjpfWynyt64hydW6S1sQd14UdSnJ0zFV3tvPs1Gd/pkmI+TynHwzIq09bZyT9jCWlMpWolnfTnh4FP5aOejii3HG5QANA7tP3cADtOZZXa6Gy8f9PelxRfEvsOXkANjhIGzKmzBSn8I5+7VPh6Oz3Bu61QUrJSDFZLbrTYWp7nwuOOyirLaDUuc9sYXJCN/1nbV9igmGfXMWGajVmiZSyoJu0eIgPv39+vETYcgdqB0YWBzPbV/25VrJ428OpsussWWTIx+d1Hds5Wvdcj122uw67VcSO1DXxaZ4pmB1ANGG3qHlWK6pWRRKnkcbYBc7fEfU40mwOePy37fv3tVuLirDP+tHSryNAfmgYfRmoSsaYAlGRhEewq4HqQa1uJZyeu4qZWM/wfu7bqUGBXovAfWeG6cmTewbi6RTN3y60s9fY1EetbWqASSrmrUfEhZNQMyC4bWoNbzbjTgdHL1K6r9rAH8ptE0JDIXTojnPFOgb5p0Jk8pZYZGTIUTcdHSDDloeZ+fYTBJvjTN132hoy/3o7Lk1whzMojYDQaj3PM0jfdlwenkXhTMXL3NNW18V+uh9NZzL3TJYmkDXeWkxmtUMrXfMXJdv8J+GwfJeg1yrUwgJt8PfWN0QISXzwZa2BlgKW/0fMcMQlbXfKEdbg2dnIFqmQYGdrOTzChWkrbfg/SUJ5NzZ4KP8i4rGVzougEv1QjMDEoIv9uuwxZDQkg/iongIxvEyPzDpSoGt1uOm7G3HS+UtkEK7dWxZ5FHeGAh0DdnaqeAO505VNSjZ/to4qGw6vfeXc8n1hyaDvNnzs+8btfqvXVbyooPgS/gSYioHsb1JNNz4R3buxYPNkHEPUdhvOXtzxpYVE67N0cECIjBbxw4Xe01jYHVUdUGlp/7sX/4333gU+PvvP2gla7c1ODLk0oLBQjsET1+GCKjKjUsmujccV14Y9ve6gGrBerQyV7JtEtonBHTyBgIjkPSig9dTTHBB6019sCtv0u2QMcJEyTVjTafXlob6PNydqCCwbGuUG8h71TRNL9iYmsY8UqYWIzauZa5pLGky+Uvd6D0qiD6X4Y1Ea7/mATPUrVVr0AUifvzJjEaTDUv5YW/lcwGG5yogmYSXYWKVVZs3bETI2rQXJAMTjI7so3EgwzBnRmzhzhcjxeXJlNVbjv/TeE7dVItR8vTm+joGGWmQmyxmlsUS6fInxy2eNkZYexborQlSEvCddpcY3H+6YoAllZc48Si5FO+xeAo1CvKfxbfmxjIHtAQOaU4d+0XezgWaWm4K2eg2QlzYDuP2wabwqNDWT9l+/OWjAdfoL6fnT+eHlyME7isR/c5MJwGIXVwhEihg90HGuZpPDCgaE02czvV9YUKpRVpD56HoqTOZ/MJPJrFrcRzCSZ2+sJ0CS+fY5Wcz2F5d2q8n3mbRw8RYwhEUOVdUCNdJjXkVVjLaVbdjQeRjo63qcmrsluENAUrrgA0a2NLQX/l7D6PX0YIxu43ChKGVC7auq1n39l1VgxHgerHphK7GjfKonI8HBskZYRJretuWE2VRGRupkd2JSg4VRmG2SCq1RB6B6QhGC+kEDoklBWTcocSYQNHO8FIuhjGyUc4cnwwH3nwlDTjVWNUxiZTyGioDdwRQFYytySguKcnOulPT5yO2Md+QETY8/45nqdNwFmLLC571sVcijkuhmZgm+vusGNMZ3yX5BURXjfVbA2neUwbXFZe0FA10HYrc+EeL/UYbf9TWfv/CX7r3AqqLXqwBEyWgeCkrdu2EaHk+sl5OPZ9JubSJAO7UMe3ZDXXuOFfpfhRu0TbT0UiTF34bkUOAMaR2CbMANgn+HtU3TV5mCgxsmQjcMHYhqUGDAjq1RcsZaoEFSqNlg5XdrFNB+7ygRyi0pRMMkAWo1/ZbmFIlQF3+L9qHOA22FCyIcoZ+5OlVDU07N8si1zbRgElhOpW287uvQWAP/R1uIrbfrNQl9l3CKOfL1UxQRTLq81eBt81r6Ltp968SwmRO1YJcyBTx8bZLYD7YXN10q9OOiFQw7fHB2ZBK7MSyuI0a+xAebcRFS9OEDdF9ZCj7/tvJuuYAz3ku7HiWns8ZJ5wM6rjSmQY16yK/6SNlhCb46abL8qHVuN3M5ZP9wrfI5uTszpCq/rr63ug3N8rDuoN3bVLojX7N1meRFncgl5it/3hLm9F1JZpPafPaTiwXFBqSA71VfMMj3XdoV5E2zpOPlrCtsLflOYGDcdgaGEbmMbkqgmkM2ZKuvlEOFCby2Y2HYkVozDiOmQE+dwgHzUaA8vgJTeOadq6SdN1K+TFXRwj5F27XJI4FSGFLqJaCm5Tnf7eY1ikEkFpIOEKZV1sXIo/aO369Mp3MhqmZuEsqmqtoY0jDyyXAuVDTfMiLaOTBkpIYbEVqGs9fhYTz4pWWOPyPf/yHxFITvV0/DYPVRV14RqeipnG2yZS7j/JNjvavauJLjMhdAjJ3akg8WzRD6yghxgZ54OdpzASaV73n4+CTj4ditNnw5DY6M6WQM/zCkfbiP/sKpn6hnEyUxYsDRooK7abANoiSsbOV7mmVlKtUdT0/dtzi/Pe/fy7hbFbScgyJz6oxCkrlsXPekmJIpKjSk9eJA4BKbbO6/CCwiw1y6XkiCCbLqwW4U+cJN3Gaa+WBS9B1S1o3tXMsWlvt4W9duuupTZxRjYnSvR0mE2yO27axg/vroSNjY26CEV5uMdPwUgbI38XEgU0F8Euc1LeVmrvLWV4SztV6Ee9qwrommasV/bnfa1sLCIpB/vA3v3HbiDByygY6LToDMIMpPkcCltd0KskEj7qsEtte1TdeFK9WSM1kG9bP/Mxtnq7D5JCubCQZUJoQlRJtk7etb1NpTm0/1EDGlq3s2hvn427bCOyArdzLii1X1SvvRwaWwSSfkwdXwVfHLqXsQIHFQiu9PJT1VSMvT6yjFJQPTRuFLB60arGyxdXSb2bzon9t/NmMWxzsLL2XySRxLM0MhfZF4eVmjznOl9BTwKgOwKCFWTgjnmw41VJcftKpkMP9adLSpFP0cNbngWxZprDrwoFPvl68gwa+Ik51bZfFfTS5grEYlroSwHZQSnorzgy+UInd6wLPRh8f5dWca3SSCUZL4Q0djLV21NEiiRavJAJ1CexgcVCkYs1bwV8PDbWRtG6Zg1Q1Rncn1lo/5isjpEJKl1p50aTVvYs7eCb82dUjyHT2Li1Do1M36jQIjKGW+2ltazmdkmb0+wEQ3EYaDUqs43tYo4+U1Vhzrq/Lbo3yzIgRq471kApxvbLpzRFhELK7oUAQRK2YdO07RhuvNsXxa9lIsPrtH0gEJEmPiwIqSQKtV2rIkySzEe2l8QYxrxqBUUKlOtKcIWxRKsvqWWqaqh0UUK9J0ZejZ3LFXM/9bGSlLsrsro/cDjgMaCNsa3tUZFaU0otuulkKRnsZrb+XM3W51ouFvpeUCc9sDXbjSSbqHOARG9Q33//4PeFRsKSSM1G9JNK7M5o1RLUUGFGCW97I1Yh7EM6hZ5XRcLzl3TgpMxs/SUZArbQO4dw4TuZPLpVLwZ+HX73xs2jf9K1E1Nt2Pu8j6a0rC5s8wyesWbyhoG7e976TuSG0ZgNJZ3tIll09a1GaLbDXoRrNNExMk/iLa11AIWteu6/bnHK3XAipXyItsPaFA3VkQt9Zh9Qwji2vprNY0z16uWmnk65kW0cCbN+2aMc88YgaFuIzV+t69xheYQyMsAY6O7m2/sGYjdpDNevdnpq+ZQt3Gm0KRR38zz/+8Y+///0//tGnj4bf8D7VPN1DgJYGfhywew5h2GvKQC3rNl3G37yodCPqoh9EWwQ8q5uFg2wsBkA45IUDRTcsjYvXsKC64XkPMjCh9duy5S91sXihBC3OzyQH6a/1zpREJD7bepfMMonzsM1cbOAzZfKE9macTYs1mG9fItglrucJciYWk1e8duZDHAYnMMZApCXcRjbKXIjL8+Ytp9m+BLkP61MiDAo1XPd5hOuS0dmN5dgeQoNq0O8E6TUQcTPCz0EaZ+4sap7bZU5ZOpqmdOW5t85X+iGpK6Fx5TVIWoEe/HRCkOYMpSnKxnc9pVQ4hgMRLRm9MbyJ718//ctUQpOcn5bqGZm/LZbC+czaCajO4a1bHPYnr3ar+Mvslo25FhqNtz8uM39Oriqxoktnnrxq5tU1DLFpyGt+hrJzoMvvQ0l4hxt5FxJumubIN7KNWwbK5npRPdk/RF0rzV10D5btXrZvN8/wuPXKdqJyBF7fPtzhJ0rbmjxaT9/CmiMmxdQHYwlxPK5Vmhc/2IzskxKLZvda9j9o8C/MvSrUymOXrXJqXt+wYL0eGF8VqskFwaJ5OtJDv0Ib0LFxu9kR16dNI9difK8ATGezjiaNvEWjmAlBJFPW3Bw//pojOdiVyM5SzoRWhGc3Fy8KSR60cCpvbruwKnY9pgA+ChsdXP6SAF1vthWZtLOV1TxrmNgSoaLruhXf0FA3adDSMm+Xh0AaxfRaYk56fWGlWo92CHN6sxH8iTsOvj9t/YVzzEzvOXBuJSGEseTaw9QooXABWpqkJrHgLujhVNSsgxNHXWkDOLjVOK6HU8zpZhYDMO1gdJGYUArHyiakkiFONFokm8ymLR+K1Lyxk6WB0V5xEdnmELAjilrOVjwc5DOK+y0BzU8aORdKrWZZfOOZlQy6t/1tp6Cgfffdh3n4iHEl8BiYEiObb9nY0CYPIQkhZ9mqdXbDr0QV11BRdPSCnt3vyw2cUfRL8ku8LpfuUrGcYS8FMWnt0thY7G3e6in5m+Ye9Nr5Up0rVFGxnX2XfAUXygYEGi1710Mp6gEbDuwBm6CmPLxpjqXadT5ws8hDd1JUGN7is9+t7Mu/l0a8o46LizU0VF/OqTAF0lenYGlpJnVzM8PcdIGQ74FvZNsjlUffYlPKhSh+Ol3M3jpFVkqAYTi+GtCWcektWiK7j5/OM/46VFCTqZxju+h7prS4FKJEV6UkHYhZKsEH/XxogjS2CIcMgZxSJZQAV6suPZSB+n6OLvEo7LS30zYDSwGBJw3NVdE+LVk8p8Kw1DNPp6otteRhGnOZIqwhMN1HWkzP61AMf4k3NjTF+VKir6tKVcaHV2m7DVmldKnQzLHXruPYx9puXEQyDsv5r99+/tSzNE6KJjyaN26gpVxdqGAFnTDaD1sezfcAS5TCse31pmFXmi6IgrIEFu7p7CRHE7X0hG3705/Lqpizw66VU9fIo0jOgKShmjLtJPN5nSuJak4mi5QQS7K0L8oZ1feX2uocno9fAsemhouRJhvrypA6mu/k+fGHH/o6LielGx6BGNgU2X0IuZFEBaRl2SbuIIQun4R1UQZXGfdXWmI3oZ6qXeCEHF4ey78sdTayr1eaU16wElF8g/RP3zqwT81lKCOsQL7XHHW0oiTj88VGdovqErjbpJ9//vfPdzOBgzh/9KB26xlq+iKjmC4KWtKAs66YJFMhukrP2OERJltjgAVG7UrM6N/1CoTTNC5rOcSXADoh9gzyTeqhOA1udtphgh75QI39HKJ5ufEAk/vlsHblSP+OhOmB+dF2C5IjZ7mlPFsCitu9aqpMea/rNQA6QJvoFKS5duNq9hoihOacTV1NC9MzEfCIUBDW8WMkdC2HApbgcTtlKGlQebyY+vBpBUb5k54w2+yAnaePzhzZQPEwcJoz1rDcVYaJO6Kw3LAlmnMdpqYksue/yO68+g5y/VpkxW4woErjus/w5PtxtaCz6PNINEoVf9AuFDU3GkTwTLJaRg3M4aS5nTApfvP5UwuzZdnT4AyxScV1mcBAlSPDv0ipVZQvYJa0eVo6xeFCOdhs1biW1PjP242nDQtLqyI16hPxsaR7QEIfjrcS36ifnbgzChTRc4mlriuk10tbb6TG3g4HavHIfPUhe8lTnzBsSswc1NrPxJCmGb9rZZ64CNNg9CeavZyP94W8UUokyiTsz2vCda3Qx0BeHhtKmJZkFoXaVGyxNTeGFqeaKFWnIUPqCEbHFrj0zY9cvXBOS3lAdaQjaxOPVmnf2/ztuWc7RpbUFq15WB63X2fo1LkR06HGaKGDy3xpEAFpGoK0Fo0Zp2eXLi7z1KgP7VK5156DhLeu1VizbpMDBoONREzwgn6a/Z1MIW4NUQL65x3G2jBZMh3mTjmQKTRlGA436FCyjTga/XGn8WIIC1bRycvM+WtobkhKhtfkRl7BU0hv9hq5GibXlkf1AnbM41Tc1GOcbRQLpf9G4yCRObUFtDpoK+FOAo04lHcpLjYLWa9seisUFNFQnpAOMkAnk8IVrW2tEazhObJJoQZxWPbK5ExKgB6X13g53OM5gezYVQEy1uHf+NLDP/u2mTTH4ZjfZekSodMEH1zuhGdBCZogGjU6Lhym2vrTY8LyLieqC5756Jtvev47euDJw/vT1h7yO7RFI/KbubWWiKy3TVlPxbRqGAXLkpq3eV+nW6IaR8SM3eRSyJeN3dFfSlb0pyuaCq0vi6//hwCIZtBZh6heADT+B7HnpJdSIYJJ6On2Ge7fftNEbUC6276BZa7H/+6pjf+ttmVROG9uKw4O9blyAF4s2qovEhEYh88jwjgXXPXrYnkICWyQ1Fppo5At1KVVStJfXSl9JaVTu3sjcLWIzd1tdcZ1VTsKgHfy1kmU+uQfjbSOioKhp8CewIifwQ19m8DYq/fvFtkoNw1fVkN1dutcmnNBoKl16LyueMkHrOgxQ1qsS0iP6TvDizAlmVO/wS0I+x50NuULYXFEHIRiQa6xYx9TXjaxW/Is1nV5JDTGJlhXWvOinJXf/2x5zcMsahURpagIsHj3gfWLjZyUq4VQ0K5vlgkbas7NBbZIlVSKymzBSilVDmlWVn5WGTO0EU6u8vm87gPJEXwfeknpZGgjWLxKInBGkQFhz1jvDOryJ3350idZ0r/mMWA7atVKA1ayviSkHKvzpWdO1AOciyNcp/hv//xvv7sDvtuP1IiUgM2X8tCXWzg3KKOxHL7yk5oiXlY/0aa3VBHloKybx01HNeqt2uoaipumTSjT13A0OhNVjsKZyCA2Cgbe9ttGzZWKYiiFe7+s4O8u5zI4Spm5TtHO2689ldTHM47tZbjGwPNjXPUgPnsXsHQfcpiLTd+mpewkVZ1AmO9/gKQE8KpUL7VaKPnegtL0IkIPlGTxYD7Cw8z93r27hhmfn/7mu+/eNVguacuueE6Ravd0MceFGMgFb3kbPTvBO2GvwsYXVgrQQGp+DWtLYgkf/6/tCRTqt5TSlNwVSpRazUcl3v25ZMCKVEkoufTnk93FpVY2fdGgeaW5tcppoLCEClYNrNPgmeR6wZovIlo1n1DIn1RcZ1GqKZxaX0n665i30Sl1UToDpFDeGJU36emUmL3ZT3mNh++cTdUxW8siviBk3U7szFxklyAbqwOT5rr8kAa5aIyK9PZvJmtuKzyl/5bptMgNOWRjMnCPR7mc+QejDDG+lHDzaP5Os/7eEMjIYGxBQke8hTBbzxoLCfrVISiKm34m18eYEs+NVtWhiYsppSglgLUg8B70QDepNO11/grWgc+fKcrlvNQfoiT+h/LJVNJSKQND0IjctbRld8aHYZ931JoWwjR7NVJrA02zAic2VxWe6QmJ75PyTf8blSDMNKfLEgCOXuvQLb5LfQvrZix9IL9gtxXs4+4Z8qamICmnJyT0jlyOZNQmWLET9v41SVwSsJ4AxZriRFvD62JRzPCqBOAbWM+EQM1oevKAVW9RdB9i6yGNjWUTsChfj6OMDKfmF6UsNljk1DA36qxXTDm10WOjlhGSzNmIdOB/JUfLKoweiZeLGe5/+ivix+6xnqNXBocdPFxcvdOIDZKFpLGg5EHKcltZYweFKuWnhSv9LqwpaNWzDBm39czxnZJ0jltvzNVq3bXrW6+upW0OFZF2rJkCsIAabA27jeM7uc3fOKw/I1nHu30m5Ei+zOEQMtc6oLW8ZOyxooft2o50YBvxk/T7Bg3uZQXWydtiL19Ti6v8r9P7BgruuTPw1TsLa4RMjHzL3AaQUUrpa0Qz5ZQ/m6cLNNENAcbCNMO9ZWK2nBtjzDCBkFTlDKKwfbfy9AV6qvWm5W+e6wWwjMojvojaeCtEisKf4BB0Q8ZJxfyiIwOWMqVGXwK4oOsXKha1BgCl7oF8jWpeNrAsFXcDR+tLeuwZu7wwXWTLPRZ5if+6bUkVuGaniG2g2Kj7p8fQHW/qQtpO7VpL8Zs8sjmRs5rYvwTmuGyIlyVAUQNsmamCa6xveYtO3NRPqfKJc1XahMAngPeVo7PRaEOOtmXt0hu4bUG9ztFj4hiOY64xweU/PveZqATaSCpDAAA7Xamsm34hrzN0qTJaODgW0hXY/GqEZ+yJnZq8NlcOoUB7V79u6pe2Whj5blNIUk1SpOgZgMTsOJyPGck5ke6rEXbXa8ohgRf4YlKgO9tPQ9MIaZmy89eiILugrC8QpirlnUV8++6772Dwl9VGuXrTEQKrJnWvfnCmBJ71fCaQ5/7WF8TzGdtLn4bfEquF4LPlTgTGVY3wQHN99nUCcyWrveuUUc/AIr6F9VzL4MIUhoaaS04OhP86G1VrnGSE71tT0rznA5cj+B0POYg01KRX1czB77Yhoxbps3qpXAC1ClRedtqJdJTXodne+Rs8Y7tbYTyFyL/tlpsdkHvzxu8Q93hGmwR7HvaLt8KYCkKrDbaCe63pmsBQAtZNu5wEQ11vjFHinYMEeznsqVT8ABAaDQxa+RyTe9/IiYNiulF3NNat5NHpiiuqMhTJw9ILlhTDFuMACStHMje8ZUstJORAGqIhyNXqq8tKra8nPusfJYzcMikeMlFiEw+mrJdlMdq3OTUIOFtRSYmK3z5/BMQ6Gb3/8R//edcv0tbk2IBZx89mg/OxFMblYVZny1yZd2HkS5tyW4HftqN1zjiiLA15Xsjqa+dauTp5yuRqHpe6nYQsjausiPutkuwr6GTDZo9utcWr4gKEwAUXnjqvfQL1cUwGYVDmzg4CpqomwVuZJhPlAis7qEEdqgr6nrVZTWY9iFI/hLcorSfCxm480N+dNNqVplCZJk96q6bePzstOX7XBf7+939QTT8vQDj96yOVBoCCdr70aPtsAbDUXY9zROEYmMGyaO4cieXSRqfCmB5v/tJQapHMqcU7gG0bWNI1qKRDkl9DxQdbBLV3nrOY0bU5OU2ykYrhQM3tCpwYM5hdCFLervbeOE8AhMNSRgy3l5XQ2ik4wpWU/6Uwu0387TAoe6ilC9VDV4nReNcf+JbGDX+Qec92Q3YcmSAlGdSsjFWqStNTnjPSkfhWKm7NRNyTxMHMC/NTHhMKgZf6vEWRJ8gZ3oCYgwkfliE9FhaPGs7n7BZ9W65skKVTrX89ba8OJLpKtymc0qKibG6EIwUN8TZsNU+SbcTMqKXS4Tr+WzvaGJFkZ6rU3Lifnm1dQhCFLadSGoydawbU8OIlRFTR0GqbmTqNlbqCbv7EBGA81XycKL/AzT7w0WBjcO8Em6Gfbl+KK0Z9009Rrv+U92mMxqddeOO5cZlDVbURi6pVEe2gZgOToRZ72O/znbEjG7eksAgQTQJMrz3TfRoMhoIS0vMp7EDZNN/gMO+ycoJUyt7nnr6GLXTmq9QYVUhr9h2u1A5jazIHYeVxQ7NwtoAAcaNMNzRYnCORWwgacLbo2cRg4GGCG7iKiSLT5XDP29ftWiP6qpaYBANaMG9nOpePLWy2Dtgrlu45FvpI5mF2627pWRpcW403/w19Uv2xqeFZvCgFY1fy6iZd/P7dKcbuog+vRltGaEuBIpycN6kaJK3sKq6vbn0zR9unkoKSNJva+58ih30LUWHFbSsb7wEbWDv+ING0ijKvmlK83t3+6dnOVFcQkBlZRMa/brum6Q2Q2aSlcCexipKnaiP4K0DFgnW1bTldvUDrWQnjMHxNM9uJJX2f+dYHPtXg4dk+319Owyv0bGgBnMataEWtZ9nDWlJlP0ezFMNa5XucJPD0dBpYb+CZqphvPKamfs3QwPKwbkCmhyFzoBAQ7qktb68xUDlTDdHPVcwKnhE4OG3zZntF4ZKctUoa6wZmrfbFDz0ww/GqJLKrOj3kOXuoYxjMRq2c6DVMTCx/1EFdlX8y0P0i/GcpJPYFvdAVMuObfGGdspQQuyiko0GjjZj/RkA6mci3cRIKqdRRLtW7gxJ7ioJHmnz5thkK9AafU7L0CVU+Mhq+FgQh1VgJnJeoadMyw9mTctsdEgay0g+KX0OQKNI6r5YZIcnpUr0EsF04znSkddUs06Xu+MnBkkOTyRtGGo60XJK88Qk9jyvl+FZ4FPI8gxoSGmW9QzBfajtI5xqd+Tm+QPIvusNXOAxQwk6SHhq0TPvcRLJmKqRH8ZoOyelsZJEck+mIrrNAx54ev4V47kAaKp5sjuM+mTTX7Vqnap3jL5YM5gSkxjSuZpGK5g3RBStv5/c4zLwkpCO4LUIa0HiyNvBlKf57JRSoy96C0GQnYN++84tq3/uFhP/3//t/fOEeyVAkCZk/82dLnjhSw6LaPdY4K6VHzsZy+UDvBZTJCLocNg70YMUK0jILFQ74dGpdMS2LQYlEa4KlveARjcPutbzmbgokxrqhZnNzPoYsLWfK7KVh83mrmqDa7j0kaYudXGycdPGCrTREYMzliIaLdpdgAHh8XK19mJKb2jz4yjcEtFAUbvZa3tg2toGcWvIGjd2gyHtFOr7IddGkTAxq80Y/XPPvn38KZZhirHoj50I0VdmlAarx18+2yNUpXOeFCvo5PAEHUT1/52csZvrLRp4/w8Oibd61m/ECsMie15ndpjkjiS5ky3DBOWAVz+oSwkG+q7zYDB4QWqbASxylL6xSp9Zya8SshlpxamXjQb3PPiqQq1A1LEZT2WDAYeGZAhvTspfaAc3cw0vBdqiafxlftilC4pipqZ04JZuJMvX0sLgBeiWX/fMi5EHqIYpapf+c2yrzBqxczlmCwp1wl6Q0tFtCMBEfCH3yG/SlCEO7xnwzJYfr+Szyes3w0WhlvM7Z9EzTqFGwRRvhG5G5n1iSsIUaW6XJXK6kdMwUVKTUN1E51kvPx5LVt/J3uc56E2az0Mtu+aewljTmSLugiA1HZ1fVdc5elYha5cXcMf/aWRdoMeeQEuA5FYxVQVk/76azVW9pKsXRfqdv+U9icHvP0+7naGyRLbt4OcvrM4ujgkZvfvUoVwkYluYD+LtOo6kCVYLU/pKn+4kCukxTqLJrdRoVpJJT5dOOQ/vuheIbbdPUyFASnmZVH96/D208LxCcHYyZZQqYdjtXW78lxG7DB4idR5WHLiTAyntSQ95+JUWz0a3LQfvWjuwittCndzIUtPr0Z1RLOH7Y/MOF/VtSVrachL7byhST6DISV8JDBcL8G9S4ypuNyGRfidqF5OL0mjY4rSQV2waD2e7GNFBqHyVslpDKHfvz0G2Fkq5xsGD7diLWY1bAI9PhGeon0sCC/vi1gztXwm78yruczRQIzzzkZIIeJzBbqaeRLeNAOZksVOnREBNytQTo55YuZaZK3kYCAWrruwl2flV2deE5apcXS8JAp7ZGuwpeBr/5yi8Y5HX3JNCZ0WRyIcD93/MtZUwBy8oiokBdzBxCd/+z7yZkXyfVbxIfgfaJNtJuWCGcC30xa4uhFOgUw66PtDN3FNoBqVEiWoCqJ6aLg60eSoV23r59L709Ay1S9ZuWlUWUYMPvs3YhjCUyyElH6IEtboAZK4J3+Z+pfHPpYZpCjl4lRT953SIk9BsoGkw6C1KSzm3Fr9AoyyySP5un5GEiPTDg5yPSM3f6lgJ54cyK4X76d4NkLmAH2xzv/l+mG21gINFX+thy0mEsbpxRNKhZSWE8RB5aSJGBBkvE7OKNSvqAT1m3PWnp2yY4VcvOsW8qkRh3XeB8vBG4rKOZgSDR+Fcouw+vZLbXkeqhDQd/+9uHMM+XZ4h+45HLX+Wf2vXu3PFHpvSwP+Ldf9MrO3Xkycb8YiC11Ke4tBQWoSHfXwPgIlbIShWaejyIg8F9sg4WgWiGHTloMJ6RJ7D9IdmNoR5B7USl2jbaU9I0sZCEY83a2S+jhZ8s9fPCmNOvqpGxLfrw01atjJEedfz+lQbHwBiG3SBoRit1I6p+2mhfMOZqUehErtFvhWXgVRbhBZ14Ug0bIJSfSZQ8auoJjhrYldC10/7VKa6ncN0GgClXwY3MM/Lm559/NnHX+yzJSjPqNDWM6H0tiumXXrAW+lKlWo5fZs6H+ikH86adhoK///hjV6yYLBPapnjdp776JGGeOtiETgbIvGzsKsjtXDPl2asXxECHcqcAeV0HuWyJh1pPa/sOPBe1n+6OljirFbTJ5FDEjhvWbA1BdCU5f6eObDAbm6uYIGauQTtrUCMM4DqP+l/cd2LRPJv2Ya+Z/9foKVnTmtvWm9ZZeoy85/uFMJ+quhGgnTGQ6WGaL1FRILZ+ow1X9jMHTUrwM9vzNZv4KYvSR2aijvIC8gl4aRxTwp+shFujhL2qZmXgngxZYS/qEj/p0s52XePS31gZCalbB59kKw8Qi7+2Om2deyqZqfUdpLsIPdukucj3PCp1MusrNLw1XS9xvQYrhyMaaPvrzI2hakr4O4vgUaq8hprccUh+sXi8UgNsGG7my5cy1VA1I7p0Tz54nZcsaN3+ze613ZyqFX5130LX+jVguX/mc2hLtLxI4SWNYNMQfTp4WVwAtFQIrVdWpucGiMO8obOxD4rabkAc7EhvlqLcXzq2yAZ+KSb3DZE6jwkVaSCSj0It5nVXECN2M4rqQDicVu9WDIWm6Yo/muaLN6osdvKkRxr0k9aaCnPnpWQ7VMnRFK4bhjk1K8IAJulgCMckOa6kcL6S3/hIDwHjcjR2ySQN6idToSamIaBkgr2BiqIzRAw2Ul70w/NCyrFULHK8npCJZKjVhbrWGKRSK5+7DL/LISQtBUwqTZzlWkFfQwcllVZ0+apNAGJgz4wqUesgECVKU5rdHO0UKLs5RUeXtfiYkyq9j+QyPyE5RbrP1ObpOMVM2ChVWRWHBmnzXOWEu9be11ZEKzpNWkaco3TLqVyp1ra116HkzFC15gOglt7K0oZLQArcOqDJzKEqEhTCDwrAMbPlTuB2VqM9d9eDXFdr/vaq7YcP31ECe0ps9Yl4ONLAY0urvFb+OglhdkFrtrA07KuTWFp3FrUYaPWZ01EZYdUekgFcahbFJlh/sHFOwWjxZZQ9zMA69qJCTaiieDhL4Bj5s/W3abRzLauLzJU5ILBS/WX/GJlrTSqgKJfgUxK1lAuKYh4ghowyYXFmQbjWrV2KVB12A5MPgVnsMlhPme8a505r5U74m3sw7HONn341L8UXPJlacGlHCl30KqQfw+2W9rPD2Y7XiOq2vjGZ3t+7hzNgrC3o5Q13vM6K9nJ+yWO3U7Cd9tAAxijiBdOzkIE2PsbdGtaz912NZJRfXpEu94LYn17PBP1GJlEDoATjpnhR0+8xkitp/anN1+tW6/uyhL9eI31LumLWJ0Cen6uzn89tC3pp3w8Frr+o7PIwX8ZZ60UuREKE5M6aD+Hvf/pcKRSQNRAVo4D95rv4rdQLWyvOmsditvanQvM0AuCNmBpHSUVBbJQYDqpfaWO+wimq13Rxp950we1kdeNpybwFVqqLPEONDCVlFx1SOJi7aZlr9UF5sqGbRUjAAXrNYawFQsKyapwm76g7M/Uj5cuKbrZEUTFcvUk8svKgS688+8OwHr12KfAi1t4IXEZmb4l2hp1U1E87nVteLccIUxtpFV4vn71OfGVaQY9hfvHliaNDUJjMr/DlVxNfUHNnK+Nuak2E3kj2r86ZbK3EkTztOnk07X+zuI2OBiQS1vcbBkvpmXtaE0RVBg3UdOkP0X5JQX9L9rBspogXVG6tnU6BCgbXFqCuKcDYVS0wKI3hQAY7I4YdJ8M+P/3rRWTXIGJAziipdxRi/tUUqHLp2N/hJEswYnJEZbjc73VGLB3A8/70ysbDLNbvaIoVlq4PvbA9Jr79zqfY/JYlhkoVYgQY0GZIJHlKUqE0qyWraqYCAjOzlCXN4Un2VphqCEBRvi15hKjaCFYLv2fKYT0iidj2UvYCA4Ec4fLKNQ1Ckd2FqhfUgJGsIfuwgbQBpEOqFh8VoX/Ye7lXhjQszPWQn8s0aZW9qbx+jCGOW6Wk80B6fXYuKB2EJPIS8X90REV/IU2p/5T0vyxtTGiKGryGj6uiUuul7NTVJn2VTyTV1Eq4SFG0rjsfnKkzpERcvfK811I/9dI6t+9kICPrIV3JaHTI2BSSuXMdrUbMs06yv6Fw2tC9gUArtm5hfR7Ge7pQPBuHPuVFKBLO4T1WgYbdTJ9OA2NRHAxhg88g+xCtlXZ/+rrMrqeCUnRLSm8X7+Fv/NJKzNSUMQuQQnxijOqGB6JJi2tw2pcQTXV12cVMrodG5zxZTrAP3pNJwlGfIZ5TxqHYSMDZwOF3VN7Qglt+9NelLkBQfV+dkUcgKIJaPPhlaIJIeM3oqS9EYW33UqT4TmOXlhvGbF1tyWAWw9DBKrRc27xT2pb+AK3vza9djFExi7yJ84Fp7uyuaJaprU09Z0rJjZqraDUfsMYIgjl4K3soFGa3xUTeu55eXCZ57E04Xop208N6yNo0zuZvsDlSl6krdinlbe5fOLI4ljgtxbNZkw3AnM3lwGprq6LL6jC2UGhTLRDEqPvDT+d8u+zSKYol1f4CvlHA2+hJ55X4nT/K+hEoSwFL1S49dpGb3NkdHsaZ7y/M5ClMoHOeI22jdoHW6oIf9FKuwpXnZIo6sdksXj9oIKM2jrZWo/MhzaJtX6i1XMhH9lhr2rwR//IkEronYEtJC5daUNL5zwIIUkWDASeiYN/RZW+QbF5qv2E0kLNOfuCrVlfzwkRhAyVUC8QiUSbIw/UyWIOh5M0PP/zNHj85OCBlBcm2Qp/j2t9DGhT4+ZXTk4bXUiDmLQ0TT7V7JsG1F5LbVKjsFM5X5hkFpdkCYSpqdjf05Ihx6XwMSvGwZW4oLsjRO1RpzqPhkzALgRYAK+tlbyJCM1Uyk+F51vxXqm1i6/p3PNUFbCT7Su8Wnk3DvJgncUJqK/VQhXZZKtnwYPwxsHfdoSazGKXYbmBcB0RRnrIEAx4Wu4OfqizWH9vP5V1isMMJKsmF46s37z+8jxqSGycZY/ocjHxfufZdz+k1hRn++76OOjVAtdpH8NW60jdb+l6k+qmpENb7iltdeIuw1FZQHsIwp3urbUnRgoNkIO3keQ2CGnm2RgxKRn+1lF2FqlBvreC184dJ+tBwTZj448+PP/8C/6gTlnQvmxapI7+EF5XrxW++d8dgQyixA1yGlue3sbl8nOncHbC9N35CE6Lw59G1USJVcnhN951y51HwY4x6J/tNUtyLBAr6X2Lu3KyvpQ5njnd6vLQZzk50dkh/XbDwxppS2+zWrY6r56RmI6Qq7/oPk2Vy4+dMc225IbUAm0d7vLmn8zfMzp1jBM80FyTHm8Q1nkMxXLT6hECXkBwW1ov7cT7yKBhhhVXDwrxTQU1zo1yuCn/h25ajXK0OPcauKZo8Eaudnby5reQ79cM2lp9n3uoveBsh1Kr1nwklfnCKztricy1ZybFgJFPqtTWYEJBtJIeti0QxVcj2x8gQkk6sMWl9R+FGmOIygWmkePdSeg7HIwYbfPo9h+5iNQDh/Uwzdo5XUJSyeMlnb17MoZVf1qU7JqumZJmMhJWUsVcTeCKFO069ulXbWRblx26ehDlr6Sq1lq7FJTQ4UT0HiWZsm51nbwjqAoN9drlGYeEgTPCFwZGKsFdhKNvqYp6m0MOWLS3CXztp2TyYHf/jlnZ7FUTwuaCsnp6LlT7ZPm0LRwNmEMjJg+63/PnV//W//leypcWuO5ZzMUD1KZkXGcrGCCpJlzR6bCwDwscYWTuW8LVixDXoNFJ0YyFy45VYKcdUH2dhBzteUzR/CBDZCcCBvUFQk4EqS+ffGGjIyNl050/LkQYIV9ruea9LiAu8Wn21jx4uiYG8rlUz00mvw3BQqs1Qf5MbKlDnAW9iWjDqja4YKSVHSWpDU1vjAkIIcl8qtD9b1jq7Tz17vlWgOxJbES6nQyIohO+CSldxAnO+VLmNp6GL1EKwoUoYwqV18gkMvCsu5rMeeIjn/Sn3Vz8mRhXU1VLXVFGBXMpEAnmTxOleyR0KLn0SMu4eyfBJMXrI2LdZMNPZOWGQyyWF86NUOf0TrIzg0ljVhFNbALxZHOBZ0OmqPQF1Vb0QYmf/hqZZtvP7Zwium6HFF8kRsX71JGUq1tURmL6eGzYhQV4aPxgjP7xY0fxwb+R69mEoD7vUbVAjBVvgge6GQ+hvpdKpZqPJxjjXfdFrNsmx5rwmP5LqP3x47wcxXNEpqRQ+UeJpgzuCpuOAaFxOTktE5kgrKvyXGMHQm6xd+sXedStGeLbuyCsmNg5mWSvEbqnH3aXBBkTOPhYbBMZKUetSIs32KGEOCTpC8QVNOrd79t/+1geXReNr5DfsNRNXm4bCXRosAYZnzzY0z6x05D8CORuvG9lzff1uwdZZGF8QWxvFbSm+bQIxuWlMhPIh0bpJ66rFiI8UOgpPtouNDTTQi+wCpKRW9mdBOiJQiVY9oDx4nBuA3Ll8SPkuDIuJteO+JM5jNu8+I7crEQaHoi96x0Q0tnnPXDwOzJA7Werj742wAwOiprwCskZy2FVMJFjg5nKOA1agG/pENp0brlrJYUDh2gpi101pyuijrbOGmchYro12Q9a6YRhIbu1zRJ2CA1ylPfY5Wj7HeRQWhQliZiowtomtzu+KQKGskypVXuwoCoaXuEopWjoOVLmwuuKaAY2kFoul5T09H40J5txmZWIiGxilXceM0mUFnDD0cF1x9LoBhyeE6WzAryOm7twJQ2eAusek0hNR0EOQ3PSwA1EP7i8Aqi/iJDEfS4KR2jHpPcd3hxnOh7CFRt/5tizSBqhbpw7JGNL+0eCw8aHSvKe270K1owlHcs0YdZ2607+4wo+q8bzuFiUlC1WXM6+4d5kvyQSa4KDVSoqtg2OjAXZMpOHZIsb/liP0XBDbh2nle9lYmvvKKt9e1PrXbbQyYkxzQGXdJL2oc5Jc30yLiDauskvTkqTh8XqrAnrAxjeZJG9jbEHXaLxlWlv/opAmext/8pRutgtitwuMvCAE8XCKe7Q0PiiMh/KuEOdSuDPaUD3fxd/e2kdVKbGBiEHB0oAVCrluQbj1m2jqpCoDcEqmWHDBTG3I3wYgVWajEa4FwkdLVuoCcF9EILlLMwPAaNBUT3qt1iNSDhI+sS3KxILG2XmUE0d4bSPljx//8cPHn907/9V6SdGlUL2j/DmwSV4+ZM6mIBd4cN5p1qFCTbRpZAhvZxHD3xLLFsskLsHaXfp1VtYtBSGnVy2WEhSWuthSURQbITM3v3vPVGLnSsQOZwYaOTdi15GLfo0meu9rS1zxM/AWxxRMfeIOB0bqBrSqddjJJMvfLqbXVc9cMikIasgWo0oik+BleFWomP4SNUce/c+Oqs0Z9F0nq20ZTayOMR67qWcr8iAIxC4Xbp1BUkWjVsmUGylK2P+UOuoySXHKpEKS2M/DdPlM8DJSubRZAy+SlfxRFvpVCDTbWmXorCSfHKDQZjdhSHcRa1dr7voZOTuvcaBlCjWhVsQM1MuqF4LROqOnM3TrPGHIt8a1CWtbFy3zJGiowmTTMBv7ZcogboW0Kb/k69Bdvwyv+719+/0PHxzAgv2mPx1pbCtasubW2A08CKeQCmi2ps/EQQpfS7GmnATyEeAWGZ1ubd71nvuXFMRamXVcCz210YTaLswAJTT+zqkKFkhGGq02+ES+TLhgrE0TWFztLnOs9ME+haSCGUQ+eqyiS32LWv1wAqrb5ywY08wIM42RWl0HXoIMyyJU3ndiE6NUW/TY+K6JxyfypecuIlSRwjxnwx/pOOwxJ1WNIz1I04YSLaSnP2IWB+DUak1I+2oXTRyOHP42f/e2R+RJbQtzeVsfrrJnt1RdR+CT7sn0CS+LsCqff/n0UVmxdsrqsZeB48cJJj8NkS0BXBsoyMVaN4rlGhyxvVKor3UtwbMBPZ379v073+v/MvuMGsFYUuCq9gYA6kDAxrfvvn7/fl8Lo6cIRKEUpuBpYojwqlGn1mBMcQmc8bCo9CEoTTDaFW3Z9tDf2bjmWCu9w9x5e4/EbMDKv3hkswSAqVfvryuRKKJLCaFmHm+UuBtej67LqE5gpVevsy/b63uKa7h8AEmM2HLIUHSUhEnQiwRWRIA2NkAYsOSvhzZc9uC7y3I7DaCOgian0FFYljLUVYC8oT6ALXPBI1wnpJOeMNU2f1Xkbgv3GLHjUAFVwGibAGcb9FuSRsGa5DP3udo18pKb5G5dJkO9qovy7hQVS0yxzFMtiWQ0ja3Fj1sCo66PJUBHoM4zpLJqLlEQY3m/Hj26CtANCGCoP1omshwpx0gAZuFYMYuFzfMzjRu/S9rTk3/BdNRu7NuYLLcLC/pDzNnR4BTFDkoVRmArFuHucRoq0tKCe+g2kaMFm7zECfINmIViFkjaBdK2FU9u52l6iimkHTIoFlEY56Or5fuU1BPt7DU/iRDQ1oEdzT1p1rQbrpYy+cJs39TZEzW2uZ7jYLEoHuSjbt1tjlMlk7JMD8ReiN9mr1RE1hZDF45ImxD34dYfv3v/joADmmjn4XWSWEzDA2MDZlaIstgZ1PhRYIrs9KkTAfWdGIghDC5DUE4gnZxYgrGf4S4HzOPY2KJ54UXFqoQlJ+mLioIBVAmZN9rHdm53ca1ciByms7LrqZD3Jz5s71P1ICIjYCMWYwxJf4UUvjyKQMrTw1KsbFRvzFNAX+uNANVxGhYiJOGlvcFy6afVVeyKiXqGmmfdDcsHfxvHYoF3M4eEU4nnfNlPVrOj/Dffqj2uvTJ0PlFBL3MKo6XwBUz6qRpng9CoGLYOtIwl7ipcqLztWvDloapCPt/tbxgsz2td2szx/O1Sjs0ec1G0MVO5VlTYfvn3R+sQXTLT10G1XxdTYhOXaR7h+fUwXiEKLgTGimyHYGBKIb/qliyTqtanUFS0JOqyTu3TADv4KWOoGO6aFCPyCKhsa48Qr1m0wL8x7Xareo0bPpnGhRQ+//rkSTfwbSkLbcuVVc+F9GczH+zkC20dVriK6U9ivCmTsPaBBOZLqxN2iIf25xOFjTbTVhprWHD7h/PlwGzNhLI8K+A3GUATtGV/U90ZYzWgEe5SweJa89VCTV9TRe6o7I+g2kCQW0YGoJxIqoqVe1uUva7LVV4MbDNWntlSpXCTRG7MxMrzjmRNhlTz7DWGt84g7C6PzSRT1DcFer6i/tDwGqY0X+CHgapof96oy1hjuvfxyJzro04nqmJqFWjV35TDwY72xEZCDqeSpS3+0jaLeJtPHantjCJ++KJ7Q0CzjMw13VNhIGl/Vg/1eUoDZlLbwoI8m0AyV5/axQMattwS3kZGILiGGU04T/ig9UrhGqez0aCuXkGt8jMkVOwaz5PCZ05XKxPO9KDmYB07xmuc4nzsm8L9HJiYIT/NXQlIov9E+sKTVv8L9/x9vD4SAhgUDbegT7O2TqW02Oonu4rgDNIcasWzYQsCf4/jGtpk6SaGtJQIWoUnhM1bvWlbSe7kfm48K7/G2ZVEfDthuO/oqDsoLPQL5WAWPlIlYS407FY7jRyhv+NO1XwP9Dd9l/4WeWFb3raU6ayVjiEJfxOewpQ43bp9QIRs8X2YL4vUNbnCCaQh0D36c69zQs1t/NhlKdmtgN62yuvgrHFqyOmvoCrQNuXDSCcGtFN7XxRTm06oyhnRAdNuz1qUVKkWC3vyxIMWXvUpDY6ZJ/dGvrAN46riTXtm+NLibJjv8TO0u3Ipwx9P2bg8wQaLrGsF0u68tUCbrfm4VJFPmuSX/2RDHlRv1eTtOlmRpSf31egQaFFNm4b0I/jdt+9uqgtAH/2nKK00GHyWBn98hZI/9qWN4t3yDqT8qgMW/K5pYQ8VMDgjqnCXGxTmeFmxcSbAoWZrOWk1Er45UYcheZ5Q2gmnhZq2yzeax5Il367ltwIbS6CYRxvNGoQxHRW7CLc1U5/cKLK8oirPcq2dmR0iAYp/MU3V1JYhZLsdUQt/gMZbI0m+S6S7YBSqgdPQCIa0+ftgyKNGyfy2k/ftFCx56tgOnc9f6psgCYynJ/921XItn/Bdh6WBDt8SUeDSsWlCJBg9v+JhlJd7JDJVgrEpWMZ/3W1ehK+OmHC6CBZcehsBgmFfk7qe6l0tKv7F3ZKiFK1tf/Xo6aEKmRs2BYv+TRwGjlE/nreyz+ltYNGQuTWkK9JuMN+OWLDlFdVawONVDhcWqyJPxTyf+G8AVwb2jD0ha2wpQ7DfEEfXvZp+F22TcQ0Xr8Yftz6akRuTn1ujJcKGrwGIq3KsoUPOh8h/8ttlP4GG594ia5rjJv4LtIbqdExgNhos2aqa70UI/0V3i/UIfm0Fs+Rpo/xY6jCjhQNjdwXH/mJm0lcoE7K4a511hIg9iCq/TAQZUpUSbKUewD5vM55r1dLNz0J/59wicyha1IKnPCqkWF2heyDTpD7+ipGa18qbPGGNaM7iNq21dLgS6sgUbjvl9pLNNcrE/NvhRHIbB1HAqwjybgeBES5WsmXiXB7XITpxohPbVyGdd6sMWmNjzUCivSan3LtiLR0XghwNakJwvaDOi6wQ/vnjR6/kniTxpdg+3bVfq0DDvBugDPmXxdNJf1Sf9S88VFn9iae3fprxNXw6tVFbVee56qToxp9HsnwIrppl0hHIDJQXsUsPUsS2tdya1byXCfzMu73nQg4m4b2/IKdayZqt0tGF4MB/Eb+MzvX+1Wu8T0FPe8dg2aJGsac1Ounf6DNbuqv3s6Mt1RwGiN8oCvsWUnPlwLQbwJRV73xoSdPgJ1dYefrUlpXFYJ55m7Lr7X/s64bXu5ajqmQXw+saS72V0xmAHJKM1RbRhWr+9zyDHZXKvRtlZi1k8DG+lDLdNmBRpiLpra4keIQ5W+jEpzmJEi709Rqtw+oJuFLOc4sq+k3VNyUtISJAe4aJ9YbAGiW/w4ZOAJCsGYVQuQKaCr2a2EACUPbdfvAVPDPHHUFNWJM8fPUQPlBZmC6VObf5hp7ULz4MaZdqXohaI34Tf1ytvDY5UTxvhGdC81nD2NqmORlNMlEU2vWv0PB1vuyZNiPFfTi1QmomvDne+FVuNAiuRQqPgcY1BDb9MJNA13gQ1wzhUIzK+wFmrhoMxUM6bsmlNnLUBmsfk1VCM7EXdXFJ4QjMCwtKLd598064V3UkuJsUa6leRHQnRnia0eYtlbZ8Zx8PhiKK2WUgB7bfarW4bCnAbMmYe4OQpzfvyqKu++M2Z4aulcuz7uFpmST6rbQmkAIw+m4QzxE1sx6qXWjEsJSgiuMgQgKwQ4VU38Zxmji1VWnw7Lw4Pz8S5SxDdZPom1F6umNwq8bza1Hosx9g5qK78yzWi8dF+RJF4/MPz4l94+FmZQdGmlmZ8s4q5xldtypF5PjOhD9QAOYCxTpfLnWGX5ejB39nS7C4jjFikOR4uGsrhVLVymnCQqT5ljJjtS7Moq4dZQ85iZBhy5sxczIC1/AavX3u+cOlKNNqWWdLowp9FMe5qc2zQH3GtwjW3Uvy9EqZLZx0YUhYL3t2EhgwfDX9/Nlj6xzXUtQC3No0enWjPIuuQoOWOurpbrXXPx1u5KeQXSGKNA4XU0RoV3/RbPob9SFDFHuUtfQZbFbGRS5IBqqACsNM443rTcOdBMbw5RVI/VhJn8PzPQQbvmZQLJxV0aM1eV70biiYB7RFE5NlU/OilA5/3pW0hJu8aqFhgnbrJUWqJhWSJJe/eTwfVd2IuvQrJVr7zjWxqkPFSa3vYwMFaY9n5tei1pRJ4eIFUJRm7/6TPsSDehZrNS9GQ84vi0JlcKhb9d+5X59TX+rW1+dvhnQNIbrEO26Bm3eXk0I1Wpp3mMJJSUJVXO1CgzdHm/iWHctSApqZ4SC/EG/gLOjUTGMzhcjxD31ot5Ubuk6YudpzQXO4QChBNRouJaR5d5z6GZOin/RI2j2cRl2cLY/6ckmKD7CYF7LyB3nPWbEO5KHWTZ3NxZxP284f5qVpFd10NkJCDrBapv1dcKatVnRKS3v+1OYmvxYgZZl+3grrsqiCum9BqDs4LOiGjil3SINj2rzdJOXQ3HWOqH14KbWOg2eH47y0/iHPzHKkVQEr3GCUNs3LIibX1AwVhvpsN4SFAUjeER4laQkx4ZjIx2VqrmiYD7vWkIZFCjYYko6cnEqyT1russsQjKiK5QklBr1CnN2M2sHa3DzCyxCF4Ryd86tOpyTRzgkbxJ62Q1LGvZqMXqI1Tw+5h8oNArkVJwop/NUv/33um8HI8uTxvK5fu0dVhhtDaFNGNLRrrrA/AtuhG5msQhhI4tu057VaVq8J+9JbTiYzMDmc1WFO49xvPZOJs+2NUG4Z7paNB6Pawlooa5nTmabYeKaODq95fT1Yyaa92XmEyWsEdgi4ngeNb6Ha8iBS2BPvJINSfixaoaljRFxdMSpf+OxECloac+eCto3CBFE5QpmoG0C3/h8nG8VGoroq1mdo03ZRCOXBeJFb+oKkMJBRUOzt0rYti8q/dCQdgIN021bXC0mHkjTADVha5ALA51fSbUWIcshPhqIGh6Y9tVVpBdL5iKqd+ocweV7t2jDRrIS3ZrVqxmug0hTdWcrlNhBuBDw26NGLAI6fmqfcXzxkJAJqmLlcAIC7jq9/2mkaqePmfnwmOCULWZopWq6rBkUxQRYaK8fPzUYFb2xoYVgvvrsRSR0lUwPdZgIAcqd7L175rlxbKvNVlOtpTR67alUrYtYKRE+Stg0Rgzrvwz9sgKnM0HDmzg2mVGfBsWWi2sZEA1ErsGNsXpfygQlHKs0KSw9GHNk3UhbPsqIo8z07XC0NWq0Sm5E6su5tH+2jvGsAmi8aBYLxOb3PPOW3s7s7fyjc6R3t6YwDxpsSoqsroy1ilDvH4ENWN+KXRTtpqfW1FKUeRG5RkyuRGRElcxL91v3n/cCWT4TfDSu5kU81v6WFBmHwggZ/57WdNri3EFSPTIOASPneUr6siabpQoI31stWvb66QmNzo4ESUt/46T2FjVQxjDSiSnQHJdCDxISfHKYhrfujsKk9uC0fNE1DmRJOtbPU4J4xiecpo3ctdGsCWP/DErGDB1vfJMjwMooGrVQjbeNG+hiyXXOITLpnfRTl2HWPdD7SXaeAWYnWol+K2RmIf/7zX77BhzZ6aGhYYN3TEfQ8prwV/agZOev15fp6zsaZTmRW2xSf2RhsvM+QzQ4vGoIq7Nq8jVHeqRsRHP/V/h4/U93yAvkWz9DeDr3KLs3WXUf0jVqeQ9jCkf/xsG8RKGs788mpojZJ+9keWiawXZR71qJeSSbOEqgvt+HqT1+o1Zlw0S0xlgx/tPpspYvYdOZFuHejiSSdLaSas2gh9SiUMAqRULcuqxvYx8/RuZItHxWqbUCDPCjNLO0LQENBxspPb+XQujD47lK692un4sprOGyOp6FAp/YZzcMsFq59YOVZYr7xC3S+rfU5HWKKED7nSTSJS70kv8veY2A6gyVG6WQMOep38b6bWksJfb7+k++2Ju7e8ujRqGFzzUYbC9dI2CNQylMuJuv/tW0bBo82NfuXNgrw4Y0R5HtNIqwDWxCBvAFT3QQiKbqqagAPD5e7zmCbgu5ZLXAbUupEnnus/4anv+CvbU26ZFNOCrdBqW4ZES+jpXQRzOjlx0igatfVubLwNfDDMwhjjP7BWV+eXSU5sAEmuXTOFbGup5ec1pnUgVENi3EWh7KikulPz2pVR+8XydyrxdJwV9/I+8KxXWE00hIGSu10xoMdCZHXhatvE5E6QrNxhbLkBRQwbpY8UbPgh+5JM3qqGbZ0ar9aL/a9WtAf4A4LWqnezps/fW3Oh799CGX2mQ5Sh3OtvjCLml3NU1+1jpmdZaW2OTX3c6I86C1VINkL/GEX2brYSWUm2WiRdRypL7z/8G4Jche2qlY+VU3rGWtlknu1HIxMbVOpABhvYHoiS37m1aErz7OYfhrLJZWpRLN3LpM8eW/EinHx2Aipgc4iGQpDmbGmx3NZQdXrtYOpOiqqhdsoBPFs1XzOLIc3bmlALTDNSNM0TxncRfxTPTcHMf3ENcgQ4HVh0xVLjQKDSDqBlC2fKK93IaVh6RWVgN9iGrGLpVZTFo+2mo+ZjY8JLTmyfqioAtN+SwDFXuKuSjt6EFPc1spGqJr6/uRSEnWt5vO7PKiAIvXDmXEOdOs2GYFQS9WNYo6Kiscot4Sa0cJJSZ154gqHcL2l1rM6x1OZ9noOR12Q1jAADY72Es5Q41qjlRKOmBH7gpcblSJty9+tTnLcVohTkB/zH4CuH8/Hew1GhzfEl3CO9HloNEUPQ6ehCuZv+LuADeHoyVOqstvpul3bvCj51c417UvZ+ACnrquY6Y13eCZ4oWG05WMQqDx4N4MelQwzJppzkoXbrsN0gRPMEJCGJ+nND8mxT6P6p7Mll5UV8qXDjbYa2mm4LIjNuFr1sriDRjZC2Iq9tNIf7eXPk0gG1jQz1sXzXcwuKo0s+KnJmGeFNl5TEO2tSlsZKGVClqZiWzyqvkXhUo6M3oSteSRaYPeJgsUt3rVd5nf7qxzLVIBgcJhrZ4jOQh3gLh9Djl64rY1MsUB4mJ6wx5GKlM0jWHRuVbRVhnC8f99DWQRqlWvwL4VCrYWGUtd889ba4tOnX30YQA5EgkF5q961Wh6it8cY+iFSlEbFOKe7Q+Frtq4jOPx13xVGVZfVqywVvcX/rpTrLFvUalWcjrBW27sNCBoxbqaw9z6vohBvZ84OK8A/QRCsrzj7Hu1jPk7mFgVWBBt//honijKd3//4twikyLZ1nkDE+OYnr7J+2VS9Q5Nu66sh4QxDmtthEmEEEAKS3M6qGd6ZYRkU0dPQHoGiClK7MnOM1SV1tnlURUSxY63gNfcVtiPtBbGhKR3lTk+jWbbmbDCL8bEEHnUNHSC/dcK2K+TQLIep08BLCbOWvGCSFZmlgKEL5WorZUJK7Bt+ur/ve5Oe1DJ04E8ASmbtGknK0108w40510NT9GR0g0++OG2MrSwOdVc33t1vI/QJnO4bvGqKKaAGdO/ffXiX5ghsHb5+QbbBzdbF9Y3wSHhGcNiXNjiS5DpbyjLrf27yQomEoVbI+KJ45JzM4sUA0V1ZQDJmunk1k2O7Merdd84Vw+hzkJQgIXJzuAdLhCrAGzpuyjjCZQm9StSFY4ueP/qmry4QAKp8tPXittJhApZXk++alyeV/ayEbPxuTydnXQRfnUW/tRsWHbY5N2R3yoFYNhniuhaoY8yoq1ZFGDbYju3oovdgL4u00j864Zme+K5/Lh8MBvWRGizubExL9wfuxzT4210LOSV2hYSjZWoe3mSkpI4zHgqZXGpGUF8HSfMYiqKKYvoZXhKZQq3atIKKp1rUx5NMY6PumCkTCvpt9dwNBWd7CBU0KOXORldVKKKjJiGZuqGnti5ga+Jrn3CSN5HZ6c5PnAXjVo/5bpt3c4hRZKitUPE5WIuaWHskwGWczFvaRDbp5HtnNRktEJr7dKVHOQkp4bV9QawXYFTqfv70ix8qrsPZrgnB2zGkXfLEYCp6GS5fQLKrYBKp80kQNW7QsFE1OWVqBmnuzGJW6NcgEN7g22zGGa2u1qcLhi5ASdXIdvl5OVC0gFQ609Q0bYyrygcjKvcDI123vVSffJTwojZL/jMgeONN02MvkzQEsJyNk/zqYNk4IFAoK6nSV6ATfcWC8CmhO6xrnt4pdnTNvWpa7g9YrD2mjTy+nFAx7xp/NrKNt2koymlT0p+yZVik1AV4We/lfLeZ4IqIKrGb7/3xSllALVtOR/pGe4PbqS9bydg0oSqI9kbBue34yolUfmsjCpcQWqcI3a276pmgU8LCthZDG5JQlCvbZgE8w4DdLEJWejnwIo2nsmJCYtA4O2CUL3H5VSWdzW315KWCtV0gtco4W+spzyWHzp+6jtJ0IhHOFlBvfWnxLkVEY2caTEBRPngL1VJBVXHdiEC3/TKvJpFZ7kRhLhwqSNa2ETkkUG2gubZHhAZ1UBVgBLohpp1GsZoXzrOrwYhKfvtpINCpfCmR9dQ9KUGpv2ghtIUjPTRvmJY/6e9mJarTMh/FbZ3Bcak++YDhLQluXtrY27+SN/Cq8v7uUoV9XSV+NIgPmaXYH/2hLJ8fciie7hZhNJ0bS1N2G24L1KAsOreUMcsWgFvK0zZnYclazqjsH++tmTbZ7KdG337dbylM4ex3zhm4W1Htak1t53ueniPBbenzDbrGGG8fA7kf5p1FxKdR1XXXAY8Td1F6gMTFXmHaLSVnwjkTC1pKmybIZCi5yM6XXRVIqCWj5Je01iIZ+uqrrQxKt2hshMrowpNKfvvyW0qywAWURwJbb379/Ks2gCjCFb1lzR4RKYx1lcZuO6luTKSv/Cwum1sbBzz56rl5gAw7utKzTG9lRoYwu01DeJVOXQPuxN6GlCajTnhgWrg17ixOi7GxbKKfGLYZ1UpNOgGaSJ2j3Iua/URUQxaQ/UyS8yf4tQhjuBwaZAewXkTbKGvCgEVHWPS6RtgxLY7HuRkdcTUNbx2qLkBdl9zKGSXjPk9Rlfy2vM6oQwYHAvhGYB+thke1TOBEizMtKpF/D/l2VhB7OFJLdjhVlIM6bf22E3ioWpfVi5mDbfqaKcFLbCRR5KK+P3pJRI42ZUWOzEpju7sfFohlaIqLWh3V6/TzkS1ZLeAMlGLBKCUQhqJC0FdzVrWQ8dK3dtUpSDJJMg3G3j6ZFs218v2YfTEOs53q56KU+T130m+1amezoNDgjDLY1+VD4EQppzYiLWnrYaV6UUoJV7jPpwhJRfx1NWB6zrXWPaXPk/aAwY89X8KoLTNHo4xSfrdHtI/EYsXCrNHIBAaGMvNKuMDoIsitsY6fsoyC8qpgh9WbokU+VhXqv06qP/6ityYxhgJJXVN+5IQLiYFsmgCcC7tNVMbvk/pGcuIn3BjevbuIOljzQD4sFb10AhzwFgB4ttcrBlBa+kuh+lAVxIAQEO42tQHB/fAsdnN9E5JsqUkulVD2Ms6WiNSJwI6K1T+0Js4jKuN4cfQ6X1dFvnwZCbdP2/oGNaOBWMmmlY3oVOmwRb+MjRMu8Kz3rHtNd/KTqXeDqiGFXhOfH963L6j1xxKkdht8NlIFYKbPG7mXxXmdufoTEX2fj8DECIXbYSgYOGEkOFvm7ax4R16qCggVDWXD3/tCDEapG71L5je+860v86h+kjE+N0b4ON9iL/s8WW5GwMbbeVwCl15aNs6P9TgJm5e4SC4HM1Ivc8lpGl5DUwlAySTzwN+6TJgjM08H76FaUW5SVqqm/Gorf0LW4K5+VU9zwoqIS/CYhSEYAQYAyvYO96peOhP770TzXjrE7VhlnJUpOpBxvzYiUGYvCq0Vk3Mf1fE+UUArySGKjdOxwqiwrXarr0Y84IO/RgTmuKOXcXX96cKEmNiIGaoOd+pnv+NKevXPSDSlxRbWKb1sLYdYaq6c7QQqqBukfBOsHZrX06RpYa7JroLf0wIR629Lz6bALV7Z9ZcnTBqpm2BqiyCXM0Wg4c22zgv4aLY0CRKEte3abdfAmoUUzrSdroYO9vVMUrT5d4mbZBDXse9GjOOxRsuuyufdMjnRJvO2SkJ8p5IeaBazZv2mqgYZIo43ZOi0Oj3ZNYtn+jm5NQRvYzue94QxtPkY8/Vn7vuYSz8lWyAacaQpR8Z6VNHFUGEroBTzLjtNqPXqUEboNoYSSG8ybYYe32bz7T6aOX9kSWptErqIhu1KGo/aIiMGdvX0UlDh3O7qO5yN4IxtMLqUTHr5z2AjbIgj1h8gVTayN6g54r6ddchJGf7Fnzs7uWo6mf+cMYWwJxkQdYWnGMqaZ6Kxi+Z8Ddtt2VWIGOfPivBUvmw91CRI3Xrm+UvzAtqTbORVwkPtoi1A3xE7qhvbtg5Y7I7i3HTJRBZ/u8egrQfGldpNY6KxCLnrGiHl8rDFMxeaiSFUtbCQkIRVNdFUlWuYJgGGxlERfwtW15/2JSea1+y5mTZJfa3E110Ln/3Y6oIQJ6LjRWj0NHTkTlY8trQTXdRrYy1P0KXHxaRV15dRtOiAsj6qp3etK/kWQ3VSGIfUAc2xIAduLHOLdj+Ly3LM73lfMl2J3L0R5zza7pQpWF/a6jQK/b6mZ4bxUDTauGPqLusY7TkKjpSXf7zrK496EhoaUoa+2kQfQTJxqz2KsC3cxWFpFEPLUqd/ULkfAh1IYW1siKsCIWlvvvHGnv+bJPDIwX/8/UdodVtKc1PDbdpuk+/7Ri90F3TcCnOrPCpbpOZc611W/G2/cSPbO1U75zMshzZUqsO8E9FuvCyf2Mh3zt9Igh+qO4GS56ecARd3e1pAWzzEQL7ryMR6MNeOKjzwBAVeN/6gDmn1RPCsLP1yRV9nicnOeWiNTLYv6I3MT5JhIUKMaIT6FYKGKb53ttCqcfTa52e9ILDIYHf8p7q+3FYcXyMJaxvcLnCx/ZpxCZf2ra5qxrzH6tZQjvtqrO/cZBPiH//+PUNpnQVeWzeLPfvaCYampVGbQBg8M5++cbZRo07KTWrRUrSXbLCkY0livZyunfrO1mWFHtlJ0btvuiXChYT1ys03Ihzhb/sStl9++UVq1NNC2hU0IJQw5bVbRFA1aqa79Vd3Mg1ru9+Y6yEUlCqFddfmFVria1lqF7Z4UuVVKcE8hKrWDVlhaYphWZ9d6VaB33//fVlXvMLmTY4ZOgamHsi0csRWzUgdsKsnTKXcUXZ7fuPDvk9PDtQN4s7wAktWd5qXJ3SU2NpMXdD3v5f2e7SGS2meRN0zAM2b/H0+A9ZoTKKRn/Q4y69DM/3PUAC87cJqRyNRpDgaLt9jLuqADPSY97awh42DBNKpLrYbLTWP5MIZa1MAJorRPvXR+DwmSkbXFvQ4SQ9stkZRonLusT7mKWNLROixQ2QK97DrvpgoHLqh6I5lO0dFpVNOQGG9OMma84UmQa9ho0SjwbbpOhjrhttNYKocpSofF4y0bnkJ9vk9Ym9/hItUTKaWhxmCU32elEtp2BBRuSSJz6H0cvmlfHfA8NC4j58ZVbijB3/wi1CbsE5JIyExruk4tIbwcujQTjjPcPtMIqW6AgFtwH9tp9ZAJHnl+SVATTQWOxa3k74Gih2MT/bYDI+95IOQvbm//l/tMxDkcV41wC2LY2QcddrHGERl1E70C+a0KE/rzLS7BZ/D9kvONNxftCz846iZT7TEj8ikg6KqVAOg2JQrGY12W4xk7Kh/+8b5UGVwDVsjzF0aTBzpcxOIQlt7G/AolvomJIeQ8YjCuJt6eBILa8SMwTp/suzWD5N8DO5RKOu2wVSoE0aVmNDIkgM6+kkmdVt70dp41Ij5R2ch+ljPdQVgVHWldtNMI1YIZ1hyVSs7SzOhbJVZ6631fbuRHc9RVK6NjvrkcaAby2v8vKpyNGrrIaSbFSZxXfHO1O3H9FAA0l/ESO4jJ2epOsdhhL9EjDdsM9G5WTt5sasjyy6t7rrdgR+PxZoUedrQQpCeOB/bgdQM5hBFSTKXIQPvkD2PDSxBsgWK+KLJ31wvynTesJv72+hSyChHALejd7k1DwqZ3OfjjRFFvWA0EopdU3q5d2ssEypz1jlnVJMMFYcuLUdMYbvRZw44fNMTOC2Gun6TWwtLTTKct4GUq/Y3vveNGUwrLLiUi3KkpZaMKb7+qbxpSbuchXYcdDYo5a2oUr/AGl/ITE8Ax1Jn1EycEowQCFuGYs9zDM0NfRCITNOsyix1A6TMDNg+xywidYEWXrS48tcHBn759MlfLu97DLVVle3GJd3h+ua5mWOfPn12yslKy0EJgpcuB/aBKpBoLrv+LO6Md1R0kGa589X3P7yXgB8z14kEAPO9IOpujQxQ9RWoFjTrTXlZP/362yZaoy9OKVyxq8i/KWNCkziHlaLNmiAknxeUIwQfO4UIJZFNQjLWo1DffvO37/+mUBNc9nz2gmWxmuSzpd7h8abMbYeff/5lcUlKGlN6I1tRW5BKiZ4veuvity1WbGrpDyfmrPw8npRmvmWNfD+/ReJczGopV6pW3Aco9nGREvHpvylkyMIhE9QFYDs0ayWuKyHWMr2hICSXz623phkcVSqRuXGy1RWL+diVxa7XWFMG81ZyjOWCOEZsLW9oxsJyFdDc7Uu32GfPyL+RcTyntEdWdJNmWcpwiwTC5S/LqiHyf2+OxZIRGO6u3QSSXPM6oO0a1D+yIi5ff/aN5kj79ut+hm8ZMrHG+QGZF61CYhoVYAdJ/42iqAmIfBbI1+lTSVYAlzMhaKE8NlYoYluDdtBXnXxX5BR6iaS2Emn5MOa4xqCVN04oc2A0LlIf3r/32px4nJQ5KdA2WP7ZiZkhygV7M1aIU1SYxwWLG+EbKLkrFrbOYkJUD2U4TBsthXhrI6rSp9Dbx48fC1DrlRLjWVau4zx2RksZWKQiv/Jt8zvkGgr6p58/AafrMd8FhfVewsHwbzEZtOzAAGrI8iUNc6EcVuy0ZDLJqYWPVOuILSRSva28jaSmFQVKx8/DJ50cVELeXg40U6Tf/jhIRENvddXC1WHPTZUwC8G6Yd6nIfmU7aMpKVyG6e9XX8LAO2LV2CNZhs83M0vtt5IEWismhOxRnYoZSKoktA1/hTT0qmhJwqOb2WE3ftZgT0ypLgfqtrYHf3r4VWZW6qXm23eQB0/52X845Av/0p+XbUV/V2mTy3cOTmEpWpyiuO0xwUemJYbtzBEBY0qgjhq41GrNXPKr10rLC4Eq8iM61VWQmYPKs9j6pPc7lXIpr4spPSCHvcymba/tpCNDWdwXwDgsTBVUSUZlCpcYHWWy1xPQ4wNxx5XVzAsw4dFqRRWXUB0yFAGjekTksqB99X//b/9L1pL19/t379+bn6wvTcBnnoIANZC18ij29KxH6cn6Q+6FSGzKjZmfxkagxTsND1yZsafB8oeSFMZL+OwOfRrAYQ77M1XzhHZwiVV816lynNsG0D47X1vBIK3YMwu3KBFjUE0f9yAaqNfjmn70loe1xtb6VagaItM8pww3BsrLftX+XGlAp5K+yT5CFoprG5XwOKXrTjRtMnPL7WSmM2m6o6dV73ibAgGxPHRh38n6I/okZJTs37Tt+/5mph7IFisON+YmlUfreMpzBLm1ls3RIukHpZD8/0z96ZInSbana8XsQ3gMmVnVu3dzGhHuALgHBET4xAfuXwQQgXO6d1VmjO4x8rw//Ud1W3i4m6kuXfNaOpia2WkY0s5jcGpvPmqIRQTwxyisoyrh0m15U1ABO35Sq939z46TZQgZkd0aI65tbsJFrPfZXa3004f7PIQ/Rtk/KcZ9jxWA5RX7/hTLmehk/6VOXpLyF37HbTTGnmbzpvBcjnXbuT35kMDT/s0QOVXKX9eYoDi7tAxoTWLC6eEOFlegIDxBcKE7vFBFo17nOc9++PK1HHi5fWGGY1jQrtkjJiwqeaMBhHaqypjPnnx5sGo44w3VuD13CeZB4+qIFjP6b6vm0wNbNO7ZgFX/ROUJPYYxrzyj74CYFMzh9/SQeDnAJqvyLcaOCUpqMiALbX3Cb+u0C/OGZcapnh8wEXJP2KI1LFKe8TqReS+E3NgEla2N6dmrWNb5jzqM9GAe5BaIkyg6Wr0u6DAPJ9INbbFecuhmFGGJIhLjatMbAuKuICqluTqhlC/lmc+eUUWW35HhmsWlnNNbZbJC1ZSpLePO8ZmOKSM+MaPBRT9yCxIwxKraRUFnqKW0+lFjg3QaHu4UDPaYBkByZDHxXk/p+18pruDN6cI2CfC8SEkEbceh6rASNPbKqPEQvrgpwJ2TF8N8+TI6Abe8NO/YXeyC69IllzEWy35zvOn5Ioj7iqV0mmwZMtHmVvktap4AIc7hjQnOI86kPNhwiRe8pQEq6MYgJr+zVjy3wtscNeZLj2FPKEe59PH3r8mi4MgSba0W13Sy9GKSv4TS7akq054/3UkLAzUyZeVSBIdSV0qP6NFb+M4wdExmvVrPpp4Rn8MrDDn2LnGBkSai4Wm9v45Ag+juOJDV9vQ/pWeCYDpaaFd1bHExN8X0qRBrAZfBCzAEcVF+XivyKiDRv4Iz0VJG/iPSl8V/mjk0N1vUaMINCvy5PJrEQXrck3oztCkTJdSZ7+HLQ9l7popceXWjrcPMltsLulJ6JlMby8iw77rIdFfec31RSLbLKvad56LF+eI39zrq8ru8lLrKCWhN1VDI8zKG+vlkljSCP4wd7OJrErkakkKyUT4k9Fzs2H1auFzMii//HClnqshmU2wbokoOSUDZWCUIfh3HoArdgrDCljSpNCWcw+PHLSfUBOw6nUgOV5x1VBCq6quYUOWbcq1muXGyC5lWlzI3qeJEOir60mn1slYerfoiCxQAFOz6gJRk2GWcX1pi+8QaS1NKJGRYXvRduu4D3rnEutfIpKIJMlZjR06bxjRzEsVEwmKMqN1VMnKlEv7MXbtj94KF1mK7JPBLC5iR92Lj6CI8yYq9VD8/wgwAlCq5KCfehjuFjI38EFyqubgu+EscRbVKxwWPtCZS1ncc5vOcqoctZQ7b1FIGY4lDsaDILpfxRq3WMuvvjHi1gmpJiXKcCtvFdBNv4P8yN1tXSfijQLAzM1qTHUYtRwQAGkutYupEymEpEkmd6PXOm/eGaCKEctZcjdOIzwTxtYZEKy30pmM1iReqwtX1l4cv377s6aLMloJGNUTnPMmPX4q6vSwsXNZylvpVHZFGKlHVRjc19LJLJS4Rc4ItTLtWW/M5VnAhcSDUmVjDRw27i9cCZw0vrKmdysZ/H1FJs6F15MfgQO8NJxteLN20tZTgyR2q4YphvGiaKIUufboEkwrHUgpq8FHbVoDd4wYUYzF4auExHtqQqEitkAzzoXxkvkFdmsRAwjo4WO4JTrlxIdmh7Pf+4ic9TCi/YMFjLOWXQro9qACVxTuIKBcPiZPyEk655JLQHXArUZSuMr+DCMEgVi6Ww/EpCQqelDAbxdBZrTeQ2n3e8IQ4zNh3PlyH25E+yLMLWLi7W/35w/39Z9+6WiEeisA8OOxTmJqtVEVQV8EG2h7MWAGGH4GXBPOl2GOXcZC6L0PDfCA1JG5/iEzRFK6VATd1MXAKs8hamks9B5Te9KW0jIri8RYzWqSLnBPC2FAINM3PBGdh0pZ6lbqKKveY+NZa4kPfo5W0roXfFHI8s2d2W9YdN1kw58GZexRQkCgNJPsWyCZ4K1wZeGifP2d0QxS2OBk8darhofWOeUJq2dT0XzihPGDwJCNCsCzEVhJmPWUvq5aGLJe3ipxWnehgrKrf7mWj3SKIUKkQJiNF66O29txeX4k1MrYckqosjafj/lsnSYHHUV1uf8XSKDzguR9eMlJWc8rTCNel30mWOVptinf2N0ybV/hVxLgz8OujBFkxBqLCR3RaGnBy6JIadOkiTpSldFLk2KkcUCpK4U/EdeRLC1DRp21UVbqc7OuDq6mtkrPqDwNEmiFOdf2OmezOAaJ9jlmoJLRoHUyVI4RWDCCEMm4SZKruumlAtRmuT1tQiIFRSSZyA4uFeVRcz0wMvSa0tNaFfo9+HcxqX7xI2ziAwS8YxI7rdCbt2CE2NmylVJJF0kP6nU3TykWf20JJKH40by3fpXPKhXk9nUbl5PJWKPxEd6Kn+V8rlGIWhjRZxKWo9c2L5a5j1NF4aK1xNYUl1HScmRJXbS9vOe6X6acNpOLKMYl3pmgRJgoUYiCeKTyP6OcAD0Ns+6cEA1AK+aI+cKIsfpeo68XKQsmXglXXrrhLJ+Uuo9nCdYYpAuLKfxm+NYVNchap6rJ/eIoyMdKvHYk5YQIvdnK/cBl8s8SXL1P2SBJk92ey69wSoTwBA3Me+LVG2jy8x68hSqOzo2zw1QX4PNGGBdJt9ptQGFGVTeeimqQuD/z4EuG1bsWwEk/z1Xkv9R7tHXLIguF1aSbvPQbiABlizEokh43mJxb+Ezm9Ar5AO0nmEkQ6mL2apDVhG3BxcqTWMI+KScvvOvg8umApUsZMVfIGhNHNQDE8AfOGeczQTeo5COrBQJtPIDDGFDoOOSWBlN2og2vltDR8xsowpUNa5DP0jOp51AEwsFQ758DMYnxR1YwoA+XvM/8kReWX/8xRJkPIy+2ZfuGfof0MbxqJpRbmijXI08QUkk439SpAgutQVQeE+lFGWByJr5LWg5gbTDlDX+tMkOImURcJHCzVOS61rmcdoJHKPYLRCg9NPivbSCCdpPaUrHQ8qzxcrbmmhxcWxlyVai8Id0UQqIfm8DkzbRQx2PF1ZCkfDuEZt8RyR2OHFR/4GF0JjiZd/EaV5k9FIue3WJ8G5LHHvc4bfzVe7eD9ykIXJ/yXLrs+GI5Afoep5ouIfykk65QMsvr0RH0S3Gm8LNOyVvlR0Zzm8Jn/rREG+pevnG5j45gYp/EwOnKsI34iPu7d5HyomnGHq9LxLyvm+ws/f7TTgWlUM8Bns1mQhdN+hyb0yzD8XVq0z9+iiFpVMR/vxRJ9mqQ+fP4iAyx4WxJbig2SGNjw2xN1wmb0KtcwBS3nXpYBplzlpOAcY48GCD2u1qHW8Pv3rw/ehbJce3bHbr2EjyZPvPnVJEQaqbn2o4UVV0lL5vVPoaaW6Jb+ANQxgO4u5wgPYaqemPOcXJ5Rgp4mRytum6ln1jhzWXZwB8N4qDGU5IHYieXmP0HtLUlbSQoZbNkxflKX5xdAdF78F2lg/DrIEUqIlWhYZof+11FQcoSah/N4v5TnLUkt81RTGECilrFcIYzHqT25XKc+AmZKzCtz0U9Gm5NgQDH2XKrxG2/24TiCvWxaGf5eEXNFYiPjocqrqBZjKQs3c1Q00saeHsGkGoxBBcJpDdfRWinLbNsBTzMOzowgqddNWrprDgBzKlI6pQFLtb8E0QOpjcJhZSauCYk2wlDMh3USdIJt3ZX9LFsiPUM6UOHyR6tppr0xnHMTn/bDQH74/jVMaVAVtaNJ5P3rsHlpd2aaiWEpkGa/PY62HqbxRA7PjWRT9Ub5IhHLrRFkgvwEsusX3sPjDkn+6aCNJz+efru3kwXE05/2tWXojcIzsbGsJxdbQ8VpO+XCBl/Jqm1ITTsbeRQcu+8fYE6XnySefMLl9zZPYmgZh6KXIItlMF/vvzY2ON4PU86WBghIOpwfH5g2i8Rzic3jAIf27HZcZRpdLaNjoYZFc06YD9QHP/WOVu6hZFkuO1W+8b2FGVpw5Kzna0qZSa4jdJb1M6sEANXQk7lEd6J+FstAqtB3OZ5yUHhWEhvnsuHasi4ak5tAPR9lZ0sK2yh2zaOZt4uvkcyeLNVHSetAMROqehMmAHO64XjBmwGBRiU8EGKE8O2HBOrfIBVMI9rLFaWHdKVBTnIUqF5rh1FEVUzpApd1Q3n+9JOu0MKSP6ir5d4wlKmSfkrYcFMTaHhDTMR5q+ZDWaqBH3Y4j7zHYTov88RhssVaXKClZiX5eVSivmHWioPy7bexlAshEEz3kNUXjBv7aiuosXoIxUxGuPCjkAkEgngnf4mx5a9jX4DxIpkHVBcw5TYgi5mcbOz6izjQdDifnEQ941uVi+XkqbE02w+2t+EkJWz0id9VhRE/hfiv/XI0BrgeBdV84TxajU/35Dl3nLTalbJ4QgBMAK3oVlvc+lN5uRDwcZr5wy9hp39up37i00ltJMNpKH+I9I6LJyyxxtACja9oMCUwNEg8EL9s/PsfvzmBPKPkLf3wJ/ihBRnf66/xGYXarRvI5dLV0dmppQq1RArGfwz/Yvtf/Vri78gA81uwFPrq9SuXqA1nZej6Vf8VqoN2HZxcChCt9JGoaSgHC+E0fNl/qJbbB9QNqziiB0c8oCmm0Euk/YEvzquFheock2ZgmFlegkSphon8g3F7KL/AmdRR56gUv/56+AtP5bN0TcMclURdXF80CVjr0P6KaJBxljJiPoaW5p33ZGYCZ0uVGu6nrOU1QZCfFiAhrd3WlaZGOIm4YUbao9jQE2T6DxgD419bp0f943/YpmRn8aMXRPIwWeWFbr38Ie2385QD6CgtK5TMR3ci/BKN21t9C7qEEYkhWZAua43xSo/CQ7sDJ4lZAOUnXWZ24BHVQB/tlQCgVzYuk1AqF5VTIvmRdZ5q0sAwxmv8wwhvOpoYAIDBtt+HBCq1C3TGQomQAfwygNpf1bsrVCoEnq4PnuWZuhOoMDU8KUHwTIoIwVCojkN1Nc9Gja390Vat9v2GohYz/5w+8wCGeTilVQIclZEOIdpomFJiGqtJmOH1kYGlVkWlBmuic/KN2y48hBiSM8AmkZPr22v7QxIoVDn3+c3As1PLIQphRnceMfvl9+mT/UieYH7PtICn4IsTa60iMeMzPAhBXeMD2KUC8DJyc9wTckqkPOB1HXwrPSW4EyiMHf0+CKq2e0rKbkSihybZJSw0IdZ+JV+Q/ueLuSznRNpAJldf3YGOtI7LOJ4DbAQOI3LAsEfVtWpFKtSAqVEJnR+bK0mKbLRNw+oSGkG+obI1M6Lh0xQoXmOwX+qmDA0effr4icrSXuotHDdKjTRolzWaBtLsTuuTmjPY4hI2hXPXRkXhn6km6HJH7D8yzdCq5DuXOz6J0RjWHkTn8+fpjWonStHnH7WDooqtw5nRfXXSUE/TTeBNG0Jf91b+ShNywDqDuTkCqaQbfU20GplFN2a6q0UQ8JEqfKgnvnofXXGquN5DiTBJ54+98zHdWiqmN6jqgPcoJz6NbJqN8PClZmvn8FL/sgtBuTeyhic/nl5RF+t2b/rBW4mw/fMHRWnu0nAQCWxjD28tv+GgGC1FnI4fOTyaPSZILtdtAbUsyVMywSVFaGm8wmQWMvXlcczrbOzAJDHVtg5SRC7jobduDEbSNSXIRixriCxSMpOVVL/T0PJkXlcTqhqT8ZkruEjVmG4bMTdDNg5zoaU72Ea0jjO1LAs5wXFsiZ1LKIWPVXLLoJBJH5kKXAsKmwks42neYHryzMFKKY6S8ELjSFN+OQ+QZPJsTl4UcYJKTI6lihsWP4UDE2CV5BdJD3P6wUllE9kJlcCQInIx/10xTQ0iNdG0pZDqLbVwki2baeMYM+XDRvC7PGGIMI1m3sZAhv5jdeEvXhTiqfaLFIIUU3CNT3QJpPLkiiQpP+NLB1Q+Vwv04D80j0haJ8/8mUR5gQYpoONo1SXqqSN19+itHImQ6yDjIUhVdVHn+Qcnm4RArU1te2Cm3X1COyq946j45Jku/YbJCZysoXsBHCvrg46Bur+H2XhMM0deYsbGhlMIdV5Ul9n8iQ7x9AjNQ1JdAmxfO/6X/M99s7I3uChu92y8QZ0beHMOGZafz8CAScscM3/ia9sB1p0x3lLCB7FRdZ6xV0JRGu0OZbEgTHCjVswmT5SZjx7gKeG7PIGgSgkNTJYQRCuHmzXG46+zpD6+xPcy4+NeqpFcjx59vP9EAxqmjuEUChd1XMIq3dAu3nGTDuH1h5vVIuYz4w6JKKYVrruZawSrOhANBnwiAgy+UmlS+sjAlyO7EibSapbKCXG018NW5Ir18BCuS9+/DsvlVLS/RIyuQ2p1giP616DoHg8X3iKvWFmmLPc2inR9eqIERwVF/xzJcKZ26wqn/+CLlwxXFJcdHYdPFaQlfDxEJv6djDd0sofio6O4SEAlh//QzPQpNE4uf8shyKYpbWaOf51tAS4mIButJJ2B4mPGG6q1Xv4MCvSOzmAtSFNyOvSnSSOmgkqZpxDMEGWg7VkIvMQS4AovcXUwn1q/NSqsJhdaB8kEizKef5GKE8BrOM7jq/gFdji8MK4xb6ywqtg5JGdoFx4B6tHHcMS/eAr6+PnRL5xZSq9Y/BSnR9RgU3bhl1XWunHPYTJegYQN8tSbDymMce8R108YdMI88eop6za6rbbdBUd4QsyYmvC/2Dt2q+/MsToEisYMcdYmtzZmj7L0oa3KiTOhvjdgMgrICPC3YKxh7Gq7DrJ7tRlsugjnSStb6sgYDJNQ8YHmsxdpxEp1Q6KGoKWn0hadb1AT9RGYAmaYPCRwdv56/60e8MJ+HW0xX76OgR1Ox8x6iyAb7pZTNuz4lW6WgJKoQduGjP5Qs5hU1bRn17FVvowrfA0nmejEoA2E5nSCDUTr6ud9s2rcIDoV5b50yHYXo6fL4dsdErLN8EW7tkhTrcPS7rdvX/Qfh/8Mia5HR6DLkZoQxmV8Q5BTwTASwSZ5qfZ02IfbFiryqMaM/SFVj0QvitJeG4KN8mMHcl6LVCdzRX/9RDyPzHuTNKXNZ5488hQpWUC38LxVVcTBLw9uIkcSarGoxrHrkVOcP/hMn9VWRgrbYLDX17iS+vQWzqDLi1qzz/Phga1Bm4N6sZcymlyd4XscVjjDSfqqAaWunz9tNBI+ajOG0XzTp+NYSwxn44QXUvXqkpDgfGOp3ZA5xl14o4clA441bogG0p19UmSNvOXbC/cXntZ5gKRhPFMRESAIIM9vDYZ03jdCDTp3+5GuTBFaTvt6c3dlgN5DAT/cHvtiPdEdqTp3Y51koT0M9e1GmJkAJDF5Gd8kMAa4Aukg8abOOVjegROkj7npQETTocs47LHXRhV+gBCN8j2ajE+6pQdURKQfnyqb39PhIwA37gWRNerdJwTMfsNWf2k62o3sLFnUgJ9+4M/06atDRmPXklX23MFGTODApAJoXR07evuKn1mWdosr7pHXN3AtBJKXXPS8QbbguvBOZ7u7SMAmRWZzeRfOcwBUOF4OTqmOqeJwCCdIaIDhH0XlJ4TjzURubpkk8xNVcVZfUibBCemhzDlyns06GkYXLO4FoDeXw3yswDJFpHmoItSO0MKKBejBRrGn7gZ5BxGPSF3pqhmpVMbBZmBeovtIriSDotghm8vOFdUK6SonTgGFLheKT/9bnsxGmhB/fCSX8y4btYy29iWkhi+TqPh17Xzhg4+pJeAhjpdeUAGzgy9VvaEwiFDXR+QY5ACgkr0IhQHluUFKygSllPJ3yfnNmzdesqQ+7BtRacN5/HadELzgSAalqNSLF6pQJ5oT3OU5Qqt5S+ZOzcuNSVdqjZqTixKnkZx0eqh0vKUOTMdFZwk3HSb/2a+yihE9k/BGq0eleFmbuvYNUcMyzw/AJH9dMZfzDtC8JU4oDcOA5l94wC08zXgmMkKA/AAjESYIkk2nYbyllYKx1DQh6LDzTKHvXhC5iNIkyyJ7JoHBvz30oicH74QTj9mlIRLrRTjGDocnTiORybiHfpx0+UwOk1o18jvVTQuJEbdzm7MvQIMsPohJihMUNfJO+jBAlHRDvYFBtsijQpkiOks4vyt3B+hJ6y9h1HTmJqXUsfOxNCPykNha+GjNJzcYK1RJKsl4jgsn6o0D42Sj2KRHdK3GQbRljJqHMHEL/w0U16QbAuNltGjqeGBaiPFETcTUeDmcVLIrrO/nlET6wE29Ry059tI1JPidfoLa/wLB2URLVQrLltNWZKhsQ4UkgtO/MXP0tjxGY7P9xA9+9rt79fLN6ze9Lw7nxw7+FNQkupBOquRKnoN5p4nGuxJvtPylVCUxlga7DDL2Nh/ghVLljhoPG7dhpiAGs7/9ArXihIHygFSobkqrZNnGdcrKmBlhf+sSOOgGo3ah9X4D8OdXWljDuCskjiVbnICyH/bgPdW6Gh9OQr8Oq8cBJzl0h8uoJrmkxUyXZ6diZuzWagpymWDwWCRAVfMmW0fUZE4lpqGN6JsPWV9wefLHyWV4RTS1tlfM+0eOOUApxmMDIPhdT//JEYk1gVMxPAqT1CImJ0u9xZJz+qkECxFNdkcyjC+p3Iilyx0AwSSXHtQgZN0bM4QnbLpDgyGg6S8uN17ReStKw1MF4CRNAZsCIZ1pDNGrnw3DrzFStV0nt8uLuxuYJYnJ0vjXsYkiYlJhCi2GNSKTPtOTvkXJ9ue0HFV9NmW4FDZDlI1EYV1Q3V8u5MxUB31lY3wwG+wm7RZlG12nylTNATAvBlTVabUWWPakLD+Ug3L9+2lIVxsKQ04VU1REk30/05MePXGQn4eJrnBCYQcqLnMkf2DYWNl3BdJCBKmFM9SDmr2ohTRAPDBx+IA02h57ZcyUUvg35uNj2KWHujD/M3mqNKqLQ/tw/Pk1/ktXDUqgqhwSOImgQbZzdgj+msaoiOjEm8YOJCZb6hZKGMMBNapQAnqv1sETlITKPY/qnB0bKzkIJ7hxWFaez54xq7X5lrrx4p4DNRDw3iVxNkC/vvY8gBf4PLpxN+Txo+tnVyxB8c0HqJ/0j568++f7F73wce+GF1BzJ1psNxS9iSwfhTWLfvzk/uG79+9Tx9eHhyv2mK+IGe/k9zsrNCA3XOC4mXZ+SteYbAvfZn/lhyQ3pZDBbGFqIJiZPLt8JH14eIAnn9fr7d2OPomAV+ute1f68ca8lCY4j1azWkmHSzAu6x+94ZENs3vDet+ZyvyQnmzA32g9F82f1ytDNc1zeYxRJkvTtsKcf5BziWNZMh5/y7fribMyB4p5EKHKZ7JUcOs81HOk3HJ2JMbmXmwXldgYPHLhWaJblOQcEyQ31GXCGZ7F48GpBHWyODQOPx8KW5iL8OVArfDl58DSfmoop3SkeYtLPWMABk1Om8VhJFBNU7Oq0BgGhZlPK0KPkEXZwLfj7nBYccQaQ4Ni/o55iLbQaXWRGt/rQVyCSJ8YjV6YETUqjcuUqyQkR7epq/AKcdxoOBdyrkwIa433SQn1vItgw5Ca/qeJGTgaCNc6RNRS+G6NxskuP376+GXLB3Ei9aWBxtAJkt38XKbfNDoR9ef65Q1BmupftiLUDgFeih5GJxciPg3Wi9Soawd0kFxAxm4WR6pXTaWQSPYCDN6Oh4YjHhArGRrIZg39LxpjPa22cgQeG94skuFSGhiSnokZMUtx0Yg741aJtrkjYJhQ91v4HP4yrkSxNaNQwUKYDAtPfNPS0l1ufySGtNhzEC17xQXwY80u5ts9sHfcMFNJVjqG6spbieWU/moluwJwYMnSAPA00+vvlIVtDeOIYJUdv1K3MiJIUNRyVg0U8y7iK+nmtAegk5Ug/YOT+HjHeJqvjzgSdJJQiTVXHnnsqZ+7Rvq4ELKcSkUo156mxLUjjwhPWk3I2L/0ApTMajTfo19baLNdZJoLKCnyBNFs+JLfZvYoliezZhF0Ga1CO07zh3rPghpArKeS/8koOVh8x0YcMdaOTmrBrGu7wsirP8jz934QTVHnYkS6OITCuSo6D/shc+FnrcJ7YW+iQpDGRi7taKaEkqdJNP/zv/+X/9P/8f/822+/HTbiXMNy8pExejVccUSrOUSGNfiYYYudaswAyWpzdSxZuxEhiqmuhLbuLjbCD6yqcyirafjVMxBSoxT9ndL9rw9IbxB1/+mzhzBr9f/4v/1fIJorxHGdwaxY+sDE3BGcMEz0TSlmmxlvFQrXMCdohOXfuDnaC0MlSQsOCsDjqTKF2EVUoWOelNYgyV0mB5FOqyNKGpptjpwHpFAn9lriWnOemSyJgPxiZizExWSxDGBAhpQYKnLiKoOMzSzdVd4Dj5RXEpTgWAtCyknGCVoIiYXFQJxt7iQO5j1R9+M/bTjBErSGGkgHOu7KSxux1XZmzth1mDhuvWcGTyiYXEKyldcN8sKXDsPfkXTAXEKOq9LKCIyVMnVUT+JJ5FREz7IBJEJIr4CxLw0B62bSXQrkVXTab7xZXs1kyDiintbSVQCpsTSUL1B77yJsAax+LnBn2p63J+Er6UpbuWyA3TuuswlmGzqXdtXEtUIYJKZjEZwd5qOY5KRrA4z8Zj5z3FgTetOkPzNB2a1vtD2jmYiGgoDpNhGUxObsNarmBIqGMw8HM1XHOX+gM5QxjHpx0cabDWVml1jdew9ieI2PONQ156mvGv0LOaoIjFKxqkIfUBhORRkrJpkeEtZxMdJZCM8HM07aeDNhsZPtUk4Dl9L14/xhoy5tK944KrS+n/rpw2dt7cPRZ0hkmjL07v57L2dLkgS/v//S3OnRIzfzoCbl/f3Di6tnV23QpzWQvjSEcLeAjLaDmcu1Iv7oyefPD+nq0ZPrF8/ubb5/YijQpIjBMcMDgXFCJ9e2Az3QLT988szdB+8GtWfA8JcbdL/uLD80Y9R/Y1ubjO7p5Jb9dUXcp06LCnQL6XP+4zeEch+75ANe+Nkm7PI2G+EBQneBrq69KKPnPagGElYo8Dfm5mN0582PDRDmP2Xpo/YcHmRZcB7RZ8X0nbi6uvLSesS5Ur8MmTLAo5JyRmn38yUHUgimiwK+UU/LnYpPHkj/s+bJbMYijRVwRcNA4CfscRJ/mJ6ita/1fCBBlifhxGe+rG0o85IUk0tJboU2phc67bwCzPg5dm+VPVWcqx53r5LYpL2mTaQTX3vUDfGf2dP1QJAoVZZ+yF3ftnsFBnwIxSTaIPxKLXxbXHD79EgJxBtYOklrvZtl6opKXqotGH7L6yCgq4lTbmdndGuytEkX0DdmWCBnYmrKLrEtR2mZi6o/VfXQ8x++kRepCWYdarvaXNeFUyB26xwSDTfcNdVeFFs2Jj+B0NU4JWsK8d7WMmFz0XysiSU0AWYCZ/MNtjwIw14eEoA/r6+uHnJgWa+3aMHDq4uaJVvqC3TpuISVw2Ch/8kxhY9DkicKWkcJ2rEKq3sJBFc3QqVkrfzrTlQBGnuJBGvJKmeLVcylypzPRUiME73Cq72X47/K3DUNLpNPaHYswchTEC8WgEeAAm5vb5n7z7/+aiVtkkMvcQ0gFmK8/ibmESvzbKtnpo5Yf+AqCgbruib/U9ePUAZMwKxw0cmAppOqk0W/n6qzC4X5XQhICEv7R7VH6gkYb8t+C5mLx8ZRWptxqcDlPC26MdWgJf3hIY1RJ+VqEWMmd/EITgQ5wQBmNYz/GUCTgPObn97mwoLqoEoHmWO37zLEMRX1tou7sO0FSkFO7/yymGWneUoUKfwM7+NqorLXSUqMhuGL6mjmBGwDlcfmfkY77hVTCBAMFFyoM7MpDXv++gQNlExoHSSwMHRycMbrhWOiRZtQYwMEZhTlTsH8OhCqcAcDpYQxNpj8JB2CqWmtAFw0giYeusp1/a43HPdTcmo5wz+9kk/Lf/zwQecIwZDULoQXfhEtP+fSTvBAcmMe6vL3gB0fnZWFsVj58dMzaXwCV78YY2VLZDrXmM7QY/aCDZ4wZ1BKScyLDhLhooTZMYJIwyGaQnEa/j/+r/8XDTJ0WhhbEwb0OdZ9hD0s/Y0NR10Ij1xOOXaVzSkL3QI4Qsc0g160tOq5gfJgEPg1Pc3LIp3GMbmgGoa06UQUFWxNidIg/LIHnc4FewiySBBSRY6UmgL5l9JORBqJ/N9bAqz2gQ8Pn94brLTtyP1aw/glYgCUCRg/AeR58PUPqjR2CtT8cvrVpsycO5NDGYZO0p4jEW5ub9pxvjKX1eYqAJi9b79Nget1tEA1g/u9gB8WgbfYxkMo289dD30pnPen/WMtigmufykhbHMXiipfjCknY1h9PMdVVXHr7wQlAbPW0jJnEFXVPPFT/lqtiULJHcD0H4HxVseGVZynMltTvn5lAoH05f4Bd4eBI/B+a5g1QNIhkYewMY1S51UtXWoL5ylPuLJYo5YL25MFfyyodlTiTTA4jwYqJ8Gt/569SlXKp+S0SJmDSovwYVbhSmJjnhZLofoXeyGeyXjg3J7/g4FhCOv78bBORZbJ6Fpn+jUEQ0lDZhWtp5bXFAPzq8jUGxwRjCDjIexlH/+mkEw4cpDHG+Srzw1CgPN6CLICbGL57MULo3bas34d6raGG1RpZhzWtl0g/lg5RMjQ+dmzF5/uHz58+XR3e+utUcwuzp5e7f2b3x/fWB/89tNKuB7AO8vbqq27+v5TEzelbEI0VscVtLHSvv+be7cIPIzwtTVCy//y1TefKv754/bGrMPNgYdIxJCN+9b106TDuiMvodzusTDrpDa2g5yvuR8IfTlqQ2rNG6Q6piih7M6Dp5OZmOA8ddFBJRTS3jXAFypL4pHzjqy5N7W71I2582HjE4RnXZCSU6zhTAuWM8wmvSyvSrS7J0OldkZBTQXz2RLXyWBJdQIghBsHRLqcxmfU1CSbtbx6PASKhWH3OmBcn1Rf6RxvFtGd5/mkrv9ejIy0c4XhITCh5pw5yvg/kMjxUopl9EbDYyHIX9059So7Y8DOo2UwmlWLyqj5tWgtl4p91/gQOM3ZOEBuXXdbm+q7dRC5aR7qIuVXVRlgwqYI/gmhfod0Ltu598tM8NRmA/2MCEuc6HRMa92zyq5hRvWM4F3h0v8SSIu1QZfwZIOUpqpZ6OaZjcU4TBiSF90TyMA40RmVFTUjm+NRVs4gRgjF/dK2uV9MdoRE2zjYZHKQ8UAcHR8MxC5j8B7L8Mb6nKvpjcBMD6FNrewomthxO4XqUsWp3gEdLjTlL/VhHlgtJ3Ce/9N7n5r3OpTvd46q+fquzJ20iZxCGtazZqMTv/Iud5lWnyxXV9fCasB+NThfaMT90RiZdffZjiFSJusDLDDz2/SQ0+hrDLO2QP7VfY4Yw0XxNb1FKrkdEGoThqkjN4jZzBRIfsVPljPZKFEw1R1IycPwF86OHKbhb+czvSLZWQkS5EaLBP45OTHCB6JOb/OEX62inRgba2GGrATlPxBxhqPhca6v3OQkN7t0UlFHrD0RTbmnmAuHOVX61DRuD7loHW6nuomhhtypjLCo01tSA1tEYJhiBD6daI77qGvubKI6mdTl58rHEn/bMOwyKz480E/+GaEMnb5DUoOmjl+6bTJzXNQeq5hZv5mBGo+OOsIZPcFho0+tkD6RGM5xpiUXSSkrAQ/m6KqSsU26w8B0BKKUVu1Ia6LNfGPKWQxCkoHLLYMEMyVjIaxzmLE3vV6w89xsGcK4bQbu7Nhm5MLq5Pz+10kwykV9gtRYm5rCZOyvpPNVsWF+6y6BFjF2GtZieo5KsPFwzs/lZGHQFADyhMUA4u6YTMsSw2ECmawYu00RDkawRDrNDnaetLoj1cwV9Rgvo1qGEE/zJJBY0brq8YqAko7sDd8WtyZ0Wt7OXb9HPdcBqDwfgJ0U8iXGGCMzdZQfJScfaLzcJtak8pxAozoVzOV8SRkeL/c1koghhIwhmszNVdSqVxhRfXaXweV8zuXZGCNSQrUsGlMhH7mYQ7qiTntjiYWI2hXAuRQqLv1IAZ+7+RIYLK17VG7pM5ZI00b/NtZrDlu5HhEIKCTZhM3ezpnd+6HsjfvPxBToBn8JWCSksUmTXeFLRrl4pCM3hiFpBJAol7EshuR3TPpnCKJcJWC0/DIuUt61+iwr7HVmLjvpcjqPe+cAY75lEm3P2BF+IUpG7u1NREdzvzxN/BdFQwsnkPDW+OKKKcdldX5VM9YTJ09zBYCM4NckbK4PHNBQby1ECU2k6QwdIieIJFen89LSZS6JUHAKp6nT1rVC0LVy9CvqEzaiVKd5ORTySjVYfE1f9JRuG6eeuFKQY5xWB3kP6yQff/WTTR2o6VABV7TNRVbu44SrdFtrq6TzN+cmWdqHIHPk5A4WPypCEPraNL5plM4611ftPkb46Q8ZvIW5RHvc47Nun+CVRB69eHi4d/Hy+ubbgx3I325fXBHAt3h01YLLGjwvahSNlMn2g+/02CnUoISprLB/fPgoTrxI1B0nnSyEV09Ja8/+k4/v700wev77cZ+bNQoR9cVUC7q2uW4x0Ho/1CRu1W8j5a+N4L9B99XthXoWeuVlNO/WFiijt7lGe4GcSCaQs6gdQd5qT8NUelks2Hoq5VAXReU2GefkQ85rn9S3px4HetarY3arxOzphWckyEqThhTTPC5ykZJBLlUVbHj8+s2Wqlls8xa24vYnFWQdQP0UrX7mk432usRkoU0T3V6bz/Gxi1+lqO72PLF/Fy00WcocADZNA+bI5ZCQYywl5L3FaVZKRRFOE9rEdv4JSaRinlapI99aigincWw/0w+K8IMsVyhpkDE5L2k2uksjWnhXbGPE8ZDaKYjP1FraaYGpcUZU8dZ2g1zU4YRCzhGHZcvMlKWIg+Xp/BKSGs/bazkERDt5Cjw2y10F+47aNg8Ey1UyEFlHESEn3bl19DLfvkKYsAZS9oOdeyPjqdK0FCRlUmADmrJuObYOJQRpvvTUJKosjTDBY2jzhE7jyDh+OXaDtu5uZbRSrl/Y7s4GOKdkP/12pgkz5gUHZeXyaGSd0ia1KJcKkm5E88zySgkTb4RIRH5isfubm3j5RrcY3PNcxxdb64yGgH9kjYa2T542q+/pGvd4v2qkWaSHrplJCo+/sKcDV+vL0djE8n/oYbogJn98uG+3np2YwRPVvfMWFqafTF9CwOE0Q9iyEzzEIB6haqRX3asagKWLfKY+Xdvm8I3GU886q7n9lAwDect2tRme2M/94sPZBiKUllxzdYVTXg4ZWArObag0qKm3SKmv1wKexPfHb1BrEzWtQQf264jDGWv+s4vGZkmteLzsLHdOSXjD1Vk2JiyPjkQ2HRWwSWENzsKa5Z4mkahDOEEuvVLsbSkz/Oo6Ml3JGtVmsMuxzqWHFtTKA0HVF+eTX71TPgXMRbJ+marrpnBRQbVIjzPg+9d04tK/hwnZuc00tF+anw4rueMnabbMDwlja3XsEz+nel/nyFIh6IAXaAzUocdGEm08UJtpY01xRlWuY9hfTZWERZGQ8fewkDlof33EUVZSR1GzKCKtWQyUgmPCsUzUSYqPYEFq3raO6CDunV+mqXFbu3+JUKPpQbMK54EK2dE5xLg9TY7pout/QuSZmjgyzopDBk4dVTjxE7A4acjtKEOwRD+whh17fh91H7AAp7pEPoRUDJUWIVlDZRcPg1PnDQDa+IoVtqG4PCbSDoV8ji6DS05otDrQYOJzAVdVKHDWZx3llLWAoUkFgfwI+OCXgw5BHVL6K0FjJxxx/0uzWT2sv7YBxOA8JuUeno/h8yFUNEUUYbsSEIwdAjQK5ED5kHEIKH2L5BKq0nHIeVKcTE0aGGl4XQnIBmTxE1X8gdEZC9m6aeue03IxtJiBaRKkBtXQ4aQeXek0pxwPOD+spqs6YJzI1JCX3fybBOI5PEyjkLfrF2OnyBku3EflBENmT8E2dXj4NaiUM82lUo1zRi0dZnoG/dNzftZbJn91LDMJ3hROvHiD5owDssKuW8hJcJgvyRk9JdhOgwjEYopdzHGeM3xJ6spTDYbzZw1hOwZSwjUKaZW6kaCS0S9uE0XOvFU3NemhqXLVOU894rmsSpOLnmuUkwcchvQJbdJlhaicfDqAhlH43++pC/hcnyQGGXiwVzRuu3vAsZAvvnRvL+9udGFpWHbGdT3gCR3Ipre8oEKMOTCJn522cM6DjL1MxiJnyAixW93WmF88ur27kicwaiDh2VzuJNnr5a96xb9R+wNgL9UxJNfrc2rFXrHz+MmXn0++f/76hTxNTR5bzWoy6Q2YL29f+D6A9f+rx/Yd3f/17iMHuLm5+vLdey/uW+148v3u5dX7z/cPviPWjL03/PqssGRjlG3A3M0HFarIv6U1IaGzxvqr25cENFF5YSsNYb77uKGaQozXtpwpHRCghyZ7/Jf1IO/GwtOfXx76IikT06Q1eoFKX0I1Brq3wHReeSQsGTBVh769leYnX2myrtQOK2ptQLPF0YKjVl5n1Ohr39ZYPU9oQ/9JGSVrl0KY2fKcxjrAYmVmIo6Eoipbzu/njA35wMyazaKzO9rF7A+zINiLg2Uqgig9jmGQLIcARCJny2k6XBLBCQyNq/yRh1t+LspciW8+4AQFqGtYFE/esTHRKscAngETHnJi1XyYIckD18Xn0vEBVwMIEBxJCR7a2LMncMYkJKFNO0hjT2kZCfNFMZsKwCQ9dikFXEZYmBf1IC8iPLYd68Xl8WL6KTlni4TICtqn59guktbbpRu0iqZOpzGmpg6szq9UYQN72EqlcHBpeOhzQUaBF7ulribwmbY4FImpfEYvNeGWo8ZACIMtk2gExpp6ml+im90f9xUOQudX8kkOiFNiNVOYRKloUZ79l/bpEU4BfwSJAlghfNVsOrLJ6OgJrkwWN+ldyG5W2cVcy99y3eklXGhjIo/OPI5DlmHGQH3rKccLzpfxrIWlZdKFCE8jnG8Qd8yjS28ntdLGOQgCAjaDVqcQgIYHghiloLGb+gz3p8Dcsa93rRL5dWRIpIGWfsrkB9ifTON33RyJMtMQ5yjhT/9PaIKMeXUOFOk8p7NOJgphjn8q65WLvXE7hAVUFptZ8ZDnzLejOB3EYCGT0Y/2IjqPz1KJMeNuTELnLmYuckOUe0Aa89xvqh7CnE2FA5ySo6U5Y6TiPeQKmktrPrSTfVUR3vIHvIxz8UNpTnejYkWqmg9fGItidk9Y4B0BHMpO4qGeXc48soMPYsxrKeWOJpVCEkuqVB45FGBJGSIwxcIMPLkTxHEhlYoq8ROeC+RhKl/KjERGYVSO+F06tgbBIGijco5jM14Us3OCrH+IhSJyjrGUYjU87iTKpotfnC+uw7ZiSFLKEj7I0Q/Zw72VKf6QXvqf4GGfKNPIKY4K+I6Yj7fTpySjsKo8UlUVZIuNaIaulDQEcw1RB8wRQnrMIZqja3UQ9Fu+2SrXRKqvAg+VJbhx1rBGQwQShdOI88UQXZQWIxpMXSZ2xl+2GBIMYOcATKyYQVTb8XAxGBi0Mu32XEblJA7QVZQ+lBAMxeSNV8Odek1jJlBTWWw71ynWTuFWI47Nul6ak8BT2rKVIrKMVqdbdAjzUZFylDJuQdu5/yhk3E2dEZtL1ZMFQUOlm/PILHylGKVpIKkbu3CIVg5iM4kMEbqgoT5q1lJZrejTh4R7DjO4inICMbZlthNNY0ZVnIQKoQZGMiFVwJDUuNI2looruCgwjKFr7RC5JAtm6Yx00rohlELLYY0b5QhSIACJxCdH1NYPpuM/ky3RoFSSSvMJE+dVQYkaPPicyHB3HGegyVxrw/FLQ3zGYkqzhpnUW3zCp0IqonAQqXTxjk5joEZQkYxwft59DLQTIRUBRyVZ2R1ObqScT2lgIOh8IVBDkIgbXwY9ohklNHlFbOVqIVe0q/RP22qxp5HDVcP3xgCxncCLPgOplhiR6CG8pr4wbALZvVfOYFT97q/3hh0awgbuDNSyZkm2tyRNxISBhBUa283WsCKr3pBFCeqHZ/cAyCs8vd/kuZ0/RUdv6mCsa2vdz160sefGS4GesvDdzcvnj302znJ+3/19ePhhX8y3L6zoSYAfnx+8+scbeHp9NX7Pg7ZeREqtMDK4524Rsg/HQrzp7XvbaR49ubt9+eTH8/vP9hx1u8Oaq6jyeYEE2upyyvqeQmgpGz15dGPZu1cPtQpo8YkyAv22vQ3rg1mNTDfXN9dPXnz9/MVtCLuTMfbCfvVHPZzHHFREBd/7HmIv4uA5y39FNCXk3PmeSV0h8Kz48wazqy8PDcFp44xc+VNWLhf21lRRE9y2vOdq5YcnxgTCOEOLjDRfisgX+59MTKGVa5iMzyAs7nON5rS59KPeR8yi7K5BBjJ5yJhL9wWSSoCNxngZgKxfPaeVwZGLnfkb9OFRYtk1JmIprxC4PEGVVvwVnekEzuOEYUW3bCB5AMqBW4R2l4jf5n6LQSh3pD20ivoxIxKPu1IoWn23YWvtYLq0hDEdECVpiqT2qIGJpeWTPJkoMw5aOFgaLJUsR+H3NGsOd6IYRcGAn9QeN7qqbluNXIHHcgjiqCXthaHfqTietTuq+x8n62sKJabW3pIBNugh4EjktZgQLmdkA0/8p6zwqsLt0c/5wwCoVKbVkifWGVY594bZQXCYocou0clLK6QPnSwSag3KWwaaUMuKlBChNSRZHjsB5w/t7VHJZ2PLv5y6PojL3XuGh6dZfaAENeuUsndGLwYhFZRmDoMKhQKQ5+ZbVMtIKdDPCGGtu9yaNtDH2OEt/gjZCGEY6igXl1ElkbTNKuznXh+AKlsCg62MB5LVLu4tuMaG2ukbP5eSxvFN2vIrTTXMD/nglp8wdbyF8gO4NEu9JcO+fd7ydkKai45PWriI0HSxu6x0jHgKvAxp8NIzaeMo2REl+FEmQVxCjsRMWFg5I9sx2dEAwy3JYJnl8ys3Hu/uXmpM7UpFRyKTifK1yTixffArr2SP2cxztIvt+afKhmpaxXnmZ7HIJNp0MCuf0XDApzZCUEazXwrjfOKoqjaUY4nIkxZ+/JSUVqzhAFFPZMkBkv0ifk6fDHjQaFID1mKtkkuvsYw4NgqHS62qdDLGxs4ibT6p7dEnUCIn72ExwYlQ9x/JdDWzRi02LiLHxoqQ27Rn/OjuaxXPyTcWjyHCeVAc9wsco/APUdSCzw0jGpXqz77ukmleUiLoABlbjo0iOvl1rP1IoCjn7Dof1Qi+sR3F1SgNyEHmw0q4y+O1A0Se1JQTtxVJZYffy18u511ZyA8eDsCyYRwBQ9pfJEK7f/kfPW6FYMhyvtRxGtc3xI9LpHHFmcDzDL9jXTmrzqVgPm0L1xlsRkxQ7UlGvkPulMMgwPRJnGtcFGNII7cM0gkYBwrZQU+/ETbkcSgaA0hXW/spd2hYujE427uESURbwA0vFTa6i5Lf5zWaMJQO/LRSehLEVAQ9RMGVzVozLjFOEdqzmEuCj3zKuQwOcH7htvgnWMT8k1InAwFdnLDB2/QwGZ2xbHrGUG2ObRE8CoeHKCiqo9ojN65qknPqwGpFgiEXaelBbQxs1S2v8WRI44y8tcGf08xEikUX/GcMPs+Ib++X3EwMvcMqW45cIvNeHMfRjjFf/WzTapzinH5JhmNksVn3wEOeZ3DpzJFzqgz7IkOJOvFQpCX5o426hF44Jlc9hAFpmamROs0HiZ2jMeLDS0JiQ42c1D+JO8c24mlzMe96qkotR+R6gmNvw4j5DezHiNgGg9aZppLTyJUAaZMhYjYR2QKYrQJcnIy4NSh3AgqrG/CI6OS1K2QNoJwUKcMGOeO9p25S0cmL51cg4If42eMXfahJsLff/dm9F1T//Pnq9ubh/l6Tzw8P7z9+ZE4D9/sv325vrzfG6r7wjSelvArUTaHH9Uk+GOC1sDjB2L0nP0wOvn1//erKIo49Oc0Brm8E3O3VrW9lmAwYkClkJRt0pB7c3H/69KO7Cj1A4hYA/VC1/gLPrVD2JYEHxsQruS0nu7HgdhOzYvsA44aMRiS2Oa2HKR3QCQp+WKa18w5EvC6srivTK+gOTMaVUlJ6XuS9qB5Q7klfGEGaAeKHdZCAVnOyGwfzGS2QO2MjtaHIp5psc9LyWiZTaIyIdNuKjn8hShvacq2sfxaG9xDp5qLhqKpBnlkYdhrBEzMG2vRYSMa1ioy5SX7u3T6qRUEptDBsLAIlJrydE7l9WycvMdtp+jEkUG0WKoAXOFoV9VNS+ENr3Lbh77DTBxgkxIqAwIEoKAjEAw0umZ+4iEOhdKK41E3WiPoXV0VzKQ4/gkIt6HHV6KTSJoHAdDPLGGpnI6yJAE0KpQZ4iGi42x0wapIGQxaMIF2vWXSfyRd3UhnnUzTQiIWkmLksznF/HMXe5g3nqjwZAFhBStu6mgJZLExpGsBQPmzAwW1cloJaDOox+jWPKEAMlt1C3NmL6xecyj95grnxBEZO1aTxtL4H1WZHiYb5hhOXxH7Er1+masgLjXyzcUBibs8bQvI2fWEPYjpxxO4kUpYSqCSRLnrGNub0ATmx9fl9l5DONDcdwqoWTIhiGqd5VlovjLfEir25RGS6TDmIpr8c4Ag/G63LzuDZaPEC8XEP7tZDPpI8BdYktVI/heRzyKanDrmlD/L4iQoyGSWFVKYab6YZ87TDCcZpemw1DY5nNJcM8FCJ4E0Q2oGj6qMuRZMxCIQxgh9M1uBX5xKqwrPUgQeKqGqxHeowRMl/rRKkIwOBBUdgQsMRrHzvFy84c9fDx2kJV86YDvJ16onYxaXDKPjraNanjwawle+CV4xLdLTZIKgkoizidXmxinxBlFb5w2w6wavJ1sFUivCEvShHKUHOukBbylMykBwvq2UWJTutL3CoDaH1Ao+ljaFKM3Q8j870NuennwwQDzGWFdKo019WcF6buWfo8hPXOVbtcqEYqBHNdzaWGuYFoHIyBeqI21RdMX78GfcrjhHGpNtDIlRlfoBNeh3PXvThea3oQWHxveWP6DrylrWZOw3bJBnPs8UsMoHZQkLWCB5EtXdykPiTx4yxRMIwg6Up+3154iWzj56xb467SVsoCJuC8suQJKRLpbgR8KhysEusTY/TSHoATvWExfJFQeWSoyL1IC7HbBDMIJNQpYaHqIuobD/iqVrXz5yFu+ymgayvUbGRuho7YspLOaj1sE05IKN+LHhUMycg4xFQ0nGc0e2x2SkfMr1y2Q0IaeYiqTdl4mHUy0kGxLWZkiX3M8O76L5YNWijlguGws/WgjpjbEEnR8MHC99EqEQ5mwA4/DrJJWbakpE4TNxE8uuU71S6XPOJhqMzZHXiiER30ouHGaHPHUB6RAO5whJrZx3rV/BI0vUxafWE2UIObZZCMTbGj79A4Sei8kkhGimiPVqG1i0gLQXOGvRw7t0Lo5RF2HSyI8zeM2DU9+LFDLGcRYrpJONGtbHCGaCUkSZXSWrTDwxgKq0WjRo2Yo6ryZKPXaI3U456nAMbhgSaDua69XcqGgKWkpK4GFsnutZxsxP8e0lOiS/e+J5QKUuKJi45sHzxqK4OuBHDeLsYLu/akiocAI1lk2K5XqucOX0uebkjxzOL4zpF/JIzQZZWMNhJm3dbnyaPWx/tZnnWFt77+3ujWwtS0f/xqWF639r8yqKe67JiLx1dP3ny5u757a1pD5pZ6t3He9b+L//2ygcDXrx88eH+4+eH+9cvr0wD3n/4DD+V4/T26sndjV1AfUfWgPvN7c3r2ys3ZN59+Ev/8/L6+d3Lm3vTiy8fX74UvF+MsjmsJQQ7c57Zm/P0mZsGVIXnj58+P7+6ogFq//bwhTuIbvblGJyJIEjf7Ot79w9fP3z4KFZ9kGSW1boX+bslSKENW/cxsqZM2ejRl/uv5hVqbWb5er5h8vTx7fU1NfIZ5HgLQtRL2Slzz0xTKUZbAF7HeRzNJOiMqziVdMHZ8MvvMEPzd3e3SooyprFdtddKnExV4iKYdyLFUi5tcM9cZhb9dP/CLZpsfZTBaQx+G1kBbmDXATN/6/ZLD4rk3Y0eoNImX72Me1Kg+K3BBuUI0l4Jfn25/EKi5YdxYvjYjAg2SbgHD8AXFyh3J4pmcFUnJBdVx/nX26FSLSLxqLQwiZOxpMjlpuhFh3OzFG2LXJBFrrKACrZ1w1xda+4dJ1v+UE2QTXHBlRBIhK6G7ro4rUVtL73voqPyqrChor42QtS/p8mrIos7Rgcb/MlUCMNUYgl/mm99p0uyJdphGDIIQqgJN+7yImk7WaCaWd24kGXpmGJrwHCkUJiEeEPu+Qtqk1W+eF194YtI5phWGdYWec4BulyTrqac2nayiVGEe1IIO7liNsg4gKHLexVtlGBOC4YuUv6O+FdSF/yLaHNNQ8CVI7ubqGDpUd+Rw5Rc6wUmzuHpMvRE50QQz0vVG+9u7JFQ8R/7E9CNZR0LE+8uDQHEJWMkF6BMo92edd42NoX0eDr92T0Zseh8Z2kDflzhnJuVSCfR3gVcn9gl+Ly5I+skScsrVdUv5CcxWGLKgviodlHgCkdTewqsrjahigXqIqAj9dZxq5JGhCflK86cnUWlJtPeCsJ20I55/a+AffzwWbb+0o3PevCFXptxCrDTI2t1/ATpEC7MoUcnLlp8yLEHk6fFTzamorhT4oBCW7rGPB/lG5qXl+tD8wDtZosc9VSVV0V9PS9IedNPE0uARwM2fUJ4aMUieQFOORksfDjseufLJ85/XWoLlYZCeDxe2gB2UJHfSdPhcS8bt7QdS/lM1h/+tpRDchE0GXKTAzwkWRxkVsl8mCmU4jBJTp+b/AH7q668XZM08+tQWm3aPrWtArx6fefjsIBRzN+2LO7EqhvI3K6nXPAzhp3NNaaYUCVPhDtxefAczpVHeRFUSZDp6vBwUQUMkUmm0hZozHUungwNPOi2wdDawxck+7mE1sDlEMBaHIQ/C/nJlkJxWjhtVc3q1LHhKYE6uxy1nMEmzQCnOGjliGQucHIaaEKYi7oiTPzTclJw2Wq4Y6Woz6j5zzzrOFaIuCOPCY/2csqcLFRjIz0q3Qvmalg2zbZGQggC5v0N2OpQG6zC0yDgpJ4UCUtyOVl/GUtTcoxkImYIPj9frplO2rh5WCJIJFAE2/Mfc5pkqZeVfAulEcDkCdSUq+R07dpN4gQ/IxWtnBPLCatyXcxhk/9zKMzhmqEPRTAX/gEUItkU5gxQu0X+8bnYgzrxVJWgc9hN2SkwfiBmms7L9ahxHmglgqUhEOGcv+UyFDATH42N7iKtmUZwMXOGArMUgCZfG1HFxnCNEyTcZCn22BqMxvWqyciU8RvH2iRdeqYoydSh+GRD/a6RbkKtY8vDYyE/p1doj7sgL31owuH8fnl3a+A1EiiALGKdRDFHbezlBKINBOu5ACT6uM0ulDVXPCeueZcmEFSxMDH2Alj61VLv1E3500nnIeg1Y4z2BN2Oao6KcsPZPUTOqXPpn30bi2NbDfPuS6nGePiTL3llOcPLL69e3ry6NWz0wkE7cOzmd+Pg529v7eFPXS+unvZi0KdPX9++eG21/+ljfZjHdz99/mp4//WLnT1i5On/9uef2H3lTT6Pbe6//fBZh/Xt+smztzeG8j/eP/g02KO/Pn5msJsXLyz2//nJvp8faPgs8Ne6kjLSy+vrD+8++qbR1XWxRuduN3z4+JmIbXjvC272ZV2xAX28vPX6OevuP29vrkxrHnmN6fPHVzdGKynh4+cPHOGFmwBtOX92d/tK0msMUIR5EaqZQyPmV69fUpJbChhYB9GQ1OPC06vBTcHlMeiHe+p6/NWXEbww8cXxIku8DegdX3ZHggfiE3mpBwMGjWof7n2U4ImN3e51YB4Vh4CD7VjZyXyhGOFRw5cHcgRL8gJRojDbySEpxOtQ68UNVhTA1XN/VLHA6X1KxUX4S3ekKwHkWznkPKvBmlNUXPKc+VqziNjYD01jI+esY52fLe1rwnm1GbeSQH7Hp5QaPzuPUgPuUaxDKYIoEBYs0SpGdl4ggIchSutuMv5kD2fROSLKRE0Ml/93orq1A7z2sOwj6zKLmN1cKe5QN/xow5RIiS545Ufz5eGErndXFYcdkO2tDLFXpyacaE/sIOHcRZyXEGpOIod+h0Su86hEvPQ1kV/GlbO1cbsJMPWCxYtKv62A1GCMoL3A322lOrXyp5k3Get0UDv8LL2k6syD7VJTOkoz9ebHdpiHGEQSFwTzz19TMtcZQZuY9OMXLmKmrm6SMFhSNaQDmMuVssxmzuscYigQTbEnzwQ8XOsu6yc01gtAgI1DJbFZNEgFTVAdtN9VaZllp1rIIyezVZInbPVHK/j63d/uY3ARJOrqNgzIxASHjrdWFp7j51DSo4DXIWZv1VnfLym5aAXg1/FMI6PsXklgSGavOovlZJf+6g1nI3YcY/MJJLkLtDlz6z4hxEnYsjjGdgLZZWkgZsYxkymMk0BwvnbVas3lhGHLjhKydYpxQAGWPNx8m1pBbVFmrNUpRC4HPt9FXQjohlZKK1XGTiMKigQPd9gVprWqYFSU9kHn/o1lB1w8J2qF8ZyyumOJofhPBHX9qFEyukUi0bJgbCC0f2PTWRdE6I+LHYFrP/bWNtZwY00nLI05W02bnv+HxYGP3zDOtrlBtJKMWpteHtGCSN5+XwwRmUoGibqRzGYLjRm4Ul0zcnEXb4gmxkHv95BgOJ0E0U/iQ6i53uTjp09ffJSGpAuKoyN4vDOjR/LmmZTMGil3XpQCkzaC/dsR/c7HBy1fUlNuiXjQWS9wvxuujBw0dTjVF7odqmmHaIf1AMa2QkpZ7fJgc/2y9uHEb+iPmujn4CEhnLn+EiE0egVNqBs/4DGRM+Xll1lgHIxTMPhO6XGIH8siPK9WuAcDSssSt4Q8wZo+jZ/UYAa1N0ecLemHE2Q0G3SYRb7yi1yJk40hlxfKco4tlcnQcWvhpk59tj0rUk2WOrAcxKOfN7YWl4wybTxQ/cm/uMpXGjqbz/mtJ5OHiY8iFnQDxy95UmOUxcjoN2GIDetoseP3HKW3+2mIRjpJN+3oyEcU1rM6d5Zn96LJSB9a2oO7CHEG/dhZq6PTdSEUkdr3gAHwjEh1paypVoJOIr90WXWwaYCNSvpr1dam3M6hPM5wMi80yWFw8I6DTRvnWMw0CG0ZEk6cxsWgqkp76tNh/BcOjaeN//kBJIoV+k2cCKLH19KkrPi9V1n4UbH/c6NNxIcqm9XGhK3jmC+nan7VZCUWmftnq+kQyzJxjYeN6Sl5CtHuiSWNwnX81+aw9EtvyvGncG6XcNoYyyrjSPWscZ5c6Y4EiOXU/T+JdQO+xEw6vx1tSMVj1lw5mVeewuuTsMt1hrZP3vrpxk79dEsLHsOxiIeMwna2etrv6QujbY7w7PmNOa8t3LcvX79//8lg+u7muXE52W3m0VM8fLXDBMxPO39u7u6Qe3nz4ubZlRnZ54cvbwzDTQoePXl1deMmAuEevnjzz5fbts388N5MYyAgJ/laMv/zw0dvDzTj9bSwRxqE5xPfxvn64+2rW+v9pgl//PFK6pUAbB9yC4LlBQ4rghd6XxtIP5iofPkid9hs8wgh75m5vrr2gMrVbhWxZOHQA7ntdeahLXJ8+2baZvyex61npex7m/rn8z26z4yPnnx9sKm6sZqLu9sbeiQCPWSJbmuUG2wqyLZPn7rnwW88WtBGfyR7O+dPcwUjnEy/m5aZ3oCgBP19X8UqFeRLzJhBW8JUxKZO+D+whQlfbjChc0UJJMtm7297U8p8ghuVwyTBcY5CMsC6pK8Q+FzN38sgWDuocIT9qtA3oGk0WXCdWI1z/5PvdHhdhZULxSdkdQqQOiURlSR5KbEIogpEalOSQgMdVwUU+IMa2SqyRCMSaDnaCfm4wleiFpUwuF/o/LSARxswjeeSrijTExVZuyPBzQYaNs0AlBGst1G3udIZZtQs0jCB4bTVRl5uwU+XIKK6JFPhkiG6vIAgieUoimWdBoiiDMyRW8PLZirb4rnuENGNPEfJ2ioYKvBFol/HuNUtcTnBfU6omtIoN0n3MwjufJAsjz3u093lTGUtTocc73I2orkuvDBW7j+wMpvP9zGYi5iOWgBRW8ZxgrxzKAnWnOySz09XqLip91Li/K0xkAMBwBMnZebSaQm4w+y3wQM6OLgIO9bmG8EHpMEGzZPCZT5TazMQELlisyAMCqshpuRtXRv/YHhhvKO6XsYZWvkYPdbDxsFKcm+XHBgkzoe1uYdXeOde6aZyPFOC36pWukScB1CP/xOwq4uf715uJLTkL0jEiqjJkPkPzgN35BbAOg7DmkQ0QSOaM9e81yInU35Ro6q0dr6nFJSSyiIY/JELCknMJUMUAE+Nqc//Jjb+xRdu0z8IwPvq2SRaxtgU+mQGLCVD3ey6FUsGjX+MMut34Iq54YAm1c1wF61mUG0bCEXkYmVwwEigWfys+ThW6udyhG8Y2xkLzRRWSJ4FlxR4PAeWveMOfG6WQjPPKMPg7+FSZQpOK/sPxmVEijg4sN/hzCUkYbh8MS0AfQsLBj4roBEYxjbxC3Pi96uG1W6OVCzU3KWiWAsoex0PiQcfk/GQnH55KkIgPhyhcXSqvd+7YMr0mSQ59TDyUp7DhY7+K58yqo/jIVqDeRDnmCL0EEdlVMDLGR6N6Wc0ylChGRXnfrYYWhgfLVST+qJ2UPqbJhuSHv5isLOaGFpV79fBUNbIOktDc9B0E0AQa5hUSvJbeWcirL+suFwmRZGuSFhlo6tEZqrl6KSBLWiPyu2+eYl3WVsDnhX6qHY7W1JIcULW/+0R3K03+Lz0ysdEUbLezBfPGy2s5RsZl0dr03lLsNrqoeuk07q34rQToK0I6TFVNATMVCnF8qwGGsWeE2P99HDgnMcZPG5H5EaGxf7MP2IRt5EoQ0FCXuBOcauUWtHV/iikXpUJlugBZ44UlaodqSkZ0mJ/lDRaihXAObT/RdJBEOuauEA6qLhM7S5G/DhY3GOzCu0zXwtIZS8arKhM5wdc2HmjKZ8hUf2Eo6W4Q0UV6Jxi2SdSl011iYWEemXGJeBjriEEanRFr3ljFPeGotEpnRWV3dgxwqt7IC8OUDW0WahmJ7pIRXUA+V5kNzPREj9l7GO7rcrPtDGDhD+Qx+f6wpjKTsHTIXVXaTcwwpv4CX5FutbDRpthPF/RGxQsfDYQ5P0AwYRkePCDYeSUGe+iNFZDaK8BTwR6Xr2/eDIs7yHyhizbheKLAMboX75/u7//NDtr7oU2Xuf549XLV5Bna93vT1/t/f6P//7fGtd/tVv92wffGfzy1WO1fj6bJQDxxO+zx2/f9Eae62cv3ry6MSfzRh6DhVs7YR68Ssha+Pf3Hz8dhRCaHl6/vrMf5t5r7J89jU/3HJ5d69Tx3/3cR49fv3pNxey6tfzHV8+feho59+mJ3lbF/nj7hqAafvr8ka6Ej0q4H7y4lMKs3P/0blLr+J+9U+i33978fveHbDIe+sYZzd3e3DAUDM/d6TBl4gPkdQuxjUjPbq5vmamhZss5Rv/L/oLx6QtozGrkE0g4tijOIb2djI+ZoixfF49PW+IFwHZGKI6sKabWMGcaflzlagyGRt+08pqdJv3SLXga2GA3N25wnFudoKHGHIuxqHRG7AU1J9BQqYiactPcpmg4AxoNJlVxCZnYmefjOqcuHxJkDcP9L3/mtZNhIydzNLRSpmZq4rwAQWqh2rih0YAIaidVmYSaYqIVIq68/mzmANP1BCHcHK+ckEaslgnR3Tr318MPNIz5sdoJ/ehDuFPsnqEGZW6VKnVT9ZAgCa2fmizLRO+MiWmxG/HFZtmjEU8KHj78s5WJEw3neaxDXSAPsBWKEnm6liXaiRfPyXNyYiQ4ieBNS0vOQlApQwjY5K4vSLEWyBUpLBdptg7+3A4OWNGoE4dfNXoLZZOQEn15AI8XpaG/VIAj+XPYZqPDfPYlKBVucDPuS79F5QaLSFERxqa/IOe0DRwoSrP1iakLkxdp602SIzuGvP8ps8Wsp9fXL1R2E81HAL1aYP6DWbwjQT/sWx4Om6b9crhMrrajdFIxo8R1iFNVNzriEmMmH2m8VsMAWul0jhyLYCCVw8V/1MCSRvNPoMzZYoH5fB+v0I6K6jsSoIbl8xGMDZejk5vBlnuO0Hx50cQPcRjP08U6u8wDcRxMskm0hkk2/W/VjQuN1mxe9xT12tZY9p73Jujp0LlpATacJbcYhCDblXLqp8iY5w3D5jOBXIJL4dFAupoG6xk1K2zTkJiJ8MBOXKN97E5JaXxHsZ73VcKaybWrUGQ/CIbT9Y5AGOK0Tc0dUJR1HBpMT04TZhbEmMsZMVc5UBnIEdkC0O9Ih4B+SteTLuQauIyzM+hQcpFsQxTZOzM19jDd4P7hz9B52kzmV0Tj89cBV5fjBQ8A+z+tOPMDFF/VL+THaOd4PNSx1+Uj0eGdFH0nh7sxhCdIj8OMXDwc8UMXn2TIZxxwqq3dhbfIxzNXOBVNu2fxSR/5bIyuVhcUqW+44tCP1i7zm6PLo4KcoIIMBYCaZpswIrkwQMK/417pOq5KYnJvxOIzrcNyJIdoGujJd8TCfpAnGKER6VOFr+5ebuhSV1T/Eb9+wuOfXLW2RYtLPCIDv5wMGybCG+mCAwFIKzwxIHPVP1nDW7DVVdeTaXDyqdmntuuvC/glxRQERSl7eleqqNS3tWGVmog4fEl/e3vyOlGZVIJ5ZhDcuE0aNdR8eXMDG+WQomU/hpnv4oAAgiaBnPI0wyz/JqA8kHIbm6KaklEUAIqU1FeVgDrSwyQlP5jkn92zmYTemnfPS7jsZCoK7uhno5IWa6dBo41puoQCix9/0sDWeLJE3GY/rOFq/VRBixPFaVXd3K/FElcHUT1zO0pVZZqtlADcEkX8F/+llSyYFEjnz/PypQzLLfNnhGI9AAcAv+piwdJgi5HKjg/XpZWZmnJAK+Z5orZpK1VgOTVQIICQTSgnsGESw8aICTs2KJjtOqdL1Ps1Z4vTfuhNW+jgapwadRU2phvuNOiMXejqESmq2QVk3v5J0Hl+5tZT9qKbdnmNCoyOpZf4ZPhFE/yixv5xK/QvWyOkAQu0X70/R4dlee6FuwAvnt5eP339+tbLOV88+fny+oV1Pe/Pubm+Zoev3z673XV7ZSj59e7Nzcs311evLKJ/t9Hfw8O2BuWFT3/c3XkK+afX+fx8+uOzWyOEEZ1GeZPdCBsn/8vf3766ef633+56waZJSdvlaa/c4onhFwYUjz2K8L0XDTV39rVh2+Q9q/tDNry7vXp9e+O9ol8trhcsXq3z7frl9bPn1+8/f/3r3tPJHz59/nRzc2PzErTuCby6foFgKnr04xUB2qVjjtN98x9fv326f2fyItB6NdALjxb4itkXKmUs3POB4rvFwsf2OPVwBh16KmDdwO2tScezsD36+teHD9TVJOuZHVY/Tc1vr3xr7LFXm6K1NTL7jfJ5W3c2pXc7xegnJ9+2/lyh/0auikQ8G3mut8ThqrFXDpS7c4scKY2J63VLrQPMXZCAARWQAZQ6COJTbg0xeX2+PKfiV6WXLabCjCZuLaTN5RpjCZMTOMqdi44Cofwef6qwxFY5eY56wkrC7LXLc8JKxm2swkGHzaG6iVH6jTREi/FIOEqZKhvD1UTGXiZHNr3h0OhceVu/2mGylGIy0JtqlzcWyJe3tRjyKOwHd2gv0qXcMKSgxZTwkQYUQoL0+BaYUadH/kW6ykXrQh5v0dp+dzICWsJLECgNEwj06vUtHSdXxmOCEvKRa4wEybUyTSnIJKS+BzzMMZZcO4roGV77Mpjp9dPinJsozxzQ5glng6oSbOTny2CzdSrlsdBhgGnkKC7mCqyGdJOG4Fn35I9z7j3dMNWmQD0caObpjuLpJYtTOpy3P7u7e+V5G/xQ2OF6qg03isxNV8qz2laIM3G3aHrMKBPMl3rxfzOfVELPxZ0PHUZf82Dghx2FJB8ewNACdlS09SMda15fDMxqLELSwfCzgJQ3d40fmOhB+GAMlTDvwHnN4zokcibi1trS0i+wJNpt2KjPXudkaNM5v8J/o0YAsx2iFI3CFN9ADduJVC9PXTRfbbD74Q+44hqHKWU5s19+p8I9OFSpklStZTKsn2mW39R07hXAOq/cuKF/R9LV9dRwutVCVU12jD1X89vTFc3ZuElljQSSCzR+pC+CkzTfXGKcDDXP1cBsGuAy6skd28rjRMFkVKsMq0cCEENWbjk85zlZ4CCZcZZG4BkbF0OEZeIdizPTlOaqcGMUBy4oDeRFzPBOERe+4i40G/qHPUJCOUZUAM3G8wdLOY6DDV1gY+cimgaJP1NOihoOgIHiJ/2Pv/TZWZqqVRHa2pNzS0i0lFOxaZzkn+QXHe4u1iolDpFf8ZAO4iNUx3+gnQ34TxVI53KO5f2dB73lB4VHimB+IdIIlRpMpIRfsjAQCX5dhWrhNOVPRw3ygaW7IU8qKEk65Y/c06e//faWAPHSKLC33QMWxIC5lAOC5B8rMNXnVyjjcLvSTuxfEEwRe2cWY9U4Q6HeINt5itN3bilIE6zU0+SyJ59Cm5F5uayIqEZrF9v/IoF4OeUkJpzHGq70ay3KRiGxU3TZrYl71qozSmnJcUFbf9x5ayeEx0ObBbInNnrOSnZm9aZ9VgdV4CdV4FKLxgMmGGsiWKKVwA4woctDO/J1eoK0nKSlYhlB1K3XcV5KWlaZXvnMOuAtIBUtrg/GuCxcIYUTo04mfh6oWYWNVipWix/ttFZyspZLdaejAoBjgyFW1L4OafweKfjV5ImkGrJHcAceftkiWmVFbuxVzXstAJfQRCGOAm/G1XCYDPh1ckIivHFZgb+LigqYqF4HwiIQ1t5urgeF1kr5lJnsTBqGDUogTBOTGhgMuDqeBiG9pO3NGUYwbSChA3RZicnmOGOExEmHicNRN/HRyaWKNFCEdtNJLvIImO9YYUn/hKgeOj2jRB7blsKFPbd0vd+mZX5rCemie7znUVqr9g9G/PYXff70kbO9edkurt7t8u3hj9/ubq6vvCPHQ7uo/OappasrWF7eXL288e6d6y+fPn399NDU7/njm5cvvLvn7uW1sP7w8V7kWLGnbP7JCp53uvb+n88eDb4XDLY4fvr69b9/+ATMTshru9i/keXh5uWVvpx0Vk9tmxGEN9cvfFeYEO8+/tNq6dULc2Yzla9/ffzL1wYAeAueu/O+QEC1dgsx+O31szfXZkeP1bgRQWWwmcl/pqIfP+6ub15f33p2gDbqBPZSYOr68uOer/k+6O7m2VxbmmUGG4goox1AT3+8vLt2o8NuHzcNqHT5xNtOocq7aMkEx70+6v/48MlWohn6kR0x+DdDMMPx2lbO31rdc6+e7MU+pYU84SQFTDHgGRJpnU/6bRyUg9Qj7L6P4Iqcxx7ykKycvQt10M7nJ6mdfKxtMaIHowvM+rww9Z2phqRYi0y3EcpdJ8xzISz71zhSK/DOyShd7CX9IiM2Q6VS55rv9SAjJsK+gVOT1XhrQQuf8RNjOV9SOgE5+cIDX1ci1ISg8/KGq4WJ7i2XnRKijMbmTlHDQHRjZdtLog+8xU+OLSqFWJeDjUFwZbkC0L/2DESLsTmj8v5sBDmccaTNbj/KAqXPEMEBVUPhRvYBAWOLc0pqnsYb1cbzhUlXFLvVjroIB3rxyh2Kd1w2LOpPbHTCfalh8wQtlmEGVVerdYysu2E4wNl0g7wkU6n5QYru6YaaLhmiZcryQwOD3ngTNycxnqcpJlAJjMh1EHXE4Y9lP/EOIR/BHN5Z//7h06dPH488WEYdM93cWMpNHnlgMqFEPyDGagGw4rzlnNBEyRlB6ji5L+b7XAkAYEdFqMBDpy6zS/pP0TUZUWzCkNdNVxc6jfnS+vBEIqtpvG5LeS7qurMSOOQOMHqiNJAiAPdLIcj0fzlqlmoGT/zDVSWNIjAzb+FkdY/xPD9ft4vcqJ42tOVfacMkR5bYkbOmGoYDnOCLzS0YgTMQalrXrI94YxIBxA2ga5JSXBS4KJ80cBAbblUJeTo5jOA2fhehPCZEDRFjef0+sONsEGJMvb87Sf0EbLQqcaWEw0+cCArhhuoZH47GwmkWwAD0TAFTjPe3EVe6cIVENC5VRxYU/SSGOv8XobuuwYFPDtLRUCJN578WEEEm2piPP+RooPHnbgQML5VqpvywcQAOruPDRITnhHDcVppx4yit5n5KJkEMLPl0cjifxMGMzabW1c2ZswZ56yRChVeY6NRmY1eTrr7SNzp038fuv8pV18IRMmzw6jSd9ZUoKkUkTJObrSbsVkB8Z/XyV+AbkR4TxgQUv1agXcAAFdYBcNMwLxrPb5LATAC1CBlyxkeqiUY3oy8x3gISzAYHABqYOrKlf/0W5P5FqE04ZW4UiRXa1lb7vG5giVMfA0kIdjR8zGPa75v7dlwCfm3raEsQYOamVFxTQ96lKOUYxzWUE8FJYWB7s/q0OOUyoWtEnz/vKUXBpSe19OgFKEBIBI6GFOI8cZIxDeCxEUMvfOh5PnwGPL9N1QlhbQ/D6CvlFUtbfX5yfbVZluNYpU620b9GhiapTh+JYAXZCBQI7aBNUzBSafOoxbzrMRNnKbc5xjyBaIA7TlcU3hRcOAA9aF2SUKvoGVxMq+lGYpmWlNKQ83qEWRCk1kZTEWz7zXmP/sHdDoHmdHJJ8pE9/We82V2dktEPP5q5XpsHon8+Dq0LnySmRpkGKsvG+ioj2jiYG4/91AJhA4CyK16adGpiwKFq2miVLrftSOTgwtJPErce2UMCaxhAjkqveOvpt4yVSvrDvjNHWZWAPbc0RDa19wrOM5slNKZbPCJSu8/8NF48Y6nu9MREHkIiqYf0uJgPb7oSl/nk995l3wZxPMwyaJVQlGDDG5QE5+uX1z974tkI9ebz/Vev4zf0NXa59WL/RhVPfXLoRjdvyvH1M930gfcfdvxfewD39sqzAddfP9+7bXD12Oe9nj98+HIjIT02N/jhs77/+I/PP748eU5Xvg9lKutpmeteFfr25UsL8+8/2TMM7RdPG18ZgD59ZHe/F1+2ov/s2dXt1bsPn0UM1r2V1S1Qb9R5LgF++f769tUT+/+/Pv7zzw/ffFPWw74bIPrEGFdqPvPiuSzpKautQ9u2dOMNQm4gPHz2FqD4hy0ivRKFYhr8vbBDyUYinxS4vbGaQxFqmcPkgfFMDFgQzj5K8PgR3RjP0y3NY5UPWbyU0MSXfMJz3InAtkCn7U+ffDWZLd3Eg8rrUI1/tzqewyYeJnk738o/hFm2riPkDVhlS1xZ6s54pprtGOwFu+0w2cGMDA3ciQDIMxy5gCMaFE4McwBpYAFWEiY2q5dU+IgV63JpK8RJ9KJYy8OxtxWHXIsr7NHVIM4gQElzjAavpTbE+HbJpf8Lh1b3T9e4OP4FsERdL1vGS+D4bD2llEgPlAeVBJCChGR9cB9VOGMyJRETmz3H+c3MKrmWVUTi5r2uiy7/YcaaUphjdGGi7RRFuVLixsLNLgrpgBGuc3EFrJRbboGhGeOSYdRTMPGL0YmfvGh/o/CYcHdHTuvh+rSUdsodKpZSElhCKb07LXerz/QCc918zlDYMkTLiqomgt4HtvnBFCUhcJV6I4wuK3U6fZZ5tnKfFzTBc2fvuSkwKYNOjjTjH8xDgJOsVq+NGVMjQXIWMgxGtVGPz6PJqZLXrTS1tbFOxxTCZBszxA2AimA2baZVETyQiFIArLHBKMXSCYF8WKEmqYYHmtc1asxVUuI0SSOjg3Oc5sX+TsH6dAizNZ5ljEY35snaz4u0Orgjh5KpGj8M7zR8xiT5fr6DyRNTdUVNgRSn/OzBXztm09VANuHDn5WbfWVZiDQJdIGBnCyKadqonWMcrVGmHKxGuAoTtJTmHAtg1R5XLDAAOOoN5xJHM02De1ANqmpTL7jtgZwj1S7uTnfGSyoN/6BhRHH1GyMOdWbK8hlF1QDJtbOaNQtSjuf0uAHhUsTpJunglKch+ICp7TzOwuinaOhMR1EEnQN0HdgGACnkVMRFBqvBjATVGseQKhj+hRxAMDtiNHMhna1jxf9zzLPAxus21rIlmI5LY3/SgEM7ruW6i0sm6Rz78niFlzah3nkNO6efmoURkiQ6/iNympNfuJ5nxYZW+5V01KpNl0kQCnVkJYuu5/On+zlw8XJaHbFICADw8Ez8C/0cu1ERmmI+6MlzdIKCgqI4nefEmK4Bg9HguHCuufKJm1LE+YmKwiMVnyFjmyZz+kGSKjk3Ykvc+Kvbg7OFtEkFJuS/bs8dRUgBYDTAzJFfQ44ux42nJNSxIg0GQpjki92rrF8sOyib+ikPjnFLpGOhMmB46gBiLy25qrbMAu0EyHAzSsqqwZjXJUeUyBuI6J7TeI+oWlxJb36aipQfIG+2U3DWf/TC15ioj491SBrkRLCBYx1lU6c2QOgMkmKtYEjAENfEMfzGHwFvoqEuS4FXSzl+p+fUdzwPiiRMpIzQyXxMM0KqS/zI5G1bVskrTrqsqqMG/6PbRkILP0j4O4QZdx25q9SuEa6cH9yDL91AhfX8RN2aw3bANGmtdOMbOpjTpp8IQFNczDmjqwMuglHXOU0KcVY5NihfErfXlBJcKExHo5JlrKkseO02cXIESMQsVRqCIUOXoTRPh/AAqP8g1BR1pGaAVaZ55tGh0sDcP+0vEOI5DU8IpdwnHZRIx+gk8ipGMB5d4NooYxJFThE19Oq/7MOBqsN41K70PsB+qjc3COOYwa1X79tqghYfIY6tt3jgUYLoxfVzI16S2fxCgbc3Hjlqrfq5jUGWr589ee0Gvx1HT7zpv0eBvffGOOX3314SWoduVZ5RHj5/tTxtIfnmrv0vH++//MeHjzevvPDz6W9v73z095/vP9lUwJTUYeDvfS0mGB+Mm3/+vHn64u3LWwMvLuIpW48RcIfXr27FyiefCO5JgJ6+tYDf5MfWjq/f7z/de3nRH7+/+vLtM/V98laF9l0UeiLq08cPd7fXb+9eMRmnsMXGGNjAyNCbUeztkTas8aeSbguwSa8XpFmWvellTr0vSUwKr7pxI/6+KtyZV/cURPmedwpfGSltb0CwJGVV+4gyx9PufoA1iuM3kpd5Dqz+NSJpiYGtM5VXjmIbElS0olIK8tul336AgT9DNw1Qd8zte7pjzpZXQJfzc3WDxF9LEl1u+AXXce98BatGpv7xz5YJOkB2UUC0hBF7eRr6OVtNjGhjvVib+15GGLRaqAqEvrHY/Idn4+bEqaraONItd28dB0LoI1dBUhIHuW6qKC0aUY+8Fuhyi3FaFqKxGjVAZ5wS5dSlqLWxSIxnJ47DJ2y5gUZN7Rf1sVO/RsxJUwfhjBIcCe6f5iSpRTMf10mB1THAz5UjVfMBhXkCgcKzkKde50hgmxZdjCOydhJFf2rUm7vCclQ97R5mFEGFz2hFrDxZg40LJ+AEIfumDUrAntkjppo+YiA7Lwt5TIIitq+p7X7lw6PYSLPSxJkelq9wTtW5H4dslMm1stRFTZipp4q07MSjLuUI57RcIOCD12/Xg85tjslTveTcDZiF2gQHeTHuQQJDwpqn54RdkKnfU9xMdmKlviPK6gjdOkiJxl5c0ZUCprbcZpKn+RbXVcTXWKNbtHkUWYYkEkOafjKZ/1EoUmJJ3dwpxi5dpDCLOh1F8vhRYh/dxHmcVJWTOIlf4cyvUn836+ykgljz3IZZ93Xz1DLxsKDRbMDBcpqZbdqAarLHvAbQTuNx3TTBysMeRiosYmnO380l8DXVnenXIrSGKZDl/ecN5wnJsFMO4CWNGQzXqSEUWdOxwUacHY/CXxZ23U/Cb3iWjsqjObYa8h7mp8yF1ca7oQXaQdr0nAdynEH362Ck4UajA545+BV6aIFJwz00KBTqZ4lzuEaddKENdpwsinee8aA79gKiFdeN2+6yRApPEzfxnFQSfUfmcGhbxbgMehL4TaugEWCWUcH8aZqCoNHkCAgXAAdrYrKzHYk2zg7zNZr0mp36cXR8I4bOgRG1a4j2PCrmDtGB5HYryUvzL5zVZWqmnrIOFReaKz/61ffwETxPmKocRYuiqT5NyBejTXKBxxehPA6n36qhbgNFJ44Q1FWc7IkL3cHKSlgggaHIHvqkw14Zh2Z5QfodB4dz3j+UwUum2tbR6pasn1nqiMVaTlYcGoVceBiZjNH4LJvEj452aYJERcWG/jA4IXZCNrUgh84sAa1cwlarKdCICgmH4J8v1puO8cGsS4Bh/WhNrF5jt6e5skbOV7/dkvZJRpvWq2gGRbo9KNYUqwyLinK6BIxW1ukc6XghRa2OgRoslvLUslc908Yc2qYY4L1Jt0WIpa2WSyvavE7hSTQKM5BkUrx1joeaLFlUddRYT489ipp+l1JjkTGQXqrWkAiRnT61TE0n7vdAbSvnDZJqp9IgeDOlxAGYLDg3zpApnNU6hqvNwRQ5hpybzNxsEK/kk4YGzFtckL/iS6w2u0goyX2OGooIhIsR01SG6BIUTjB5tEKaJMC8NbnhzyUykws1Nc6Mu1mRZmY7raw7S1tEmPeecPju/YrpZ8MU1OF29fWbLej3NzeeqKv3RUho8DJqbZW07eZ7HVDOr54/HDNZ8DO2tj+e6n8a+766u/ViNRH6xUvcHvnQ73PvCPVGf0vIH714//6DNc3f3vpo15Prq2fXN89ubl98efj8+vXzf/9f3pgt2OHy8f7j46vvVzc/3769fXljv/tX78yx4v/2lW0zBsGPPH5w/fzxq7vnxt9C1TT5//ff/vLEcK+Udyfw3mLGo/uP9hTc//bKvQE76R/ZDpS7ff9hdf/tW0P3x3e+QnBl45jHDF6YT/BZ7+78dP+pZc5v30nhhoPV00++RdztgQYEbizYPkSl7jP0DlNblDb9RurP9+8tdfcJgk9fkH5h0Pbte+/obPuyz5NdfbPD4fMnKvXitjZcteXTkP6rewI2vnIJi9YegqayK7OnnoQQAjJA34UtyL7bstUWWZcCkKGJSc/G74zPnX1DjZnomXHMMQp8c4sSToHJRXicMYboh5POYOdtrTedsCJik8PSxRJOrZYT8rcK56ncG1zOaFsUKid9QbVDC3+1lzz4lD6OV2qrPXMvMwgTWS7ouFmPyDMJ5VLZOgEUOudkmuJhQ6KyIi1hgyo0b1BReim+QrZsEOs62m67eEK7WyvgWR3DYI5ji5P1BQsdjdfpaDVdyQAilGgxcjQQwrPikDhJMjwlMYMtrkL5Wh1WIdEMY5j0Z8oeT+NqMRu3NJLaly2ZFKuEhUfxSfUcFZgUZF4XuYxcI8YF3FBiLyoVhrilrnWshW3akKnGfoabZggSmP/t429UCLLxjZwPYOMh1C54fACO+xJzghTD2uaYGWMmWT/IxtP/EaQr/0qSyOR1smi2qx9pdM4AcZ4QjvgLXcHLOvu+QYZYtkzPsnxvXzuucuSCnHqLYaZf81Q05meqZEzM5bqU614EEmhiOhncLZdOu9SQq2DVZZ4zzhUtBHhej4Zbv+A/2qMHAK9+1ynw2+1C4UhuckKAH9L5XaZtbU75vs4hhrXZMeTZLeFbakShodu/jDXA7DRfysMT021JfUZnZ2kyQU7VEIQvJSCURPHWu4Xvv3QRt4UQQm4huuZaYQ8ZmbOTy0Kj2KSMYzox2DhqSgkCPAkBJUc2PM27IsuwNBrxMjTOSZGwMUGC5uFHAYksTsZVvqQZ+ePiguOCLXXkAzVkYSSlkRmnqJkp6rXrzowkCRBIGwj7U9N+0I1H2HecciRVDT7q+ylbNDoAAQAASURBVMlHjjL30ZLezXCaLF66hzXuAQ21aD3cUmztEGro/y+cSoJfES2ZLy1xxSaSwKg6ZYLI52pZ3dDjqNKJsbIqjyAgwjzX0Eihcw6WOIVLsd95D7Q4YilyJf9FE+isFOS/iB5vCdHBC36ZZJqPFnRHRVCh6Bz+2HCELy6iqSgc1Re0fkl8o9QcE3BtT8EcsfaZNrLdpV3wVFioJ5s24S3L/w8Dq1WypBxCMJLLtNedgdzuMDexQw5PKukEJQAxvZ0M3AIA6w0lfjNuzE+uei7VixwpjNFkWFdzJpUNEA8zmlMCgTVHKqmno2iNGQzD5T8E3MX5Qio2wDf9tei+AXcDN/wUdUK0lX5N9XZgFktntSCthGcp+4gvodHhYjzfneoS2x1tvEWAB7RU1uq+Ws4XIazU3/TpkJhHDEvTAAjsrV26Y5AjLKRWiOrs84BlnMNOQvKzFk0NTeIPKGDtUnvVqPW/9YMmWvWLMyxS8Trt+e0yFtbVhRTBqhtVy7/wE2f1BwynIVILCPJANXM2+7JO6YX+51RYqHZUFIKJMN62luNvHBJ2SOBUMfFzSDpUBQPtOfcbZSoS32sYtCNxMledVgLDAPs4Vhux6KcegsRCncoQxEkENGzMdOlLiA+SwvO9Le81s4IKlXTcM3wwJje8vfXFjBRok4fSvkPC5RxGjRap85LW18JQk9ZmpKdeOeX18xsvZZ2ceEOQw1MjAkmJ/7yw3e7nTUtLt3Tn1Tc3N7dGozqOW2vvL555s40HVF++fmXg9e7Pd6jZLfLHa7MJe/t/3rmP/vib2wJ/f/vHsyc2UJlR/XSLAEcvr148vP/0X//z37Bryffvv1+9fvn8kS3xXhd0/+3q+6Pbp94W+vX9+y/39z98IoC/35g72MXT18SevfTs7Kam3uvjrsDvrwzmPY3w6OaloTol26vzYGpjad5Ciajxzh76ck/hi8cDHn9/89urn18ff/jz3uRG1BibG0M/pDCbWLwA9NF7Xw94bHpz9erV9UcPH3jdJ8UaGSi88Tmh7+ZCeLC96er6xteJDWQ98fz0kecOf7iBUGL49mDl4eWtEdzP6+c98kvb+ksTDMOATYG/+TKrEb25kdUH91gsLpQPGhg9NfZnz3cf3mnV20h7TY0BQbuuOace/cODl6ZupJJT8dNewABBLy7RGaxr5yYme41jiotv5n1U0aBhywF8j7mdc5LWk+aHLjl1HooMn4S06cEJ2RxVhco8bum0v6URfX8uBKGNVVDkUFwuf1zVBhyVFHrxSS5x46blGZ2UUctRIcYT3qTEM4yOT5GujbjQZlgrLEMHWTAUMTZYGsDWKVAUJpNtMYluFCli9zcU1hyctsOA+abFGNN+/5bLy5mgmk3gavd+u1WyzoXSAB8qISkPdG+20Aw9UQh7fgqmQhBJ2iBaRmioXIEieE7HN6px+aMvEEGDc+aN1ZYACNG9r/ybTbe5q9pQlCTD0780HGOVHB1mjuQqN0csvjEsHJtaNAYg/UlBUC39cBIJsAwTRvkC3/jZD9Jpq4SWxrJXzkNd6ZykZTAeqHMcH2HsrHK/RyKRU1oKq7fyB2ulWzcD8dWRYyM1ew11IJrlJcPsV+6NsZo78JDmG5efc1zSfvKmENRi0F9et6SHmZr6VQTsPeAUNXFyJALWAEWTT2AskDbiDfMImnHSn5S4rYbfPn74GINYanCWrQMlhWZxF4+zTCgcR6XIY0Z198lIUyhNsfiGYT/njxZhmAjsBXpIFrAHG4AGY1vkKlIdjbzTMACT8NQApPWF+OmOtO4gV3HEbxSqqO/XNnZpR85WlBwwlmFWbpoqaRqIK8y/apGOo5TDN5hJyImAYd6y2EwhKwUSRwOIVcAQKC0KhuvSd8WSAkzUV6aTUUwHEl5zCo3iDRgAv9PY/vtjEKLKkS3UbdCMhxGssKoDMKqwZIgL290Z4wD0AHOZI1dPSBgoRFnE1My3gc1/oxKOQo1aOg4DlSVil7Q9KvnhFBVgYoaeYOW90ZqiEjkbtJ4IagijPuz8FmdOe9kdIZ1D5OCK4Uwj/YxOpIfhjGdAq4/bC6fxdgqVKO+cR5Rs9eHQaByNy3gL93HmOveZ4vGqtv39nn9vnzqU6me8nQ//tLbUGe1sg46TqSCEWNZp8RtID0dqASlxMo7J9IviCuMuQpu4L7yPqCGJclpo+RZMk5YaB1BpgV4E6aK7cbkj2aZXNlrz9YZzMvj8hFSyK5z4InQsFK30nl3xn1acnIeB6nVavxnekSB37ZIbLjlOwqzTHfN12U4UKghzPQdWTsTS0ApPHOkTp8J18N0KH1HM+FHh9zSKgToGK5eQplw7hXr+lWW7T7dIloByNaqgMvDpqTyC0VIb6mHDufqivW47oU6qn9NcyOljcp2GEUrSV365oAhzB4PVpclcZdXMd6yNZhMMnLdCeQI7PdCVkIbt5MtkmwWPdH4rh9ZJCNFro4vpShId5OXOOZJC6SyXbuhldgG4Ww0VLuZZDmhcpp+8MUdpTpWuEUhFJzlSyYxESal1vWAom9MmMAyEx4Iq135nWlOdnK331u263BfP/UyuyNjIcV7EUVZGX21xWfpzvRK8dJ+tIFI2w3KB3jDDsVJ9KX59cCHWMyTdODgTThMGK0sb3ICzUA0P7KIAbmNuBDi3u/+9lv6qDVdICe5b2+1tbf/+8/X1ze+/vfKYBD1bHDeC8TLQT/f3b357Sy4b5t/+9spjtV7QSQleUWUr/H/+T78Zkt69euVNpO/eddfAPqIv9z+vnt++//TtP/76+v7+kQ8EXF8/86iS94K+e+8tK9zz6p9/ffTQgD0vNt7b38IT28jIJZ88//alRwUo1Ub8phs2ED88eEzA/QA8EwfzZP/0vo2PBvev78wqHn37ku8ZwRvT/+M//ml5XoDevb55/CzZKal9QF+/9/qj22v3Iv786x2L3D33Ok+vL3r88sW1ZX2TBM8wbOu2GxIN4t9/+PjXew8uP+uDaLu/RMVZ54fdO06KIbcyvD71xeOnV/arfOs54Uaaj3+8e//e08aWBa5NMHoL0HefAOOkfARYaYAy9+gehbPU7T6bgJaJOUUYn/k7L8k38sZ2EzXMnW80TiqpFI/IlZ4KhJyJI7bszKswOICSdpePvXu0B5HBzs0bIDrKRiXeenc/Dem3V0TVhO0mJ58PphA7gckL4kT4EK1VjPrRIroRQ8MUvB/2I6I9hk3SirVIuKl4QKqVOnDXNs7FlxJRUVD8wpDnF62gGnzjJH4SufxQAa0WS0Es2Euy8b84RVrg1KBE1XwJzBlyhKG4Vhx6BnXar6jTbGFPeqSEE4mEdL0ADqsP6mwDq2371E/iqh9ZzMbnskCg9frh68MO+nhcH3ciRgOFDWojGWIYaKi+BEll7WSanXp0it0SPYMmdCm9E1EvBzBxVaWRenDl4zphGsarSg/LUfTT8DFSsFMB4IkJCCB5Ne80t5oTIuypQz4emikpdsu3KUj7vLbxd5NYdCHPdddrxO0Sqb+1hWsjdQ/Ijx/9bcgAj1rnmakxNX1nOGOdsdcVZfrNMRpMShTFYitzuFmJhjZPJtRoxaS2WAmhJQd3OYsm7fJqR4NghMFp489URISVTNWbMCeFUInVuoMjmna0WmNN8xDF5zN8NaSEsAwiSideVVQFF/rtBCso8rENQhIRrjN8jBnhIkyYTpO6Nhh/Prq+ub57aTdmB7n8hvMMaeqSsBRyYmYRYwu/Ex+VSQFeZudRqNPD/DPZU8MZHAeWVwxeece4lbTagA36GDpvmKonzeJQCoogVJtaaJl3QSLME7yK+NVO67MAEYlT5q+2LjE2yAt49hoPwJyU4Aq72I4fF1knSqhAu2b/AwkYWPsfgVQKVOMxX+grrKh+2J/iQskoNk0BMJzxvPqoKtEsh4xiXP1iPq/I+htNgVHhbjJPE7+IDbiTo6XSIAjfXhBfU5TLGNumDOWhi8Hps7+xff5NtydMIj/hQuaoBWwLonF6XgNaKqt8Ck1iaouTqWZyJpmAgWIenM2ISiMGDyhjBuaZZ3a+rCel1umReE4jjMyZfg3VSSuBrUpZYI6ki4NzB+ciHKWoTys96qeLGZMrE91anBIBR/kxmhTZ3kKEZviHORJtJcJ5c81IXfzGKHBKnDNZqHv1+hVa8Goy0fKXWIozvBn5FSoADM5VKPRTohnzxX1ip5m6jT23F2c7FMZnw0dumuWKIt1N2yidqKmX9bsMEkzWcDkpauWEFOgGFZV6uONKfscgM6e/qFTdeLckFZUV6RddZGuJhjJbUzLWcBX+hU9irYA+Mwsj+5M2ltAxFVdNgZJfuYLko4LezSeLVTOiSg7SIwpn6xLFGNw5SqHzX5slGpy4iFyy52Tq/TWEO2CaYBdvyhuqzM/SXjhLBieQQCWZf1M41SHCm/g6sKkUnZLRwTcljZXlDsoppfb9ea+CmS796WQB3994BpaK6KGXsjUGRyVtnklI01HqS4qx0eJHw6kjXQMRy1aNMJRoSILJuOAKZ8M4u+dtWLl6fuUthS0TN7ChH6+a9JRb8UExVKaQrcn7+eEBT+ZdOjnDTUOCuQFBeoQUOFp3L+8wdnf70vdxfRX44f4LtC3Gb1s8buwlMFYGQDreYoIMwD6Zt6/vLBnZwfLom88JP73x5asn365un92+usYLrXoj0N2bF1c3j+6uXrx99SYBf/704iDqvb9vUPDqlW/zei7wx/XVjXcL6feMMcj4ye7/R08si3sHKj5ZVnQgTheeBCCO4T+T3Lx4dvfiGs7v377wG4838AAsGaN//vjAHDzCGjY9u/XgNkZvGX3+zMfInph5XPtUcDdgfrMn6cWzd5/en92AQt5ryL98/2K8dfXsinY98OAFpK9evbz3eqNvBg2IW/5/gZN//POvq0b1t8+8MHTJDYfbEnTvjUZi2StIzTcyqDnJrXlLPfGn+wcWshzrhU22H5yB2uxu65SlB+psNUO5Nwhl90Yj3rZanFJFXsHI8/m8rYQNbfmNnsppuYSBdS9Wl/Nzwhy/wY2/Lh2ckKPNTzYH3uqvgjq2yyTfGKIUWuhJcbAvSLWNxDx/0xUjKH3hcBbQMCCp4JLQkDrRjUv18OOEA9B5gUwF+xpj8V5k++nfPsbclir+jW5IFtGuYF7vY9Ydfyg7qTohGxIpOQygCxVuz7BYLS4nPp044oPykFDFzyNOZj1FeX16pqelAVkKUkBDRb315aUPB2PRUnOJ8QCwHqfc6zrEND+q4JwfRUpsarIjBIabhUZK1BZ1YHlC+Zx0fdlaVYLUa1g9CRbbjdVQQLu1AKd5BeAYmFzSC/zZK9vPRtNnjDY3zJkBwMAz49QRVMlHrQvcKVGMq9tXN9D453Jo2a4QAw9NeuueJCmb1WiEEepUq1wJ7GUPxyDjWsl6B5QhTH9L4/76F5wDPfyMlRgMZ0zwH28ZgOLQVQI09mexmFzbdaYZGFh6OEYBF65ci6UzxKHVItESbz4/muuGjoprVL6dR83oKAQ2n3E+f4hVTLgCriSFoEs/i5rEr/LMObui2HlHnQLp/JR3OdAZe5RV4ipJG88EQDpcawu8k7bmW6F4b3NmAoYFWMihSRWOCU44SKpY9ze41QVh7l0gs2mdXR2up5toOO7WfrrlsU2xHNmd+nR0e6dZM3bKTP+xHGmM5HnZPfH98kMVymOrnyDjOKHWrJKFpLL8ObeNej/B9HswKVGTHROkM8kHAQiBTIenPhQDDWFFMI2N6A55HjuE8IPod5wdupfLQ24MDNsgc4RV+IW1c36UP+4ChzDjRmrEncZhfXpCJhbF1PxcA4yvs8y0laEU69DoF0vTgYYEiXGV85T0reUvEaqK7vEWyX9IYGOJNcyFxsIZAnbBn4Zuo5MIdDnFLURHuAXgYwVVudSx53wrSba6EMcd2pa8EGxL62RIrxGZ7cmWk5TaVE4j9SIO0csdncxOE12TBPqXQltA4nd4VGyokEf2HVDvPCGmsjoJ4zaSOdFueqpQ5EigeCjSiHNBokXrOtZo7z9/1sOlIGUbkOlgkS5jwNaNsx7ARSuloWak3gabheWugAHWmwxnXRdVgIlLiPOA6P/rCYHNATI9TQAITPsM1HappFuJ8+W1TBOHHVReD49Ss4dW1nplCuy4n5h5c3qeAlPhMfSeVYAIlVhZZ++EvQgOTAkMYF3EihIJ5HhVJfNLzess2p15mMGYJOI3VA0IZgWGhGHajAmoWME2StjCmBojeTiM7ijCABrRatQ5wpsk5RQ2xVs670V+UpjK5Zn+akJl5d8Y6Aa0saZWK2moDTKsLX0BRj7kcEOLH+dK6tcTM+oBpDkHRaS0w0MAG+WfFVNoKYTagw/Q0YAY2hT1S2nYww1iM3Mv/AFXLz+6uU4Ru0XH9Tpq8Wd8afeOnesAlKBYm63Fbv0sGbgKYQy0reFbPuckBuu6SivTBsvmEBzZRpqrJ8/vP9kc/8WHd6zItnT79Oerly97NvfZM9/9fXV3Lbl//vzR/n7fW6NxzwHfblX+xr7+3rPBNGnr3T//+uH9PHUL37yL7PXN8zsbZrz65+e3//2//9G7EL896A3uPzx4VPjVq2e2AAm+jx/fear4+/13U7ovn+9h9vJNYUQo79E3vv/59f6NBxIsyz979HcfFr65toL+/v07cfzKgNro+ccX7v76zUsvAfOosr7o5Wtr970y2TieEQ33H7on8MzrTb1h7LltBsYtDm9Nffbk7as7QwN6eP32tUmUx56pn1r/7fXr66fXf71/b63+t7uXHne2Xakh6/Mf9w8f766vfnv9kjINwLDaR4o92vv00eu7W8N+NjP4tmnr41+fXjx55laDEbxu0ofAaJBtuZGngFj2/fsPLFg4e/stLfp88ofPJjresPTlk6+nedtpbzHCLstkszkAnQv6bKiwjuF8bMTqu0kh03tfjzmDCcNX40fVOXBmauLCLc5TzoUTh2vRBAMyy4b+ZbnCvOy0oPQ4R3RO/Poi9EbWwHP4EoG81FEMnd66iCvLck4JQEg6yT+IPbcn6zd3ZBmGm3//uc9aF3CxCEBYLdKi2CJm6eU0xGo1YGO9YJQMu9KwJFy4CjUVaG0/TtB+kl7hotBf6Xgk+n3SaWQC8ddJ6DBcDJYKyl2F/UhiUPZWCxxgvzcCozBXwREWImmhVmlhiaQOwokwnwGNsXpXGGWKFsos940ZGLe0EQ6kzWPvXt7GQ7Q29aE1mcrssOzacI2wlIsag7MibCW33TPkA06UGB3GzowLviP05PAszXPvqZOa5k1HyBQ4DdQIRmzDmSBbjKS0uNlNTgoSBK7XWSUjlsQXADmHmJgLdnkSuo5GESWNeSU5nU+ALJ6fbD0+uSKzx6UyFUJ7B47y0LXrjEc3M0aRnMgda5WBjuk2+IaasLjP1uw3Sx75z8I/hLDDGQ0nWapcvdL8IcHJheecARwQAYhK7ZKnOUwTrZAkWdqbR1VSQ72qWM3/tTnElZhidY/idE8qNKQrJZqH2P861vRX1fFMuE0XOUPLhXHTkf/r3eJ5DOe9SlAjskIuMMJY1F12qId5RLE78DO74JQTbGitAemdNe8Weh06Kuu/NCdbkmCA0dJY3xZ0KEyGGIsm0hoqShO/SE+0yiZTpE474VOz8Go89AENV9fV+A9NbUYpDeMk1S2dgW+Kctq6uLCCsXOa1DvvxLHxgmDMoIvlXLD/FzVgsaulmUqnJWjxkJ/71ru9qjnGStyHn49pMFU0ugAJYfzOi7Lazo+MaV9B9QE4iJOul4IgUUu36FISkGKqA3j6T881WZDBPIXul4p07hhqDXLgnY+TX4Y+LhciOoiPJVIoFIE/iLV0RWXTDn6XeGShpcI5Wb7LijjR9pckyGm13zEV4TNCo5QCI0sEDAxQUrR2EpFyVkRaIk2GMaaNv3QTRT5XOYX09FVot40BsGiM7eOIs5zLqlNIE26Y4+YXxPBD1eLM+DeMjnbOsSgKZw0ysz/xzt0KaQGW0x5tEUF41Jm1G2eB1EOBMhIYygvevtaDB49QopjnLX/VPIScu8m0ExCGF4cWmJNlLg1j2rLc5LCNWl3rRqV7jDU0oPn44eX6DGhPAkzbQ6hnshSHgTSjyVmIlzPTgPLS1jwm5+aRpaQYciRI3o8zSI9TAYgjXDJGU6O05Jywm0NVNXQFRgg7kmjE1JQCAom9hIJcSXTLDoYR0VXO3qgWEmHMZyBSI17XqrqNvNM5qkdMejo+bLaoyZrGYc23YDlYzGdKTPFU2CjT5W7Nn366YVWupD3twLShUROQZiO9SxEz6rR1xMBO5jUxgDG/AZCRcmyvKLeOf7+lISsuNSGX2WzddspHNH8MN49U1ZZrAOuaM0FS/PT+daIXoUjbCk8Y5PXrlsp4aHv9ret7Cf/zx2a2N1fP/njrxfkWiZ8zlwdJjKR9aVxAffnqM1hGoU8+fnhvP707y58evj27ev765cu9IvKzLYC6u4+fPlqB86Vejvfm9c0ff3sN829vb33TS0eE5vVVTvfp4fvHTz+8PMh+fav2PuPrjTh3N1c3uj93nNun+9gI5Mfjr146+eHTxwcz7++2OX37+x9v3sLlEeGHB9ITRGqiLX+JYhNPYeINPNb4Pfj88GC4SDtl8sePbRvybMLHd31U2NTBuoP9S2V568Ffv76xOM+KJkLXT2zW/8df/3jwTPOjH1dFtFCZuZ49u//+9falZXsjJK/jKAO5I2HIboLQPbmo//Bshmf17u8/CyPfVWMtfmPK74PCEgTSiiUT5nK34cvX78btn++znbGUXUDuQnzw2nTPDXx+MJ1oPxp/fPyinUNPRGVxYrZSHPnfcKpAOMN76YkSLK344a6Ey+MpNbfUaXjtiQdDDFPEKfcpRlTOOcsAywx5mnbGFJwud1U/R0OOL3FOqeOs8qabSxCVA/Kugtff8kRVy375PRTbiiOTnSZQ5vAWZXJZIVYElnAasfSzKIGpXUOMdInlTVzUJj6hl+sgVJLPZ6VSvZhQYipWv6FwL38cW7Wqi9lOoQLIeMhwZLsQpWWPxFhq9UMzwBpYF9tFTdhLwlit10t/EzMWe3qb+zR6AKQJLW0i0vU4F6e9rQsyLQvgEMQvJQCOSafpGrlqSt0pMJRpAHxp062qngVVxwmM1GsD67oJ5xAfPVcSy9k0DbtYVuT2pfc0rC7qWg9B3cHRurJuwXAzGvjF2b/ANMQ65bQbbk/unvZ0jsmZtzsVouOknXho3cGLcRvDAClQmkXUox7mJ/pUnFLzIr/LfrypHj1JoGb8dH44b0hUR9CNjzMmUdcNVSMBaq4L8ASOnYioOgc3xbc4QpO0iYGLe6S/Y43CgTghmIN1VhovgjGf4giGobWImc1t1gVU6jgmU5P+02QjQpCUc9zsBIhuI1HgOfiScv+SL4pjKWdWQBsp5LK5Lg+J8poQoXbzTlYLY4OuOlladYXhA9nvRZUTZLcypuc62KbV5gzrpnnI4jfu4rIjwctE63BWGJZfAIENWslFg3No9VAgHIL6wYZqzuW1cZFcA4kKXx2xfNhlfGpZLC9XhIIW1uKigQsMAEdeNHFq5t/uyKUKxdVUOpZjxYmCyA9VNascVFVSXPexV8+ocCdiMiboBeXUDlPU+1VDkDltvXmELkJNsOKj/O0isHw3elnzX9qDhIwFZjwnx+ERnggEvKSUSjO08cNGCOWHVL1DXYyD4L05fyfxs2No+hU7waSfzTpOE1ei18xetzZ00S7kczXJDh7cadkwcmF/9BuhVtzb+ln8RICcCcrzXPZ/nOXKyphheJbsGtvFTeOnEKDsWszgeWzEPRktIHUCcjqqKHvUl8BfPyd+SiINx6Hye+yVeTScQEWpyKQ7AEFjXREUyhsEl73bAMvYJ8BwUj4Ko3SMMqqlsGS8ZFjjLXzGDioSoeVeXn5yTZ1ujI1lLKT0NL5ClwZk0lZdoZ+6Brcf6kobDJYF+6BDdJ3Oa+GRrxWsPlc7DmV1MBKXJFv/jcP07I+oC7VhgSmE5wEqitV1mRO+d2skTiqb0VpRcaskgy5fVxgXy0pKMMNAo5BRtKI9WhxMXGSULM1a/TqKpUnAEglqh4dkHGYYnHAPDbUjr4Yk4sQ1yoPc531uHfdgBOnkzAzb23o6D20zzRzk1zuX8i5amPYOPzIR0bwhcjwcBkXLhXnX/sk+R9jjcRBMmbMCLBsSjXkEM5sSDpRXly7WcyunmQ1QnEi7R0aWzWl3nNFDBvL+S67VIpxh9yWUThcS7wsH/kFbfgEbkjTGbSAB0iaBhuSs8OO5N4F+NSX2tal8hbf1TGrf67XS3UvfGjti6Ys99M+1wLiXzFzfXv/x9zvTAOy8ur29/+j19s9fvb6x6cXd5DdvXosaZvu3339/8diO/K9GFPYOGXeS56ZnNPucgpsMrOiGxO31i9sbL/zJfd94d6cdPrc3tgu9+/DRAP/muSnHnWXqP/9856aEleWvttRYJ//80JYX7+b3xPDPR7+9fisc2ZMGfFT4qWeOnj5/c/Pit1fuWzw2avbdYq/KcR/iv/23/+bZ3D9+e+m9R88em6G8+PPPP80F/rJV34K95WdL4Pter+D78MmH0n78/tZLRL3AtOG68efffaPVJIB6bYj/9vXm9qoR4Y9vv3kVRib9/vb2FXX+9f6D+yQGV24fMfft7QsjMx/05V/w2+pPvRSOeXt7Pntbae+uac+xqDG7NECy3m9yZcXxn3++YxQ0iPfKB1MbULKe5x8sI/34+PGjtdTP9/cfPn80ovUkj77Z2EtQ8L8e8nHSql6+KaqKJGUF/hxNGKnuJw1iz7Mb4k44lUOWTxqXnYX8Ejs85aUGuuUrjtwohAPBUfsljeIz4epct5a8YgW/Bjow4KYUEI2moGeiK+gqk+dy10K0wGyyQDPlGWUyg0aYLEQWcZOsOsLggRo6xYzBwbgSqqSYoMj2AQ3YwKOCGCYTK+l6yZseKiqtVqBPqA0ZGzY1xlruOuWXJprCPxQxig+yF43W47kKCU1cCnj4uydjVuYAeZiXUsuqkNDX1waR+qhhOSParY4PPQygyG4yzwMQSYFNGFM2fNGV8JajpMHgZ9aUEDtHRTCce+CN/kkkMYa+o37t9MVEJb5eUEkiN9FsmxMqfNLzMPKWconrTBThXL/QGgTnQW/PEdVBkxPpEbWy2zcTjl8p/aV8ZemQTFPUBiXsHi8Mys2NR1m0ETmLuY23h0AWP2TefYwEBN5IxcvDukUsHIhQL7kJwxFEHEFL11ygp1d9QybxuBM/nCFTZrQVZwdXdVmxCtk4jL3JjoENHzGt7RgI/owEkjq3qELVbJQ9FJKkrZXhzffS+mnVKMUFinXzFe8Ekg3SGMtNQUpfuOWN2RR8cQ0RxnSeI4olzB9s/Y6NNOyUe9RBJxcgpSl6UT2JN4hv6OVII4Kx6qK1kmMjnlyT2QvNKhaLpxFmBHJFOwBoz1cH0xAf2w7N6QGeWO+64J0YUxfXrUWc+ztyEQIJCLD2FXKOcyyfBDBlHlqwXioBkzk3G/LjaRM9VKOuCehoThEpxzHW/A0Exzvi8lSm5NPzTJfjE5JLdRQjGaudG2gJXmtAsv30idQQTVBwETycq4BmFP9HCbQzbINDp1CyA1fpByLYWs6j72ZFA00WWQ4bUSpeO0K9cRSBRIffnHGFSXUMN1njBw/96Yg+gTIGG/udSubHzuMACY64ZBe6Sg7FyGuiMbxgZgi6UBDARnKhPsdECZvWZbVINEglW/A7gbAs0PhvhEvZKYU8Bwm0gY7SwHgyv4wGdVWMzAyWZUyOp6OhXx04jMFYHkg6sspcpDjaV3iUgC28Oa8ERqDdhWz0Jq2gp8K5rdIA6nHm9JOstIJYiRV3Op+6gnUZRuF1eZ2zoeZazfZIKG9AbDkq0QtRHUxULOnpRyMxq+t6AfhfYc3qWaB30XW+UdZuU4JDlbIpJE8s/Gbspqp5icoh7q0LaZgG67sbK+Q/NHuO/CffgC+DjmklFAmHVsckWT6FdzjDnR+X6uNsvgbf2omxWTa9lbYuhUCLySE6fcmaYcf4VR3DwUxB/uh09Yh4KAYUlTRjjs/EgD5jbqwtkFjM0TrpE634HBIMVhvRee7QTIKKD1eJzVDaJt+Okm74Ky1oQwscGm1rmRzrWmYRl4RCdDwStg7VNb4BpuhkzgQl2eGcNWPktMU6vBQqELWMqrO6mz5H35q6hd7WuJ95Mb9FaOLgwKK4vfntinlqzYDHPLF7xrjc3TIDOftejDhvX1y/++c/vz981hF9+Ph5XHYn3ab5z59sps9L/vjjrZdMfnj/7ov3+d/f+4zvy5dXt3fPX729fvXy+ptniJ8+9i2w958/Wrp/cf3Sfhv+Z03Ze3te3b3wis//9O+/ewbBmuCr11cmI57NNfDF5LPrR3//+93bN3cet2Xd3377jTIsyfmMKC92t+DLJ1v5n320d99jv7YNSbQPH9+0X7/PU908e/7b3atP1uR9n8tmKA/YPnvqNaMy4bdH949t1Pn2uVcXsfZPM5MbYBwkXyT/I7v8MXvjXgOl2UssgK5Nw/pA2MOb2yt3SOjwtzcvfV7ZFwdMomyL+uFZYt8Ie0GfHpX7ag7TF/6uruj5zl6k21tvGrWOQNmYef/5EyODZyAfVrDR3TcNZvTisgh+/ty9DgxzBS7Ad+if/e0dMgfhxcW1ZXzRaJSz+UmDjL6j1F4hXrsNfnw+p+IUwq2x/rxoQ+qezjruJXXwv6ajrTuwz1PmQXHpKo1EPYfaAHOJAiSEquLUTHWOLQocpCi8S1r5OYCNtigsVjE2122LghzlnIDaYaCMgRYbR6IDWq2xGS5jO1vQwr+xcn1E4Tk+8VIHKc4WCLFhJLPeKdFVeSxEKDn3G1fAnNvMjKElibJffJx32mhf4FNsIU5N+2t8iodNt8YdhaQGiBaYab6eNVRph3DILEEAd0m1mojRaJHCS6vMhaYFmoAFn9CdauTXk1iftgCkdTsAETopDX+JUH+irJG30a3rdPiLVvaJs9AmT5R7oVxnVZSQx0iaD1kWrxyTIdVs7IElTpONWiRuqHKkvCu27aPrqZUMhNGxiaXe+wRQvRZTeCu4sbKZG8s6xaQqCI+XnIy5lffKmeDhwcNAZlBLuTFZjxyLkvq6j1wIosYmFz/BPDaV5TBablbTwKIdSvXsgSOZEC3B4GlpVisE4nf9Q0oARCKY6VFdZNePpJJfRz5deTpVTpddNEhoARJyZGAaIaBpYGB7O+LpbuZBVe1mL6Jhy4cuosVYMDE9EfzF9lFvkCPhrybdqz9GmThPuIYmpfUNn5DYGKBHHOOqpc2O0UQ2Er8G7bn3ilI5PUCSdLF5aVX8dN7A0ZFgab7LRc2UMlVgTEP4U8BFtHn7vDQs6s4PnY8leBzm1a3xHV+KHxgKZKf9P78CPEWdCYMwDSDnH3tg4SEF1qhpDpCeHahnp6HAJES/GOg8BHM8eH5JEXg870iiiVxD4qeAcVOCrEoOOOCTMuUoPrQ1TVdu6Wr7ryFHDlPbw0zDF1w1BtjNXjeaDmn8XDiNqCRheanP3S5Ch+HyK09aYMKU3mIsEYIc8l0mbJlgh3MHKFaffJlv6pgrnwYqaAEY7OMWGzUiXFL5P/QQOcs1z6NRhW8aVz57zPppWT7LERMq4FwNBRxZ6W/pQoKHM33DVmB3elxg5wl5VogDGdqxU6OTT/dq3qkifmo95v0tHqJH9Y1BG3VPGKkZiTIFojNSuaycW7+bMyUweRMHRpDHAw7/qtanrjfaOi5xwpzynzy7SkZMN+Jno/oL/URW8GtLV6eXJJUReEVtGWqU7ytUZyVgpp3D4qEV2biMw/gcmUFqi0Q8KlQ1/6u/xwq71B03A8kLKQDbJY75KU2v68ou67JjIE0vpHMpcFlFV9qSjEs0ugxmvqYER2l3Gi+mjAZa26tn6UZtQxNI0mX+XbJ25CSJstSM7yYq6UpteptjAJtKkSzVIh0bx/nWSyGqEFgBNqNTI5zKw5bMjWO8zZ0QY9jvJPI//uxxjIcWmZrNL2wgjK1EImx/st10cipUxckvhbMmGKvINSxWq8BAhl7nTyg/icxw+q2ggLXFq5MVrHC5fjSiOCTH30x7+nxEGyQeGXhO1gzpgTGQBgifejd/fbxSL8/xzVorTDaXpMnHj7xWmu+8tiT/3LcvvK7mo6cIvA/fe/etWXuK1ZTh9vYKfyYM3p/jYePPVrMfvv3+m5H2zcu3N3dv7rxB0wMI3tJpcR3Pt3e3j33wy5j+5s4+lIfP73uY4vv3v//xu3Gy8fRC6/7f/9Mbb7/3Tdybm+ev39glT/1PzkvKPbfG7c3yyGFz/58ffDe4VVMr6OLSTh2Dew88eFzBl7iuzXCsqhK/jem9NciExHTFfYa//vzLHR4i603+7fe/seO7dx+N2OD857u/Xt68eGOn84sbzzf7GJh3d95ei4zHdhq9+/BJZBi3fH4wBfpm0O8GHf/4/tTbbFp0N/r3APXr1zefHj69vHpya8bz9at7HXd318aDf737ZLRjG9LHvz54JqFtPj5g3P6rx1/vDfp9uaynLGzy+cy11nl7I5BJAU/48N7L/g04n5oX4Wo3Tp69c9ejDwY/9ajHx48feq3pVe+HMQpX6L+f3iO6h6P4Bx9Rzt822ikEKF1wCHKFpoik80wUyJPomGd5IFd0tDCx3M5rkBIu5kt8XrMCdZmCQcshZhHyd6Zr6bGAL4ezMP/i56UXraHDQc877OaqqktQlwvAFsIyA555+5AVLBVeOsWgVAphoelETEkrCgfcLgsnhVKjmBZxnGABJ4XLFJISFjPRLk4LtP0uMaK0S6orJyeadLGUKDaxXefVzESbGobX77PBo80S5caEjn7I0SIOZSKFoMHYENZFQsF2JnHgCRjnYaO0FBW76XFJFcW25aR5WDiVZJUyD4EtNh2Sz3vzFR7LP3HB2BsZJ5RPcrE3pUBk2V6Ad6+rdJ1F6vsw4lcdOsI4gUGt43B1arWeyIFXNR5q5hh89POx1pIm9ezc5OpoK+Yv4IOc2rU4KTqjUEea87e7yit3PUNDmyyIHu1I6RhesoWh/rd2Md7faUlfRhrNlRAETppt2SNVK8GYF0MlXHjLSmV1tYdMjut0neaBwjC4ncM6fhp4pNVxrybNJ/uYmZKcxyWshE7h9VbhwXYNyLn+7kzC8ayIiP/S7kX5mz5pl09uaIuBUUk60JuVLQydDQFIRDUfRWyAzPe4EdKUNH9TkAgOFANWhYrGHanUeYUXnlqfglZhzSlxvbPf+Elvvwyktsl3B3INogZSJAQ8zw8HnhYRTpFaGMWPfx7RNK6qZDOiJNdqvP5iFW8RZWFVmsAGD7pjZJ4Mf7ErFbi5Gw1V2QhkWCLqQMLv01BNUm8JpkngrBlQSCOU9cbuOVdz0fARZ9SxCXktBorwMCipsIY8bZ8LzFz9K/pWnv+BL5uJptJ1L9jECSnCM4UPyVx7vi3PHsxarv1YgY5RLqa8UImNROl3kJmyI0YtlERlyvl//t//b4idSnA6PJmIwTeAWwxsKDaO82wZavyldPE4LmsN6YEZlRGOpewU7UnEMMc/GECPRmzlzI4XIcdvMTCvzo3gUdhjZGxGiXPfyQzjxhajxAAb8EUejIGCQ6HzLmeGWaULzRk2JIfbGQM8KGX4VzWYHOVkCh6yrYQNnTle5QnbvGVcAUs+Ra5bR0ey/wkQY5ewyR1dZv46PN1wazlIa81iWrNhuHPHYNTO0UPXJt3w1bVzQQ50Yr8SLq6J9O5iALmCF4l4qTu8hSQzx04loFJjVfncSDfVweUWz6IFSO2cKd3Wxy+0lC5UNBSrcTeSlKatqDMorOCUYjbbqsop/AWjid/WROFMZ4+9XPIi1wmJhNqRrBPYdTxnUK3Wy2bAKo+zVdelwginvsXtKB5kOQP4Aj8VlhTAj34JsvBbJB+KybgvSQcaHyF3ggGJGyShxkkm08W4h85Yc4Y5bY/ntZV59FKSOu1/aTKDwJZWMwFUquKzVQ0O0G8YvAAE1ubDaCFkjEiw+DbaOD3T5lGoZB669vaPNlV3RbNWtfu+lF0+377eWb6+8lXdT1YkCfvh84P38khBPpLjBZ4f3703Indf8cro9uruwydfn2lXFf3C9eXnw3/9978/qT/Fm5Rgxde6/NUPbtI76h+9f//x7u6G6q1QYnvq/S6h+3CvoY+PYf2//t//LRvJHJF8/P7dB48N/Mc///RowYunL4y/fzztjV6fPn3xTlHvLLKmbr3cwNXg/+7lC9qxS+KP18/+9vffWOn9O88UPPrHX+9sPfK94b/9/vbagv3D/bt3nyzpswXtWaH38pz/+I8PZtEfP39+5s7Hk+cP95/3va9Hnjl+8fzq/cfPgpFfeOgALXMb426fC7j1Tp+b66+fv9542//Nc/cX+m6xVdUnT//x/v1vHpn42qzAq/73vmx7Jyjt+f/239+xHzf04LIPGHhjkienDSzff/jEWp/6JPATTxgbjn/2ItFnj1+D8FkEtz4ePb7/+gUbkiG72TT28PWTicy//f1v7/76q+H7VS93sm3e1iUx8+HDe69LkjENbRp0cq/lzAV67icmuRa/uviFIZpbOieFriviikYuudYiRxNxw22O00rn3S4QtOs4GxdluTw2vy+hFSzONkDybEO7JsKwyQBvM0nJxYt5QhdrXEfWwgYS0V0yOXRLCIg1YBK1qKy7WbBjiXCju4SkWc4f6vy9Zg07nCX15EW9mmXtOCk/q3LUJARYMbBuPhN35T0ojexx2Y2UBmooxlSRqAeMLyVTTg/ILcnsFxUt/53O21QT/MEQ0Kj5K3ihEhgmbk6kXXqKusa687ERMXSVZotytSSQXZMlvtMVoBbjUzX5oqADlKw3LRmg9ya1ZnS6g8DK7d0sPX4CJi2VizRHX8FgqJ1RhFbaSl3x0HAgWnVYoTqdMh4vBlCi/UUh86TUBQkcsRS2AyBfgqUb2WDyJCO1qI2ffCPrTGH7M2uqlJLSUXa5MIbPpgJM0wu0xKaXBcdn/1JQhNT7nRBH+dmoMqhr3ZH4h33qyvcuCdnOxo13EzY3mLDHyM0fYMjB5q6H34FFTwKfUSJzxIlMnKbwGfeylDlWVoKbKbHuPE9oDnzEicfxcCC6vIiWFGtkOaXbkTNxfOIKFSOK/HgKd9k4ePwksmY8/3QgKeQoZebevaY6EHrYwDQqDKCVEkqr0yZgbK+qm2xTT4Zetkld8kZbUlPy9D9nVis08DkfDu0RQENMWMWYpUyW9JitoB2N7QTpiw9BqD3qTvQsHCm4RJoUiZ9TLfrMKmt1JAZw+tYgpaynddZ+o7X4Otmp9xRdlKjhfANvCTLPjJkVwr/6sJ9jylk1sXLFLD4DtehpUJAah1ylEjxrOxXNIPB2XEjW6WviGGl4XUJgoJ62c7O5ZYHpZIPG5Jx1+njFV52InRG+FgdpEv1qhQ6iUXLMJ/11DeeRtOqjbkreukgKIzC4OKwPmGC0y1OlxRXnEFA35sjqfv4nm4G/ZCgwB49GTjo/DPltJFSXMANA5sDfVnEwv6tuMY+HGqcI2gneAnbuGHBJTXGGjyV4kiJrje26Oj/JOAYAu6xto7T0orX+yV8lC/XQnRRmFaGFscwiGdWZGRodH9LQSb6d3DA09h9kQlnf8VsVhKpci5AEB+xGP3oas7BfZwtsy/MN9QJsjTRMRjA6GJrwUjy1gDEj0TuDLR7jq/Q6RE1RDksERGECqmm77TG8gYOcHkkR2+baYjK2u1FwRDlChXcM5na8YlpSdiTtLjMseIS43yYo23tKwUoBj31/FaR0MtNi4rfQ+IIGSgHZ+mKCcRg4no/javUrmWItuTSIrazZEeq6wPxny0jAqgpD+SsQrCdVEqLeeAVReSdClWZ7mXdKO57Qb/ofTLdNUIy3051MV7R9Ur9CUrTO1NypzIsclmYyrcZtzevnFB6WsRFjwE8a1XhSwEO7ECJ2bA2A8fQ6By25lJ+uzt4VaFnS5TSoS8x5fAJL12nF1y17ucA4kyDOPWfqjgC2PSz7+vbK+2tsxfF9EWnDw5D2AH+8f+JztD+/Pnnr7Z5ea0D1PgvgWYBntx/+srPFph7b2F4Ydnvh5ueHj54lsLB9fXv72+9vCZ3TZmCP8/r6raeKvxvlG76yzr//+292H5lpIPfyxQ0PZRvfFru7viU5x/jwzhszLe5fU6JNNbbj/LCBfy/C02lZ/be75v7hp9049u3wXHXPucOjx3/7462NOD6M4O0+KLz76yOt7sNVXoL+1BA763pLg3m3dPmNB3qe+JtpC0/6/NfH1zduITh1b8HzAN9f+wbA959/fvgo3EyYPHnw1/teG+TZhr+9eUVTHpsWNNbx33388vHDvemHVMOZ6cp2CDHJqL+/evn33+88fGFrg63OGD57su1Benv98urnszcvX766vjasef/e60F/mofYRy1tf7VF6b6nNejZZ4/Zi/a4ommb/TosYv+VGwJ2HjI0l/E6I3MMACTM+beMQtuqnIv9vGrBzdmYJidcYPLSrSGpvYzDFhyWn71oor03BfvWoXOuIrCA8luM5Pl9boIvM3UD6Nrmd9TcxF7aS97YqO/IgRvcX8bBReI6NKiwNpwsI1rraw2R4dFqOAth5w5wAKS7JCqNl+sULxctg0/UJYcLnzCI3KTXQOpYDxLR9n4Ulcg5nKQk7MWxLFpOUIVNwOekDFA226BtDdQSTEOxSBqJlVTl9l/khjel0BMNYJXmiuslsVb59wQ/ZU44yJYGkZ6q8QIp6XCPo4lPQVqf3VOKnR+Vl0laL15aNigcuXXt6bREU8YoQcSMg1DkXfNahXMjVNSoOV6jfnpGXVe0VCjubxODC6srLbvmE7mHmtDGgHRQjiPPZSStnWIqHcmUGXPrUwwlw0Cn5UBShth5B27qx3EGq3TnREX+QJlWN0YaTeWOPE1LoJom8EwGunsUkM2ra03bszf0HEMt6/g7EvC01JVyN4pVQTxthZgDLUQnZmxQmvioTbrphsBRFHKpPeg0oBKkhkA0zt9z+dgkfo03ajTOSPyKo+6XH/AkginGAssP9Qg+fdgTz3Uxl76PvOFJRaHgwmltbeNRVWqABkTYOjIZKpdwqKKrgmtNonsYVCyuIfET0XgshAlVizzZPeXeWqutdcYpMBWxG8dDKkk3k9D+GP3t2zfu1hrN07BxjnJgTJNCMZaawx2r01UkrRTv/s+UGHXmQQVmZ1pBlYAL5ESYLnOJcMVDxv71SqsTxQ3I1GbOc2SsCK4ANkRzzzgpVKuJYhby21EdDApnx1PIoyqr6+/PpHcmL7UjYwhmVgZq20tm083lMIFO//k5losLR4SPNhJQk/wqPDn2GcMwcOpCZRGfOJBpG4aQVMKl/e704KTzSKatQ2LENrKJz0k7DpYdVkDXw+UiO52WByaefqHB2iE5aS8W1TIHEmB4Bb2pRWytS4AkpK6TJNZDt/adx0y6yUBLpn7XQ+3+lIpEhHnZLtSlxajURUW3A7ZiMwaipGBq3XiUg/5PB1ZTSxYC11s4lBjSKAIVB4nX/4bUdRiFtw7DbxlGI3STi5bAYGVTXiW7mZ+/KtQ3158WJL0131lIeKmqjSyV9NDwIZHXITV5SI3WdpjgBMAxbQJmoUt85u+ONQeWwsuAGK7H6mTAE7OG0tikmnDj3OXFJgvjSUyx+E8N9OCkGKnLPgku3ZSxZ0EwKPhtzDoGkCpTEhMntWkil98zCj5dhjNbH5OPRm42e+UC7VMn01odA2VQHIzpADK6CyvZ/qNFHyFcd8icmx8CMrcOrLRSCEDqD5bEncUMNrAysfpUMqyYL/wu5A6NasJ8VBAYzSK3PHlg50jkqSZbTNLMp5dqiSuDIsoouKEwKIyukNGQ/LIkANbhH2ShPUikEn06hrieU+9iJpmZo9mNYb+7/57Ztf53d/vaErOPWH389Mngw+q4BfAnXnJvz8mL6/tPX8w4X969/Pbt8f/3H5/+wyjzy/d//vWXYbhlc+/u9EwvL/lf//nf/7r/dO+h4evbV3cvjW5J8tub3wy/bc/3PtAfHjd//syrfr5almsv5oteLfr86ssHDwk8tXPmxZOvv79th8yTPaT86vVL9/vaLvP923/6/W85jg2O3757JQ5he+P+Z+/u/Gr93ngXM8bjX61rfDfgLlPYw2NSYW3Jz+cPXwyK7by3efvjg1f92PT689NHnzKgZi7dOPWf//hT/as3nj2A9ptNT//+b689Uot/47FnP554374OgrZ9Skza/fnjq91HfJIOTaGcvHn90i4KX0njrT7kheK11xwVWo//8f6juxYsh08fG7bsxsPZ4f1HL1g1YOZ43U195wHf5QffUy61PXtm89Unm5towSuKPn/2PPLNixcvb17mhH0LzNs8m7KaFqz3/UFkpqcM5b170VyoNe+fTLW81BCEZ/rhhIKIV+RyNld5jFKiz9PLLNCrtVQPmyIyFIm2TPQRhpISSCV+l1JEkE7oxFH6XG0O7y3Dde1hGxmuyXl3K4MGDMioHyeSg2GBGLw4Ob9Vq6GTM6jCMCsXgRHN5yHU3BHb6xqIVmYsPrh5YGDw4Df4wJbtDy05kDstYeAsbUC1sYgmQ22uuigtWJfASbaVtoIbvHI1LvzqULpRzoaJZDwPIBWDUdmBRGlkI9EGYvSc8mOy/IOPVBn08D0y1S3u665Q3BqEi5NGF/VxYCjTQNZZjBg6haTs2ogH1lRxTBJS9Eiq8GIv1y5bamCljRjwkb0m9riuj4aH6ks8rVN+l2WIEZ3GBqCiMn1PhqY9sjZ+6CddIUdGv1XMIBzPvA7A3rja87v1NesRGhnjV0hOIEQ0LIdPzCNdIqPtaGdm5NFpQU1hwu9aESXo8w8DoOgIsyDjyGiAL4Wnft+JLoMGAB/9OEdhHpdJ/Ogjhzzd5IEps+dtfpkmskQKRf45WofAvCNx2sGQ3oDsiFsgK4kINyfMGbG4bCV78PwDa1JE/DiL86hjSy9KYVGm203VRvOJ1zRbBzlklIB0cD+l+B+rR6yYqcmUB0YVEbKBHocrMFLBmGij3raffzGfAMph2tDZB+QBAoMHnzkp7+qshAKjFxajJWl0k22+BxUMy1eFAR9IyXBmczsr9+Kd2EilQxtyIFkhKm3AdonENJJ+HHhQPj4BDn4lIFNdDpBDDKwkBniOkWrEC+IJvCx3xAk+leyo5mLEWDrsab/62JqKp8IxDdXsVbMBBeNIP4XBLmaBVcA01vt1eFs73hFMB20Mg+u8DZ7Cliad5HghTK3AGwxEaXxSu4WhWrlsXJHlB17zTiYX8BpMSwpzDrjVsyW8AWbOgl9VKABX06Gy8uBCkS05gjYd1YIHtt8bBWYYSJbWG+fFFhMmZSlpdo2xqlbrNO1D0tn8teWfiBcDKnD1i5l6qdo1z041rLJFmfxDetUETr9LltjY2AvuS/Pcbgk6aTJGQA3TnZRHJDLcNqPVnywBgZN4YTXOOCUwK0xP6OVprQY1yNvQHMwGq35LYVVn8gRpQcb/kxD93aq/1Bk8AVdSsvTTEX43eTUp8Wvmt2r8Ri6xEwqYSwzCU1nc5kMVEWcNnVDvJN6IAUsH1WwKF42pFbTGWxTiBwDOKQRgyr7kiJwqkbcqzZhkhrmBLFamsosZN8dNAOWoz/pdzdCnt6gGYQkiUQOcrnKVcG4Pg1sfKuOLvX99ZzT7gp5nQj6cK+i5NMzV8XfU48yjlk3GZIQqbJ6TftE6xCFZVb56MNNA7dNw/nYBDpqSE2QM184PXpTnftE9cXIBUKwMY/iZcnJmgsOsoZHebHGhlY/NQThEEltl8QVdQ8Dnz404N0vpq6u2+XBI7+RB8cWVbTpAYgIVr8T58uXja6v97phD3penLBd/9QiBt9rb+v72jWZf766///sfV//573fe7OlZVfaXR4xHfZ33w+c/r66f3vr02Avv3nn57s93L15cvfntNyb1qDDx3Fywed284vP9J0bBGJF1t7b7X98+09Ys4rctthPQ8L39OG1Ivr992Vs3vXqI3B5U+Pj5wUeCLWy9eWX5vTny+0/37798oSfL4Z4c+PnI0vLPmxtf2P1mrdinem98VPhGQvjqXT66v+vbFx8/tjBe0D554o6BvfK+G6DQy9R9kuHPf/5lI43ptFd5GnG6I+Bzgv/5729e3115e8+fnz++fnv7X//9P72+evHm7iXb8msed/fyyuTpy4cvf7x97QWpTPdv//baB87oeDuOfry8i7onrhnxz3cf/td//vXu8/27j/cm7n2Fbc9jcAJ7ojyybN/CX+8/iyAvEVJi4mLH0f3DVzOkhxff7n88CDzB+vrVrSdOIfpp85LpqI8RC5bmq0/NFawiiXKPCghImuqmxwZhfInRyZ6nlkQFG8fMHP0pRpayF59A6P/ihK1JFpoljeJhDiQqcuxiQcbReJftKils9qD5yP0rP0jm9TepbgtdJavCfL2JtLA5CR6KmwJCMixPxdiv4VpJdLuMZJligTCw1X0AH4sgoVzkCorxeEnvIVxHU2LadiM0eFtplz4aoBOhAIRTQ8zLnbQqZECI2HVMY254C7rSS80XyWkrJay3sl2x4BZ7G1a2z64EBbj/tERecQhGs5lFcTrMQD/d27nHJ2UX4uXVshDexlUPQIgqT10k/5g5ormAxZu28FYSI29aWd/XMnb8QFQ25uFGyScXXYb4UVinEYOZOmQtH3gQXhQ3bbFQLAnH+bwEgTL8qExYRBOhfWJrPgciAkyJEHvWMsrQWWGdQjpUs4OADt1YkDuOToMIJKOsIR4wGwnFpyTc8dCQAyiiqFDL3KT7862PhCOp4JH5MRInuUPu5Ij8lupcgVOr2kqCYqjBEwWYkxzP4PtX+ThM11pgnnY08ScSUcgt85I53gpGtyFsHOUqKdsfohF2mX/IMZKPwHBsU5edgPBagVI1TWRi6vAbcTdhvz54LkjTjbVqPZ1sfdf56aQSsN42xuRcf3OPjhiJYZO0ltKi0H3CiovWNcx8eE6T/En+yY6xDSA8u9QCfgdNtoK5+5ZwJtSqGi1EvyFpBPejub2j1jXYLhPkOXBO1hgI4Xgpn0S0o8FufxI65IFXcuBHYgFQIQz5b4fLkcgBNDmzFHhUcZ0QkzIfy14KccOmF4ALrfCojzE/Ws3Jw6CoHlzT2p6uHFpXiF5URImIgNtGuJnmop8jBFr1CJ/uNRlf9T1RXvDGf74RkniQwdh0UQDAl3CMJeMv+vETJ7/8R0lYtiqRRJmMNpVOkDFfdGlMO4VxlcTol9OTdmEc+YszwaNBukiqRrQEhhFY2slwjsiWO+YHK+FxwzMVaykLKJ+y8s6TkopX8UnFcsHuY4M5kRz/8+YIjwlcYsApsRtzZxcX46V9rvVMcX6sNWXHz9LHZG85tmUV3r/IiekkT5dyNxga90xkmCtKXggpqiQCf4/WTfwUYoRdLA1zVZQB2fjqzLXeWrYFsIG+v3kzMQ3jtGXI+G1eUGSrPNDVjBBKSbSZwMHjCmJEdyeBvLtXTqux6q2xAftpOrFtAJThfHnjMtlI3DEP88Kqd81eeJcdJjgVxWek6p8UHjbSicECw5Y1y2J+O+9uZoqcz1vU19m05FY6TgQ4C+nMBFfuLf61s0kmhWmYtgrIbhxP4CGXDfMNNI73o3exQlJqqdU8ox0p/OhsUZi0eGuNDcZyb8SWTUi1XB/b/UAS/WFZ6pk1sbrgp59SBqKgCDIOLx2GxnhLIfHegZ0TeDC7yiLsMn1GLLdUoERXlv48CGtsWnA88qLxlJznuzJzM/HbOpA/2LOg69nWngMl5/Pe6fn46YtHT18UxBg0gdxdTpvamYILeB+Q5WTD5TLSjycfP9t7/vU//9e/2QSE8u9/vPUQsDsGf/z26u9vX3lvja0+//jz4zsvzu9J3esvH95Rpw013x4+2EPhbZrG3b///Q+vwDFVhkN85ndPfFIAu99f3t2YeHCKV7+9fvX2xpsZvj/5vld0+7DR4//yn3/nC4TVJfkagHdwfvPwsQ8Gv+ybu+wD0dfvD/KhNzrY3296Y6zsyWM7RL7ZotT3v3yOtE/kenGAl3iayew1oI8sKNlYT1WW1uim99f7MFbb52yxefrl3hL7jW34nsd94yHgm5v7T59w4pGAJjM/vr1640GJK25jMmM6fv/lp9d5emDZzMETCr6H8OibTx/cQ+UFROYm7z789fZ1TyN7CSGtcv2Xd69ygQjr9TnNo4dPmOu9S8xujFVaI2QRYajxzVahP169NCnw1C7OPn/89sH3j5/4/PCzf/7jL3u5bq6Mxr699F3l25fe9OQemicTjNMKgJ7V7qtr1vy8FilyOV7e29iFM9dtuxefjykvuKy2AOv49UbRBn9b+NzKvYYBb2uZ8mG7ZGyFl7h9pJtvpyksa5uzl1G3w4B/8WRRmsvrsOvXt/yP0Vy3APFbCs2f13krKQROjGxZF4tocfV1BYWAyyZs4x7gmNxVchG1XJECuiy0YcN82l5fE2iXEaq8ZCLLuefQGL5YO43Fz+ktpsbQjKuitUWQUlds45umI2oiVAbzo8ibYf1O5BKAUhENAOr912yCRKtMZfoZYW2JCf3RgxryFkZ5kWXeHiTVH0RuuQJC3bWFgGl0LBKp+Vsil7qjvEy+1KGZHyUIYZyyMsEZylRKgt61jaYnhtieyobLroLU7nJSrFPjKdOUJpihE0h7ddE+Xhb/EBLHE8/mnHtLGyWfzmbE04yW6+vroUpumWMWRHo9NdU4ybWSq4yCC5dcM0+YBT2EUxV3emLbelqfRaDM2UiTtTe35EXhH2HESTt71E+54O/iIog6+o06ZnraqFEWLmRm+fSWcTG7UQF+wtfhJNGM4SCvdn7OWzL8huzB5gZCshN6a4jpZOYQwghNqVUbfibcjIW0EpKqrWVcr5/lMFt9hzlqowsOCJz+8oK4W+BDKCqNcEgEPYlj+PgoCOxGLfRZIg0MT2GSmeg9/X/7odNJe4spJ3gbkvU4OXx0TaXoYT4MSb6BAoScvbb7IQzUKx7V4PyE7Jd7xtBKKsctrVLCTFlxeHYooRh2CfXYzjwBRxSk386GpBkIjrN2XLF41P2PGG1PHCURUN8gpznkKTk6gizRfmF2QtiLZQ7eozRvx35ZpgYcX2nMMuTU7M9WJMf++TXu6BPJsZczbBDiN3aSHaK1jvPLCCYuFepH8v+THCbvsECUYGt/gYTiCA5bWMoPMYVxIRCbU9wSffqNmZTf+Vx/Z5W4vLC4ri5cv7QMo4abTml9Gk4zxyok0Zjr9I6qBczeZc6Km7JHLLLFkpI2PyeY4riCO1HE7QaCSuJ62znItp1nDcIIhokTYwVweqghJ3aWFgz+3DE4si2kAZyj3r7RyYjufgVZLkzJ/w24elQItqmmgFGPDawsZ9k+3io1Ko3D9m5TJzIabvFbrrGz31BgB2CtHEsgLdvrWtWUxydeY7z2NojZMzsoFbqknGFqRiHJKsG/EkQ4w24un86MwhfDcwXcA5uT1O1BktHXT6eZ6RwLmOdV1AOGKjGSIYehTHtu2kC0rk6JdaM5ABCA3afWc1UIuXbN+5tkOvTinJW+IK8byD/Tod9KQrKYzKcbJbTsFIvV2u2wvUmVdBAWK8o1zKayYW/aKlyMHSQhOqHeuCzprr/pjZkNa1jkIAHvkkrD31uZezKbFU4sxIAID3lWi+hY7Sq1lSCSKnc7kZZ1XIZ12ouHTJP2Tq+ASTBGpsSBEwmQ+D8cIoETmpGvceI85+sJhxRi5MoPGAiArTIo05mh8rUPaEHw/cef/3yfEixrf/0CVc+zvnjmbUB4YFJr7X3k7eeLTx++vv/r4Z//eCe56fMh95Drp/fvseX9+ARgrb///T+9e/fwz39+uiKBj4c98ab/J6/u3vb2oSc/Hz5+NFfzoiFbZFDcjfJvL196sU774O2PsHhphP/p3SeNbVsnhdcKeSWoOYoJydvXr7z6/N1fD2440DaD2PtuSbu9MT8f/ff/eJcj8KCf7mYwaN8ouP/0radfnkmqRr2eZLg3nvZ2UIIptwFJF0oKTyZ41493mLoRoIihzFKMlrz8Z8H1/C/v6vEMxI2HgD+6F/F/+K+293uZ6adXt1e3FP7l64dewvPJO3k+fPxgwvA7pr066e4OWc/yerzh8YunpgHeJu85Cl8Yk4C9t9Tcyd4hb1P6+bUHTCWI+6+9IKhXgj7xYIaPBD+xwtrHkB/slH387uMnjkpvPjBsPO3Wivv53x6+eULAtPXPPz8JkvvP7ip8eenNQp4hNqXZfgzRY4F2Ox++05jx1XeCLh+KBvqf5ywNWoncjiNFqcLoo56aw+0eKSSNEuol1Jahtk0CRD7M7b2h/GxfAV//XdNCoBFezyAqVCK45sLlwEYYC/ngmkVYHAHw6wMsCjnz3s3ijA/P8xvr5Oi1EM4N6INq2BHRYqQHY3DL2xeDijpw0ui5bMxHEqvSPow2PK7wRqzIIiFdSETYg6mUVdCNAQptkNeBcsEYoSOaS3lMUWzUqcmxihpVwJvSSn0FLRG6O+etShk8bUQ9pMA06qd0gTv4K07ekyGzAjCWW4YZLSi5QDIGucSoEYKwBRa+BjTHyTMBZHODmG+mGaNaEoTdzieiCa1/gC9F9ssGM4lRlktppximJIhsUORi+FTqZ8yPMnJ+yu3uEk+SOg0c+k2Qcle6TFB9Cf4vfhLWJuSlQ3Ow9cjBhQM2GmtiTCgNY7F03on/2NDRKSa7XA1RAoQfqjKs87aUNLPCde8kWHEw5OMeNOTtAk6UN8DIT7IB7vScGmamRB87sVxtA5U9LH6qYvxCWeN5TuxP1KJpx7oAt4AATw+Xejkqv2r4lLh+cu5RlNrgyPdWAqXyuozJpkrDw1edxaoAgprdooJG/nAwoFJix94CRNNFCoIzdSLAQzqY+z8GN27fHGbNlXGE9AMQTBOhTcLjowZ0Tvlq97tekqr8Y328aTD8ObZAxttatAgIFcEuph1mBJIrOhEitV8w7wqeyzmK4yfOgYV/PnCaOE9HgWiYzzh23glyfqfQkk9i7ucCH3A1h4X52KLpYlLVywCYzF7xd4AbdDFRGsqRlgt8x32vxoG/QADZkEn7rITVdfqztYsRJukxd3xv7DpOGrRUkDg1HM3opvNI1sG5C60fkRmUxYdS/2c1bfwdgosaIILkaL7T5EDF3xqs/UEdjkOJTdP14f2wro47agqKhEVII5jQatVADbS8s2VI51hauidO6dRP+WlOqS4NZu8qMIE/qON3sh8rY83lTMCKZeFVYlvzmioMOe/3e5w7gRlXtSv8lykspp6Rda3y0X7USr57U2TeqaibTQ0T/cC/Avuw9/bPNtKUX/FD9mMehIpG/07iOw/vrmWCzvBiQJBr6KY/QBmnkfsmAvhVaaCEMMV63nclT3u+sFxPkaHR3EowfiHE4cr6fWrDjKF2EDWCFyDRUJsIdTza+B+XWYrOZdsAiJCbBt2/4DdZmsZyQY3ym5j2k3KpTAJ1eaSj8iIe4q3QAEfCsKbcwqq5EpOFgb24yilBugqG685J/GS+eAIXt8D4A3I7KUKSoCyzdoCqcIylJ6PoVCytBoo3r1/RxnGqrN3aZBNLGOCPgYMJX4tAXiA1lIiKh37iJwUgPAXCvJsSNFZgWBppNaWhgDbx7Lws2TN/5NE3lQt4/RNr6dkuZFO1XjDFzk7GOU4yhrHWjx/G7XI38shiKRUWlX0v7N7XClvCefLHb2/sC4HCTR7D288fbN3/9ubNK8vzMi1bfvzrk/d9tuhqOvHM5viP2mLPnhyjWMvbBnjeqPPl89dPXkb55Nnb16+tdvNNn9kyhn7/8S9D5/cgrJN//vrCSvvttZu21EZkjL/76z8+fXp/e3dz9/Yu5h/5IOhnXxbgFO//fG9KapBNIvleVri+8YyBicKX129ef/v++fuPz69fvn703Uzmx/NbXv30I/4/P3ixJm1f+0DA90ceLybH/Qdv0Px4e3dliC/DPfwF7LO/v/3xGg/Prkq1GP9kOP/5s/Dy/LIYpC3r83/74w+Wtrf+b7+9dY//t9cvhUFa/fHoy73HZ39ayH9usvPwzePCnPXJd5OTtrHiylv87dv3zMBz850fP+/sNLLr4cre/Sf3H+9/u7u+efbkjzevKeL71/s/3ty2sge19PX82eevPz58KC3f3vRZMUtid29ubUbAjCmpmdyff76nGRb+opWXNfUkBP97fFYO3H7gSu7p/PXpg60SdguZx7Ivx/RCoQ2O6Nvgu+UMe5OkC7nh0ydPZZxDyDQoD2g88Z+8qADE4QbchWsBK18INRall2YR61axqpaHy9s5s+z0wr0jA7nGEwVUTxWbetjJbRMC0VvuBUZ8CPm4qry2olLBtI6VlngdxW/89yIXc1NQJ+viB2bBocSRQksOy0sL1Q0k3O9qaQB7G/rX5Ucz5a+fKmS0iT5EkkTeummAQkaHXkmoC/lYLbTLgdpUXsn6oJhIhslBN1SAxo4CWSjDVhADOQFOlgvmwhzr5dPuRyUK4nVS4wlXbmiUNyods6i0hJR/Nn8I8MiROLUKEvF8LHEJQFflk4PWSSztkj41iIHlJV4WKxNfu6RWN9pcQgs9k4Z1Fe5NlWpiBrbO21sbWdeR016tPLfsFKtxe6zAl05ebcK5JaTH3nOVLOte0uNkmEYbiSZLKJMFOyTlZWDZAn3lI5o5wsEHDMWZ/7xAL1wQl3iRWNZtkjCEWA4zSRksQIx1mdscyxytKRn11AqPEIiVfmCoGc/JOnq2WR/DCjETb7tpAAxeXCkFuXlFANrsfxjgVFfDdiLEGL3OHJGAamxkFxhSPvvie2PN+PGvQ2EaW22RiMELnVrVHWXkSaR55NgmL2qUIhEpmkPm8DNx1CO54/DTKcq+rDLvOapIjevu/8XMcZ46wDkGMOJRAhti9IIcvX5gO8lD5ksI4isDDww1MsQrwCM46eOp3w4njjFV62l7mlQ0leKhttX0P7Vtcpg4NQ7Laa6+a//KhzWuPIM6TQ/ZjoqmEEg1dDkk8QZoVmsVIGJKQu3/8c9pcsiV8prPHz/lM/KGPJM2NenyYIz9EaKEo65+T4ZkYemxBN+oxepFykgsa0k+W7qNg5NYGzhjIxFwCBvQsad17Z2HW/twxfARsPVOXCpM85VmhAuCAcdNSRNjNVcZdEqpkNf5AVPeGV4QRDUvKaoDhy1dc4VzXri1pjDVhGrzqoiySd58xlWRmqOnLHV4w8Lxm3ivBBupayyTMBFqFHgh4SRuZ61LL9iLvYHgUN1RCmicwnwwpIazRUTFPBVeA3SIAli+O6uqjYbWWbqtD1s/a0sfeDj9Ihq6OhlqsDjehp926mtSSrJTGRa1BiSntTvsmjArDKpqCy41O3falf+AiLmfzTWzQhLhoZnAOm8aU4B+FR3lSkeaSs54SEgKPLnY2X6qTUH9xgblzC3rlhQuk2YpFJUzZTpcpsjFSpjd84IKKb9z73zn8GkBYJfssvs5ImXERvpi3+YeaXQHzA4OBk28N5bRljaqiY2eqSqtOPKrrZH89f6dqCZ7WfjUXnrNWMxdkxRXqUurzjoS5GjJ6jIVtYY1YIIzNEjDWe1QPxmQpDVBlCTrGrWCTSEqmHGOd9eanE6irmvLWls+LxAuS1+5TrfyNYHLN2UhceJzVSTlBEb7Foa92MdLKs0fHx4MAZ+8fNXb/Xvlv8H1x48WsF//fmOfz4d7j+T+vL159NvbWxQ/v//4//tf/z8ePrx7+ez6xrp7rw25sdHEF3Z/etL0i3fx4Ort25e//377b//Lm//y73+7f29r+zOPELe8/fPRxw8fOML1zZ2e2hvre1TarPbZU0x5XJge/Dx79MKu9O8/Hp48+/60R34fe2GQ2wUGjS9unt29vnO77vbu8b//73DtY8D39k6/fv2KQv/jr3/ixJuKzIWtvFsS1EvYKv3RmvzD/bOrZ5/sXnqwW8drfAy9nhjHf/ny3W0AzyW7h2BwjIT1eJuC9AWeMaOoboRbm6TsZz//8Y8/BYUlfrdMWNbjt09eeHHnx96q7z0tNiV9/+Yrvy/aCPTdU78GBP/4j7/4g1g0f7JSzZH/9ttrZjZpefTs6sNn+5TMEUzVfuLxfV/5ffpwbzG/5QMvKhFVdkD5uJgPuNCAtRr7/jnxleTnZsXzKy7KrDZCGRAacnuOggfZ5f/XX+94oJf/+JKw97RioO8t3LzQy35++GKM7mEC4wGpw7jFDMLrmswwTbf0GGd0jm0rAmJkiU5E5uhc8UQQQ81X933c+Tw7ckIhuzRFfUb/PaQr4YpDgcJ1+7tFn7l90cDec/KFw+YMkBX40lwEOTYWBFjNq6o7LG4VNpRb4KuCpOoCvqlKO7layCjYpWuY8MaiAvbkLswvH4JnXjyfHSMAT8cUPIykiFDv/mraDJuG8WUzqhYn/IvNDqJBE0xcedxcC5dyXeydkroSz7uzBm2UP8p9WFpOKFRDHmxPvpajGp5Gl1ZdUiBc6W1Zzin4o0y6ssbECulcDmGL2SwVnQReJ1UupRu39YBFaEJEyMynxS0DYqdVYDV21jMuCHhp9ycnaNk13tp0h3eSdL0MmApNDLWFCK+Yz5o1yEMoxE90R6bm6bMS9Rqb8CRjow1fKuwebDw0B2uot6XuhsX1IJvk0EzNxXSLxy0bZXekdp8Wc5qXG2d9kMqlgkrV5WC5tLYonq4stFsFoDoKga2qMZa2p89kSxWtgk2wfqfqhiX5av1i6nO5ri0q67zqbpRZWInbpPOk0Hl9+252DfFZ9MkE6cfkUTqEnEXgSW9zgGV4XclM8MsuG71hCrn5IaUWQThXMJUzTZcFj8VZ5I/sxea62bhTn0U67XCRW4xQaMO52nrpPDDqtRl1J6k3rdZWLWv4nWdWGsZsfbjp6uLYNEpAqIEcV4/MUayzc0EWWDoPcyzOexsirzip1hzEUbUTFtQiOwLCQ63CMRt1yY7HytPVRZyjU3AQr+GUEPZq/MBQuqGdzjOxOlwhtvNAg+lyqnY9LU1RexSk4U34yVlraIdfib/AIh7BWlKOC3ZL31N42HYk1UVAgNqk54p2EZeidXlyzBRrVc8x4Obn1vUGf0l6R+L4n2qGaZ4TL7FzjtACFdYaF0Vj+CRkdfEW/7+gz2Ar2SZMMh4lz6sb3mUprBdB84/mhYbCBXZUkE66qkoxEzvrTuBGgSR1GdiIwy9ZqF0wzGMCdXKcODtFKr5Jvl0ixmFkoXyDqoaGdKV315OV7zjxFAI8HphBtGv+L4QJ0GDOZgaUOgnA4R20utjK0phDVUjiMx2plXe03eAYmnRwRuoyRTCtrKdaPSvp9dPyY0YvpdUrNqLX68iIILbntTPk9R8mAvXM4dQ+JmtgGtDTw9opoRY1GDM1iLchPqCIT4bl3zF/+KMxXVMIwSVm4oS8tNLTaazLgn5PB2k+912eGRpC6S2QLk1SVmqR4xhID32cqlvDlRfteQ73aJChhEJIcyx9fAb+MG0krfaIo2iwKXoMBkN2vNok6xy2EM1z8M4lU/aPJ/anFPdb2km6HA64AoekNk/ruiIVBE90dSVrIrR8y/Gy2tZlF7ShBHdEqNWkG+YGgixh3R+1Eel9/OSIca16WW+f8/TTfbs9rosy1cMDzcubhulWj60fD2pYHj8yRldkqddjgZ5nvbu7dekhV3e0t2yRWjxwax+5LWQ83+Z1j/wahxqceurXlv8XT567GXH38vrvv/3umVoEP37+cPe67TQGnUXMo5///OsfTrz400d8f7+7+fiPfz599PVvf7PAb8D5/H/7x4cvP23lv/70/i8bj175+NYLrwS1dfirtwDZXMa+RuSvXt19+f7ZV3sxK7q+fbnniZ7ctTb06uUrew6uHln0v7XdRUz8+3/5u7tgtvf+/vqlCIHQBMuiv8kazu2298mB709e+FSA2wIf/vpo9iU0/3jz1nb/397cuRvw7fv9j8ffxJHbI3Ruo5G53l56Y6OhRam++cWQPgT28a+PItS3z/jm1x9fPaPsY2DebOrFqSahv731bMB7cSkyP/z17s73gX3E7/GTv/3xxrtAP319MG+RI966F9DyJE2+fP/BQv/X1iq84t0a23fDfdGReX1szPnXgusxYt/vv3nP6ftPnz0PgMP/9PsfRPTiUx85vrftCqkeP/Vox8/vT55++PKDnr8/+WHC4JMCX+1p8TA3N/v+0zMWpkYvb2+9OIj2ro3Sfnz7+OefL82jWhu1gY3zW+P/YZa40Qku9FIN0y3IcEJ8SsV+//+p+q8mTXYkQdN0zkmQQzOzurJ7pqdFRvZy//+/2ItZWdJdVUnOiQjnnO7zqn1xStbCw90MBiiHQgEDUbNYtRT1NG+2ypgjzqVWi8W4ma0bb+emD5iidjimJk3i3OG5+jNjXUrnmor/xtNW5RMKmIV381aFixhZp+mSmKOWxI4RU712RNuqGS66Gg9V5ql3KmbwcaXWqNW4ULBa1RUDUvvsWRsx3xmiXJL8uZT45YaUK9avcjfxs/5d7UphaMErkmAYqAlOEa/h1aAgFpVmoluaACz5yMsyh8IIyqNMIwhNrcZSlvVqgvIe0QcBiO6RpLVxA4c380hl5KzFzNXE58g2YnxSaJPfp+ndhZzEpMOQd/JnZKjSJZ8EEa4gG4dCMXXmiKatNEFuPjsv+m2oIhWMAlZyXSBz7fUM8egdxuOmXrFFKQK+6J2YrYKQMcCyRbychbwxPVyjoXEQws7fBKaM/patqB3NWVz7U8U4eBqXrGIBMftYAM6jxXX9rrgmvqQH0MxWSPbN9i7AkFRnj3ym/emVAgl+kRsDYKWkkVBwJEP/hjS/RrZihvowlRozjp5+knDpNY/9aHa+d1Ka8UJiK/LY3oqY9DhFFxALfEFRF7bBjBK5klLClz60SK8i95hae7XIJ3WXDdjAwDTpKUiexcYidXBUy0ZJ32Ps4EE0DC9cDBbC6lsIWKApDYc8MgdWImhLw9PbkXJ5oiH5kp40CXFSDU1WSiaFjEdLNzAHGJBULFG5FbaQke3AGZaVlwFf0sghUEGIHOm9aiQuRDCWOlc4JhSRSf6hHKKFftnkByKaY8G19JHqZY2pJ8DlRVjQtuSfxATrUbdU105+GbOrDAbQlQpS2VyQjZhgiLdFDiFcco6YhuQR1KLBYa08g3fJsigxG0o7K1taONbkmYIoPyLUixKXn3jJky1MRcmIIi4GkcesCrgqMkEHmFTCNTItl1KrqkXKsRChSz53PU4ALTGDm/4uMAvYeT/cVOdzMcGteoyKF8oqleH3cqlUUw0qW7wYqKiq8iS+ZDKeVOaQ9q4s0d/9dD+izH6aZYfPV+y0uYxAr0j2JkiKSOh+XO13wdVUcGH8Xg5uLgSAMZ2cxY+vZt0oIm7HAgnKzLsJyitejN5AU3gNTorXue3pAwhZAr8E37MPriIKpARkaF3kFdMo30reumel2Li8rsDAmX3fa9giXA9h+czQ+0TRpb+x9AViZGnViC9/nByTp6HPhf1FwughTCJcKBH3yQ6wZwLOVqBTdOoVQPLDTuCJMuelj9VvNKnVWpcRb8obtlLlojISgyWkiRQDacArNwM8I/ZKHolRVUE9ijxFmMYXpF9J5o7v7KiKHuUZ8lN0g3nCr+hOQMGaRmWMKiDEqG5MA5MN0IvirhisoarjWo0NWBay2BUgk7JQS4NBTmuLBL0uksgfJfT5AgBXwquONJ1jBJaCaMQrKugjADbXtwx1C9RMHUmrA9A8HIS3B4zt/EXW5u4MaxbaivAfn1/29w4BFxF6gNxRVuqg4dNHywEcP/Wyfn/9aKXc4T7+TNhY29sSwe69Ptsdf9c4vRj7+eHtH3+7eLHIdtN2+1aU7unTIf9o/1Af5erhfmObea8/3z/d3VzTrx1/TCkWLtsLiD3XtL4Y0T/CIZP2FeKX//oXNU494FHNyaZ1PBqVJ4DX50c9kZ092+Os3ZrO89SeZdqSh7t7bY5jh/V9TOOZkf6cHPfqGF6Sp0cm0PeE7a09E/J1lLYKQZCq1+GLiMrz5cuZEh+OD1Ute/3Ia5WtJbb7+5unR7oxthM90GPx276f4o2dfWdsdd7Qzt7uzc29cFxX8vHVuWkHzYPa2fz8w6lay8IYnV2KqNw6Cj0f1unc8h9Pjz4eH/occfv4+I9vl4+vm48bG3/7/cuNLYNmooL+WDNknt929/ZfNt7Pby3x1RvQ0bqiLh8zrJpQt1na3Y05Po82DuIYTaBixZb9cjq3d1feaGV897B64dZaaF8A7h51unRMdTiuLAtxljO1WU3gj/5qO3abEto8wAw1z0AvWXsmNWLMose8JkO/OA0zZpj+ezcSMnxOeikpklEv00EH8dTbGSdWVS1nQcXiChY7r73AwpQVmtefVwX1T+qi8GbVB6WKzlEFmpz1DYR3vOh445xXZBRn9Eci8n0dUqwz8gylFBzHURsVxNfy4DdcTEWjt+C100h12ZeEDvkeqnJcTWQK4wxSxGz0VGUH76pRQIV+Vdih6yOq+TwNB8ijAw9C+JPVqrEAQMUnjSWxID5OiycGznw+jbwaV8bBruVJfOPfsCMn+eQN9Is9R1Cq6prcHviNcbyLDtWbFDCtSu1UngOfViOoHUB1ny/K3dEw/mp0pk03J57nWekOzd+93OCEGdgR4+wwMUipD4OITVadR75os68lw3TJKgxY8hR+xXsDNJGEg9qHSgLuMX4DlmP3RB0jt/KyFQn8yUSi8ifhwhLFwFFtmbbXrpVlJrRElOfJG7ubr+CZkdbBwAoyCFSLKENSkZvgYcWvyZ99eKldAGVGZhpih4uuM4loNtVHXUwApS/GCfoEP3DOzZjvcJsgkj9SYq4Ccx/iwpi+1RBO7MxFd5O5FNnnVcWk+4NmosDxvJ30GY4PP3aCozWsEs19FpVzG1EA1c0Q4H2Fl1oz9gYmk15NR160LutocEiLfoThDhB3Xi3AwJmLIhrOW6Q3KfGzlELMkh0X2APEz8JUFAeiOuA2WYVnGUYcUwhhOUbmVbZBLeMIJzMPqRKwjFK8Kf8wu9ADbqUiqJwr4cgwVX3wKTKvJtRc7DMhR/+ADygbGxxzE5wo8T+VrgjryXOvVlXSY1wvS48mq7fw+u3K9akj4GT8AfRbdjdDqsdSBm9v5/0qQzMPl2dEj16GvyEsKN2MEBYZDaBq90LelB0iI17OhSG/EZMNylZVK5wFN7UpymBT+9wUhyXylXAHmcIglHmq2vAwbGW4DTIVKw5PARn7GzOKptxBWOCvZsIlToqIIVUhiKv/qqp4esxP2XClhGLxXNIq8wSUcCBxLCs40IOrQEbYyP2q/4qksQ8ovEWJmiDvgI0w7TGwcElHgHs3sSNe1KwaC0T80FZl/07nElNKWcrkeITsxfKilBykwGVeKdOM/yCPLLyZtyZQ29LRLAXBYpUApHb8gCiQAVbeG8SAOVKK5KBURRvJ8JOUVb9chvqfBBTqtwDwYC/jnh9tv8IZcgkYig2/SGqQl0YOPCWhag/8KUPub5VfOZnlkarkUFFX0LQQrfUS5ib4Jb5PZtnYIpYKZve14gCDX7ZR5ZCR56pWIIhxzhgVaQUhertUsJknE9xAN5SDHRblCYwku9yBOhnIYRqkENXNUIZcw5CEoSsDXtJLqsGL0zRlSS6jqOCUXnM7/Iz1ho4pq9F15XJnfQ1P5piVcaEKxTJGOXSNZbIBehzg/UocvYKQSDSErELDXc8vu9kqzjP1RVzz/Hx5ffv3f/4m/Lu+fbgwOSfNbDTZZmPzQJy/uSEkFKfYQEbT9fnTqcHIq7sLocX99Z3DwigMhKPj/Q8mCG04bnbzTPh6//Dy9mwKipXE4mYrjM2NNSfl118///6Py+tLk9JrSw9PDp/tzC/+FYk+PhBFpqiOvj7ffDl37tftzeX93Q0TFUPr1ZgRaHIOVm+urkxe+vjxsOjgpdiXsLf3LLQ9eHs2tmdE3DFflkz4tX5zZ47NntkB3y4uym5K8ea6efWOG7u+uCGrQ9vjWHHRBxMj6E9Hh8e+PFiy+/NPn02psMHn5dXtlXlL97fWJLAu/SR7/B/v7frwcXtzbZIQC6AwO/bvOgD4+enDqVMOXs4uvtlUdMPMKIcSHB5m3zpmhztG9S8ubgiNghvFfFl7vH/+dnVDJJfXT1+/3fbBqPDFOZ3sR5/NaQ5rQvdvF5didycQY+H+6X7Z90tQuEuhjiwQUrdpjPplF3ZLqLf3t/dZk9BVG7EM3DIhZw8bzVxiI2VNRTk6OpZNv8lIMUWwHt9ymLQvIig2K4klemSLfhTMj2XhzfypDk9A1ttqbqacsdYZLmMVwuJvNsXvNVnf36qVnJgce67m5mqWVFm7qmbZvzzauaL8UtkMcFMBy/b9PqdRHVxVKNCnJk4G5XzdhFIx9XxIKw6jDpQzm2UrfZw2KsJ1A9T3xiIhvzlHiCLXv+nh40pUpPGJVzkoKWfitYytcxinEfG4W2qxe8mqFf8GvEqFEI0pCSE6/RRmKcBU/miwcg4j5xyvLH4nz4mnlfojNEfYEEFOOWdOIGJqZdJDUaffNZ3c0XgMVpd0E2nEgmWqkpXmiKHFaTHJB1MZbNGC/i3TqLAU0WuqWbpni65aEbHoHPEobKUZksACP66g042f9axJt0EuGIKoDRWIk3l9oSE32x8aPGE5HWfVE+UQ8Pjt6HLJV1AQI0NIJrQQqaCS9UhDN4DFITW59BJev/PPGXbtwqI8YL2M90x0ghBbAtDNwkVfAEK6YA5o5K0gjKwCG47+aw7QkE3QbwYzyoUOdFYRVdWn0DFfOAI19WJQYCvocbrIbxiDOnMr1ImZmfDZlDY/CSE5A5EQ4mIsASWS40imWo0qGF1Pryqj8i6ZL62P2px+hv5e9c8rxaKz5G6SQPz7A2Par/xoU5p3c7XLOfgDO8YIUql5LBeWl/t+u+05oAjAuKvcRFg9I655GonJ5Pr+K0uQ3aNfsGROHsaIggZwKcXK32no0TVA+hsyfCbv3EhEZwAyzA9QYznxuxhG6EI2bFYw2SajTC7AAzyggR8UsQHRwkgYA1a97nWYVajkM0UHGJl4tbrCBktxV/pKkSHHnTJ+KUFK/SSywPdqviX11EX7Ss3dVF5FMLuUGuGrCKPcwbWAlSWRRiqljxNTbydoGd4jXilUT22fNCVBOD46/vzDpyjjK0ZaXrpBb6wOb6wQyTJAjx2vAE8wKWr+VIXCGvljpoB7QaWyREcYk/ei41zYWCFlawV90IZIShEVG4rUwMsv3TBMOKKpdmhx9L1aagJ6BCnj2gZCvlhJAHjeOFpcqj9DQJSv/OBKKDCpGEl/Qv8q7B8MzrGa867XywUmxrVAGhg/CioNKCDYmZu4SGgyVbeWMNHYY9F/ZfTA+9HOGv0lW7ciIMFTc2EVUnVj07uJBAcT2MEJIq8N/nxkKPPIajCD4bUscnausDdMkMLAKkP6yo0iF/h+6w9kM2lT5lxGem/YaSBETmIXwXMrVa/GbzLtUauCA76Wj1hwmpan2UBEctJSieRa5JrCFPVTnnEQQam2UFcXE5A8spw3M3RkvNxrGMObisCXMKMd03YCFtn8SWZQp4KNrYQITHbbFdh4HTVCOkxJBBZxtLZUVRL6g6ToGdvwR87YmcfEOCKCNNqXKlBL3zcQ2MWRvFsS1gDkTcqPQR3dlreOa1DbwIzralH7qcErqqBPsROGIGy/TtvfbDeVyNQIflEoLP7zQ2di02aH263t8cGWPIb8Pv5ga8utb9+uhOgWytrOx9f1jx93//Sr08GEoesfP586SmvPytOd163d51/+dCI6F1CYycOa7M7/6fS4g8Mcov7y+K//5VfxOhra4MKZXDvOzHJWjoHvTaeEiXr3Dg929g4MyF+cfTM1TXBsqk8VvK8xWzbYYYWHpsLfP3ZUmTZ+zaynXfMZDpyftfmsH2Lg3lJj0baI4MSepLPAzsb5hre+fLsmNAS8mEUvrn43X98eRW3Gf3/zQJoOyKpiNZVo7+L8PAN4ez452nNomAPChDFnZ+d8y+mxWmdM0Pypd5uJOpP44uulbg9inBC29bi287Zui35GYzWFTiw7eLy5IytHCbCX68u7k5O94xN9KnQ4t+FVJ+T9pT181ChVR8/Kgg1zDs8vrnXS2Gczgt7XPhxYzLzF33EMr+uvDj2oEvWRqte4MjFJf4Fx+KJ1cXV+d3+HF30Ye5tY86G2wKjvYWvUxdP4EGBFsqbn+BhLW8YIDHk22DnuQtB2cnLSwDk7rETjBYtTlYELreJ5ay21OSpWNWRmqjbbGx+hNVX7STxfwc87E2Rs3tYT4yjUFxCqLI2vV7U9SqQINYw1Tu1UOU37ahCdCVTJtSBTs8dLVXurw1Md3MLGyKNKgQLraZKBNBCTJ+AuZKjCkqdaooJrgDDoFaIBXxydl2DqdU59RIwSEwOBH+zeohwI4vJbKY8yTbng4SBPNUwFqpaI3iKYJeNAYl61Qou319jVtI27Dpey7mUrw7hfN3mA5AtMviAFRDt6ZpOi6II9h5Y8PernJHz4R/grN9VGYQvkpdcRMvYxAZDONhdC10FYRX5BgtjQt5wKgglLoqgHiJ4+UC/C0ryDo7maV5EoZ4XlizD2ES5A+jP7kNT/iBMylql8SqFoGof3/QMLXia2S31JEIzknfzTBaimxk35UYqSWVESAJfkIrUvRbGDDGF9ZWbuo5s/hAOyx3KPGJEaZ2QxNh1UbwILnU5gb9BTmtmq0ZxAvI/Toatmb6RczJMBgF+bkorlnsygD7OUX9ugZik7JKUTV0IZGU7VKP4hdT85WSM6Gu4MALFL6Jw91cpkzyD1qut7aFv9BXQCEslpYa5gTubhUGm59IJiyZ1XaABU8cX+yKF0xcYMlldLWb8ZbFKbJZRDRrVyyC4/EgZgKAdatlVZ4Kaxc8vdRHR0DP6oqQZJIBzEyOm36iuDm2E5KiNW3t6HS/7lhlw8/pGiiPvl1Whn3gEP0Eho3gYHPKmBWyk33KpPxOe1it3RuBAWk6O2CF9b4qXp/Y4o7GQdkCXDCAGWsCeOQVAQnpyDnEQWm4kAvghp/pZvIT5Vx4Vs5ShKiHjgjfxqB1Wp5XkQKhaRssIlV6wBV1Cx8imBSZyJBeQyd8EgzbWYSg8JxXO2UYbiGAlYWNQp8ri4ugRlEVxOTqkc0MqR+W5YEFaRCeDY2eKxxksGchBjZ+rJWEkQIiPmk12bnmJYM9BH9qUhGctI8MNDokwAVeNAaizt3GwMY2wx2cVoRE6eRBkLYzfxtzDnZriV37tKyT2WKWO26M8ovb9YznqiE7XB6sr2uKeFlyCDWHDfF5ylrV3oT3q9GiuYSJo5SNG+yrZA4jpE2PIXZ+eIV9E5TzAqR2D9hD5TjsvT2Pga4He6qf2oba9gVzT4DYv0hdhY1DLNkoAyDE1xFl3xKcUECWbrITe2eL3xCzKQTNwXlywMYlEKR5lExkCrLYt4E0Si6sIJ8K7kRgLxTR0RJQn2SY+OaEiY3S8mrw2PuembAq2QzKqDsghcWuggV38gHPtVeEApSwRxv7LvlAs/Uqd4sgIbHCl8tzuyAoctZwZlTul+ooonGvpBi/bpwbIzEJROWo3MJYeRQHOTFpYTY+4sYqJyBnX6PYx5C9awkDS1RMS79D2iqhWKUhtgFFMgwuR+G+9gTSGJfaZPzmC1gaxHE0LMwDev3VR1/qa2xNpBmxDyZe2v+nb39PT7xVVTUF42Ph0eiQx96T8vdn/804+fXh+ftTufP+6T6ZWNfbb2/v2fZ86carKaeej6GJvrdzdXpsOj5/75Zn3r9fOHDw83l44J/vzzJzG/uev2BiKqg6PDnV2b1IuB27lI1Gt6z9HJydvL2t31zfHpgbnp5quIE3YPrPQ9erSP/t6O6TWiWep/uHnYP+iLfPMXN9Ztkrm1bUR51/yIixunBq8d6JdYw2Cd3Nb2Uz7DePD6w809kWJKBEiYmMoHbqyZMe/w3W+X34jTF5KfPp6an6UPUM0i1rUNe5j+YHHD8f710+uFnfxtjfT4+vXq2gcVOQ1xOx7g/PJG/6nZ9xvvPn+opzePd/YA/eWnj/bgv3u+2T0oVnm2cmBr7fHVvKD1u0urfJ8EEU8OY35bO/TFYM36k3aav7PN5zT52+trR3u7plQJtcbwxFkvH08PL+2+urOtfaFjPTruwWqHFnm/CYn6NMQE9MlswnS85+zk5uMZ5GcGTOJWF+Hp4fTTZ59EdAVIgMn5TRGzY+xYj49QsBYtTf2ls6mp6ivRuVjsi+N4clDs8JXn4BZULzfVjElRR6pw89m2+gK3P7UxoArmGlVZqjDDzhtP3YRovEmveIGc0dQlxNM1Hcm1VONgjutBTC5lPAwqVAr9BUGaT96QRqRqrofT19eGolQcqq/SaYabarJ4vKogpAHr1PD+5OqrzjyAIZOcUoURIDHBiETyGJ6lISGl1FWLUVmnzXKnwRceYRn785Cf0adr2gncAWyZGWdS1U/mxe6KdO9fqhdENv7RPlQjxaDyMEPMqHCaUQwW6PUSDdjxV9hKfeOcYSsabkBpUMzg9OBMRNmSNSYt6C9gqKwL1x5HU1jIZcVrUizAldJgzWRMAbEzJaTgJWTzf4k+EQebDFHXrDPfFvQY6XT0RWXu+tC08fww8xu/dw6DNiMs8GrQs8au4PifvVHYrD8J+2JL3kVufEVgXIQpNU9YknyCWWydT/YqP/5+cNTeZeUps+y5xwEW1hifYaNaBzqbJqPfoE4jMk1PrTnWM+YxmBUJI0m+CDTSG8tOtiNJpq7UYtqlKJJhhzmNSRqz0n2tYi4ACWrJiTIp+ITx8HB/SmUAC3Z5KpIMR2q4hGeKGM1QBIMRM1e89BbeIWzwa3MTyPQMs8hOgRCcsoqIin6Ya83R2o/c0K0eAu7FEDUWq+AKV1WEeHtJKr5KuY2LaWDLMwpDDmnjJRjeDnHuQE1J46MGV0LwduEFy4MlwpAjvaxzSUfS8lDyiCJ6B/sKhXSZI1V1yjTSgruxLnzA4sJ7VEzoDDwAhKycFK1Ascp4URgnZ6IehH6hPcJcva1HsVxDR7RkQUtmmvDOwyqLPyPDyRTrPu3C5SeQI/2lrHIQwanE8DXq0UTbTnBCZempNUEHDCV+j3CyejdxDtdA8bYrenNoCb5nPK9t3N8/vD5VdecFd5UIegomNU/Qn5FlVaqZ3956FfvVnGzXFYelzvcRaKYCQ6+RWF4xBTSSxpOv4y+mR1dJFlpZoKAmNoCQQ4GRSgQkmsZ+erFIHAENvZWrbuvUvaE+JyV/IgdowsqpOcCstB59Q++qijYWokVjHylpcQ2J2z+DWHyk9iYHVedEfLUQwDABbFwgZxHl3DOUxLIkVa7XxSnSSpVQx6D8xvlz51sbtm0PuE/+Tf73gXuvqiiDOEQPoaNeg9z8qJRc3C+9rEgd9MBUBEepK/mFN8yhRGQUkvlSGcaBBn8SSd7ftNnqlgweMGzjZrApV0HGuWAhurDU6U83KxlnDPDQhd/SMsqpSB6nnvSXt5jeF+aGzvJNA08K+spgtvIvW2g1RQVdIytFUbPwpKo0uTzsWQlG4JpajbBwK29ySNwFKi1Gvd0zC3diNuSK9jIzjjS2Al1wEgJjgLBJopPTr4A0NFWkEtEMHvhpBhL0SCT2Zwl1W9bMZ3eFFllxqJvvWwaMZ4UCk/UBbsM0cVaDA8v7xDwYPXJqlyUBDoLlAqpkKpHzsgQN63vmPcyXHGPhGkv6N5/H2O/6mxk7IsW+C9hQn6mYM/77l4u7e3Nskvb648btxePVuY1Edyw+dbydBbP2ucenVbn3V5tfztos7uH55cuXK1ZlZpXxfNNyzOM3d+bXP/8irLTrvNWk4lP78tzd3mKd7d/cXOpzkjMahZub1tc6+tfHDZPR7V9kdHp903lgB6fHAlhj6noweiCsWGRu+NsMJ3PdfPB6eXz4sL9ty074mLcpQ8fH++bmcxNfzq9J8OzC9vnNvxcQYvzBWlrdoXunfTWUcHx44OAtYfHNzd2vv/zQIs0t/Yc1i56XHV2Ojxyt+n5vWv3N/dGeAX0bAT2fXVzbNIj8PpoYtLl+b2304e7nzx8wy6w4w6vLa9bsa0Nj9C/P+85H3t68vLQ3kXO71v729e7q8cnOpncvb4/Pb/d6UGuv1kfv75mEUyV9aEfQF+thrq+dtXCboW6++6winNOlcvDx6/OaMyAZ4+GupQ1s49mHB0cl8Ly3RIACHxdeXq8f2hPVtKTn2+fH2yeLy30vAPnq8vzu5sY0kKyRLW5t++xwsLevQvruoWrkTEyHsJbi6VHDnM2Ps6pCTM+WS1GJmBnvGXlZ+Hj1ci5d8VpoOy+hOZdWbZRQHXcjj38Q0ZqC3ox/UFiO8T81txOCTxn5KFTegOTPu1HRqn0ghj/PVWLjiO65s3wHCgNeB14M3fAtStVjDoCDA2sahcWxD6jeRr962ecLXnv824IoLNP4wSL3NEX5FnVfZVH3J0ONF3bUdywgj+vnoHIR5DFzfngMpOI+XnKEOgNDQx9fchwkJb1GoZhe61lzEesD0FtvgCvIaARhQ/1OEitmi2tprTYjT9qFNkwNPWUb95XKim4MB7B1M518LXJsE/mT2PwQBEkSJGJG0uk4HVn3sa05a2sj5CZp2lngx+ZCp1I+4xSPyNEWWFGYo+YOkt7ki4igTis8rWdsTlUFGPUL+2UTK3qVya26Lt3MZiHw8SLYzG3njxWCXU72llUMzLkBwr+J2JJsbGmMstWhOs++3OMypYC4GMlQSSPDvpKuIarZgOma4RCsGyUWcU0eBDRqxs5RKINvWhAUUQ+RcMAO94DTwa9CRFNEDIAQGcow1DDSI5olXqLC2qNYI7wY7L0T0DtcnN7LP5Fo0PqZhrj4NcZQGFIloyMIZUp0/o2uC0lLSQipd6EwLZSzJnXoG4VWsMa/igNepJdlbGuAhGS4qSBa5xra6ZfFAbX28NCBDPO2wrIQrD+9L7164YXEoRFIghXGrCQljwvLyvqbGoaKOMzV1NMII37YREBZYF8tshLSi0QZgiezsnK6L2XA9nsMC5tzU3WWqJ0dOQfcK8NS5ZR3BMiFRtF05wDSxCvhGln1ECz65SvicWb9eR6rxUa4hp+VQGCci8BiZNFAUxXyA+qv3FE9Ya2MCTC2K8OhyRLCtXff3v1d0lM33L3oz5QeyCWUJhtcsTy6SyBFHkU402/OFGANwILY3YhNNSADL7IVzCuXGuaRBpLyf0p8SJjhT8VxnWSJaczN/SL0VDHfYhTEc2WqSKpHw/xhG0tK9c3iSM1ejwJrVxZ5RUwMRgzWRmRwBqfWgUIRFpeV89RtHE1CSREmyX86HjvrBlC1bupHloOGAsH0F/DgNkSRNHocaFQyN2HwvywapVkaBWxQ5r883RWAjkb5kG7VcMAzYoUWPLoDqUzAGJaMuK/gQ0JMYKYh7KzYLFmTMAllbKIJo6+dzqJuZECiBPmJb0GU5zIqtm2Dv4oTdfCTZs0kCBaMIjEuF+e1jLLySoscR1OjHVSpLUvfL/lPqbaogxGBWRGp9rF1UReIy23VhEyGlciE6A9VxDHBDqON6WVzMbuyou6V4+XZSp+50/soQqlFQaRJJs0fSNKrSV9j0iVE9PcahX9kwJFmxgCmRGplAxK1JCPgseyxJQFQxpJbqUNaqywgYDByI5S0TUY3Tk+SWFAF9OU6k7iL5OTuoKKas3y0Su4tv2czDdN23Fp6+rZhLa/SRhH7dmTCvzWpmhJRb20w/DbuPNiyJQ6RP70YUN/8cfcEY/aFfHi831/bPmqKSMf9CjR3j7baIubx0Zm1j3u7v/12ZiXl56MTvauWjNrQ03Ay+35fF7ea//+6sfbzxyMTv82YN1FHa6HyqaBX1/cc71//+q//8e//+Pjp8+7Ovv4EmqybfTUkax5FldfHCtPZ1RZz+k3Vb8t8G/zvHOwcHp9apKpl161jn093nWSsTuUq9aLjo62PMsnXdZP+b69NnkkKoqDT00ONraFzZmIfHd85WrN7/cg8Dw4PbAsKnWlR9l3e2T+8vblLnmsWUu8hzqlhnCUaTmwcZPnv7trR/snl9RnLEVRdXV6yo5e3Jx0FR0bc3dyqJT/9/NHAW1VeSy/SMpHm6Oj0+IhRaohf7PrTx22UemMrp/fH95fbB+eOteF/IYXvAM8mOO1QsxXbuvQMhYRPDo/Orq8oFN4dVQ0vvjMc7bTc2TQhcb0KP1tAsg0zA31h8HNoC6PNdauKjw63jeSzHIeDiOPtZWRVg5pwcnDa2n/1b2JNs7No9ehg//7udm07idVJNrmKeB8M81uTvewFtKaSzmcEfqNGNMrzKg2WG1Mw5ygn0xiYQbBqLsPTn8o1TTXrVw1hFUAdpPOee5vdu6jO6IR6Sljqr0paFavlrokp3O5chyoj/1et1N+er3kgyU+4TM+IjZdTB2WEQuGifA+1sqqCD1vr1vHXZEA5eYLphikN4dV52hrsqo7ofBBm2T6mmXs18SK4vCsrnos01DUjDuxKFzGyY5E8q8K0oD7OqADGcg4wqdJe8QLIk8QPuEekR7xjoQ96mMdb0olCfRZjrwlLwgivu16PCMd7EyAFcdqStCY2vSUPePzOy00znfwmAcuIQa1BhFyn5PFgaTIyxyNyQWSFbhehDCDk1URQdx69Ab4c1JCikMyDLPY9qncBdIWUxGBhGBGD2dnyqI+QoZ5LxiIntiWwbi5YcMdalc38shh2gTrz/SjXBq2MCufz0YaWF5GQ2AimRtKnNmbfcxCa5MlSfd+jUMRXwDyKre3bzi0J43fPmWmhmkbSaZaWFJCJDATD7k/8NEzv7WgeSbVSS7Yx2jIPbwJCLoO1ZGB9oNzc3bIiInKmORjwsRlB0ZmxMYUK19zLFFhmGZfTrEDkwteCA4Qyt9Km/mvWhQU8RFCsuWoBa98n7pzuq/ylo3IwejeGtDRVoCs46gtZ+LJqiQVdBU561yBLZEW9H1VCXQpmCgbm1YhxmEXAyvYgxZIJr+TIzhFS07x8f4trF6KGvkXoS4+FrMdi2XaimYwIGw6ry4sVSMjU51peLgARTwLoVA2r+zEzoh7z8BQjI2qFs7SluQcLrbSAJBoM8pQagTMkUHCfDOMpqoa8FBabZDbwoyopVhdWHPYnhFkmWWekYEdjNa957y3Hkrr0GD26T19E5oZ/jCEZByAIM3gB3Qr+2BtgGMsbLFdicVdJ/+RMpJDia5FP3t3dpAQ5/lyNsoSpKiHCWdlNmhuAfi3FxspD1asJSasoA5FIA0BACdAVQo/+JuxEHCfdJ/L8X2QOMXNfyJUVThSLhyGOLWZYhiWXqRfQDRTAECl79WFYzT6UGjy9LXxfGJCcZ/ESyWoe/sYwx7Qiwo2c1aAhmgKK3RczrmlUuAZm6R5QeuGpPKtrmWyT5kChjKYzcAN1BmracNxVO6kITzHE9DnAqyLdMrDvxskW/JE7Ap/KBmoNtnhhWu7aTQrnzrRCPIGBJBki3sSPadqRRXRJL37jbJGSOz8ZLWedZkbnK43whkLBJKL+JEcvl+CYnVV7mUb5mROQeAGHQ8FWDbSHpfPw/aMB940gTl8JeRYH4YZHDy1XlbjIfLo9kwIpiuUMvnv1KqiaomVXorwhhmJhEGJzGfVAEtOL2/kHrOA7MCpXqIgDLRGDankIREra9DFm3sdvZlCMAlrY/eQKmVOyCPVIrzxjt/56q4EhhBySbI1FGpX0RWJztgeBY2ha1sB10lkhxewLibFOwzVfpmDO4VwmyNTYvVrlrWx71z8+7h8e8h3mZkBp2Fjwag/4pnbcmhmy9nZlivzG2ostPp9/+vHEFH2LglurCtKzTfRFDE+fPzgB1+Fg1t6+/vTTyT++XmL30w9ayZ3z88vj/V1y0C4bPf708VD61oXJJD+cfT1znPDp6cH15e2nz6f//Nvvf/71B4eBmXtzd2fc6+LXf/l0f3tV35ZRFnWRClEWDgsofbmxxNUGNxYYbDs4a2/7/qHDgB7url9MDyrCfyGpZvU8CXPFNBuX1w7NerEM2BR2x4TdPl9/+vzp3qyb7e0zG23e3p+e7lt5bLG8e7sAOcB4f9upurtnNxd/Pfpz7W/egetvkJAYScaaCJJRZc7OboT1VjWQic1z9vb37KvjM8vJ8YFDiM0XMt3IBsrVpTn75vh0n4egT2G6TULPv13YRfTHX37U+yJhiZ23sLalu2Lq02+/OyzYFj3rulK07eNdlXW8B79EWYfHBxZnQ24VhRMDWAtPQl6+z6AOw5YT3976GLJzvCf2X7dLkM8yey252H55ePz84VTv+fLmjox9IWWmVlg4l40BXd8+Edso+sGZw+ZfPdw/szxdCBNVfTEQXuNCX4NhmgTFXK0/oChyJiQjW3aX4s+rHRs1Ie6z84mVdcXUu9xRNVE1922q6uCqYhE2adcCFQ0U26n+499ULq2a2odHTqORpSyjEXEuJPdcnVYD85Z8IIHIzHoYgC9++Gb71U9E5UKrF0azxy0sDXOhAGpVc5BZsuPfImaCdYlMyyPJI1U28JNCBkeERQ5bW3sIdpV5YzXigxiyVY3b+4rDjEFwYlaXmjczZhJSKUZWOubS7pl27kqbOEAk7720pYsRLm0TGBDBD777ZBLXCZloIar3Mun0gLa8jaOv8xJ6X3zj4mZadkwL4w2yARk5yuxsbhOFMCIUXEXDGW6+s5CgCHzy9uUhgeSrrI7tuygA4KKHWeBOHU51uVMwJeeQXYrrUnCP+jzjrXuFumyAtbcmFYHZj+i/EkVFseOvJ4qEN1yhAqBB9FFB7hQE98FrLkpRUQAAnpFUOUyFziqIhlWsb5lSyDbtc5DxKKkZ8vHQeJagE/0J9j/7HkiCN/MNZjbDH+pelKpOPbFM3t4D5XqfuXpwbnjBK/aXyWbVjpThw0TGNARTMZLi1AfJMQkuUbcZwTLEF130EcnfXD1o35uO5OZRlZkGUXowkzNSypYu/IwxS5jLA9Xqvs7bJI9SxGO4nOpVgcvwGGsSoUPtC62m9HTq31SHCCAQABLXZMNCKdOuyR8xASmlvEQztGnF7E5g6VEqEww0N6QRzFFZ+CN6RJ0f0OkDvKQEG4jhAm2Rguxpl8PiLSQrvBUZAspAyehITWOHfivochNVi6jBhTtmqvXexn9/cl8eCC2GQRhZk1XVpEyl9KfXGdJAL2dlM6XvGYIWPTJ2O+xANylTgwZODILc+1wcN1O4BcrAhUn+BdHY+X/KIZhTofyVf7Ihqpv0ECM9dqd6VptcffkhGRWzDQAnZ5WxelFBpJS4+NxxmAsZySGgWcv8XWo8NRSmTs83AaRa5eVD/KIw/m4YS2GuhDZv3ZchChbqA41eEJIU0wQlKZN7+YaOhYa0MOUKrJPdCL/cDT6F3v/gKB4ypYWPuQwXRpVVYtF6uhm1pWZiAsENy8jHybYKASWCHAY/7tNcECpVSjdhqs89G+lEfhz0NlsMaGMUroEvVYo2wCVJeZkL+t3Ks3wZMIgqNqyU9k43oA4dcdvpU/tqX0XZi0VAMDZpCK5PB/xys4L0KgwF+zBsPKqvxe08XW7FwQA2JqOr2UE5JrgEAjD0XjWPNllAjovZYUkRVHs7Ep3CPgCnrl5UcMWbNmxq4MhnoXoRjpwsst/1qlY6xh4t1F/IdiEbiPKwNnpicCjoTlDSs8z+S6vWZPdVmCmXqEkLcAmQB1EzmeseGyPlBjyq3KUMuiVn0HkcqMchLq98Fo/ZPFoOS0434R2X4ZVscVFC4enUz6G2hPkZG0AnlFBoqyDAgnqWsVWXgswoyRUw4P1oJUAbVu0Tg2YNFd+9af96e0Xay/HRWtSmPBH4thk7X7+e2+lFnHJ2diVy3bczbHP6bZVzfXl1xV7MTlFFTw4OCYc5/PDDqYH/a3vlmCjyaBD8WihijopyQQfKYOTb2z+/fXPWrSjSEDYj2NnctjwXX59ON/f23sWUNxdXh742XN1YEfr8vnE+K00fHm/+9b/9KGz/+PHo9ORAWHn/8rC28fTpx1OHfFlq/PR4Z0NyB1PpVTzcO0xg3UkE72vPLWTf3HG8AHEbBjZzxvC/Ore3t6/K3t497h4xeF4iX2aIXqfF/jfm32wztmdnjd2JNM7vHywVUB8e7nWrtPfr57dPZ3dPv50/OL/YmluLE6xJ0ErvbW/dXT9u7+/f9Umj3dMtHjASruNxc/1gLv4usoThe2v7u1tnVzfbTji+cYTAvUlKGnpTrd6fnnbbl8fUphdHCKttBsuvzq85mZ9/OTo93H7Se7h/2Frb/GDGlM8mO3tm49yYIrRhJN7sHV/197mfp1dnpTmwWbeneT+st9rvi4QZVCJd1fnNIoZG48593beq+v6Rzcw6wHXB1zOXtbvz9PDCoI+P9q4f7q9MM3p9M59HeecG4+XqxtwrU48et/e2zfdy7wC4J3uyXlvG/HZ583hx7faWXR3tf3SugtlZ5lfumWjki+HLu29B9N42UYXXWXY1YerchCN5wn7M0qzSalALrSJRQ1IbURVh0qoM857p2k1E9Khi6BSOB1exTPXaNQws3spNTr1Vgaoivi5NvZWpNxMwGWhXAUkbVDRNnYZIlWoblv5NozX1sLCbZxGyECEikAHI1PpxaUP8VO9+qeS0ANGEIx5L9LlbpxGDFDFOqqGUPICGwAuLNHI7WGi1htqHKm9XlXqcup4kWFNi+gaih9xp9dj7/M8gKtTslRd5g/4k8vwYmcE/LVEt3XjOldOzb9bCkdohI8QDV6FZE9IDtmqvF/dXMUAbuxsvlEi7wlY77jG/twABTZjORPuqkK+K5CK5WstAMtiATfaRoHI9pYRx2rEpbRoTL5L8fASIs3QHSHptaBPiCbtr9URXo8Q0Mr2FSFyGQmsVWzQAOxtIRyutbPg4xgCUlRgzrQkhlSaAzTiNdrigJC3WD9QTS8apSsQDXBQgKgEttxKl6ANKJoRejckiIXKgaAg5/APSyNHAxmLAM29vyoycCcOUQZy2w490GGEFXH5SCvx0SNKC9IWaxBq2RY8jzFiM0qF3EVoEfI/VMmCvl/KrG6+rLLKNeNIOLMx1+Y6BUIKaPG67Rn2rbBVGxWLYNUnfgQzbgC7XIsnuG3jsZMOi/5EJzHhaSELR8DK8I4Pka20r5vJnSE8c/TAxF4z9KgLp7byQklQrnfwDW65JrGAQXb0lmd6ll/jKZBf7DNrA7HlylqKU0nLKW7GVSLIZr6UsBC1A0CJxVFbZbnoRjf4GakVKXC+MlGHkvwD6nm0RwGQPYz+gFVNNmgQQCHlhFugFGlALhcCu3oY/JKx9bHUlnOG70I5xBn0UwVrKG7mDZ/7E+coUV5YwtFezkBQdvZ8vEYMSrgT6ncERAbKGRIC9dFv+5SExpn6wXFEaCQkFCcGBYAIvj+jDp+LJFN7qznBMtd5Vb9PQ4O/NYBUU1S0fGxgfMwM8SpZS7BhuALxTIBsdCJKFSqToUVDsNTIbEAJpRA878S3VFcbBvSIMBQghW5l5MD4birqkI2iUFVh7hbf5j5CoKMp3FZAHLYW1y65brAvN/Xgr9F/cYs9dLfrWarZvjBdmGU+6JtblF6+dbEjB77mMICYvl0TYBP1AyDUNpLYgo5hOAcLkSsuLc9dl4jazkuarjc1Fe6IIRQEKUaShueQEiGdJ5aMAKd548pPljLaVXSwnhY4hjQqzjHz/jH6h10/0DF4EZBcosdQPSFmX0aCGLdMs2YM2tSHc3PaYMX2Ofa3qJNuYkSfgcBFNNagUnBJIY+jLBMYasxA5+18KgBClzW2bKh4o7ePyqLIMJFreRWIZbYVQSswK7u7uLYRIX4Qlb63+8BXPWUvvRvKtXzTd3zwNoblzcTFLHJZonl+333s9VotHTSt5NZNq9+b25T/+cflV2PtkYZxwav333y9FVHaJMkl8f+t92ySb1/vm2tjr89XXg/fnJ9NOXq+u7p8f3u+vzBcH8KVaMeO2f/rp8+HuwaOJMVuvx8e75lxcXj8c7B01uLwhlHw2JP/DZxsC2Rvn/ers4fH27Z9/P7MA0xz619e2BF27e7+9eH+4tFvONDNszdyVnY3ry2927Hm4v2G3rPv25sLkfgKxY+mOg7dsN/7U6oW39U7kNa6mDef2nAzg7cnHA+sevl1dfzs7Z/Tfzh7Ozu+23szOb6Ba18G4gT6fR4sITMe4uRVL42vrl09/IhORufCeb7GV0DJbQ0CMGFNcRP+izc8/2NVs+/3p7vTw4Obm4eTkkEq/nZ/rbplcry90fXmtHndUmYjMOounB3N0Tam3u+zh0Y4Ddi8uvjnyi9U4dPn66lq/4vz8wpwoSxm0tvocJmftrm8/PfeJvHpaBPVu453mAOvR4GJOIbzyDUW/5U4/7Yn1mdijRqnwp0cHPimoRvwLnn0c0Xk5u7k19v/t8pYI7m4fjArYydxyakcUcE+k/3h39/7wQLffLu6u7l5OTulRr+ZJV2Fvffdkb/fp6err2ZdOVNtx6sKdwXrfMewgxBcJEWiH8GmLdlRt/oaxZKb5z+yWfxqT7mtq0TOK8w+qQ5VLXt0A4Rrjdr+YOOMHZFYoVaek514K1l8g8hiMcZsT+AayklOhPEy7qC4XCwZ2nAxiuslXRwO3w3i8R0I+fFz0QJuK31jAqtIxGx54cVOS8r/mualsvkyGeZhTOf2L6zDKpuqJjLGAQzd4J5B5u0imNk6umysbVY23HCJzvMYjEIgei9GLLFVu38cKwdib95nCwtcy3JADQoPf8kZ0L4evJtTxzAZ2xiX65dUILwxGEPho1MTpaAp5eVUeb2FkZLpATUpC+/lmgjYYE29CaVRIeihHqrzjSIh3nHZ64mmYC7Dqxy5CKA9mIfadYhEN8SWU+WTBkIhgka3fEPHzJcRaBZHqB/bUOtLAKaaWKLyMFI2pRgYSgrz1NqO0QvqobtC3cK4giAiESiH3OfO5FFhasVDn4RsUWwQz77PDpbMxBNHpEoSVhTD9Bq1uy5RBVUoSxiSW0EUO5Y38PfbxU9K0R2jApcQhr1hCwQh2p8wqhtHA0eQy8X0VAiGVTBYWIFMqmJGfROZKQsGoo7HIsKY1+H254iS4/CrdEtcODdWjbr6Hp6xG4WQYYQUzLCHlt8xsbCAZVsQVGtfoDwQaLwxIP0m+a17KMmREs7QkWy1LKVE2HMgYR3MlwXEFiGG38xQENwxNITndS/FHQZLsdokw4fJW6mRYuBtGFqlH8KJ0RaUPjWHNCAaWgos9uaH9MHSRQUrvrjrbjYsxjJOUtwwy+x+fDR02d2ahqqyjLBAQF4UDt+pTFIE2JhQ9ilIQ42ThMcqbUVDd2SrIUhAS/MKUNhvoTP0hDjXHUtWITDTOomEoJCouw8rsyzBKKfNwWNUba6HlYS6Zhk94FiXZkStOQtRAbWYwoZhXSHHfOyWqc9xKgBfoWSR8K9FUt7kR4BdCPS6VTULxzSjYW6VhXJhHAlCLWyeUhbeAx3i6X6iViV9eKIyLHMPSCxQvTqwvt0xjJbEybIGGBgvmQgroaEJ+2pUH6snQCNaYbH392CmY4y4TD5ggKJLM1YOuBKrW/WEBKzFnVOUac1qcZLITxsfdYHI/ZafjxtMLU+1M2KC++9ZDFs479NXirKL/GZCs2QUhgDb8E9xHPynPFRnhk9CFwlJcOIsYTGeUC81DwiQtfmoqcxyO2fECqyIDGSjss6olLM6eU1TqGMBTx/LIrqVgDrQ+SbrJ4GRbVOwenOQfqtETE/ClJmvqEU3ZcDcVnkcZe8vrN1irH7WYvpfaHZN0HXzbaI6CebTspe/O/F0pCMmup3oklfnK5LlKNb1hKYhjj0Ihru329k55/gvGBF3N5AsgDTK6qqtZvrRNYZ0pOotwaUoeIvAqzTejpODeNKEW7MLVfAxmpStlh4QNYaWoKI/L/jsXuc7b1Y0ZDT4A2Bt+016Ze1vbB9vtO2bXfxvVYOT4aGf/yBQR3cSNg92NQ9vpbK0fH2z9+uPJjx+OTw53cX1hTs/dw+HxtqjXfvoSVUTra0Xbj483+0rt7x4dWV6+/uHEfp1vvhzYSBTlOgAm4d9eXVtC4JP6b1+v703aF8zsOnp2xyYz+1u7BztHX363YNXJVsdtxrKzbYmqKbtrG7uwNtHcqQIHB8X2Tw8HR8fG/vmKu5sHcbNd64mDmRONVcuP93eGyNv1cuPV+cTbG7taIn2Sk4+HF51R8GTyfF/2rYTzfVNvx5G9Ok5MaGP99y+XluOumQpudjtt0ffm5sW5iVINAT4/GEnvADtNkHFe5yHsb74fGod/2bh/dAhAjoKNBGtt9/zi9qefT37+5fTLl3MH7/p2wtzt/n/b95b10w9k4QPr7cePJ7YTuXt8sJrWeWFfLi75mifhCDvFmOUTF+dWz2w1ccjcLWaz5cuA3T+ru9sbdjdiHB+PjiwitqdQM7Q5C2P/21uWWc/EaAdwmT+sH7u+s39gHfaj7wCrGrYmGiVak4gUMw1jFmFjbv3i+vHrpT2atnUo/vb18h9fzy9vb57f7InUnJCra/0NA9o75mRdX13qwjEzwmli9HxeI8+l6rExBkDZ/Ux9Y+rTosjI5lWlaT4n6FTvVB/5c17jJ3OP6J7mavG3+PsjuiJstWWUBE/uSHXzt0qbc6h3UaiN0qpb3gYy9ataFMwZnx7fOsMZanQPyyvg1PeKBLmfKTQZvjeKILhyIAOtwLdGuuASBxGB/kKfcOUbSWOa7ep+TTLVsa/x88jNr+ZAeIyK6kmtHL6bFWGKy8BZJb1CWG0cUIQ2ziQic5X8AdTjTOpFx1PUVAZTo4tAyqmZmuLoFHoaF6/LHt7A1rbSm5EjeOUHM7c2oo5sY+Uzqp3AvV5bt/xGhxyc2tmortlVIIVMIPCHDBccKWa6EEQHLAQpjjxrIZWNV6DhKpQcghd1JNikF96lPXK/OMkIGw5H4rlZrnHKknMhKdPqmgY6qmIBlYlCPJRAWMgMpi7MKjuk1XPoJmaH4YlkhsuyJOFepP1u8tmeylkFKODpK+4kLARmXbAnokKxMpRA5AQwl0QDMAKbYMmQcMaM+vybrBbFAg9GvLADBRNfMDyqLt9fZRgLnEoFLmojbBF35EeYxEH+n5zRpgmk6XRMSL7IGHuANFsZOpRm3VAk3JqzsEhIMBOPAVs9qJ4WPXiUuUwAjGAnJaaIJUJWRSsSbUnIy8WM53nuQfLCbV27IX4hfYGQOAa4R3gXICvypnZL+a6VbhYJLNkm/wIgvF5GdAlgIiloCvRuan1GOdofdXkawFKW4GbJN7GKN/75BltRhZe+Xz5nKACTY0wAJFQejX5vFowjMOKXHoYxDezLoC7YoQuFQ+cKGAgL5sGU9CpZ+VV/knjnGs6SVQVBHs4TbU9DxhRMngMgMcj5n1ep36/JpP2WdfGhGd8i9wHtPcD8Vh1T1RR/3oKF9KE4HKwcMXrpisCGVdQzRHU4rMRB4NlUlUwtRp9cyJK2iKVq/m5F3YvNz3ERAVOyXDmHMKbLhNsuB4VoaReuajt4RIMFIZmnBn5CEW0upGaY8VeVGFCTf6xwUryNTBYAjoV6FIl4Y5kqtuEcrZV0fNFckEdzk1JLNj/SarRQnhOc+3CoY+M0/VbbolM4oK7XCOW/UORRdjqaVWVDNUKHdjBTafZX4NMMzNYEEFHzSeIfVY4GmoZN5rpGJDYVAMUxn8DoLBNEWCpT6rtTHhl5znD8QTxNTlu/YcaB6h0ZtDl/JkMU4Fd+6hyrHrdp6ksfVZBjALslejLPeqxYVGQxCSrICfjP4S3zJmmGfkm+LkS0Jlzo3E67nsRyuAsZckY/RLn5Jm5tmnappVhifoKkxiTXzIGqU9BLaNFzYtSjM0tBpvzzSFPoP2IhZc0c1HrmBBXJOKKpRYxDeINcwM2+afhyQIOa0TNyZgY582i8quGVqJDHRBCduNFvdItgtAKAG5Xd2zdp5NXMHsHv1m5H0+rpGeIV9dquc2P93l4gIu9vt2+Pr2vHJycmxjy8P9vKW7R8f/f2dP1oZg6htR5x3Z4wzZTd3Sl8vLm/urja+ni6v+bQq86x2vlwdGSje47skfl0niXxP1kz8OtPh+Y3nJ9dHO4enh4f/Pb1yuSQ58f745PN40+n15dPW++7vhJ8PP3gq4N5QjbO+fXI5jMXz2/HOgbX55eff/zB3CMTS4xXmqlyc3FxeHTi4NtiOpt3tlP+2/GHk9urC1uTEoEzDBBgBsXW/p5VrPe3ImOS3/xwuGvBwj/Ovm3t754e7amHeiMPzw7E3fd55ObZQb8753dPjscV8ZuUc/P0vPXwbIchw6VXJuKL5Z0ufP90/fC4R+42Cd3ZshXP2vWz6Fk/xwrky4dLq3a3N15buPyk7rxf3l6cnu6dHO+ahmXLTVPlnx7v//QvP6e+1/Uffvr4+fPx9cXFtjnGu5tOGnP0MP352T84PL9/0hPYevPGlkoNSRg1pugvX76Zm+74Y22BHVL11HGts6G+CnCOdw/PX+58Dbl9ePS5Q//wDjVM3deHZ0p0bX+9uDRMb5vXb2dXzNl2jo77NdhuppOlxv9+/wVfzgaz9Mf8BHsTnX85UycfXl4PTSLc7xOiExm+nd0dH+ydntjHdMspyz6CWMBAHy8PdoDNrK0NaUSiMc4Z5e30wKy9xcHjsqYDgFcuqAizqNmVR/L4Ivr3J5+5WnXT3TQZNVeGCnFdHddSmCTd+NGEm2roNKbqTNVW7VErKkF+LYDJgWoUFvfCG9dO1+LIl5NqYCi31m8fLnS/V15ufMb451xNnjbvOD8wFHNE+eCGTJWByMcAeN0AO0hrU6agiLfpUo1nI66V2aDW9gAlkSfXe69fVFsGaqThfewOXeMRFpYn0bssUmQblJyhfiOSiJTPHXc6X1dnQCcPNtJADJplm0Y1wkYO2i8qKXTTlgg6o1y3oI9srYvNEyYrxHbhQobUxJ8GX3Gdk3pZ3mITfDfDgpwapiJieA07+faGbyzDyCoUWIg3cyg4a3aeIIrCyRG2X/0rpCaP16j14jvLdbnZcNzSDjkXYGmSYmcauCTBZVLRBPZLgzJcxDBZgF9oW1ctiudfhpBaRxgN+deYyk9WdSfSYCZUd5ifNGmzbRXwEkDIWP6IRUH6gSPekY2y2Cq8XdiPXBKrxQv4YlFjX6OjkVLpmmO5xsEGP1Ck0cB5alQ0XRLBCj8mpIWCpBCaACh//iT2cEUb0yVk5YIzJbI7jGd9flFwQJDYcH7mGsH+l7BIazCGDzGtPVAGZI9guoFouUene5cbDC6/AUGWDLhZzKluWFfEp3Zc9Dt0LrSizNhcn0gnaPaOu6jH4TyZ2UEeI2UdvBWZx5Q1AhkS4gF5k6WEdD1SdBN7i/arYlk1M4iU77QQ8kLhgFrBHYgIbQ4IYQx+cOMiXhjPdzmM2OvIKcJrQrFgX4Au/meRm7KuwTL5F/onrlmJa2FgsiEJINOoCv9CGg2xMqVwMbmydjcItVRM/qwUel19nmsgDJzy5mPRmF31z9tomf/QDl1hAT84E996zDDyH/lS70yziK8xvThZ8oEunzeUlrCGJLC9DXP2WrmUUUX3K1+piJu+UFr+6HZC/8AzLJRm4chteNZb/oYYAAzRzMljcDmI7Fr9SR2ljJeXYfxXlMTMwjPs8LKsyDAw08txeNlmKYZhGGNuJSJHixn3MJUTkSeLmAuyZaBi2sV8veKjiMq6kXvIU0QMH+QsGlAtP4GOTNzLjVPuNWK8WoX7/jZwUciPN/8LDpZiyyDbdF1C05nnBaB5JcOJUCNd4NicWu10Ky5rgfBOyMkyYaabvnR7UOsQEbOEkbrGGZUrZiO5LkHuOPLWN5uhMSqIzTEjEjVnAB8VHuupvU+2KAtizZyE0IRRTujkGdVAnzTgyl9HGfnY4WHorCOZuyMj9sGrg79gSWrgmOsVq3BPMNHAieWqrZ8L4iAjRjYWVklTW5r0pdbFvr3MHWozb6MuHpSsCRFpZZ5h6w8daedebcXTCCWCWV1tP5OTxf9Z/Vu2hmb1wMowxOYcKVPDKyPzDyI8Qwk08sdZML1KMmzJSIJPONLtpCl40ZETghgJKNK9fTw42P7506Ghubu7h0v7yZhAYjng7eOHo4PNY5a0eyssW9O/3bi6uFHNngj7/PLk8ODk+Pj864X9Y3/5fLS/bS7N7cGWrsXGb79dCBQP9usjWbRFLty+83Z29yTubbwKB599eLJc1hbzhqsPNl/3d528+/Th0/H59fXHD3s/fj64vbrbeN2/vLg+/rh/f32hc2PgfW/fJ2MG+OpjlYN1keXBVvq2Mz36fPJm33tb7+8eXJtkY8+czK2TfZ8eHjhq61BNvj/ZtobBvwf7oDxePTqBmLGxcGED4/50aqUmde3/x8Xd8a67TYeJvWxZFXD3cdMymE2Tby5vn453146F34xRmycSsh1ks4qeLd7FqAj7g9k+G+s6Lfd20HwyGcnY5+vF1ZPFF1albr05K23HJxEHC5l0hZxvVxcnR5v7+xtP9zennz5ZZ6GimV7lwIXr6wcjuh8OD30wMXJ7fXXx9Ljm8fzbpY9QL+v2VFU910VhfWlgKjZzFG2oF5uv5GBfI5Py74zB+xxkVyJBf64pq+RhrNVma05+2DjQNtz6lrT1bpWIOHFHY3l2Y0X108Fu2xndPT5Z8/PN7KOn5z1flIzo3/sGc22LoX/9/JPP/1sH248Pdw5EO9jbdeyANRBCHmc06FjeOyfCnnGPz74V2W7U8gk2nB3P6EY1pDivEJy/ZNeclkRm26fLDjyt097Yin/pa9VPFk3mu8e1cg3MHYTZsWC6u5zEBA0qCDsATdUm6u9FBB95DI/qVgNGxQFNUwlgC+jz+eyJzyEinoNjECAuLkgtW0KZXGJZvfava6EHMWjm2HIcamLeQEq2pWJGeRUaxshBNitTlikurYlvdwUr0wChoCruXqkZXAANztxdDRkMnuSZWwTAJEfOR89wB/cscGkyoKhp4/vk1wjUuq26KAsuNQbLfDRhjf9APTHqdE2LmJQZVq41pU1IFxtulY9d3AVTnlxaeQk/UtxH8GhEQTdRGWNIivXcf1e+KROdaBIWDXXtwwzquQlCx0pq4BbKkTcNx4gfCA5Lppzz9N9onLuof4J2Vlf7QCzL0cvuUdvoKdoQ7m17IbNGcxO9SkMJn0wyDDKZoCIRSc2v867jsT2NIJgcLO6XUm7TGtyNkZu0jOpR+Xhv6dOSTipFzNhipYkrCFMzsCk9gZeY3qUvgb7npDemmQ6qPRWn3chIR9GTXWYMen3aGq4425vaAYGKLHt6WlLQHfnJsNvUPN0kxpLxl1HWhT6ZRoC46MwcGcgwPUZYWBdi/IkXdQ1JbKAexSiyQKXvYDXOk10JlHvK3BaOJqhASWYeG3EH2khoqadVfI6hYmENUCY0EMs4EII80WNAJl9MfteHbPKNaRMDeYScnMFd8saVDPM761qJYIj2a8QhJyJRIdt3WQXVe+nVnPEwIyNFVrGutwqiqnyRsCCMIskjNOaXOVWj4jVKBtfi/caP5qnS6xJ6UE8MQDf0k0GcziXwC+7UN/hWGeAdyFFY/zMGvepn4Ax90Tl0DLdeThAv1pALQFT1d5QfJVn4grP2v/tFhkPNGNJIxgtV1Mtckgf/8yALEYs4FijYX26YTvTgddH4kn/EJj3TT3CBkqucmU5vhu+hLwfHf5sDUKOQrFJ6c/cTHRLidDjyCkGAACsPN52MGryhmumVBxm1TTsbwhXlQOMC5IxhEHPxPhFIH5+LvIqjcKGR8mRoeMsOTTmw2p6Q1mLVCAY8f1R4BwhieO+ITK65yCXd/SztxV/eXSKwXdMN8GeZ6lPnB1CffjXXszvgltBMfLO5t7ZhecDe1o6hTPOCjD6WblmdMWL5dT2UnUUCYuBwFFUkn9TmN4T48ol6ZI0c7qkUpPqdTuZ+kbDEqUujmjKUf1JiX/Y/HtPFePOxV61k40ABqeWdnCvvUBtJSpMWuml7Z+RsBFVCbxfbFsjXaexq2IaQA+ghSU8buVhNryZs9iWFFNJnfZ6Mqvw1aVE6WiuC93qwZSdufI7wW2IEeYVmcAtH+livvGxjs5kudpZSIKM2TBqkzC+ycbyYh1YHMPll5muSGh+x+CEJTfCg48xGhDl4BR+kamjKSPPzldka751H6JOAwzJluLy6NmSCTVHpzvrr0b5tfF6vLk2VsfOP2dtvB4cbBztrdow5Odz/eHB4unf09vR+bu4Ke9nctEnO+uv9zx+3/uVHuSwP2Lq1d872wfHxR4Hd4fbGx2P7i5uQ8/rl662JSIJerbI40hCHbdsE8D99PMDR3d3L1vrJ5ZkNhdZtSH9t6snd/cXZ1ebmwd3529vN1vrDztP1kwnkxrzFyobz93Qp9ncf7p4uv1wi6fVeL0fFq29nL86Ls3NN3MVlhwXR2YkPF8YT3wz/2+L/zpJcU4nMP7p9ujcr3UpWE+Z1dez052uZ6St9XdncuLt/dLIAATp3zBQh37pNLzo7vxY9Z5nrG/bb0X1yEoLoQZ2xyvn1yRZJp3Y0tKwhSymqXr++e93Z3zHiamLR4cmhOf96C+dXFs5ecyCffvhUNd7ZM6fq6OOpHnDewOxhHRj41qzafby6e757ft3fN2MnvPdzIlj9l+e3g21hv8F1HzLVjp22N5qxBpV+xlAReW9Jh3DQ7C1mIHgnh2ZcrW98PrHV59aRaHGbNF6cRqbiqgIP1MFE3tbOzq987TN9yJLvggzx2LqA/nV/59jUrNv3p38/+/388tx0ZOsQ7CpEIFdPa1+vn+6gJN47G4TamOjIUPTt/Y3oyicngi50qyHsd/wsjjonUX0WF5CcHw86HEw9j9ijj2z5UlkqpXB+MmufkfXq4JJ73uqhNejIMzHUqgwomjiNagFrHsNjdQucqXGqHFew3E9yiHqsfShomKYqgiePX/xGznt8c/TkUMb1r754GEub7FVhIGogaqHyRdJDmttfAKLQ9rAa7pZijffU4sOPTlllJpyyKKQjpGkIWYEUSeBHLBuGQofIk9P8K/7M47jKXFUibZCluHYYJPHkWDHy0ZzxTqkmjBJn9qeOQcPYqkPexte8Rne69X8RhNz5/ykzf8P4h5SmHURNlAdkxlAW750PmzEm6eNry4NuOnfhCBHpN1OhqeJIiErPGGp4ZG7pxNAR/tL77Z7/0dLLmYn5SYFC6obhXEpIBSSZJbTRxxSUrj4gwAt+n8nM/dDwXbZSYhgFKcHFP9OOvFgYbcU2ofa6Z8Fo4W8NjRfGd+cmNWXzq/ToATbXzwG1lr1XQY+LxQDSoMvvBrqhKISIkiWD34N0FFvpTFROQLQXLKsUAAfFyF+mdD26TeDoCWPNUPWxqrJYFrgrUSTDVSn5i1gi0jWszOgq0Q3tiiB+BFPbndQnE1iIx8Z3iUWqNyOldFEuZEyoM8RITCNSSx8rhXGKly3s04n1sh8p0VAEosVZ6ANT4REmYJWdXBX+I3EpgoxBUfS1lPW4qolDJ3RK9TbdliXAEpNb9CxagMDzcDy1bPDJLlkO4lVeMRD8GfnMvafp7y05wzCCK5dy/NFgD2kE+AU7ADFSpEaD+Q2jrGlftj+EKd8YVXRKH8wBcacNsplbYEaqMTKsZWsAxkkCy0XMXRhdAYnZiIqUfvWImvLNjbshoxT55OG4vJqvZDmFBc7K0UQswTbFbdzc0FoUJZsxs6ZVgF4W2l3saDSt+i1hqBtELaQsfC6Uggn2dKoyteGwkNp36sUUkF4fyNjg2HdfG0e80bsydH/jG4Voxg/3VNmXhFW15AWqL5VQFBmIVOfkXNFT2UwlxQ1wT3l7bRunHMhJT6wYH5EunGZIy7g+AMV6MkyHvJzJIoA13m3nMEor0f+Grat4RBfoyOkk5EgLSMAqH1SaR8F3Z22sSrKRxTejpO35P2NVUKdr3CtfGekWJAao1hXOCEo6pBKzLo2cXpBEdMmnO8X8lJSZc5KB92excE9BCWSShKflze6CqeRK6n0s5vikkDUyeEsvXWEFw48Gg1CHQFuQQibbrMfoNQlg2mT2GXPimBqk9w+79kN8tFvkbOIBGJgpp6F321826QIS7VOK8j+wVTbJZR4hjtVHjoojU5Ktdo3jGYViJ7Pp28bCVTIMRlYhe78Rhtvvvic8vW0U0VJduwFWCzXXQIel0gh4s5bTQVs0SGTGauUW+jug17xwYbCR6+3NQ+2ifVqEf5dXhmNfHahrNp7tRcgU8K0tM3q2Lm4vrkyUsbmnU6uI0ogp72fGy+7O1dXtjz99ZK1242nv+f2Dzd1tc/GdAuCU3yu7nL+tPd23FNjEEKg31uyx+LaztS8+8Rnh6Gh/S3eycNmkpV2EWYn78y8f/+3fvphKput69fj1r//yoy04dxxuer+2ube5f2gzqx31QpAqonXWqMbdmcFbO/vvD74CvF58u3v+8PbDpx8e7s/RZf79lWO2zJRxlle7ZxY6iK+f3fmGkZFs2rxm+4Bs3hSn69vb57uHl0+Hh8beWb2aYoKREWUeybkI9a0tPLhxFvCTw3HPr26Od3Utbo8/nFo0sWZSEHs2T9oAvHDBFJE1E/etEj54W7dJku1JX/aOTizgPeCaHaB2f/d//PUnK2fxcnp63JwOo79C8L2Tap+uB+lZQev4szYj2fy338+dOmBqxLZOw70JSPrjO+xe1XUyn30ycPUgZtKnF1u/1bki6r39o8cWDxhDHRtlhK9rmceuqqPu+4LE7+0wKRsrbW7vhoytOvm47TjX7YSkejktoAGt1zW9nMN6WyaRGZ9+dvKb8xMcSvb08H5iccnOzu+X1x8cWW8lyd6ub3xWTP/j7IID0H36sLv3br14w1et3s6wqzoWS3TC9KiD2/CukELQYy6Q/S6rxo2/5oGN/XucalSLy90qtVzqLFPnYlWeqZiN7yhYjWLRO/NYJVsV16AobjlL4znTAMso3Iao5gCOqbOLB1fxhQ7SGy8IT35EHr5DBVxwcAsG7Mcb4GppwoMU/Ws27nQkXI1RLmc8vPrtTTBnuKdvlWhrsLyVJ+L+Gh1xTAddJYHSO4qhYKVZUjkB0Oi54C9MqwH6BoNyp/mlxheSKdNynvZsjeC3GYl5lFV/Kl7cJsxxHcqO6+kxTvNNtW6ISQgxQc45Ne4FJi6Z1dOZDMk8aqItvG74eSGuTAls9D0FCTZ+A9Twtt+w6D5FA/hR3GdPLACpQi2MEz5dULVMSmnlYfEvMEbiZyNOObOqpBEZGQOtmfWUBvsWkaOcrg6y5FkuRFOEwY4ifiOBBRJ9CdEUgIKYEXahPwIkD8F+QRtXBqQQiU3cQ81J5pZXPl/+pFaGscnRXIzI7DcgNL5IW7bgixtoNAB1sUZseKomoF3m6Mqu4s4d9x78mU7jtyRlgHXv+qNFY4AVVz4BEeHUhYEL1RAwgTLKs4TBN+iHldARArC9mLfqIApLXawxkqojg2Iyj168jZUStGjpJABYxlgshAvJSF0kg74yTVlinPY9hGNF5Vcw+2GZPMO0FogHakRnUkoEgKChZ0tuAtujglU6WMmv5EHtN/NOjplNFXxF7pA3plX+qcp5hgCUKTj+RA1rT1NjCdP6e4cMFA8TS5FqhOEdBmYZTNgXVr7TMOSMQRY3VysXJDCO5RTkVKpQoou4hv5yok59WGiCF2ESIy9SNebdAuIPCxwyUzcg5RsuupmCoZgekRv5h994Vd0K82JsgE+2hfleV+9VQ21RXncgA/Of0JE6Cg2knPPY+LWyi+tfDGtsIvPtigAZlvpfzgAOUSVz3HMfmlzABGdj+hiZWLzRL8CNv5Id4nJkWcBUnmUANQRLizLSCNuMiCByIX8mYOU1wq/8Qlu3KwdUZc98l+8GfT4mqSy1LjSLrMZ6jXBBJ6YWdy8HSVjINWDH3FtebP1lTgQQTCFgMT7FGWgsSEo2Kd4V/GmQciLo6ArdcqeI8EV+0uC/3Bf3c9JkooDov3RTAvKI7jOtdomuhkDQlinpRNzQbBJx0zgxGC2BSA1GE+SWIxky7amQ4NiaGw40J4JqXW0nhLK5kR8JfruX4n6pW/FLL/6NZEIwFlZOjU7zNZtigbb0wI36m5uoX0v4sEhMC6UkT5ecirsQKD2vitj4yc2RmPZCZOc2I2gwsrnFKrjVooBJJ4HaJOEIv8+TNmIobnGkUW579D7pgxB6SMudREI0WnOfzrzyCzFJg0pqBSdpsklgNp7FJRoqgV0NGxAzqENDWIMSCkqDguxiEOMz3FTdm8/TEsid22NaIjO8kBue2u/zzZFMvuVYq2eRZh/QbSNko2brff04vtZUlvfHt51Dc76vNfO7a892619/P4YIdnG87T7NY/l4eiBUtQfnpx/237dfLr/eHNrnZX378sKekhv3L282CDrQmTh43j/o1FhLY+yCeXbnUN7nzycn+FahVd6N3Y2vv19+/nhMYwcHm3tvWzePT+dnZ3/+5aNZUf/47Ztpsxdnl01jt3ulvYBury00duaVEHl/e+vq/PLpdsOZYm0zbxuc3R0H8zrM9/nd5joXhscfrag21G0XoNeXIysKjOHfXxsXNynl/uHeFpZ2tRQB249/92jNaHqjicxzDkm4vL5lpIhvGNkSWF9wSG9n16apX85Mkd+2z+XFran9L3uWY5rrwoxSmBFukqTr9Q4h3t9+0IuwpHf91U6ni2P8x9dvXn/Y30MzdPfX1kY/fzg9EmDYycenpU+nJz4eKGUTThNsHBX19PhgVP2fv10yHNXA4Vofjj79r//4bWt/hxdkUy1ZtmZb+PJo2/gNBxAcWFHARJpDuK1i6LSYxWT6UCMa72ZDiXIYtirhs8/D4Yl+n1qr6d62EKLORiu/DfPnaYROVoYbStjd33KQgjXWeg0+fwi2eBWTgYRKNkxyMIKCVxe3Qm2mZmnylaUDFNmp4euWlv/w6dAnl82DfTvJZtY2LX16pjXLslWTpda3fc13D8zKoSgIE+/iYsPpnvaM6oBnrrumQHXi3ITmOhLj8zww1ORc5ZChulhC/ilNekFPuckmBI6DnhZFlaq+Ln5jKisAnqtrLRpHQsPMFsAslZKd56impaixaYOHeuCEP3in1ZxGASLpCEYGKOB55i3E97kLqbW1+aR8pubJf1OE+ELA1V7w9C+KCJ+ZEUQIgzBwk9cfMziMW+mMQQQUJz8A892ElANRf3KYtSbexpIqqKSwewJQtzmNEZfPm3k58GtV6yq44yNNRRNCAyKC4fkVcQ+5zHjixf3GRldTd+DR+TQW03OMTCsZj17XdtQ/Sey89UT/pJlsGvcNy2SjNBKjxnwpOUtPejjHTY1jfAFNSgkTDiktUMA1Rz0SSNFZkTU80n3fhMLbRXewJA0WkzXVjiPbq2A1a2gVw4HLBsqR/Merm0CZ/SRghtArUW+fZGtO8yTd1PDlC1yEWSTKzMZosTFdXML0nucP9Ix5J9aEv1KRZKwhn4VI82pa47GWmr54ZNYEpXiGlWzTSBaSaBbJBHCx/KWI3xAMbZgY8qbZhS7MGXaxdWDRh8m46E6uuSaadFfTueoUhbGrdjbkMRq9CXzeBSF6gEmwK7VOnoAUrdWzShCT6NcK7QgBmVFa6lgHKAOLsck3fFXFWMGQnabcyD0NfUaVgU2UER1THcCXB0YjIKaGqh9RPJWCuNwl1GFLweXGb3CBWqk+CYzc2Q9k0hc34nUAinC+38BT3eSvgCUFVxRm1KKC5Xtm8qmaV3DBSD/VrFTmgj5KkioOp/gYWE9lYM+Z08Dvd1lTHBuXIfm5qe7kYQg8eIbCQS+j1xmPCQKEptaMpDMQb2O8KwuQBwQPcHHORpJ8CU/JASjb6reO6RhSCutVkkANmYyNDRlklppxWWiweu1xSMLnsIVsjnvGj4ea0KAAvkWUismAsmEmNFOxq4GqJT4rNdaAuIqM1LPxkc9Cc/RR7SpzpCMKDqAUX8h36/1CPcsDZ9guV5oxtBO65iai0H/F0lzqnLYhvI0QAJLhJpbcJThy522B8z9Sx1UtAd/MmEePdAY2+23GzthzJGIwDtMrnuYu91pzk8cfehaB8EsagdyVIcHZIqR7k1iFD7Wy6PJfW1DRJvfMbqFNFpKnPYIUnJ4Dz9UHhESEX1/zYUaGH06tPzU29ReBWkRX3oJs3NHOGHEOpZrpwrZC8jQ6tbgef0qPIa+q25miVGVxOkoZswd4MY9yjjCHrlSQIvzzm2BmtnEptIDO6RxGKC9gOFUfY+bGLf5LG/do1HNaNTS6qbIRtUa+mjljMNHHAPzJSAJbJJHlgApFxoa4dBtGufVhpk1dqkg5a4tTekBAY7FsYuJJf4fdSuviE1RyWFxBDM3oY0NPbU5H1KKEkCZ+HwfqGbSHugEHk5ddRg3B3bKljaa2YLdzvgQu+glIOz5oPo/C79vPpx/3jg/3yOXy+rrxlY1XJz1xXHy73pD24fHpnp9jLuvPzqk9RD5DNiNAe37iFADnDOjs2jrz9u7k0MHA2kT7RWqI1798u7n3Pc80H18Kbm4/mPNDYG/vZqZc3V7t7++KD80pt+no559sDrR/e/8uivQBop30dSzeXvD1dPssxj8+/sEa35vLm7f7t9f7B2cY6+QQpV0114WnN748bF5c3G/tHrO4829nolAfr8RoqGGsvkk5Jsy0FDLtOLlqbr1Bc2wsdhZhmk1j5/5bpw/0jaXQTWBtO51rzL+83T492/NePGoGjh31yfmuM3CfBO5pmYuvnlXXbT7kuC0j65cPa/9xdnP1cC/4IXV49MfN/LFTUBa9/rZ3amv9wxs0bx5YqHxvMfX1nYaB0fjUcPdyP4sT7GxEINcHH/b0s9+29oTsBcXOPbDvpiUUz89YvLu929/PM1OxmV12rLeFtmALUaocH8C5PFgV8Pj48cPRycGR+VfMvqMVnh+1hTI7EK5B+Y2NNGc2OPHdPTug+Fivpi8Wazqpdvy5en5w3tb+5tapYsk2h/bl29WX2/svthkVdrCu19cfjvZubq4cfvDt9u6flzeWUF9c3bIR7Yf/N84Vm6lW1YJxwrmOKm0hDQ8mJ+M/2D9krrTBvXCg/V65kerb+MxquYrk1+JMqmb5ClegKjLVXyVSLzle+KVBu4RHbqpZkw3zVW/lq4f5ksVxAVXyhFne5t6gC8NEXZ5q9nIRMmYMDTHk6IgHMJUF/GjMcy57qamwuZccDCCgA5gzhqjBoPGLQMIxwzGtBp2jzWImuhhJHwq4TVKoLgbCX2DjQpZoxBdjzyxhWrgAsdA2x5Iwp6WKQvwhnhbE+pXNLVuOFrhQjCOWvuQBGhbZxRZorVSOzmhXcugVgYQv1xGwoUpyreAUrhTiANebRLquViMgDcn7HQuVHZqxMQOC8mQpvCcsYwtKLroaXpWZYj6OOd7DRk8a5kDRWOKhcr+RAMZIaRFLDQz0OKzpZjnd4yYHGnndWNTU2cy4IslwLXHYRI1TOmEqIk/cGfhr3m+yZ2MruOzNCMgMjSmC/Txocu8vAoqJWGzhaewPzRFGaKiRXzsiQAUBdWktPNPEzM1Y7QALalaFEHIHLVDxEmt+GE7Wr+wkwgCA22qeW6+IqF/B1dkjKzeZsQYJaBwFcKK14W3Ijp6gVy47DPsQJj/iPVbder+C7BYBEJEqwSnr0QXkwMiGF+I9ppGF4Kk1os8PH041yKBFTGoFKhKwyLAUBMp9QIRVCzFJYtXVIcwGR5QZ2/c+3c1VWhXZFd9e+eNB2fnrNj48pMQ0EfyFPHnhnZxJo/KZTbF+Ocq7AugpDKPoEX5Ls8IwF4AT04dCviEhTpf38lfkO21uRm4Brx8/mfwmh6iEMMTh81+6HNjvRVx46iZ/xAQno98oQwjsiB/bnnyYHX1x4KYShGklzxjp/wik9FBGtbRgfb8WWXrbioQkoQqtRjEXaGHmFfpu111KrXMueRiGDihxIZqy2KnMC/DwV11Xbm44GbOY7osIlVceltRJ3wYbSEiOddlzBwiO18x67HUsjoeKkxEQaseqGDdiqkvSkQEpHcvG7vCTpUft8KUgzYyTZWbjO2TsGpiKVrVcOfx6jVmS/N6SoWag9mDkF7XFeU3mdqXvhLyq/+FI+jn0WKopRU4DPwX62PNfKL9KFMcTXj0WrxctxYWL7JmFOB7NxGXYH0fFviaBzGtkkUPxSbD0EOpsjVlEzRCWbGc4xHtGjP7RFeNMa1WzXNL8Hz3ylbArK9vi4DKrpiRICQJhczlLl0k/NfnIPvY1hgZaAhmbXiDRlGk2bawUvaNDTBV3TI8R5QiAhFBiS5aReTVg/AtihqL+ps+l0roJUW5S6W7al7ChCOR4jLXp+7EGogahFH8gyA7y2lmah+a1uvqsDz/Kwck/jpEL5pt5sLZ8ymec4z6nDZBMZfmsmkTyAT6cg8O8/1aCanXEuE3RXzeO+3Ag5u0LgE0PzWx5Mo6+/2FfyCjKPzw8oN6bm7vI8AlC9dlZ+/TnU9tlUgRbO9jZ3z/Yur6+u7x6Mdr+9HRvbP3YaK5tNI+Q8XJwcPRw34wkqwZuru/tAnR4cnR2ft9U9Y2Xnz7vX109cjVXvz/qOZ4eHJlI8/byiH2z+W8uHvaO9m9vbp11e+usMAfp5rVfnx5et/aO7Yn59nJ1fLxzZ1Hyx0NcWG37/HL/lz99vr+8M9LvMIDzr192d/bPv17pyv3t5Wb/1LDo2u7++vXDrTpq+yGTnw4/H2m8N7Ze7JZ5fnm2u7/3vnH3IIR/WXOmU+Oiz/e//HT492/Qvr/ebcyuOOYvaCfed0yrcRKNWVDvpgmZNWTHpL4dWSGBUGzbmJz2dcfMqjLOfnTcDJv7p8ezbzd6zRbOXpi5ryIbNzQav7VmKN0KZpNsDretid5p7uDLvSUBe8cf1zd1bO4ffG/Z3Dw62D97enW61t31/c7GnvC/4Zn1NzuEnv/j0i1vQFm3djXNmjbpzpj60fEex0jj0lg4aeoZ6BmSmwpl2L3x/plso1M0m7/mtSbs3rq6vcOIIV2fLHkP7NnbxylgbOno8Fi1sH7g7Pbu3Fak720IrN9jUyUt6M7erjlOuodMSLSoz0Pzlpg7d/rx4kk9hX/3lJBfH9YcdcfM23iH2xNc6sLwCTk9IyMav6ksDFg1ZdR8WdXHwlne7PtwbJHPeGNFqoB996qp1gcr5IJPXWsK055dL1QFEDS96gggwE7m2g1SG4dc0AaOBkF1QBIBAl82qVXzKHF1X0xQYv5NnS2syXtM1BQ0ZavkHDggU+FlKyUK1e76MwDQnVJQAOttCBuE1pOX0otqTpQ6X3xG4lXMPLnPVfrvPqvKpQ+OM5OtTKYzvy4fUvOhzDIK7i5HMeS1JKbDYi3SUCf6epSbT1RhCx3HtfQHeCjkc4zlYUL+6AsYETINidT0LXXGop/Va4WNX/q6iHI1fBwjmqYlTVbYgT+nF19mIJbIQHwl+y7+BXv6JYTlX0olY36AsHJuyQfw5uITCrka1JgDK7Mxr2vaOpK8aCDvPf4cMTWGKU7hRcjoDAcDGjWNinyPsiPCzqH9yi6vjaVkcnWWZ+FvogkgQjK6mm/Ai+Rqp/oKkei68T4tlhkGj3HRoBlmi1ADG68Rk+3xGEu2JF+wUUQ+WIjeP4BlUFlieWIVRRfrCs9yaQ4yHt+KckEwFi9OU6txjmCQiHE6uiSAVNKaJsbDCg2wiTcLzhQ7/oRdjMVLr3pVKjMBmeSC3yTq2jf/orRr4aybMYSCInmUglU2OgrLAMOXfB7BrZhojdpGlB6A9V9eFLoUZDRUqRTyvI9+bNjThk/nRhq858EagUVqYtBUulKdp0h3Fy4scCWTMO/hGcLnLZMjqwX7ktNvDEye4TQJdAEZK0XPwfw+rp/H8HbMoPApbyMESiKlA5Y2+3yUd5rE7wIpdMwMZMufyK9JjsWVZ8DygloGxSlUzUo7xRv9hgAu+b1P3cU1q7eqXgpMiv1dMuCnDEm16Mi/HEU1K8JGYMymyoIesCKg6hT8RBKFUTLpVTQ3WFhe+hOixWbCGdIJ11J6EBJrYMYig7ZKJQIspHK9pawnSQGmGNMfsMTaKYmxsRjIgKvey+gXlgo3ZVh4HsiQeZrvHb1BwIBANGFBMX5qMUFZU3si+a7+8YSrh1jpAq1QNSUgs9/j95eXKI3yHgJCGb0PMA1NTkiT0fJFu1zxukACp+ZhIKWx5JgfTyaLwBDvHiWgId6lMD11X+Uv7JLIE/F/uUD5eive1AY13h/1OcdmAQnfydRqYN8+rffVijbkv7Uz5uKtndztSypFr0MDpCORVxv4g2icI+6gcuHFN4HESwJDB/rnVU+SlkqE2Z4pWj3Z0cK1XSaWJSo4N1UkdMtAOit1LM2mqHTGpEaVgyUwWqDcqNka8nsevMUTkTWGC7gii1QS1fgyhAyp0eYVpG6QjxYVmGZGzhUlbISFSl2dtjlxJ0lQ0xc8LKqyqcGbLk+KNOd62wJQiksnoMu4MJtt8AoClIAv3SRv+tAcVsVLrueVNGoVlK3QtNPZRmUlctzRA0w218lXYa+Zl8nGO455Il0GCP9wag8i233uOddJo/bpo5n8W4cHR9yozf5t4n96sHtq40+9sIdnjZ69HY9P98/Oz8z7ZSzWvJq1YgL54YEDdx/Z7PHB+k8/nLAUqyfOL+59VTk4PW7b//c3kbtd7T9/Otw/MkWl7WjOLx5++/3KLJI//emno4Ptk+NDPZB/frkwkG3PGFsM7e1tao/Fkjf3Vso+skzTkBw7+2YM+u7+/ebhOKA8k7a4qvPJqbk2JH0WeJt989j2Ei/3FrpT4cbT2sMNYe7bB99xB0Tw9CpydUyBJoqlbx4cbdoJx+C/DZGSXb7Vr8aphTd3j2/GrX3WEOtTtIDffJV22l/fcjCwILjvZ1PZHaVlVlI66xuL8sKyjTfrapF8+3ByuGeHJu794GD9wweS2H95er+8vN3ZeD/adzaWz2tUY9niPeveP9r7229nzgqgNWcAO2TtiSXPwdzcpd2WnMprsD4T2njHDqrYJ3E8WJrsDAVGlnMvuGE/9Uiq9zs283lwREATAuuJYsR4c65jbfNRELmbwD6dfNCF0jjY8Ef0T337hzvmfVnqbLUFjlnY6d7+oa+IpFHKo9UUfXxCwJpPOk+OA/7WcWeE5LtKnUxbhMrgkCqit8kAo713lLJ4cH3dRwAVUC9i6lRVLOEvxs/uTe0iVJz4UDLRdniqXIq61Ljxq5iVx7kWPrXXVlVnTBxKmyJOzFesEKEq1rfyfAu8kufrXzUaODnrIdSmNraCGsS4hyj446Cqv9MiVjdroV01n1W9xRtUO4NQBbSBjEgox4WQfOrisCCihQmEQM15ljkPVlsuJWKosLqLQzSo2pLRP5vYgCieSHdR51edKgItPs73ophhiDrz9gtlMtayNL0T5ZTueXgcOYarDJZ4GHEqaZzzAo0ccjLtXzReeuTAzSCIBUUhKUmcgxrG8CTUCi5rc7GOBu4U1EDTTrlTjhv9BwzL3zupFcwCojaRrS6keiVHLYW5PL2rZQFNi6RAWwPVy8JdssZMzcZoGCivcpLGqUbI0x5mrshRCwyFXF9f0arSiciVW49B+WEasuekufSH3miDOw1NbnnLPpIhW4XgQodKOr0+odK8Xty4Igkfs5WI02GN7cE4SdEmXVnoYnCyhnFEKD+LixKKqkGphow8dXNXsdMoNMLxkjR6nwC1nu41RKOX1Vu56jfOLAb3UHcFflxbJgOK9EYMY3kYlxrAYtYiyYRcofIW6Q4LETZXb7p667f0GqwBVkIvUhxVekmxCqmnK6mmQVe/K9x/N21NwFogRbnfvV5hYyER9P+XREy174EgEDlHnp6GPbmjH+fB8LCYzXcJLiKIXLVZ8SRjKu2eAGlVZ1OC1xEBUdOeYylQ40+mpxeRi2zn9xRYCWF5EeSC0ka9gzBDon57rGhoF2vpBvDld5XZ/2qubmLiGSrC5oq/6W5JHs6KcPrJIYET0R4jdLycXHmQgQLFvIqPbqI4S3ATpUVWlXU/PxFYkfLFe3fqXdZfylSuEWyCnKDNH4iA8BoX3fg35cewuBfizsdBPN+OGwUPejkx4FaJiRHjqgCObUzUjTZIxoKBz2KQXn7GYWRFRQWAnQCCboiWbsooIFtBz0Af0Y9woxZ87zCmOhVwRwKCx+JRtYoFcaDODpsTnUfISLqxoWTvdyHmcO0335rwhmRZRwDNuykB8w1dtNwqLYcyaIlsboaAcGlX0OKdDAMpL7P4erH88jUgoH4EAV7M3j6N+inKgypfOJNk2iZovkZ7XCgQ2cM2KCMkumyvVsnyexVe8WpOF5nRMBaZfchMREPVIsz0SQjKGOGYDNG/CHyy9VgR/PTl19Nwm23imwr6GqCAGxmISymUYALMpDcSDtRUz1Wl/W5gYww5cQLlOfoyZwymHvCM5XOpM+KDA6CQh6+0veotgOlNUQYlepUVdbX3M1kkgantSHCPC0Ry5fpZ0TWdpeEf0Ub45G+nUQ2biTnT3gdnYbkoIb7b6JYE6IcYeqsGtsRtJUYYiM4gdEfSmhYvgtsxVC2q3Bb7nx4fKcy4BdxkdHBo4oY1xPakd0zt49GhTf2t0322yc7Gxu3pibji7frGUL5JMY+fTg9+/LR3fLR1tPe+9Xb31z/9cLi9d3V+92///PL4JtB/NBZ2fHTk/F174e/vrf/1Xz+dmCu+acrQ+831pXOF75/W946OjnQNdp/3DczfnOtTOI3kz3/+gVe4vr1riGFNlLn546cDo+6314/nlzfbe1tHx068emA4DbFM9/T26smg+dreweWdbSuZYLPZKPr8+nJtb+3m/hrprRt+1O4Kvk+uL662rRzefL5zeMH91eEB+3gX5T5d37+3yHu+N2RO7HDv2/nr7eWdtavjVQriqVxn5fbu/uz2SoxD5rbDt72OJv3vX2zHb/IP9fMhdcZMErp/MiXoyZKDFg74tHLcCLT1O3d3Rru35vSuLcsWGKhATaL6tXu4tf/pYPfodH3rcOfw1FlrQjbTqHB0+2rbH8cpGFh//M3Umt+unErw8rT+9cvdxYXP1hjZZrEijK0OMtOrYxXFr/oAlkpzZstUZlP5hIVNXjCk/9bHDROoDvaKu54fXvQNxOZM9/HRhCo8bvq00G6xrzxSeZzsq4ch8Dx/fDq7vrEm4ePBEWOkXwUJc2v7UH2wyNzsrLvmX63rGZwcOzzA0tjbvYP1//2//qi+XN88fb24eng1u6wJTr5s2YL2y5ezWgNxp81Gp0ox9qXZawudPMSLpdHiWOlqQT6AfkxIUJe6cr81Byph9d5N4b67ss8HWJUlR13z3XYuKXuCMGWrqunZ/DlSH5eVPy8YL8+0MhHHq9Vzrn2VnrOaVjn041/yMfk3kBuDKHHcHY8QNH4pbyoQR1GO649hbP0yaWACKDM4Vjp0Ug94RScxFWsDn1j8YwEaGrTGuB5Y822UF/+wMYZozgklypD6CgY6eIsc2yUmehEQj8Zo4Gx8OlrJilgKETTVviushh7qJuXQhqN+FYbqVskrMWEvdSdBjVevm5Q77qX/AxhG4N2CXwtbO1tYE4QZqlxeJ72JUUIzsS2hRG3SJoogDJnpMbea0CoUWGPn4E/LwAf6q3FKoI2Jwp3LTchNBE0H49srHcyRbUVz8iOdCGZF46vL03g/yS/0qF9YYzmIlBFUTE3zN63VDDJSUBbFQnnrgRChfMRwgIZkZIwPekCop/5VkqkD3qhTGV2iJtQtXR0sR+FkxgsB4w+9fjcKvmo6o6FsPceaJ0XKGU+FHFlvbSXw02SuIr/YTDRRhPJ6yC581frR18hnFcYtvd+hcKkRsNQBVj3BBXVVMfq70IP98NFApjL0ZBJl7lpVloofNfSzV0maGwKxLQvUkT6AcBQ3FYTLbU9BmxQoylnwlvEsJifPUhOVSP1jNVB4/4dIB3g9LqUKLdDpDhrkTas9xBMEz1DfyQ06FXc/uAtfA1yJ3kSPOjYmiCQUz0vlygVyf2Nq8iys+e63dBtSIsjxHs01+oBnye4nr/J8V2aDsIWMBb73gEoeRDHI+QyeSJjiOTeWNkJLC1NZu5mUfouKidwNufqBAFZWP5RMctmrZKOKQbWQNb+pSFKyjfal/lbJpAzrEru4v/IRKOh12EZokziMLTHuQnviWiLppSyiivEaTRg0SKFj+kaWaKnX1asXoe7Qm7YW1yOdva6gxl6CHjJUgERUZUuC2eGiIWlkFAV48GuE4k+1OlH3LzImSpCNYrRQMig+MshEsNg9uP3vzwCMZ+W53erbiK93w1fWM1pRAfoWHKX1fyodfxSTAFd+PFn0Yt7yPm4KkSLXG6HS0rMR83ba+4Ts7mvVplTeaqQxripuTDclNonI6+wb3ioJJI1RGWHTXVogT6v/KBo0UeYwKCfUfzCMlzwj20JxLoyyINaWzJeysWZ50CPbyIQKR9hye55P5OjhFrsSXsT4GpFcBRTrG4/3D7nMBJNo4C9ThpvDnjq7zM4KHvGgxE+WMjt/1xkoBkqdvJlXaBvTaEwxqZBZfiG8sZb3ZKihImBpi+xnHKVqCTVXMs4rTLipIqFLqSSLivGG3lSXGsQK9lwQLfdgCt2SBXsmskTn1WJXGUCvioRs+NiUJ1fjRvabX9sx4OXbDWu0NDYGkD4abbg5t7BlUP359e7D50OR9+Heyd3thWkk5gfd2tzl5ZYz3np9OD3ZuXl4v7t9O963nc6WHsbBh093z7c0ZriwKSrX13u7e7a1vN+4Pzne/ni6s7939GB/T2PIduzZMon8imhtKeSQ4KPDHRX97Pz27mZj72gXP799uSOXo8P9z6fHZtd8fXm69zHfXHNbkd48fP545BziJ0dKHR9S5P3NxckPn65ubKb5dHV1f3h8YJBbtH17ff/p86d///u3Hz8e/eXPp+/XThV7e4zHTinWRpqn41Dhy68PDgiwHf7DvUk5uxtvdq83R8UGnZvm/xvMcpTV3ePLZ98CNl9N8rHn59uWvoRFwA1h+r5uTPzq4cUQuzBd8O2QtE9HFr++fz270rE62dvTs7AJp31Gd/e2Ht/WL5x5zLcJxR6bo/Lh5OTx4dGSXiOzLYD2yU2Q+/R+9PEky83vm7dTjLuztvP//v23Hz5/cLbXb7c22TT5quOTd7b3Xt7veSOx+EOLend9CLAW2clbDMM4AiWbvIQRH4a4py22ZrLQtorzvLdj0Jh5vey8b91XGU3i35D59vkxE8443vX9dC1O9kwY67ppHbDdk2B4dEyYWVvPdl1lrO/mMtnPad8OoL4PMCgh3ekHfR5doVdfu54sLLH4cv31//E/fxNdqzqaj2/39z9/+njIQLYOHu4vPn/8wHAtVGDCoixtv/UfBtU8aoirbAJQR4/5ujVDJH5Xd7zIkLupzvEY+jpWqzuSdty60E9sraJUTYuSq1Rl5jzV2abVNedTkdKnDlanSL2BId2qIE+IVovjplC4MY7ckZwicT40l5S7aNYNDPxG2IvriHpC/2mhqnSIXDz8VNSphbSi7jMoKJbZOx47qSdq1WlzWhp0z4lV2AWwYYiZnRIlRDLfQkHXJeXfijibGcjNx0n0VNbzjKcOWDY85KQaN/IgvOjTXcyNVMeZadn5h9pTAX39FFpgaNah9ZCYp91xk+AgyQFCO7HpeGRpHBG4fhK4rXu2a0zmww++sL6YfL6R4wKQvQ2/xW0wzISlxSePDHDUiSIv9v/V5DmgENd8cqRMwEQsWvuFL3gSnmutbsByARs9pLdyrskUkRARgryaUP/10agFJcDWUWlq1rQxdY2WbebxO/RPW6lguskXYymcaSeNN04fx4TPy3i0ML+PG2FJ3L2oJSplwoaVNRaSzdgWutE1nTcNX0IJdEAQwCQnSrOXHYeUQJbmb4KEFmYwRyQhDBakLQEc61VlFsDVCPeAFu2pKy2sR3D3WX5YUJJBTgDqRTBHsohZ+OrLNtHVjqOtFm7OPguIwmBHwAiTnDC9CG7EgjyURLVieFMc1KrzSBOiaWAzsYhKuP3EzPwoouzYD5uspisyGb0HtJzBpuWMfHEmxSdSQzchda8jPFHH6UCweMTbDGyFcgpVoQboSBSix7vHyFoRNpyGErUjYTQhcAiWOLT0MrLDIg/ExBiRgQl2EgiGu4UUoienwT/+jUIycnAX8uZ+yiN1ATKCrMQqmgpSipvXgIQsOSbNlWxD6KHLUDFty+++IA3Lf/yrXCVdI7BFd1mvF2OfkzI2PyyOIy1zGbAcdhypg+MzMQNVmJDEQFE69USGPKBXI5Qw9nbGh5SMmRlZkR5BuaFQxJjBQsNyetgzgRLnUr1h9/M236oUlGr+EE1tjDbZBydjLVCDLn/k8iYcElWhQicE1DAU5fMPMzoFIOcXH3lAlyclYxLZgAe+S0GPshV6Y1KYWM6J5ApnG1mHLmZwgB7v4msRsSelg++m+jxgJSnEIRAkgLE812RMpJhBSQYFwbhzQHKWMY6QvgZgzn2Yv6f0BUC3AYN6C/1e8oc6WPoAAVn6BKljRBgnkJdjoTkHlMCHl9D2MwRKj/elEq5vmIiZX/MqU0kFfseRAgOwnBzemC8YC5Yike5q1/G+EvaYVwYziMpQFlRNL3aES1sEpeozSRGc8f9a4IWaZZA+Z8csUyj3seANSrBClaTgCEoQoxoE69hmeHKRB46WoTemglA5lK9AzXPBQhSDNPbjyQ14AzODxy4hNBq6NOfVkn4MZSsYT5N7qXh+N0BtTbNxXVumNIJkhNoM162To12LdP/y808v+kiPb+8PbxZtmu7sDGAjPmarCNHu7qwJ3rM5p/34NbSnhx/en7UBO2eX5pjY4gne7YPDtV//ZMRXwLf+dPcq/D3YtRv8gQMB9h3lK6h82TY33q7zvgYcH2ydHtn1/4H/2njf+3j04/m5dQVrrerdNHHILJ32BDGb6Ghvy3FdN+agr78dHjoS+OG3v59dXIqft8z/sUGnGPRv//xy5avEzdvll9unuxvLt5n0zaVDxzb3NeC2Jbp9PtrZY0G28DeDaH3bNvx71xc3Z79dP96+O/xAAA3gP76db27t83KO0b00XE9Mbz4lt9B5Y5sC2dHa5dktNy3m5YmL9t7nUDPbHcyOOurQzBTPUH0mmfWpCVsQQ7XnFgoIlpuHTbT71kWI4BmL6VInJztYo2wDvT682BtHUG6Ewvx+dsiGOmJAmMUGNg+//f36T7/8zPj+eX6rlpqXxTfAcm0nI8N+b2u+54iVrcBF5e7OrjlFNtYRrBpDCiXT/L545sDxDNkqpZmWv3G4s2cHH6D0Cr5dXjAhJ3Yhl/3Y7edgc8tn7We7e76+mhYmBLiwUdT1/Yftg603nUwTmvvWREq3d3f/8dsXgbvDv2wtyoRb4Dsz030OEoIfHx+9+jBittKNTyNiqa29zW37wH45O//9/B+PNluy0Np2SQ5ce6Qy+81OFGgMLKvOuqt3DRNk9KTtscpX0LaMIjd9JEE7wcRHDzVatRSbryrgjO5PheKn5ZzKVXuAU0CqjEIenrOXufeyFQGgyE/eG3fqNV68dS+Zy9JJqEBeolZARdYF9TzV1JtqFmrzAHndaKcV47swQgWUoHJFTIMOdQPI83tYWruuIun5YEZWEpBnPEAqwuDi67RVkPAiepOcxSyYQl75weMhOIGoiKEciMRxQdxo/iqPqYFNvHFKHENtU0Rqnga519Ou4c/5zezHlXi97UJc/j85jAzmQAMCBXyaxXCP9y5OhRCu3gCdZyOHQwdKb+8iT/ECU9cEtTJwelHl+q79Gov1tiFGknMxEpqrRmLazZH05CUEcsqgoTA8UEuFRwVStqC5XVbtBkYkYwk0y5xGmyVoyxQIbz2QuVsUDZsbtEGauNhMV1E4KpCxNE/JpRGl5ZIzGodWSGr65Y7wdn0pmFATe5uxZdUzx6nHKRUoFq7MoMLH2NVUj4JaKugAkBdb2aCUYqYNKRphGmPPZak6jbzQ5AaTC0kR3sPgKmibWKigVe4wRu00uEsLGJ1RHsGJdMxr9L00W9Ug7+ADEQ1+AjTYpIedAcwFQsKcaGqBhmU7s/l8+keGJT8wi/xwEvYeitNKFiNJmhq9ABkuy5OkJpuHBUIyKd7oZ+gb6mWdKGskSyPVaIrgrFSfbCgvEWbg3KQ8XIzEcJl1T2QYtkAnFtYlQ2bmLRqmBg6dY28V6wrvoq2RmMIhE40ottJFUNUL2FavlkCu5+DJ5pcbpaJlAh4EDtTxcpMnia1wll0hikHYIh+P9bhAqD4L/rTJySi4yqWghXZy7GZEkp38gV3isB5k6ZO/2hRpSgSov4lFholaF4j1BgI30lRaRZIRBUFawQQ5XZJUcPvrx33CWugLvPxx1S0K6E/GUdVihdWrKn9QgyXkUhiJ8xDAXvWTD9Tj93boqpxiI9kEkfJH9NX5OuJL4Pu905LlIr/icHjrHoBWTal3VdWEG2T09yucEhaTwE5pI/T8zLQNgQJyfFjQmzEiSwIHIXHQhBcF6BHqVWxInN+ZepjLsHDuzpvSqn5RG5AImTx5kL4VJK8gR0dkrmA0/OPHW2gU6AqMlnjEiu2BOSXEHLLFpUvGaFsIYt+Nq1VD/IiYrd7zQyOJd8xIkViJ+orL5x4QrWzMr14u9kSEq35CN+Wk3NqYKA9nnrnKn/k2yAQtUY9cyS1MxDOWRRSrAvKHMqQiNgPjgaU8OQ226Z16HLkteSo+9EOTxTKUBJU+e0yx2S8hFL7DjhXFx0pH9OM6QUiz4yhHvxMW1IyBJlukEuGAAoxpEVgziHCooYg16kM5EC+v+3s7R476MsWor/bWCdz/8vOnn374dHzoTN21t4envc21fSp9fbeIdkYfXy368BHAulfJe7V/E8m++z6w7XPB/dvD2/r9r78ef/54aLaC2uIEXORcXNyIUnYPdi7tLnnnhCxUOoXs6eLqpmk5c0rV1cOFYX1767/cPRwdbTs8gD4E0Le3t0LXvSYTY2XNdHnCEUvbdOfAt8un999/O//nl3ObCt0+P5Fdcd7a2/3VlWPqnm/fxKA+R5gypIaZorO/u29c37X5/mjXytfHZ7v1O4j3/aUdcLj2D4cnNusXQF5c3p1fttW+2RPYVZUfLQSoBq61T86Mk5kFhU3VV6/GLHluUqSPhWpyJhkLPkEUmFoa6GTlB/H9+tXNo97Fw/0D9k3q0qwLTw/3bT1vjPzg06cTlk8/1gzr+oiKLKIwcO8rje2GHm5vnCp8f3dnG9OjjS29IMD/+vmT076Y0fnd47XZPPSeernsDR9J7pts32AEW9jccgSErxMCb+eRveomNgLakpLMXG9BpM6HMC0nPZ/s7X84OfXmtp2CdIHfTNo+sm3/3t5H6zAO9/Sx7m2ZurPx0XIO07x4JKdWEa4zGfJ+HWVNcT98OMpvvq2RlQjAIL6KYbOnq6srFdDSgvouDli1oWR2SEI+XJgg9OpMA9VP+8xQ8SKO8XnE0j6/GVDOoUCqAUteiGZYv/qias9PntCb6lX1upBPJVMKDQYy1QhBpPveFmRXQ7+3ykmDxKqABbvIC4hH+q3yFhnVA5/EXlKYx7Q+1bzyGYDnnMm45eKM3paITBAKUzi3CpZUPFqQF6rFJ+RPwl6lNnYDVP4TzJWfxyzZadcb7o2XPFXjenndmvvFReVeEg7xYLXv3+RU9x9rufCsLUeanx+a6aePAIGZqSoFal0jjolL0NmcsUQPQggj0Sub+3s3nziAHbGtmmZ54RkFRadr+CamkVZwamcpdJGtwrZF5/ilYDI2h4SR19zHUQKRv6/6iI4TMiPD/wz6R4Cxj1RUI5P0yLjSaGg0EFaT1mJdCiT4fbC4h1AmeouLVfgxHlukQ54VT7BFmZzL2B4CJJHZCs7w26vUl0N2EY63Sg+/YIfGswwl+rZjTmM2nFcP9fxXkH6VzUTli7DUSNh1BYMMefxLTpELCvEZ8y5+8zcyuDACKXfNTRcHMlZds6JcquwKenCy56kL2PAQJhkKnKhSvqQmaVSKNq96WzsbCXGUkXV8cqzSzURfRIFHBYcV+TJ4RRA4OqwFdz9w0JTQRj1SUaHtHocVQVXDkfDQL8HrKEzY9OMR2iHdbbIcK626SVwZdlzXxMMYzcNDpUEJmtt2cQBmMkQ55gnNK9D6Gda+l45rKhniqyJuAjWClbVrIWy5j6aQLpInIvd+T9pCT/mGdI+rezyWx7XS+IpexBDggMqboRP/mCgvkOZLj6FEz3SxGBqTGgLiTmL84n10EXzFUT6jKu4jrygiiUpclJiAFvyBrbxi8rDYyoM5rtKNx15XIK79g056d8gb/so0rC2mRZSTfeSygOMiwo2qjAyysLsWdSqbuxgl5QsmHQVjkQVe8MAwPKzolUZGMTFWq3FcjBMdAKkhVWyAxoDCPjV/8owljR0k3ukDYRsn/JQSAkH6mLLRqYqGO/objoIP2ygZDr0ZYfVJlODSGKJdyKva9zWgDjpodOYtxSBvuXeb9LxK9F0JdOpVwk3u1VsJiPd2ER2OdWVlLGk6Cd17t6IpluM7lxG1mfPYcRIffENC4h74UlUP34jwHqFoWIkLYeQwgW8Al5ozHMtSymh5lBzOCIxx3FRQwCauWKGfHW3J1SMc4/SSFjUtxC54R5g5RXSiDrEuRdRbcujtJIHhdvHOwRtJlHPZpiBKxzAAHdl7ZlrKfreotuaUvxGk2ZSpjoT2b0Q4tK+a8AVdaGfEjhyRkW8cNpUnw1G6Qd7lENlF5KEjheF06jMKiFHKhCbJrbfxVGK6m91CM5D6MHqzYTGcdmT2/VYhrc7Jxtr+vvNrkeL8NSpiRZ3p/PL+8O3qt7unW9PrN3ccebbhZFku4vST/fudANWILLiHx06GZtcPe9trP344sIO7MfVPnw42Xrdvb9fPnM679vzjp82ffzp2ZvDZmaWwG1/OrsweOT61rY1d4R/OfrfLztv1w6stf4ycH5/s/PjD3l//yyefC0Sku5u7Hz+cqEXEeHF39+XqAgv6G2ZKH5tptLV+fLRvXfLO3ubH070fP3+4OruzFcnPv34yRry3t7F/aJ/Qh73DndPTg69fH28un+wbtL1pnx8039t6v0W7G5tfL7+ZX3N4snPwcfd1/eFlTSy7Ztcj52WJj59M0z/aF4C0w6RJ+ffGd+1n5bBkQ/8v1/e3yqqoPg9YyCdOogFWoGY7HMBht3yvVb83Zkcxv4ZF06M5Q4bAv17c2VZTAOVjgOksZuHZHlRPyrwiB+UuC+1V7r1mwuw83N87zszSZXG/2fn2+hETn13d3G+8//3y9jfT7vd2Lq9vrm5fru6anQ++cV2HM7CvvplU55H/fH2jn2O1cp+ALNjVb2MTPgUZfbhx5NnWptPBCJn1sqfOv3uxwMDGLE1pkMdXgh8+Hel3TfdPHxLwRx9IDnc2/3R88HFv9/zK+l6rsTds5mmHEdhF7R8+HOrW/P7V9knWFeyycGIxXYhme9iwUKFOKhzOltvfbS6FuuM7AAtlm2K/25tH5zQweAIhZBsKjYupntIlaFV2PkYB0S5Tnb01qgnCxyfz0at9U6/tpqXXuqWbYRDRMIFxeq6DdLQkas20VfkHWJQIMhxeTK30d9S7NuP0OY7FybNP0GuD54JWGN6M8PFpHBdgCAYWhPnNEeV7YF0aCA+yFT/hUHeoxQBe1k7BstDucfZTXhY11qDHH3DaV7ec1YREikTVuHib3gwLOlSxybGFrtNLGGJeXIPCnvhWeFeICkDNqzHiXntPRPVcm9byvrnTOAiPYg8IeeTv60HeJq4goo+4gia3NG3r4vCHBZlSGMbmkcMv83jjVDiza0qpAU1fGPGATEQqhCk3oat18zJBLdofYQYKpSD1FWIUBVl+ccwABDaPTtc0TX0DAcEjUpMwLTY1CHRlRuk554ks5wYsjy7AJ9Kt25neMpJR3KhYhoXRBG4EeqxrpBG075IOznINddKjTQoWksA7D7YXkxkAapbx2tLnosrITj7T6SWckIrPsqLWTAdDwSk60XZQsYnUZDjmuqiLayM00ChvUSUy5NGjSIzTzwShu5Se/GVOjcmDwipIzgunMkWHXxlCcZHfHosAqqYVQSpeoahhzwZSZ42vbGMSMlU2krysiH8yy1AAPtcgqQmml3kV1AVzxZmN1KmSpU9/DxacwlnW6auArbjRB3gX/RIqT+eb9/KNa0EVBajBdQgRgDrjRGkHRPdLZ3KpFLJGRrXAP2T/YekxB8qYXCy7VzZTc9FIklnGhUuAc/6EGAGTMmCrFFPBs5dFHSlUDqy5YRIsHADQotRv75i3q1yuxg4mX2ZfX71zNkpHvD8IVYNB78IHVVZN8FW3x43fsuKgDNLH1sZX9VTpYKWyarZpigGN9++vllxlrRIFpyywDLzhN3okzGdQgpRLytBACkPNIKhEGfMahsGhTfRkMUADnelwH1qOBgnIHVA5kKMcJOy/2hNrQ33GV02TJrOqh5xu6q6tiletEgrcwrJg8fg4SbIN3y5IexFtEbNCmk2HOzjVRj6oVUdxp6CUcq4UkMQqL/MYWcXgRUk+v34Faa4MTbbAVmemMk6vq+I5CPmnaNEqoxMKTmUbzSm4VLyxNgVgJw1/mEZAYUguI57MJ579Rht0CQrtDZxxEA1AUXhsV1H0zsvrQifWxt8uhMRV5bsyC29xO16meohkcmoUbLQwYpE53vwXezHfgRu1aJZ/PsK7bZy7XHSBAZFZZoAFkvHTi4hGaxYc6nzl2PfKU1e7qjrBH/aH0yoAUGkkYSRVtQYKedxoUIlMfENMroompFW3JCL7jpwPlQiq7GzSzaBYZJkQEEhX1KvRZQ3xX0AAi4wVDP/A9wKW5DYCHF2OES4dm/ERC8FZbSSb3f4g4BH3GAgXD4hnjeP7imOKNkR7naFblMr92YqF3TvuG1oT4dd2N058Cjd7wYRfG1PO+qu09vYsOH23VsAYcENlTu3dscTi08dj0zyYhTkHjdVaTrrr3ICtq+vzncPdl6c1E8LbVmrTPjnvhs+3D3aFl1fXzzsbd0eHTtG6FaNZi3v27Zxx6XOsbzztPr/f2F3/4doklvVXq0iLmO/vrR91OtX9jh3oj/f/x//45dKeOF+fTk/2iR7f+/uHd/e3NqP89YcjgbjdNk0sMsXd2txnA+CvD1y/M6wIQSxs7ax5PF8vno4cDvC6eXN1STGPTjXWuvrwYE/P16c1s4haqGn2/AwO725bkJDts8dW7aasfLA9Q7SJPJIt8c3H2Nm+fHjROTjc29zZExw/3vh8YMdLSyVeNm9tM9rngjUz8J2vILauYyLstaOuqT+7O2dfr3dtX2RvpB1zpZ4fbJT/8HytB7e1Z4WDjXTaqGfx77bUvLci1tx9HRLj/5rdVg0hmGf0pJqxbudzab3M1Fd/ZDIdX7+akQhTlWWqe7tWhpjQ8SzSdVSbRvfx6dG2sAaqiZF9OjjuGQ8m8b++C9k/n+zLdH577xzfA3u/Ov/B6uZdo5jOILN/643u3P723qv1EcYRNzeOlu8bnRh9uLXnIDRLBq5p8OB4X68TMWY4kZhZ3J1XsNsetQ6U4N58ZeE4TbpAc6JuUKBoj4rU3yppZwLm+ChBuppj4lOGnZ/gYZs+5FHrTmITUDYEU9iU8+9dkcF47OoXr85xuMup+ZUfbDslfqYIIw+leKM7nTvbJ8rwyjnVuxajySoNrS31fdUq5cULbvK004vImSgVnSpT8Ri/NV4ulwXiso4NHsT18Zke+4CXV6nhQlWTG5lpAY484/X0Y/dVTFP4dBnZvZeI4f3zKhq0hnS6X6Q1XIsDsiQfsNADCjroiySjH1YyabCcFS0bENfOjkfKbfqn20MX+DA1FDI8sRl5/EusGo7xwIQvEXjs4xZHQlevS1wai5kViZP8ZZpKuQsFMiyKBtxb9/Gc9TYagbs8eentB0rKWoQytGqzNrqvsqpoWgZgfuTumJT8uTuiWXQoukfeCCc5UM80cVFecnTaMXzVcRqdTUA39OQjylI+EqXDGF+8f+15il4ELCdECy0yowGDoAnmZVAJVQd6Ayr5ytyQc6GCXYkig3jM7NJ/zscvEg0XGkFWgDSwmhkTfs1H2TKbCKi5CWOajljF6Lrmxr+gMVyxUH0qv1ERRmoIesS6JGeQE6uPWtNrvLHajDnRyVZq9mZ52PIBtfSRc3TiKJjdhjPS0Fw/cNq+BWOox7YDGr1xl2YrhrjB6TYrWogrmzugMY71sTq5q31zxUSSGUG1ACBQmgPb5QGy1PHYmHo6XEVexaVmLOpEsWL8Rl1AVdslkuk5gafQfJEBeKYbgkUL4Uo4NLJQPJSAr2CZ+gvLynIW6AwDVcP9kg0QtT7MvqbzNpn31ClgmU0y3K7iG0mJ3MKVfF0dKdRYw4DwpULN83Da95eqWKxqOHw2hwCRiIm0kWeaVXThLgl0pVNXao31wqQM9Slpe5RjJJRAJYAwpRJJWlzezZ9ejRkolfhkXPAlLFSNu1SxFwOKYVtTab74qdQjobA1ikYzTZgrKW+y+NwKhlyU6XhXRBYZhyj9Rnf5oR0Fl284lFYsMO/G1pXIj46BVc3cVG6lyFTrsQbAxVCIeKwqpeZM/C0HkudP9dKjtIqVDjJNzFhI7oZzSyvUCYXLe5nH76cwGeLJtaoYI/EYCvsQmRWWMJWtVIIdyxiEi8wWJSU9lzxdoem+bIsuSs9VuKLD/1736Fr+lrg8VLD6jMSyAcYGh5FonfxJZuiPzoEm5+puvF4Fx1HZU0RxwqRWNuCmPmSCCrUiK/hDFalM4xoaVCx5vMk6FlFXqA+gi9KhJhtAxvyCRuOROqkqDsIVXRokIMowhods3TJoyqoO1MEYSpLZUvfy2rAMtWNbo6YhqYoU+blgrVXeOZGNoKIFCEDCXq+mZLJaibHhKPdETQhDNz3WE3bJrDiI3XcpYy51+8aI/6CSbFzZcAeQL29PB0eipdf1l3eHfTm91dxbQyFmyptYTw5PVgM/2M1TsOJHP6HRYx0Jle3IBpb6EFsbR/u7b6blbK2d7O4c7mwd7m59ODRqL7CwSb/A0nm0b//xj5vL8+dv327sT88BPt/e1z9437q9Xv/7358e7vFW9HDy8eTGvJwXS4Q3fvm495cfj4+PDxiBU7LI4ePJ/o8fjj/sHZxub53u7jzdPm7vb/zpX364Obu1R5BRdlvM2PDebuCPD5pftN/f3K1/O9ezKuo/PNQB0dA+mbjyfG9H1I2b81ux/cvDu/MKnHVldkpNpylDtw8s4OLMBji0u2nhMxOho5sHfR5mY2qQ/cWLMQwl+PF9xL0vBO14c/8Il9xsjQwfHRUmmG0UX9zcCtrz61uaO7XL6drbh53tk531gx0B7obd9x/uHvadyGuJrAwnR0cHjtLaIKutdb2O9ct20HwxV95c7/0OCtj4x1ej/8z07dpZZQzGrj72Lc14/NJsGBQyo6bhHkQyOPOgfDBRXTICDtLR3ZZi3N3yV1CbHnTsdN/NrW8X99cm6+846EHXyRKitY+He79+PGWRljj7wnGwvWVLpX//7fIJHl/g7nTkbBG7ZQv6/e3Dy3MHMK+Z0WRDVr3Bi7ubb9aDt6xcH1OddQSDmcm+b+xdXj//9uVGR9I+r1/Pr21FpJZ9/e3it3/6VvKir+jrhVPVrq6v7f164MyBqTEtJ/AhnudU49SJ6l22779aUC2udaGBWkfCIBa/ZEBr75ZKNFULs/mKiUXmRdCmKgWwylPo3L6o4OnSq/g6kb3Spe9MXK5A5wjQXH11Lf9R3V9iFDWp7RaKGSw09DXTs95LwJEDU8GOryI25/JWcVzIGrTGTwNFSxMfm8LhNY3OctSYEd1iUvZ6RKGsd2GsxG2jCUMk80UzAgANXQiJIq+S4VQkcpgQQuAaFsbL43b1VjxdG4oiAiFK08UsMR9XF/EALJ0ZgKkPSWQFy7hb/jCYGBEB57UGNeblQsPoZVRTu8bUANRA57tiCLIV2bWzeX4pvUJzavQwjGQJKXzWE3tdriXwVQ2n2VVnQas9qmgizp+Px66Um96uYjX3vgMShwzjMNP7ABwFBaAxRMRHod/etWO1U/usNapT4TeC3UCFZmocwgsMFoBsbFScjhtKWms2YIRlDLYxzjZQWlGCqgVHZt0AOcyFc0+qusMKksDCbLIjWLUMnEBKrha4hpISgQ0k1+UamS9mgFkU0qPHaTSG8YzC48pmYhsFkZB5u7A3ny8qrODCI+CKnBwfwcfEZHCTtGk3BoepaFtdEivJBKtBVTcQkm1taF+uuutB0fIMkF6tQC0Vfh5BROHkaaELNY96mPLQHMIVWp+0EawQOPKr5uXwFq2ZZeklGOZcxC5oUvGHCBSusOCf8Jd8w0U2nHlIGp6GNonYX6wr4COrrDTNyvqfZCiJ0YV+v3HtWgQeQUFGDwCrqwo1M8RkrpZhBP1u0KzeYTsGySQgAzYwUCCjx6E2zY2t4h01MsyfJAWmh9WNu4itjqNqiq9ZMOM+IhaweiZdVfJJy8m4xiZzZPACXtJ4tgCORmRWAuTllcIjxwHiV3S4QpstlHu+D0b5si58zNerlDQXc1LAY85f/r5B54VHpokA2WVc6Jg1xIhTZKW/GfHFpPz+T9Z68bJUCBkwzm87D1DuwsC8ir0iKByMHAZJUhuhw+t9tRQybgWGBeCKIGWn5z26mfqdfIWAVQPkqSFA+ZFBWYO7SzQvfWhI515lCmhF7cCVNtdiTGFcHgH0UJbYRpl7Ili99zC2ycTL7pdHGchjZJWwKpncKqz4ck/jPQ3FwRjvuiTBs7zCAzQkvEgAhJhyzWgKjOx4+Y3BRMQnwo6xcdO1rOMsIl7GqVSpay6vFuCxNIWhGQ7S5qBOR2WfCobj6GTx44vHu8leg1rl8C65DBbYsdBtNW1iherJvJRHSpdCfkPK/blkGHbovZ0boPUWDCwn1XEEAUkIxJKFAyjPiCt1o1r6wg4vDUL68COHf+VMS7KRUKyo0iKDrUZ55dGoAEh/ZrXMPuzvAiuzXQ17iPxQd2xNwO7mU4PLT4I5saB5N1q909Mj2w6/iV+fnw4PdizzFOfud8Tr+50t+u/ufA46PNk7Ot45cfTrph1X3hzZaS2D+f1aSetZLZH4/MPuv/zlAwMtMBAI7eybG2SSjMkkl+cC5Pf7y5ff/nF1dnG7CbdtKB8f2pzm8W79zb7+28bZ4fPmh4/7R/vOH7izSY5lxOYmffntbGt/50///Ze37TaFtYA46W68b1l5/PZEguLvu4v728vb+5vbb98uTSL3fcDWluqTU7/0e0T05jk8vTa5nLiIVgt+LY437amhF8teW09hOatxEVp56JQZaswJMkiLBPzWhJtsQ9EmCfEGzuIV0tEItyPurdSDoTsyt/ei/NYz3N1dXh/tbtuYyDZH9mRsc5z19Z9++nS0vXH99UzNpjoRvMOn4Ti/fvrHl2u0ff39Kws92Fw/2du+uLh+9UWlM4QLwHRIbPmxrzMhCrRiWGgrjplebqPU7G598+buVl+g6rouxHmkxzbWseW5KVCqEat5dhzzrQlJ7z62mDP2aK7X+qfTI/7s98vLp/U3y3PVMrO4fr+8MlWMVehHnBwc/PzphPbVjOe3R+sZPp9+vH28syh7Z3/LimSzS5zczMLJ/9vvZ5Zdt0b50Wciyn3/dn5pxIhufzw+9Wlp29afW9aoHD3fOrbsjQVaG+N8gPMLGS+gJnlGPftSNrqrJk09ru5V2Sb2Sjti92rBRDBVKbWjRJzKRRHVTbum7lqDK96q4npWAZd6J6PiQaguLtKpJeuTGPcy3jJCcua5ZqUAnHqY3mk/BzXV0EtWoawazHkrBdEAmdGpJkP1dchb/kK1DV0A4VCVdGkMf71AixoU0ZMLYhDjBQV5humQuGeNXJteSaOSwZyfSqDQhaQhIAOGJM6S4AqrogrIgh54IPFaHiwKxVBGVhgxoIAM1NQGkmn85ojUIDfSIxH9OC3iDZT7sAxh7nwlkIXhKptvnBJJMkpiCVWog2AhWPmA9LZZQG6U++Otx8m/SG2yiTfr+aQ4CLDqHi56GCElYRKsgFicVMctR3A6ejPk1MeEaWcRQ/4KxG/0EIvfI8B0FGGAPPoueWsbrt4CDl22GKnyKpbPF7HRCwlKKrgaoczgMRQyh7Os4+mH8WkHkSrn0rpwOAWR4Au+y+nRw3x9H6xlTW5oUmSu+m8J2bgujhrTrPWRB2FLEDKeOTaABTvpxFUpWQJV9Ik+6SMPw4EdbFJGZ6QNZhdEGLm+vR2WF/rlLYZBRXiHveQPRoUC68cvr0CN++ECecQhpTxyTSIgqWz5FodCepmQtEwoJOfRlI92PjKDKnNaWOhdZZZIJgS6+ITxG6Og1MsqJjKJ0HhNjNE/facIQ0lwG8P2z9M00PmQKQ5CnEVPwFTevgdK8Lb2HePTfAyEJfOwP/LEmyKKLnKIvSXeGENCUNquMs4fOCaaH+5knKq3UNgb+m5SolKR5F+3GYy/U7THBXcih3aEP1W2rBlj+YLUzzyMOrRNBaJ3t/cDIiSLkSB+vk2lUxKTuf8rXSexpBdHGGTGAUdPKIYwFMRxuCdEnpryXUZlljFS5YaJ7ZYwPIRl3ven0D8GcrIjdDUxulPbRHXVzKKKpDlxHhjgrGxtACrOlGWAKKIKfKsa4yIjWvG4NbEVAyNimeWL3IHgbTQUIWRGAWF/gKCBd84ylkU/wYF/ycJrJ4ExQewHKdpADez8RMaCC0BxGsZm4CcR0ESZUuSqpD/yLwAAUVuQApzE6JkmCvzJ36+oHLEsBQeKXwM2e1hMMA+0wBkuUys2h8hg5W7mMlJXYXqfYDfIpIH6FQOxNveBW4oMrAE3QljSQVYCZDdSFq9UpiBl0AmZVU4tpZGlXRkDCL+UaQ5reLxLwtNKpZfBKqV8EABlJ/kxnELmLniG5umLRnxSKrOx6rTiYVLmTU62xnIqwBx+mgnFVLFImOWNnQhPHDK7ISJQhp7kAeBSSubMMILgyYoEowm/KGTVa2JLNlwXvTTsEdim6tIL16OkvRrVKMP/KvbB0YFxIG2Vfy/rdhQxrB9h9q7c3TMd3LQNm7Vvf/pgTahw9tHSVhESApv545ysA5PVsx6HapHkwf6+NsusD1KIoQt+AAEAAElEQVRTH446CArel3bi23z/6adTS0afbFx/+7Bv75GtN6W9vb65bAdJlWD39eT47ej05X376dc/fUp9628fThtUuLh5WBc6Hh3aYfzHz0f/9a+/UD53Y5qsumO0f+9w6/jD7qfDw8u/f0PQ4fE+AxNP3Jmm8vDydPf80y+/2Dl67eWxs7R2nOz7ag6OyHh/38R6u86bsGOH2o3r6wfb9BsQ8t9mmlTvMq/l+nFNL4VRmJ9jNa1R3izKt9FO0XKswnyL72NR0vAj9BlnmcXcPpkaZt6+Qfd1K6KdjQasbyWw6CR9/LRrdtX29vuPn3Z++eF40juN9fhkr4jR94eOZRBMbV6aQfXt4uL86n/92z8sWf79n2ffvtiZk1ZfvlxYX/14+0izb74TGD60S+m1WfYCaCGqMw3M2Hl5pmsmU5M4PQ+m2rcM/Za1dbO65hOODtq7jsHzy8Pp4dYH33FkcvQY03p4dWSE/fud4HV1eX9573AIB3gVoN+0hOPV0Qqne1t//fnozz86BODtzz/s/uWXg3/9afvX463Nh9sP25sf9/Z+Ojn810+n//Lp86uu5fW9anRs2cfmniOcLQ3f2t98fLrTsbQF6IfT7W/f/rm9u/bjrw6Q2Hi4vxQpkeaXr5c+auwdHulv6qgYRtQZ9V1JDdGaqjvVlPH2eYbv/lnTwD/jBevFmtMZIwQ1pdpcwGpcH5eiqGVJHzeVhwFQteYJ+OPFVwOltVAHlwCYZtR6Qiq/h2qkOpr/mUBzqnRSp8tqPYcrRx4JP/mM2gcpcsBS8DeuU3JEToQ0NzmVqtocGXZ4eOhVTshsILAU9X7hY7wicnzo8RZF884iNNMmJ8rJY+dYii45hFq94nUBGZP2RYIYM20FZ8jMb+9lAsc1L3qnOOJl5NplWPzb+FvCqatTwx/NcYoI6gC9T/HjuGQgD+n88DQZpfq04h4W0BY/ije0JSaX/EMVZL630MLQFhD/FZSZSNGg8OhxTuDWqiJi1tRKV1aFgT1hytzYnOKxRVgTVBZsQAaFtKVn0kvbFJjVNNPLQr1IHDhg/EoJ6r0gIWeOWPC19b4DyDl442gu+WvxZyaShAqXjueJfhRP0zFRtDBW1/MiAYGsG7lJAx7KUixDUjb6M2l2RopuJEKUqSRD9QJAX56aqGYcTSrah3CfkiZbJExXypsRKeKyE9VkWvPwgB62bqHBNfjJayqdZEW8has8S/2a/nmIylf4REqqbXC0rrNuKhlEoRxJJG1ON3LhS4prECV5XHj0KplP/uSV0USbfENek4GH2CI3LxWRHt0JW0qa2jMpU7ZUhujez1V0F6jYIwpwS560buQePDGCL3oYzDJlhKEBPRxhQfaSIFVK5au6KXTelrPEkvsZyYaPeBG2mJDMYNHFd0rKFbTRi7dJL81TRP6q+xXLYUlTMeN3XU1YEICyUUi4ULYioFJuXVkIsJ4Yx/fE4WyqYfDnSwnsrmFzBBKiylcH1Rl50NbinB5H/KisiFzozghRyOOFI9UvAhmhy9Xb+Q/sIC7Xd7aHi7xFGdE6ZlDtGOsvlVIDGFuuhW2MYUme0Xv2Ebuyxm20hzJtalTGEImeaapQCzVTSUAoS+RWWAbwQVzwJIARa1JOMUN0LrU4bCWgORMqypFYZYyP+Hef7nsR7DQR6QD2Nkef4hcB5Xxta9AanaUzMxVM5tF69FS4liP6Yy/h8MUB/i5YZYeK4SV5zXMyiySXDDJX5PvblYC8qipURUbWf+SZIhITSK+WcQ45h+5QR0c9sWlZB9EifCiwuahAdtrhF76LNwJAzSCjJ/8FtvG/uPMvi5bH25kNNnhC1FwHL6oVSM7bjS2qEbWGfo19jPuOHVGTNDlliwmbIdpYxhyJGckDLrtCADzYG72AOd52qWzeKOrlEAX9dOQ8KFsqMbL1/MY8LT5lab1GFJXVuNYi9x1tIVi5AOY4wi4PV4R790QE5rTHeDH0vo0sPYmaZqgSmz+2IJwZ7TZYEfO/vFj36dAq0jU3gxMzJ8SZsiqq7wAPV3eG+Jok82YDmVvdU7s0Pj3eOf61rfH6gGsHHrvZ9HHJ+HyQmz6OpuY43V41ru2DgHW6P3w2KGyj/ZePn/Y//bh/fGrTnnvbwojIBEGiN5GP8TKdIBNALBVet+Pl482eLTxv7P5z72hhU1FkYNM27Ccqyjk9NR9FG71+dLz14cOxSTvMSH/nx58+//YfouRHe3cSR91ypvO2bhWpNcFbe7uXTy8Ozb26eLZe9uzsxqcJ622d62XaDFnKrypZUKtTIeHqykC+cH3r1lKArS2LdlFN9lfiVybnAFrtb4pI+fTCYIzpE3ZN7HgG6+gErn0xcf7C2/Pp6TGizIO6uX6i248ftm1SdHPx+PF0/+PR2p5jEO50s+qwKWVDoHa729o6/fB5d/Poy99+03f6j//19eriUQbaN71JAHN2//p302zW3jqg18SY9c17sf4oHKk6ZPy0fjd7MpOKJegX4NT8fcaHbiGD4Xh9swkxmhr68Hbz2VEFWzsXD1u3L+uP989kYSG4rZ/Y7tXby/nzgwhQzTvVmbE57O77r386+unj5v/488n/+PPpX37cPdxxQMGGqPzHk+PL67Nffzj4334++d9/Ofq//ZdPn2yu9Pj6cd9ngb2To6a6XJsG1lHInRWsX2ofJCcn//O3bzf3jlY46hTp/Q/PLzuvGzvXj282T0W1TZ/sCmtz07Y0dbzD3Z0pW2Te9Cbx64w+MlyqyVWOp+FrVCXaMs4yfoCWpkExh6YmqnCfSfutuFv1RW3Ko0gOToO1S/11M74r+4JPZs4hhzCue7IXoWqGuAtOYeyilgO0xU6CyFTqCVSP/KgyNcjyVF2BUjrHNLiQGlUcQpmN79gVp28dTkbbsWKHpbkvZ3UcFPTgdXEdfWRQAbwFdlxSHjU4w7jMYZr2Wygus3IRHMyMSAa0IpMEQFCU4yRU6X40ezKpiHDExqAgXhBhzFXl6OI1brnkmRAiY+zAmwftJAEZlw8UbmT0G5He0WflBjKAtJnr5VaC0zyeJc4Jz7QFcpIk9NX83B/xF9yiAO+TLeeJ8ukgucVcBC4Qls/LSkzbq5ArM2jf5BGOIQM5wY7IIX7J2S2BNAi4OPQIYkrB7RpGF2s0LksfM/QOZjs9KEqSS7MVmbOGIXEGUh5XIKJ7JBpk9tDKCnkyct2hocPsFu+Aj5zRo+TUH/A6A+7S1LQ6tXwjk1pPYq9tIk+YiBXUzITeqx0p1i9/oolcUEsGFlAluqWx9ppMgp2EA7gSSB3jxTh5m9icFjssPUzverSmVDgGDUUHTQYAJyhcBJDgFgUPQVSMYlV+9DsUgD4EILSbjLsrdUwkVsM1NXGyNVSqaYujEPQ7XeQNlooZswEJZgRWOwI1WRNVzmWklgNBtF+DMbGnCMWrR0ks+XU3v6YsfKia1NJDQUSTeYCFkihmAHFAT+ZylTWqyuYBiKpLxbvtWiiHN5H26CKPiSUHi9xTZEojbykeXYqAMyzOyyVb5CelIW+gDVMjnwVUz6FbhNON/AoMZIogJ970++PIAe3SoavUUK7E3M/rEVmdBi8XBxERK4hqKYIkFEHa2wRgtoEG3GdqdaD7TOmekGgjHSSouibpOEKjBgEgZPpxH4R+htX03f04LIVjrRhugcb0kBPtY6xwufeyxJH4AocKAz+jvDIuvphxFMg3HLWsIWssagFOjVUA6JJF7UoE4ytOsg+kLpy7lz4ZGRym5lXlZjApyQbGlZ3oqsrUd0yI6ixiv1/+BycvIGUqWHwtZt3rcETJws4iKRn8jAgl5GMAqSwgo3cetvvg1CtFx0BKDlJGZtIWcdUwLNciN29HCZM3yInBRQLLE089IXW+JKFk95kCnwYnLZQz9CFCT789TM+LJMgVaEImjvpjVSTCWfppCUG639lN7WY1KhlFRnCE19OsFAdooqjFOAt0XpWhSpvrb3DLoEtj831mVdJocTN0F4sZjfxxr1jQpyWAC3mgJbEx0eU33eEr4eTEo0Y08/2efqfJJN5gybY2QedycFhhuqhCHGrCOgFYfdqO6rqBNlyxY8zmtmWal5e3JraYZuAMuOtbyetmoxjZr+VZe//44aNDu37//Yvh8SOj91sC2d2CHqGn4VNsbZobs3V3fWO1qTl3V1d390bObarv4ADLVy3mNCu/hQfv22u+VG0L+44/NK+dHzfX/eH6zcb9v//tcfN5vzHot42zM58WzOt4/OF079Ops7E638qXghaAmvdycmB/QJTYFRIUm0sKwi9vLn/8+fPtxe3N5d3Xf56/vzwcn5ijrPqbi+/UGxOCXq/PvvqwoE7f371en9+xTvb9+rRuxrwVtDzY7xfnaonIyqR9wbRPLKbWOUP1VZE29KcNppgRSc/ijXfawX1mj7gnfeoxNZ2KxF2mU+kZGdr/Qcy7u3V2eXW0ty+A83nkcLdQavfg/b/8+UTsTlbnl5c6X45MoIP75ztgTAQ6PDm6uLra2NxDz7cL3xMa3tOz+vxRV+L18sYkqCau7Oys29fn8s5U/OqFBRjyMUYc2WbUx0GHOiC9CWBZsyrmNOj2WGDN/BIgjTZtbJzsmaC1IwL/evd46fit5zWx9n/7Lz9zHP/+5fyfX6/vmtuEeSufHZO2+9Px4c8723853P7vP56erL/Z3XN/a/v4YON/+8vHn4+3/u//57+c+Irzdu/45svLCyP+P/26d3pi19dtWxJdnF9ghAlcnd/rpBUpdKCYVcTvN/dP//7P3/6f/9//+f/5X3+7uLj97Z+XJhKwO4vdqOvo5Nh2Rmofqs21AMHMeVz7bqOWqbkd6GtT0QmUVRl1J8ejRnauSy6BCGbBs4Vw7S+ZGvuumK8mDbG5rBlnvr1LbQSn6jeOCApWXuifNBsgWPyDypL8y9wApDAgTFXm5o7zFQAoULoceYWltuY31Ez6klzNHI+FpN0W0DdvGAlFhxVs/34FdCx9VDRzy8WKVcmJyXJfIHMOOYWpXyqeehcIYEcOsIOAPjEeChkyuqfvU6HYBqKfyCc0rZCYj8PT4wKihksPpyYJ2ePlAIlrui5o9rC0noMogc/n32Q47VfMyp9eIiosXtUxmCZ7wrK+tABICENDUyjB5Go8koOIdtAvYZk2If7Ib4I33m864WacT9hBrQ0Y5Myjbb7taEQ6Rk0XAeq863CMIHAzFaPUNX3FcKFaQrl0mQdWBDrkRHzGIxlDSWDYCbgOvEJmEA13dFRTqAiyG6OpmZqgfglatEex0OdTfCCM2BGLEjAV0Wgv6BZMirKiVftVh2qGgUb4Y2JDKMS1bnG90JxtAD3TIiCpq+mSY86bl4691LfUhaUxyZ7lLZyIQW+HPIoeCWRjAVmGJkkYX4GIHonod0lcyrJ+UKo9ybXvaSMcv1YmoZRXxI9lZCeQ6GV0xWwguyn3RDtB+c4dLHEW7QpNvdR/42IrO+gyYOnVdADHTrIEVicxHJrUVilAyhjqwUpJWxMGEFPtHe+THUYT6cOnWtt4SR85vMoM6mjOLgoD3MTJVCm/ve+xTweFbYEfAeIEZVFRvDH0rNZ45LLY9wIcbW6Ajpe5WHikT5I/BMjSIIVrlBVJCuOYCRUohXfCswFQyQp3JcBae4+JURlgABzcyd8lUc4YGksIc/UxXXsp65KnVHAK93oV6l7AXnnFARlFzOdEdkggDUB893WRUiKnBA9FJjUFiGzcsspQjihtWu2jm+mZ5wohKhqivhy6DCWEfSwn3BRZQi5uoW+QRDOww27k92qoRrT8JKKQDPiSjosKxFN/+BdMIhWRIX3vtA71M3qAXUZEjLBFcxUSedonDxqPsdIqQKKpzmQWyFP4e9MyCkeGdmXGq2rhJowPd2NFhgQMYS6+JtZiOeWlBG01okZiqV/DuexylTF1fbeLIJIYGqXDI25I+GMLgCFvWTIcxwGaPFQyTNuIonDQ1ZtALcBH4aMmqQpmucHuLeHIHKmay+k+VH68D0XLAKs2RxVramyaTRGNO6HK7ShL5TMJMJX/Yawo4XH6Pdofaicz0SqboCBPKfM9RKuWh5pewegnUHEADZSLNke2onoeIciNoMyHFOKJzq7yUnETq+aRkwaDumcyEnvAkWvRBRw0LyhnhXyQuGc14pW7wVE2ABEiE9t4jfHXNQPTllCoqqBSRCMgKr4NHRoutAthY1Upsm12hMBs9q0RtXfh0fqriUOItj3/3v6BufuEt7XteNq75xvBnWZSE7h1dn5h55Znu4jstBbl5e3x5OCT/fivrm6Zqwnc9nOf9a8P+wcHwlJHvaqAHz4dmC1k/P9of+/g4MPtzfkYLJW9+nTgpITdzx/urm/N3X66e3m5fNP3MET++dOpjfw/fdgXLv12fvvzj8evT52SK5D78vvd3f6jCJortSURjo2Atk2b7eqNlG+vnX44fBYM3r8e7ltIevP8ev2XX3/8t//1+5lTaU+2D+1Z0hSn+7cNR9xu7b3v3j7bAPTh1tR8GhRK7byfHJ84gur+ToBtnqjDzl5OzaxnD5sbtzdPQleCfXiwDSJtshna2bQQuVabrGm2UxDe7FqqxlrRagpO2tJeppQ2dNKOW6r8+QOm7mzAbStPk4h+/OFob88I/cOPJ4fOxFXd/+Pvhr0ffvnhxB6Z9849ODiyh42ZEf/8+2/3dw+tm9WHfHwzi/74eMsxYZeXm//8euGA4m8WKDv0q1lgzkBo2TsnUqjGca9v3CrDKnXm3p9NwGe9zmzjHQ4sT157PzraJXaRyvP6693j88bzu4k18r74bPD8dry3+ReLrU+Pr+6fbgju7uUI+u0OkdMHM1T6w8He//jLh+PjnZ8+bRw4K2Hr+PcbZxBsfTrc52Uvrl7erqGuopI+pORydn7z2NT99daIHx2aW+VTxg9/+fHi6t5CgWZYUUsH2+10ajVy9TO21j79YDOoPgfoe7d/0suDLW70tNi7eFnQb5Yva2D6y+AojlWNPCp3qpe+DJCzpxp0mkJdDfl4SU0A0fbdTwWpDlPf1LucdMeQt3tMHmFqtYrJNhY/oorpNc1wclDV1kyqT0MOjnUqiINXb1XMtlmZKzuZ+oB9CVxckaiHcVxhmLqPABdKBqeep2oRK1wJ/iRzzJxkN337zQ3yDNyKoWrUQ5h89WJoqBBbzuJ80FBew5KE2S4TJwYwa/KWwDrXM90Jfiyq2jOkZjdaxhtr5mrTppGViAXk6UiiwcxDpaMzf+VahdTRucySmObVTEJ+aBo9XYf8JHi0UltQrYFwMPZp0SA5wlJXypq2aGnEp53K2eWb+Tm3hN+iEUcETnBDd3na4l2BNZbnsYZ4uoURWqOjQ1kbVLuP+KhBfMKOVkUS2YCCx0cnE/7kIIwlL/iwypt0ZklY9wrMRB58gla7yFkEvxBqMEA6Pr3WDYXFmtqNePF6/Pk0dvijTVTUZNTM1WZGEmlk3NO+0M5CQyjm7UhyYozvo1EUljHUPYBtVImSuOh3+el6CfiKjpbHCV3QNhyhLaUnlTaAMhlppFd7H05CmeLBGZX4NUJM9RlAnNXhbLQszQpqoZ7rjxAD45KqArgs1kjUQc4IpcxtcNz4NYV7jAJkFy9wyknfqyRavQuWtyPPiiiZ0XsRoWzPHxkyOWAJNVA8ArtecuVXe6tQthCMTFHVawJcskRYwIJXq61c1TOl10REIRT+lKGaPKKuFEaSNgnJTFxD3mD1Qu2caHB5hWOPOhteiIU6DmQq2hQpfTkKfQTVGIHiYEdnjPSodcYowuRJSGiL6NQGyHcJRNNwOn89BSoyU0VsdA2WGFYOwDK5qjPJdjKXN2ktQswpTZ6BkSADOjVlsrMJlUtQoVT4v5fy1DxU8kHgANAYTMoSKNdrb3RNAzAVuMEPsiD7yA3DhKypJJyR991MZRiOMJAsJRMPaKN4rYReeGpbfhEUcABMHesDIqcZ8AwoK4NdnXTVYsEyLKxkN/4E9exzMe5yoKgqDeZ8WV7y85gF/QV2CAYds903BqM9S1QojJl2qy1AhE5R0JCtyWHluhRNAMmaFRirYgTGP6qO8ga2KxIzRzSrQWxNnUT7BPB9ZG3ygiv7yC+n7GSS+SYUEAhFapuAgtVNPoQ/K1Jv6KI9qOceIuRJHKqwnMEArDTuWoHvDh7/xqS6mRT8KSa/4uF1N310yIGoXBnHjGPHDW7iSz4EuPO3qBfFSw2XPGcvTLbycBU+o9OIsuQJHO+WNpcWTim7MY7xRtvolrT5YjDRRj8rWWZAsZZGMiQZlMgwmE7oYpqrnRRlPBHZi3Gp4sW2RW8UZ9zQYpcexuPTKavDWLQDMWWHAClpX3ZtmDkHUKKHlZnWXzTKrLc357Qns/qfRGDC+gmGMnL7M4rf+6jduVq3js9tX6CXV1utfDh0UNSDPYDMz7Edzvpj7Nzd3dqsxgQeU3u+/vbt5OTo8fZpwwlh2jDziZ6eb6/vrB4228UxUh8/Hp9d3on+HVb14eTY9F6zjYjDFPw2/BeI7yL28OKb/Ul2bEj/2/PZwYn9Iu9sQ7S5t/nPL2c+TBirprvD46MnMe3do66tfT9/+fXj02sTY8yht0P/zfW5A3NtksgkTejc/bB//tvFvoMLDtYfTNqxZ+WzdcJvX749/PijDYrWfzuzr1BfItbXnc+++T+/3f300VcFO5M+2m/IsgdLAE6Pj4UIegbO1eJVLcllQJTvxCxrWC/P7wvxNvkcc+xzFKJleqFrVCw1VzsH2f5u5qR6aZlsJXS/d9N3j/WdiyvrWY1UNs5tJstfD/YdRXz+9PTb5f3ezt7px9NvziGGY83hwutfzi9gb4PNvs1sHu4bx3+1zPrbxc3l5dr59dr1m65XLD1oFvrwUGxhhDiXuGGPJixMVPj+bmU3m/QNwwKR3Y0GcY1ZHVvnoco+v145YPht7YeTY8r8dnG3vbt5urdpsfOffj28un24urbD0Jpl187r+uHo8Pbq5i8/H/z589GvHw4Pdp0dsW599s7zzpfzu29nFz//+EGP5vzmRkdve3Pn519Pr+4fLyF4etIF/mS1wf7Bw42V2JuWVn/4Yd85YRdfbu8vb08/H558PLYwWwCtcWXcTh4wd8oC5R9Od6+v7u6urk6ODnBxcXvF8M1cIhxeovy6YD5grG3oLIllHfBMywX0ljka+l3FTDltfkF+0uRQgHIVquQyp41Qu2cjvyo4aYqN1KNV/MFbGJKa0WJumajbAnhqdnW7VXbIBhA6F0xoQ0B3gwcc3TI1VafCe702ySojs9ndd5ZcIReYIbFKJtPpOx4A1eY5/hZVEr1C5PhteApwtQTgVP0Lo/N7MIMHkRlBZkjhNy80nho4UBCgXssDz3j03FuBXaTPv3H1Xk1+RWIk7x/8mi50gA9v8ZL+afzmpBpG9RYy/1WMiO52fjfnJzksnC5eukLTjOTVi8Pk5JDzw3no4t1halqNOfWcrNCCYkwiLwUpqeFSKweAsrn0/P849sLI+hIgTxOd91aKtAl/egjFiMgnwyUolBPkqK+hSeZpq8ERqwvIRJq3URr1rgIygiBY7npCkELtPAPmmqzFVsc88BLUmr++9rghUeCJgYrqdM2wJ1wLSWADggAEZ2aJvTWmoERkoh4VGVV57lPkxg5plA3SBrkGH0rSXRFh/4xGjTlEHgnEZOrLHsBcWs/SPcyHDlqGHAEKQ1i7NpaglBxTNsvPUc5zREEIajLwor+FTz0Bb/R/qlyEEmXjnmWLiiIN2SoncagcmNFCof7gosoyrwhstB8CSNGZuKYWRO3ED5B0VTJjljGCoqXPaH7nWydurBfB1qbJLl8shCdaptGPzIlnhjRG2GhCSnZ6/SwQGrEUbGmVMDN8LHVtqftDSfDSPlMxdJE4WJo3g9jfrHdxR5iBKXIBicNqNk2MKAghkxg/9gdfwfFfh8i3fYM1HAt/14yM4bqKMLWpPODlC2Jx4nhYXIMoPUgti3wQZoN1kGrQMkW5yqiDGwxiW1QPN0uOtUV0K+uKoLkieBQUov6NLKbHFUXxFxEDGid23o537Ia1hLlCGWkhZuXqywIU2oiOoEgqKA1kv8Rek8stEEF1saLZCR4ZMlFyqcSRnRQU8g7msq58NMhTzDAD7xwQoAzIZKORntrAxnwiFjHUJUjNaFEzvarWJTwBRFvmy5vixdChi++o6NNeS6nG9nzwbmNX+aOPbHUb0NqYdzqY6mp673zEnM8FyIjBqQnBb1BYh73VDEhGkNN1LMJEs0Sqq6EolmUTNkNsnCBViuDTcLEL5twuSgYQMRTswlQZEJRmDF8bcxZKPEkqpXqlMtUqLHnkLV3Xf1KoYREmULjAWjoq/0J8lRsFWFHe3zQ1zUZ6j4rgjU6rAPVeDOrX56aLMVXlK5u/RgcIePWIlbzDqFsMF/9xh6nxICOOcCFPK1du7UFAGBrxEfRIvkgizYIcrPnvN4yhDRldsSZ8JQ8kzoCcIBG0kWd56TEHPC5nd2/fEFraqyWhmjFOFW7BKHl2GNBgiNp9F2IFOvfz1Rwp+bWkC7o605eNcUpPzmFt7/9cN18jyAPfR+bt7vecAfu2ZqcYI63tTvnw5ORXZAkXtg929Emuny8tCXbvAFtNgZBzY2fN0bQfTg629zburwFeOzo+NNapE26nGoZsMrcuh5lEnz6Z/311+unI3jWWoB6dHr08XHNDyBYBXFxemg/zy8+H5tnf3L8/vD1vPW+aEW86x9rW/u0dyW05cvfXH44vzm6bn7K1bgrQ8clxZ2DZQMZA+/bW9c21rUp//3bx+vz+868fLFM+3j+Wbkuczz98+H/929ed9UMnZmmv0Xd5dSeYd9yxzE8O9Hp7sqsoJ33/6PCsp6/3d9Yt7rwfMCnZDnYP3m58OVFNCtPfbKlDLELq13Uzeu47jOK5rzbrfehXk/pMZ85VsXZGy0gOd7aPtjev7jqFSh/v4tbsr/un5yt7UfjI4viy+6u7vc9GtHdv7p6vHCmsD7e+TmgXZxdvD9f/+t/+UsBnPsvd/e6xgxv0nTbtkS+g397ZM+7/t79fPThBYHP3zoEG65u6OrAWvc28IxNDGH4HJwjFGsx44yEPqgjrD2svTmyrqrw/H53sM0J7lRq61XDa6NOi6XdHOxxsfNjfO3Hw8Pbu71/vfr+8/2BE//7JiW8760ZAH/7P//7j//jr/s8fDq0JFnruHO/7dvFmE4jt9T/98qMz1v7+5Xd9G1vDAv37t+umGW1tOlzqT798VCuo8qcfd3f+5cCnkK8m/1zd/defOtD58uHVzDHm8fzw6lvA6YeT+yeTmq7//MPnr1+vfCtQjawY/vDxg6kbBsH/cX5xerJ3smeW2vrpx483l7ek3RZNKoN1n9o9drXelweVZyIhxiDms91CgeZUVfVh5bEliKsKZ1NFDoCMJmTMvXATBuJ5Rq7YuO40hCa/LUcI6ckXhtZWKAPXug7q45pql+cZV5AnKbKAuhSwZ7QojzSDTUaLYeEpJlIHRUXERK1Dfg/8PAMkYRh3xLGUJQby3DUZ+ZkJ0bTdqkmT8ZhoIWn6BUG/Q7MDKS+l4cNyouG4FGiQpRElj0Fe8hRCAVV4ChZ6xnlGyUCBtPE4IqsnIM9AXEiHpc81s6EkDNo8QJHhMlbVwBd9LjHxfEObEcoFAI7hqjvbXXgJL2r7kjP7GaCGEOr4qW4zqL94X84NaVwzkvBSuwYAnvLmQYixRFmTSgfMklBlJgFw0BYm+JYr2dSa0FrdabU+wlxYRltelVhoh+CQFPjRyXI3YgxX2ows7LpFRl8kNFjolz+LmvGmpZ1iaeWq+U+bCvJArKJGEgNZVOEvdaMca9kxNttnk8Bbj7HA9wqO6C/W7Is3XLRsFIOxGCAAp25k2TW7saq9Ax7uRL2EMcN+Mql17sIm7DUxWUQtFcjwagyKUkKqccHXWMiIDiPqvxBBVh0k5CLc96dC5D4qwFf7VYnaxFUfI5HVCveeCTBdFdot8gCkB8SQf+wnru/N8aANyFyRAc4YADprTOMg1gkN0mrfSJt+aq/LPQVskaDs+A2SI7cMhmzbXcNERXsx32sqKjSd4eKz6maBn4gm+YCGTnJK8dngotmshyiH6kUpoVF2sfbsJJ1E5dTl9ByM4C8GMOwGlbgTkZo0a+7T9kRrQHFB1KkJc56P75By45UhBaaIgsENUGKfC8wVmgmTvmdESqtKvltk3c9EFEcJv1IrQ610oMe8gUyqi+DdJYoJy4c1yVNxZCrfuJeaVPlYUJnD4X9Xkw39mfKqZcCwjX45CLRXrMpoQSZR3kSXqeYgGLP7JWBdyC3c9TbFREYmlSRSYp95e1dTUS0y53fcH0qIOYgTU8EY5DivOVlUmPKkRkGKTCq5hvgpX085C3pNRhSQ+4gxXbNq2qhjgk81KiXxRFxORbAWqKVXkCJ40n4rnLTDwgFFiiF/ZBVPZ6zzsr5Hmdvm0gimwWbXkE6RDd634foYjdLJxWP0aSfqMqK7PUAQu9LHyCIkQc0UFPAD1Nyq4eitv1ls3n0AkSeXAhD5rWEeoSWl0kcmIE6jU6EoH6nRAhJ805foBUA5wMm6kEA+vUiYGgaKZ5R9ipGJOjISvBOzlLFO6KQrM8LLfIy1DEyf8qcBqwIvVhjcRZMkID/I/OlwgcTEmALjKaZWlBjgb2pW7ZxkBiafwjTpr3/9NclqTEjDLBuL8ShVVERQNUhjwn2fB8HvSK8e1NvJnJxtZDsWn/yaZjASqUlIbjhDMavDFKswg3/HXCDhOCSGubf2jnYsrK0iEoLhSnuD7uhh89dvJ3tiQXvYt0fQfLk2YLxpB38iMGa8c2zC/d3G2/aLodzXiwPDvU+C6t3ry2vMO+2VBPgaCzrBNl++mT12MFj3Of65OQ52wLy51mI51vby24WB8BPb/bw5WNcnv2fdifOOsX1yCq2eA+s5Od5yUO7j3fPuhZk16/cPzwL006Ndh0y926Ho8NAWQMarr68f93eff/319P/6v367Prv75U+f7q9vWhlpL9EH3wqOtjYO/vZvX64fbuwXZL3Bty93dw7uerfwtGb+aLd9TH0HeLTt/YOZUXovrybok7Y5NDreFMRSiX9G9drmk0XVyJXW8d5VZwF33yTbIZQ1OWKgHVfq5tk89O3q4f7D8YFxbl9Xrq6fnI9m3yEDoDo/n05N7zHZ59m2pDc3z+j5+PmAIA0u/PTXf7Xr/n2HLugVbdOO0dV73yhuQXJm79PZ7bODcV/X9i7wxmqancTxNJ/p1ScdRyXYn7+PAa3VzbioHNVLl3J9zQ6ulgVYxGFjJKRbNKDrcnrqq4BhFiaxYar9nz4dffnHtyu9i7VnSwX0D9/vX463Nv/7X3/4l79Yf7H90dR0fUgLHCyueHnZ18P4+LZ1uPPl77dXF1d/+vMxqz239+ft0/HRydbe6/GeOWbc7vOffv7glAifFHx1MluIue+cHP/94urrraXkRmhfrGbeOd51+oImQW9td2Pn67cbQlYd9vYcHvfycH7FulmR1Tc358/quc/Hv/39rAUN6+v7DhvOofpp06oqJ/fk69MMi6pz+enxwJxZAaUKM/FEoU6fWAsRpsbnc2vCgtrI69SbPIBKygQ88hb5Gm50Z742jB/QGEnLmTOOGamdR1GmoqUzm4G5fElWFQvduAL0KJFDry6DnurYm79Vq6XJ5kNqjAp3QGmsvWmyRRn5MabAW41P8zitQD4kWHwVgwZ5YJY5tzGcjjSssK8tWAKFtenwKDOXzCio8Z8MdCFlvC5n256Y9T3ynHLnkMmH9D0t2VgIvIOx8FyF4cllzjb9r4Xk8/xLPjhTlK+t6mFm+g9SMzNOrxUIyaMSC8aFxiFw3GuOzaFISXEmnqyA140pvjd7UG3lFaneK2JAwqJuLAQs8SYaDAosZMMOl0iGy2cZZjlMNHLvX6WFAciahow2jYEk8lw9+Aoanok5TCV14XKbDaQJKT37VzCnrzbY4c9ACgO8qWMPoM3ecFTcUmgLZaLys8xDZqpLdJv/19wY2EnvDEQRxNTQRBKAJjHahoG7Y4nFPzSSMAdmj+VRVlp22CjHavRNgTRGd4a6MQJyegDovR6UVQ2QoXm6Q9Wa+O+4umKeAZc9LCx7ZYJAuNJlcpCtAv0P+2gBrsIkNlWHZ6CkfP8XgGQ0MlBIcVwrz/AGxUR1gVnFWuhVaMSfybnRKarSlTiGLWvhfhoh1pFeTarXI/aO96IQz74z/elP/+X3LxaLXWIBbQpw1Cgj0lgdIoFDEUEhT9rSWSVS/zx6G6IJNkY6CQEudSmukBKjyEgd85geUYKaJedCIkcn72hmxDXKKopAiBPr++zqG2pwciCjXATk9wJeV0TicoUxgUZblHTXOMu0eCkRXuiyucRC5lyWtCatyC93v77TnAzTbekgDcv9gXdFbd8JowFhUE56TeuK66HW22VS+ygkXUaf3AT9HSW7SVoxWYS9wunPQoGakIlXaihuDDfSoJGhFmfqMCvL+SVk70HC2IIiDrQZ6gZBBGdwxXc3Dat0m/WCmXLBLXrL1hPsEAZItp5aFIvbCIjvyuXllQbGe3YmiMwhBkFilMS4t3LXwajmgGLYXdjqDiiBrL/Vk74tzGgQgTheqGYDOpSK5SlHIx+0RD8qHBo5aDOdp+VrQEccSbPyxJP4IkNWk41/cthsqDeBlLGmNVesKhX3N8+nqGna37w8gyXXpOO9WioBPcrQehrAEyYrmDyyvNQEdmpFtCyc/pJxETSiJm8GqnxwxuXxQQGsiSUjRVdddpTVWHo34z2I+P8R9V9Lli1JgqbnnJNghySrrOqp7hbBXAFvMRAZXA+eGz0CTLOq7Kw8LJiz7Zzg+3V5ZG+PcF/blpmaclPj+dAOJI2lavK3d/2Rlsh8A2kZPoFgNerrpymyNb4OfGNGVCnvpLnBma3hzZhZVCz/m+qBAHD4rBAIjX6lTo8pCcZZETPXvqjRlbEKYlRixYfQSqsjSxdvOnWMJZc7Eg9urKU/uSHtCn/iq4Ur2jkoSFRXQwFrRtDvru7k2dU+UQuO3aVU4hMOJp3pxHqLtV1EtSG+t6636GzNeL9Y+Pn88wo2xt1Frg6mNHZoEb62zSKhj799tQrElVs7LwXwVLwTNO/uBLNOknlZdwD/i1tr3RpmONoB2U4DdecAEdF12DtKiOt8c3owR/fcC/0deW+06uRw9/Z+6+dPV9+/Pzw08nyJqJdff/3y/fsjlwVYym6xL2EBZaPuP/+Hf/z8ty+//tvn9z+eOHZzb3//SScgPX78/u3R1//WVWd6TYcHe1ZadQXw1ubh1u714/Pn6+s/7Bwbk7KIWWS5fvf0h3c7ws6rSyP3Wdr+zu6VHdNPD4ald7rbatNBNA46FQOJzrMR0rAoUzwhwt7gcO/mWt5CbkPWgk2bDbqj8WjLltXnrV0xsAUtVjE9ru18+e3z0f7B5ZWhpGfH5gia1u+ffvzj9y69MpRur+2tVt0q+ovbtZ09ZxCdfbl0566jSh0UenbnLE3VJruGfwoBO/eQEZhwQNHsxHZpMn/XMgP4awuMWNvRS5DuZnt77OKWF3f3frl+FjRb78R//Pj98Q9vj+5v2glAQE7J+8OP7//bv9mcsPb90c4//+nDP/3JbWzi/hcbIjasB9rd2d/Zu/p8dvrd+1+/nl1+dCbo0+++f3f9cP/1+vbLxa11R5+/XPz7f3y/Z4XV9ubxD6cP9/YzPP3yk4VFN9euP97Z/Xp18/HLDWdnj4R7pT5+vdW3pLMmN3gKEIxZIpb+//rpjMo74fQP798fb73suqJgp/sELPvhEfcO20DsHNRNOxRsvhSVb+4WxD3bUbA9xi3MqiEnrJwAe+SbhMUTgjCc/BYTGsct2aCvcaLWg017WbjA3BXiIsaN5D2ALywLMoUDk2aPSTZsP+GZUKOGE/65HIiOw/FXQFmlKWpzJPmJbL6gUzq9CsM++bRMvYIg6HQ2Ep/HmMgJ/l7kSQ1UD6r0pi/rG7d3lsK1Ti/XBkjX3NbiQkkNAy0+yFAA2ih7tSir1siwSr/S5cEVaWVolsninJot3eA8XS79NawZn1qooTJApvECn5mEQJhyYa8Uxe8C3TpdjHILNFhXXZ6vQSRFElVc10eqlw5nHwhwbiQ8+XByRrIajIdntMkFLBFY7qesUgDxtCrKRnaaii8Rk5cGAlKQQUwo9sH/1+Gh+BPA3Gl9ukbT3PNl0WNwE5SsVmZrdlWqlqJzTI7B08hiUAykAJNXS7hUtGD42tZjZ6uPOOdFzJNlNnPb8KPj2lAO11gTBe1pHWr+aubA5+a1SenG+NYFCGxf86Mz8aWlNmgtVCKpoBndVL0IJCTjfjnTNOxCMjYRyogX7wi0ng/k1JMoyplSei5MmlmsaULRM0POMsSNwquF/ArF+b6PQAOzfNHZTSqlJ0NV+DchblViYPypC2nvnKhAhuiiRbAZ5LMpKKMC6YWXo3nzqqYSO0p6lYuEqlXnaOkgWmSTFTfKZuDj+kZlWbi+QSM/QpSC+p/+9lMBPewgY6qWv31uiQd81Qr5iRSqLFIjqHoxmRxHWM3eSw2Z0aiZkAkZ/2PA8omzYznzNWewxAOY0ScTHZRivqdFmmLacRvNSQZglFzOaop2OeXuFZP6n1YrmXCTo9fpmJxZBAhJaSKoAVHNI+A0oPmfqqYVgONJ76oh0XgFgMIlLUwf/mPvwOgXpSXWiqRO+RyyiKgpBnaDDcsX5HtQJnkHMQdTydL75lmexQOqAz0EktiCLP8aocrsVXn8qZNRcW9xIr8BVB7htUa0yCVmxoala6j2fK7CLa8M5cwAhiPgcKoxWLgc/dHOu0XVuICtMATTkrN0ZTQPkOB3ZU9ntoTwjPVOgAheUHCTPHpOrCMRMDnBlgOCLTxqZMuT4UjmITMz2GifQNwPxiw+Ge3Ni4cYWCATTP4XCSQW6KiOb3hSVBJTeBbpISzrGFFU42+0FMQye1xLn2DUciAuUn+A0+pl79P7ABXNK7coZBMgCWaJ9UeUgaurHZlL4E9YrD3sRhsBRHh1RQLOEG0S4ZsU8sVTnnzUaBH8DFmJNW23rV7wsVkR2CdO8qq7FVhv/cOtvoKAoGLoVN3XmqsgVktdR+WokKD5wNp3hPe8SCqupmoUmSUMC8dIJGMG/kiUdUQc8haq4EnsraI0J0Swtz3imVliTHPooeP6m0URbYNfLsg7Wmd0G3z4t5IB3paLpKOwbC3s1r4ToFuy4lR/A8+WjbVC4v7pzdHey1xpun9waFyWJ3Jr0xvnbAJoDsEtXHaDPm+4rBZfBNaul3JT1ufVze7h+vHBjpUeeIj6p4cb2nv15cY6fv2b+9WtJSDwFADvWCdurdH62vkvn99+d3L69tCmg4svF9bJPxyiRY03f/j90dcLByUxva2L1fXx6aETX+x3/epG3scnK7/FYednNvRevfvgjND1Dx9QvH51+eyC2F0HE51sHByfcNYbL3drj7dHBwe/fr11Ss7B24c//vnw57PHjx9X+GoI/eL6Tpfj6WG1fbz9+fxmf7XrAHuRmN6PwPvj2RXNdxjq1wsBfmfL3Ftz5W5jNxw7npQOOU+/Yz2wXEc8tUk6uLzZ2ec0hGrTH8uoLKbn451OIMOXK7uiW5Sd2Dc3zu/u/+W3C+tqnNnz8fzh1qApfXJw+K6F4A6ncxyrg5CsyXo5O3fLkvbzjlXRl//x6ebGSt/njZU7xTa3zGcY47bgh7kVvT3W/lltaJmO+elZ7yXobMqJ2pFO7vbmVi/i6GjTVo3V1xtUij2933eH7O6uoX2tB6X6H799Mivxpz+9uzq7//Ht4e//H+/fH2zuFqQ9nromem93tbo9PDm1hODs61dzMv/229fPX1cnBzt7b/Z/+3ihj2JD6uH2xg/vdr7/8Xc359dEef9yd3Vxe7G6//jpisJb9n529nB1duVy5Td2F+yt3642f/t0e6Wjrpfg0NXtncOj3fO766fVqiOnrKO8dnnFzt6hzeTbJhCedu+Pjt0xvH5111i+U3CohKkYdzAf2YS+s2v3t46iMBET6nJjMoNgW+SX98r1ZPUTVvZHyEIA3EDRLb4XUM7bHN2YZIWlaMzzZhM55SzqRAzcbFhgkGcgL2b4Wrz55CqttJrVrsXMz4RALmECAq77NRTImXEAVKuKAIFRLj3nkOtSCz8OgjxQBbn4pk6gQCQEFWZ8TpTyClGLR2pnV9FzlxmHDJ9aI5hr5q01RAbag1ubQ1snIFDZuNwl1oSAqtg7RZYSGnzx3JaFwx5mePu13cG9yM0b5wZxY55jBG4t/i7GDTnQ1k+Tw2CUWiCQO46t8Q2XePgirImuYu+MleQ1Ec4C5zNrWoKMqGFCl8QRKzQwQWa8r5kAcWgsGwOdITMQvcz9TxuRqsg/DUG5vYhlcgC2cXXhALHuCMOepkw77ixJYU5yrzXQoDB2CMRVjhQwFU0VCZHgxn1H5Ex1VDpMqjeSQ3YYgBDd2m/MTPqQ8EeNFEYrmxDjUr+1/UXtVt00OFh7Agz2DAnBI4hUP9LAhwIeRGnajxtJY6pYXlE/UhteDZ5p2sgiePKrKeY70aTlnSMILAKmLmp620gClCYA8F7q0FTO6RWUJW7UTI3RRTnzGYsaFg0fEmgQKVhd3KymdLKbWkb46vcJoCcoyzCAU7Xt3R3zh7YlKRT1o0vl4wH8GYCxsWY6bkDCwI9oDLDCRWxJ/0CvCpOXHngW30I1zKlHjbviZo9jMhALt1FUPbEcNCSEd1j2AdYQU0FIqRO2pZLlxqJYM2Qu9C5aLeMU1PCot1DWLBOZDcVpjrfgKyjyofZ4C8pSlzdADd2DArRVMfNjoPkwFQV9FosajZjvVVBgnI7PZwxltGcW0VXp8KeK+oBfbC9v6UgbSVHIRb2GuHCQAcQwnoIoXxLDhrPyBS8GQqAiLZlRYpxf1qLJFg3GTUcc6etAr+K4jhheo0WBbYW115BpqJK+B3GBHY/Ky1bzQBLHMyrYDF4VBDPR+TXcrOiQOJoxkDL+9ACKuAwymmFu/QUryszAiUfGiTvtK5MdyinO1m7GDB57BsTHq4X70VBTUd5lNIfJ1+8UBXa2RrbdweAWKXTOTDrkeaFOQSkwJAr4psMxMM3GdoDxEEqBTQpUWRMIY5SNOql0kSQ+5DhCLFlMdjnmPRg2RMoJo/YA+FcfIMPAde6JCnrJOrLzSfRY5xG9Bk2xJRc0/I9BZckNqcs36T4KqCsXzekonHRq7fC9Tzzya7Qtq1MwxxXkNqVxiYKXhi6A5JaTy/QVUeNldj4TIwqCzHqrWu4Qi+D6gFrsgTYQUj6OXlUqYmZTxbdjAbmRSjc6u6CVSvgsssZi4WIKyW2MNo8aRSEaCji4TIPND9255axxR623GL3CqRBKqPrrsqjp9c1CWxEEkRsQld/Cmz1j9RhgkHrHqfZ3NdTER7cMkLsad2vt/PwCISqwzOTgYPuh258eXN1Jo7DjbHW/c+f8FmtJtvfAvL15vi/gprFOjxFgXQtvXxpMUg9kjBWLMraE/Efbhv/18nDVCvgdh8zbQHx5e2jkeV/UdISu1dePu9t7ZghogKB6d9/A7eNPn8+tYHGf1Ym51E331F68OTiwPv75fuuz4d/Tp//1n3/88svZy9ba4e7zp4unv/zy5d0x5/BycX5nXb5g+MMPH+4e3GnskJuXg+NdA963Nw/He3dHe2v7x7u2vl5c3jnC/2Bvz/UHZ+Y3bu8tkXH6pGmL++e1C18p3/3T0eGW1fDUwTzR9e3N04YLsZpV84G06xDyGrOqlZhqffXfMhYybW1osXjNoQP40x3+dybnMnm2cHp4pLA+mBsI9tYNbMMjb7RvwdW+GHbTSP/55SVddW/S5bX96VT68fqquO787snEBKV2DUGgnbm526ghz6HxvdR5MluD809rV+4TfnbMUTcw6wNCaF2Qb1hry2k81mGR//Mnh2temjrgqdac6vr+zfaHUzct34uc/3J+BoEPH05ls/7on/9ot60dCJ/+4fd/2D0+FPz98tvFybuT1ePD1W9fXfi7duTu5acf3p2uLq++Xtu5oJ9Y9PPmnYmBQ4f87L09ctva1Uqv9UWv4Gx7/S+fHj5+PucZbfzd1/tqf4gd6lumjXafW/R140KEzZebzjw1CWXF1T2rOD113dzW8aGNJXpxm/uHh66IO/v01Z1zh1ubVhXp2POEGnsbBnggpuvGO/G/RlZrzVabesEULzBrGukYmTGaMpmtNDOnv3iAcuawJtpgwlOEdS6uJt8whWVYhofYaO00DSiMa56QRfpNN3B87LeJUK1Q44D5lcbXQaMShX3jxMD3F+SKz4KEEJxoW8Xe+aJAGdrCaB3g3J9VN8DuIL6iJlcLqbien8vpzZBMEFwwihzdVFXksnJ0uZOIwApIzV5bheVDC9WSnyFb4V1rwgXiQQ5YJ31Gjsdjy8x9goNC9AZwvOjkjckTUIW5wuE/JECvvxw6xrodwtYaV+cCgLroq+M0HPIcK3g+bqbyEMi95jRJrYGPOYc3rIoREwHIwZ8wAJAiHmJs88CzkXsXSINZxeGfNPnVZFfbTVVgWaATqejPAGs0OdiWd8LMg6zqwmTWX6OoxgVSTXrNXJ2ZRlhkUzsDlDgU1TBV4/T6gCpD8UBvNWvUYHmOlmhcy7XdmTId9SjUM6SUgOzhjxdayde9hRq4ybMISGd/2pMmMTwAxaM1sqnMhLwjoyiNGGn++8ii2qRGlHoxmJeqaGeRVNGqRGoSr5MTo1KeelD8YhYXR+LhIg6sKKgcEdSaRzISZKCe0wfAoKrvk0hq+4tCfQu4Ojz5qfbmo+oGJ5KpurRii2QHpGRcVOEghrOB8ZZpGBegFENEiWxBnoUmaERSOPhng1wHk5Cit5Krbkgrc1FZPfkYNX05+ZCWbql6RDnkDrKxdQCPA6lMpFV72A841EbnYI6URTrqgfhCjvxTJEgKLhCg6gdWpc7jSCEbLCYJYrSoIW7jZspT9SAvCKl9HgZGClNQnuF9yzBILsIdIAttKBqwIROsATIyg8fUGLYYO6yfOstDi5AGZPoZdeJLBYIVzXjX0wCDajRWIHgyCVGqMxmPb530gqUMIZuBdwoz0XOlgJ4+Yg1yX2uqs1uTtEbw5OUiwcNiYINZe91PNM4E8TfssxMFs4cZUBeZKaMhX9hQCMhc62Dl+AZbEDIzKSPiIdfTunnSzGNWkpRnMC8kRbVMAgt/Ua4cZV202SsV1ZBAYJQYyp7FjniTq2zg3/R0faQY6jdYYbiEsIhqeFJIL0yYABGVnGem09D7rE4hk6jgvpt+jc/LajYrLlSdccoPEsWK31QEaSqJL/CpoGdVEolG1G8cMR8xcb+vZfR2+ZdRSSiairGa5cd2DmljJCAfzIWQtGg+KErWaMWM6b8seWACZpyInrwJ9yezUZ5sa8xykI0n4U/dfOZvdWBjjZaiHbgBlxRgdFd2T8ZjvR0IFV882KAaokS46AAgAFuBAMKyHIteqUtlPC/0alNzGYMocOoLjfxrnYqUPGHhXql0kEpUWMBmktoTuhz6Xf/ev+mYGZDInjlmogMQ76Zlz1CJNratrbkcyVWpGZzgY2P74vzKkfkH21uavtWNs1mc1H7oKE3DxBbii9hNK9CVo8NtWxGI/u72cf1g3eLvq7Nby1dEAhcXdzoAbqASnVlPYUccFFYra8W2rh+vLs6urdSxjXdnz5p1R+nMkQh3tgw8OI4Fr25WTjPZtHAfpQ7wNKqrx+u1g4ZWqzu7lZjn519Wewd7Xz9eWAEi8P3l7ubk9GglLnhe/5fPV19v//WHvf3TY+tWXGl1t1q57PZxZ2/X9b0GXET8//k///XPf/5g1N/tA+dfL98c7/78y/XBzoEYzO1SAoPzdPTlYXXtLmMq57bjwunn9aurR1cG639bnn9xeSsWO9pfs07e8aDn118ubmySfdxZ3xc3wx4r2qxEbqN17TGmHCM7WkFz6L42OwE1LtsLDqbQ4nlN9GqwUGdKh4QW3JhNEKo+Xx/tbX94e7i/u3N5JXZeUcivl/eru2vbNR6f9GPu9rb3dRbrSXeZg5UA27Nbw5XMO9e3BGHmpB0dbDQVMJ9U6FhoCdvd7Sbim0e6e3bzgHCb1VHtxxt7MTsC6Pnm4d/9h3dHOxvfvTc+suuSMns/rOw53Nx4u7/25j+8PdnbtUXi939wje/u+fXVz59/+/7N742KnJ87JPUBwz9/ueKErh9uPl3e/fVvX4+OLMPfPH1zYE/zydGetVVG63/6+bdj+zD29/7t5y8/fSKEl3fOhzrYdTGCtU9uSvhycedgqvu1xzOjdLaCvKxfXt1eG2kzyrW+fnS40+Gku892f6xuvohij4/2ni2lMi1wZ3nbav3EFXVbd7fPduYene5bh8ZD6ppygFc3q9397ce1J33V4puZf1vGbrP9DCa/RCKePPCoeRodL8udG+I1tWIqrMjDJ/udnFRgBmtrX7xhtHnnGubFBQDAnbJuDgE8LXF+HzHS4aZCiyXJLnDj0cGvbWLksGAzvNq06JVVmBNpyKP4iaLlDcz1dVgQR5rLkrkgjObl4FNPS5h0ydTBKjkimqODSuizroNfqsnXjIRmoxJF2BN2hDOfk7N0y4cO+YxkNTRW9DZOhb/D6Xa8LFO4aoVSXYUwj5nRBUwDw6UUYdSGVK1X8WKhUjoLMds1NEsHCYAJbgBpBNriQvtWVV6L2YDVcAMC3KgWEJbxL8KXoC2CwmcRhzE11p9TLUhwJkGDOTMjwR1Uz+ABe51nMDh5NTJwGDpAuOAhyK0awOHENZjHmgLlcelDMfEVfeXUl+4Qu3vS1UqRWiLYg4+3ypKjssm9zDVw0TyRqN++kFfsmgAUmSE27iVZT2L44F17DAg9ufWgLrqKhNEf/Uw0Bm4qHd7KWrAOyCDAR6EvpGJvHc6aNNoT9+adL2E5bacUpUouBeDK5lVjmLR0Y6FrafhkymS8TBzKliFsGEKBSp3PMIyN6gQtJnhtveQCXUqfYWl1elRWTr8ALIJKg8JnEudvCAeP01ehQlXZzCqYU7CawiBCBS/y94wuxLnLPnKGmSEchpheVvQNVuklNRiEw19pEOEhPwEtgpu3S6lREijRonoLVRQeRFb+mvnwGAnWlmB88FrSE9PiqtcLzkN71KS3knCr4x4BjSLpQwosF5iLDLM4Ct0r+RZBRNrA9ICF8WsQ8HYABRxpnZs8rEi4A21EF0XDQn9fBzvUDsLULzFwC+avAhjFWJgcs4fMRQ18HalEAhhLIpSWPK3VG7Sxb+CWq3xTqphU6epjVLQGNovnGsXCbcLAbqyfRZaFjMO4qgndqm7+XdnhciwMlv8VGt9QVROIa4RnDnk4yNZH6YeN6WDCmE72sDpcizK9DnOdsbwD7U1ipYw4qiftH6GzwIivHG4voxbpSjhWKLoFeQ7dM6WQu4FWCj6R+ljIy12t0US0hDcI7HBbMiSYQXtZxto4x/C92sgpHZuahUG8aBrhj5XIjUrA1KYiA8wp0cKbV1VKmVro7xO3GHSH/xgjMTCvoCGC+d0CofHII8rIG+FFz3DabwDqSs2Hu0w7xxdIjwM+2E1gPvEspqXVU5zAOLoC2KVLIJUg+J00e5SmEbhZYpuJNhOSCAaL2AIrf/pUi2ZdYzNvpz6VVVEDM6jHKn20lH56lXEvxo2TLXuVVkDon5vOtrnj4c8iQP61bRa6gkb3+R6KZQGrMfvhbnJXSmSgnqQygxZulEnBfc/pxISoa77eEFTHqLJQTKKDKjOjotE9sL7Cgf0BtXVy9/DAEhozLVavCAVevp5fwd9BKY1rPd5Y6X5v6qHdCIbwd6zN7lD7+8eTD3vPx7s3V7dab4OLNjrVk6Sku7qs2w60Md768evq++9PMREe52e3ArVRbKs28qMusWruG/ueNcN2AVw+PWxpoJiDQ3v0DXQ3jBY/dILOy4HDQbcNwW/+er767oc3NwbAr2/fHO5cCe+eN6/u1t8c7azu1xyA8+HdgS23f/v57Lvfn/z+H9+d/3L9/Ljptlq9F4ygdzdXd1fGrdZf/vXTxe7B9rujvcuLK8zDHytHbm6uBXnagy7cen52Ja3TZvTUBHHW91u1f37T1KKWsF2k17fGP+F30LEpgvjdL2YkRmdGM7NVyi1uEFf7ZEHPa+7VopZYYG8NXbUQpeFHFbRzdePK5QLrlv2vu4l596CFK7ThwrzK7YNOyPnV3W/nt1bz+Gr49mh/x1FlNuTevmyYMLD7YunpgSe8mnW6VNhNX0RvpZwbxHS/2wlAE+s8brw4PN/Wx41t+57XdQD07kQ2p4f7KjU8/90Pez++2z9cXxdS//rZnuR6PFT9zYf3//Tj6d3qyuH7x+8t7tn65eOFW9z+8R//8frr03//bz8fHm8dHBz960+fbGx4d3r06dPqP/2XX/705+/3DnaOj3a///Dm4Wb169f7nz9f3V9dfffulEP5z//69aMlQBerg/2NP/z+9Oe/fYW4Dt7l3b2FyZ++XtTwN+AvTu4wRG0QxlIgFnBCt3acU4TNJqbWz6mCU5DGEH7/4Q39Q+KlRVo2QP/82047l2/sbZhdylsiSObXRCW/kfmLkxo5ymFP1EhqjEsrwAvUHDQJvLTW4jPRGy9a6J+TZxr5hFe/lEPKDVfWowe2ye3Lny8n7S2uo166Iq85ffc8XgKk8rdwuQFmz9z1tPhTV/auV9AO49KnIu3ItDWd9oucoj2NDEs2JTcD84MS9cmT1BpyDM0rrh2/OTJlZ57NwV+dFGzEZD6gjm8KJ6QtVHiEC7gKhuRiHuOoVcoJoo7vqPEqhGoZHM4ojT2wlcjH2qtQ2UIicYSBnljE7yBGwaJWKhp/4i0Aqqe8wSemTKzmWwW2JzFYDBtfV+uZh+5g/oUzFDlGRUAkcFa693M/8TS+oCHEP1j5r0YoLaCQ+NqyqmsCnclYe8Qf1hnwHT6G4PL/+TYvUDb6UNlXYZkHNoiRHGKb7hNijbNgUWxwGuPu7vX1TW4aS6prPt+awvCDZTTI7h9ulC82qlzqoB8VPWCaVX/DtHAO5MhL9voJkJ+kBcgUGrwS0DI6C8jCrDS2WhQvVlFZFTR4mtR4PF9qTif/FMl4fCPh/ioSxv2a/u9MbYUisHEYpSPWqUGuIWe+oHXKRdLCxCFikBmQxBm7vR0r7S0qRsrZ4DzjNSAyjTgm88Q50pStU/tNXgrjDErlHt2J3youcGCquZpBNWRexYNK8MNfxfO/SpEQC9Kb0Ix7deHqO00rIOxRS+/LMFgvrKJD6U8LtEZtwjZdqcZ+zVegSwyuGhcWTXFMQPrCVXllYA3+9nIUUnHVxQdFURiWaY4afeQarss1pQGYLl86v/Ch3K+Z4tJkXCx6CkxF5fCC0PMMZVP2tVR/wViQl2l4kHQ8l7jo0MCtIKalikN3ogxuHOtTYV+nLi4E1MUyX+vr3avzwmUCKACqzfDc0dn54ule44NXSo0F4vvIchCNI9FhJGlMsUBfzfg79CSAAMomX2mhNsVjLi2QPY6pWxXDTTb9KjBhev22hEgeitK8QAxRSK7PB0CxR2/90qgh0561sqUlaoNDJ6I4qnFpcZaeYl9aJoSWIaChgqFrkEgecIYUXbRpcTDRZ6GgQpEGM/wxgmjXaVtZNIFRbGQxgzKYK2q1KKDRDmC8JzZ+u4FS32lKGh9u/R9diCTev060WnUaun9xRiqLLPUNtJ71rPyehjZKUa2Iz+iKIw6WVymTcRFAplsfPHlwA4rQV8aDWjUiKlXGb+gscGRqLHdkiWpcUtQrCZCNoWPeygxvMnVQVDQCQlSKO8tyEjdaMySFqjHJaWUfrCiI/kTD/+YbzJZMe2/sX12lV68S2hjNVdqPCjItgGgI0BCUJiE8pQrOQCAqRcJwQBmS19SlLlmFsd7pjeTxy4x5mCmvxbINiNZE5aVpqyBU3P9w6yIqS6ENwz8asr68drr/Dt47nl/wLrITskcW4snp4Xp/e6fx7ceHdoRu7Pzt1zM5P5weI9KZ7jan2n9msP1kf+fIOS+bxl9XziB1BWpkkmBzPQ/nZ2JEI757rq8y7GwNNpG+OT1Z3br89cJymoibXuHB/h4euUfqy9cVAbWQ/Xld2fP7e7HL569XL3fPjqDZ2982rv/WLVFO0TlYf3+ytXu7cXX3fHl+e/p+35Wwzq85eHNy92n988Xl++8Odw9xiWZpdo5ulVm54Gz38vbJcvGr85tfb26//nbp+uFtnZnPZ64Joun3tyvXkt3MBXDqE2S68audpusWyWy5lMpkiLjj7cnuTx9XmE8cQkbaLIa8upqui2jbTBqDWntyTCjpeNtO4fSigI8NXd7cOr7TftRarIYYNRSprYPuV1/v3h/ttYKgexF2v365EmSZs7Hq6uxKJwWIe9Gd44N0v3/5YmqgLQo6cNmCodbtbUy+tXP3WZ8l5W6T8ZqJCwrRra4Mx3F1GmWa6bxXO2DeHm27jJjAbB62AcCJriYQrN357njfLpC6TY8vP/12ZucA8//D797+8z/8cfXpl3ffnR45jvP2zh1njrl8++F0dXb+9ezeyR9mctyKwAgODjb+7a9fPn5a/bt/+H5/4+Uf3hzsvTm6dCKTZRDrjx8ON07e/e6n3y7/5eP56mnHjWaPhuJ2Du4uHs0B/PbL5RdLs2zNpu3t7Vyz59v6H6dXYDutoCeCQgRZ1KO/ZDTXYVA7B7ZciOY3hYY4fHZ7/eLb05rrC4CwCkDVrOzy6saStdOjw6urM4Z4aKeI4V0TRwcHnCHW4FyGp1bmxjCz7yJ+5ieRcJhwPZDy5QqyXPKdrwXiNb4MU5SwzMsVWfItivCY5OIrvmbsqujTmjGzCvxA+wuDVv6q5ltAI+LxFTUZ047rlTIzaOSy+CKY9gnbqinQJDEIsCs+vaA8fCdWXkYQQ4a5Nursnjv+Vv78fqRiVW+m55De1phB1d/8zJDJP2OFOLz570LbEAhJl4c3YR51C3pqgZWvIMEfcPsZ8FnJqmhCLMdTxfZeNfDRBu4A5zaHqbV+E1MuLY22adnbpggI4YwRWilI85lD14yyqdobwGUDQbcvzheWmTsttYLexeA+Zc6xTyiD0bGzJfXSlQqHieDU0g/ti+T4j0eoxnA5warRqQXXPOnFIZP1j6Ys/YEUQ6mBMeGHCqHgJ3QC181luNKByjCqK2iahWKGdLpVOwXd8JeKO8hvSnHKQryppHg+LRokFyWZEq/6U+1RCEK/m4QpG+QBRjVJecx3TVuj1ZErvqh9FD+u0eYRfFpaFy7VgQJEhrcFRL5kMo1YVVnUxefw73XMH6HW1EofipYmexm5G/ppxTKcntJOcK/w2KkCIAwZC6hqAbv/EhbpqGg0Idyqcqlz1IaA4uFr1YMhgKMOyJRdBkB0tk2IKxmHXkGQQrJGSzgQcB5y2u6Cn4k6FjuCS3OvRVnRnKpOCBq1ww+Cx7iRkSzEAdTyNb3KC73iLb+fcB5DDSB0KgBosutrWcJxBJuAxjENYxu9rXqlQ2U4OQLFCxJ5lVEeYwQNDZlBhUxhsZ/ojX5SmBrye/JUy2iyV3G/3/FEWfqDNSgc7YjV5ZEJjctYQxhPKXWNOU8GRZeADZA8cDnKOdVbi/GN7iAuUbliC6mDfdkV0rbmpZCf8CKbkLApvSeGPGwwU+PFlYPSehtMH7xqBwIfOnE5UL7G/64Tr9MWdXb6a1km47haVQKZHvA1NVOCvHG4Rn48i8mKmyIMX8Mtvgzoxbwl5hAQwX66mnM0J0J8GGfshoXXLQRXJinwAI+7WuOBLC+lf/Vfr6SEtorYNk0Qku/MdKFMwGt70AgjOsKEm+AUE7YYseYNdgqmDxHJq9a+xYtmo159RxyXA1cH88asct++YDOuGHitgnGPjbQsAX8ktkm8j9dRuvwbUpd0fM7DrVt8rp8wufypjw7LquMZ4/Pi7tWxOGsQKNn4mjoG2XkfiTBbpIU/mcOroZbBlzSCMoTAwM+ttz0AClljil0rW9W5GHkzDjzGSaCWwGBYXfNTNvo29mP0CHn8yUNTtIYzrdjMz/bJRfqGCrZSpwP30ldiJm/z1PQnMipIGvRN+56aGeF0vvijO33EdQ6lZBou0prmYGTpbBxTAALS+NEyoWcXcm3rRgreVo5WvyZSZ+fopR0euKBp03EydqqeHB5drVwF1ryBeemONj6/eH9yxNiunDt5f8eKvjpy5n7L/bjG1dwE7NzF06Ptnf11C83fbZ+I51aX9s0awt+6uFrtCq5enlY3V7YWfL12DPy162b3djqR7mhzz0KRh5sblFrHg4sGqzd31v74w/G//rcVhooMn68f3Di2ur2/MAVwv3ZN057uhUxHa1uXq6ffdhjU9tk1Aq/0fH75ZbW7+fWH705cPvD04KawB/dhaf539kw5bHz6zSn/5Lvx6eYBmyxcaiTu+V7S6j7Den+6b25sc+tge/d+/dYidWf/bzmdPlVZX9fT2H9zaEGLyY1GNQXOthF3CSCc+EoKScTj/tqzIVF0mRlY/EVZWMJup2Omtbe3a07BH5N1jpBri/W4Dr64F3jtxbFLFPG2I/yJGWlI0Kt3cbFN26Kvta9mBgRM5l32dvRy7Np1nCpqx9l0q0CtUXNsDW2K1OFgYmPRfAenHO1tHuw+/eH7498d72wf7P788ZLibe85Bci1po97NlJfnG/oLO7v/Pb1ioWvPd7/+3/+8f/+v/4vH3/6+vb7k4OTYzt615+39gyubO9ffjpfnZtjeH7z5s2ns7uffz07Pdg5c0ro7dof/vidhWH/8Lv3352+/cu//Wr7Bx5++u3S5vJfVhv/6be7L2ek+/z2dOv7N29Efpc3zx9Xzz99sqNhJso2tuwGNkHBgOxVsD5JYGT5OlM5OjpgL/qjjj/dd1rl1a2RWYP7Z+fuS7YIZueTLuj27od9a6l0z1bv377V5+E+tro47cXVw26XYxznZxeCtOPjQ5NkdqpoJXSkt7e7Mozy53j4LEpJurzHOIex7vzMDM876itLbeFiqzIahqi3TvC21S5LB6YNWwx9hmbITQemI4zImh+Z8JGppyk5IJ98aaZOcxrZLSarYSZEO3Zy197M8H8+LS/Rupc8x7gRS3vkBMIqZ2tyeI/0Mn84H4A6yrkIO3wm2kYO6mSqRnUt0fBE0kuol2+fUEl1BraZA68IB0/j9oPMIJpkov+Ki/smLEgJ2faEOJo8vbCpJZ/MaXvT1rDcrBYTN+pCe44Dw4PgNuY+/ag6DKGWLcK0Ziho4wxrn5TS/YBhnaf5oAl7IeYbHDzLoPRAb+zJTEtNKX9bvRq7AlsfyMxvBUNBQzPvNRO1IPUiHIs2jc5wBpUhA/E4mavI9DAIL/R3ogyxKBlwCkLbajVYqbfBuyYWxofM9cmBAgI92oY6VNN8h2Tt1JTyOCRjlc900gQFSkCgdyXGxIVL+Jwah1dg44D3VTHTL7XDUUqaQj6lvJ2eUl0g9AasZi8+LDhrgesnAFOC9krgNJxKixMKdiFooReN8wjhhShF0sYl7hqAKu9H6f+Jocfu2RiB1oyqrOgzwhuP08IOqhEduf4PBj3HsSp5FVz01kanBlEtb216Oowz5a/0ROqqz6IDOdEw0og7G1z0we+4OgqD1Oz3G3W+pejhB8/XuhTEQwC9ADSzDZlMW7YQqaPV2IScMkyiP+EZZfOHhUMPvT5hluyGEABH8WJmOMvdg4xZK1iEgQmLSgxii98IgQYli0A89IGzwa8+AangMCo44QuVcsJdjqlUx0CCN8UiqloEtCAsgdx4HcWG8ByLrAvMoC0C/UZg6UvuIWHeL4xKUeVqDKLKkp3wx58YP+MERVpwCruxE3+hEj6tcklU6oNEsW5MWQgeVDiKegGlkaK/PAVhBzyG9JVJxEY1TodMCo0Jep/X7kQ6ik5jLziaUDMB2fBuQWyxPfyF6KINobT0Mjl3hdCflVHLPPF0GVv9qdIol3uMHZwZkhiUONBZi1Mx1sj+GpJsHoCpDoYFLZ5ftXwmN1qIHf5ztIWKXrWfNeUptuYWG9JN3XLL9b2DxlTErTUVniE1MwxcRqqcT4T/wn+4cCV4WQMFRJ9WBPnTtxky9dc/TFJELn844jzLNCGkFKO6D68r1tM2RSMyQYHsSxQl8J5jflMUkM3G5FkMaRiZcbJJkCVCsXk9A5U1NSmJB79V4WvNsM8QU/xd17+WIwcRE7jpXJ5aa0KSXdXJwHqT5lSNNckK3qPfbULIZ7WluOI6xHibcY4uprAhlkDGAMIEH6zk4XGaAUqT4tKINV9MicexcL0K6kZY/NCeGEGabkDKmlsB1r8OkZ6eS902E7jV0TsD/4ZTjw8Pboz/Gyy0osAakruH491O9bm6vbNT9Mj6iI3NW2qyuvv+xMVTmweCoq09ty+53QVH9g42LQ2/u1z7/e/3fvjxu/MvhraFJptv3u7fO5B+d/3hdvPMLQCra+3kkZN97EDd3b13jM+e+7zWvn66tiX59PT448fLk3cH99e0xdnzTvPcv7AWwSr4+xej1T9+f2JV+deL58srB+c7zca5O09nuoL0ZePePQAuF/h8cX16sPu3s7OdteOT3d27jbWffhK1375/eyBY1sewE9R81cHjvmujTIoI7BxwDh9LR+6vXeale7Bl6dPFs1Ps7Y5xutG+uNPvs0vf9ZbpidM4n37nHuKbQGjQV3d3diQ7wf9XZ1c6SVQr3qirxnMazgyiRoCOkKdmX99mRodzQzPDmlroRTjZiLJZVvTgKJ/xZA4VMkaKzWkCcTzeUT7rNUTY2ZH4Q5fPOSLTzXN6971jjKyZuTFG1e1kDDT8xkZoj3jMOU/Ezmz1wnYgYz/D1vrb/S3H7Ah6r1fuNb4z/P3mxDaE7ZsnXLWMYuPLp0sLvyyv15/5x999+PMffvfrz7+t7q3beXN19lWvkrlg5eri5cydBbdrx28Pfvvt4qfPF5TwcHf/y/mVpU2PTzd//P70w/EbB2ST2eHu9i+/nN2uHX46f/r//dd/sTjRXm2HgR5vrn11kcHm2tnF4+eLDuayyVoHz17zteP9ev78sA3Ex7sM73b76WzlQKD7fYH65vqPx0cmUwTvOiyq1mG12UCU99bGcDMzq2t3uG3vHV7cPJ5d6Ccz2Me9vS3cYso6KkqJ0NpoQWQuEj4+4K4E2JTEyAWzEkmPdbYFiMlnVTUNtYQ9TPvigW3wIayft8ysdQlcoMEea/8yWx7PawvuSZXbgbvEXFh+B9r0+t7BrIEo2OWXaj7JbXyFijxUnRX7qqvm8DXGloeRP9ufUNJJJRzF5G9W0ENh4XjOStURbTRBWTgLPaM7PxMm87da8h6qLlqb8r2nj7W5SCtbHi+32bcpgWEuGIptklJV/jYgRr0Kpouh+aiuW25gix82ZFXPme/RzHF6wc/7Tt3gLu0jcLk3BpBvHA9P3KYgZBufi2MFLjO0Bxctmk+Lbdqo8GL3ecHVeEvikFcDrKbIqYpYvUCKKmRBpK3P2iz9lg1dcNCgBf9lvUDMGbIVR53cMxZXQxm1vcajSJY+Eim8w45p06tC8wHJablqg1DNbeJbTcwsdgomSqfJKMStRYMkH0PlvCkkSHmSRQoJ6IKkeqE6aKiwRK+WAfioVfckRnrMnrHOgpzCviQtu38T7VdRbWIagkJ8eW1PhxtAUTF1BQc+MBu7mEacyUR+rfLS0qUQuTZ/YAgsxlq0F5v+PrsSbtVJdf0ts1JR9qpp2DbQwnzIr8vkbfQCNPnKED7a02xwsIuoqWVazSiMYYD40++BUFrIFGlITN/SOiVVW8M6XjV6cy1GfuvhKJRVqSco6s2SBpMBD29wvPHA+gNYHeWNukFgQWRBW9LfC8u0ZK6WpWMJOdRRKsVDLzUdUAE/OHTv4Zpj9MJc+5JPKKds6pKYNqobphMmL9T2NfgyhhLsqKjiA3ySE0QqNv/LCYcgTzqFQI/U+d2CwOiVubgfet4NQUNk0JeK0uFUdKldOs4sSEiMrCWfP9IHwOD3isKCT2vdKMHUvjD9FVGvwyiZFGYNrkMZBaz7m5ouTJFJtbKnPSlDZgwVXkOGqBi/8w2BmIgoE3Hul0G5NnrxL4gVfpHJAHmFD8IreuEeKGNCqigQHPRU/PdBEaIGGTpLN4AADOvqkOeb0sbG+WJXWIVOuBlksmo87H2mUoOm1qlPbGhIePEmGBC1rXqLfCVhRXqBqn8f4nLSaSny4A/Cxq7MVneoiP6M7il669gwrtifI8a56fTJEfCwzNst4yhJzupxiV4oy+HJYiGQIfAqakTN4GSvIhb1WZ3vkz6lwPR2ETY4PlGvUpGwEekRfXyYV4tSDitkyHck6/IATYpBVIXiGKiEB0XiS+1C6usZG8tWXnEvMtEF8dzW5FQwfstSszStVIDmlLqF2/JjqcAEkxe1WRCr4Ay2USGiUoV0bbDVH8ist6mCZKuQDHVOZrFQ0h1sqzW/42QVnhZ9qUOWTDHkmd6FlHazYS3acMuoFl3I+alsa+3W9t/1faIo+sSGLR6/HcOHrkh6cRjOSmjzxlkuDzffvdn94a3ddXfY76Ae8wrfHe1+OHFx4PPq4uZ57c55kXdXtvxuCp5I4uLy5sv5ucN7/vS795ers+vb67dWMxiavV8dHh4Z2GcKh4cHlxc3370/dhyPwT4BgVHJ+90tkff5rTPyt86+dgi9kVmHwVu1fXRs9cudi3IZycv6zd72y/HRwS+frlui9nh/bOnR7sbqZt0y8dXN/dHuliU8GPLuYPfr5e0PH07+6c+H/5///vHnr7dHJ0fot0Zkf3v/l6uVa3Kpm5xbe1vX1yJ8IRc7SqtXV6QmDKsxOb+4bUhme+1UGOucOMN0JkXuHD9KZGuHx/urhzv78w8OTrfXDMQ+iWDNPdQrbFKC6a7v7RwodO1E++VUVvyuP94eD7q1qK3OTK6jK5ytSzNEJIuohZ5ae7p19/xyY6bFDZ32Z3BkpD69hnP7ei0UEbDDtABJ0QKLtLT7njw4ONiIasMZ1KnYajrArE53xKze4fb296e7x9tb9lZcX5y9Pdl/92bH0UmC1Zvrx+vLa+aPCgqzv99JUPqH//Tvv3u7d3R7dUEuh999wLrzj2fv3r29/Loyyn67ueNWmc3HrV//x/l//7ef//H3J39+//4//+XTr7e3//znt+4QcOTmv/zLr/pW9PVf/3J+fvPiMoS//XRmHYcu3JvtjX/647ufvrot4N6wx5czy/4d7vlidZmBeWP23Mbm7ha1uXKuf85qx0KgzqFlmiYE8OhhvWOCDlzWtq5XZjWg2A3Tvj88oYfyuVHOzMP23r7JgQ5iellz3UEM3zCV9KIHzIqcjGlPjK0q7ZKHF8Wz7jEDnBiR3xEGZXtTcTO6O3m3vBQjm4aGA8nUi2Ca8BznwqQlKsVkDZ4YMvaXtUuVllyZcc7Z0qnmZ8Yf6nM3t5CTnFgEpjpavE0BH8ek5Na2ZU65uBljmcH+GvblreqgSh3z5AUzttCEA0UYV5PfrXnCiJDgNJrEXpzV+KgGjHI6as9f5RuVrn6lFAqNPkPuPHk7M+eK01aGhQn4snQzGo3n9ZrA6G3PMGV2RiKsihwvt8DnrKZVqz8TfP0Eka7ACiWC4zYJNPSoRz6NO6/Z6J2c2shwTB7gDYaNJRlB6YZEISyeK8KQE1ZNSW1A4zgCJkAS6JbpTkTnUwVMw29yGbbkoOPUhEe4xWkPBAUn0g2f5nD1fbxamK+OTJ4om5PPHofwhog1IlD3gRa511RmziWLLkzYmIU1clELKPPkVDwkMC1NIoRY4jus0J28ajFDHsc8oBi28oVGrIFbDX3ZojemLcys4R6IVM52GtuiOCX5awTjpfazlhFdlDCYsaeBcyQnxwrHQ+yZ5+ia1qwq+jL6/y1KHvRS88KHEC4Q4uTVRGVroxFVtWEI+liipASRokLfmymYykxAXHO8fLCqQuGzYBaQHvsfPsoA1ZfXQBmleNUk2Gu+KSd7zQGBZDjhXEG1DtiFexTeW5feSBcNJt+pG/GjX7Xy8vvSQ2arUgi8Tqd4M0XCK0EAPugtZEN1oSVOFG7lIjAK2pQkJf07i3Lv1vHeeusjmc6oLvghoGjUx95REpUQoufezkvgIo8WVUVgJMOnIkq+2vs8lwtM9jgA6zhTkKCjE05okUOFfqb2v6PRQ8in6UH20fwtuIVFcplId3zLoF03DxMWwqf9UjzCZG+6pKdG5prsBgDcwPk1NtBbyEZ8jOjVFMBCzz4oHTzD2DOV5K1i8dCgkoAuxPtSWb8qaNTPVLX8ikvT5iJKXsgYNBrXwFpSVh9qVM5MGxoxRX0ZZ7JpRAHQ13gxymemJm0b+S9wRzCjvR3yhdUqyosltiBWNyCjHIs4VDe1jPOaRcZC/fhbSat8asdU2ii7wRhUNFdLP7ojDLfCu3at6e++szyjrGsteWgCevwIBBqSwKXOkh7Mx/sMLpVWcCQS21RUAI7soqRGVpaPNB8ZBdDQqNR8fE0/dBcapqrrgliCHslo/BbeyhCBagdn8s8ECnDDUgDDa5RyGT0Ce5Fg4hjRhAaMx8JLorWgLZkWZc7pW4Hd+g/ciIExewSfipcJXSN0HpaHdB3S3rTcNS1gRlB18dF1+WZs14rt3Jl/0Z8rHMWoJYuoAp+4txw+a1QBhHhWO9i0ElpHz0NVWbagwU5XwTGmA0ID/HctM7Mwxoi5rbV7e/tjti+HRwciJv+seTA6v3uwe3q0f/HRSuu1i8szN21trz0eHu4bCDd7cLS1+9vXB82ta65sBj0+3fn8pZbx+Puj84vV1c3t2+O9t999uF3dP1w9/3bzxQjs1Vd3/T472eX9ztHqcvXdh4MvX6+yr7WHy9Vq3629hvndtNsWBTQ6StRFVCe23jqL0ah/55Pe2dJq76mY78U/+8mtL3JT2tHp7k+/nVuz8fXy5t0GSB3ub3z+60VbTK4fHhwJ9Ifv31z99OX33384Ptm5urz+L//9p/cn1qI/n/gcGgt8/uWXCyGGxsvVuK6SspOYzWY7HWNqwNdmA+ivdfKP4yOFiNtr1in98x+/++mvn1Bxdnez/vhs8dLT/fPO3r7w99pxM5vGy3cuVuds6MAA76abmNtQSy5ZPjufsTu1FK1Q2K6gMr2ybrYlo9hcd7/yooiC3XyIRVANaqab9zN8p9PrTLDcgyXUGFjXrgEA0erNrVGfXIllMu0BsOooj6ba3HoqSoHGXz7fPx7sbf7u7d7v32yvLm+sqPl3f/7+yJFB17fOwV7fX//l169vjw9N4Die8uR3J7Tkp3/97Myl3705hdLu6Rsjqjfmc242HN3z9eL6y8eHs5vtL8be71cHzwbRKdXOD2+P/9N/+evfLm4ODw7f7xxs3T7/dnbx2+er73948/nL7c8/39kR8fOnjzoab96s//M/feBQ3BDwn/7t0lUMx7t7d09337/dOT0+Njc1IxoFVeTbsLLwuaUXNlcIM3U+xQ6ceLucHVw0x7bema/o4CnTOU8vv3y+EMnvH+Lby8rdcKYAXp4cMXS4c/D26MDkD9mc39wK+DvcadsWAL0twtegWPJbi04BxsCTmgcKsBgjFzF+oAVsXL1VeOw6Q9b0ii60hX2KTth4ji+faUeQDn8GDms/JM83ZNzomL25vNl4lhwLc8/b1nzAWqeCgUrzv1CAZZR53EtNTJ0h6maOkWPJY3OF1p2AbtiFk0cV/8DR85dG3FXc0pdxRzAEGcdGUWFdNFm91RcVHVkDxyK4qNYETVCbn8xHFW7mnyLkZa3L1+pE2ZIeAI4xB1d0iKKiitewcsIFjMHkGsF8eM/4XCsMGZ47t1hbaZYnNmJXrA0nANtwZYzmtRGexLgd/g3HyCZmqs2tvfSDWPgWAc8kPxaBUyQUbqRb0OAbnC3SY5dQgg7U46TIjfH2oHSMzoqNLFiKV1s6dWhuvGomJ8LlzwLBpRLqV820R16AjWOqlyxbh2+FbeIjx+GWZhLYhmMpmGy9XeYfYDXB9zJz0jCKNkfzN4zCbVyCJ0ljJVAIl4B9Kq+RKpyqJSbfqKthjZoMzbMuh/1dItoJkZVNAzAqBQka7qm+dr3wsdRwQ/2CI+FgOPWoHcZAUzL6CSE/P9/waQwmOZrzpN+u/sa2Bc/hiXcRKUOyG9ZFUGkMqqqhpCYw4xshjphi9bIoiDTjcDYIViVjh5+kqRSJsKAQZ84+sshTXSpt+EwKBUv5KlnNodfwcd8BYb8oZJIaxhCK/LqguEoa8pdvMAfCuM1IP+4NVtQjfQC4r3IAr+6lsuCH+eAd3wKO+wv90Vg/W6IqMBm28iOcYEL1FbLHIoqpZSpqOrGaqojKjviIaEpMGThkPupJQwaZ4Qk9HKqJw4N6VYc0HxS8VhnASQqj3gzLo2oqGDKn6ilWndDw0r9FxJOe5igQacmi9/rC3Igq4ZO1DJf8RYLwwSc14n8XywRYStKvdAwN6XCs5CDr13iHbySpD81RJOvot78G4dQhHXKcETgwC9k0or8X5xevMP0BsWzqrKNvvrXgNRUG+xWNKc5aQMrkpFOgBS/UjgLEI/UpM2jXkNBhoyGyJWNmtKhdf+FmuCLpJqrkqib1tXfZH8FIOpQ5VCNaMJVNRtAcOlYLNEtI4zFaFysDo7A0AjGkGcsGmA1Ptv0UFg0ne7mV3dB69Sbm4ZSqlPJslcX8KSYerDReDWJpCMem4LUIp75WqjQRP45pjULVtEGWOYBhBo8BF5pJJ7vVGqpntMS7pQe1mGv6GrV/nyMbOSaDvFLsWnIoj2cEp4JhftDi4iDQH3Koytb/+YLJkRZkihgq8VzDsZAPSPGjb1qP4jvhCrTDXE3DhfKL0+NtLaIvEgjLDJInvE2mQ2kMHR2u6FANHQo5LaIYuJNetD2EFr45/bKBATIOS23U5nlOyd3bm9UvDp2QV49fM/F0dHRogDQeaW43N08O9y8uL77cXzpBypbK3X2n2bDyO6flgHRyeviw9fDd2htreIqKNh6tOnEupcXZq+tLC+X5vK4C2H58/wGkvd9+Ont+uv/xh7e3jqi8Ff+hb+vm+s4qGcge7h+4JWB3/9nakvqxW2unp6d/ufoVx5zcYiH7zdWVLuebN/Yf31i27CrZ1eq8S4C23f+652B+uwv+wz99+Plvn+qS3DwdbFq2ZMJq7eranP6G/QvnN4+/fbr5cLT768fPrpK9vn2yX9nC9nc7L0+XN4/rWxc3F2n7y8an1VX7nm3t3d29al/BtaUxOiECQLGgGxMMCjuA08IeknpjrH5z3aSD/qjjAunD8c76u+NdZ6ncvDxedv5mV4np/LAya1CEw3SifnL+a5TfxEWR4s5Ni/UfSF3d2GiWhhLurFmOZUewrvmaE1GdielI8p39XXkz2U2HlbYSzrms4/CnFXFakGkCzZLZMNaqM2BvwMtz9zQ3Wmo7cx6hDqAFM8bnU8wX+6otm7dpdnX99LD59Id//O6Hw72bi5u1p62vTvkx5H+wd3Kya13S2bkjkXbvb+1J2P/xza6+4/H3B7cPt/d37tndfNl6/B9nq//zv/+8ficMc1Erc3++23Brwfqff//uL7/c/7Ra+/M//PBPto1vvfxyfvnz1c0Pb9/+/PHOdoJ3P77/9ddPbOvD+4N/+sHBrs//4/P1T+c2Db/88cP+xtPWye7B795tO2PKSUSYbRuwgFUUa4eBnZG026ZV/Sn81BKa8p41M893j1dj/G2CQKtdC0yc0iLfPNHeJirMG2nwH74/PXKV8ueLC9cVE0RBtusObOtmA+iwWIoctrruNA/Ab4wZMlLBz2Jm/DzrljXi7a6Rr+WXpFFDonVqM0BhSa0p58Y9+HBdkC/mmFMNqKG4CqoUgCUDmO/Ka+eaPOQAlvpaZqsHV8vFD8kMq1FjuQuJCmorn4uqrUEHFd+yr9ffskuvxfFHR8U+EuDKnhuQHm60tIAmJ1kVkMAYAS651nAE3hsV1bpNKRlUk+ual/IgTTe1Ef1qDbzf8QSR6IEDbi+uu/6GbkZV5YS7nrnTw/K0kmaATN6cPGo0mjLpA77OcFah/xSgmlVRtnF8RYcSahxLX4aBSMow/3B1gtExhRCp1ACZvodl9wZxI70BaYj0hGehNLljeZuPsSvFSpqg+oiwtafmfGo/IWQEYGLyyE9LR2sm58ga6mxR/cl5nFHiq5fhQ11rDCNQpmqRr8aLeBbh9h1thewyhUbF+icDBkx1wxgSMQCh+zSTFXoJU2FiUgJi6Khs6OHvECmyXCI4TBJ+VK+PNqZC/Epo+Jfchqrq8Qhgsoi9kj3SC08xb2nNFyWP3jR9RIONtfURWGZAI0vRSEhD1RPLPVUMv7yKJ2yOnnimuilGWdMHH7gGPLVETlpbto6TaukdNKtC2Vf9rIh4QnU5MTu5qiW8Y0Ik4AwQwXt9mmoGl1DKnlCO6QNQ7ZO4ZNa2xHwV450/lMq4nhEAuqG6cOuzAAaIhaST1QCKkK/F1UWnwrLxJAsbxkbKGq8GxSWCTasD50UcGDMIagAzO/9DOJUdtHNrvkLdmwQ9ZSd7XAIF2dhQRQu7RgKBgqWa6ZsiKq0q0FI8VaDUb08De8lKUjlJ2eLUUIquhDX4SQK2F8ENyPA1KBYCx/0pGEivv5HQQkk/chdd0ZXFSBZnqppxZUAo4AO0p29876rwVpzP4I0K04nIGFIzJMiHjgqCPxAWTk0vclBcaIRpqlI2nb/YMcxiLZNfziV8zHWqLk/E7AKdBVKIXPl0LqlpVXmBxUYd6hhM7xl3hsyQD6OWCoDkB3S9eFnHEY3ljLDjsowc+iz0TP+GLfBkCYxKwTGJBrjymUX+z/ATrgGLFUIjGcozjPUgVzSarGxSVewYMr1NkJqlBfMhbXxQRGlNmXe5qgMXdQYGNb9eOwbeGu8cm28ZYpyBAPYLoqe9VFLZGBNeIPYXJrgUMDo0gmolayOEkT3kxz1kks5wOwFNOvedjMAZlMFs2czUlbKAGCuSUY6S2sTqTtyjwQukWOxtWIIxjUA4wrwzkRaPpQLFvQ2HWjUvm6p67SrAEYQijEw4E5oFP5HDFQnxjSFNJdUIpN292re6TKqrS6IFCk9mF4kNCmf+EaK3BlZrJKxiTus4EBXQ9vbbdmyiG4L28NGp/06ScXDi0da+tSNrL3cfvjuwPW/19fr42BiQq2cfHZlCPG8OX946DX5n5+HakvTNtZsHswTrb61/cDSy0NFq6bWnm+vNw80fvz8wPCymEyEZhxavOt7HPrdrl/IKtJ3i8vjgENK9HafO78Pq86cviDn/fL3eiOSlRRnGzs/OLt+9O725vbWWQ0h95+zO22vt6+3j89XF3aUDX4r2N63ScUrOvr3LwtGdNXeQsaQ/vD+9Wt2fX9+6QNZGSde+Wob+b3/9dPqnD+fd+LLh5iyeysC6zan+Wl/uHElbhFmvUXAuOgVb27BeguKe7G3b1OCy4bcHe5cPt7ZRnx66PcD8w5XezsHhlpN3P1ztOoPowMYGGwi21z6cHlmmhbe1VF1mZ1Nmq+zIf2d3l5hqkh9bBy+KpkIMWAOhbRbHzwLgmgpeT0+gcy2VYxU1dSmPnofAyfE/Gi3LBkQ53QncghPLlNfdFMYK6mhPs1EQU99DQNsxVhMR2fIqGLSn1g7u5+O31oM948/tzaNbIKxWt//4w3dHHMrFxSXd2d91A8DbHxwFuk3qW67+vbm+/vXj9c3Vxs3z9c9fbO1wjrzrH24s0Hlat6993fVersm8erj6j//83Y+HOyf7mx+vVv9ydrO6sNLry8cvtwfvDv/H337WF3Zg6+9/fHuws/bzX68ebp7cL/10f/PObMb9/YHd1bdwuKtWveVMLXvBRjbsul+HkfLJe9t7OgJXtw00MJAUfkPnpHM+GaYLvw4Ptw+2jzzc3j/YI2BlxWru5fjX3y7unl5Wt3dvTw/fHO/Z7cApfvpyaa/88f26/RiHxwdtltHJmF4cT4JRcZC5FoQlOeJgvzOZqX4/fue1ZPPF0KZ4VRrpch3jo2RJKXJnNau1oMTKa9HmGpEGwWsjxv0TvMzFW4tn03BUNRZMA0wnaqV0cpzjpI58bN9zS3wyhKl4q84M65pO1F40yCwdDvCB/LTTgxK4c2iYChTOs42/zaWBr0TrvGlZrorjir7FyY3rpc88dr0O7g8tMKwhSvEkDo4VBwZkyMiQS4qRSZWDWsKt13uOo3uigWrzGZaWP2YqxP8VZ05UJyfKYTiIGbcPatlGGgAhYWAsnry2D0NkquYZ42z8Pj9vHmACoGFiERuYiuduJ9w0JmiwpmN2O/honHfjOMWvcHj9V3UKYj/2SlwwgXgtEaPSbnrbyHQhuxoJMcbWM0wlcK5wcQpGSREVPHDZ29cgofa+rW7T7CoVu+ItPBSNfJXphjVsMUxWQ7yCVVNlXqkLzh6Hm37FIm+TdS6pM0DIsWqWlmu0DhCA4i5KWmIaIovD2tKlnLu0qUi6SG9lqgdVp2sE5Jt+cK8GgZgmT8iPCvU8nzgGk3CbvRaKl3UwAY0BFkK0emGhFFYe1OJB0T6L1YTDgJIAhUUNJkeMjlhcb2y3fIhJYQoD8GHIDP8epMPA76WaqVd6SpuZ9Bk+R0oPhGDydobn04AgqCiLAMiQax34nHnSjHjiWiLv8o2ZLALPglq+NczkJZp/iw+ZyivJ/fmfcXN0KLJUrXD0VIX0uKnQkkFi/Bq5YJ6lcXLcOnujT3SyC6XmawPQ0V3vpU6aDKEc1MCrbli+yAJ9vR3skNVb9VDyAq1q7RWSVR33X4MxyT33dkTpIWlO/qknsBI9RxB6G0eLGZ4NiMAplfUp4VsmEBe2IkNZAJTJBhr0HItdczCDUCZJsAcsUnqg5Y4xERJ4sFQ8r9p+VOAFFiTqxi3NQ46pCirtb/5unufv0AyMfxDEVzKOpcWEUdOvFDfzU2PuqdnSKImEseRIq04Am5aFGS5zE8X9DaiM6cpkgtjFNDNAMuqalwekYN244tS1jP0PgVqcneQ8Hhl8FFvooGpjwLkG6p0rp+e0iksaTxSJQxLfIG5JyXIxGLVQGxWhB+HwHfBFL5VaXP9QTQZhhRXJJcWS9ZVMf3NqlR2Z5vwwy1diSvCDArryYsPzuNN8riOJ5JpPLhVnAS8PqVHUtGjQw1eZBuSkeIKGJC7Vug9lE0419uyzCGtaW2lVChho+kJNyObxx3SbrM8GAAOqaKussEYDliJJSpmHWcOJwNMAwkh9x3pobDGEbPPJKiIF1H6LhRYcVAKDGeWSPjtvmg23YqudWAi3smG0WvWWtKa4FhjAztSQc04cCWqfqODYQmqD8TazYJidoQcHwG+8/3e/u728kGhw+vZqZZDeMgFh5O7e0XOnUzpx/hZvxJUsZf0QInsaEctGn+9u7aM9OD4iE+tbLuwWYDcOCdpef/P22HoYPYLvPxw5VdOlWp9urt+/Pb67We3Ym3mw5xxIcxaY+OP3W/eWoV87nHTLVVA33D3UDX4/3Z8cO93lwVn4NhGYFHAPgP6tw2AsFDnY3zExZcOAmQm7fsW0519uP7w5EMjfPbw4U+cvX2/enO5qPQzJf7q8FKqub+wY8mkCl3Ji4qN7oozK2JNAKW8dkK9FvnJ9FKl139DGycmRdS5Mz0rx8yuA13843P/yeWWZejtjoL5t1/QelhhOwneDV3wNJ864uq7BiPX6mhusagkcR9gYYWcvUlNrc+K/cf6JXD0TLyE6EogpGlvvtiLjIJla+qgDpBxDebCuS14dhq4Y26ZeEuWlgmbpAFeRcQY9/hY9jNrube8+4aTjMjdfdAcf7p9/diD/k1uf73c2d/ePdyiTcUwLAX747shm6vdvLBNrG7DOGGL+9m/Ob+0ygEsp907XXHdzgMuSb3Dx5fmHo92TvcNPN+dvvz/9/rvT4/X1L6vb//q3czd5/en7d5/PVmsH2x+/nOsH/vBm69/9cHrxsvF//Xb1+fLGSD+H/E+/f3PiRrnfvXWekN0IO/sOtIrira4xHht210CRd5ut/bb8CaP2d2xR6PoFHUyn+/tHFe3QcC7Txr3bDCyyyr6I+i8/f+a6Tc4Y2HYP7vt3b3TDbA65frw7Oj5mDiQWX16ezF7FvvU5PMfKk42ivRxzslN54yn+8hGvhjqtL4/xrakmJuLm6Ar1eIMCzfxP9k838t6bouFxUYuijLdpXkFzNJnYvo9aVEolRAH5itixeWeLEaA8m5h7BqTzSTZM7++4as8QNf/E6HIbjRZFUU3heGUagjQIbLligheFD42RVJwzXqrIj9/MT5YOh3FaUtJkkuCIZmhzEDRy4SoOVNaWgTEOKteXX5cSGw0dWNHucgbAaovmVX5Py6FnIoO6lEAdCPl2WcbJB8czlMaJaSJ95IK2/+E8rjKuhenUG8x678pKYYAaFZyW2+v+LXV5LfYqbxIZBLIXuQZyvQIPtdtxuZvRF/4Tse66qsfQal/kG3dfqIQEOJF7tQQtugR95WGedfKM+7RKxLwlLYlkvyEgByRgvLZmu9TtbZv+379/bx7169m5nEjutzAghOtVoh316dCQCj5cA9OMUNKqnUUlPZkgR2ZWU30Tn6FL7UBU5fCEaVXBfNIWib7LvTwnimjSBoxqVc4D6iYghlYpi/IGpdfLXArpxKYwXELuaXNBG4RlTQGqLoTybD7JIhAZjBS8LbU8kdj/EFu+goDPcQcSodlj+C/5Fz2cpGGVwuT6qpxRCw19GAXjxnwKvuUqzEhGiSXiUqryR2nPKApsEVRqJgWMmlonQSf5MFzYInvjOeEdmfoeS3w/tS3JcZkwfSS+8iR/PqpbWq+qwnOP/kaFWugAzP3g3GSg2GVZgERUKu7NcGak6R2EORN1l1wTVkVlGoH7OmjEEKnLM5iSZY7ZlEXeGJDNJrlBrPKSwq6/ivqVUQ8J8/KVmCqqksk+dXux6HM58n6E/gplAA4dJcXaRqD9kSn9ptMjLdTyEQxg8H8t7Y+8fpRbDLuiURV0L1G05IiM8K96fwCvr2fR//6+4+HyO7VAVYcLi1tZ+IsSAIOZvtYvDKYfKyvumykeMAkgTGYUX87qSEOSt3/1bscjcFnIh29AM9GWbywx/ZRPgaVSjhC24nOYQCwxGv6DpPy8gK/8EYaoDjD85ZwMt0CPb9AjLY5cOtyhUM8byRAfZqOiM1zhX35hkouossx8zUjXeEFc8hzDCjeYgfqVDrfEGYFqpcolDrnIkbGuAAY11F83Q1PUa8meF0J0tPIRY0fDtpHyMF+sF0KY0O7JZDFsREJNWp+o6I8XCJ+KoBQyfmoYBp/0tFlFBlzVGDUykb1/iJUYE1hLEjUF3OQrCg1WG8XFSUXygFVWCx2xlikXBVqxU6dfFdKhQvc0AVglP0FhDdYtp7OAXH3zW7YcRMqX1EKQfTYhWPAR8rM5KQL9N89T1JLHxEBCF9TiidhR8HN9e3OwR6o8gqUymp/uBxBsGu51qqMtregWUBqPtpLhcWVIffPZ+T+pATqe+O/z1aX7X8UMVu1rE+8c1Smmd96ks+Kx/eXJ6L7a37x3Nv+tXrXT/Wei4OX0zeHXLxePlrbg4cbDmzcHF+dPNsWenryRUVR79vXc4vJPHy+OTo4fNp9//nwjhj67uHUs5tX1nWZ052j74SYF0+jeC9ot3ni3//yl4/WvGhxf/+Fk78yu1cf1W3ujm35b/3L78Olvv707OrYe++PXq7eHB+xEOPuXX5387u4wm+2eru9m/uq5+Y0z54PgzPhN4+V4Q+OejKq33sYx+dv2ITQ6uPNycrr/55fvfv58QUT2jyLH5cSH7kW+cnbqnvUyeuD7zjDdXP96e9v0fFrBUqhym/xEVbX6xCQCmBu72qThfMY9R/Lobc323p3mxE3UGJy2fn0alWgXjxdtuGTBapMcSLZ5m4ZAMxXQxhdxGLpbTFXEPN1IYwUUm6tAGpM1cejqJCuUaKs1Blc39y+fHOFkkPnlcH/7eM/m9audjX33fe27GNgOb/qx9mLX7G+/nbuF9+D05K+/uVCLEG/Fmg80ccNxNHuffvrysHW/7Yj9twf/359/to7///bn31+frX65uPm3Xy/MMf743Zv//NffjNQfnOwcnu6/Pzz6pz+e/pf/9tFBrq3ueV47Otz9xz+92Xzq4rfz7m82teS0KO4rN87f6GAYzt+6c1iTXQzOJXtxUYH91Ht7e7fXQiVtIBt1wdedrVn47PY2t1rt28yyZl7oHi20f2OLZq3vnxxYMtT2jOc7XQj3TZD43iH22STjmjvCsN3lmRozK1aMt5jMTjiaxeexTfZILVgZo8vA84F8dQ6ZsY+bJb5ElSnx6oFgnt7nPzmKMeEcZtO6/IUJh2k78gETO3AuXApkNB95nkzY3pMnm4hNXyuiIvauFgVrOKix244fG/rJsdGY3MtsP8sBYJGMgVc1OKABAH+Q4Z+baURM3FMQklb5nQPPneZ/ZiOZFD5oGcFRFLlqkrOHpTGCBqxmBX9Y1cgG2wdwLJnwrkAS31PdXGttVkyYioSK/MnCKDBDOVpzzpAPX6QW9AxQ5V4xn2Uhr2mhrsamPqZhUMpf9cNt/PlwFNWhzm1EKfF5N5T6CoE8ucQ8eq46Gq0RclR2rPZu2lPFAUnuNWU8b7zzTv5eBQIJTcKSAetWF+ajt2yxvJ6Ej4Rwn//Z17Yd+SYSL+MhnIoBWqcgAwjYq3YfqOPH0r4zE1WpQkqQZklCDevIUZL8ufsEEG401vNrQ4+kWbivICHhknQPnGcELLNYMGcabWIJh34XaxXqRO+kAV1IPGrTwFYo1jDheQ/R7G0ZhkmDDwVaQk+M1gMpWNQKt/I5SVFv6VQlXsUdn9DGkfGEYyN1gdJDYAkxZAqyver78FQpz6nKfCrrIZkaueHkJtco4Wu2JsymvU5FlJUT65PX2IsCoFUvbkPsVcpl0q625rkiuYWYUCloN3uWFcsF/cGzll3dUkJ1kAVxcCylrv9UudgjQN6VPoQEXE3xPGIBHMt4rax8U3pUIFqxbCnohYI8mCtHyvYqwaKRXFSTUeEwklXimw0u6dUOqWHuAAS5mqRJnRH5ZDMELl3QCOtVuTAjQodp/V7oi0jcGinE4b54m7x6emV+KcXe1QW7Bs5ozHx/hfgN6dxfZhBKpsyN1U7/LLfz2o8c2pJMWj6ifdWXwTuWTIwrAzi0V6sCF80SE1rqX8hOcsCypXQ7QYLcXFLPdctYvgNRqD86pKguNonUxcdR3EfiQj4yepsiTEyJ0EkAsyXcsBGGUqLcMWkkobRq7ArCWIHobBLAAVXbryLuuNH9OqCKtE4gpZBftgwUcjjL5LlnIMqd+/MBioXPKUA4Tc9SIln4YlRXMP8XrVU62qPcyExoPi/8Ut3iaykEeoEPgVHiRskWsze0NBILE3nmRxcBIRGeAhXgwsxj40Zpbf4IRUgXQvnqobxph95UmCxOBMDxkp2TXayfsaglVYqK8I8qoEaKraVZKoXGNBtPtloaxALfsehU72alsWUHCklblEolFHSscfEOcTVTDwcHodtyJzdpdfgPvWqM4duUVh6NyLFFxAEQO8IDXgiGy0i/ACJW1A2oMfCshTCQnEo0LBQEqqGH5iF/UYP/bHzU8OizqEEfpyqg+uQW2V2j+nbY7B88Pwi7Tf9YUK5hcYHqxu1tt6ZC0kBGnoAKPd07YuzujrNwWezDtvtfDw8fXI9163TFxGEmwQiKcFaXc39/f2tz++r88sgBk4fbLgYmF5dYic32jw4tbbm8uXn33eH6dwc//fL5zjju7vbF5er4ZO/GeuUnJ/o/PDn9URB+f/vm6GDX/bV3d9f393uHDqcHRDynWReyrq8en/77p8vNXSHU5vnK4nVLkugavbd0XsS2tYLr47XbZ8n32obmFbE/GGTfdk78yrIXSwCpiWhKO+cyKUK3iAUfXXNt8Eyvcv3NycHnzxc7x07h0dlRr6kSEw7tIn1zarmUkHL38Ohx/fxm7c4BSgdWHzkMQpfCaD5u0BxnHImpsu8XZ3U6l6bbxJyqZFKX/8I7gX5C0Yq7BUx3ihq7c56QULLsb8kV7DgSlVjZnKHwwc1YtjFfBihaNvxtfYJzyYoMmAzNZlvNUnJuVMX36eKa772+vXIb79X9CxYfPDszzjlMdQ0Ojncur69dUry2dfDjj2/eHO6dfT77L2fX+0cHZgmsorGy5r/+y5ezKwLEsoPLu6ffvnq7d3HmzKYNR4v+8P743DL82/s/f3fqmPrPl/ZjP24f7mLHTx8vyOh/+eHNW7c/W4X1vPef/uuX1erRYUrvdta/23PKklZTkL+BgWfOsnh5fntyYEWCRTtfP+u4dZD++l0dHp5dH5WLY3us49GqqHp0tt0fMQyXgYn7OSoLzBz54yaAy5v7y+u7DvVZ2ziwrufu+b2r4Ezj6Ga1USpxb+1vgWA2HO8Zwf7BbuuOcGJGZK6vzQ8csjV2TgNy/inZOMxxNdJZ4zwyyryRr3yF4vmx8bPg5luKUSZR1Ida9hmwnFEma/62jbNDXNlU5YPqmcsVFdG3mvyg4oPMpFuLOi1IIWgLVColZQm/QlUSm+CJJlDQuow7yj1CAMI0s2w9Ym9RMgDy5Bx9LRTgVIt1RAwOQ4Sq5/DORYcNLDRhOxvNLnoo+i+5RA850obYhJ617fOJDWl+jqpETs+8U2H0QF40OSAuGc8V8/c1TACa35CntmsaC7YDbByvaQOTp8WwacFCPhTRFTozVISY6SCNw899I64oBLyaD1lFqw9dPphYoRanuQKjOXFp110TrXtEprRgxtcZx+k9UdQmxDQwI83YXOMLrcFTfJruFtm3lX3kvr3dPOTCwzIMsZDigXU+XVYIg5FRAoRS1jy1KBKC6ljCSrHJg+ODdif9fw7Sy6CMGrFa7ct8EfVZxFDntonKGvFRAaWDT2dSMRXND6ZQy96RW3S9arvvowy9kH24N6zmqKQEkQCSKeUvuO9JgjcJveepFcx0ZNIRRRkYdYWmKYRHWi1n/Jaqdhq3wAEySP57M2B7lFcpeaTOK5gkaYiHcFWFrVQaxd7CJbDURLZKQHj0uoRBgACBLT2+qACcuFENvRiezNtY1lepiVglvoIJwET/U3WlZjIkUD5NJ8Jt4jrvCN1PYQqrJ4t4hi1wKoLCjqFCapUHfaqokv77HU0IgMEgWA4I9b2AdvApKW7EyXBVbAG4BJZSQPbvlSg8wStqoEQwsatY6xvfFgpnzVLtVO4xPMpdROpx4MVbiXgIQrYyqKQ8w8+gDjuXetGvwMJQKUDE8VF73+rcL3UEHVS4zLYSQOAqR5Jb3g16FV3sx7tc5NIbjnJfyUD+6phsajJNm7CR0z3k3VzIs/QlJLN8nm5YBP+Qi1NE1fhHbjjHvJCoyGCo1MKFHoS5AAqlIdl3/xUazGdbc/zlhSOYXF77dkgscciVSqPSkoLUPE7xIsp9CcnGWnjghDGRDmVa2CJWq6Lp4ZStMc9OLiNdDEWmQ2NsCIgpVaDuKFIRjhllbFixRaXeeBtFjNVn6e0NheSUwXs7jU1vi/ijY8o12MNTJ21xuXTIwFOir4N7z1UwAkUIDBfzQB0YoBiyHsL7OhMaDVf0YlF0VS6Or0YoFcJIr8eIwjGcvmlSglr2PyQF+j+9CGiNEylpLm6rI1cPBNnYG6NmpX5GK9xsc1iM7yvS+mSlQ+mwWgwJEeUxX3BNZSKAGtAzzdgs1+alhfjQJakQVtfAAdNfVYNZvZ3ZvN4C/aBZgqlGwHO+kW3AZop30s76huXptoXKsL+1t3J4563zK4X2Sf3y6xdie3eyZzmNqi+vrvBSbH3QSgptic5E9NrQu7Z2fbi7ywnsubHr3Pj8jXPW3aDVtQO0fdf8gE2ad9d3119+OXv3/tQhmxdfL05Pj+5eng6P9u5uHwvjRNmCLOtGXu5tMzg52L+67nIuY7o2+PJzihv3vVrdwMea8uuV4cxaX8p4bVXr7qZrxeiEzizZ0FtzMXdXjqXTQgj3HZuYiFmCjbDwESmKwl3oTYG3d4vy719sh9WnlLZpdNjtwjSHa8Ucg+P23Ypi6IIZAyxyDubjnSVM2LF24ojlzU3oWYb062/X4gzGYlD4dnUjCrcA/zt7Ajae/3Lx+Wj3QF+jepvyqlNLWxgWyZgyyp/VUI37K4ab5mQETYiUFC811NrpCUCyYjoidBRw0ApgqBAY42Es1qmPIVCQKSUUKfK2aUnrBAwiKi7+VqU+/9iclnzr9lpcvn56sm/J2/n9k9VAwt3V7cPN1xvnga4fKfTy25eLL19vzq5vtj5euyLt/MrVa05QdYvzEfRNPlx+vRZBb94+3d3YW7Ju84D+7ePd7Z/fvzNr8LezlV20Zys3Qjw9mh9aW3v/5vBQRLy16fa3m6crWyP++GPj8nqwnz7f3lzrHUWncP725sGEAPxdI03MnIvuh8u6Yii3NIdssAutJ7A0k4+TSKutqOL1ncCrAeL5UHR22UqefWHRXrGpQ6us8PnsdFGr2Y7sfnHkFAnberC7dre7dvS4Or/Ws7VZxSV3uSsbCkyDvD0Zk5wdO/mEPGfuKxNr+J/+18KRCnVcGlTM17vIldVA5NDyfAaPtFmFQYSbWBO0FcNNUxAayEBwNTX5NR9JeoYLalZIfF4RmqzsQu8lh8Mt17g0UkPR8qM+ND6P18jrwAxqtwFQRmaTDjn+P93LOwksQi8nXCPiYVGYClUV3QpV1RZ8pMDAAK4toI+5Prq3jMx4F+gJZUZGySnnBlKeKt+lkErlW6JkqttLZkvz576n4H9rppEAjhxUlFrDgUTitoqqZ/xTbqBJCXzYc4CYHsIAjPzOTtDKZxNLwyEPNBStrfU0PwES3vUmO5qFuNxyWbJJa8BGFkjDXzzKbCNdCewdI+WzawU6RFht2g1Ud7bv0AK0GqIzsUawUphvnWRCRGMiCTNEDWmyyzc6NnPyU483S5sSOXQ+zgzYOMyzsP70heaG2VRW6LzoYNqFSkTpk7Dhxs6aLk7tyNMCaRqZBoYx6sDs1XRaUJQCFF3IGv8psLo9yI3gMje3g7j4TOuGefET95Y2HeT48i3mDp/0NppFC+miAaiWLY2BFEQ2cBY+mPZ3BAoS4Jv0VY2voTsIg0Q45axsUdvAHmIxc4QFVNCGaQuEQSN90Iz2DO/5IknOkmNarFgwGZQy6ldelaeaoyK3oEDRvK+VLZ/34TDQIpkISorqV4n3XKPwCpNKRBTTnqrTC8ZSGFNjUpQ74IdnYSUpAUkuVpjRxtL6hqJUhA7zjMP8kZdSoWyogapjOOCxq4ylq26esD0P5tskLuOY/ECEDSGxpQJTCXtZuBRDVNOPXGEVxODXesF/uNL7LGihBqpx6RVSxeSPSygetfR34dsgCKpXTRDLAktkKEE2IMo3FagsvQKL2rGY0idEloRgzVU6Ww19VZkWfXANZWBHlo0WoFbfuuLZOCxjOo6pOX7j/tJbhV+CTEYQYAwsYTAZO2E3xmuy3JgMByfCVIv/UigzbvAvVR6DGh2hK7WYNTaJoH7goFs02bod7zi45FyHT9wTS4kzAjvZ8yVvlFdSUUovveA2nFQzNbYLucAC+Y6tECVMHbHeQ7ShdjxU85sJYKTIWlt6HAMAGvUfjRjpZmqpTKsPwxf15k5GL7P/XvmJUdOchI70ApjFeMirFiIgIHnjwWfcSh4GVG/HUwhhk/KCA6gKyp3QZ2udt69ekjI1mTYeYSaykybPNeRPvRmYgdXsYPwlDsAwUOqOEXmWDNAsvEjEEK8tXM05dHifWuXyICvBa6KG7ogdICMidKEaF/MOoQo6PgyH4/+CkrT824gJ2NSskc4WbspAE8SqiNYRjaRqgDmM4Z3ohEgaIStGGswWWziyccgUJV7f3pnvI8BuBWr5x2rfOo+1J2HgxtPd1cXqzZtjy1dgeHN1Y9R8fS5eRZndApZ9gXbp6i+eaHvdHs27m5v2V568vbq6WxlGLo4xrSQgWzs4PPzy6eLtdyeHbw/dL2WVPb3ftmIjnLe23xxYpUyzzz6fd7q9KIkSM9w5JMHGYMGsxV1KWZD+62fbCB6OHeC/vSd4dwQNS0jeW+tOrny4eLi+xQubgxsbFsmv3TlfqMCdBbiwzkwsuM4/Zywtqdlav7grkmgCpBPct+1nMO7oLtu4t24LxI71/2YIhGTGxY2sXdqH+/C4t75/e22h0Yuz5H/34w/3py/uD7h/sLbKGUEmEjZOD+0s2PtyeW2o3uixWBPTwBSgt/gnpgn1JpDa7phg4jKUaM+xUC+NY+8tpn9yqGl4wMy6dpcl5GFGARrIaM6wKbVRKhqTVTBQijvlaRf1ZBrSpiC1pPDFWSWyBeqx9nK86yCctfZai7XVvbN9fX+3/eT48ztbMvb2t8+vrqjwzeoZxScHu0en+58/X385P/vw7vR3P+5/+nh1+u7Q4qjHg4fvfji9v3m4dIDRbouYGcUP33+4uXv49eL689XKHMjeruUSLEW34fDocM+pmtcXK8HTf/zjW8a4v7O24+K2n2293cUxJ/CsOoTw4cPbkzs3y11ZTrZucZkw/eBA70tnObOH+MPzff7CjM3muiquGxEWdmTOmS1v56iq53ussvtppgseLRPTfRU7W3CFYTcPd9dfb10/d2odl3HTra3jNxYTgd5V0XT78MglxRaut09DH4O1Tg+/TaZsh4mZT8jYx0IX88/IfcdkfIeRr6WQZj98deiNhwRtPErrdlg1Byg/2YIqq3/fxpYTNiB5NQ4wV1AbkdF7kWoXl1e8V0FAmlv2bm9vSLzxwqL2zhvJnPLWFczhez2eFaTcCjypkLvvJt6SQkWtf6JfaQ5KGyotl1JyIwRdQMlgOAJC/a4Hon+7NGgcUY1yM1k5XcLqq6ea3dHZKIietNm0mFOqbMTF2wyAj6yx8+y3Ov0um6cYNfVWTq2tN/A0frLOTJjF9fLIyzfUIALrC37AZOieoWgKUw9t+cR3T0mIsDbXHDB8deV+dJ6kV9ikOvWLrRlhVQDloQgEVAcINwBU1jgzkQA6FYkiuLPCOfFmWmrffRqzG3QgB4iak1cNAamFbfXGodTDT/98ytn3oRHOSs04ZsGDm9FstCg/2U/jUEXJqyaRfOsjVfw18GmhIHq9DccSQ1gRmA/i1bSklKiJpA9JIWxjPMLkl3l43pcJGHTzqjR+hnLZyCIlG275IjHQgakyOctYix9cnxrH/vodt8luWnZ5NRiglDgpI57qXXgNVEixDsQMeq+YNCpXxFXNo2Pzt9KTa0QWToGiKErBe75HAICsgxMoYsPqZBRz/MvtylgvOpLlRILi2NWJzAY2OCuXvbRX5rWuEBjvsehPlUpBwoQZvvSQ3uNN3dcyvMq94Q4cUE/q0c/UPiDkGnLSq9iIWbUNC5tjKyLlGaL65jWGaBzR4rv6F9ckA1WpZSmCXYqPq5kKo30I9Cr8YyYccgmRH+/CChDfwltC4Itw/J2qJqfiaU64jqQSQeUC129fl9+LrAlkqB1o5Vxf/z/+9/9tqbuaAl2t2sPqq4tcWO+DjGQz4o837WGaXdULvCkXL0Z+r1gmoV6z20EuZefalyBeSioO8aXjhbFTfS5PEIQJOYuQUXvjK8sQOZ2ONUEGYcFcDosrZHPnTqEkgAiInuwRO1QEEU+vwjR4nHHigu57J6Qi8xWUzFM2kjnHAsMwAG1pDCrWDqTCHU4dQWRpVDtchuNKLxXpCYAwkjYIoYbc3DisCAd/vpYoD6gBXqxrGBHoSM9mQPZUrz3tfPUd09eqAWtBITby3Q1bJCNF0F2IPWSLLHtI4bIGfYaFwzCWoqESw1hxZcIUJnhecXSO/UtRkUYBW+BAXlGUyPpUY0Q1hpeqVEtt2NSVRi7G46+y5Zz+W5KVFVG1E4loEMvTCQtwsUZlWFK2JFjbD0lX9owm5EY5ESqzwNfE5EEU8Z2fyE6ri5YUH/QCl+dX0XkGObRjWaPCFmflSTCnP8g04pdQ4rrx+f0NF8g6XUZT6ZTEMXRLq3eM+qvBkZowNoZ/+eWz2O/ILb+nu9Cy4AafDY9a+q9mMZawyFVQRmDtydQD2j9wwI4dv5b3NyLI0Rmxxic2dP7Zgp2nm6vrnf3Nk7d77787uV7dCaT29/Yw9M7ZOGtPYufpUVtrdKujIr66vH7qKBpnXt4YpyTnzaur2zdujzrc+L/+cmY66r2z619ePl8/XDpxdNMp+G3EJ8BrB7w8PFt3Qy1GYHUfKarlHG6JZTw7cHp6cq6/0Mh2VTvvWlmOEv7B3UBWkDw7N1MfJaURiMxxky82AztciMMWA/7uxKr1bQfmuHFAT+f46FDY8fniat+5krsbf/15dX7XnVN34tCNrc+rlaPzLkx2PG44vKjuyvhr49xCIxyc0XYLCdYsIuL3cDr5tRQeGvfYa6URRSK921um19jqnSGxMcw0KuWBaV0aPRSqAW8qVOTTaHR6OwNkFotTCjxpqI7M4Kz/JeY+3Nyw1t9A/7tD+0Oc6Lm9a2jh2fL37bduNni4E/f86fdvMNCZQnYGq9ORhG/enABy6YK3a4Bf7gz8r4WweyGsorKt9vL87u2bYzcyfK4z2FmKVNWRo840pUQn+/s//Xz+9v3en/7w/sPxkbvUrtxB/XB3ubr5eHaj42ZCgGqAbcyC4t7c3B8eOFZo49JGYxHn5pxuvFygYQelLs1Yl42+DNbB/ldEYLJq7cXlvlb7mJRwWijKaa8I5667dTdPTGnRB8W3NuwT0JE4Ojx8/+HAjggeUNwf4Li19v7DW2Bxmb641DaPLUgVN49TY1xeZaX+5JTYXb+LlTG/OKMUOZZGNK877iiXPeVAEEUuIutVfm9kWQtXDMarD/gsfSoZt9AYSt4+2NNkzl/GXv0AV/tMJJga9VUNmMBGQow4BkNZ1a54OLHY8TYECuf0RZe3+dXRqkaIRTzYtVn/YVE17Rcv2ph6mRMN4PkEg75kEthCz3kI4DRb4Tlea9x+3BvXW8uICdDT3GgI5JngJhqwPGiVXzD95sDrVDfQzovSmd7NB5uAmuIwKtia2qt5nGENSh4yMmYgrBCnhiCiv1FNCoDhYV0pDhNbJoT1HfqIkYLYiPF9+JmfDUIBd+PuE8767V9sX18zm2S9EMPHuFelaqLvVXPg6TY/MMkOWDyse6Z0w2ajToUcPJ/Soz0ks8y9zFf4owsbp0QtffjndWiFLmpBYgKbGGAIX5QnKhbpQFszUYBq0GGuTBbiqylAU5ey8QGC37petX3zf6k0LSq/EnBKCRVRGmIZwvCca5Lyd0yQKRvkVTXlkgUgtYwjL9IPCSnUUoM2OjBUgAImBArMjBNRPWUb5hsOlT/uylVtPczTAoH0FiTCdjJMoDK5ZE9XCx09yYc/kPSRjgUeiG/BHMzeDizyijNDgGIgeGy2aiK0Cd/Bm06pegY6zQlsydPmp13ikGWepFfUz2+1zO8kj65KD21yRv83AsFZqIifhVm+xu3SxzVg48RvQ1fkKAx0v3qK7r5msoN/3wfTwSBCgt/rEbDfk2EghOKQXrDtxdTR61GF17fEKhvke1Go88rS6puqvWrzlTFKGxImVRVAKYWEFCFehWgaNd8W9rxGrlFeVz4mNnY8CiGbf4HLUFs9OfREPwYxKrWKcvKnozGsW2YfhYBKZdMDos9NKJsSTPXyyJBJD65+wW3RXfUt1Q2qxXBKDvHh7zktjxslRv18HHcYbryo/Pg4xMvKqSglDit8b9ylTcDoa0gjdUwqDEAepHJYMEeyVAgDwroElFOdZmkmi0O45do6Kg6PG8xB5Wse8MdOiWX0WtmmEfrEAjYBkCoQVV1j7YwB3zCWC8MA+AjBIOA19LEGlRAYoVdkEvJqtdwB0T6Zi56xu6SUacqkpZElRgwOI4IULrraS9dR1R68lg/+BrPFksYIpeWoOL4EGq7qiEtezHw6gEpJjG8Q4SW/pbzqgMJjlotgFkGkOYICcskTjaMZfVB2YUZ/KVjCXaZ3coX+LemhDvk6dbgrNDEeMFcYxDH5yhaDuwu2AftC6II/FAh+wh3GBXDUFXvHFdKTx4dOyCk+RUXbCbJBugnczoahbmddRjjGrB5vxx/t2PR3JAiyzXf95dPZb+8PLJi3h1KsJdfdh+/fGBzV5DlUZ24x29o62DGmH+OZiVkFHmr92bTA9Ht3H50idEVpd472RdNdR+1mrOp9cq/TPg79dv/8+csZ7Kw8PzxxF4GBqc26DY83zggShlM6l38RBKWbLb92R7wcHexTPPtfT9/sibJ/+unX0xPB6p5R+E8rmzbv3hizfekweIP9hK7V6rDOMdiOcna8JT3e3TYILZDbPzi4cmgP1Gd9vztlnx/u+J+OixnpQtgkmlhra3cOeOko2tS81TtM7MUpQ7yyNTbPVv4c6wusbxy9e2M5ysZ2t5MI0FO07e2/fTyzJ1hE4Vx/qq9Xe3S4f37JWp3C3kqSnGOjB1Slg5gYn66iOhI3JbDfwB6LzqDADzLMMP0UeIkJ+Ks0liKMtMcQqAZdH3g5H52Iaedtb2gtE+QVpwC6IsWz43kU1ogZ4VaXTsH27pYrkA0M2O5sTE8/6fhw/8FC//W1798dfffm2MbuvY2nP//hu739LcE6UfI8hweugr6/OL85dvLR0cH/+V8c3WTpzrXRBne4/XLhi7vY7kwvfHdyoutpHnNr/0CPaW/r+d//87vnp7v1x9uPn3QCycGinceff/nkZjGMPLfv92HN3V1OHLq4MSdgR7FdGS5c3zIRcMPwSY0purqk1eDFDbnWtXpZMWiT9mYxLc26HTnOzW5mtBwhdFzkv+UVj3/9cGs7wNsjRzrtn54eONzJdNC7797YF6CHazxkb3/f1gNcs3yOJRIct9NU1abt/i6K1pMqKFGHFKwjXBHU0ujwRQQ6YSjV0rlumImA2TO51tueRkbZxfDB5z95hHwLQyrIFEAz+ClVOhVZhtkqsqw8oQ25Dv6qTwE3OL6l/HmhZoApMgSs/vLc1/xYfcAWv+XK8kz5QcVrcQLlgXINWH3snae1x73NXbgtvmp8Z65NRfAHxFkI+nittg8OsGDUFwHH4EFqPQET/Qx6seg0oNQtpZz4KeY0woXQuJSFyFai/P5HRZn7lDiAYjh9LJqTgd+LGVIog5okSjGqZUhIfl+rPybQjpoGemOHuBe+wtD9iMorXhWF4D2w7gaeAhtxSTyN8xDAnhbmxRRi7UtuMq2et3lNj+HvaNq8BDybrPA4Nj8IoUbxtKgXkQzHaSGjKA+Oh8P3vns9gupRMe9HcBHVV0rSyULGEM0DTAuMqc4bgJpX6aT5Nwq2jN/hn6BiYhhNZpwEPeSg5wnPQ0g9hZ5LFYtcVFVjHlTZtFyjnzY5NOwlb6iAPPoYApLGNc1DiHpf2aoiwp6HtsYiIVugEpNISZjLB8eutFuR5OqPICFZ00qJNCrLZKFSegdEKpoy9CDFQI+VnK/dv9RMEFVTO3nLkDqHXtRODfN3qKG0o0I50/X1g0OX0lzrqKbqIRZ3oTosUTQEUEgucSG4NZ9xbxTg72DjwgI3HJWrYGHP+IrkXAWjt0vKxHiTMRbL2R8Z8nxZnNr8m5gtmhfgIHhO752PyPSqxfe4OEreV4mRrLBvI1Nsq6GSbyEhpowMUuaZSXvNr1x0aVYgE0U+VCIN6Atft6jQ0heKLwFNaj4h43/s8zd90xoOgL7Dv9B3tFENC5zMAcYLnKQRSD4/PsA+77l0IoujVTa09TdFED6Di2xAKmrlqBvUR+QLaxZw4wqTRLliOnrA/sapRBo4P9Qd6+WKmvnMU2XZ8+npycXlJVX2DH8XggYnhzi+DOpFsZEyRKVlgPpq7MHDiKlaQVA7c1I2RmQysUkpo1VytM8MHgWgxfrNTw2PFrTYfGB9hm/pB7IGfwnaKlTnAV2+EntqJGJX4gxzHs1vteBbx+B1BqVy+V22KlIfXbK5s32xStGGWIsnRRqtY1FW3Us6zPsysodtARbzTXedTz+dE/o1fSqgvH0lBGlGaGtvmghbNDX7Tyb4Q/Sj/qNb5DM2UEPkdWYfwDRhND5ux430JX42XeMD2uAfab3K5n1SK7JYmB9pS49ryg8U0OAwotSG6ZhJrTskLTY0FAFgDbxMAIr+85IAG3Q3KZ/Bj4Pg19FSj6tAD1RjMLwaDCVURUyqnePc02Gr8Hd30E6p0oqWillgUi2iYoFSjai9jrcOOcl0twV7Br/vr66F2q3Uv3XTqs2RjvMxiGyg3yDukeFto503lrY/HhwdqFN1d0a2XwypOkdRk/loCF/Y2tCbfYo760f2jF7e0Dsh+G3zABsuvrpaOSbLSTU7W3uOyHxrR/GX387dLfUPf/7eKZKr81vdjfsvK3shHJtz6fGShJ5/+P708XGl0VpZ7nNvTmDz509f9w53HWr415/vth08qj2wYHltXegpZKOWOi8rDfxYlN6A9t6iIWphRqJLFwWXDu1OQhrUGCXYXZ2dab/5I4w3XrzXdtc6A3oj7R15etnftVd4kZUKW4viDBiXxZLetRkG1mCG5KCbxa4u71x7fOfQf2t4158PRfOrewvcDYRb8mCpk36HWQ5au2y9IHLyhYnhIvzz1DwaS7EiItalapi8Z/OAm2QZuD0DzVGkQjZWRMe0ChY+EXg6m22tm1qu7VZ+bI2CWDNkML/RjdpIlpQKp9NNBVSP6SndMJu0O4bo1gTR7uXqaudg3br3g/31Nx9O3elGzlzVze3z3tEhWKu7R0v5IS8+djXayrVqL2tXZ6vNlTsHti/h5xik1SUT4C3sADaUg7V2fByrZHv76N3e9sbm149fMIA+E5oT+OG/v7XjoKf7zb1fPrlywOlSXUhnxf/XFbHuOPIVy/TIhhVr149PB6PuucJsouYh6TZg7wjUGYkY82GGay1T65UV2CKEwuLxOLjXGrSX9eMTG5tpEYt7Wd3ctkv+ee1f//pxZ2vjw4d3HNqdERnt/ZE5K/biqj7Bc6cGLd5yeyM9mcV12TqBJTwOqnX5LfciH29JWfo0SnkPYiIILwkuETPaCMi7cgnar9wahAqAFgdUy1UpH0hnyhMAJnn6Ii2fTP55EpBedaxR8ApMFTICQZcGcu7IP0jIAAEvJzhIMSijb9/abN6pcBafoeOtRgb2MFQj7UoJn5xv5vIEnE35GAziomJGrKjdYIkrHZxP7VGFHk2DgiJhyoLMSA7BqsgotEGxjtdL/+OqPn02WbkiQqqP8EQf7SNOqq5NXAxollRxavbfd45Zra1AZDYNxxGl0a+hHE2REjxaG1V5vLq4qlSKrg7f43NYUapwG6Z1fN3yMl8dzJCq+YuvINXJw4yCDUL2Nm5TQspQ2DmtZ9sVaG5TgrRreE/CFY+Wminvp0cEUpiPjlGUmpKae9Cq0SYV2msArxuN2h2RgiV6hmJ8fQSl+Q7TgdCMhCvqrfhcmfHTCICQBqqzgCQbJ99k0v/owGZ4acWMtOCGWsgoxY1/tK+BvwmcFmxxK5Uu+IFDR4okLBgiKNqHjfL4IVMFvYn5te9a2VjglRSUAqAG/zX8uKFsmlybTFETFlRDY+SXpAQhiwSHkwBhPsxjVIDaNxUr63SNuSk8HeBR9ak5e+IxsKWycAF80QEFV1fXfg8iFHs4kAiKVaJtJCU9pk+HFsLByTwjjAZkTcqFdPikOYVbsEjcfgBBY/wcHnD0AhC5q25QgtRobBRKBHBBL4hgBm7C/fEV83Z4rdZEOf+SQl/lTyeJgYxSrUHpdUk5XcV/ybWM4ads/JAQLalh5hVRvfKGYErvpW8e+uOLohITYz+vKSOOAd45pAKbduJNlFWhbHxxUyEZ2AHVw+ASsHlfAOdLUpfjlaHNl72GznOPo8KRCmwOJbOJv6HSOSEBTzdRFe4yFPUuNU3NcSc2pW3eeoAwTxfM+vT+psdeRSvtpMp8TIplaJxdRX9qQbtjSvYQ7yrwDecUBbTE6e1g62VE9yfMcpResRZ1AVJMhARJKVASVfOCDPQgnKlUPnWEWAjjr25SOLCiho2HD3DoUCCVyRAOss9QzUKO2mWDAETaaJu7nIJS7IUINsJejd+zbHhRLfO8ML/fkkirsfDav56RQHbJIXFCePFEEVxjM00LlDBnxkXkHwsn+WjCEIxUxB9weVJU+4fSGWWflhkOkINRzIrdQ2NP/EJeaXQO1Z7jWkrSipFaLFF4XA3TkW2IjtNJZ4aNOZT4TA+y0pgkj08KmS6EIg4lQwS2IF2I4MwHtSVQ2FElwBvvLKhLZ7jgWkcFWNxMahul7iuqtXQd8D/3tM8mYLJGrOrxlZrcPhTTQ+XJup+1dZf4Wv5+c2PX6x1RTfC+sb+zvrtxsLq8XNu43ds0hL95fLRr6P3ik0jPXbxpN8bqlh2fHGl4cUOtB4IzpBqeXz25JpeHPLI8Z3/v+sq617UvV1cE5sKvkzf7Fvw83QpqhRC6pG60heHzx98uZpG/0x4FzK12c4CmK2N3b/U71i4cpb+7sXbqvJ8a1y9XRsO3Pn6823es+5HI3oW2a6ubRztO72+fLg08ajjv3WW2NYvq05D6kPiov822WJcBSTxes8zJJKERXALpuB8WP6rdbgEj9TegzFJpB5I6hobEJj4RcPfxjZK4NdnBMsY6P51f724fnO5sfL26vlxdT5u+RWa6PXoOOgN6Qe4SE9ySnBOHaM8E9+2gIPeaQ+4qx1fgltjD2G/8garRSlZmLzFdzrcCIuxg5mPiNRVYMy46W8/kZG6kP60FFMJFSaM1eu30syagT7ofOa/rA9Xu1gB7qHUWXp5vX6xu2t96chLsy/36/frLoXu51jeExe4IeNp8+e3z6vzy5osDQHU6Wyu4eXF1d4W69a3bq0cHthpPs3KLNkP7aG3zSBeTHLa2zu66Hdls0v1fL1iGZTmtxafPROfeGaTdX9l+kaY1uUQ2G5/ObwXuQucD01gZ4rhOJD0/vt3Z0mVd4XKu4BlPh7zO/BGKPzqaDbc6wrUWi5MJnFsdbABoQwhKXg4Pux2MihqQsZt5tfVyOGvcT9/axmBsNA/LQijtxfXFm3dvLPTKpuFWB6IBKq6KR/dMmdSSTdf3Hi6P3yAhAuVTFilgeI1FV//kNjHBV/4J18dTTT+QGMfd0dhpIxpKSGigj9tQTQIMjYZFxqWMzE0DMpU8f6Og0CkaUHE7aIpig5bjqjAkOZDaNd9pl7cTsI7+TZZpyECjRvlm7gsnlaYzWQ2eR1qfcIknTk2nP3DjsrB+dJAPyLXLpUXPW/BREJlgS2n41OeZCChUl5Zlok918jugsUc9mfG7Aco/AwGZjkLa2OzOvswTHspNXA4d9eVyw7+heigUsyhoTEBWHyUCJ2iuX10RyEhc4oSiT+obavlk+RcRJk123MxMRfw3W2qdTESEWvIdlUuUdJ7iyY+DWG26iUOGEmy+kTzswnumO+tOVcTVl6XBtaayZfUPK3K6FfRv+I7nZFRSKqdyTMin0XAH9UJ3xgoXtJOLcdmFe63+rQS2JLUnUexKvTDEPdAX5siwBED6BPiaHuFWcXCsCF53NdSKwShx9KXGF3MwVxb5l1rS3AitoPThbdjCvFoQb4OO2nBJBVJq1cYKgExI/fHLJ6knl/DHYSwYa5t34R6spD3NaMa1kOm+dpd7pJ/pv3ojQBWh5XdTrzVyRTL13EoPGLqCDGeAR9p+x4SRT5yaNrlX2IhM/HQ7e/3NOFDbL88U97cvBbITRo+yGcLavn+Ze7mDG/CiHwwKciyDCQoNFFLmUlDeYp9Be8EqFBdyZE5IVbpwb+QCsbha7a9EeUJ+2GT00dgo80JTfb8Y3ryWpIktwz+OlN9zNSgcgzJDZBJ6AqEbU4UXy1uvqmL5hNdQF8PLIsLUGi6OJYBDsr8MwVvuhSGAo8bJH1YLAWlOtHv12vWKZN9HmvnKWBmF31g/ZCLaG/8ncmLXQ0SK1Qcw1Kig8aMK1ofzUjoPtsTKKhicwK++SmUGudGpehQLnHkF7+I49JjL8LnQxmFWFkZpVRRhVCSfPM4kkF5ytRAJT4U153wlMNzGsD7YxtgGDszlb74VmDjfIZjRlWyHGzWuOcpMJTwpVk1C5MSc7K0wFyFKZS1ABccajNbSFQFPpAJgLVv3JMVS+EAdlipVFSRC+KU1vsqMssmRSUxvKvspAwvJGuEKTG/JPsfRGENsmZ/IzE9Gm8dk6uH111JSLDupMWxYBImmhziG+ads4e/MAKqpyLoT1aZWf5LrxErTCPH+XoyngElNMlTDb4n7kVb7AZFsxkcDBga2yBNyGeSrnK2yBQpdiYCSxXLQeJMcwZh3ganaIQheidMZg3XpyRxkj10RpdHXMFVLh3fEZSWtViYX7JYgu7E06ZyOkg26Emtt/NNmA9mOMbkzXtpCcw1QvCcbx9jf6bQtvVwr7LYt0P/6xXGNTpfWPGtQrOQ53Nl3pI/QbHdj++jN2wMXI7UG3/KhTjyMOgdoXjhv06E6MEfH886mo4Ru7j5dW5AwzfbLd29PkUgkrk+yd3braPvzJ9f93uwebh7u7Skpatxaf7oxQn63884aIVcK3D6ahvju8PDTLzfn148W9Re/Pj2fHuk/C/WSUpNUBYhu5no8cz6PJf0CF/faWUG/tX11h29W+0SgdfO6OhaqGOtqDWtLeGMkKHjH+2jARHkaevuDIc2urpyPBLh1/Y8PTokhFwTiv/YUILccWKzTBQMn9Nasju7bg/NAj/cTCF/+8fOVkeO9o02HF907P+exToiWTehj4YrLyzqY8/HZaDHFMAe4tSuqpR71i1TBGJ1YbxmKrcoGHI3Hy++CBQtadFrcC4H31AYt7LeCDGGmMjwszlR+nclUjInY+lLvMn9KXhhAl/wmvrxFo6qtlqRpLHltZ/1AMLx+f3F3c6yPaCpkY/388s4+ipP9p0Mj+vfPhwd4VHgh+r+6ejw5PHaB7teLK3po6vRvH69c/8uh7BwcOXJna2dPsHdNWquXA2ew3L88Xjet8UxPWzzGVTwTt6VJJhAcgerY1uYxOziqSVEzSHZoEDM26uNhLx0zc2IOh7GZxml6be3lq33H1mYUQHfjLyGsTBY5uNMdYPZ308yUVVmdDULYtPbNaU+4uH9Yp9b9DPqr9M/qrLeWdm1tOqLKMg8ropwQ9Pnj19PTQ/+Ojvcvz60Us6NofX+/c42okA0wo0JPdgMXoW5s6L6yesizoyKJnEauFQ4FNWQylh/mpc+MMdk0tOSNcYv8IaA6SIBwN6rRdixucPQkX8Tulxh68WeEqa7F76G0iJODske/jYZLYEu6+TKxGbUhf8GVpFSIGcyHGxoHA3kpOaI87iRCP1fTT4+CU3WVp6CzV/SBRx8w6QZkOChaCoAM3BH79bdSLOm1w4n219Hu6o1DNUayVXFecBGccDbnjPaWc0yEqiJTQOjBXrli8mtEQpM77VTpabrZuUgOwNdmSEHoBTotzC2jqQYIBZPOBiEvG+4BWkkw+r7EBiHip+BBZ9WGfnODHTpHj2SKIeGPv8CRHk0YaYEii2Yxvg4fGweYo5aWw+IySUWKNCaOT1GqOu2ZJkz9UVp8WeswKAkhCLTYY6nbA+C+LcZ+dbXi0iIF1eP0IqPwo+5HypjPTJC1ICNfOORQ8KbdFDEKOfO7VCTx5VKq71VSw88heaGd2nMpfETjaN3HMgHV0BIBgP0dwzAHcyitdWyagoYEf35PaFFF5YGEogivd1lmhPgb8iO4IQ0KfS3HZCgUgMDo/uIty9FoWh0en8m8IB4a8XM+sTEFS+vkX9Cv2iL3tD18XlNDuK/DqLAciRitIEqYDBwCaVeDgjXkWBdXpvkOVOEECFnKDGiqwgMMlZZWkZ7rEgAuoTrwhM6nFnL3k9xhS2UlRGXdKrlDoMfCG++gonSYBDl1BQ4rit6z4qB5qb6BUJX8lGSfeTlgw7CawJzFpWBkSnBJu3rqGT4Ru7xYTKP08IyMwh4Saoye161sSCTsfso4vycU9hWiI/iBPniPGsxTVYbPQC1vQ+yIqZKEmqutP6lZH+HF0HHTMshe3ZkNsUeEt9wHLWYdXHxMgf0QWD0NewRncOr7YJTMJGnsIm94WqBNYWJBH/iXdYjLpw9HAK/7OkWkMBsckUd11TrG3OiFp0K+sY3A82y1lTFFDTGuGgaFIYmLbDVbvlgGCFsBGEMbStG3GNEDOv0WHIr1cos368yBOHUlAKWtLBdRNYwRtMmsEwFlXISZSuXDnmxKzsieoYeAFzKGSXzAhrzPmIuvSO+j3tRPrROaqC9kMrxcc34cYnVPB5OG8+M/gJaxlhTZgUy6iTUXSXZaaGs/ppeVcMHwlogB9KFwanztWaVziyLkxdPpGQMo34wyxGTAoTr8r2GGa2i/LhZCCxmiYaKBFiyl0IN/agbjjh7KDisGV79HQ3ilV1aPrHudZS4rvswJWGbQOtQ4rHswXQzmg4TFZYOTxDNW8pqut7hOJ8uIkXwNwjng09Cm/aNW/VrQJZPwKC5Z/dNo3Ny6Jf/RnkUf28415/uPTw6tYzGE5TZai2A+vLf8Y2UJjhXYNGTPBuEhzYDE8ZsjyuXYG9pzK3DmyZCZhJ3BboHEhtXSZAJbcbMrYy3n3j3aPd2wiobXM6QhiNv48smimPXdeyv+n05Od80VfPl4Zv3529Pjq9Xt5fXN9MbXLi9Wm1t7u1trdxub1w8kuK4bQ9gnB9vXV096AKLdFt/U7tpN7LqcDcRZD2e1yfoLTbDZgWklOc2ThopK6EVr0xyKgY2aZBdDyaKVbj2+JtABJuNha/aot4jcXue6WxvuGrOlFQccR3krmj91U8GLoWhn0q9t21rqGgTX+q5d3t2vDJ+s7Z5f3G87CjT3ImzN4LIfkbT/o0vWLtH1LIL4pw3L+F90S4wTq79IaxRcpwB/618111csDiw1zWxq2jSSE9V1m6hJ39QyjRvvNS7Ol7gQyXX9psPKjpx36qhUa/BRatvr0e7mwbbzleyH3b58ftrZ34OcLTXYKQr7dGabhm6kQXZhrlvObBjgnp6++/74N9eHdU6wQ9o3bXHc6r4BXLX72f6iiPCrHs8GWbpw+uDxViha3INy/TfYrq5udUEtf9BDwE6m6+BVHQdaRj0NnF1Dgy23ChohsqTWV9f3ojFgJl40zmodFFLyU/muWF/rwjZBfXtoh0rBBxNwFYAuSt+NsW3sn5+dizGu3CA9N2m0CcSJqJdnDql1/C0CnF11efPVjR82y+g2pBiAZ1iWAh/wS1LwmAdAUhgmlcan/c66X8NW6ZiA9PrtAeHTSpOFf8t1k4nchZbkTdJZLW5PI92J9Q0My1zIpbKGBFmhIjLM7S5W/khpMAih/E8Nk4XRWJTuGbzObQ5/i2zUxl3LWTPhGcx7q61STu4uzx+GSaqCoVxrRbKNT2UeXqVGQXKHw+WF1Scz2AzYN7fM3OjwBDS5bmjIjnuAq4W7ljdCZkXHMtcaE9LwqoYS6NgAa8Hi0jWKoS2oK4QqM+ds3ZQ/WpxYloagQKvkC22AMP+J0qqeSdoSYag49k8riaVmpQxLwofnYln0czpp05RwA2NTFhR5k8erWxKSs25HUbwiw5Frp4S3Cd2SQMyRLPNodm4cpeBDE3B1octLVIR5/CHXmePFneLdSY7KQXZpkmJ7yCegaRxRMdrOuQ1kkiIvUh90ssBUaERZOJjCgpuKzEEjXk0DnjTpC9lNuQivMS16WxBsZiZFgPQEWukVj1mvxDyqkY2qrNbw9h8PJuZJwYpw8n/dL8YTjuaMXGSrOmUqMg8ekU9vXxd0YUVo9J7FTlnvjTwqxQzjXMaiA5NiDPLdoEKyfnP6YRRq4TaKH4Kj0ilAz0Qg1/wsr8Bc1EypcixAPWNaPznfKVUKrCoF+QFLiDRcXggsZTP7cE8/EeC3OWfFIYVBgQsBoFAx+oBxeDQRPGgx9RXJpXLia5AtYoMZjpFTV8BjDUeQ1TQB2wBO4t5SL6qORyaLhEtT0vvXLLgKYOL3+9sAsS/UrEGESWFWcXHEARuILdQtD8kiJkRv7Fw+wEFpnElENeCICQl7CI/VsnoGVVRDlJWeD7p8o7TyZz7ffhapjBArqsD6//v/9f+kHEqF3bhgBUAshJ3snF+ahEEjGPUFOizmF4uaycrsYQE0pRby4qWcI4ZUbUoEKk2dSglypKjKKVJMXdUVUXAkJ2eEBX/or7GSEgU1DgAsnOjrsIQTAWHMGwJl5J5GmdRGjDUfeU+8acOPatCisN/sBJ6TDZkwYaakGOgYumQ2dty23WoOVfPvWSk0YRhlQ5pfereorjq1C5e8a1BqcB7aFjVVyaL6scgmhBnJrSaMmiAeSsFsALIBdaiyCG8DjnRKjRvzqVH3vgyJ0+/EH4UyL348dRe7IWwGlvIswZwlT14hAGQJigYoLwkNiWlI318TXz2jPOOaaxrggpa0KoBxAVJIEO1a7RoyfX1twnlPCfFQn/Ol0TuvkSO/UsHEFCKoy5uWfPOAxXS1lEDxo0Na3XmIJaUJMmqGWzLLudjyOM3ukACx8SNkQZSLJtQ6ppCihxRbAIBWbLTq2s5WzZaQZL1l6lZzFBiL/u/uRP8yiM8cP2X004W37gO2r2Db2m9bqq6urwA/PhLnuEBY+CXyEJ4qbv3+497ufmKiMIU47gC+Ng50eXaJBF0xGO7s7M0sszP1779+vRaX6yrt7O5p+D9/vUY3ZuhvO+jdqpKb6+vRUlnWxZmOxHFqqLU06zubN6sX2R1TI/7Rl9G52VrfdtuXReem13WLa02fXvbMLbbWCNsbNDXGTbdrlWrJtmKtdKNcSU/zOWOHFoNni43Qt6yFtqRGdfPIAUzcNeZLY6iERSPWg9xcX7083H3/9uDDyR5l3D48+OXjGVQP9qxs2fmXz3bGtl69Myvbx15PMeVuF0D6kONOHbN9db3pQEp6UU/SbgGXHuzt7etKWYMVDfFIYYZZ+GYrgf4LlPhQTGYItcjJH+Rcr06WLgC3NwooJlJ0lM6fIoY0Xm7LZHQ1HVT7xpqf9ee3x9vG/o9ckdZq+84m+rK6s0jG2Tsfvjv5+Kt1WE9XF/cW3xOzRWIuRONJ+Iubp7W/fvyqx4pY479ErqtgI8W+UXdV2fax9nJytMdSYGWvsCl+ugIjA9V2/RJWmm+ruomTx05+5DRu73VRNVJRwO0Y1MctQp/FUWrphNlpfJMiDjShMVcr3DT5UczqRWvHqx+14umuyNCg6fht2zAzEArCdThtedkWpT0fH5PtLuYrhTPMkC60AOnAthddppyeLcLWTAMFO6pyfHoic04mm/Y7j8E0PPjqg0zVZ4m0UKuazTY/uTzIVnqeL6+VBrwOe1eEx0g9IjEvNXnzWssHl6zAnCqi0KfGdYaf+Xh6gQcQC04F6nmyVqoCXaDmX+6I8aqCksiZ5sOktiD3NbmGAgDy8LwZllU8FzdFOORxjdGJz4aWiVIZxSWA1le58+TNPOTqEisbxIcwYxHyHxwcXl1c6vEAFLq5Sj0iVYGZ9ANew1FjOkyLw8UxvGaOMCUXgC5PcqJK92hoz9YVQSP3OALJC/SRvnA2/pWtTwYau4FcpmE1mUagKzHsr/+TpMZzLYJbWBobk1fWFQeyeAURiJbmRha4w8pgDe1Q8EAQQmdqWYvj4/UoFSgj26iTvLRHPcfD5OV5BDElkggc0sA6MAPZr3zOUErUFHuJvdQqDRwMrM1SUQQGUTr8JbLTCZ9iNThSe+GvHLgjf2pbeoo6PKn8GEJwQioG+59DnbVMjHpBWOpoRZz3TE+RI7+cSbMKMyi1LE2q2V35gyNOwWevkl36HXr9LiAGwRTX1Bxu9AEPy9CHZJiJxJAf5o1ueFtcmw+Vc7RlHpA3lUhBIPPHcbhNnUk/ytWRWi6aFmSOaMywupbi8vv42u9wHoRDJxTmT2rrMy79VV7lLKv/GDGinnAine+Vl5UHPNzQPVlCKYhe9ZEHy1KAKi15Ci1v1hymbIDg5vqOftKEUicTZKiQ44MNNziXb5FI+AYBFd35EE3TWU3KODANbmlpzjdKw8XbhfYw8gUyoCgVdpkANSjP6GEFhyu9qrIB9ff8fR2YOJDGLjlyfXWlvJqhgl4EG8RQx1v9iaKieIwBGRUdqQVFEtYGBkraIVlNH/s7liw4WwLuWJt2qHuIiYv+Ba6yQ0z+t2I0LKlJLHh9hRNjF3XJrfMgKi7/CAZazFkGX7mAZcWFhjFnrQFrRqJhy/Qp5VJ1dPEFYZ1cg4ww38a14mkISO7yII3BKCLgPti6QM68xregOhXBK+xThizwqmDOo3k9LWbtNcguYgUBliKacYJsb7ouUIghtjYnEuE/dPgWGDyIC6ZSSbKA4b/0BU84JouMf1ERABGUp4uliashtFiakkkZIIs9K4au4X/qhEVauDYiB4GtZoWJq498YCkMB5+Ax7vEI8eiSSO44nUtR3WVY/SHvs4mXQNvi/cpIlkG9pDZbGbMVpcqfHDSoqPYG3r+lp7T8Wqyhk1HxRSmDDYQKFhJVWiHpVaa77CNh5UosCsj7fJtfqX9KpLBYK6eQY2gPLQUV7wIlDscWm0cCo0MthIGLCFOkK3wbhGLdRptZGTqa493rjPeQ/Hq5uT4iFh23Alg8EBbsrF1L3a/O3t46DbVmlVzB/bUOtPm+fn86lwHVVRk6ZFOxvpdx5senBzMUJCd5d2txPXJT+H2DvfOz1a2lGpYtvee3313dHF+//Xy4ePV9d759e/fHR8a17++cewKBf9yfq33wDnYvrzv6NGtrX1XgT3vAPdsW4FtvBuN2BnV12vTVrfKxK7fYSYFYwbWZ5Am7+aNK2QFbQSMdU7YoQS0yfXBTmIy3yI2zerb7NqKXlyjQnFs9nEashKb7swpSba8frm4fLpzso1O3fq1A+Qf7g45xMe1L+eWzdiS/LC7tXtzt34hjIWbfW9N4nVzEPkRDXmgZRngZwF2mjIKVir611uBqgiz8EXQah4FChzFEvHXAhHzzPLtOKB+99aaLl9losugdBDw1t724eXFFQ9TVJHlZNTT51nKjrbOfE0mtL5xbUrlRWcgp+8DyOfba9H63svGu529zcMNN0IsJuMq3femidwBNwucLBvSf1DgT+/3dZE+XT19PX84vyEuA+Tb+O+yLRrNKzQUZwHb47NbHFDINHUO6cqBG3g3WjTlcFH9Fr2TLpB+uhbdisAH9/Xz82vLfjRGND/nkD4j16GvNUN1CfLjWEOk/TFBSJJNn06TBhQnVgRKlI1N2A7T+D0PZ9eDiOHi/v7cBmcHZN3cvX9zjO0ETVAuOHOk1erarQ4vmwfQb5yEHLy13mnPeqVO068xhgq/keTwbqYHsVG16hrXYE/CHbBj0WVRhCRQxzw5E3WNj/I3b++PNp6p0lu2SWeFBakNutNtJ5Y0p4deugv/lq/k4fU9goC7eL74xlQuv1ZwU0Ow45XwO8+MQ+WcEGdp2tTgoZRvLRrk859hN0KLpT1WTalBEJD7k5V1VfZE6kxHG1egmcOBNLDI9BAUKWoPP1DynvqgZvCurq4AStVzYIZE01xZ8ECdsufKVbuEO/7O0D+bhUyyrcWJ2PgLR5wMSMPwjt1sHAU0ddYmJ6bkzyV29E0OQb19Lw5u8le9ua8Eqlw8g+0CH6kaUPQUWUGmvXO1o9UKacSJ4L2Z0iqp+eb6YlvsBX/qaRRpeVBZ67X4Go0OPTIebxo07wRHnGr4fBEKCNIHfzgO83LFob8IRT4wfZa5ryqFAeZv2okUUM9QUzZ6Ax+tUFY958Nv7+9bvJfjw1ZgCzfmM4JLabUm4YCX0x5hoOrAKTFlCCJxpES00deEEQcD03wUXCXRAm/oITCV9Rf32bFcqv5WHQoaO9Po2IdvgAA3VIEqIKrDBHBzYPXrMhAqydNqtKoSUnEJcFSHuFozNBn6HXMqEMd629Bn+Ex6vOkBkAWh6Fl4lQYGJMjICF1WWmWa+P4EDG/CQMYUor/yKwiG/HJN2TSOIORTTPYBHHAPlRmEF8aioLQgRE4c81HNqEe4+TKGgHs4MBoRjNAvNO8h7HiJWsAIU435zlLGiAKYMS14Mh9hp/3fYaigqhc4lYVhuuBfYOBQVBfSfUBJyXHSc18pUbXLOTnieW8CU4kFVVVHIDyD628ck83bJUXxvk6mkfUCLQQqRYiAmSEsXxxc+hlTa28CBA/aAsy0w5lvOZ+N+Vk0vWalq5El40ozGhWWCzte6RqYjJmwvAIDaxaaZRu+pf1eNVQw3mdxs55fCyS8USgFQ5LKqyN2M4q8VZ/C+kx0aQkW7swBIM2iYoxAoV6BcpqvV8hISne195Q4B1HYyp5lVuGAHRbUrmgq0l0Gk0YO71qTsfgFBdfbw1SLYhh0Smp9kJeni3WGPw/gZum2PMRsVXoi9DrqGuwDVu1QxXrMSEFlHJdBSK9eb5xL/mh0Ed9kYNAchzxxoU9qAyjeJjuwBkhMiKeGhdSfWVaxQ9Nn7azqvWqsJaPCpMQN4bzTyJq/4J1SCwmwnhAh+S28lKeelWgwvVwMKbHapXrnhJPXBhZ+isigrqnRKHL8BJMveO0bQHs6hBD2ajoAGXE0ltFnzM47n/EOprMxhF5Jilg5ZqhpONkzjmIgQhaL9YBpMTrnExuQ21xB66Epg6DHmuk6A3x/63IKgGgp//586Hany7YFa31tBjh9c3R9oS8hihaP7W652vdw99FW4XvrkdZ2T/ZuphcqSjs7+8wKSezw9PDtG3sETlLW+NU1AZoalGrOX4yo6o/ddu5etinMFfOube3vv7w52rm4uP18fn9/abXMhqOEjvctlTm3cuW/XX19904PZctGYi3i1vquQwoZycnRidu/uiysua/12+fHo31L6becP2N9+p5e/7olG5vXQsgiQVufiw48Dm8KR6ZJKhFueIuXfISYmDhkjP/DSy0lfopgqcNY0GjeaCN5zKmmFF+fKDV16r9B+q6W2rAR9kb6+s7al+s78eE725dvWsuulPXnOsJgJBKS0riOmCjPrbVKz2uW3NByCJissINVkvepZuMrzKdmrP5hTgwJvFeaQb9pWqgZ8eamvaAAXS5xR38KN1NqRY01oE2XbdEoCePNm+1rMNX9BG2nbdDdipuOonIa7PHGzv6RCaF8k53TNvmaLDbjoW3fb9xgiye9vnPrA6kT+9OJjSI7aw7Sqert5/sv7MHuNpd8dfKS+w52HjZ2nDdZXOvgqQ7GMYNz9Xhv1sSobWPt2w7e2bixnid26clTbUMS7Wi3JR6lMtOFeG36iRLkA0g2L8VC0VkwSb0z/cVdZfs4QNyzZ5P3y4kQvelT+4D1wO1b6UrgzQ27AtoK4gScrZc3H46tkuNcbE/XR357untoA8RMmquM2vinHgLqPrKjoxo4Ap6l/+xXnaHEi2bpmk9jK7qprejgMfC8aB7uGLCxZmahaF7EZqul9GClruNMfJueAEmRZmCX2IXkp5YcEOOy6xMnvKYe0+6OX52IQS1cu1KzGzXvGnwOhioUKvFLjU9XvBbEcrjZDellXd/xTN6xaANrdCGEpgmGvgEgBMpSzePiQKClgl2Z/h43wCokZg03QfRKfeP/c4lJzebvBx42LW/ipVVbDVFBsuYxKQvx6roXaihaCKuu/Fu4Ta5aKBCYRvYS/2eJVJ3hPROacTu1qB/l2ZNv2UdiUrC2ng7qV7d/Q4g/DFaOXEKDlataLiwHwcKisc78MMSAHoFmhrxDLfPi85uG7EswwyArpL91CytTq8oWM4pIh0w8MJwAWr21mq04ln+q9hAOgcjp4ysRVEWdl0lMRK31BS/FmGlwX1GoYUrE+ZAiyFCFh+eaiZgphVV7KxUsOdOcgEM8uASNOobQ6oPhA43G4VQl6mSY2NRau5G4/GANn5c+zNhpvHr9IIkYwljxGtPlTSmxN5c4rb/GiwCa54wnXbWZIcQg0DOCCTM8wB2QSYlLAZ/aFAjW8h0hPqPMsbS6qzqYOfUhpC56gcS8/JZ5wVDGUVWvsByPIgKqRUC565CXJRNOqDnLKBxYEVj26ggdiHvrB5AEjYDBARJpw+TRsoa7j6pK0YjvUL8qageXIg5/ezCjzvfmFuRRu1pIX+Y4ONFvBIVAKlSmkE8ZcDWPk16VrIhcYRkrXu5u5kTHBdulIOSrvOwp9IS7gKVIyCCCcB+24PqAKefQ4L1XIIffIvqeo90nHAarqk6yISvdH9+/wazYZEgHwtbL3iZuJNHgMrxWs+i3FK3eSDfi885AeKqYarCv+ufrIJr+DZHTWutOLSiO8SBmsZmMR6Ew6IeujzYkUc6xaZrhwoLcVMQMM0vFtWUq9JiG1KlIKr7GFCYnWkFL7Bv6uUULTrLqyuKyTxGMP+MT4zgEKFPSTl0CMtmYq3Q0ahqFet2SY21AbgXi+R4rmyO5mvvxqT1+dSLp0BAC3vD5+eXy6jJxNPhECxtD9oXfH52iD6pKPH2GzzxUHMBDssz9jWZwJWFbhVSIDw3tvhk755urN9o3OrmSguKn0xSVDX4FsUtm+ZIj7iPWWxRpOzwky9E52YcdZZSHm8vbzutyzEN5PFDLIv4Gb+aFKCEkvZGuLvozcs5mpmxOTU2waKSDPArv5X21YTADO9qoKlX7JiA0qTa0J6+qLVDIM8Y2CGgVahZieC1ZUQKh139gEGPguWAViet6wxlrhDr2Z3xQOikIrx9Y6Ma8K6ycjcVP606gd/yl3p9dknoFNlU+WTB6sLG76XZeC4e/np2fnhy9P32ztf4IvKMTLMTQnjjjB/p7ewfqevv+7dnHjxr0m9XN9erm9M0hf0RELZLYLTg8eXdydGwY6eXq+sbYmzXTaHNWj2MfCY/PEoIbXHPgyvVdfSBhpN3Gp3tHZ5e3jmu/+O2Wihwf7FhgIvvNzbO114fH1sd0mqol2i8b224Ha4WTm4aen64eru1anrUQm3YFuALs5qGtplQgTcaiFg2zK4pdY0leCakRH30josP4/AwF8FbkkfXlitsgmJVh7OvCa2m6Q/tosDn4w7vDk9ODq69ff/dmX2fBCDlChKzOzl9dP1u6c+OE+3S+XjdbJpBWfM7BS4TG56i2fQW6SdbbbNsBfH98YFw5U3PGkLF20xftpmACsKyxGCWnNiYLIFevr7Y2QtqdaUNzV5TrI6CB2H2QIsJLn8egaNOoREESEay3azdVY8QN/1M3kfeNg3fW3x9YCG5Kwwp7u0HuTg+2T94ex8Vt+5JvncXk2rX71ePZmW3gLxYOfb15vl3d2IDsYgmXCh9t7wrst3fXDvf2oXft2FdatLOm4MpwuxOROi2kkQ4HkTNbJ+6s7m/QhB4r8zGdwWGRM17ovX0lTMseFIauvXEvHZmgSViQmRDgErA1MrIOn1k9zUKyRgbIdBp3GGELxHQddG/1WBy4+PbkyP5gcwvvTk9//vjrw9rq9+/+dLTt9oPL333/lvY+3W866nt390CUs7tLV7JSt+YZjhG42wORCc9CojiZndcmFRmz5KRW1EJL++a5P3khgHICAWvjL25k3fOBtKwdD6IXPS5ANm/kEaJxRB4SWuRXCqzxT6ouHh3GDtOqevIPZNkoNMgAjEMh6jLAB2LTeyl6mCIpDMPJ641KfPPGYkGvck60CKW5I1n6VWLmMSFvaXmj2rJxWTp+BfSgEnZerQwxBGf4jlxuOesyEbSq+fIBjVevu6GYzDh//f+oUD69qeFvjqtRjuRdIxJdJML1aftA05b1wefGqvL/r0JRPo8dpZiaNx7xABfunuvh1KI2KECJwlz0a2Si1xCeoxdq2orCa/GlB7LYNWByLk0bhMFXBLqxe/hg9AGSkdmOoLgNc1CxIIkPgcivLzSBr8wLwtHlU08jLquMPpB7Uqs9Aimdr5OMOyqUOJ+BmRaBBEm/giw/Emfhg5zDh6SPysCmPKn0yAzVgVICJ8OhthooEAowrNMcNOKMTK/8nAJJm6LCNgQDC1Tq4dsMc6QXJQAc5GXlhXoUVEpHXXHejBp8AzWdnKlDyVCI9kU1ltpBCltM8V1VmA1yLTHqeM7yJsewQkTxWyacYy2m6KNAgsPEGg2xOEikV8lXlkgPruzmbx3q3RhTr+M54RbsAj5KUtiA4XQeVuqFF+DpKo5Ua2wfkkUyURfaI7uwSSItb2vCiuMblYMhYoDlQ+BnANFzZSSOjCLBhz8dysBRVyk+ZJfvSns9yDclyjxf9U7T6qQL8QWNgE3WMsfwYUW/C/PiCELi+cLVUGuEtIlBJSUysm/1T+3jZIw6T9UALhV9Az6Vhup8gPXXr0WgqntFVbEEFZbeFw/1dwQPdflSM1QsGzdHL4kVl2STTCSaohqbGQ8r/3jyKcgi0z9c9lvFg0RkRnkGOGsvQPLCsNiOqTegeKoyY7qHwWwZU18ixIbiBmf4BiqN6X+2Rzknf8xKVEOtMTBeEgPlInsGLF22V7qkIraxxcQAJY7I6JaKIUUuITmOD8d8IIdAfMQmTOs0/zKiMeuNv1BRxcLTfFlKyR14l669+km6W/ABgrem7he9wPynFlAVfYDJHDAkHvCZM96DLTCvwpHLa9crUUhfDGOUqW5FnQPFG9JWIhJY16LBBVV4JRMCR9qLzgVh2sU0fvQ2sGNdr6oJZ/iiFIaAZ96LFnoBeP7OqBhc68WVOUXy6TUmJLg+eAIBfmfiMprw6hnByNdQBiTx1OB7gqqyr/KdBh7YWj7VZbDBxMtleip8GinUjuUgcm6TBWi5Um/+aOxNnmZUkTDcD3V5oApsOODPINguxu2G/bupV+T2YsG5BTRMxTVem07bfH50cISDbizxf7wDfvPw0A1LLxvG7K1tMHxrfNLFrpdXYuhQsqbn/uH07dub++uPv35NvZ4t4dVL3bEUXhzydLti8c6Mtyf07srlsI4i3XSaCp9yfuY8fv0BKcaqo78z8ldXBHJ0uHFxeetIGpp1dS7OXP/uu4PT463P//b4fE3MBdKWnGgv/DfsNla3drCFgK4EMD/w6Pge6OmdYviz5dpd6dXoUat6E42ZSnFSC5CclLIYFcYTMnXNqmodtDHi7/RUzGfYm0FRKQui9NzwkzQdkfPkhP5dG6xvnPL58GxZO/BXt0/vT09plXuEjY4b/8Z2R+IksmfrrxopxAcGZ4pm98CVw/y4wWlqzg3YievmLGPwKZuKJpxLlrQUe8VpqYQT65rKX7omQ+lcYWOIskM18+YdhkPZWCAVRZwj/NWiCum52NIDBZnFGGkpJWoT9daGWxmcaYRmK6Wubh+tcaFxuPFZN+vpHB5i627nfbhm0gb93x2un924K+Lx+NhU4JZDey6ub52/dHS0YTOJFTU3VvLfcK1Y9nJ2eztmQYg12JLcOPz2ZMMdbaZKnK5kPKstGsZua1YfudP6IIklq9dBMsqFk1bk8Glccl4sizDnUKwjisURMY/+kSKYxhJ5Do95pI12UqEHQAf5f74/59XXT+1XfnLfwerh/uDwUNdAF+b2fnX69oRuXnw+s0NG82h9kG7kvi9WAVlxZsTaxM7u65Rss6aclKHiGY7F7OU4fDUhyatGSacvOqqW+6l14ByKJLNW6XnOfGyvEO15XEpC8ZbVTdjHbRSOjAfNKVgukm5QbV8wKmCLwmBdkW4CpzReFKP3RVyYCddi5B8WF9QIztJUNbvY+MLi2MBVY/HNeJ/QDda0KZq+BrwjIHUClJkt9Xmib+M0pVL/4oxcOEtLNnDzjEBs8KxGJSozGZaHxEj8HUkgQsoYvVXR+DfYFbxO4lCd41/2B48/zBtn75AtT+stZ5wr9chUhzkC1ufdvR0jF+dnl/l09jUMFBCgWOnOEHH0Qm4/k7Fqks0StZZoiIMG/1+vADHibXUZl46naHlK32q5NFIGzpd7D0Jo5NXi5DbswZPXRKOjmeOMsUiIo85CIGM4HRrbA5wjKDRmBslD90uk7eBXBOsnhECgz0JIeycyASrR0L7kBDFNntpTpOmpKqEGvwPFrvhiukKjllppzuvMBtbFTHiQEf5gAtyqb0mJf5rdSWmVct052Sg4J4fGGJOGJ3lZF+0EEruiMODhkMEv4x0ZMb/YxRHqVazyS42BpRKLLUyZgDYRNM6tbBEI2OisB0+q9lfBGtmqDB3/SbBVl8YjOnsjXnPKec9h7FTdXBAydfuVj/LB8u+cpwYyU9reDgjY1S4T8Wg+ZHxL8eZTIoRHjRQMt8RbBDK8CETEduo/snIIFC/cC9zH0EIu2prX8knZ+3hAms+wOS5lWAXieRgvX5kwFjTYjo2DMJ1TEFQBkbGvVmTUzibTgANLjqDBP2znQ27Lq5CYJUMxP24VxPp4GIYn52QM5EKsprBILNymS6MMkSWrqKheDJlYqBr6pOfDruhcWDTpso5MzE3Hv340DJAACzbhQhIgckhTH+T9xJhBsVLeD0VJjmxSpxIWOr1vlHs+ad6wr4fhBSHp0PMOZQ5gSKEtMOl0/j27CvUoW2QjPQtsejddHB4prarBqtUO9KkaEOFXSiLfqK/M3JDqopEARsZh1UQ2HoWCt7KjeGSBvDGh9iS2cJxTyC7NCxsVe8kFxw11iz+4oZl0BiqLwlp0qZcz4k8br5FSz0GGuNSuO56RP8AuMOQFj5nV+YsE9j7p7vDytIhKDlXiwOjHK/cq9tpU5DeVEgrMNGvdsEXXVfx3I5cBblCiQMABBR1N8iAywMvRC3yFVQJcMFCIOX6jrjTx9DThJIZji2oCuPASspUFfVihHugpguFDh0p668N+BJESAe/7aIJX3CiwS1cz+HqhsTFFXUgGWqWGJMcrJXMZVLTAJXwpKsQExfKnNKou6pBWAymqsChfeFTHPU3A6ZpJddQMbx/tO8qkBsvqB8fjbDrA8dpQ+vbuXkfB7G4538T1VV8+f11/OnAc5eHu0fquO1A3TNILVp2uYxTtSpzLFR1s//Lxi6UcjlA8PN5bXVzTh9ubuy9n1/i1r23a2ymMTibuvSSel5vLu8tbUxA7eg+o1iS/PTy4unu+tlDeKZ8Ptz++P/rhx6PfPrXLVGi0un367fzpux/W3hzt3qzM7LhczKZj0dutE2eNjh+7uViM2F0Kc3mWvjctpJ6tdNpyRmeWRX/iEuVP1jjZUOXLk2je+u5H7n4Mqr2DNXrTClK/cXPJtm2jqXILfSm7mtyDtrNze3etP0Ui2/s7Hy/vhGG4LQrd29k1vL21u3d7AZe1fduU3WRs/djDkzt2CIXQCcKSQ62J8gKKLlt+fr69s6Jc3N8Jg0RmCILSUwOy1hnQYUMHK2CzQtBiQ9M+Nw8kPN2DJ+as0N2Ny6rWjGdbqoTMVEXbD5ghWwG+2K66KCcn2VC69UaiFhTJoO+RtTrcdWttb98ah/ZoOmVTtG1WwSmlN6t7EywOkhKSXXYo6tbNlSFqmyWMOKw7zlq4e3Hvpt+Xh6sbExq2j5v+sfWqWGl9hw64kC5LsZFXD/vp8dyQvxOBXLZAZjj/ggM+W/f6+1Zb2Rz8REwTPeu8Pj5s50SoOBnmS8lDBwwhlgTEzSUqHdGv7TjItZEBa7E02KKHJL67ZYXn3XM7d61xq5FjuaZiHp8cZmpg0RYDuvzTL582t4uO3799a/qT0N1abPlVK8cEfxh10yGz17fXx9vH6iT3opPx6xBj3TmCvOAY+AwizCBujXc+hLlO1FJTNj6n9Jx6Zdg7Do0HSF99pdGLEyDOV48CJxxImcUWWX084WSa9WolVe1EHYy5ZJBOk0zebcmzuCy+W3QLXqDwtf6JKBYo2jAfdH1znKZl4MC5d8Z5f2uG8rD5N4CEjClPwc/iM0kR2sB4kL50fems/DQQPhOP6gMwAbZJR5YpCBakt7TlFAGE4AoCt2Z1k3rUlIwbBsinUALwh8wG77yAWMY/HZgFDW+XFJl9lrYjWx4vLcXUpeOqbGjxHIeKlROedhrza6Y36y8ZWOgEX6MPzZo+2Y2zt7F7/3AHp4nOU0WOKQnmiwsZcIjSV/vwHodHYXPgnuXXYKUyNYs2APDYRVppTkqOPG3TiCGy5TY6YRVgw15QxdXeJfr48BpThbyMschv3BiSwkibIXfVjURHHYbaSuO0fks86d/E6PggK7cRqHAFMJRIhDSrocGvJZoPDgTImcHRyTKEkKVB9LCwNe1s0gmejTRXMGgIBRF4hZwA4bCx/UunCy+r1GSlmbgf0uQRxHD3dWInfwDotIGoDjicZIiewS9S0ZPOVKw8LNGrqVte8vV2eK7crOMaAmVfyKfeQy/0U29fgzmcGRnVag9uhL2g9Tq5BELIkK0nlI9KyaE6H0lDS6oiyacMr0XiBQYOg1UOO42zICC6o9Gf6ZCH2MgXqGXR2hC9SAeMxNFArbpgksLHJRQslabbaBjWDRKJY+ojo2Eszkz/KgIWToa/z0LqworBPJ70oMbhUWNXS864pPpEtyCQvcsWF6oFoTPjpwbiQHiTYIqm1V5BdTFYD/JXt99oCsVqyNTGgAYasU2qHE4Bkk32ckVA1XuSD1SFsXm8WO9wm/Z7OwzFJh1unnokAVfYL1NpDJIDUGL5CVpqB/Uonzi45oHRCOa+8ZdF1DyHtwKVSTDVH4UDQYOSAYfY2HNiDcMYrewSVWvziVmiPkaUeN9efisiFsARmLZNFUH29Hc7SZ9iThWN3mC0YujSuMYKhfX2FGPJRcMz1DEUVdD3lCExR++okNoqCOk80Qhs5ClAKZHaGsObni5malpCL+88vSOoEcQIteFPaM8UrXKywdBnoYooOd7IRVkqkjHnZJLJqMI0BjBHN8yX4sBo8V/1LE7FFCAUGdez+EEJaTw05M9JDT7Iw+o6TMqEpE8FJ2dcnZT6XegaMWSHdcOG6srorc7ITWiDMnpVOqUdUgPYq0Q2yRGiXgA8ZAbTDAx9I+oBU3EsnE5FZSf6DywfaMSXjMYvBCZO5CzJgFrBRxvvPbLbE2wQdP3ZwnsLUzbuV857EeKkCvdFAmvC+bVHu3AfVxcnx7s2Q54cHVpvYytwQ9b3d2BogVqZ4OwgcwT7u7eOwrm4uXNuz/amu59sX/56vhKcAGxxvBT3694+rrb2xcz7jiOyMAYETYdBeI8mzKjP+fWtSNLFuh3nr+x+g6w6DU4POr++l0UoaU3+pTu6Xjp8yd1aq0dXvbZ7D5nW7Mjc/V/Uw/zP8FAA64RRmq4Tsr3rGH7dzPjC/PhtvIeQ8BF3qSWBiAKNVgmdOQgK1imWLR1iYg2ly4aBAnL2fbTvUE9Dd+uH+4bw6VqXnTVlZLtFwrVnYePiWnDeqhXbEiiTDooLkjd3t2/qCGGOIMdNYXsGyO0BEESHSxHD4/GhXkDD/5erezshbG9lPDfPBstzKzphWkqmR0NJnH8gdnojUsPMxopEKAxtBps7jU/notFKsa9hbKQWkhZXaHEE3KlLeiJb+u/0JLu4HQO18XLsJjg7vdfWz1cuCeYn1py8hD+zOtl0gUD6ye5eQbP5JCuFagzNaBkFNuz3vGG1Xo1+CxvyNdSs8Tt8iPntGrfnWDAlrGTf+Lyo9KgtILm1VPzFdQj5FkLWPZvIgHKvdctpK7oYY1Ytb7XMoNRYq7UjJknMUagtX4RdEesIf9uReWZSbgVtLkMhg/p4RorW+Ry6q9oJWB2KdXt6fPy7720Bdrroxr5uXNar27aDk/YiugJPr7jeIhTGLXjQ01ALnhKPqrP9ecZvfnJhPDyTnqrn1sV4lG7lHGRQyA9KZ8iTGtaH/3vvAkCfyr56XQae4LivcMg30orcCbbmE9j2bEzy1g8rH0cYhPLbzpwf7b9S+JhhdhzkuFxZ0Od1qNYw52fQs1A0jBcZ5dKHzBrHiZyqpJrIp7IQhhGtg5XiBOcVUDave9uRRBqdMscrHzxUha95e3UFLuT8FA2Q9DBcFd5C+BVsONPkeixglm0aiXLHkYIkYIf8pOPlEoZ6yy2Ebib++ingy0ooXputgZVl8c+PFoRtOq9WTrBjXoZU9BMrprKiQKTgZJBDK8ylKEIoiuSHauKGvZhPgtPTiwsxcYa9POIDOpJpOjYva7OGP6EaYiqNQzCZceJvRET10A43r7G6nn+FquH193yHOQCjsQqT5XBbNQu2CSIhLqQpHzIKRABkYnO8C2ISTNB16gCCJzamllxrlYZbugHthFPtccBIFI656+Pw8Oj86wW+E18GvqCiVEyOdZAEZME/Q6bhKQMWDedr+QIOaBx+RUoGC/Z2BSEzOxhXgVAkZaaKgWyYdYQ1gU60hFhUD91LHhEFbkumsYvaLNoYVYtVNk81/Il++rl00ePScCOYabs/w0YFPcvW65goIVBShj2avyiE2PC2IHN4nqEtP4Q7ulFZ5kVS81XlMX9BbGiZwHVqAT/NGLpCs6/UI/OUM3Ym08FqeTus8IhvyM4Jf0tZQiwQ8CNKgtpzeKqLLBq8jthe+JVE0l7PJU4tvV64sWjIAmdeyQnUwha5/YRkrM72lfKdSvRcBdEV1MayA57b8iGzibnT40GuJdGa8cnwior0US+INHxuuEKeQFZHMsu8wjw6w2NCekMVgMNpWmJyaoq2QuFHqAUWypYH9xaMvazljpJwGzuYkdlZ59cktvyF4PJ4RiSYiJwV3qnOwhGaR9EhEtlUqgA0ZMEzghKv8t4FrMoau6Lfdvdrw3zMc62ubriD+DAQxfuKcJHGWnyAZSoeXg2/1csxQW3TZ46A+qUyqLH4JDwb15zJChJDwmxm1dY7s08GIAvKEQWlgZzKfeNwAtTqi19e2VuHZWa18iA1gcsyIQgA4vcgOQiz9pibHmgFQ6CCS6s5tsrhLp4o6Ydn0ln6oHnS0YrseMkVSlhMywut4O2z1EdrxwDiWD7LJTsP5m1FN+nVQFhckh4aGREA66UnXL8i3ldaz+T+9XwnkhqNTfEUXHBTqhC/zmEuctQVQnUaq3XAyqyLQqnEm4sXW9oemWuuHsNKHxMJEDN/7lIkR6KApkHaedl5vLl09M/e/okxtqvL7lTa20FLQ1mYba2O1TSfv5xb0FI4fnbtvB3LH+5+vTw43nPcoVt0155vjo539o72nOz/4I7hze13HxwfdNym8C7kvbUt2Iku1nRsWtmzZ6j4xsCuI2Gwv8UKhnLvutFpb/eA0K8tk9c+bGy9Pd3e73LdhmOdJHm/utUL2FnfON3dPb+/+2Jge82ZpHbsWubYGUkE4yaBLjqbUyNc7mpJUOexqEZ8oRqfUSQqIfpMmY3WmwMZnWG8XoZS7YUGWEHCz/NSYJ7LE/Y1sPriTLC7PRtExa61aBarGBFH3M7VjZUem467ubm/0p042N25ur42/eCuKMPnm/cvJwd7QnZtoIVUIDs7iBWRz/5eM0EtDRpLd5i+vn62/eS+6qcDnYb1DdG1391gpwwtN6JmD8aBMV0r/N363LaKDO3haX+7AjZWGCrnFnRJ4EYNrq+vXbjVupQoZZZQqCdgUk08jTxqSi8xnJIDzrtpJNn0ycl+50plS8/7O2sWyesYPHx9vr8xVvpsR4cFWMZFL67u8cdoqBsZIO/8TkzVKdKWm39wrQRqnfATe2/tIXEd2LbDQe2e8LB/dNBarYeX3X2LyzZXbonWulhD5QT+MQeQoQtPQhlP03I95sMFGYfXZ+FL3P/VuwkFSE+fxPAiRsmgHLOj9xSlDgZf1WhCXSB9PBxgd+3w4VnYQ3Zqa5OBfb7oyoJ/x56ena14z/enx2/fn+otbO22T4AY7GWwIbj5kdg29isflHySag4c5qx/+cjDhH18Vam347PpVyNNtQ7cKwebPo5MDDnbEjCxQtKcsDtdnhaEyPgSXqX8RTy1uK8VNVGeB/PVAjg4EK9sHqSoQsZ5m1Mdh8OBtDJEG8eKlJvMxQoQtfakgulNAGmOiy8KwfuGIsmAZDKAhNXIC0d0iTFC1QtP5B1aWqwSsVPeZXFK+Szrjoa0ap23C3oec56LJ4yQ/Groq4tl6GHygMOEJQiIC7Sl5VJTxeyN8ZR/DmPvta3CyojqpApCggOimLsmBNr0Xa3L76FRWY1aYZjxAFSoHsIM0JzA9f3tyZuTy3ML4QQ6eS2OZXHI5n7xR7ctIDNPAj4JYjckgOHK65bXQMVgryYA9Re+beCB0gTtMCeoKAqtPtOU1I+aiy1HxLIQO4+3UBoNgGTZ9QOLXgh/WoSiGmoQnprLuoiTM4ReuY/nZFSd5RnJU55eAl5EErZFNpLwLxMyAegoYe4Ltyboog7yTAQlTzdHClWofbQ3bz+dlkSSKDlauCDfJN7Z2bka1Yv8kSHsCD18whM+yTMsIJNvD/HQi3tSfB9n4U/pjZGpscUO1Huhd4xCmqrL05N8APYlnVZBDz2Vo9dLnnnQxiJBYqwugyz1wCfESAMTk3+B6RmqY31KFIf4WbRIBrk9L/UoGHUBKCHi1DTjVFpwS9QEcJ3Vs5RaMvnSJx4C7glKqlO9qtML3mAme32NUX4SGcjxRDWD5gLDmz5BGK/CdeU55RSLDEqTPSFCLPgDYREEEHG1P8EZtYml6vCMmRUZ4ADKiLq+B0YtYifoZx2hOAwZHRsOD3sWPKPiG8qsPi+a3eb9qnXUo8baB5D/43//36SBuXivAKN8wmpELiH1YIaEzC9mzSh+WKHNZ9Jj09QP9SUojMhYkCDlimVLRdWUvP2G3BKXgjV5eN5KDYMmZbCXsyajG3PmvF6MWSDEIC/TBwyaUASCoQ21qSErrVUbsYRssaUy/sXg6i0mTgPAH8ZxP7V507ToTmRy6OaqpmUc9IabMSCAtUZ+BzgmZLfDiYJdVWFLzne4U9i9tE+jBzjjFZNTBIDFgGUMv7p0uWP0gAYOlGhJ/1K+BDix/rA3xU1fM+3axujAh4WlXkFTKS+gC0LAB6pXg0jwffBheYBBgEZwaBhyygrOED2isToCpfJNWcBDOocEc240EF4OpmNXhmbFEzVUFYiKkRC6eByoVvVAUJFX6i/fvFhSQOYBRyfDyJupNNq1zVWaQDIbVfitPAxVNHAjeGjJ+Ia8mb2pD9m0OxcYK2TWwWO2hGKeOq9s9ci9Uxtvry+BNKwldHTnl4jREiCnHb3c3/z+D29P9gQSO0fCwc3n1epOvQ5LMWxnSBxarl5CNMyjqhtzRWedyOm0UD0k238fru/29g9bM2RIWth+/3B7uUKQ4/EL7NqSa3n4xvWtc2Jdyftks6gw5NpJ8w+P507TXw69wr3NDVMOWnxhnw2+wk3ha+P9NHNDrMkaHHqPbzW6asORCRRTY1fVxoEBopm0OgJnDVxPSMyJm0ajpptuDtZOGVCkLSCQCPD8LgcINk1GMPIdFo/Mlf+uPtjZslrUWpJ9S/BhsL7eQ3sPOmD+zJ6HzqsJ5genJD0/f/5y+egUHE3y2tPpkUUoW1c3t2R8rR+lJXWRwsODfsHa092RoLuJHYLf1PfQEFgcv7e29cOb3cOjg08fL9d2HGPv9rFHQbZQ//T45MrmjKuVNsSSBpsWUI0qh/LczgGZRW+vtDxZ78xBWamPJrMczJnmcBNiFwj7RnP2t16OdjZPdrcPti2+2j59Y4P1PT7qbq1WHeo7q2ts3e5e3tsHS/qoQKqORbof2C6qx3QdT4zkhpFvwsT0UtVlT3ZfaPjT4RQV22dMxcZuwY9+pHArHynz2FTGqILxHrVvxgss+q9bZUi+o9P9yEKOfAgr0NNZ3ZvTSjHVBxZuZONWB80eaXmIm+ykHBzssCHP/CsVVaNZqeNjzNs6Mvexsf7uLU3cdGfFu3enlkth+KGVY+4+m0hUvxrJkVLvPY+eOvaNTYxrmuHhvEZp3FHj64tFZ+y+eJGBomxywbMuqxgrn4JLDN8HtOLL4ifDPc3c5vcHqGLlmPZIwW/PhZsL6/CfmWM10ecnEnSrGqY+tbbhkr8KLe/iuT8cThyd1TXIS8DhsESrI7tXP1uMGyjw1bM0f34rqy+oFzpo5pwXbGElMy+Uo6vDMN0ADqpBX/i2+AqjvAWV4OAjDx74HoZ+8C0IcXhBuNo7jadWAHyYMJwCIJihZYooVp8XYdUCn3y1SmsguAYgZGwba7Ic3XMikB6C1eezQXkOWhFrCyib/JmeVf3RXAnuhVEsmlWdYR43ksWCo+hjkak2jH7SFMSEiY75zJBTHv5zyIx05CDQe5yUid6ai5CQnSpsaV+9qVanyLDM4IXbLMQa5oVVbArYELhQPvJVLuYjkgZNqwqy53g1zMHGSsbhpd1J2bxRCsLYR89bxhmNFZGEn8PDUS3gpvy8SaMYhpy6/LCAP5xymUCqnft45f8CKu0c6iJh0Qp+I/1JgZKM4iADmD9JmGqblERddX5P66nQN5hF6oGl1RimjFcxuSzlWX6rcR5efy18SEiL8pav/zHwWynPKuzXwJQeJ/0pQ+nVNcX8kjhmXX3LQ4jLlRyKmHuYYNX3yH+6d2r2n//hz//6L3/RakqMwBGWUsQRwOrwXL1eBWESl2dZkClJf1M+MHNQE1kNpDJH9UQaETfoxNuUo4grVZGYApQ4Bv7KN1V7HwQt12jCgpu0NBm946ZIZ+FRYON5ZgtR9E4lilbzgkZMmqhGyoKb/D69XYgNq4Wj0Q4gaDLAMIYQPaA+6Bx6q3qihTRGutyMMwAVkxLLwnjYh9wOexZDxG5NY7yTGBNjQ0UgFnxWWuHwHH8REJALslE4KgKhVH8c/FQUiox2+ljYCpSiuTZgFl58UwtJ0SaHLOxNBs9xf8jDwte647/4JGZN3p5kVZ0UkJe+L5YgwxJtMCd+LTI2UBY0xTS8MW1pMOrqieuUDT/c6ywQWBdN5rxmIcqYKJ43K4S+UY9QVa/i6lAWQ+pKhglZG40bp5a6OOon8tXQi8G8P+PUFJ+UmDzA4baYJeYHakF5iEuTgtKoRJ2ThfLsAK/mZnKIFej4w2zQMA8qiEtRnHzhDcYwog2jwUmD/VQKfxJKlYxVjGSlhcl0deRLMRqRyrnIVsEEm4uvxmSXSuQJRtPkX9onblD9NULpYc+KQFMRvFnGNpCmOv+M5sqALviLUFRg3DdE1duIDj1pyDB9V6sBd6D8h4kB3cbNO17RK1GSQWPPuw5t0XjducRWjY3eGcQ/Mrps3uDJUpzdo9Mj2FlybhaV2uwfGkOyHN+yHEfqb1wL6J837Q4wXHjr6BhLPg4ODf+JHN+8O81snAfa6pwby6/Xtw6e3+03bH91Z+mLRSRnX1z8+nB0ZH3Ry29fby/vXy6tENK/MJS9tvHb1+vj/R1RXIt3XgT6Tk+ybMFS7GUlzJ7Jb6cDkZvRvhQm+W6Kzo3tamWYT8Pc2vSMiBK+nFra1Do6nee6dHCDoXU4/gjL5W1D3kSxuizXzh4iFmPJL08Hc6+tcaTbrQ703Gfh7HGUAUI72+4WsLMBIi6sfXyz72B4wAZtfLa/+f52TFyQauvys4UojpanWMZ0DLwaqkes45gI2Lgmf+MSA2/de9VdbeItS1C2Nt8e7v3H//BHSre9vnlzf0O2tvBYk0Qvnh7rvVi8fumytjUN8wPV2tzeMTuSZpO3AcLizhRa/I52Gye8sHmauuIc1aNjj+sO89lNXddfLObaWr//pz+9/9Pb1OHi8uq3Xy8Q/t3v3qxun3/+eLlhq8OL7QKWJZtlsF7LBSHsjebbm5GCYntoEMQ0+Vd2NsxhF0xBBRs2KpvHcG5o0RXfQt0tDXpx/XNxjWDc0sFaawG8JXk8Oa8SojwnPScA3ppve3hoXmb2BtSNwUNmSrXFQqIimq8II22wyEfrhbfMUmFTOWZyNjcN/JvjtBfFAbUKH5/sf//uFBWK//DhnZHNJzc8HB0cH53CQEGO2BIgAxwNwUwnEB78s7qQbRO64ToUUJ0sz78wb2korkj3kK5CgfKFEX6Y+ljmQ4nbiQwWT3JxtS0yojQZUeTY2C6C+R1chABFcGpJ0HKz9xmOmYeGD3I34444jsSPEaXlNpVPCfKeXMhmS0k8jnvwQrIMgCtufLc/Xso3C+SWxoe7Cq/XlkiG3FSZBcHQX6fPdUQn5Gro3ZNaEOM56tTOJCw6GsyJSSWEE0XjqacBkUZBwhlMFWgvai6ntfJKNV6CDHegLJC7uFxphvOcg72cavJs7wxUpUFpzKFxHDNlugoYCBDGkFHKqRfHMhE7w9Vx0QC/PmJBeRwOA/qRl6VI8UolmZcLMXSH40khR21lQ3DNftdGLj7fqRj53OngQXt0A3W1p8mxYTvbA8hyYQuoqKNvfoMrGdfiYaTnoWTNwr0Q/U+r5MU03/CaBmt2DInByCVotTJLHJZMFYz9aUXPA6qABCtMNUO+zGlK8YPC8hwdHzhJghx8i/vjKBGqcvoih0rCcFzPwuoqSuXUEsCYNdT4xnepbiHHKy99HcAtYAMzpRvcInhCoAXP+SYlMuNX2hQtkFSdegcsKcdtL+Pw0I6FDQ7gWGrdQ2j1maqD42fRLaAWzpRhYfVSwldlK1Svr+oX9qpdxUEYeukh6ae9iC9vvxRUwmx2/JRx4Cy/fa1yrTeNaev2zsPd0//41782NqGIlxi34D14vIqmzufQPsVZpLLFefKrbSk1HmnRnEXe3GQ6qvWFTrlgmH2mC5FTUDnI9DehvFL6P/m28C6+oaVaIjBYqomKPG1ITz55cj/xStbkIvPwfuH/WNPE7fE+VSnbILZAntxjF9nd8FzxeuwKpHy1cZ44oMhWue/wlhWbPCzONyMfo6qOVxnM2ED4lHMZhF7kQQiDbXBefXfY5qfk9KD5wS91eKiqIMQsb4FLkKQxfZ2oHaVfFAdTFLe3SK7F0VRXWA9bRktiwPLQts1wADABTZFxhcYQMw9prEVkkugGREn5osVoE2fAxoA9c3D5iDIlnlDF+rwSMYSlMdnm9VLCqvCH/cDTK+MxUJdN4rA6pqNci4910wLhRlOli4MQVgKvqnFrsXPGz9KK4XsaA2f5B5mQgiee5mJkQYclxeoLMW9JRARrGHjqqi0ZziT7Is7KDm/BJGs5C7FGaq+WmSKNNGbxJaKQkXCW0bWE1vAkIHnD0boZWelpYVjMem3L81yhnbv7/1P1l12WLEuChpfMUHzoQt+mITF+098XLDGMZjQzPd194VBBMoOe1yLramlnVWbsCHdjMzf3cHCZD0lniI14R7hLP0SGkOjiud8DqqtwIZbOQaZQZ+UIuuEep5JSIDRHhq8CacfYxkRRjDfOMbxSR6Gq6VpDj+jHxtXItGTQ9KIVtFpTcmKTnTUb5tyt2x57bd3hO/vy0ZKzFkfCbF760cH24dtdLebdzZUTjzDpYCZThk5P9AE2zU65ckBXhG1cnTd1yx7qb96+2dp3esCRDnh5qwRWYr52v3946HgxRN1cWtprN6Hdp7Ub9Dxe3q5bDjzm9OVE6tvuqCu7JrHVSB/u7rw92Dq/uru4N6G8l+I6QR/PW+FKEtrySy8FTAmb9aw1UqMw0jWEndjpxFM2NEY+o8VNEGYb5kQpBNqmwdxG/ZscSuYaXaPyDNiph9J7ebk+KgD7Ozsyj/3dHdsWebS2W4rjeATU6jdgHp9mxegFmbsi1Jv7ZH7O2lWbb5o7boGqhRBvX+3f7++dOqTg8d5MIacH3F7deIfgRYeZFh2QZPCSKJDVlsRPBshlM1f3+gL28Fl/f7i3Zs3D7eWbt3v/4T/89k8/frYO++zi0hsGaxswwFrZ0bu3R17UmKwvst9eXhEGoxLkNLEkQqpSU0aOX1kZScpKyMml8Us89qrGbHt7Q+l3ra5t7evsrGPp3XfvDt4cHL09PvnkmOP7o921h+PtL5e33344+HJ2fX27YaGH6UxMudk7AK6au/98enW16zCB7W2qgWx3f9t+QKwZDtNu9Aw4s413WMqz/pqIYn4Oe95kitOaUWHDnFKodjtxoZHR75KZmDOkAi2MKwmJZagl35Vp9zNRwyx/+7UYZCi21WeuSWgUVqdiImLvi7k5+ejW2synNk6OyKJaxeQtysPq/ecvv1p7vW8Bg97N/SXPk6+S2725bzqGGxZjMBVb+vJEbHhJdbe3t5t/B3YJy/TC7vzkqtK4ISexd9PdctNS0uo3foRG0spQBSX+i37GWc9wujeTwxDQMsuxlm8ZLFCDJbcPkYHq2SJJmWILREUTxWoC5ibYaX/5GtbJjaJhnLEbtff+S5hoU5Au4VYbFn6GSHEGXKJTOGrjpKUmSTG99ZjMsRELYXKjtxnxXCov2nR/gtXCZTAAUxB5BeSyFx93avV8qV3ObuXnjaaLit2O2OEBQY+PZkqUV8xNoU/7uhSghZFnEkaOqvpRjstQUxDDYBpCu4BMEDwirhMEIHUWm9LD9JrWPOJMo8Yy6A55SwwPfgtUtjWjavZet83rMM4B9aCas0kYsYPwzAPd1UW265F/TXo6L1GIBzer4TFBjJGN3cRwIkpGyUfRJiAx/2mXR+DpfeSnRG8tcMaQlBwSkvTUreEo75O0JITkv3R+BEDXsTR4RTMRSUFtt62fpQPZWjIPyyiiqbOAYTxaqV5lfaTSsAiL6KFofocXL/idT0zM8FZZgs/QVGOXSoBLSgr+/+QACBxuBX++TLXMNcFhGm6ELdYbPT0YobatVuIbScyD8MV+JBWLakV6tdJijIw54cXOfMLmB20J8GuX0qPhaKECwXSz6G4BFQQ1k8MUQQ3Ucz0ROEPiOMH0g5ixx1zGRdG1TyoLvd+RIJCVc+Y4w+kCOvrLIys56L7mdeNWLXFMGyDkRP54k19z7NbAQTkM5OZi6Ti5hjAtDkxsLkxEcDRlq5XxZ+AuBaNw7ICPTJUKgjrRcqFu6BsuUrRvySAxgj//XvBUuo7fjAcNp8EGPaXQTXYyWIqiaC0lin7OowlfVOV2PCUUCHxYMNNZjKebXEntDF5NMOMfDrdU6o6mLVoRh9tipfuLy7nwnN2L0VMl6Y40EsICB/xCCU/ILpf4lUNOUCtyTRVPAosZbyFUNXqPfLDQQjrZHAero9O6ouEcPSjuY4iCwhdxA5Pw1FosuEAzYhX7er0xQwy1iIUhlQSkqmTPiVYQMFZk9HMwjkd1ewQycoIo4+csk3Arpp72r2A6amS5bINCg8MCGuJrBnzNmFgzSFh5aOOZvkJdhT5hEi6xXQAaZboJTo8UnXxPxZy24FKQ8gk12qdknRalh+jmI810Gl8l4o0E9CBZRznBqlxnwP3geEg1oLm/yNPtIdmvnleiT/cgokQT9cCRiinnaWBH1/J559Z6pLCbniV9MoxTsESHXGJEjmWRpgABAABJREFUUcwYEVgmqnsm84kqH5FV7sHWidFF76CZkDrZow8JNOCKGF+IxJaLLMd9fYW0HpakwSV6v8FQn5+OTFhJSYxwzwzno6NXF2efdnalVoZ72ePD0/XDmuTXYseV9auzi7VHw1tbVHL6+fxsrYUlsDrOyZrJPUP4hHB7Z9jWnCI5dsuEb814x/PD5vUVO7s3X+T2ljF8/stHi4nvLi4lYF61GCo8vzITxvkUDvRyFq9B9JvN7e0vN/dfzu+8oDCTvMa47Cpb9q6BhPEqMi4OdX11LefjXkbZqJNr9lagdyCEoZ1tCoiBbejsHbRrfj2bLx8ScQRXK5yl/o9uEWDzgce5ZxaQbTHtegR0GnPsK2uz6ftshyKd3bm5NOg/EYA3cW7nHPeGAFAJcQvBXZc5PNty3l7xWtPaeW/P9na3zj6fi8aWCpzdPuimtM/Qs+Ou2tKHneDQjv6bZqf4vrH2uw+v3mxvnp09PN9t3J4+/Xj2xx8t0th7ZXTYCOvm7nbbjRr+BNppzffXFD4zrLJPpkhQxl0153lgkWyarPrQEvEHK4K2N3dPzs5YErEYDRVXrOaYwYyt80/nv/n+eMNw/cPzzvrG+/fHr54eDZl//ny+r4P0+PR2f+thSx5vwO3h5LK3i4KK1oR0D/a2LWD2akm7fn39QO471vnokWpdLDZiwV4x6L7odyqUX9hhxp6PzXNofk+T2NN7Iix9b6h4ogjp2ALKby8R8jQpnnKYayPQtvhHv5cNFu+ClKMVc2i6zkDholYzkAUKoa+FV88rt1e3jpE7OtrTPyQBK0/Wd7d/+firwc7Xb15LiYDdPthyIPHl9fWr41fs4e7allSPZreZqkbVChwc7CVy5sqixJ9SvsZcc2rRoO59IbpwxRMm8ggNZMXCdB/dUTi18ZzGU4Sml0gjjICZe7vBVgjiRZdsPLfHy7gDPLOEAARPxM9G+Ho0wuiNolZ/4lCoSCVfmMxgifwFinKO6voNXJbt1rTigx66MhWMTNISRjzF74pdJRpQny7P8FisrtMVLw1gJSVxsIg9PphYmK412aMt2kZWSTbTtNVUM6/souvEyUn367OViCO1Bqs3TK1f6i09msg4INP4NrL2sLu3m7AXRY/QkJMII7kmWIxNQck4HYVaEzgL3MGBXRnVCyIzwCOO+Z5+SUBnyQpmpjWMkz+RIaxPGETLIlARohVu7euKel8qNqtODQzTI9HC7o5fmKrRIaw1c75vBEUkAbFAHb34jtSM7K9TXACJStC92Wg3oWHHDeIiknqnNnLb1kiV8C2PR8FwApVpLhQgobovL5FYgvI9jhu0lYGppwDniZjRY+ygeTIwDuorkzIIUjSqOct2wE3hAUn8VQ4k/OMJfKY0cvLRId4z9sawlWLoNZ85QtBUynHm4zF4bou+C6L8AlMDNWlP52Sp6LaiAUKJt2zJFT10kRACw0/TNeBjNQYKJi30O81pWGcjowQ0oL5eBGTEv5CH9njxlHcArSlHUrz3oMSr+jESzjHYxnbHKP5/xKjiUezMB0lTrfJk2LXKi7oKL9k8kMSfZOczVAVe+SwqbPFBsMpWv6aunGfeLcSgNstoWOwGrV1ClHc53C04YypQIzpqXAQ4mx+43X2m2KDkQsdw4fbwG4WgpVF3kLb09LKNbs5DBQmJPHnlwBtuEoWYouIwq2jllJzfwEXzUj4jkYxMG5+IS+srhmsy4AFCMNEiTyjMNmfaBoDJO0sPmiyW6VMKSYRL+e7HXu60aFdANOOW84M15qwAEEIVuxcX/pqIT62SFbAKH8murFG9esz1+V5Ek/EhI192j1zEghI4n5ytPDFW5LJUWaycyFuj0bFB98lo8ph0lsdUVYzMDWJksYBUHoK4KTgFPLNAWkM7+FzuoYPE0MB03cmCuKWgD2928eKuNRiKCg0QzGYa1A9w8xB6VDdA1XIfJAgTwlntRsYVroSXJGUGKJiueSQtxiEcN/O7QPPVeyMJeyO34i2N1E7QVxKLlzQ1NhQYIk3mE3qWhxhVEkDkLDyO+LNC/zKYhprusxMXGn7wEkS4mMeYTYYTjhFKvQuRt1kf08CbNDl6HHZjEKfq9rugmaGBGahefTYt0oW0ctFPWqlprCcphg7tYn3GiLoQGw1Hydqz4epENwFXSCZVhpH5ZRDe6gWI6nHV6SR6kitPFtHeXReD6npurd2cX5lsY8zy4vL65vpOot/k+I2Vy+tNyyh/+fX63bt90IA1qu5id9/F2tqFaeYbDxc3ew7fOjiQ0F2en2/t7KH57NcTB7ZLLW+vmhpksH3lzjjZ9tXFhXOzmq59f7dFmaurFzfPZ5d3TfTfscvjmlk969tb17fN/n9a3zm9evxy8/Dl6mH7WpiWWJAxAsw+0O4ifcx18TVt2/Z2L9jNidrZpoNeJWT/BXnJoEaw4XwseKtwtE8qVzfX3OrAkWVb29bsese6iS9ZSBMDaL4dHgkwEe3smNYCHvmTFVKJR0ebZqlb30AfzBi8oWspeE2su49WQDiErGlkh94DFE6fX78+MNYI7M7uqsORvUzYyaAeL+7ailRZTYt8R0vB0uHg7SyXjextr78+dG7y49He/rsPH65vrr58+vzm1dH2/uGfv5z+5eMn5rltzHx7u3cTMq9AOS2rRSk4ncV5AgBL1j3Ql1iVvW5u7uztyQZyvHqnHUnisIIt83c02w7wYlHkSUsdqrC6e3r/+H/8j//6u9989/po32Suu7MzW7ByaxOZNuyfs/L88afPr4zu3zXG2VpeK5qdZmCNARae1uXIMmzj8RAxSMP/7FwAYwRG/zcNons3tSXmrl4yQW+jc+BsmuKrkrO0LIc/6tNydiqol5Fz198b+++bi+x+AvnWzu6ZiUoZgcaPD05TQwr5RLmFm1302tapqzLBOhzYWj2/293qJY5NfyzUrt+4svbzLx9nyeWq1QK6i4S2+nxKYwKR9cGWEhwdHem1tinkveQ7X/MIh8EHOMfvpQeMmNeN1VXjx8hgyTHKSwUGX2bGo2IYwU4BpMEasaX1qSmrKo1f4DcxAT0DKKx2CUcKJD8gfHh+sUjoKFZz3CJkCf1LnoGEsOSOYtlSaTYkEGuKnL05LOYx4bKuhFzsGtm/iHSy5K4rUuzFe52cem0oaOhnib2CMBwVmua4ALgkW6MTFYtUgdDEQJqTswTzeZLTLBJIXE2JDkuSacY/6DVGte5z032tj6ANjnFNL4CGjCg31Uc17iyUDiMkKU1JkoO6kqgCPDISoyDDTpLvolA2gwPZJrTpappyxCrvt5o+qFXLxYifASMEpfMyhPRDrYnHUZ099IhrIa1/MfC0axP5ldEzB8VioxL9EUhy0b4rnfDoDUQKNZGEKXRMsv7M1o4dlsGsJUInC1nelpSMTxNDhksLmJkMOyhJK4o2szeGFhtjVLhIacMXYpQB5tmcyCwH0QUp5eGffykB+2ShxSGEopBbWQIp1Bclq74EkpTzkLG17vj6IvyMbfaODixwKBeNYCysowHjCIFsMRW2JsJlUVlR+VXSGXuOL5/Kknx6qmmm3pkMg2PXPiGvE1H7kvWNYEFo3CGeBvFEGBiRzjmr4ROvCnQvD5qHybB3rTP+uBBKSu4NbQpqKCc2BAActuRpMU+7v8w9C5w2IP6IQs1saMjyq1oxGcxsMuYiANJhK5Kw46lS5WCxpF6J32J1abxRIOpLkuCpUA9rJkr5oorWKvgjxgCAGTEMoKiTAc+FRz6wLEKIHQTP3SFj5B+KPtGajnncxLHF2nuCVGBjy1MXUTg3i0+TQU3dRFJxzGfyZcs8VJUqjgT8don0Iv60H/mfCkMuJEZlkgtsxLGYhqeLxYc4PCpmi3W8KXi0OyZBc4vz8D2GqGwxiIgGaSQoX0P11cNHgj2H3UMSD3WhI7DZVTdiKDPrk3xSpwyDMpnxOJQoxL0L3MM822q2ARoGDCzBGisAIrenpzKMAPJB10knLcYgImXcgIueucboeEQ6uMsbarc8WWqpoQh8HIgqOX4W2XzKyNEmA6E8kuBQp6R5eIJxiRRjBRVerA3BiJdgla7UHRDZo9UHEOWiclYDUx1vgZjzjJERj4Q+yZj1kI7A0VSM/6iYE2bokQHJYpfwioyGpNNCESqxjplman9VXrpmnJkUdjgWoUkiM69pJupKjZRUQeBI7is6iIZjT4g9/0/+DfdmDEFehBw2KJFPKbWvUSid6D4Xyg2nSH6NqcSJ2HEuQIs7YznSgnobZRngxHciA1TCZZxX1OxY2aa261dMP9ZD1lvTaESK2G/vHrezi3Ux2bwbc/0vrs6eH272zK6QYk3Xdm177e7qxoLUXkfIZb0RbsDw+e37V0zgdkPX5f7zp89eMuw7sNag653Tqez0fw28/YLWbU1jAH+lQQXp7cP17cWZmVzNFP9ob382QoFP66dfzO1fsc3lRdvt2bhGMuywMlvtPO2tG/zTiDfN3TA1YYgKRMrFGuJtrMI8AcHU2ExDOozhyrwgzerM9yVaM514zfQP24pKa6pfat6PDEwhk1HMUWFupunL/GX6rOPQFqRbG165elGgbyOZtsi4rkchKV9B2eZme5jc8wl36YI16RF5ZPHrzr7XqSmzDJaRPMi2nY9MWXcXN+bQH+1ggLIIc+3BQbnS961t2bv1sc0XMlD4YBrJPoU9Xd86pPbv//G7naZdP7z6cPj23W/+9f/zX23j5K2IVbZv3uyefbknR1NraByn+hImNSWBAYR1xiHbljR4m8fwZBWeUaOWRj+t/koSI5usp9UItdMEueLIAt3xXy+fNg8cMr26/fmCivkP6o+shH5jR6Pny9vrV2+Pdn44YjLl5tYW1/16sEhia/vA+xYSan7pirXC+nG9o+A30mMWsWV9g1dFvXXZPr+4ouQdPTFvaZZpUKTTmSt5Q0GDoTehQiQluhlO5mITJnjQuGdexhHQoFm5eaDp/LmmjMtNnFQ3Z6lYbsUfyiBmEb83D6QHINMXj3ScNvT37ja8Lio6bW5cnl9e3d78du/bg72jOxvfnl4cHO4fvDuQ7gsGHz99YiF7ewe0ySajAxyY0V/6OJEcePGtMD7Nv0anqZvuYbBoIzAgxjUWMYORiYKtMDZDbOaaVbo4MDEkFpRsAKs5Qhkc4fpTqVo0vJFerHKcLhpHiOGpOMV6Bh2Fq4vsME67LokUXfpak9ebB2yBEPThap5ITUqqCtHgcrrGQRqOUVgBoDAymBFW7kUkjdQUtN3JYZGDCMgUQzPJowfBIbWzrSU1DzYMxT49NGYn8qAp8qgM/4rOgFItXA7Y2wYV8aJ8z4mU5GeTH2UCNbv9uGkzg4XOeEp0BUZVfB0dIWyB0xBYUb2EQAGjbyFFvNCnMSr41qbzmxlBm5QBofWeis/5vs9gTIiQGWqFaHKXHiJP3BYnwQlupQgwYeN47owqExU45J1VxLIMb6ykFgdlfPPo+NPnXwkCCBRt6cFqZ9ts+Bap0/NkG8tTqF94zCVS74SBaT4CPrlXwkk+icLvaaD9BaFK6XHqIh5HtLRY/vKIJKqOKbqeRhnYkeOCLQmAM5MUpilP9woXIoITZEZilMSmCO4nQ09V7neajWCPoEnCKB4Hf7kzBKemsqMMFTrFMuwM5yVD6A76skYtzHxeogRrqpWPiLGoaJgmIHQsFmcREKndma6pvxGUdb9YxaLIBUiiWEwAQPWDG0a/MoOkNB3a4FcPlXM/8IF1pz6kr/G+tOwEO9rJg1x8rThGurAz9ulplhIujMfwkgKBk5fksHGaswAzKBbKInAUTf6FLzEcfxOxiO4ravUKFOheZKJS2MCMLzCDmE79Ic+58Hii2Qtd6kZKmXmhT3HVSdUd0GZIqwAVomD2ibav1zG+INXkwU0HuoZLZThxGGV+j8kiPTfwFYnIDlRoFuG6+v/FyimPFoUtGuN+8RycYXBkpXbim7gGMjgvEWTQjx0rbyCztf+JIFbhm/9RtUSHOqa04ilqEVDJ0bTfQxxwteWGG5XQLNFTgspJRqaoB5URJJbagBiibN/ZW3TXt4nlQmWbA6pR6cGCNqIvyCaZwT39qDKhHFuxDHTahbblJs8IWILjPVXFxRQLHdUmJeyImgVW9leCQjhEh6Rylsx9DBGZXwuTSm6guH5/woxIJOHRV+nEImoKxguelhep6Kjnk7JAUh6KemsxHdd6LK0xkOIIL2jwGThli/EQ5dkWbL5G3stQevL8Wj4dS5gS0NhSA3djkQgbEaWMF0saTbitAI4I1XX2WotLJgJ6AoEyIYQSoy9kjAGo6GsPNHVjzcpq2KuDRX8bPJYmUwh/nPGY5NYkNFlxBGokDXynh5Gz1+k1viu3UlITPex7Y+7L4cGurC3Vm/38aL7NrcXvr169Ov38aXXrwFb0R6+9ndASz3pNiwdsBXhzcX1l6xoTe6wNeL44vz09uehd2JrzknYOnB2wvmJakBk/vXS+Pr349At6L75c6NwZdJbTm3xkdjt2Vbfo1xlO8sONNXPEDRu3kb+t5Rk0GzPFqHdSXuM0OD/m7kz4m/bXT8UjuTYfahiMHNgQXRvt206ccxbbSKJuuc3dZf8meJgzI881U54IrTSQjLKBowMDhKsn5xd+G+KyXFgqS1Mko7fB62xYaSccayQO3jrOeO/jZxv9P12122nnEtBDiihQ8tw1o8HrTgpT3qEBr/bPLpyT0FCfeVBbR7v8F2sMxXjd3eUtyLJhkxVV1FU6ODgw4khEW3ubv/v21d988+podwf3Tm/78uXLP/zP/kf/6X///1g9Pd3bXrM//z2CvT6SXW/vGcg3l8Z7AP0LC8TJyJulXSlPGw1dcl/sYFzSr6+2v73rnSH9IJ6o5T6Mk6z4SLJtG5/G5k9x8vxoT9i3e0/2Adpcefyb33+P7Tp1T/UbZfRHR/ufzy5/eH98vG/foJMfT0s1LJxVy/wmQIGTfvANIwOGHKbplGvHr0ydeo2+0a+AKnDrNBrcqH0tRcvHEyxn3tjACQ1zCxHFJqwUxeU1SnxOGjQ/NQfSOrfEfpEiX5vWjoe40EKxUw91ChVVmH81iGM2VC/i1qw42d/fddbB7cdzsQR/x3vXVmwfvd73ruLy+rzj21ooYkHePceQt3WG1LojHah6ffZFsXqkHe7JwC/NdKYowPJn8YNb9hl3n3jwNWRFbrYn9FS2dqZq+udbNpVq/Z+Oq+kuEwpoTMklYgyoiecQFsamJzxVi/lwBWS6EIoSSAG2FkdJwxNLLu7v17xwhhaEOJRIgHs5WQQp2QFIJdAUHp6Yez99KwQF1qF4LM07FRQGs85AwPFDj2hhWrVvSzdmAvuQWoiW239tdhGTkFWX1JbTL00A/YWshscjdLkvKCgVl+D2xkPQjEo4WDW8qQGbDamwscIj3kFAQjN5ag4Lv+yKgYyWpCDTy0pjBFgMFlEhJjbdde/HLAdyl0gYHitCttyo1oB8cyIfIsuydbHnHjiF9HRcm5UAYdEqAZNItRRwIZTHzCRV5fLHWG74g6+mPp7SHQtj0l/e6hsyIq8AdXL2mR9Vx3Qsy2CMuFg9HF3QvsyToRpSi2W3Fr7EwKnjJo48ISunbCOgdoQDpvgMEgsQjYCzq6IAhy7uMY/oS84Jqt6vb0WTBVmS5NTD1AzeJShJszsJATEBju6spZZvUd9wWGohdwA2i0peYweETwLDCJJ6OhhTWwqe7KTgFl7F3EnIkw8hCu/uKekTwdPfAwwLqKeK2G/Bkjk8NT1+L3Ie6YYVojKl8bu+oWe6AZB136/SsJgCZ2kgEtqYMSzxrJDBDmXI31W2iJUAJMn81Kduc2VqFSPDJ6EOSXMHc5k1fKpDVJ2YCiTV4G6RUiLi2jGQMBWbi2AN2DaTxWOAVUHLzJVq8t6MAqCs8mOTS6bnd4gaMyo4dKZ9dMWbOxEcj6FztztlqoNr/AMB1Q3oZMgqpP0ALASNKAJY+InIyJzHPScm1wENeyrusYDQ3xB0E0i5id/+KT3SqejoJt9jEGFj+stGDcXoskk30VeBmVQEJHS+4HO5HzVNeCKUQgZBB1+xavSIsQ4l4Z0C7fPFqoboklQ6iKuM0q+XH5eKLNE8+kMxnYFojAAFNWCiHvdWmWXQFUhqRUpz9QxFDEtVofuEx5h6MRdx2abopwvBdheYdCoXhtqmMmgmCiEGtTiNeJXsXdDcnsQwei2zlE9IIOQczJe0oSAzJBKCyAsPHaAfY0iTxCS3BJRWpkymSQRA+To6M3ko7Iu4gBFKxykaCIlU0aXGLzn0NfZL9NGVHBNj0g3aItqXl6eCCXNPC3ivSksjxjxqG9IyvVQJy70Zs264hidJ6kdN9ylCa0oTAkYQTjvhndCjpYRR9XJ93jsF8qKsaCIvV8xdlsjSoC4tjsQaokCM9koenzzkc9N5IxZG4uPWvH+ALskpjM9FkHOdUtE+XhKREDWJOOp67ho99idB6mQntCU13Hu6v5HWHRrkflhxsOuldP9gzxj95aV55OsO6N1/Wrm4utnbW5cOIunGl5Nzmrw4s+2k+RomM9QUv3/7pqF0k6H3N8wQsxjg6vRUe84Qr05PzJb+oh2yusAkidObKyPnK/dXK08nZ9MHMG394fn09DrFbrpeM3TrNYBW3drQi8c7mTMxm1VgZ0gzeSajSpDGotjs090YT61OImhHGDu272zLCyVqphD0XoIanizw3ZlztUxjsQbBUxNPVo4O98+v9XpWDl6/vri8pFHLebfXNw8PnPO6em3Ly+v2uDeRiR7kNge7xr/tArl94+TfeWL6u9xWtOAjnZXsnUpN+KbjQp1XRd+O5j3YsRmiIpYxFFdEWP5s059rYyoYenw+3tq6sOLgxgY4T3t7jdt7FXOw9rRvz9KH65MvZhV5urJ5ePTxp9PL6/uffv3p+MM7Knl1cOAchd3dAxmprX0fn0yZYpCPVx3Z1g4nXNah0psHe5iE3ZadDSGsm3ck5a/ZR/26ZdcG3GdzSfQZITVj5/LGdkzXOyLG7c7VlaT6DM3/+MPRzv6mjosVL84vE7qvbuwrdsVDnAxgAvIP7w+kThe3dkFVP+uz09jBxsaeiQir61cSQ/rbdi708+n1lSF/mmVv7Xxj6fmVFUR8AjDSLsho8rgm053lhsTrdUdnFzJjlo3Bhpy1djr/xiMspCa+lfVrLay2fArh1UswwLONBv1DxNBqz7hZk6CMKXMcYDfNNSMUnTPZvB7p+YUeXEHMpp8X51dc4/jV4QOLuHFawMr63j6tnKfXBx1mUZk/5oBF2MLR8pXzijLI8RUjrLHxW1lXoSavRJpHS747iWwBk32riGBKUTCblwwYfptIgoMCYE2mQtOijUAWsMmlAkU5Ea9B+swNXW5P9FCNyJSJJG/zG7tNnPMJoguRdShrRD8igSMnwbXwFUfwlkBMsOcho68Ik/l6NtRDn4v6VrhCMCiR5mJpGWe8X2ysddBoT+GBP50f7Cg79Cy0IysIUdYEVMl9+TGZ6xrZs2uaa09R6UlWNMLLPGIeoCYIabA2L84vXQTLo3hf8sjA+odMAEYY3RhVYDbcULN3KHJh7e+celk/Q/K/5IsGuYzNJ4HhWXQspPtNEXgBR4fzfnd3R4lrS4WWwSjCGa5Qwj3DmkApbho1OuKl7saFEEeJ+rCpKcUpM0pxt6G6Zj0V9GlnmK4eiS/UA4xxj8bkGu+jixqUxW7T3DCpKcGtobLFFHta8wSMZmhS1aVRw3a4ojeQpdRgAtNwZ9n22H6KeOEzGyAYn3EJWDTEacHtWZ827uI7mhMdyObgidgcjvSUARxSV430TFMew2N/4Hiocg8SdkocoSVe33087qfW88lG+wpMEz/uNo/coSN0llYlqKwWXhCXT7Sqz0IiBci++ZeBv8y2yGyBUYZwqoXgkVLFNPaLur8KO7TpCpZhoGjw0lsGOu1MP42uw5h+goA0qHEq3xjaklhEDLXFt2gsnBI+9qMyUmOjPwvFfs9l+gC/fGOx/ILVFExwRUjCLJC87JqVjJCMDKmXC4jGZfxGGJCLUY2AInhUlpT+KkU85ryjlyj/WhEweBdOwfkrUzSBHYjGrqZAeKM2Cr8yFTGTLbhPHFkuWOUi3V84z1YRqs4CK3KTLDdTNqcb+dJZMvW0wtNf5zxuOGwI56gZHch6BcQxkTGmKBj1+BO4BUK9N0Sn5xFNX1leDDZYUoMUzPoJiU/MjdqBE8ZRZxxJzRv5CK4IqMoQnwNPEKYPHThF6ngU2XPBfoBV5oUYhbGZSzc2T++1u8tTyKqS/vhsDOp92h7QLa3sqNYl4GxSbcODRibAKViPeLGMEr8ZzIKXW6Czut0uEMgwjHyo5VM3pl2QE1rf00MdXwqZzr3vKE1WrAJfDff5NNKTvPSMJQFg/tXT1HQfJponCgUYb07S6E4oFFC4QBYBqjIjqgnFhPUCDSZG5gNWgVQB5vTo6Af8lDknMbsaKAQoQIIca3Ud8luQ/VcgufbVP3bfcjA+D4RaxcoUGiGaEjQUCLJYCQufQ3NmA6C7RrJT2cyFlcOZtg7iVB5rD2W8D6qBgpP5iuL6dBPUXNnYce3x9uLqThb/xdxly3bNW0lQNDWebxjeoWDfHNIDmiXTiDf1/+rq4unq0tlhG8dmv7fB5a5jotbWrs5O1b9oXOzJPpWMwWi3qSqGwr98eTq9ubcBTBnulXOBnfhm3aTVfSb9P308u5IO3jzM7u9OBHhs4Ir2Hq+EU0m/f09m8qTPdbvi3BuvzpBY0vDFXaSHvpc9oD+DNSm/AMwujPPWiho+Xm/+zx4On1dMqpdL7ZuW83h/dfHF9PrD12+MJB+83nu9s7pzsC3n3Ntcu7x7/OnxjOFI2mnLXj97hs03N25PLl9tb35zvPfzL19evdv/fP3w6cL0spXbGycDbNkXH0aUMwbrQ/3ZeeXMq42z67UWVa+tfD49Od7f3F3ZcZ4UFlnR/vaW9bIGnQlkf8/A/A1zPdjf+rvvPpx++XT2X87ev3qt83Z0cHR8sH1xdm56y9GrN28Oj67Xr97s713ey37uL85udu3ltPfq0+eTjjFcsYJQyibl760PTfE88768X9m15f3KxrmtEudUBJm5lbqMdntv8/6mfRH291e35pXL9vae4XDTYy4vpT13H17t39w6yPhm4/n28NAA+NZ/+aePf/+b97/53e9Pf/p53WHR+/vXN/f2IKKh1ZXdzxdXEBtpeLhd2XeygNdNe+sXxvyveeLz7hg3kzdR695go3lKttxf0ujSO+7j/RW9Zfb5JDfVx8iV6pNTs/4Ai276lmNELcGv6ym1rNWjsDZWYhXy3+ry0hoA/yenyWeZersmOFnZ8u6GeKw+5+BWsd8/3OaGkPNN3YA///jFJLeL8/vLS2/YREX75G7+y3/7k47B8fHhwdEBlE4O3ny2aZIwutZWy7MZNCIZqhCEYHRxfJMZeOtCkVtFu+ir1cSs30NjLh+97Fl5fTvL8fL04kOBrnG2ohxSplQtVK1pNRoxASoPKaYMqIApUqLWyxEibS5HCXQlekI21SAXj+hiRhxhLEtGlTKVKGJGLvEPUwVeJJAU9xPfxbIlL1dgsIceiuFruFZhad0YyAyrQ0/4lJJKliCIC8/SGZpiE3LcRWpPlkiQxBbhqYUX7YgKhMMYlG1WYDAqouLw3rfaGqsp9Pa46s0ch95QPT0vcptWaV6/D9eO6DHENphDXKNZLp7kRYTGHCZtU2RS/CSocaAESEZEE5BJgT27NQkiaW1aSaJHPwLT1lRF1VJz7ZCast7lJYAv9RyqG4m0VsNSMzTyWwQWfT5j4v1KndSUzhMdOrMHsp2MZUBqm2sNxzEyrUEBScplBzjNxeblWJvDaZHnNQJhKlmh3rdr0gOipFBHfxEpAAckikhh6SANfQGJrkwsS0iYzC+BDcNwThKVvjwTO7E7eQtyeGUULnAX2PEpIZkJrl6z1EFCVMDB6x1dQfsrxjGk6cGKKi9II3s+Q1VXQMIojNQQMu3gDUDPsuMgz//sHImprTtZZU+/FsdHCEsLp5ba0x/LFlJHRjPsqpDlATHGBlojBX6nAAikB0s0m8HlcLivwHxyvCGze+GONU8CFVxsdQ2dYmPDw97cXHhXKv/CrMrUVnvq3sLkYu0ZZxuQIFvQSV8GDO/IAWF+D8tRM8Rmustn7iA3UxyiR7BgIZ5QQlSV4WiALAJ8qfy1cH/HGGIw2hLKooEpGZDSm9I2ukgT+V3F2pJZE0E0SMy+CWWE1G+dSK5bSRAqnZlMAO1N2nRhl07qEFoPQqWF6BSD+bHjJALxQlGaTVjIAVQBbmqwUmkQC0hKFz4KncW6ctCSJOqZ8rLPkTtCUkZhHcsuVBG3x1xKW5ELmps+IpH1f2UQBSNVEqlampmFMPxhEl7oelBvm1cIO91vNxX6QWsYEzGxVAMWYc51Yq17A0EDr6WnWoLEpnoRYWlRJmbhVGwVmEI08MWHVLLIf7wXKxGT4iMLkMiqTOEgSY7F97fycYkwjyva49KCxDh4hUIFFNIUgVnuN0Byy7FyxUqa5xM72v5Et8T6l2GttI+XXpiIiYtBJ7GYjZgSj4jxuL16CIk1ZLixNYMcKAMZHU2O9NgkZmf9kkMm7msZC3W8GED+4K365gCvS02dku6YAye5ZW1jFoZqyk7oRnUPbCSTmnBneneQG8tJZIiv5VhwsTRwMngZMjgBAXAIo0kCnKauPMns5YMD60tXb+6uEGKffoN9N0622t4ClqK9PL68uHLy7PHhm84PMCV+c+3w1d7KfQsqpFsOITja9wLXXAgZ46qtEY3unp1caL+uLm+t8W3+iJnc9ys2Hjq/tvWQQJKgiODnL7fXztC0bf+9uSqWehfQE86GYfLm+lib63xdnnxsSv6ytbxB5M0dZlYik2G1voWDXWtKRwuarGyWKRBtSdXD9VV7vEgOHDdr8UE9oDqOz+b5/83vP3z5dGKPy/2NTadbOVNhZ3vrmw/fCA8///yn1XVnoG28OTq41Mm1bMDsDntrbqyYd/P+m1d2+bRA9psPRydnF7az2dtYPX90Mtfe1cXZRsds1TQaRGcMdGCCgEz77PS0GT9bNsbRlbDtu3Hk+6YiOY3Lgtk9R/y2qb9ty/Y3Nw72t03NWt182jvY/+Nf/vz2+M3+kaH3PVkmu3z/9vDV21c5r9Hq26fX29tiwdmmfvX1xtru/tbOpQUaKczY/6oh/C/nl3uGt9ecSOAV4I5+dGP20pC5mYOJkOymSTjSXm0/hdRnMqpvk/0rBzlb1MtN1je+XD79+ZebV7v32044PrvZ2dv21mhz9fHtu4M//3ThkN+t3a3ff3u0/fHqsyW4K4/n3jA9rZ3fPFytPHqb8c3bw8Nd87nXPp+fkgKtUaDpT1zJ4V/abIaaq2XL+OOrneKZt61yWE5A84VZ8W7WKtcIiWmR20AmHmYfIaapBygtKVqAM+bCKYK/hNZ8LbBKyfh1JFbbahZkXkNr+eJED29DSceRCE1Ffzq/fLD3q+Xj2xteim1tHL06tqETmXpjBpyZOltP22aqHRweQB2pELJJLveSe8UXnj3FkgJ6sRB5zvJ9LSqya80H5/U9CA2OFNj8j6yyFmUmxemFqpgzuXFYisBz1KOKVZkXHTlKbU0QJh4OmJkvnhAmvBPcsOzrgsiTgtIQkGkUTOa18BK942t0pBoBFj91ljpzmdtGrg8XQK6GQ3zWGBe7fIpvJZfG/uEoSe1XxWk73YoXM8IFZjTFSG1lT8iqJtX8GeuMcRQi/E6r5JgTb1eMFUx1gz6hU71RAzzWwTBeMyF02oL2o1OxnHuaP9fQQTrqqG19gV8sXQI7YXWvloAOm0faZDCQkZdpZa5D7ZJLGAiawI79qYXyaWVUe36+PLsUiaa8r0gLr2IvMs/EKbTODFzLo1rnSRbVw9GIuvZ0qIvTRTgEFtgZ5BqTSYoL/MQfBv/IrQ0k0qKf0C3p+IsEptUPifA0LQpJj2kql2GN2kr3CadNLECkNSrnUqRhuRFUTAmpYZkmm4THAkJH1flBjXJCUF0TTkmocudR52SaMATn8z64yhImc5g7isOGEKNVCX78QjFDSyBAIVygcnRHbI3EdH+8uxG68M3nhfFIA5ChgzVSWqyyri/hRnO0pBcE5RJzmcpeZJKt9jU6YdaeOmHHWe+N5iib5fvlfz7rd9eY6H6RqDQjQ0oX0R02RXQLt+tslNRpkpXzoCKDZLAvJADrNiAgS43Gt14KvuScaiwamOwUCGINUBjVjox0y7UXmVQcYZEBa87JSmmc1qbmVMxsiNcMWMWmTFyOxiqfRQzkmK/zU68JSB/P9MOFArtdhX1u4s79GfwcDodhT1CGhIjNU0DK8n31D/YRJBqxr1h3M6NqUZQ2oXGcBlnjZICNuJEOGbpoN6n1GduK6L4nDf9IPVtTplGnXvTD3Vqx1DRmERktaxPssOexMkpyDMYEQm4wGlVflZhxJ+tnmgX0JS0TLwoWSVuHu1FeQHydqB1FMRObBUMJpmRmZqeNOkZAyWSkvwzDUE0cJIdUEu+EMzDdVRJVaEZStxvoXUQMT4lyc+uRgOtpC92ZYlk/GjINPZOZcxkLaFtcCLDS7qIDJJEMcgMnqG6HE4hrAUdVro3LpoghHePEMjop9lkpha6xMzzkJFFNOEsXqF6a26lA4JA9ECAUPrU82ZmHsVuhLnwmyw8UT880F7sENoEUiKtPKT6zk0QYU+JL29lASJEuG6hYlGcDmT4Gjex44G7tillk5nkTkbYtYWhRM0J4zcoY8oimYL1oYaEQ6QGMNZmNpzOZLeIMgqpu0L8muscJPzUVQMRxsGRFNcbTMdP2Gzhv9nDuip62huAIrMiQZ0dTycxE6jVpuKgLbktV230+9VGKoWhR/fTi9mCHdvB9awBfEixLZhJWrm5uSzjVPr+5uHu4KdeUUIp3p1/8sp2Ks6Ya1bW359p2ade2bRkdIPXxUtqvyXDma8F7xYwI3rxu3gtTdCgYm72THje29Lhz2FHDpze6IjrInuiEaSuKpySaYLlM1k11LY7wgqKmni2mf+Sb8C1T8MrcpF0cOcPM7PybrZ0NS3VXn6xd3r1+vtKEbe5t/+5vvrEt0P2VWf6rezvfX5zfnd/cvX61+Xpz5/zz9fX5pQOyvvvNN9cXZ7b7v3aeQS+xNo5fv7r/IkO2yyZrELk2zaG8epRQjpHQ5crKXz5+Pr+yd4yceddiCSt9JS9nd7bO13Y+71usbSsdZwzvrT/eXJtJfnyw+/7da3aybkD5af379+9YhcW1b14f2dYQg29e7elN/fLLJ22fmfA7B2u3DztHN/fbuzufTq8l/o4t0MficlYriP6ihBnzpmUd2JNf1+ujZQMa7C323gZAN63a3NrdNCRpnhfCbQhlES+VsyU78xCuAdPr+7ufvpyvOPj4v3/62+8OLDb4l//65ejYko/tw/d7D5eP3+68/vXXE2tF9GwsDP589vnb1webZ9entIPOXr6sfDr1ymL39eHGt16dWOLdIpbnX784SeD54+Xtqk10mlVY2FttUL73k7D7OsONRShvhzLiomJzVVFeYjXeK5ln1V54cBvBnf3nvZlGppK1TNucyzecwT1lBcqMv5tWtFlMAEwxU65dbbNI74sOdtS24xGPs8f8wY4x/22+qH90eXFuiYf8256wvVxbXbGlqvnai/Xl17PLZD44Q+mIKazJC/PuWMObXzBGz+SjUUr1pc5t5eQxO6s/89LUNVjO4gEXf8w2IQDePZnrarOYJq+CsdYjLotd0BWxkwaEExknkM6NwqMGMmm3frehHwKdWFqjRtoRjKgCQ2DjywirteMD2Z16TjV0KSViysNbDru85FYAVuk2icEY8cIk7XDQeWOAeKFe9Zy2AaxGbShX4UFbCwiCcQAIuXKTLTHj33SuAIRXsIUVBEFXYUHY5/bpTlyOzeGRlF8CeAZhBc1OZxcqPcIhZ0CylnIgt7F/R4gaF0MSGnyicFu4GOEhNbapo3agnBJPuh9LalKzRSKq+5RjT5OaXGTVUkJuOUizN1zPy3YcEWn3+/BQDXgYwxM9zDgaeuYzKWjgURR/cQ2NcgmQ4mW904Kn+7F8T5VXlKUVdX0m31LVt6AqV2qVtBGDreglkRECUoFVwiMowHc5LQ8KOinS+KnVWbTDYHDKwhkDsZGLj/JExPqmyctagl2LHTcEUqerqdd6/PWUfMAIdZNX50DDchvcvQgTerO5FHbW+SLPyJg+EmMbqgGORNhxW3PZSEeoR14jFtaIF/JJSpVPkJNpD81Nl1o0MunMJBPloK3nBKQLFeRXIE9+DGHaGxEBiLAFW4YxMkkCkoEmAqgB9chUilCrXi5BwmVHZZvR4R06DsBRHZaEP0nV+HEEVz4tlWWNPgKe0ocZACNwLNNFNlCV/vtKyMirhFtdYA2QAmbC1shO/jAcTaq9xIr5jo2sGQ9RETq3oyp03Uuwo0io+jo2ANVkQ/RYygRA1JSwVT46fMaylnGNga1KIWO5BkCFxZaUTZ2LylwvEJrPAJQ4U1Mx0hmljBA9aSWu+QdXVzczXBgFQc/zkeSb0l9JGboLRm5LSYbcRdlxMgX5MhIIH/84WkRg3kHY6wZ01O5XohMi8uVqWeoAV4agQTOwobrC7qePNLLUi+MXr46hIgdCZTNJXFtSythbcqVBd5ML+u2DpjGU3hswRmCLGxMooZ2OJYanc0aIBayQq1iURn5mTapesE4bUzwaeRpmkNNPd4WTVqdPI0x8HkfpsoU0SWbixtKxidREO4y5SNSEUKE4Xkh2yw8HAF9xWgMWMcEv/25/MRFZ45p4DTYk3uIEINSIYEI2CFsATSn9U7fukHkpM48WXeoiANh8AFGm01jeWmSsjmDUbk5l26OKfCzWaqgQ6jbK+gBJwuk0+mHXydFgyGFn2/JK1NxVLj2npASYqHEU8H6TYbS3NvHFLTOkOI58Mhf0tEYAKIevpW9ZzTpXio1TlVVIoBuJwbA4HNJaF3J7sSvZsDTeoELHJJkcz04kYcKlAaHV1cP9HSOOiNFbMPDNviTBH0+e9378+Pqtpb2m7WyZEGJrIAygUANj+F6Qb5/59a29o1fnH39lDvuH271jW1/9cn5zdv9sBrkd863saB7nzs6uyfHP5oTY9uJ5b9+g9PqlSRdFNcLYNLL+dKub0TkA8vtzhxQbXkOz+R86Ad57bBktpiAydXpu5kQAHDlFPD7NFAxG26CjHwLY3DYFxSpPGSUlO6ZnvWkbO5sXl6fHR/YsfX2wt3V4dPy7P3x7e3pxsd4i729/+4ez07PNjZPNo62s+1LzpktjcOl5fXfv+uxsZ3vXbKaTi/PNVgzUZ9k1NcTRvHs2ML013G4/T8PG4ihFtKcWvjtsyLQTq0VVMj3mM3o6HHlN68WS7Ti6ZschXDw92Yvp2bEMtmb19be/+e7zrydHewfWAhu1u745IYbdnb1DfaZ7rwjWd1/vfPz15z3rDXoptOkYrwT1/Pyd8faD3R9//plJs7mjgwP9KFuNSvGN71NiHSTu5ORf661v7mxOilf5jZcGPLvGWgR7tkp4047sUnCrB4x8f756XP1ob6bb4/db7441S1f/5f/9l2+/0ZmyK9Hrn366Or3++NqRZEd7hs83js2ev7NOxLuKp40dZvXnL1ePv5wKLe/fHO/vcV8TeSxKps9747MH2zv1cxtPmc5uHNUn3Vh1YrG8rAjNI7RwvMl388OWsXB9TRNlLMpouDWpMwiu6oqP5a0c1LVWlZM2QhNk5hGTcFsd4RUJs/FaRLe2ALqxqm9Gg3s7doi62bfp0tbWnk2UdjbOmcnqweGrV2Rl7P/t2z0u4z3RwdGhjLygM1m4eDLt6CAaH2XfRd35KFPzUHIDf85Ed5TvHrYwbftZLLhGcOniszBYD59H+90mMGIjXAX82mqfgvyEFEEAHEBjeQYsimzdLAzWs6tPsgRA+b1RgzL7ydsmP2jgqNqxAnPBrovaofnnWfGW+CaGt44CJmmKP3USuibJpY2veVlbMxw6RQI0HEEnJ0s7DMwjxhkCnyk3F7Xovi2tz9LchAhSIX7U6qYKZCnPRFJPmXD/+/FkbEFbzKpeeKxM0XYZVEVMAlfMH6LFUawVjYQf0DIhovO8Ziji+oFfhCYHdKABg8mzHaRqMvqaKxXS1fdViIUgh6qFwlREe64Wg5Y81J5OBqkwU6fZzKQWqv6DYhCgcrGd2sTE4MlkQtkHeDNWVZWaADGfhaepSKvRGfFGTMyOOt1xqfYIJGIUluMljvkFIdsQSN3XV4+twKheo0a+6OlOTWLBuZa3/lv3Nm363GceJ/PY930gDEe1Zj4Ffg2r1Qs+iQjc8fREFJrJYeABqvyGuHogviNX7AjCjIlVss5W8SELHy7d86Ej5i2YWOEDZSoe3DD5Cwf5J8Ho9BeS2uvhrva97I45pdXR5qgzsNO9rNjS1EZs1JMXDYxmh9SvJcUtENRCb/4SGT4ZW6jzpsyZuQ1V1jSTIevKZTxFWo+RkZZpKpNdUuF0UEhJuV3MMH9JJuhjZoMnFmhkURD7TG75wovvRMPIy02kjpTGj1C9mF+6GvVAHTnxzW77G+IezYU/GcM4QL24bqtbgEi4BRwumfOyzm4ueCEbWU+xkcVXPMMW3EpyqdmUXJUUNzKE7qXEgNOgAhFv4CvnC2iLX+lY+JifnCQz/YUNRcYtgxTniXWIUzmHzb7pu05k1pFVgDnFxoAqUUe2sBjI8RCSXWxRrcXxejsTSaPOIUysJ6YieWEN9MLKUqb7WjG38vRnaxjZcRDsq729aVHfEJiFgUQW9D5PYxbZgxGwHJsAApvG+gQ/4LkBIPElLmjQGsYusQZiWSGoGfOVAOJr5jYob8TCVIEkMxWnfDBROtP+MJM/hbFWpx11epYeAMl1XRbjoiXasI8G5XlpcVBdDoz5BBUQ0Vo5llseYFKFZAEcZmo4PZMdUxtXiakUn3MiLE7yhwlG4+eEhdnhAmyeH2dCQw6EJ3SKxS98JZwp02DV3C+65RujRI80Yzgi/PIJ/jRNiDI+GEGIksPg4uppyp1wTbuSTealNQMGROuXXl4BWGM84zTM1SJa1yPDkWDWgpakBrHqyMBJjLpLOlHtoz/Q5CUUhkUeUEx6NG3DXyGEzNcNejvl9O7x9vLcrjhPDuY1LN3eQeufPn2yvTyTutSHvV89/Xh1fHywf7Dn2KrVrV2bAN3d3kp+D/ZfnXw+9S787vn+z3/5I99kzyxHRqWzYR2oiR07GyuOFD6/ae3HmwMT3Z9ND5GI2q6FE5oUbjv8qzs7ReZc7VanS3Bzdykxqkc8dLZdSeepGF4yGcPQbZkQofFZciDCFcOfjboXG6dzZTTUCH3zSu4sKrCTaaE6w3tcsYDBClVz1f/m97/VndROba8/3Z6dXF/f/dO//Jf/+f/sf+EFwekf/xX6tRtvFdbeHW/pKPz88fzzx9ONpzXn+D7c6NBYuJrtSeINZZ/dts5B3kwFdClppRfTWpiu1yYOjHKG1MnNLf3a9OjJaH1ryXvDvrtdaDC7bW9j5/Wrg3dvjn78l//P4d6GA6n29o9+/PlWP/Q3P7z+8N1bc811jf6f//F///7DD/sHdtpc+3RzeXR4fHt59+pof3//+aefT+9v7mx2ZDXth7evZOzetpjFfzkdLCfaGp8z28h7V68sWp7MEg1hlmARkZclDmvzAmTb4t/L2xt61FPw5oJx1mLp0q6v/vrlzDup80sLOh5/eL37zZtj8cj8Kgc5v5a03D/97e/N8lm9uPAiYv3L6cWHd0e20vzzj6f6YJcyktUNmx6xaL3Ii59POQNlsVlE2HFf72h9U3Tm/DJ1G+ysSwnyf1NrrAJh9POiX7NB76jTkvCamQC2/mCukfA0rQyHFmsKAiyk1s537uiiWOTeOEouaEJ8nSVpBP/VF7B4g7nu2D+3geSr64fjg72zU+c/X3/4N99466oKp9PLPr+63z6/YnIEfnpy+v1vvn39+tX52bn47UwGXpqL6WpN9IuGoaDQNFlhGa27wRuvnQBVyJjgwEQJHIPcmp0DFStKllWUqbDlAgCzmeHa6mF8cpGBFzr8E2cNl6sarzIMTwtAs/bDb0NOSTB/ARm2ris8iPhVobEQ5z1bLxJN1MAR4s0D7mt8lYD6gOyynH4BGDo0Vh/AQnvjQAyp95P0aBlUuid2vhtd3h929o4KyNaIYIhUCqQFM9DAiU7UIxNV/Y7YAp0vUIifmseFBffdqe/aGlNmUIcnQif7iYeVTW/VxJOoaDCrviMaGooYSRaV24KCubKMonctdR0nMsquXmTFUtMIGNil8SQQs0M2452ksSNfkOQrUBqXKEZ5cTxQdYSmD+C2TynWC/j0JXH1GyXsh0RJGhsqE2AzEazhSf490C7N29PyB/8IaW4vOWLC5K0wKhoPIxBwEBDt3YkuH60GeRMgqsSFoMz66TS4NOUavVhGdPoZG5A8lEUs/OJUZ8hjgUMBP8QKMjhazxwVF/3KR1yI6cjyIiXZxR0KqZuPa0ZFljx3EfliWcs+X3yMwLPPZpTFNM7cQTmUkC2s4VQZjxA/kgc1wfZ7MSrlhnUwIEaAwj4BrHldtDmSn3KLpHyPzhHoglEV34DtD3JGpou0F8MAWhFgezg0VMVPovHucNs4Qt/GNfLfkp+YUnGBMFXVzQHClZYL5UHARO3/wKoD504fvPdoNA5xNERY3qTe2Ooi7xQ6kGJjqiYHKIZIv3yCpPQSyr5yC1d0Dmq2t+R1MbZgyXzUYlPjfQEAs6BHEozHw+EFSdlhpDJpT6f8C21JLFHmSi6Wkoh0B9kxn0JHDsp4EPbpcUYyNZdaE1zIp2GoZo5HzawrhnOw0Fdm7oAYsdGksvsCHOKWCTaDL4GJGBPQa0lqojImUo3nhq+qCMw4TDC6DxGfEW4A4QCG07R3o8VeMkwh5dSLwkVMmq12/3yp/3UxEDXHEx4i2l8CXQj2OyG4N2LxNYhjmzCUyedgVREbDT4ZD5b2HR0dXlrpJnRu1xSDZrAVkXDk6YVmR+RY/WmCUNsaLsqOY2w1clBRX90nDfeK/CM9f4fAKETqBNlInedIjDZ/fPWUuPxtNumMAdXQD9jidU8UlGmLIzUqeBBSqZUkx+JjOCyRny2qUaZICwiTZUxHTpD1iVwAxuCyuSHMgCyFolAB9ULBZhJVvxLa+N9IbyEt1rJFEht3hVitGB8Ju4DGr1y6tqFPNGWlXWNvGTMwizWFpcQCmftj7qTyaJgtFJHRf9VpIf8ljtEUqnxmOPlFIPZVF/IWwx6B18/J/w1/FlO3KdXaUzYrWe4AsKbfPxARgo6PXnlRIE+m/mZrPz2ffj7DDrETYy+S7p4/nX7WTMrazPpwCBVW9rb3zPXxYsDz6/Ob/c11R0TxFwdOHG6saAru728vLh72D3auHh9Pbx4+nz9cOeScWGTvtmJ8XHlYZ+cRUS/fxCErfK0GaOTGuH+LQCZHgKKXxeSOpP6tPBnABkIBrzikAtvbBw8PNvpkJ1YA2BRI9Zs3h2+2Vw848d7xweenO1PhN2+b3r3/3bur87Of//zL33//w9XnEyuW7y4vdncODo72H+5vZEmyZ32f7b2Dn/7y+aMpTva/P34lPbBKgawsX715NEdoA+EoMtnKRH9j25Sehs0DWVlz2IFBcF2g5605ZsuA5crzK5v42G+/faUev3tzJI8/ONx69+/+/ea2FQVbRs2/e/9avt6UKUcrvPrmv/+XL3/4u//J1lp786ysXO86rjZJCm733kN476Qlrecjm7aO48Gg9bapO4bXXx/t6T9RXe1tm2m23w4fX1vfmqPBhFQHAtzZPckLmGtnRFiusL1+rZ9Dv7WDegIkufbZW4lb4W71+7cHNw/r//mPV795s7XntLdV2wE9vDFmbn2wYav9/X/+4y8He3vn59fHhzuPR+Y+OSGMwh5e7e+enNqVPKVRG6Olsr29HRHW3CrfbNy0baVFBxQ8bOshNbc7dxCUkueYugsezkJM3DdQyz10TyhYsppjKO3PBJxiSbX9Kwz4NiFrHDgY+ee4m2Q6U5NJzGqUJprbv+juy+n2riXz23/+6dP7VweEd3Z6yX5Yu7bg6NB7gfV3H97u7e4hDv3baxbDlCPf3jSevaR68OsiclKo61VOUGr4YxpopJrFowzv5nrFhIidHxbPNAYOZ1+IJYEc3yaN071EZE45SY86yvhWTAC3kq4bhubtE+oKvAAlv3yn3AI2dJY9z2YMrgvC5JzmFSTJjoshKA3EhMzGv92gEJx6KwsOdMoXjHxSLVetjVmC1fBY5jEjmoJUMk9DU75UEvQomVSyV8d9oy9wlLILBQiwIE0hF5GUAF/aGkJrBCddilQxh4RpimvlE/NkhAsKTCsfMYjvUTQvSVIEJSYcNIGTukdOgetMMaC0IEuKXxtXOxXxIfS1N2s1IsjLhkBqNC2aJ/hnfi7gm75Z/YrEHDq2BHi59QQ0EIEFXwKcHaTCgd9oUSWRTwEuRoyeu4zmqjSmW1LQXbaUIETrRZENuqXJHlUJzZ7qWqBN+9IAxlgXmnExSpzZ5NrHVnwVCRaMzCAbsNDZ/bohZBpXSXvkWRMt2vDRXqyFzROVXbILXZqxc+Cihcrmv8ZetRezKyvDEiILE7GcGBNHWshWoBIYiW+5CW+a8KXWCT2qLyaBHXzCWBqQcjMqynVjMfGRCSTLmJ1Q1G1YqpHFA+qiWIHcgBZW3MikE3JoBnFJamQsdef+ogn14hRLgyv5wzLDtcNmGEimUc5sdQG4dE6ghmuYCe2oLnzDRWzGNWeJAr7vMnUwqmEZKLiiqtQlo6z8y2L9GFmEHIsTPaaLm1biLpAw+hVTy8ffuBiQSST5BH0xObW6M36a4PwMZZHoZwoOnZWBmoQXKcUxsx2BK8b4whgFqE38YwABcDEfT0JbhlznDoA0vlRhkbFJlJ4kiIWVSbnyyWanZYIAVVKtSkRNgMb5/ekqgImMOeYVlSwzGxcle48qxAoWf2jr4oY0koaus3TZcyjSt2BCjLjyeP57BOby1th9MBGscAaa4BpQgQ6RisHinppqoRMLgzGz7GkpbO8WYEvI2X+sLfFInVqLkcNyQabK+JBBJNk3RM47+5q5TUQIjsjygqbfeYrHPLqslBzHjBaJQVnHKd2ELnaL1BE5M4LcZ+gghCc5B6fCHtf/iWg8hm0mwnaHoG3/UoOkbFQCyidBTVOmS8kphdjhIL7MoZzWgnyAczveRRO/DZwAMrz4CpF2KRTD+xSrmfEcruUDffQQ9ZRPv5lKSbM7LuMwAOgK1F8xMh9f6jGRjxiizAIRuK+m5UbA5784mKlM8+x+8npgNmli+mOtMAvm7IW6NoOghrgg9FEecDiQQV8ua8nAHo3GHQOYXsTcJf866AxMaoqhlCFReHrYXjMSdsVmd/Z2L8/vtg2abW9cnl4YdTrct2O9nUPXf/58ZjrJ/p75MA/T42znpaNX+3vH26ay2/NE+m+ffYTZW+P6/ApJGhV7aKLIubjGe6hc7qgjYWnU5f3ax4/NbDRdu07kli0pn4CxsODCnprpFelWeT6bie6FAVOT2iZYg1LpOiMQ+UnGxA+ObP9L82p0EkyTcljvMj/o+vYyIZgEvNZ+/COZmeqA9Of107NLg/o3V7Lq44vr0z/+888fvnn1+7//+xVnwN7c72zu/s1vj/aPDyC5+vxl29Qmu5EWS1ZMuflydru9u8ukHZ9ccm2pxs6GrVSvbKHjwFdb+Jv7IY9sYkCZTtPG0NTclMYO7hw/lrae3rw9+N03h3sGHe0UZAZPw+3P3394R6Nnlyedory3cXJ6dnV+++0PH95+eHWwu/PqcG9r6y13PPvyiT5++OG7sy+npyfX+1vbvPTgYPt+7fn08nJ33Vx/KxJW22jo9ubN6703xwdnX26OWnCwdXF+vXO0zXjknXbsMfVImLy8dELCZscumTfshUij6bTXqCoW7p68t7AMhDyMt3mzso63v3y+5L2//3b/7vHujz99+c3r17/7bl9vcfth//Lk4ttvjp9W6fr806+fDp09/Hb35tOZyf435+nHKmoGbKZZ5tuxwY837RHMvR684rF96vQ3GubI3WYhqZ5wq5KMnTMq1uPw4IYmdBV0UOlA2phP5qFFmaIS+mXAGUrfsx9xgOxV08DxncVZKs43JoRym+LJxF7KKnGya+2j1yabH7+cOxbg6HDP7DV1Dw+Pv/nwSg4CiL7T9c3Nrn4MQ+yoqbphuf98JgtnAEPuhMq8uuBah7zrWoZo8gfxQoqnymN8MXtLODxUEhfyImUUqK52p0hQE+DOV8rBnO7HTMKO8ViORYEaWneWXF/5BFxMRmrRUqmoLXxNKCGVGaIqcwJiIp7yPtAu6BjDElg8ZxtF9dqaqEoCI/lSW+mxaKxQkXniOc1P/2RiGH5rchpvbsy7vgTtB4NIpvFaGBwqem/gQvzwGwP4MkjQIuAZVkMhFeiwJnNiofLRfNLUaBDAZFG4iQfbOjXAMRlJsVXpr70abJbZ1gCTc/yzLsFMtRmv8wybhIcRqLG7sOakb2hELWGQ3JgiAtBZ7AFDZ4yca1aQP0M/1PdVXP9/VrooJsSeE08WBRFJGoXTHBqwQXJvwxbVeHmb+uBQrCM+Rr0I9rVma4qN+pZuDJkbeuFTDw9OEPMKq4zlBQslkmum6MPq+oPcFODfSzuY8RIJLY8LJb3Rb8WTRrv0A5iOjOdlaUkM1nHR4YoGZx2OsoBneCEpP04Ui6YaS8mIJ/OkhEWLWRdAo5q8u75VIwBN23yRp+5HrsGWyiWwQ0E+FOj3whD0XcxZGVjWmM13d8IZ2pIKQVJvYVKduEhGqsRbP5mpb91JNsHLMJKXh3GEtrnD9KqQZ4zZhGt056mshoVwf0xNCQIrmx8ZJDLXyP7qyCFaEE+ZnEWhgYeQcs7StiUyZJ9xrs48GztZqI1sSbIubCyNS0Z0xabDAKDkQW0X7uBqKCEKKEZDfLqw9lUsqfYrgPKMPFSsRgyzDEgjFNmNKlUax1qYKjMcLAsjuZW6AUYlNQhx6aSvwUkaKWjRSPLNtDwqrxrpZCJEmYnGe46Kk/ndFLEEl1Sy2tESXCQeoQtQFpN8ijUixIzvMmN3MruceZBWYqDQcVgWaxC/FnJhiARoCnlARz6T0oyNPMMen26Ov6kouBN/96ZbhgBlYFEreruZxH2QjZFig/r+ITyhLE/DMp4f6HmYYam1EK70EFCM4+GWuJHMyDqOkuAoDMlThwklqQba2pAghOAEbHHoaTyiufjrrb1UVqwvjoCVHtGf0eRxCcrdvsgHmikRMA8CZ8mjkDzqKeDiMDhzY2TFFpHXMLZzFfxkBP5hPOcZOAtRWnBIEWxCKhVR1ohZiehZxD4aLJlg5ZHaoM7QrGZNpuY2rwjQ0Jatx0vjYUNx0iPGAPbpvfwUhmQkNBr0gJDYHjql2CLjAk/x6YxlQOpmOQTShiu2TeRXXCU65bcRbdxlYj29TjPAVNMMxhe/iP1Ov1KrMdSJQoScAMlb/mwWf8pMaZZf31oS2iO/6cESxt1dw5hyl+eD/esLieLdzv7+xeWVhaCrX24sVbX3ifHlxrbbt1HC3Uvb/X13rIE1V8TgzsX2vi0mbYn5dGtEv1kB5pmvXV60Lf3bA28DJJXPl4/3xqh3d221+Xx582AbFuNItg3FuJOIt9a3NSLo3dl43l7zlErSKlJhnkGfnLI5EoRm8vTWuqn4l1eXOilWsZphcv+0eveUc8FNOiZ22MR9zyz1QhaANKYNMMi+cd1W/zdHb16BcHN1at+gvf2DN68M/e9DdXbtWKg98eTgef2b1weffvm8u/Zw8P1bGzP++MsJvFRjp/gONfPmovlWHWIwvdHCCy82qUYud92haM+7dt9cs/PS1uv99aPtvW8Oj3ftzLO9crBzePzqwLT3D98cvfnmlQHmk//8+eL8M9QHO7sHH76VEAsHlydfvvvhw+mZI8cayN/c2Xy7v3fyy5fttaftvY1fPzmXTHa4Tghaf+cZ/6f//suOnfY31n///TfyU8RuHezfPkqvt46PDcOft1kHGa2u2svfHp6yJxbKAjMtRJvd5CywTtMTkEjbZECTAda8A9DdtO2D2tZgXN487e6s7Wwdfb65+/XixIKC69bhPn377Rvb5u8efv74acd+ss5O2zqw4cPrnz5f/fL58vTOMcyE0RQL2m26fMvun9a2zJ9ZNdk4O+GGXILW7ff3sOKGlkMZbsFGzLfiHWKqmKSPLChiJbdkJqowcrahteKL09Zk5z0oos3fadJYQ80kTenz6FYK/nTU4tp1a7CtAUCMEx68rbq82kfk6vPOvQlXuwoRy83lpUpmZppWd23CUEslNs7PLrxIkZ+R2tXVNQtkeYgTQ0hVSPjaJNf0EK377hRVelYbv3CRR5sZf+9dzcRGI0qtmX7Z8AoTjH+y3l4LLx0JEKb6pAh2ZJwz6SekBjtVL9MOp49ReIFLuH4JTeJMEzvq3TUVJ2IhSZJqL9Gy6R8YeZFzNxUDaIBXbIKV5pOsl3gImiyYIoIYonpBshz1xqfB6IMSsYvZ0I88PlUtQJoIKtVIAuAsef8AL90xmqCw51oQR3AsdUBkOQsuopP1uAYh/TIw55o1AyemvGvCPaWxQHWJK2g1wUVyUauNE0DPbuiqrJFB6WxatkQRyEZzDIAiWpWrSXLqAmFuhOGAbFse51fAtFKiJFLJmoxpPsBgz+AnbTaQucKeqBJykKH3T+8U8WVfbQDlt8FvEnaNMFXSgrg+CaL3r9jEMyJQZNdgAEZrIGggpnWbLEJfnhxAd//k5AuEMfLSmtTyZgYV0CwhoV4fQUQqVTKK2QhbGHELp80QVtgz5csnM9ExndpK8kFpPA4otgJ+JRE+7XssB5wUoUZGb1PBQZEqUR6IjFZJLtPdGreXm1qwWsPIHYC9TtFLw8J0sSBTNlwh9L9vAH39CkwEBK+HASFt19lC3+FdviqRHnpz0rkcU7o2ep4qGEEKIzNLUHkAgAyEur6rMuQnjRd0QbGmubYVFVESrVO03wEdqXtCsS9UBngoRkkUDp1uENSUS2JDvPK4GxyTqHTlM2Icq9PAZqIErAnzYd4BT2MI9veFFpVGhihK9FAu8oovd0ho6OlaydFWElS6xK+yPamqf6xuKdh1ku6xny6SFewgLF/lSbE6YP/K4GBRIWtEulqBgWJ1dkGemoWA4l3vKz3oeR44HwZNLCM280qrF6wZzyAOltqAdCpMmUP0EDTlAM80yqrdFBEWkIqJnkvQ0EIIWAqWlg0nAGnwAOsNU4T2KyyGaqYkIAFmH4M3gnz9WgxG9xHjgijSrqLjIm7wG78pkgrnJi7n8RQa6Y+SdEJmWT3GceW+5wgjpa9ZckbpHzCLAQl94k94B63QYl0rWMVTGUcSLjsffQ/xNs3Y2TZ+j3LfcZf8i/dJLJhZIdFHzyLGRT7DaUgF32TbmBw3jxxfh3eNk1kx/KSl8fX9jRcXvzQwxQb9tF41mOMw87KARWF6jsJUpiUYIQcVfsSDnkaXvrXbXzMJWoMWMRjvtnA/ElgkWXNVNt8nUPMhg5YpU+USDhJ/YZ2Ea72mPR4bKPuv8UBS/PWmmPTAmPLjVMFsGGxsL7sdEZGMiF8EXRjpZgNvLewDkPWy34xnAhZKeLLkQBZi3JWO5E+FXIJ9fjTXmSfY8kUrsrNl8WVbQ1vgaIHn4c7B076N7e+c6UUNGhtbNZ18vrTwwjaTKJYzPRvfkmUb+/eed2PLVBNpvEHeWqaU0RoRYeez05Tak3FdI2CuP4bMKrLlqAOAbx0vtbIhr9rb3r28fLheubXU0wlTNnoxELgq52vfehm2cWJ7OBrfT1cGqotTiGhcql4b0dCTU2mN1O46w2l399zeohnIkxk2aDB+enyw8/r9qxWzdy5v7m+vvvnmvfHab745vP1y8nf/7jevvv325vryx//yX3/3u+/e/ObbNVtVXj/endwfv3lz+uXiyy+fri4vzNOjqf2DV2f391d2sl9bvzy/xrnFvny6QUTpIt1YJHH3tLPl7U0PzGdBlaOpzGW6vTMVZ9cBDK92tn///asf/+nP3/6b33zz3Rs7h1r0fH/78ProSGJvDt6bd28/fLtMSt7Z2t3RBTu5uNzZ2zm7++xNib7T9Y2u0/b28ZE3HHor15A7ze3+8unx7t/+3d/89NMXK4+P9jel3cc2PFpbO3p9wLp+/fXLvkR8a82I9enF9ebmTi9lUhOjebi/e1kfYgLDrkHueqArdkrQ+aSvUon1jTMnxDVU+mjeFpNjLP/0rw/v3+x+Pr9+c7x+d7N/d+/c3M0PHz6Yg8UePrz2Smb1l1+fL66uQQHw22+ObBZkgx2vTozbmsYj9JpBZiUFP3ZaBF+wP4Qkhj2LGwbSiy2rvYPgybigBebNA8xWIm9tU60Eo85Je1Rc40rIn8IFb98KdF0WE/Sxim/GTl/aUr5cKClWrDjWsHbdFHmUsTdUbkg0H+9Xnw73N81f0sPZtZ/r7vbnk1PmZo7Wwf6FhSXWt+9sPHgJYNGFDYJoVerPngvEhpAn8sBOjpE66wgLVtFbHolfxNeQYSmuKSYeYqPIIKShp6YRFwUfIWjmQCaFwBT0PAScw1eAs6kY/Bf5TMh6Cfhq+Ux5QivEKYVxjgYJGuAqoujste2m8VufCCn3mqgYUcBrrWhOfK5vFtVLS0Tiis8kjfI/qMnB6xHVh/1+Yy9G0dwwUG1usauvtQ4DrNYqYgzeuRgi6o86r1RQSDkvKT6JJuGsoCA/zNFpextoFGIDnk0NQQGT+eihmT/mqom46GQexfOCRs+hX14g18jU2qnC4IffTijXGdPpiN8Z1Ov5TJoPy2wNhJ4yWY1lmVlKWWSa7RmMbxC0lt0vnH/FSBKF6FIPOiuw94IrmZZFlJGTkty+0Rp90VmjJe6iFr9QBYkuW3TPVAjzQTUdD7JURkxIvC+mwizyJgKJdwiQAinJx69O1KjjawOEKveShdkj4jtZ5YN6v+YQGr2ZEaRp6ZivQgiJKQpYsxZ8kivQvQVqbph2Jl97adunmNJJbJKuDCUlzsuxaMKuew3As36cjtiSPBqIxd8YFyPUIt5pE9HgsQ/hB296L7HqIpvLxdgkrEhy0/SHdrhHWJaSNBIQWEufPPq6XcUB6zI7d43uLL3PXFUk3n2os7UodAHdhKBIVypOqzrSRg+6ohE7E5FUVSvUkoS6cRED7yI616RRElkfo4qeqZwHzWcRICC0snQ+hyE8dhAtkpQCilcGP7x90IWpLITQEs4UKAWqb4DTpBfX8e96YH6VRrz4WdKVrpWJgInYqWyk5leQ+9pTqPvN/MY/kY0IdxbsIMTXQt78VqsIhpa5j8IkAO+LXl5Awd1WCW66Ut8nCxytp3IjxwCPlSuGOOWIJpmOoyofhsGBFHTEXToGTVmBdUkcSQy5URnpFaLAMAsGQOkVABL8GHMzcrIY4htcbC5xNzyhWhQXajUPY6OR4ZOLJlbJhIivuqfpoSCS4SKidrIxMI4RBhdMcwmaEeC1oIYW0u4neNV7wwDO1wZDNY/iJxZCOyXZbE1gdeM8PSmSYeIP5uJRXwHFXRntyAFYvuSpisLrvSYlQaE2e62VHTkQjAtfavqBVAaD4uTC+CI1aNsTYwbJ0kVgFqGp3DTdRv0lE2FedDW1g+EfFOos9WJ2zF0VnoWwJDZOziril9qWZjiZI07V9MvghqosPh6zjujwNbvoFSpV5LGLFeGPOprsK1yORSmkc6XJX74OT2kOFNeL1cE+NuJm0BbokxLUaDGADK0ROn3FXv0nO3VCVXEFACxFCCpB5urxlTmZ6C+0ualc76BkpoWUlozfyT2nyZdtmwa2s7a1cnLy0dDXlqW1TxoX23S2PPLz+WUDjvu7l6c2a7x/8+5gFocX2mhBUv3l1CJPw6Wbn88c/7TmvQGKD7dtfrNpegyaP19cYFHMPFhfMZXly9X9ze6WeelWqOp+S5PeHe849fbQGttNTezt+eXd9eaaU8LsIt/i0FyY43oDYDqQ5QpMsgiVZRurNrytW2jjztf7333//qc/n3/x/qKB//0LO2M+PX737ZsP339/+/HTr08nT6ubb/f2v//d756eL77/+3+wRtmrdG9Gfvv7v9k7NM97T653cHy8t3P79HxDql9+/WQ01flcOweHG5u7qyYX2W3SOoD1TZsIOrvM0Pi1JQpt28p5sgdEeSdyI3Kur74+PLz6zPaad2GfU6cIvz7YP95ff/u/+tu9vYN33384//kjyzl4ffjm7esatLX1nQNy/sSwd/YPLEG9ubu+Pms9w/H7VzerN8+dobthTx6bGH737Qd9sI+/fLq7uTw48E7DLqZ2WNo1X+XDm6P3718fbW3Juf/bn366cpiXVx/X9yYutaueCYojRGaYCFdXLaK4M4vJhjvWJTPGTAkXpuHXbvNhiyscFmD5MntGFFf+5Qx1mzdPKyefPn579O3nz9aTrLw5NoXo6ebcUb/SeP2hp9+/e/tf/9tP//qTDYAevn/35n/6j7/5l88Xn86uTq4YXVuUWijIZpABLb3qLcscNHx6gBbD7uzaw7R4wn7lbeLQ9DBznazYfzzkv7UuaB6OxskyknkvEz+4LfDmO1pNDpTH1wHI2ZYxOZ4DEobHxexPpG0QxHelex0U9WTBsaOjbeNKEle35rTdfvvN6zfbh/pRLOSels5PVJf271vNYQ9Wq4RVa8yihG+cGsLCzoTYWpQhtNjbmoavD5nQDGOjpEo9beFsEYZTjyByZuk1dEKfm8pVugaiOCYyACJX8z0kPjXPSoWrO0oQ4IgLLHyObOZJlUGQW5fbgbOUn4oA1FgN1MD6MrAH+MQjdCrpJnUQuQthH0mTocVObZlgNuNQM9YTGXy5krDWwjc735+y5uFFDEw507rh0ZtMs19MT3UdUxOx5TSllQ0adNM4oAgYgUujSUzTDAEv4OC/1yYaw9pDeh5xqNg75Ngl5nbaFmU6iaLID2ZPE/8IRHPWcF7dEg2NQFenbob2J1GLAhMB0YY11PKaaIFZmuqOQlpkt2Z8UOaHR5hstCDqGsCgTXSRT9Rgo1H23owhFBpFRfh4d2MyqDoqmCf2eZeCEl3TMQZQUVG7onBNpUI53JJHZvM9IEP0LLpOeSkl7sb+lgswVK98lWBokiForvtkHwBNhrfSckEoy71QywIGxdemVlm31QEpqQA15hd1vrpdekCTPdXsTdJPVVnz6Koik/MokmGM0ssfAtnXeUleIdCywW6G1KcySzqbWkkymCUDxKCG3wNlXOmFvEygrlEF/B5YCc0PsZYtuF+EiZcK55LgdDUTT7xOtNpKu+xO3l96Ew8wVXwoM3roYnS6kBFy2T89IL/i2VS/wEBjlC/CiDDf49Hv2FFi7Dg/K7usfx7wJBLeRdHVH4F3y8d3tdUdmgGryoyNDt9pduF0ktLISyypKbvyva8vYILIoqQdYzwvGlkgDNh8ywWAPi7UrSQyB8vXm2OECynT/QAWg7goodLepLqhavSx1OL5yTFRTlG/xYLJxxSQqzVMPpxGZVIYOXZf2zdELEArrfwYR9GAKY0ox24UAT0wilUyC0hPdfwH+jCV3dBZfE2i6RtEyR005bK6RogVytuz+rCOIBZnqN2iMIUHIKudEY6xleJUVAyUYCkCXhV9FrBf1ZatRxi0sexbGh57qqcYOYIjaG6D0ahmKkQVw610b4TjE0ofBCsWaoQt9Qf1cr8SM/wfJFeLZbiAZ7o95BAV6EBf4zdLvG5ij5ruJbbe/hPcwJUQ1HJ0oI8nyahPpPRO1iN00F1MRRV6CWo8J+mA5lFScVGblApsPghCxaYLxJCQAvYyMrdQLso3E5oj8qjxfeB01WSc2R2GVBlp9+sFFCE1BI4LpoIaxgpxBLBZQRa++V+NCSs1QGBFKR3V/NcAZARLxp9dRbu/kiPhtba/urCrN0BieylGG4M3NKNBvZ28BQEop07zL6QmopI7ddC8P23fa9vUrL97Yz+TL9ePt5sruge2ytYPsE5889PVw8OfPzsOdm9z9ezXEw1eS1FNmrzVnTDz5MBU/4vrp5137y6ubw42dq5spyjO2IHn/vFXO8J0buvKb745/Ie//e3qw/bJf/yzLTd3ttZevbWnpTkk6zsrawc775pYf7v+86lOxeXd0yZ9e0HR8brt8t6S5BFm7ak+VXNjVgzzt2LVzPr3R0f7BsxXVxBJODY4stXk6ecvH95bSrBxd3YK18PK3fGrfbuAffn4zx++ef3N9785O/3l5vzk1f7W/qs3u0evtvb24Ch6bzyf/3LidcOHNwcXt9vv1l9fXdyf2PX/8k73gujMnLq9yG2lWTJT5NkBnvzZn1xZPidD3PfCxL7y5kdR6+aWlt1EAItH99bXXh2/Np5+eXptf0nafPN630yvjVbbru++eqVf5aWJ3YqM3x14V3PXxPfrTyetpC5b2rB1qvla3/7uw//uf/t/+nxy+d0P79e3r/Z31t68Ofr105mzDl6/2rMuWnj+f/1//vXXsxtLFwzRXny53tndZ+G3V2d3z9csaHd3x6LmjW2m84hKs7AM3nN9Ib7+pBOyOpyhLdJ1BY9298ueO6zNJpVrt6tPJ17Gfbl7s7+lT3Hm1Jv9nf/nv/767fuj10c7u8c7D5e315dXWxs3P/xwtPfmwMsgS0Rev940Leb97eafv9x8+mLphM6Ig5C9Uro3uYibSXQgp2rOctdxzVdcQitWqKuJzAUKGXlTSbProsBi/QXA5X7Gv3iVaYKC6xK0OZGa+WARcNpMSElEnLaFlyGPYmeJjriHjuarPNt+6d4UnKfLZ6fdZUxrm45dXt9euTy/ImLjoCenp05R4Dv8Qr/u8OAA0gnlppps6rrysumCjxsXYTDXsE7Biv/MPlfuwKyEkCig6czNfCSiLUoyadZV171A0OB6xUUDzJRCYWfGa2q/hZ9CtwrqBjaua5uL4iMtN5ObuDapZzlWtco3JjSW94NQ+UKcvxNOX5qqIlgNhj94mRYtI+mdSX3dMCd+vDVZZQ4kCayEGBYzT/Li2WpCleLXKCU2R7nC5tJGo9t1TM7FdMwmG8o2Gl8TW/ylUDAUiiOG3B036suhoTcAtRcxAY/CKTyQdvZl5lXplaZRGztxT4PKB72E2nfuxs6uXc7qXhKfqMq0Jno3Tt8yHVvEEgMjaWFh9jaz2ka2KJjCIrhMnU7TPDCRKqIysF77TxtR5ydJRpxry2F61bu1LuCh2X3UNhLcCBRhI53o0w42x5JdTpIw72kQSsXd6k2XTztK1ScLeG+DGTN0OKWdLGqsIuKXVC+10SmB0BE6Ka42iHfI6VUY/QJQQ5m0xsjGJV+SBwCBz35CkzthOS8dx0TYmFa2AVNcoWQGYRFQMVEIrRn8mGiNDEb45VjziBFzI4Y0rgGrwLTpPcxfKbMoEfyhcO6gnBF0T9wT6F7UAR959lq7jb99QEtaiQE4peb32JLqtcHLW3cRGPHpp0KNow2Ni1QDWsFCDTHaOsxT5YUT1Kk1PCWWtBspIAdg0EJeYegmOWkKumqLHCYsV35BHQnzUX5UiYz6nFhI+EF21mSNftfoLM0bylhJ4iomgOxpNpPGpMfzanSsvZsjgfBOupUQAgtxJrTo150I6ifVqOJrkgxfPz2Fbu77C6wqCiwXy+/AZrOJFIT5DG+Jq5I9cFGv0mXmMRfDxQCMHQ3KUr+qDKVBlESz1PE7BFHWD98gpxG0W9nTX9WhNuVVT3Y0qXDXkeJt2uLtgMUnQL276eF8d08LBjjtjd1klL2Oo5WGQyIvAfaJh7kChqoygsmbNTy8r/ec3hmyS4WmtRqQdQBIQFVWG7Z5XkRMfH0FDO38lpLdeRGIy9SfKFQXwhTr4/awECf1gkqIPWKjCbSBgbo0Y7hy4FBXqa5UaSUJN+At5RXlYtDN7EkVlMRrEWEGD4o1aRGr/ZvPlDUa3Yy6DCWfjSyokcUUB0g6HkjogT2rpR2cIa/kn3jq/IY0N5y5vMZIyhsCx+cTTcbNN4AYrEjtRc28ShPfw6gsKEWTehR+MJh4521Ggy4aMAmAnQtJ5n5Wa0Cd/EmQ8pLJIp8hJTExAxURRlTg+FDo8grCdeJFzPAL3zgMcyoGlTcM8dVlCFrBisfmYpngLPFFZCcghQGsWN02nZ8iONVNeMQaaXj/lc20ciIzIzN7n9ejM7JrkJjZ5hjaQwdI3dhjsTe2dmV5c7Tzp49mfKw8/HL59mjj+3fbtxd3H89u7Py0vbPrnbhW7tZUF43Ozr5ZLp9OLgAyHcqBr83cX314/2rPC4Hf/fa9fT5Npn/zeuftN++0dVamHh2Z03V3fblydf10c3H1y9n1xY139HvPNpoxQXx9/cLQcU4ogyr/xKlewdiJKUNmqGyK5u/fvdpbX9/f2z7eN9Hg+c2HA6sK9GG+/dt3+we75H5z33RtM2JtaujA47fvPpgFdHn55e7WVu7vdyXv5AOZxH57x6ZDso0rc6vu7gzo0oWeBYGenZzsbK8evjv48uWKwduDRSOgOTFBySb3t/YdSvwa/iS/t712sGtXzQdg2xbm4eFYgr6/8S///Z/+/n/zP2W/n0/PfvzJXP/1f/jDD1Kvi/MzS4/17m+vZfBbehpmmR8cv9qzc6ts/9mo+tX56e319enhm9fX92vX5+ef//Lx7OLT3/3dH95//+7LL1++eX90cnGlvypxtkOHCV4X93efv1w9bOyc311de2TJ9fVFnUHBIYdjbrd7e1uW5zLXi9sbe706LMB2PVa3smtWVEu5smqKi/eqRpGuzH7On2XeK0+W7q6v2DVpb2P317PVT+enG7vnVG4K0h/e7/3wdv/d++ODw+OH28uD5+e9g7XL56ebq70vn7/sb6/pSFLMf73+8qfzS1tCrVtlwEr4Qqa41atHxsSYUajHIUFe2cpo+1YK6zGxj3NMmpXpv7RnPKm4UlONUJoXsgpaxSZxYoliLvnCtKkYmZhk5ms5h+TDCwdeI6zAa1kvGekJef11x4Y6lU6rcX9164CK+9evDiVmb9+9OT89NTXrYHd/e7cFzHdeX5lZt73fWc1Mtla1uRnSRNFVWmfRehFm8niMIDliCVokwMlzEzy8uGPwQoG7gJCGB6pPtNFrylNjNDgvLULxinKI6GvLSgJKAI0KjFC85EDvApaXkiHtmghh124po2Q5x6pzM/ROl4PthocaBaEpYtQTJeikoDppcWGMcmogilcEVbwRYCO9qC0SDhU1l3WbpQhKTEco9aG5LkSgux8XdIRrmOatdUdJtkFFCim1arFfxIiauhbqxGxmQFzylRnm6M15tjpZi8IGDvRmi7r6O5KzDGICeL2pSmIA6q3NrVvbGLf7jwM9is94JENaU0HZct/sE1IOQWiocmOkZ7RrEoasaOifJiC+/At17zLHeruhDHXEsVB9eX5JAEjQtwGa9tlMruCp2XEz9R+nfqhVHfTEtyrKDPm9FIK10J6nQp0Ax+AJgREkYHWabsS1+xCWWv4GaCgHC17uIItvTlFFihpIpbRKRnjGmafVX4/apaEBCvEwuYORaUBTa9oZy6mzVOl6s0NPWQGT2N7eMX0OKKJWoNYNhDSkB1WeUUPMBQhd1v9gx7BtcdKZLQir85nJkLxvUQjVOBNmM6NEhCRwEwa6oqg7Kb0QMfp7+TpPPe8vepTmdwoHCZzYXxaN3I3cMvK6svNZ6kZLxhD9eAXEQTpROF+FCClBeiETFbDpehiITJ7HadRfUoueD+GBHspzw6os3xGTqF9AlBFF4ATHQVFG18Oyr8HmUkRESTofgx9k5Ey2jHABFfClvJoZeXiS8GIlRQzXFcYU9QyK6HPjpcyw360Xkxkiprq6Y43jDovrUfRXOwRwEX6Ih8tgjo8xtZenI0ysJKawYjpK1GxewNR8ES/ICfcrQ2SXCUopXOSghZuA+D+f5S/jBw7AZAK+qz7Vyn9e2KhxAmSprdgiCCbaLNoCf9EKjF44zgmLjTGEqg+ix9ZhzUrZUKF45ml4yI5BJgDERyF7ImUt9pwAoA4RVobURgrx71MiGhDtpVeli5QGV5SPjSlSXWleOhhrAKAhgZEbpEWNcphRtjx+jJuVK6H8QMOp0FB/FklxJwyM4onLLVW4NCkNkYtsOUNRM9XkyENPXGTNi99CXdiiyvGZEcKgS70DREwEP4zCnL+T6cZEP30t3NcGyZWBYS3uuCK6UXUKZuUxO69rFdaGLdAQkVqrH7SE3l/fMx4+rEq3sx8RqLlJFX/piiwBtxZa/RhvWQUPy4K1W1gDBMUG9CJyoUbljK7fXGzsZTQ44ZieQq6pS3GZKAald0AhbTEniNhAlkPn44R1e+q2gdvqgrQ4IVWrr64kS6NGinPqb29+zLb08vH+9nFrfWvNxJC1jcONo6tLU9zN0r+xcODm3uDugwHku0sLQE2S3ny4uXIeavP3t9Yurh8+Gd3voLmdy/sbBwRv76y9/+7Vj5+vvpxfGibb39j45t3Rh3dv95zU+3Rvi8m///v31pN++8Pbu6s7B319/vLlX//lV3t+3sin61F0wu3zlr2KvOnYODu5mmg3zlgmVupZiF99tgvn8e6mnSWtTBV+mN2bo/3Xh94lrG8eHsmbrz593t4/3NrdOPt0dtDc93uz84+PX/3md//DX//yl8eOIPiZvuZ0XoPE27jWvZMjUdDV+fneq1f3q3u3Zxdre7stQXi6NSJ4Zd68bWE2Nk7vpNrrmPr86YJK6YHVmrWia+f6oX2xZ0mAP04juLt3QNj7t3vvXu2/2tw3Yfz/8H/7019+OX33Zv/vj9483N3a1efky9nJ+S87Nk41P359U5W333/XqOzK8/H6irm2Z9ef/vzLx33p8+3N2YkT2a6Pjw7+7d/9YXN3X5Pr+DBLKJ1jdby3ZQP7P/3p8+Puho7Txyts2s3eZJvtYph5D2vP9xuPVkWfX5y7lq3aftXai8OtPdk/W5+BAy16GxWY4DTR78nuQJdXdxbUbG3v2HXfHAaLcRkFjfxydnd6/mn/aOu7/c1v948ubm//8uv1Wz0b3eTnh4vLG7PjbSBqev3OzsHm+v4f//SzftSr4+N/+3fvfng8+n//858+XbSfEo+a0JF+WXwt77QvLN9jxj+uyZ2ziLwsFx+XnfAhSUHzuFOBzIUPt8iHp1jhKyS9ECsICEOZf02Xz/Ir36mxsfwgv7BRkkEiD211JdTbXwmdbOD40JubLWNN+i///M9/Ojre29tY+fjx85u3x/cb9Q3evnt7f3aqz2n4b8tWtLs7Yol2oMHAYhFGY4qHQuyrPImfoqT4Jg8XP/FSRJX946vAg4zJJOrAj1LIvgMTXNdV85IhrhMSUIwY2LIoF+AoO+u1tHwaiIjJGELtI4jUABSiyDa0wGa5c8LuYJ8WaMlpJjusVqF6gqPwOPmi6nULUIDctZJCQaxxEwrrMjJAw8UE6mhAasW7H4WuIm9UooI7lWcb0/f3G6ia5QHrEQ5DiX05KOaHHUCsodfPd1/Gb1KN0Xqc1q0ZJuFiGNM019B6wnsZipa2biY6kat/X4oTNz5je9GW7OpS6nfBvIhNHK0t1nihoCJ0peNQtldFr1vLWssga1RgiYzIlTt2rQwkHkEHfZrW/c7KXeQDwWy6qdjSFqV+1ygsypq8QpT/2qQQ7zPrXEQRIsNkzF5/6WUeeV/TlwwH1nSFthqMxULcV6ueZzyzCQ1ujQi7bZivnkAtONNSmdQqteTri2H7Oh+PeJma8zz2IarlitNpoQSjvDMaxtKuwcoG+ixdYuLT/PVqIz+1M8OyPWsJTlzEXRdR6zoznroGuTCYlZRxvFiTp64jW8qUIrJIv90ECkex05doCFpiqYD7dU2XwdCp2EE39aUba9b4ospFJh4uFcr4k1IULrlHrjL4IX3aOzpo24Dxi/T21c6JAhR3/M0mg+BfPCIOkeGYD8iRO4aR6pYAGL74HeIFp+kKduOFElUVUchF1UuCYrDcLYuaDkGFFRhJjm3QDqFlFUgixM7bbm5bUprqWXuRNlUKwn3pMkb8EeLqcqfHlhZMfhgRAEEEmpK48RNVPZlEdy6SXkIYAQyupbQbKBnDW2qEs08Ee0XdKHg1ySt9dzebc59sUM7zPeqtVtvPJdSFk5B+NaPRZVJGNAgCERdyPZGrqYFGcVIB2ujMilgOM99JP10jLykgNIOOw6a3FhNxhR5wRvcToEXqbubqVKlsEgcXgG6FBANuDsjhs06rHkJ21iBvw07WataDSK1FxemZsIiIB3nYdx1lAhU9IWww+IMgnyypCwa9qDMGlg/shYgYia5pikIX5bTYTeSxCcRDKWy5D7oyDF0GrC6zWeI+jYfIv8RCwkG2bxoyouTlUblIKBLBtGRft6NKwsQ0KVfI8p+k8NzeDIm+KuTJdFJ+TJB8nh1GoiqBgNeTXGVcq7uj6xrOYYR799JTJe8TtJ3LNszPrY4FX56XNi0jq2kBBDkJYf6QSmMqg2KC1Ay8+er+dCejp7Y/2hJF0h4+k1dk6xWV0HsIeLpr0MuStWZgl8HoXQiICP66mgeEQZd+1SUHUE2yBlZCbNARhW1yntvi2upPtIuqcZFBpjVLLR+klQbo5LUSn8YWN7ckG4Y9taaKadR+PrXsbOt+fevh+uKbt3bLtGfnxs8fr9cfedP66adLb0MdmGUr+aMd+9A5PHfrH//D395cXN6enX/33RsjctaY2lHxz3/6Scby+ddzr2SOjg+vjWmvbNw8d6LWyUVHCJ84nez28X5l3bb6GthmUKTNhE0vUnmmYnObV9srf3j/vnW/TsG9u9jYfoVhWy2JA845O3r93mrVxinvPL5+9+7N4fGbHTO5zUOxlnMHSJJcuTk9N6Po9bffgfJohasBpuvbnUN749hzZnd374jIv3w+s0WRzftltDpG9GSa+DVyVtavbr3U5x/ZoZ4nsXuRoCdx83BXgvBoWa11o00P2ULaxuP/54+ff/xsVfH6b36z9z/6H//wcH1/cfFla3fTtNm//Onn168P3v92/9zuOq8PnSLmLLONzZ03b79xUNze4aFpPJ+ujJOtnV2cf/Pbt99+82r/6PDk48nHX04+fvl4etV0KQH69FGe2iIG8uQbrEkm2m6pq5uyqSLA4+Pupg3sifPBcMX1wy1f3N8/FKxPrs72t3Z2NndkRexkOdTTKw6Waav7ggMcq6Yg3UoTWwu+7pWDGWA3/+bD8fvjV+zs4ubL8+7a1s765x9P7F26ud1uMK9fvTk9vXj/zd7axjc2Xzm7vDAafrS1+b/8+9/+6eT+//if/vlxbQepxMIvxyEy3jZlGw8VNAQ6oaJWZHICOLN5hsyuXTGQ7LyfXJFHGLmYdiJfX5pJwX+aKL8r4fak3TxrNoVoME8cS6vMyM167M+WsWCZWm12awEGEFZTs2HILM/YJ6ntLZNGXr89Ipfzq5ujHRteBYbXHB4fSBfuH6/QICxDd/jqUFMw87yb36yc8OJh0ak/mCp2MbBI5cZFkgmUtRoF2DjMv2unixXj+7SDFTCWEFqVXL/XC0BKhWNZBilosMiJ5okILhJeEq/qJEMolt8gkAzdkXnNHxClRyULBQ01xahEW1BSW8VYKPjECbf1e6ClkwpAYKirdbTO5zBR0K7BzLuGFUAxeFEpPypCFoHtAlYnbcl6MScSegNrYCwxTdNIjxr07KBx2ZIeUXGZdq/EyxG20LANsREBTube3tEfhXLJc5qVhFp94+yFVGC3Hg9V/H/9sRk7aWdS04Izsen868uNItKpC21c53C9qAOcGi9MEXXN03A9jXBm6SvBem9Y+SG9sN9nyaamR0fma2OWlDItILyYROBonFyXgPMiCn0M+iFyoIAdNbLnWTNWClMaD0Eqa5TtK7qRyVK4zCEFLh/K6AJSGDWbIL94UQbF9sshRhrpbaHMX7bidxYqtvYur0+cEcnSNE9e6BLr3U7v3KvsKNYK8S3nRSuC3ecdtG/rAvWFVYhIeXmTY15qsniB/0J6mEaqoJlE4TmDqP8TZLornXKhy/2VsKViMlEm94mbRT49qkoCUBGdkKUCGoz26ZzHoa4gYqc2ADQe8Bww8nwdJVGNYquXF5dL7HLT48SbAgZMmJHvvnowdntQix59g/frU/gjR/2ulg9oo6nuDO/LA/SjOLcykoWwgV/0aMtBL9r1Ue879bVtuJr7Hfbp3JZmxkXsZMRIBdjf+qWpb0G70F+dyO/jkefEbrcu3qSuohqipTwilSmIDZsJBfCRWFwvn+jwf2E5fZF38vhac6GwEkNJCh1JiHGVEgWEy2RXhISir4Y2FGZe5UkzBowgJjvYoyb5TguRsU4aB1h+kyM3yF1vHirpkV6EVqGewJyhuuTHQ+7QXYuboKJXvbzHn27MLeQVnQObEKnaI78qKu6g+6/l2/meb8C69BAqZ1AkqxpLdW48Py+6VccPcKD1lBIWrsijAgVlzWdWAu9C3Zhm49mNPExVRsgsUKgMQnLIcC2cLIYY9lyccSuwXNQjJCp4ZA6xoCJyypXnhabC7sQnLNMdRN8MxQ2W6QZ4xJgqk5tVnq9ipy7+X5kZD4FCYQJktTl2jV3RX5Uk3lu/tOlHIFIOIpJBoMYDbRWe0KyUm8UUkYZZjK8qyCWG0Pxzcg7OY8tCQyCRHwcTtkJdM5x44SUzf3Iq5E67W9uGyGk8tTQLNDIZobUWzUAjIWaQjbWM9kYx0lY303sqgIQL+ZlgUR9ddlIvggxxih4iQwDi2KkppFnRzPKCSOZUI9oc6ty4aTOZXS0uoWgR724ezi4uvGE+sFvLw+3q49233xz+5ReHalmluXJ77Zjg1WuhwxZLa2ufryyCPPnH37y9sIWkVcEGK+/Ni7sx5/7Dnk14bI3TVImbcwNvq3sH+19Ovrx9c/iw9mBhgP1/Vr4YON9e31o52Nv55u8P75x+fHP748OD+S0nZtif2/3HHnxmmMta5NMmCjH2FdsN2WBRRkUGZvl4+WvOuqB0eXf1YWf33e7B6vOBxak69OL61cnpJBBrq59/3t1pYr33gkdbe2+Pjw8PD28vT03iJ2+7jt4/3oorb94cmldzt2Lg//Lush3fzQay2Y1Zwtvb+5cXZ3fXFxp4krxtZ/39x6eLN2tHpw+nK5c33H+jlDjjLluS290/7u5sWx1R4CNbzvv0ZOY/OMfHH+4vz/7f//VPlxcOyNr+h7/7nXOkzp/sxLr68c9/+uOffpX23F/f726tHX77vQWoLfy9vnq6udtYvd9/2rmUqRxu/+Xi/NfP56RydnFl0YMdhD5+/Phf/uWPF/cb1w+rtqaxgOL04sG2rZ9s91nSzH/NIDAV2Nm116UrTUl8skmNhPtpxaSIp/P788zo+kYAKl3JPe90o8x+L9mqb9wfQsu1ynMa4dzUdZgw092N9T976dPK3tu97RW0/Z//45UD43YPNy9+Of/w7sOnkxtWd393vr1pgHbn8X5Trvynnz692tt5vbXzv/4ffP+f/+SdhH6IlcOWYBZgWHSxetvpxegQh/O8Je5NkMDIOPtE0fyEQYyb1CD1pdhVKKgB7FEhOGmUmuha5DsA1ILma1TIbHDXHfdUtA2o4T/W79ZqpzEKBnpzRlAvTm5tLeuks04M++nj+29e/fynn46P999/eOPVqxE+5ipIeIuiXVJdt1FY2N3ePvtyLlqTmOlr3F7PUwQQbDXAOX+vMRuiioXIQ0Yh6CXY9W3aYxdm4C2ZvZJDc/zhML/APIaXL3BVEq4UNykgadCFx8mEmJePBLoRgaZ6d3NikWdFxSJqbBReYQikMmRXtAHE/SWQeuKRQmyohLoXSjUlDZA9y+S0C+29Q8qyf4VRLIEOtquyhFjnNWCiBKwKlPBNIzItF7dSfkGqAIqwalffhKj2RPXpsYA2OTFOyIWsBKrZw+f66kpFYVCVhaMOyEsmCQ9tDSHrVIz9kBtoYpE4ydeUj7U6DDXK3guhRTTV5QCziUkj2yQgXsRTwQEBkqG0k8EaUplMrAqzyLVZLSkcU5Ikapr3tA21uj8hbSQVtLKRkf00kMj1AUf3jwrc64UQH0GG7XrtElszRH3jSylVaQodNda9gUsBj2f3PLgU7VujvAM53lFJxaUl+DZ0kMCXZheWKE/dvYOK/hwnGpRURuHuVdwDoUiNrCg7UWaMdfFo42Gjp7F2vHz9IEApQECVU2EONDPTAhnecLlAopIREKmDKL/2ZHKbAC42vGTxi2NFzNhdkJKDbxERcQ03TH7/gn1IRQR7HIzjICOIiiVC9DduiztUBMX/uEz9CCGGxaVSdE3zcr+4RLbDzQx0Tie/2t2s0a92Ki4g+gQyotM1i08yxWdqIuPBO45pim9VIneZMMk3imw+TC2qQJs3OZgSc9LjZJ5pbj6V9KVBga+G0SPBkNloWFKKR7APoi76wBi7qsSX3ZAXmpVMFmMM1fqr7mKkN3hZ0cIb6jBFjJlKN4F6Icn98MQyOXelSjrB+Ev3INMf6RTa1B8qq6UuJ6EqkmqaWmIKdkAmWKKqL5S3cNW4b+sEGvMAviyMSBIfQeJRAm8WMu8Q5YmZRELX0KlYE/8JK/H1CDPoyciGqqL8koShz+P8SsaWvul1NFGPZ8gryR5iQe71n09U21Rd7uH1U8QnCAEwfqJ2bLHIkw5ovgJA56t4ix0eu9RyZyFJOYEDDdgwHp899VGw4LLEFD7sVqxlPolCBMw++5qig+0ni4x3S47EWRyCkJgT46jZ92rN5FT1PYSIxQj/48zRWT9ndkZSa5wBgAw9caCxhhC4Af4soSso5P7ZyoAqg0SMMgsbLkBQWwHowfdv6H5pdBfqAUdd9JSDJNiKNVLVmMEi3hH1oop0MXEos0lRX4FScUpPv9TiTVDNsEFA3xSaSFFuJgoTWJZTYcj5VyVhXBAgEyhdiwA2hNfIPUEtcIBC6uBZdN3oiC0yiqrjERApk2UPFi2dl5azenD9RrLe9Flby1zbft+YvUOazAK6uay7ZaWjCSdPT9deGGgy98yq2T36+NGC0mtvytc3z+yVs/NsIv7qt98cGO68uXQesLkl67/+eqHB/vb9PmG92tl6vbmzu7L+8WLl1Fz4p+ff/fb1N98cOzQKheenF+c3tk004bn3KvKq7a3Vq6sGDChAk30hjSYKr7nNWrfoounO3KsBbJPXzdPAmMXK57+evHn76off/Y1036Lby9Oz9e3N3YO9Oki6Qzo/q0+vDt6oen76k0n82++Oz798Iu4Pb1+Z9G9X97Hp9YPdo42jNbOd6nJvrB7sHTsEjNHpeNCgBQ73q21gaqLQ0cbWHzbWfvzp6tPJ7erWyiX69VtsIaRPt7N5enWlE9zIQpOT9RxWnCi19+rwlxPCXDttj6KHwzdHlllYSLp9+Prh9k4v48dfPr778Gb/cOXo1aY3J6u7rylwZ3vz9ulcx91Ja1rix/tzw8+f1q7WN3bXn7Yg/Ne//Pwf//NPZw+rh2/2LaY4sUZ5Y4dbns6e/NyWxcg4N1a3Ti8kML3z9ILCu51fLy73t0xud67ZtWlJMndNjq1Un70DsckKotecsPu0w3wMpRc/c69dRw80sMpiOVquIX2FRL/tx6tHy4IPN9feHL/+9dcni5jV2r65+tvfvNvb3HHKmrPgHAXtyOSn87PN1Y3j3T1vhj5dWIhx9f798T+8f/vL08XPF5cdOecNttFcyodGorUEh2IPlCHNQXIFH3/Gd/K7v366VsrvfK93GRMyil2++8LtNpcGLgvLH7WCTdGR5wl98E5DX2AygYrDGOZHjW7y3u6qDaG89b2+vLOu3PJfk4EevlzLZO9t1n9y4wyJ/R2bBAj65j5deVdm4lnHuFmM7t2xpTJbhzqKJ2f2D7VTFt+FuinC7HyhF+FL/PHM9IP8X3ybYWmlWoRdrqylaHpGhZdPWWCpD16kn4KFMEdzMx4hpNUODcsJZq6SRg2EweaWBolqWGRp2orlZYhw29yPqElmna2xDCKOaAee+4k64mfYaEYQFU8d5Zpl0hpyPZqOW2qMBlVEEz3Ndy2oeqTwsgYgkpY2YnXl4HDfxqsm7ykCCaqXhkABthq6Uj3fEECH5MS62/4Yd5URbCOdFElhgnAhnTFIu92q7UBD1i0yW+IxDbEKgVzkEJE1BLWSpZdCej9gsx9Edz8xOAPEBEbvSMtjrLbt/Xwdmz7RMQvKsYyWWmhE4yj/kWMgIRLn3WzmXRtWM0Ek04ymXGS7k9DcR5QmAL8UBzWMbqZZv3PWjnMZ7tNysOWyEvravhprFREVkqwt6vxJglnIuFdzk3oVpgrmylM8TmWjcX9xRkfTPjbYV6l41GfD+6QcUzcDGG9VPJ36rWGyqqCbQ1e6SIm5cIkHAUce+MO+wvUDKwOdKp6yhAReMURlaHPh1nCXuAcv1WTk8M6j2vTkM71TKk5ofdCifEKYisxPSTWyz4weUaUHXb1wUUY032qivLDMX8b2/I6WPn9lMAKiG53gQT/5CVmVNgzikW1VskWRKtZ6i1IdP8Np4MaQKlR0IobuBND/wlpGNCyMqlRLvRFIpFEo8xhbVTOuh85eZ0ZeJDBIwALrBs1OgSy/XGhhaqEBwESH4iEAmVo6TTb1RMbC/JKUVKbEJveJwkwsKaC0dHeoL4Itt6K3K5hjqYthNg+pDp7cXqy0uDRuOGRM8arEu5xAoQggz4VPNJL+krSNahLu6D0SMgZkjReOslMCuOoiHSCxfnLOl0oh8gDb7ZHcCxT/pAt9XGKMkQ19yHDfVzeNrwNOCmRKKBWj7qZ+QpQbT+1kijH/UFYPAy/zI4zKExki70pABbjcafSeTYMpIA60qeNW8gtgOvYlot3ohbKWAw6glhFr0AhUdThnlCubGSXkFlwE1dmc+KYESCWRmRFJtJzrpaOGUXiwHnk4UNRQaPWapTfBevjxLFHk6qh+1qiopoEQpNxUt5RizAWMygz93IHQkkCM9UEz5ZEHO9YH07oc7B+cn5+n+YBzZIwb2g+RuuiJpgSqSKm836CBiUQkaz+GWFhGHQqPyhYy/F4oUT67ML+t/YNfTk8EbZhqRh3BilwIl1MlJVxMcyKBAwHwRamqww5TCl08J7pIi/H7lx2ACZrcr1fGy0axiTNDimZ/FE3FIM2wKdoE+lGlm6Dk5CTVCAGiAot10jAJwaj24eHR1dW56fxXlza32T87v9zb29zb2ZOU/f633/z88cR2QabE7B8eqXJ2dood+2PYvuaPP9/9uHpt/FPKerCvG8yB1vX32OSH94en5xeYsv+mzfU//nL+53/66eby6u//3e++/823K8bVHxy5Kxe3qvXi/MIpAnT4dGJHy2vD56unt3dywCtLTh0SbMbkprUGOWcLFyZoLnE903y8Pz54Y7T+3bfHb96/3T08II4f//UnWeze0d7B8cEvf/x5b9es9Y2Dzd3D433j91Yd3F83Ofjg1RsHtzYajrFnRxnbC/R5a+1G0nRrbP3jyd7h/s4bnumYofsbpyOv6xFJkvQsnDe88pefP23bqWft2Wj3nqWfF/drm6vb+8c//+nCFuN1/9kk+yRuxkCTjih7eD759ebL5ZkE2G6Za3dnf/yn//rb9/+jJ+cp21r/ae3d7vEffvju+9996zQGnRsvT2Vcz/fXdXMdaHx71VLiq7vbX08l+izFFjlOBrDA+MTJXGsrf/zLZ8OasJlDBbUFAAII+7u6uDSHZX1N98w7CtZnrG315vZq16iqEZpOent2QAC7ZTlcT2dMX8+cL3ZlUIG4ZnjVsQYWeC/ZQDumELXCGHRQgAuTuPQ4vjxeW4d9c3Xj1cY3RzLsp2/f7L8yBej6RAJrIhTbcIQydd5eSwWs/PPe4OL8ilZuD7ZWXv3Du/2T7V++fLGR7O2YNLNu0wWhzxBsDgjv5BTcZOxfKVQho+98fmTe10lxVM/Fa0F6P6mgf/gVFyeLKYzkc/Pf0PI0HK0ganFX8xkEO0lM78mu7tqnSAi8urjr7GS2mFNf7R1s79us9PyWPk7Obo8vLJy2nHrnNz9sHb3e/fXni/3t7b03R+c6Or1ft4nq7c7Z9eZuS4gsZGGKW80xqtPO45HSCy+qanpnQwP58sTnXvMWD58dquAppogFeW7l46JCO0/UDrlCOKXQOs70q91kiXK1fntcuCt9ifPZ2MC9iSSOQGvvdhZXDbx7mVnEJOQ6G10v2VX5XJ2HCaYj1drRdEFHjKwnFa/AuK81vt5ADuppenpdBpN2bdY/IFWtQhYdTZIgTBk+LPqlXma25RWlm6BN2I4U9X1XEbM+0m43QUZxc9WWV7IlQEl27kyLaH3zzpZlKUGGbvrqBgs0GMXnYTk+fTL4lwRIOeWnO2O0+zaYVa7x8nHoh46HStNoUAUBmsCWHWZ8S1jvS8vzsucCeCbuFWIJcHoqaelW2fCIQdtkQyCndFumD8gMG1emmhMFHQF+tA/o6cmZVCTzNOG2TlrblxILhxjysiJ9O0C9S5IIjdnUuiG0YjP9iZ1nUjzO+I5mnxbKubPJPuUBLy6/2I4HnqIdL3aUvlmxdfJwON5a6ztf/YE22xv6EwG7GvZ1kTA1skFoiWAG0vMpNYkT9YJD1G5jndiZIdJpHfnRBTiDAGtIHa6TrCrj8nRU07xAnNLgcZwiAEJUpGVwJmeI4lBEe+r2YZjuQjetbB3HJNNHnSxgeEaCm+l0Hiy01O77DIcvBYawcrz4nDq5HmkMI1ySBoePv1I6WV+cLuCHilK4RglHLN2B1Nesr7TXn1ATOEQITuOTNIYwI1iqLJYbhe5HwwSESI+afnoE6vRw+h4aZSvSL9+StKvBOYDcmCeZSnGpDUcWUC+SGROryBTr4cgkkGD3b+iJhAiZOIOXafo9W8J/RcI/jMwlHIsEZmp1j3x6nT0c+F6yGe8TtlA2yqkQQohd+jL4usEeYiOQ/paqsirhY0JBoKF3X7S1TZ5H/hlGGlNeMGQYkwXm+NDWhCyWgeKJWaqT29vXr798OWncJYNmPeEVNnH9Even454hpoxEw5oCvqgc0AQxoiCY/ha7cVDnB89fB87VZFjIUGZhXO5PRONOteIQRJKH3ZweRQLLpApGeUiCnI+OPl0WrVgYbPkDmsaAKEjghx0XCjyYelRThLsIjdxx5FjBc6aTYhZJj+iLO7lHvMqcBIrugM6eFplEFmGmJPX6+I01ty+vm10nZKSOpNbIUywv1h+XtWL0pVZRZTL5sb/hL8AvQOM1e6GUAgFJVGyxn1CUlRky1WyACgG81Yh4H2JJqtgLztekX3M1hafX5Ha9iMVvx6QSRsRGQ3803EVnqQ/dAeMaMXMRsw0CDemwq1a7lWRiKz6LWZESUl225BOFY34yvxYj3lq16lirSj8eHh7o++3u72DCHufn55em7tjzpcb4edW0+fNLA7q9XnCkl9zk0sz3+/vttZW79cc3zfPSPj07ffbm7PHTydnKdpt5b1/ePv3lV4Hz9XeHf/j9v3EQFZauzm/ast7WNOc3dze2eF/7eHr5l5PrjzePV5fWeRmI2DDzBPlGVA+tGp63HmcX1xtdw9O74hEtBpsGoWH/9ofvz85t17llYrH86ej16913r6zD2yKVtefd1yb97z093p6d/Pru9TeODQioA2VtOrG2crBtzvZuAs5S7y+//PTjn/751p5Gr48vfv24cfRKcr1pT8Zmuj9Qtm1JZ7N846uPr9/s7RzuPT7dvnu1zZY2dg5XrtZ++nJu3rCZP9qpPe33dqttLk4uf1xb3z962txe+Xd/88P/8t//4//1//J/+2T2/80d4i6+nFx8Pvuf/M//vY1k2qppe3dtbU/q/7h2y/RMabYo9fri5OznX+095c2Ho4rNiTk7+yJ7+HJ99+u12TWP5jpdX7S5p2UDmm961+g6XZcN2ILTvuDWITRyz3nHrB3TZUP/Sa/ZQBl28fpJFd3aUkam1CEOyYvshfIsiUU0F6715eCsOAe3/QrvOIJ03/ILp58+nl4/fTLV6Pl5d3P1/dPmL+c36532u6Hk5eUFx5X08p7zs04jfntgKs3W45014TdfPv9yuPVqffv4X5jCMjjVhOwa/ManMumogvrFs3jDhKUCAvQ+/vB6VkEGXr6YCNEIItU2yMKqiktTOPqnuCpk1athQshjChp1SdvIKrOWIognFZNhW8jrMYBNNc3uHWVxen7qdDMDm0+fLvf929/4+ZezX369solQq6jXVv/bnz47PWJvf/f4zYEjqXmqvNIstm3dx5W1XTtGdc7xfel74Q6uZuP4vUyr+BrtuXcpL5Au4mni5wThgp66vSKeTppAZeCjlKF0M9FgEW+Ja8JLwaQYVrgraCg0kdYlQeE+pHB4ogihCJk6RpN3FlRrECbSVCs6APB0iU5wkWTRBoKKdU0vLzTIeJY3A5iv4nRgKqhUbC1UQdlLjwJX6Z05Z1FYQ2nwu2yeeOaVQmQg0NjfwkuqY/sgC/C1vNGfhQxJ2PEPPNKAEnWlfDFaS+E3vhSQDYAS74g0fwln7SrhT0KmqUY9Q0qe6YX4w4iIOtgr+joiN4OJ+xEk4HL0Kds4LziBrjrSyFOgNv5FLSWUJFyR2X3OSA3GwTbgmBq4z7SmkbGxfn5+4dHSsKuFVEUlfEoiP4kZhJrWCm+anEVHCsECV6euT36CdXBGdBJ6UDgcwobCRDfKxSaA3RuZ1EK1UZuej3fIhEOtIzyKz4pMBEVhSQgFeYX7aGMrrQE8STs9hDFB0IWSbVHqYbVpp6FTIQfybEeJaKhHk1IWejwYzbmTCoapkXBAYfA0puiaFWWM8dTNeCgKqIdmYKIHHQW3h5FhoH1HQDbWAs4mX4Qu7wyW33j0aIwtowUNRCg9RW44IIJlROa+skNWVH1FGDn8wpNSqkFbna91oz+3qkq3X8Sf2Sjs8/VpvFRoysdKBjB3oiJ1BDI0fQ9rcq6AJ0oiIeEMtS+gXoBXySfcLrr2PEsIVBINZgWm8+/3gmhJV0a8IZ6KI0CXyT6Vuu8znA1jin313JBNKBDH9vf2Ls4vYVay2/6jjb0FYyqm5WCSQYOcMVfUSMWKjN+OfSTJ+qMkrgA6GiIRJppT0fdsY8I7HEgHgbPGdZKZfE2BZJRnEBgmiXLiWoJYMI8wRjphGM9psH+EFBL/ogqAT18+I2N0kw5A/au8CnCaBcXcnulcIBQG03F8YyoRZzrzjrJGy9P6+pqN+F+oWaSFpnwmpgWZBDJyr9FIcZMmxmgNOQngKNYWgSOgNlCHR5whhChVVi1t8yggNsdaEiBwHoe8sXxKSuvw93saMH+qNR6rjH1qRUZCgBRh6vYGUwwYaqFYQEMXYfUWiq3KLW0M8GUmPs8rMgxxpN5oqASLMRQuMg6pCLkkYdjrBqQy5fxDW1ahj6GjnwP39EWAhLKEsGjGl4LFFGwyG3IJWd2ktJBVxEEqUqybi2wXPYoamAlwsKewdyO9zFUte1vCCtyhmElH+UBtFSLRWAFAfapBRy8vain9JbEbIEiDZTrf4dM4La1LU6qAyhobJ2vEZxGAQUTWlSsZyto6u7vZ3tt/vF7bYlG6FWvrp+fnSN5c3zZp6Pz0bHPb3KDVS92H64fzq9OfP12V6Gw8HOxs7q6vnZ7eH7/b+/b14XfvXx8cbr398Ob9t982IVWTcH9rUvjtjcH/S3o3P1AGfOEw25WdXa/YN+6utBLttvjkFYG7MulH+yc+Pdn130LVL9dXr+3faXrP9tZvPthc6ODh7NwYIp/e3/VzcHl2Ru1XF9e7b1/tHm4d/e1vTV6yYMAI683Nw9u91wdHFhxfS2XWNihuZf/w2Cx/e7wYPnu4O//053/9+U9//POPXy4u7/c3P719c/z93646Hnl7e/f0y3mKe1j59NPl3brEd+/HX87PbuwEb7cQs3y8rbg3t+P9t7vn9xd3ZzyVJDfk63c3K/t7G+/fHP56cvXx5vr71weOVf5P//yXf/z3v//2vfPG1o9tYLq7++rf/827375lCWsbe3nvg/nzJvPfW7AoDbw9/0SAlHh2dfGwsvnN21dGoS/Oz//8p4/OItt9ej5T8sAslZUr5zE/36/ZdubOag7TrnvJIfU0/d/EYgOf15dO7GJhG21pqfu25hg167QKLEKtjlCXefeqA4bZnuPAmLNJUPJ89uI8Zfsm6d1oMkwlsvvpve2VdnNYE4y8uDCdywyMzxcPF/fb+5srF//PX9d3xbHHI2+ODljJo51NW1EumfYOgrdaMmFd+M7rk8tLpw3//OOng/2932wffLm8vXBEtADiLIhbxkP6HWsoTre1LK7mwzXyhnE5LsHagaZZ3gQFynXR88mSsFyO52KTgH0r8AoSIoqHuVh9HGOfxQQnxm04KIMMy7p4zbihnY0eCso8sdH0VW8zylMsO7HVzOZa2+la2ZmL8s4b51PbUOrgcPt4+/nDh8M37w91Fw2KsBibCJk+ipiWFTk74vbGlkH5YhGr2MjYcJNfz4ARXC48Nh5cekdttZVFtgk1skZPJ7gVf93kt6Q8r15nrWQhN6g4Li4tQZzc2ILkRrTXOrDl9GIfrTYqxXHJTkJTc2IpYUZPFLqF2K7RNTKo06LZcrsyoyFlqtK4ZuIScxC/sAlC6qG/IUydFBQgvxuGh3nhrhGlITuCrE2ps16tRVrgcDYGXK6JqgJm6Ze+qxGNLP25qf8e0DD4zANtJOMdHQmrxbJV9CFVPUZItDzCYEdk1IHfMhpCpQSXaF8kBh2/qIkKaHaUTWd4MvV2tdb2SdCtYlIrvjoGoSS0gRtcgDP89p4kgwS2FxdEXTverpHzEqNiEvTm8fUPaewuvNNFxLhAP1YPDq5Tq5/pNQUH5mlWhnZO+NWWwPGJVhhd5DV+0hyJuaR5ePGV0UVVza6LqEARTv0Ms+MX0bZgrwj90XvqcOm+HlHiMcZKtr0XGQsHhltlPPNuf4EN0CiololFyDcQAqLWcArEu+aMGN11x0UUpZSXQXTE+0RMD4KmJCIjZNSnQBR2vxSxsQyMU0NF8xf0TC034oXxgAYYybBeV76qEnqfmIwAclaNrsM3Kvcr8saRB6P7oCyuN9V7xBD9XgANU2GdcDTkVSU3UUBFnzid0i8Dgpiar1+ZmtqLBJieRz7ilTuBevkMYuSEkGqSRsKJjyF/XE9ZLAACawGnon0Go79KRzd1JDimpcwiWJZTahq9KQIHI5mFhUEQPbwgFMOskovMRuhTHqwepWKOrGAxz+NRSnwgrQ8IrooIybQOAGCDkgmOAuKzQsByGG42FKlElEtgWpiP2+yvZLZPr2bAZR9NlYFqFD+aR9kiPUDjpFSM1rt+EXSEmlboIBjgfKFW8lAr0cx1xj1904XnHGjxKuizVuQoWQI9eOsTR+cstMcahoZRZYHzO6MJz9gc8rsj7mC5FbQpzx1PY1l5vBU6XfUKjxHl9MLKpk1j2v9Ypj+eNqqt0St0IpgvNYsgpoqziWs+HuTPSxhKyQpkeT7iM5Vkp6HtbzQowbGfmhgaLyyp4YESkbKnAIzpTG+BSDALWkgTIhCYLnoOLeo5cQb+mv+hcGmwxfOsUNsMEeRCrffwdsOnBQjCCoiYYmAPSUMuAMlu8YzF82IwC4NlqE6JSqg6Sb7iiXPMoN6F7y9hKZn36jYGp0+ljgFUQJpjEEnZtJtystEinQQXqCGm6IM+0k99yFtkMkNoCCjEZzZdLHEhdAqzNCx2PIVqQMYtCm33iAwytELRDjN19szxd4jV5qaZ2atbu2i/skKOYVw7qOvg7Or6x9PPRj+Od/Ia00Xs50irpjGcGL83U56hYOHh8cxg+oah0PvDo5Xf/+GbV1ub3x8f/P7Dq1dv9vffvbUp0OrB0dX5l/bosgPKxe3VuYk/D8/bNtfX/koIHQAs12ol3cn1vWNivVM2WYg6sXl+dflq/+B498jJYzbfOrLn4uOjaUfvDvbXj46eH66u7q91IZ1GYPR6fWt1//WBw3rvV683t3ZNHFq5v7m6Pt2w5m/DxJLbLbOCiPP2yrQh2xWd3117I3Dx5ZeNu/PH00+kc/GwemoB8NrD5ccTq4+PTGrZ3yF6wd+cBDZ4d/1U7+WqNbI2OPKexOygH759+3/+T//69t1rOx88Plwje/25DXleH+8dH60bErS2+K5YufEvf/n1/ObsH/7w7w639s9PLz/y0LXnnd3dFnbbqunhQab86B2EIXvHDU1oY9Lbu1tO1/2XXy5P79a29h/3LR1/3vjzL39c2aIcRG283V8/PNr9oylLjyunDlJbKcs0s5/nOZm4VyEZ2+Jh2jn5j42M1g2smoHFWvicw5wZkzAjI2ezXvEU9jZMC3TOsr1CrSM35jp+bJawcnUsOVeDrD5sb45QyLOsgni8vD42lQiamxWLrk9Or94cbPz23a4OhQSHD5yenjp3jDakSk5c4hbrD+tHx8feY6ytbR/v7luu7dUGgnQUEM/qWTEmwGfFOVVYi8AIEJvcyUmXxtnDdvzz0kb+4UuF8qD8rghf1M0xl/askFLgn9a5ZKIcyFFc+sk5GJA11LOvBV71xXYPdoPhTYzkQ7rjiOCG2Zo1wdidybD2tGYS2bcfDg2yvjo+eHdogcmalfTexrNPbwFgpqsS+qIK7jixLSVMRXO9hKBegcbb8gG8oDQjU4WOBF5IGCFgrMHLZRZHT/wvRMPyUtu9PurptE7MwVmvZ5sqo8wE5l4BTUR6KZzkyuBKizFYfR+SJFN5WPsBLu8eiyoTxuZQF5GYEHXuZiMyOEueZgYpQ9SfHXQlTGOQmAloEYp9mpDX3gYRopmbYe/0yhKjcyLhixBmzAsEK5cq0BSjMg+lqVhfRh6cfIKaVdBp4iiNAH4CY8lNkdHXGp8ZOAtJw/ylwg6F0PSXSFRhYbxHFA3OssUQcMKgr7o3pKRkyQCkyYiCqlU8z3RrUnUPRnXxnDHnLrWVhhpJLRvg9MC0/mcrZXDCHhN+wd6WpkKn24AALsjzwTh6SfJARE89E8XVAjCniIxFg8kHPH4ZEIzMmFEA1GhEiceVayELFTCOqISzQgQqMBeoZbzM4xww+hNbDVf2GQ2xPN8DlPshhzpgZ/NX9huI6/nUViVdDxOUb0jSUPDolFcpoovaak+SM8mYm8kpsxsxT56KyWhXMqr6oJFg6XGRSZJI8v72e8yi5J6F+Hin6oCBs9Nzd2iBvnKASWwUHm9DyUv15DPpL9EFHOT4yDZCjLZ+oKl8jTUBJPEKf8Weqt11k8SynNx/AbO428BNVgVnz4dlTI1J1zrEyKCtWvCHr4hMnoM/o+i7gksB36ZwZPz15hhGloJgpMIYXzlQMWRYCe/YfyQvQGbEJKXH/sJ70dLlWEKFYK481PMm1beJ0mPSOfpYz1SJmsqDVeY2Xxsjbnln7OWtczHmOrqDxXQeaBKuP72AA+IrjuRFoBmt3zOgEvChdURZcV8BRggmpnDkqieCIH9BicOK+tSJdx2M2j/toExrsbu5mfGx2+cVhwl6OxZt/g2OUUkDGGQBPn1zmOH2xSZqnPISLoRyrtvLSryhpN7nKFuGx08QUMX5KAkFCWdN7pJDSX4hSCkx99XhwdnZhQnri7kghnc1nD86NnwSsxMHry9vANDiRqFGaTbxhCzwPjPxKYU2mtu4UcXmXYQSgAxfjSqhOYOegZCFbHJwQTQidQJUesawq2UTvmFcRbmOrr/qZDiTJz0pdmSL80OWEeaol1KQqTjTWIu9xvUNPIzOxZFgTp0RD+olnx3+hTDwoPChPlSoWhdn5pIqlh+qOe6ujPt4IwpkLRKmB1pvL796YsQYvUr6W/AaDx7hZE5ofRHUdN+XiZXuL4imVrQsDjC91mxAGKyvUhI/cMmzuZsaxd6AJ8yqlGZGoE9NII5TwWIaYwC+9LHNhd9EO7qrCXGWro4tGznY2TcRBDxvYE/Ozw/3jVxv7u+tmK9sLP69c0031u5uLM1d9uyzWcmjUWQmJtmWXHnF++r1blt5npxKCv/xP7w92lp7u731b/7d3x9+OPLOeWv/wOFSK5LN57undTn2yfWVUbyny9OLL1/uzq4eTtuS//HybtW+O/akvLYar2bSJJcng9qG4tbWj7DG0N4cosVAGhu3Js/Y8933v/vt5po0RNKw6qyrI/njazP6N69PL9eun9/83fud483Tj79eXj+9P9zb2zcZRvJRn2p791j6asXuxs6es3GfNq5P/vzHP//rH//pl4tfz1G78nS5/vbNvl1ttnecIGaAduP84sZE/729VbOfeh//cGlpaKcgrEm4b1c+nX7z/t2182KdkLapK+X9uJbeTKKd777Z+2//7Ud++HR7f7V6ZzbI7of9p6vntbfGAld/+fmX+5W7v9v7w8ovH51O7W2DWgYwt3oV4JBjMc8rducymE/nDfXa+d395cXPNhk1/8gZyp8urowYvrbJ0drD1t3N774/el47fzh7vLq6Xd14tgO9l6c6VqzETvy2UHJyrcnoZv5Qll40RegD6CYxP91WcYadeCrHuXNU6uPqxcMdEyoQNQdyZdfJxM92ENoySGB2DV/kC6xRf8LTO125CQTWL1i+7PQ4Q6lvj80r642Zcfyz88fPJ6er9k5gRVcdErezc7vjTYKh9ZXH3X07k657A/iXT5+5rj2bLBARqerRQrGy5m2DrLyuS96emSObO9S+kHjXtfddTCMkQKjKNZeIGqF9CsDjygUoH7D0RtXx9aVATHGX3IchihKdqtLOKnKC9V61tLOZDmwjsBxLuLTZKznvWrOysWJuGy/dtdx8Rza3sb2z98uXi20rw5+ebJ3LqMgOVUKDzXD29/aNuCNTAFIAe7qOcE3iJzkoSlNKhPZOtXyU6y8/ghY45b4zdluSgb4pqQ6JYVYkwW9hdQKRmmIIGjxEgbghzgmMBAhz2y1NKEMd5pMVkQqABNWy7wKsSEhiAKq7FCiGTy0QoaMM/pHZDBcuVCQnu40BBbshITS6LWz5LTnzVZwEw+14tH1Wu63XYqCj37UDlJt9Qu2J/p2cW41MYR75k4iojUnMEI/+75jCZCBtJyqGK9WZYu0u0HBMQXOxma98B01bSc4ai3nNy8Xl2okV6zDmLNMooyR11IWbfsDyVlagrnepmc5GtUeIcQ0R2S4mhyC5AYAkED7PeIPXSbXC2XH3azBHiGRT00aJvRR1zw685QMGGU0SToSaDMaTlejow0WnJOUb1/NYLM9f/EWq+6GM/f4m8iSsSByOa3iyXFcvTSXkUHAHasqoWEtdK//KUEZB2IyWGvTaaOofOPE8L3hwFGtCZ3FDWXHYpM0JLJku5OXTTXkAOFsYylRK7TMFK6r6qLoAixHZSg3EACS9+MqUXkBACSjg6MnCvYNK4xmzD/UARSJsgKwn3mQP5JDC5eUOenww01tftMXl4JKJ6h7iE23w+Bq/CY0256umdnyjCsysgDqsTQ4QxknwYgVMdSc5Yk59HcojahwwIufuC94CbsJZ6ox+sqLlqardn5iW8EpEo4qzc9K8ZqEzAJVVYnQS8fDF12RuUE/h6ImRBQi1FfATgzwtZ/QQJwkjeRopZwNK+wE/FxjeQJ3sZaw9wXgM5BC7sDtcuw9U9CwQIigyVVf2/09rU16pRY/DSlAVe1lYGcpxg0xqJi8uEEaSk6XltIGJdH+Hwwmgyz3F9VfydiKLArqBreRb/xvpSRbjwg2zTw2BWmShxW5Cp5WWGDAiVzUPiYtws4CkA+8YT6AQQn+aK0ryNSEWY0nUM9cGxxYvyjTdJqOG9JCQM/YXhugpaowYvt5hGV6gPD2diarF63Z+FX8FERqmoUaYEq6oMfVQggssohhu4boxxCgszXSDEEjJjTJR9Xo07GcBMeJTntn9cVNXY8oQQpWJdzXAtRUTlNkVxbtZkj318paiXhNYsTw2IzWIdzJUJF7GUITC+hLLmwckKEKx81RB7CutpDAtdgc2yUTk8M2Oo29YiGhPlEdJTZprxaaEu55Cqi7NkA9hmFARzOkTZwBUowbBycjqak4zoEMyKqvm4IVvwAKssQxRDf9QFampD4XknAgWX4Cwt+eClGPMh4von+YzIgfi9O7ovxwiLc3UTEozzI/gEUIdpI3tsZOIMQBMVmUAtzdW27JTR/Yey3VsmS8fur+5NChtdO3e2tnH58293Ydbm+I8OkAXa4d7dgCyl/z6q6P91UdHS3V8pvRo6+rp3/yb73/43Q8G2muqntesDRVWhUBrVq8k0Ze3X06vPn68/PnT5fktkAQno9q0eJZALyWrveOyeeL6ob0zt7aJolfqRljFsqd7Sa99aHJqYyHeZzgAy5yf8ytJFO0Zmt3ZPTz/fPHu/XvD4rY01JXY3j64P3iyb30JXvNpLk1+Isz7lYf9ozeEZ5fp+6ubLx/P/+N/Pfu///GzMyZf7eysbz4c7R3xnT/95dPx6+P9o4Mnm+LU/j3b/vSXz5c2tLGa1e4/cghB4peTq62VTXMN7knBoIWHLGZ19cePp45S/vbb908fz0wIeny+fnO48T/9h9/95oMXI/L7xuc3j95KH82DVxc961frO/u7j87nNaZo/yBT9UnpyaYou9Zbb92aPX9nBN6Sw83NHUesfTp1xMHeq91tWzFZ0XB2dXVqysz6Dse9e7ojROGIRWhrWbFdg43A7Wztei1iPNrhVuydZTMR+RmPk4wuL6kYmJlXjKcDx1emu5vbZchcRbwSUmyCKi6A8GBuzFr7z+ZEGfzjzZUJGHYmffx8eeMgZZmaQb+NtLRq4peBblO5ZA56BVZTQHpuk6K7CxiOXu2tba99+Xwl2X73+vXp1bVhWOfwZsYalRyQkPLZFy8eD5jASd5FFyh6nh/zx3yKV/3Vo1WublTP/XLfiaWV6eNLI3E5RzFZ9JCxjMc4x6FpjU0BZ1vz3gasu1snQ1gn48zpXfcd+cB6D473Lq/v/vN/+vP337wxlYtJf/fqvdcaFxdXZnEfHR99+fzJCordnf2GGybKzQQbOGEuHkYcBrh5k0bIuzxyZIuYEq0i+ERUYdQWCkKf57hSl8YjWFdCUNVUJxghy9dpQbhlY1ilgz2Y4AmmOCPmqF7rXuQEnrAKyyywsZIlRJf/maDfuYGyQFYbWcRB8lrDoTY1CPt1HMrXw1+yG0PDF0KKxumINpUs7I3OAAmrRfBamAZBEDmq16XcubYn8YRH0kg6wYJTkSZvNIRflEV54kpCMmlxQIOl9zKtTAZivImEK7QiFDQHozch0wVqFpPxGpn4y3TQZfSR0sUcAhmmFsDl6KBBTUa4KGHE9SJbEH1zelXTq8peRZV5P9aUMdoxpWpEhKiYiGpzF9SqVcvY8OQbmaPypdNrx+W1NQeG3Fzf1cbV1E3XYqZIpTKxssGaul5IHPkkD8ZH0GM50U9iWM8J/An1NFsjjaG6Nknm476n2cxsim3RFE6HVFOZRu4qzidqq7ncDTUE01PLVUkJT8ilIJSS8zTWqYB9mPxGbC++CUQi1LDUqpZsjmxTT/bS40jvW4xkPiw7t+1NiNsquuehcsPmQlJ3lspMBaSeZmyljyHiAH/NvEGpXW4ZIVANF3b8nMvQgZOL9amN7s/XzyAs5EOc8Y1g1VkQsZTFuqu6iH6xfF8SzkIPyLEaIpIPUUQmJ3+mnl9JO9NYnKUuE2TJf7S5lFu+lmEkpYBP9alLqiwqjoIDO1DJa3CQTw8mGfuKoicVKnSU6RUZMtGRg0cUM50Z1C5BQ/mgplSVEtB0A0KiepSkSx+sZcBuKNN3F0uBTCiqsoYX4r9iHEqVLXEY9Y92mVlJFLCmyw16JJYNa6VKIoWSLiqRQJtK7iPNrcyMf2haaKkQpVuRWBjTvItMByMRMkhXkbZ0LaCHJaJDr8rwhfBeYmpE2brhIKYZSYnJkn8bPtThg8QdukRFF3G19Jbi2OA6cfQ0agMylp3+khEZ1gNLiMNzHQYPFqmaUSNgKrPofHG2xTEWN2vkIJYmF59TrIfvYTx1ghrYwVIbiPfFwFh3eUhdkyb0MNC0mydkTi++iuDaEHCGygjz7YX9vyq77tKQa2RQOQCyPN41HdkoH+qTiTZJW50lxGbDG0hMXCMKWEZTzBEElEzXJdG5CEz2XPHln2K+NuDEwTTTw2cRamE3p5oWFP3DeHQs9aciIDgGUaJDyMzCbwzE//AJjAnl0MtRVRWOk8e4SpISo5tYXHvFYGb2YdJzR32VVAdGq+pC1kuGiqGotL5YnK32PWSCo7q9FsBI6ld0CjTAJh1o5uLwZYBEX7StA80z6cQiuCLGmIT9s/e9tr63P75DwPafV4wW394+mvO6u75+cGgd6i1hQbm6v3NzdXp2ZvfJrU7Qsrx1Z4eOOe/qkz37n64+Xb99vf/v/6d/9+//h9+9+XC4vrl7e98sMgsd767PJe53N5eXJ+cGe2yicn7mgF0bAT1/ltzZN2htSyp6Zh7P/dNF7wilhtubq+uyf/vjJHMC8/Ns9H0b3e/eHmLZbpirD+s//ssfbbm4syFd2Dt+d3x5cmNJ5Q9/81sHVK0/XWs9zz9/evPuu6O3hyYF9Q776Rbfn/7ln7be6jFs7YD7uHpzdnb+869np5bkPu2uEQiNPr158+7hbnPLfp9Hu6an6/v0c333048nf/7p7OZ5/fLu4WbtwYLmneetywsLYdccvcVUUWNueJt7WDyws319e/fTLxe7myt3l9c2fTzYWfsf/Nsfvv3N0efTX69sI3n/oG+wfbBvK8yzj5939oytb559ObFG4uBoj0vs7O4zMMm27gHbOthe2aFu7zsEnFZO7F0+r13cfnp3+GF/e/O///xp737lhw/Hv15+9j5H76pxF2YIaEOe5Oio5m1JD2PwfmBndYsl5CxwmJjOUAzNZ485zI6zrly15HfbCgTzgszy18WSmV3f3ut4W+TqPY04Z6YNH2bCuQ2BmkTebG+j9S0scOjAvAHSCXn+05drb3RMSTLkzv1Kv5wasb95d3FlUrXdSUXpy9NzfnO0v/PpmtXcCWi6TY2Ri4pUQxoThqJzWsHx7wnrfs2Hg2hp3EcUp1MKP54scYNfuOjO0tgoM25OKiSUaGZM2j2+qN9hWxUIl1SER2/1vrH+klBg9hoP4HHC6Zcze5uuvjLvZ3fz9tJx0Tfv9af3HXzmuOgTXa5ffv38eeWLDb2uti91BR1LJyyjyu8CxjRVEwkLDoJEU0oEyQZ0KzZvCRq8d+078mo+y/mavbAw5QKrCihWDCvG9qOCtg2sfkpNJgMu5jROQXM+ASmAlFpGD18ZAUMzUajGbolU/igvGJNwKJJlYdlNl5o9hlC6/BLDC1xpRK0UoYAdCIjZ6g8bjDXiA0LxNUX0ERiZQUBoqof0EASlUeQ2xgu5RYaCaZF8+hYjijhU2HPOjcjhq44QsgXSpWs0zZwtvLZmTiPG5fzJnD+GwovrSVWhLlZnmr0lHgpJeIbkZgmcKljpnQNyZEix35JTjHiE40SX7ckxRDqCZY9pnOXLC2q+GgtPbuh0b8okR2UpQAEH0qXSXhCVa+iQTLhv+HlROs1qmbULmdBdZtNrgSiHvlSGxFQcAbQKzoei89o4DXfHDmhlaL9modTfi1eEtRt4I3TNWXIT/7KapVc5NplhFCunB8KWCLySTRaqj4AN8IeY7KHprPhUojHZdIQr+NXSHR176/x3EvDoxZyS1xiwP0PtsDFZ4+IFniZepq6dzVgUiMGWM+F1MZNJdaZPhbbYnBjiGeeqHZfDREzU6fohUObWEB7GJEuLCQ4eJab88AXBS7qca3gOO37dJEZ8oWpcYHRXmtsNhZZavoZ+iJ+qkLOZyUihURbLw82YlsvuFg0CT6tMblxywKIfaHUUHrcFp97+3CkN6HGj1b2IUHGYXYgMKmqrFQkRpMRIMdC529dHfS0yRFicDD0DWI3sTW3kuc6qSj/yC+RiWcVhK5h5pT8js/6EsGJLgSkYLVNkxIW+8Xp3faBwA8AKfGVteQS6Yek+tJOmF3t3mzNE6XCYdY2gPZ9QkrKHnBeIw8lix6hmKDni1K1UzMWGC9FPqBUjQF9uMjBmw5MWz4+NicKLaHQrEwqGhYVamixGmbCHo66FTn+XdCwilEECPcbURUiSVqknmQ5tINbaLYIuu81E5rsKuOgr+FX1+0XQMCoyKBriqkwjyh19ELTUmZtFZAaRb02szz6GR0y/tBwKYIu01VzsXl3v2uKr5iGsCAJsCkxHLTGmPyWh8A8C1Gp0UlLlA5gSa6IStR/xCEmKo9dX1Rc/J0yQldfvEgg0Kw2HwbfEkYHMpYk6720QcZEJyljSSz/ezXic1Jzso2pe+JIJAGlNpyfNhSsfqCVLYsDObCjoqbIBMGCBSvIjZCqM8QoioHlTAn1imU/dm9GOX/7VnmmqY8cpQUPDDD4tJpGPABeCVlmBb6bIYhYpPAhpL8Whz9DXLO8T1HGj+SWYRRGivaStzMan4THzgNH+0AFZq7ZsCZAugcTRwbvis5NxHUr57tWhif972wfmCBn1NN/j9urKzv1v3rx68/udf/z33//h7/+gSyIhuruFSMxffbq+qAGxGHblYW3r+cuXi8+nl5/PbBrp9cPanVXFbXD55CSAW63M2oZt5tFsWNrAspcD8srzCyi2fvjmGOod+9ZLElef9zbXvn/3zlDryelP+6/eoOTRoVTP69u7Ds96I7U10P3l9JfvD/7m3Xff2bR25+jwavX++vRcZN7cfHf09nn78HHn8LvNtW9W1k5vL39dOT/59fTuU7t59+by+Gj38Ghj9/jo/fffsq7bPeeUfTmTVn+6Ojm7t9Pjp+srfBqaz4Kmib12Dpldrrcim7FYQkraHf+0uf7z2fnR3pbk/mBz/R+/O/z9q9370+v3Pxwl5Zs2lJSA65gwEy+zHGIgZby9uFh5uDR3hJVbLpox20yzIQnTEihzw1kClnTs7r85+fzTb98evznaleP/5ve/vb25xO/vjnZXvCgwv/9289zgs3UXzic26s46/Ftbt2iV4F8fv2ophrcMHf0BIK2Pr+UVa23cb4fQHfv86D1p+NvaiC6ubuyjutE+ngiphfbV0Hgns4kZ/IypAcvDiyGslR7vBY2VnXZ+fHi6payn3dYSSOmK47+cXm73rme1FdsANZ3dKvAkc+jULY6wun7RCWZrzvvwFr/mWapURCsaTgzhEEvzCR9THmedO3UCcoYaOe7V0/nDfXpDxyC8Xc2fijv+8Ts+qBjz7XE9o9mYUxxoWpQZaFIZu0ACqOKarf03GJ6ZcV68eUGwvn5kMfrzlfmfHNk5bge7x//23/1jJ6Td36BWB3VeIz0y+eeHFeuzUQKUxFTMwWtzOthUxBcMS48m/JUC+XBvgYVHT7zi1DER4bUFACE+Z+82bBIF/b/aLz9uBbko3dz64plPb0JqCAmp5BXY9Niop9S0KDEbEA+a2rLaOwPbM75QOB25kZXQAikgCIcV4AiYr3SMRy8KGnmZMFUjHtGt73BplC5DSoWJvBDm4fOq7S+DiVzZdhNFBE8m1+GAheWZqY9g/DbEqGT2GO8jk4CgyR2zVpCAzcUM4jcuLcxpxjlN8qz8fo5b0XLVCiSoANUNW2YLRV25C9J67VyzuDRMeSfcBW3Bv5tavl47pDeXM2sCTF9JGFHi5/CKwjoYJn2BnK6sjhHV512EhH7U52bpKcYXSyBcbGbzQEwdgtagjGzRga4XUdSlISLG3JKzDe8kY78C/isITBxhs8lFBYYqIpnSe29cHOO5tRCarOaMrTg8sRkWImS2NNNP01MKB5SQCS2YENT8TQoOorlU+wd7nz59JmHU8SglFuzTjkdMNDXet6QQPXSdIdG/TGBJ9AfN1Iz6JW0aNhSsQzQyi0E0VwDYr4DRFomNmo1ljo8UMsKbnVR+lJhFyVUiHpcsqn4RagLm42aFw9Kj0U6uBVIUIRGKEXM6VaE3Y4nE9WTsYxTj3bM0pcIoAn3AguB6DCpEAL/I6qvOkDJGm8yHnnQHeqhUGHp8X+pONIu6SV6WQjjI59C2QF7EPqJLk93vs3hLhQHLFpNGSmnZkpGk8cH4msJVz/pePm6HFKJKDL1pNLNLSglzQdgN0F5EO0jU8KxUZShchKy8f0Fgwwsi5UbCICg6rUAczRoAZQfV4i1oy3nqDxRXI2GaQiDr4NZkTaid3h5PG0ZZMHApNSN5ydTjAd6xoTGyOIzH6TKm9eVrhE3lwpHqVBzdFYC0n0bTmz5IFvEDRKaWDU+SJojUDdBh0CQouXTrgRSACk99JmKibD7gBE1XZKxiaiHV7ah3la1AMGrwdRFraPufxKErSPVxk2hi3+VIr/w1PmIkx1YmGRLdjHYAHCbeVZ6p9vDsoi5+LYw2TuwDFTlRAVuuOA4/Q1zDY3EosSNJ17zB4GTlG66BxbOvA0H0X6w/C8vvTbVqMIlUFY6HAQJA3MTg2A39i++jCAiTbSYxBFUFsypDFeX+JRkfZRYwHuGtOxEz/f4ZLVCLRheAfsM1YIf6l8JLgxEKdWO/WUkREpYhUUWETMe9foXKk+jI8s1DcORqJdWKEvU1veXXA86+/tNOe0KBSumL0GYXiV0z50Ib0wxI7YSx4exOY1ZXxDbkDgGwdQyVre8e7t1fXWor+YvUxM6T9nTXkDjGSO9G5qetgsAsZ5P/zf/RlH3z4eAPf/ebD++P3ny745kMWka/vXegE5YyNJ5uXF6ffPxy/vnsk6Ht26fPF7efzw2Srp5fP1zKuZ+Mna86k8xgpkZ59r3xEsyK1IZjLZ4kULPUD/c2bal+sL26v73+j3/3HWavL6//5u/+gJPXG6ZeOKV18+j90eXV9avjQ3t3rO8Sy43DDT79/Pndzv7N+U12seY03x+P3u/ac6/NKO8+Pj59PP/yy48/nf2nH53u+rDJQIypX9x83rw/eHW4s7Ju6vy9mQcX9+fXN7+ajrLhODArZYxH38ggrm4lDzXtUn+LZDXbprjSwsPt7RbhP3ZEqNOzdHh8/vD+w//iP/zu/fu907O746MjQ4HnX05OL8/f2qFzBg3rgKxtXl1dOsrg6uLsaGdX5q4Vtmf5rWkD2ua7eyfpOpng6ub5/Pr+y/l/t4H/8cHuxc3j2/29g3dbq+erllPcn3+2kPJwb+1UGr1yp18kpb69lXozXuFYD8k5vmsWdbNnLzcSl9OG6yiyvFIfL75LAp4h7F/WNFGOVTZI/NhuATn8TJLJXOfVnMjAjqxkrVfB8gjini843Pfh9aG122v7pvze2PxVMVZdGthIwera9eXD03bmfHp1afNW+ZnrqgtDpj1sr+8JRTdPNgUyUw0leWGOkOsUG9zqBvvzKMv3p3BX2OAj/dB+ubXwrpLUu2HydR2eKhYBit1NicRCIw4C9AQWca/JABO+dL2KiPW9pw3FBH3lxpLT/d0dNJ+fX3F1vbE3jjjecef+7Pz8+OjQqx2b2VmJ3oT357Xb67vLs6ud3W2bOaFdb6EuTTGpML6kiSZdQAA3BxTYqUAZIwgLy+iHF6sRXzmX8VLMLtFsC5qIFY8X4aSgiZkt37rn9YRi0pnq8I64iK/4nhJByllM3DLN7mWgJ0GZp6IxNTu/16dioNq1R3gymkCpNT+GbFAjFLtOtmW3uo7VngYXWXxhEWNsNeRvzCGTUCYOVBRR4ygq/BkVpGylRjgdwgO3CAaUSEN/wygY06zEkee10eDL131jkUCx1XbJz7BWlh02Zc8Lu572qUZIC57VtyrDkH9R2jfCXp4qwLpojMHUVmoc13Vy6hsjieVlXfGkSnBqwZUWyQxuYLSMRS/Lt86AA8Vl0GBvO7s7U4b4gwkEqcMDkugJc4DWk+ip3fFQW1BPLPmWANQCiibLyooMG0hKnK6LMWDcRZXQ6orCIiWWy09wEVWrztUxPbRV1DDnHH3oZaHZlD2S7EUBjsSBoSWyFjgtZiCZJBfRiKQsL1lrxIl9jBY68CGKZcjzNfplWi+M4M4/9/qEOmd0obiS6A/fooxuyogM3WdXbi/0wE6NbqaCFOTTTCFfA4n9bowTLZa2UFBDC29P/VYyAxjUMTN6ICpkjAxLSCBlKogZeEvdqizyXHwJpV+fLp3tisWg9pox5nYLq0Uz0mXQVSzjAjYzgyJ9JaylCsNo6p2aI0u/Yss3ZTKVSs6T2IFqjC5JDkeg+YypgzclASj7VyfP8Ui1VG4nwCmcwTf0YLNtvDuSJnzBi/KMcImjFDMqUIaQo2f8WrkwDtPVSUuRR5BZ5hKFKtIj4vV7AAtHjUqEw60htUJ97V8IFvK7jhptW4Czg/n4Guqq5zELuEAkCPY+RAzwkiR3lRtImYnPBALlURoZC8opb3r00pYxDIe5CEycwZzF9hJrhL64iY+UFJglqzM2ltoIArpaOMqKfSLOG78SvXQDRpRjwbnTAMlhEjfai1D+ZLc+jdAPRg98i+A8oEdRO/bnqjDZnVFNVOVRrK1Rh+m2uqfeUJvmAJdolhNUC15IXYQXb3OtegXSk4tsj2NXtxaidVRyIK8/PaAUZcaLghYP6SZl8QHExtGEhIqNKnwlnIxJBYW662Kck/YE+sJQs1k8ByoVYcTV5MrVGAaLy+1uHvM1wYKCRn5sGi4Q5XFLhIpH6shfermfvEeJKK0dQs2UZ7hxNP2K+Ed5USlzTApDw8JvRKaQ6FPXB95FjK4JwX2tRZY1TxkSgoaX5CUpzh9iv4jvvgoCWXyVzSjZsJy/2Ar6xOUY7aFfbgTXOkbvu7XTdiCsVvYZfGM8dYpWtItNOnL2roxjf8/Y89Pbt+8fjqSFd4Yrt43P2+vwzb6k3tjwlj0dN9Y/vN3/5huJzcHRa1v2W6NZbuSsLK3fzeUFoFLVi0+n55+vv3y8MIPo5OL+UibbKKqc+L5h3bUNk/4bXZrGAF2kG19G0AnC6tVRx+nPH4/3t+/OLx8PV//NH/7t21evbF6kXd/c2X96NMq+cn595Uxfpnqwt895bq8uvnn/mytHGewdfvjdP1x8+tPq442s7+r6/Ob289rKm9X1fePP60/nv/7n//j5v3/8089Xv15J6lefr+7ef2M4nUes/ulf/zt1rq3rIN2sbMqEnqWi+TVx1ugbEjY9gLHX2JvE/8vJucW6/ILGnUlsyNFy5DtvdAzay56fH365vvmXX74cv1p/+/bQyLq8+sN3P/zpz/+8teocKKJ6cizy8dtXZumYpnN1diP1LvjSi0NmyYW5ssvbG/mMgfurllTe2lXTZkQ//vTxdctPNYMrZ1eXe7sr79Z3FbCb0/vjw9Ob50sUWyfNhh0/JYjb0nV701sLDQhrF3kYrKF3LsiM05B2qKheNJBKqs1l0OWRaV3UJPGQ+fo6tieuKNbRTizKicheKgkQjK11TbKEZ973eHJzfm9tRQOutjfd3LXhhgXercLXl7vhzbOXzgZSWqvNB58sXL6Bs3cTpv/oxDxL+OrNinXTDOdZWbg/eWUBgXIWo0cw5/JWMMHxGUUmWfGtUC8+zd2UWbCa/oCXMCiqT1Kyo4CWXb85Twm1iT2ls7pA/GXeM+Ja4NUePjrb7ejISRdOXFq9ur7+9ePJhzeviVser4t1e3Lx+vg1iyE0fb/7/SZXkB6azc6CS2otg8SDpLAZWcNENI92sjFtSuPuFCSZ87uAkihSUgMxOERISWGJTtlxDKCm8ScRpCihY+D+9PbLzIoNfXBf+50YfVj0OGMFwoKEcC1RiOJLbWlrJn7IfhZpQw0dCMoNQFdRb46c1SaLkGVpSg2PlF5aK4oqFvT5/RL2U315J0JwAH5lYmbiW0FbA1C8Xe4swLNjq7Qd2l34xAkGl/j40kwkUdmGbcFmzzd3p+NBfhNvA/eSOqsNlJ4FRHlcrV6pqvvROaSMXbES2S6oCY6u/REHdKLPTk41IECqqBLa0JqglrZpXjTNZBO1hvNewrSzliqkx9G67VOUTqrJts5X3lQLJSxA20hcmQMLWLRAVYj0NE9McDDSZlN3ujndsMTFU5Kwy782FMNyA3Z96lTRisoRnidN5jCCLWkWYrFdoC7nRgSVTTFm14sxVSN2xJVwxnhqjJdGf9rBbJi3ri876pK+dlHt4CTKscQx5pw9IWGSLbrvWcX8CWBvMEysTQIGdTwvfCkxSf8iAQ9HVrW8keZPfGdX/o2WZ1aSNKJsJwjExX6Mv8BGk92FDuMvze7E/8JevAcz28BX8lcmeudWwEOS6Q5nQ0A3hp/hk3yq3K5lT1wP6r4u/weyujliAKN2/mbeiXWSCqIYywlcPsuzI60aJOY3m0mZS549XLv5AmocaintSVloTCSx6g5Hg5fMiyHnFxfzfLga+GiY6iOiIbv68dtfH38xtWgRNWTXk+neyMr2D/ch6kQLfyIm9x8BdOOrSJPpKDwEhaZUH1MgeUbM40pNOy2S8hIFlsoLfdIJX8FbKIpYleGbC9w2g4/p95KutrCMkDVMxgwJo8wZ0ybP6y3MnKGDjFHV07N36lv2U5xNLfO3XKKuJ17iuYCF69Q2aANT6Ed7zC69pcUQJuKqtbCkLuxFn8zLBQOpDhX7P4/mTjqoSvLQRoSMOwAtwME55dnY9LdmJP6vKTsgkCWluPM3AsB4wdEbzO4GvcfJb6y6a7fQnoeku7hZbiKGknz10jwOsFMBn3wbeUtffBLZKrF76bWLdBSGmAlRjTEUQNNmNCgwYAqCkdQnh/FetfsoTE/zaKwnWY3/q0ihhXtt+mxojdzW+I2oYYVC25Z9yIPkVu3Cblw3pbzIMDkgo+RbIdjkCuMnkcQUBA4GsKADKsSlUBqWgVkngT6e9Irgwl4EEYhIiWx6m4MIyAQaUsq0xsSlVsaE0Nx3NI8ECCIgXwUyLC+Wk9njGAvBJLeCCgolsUalXwxSlimfyHyfOngBZ5pnm/3Yk94UZ8KQK1gq6kjgW4ec2uJ9e+PNqyNLSC+v7s0dt0PO/5ep/+r1dcsS+6+Vc9jh7BOrqoO726YBg7EIf9IFQkIIiWteAm+Ct8IlQuICBFdwA4gkgsHYxqnb7u6qOnXCDivnsPl8x7NOw2/tvdbzm8+cY448x8xvXu++7frdw52DA30Gzbx4PN9976iKK23I1eV162IMCe/Y3+vyMGvBHx1m89OJeYCV0+u7K+t+NjZNLNw9Pu8ZBO3UPy73HvLoxzYD42KmrXUrwp3hw7rW3r7eVnxn9/LV8e6xSwF2dzaeN44ODr/Z/25jWydk9d7RQi1KMWtiEO1AwCXMt0X443s3FlxtaFrXDh6uHe1i2dHtysPZtbX4zyt/e3IPU5z/zZ+/uzs7f3rcOf7S8UgiWsPvFvLozlx+OnlwZpHj/h+vVlzSxV3YX8srkNLB/uHd9YOj+4lDWH9wsPXaPIUo6vF2e/fA0L1zk/b2Dk9PLn7/YffV4cYf/WrrwLE8T/dE8yd/9Kun2/vzSyH68/a+MYWb3e2d9z98sm/i88ePB68PdcB0AEQ2u9srbmTbcQ3tyuqO3YoOPyzIS4YWmPz06ZS6vv9wZnWVoeWLi8f761sTJnq+Dk41xC9u/Hh5t7FjbCLpWsJknZLxCJddLYt9rUvmNb3FPPp6/3Bn37AG3ggvv0ZZHdTqiKgWUGhv7rW7FG1LNOm0REZxpQ/WdVisIN0mPwMiM0YsoGmRzLXtyTf6Hu4a0zlwh/Hns7s7AtYLwPkLa2CYT6rbvnntkPUGrlDoxKiiDWfXGidefSKAMZzis7xPZpiRjgFKKOwons8/ZHXSGZiDWC1f5vzHsvzW1lMznoOTUID5MBZVKajTMt5ApKspyuQU1wlqkLtekeVaj7s7Nmpv1dNpAAcinZp6cVFwbMro8GDv5PL+6NDhre5Fvv/w/twCjIM3b+z0ODAX8Nnt0g8CH4u7VL13oBPbeIQ5E5VBGuY8ONULq6LS2BmBMacWJMeCFpjVEcKt8UhCREtQIFzsWUDAiBbDz2FzRbrbmmG7GvTPb26IXyOVr9NITUVq8cm/8Wx4uqoDfy9DfJ5f3GoRf3lg0mCNFF/zdQ26j9xzZTlGLQCXfm/vTVBrs5NUbq3mIzTHnUuAqkp4Ict8yjuRXAzI5yMzzHmColLMqdH0shRs8BBxgNXkuYtQH23z5vpWDKTPiYGw4kOqUqUspYVtuWM15qzGzXrIWzZSgxvtd/d+aKyLZTFPtZhhtMQLT+4e2ZclkIhKUjQGSbXFmGGmyKzZbYzt67Lmp6oTn1yR+os0h6fUmB2NiNNVGdQsf3z1ddQ1YPnEAMDK9FoKEOOsaLT6zkG6HVADthzyGEwo5+h/cdDSTo10+hK2dCax+DoFA40JXvlKxGrR455a5O3fYF3BJTiuKLSiOrHCGwRUE5qsPsoupWCFh4CnIfNOTvTJKUd0Iq0lxFgUf7yV0i/C5X8z5Ny5/L8wTs5RnqwhxqaHqO5mNJM51Q61cKjfEqMgP2FFAABGXfioNM6qFK8qUxVMZ2ItYPG5kkgEJabF9soWGda2VrZ3Kgg+auTzkSedoBAj93KisXpr0xUIt9H+Bf+ht8CXhwka7zedT+gFLjAL5gspuaDQ9bYe+sKxYFYLHOXyLXyGM8YQJ6gJVFhNxuhZKAu3is5rT9n9iI/+gDYVI29IBfhFc15IlXPKBU7BKu+xtNBbwo9hcnH1oB8Ov9StOJHd3N7irZolD5AqlSnblXvQC+3h2AI5ShdZLPMz5Z4sAHqKC2GCDfHFM7iylA2YHGPlWS8ZL3jLVp6g9AtbPQR1UdCoKsNwsIkkD7MOskxeal34ryot3kJ75BgdIKrFn0oKq8ZoC6gNGdFqpI0itmKei9GeYwdODd8L2mqpW08fK6sIg3oOG9/AkwfGUnxHUU9jMJOjIZahS9WJ5Be0Z9dUI3YNG9eODvyFD4N66lMbAiz6FrWJgdgYKKR5qOAoyqjbGFsmFwYdbjJWrfhIoaVWALVoHhhMHY3E0XgyYXf6OobHETSkNXpGThE24itKnuPqhAhhlS4uYu3bGHqWkIAoiuHM9sJyOvN11DRUarBSgwVmqPSRgBSfEuZPeVvXW5ECHW7SY8xJi2L7lAl/RcgOpwp2ZtyI/GXwRY8euI5VKbLPKVRJMT8PsrAI+eKkUMAJAgqb1Ei5mAxQi4MVygNO16VWG/PdJxTqXsmvAfY7PxsPF7akUY0ID6sHQ61y2wqH1XVpPITn4J8Y7LJ9tW/4V+jv89yxOe68Ego8P1jss73LKz3erb/ZF/Tvv327f3S0fvzqGLoWifi/s/fK4uAnC52BuLm9PjmNU7bNfv4sur24u7u8v/tZEH67cvG8dtkhf8b+n24urgbjjswPpbFZBGKzTrgOi0Rnxdvg+9qpkLvbb99su+3rw9mno1ff7G+7eczhNntbh/tG9rS7ukngWM5+9PbIeO/Z5ZnbwjAPRbcGw59ujnZemwHSUhmYXN+6s0XYap9/+de/++nk5rMDQlc3zk8v7bJd317d3F7b2TxYFYavPp/eP74/vbu6XTu/urt2e25Hjwv4sBfXn90VdHl1e3Z+nYaSriEAY+Rr6++cf7n5ykKanz+ePVw9vt7b27x/2KQC61v2SFx8PHdVmcuwBGAXzw9bh7s3H88dRrRmi+3NzYVB+8fn285KtXv7/mhnw6yLmEOATdZmFPb31q9dFiAK2Xg8v/z8eLV6dXlrJ4DpmUPnluZhdFduD/e2L64dntnaLRp54ASl588mQQRanw0Es3HK08wBjbJE4llf52B333ImZVysLMD1yZlRs2YJ8oEJKjNjAg2QWFk0euoWA1MyIIn87qirKCIlmuDdblkLHdzVsLvNc3YEytrE9FT4VvDy+cHaeYsmisC2dCced11uZvbC6immpx2qIVElqylq5URhpWwtRgabFTAZP417NZJa3CyNclKkiU2pesaVk5xxBBCg6tUsjUEaiWk8UFShbAsP9ZkzNzgrV4zOh4kxdGzunm/XnrawhYNmnFgojzbOLWxM0Fmwzyvbf/f9B1M9zp9y0YRrsD/8fL650y4CW+0PjtxrcQglVn537f4KrqaoQm8yH4O5dTYsxTYpwo/90iJMIxJixp2naSMZ/QRWHIIJpcMD4Jmr953sYgWEog5nYtj4jb29PRzgDVrcUssah+ta5HyDNUWCo0i9xXE1isRxsRFsga5UTVRdNh6SSuTi8mYUxdSLnhIMa26r1KtYSCvA90TmQHFIzRdJSWTKGTpI2ItgB2Cyg1C/8w8wGBfXc8saGb11yeCz/TShzuMzvnmveHRN44Im7QH4qEApjIrkpjUhfBmJtdi61cLFrwBN212eCbkaRwc/LQhtjjTtYyNxwtN6PY2722vFQPZbYm5/tE6ehaWlFj614dhNHa6vISe4xR8wZioYhtVTG9Gb5S1VrC/++KhpkwZDVqaiasc5cAHAxhy+YpX031uoQhS7I22abJkh8xIeUB792AQ+7ZpiWoQKA0NtCkJmpdyIZ5qvgBH1tDXyQRXCIyMsQ0hF41JtcVTICRPxhmyDkhKTcyK9MAzZKQevVChy4qHSee+aS2lLrgWC35NS/LboePM5o37ypsPIEWCULb1KXr98IlGhJDOoxjYf2Cw5FFFdZYd7o4oTANSiTb0L7eUGov9Ua6yrx9jPzHIv0KgT2yAmLnqzlIjacMCEuln9pZDlJSCNaKCqK95yOVxWtM9vtqxJDzd2qSKAw50vLsTyZWIwfwcf+OcAPQ/aC2/HIhBfeu56+QwlQXv53h+IhfnAB2f5Mt9hXOdksqMpWcj2UsZ3FMgNqwk/hstJdnLEVU/+UeZgDiCFQr7Au5qqfXQVkvIDT3VQ6Gmyv+AVu/jMeo/+VmlDINCKcn9GmWooQFwGEprP9RkqIBRKSTt8/E9tiiaxmBpBCIo9M4N0d1GQHAcQU0Ulwm6KImZUMDLlqdbxQb4u8w8IzMuL6R19LavRFDAT0XBwhqBkXjxOEfa8HRWRPIhO8Kc6eaQsLAWJUzC+a6mwEkPH6C7vME5kYC7BZb0XVSpSC57epHkV4crnz8TXdQy0fVwT6jBIzjLlgVmK3C8eCl1oXO845mal5R03+yI8crY8AngkwzdtrOpFol3WyKPhHU4y8mS0cGx0vWxFtHkldWMXAEukGz7xqqi6IgbhggBUDjTGjlHVtjkh/sUBWWkK+0yr5kvoI3d2RUcnMgir3ISympOInczsqudhONL5tToV4pfkr0nIN6kUjb7LkB8EBTexQm0zBVSeQQPxI8X0FVg4AII53tZCL2rUKFTOCTOjEdf6Us4qElItVMxhU7CFsvfSjN4GpRHQAY34Kpm2FqVLbKF6mCBHFcXuVupbtO2EkHX7cD3TfltwXenKF91euJm3vcJ7+/vWtimqvTra3fjmy9eKOv3ceT6Y52rY1a2VDatjBN9PLWR5tDple+Py9PL+6v7y9uHTyc0PH67en9+9d/jPs0XnekU7D9c3eGEtMtGrtiEYuKOkVdUaC4JrT7DjK70wE7O/ueGwzOOtjV//6W+4wMdHsbhQf+No/8hdunuHR1ZIXP34N8h//e1XR69eWxG0u79/dfZh78rxkjc7+/v3V5fnp7/tPrHPLgg7cAXa1afr85MbvZOb6wcrBzbcEMbbirC3N64Nfj6f7ezsfbp9/Pls9fv3t4aiFdvb3/rDTyc7e+YWrElxDiYGrDs21eiNEu0RsGbl/v5E0oMTIdnR4/Grw6/fHV1fX/yjf/jd+aePZ5/OXZP88f3Zm5VD1mC+Zefo6OznU6ujTl0ALBa5vT7Y3zUuQketf/n2q1dP11cX50+X11rCNacnGYkUdW2b8rI1e9U1vavbe5ti1R9+unj7ZtcRM2wSWH9t7nBYLUXAAzHq/pbx6ec5w2bF/V+UCpPpaq218N8W1a1dkzYiIXKgc6IrDsxMEfOzdIstMBr6ljEa83b8pZ5243NGlB0TtEOpLq2kYib0qZHa/FtLxDtMyJlIVj93d6lZJiKfgwGfIZ/Mx4WKg1WKNNc2g+BMesu0NHN0f2PbaevaR5vJxcN0mbEUpZFlPrbRihdzzq7HQbDfwXNgjy0gc0zeG6W4O/aZy/JB7bhoxju2xHhz3uqU07/iOXani2BPTb3qnLL4rrYho3l8dhSVQj7OlrEfwCyaZV1YdHy0/8UbKrry5uhIh/ba3dcuvNh5wmedCVFL1RcyRpXRXCavz+9wKfJohoFz4mAb4893odKFWoaMVY4dKLE4CJ1hmbcrzAqJwXmxcfzwdpx7bkFX0LMSi8vK65dbZJdnjo21qeiNvSADwvNIDg8vawo85ngqOmzPvcf0VVMY3AvooltQlWUfjqYZHcu7ogG0irU/daqG8wQ0voKOD8P6YOfMZ9G63GEyvRpOJmgjsmgw98scAKYMjpW8cXou/ui5J0Bo5ldVF8KWL7taS83DLQt3l+P1oNTcI0sdz+o022YbBtkFw+DEQIxgTddNWT7wmSBSBA+4Aj1tGblE7wxpqSdFHSTwgZcDJMXEJe6ii8PaLTAt2vCkJqZxEMgB0kB7+tpP1DkbbW/PqWimRyWDVlpBNoZlv6O9AYdy+E4IZDBnYVRNDMEkJFuoWeWL2ssXh/uaeKdcrEZpQp622p80e74ntsGHxraAneDi1ET/cXgUzFxWqy3QWhOzQPPAbhUHQMooS1/ia21xUao8itTcVWoC6BIxp/4t0lKtAejRA5QHgjwTrMeOqktFkzisnAxBMRQFN0Mq/2h+ggDCd/RUrjdpxhLD+D4gKjf4RJtqJpyFjNQQGCUEIKhhGKP0VtMd/g1lQ4/XzC0eRk2Nu79K+ZIUX9BSYa/jRuoQYksViWLyRjWlErVnalXX3+oW9xRsgAAxCv+iDF5xWV2ylKTknCGTuDHaQ3kLhtWS/Y52xG9kWkYDyfEqxPyiHJMzucxgLmTBC5ZKRhxpF8gZbK8WLnkNeDBH88s+dMWI+SDB2wGTf4lUvwi9jRbJDo7hNEqoOm/7osCIYMnce4JLpm0C9tLrF3YvvAZLzTzIUjwIgxBLU4bd45ucw0/6EAbZVWD6gB+jKwW6+Km51Mw77ZQwNtN4NkpohooWLQ+Vpa7R7wDG1eDHCVglLsxq+GekO0GtqrEpr2HfUtOpi4tPd7Wmg2RUMimQwm8Zlnu6iX0pIgriCXplbrpZ6xUHhrKpP2aPxrXhbj7BoS5BSHvVDjRhZ1FVUqYiHl5zc8OwnzRfh/wIWYDTG0tDs54xJFzSnsHPZ7g4kpsnJGsYJMsMN/QCCN/BbkgqLJ/+yTB/8IkDEkVp6flYhvRBIzfB/aK6BwfgzHk7cUFKjgNOdeFUMxocQZGMDXGsbgBXOkAEl4Jd7/NBcpEPgGXFHDMD25tbO9vXVy5g0pF7sclaw+m4ylAdKQOZ+lgq5uR1s7T8URAiGXuENQL6GbNfWBM0bcICcAxSiyIBSotZAksweIX/jl0hpRFNFuIhzH/JuWA7/Iku1ZEgqaSxI7WYuXwavgxV+O9ub0PLbl9r+C3Yt8D+gSvY3VXG3I1dLkbgd8xzZRlmnOsfwmSO5iS/tcuz0/W1baP/ltlYReL+XeGRef3Lk/YSfzyx+gOXt6670soor4jR4TRWg2w5kYgS7DsTfXfHQhyVOUrRGZQXZzcWYx4cuO5qY/Xq+vvzk40vv1hfPTh85STJ7a+++lKQpHe+u3f81HlEFwaQj968cQyY+Ms6JP04jeDj7cXFh5O1zX3ScWr++9//dv/285s3Xz7fuNBs5eru+eOnS6rLKlHjdBrCswHXAn1bJWwzaPHG08bT3eettc1zkfXq3e7Rzldfff3zTx83t9f393VOnANj/eINugx6ckKkBl/zHu9Prl8d7OqWU4SN5/s//vrwi6Otd/YpH+xY/mQWxRn5t+eXpHb92x9vzq+FjKfXD2fWTN096lqRwor9sDtrP74/p78XOjvra2dnN+dXN1tu47q5TmYaYcJ17BKRmMB5e3Sz8nxy9uCuYyd1Oplep/jD+Q1n43a1g1WHeOSaDjZ2nNLkZCfIWxPWpMmjJV478iyalssGmgvu8MIn5776wvChWvxms/PS0q2t3z7czx3Mtia3Pq1RA4uAPusPUza61CQnLRLRWnHFqHhnXQrXE+g4jeSd3kSL3PbgQoDmC3g4BtKfVXP6Tw7YYTVijOkfrrVx1dlPj0+mXyh5g8bzs5gcC4UDxKGRXePM3zeeuSPtcCY/7cz4hLFQZu5Hes2Ndppjb0w6k8GHTEYnbbw9gHZOt8Z0RSfZCaquTM+i9JeVFfs6d9XRqDpmOGRZ1Jfvju8ccfW4afmbvYJ6l+hc29teW9/ldM/OLvddHcD4rba6vd90pqp5qgdC4fTaTdG6hzq6jk+dh2JZ/X9byF6cLTQUBiEca4ky6pALQ26I05sWtJZSE1MGpEK5wWCbKspafoFV1Dqo0W0Lem4dquk4/IJUgzR4MGzB27gEApFMAMppz3DODD/JhhRleQvZyj3t8bjB8TCKl6J5eWm2PEBJLRz4Ahn02mtEcVD1biYnATQM1PTmPETmUpbvSkaEO1Rra2YYOB2Qqrmj7XSguXpADV+Jr1C84OAvBwFsGFVRDr8GqBZz9Hwa8SRU4Vy61W4uJY1XtWuVNzbOTLeczW/Wa9ZvyEdR0p+JFVrpXhd4gPhVezFCIolkF43JQBUvYQAOwETHIEyZZHKvFb66vppgPTcut/EscfbsDaHw3VQVSkGKhx5ko0FRxiAX0eNtLfVkGizK139VxTHNiy6oRgdLyxSjIpLgEKM7AZPJPgsHIjTcRA2YnGLhncCJWVVd4mbRKIMYxgYyNlZbghhvg/91NJcALFakiSrtI/O0aMPHeLToQ3MCC0CRSR3heDdgJ5xQy+iV2sUASlVfZlq+oPoqt4RksdQUob6WudGEcFjypFqqnzJ+MYTR4R4lYpicvcSf4tSFl14W71bTcF+WJiWm3gQ6jMBtqh8cvJqxcExbIoSYHviFVwOzr0QZV8QkgVLXRIkKAQlHJEyFE62FQkj6r3Z5+lK9g38ohzNo4b+YW8hXI8JVRMnnTcIZcqpdqTBUKj8wFTV8KUOuoBrnoVqSR9j6VFeF+r48eBV0JP29RCapTGUe1pUj/vijYAo45ITPlBoEMTOLDm2womj2AMi69DaDJU3pthPVRVKBD16kkXE0IwSiOoqKhrwxeZ4lxEd9DatMf73KpnVZ4vveRr1hGlKpomBGWYsVw5f/SWp4NzX7teCaV03px8gHqxIWCPNVEdbeEMji4UArPdhYgRQeQdLiGtTrU9VcnoCvymIiTWrkahoGBfuWBGpI/FWhVxrX4YDg/u/PdogW/Jk2IJ7AFkgeh/5jRIjGt5fOWY4mD9XscAeChuIQv6iofGK6OvTDTHqfZ1zIqYc8DQWVwZlOD0yQvxyAo17GkWQbQcm7LVKTQx5Rilehumln17oN2QuhUjjNcSz+DosGYZyIi8jOgefBx5kFyn9Z4hQ2cisDyG/pYqNYqsGccAEPtY66ub2jcCM1A0j0ayEaz6kKdqV0s0RvGoaM00ch8CEMDvCErsYR14pQmKiJAzoEhNuTv+4Nhon5k0ILtxoLzJLYTzzNocDwheMJDnEpwyhP1E61BfqabQgs6NUoOqDN8FWW/MtYQAituH5Vbu7c6mTL320dtgz9zat9PYTH2xvMsB/ApVTtVLU1lsx1+kV3TWjd6MM9XD0bCb84P7k6v/v5w9Wny/sfPlx+vLGiaP3j1d35teAzwkejNkT6FkTjgQgS6/UG4O7J6aJf//m3BlKNdb85Or6/uX5/evLF64OjN8f26m5v7gl47+7P9r96vbdj8e7G6qZSG4Rk4P/hWizuMlXcet453L37+IfTn386f39mrfnFycp//Jvzd6+evvn2bvPgYPftu53983WHNm5umeEwur+1mynreJ9/unEBlbNKXVZmK7IYb3dr5/r+7uTThbXfh8edpm9k8/Lq5pYFba5uP7tvy5Jc5wAaKqYRpiLvTy9vD492Pp5eHX9zROncXby/s3724dPnN8fEdvXZhsXnk/ObDxe6Aeto/3DRpWv2D5/rHJw+ukj3489MfXV3vw7t3cOzyuyoOL+wcdpamSu5nS2KmwYmjQ1aYm93r0Hz0wvLmB8dnMoOqI8tqxdWRbspjNqUuaHHnfW1K0cM0YfG1hfTEHzPeCmFEAR0Omgae3tvZME6/h0RgF60M8KNmNzc3FLRXWOW5KnxW9cx3rhx/XDtDc1mqh1i4zphvx1WC3+nCUkVtVw/2DK7vmdQf8V6BqOqq4yX9zW2oEehSjoJD4fom5VKZdccf67fm7Ho2yyTuDfCkbzHTISPeY1t0/f+jQ9iawxl2ryMfgKzIjveRy92ZjgbrlDBjJkV3OQpqKDyLKeyeSrPbc6js9NRbEiQaWfgascLo7aE/WSji0VejxfXN1+8PtzaWbeU68DF2qbThGvbWx8+fRLZ26lut9LB8aF/VlcwZ/5E6N/dUDNMy2wLpGcDojbegwamZg5OXWHrLT/pzCufTBshPRHZauPHMknmQMbDFHUpnZOpnZ5XqBMor0O1g0e9At0bJCC8VTyEPM5QfFNBrgwOpWitpNUWVOEEFklnmYBtBVRe0QD9Erx6kWfAn7xxLhSSS9cydzvRNtEOtJBLLnVDwlx1iqtdTujhyQRbEipY1dPiyPdCXSJt0Grxq4OtlrftATJHeawqJtYXZZswhC3UvJEFHG9JmywoKg+5uMrIpwl8csqTZ66V5L2HpaE0d675GgCsjj3pGyZANdaogkhqLmsOSqkVM+zo06i8PzEFCjl1sqCWs4pB2zLT78osRC3BdO0axIMbTdFYt1bVowajzfggA+abvEVXcw/Cbd1lvxxQ2jBoZ/zHm1hJ+2UPWx3NeeABAV20BR7F8RwDtGN4qKsx9dda6WN4mCBFu+lnnuOq5kYTkzRBriACk0IZaqP8a8K1WZQYN4yCTXaVsvcz2eOeDwBhmxAnYvHYSHgSX1g3CjZy1Cwu2eI4o6kx9nvBBPZVHNQQrp8Z7THHN/NgrCfVqM6QkOYzeardw6iZ92kOegJbZ7sPfFSDNM/EZyo1vLPeRROWmAK5LzgkuRQzfvofIVB7SazS3oRI/AZJAmTDa1p/gONqgQTmlA0JSgUN5mO80Jiyw5lhV9DS5+C5wBEVclbXkBmUiXJRUS3LqwFdnqkbKhJCZoQ7CLy8gtryNa4NRRR/yi1oR8WA9RA98vgaFfNRN/mWIZ8zkk1PylNu+aMwCqa+hbQwroqYs9wDMLTEBSJBxuAhBwhcyUBhdNmz2vFODVW8pGiUaAz2YXRqQIoGeIxWhznH8YJotCeKYVO4RTlFmNiLUqUl4rnpJ8G+mhbhjP4tlQ6FvUJj9ORrmPFLK6wQG462FCivIQYlrYXp5Z5oshrZxnTyhjVBtYpigeYPMiUVtiJANSmBMG/kkctLEgEbOS3Ao21S41IIwT4XpZSAMIDBSq3hMNKJ+dyZN3juIZSqAaDFopcGVYFqn1HnuMfSFv0oG+gMaAGXcSqYsCHSCMoIHlqLdXHQLVRA2FgX6QDNey4IlRqrUqMhodUMg0l9CTkjT/9E6JKWxwHBhw4PN1rspvPzMmaTdLwFapl3IwWDvYvQcd4rv6FnLDyJ1IzlAjBUyD4jT0lW7RqVkBqvMZUvkKdQ6vtiAHmQvrUFdAT5IqhA9oL7bqk0vqXJqR3FQELuPksZUVXQ/1HsioRS/mgQnBezzCkwDf1upfoJop2OfDq9tnpEY9Dy7OfnIxfQHry2E9f6cjHf1tbq0esjqmdAl78U1s2x1hbGq/T52lbZC2Gz+oU3a3cPDqWx13VLL+pSvGqFmk29W2tWoWcP/bgNvhl7y85F+6/eHhwcbl2c3tXa2Pe5vvHu6y/effnV6c+//e5Xr3fWNo2i77/a//y8e37y6ZvfvPvyj/7i9tT+ggsXaNX42ljp5J3V7Yv3P96fnT3cnFtPdHZ69tOnP6ju//FXpz/dOE7/8bd/+OEvzk7/4h//xfG3v/n1nz39/nc/fvFmo4U1QtLH9bOz++d9+2KZ4sr69vrVlfUo24cW7Xz8eeOpg4Y0bS5Cxptbt/06OWi06NqXLPRho8uWVx2wI1brDCOspxt6Fnt7N5fXK1dNl+/vb/38w3kHGa2t/PDT+eW9hU7PNzZNG4TPtd0IEp+vH38+Pf3y9V6u7uzp8NClRaKXFauozu4Sp/FwYebOXqPsbtvl5w0+P7mq+f7xwt3BdvdudnKO6ti47dLi78crZ/i4+OzG+my2erBdojHt7v3JSWjAMiu2R3UN3dtV7EgfMbwbGKiFvhBYZlk14bZf65pKtIiZ3cp/8+TSruYqCwQpE4V7/ry7i5O5/K3WtAhXGHKLnlsnZOmXRS/PtmNfiYyN5ztulWWNa/cXKIvIU+Q85wxVNL1r6LphHkuP6GqDDrSfx6xTOUOqAC+KFTnjG4Gg+Ux4bDkzYnBjaCUzqoDwFnlWhfs6tVqaoneU3+D/a3omE/p0nM1X8BLmrDoNqCGDvKvov6jCTccPd2+Pdl16ff7TzeXNwY/vL3d217/9k3d3l1dE+Se//tqmcHMc+tC37WleNUOoC00B1bTe/Ak10JfU5299PwtvGEIHfrHTEEkNC/9qdPK5UryVeWidZjWHkYlOzsrEyaG3Uc4WwDiYktn2ien5zyAU4fHMXWeey0LRxKkTosbSKZy/Gk818Qf0cn0Tqi54xuUmTvO33CqA/oFGf+LmnB+NxmnZZqhCR6+RJqJBVx7QZ9CfZ09EOYEjTVvoRXyReq0fwVVmgoZxS4CYx1ito4vqWoKZD0mCzqid8ePKDUrTzMAzVjmfCnDa5ge28XZiBiKGgt1c8kgZSkMVe4gpKWhGIS+JFy3CjonzM0oIv8rFYQzpKeISilriPgg0Mt76I++k9Iv3FkNPO6UCDSpMRqLUThGgwrujXWfGhpTLA/oEDAxkDBvbxy6qc2QaVgufNeMSQ0nWeiAy0mfihiPI+vJzEGrs1QSQQk22sjSEYkyoPLYBVy11TOjtcLfRLuqkYQJV8jwQd9UxXjmrFQnVFEPArA+KC/wM/zFyLQiIfb/wc0TgrSJKZiMv5lDV6RqOKIA5CzK+eIBTXmTgZF8VjuJlaDhK8yML5vOl6jKo0S8hGqHAJwc18Ae31DtPEsAq9X8CHwBiqgq5vOSm35WjSryLsnqf/lUvkTW14h/dzoxGdxLB0NhD+CuuVWzKS97wXOJVtbLcYRE2xs9gVrYCUSXNA8SG1XFvvs7v/AZjrH9YrfITB66qqCr6Eo/89pwfAGYW7hshKimQ/pTBIw1eZFm1fYLo1VLjAidMRupeS/GZnJMbmZRfCoqWkE/xdKAiYx09qHB5XnJO8ZFv4px7AOpTDmpqTrcKNFO7LCsA4Twq3lgFvsTK8OpnJB3L6moXqmpfCRD7qUocGfmEQeSBVNnBDwhPQ1WOzxfOVGS50w2aMk+wW3Q4UWqqj1AEj5F4wPEXs0wkM4Tj7a6zwK13drqZoxrG46ijjnrKkdKo02I8cVvKoaA0O/BYaXoJxXAMK/9xqWrzeALoFG6OLu1N/M228xRLMzC6ro1vgTgak27cCwRLHv3oq1o49IdZDNO6lkxi3GU5qzcc8vvsKG1TURfToCUT7R0mR8fC2xFQ4YI7QXM0S6WJfGldZvS9YaKZGxkvFtf9M5SGQMT2NS7kdFCUO4YDSfg9OaWDJr8HhXuh1/eyFLLOgW1P0FMW47QxMvgAO6gWmg4rl7Grcdyx2qcK3ZSEm32pC5FLwREvZplisThn5S3C0snpJaoepYVcOBzL1K2UxBoSGCKBIwUt0cU3/C/SWl4VHDSmtaxNyEmZB08/0nyWPK2RUTr01mYgPXmHgxmqzLipFWGfiFC8iFc2gO5s79VS3K/s7BsSX72/vnbRlhN3jGa+eXdceZHfnIGz7r5YCxeunOH12QLceytTVrfPb+/ef3xwoe0fPlz96Lrf+6fLGzvNijXhY7sqzKyxGRtifjobnw939l/vb33h6Pu9bfuM4XT606f9o63t54uNu41vvzh+fLjeP9z88tt3H75/r0Pxza+/su7/4qczsRNJ4Ond9dWrt19SjOur81dHb+7vPp69v/nhr3/7cH/3r/7u04WtCKdP6zv32xZqPKz89uebw58+7L7ee7278vZg9/RHY/COb+wUkdff7rHcD6f2FgrpDDe50mvthx8cWbR+vL92vLnnEH6RheFeS4U2r9Oxcyv+Rcis8nFtdybQO6oG882XuQHMUfxXd2tHWyYrvvjieKLkAtuTE9Mal630Nfq/tnnPyp9WnOdjfV3NkqFKR+ie3rgzS/z5s6j/wfyGiwqM3rqHywpz6/vX7D8eRVg9NyTuXqrptNETcXtRsR7aygNmH+3u+Nf6frulhVBCdmfRZGKdhW/t0+jlqlmPUXgaKFLqwheDiBS1EzgtfpuzzI3901JtBEegaqGok1WmG0ApOs+AZrZSzLaCzuNbcXAQ70S9G73uBMbHzdWWuIj4UaJMuyWEL7oALNRVDKp00ZgqNWtg2fjQHcUrYjPH0QJrdEOPZdOulSf7OFqllB1zn1oxBj6uLPbnln0KO1gK3PpSau8YJhMp0qtJzrolAsJsA1FbK4as+eei0i/i1YLUhPTfI39+fnVpfRoCGQteaMmh7rqFc97k5u5gb+P1K3vld26v9OdXvv+PH/d2t1y+5uvmwebF6fXm282dvZ2b6yuxJSvGGQ5hc8eNbRv6EhBzlJXKSIE51/hb0vbcaWCQQk4tRq4jv41UdBEGZCGGUiR7K5XhDyNywtLH3A0tdbRAzmWJFFtZlNcMnOytYm/Wu4mJFd2AxZmIBatFTg6In4lhS6Q4vr0QJc7icA4PRgZTapJW9ZR2qc20YFNDzVY1G1KKv847qlSQ6Y8oaGL01sGHxnqnq1EwRSiSOpVGazt2cnH9JJUJrE31T29EE1n0GYVcLxbJYq3h9BhV6ZUM1LEe24TXBb7UIKdY414TMUP4w0yoKW4aqhX4PVEIf3VKW9ipxuJs6Yj1MNY0LUL7spIVGtQYQ4rMao6jv7XyneWg4lYuqanYun5OGWjtICNR8VnNXylpAdKy6CIatDJhYVLCOMes9qmZSCXSYAQRp3zLpYRNIBRK+sAjjoEB0i+0ZAW+VGosIsThkZDjrR1RfR29SrYNcc5aFI2lN1SDOMFPU/pInLFFT1WyyNejD77R5yitUeujDUimSqqsSgjI/zZj4HNc6s1wXvrIRbZEbCVqgw6jcZyYtA4RmdzEVEvrE0OqJdJHToPh4J+mEkSg5U+/qXU8xFJyqLA3L+17Qo+YUJtIqYexsdgyGA7k2t6gzezMTH/F7slb4SET+REabBItVlF1eAYvVvC6wyi5R0YvJdOBbD9UQJ1UBYbAYA/0GDs64PWiDCFAlile9Y5MJmviiPbBB/FLWMj5jDGPc8Aj+cGpONlxRN5GT2jg1xKnVPX8m3gTYaMYizbGn4orlCQWKl/qD+dSiGlMuDwLaQqkOZnSoLwUGz6HcmnDgvJF5nxrIDbUCitjbpnyV1RziaqJptwSvY7LuYhScGYgVjAGgc2k06ZAarrwcBmiAJ6XCIP+V+2i69D0tU8F+6uWenXlWr4xu0gdJePJdD/gB3hOJA8/lWHE5ILPCr8pTaM/phjWVZudlNf/ifQqxnF4qxqKS6AALzKTiBzNS1Ic8Ss7As6GEzn9zkwD29eRfVQZ61u2SQExviObQVTvpvokkjyGz6XUgG06xqSRvNgXbSWCTlHyr8RJD2Na3/pbEzWEv2wfiUA/YZVyBURSKNTvWawCcbUEaq74jMHz59Ycd+BJ2Zs00HbgxEsVReEWJc+NMzHqRb9JPFQXKoRLraTktqtlITZyQzI4EuvU8fIkbptHcl6ih7QLOkaDXqaYh7EzcgYX2QKhNPamZxXP/Un0Se5EM6y7vXPqi3piSMjwfYUaSdYPCNIx0Kws2pUaeSUUnChqnJZYE+it4rGpWgJY1TFfFxcRvapuv4m78/4M4VpJ7pjwWYwk88O9MU6YY+Wey39XP796c7i7f+BWWdGD8NepNO1ReXrACGf/X1/YqGp+yDL+td9/OPl05nSTu5/tA6ZbNhg47uZ21UltdgyLYzRUOGD5uNPT7Zj85u3RqyNn7z+/cbjn4d7h61e0ZuUv/+j6+qx9tTc321uH9vXuHx8KEA5e7e8fbO8fbK1tubHr7HDn9drnLXeN1Zw7r9ThmnfXgtvrs59/+P0P9x2wf7e9tvU3P16erjxfnFzq01rv/sFG5bU/nJx8/M/92W+++6PvLp5Orq+Nqz8cHnbeuk7vwcHm+Ycb6+ctDWo/8PPn4+NdDkA4ZhX/7r7gZu389vP9uoVSxytrdks/XD0UMqLCrg8RIZ7zlDatvjna/+p452Bvzer/zbbkrl2cX7tU2HTlzva+KXzj3O9/PrER2ZE4lFac7Qh/Fbj36vz83mReai4uNRJvG6qdtDSI9Bzi+Xnt5mHV2IANpdYFCZlzDGur+47PFDg+3e1twcOc1drZOT9krmZVb01kiylWf4mou652WpQ24NJl/1Ewt4ARZSuoN5rLggEs3BFBfdxyZe6CErAm/2z8dgMuPVCzuFw1zSnljqAobmAs9fBNKGUIDdE5hQmDjfnHobtHuwgQ8tRVIRnG2q1K7u8Ev+n2mI4riG2OFgbRGbaATr0kCLWWw60C2XBmkTvFl/GueUs/AM7vUlP2mlhBpmQGO/62QKR3kvBu1u8N5kBmFzmuDiQl2HznmBsnkLUVWzV8AyOdKf1bl2Tv7G27JKF1TzccugVRG0+Ot2W1XaEKBz2W88sPTsy9usL1m9tL/W7x/cHBAV1x0JXOmD2m1qdAhyfN0HNvreQoJDLm3Y3JcVIHb2SSS8GGpZ0aox7fHkn5zfGx6PY9fo43mzij0fFGKPwDVhWxaBmGADeXaJP3PV+D7hoc4Apk4z9YC8f6w8/UEkIpOMPDacgJQMo4LlRc3+goh5KKeEguzmRrTJcnrCrom/Sey9aDpsRAFXmSu/YLGhTJOGw4jDcuqs6vhsEMadFBfXi3VbjpzLr8bpyrhn4tAsOu9km3RIdwpz0K9SiMRB7Sr+l4tNJ1xN3+4JbNAJIuSU1VvEIiUC+cbzSHWtRqyCVmpRwkWxs07XGNlYLTQ4MNDoMuzYl5MxQOJOALnydbFlQYl376FJXmNmNR9Mga5wIeTn1XePBbOFpCHVgflli8XvGlDjAzTCpemBs3q2ACBl2Rmo/4sEyn+1sHrEZ8ZAWs2qpU7bEO0ZAq4MEQHxnim6Ta93ashh4MElb5B7+xp6UbOdJXezZVGzd2Jy+YbS+udQ6C/0sLSGpg61qlEdXlrKzIrBZvoFM9kRTAsYBauTRKMhGBA2klqi9CJjuhQN2LuKjqHPigXL0z+F3bjerJQ9Y1o6iuyvmpMSU6oaZ6pv/jlezABznxuRQG+MEj5Hwa+FvqRU9YjaJ6GR8njxobVVmoq/iYs7fziaJhqYhG/pg04HB+sJ1y8ybKRoKxaQKJv0cFQtlC9SXW0JoHOT3lwTGwBsURDiE9Cep9qa5KffGRjZ6MvaluKkzkXuB2f/oyFQ0XVFLJ2Db/ylDtESV7MAP8QvpLxkmQw8v5BGC0d/nWeK0sSPDd/0it2uIhD2KavvavnyS3ZMYCnnQCo9pX5pcovC1oRon3CtSVl63APTBL3YHDv4TeIkhlJvqkZ41ncKOUWCRNcC8WCD5LDOkxvcpnnyBU3WLwFGdokCeILw4u5suW2kVXbRo4nmMCaujnTP2QW7SoD8kNn3X7lVxygxrMqFc+ba7adAgOXo3qsyueZd2CivYXLszEhRJVkvFUSLpe+JzOnLX4ahAL4IwD2CEBhjgX/+k6t5vyFPLGgqEL2nl5o5St0okl8Bzutl7LdzWO7sK3t7KtzEB2BE/IK3X4YrzWtR2pYMRxD7ElWXRQwyy4FLkGa6Jh8QMcNEgalQ5ObngyzoQr5Rnm+DqkDDnaQiIbhwulaYRqomQWU0Z9paywbywHGLyJR0mmXyE5zwFOWEFohEO+nFS8gAZkauRgxm9Pl/UX3ahIzzhYkTESUlPD6AzOZJ8pT0TF/yGBrgLleVH1KsOAJqxhNe2QBs9aFAArlRRgAr7x9QPnuqw6D1qwd+NiYOHe/e1VQ/SuvXOcjxuFLYF1LdiFGP3h6ubm2jH5127ruhOkGS/bWVv97osjSxn2tnZOLx4d+Pnb9ydn9w4g31oVBK6svDrY/uqtSH7jeNdOgDunqxy/OSY8G5EF9EJSMf7Bl8evvn7neJG9HVcF7F9cna9t7Bh11Tg6nN/AMtYh3Sog9Ox9dhPT3YZdDLe3Jx/d8Hv66njjUU9jc80+3dv11dvLNFj+nx5vz84+XF8evnl78ad/8aujb7/48QdrfPRbri8Nxnfiy9bJxf3m7jZOidttyrDKytLur7559Xx5xwg+XV2/Olz5k998a0frxV9fffHm4PHkxjjljeUdTaFs2TFtimB/Y+0v//zrr4/3dElA/Xzt3tfPkLaLW+x3vLdzcnLJaqh2XDHEK5xseboNBoTGhtgjwedJxEw6XA7NrPfqbQ3zs9F4d6vpAKRzZD5zzYJIYbKgjuSPDo+OX280Rvb0+fL6ytD19oYdFwN/ZeXu9uFgz/lNTjdnGgUrTXp0aVSbKDT8eMVnciHad8MQF1dXthkwTHpEQemcPePpqjVdorrrG6rsm5wH+3vtmBzvhAxn3TKNy8sbKNJSK+5EwXxUx/usft7XmWllRw6ENbkagCtQKyPNqMnAiiRalYsWSWuPrVlqLLutGFblzYK5MSlKz5TgkKMbKyhOUQXNx8MXW8jcvJRV+KVVzl5Qw/bGvTGWbM3nxbgCihPjO1zgpfuUDWXzOjLVhXXuVO4eg4c959dudsys+Q9n/lwa5Tf3sfVsO4CDgL56++r7nz7qKLDUi7NzlwS/evVKtXqG+LazvcsfQVV5NoXPmEWK8JE6uzlCWN1mgfJRufekhsMhMxu3omtxZfNQ4DXdCJ4Q53m0hbSpKJfuEy/Snlwu85cz3y5NtYhuqFdiTkNHTkNYkThYYAQf9UDFDxxwStdCfGatPDiaTn1Q2jltKFep35KLzsLIZero/FUQpocTJSMbRUaCSIQCDje0r+jUoroXKuSBAMmGwjLhidrn1bsb+2SaKG75FpDQ9asAPcmqP6CIqra8uv4wtD2EMGcIO+pViViN8KmIzXYsJk4rpihm1R+r3UhVmiJqrRprUxRzZg3VGPLCytLz9bM7Vo5hG+Nywq+moIScc7FH9VL/Uii6hkazUtsEABfdLIcjCmeGzdfYO/GZ2l/YVzsrb8TmRaoUD6vckkUAcaYXZJB1+IlAKZipVDKdEFlOVWIIzXST4NXFVVys3LQf4KHllx5MVc0go/xB7J36htVRhO1pixexETlTo2eYjrgLr4NcFdULaVQjalECiucTQ0CLoMhLxP7AX1QGyiRW9UKPN3IuBVPpRBVulcAWVKfw6lVLfPolAO19qA/YDESucIbtAo67QF5M9X2c4SAwgJX1yaVkR2By6lSOiLEcb/A8NCAStDLIprbKTcWI99WXaAQnBHyNDL9Tv3Dvu2LDKV/KDsyUzVRRtRBKQ8FTVl1CRNnUPs9gY3FF/Z0QkeACPG9xuNV6w0wJsaOCTcR1lwjkib6iVTMwlFgwTEcWOKPMYeUzCBQLRa9/g8aEW1WlaLn6HUsXmGXGNOmjFr2Vc9hVzZVaEMty0bgsARpNp0p5T1mgEveG7MF24R431KtWW9bLp5XqSLeGI6ndECdzt9VVc5klpqyEL12dxZZ+hsBkM6ofGeFqZIvG+GhK8WD8EarDOUSmEDSkxB3AJ3nJIB+N8aFGLZ1o5Rwv3HhPTm30RkMwYta+MZVWkmGcDKpLkL9AG3YrjiVVvXRg1D9Nw/Ba3eQROwZzaTxlC2OSN0ziRALLThArUf4INEBqeC97rneoggwqdyyacZAZd0VLEhglrq1GbCPoSI+dqUF8XpRyUnxXI90lXZ9BmK1YJ6FUJjx/mvibjxwYHMDpnvmr1QFPxg7RG72tvzRNB3iL6ydnVdZ2+ki0oHhkNy1fCCieeixYgj5Nyws+g7RnMCus46SdjhzZHQVtJJUUFmPmPhIzLHqZC0jmU7DNlMtQfZyp5xnJ5Z4si1vEh0JzbG9cYfhUfJ+UO39CyykuLEpr5g7O2e3ouVYBD0BawEqMwPrAEvB/kRTHmiYbiSeW7QNrXYz5Up6bg6NOJrdp1YE9+mcHh5AlZe1/2nx/e/lwcyWreO7SbV83VsDw7zlrGnt0tP3F3tGF43MM9j4+nt3ffjo9Ozu/tWx7f0+vwVJ7B/sw1Mdf/er1t28OLQc53t0D5viLo3dfvMLM9kMfHJyenNX2dnuZ64utxT+zZ+nw1bHwKlKx/O5m7+AQc66vTkFziOXZ9z/dXpzcXZzcnH66e15zVdPt48Ppw+r5/fMXX+4d3N1/vbt2/rz+8V7Ktmt/Hdb4/vc//+N/+Mc7x/ePtzs3lweXdixoWQW0oljn6p5fd4WVdTxWHGxufvOFuZDNT7cfD14dvto9eHX85otXbz5cnrz9affHj/eOdzm7PIfwwfGs3EgPH49fH+qwvLLJYOvt1adPD9cqwODrV6+Pbt0RZbXD3ubVVR0wHqzgn6TW7J2weLmNp9vkiKsWvTia1vWg/RBau5NsUnBRsFMlrQWiGQLCsdJ2b6dCzIXrePx8cXGxt9de7X1C3X9z9pFALMvfcNirfb1cQPeAtA9Y//OWenSF8WxtlOp0V2IVzqW+AmA3HFv1rn5NPivJLjo/1AOp8aI2jG9ubDv6iVm466AOwvOzTpEdhxb23N9qNtRkfJRLeMBRr2/dz826bffQyTHZsbHVbIDlPlb6cMuMa3rHTstkbzm9XLnTZs22cDGCywZZ9zGn+7kQXvA12gGp7C6bGJZ6ovt57HE41DiSaoSXZjy/g0qzKPmfDLEWkb7Hb0ti8lQytGxeEOw1umzGJTCKAZ/9gx3Td9pVNrO5ajbA0aVbvP/N48Px2yPm9/3PZx9Pbz410XS/erP25du3X7x966I93Vzdxb39g1szNSJd0ybdlt0h8SHBAQ6fQaj5oCXMOt/jTVbfFzRNC5crm1U3C+35xHEn439+yTxJ6ENXkWBuKW8QcO4sL8PNlgiZpnwauRj3zkfEsnye5j8/QsCLsm9hDgEAAQAASURBVC3jSqldICG3nHOgFtlAXh7CnDcDBFFLvekyCRSv1Asjv/jf6GxOuADSFIrlQzbFNzlWjWAAOyPupqcieQQH6lJLjVoiH55UUTqg0jR2bUWDFdMW1xjCGivlpq+iB7whuFkOw2ijCWfX4VX5zuj0YQJy4wJgaZdwv7OgigvlKDCIRYXa3ks0GaSJNnrimKBoDFCx13BbiTgM3rAoPQsC9JLckBm7ay4zxgr3AnwVJ6mQirSeacBLS6pIW8X8lh/N8i1F4Cn4Bx8bRyWChycoonCKD+5RNaBHyaBccLF6be/ffV27os8imaLhqbGaAYr5GRoWhbBXqhuOFZakWZCcRiwaUtmJa0Gv2CghKEMOUMms3MuoZYFKLU86H1bJzyeGqDodo4hdH9gnLklgpMCpqmKBKhquqG2v/J0XvtKcEaj2EPhFmytULUlZ38yPGV0VVFiih+p5UaF8l1HIEVZSCHFfwC5DGlfUFErlCduYCeFiD+oucdge6cvH64WIgZYog0LKo2Po9x5oERZehXFFk51qoDffy4U6itRTaVBeEiEZTpNBkUB5ngHN+APn6Zu96GFg/I+ppOnPohPCuKBNxCLHIuvp3tQbBG1Z8peZ/1IXMCE5zA3ocBjk5TnGhsqgA/T0txfMZQDE79HnyQJ94BQYzIe+ckkDzqBkT6owCqX5qXjRXZ+EWsUJ0FfV+AqpjHDEoI4dR+wZGGv2M2LH+ozritwSs0LKwtATeuL4VKFIknZK9Yyd9F41dfjgXXuZg6DO49289eHvQo8ox0TxFNOxgUxBG1Y0NK4WKjgED1kzdFIgGbEj1xrmmbMrHpWfvr4s4VJLRKeCPk0yxEnZpgZG5SxCKz2vrhwH0kiq95ANVZCN/1lFQ7tROeGpYmhUK7QxYcwhdRkCG9SXBH8QZktAUzFqVX1/0sZeSYCUvxlKlpD7DiDQUeRdH6TJI8L18RVw+rfEr1ZDMh5t82hksixzfnyGiCSkLcOehBDMjK2+eJ9BfmRXvxxGwDcVroCwRMyx6BOwapCqSBxL+/OnoZ1M40C1Dheij35PA9ar8WIvaNeSLdike4Nne7sL0IfM/A5JtE2iJkTaAtzXaldfcyzwjMiYnJpVOxesohj4y+r/EOPfF4RTy8j3kcdMBdAvaC+lgiXEkb8dF8Ri6XmHM+5tvdrYs7zH3Q72LML11Vs37W6vPN26YQuiT2u0C7GWod+AKHahA+bcNVGfV+8cog3Nm0vxswt6Hi9v7k5ubv/255PPK3s7btja+vx6mxNcX72/f32w9fX27v7ntb2jrddvDt6uHu/s7R7u7hHK+fkFs3D5r97J3uEeFpEgn3J0fJyWOotRi8VC8eVh5fbhdvXOZuXbg29//R//5T//9Pv/cHS49/ufTz+ePm7vbX/7x68+fv/JtbVfvd7/j98/fji7+ry/L5a3psAxNwcbq0aw/8P3J8/3F7/93akbtS6uHta3zQjZR1sMfnCwR3W3LH862tjf3fqzf/BVZ+Zcf3z3zcH+67cOST2/uFn5fP0Xf/rN2uqJG7ReHW7/8MnwOzk87rgh7PPakZr0Kh5u9/Z3fr6+ur16QL+JNQcKXV48XN7ekD5BiLpt4V3bWf94clMAY/yd+mvELDVzk3FHyTTQy1MVsIi6VbG6bqUQRmtWbM7gFblxSmqw0BId7eWvvn1lpc3l6bXem82mZz+dHb19tbuz47Kza2u+95ic9nXl1kVUhbe5MrGseYYmGp6fb+1raA1GOqsnaBrN1ytLrbZapk4d09ucWl1ZG4yNYtJOnT4+1Ve7iZEJZUP4on8+ioVKsmtax0bPUFFZzFRoxZGlF6qUtTTIcISOdkRvQXy003XF7SUwvEqntb94ER9yNrlweukVSnc0ik9OZZ1WMc/MAtL5fEgub1IYrNTxp9l+TPNFTyNW4AJlk7UcBbUte6BsavdCcgMRrFIbaYHPzZ1mQfHCKUJd6QjdJn82zaisfvh0fXiw/epoH4tOP564kc05V/AECY0///gzDrrYmgOx7+L2zhVwbrNav7r+tOtAXOciFYxu8RzqZtbYKWU+md6MrPs2UWDI1lRpmvJy7JBlZ/XIq7xuM9eEFrzAN6/HS780ZGwZDoXV0xxG47hNxT3I629YrySyGCKnpEZj4gOdlGhQXEXDtOV3UCCM10aF5MmvQRJ7bTzDHZ92gtXyts4H0Gm8tJSwyYmNe8RYwPkW2WUDVAhlgEddxAQ++uAJqip41Dx2wvNBHTkmxFgg+JtGUKE8/Pg9OgmpNpBQ2G4Ba/JN3tGIODcMXNBuKeygEfQlIlcp9HRVwczjirWMyECqVQacbaUz7WlS7eiACKlNPKnFDLgMqBgiYAfbxiuBVEVw6PI0EzFSpWNrsrXWXzc1p4HE8oNjslSbEpNJwY9K1eELtRwtGBiaqOwn9upiyZ1QSI4RcCB1GHwnoRBbGqMsKKlOvqDX8VvKjZL0tkLVlBo0Ebe0mAvtKWGaCUYNE/1s0Ir0oF1dsas2q7aj6tmgmrWDMxo9bzWB8khNtGEcKxSkTQOXdVOMlC19KJAoHXOAlTKEgDwUGCXxwhVMmEzUcvrtZ4qXv8foDRrRpB52rpFIxiKNlLJEOhJBaMFnghHyRj/c4kaA60sAJuf0HLyuNpAXfVia46EGsgEc0ria7Au2qQXrCWZK7j/IHWNbtdoFbmfiKP4oXvzCGrmBqNSwM25F0QJ+PBstHDwGS7D8yB/HVIk87xGU1IpGQuwFNxkWacZeKNLV6B0aRjkVipXR2SJILXL+s9IlDL6hr4awkk7g8764agQUuvItbwdw+cPBJx1YBkl7TkSyY1GCrtxM5JRWoCO/1AXWgIN6iSE0zEQksIOfkm3lGVRAa67NK7vlRB0jg6DLkI7G/QI1KCgW1mgwajUv8p9aEnzkHMfCwxDI/M+gFEcof1+9WhIjhTS5wjrlM47jlU9DqglGycmvbGxT48ITyFNNdsRHxyFwJvKVHlqJMLVT0dLrgBjA8SS+yTy/1lsufH55AbFwUkVLgMIAHCTn15RKJZIETMSdJFF9DXhkA96DG4dhtigTigpKGu4Gh4WEjJqLhrvLlOOkqCERdxNR8OpMl22kw3TTd2DHzIZbObV8AbJVGS+nJYZ8aKANPDgw/CBK9JAQIBp+IMN1IvuXgHhYqQgkqyUnmxH6TRyDfErv1UBOZbcsBcEGPmjZA4DeZDnMqaMCozmQwZ8hBjnT/TNSP2jDTNPui62TltDM2FhZNXtcIurm+CYIyLbI3+JoTxg1WjOajaRUQxaa2cDYfFlwiAkq7b+84xC1GQsnk9o4xyhqzNi4+UPXNo83cW3WnmgzAZDO57vbm/2D/Tevj7TFNvmmUHkeLy0Ssd/3lkMg4+1t1+ZWkeMgjWdfX14TEpfpQHpXgD3crRxu7v/jP331u49t/RX7CG++fHPw5nD/+MDDq70d4+YO9Lyz6VMT5Bqp84sz0f/bt0f6NfokIumD4yNrzvVSZDNdh/+iPXKAjcHsm/Pzn/76d/uv1i/XDn/+8eST23r3N353efdv/t1P37w7Xtt4+PTpnMqeGCrf3NvYM/Ugtl57fbyvo/zz9fPWyua//bc/W92vx3F/f/N3P12ubm8dHZqiwFiH2Kxt7W5++fbIcTvf/fE3xxZzfH7+k7/4h6/evdnZ2nU46Pb+BXDrx5vnP505A/7z2+Pzm/dnn041tEaOvv7y+C++PSakkw8/b2+95ln++vc/vfviODes1VtZtV5Z5IcvAsebKzcnrFt1ZUB/5tU6qZAecUiykoirhJm20Jcq62a5jkjs3lAxQ219C4tIekJoWw3s2P7Vl7+28Ol+y1Vu6wev93+6//TDHz5Y1GT3tnbrzlBn1123H0D3335mG6B1ALqf4d6oNlATqpv81IG0yp/kH9x/pL839jUmTw7iqWwkc3SIuPggb2DtkzPtqa2zWeuljd2BQ8ldGKzmWo+1NaEvlYS4YDo/lnAcclXPnIrb8st16F1suC1OT8IBLfxzjV9BeTGZSGjFKqPaAKuAJFp0wRioXxAYASeuZchxsdExIKz3wFlxUBPr5HeyC2F5w2qDfr5y8UvRrmNmQdu9SXzwIM6Qe89xw5KHIiOn/9tSDbM9q+O0EWRm7/i4Bgvmvnn3hiVYS8lv3F1fv/v61crD88Wl+asbZzxQ8i/evdm2N6ZbN/arLvMuXsfJ3NE0pTnIsBpucw05uPiKrhw9/ShuW4YVYgjcfDgfLRqGk5HiFAW2OchyxEauRj3R1VM+pBYKlybQqYIa/iEXJtUf5yszTi8u6ZuZ3rGKsjgStrEGQO1OKNPIQNc0+K0YxEtf3Ob4KHVNRzc3VRV+z+DLks0e9cCMj4KPnH19iXGrSytB0/rnINRm8hP3EqZztGokr3o9Azxym6No/Qx/P8wx+iEGCG/AGm4Li0FjWDptQaMekvGvc4VCcGIvCPkEra4XZhiOYcuy/X2o4ExwuiHj3oF5ALfsuUmFWJZx8ZleSMxg1oJmRXVjWumqkZqJwJq8qsliGqpPRsDxyNmMZm6JZPQSZ68CMJMDVDRQOZJnswksTBuwgz5Dbuq4GuuS2YcDZIoNbHFAMEAYQVevtMoFsn+9h0ynP6UtKV8iHs4nrD4qppAolRdXpTBiDewimskQnwdqD+idRrBnNfqEPxw9v+Qzndi0GBclRUE8T5xDsQR+foQTdhVZIIxWx+PpW1IqJPdlsGRA2RrW18LpYA2rpZUU56WBCZNfWJGGU+8R2UxQFD9kR7/QPRlpUzYaEuD4YFBKKx+nps8QjX1a8RgpZcp/LyJIAkrmjno5FirFV94SEGLF7QVg0QMO5JajCcxMr3qDikUL8PlW8stn6K2WcQLV36tBY7i/5JcW5pPH7x5kzPOUcwqlCQuNg2tgmmebipZObxHd2E/FoyXBDKTKLejJMEoUWK/H5wTC//L8wlwpva5LL39evs/gGvHN24XNuDalyinbFCkTMygYpWo+5s6VHc9IPeIizbDKjeQWLzCOKYMJsk9DVlo4IpoQMKkPe3BIUmwZbGPWYKwm/fhpIaQsDkJfAjBC6rfsza4yuaqGSXRJhK8/8wAQbIv0VTrBqPZNEV+90oaFWIPcwVFEnqCAME1Fytq++BlynqYvM6vNyAhuLNy+ahxXwRyBjtCEv9ADZlAJf7gKkNW/NDCJUKeopqXxgEQ7dIODRjXnwMQWG1uGtmAzXoAbB1UVbXmBsYKq0BqhAoY+ipS5FdvGhBKTihDqb9TEtPwLYtVo/EbYEsScY1JOSMM27Evpk3vDQr0L/4mVGXQmnXr5gVhwJ8ThHBQEinFKRwHyfUaDhSXQs2Tfet/cmXjIV28jJ95pGDJZmXXTqdYiunxf54G2n0x98tMrqzw8AE9k0Mn+takT96eC85GuQPRAooAnx91qhGSOnwsnyTTexha5x9sueuu1eicldcXDyC4QMlSWNQ1skWJ9TsfL7+y28dRxEvah6g64F9dI7dHrV5Tg7v78nsmkhMJXXLUs6MFRoFv7e7RQG3rDiq5F5g8Oqfz46VxvxfyPYAdV7jnaeLXx/uLm4+n1xbXLbG+/evXmP/eP/uzwYMVkwP7RPnbcu2Xg5hGAzd0NC6YJOEzXNm7vbnfWrLuJVLPnfJ7KxeK3V85BARxx984csqX17MNPP33//bc77z792//wN787/f7D/c1//P787MzKn/c/XP6f/90HWnJwtGcvMThQEpAxJi3wN28Png7XHTt/uPL0D/7hr6/NHr7/tHK0/ri+8+W333z627/V5H391asGDT+vH3/9ztVjDuSx53RtzamOrzBzSzfGou3POzenJ3/86+MfT1cu7qxlsTt2fXN369Xu+utXW2enlwc79k3sWW2/d7j9n/rHv/n04ez9+1ZRFUlsfHbK6M2tMyU3dnfWLHTgOmcNhXUwJdIoa3VIPWamaCsXl8YmUtRm7QAwI7K+8fp4lwbcXAnQ2Y5ek+hk8+9++NGKK6H+ypNR+9UvvjgE31msYhUZeDuGZmcwVaEaa2Z32D/T5kF1vWZAmlWpacL6WvrGAzpE/hmOOgwHezv6gi4ntYgFant7O7e3d2N8aw61tIOjgeuV5+3tbacCiBEZmzCLeNNqI3oN6ouXQHw2tOjOlKlfcoe9CLNZaic5mn63N1107DSkZeCJLmxnuG4hsJhMiGBAVBETCHxCS5HqmzJG3fhx/ShM6cee+t3sqz+qYz3Z3LSFVM1L1EG0Jmr8T+EmGnKwSwNb/M2qiQB1tTMgF0c96qeAw7FMm21mzMzq9Znw7Gj10/nZm9fHTiwCEpecE2WRm3OvcIEfe/fdt7dXFgo97+6tb+9sLzhsbdt80nAjQbNxUOOSWsMq1vEnixmPMxm/EIXkbqi+4JKJyM9r8ELjEAhOH6Zz7uXLCddIJM7xMg2bUIlRjNxsRRqLiTmeo4sHXpqzeijFcxyrp2TZQi9XeqckiztaKh0fzE9GQvmJg/fG3k6Vmd1ixtEdAUxp8TIvFzvVBD2qqHULjqGWOeZORb0Sy/LRbTarOUaDPGTnjOGozhnmyQlRZq9StmVQCX3F2ErwK4TlKSZK8WtcbnUDrh9proQvpQykTZ+E3RRA7kKrwTI6oxaeNZqYJ0Ev0dgREn3o+XTgUSsjsmyz6Zbi9qGl4ySYcsau2vaaL0zWY6a7oTzw89rJvFE5tQAT+T0zuNg+6P9yUkiXE6O8UJ3gwu0X0cs2ZWsWqSs0qnJ47Rk+hfLDf7XkBSQNY2EBToIrGwkGiD6kFlM3PJPpdDUjp3jGjBMTRAWTiSxF5JW/AF251C/A08p7l8ZOOzbbE1p3N0NaI5eJyJe2zIKOjhDMB2mDpjXEARrud9X0ugphGq7sEAQZqE2vRyqtUCqwmYQlZEgJIF6xX5gy/JlwXPvYIXtgyMYY6QzyR29AxmpFNI/S6/sRTSpH23MWCxb+TAMd2mKgjKz82VQAs4XBdVi0OKLGIgFMyf2h28ZIhm3VEovh0LqjSI7YJdKrd5pKcITgh0LhVhGIT4xSDonLd78VSw3GJBZU6VWBU/Ja+BOeMvk2hL+wVOTzS7AeyEQPavoWG/yHXMPTE9Y27jkKEAETh+RmAc4OvVo8Q9waw1TVEMWNBW0kOXpAf1KcNGfy5AZ9XwgKx2ouQ/7aRxLSaM9YTQSktWNF8aKpoHgaR9LLoXFRkR4jSQZFgsXx5b+A70dJVj4VL/WWwdyu19jXXgIjgvnHsInC1u7L32/SD17wM0Kf2B3y0kJ/HmXKG0Od8sEfA9lzehArGvDySmZALIKcMnJmoqBprcZ1DMx+qTp5LGQimYJmiuY3gPNUtX089qffWXecmb4LRVrMHvPLEA3JKsWN74XITdZjvTWvTRN7lbs3arswcDQgU4GJbES+OKa81NTKwIbh0TwYqYF0RmMyj6WemOZ5iXFhCPjCXqUABwo/cQOERcUUq0hpZEMXXmaHFqEvKqMOAq2KfuJGegLWGIPiKejCVnpfv0DeGb/JuloyEfKxPVaMcoKCe0NvKlTAoyFfGgMAh2eAhG100oyBIAmK1ZtvZBseYF1LD0XVhhjnwt8lQAWlgW8avUmAQTtD96yu/F0GWQDhFXrSmvA32d0MdSpRnhUn+4TcrcNX6E4rWsVzzv7fsTxGF+uzjYk7wFi3/3BvbUsnylMiR2E+XLlpyoJ5hy/pHa4/39999+XhtQN4Hp11/nB2s/L7k5tPnz5QXuPcv/nm+Ku/+Gp940Cf4uz06s0ff2sQ+Pd/++Pvv/+DFTvWpby2+j+7eNrWG9kRQjvZ5vrq5nJvc+f2/O7u8tPrb77ZOXR3UueJnjv88uFuc2/r/MPH09PL42/fXF6c/+t/99t/+fu799d3P51cOZoGPeb3E4S1TB9PXZfVoZ1rT/vPd692Nr463PyLd8cnl3f7m7t/8ptDtwbfP30++vbo7Td7v//rT3c/vP/izf7xu47O/OF3n45fvfvVt998frrf2HFC6NObvbeNcLgg1lgA6R4d3tx8suLpV7/55vTscfPfv3fTll6fFUHfff361Q5hPh/tb19dXeCzsUBB786B7nQbqN0gJk4QOXy4uLaOhMov1oEVjWTU2PTbcLxgUNhi4OL4cIcZXD7YFGtaJsUVoBABJd063jUtsL+xfbjp0i59qHtWZF5irw0dzwb2NZ9uNZ5TiemGMXpVF9raaSAktSjHGUo0mpYI+pmDyu3Nhn8daWsl1EfnKX32XphO7/Qe6aY53xWL4/WQx+/TT53DHBeS7AXqLNHGveymuG/NtJuVWQuuL93SNRukBPEd0jUn32PCXRFeQwnsyw8wMtBtmswjaOPsItBrbUKg46RWnIbagcs2nthg6Z5g64TSf4NhuavFaWHmLzaeyddAeZWB4HfuTmxqcVhxoWUmObI8SkEge3FQK6qLzmpoE8u4T8uZliWXuqMQ7mxbFyZg8YYukEPJHj+c2za9ab+vHsLx0a7L9VRnRTXF2TnaczOYzb6OuOp+jeyvlatwJ02oMXZoYmQVMjIVTH+gcYdCrGVLAG9XVDruuSA1x9LYSmM3eRXhVB6svkENRw1jbkEJ5pY/6VOpxSkFARERnTYyIR+8RDKZzivgZt8trRpHnR/mPmtSc03j1uKwB3X6qEiF+TejV0pNFC3HYFh2BkuvFLDmQgm58N8LQLyVMweXn3xJwn60qRcqiWKWicoCCaoIbSkq4vUjVtUzNswrLnkWPMEaYilFTQSi8qfz6CGexKUISf/nKYQE97NqANQXvini35wAUfxn1d8cdzFRATuvQVG6qaGEooZslvmAHbtqeQBLr5LNU8uijKtMQ9rwPM5PPmKOFp9KpSD1W3xMzS3t9hJ9vsQAwMbDQTxlpeFykWXRqeEDv/3TfKs67Rm1gZKvfVIk/OkBl8YUaqqILKkpWVzhXO+6WPJIYSBeudp7yY9AuFEwkQAGYu2gtwgRNsCrKVKWccximFHvhUIy8jCIkFoxA7HeXtbN0+Ak1pHOOByPKa3qAtcHxxCC7CFkmAZDlCzaUo6RS0wmlDpFckZgQdd8SSy8TemxYHCRJcJDK3DVIsMQ4rk8tfeWvZHV6CSeD2pTd40485N/AdI4VFgOn5fEqooyoMCdp55VSRQxpv4VVqo+ehc0PIemX2Wq0YjSRX2HjS9Zqzbsy55ZME9MmDIjdPTCOvRSm6qIn9U+P56X4lD0isYAHjPYj99ylq2P9KiKJEW8DY66pC9lAzU9FjlC5pfPlO5r5XwCtfwdlAby8sbvqgh62eJaZvS5viPWlDZwlfOWXuoQhV5jvg0/ONxExWllfmQZI0GCXl1e1Svpi3mjFFr5mrjaRRXUEaTRvNgDIviTZ/HUjNZYCPwqaIiXDXhAFSC5sUaPhs0L/okrs4/dxFbfoc6x/CNjYW4Rn8pZO7JHf+KunZGTHAplnjGdeIcREDXux2NWhbcQyydWBRzE9NWUWrNMKaDLkFHJ3arNwTlHARQZMHJYOdi7Uf8GJscrTV2FhrgvOmBFaghY0KZE+rGoUb+ps5faAgiDiY+hNFXK5q0BVnxQng/lmNKxRQojZYIEWYqsD4bcNrdiu28jr3gVH9InWSrbwI9lCQUlcQUBxSV1UfqUTe058fx7n9xk6djhC/VY+tmM39dYjoh8YoQXJBkUX8YRo9orKIQvB+ww6OUOAYFLfUJVNI6LflF4NVuqMYE7niv3C2kEFHAs0u/yAUvBqhtPDYBYHmlLut8kVlQ03aEFw7hgX6cl1U0F5tf8Ux6QRZ9/0dVYZ8nB7c1VEfzmhvPnrSUVa+7tWHOxeXd1YSm2HbvaOzMHN5cuojeCqMF4uHMV2vOq1f/eGFa3lfXs/MrJM8a0LdNwb9ZJp9Jg6fp379457dCyd1tNbh82bi6uNndWdre2fv7kzEzD0zdfvHlFo1Dx6f0n0eS3335lNbtFEet7uwIhO0XvLMVx0srOm8fPDrB/Ojo6ujy90GRt7R7c31z8/ofTv/rbP7z75t37T6f/h3/+tydXz9duwO0E/W2D09bVN6JhKf/h4a6x9gvL65+Y9xUi9jf+448XBty/+fLg7a++2Nz+4uEH3YzTzzdnB5srR7852jzY/fKbr51SubtzaADfyOn65s76juXZ289PD9uHWzo/OHt3eXZ1LRD//Pbtu+NXR5+fzl/t75zd3e/tr/+jf/A1Gt66ycsxKFtbn75/2HEh2ObWF293DvfXT9YKWd0aq6XXfPNH5shG35rkbWzZiDJ1sCtjl3yFtWmJQ2+clWRgwyGrLQ9I4UaRn93U29rW7d09W4rtEXBYpxFHof/O9roVU9qZy7t7GxsaHUrHaXL+kYpRA2kGUPf37QnONhdlo5ZkQTisRFWNK/NdbrW1kEswnikHp8b7mdBxlB4JLMwvcDXCnelLsHFa3548YYF+Aq03trpRO7ziWoNw0FaSE8XTEvPTmd7QJHaw6uju3nG0HGhmTQO96gxRK7Q4AeLUR7U0eZNkxCL6eC4Q0DeriwsM3JYdeuxgIk/UZefcAZEBCIuq6x8GZyfZrkwwGZ+DxjGuPCqvXnFls8fMomjaVOc2v1WPXYiPVhEesbBznCVuVTgXy9QE0DZFrG3e/eqPvnvCJT1T4/w7FpftmN0wWcqzOjhKz8+2CfDz3hNdxSoOrSHP6hUR9jVXA8WRF1x9RnJ+IdkH2iBQiUr7P/PWtSgxtyQcwlQg/VsiZsnxXBE5ZhAxh95jLRdoMihdAS5oSlZdIMujxvmaR6VdTbD3Epr8sMp8alLTu1zuDPoUwrJIPHR9Sj/tJymCb8dL+DmGrHnpytKcUOWscIbPn6gi0oqn9S2Kg+lr0wJShwf+UA+PRLtghWpMHKKbQFiGSGleeVjetFy1QOXqv7qotN9q5/B1gab04sLThQnrl0FoIqouxaBThTo6c4CIIvFs1erCHYbTTRpFZ2kSRiVZ7YLXSgx/goBNsK/pSVKIpZnYOH3gaSCGKYSFhLhT+/kSzyC56CGYdaiqwtNEHVIxR6lMYxqv4V8WgV4W0OaiMOt75Wpe80g17tQDaEn9C9l5LCYpe16iiD+yn59s2ZJD8pvXrz5+/BjGBFrl9UPiFFYpb28JJZ+q/Rp7KjgBH88TW3GRP6OHMxFH/GIDgGC35FTjmEMVlnN0DlaxVAd1/F2G/RKNQGFaWRreyMKspIqZCdbv4pvOWYrbUlM2pPe6P+FUxkhIlybeyCi8jt5pndUYLQWNsIVIVZOsImpATRzsCYYFej1LwN7cyPJKFTCHYX9CNTSIDz4yhLbAgRTqYIxttsahL/Ft5AGDYUDoQlRpFfoT9TE4IK9eHXOwlxfXSI57xZCDDCQnz4KusulCX0AKXzj4k7gXMfqucEQXGC/PMcf3qShdqnCudfL2DX7jGUrwCd1xLxnOVFEdlenVhKmlQiBuROTIevgTpeojvojNghu9gPJMM42NDe9jd3OLS7OUU5Dz7y1QRXmWaZUGwRCIpOhvYExhDUlpuBha/MKTGUxwgpSCrh6/Ovz06cTLBb+AK0YBsx8yyxtGKJMeVo4vU3asaw51kc0463IDwEIngjFXXZo+yBfFQqH2KN0icr6sRECY1njYCHOj1vjTwlODfzXho3NwRVGa1GL39Ihix+jkEYBRshcSvNPG4xLmuiU0L4+IGOXBxwgV6lWGTJCgWhPVgErreWTzZqLYyC3ULleskwGleFNxmK+YQnXXLNfE4QyXsMuHEyfdcc1lVNz6Bs5rGsJF/UCePHAd3EaBRuWyNg/Q7isymaIsgPJrBDeyiMkjP4h5kC9KvRpNUFC92L70SbyVR8PCjSbExo2gXP62JowNpO7pSja0FFdjKgp9AU/lRQObIT1ORHIQwi38o3oifhc/idfl8jWNGS0nHe48QeDeODVvk1FSEJwVJMGtxHmAKu+DIqwAm54YOTXSqbi9LrJpXx6u77dEt1uGU3G7a6RaRd5SJl0m58FLi7TWdIkP1jevbmxsffx0cmqBjNETd1oZ+zCMfX1/++rw6HB9894+VPHk7dWJk4KsQd9eu7y7/eKrve9+9ebTyf3795fY0LL+u5YbHThY/xA/MMi6ohW3ATeF9vz09os3WtzuCNgqULp3rer6lsHPrcOdT3/7h/P3788/Xlw8bv7rf/PT3/14enKO+AZcIuzzwxdHu1+/fXN1cfHx2vDtZytj3hxuX7s/6+7pZOX5028/Hh51POPFX3/69k+v/mv/yZ9/t/n5D//u4ss/++OV3V/bdGp9/8Hx2/M//LC9t3/0+t3x69cCT305DGRKBootN6GUnee4+vSFw0TPzj59+r0jIr/54vj95fXXbw//C//4j1av7hybs7+zcXl5d7i/c/L+bG3jbn910wIDXz/+eH558+iKP2a5tbt7d2FUuPZd62byImmmM8LtTtU0Hr6/s5WmOTv/6fOc/dPoEWtlf4TtLPmbc5MMz/s7uHrbWZTbdVgEx2KXn0+v6nSNrzQ07kaqSnaEdqqajSzuxWjivaVuQn8+zXqkxjvEEF63DcBYhnlu2xfEN65gXX3uzi63VjWDb5ekAfBVN8dZD0aHdRyXwSq63tn/o2dQDR+dM5OwVM36os6Wdd6luDfXQdmbLrPwaUIukXU3K9cGR6TpfpApMJdBdpSkWYkCFL5I3xiShA8Tbt+MlAmgPA+XH86NuQLyEiWNjZVtsa3FV2N35pyHyS6ZGNuJQQwvZ0m5YCkPNW2hQvHpmFmX3Nkz4bCjGLLqdjIce7xziYROXZ3k775+u7llZsAumYe/+nd/e7C/++r1oRl+p9/qAxD5UoseKf9hQRPayFbfVWWLmRcb5cQwKZ9ZI8LX1SoLUm1XCxEq40XoNr2hwJAvZ85TqdSFMoyLAjVfFOHjVXrI/xutqK0dj7SmfxXHsqiq9ze3UyPeOmNFPEBASYCsbicl3SSskGfWSdZmIQHzMU0q/69ObYIYaWoUlirqf5jAp77uuP2qhBjH+ItLrL7JWc02bGjRpr/Kqy19AxzgomHYekVjxg934CZ3pJEcf1jb1DdoS8JK93rUQM0eYotzhiGwbddEVcPWlGn7SkIe5CmY58cDxCIHd+XhxIYfKUgMGS5NnZE2CszpP9/eWSP38kHetMPYvXCkv9NQlnNsPyWsLZwQavEGsVHzNzvQEtK4dBClo5RCJC/aShtt9NfI1y40QAlJlPoaKX6P0GPKSx8secbyhJBe/f/irdF6MJNG8UbtS6zDjiwOr15im+QzYqwtS1IN7TvtF6glxX4zyZlSLSrseyhImIbPV5DhMMgOJ+E6ygD7UeBoVAkbjFke4nbEzqfWMLABXk61ikFeYeiSw/cwRxEsFJN1VJdYM3wSiXv1eRQMFfgt0Xxwg/HyG3EFDFWvMp2bABVphAuVnrzhOBCmna+xliUmA47Gpf7JWvYl0cNCl4JGL6gZFDzLPxhUCJXS+56sRruQqRVfQv9JDLFFuC1Fy6ixSeYSf6kCLhfuJv+l/wBuaEAEu5FPneA5DFRoqpvfQYkyIg5ioiiGCM9hde8DMlqUtg2rpUyx8r8EfjGhYuqNbQNnQT40ygaOnx569gkEJldDHqmae5Y88oKtmetySpXku69LPnyPmOGX+LTassBR+sqAWwSWCxpM/WmgaUyLwWtvgOWXqZhsIg0NAMjyMIAkBTNt3vPTp5OTEU8cbMhqGonibIzQ6IZvH7/DL0aHiwcDHPwkTCQ3Khh1qSPQxeWZdz6oeC2avWcPm35DHWE0GxBopxqqQcZsY1fEMWTTYGRe0+YtRhN3YCWDWuiwKlLgmromxWJ01acHaXjpCzPVNpyMmjxopcyeb2/duUxqDg6PrvABICCa7LIOhhOjwTZO8EnR2znHXETVA9WQuZfqQkxyqZ1WA5g4Bv7k5NcaqZIiA1A4nDtWUSP3Kg0AkDV4fFxVe1Mj0B88a3gsi8T/EUfO0nstlizKSvx74MjGpQmyvfnF0jRsduxFASaElWzJdcFqwCrFTKR4QFLtX9LhGY20GVSsCYnJST/885svolTLdEIYfyZaOxhXhgn+4lQ8SjpoyveFs1HPzrSdHWlJthkbXYJFeQrIVhwoOYNtaHcz2taGtT/CFMvUrUGw9GAZXRXg5Xu0l/ZWOrPHkoZ78W5aIa4yjus0m2fLHKzFtoD8aeWLgwMe6ehoy2J/zSgcHta2L4lNh3a7faf725uH70TyOw83nx0d6losC2FOPpweHO7vv9rvWiP7hZ+j94svv9w/2HtqvLXG/NXxa6tXnEe50WH8R3YXrNpU+nh7+vH9796f/eHs/t/99uc/nFxf3Rf842OnZ35edbfAX373xX/zv/4Xr3Z2/8X3Vz/9/HHz9vrP/8l3axt7/9P/2f/twpYDvtJimKfP319d/T//9Ye/+Mvbr371qz//1Tshz+Pt7cOFsxxXz3++tI7nae3J8nbtcGw26SagfIwVO+ti1NWN3W3bVzMGjseW+r2t3/zptz+cXx5vbSpz+MWXZFTTsuasl6uvf/3uw09nnz7eO2/o4vLxVDy4tu6G4auWL3eK3cXtbeqSLWijNyesRNKzLRrZM0hi4BB4dHpmbRCdoHvPz9d3t6eXq8f7e400O8qzbb52Q+7KcHZz9+PH0wvTNBn06v7GzhevDnd2ahWclY7xe2bw2rblfFYn2BaLsFPpg4QOocn3phrkp19iWZcqmCmiHo5KIyav6PaOfKubnS+6Yi2H1f9FaxNStNB/fVWvoOtQjGcpAsLSjXy6f75y3II+BPIMuRnSWLMOXp8yM3KaJneqU0QgtBsULKDwDAaX6CS0TQPyS8L02b7eOKNR9s1t8wPZ+YVFag/kIxzM7v1XPB8SjaXA0FcQci+YxXVmi/6pMGviPUh5nFmcyVplZ9A2o8sxDb+JrxYceS/kcocaFRGdWgdyT8HMbqBg9cePHw9cdvHw+PrV5+O3B5dXNx8+fPr1b35ls/XVxfX+nom4a3yzA5hIuTLxpOq4AH0/jqgQXr3GxcOL7XMjPsOPWJVnWPwjJsMdpxHCKcnjlU8uiOtEeJSnNgWE06OI2MLKsqUiQUrTDOHLnFOEAGQA6blsMmBvLUIn5pm70Ayl6H4JvmHmgNR2uza3IFOo5UxjbO5vwZ+fJkeg4nAI0EkIB345R07uGXFHXV5dKZWjAswJueTM8RagmxHS18KWhLWMauWQ6Y/fPii0yqip0cLN0AbqxhmsRmGgV432z9h3u0kc8uiqqJq7K+v0pijpNA0JgojraKmrZmLGqlrIbq7SR2KOmJaMP046C1EoWMRnlgIoiXLD1gd11F+TlM7J1iUgtbjK6uGOBr4EUl4TYqOAw0z95kU0qCBEP7UFCjdDgurQk3EEnXClq5dQPYx7rsOgKJQXyeNxNatmikHMMFBCEuqocwRKSnLodtZIKD2DcSlYgWmCUh9Vl4dXWbsbdZpoZOlB06L4oAs3WprdVZ+iEM+p+bPUNbpQIl4uTH2hUeZyjwkXSS/jwaP2mW3aNLSHOf+jujQeaQVvUSqXDyGmM2gADnemRZWZ5MEsg8xKJkp5Bj94JK9R/YjvJ1T6E1a5kxrrZBGE6aujtPcIJ/bstxIJZgpmbNOAD4QFztAwylzOae4hs1Q+6jVOINpRku8ZgH71NXFFVFxL3uMwJ3bNjiR6U+rYdeSkVCyFfhJd2jiZJkcge6jUUj1KRsdesB3OJc7QSBuWnGOsuC3Zi/gw5Ib26Fu5sBorUngvl/5D2gDC4DcUeD2AfYljyyeBLtgNefFzwnL1L5t70gw1qnJRMsruy/IZgqt7UTJAvYOldvr/L0P1xschIL8/oWGuYYmxEmT0km9mrONIrkVsiKUCtHgu+0gYKQd8UlN4Z+L5Byih3RNzAjTD83KoAlcMFxsWRiufV0ldcIqXAcuzUjNg40VXzXttPC/Qizb+/5x1TXVyre8YnOgdeMPcrJA38JwUZlImW8hxVyfghGrUs+pTrxH0iGmYNpsc0hs43GvquI8qGa5qBb2JcA1h6hEbalE0940mZlzxJeaz+YpxTKqQEp4zcuCrnNCLrlrDZOejXHyp5lyJPEu2heFTvM4VLgqClTK90Aginr8MhIz8qL49DJ19XmQQMnXzciijmekzgFKl1MjnFCJeorZ5yhpV0gPMeYjMjIiMQnN/eVtARowRGIexJrc1vEVmTeiLG0rL86p6LIZglcIKR6BsG8ipq5mi1dThAIRgi3WwwajBZCbuo63BMKkDJ5niDynI6kFi1DFAMp15c0f9ZCYt9Hf8IO0pKtw2Mq7KVQPJN7Iuqigcub6+Fkkl5tnOiKP28l5Z+rzqAJPPlsIYkb64fDo5vzm7aV20EPL67tEhQaunNyerd/+l/+p/DhUnHy5fHe49XDvw52r74NDe3/NPp45G+ebXXx2+eW3q+uru+vz64ujooH2Q1hFZArN/ZGQU2xWH2BOkrp9vb9d/PP38r//m04fTW+He6+1tm0Vv9CIMfDsW5/PTx9Orv/3tj/+ZP37zl785+ss/2T3/+eRob+dv/vZHg1BzT1kH6Wj1DXL/q7/6/v3Hmz/6k1erTpuxtWDnef/QxWLnV+cnJjoO37mlYM957d0/ZoS5VtByqRsrlm2KcLQLo7++dcvB2nff/iNXC//tDz/ur69/93rf2UEuTv744cPlPX5c/dGffNfhPKvPP7w///nTZ8t0DP8bsjQqz/gtM2AiCETnVjfDa0q7Lcu6rPWDHUI3AEHZ6uKsrjs18uzyjodIkYYtV9d39IFN7HBGbue1IP/h88313eWlw5fur+9tNhAYfxamf/vlqzevDi4soyrKdKnaHn9iYNK1ZZRDl0QTRbea/1lfcc+D7Zf579ZmWFX1uLkKOKbNjXWxgo53mJV+U8bVls7VzRV/in2tPfK6yEZkzVml0k1/CV9osQhXCTYdXa3jZ6yGJ4re2DU6jbLkcVZYAbVlFwSnE063rUjDtZYeZYytymv94ZAubmMojyb3tnbXd6ySd8+dzly33YnY+BFtKXfHHirLQDCRaeTijNmbqZhzNlgHaJMph8AVEUc5pnPOL8GbtQrDemZkxJhTWGmIN2+xamW/aFIQJo7kXoj38ubBBNTt09r5zf3R/s6RI5jtzVhd+/33P9F2YzQXZ6dWkR3tH62v68WZPQChhhkyY9nSstWw8r9PSKpL34xLkA1+OCG7Apok6pFPy39uWrEWV6Nf6XFDNS8EVCAbXwCYMYvi/qE5KNFecyJPYyskNA9kQHxqhIRlTrIlCJDhMBloIbH2vTx5mx5GfHlCeEYFxfcWSvNlyi5PxoPQmSqGQs3HpKMlEhXH0hCeIR4kpAVzrLaBiwmWvCzmwJ9ZgSnnqvlNJKg9EBLmUMtkqpqOAzJxpI+QkgheId+ERp3rQmqlyBoqsasmC3cnvKOvVrIt82htZY425EQVrq52pcMoUqzEGR1V/hm5iQZfKM8EKr3VMq52mJI+CfK9wU+Qktg0WFGJITX+HWG08JBGS/ebDSIuq6l2OGBILW5fR9AROl0Ur+SbjkpSp0Faf8j4DFfgUqeCbS6dvnQONUotHci6wHN+dJIwUjkb9NEG1tCu+sFKawDVhA5gfSfuQgVqYW2JvrapNW6hJwFvufdcnxpjMsRm8G7ehoSiRqxoPQ+kQEpbgJfKNVcS/oVh/iCqP6PR1KCnEUwY9rwIaIIJ1MjZKgNWPm+hKwu0qyBw4Psd3+Ge3KHWejN4l8OuS+Xnwy78TRvLnHIBnVkNwClaaTnAI/6JJ5ufaZCADZH6SC3kcysFTImDoyODsAEoJDFtUR5qsxAopxQv/B7hBsFz6AJVSPNihhg8khnK40RAg1NXcIQ4bJj0ZFP+bC4OhEe5hoHDTeQS5mjmC24qXvSuMphaEdo8SA8N0hfgcA5a7iVshzR/+qlS1UXySE4dsT+5eIg0gQ2mzXhxNXLR1ZFP9jbDRVK8G/OgENAgNtYCCAAv6jiZIaEaH/XJCQ923kMUVT043koZYZiUrC7P4ZSQoDUEBDeWDdvDJhoCnnPsItmS4nUU8h3eRteAq1KSyy9oH0GQp+wjoPFBPNGi85IqriCF6wskAaETiIwRg3mEp47wVDvIeBpbiyBDQ35vMTRtnE96GRMmPbpGU8NR/uLmSkZseilnUd485HiiqL5Qhq3EMCGoXBK6jHyn5ZnldHjyjzFBYgIFXJegr62nCq2RdLJMgWKq3nOsCHVQ1Tv4552RqyDhFqoivu5Eul6e9Dop4qfxNWpasdGKcFucyAxIDFjApyfQm4CoaSTYbnKOFyZ+0ALg4E+inYQTSHyfVzDUFWqICGlRFqOQjC9hX7chbvLgDVyNiPGZFsgLvjFpVz5NEM8111qESlCsfaZoYwP4AHiF/SsqKsyZXENResbhgliltRpxnvdvQQgX285Og/6NcBEyg3nzWuR969RFOtXKfm7ds9Xmdlk83OEuppkB0C7dXVxOUPFkaNXY0MXFtRDx59OfDOW6lKmDPTqdRmdv07GGcwbUiguRXu3tick+/nzmyBYHPj4az3c2uehnXXDJ5W+8e/3l0cGxYN8mAkQ5Lwh1G+tWRxw+bz1aIS4+hNLt9TU+OEnx4uzi9devX7uJ4N+ew80ZOP+lf/Jn3373xf/4f/K/u+crzXLsb/90evUv/z/f355e//k/+PrV9tqv3xz+4fz+//ov/+7UVVz0hFNuzXoTDX94//G3v//4n/yXcYNHxvw7emeDwdXFOT/w6+MvLdOxF0MkjHniyGyntQS3l+fn9lpQhvPzW0t9kL53uLNyd328s/Jnf/ZWGGz0W1x7tHvwD//hX17e3v67f/6vPv78s8wnpxc3bp9rN/bG400H//vXkNzTszN/KIl6hcvrFsroctiG0cLmRk5wgpcw5GwndBLXgRCazD7Oy4u7y/NbzTaxUwn6aBaDOIRhriBoF8bnx+++ffvrX325vr1ivNmBPfynI2nwa9N6nqHd2nznFwnSbQkoYFxfMfdDeehnUSberq64PIROUTB9EsCF5WzQUgDTCdbfOwX/+uYaajoATk9KjrNSxnYOgTiPt2meqaO42w7Ax+nRQvLqpjsomkSxGYD7awm1Bp7Gr126XTg9z6I1bJSWDhs4r59snd4MfUEMMy0sMi3QOjZnGpnwcGYobqzhmE5WbpCDwlaWPG40w1x4CIEasKhkO6zHh6tTKRxy+osDz5cUBNuF0R5NSObZJr4bd9XkQ302fMKlw/2WTnFsj8+d8qT6vUZkRSjnF1cmWFi7/uPZ6bkdBGerD1aQuRhMAPrh5sPe7rZN7e680/MpHn16gDK8iBXyGutxCRk8DIe0Wg1f84QC1HxnjtHHIiOZfcVUOdEGCIG8tIN0pdYs36W09z5aDYDnXz6/EFfd2prGEXja8e110jJ2MJdWVV1TbwMQtQE5qoBEci9qMpYqKtZq0lZkqW5ICI6WJA7n2+rDlN3/VvUEIoWYdpNxeEN5+OFex+Lxh5bBWocmcmWSAvTpfiCcRg3rVIXAhorUXgrXCssaxCI0X5P+EM4Yl3NoIJ/8h4G0KMRr77jSWgFgdFeVCp9pCuVE5iJl69zIzicca+gNN7R4RmbM97vkSY8/Iz7qFA59qefmMzJsxW8BhuGP7tOQK+H2uh5EXQJQg4lXMKx0g80L2yEwsiaCui7yUBReL6ku0kmpftEHNlKlXqQSkU+jquglLoKXl4lqtJHa1week+7auFWltZKZ2RAYh5N2ljXqkPA5MnnQQ6em7QYmvCZEqTLog2DMdUmRp1IAjr4VN/dFRemJPHjllX8JcAKigEy3bepI//FkqWU4P7FEw/x94B+yiJ4ez0RfGoiaUW+hhgPVgt1pe3aUXjWZn9FBjitIS0cVoLp4hvkWzMRBhfKd9A2egwwWCzz6Pm/jMpZEhbSaJw/zT10k4lmWRANVGaZeOWQBHgOqKEjghefyRB2ViDnD64XtxXUZWbotpir8GDiVHVVHrKd8Qto0jgVkKVURqOHXPJDL4JZfmg8chvOBHHQKO6dEGHmWa2EILOWFyVIuwqdIv0esYZtYF9mHSRwaFS1xUE08kz48DpIOYrgHLoEPGz2VGgcDMEVCR7IkXGB46ULZBp8X7Qnv8hfCIisMJiyfsCz9AAExZD9s7uasRVECPs5CqbkrRObi3AWNEB7GKR9DB5BnejNfa+Qke8d0F8KApewRS49SvrFliGGi9FjpE7Ri3OmgsAxf1UUegC2g4kh15FWNJgOurqoeV2VsD+IOSrQvREiH4jHbFyAUzVNKMzOAVcebLuM96WWCjzCk5kHpRY1B4y78PMFjNbmM2MwnlNSio5ZXlj/mvLQlg+KgHYHwnMEkuYb5sVolxUz1N3qMJ8qmWGh5kXJ+PncmhQMdVgQYDmIFzUMp3vk9YDGNm+JdqZQWNmG1zHR8zxTmMhVn1coOS2XI5EbiMbD6Zvo+NEZ+eI5DvkIyj1z3o85h2C/KEAyUehXbCh/ieHgxS2CwriLJCAARtuUTwiQIpR6QjD+a9lTCBsR4FIsByeAbWzUjoeZxKJaeCwo7LNGKev6Lhe/sknZLWUiuVTGzzUO13lrtAjquGNQUaesvdB+ngzdv70/Prpx3ZwHIlYDryUGQT6sPTtGxEmJGqZ3P8vnByY8wOTra++qrg3dHh8aary8u2MLro2NHHlpbsLvtqHhDUo9HbzrgUk9WMESIbt01tXxzcbN/dOhg+rYlbOov2V1cc5Fb3mmm/vH8yhJf53DaWfrNl8fHKw//2V+/+6/84z/53/+bv7ViiMC3D/bO7j//8787//fvbx2Ec3i893fff/zp0z2F3C1u7JP7MFG+tvrpxtH3e9P9X1/b5rO6Z/fq+lIMevnp+vWX+59Xtwu/k7LGmM+iKXhrTH/r5vKiftXGysXpB23T3s7KP/rzb3/163d7BwfX1496EYeHxx9++PiHH/7w8cP1xzNTJZ+Pvvzi0+8/iR4uBeLOAkIWJVh1C6HroRJ/ppRBdKGMEW06ogtgiZZheDcJXz98xnJv/adbZO6Z8MXoJt4bc08JaE5qJv5G7sHO2rdff/XdN29Z3MeTExcIqAgd+jN4LvgWmZtrStOerezKeVg9I1IUqKmaGU1Elbsw1q8yqkrEanSg+P1dx9Uxv831VpfNLbDWYup82mZjfVErOsart3ZiljY1cNCIyGw6hKSuqfL1sT8/X93d2bjgPXEjpjE/pteQm+NlO1hMaCUIcDsCktmUEMQCLeihweFAUMpKafT0R5/WunmN0ZFdky2LJ0TBGK98uRX0YpYQRDXrBZeaa0lEUTNfyPXY5M9YXRZtd69FWWkPgHAp7PJgaFdXHi/ZgmVd1WqrhIkFN1ltbDr4Xy/x4+n5vsP/5xbt3/3W2P+edtZRV/s7+68Ov6ByDuTC9wP3aW/v4knkjCrM2rNl+T7BGU9dDm9g9Oxd9645wLwdvtXtz0frdadO2KT9mhY6RRkvjQjZUSJd4niU6K2ZKLVyYI2L8T478TvhNrJTCD5OrPVdtYaTV53FAfqtLGtApBT6eFZ8pZI2PCyr89USq7yiuqqSGdN0KS2CymfzeLOIUUVeLgEuVFSCEHxIVr3JeSIuL114NdFUwDQBRSqKEC562Y9sla29SAmkIy3W4a0EmSdeVAQHol0Nc+BHKgYILKfXtJCVdqkDN0DJTQY+il5GYWNf9TceOWN5SWEwG7c880fJSi2KDMPj5yIGoMBCBsw9Dj5//7LU8A6g31WxfIHmlKgaRV6qky+32XhoCEeVV4Cnw4HwiZHZGs4M9Obo+Dlj0nihI40SWSpf1hU+As0lcZczg+TZ9gmKAVusjaipEUxfkkfsfTE0RNWpUEctlxllhNcA4/hCb9JAZCsOAFZFyMNVGgR4Q8l40NvRHaql+OBf5Z7RpdKRSHLkRUBe4FMmajCcSD4+vZoIVWql+hT4BkdVOFM0XMb4g8awGs3xV9YxKCBDzyBmqz1zxYiOtdHiod80ARSzNKGaKBbNz+MFPHfE59SpqLM7ZZX3akFK2aENt8JAhgEbtaEaL+ZP1hN6fsoZiCX7gsmIY8ADCPm8np8+EnrLFqeCWArkL5hUpXcLWxQZBcrQVB/yIxGZ1Tb6O7VLHJghCyd1SAFpWN3DJC6/fe0D9JLYYzhVYPl4HPhlSPdG36IgpKZQv42fVTKxVePEkfPk13jFSgIM6WSfVwktQGlzYgkS8obAspXAccSsieGKQYBKDGUuyq6esBjRljrsUENjNdIDMYQtWtLXkkM9Vz5+CpgaTvap1RSccUPpVmYjZyY9P3DOA4wSvNSST2SQ5dEWjvfPoBfFI/9qGxyyxl9YatQwzUrtgKkLNBiFVA1Jm3u0IkPLQh2ppdz1dioy7Yc30YiNI4GoihMUpYLwXdy6p3AO7XHfM5KkpqQAwoymxPNMKAzhoHRDd4t1NVQDYGIiOUWqKOC5oQWBwSc++KrSheFEJvqBthQowxyHQV5arJcWdHQRRcNSDVgjbYMaRqo0G1KRWrVGwryoWzCfkVcVGQ0SDBUkNPiEr7CaFhe2ntOO1Kkh+UgYG0vfEn2QF/cUGsnM6ooEHJ8f09QQRzwgygrFfmECUPWnwy02xrA0tRobHxg2eVFHKyWcyV+Na5zZ29+/OD/jw3cFHXtHAqXy8/bPt3t7R2afVefYHev8lRISjPjo/72arHihZuYoukhqfP3jrXMujL+u37kK7MFpoq1FM+EBiTfHu79+98rx8yJdx7Xs7W7cP2+dfbpmaefXjxerF2J7673X3jjwZt0SBcu59/cPzk4u7h4ejl4fbhu3Nobs2BmbA9DFetefdSyAwpPby/uVu4ev3+59sbJ7uHNgdPnT6eV/97/7n9xu7/yr//d/tOJecUP8QtTrS5Ht1eefL5nCzt6ekXGhIe6RB1LT3KKxu9vL2+39A6a+umory/Xa1t7x6zcXJ2cX15/27lc7EGn/wBzE/a0LAz6L1B2yaZrDkgM3gjEmA4Rb27vmLo7eHh8cHX9uh/P+6sHzzdHRbQtpzm16+OLV6/Xd3YfvPwji37za+fThWpfCPQCsFQNZiQicBrGIhhfT/2Zyri6vN2023lrb37fM6fHm4RmHFCpuFQeRyvQZaZD4OxNLuWbZa0rzfLC//e718ddfvv3i9Z729uz82iqsm7u0hd62zdRFBkoK5IXQTg91LpF+Ju0Xz+m3Gd28f3JcD1jubLCBpPAtFdNjXJ+LzEw7MBYXP9NZSuvjZt9mjfXeOBNKTIfklyKwg7eVFtxz96apncGsu/jMbRNWe21yQy4abs8wS7GVuzPFhSINoPOEB1u71FxMrMdleyoSBJfeiEicetSpr5YgYdosoWwrAWUVhNUOOYRKAYxlwlkwdPwH02/PMsJTGqC0qzZirE5/gqpUKl/AaAVAOgPIDS8TIU78TM/0E2agQbRqrmZjpe0Q5jYbmngggl1jt6ZczCTlU4T49w96tzZMOR9oe3317ubuy69sgLh1sRynd3Fy+uU332HAzfWNvq5dwjDUt4uzuY48FG+DJ1L+Ptr2FRWwhfm4lyXerbnNZ01TwrNAfTmvTVlFMDN7b1V6SwcxejxZAvaQx+NOcSmDqVmpdX/hVc9qVJZXzLvmbHNE5DXuKN6qmocTIZGTwYhpXHJeSkLJbE/wamkmVvZah8f4e6P7yJmOxLQmsb9GoJqA3XWx+Pbuxfm5CnOVI04A6zDPFER46n0hNodobMWJUoMP3sSPBK0zrGJ8lnW0ga+sD4Ot9kWBBmcNb5owbSUNmYZmVHr6CZAcvDCwqKCsMamwVQhSQzo8Up47mLU/MQa2tKdXNe71k+NRzR+GNh4PECTV7s+ioL5i5YPtT4my9hqUchrNv6eQ6/ZNuUclxXhR6XiPlmnsPFDF/ESQizeGk8MIVEoGtiS/AcbSzoc50v/68PETxHA1uU47nmlgFlOoCSucZaqkX6uldjBSwWnNh8/See6FDn8ULAhODQsw0lh0Ui7jKmFADcTECeiFFs9A4HMpqfFwBBei7iXPIORraEqqBHGY6WpXibLl5v2nrYcAeGiUB6tG38rgv7LVVOna1ian49R0LoOXlnBXJUYgmI3N9WIURMlpCPra2wmfUqeFXcbyhnPDNJVUyPO4N97MoEbSRsEgH7k4KgOSYea7V4PdqFwI+wpPFhE/5ZRW2VBOi6Ji9CQMqm1+YtEMpE3s55v8YZhFFLCBQQv7PpxUNhwGhQCMCPwGZXkecKW/8MRDONOKcve2P4otjmtKJc2l/LxCafLqEwkT2KBdwYhaQGPpiPuXPLmpAb0ATF6RSUCqilXNVKqyx4Upw/14R7nrqqtyYL/kfMGvtAVQyMQq33IQPnKynqVi7E1JRyLMUJ0LriqtSxraClOviT4x1+JXUkmbFcPT4lRP/CAcPYdy7WqVh3MD7fF9QUAKaH4UGdDD3hfqcpSJW9VjpdrdBP+iLiOP0YyMWy2/vMIxSCpY4xcNo09PLf+YKkaT4kb/jC4GY9GDTmRbRsEHm6iHZyqIEElKqGgIXKROBPWgcICHxlEa1rDNoltG71rdnl3F7JK5XdCaWcMLvESb0EFbWAuMSdMTA1D+wRzuSQIcVdcAaNuKhPkjEaQGr14WBVJF/B2i/EZPujFSVN2Qh4PqncU5Sb+VMzm4IScJ0uyht6ZlLAeZ0TWpqDZYyKRjKfDTItZAstW4OJId/1v+WgroOPXPMGoHSbWEqVRUEeU0foosUf6iyuAPjWDGdBaO8EAlkSYHRryGzHu7AZSTNIsvt7c3Hu5uXLRq/YVjGXRU9g+ETCIsqzVYe2uQLFjHI8Tx1w/PN7BxMdijY3/AfHy+tNhf72RudnPo5+39c/sHPj8brL26/fzp+up2de3W0Lvx7JWng4P1b75yAv7a/t7aLc1Z2/zxw/uTs9vL67l69vb69RtLfvbevT76wgn5h2uXp1dtKHOoqM3GjXg3LP3q8BgZDoHBjpmn6ij7y5MTC1eu754+3T18ODMncf/u9db2Hhlu/PN/8Tf/5f/a6//R//B/8H//5//+f/m/+z/+9d/8qHP9xesDQj91m9mz3c9mftrV/Ly1f/fs/rEHo9ObG4b2P+86BP/pzLWzdKdVTwLK4+N3z99RSwu1u4P2+fbp+ULHoFVUGb+I+aAlU5nPk3NRLSja3sbA3Y39N07P3N91oxOurrz56qurvbONp9uTny/OV69W7s6PtlYuPl3v7R5cbD87f21sn7YXM6k3A7DtWF/WCfGOW6UK1iM9rd7cG+p+MC1zd/vkoM8C095RAPIiwfRhdCSvZWWTrsXB7u7r13vffH1sbYm91hsrzyeX9+/Pr8+cE0p/hH5W3W0W37sJgKJTPBcgP2+IcV0LsElnimLFhO6Ge3jCPT/tSHYd2pZNzXeFxTO31nJ/HNIz3BZR1duk7zTTKnYStGckg4MtA6w7+QA3pqXJw0rKjvCuB9c/FQXa+mtqQHodEJpHFfUXbvcg1CpnRmqMp3G4vKdQzYRAK/cL+9gmb2CGgnvnJKzAAaGFK7o6LJGCtbQ+R8GncBFFW0uXQCrjX6baZMBHGMpUFfX8G70jcwLCDJTKbxGFfqmg1o2/KazOZE1Py5wEnubQmuPaErRTLC7E5Wn6S3jjtywU2Holu6+x4NXx3qn77P72h7df7h0cWn318OXbV3f3txeXp+tum+bWrpvHG5Nm/jUtixei2GSIr6FTEMzlDj+jMbVZGrPYmnRe/IlZotwgwopy5mHaKUXkkrOQhRFzCtZZOVjTfAIQOK+R4ioxfca1at/4l0aCilFyg3DDOdOAFFJDh14s49fGteKlZ2jpGmJ2h+mFn1LOgKo6b9UvKCf2sjlaZxZ64SqY/NukRwz6qO6NNVQPepL9VDWsazHBRgA4AxPVuXUy98lElPaqNTwUAGZe5d9jDjSQR36CQvh4Qk/F5Em3mv6KMh4TUT69qFIfMCUtdcjMPMFeeOIrNhCQbAqpNwiDWLzVN5bBn5EFTiYZ7c5wE2nxsHVr6Sc54MMEQvSfnuIYE2jIwD3iC0rTgEBt+DR/AVQzZP1eWIE2X+dfAQlsF+Q9RGvkrl9dc+9R6J3f4OFAzKDezUtneguS7byelT8mV8ExBhTL59OfqgwO9AruBxPP8RFACrhIdKTD9qLdGkfJw9WscDRcieFzesUvQAAQkBPMPINDuFUnAbGZCTVKyoPEhBOTCOJIcOpfVLo+W54ctIltSKmxOc15bKcXhW6xjXZEE5b26mWkIJkOevyeckQ/0o/hURoJWDoa7k8vmy2aV2Ta7kRpqp46vFddlfSQmLAiMRE5YNEYS3Ji4PgO+Dz0tiJLZelvPFZe8cBknbG3PyEmrczgj7xiKlWTXh4w5wPvqq5Kv0NJHdUO3i/hkBr89JFn3oZHFVQQEwBUvHaqlMkaGHrTzyDfV3mW33EesAG5AAmuJHmmfG9lfulnVioS5h0vnAZIStN6MXUjlSDyLCjKVsO50QtMH/YkpgpQ/aGC+vU1LQcLnBlYw4FhhMy8f55uOho5wTDQR+fyqzEMh10jbZATWZpRKDjY1zfFeg6vc+sMakYi2679CZUc/eAQpIhfhFdfuYENHmF6t6Puiy8NTWgMVpkoAnE83xG4oX0BNPWPmg7jNLdRO0qWoyGSF6dWUL7IT+3K1slEFbSjJkdQ4F7mmgeJvNxwWHbcTSrx38gfTBqK04R4GPFmlTIxSwdmD+pZqvADXY2pRzJt9EdNnOlsC4sXcUAtalBFa2xgRTrqmbexN3yUW4xNpnodE6t1jVGhtpzYyG49w16olvdPEYKTAFQusxuSarbxqvihj7fmhh81TsMo6fMhEUOxIFQcFQIOlSz6yk6m71EWFHqB7Q0ZckOtQonnAZ5TVitVa03AQ0iT5jCUBx0Klp5DD3HdgBRvnCBBKOpTUzSObDY0PqIARwxUGuvd2DLWeEPj3LxllyYUcUPrt2t4Gd1WfdzcGN1HLJarREknkyP/4ulmc2//yRlPV7eXFze2nHbj7/OGIeHre6ds2i3XAJs2Y12hz/YYWOv/cHb3+PuzG758z/BXK0kw82F7b9aEaB8fP19fXP1wenb01kGbFkHAYOPkxKXBV/vHB3Kfnp4cvX4tctIVurfnV7twc6G3KHJ1qS/0UPybL19/93ZHh3VzZ++v/+bj/+f//e+/Oj787/y3/+l//b/1n/y//vm//V//b/4Pp59O37zZff1fdK/x0e17Mx8imqcff7z513/9WwChaoDWmbJnp9diqS3BYxqO/zUgRkM1aaL/h1uHy9iKcL97dGA/gPrvbq4s57CNgZ25VkArfHR0TIXe//CTsPj4cN/2TZXp3J98/GDJzuX796fnDx+ur87PTSCs3z6v/fDjJ1pgroMaF73Vmc2WWcq0rw4C0eXIv2hl7q1tWd2zyN6kAOYrIrP/6Vh/s7kYot/g6M+d9d3t7VdvDt69O7bveafTk6xf+ezGgr/5m5/+8P4TAmbhnYjks6PoyUa/y3ZtS2vclUYdhavuJ7A2nSpSDEf+dIqAqT+qoJkUwj+64fsJy7Y6FckdcFmB1h0ysumIMgRG6efu+s7JNizatIIIPicT5vpduS97jhmuZJY6Ta3QklG0s8DeADruaCprsQxw5hLHaYu2VcRb0ilbsOt7TB+AFxVlYWObnQ3s6Tjk8lVn4NnwNqMVbDuyNoYKusYj9d4Dosbqp5VFc1GpxOw3XI3zmVPQK4v2SFx62vxevntFvxfCnEkrqXgsFLXau3FxgJvhGHE5LJW4co+QsZRLe+uiO+A4IluuX+8fXZ2tnX86eft2//1Hy4Xu3pmyOXQfMMHmMVBTkD8G7hsfhbS8IysdJ0SaPpDszwzmVd+k8glyhj/9bqxdd7E5Rm+NBSyhTGV1gXSa8bM4oF1GCrIHnk/xdDFXqChv2SrKkXIcBkfZ8BHA9VtQWntmzBs0b3ktuHhBUdvSMBu4B39ODH+AH9iiK6mhwQnln0fBsTwvBx1ymR6CrSnsNoESkJ+Qz3CHITWlkekzENrlwLKDO+RgS7aWaKmoWaleSeFg+4MD3tvy0xSTMoiNw3SYpuELAjEVZMhU72CmrnkIcn1R4KHToQVxHjIjh9ripc2Splx4w1TbpFiN4QwwZTsFuGP85dFEgptOjkS8CnNw0wv6XLy2tLY4QEikrJTk5FIzQuVqLDyovUrpgHGxrIDb46XyPEECWPGRpiPCkEB8kSExJYvDyISgp6Ck4jKlH3DjJYBYEmLREhsUGkkbdkC3sD7TViC4+EAovhPjiC9CanOLH+ImWc6Ji6rQRMkvbx4ghtUl+wV2SkDv6Cr7qmHVYWtPoMrrdSxSm8xKNuUVKKcFzNgr2tEXCnqwSzRP22MVShWFf3iELqLDMMWoxuEJTqgSSrJFSkzCxtS9An4VNFVknn1/KVtjrs4mB0IU5jLEh0yt4otak3bfl+hiuIKPKg18/6cSuenpiBf0aoIeWIBMhy2G8GM+FfDxN8lMCCNUzPC9m6ApVyBHWCkeUSOuUZGyVbb+7QIOkBHe0gMPH5VO+apZUBpFjTauZUFZvgWXaAGij6TkqJT8L/mqK2qW3FGUCBKGx3yXol766r9O5pQNBenYGIoZ28Bevpbwwp2epis2jOp55BcqUVXZaRUWqQ/lvZsh8P4gL72Qs2iYWlCsEnzNk/LNmVzA8UNl4VzV/i0IZX6xavjDvyxqhJRgy4tCSGQzSodPbInvcpIOQBMulLfa6oDaRAuDFurJpr6+xQGl6HgyR+ML9DQmTRq84mZxcJX3kyMaHKCBm5MvFIIAskg+quvGaEWIROZlAYnMEZL+5SsjZSBygy12FyQWTKe/vD8O0G9RjkQQ1ZTDHXlFsbKIhHak+BLCoTNN2kBZEWHwFtUISSuzGwifyEUfyWmGGKGNgUJmr7ox1PFSgQO5ViE8cwFahOQenhDiN/EUvUszGS9fagcsEYzDCSV8WHx9uOFP0knQ0y2ir01B9LVhp3zTUDKeXeqs9GBO2X8f2RIigpcHSYu448ALJ+sJTF1VFwj8STQv/isLcdgoTAwV8zKYumlVd4cUWWhrHcvr1wf1YT5/dtHv89O9zplIxG5R4984Zqj75upKKHN1Yam9Hb9uAHAgzUMnP7b9bs26/8triyq0VM5dMR6Kwc7F3LR6RC1uexXbffmlM032HFp/cXLdZEjB9efzswtdGl9P31+uHu4d7W86h3Rj10T2rUXP9lbCz5i0RRHbr7avLi/ScZTpLrjA69bylZP7K6cQPV6e3VpitLe9ent9aT3A5emHY5dz3d38b/63/7efL07/C//kn/43/ov/9L/6n/zX/9W/+Df/5l/8s3/zL/712crv/+jbL//sT7/4+Pjwf/l//9WlYX6+XmW720Kojx+vPry//tWu3QuPVlyIkB4unPRzfX5ytn98vLMvnNEDteybIjVSMofNdySO5Sakb8czLJnC9t4Btku5v+nC3d29fee8iB0p+m8/vLfD92lr98qSpKdNS6qub92jzBjbcOY8TlKedq2VEmQqjCA1WiY8oTqfzi7cmExxLhGfmSRu/OwXrdrUy9r4+t0X+h7bm6sHLpTa3XJnWRdNuWJpdeX05NNf/+0Pv//xxJ6NLUfkiKUUFTLb09x1FA2CAgRsI1j2L1vs5V6tbWuK7BPoyBG2iwXeG0L23FVxbElnoLjbsf0C765MooEcAdfHBDQ8dptAUoRvndQ4wKhBz0x5641vHx/sXFy4uZkp6dGu7u5s1z+pMzxHS7I+i52M8bPurfqQZorAF2GzOABhq14hPp1hBvxPZH3+rAtkzQ9rEQTwJ2oUNHDFMEdlni3W1e7kHQms78N/rCgpt1kxtDRxUdFsbIa6CztqqDRmDSuYLElDq7ZGETBBP4z17caVJSK6b4eEah3KBE4diqpb0/V6fLx+Pr+62L60JsqJuaaW/vSPv3n1aoc/sIdXFbkmWJsTctGYTwMfHAVJ5asnQzXSIl9jSzgXnsKNJhssJ1bOGHp5D+zPgedFKU7ZpI6rjS3Dh7SLx62y4U1/5Vqcco6Y5vjmUyMbLTQ078ojcGKSUQVvFakVEi9UCM4mrI9F+eRGUqqCt6ZZg2ESIYz2TjQ6Az6kPXB3fZ14FPkmhLSMHlLiVmPOoQtR1JjIgm2QCShtrF8iMb416WdmBl3G0WZhjDmHaWUprLVdKXC6T/oK1o7jF0VI4oHy/AsrluZ14AMOjV548r+2D11dlGEmqlcBpj9+taJV97VweQCmM4MzbVMK97zi02QmuxiCSBnAbElP4W+6iy/DHa9gzVerTkVg+ni7oFkj1ac4RLpfAYREnBl8STFQ9f2WwkvvTrYADUDpsMKTII/zqXqJGW24zbdJkUHWIiUMrkYfeA0ELJoejmoX5OJR5ctT85s9yhlwByiQKUMrqpEy5keXAj55wJ5GnuYbQc/ioic7DDzEvI6bHSFRlyzzJ/3R3hr8kPF6iPItk8EafgV8fF40XKJ36hugMQRucSbo+Uu/JryOqyigI0QxIQ0ooYPS+Kre4eeC3nBK/mqPXRpfD3mzjC5+YsXEouAPLVU8AMNcYqSGgk92XWINQh8pVTxVA1sNtG6EEJJlqHy1Zzx99Tv5VjQNT5FyBdUV6kuRhQ2LNLwbDBaUloJle0Fj/i4x1WIySultju3jS0XnrecoHX0OYwL9e956FWqDaihEBTBhPgBiSGTFCOimcmhtKrwiXvAOXg2MISzBjP0vJGfT1ZHA/GhRFvyrM5pfsEkuNU61BJMK45jjsJTMesmtyt5nY41JZLDTiwUkZHxeintapBvj1N7QSMtbx1qHlJGd8g1o0QPElhIveMUeMXT+qiv7T5DJzMOMR8Cp8Qyt5zhiZQbtMpJBIIbMtF/W6KITL+PokTk8TFlTnHEW+F7tWNcSt7Z8eRXY6kUqk84O8EJbIrKj/bHWywms0yXN+cxLqN3BHqBBXqwjZ67JYJLWUjsU/M5iE19yT/AGP0x6UKog0KvAVpcMtf3IyN4SRQNCPIwmP3cgeVYFDDPzzgCA44NnSiF2IXO0hf1rDBTSG0lYNUijSZWrKPgQzL+EALI50NGfso3WwgfhUTevKq+c9iPFcOZPd6gOSsnCRylohE9nKXDgJIghvk56ZPooHj6THwYt0Fc55yiz76UHStyTuiOT/cLNCYyRWi8sAd3fX+OSEAIDObfjL161BbzzW5r6WHMsz7Ml7KK94nskqwXvhXbEY2y4Jmxl5cpZLQ9P1qJcnN/otlq0eGXw83lFH0H/wrbxPcty22O7cegysK29vR3jvI70ud7d2rl7ciFwoU9N/ubK/uH+89rt19+9gsOvfvPVdWtann//e+t6bt9ZQ793YOP2piPzEuWm5RDbG9uXZx8//nB5efl0+/h8en330+m1iP9X331x9uOZK70e788/3V6++fbN5enjv/h//vuHq4e//Mf/6M2v/vSf/NP/1H/+n/ynP3w4+b//n/9P/89/9q/+2b/91+/tL7aSZ+d543HDQaNCF9IhtJMPH7755ovVzb26Q40dbm9ZyeTgzObzbSPWX9o06FgcacxQUFy/d5uw9x0aen/L0re3rfPfuLg80wWy23p7b88SJSxwstHmipuItz++t2v66fTc/tAuhb3Vys2pGlodusTChIwdKJ8CGNjOBmHibZHk+vr51b34sLmczpunO8k9f6DU+tOvv/36T/7o2wM8X/XVUqt9h44CcnN/97vvP/27f/+7nz5daGk7nd0pT/c31lDTWGrXKthuMHBSZIE+Wau3dU6+NNZbm3R1f0d1UvrHO1cO0w5LtWiIeD3zRv9Np+LIIw69ozBNlKfPWWhWkC1P57Q9kQIQsxKclKrPLi+d5e/OMRlYRyfnIPnZKbGOn8oAREK7e1ZhNdhfj2N4IlQulpfBtQJzAqk1VzoVXjdSu74mmGYYWl5buvWYpGdhRmcoInubUAPrMs/5xGqVoXjcHcIlMxX18rASxxz4nLF7Zos9Wuje5KCc3ZSYgGBlljE9P3W9V6MAzaENXc8Pt52rJLvgFS06Z1Y1QZeYHbmqpA3TB3sc3f3l6Y+fHzdM3jw+uhPvtdEAMHWWklSfqi6my0JjVw9wn09uZPGrDWT6FP/FtZFCpWufCovlhOG4yvJ5oXdDwAtwdZU6vpdDQ4hah0H5QJWNY4l2APuW8ylKWzwYu5LNi8RVZyNOKeLvgvnSHM+4MlSWVqIgOUQHZ411HJ7KFMlvKLw0LSltJKhOYUqHw8WPsHAnh+G5h19GspJd7RQvWHOqZ4JjqZFKUoOhghxlshquGZIXVEO+RoenHZ2csjOsA6NfKK2RYOuAeQid6QFS7/HzhfUmvlKe+py1eoKDUJ4wHGSl5EECELgrY9dx8KBm4tw6fK/nFqWMSCSgFhZAgGE2HewFDSkgizI9+KtIyqmOmiHSSEaA4B16GSksl+ASt3AmvFlKY0/e+9okHhgDarAtR1JUFp4a6MH8RVK0SHHBVtDq/QaiM5qmyU5gMTQ9wGoFtbBTb0081AbyC2LKAhamyw/b0X7MiD4aisVxgSBJtApHdX1/7vboop3wmNZ51AkyjJWUybv6Rfb+TH3T1SgAoALx06f0hDgRBejTtqII0JlJADsX0DxMBOJPLJUaX+tslDoIpAzTpiscnyfbUoscNDmM45bsRVEqD65mqB57hQbQgIt1ybQ8VS83uXpWugyecWWBU/pgi+RFfAutU8/QGJCyhDXdGNkDvugA+vLMCBxtESSlYxP1SQRq+BOHp2rkBhM+g9hgVa6gD00EE4mhWcTSXw6P9BO/N5CZOGeAl3H5eLlkroDSE4z14H9Ve4vtadrY+5I+osG2vIsOQBhGag8ew76/JQ4lPQqYGOEiQZxbsqrihYnJPZ8Sa/1AI3tAMKVBAXvWaXs0mDaNTYxYbK82rInRjHSp15/OocutpD/jc4GsqtokgEfwkA18zeS06+kOeihwFpvapwGhk/pEsJLQVii9MByfKoAVKeAI/KqjDP2HcB9lpnmIH43WL1uy0gBsDZUcQHIFc5qIslVk0fWULxVZuCW9Z6ORmixd8BmgkgDzjH+0E2qyAYJTAz+AAUiXM4asNL0U1xaMqBy9w87q9aoA5e9D6iUiyE00FljBRbbqbJa29ZFQsuaBy0YtPH2VbRQmXqkdpaoJJc2MxcTTlquLakYOwsnUkNUwjmfxPleK/zEnvuOSsafp6dXWTg8yhQnbSMjmQwx/hgkNzY0jC5smN9PgERwam+tEMg5n+9MSDKMSSk3U0BhewimLK7boQFLSOmq5cY+r5UlFa7JykerskHtmsL6t7OPdrcZEmwd/7YojGp04rjFqxHQuYFLCOgyjrWI3SKmiAcT6TtactJi7c+id0/n8fHEpxtU/+ayLYOTWRcB1DGrVHsWZ93cru67R2do8evfWwZ+ffjh5uLrc/uaVAUZh+u3N4+Xd/afz8/29vavL+08fr+8vb/7sj945aPPoaPf69hrvSU/v79sv3AL2llyvr07OLm9evdqHi3fG4m+vLwxLW3L0uHgqe15XV7777q1rAlYNs59cbzytX30439s++Hh+/c/+H3/lIt//8jffnby/Wt89+PI33/33/uh/8N/875+fvf/h448/nn38+Yeff/6rf//9X//uDz+c3Qn4b9xG6yDUhgBNIJGgE4YMzGPrxtmHK92QN++O1u4frq4/GfInehehbe3umReZMfoVcyRmP6bx3TbwfnV6CoSDL+dKguMr1wQ8X3317au736/YPfH0+frs5nZ9Y9fyn6pRkbFh0q7xs0H0cc8ie9Jvd2ZnwsLMDIwjoHSP1543r21+1mHJQ9MjGuMyrLUv3x7/0ddff/PaOfItGCM7A86XVw8nHz79zffvf//Tp/NLfewka82ThduOhlKSPpL3tKyPYhZ8FX7v7u+a/rHi59XBHqU27UN/+Q/45XYnlKEXkMEeMQq0Rd16BdZGuVqNwVo41xqYGbKl59pUaPIAD8/1rDrRVEg7nXYREFDu1LISidNqtwFH1JEGBa+UkZk7TueSbq887W3v2ktr+IF6i8udCGQBmx4Xk5zMdVarc+5SMMVgQc4chFqfyp4VMNmRuvUSMsxx4xDjF+oGFYxkwouLi7e5nWYP8t4lF9oSE+tnoTMPpjI7GbLI+mOfZ+EiXtS9cRRpHkwq4QGytcWNCDjqz3c789OGuRczFGIUu7S/eLN3cXbz5cHet6+OTt0KhwWb27Zq7O6/dmCrY7qMosMADmlV5+o0FRDrckjQ4FKmDeKowzNK0RL+kA4VOAaBo1DKq3GNyuZs06LxMKiTJBvFiMZiSv+8K53GzVGPVSltHOME0S10Wdbog9osCqcoC0OCgJQcfCio1cPiwXSUWvwWVM2KnQwgOPlHvjxe7VFvGx6jV83iGhKbNBYiQx2DENPWwGYZQZ92Y5qqjsssH3QEjVNMXrymIXn4HoiyD/PzwleeXO3juCsxTYD7uPGqzk9eHcHUH39gqAyuwKpBNFNS0qbB+iWUGBGMDIac+EBqnL+ShAhWx7NifUQEpNA5kk3P+qrlv7atqHCzFW5pIJaPwSOWm8JEhSMw4QXBb1a6tP+xtDZv7kCIpwVMVdpUSTrpyVtFUO2r2uNAAai8yQnoWrERdRXVZIVXEJaOZVqTIOYFtlE576cgg5q5/a4CAyt2LbInQTnSW/e6k0BENBOWVcG4xqut5OmzWppA9I504rmlpUQ2G4jRW/CQyqoRpikCzPNRfWCV3qJktCtM05SAyE00HkoKdppfxROMeo1RsCqtFjX0UaiuYRq6DIjMAH+qq55pilKl8H/Ri75UNwYmp5Sk6oZXkzMuZxflUp1yMnivoPoam/Cm4oN2vPHKG+hDDzI9h+FLBBgVC7pLTk3CQJdJJYGd3/0ZivA7u6tivxbliZkBma8ilmFNKT0sYHEnicf9F5iLqgAwEperLEGPEJnmudFSD9WElBFZ8ulddUomMurnMe0YnNHn1SA8tEb+VFpSn1CZn1ILX0ddB1q96qXsotPeyQOA4SEyC/QAw19+WVDEqaFgyOdC0p5Uv76goDIs4V58Bul0fJyLNvyqU29H7QYhv6q3/DKqAQ7Zw5Cp4C/kgT1HK0SBf7Uui5ETbIrQCEqDZBPCNg+uek03WhL60JIqByYnNdgNucMCr16ojqdN74YXtH3GKS+ikgIaWjKG9Azv1fPizZUYNzoaphVZ1qXk2QM4AXojCrQEPiCA1KqbmZenWICN0BabnNA/hKlFgTsvX+YEmaI0kGrroZP+ME7bGcAoHQUNTBzJt47Hk2doVal6gCInbQ9CYsy8W0gGPaMdrVtGHSJ5JptGuL7JHj5C8xHN5B37700yN0vrDJM4t4heSjxaLD+W5gJGBCkuUchMecQtaoyBbfAzfgyzxcijxmMEerd0P9kqmNl4/5i3TMvDtHPJbsQeW/j36GRGuexO3tA+wYGZ8miROWphiFc2C3Gwd8M8lQM7G3RcloTYflnl1xeXe3vbWkO9h93d3cSvWWrgp+3CLo5SU7GCO6ecB39rxZDF6u6xdwrO89mlo3DMA3DjgjzNck3X8aHjWZoQ+O3vvjec+fbg8KtvnRe/rcNydnFzfnd/8ukSfe9/PtcPcdUrxp1fXW25BmzzwATCp/cnOzsQdwyPmYGb048XxHr4es+B6CLsLXPiQvJiH8OSJnM3LTA63N/96stXW+v7e4erf/jDj8a5f/XtG1MUAr39463/8NuL//3/9V/cXp780//6f3V94+Di5P327oEbCX717W/++NtfuwiBy/27//h3//P/xf/qf/N/+bfaoA8fz3/++cwJOC1P2tyv5VrfuDm7bpX2Z5d/bdsAa63Rp/cf3779QvC3d3jo1KPr09OuOTbUf3ioob6+v3q4gPmTu7XwyDFJj85Keri+vbk9Pft579Xr/b11h6N+96sv1s+vf/zJupfHzR07G2z7FAoSTMOQ5lIQwexMEdDVugd2vT49X12Z5jYMTutpDJVJh9OVVZdoCXhW756uf/rweHO9a/Lg4vrh+uH29Pz8h58/nJkzsS9WpDwhlFI0iQoJPwXUIu32yq7YXFAPlHrYN25ywFH1xsp1sUjt9trKMVGO6MR9yp38Wm9fP2nNubTuwykEpp++OyHHzgleifcRWtTPRKTOp63c2/qBt90vsVLn2VcbSLok1xFA90/tcWVZxRHsNuOljXwG8ukADXenmcUyVt7Y0+KrDKJo5kHr5GvjeBvpuse67UOrE8w1iyJibjZ1f2unTezOGsqAUtsGAJhwXokx1iRCICvE1WnPJHCfbCePNz4y2yQks5h8Tk0JRMatrHRxO9nxj0LVTMN6pWFIsQvj5I1jj4iGA1y9vri1OOv48DB8jDRZI3fZ3Rm/+3B6fnN7cLj3/P7j/e3+4aFd4Feru7ufri62iGT7AdN4J/2stTVzTfxxMfHiSzkc4vDJTdVg5RDJ2nNsQ29aI8SL+kiryQt/uMlDJQhKnrRqSsX9cizfl2x1PKRpj6q3DfrN4fBUQh35xyvni3BSCv4oPt0AlShSiyBNqnfQ4O+n+SioUk2evBHHsi27cPOS9dsWHjZA47PQy2vXfuGpJWpzF1Uwp17kDWmgQTMIcFRq025+zU0v+4xQmlCFbR9Y18+he81Ca0cUZle1WRjI94Z/PV7gw5Bqzk5iVN9Z5lh0UxRB7Rc7Zhf4Q60VTw1oTgsNdD+7LBnndZIjoYOwkxG0YmCztfWTgYJT0bYvw66JPpZvTXORPyAhDmIZoFScAPE43yj2EtDXPKW4oylL+xgb5SqFyfs2fQzEl9ybEKjpSaxLLRMqkI7XyUCli/rJgx1L1VNJZ4tNADPnh6JqUSqUEZbMRoJ1cupWge9l8RJQmEnyjEQ8SUT0aok0ph2skSviwUQFxEQpicCjIE0F3sSwgreaMgjzMOHOKPRzFhbFXgaaKqJuPlqhGq8XcgDINoY3DfPHUkJLcycwCHnugi3X4AIAn1ANqyFBBhbuhVq4SoMT7tupZxSyE2agis8n8eL+AmOQcSHyoTFA4KNGbMAuKdUxkYb86PI7NOJSjkyzHZJ0c4hK2RtRpIRzIsJkUx56MU5WuPz9RxJWyxMHo9HDC2T5NRDGhuQPyQL01GAsFwLS4znClogl6FM88JXtT5wZ5vRcIuev4Ig1KpZ6B6k04eWDKkyegYNAxXNJSXzIX8oFdqrOiluLHn25ZkAmah9HsECcrIHAT8rR70GIZqDQMQILLhFAeAySRo2pDY/RKS02qXkIsyYDMjQPp32aZRpGtBRsvofIZM0hYmvPw/x4LVamskmwIfZhOgIpx8Tc4yOoAgxG0GlSOPk/LVCyzRvmxpur6oWi9ePjY1o1Zl9a7j4NSoIQnp5cYlBtUNRSxDFM0GTLQ8I0yu+ckWdIEHneZITTTqW0rQA6Pakuf5MNNZzWQiJXDhlFiIfeZI2TZ2hPSvgGmwGaZsnmM14pnsyLRF6lgDDyasHJzvOCjAP4vJG/tjnvOXyb/HWGxkdLHzzDexz39LYjW4aidh+Fsdba5Z7nM2impr73HB+yIhrGR+dKkLyE75l9aFdRGQMhsxkuyr24e3FPGVpqubgbrMMc+2uHoWHeOEfeL6UIeNoyzWZWrHOVbeecq6WJgj5pYNzPL8Q9EVsdsBk5Ti4JZkG/1u5RN/JB+bWtVceMW0Ed40xbfX7kneLAw+P+4YGlBd1jagn1aldg2uAJBCuw0P7i5ESTSZ7ilE9nl4UpVlhp9lY/W7v/ZPh73VqzNZtTDbBe3z2f3tyR2J99/frN7qbV+ZePzxfPK3/ztz/pere4xHbSvR1YisgAev/p6sBI99Pz6cW5d1pDYeLV+cXl3dWnk6s3b19dnd8c7lph8nx9dnZzdrmytnPwetOhoxbpP169f3jotuCTD+e///H3f/e7T7//cP6nf77x1Zdf/vT+9O3R1v2X6x8+Xfyr/+dfX9+u/Kf+yT/67te/dhDo9v6h6Nn5K+4gwvV3714d1hexd9YewYeTkws3WN3c//T67R/dr7p7y4mdzmRc39/f3T3abyS3fZlfJS13ZNw7IacZwKMj9wO7r1fI8Hh5+mnN4PzT48XJh8317b23XxjHNaRP6K9fH+sQvHu7bx3U6fmliL6R+DV3KTxb8p4iFK4wrvbXbm10Gmbm5mSZtQ3Li4o22NLn1TuLqEd5sjIpmkxjpG3SXfn//Js/7OzazL16J//z6u2ja9Nui2nkadG/nsadGSQyI/qiZPqkYqv5dage50qGMtu94Aoe8avTPMwN1TnfbRs6ZQLgTl2WH4liKJBOZmdiClJejtv7LFin8KBSPCutabhydLsd6NBe27Qq7M6pQG0OdZjsxt1t5ytNg5r0sZYm5NbGM5pV0Hr2zYKZzV3dpNuWCOmWZHoc4Ew8amcRZdWBjA7eabEQYmkyVrAuPRX7VuSwn/ja2mpzg90xULNcS1xr3ZYKAGVWVQ5BpZxDrjcnM24p3zXhZg01B+yD0iI8/mxZ+Ymb04W2TIsyKA6+gLluR+vBdCMd42iBjZGFXfMquVms4SUKJQViFnc9nV7aaP9oDdzP7y9eHe9vrn96+/XRt998WYeLreWu3QTSZQs4nEMIwXGyEwsu3mxcFrfAP8C93g7SKHDOYQrEqWkz8Tn3hQLB04v3GIjjkUDARi4dmShSkcemPnJHXvqkk1NLQ+MvwMdHqXHUWp4ivJcKqde4uLxfatwUdKzU8NTSFfQUrPdKanH/S4bUYAY2TSnX26ztJiGEtbormXD/CHiJSOLAMjpWLJXfBiofronEqFnuQm1URHuXKtbcX0237yxe07Tou1qBc39wuN/9g7e3RgWA9zFoGJKhnbMlOkpb17p9XHhRgOGDbIxtbGXNLYGX625CYD7O1MI7zMOH0XAAQ2waFMzEMWQBKwn+NXngTozuFbDqhXOKqoZA9JYQ8q2zwrmAoTQfeDSACPgvx/LEiqltBgendHUFCYgKeY609MqHws+q6Z4FFhCAfj1zcOAgbZSnl1WWaoUkzA1q+EiEoxT0svF576vs1UhhOA50lXXCm1rlpDgKUze/CGnixQUIpEaa/ig//K8sghfUVQ3gxMxF2JMup5eBGu3KppcUlfWQ0g7YaqUYs3SxzEovP0qPwhPVLFII0MrB7t6tXdLmphqJG7yxcNCHA7YniE7hqO4l+PIdzJQnkqdqgABVLK5UqTcok2ca+kkb0qOxDEPskDDoxQNpClbPonUgrTvD3dkV6lFLr9SXLCbn4goGnpcQmOrxZ5KqVwrJNooTXN/CR+rywWyZAY3B81HE1ykli4ro6HC1nKDKBIKq7LHwjMYFUgSP1dayxYI+3lXGJxgVBpyRqWCReZkwqhLzX84KZYwVbyhrtJkYECNvdS+fAStTNts0burCCytXHnZExceNeu0t68tp9hJ3FhQhk8bEUL8nW7AhU4AYRcOJOkwgF/9GDjjyt/pQ7WapG90P4NKHnjy/sE/mxZJjaAhnAGwSiIbGUjLRZzoOIEwAnJyexkThH+BBZrJBIYOsg4jw2oA4MOxmzVyMripCgkNyrf/MvQJCyLy/xCGq3yx2HF/P8JR1+SodKMBV0XRBPM+hL8yM/YtACR6b+eJimGYSwVGUpqIxKqCd3Q4Pk4cqZMzLFIT2UM1lGDHV5JStmZxSPPyyd1a2San4gq3f8vsyUqM/FsmEQMsM5sEz5fVrMtQqLwTW0xs+Jy+tPaxqrBczxlPJMTXN0zzOeSkwMe5FRlQRM1OZMVUBQkwuMW+oWJVm2H2wjkcEDp6ScKvy09otZCShUfEhXDkkJh4VNeo/i6xqd2f9ZUMNVqjcPzqnZXdvV0xpzYQIAirQNLlhNFETaSwKmuATX8Gg9T22JTpu5/ry6vTSAfaGXY2OXwsn7x5Fb5aprz9v1l8Qt66snl/bDNwZMCYbyOj14dZvvvvicG/948eLj3c3J1cN6bTpeHXDYUGnV/dYBPrq8/pXb/ZF/6+Ojj9+uvh4fbe/vf3Vl6/Ni+pk8JyHBwc6ME7gf/P64M4x/rf2EG/pfhggff/x7A+ffmvlzBubXcVvzw/nJ7dn57fmCT78fHt//ePl1dWqM6wPdx5XbmwO//Dz9/+ff3b65vjw7XfHNy28WTMqs3u0e3939R6Wp2dWzIvONz8/nF1dn1ycf/XF0bZh+dXNi6uTD+8/Hr9+bQODnuL5h1NnGVkudX97uX+wdX15huajw0PjcE4o8hEPO9jl/PzMj+t1BZWOM3o09v/pp1kqKNh9/vG9Ed5C0Mubm8PD3ccLbL0Hh2IIhjBQkGXkuOjZqeHWMdOcpy5ru7u81ArRMaP1+Lc4FMZjMykd2HXYahq4dXLqyByTamM5zNzZTAV/KRdO7R5admL/rj7DNldsr0FuoZOO1inI+eXVpq5Zc5LAPwm+HywDImlZ0nmNOleysrHNNCzDydJFUFt722cXVwJEqssbYC8RM/Bc5PgcO18YLh03qmrsAzYOHaK7sFzbtipUO9+Aq+C+WGrcmMx2GBcut92cbTc27DY6PQRj/row2gK1y28tjSI2+zIDE0j6kA8391bYh4zBafMvpr9EiC1K7u4Iu6ivOvW0oFFBirhYEZAS/KgL2On+1xbVDS/UKqzM5Y3Nejt+b8WRrOIhLMV7/5gVQmJFDVIDt1bQmWlyDJPuVh2nhthbJiRdjadXTnO9Pj7YP3L2p/nGOgYbjuYVwXy4OMOr9dsVF3XoEDyZo97aPjs7PTg64KyMDlCV2bGTh4R5dc5QBeQFK5yqVOoRzhqUGVngLRAxTSliNX/ezlAWEhf3NC0maJjpLRrpjdqIowzVpCA/QcrFsKoYx1cTmbefyI/XIXq4x7Rl2dLwLZQmUPUqDlNOMWITRS9tzVJv7J7aVZTXXbGec2uuFpm2sgkWsa9Qu+3d0BhJir+drjad1xFiIQ7mq4anReaEDmhJuEZGJ+hIlONL5aEtDeY70Xh9u1Vq9AuwfPPq+anVZ5x5M2FamZH7Eip5W0uEEE+QHz7HH6VkA9MLiwu8jX3t3DXalNunZ3M9c6Nvk7/GWubI7XejS5Cj4H2pnUWLN8YDCqR8YnLDldWq6UW+xqL8lYf84D+XEy8qPe0Ecqd1zlE0ECTbNI2VGTQkNjWh1yXnJC5yh8O0XkOmN4kRcyoMFGDhHXQfOtVA75wFVOMcLv7TOs8selra2hpqHA5BiIdDCNC/EBBu2Jj4InJaupivQO6svmDPwxzlVUoVZcQZ/BkkwdKBCUmBWGociwKIb14JSPHTA6MDGRqAVFaN01GclAlI1NOsTkgQXvzPU/ESHn3Cc7Rp4bwKw22xiL/HBFhCtQZwXsJq1jA3bohQ2YNFCkNI5lkUH5AR/MjPWwyWmNoFdyIckXFDGS/VwXmQkauc/VmAvzzFX2bRt7+XZjxQrs/L36XojInI593U1lvuTgqJDATsW3ApHK2m7IskJshURX3F1CybxbhxLFNNAP3HdlQDGJJTxwsCCSG5q3LEivChpK+JyatJDw38n4z0PrT810NPk0acwa3maYHURXBD/ujcMLQhVvaW3f4ig8Xdx6N8OkH2mHuJMYNnwAMR37PPBZvwGh3yxwwBGjiX5unkC+HGM3wETuE6wOSPeJ/eCWTbIiO3/HLWCZPKePLU5BAoRMoK2iIE7zwHIY9FUflWlPgXXDm1UfQJX+JU9TQYNpVnNj4arTyRJ0QNqXDxFeZxb4mbo2iJwl+WmkRBHe5GEys7/Sgp1FTNsWUx1KUtaUphGlEYaioa0gi/NN6Sp8ZUokAlYEnj0VATjSO58QI42ZiWOAFFuDB16R35W0tWvcPwSMAlcJJLOqpFVFARDWC1D7+DrEPVcaLKFXYn6NgbE9Jjc6xtxwySPCOLzGzyTECF8wPLr0ZqV9btkeX2kYSf+k4z+gLRVK42GJyQ2WATeCey6m4aCBhDfBngn9GXsJ9uyYQ+2BtrRi5+LzyhV9IxJG41MMev2ZeZ4mjhwsGfu9v17V33XgkS1e222v293bZd3ou2XV3lcH3t94rFPeI50hBPCKYfHu5Qen166UweY5g08srx0oYet1Z24Py8dnXzfGoXqn7A45PrqHa2N+6urd8V1dWJE2BdXNz/+NPd+5OL3b29t68PnCvvzBuL2K0VoZw310JbweKGM4Ze7R5+OLlww9TxmyP3Wp1fWmzz/Pbw4PTi9uzyfHdnY3d7Y8d5+7v7108rVtzZZOxMnluLW26c5Pn5V7/65vBoWwz27a++Orm8vfpw+f7D6cbmq9evX5G9fQV//OvX+2tbx69ev3//4V//v/7Nf+p5be/VWxd6CQCMQIsqKcJf/uN/8DefTn4+e7Kt2fXGG1s7x2/+hOqZ4nDrsZX7D9cXe18d7hx+uXF4f/3pR7eKvXn7xtC6E49evzqY1VYiylun6PN2aztbFyvPdiQfHB4axz39cLq59nT4au/8x7Offv50e2f25bPrFJ7WjOBunboTwaTG9tb1o/ayJXDUKckxXUZh0f9zN7Uxz+suJIaU1qIwh6YvOskm6QM7NbLS0q7dVbeU6V9QNk0WLtvVOJZIqS3s4f46yEgRek18947u0dsQmt+6AW3nYNfNsiuP9w4mKtJogc3z3c7aLnOjzA4Ugt8cWUPxNm3L0BVpMn7lyRIoRsWgeEsZZjlf+1zZEF+X12VbHRxAlXP69HP6nms3LUYXdTGUBgBsJgnbibnl33Q/1urKlVCvhodJNS/MEtWbwTgh3s1rLaxJ93g6zEMiC0Pt7d2tQBwJthpfW1BRVDUBk9NjHKRj+MXwscYp/8OKsyPmk09YTGzCi2xuaQWzP99ypPBU0eTFJ8R1GlLj/YhbOvbyqNp+mM01MzDCTc43lzWbuRlu0cZsyNl0XOvaJjP7bC0c5/b0vLe1eb8FOQ5w48s3B7/66q397i4Rs2zEwVeOCn3Qh3eoq7PNN43wWRkfszjhvJ8KapSwaoY5OLpfmgleC2k5kvkf/v6nbpEd1VFUa50/nzkQDJlEfG3CO86jYdVw8pP+jDALRFB4HhLpefw8lHhT/8ZPqt8bwy40FnF5Rb2+wRauIqpp1ZYNFb3Nm8IhV1nTDGwnt6TqNSXJqsQ8H0pykrJJTyKRPpQMN7JemL3QtQjZ67LRo4U0D6hAI4poH4fGju5ubmFlECe32qwRZdSIVztHzVv69CX++dN3EIaBSgCeYur7zpBP5sBwxkJVWl7UadowLrwTx0vchrUmY4d1QaMg83qpqOAEbca26I0q+zqhi440HcbYWCB9CRBat+Y9z4152CU5rfYwQvZI8AslIyDFR3aBGNgoAjRzi/MGK+1gSTZm+/jtyNlspZ/gIE0bKSiCJcLr0b2QBzoe1aKnZ8maT4qO0ZtRErYjJS1Sc1qjO1eHX5aFQNfA2+cTJO/hM90O+XkJpFVndC0xfTSWIHCGlYr6cAVFAThRLcUCcYMGqgCNFDL1BiJL0e415QLnARVwhMQuChx7Jx5jzB0PvX59edOyS2AnPMtTRK8i0INg/XAkM/agxKU6vTPgEHtkneB44CJwdD7kFq2K4qQqo8QyjX8L/YG21OQZzfHYTxNuMYGsokfqUs0CdEwVVCgMD4iDTD2GNqDLQ5RSrfLFSQAAJtN5LmfK4lO1AwcCYVmBwrBq9Cn7wCHU3g5ZgZt/OZ6qUxRkH69zwgQUHM99r6LIm689SJzMwSGSvoZbZWhLOrZ86Jq0F9WM70FKe8au4szg2F/QR+ODFJ79U3KpX8Fsx6cqggOmoriMtgVgr5aCwFXP0BYXCIOmFKL5naTTuMZLpIS0j2+xB4UTbk4cD1j0wY3BGDCYIuEW1sYFx+16GltadALSssGShsFAtfBENDwZpLxVFWFspvr8it4Q0sql95TPC1YxriR6p7rSsSPIvo9wht6cPrQZT8nxdzAOZzuQ6sNUWyChFLSFdRlbH2jMgPpoFcx9ZAKJL1uwxSFYYtoCvlfy+RkyZxAxv7Mw6oUJ9CF9ShjyJynPUPMzLa4H9l1ES3aL2tXY4E/Y1yRrpIUSAQ2Op2XyVITnE2OHC+AFuSBsBhXGNUBlCCEjtcO9t4NMPPcBHNzAzuCBv9oGQ7wNFnZMeHNW4RAjQ08RlWIyOFgJz/F3AZciJzTjVY5bXlmMeGXwioNZlQYU93ZkwkanfFK+9ExfQfu9t2MJc4TqZty7RkenwB5UYnWJ78356enZ6ScRpoFq/y7Oru4vH2jG4c6urrUhfNt5D+oOPDv28ts3B0db64e7G2+PHBe5srMvEno+v7BL9+7tq/0vXu/v7hlQXrm6vr+4uuXf37gh9/CQpglSTy7vrPXBMtMDH346MdotBnKAjUVZJy4asDLk8/PrL44M3FJpCnB2+tE1YHTj/sZCkCbTD/aISIz1cHbmGNANS5neHbv793BzVUhmPHj12Mr9x8e//eu/Whbw/NX/+1+cfvjh5vzk5vIcD6FhU+k3X339n//P/NFf/INvNBrWA4o/r2/O3Yj8/vd/c/b+Z/JxvYCNB2cfvv/xd39zdv5JmPzD97/D+61dfRDx7aMzUj8/3DhyxgULrkFwtfLuwYFxeMcEUZyby6uL04frk9vjg92dwzhvX8gPHz7qx36+X7XsRlfXGTjwYd1QaHsMb9bo1MqeuxG2YcBgCz7Im8iy1KXlnK9+Cc1rl7M7W2mbC8sARz3SKJJO8cxzFDzVXVgR6LiBeGV73U7VjrG3UuDGbW36ifp1c6SG4s5m9VKriVEEbnMF9RK+UNtZfGJZ/ybtIlZcavh+jgDOjTTcaVdDNsHUNJMy6KgLxtNP9dtLOm+ZFKsfr4b0VuqbdsABsQ6Jm1vSS6kbw5vp+Rv1dbgsDZsF960demB3HF2jaBjUIDzGYde6I9rMU/jaWjW9AkP1WZuYL39VfDRDDJkO64NVpuRo+mnQ+Q1WxQwZV5Yr05i/r5BbYm5eQ3r2RjZDMCTbW2wFoBUXraeyOqDb/fDn+srlGZaWWL/k2IhCHNsU8mefH9yNfWAe7ik7NQmjJgvIHCXlWNGLq7ufT85x9fLq8uf3709+/HRzeklL3L9mysWqEqPLJhjGkNurDyPzIUU/tXQNuEA7DKcRGZfAxQlKiteLU4lp/N68ymPPuP5LKYQtHBhfmAIhcGrpSAYQ8jw6N4a1YeCTp60JrLrqnsT+0MEYtSATw10mNx51/GpF+Dd+rWZqBFF+Asm5VakF8Z6LQasxqmRYvoxiUa16QUVysk3zipnyyO7bQp38Pgk/6IFeWETZ2nTUOpOyeOndslCn6saTjy5gQF/LQ0ZzUNWoULY2DRMMNXEgYIQs0hsWld93GSA9jULWghvhHz6jh/Mqvx1uENDwii+EELWz+qsBqZWfNYCYL13XOOXsOdqHsJH1IoS/bz5i+/iLRAD8QmOMnq/UoJpGZyYFqjpF2DisiOAVp1Dhiuy8LR+0bPeYcYSZ42o8cSwhlXjRouKtYHJkHhLY/MYJ/itGQT7MF2lM8Oe5ACC5SA9ZEA7Nr07EBAoiKQiGLAhP0Jp6pRCFKlNN7jHnmAzSp3qnyWwI7FFWb7xvPifVZQ+Yl0uaHzm9iuzKzlaNsi8yrQODGI4CIAMQCw9jklT/AttcZciAlmD86k0J1VnBnnVC/Bn3QmPLOwYyUAIDpE++JUMI1CR5XD4lVmH63L+Bn6xLLWyIg5TIs/eTuPwZhxawlDOwSTa0p4Z5nr4byAQ0hITbS0VBXT6VVEtkJtUeEtBUBXgkDHVleEFp3MIAG5wrNznjSwKCc5WW6Hf4TOQZPUGYuCtsh7ZwLsdgU46gJd3y1hD6YIqk0bMWXQxboZWSUrU03COIMk99MXH6vgtw74hoolLdNvCaP1rYqUJqOnZVrYNS+EBKNlm5HYlLKIYoDZFPOPUletKC6uKnxAObkAatCGCKU6GMo2xxOcjpUB8A+r4kTm3sQVtS9QByKK3502anx5LKDspwW0Mbj2ZAbnBIy9CvTfXhmRzEcW/kDPajowZtlJQpn24kBAmFo0P7KHQUIdZ4M14O62CkRQZg6UuMt4zM1H7wSZSBnCEiRpixsMCiMR/US1CdquXTsqqOvxgm4EFkKC6D6iKTDQ/HUuasJaFzw2ocHRTEd7KESuPMoAD+i7+er7hXuzPMBgQwI4rp/igioHiDvBgFoakLAng44kvjvVI+DxRRdSQggA++yuQr4D3TJwbbAGc6adigDsnEPhRrMg8eqXg05uwCiLHpRhTJNA2St1oRdaXTacILPwmCzbfMYNUmSyF63RSRkBZKwb3DIx0Ao3fFQdoPwdkybuw+sBsblbrw2Bp3I8k7m7s351cWTgjqxU+W8xvLuDi9c/NThwTer59d3ApVLGVwsI9Q3Y6u7tS1JmH3c3f2WtdhmcjT55urs5OTFoLvbu5ubq1+urx0i3CnX65s7B1sCn0EmB/Org+OnVe/bQmIGrd2tz58uECYQ/BsH17bMpR7vf5sS62wQaTWmMvV3d3p1c2h3s2KKm7Pzx/Nc3yzt/723e7d+erf/OH5h08/W4Dz9vXxT2eX3749+Pabgw37CJ7ODXxffvgRAcfvfl1s+Lyyf3T4J3/26x++/5sff3fy1bvDt6+On2/vf/7+d6ebm/YCnJ6cvPvijQUeNkJYknR/d330av/kw0d7iS0EEyten184gXp328L7TbuHaYM182i0a4LgDoTvn1evTq9sONh/9+r8w/mDcy3XVo9f7V1e3F7dP79+u4+T95bg77rQynXLFC95Gi0XG+n/frQOZHXdynGzBFbfUBuxe3uWtNoEI8Il+/FAdMaKLTrFcEQMOVIaM2HHzFFQBXfA2XhHn2Li7s5Bzv3p8972hh3dGjMiNgnjIxrTGbt/uD3c26NPDkx1zI8jCdW7b+hXbGUJ/nIznU7g5rpxQaAE7tbVGK7j9BgTlcsjjIvT6+Rksj5tbUtsvW+4FzkMSi/Cb+f8tJyrxriYKfWvdXNYqS3FTmPdUi/N0kMR89MfJsXRad9sI/YAffE2G7fKv2jLAgP9agcMWL++vuboK0y2AcZCtEvLr7xHJuiwDImcGmcjitAi6GFMw5lvhX9Klj3mR3MvufIE4Zv1SL2fm1n9ySlZXdbNaHqdVsk3vjB81cEz6ZdDwC79K/sQcBtEOxgsvXKr8bVbIG0VsDrLMlE8eVo/PrAth/LfHx/qwG9cnDnD94ZSXe7cWrEpxcFXuHp5c2VDvX9GEyBwdeWOuYZyEjprha7xIFhGzOK+8mIRyKu4jQW3ox0DPPOTOZ+oHmwXykuUQUQ7MzyoiBPUCNuW9iX/Jg+Dyj+S7ECYOmtrZnPnuFkFXArhvCz1ipMwP8ApxzKMChHf9da25jDS8OHi0ihakzovIqkT61uIo4yiTJwtZ42Fo7LmZj005rojZxhAuuM8R7uKRaCPooDSrUfTVha8NVofsbMzAeRah2Ebv+1Zfh/1UTgIgF+LMNFttBcS5ZIjaT6ap/o26OOuvahrvX1wcPDx48fpxr4IAvvUiRsp5PQPMxMjOBvUXo/Pm5jQH0DmgyFsE0TELTioFMkQSCoAJTSYhq28vS2RjEh8XRs9CEqaTC9fJscvv6Il1roD5C42+0bKPoNG3LTUo05XMgKaDqg6eCxrDL+mfMzZ6+wnLattfRmqmjZTWcRLx1yySJHkpAPD7U8fP0aNqhiLGuufz7O/hT1Vt6iBwXuTupRqQVA6K+BHCCnMYk6/ZJ42GEKkQQ1qo5XKYVpLWZq9H1uJluZwBwsL8mU5pbxz1jSMna8UZszlpb2WY3AK5+EG68tSPMOAifiLW5H5/8eoyQ2qbHUMxtdNgJ6LWoT4y99R8oAsKCSRyTE8L3HAIn3EpOKg4kkIDCf5xqqLjYPWROGTZ7Ili6hUpBKV7CcaYff3JjCwRr5Tp8wZuOzpQsCLcyuVVk/hhZLeDdAl8RfwIam2PPFSkT+52fFFk7TkjJyqHkucmFP6QggQo7DVqoedxOad9BdeZ9vlpkkTHytXBYEbsaXHvZU0bKUtQ0yYJbDcXtWTUAVDGSktZ6e+MtdVyPrGa8S0CLX2IY8zX4aQLKlgK6NUdf+pGTchM38BJ5nBz3LwVCqAwA/yalGAo/cQI/QsuoVnGjkhgsp0ISanNTU81DTGQoJRyqXsLyQPYPUWGkKfO5FSw4k87Mg2GnIIO9VPH5V94gWvo/bsFqmxauFEookPrc50baeRWfYMZGRKHR7EPSzk3cSgJQ8c2GmwYos0b4sPoiv7TagaEDACFLhZWx+gsXBRp2zj+GJU2pd1RVcLbfG/2x8T8YCIFjDCc6SzFMTtaKx2n1wVHDgFRfCe+iAcBPWoPVhGKRphmgd9G3RrzhuhqVsiw+TvKYAI1poakU4PE8TA6UVHqfBSI2WyVDb9UmlsaC2jC7u8lXOsJWxIZDDl16Jr9FB7v6yFTT7iXNV5Qr3uHILb0L6ysmcvGuciVvJxoiAPG5dc/lUnREChndENaFfJ6ta1mPpudefowMmYDoq5PL816GjkUkvkbJmzi4cbAaKRcqf4mRnYP4b3meXt7E7L/mCGYVP4Jx6+bFTYXRn2sJoBuD442HEDz+9/OhW5bWztb5PC+tpX37xzzdiHn89eWevy9HDgHjF/7KO9F8jqfn++PDl981WHwBy+fnfmGNFTq4EExPYvOHnz6fPBZxffvjl8+/P3HwxYPLmT+EkAfrN/sPcv/8PH43fH6ztbX27vGJv9/fe/O9473Do6uF+5f/v1r+tPbG7c3VyKG7/86t3b7z99+HTuBP27y1PR7t/9h5Pdg8PdwwPb9gxQuxbMlWAuUbZe3+SCNdvWBlE3NzbtHxw9Ot398fnDT2J5wb8lv89HJiK2dvWnfv549uPpxW//cGLdjejSGqbzy4fT29sCQVftCj22NvDW2UlY0pyAJaFpj/3YzS+xC6wQ3dEugpnzNkl0LeWjW0UM7WG1SXFvU3A/FtAkiQ3NjaYL0tLYoFJvLdyjOzpWILi9sunaMtsajNMbgDefLjBoUJMSPh8e71zf3Ozv7vAmjmvqONLsVMRWaJUtr7s5buPK8p06GGKaNhAvFemoCF1ss6XYyjATKmwxDwja79QS27v6Sl/SDuD6DGwNN3JBuk/3bq0uA7z5kEyyxTwWHrQ2SbJu4Y11S+ZJuhpithELxeD+eN+p6XPdj8VFjcFlpys7n9dlA475kaN0w+11up3hNtcVx0WW2+x84w6K5TNnZRDGsTsdo7ov1rGMP6yNWxHWM9qZl9PxsKZfl3ZiULDG2z6YXfHcaLwQrWbN/W9bt1e3e7qOdKWhXv2w+qC6lw77PzraorU4bBifzejKXV2cO1TXpRsfL2/eHO1+Y1nb211O0GCRQ7p2d/TNdewN9G7s7e3D8u42lrJv+rBoB0TplzYljHmKiaR5FYzJRcxqn/qZM1j+S6lC1Znewb0Xf8vx5VnySXxwI2I8WR6JI+146/ZP52KQpF3DrMULT4ZCH6VyizlnbG8nXGwNqxF0ApBASbG6GLcWUmckp+ejjN8z9C0oLKYfH57r8xm/DTRdS0YV5GyVWtz0BB/5zIaEKJrpoEbf5fKLdWFU1mZiR5855WxaJiRrB/XZ6kQjeZDJ+SsWMhxNS80WhOUaNNo+KnM7tWWQ1ZQXA4GhnIM2JuiROmngRL2FsjNQVcfT97Qk3So/FGsscuOYgzPxiHkgdIYdsyb+oAxLt0SbG+MDNHn+v0z9Z5smS5Kg56XWqqpOHd09jd6ZxSx2sVh8IMgfwP9PXuC1XGBH9Ex3H1kytc7k/VjkGfCtrMx4I9zNTbu5uQhIAgAJrKj/8YlbMK0xvXnUYVWItQIdY/HCHRXBSIcRpY8uwEg8+JAhIB9765cbSMCLrUIpVZkmaIL7AOhYByRpgBi64V+p0PBxK1haW7q8ZFdRBfyu3IQN+be+dd+nphcpN6aC4NRaovyOc2z3P+D0SptBnnw8rFMOwHERB3hSCCe3IhN8BxJ4LHAHtosCa9JPfk9XSuXBpYxzGphLZPIyT5k5eodGIFwX/zSMBLQfGCCn8GoaisYoYV0xyrM+c8efKaxW/ILj8HZ5/AInieVY3FQmCgbjhaWeqBKb3JyPy7GFsI3hyqmYd30Bos0ATv0aGkpGsEsa1JMFQiX8F/tVd+Eln4C0CVOHnEhLbJG9pCyXMcAAVmv+LnpcofnUYk5+8HGRPOprwIjGMQVNuIo7YbHUyN77qLqgTaNm7igALUv1h/ZK/Vazpn0GUACAIZEXSKBO5iMl9gmT2u56GF2jGWFark4lFjzao1OmP8T6N03MI8D5EQaQvaWCFgK2YwlAnzGMFGJaAtwIuw4dNfTMRSj6NfjAXxX2OI3DIxaNCFHTzXk1DCfslAmHafTUA+g0B6+Hdwwvx5pfLqjVKccZvBlmhU26OPgvZOR2kVKjyikGr6V1X+IcNCPkRZ8UUH4g9zSdHhdWqDjHYnBetTe0RlZNx69pkncxSqC17uQ9HbMQhc+IstOU84vXyge0+bhyM2jRAy1A8ko0vm00HUk+Ig0HPZQ4t4gpFU1kBBGmecMBFiuqqJ9BAgR4etGoO8N4g7yRQm5uCjBXFdOmhDNunbeoe8gJjVYgffQVhp5EtIa1nkgGjtazz7gUXT6xd55bM0AN6hPibsNLyNjumBQIdGE6cgACjWIo56DxXr1sKGXv7+hqTQ4uMojeTtUkzGNJLysKOhelA2fWe3cm4TwIH+gMIDoSvLDyRYGtjsNxZGWnjFN4GxSdXn971ap9uXvnYVolcvVgX2Z4WuKiS9i1k2Dz8OPZO4ZwWJY/ZZXOm4UaIqAtCdzP51emJI5297774ssffv20t9fSJvH3+dnF0c6hUQg4YiBHH17eP3/66aO3BFxc3OzvrMujg/flN98blZiU98qtYdD94dHO1dPT1fmZtOjf/P5L5zuS18HFwe3Tzn//50+fbi4ywLPH/+1//N3T1trOyta//PX8duPp13cfX+0+7n598x/+3d9ube2Jrb3nWBpZOvG733/z/U+f359eS4z/9Ovp+fmVAco39mae7H368S+7bcsURzmvdE0f4zDG61u52Ofbm6t8QLsNn9//9A7LzNULh5wMdG2H7/rVLz/+dH7mVWmr+97uur95sLf/0/v3zsy3vMOaH5nfXy6vnVxkYwP1nGUpyc9SnbWH9ZvHm02b01a26EJncdoqsLPJphmWrSPiPiJnTJmSc4R4Isc8eSHE7R3zqlPnSow5KE9KpSRRxHZnSNIWQed1jtuw3hTKxeGOA6J2CVslhFphJVo92Nu8vLB1+cmb3ThIkxpXd9dfHr8SPVMVS9AMjaSdM00fi3AambdympY29u7BeCptN4T27uH2Hiir0TS5pR0P7olEtVJvOklN40w5U2hUrL5QHrSIiqmU4XP4pckZR6mI2ldXLLMB0Lmf5gBqhm0yJdsVWmFSQEM0YhR8smmFV7GYDHcNWxm0pVWO4cmcBplyHF7XXPLCBBlTNdgGb3EgL14scx3z42TEH1qsi3h+shhJpUiKsmjkdHkXa5Q6DshdnnfVqImhqcM7rR5se/fF7end7fGRY6nyF86z0hHIWHTmqcVaKhitrWfIZzdPVz9/ePtgU8zqd999g5BI9ZNP2bKlRKyJ81ZmW01HsTmrcCCVyUrwCwrKEnCE43PqefgXvUOjrbx9kYVRBLp4NTQgwE1Q8j+xocRk97ooAa+u20oDKBDJ93A1uTYojbfEjqkZw0oFxee8ZQDLOhH7Elfl7gRzTefkLDlfUTKGFFlOwAdOYqr19EQ9JTFBR5C+ZTL5ilQoDEIJHhwdn08HdLiL4ukXCJd+8dRAIgpMUPU5Wo3I6CPhJqLxzm/tIo3t+GN2C3ragmMKiW/ze/aRF5rr6OmwRxRaZcV8VPdvQSBeGYDRrtxyTXcxsqIh9XS5zzAji5yYfqrxG2nXQymiAxyeV5LbhAhBTLTdYR7xLo4ld/houOq4NJ3yYg6gNYRLUXWLSQt6Crxc1/bkuRq4eib5toTUtVZ8gvdVrV+uH0w3YiI4OI/eWgRrbke28CAu9VnKJoL2qePoTGuTAZJbtTp1gk+Curb6R2GAux6NP6kAaOgavikKZNV0hT3Dttg1rC1ZpmdR0H3oDYYz2Ku5vjZDqAm9oSIxP1XJo/Y1coY5ZFz57CuJJ7XwWcqHtP8+qFk0Kt0IFaDGDEMQiVMisarf0sSxuBeF63Zq5kPKC+/grEzc0+IQqRH1aieq48OQlpUtWNRM6PW1Rv3x3R1tL8brC+4VeCwLTKZ8wckQPgPOJKYhTSztDpyAjG16yPr8ZlNcJYqB9qjnS0tREUr9GYcwN1LX8PF/EXcozsffqevR0uKUeXk6nP+tYA6ga6DiCaLgOZ8IB2YMZ4o8N5pXxLoC9NxaoZsBEKHa4YULukjdnzqjIABhqG/jOwAKPnQHOTXiyajvaB4W9J0Z492we5iSSOifsliDXXBIHbE1e4st2Vqw6w55q7kcRdF9TxsvaoETiwllPLq5uAXDsf/FuqObRfot9gUfOguuwAylimeikdDrl8tnxyCfnpSr1gb0jBMC373Qg1y0wb6xQnl0ZXoe/t184dhLfFwBkNVY+ACfFwQaoDdrkObJheRws2e/c2pN3qEeSW6SxswfhRwac9c5LwglBTDwc1BVDvxA1qM3chinQw4Iq7gPSoXFPlhHTFoQlIxyqEwFKjD9hJsJcB7VRoyB2LBUsNKgP8tvFE6shdopn+qKKqmXj89qDkVSKFAdAqVZ66WU5ObcwUbYogwcwghnACOi6hDiuEcJITzcg8owKsiMPM3wvFocLAwTSlrWTMsL/HKrKA4lF61+lqy9vl1vOY71A/NCIpGClT3b27CyALm+V28qIexMnpveK2ve8+byzDmXV5/O7FwUU8qr2s2/UlDi4nHXRsktp5LcMyrrMG5HPtZzXl6fC4Ykig0FnIXu9QEW5TOv68eVM5PHN0/eNrC/sfb164PLG2tULJixuKXOQ+x2ce2EfOSIHenG0+nna68XuL26Rt7rL9/KpBSp722ZxjFbYvOBFPvW/u7KRYOtt1/Zzrvx8y9n33z/7e7u5s63a//4T/+68njnuPcvv3t15LTR7Y2DN7uvd9Y+v/vl7vL6D1979/Gbt3s7v//mb4SD2E9oiMBsEcTejn3BV+sPh8zV2u27qweDmuebsrNW7X/8/O4Pf/gjxUlbjZZubq4uLcy25udx5fNZynPnkMq1W69KmPlAAb5tu1ur2xK+u7vWIL3VnTrS9IuD/a/ebFnnd3N+61jOg09PK3e7P7+/ubHynoZIdq6v7uxtnZ9fb21sWxBFBSBZp0ATnL3J5umsLjzlYiPwl9SUHX+2JtwbeXka2kSaUnpU1NyIMJnCTFxI2VYt55E/FuwKnby/b7VFN3XDzsa0M8SbHUxmMAJ9gmEGoZj48YKDi3sLtwTiu6gDjaZfm8RYt+FZ5tvrtu7NUfSnREQ6TKkwySBcqO32Rt27jjYT4nCsQxSwWpBzdXPPBxsDAEL5W65jHM/0mpR44BvYh1SrcUMdpBkDbwtmNHZYztoecSf9nYX/GSboo89QiszilRVDo4eDGQ0Yw7FchRWz8SHI3oq14uzajMjNMWZq1XwF9DSIXXQSTckX1/MPnf7B1Oln1qwzMsM1ScEyHfWtTQ4ojhaRuPoNzcaia52oROdtFFh1FBTKON/zq5vN1Y305qn0sIHEPnsx2DN5srFhUG02yXDo+upq65EF73z69fJ8w1vzSle//er1wfFJouLohNR3T9fP18JQHgOq02Pmq8Y5o4jyRgVuw8jd8R5o7w1cFAo9CWJZcjM9Cy3ylaZxO9WsNyHfQivQVSC1/KHlVTutmsCVgkv64WZwcqccl0NL9VNoLyGljf4PGhM96MdsbrYuiNR9IG6GkBdFQqAmLFZjPKfuAw2w8DaIRIZO8MclhirIi4eMtJmV5drhAEMXy+QGm9EERY1e5bP/lDa4faJS9aaOkTE3U4KJOz2mnLhdUg+KBUM+DfY4eVexpNkDMxU8TO5F0z4ufaUu+iPMh3BfR4eQGeaIGcbAP1fv0yx0p9Ngcjo1ShhDJkiF9vjwlx5KK1nLQMBxoPyL6unj1Jq24EMNUmYtaAi6WF7X7h+EsKUhseflC+xgoRWOYoNtPVEj2xnCFT9Uqwgkra5bXzhMV9xQTBzkd2SEg5FDBJLggiE0PKI3C6sXZIeT+boFQyjNkEaRJAKIO0U0pS38cyerJwzlfc8fLjHPPIrhTcNNdIHksVakERaxBWlEqxanMcwKqh+IJSatxKXkC42JgtKT/K1ugHDrO/wrCo/KNhMmQlWIZgBm+HFg8hrhMSlCmpQpLou1JjrIzw8t0RhlcQzHyccN/4MPrEcBy2xTkNxg/5ah+DBE4DSnjqJihjoLORqhEBVY4opF4QMb5hlKwxINLUFfNqDw/EdPLPQtKUcMOD10EToTCXeN84sauPwNf5gHeULZ6mQbxTM+oe+TXbxYH475SQT9nwhQgeFtJaduijH1FkKmRpwuApwP4EuBhpNY5QQMrxGyr7H6iqcocK7LHIuKrTE7PxOX4xIkYhXjBDdT8ImGKZNXik8JQNevfg217VpmalVAA06PgMTlrCZtAsDXnNQsCB0bS8AagodCNRHqDW2hMTzwgp5tp7+FFaAzPNUB6RKk4hq+tq3NOyYcxqKBUbVMtH80TDEmWtXxnmE1/j0RagQflvFDuC0t+psfh7C1AaoWcxMVVVuGMerVzpQf3fAVyUnC15Bn+4M5xfQoriJ5bHK0eBKcM9iIn3mTXFNOq7k8jJPGg4TstKpWFLyccDfcmPnWmvOt5qDxssC4DvsFw9EpHIam4Bbi8pF6o4KnwRDTBsPodYc4RO1IjhsEFpPHpSa95bCjXCQy4IkifENUfNPDzwk/kBFu6eRwm6+07mCYjAnR5iQSqqYKrg2v6nVIZ0SUOQRz8SZ1LTQyzanpMuhjwOBQtXE00Z63TL6uf7PGrkWr+gk10m9neo5nebi5tybbagEFdF76V+uEVUZcd7n9OrQHr8CDBGjav7W3F7/EvqK9tbXd/e2L0zOBoeJbnTdrEczurz+9Jwv9xsXDmqy10Of6zhLklKywZmPFunZQrFp3gE3RcYsFxGwPEszybh+c1nn18PrklbDMVC3GXd7e//mXD0f7Oy1Gej4Q/b1+dXS2Lpi4Oz46/uKLQ4d63pzeHOwf2hEguMCl/YPddxen1nXs7m2v7e1ZHk7EVxdXv/7w8Ycf363vrJ9s7o+RbrRQ+nl75a4TRZ93Nl+/OXq6teR67ae//p/bu4dPK8e7+/spyP3Nxx9//vDu3Z9//HBx9fjlF0cHbard2VpZO/IOAhnY9afjV994E5oO5eLDe+ei8iJ2HRzuHRLcrx/fb++sn346+/D+1KEzR6+PWrK/KX/Pdh6P3ux70xmdNEX3+tX2N19/98MPHx0Qs/P2WLBskdHJq8Offt7++dPNXz/fX5oLuLtds/apLbArWM4d5Sh4uDUL9G+tjdYNgFYIX6dWT0aXmBSvYukPWVPFiT/knY3TcmINBoi5nrWNsKPF5czoJqO1HJjikJ4xDRsZT9u2XT3tWJCjkLwBovkxFYzAitELru/Er2ByX0DVXW3axnADAgViCJXxKcSYnl80lmsq2s4X03MVs6MOzIEJRfeRZDVGtkNUylU4y/hsnTUloqvJGy+RTTZlWGU+JC02KsAZhizmMErEj2i0u8aIJdM02myqqiBm0i7ZeduC2aedKh0oRHnHxhucZ2EC3KK4vuLY9PEx2RYXJspUIiGbXiwaB4jCk4QB4cmL9fTOa61XDY+zRMuPvNjJ4jGn8qo/sli168OypWhaezbOvXq4MWaVyT49u9xZdzDonqHoN28Oc9orjqnd08rJ4Yk3xG04jcs5RndP1D5QK2ttmNnfgS1v5wRG67b4A6rAzmHuDFkKkDDyntOXJ+bwLcFUIraBFb5EWosP6cTiaLUcS3JVdSjd9MkX9a8vs15/2b2W+xpnEtggj3NO96Bel5qjQw4eYhCvVY+C/c8rDucVWGtdQoGwF0+YljVY5JfFSCgLC5o5809L0BxiCIS3KuAjAcLLzWlrprmU8DHkbXlsPlyNAjy+kbSQSjXT/KrO3qrEPz4WSJvy26AfaSJgzEFFGMYChaf94iuydhPdwxjjithDaTETvVkrQml+DA5Dj4vvXyZBuokCjb5988W7jx+0OPyF8PQUCwXxaom0JmbIjOKkui4gCKYvGkulfR25eaBWpYpr41v9lM6rrWJxwzNloY4lECY5LD88OrRUKckN2jOWg1GsG+BRGWQo1XTcG2BZUG1ULdbOs3kOoenFkMYsldYJEC5eK0X1UkhubZpQ16ceM9oGZr3/wsPJr9Wc+Mn/YvSojt4qT4CebiuvjC7DXUYCHV/Rzn9FL9/levwAZFP++sFYaOETSUaq8lQuXakbi2bkZ/ApgzJhBweHs838gALKh8R8lktgF6L8jij5FdAGN7+nkaVAddACrGaindt1XZthomxPmwjiu7zhpNF1YYxlIBZhCgWzZZ+g9TcOVH2uQ0F5TYA3xKX/S3PjkBesPRzd1lx63kf1qo7Cp95jYoQIWvVxF5dmvYnC02LDvGk/mOpO2n3ulKqNt8ppvWd4NFytYo3BLdUNVBKofM8zzGUhYt8W3AaBIROgSinrqy/6R46k46vuzs4wJXlrqsZCOf8uP6ZoxQPeggccj+pBKKfe6kDNL3gvgumEjdEVIlQjXqhUzBqva/mFa3NagrRNpP4m1NzN4mfHN0wHEy8GYxmjDnRDJBaROjjePwold8b1qd19AXId6wwndLQ1mRWkCkP7i9KnXpGzfI0jfuI3+suLeDyBRUWyDF+FU+3NwgHNOAx4dp0m3zE8VAOIgbnF0lpZRXcU9ig5AT0tTFt629JNWqOs4FHTuF3TAzJG+6pS3epIz0SGBaluZaJanyqeUIMKzsdfEGJ1VzOgnEfxOSwa6XJVHoAgCQd/96Jh0EsvmWhNN4M8kAaNwJbVgC3Ww5LbyIyi1PoZHcCTPCSCnUeBCXKEIRHcxdhWDFd4qTrj4uNSqpFZ63Dlkn6TRa1HnZs98Dvu9eWlg3MVbFwK5x4UW+S91ZonOoBil4Ezcs8lRZiuEbqEwAMLzb31Vyob/OZ4dpCJDwjpvFdNeLq3f2BVtFOANGXnIqqgKaUiBbu2403AtzdnFz16eryynffGkSy3XpllvfqFKP9OYlXii9+rC7OIXOxirbY3tUpmw+ja0nXt4snayo0o5NL5JRfSnEJfHvP006WQ7fDA0pN9q1aMq48OWseM3ourS5qAxJvr89sbApVLlqPxiFd2f92IQHCzt7PreKLTX1a/O969u788/Xz23//hR3srL67MZnw+eTw82j+wKOZff3z3eOOFBmdipq39NzdPKz/++nnz5OhQVAzhy4tiz6fbX39999PPn3f3tqzZ+PXD9frXW6/frH793d6+NzetrB6+Pm5a4Pbm4vTduc/pxfXVg9OK/vYPf2cq5eRozzk/N44zunvcN/HgQMyHp3e/fvK2WpGsF+QenRxg0O2NlmwnuDt5feglv58/nuMPJ7q9+vQ33xzZI/3T6c/jlLxnYNV47bZ1PZj77B0KYvsstz0At6mciK0wc5TEqpUiewOMp6ub2qCmDtPM1nL0OVED7JLr6q0+7TYOLMNN3NyjRVvH+9vGY57SevMA1jgZzxDckoPnRy9ubmXwRdW7a6uXbRbvFP1egtNrIMqgP988S1rfzLyNVWRbz6yYIq1cXV1ROwAhb3srTBidxCrHMMptsq7jSJcAOke09qQnc/YitCPXf1nkOvmsGIEUs0VWfGrJcm/TLJlnnspa+UxjyQONQRXA2uv9bPd1r1EDkNrzaRA7v+ola5mplVZP9irQpgz17oas8mdLVoIVAxlT0DLdXon1QkDAYLDkODJQBXxcuczkh+d5gUz42YIl5ZvGEX0y90eLke6horzTb4sbnlqJJJVqw49RnCKOPvrl/fmn0yvIY3UzJE9PX3izHYvb+nx0eMCuVx4MddftouGC+aX2fz/lP03u6TScUUs0cNs7ODCayv/FTyiGrl94O8QVhefxSlLmbqCqqBAqKvpUqa63md7ZhJpRy1vhQ84cy6nRlDQAaz9AjCjDWpmKUtNhGfjcIwzmPuUkomZxPYWhrkffivmxGE3iCUVz6vUUrhrCTaxcoxGxPELHkLMEcGt1H6BWF+b9IZL6hdxsg7mwVgeZ3anvHdFFuaaKrsRUyTb8zbPZcZH4RqTTcbAHfRPwQVY+QAWR2RP51m+AKOgPbV0Ph9XqLNchVN0i+xrFLnmG07Nz9Gofk2PJ88qn08/AEizqWy80GGovHLL92gZvwXAQT0W7O71VRVCieksGOhCCGuKwKIVKDC/rghUe/F+wmnmApK8KjjGu84vzuJOgl9gLcllEWZiGPS8Kojyow+sRRL2Pet3w42m2g9rkGBtd+7A/3fTFRdoCDUU9Z//kpOyglxp4CmHOCN6gqoIGoFznABcT9BU2ZIbxhfX1SEuZooEgF1Jjb4X8VwzYGfdJcCzjLwB7xNJpYKwL54oVPPTMnQSdeJcwdBAWSlnDECteWpyQJwVYWlSn1KaxZ4odetp4aSIf4kYsTaFrPC6hK880jVaz8pEWR1HhPA2vgresdj6ImrG69EKqE6ozdaB6APwbdUn7fDB2EFMGQGCHriTSoFQLhUCFTD5oUiP0wMkZT/p/EU0FAziNgNH3Pn7X/mD9ciucg5baKdi/4a2/4TcgFoWO4RUZTmp9vtZIgEeOulMf3zFQwYUnxBuqCXnKRlMYzSIQ5ZohGqtSZrBOSWu8j8tkEubI1GvWj/rU9sDJCGssU9FKI9ROmO79i2l2NOBjmlqnS9FJ2pSZKezknRot7gaEOD5RneoUNBkXzw0W5a4irpZyKCOSWXdI0vo/PZzmdnf3LMlmQXDLuKfqEh1PUmFhCToSs9BBi/DxXxAOLNiL96kmbg3xKFUAmj43zvgDfdw0pixqqlbPguJPuQcVE8M4tSxtxNizoVFpT6dopXADUzxSGwZ1uWk82MnPhSeMcFoIWWTVIWUbMXcR0EiRD8KHxIJTnumMFYOA/LtyLrAIH6LdIhSgOIr5CnlGJSUINw0qMcmMslwYEr1paRU1CqSbFfs39WxSYhakzl3FYlcJyxJpIOdthFMwaBZ+lITjdpc9xq28ZwyZXhAyky5tpDEcSPdq0R9QB5lhstBQOO7UZ9qrUh/ZTjgKGiGJuSDASJUFtnP1qDPUBPxS/0agmMKeuc/9fWfVC15kW2/ET3yvLp4eOeSxtRaOqtT13LX24EYE7cWxndpxf3N2LQVs5+/HUwftPNvcSg8dmonuteerL/bWHVx/cfPoSPIbMbodKKLIW4rt5HhB4bLcw5E4vfZSjtBLxKxjeL2/7ygbbxRzTOir1wdfHh+cnVueVzcHL2OMje3du16ZendysIOjxgLfvHptz6RuzCtpvSDYkmih++Hh/tnN1dmH64fH/Y+n5yem46+evOV4/2Dn8v7h3c3d6t3jxV8/HX5yrv/p2dn11vPD27cHNhF8+dWrvcOTwy3zCXv6AK8mcLzPzfmHn3969/n8cnNje09EvLLyxeHG11/uzhGXF69ffX9fetJLC87OP30W2XPC5hbu1q7++Zd/fvaK39W10083GPrd968OT/b15AZhZ2CTKFZc3JxvfD56fXD+4fz6Qkj8aOWPsb2Nm44MPf18ebC/9+b10dHhjj3T//u/fIxxqzuX19fi5rb3t0/3VkfjxH6Ky2CEJ7vm6FaEgFSDjtEAKqn7bEnYdKwWnYs/INKrW+2IFbs3HdAR1w9SrU7ysSrMcipLxThIGwqEPQ9PzlQ1Y2J26GF3c9tCoDpYbwrzdoM1W3Ufz68u2KYgld2a+BK5Umyi4pcpJ+2mYwZ9snriIcG60NxCDuhRV1rqaXu72amBNLi9qywzE9RmJOgxEN3qOH+IZn71Rg6oLVt2ffd0EMk5NTrLm5igofxaMwZAgD1fsPCcFeUdnlaYgFkralPX4PzyuweEqSnu39vpBZkF4JjTtuYGALfW5bc9pv6kHqV+N8cDbQbGvWeodQShxq5Q7SlxTFBScpAcOkYEtNZfrW1sz+KNXBJITckiWk6D7NbWyHL9UralUzvXd/btupD5lLZYu77mOe7293estJC4IusfP106EefkcP/T2TWBepPE66PLNx0Ou0XKtw9J2blHxkd3Z08HB7GOcyApbJa5sAiWd4N5vm0hYTwNrhQS6dTG2XImxb4vkX3lxhnmQhWPFdXC4hIELvIBiCmcXXyRvcs6GRnlWjdo8RsWtMGfqmN93W6+102X8a1VTP32uMxaXrKfCtPrhJB7a0iSdAHIry55WP4PVSqWh8JyPmt6Fh1fyNerBWR6DTDTKWpjKkloa/hHPT2toBbHq1oEtYTmvg9uwy8oh1Y7yjRtAgg5E/3XCQ5ueXmdAB3DcfwMwxmZI3h4m5KkTtpSIzIgHFXNX11fcf4La1UcMa1ydMM032obnhSro0MtoutAC1Fonam2KPuiq/ikJP7XgBYSoPYGGYdKsbpFgMMDJRehL+VAgYkRAvKDanwyKtSyMq6oXnEBViPAtLIwHxU1GiGlcUKzbGlGj4DXXQ3mVRaNzbRDOLptO36LTi3+G8cBy6VQ/WCLXBY0cmkxGC/jQgaIrkyfwhcJKFwjSRnbncPhso6cc1FskCIt8HC+GdSeTgjEScId1xk72Xkejks7tddHtRHBlDT6NUsZ35vtoW9ar+VhIz2sjRZGvRzdo7qGNBES/iS9Upw+L5wJa/BN1s1GiCKkenYI+jeUJiBAAqPmhI5IQzjk3Y0x8FYGXliSNmntJTJRPo6mHgVLST6EQ0FdxQav0auC3sjvdjxwM3LUnXgok+2Jx/F5wPoCYpcV8VQ3nSrM0wgerWNB0Juvv1E9oF7q1MSMrMI8bVlQGux8WxiY/Gva0xFckbz23A3REBi84TxOKs8drQu0FpOM4TVBQ9I+VYREjfQJ6eC1GGKcSOBqbWGTBsbx+c1R4i9mp3mj+kuZpSWKoiYbW2geeb+Ir1AVDfErR6mA9mBZwKdhPVwdA3umhZ3EAlSc9iwCQ9tVqTvdoMRnmdrsPI40Yumv+2V6JoBdJFNF0qqc2yhXZr6MvnY11emZSnF/hqfUNzkQmef+h7KdTx2+BoG0Yvx4T3wSXv9cxAT//K7DnrwFoBNGj1IWmtfhg610Q52QTcXErwQ6ZARyWXY/QEhOFSAzXQXY6ZCgFR+84CP0IqH6YlShKiSBg+kTmKNOaN764AbEziExqBBkwMR4XTSZ8rkD+KhTK3/qYwLw8tOfovwEl2NK0ZvRHmLVml7duCLZ4QlP0c0Im3QssWKhWmUNJyEkkhnPBQwPG1Z0eVppmKTub6jay5ixla+XuVnbql06OdiSAi6OVZtqaN+bzI1m06hCOUtEJAFt/SxX6al+S84gbNMS81eq2rp6bdA1PrFz3BFn3b+/N2eX/DJJC4sdV66zcVKLd2+5lpqy4sLA6vpB1OWEk/XP17fn1zjjZbee3/V6YLNGu1vCGueWlKUx7MnXO9LeFtj13YMdSxeu7u8/nFkZtGom4fffvRV1XtycvX61T9AXV8afvfrKqhiiNJywTdkpRiI2784yM/Xhw9nF1fXW9vPOzq7XZkF4c2fj9OxC2OvU/b2D/b/5wzeP91dOQbx/ukX2hQX6d/dHe1tfnxwJVqz6/sd/+NPWvxcrPu+uv9p48DbYnafLi7OffxYNnF3ffzQUWV39cv/gq6Pj3Y2d+4vn7VevBfOnP/+rAMvO3tMP5xen1yfWB1m9vr51frf+/sMp9X62quPm9vvvv3r9xcHpp/NPVgKdX1q/ZxsxVTx5dbKzs/f+x4+XZ1d7+7sXdlk4sWdn78u3r49f7+0cHPzyy7mFU3vb67/76tU//PjeCxTunm9Wrah3wlIeXBqSZ2hpF3dBLxohE3ohaUFwRpW9zOh39plUJ3NLl+kQtSdKOxmkLZgbiTs8nkLJtYNzZ8eFOLh0Rjpubym+YqmUuoyDMd/ttRe9bTu3ckceuYkYkVmdIR2wr+Di8ZryCVkmhthyRj990zB1o+28B3s1mBS7jBoXaqgsMHe6rCVzF47wvKXULxO2VNj3zZXeAMDtOtsSeeYZXFOqFvEXZcpWQ68e13IoZoPRPJnBgKC/7cIzsFdRF9+mdme6P9zbP+39aB1Tu7ZhqlMw1ejFxhazCtZW8Qj5hLyEBXJtTikZlK9gzrm67K7Ajdm2EKrFiqish+Mlyjur7UtTDVaMwFNwx12ITEtRqOBNvg08TJZMRpa3t5irhNL9803TlQ4CZdFPG2bqnjevvfft5o4p9wJvS9Ce1z59vLrcXj8+2j/cO8Cxn99fFF+urB3smXpk/VdeH+Y0rd2D/dPPn7H9+NibhQ/oQN3KOD3k5G5EQu5yJg2AcubTg8wmSM/rH4uw8XOcnh6oSKa8YKteG8jZOGFwqedXgOZxMAOn+XZ6Eb06OFZfENEyhvSwJMhLe3ndXN2yT516FMZNQKlGUTUUJiiJtfU1BUFuS16YBONOi/vT1O53dE9avQzDil8R1X1VnChMUdBOLhpUpS5jATWRBIqEU+yXxnL8LvyIBHhjn9oyvKmHrDmGTNoJdOA3Lh0steRpp2DNYRswQUFV6EVrEOro20Nbvn9CIhEeLg18RSBQ7DGHQeN0/dmEmGBHhDsxT22jXCa/8KSlZgGpKwg3H0yvbJ1qyoqEuQO3xgg1PSEQgPWMjXIHNsh1MkK2vkOe7OYiOHDLhLVRMbrDguunsGbEVO+MsZ5rBkXA5IUCI09epOSHsUyWPSjJFtqeu65LhVj8QSK8XsQ9hKQwWRzK7O9vu9pINlbEJdV5FX2uqjUdD/1GARQQvmg6zCGG3qLkJQwLuaWbrlUP4Rhl8RzTNJgGMh+/WXpqAznCqlHlazomQBuRUVMArXBXo6ap71CkJKwjwK9RhqWMb2hfmKYh4HuMA4Nh92ukJiaD6VEjojBB3vh/SPpStcYYiI0o+CgZJJ8Rq+gVWu6GajKOlIqBn0gr7G8PghbJoVF1T+03eBlgd39IrXL1fIly1wMGFmHs5jSwLIrJW3av9ue+alpK7adweheEbs9/ZWlLkTBUMGGMKAgpWITka8NuIaKaAzJ8B+HanzZefrdQJ61tnLfodOigOAionX6Rm3NPkgo82Czo+EPTLUEtdn/5TCsaiqqm+UIr5abEiYe1EBhVWBrNGNZW93f2zs8vlBmsC/ql35KZz8JuGDWM02zkJOMYOTaZShVPz83xF14cPpSSh5taV0JdyEb25No5RzjAMpkFLbvFby5gJnKUz3Ms1dPqEbxC8qlXl840nPm+qa4yqxNdhtqILKJCdBRlhumIBo3RuA8R34jbncBG4hQe7UR7zqNNXZl9HiFf3xt6IA+ypkEb5OtXWFlcyizrUGOu/ZmtdJ+t6zFaZzwtaW2ijVhQ+ySQh+XHdFUg1B/5wxRH18eP5zgV4ngxCpl8JnEvIwokpTBjpYrBGvyhHdTsjRYmiJIH8WO+L/TmkBBU3wAJgYeEuTimdNKM8cAZaPCUVhQfxARfosD//sBnypCqnrW+zZ0CvtxrXjWVGMvxVdcOQTG3XOD9lXU6TmSXfe9dWuXdrXxw9Oe+vbGbHe84Dem02jDQUXcO+LeCwBpux+yk6c5tvPFpD6g983bbtnxY4CVMfCWUn90Uv/z0yVyHIPD26snrbK06lsS8urFLbMsR9teidm8YLrM7uRwDFV2j/QOoFWOR35MttQ8mIOSJRTw//vXnrXYgrFxf3uKa9eAHB3vivI+fzvWIr748EucZfl5dnhPX7e29V0ISk8HFp/cXsvZ3rVbTS63vH+4763Vta/v6Qvn1d14udn1rSdP+tjT24/rR5uHh1p/+5Wdx9b/7wzf2Vl5++vDrX0zrqyoZ6x3Gl+d3dz//evHx4+13vzt5/frVxcfTnbWrV3/79/TjycTD1enZh9vLS69HoFQ0bMU45OH+TP9u/8Hxm+Mf//rTycn+5s76L798IPn3n07F0NvM//Lq6PjA+al3jtQ8PiSFn//yQSr9q999aXT0L3/9cXN/w7rt/aOtK1PhsnT3j//bf/qb/+Of3v/je4tRmvo3VGVa7VQZ/U3fWltImlRUQEZlciLswxP9DUOjIbghBqUmxaCgNEkNjPtJxGwAZfLFVgEHK+3ZEdwK+wJoaXu2sLO96z5pXVhZXyb/2cKTlpbY7zGLkow6Tw4PLTS/s1VE5NoohW52CPfW3ja1lHcXRjPbTk1pE7ONB5s31uNIu8poWLhoaP24KnyX/2aaUGaYVqNBO68isBuPgf/0VoSbDWcTiOBDVsnBWn9naKLI+3HF/ThgyN2sRJbE1CNEVi6G3IvIDRXU27/fNFnwbJlT6Enr0vvS5+ufPjvayjoc2xusQpn5w6Z2U+P4Nh4Ap/EbPxdHoun8ErRn859mG0NwC1ygZgd/wxPDDJ8g2BJTimfVebg73Fl+2FT+E6Y1fpgVL53ZKSJk0HNCV3tqnr2028q3DcfdOhbl4MDmlvVPn4T4d1989fpo/+jLN4feOqGX8apgnPz463ujhpM3x84IxUbdAAxxL7/lXwn+9j3Tie4xfHjOgTzut8wsJXG/sCBv7E8sj1L0joNqEimdWnwfCMTVy6FtaC7VMfFLLVZikrUipnym+lhQgUEFU+dm6rr4PY9zgiEJad+WFsFxITiDD5G67we92D6AVMm1gRO9fhAct+tH1HSHm8ilTzmghajGM9SgpwTY6qb6WYRTEW2FpC8B6XdAi9RTBK6cZXCJsEYWzuTJYbbkaEK+fk2twVY3N9TF5B5NmzFhEYx269HwmZlSkmEafDJwzcaEkAHDNVQlvQr9JjbVRJZPJQFm4e0ENUIoP1WbpQnKNlInjxEwFKk8PgGxAwfanirPtpfubxQ+2Y3wFRrw6o+NAxJ1kaJ/bcFSyIsaZoTpfnIf5ZnmZnKsxW+NB3FJXXwraJj2U4BRBjfgR6aREN3B0fXzfYM3vWl1EKYBC7ynHN6E7CP0eBFBCUsvmbnBq2CjP/W580izGk6Z0y6FidvzamHCBOtDWt/xE8zhXIyGEgEApdg0kb4tz/kZwmMUYGrxN4Y3UAZ8ygRwifUJcTgTIarxqAvmDBLAmoPKIJu+JIUYnrMIXcgXyttcGFGVhVpPfJSHM7Ca9ASZWk1G/anMAtA1gNIrJO6mPh5wvCvG75OpJAAh48gIRYPrPBrTcJUneGn2BduCqFZYTIrT4xpbmq1i/9KaRfPTN3eL0kZ5PVtwm4vkmIKAP5zyN7qGld2NtKq775JQFnfkkTLRC9ZUlFIaMx4nVvG8CAyy5yHAVe5Oa9TNP2RrV12/e4VK1tonGTAr2Ka8IqLhfpaQfQKV7ZU90sRQnTKHpTjKo9mC3PHM4r3FTigoIQUe34cm7POXmYAx6XZ/ma5C9BtJg4d7aUN9yeKw4DMAg+SOthBg4nf6V3ea4nQryhnqLF8bRjeEHeLJwJLc3skCN6LXTBT85nfSiukQgI2wniYepC0X4PAyjS5iTrC1GLuGrjgZq7vdbwoqJLC7967dvegda88BQHz4TB3cZgm9+JOD1Sa+Adh4IANEzfB8VvmTN+aLR8HMOPxKSiN0XwadEIlh0VZdgBZGzcht3B8hDEVBK35Cpd+axPzUZipGOeSQw4ux+AZgZgxoQlhAX7PMtD7KIJZbcdvSGxnK3ici75TgfECLd6lifmcie6gtjKoPARsIOqaNpYDfPgtdODMkxmS5/BFiYxuxm6Zn4RnWOWn+hm5hmYUeEj6lAJHWG6A0zCkLrtZVx7Q4QB287ff8wmIUh1qK/GB+c23r6Mr2/p6lhg9eJnDfIOSHv/xiK6E9wtfnJq6tFN+6e7Tr/WnHEZzeFXX14CWx3h4lMeysTrQWTUoZO44IcyJOh2EQCIGt25VHoaSTYZxjPizHaJv1d8ToTr+hRnuH2zs7WwKq87Ozk2OJYPv4mXeKLqanCrKea1fGGg9f/+7bP/ztt19/8ebDh/PH9Qcv+JVQFkvveS2wlRMrd1t7e5/Obr793Vd62bdvv7i8ezA8OPuHHyxG+u6PovMr8s/5r9lkuf/lm9deGPb7v/39d9/tG1hZc2Sew0SIgdzV3f1uW3dXHa+6/mjXM+MrmOL3/vi3vxPyXljLa9Pw8YF1EFLsUrXHb0/QSxepBylcnF+h0albBm6PLZ7feffD1erd2ZHjUfdaq2PAwBi/2Nv42WIuy54c9WkQaEBlL+manazpDJYySpos6KU5AiNqltV0z1o1HmN8WjaiW2qcnA30ZoRbsb4hpUkeL12jBdRJmHx1e33skNP6Ihlx5+2vfDo/t/jJ0pGW4t95fcQmfopTWaQzkAwbEq6424CTIXvz1EWrvAwXlyODhK8UrRNCLera3LQtwUlERiKLG5iZsTQcfeypfgZZ/hpP8kUWz8yMmZ5Wj6Itb8adc0+fRflim4zIcoVtcyB5m6a+DE2LEEQMmTlRzjZlxxNtsgFo2tdhpMKWFaD4EvD2y+Kd+QCJWyZhy4iX58qnzjtc6g/jaoNt5pLlYkNGCHr/czgIdH9xa5wMj9cYhKHYoyJOT83l9sfNhrC3g421sl79hbOchnZO2bzE033HCjFpo1vO1LSFXtk74rxAm8PU59gKsne8tXWwaeXQ1fmF10KboPK+bBMyT14rcK63Wr05v6MWnJt5p4PDQ2iTF4wIcfJTpV1mJtlFqRGU4DCTREu+H5KLh6xPGXdtADAzGHUxPNYEN1wTi1NYNcOqqjS32Uxs0ybFmhOgoJLjiEtaUaechTJxdvzX+DNXGOf1ETnNxd3V16qTXwtH5wEwCq3zV3gijgRFiSxAfw3P+cBQG/ngupsiwhQbmASVO61cA5nSW74mQl38etNfHPWCkjuDfN4SfDa0AA/tAeKC0vpN54Nf5NA2ejf1aDOgm87S3fSEXtY7qFzDQI+6okCvN98LJ9zXVsNKBWjUBKy0Dn9j2+ShkM9UNWdBTvdxeGFfzG+ogMie0rdC/5eA3jX/FAl1XHHFQBRAhRMbBusKafWw0ndjv/yz4j4zqMMahKuSw5kmITRGMegqRSWCVrH0Yz4w9JfiJXpKRYidttTxrBrV4ggl0YDWdaKe6iyXGpB0abuGbBCZnvZl5seW9xg7GKZ+FhwOgeLshIVp6lpa18FN6bdfkgm2nr3QlCqO5hhNmzup5ZgMeTgr5DMswquajlcjhaiLX/8mVgJrcYHCABJxJOuy073h1GIvuJ4OvniJ8Eldaye5q6NWg1JACLyYGx646B/E/EmCQwVkXPfbKMXTcSrztVs+C4GjBgXUmOqaNiUSKFY9i9a45pR2S3NTsfn5KB9ZZ1lKTIo29g+7avRFtpCMCQAKkFKPMEoN/NZmuEVg+hzAIrLwGxT8TeV8ljIxldTcHvQGq1GkkKvg8hQI12EL81rG1TxMOjMjnIQ1iER+csw/VF4CNho8HKST9Av5UavEIuZaR+EghXg1qpX9hwLpFoqVy+lJXaauZrDOdsySlJDuSt0aqnp2q5KW05I5uEP1WBar8ggpOgSIPzzxzr0Zuo1H9kIZELQ/xA8vBsvQoGKLyGEcpJQmVENW42ntgouvmnB3nvcoTohrUx8Pp3Q4SyrkQSxgCPDqio2TjmYP9G8qAmulR3Oyn4UbmIKP5J5Y2SLP3kRunnfgIEwPGoLhCVxuUPSW7U2cKvvaOZsKcLiLqiQJP6rMvFik+V7bNeqaOGpqdIdWcUwYIkZcOKgfUSaqtQjI0D7wjVIys/Q5TaKRAfFoaKynVyWAhDSnD8ECM4hpQiv88rzfE23QK82mQogdW8tC4lb6NuPD5Liyu79rT0Uiy4w1keVrol5wsZaK+7yMx5QUU0auCksn17NlKrBdQZDwA0VBleCRKsJW/XqURmKtDq8L0Ss4SVA00UKR1vBs7+Y7cQA3nfMo/qTf4ia1LRl6vrdD9tx7gOkrack+Ws9y9MVe+WhntFs74Rjo3e2zz+cnr47en91ur+/erF46G+f07vlC2l/45SjPC9t2rRHa2l1Z8eb202ubdB+s0pYeg8/l1R3/L234qL+f7WV8d7ojKyy8FSqse5NUVjvT3Li+Ln5xXM/Oq8Nvvv+y9etPjyJxQ6nDw51Xr47BfXd6+svpJ0K2h/hw/0hSRMrz6v7xH//5Z2vl/+7775nupeOMvPv34lq+7u3bI4egXt49f/x8/upE4n33q+/eivGvr5z4f/vu7M7JLKZE9jbXv/lq+9tvjnesyr67Ef9K3r//9UyS2Or4/YP9h7sLBissubq4O369v+VVWQ+3u0fHduniMa0ghZt5EfDNu09vv31rtX1jg/PLp7un88uL4+O9o8PDTSuCfv3weu9wf23/7unmdOXmX51qdG6n9Jr90Jt7W5bcPN6tXgpNy3YZ5BrWtXJY7JBi4xC/Q6HT4vGRKR+Z5jpoEGUT7ku6e2qLd9GOCd0oss1DFLRpoMVcRu1n1mh9zYzGwc6uUuLLlTVrJ/JdllIRoreWvvt4rs0tcbwzdgzwWwCTgTohFMmb2wKUFe8tM+VE60h0CaDnMCJN5+usISsX3owcVRTlbiLHPvKTg11KbCEQ24Y7okrPj0lyKRo1ayRZD76uHY0ZWmNeS/9RLmf/5K3W7FG8K2+POXZw7O50sJVBG6npd01t6RyMCnADRDCV54t7WfIYhZGepm1m2N+2U8XCmw1rcnQrBQQFtXXwOB0hBVpwWTxS9uiTaJpOGvSSUrMz3JGjR2FEIs4irKL5QDZgHTERoLAegbHLvCaLyGK/ZZcs434+2Nnmkwo0nc319CBJc7S960ykd5efDerfvnpNFQ3odw62vRT55Pi16NBI23r/g4NDB4ViRAlg3MyrNFqzloiLwICJVuOEj6cogwqacq4dpm4pSwdL8Gx6t7wWFulN0I5lE9eOk8fFpf+WKEDlQAsgI4gq1Ckd8brHPHbUudBMuHWkMmsuFA7D6Y7Tihbr5r2LawfHNsUWQ8xS6S6HSy221tBv3weRxQ6yliSSmlBCbddeDn35WzyaRNoWtXd2dtZoSM4lvPPPrvHNV99xQGuDiYv8MtHX11S2vsRF9DVVO+GEyjWr4IpxdK5+jCSl5vl/24GKM0pUrU6cXqTG2AtFGZNFKJpf4GsRi7SixYEQFXSSaYRGpsHchke4FIeBAj0CNJp3CHxsLxqAHM6gY+lWlMoQ8icRPImnAdIGwsxE8WgdIf3GbvCg6jYqAKM1TKrJ/dmMgar68PJ3pjXAVwpLjQhwxpe6WrUVUxfznJICIBSIrUdqZJKcFZsqYipgqGvLv4VO6BfVjKoZGSItjxc0sUdi0f4QanmPGbSMtchH9YTDPCdAQJVWKuwBRkXQpBkBj39RAZckmteNdxCrfkxOxAul6XlGpOE4PVVmRJ18ML64J4AZT8ipHre12tepglgexq046hNOftXQ4JcRp7/pZ42HciVDaoEGW1HFjAyqNc9hOkQtbK18CA0OCNHyeLYaWoqrqMA02mghDreohJlpMl2Ok9oI0UAvaLw01ZfuL2hqK/zHXURCpMzT6PJV3QESgWEFcloZUYQ0qAI3pFZzkrZh3sef2vS4tl4ugpb0x2CBmhJzCpAH6g9eKc9vaIVfpAydhD2tt7hC42EIwVl0pbeIjGmS2BKzViNsVXrS9HitLsv48raVVBeExE2uRQMU2Cd3hos6ifBTMFWtuGKAeOQ+olybknQzWlPZQSYmZM8ExCg8UVwTDM/NBfiwgF9b8Z5RnYuiYKaa+dgRs6glrHLN6qqmgRmFx7chsV+X51cpCSfSlGLLD/id2A2b/mVvC40WXiJleJJ1DfmxmrErLQPGZqswwa6Z7SbsJshWEglG54qxvToq0PPmDY1aC9xizTZU5Kd45Fn3AkV+BH/GqqA6np1U+YDRtkxx8RKDjIqpeEwd6+ylPPHcd0hqkcuJr1B0Ezsmz9TvGcGPGJOCT7waLwYr7faJLqAGDhnl4+sayvMJdTvsxKLwVqwidvrRTDdlSPGAeHHNOmbqotMlJ/FZyI2N+N1CnRkgaUiF7tc74lB7JaGQHyn94AoarfCnQqFq16YQxnvsze61+Ea3L9Sw8ORBn1f8s7VqUVDmAzmJ6KsL6+Yd1m+Rx+7Gxs3d5XBp7frUbtFbOqQzs2FXEG+5wtmtoqKYjcurxw83TkNKSWKI14uJDtupuX2/ao9dCzcpq5kJO4whpn+4kIGEZv2E/gBFkuIGJK0aP9jzimKR+tXx8aHo+eziwlDAHuDv3x7aASAT7lTEq6tby52/ePPF6cWl7cbW9+5aYb++phf/8Pn0bM2LC8Typ1LZv//y1fdv3/y//us/eQmx13VtbO7/+3/3e9j/+v6TQYRlNv/lP/7xzav9m0/O7jw6Pb/95399//HSu88eDrfWv3l1aO8lvvzy1/efP3+6uTUNIiO9AdeTL4/MkEiMX53bZrx68uZkZ2/988cLU3wb69Yaif+Sxe3VnSU0B3sn13e315fXjJkCi8TvN57/8Lff4bf3jn36dGGRiyUhFnwbpZyd3e9t7GyfbP/pz+8/GVQZjdw+mkRpWuD5+fKq1DvNpAVUbKzelvRcwxhj3RiuYugo6ij3xH92dy/uTBqVvgvsQUCbkvSI69rd3tjZ25aC9RYI59KwOOujLP2X27XufGfXe3ad/mn8ZiBECE97prNMZYhHKdHWDim4CVUmDxtDOM6uYKg7llVbU1cPat1WbZqLubtz5okAdNVrCjj9dHi9lV1idustWx62bGzgNplCb//dKXT2tmAqTAK2m5frRTtrwgcc2N31mwVnA5CgYsYRy86I/O2d3rcFQlY52ZUuNz+/ec5cntYt1hFPgUC1rAfqKFFTJQ5RNQawRzGf3SxZtkYnBudiojwnP5L1+cnBAJHRx1vOwNUouWdqEc6KPQXichtVe+0xJ7y6sr0qA203/GXjHESIV3RAAiJbrHvrsdN17Qs2j7GlZ784e1zZ40LBs4Pn+d3nK++Qs9eaMUHn3fuPJ8eHVABPrllmbw9XNrfgq+V52G7sp/fhaow9wjZXjI3o/a0v4FmGlIXYPOO4L6hMKDc0LkxYsj/NxFQ5PQxQ3JiL6sWM2JVKyJukqETEX8S9/JhrHypLDWLsPKAVv1XOOTnwLpbSnT6dZgOOAvxwXppVCPt4lAmDXGi9zoCKlhXyMM9OIQusJ5yFlIqag4DVuUyqxW9sIwdeoDZIUb4Fi8GQsUxnhGUmI3CYqWxslZJHSApQbFTsqBeg0dwsXPf3dpvlcwzDfIALonIDWizgL5YlgjFbGA1/snIlQahsrBquoqzite4uhjAud8p2Fx61nAMEs83mb5sDRCydDPQ0OKaB6miPFfGWzYQD2qctMNMDzdefJj+IhzR0RgQuPelmssjzhNGLOBwKBMxwUuXyIz3W3DRBgiXmJyvKTdUwUOAwP9YxIqv9FIYloHk+Qm88jRaIZFklavnSUR53quFPWYXBxwAXch2b0cAS3ziZ4q5wiLJR+BxgGgsa2rQT0lCxTaIAcfGoBuz1AR7EqIYH/QNqgRSJQ6ynUzkcU4MXhtQkiDQ7gASRlMO/ptRQl27/m2IXGBQKwxGQuEMVBUsFG4sMPF36+uAE4SWKW1BUKsQKfooqI66kmmIvFjdoeBzOAtvZ1zEjwJCYD0kRvkYXsUZpxERmapkWsY3+ERbAirmvCXS8WE3mX+SWLddg2ueTTiWL4Ptaa0QBU+aZG48cxT2tigdDSwxJOsOrmAPvoM0NT2KRZ3MDlSXd5mlsqNx8pD+DrQ3DP5aGckKN1OLeAYBQsgi1ykVSJlNKIw8dw4YQvzwA2sVcqiGNbWkvR6tB/ia6AlNBUF0v7jXG2cfZ3rUl0J+er4g2ggoNF98XeJ8hZjg1klAkhlCLquNRwMceYFm30kjOZ1Br0DwyIGDxioir6iS0YJKOx52eDBUR151+go/hXSfFhOS4jrgzIb47rrFOCf/qqF4wiWqndhCw3gU0CHiKA2GSnkO/wjE4hRx9mqFs0PLXy5gnk+ppw6XQyEEoX8hL1WoXSEwDGXwF9W9DX46bYsIUtECkc/TDjLBVKzXBaQYkp7lhZbzfcIN2Ih7a8w5C2nQ0QD5uI0ldH48QgwNa96iKPlppk1yqLqDh2oDly+Yfp5x5KKkW5MfnQoaaqqcGgAMjhJNmJSO6x5BJX+eRSwXL9Bd/FN+nk9DLQTRPolbfmWjj0K5ITmcgw2hxN63zI7qAFce67SBwA7zLC6eL16k/3l47H/f6qhwr9iq4smm+YHdr6/y0V8TCfvtgz9IC6fxPV3dkYCnyVWeKrjur5/RawtWqD5so9cedM2MEQkelb92xH/H84ka4I5Mt4LAtWLcEQ6tEYAdJef+2K6ysXF1fi/+E97J+Vt98+NzJKCSrr5VPlsS9PL/Y3ts2mjJ6Odizn/j++uJCd+OFqPvCmqcn0Y/XPBlnvDo5crLNV6+O7EaWt7eK7+7y8vdfvdk7OHbKqLGxAczNxf1//J++/0//8Q//9N/+9Jd//efXZ19eP3jr1uH1u1+sZfl3371++3ZHkvrdTx8///z+0qGnt49fbBzjuDN/brxf7GjPAqTr66uvvv6q4NjLr+ZIzbNPp96ju7W389Off7J82/nZI6nnn399f3F2KeDa2tn7/Pns1bMTQjdvzm444afVrQ8fP302uBIuP6/fXd+d35nzoDo2L9j2+riy9Wx/gljZqiHbHeKJRX05u1yHvm10JDsx7Gw9xnTzaXSfOqkZjbZUhloxRbExbCmSvcWsL6vX91j/ZUm6VTu7e8YJnVpvUMfGvGDk7t4ebEkAVsPYnLXPlISjF9c1cN82YjFH2tXR+73jdss70BxBaeGVN5IbUWjAGIGyUV0HLTBJI0LGY/EYK7AjvHcdPDyeX9hT3vEafmDaemFTijDW45eRzVpz3a6YUwdi5gyplxzCjtDnYXLtyxDFlt9ckCU9xln0QDcqGHn0sjmmhHPeLYBlUu62uR9v7lHF/b2dswtnp644+sk4yXvNrDbBAV7N8IBJOYVpQSwuTl8TPdMvLt0Im1W2sLqj5/g8Q1yDH/y7s9Cq5RAiHlQQxKo3LhSwNjqqy0RdyPDJ9lv7e3XNbJ325kV5G14a3awFry5+elpjhqJ34yHnfir5p7+8s3Vj99O504C8SeDju09/84dvD5xtu/LsjWy2mJuFGlaMTfJ7zQha/dfEuNRA0RVEFwJoVSTJs4ZbrqT8a0wfMtkjLSOaQhnCGBp9qz/SBLpdz/M80uKo40lrzFoJOU4uBw4wN6okGMBRDNwCO07Hz5a3eUAnZ7I9pwYt/r2xV50FxOpWOt4s76poLeb4CFX/tzjnGuItW8zj/svwinByaS1YCpP2z+g9F8to+KGJgLCvgcxAlpKjADWHM+AObpRg/k2P5g71KE02IYvAoJ4iSmxaa+iI54MJrx6TPB1w9WXxkHjVnH4wx190YrkmRpuSYqd1Rgkl4pOLXckYWi5l6pKRZE+9fJsi2iUIc7hqCFMItL5jumzGG88bpBW9AGhA7isEEuj0fQospCpMNULMTxCsZ6jEi3AnGg7pKGq826dGR46uTcgW6Huuau1nu4TfngeK5ljnVnYRjvY8UG6RL7JniVQLlqqdmMg/BtEWwPCuB6nZVMGmaQHCaGG27WdJI4orYlhMCIL/GKtMd0Zw0FNcGcRzTWiLCUMyvdUEINPSEFr0VaQee/2ZeJdWVCtBUIzR5IlqsGEhe+rjaDYFBeUXMYJE532F5CKXmhsEYAUaD6ah0fq4XkPaiUu0tOgxSrBtGqUV8PSb8kBmiBMTDRd60k0avjBEvaQt0yr3MaxcFGDpDqbx+D50qRk6uT0mg/0j6VjEXuZZ94dLwCLW/fm+NJrBqh8ek7Mersbwqg5WWb8iYMex8BzpRKdOI7uakFITUeerT5yddrrqZnddTVuuI7B7rQ2vGQ/GePMmvlQhTZ7yFXSn2/wsrg623FPLyGLlS59aedjDCdxR7JXyBymlU9tuiKqKw1l3FmoXVH0l5JJWwyaAFMR+X6HhI7EW64IbbnDWTygVQ/3EgeF7RhC6qULKyq2kUCouXAZscI4EegMbpV007M5tUaB64uV6grB0XUu1BfSItobnbtgs6j58mLaVTm9USDajuJpmT9RJ/FFVH2rdyDWVHI6R7GJ9DRvg3eh8EepAg5I6yASc0bXYsYg/JLTldgqxzBKQR4Y0mpZ5L/46vqR0EyirJuhfnCaoPDhUpeJgCxqnyfENFUQehBROiUwRmEQyHInR03pyj+m5KrDDikAXwQ2Snltn72SP6gMo9a6iwou9KQx6Rgq9tC7LSR9mukBJrXOIEUt8WVr0Djfcq5Y2gYIetaJGyms9PUzZ4GVmpbVtyiR9K3x0/tsbzppMEsMWB/6IyZxmr2KH/1g736LVuwdHTpb0lYzaNBiSZL6xhVYh6rci8iRCr+O9v78WHW5/sbYpsX1//SAjfuHdRc6NeVo9v7dszMrsrVfHB1Zau9vy7nTj+ezcWfX2km7JgnnLr85KWGyRhoeoRKdjfPQKXhSAcKtqzX2cnFjl39ZMeV9gLYC2fFlvJvO/vbdnpwG9wdqb60seUJ5HFp7OebWZgFAC3Bokr+1ybvpXX5x4pdjpx0sG8O2XJ//T33397sOtY/spw6cPl9999/XrV6//v//1H68urPy5P7Bc/37jrz98NJj/3/7z7/7m62Pbp63Y+Pmnz/ZAe2fym6+2d1PB573jozXkXN1cfLo4Ojqy7KeASd+3vm5n5+PF+c3P765vvZJp5WBDJClb+Hh2asHPgbQcSW0f7r16e/zf/tu/fjR6Ec/dP5wc71+e3v/8sbn2q+uLT7cP3h4gJb/qfU0X9w83ZRVaJSFqNybbWpuEdHsb6lyTtU+9gD8OaWomfcbedAsPsz57LVghzcgBTJapyG+2FLO5jpwURhihbe7sSGreWb0lGnXi09rBjimeD6dX+5bwr9rcaYPIrYiUoL332HKyw+NdDtIukb190xY2kZdSEu6nN+trtzdFXfrpumoBruin5RzS62zHGwybU657Y5btcX8QkPsojBqmQbFpeyMR4WO3/KB4ujoayc4eqRy3sWWzeLbmOKkOHXraP9huF7u1/g/eR4GJhiV2jTcTwUaMathiiVsbKu4fqY0tyFqHo5HwDP7ljWUNnp2ZzwDPLDcrVGvyChPqXzAzl0XgWVbRYZxdDjXK2ZlsU2CMjlRKl7B2tuB0LDFN07p6mf47KrKYg4MzK2eIVRfQOqVb8T2K724eDHyMHpiPVf8sNV49m1biXeyNdkpTUj3q/RnbW7vxVUOv37w59+6An36xwIzI7na9vM8kxq0UwL7NwY7nMosyuQAOzTI/3jYHk7cpOEAyoeTksLJ/VKuPECXnoo77uRoUVyjPFLSOlOAzMNdTj5boJJbN0E7pZd0sbuAYIOnry3AoR4iZxD3c6EndXYmCpcMKXHnQ8Z+/KTw857v4z9ACBROe5mImOMu5Ftnz0sXE4Jk3KBqiRC9Rk2B96CDtKuXkfcDxO4qULWaop0OdVvyN5JCpP4WtQUX7mVDjbkfoqkXW4LXUR/1rLyqRQOm0WS6w3A2sFMcZ0kORBVnsYpiJCXFzegDgahbVrhxohYq8ns9MyIOlIbWK7KsSr3xYW4wa3vqK6mmLyOom0Khw4oMTDdQTiYMLDCIAGuHcsLqPO6SgAMNEV8IfHOhPScWsGC1TLqYgZa6h1eq1YFRe+4FPUbUOpEb9QREeMeGFoiLyiE/ujZPTOh6jKMWHwuhU9efpx4S2QJBsKYqRWrrig6vKT/ww0gz5Si6K4Yoo0T+UuagKPOPeosZihnDlc3C5HrbdRI1d4UANsG/4lhMavZpgIKxs7AENfxrLRXQkGuX4E0J+lNcglaxbz4ctWkxSgIXQoBNzwqo4rUC0Zyud3H3/cHd1ZUecfyPSYMZKv+fG8nWRdkL3wdiJNEgZ1eFQmyC+BF2lV9KuUWM3tapkWZW5iDuDC2pCfSqjAh+maEgvRFRw6mvE9UJKxaYh7S52GrgkkAV6BPM+KXCyi44+jazc1ASb7YuflKt4K/yKnZJX6jRXnixo+A2jAVnxgRdUoKCf3Oe/PzzS5Dwy7BiXLOeDzloLEH0dE3U9XMBBf/FLWMmTjn4Td+L0o7x854i2aDUQyvuEfQqhUNhBoxlzS6771BwcJscMgpxOhRYrTV/6QI6xoSu2YMoyBAcndsQIN2sutIGPHhhqVl3tvpj6uJtwobiDsSf+RWZYcNlBgEm6PpqouusBHosW1FzlPpQOfnkuxGYobSpqZOMnhveLu2ygrCSZhOMgiDejPt0P1jgjmExzgtroDUucg31VG8qDH4xpoMbreqNRyakSpT6d4UDlcw0hqjxaAR+tiPu6UgW0FV20aTYBgwziDITIN5XQNPPXXkQNnHHrLy5MW+PR4m10DsIKS9EVgosDIEySjHOhJF4FxjIMLWdg7g9nBouI1UOHD/cwQyPluzvkqxmXluRtHRu9TDeGHdNtLa7P8MojNKO/n/aeXlxclOWw6GTd3k3Itf1XC5gk1vM+YMvarY7c29qwaF5cLlGaMjiWkY/nxS0EOjkRsXiLOp5LNzqJxtlAn2/uzu5vtvc2Jd2RJHbphLz7JqBbY+29YzvziG7HM7JYEdBbWwKoLZeW9ISsnVzFbEi1FCQjIAJK2Wp16eFegmsZkfSQZdG3dkQaGODtpeB+1XGHFsUYq2x5D4DVNXntZwcZkZl4+nH36FAc7vTKNwerJ+hcWT0+fnYo4v726vt3P//y/qNe//vv35wcQeXh8uzizeH+3//t32/tn/zzTx8+ff70f/vP3/5P/+PXwiksR491R6/eGIPowp0lv2moc31/dfb56vOZs0lXvHDp5s7y+M1P5zc//nz61798/PnXTx/efYSkFwyIre2oMwr0Yq9Dx7QctnlTZHp+cffV19++PXyzu72/sr33p5/PvfR3d9+Y9Olma/3d49MHQfTa5u7O0f1FPNLP1Imtb4p0qZWwvmRyL29IA3kHlkfvSXj9WUeUyug7ddtjWXDRY/U6bR0bjVkyLHSVPoh7xf/coTXqkpS+iowNLz9/vjjax9Gyf2+8/5jbkdNeXztwnJkX2a5amPJsvmuXPjnbYNdZobYEmLUwFQChp0vzF6h26lOK6gZETE3Rh+ZUjTSpSrayaq6MuSEvlc5RmEoaH0sZhiwWrm7vEFhopEuASR1QbJ1/20akNkzZOPrz8eHy7s5Btd7Mhjok2x9CHzpg3zvLrOnhwCdbQZEs2tQH2Dxv07wpmCb6IWgjNxMz8tox6DBQeeZ8ddb4WU6Cuxh1DrHy+BQYbTEfx4bEsOJ0YMW0+br8T6e6lFGyBcUeBrAkPG9sEBbNZ/+5Q8VmgZ5hAwCycWbiMniNcMdGQp8vry9s195xkOna4fa6lWiv93edIQrD3//u9dGxk6+eTIK9/uLk5KvXRtneGb/ZRhUDok1TRkbOPIwBP4SNLbU6DjK256N86T8RYEnjGS0rk+X2OzRzKH3LlfmTn+mT31ZX6yPoPGdeq3vFHBPBxHNdkmrjMAOlLX6MRmtOUbfACZy6EwG47v7Adx3U+FQxDXWVj++ny2Ujwfht9WhOCETWlC9c8J/zor9Lo51II1oDTFBeF7w0HfQlgl9oDEZeGJYuJvKoRPbTiMJd9Oayw+7lM0/rIKI9ctoJow7aQjh6xZQvkfRU96uGFu+NkfVBlQompXJ/YWoEgVOPCRT+5REzmwSUCPxm4srE1blftzWMYA51CgkRTyJ3cJH+t5iqk97CbSKHMVdwfWLvtFLHlJfBKO2LK8irCKrrOiOeCET84cSXIH6MYgoMoo1msSJnNQUSm5EYYAuLBmrcT+bzi0vnXqI/38Hu6scirCaSBR7WZN6s9HBMAA98gyXCnVEE7JYRF2Z5+KJytRArQYYD9DU4ythQYrjlaxDUGcVjsnla7Y7Q4/lgGY/IKNC2sHVIMfQGyNzxFdYEWdPhrrkeh7bgvpULTXWOJof5gPW1W34vjES0kle9kcci2x7C1meAh4aninR/rhYtnOsXHBNRerd8ih+mUQIptxJvgxfhgJCBoEiBsVz8gJWbFdZAFZWc8v1aLNENGGgdqTFNMfoyOj14DqoQnm5qdA8YDNden/gzrS/W7W5VI9OaAgoMJRD6zLDZ/R7nN1V9+aQkIR8vYlKCiOIxTWWWF4FRQDPFzXv2AVd/SKauF94tgGHW09ikQy1cduF3LGZ2O83FjNYju6K+4ml88Rnm+CrQ9NANHIz+xgDZp0cu5qhiGJYFV5E9U9kyQz5imLQ6pjRsQkUCKLwGHIFLqmBI10GkQ1MczaGRweOXRAmOrK9//7tvf/75Xc5CNH5fAa1HTgRDOGucXHIuNS0ZJ6KEx/M72pV0X+OFF3EjQpbqgYhIGcppV7N69e5OFerfGLqMRBP9mND/0n61q+EKj0BjXjeJCoJRWi7Ab76m+1hUVY9qu5/4md+XTCoRAnmPXoYcOfQwrFZMjvkNIZAwCSEwlB34ufsuYkhgfUCDjCrBRAgga3pNudsCrILU4eGUpm3og2GK4O1NXnvEfQOPbyk22cW3Wc3c3e7PrEhM4xbGq8XY4eNL8wM/khROoBBLlyKfnripxdS4Dzj+xcaUZDK+iX7sz0ok9/ta7krgaIvkptblRsX3ZfUxSv5W1vnqYnvfK72cH3p+I3a4v3EEJ3zNC59++OyGhRDCo2v7Ayz9v3q0oudxddNiCf2CZd9iuc5RdLxQ728ytTI9vVPmnfmonc126SkQ4ivea9ORN1BTTRrQCVC23spmiYw74nBry5nl3v0lIpLVRTk8jVTOz64+7W4d/81bMIQyzlC3x9FCGql7JmTrpzMdrYLwdqqf3n/83XdffD69+N1Xr799/eYvv3z687sPX37puP497ws+fn1yevP+5unZ2f5UDBr6Zz3p0d7r/+P/888//vrz3//dV//5P/1eAPXu18/W7ctfe9MqQt4en6zeb/3TP/64trdx/eun49dv1w82nS30y19/PfXugftTGxjur++Nk6xYOXhzbK31xw+n3rB1dW7hNX5vXV9zaDd2WjvE3SsW3nxxTMl/+ctHnfCP76Xdb1vlYpQooWt92uX9r6fXdmmvNwGDc05Tvdtc3TZ4k0ZsiZYuSjrTaLPfUtjiHt6jjK1hk57FF09pBz4vTsw3/ZEVIxyLUDKvHmRCMbtAo0DtdF3bwm16PjzYM25sHkbqcW3l3MH1+fmVnU1vKLumYbOsRpAuwb+y5wzZlTUbNsQ6Z5e9VsJwT/NbG9skCy9pevMVFl/ZqiGMZm9MRjZsMs0aFZrbL5stO6GTfHM+0wnPeonW6WWL3ktQ52+1z4bZogLoLJsTaSEHjSBRnRedp7ey3Bhze/1gUzLtNUwxznm8tBXYsS1yrhzZivEb/ZJcZ2WmHYxaTV9mvr0q1YC8vMvWzvru/ar3tWm6tMeECAs2k/WIf4yzGAjS3JLcYa6U4+JbwNKVdNZqe4ESxZxeb+jbNAfj025C8IpoiUbvHzBI7VRcL8Cw7NJb3ksjibWQ3fItZsfVzoqmFdjuH/dCNDLnUw4OdrGaYnmR3KujPXt/rEejBrHL6iCv7cCf6fs0Z4Juq7O55JWRnIchjuZAxts3DCXUcZs5EBTm8QRhjQTq8PIoPE4eCf9dihNcYsIsJsp7YiLy1VWSh8Vg8su3jpOj5xpVvcQ2AVo26SW1MyurCPFNgfogjeGmLgybYCxkwQzsLaJVKKB1CjExP1wkyiIUKWvmZs4zL6s2LddobrcOpZU54GtOKfUlj1KlgE4prcJ9ga6f9yiHHCHh01m6KA541GMLWPMoHhayND+AA+Yn1cVqBTTeOr5hIE6xRLVR3kIXHzwfQsIBUoWLwtnCM2EjIB7ihhhU9EST3O+Q0M5faiTDfGpuIhHkR5Ly9Z6tXfMuRXNGADNwWuomLIaccCsGwCL4pbFK4YH6EHCFPSFGBWmrhqZHC7vpJikYNS5eqrmq4IVxa+m5CGfqgwf48W24pHWXOJm8iouSHn9VPFpfXHTrojiekrxY3YJKeaPhd1i5mmHEizayKREWsEtAV4EBMpKKED/19EktAdXokC0zMsRXQC6TSodQtTvOq/hKFZjQcEQ35BgViU9QzSKUJpGF7XxpWoFuPNRK7VTeDWAXhWHGHqfbw4EpPdKayKemIT1WBrSSfB1Up/fvCSIaSYDrZxoKWlIKpWFgHPSjU0jOqizhaJWUS+2HyWl15MWSICaL2DA8m53EE+KkitUaE3CZ+KjAxJxBHDNXqZpZWIypRiwcviVwX7obXS8DksgEM96m/D31mbLpAEp8DUqVXfQ3yL9d+Ts1BmBXNR+4hBUyPa9+Z6DXPpc9bEk1RXIzAgvaAFe0mtRHLVrk2q0F6IjZO9hF57kApAOYI9RMqhx/XYzrcT8XA+qCbORNZGYHZNQN8dGmnSnEQMlgYW4QsWyQjiIV/KO3vO1UhhGcZu6GtVQx7WJ9CAdz1rHFBedw3z98+nyKFGi6g+QDq5Yf7PO85jgUXnYIcUMAh3yheUk+zYHIGpXBI5q94BH3wi6RuQifkXPYJqNIS5lcR12VEN6TWW0Zltjb20lnhf2wXZmB1iBHQV+rPqrQ8wEBh+75mup0c+lu2dZysN0cdVqBZJ837LTvhIserYrOCzW4Qo/4D1SImIdlolaaULfRdggQACBf3PCpudxNx6tBANjG8egalivpqjnKuv1CcDFcCBRW9l4YkPMIXCBliBWpSgSNUw7JaYh4FAMh+OPQY0jGplJtRIP/iSgXXANNJoSkpl+Eomca/BV3H6JDS0Vc11bvcqpXwRnvRzJkw6eUvXBsY1uMaxvZ7Z2AGsXb+/sSxcK1O4viRWZ1EI9XV/fOu3cuCkz4908fry8vvHPnSaR47sGjSMvyojTLUEE7+xLFG5awO6ozFfTGVqogx5yezqLnmQJOMlRK7+Iq/J6f3n8+k/dHgBC/A0YtlLf+1SKZh5X3Z3YbXB0cH8n1W5dkW63zDEUgD9cXh7Llr04+ffxspdKvH07Feb//47f7x/uPH+/ffPPd//jvvhHZ/enPBsM0rdcIrB08ffX21S8//rK18+QsoV8vr//3//pPh0fr/+v/8ofDg92z+6twWN38+rsvr85kX57uPt9eiPQ3d2xHcDTWV9+2afb9h/ekube7//nzR9uOBTFFxrtWNK2fnV5+8fa13JQzf+iCnPf1zcOHn0+h/e7i+uL5+R/+6594iZPtPecqWbpy3tHuXvSWcJ1YubW2+dkaeVlqeofd4kbZ+knOyB8UmthQu9apoBSA/5H/pgDluSY3SCVZmTGfsIBF5NMaD2NxX31bnILdGjza2cWl94IRnjNArS1Z/KQlJ3Y9sFbvpaW1phMYlBdCkKdNjeJcIz1gvB9YPp/WXVvuM1Zg2qCpnXSrVuwSdlpqeURBecglAavxLZbbsjBatl/w0bR7lEu4m/ChN7NCLBdarDbjWciXzntatcYdsTwdQoSq0utsJMO1EsuIselZp5Zu2UMseEa/YRcLcASXISAbv7iiwM9r96sWs1E2bVCYg16CZqdTvpCzKYH8/Ly9S/HMx6y/acnc9ZXRnXdWjDNknTTfrqswnOUKOgRxtsF1uHAmhUr5CwMSg58mgfhSkx98QjFKG3AxjcOtLwf94XZ/bafRDg41XC9toYNi4CwIOv1bNVC/4yvOry5frRysfLwwYlPY1KNXRzMTPNhc2zw8sMt3wwFNzv+9/XD96vVbGl+fJYVYeoJX13usmxt0Nq460PUQRS9uPQdO6ej1PMuFTN4hD1fQ5u7ir1ScD1Zgv5stJ5jePxcHbhXmg9Ip0+RPYGtzyVVj1UtXy8f66LjcIRfMnJI604kDqGzoNFPKVboZ3+hbI8l8sqCNapvGtAoXR/LQhJPC5UGp7jKo0Hb0zU16OIhUTCETJL1rr84l9GoiR+eVC7ee5kJT7ybLaKH2JsZ1WcdgNs7RuOBOT2uCjojrR6b/CXhsKBJil76m1cMSXW0MoSiIZr9ahM2QSrLQqFQe8rewhpAgxg6C5qq6AVSstupCl87uZbm/tQayDvBmYrQRo+DhCgFLb1nlVG7wGc5jLPTyD7XTcR2YrJQ2yH0YSkEcDOBlLyaA3SyIh2XI1FEbEdR/EVfSyQzkLFLsWvc4TiRMDPz/w7nGwF8eZRj1O/R2Gs0iCkJ+UzyAC1uDOX3GgnB8zkr8r5NZMoPg1Ggd97iPKUA0gKMbmeFSNX+UrCNWPobUWeqa0Z5QFiVRxjLTuJeZG2q2QYV8CB4TuilhNREUbBcuLBzzdIIWzXlCnWRO0qIYMTKFtkcYPhcVeunZ9fPDRqwYWY9OwwZF9ZyhBmcccCcLIobujZQ9SHcS8bQbpVEysX7UTpAxz2OBsr+FNsGg1ZAbhsSjFzghH7MWOUbMGDsGxOcp1p0u4uQii/4sGIxLV8DXKeMv/F/0Ox2aOu7UuC8wSlcjSZ2ATkNuLDCX8j19QayLKlaiWuApOunSpENmmbHK2lBwBDNqN7VwYW4rMGXoBMGEYC4gyx+Twy2gX/hefN+1FrlszRsGuHAn+ASp9MRQDI/Sk6slxRoKSCgW+rxoNh620lUkkNkAWEcSqrVcGegm0cWSZIac8t4qW3wBq25mYvSQHG9wdSmF6WEfDGWHhpJ8qK8g6QY4/xxouqW9erXsBC3erGFXXdcoSIFiT5dZQ5JbRDbXo5c5i3qBgulIB08hv9Mpn7jEK/UKIej7x0u6HUPx2u8ZqeAqMhf2uoV1enRm5mZ6u+jE1AcUL2+u54Vl0ROrOSa/DcHxGUhGjnGCBs8HncEhE+1OWOYNX4LvktAjvqEubqukDDJgFOVgp5fJRRkUuVbAFcnCgAf3JWe0pGemZL5iNlpF9KI8UA9L7ILUrK/s0Dc9a6v43Yr8vFXO2rXvyiNQtWkrdtV8nIsQTVQSs6and0McIOSKy4N/AegIwu7S/UOnukv8bW3vizYbBOzs7cFdill+/+TVK/rpsMubiwuR+6aj8+8dVc813AmLGu3Y1nv7eP7p0juTiFpwTwRi4UJLuocBNpg6035H8O+UE2PLOn2xfuGrsRZO9VKqtbvOcclkcECRFtfOodpI8+KxHShag37Tm5jQZgMcmeLIx/fnb9/uW1ayu7NvtdHu4d7jGf7evvnyyFyCQnr63bXN0493hyeyxd4bcLW/v/Pmzdd//Nu/+fNffn337r/v729+dXLw9os3333/1enP77wY+Is3+w8XF//tn37x2rL/5//yHw7Wns/ff5a83zvEFhskLDp6vGzwc/rNN1+dnBx8/vDp+Pjbm6ur92cfsPf1m1d/+tNPJEkmRvjb+9s7+85P2jj5+oBDvuo9xytWpBw822fNm2z8dHr/p1/OPl6bdpdyfr4+vPN+rMO97aOjvX/66Zz7F6dZ9iSJ3qJSWXIv/nU8a8qQKeoZG1fRB8lp2dMGQCXURyWws2DfTZIyY8DA+QRAKBE7IAU2WBKdjO6sUyd/cbBYdOPG/g6J57Yq3h8f77du6dbOgzLu9LBdPTN1MKFi4GwuQbuTXiWtNWg+wSJ7cb8R4HPvfns63NuzDL2Y6Xm9pV87jMWai143tgd/+27be4pCQ4s0hDKA22d8AtUtBIFf6i8OaB2OSSSr2mafQJbNN+r4ticgy2/wsnr0CSDl02mZYaiw2GJ4MK9uhf43k0+NCOtTvIS3kF2ATtMMjzPish9c6MVFy+XXt1atA9JdGH82OVI0ksk3cTU5VIPusWjW5ORQ1t8BTblN1ptdkklpJpcx0JKGhyejHl9zG7OxL+bR76hs1RBBuIFu0FwXlmcUvUzNh9TwkEPY3XFn5WbD3uUOR9o4u6H2b17tWcF0+3RjNurbr74EFodPTk5sPjaq97IqiMFzf88L8Ryy67SxbYrB6Q2mDdXykDkpCPHlfS1E0wfZK5KzyWFWbLwSwv0dJ5k79jg/GyniBmzsrYXoV1GtvH9fhiVUcSJddXOq4/DnwruoTdpoq1gcB3jRl65q6UdACcR0VdZslYMPbIPibuolW/SIgImc8vgNbKqRILhlV9P7FyZ7Mx9N6fXAbMehtSblJ+GlifSuxWgAGhSaNOgDDMJZIE74Mp4/5HGS06MQLnAhhBhpHCuIjJ2gkW79F+yBBzyAcFs4orlw44k3movGLro2chjc5aqqorp/g0gA4ygyZrwVZroP0Ni7EgRRJ1IfDbXyRB75LV53h0fleUl2pqBCU9QY2rU2gW9upqVu2qU2dUwLF42j5BRaHO9R87d1Xl6YEQNa+Ya2kMAK7Jsm41h1kZAG9F/NZQxTsYXVaZ2SC0sXEqMOvOF29WJAJTBnCaMLVsSmeo0hLYSE7Ng2/K/GcCNux/WUs4Yrpzlv+2akNQUEzAdJVZRFTv37KHO2ltSR1ByVwiE5lRobwIQrFcbkDpqTd84YCWbbg24iVoIol8K4CnKMHiwgHoF96rtBUCy5THXOEFvUyFtHFmxTLXXjMb86LEj9fG8w4a6LGRgP2L74H/5UZTgR99SblO7YUXAGAUAwIVTCEWKh85KkmCwSHEGbmCRJJuUJnLrvi3uq11bc0l5QhsEg+yzFEDhtRMtvRMUEYh0uBCaqk9mCT8DIbflCGspqRW+o0dib8mVQNbfgFc0+caOrueuqkLcPjQ07fC90c0PDQHSROiez0ZJpMkcRSp7WDOPKwGPr9MexoCcj1gWUuvUS6f2LsGPTUJTuzorDMbcg8xcEHIycQ6CL9AQdzXLPKGJtna/n1GAx5iEqXBbVwJnbZf5LnBp6+VNY88KajJYXySgZ3tDQPdy0DiS0xyTGfWuTt9OgD6TCltvlFFKBLHPInPICYUEfQoaWpD1ojN+bYmrgTLRpcv6CEzqJLun1M0J5YetvjHVTe/wLyAqN+CoIscKNgQZItamjxSS425d6Kl1sXcX0VVqfMDSNTNtGXvgJILridI64y6EXaPdqeiyZkoSez7gwfxsrKtmd0o/MO8mOFygya2tUT+33bTXwzAtp2a2YiezlT34ljKOjm9rP2uTBk3fdTEoQnYrEh/iXpmGGiHnBClDWyx0bzSonQrPH1yMRm2BFQ4wzeWh3elbuyZcZ0tgBeesNwRB6dfL69uYSdXKywCPI6hrNWG8gnvKyAoK6urywjMF08cbuxs3VzeXpRWembO9I+Z7f3FsKAiln0WwIabZXfe2EyM1N0dWl0NVZMRubR/v7wkGuEnOsoZbIt93TpTu8z/bu1o1DW8ZB6wRxYnrbokGD406+R3JrWQhRcRtJ7xxaKXii4ug9chLn+vqvH37e3fMGVVtRnW5peuBobXPnLz/8KvHvNVn3D9d3sxhc3ve///ju//G//scGLWeft/acfLL5xRdHcp/GQlfXl3/44zei9n/81w/vPl19//3RF8deo3b2/sONZSt7NkUUV2x4Idcvv376z//lj1aBeaGV4YpE72Orn3J6P/3wqxei2Zv7608W/Gzt7+0R2PXlpRS5I0EfVqzAfvj469Xx7/fsIv3vf/34w+nd1a2RojmZp4szOVn687z9wCmbKMEVAeejqBbkCDc4coTrpNfqknGQZ6Ah6swHk4zlhGgY2VPaN/mK9MfQsohfznjDEa5W4agEBGMRBBCp92fRMWl+TJ7eFkWPxi+W0qdLXl5ueYlshVT/yobd3hTXGfnmZJqQW1nZd1ZmusoLbzkb1CYAamAjNw0vOS+nQK90YF6gJvfvRR+Jz+fZabDOpRF6WhDPBWEjt0Mb0WAmAGgutNC86I2RrDZdQxNm06qVhOgWhbTSznDChhMHDaHHELqdx6VplRQsG1MZxtpuIbYS9tkBrJs1j5Hz6oXBNbg1k6t2vNBBy268+tcARgxgb7zXX6w/MGoauLJtB8vqo60PtB2qUMrvFYcVTDRx2iItEms6Tkxv33XrpgoE7XoQDVhekjtG7K3TOhsp229wbxZLdXAIyOE/plssSgW+c06fGHhBladYSjDQ0E4DDME+MzGH8uAsLIv8yXL9l3efzZmcHB+T1cfzzx8uDQke3xydPD9ebO56o4VDv+z4EfL2sqrwyQ1mXtBGxeKp8JPW4LxHnZP8omNTOGdRj6ZpZE1QggNxJ02bxWF5ycWn5L/rNarCG47DxA1aqiVlGiAoyfIXHU5VebYMgWm3EonjF5niz3jSUB0/nIOrY6UjkJ74L67Wa0eEYWTpsFDP49LhLpA53Zu6dRMWRaW9Vp1lLqSCanRJlyRDMe6CWpjjFRJSUcFygxATLC0nAzXqCglAin8ulRCYTH9SRxBLDdpB8W8J9xE+66yURxd8QcuHNOZbGh8ywy5BT0VsrNcraqfEQgeVJwuGEaxUTz1MToIqA1Rr09sOPknB4illkNm4ohYm/1VPNEFn/OTHsLGRQOE1MhqE4IYxOWWbEUJoILltuCo29p6FhQyEIcJKX+bs44a7WaJd+yVuYtF0cHVtpUcn4z5BixuaASwNHC7FMYimVBQ0qamTTsT69AGEvFvBW/2p64hOoZpssV8tbfEYXW75snwWMPWe6XAaKzM0OJv9BsIdo3Fla3HkCCsaGas00yLwFlZOZFjfDR3NoFQBMqFyOO4TzMhxe/mtori8MVqeGbBGxA0JkCEPgpMWcI/oR0tRONGX8qmuGn1e6EhYOBn+w4Hp4uPIIOPCD30Ij1nZnjci+ewsbOtk8UqtqeKRAqjTCILCcFryNCZgw/I+h8ljcghoT50WnmSzYTLAq65pdwo3DQvxK/k2oTRU1X4Ai4dGM8fiKt//l+ZYhutoGBtJbVKe9Ape/Q/hAKmEJSojM8xbbVGqfcqFVW0MnFqsal+gwkmSSh4ZcpWzXX9gv7gnUh1SIqbmYQNS0fDoyiARiWCQa54jPQhybdTYtMT/+stEIkWZPGBKg/WgeZSN5aoC5XfcApAWgxE56KQxte63JMoCNqsIKn/jRomNvMBEt2FaJmB0foQ0iBQZz5kSjfNVSsjhQGB4NyNpjWYV/k22RqlBkaNZKCOG7NOfYWXNjKUtpIV3zdm71rR4irZIuk5CNzysUrS/81vOTIyuVk48kgs/yXs+CIxdsXugjA9Plcv9vwij5hMNv49TvmSeiX8kopGMNvgRgmrEOnhB8jgpxLdwgWetuGxHI1NMdhYMDPaTGuRt5bkjBzKD81Su/iS9VSdEWiSjRhC4iJZHhyVlAAEAAElEQVS2K02AOxXzmghClJta0Z6YZol/Fieuej50sm8hzDbHOGGTXcFqes2ahEWndjiNJKx1wEO65TGD8/ToHqVRwycIQFWE5OR0DBRMpgnzIiErek4FwSL00oFFMV4yBVc7WKUoSc0Q9/Ls3EIK6R3dl5GnDLr3c1nafnV68fH95eMyVHx6crzQ7dkN5dglo9vrC6fTPz3sb24dHu1SNRsVpZe916nEJV9mJy8J2H2oe3CCkE27ljVA2m7h4od6+wh9tBjjGvXeTGAkIVt551waSLEmqqobXlk9PN6nclYvXN5e6xT1Qtz+0ZGNqbtO0Hd0y9dffvEvf37n2Prjw72//vDey1j//j/83bff/bvLzx8g8cfff41L6N9Z2/ji69dffLEvnfvjD58+XK96xezff//Fd68OHUC/e79tr/TD1f3O0f6ff/jxbuXxv/zf/4u9y2vPN59OvSdBt30nZLB59POpg9u9LWv809Pdzv4eIXg5AqYuiy8/fPhAFL///s2n84tfP197O/L96p03e5Hk09P1wfa2oPPq7vb00mR62rlhMSpB88BYFl9au0WO0p2jQjQr5dB38gPsboJ4mr0mIoyL8bE5KGqwDAwYCCHQVcOsvAzFFlTjmkHew9PWrnhOWv3eXgWBF1Px9l3jQD3JByebrWwdOqtD63zG04oYUlbWsKh3StBDB+3fPTrvVO9vuKUjeL7n8az1bzh5dXvpsCAxgYCJBAGnYGMQnE5BP0wgwE5JhFvWy+YmMoQ0tkAAJb2wNi74Gm2oGhKwIGeW4RdkOOkf/rcehmovCjD78eHiyilK4B/v7dmkDjWjFB6VXmGdTcMb61Zz6b2eNrXZgoGmp8yH9FJqIcLzhvUgOfpctchvg85tOiupPHGY0kOmyZfCchYswacuNnUtIaymaDKrIh6mzhJ8hR4ysAjl3rZmpOGB6nn3IBpbPpv4akfy1GlrgCYY0exeE4EZQvAsYlNS9B4DjD3Z39aq8aNzZpX/4tUJQMf7B69PjizhMkZ6+/oLY1EeI/8Pwq13Hmssdzm9iT6ilxMv/hwXfc8s0yVPiir8DQ2qmeI1JYtqkiIXtf7NZeUwGyFwWb0CuR6vNhoJuFqKEZdrNHsEgqL+xWJSbrFTHzi4E+jxbMwfN3zLtZF9nrZOPKcXeDKctLfToPhJojS5pNvNZGa+okmMqMgti6F1T96BMGG9oZg8DiCYAb/WrIWebjELgkRSM/vDMDlHd8KZjtWzx77JB1Fh3BBhCABB/o0uRZZwbenjZCWGV0MdqSGkbmw8BzUW9Q2rBHqT1ZrOBSNDA7vo4jDcNePAAchEPpAxqeMjU8lig9Zo+Rdb6uyGi4N5jBXzdvwaPgQjHcXA+bVwVcViVhTF1yaRPKa3RBOXBii6QOdPyKVGZmBg7IP5w9tWHwWyPj1UliTUgknVuudxlLkpce63kvgFGPbqMUev0hkuy9lFEIeQKtSjigWEhXMpxIKr3wKn+hOOyt2BNuR5Uq0yKgOvVgcE1Vo41jsTmujwmMrjjJ+QG+xRRAo9SkXyNrXun0+lJprKOmaFWDdiC0CkNPCWEDlsi9k60EC91i6m7aHv01/sijiXQ6J7MaQHfeJQD4OzcMBfvOrZwpuXVf59VSttbUyim60m9OiBhjyN23BMRghIGrEDIqNO08oLsQq4l5FS+IUJIzKc4DHBwdiFUxNWRVdNh/MQNX5yIW9IqN1YMzqfKk2xkX580woWDyogZTXR7DKFdDvDD8/50vVY3zQ4cnlpPQrDI/8G7VE35skwqlujWbsHvtWmf5lQF7HCo1kUruCLAZP2eMBxQKGXNBZFjFuJgSxjRyYTom6nKNFaEyHDu2kX239bZKLNhaf5mnpjMXRio9nqpmtq5/yHt52EHZ5uSgcCC+6UzA2NY3QHUmnb3G8U0eLR4RokFSquDalZR449tYFGqDZfCTIeUP4htkFO9A7yQ1q0qaKbrOwijNEGwlke0XgFAOR2FYjD0bD4a7/9aGzk6os4pi25PspRTZhF4NIPYRpnDc7IeuFnI35qpwy0tKgMl673qI0XbGuQ9eKJDJzq7Q0IjSLyRNKHvBqCu4Jq7VYnC9NMPfSL7MJHeyqBP8OtyrbkehhXYbss6i/ASQcGUjmSf2NOYp/zlQsCspkZSef0ckbgaAIymhhN+02Q0ZfOxP8sMYFoO89euN8re+Oa1OD0zdrVuu+56WWNDQyFIg2NPMzUUQcKIKmrQLYezauadvP0MwZtcYgj4J2AvrJqWTiqnOZ+dnbjHP7by+srJ9R4le+BVPTK/pG3CNWhCvxQb2G0HrSzg+x03Nq9cuig0/pvH7xw10yBxSwoNzagOoajgFMwTpqh4Z5tBgjH3cV3p8ctXvJ+hlaB90385221m965a9E5ZNvi+VFg+nRvJcP6+o6zSLHR0fVlqh/v3pzsO5B0dxuduuOtnz9d/v1//MP3X/5+fevN0+bN69df3Fxdn51f2PT57fdfHZzs3Z6u/tP/+78C4vz9b44Pfv/FKy/LOr9ybqm1HPci3X/988d/+eHTF8feCSbCvrbTwLJ1AxsbEdDnzEyvAhBaEc3V5eUffvcljWzxyU6dEDo/XVxcT0d7UZbdy5rWd67ObL5g6hfXV0Jy6rQEW45z5CD0zcbTlMLW1V6XJMhodTHtkcQ2oGSc5f/pEviTz6MDhmr1oAplx1ltq8yx2SBKVQnGFF5PsLK6a0/F7TW23t3finQN8MwPWAh0sN9LIbbXd0jDi9guW5zzfHywI5o5czpqr826lcLuGIrVlb09AwBICWhIvmNGse/67uZo5wDCollnzBd3SqoZIXJKlJjzQcPYkTDIdBCEKTj50hxvABibHeOkmJWzmjFtT/8ZiIKZFUgUhr2LY/zPuMT6TwasD8YbInuj2jVrR6j0nr3Xlo05inetpDvdszDMlomLG5tVnKbfyh/rm+ThuJA97zTAOLuvTd8/t5wJssoDO/sHNpx7RWWP9ra9fxru2CsfAzdavfiTJh/GXUjSAkJW3qGhUWCFesyR9WW2FN3b7uy+Tj7ZRVNBOUPWsCaKt6Qh29OrKG4a4MEKFAkj68GWE1GabmhwQrh8+8PKLoJ5GKMJkzROp3XIqLxyvSFteTg9P7fX8HD/0DvI+ZOryxsbPDpO1Lr2W+vamyrkT/IWSKIkE06M1hVHqjKfxCGjTbb1LHl7cot6ZbgSR6eO+pXcGY/HOfClBdBInjLVWp4mPoJPsUHpKdnm4CDcg/HGxEtBCjg41XwY32k4zTq0q7C+Eruws9odSb90STPhkPI0ipCWpg1ajRXTm6SAdVgwr5+iwC7cC1D9KsuSRsOUEEoDy+lIFsgrBx8P0ncNRmZOFaNc9EDlhg714KBCXSGIzHiv9ZDT7gxaLO41X7HgX8I+ZaYm/KGWVfQIH2z21ChFNn6MDwVOSqT0hq9Awy30PZlT7DyZ3i2O9+EfaJFyUF14OyRMxKle7gJKikknGR8S4uArPmnJsZpowuE4l6cJueli6pUCmvjGAKA4wWWBy4w96vXjTwXBV0znSE6YTMXRMlMWSxlSSQLpf8WVZ4P16bJpDdWyc9DZSlamSE/dLJtwP3E5mFVh71Q6tg/+0zApVyVha2A6cb8XfrpA4PDqJQLpi8qamYbI3yWApDwEedbDXI4WaycSlG5Oo/Vs9b9Ukra0XgPi8bDy0zSaCgxG93IC0TLYara4AaRywbXSt8F8kVGNFGmEZ2JSWbn4EsZwC+G+lXpQOCaM5YZhildnQV56mQQ65YdWl8OWIXvYH71guaHJeZyeU/Liw4WZS3OZinZDAqWRMoNqsdlYolZASm0CpeTyO8gDfb56pNF4O8abA8GvheesKFkrXe2KZZ9Jfyq5G8hpO4ri5FBRhSlJkaq6VNamugzZn2ki56I+fxcRRduh4ekLFOytF00+7nta/dECdwraBlwIqDEClueEUQQ0C9Owcj4LDhS6PlncTKfrPDLI3iXDYqAF8MIHjU6FVtGNd/Mo9zrbW2sLnGWQMJY/DqjUYE0pOtikjg358mtlFFDa6AJcWDWwmeiLaSlPT5bUDpYFZOQFodjWp8B0bAdX57F78gHjeZPMiMA6AqJ+EWHNpHvTEDvPOIdx5RtiJZiLFBuKNK+C5mGahxDg2sqjZ6u1tXirKeBpepZS1ewLS/FTLVVVVysP1W9k40dSRT7MQeh5Li+hF2PNcTSaGDImvQHvSKZqdSncIlbF1xJaTWbVjeU3xyNMMM0whKMLTK1DbGkohlfeWZbmlOMgxObTEkxhKpQyxZAMWw43JEf6uQnt+jeaOT5/oQ/IpDB+RL2wihOj3KBleLU173kYv5BmvQhulAzthfie8SbWDj84/jA/MprC+HD79vIynB8fri9PHRnklVXizS3HPz4/Hx4enp5ffXFw4DSbi/bdtomFF3Yi54GTNZ1L8/h0ftWRo16xRIQXVppZZbuhb7MGRriZUjo/frRUEJ983SmMm/FPpucnCwgjxcQ9+L+oS732TStlzlc/b9ztOM7dmqPd9fXTT5+96shLi0U2jkkW3Dwc7H388XTPi8faPfx4fPL6zdf/w+fTz6vbH2+f715/+dX5p8/SVQcHO461vLsqUvzud199/uefT072/+4Pb7c2H399d7n/+tWbr1dPP5z++vOnf/nr+e//5u2335yUpreq6WH17MPp+dmlntMZKweH1iCtzXuvVhy98mDJe4MfaUihZttzVdm28NqusQ0nJt3+8stncbo4+503ftk++3R3ft6CIiGdg1/Kc836cmPggirfG6oJDuze7FQTd/TP1D5lyBGlAoUHneDhGYYVA+mE0vycHTG24b6VDC3972WF5dtaQuPlYrdGetmfrQteytt24HVn/qhmDOd4+RPny+xu3TmXqbGJt/DSXWdTNnSn2eb5pSoPdncagayu7m1su8XPKWWAY6rHzIaKKJjopZDEOUd1vDaKiHybshdc6FyMWhqUyqxPcOCdEjYetB4jBVB9rDgzzPp88mOROrmGZooEyk+2INvAueZw2fbFGv88Pu5tcZgKdnQPA1F9R5O9+2zdoVbbDmO1PGvTuwhW7WN+eLzpNB2zZirO9iFmk0WvrFpjpphdMRvbnX8KrUzLT/17PgQ+WVLOH0HE5qhYFZfRHb9R0kQ+wgYJVm5zC5bzXByNte6iB9qBRMv5aYAxoCii43RbVeh1fcLQ1pHQVGpQ9b3c3q19JYURa5e3DgbdPjna16vBf393Ryf87sPZzBavmxnY294/PNq3Gs1WlrfffGkADMWUd902gDyAPsUoiIriz3zGt2SD0aiVcTULsUU53eLTWqCl90koo4Z5ZypHWDiQruIGT5v3rb/LUZFXPe8EPCwfIA5QpIs7ecJWpi03R+IFmOMQGvlw/kprKKzmN7RHAsXrzWwlBg9Do4I8V1mGTCMyqrOEwvWD7uAAl86jtnyFumhpyfdNkAR446HC4j4A6QhoNdbDLUKjpUWn5K+DBmeQHSdGMjNK4bXUdcsQy9NJtPDSqxYPMnMU/VswEMS2RIt6S1PlHrOvWqnieEHYdEk/jUW5VuktI0P3lpT/Mm9GL5EchuGcROJA9mvEOxc5DfdBhpwrQBDqEe5F1AhRcUpc5Ef6Iz5FgYqaIRFnwBnEGroO5OHApOdCm8bCQSU9Hyvv99Iucy4IWaTjVhAhrUY/xjNcMj6kaZhRnRzh9JgTz/hOohpVDfnxV726+DQKl/Su4crowIrGIqUYEgKKKVjAozACG3aH7UuAx7e4n3XHtK4rXgxQBk4DqtA3+Hjk476nvPcoNh1tyYb7Hg9i4PRDwXTrcNFYLJ2IQiOa7u5UeIFMIcfdwZC5LzyhokqNHYFljGHee7Qw4S60LOwN17laqOhRsYShSAcBwX+Q8lCx4Qmtr42FHGxIO6Iiced4iz/HDsNx4Zvi+DOfgECk6xnnV7RH/V+41yOwGgulvXhFERR2ZykYohHpX1dKq+hRvyO6CxzzO6zJz/2pWdGqLKC0kbX4gk0DJmjVqUDtuViSAYGaJmboMPV9D7OleKq5YFJjwR0YuCeglazBcTficvS0Ms1FEGN+Ev2/GIaV7oyPWEjzFSqFkguuC9lL63lKQSdZ6zAKZOFDr+NvRs29N65Yuus8F6eXTue2ejw0YtCyACmsadtYpqc5a73sELvQAwHSHcwHaINGejkKs5QwRPnNHUcseEsgy8KziCETw6MI62vOfS26M1oYlElvhCRyB9keZjP1k2kYpg37BjUvGy4UqDzy6Sf6Y7cm8pVyYE0od6N5hpTbU7yHXuokHmnSWXzvZvPj/PKICTz9avgtYsq5BDNV6X8WYlQ2SuIbZeWjxTRcVF/DDcIAutIl12YCj+sLTE9DFQOFVkZcSWz6M/jxHU35rMuycNkMRmWfAZtjigkcolvUPqdZJ+o+HprnMcevDxr8hw81PFo3rAMEge5g52gLQoKgVDHGOG4FMPz+vtcAeYDdttm56ffW9i5XamXR3d2VZfd4bDWCNNYVxtlOu7W7ewgTi1s2BOMO0Dg82TP8Ozs9cwxQEdX9isPwBaTHb04+vXcYTxnf80tHRVpu1OJ8C684LlZjQMATQ5IkrMDQNOSWlMZCMvJpjpMrsSEXaQEwMsO2pGwd7VMnuBucXJlqcPC5Fc3F1KvalG7BMMVkZJ9NCAgxV1YPTnZvvUt4c/vg9ZvL88e1p7vL83cnr4531tY+PZwd7B9/9e1X3km8v/Z88cvFv/588+GXy++/OPryYMta60dsWbWufefs5umff/78xz9++Ydv9qnj+e2VDc2iKLntTe+XXV09OiwkxkBvCTAV401Yny9uBPqnV167Jt9vYLl6crBHJ7w24XHt3gBpZ2/38syRHPTPEglbF2T/jNh705N1dHD3hEqKBUXARk0vSk4jJ8ZlC3RJ39dyFixdaZ8onbx2xPsqkZcoq6NJvR1I1aFPNIi45afpF8jQphE23T4/3GS5zBLvhcwF/Q+rW9nCLrLW13qlrgm0Ndt8N21FoFSEDTWDAC/I1XGSy9Hejuqnt6f73hG9tWWyaEBJTzJl/sTZmvQ5nMb/y2sK5oRW4Gi81zUYKRk6spHy3NReExneLDURf89eF9YSDRaBFCel0SKA8YEpDHp7xfTjk6OBZLPZiUJoMW5iBUC1K8WAw2mqHMvNzb6ceZYtftU126v5eLhrjGqvAlyLyyn5+eOtlfV3dr275fXVW3agrFlXdAelsStGFq7QKrqx0sS5/ums6uSXBMq8ZOyFn8ThnQPCxLVnYL0k3KjMfXyALQxDU5q4vAPpmHZ4cEAIBpVX6lQfIxaZBu5lU1sMzGTXeFC3E7c5ip/ffTRFtX10sG54YW3P+hPru7y+ObLd+nD3/NI83s3B7u7TLx+MjK+tcCs9wYBKNstS81CNuBI+9qVaiUdkyQ0WrBgkWKuXv8L8SScgsYwJdVKUxCIUykNpf8fd/xYmSi603GXUcjxuXclE0sCMW07nFy86TSvM/y1uUC2+C0whDz5S4cYVYSKW0t+Z45pUSA+XczzhtYRcLbriGKuFwcSt5+UNcxchm2Oxbn18aaOW+SDcZ/QNwombhSipQajSEhJafPVc5MmD4C8tHQUGwEXAeoHEC1vS/7rL8W+GmXBUBu2gsUJvYOQ49NdFi+BkpToAf+oRFljKaSYIBdwv7BpIjGKZuqlXdaXl4QZTQmb/mNXccZkhZX8eDkXROEj0q/CxpXpcTGvniAEDaIgzu+46hZY9RO/0vGGnZlyaK61EbGCnj1QLtq0EK5qfNidijo3hCQN1KRsHNJgwmWLe8NWEDiAdqPXCa7VUGdnVMBkKlSgewHFeucl9IDQI8+H5In6+Ju/xftSpvz0IVZIlLG1NKM+qooWsm7IeUKCBk8OevullN3SYF9ot0gk56BHokrUMcg3zgbicHiR6kGs2QGhHTAGkX26EczFS31lY3FgE+PJn6eKTZtGwGlr3yVGKpvATMsOC4PYUb4vt6bzbHCxZ1NLUrekwgWy30DudUaJPIqEYSrW2YBJSoahiOpnQY4jPENEF4KlP1dKNQGsidx3MIXHaAj/84vy4CJdVSyihBcgiGbeWazeTlyayKdo42EE1FCfCDERtDd5pwotW6yYPDg4uzi/Yfc0Z8yM/G9LMmJAabMkoXP2qDR5ZZUoZOwhk5LcEmhMQV7LG+gzSv8k1vDzUAELoq4YQ86LZo14YwR1oaDILc6pJvWN0x8DIqHKjw2EuphfpekOSgGnNNjinIjZqx9+Fnulj4pppybg8LdYxDM/x1w/u+TNOKFZrzU39Cqc/tjTdU9oT2iPHHDFeL94plISP3Ci15LKHbhWpLsChwTInZIeX+1o29e0+rDSraWJw/7deP9kwoXirsehN6ePJSKimlZ6ng/yMFkalcRJM1eOeEgFI/9KmcStwC1mtsWb+vunX1hIKQsdTxBRVIJWfTfRjZtCnfvrBsG8FKoTpCGj4CRUo4aiTEDQqkOAc6gwa948CakY5QGDUKD/8fRje0mf0vEXMjV4qlu4FU+Haw6XJQrmufOuDNexfn0omTVg1bao0vfID8xRlkfKM08ow/aYYYPro+TBKvOq4j85mUZizsz23F2X5ZuK/19bilbBd/2xD760MKkTJemXt4PBEyHhoA6uonMREe5aTPT6+//UDfDrtXnwhmWtz5Ob22btzR2kceB3U3cbW8a5AandvT4AuzD29uBMWG5HJal0LQY2t1rZkWFsyNL0cWhhg/UqWgcQX+0IOFjUSmU3M9UC3d46zOvHW2b19p/Lv9Yqup939/avLqxgmKH26P/toadDjv//3v9s92f/T//mnH95ffPr0/vnm/j/9p//wuL56/vnTz58/yeH/4e/+cPT27cXni+31x3e/fvjzLz96E9erI5sCVhxxeX1/vX23x07+4R9+XN3al9A+vXvc2fTo6erUcZGdE2Xb5cHBETnfYM/qk1fjouzywoFbTzfPMqzE2XY9+xKu1+4Od48urh68L+HTuT0Fjz+dXXyW0zW/bZk4xVvpxP1lbV6qGuXZFiOrG554FPsQS3/YCZXQZ+mf8CpNVsWQJy1ue6IRF/01tICWTD+lYG3cppUhTv6l1WyCiLcsefFaL4qgl2oix6IUGffstPOFMl6BppNznq1Qud8yMtw4sJrf2vTr+5397f29HSZid7Ud4c9PNw51srYeMDgbrtEhh4SaiodNA0WbCrw0FAFP1oxZm7UKOQTV5XXSiwtSzxzd9pc0kcrTeYtCjrSHJWINk9FpVkHAIAKmxtY3gmlYqAgpkCwdejFHzop0bElcf6KLDuC/vrqfF0fsoEsg3fvunp72NjdNZF1fX+NbGaImKudwQ/OQrbIIYSyEhlDcyhlWevXgvKbd08skHn3oefbuYfZttWEHu7mDipk2QYRBiHHULFxxuz0bWKtHzhEJ/FFdDt37TR0s2Etayq/YIT39Ybsqc01FFcnfLo94bGg3OwfyrNlLEbkx82fW8nR5efN4crRt+RMCXbTH+85JR9tfvjlmM5fOo72/ogyiJ+v8iF/nYlc002bpLI5IMJwOxsllsUoH5494OLJij7rL8b5absWa0cP4HnSHdd1EHU7O1m8eFca7e7uUbJkn5508WhzjIu5IauVVeRDOiQoZKBpk5jB7hmOpEZkvDbWdyWxSsTV9zkbKFigH4fF+4zYB64kCJb+oWVina4Ap4KvJkbZoo7qZ7Yc5IMubJbROikpGr5JtdRntVAXJcNIclahEm8ubYQO1bRlAD+tcqAj/xsmuFS6gqTNlDjBj3sgsuk545aEJTDJDndioZUOmSmlEPwVevYCWC8WKsWqbwyxqyG9yqakX8YDPtbKbMPRggCtFEHAbJjQ+UaEQsZx08caIm/G6yO1oB11plwrqOlAb5cipS4oBCW68BAIUgGGKaHDoaTqd0i5MjnU9jaUZ8nScOlAlCyK6F+NiTjTpl+kQkwkT9KMitBFQi2ztRamUGtED/iLS/rqr0ABxv3aD6icGQiBpwsHXCQAwRxs+idW/wcCNPGyLo2ajSw3gVCrmZh1yDO8rWkKsOK3yI3KcCQr2areRT6LX4FI3SWIIol7arT6YnFtREL5CY7kTJ/+vTysGkzWg4CX2luylPCEO5sLtYs5pzZsgZ/CDdR32xah9xgSgXQ0106HszsVACHa6WRUtpz8TMiEebrOXYDBIsvFEsQDMXixAfMK3YKyxfbro2/KrFqoSh2N0/3wWqpdH3agM/F9Kjrb61te0dC7mWQrjJvSgBpZmPfXVJTRoF1kpIztA8PM1ssofJ91gxrJAKPhvLSKo7qeQC34DdNDVMOut642/sathdKoFXMVT8UVaSFhQW6pTiQLWBUUG7GG20VHo5eM1AQ2kLG1Rx0HNjYw53Ygd3W1/gEhxBmTV8S/xLdz1rWtAFplFFJQ8dZFTyAERVlJZmsSvnqoy4o/xcSYoMlKlA01rlgbQ9MT5Hio7A8qKpSKLroQ8JEeXXA+FYxtjYIvLZr5zET4q1kgkv1DdReEvEOWiyK9cIJjuVxSSGQ98lZmvIGTQPoA1LTOnfQOCan48VBt8T/a0tFpJ09iYTwnwQF6U+AUlDWHvlnMMLTMJdOJGMJElPigtS7zicNO+lYgIypJfH7cU1HDyxM1BPpTGwCDkg7rmB3uamoan54GJWoX7iSsdMuiPd/QKTdzJ/Bon+Du0jxeLOaNrbibN8EkPsZrGDJg1C5mpu3qoaRZIoEd9Z0Owrzp7uwGphRjl3iL6Uukbu3vbyN7a2bm8udJZiXFOP58+3lzqwrXgPsw/fjy3qEW2WbgCDkCyidyL4ZZVDPakCid+/fWztc5iImXO5GA7bs9ACDYwRSgb7nhpeJKgt0dBsgEJDqNjpGu+RIt00bEzRqvWQgRZ89lCOlKXhvD1VZHN4asTlF32FlrvL9uXKnj96vWVMy0f7rxX1yLhK2ein55Zl2Mg9vbtNxsOjtlwAtD5+acLYboAYHtv6/P57afTy8NXx/cXjz/88OP61o7TLJ2Lf3Nnq2ght9Ul+ycHNlLvHeyJ9kRc6zt7zgj//OnCyMoIQfTsVb6fzwRUcFs9v7k7vb5aXbumexfn92f3jx8ubs4fHs9v73btEXYQk8U6FmL1eqzWhmGLRCzTr/+e3jGtYrl44iK/lhVgmqJ+cW0xww62DWljO+We9/f3xMG2eP6bHhoM8J9X152myuunQ1Lm11faYmbapMAMzOwNbRXom1ixosmbgE0UgZPPScFYlvOI1o8ObMm24tzpoiFvb4i8+46TYrefre8yTkbpsorPciKM6yhaVmmLa0PrNqhEEKFvSv8baqaro/Cs1aKdqKHYdWwSCo7PqWtUMWrT7RSmmMZprcI2+lNlIa5VQHM0kHZUYVTuGg6xemBt2BAtOJf1UnDXRIoDmm56B5xNnXb/Pj8fHGzd3D5e3jz5wfADp2Pu2OTweLC3b+XV9ORtSbT7ByeMBbadqbO17j3HTDArFODfG9gyWMul7DjKedJZ/p6YynjE4EIMfTf87AjPACa/Q4HTeQkB64O2tgxpBHDoxXCjGyGxcgrwIsj0PTUw1fNbN591c5vFcKu2miD//fnZ4+q+IfeTMcrZ2srbVycnzweHK96bgOPHO3tQ2jVb40QvYXr+yszPDeer4Z2NXS6laGY8ERdVJD9ujUWiVL5c88Xx45bVHW3C8kQzPm2yvy3YmH4WB1LanKSnao13egksklSn9yAqZ+Y35mIL6loEgzDjB4XQiF2NjEr6Qki2wO/Kpzz1HbUCQY+6M/Bieszhiwa65zWXP4d2LYrwmuOaJWTMcFkhQwqjNtNLmBoj3DSMkLXgQ17AN1IS5YQ5iiCZPfYkn2xKkBiXoZEc2Ngp8tOjUFyoERqOv0Yp5KHtdRPqqp83NixZ2mw0Nc3GDM+rjN6FChf/xoSF6gSnYtJZPp7X1w+jKJU2R2SacT9odRn1XzUz/SxOu4mK8ghIiqd4Z4lUK9Ra+qcosCGE6OzUn4WhoA/acTdupwzANyCxR3msGK8W52WZHIaorqxQWzmcBAbfmqEuqE7WbsW2iWJiAbAc4fgBkD3Vgp8IiXsKRDI+MJbYpU7/E6G/qR+GBzDVGh7FLhCwNN1RcDCnrhPV+DrUcJPFx1VRwMdtaNJegqUFQKQS3F/OOqNNVxYPkBImBOUHJvWbRmu4CE2FKApiGAxiZAFM05swSd1i9bA+dgQtnuePWqoAkvK1OB9WCa8wnRgmtlUrxF2qpUEFuym8+20MAGDyc2uRL/h9qzcugCysj1SooFIR/5M+SuO/P+AGYSDXjOqJP7ZqNszIxUW/VU46gKRjyroxCBpv91QT/4b2PO2x+0v1peRYuKJ9q0yNBZPoFAPVEXBTiW4osbwJWOFxdjyUC0cxYBZCC/XKfNW7uIPOEBq0wO0R0lKaF9+hCf308GVxbT2vXRWTOuLzgNjlAepzc7iOtrq07NDXcCWnMcL0gPpk0WRfwFd5avHUudeCTjc5wDjZCOxFw1gLxR3+Lnzvd3yPB6ERThRoSMMUJeEZa8dswE9MYb3QEtpQZZBSWqm2T4wYeSS/Pm4A3pOFVxXJfsJ/Oo+ptVR1r9sALm6u5kGlBjP2CJXBFsOCOJUEJRG5fNNeDUUHFuBnHcnkddwWAtoTiYR+yE4MNNX8Xhz0dKWLx6xMPBmvBCvQYuI0BG34l5wbSFy5BqPKh9NUqpMKOmdz+cSxrAir8a3jF0DyCJnuDwMz4yQFjkJi+pkLjtGVLAzyFGDl81bjFku0FOsWCIurvXbohQ+LzPod/iqGMI2JzBFHKjfsiQnEnScS7jPahAgT+4a79bCyJWTdcgCo7cjjAJ1FeNMJoHe3m1u77UN1qOnKjkMqsd9ezWvbbe9XDveOL68uvdbKO7webu729/eNBCxZEXUJI/xgJXyA8Vre089Xn86vPpzeSnGe39qeaYmCTHmZwo2d7ZuHhwOv+20wbBcjOehldO50W2DUrGs6iV8NXH2LXr0pk5FFxihv0r3bE3ht//zj2dsvvxCFH785sJjJToPLq4vXr47PVp/Pz8/UtFfBuiYLXRxLxL7X7ejd3Nve29g/carNjlh3dfX84e7GxuGd51u9/u3lxd3V5ebTxum783/986/vrh62Tg6+/eLw9erDK4ul9rcvnTq0uiNk7ZwLUjaJUT770V7g7R0A8/IisM27unO5vE+nV04asu/i7PLCwECi1bfVM4tOVi3LeLq3F/WWiuwYPcm+O+hide1gY9M+g6xXh1m3y1RGeyVEJxmWvojjrRzvDB/DoHsLUASAuCY0syrLEqUUm57UYbW+S6cdlxkmzYcu687oyy5b7l+KeN3B/GXH63OF6dvrlm7ZgmBCxFGkp5aMmz0RntqZbRnYfosJpSJsILYrwDmbdN7kJIjclZYcGqthuof3gmAjoXFcbXLwyX9qvWmrejWSJeQcYjHFdJI2qMinLp1EFlJkCWeGFV3jOUFiA9l+Di0dEY8LZo01WjSVc7DqzMaF9MqEAb63gGpgmqMxxtFhf3Z07ObKwbbM6xa9PbRdwMwET4MdViFLejIWqyDWV70QAHNgrQkC8Xa2q5tru4TlQ41AgTJOIYvZtt4Bo4YV1AxLe0XDeP7W/ksVEzwjCfccAn4xZ6nj2GXUFEPq/BgrnxOXEranbSQw+myWr3kKdYqBZnWQ+FX6WZv3r472t592yvE8P58adF7ema+w7/f6+eobGxcePm9dbLCOw+3dvYPd95+vdjZMZj4xZzaMvdzDzs7e9eMNt1AclnqnMA3+xmESuislX/wesuVHy0rkRC0QRBiyoILAAgPd0HhRJKCoF2nx+vwSidePFJ9RzobQ3cxJ4lXebDqpKlOI2S5cTJanzEnSDcqyaI2iM6SEA15iWqsN6/3GUsb7xeMcjVMNNreMWrlTQOL/9LDGjTonjGpYplg9UD2vvzjgC4cJOKqT1IhGufAfq1TeUxCmrwksVsy4bqLA+jYlCa2oMStg1q5rfVW+xZ9UfSKCtHj6mUGgoAqsZg0obR5+meWAewHcQtQCxx0F0KS/WPAEQaTuq64ELXFsuh6NUpy4l5I0Xc8ncefIJjL3UAymAkhAOGEx7WX4WhhiVe12o5HMcDCAY9pZ51Vcgbo4MyMWBWj6wvkCLYrdUWa5AgqWdnELgIzIQg+F+DOfaRSX3En9A67+tOm5YqlBS+AKTrgi5IcJhjW7Muxqv6XxRtbmSbmiBn41isDRTxrI7SQ+TVQYlBG6Jqg65nmkiVxWkRgOL7KAJCeUJ0B7GkvZ6rvLzsQ6JWchtGdJi1jV09YIHb1wTgM1W/cmARMOi8pp2heCiJyKoQWvswpV9AiYl3VkI6kaYnn8KZn5+DetdNDpFMMXfwGteFqKcvPtPOQMSsGvmGrhUqEpn1QG+WrRWgDSC0XUmsHnmFjqGuqTjvEoodKS9D2YeLu07Fq55T+6NTp3PH0hcBpTtgZiBXvcsfNp/XLeXlW7pkMzDbhgJhSG4SDG2z4juiFy+RWkqMhv1HTWoVH/DF5nf224uo+GFw64Xx8cyS8xrityxbBgTA+aLIb7yx0xWoKc54STxY4NpEmtZ3XsXTrk9qhdilYMW4cxNkb4AzD8NBzS0S/7B5SYalpJ8L5a7SylFITcQSoBE2rq7BHa5hFaU5fpXYI22hPM0VoVF75Pi/F5ZOnb1KJLSc7vdB36i2dHCJQc5et3wGnBiD+ORmJ+Kzx8+jUmkg9NTv7kbUb/Fx5mJKl3/EoUPqDp81h5VXsMAZnvNHU+7rE0yQMlNeAPRJBI9dP+YgIp7GUg63mshg7oJmQxhwuBJJtcDH7RB3guBubmIAJ1aq0fCU6ok2j0LC47hTO3jvbfCrxoNji5ZE3Gt0BhkX8Ib6hYoDJS0Dyc6xpfeKUFH+Vor4k51qjJNqfkfer0NK1XQjSnoBZOoHKuK6PB9Gc8KTQ1ii3u17pzOYXjDQhjlAbDbjiWcAruRCRbThKMpeqYLhdW5kQEH70dRsS86rkVIRcXT7dWsW9ef7Y34NYrg64uTyVPt9Y3919JnLJAPRzlERtdgGwV/LmxgcS2Ny09r3w+vTn3Sti7R9sBWuUso/PsiEbrtlcdJM9TUFGIyX0zbQubLUJiLCPVmOMRhB38gHkoSG0U4+mUWHXmku+8/8rBoT3AG8fHtjE8Ci/u7z5e31wfHB54o9nxybEjMnrdMH+3tm6puzdu7R/s369fi36UMdwxnnlaOd/dclyl7vLhm6++uLu+2jrc+fX99Q/vP3+4ub14fPyff3fwP3x15EigozdHV/K9phSfbqx6F3XfXV/ivESyE1V29ncur3s11f7h9vqdxTmE4sSkJ8v9TR5QVMpr8czDysPH65XTG2otur/ZWdt+2lq/uXek/q1jhZDIQYiYuVLhoF5SdGU4QSGxg3wJLO6M18ok/FglYWlZ2uWwr3uBfPMwtiQ+PO7t7NrkWtjS8FUHn6IKgCzKx0X8ZyMY61RIJzYZPWlOcM/vysrbpm4Dq3kMxuikSoNC0zZnN9cy2IYxvILg2Pt+d58tIWI1bV0YBDqMqIhwvSOkDO3on5UuRFwm3q5gM7AUnqSsZ9uyUp8aRxkbFsmPJRXiU+PUekI9JLvMYtKXZR6PtrPTIns6nAeYvAlAyDGksefBE1NPz1TZO8K1+PDsLCCLbjgOo6a9LceYZt7rG1skYTmQ42KpND5ZfofbFosYfGdqRKazXFv3LggTtirh9L4pEm8wu3d+TpNjBCPWL3ULoDGc12gYThDb0pzYYsxfPIEzk51ofYuBexmZpOOD6s2nMqSYPcM+dwRerJ8iQayXamFAU/D0mRK0nmgMX3Wu6xaFnNb1rbwpp7TTVuwGgTB2Hpdh+Oe7SxCMjrY2vTdj43e/+x2KILS/teoQ3K194+R7e1SxgW90Dhjg1nSZqOBdgTQS5ZoKiRZHXRdeX0ZS8Jmuiv+sm2Cl3cm7JZp6E2oKeeJJh4NDUNEchKSrPLC+a3hSEmnM0kEQpJue15/aRTSDBBWpSlqoL+UhMT7PCSK9qKudzrTJFh4bCSDXE3Ef40BekMSmopq+BY/1KRa/i+SoFj1+8ZyQgIC4OZ2sCUhm0RkjPz+hka6rwNdv1GVcqNzyEgnzn1WzuG67hZWNJcpng5wc2y3mssh25Ng96GMO4D5YP93BMEwJzVELejrxqCIUEtvdga2HeDUoRge1nw4Iz4phspWABhwO+tkSC22usq+DvUJpYXmjytYNsvRGxQ8zbk1esZfcqx0qQLZEDzcSd11YUslQezZCrlY9RaZdGc9aiOKaAUyY4f6wgguIMuVpSKDTC2INml/KjFBa0ZduNJHuzYYx0w9++tRNZ0yFh5B3weNVICBGWcPQ8K9KEmKV9Lk1uZFWmxiIsQFrT5cHfrr/MtCtucKJsWFiUEynqakqLLHQNKbpvkKiSI9esczaXTSFDwi3hmQhsZTUmSZ75cIch9BZTKLKwreFDi3F2YXSkddMcHU7talyDakTScr5MiyJWIMxVeuJoqm242qGqVU66rrixS9DRt9iWoKIwiI0hTnwud8jF/PxkBVkztOegql3rHdjaEGK2pAZNo+UVYknC6VjAXGpGh0od2X73AsC+YvROdUDUhv1CF1EY5UgFi00LWVomO1pj6YQrikbkE4BqirHDoj2AscYxhGlpg0ER6EGRP0N+6lMsLAgm2R1LpA0QIO6EAysy1g/Cmb0Db9h0ugBHyqkwQAtY9CynN1l6xphnCFpxNdBNKJjFpgk1P7Xoh8f4li01LM6CV57e3vC6KIlXxfpQ0mOFp5O/AA/3kWxLDCfmGnpchbS0rIYOAzRQ/Osq+uCpNOzc9oykmO6KSNdVA5KAOZny5Kk1rVerVQEx0ACzbWFDR5FRAVrPQLQOHbV79Lc6bRr9+vJQ0xKIdI14aasoUbr4NIogh9dD8piDDWEDwN4FGsEMKuAkozYQuMoXdAYntZFwUeVcUO1tyAwjJ6RJuHCNnsJQ121Avl8rRJGb/vrtQMj3hQAVsNBiMdMwpLD8LtgrlwF9OIY5mg3L51bQEPhgvKaSO4zHOpuj+IXjpUbi+/1gn1PfYr+kVxftXD0Ram4vBw358WRLb31iAnsebeoEamEp4UvO9vS8LxQPHSc5fUldyU9VvQE/ae1O8eAOu1k1SGVlw9PdwLcq7MzHaJX2+7urTDOy+tLgR1Zkf90YTab3p4X+z+cX9yYFbDJ4OSrNw8Ptx/PbRI2EfF4bmH97eOcCyRHW206f9dsfq5/e60ULOt70RK2RouKHozGIjz9g5xDDG9vv3x9dCiCd1LN5uPB8b6o8+z8ulU0a89vvnh9+vEME7Cotxysbb56e3z6+WzNO8gub7afno+PX23sHjQPbK38863Q+a//8oPM+X/4X/7WavEzB8Icvj37y1/Pr+7liL95ffT26PDix8/7h5vvP318uHYC5vXB0YEw+rITUWXNRYprthBASPb0/NPpkz1y68/e7ivAODraNt769SdnrnS2z/XZjdUlvVRZHrFXIjxZbkWkVtFIVYrdTWHQZlGCI4MkoZwBQw2sLBcw04ikjwN+i6dbbZVYFWAGei3xzvTiFuXfO3e/nLHsNfHgnjMl06pAWKiVO1HF+wZs3hAEYtQyOKA5lv6bMbBLG5DtuljLYM4vzr44OSLEy3sbtFfV235aseBH+x8+nwp2dzbXjWiopRG3t4np8mmsWQ+qZumU3dJ6umTc1FLxNAp8aGbGVTwzWZL2KMvSNaZGKWQzGWfjWKSe0hcH51SoBIpyxSsmPrqx8uQ1vUzBgqJsSx59/IbDW6WRDGnwQYhsVVW7q9etBbrn4lizDsgu4QNL4TnJKwv9cwLb+7tqeE+ile3ObDK1oZxT9umezcVIubm9NeiUZra3xkIC4yV6S8WRt8RSdZ+6mRZ35efBxN7GDjmUdh0M8bI8RIlGgw5DuOerx1tWX2ZDtN3dBlIzrGoQOK6IhQrRrY6wmSf3ReGLAPMH7Sq+MgJeu5NgF13drd8fH+2yGL31Xsd3re48bbw+OrKFZvV+/dXGyc7d9u316efLh0tvrNt9fXd36Wxee9/Pf7wwG8DTwXnbLgGKlF+fXml8MtH46CHDJO9Y54iBM0QNFeVHvgrUtSkG2SkWWbg0PrkoWSRUMFGnb/ax7cVcFrOln4zd1zoRPoI+kPgSimFOipbOh0esDJTyKdn46tDUrN/ipM4d5kFCRmnC8JWGEYrC7igc7sxhBOTrePJsZaERCuE/GjWoImdCFlhJ/ZGhMSALMhUmyV+Mm/LXhcEf9jp9gmaodZ3TlcyCPWjjSQFipNXj02qtNJwOSTzPYJG28CFa0vziBCzPEU6UuSR1tEhttOY2kQ8LhzfDvSUX9jLHEk8UDrs4lMRSU2ijNFtk/oQyjKJ3tiWhF6sgm9LFnhg81I3uoSChx+0RfSXRC/lYnojUY9Gdn5HsGrvWGfWIoBa2O4q6UyhmdMR7VCtVyfBjT37JZb1Do9BadBe22sVYJU2bu2l+tTzCIlDJlpCIz1BRstzizBW4r/NZZKSpZaXZ4mCxPdVKyHJVLawAVhLE0/E/UQuo9pHkdxIJy2Tt43IKxDFXYrzZh1V8Mhimz6nYaOA0VYM8mKF++egqLZqKpTWtGfqT0EsG5BiJz81cfU4ifRuLmIC4O8UVc+cFYXfAMWRVE6LJaKSAfBT0LMlF0vLFHG8cm1gOTcrX4lgfJtAwNuuptyrpQQOe5sSLiCrc8hsZAQx+EFwW3uANWpjJ3Kz1AI7xujM4RGDogQJC3Ahwf1KcYELGhVKeuFiuq+Xr3HE1xKSq3Y5oFzkiv7DO+YaK9AhtQ3U8XVjjYgj2rRZi7nBobr6MOSJP054SSmWW2A7s+addDS/M7E6AYkDakIlKc6JQtcVzRkGDvBdkYhPM+h+c9DWu9bNEtEQP+cANUJjIsi6nO2uE5DKbsAs56xojHaXD6yplm32gI6itJI0ZHndzOJt/2Vgx+QILrS/Y6M5gRd2nbNwbmjJuPMCf4dWiN0PweHPk1ESItfhP7+Z6NK90BQlpVE9q02HDBmqqu51xhR56MaFktnAQvTBQKf2GdfnLHtVa4upBl0VI9CyWcmfWd7Xarw8DdlM4ACMcdT0iYBshr2vH1nGsliV6ZNqhEbm+JKlZPQBj4MdRgjZuxY0UFwphgqeDHr+JIT4NladpBVTPkqMCEWEKX/zxDUPcwQrhOPElCC5zPooBWxMK1kRVcKkvJKt3ma1pXGqOWes4wVVMfggj9XIc0HjbnNHe1q5S4iR5PsIge25OkBfmDhbc3jNxIky9+PhhTaTncEppZK+PXVu5v7nqhcH3K7+8+xieZpxu7k5OjtPp7a3bm8cPH8+8Jdf6Bw/3W120Kod8dWkOQBp23RSCMPCqvThSQDbyYl4uSRw8sZqEKFIaoWFaMcUMiekxuhpYFhWVfqOygi0+RLB7f319/GbPsfW3V9em7/cOdtTCKckD9IqZTk9Pv/z6m1svvb68+u67719/8WZzxS6GM7mdV/snR4fH+AWOc0V7Sy1DNxvj/ND7lfuLYoPDfTuq5Y02V2/uj4+PLCC5fbj7+PH062/fOFb+7PRO1nx7z7ZX4aJN1TtMVXQ1cxg68gcxvWG5NyB8+vD56MALktfe/XLBCu2wZlngUxw/Up08E20UUAqhzBmanfSAF4bamFvBhCkAxRopLknBlD6FaIWDN1k5wvL+1nIsOk2r13e29Si0Le6lEIVrdJg0bXmlUNSDkohEY7oH4mPbQJ1h52R8L3nY25UqRt6cD7NmsHd8vKcpbnN7fcOaH8uThLOvj3ethqKus2nSsTo3wsVGN5LMeUSrwlZNfCgJgc6rYYcwoX8tbaeoLJ0Gsx3otU89zFsHkiDG4nN6qMSrupRilEzVJcugDyUPZjAAHZpjjG2QrGXIG3/Kv6NNRXMXD3U6Dfh2dg4s/uENNWtRlpUnBHx+c7O93vvmbL7ldnbLzKwd7u1YmwU+7gvwgjmb6QOkg2ToVshZnmfaanX1YH/LaNg4Rxp+d8vU0ETsZIT3SSrcMRM+SbE4z5ZympXfI4ncAo9W8hhxjQpSdbYgOcmqSbpdEPVQuKAu37R4umbYvb7hkVhbwUXlFNOBgWHDh43muxYqIcYuZ8t/nPfv/XRbj1+/ec0X3l6/Pzza2t8/gt7p508UydDMYG/38FAHZf+Md1pjOCyDiYCCp3p3OCAqdOaaLJBoroADMXDtwSBHdjK1kauBpWeJGXkwHOgKBE44H+X5ZC6m2IiWiGlpDecZcaylR7g0elEcX4G+pknFBOPBSAo0lznkWhuXsgBxR8MEzMTcKV7nLsr29sPjIA1rc6Ah6OZLsNJV3xNkwuAzy7wU+GsejtLka16L2HfgCqB1EXwWVWFowCxCX9BFjnbTfjo/Jxex9uwx4PxcPdvSebkBEsQAnNCTD9QuDAklhV64V5fTzRTFkF43Gub+Cz1LVNdxAMSH5B5JKukwC/2FDpewGnhkcvmcop0ej5XR2Ny/JqNijLGutf39sDWNxpFwLBlyL7aTI7OO1FSQUWtncKmQeGgziHAIcF8BXDrcOAk9CHRwX683IuJFqiXHJjipI1t0qJDXKxUDs8TrMAJ/iG1uPJoDXiciIoOGPi3uGau3PR0q+kLbjUDQhy7ZhKypPsegNOMrVlHXHcUztNjRZ6KCVGoIAkkZeKlhRWtxC95OVJP8G4imt5Wm3TmxCcywOZwZc9I3B1J2Rhk4IxEjKcbSnga0i6C4X4DUQR05HjcbFOAaFJJeEcfC1kK1fGPiTqAgq1A2EPZudkPV+czVvwWcKVjMw59lOKEMFimkuS49myB3qWtday+xbIyqNZ8IhaeS0TzGWKWp2J9ADI6wUrD7iy1HfXU1VBH4+qqRebpYQRIJeboRNyo52AVUTdc9U31hd8oWDoP7ovndmGJTZhBpKOkzTwY/FbCA0hdANJ2kD16e14TCdWF5ooWPTBey4ZrWeHfqrPOhI4P9gpIKOjJVGh3UiLqpu2r5HSXdmgcgu0jQbOD/AhJHFjZFQJFQ1V0omNEVOrOdeBo/ozq3qMrAicWUbPGbk2UR9ytCGwol1FeRJUcYCHNk5aCTiwQn3yRDlQLEAO1y7ku7AZiFaNxQc7JxAtggxccXJsRh3/OAjT5nBBMkbDAjm3bFn/m4huvSTCdYiBLqEZUsh+2+Kg0Pgq+VZhsg1B3TAi0BqtuGsw8as8PsLebDE70LnyGf0+RufIiy1vs99NXBvFCKjaUG6+DnaaMIZsehVM9ttrisQwiXkV3aMg31NLUcshq8Zefjm9xnzHxB7YZRF8NGxjn6MJXgQL7py+gJGkf0MyWVXsZcJKQHI2i0j5xxPx4OzhGkjDCM8tn+0vbSVR55SRWT3cPWwQFfhHf8qY0lgDihfm/PGeG6xvub8wvHXAoIZCwESbsbqzdXF7hwbSmxwGVt6+DVHj8saCbHq7uHs/fntgGj87WjLr8Wia9/fH/9y6+ff/5g4cuK1T6iay8HprhttiQgu0rum92j7o1vi+xHFdFU9rd9ZriT1NKcNBBJFMhqHpaJByzI2qLNrQMLMZR0HJCwVQbRpMTrk1c3V21svb25cXQ9e7o9v3r71ZdvvuoFqJ9++eX+9umNZUPzwtSb3lt8tnp3KsI7fPvm9Tdff/rLX6B7efvp8M3O1sXK2btPRwcbx9ve+irA2b84//XNF4dez3V5YQvD/dHRnohf5OCslddvDiGJRYTjZCTasnewf2locfe8t7ZjYEQWR0e75zctCxIVkzFaOfO03Utn7aA1wsZUx4sah1D71itvMAajM/5GExfSuxSbBvg4+JOetMydZHPc8s20sd23ZY4DL53GNLGCHshgsWaHpnYM12TOJMRxkkY3emnHMT+14gUKhd+O+DRH8SzB/7x9uL1660zrR+feH2+tGuC5ziatVLl5kFo+e7bd+nJnTa7denfZdgJasdXYq4J16oJq/lTvuu3QSTMD/FiWMFYwQ316SJpW2bCskBRHLJ4tTzifzL9TTVP9wg47HyKwftQ7Ayx0WfH2LuYp629pVhsbdpH2LJ2/SQxt5XwsDmaUIj84H+0664Yu0V5J7g42rVM1Qbr+ZJfD46WJmtUdWW+bzveMYZ4ubGbwxgard0TPe1smcJx49Pn8xvjQbpT9/R1TT3CZibNnkyGEaGSFUTr5bND7PXrZ7715IQEWP4HcHNbqmkN3eSqJBcMpQaS22AKp5uGRmk3zwwRSbEGIMcc4Z6s9GJQECKJm9V5kIdRuhtBJsreNswSBuHppe4Mc0Cx8ujuA1frPHz7wrNZwHxzuO6/32qFWW7Yx7Jjwa0pXXMivrndqnsEJRYKkyRMCDKVRG7qbc25veqdKFZqwXjJKB+msY+m3CntVLgfRB+Z0PQgcsu+/mTY/Os9RUXzpQ8I5hPq4GFPdKvc7r0kkU79HE0e4xdAws0UhLf0yJftEoBJDyghTxyNOnxq8+sTBpQ5c4qK0LpgQ0p01I1QmZnqzBqJu5p+BoGF812SC0YXI9mjVH4nspOTr4H2M+nLGHSdIFDiUB1M5tZ3/fgEb7rOjgP83COFxp6+pK7ToUkm1UAGUlvC2rxiM5SFTpoB863mCjzMxFm/yiV4W0r5hO0zEJyygduvvBg7qNOEOsNMHwT/2u07sfTC5vhnSTAyBpsHg5tBkKwiWQ5bJskEgb4xdTW7P/sCxQ93KIt7kpB3d6Tio6adGZ0KpXpLe4nT60cYVfG3N03AuiSOzXPUQCLn4VRagMdLKeishi+zrKdJw4nQ5DXWl7nAmTQI2JhSQ5GORNtIHLuejsGfFFWmmgqkpjuKlAqPKca+v7tdZKqF8azLDLWijpZQ42BXzt2iEt2454shRhRQVwwI186KoK8VZncCMyTcQQkqRW3XDGASfbIc03UmhwjjMs5cGV76nn34jUlNtJFhCqQjKt8e0Pgv26b/CgBQhZCA9TdVNwgwQ3krh5ksrqZRijWzjcR/fC1PcSfE0OZAAgWdt9Hx4OHGOlrrjUch14WsNJYQYAgJo8Bxm/AahUj6pPcS1EasXwxuEPFsqjmwXuMOLYU4YENnLdSqtxdrwYFr3dcnKQsVPdhqnMqOxf8Y7fPfMg+poYqQb0oFXmEcOXFLLy9De1LGmkz1+zuabHHQKEgsyhkZ4yobGUlX6Ko+f9gw0kVBZ51x/Jy5zDSrFiEUDaUmEpFKpjlb9dgtaC5Gag8OC8BCkzDLplh8BDPKVmebql6OR74isEaFmx9u21bWTOsLqhQNa9GzE1p3gzKRtS/pcpwtT1zNN6xhSr1j48lGEefiy6AGsRytSC+W1klGU1M9HuhhoOp2iHJSOtS86FMzRXVzILyu76Eo0DjNcuLnwod++5sTzFzGwWw3DXLNGbYGGt9AIu9E8SBURlKvwYnB5IZiXpXZkjNbYTJKyfXa0+eU3iTSwT5Q4BL5245h5xPuH3V1rjjnJFEOLQeYIR5Xj5hwt2v4Tsq5DSRuXhU+JFsKBdJN3SY7DMTmSqA3IDFzdVKasIb6LgB+8F2nn8PiV1CzKZZShYQXH1vZ2TnbL7thebKlWG1M3vcVJ33khNL+/uBK5GV9s7DXtYX003u0d7u8eHN/fXBy/Euq0voV0by4uJHAOnKG4tnZ0snt1ef/rDx/ff7bmf+Xi7u5CkcI1QnxwXP72mvdhMY2ZlepEGqc3SnijDYeKeNLDcRnoRWTR63QAjU+EI7jfciXzFU7zWbm6Xbl98jKB5wfn0xOQM1nuHp0NanEOfl1emq/YPtw/kCGXLPvyq7dffvvtzz/+2Ut7j07e7B3uYZrVGvTGFmZTx1549t13f/Nw8+QUoYvbH5z7vmmBlM3CXx+IIC9uLh0Mtb95sPd6j3TOzgxqej8leWDfgYhyy3Js0Fadt3h1dX95dWuAIcJ20optmMKFtHHj+fPVhfB470DkveZ4SYzxUnqqn/2tmSG58VqznZ3WAk1Mld/Q92maP3HcjSX1gnWKKnos0UrqxN0pMfw1K1wTZlqHwzoaf+R2BAzsulST7hA0kz5CaeUDbf2MZUUrT7t7AuV7JyxFjCHEpvcreKtCiW2e5vTzhbATPEph8Zeo2nuyDnZyDg39vZ4W2/f36JVXVolMDJ+YAIKuHL2JboroVxoPfON5ak/oyXnCDmSkwUUpjJFp+FYd9+DM9HzJYCdnNqED++vOvbP5hRHPmzLf3upgDJPJtMgeGuLmB0MDk0sO79mzjEa29cYW3u0n46PyekY4nKdtQs0EWBdEamZ6tqT0J6C9vbVoRygsHDYtJpwS8axfXpnybt2OInKwt1LmvWrMZFqjJjsBJE0a1rrGxhKiVnnhdcEcO1riexJFe6mB3lXQ0BfTmV84dRNTWKczWHt/h544VPMU+VsCz+2g0m4Bka6ZPYs9wG9tep25xUkmAvCHUlVrbfXm5nEba4zT2otjpOeddRv/8tPl3lkDJkMP29MPTgzknXS0+d03X7199WXvokXfti3u9TI44liwkqgzONf15yHHTvO20yGIBvQmvGhIjrOlhGTmW6H5JJsQ6GZoJuA0or+5wJ74j1JfW3vhHo8w/lkR23jc8olTJotmFYeS0T4vjMvTDiYuQFFAszQZToAszWlk5JLbV0b1R3PjEy9pUkQjvxqQtJUXbYHlb+gNlm3LXggMP5DDV638rf3lNIEO17MQUl1A3QrNdivYIOYu8n6FVplkwsxUh0XCuGQtNjBOFGxhtaegKQAuU3vpnw0OWxASalikZBDKmAlCGvzQw2ZsGtHUPanlpi94IiRfDNCNNFPrybF+QflBm8VT1IJRjB7+e7h2fHCMzzc3tnWVqqB8CCImHFYrYSVCtTzEFv1L26zrl91nOfmAKUQnp4NDP/YiVr+DTFxzrXClwz/a812z1B6TUYsGy1NbX6dXXpg/WbZEVqzfKIiioSuughSEekFQwHSJ3nQoxWO7RBnTfMVJT7seaU32t04bMcwoFRq2LoLgTwcOc4yBqiq2wPEVKJiwArSDrs3xafHBRZg2jMk9+qeY6qGn9RElGjPzUWZl0Dc8IdTBvOA06tSq9ZDnIiecczUwa8en3oTP73VD2qV+DScqDflI1mJU51KmBSh5Kq7UDxXZkwavBq3KEyi0G5aMJMYRVWzBDSUaG1YUQKIuaY3SppnxpKaS4bh0X4KIihBBB+4NymE0Q4u+VwC0GAt+jKx0MJAzFfrqS1+r6GsMGTICDoEaTa4pQcrc09EKZTn1yMoBxeihk9LUnYxVBK4JnaXtFA0I9CCPhlUXaEBdOEs+d8OtuTc0EK2+vgRewsZHVA7SsRskSyptGSRswteQRyl0rasB2QoPjcP0IQHqmujSUNnfotLUui+pdjU1E/LD9KU86ir2mx9UTIM1VB2UV76nI3DAIOO+jiRo49cGat+Qr3psrVhszjxiUdHoPO8O4OFZyWXlUhVrbZxQ9eSHJvydNawY0AAGES4G8guwRe20WWGyKz3DJklKCi2KRDcUXpgEoyG5WBkidavlaaJS5zp50NjmP/+rpTg1GUcugCwW/VMgJkQWqTUYSMoFiNkqhhCQ2fAmjtmf0n1UhZHidiZMBx+p3VECoLgUGotRtUMjJrQjokPrx5ziFSCLBru57TiRFGZ1d3tnOSsjrR3uLmwcsgZ+Q5HJlU5kpeeAB15pLhNuTjUU4MNjWmi+eDZ7lcSIzv3ZP5A4l+Q7aoree80k+Y3m2z5qR+NDSQQJ6Z39EfTz9cWFlcCHh7sX56db20/bu1tWeF9+uhA7kqatpFte63t5f3p+9+HU8Y/eKftw2dBAxpT/8WYske7D1e26twG3nt1jr+yB0FZv2upLdkQwugE6QD9LyaTotKYhLlHwIyZjsbMPZaDWHN/Z+dVffni/uXZigmJn54pAveV0z64Aq4zMRzuR5s7a+x04Hp+82j+2WOmLT+9/eX9x8fbr7+Wztjf32OeqgPn++t2ff7w8u9DdSLn/43/7k1a+fP22s1Muvd3YruhOhd8/2rc7oGwxxpbbXbONFHp5Mse8FNblOM0T2PVjgCHd08LzzlFdW99d8+oE2wlOXu++e3d5dXXnnQnej+bNapZRXjjgFb1Wy1CRx/tDx+psbI0iFYLIRDuAMssp+Z0BWURl4M2r188lZY6C6HHJUzsraCgmsZlMVDq9pHHMy//4BRA2sxYrw1yzi1HWtYur671t20ZXbR5YtVDeEFDmWGg5scLe7g5yzi/vzPEg0qp34YDey4Dy1cE+Om/ub/eco7O5ebtpUKeVBgGNHKCnY57V8Gy1tRcJ0BKauUpPQxtyecsuWy8xuLM8hFOEcfrMlt/l/WxeX1/b3zZoKVk7KTcSeFxry0M6ghcK2AgtwjVQEd2ZOLru3XaZnoz3in0J9w44EkA3lSh1ryojhsDVlf0A272VbB/8zoW0A8DsVl2FVz5sbyFzo5cAFA6atBCYCaBsnqergpvNR4tkoKDDtSwqB0HoHdW5ahGZMrhkOJqnoSnIo/ZiICfnUCRy9PFQNKm1/HzeprjKb0Xt7KcgdVz8huaF50Qr3/i00jubEa4raosFJtWxtRipIN7OnKacVDAmKUja5XSe7i7u9/fb3nB8uPfKArU2QNuxuvnh8/sj04OOm6N5qbRes7UiMBB85lw4mXGz6VTxHy2war9zxqANf1TAcbrWcCnEycqTN1zTV0AiZMI+ypr/nAAu/zz/JotJIQBUkllhYF+n01n0BJSO7hkgPZ3+UYHc9fRERtGYujziHGownuIwmDMqdvrQut0v+Bkl01e+XFAkHIPK9FCwD39GB4ZJBvwHtgIToLuZTS1ap2Kz031gLijHNi5Bz6SWmyn2RDOQ1EMUYrZQB4QmXjRfSOd3JhG7XXuks/MIdThhZGvuQpFBqkCFdUMe88Z42gQZv0rA9Ugz0ZflZLBugqlH8wTmMAQI/hZN6vmjtPLlYkIQXY9Pf/3xr/gDveHG0r/3iKR1/xCBWPTGx/o7QHQoNV14U68tp4Bb81WbOMGeRpNymiOL6ROJX/XUZLLLrge3fEABFRnNICoV0nyaZ3m9VVaRAyZOKupnEC/ChjMWLGM58YAyC7EhCUvSnJFAtwugqWhk+KYzVT1GFY81GeJ6QXs6qdpXWHtKwUrhRKA3LfYrIPSoI9Qo/xL0E27cKFTQVF0bH9WqioaLrAxNGOUSzpOO14kXQGIjYUIqnkChWIgcUx2SxIjhvOdRPfRVHnz9UDYLZkxINLF8Ar9Rwh6qUrtVQ/iYRp4uZ6yj6Ka7KcFCe+ZYg27AyzfBGL7wdtDRgVVXFYW6dse/dCMljGTNJN0XK9Az0Org9BlMImMUvpvzIDEV0IfDNJzYEOjp8DC5AKLWQOnXb9o4d9yf0rVQJ5OqY5sgB0T/QqBfqk0wWmENKJ1K4UH+zlfdjAwbDQvBiduqUmzNwrObMBoBLwmOgGhQ7ZBLTnoxGmskbQWqkqnsBI4IqPn+z+/5GoH5qap2YwK6hYkaraGYkkK/qOBigeMvFAvHlLsRi8Kzhg4+eRYfd3LrwzUXygCihVTZShEODiJjIbFmEIshI0hmXNW65FAebk1Csf6v7X1RGrZTNeZj0RiGgCj3Jc9R4EjRaQkqojqRhGdhsc3N5dEXEAlMQ5hBW6uTZ18UKTEzFT2QEtlSJCdjKAOlkA435ge2ztWDwXfgi2kWAubP0mFEUIz1K8YCUlDXvcWBdtoS9CC7JObjXxBDG+gss9GIc58csTJeNQXwKH4Nev6iuN9JV525P1xJ63wnDj5EriUqBl+EjEOpm3Rz2XwDAl0MmiqEGR+iv4Veee8MCxVFgaC2FkjokOW56djvtU3yk+i/xmdfEYYIS/ydQyP48h5Za/qpPPd+cf7Z6iFDho8/vxPsX99IDF9NeIel9wLEs493nz9eebEUT2X3Ly/07d8cv1o90BJvaAPl59MzB+BIKl3LxD7ZNnQj7YnBt5ZLD4WyVAIpITYpkyP/D1H/eEa/x2hS+eI8wa91KXOWvMQzq7PKwlzDqy9fjXqiZe/u+m5vfx9mRj4HO/sOp79+2DCUebMjqnvY2j/cONjnQc8+fRYjvto5uru7fvfDD9ZCbB8dyiDdfrw8fffh299/Z/zz+dOp2ODr774zJ47Vh0evPl68F/AJkqR+Z8C5dnNxI7u6d7AlqLeqCLcdbWMjwI53ojn31Nji1nt/N8WAuys79MOO2/1d7tCijNu9XZF0hri5uWc2BXcEfjTj4vb2eO+wSObGqhgDpabXrKyxRgg+JOqtrdJvpRIbHsnHd9g8/jAbHCuIoqU0IN0ugLCK10IpFpTiZdmN8CmlPtXvfNTq6t7Ong0boklFqJ8hyGovkbVVo85bSvjeEfqN2rZs6ZDeUwA0w/gd0bMRD1mtrziXFa6QItnpbp/mGAdmyqWsYprfkGi0CZmcoldEOyHFfMXLozR85qA9RoISxORfSDMw7kI0vVnshVcmhcw72XMBE9smrpkniIq4Ub4+q1cNEOPebNkCISH+7QWV3vOO3Hpfp7VqKIs2iXV91eZkq2to3WmHhLI8Y6gs0RWVErub1BB5atckhpSkoNCAE4sMEUzOCLJzT/pbYxdD3vnS21SkFkhfpwoR3/JK3ApxiBVmMYmuBJJOyTTksJsZ5hL8D21Pz4tYHNKmAhM5MzUv+TtpGsWswAQZsZpKwDPH0ilC5RQdvtRRRtBDvOG4VVjG7bbpvz4+2D9wXu7G/sb6337/tZVOp+cXhn8Oddo53N6woGql9X6dFXb/rOTzulhqi7fRCOOE6hKOp1DTx423yYfnqxufzNisJLoCqeJ473GH+jVojudffk9hTGMfpIeC4CTrwIFeq56CNIpfXR9cKRxUvDFc/bW2FJwqFfYUMhAKfgDqK2PR4O9BvMm76pQbxmgHrsHpEUkBGJwaq4tpTOkKkkt8Fuhwq/cJ+pSELpOOKbnhob4hAWFEtc/4/fwJudYK5Su+pLLxKUErHDCWW1hfOipWRLsrWkAVPW6co3+fwQaMKzQjDV0Q26p7aRQ9UX9UmYJOAShzS92aVQrPrL+TZxtoFelmSQVxETXr713Q1VgTN2a1FbMq5m+cAwHdEAQXJsAS4uIH+LsfIcOj9F3gC0tJh0nEJlSRRpsxuIo4o4WQqQg2hERq362x3FCKoTF2esl6CAO6tj/1Cf7EADApKvBwNAFb8BUwTB5xZRQR0rp/F+nq0qgCo2LdHg0LJ5CnB82LDime9tM16dTfYw6G52SmvicxAXs9wJ6+luSsvP/ggImMF4AhV3mlQ7ghWRSmN6njNKrKKBgMlU7ZVG9oFP6YQI6oQBY0ggZtGujdOAAEPo0j3J5OVPXCyUio5fkVtxf6hz/T/PxSPTTAUA4PY12tAIzoZKRiaZpVKU4LDRqlLIOWCV+DNtEdYFMyTXaBWGiG3VhNep7LDPJSvj+1+JtOBCRcsSK+DN7KIBzgIcKtyB0OB99nRP1C1yAcKZ6AUIwLD1e1OuSx0lrXkgLBJVzI5j66LkOTXKDpvnrKoX6qY25J4kFEkWBnjQu4pMUhBosAbI7kxOvtxxJSOz6lpoq8xxMt9KhWBWQweLiqws4KkelJDAjVqs1VJAx6/iwf0LTr2iM3Fzvo6XBt6g0HguJuDTUNDdkRAzaJYZFdW35GsfSgL2nm/I2R65APSwTMtgF36YQGPecdEsLIBaRkvFyP61k4ppXa/21kkgqOSWSuGQInnssIkXrivFHgIyKnhJN5w4ydfxnNcLfjApq6TjuzrnoU0pkd64SYSs0djixFARnACMrn11aghl6ER6PfzxbB32CwgABi1tjSB7iXup7TCWCld4/wh0drOIIWUkuCv98Lqlkv1w/nHhbZ1xCyYrNFC04mqffABchHtacQAGcq1mgV23/oH2iJeDpByNCLiMhIRumX966XUN/wQiYFnd6j+avzi1ULzned/yOscVhkQZVRGVK8MxQi11c3nho1XF3czGKh+/OPpxYOXF1cCa9vLu6lPDvWpQ1STv/0gqetV2/WSzVufrHlRVz7W3fnTr4/PTei0Lk8d/a/s+Axjyi9H1XO2BhQ/E5BdpqtXtkeSWUSmNPZ1a4yRtlrHK6TywqSOSMQ/iZT3PESK6lTPY3Xyu5bCE60z47hxx97f6Wxrfi/OLsRc599PhOJ/t1/eX1wfPK7P/6Hm8tLyWCLJfQfiNWK/bkPVoaseBnwu9dfvvn6f/j608/W/OzueI3t/t7Zx1M7I6XKjow0Tk+5gC+OX8mQnH24kBdvz6t9sbt7WI8lhHZ5fusYUHhfnl540dKjiFTa7nH98vzBwvFbW47bD2ANldcGXL15dfT25Phf/vrepgtvMbi2C3Vz49orw1Yeml8osDP3beVPXREv0iogswqWLRE0RZIHTiPz72U43RxVxFVBrdAQjZhVR5u44xXr8CY2xeDaPkghrEx/C55mCVDepZXxxc9bqwe7W/IUVv5cM7hpQsRM8a56GbnWmNmWAQErtrvgFmYdY180LyVPgkRS04YEDsvJDZpO8HIx78p66TXpP1nT9mQPoXTYuT6Q5Y4s7Z4XCxgTtAPHSvQixCZVCjIkgBn25GX0b5LxrcZ2HIKZrNTn0a65IgPndZqlsWKBH1kzQ7HSDgg7GW6P9uXH12zSuEnheHDk1LB+wI4ZL2MC3USHOQ3N3RjW29q4vnG4vUeGcND47bOI385m64KyyHuLbXaMlreszJF9wGCWbpjmHFoE0kf8GMfQRhuZel1mCq0j8IA3mzgsH7Ta2xi01SFLxjbgN2jIIzT4dFJni50KARWGmwJGhnhF4m0g1/XUY+RKEW08dXFz7SgsKeEGWuvOCN4+PDl0OKxji4jkn/7ygxkycPbWdw73Dtji/eXd6rwJkYKZ9IgvufukyY/BAehERSELR3KCXCbNH/ezONgJ/hSZDMXoGiKzXL4RN/Js6o+39yefrMMD9CWJU2emUNzJDWoFFtLobRTJW+SiK5NL9HAcr9/zKTyi+rVdC/2Zrq5unf7hCS9a0JqxUGrt1gvUQCrzQgUkp48uxs2Zv6Ca/yWNTCGPo/y4o3x4UozvPas4c/PHcLt2fSq+1FFKIPXixIq8hxkUQCFKnp5Ed6JH0dyplRx+YXdj4ge7R7oTF1jdXLS2j+p7XPA9DMQthhfYlyHiSygAHRZaBzTMH4YksjL34R6uUah3nt5qiokUKFa9UoTrZGWJTD43nE0xoFecU+9PJQCHcxAQi5NRjmIVEYxpVkPpvsUzbA4h04/jIQ/BGDWeoAtNRk6Nu/KE6kISh6mD1ng/X2sFCoGagYO1dnPucTJVEQd0tVUvAvbhmdPbIVDT4CWctA+GfYVjKt1FPb6xgicoqVaqUH/ko9ainx6iGjzl/EEychohC9tYWJZX3weeYqhTEd5w05Y7gS/sfPk6wQPgNdKjCc1xJEImu4z/+SmVVI+KruX+5NXs9wurGVhCtHYI3DlOzKHdd9ocOjMc+3eG1CKARZuHgMBFmpIUybcRGuRhmlq4qGFXo+ZKIxO9m9sbLamDZ14XpuP/Y+nCLfcDMeDnghDp/SBfYdVoRUTVzvwXlU5D7DL6Rwi/Aaxwdf2eAQk0Ymroua9NEHqc9lX9xV/4XoFWekRAuA4rq6JgTTS/jEm4xkJDZj4xblKw6WVZ8+HIYKxuQKE4yNESNXyhQwslFNGFYmAy6ahF4FJ6JJH4pR9H0VwwS78DEoV9FI68TMVPDhQEiuJ3bGNNj83QqcLOOYEIHpfUKKLa2gNsGcnxBZmEiu4ry8KRjSLSrjEfJiEXGw5CkBpVrAtkAVYp6ht1NT6g/Q5eFqbQMJaF/BZb91R1XgAM3nPG68rWL/OOAxBkFi6e0wJkQMYyvBrLb1iC8QrDIcsPCd4ivoVBHUBxyTBG9XF/pUzSwhF0idsUScC8dI2L1JLKBE0zzFNYiblR6/CHXUQPjQujc9cLjaijZuFAOayllkGJnxoNBOUZ9qDOF3U5ZZJ1HeQ0JxeAm8tNTbA3X6MhV5B++kfuiwRR7ELkQcSma1ttjOMhlu+KXVRi2g049Il++jmLS/F+e3e3LrazL0pL6JdM/xOzeMvNPIu+xQ5UvcXWNji3t94EZJns/cXpZ0cp6nzJxwqCNyc7Uq2YDf7Tzf3b1/Zbrh9thfrF0/MvHy8//frx2TKJ3e2D3Z2//vjOaqC9/b1LpwndrV7ddQKm8QvOWR9h/TgHjqrRV12L98WKjOtgRJmoy2gnm+2K7ZAMHaDeD9YpCaAsq3i4P7++fvN63xGbB47Z2djc9X6x23vjlqMj6//3L84ErqvWssT3J9swDh5Fn7lRMe6D5Uy7JwfPV+/f/+svX/zxa0Hj1dmn7e3dld6JtLF/8EqO23u/7My7vb3yYqvf/d0f3v3y6eL04ubCWiDBvqVRW3fedrW15Tx1q4PsOT79dHr8+vWvv7y/vrtyOKnz+M5Pbyk21C2PEqw8WgvUgnUryJ2h5F0Cu9ynzQboJhqvCaAUhCtUtcl20RzdsrDS1D+h1sm2CrecCVcyd1a3D5sl0Ol76Rg+CbY5Anxak21vQJtZMhxZZIqBmap38lJD6Nwd3zf7gHfaofH0dGApS5E6ZTPMKyai7/r76wtrVUwObB05Kio1TsOIA+yOWjV2c4fx1obLxXtwI7lRsbnYlAG3pqjMofcNL698VkeFqmbxeZ9cSAjTjzsvN8hXG0VwUwooyc2JxSk5HK2qMbBHJByFwQ623dt1UqfR14ozaKkpxpOLORgmJY2Nam++1R9LtOONfQ77e9v3Z5cZqV3OW4QiVVomwOIxiPOjZq4E3JyXVV7qO0HXNghbupsEeHTm/o1I3TzJwT7d24AYq4G866ElQzMPNr5UJr5TbtmNBDpKiIMOy9QIvi+ursYhZYuoLE4t4HBaHeNFeGaOCWzfQiAM4RoL8pmDZMQ4DAyca0jyLwZ0idVKQlMTTWWsbd5dG648Hnh/wfrG1fmNSSFb9vFe3ytg2DcaWVs9ONoyfDv9dHF5feMMaLMbPAP9h6KVhPOWPaPEKMvhaDd1U2/0yx9KFqp+jYvWVSU00cmmXQSky6YN63OxhNxnXCunPD0Xz7nEqS6WAn6jjldTYKprub6JL412DBFmToTEIAI7aSktjhOexYTTg/z/mPqzXk279LDv2/M8VNVb9U7dzW6STUqiRImUBMex48QW4DMDTgIECPyl8iFyEiDIQQ4CI4GBRFIQxzIim5REi6TIZjf7HeutYc9z7fz+172L9lO79r6fda91rWte15qXJhsQ0Hi6+ZPmF+Ks8HX2pJc2KszzEI7/8bxUKveYgdQYLjGlHLyuRqpWY/wv7FLzhQ/TdA6BaXK9DG+nTSy3jJmZ96RMy+ktfRsrUVyG0KxPH3+YOl21XSqKfKcqpt1MeNEy/+KDv01KNKRd3yBedhMFpgUAhykvzudmhxYnWbX9qGkcWfEMD/2GWNFCDZNtARUnaJj76TNPtQgTvwpqEdGregTVqxNS2QoJmp0F1JKwvpJkch9M0pBhQbFvKbyZ9jX51zFpD4wwJkHEszzAMAGG8ReQvErKtSiafLGLcHFzEMDAwqRAY31WPW/TpqIm5KUhSdYnRoWhhxZxMDOj5imR9FHbeVYmnpRTeX/Z45RagpNCKR/EqrEghz2AF0MTozlKHFOHL0wJi+J5zXotplxLdWokRALgTnuM+JjToEnxa1+DWHu5lKp99AXsUULq0Xgc5g0ro0xdyQgrZmtyOpAxLaoYhlFTnhCOSJAnclFk1LlwoUdfUvWYHbP67pPL9Ta2iG2M6XWGmJReSskSoiK9qp50Y4EmBxgD0MsJeKCFumgZW1aukklfizHf8gNGPURX6ph6QxrMavRTizOes9qV8I4UgBgkIs4LqBDESLNGhZBxX9bKTPyX7HAhXZi+Xi97i1kzrwSrcrDYxtf7BNO/JbvcKbTEUHlykex2yEBwdfBZSXrcQeDSUT/hvCTGi0QSXB8I5A0bJOuDr8398rOVIoRF1cJzobXjBabq6h1Fohne+gg008VKyj/WVSMaa2IG2643P7Y62hYKY5xKxEGvnBfZMpjo9awi+C96sHjk9LtEOVWRTJbK4Fo73ViCsjkRKQ02MCduIgUPFGeHdqA74FzhwZbMU2qC+LgjBw4mK7S1ACb7XqrN/8GnnDkQdZdkmLMLTXKgmcqgFDnANZaTScBnwiB5kZ/1eaVsFhtn0kI+bvCchiKo/a/qecCNSB0me1CchvQnBYuRFBTPQixoUZYQR/vHqIaEwb82lMGoJ30JBhbFzIb7IyHEjK+Ar1em8yZPrTCSF+AjEIoxBOr2KKZCGiNg4mF0Iiw32N49cFyMLb+IEIGk3mIcywk6Ev7D/fWlO7kQdXN+zpur0TAnD+bIyzfffm9ti+uBIbi5unHphu31rW9d9ir0ccWmYMvSBb2Hs7u7S5jvCT1Oz67fnF9f0pxHh0iui2HZmFHwpKD1pTqaQ9h/dKzobUlFbtn6E52q9JxU05B2FBBK55bKdHm78ld//c6BowcWalvnUlQs0n784ovPd3a33E22vb9T7FiDGIzxzw/Pnj27MRp/c311bvH9qhDQjQY7B8+++cWvXXDw6ovPKA7vfvT8JUKunPbz8Hh+dmnfwu6+aG9v5cO5+5JMaFgOpV+0s2MxyYxqr6xfdwXCCrBk7UBVi8avsMGMSgtYdTkotk4aocVvU24Wz9w4kf7mzoyEFpydJ1xLlRpA4n5XbC+mAJfuQ7F3aG4UkoFAuCDNN+HqhRju4hpFtbePJmcaHrhxS5oxZmTXvWzUquPzRmHrPt3hatGSGrBFhFIE8PhIhLTp2d4OTtvmAYfdre2359cPufdzroecNARmC/SfCn8eHjAZPtbACLitp8/RpcM6wwUEVlgQFr033N7oYj41vWe/3QdKqXRa6rfU5jFML/ORvA05ZSH0J4fAj7M0AAWy8CxEoBy1i404+WrzsYDI5KqFVY2MmzFYXbN5w2LZXfTrdyh+q6f7sL6zCdaso8D5ur52ex8d7pqUMmyvauYgKDT4Dsmmttd1wwRgHxxvSoOFss5Ayvln0kJ4NwDoKGWnyOeC+KXhpKNFV92thi05zDUbgrtNCe10W7o9YAxZJDfm+XDq/FbbB/KsJpFE9lS7TSD1EAommG7e++rabfaoNs5rTkCPTFy9cYPbT/MnrNyN1Izn0XKt1jYR70bCraWeg4koh2m5Nefzuo5jQy9l9dnB0bvTs/enJz/78vPbizv928Nney51MEWw58a+cejOhGU79MUsiEVB+DlNUm4KE1DPf9ZWTOOam57YAlYSkJxYiwDyVPAfd5fhj7/Mxr0DkCL5eAgUsDnwVl7J1xClqb8OzKEvgDCTyvPVy9FtHtJm7G1EgxnVitXV8N/6tLgaF6lKoCfIqKmmusZT2tUKtzCq6qkXCTDQKNA+PwxW5y3cpm3t7fSi4dDAk2aoSC7dJr566EMuzyN/EgQ255/Ll0szJ9lDG+GoVON9zc7FNy1ibviOIgn+8Ip3XNgyphEHfYUkf6a6aChICsOwCiwo2T5lAJyBxfSIa6RJE4AP1uoyAXmGXjglM6CoitqFWbwi4KxILQnoY9QLSLNPgRws5BrQ1TnOHOHYVcPexDSo9dZAUX+oT3ZI1qDJUjiky6drX5v3RAKk8leYljx8CFdlgVVrK44o2yQ2maxNsdSiOkgLD1sMmcMnhGQSNUXb6Q/TSxkxLSfTqJOqFcSKkbos07jLMEuG1MZwmO3UPxTgxbCRIsA/7uCzX8Pefg1b8GeeJjWqAxu3E25AhXAJaz4gyFHdS9SZTApCkAmOWsYpRC+gVJsQjX/BPMCLxcUxU4nIDOGKVU0q3fcazvgIFMUYyMolCekp0XwynypWQilW+T+qVqKKzJiUK8aewI8z9xV8wMsUIQD7r5agpkOKSinx6dVTVNPrgUlUxVe+VmpgBG1KJ8GZ6mTXEglVipoGXPgituJDz9/AiebJgZqn/NNTGqhLtZYA+WQhIVhxJKlz8SCN1oGchNIe5Ty0ki8VVJ2aSEcVU1EglJbTU/XKE3cy9SlaYqPsvMPSIRsWl59ijFxV7Gmxpp4X7R8FrWpWFBeHn1lUTjOEFYboTPcoUqnBeaApVkoZzH9XF1eSi/QZixxyy0KrFkqrJdLqOfSMRJQj5InhQsdGM2YaUGvOOfLasH6Sd7U0NZVBjCDjBmKq0ykZ8luP7bvqUt96pfiJdbCK5HRmcEOFl6oG32pdbwGBj9m0yE5GyXXx2sNkrxfKhp6Ri3a5imYOC7hyDEfqqNObBDHUxY9qLxH4kYMv+YimVtWFDyqFWpXLDBpFzA3N5p6ld6EGKQYFgzfx6kATTJQ+XBqx9lznED6jGzkuL0Tzxuo6vsOX/g8+S2Xhq97ApqzzdrpbH4WVkBFr5N56ngIF45pWwmiLOHxe0WW3XCOL7WT0W+Nwq8b2jJF30SudQWShR+spTRu59cgGUAfuWPlg2QwGGjR1uP/Zu9NTS1sM7a9tvj29MLovZrUu3IiUDYw3Vxzxytm7MwPhdks7+f69QON+5cJNWgWHLfNQiVXs0D+9uObxBS+EaB0CfurvCfLpJ7b7FHs1RwRfPRaMbzCE87EsRVSTdjx2AIi/Vw1/rnz95uz42e7O3r7bj61csQfA6p3r6wtbjPf3BIV6nm16uDo/XXUg56MLxnd++OoEAhpfG0FPvvna2TsrhssfhAybHaNp95gjLDFhe/dy1rx3Jez27tq27dLrZ2en71oTZc1QS6lIJ7NL4ShVAi5QczPUjS6C8X4HZW7pQ2iZnjss6H7l0IGLd84cut07NCcjLrWMzb5PYQRbsN565+oKy1qebB8C4muonBY/c/o6Ep6J6to1Cnd3h5v7Rb6WCqUyHJqG5aF12+ZnqHzdvQ4QBZZdav9IgRUQgZjbGD+bBLwmk74Ron3kq646sEZm5VYuxr6x8uxwV2h767gkpuFihI6V2NDNMzbd0fvQESVhBdVsx/mDnkMZi3QNh4tvoDb+PRPMhhrBm5EtZtC22DDPCvJQOCkH7E1RZOPtXhijywf5tIvDbsJoo7ngOHGI2HS2C7qEag7gn6EoHcdWNzmKVIwFQVrpggRxdAPwj7dO6hQf8RmmXERptw4n3dw0gUTUam8K5X7CqfXVs6uL432XrBNQJhnTCyraf+8y7IeberVbew5Lvb+8vrWkiNQEzbu7Wxe3N+dXN8zE0aioeGoYGoawAs5l2G6EhVhBUo7An6Il7tTMw8ytcY4liNWwIplxhiotryV7VkBNk2YZW37SLnyHOG06CQmGddNyZJg0puM56wOkeadtPhr2u9u793dXb8/dNH5pLRN/8ubdeUfmbqweH+3rlzLV/d29fNM0N9lcLfTHtSXJtJFUH5jwTznMoiW2ViBGbUMB3ot3Jfy/caS4WeZ6evwgYYJdkzFeTv5xjtmCd4hd/Keq2xtdM5FDVrSeV6ckdSiWt/ZLVFbrNGcEQUM2TFOcUwFziS+fWhuVUbhpEcDiYRYXvaAEzmCYAGQCUJbQyMY4qy3Lw9LPaY5Urvjgs0TG+O64JywP/2n3ERYj2Ro8aBdldOf0mzfvhnvKVlyO/vQplGU1UFSL/oxsBa+xY7KQaEyYZmkCvkxbt3e6x3BEL4HKCiK6cp0fm/IcjhVlDjCYcYH4y5415XFbDeoK12FyKhQf0DcR8mBLYDSwvkHHVRUpoauef6JEILssSks3cCXVjbcJxWwSMdHmJMJ9UHgqbVBkGnqTnIrIOMoLE8NSBhFCz0cRb5cimJlXSSJ1HhaXBoe6YbWOhcgg6RtAhtrVpGjKETWOCFpkgUgwYAg4IIrxS8kpR5jniXs+qEcYoGiUHhIhkzpNMErO4fqk0hZ6Nsq5wFHfknOpj0QAx5mQBxGkQJOjlBTRlxFpbBYoyhLkMTq1F01CGWVjSr2INxUNh7o/+XmNbFSXmmdJf+oBZrkTsqZDigE2A0MJczQkYZGmkkBVXMbCTn9ljh9TV2OF2F6eOFHaYFioFgGVLbxcGKtG6IbxUuvy4Dmo8pYei+JfwPosf5f8U6lszEGyxmXqejK3hBpd9UaGDanHU7mBM5Dm14LVcH0QLntTSspl+t2+xp1VNhlPFDhaq1wx7owapPTA42lYqbnGfugdDYl3yG71TuO+o0iDFiwHrTGVnKBvso0ijVeYUmCSbICTQreKcPBjw+WWTKg5lPydexMbl4n6YCW/EK1NbfpsTHpMpW3guSSf7DNIDZkDJrEiFMW78Uq+Bj0Euvr7xlWRZaiUoirIAkHhKVqb0ddqD3JKtjyj/ckmR8MQpCCqKk5JfcazKJK6cGoxc1LT+FKQmtOZUQSxDjcFPb4GK0hh8IHigg/uFS8mzDAc4xnHvdjkYIi6TrCWRWAR2owQdDVVKuqqMCoCu7QZWDQtDWRnPNKLBNPknGrGzGovpzmZw4KQSDdWO/tsGY4aJieaPpbSzxj8QInt/IsGUowb0tOuJ7uGGYYW4gmbdMl7uMvfqBKUFyxHaYeEUvICibFdjGjURxJ2727twWSyN0YihgANjjdu8kKkwwet6+UxHYkod76RetFJx/NvuRhUcC6bFf8CWfGKs8KdcSJU3tvb3Lvb0XDuv9Trce+pkar706vruw3bijduHBBjVcza+tvTS6cl2g9qmbi1L44Zub99tHX36Nm+Kt5f31sff+VmAMtJdJmsomntYgMtJF54BhPCbgpbGJtezlHq5JulxRNynIXgRlVolyI/vL96f3rnnEMjT5ZbrL3atpF1d68DHc1SvP6LX+jw2GzgBrA6BQ+mLz589/2bn//t32VrLvO9urp69ZMvdg9shjYIvmoBhZ6UUP/t61M17hztH32wiulg62jv+vbqq69+eH9yfn79YX/j8dkzZwvZRizIpBHC2UcRJ047Yd2dxg5msUTq+p2zMHWrjLlvXVpf4gQPK7lFrmsfTt//4DgmkcKb8zpaTmKKvNbtZE++C+XI15kBNiNIE4gb5reYBbCXFuTcWNi9/eHmQYcBH5hLB96nqmKUPDcF0iHAODZVM/A0lMKJ5+VUtVgKxhZAGybOfLoYy8SE01WEuqZVDvasOqe127pexf1rq0eHc0SV/qQuopMlcbzbgvTMyIX1tlSnkHcGFAlxTkBNmp2fuWVUu/Yqk8EISORGUm62zCmzi6zDuGzqLpv+VGJnBxlLN16JsFN49jhrZyxXo8W0PSvnRe3Jxmvj9HpKR/s757RQhOFSXxtONrfoAR9uDb+20p4H+nGwv2uTBI8H/vHR1rszg64MSQ9o9eLaqayNH1sPQz33dq2/t/qfbthEcU+lBfcgtcQfn91Obf8uZzRM0Bkw40AcM9onEOxCdMYtvtGjThb9tuNZb/DWIbKYwrew5jbtjmJjNbbw6rL5CKG4CHJsXmLT9KljQyeadPC/49g59pjSoaPIB72e4obbo2/EDtykebaz28vn+4fg4D21N7busKOL6zvrpl59crSxu8bqP/3ik1s9gt06RacTU+4f2kLP6nJ9ec2aAMLldRqLrUPnnS6fR7EULcr5cyZhTnas1dcZ4KRRbdmSKAEHIJwGzCduTFs2qhEhVTrakZOfQBZ4slB7EVvBXFNJcbjEOUBzaYWnqVJBPrb5HBVqPUWrxXCq8VsvyMAZP5MDTf9U1Uj8NEMKLS2Fkg1l1/rMQNKCj748lJTIM2vxZ85BGZ9IAIvqkHQRrX47HGBNDWrISjKJRNs6Qq1We+LYyQKN6ZnHtKKCiTgxit9rMX1AvMKahWfqAAHb/PV2QNHbEJBVNAy0vFgFyUie8C4z5Gc0S+pUMqwhnVOdqmols7fhBlVp4VPn0ohHVFItWBT1SG2cMOHW7s+rVIty5gMyRyX8LUSYL7KpzPOCzBQsFPGpP9Bgxaz/iUs1iA0JPGkX0wjX4QGyKFwqRDYq6bQakpgQArRhthfFLaNeSpF8HFikQ3nkeqK+HBEGTmwbZsAIfDAl8WoLMVlhBNW9J4fBevAb3jZ2I6m1BrPwb56lBDTrU2TUNIbUmRxZ8r965rXfBIQS/8K/AEAuUnvitkSMbUxMvGtLVQfOlr2irRMImSJoNIA1TtXr8CH+CSrCpFi59/IqAiEMTAOWCIQjBFSOCmW2Sw3eqnSMHURsn+m1RFovLoyHe55HxKPkUqb24FUoasvp30Ab6mWvpMSZUOJDfI8InwTUUyKrSJ8wmrfoklVeeFZp7/oan6eawE7igFM+RkX/U+YS4vPTKUCwQkyJ8oVtOII39eHR06YTEMGdSLJA3BdCVWrpGXubeg2AkWDxMaz8ZJ/YUF4Awo2uGHApxFloW3BLQyKJpXETbCyAgYX2uMuhHkBeWFq9hIZAjAWmoFE4huZhwMa73NOgoa64U+veVCPEk0vbXOp1pDLxc/g2ofkwSyXpEGgwCHzfS8n5llih3KJ6DQvVjatHDmcuZmrHPaUq7uvN5a0IFepohHFIDni58+9JcHJOXdSdaqBYcelw5yDIZ0YpOjqgKCH+168AfCoaXnE3oZwK5qQau8gnElxCmMAxkJMNDxda5FcXhFrpopZhfiiNd6MeWjJqqlUe6qYCRYqesgQFlSc1BUKGaDKtngPaZ5jnSyo0ch+D9129jVsMNEPaEFe7ijRFXi5uRZOfY+XvBvgSBVcRYfNrIw51YEIiXzOtv6+hnYHPzDVxa3RINlduV6MzQI+gjR4L22mwEW9uVhCrXbi7vPJKQHNyeukoG5K9vbrawS+3XO7uiQwfrh/OTk7OrX//sHZy0Qphii7Yurj6cPHOVQPGSM8dQEJe1rZbxd7RkC1mWD8zFvvh7sRJ8iJYJCP6zrqIFcv2LbI/O73IF642jTAq0aKFGZJBOwUqZEGdyCmTTBCNVcjL4ZKsoYGLi9vNVy4A2N07+GR3//D68tQyiq317avLy8PDg8OjA33+H7796pNXn+44dfH0/PmL3eefHNsqdnt7aSzc6nv8xedVB6XsHty5G+zi5p/9f/7sN3/7J3/vH36+9aAJvDk4fHZ2csXhP//kxfbePjboQdHqzZ09RwBtre9cXdxsX7TaTLgn6jeubspka2/fHMj7dxfisf3D3dWL+/cnF5cCltUNGy3fvT4nrIPDg1q7NqVTZnpx70z6Z8+2bdkUYR/tHzh7yYiThUBswiIiXmLT1MQFDlai6ZKUXAAnCnQpoZ0AExA/dClVzd+DC507aJCSoHWMJJ8KxXR71h4Us81yZLcBi4ybLZh2ThY7ZS9vb4Sv9ntofRRp9Mgin2Q1NxyEPcwf3BU0R1W2dsUYZ7qEEYygxiBn7dk8lO7B7DthN8za6Kb3DcTk6P2TvcmCLGhQUI7lFEhQi16XwQ83aIVRd9/SN0P7At7LZXRzc+1gp1U9dw9XhwdzSpI+ArasfDBkr18485EmyswXuUcirbNE5+r2BooHOztAn51dMRrBkpX2SuozE9Plyspet0Tzgfpyt0LncVqCyEYh0aB/5+zb3Z01l8TpQLoLbCzc8CqXzlVr060psiinEWKegyTZ4bYl+hp8U1FQpOtm8LDYKsccQuPo0+4UzqnCxR3GNPASt7mVzcbFWxaIEJrD+z+d9NKEZDMVw6ccCuaZwGqDg1T+YXN9x6leZsbaOWC51M3Z+4v9nc1LMwnbO++vbn/+u2xpxzoi3WNL//NUuVEyGi9X7zIDnK+In2lNwpSuUeCtphXogYwn2pDV3FS6qBSHmQfzCpz0cByaV/CdwLrocvGfI/x0tcalJmQaEb8DUgsRFn5q5kB8CgiKRXKH2DKcT61CBBVULddSjeOoFQpOoAKmemVHDVNckKfOp0hF1qWWmubpSoEZKLKt7UXNrBSo+a6N4JiB1h6BBHqQ/a2r3LpW2EJB8SouW9sSKlh0xVqNqtaxh55X0mXjotpfDk8UDWi/MCezrgFSack0CPGQicaBrkMiB3FAcQQSxfFnaWvrfyYRrrkxg9AqjKlTmg4iWlcniUzEBgjGTJsbFcLimf1QYQOg8zZK6xdzqrTOfDL0KJ60hAiJGqaYAfM4Amm0eRZzz/B/6vFE0QRRgzReyVO50at0JT9QFCTZL44CklL4yJpy/JQTB0rDvfE1WigWV+8vrnKn2JXkkDJLA+LSsA7zZQlOWhfrAGxYZlpeaIQ8dEc8WKTJdn/26clpvVKCMHvmIVZFLEXjjBlICZQwXZz0Kga8hhqowrZoLORVA5NtdEYKDiR3FObtIxNc4g3z3oycFzwTj+9ALTn89TX2DnNyKXNzCFnMyYFUqIXiGCXXsAvo0cxsuId0Qs2I9Ia5D3pqmSJPv4D1OiNKnPPX+9Dmvf0NY/hXRyodklM+rBYC41uskBBP+l3m8i+fwe1/WufH/LH3Iwsqr1gsLf/QrephIT4kXB21v5GcLH1krsJ8XKC8zpQ81xUbqZD/8H2kU4M3uVIA9fiWljDFbDinMGhm/5GexqZ/w4IG6lSApZAkA7qVSk33GhDVM5XRrQgYUIPv8CFBjH9Ry6IN0emLYqnH0DwIwDNpeTFspc1PuKTI1ZLKel5ULQ4C2O+Plc5ztKVwEpcMkSNnkwn+tvhs8pM94TPwOiQetcvMSRXKOuEeHg0dJcsEUiU9V4VsmABIpWYDdDWM8FlUQGmO4QHDzq2JXEb7SozwIZ33Z6W1JjE2hmdFuZR6eoYlOC9ektkj3KtFOvHfZ8SpoL619xLg7LYvrPMBv0C82hY8BkM1EftHqdF7atP0H/CcGOo40XQo7yPwBWf8eJxBAmuSx1u/Y/4I1KhnScX6Fh3XOamLoZcVSrEKELkDLpAyRNpYWs+yYRq/DAEQDYphRYPfdecanrEGhuALbwWrDvwztNwGYivIhxvWLlcL1TWBb93/6s25JToA7lyenAg4LFkwxvpwiSCgHs4M/K85B3PlzKFArvm1AJuIRD7P3EVqfPLu2eGRmYg6slz/gw21H04dA0S4nZ2/g9rL6wfj8fv7DmK30Gv9+uISUVZNmBVAkQFlASImNOI4NqIk9BNH3rQ/0hUhkuGeJuPx3cn56vpL/L5duV6z75GWuO/WUZY72y+/eHVxdnZ7df3880+NAFOiX/27r778yc/o5OXJBam6wdYqjtPXJwdHR5sWPu/tA/j19yf/1T//y3988/i/+Cf/4P3l1Xdv3qvdGTAvX3564cDE47X946uLswvXirkgizneXl2+Pz3d3Fo7v7n/6vsTCvDik+PT2w1Lp4wYM2bh/e313Q/vbr563XqpuxUL4hwz/8G4srOSxLJCdGcKuS7CEvUDsdjG2p6j2fPvrt/aOm9kmI/J5M8ubg5rwNYtOzHnIId9z2ZabNmFpDaYHBKoIJ2WzDlLuluY2l22aOvqn9boy2M9AxU1EkxVOgUoP2RI29UQ9Uvx2sAGTXJK0q7xb/256yth6qifw39udcAshQK5HWCOlLV9POXUYW4JO94yUUbNNCkwgJKUhViKyhL4dzaYB61tkFs3ibXC2nfl6AAgk7/dhtCBNivDBAjrutRroH3jZALXELvAFzoPVt/w812h8DjL8VdtO7lHy9X9ncmZvT3XxG23+uXuxog+FTiac5wsdmJBmRaq21AONXtdzCTlbXS27MeeNoJDqlW7u7+2+/zy4pbPsUv4+jqlrkNy444xiEP+cWd34+4a4TbAdA1Ck+UGTcwFGehIxa1E18YXzOCeiZzW+E7PlmlTGwggrEVhGhfLt+s9JyjdEjxKs7g7N3a3Wu+uS9GclzsT0XVd6p6Y+nNYVgP8zCtPy7+tO5VIr2GFD3j13D3C9lq4vLmepp0S+mkuzDDYyHw2Vja3d0ysFU4VAumYjyR5raU5mwiDA2/5tVdyIXrMM9qJilyrVHs65SkVRSDwgfPk/XzNXTIk/KmTwG3Uw/HJ4guy5eyoEynFkUt80CBUEV+4TdikcC2AWtOgikJWBr8Bj4JUpaEcbwOuxYGcSxjbblFRPPcVPrUncPCsjWvVtU5abgcwL6KlVgBwKdOyVw96uxiEUOBD1bVZ5Vw8lawRWG9Rm1LIJb5vlD33ABNFlqrDP/+mhhjFG1IZ/3xAC5PZH1JmBLXoJU2AJ7LGdlrLCYL/PMwQH/OHrNpkhhN5lehn4DQOHdrgpL+GhHG1eRXRJ2bVrE30gnIEh14hch44+IYmWQVouWjkPs0FRULH0GXFPiriL4hPIq4HNjsrSpEv/pmNnBZQbcycMKtrqsAehKsp9cDA1HiKzZInHOOq6gwD1/B901MyNzoyq/b9GWZlksPbUIUsVE2TKlX9WNMMicEPNPTKV1yk8aEP8vA/TOJJUyvSpq1P4XU+VEqsXqE0/Yi7E+bVUvcQq5N+SzpHsyUHGFHFHoZlDSYoMvoJm9jPGdYtCknZpHibJis42ghuDyojjnyD4vWf6xvEpNRgQYMmLYSETEECjoYJQcS2ifKBktlHCv2Px+GclBM9FBulkkgEM2M2OQGUEwmTv9LQAHapurtgJpvCHuTpbdgGCjHBT9WXjzzgT87FS8w6wBJxez4LtgvaUTjpfqs29fNZqlge+r5Ai6gwNByIF+qItrQgBOCaG2Vdznl2kIjth9k+SqA6XMzXxCkFyX7e1YeWKAMNCIGpiHb24CtjgcogkGuorrKRHxwHy0bPnkr680RJo/WKaytTrPFxAR9vLhHvo2jYiFHwobtVOM9+aSZTqdTOZ5qzORYALiGo5FJ9StSWOFRbL+SAudoIWGccg3bsDCv50RgrhnBp42pn2tSLcaaLokR5HMqcAAe5mGL0ZuCMZD5WX9beJZMljUcP5dwcnY6zcSlHWduQqw6dsGoYq2ayeXCvhPiyYayBXwl9Qj4zVYojwYVJVHpMcam509CCE8YJAjbNHugtqEZt6F3YCBMGEyp0ddp+ovdNhoXGQUyFsY7QvAInds2YVlWPxoeLagaOX2kCTMveR+lh3jxrV7L2eolVqngA/dbJikKqQ/bigAUgtyJR5Bva09eyVkSK3BGoKyCDRQK39qSaUrxzs61JAHNOjgV04IyfnZ3d83fvrIzALjtkubkrR4DctGb6+uLu4uLi9N25HZHXqx/evDk/sgDCguwa+4eNg+2z84u726vPPnv58oWl7utn70/ETqenyczmVJ4NnvkjLcUwm3oYeC+wck2TRSysg6eeNqZMHb/YDRs5RK594kBs4w/zfTzLnMmNOSRiI+dXb87/9b/7wQW9v/FbP/mN33ixLbpxpKmTZ27uTn744cXLZx+sZ368f/3Xvzo7Obeiae2LrZvL6wIwm0Cv8fHchU8EYV2/6Glt6959A989fvgX/+71v/3jX/70R69WdnYOPnl2cPzZzf0Zei8vL3cOnVC79ebt+cnFzfHBxle/Pj2//fDm9O0PP9xcOHffsPovT+wJFuepYW9XQLzmYFRmqkUWgHJ6qfLaozuDXZns0FJU2UThmEq2/fxofW3PXoI2b1xfXTNvPa6O3r83yn73w9n1icNHbyxc6WY6JxaRtpbOeZdaPj015+Dwb5lMLO2sfUpHWlmoj/B/RvsoH82xmYO+00HILCvOxcDW0YhLaJTlQDMaDZal7dt7Fo1ctayuIcw6xhQyJedDkm/jVXX2SMrAVUfmN6Hk4NPqTIkzvod6hk4MzQeO6o45jJXVQBhZmCA5+6WHYeyJ0JlAIReaNHBZwTI5hoSG94EeV9kNyZZL6VFdXICuX8QETVnxbEe7duJSKRen2pLRrvZ9PE0KHfppHU5DDJxAVr/hqmcxCNW7ZgIOwGEzrAalN1dW4KgPD9NDJ7zWakxzq+8GGfrahOEjCHbkqo5r4jgs/NYD1L9VpX3UanX8qIz6XYyPSxGWYWVLsNzt4MSntSZj2LuZDNn1pzkcG8a1I+M+WvyG1NkMg5WaMyP6bhLEGr4inzYdhxosumYUVoA5pi2ad/HZutO7jp/v2ZT+6sX+82f7Vjl1JJKFc42NruooK4jJ0PZ7XNk4LnIwkJRbLdjCgeSTTLAiGfjqUQZa0dhqgwI1cIQs13Q7m+UYK87fAr6k1+SReTCKa/zzSVvtbm9ixxjBzvnFBdo5B8XzukAv2QbVUZR8oML0SGHZVEw6PrQiRSt8GW2Ro16olrzcMoTiNJhyguADam0HahqSKCiRUVg/obCECQYkNZ1ePK3Ux0hO6VS0UhM5pSFqj1tqqYFeapwObQNbqoSC+lg0bZcR1/XoINluq+lclalZnZBbeAgUrKbViG3TuSAac5BVTa/E03CTR2sMcgxIapHMnIrmVKQ30pkBYRi+oGOEJ9/jxFN8PIOSbCLzBAUQhMczGWqdxzxbJetZ2bBUDzEFryXN04maYwlGBGpS+YKLMHdmLaREXPXi6NNza3HTeRSpl4vzIq7GDZESTDwEh4UoWc+tF+mJthOyo6RwFQKUE5CENzxQIlWUpFo5nBRWuJIgoACojDmlROlrBWP5fE2Q+OAow8KdaMQQ294WDmaIjdIsRaIUhzX2WQ1/OKc1Jo3IrXGupvwbSMUPngwK+HC/SFYDBLTISZmLSZmDXHYPM1YI1kAoGnwKPL0cnx8lSmAsFfQLI7homhEj4rd/vkTDhH+AV+PIIibMU1qz0OY37qSkiXhJ63m6IstDqSOXHhb2JKdeUl1SUcECIQxlGMZK9FniXg+yD8bTH9CjQkN2PYDmD27EgikbicH3Pcmlmj0CUZFJh+CCV+1RfgcGg10VeF7CbnWa/RQXSsluR7rVORGY30ZISIISxj+8mYqHz0EnjOVZECnksgvMWeMRM9hBJKOLo3WA+G0psWAw1Ode/BrV8WIhj4hobm4hCY2PGDqGVziXksK5KmSVD/HGWrccy210ENzkl9IOI5J+DiurVpfCCyuWOJj/kiumF4LHNA+VrPiwa8QZ08AdBqrBl6FuCqYZ7cipcPHBOJ0mJZvT8IGfIrmbpNk/g1tUfeEjpgG2YFrugewv+L4MJSHPXxjA4xYLDotm6HUOFy1aHBXF0+k4ZUtoqNe+tA05R0oftMHfiDg+IFw4C7V4RSGnZlTDM6WM7Tka9rycv0lVCCsME3Y6TWt95A7JIMzi0ThMLPEQqSifIpFTiDYROfgxZNAL57B96kKMykBJrybcpFekz2A4dSEFgp2N02jhjKHOa9xFjVd2RsbxliyjVSCkY3m7vdtKbmpsINS+MDfeCm1uVk332zBQs7i+bu3K+eX5mYU0r7/54eLG3bBzq+XGyqHzVvb3HwSm2o2uOMWxh+3DzZ1Pjj//4lPAuUTxjAMxGcqb95fnDnMUm+xsC3ZnrRHbWxULJyf7F5Wf7lw4UmCj1xxxMjVGEpnEURwsZMwXZ9he41Itbynl0CL96tt3L45/Y+VxR4/l4GgHhJuLS/X+7G//ttXrdw3NPv7qqzdE+OOffurm4r3No/vLc8H89fnl7v6L559/efnuh8vXb19vfL+1er2/v3v46vjPvz77Z//ir/+L//2Pto+P3cp1+utv7Kw1qHx1/eAygbMz3Zzrtyc3f/EXF++vHt6fosSEz7ojHe/uLgyNF+Yaf719fH9+xQ7FnRTdMNXoA2mNWJyt/vhwcX45pJn9qDl9c373xlnsKx+c2ajF33Ay/v2NA0OtH8Euc8Lfv71ueQj/YcuHZSSC+FqLFdH85cVNzqNvTSTapmpROOUTRlx37o0QUYxspiVV9Yua1IVsqKkj7e9X7t2fIPqzCl6sKp/VWQaCHfNvTbxREVMKdO3N6ZWdShZA4QbSkGkD8egdo8+nMWTAGpfI1hoPQy3UWYkuji+Y4F2xsU/9xAkE54hYUQubktdIvpJMQx+1rkUNJMo6wqGQwHJKwxx8Cdq79AptE21HiEvNqIe1+m5qF3Qzqwdrr00LzOL1FcvYzu+vcFWkaxWakQqnMTknVYi8/mHtYLd+gS3mepE7K2t2bNdYrnzY3d92dYTzTHOiItE8Bn3nfqywMoGzdWtWpwE1l3kVegg5fMyoOA3wfuVu80BAHFXwr2+gt3D3cJNjy10xDSVrcVY7XimuGvDjSFlRwX+bdRofHKeEf3nU3GZHgrSlSDcuyXIR+UIPrBhkOqOlwi5tSr7WRSVkub0hmHYX4NHBzlc3PwC2s7f56WdHR8f79jIRKw9pFHl3r/Ne7e3Z3m1QIE+lRg6qlpGW5bRh5g3MiUxzMfFECoBwleESn5a880CJkpC0qSWOb58Wh/hKl6v8NXaNGUrN49fTyIfrpC3L1SZXbd2S2fA84GmRT+yJ57nx6f0OspCckePBqjrkGn3DOphPJQ0IBhBihuSnjVgaXFWXTkohJlsVSCGTobrIdYnnJNNnMT2I+fM0IRfWPADMihxqZbwHA+tALlu8CQnaPXXFZ9klDpLcdQBVjz7+H/ISvIcE5ldc7qXNYlE1lEUCsMzAcGkCldAepQVaxd7a6I0qp5DxWcvwWTKTK1SW/nx7vqmwSpnytEHxONEv4hyIxjLGxhsNpJSwWQRep3HGJTP0TuuqI2w+WQvkUVHESqm2uNMMmAe0DKaRwO3HJH5/idNyFxHLhTXuzxeAvHAKmwuocg/eL6JUaqoO4KhDtcThNJnPaMBXDk35x4ypMRlW6bQsw3RFwgBbRgUinUSKyetahHCIjHTwLy+KIyWOiPqT7jRMQJwqpdzTfcVGpdP/LFOJZbwvz5jijUylJ+7mV5N+tPdmLFGGXga9+jxSG46YJoxxSZkwdU5KwK0gtO4ojtLYJ4ubgmydLLyCRvFeX5sHHPmmUOCnbYUio/9pSjyJ58sIb8gDi0CcyGCmGJSS7XwqMg/D3qXpqfclHex4O3ysimEmalOYJsqqH2KQj9N9xYHKxJIEGjJxN59T12JAxSUfJRJPlURebOK6l1TJUTt9RsUXcUqs1qf8TzjLFhz/Y3Sd6cA1+NQmy9IzdQkx3TMNogoEPLe6TtXDkXCAS8rbT/qXneBCuMzRIvk+jUc4V9fyJnqn9vRjIRU2k2FxYXEkIuefV40bjSDAqOQgHsSwLvYIcIlQz/Z4MYBiQhR6S9g1PHTJ/4bbde3H/uBcKzmzUUQuz5BTJRjJTSg+3V/ACuMgI+5EHa7E79hYHUqRlppoXl0vZWowIz1fU+uV105C46bhI0VOBeEA4ZijrhhiyYrzkjsTQ5oSYycxJL2psqG84YFO2aNkzlnznOtK+wVFE3oMTwCJKVNEpXF+OKjGhkiB9yrmI6URCO/FNSoul8JJIs7GxroNQ6YvQ7OqFopBhgBUQ5LAMydlcxfkRiWG6pyaT7RHVxovZwiEYZnLaRiw80zu8M9bKXxxlpljFtk4H+Ph+NkxfnN5WmG1tZeoqwB2ry+uRkQ2V2yTuQjVfUq2ezrEBF77RwfvLWgBt6E4K6T33Am7ur0u6m2T4eHmD+8uaPrB5rrTM/ctuth8eHt2+c1XpzZHPvvk2enF1frJh8+e7QuN7Sq4YSPrW1ZBWLiigXK4ED9u3RHynbK327rt2zWLzYe/1IGMhSOtTxlGUcJUYbiBv8j3FedJESvPP1ycnpxsr12t37/b2fjs0lipaYAd251X1g/3zy7fyPPi06P94+dX1m9fnH3qWqitlb/65a9OT3/4jb/7Ow50NyuyubvnAtSjzz9/vDn/nZ989ou/fv9P/8W//vHLuy9+48dfn6+8+eaH25XNb96ff//69Ohg7UcvDaC6KWnTaLZg6vzOaaI2Gi+hryHYdqoQH7WvAR+MoRyDqe5MSaGmqCe99mbCKPZd+MOna0wf7RcQIIi/97ZWDhwV+mHlrS3W1pM86uE7OFJsKYjUqcll0jYqSq24L1rnTBcLwzrEfX1dQEm7hJtmCooXxeYigBkxy0OnzPxVq85Aid3OIHJ/lnwWKe05BicdEZfrlNnEiwY3ozVsrTdTP86+2y6mSOeNllYNY6eKAOdDFtPAlzJMOkUbIafbHFoY1LovX6BB1Q2S6eltxk3fZ/jQpuSmAmBLB4z6z85UCjClTfHxga4XuNuoj29jYgvhuBy8sPXboSXEceHwWeM7O1vHGzbpBsYe7sur8+N9yg/VujQOPdJbzBXbS+6sHstfBEDTRTGhJCxGhIFQ/QW9DIPzDdDeOX7HBr16qq4PsExH+/qw1lIk8103LJTAVm2FZ9oZL+s0gQNQ2VAn1p8TGoRi+mwtbZptBaRk7otcFgZxotZTZBZQx1ja1e0HjiU1OO642zYd47XxFKv7dAZM+0GsTsEAzxtB2/0L9vY4q+rhw/nF9ebBAcq/f3d2eKN3c3D4at9iOfHgwdFx7Zxa4JozgXm+dGH++KnUOCdTeNTcXX8IMhEvRXmwjusV3kj0krYzMW5MvrrHTy0U6tXTlAhNYeNPEQxY+TemnVZ4HrccgWok6NzgBPGKqcBXmjbeLywkFhfwqDqIxJyGP+E2HndalpasQ0l+FoTJ85mgPHstfqI/PeR4a981SY0B8cHkJYCDc2N23lrTUgesSLrlBfVFNYeDRvIK1TCc6DBHzmLBsLYBZip7iqqjImyqpTEpVHCM5hvJWiKwStauaBwjG135c52KDLowMrMiLCY41PaVJyF6dS126G1OomqW5jUlrPU3B1tgWgCnOrV7rrFtPlxXEzdDvE7dyFddsZcbccpFzVNykyE2zwDfyCW29F0RkpgtBL4kzIrHSX9Vp4qprr4fXmFNzoDUDEPMV6yb+pQrsFOZfyw/fiGlsYy1WYXbwIoRIokDM+HH6NiSCJaykuTP/mNEHPcc6CGtahNNL5VDFDWG3rAth9Z7vlgZr8l+FGchkL9KW5a4rsY6PsuwdAyQE711g1Xr42uKJyqIt/CEAHZUsGCJddMEBkhkdRg+orS0JzCb3UT5Q2CJDF+i5+l/iGGygtJkUVySFPwrMGvgsgneeTsaDgqMIKHgUAHC1BtFC596DW3fJyEDSVDVhSGjSKoKIylVkgJkQRX/CNYbpEy+LHQqDGQMjRSoTpEx5EzPJ3z4oN6rKRwGC1XJ718JT07A++XtkiNsQtfn44N4VAXUDhpUAXIJSfakC+1WxWTLdGRwraxqcZD9LJVJHw9gxLQKkKFS4IbSMIyQpcgkyUxpQiXGZOHRIw/CkoU0Sp95y+mLBKqg1pq6WBO4+m1PvQXf09EnO/GHAtGSsCsK1ITA30c2lEJOYrWrNW142kEbzXW5Zr4sPzUFRmAxZ1ivxmYSs5kAghWo6TgtklMGTWrJFc+DehY0puXQB62xDRO/zWyK+eKaEgjUHK5bpSpYCZe6PxqtWsec7MwkNPyAKY7xNl4SvnVUYDXND0yUc8/ADdnpBtRqjpaHCr5lb099vJhNFtDQFBX9o7r+ukR4+ooKQEaQaTcPUiSdC4lpGuaKktuou8hAkBrP5RjOPHG4yL6hHavIIBNssQzogxCSoZd0YmTK5msITAtRe+kTl6fEaJSSubGkk2dYMqsiTbCq17LgcSLCFBzD91FRo793hvmLIl21a//d1tb52YlR2y3jne5zuHvYP9i7ubrEzYODw4dzocfNzo7F/c4Kurx0NVLnna8Z0dzd3HZY56uXz3WynFjycLtyeSZ+aEjj9Vfvjf7/5MefffH5CwtpHF/5/bdvnB+ys6tJcNznpfuy5obwu7dzAy5Ra5fsIBYq2h5KDZdB3b2t3cSbMucEcWfiiaJ/DKcTgsAWm9tJhkKe17SPKGorjy97yoZ7qxt/9fW7T//8q3/4d3/y+v7bvZefbzrIfH3j5Lv3+y/2u5HxYf3g+TMhvi2/rz77zIJsx3ne317/+Ld+Bsbe5s633/6p876//PnvWgFomdBvHh8db2599f3bf/rf/Pl/tLr1L/74ry0Kf1jf+qM//euT04ZO9zYePn9x/PLlzrvzq5PTq1b73N5d4puAeMvsc6dGIpXJUSo60EH7qzq3NpFatONwGtKz9i5VbDYpsfesd9Yw+bTnEMvGOanru/0PKzZrXjbhohfKK9w5momWUAma0LWyM7bfEUC+PzoueuVwd5capyrY1B1w6xaCaLHow1hqXmZ7e92pn2q8OL9yACTMzRy23sVBM+uOTnI5HPiFO5bLt77uYc2RMjIaPx7X183NzJOm6arV5dAUFQHwGM0NoYoGjssZFwBzgRLHMuNJ0PN+vG7qjZxwN/xvVFK82/R6y1fuhTF9K/zS1iPHVBVy4Z+bpk7i3SYyZlGiwCv3zo0y1yJIXuCCfzAJtrrpeJGbyytLg3bW7H8webJphM2GYFAMC95vOB2IIbH3FrJ0ysH9YyG+FUETuLu22slC9NNFY7Zlz0HykFrftgL4tpm6Krz/oKfcMh5uVl/Civv7FPvihj/pzCU3DE9Xi4OXgeZHN+9jLw/3xjwXF8Nf1aAuzQGWIUNsplFM431tDkDi5dWVlUXacvqkIK5wmBlUnXay0H3fxr3rjpft4oLrM1vfeUv9hA0H2h7sbFje9vz5M9K8vLzl5Ra/Sp7prW1U0+ep+akZ0n7ldsi0JixZPbUvE+JAnh0Td3KUzY8Htdf8jgeblqKYUrpPw8aUlZwqSBPwL3+4+LckmuokTQDqUNU+ojqAaXW1jBftq1Tve6d4PE3zypatpV55UVTMRz28kbToSrso68SIvi6OiBZ5EQ8tsBP9y9sOnSJjDc0UqgmRScBNTLrBdWDUj1FAzHEFModGC6KWsE914Yx8GPVGLdxahpwhwIk78B9GpG+uESRUxIlW1o2j8D1tCGe1oSky1lZd5Hx56Z7GupS+ItZvE3U67bOgeZxn7ExkVvpxCnUt1NRnGbvU3xIL0ZxO/oGrKnAgvqmFT7A3PRWtKZ3WKn7LqUJ5SBPna9V9nbEGvhtXo6UFEdWFnDmSAA59wQHkN25Yg1uzqKqImUgMxvg2wOVTLcbYXtgqILWHYULyU+hM5ykECJYGOC/NzmNMHgczvBu1TGq4AsFwpngpRo1kelEnqdRa5PyHTPGwrmAmGdVDpvT8YasVoDYtF1EqB06iBiuG8pvQk6TZZJ5MKTmnjOrINUZSTyleJX38SV2i3zMpcJYYNZqZX1eqwGEWccBOiTjcHpIIgLOs4TwwuSCAwjqd623gA9go6jwvepeUE6HEwKi/EvP3KSVsY+XQW46yyb/URYvkVlEWIlPYzJchLkgBi7zJUx8HwBFrk4QevPInaAk09qUPxWbJqrqyU2nzymNKotR8nurK3jEgCAu4+f2RAdWxfNSUtg3qQRxqIt7rEB/zWLL6qhY/xlGy+ews3zRkDC8GjyEO6WEP7FCnd9EQlJyZjn+aMC/i0EdS1ZGW+BorgXUInC9JtbQUsfqSVDXAj2uQTlrjMUIMzWJUvzO8VPYJgcjJDy6BZu547HCgDKyBzJ6ocizmjRfZDENAy+eCj9NUcMeA2bBeqbCLL7ST325bHrIWZvo9KMsSWxnUaEFxv29krhb0qQg9cK9zOrM8E8Um1CJyZkOIona7T+ltzqqdEngxxQMe2Bqn2a+zoDQ1YoJP1qudLGR3NLxmMo6qT9umjkHR22D4oirI5DsyjKLzas9FpKxBmeqK1pNRuEnwNbBy4nNcyq5E/HMGv5jCnKmRpRpIVzDFighOJlzJ4sSh4cVE7cEJ6lNTGq8ogXpzT/oqrXSKVfIoNeMQikRA3RHYICr5egLSUAGqLehvUFOV1krJ61YsvA/a7Pefld/NV9ongEOiPbBsDzDdf3N5s7Xb5abe3dxd7X9ytP9s1/KJ9oBeXFsIvn+w/XhzeX5+8uLFs+Nj+2Kfq9V6GJsID42gr21dXFr1dn3VZfW1Z5ZxmGUwmHUN5uajddfXd5dWFu9s7Ly/vRO5jvqmXyZY3I8rKMYaET8KMwp7GMwI8V+u6o2LqRPuCC8ViUXWj3aP1cObh4c//frt8xfHBu9f7B/hn2hod88l5Q7/37o4e9jb3No/Mlx6ZJkTEDY6b+4c3q/umStYu3zz8PqbnS9/uv/s2cn33x0ebv3BT4//H5sfXm9u/NHXZ9//1//6zen9zblD7redGyNgPHntVJiHX7x+v/+XD7/1o08Fvifvz0jNgvpklKDadkIP6Yml3e4ZaIn+aJaYde/gyAlFHBwgVKiQqzYyL0Ev2gg7toxCXx2hJGj89s3FdfN6aQFfVCUUpIbDXkMU6A7gztrWituutpoZuDfEe2nhP0xYEUG0zbqjfh7dK7yzVUOLvU0RUGxlCziMCbGcdIaGC+jFaSa9XFR8enbWCTldO8VCWwg3Th++CtaYpUK6xNrACeYudKJmZJHu1Xwye1GNZhs2ZIi6pzCiBma0n6xb05KVIFGOnFsmaRA0Imul6wiYecIwRsR2UJYXYh3eoBkm7Ucs8IWSjpzBOs6m41PXrOo0D6DbUTtJYfQLTBc4ksnq/81tq4w27m8+OE5qzVQLsSm3YxFU2yh1HiyLyeQt6tla3Vvfvri4sXYH6S7UMPJuDGNjK9KWvaRhcu0aiA+uprtz93UzA93gaw2V294sjeLLGCPuZ9RRnxtBIwXRTutG6vG72IJC3N2b1dT1buVYOIV15gB/Js98OSwkkyPkniTyYJ/JrdsniqofdRFYDUY2JEHInJZ0+yAIQXEroMqwsvbtD28VcJLp/s7Gj3/6Jbm7n27FjoCNHQaYC+oYn05ypHZSFefiiCxxJOgGwqmQbHlRctFcUvy8Wh48/eJm9U7NWhHBZCt9mnzD9OZv86WYPD5Z5hyrf5M4kJ7GaxSHBuRVH/Nk8KeqlMY5MWisIJ4mPH3qNPUSPv3xMLV7mNJrdKuGBqSJw7ydNrEGXd4ZKQoRiusrJGWcsuL+1rXChxzQlGvlpwb4UBHhkEyT89ttimAH48Py54NJjl51C7kN4Cg+CHvSFePstLDy1PSklnUkOtR0mFhOEJ8cuxOBr+P8xAPxVttdQ7CjH6uFCHIMx6yI6Hq2EopPuHpcZO298Q5jKlJ/zBeEwxzGpo98j98+9fbrfUNsKRM3a60jbYn7PU8NNaYzwFeYAQJgeFnuj7JQJzRg4xNwxOMTtejmY5FTKNF47r61aEigVBXvGRAyViY2joQhFtKpGd7gZ3g9cazIoEAfHS5kHjNScy2jpMmTtdI3cKuCWMueAvBJ+E7ZYO1BSiWD39irykAYpIZBqUq6BxSAIybZyzOw0hNiJfGlOxK39coERcPh+mpglxnmSsXzmQro4FPPDbUUgVAeUU28Sl+pcXGm3PkEzYoMUCUISePkvUmyi6IqAcdAw08WxIwzL2XmUWJf78Z2lgyDlhQwSy8xaZYvxXoSga+hQbvoLSSWDLxHY6P0YWFdqMbpRXaxo6zqxrd+h3fE+iiy/Jvn+ebdUwj3VENKiwNTXayu9PAZZh6WFPAhT/AhH70B9JWqEJfqp9KK5ZuqIDPgubSVJRaRhOlHLpMTlzj0wR4LRuQL9zWHBi16Oe3OAnOqCogqR7GGrrxAzeRgU4kn7FUV8su3+Eh0fg9pSx4zjaNVT2XrpAxPgaoo4lAUUbXBuRuJqd2waSgei5BBsJIaT+1jyeCALa6tvxGX0tdhXVVPTpyslK88ney8D0RiXVfMxs/sJU2o/fJZ4nsOBb1suzauURNc6cObyIOlgqxy060kVdX9E0yMoSqoChVKAUOeogBa1YBBpI79+NX8t4JaC1QPnHg8hpneN96alMdIFEQUfFNKwmkl/0eUEpqSsY49L+2WLxQI3o048nr5Ys0eRCDmHbokpspUa7CaFnMsPNVWCMphJb9XEVhTUS9/MYDhf/6IbKQPg+OitxEZo2OcgENKhIqVOde5fMALsZ1MAmTdEvltjW3Bw8WVURzM5002t7amP5HgrBQSQ0PDaZqGUZ49f2aY+PiTo7uVa3Hk1bk5nJWD40MrH969O3v35uT4+Ojnv/s7P/qtL9f3ty4urg9f7jz7Yt+oIfiOu3da/Mvjgy8+ff7sYOvZ4faPXu3/9LO9H32yYyzJ+aMvtrde7e9cXV/tbRuI7UhzU0AbW/ZTOoBejPLgwjKswXwLo81NoKUJ3wn/G0kZtmp9cUCTkKvJAda0/PD69O1by5O23r37bu/Zfqa7484ja7e2do7395+/PDg8NpPgFoNHm1Svzj/98YvPfvJj/ufk5GJ1/+Ds4uTk+685/Pdvvv/t39z9937vwAFIp+8f/vzP356/vb6//uCQx8M9N6nywikdCZ+er/zVV3YCdx3CcoBj2sq+6GYta4OF2kSCqCWxacKq7SapOplKJEdhisNZRWvphTWcNvEXNzCNlLX19F0CYD2VbcFjTgD7aakM0dOufYeudtVANQlDzFSM2bSOkVKaebDYwwYMKPP2VeUK2y763WgdP9tInazwERq29N4BOXgqJzWxdghQkRS9ysusr17Z0wDu9CugvSgjKQnrkElxYY4WvzsQZxxc5OkDdQNAVjx6nGojc4YPMgT2AReDdoQYdXKR69NAVwdsC1utrlCemqevvcpeirgy8HWrkvyoEQ9r7e7unPnE7pU0G+aWKxtc0YeMfbe66TU6DoXyPKydX92eW2B+56TX4q05MopqUZ3WcO7N3mqcZxpM5OLqRhWpIIRgJdbpOFKqYS+AZRiarob87ZXXEgmzoWeuQC79KYjze5urzstamk8Lsuq81WPqPmZkrjttCRVkyoiwSiXE1WBqTsktb1R77J7LxCAhzFiB0BwTyFUTqC/pVB/YXrWUydSZlLhu83G3B/BL/tU3XXXEp9kezuvNe5NY3WFxquPegim7XNw+0QXAaihAIQnMK6rO+ZCmelPp5VNMMOFvHrJEDU0iIleSbSFNjYB0ljgmm3+blyXSAaRhJZeo4Kh/NaoXlHStb33UXql5Xr5X3eRRfHkz/jM3LgO+D0KVGN3rj5wfyxa8UtbxxTVb2K4gOOHPuqZaaMDWYxjPrwhpI8icdDdNUsRqwWnb8EpGZf2Aghyzr+x8xs5DIKddxNPUQT6teuMP4vyp+iVYKZoZda99rxXAVkxarCnDkk1JZYNX+OsVIJKWapRqFjpUsyhCb/pshiWW/LEFPv0UeXmAEiRQ6zNx84IWnPMzmbcPA6P7M2ZPN3PI07qyC14AZGgorXZQ6x4Grio8mdRV2xKODLZ0qspSl/E5OB9dMSSvbvSRVoCllLYtaqf51m5DZGoBFdO1oQHmW8J4OmNR1NKsRCJIgEOQmeV0jTS5AKR0xgv4vnEjg+t0HGATxYlJBiXpwKQoPnBUxlsQw3xAlmXJVsLSJ+9lcPNURT5xIDrjeDRCFHi/4aUa6WFYg+5VNQYq0cEEyLhEA0nXD6MJ0EBO4p4qXq8vHQtm6lcG//qIevm/4Mzbga0QyKNMPSaGBVKaEJLVEKgIGVCK0cOF7PDpaey98tWCgpHY38iUGAMtJzh+qwVapC837ucKiruqcSpS1WCu2IJEmXxGnMF5yhyyU18p1REyIwUQxmbDDKsW8jU3sVopAp5jQKcFoh4Rlr5G4fJ6kaukHFO9SfOzvVWL/HABNlc1rVLw67c1aDXcX/CTliQgBDMkgznER6kHQhxFrBUcdWnQQo4yxa9FA5pHk1KZuPFEH0QYnYYH2KBNehTwmDOMHVGQGuUbkFUCQjXExx68joSUrBoQ3nOlJMT4/obnYAMc/pZzpDWsk0J4m6vOB7xZgggFNfwyLaCifaSEUgA912hOh9VoIAwGqVr30Unw1PZxqnRlVSRq89+bN29GEXM0coglYDV0FGGLepA1lHoZM+kVOtjt+PBKNZ86HRjx5eL98S2VyjfkZCJzWEAN4tTwRx5UwAh7hw3Y9ZG01pXSgfra5cnKWr4CH7Tr8vmOT4hFspYSzBFo4/0qLcqe2UPpHskicsbaK1htyk1TUwd6Og/4MliVUY0+Y7ZxwOmNoxnDH6tDNoy/O79PS90OaWdo3BirzGnwjSTjoA+eHZeMEFvuI8BrXc/NlbUBK5szXbuxcfzp7uO9BfqbpyeigrV719Ye72CT3ZCWDq/vrn/5yWefffbp+s7erTDj4qYre0U7DqPc3f3MUaOmwh+srnYt6b2NhadXN7/69swZOAvOzpm/uvnw5sLaCMfaODCUtqw+f3F4ZtLg4dY5/ZBxAqZwyni32YzpOxMm5N21bLl595px83FsjjJI2Rhfoywa5se//vr1m++PfnL0E+OxYAtxRGDbW7u7iUSUZLmImq4cfBgcw6jIOj0zQ/KrNyf2Sd//uz//7Mufra/sHR7t/P7f/vT/+a/enF9MtGu50ZqOwem0IDFQ6EZQZjLsAL787t0n+0eCzzuXJW9mSt3J2oB6066NKAutVxzvqEF0h5c9FnkTjjQ1I6c0lmJIoxLStFipAo75EerzB6lmypnqpiV+3z/sba/Zn7m/bWD1tsafaqTkVnq1uC29o2sN36bF/pvA2T1y0580q/yNW441sSwvxRB1H9z5IPbbNCILnnE/Lmgayw3X4jYWXWvhYBZdSn2bdIwRuVqLpqkeyRpifEWefPmZGrAZpLDeup5ATiS34jMG61tBGDOeYdT66nUeFscdepoKbaImWncFTcEXdSVzXaPC48LfIYQiQQmHtS9CZTXrhmV0O80rQqPzLvUwHRFLfzbcEMx9dAwjrbi4MOHxgQLrglSfxVEuhFtZFUbP3QCC8voWlj91+RA9A2B6GgUIWED9uNDOcLKkyB7B1nvM2hlUd0GvPRt6U3rgq/eWh8HLBgenhZonwac8A2+kC76IGKVcXaP+9RhUnWfk00gS17QzBkItObFyaUblG+pWHYuQx8N06pBL+gUfCay+04aO0OaOeqxW4gtcSbupeqfSPjvafmkD8OHxi1fPUXV+ek2SrKatHbrzq4310mQngsGH34zbuUlbdzo7C68MJxQt+FLL2O7n/KE93HVuqAJFTKCAFNKll/DKBCiDD41PHxaFyd3nEjP4DJ0JpLyIyzA6yrYBI4nTirUbTaW1JepRZAaD6MU0vkERrGeGge9DyhJn5Ku3U683fmDVKKyUQtjircLHVLZArejTQ8qnkZr1lhUJk2zTb6WgDZQq2HlGixRlpovvVVkbss3tm9/2xTNSLSsCRsEaZ6DYRXyeaM7oUo1ay19Tkd42XOSkXd4ME8N/wh3+RqEIHDRJohqbVCcvukEQQ1dNSEYbjVOQGw3TCUbBHzKrCOJBC5mMXh6Tt2ECsRbmtS434gBPUvnDJJKnalVzVIROTZgeAr5Byfh0kS6WMhloQIAqT5tOiYaWoFn4n6zTh0qlRQBm48iPZrzwQu0BgXqSqi5kqjdkPMRqLGtGCMhhb8xJ2UYQ6V80ejVKDIPGH6Ydj6f+Jz5UyQnIkKaPCk3JmpIBAI88HtzoktZfvyJCIhymxfL2QLYyCuRKhe5sz8NTmgRGyPRSngG85EIGFpVzFKEAgBiYD1uTWCbIp3gJGpwRmeTcL3Dlr201qZjPHQQAaA05nuTn400bkSM06df9VnooTvlHuxYeVJefBGyOTiaWK61YsholV92gFCtGhxEDVYYmX6az0A6VHqn6R0MLZqlAeVDp5OiX6mi13/HoKTVvUM1TSl3qJxiUzvswiKKx4kFukWCGUN5krXL+0FPKClZDdaD5aEuokfeAjlD6o6RcvAyb71XqpUT5PcsNlQQ9hxVInDrGXOY57Vdf93+lAU+cehJYzIuGwXj5ErSZiFdpRYaUQUGbl5ixdTST1GGXEGPOzJyCBq+P6IUsoQZH6AfVIW3IZDblHdhRkRU1DJPJqYFtwn2w8hbt/J3WnTJnheM0XKNzt7e3fXx4ZIDBmv74mizCZNRxUfeC16KV+CaebqDAF1UBz8d5CbgCIEuvN9w+kg4qBrT903EYD0oPvfmk3+pp2I/2l8FnlCKKIJGkE3Z0YZ0qKLq66Lac0NNiQMAjzvTVb6+HvUGkgvFqaM+uqrr4Jpb0dUpR3xDrOUnQopmcbQrC0ZahA0CVxZheyQ5zs47DeWVruryv4rmFwGiNVk4VU3WDmnFNjWO97U8UzRtZzN1FCS2sHWrFJ6Z1Jav8nZXhIwidohb07x3uu3pOQdfWYoNj0G+uDFK6QlUb35oliG279OfmRqjXji4oWbR8Y/9650Dzc3uH1lBsuK5Ly7vnvPS9F5999qPb2ysXYIngHRVDYT7c3n3y/FgM5VzMQqz7hx+6TssJ9Y9nl+2OJYMLw6zOhbz54CzLQoHuZ8jhktgERo8HW052uj3c3uG4rrs6XrWWH1BIIlv8rqhe06M5bBKjvtboXExrUMge0IevvjMN8KOf7+ycv/lu78B4/6ouicFlGmxZ0uWHeyfwo/rk3furt2/3D3fef//D9199ZzNv96RdP7z7i7/64pMvbq4/vL9b+Z2f/fY/+Pnrf/lvvzc6KtqldJreYi/6lQ+1lXxRn26Yent7+vLl0YdLUjVnsTQ5BJstodLvJjJWVqzDoQxUgnoKDCgZvaYoFIP7RV3XEdOrfAxF9C8lSZfGFlCdC6hFzyHsbmw8PyJGIZ1zXVunsrK35tAaC6vuL63UqVU+PtzRyTh36uT9w9nltWbaKncHOF2b3bi3eaAQn41QAyPQwm8j966UoHeuePOixSQtyroXAxb3Pq5Y/pXT6jBv621aDC0MvXJJ7sSVSBqPXD8t6x4/OY+55tHc/K3q5Ev1NefZmsx1gHzhB7r2uB0gkkvLFHvO6XnQrOkz+I2TFiPdX7X3YNqZonEbc3VrVe1In41dnqpuPxKissBuxbp/XVOU+KrY9p7OoJX0jmd1r5YDoEyVUcycA/E+bmzfXV7v71kO98Ex/xCQ7m5mMyogMMCtnW5OaJ/xql5f5zaKm6kAvKz60ouYa4ZXbTJv9b+FNzZrMNgJbdm0460w3Yg/my0yMWSAL4VATdAZ/OeX7UPuYr52M+VDamtqcbuyG1cYC9cyfmZuI7GWb7loFpe0aEbuV1e3dhy9GlhTE3kux9EKaEARHi1TDY6iurhQAvKHx0dn707EbK9evXRkkGWBWXgTKQ+2QWcomNuA0WzD4MmfdisW8vJmcrLH+myj5yHo4xk2LedokEiGSQ19eRMoyyIMaj9viJ095N8a2S02ogKVmhAz25A+WT37FN9MO84qGNd0QCaIpNVbTZrkM0eZZK7OStf0wFcw5Et+eG6dJ+IwrzVEyN80OhKme9AZ+6JMyGTbesgOVCCIhXZSwF7tMnzSbNQ6E6obM5x/Xy1TrL/jAEk7lU6akM7kcTpaSGhGB8LKRTLjh71dQrRulx+e6HXrtEzDGzY1fLWhQxz4Q9dgo4/RadfUzdZ2vqXRN8YhQzYV3QGJrlmRCI2ABK0Y3b/a18KRAgDRhHQ2FQMgNUJp33nn72WgddV4Nn1CPgIQ4wvQhci0ZfIgkE/zycGlC71TUA04rwrfa3ny6Ala1fIDlc9pIzVmpbw55Ik64lK9rGjpZw59kiId86GveS+cVcd8Yn4ML6gzQjfxQBo+XB0cCIaF1mRDr7oqTfeqjhLyXekfgGpLiIVhUWmqZ1GzYuuRo8T0bvT3Tud81ghcu0InsiE0WHGv9VII/0kNQKvmqod+PhR1ECCkMBhow/vogUMGMQsBQmr6pb2Y2MZfxgWx2DaoShkOpKIq4XenZoZHnn1gHjk5aSyeQJRK+JTab1gPWiVAppEOssEZb+X0Zzq6Xg+kwpUBCJ6HXGg4V2iKqDHPoP7EN3VUA8iRHtEz6LAAGQxUEIqyTiEoqCu5BDDtTfqLLUgKW78HWl/NAEwqdlBlFeUMA1SoJzNxVvmQMlKUwgQWhCKxDgYyWjOnHz7RdMnDqd56DaFFMGSKvNGh0Uik0scqq5b+YZehRwJ2QLiZ6bRtKK8nUIDECnEQ8NY8AB5KM3b4FOeFmPfNmA6jYcAI82s0W36TGJzUEJXBiJ3il5oxkVFnYxXsaybHBmv8ejVSr/5kFX9hXTmd2i3BqDtVz7TE8MzuEw9DpYs9y6P+ag8TKoYbCb5aAzK6zb2mnUkBYgGezg8Plb7ePpzfXXLlksUo2SdeVXg0LIwWiWYOUnm0jynYlF5yL2gyLhLG2QknNctypgMU1RHF4XJS6RNsfcZ5jYQHbCmKx42gKAVVu/UCn8akr0iPe9JnCURs8kbfrybQZzRqcPDFWwVAQQfpD/PHIEcpp2gsmk7RCH9xQB3h3wqZAYvSJBtItTf0kledmjheIXm3L2ObnQAcnDXrrpvd2t65ODtNoYyiG/i3LRKXIFmY0+Y2m4ZB29neOXv/7vbiUgfPWMPl2fXm3vb5+3NY7B5svfr8s/29fRG8PQG7mzvXDx9OHBVqPGp33xaCy/MLbD+9vv3m/cUP7y6dIWNdtfUV1H8GVOp4W5aQgj982NvaRg8cXKhrldGz3V2Hrhi8xslLuIlmjd/rKrB+Y56Nb+UFiFIbsKhWLwglhcOYfuG0ral/8ovv9g8OPj9c/42/9Xc27YRWyIGV5xeuSbaIg4ruq+vx/sKVawhY23rxo8+P3ee0uvXm6+/Xd82i3PzFX/7q1c++PD7e/d/+k3/v4vKf/Q+2O3NZmyv7x0c3lxfCt06DaZ29gK94joBPLMB9v3pgWHXTih2HeNYQhrBgbn16bmTlI+isK2woOiNPtRwJbzW6dUG1huxfop8Iyo34ZK3zW/AkGuDmDGyvuZh249n++sEmTWOL7nA1VEw9AFwXQNMhh5k2rDP9JHcziwuv9NXVOkJ32PGlsJ1iD3TkWCKi80X/Y7ElQA1d38y00Nr+0f7p92+0I8181x5zTdGhY+meAf2xiZQM2HAgW66IY8mUykk4M3YQzLGbNB9DWIq/mNEXTUWrRGRvqKzeCH9odmjM09BzljuqXujh2bgp7Rcncb+bzrHNc3KyclJtZmV3I59j1UV2rYtiNFHj2sZxIsnkiuDxKuuJ4Ta+mBexVFrNXCW7c1WzO7KNd+r6bLv4a3339PKGsuk5WExVV1/c372EbajI/oyMNhAyJ8TbZEyNi3ithuI06qPqQCehRpG6qMCGiQfnIOSyeGM1Zsui6+mokDH5kHIxZS5l/Cq6fUOBSovkZgh2tOPRdE4+13oPR2a1fV1foiDJyDcvmiexDcEUwYxKUDoBFRe0sb1hT4ne5uHBrvpt2PngsNpff/fp8wPsPT44dKjR+fuLd69/cMTY/tGhKvQq3W/sdgvc7o4wva/YPUci5kWJXh2kFzrpbCIuhsguRz8gz7+R3uInvebVNR8pxXgw2CZqFeR7uScwsgTMHIeZj9Wuy44bja4WuOd8qxptH13gFKsBaug/mQeth5r3/xFa/MwelX365JwztQx3gmnFK7IgFhmprt81jkPWNF7je1NnYMpcif7V6nFo7e1Lhwtqa1vVQgf09SI/pMGVIROYuqpFcS8kidWE253bNsjLsNQe2txEqlJbE4G9WYLRMTGes6DAJxekIrFK+WOsGsJ8VDR0mQz44IGDMmIAV3pdl9kBUk+y49oGDruqOxk7ZCBWJICmJAA0DxzlgTIAQUOmzSraSXKzdMrDDF3VN4gJWojMNxuFm7eyFhSOH5RhFJ7+L4EZkU17jTz9mcUtpAD5BxT57QMbwOp+1EfCu1wWdiiyCNvXYTsRDA74VMRUWhqTMHCjz0i1lrfnEIxL/iTlmDCSjwdD4VIwQpdyDJBQ6jygwwZlb8Dxv4KqmIiulPkEzE9NymjeqKh8eJPuNdQbmT6KgCznMjoWA4srqBDRQS9EhwON3qJNik+sCN8IqdIhwgNjib1hVZvlTRAmhlE4GVXOp3rHQFNOmbwqdTR+eV21kT8E9iqjTqMHZu9GtTwULvZ+5D3I077wHq0Gw9vCy5Qxhg+wCbuGTBBkjhBZsWtBY+T+0e2UoVxVMnhPmSLFQWNYnMIHpxwhJCYGbzxOD73C+Tgq3xCRKy5Sz9+Js5XykTQ6FzJVl33GHQCrNEHWf7UisBVpC9imrgqvr4x220HYzC9Uejfwst7kMaJiHpE69ilLIhlZEq2uPRqWotLhqC4O2siEhxwAjznqCw2l8D1xVtMQGHZRFvCis9JR5HdsmbIyj5OVZ3BnJc6Ad5uSRScNv8VCo1a00zEUcvqMzllqYn5/ygQ3uiqvWvU/cSxOyhzjZmaPMCGZ/x1Fk1uGUNF4S5/Zdrihq80ZphCz+TIvtjEzoSkX1g2XCK9Rf5pUNICiMUiYDGPysAvJiqsi5iy8AlLupeEczisyDUaDK+GsVcXtMKkLtDQkaXomPAE6kgb5ukAFu2SYtSjo9/BtaqBcNExfZ1y5XL7CCqt5SdGGdOFF4+E6m3TOEGAGWRWZPdrZ7DQAcpahDZE40DoHO3sF6IB02H9XWDiXeoNvHfabm9JDuMTfnb09agmS8/vpyu7+Dq66omtre+/hww3+7h7svvrRj6mURT8uCJg13R1gf3R81KDv7YpjZKwlPr+4dQ6+zsfBppw3OojaDNOxtgaISh2JaPhKx5UWiEnEs88P941ebxzs3lxxQY4e2jq/0rZkbYJGeoUNw3O/O+jQHVVEmVKPwabNC6/GP+Kq3sZf/tXXL58/+53/1T+01sM9Bgpenp3Z/Ftn1Z7f7a2b81MxmRXnf/ZH//bL3/3ZT373D+7ev//+61+vHx7/1j/8+7uPH559d2Ls8/rs2raJ/+I/+0f/t3/2p//tH30rujJuqgupckOvNR8JLRkxEo20Q/oNZu8bVG+5Qie+Y7URH2qGBHJCFeJ3t1wZe6vFJWL7Xo34Cw059TnVRhguAMs0+MPF1lDtw8BpFRUgWf8/xbgNlzy07Vg9u0eWs9hEIWwxKm8o4YKgjavudxzpyruLK9leCeIvSX/bkfgXF11Ys7+7qQuE00wt3TMNYTOnmxCtm1pfcyHxw8qWA3Co1Pn5pc3AZgScGNR+1qtrW0SwntZt7WyaUzG0bQEwraqPnUOFsb5lK61QgwtdiRYdeTCMYxgp7FNbFcHIlDeDynqELLQ6T9AQQB3Ve6MkvIuM44ZbSEMNMrTM1OQJaXAIvCjFa/SD+l/VyyXxbfE5uMuqnpUG6ZTK8VoqZbkAi9necTfWxsU5ukQ6eVY7fbeeH6CHpCjP1SUIdoDsuN5NrdilDpO7YZPvcrbSphNL9RpUTYJ6CHDzgCLj7gX3s+YHzvwNwvTUOljJKsqtOQ12lKR+C8z4PiyxSsd3apJqmVSzc7cDc/FJlFPfpb5H6xF5FxjjPIWhVlXqiT/KwRq/YL41VCRez2q8aN5FDE89PjycnJ/rjzs29P3p/enF3avru08fjp7t7+sfq3vfDdmIurPasDmZ5psQYzBFj8W8KGLGW44XpfR1cnJ7+bnx27kzm6JvyZEjA0Ep+p6YpxHAmLEO2EG3oIGRScxfF4U3XNVCylrSvGW0kHcWEYnjinPv3viqdFZTxJOteSIOjp1JAj6tG24sxYOBP/KMQPOokFY8i6AFRQJ8obQYqLT800IVBqiw6tqLMi2Xl2kNyMlAYXB0CxntwA921A3+3k9TRQ0n2GotUMBn209eHXgi5rVlqItuVemEel5VhHVwHdN1ESOTeIgNckhVA0w/0lHTANzwk/XoCXs0YRQva49gOrziU1Gth4eK5io1bbDN8FrzAx9pCCMUXzLDakk1EdIoaM0zdg1dps0KfrQKRdtR0dbUKaUyKrDUmLyUqPENjWTiVVqCkRBYcEYp1KYBjZCO1cqyUoJYMTowTiZvifDQ1tQ21w2wZrr5xclYODs1JNP4BeMcjrih4D4WKp67zrrdCAk+a01py+2DIeFQ7aHSQ5qMWMCqvVWO6UPEpqOggOYvRlR30UuZp4uUYiSGuJRiV38SKZHaJBD1kPgiS1RVcYwG3+NIJD2c7LQrfzqih5U8njWaH7R3rNJ+H3L3VZ5YHZNCwKdnylmbu6wuKWVSy9e/IUc9KUJRE/VRbD5pWsV9YWHh/TfoLTGJhAjBwyVbOYGHc0VGWEgdeBGSupa4UBInVLpIqorCeUoOvwGaL5IH0ZgTTwPdU8g/8fNviJ0c2DzswkeUgyk1kqMXLWQVW/sswGT3EIulhFTP5fePv5NUD5uoqwadSZS2lUCHErCKxj31tTZs1OiJob6Oc4pBFVF4qqMZlI/YqoYi4IsMiTbKuGBgKaoJYmWm8tzloJd0SuNKndc4TjnhRV/hsiqGA2mMryCDXroP+++E5kXJssxkoU1C74TRjaKVWAZpKfqDljs3ATtp1ZwapGrazkE22hXxJaueV9IVARzmTZdT1ifih8UKD/AICakF4YANl+Lt4KzmMAG/+HWGgkJp/Ooi4zCfUR+upOKwG04qJcM01iiDC08kY58y+O198fpoNo7Hv+LyJYOHRkeY8jAQT6t32nulQIahnJAcHoRDxOY6mz/hIn1v8K9KiDl0UCUbG4AAGHRxKQussXxsgIVawiTYC2Pa/AdE45WJkcM1zOC+FQe9C+8MslvmsaOo0XQByu7hAW4pLhBX3sVGxsWh0AClkcJbo7l2p1qdLOF+c7c9ZNdX9/vHx5/++Au9gour05P37wbhbY3J80+faZ3Ncp+dvHFH7HcXN3/5+r1jQ20AOLu4ORPTrzo28e7SSuK7+4vz04MdK8z3bXCkmCvrd8+f72i6xV+OOz+7ejg4fK6PBhydXlaO2ccZ45DaiKYYohMaOylocXYTgMZg2Q1bYyUOrK7rbHz33bur62sRozMwCCHzfAiBuRmATVxg5N31xcrNxeGLg/1Xnzpf88Xx9m///d/57Me/eX9+//LzH7sabPvwYP946299efC/+fd/7w8+f/75njM73eMlYidm7bKQU1BVO00nCYwU3Cfl0Bg4GLXLiknUShyR4hKAtHuHQLpnZ3dPT8hlnw+Xt/fWBVFiedhJijT+I89UaJKYMwYWwLbM4K1+2N9ce76/9uLAGpMCZRG5bjiNon+Wo9ioSgeMXjM5+w2Iw8blPRcs6G657dmiCB31LoiwIMTSLe7hcccYvkPlnWQphJ0zNAyz24lg5GVvZ0/NolZEAEX3aMjR0T7jsBMA1jTaj3r9wNamCz5Aa5KK1rLGm+xvrvBk5n6QMfYQ0T7ZUGFWo3e2pvhpOzpgA9wL1oFAiAZ4Qm0NSj0N4+R1vN1cuwmALhmjovnUht9k1b1fXT+/wuPATkV13RXJQCZGF41b7n5vdcvN1bPDPcy34ovnMp7x7uxC6M8Qt4O5fuXYXJhzCRyMDRU7u12MbXOz/fEHB1ScnmpSSJ1z8KeJBBFg5krNMcJdvK64bnLLy3DoWJhRpiL6DzZBO1kUAo3w64VwLCBSsvbL1ETI7Ea9GhlsdK1A94s1HRETCyEyHDbCFnKP41HDSieqmZA6rHE4B9LVLpzklp2V3tm7cu+OuQfLuN5dXn/19vRr12pf3a1vb7x4+cnhwfNcwmaXUp+cnWbJRiOWQ7ggMv0oMlp8lzmH5Znco4EEm/loF36CH7+apPOqedSKjc9EwHztlYxQTec/ukSWpQQWeQClKH88o+i/UoD5XgPUcH615Inzk8DrrcwAWZwceyxilpmsRl4JbDK34jClZXUkJi2L68NVxr1Q7NdUJ8tTg1W7ODhEwSCdevmM88/+A1bdwawC9jIxQEQVOQw7oBYtqhuWRPyU1TuKELghKAObkSbqAqwMS/6lYCbQUtWMxKzU8GSWUba/qKlvQMhk4q16R7BJJOFcZ4aGMUN2BwI4IEM4To2UtRERiHc8RaSVCvPWoTH2tcdOW6OBfB8PQ6soIqOtGz/GPvGPOnCCCgoosBT+QDD+dEPOAMYlRaoVwZoGVZLjLKMF3KjZaHotI5xhMrKegQM2gFeJtcA3+bFVjJodVvEzEcQ04sKxeSgzUHLHtxHVAjEfpbqiu+QVcssDtrBN0koY1asirikZp8tVChBwnllBz72i1WWhLClB1Q0+qZuf8IF4YwoL8np5g9PkHFBJPIOKV/MZ/GXPXtAgPzwjQ1pYL5/VSzv7r28WbSmJrJAQmDAP4Kh1Ug745IhL4SWFE1swQX8YKRON4RI/l09cfCqylBpmxI3Iy43Hn2qqCpTG2ykyeTwBHovGY4wGLmLtDTXMT7CO0FswUH/Ap/7SVRKM+e2puvqkbH64lAlZFwF5OWDKko0M/ytZ1hk4l8+ndwtUgIcv3gJdKhr48/hRb1Ii/Ki8NykciEPDILkwa7BZLL/4eYkOExaYvo4jm66eJFBjvqZ9ggXNnoituLycyGaDyXvwhkMkUIK6X4umZpx+Ir5udN4ugPPxIktXYEQELcyb2gDvi0LjJqqotiFSJu5M29tRF5tySVMXr8DQU/hMzhtAlnhI7SoETSmgxoTCmKlUZFgTU1Q5Tbhc4bmIMCOp+VxwRjWWxm2a12BJNIzoIFkVYTRe0pdID05htbc1rKB0AEVj8FJQP6oSJtJhgL1Il7gQDho8E+JSIEalQOrvTQyXue0pfsJjPvG4TwLtb7oR/33izOiVzNFn7FAwMghDUj2Z/ei4t6gDA1CdIhBkHhAN7y3iEFuoXqKvsIoZy5aJu6umOi3msfm1PSfVLsNcEnRrga8wQqiiry21Nkvnp9EUmwF0nTq3xSaElpGbDXQC4NrKzpGV3/oDq0ev3PH72fb+0ZvX399entv4sWXgU6NuNtjE9P3K++/PL09vbLt8cXT42z/90uoAsrNdsnErd/PuGtZv233nCz1+sOXWhIBAftspiw9rVqVYj0HTX706hGBL5Dcsm7byR/shdDbsikcNNu9bZmTVUIfJUI/u3KF8aQZdqsWiJSltVK+vf/Xt63/53/2bs/fvby/e1plo06Qh7X2tlxltI5oPVxevv/phZ3/32YtPrk4c/3P27IvP951N9M2bm3fnjzdvLn746vL67C9/+Ver25s/+q2j//x/9wf/+f/6b//DP9RdWNkTO1pUtHNgrYr7kyEg+BbiYT4PoeuUexslpH4WyeikWoNB0PCtBZ4DsuAp2BOZOk7eKotcd05jdC83SNXTIFrlC4njArs1kGsC4cXhrlFs8ZrpHBUJXq8v3UXA1d+dGMK9JZq1Z3qE/OyK+RWr/e/FL85+3dvdfHaw4XyXwgPWcWcbQ8cBQcxAkRNo7ALwSv8rj2KXgvGthqDtCa5p0p5D3kaF8KuJKiJZGq2FXlUzotqhQhNWUqTgq1Nk85BjRDUGCBK+LvEWiOMSEepTKyhrq+RXxKNqNXHEXMh0htuJGL3W6qy12Gr6PYxfY7QLaeHIyro169QZ13V42SiXJVLXR+ISSEfl9PLK/pYZZ9/a3nAJLgvd2QBgC2ndDGCj9qVFlgLs9cvrW0P7DATFe3tbDGhnd0OnaQ7BbKOCOQTrwWTY3t1Sje4w04OyVm6W8ZNsSz4I0674nLWQYs5Q1jWxDskEhMOCWkeqH3UH2xbtYDZdKAgb36I/jaQa+kd7Ca6ogx5+IImn5tlGdkpqeoROTAyUZTThEGdViWPUb5a5kheQsbwN6ys29mAu7t3fX+3vbezvdTPYyxcvDDufnbjaYvXN63dv3/xAh/1z4QB+b21tp9xd51JHYPHwvAmYaQ0DnPaCm/WYt8wWavISbho9Ys6F9Tw+LW+mWFCzZ4KKbg/UUqHBOfeq5ZqMi9cN5ri/mp9qqjHNfOAwjtYDtcEtX0MMSA9gpp+TcVrpbI4mlVtz2YEwaoZSjKLbKvFVfm8HeGRmkCWqdemTDOwQop95fIpLD2QpRctiNj6/3fANBKZtUlpntRZ2qS6M5BhOwgFK5X982N91H3N1KahWdcvvMcg1NZhXA+PJq5RNsSxXwmStgLU4SmFRUdTCXUguJAAJOZxRu1+Kg81bQhfDAVGRHJw4vBUX+ZRgErcQcKQTyEQDp3JbG8ZLDz5+wW/kiNBRBJCF/kvsBoP2zolVIDaBrOYpreB0sF21raFFgNqxiWUhkIwAirwhYESRMHxTKvbGQ1Q0JlMFtYUJgrJhJNZByYenioRgFscHzJfpaQxX67fkgD6Gj2oERLYENS01TufqEDn4wG1kmD4P0xsFATNtIcoMpOtBpEDxSZTITvf99F/6UlD+xTS4sCqc2S3v5Oo3ivS12jnzJMSFFwt68ijgw62hGdi0Ro5E6cFH8T4yzGNCf0JiiaPKO45C+hSAbQyeatSCUl+RL13i8vfpde1YVu8TJn36LWHQ7i3hKzhiGiBBSXbRPqguKhjbWG+0hgyEgzQgn2r0h2kDOG/L4H3Ezd9cyoCWOKm9ANGi3DLINzq3YAmUF1o1xpQeR0Y9b/qkGD87KgKMPm7jBDEoJQMoJEhCBsVD2gcAej/TSVU1nmbMIJ1QqMrLlmAS/OhfPFZ+AHhFKpXzZ6hYAm2xEOT9DJerLXozs6Ft6lLHggZqg+81JNKCHId3RYpjxl5VT4r1FFDSiTJWEF6eq9/XsSvGrwv7RDu0wmS4NNUpUT3wY1qErQh2DbAJ0WYGaogKJ8Vr5aLGp/pk5hAhoHHAwMhe3kZOvBp8njoGVDmcid9LKBU/5cjygDEzq46Do45jGPEs9NXLLw9ag4bCBsKbPQdpho3krEKg4OPjmKNC2NGzXkC22jGD80o9hoQkMmOKNSTyFO6MCsbA4bDfT5ioCgTWm+JmlpidceZx0lr5jOBCQEbMakBxEcd0YJJ1ncnYJcQBpLqwerQoFeWOZWnYctewZbsaZ5z1+fNjBRESRmYGdrfharQev3YPHJo5MQq4H+4d9t+CHOfL729tHO1v7x2cvnu/ueEMEYc+OZ/kend/79bUgLnF+w/XjqM52P7guPS7h5P3lwYPG6iBUV5+9fho1/IMcxENq6Yv9UScMfKjF88e7653Xry4eVw7/e71/s7WiQXWJGShwrqodO3cSrlhBYXrEi5XCBvONLDboi0KluvFNO07CarsbxyIIMui7X/1b3/109/8kaDKRWc7h/uNOK2vnZ+dG2bZWLm/eve1I+k2N/ZvfzhbPbx+9sWLIk9bFO4vT19/ffH911frW4e//eOf/t7fergjipVPDvVP7v7nv7/7cv+LX3118t133/9wvSJ4nEbpipJQizRB9Pb4wYlGO6qzjLvIi5JHB1ZAHkfqqjjth9YVKRYDpdjEp7mdrOAoUP6xPrpKQHYHGe93X+vx3ubhbkNrRpctNvIOwLvV+zO7q+/dN7Cmh7DriJvN9b3djYsbOrlHjyzCWca/bdo+2t2AnsuvbNK+Nj/gYgfriB6tArHe9+ZqxRJ5iz1qyx/W7vFccw5VvTKcN0LY3vEi0mJ9o7viTgrlayt/C/lr4YkZK0QhaVNk1JSCmCuhel4jfAYLRNLIp621rRnXBDpjZJQhDbc3uruWumGtBlav8/5O73Esnw9p3yoDcneBZ0df+goja1348ga2b5xh2umZ+Ew8rMPslr6lFfBWMeVAEEJZhSCFivC9ObCy6mHl9Pz66HDL8Ziw3XNHHvJ3t65O7STZPDx6pOTC9KyVrDY2DbKZgUNjR+ve24vvWFvVdpcnyZuzcuZqtDTX0bFgQilcxQuXNuhDYaeuxPAk79FowGLUhZEtzMua50x0ukHLhGM0yxyk2i2tM/+nd5H+5NtBsJ1ApyVhKFjURv+EwhabWSE3VrOztfu4SQfJLVdMxjjjVB96gGU6A8Z1HQFkA7/ZOl2pw6N9d0KzLDmhz/0ZFh8p5b7wlkokalosTJ8+D2XGX8JFkRNwoYKThXS1NRx1fEj0xVX8lVAGsv0fQ0oX8NNvpfwe8RUj4k4eHs42P0ws4i3Z9b/Rk6oBB7dzJsMuDBQJTchbXp+ypZflzNb6llLqLJU6ofn8NvFlYpk8JtCHqJCRnhV4GbxvLahsCojXdZPS71qqGTnOI9V24HwGrIWaqDGvngJMXDE9KBB0/HLgNVG1yKDIFnaIb1kefocnjZu4IA7hXC3soBEZjRhiDlHXh6HH0EMRstAO33rvHfMFmnKt1ZFhmJVJylkvKFIlKl5HAg89j4joai1Urb08pJCSrtCBMkwDTZQwxGTUkXK5vKuhtzC4A3aiZZyBV55jJaQbzGplYw1ZSh/7JqTJj+CJt0Guo5RXxBqkQSDagR2OR/2T2DtFOl7p9hYDZNQ0RxEc8/HVE8IlKFOzEYbICSaUFMGZ1CyY82oiPUBz2+0xUEPOBJzQLwIZtg16w4oKejWvQZ2wAz7RDqBf0AMn3faMAx4KlAoDagfQFUW5xMgsdwpYGsWRZYHd75EObKvR696UJz4Xs00IEWHJq5c1r/UfpMjAC1X9fAqGFRwt9QAJbxawC41+h3s8K6enauzHvxAo0WfE7olmSiGwWrYQiMOy93vCFQBCIhIiEcCFcBnGgQy0IE6+cAuCnOor51MRZScxcysKGryCzKYhQCxEOpKsLlllqDssCyj18gYS/NiFyqYMcpaHtIkElle+kAcTqkzqADQjJJyoCp/hhb/zLcojklwXdOHE43ZJezFAkq5bn9HKN8xKTolTBQIlZRegQ1OU+zyRmP3EXK0nu+hRrYopHiclAK55WEqFxFi1Ya1RjuCGM5bVA25UvkGmVCUmLu5p2DWMaiwZuRCztrNMSW40aVBs/LW6OfUWfVAEvZUyAx6Q6buMbkVyaPrvZ+FbXgP5oaM4KXpAqFwgSaGmzWsvmZNarm14QeaLZUyTgPmlLv9jQrGi6kgVqJiVxwQ+cVAO5lHI1/nxS11RN498ALlocRGgCbfjjciSO7uoCWeLYbtIKgZ+6FqirCaRT9szBIxYcCFlHZbWvfzouUa/48NopNUIkw3QMnBCTxx4MmN4w3z4KaXGw3uCUwXHzZtw64ZvMWdrZ8cAIThGTVzOpYnZHu3QXj+6V8ja970DR5fX4K625scJmC70MjDZoYQjiM3tbeGQ5fJg72wfbm0dn735wVBng6cXAqzt3b3DB9MYZ/cXJ5fc9vH+pttV3XP0+of3V/f2F25f3n1wE/De/q7dhBLF/hhocySfJ9AXGn1yvGOVuYGd/b31Nz9crE/0f351fbC353DDfSGmlvXDo0Fe7DN6ayzUMhnHKQodEJ4CjrUvX6lUWh2HGovN269uvDm//+N//auf/viL1S3ToOdW6xwc7h49O7g9X7F6fv/xpZXrp+eXb7/+5cPtxebRzuPt+uONu40FY3fffH1y/NPffP/+8mfPvvzhr3619+mPul9r5fCVdd4HZ7/7jz6/WH/2//qXX//qK4CJVFNJmiltX1agaiOmRnDdCR7NbizjT/bDtUTnwVw5/bUkvnmXZrmpbbFCdkc55Z51zOCMTTTttruxbsvv0a41WdaHsOFHfHFfm36EAE8UztmJ7CxHEarb+eteqgpvrB9uHsDMzABFs8f68vbucL8LvXTCCkj36gYIP2dYYdU1DXRYWG8Y2pE+5yfufTswzCsUNu4LYD6AnmiqXUa2teH+B66bzehlQRYdtMrzYhpYQY2p/RLhT+FsEyZ4w2SE/uBJYTqKeMwFtdm0M3zU1gDKNOHYGstov+ZvTJSQ9rdt766HIEWcfH1/q4fgWKfstFo6fk2JmcQ3ARhbcXfb5VZbEAZy9eLyXh+JCrkWTVfBIPq1c26E0qumUETyluZ/0MWyfFZ31vSYpQvP9g9PHBi08rhrKxf/mpLSvAbCHW8lRhbrkz4VhwY5kotptQNHBTX5mbM2aWC4gZ9Acu1A6M9VZRrjRs0dO8Qw8nvTbnXHM05aa9RUgzcO8HHIjxUXejhI6i5niwOn/9Q4VKLEOl7LKp2DXRt4+sCJN2PPy3FG2qCbO1fMUpCZWy4WWbu6uL8+P3NbAuDuTLvnRR7OXnz23FGi3Ijtvzs7qcD6JudgK7nJixZlkTfvzLLr7kaV5qGWBWq1x5Kmg6HgRNIpAD1JrK0rkytvlkelAPNu3GMuNdbkHplGTYliailIzdiB7WRM2uIz5dhNX/zp94yPzFu10U1uIc+MgN4WOK7P6bqjokXDmR55pBYTqy2qS9D1VRh1r+uQQI8UPCuploFWxb5CFmJewi6Uxj9jDmWwHHFqr1n0r+gzLvQbYAoUUeDRmExGCnxmaKkZNuu8gNMuNNATMnLDMkPIZuJDEucK2KCaq70CS4Q3XZpqmfgJWIMzCEGDzGDIrSnEuMDWZLegdPxAIQEMMzEBq01oogRL4xpZU5N/1dEwVtgMa1mnhzxz4vA/hEQDc+4k1k3OUFxkWnV1ePrwOh74bgSqH2U1nOEWw3tKcGlMmpKzry6tWzXE86ZTqONwJu6qKyh9Ri5qR99o2jREWTdJxWd5k15sx4SUQRVJM52RAdgEHZyiQdOusBwRQjHhoXQQo9JpBS5xyUCpW28hyCCM41q0orZhNkyGwPRPwjf4iaOYEPgozamOHwifBZNyghi+kpKfrzggOyxGf+KoquNGUBsISSjRVbrMyg+ZWUp1TTSIwKGFEUS4tIU/6kIWhAApR50oVA/oIMHDZwmrKiclzjaeqyp8Vjiz8mL48BS8LUj6HZWRu4BKvniFGRCQvNQAIMWqzkFX7mhRM+SjpZ4e9ERPikARmeDK+0TvR00IwlMHYLgWEqhNNmMhI/VENUgQXhmmsAw0MXSnd85vE5ZnOQZ9v2SIv/4M60M9lsnAlkeQHvO5C6mF0gvvqi3m97/+Iv2oQIs1po+eNixELbaB6tlhkxRGotxMQhofJMm/6fimptMxYr1gQqbvzQM0coA7ySc+Nm6EX9LBQUFMnnA5GybCMT0wvUUSCAoTW44jDRw2wzD6Bzg15ArpeKabhlVjIeeTu1f0ickLB8eVhHTcjm8pax8uJxFmF24TbBmxPOPpU/3loVKLckcFCgJCNB+h6UVY9WFwniuvxYZ8lahGBQD6lg+N8yKYFkXkSH1yB9VH7Apo15NdtLdFDAdi4IyvoW5hDoYvCJhTh7ZGVzpe4H3VjA2rlP/1NlAtHa+O7FZFuDQiI1VfgfUNcXFG3ky3wZUkN/o9uqn4EDLzGESYsaXPYpp26iLn9trI+qO1QF6Jbq0YsSF4f88Gx+S0t3ekTXABMJHwoYh1BLw4df/wUDUoOHv/nUFlPHr37s2rFy8sAzDeefb+/PriXBjUbLNx1rVt4/ePO3uZe8sn7o/3bQNevzg5t3Tn6uzcEKCT9R83d8QoL4/2XuzvnF/eWhXyzWvrdC4aKF3ZeLG/zYPdbTye3bQnvl6XU32sdrCVWcAoFHCo5yi8/IVDs5oCDdpGmOOJVQmxmmo+kNfjn/zpX//Gj17+3t/+8mDXxQgQ2XNuOUpPV6/XNp6dr1/91bdvz7/6+ud/7+E3/+7v/6v/9v/76YsDA72//NNfWPywu3r72SfHl7/46s033738+c+3t3df/PTzizffvX371c9//7d3n+8eH/36j//4h3/5x396cusyqSt8yEOKd4uGWwhEyWGS9hAeQRLxmLlokd0Y17XM2qk56XMf+liu5J45g8RXOOb/8XBn83jPZM6GK50temnJUL0gU2EdKJ2jLQx1EKfPPZ9hvPaTwz0ZKEIhUka5cmaJt7xPwdmajtrG5u2BLdKW/t9bHbRh4Yx9uodqsXZoY/P99cXW1r5h3XMj6MWObfEXdqdaVv8nJypOtwWLqtEraDtBplH3dZrhhmMxheJLjq7FMS0jlOMqvGi2CuH+KdUpQGAAbFyzNtJGO/5kRouFiV0+pTqdbSS1czpzY8V6trkWxtsuF3xzDGgj4nY577W2CqbZReH6KjZgPkGY+rCrmMpfK/RoqqvxUb0DPejWbK0+6KkSCp+KI03UrFmIby/7tR6Us4A6AAfT6SMhmKHa3Wnji1kCIrNYghrgdmcWNFHDbK9nZwjX1J6LcQgsi1LX4+FiWlK4qn/rcWvabl7BGp56s0KcrmnbcJwo5ueJahrbqE3f5t6DuZ2tmtb2XBJcE7FpPT8vrlLU49VuvYg8mF2eNNI+ae4nPz/RgDjPYIFJbjK8uXoQqz5f3Tu7vPz02d6zAvTV58+PQsaRL9wKXKf/xktye/yF3kWxYOcs1fBhC5LUgnj4JnZMyl+Fu49iH2OCXng9GVJUeWkW6paWxT528Co70TCFIBnKRNbpjzeyAptDXtfz9FVODE7n5UrbZ6yEF4WcxnT8M+RYI/EAggAwRkNzfY3tBBPU/DIHOV55vP1Ma8QEdeF2YUD928GHnkRgys8eIUBrN6yEabZENqAHn7oQUZx/zs7ToYkXJ9RWFWKy1rGG/vin3WK28AIHRQAuNaoa3tq1ODZBcIxqUzJpFnmVP06yR9naQC9xvhZ0QrWef20Ocg3FgCM/IuJYoiiknsBlWNKogOqTBmbmVygvWpMZbtcfa0O8l3Sg5r7dKTOuj5gWSNfUDp7BVJBxKJsI4nMjO2Fbaxf34YXghIAlU2eFiTdvofOJk3Ea9mFaKykZckqXpvsLhsciH9hwUMsa2tEWYIEvfBjOKhZbgEsaFUsQcaNwQrWA45G3Pt5L4dVkw2C50r36IeGJF15iDChhrsjwdAoF/0kET6yWrKYhIZgqHOuoIqXz5BInBlLRpA5+Xoc8Eqj8IDZKM7o0fE5xBprf0F1krLJScQu7hnFeLR9fA1lQt/ATJrGI0VRtlSqHnMnwsZRafKJ0gTs9BHkgbIzKEGscZXHy16mmnBEFEJxGxnFMpXBJH8oGlji8DJMXB4ubyj51+QXDkBsgHOHAEYalKGMgA2YUlUzDcGQa9kPDPLilPRABmVAPCz2Gx+T32KtpXcJbrsWw1d3EZZuvGofQdC0yCXntMa/SgEFOkIFwtdyE7Re1cGx1dDS6gEtZffodxX1CZ/mkc0M/HUMSiShA7/1VEY6y3qAsBZUZ5lb1hLOpQrHrdFXHJanIIIT8I/ik2MNShUQ4hEmmmBhms07gh33J8qMfCSyMp41XAhDEkmgA6+/GhhIGszgG6MgSYhAGCljlvQJqBDN4DoGBG4p6OxG5rJo/OTs3aYYifB1jiQnSVaWU2tSDg1BbqkgPFm7MW8ZpBaNENaBRE0LQC3ogsMCYCcJEaxraJDkfUGL9inW37Trl9ydBzuHdKKdfeAzC4vWAxX4/lA8yKc+ycSLOQXk03smkcy8ENIb3GV04QyQDK8+IfCS5VKXG3oJQkLhozHCyQDDXNhSpApEW22h74AOSwE2IICf0TQFjhZjy5uraIng20zWfxF5L4EKusDMMAxP1H704Fl7fXN12jsr29sr6w+XF2YtPPtNmXbpV9vzi/Q/v9na2tg+2Ty9ufv3Vu/fvbbR0HvaWKW+DqHs76/fuETu/ksK5u14pt4CG+4fDrfUD+xc/3NqoeXJ19frNtaOBrHO1uufSI5RmE6cV3Q6pFIqJRq1KEKOlaVoXLh6mo2SpUKcftgk+8dZaxxuPPaytnF1c/eqX3/7jP/z5y2f7iJah8G5l4+r05ubqVBi9evN4JJL/5IWTQX/3P/h7l19/dfGL05Pv3n72858ZV7X66WF39dPf/Z21ne29w2MzBmcXd3/3P/hPCPjq3c3+xsE/+Hv7Lz/d/qN/95d/+ueGmFddpVzLaP36DMDyBMsVMOQLH+keqAWkXXksyi0WIKS01b+ky3z8o9AetLe6K5/sbD3b39jd1i9du7Ycw3rvh02rT2ph1x/3t7cKyl2JcC2aa/24m9OsVjPDs2XR1J3zmx5e66rdzRqPNQHuxuH2w87ehgD36/f3u+vrB9ur9mgIWdxX20DRvkCZoegW7p47j8nKn1tjBzpj1N+0RScvmjWaSYPOwRT3+NGM1h6n7Zk8ElDKJ/TNV4g6jmMmCWVTiv6TJsXQxyswWww5t7ZINqWE/ET/DNaeFt4YyfkoI5icuV6K6Ira60JRXbMZzIJXgBoN1yOwSEYPAWrIsd6seQJX2t2FDwwtlTKjNdeZ1VswT6Yy23ytCiZBXUeluAniswTI7XNMnGn7fbC3iZtLq6anZ7ejdf+62WZUVGXMuoHYD6uWRpivYkHcQYf3bHStmDkapoqN+dAWbBi1tTpIhOec/lmDbm1qQzEi9XursDAtp2iXue63LcKmIQrmiLkR3Gx85ktJRH/R+U9CNPMcSManza53yMemUHkqhFvyUS2aMGEkJHMdyJZ7te6EYJcwDvccHMUFt6v++vLu+vTm7uRm7e7x1WcvhLFwXcQ6p6/qBBWdmAuqwY3XueWqQ1411SZmqUvDMcGNZ5hQd4jViIxDI27ao0RMzBZCG6XozXBGnQgOZNA6UkYlKFC21j2HrEalxkWULf2bXWrpZE61pqcmeEZYJn+1FJfnTpv1GmWJUalYY3MY1RmXmp7BqViwV/RfD25W/Bb5KU5ZuNGW5NV++mo3iE4RiuTHVRhAFFDWBMTSFMAXZTLUlj3FMfMdWstgNonWfFcFKtKlgRYLbBgBVdX4PlQUbRUZN4hJwUCGCjkqCxq1hgZjiV3K88OKFVo0aBKDm3ufM50iIPZBSa0kW/lmHD+22r3NZS3IR7vMWF07CChKaSO6iLMOVtvyFwmNW5YCHlGhpRGTVDc/kCue+f8RHZ6oUg3V4rlsTde3uHey3Vll1xNmq2XiF3lxCbYG61CNWb5EQl16ytl6RV998GdmAIIP49BXG91d+mk15XVt1IVvjKV0PRn3QBaD1b3xCmagpmUzkA890PLnMA/tYsFpj+IVBGuo0pNJH6VVua+QVEOk9Cpljgh/Rk3ojFJwnjeL7GLIot6QH1n4jfFxyUfZwWLJo1L5C3uY50d1zZ7IIBb1Ngk7zCvBTui1oA2jpaKyBbNPhhEuQ8j0pclxKl1QxsbsfcI2KVFVypBHVYfe2KGqwSuupAmD+fJLGSozDOShhpfpZB/MHkx8DXOcqoKhpVKxt2xe5dNmNnUSq34UM50ZCMVFZUaJ7B7Jj2tGGmqmzmrDUwXCJTmFBHDVABzujPmpviMXYSxPgyVpqIl9unN8dOzMhFB6QgtrnvRGedY4HAk8sMpqD/yJvabb0gniiDUgLwIe442hiMmP9I88xrDjEdryQZS1NzmV0K7Bkw9aGVhj2MqC7+FvCNIow3yUaahMiwKfT89C0trEJjF11+IW3sIERygwfiAby5rjnkpT3IEwXAlbr5ABBzATT94wm0xziWBQSS1S9xHKaOfof8t/YaQUnGQQSdTyYfVc89HwpDeUpfVC7gbu/k4/3kYCNekLYgd/AGC2UM4N5RS0RmP/iTuiQmb+xTdktt80837Cc3ZwcgqjGuEEpaEsYQW8wTkLf30ymPE1gxBspqeLwKrgLWp4cnYKhdx8RosG9gz5pIFBzbMvfmfBDfW8IuTZT1XF/2qRt/iAcqqF986B4HGsxXmnxRjctQBESIGuhu4eH0SMHXORDrdjVBR9+MylAZtXp1fnZxcHnxyb9b+/vnJEPEY5r/a9LbOn58+ef+KGqPdvT77+zrFAxlkEUrvnFxcOhzx8tmvi+vs3FxZsrG+JNFYerx9vTu8P9na/eHl8bHn6wdrpjfu4Ht453HDV/oFd47UOCzLB406AF8+OrLWwggjZRnHxp/HmRh+FRymAFMrqw7FSA/QJmKLe26dBuzhSm7ex9sPp1V9/8253a3Vn7xk7txZ1bWd1b+Xg7vJkf2/13/+P/8HpN9/8+Pd/0zGoDgN6byukVS/Pxcirn3y2t/l4/+7mZuPgSy1BPfmN3cO9Q6AfVu4Oji3rMKh2+bs/++nPf/zJf/P5N//1/+9/+O76HB7wI2kCcEB7DRz3agTAog4jtDOzV8zL4WhJNP1jhVCH+WKkJOY4p52Nx08ON/Z31g931i2IoiciNGt+0I1n+JFBPK5cPN5e3tga8fjuXKpNHN6v2NWK9h/0zAoG1yxWd5rF88M9LSMDOzEXcFvI6JoHtuu22aub2xeHm8eblntt2eeqOdSZsyfELMXlzbVdH9rxFpSE/wYFYOV61J1chOOFpAw0hHyo6IQgopWUk0YJlbzBQJ5oUVF4Q5Lettl45jRosOOxc4g8yTKcj5YuWmZKuje139bQe4thCvJyNy5Wrr+6Zum80+zFOdyBs7VunXbF5MwaqeyDkW89enCclJoyAKUL1MxYfcUsx3YCWqN7Y+lOCtVaLsdjRnPdD4c1rdrX66rs3CBAliddtna/y7k47LNrkzj1ou2xrVHJkH0rnOISec8ErTZNTM2ajsGWkc/W7q+0MUAzgTOYAGcsY4UCcf5he3Pbfd6iT1OIvmI4/TeI0zKv9mDYEIklze+gwZolhMkrkOKj2IhF+4aNZ9oSOrxX/g1qjQK4bFDo+DczkBNaKQ5h+zjoZdcvftg6//Dh5bNj+iZVCGXbz5l7825P94/2Dl8cosSucPqKuQxy6E740au3Z0ABtPwxve4HrhJpCzfBbMef9UvjQWpwlmH41kDIwkEvpYxrrSVAWcrTo15WY1LatXzj0pTgBb8N9LQglHD8s+wlJbkZF6c/eNEpS1BJVtMViS0hTGOnBiMm9jlUQU4TSby0Vs/D+CKQY23MfYpsQhJ1E+hEFBfUFBJdbXZnHHVd0wgYbs/sR9GVr1Ab3LIkn2WpRk1KQVvsW/ggNoCx6U1Jqotpal+4MWO0UK1d1qYXpWVHlYRKzXe4QUN6TZj6Js4b26UYjSdCRn9yKRDb8y5hHhsHGyTLOSqU11WdEIJbUtNCDpUe0gulRjjTA3em3IyH6pqOSmT1cAiVCIGj7v2EqoNk/QWf2tZIj6VUc8atxA/KeOkor7pt9BlLsDBhDru0pPo8DQTE2NAe2mW2mhEaaBxm12Qb/6qjPtuNGj6bY9z+JmRUHIbByZGrhqOexlf1OaiaTo+qkKek+oRsJ8ipx6j0MH/R5YoNpYlmuFR6tBRD9sxdYw2t9kxzBtRou/cjcszwNBmSUtkQncqhCcx5XZRFcs1m+AAsRzV7KdMyyDjYDvPrGERFxRsVlS8NCRLKBmZ8TQ7ViA31K7NZSQlvqXhJUeZJ68oTjH7FoslVRfCq8gVUvYupGiF/owDlIvxJZ9foHQUAOXBJI7gxU+3JMsyWPAulUoZ1ffMZMjAqHV7IUDkMQGizS4RSu74ialhP5Knm2Mmwo4rrqsyUIsyGBZSYmIMJmmxPIzoJI8UYD8il/fD2DcWh0wCGTWDDy5Fk0KhW6ET/ohYCtrRBg9BDbVtdXiUKGpSTNgO0RTrJJNTkxKapZSA2JR2KCmKaqqf/n53Jo0gB90J/O3KSYzhnBgbIdXy51FJkGQWaioYiOSnV1Jl/T+8xnuRqXJE2QPmF0TzYzgi093Sxd/m1ArUndYc5+vMU8WckmWek3xPPDZf8Chc0gwLPyMX4EVUDM+YEci5m3r3QPPjgZa4h2LFLVsDHXJ/aY6QAqFS6Ee3LOc3gSq9Z8ksRo3kFDSOkKvdvFqOG0pjbdHBVk7LkIpsLimFS5B8eBB91fmvfG6phP9N+JIUQyEoBrFeB8yQ7gSyUiqTAXZx7nbIyYwN2RZfnbHvscHQv5i+jF4sfnzWyAKCGwYj3l6tnLQSiG5bx8obdSNpRoTkLYDvYu3MbroVB4piDo72NrZUbe4cvzm3tRdjdmdM/xIG2CJ+6X8zo7/MXzzmj776m429Pz27dm2t5PVpevjoW8d+c3b99d3t4dNii8/PGRq0wOX6xv3/UZbXXdysnp3ffvnZl8IMz6BF0c+WImJVPXm7tbax1zs/D6uvTSytPuH8taSPdM/2C1SglvsUlkjgO+x3DCStjrD3j3TFIzkbpNjZ/8ctv/uk//+8P9//Rp18cPDcPcHdD1XafHTzcPTMEv3d0uLF3sLH14v787vzk8vD5l+8uv9k+PHL32eX3Vxv3N7/xd/7WxqvPzs6udo73d3YPKen28fE3v/gr1uJQVLRdvzt9ebzzH/7h71hB89//yS+//fb1+s4uDenYHCPNNIoe0qcO2dRXN72ReFsFkv3Ck5aSYcrdg8m6NZt0rRpf+eRgw3GfhbA6YHMfsFVQp1YTt5ADRKHyysX1nZVU9mG77tLBn0aqnaCpkdSjw1pd26tufsCz1eO9rVfHDnV9+P71uWDUPMLzjZXD4+0vXhx///bchEBbL3YMG7s2wPL3OfdGoIDg0Uc3Q2diMx3IDqgtBUNEdPCHDf0SQcvcVSYn4kX4Wlkk4oM8Odsys4NsL0OoIVchNAUoCxPyh4JsAMGmczaBXFtxHnPsUWlZnfX6dIxnRJbZDycabUJbNTNwTvJWntXxyc7XZvu+1StWukNuZY5GbE+FRtZyKbshbFzpturHh1javuEOx+d0Zopj7XrFncoWEQnlHt+fXxzv7/NlOxbRPDgP17E/6zpblv2YfqrHU9x/t7Pjir3iJphYwKSvkSPpJPfG7HNodbqjV2ec/haVRakVPvfbOxkmHsJnd3vnJu7x8HUdwJdu34g2SMTPbHUruI6m2dHekH6tk4ZcDLRuEoKwbGGyXIr6QCxX437lOyccpYLwK45rGb3ZHJzkZnb1aDdD49zBVBfulsHhnbOvTz59dmxnzs3K/f6ezRl2id8fHR9SVHDdLVjnzwoit5gXG+WsiD70PKUaBSUhk8TzNvgi0S8C016kPznDGjsGIduSTg2WgIyGjcIotwy65bdzpvnOYvFp2j42FmmBT8yXj2frGmYgJ8BVUAxtqQnMliyUiggKLrO92hpWqYivrOvJ+YuNNA8NnxUpeoa8qj2MPrcCpDqjIw5Y8aX6VC5nnmLScAA5Jd518HJA84zhF9HAMwR9VIIcFtq4ezwrNa3SkoCc48c9EHyg0H+fMalAEKJ2IDYVeJFOYb0MMXtaHDajNp9oTQf6Ci9UyBY5Iwh/tINjrXXbtK1a1WnXJuxWpGp1ZVsRxNeUp+CiJi5VBC1vhjkdwFV1wutZXoGo8XUpiZz4VjcOGvVh4I574RqKMTn9GOmDXYzkE1tEKbmNesCYg3AkBCU7CAFfcW4sKzelV6yg+qilHjWohr0wJ4B1/BpBm4ZkYh6Ist1YNgoWJ3M94QvFFAJ8VpVcJrHwrHBrGmXYid+mVUqskIFGtIyAARosq2iwHUJHl+L2KH9EFhwXulQ23ixqryOEjN766VWcDpkpMio+5uYr4HFG7dVcgdFk6KRj6PZ1+BsmafJokkSfKqj5TMvkTAr9r2iJTTRNXB4epccpycNh9QYKQ3vLXohqyJc8oMoYowJH+jKkxbXa0dtT2Z5+h0BhTODV5WfJ1uNER0vdU9VgMKQu+JZbKdohsanOEgKucMgaGp24zWPvsDKBCN2mb9dYy1aa9hSeVigrnJAaC2QdEgGlYWTgfZzIbICT2O4wrq31oDJU+wwGy1Vtvvg9Vjrlek4LUzFmESNkenI7mWc917x7a8tatMdqsCZAUbW4zZ7Do2LFGzkkHBhoacp8QiAZ40NSzFtNFwVa3AeSB2xFe6tsQW2lvU1XjEV1JEVV+eq34r6NotTr0AzsHe5dnV2OXUEYE0lcLx5jgASzyeJandYwBCdkssD0ECh51DghclX7BH8xNlimQIVKbVQSHYp1NsacygulajFQWa9D49+cLPQqNEM2EesLkJH0cfRCFIJvg9tME5NLlMbLp+7NdM1By6Vqcqq9MFQRuDuOEFgpQ0isWB6SNKTAabwzm1gcVo+z3XY4WvuHIvpmYx8R8fYAAgFkzMkAFiaAUUV9GcNYxpwG85FFtU5TBBVwOjul6+EgYHR8b1doLbYDVaxzby2EYwOb9NfymRHY3BYZKC15/8VzvSIH/l2cXtj6vL3rfq5rvh7tzsQUTlnmfHR0LKJ4d/KWoqP74vb6xcujF/tb19eXD3s733777v7qce9o7/vX73RAdre2X9hAsPr46sUzh61f3d+8Pr/59bfv2Up+88OjoEKztecaoo11Z9J8fX1txFpIyySKJLpF1W7hzbsG5UgyYo3gkqq3xalS05BEqin3tiEfIVTq3RFJmvPv3t4YI9/c2vH+4uTqk0+ObFM4vzr//Cc/3Xv28vz8Rn/y8e7i+MUrZ6zfiew+3Gzt7V+fXX7y0+f7r45uHp38eLBz1LzE9r6tkdc09cPthQ2j+1/+zAbQm9enn+6v/5N//Hs/+vTz//t/9c+/fmvDQ2Iu8LL+ozUbvhbppb9EbBDaESv19Igtp0TITINFWUyxs75qduFwc5XQ7q91jm60U4qlUZTTKFd3PnRqp8jlcH0H/Tt801XxYDuDt1cPt9ccE7S/s315Y2fAw+at26PWjrenGV+5Pz7QJ1WZIFtcSAFvP3u1Ry0uTq20SW3MbxSQ2XjqlBVHYzov0pZxEcbWFvnzKXrIDNVSHJria82SlloAN101ZJMJgp/WBI1pCHkXNyE7DW3UjZWZZ9dDxiW1ElChavLVnGOwviITQ5S1SbkGd2CJvB87glMcTbHhTNZnF9e8k1AjnbYax6qxpgHt9uFQ9CWsiW/NjLF8qqLt90o1XjowVDjojFoEW6/BDM2ctYt6fcNhqTOYTsrCB4xtMtoVjpSLEGy1Fq/bYmPYnyjT1bxb02sp44rDNLfPri8ZpDNGLa6j6q0fqK1esUBrroVVHaoggNJGbfQTLKhrJVHrcBpPsNOGgjh+SRjEDxcyakT0TCDTsOi4BnzmvoA0nNlm040VMjTE7/QpYXdjnGZ4HjZyWrmdWM/hPLodb9Ml3UJ3o91UUhpf4aV6+cW9XXNDK3r1Nw6P/fB4bo7JMV+7K8dHzw/2jq0NM2BAMvBsNRHCGGOnqH10RBP3+IotVMID78HV4FXufWqhZSSarHG/T0EnWsqg1DjPzGUaCClshOH4n2MEkBIWChcRVkVtUTrS12n1agZJKt3rM/NwwCw9EGAlaSyecJC+YFIG3ED0NP2h0fB/kzDyoyKCglmkrrO3NK9QyqungGERAnyU9WmJTNMS5hRkqSUIzZknPmg33DMIE0oKC9MGmNWiVGjWouXRe8VD8tnAJkxzVvaEQGuhb4JpmuZ8ExjgqsplWxDKkVKq4WG6XBNIF4IZ4ZiVK9JshHx4LmEDOcwSr+itSWp2s7U6FUnjJ6qoheNQ2AtyAERo2Tozo9h6ab8yNzHJiG84lHL4UQBRNYJRMjALEmpnx4eEDy8Bd9CipxWt9M4V1NYyNFQ6fB0qagmAfOquxBU8XpbmD6KGt0hRtZlMw2pRLY/f45ZDBji040AKWXmKUEOMX9AuM3xUYfiEU4DqwgrvNfNJaSQFSwUCmnQ4N6kevPVAf5ZsozbJGHOqgeJ5Gn7JPKLxapCrbKOcU/ApegSRlAYg7sUaaC84SAS8zJ7kWWoMZFilqCoCkulUoIJjfT0sCIzGQnfci8xDuK+DXXkqGEELZ8JzYc6gEcjRrKqLv37BAQI6M4NM+UO68AZWXmGmFJ8qSUzV1UuVZP6xgK6G9ajN8C20y6UG34dL8/wRiLrUAZupxe+lFkUYdcyDzcAMBLUOgndcoIp6FVuXCuSc7kGJi/MCKx8OJs0cQ6sQtUg/Au6tl/MuMv4nKAISQxhyCI3kcmOTMgSFNrhZeg9DlAJhabNOifdNFNeoTKJ6FpOD0tAQC/UWGu2ArXELjSJoC5eGUxn5xMd+M2zGX2UcfXxIWPU7VSg514TF/ESjetSuVjBi84NJTrZYVdz84frqZtAU5TfQIkdOOQNqm1FiHdyEe9hPNt6CGZ8xfEbBhxOTS7g7IpnqFYs09Sy6gdKhtXNsjHOncsvHX9TjTsNsKUgKZIRzxa5HDczCedFwUTAuxeG8MGaGqpZsIjEoR7ZPnms0Csg47yQKS3Ibk0hjOKYq/qjJ3LdSGMtBw0gOL+XRZKrDEJvTN0BIx8ZNz2BPwxX8YGpqwMx6gYYnQiz5Fs2TMo9TS6mLFT9Vn/tdeK54/l2MRabDdrIKddSRyN5c8Xt3e3N4cEglxI5AX3U6oTFIIf6ezPw1vrR6Stfq+v789CJt3Hb9Z330LuwV9bbVc9MpK6YR3r97c3279t3rM03oj3/jMwf6XJ0Ki3Zef/12w46B/c3Ts1MXCG3s7NgV/OrTY9sSCPfm8vH1N1d2OlrA7cIjK1GO9uQwTrejkf32h8v3Qg3OX6/EuT9sq+ApN2qMG/dKceaINSv4GmNaMnFdn3Ra+2nZsBEJVNoDDsN9d3/3zbv3/8O/+Yu/9fO/dXN1/uyTY9PRp++vtreOdveP1vb2P5zfiR/1JfBe53pje+XQshtH/hwd2f8pWOpiTLtLr8/uuyrpwTKnszdvrt6dHxxtvf/uj4nk9N3ti6P13b2dP/yD37fA4L/8r/6b79+dpGB2kRZyEB+HC5TogkWSWmc4WpRCBNGlFSS42hCH2W+6bUyUyEDurqlNwz5FakjesPjnli7ubTiJvk1IVFOv6HB/+/zq7rOdg7Pzy73ddUdYWjtDWfQTbHmmSc601L8io27Lsg5eU71uQREmgbry3bvLz54duils44CFGv9ug0GNFjSp9w11EGcwOrtmHffK1OuFug9NC5ryOzGGkvnIQWc+tkMsyRQIpBlZRjw6mzW0RhlNCUf9o8TOmhKcjicRcKi0HbduvGrxiTeNhwtjWQ39NieR1291vrVIs5TGVjmmUYAbS3QS4iiDsaDC/b7EaqLgwbg+Yt2mNyMYlq2zX+7JoPiNW8C4bECojg6D+57vtxZH56YzvoupfTC5Ym5VZpayuMS9vZ1bx93O2P+4RvY3R5HqsvDOjGp6qbPgx+HfRX15oeuWO1/e3aDWAL1b6rhWP87TRQEVSHsdVIqZO61hI2eHZjFbMsETPqp5PT0oa67UWhDzsLNiO8SHbcRbot9SK5F/PWFigoIiNi7rP/A5AGAvVhsUAMQ5Z5wnb2bjOA21tItAbY2wRuwAI9bWzs5vnu07e3b95M3Zpy8OW7kExMbq6cnJ7t4eS4lMUUKtx9LY114wSIh6tXgxl8t5wLfahZF8sk4ncs05LjYw7QJYMjAFDg3+48MKB6tkGqMIGj2pdKUCqMeT+iGHfkwLEuu59rwfOKlDkEczpeu81f+suasiAGQtGrMlwx7unG2tTBo1I0LtLVYRxpWzphnaBDWzAa1wA0qNGh21UHQK4mtoR4Xag7w0MTVMHasAARWm+4NkGYYbvVVryExnbYYMWHmD4krIxjFGKkZo3TIkygAIQjVDNUJ+ZOMhmTCJz5qiVR47pzgLcuSqkyNKiaLA1uFsVJGrLwKOLmbaJpN8TBimR0jPgflNSUhH2WhTO3Ryc0jwkO3JioShCONqjAqUCx4i5EkiMUC5StfnEVDX5A53cYyteNOCiKQfzKIScVuj+wbLqj/a6VvTL/Kk8E0O1P56hmRCSYrxR24VmZAUhMxqrCpmPoo3RZCL7h+uznNjT9guBV3Rki6lQjo0PF8kRBlaqmgpOzjOqdyFQzhcVAaBcAh9hltQRTrRDPXhF976krYEEcjK4uPSoVr4A/khNj77BFBblZI8WdlCabwrQ3AnQznd+ayGYUJfvV5mqGSrMgWGxsEoLg0KQ+zgEnpZpYJqpfUpKhLUGDNibcC9kiHMgxfdC4N61Rd5xkaqsXjPPzxVGbvI1OZTSaxWbwJP3OE7xMo/+qO+hT+V9bqGSY09yIqIktUPw4W0Sc8i4ouMgeunlYsQTmstTQABAABJREFUGG7Jk96r1UqPwKSKqqO1HEeR7pPKTgU0AYQhO6CjCSmc/DiL1khGM0Qhw98ufqfxzkxODuwolgNIZeE0olgIGoMDTRVpTFwup/8LDtCq/ZYIWe9G4kO/SLQxdaRq9jgAHA/LVB/rP4YaU5dalcyPcdyKWHldYzUyC/DoQdiHgIystyVu9XaqL68aBmEmj7dxr56J8ceV+2stilmw1sGjvgrT+DEhX2TQZFa7/7nanpTG+THUJ8aO5XDoSqRVYTrD5LfO5FZtXM7tiiA4dE/s0FphkuK+I7qROcgHe5YVxaiWgVZdPiIWJCGxVrhNIhoxwzMAVQFD39O8mLNAqAoTC1LCe9n5JGeKNIKO5TmR4XkS5LUxWN4Iaa2LnKI9eRJo/YcMiexQAWASr2UKOC1KhunidG4AlbMzDRogUaUH3if3jQOFTcFMfVEZu1p2qYz25ua6UXwyMEZII7UEKw832vXxyKkfewEcpm6UKswSLii/u+tYQAs9dQoMyvOX1skbZH3z3XdvXp++++H06Ph4Z8/sgWuATQ5oJ7sP1ZUD1xfXP/7xsRPrjz59tX+wc/b6zfHhwbuTd9cXV8b7D3Y2nz8/uLy5P9zddTaPUc/zc7Huw/7x5tb+2unJhQ2Ml4IIR6cnpJZrWwCDupZRz+BlkllfOzDCDcrdrYXS4x20jnxJyxmREktGjITeXvq1jfPz6/3DfX2F84tzOx3WN7Zvr2/WNi63t2W8cXSn2h7ubkDebHDdJtS7q/e3X6/84uDZ0cbu89Nvv7n47o3lPZaF3Nyev3v9+qt/892nv/VbX/79P7i9+caiqd/4/Z+enDz8B//490/fnP2//+i/++6Ha+PaxG0mwGgr8YhAk8y0jkJ2K+hT65gvnF2Fu6PrXfBlzU9XOs8JmFsty+gocfuPjRYbIz/QN7FU3xDULKdux7V2ca97zg5cSiCEJW9ryp3pZPTenEAbhfWwNkdZ81d8SVMuuzuXF85aenh7ebe9e//pywNBGVMTCzgvgAm9Oz8XiBPJrfvKCvw7cY9p5FQGbyEpnUahxnLsiv5kMg0rNLighZMxS0mh14GiZfVj9ahz9GP1tJ8O5+2n2daTr7vbDKosS/GegNYZ8CCntTow0JDt7jjl9oq8MMSG4LpvFlaIe0g+rq5u7hj+t7rGlMWHK2H9B6dzCuQ3HeGjw8Nvya8P3BoeNmUh7+OjY5Hso9XRq/V3KBC+CXs49nvj6+uWdd0+dFOYRT74wEzsmcERi/Id09mW9WUTbye39CQGIQ1jImYPSJrwh1XLcqP1y5sbO4PlPD27JNJs1nj8SttsxHmgoZ+Zp79m52ITn+97bR31MDHWnUKp08PhQWcQ4Sk71vWK4XnyBqGQ7zgKTdyMSbvaT3+Wy5vGh1QL9ezw3rFtwuAB/dCZogNvzs6sQdrDulOm+fji2bPTy7vvvn27vcnq9/b29+p2X7Td2V0i15dtd941lMBS4wfpJHeIiSYJKDVfnCF8jFQk8ZQDIvllNpDuNBQFYfTKRGlQhuLRgpq/lE92+WrecCbFKonPrI2YaC/17mdsqy+xq28T00+0p1atw4xne5U9hpy/hEX1fS8oyXlUYfGNxqnuFhxYCEpbQ2JxQwhNAIqd9TGgLRxpuAf9UuJ9GBaBLY6dHYE/FBQFRmyNVIEmHJBFIPsHe/hweXkZStPChsmMP6Kd2iOd8kF9qK7JoENLAE3WEexlLSBMzfMV2yCH60E1mJAe3ygjK4EgmNBVA111rcSMTfKfM/+m4niVvPKoE6kDkF7Wtw/tWOwVXY+0xr/ixsKBuGDkAyIcxROQiK1qOFV2EU7ZcaMvQ6zq4I/nsRj3x5kAxdVIQbuMSaG+Vsh4NSwitQhU3UQNlR1HFCdlwAZfJ0+BOAyAr5tUPRiQnkLFR+3qquqyj+nCFq9nPE5OHMv7zWt8oerFjS03SXMCBqRPauq7RnwiqAiM9MROJhN3Uf5caKysbJXGzKqOUrT2iYRRpyTe+A891dJNkKJeOYK4IFwx3/pIXwxwybAkQna0K3Jj3TDZF8VGIUc0VRhSVTpYxK7BDZCQRWRy6N/U9z8+lWFgJmjvyoIi+VguIN7Oe83NEj0uEOSIN175pN49YfkSkuVAhmsTvz3hPFn9qsaRXao+GapNXfk5cMtetmQeIk3qQWyCrrAv2T8/Uyu5ph7kxGILfBVn//mmRbMm8zg43k1XEmYlgfBEe5UOJbi7pBEOHNQYRXArVlFhFLCswWfJCema4hBXtkZzqVTesMoBOQeaQXaWyJ0LkkQJVsdmYE/9QiyoGWaW21s7msb0Njk0jNFzzM0rGRaCUhX0OlbjAyDhlLUkA6yodN48O4+tvRbHd5uBdyCguxJk7G55y0Tjdm22dI5pqh5SkdOi4uoCXy6qWa5Fa/NotQRTwTLsPflYBZWZc4hRQAkYJ7Dg+s3FwVn0zxekLDlKzKtfrulJsuLqamhMYvy+8ePIXJTJaEasMLF+byJ+bi8i4u6JC8FNg0uZUEaGPHVxzVJS4Y9ox5OpYKquryLlSeWe2ql8cXyafKE7XRffYRbJKUCo+ngZnqK2SM6p4UYAG1udbrcC/uX/c+jYMOadWHEeknBjAPDEDD0DPiKO4Y5ivH/jfNf4I8UU+lzOQlU47ozBRbIiS3fKWud7cHwo8pIRO+5ubtryaChw4/Ht6+/ffv9GuPPqs2NCPjs/d3QPCo6f7cm/f7Bv5JAzW3O/0d7eh7v101+ffXjYfmPb8MUFFu692ufcjvYOjjZXDEy+v7ignQVzW1s/ebnbIu9ne+e3t2/PzfFSlrWzq7uLm05Ab+nEvdkMsfGKM1uod5uIzRbMQiB63kBd/rixPdMvqU5WXEPCnv7yF99c/KMzWxFOTj+4eXVn53B9//78/RursE1SXJ+c39ycGmq+/OG9lU6Hz3c0cCKmP/6jPz388sd/5w9/d33bsqizu/ubywsX7l47GPT7X73/8U9fbext3j7cfHAN186eyKlTeNZu/5f/5B+vPl//v/yf/xljbVjSbM/94811h1caamaWdLEdApmJYCt1EeUf7jjD0aGcXeAl1kQYEdsbnUzLVaNukyvJzlKOD51NScr2BF+5hmzDeT5kd3Hhiisx7tq6oyi3tiyPsT+2NXfcENMF3TEvh9vX9g3f3l7eWQS/+cme3ag3v/7hxImYzsTvHCZ8t+Y8B9ArcUz9+ToB6TCdbawh12FnrYfx6elp78QnykKsfKPV8CELWp7+sal6JSMXu8XnvAirT1Bo8BU/2OH1vbkLw9iejSkEdZapOALYsgpj2xS7MXg24K4DFztLvLkS2XfK4bUjPmcCQR8bqVhM7fmsnR19YHq3pStjWFOcx1+afHIKEHTtIyKPfXEAX+kS5e2Ny8suuzDSwUp4bHjSLZEt0fGenmvvCwCsStqwKK7WvevYilbNsKWWlN6Y9xwnYpKLiQmNtzZ3uMUPZhVI9tpCpulIrJrD2XWJs+i/E7c4tG6ZdtwpXbIHxv1uV3Y9YEJVz1wfY7m4vOHlCfn6Wu8kR1EHSdfFpu1cIvL1mRo24ztMj8Z9+sfNmJLQk3RGkODhthCHq3x4uOT9UA8xXtOtG5vrOzaV3+mZ4FfLge6uXuzyfc8Pdk5Pzp6/ON452H7x4rkJxPoVJpd2dq1IIQJey9DBbPpsDUwI5EKJlhamveMs06NcH8ZSq/xkETysx0vRqZbQYOaCcG4RM6BOHhCeSxul0EfqgQ+aG1+pmS4qoIjHiuooeo8tvvEGy6sK5lcVGOHm64mlbD7y917dRYGqo4gBZ0IlwRJF8Kz0iq6gDehBhjeAmsvplsPVFN8AoTxL3FaDnqnoYoU/GDMuFhjo+09ENa+uTGywZiLvwRP10mvukp39b8XxWZ8KYBix1Cte1Vgr61ktfEI9T87n0YVuJvGaeZCexxyK1KxpZUrgI8uIT7Fy+NSlZLZhGHOC7E8vppbtj5Zbo1LIUR6mv2ASY1WGnAmcpjnrqDocZw7LK7WoRy34oGzY1rYWzvqohz5AUlnwFdTyoh0/ezvhCPg1XhOPTguoDakjKCxBOOXR7C0DQyAoiLEoVUWwh9UyQJguBZwEkFktC6LxFm5pzjg9mMCNB+E/4TUhT+EffAGEaNkKJFKXCKAgI7R4NooFSfN46ErHwgkMCl+9C2tjbqoyHUsvozSY0e+ZdqeJ86XAAHr0PA6Qp2dl5yHOh+qSKHvBVbR8fPA40HpT7bBdmDwJ4FTVUh0cRjoZqs8AY26KZ2sQ97TwZ5LqSDQ6DBzI8S31iKpYUC1Du5eDZDDAXILbnkYysvqraajJkIZv4T+M9kvtwfJCxYNDpqgNmvqorMxQVRduyaagfwEqMWUDxLcGWlDht/BIbu9SuKJe4IovFQOLC1NLWQtDw0OtkQeL0fgAex1XVNerhY4FppoXjpBHogzLckvt7/ItdgDAs3Q4kXqXT0Bp20SHk3FyZYpeqC4eaMk0cisTD0VCkwzxDu2KQ5IlBLeweBqDODOudvgyTKOyzT5J948VIbBQeHB1cezZmXjM4QOD1jDSG+EI16Pf0vRZOC/xNCnEFcRi3f5c+PTu/alwYrhCNqbAyx4rojMJyQnzuIbhZJH/JavkOxxIZpSg3IvlxLZcBvI5qdDUqRgtASR3P0AVkY24YSle0SY1dtIu4ZgP+6k0p4EKCOFq1mWYpC1iwVfBeIE4XQvFkGlFaIYe3GTLe46K51z4iCH0SW0a7U1QzVduF49CZwZIwNHeBGdYPr4GPE4w5a4UTKBeNyCP02Ri1Sf4Jy55oJnogouQKFDhk0KRMErVq5SlBMvhzd473/vg0JXySBOhWXPsIEWjkg20O3JE4GNnpcbj7sq5JpfHLz5hCRozccfNpQ6DSEOU9vDuzQ9XJ1dGp49e7J2dnF6eGmZ+fPbJkfZ3dyfsxFjk8fzVM5rwwWqnm+/3d1a/f3/z7tzC/g/aoY2Llf1nh99+/c3b1bU3J1dFpxozOzIfXBVwfXVx4zxEK44ol7sILh1vsrHqEjZjtOBZziEKtRmV7ul0C20ZiAVJ7IRoCItUa2OS5rC7Ma028xDx5dXdmx9OXn56KCTcP3zRjUYrZ5dv71+/+7XTll99+eLZq4P/8v/wf1o7Wv/Z3/ttI78WQX337uLerunjw8vLU/fIGu/69lfdWbB3uHPo8J5PXz7//MVnX35mlf6LQwci7d2fC9M2do4O1q7u/vDnv/snv/0Xf/qrb4V5lu3qFLFFdsNab2GHNwQmjrXh1di/+32t+N9Y24nRm/tOLFpxR9XD2/ObnTbrGw/nPqzd2jzYOxLynzlcVdNbV8KKna2jPSr0YOaFhnAgvBUXaGYGkP29TT6LUW47B9M4U8d+Zyy+Olhza2XVunMoGNrHr+4BuL3VgSPp88vLDMFMQpMkmtUPtpKb4hNgaWasJhE15nmMqKlsVJYOaEDxNQSc/tjsfP4s281XLUfvjR4XUjSqp1L7z/mCDFnQXxPLF8Up4axgXS2tx+z4TpMRWnyqAlwmw2rduMX8cGjD4UgaQurH0S1H0Mxklwuc4Y8tlpnp+5lsYoKtoq7SueDPKZ+XN+116Tyxbhq+0vm9pTCO7X9Qn+Ur+zs5Rr7KWL/l9ewMucZc9VSMv6yZ7mwFf22D6Qvzn+rwVkgg2MCi4cDa9T02dpIM22S5LchZ6ypiLocv0DswpyNNfKwya+LM4qYkc8kx/R2LxpPNS/tO2umhr5Fcee4WJtmzMnMm7MJcBAjmKepXcgcFlC15qAEq/s6HyKB3xxvzjYrox9FMXstX+ZFqXzSWbFvqXyP4cGJgYHPj8odbB3O9ONg/Oti9W/nwfOVYuG26aWdv5+DwUM8YXTu722SmiD7REp3ouWrfeDfISOevfHJWiz+nxQ3c9Mpv0tSE4TbJ83vqJmvOlsMkX59cq0y5uFpDLGAHFb9vHBeQaWtysJWTTQk8UmPOcxoO2IBSOOInFzoCEk/3VXMZtkDnvQ1k0KlQ9Uwt8yrjWRTJ2/s9g26qWvy/r9CO1UZNlGEISkB7fuO6vqS65VGFtBn29dCyE3t8dSPtC786MYc+h/VVEJhEE6maIfKi3tMMZWkfKVI9DZEdGuit2dMuOPqmVk4bYgFbBEJDWDTcqwHSbobXLNHxNANl0yzDc9ZClD8ytGrymbhhdlk7hNXIRZsjhRKJhJtmpdzRNbXGcJmVrlxNXnyMvcPEIa1CUkdwCbaGT03LQ34+pJzTRTgwi/3kGN0N8AHjaWlzMwdduHZvGoN5akYxwUc2b1UXt9WF21EUNNUhJKn5yJMvGwuIO8XToVSPYi7Y9pXghsCwoKUrTepKWrqddAkzZAnwzDNkgyiaNtdf0oNMszyYPhKl9AjQeM02n9waXg3WsnhTHB9u1HGIjT8ciOZ76UiHPgYGdbLnPzEpifjeCzX1G+B0Q2ykfqxj8HE+7KGQgsWTrAWNYTyTYMGo3zUoLfUkgoGZI47PsJOihGyhmjKUSdmhvVpQW5l5GAADZDjg66KuCimy5AZZ5kXPS4v46gjEmLTMI4u+Sq7Bmxp9lT9yCnjDZCmyoDp5QlVqYyGTFQEVWDDElJDOfVQrrNFVlRPqyU8e+QfwlhAweYzqj3WBrTkAfZEilqhShkoNs/j46J2h9B5auJ+oyhWqg7qsE3pCLK4RQZjAU5RjMTCv3QCY7JUhsAWrHASmpJfAwhn9sizC84y0PB5tGzlRAjSOPufglvyKddjE9IVKelw5PTsvolqY67uH9KZ2Ii8xSjmYF4sn8Vxm2/uECC4lMqSkxggJ23w32ssftq2xwyjU+gYrEMhNRoaKwuFhLiDZVzoCfRap0ful3rFbNq3hF00NHHggTkcgyET25Eeiq6HHAm0SkT9GqzqosSa0qsSv/sTkFCF5+KkbJaqY8ZXMUv0fkfEQxR+Hu/CftMMzT72mUVS10CpaBumhJ8tRleYynxF84x/kV3XxG3bJLHpZ49LlWKw0RLEs5lPxhkM9pGOVKj0FE6QzeB7EF/gYrNrbdpihUX9H8ruwyJVYeibOMxHO3t1cueUTReIbULbdjrSuDRY3qKKOq0mmm7tLp4I+3nwQ74hcrUg5bx3w/quXL2m5Q3LmuJfH/ee2DYue39Z5erg3sP7NtyfvTi44JevHjVJrpL7/7vXu/t77E6evPICsrZkMUBMWPxrdx2hRzJUV3tst3qD0Gg1HawCJaYKqu1moo3njI/hace/Sl7RMKWsZR4RJLEW4Wp71lfdnF//9v/zTn/3si+cvPzNscv9wfnv6w3e/+vM/+1d/snm38vN/9If3jwbeNr7427/57Eeff/+r17/886+LmW9uvvnTvzrY/tHG1d33X7+/Pb9+/+27tZ2jH/3OF6+efbF1dMQbbz5sX71/f+tyhKv7/U+Or69uBeUvXz37T/+z//jb/+P/9ebdNQl2ENJ4APLnenVdJvoVhK9YF3O4t2nTwZ7p92541e9KNzZ3Vo7Xdy7Pr4m4UHt942DraOV+5/rm3C1pNmLsOTHGgqg2k7TRk2FRD4oiVqbkDQuvkJ3Lz/L79IuGzuGNNTpYenS8bQCZ+l1c3j7TS1tbOXGQKCSNUa2sdNVtEaGPTbcuFRAYpRL5l5kBqP1NQS2LZ6/0zaaFfCIbsTTIG+4HShnU2JVmhMuGpusSpo2cUT2YG4TWgde76+Qh1ppvcWdbLVmdW1JvMHMZ/udjxLcMlgqaUWn1d9aSkDW9Hsemc6q4fHJ2aY0QhwUgDbL0F6vsqTi7dEOYswPcAHG7t727v799NVt0BMpWuTHY+lz8kShHvCQ2Vwm/GEXWiN+0/sdIt36YPpQrNZoDyUwRanOwCYMpy3tEPs7rW2D83q790w/314/2G3il90L7reFpsGEue6lHQHYPXblYo9B8l+DedIlx/LVGeHgBN4p0sJKJKL3BrF4YhD6NjtImT9i6FHwkb/0Z9Xuh6x7Pa+I7J5S/oxVmIbDOhz6S90T+CuVtxOTyEKpJKlUL8U0t6jDqxHLuGRMvcbdya8uPGwQPn3H5+huaSgOcsQ1EPtw1ggcHYOVMjeZOC5jypA+aFO63MTj5aS+0pzlPU2oFcC3tTYieiDXXOkpc5omGoZmypSN5S6VoFr+R2qlxGtU0bz7559EMriAxQgsSAI0/kWVBGtG6guqxQlIbESkTJvHPBIbnHHhFhvMNu2TXs7O5Yd8qi77wKsoME+UhAdXcEp3R5BmHql6SzWpAJgKZ+dno0p2+t+os7HQitIkyfAwnMAEQ+fGfhcbaXFxNqk9NRbzFn7rcrKJGo0h6WiKDeorPuL48VCtIMFRleCIVuenSII/nSGFoHY6kaSNZsKfFNISRrUmt5YoVg389mzoIU/M8AAvdpJaXMIggQ87tyYcUSCTNiQdUMXiGMFUBB2lDDSNqRjenjpA8gWNq3WDNRlIJPwUVggkxuGhq1sSmfzOUzlCWsqlf6lTUOOwiWVZgyeh2B2rZr7y0Xjg2DOdCMRALEk0TaxESS2z8b293S4YgThDgeF68HOTVy3A8eISPH0LCAbSDLGd5E2jjyzAyaMIWPNZFn55JoqA2pDmsG/a2SnaQAclP5ulPalVub+CpounbeBHjx5DBHb4NCoWFA1mqmw2zPuMXKUqM7hf2xrhaqiecQ1JSFU1Pe77F3flIDCs9hNF2UNK/gThoD8AA95HCWhP6k75NVOz56VOIMkSURf4hcHl+qs+XJ+aM5iiHoojP3Krbg0RlJy24kUwTAIwwr8Yqe7IhL2OKkopV5VhvmYZ+b4KdncQFqX2yGbkzZ8Sk/Cn0YhjaLu8b8pF9PEtKQ2WUWGqRrmYdXM46Lgcsp15iz/15Ynk4DMLZSdW7eX53x+/Tk9Ppu3ob7IX2KvBVzkhKs31HbakBHBIjiIJWU6labFl7Fz0sma8S/Jt3pZ1apkF+1bx8CDftFZ4wTwY9Zxs4AmZ/JMRPk/XNSfXRgW4TUnTgqLwIZKu+QVTNqpVBcSmg4eGgJqJthDKVqmu7MKrgW2L2NhaVgBWcikMsACmNZBmSy2AQS9Qa9WXhVjwGgGnNABhGce0xajgmV26l4D6kFrqMX2k2ZuRv1LE3gol24uYGWXVbMqZn2HtVcXb+kgWSEZXSL8ASeq+T1OKGFM/nPmkI0Fo8bZ4RRC2vUl0q1EwLtsfS/iXQoESpdMIBzks1xsiy5QeViuoZ25DmG9iU0+KK6Vs4Q1AtmvbOLREsmuYXHV1enjz1Q9IIAc6Hu+vr7Z1d/vX83YlTMA0dnzohyIaAm5tPP/9kd/9Q0Xc/vDZaeHC0r0IB/d3tleBF7++b78+++sbNVZ29fX15vbrt+P+9y/PLTdcFnN2/eXfppis6UxvvrPqzS2JRqaUm6Yboc1uAx9FGJuo+GCd1auH4+zhQRLspbhUB24/Il3Hlgh7M2Gy+BRsIsOUNyto43ArprQc7nvVo3ND0+q9+cfnrv/j1n/1ba2N+/ge/97P/6N///hd/dry1tv3q+e395etf//n16fXqzgv3el1drvzyl6fX77+zC/Xw5d6XP3p+9Mmnzz75dH3v2dXlqtUdH3b23t292z/e33v2ilf4/i/++uWrV9d3158+f/bT33j1/vzXWgS+wc4CfRkhNtOxymb0wqj/6uHO6tH2+vH+1oGlP1LlHCNqtY5hVHIpFkR7x1Z9/958nO0DrSl3nrllLaisNWq8mZNeu7LvQJfIRo6N9YOjXWO0NgPs7LmL7cF2CcHbm9MzHHvmTuhpwYRsbq0tKs8JrO05KWlt5cIp+oAKOWuWCgTpqLd1AEb5KNrCXjDSNxbdpJMRbqeOWhGxnOSXtvvUHx1HIWuroWZABEBdCurflneeYdXSoxur7+ktmzVw0PbfzTW7F8jNwZR24IrNL27MVuUXmERbYzlYam1Cq0HtlbsrWwPXbx8/7LS3vcCXberFW6iuc2E2Cm83tjf395yEq89Qz8Jgq2VX8fvD4/7uJs66n21v08aUJtZEvzyYzlKr2oxe89DMcryDTg69xXij9XYs4BQdvW4xUIeT4IONHO7b2OXKZLpvH45E9u4UXSvb3QLNC7mMDbeApbE2+TZAWHtRFzd79l0o/2AHxk0jiwWLNgkYdskz+S/uHtNptzMO4KIH3gCfcb1eBP+J90JJPm0mDBfXy5NK0TXgpdo/zQHmlad9pWa5NUvhxSd1XO9vMaUFgc8O9uU3JfXJ84NPP3lx82DP8OPZ2eWW29NQaj3VzXXaGGTLSXbsO5pREeCW9gjWi0qMW47l8KxlgdvS3EC7euUfD4xd0lMh+cab+5rD97bCNe2TUHOJAO6W2lIPXwEhQXzCyHgygZpk0AJY07w4zPQHB7VRvObe4b4FdayBbholWBwzIFhJ/xe2q1FR8oirE/Plq2tXmIKP9msGaEdGcUNXB0HapXx1uUiTPap28ldvIe/ACgZghRIQYyUFguncgorXqCPpVsgEATfow9ASQ+ieulQqHzTogDGRKS2vJrCQKFlPUEQxZRk04pl/acKMHMXGFjhUnz4lAvGw13VaMsBavfleKeII4Rl4zh7LnpyqClnJQ88asdK9W4DUHGvDQyjSa/RHeeRWLvde6xnC8K+S7K7hPNwD2YPPlKomKTKBjIwiUsyfycBeeFMDjaJKDYPDXbq+RB4s4IUBKR0QJZTmMV4tOIwKoUNOtKoglPyH7bB0wRoWQ+DgA205KbB8jYYsgBllY/AGDRYA8V0+eYMD7PzrazxENU/edrHlU41glslHXxUmlGMwiqKFA6N6C3qxXc7hg6Khh2TNogdMiD2xNnhYNlAXvKbGsixRpqzSfZv0suRD0sQF4yn0sZaQlDBfU86++MVMQHmy6EUtAzdyLP7EVvnGhNHOlfV2Ke4BfzLkjwiAGdq+h4C/SU9innYY5NvoLLi9LtMTSn1vG2qpMCKdxnqfum7VmDbgRj49H0Rp+ow8QIldE0QNRItwqK+p2xBVVwD7+JtFZ1FTtXKjSY1+LZrwVHmOvsYYAwZjJQApIu97teELgFdXOr4tvPEcpzIb76njdIIzDCoVTZRgWJNaiPckFUCgZASQukwoLPOw3k5Laz2cS1OXGowyeFGlOZGakME9AWW0wY6WeOQNdCUkDS8U89xbwzbFM/B/GvaWHSQcHcixqJzcgfZZwzyH9KWdPGY9hQa3mLdSCyuS4FONVa/qQb4Iu5WVFfwwM+u1JcPAEdwsF2md3yzGVqeCfo/ZyDnzay7QYQ/Tm1c2T1F7K/QC1q84p+aFRBxIQYuuVZIf9BAli+Umd3hmYzXAqvngyALXMOnhECRmDBFLzwfkcWplI/684NTHrGdtj69oB79P1gGTOAy5vg8VT7QouoxOBSWlvb66tluX76B/MNZEW3VgJNfUtJUMmEwYhv8NLhOy9bsC9qau8uyPO7s77vwShRg5NeRo1+Oda6H2Dm9vr09Pzy0fF5wdHB+LwkSdp+/eOA7l6NmRhRh4I445Pzm/OL18e3737uR8e0MnMNVYf9xeseQIgfu73/3ggoHLvf0t7apV8aen1+I4DLIupYmLxh0/mDWBP+NzRKnWzuEjDOzdeWfR3686aarosXuYPjxalqA+XSaqvqOTIYKxLq4zjrr80owNoorWVh7OLi7u1+zUfL+3v70jVljfe/Xjv7v36qef/exHKx+OXnzys4vbtdd//QNDe7w9+PFvvbAi/Mvf+vHOq88cLPurP/n68NX+F7/98ub1xdqHvU+e/fxON+OD80PXru6vv/zZjzZ2XLB0+Jf/7pc/+c2fnp2e7e8e3N6e/eHv/Z0/+7OvL+wRaK0CZBvSpi15sbVV6/5fHe1++mLP1ktr8Z3BzzHTHmNOV5byNxT94KRJ2n2wv3V+cXtq87KVUtZdbAi2PtyuN4/gHoCDPcs1HN9+97YlVaZo7HO4EoKd3t+7d8FcgqM7xcS6bS5rPhNOnt6sf7r54oPLpKzwMTG1dnb7AAQLANFiL8OTew/rJ8LZG0vbxx/RycY8OkIbP0cVLQmok48ctqhSiZHV6Gs0Grqm1TSQ0mrw6G0WS6kYYMsYNNM8WNcbI5Bb2Nx2Po9kB9RwX9aja9j46Q+7tkbs7lieZEn99aXYzKKbTLguT7tdQ2MQ2DTe3xJ/GkS97yzd2bmek8h1+exK37c6JXypxDJn4hu1tPaso1f1LpxVu0xiNIViO4fYKIfeViKl4GiCgiHfdimB2jPDg4N9l63V5Yk7ht71paJl/FieEJXNpHUcZ/ttrC5SB7ZrbcwkcAgbafcwkKLr7Rjc1+OZ4Y/xabOTRwc6123JU3el4b9ss9RhxkoEOq7nu7DLX59HXNg0hRL6P3puUDE0bqsxQMpqPowpmPqzYMayfkP7qOTkJU5slO+3+ijf5dD0nTWL7shWfCewfPZs+/37Nvy8efvOxOrF+cXB4cGzZ0efP3vFHdm0CjFNjrnEOFcs0mAtmatLx36Rv8pIlSfL5dEWMgarWdB8mofeeZ7X0870ODzNaedzqVYqUw410rQmYMakfM/GgqlpK4OCZZngpse+aFmsYKqrKQHVzbbAfNr3s7MTwyHjh/Nyo7d5Wjx8armG/wk4Z64zNoptoenTqgw11UrGx0GvzUj8zyiAhJmdayVYkcIMBeaZsrAF01LnDA+1Ycs0mVyH1U0ZTrEUyNawWbeVjCZKgYkpoNqtqsyscNs3KQl9IkhPtac1SRoETWq88EauotxlG3EsSxdzQcMZsvK6GGC4GQNrp5qRjqfZZ80ubsB7RFlPwIeZSPSZpfg1W0riKjgkAI16OM0LVTaMs5QqCfg00LCq6nQTmcT09Ap4NSNNe4dwCjNB3pMhFDyA+BTA1BlGDUaoHvJTsGG7WBUihde9ysylpE7+AwLGpD71P8sgDjErrrecAiAXz0YVU8aa++oqZh3B9moUdKT8lHmsfgkzMmdfPy7lQnnoxU9YiCTCJnRLa5dCom+ktQ7J4i4rotJBLCGOAlViij0hmbimpzqaE0pa6JFdvIa55lhdYykelrKpbWKqsDf46TeigUK3KkJvJMWCJAapomUYlAtREDAZ5008qUhyKde8mkLDHhThVSwbMIlA3VMviifgHDLDIrvPD0BiXqVmpFnBYRYziRthxf3KXb5YNqxIbmX1ZS4CG5WFbn2PATFvKoLNkwDvj7EyUIOorEX2NDhKEmTY+CzAJXoayKUrFISUOKdgzDVxDgsUgtnkj69xJl7yZlrU4HsIci/jUNun8oyFy1nU2G3vQjJdx4iF6cCnKVO2RKYWQoH3oyx4HJZXG82E1Bcc0rIJpUafeIeF0WFRKW8yY4IEsBY+ywyJSJdpOBCy809aBs+BSlcUluhTfawJs4LUwgGOYFnBn0XG2JhSAZObT0uM4AnBICJEqVFKYD2DOHmrvUlGlJcL+JCaAk1ZjgNaxBqfqxvu+cHm6xP32G2K49YkhNX9aCETVNArRQZ+ASZaBf4LPaaJG24ZbVH51Aj3yI/2Bhs6nyfqh6tS4YVi4DXFMXxCc4nj4zg+zIk1ZZiZTc9lC624ImcElmLDVrYXoUrgQnsQFxaX2tbwXee+5eCs3pBptoJ0j49x8nyYKNkhDwB1gq0+GI9Pw2xnvd9yi70hUo48lUHGhsUtDuo3V3l6cW65zv6+CGzdnuu76xVx6nOnajq7Z5Y8nb4/v726cMb79eXd5eWVFha1usanb89tDmY0t2cXEHWT1e7etn6Rjb1dy7X2cLi98eLYwOvGZxN+nl2L8B9NINDPk1UrssnKkoZH+4WZAfZTGeunud0G+Sj72qMtrdSFnEitseT0E4HdrCnSIofdvd3Hy4e/+ld/8Xv/+O+51eng8JPdn+598fLznRc/csPsh+uTh8vHjYPDlZV323vPfvqf/P3jz+7f/eVXwrHdT5+7q8A+BAf3Cza394+3Dl7sHH5mg+f2qzio+0j58PHiss24+i2XDjm148EqiN2t3/2dH/3Rv/klzRZCT2DUmuxGt62iPtx+ebz9+auDR12eop9rIaw5GSJEC4Hs6gI97DgNxopSvQWntdhzfCjEWm+p+sW18K7l8ka+HeruSBkHCzXXbTh2bdtSdOXON13lq/G3gWFdD+Hylslvur3q4urmh6u1IwuPtndf/3CKw8fW7F1aOd7NYkfmNQTWu3unD1eN+UOOMvGzKS07ZWgzppCuMqYCAo2B8fgZ18yIFeBhqDyt0p83XSHoqu2xBKwV6ZphcAWZBphboE+OMBc3ahoZQUuWIXzr9oY7AbK1Tg4pNQ++vW/awxKjxj7Z+9ba5odukGtvdMt17CjY2rTr2ZlKZjtWr++wU61sfWdbjHvN1+geWK+iV+JS6gs6JHbffHSw/Z3R+1Sle3CXK4cpUkPcjIhpIYn8RPL5gGoxha6bgXwOgSCEaGIsQ/YgEq2yQmpn75BmEbeuSrEVthRq6+AV2VhfdnUjfG3VUJg9np2fMrpMQz/M/has0FNieh/g37IQrOkgJt44J/G009EpWxfn1zr7+QnTNXPEsKD29lok2a6Ggv5OrK/DHPmPLcvkAQCHWc4gsXL7PHZLWAka4rwn/8N5mlQ4Ptihz2/fn794ZkFZve43b88+e/Xi8Nmh2wLfvn3nfGG7s8EU6/NIa/e5YrMu9IjCJOl81biaCZJUKgP/4mFJxxr/4rSWbYkLp12XgOUVBqV/BVYq0pOjYMBSsFo0TmTm+rSw+OUjb/O0PjWLTwB64PZJc5o5XzEFOaA01KImAwvlrUUI4PQLSirskCvvrUct4xKJwhkzOVIJeFoLyhW2wINTrXJIQkAG/SwCGuiJCaWg0QtRWOtXO1deY1oYTZeVECnyWhXBpyWmr9WNAq675GLoIagAtFHp9qI05aVgRI3CLZartiiHCeALQ0gfj9jm0FjrFu5pArD5fp50eJVHRYVJucBKCqfAKptYpulLhXzQn5QLElDqa65gnvIhI19tk5mQZD3khPlYrgrVPjppwWeE+RZXa6qxBZy6TeYH1UMw9c3ShCfVkseHTakUzIgCA9F/07jraUkt+q8vV34Kz+MM0rHew2IXJFhcUQwQDrXmUcf0qg4eFkHp77WlsNUBI0r8YD6FE9G59mhowN+zs1Nw0pWRLHUj2cE56c+remUflTw9C+1UKHzkNBqjoZTou9c+xDeZCgMG38rUY4gb0QwTv6VNRaNCFZ9QbUCEzAw1EhMCh3O43RqkpTMcBSnMwsHeA+xrBZc6EjEdliZT2WhvRUYMZW76KEyA8lsuBcMWpL59hLwUGDnG2o9oS64e0KrUz1AqosPeAbWAYBdeDrFlXSpKEhVXXbk8LayOgCFqQLb4ts+wYBBuAOAJ0Vi5EJw2x/pIn19VVq8/xDwThowzbOHrgK/WZjF4ioUpnCA32kUwW9ZM7p3aFJsDUt1sJwCo9S3ZEq3KHXBYcSvKn9DrsXHNsdIwQ6SWFxbEXtunMAQxJzAhml2qIxP294mYFG1hygwmqVQttKiKyG+aZKyuwNQoA57gAG0FbKkEXeMNWcFkHY2QfdFsmA8iSrGfLCRkp8cCBgahCJHlQX8H6juYHFnjzYcOteO/wVeuHCmW04gYYKQewye1Tyy8Dk89kJFYUcgiCPBBQyM2KiIUy93kFOq+q9EDDPkOfj+ch9XcMHvwD3bQ5sVh7SHu4uME8TBZavQnsYpsP47NLzyNk8N4lD11XXB1xjAQOxIYZgx1TyKCbf2BFM+7p4pGXFgOIRybDMkMkCqCfmiWXpFxtVAGX4ZCrtideRN7+pyThJGyRWro8V1FeThYNXPVZY0iA/5e0LHlVtW5ELUtfUYomZy+gRX5W1ZHXGqbTAgYz13f3D15896swiefvjBMuLaye3t78frbb8X9h/s7f/3Vu/MrpyY+XBhc9XLlw09/fHxtv+PGhuHni/ubzf1tsdfR7p7V/XoUNO/mphbs+mbl9OT2xMGWeV57SCw+uTOE+LB2by7AQSha4Tsj39TAkBhqeCxkjOZ2Qvm0l1i57F2wXGQ2bHywkxFwhwp9+/2b77797n929B/avPlhfWvn8+c7X35hVPTh2rKmdzv7bkQ+2j34ub3Q28+/fHi4eP7zIwO4GOK0ldV9zDcYzPXvt4R852Lr0VxFa1rw5ORtJ2Y63OXg+ZHNsiz63cmJblJdmk9frv7JL43/5/3ri9pDIdxfO95bf7HnEqotw/d7zw4ETufvz9iy4Xdq7LBUnboO8bCyqPXfNpuurr+/Ozu1LbhBhUd3mrkyzhrylQ/mBUSM/MGes25uLabXvdlzna84khfRQchfWSHjkoHdlR+9OrC/4tvX73/1+n733cXhOhtZ+c5ZTucPnzibaW9LP8GtcMaYLXTjYPWzOtyFVm9uCQLwe3wDFe4v6VplZMagtSKpWv5GIs2Z/az5RLaJcFbvKB4BikNydN1a1ao5tsar63sf2khLoPThoX2ldw834iD3TbkWQoAnDtcK2rsipqGRDhfQ05kAqA0t1MXPXqfWWLtIXJs6QjhjvBxu+06xEZQKsGiUfZGwtSCt9Tarz1/sn7y3dXXt8krXq/F4pmQT9t3VrWVCjIcZYoOY3noenBQuw9aaH1rnEVPzE4qxJ8rBs30wq9aIb67YtQk2DJSnQ/cT1brtjMLiHapq9kJ4bv86DcY6LMNi8blNCK4lxhk9fA5WfyNrBeq6tW3kyGBBtK0o31InokHWuMwdjBu3QqpG3Z4fa5PmAIiQaWFh4Y1wnvrddYkw3WhCwFomhsSbuiZJ1TcrdrDYI+TqQIvErP80auU0Vc3Stqu5xS8//uKFzjwEDg8OVGiC6tYlHasXbsW20dqmoI4TEB7pc9S7aBZ33FQuDrHgwQ13/v9U/dmz7UmWH3ideY9nn+nOMWRGZOVUU2arqtUaoCVUglbRD/1CI0SDWT/wjvGAGX8S8IjRyOg2aIRMohElddeYVVk5RcSd7xn3vM/I57t83yzYN2Kf3/af+/I1+fLl7svdY2gryCGahFlZPCidijEMNc0ApmMKZXH4APLxKt1iiqOpTH1JQpkoYIDVrCe3SwWBlOJxxMvgV13xHOAV66HqZEpvpWjaHnNRHXwAgqXviOWJeReRBY3G7RhdLM26XnoNyEQHYs/TacYeZ3gchP3MEVVJjbcQjKIUwTU4KF+TfeEJCyZXKKAP5TaGQM29usA0rtjtZIB/DS2KwPxWMHDKpUk7jKuVbBTPTxBUy7wU1gCEn0EFacZ4dUBQccBgPZ0pBkSzq9fjvYSD6S9k5PgaCaQHD2sQEqriR/ovk9LJGdFgeHPftYvwsLBdq24MQuiEg76yLVMgRKKPAWt4FUck1WooqtZ/eZBOTfAFk1WPZgQEun91+3Ljg2/WwatiVViGXurkO4AbY0CvaT4pURGk6fG1rygVCYOffjxoVugsxYg6rfkXFyKk1yd9qhrKMQA1VeSVq1d6BgDeYQ04IKsmdUGslEpGdIXXNKHqCqqZFgGgbWu5yxkGkUK0xkP+RRQYbmIERSQb8gIXdeFMZYuvlYhfygOB8DEI1ld5HWQW/INByA8cj0Ue/NnlGI32gtoHt4ijSK76wSwaMT6gS0uDVx4ifU+NsV6twZSuREnKm5cHuPAhA9aEYARPrayYrFBRDTGlg3colwHJ/nhIUj6pMsYkYP2IEPN2/eAZH/Km+KYUdpVi2wNWH9AhyzpGf8PPgAtU6HkoIgOxkFBNe92wC6lVNyy90MgtmQdviaVRhOCnZoDOzEzYE3l1FcYBzScuq10oesyYQS1qTQZKGUFGD6r9B2n6HwkEBZ8Y9CbdkBu7GuzylVtmHTQSiqJaaXupCbRGnTQ8B4m4aSW6le/qbHd2ZnMHNXorc9gSjQ9/Ul3xvbiUeX1vwvS8rRFwkSJXSSIzN+oPIaEnqghE2JsCJUg8cUGsOam6eCWL4JKDbM36IJJl1MZUISVUB/cYEYqiWg8wkB8JYOaxcoQkJ8uWdYBksFyrAk7ENGM8Nvgoosn7xATLk2hXXWyCowgiCJUQowmht0QTetJz5IMuoPNf3G5l2FnTkPHw0lCjMKlHjjhA/GBueziScrX6jBv04mMPEfhVqvKU5SVuYkp7yAyBU0f0ytwva0PpYJoJlrvQ8Se2JWpTCeEC05/rljNtw7pQPyRhu2k5c5ByjYYHGGdTWnkRjKyZdhueciI4FM2X68i5Jne3q+6gO55ciemntN1B72a1PHt/xlUcHvf3HP1zv3H24Wo2vUK4awHevH53Rf129xZzh+67UIuIFw6YYS/t+qWoe1t7jhk9HplK3L2Y3b85v+zv7O4P++ZXOIWmq0WxxCwaZmxuHA417O2lozPv7uyR1V05B+cBoqJXO3xvV1atxhOHhJq05dWJY0ACMbJ9kSbN76PXwY52SQo12dlwmdnp5ZlDzd1ntrt/uHGXkKGtzf6ClRNy0zng4u/s9be3j8zqagkR2rUZXSdkZnH5/m6+cT0w8vnm1ev9o8PNnd7Ln//ppy9+sL3neCUjaSeorsYXE2smFOX0w7mAfP7Y08cnr99fcBr59pk2NkV/f3fY7794fPDcNOpg1xwB2HzMi4tLXRlPCglmebFFB+Bm5Gjojr3Czm7Uy4se2TN5bQ7c2oajP8/uHXLP5d09HvU4rLPoCZd6Y0gDtEk74fY2hXWdX82t2W7dr3jYX744fjdbCsz95NCKz96Taf/V2ZyeuVMsATuJs3L/68zYyxiMddHWuLNxF6LW1cCjy1S7TspnDcyDcG9ziEA0TlvnAUbfjXv8zGYOyqvRZceuzNQu/q5WZw4fq7OG4ESgHJZl3GKOM1N5llB2OhZAYlX5JavVQb+XJq3SnImZSBjhL4zF7h2DYJeUXQHXhlqHo8F0PBfHZkLEANKQQNtI/Bmuxl5srQTW2/znEM9y6XjZQvE7kNvccItFDsPPo0ZnbUgI/LKT2PsQjF71YwEfNyfd3Mezz5AjO9f13Lc2zDBcuf4Z4QbV2n4uLkjjNZbRlbq3gtly0lL6PGFzu3R4tvfxrtndLafoyMDVyBoC86RajbkQh59hns6YbcjgRGdvysi5n9TDMAAfhPQ4HpS9x2voRoniPV7rTYxqAUS1Oy7sRdE4jO1bv0veEGOZ2BCkoVHojj0z0tzUgWGCheztMYp2S9Y45xAJl3Iqr50V273DIaoXi9V4On369DGkyJn6lrEt+Zd9TjsCPQn6iGILoqq3DjujJvlHHfzA4djM8oqofXUBZscyZyfdx7SRRAbT/6iWmB5BKCkFY0i1pXQNccpDTxlrX4p4CzEjE5VVEbFdbKb8GQKVbebEViF4oj/CljddTHnUwBlXX5dYrMZYS8kydex/rajndfW8aCpXzCWV8UwhVfofax0E28wxbnC/Ysyrd143q9Snd9ATUTWNpIRCMOlTQoJ3EAUpjS6dWOtK3GX+67fe03NgwkZ5oZT+B6S2lQXYEoHCHJ2ovZzhSarJQCYdvRqaL57nIodkvaVW4Tu44XFeROGzWlJzlDXRjhshLiKAqTdhESVUhao90+BodqiCBPKlFNQgiwNxH9XrP7VgWuRgFGcjfygKizKDUMM2uGTiNBuHaEA4XBKDZPClbGhMYil2qqzZa/CMUMPeEAq/mtVNriCk+TRPIxxKWnpz+gAk5GWndTl1Op2sGcy4ZzKoLzoekJuzyWxRQXHKgRZ/r83KKVSr5aDGSQYsNXoO0SmbFYO0ZR8PQTwNougKKi07uUcARWxQVDAcrsdGLMY2wYGuIs+pqkqAkTzVAIv5Ki8uBGawSa5kiMrXw0eVKyxbvfEo6uS0ZMgnf0N5ffwukFHayhAyQmzR0lBtmVMg3Kv6UirJoU7V4VW8mvxsn1ZXUKu0KHmTXUScooWHh1Sa/4qIUuC8or1VRDFBcIFeWNarGj0jiQpRC0kFu0BE05suxohkRjmsjLzlojq6S6rJLvgd6Qc9a5SRYvBnY0o5aKcU2hDpIbl9wAksCGcWPdQWFzQJyIBDCeKv1/u09/CRlxM6Kk3TQYcKaLAAlVQug7dwlqyjgoG8rTHTqFKF1JmBIQOWU/OY1O3D0cHM5SMghbwUl8cHydqzxyCXpf80siw7pGW2fMmWujJJn0YFCa8KPRniuGf04rUMdUWrG2Z4NvBDY6EZ2v2MdcDQZEyzBRTjAyvDVpinFXmVFJlSaYhVu0ob64Bjj8xsfWxmv24YMQiNOpkDH8JVHDClQAYBhfGaCn8IE7GV3OSOJYo1Rzgk11LIMCrK0HKawvBMcGBngB7qMkDiu4fbeVeagZMxsgDKGS4DD6W1OpUulHbkpSgjBfE8RoEHq2qoZiykYM2ZZcATQ2/8Jidhqc5fgkCIVtqYqGpW1ywkyPLsdU3u8lIimuvb1Y57JDLF6BNOqjhzKIlbjlO1nM1MyHKWTo5709lkJfb3YMiN4ICaPB5/OCMot+2amf7q6/cWCkaH+yYuXhw+EpbA159v995fCZTGs1snrlycT473e05QnM7p3f33nj7q8V9XOaXdHA83y/ni4n+WIpWZ2HQ3JpZE8z/MEu3z0OkYu2c7rE3DLipy2OUnT3ubLmnqbA6HR9RCPIybMZyTgVeXkxXNpQ/HR0MyM0548/X7f/n/+KO//w//9uPHjzcMdYQCxmp3dnuiea53ewesToZ89i+6NGqn1xkeLC7G08tLHN0d9u62BsvpHXf6s09/S/TcZLH64osf385zfJBp7IV4iKuJeJfF3YS0FxkJOeN+d7TXfW8Lc+lHwsaMfrs7R6P+8dHBaN+1vRqFeCHyvzs43Ddmow8mktHIH4oXuEM+HGb3OdlqufX+fKyliy3Z0hWKR9/ZfXTY51bymXM7xNa9m4B5K9YlhxZzTLDd35nF7+5sffZ4lBNpNzZzyrv7m48GAutXHPLlwlmg3/38iGtnTyf9cGRN5rpvjON6ekOjGifRxIhw/arFaye4au0oV43RNs0kw2Y9WOlXBgIJ4aOEsVLkR8/KqEZXdSv80njL10Yvbi+4d8SI3QiZ4tswYGM9c6gMu2rjSGfDSO3KQbS8sZsNo1DnlsZX0IaEqmf3pKVCKy2uzVqZqga7NRAOKwWi4go+rB56Na2YNsP0Z45+e3b9sJhfZ7uwAw+Mfh3V6oezp2yHyApDfDumG5bAowd2hILltD1manXNZmohmnLrFHrbXRNAC8x0cm4CgZzoGF9HBrcNOFVTojVfioFNAZwj3a73BwNz7Y4i1RbS6YsHyi59U/RuCYCn3CaeReE/ELERbdoMM4Pt5aZw9xXK6td2zlSwqBo2h3dGCOJ9sii2EMblqNDrpb0QoYW7b0FKruwQNcaw52fPA85ELqyAuCYRNSatNt1xQYJbq/HNTS9+aizbtt1ot87qdYffyt0Fndw2OF9eP3r0GMfsnzk4GpE7KRhchVoqUcY/GhIXiuAzGx1rGDtbpjtz8xW9LUO56SrFueSgh5mxiq2TEBsVa58ORfra/le3QifK3qZUZYinSECISkFTamVjIw/tRq9Jl40rsSgmMgPU5NZ76kojV86jB91CMImImYX05FkOTT/RZkYN4piYMtopEewaYb6DOZRSRmJm4mrZWTdUBh/CAhQxKh2t9erc0g3nBiROYpJDqZCVPPPR0wqq+4uo0sii7envKEbNnYe36YjL9Q+PMb/YBK6GiIsB1RCDrGxoTO3YlJx+lRoATEXh7I3GjYvhdUkDADyJe9OITZ56X5OYWAXT4JM5crRkKh0bUi+m3jphdgUv3aiMWJrF3ghdpvTaxCq9NTEF4zZEz2Ntgln5JLAvMos8nMzcqLzxs9KPw60GCWgP1wOQ71F9ZaECk+BI8eqmM1AhY/Cglsg6ezLCWAYrKgaZSC/OVfhUn+JfNCOUtf8i3uKwnyCGpzb+pJcvarKtixzD29L8IBB2xXXTaiBcVAZCYZoFQp5WSA7fmpODCOajGgSS4njAk6wrsQAqH6mpvXQjqFDmdYZQAV50ojiA+bLF5vLQ6JXuuUZxCuEiyB6CbphICiSYB0yNf1DLHX6povIEbKsgIlsjECCpMmoTLAIvihSFScmCD2HdvOdUEGCtkpL1x/KNHHlSf/gRoEkEJzjEP89zUI0OFOoBH6xSbTL7v0rKlEcOYpqQZ3WGs3hamaLufhfTQ1v6DCD12uWRB8ECVEBpifzYh5GFvFdBIuXCRZVFeJRSVbEU+S21xKZ66BJDHpKH/pmcaA4cbWa1mzpF9XQD1YOCk3wlQuX0MoPB8HJ8CXsdoYZxf52jANRPZWUO38OCas9Vr4qgFJyjbZlnkn9yNb26GNOJUKEDqVeaFO0UAIiToSZOJBsSgNSsmquy6UtMAWgoSuZnlCO6C1qxVNXBJEOUGlzB8V60R3DTdW1lllqvkn6LzhtKxQo0icojMdgyhBDGvRoLAWjiLU2rhknheNEYemGRpY80YzPEHtiO8As+iZXKkldwyTS8qYtskvMO/8OjpjFQDxeINBaqhJOgfRjCwbtkLhWJ+CQXcCTCimQMtMJSrk3O8KmL5SFdu3IJK3Dj94fYUF0mFUz4SIJMkRCbW2rgF6uUmRP5S+iRiHzsFE5jAo6FG/ybYlqJtZpT0CLHqDtK15pmAxmHRnCAPb6OJS09QWCmYc275zSSTro94dd2tl5nG7HNhZx4MQKdwf5Ehz9ddAf7vNpuz51R28upI03u93q7lgrevz13XsnnLz6ZXZ4/ffZofrf9YXV9udoQX9N3RP1sFYfp/vr4qEs5VLK/v/t4b+dqevN+duMwlkwi6QQia5LKRk2PbCjxmTvHBLO9ahF+Y0otKG7sXMxv789WgrkMfqIKm1ciExQz5f9wsxp0O3wK6wp8X9Hybu8SGu7m4K8ufvr93/z+8+efpynfLLhB6X64pVh5a67UjPn1ndOQbpb9g+Pr2cVyeob9t7eL89Px7co5QiPhD+apDUYGg/3FbPbqzVeHx4+tEhilWDl59fWbq/E4m3H7vcV47tjHo5E7i7dmK0cbEcqD8/kPD/onxwelXKqNlk+svs0nj06OhyO3pznG5+5agLhN0p3d4+MDWpzGgwX3W4N+P7Zn46FPfPFOopA6b80MdKex6v3t6sZAc9mY+UgAN8tO9dgYrp0BQJceZzc0mGPxLdYWnAF7t3w8HBjhnl7OxMn0BxaOuucX1wbdDosSTS7+i27HZWTBjMFKfdP62Ypdx8KahaWP+RmtzmiT2lM8jmDXrLbpUgMG+qh1G10a32Aq/188EngkwC+luNPV0mgnrjaNEMvlBJ4NRyQ5Ugbz9mYCkXfFAac7Mq1+OVtYzTA/zWhk70Q1QCpEgHnOITeiiSC0vbi5G3a7DKohhKsWIKh9sg/ppKEcI8Mxvs9az3r8r+HFTmiKZlugb/0gZ4Rm2cHIJwJQjLmWlkGazcHX11xD4AiJu6/FaZphR9bZEqnlDjthP3TVsg13PN2Iq5qUZcYNF9yfkVFbjgexkgU8vtee0RzDonUTLs4YGLAHVNRPDVCb0pCRIpKH8SEd4FmKzJVSkYrStI7BVcNOR4Gy5lEVwLNKFoUgo/Q11Q3GW8S9mho0ElZ7ic+S2K4zfFPr3d3ldLbf7U6Wq/PpwuqAwdLjJ4ecfvxPvLJtG47Nis3JnQbQiOmqfc8Ygsk+GWHgS2x27GeSSmeQjI1sIImAoJsLl9m9TMS0HiFmML2kgWVIqEGCLqnMMq1iodPplteV4soHaLl61QcBH1BSWOTqB8GhMDGVFAZDE7yUblE/oaD+FCYy8xcgnGyMP6nmQXPzr7oeNRUQiAdhAxLgMjaIPacBOsfADHvlCE5+6jTT5wsMs7Ee6LAnL5kh/OAyIlMZEoJiqqKRcNAVhWlxquCrGjBSQSazgmEgMRPxTIBrXErb9EuNbD6S0BWLqjXBSp7Ig1+RstCGA6T1ZGgMqbrFIgIm5biHXT7whWRk5Ufb0QtH8KKqmB/WpbONxCOpOH4+wbT+0rpyN7L4gNx4/6pDjcxpaWk+pQ8q0kAYkOhP/Jl41YB7Gd766Qt3arGInIOyerywRBDf2tiJFQihzILBSDgmW7jNV5Gk1epWK74ATPxJzx7xBohcyZ1KTXoXEWoMMw2nZfBfXB3k4GKAYljpQ/AMpUlNp1+8UCX2pGpVxAeLBEOmkWfwUVUyxBWJFIJ1idVToIW4TFYW3AAsHqquRFaKAeFgUqUar0EnFeWCnf9UU25VMQpyzaeNqgS+/5On5ayHwtxT5Ox13q//SfCIM4VSK0a5Q2A1NCWqPRQ/Q0KwajADT4pKAUyrBZKS4Hq1+xSXoyjCHLnDipYSRhQzo/aFVRIABu8jnGhgZAVCKs2Pdc0FJVe9hiGwlx75BokA1ahItODCLKINVIDqv2BadeWV5c5UmH+AlBJEL+ONMfoJ24gvGG+lqqZpUSokhZi19oPGLMTEMNc15qOsWq9TcTx4G6kEzVJC5WrcDJSWbAIJaK/0THHycLOpQxJjtgrzTF14aGoqHTIop++417gcza4F1mTDLF2/Ga8aDobsVA63jPixKKSVNdHHSijr6b1GlUqDQLx8pkriWgCABMsykYABEkhiYBJhEiByFvMbsXQi/NIwiqjs5ZLBRzkH0iAndWmCQEUcaTARUZSpSKvu3BPDmppkV4Q1LwRCEDxr3UO6KloQbSAwX6Zpa1RQAwx1Zi41RUJc2AYODpR/E2/ex49UG5hpSMyWjjC2lXMkd9YNjMl2TLp7llmlcXbEgYezAd3IjGMEiOTij7r9jI7hAw5ER/NKRaiBU8xlmeIgWUXIsZXiD3lEdk0nm8vOPBOdyk/twVy7FGA5O5nLcZHqApOdRbiz1yOTNECHpdhJuRJiwxu0M9gJPnf2LPaEmTsrexDvTjy1M1T6h53F/Pb8/YUlwU++9fzt2zND2L9+fyXoZ2VcLJr7WuTJTnew1xt0rs6uroQoCNLodsx/vzq7cofq3N2lxrdC19I/MohGI64eI2s9HAZm7TiTmtuZOI/S1fQIL7kXxxShbC/ffg87sJ27v9NzfmM3twU/bHb6ve995wst4XL+zfXDzf5B//lnRy+++MQZQjn6SovLOkbOQMnE7Yqv/8CjsqFhcHAogMT1V9eL+ftX7+NAb+0ZJe0Nch6XLbfDo7358krMizM9qdBq7jwkNyYtTPSKmV85OnG+Gh3tcwg//faT0+Xk5z9/RXxkbqL58aNjd6laCRFwwtHnReF2b9bNzWn3K82ZJ2cwExC827KIui2DAT1TXwCRgByHMWUXXuxJJk/2uGdEvL28u3vU63MxidDkreFNnFfeq/Zma1pvx85gQKzfuOVJSBEOX4yzd/lk5MhNuyC2Z6vOW1PuF2GvIUbxN5vDcJn2ZuKE58TixxWLZLRCAUhSYzrK2jcVZc3k9NpaOLVkABKGnwMicxAChmuDRp5pUsRDzPQ/DT/x7gja3YN7jjhz063J0e7O3uR6CVtXG5vpGNojcbthYKWPFQOfYV6nS3E1CmPH5tqyKTawAmkKGErk4n4Lg3BOv5Zp4YVyGwuLcaLVmhKEOUTZFlh9uY5XC9JaW4vWLyACNDsN8CQTHVtbBniG012Ob47Vj3PJ2NQtwikpA7+8lubC87rlhMGx52Epki8r6GW/tBFtX0Ug4Cv3z4Aq7MpiBfxNB2Z6HqspnkEUZdNAmSHuuF7A0CGyTf9juMvnF1jU5olZDDcT5GhUosR8BiQp9sZ06xB6UxXLaywx7q3KY8B4ShwttWJe/S/+R/NiirdGoyE7gyzIXVxqXjdfvHjCr7w8n8W8oyLntqUrNP7M/quqOm+urzuabnqNaBMszF/IBr5PEtMzJr6i/VQ54uOFYUdYZOiarjNOXHLnC3uZw5jE4iFS6TBTiTF0KJ1DxpXBK/2IhZXK3WoEIL/ie+VYZKAIIPPBcUkzsRUko5LRRkVSJwzDI5AZ/HTQqbvWSzMGhA/qYvwhXdNAMssRTOPi0BhoelSjn0ZWKGXNodGm0jQIYwboxhGtijGB0D1TIwMCNiHIqzKx8owgbcTv+I6oRFG6lXSRgYt89IUx5fmEn9CSB8yk5tzYQJOl1I75Cy+LosCrgmF+pq5URDKZdsQVMw3ew1a5xkVMU1n4RHtSRNMy9ku3DhTFli2WoSpIpZnmK8emGFTErtkSSuRVov7U8Mk8usFeSsFVwRDo48YMYWw1Ixm9ajyJOaTBzEjQCck5FbfEUOIkE8YK92ooElW2CEkICIBnWIPwcC5yKzwiYj9JHzINAW/wRBvMWLryBt+MTWTG/0hB/y53tqJJbCDjAWfIrVLgoRYcylGhgLJRDN/4oy7fYITKxrRyOfxM04lGS8+yD4YDUfmLrUE9c6/sQLL8/35g6FPuQv5GvvgZMx5mVkXqr3YXNUjtxYwQWEQkc2kVtEGgFokSxWQ5MrRIomc0+lO8iMx8wvh8GkK+Q0P7LWd0POqaviCJgePbY57zJ59kDPTqXEJv+8Rv9JyCxOdviuBPKwvRcKyQ+ViRnw1DeTTXzP2Ufodi5VJ+jS6RJ6v/1NdQSAMj5EhtPS7M0E1rLQQVLgl6mw9oaVQwYLiZtuAH0ShJ1RBMU50PqtKWYiDyXH/4xcGngCEh0znsQywLelNKSybpzGBd345vxoVbHOJMCEGYv54T32uihfqmGvWlHYZQnDK8FjMKvaqxqC8mhsV1DFlFl8obK1xlC9noLDqaAUJNqmwwqHXM93r1DREYWx5AJIrvsqmu8MDzOBOlCWkwkuWJtMgpIavBV7Js4ZahdgI0YxhsnmzZqLifUME6LUGxpvTeJj2cC9BwOKAh0HYoxopJlKxo8GfPsuRXiutnptW16xj3qNQasdDfGkBaYPgfEMWWElHUJyiX35C3DWa0UzJ+081Y6yiuGult5pnKdgdQ1q8TwxrcSj2wCxa+21E/UAqUwIq6woqxqF/J7cPd9wr6/oUuLqypI9XE7FK/+pTttwUwk69ZtecMITQm1SdEu492R5RwTqzCIzwwi4ohxDsc7BP0ZHrJy+kNh3RMzLqzPvccOrizd3V1wSnfHwyJ7Opq9fr9lY2co75bgDrLD5PJuaHFw+Lutt8RSrTkmP7uDz89OxVVs/rpV2fj+RzV+4MedeWnRsSbbv+92+3VKkoWLmLx2V5OSTwubdYSkE3HO527rMO7ukkjj9viaH+Ttywfx9uEarqoaMVDb+PeyTF/8levXUU8OhyM7Oh1qLIBBq5mpKvHMuZ/2O276OeSji4ur+j8Vrc/N/J597W7T88/XH31s18cP3n85NvfZ/ecYNp5MOG9+vrr99/+wbfgMBgcfHh7Op6OxYEPjvaXF5eHg8ENB8i5ku4Vooed7ZPD4UvrUYlaycUFEJtOrx6N+pFPXUNDFrYEj6/vJ9MZn2Aym26e66LuxYdcno3R3h/09LB8QafEZLPd1sZ0scQZGQQQOR+T9phvfXo0qiYX58ZauzUDXoqJebPIhhk8FBrsIFHe435X4AfvcOPoWATR3cXi2oVo5uOPR11z7H/59WRmCciNcGTmBoNrU2xxCLQM6O9su1QuVtu0XBpgGkD6Dy2jnnPPorz65tiPWpHj3/CGtQLue2tZtNOzJKXl5uUbNeFW1BJw26219/Ra6VP1piLKiJXqc8G9NH5THCsp3t3qnkPKb+bc6yykW+nKkGlvb7aylVoE1B5zhNsakHUTpUxymEXBak1Jn0woate++ZH2ixvCOdfJmfc2+Oj7s7HbooHwP4WzN0SlMaNWIZTXqCGMER0X16mzUw2UiOra89jjGBMFtm83HK2aULZup+ecA3a+1+3NLaqUwdRlKM7ZTUuOz2FJJHVlEjMZjH71A7oGkVFOChKiZigVjuEO/iM594ZxcbIZIw3HqXNGlprBwlbC2+wH1WIdJJVTpRgMhyN1O5ZEsghGbGSTwyHqcLP07JTH5cFC1jJ0ZA/dcIdLdve7+td1GgzM5XgyfP7YZWDDg75RiNoSfZdLmtJ+QbOXoBZnOiwSOwNt7S49BROjPOWIjY1hlOJfTFb5JaonKs0dXk09Ss3YwbgvkNJNUAaq4qe6kiemL3zQK+ii04+UecZAxaSTZXhVHjkrnZRomp43taTrY1rjuab3kJ7pbkhClyjTZ3GaI/hM6ZUpJg19jGc4cAb0Dh4ye1Z9kwl3GaWgDXNNagNSDlAeAAI2tAWVUOQRdoGcqWgCysHcqTz2ORxKBlpYJlGZNuWnQPBNnG2qJj7AIQ5t1IGfqajq0dTtlSbIUARcVsAE6mSeL9KINxydCfHBKoLwh9iKixLSSdMRmbE9qOvEY5TLR8KGcCWcDFlk77s43H7KRgpx9cCNoUge1eVtxJN4hzgKbEktzuM/jsqbl9X7hzMYWMEnCqkYA7EIBZikM6IPANI9pqYkHjLZp3SmQS20BFYBDPjyaJMSFkYaIUL9QWyNYWgM3zLoKphBNjoDZmbrM76hgjioGFAwkV+ZvEidMQ7FVZDZc3LXnJVDC2E3KoprYU60E+RAaJ88BTuQw/5QT4IhM4n+EHx8gVQFcUkZDvmUF1Tciwbh+LA3cM6ZEFAoFGJ/U0PKFvJQ8Aq4qq5g5rFC6ODmTb1LO4nQGv6Smi+UYoCmRL3PCyn17G/8n2h9KUww/HX+OC1NYSgJEwt01r5qRkCBEN4AVu0AFBrBILXF/4xKVb0yBwEZ1n/TalL+ozTCZO+VjenwilzDRUBTKmwtABUuEiwjD3/hDUTc/SI7TPRJ51H+bxUHLXW1cR4yEzKYcXCRF6w8BLPGF+Ai8vI4yy/M7+JgNZVQkKpDpPSsNvCRUnuZy6TWqBEmkNdh+PZI3VNT3RdTHAcsUkhi6Uv+QjJzh6QetQpI4kk3hdzwRfsMNNawjIiEOApxnWNWFAghKZR/rA0YGkcaZ/FQvpgJx7RgsZZQZQpoiFEmpjl/wxApdC8GK/j4VUwuVJAjZ7q98nFJzgdID1qQLjwPsdd5SNXFEEbN2xAQrnqLkLARTwJKVjILhmXsQkyxD0q40pZBqjEgUnX5jmqokWqw7oqGb43tEPYvZBaPi23aeIyjVqM1hQTINPNtSFZXRjBYIMIq8mVKKhoSAQU6bIzha6oI29Koai1Jax9UOHawfqdmsoMPsLqE/P6YTzYuFIuQWXxHyPYLseRQ1EHnjjexX7DMAV019HL8opNDjA0XthVm/kL0v0Emj2bh2MjZ7fDgaNupK3t7Yt1hbwmIH7y30ze1y3k37z25nD5/cuRM+vvV3dnVgox67v7d2eYijPqd5dVse+g+1JXj6jmvWPTouDuemoUUUuykHacAzbq7W8MefzRX1KQzcGphTQ84m4VCZkof08yau0V1KwfGi3cfDftRuYetG8bQhtWNnkNslHz6fKQBPh4dzC8WT58dbVzq7G+mTiA935ieXT/7lLXGMZphWGSK+vputliMzzZuJsuJ0CKBJZPd2+XkYvnqYr4zGNqi8Fd/8WeffPpodTX7IGbdKasPO7PLHqf//dvT0G8jRK9je/Hh6Ojyw3sT/auijG27no6fnnjzYXU65mo9enQ02h+Q8tv3F8cn+2TGlzFuEU9vWtog6MP5Vfwt5yUtl4MBtRm+/vBh++L6aH/PmOHalPjGQ050NQl2w/F1axfx5jphipfLn+3mX7pV7T77eRfxJ9x/y/27EaWjuXGdH26uJkJNdgDRQmzEfzrqc4X1lbaqjqcueO785m8cny+X56d2MwvFz5UERn1arDuYMdmuAIEuzldNyy/7a+Y5jbH6Py3ELCDppxkyNJk0dbFDR1YptNEigPAcPiG6aTiFof18nqGhoPWo+K8bdzYouJIic9WCZLJoZhljsLtnEyr/nv+aOWbRLzwhIxKjVYpbgeyWsozB5YEXZXN8ap1lw4mNR0sd6S28tAErXkKDjF8M9vbKtsPT4GLoCKB5zIVpAy6+AW1OfCpP4tpeFg0Io2Mv02bT1J21ywfVgshaWP/B8MPp5Y7htPn1TAxnBQYJTonNUVYb250MIlIaP/FPBB1Vx39ugbCb/VFvPF0w9daSYrx2Mjih7YwqA6INOASpzmREkDgr/E3EY7/fWYQYNt3EEOuDpXFtHe1LvlbwrBGpxFqNLlYRk+KiqgzmVcFQUGDzAuVf5VBgxDXDzgDNl4vszs5pp4J17w8GHQeP3k/ncJ6Ob+YHt9Plu9m4+/hk9PQpHGZw6DvB1j6S2ujMHkUtoVJ2CfdYN2Rpm+WhxobWqABDytylI8PJ5CYjxpNOpVB1cBI0DWWBpV8BvjazMkS7/EGOZMoXzmDr2oMqJwAmzXlVLIqrrlRTmAQYOqN2ptLMW1S32JCPuCJtnYzd5HahQCBEGUqHIqDiDsbTkq86mfRxWl5cxAhCy4i7qCI+qy3W1eEGAWUznWxU/LE+CKYXqBkyNEA0PW/w9QlzgmioQile6l9oR7vVNf5fcCuGUxLp8hdD4L4+dQctMGFIUaqVprsEs+gLwNAYrqYLixBUmZ+Q1GE5V40bXZTGG1VRKiiUAqeavJ6oOQNehuqMzTxUT89Qh2MBC3AmqqKAm6wAA5xBUlzYLMggsJhZ+OBMuQ3pMQMxCqFYmm7tqglFXviP45E8GW8pBHI4WZzzhRkZA1CMkmOqSOePujTmlk3+yCHDpCCJMmhVbbYdF10Z7OUwg5SDlf/bmBNGZBjHv3AOkuEkKorkWDBFfIDNvEIyRoXyJ4lNY5MDf3wkRTmiIVL8wO16G0+HN5KfSAYtXyWodU6/0Ij5GdxGsqA52Lf0AVklTqU+epKeZAi2oSV6leoKeJjgOdBSjxdFb17nORDyhkQodjW4ECtrIcBCZM5IFj4DmcpWLAsVkaAaU4uG3J5DQ5pNMxcsZmyyV5IzBkvZdSmPNL/QRmYxoXCLHD2kDNAoTNH6VLqkVqn3GXBXtiQlNc2zpBWupU7Ea0lwlk3WPKk0+HkZfSm1jjbTMknhQuYso51wWksozm7RywSk1UWcaTEJcTYkKkDF9uBW9YJcbm5eBTEdW6ljTXvUWkm4FhtRgFUYpvkZQiOvQIYbdxVNaQTBh2ef/PW2MG9cBqoMcZWV02IcPIJh0FPSvzjQTdHjy4b3f/Mqs7MEm6ab4HG1oaFagkozuArrNGnMow3x2ksNpJR0mA/50sawtJQVhCh0WBY40pCTKFuQo3A1RJOoSFlt2Uw4pVcIyWg3HV0qXoYpckQF9HAPizKbgeRqiYoTcqwVFmFOZumSXXUxaCSYKSjk5ozC8KdqT/sBIprp+yM/dSGZdEku00K+q/ss9pegQxpCsU5QjFAEzlBr2O1brcCH7BBe9hzWJUccKw3UM33UvvWUf4lGiZRFpN14/qqGjklNXQEWRvln7o3D5+wT03TOO7enFENc7LXX78egM7yZ7N0DCxbwJhRnSeUcc4ZjZZPf9PDJibV9fj9ucsWYbJOZ246s6fRn14vp1ZLf8OLTY5MM0/l8tphFsiIHug9HB73usLecXXdHg/ny9vL9WAWius1TnsvHabMzIffX3u7vDxzI2LYEwY/rAkTpbS6sSIx1hj0ZQHJxBDYLBIGtgYIpYTPVlMBEryByU8W7vV1elKHFu9OJU1C2e3v73c5vffvFt7948uN//7c/+/a3LRnwPqMaTh4an27e2j8w3D7cO/vqw9WHD5smfztbBgIXxkjH+85/v5hMz06nV6dTh/a4hcH+yM5279VPXn36u7/RGfZ4zdY8Dp884+9OLq8ErGw5lfJSQ7EbZPfk6aPrN++Gg/7Z9Kb2FgsG23z05BFlWVzfik1HFtKubxYanYgg0RKdfvdqy8V/W5OpqPfVcNi/tgnhaoy7B8Oh+ysnk1wF5bqE89l4ebvoD7rOwXTp7fJ21dnK5trZNYdvx1DFTuWN6U0O+MQ8+62vl25hG8/vTmfLz8zeDpz2uOEGgNnt/fll9s0K1pqcL0dHG58fdp/uDOY3d1+/Pef1X41XNMRAzA6NjsHktfiwa3RiPLf2VsuurjZRWxn2k5JpsJu0fbFAlDFbGKMTcdezg9a6piYrjyYTixdtdcdZ9DxNIf9yskdcAf8oNtdczJTZZ0E7IDJRdD4qvsEv2Zpn/h4SjrjcEmR1nSh5274TDpQzdrQvSArNsnc5XbL9wrHpjvfEfNEsD7s9tuPG9LydujE8/OAcx6kx3meHdrbxwSeEqJLXLpAJlPJsmF4qx3URk5kFitVq2HOIliBAIcK8dq8E9zuLKQzCMLQ6+YfxMAEvM/zd/7DMLgtkWm24Bi2VGKtULAHDVVNi6Y59xPCkf7FV4OYuTnvmfTJqQi922WdvQGipL8toGffnUgXuJRK19GtxQ/aB3D10HOU7yPYJbAAz+5WJbBn0WDt4lh2LUKCHP9onGzZ3jbEJ/r2Z9usgIzxkP5c31/PLxdnl5GI6Nfy1rVmkmiAJW6JxEqP0/XSVhmtx6a3qU7yMxVMjFCJkudFfUxKcFwzwqe96hct+FLrhDcNIfuUpysZKwIQdBMEYEpDAzFxylmhiWcu4Skx/mGnUdOvER4gUzTOxAMZs/rpSGgwcRngLcmrEo9jwjJASL4ZXFT7ktSffPnKkZwHQ8IC7qSyhl6PJOCBfSJVsUf3mu1jyShBLfNbIUvny21SibBIMxizseF1ryPof1JWfyccgL2vgWUGCCdzUFm7iQh5ob1bYVBQc0t/BPkQZhSYEoLL5pifhWL1GZlgAYi2thFsaSpUJdeVCQKkqiQNHNYxPi6KwEfrhVpyZ/EnPlO98Ipv8rtk3zxUsHQckHRzHiYtCVYg0GDIKQFhWS12l+Ol4131olsUM5mVQnbzJGeExI1Fj9YYtScHw0BwI6540gWSSCiOSj0TCB2iVymXpJdKJs6Trd99aMqi3/CVFlYw0/S5uMAsqasqanmudXkOUkn0cqMwaM06Rjh8wD3PDpvKywpQwNrKuIRMg3kuSO3iqCXplVFMmgo78A6L0GTLJFrSDTBWK8xCfJE5mfLbz8/PkLpx947BXkWarIqVBDj4ySyxCg0Js8br+iBsyqJEhlWuBUVLAIk3sruTQUjXFG6kqquJitenRQCuaVLR+LvTl9JOeV23l/EQuQXNdfyG/1qJUHImVVsC2slRlnhsJMFQYYmEmQPKk5mCOiGzjWtMTb0nbS6P1orUEg2MpGkNwKsywG9xqHuzOusbAzCdcCkM0+JJQYy7LVkUjRynhDlUt7SmOpWI2JPUWdsGvOM4JLLD5CqMbypFWqiJmcmoZcEdfpdV4CU8iZyaCdsTi6LwKDslWngKidIk5HAkJVS26oF+R/akukxZZgmkDBkuKzozgffLb095KY5ryUjVzb8xuVCJ+c6alAUqzC8BgDl645/+oETyj5Ypr5NDW2NKHFIGlSOGw7HL4J4/MBEEikPFTF6I6LqiP8cTHz5pF0CuywiXIhFWxQ2FOhJubpOpugUpER8GHS3p7uIGSZpXhRI7KUUolUrXcyE6wCGOeYUtFdjU8022UUYtyl9KXBH0hOaqiYE0zpIVEPTAlZ0KbuIBP7HQ568w0eiOC6ixhUoJRh7oZrkgTsWEysHwOnMk8VghXNunWmmqUAgg7o/7wOaMa5bKDSldkwjw9DZQQmNGQmPtcYQET/MnkYhpwFAZgcEjcaAF7rpdTwwAnCoFmUdpBh4IBvMaeTpdPPz19fz46OOTQKTc5PRfm3e+PbmZTY50jJ9LvbU8/XC1u75ymfnE1ycL4g5NJhNabyd6xM1Pw/c1SH7YroSTBaUiIp6lQFy7lgMTwTbTbtVgnvbwmkzOCckMSUHe52tbBoImOERhynaswbh4cJgMfs8luzxUjff5u+uVv/fCwO/qz/+7r8cVy//Cvf/9v/96TT5+48kxsx+L84m5yfr74yubTTs+M8paw9c2dkSuqrDaYnptcjnVOjrkbnDwWivP4s28df/7J+Gx6Z4gxXX3y/MVy5MzEDL2Eo9/dLHmn08nEfO748sNw/4jKGE8cDodfvzw3TLaNwjHz5vzxXCi/SeBBbV3GagexiynnwDHaRwdiy7cGIwKyStThLl58mBgf8dWPhgNTtitH3GxxZx+MwRyaOjldwuFsvuRtfuJ4oa3+5dX8bL7Qp5Dc6m4q5kfHP9Hz320Ou3uT2c3rd5Ozjdnnzw+eHA/n+uPO8tW7y7fvxq4v+NXp+NPHtjDsj4a7v/uDF++urt5/uNCCbpabhgrVp0T37A2FrVmAbBdIfHwWaeDtoKE0q9wC5uwZ05MxC2mM+lQv0ofl8mDzINqh1k7EJrOzJhBTxqznBmt+iTxmnw3laLXoG64/TRzYyaBeQ/eMLmS/cWMapzh9N8OQg0VlM4Nrx4IL+5gR7oXBiL3rIljYoM07rjZjoaHkDmO2RdQce3A/FAYnrnJlaJFAB3PkZooM0K6nRkZaHZuaa8v42fGIWbyt7YmT0xJps2lRZNDrO5QTkvxvGmmYuLy2vLCy1cJH15qNJDkUdWsnZ4MJ7LRqVYY85i4Ng48ISVZOxhgfzTwWj8OqyWcjr8TqOG0P2NrtimvKVCW1JQXsdRZXOr86kFE9OXI0l207HInpdnW1Ib7Z+cSWIFlPkbrj64cbdtmokrkAx9Qs3tRgDwLeMBsQNd2zO7PL5GKK2N3NuxdHAzF7zx8fanMWiDj/3d7Ofn+QpdK4KARpjtmNhELPchddOu8YxnhpsXjlH5exlBxU+OscayXhgL2+IeYV2Xhu2PrrGWzFvYe+DKoANjXGQpYfE3teVjFOqk0OoU6vxObJGSPHaNf8mFEXpqmunCc1VpR23KBUyHSHyYGpCAzjY2mTzLj0mOg4QOFYrDR7FK1AGqSidLH8cR8txmYgVLILTK9g7SFqp4hFG2yBMCuSOaMELIEMAY2acmJQGlStaQRmGwIFcHiFoqYJqlB7S9Ga1BLPM44gKevFqpsO8+IqEEENLFM8yuaTXpG00zLCHDnibITVVL3AhS0SVSQ3zPVdcAtreCAx1OVCeOI4JNiPNaLCuJQOEQNSXMeEcShKpfQ5AMKv+pYGrMT0kl6TI0UlPFMAtXheDzXKylBMzbEeqVfOYBr9B4luKE6qlFGucBmffRz51fYwRKBySk41SvgVwpMUguTN0KgRGNy85BjELSnEqHl2fSirHy9WQwMgENL/VmbqWY54/GOf4EN8eSzBRQ1jTNPRp9IgUYgHjXjD6d+ZxyCZ1hoQLU9QiL5lxrQe8zPOYYB7hkDe5hFElUSr5chvzKqH4KD4R1DtISnJiNo8+IRnsRIfB65lggrR0iTGJW056PnI2XBAUg1Kw1z9xvpt3kc06lRJqkiRdUE/cLt6gPWrQC6hQFUmkENTCQyDsT3gUj7wMLABlNPvEmIxM+/LqYoxCRt89Capu/l4+VtwajyhsJcR4Dp3sEwFISx4B5qyeS5qPUXPUqY0m4oUApQ49epxokORlvQi23NeaV7oKQKrhiCUf3JK1U2SIg0DI4yIESQwvlEmssPxcpegkQ41hjvCjLSoad0OA+GArE/MfTqUJsvYAm09TAxnwjjflCwMKx758qyP9gcr9X/Wi31sw80LrKxGmcHtWtuCUjHNC5/UK/yg6Q1S0ERgEINVsmlgWapm3GuzLwGXO1tYYHVYEYYXbhBTJiYMnmuWwaE87MK8RJFVxPAsgboxRr7L6BSZCK8+G3WAgBHS8pyzBRNFwIlJHGFWI5smeYAGkv1kQpO/hE6akIl9JFZkJjVMAARulLOtbxCxDyx9t2YvX2VHet7gdPhZHYByEmpJVLx7gpu9ZpbRqHbVhdjayxjOlogKl3DDJDb1SJ/dmm5tXkQgDOEGWTXkV3U/Il7M3dEjcTJ8epH3LP2BE3k4DXHN7IxMT8a9gmQpSZandzuOinF0ycLMOmqMyBaLieNoTO5OphM+cb8/kO6E0KODk/dnZ+PJ1H1SbiOmGpfnC4jhrVN0FF/erDjnXIIdZ844SF1diZRgarM99dER37iDJzCZ3W448wcamWVR4GFz5oLhpYCK3bqdStzFNc7HcarZFcOG7B8VItTbe3IyFI78ve/9VmfQnV4sdh52vn7z/uV4Mdne+aOfvZzc/vnhs4Nv/canwmmW85mwGOown93sOwd0eLjzaPfNqw/Lq7G9kXuHfeSuTleHJ0eff+/bw6MjU6h84s7WXX/QP/rshR3Dk/F0sjg9ePFsNruZjqcX5xcHB08WS4lXvf39Xn94+eaNwbjDFs2NJoRbczaywZxsCeu8P5vc3S2Pjwb7hlOcJ03ZLO9soYno+nvDnh4rTZVKD/vj2XyvuzVwMVPPVLpolr39vs57O1dcaVmuN9vYmt1tfXOxfHiYWE6wRZQBNQUcj3nqxKT4iMYYB6P+ZDy7nE9pzeX1cncZUwrS58/2NYXJ7V1/b3ix2nw7OTvo7zw5GT0e9U+6vdfn8w/jhaufskfpITt6Kakoo7h32Ruwg/Psg8AwWkeHjdipmW/DJw42HY4BTBtJOzWBHV0qy2ZlIZMOruvKa8ngMzg52EcPK9bI23jHOezSXl+AIKz4ppu/5tdzMQRmzRPntNtxz7RsVN+4i51VZdZhMqJIpBVUhDMZBbCSCZCL9+e4sBhW0+H0zZ3B/BXDUV22TS4x6XXAGlgcIOhnSpVax1GLqHg54s40MG+NWl0TZrexlgO4hYo6rTWGMQbH8ONuw5lajtY19kM+e6WPtMw2XToiSWVmB5m6hDWQONsE20VOeuCLV1R97bfbHxw4bAc+luaYUKYBT4zwoyHZKeFqi0hIYmyXg2gND5ZLamCLAnZmN73c8arTo2lcDu+CIMPSDAiOQd4A2lpE2UADe9MQWiRWxRgtbm+vLq6MIQUFOYnXJX7fef6YZefAbhts3rqVYmYbsJgiC4gx9NWtKAp+LFF6eCAzgCzLpGryZCfDWxqVxSLGschRKlm9y1lJ2V2asjGflEBx8o03H7BesBVtSr5KeGYV1UKRMjuQnCpMj8OyAQiMD8nFqJajo650rOlS07mk3cX0xoYXe9MSC4Gk5FNFwzcqEGLqZJ7kwdu4XTCUSwYIhsEBmw6owW/9mqFtQ1468uhieoPwO+dYBH+tw6iy6CybnOxl3qPnPrDK5A76SbbcD3+w6GNF0Ak+wby+86rcd4mowwg8yWMcmFr6LjJlCr9wps41KRlJATZtOc0hjMoWR5C1aJWv58sKrA2KigCQvhszM+AELZz3QbsKUzDsZf+tDuU1/oRzRgugunAzPlI5GVRAYZ/oQv73PllgUREBKajbjIxDAopSl581DJMf7fGmIpgkegspbQS0gIqPkYfUgiHV7RIUsHm1HviF2zKkbBvMRGT6YP1rOFXYNt6GEllVKqcnDA/W8QjW1QSlEkTY3kgELWRHkhFs05/U17BKQ8m70tWo8dr5wZa4BwUwgDC8ygS+dykemGnveQqAcq6ob/MlWlKhuC4YTqemIFjfYRRJIFzmpIURYFWhQE+B1JZivgk1DUKlhWSwykRMU8tkTBmlSD8kV8GiEwDFk5Qa1umYJoUogk9yeJn3rdL1T4lJ/4hkywFE8E0FobzAymcXUbgTl7RNA1QLgY3RtsqCQfQp/CIvOTNdbQ6DStIncm4Z8jf1ZDqHwoUdwVge5gbC+bV210JpaUmQLrXLJPyvSZHYcJOitWhOzE889igQo62/wVCTMTFJasSLRPKHiapNg5SYMLV6SwXUnF6hyNbNeIsWquzBE8LDqLTbtY+uMZAQcqqlICxmJeiDkNEI+JbIzXTq9oqyxCbFLwEPM4HKTENYHJT0sxjoX71NxGFS9eHmb1tsKIWNCShWyFRMjrmJEQ8tgROphWmMIMh5Tj+asMXAau2oMgGbWYwIUXeYxdmMjgpDjI3TkCKhhRoChas1O55t0zz/VHXv3llr1pE7lwVV6kqD8Sd8iqwwBPKKcyCg4UFm5f0lFM8yxw6aNlBRDeGgCqZaEYtynQ18gU1FsscBzid8qNFg+Enr0J0XUVkAPZFOyxZ06mWAlPqEWFkDIwIEnwcDWiqpF7yfTEDeC3UQU+7+Nb7OiqOjhAiE3sCKhICFDYH4mVjncGTJfmdlqkz89HzpaBieiOAc8hVXcrfILUrdvlMvl+fvz3e290wgE/jFuw+D3u6bb95fTebAjfb34/3QoP6WQPIPpxPbB+yqdND/2Xg8Go5WM0qjg14e9Lsw2d4fvej1Fle5xup0IYjoZlmnYoiHEXjAj0zjJzWmdOFqdCXy4Sy5qgir9Y8CUT7/9GA07H34cDn5cNX55PFf/ewdp8Fk/NyxhQ+3X1/Nd7ub/ZveD3/7d370e3/PLB4XWSDL8OTRlrt4Dx+JKzqbvplOz/afHuzvDvg/Qk32+gePdnvd0cGTzz/f7vY3t114Opyu5vsH+47unI1nk/F4//iYAMaXE53c/uHx8napzRzvH2mg08Wlu3QFHJma1nyiSJtb4/GUA+pApZyi+PxoCoyrlK4un5wMNlY3IkPsDdXyHM3r3FK6aDs2YQ77G4PRUEy2ba38o/su3dB8cjSnKRbsNeD+ZNibLG1nuD9f3oglFouy3zftTTHjEqZpbPI1dw3Vnh/1nz3pz8QMLe8EcxNNp2fJyJmbnenpZOfOysSd5Ru+/Vcvxx96W6P+3uNHg4MjF4otT88uDdesyWiqw4FNyR2KY2h0u3lrBp26cW291QbpIW2l0WJUdra7MLTFVnM2PNPAUKZNEaLhorA0e1UZUuEoBjMu+OISUHEz6GZbOZOsjQEePI30uMVdJgaP2BWNqBa7M1YQyLYjWjdbxkUYMRJZ94OS43QEGllZxTjnTS2v8y5zg7FUVlrUOOoa4nLLMcpQIVNmTKkMLIemchvjeicEqaaoN1zny1k3yaq46lCpWYnaZxa0V//rNmI/NWDxNrmQQbWbc5Zhr2Oc4KZnReaTBPNkb0sciIpN8iByySbrjvsQHN5/4wY3pqM8YzbHUoMQPi0wnMG+uFwMSY5VpQqb0xlHP60ElPJ1ctTpYjo13kCWAY6IIe+8AieWNdVm5M+iGXrQs1jy3DpoLn7b+uD2jkNrQ07OI8Jp153dmvymdCrZ6hktbz+8Pp1qxhykxycC5Pqff/bYsh/RiHS3CduCRox4zaem2VZ/lC6l+ONNjFn0gJ2MiwDPeOrMbeiLu6NwWjrUkJ2eq+xhTf+vu5Kyg+iKwZQlzMmKCuWQofW5xEIU6spCR3XNMcjVlTS7KX/1JEHVQ/rXMt1AAp+KmymGdgx3+IYt/HWv+IBKqSsSLxr9rL/VLVSnVowNsUQZAtTSuFEdk/lhaKRsiM1cYzp9o+jaNpaGBhKutZKNZ42T6+esJOBiIxOkYNW6GG4MNf74QVTjQxGJroyQVVqjo6BUKNABlRfVEC1lC0tr5hHiGFvutTyZeArfeMy+YaC8tqdqxw8AQYLZxJUl53gjScqmbVxlu2KVwmQg06FTCa0TZOqFSxAlfI3Rn/TBhVnYooC+uLnyKgLhI3MAbIyP0LPqlc4XmBCNz1XQQxIDvSoNgWs0wMk8U7nd8btglaoUQ0VaGdKgka644UwzkFhr2nnQn2W6Ni6Nh5QNVcWWcCf/0qOnocVHR3sSSiRR1DTGLPelj4t4onj5U/8i/YhH8faSfGEePUW9PMlQdcVxqXrlTd2BX9KsssGphFsKkyzAhQ7eaX54Gc2pipLXB1qBhDnJ20CW2xNI8iYzweadFNnisOXMw5ATvwhRcV5TUemkhzUVMbBhQBBHQBpapPMR/XpTMJEQ3Kp4+Brh+b8kUjwsRFJSTt/JExn5A6V8B3L+JqMstQIQRCKJJrzkXg8ig4OfsFTAtww6rSqd+d3QEjYFGiIDoByuX8uGaUhmH+YjOhoo+p6GSmpVNgP9LOxWhnAkbm5lpUB5HSTC0Djryhdl4VEcU4ksWlqgFwQaHZU7aCWrsspANSl+KhBiokNplSE0meXS0jz4wKrpEHnrRL1vqXlR7U8SoOkHyrjwKfllAaFssRWLA7wMSktJwQx7MoiCsikx84sIoXxcwVoBKGQKYbSkY4NpJMueZtoG9DTF1JgBiUJNkOFDrczijxQV5ZqdSDJrRtp/MMm/IBguVQtJvuJeSEt6iMPK1v0U/JgvHFCKSOKLh2/JLKdFgHAt0ovsUllxEyXK1kfBWlstC/43hqDIr1riKAAFZJQkfzEn2tIS2T0gw9IiWVUAyxmKaghOvmvtqoGNsx/kLhRZk7agVADDRenU00SyINKeHk6oQDq/DFqo0M7l1eXhwT7VNaEosBt9NZ3BeaqpuEwwg+B0oL0or6M1e93ldM7/3XKWzv3266+/0SU8enRyu3LF9ZlJ7dPzuQUEow2zzPvCVB7uzk4/KD6d3y8W3I5rwft2Kh4eHowv5oJzDwZCXI5VPl7d84Bnp+fihuerWDSnpB6Jstenpq06n73vqDUiHc9XC340D2aL65/w6qNR16H1/X6fwzlfPXx1OtZPTWe3P/mTX6jCnuXho/6w2/vBZ09/Y2vLUaTf2X/Kl76/nN06pWdnezB69HCz7A2Pd0d38/lkYzUYjj7pHX7Sf/pi+u6b8ZuvDg5OOnvHbg3b3n+EXuH5oj4Gh8O3X70yCjL8mE2iCedns+l0YUMnE+JShXQphEoX7xy+OVjMLx0P4wRVQ44k32w6Lv1m565zu7M/7NlAqV9zStLl+Hy/l5GZK1vpAF+43+PCLt0VbARknMA1HHUGD52ty4lrx4S0RXXMHXc3bIzWADJAFRRkOHMwHGn8RnoPK3PzOCGwam8cn3XT9c37Bl3CXub33a2dg6OOE3/m7jdNNOLGyMCtd3R1fvthuhqPl0O+amdHcPj5+/m7q+XhYO9w2Dnpv7iY3UxcR3xnrcKhlnxWcTD2JQtet/TP4zf3vGV/sqmtvb0BA9bvdg1U3PnFG9c7zqa82DuBOgwCir3BQ6s/ROutdW/xJ0ubwWveKKystpagBk4rTXV3b/at5mAcXPJeq9M66Q8f1XhBY4j+39sy2+UMJDTJFLhQeyNcu2m7zjW6sw7FWHojj3Gg8oIYWTTeb90eHX/OoIhornMgFjuJrF1Od0YXOb+IYYt1iWMMiqU/c/wMQ0xgZrU0fw/Mgs4B7WyZ3toUthWYySQXobA/2YVbOxnTTo1T9ijPNWGxA7Wt2q0djvpBtV3Ulo/UYq5UBBwjkEGUkR9PyK3qqf5hywbd26zHPORALGPXThbTNHBbGxINLy6De51P9jTjT4YTjHKc75hdfGZ8xGuxl+4HFJsXS2ivTd9VZWLJBMRl3EKUGs7VpYOsLvYPeoNhb3rzcODcViPaw92vXr0+Hh0cHR2q5totxTm9zRFB+BKnTGLkl84vJq/McxnqssVSwk9amM/axmKxoYg0nJTV++b8VfFYTq8AiiUu051+JKvKUcW8rako1lUvQb4aRUZTkVv0EHPkoScFhnyqSCBVr1FLMclcKEHg16a7GXz50iFkoSmGOqY4WfxMXxYb7kVdwAFBLwBKv/axlsYABGR0mGl4RdMrIx2ZupusklU3rWCMcdpBTS9iY5EMZoDEWwityMGcqjnzg5Y+6lyg8NxrbElXgsTio8oym1ZDqdBRgEJImp08wRYa8cTbgEoVVU0JqEknM4nJDz1VhIgSi5+teHVz8PEGT8IpqEYZkg0/NRngMTPS1pyAFqwbjS8fJlTrClFOc3SCtNEzCoJZ+OSjStDig4YWbFaVRp6ONuOEvAuHiRv5tcAaAKoHPMtBqQjVyI8+RHBNBNRMtZkjTg2ARMHC/uhhyoRHSPP48buGlJAo30CRtWxKUuFiMC7slWTQgAiB0epgLn887dKBEBfXOSQqg0J2our9SLPaQxfbovbg6UcwDWOUllI1JqGIlYF7wMzKH31PngBIhqYeIaSQDCCJEUrLFhCIIKjGNzWAX7mSNyYvlUR8QHkTMw0yYqLJqVFF+Q8Pmap4IFnYqRz0fH2xt+wliFQCTggJkwM59fuknnAwzVZKvW0oFaxGssdkVcoHUaEurK/U9d8EJAKVRE5S3KEaRQXRUgXp0de0q5YnRhzQcDCMi4+Vh8YGTStLk1nkbRnUmLZguYDyBmlDoNLOkgXI4UHG6+EjgdPdkFl2ITwrRoAffMo0eW6YQ1TbQDx5AwEMPPwXeFGnUBsSsv8pM+UaFaMHN3KRLfRiXzBPhQU1qhxtK5sctGvYIKfOOabKJBlQ3Dcr2rnq5boJLKP48KFULXH2EcmvOa5enzI3bERGOUBxX/wDIShBqLrAJoUglqbobz5wkgHM0BuVyoqKH56TR0GsCy25/MVrFAcB2qXNaBVpnQ1+Ii+1YcATz2QRsEalqsCH1JO+NpPrHs1JyJBiOFMCLovDxQ7k1FKLzimjdmP9SmUvpEPKTzNlmKBscqenEW4bnIEvwUmt/5pCpokmQD+sIPVmK8vRB8ornrRE9hwucXCwotbBg16qjlxkCObEkEobURFgPbdAVc4My8qkOk7EC0ZqzwbH2XTSsVWR/5Qbj4QU73GTsI6Ib2YLHk13MLhe2FCbJZKZa7xsuHQFUmY3THhtzi9nMB8dHrQlKWElpqX9p+PHNGeSzOfLy3PbYQczM9LOoNzbdUkXf3TPge1O0hjs8V/Op9ON+ebZ1Xh+c29zrW28w1HvB4cjGrK6f3h7Nv0wvXXZkxlfJwrCTeMjC3UJdcYTXSkFu93cfXexWLycsTHnk4W4787Dg3Dk3/+9Hz05GA143ftOZZm+/ua1i6/OfvKLP139cWfQ33g2/Yff+h9tG9T0928NUESf38w2VvY6v9jufbHim99udoYnN/c/NxY5efboek5vEplweXZKWNfLKyE7tuq+e3Oqn9Aiesc7/RsbG1Y5W4lf2xNdVaHiYm9W11OHe/Ijr1ecNiw9PBwengynTrSZXw/dhOyOpmwb3+hsD96enguD2h90KSbVF3G+WCiY+8/05wywyTRy7N3urBabFkrIxxQUDeDWiiShAk5GijnJtGSu7eP0rLQTDTK7OY3tjcM37oQK7W33nad0fWtanabZxv3qdKJJjI56WXPYueuPtuZnD5ZPEqy/u2UXucHL5a1N3tfiiIZOaxocZEiy4QbhBAXZLJR5PmTWZLaryITdCKm7c4QojFw7sNNZrLjR0ecMU8Si3DmKygZc0+hpJqxDVlmzjSMdM0fT29iVxE7m8PJqVbGK6RAfcrrlaJgDSQWDmS1VUivIKZ0m1VeRgqW8WIma49CA0stmz3GNFiCXpsN+iTTL7iAOt77JxnV7uAmPLcAH77VEP3t7jnVyZXU8Wtzs9XPTgo/1ijIY1VM+uEVYvI3DdAk06xgEMdo3NBVLnIntrASI91rkeB+4cfhnORs3FsUojoV02ZpL0BLbU3YIhrIlBFzv6/aGnV3DPGOtnb1clkyk2j3hz9xuFgOUTzZV7eb8UPinoGCkuHQ3Zr77HSTYWM8W1Yzz2gaGDfiPe2UI0Yyhouc3LLvY/2wJyESP/QMyWC819rfFHRM+e3Ekn/mEF48GY0sZd3dvf6U572ie72bT2fz2xYunPeei7lrKyLgH1tVZlOmO8WffsphcJp0y/HqaIzuX8Jy9iw39Gxc8ck8x1qdcCj+jK7X+uX5Vw0h8SKxYTYsQPd4qJTEAq+tkG+MNVYeFeF00DoDb5tRIV9lgkO4puSpPMq0/6R2Y/EgE1WvI8LypWNaiKzXGBmfKHm+rI45rEQ0M/wtolDw73JIhoW7xPllXIguG/BLii66RcrkT8cIhFbPvvW5L/sgtXXD4GPgcXx+qlugAQWLZ5A1Pdag6r0Jb9UJhebpLcqlXcUW8LPXQJjynf69aav6++kTMb6wOnOhcem3oqloRFUkGAp7prQwyyxUJdnH4FI5A2ToNNXyoXdEKQrfAhw4ogBlEM0JLuF3qQndoj8eSGlWtliwO5DWsFCMLr7RiRgSLvEy/V1RQEk0gRcrFKoYUohFBCwoKLUE9QvM+j3EbsAigAgIUbsBFDhRjF1aAHAcys7FVl9Tgn5RAlDt4RlJR9IoYg2/cLeSkkiTjVUpFcyIFqepVZ2CuHZJIjRCBTIGke04GuX17Fb5FNnE4S1nhm+pTbWCFvKDhO8kFXdVcCKOg5mWCVQyIGQy8fAAHkzDoQiVEFKGsIAeUT9EOJXX5nVrCxb95pibJVhgWsd4qFX9GDZU947W0DjVFfxpP8CFc1Sya1vnWd4R28EuUqbzyRG8aMpUS/OqnL/RX5eGhjxey5JgFf2Mow8G0hDSm4g2CVVlCVjhV1CcP3sssH8xaK44BCsBkTJEwMTWZZtDZm4MZT8a4B2bVGDrVKHPTPKl+R2xVHgp8nAAqgCryWDoApTAo2Vv5VIk7cX+jisiJBUgz0/jlCnysyn56L9KL0gS1J2vkpw3GMkpliGGoeBSoXqEhUNOgogo0WJm4mzlgVGeeRtgEYHYn4SO0Lt1Y1RWJBkW/ZeJ/BCpwvsOrtWijUTEHMpb6ypypsrAXI6tDiu42PiC0xBUmAYvOEMEOZCIkBgVwtev9y6TGgZABwmD6lqiDb5TxMYBFfliT3iVttTjoIZYaf5uGJTq2OoxUHs2MyBK8Kz7erZNobAod4wWT0FyfUBqtCoV5BNxbnbHmDZ+IIezPt08oUlSu/JfElEYLcWeCClwyhUK24kU3MNBaSo7ESV8frhZ39WiK00aJuGcyI7IO0OgUZhUr8xbLUUNP9uSsyve6ffvkxE8HA6J2Rspe15TuYjbXlXBe4nerNeM47uNKOj8WfYKmDg4P3CFt56Mc+yObU2+MKyaTqY+Y9kz05mSS7uXkRmkuncnX1dR5iN33Z5f3e5vT84tPnh0aXcwupyedETf71Yfzib2T99vcJjHZLnsKE7UgqG5vjoSObGwvRC3XEr9pyKisUJ2d3sGo8+3nhyeH+5YpXnz2ZHW39dOfv94/2vvFH71azO/PLsYk8Ljb/e6Xn/7Oj773w+9/L72I3Zjsv6iMlVPke/2j3uZez0Hszpk0YDWYePrbf2t7c7hx3Xm4nto3MZ1MjaxNYs+nFj3eHD95jj+D/f74/IKr7tQizrSTZDj+vM/J1ZhkLs8nM0f5PGy8Pz1Hh/GB6S1MvllkOEEuSuznLP8V3Xcq6P32rWu5Td2Rv5A73l7c+Dp5SVftqjFXXjntRWgAP+x4tDsR3WSbnZ4yg8M0ByMMp6qKbTLYhsbUqU9CN/j/NnDnAjeBJXc3/c3JQsC6vpLG7Ai8Es89Xdy7hOH0yl28233XvQ52nh71x9PsLtBc4vn198a2c2cX3f3F+ZiyOd611zmwEmD/gxggIivF5tan7xfn4mD8a0eoPmTuwPrTzp1r1DK/VwNLekrVs+/cYM5pMtEivltaYFZc087XLSXBNppGVg+co3L3YFkiy4Oai1o6e05TSsNIj+yeNRbJkfy13z22K3tjrJQYlsS35kGLu9m4cy0wzYSh6ky6u+vAbVnir0iB06sBLlarfjdnyARJTTgTCIKL+PFBKk687UM5ekhYzt58Vbct2zVoO7vM/HtBdzfmMjnqaMmEB+uUuXZ7J4Sku6349ra3Yz+O7d32KaJ6e2J0wQ/e3GhHpiLOwAFANzrXziQD8FsbGGDsZM+008wQ52o/LT1N3gT/rfvsUMBwsX7CfuJVm3bhRhIWtYzN0/x1dviefQU5IjV+hX4FnarJLQr5WAGAYQKXahOtMIfQubF5cXnZ6/YfHewfDs0j0IrOUa9DT/SYVxd0c+ezLw5dr7SYLGfuw17MnIvb3x+iVqU2DMCEHGPVcFTTDXszn8IO0mE4RPZsmRjduHWxhxF6jvy3aF9ebDquON/tm8LLU/0CQOlGy8CmJ8oLsGJmY19hyKLa7+1wMyBE0qX/LKuiInIp1fVGWnVwqT3/FcfWNhnO2oxvn4YDwwo9oznDZIiozBsflAROOjlIxZusV0HPswyyNcwyPAh6EUNoKUzwRO9T3gXEUhsTXnliymXEQ2ALSHhYAqyqIRwEUqZ6vUTqyqhIZYvFxxbAPYQnMaBpSX4qFm8hPz2qrjE2YQJSEtVDUhWHBDjcgngxn6xCpDrCv9QfiFnEyOgCqOBf5KqlFl6qjy5GFarpxFXtA7f0yEWk6sM0cwvpxCXRWyAzL1k8kCsIKIEmSMLF6WpXF5ctcCioZdRU2Sun36pARYOg1QRSWMvPCX9CPlig6nGCTyxMxOKvzJS4HarB2pVvw9YrXp1qMighJ3wUaRwxIpEe4sPMgq3HDpm4rW5/g1IUtYqAFgjlJkVMhZ6XLZs3nhro1Nv+pWwrl2wBU79UBmFJas7wUrY0nPjQqo5oZShMoqtUpJXSJINbIEr1J7VUlQEeYoNFkMwRJ8nBPYg5CovyAlmhs+gKzIJQwKPABblUIYoedSku+w7MxoT8VRFEU1f7VErq/thw8iZoISvv4JTv9lxIVtGQ0YAWjYGW37nae52dtuUxehaN97phGVgfSQ/LMGg9Rs9zOtT1BzMBK4lSCvwN5qmIzusSY1nkNVdRJ0JiuB8y0GO5W3dCrVRacowcAA4iGQimNRZf+QBRXHU1fQeTwYEFFSGANMwoVDXLwk1S1LHGigFmSFMUN3aGi9Ui41PqaezX+SgzezflNJsr9kKzbOIhKG1D0xQbah43GGo9ubbT1Kz5q9g+1cuPn2YzUrFPjvLIRjfVcVgZSoeYs5RAYWG6xcgmaqrLSTOMHKJkzX+Fkb6c6wBQyMSJjI4AC0uscacC/wIk8gQJVyEMEDiqw0q1bG0EAlASm930E7p+hi6MjbY1oUkKaWnqNXBHKcC/Vlx1Fw5NN5JOKzJwx/qiqNiVShVTFnrF4RBL6uGZLi2LMyxJISnc2Fyjqcr6AJVC/i/a8EQfDDfihzkbx3XQF+pv5GHaUlHLnGJVMM69k3ezI7mM3kPPJanmqghrtdQLZEWAh9Q1khFts2WHZamWmKy922sR5oJ17kcC2RecXYK1WzHR/zwPBzt4byPvdscBgtk52O31gIrT3+kQyt2tGdLl1ZXzfzJdff7h3O7Dg+PDm40bseN3Sye4986uJmaBdzaWj476zx8Pb0T+3Gy9Eeu+iLczNplpi4E59a0tfh4rnBM8tnfcA7DfG95vO4hwNqdy3OTcprz8rd/4xHT4ar7s7Q8/ef7oarb845++enN22X194So+QTc/e7kQwPBs2P/v//i73/7u5yejJ8OTg+vlw93V3fxMrP9z3p5WxVEGLx1fzmw3oJhPJ+fzyYJzudXh5y046Bq2kAaEnX84FffgVFOutele+4gfnRyfzq9tfbZqZur+6vV7Cstv2+rsnL89JVJz/xCW+cERQ/PpcsUV51HS+h0/Xr67OBl2nBQ92LgZjbrOTdWIrs4ubcUU+WOTxsbew3LuVMq746O+Hb2ih4xBedW5z89YdMf9Ct2bvevhZs62v7xcPAie2nFYTS66lNOE/eXllAcyHAihpzZOp0ngqrNcEGtiq8PXf7Y/WDy8fDWNPd/dvByvHq6unz3qu/uBvs4mt0J95rmoobu56x5kt1AZ2u9cXM3ZlSOHiXY5qXsrFxCY5Be+n7bJYriARuxU9swsnY40W+33+4JIJs4xdU2BrY2mfGLB/LLxZtuBm/H9KLS2wNBta0ciUow4AIslEbPldbl2sY0oSjxPc2CNC3nzmmpuOHIp3I7hBOCexVbldFENFQSuLZVyxK11EqSn3W91tXfiN739IGzpfroSLLc9uTb67ZcMd67dbMFZzpzs/cCClEGTgXFdx56B/d6mgZDLccEChBKxPK5RS+TV7YYVoe5mR3PXIaTR5ZgBmNzGkF4v3OMGDvVi5Q6z7GOzBJnz1TfqfmL84f7GpGn+cKhtexm5Z3X29sb4a0kH7XPQRFGdviyWN2N1SyGqRHPio5wshMcurTPUN0jT3WZKlGl0YlKOK82hQGFzWJ9bLJ0fa72OrU5vmFgg/N50QsBNz7hwe9eZsFYDbA3HifPx7PPBkbbWe9E9Pzs7+7D65JNvPXt2oqDAMjDns4lSVF2lfvqkzy3Po9ku0ma6KkPWCsia5acUckYXmKG6/8gzgUqTv/IYDbLw+e2n/EW6nyXX+DEf/SdpjGFUykArvY/5OXWyxqqw64kvGwhxzdOv6H1UZQiqFF5lfarwKcjpVpLfh5taKAVfamfSICdT2V4YElJL+nFIttmi+F6yp99MSFiN3LSRYJ3GHAiZxEE1nqcPbRa9oClXgol6Z1onnZVC8R8qdrxOCA1bwrF0ZboGChP808BDhUqrP4hfqwuDRthefRC7V/xJcfBTGeAwqw7Xu+qOM4wNURnKxgWKH59POtJavlA2E1JYK7Vy5krK9gpgmIAJMlRg7q9K09Wm54ypF4hBBHCAGPxTAjkRbyjVY+YtGEUTVqe+9SkjcapKoDqmJbBhZRtR1Ig9SCee19CXdcuEIMr0ieCGNVVj1RKew1hKbp/OWlO0AjgA0QJ5dWYEIg9vo/QEMxELYDQsPlIemj8ShaFQvMVKD9Sgkjr9iyhLJbQ1zAgaYXxmP0NqsmWBS1m0+SST15Wen0E7flaUM4m1MBK2NlmXNONvEHIkEjXLbGmGbT7rFIRVBn+9ArZ+e6tBNeWJOBpuVUvQAzBoEGrjTz1HAPWBaLVuOpqnok7eMFqbwkZp2s5HqGCnaDLAvVAl5fxew8tEdEMsAMPTVFMohc3ob78RVQxfvw8O9aohnyJkAfUqnJ1JqghPC/tUr5K8LXABieyomDUgbUkqlZJaXChY6g7vMKvMbkEuBy6QeGnC71JJUSZF5pJy6Tf3HfAaZWIoe5IKVV3ijZBi/srzL7y8k+g7/X00xznLjjaLGWLrg3aIqZp8y9gSimY/ogHhZ/LBv5QhpkRCK1R+ZMCoJT1dTZ83fhV1mmtTnTs3WRZXUl9jFV2IGcpeIO15Qyc3m2RiKYiXAJgAmiugQZqZP/khgLjIItMSKuXa5tD3YOA/T1hdLMn0nm6j0IR5CGYqMkJPUwxDqHLyhzk+UQJUqx5Yc56VkmZZrSJ2MyTzFSId0OJD65nWhgn0mLC0Z9mi3OmEUFfkxzUvUxjMU0/h6TCc5dzNskWqfKpeK67idQZZZeVY6oO9Zz5YRQD4IhBtWlti/1iwJvLDBzRmPf7WsZ0RdXQAi8KwEJiJtLTYPGdMX3xjOzJ/GTpxRtcOCD/QZJ5DTk6OR2z5dOYAn0HMCvwN3Q3kHRaePv5uMh2zVTme/Hq5mE/49yYg4eF0TJjMl+Ph/ogf6BZwM87I4R5HPZywzjszZbha4bvhhTMBL8dzDlluA9rd6O32E5/e2Z3MFyfHB2YanfA5nd388qsrNpVCuQaAW8IpFeTQE97ggJQHM9ldymbvKdwESyymgkXu+LL7wtD7ZhX7ncP+2en8/GLqZMKHy+lPvjq9uDScunvy9JGNrw69saf2u9//9hfPHn12uP9usRzfX/83/80fTa5n1+ObP/wnf+fRly82VQPnnvlO4TuOM9q/Wc3ExnCOpufnFWmN2TMz9sKYjVXuFvPO4CCnmww2jh+9ePfqkvYJRjfmeHd2cb0Uld4RI2SVw9LffH51M+Nbdydnhr13pxcXZr6x93R89ej5o8n1teMShUV0bLLe2osi323M3La2sTHs2J28fXx04Lz+q+l0e1e81KaQeeNsdsJY0JGt8ymZCvyITsZpqrkJQnAETjYaZ6ybpkSveMX2rQ72xVGZfOM0bu70XHbrtMyN88sJ82H+/smjvi2wT0b7RoGvXk+my0XXcfK3G28Eeu3cnoxGJ6McHcXRdIWbA3K0yoXrBRz+WHPqF6eXvNWDUc/hlv1ez4bv27uFrQOWAU4nc7FAstl7buDm+FdYDVz4ZYY5liQX39LtFp9DkxFCMS0U0SiucA3HskxFCWPF0hq3DcZuc45mNirx/tO6rTPcuuxCzE5sBe3XNafTaLYyDkfOkAlH7m9NkWtQatEbORyJkRAPJYbJFa9O4q8JDg1i+7g/yhiXMyDavtcxqe1SYDqZ6706tsdQ/uyQHpviyTSOgWGa6rZ40pimLYNeN3Psaq25jHnDiITXgWSUcm/oNPN1rf5M2ez0EFhH5JtkTx8Q72fLbhfqMuj03ZJRFi2jev+hFxWYr/mXSjhZNW0/poyLljAYn5j72Pks19T5vw82BmSob3xRDbyMmHKxLZxI/E42eyioIouHV7HBoenehI+BjZEuyh72tg+clrqzdSW07+b+8ePRYnbz6u38ycn+wXHnxYsXVMhgeblz7eKL4cE+EGbBMoOAkTn5ND4W2yQdenkmExSV3xMbhz/sZnaSZPKYwL31naxgyEyWZRs9lT0MDbGVMbzpzSlDM6eVrcwjmDiRDj3dAIqAyNYRoCsGJjDTea27pGb5MdBH22cgw0ehdmK70hX5BVrNzcXqZtpLb0Jxg2ChF1yCV81elw8n/xqgqireKX9CCiqy37yIZU1jyXFJo3DTgcFGZAmhBBFUkAILUEwLwRpFjUFUpGAyJ2fSlYqTWqvTKV4MVB2w1B69CFfEG7ySLU5iPiENOcEcvpFSUq3eZe97SA4R6XMVbGyATJYvAgeMwqSkZLW8LlPjskgMdYG67kCLteseFiqwFa1EeyPQYnoAlqyRGWZWm0K5zIVT9f5ewLuxNd29sdzN7TRrTaoi5cYi7+mbvNG9MgXIBDJOS0krXXfkmh9xG7DOY/hTekVt0qmnRuXkMTfqdVjnd8hOew/loDc3BCPCk/j34HiTuAPjpDguLd37ICElEtcgarU/mpUq4sN46wGBMoWxJe6kFiZVQ6QsfwpV+1ARPptmDF7VrIJUaxSw588E28hDQUVaIVllC8YpU6D8zIOy63+KFW0BzFxouJRN+YYqeEoSWcNFmdSb5hbUpMPWR3pEEJLzOn2XQVS5WH62B3nyKT2WolQAQSa2ojAEZ42634GfInmIcirYKoo8G1EpmzeVp6DXr83/6B/9I4mFaCoIRh9/flS+5r5GQl7FDBWgZAQ6877x+9WcWWf1lz2K7xj8gnc4EIRawaohz2nhviEkqbSEilRi/YQMckrbwrIggwakfWyWEWkolRb1L2wDKuilbKqPtunnSh+lxBbEmkfwDEvZmuRvkDNDXxKVoQ3vQC7wf5Onfqc4cuRRTRNYQw+o0BU8U7+yAV64qVd6eAJta4LpsDEvywLSWp4q1FgR1U/WHEURH10IbJmbUpZQHBKjgUEgHVUQkOpnjUOSQ4SS5pSNeimbqmlnOQr8/mAjjCMRQSkVnFtbaMiUlLwIepUjfkOEm9zhvPrqAwd9plkRL4NuNUtVSY/US6HrGXrRDdOlUU3YYRTxyaVQAat6yrmPWDWJmOniGB+l9CT9QvrF4JC+uaRfpgouoMrNdlZvQYJBKfArhjIY3j7YcuoAEz6zI3FgEETu7wXK39/f9Pt7j06OTBjfPlzPuZsbNtd2zaMkhsSijR2J21uHh4+vLt4Gia2N5XJhgnIyntjoZ0a8eved6cXEhoFurz++mpjh5ro9evpoPpmdX5wNBADZODtb7uxt8vxYT+o/X9yIyRmOhnZDMtisMd/2anV9cT5BixAIk50i6A73h/cP1wvbTKvzefTk2Ezz7WJzsXz4+vT8dDKdTW+OT5zKuXvY6Q12bbLd/s7nR+dvLQj0Pv3y6c34enpz97OfvxLg8s35hUilJyfd3/7xl//ev/cPP//u4daWSIbhjTB87ePagOHq6NHRhisFbqY5EeTBiNSwdnl1fn7rPBN7ObZ6q4f7/sH+jpN1jvcndizPFmb9oXZxcUUr37x2g1hM8MGTo3lOB7oyYD1zl/Cbs9dvTl+9PZ3nlJut/d7ep8+fi/I/OhiMBj22Yr/fu7GBYrE4PDoYjyeOXHWIqXgLKYUJHkAmmmNm2AKIs2wcdsnU+AKwuh/9yrYVBqya38w0fXrb64pCuRWswoU5HOUA11gbM7Lm6CymPGy4m1ZIkbvY7NmgEgY2R0dGWDvvT0+vOPob7gjbtm2Ae9bvbZkU15rEnRk2gK4bMJftWCN3QtkfZJXOzVAqOMwgc2OxnF2cX6Xv2u5QEfsgbC3WM3Gds9JzLfoop0wuDMCIe89A0QbihA+lwQqVsXpTse+xVshDeK25C2zhRLpMTZDSUCzZ6tpuZv09czmbr3J/Vo1qzfrDmgr1BXukz80GJKMjLStTgLxzzsHmhrL3zru9vzvKQ7lBLIe5lYVAmux8vZpf141XOZ2TX2EYtz/o2c6hwYkO0tB1Z2czbnFOMbpO9E72HUBei0aOpofJCRKAQcKdWSZdhkjfNHarZM7TzLx9Nk64rcy6nkNyl6bmh10rBhvZWXFnjn8A2sz+A2ahTvrHj+x1zhE9bIJ7A4zsGAQxLatmfFSDk5SB8Ywdydmp/H7XFLh3jBuXU86iAsgoc5oGmKOI0jexrtx6LZ2LrzsJje4SCNysYENAw3DrwuGoazsQiVsOeeYWif7es8dH2PH0kxNTJNYYAbTaAPPuwCLhvcFq6EShIW/rlQg6RgoKMd3NhFI1P1stHprBVGscdfRX15D8zRy3Pqh6sZazLH3sO2gtBSFRX8odk2eMlG6RgtVbljm7OwqHhEVhlVzqaX1WlQgWKYhfhVhYVnCgREUJzbKqDiSdSua7stM0D4QSTcsKNiqb88Alpc/gFynRw0CTOzXU3+rFlJISBwHIDPPScUTJC/l6pSMijgyQgl36t+oDAmr9KeckAoZS1Vgd60deFcl6jXywVt1YmoFBNKG8HYnpn3wwLfg1nod5WbVIT9TQBtwHjXBoCkkBUm/5A/geOJnGiuPuI3NEWZ9QX4DCkHrbZt99l2qsM6sRs/Ru6+IgpAaEx3oEjRI3pMCFcBLS0kufq141pqwCdVJiTTeEK2DQRrgZ5qoRRGwGOvj4UcyhMEW+SmMiIpR88rbVXsCzkuNT6lwoFVJBqODEglWUZgrWwACWRsUNmlJqLAzDsAhE3KfxCTqLfSGpmkmk2dRAkupLOmF+eYzyyBg0wproYZpYlLP8ySBYgPKWKqYLiArJESJDEnz8DMCgEaalHjVFcAU++MsW3vqkeBEIfx8pKdGyNorC5DCw0KWKbRxYszY1CMkrBJf+FKgSYrMBVKZIkxTcCn5r3XLmo651LY17LXXNgXCiJYQPwR+EyBgoi6KeSspxPcx9htT2jmX8qKyFeX15WyyQCZyyIcQTgsGiPwRThAQPD/7HoJJujGmr2wPe6ocyo5ymnpkhkoh+FypqiuY19slR+ARg2fcyMbCgam6AZ0gT9KY/T8aSyhr/BMy5q1NHNYVfFAtyMI4mUIUwjSlOM6wLOKWkqTh3xfRMNU15g3BQy4x7eBh6wgJJqQvCNTANWD/0N3lZ/E1AapZ3IcVfcYS8I8xS1Kc8bd0hpmXIhGlVPuiXyhbtMRymmbQtjTLdZGxNyxA8TRIEObByRkqWcWIZ6+j9zNNgVXEbUmBn5SFJioexksBUsF6FccH7I7FNgiBXwyjR4WRmTxVRFifUHEIKjloToI9heGAmLtJsWyMKPdZZtjA59bY1hLLFcIVcLSPiANNjwgxP1e4ZvQ091SPEpwjFnjJnWFpTwPIQRVYGDKdq6Ag9dRU7AwHBrDbulHyyPOJYSd08Twzj7NK7mExG+0NguVAHx/thS2dzMZlhSGcwvLl2mVS2n06nk51tF3l1Li/e2bt4ODp27iWUnHYvjlaNenpTkg7Z5OsfnIwuTsf2/gri6Tl2p+NMz/njRycmKcW8OBfIgYanH85MQ/qQ8fHhSACJQ38ODvbcB+AgGnOX3T7nTZWb3zl+xtt++25ye7M6PjnmlZrqOp/cvD2b2yNwdSUK+vaLL5//g7//vYvT96ZXHw87T/c7gjlMUT9+cvgnf/3yL146pujDuUuKZ7eHvdEPvnzxH/z+7/6H/8GXDl7/cLZ4+Zezl+9Of+PLz37w27/pNKu9Dq/pbinO5cOHo4ODrUH/enG3mJytZpPFhej/jd3RkQ3DKuj1eoYr11fOIlqSKD68f/fWGSlanM0P5uyp5fh8NnV3WK87mTldxpXGW65GiIMVFdhdLO/s/hWvb2v1viNUOq4gmPGMB674XYgJcQTrztVi3r3b2nW+pZ7vzqgkER038U4ZkI3Z0lnyzlnqnPNLN8yjbxt1maUWizK/milPCQyfBv099wpziymDQH73YBmY5XC8ja2Drk3b10+PnTl0c5Vb2DbGNzfn8+vz+VzYz9FoZ9g7gqfblp37fzZeXCxWgw1rcbebNxvudR6PF6asEezO3bOrhX7RSbojV2jNb64mb4f7vaP9wc7x4ZVwrUT1WNgxvGTuss2o390zjOAROixSDJCFqbQlBsN9up09nq04G/ikZRlR6OHM0aYxpG9O6MbNw7CTWXD2EKtzuqgRQULe9aeaUu7E1VK1Rw2WW85ObjF4QgXYlHTTwor2XKY27PfUZR6AFxsXRx9gUr8bY4GNFkhW94qY9kSyAYDLszvm842KNV8rIaozBDDGEDvEFjN62ZabDchbLvdi5SiGZTcungejNS0FLaO+TQgQS5AJj5yoc0WDxa/Ub1kQ4TGxJumFD/W29kwyUZjMg8jmVgcHr2VqQ0WbymrOjCPmOSQL06DhP3WZ244jtcPR312uVpxXdkOkH6YlnNImkEzzq6m4HusUV8bojYnwj+0Kc+OL21CBIzlk1gYAWzQMsK3R4YbxvMA/fdiJc8R6894OfROquGvM4p5pTcEmIlZe0H/4aetOfwRmrK02wKzpfKtPwJNm/D34MGjNYFbtsc4xoOmKYr3LiSyLWIDSG5VXmc4qNi+MXXcrGnNWWePxB27ZeVXEB0wnG5hRkrXT70et2HMx02/7wp7MIpVBzsyxDRWpTUcZXzZuGZaq0fSHyhPT4AOPrLKlL4i9DuF4aUU9YL1ljullkKleBm4FLcjk40cordeFoAyKq1dHprjnKpK8SnCI4VNdeTALZzNaaP1IFnCqruzv/Mit4FNOclwCHFZXOIARyE2vHQEBQvgewAxjqzBtSOeCdonVcUfB0snik+R83DRtC4b3UqWB1aipYGnKH80molaLp6AXtyz58Uvzp8N+QqaoDhrqD8PCFDRmFA00FFs0NWhr+QZRNNDpuKTwkpDv4mboqKX76q9TAyUPD1NVcaCey2CE+fE4oqW4HRclJJerEBk2bUJMFKx82ShMVRRepWCprsTYq/AmqWBG36Og0tUUTTCq5EZ7mbf5hg+Mon5ZnWhqxvJFEA25AFM165EjCuII4YaJSqAteMZnSIWgYFZ7VXWHaSG7shc6KgtD5aEwQOUlZidH8SKMT2W+YBhJ5dMkFVT9jjwKoOpCXaOkYHiTGgsv6cDGEQnxXqtNStpCYZI6VVI1y+AhAWYNvIoKnZBS+dYqEYDRz7BXluJbUuAREMFaen1gLt1j/q9PicRP3tEaAc3Lm1TgXf4EVskvpDY9ABLehV8pbhVoQEO9p0x+hTCQmkJQTf1CmktG1cEobGI4wKmf9dAWFkBXg9rztZaHhiFfWzIDORJDqmiNnAshqFYkFT02C9y8RjaC0jQyKXqawRqoQvFbgaLKwJs60u+U+MLJkBx8Qrkv+cLQore1vgZGmiLFkDjWYXMhLEn+eKrhdQgRQRTjmCF4OvLiUrGUd0uO0XgvyxiFdzmJTBIqgkjpos4w6uF/tQaXoJc8WepOLaEIOVxwTb4sTiurkP5YfrxVJIJQ08cMARratJNaRk9tUSygYkZL7moisMjaRwFFEsAnT8kmuJcWFmoGPpUadclIC3EZ45WtUu161SVar+cuzEkvsyzpFQQgERjao+9R28ii2F6VQD4mOBj4V8sm1bTbKMhEnT15u8y3mA5gQrgW7M5XppGbE6z9jB0RKhaaid4J8HUSq4P0s7V0++Ht6Xs3VRnk4YSZsJvZ/ODosQZrktBc3fVyZhEl5N8sYGnyVpdvQnbJmzee6PVEMFNFvi9359Ez12Bd8GgJfTDqPToenZ+ejo6GW3ubV2djTi0aLj9cHh2MHnY3Li8W45mYm6V56qfPTuZitIWy5wZZ066jEW9i8+HN6aUjzQ+P9kfdzCm+fHtuLtwdtFATVPPbz59++snj5WpxO7n88tMjaxF8mr/4xasrp49Mp+9PJ6t7N5SZyb097nf/8D/+8Y+/+OKHv/Gtd5dXf/Wz9x/evf/F1+8vZ/PPfvjpt77zYq9nh+LCWOZ+NSf6vc6BgcfszVe4KzTs/btX1/P7R19+2Rk92ekezedGUJlzHy8uacXrl2/cGbw/HO4POsub2f3t9GDQOzw6+pM//ZkT0FdzowlLGsuXL99MLFVE2w25DNxuNz580FM7SOf86nL76mHQ79jJS3UGfae12idgs+nD9cySjGifO9E1PDlH7wvf537ZJGDL6tT9ZQ+3jw72Fre7QpNGw327FnZ6e9/69tH0fM5fmV1badkaDA1EN5aOubmOGotC4blmTtGUsyGfKJuNW8OJx4c9OFztbp1fTU/PHhadB4l9Y5TB7ZOnu/vHw9fv7XS4URTLd+42nh6PzDc78cg+78OjrpthL+c3wntGTkXdzH1ti+vLx8f7Qyd83mxcjp2ApLo49+6Iut3iTUb3XaOs7Ru2sBPc1NzGKzpFpa6DrT4Ru8ym83T5OniwujE3bzd1XDu5QDP+peax49Sf95oOMFbJ8UvGpZps7ECdx4CBGoHN0dcTbvmNOB+DmQyQlu4sU2prp+u6SosB2Wngni4jAm2eocuiTfbDb0XL3V7HdggGE4OUxZDd2zm9ZZoctxXXHMJWzuLw8YeMteBW8wCqM+nPVoTktH0DuW1nklolEDJtv7Kxi43IuXJ9a2th59iNGEVzVKxoNllBS1disGXvh3Ml1GiQjQNYzQDk0NDNLbP7uR5b0NXm5nQ5c/+cJudwpBil6uVZxVgG1segfTcRXKL2MdyW6IQVsYqCVillLhJQpM28WGJaabyMospyH8iW+EBMu7MRvrdvoJE4kzdnF84L+su/+kbc//5+Viq6W12e3mRyReigun0BGghnJ/WGsVR4UaYeOrHSZaszDRFDmD4xPGWy4FFFgnusbExidRaxoutSlRJLDu/4QLH5eoEYvYgmHYGy8nvf7KLaJeb/CnnVUwWYIVBNo6iC5fcuoGqKNDiUo5yeqCy/ooo0sL5DY9w9Fasz/QrgmVyl1Onp1o5B6osYIBTc8gPhBi0NQ4ypfrDyxLksdxbaSvjoIPIHpVIwB4AwqwDpC6qu/FIwHUd95PcMLb/8Iax6pZcMvemd45emVBiIY55DaZYm/ASq4BeldBFHTEAYnxdRCmKcDM1HCplK1+ABtuqqKloHncESjkVja6E+oswQtGwiQIneSQBb2jG32HYgSy7FoeCXfjvKAD+WLEqxGQcm0ki/mTkCBHrQIcq9XnUBnExUVB26rjbYVqfujayoVyqj9Gohitc430b3YAWU/IiSjQdXnXOqK5FWkjcVd5dmFQXyNnKX59cPmNNGXKVu3mWFLXQVq0N3MV8BkZMsAAQ8e6nLU3Vaaxjc/oteae+o1gbBYhUjxWhCScrfPJbXmmEDBnqmyYrXNDckI2AYJqUhWSmhV1IQL/cviaVzEqtMwxSro6rg4RsgjRUeGhUyr4nHGKKJsxmFIAKSRRFM5URTGkjYEIrkkLspRiUSio143ba5tEAHhay91CfNAgbhc/5P5X6U9EFp6EqsLCkNJuAp2mhqhZX8wz/4g7xMavIjCYZhgB+UI15p3C+sKWrTGeg4wymtFMgwMZoY9aoWHoFloTB8VJ2yDcXCRT3l4wZaTFUMjgEwhUn7iQKFpWUT5fRIfn6nUdWQCMwSUtDVEFRSzSEcD4t9mu4pXG1eQsgqFS9xN0IhZvJoXRaSqPFD1eCGRVBSYwkqiVUIgRlk4Dtca5tvmw/TXeSun6rFGy2FoIJwaINh43dmx5MSUytDxlotZ1WkzoinfVpzDU+Uz5torbLhWCDjQIAWT4KLBlr9ejXj3EQjwCe3jYAvf6Ml/C1+JiVUNjrDB/lBRh0eUlCygxJkgDVvo+NmdHw8RJJRO72gXjxtoDiYMUwgtMaTomG4rOoEwLO0xg0PjSiuQBBKtuRsSBWZVmCzKgVvfEAsZJoI5Uyp6F0AppQKShCBU6P+qGuBjWZEmdNB4jatgD3Dgqmdbu9yMjG7LHaZmHlbIt0Pjw8eHe/T8uXtgkdxeHCcG3m5Wlsbi+nYyAhSie3p9Hk+Xlj0zukZ4VIOKuctqdq1XeNzt8peinQeHR3uHxxdfTgzO+ZeLaEg5gX3B6Nf/vJrx4Gwb6dXs1VWbHacg2MGc2Vik7u2vfPscHi9s2U6+Wo8ESp9fCIYReD47usPV5k+fXD64WDY3znY73/3e8/6W53Xb862uzYMdBbTm69enr06vbq6vp8uEgRDxZX87PHj//Dv/ebR3ubB8ejVV7N//cd/+qurc1s8D/uHzi35zd/6nf/wP/pbm+Oz/dEjIwrSv1mN7Xi0PXS1vOrZaDt+L1JluzvY2u33T9wMcHQzHzvB5crZJibe9vbefvONIG2u6mff+/Lrn37z4e17HY9DTk0k2wfL+n719dvL+e3LV2cvX71EEb3PZJj24VJt23aHnU+fPzs5Oni4XZmNJi+nGJ0cjK5ncyrQRow54OeWh+qA9U2bZ7PmxOAb+abd3jtqiRBMvhN1vMGNjYvxldlrIxYeNt/TMI/3S5cwnP1woOd0fvN4v09nTAtzQCfz1XieCPPpbHHY3Tk5Gi7u7l5/uDl6fHywv33xfnzumuf+xovHB+aNJ5Pb88ncQgKtX1zP9Fg051dfvbaws+Mg/7kQ/B63Ur9Aq535yrN3Sr9AcKsTVxeLLasn/a4ZSLE6PCaeIQdXRIoN1v0O8jeNWJxVafeEE3s4nRPnR9Xcp73CmCNsHVtm4scSwYJ/jtlJL0Lh9+KW0HOwaT93YMOOC7sOaKf2qblyzekt48GHdkW1hmHRIdErmZ1N2Iwt5tpx2rxrbm9WfaOB7EGPM6E1Om1J+JNhodsbpAgYm7iBYdM6lS7jwRG2yNFVc4vNeduSa/Zb22IctFQZrPzAyZqtRmfgICiJXqnbGo4FkpzoWSYO18zmJKDOLiwmPVt43RJgxSBBOz6cbLVndFHXrTILxgA6EizIDQVZVagLEBkkqwaqy2JJ7pwSmGRBg9gogdWGDEbSbyQ0Kp2vBYW6RAUcgyKdmrpAZSU0CgT3bfDetUiWawEE4GXkwBbsbLm/4uSwpwyOHR0d7DsPyGaG7tbJyeHjJ8dWw+Jb3m8OhwMrvpiHuTHKjFhcMV4Xm9ZcgdBQzhvDGpHGkpZjEwA8v5wXlI4jBjweeRbVqYR/coMWM91m2WSI65mpcaJM2fIUm5EHVnr4FX6ClJ4lKfHR8tM/ecoJCwqxpJpWdcTl4KXvaJ2I6mTOZ+31+5XhJ7kXmIACGHzyognyNj8B8uk7sDoz6HkIwuWhwiFdbR3qAH5QDKIkVf1IIFQfoAAI0ZB0tfJBsXU3HtK/hbr0TfkDaHgWIGpMR5MEuH0E5QVjXpPZ0oNSOtaaskz3FMZ+7BbDu/CwPMV8x7lcw4FvMTPIFJw4TuqPwcKiCDrMk7IGXnW1etNTRVLp+NtbOcvdYsSS33v+X4lAewxYmYkpGhU+R4tkq/TSXlSX/gCIpIZJ8Tqq7j9mQdXQQa+ClU00WOlVsTTIFLZRjnyyK0BmVYSB1AaLypUoIHCoXGlB8cySJ/+HnwhpYqauFc0VlW5y8bb4HZgG4dTA1EBpS1KqpoD12ESI+YBSkp7zm3d2Li+uzEHQBmMnKMkTYabm8Ceyz7AlXG0A8q4+DXITJX6W1KM2sEmhX2fTQGoigGRVxxDBqlWRP9GiZA4Na42KJwlC4DfSPqpfS4fAxypKS1M8GBc+eYwoCxpAmZev52DfWF2KVxSGu+uXRa8cabGFhrIB+DGzRx8v1w9rZmyu9wBIZkFwQcWpm7rU2CsAgPC78Cvj1apugPKKFSQz0m7Ot/yQkLM0slVYP2v8rRhQtC09dcY9gaOxS1FHqXIyNCzxC86NNW2C3DvbN83QNG5gPSWuZxKOnCNIn6YjRXH4ERiheI1VmYzilH6tbE142zqR5KWYLVQdShBsAgYg4aCYi+nq0tTjyoc1qpUU5NVeIgGvEE67baqsZONklEArqsj1prVadcrigOEB/6YUotpP2Nv46aeCafxI1uWHUl9qL7NYlSZz6W5aQapgdUJ7ER40Q4gUn6o9RONeqmtIh/MciDJDRVcoUr+NYtkz4G3qS93Zh9fYAi+ChluxIVqmkQjKWo8rCLIWbQHhYShSYo/BAiZ+Cf7kVP4gWTSmoao0Y4ridiDWtFlVGyaXVUqNQSaRxMYY8fVlxJ8q51UOK2g6kzE4qrZM0mfaOS19Z9Op5KvZ3P5Os1YW9EeHw/39/dnlKZDDQc9ctggMS/50yzyqI3egZwOnyIHZzHmSN/sHw3YGlPl4Cgng7fL27P25k3vwQWBavzdAMmPnRi/zm+g9Ojp69c1L8bImmy/O5rt7fS3bpbmr67nDQJ1gYrqalyAm5GqSCUku77c/eyGMxAGXpq5Z5cV8fHDQPTl4LM7YZuHX7ybvzyYHJ/u7+9335xd/9ZffTC6X4fPe5tHRyGbTH/3w2y4A4If95V++PJ/Ofvrm1bvL5V6nO+pufvGdJ3/3d77zw0efvZ0N/ut/+6+2ryf/vX/wd37zt75LzNeLqVlwOyZvJxdi57HLekb34Lh79GSPF7xpSn5+/vbdbm9wPp6/ff2e13R89NhlvheT8fu37zt7g+jsxsaH80udiS71zdXqT/705x/OzlwQmxfU2NJtNC3b9Xhv/NFnTx7Z8su1Ozo4pN1DInm46xrWdHOBsZHG4WAgVicTwD27kGF1x/HNBLArdV047Ggii0o7qY9bxq/Fz7uVlpJWIrLn8nKmGRoWqcXOardKWV+hKsvbTA9nC6+T+O1knd1/mMx0i09HPLftNx9mw9Hg8cHw9OL2gyvbbCEY7j553NNS3xkE8HRBWF2fHFrD6Hz96lQXF4db2FgnMScIgnMODzIOebg1rrBu4PQnjZCzTl3N8bl8oucWhm0bhZ3KyYl3efD91XxZ096mmUXGxW1yFie9lygP6VDj8fRaDLrWm8N4qlVw3uPfu0nNuQhUX4g8j58brayuC3Nr+khP7CXn0CYEumo+HyrG3Fq93cMuT2DMDUucPWtCXs86Nu61bqB5ujIh1omp355ZqogXHgeQUJyBejkV5RRD4fjXhRebD5YsFlaKNt2AhgTga0WiLrsBy1gj55A+iK4x7bBthcGP/X7Ht9Zr64I1PN4uOcYUl8fvFC+xTM56ddSPDHoBGJotbDdt56AkPi/kLRFMFrl1S8FECTE1aEqPo2laMBGgAiUtF/aGiOwVy0BRVMwrwm1tT6XlTzR6Y3sxD4clGrSMHL+6u+0OZiNGXudoODzs7Qi7APHRaF9QnwW7oyNDg85wOHSZhaCOXEbm8KVuJxYVN4qhZTmzXAN+JjLjPpanopdpIRzykWh99EqxcvEdOW0FIrzKAwiI1CgCtqiNtWTYyxFJLW14kP49drOcycTrgglaM56eKiX9HTSUAs2n/WTKwJYBhLjDfqq5PBvYe5C/QOlLIFzqnTDX2AKvlMt3kFQmSPobrOEff7e2scWdzZWaSQIclOpS5dQK5IFQmoPK9Ai5dHLtvAYkiLqxFEopEGBUcCRkzTyWqCDDxOKUwXIqT6ffRgvYtfZAQENsZeZwZx9OaK7tNwAoBW4Qa2MwdfGeQ2kwbgh4AB4c/7V0VUlEe/puMWaZGAmQOP2FfCkASWc+PhKUHrHGhysxFFc8MxoZkEcQoMfP9gCnQgbO4Un9VCpwMJa3422NbcLBGoKCA4PQApO4ENEEDUAZSAIeDYnUcCmTgxl4JKn4H3lFJ2UOvfXv14JWaUsLdQUl9KTpRUm0EMZKQjigPs9FXrjd0K5FDD8AVzq1hJAEeIRwz83DWY/6ao2fg6E1Mu/Z/FPjvcg0eeGQ/BV9VcogOQDhU2wPZHmk5KnaUd7GH6pPvcCZwjkFGQvc8BZBDb1kXpdWlU+yFbDA8VA6UPUSdNAqyEnI8CkMjmI051mrz2wvRse3XLv+EbGUKllwYqhSKSrCfNUBXM5Sqquf62oKG2g0hKJDoXKNWPAwqep/FSQ5ylR4FUnhkVQaXNHmwYn1Sc3VZmSNF7pW0DA6ypkqvAnNgRQ0Gv2gOU8qDQJ+PL8oZeZYogEYGZVWrgpWySASVkqNnngdXUqb8SahrgItU6q4KV21LH3QDRzj5Rzc2GScKiCHs45wrCOf6WXy13ghACNLEEJ+6sXMOs+r/YInYTT+wCA4VCYwi9YgFxRzWXcam5xNMBkrA1aYlwKlrE4ItDAh2+MY3Jy2ASwQQSTmMmiE86UKMhaCoYrvGllgWI65MEsbsqSneLEvNXpdtZZMpTaLGW+4XOotvaMz6fW4+KksL8GC/hrn0qoIebOOBioGht0En52+sRgQCPXRyDW7YjiqIBzkxGFsYccREkk3eQRTpUt8pV0whqj8oLV8JaaENYiyrRWSVEZhWOqwOjwJZYBjYf6GNZlFkzmRzdVfav8AtoOh4KzOms40J+rARyf07y5nc4ox7NiAuns9DcbX9zcDOy9d5Xq9MDPB8rk/lVBd3CuYw/jA5jbT4d1+34Ls4nZxfX9tDQE/o2PmupYrYf5GC+/fvnML73Q67+/3Dg6OZuO5DQDL+YPQoF23Iu3uvn792l5XoRHv30+4hFdm6m83F9Oleffp3CE/Ztu3ZkuBRQ4W3fzBF09sKTw9nzpmfnl72+2NzHF8+ujRi+dHthO+++Z0erE8enY8eDb62dfvf/L/+bmFB8MSnDoYDL/72SPe9JNvPZ5cjv/L//ufGTt8uBLisTF6cnD4ZHSws/mf/P0vv/W9F7/61eX//r/4F//6z9/vPx78+DvPPnnxOY/JNs5ut7eaX9l3/HCzu7oc7588GRwcO3PLptv+Qe/9y7fOusH+1WSyudPFhqdPnppEtv13p+s+4P33784/+fYzET98boKzzvHLlxeX4ysjmpjN2AmhwOmfCZU9NYPl4P3tncsNl6m5X9ghnoOuECZ+7WR1czjas4dyzwgqzrKDJncvxvPBXs/OadPoBgi4pX13O1tXs1l3U6R1YoLpCsVyEo3+1k3BN6Kq+l0BVro55y8Z+03n7v7d6fYzf87O5pQbJ4fubD/Zt2t26+3s7heXyydbneGof3Y2dwvDly+OqPy7s/np7Ha1NRnubD97PPpwZi3BxQvbF+5ruH5wftB8RllcVMb7RV9uhzBi9Goxc2qqLdLjo2H/YDQ8Pbsyfb6/3+k7wJWzyaRYoOCb2k5xY+J8d+Qm4JxMn2kt73VvRkKWqjSBWpLTVT9Y/q4+O1aIN5+77Uwf1HSvJpM+W+sof0sj13pobB5inDjumSNPY8kGIXHwNWg38mALKmjEdlXLTuxyYt4stWQvsuNaN+3GdYBqZg1htemgnl1a4Rh+ECDAOWekY+UsAmddjc1J07W0leZaDVbvAQldaDb2yrlhvOQoIbnYVTrmOIEMzDj3ZR9y/3aMs1FUzkbMgDyI5T7gjvEkgerybODpZ/O09Q3scdiqpYicEMq8QEYpumQOPtbG9b2Djt0R2f+VXpXZSOXEZHtCrHDNEOMSgwAW+9C8yAIVk2cdgEQmi1Xvbqs36j89ObZ8ZG3w7GbbLoDFfPr1/IPB8/bO8fHJSNvvD/oEZ1bVvdN2Rsewcx/xB1XryHUtoqwpuxtbj5c+Hjylc+GDQrNelnNTXVyBib1VVikZCS8dQbhMxmhTxL+AyLouBwKdEjSQdJx5WLu5rDfKsLuc3ao33l7ElSneVC0z3ilfUAGr19DEsDoEAkBYKFtWP56NGmqiHRxsK39L5mRKXyAl3XLpJ63LnFFNowSxJDfS44ym6nLRQOflgZZ+1spXdUwpFS1W77p2kJUqKIHTyha3i/7Ub5xcIZ1xA5IB3+iKSQU/AS9soVq+VJ1eH4DxPXTcYIaNcM4jJCKm6mzx3VM5pvgGz3JfwzqPecM3iHaVkHzFlY/LFGI1YRzl5taKNOrUZZRSnVccwdSYD15ATCPAmeht5K7TV19EIbQJ26W2mJm4kpFgFK3qg1PaZvzLAKn0EkOmKYNJDdJUEG3xJznTb6PPQ+OwnKFadXG2IsdSv7h5soUpECmFbLUUd6gNkWMvBQqeIbk8lYAo/yp/MljKpRw8DTAVwQTNU2Y/vY5XFHajLxzXJZjW8zttmCqTVCFWpfAhn8IwHGOyAPe+URECgkO8teQpcryGvgzSStbhW6ykI9qKajSqKQhXzuQvvuahqA/tCCsmVGJ+FlLqy2MVzHuQSSDeilmwdVMNUmY9JJIEhKMwNX6ookE31TUuRAXaz1SAqSlcLcvfcKxwS2K1HQ9ElTctX0gsrvr+J3/wB+kty1P3R1kU/jqr/BikX2lUFV+UjuDX1fiRJioh3C2WBTs2TlmaxHus3ijohgERR5ND4ATT9n+xPvXGSkfdJdcDtagcyRDBsMpQqtpDBgGtm1qjOZWnPYf3xX+g1FGVBoS0YBESowCFMMepqC5UonnsS/Qg5WmbB28Ii/hJRao3HsoKxC5ANHqUW4djI+QvQtWQghoRJqizAAWOCXJD1nCppvS8CFlRJhBqPBB5FQz9WJ2tpmEEbFkWcDOKwM8Q4VM4FNPwJXqTYVvTnmqucRcytaZLzhAikSeZhCjMUwsmGBKAH5ipOOwJx0K//2Xxv1oyy76mrt6xvagTAe+97h9RLDK7g4rGB1qgLB4ybQoqHXk1/WmCUFewlZiJh1ZQ1T5adVpIaA69JXG1h5H+z6HdOeswHNNadK4yeFAwooniRRXkVZZN0Xhxezy+coIhNEToiOFJpKHhjjFAt7t/sr+cTXOv6/7AMEpYuG0EDmiZTyY2ZfaGB9OrK+MTIyiQVwtXdW10ek58F6u84egaB3ycn092+p2nL55cnp51ndbvNKGxbA9GCO4btjEAA15+czq5dmjjhuiObPuEqAMgsaluL3KKSGdn49vf+dSdA69evjU13DeFv3+wvdl5/Gh40Os5yedXr14emHEejH769ddff/PWKZS8Q0Q8Ohp9+8VTc7dfv35/4dTMpXu3lvsHh4ZjQmv+h3/n9xbXq6vJ5H/w+7/9q7/4xT//k5//8S9f9cVvHB6NHu3/03/8w+ePnx4/fnb0ZHQ3u7lbXq5Wjgu9ElGzM9jZO3gi4lSD1KwmzvnZ3h3PpnvGLZeL/v5ht9P75S9/JW6cGZpeLWYzt5ttXzoNfnXtXP+/+vmb84sJPiOVGE3NeyxbEFWKQbPiVPc7Hw54/oJ/Bt3ejmsyOJQmVh1xs28CFa+p793N9m402QFBDJUjmEQGOTJeN+ditWkOYpJt8+3p2aiz69BUMwLT3OS6LVpp5E6Pu4eZU11X2XLgaioB+lsdR0PmJEpjkPPZ/NChsDub3cH2+fT2l++NK7aOxcTs7RmG7Xduf+u3Hr98u3x3gRGU405c/5GLz+bXZ9OpY/vF65ifd9uyWShu6Gopwly0yf3x4eDsfGpIWQvrNOXmaDQ06j+9mDE5PcPQTGbfmv82p2wyeuyISefNa57G22bc9yymJcCMkmsAHHfydaeYJmEfiDGV2f/R/t5SKI4J6fi/64k6LY7yi8PXgPi7o/2ezeKO0DFkcm7PjaUYgfj84FqE0aiEzhs2a+AknhNrxcdsbwjf7/f6JnnsaIeV5TNszElHe53L+VxvBeX53Im3dXT9xqZDrxZzIWq5Br6z27UPhXci/J1uaIYQMsWtsxOWk/3OuQ1g2+4Or/x0Rqo5G+03HoZt0HFGczAx85BN8WYlDEbCkWZOYyFM2/uDjbG6ZvpNCTuQN0egypi6/AFQ888uKVuZ2Q4DDvFgNhwYaHXs4rWMYK0m+6fFqNDFNrPJxli1UwX8zWjAxMdqDL11JpL9yKzl5XT6+PFg1Onv527grdPZxFx/1/DFj427J8cH3/nyM+gbpw32R+SY/RNQYZt40jieDi55m1XEjwgVhuX6oCDmK71SnG05mQmWKhRVqK2fYak2IT30xsdSJOakvJZ0R1pN3qgkmuMRBL895HvthVQRFcdFW0+c6Xz0DtLCXr1G4KRsS89z+kTf8YMlQwlQpoLxN4dd6RKzgVspS2G+MbNCi6VnPjXolYlWi+cglu6vGfscGIX0Yk/shvTqVMuxLBbJHMJ1LP4H++NscVl+IH3Sf6kiQFrHrWONCWrdTTpH2BaT1yk1rkiXEQ6X2yS3/FpeeX7QyBgV3UQC7JqL9LhEQ+eLSxmSpc4s6aQzggaAEFJWHqAoQVLC0jbRXgPmvNNDAUzWnkNDNDDSb4JWouJuQ1fepjsNglrEWs9beuiNemBO+Eyxm2oBFbrwqvhQ6pdnEGSO/KtqGUqR8DjcAyE/vY7IMwKs7KkXYhJVGsRIs1y+jGrg66s0GTIFvOFT0KpZUSAdc0kkZAIiZ6ui6slz47D0iKb8GaB8IpfSmZDfypRYU9fHlpLn5tOym+XCNfm0goG81pAgH+2ssVloKp4mofBBOzLTfORKCw27Umd9Kld+plwaQhqjh3UtlS0QwvM0ouhPyGuV+BuMS1jhZ1AuUEGuPgGQN1Fmf7FrXbRwU0D+sK7aqRINdgpXJVW0RFNyr9cFsL7Cdtn+5hjQ4imgBA9ReYDG9xjQ7A9eY6UyDdvw1OowqZfWxog0RzwmzhJ83Z8SB6wcZRQgUn14odUxqfI3HqENYOQhjNKqrtLTJos9obDsRXG2MoQjJVHfOCNnuJgJn4RUhhcfUVVdeFoKCk4q4RtnWlAm9mg9YQ8eWiI8DdLMWT5phACiGYzYmlKSVlfjL9+0cExOedSlCjXrqvH/Ixz4BywSws/IJ2OOcnOBSdMKOZ7a2IaWV670OnXNCpddZ6M3Dp9j35XO2jdASmlxpZGhWB1SoJS6oGLdile91sYN2/5MJESOsElRBKVU+wu+ApWMjeF5WBBqogDgCEvmE0C/MAejIR1YBS2GOLSs2VWsBrv4DxTeKq7W1Fdw1Vgco2sZq7SGIaWFAOoAuGXJHUc/uBWe4WNEEEJVYaowclJtQEmpkeFaFqVgWSfRmaH89r7X3//w/p1VCNPxghM4OgYAnX5fjLWt4MduZhqNHDd5/Ogod1PxH6Lz98vZzKhfeNDyenn29s3xyZOdTt9u4OnV2HGinCEHBLkDeHJ27oQf5+H1j07uRatb7dpwZ5J7ERwSenzlRJjXb3d3h0JQnMHp3O1EcmzvvjybJ1ooa1mmJLceHQ9PBrsOnp/db7x9fX4yGn7y4gklF3HcGx2/efP2z//NT4YHg6Nnh2fzxV/89StX626Jj7i7++63n/7mDz+bX9//uz/5+en86vRMaveLTw84ag7f+cEPng6O9//F//m/626vfu/v/v4f//zNL3/6arnn8MLdoctfbx+Onx786Gn/cND5j/8n/6kmNfnw9vBg5+L9uY7PwfWjkxdb3f3F7Orw+bGjdc7eXerhTVU/ef5EDMzVeMo6n1/NnHZycXbKBe/2B6dXp29ff3h/evHXX1++fPMhHWE1uXR79y4bIr/0B1QmPloUNmaBZlCK508ePz4Zbd45T1Ps/tbjx/sOVBGXwivVdOfjVcc+0XvnqdsH3Dm7mg5ysa5zYFY72pyT5i3y3K7Ox5cOtYc/VRGnYcuywCp7N+mLMCM94u723ikfNk42zbQs1nl7Pha4Iqr+k/29J8POy/P5Nxd35umF3IvkmU6uD/obP/xOSP765cQtwImW2d083N/b3H348GZqTOPGN9t8XQJNvW6Xd7PFtanhQT9bA6ZTN1zd2LpBS0XbPzke8TZPz8aUWACMOXXrQjpOmbUHaybaF/I1MlrM2IoyYue4ZCJeaPywk+v8uKt2G5sT7fepAKtwJw6nTvIxXy/CfseIzGhHfI4+y8W01moELfFVXR+hhWP/1EaCBCGk4dteLXwqgzg3KO+5bK5rPAAoOEYpDqs1eLbhl6+bKphvJ3K6wnlX0ZymoPlrohlfLe1IjtfuFmY8yUlEW+49yNAXchx9W3lJjORJPYsPMYa7bsvd7+asTF2OQaDorczAaLmJDImZZWSco0RMUvShWjoTR20YcxaJbVFvVCor0mSak/5XJE5L7rKhmAFhICibGAIi1gwZjRg6GzCrIgQZDJgaqK3LxgM7uasu1ix9jH/hF9OBfVlks4xjXp/pyfljLhZ5djx6/Pjw/NzRXr2j40cnTx/NLs4A/uzTZ0abTNbo6MBIEjQdVppCTUnCyieWNuY/YSrI8Zx/bSauOph1X9leJOv6A0peyVtzTEqxxSBgtfnQxhzqFGhVSyvWeiuZklPbY12jOxL8korX/kasJeSUzjxXIi3llFdO6GemXIVwT0/XcPMj3nBccwnyaO5eFY4Bq73HFMSbySSXziikV4cHqG7OD1KQrRGZd216G+sDM99o9Ck40WLGJKYjnK1uurgpT82FB0DkVr25Hz4lzAbeqyT4IAEfvMoG9ArACM/iwqZbQTVdlTtcKgikqEiKotGQJ6rIouONzggV4aX/g0b8/HSOfhrnQ8czZJXKi7CZekeCsY1KKYeJVLwEgqHacjlF8VvUpDPGIm8RDCaUtK88ZBASJGvUR10j3wBPPdGxwIsaRGfUjJSqNzh4DiJpj7XUgGLtIu2uCpZu6Hnj2QdG6PZHjfySFM9+3DSxvIJAe5ILm2LBwiiVVQ1g5r3nQjgZ/v8+EsKCYBgupcZgqEj0GVrRsdTjK4rUuFel8LDelL6t4cI04KX7xD8sCJUGz3i5VX+xpRw/deGbYrBXDvcaFZ4Ljj+ZwWw8lFISL8cv9UBgXTYZYBgLEx6GBHSnXZUlSd7CVlJaSompaISnjCXc4E0oDf1woZ5ST32AlblBzsuPnFRpRN+adnIUxCrSwLZGlIQU+ZtNwPH8Pgov736NPdnzoBROZXBSpvhOJMlWiAU/eKcrjxVryDXelaRjaKQXBqFQv4W5Mb5VUH0pUuwGIfOsevWOi7TmjQUNYMxvsgXN+HbVsINYWRmVe4pcq23IQ8Dy+HiR6sLodDyhotiHA7UrLiCR0LxbhARg5UnhfGChBDQbz9YQUmEYHMJBlsO3DkZDQiyDjiIwlZee2bnMgiTO0syZE6y1DiyM4YvMQK4dbO4NCWlRjSBZx4ZglE2CYXKsZ0gKE6Mo8pTBDoJ573+v8iOallfw01BN5pnlCvuqIcngGQwPQTKbawOQmBRhnuLupxoZGvxUQKtlwEAOteJKyWn6LSwoTYh1SzcWsCqQKgGC2l5jQgqXUHQnggQ8RmOQue6Kog4+svkXlkI5Vp6NwyvWdd1sPMrmLfhMXSrJY3GmYACqiqx4FI+YV7OkbKX5yEGvNxtfYj6/mv99enXxaGSKXSRxTuoYjQTu7prNXS2mrqVxngjY6p3Pp5by+/0h70P8/Xw66/cHM8dwmuPs743fn+vAu8OhyXiuhNjjsw/n5t1dinR+ceWAEudOimt48+ZUCHJ/n8vf+atfvbbewT10nRMX8Dvf/RZOTs4veia87x+G/cEe73DbroD9xf3dn//klwYYP/zus7PV8k//+PWHixnrJQL8B5+8+PLzZ6/Ox3/29cuv336YOaR987a/t/8Pf++3nHv/nheyu3s5vn17Nvs7f+fHR8/6//y/+lcX49nTg/1sOmWaHYlzv/n86bP+xvJ3fu+L3/udH8/OLr79g+fXk/O7nIv6aNfFxf3RnfPg+wLonfS/5dCW8enlweHRdHxxNZ5vbHdn0+nYHVqr24uLc7uBHQP//uz03en4q5e+J857iacQjy0DVy2A4DA/CpN/0XPPfhvbbm9lV+vj4+NRz9mdumJz5NscanPevX7GA0Jkdh3Jub01G8+wi4OXfvX6YWt362DYn1xNE0IkCied1qabmIXLb9vp/cCHvnFeYy9+pWldZ727hmx6v9UlF1e92aErSOvrt6eL2z2LCd8+sa1z8/X59Qe34OaI/puD/UPBXS7K/fJbR4T8izdX5xcrbrjhgZby+PDg3fmlQA/6U5FmMTui9vGWYXPwKyNjuhqxPPg4mm5V7kJ/+9Kgw9Ty7o6VH6MFrHAWKvW/yilLD8f9BIzFeDnuxl3GyBXqdnt70O9QdMNTO6NZSV1WTJrY9yxXZP2Yqxvjs+nUIy599hVYNhFd5mcm+G0udtjT7QOfmbXUV0DboMwrVhBDlLcckQOdHLYDeQ40oPfuvxPQH5ti0EJcVhHgwGUIRQa1D3dIIG3WJvaUlcv5uQz4ttkiTQijVokMBCtmJpOTtYuXTXJ6563L40wYm/vv7qLFZnEDBluBZTUgMaNEanAVmWPsTksqUqnVk25IC+X6hJr0Ys6ii50UaGfgZ/rfxg/betVmgIpLcq/urvHM8gu3iyTizVNI9wFXFJMZfjy02w9jsFMXxiazZhSRERj1+64Aoww2ddhaY3SEhM+fWkrrXVxNjAMtmzh7yZlaDv99/snTrvB/h9HaQtSz9pjl2YpciClLx1G9dTDHGHaQtHWU1aGwycjRZuJuppmEXpR6xjwfNi9U+6RR5aulty5YEptIYTgjcrZ+IXQWRQqxkQrJkIYYvYmP65lrju0BlcyByxSngSZfuh7QZAaYdY2HVxlkIesiohzT8p/S4WSeu1bwij5ygV60wM/o39pbCJCgViqW/johH2pVv66TCAqBYOBZigw+CrQeLQ/1Kv17Sb+Wu9NN6KToVfFApuCOQBz2SndMsqhubKmuqbjtXSMWDhFHeF68CQBvAK/uBgWZI7O+V5TCrTgW90+F8UBklyd8NjxgAkgNhtaggPNcClBlpMcNIE5cTYGMCmzfTzcNw+JG4hAQDXZUAh5hUdgQrmbolbJ5Va4IVPOO/kAPTyqOnxiDWrlea90r9GRQZUB67aH41h6lsCcGXSGp0GtVhOF+I7l1y8E5CltAmmQbIQUuuiprCqRDZ+4zJA91GNiqa7yCtkxhcz00ZKJ1pTlQpCJe0aASTarwiZpldiD4YzqwISaZwIouxugEUarV5lKjeAApW8oYzKrGYlR0O5lxxVekWD5kfiV36k+tlaORHGYWYslSbEy+lE8R+YmG2vgZBUhdSUyrCSjIREfr0/D/dbtIfdILH38LYGGAKIKvQqkxn0Y0gDhbUqEA4GNdxNSyFM7S1oT8k3/0j1IQ12SqRssl9VBE5IXC5Y1F1nJqYGFpeJpyhAdW+a+hJ0nxa+P7+t0kITniyfi44ZEdPEVIyA6oqi3FiwBJbHnCSxRRXwJVNZ74dwUhjJYnnAsVJYkA9zLWAQp540V0IpWm60icKw0ICUEtmQJE/dHLwqB4WCVbRdGVUlbEFDWKKgBzBRuH5P418q2Fy4onQc+LwKmRa+mQVHikyrAJZMJL+/QLLtqnIs46nE04N9VAo4JrUcjD4Y7NTUxnNuASfwDWQJZKASVzqqvYdND0edptfWr/QOSrzaSHthTO/047LEUparKBL02o1lJSazEhIlgTy7wTI/hpP+rC4ACP+NL8ii1pPMUQYEJWfZgPiJi6iDsuO0QRiAS/fFIWhOrzkqHF8NQwUjZcNf0bNpTYgMUpoyyem4IhPxsPMhWpYXMSTQNjLt7GMimVQ82cWs6N28Rb5FiUn44n+4Lht3bH0yvR4T1ndZNMrmfOCTBcBBED48vz3URRWoi4X86d+sL1NBffle3qw6k+fSrCZj57/OL5wqmELnaNF8XnSPiYcwk2duwi7VxcnB0ePXr/+p0wZao4vhi7I2wynX/96soVXXY0ynx00Pm7f/tHZ+djGwrBODiyHYCnQWkzx/jzX7w7Pf1wcnQ4fDT80z//xV+/uxh25dh5ctT/xDVb13d//pevvnozuXQ6yep+uLvzxafDvcODb74xCT49eWQYIbhh44vvf/YXv3r71TenNMDtvJY+3GLWd6Lk5vbAgYWcnsX5//Z/958P8HV75HLf/Z4JfSFVpmzpicuq3NKFCcuuK3K7u5PzsX3J42mce06hE/ydNPrBeUf3D3MR/9+8mc5mf/3Na4eQZi/ornsSsknOkhsFi6lPH1dWr1plNI0csZUiCA2/viYgoTcCbJys3tkTaeMCYKriniyh3CZyol8ZZudEz1sbQ6/Nt4v9cGPYzt7F1UV2C0QbXf/nSMobV0qJmhFon5PsOYFbe1zCufgk4phZ2tX69UMJ8BgNR5fj5VvbD7pb333SG2zv6vHen68+OMNo63YwGNKC/u7Op0/6R0e9929nb07nucZ8y87g7mg0mI6X8zrofmS0sJh6rtCsNEzOn+/41uiu2V3HPpEiz9cwwVlJlruy0Ed/6H98hQerE45+ksIlcAGcEWnaeFpnvPMsZNp8nSEHh9MK9V1GrWFONgpLVEpXw69lOYWfkKuDg8TB0W3H76jFYKCCjNxnV2GBDw8Z+O7sUEJjWief9nsccYcR0f8c1onpXHADCs6cRQ6Ms7fCgMNOBeffOvfGqVn8BPP0ca9ru4JWWRYg26yhqxNhUKGUA38Sj8OAxP7ELLD1WcvNtW18fei1pkH8lEWbykjAtAglYSdyVGjOc+KRIDWGMNfluhDAQVgrZoSpUSRzMHE4HJhoSCzsJ50Ohy+ugNM/V0sTB6LNDExcDkgHvIUTi2VIxrBgdJRDQrnFAZv2neURVyC7SfDF8eD5o9F2t3Mx1v5vjkf7nz8+sVB2fW/zd1cg3OHB8FP3Ae9sPv/kBZnrExLRRDPZPWizwxp/JtpjBtklDInJbX5Gmd+kSIuBLTT05VoPTcpD7GYIJGWjfpiFn7COo5lMCoX6GOf2h22PwVeaKGtEkRaXDP5TSK7kZU6lMFYpBUw6dwCTywM+lD9NGVOjKoAi3DiUqbRlVCQoSQeCaKvqdC4kxX4rEOxjsavdVx8KL0ADUqZ0u/E4Y8YbMSG0uvW0D6gE8jpF8aAaZFt3oB7vPNPAFPvoO1adIS2tqJgJqudGsu4Df1SqRroKXrhUYAMEc8PeklR1mtEW/6XzUlSfmPnJyCKe3N98VISi8C2uXubC2ga5Gn0pX6MRXrtM6QR16NiCq2utUCTkxn8Je8NCf6IkkbKq5I9PHyQwEynlqadUEmWnysEgbAixHoK4t4AQHPtUfg6gGRellUWFQmnqItlky1t3h+c4Nc5YJnHQmxqDFacucpQHI8jXc6vFS/hQmFQosXBXqvRQUuXyBpFBCOxgqQhQDceg+pHepOdHzKPWlAxFUdO0eFJ5H82o1rHWpTgcqaFpb+xYYBfeKgSzOJcsgZaq/U0GCRFcuhI/q1ilp2x9VBXM/RdeViaV56ev8Bkgz+1LRfCUGAQ/siKlPmZpRdKswvUaJAAZagJNEcjIHSABKrW+PReQqtb79csGt2qM9rQHGQOq8heTA2XzD//xP276gacFDfB1Pk8K0AavIjbYVSOoZhxQGQNUSjD2ifVaY596vPw1zW3CuF18W3qstgCPg67eKq5AoaQe1dEkMxTmDryXHKXJea/gtyJhjq4iKWulCfHhUbXA2ALV1yfsyHgh8CGYZlbOcUxbubkN/yJX1aReTI+mhJzG7BJhkVwz5TBUNhZKTTzacqaxyJyuOGA4qbnqzTCj8GosahqWiTSvdSnRh5gwy9bZEAkgZpT9gW1cmcbJ4Fl1NagKKoZ6DCy5ZKYnJqholzkgw/5wGOv8TpeThygEUCqK3DUbDneWd9UVarGoXhlmxCqlSHEtfW34HLMuUL2egUkzUxAndZDFrYw6irjWz605DAiTEf1uqlIcxlJwFC9eGeHoIEkcBFO70XX5Ve5tpIa2eH/BwSNES3OwxWgGseDEzob0GqUgUbeEfMf2i+3Z4ShlypJSJQQzJt5EqYtOh50cG35/f8wTzyknN7Z+4sWdpf3xDCviWi+ER2/tdp2C07s8t7ifMbCbtnrur6UDDmlZrkT/34p/cLrI9Wo+u+n1+4vFpLc/5MqcvzlDjeUsxl5o8cV0NV8i+9Z84RefPf33f++3X757A9rTZ4/3ukMLRb1u94aLPp84QJNJfvbpk+vx7M9++tViud21QLG98cmRqcS7f/eTN+9MUC8ydjl5NPrsKXdk56uvz/7Nn311fHjwez/6YW939eHVxa5TcIY7P305vnJTFduZ873COv6eu4ntW72eLP43/+v//GZ5dvb29T/4h/8gS8wb96ODo8OTR3qWxfiy2+2LIBcl4rKt6dXk3av32be6u7e1kylenu7ZxVSkr3MtZ1fjr96d//zn37gJTcsmIxuvY69JzKbcyJ/KxapBILi0Y+V0WlEDKhYd00SJXSDW4X5/ZBPAxubhoXUbB+LsCOVxla/zckiYgkOBKJ3c6ppYU7NSEvvB6xfUfyvePcHojN/YfoQ4E5vuF3O2doStht1t0fkcVlc6UTkjtEcH+871f3c1f/l2OujtfOv5UHiLyY/Z9G5s/4awLuPM2w2nXtor8Px48O5i9f58Tj2zoLO3Y8Qymc/1/xfnU9PYTqfhoGu83NHr2xX9RAI90eLcKpXdELerXEFtdj/HyXM3bX/f6fecxCo+6NZwrtqUyfsdQtbSVw6qN/Vtqj5N2Ny/Sffa/sUCxVPXZNxtFzdLG9corA+oXe9ruVVTmMwWPB+jpEF/V2eSAYCRyd4eqcmvudEHQjEssGqQCxdyykC6VM6uvDi2t7d3Nh7LIwpLZEtUbyHoSuCErTiEx2LsXeVspDsD5cV8jlIemPZPHECbtojhlTf+kiUIVmg9neQdZpFvmnVtFjTQ0FDN9cuquJ8ZnRhfO8WBpcspCEQfE8FiedAMB4OOjRdSaEKMltGFFYO7G7KwRmQkycyQfA0LYrutSMQ1SdHY/BgNqBokGQ4auNZyswwMYMyjNRMzJhU4RNYZbD48PD4eujHa9eEXl5fXD7ci/X/ru9+6vJxYbHAUklHs45NDqydOBO4Z01Ngi7A5pokNi6XSbajbBw5Mmsbi4xcOp08pLzmJsiV/AlyDZ1np9UOhHx0ve1idZgC2KpIn5jpebIMT6Jn+RE76LKUM/sv8pm75m332wIgGmfICsQwH4uYrk7owMgYfCUJDY/YTT5vtVJU/Q4LWL6Q6rTk4B1hidXC5hgqpAgLsc01O53X7ABJc1l/pv7J6kBloNUJIMd2C51LyNi2dnjF9WbqG1h8BgtLAjKqsez1QpRQqlCNdT3IgqXFPfiRIC/6lQABCp2Uo8EGRXJApNY2jekMw4Blgwb3Rm9ohpOXRXWDlhTLNrS5NHhYs++WCUH0ycqjOLlQ2JFVCFTPK1bljvgoThxMqgkA8mbAqn/T0wRwJUCx2sydqB0tbC8fKR5czD6go9It8tiSCqPT0+CEyXkR7KWdGm9KqbBgSSovUIFDoe0hPDazyeZsXASB3foSx3pR2FRwHc6cLYPZKcwIukvWnyCxkAiJlI1N/4dXwCHUBvFZFBIIchKsUuPLyYVqp5FxLvECppT6FoHcSwfkIuqhqGSLoTK9QBgggMJWH9giu8FoLvclALVUu4o3g0dKqDgWFQ/ElzTxVRx8q27qy4mrpSXG+5Qli0Q0gCkqK5Ucjwd/2KlmifmoNn/MdAxI5eqCuTfrJU2IKPgWqkHS4QrEYSR8JzxkNWqlcXml+pkbWSFSOX/NLjehpcIvtUSvMIgoioZF5VaPteg5OgEL012CATaawLoyjqX6YFtEYtEC1B5OwCveDityyqiFNhVHwxr8Mf6OU9TIsKFupTyDs5AcGV6BTo/MUD/ll36viQC2mhs16GOabUWPulFa+tCMlIvtAlzsLFEpRMi/UoKX5C1uZeRKYTrrBM+UUWdNeCUlSUQQdpoft4XadsIvqgIRvtaIGQQbJETD+wKAAVNGIInxDu5jaWt8IH1oe1ajXKKhwwypnYgMLHWXAlDPuWaEBUZOdTBXCm/seple9oY/FM+AAFtoEpONML5k1I30zRda1e0voqkpTKeSBghs+hTl4E1G24QqI4GTIgdBCtnGJAqTnID6vkOMVmDiksw/TeQQ1U4Iw3AAWoFQFRREF4TektE/Qqn9NV2ru2fyrPbI5erzXN22sc49Isz+Sfby1zfc+rwbOLHf24gMf37W29zerzXsjBAReJ0zJ/B/3J1s5nThkjiSDCnOX5km3d7vidrwTYGXf587GHm+j3x3MZmMnuAw6O+Oz88dHx+cXl9rR8m5zrM/MHkR9+f13vhS7/8XPf/bL3d7O93/zNzhS5qtthYXU1fRy8mH8rafH24Pe16eT968ujg9PnEc56iTo4hffvP35N5ez+53+8KS7c/PJJ4fD/tb52fm/+6PXm4vtf/Lj3/jy+5843ucXv/rF3q4dC5tXk0vzmibQi2e49GCMISrBoi4h/Gf/7J/+6b/96dev//yf/q/+l//6z752evzv/ehbmO0oFfdBjQ4Pry6nDtxxwYGkt28/OLzx8dNHp5dj88qlSJvXq5lFi9fOB/pw+fLD5QfXm/GgIvdYzLR4EuE86TC5ZesxgBUniwPmim9r9SUWgK/Mk7Gezn2PmLaujQVN325O720udutLhlU3uX/NqUR4xTALrei660kF91vc6zQrerOTi5BNeacNWwe433CskEl6Z+tPZ8rdOrZoOc3OhG7XtoAt44Kd7s7ZdGGkcnJszaL/87eLX7ybvnjUM1930N8eX/Llt7j+0+vr0+V97za3z1qEWcw235+7vbhresx9VpC/W1iUcJImDvfubhf2HXCeje198+jMcGuDWrIgMwfnuKPMRmGLE3tWXDa3F4YmW9a17gcgWBpIpLWRYAZSBu7+w5W9YcemiIQCsBqyZ6+hwB4uaSerTDyerJ0yTdkyqyXwVrVUDrRm61hNadqU9pRdAfMMaxllbRbf0z1wWdJxuoHrOhjFyrgQwMyCvjqy5pFbySLcFVVmUZBjaYhGa6QPbtza5G3fr5xcZBzE3a+GHrCZ8Nd2uvbwxhxjfOKZbAHIPmaDNg3PmU0siioUC0737h0Tv0ODbJeP72gn0vJheZfrlo1PjDtteUCoO7Rdrs1ui5Fjc9wQx6ZY79vLHIJ5GaMd4/4H4ync05JJx/YGZv1mxabEIrlTjFtsG4nQojggEMxWgRyHmh8caJq5tem+Aj2KWEqNV1ya8REX31rZ8uL8i+fPzyaOHh3ndgaa6ELAk0NsdPn24ycnzNGFPUKdzqHAshs6Tj7xInA1bQOLqW8sXBAmM03Sf+r0N5YyrznKtbIZ3MJC+CRbm4qKPeImJipGeR8Z0vrS48csVi0Fh0Wr0zM1ES2FfKuRBoOy7am/sPiISgELnmb0kykmNbWELyRqf0UqjZNkhjvdd/CPfS4w2n3Me6xxzbiVTZHD0op0D2BkK1117PJx1n2nyTbLrzo2QM9bhKCcOxGjTT+MIopL1DV6G0c8ygoiZPRH3oLjOyNmljqDt4wNCnz1fVFnGYKpWBSvMIqHQIUII3Ph+pr1SCDpBBYmwEZl0NOKtCONUh3aV7kJsE3x8CPugYyNM6FTPdVnwREoEBLUUE5OtAzRJVAosZOtXjovPTgqrEAGTsXJTH1EUbwIPjhJtw0zZApN+QmnRq9s8moB0JaoGUYfAJRc4+Fidwkt55EwcrgUQAZm8A9LS4rJ7WeZ8gSOYW+Blic/CmIrKEVFkVpcoMCR0U9dT9hQOFMECGAhJS841WrW/KlhTAWkyBxyQkEw9Af+/jJuGRYGhYZGamzEAytnEA+NZcBCTngScsI0eTE5wqW0lV/msCXAmi4GBk5EYfwpgCFHhkqMm5rMJTX8yc/UGBwC3kN+hWMRXeooOA1aIcBDrAYoQ+hTmzpDJrj5L5+SRSWFaRG3mvwXPSw1DCVy13fye1vf7U8BLBxRHu1KTE0yK1R2rzEkKz5Ja5V6XYoLyaCUM56ziFYeeTQjRZO1YNCNSLpRmNrLUmRCOkipWrbCqX6mKSe1UmCkSkIKQ0MHgKXL1CK9WhCFH/Z51ej6NW0oAaRhiA8xB2njEJaYWatqrtoLBMLYTHhmjM68J5QwVKVCr9JHGZan8iCm2rorqiiPUmfxoREQ5mabEPTKFoSDioQjgKX79M2yw01TTNvL7ECYLp3AGicqu6Qs9zOdCcPOMZ0xqbjI+/cA0xp0xVlfw/QbzEyBZFzUMkPLe3omBVphYRpGuIqKhlWGTzXPVJnbmkMUtyGGfOnFSYDDUj0xtsigbfC5q349ROwxwjMiqs6J1VLOKjbKEAJeoBQf1hYpXUv6A6RCmyGDmJxSK38EirGaAKz5JaXZSVFFEI4sIl8tApcwXEFTjIVYmrHiZeJjrYwsiiFpmbDMWMhrXCwbhBBI6tp5/WaURSibj+dlCdIw8QrD0eG+e75yU9Ruorcd1wPhuSNuxAy4o0etLEVMYZSHsXciEOuDX2ZIwbSoT7rWFoaj4fjioj/chwJ2LRZTBzfudXuTxWx4cDA5vzTphsWXk9lVzrfp9bh4eztPj5+evj575PSd509hZqrT5UE314vXL18O+qPvfv8709Xs/dsLqwy/8/0X4peoyJ/85Bd/8dfvbRl1vM/Jnhnfzc+ffcsw7K++fvvubPLl5599/1svfvXu7f/h//JvuGifvDgaz5fjyRSf+D0J5uYJ2mw66A9HXYEz44vzP/zDP/jLn//py6++/p/+0//0//R//K9/+c3b3//xd3/0u584b8cOZzeaOUJHh2Wsx1mbXS2ePX3isJfxeEolLGRcXl59+HDKBfzzn/zF9f2Oiwbevj0vKRJXEwcNTQLGlkuY3pzuibwSsj6dXuUQ2i3B8dmF7zhFQ2d5CZGJ4Gudnl4djQb8WEHb+GY1xsVQroXKVFP16/H5djumYLmDgoIm9mwoubUx2O+Op6LwXTlsT/aWG4Jns+Ugu783XPJldtz9WoSqGpPT89tlhgS396dO4L+5797vffGs+6vX43e3ibe5G20/+/TgF1+dXY/vHp8MxMiYPL+yqWPz9vGjkV+zRMZsvPmwevpoNOhuc5Evr0iZamuIudnDVRD8vWxgkBTnJtE5ZpHxzSYH8yvT68Wj4ZAjMXOzgfNPF0vRKbPlrOxLLBal4jdaPhJH5LpaHj8O8KIXZrgVyJZc8WM5OtB8v5z6HW0NGzPpSFLXKnIbncaEcQ72tHYqtj6X6QoKyik9OSOr+trYopyrHS+NxNKqWJ7yReQou5kmwDoiY2PTlgkX4yDZZRU2RABrnLEZZzUfrYa8+UdEyYwZERGO0XKGyvFQKUZaem0ScGsB6yW6OgqgzV1PVkKgmEfjmvjMFnx28DbeGrQJjlm4vXOYD6tlpHDnbgd+nr0+TL2OQxhS0Md2h/zkxvfwIY5+rHH8tgob3HYcUmbBwQ+vsvfJ+2tP5YxiJRJM3DsHiU3PTu9OIqNsKLIQY0RhfCUErru7ZaVqMt1YTObG+df3S2OM/f0E69FPY4lOzpParTEhc5HIKMxRhW+GizrE8tfHz9jyGhNnyBw7H3MmKRSX55SAOaLgGOMhS/dxVjKJfiZvXKLUUpBTRcnLQ6uFEnhu58NgcXzNSExuHkwWPVTKvmF+mMaWllmWBxYgx5kz5aLi7LHmIdjakW4lPYUnttrHKLOowrbqE1kvJ1uEVlWDrJvGZnv9IGteBjz1KkdRdAzyAARAVAg2NaHmJNjQhB8VBJI+OjWlU8ad+MWZ2o8s8yosyK4b+OuAYAd7mTUc5BjFJb1GTa06+iybihSrjOma5Q/5+JY+Kz0dpAGTCJb+pd4H8yoX7yUIlVjBIVUS8i8ol9/CNtlbQkB+gyhPfdKlpqbSDH8y4k3UdKZfmRt0wq3IxJbU0nDDamCrw4zriS7UaZdQjWwA0hiy1KAPDQ/DoHJSo0zlNmBWk7u8cmpAHkJdRMyAt8WQzMTRB1kLz0Q6ZbeWHPUfdvmXcuhMXEP0BxCgvMB6cJr+eo7MSk0qRzM7cSP13LFNmblIlkIjvAldhW3KEU3QzlRs8A4tGZt5bjypgtAIK5KhSQNyEVkSfBe02ve4prTFUdH4siqVGG+pqo6kQCGptUtcdFQe/hWwoEG7sQVFflaRwrN5I8WFJv3W5GUoVJqaxW1uWEGgcQYTo82y0Rzvkj2FYK/GEn1xMFnyrn3qbQxCivhA2+s08xz6XAgUH8NpeOclRnvyD5Sm5euqKqHAcis19ya2IMCNyZRohFGf9qDvkZvqJUthWQ/BoiGBY5U9v5KzuhkvfYJAGSavKiFFK0+jo/ShqglNDXjoqsx+AkgRVBDjEG5KaSyAbVBSQ81PUBHaSGxSwM9k8HplLaWQWUiG5z4yqCIB3amoZACtGrNC038xFjEZeBsPHq5eV8aoWiNB/wGORGTnv0JPh69+ZVXqP34ChHEgWeTVDms4EanE3JQUM2KrQTydC7yScZiUutJCqmQcC5/SjdBYD+CYYQs+iAirS/oYXnkjiDA/sMCpDMEFS0N+shVLg5ri67UIiKV4VVfYhAFFgVyQiRn15Bn+iARWow1TC3tgSxYxDZWarMlJTTUmTLbp01WyzuKxFo/X2aacZShwQABQnqRn8QH7Izvp3kaIRaqk0BXm5TxBwzzegG5ZDpf0DLuHppmzjC/Q/tYx4R3BCMaCXElzrmonyJvVwijIpkNDBtOrbB6T56NrZ8GVEv/jMBnVCqMX8us6MeOBpet9HXiS63709B2LSeOLGQSclvPu3Sk76LBLwco3DzeH7prq7336xadPP33KxdA7jk4OnJ759vWZSfej50ffnH34+s37R48Ovni2b97fPVr/7R+/+uVXF9vbYm+cvz497G58djx4e3b+X/7LP/mjP3l5OX34ML7+L/7ln/2///hrOv67v/sbPODTs3jqOlasvrGJ8y7nGLqvlAt7t5r9s//kDyYXs7/62b/7n/0v/sf/1f/zX/27v/zZ4vb2/Ox0Prk8ffvm9O0rdxsbP1OCi9dvsHt//+DmenX24Y2gKNE4f/bf/sXbN2+tn3xwS/Fq+1fu+n1/ma2l1Qn5QzSYmbnqNJPO/eaekSx4GqJjWzhVpB1rFM+Aa8cPTZRLPrlrnNt6a1/p29PLl2/PhOEvHnZt93VJwtWYL33rGHqz0PYhuEuht7M3uZobUfC2qQrgvLxqFe4Bdrr89Xi+0qOejZ3LSqXcHvVgup3HXzMG6SyFXGUnK23tDF+NV28ni09e7EPJIsI3p1fTxfW3Pnl0f7vx+s0FMxGnZXvL3cyTqfRjKTpOXvmZXQWbD92hncQoujMIoXVaAjaQsNOB0ixojK6zzv+N2gqt2dyzCiIUy4VoNemfjl7UDd+aLlukEdBPiK3RhcK0BKHz8WWppyFTmTupbrDKWERtZtahJCcIzcjU9qVMvTvqRIMiItTJloZsYjg2R3vNDwLRWuFpYCBTPJ5qeM5Z1QRoKgiqzHiyxmAkBr0s05nXVCt/PTYm3r+BByePPAd9G7BrdJBzIR2w2xqug1MTr48dfHfGErfSJDf47rXIYS5f9D8frnwRjngmNTLB7NqBDkTZOosSe04cUnnGcrkawujIqJJlDjW1PpmApkxBZhyPokwOMcKpNiaOlcYQP+DirTI4STMk0mRt3e/cQ5ELG5zFdC+ICvp+TWari+m18LfxdDzob//we59ZZVKFieAwMT1RpG3LDREZ9tScLiZVauwYjMpwJVc6fCnoDwLy5IFxTm4pOJxXsXsxdDGnZFSvtK28wZmY4MqsNDpicAFuKYVPfPK4Yk2g2iSY6VnS0eSb31OJ6Si1o+iV1DZ+yJplPD8wUzdGBQnmIQCDnEor0V8M9I0DVJkRBiTGXHepP5Vb6JEwNzqTYYBP3HcwPcX4hxX18ScdZaQU3IJKoHoIb6pZVY7KHnLTHaMNjVjhEzOS5FCRbzz82E8FjXA7kLyQSZ6ay4pc0pNTxHqr8mSITUujUEEDKL90WQCqDKEaMM8+8kTT0jGbK8yYx0dioZEspFZ9XZvGirTbnGXLgEVN4NSPRGCLgSXo6IB3EA7waGZzO8KTIlUaYkOt/PijFpDJF+YYnoIYqFgbyIU34UNaevEt2KO9lKe6WusnWrXmGWOeYgmUiIZrujE+JRg6Cw81QrVgY2NEFnaUOoTROOw10konMcQP6FZ1am2vo5xoCuBy1mUKRsU6+dWeAjhQQoJTCEcL0or3VUOyhVFRlshOiYLSGl0BqZSULMUIWhCGo+pLap492FqWSoFaD5UaaslWEEtJCj0/g2nDrrn+sFR/U948plThn0TJeS4fr7ANQupCSITfOKNI8IZL9PPXxbFOPQFRVCnuqT4pKC1frWQgxNqyxoSYKpRNKWIK5Ixsoi2GkvTV69LdNTEiUwX/6msrXX0KhJcRJrjhgfZZv6rZBKm8irKXT5acoMdDNb+SifCQWnLyGL/NJ0yIRhYChVrMYomwdAbQoFo6Gs32Q+FUFRR8JKlOSQIDh/ZWrVWNovnPjIrXOYHctH9exywFAW3DgXGI0Zs2aA1D80NEDloUo3x94KATTMKiIqS0EEqYQPNTHxtSA4lQTWhxf+N/t2JKhdOZO8n6VztLR4S5PDisp4yUkd5ULRJP1d6V3SxexZnLmj7aw+H6ZDU5CpEKSbooA4QI0v5LRpmql4BFyqY9xDoAHPhVQ/5EBEipoDc4+KluQNllnEm2GI4a7Ga4GATUGKZFqUKUb4/MeMAF8WDhdfgSTPJ/oZ10bCkx5qVXCkjMd87zjkPmWZ4U1obxjhDTkn2vPct6lRAISAIhjyKp1ScyylQWms3qjUajuB28sK3tftc9UJe8sc7AFsAwJm3j5mZ4cKg48QgUuVkudrsdk4hKeU1cfmo25G8OWe/F77IfwGZEs3tGBNTKgwnH28zpuqjotjvoQt6Z8U6BpDbn59e9wXB/OLhf3Z5/OH3+7PDT5/zwQRwP57XPV+gVF00on3/5aW+v9/6b092HvS8+/9z89i9fz3/5evKzl6/Pri6czXLU3f3B04M/+LEAopMP72Z/8pevTXN961Mh6HtnzuGJMj/0O51ffPXm/eU03Sx7qhPKDmzztR33E00mi8vz87/1o+9bgfr5r37yn/3P/9m//L/90fu3HyCouQuXf/v61OhlPl0IheIdXXw45WY5n/Ts7Oz8/HLYH1Hq19+8NZIyCpqMHUd5+/VXp2LfuXvcvLScCJSGRSfpuwcO1OpGLL4bZMWc2s5j86sRWYlu0/y7I9Qd/dVJqbTK/Ad3bpO2LZbnYrx65eydq7kLhuP4rm6drUlXbOJdEMCty30zXUqlbcnMFK+LqlwCkBE+DciCr8urNnc3rlz/7FKDrV1DBMsjBmZLR9d3iMw8tKOCVrPx9dOnh5eTxfvpbHNXO7i1FfntOxFF158/P3Jlr9in2XSm+94fdr4mk6vF9798YhC/mF7Ppo55dRnUyk1sC4y8fhAookHqREyC21b8sKMjQRaB8IeE1pgaj5strkyoj53JB8MBhhFZzNHmRs7sT3CR0++ZkDu6VDMS6SRyFbclskxwps0CmKazuVObew0AjWxZbuJIC0qNNYOYOde9BLcAlDn4soQpUsY/gWwVZ2yok6gfz2VMMwyp40G1ULFjdbqO5pWZWo0PTDflmeeGIgj2cEfqlhQc68T/MH2ZkLeViY5q52mdec+bvBFYn0g8jTDxPNYDt9whkQl8Z7hCjrUUXiWyyyIATGbLhdZPjUmfkXGoks3A7l6b56iu7RzzlDllNuK+415ebRIfWabtnJeKQ0xDx2gDMzL0yXkrbDQ77GIvky7WlVJxdk9nAiIrBjX5RUw5Hfj4INqVnuXBWadAGUxw2d67427mWoXN0WjfGhs2ik9zeq8rvcfjsTgloCChFJMBl1Su9ri8+QDpp8RYrDSFYKya5vPJg8neRlQtfyCEgfUt6/pXHkioyAmTC45sCuVHktLptwr8Rnj6yeiMd2mlakxCfegRy4yRIMhXgDXhgAlPSoOLs8GpOuR1LwBOkCtSjAO1eUOv2FwmiKWLTQgUwNGTeqllwVQES7mVACIWHLUGes2C+6M6KXE20oMwLL9eNknXH7RwLkO+qCWW+lfkrvthz/JEY6ufgnNjQnySMEdnETL9U7aypUbpMR+aQJbICCXi4Ig3XmEgBMFNUrzzkCMD1NWifCCmSw1Yf/EFOXlb3yqKZvBJUmMUzx+Fo7WhWvvNkKxCMAgILgltIEK0lveRGcw0/DC8xFRdSTKumcznCSONu8DFNH/9JyXyqGFSRFA9PhQxlY4AGHBm4UtJwta4HGu3Pqn5hDPggOtZQy4S41llgTG+TYYTeVV+uYyBGUYFlZgcqhVQYU8RXDBLtsWHMDaKUeNKuIX8sKV9R73WVXuDn/5JKR4lr4fC05dUKYhd56MqnsqxCYToUlBLBjmBb5yMpFIZWcjusfwI2df/AazSepXiQcA/f9e4BhBwoaJhUqpSGZrOtHz5Tj3tk6fSgcgo9UIJHkW2r8LIm9KoIj/U1Sfl1xCTIZ6S8vmvOKBoNZmsCXsM6EwWFN7V7lJeemNTKorRaOQlQgNtivif+iRrNDgQgceGNNdYsXxA8E/W5Io489Q68moSwRJuqTttNv+HnuAc85CWXAXz86Mz560qUm+ZD3mSPWqWWhqvqu3FqEEzKpipL5WAFZTCjbitPqnIJ+LKXEcMjDK5ZbK8bUCVW1cHoaK0cGnyTTnwdFiAhkBN0UJ81r1jB6uqtOfUXpa3sK2yhpK2odX8B7DBKk0udha4ULHmahokNKP/UZ50RbJWcwrSUpCnO0jd/tOoMCoPgSkHmEwuBwF2Qcm7NPX2SW+He/xdmhA3PTOza9MMA8nyl3WLrD0TQ0spVuc5VdRUX6u3ISFRWXmCZwxl6ApJ0Svyyi81yqZ+z/6DVRPKR9GkjcngXXw/fUZ4hdrM5YRSChKt81zahUdMFYOViXnJqMinYYv/nkGQlRnFNp6Q8k7udx5iIAjF3Wxnn6+6g4FrmAy+nN7HRXWSDGccnub+heXQc+5JyBBuMXeDMh5lI0F3MLy4nNgWrEsyGS8EyLE5i/l4zywvtwnw/f3rm7n1XlyczqaDwe4Gf/A220l7w92D4a7J8LO3rwQoLdzZNZ8cHx93t7sHowPTwAyk0cX+cNdVXD/76TdvTq9m0+ViMqb389ni2eP97355cjaZ/4s/f/tvf3XGE+SIn19N37w7nc1nHK5nJ0PR2W6pxWMRFk7PxFEo7XQ2Hh0OxmeLi9Px3/vbPzo6Pvnn/9d/9ejw6R/9v37x5z/52rgLJpkaxho3BxnT7u5989c/O3v/bp59LZunF2dTQevbnfHq9us372we5VWdTefvZquvX5+/Pb1wvDrPrHonB61AgSmgD0Rkh2e6IfIrzUyvmcU1h3eWM8E99HCwb5esq3wt+3DQnfvpArShC5hhr8sC+2I2fXs5eT9ZfvXGRWdO+9wcXy0cVfnh6nK8mu10oja5TStanFAQe4UXM/u3b7ZJdmt7LM5mxSJkGcFmUYMfrim3sq544S+6XoCxElye5Z3hoOdKLvPjF5OFeWXXin3g6d9dP/+EgHq28p6NRcHf7R/2f+640Jvb733x2JGj8Fw8PFxMVsaNT0+GNUWOOD6w44J2nATqCFN2p6wX+xJjQ7vFnpnb1kkaG1nESJC63v/+fn4tdi7H+SdIKpqf/xSQ0+illotNZAvr0mj4lInisJAVH1eYjQNobTPPJ75+2lK1ZYxN7TUvqKExvoxovP7EMOiXOabach5i3P1Nw3uwaz2Tv9x1mwNW9j0nMMD/jmFaXC/tLel1HGm14UxTmgMDshX5olFlrlIEyD03PWzVrHjbaABLX2JXEmtlzJlJpPS2qS0RO1k3iT+lIdggkXAl15yJqUpjVDrQjeIUMoqnRHH6b1aO3rSNOX59YmMSYx0PP0D1IBgXaAigjwijnFjDxNq7TN9jGSGRKczMtuhEIOTsJEcmZZoTqRsOiXLI747/FBSvx7+9HE+ZodFw19FhDk3aH/YRdOxivcfHRydHz58970eLllYonAimURlgMmJYx9PVXTYL6Se7F2Ugj7LnvoNK9TXpvUhLSiSl2cSYk2kzm826hnkBm65d7hRIP6uQhOooYkGxM3qSOuK2+lFwyz5X5uRUC176BMbHDyBK5RNoqSjQkjM/q8b2OgBh7j+pNREAYC3FmTCovk9jkBW32f+iEsJ83AT5RLMppML2WXmSK8PaIrm6Fc+sCqWAYWpdZ0gJtWpHtBzmAJYFyMiKfw9SgIWBeeUJw0MhJAM8OLc80nEyn2JjMdzreBS0QrvIC+V86c6UiQ9Q2T92fFE9nyxbJdQpGZRpXXM8k8g0hPsgr5QuQNO6SzqpgHpm5C/Rd2Qh6WNOxWhBsAvctQ+nHywWWLLBnIgvvXCJWyuLbsQHyMADyUazagQ0Ch4PIfCQomV5lBzzknaTtZAgkVJFVHAK5bCXP3iGvfE9fBpMWUOOMhCtwJjC1o9kaGhkWGE1PjOTgV61gFlg0tGrU/3mDtauoEzJVu8DJKSs2R51gS2mw9BzLE0k3DD1nZ+pptUfxNYlAaqPolKDcjQorQgCPoFQ3woz5cWkor3w8CptTacUr0O5Ut3UmyZcxUMrSHkXv8R3wS/oVZ+fqShWtzlprepKhEwByTf4UCniAgRJRXR8qqoj1DXyQrnKg39UPX/wsywDZCxCcloUgY089A3soGgVLrRGrzmioSHU5tP4Hnp85Ex99SbZg0spRNpGdEsadvhDi/JDPcUapg5MsKrRJouHSE5icuKjTwCGgBRvw2uIJzHpyZkKmAOm2WNzGsKYwoQUpccYFQRQeI8RV4hPAPdH3zRjfTQGE/5z6DOblPmetjSdYasYWzngp9Mqz37Qd9nT3Ww2J/JQBIQZbiT8f7n68ydNl+yw7+uu6q596er1bjPAABiAhCgusixRshW2I/zHOvyzTAVDcpgO22JQIiQuAkEAQ2DunblLr7XvvfjzPU/1KOy3q6ueN5/Mk2fPk/vnuFl1mqShI0/BkCYT6M1L1IC2o65ZPAZjIEFdyLHvTzONR6uzVQ1KsTiRLESMPMhTg8gJjmaOcJrOk4+Hs4I+5mhu77QwQTAbwRMkDdGBtyz/BdZPrK+Jzf3hZAUXLY6LCTesGtsIK2gMgZm3bDhAY4YraignWCHij68DQKMIdYtTkqpqqsrfCIqlI1nQJm8vtASkxgBAS27j+OK7hQedo9+kfIj3poH8yTXFpfk7tYaVcbi8kniyNUIL8rAycEIVxStN4c1log7iQJvSBnldxiRACYz4z2zDxfXu9sbR2zdP9/ZcACaC4Tqdw+K3UvBYffDQUYy6cMb67CgQcEPMsDFVvL6+2tvdt+BeGOTezwebrpi9ePz0KZys1REjHh+ePHy4fXH45r4AfOXj5vZDx3w+vLf+5uXhxo47j96f35w9fvxMfshsbu24TsvJPGIco6qnh6dH785euUr2/qpjQ7948sTCeSHMP1OXSPMAAQAASURBVPs3f/v66PLsVGjpaMv3R8e3ZxfajcT+s6cHTnv5zas3o5TWaazaksg65NvY2Ts8F0a//a/+9//44NnBP/1n/+yLL7t161/8q7+8v7b+Qcy1YkPk5uHrI+vCf/vr787OT5xPb7/k8alTrX76+R99YxLgJwf8uNbq/b2j45NXb95a8PT63fWrt0cWfNhXLTajKPjeNI7ZgLEaTTE1oSgYXgtGEX20Mss5FZRNdy+f5Eqp1p3rSgmZqCNeMyFDqsaJZ4mIO32veLXzjeYQXjzeIU4LPnTgVz6t2/aJ863xd73stVHbToT5uHb/7OLm6vTD2cWts0q3d5pne/j+vhOeau8sXk5l+JRCxtX7jeAKM8/O4O8Wq5Y2w+zdyblL2W4vPrx5d/H86faTRxtvXcfw/sPR0fluFwhs/OrbN3/6yy9+9vX+3/z6rWX9mtPD067g3d3dpB8M8sK80PrWpT6JfbirLZue2FZrXO/UnQBd07HyQN7ziytXAQiP6Z4mhr3srm/qAayLLTu7U4id+jNzPkNMrL+KS9z2Yizy63lNBNBVYqwyTueXHGnKQelosa01Q5rW8winxLG4ZyWbDBb5zp3UrKTOW+t8mijwFTMa5cFbN32Zpuj0T3VctQzJflpj4nqa5MlRCH3YC94Knu2INYfGyvk3teicFM981B9gGi2hKT3n0PSQvdmmJpjQ9tq6JVt0eXtnQ9+AU3EaZycWQSZH0lopOiCk1/nb3t60PJBP7xW10k3RVaX6ax9pEY59uObts/Oeba/68MmRrOrlajD49ponzy/mHrk109SFHgDkl+pXWPDz0Kbh2+MT14Fb8PBh000T3WxgtUSuTpdS3/vxnutFHpvw2D/YsY/IC1pu7u7Bx9Xj4+OrywvjDkxD4ng83l5V6qmhVHX5e55G3VMNAQRwSw15Ok+Fdz50toghP4nbCM83Lvl6nbOVX2MfXZ17YR4j0PimjHrGQ1p3iv+pEoH0Qpcyc6m4CExm9VKUpaWYbFVcPoc+NWUdApL6axRGzNasb5H3VFUYgHV58Jn5j70+cXj0NJUI27Z4xWN4AV+90Mv595F1iS7UU2l14B43UiQwERjFDU47zYrp41X/gjPN1VSptHpnqEsejYuymLYwUA4tUQtaOJ/pnEivrqVD0sgmYQxQ8CemXCQlicLFn/K3sq6WuoqjMBKmV4An0IvAGFZQofZpTyFQKALXMI67USwRLTiHZM/50j5zgm2tcDqg0gEbk3EbNT3Elik1NQpFAB4JpmBeL30hlOZYEkVh6/RtYl3MHy5LV21I1X61Ihd6ywdG8nm7SEoiyDOasESowVzeUhJyQYgUD3KmGKlEw3l3IfvgoIr66/JNTKW6/LAOoVo7RkAwllzQB8gAX3ShGkMmrWZHfQJCKg38pW6e78gcnZNfNjkUqOYxov6iQnrAx76GhKgeJtDamFBEpJ6Z6ciYwq2SlepXGXiR0ksM/udsyt1hPFVjF1ZwKQ2pBQLkuyIqMG+9QOvPYHv3Dl1QRO905BRRV7+HyOipyoXgO5QW4uXxlghowqJjZY5atjWs4DHUgWGBC4hP+oGcpLvo1OcKKhliowGpLh2Ccl4glsf8KTv5m/prxKYINQ0ebZACALX3Ud+iTzF3ZMA8qn6QGMyrLAGnjeM6FVBYhky0vyP9SKA3ahp1VCadyMzHC8pYdY0KBzorgmcKUV1pW6sPi7MjhDJUwBdyzUWyf3O24Tz01yo0qhFn56frAzGKq1XdIolFOSZPtGFOGAAwNnunoG0oy8N6BX+fISsAZQxPJE+olFLWBvhgppyMeSEEdEbl7WDuTdYe8Rm8A9pEVsnVH7zwQAo+8MZYDTMgPeBATqF/i0Skx4Fy9eEtwYdYgeQwQU6hxzzHT3ng7MHGVyXHQzUCBAT/Xj97dAz+o5GxjSYopZbgjjVCvMrGA8YNeuVLYmrDgLq8ByEiR/sRoiKVeSWyqV5sGfWGpjykIEZX0WjlHAfRciBjeB2MbkxOLHNxdoFd4l0MW9/asCRFZCPRx9rVovCSXPSTCIA1CaBK7DRLQMFNPhh/dRSmhRhn50e2tOIMsVoaZJ3AzcXtxSkAhnJv+Wkrzp1L83h/4x/8nT88PXGp7tX29r7DXnY3tw/2Hmmzna7/6s3rw+Oj/cd7VPLd0eVf/vrVb4+OP6zd33+6+cvff767du/8/Piv/trinrPT42uHWlqm4Ypie11ttYTKl/t7hPT67YkVzz4WYxT5CXzuffzi0cHmvY2jk5N/+A9/8Xx/47/5r//Z/Q9rB492/+W//nf0zFLt08Mzxiy4EfP8X/7JP/+//tN//u/+9vXlDf+78sP3xw6f/HD14Ui3w3nyF5fO5BHbXX96cHr98bsfX7871WcRuzMmita+0tkXmHaRr8T+kkcurMMdLfWBnuU9hKuA6Q7266o1rG52LT/I6VuhfuEGB8Gw0i2wamL6vsG1k4ub37w+/fO/efXrn07fnDjV597ZxfXbtyfCxaN35ycntveuXd9/UG/n7MP5rWU/N4cXN7pIp+1c+GS+hyAysRBeo5TWO2kxhbPEFCs/WXTUphGGrel21uW783MDwJoAF5wZZl/fcNATLB+4CoJGabX+/a9+shn1+dPmK6Bx7mipT/cOjy7tBF/99GHfpVpX7nMbT0uPbNWNmELMlTVWU6japmFz6O1ZvxE6bqx1bwa56OAwYpyxar1Tao2+NwWHFTwRo+uAHXqfnk93BRwGZQuA4tUyH0GamD7Do8ouW6DmzdTlKAyiyz9dr9wIIcnQJXGcoeBS8/b+0+bDrfsfmyblB52Zo3r2ZYLFnpl6Mi3qslb+qiH6BnQDzB8yyNEHlPIN06gLKx0mS1PbrtBQRYu3NPBKdZ9DA5N6RRYcmZSztiez76xSpHNQw67aE+g5zbWle00kGNlS3hIsGnnrdNRO28xzf2o0RNSOjtaJ3TjtFAN0A9DI0TWcLJOQA1cQTtz52Dl1FHE8JxKaT9CZedDtBFTe/QVCRRXMOssPRgcOj+1Rufirv3393Xfvjg/PUqpGiN6b7cE9cf/cHOLQpGuqpFs77VKeE8/v4gz+GU3hlnT61GIu5+Eg+i4danDhJEf6ZfKfpMo/ZVU9zUGQM0LgOPxEMaFJXjYYqvCnFm5aKRV7AGBZ/VXytK3luGuYppmcXVipUu3CHaKLFs73+slKLC+WHH5PjwAC2qyogLtfKvCKrsPWQxWmvdiG6olWB78kIgM8qm/aCJ0iYeLv2qMa5sgBx/tFsdWDmX3NXRdj+ODAPKM0VqmQYGmyN2FSTLIg2O8IB3Y0XHwsPzxkrl2dCBjMOFNbnjiKH+NwIaMP6FqlniGxSGeCUWCnRQufNqQwm1RlisQbtfQnctMNEuGFlkc4lg03KKekqWRkjeHRX7ZFFrBKteQJpJiBPKX5NlF1OAcMKtIswPOOUMQtdRR7ysPG8+FUPOoRu9grBDnpwo/RnXkRsKCF9tAbeqESwuFR2OWxPpsMfNRgViiSmFA0maoDFWy82KxvfgcmmMPkKrpjkUQfNVIQqZCu5Mhanrg0yAwj1BIuUwtkqgzjlwygS1DQbygGbcjxFMM8+8k6grlIZOBjUxYkUY7olDr89DfyR4XUdfeq1GFCoNLSXEx1xjEFZVuiqqLKqTh4qUAZkvrCiL7cgVSM0salASjVyzxD3YM7sKGUFbT+PJ5Meupa3j5DZmS3Dns4kJ0vr6SABk+/e1t8dlcuWLItVA2mk7PFJEP7sCy+KpMSUx0Z8BZ2UBZydWzfpubQutMWJVMyv0Mk/kQGHGLPTPN5kSOq35wjI2ydbliquZyQm4DQxCbWwmuK14rA2iS5r8XvMBvwg7ZXKmD5aqvaGs/IHZ8LiTFkAsZNRIjJFK92HBidgw+wmAMfkCaaRnXOblGLyBnPAuZUU9CztbWFZENcYEZOXYLG/4iXOgwHWhOBcSlVYhqD6ESUWA9kqsxbtQn1vSAJD9AZXUttqEm7EuAQrR+sdXzP4Nh3nf7se4mkJ1fBx4xGNDpbTBaZMR+7Sg8QyAKxhvazGtmGk13WyoGKg8txN8BjgVMr4w2ThxGUZY2TAiqgFk4vg/TB9FI2rOAKMy0YJ4gYNWWTDUqTkTavFqRxqfI3VIPrwUxGjH/QtLh/FEm3ZM2ZHgvw5GMj6ZWphvuWVVAPb5tfJs02EboP69rp3NOOfLRkX6V40kFRlmIsHlUgdfP+4MW+EyVhYejL2YgOZjTuub2zZSvwxr0NmrBl3baBydMTF/s+dBbNvZUGC62VuDpdW7138OLx8d/8YE/z1Yku2YO9/d3vbQI4fPfFV1+6zmpnffX518/Ojo/1IgVWp8enj/b3Xv346uUPb6wzWn2webD76ZsXz/fsZL64/O71qfuDre+4d/vpQAS6t2eQ9vt3R3YZM429tdXdzbXfvjyEO0rIlEZZHy2e/vrFU+uPjo7e/Ed/8PXPDr76v/2T/+fK9u6TZwffv3ztvdtpY+71vZ0dkVOhr5jMAidnJR1dfFrbuP7DP/ly7cH7n77/4c3b03fvnD56z7Vlwuvvfjz80Rog0wuiov1d50GyOky3v+LBaqzIPO+vnDug8WrOCSGuETo+iNKMJltz7zhScrZSIolbwDQ7rNf3H91/WI86tTXJ5tqvTvcXFWUaJNUW3pv7x2enr4+u9zcfPn+yIao0Gm/hvQK6XlaHX1ggbrj40/2L249R1V6CDysi6/ttB6e+sLBpgSq7tVdMrEF0vauDX5uEH+sGKgfjSt3b90dnx48f7b15d3p4RG1sLL7c3dk7ObX9+3J7Z8dVcd//ePTlVwduRju/sP7owvmxj3Z3Dk/PrGJ//faoXSg2g95rML71//a5Otr//e0q+zP6nuZ9tI3BVMDa7P0NLZ53FsGQIOPMb3147zZZKHNrXDc/2blWHxwDyhIcym63AC8k/jAt2TW6pKGjzvAhuWkX9sN6O3qM0vgEnbouvhAHk9u4Icte6HPltNn37m2tb7B046w0yWC8RRZ6blihW8ICpyWjd42MGQTZ2d62LMnEQgu7GGyOvbU0UCF0XfL6/BPaahmactHTQxJSBPTcS2E8kXCt7gDu6DmOQa84VD8YctaYtSPflm6HHjXc+RE++kX3XJemUUIjnyDMqRVr6o9zaOnR2kMdqvoLbnqmOQaqsYJY1aqjZ+OB/NQJo9UFAR4JdRoIEjFEwpNQDAMGRdIzLWD7+/7TgxdPH78+PLNa62B38+r8/Oj0g8mfv//3tl3mpwexs73nGAD6KozXB7CniA7ktxoQEWm1K0PwlbfLu094CqFCGbhwSCk5lPLk08YXNlFE7Ts7XTItbXYH7DTGX5NE7jnanLKqTMeoJT1WjmVpWcTZEaQhKyeaJhApF59JOgt6jCLFm6EetYUhEIk7EYAD2qATlj5VONjSQVLxLwdbmN74MUhL64+fg+qEIDDU/k07qDBDKH7r1ASn5RaJeqb5ZArCNJGUUU31I3sTViWkZgHCtEIc1RoICmz01nDIMwwrytc80VUxwhDSq1it/SrSmJ2yapjWqjYIkwvR82eYKYPMVVmpkYsH7CveKS9AiyBkANB/7a9KiXswUa9BxvElBGhJqguz2QXiu87PKcAPYTUkJCnpfk04gcSUliYHh5QHHbRoCekkYPr5ZDCK0TBoPIcOSqdrWzrsP0elQwFtL6ShMLBHDpGlDNCbnJM4hC6kUdQyt1YC/6kQxgAIv5iRduWQoV1i5dJCqLJ9HgAVsEtzknDKY47d11qc0SjJCbOoGoyqkF+Cr2DJRLsGDqecuMNxalpeV3M1LrFfokJe8PIkYzdg3uW/izqWKBiZiF8i6ZApwskE8HrRac+Lbtw9JOm7/mtVDiZ+w3rgwz3FE99aJpmsi+yNIhUhltmfOJlK80hTJLQicHlHhyemqpaSsv0pGDsSiqzxvOc0f2j1WyKGyNkbcu9vXIomYV6joiOoQcO7vvRveSqWqrDk+KpmVXtd/7gsKWCUz/vPvav5MoxfQFV9aMkl+Pah/fRy6QpDW22GRFWM3YgzulUN4x2qMFzLU93zKbF+c5hLm3i0JmrMSXog85Oj2/FU0tSrADC+Vr5nn7izwI3MSV+IXpLzi/EgPQ6NZnqSk6SMkCAHjcWuhm8B/V85E3qNjZU0L4CFwII8vCR7Ft9Me9lYpgolyVavwk8cJk7JEIgJpS4e7o4Dy1Qjqc4kfniKhECpkfMJ1RRsYIHGThr0zfHWb0AMcox7xaYE7SuU5CvAmqX/YOQpqrxSHgeFKBreVUWvFoe7sD00e5t2EAjb9i1yW+6pINzjwvBcvWnDuFop4MBFwRAaxlVj2hXngEkW09HCI+kByfQa6ffdg7d81sIlRDICSgI/Udw41uYB4cBFW13NLE3QAK3pnUDP9s29uphzhuDF+Xkbgtc3rp3kA7YApEuvVq8MF3/4+Pj5gSuNEKWBtNAYm/DPIhUX/YBmHbJAxPmDLv5p++P2jnuv3PmztiZg/yTEM1x9diIG2jo+s0fx/ebmjnMXf/vjG3MLEwzcbO3sv33jQrATvZS3b17t720dtdP2xA1Yxqa/frb5n/9HP9u459jNy3//23d/+Zt3bm3Sd370SBxoQcL7t++OdfIfWYnyYOVnT54cn1528qXmR+RXu26Q9cNXXzzRb3l7dPR3//T3X3z11T/5f/zPK1u7Tx/vnB8dW21kuUXs/PBhfWP14Ok+qzq7Plux7OTB5g9vzv/tX/768FTIe/y//MXf/Oq7l7gurjs8vTm6uv/t96c/vTrWFBHjxqZlKhaT4PqD/b1dR2ca1NfgC/kMTJuI0MJJweWuQ3IgfeNPzsC/t7MrYW2ChhGm4d6HSNtyd7PVJk0ROAew8EnXz7r2VTeXue/JbVmCTJ0FKnNydvabN+/+4tuXv355+sPR5evz2x/fXViB8+bo4vXx+eHl+2P3VVnpYr6ilblUlaHNoqFW0teJpYGUk1J9nhPLYEYVC6PHJKWsXVyK1z8Q0E0LeaLh/OwCsZb72+65s71lIdZvvz95/GhLBKW/p3m2uJ806MyzJwcDXJvdyi5KRG+YuLM+OUQrf3RNc+S8rjDXEXuNoq9Azkp4vOsYwEKy3DE7zbFZ0GVcPGI+Ovk+t8Ecx/PY8wCQIwwMsQpBs8SPDfPnMO5MzF+hSRYvsi/4s+5/nAbu5JSa+4JdLrhF8+IPrZRugg7eeDon8JjlcCImN2PrOruyXrLwkihnBn9xZgRdnMG/0gPqrlMKqWWtqXjW6Lry9S5WcrOC7wcr9mxoHzgrTlV0rvFkp3DTxhnQqSOEHKsLOgp2XYdEYHRJsu410y25KYi3c0cgbUMyr1yXz8oWK/PmbFZcUplrvzdd/wD4pyXoqdsvJwdJp0gL5djPD+E0maQMAgVXjEPAi4frx2c5hN3ux763uXKvG53X7r+0EujTx+2DHV1YbmoL9u6taMimFUdGByw/aTzDl1mHPT2KJJl4+pMz9Hse86qqGGdTSy8L3HpLhj6J2tdx5vO0qOvyYrxlSxdklD6FpuGTkwKAVYDqz1RKetPC5sVb8SUSVaTEz9DGJy9QxqNys2Su8OA91Wu5JlKGmGlRv0FfMFwajkZnqH6rNHP+NA+T+IRoaaHBEDLYKgX/+or3xQy3JnkgozkY1fW4cOCuQVxIGFcfkybWKYdYvCg8rOIbUJjuIS5FXECwlyh80nf/4m5NJDH4iYem6KdXiZMyTNMksZarjtPdGDB4hOpTh0q2aZXivNawFi8zTwrVO7Lr2WrFpsoLaXqek9aH4aJDmMb8tLHuijxTMqyTnK8++IOIBuhnUHIoAqkQA4bFMICMwiAhO0fXSAIYtC6siNVssPV1hTy+Ysgd9UkkJBSCPwjzVIMdAoNGCIXTZ85MbAAItPEfMiAu1cW0qAarWUpzWJ5GxQBXTXCqbvmojAYOtUyPOwmBovO4gSjIIzWhLiCSXagu3KFpIAWiuFfGIIenL3RyYcL4SYTEqyFwYMhWvVUxixoWjkV74+gpZPDGOkQ4EufbXRgDQj7EodP6drGxbs+wriJATlnPKeT0OpLIoKQoLHovP6b5FbNCNY4smIdYdPbxm4eJSz6l3+VUb18HrAfcmwwBWJShsvPpz8Dxu5XT6lQl7CC6ZMhyJiCetbxLOtCLf4wYAl2ARsMUiqGAJnbyrosJYhX5A4X8KTk4sfn28M07oPA0HGJjTm1qnyB1hr0DO7ACu6A19kn6bIympsQLHcOCFB0sUufOBlqaIreWI+Mf7aFDw7VMqwZVy0dqCR52kM/RRGKWwK1UP11ZtL+4k+anDTGXU4B9UTUs4jMSF7BCzVk4G4/ob7DDHMKTv8nl4namR0I8VT3eiW4VWBzfMKpxFCMiBKHWCIHW+F/DUV7F/wyYEkzAPSYzCKbWqhxaGkSPV7JWi6HGmX1uUXukc0BaqWXowlS1yCNZYEIo38lLZZ9bo0xK1ZzroqeyEV7AAcMWfnKciBo9qDE3lJ3EojLEJFxJdkrILWdTVGCKIxNhyjCUljnOK46Bis9tiMO5cBtx1e+oFoU+dp70lI4nFakf5x9ZdOaJ44T8nmVRjj93Ny1H2QIh53uYpd8/ePz+0uWv5mlWjo8uHmxsWl5MjVR70R2yELWIoMMTrxwYz/lyL+/fP3329OpK52GrVWE5xvvrm10q7Iz92xvBwAeH/Vscf3Jy3VFaHz7s7e44LvDw9euNzbWt7S2rLva29k+PD9e2VgwPX5xaLrL2zmE3zqFf2z48fPfo8d7+/vZvf3xnD7Ctw68Oz3Rmvnm6//OvHhvf/su/efPO8Pb791v7W07T+ebxYxyzrKiZH6vRLO9279KOJRqi5c3vfvju7/3Dv4tX/+//4X/CKCTcfLx+c3TqDq0HG8PAadUOHu9/95uX9ua6hVjMxJf+6j98bzOpky73RDlbgtp75+sf/sd/9SunaRrnJh5yNNNAJzXw2vO9A6ctXYnpz04vHA3DLesh0CozAps2W5+bq3j/8bplvpYIGnruFPnrK4NLRXtChPpWG1YZWd1srUgJDdEZb663vL7FX2s+2AWlLVIR05+f3DLaDzf3ncVyduZup3sbW7oMax0z2jqfBkO0WYSZITIHpYz1T+hfjFvY09hkuiKydAynVpnq0TJ5UzVerMvXMP/dyenTR7sM5PTixllShydGk6/2drZOTi+OT0+d72q/wc7Wrf6Pw2B1jGwmceNAx9g76fPhehMP4tGsRBuTw1KvFTX0kgLRirQkzdS1MTu4eOBsTH8yB9UQ+PtGo20GyE5yULQ8n2Wr7IpF/xGkRWfBgnbboc0JoNVgAHOvVcIBHVAXqy3tDdtu3D31hVQ7E7yeCUBcMm4tsQVFtrm7itiJQ3Ns7lhuTWQ2y6yyNda50sQBZ5stWsuqK46N2Nt6RbSGq0HBGq4GR9HCumol8bkHt4Y3Gyx8FI6gEHDdLL1iDHFthXF7Z8LSsHyLFf5IwJAmLtVSd8F0R4cW1aJzNeYLML6rhcPukxVupnj0JBzKJG9+CiuaTuSL8PXjfc12brU749g2BPRL8AJy0ATDUz7LirQ18B6s/PTu9KunO093t26vPj77+uDt6enJ69Pf/vtfr//+Vy+eu0mOtNeQgG5hLnobEqReH2xo2TGVteiAzjHCffKNBjHM085wDRT0j3Bo3pYjNzieE9+gIknK0gr0Ft3+pMrJUXFCXVRd1czHu4lA6nbKSIHTnIlF0u2RWUkjlcVpj/YzgrQLBEbnbYci3DeXsu5CNhUkTFjJAxkR0jRzVUylxBJEWu24x2jJJdzovYdacP45306aaaBmeMFYzrHHdtOZG7TyioQTQhF27cMiYQXLCQOdlva6aJLY6rSSmNlnfk8r5iliS68xwi4vSTkbvItNIQA4VrRjHgNrXiezh2lKEgWgpnM+2toCUjTWtqZO8TfPUkhhzsAz09bNI9Wi/wK72DCWVkrjskLklAtQROXiikmycTEFd4BVvBYcVMqHsTBykb4I3VtVIyc8ZZoww195CBd9NAjPsiEU1q6qZTjG76Uric2D6igeBkogDjnj3BDeH+hNC54e4NvokKrjZxrY+FqJMSN+KkF2lBFfHYZhjEyHPH5OAICDilT14rkqGKMDSBMU9rMYHVzERsLMAFdENnxDSsrsDx6qbtCTWknimsy+BgfsRK1GCC7GITFZqH4Ilyt9hPAUT0b4HAy/0s3qjXuFjiOGAORv0TcFZ+aNTqbgKVgVj7vzm5iCNHwfxKUllXDQSRuGVNPUEjmh5XOHQUTN14VhC41Bg09g+yl3fJt/fSc+2UsHcIE5JAwfa8qCWco4E6Qtmcl+4VVhYpAnp0xIWljDXBN/QWpavAgDKHmWkk1n4ssd0oHl7EhwqYkTvKtV3FnkaqhYVXn2YJY49DM/obNegcnZSPyMbUzqm9pQBb2RIpspR66SZn+WMdXnSiwa9g461AWKKUhzXipNb+DmOEaew8oEKegBXbNEU4nWxAVo8ByfgiH1dgAd7uHgKHzaVqNVLWNdkTD+FChZaZUUQIz2GTpCrG+qRkcsg0JoBUS2wjXjYkskvUg0rQvnqRkCsic6PQIvENUoXeVL9sI/34BNqKFYvGUsPChygdIfubLbAPVLgOFbcSuWkoMhUkXLFNixnIBPWhmzQK+XX0Ed/tejmP4AU1f754a+WUvij+dxDnVBquwsNgUORsOxseQxrZQrWkevJjM2EBP3JLMH/IQYuYBpbLiGWmwEAVjZX9jpIjVCanP1DjjalK31PaH8+CmhTCEjv6u9EziuO/tfe9944YN3r16JWTn69x+tunF+zlk3AdOBq8stI61zIwEurbq59r7NtDHo0dPHlvkX+BCpU+TPL7a296x/oJaW3SAQAhcXhuNtEbFYv6texbV4LxTdEARcX339s6+Oz4Xg980YiOAF1PlpolpZPXz3+sWXX1xcn/+HX333/t6GRSxvj872nLSyvvp4d8fyFsfg/Hh8sWpp9s5OK5Esul+9/+bknD5hl2lnFT052N5t4dnt8dHhn/7yD5xQ8y/+xz+3cmlmJz+cGcNPXazHdiVqB7Ng3NlRETPeGsOksQbXr87O/+Jvfvjlf/wHX371/Nd/9YNujYF2N46ZDRGbP3i48eRgXw+umnY3nKdoa+r17QP1w4OVWdYvMivGFQ7eOENJ8oolNlaSbJlkAaER8YssT6xpMcf9FXuL9/Z2qKcTWHQeDNLj5O4jpyY1afDo0b7eFLsR5xLi2tb+uVUX502DY6nFMGdW4Kj+vn2xd61jtknfUvkaWgCXW/oI1HOrMRhMCpnzoCqxYgpL0cL3bG+9tTqGlO+tnF3fHhzsmnixnmZ3d/3MdcIrJlS2xLsrD90gvXJ8dv3Fk2fX5y/fT2uVkn603/Tj+wfWsj+0x5eoqmzqc4gnzxNidjzXB67bhktUU2DqMC8dT+k0P0NY+9AJmzkN51mtiTCglhl2NG0h5sS7UTotOv/6Sd9MkyQK5BwIVA/Bdl3MWutIna7NAoAzgZKVchAFnDdUnRAp59miu76xulQT0p9g6F6tHBHHZTODmF/Izs7D0FItHn6GD23kbp9yHgPfqJUJFlV9JCX9HrsGNh92P/fF1YWwXnyZS2zDei0st2k1F4BQsmfHlhw2VicThAfW0zuEh0HV2cAxjg+peMu7TYzIFfP8BaAcToi1YAmNeaCK4IhdB8w4v2SWpTiVSXMO5in1gkBDWs1C/I0PSiLMTcDWe/GDDx+sMxBb4Xe27J5+qL/54udfnG7tOnHq+OjU6VWGZJwP5qRRM1dYrc4qXkmUt++PtxwHOytSinHSt1bb4vsoGFXNQU+jubhF8hiv2DekkaOpDSl4u7jy8fzZMvz7l76m/DWXxTdoI86UWqmK+I4os0xJsBHT2ruFTPBh5TMcyOfDZ+L4DGGadGeqXuZsa9+CPwgL4xpsukMo3a5g7ZZiC2bsOJ9cMBCnsb9u9TJwvoSziWB6AkkOYF0iPBH3DnFDbRpKYnl5GBKuH9XOaF0U1ptPcg1jZfVVnjLksisU7dRlQW9pjxampfAZ+0IRQiTAFHrFr/5NXOFwaosuUdEYUL48+5r9D6oF1rIT/K/kaGBvIwrG4SF8lGeidonKglkPx5vpn0/mWrch0i8PNTYYXWc7Vo4rG7H2mkBW6xUIS4NczxYD8ghA1VDSX2imfzC502R8iy1FkoNS7Arlfod5KhI+CUD5gijkDFFe4kPUTUqJYESalDvhUrw8WF5aKcLxuWvTg+IZHyqZsCLUI0Zg8dQnR9iGc5VXxCRAPKyqWLE8g6xeUkJyovFO3lAJl6AGGLDRf+gu5WO1V9mRJL9GIb2cguEJucKkClRBUHnngQzFElxb6c1dXcDLkXjTt9DR3GQUgVgSA7NIwVNOZXD5jG1ILonRF/gKjjuK1dLwwZ/S68T2WlJur5QF4nC4LGqcDGndgE0hwyMAVfC7hwQxCXX+BmSV4epdENYTNFCVtQyQpUCAvGByQKiG2gHqs1SfSXoe9SplouFJCyClXHQ9Tk0eiUtBuBfgKdu0qZn31Lcy2XW6S/a97v3yu7cgZ9TD4lDtqa4zMT+4by2jY9fuYnRzlFQu8d83rHsBdQDjQuBTLGTyJqoeIeQ9B7F0Am1pYK6GV0qcWlN4aH3iBSNpn34zHuoPK0TxO+8/mOmbODW0fFSisvQjdtV8ugCVI+Z6IAADEU9hCMOeYYc0cchTdUzQExh80R/Pwxyk+jDETCIxvqhFpmn9Rl3qv5UhOUJJdakx24lzSDLUF7cHHrBg+s/M8s6Qiubh1XC+au+kifZ5BQ81xrw+0YlX/GamlA/Po9XEjissPp4uUzJiuJgcK1obFg3LMv0ZFZCovHTw4JOaYY1S42QX6hum8zFmYmm1idT4VSyiLIWR8+r6Ek7iS8OZVWSctbW52i9HqmeoRmSvP7x//sXB9eXF2taOJeOiWLgKjU6Pz1zr07CohRBW/6933j8IeKiNh6zh8xu36d5eCY+sgYGFRQhbu3sx9dbm3qtB59Pa5sbZG+f1XFqZ8fhgV6xOaP/gH/7Di9PD3Z0da2AsYcA3q8b3d3bMANDLP/ijX/yHX//oQMSd7Z3fvjoRp/7s6y8g8fD+Q/ttXx87oN9yCHuXV0/52Y+fvvjC+vLL47NzVww7shP/n+xvPNndOjt3OtDpl88e22f8L//lvyUiMRkuPbz30AGXYru0BauG/8+ePja2pxNHoNYObe/M/k6nGt3bvPdg7y9//f2f/5u/Ojy5PL7+9Ptff2OE9sXT3UeW3lufQ9APHpw569Q2yZvrJ0+eO7/SRcW//e2Pbw8Pt3cc67L+/OnT84vLw5Mz4SODtxrI+VrnZ6d4+/jxo9OzU63Gh9t7jx7tbe1Yhy+QW3n99nDLIS+bazZgwNlEzcnVuYvJdtY3vnj2WL/CoLBLwDYf7T1YORVmfbi3d3pyfv/Q2ev236bE46nygNTPaMA4RQoiuePnG0HiJFbvOyCNynr2RmND61L+UWiePzhFn4bnrXFaubx8v70u3Fy9OL8+2N+xzUO0yqaEkHpi0u0KODw5fHGw92v3vt2zfZaSWvbayYDMBfhFgQ2mykxL4YbnXgnH6TpD19i7OIo/cUoSZ2A0mYimHYNMS34FoIlNc5Vnqg3T8/IbpeyJlZTYuhsn+VxZxqSw1VOJmWY45mguZGVPvukInF1esx2blpmq0H0ssYG/EFj2DrEorsmOZNtUunT4vjhYrGE51ruTSy2ENa+mmd6vdI+BWQM3bKNZiqUyXCHyoOo0VgaS0s5afD2fiMneuxaXX8Q9NeaUim9XL2+v66exWUzI9IWCD2za6UEgNZtAuBLkGDxBKV02zeYV+zo5vdLPRGonijZhZDN3/tlqJspKWwVLIl87LuiJQf2txozyydyCWhij2aecQ9cUGClY4y/sNNdX2nYrxcd7l++vvnhyYBf/q/s3j3ZWjt6dPlw5+KM//cZc4eufDtnj5eXF3qM9uCtn+RXuWbimi+fmbL0HULlneNVKjLNCHjeVi64zUMNU+EWIfUwH5bruXLMWueEjX/3qw7v6F/5LG5SXmxktbGXeIomKLuM1WF7LVUNp/dt0LK2mUhCf1aSA+JF54APINAEM+EyN0xBbBbUMxLSvA1RWUzX+gxL0Gsvcns9CBSRB5jUhY8ov/wkStBJtW9vpbc8KVzbXXaMzstDP1Odz4lgYZjzTlIPeICBedZpKW4YEFeFQEByqGkp5KD3CG4QcP+Ct7xrlGZoMHJbU+bmzoFAoZ83TkB8cH88JJ2OpicQnTJJNQWwnJsRkVxljW1aAwcjeRoV8IqW0S7DrWWF5IZtYTQgxsNrB6A3BQWDpP09Zg2jNt/M/XiM/nDuocHKrUSMeJ0MH04btVVEPoGSoRFVVyzGvNWfm/HVj4oW0IUUPmo2ILqSFPe6kEgO5lHRISg9LZeVLr0aywe5/SllFEutjTGe12KMgUOa0unLaFzOZZjjvoy69TXF9RgMTLULDvlfxD1izwa0aSi2TxcLD+iHDscEJ4MG4eJWGp493aHldrT6Kj4NJz1EO3YD7nTbcQZPN2yS6cGMkMiCCIhehL5gMSJVWDXmmAHEgBi2/ZIDDJGJwkirzaP+QO2/BGr2lzGM6FS5pUJ6/oSdl0qNxwLO1rGaeB69EM9XDcYjH05Qtrpb+O7CoU3uvFK4mTeD88Zv9eANs/72NO3RUKzY6YCENqU7PA7yl6RpKlqxhq9YZrQiy5wArLMpjVLqw80lqKVhILGTm8mbVuK8jdWUSbTGiIrn7rFG25gcKAlOyAY4MhZIX0RrTlm1iytrAhvrqm8iSMD0PEFhZ0FEDD3kpg43aaqHT0QDWuAqPVKKuSEjqyRJ6qraJy0Pt0GepT84laKAKgviUjH013mkyf/Hmw0/wwaH6/vBj0Ib8IBFTVOorqhd3M84xl5FzaKkS98Si6i0UEsThKEgogcinYAar4xUFJUtgsRiYxNH+vBjMFUXChNed3of/AMbtmTYBv6GXhsEmTMfbpYZRVplSqlZ5tUDTDz60qBGeI3G/4k/jSk2wg5mejMSxvUCnUTSryQ069jpRJsjEmigb/hlnlB71UjpYVBGcIM/zVJWO+Ro2foYdARRBWDndWPeMO85BTyCZBDBecnx2ePDoKbU5Pj6C5OOnu2AmldsyH5+fC9GcAmSg1jCeVb+N7tshYADbDuOrc8GBKo1BWuyvr3p7c7W1sXl9LcS5cterWqz5gDKGH756qUk4P20k1DTG/u6+i1odofP46xff/eavH+2JDLacBmZA4ebs8uDRk+PDQ2eJf/N7P//X//zPVj9dP36681ff2g5wZchZeG0O+ESE9dGBkuvWBG3ubhnaNCj+R988o6Rv3Ia7teWoEWqys/twu1vMLNa/ev50/4snj/7s3/3VDYJbKWFHo7vob8jEwGsNGBr0AC0fOjt//uULA/OG190pVpzw/uP21tqz53u/+nf/njpsPnq0+/jZw82H/5v/8o+37q2dH54bnk1nPt5ubO19//3bv/oPvz6w0n/TLMP9H3/86fjwzfb2gyePHz3ZdbPxM9/FqYdHV88eP9LnsRgqO//48dHOU90wB/tT/vPzsyeP9lyw6gS4g4NHVxeXZLvn4lXh+YOVZy+++PH7V9cXHza2dp4/cv/yrvG468vzjYfWERmT/bjz6MmT/b23h+fHJ849vnlfU63Jb4Mnnc935zxmxJjPaf3I+9UWx1OdfM9YECdQh1ZDKmd+djSfLU8fNIU8v35f7+XE/tuPVka9O3F5QgPKDq5Zvd+5Sy9dBraz/Ytf/uxv/vo3t5tWLq1fnp3jMFqsZNcONZBvGfvYGoTw3DYAbJ9mYCKFdJ66GviHVe5INoun2mqvR82HZPK1wPwC1XUTVzZA+fgThkx6TCmC2AIPbw3M3GPtroOUkaG5QNfooy7Ge30DEZYIgAWYOiAFWsZI22s7OxRBKHpuuccYsUDn07Ugg6JkmPdaNnOq72shB29h2mJl5cKSLEOWM3LE88PLAieyLrzsoFWjRwDS1npENdjmnVybPd4EuTymWDDDL2KzCcRsADDX4kM7VcwhsFfTSrpwZnRIVrnzC/0HG8/0Yq4tuMLqNuygvoUi04DkJa2TEozm18wYaFDogwuKeUO9BTmdQsqmGpHBcQwmgnZs55Ybh+YGUx8Ifjo9PX26v6MN++Hw6ODJ+vHtlRkUS+v+6Jd/KMvllSnE92ubzUMa4nX9iI6EMQJuKf/QdoXOA1BjbqfWySfqtaokTWw1LjBI7Jntkoc4fIhUbr96N65VIrDT2C26rExqIHHJiRHDSpoDdrEgYac/DQO1GToH6Mt4e88DD+xyUIzOi4CV5Hx+QTyUCgxCoz6DrxKrZJplObO1vtbcTZ9hIqRazPQ5vRQBmyWeUbMSBw60h9JiVnkUtH+HtgS61g86qgxTDRZscJVoo0JBf6JAD6fmKfhURwsAdKSogOk1vb9gLldDue2ixvMYGK4zXVD+xFGVwAJDpUvRoLob3gBLQ8JVAWyskW2iYXYypho5CqJCKVICYQEVgRzNLEzwari0zIFH4YCt8YqZxMNQG2bsa4aHe2ai7EVJWFPBeAZYTe1mCQxkCBGqBI3QA2VhSBjG8qJqRhq+KVZQ5Bnu9Vi2OnYEKNSWeaK4aaOxBlGsVe0gpT+pQ/ABG7mHhixxhcZCMQiix0mMfcXBKlA075R1yjLIRGRo+DUmIFs8TM2SopfwQVhcnepmgS9AKfkIC/8bARHD9LvapeNANnInxwY6c0BhLHN/4RYJ3Fbk9b3/fYbc/izfAzJ6O5kLR4CajMqlG/3ypwAsqQJTwQikITEzCmtmBrEpmXwrWCZsjI4JdVRR7YOK4gsCd2VjphdljcDJ41llvvQq1Rg41Lu/8waIKdEXoJPvYDIa3mTuILt0VT0uClER+YoRURUzJUzGeDF1GGWvC14HvVLjiasTAZgw2cKbNglqRxuMrwjCnIcTrLBIdZboM51IKeMnyweNrxmtUZtkvMmk/fWpM1BU52/nduPFGE+MN66uADAq5W7pXEykE/UTgqd44h8aFuWIKSMqSEFGn3sMPg+7CGNmBcCuxUNpHBwzGCkQ7WIzI5bFGcWril9ZO6v6wWckWrWcSPgvTjPXQwEaMtcwtKIk7Y1dpKPKGNIcSyLEKvYwABVJ40AezVweW6asONXUho2YG5CINCNkD1chY6kAkliN3o3U2KpLCpMRhGwcBw7ED92c6b6TgkaxnM7QnPN/EBR5GDGzNHF7tDweCzrGtCZHWcqIRk1f6elGI5o1JDx4byOwrkuFPRgTUm8x/bxKJabftWRGhRRAyMgaHijVts9Y7tQ05FrGbekhXK2sghiONa6KotTG/PXmxo4Tat68fYNwlQvK8UJuUA0ixj+Hmt+3588Y4TZY1gDV8o8vQwlN15Dsuefr+hpn9vcPzk9O6SHVdi0uzA1Bq/f9+6sH6xtn747Prx0as356ql9xtbO3RUhHR0cvvny8vbdz0V1TrYCwKsI5mqtrGzuPDv7yX/+Fcw8fP9//8afT89tPz58/glEnpNeF/Xh9ff/IFVQrD86OzjZW1/7o9762Xvr1W2eNX41t6Jze315f397a/u2rV9s7D//wl1//m3/955HFMxr7h5/Bv7bnuvqqIE3fkqsQYN1cXj57/Pjdk2ev3761jpmwsPAf/Wd/V4T3/PnBi2fPzz4YeX6ws7O+7wD+a0elO8nx5vr84sGna9eTnRyePnvy6GB/d+fR7rtXl7/9m2+t59ne2X+yv/sf/90//uHVu+O3hw4p+uXP/4QW/PrX3zMls2hHRyc/vX754MG6w5EAOzt3AuaF8PXl69dPnx188fyR3im1sMjn7PBid3/vm6+/OD4+/fbHt2T1y9//eu5ZM+1BZRyib4TV2o4PrhM72r146xRVdyy4UcGiDouitOKtfWe52t1P1IOCzXBvfn/GDWp7qJPQE6fpJj1jI/3JI2eDiouM7efnmeis3Q6tI1vtDHVLsOxrMAXyaGeDMpidePn6rSFPgevJaetaBLp2OBggKYYQjqdxq1aHGHewPIomimppsvFm0lELC03eltzUYb5fmG61UCPZDR5TaXfjwsjIydxQ8ZAftjEWHz58YkHaJwcPXFJsQWWB2FgW34sEhNxef3i4ZRGRM3ZoX3EntkAMsfpRISb6j0u1PzjBhdMb1sf4rLwCTbYzhxpNs1iEvWJujQjaT5jvz+vnhHVR8wDFVbX67W3IaRWg5GOcZEJwl1aWM9b8g0EBpo9vufrc1qohT3u3C501I93r93FNzG4lH+mIJLrGJr/B1BtgdjapHs7Hj5sOBzKvktMStJhnbRJFR91FBYC0/klsUWiXX4O/C77cYmGJlM4wonCGTPP2Ca5endV8N1c39ltzI35TKJNRXz7f/y/+839w9MPrtY/unrjfDuAPjbzsPn92/O5Ux6/WxKrAtVor7h1jx7P2G/WUbaioecLl8VAT2312sLFunKS/uAaZOifjAJNKjrf2KAWd4bn+igC5446BCKIalKsRbFrNmE7JSuU2LWfsTrTaMhXJwD3ikirHKwxUgsWhBp5m3qBWw+SJdflKLEQUTMCltiPMIiWsptUP/2nTQ9YrDWtt3wRhToEy6qy62h/CTU5K5aZqExvGQpQxfpyqxRrLTXd7Cy5RQxRQ3bPm7oCFKjtSKQhMKU2PA1624TzU560UrJa57THRPjoua5QGOLQH3wV5tVGUYZQdjGqFW5j7oUbZcqsu+6qKYctEoqBNMDDpdYYUZOqsmnghRUyhTRyxDkPjIdvPTBjLg5X2WjhTq0Z58tV8DvmMrSUDlQIzSSpMxsQ0A6m0F9y0oDgnncCKUSDtLBUoKEf0CFDJaUPLkuWqqsq8THNGwWQpJpwhQvSVnIoM6gO4lftFLH2JRicUBQfaIwGJU2GsyWH4wAluMMEjfFcKe6d7JuorMICJrxK9V13qB5/BTH7k5WOInn6sPTReYbNTPi7shtjBEj68VlY2rzjOOoTyQKyeeI/gFGlF8B2NHv9XtEN9AMbHvPSCnrK1XtW2sGNgVmzAjz/PxKoXXknBu0XBKHO89kpCUfFYnJQ7UCOJu2/lShLZbMAGT8WGTiLWKP3/f+Ik0GrsTTVkcZMryFPPHUWDxL3CaHCnjkW8pYfM8ncA+gpUySNUf0HS5PiteO1NVMQQlYdrhhdrAhKcRK4QY7g2AeptchoTwafp7dG+KB0ggh3Fcltp1RRPRYIUJhMPM0Cym7rKkDkNIWmGzOQz/ApAw4cpUGKYj2d/FY6RwYynEgnYb/Uo5cHv8sB1TC/nAscZtq5e+bJrQGrmWawMUc2iRjZ0Ra4UTA0YRPtBSL0qBtTyb+A0QyLnQj9sQFFac9ppJ7XLCYDL88U/gxZBmdrVy/vElzBRdRH8grmQyHpuaFmQ574ebR70ZMwSRiObTwy4csEb09USs8AWgeAcAjgMDAdRyfygWnMZeSuKNTTGcNk8e5s+1KMYvzZzdrmhkezwSpakf+U2meyzKW8Z/PAasBASRPB8lIJM3n+0JROMu6FqEXlcarakUlVqNJqTMkCatwpb6D1cWYth42oVc0ChWNswyquXb5zS7zSZSVs7OTneFbe1DufKcggbWEl3wwqf6/MNSwJW7jv4fufR3uufXhmnbPvqAyvAxXnvTy7ePXyw6cEql2nXuoxrZXX94vzw/dXN2fG1U3kcCGNzqjH33d02y+qGPT7Yfv7imUXv1hWsbTy4cH3A8Sm1fvL46cXpxc7+1tXZytvXjs68/ub5wfn5yc3llaXEP51cXt7ed8rkmbsI3Gf08OGj3S3SX9vYvv7xyDlAR+6sxT7nOq5tvDp+d/Px6h//yd//q7/4m/PTRngNzRKO23K1MRiSUHymg6RJQpEh9F/97bcORLI54eby3Njnn/zym7/3p3/y8qej7e3d7b1nXz5/voanYmxr9Xcebu9tmxU5vP96fXX/+vqVBvvv/skvdvefvHnzk4mQP/mPfvHu9PTBw82DR/s//PDq19/9Znvjwc6meYu1H356q/O2u7f5xYsX3337rcUex8dnwmN7PT98OMPeF09ajPT27Ojk3sdn+hQHmz+9fHd+/OH43eGLrw/+4PdfWFDw9p0bEw5fPH/+5dfPf/r+R+tXDp7srRysnJ60M3d3+/Hu9prO12unxFiZQWsKShsxqz1gOPVyBfVMSUSIEb7ltVDhiaZxH1auycugRz2b82SD/mnYnPyDfeZNxMFuNBBK0VGnuLYh+uHKuvDecTTGpOt7MA2H02ul2vYnkla5+hikk1ILPdce2CesOlMF0IQqXITaeROoGOaGGURnCLeDaD2HsT0YmmR/ydBwd4ZR85qNWJNjKCFNtKTeG+d8bK479Jbc61gDaxiGCmiAxS0YgWiZ/biRwPg6Gtsd0bR7jaJwmdit4eFlWixk9ZjNMF2ul9pfx0ATG59sAQYbmVtbesxOy7Vp4aHl9gXWxuRjcrEa3Ix/Rw+2IspMgrvtBNTCKeG3hekO8pkTLKFOJ0nNmvza6wKvzt2qBRUufHRUl0M8XZ/8seuAAdE5hmFrP4XpHHqdGdVtbFgLSgFElzlJni1Po6TjRwtJ9XBb1YtRzSJNe+Q1U8Wp7mFYc08FCpxQBNjHzf3N0SB70h+cXN3+xb//9dOtDbrx/Q+v9w92zRmql41v7W7XRnTxCM9gFRMqddLIo/Uq1M+riVXGxyZPKIxrG/GOGPG4URrFIR4foFipXGB/5qEnilsvvurUvrSD1CY1hgOtKGQqXQaFUhIgDPGMp51vIQBQAdOMlOfD08SpcZrUCkrpEIsUOG+i0LQIYfu7c1rcpZbijnsZorwLs3HqFGmQz7+L8ID3UjWj0uG1tKEsiaPBJ4DQpjpNcE5L1Mv+5jzKJQzwe6JzRI18hz30BHCFFAlRtKp+OFVzU8+a5Taqpd6JU2UKjpoU6cGbCRJKbwA0CtikLhPMh+qIKkgtVIgWleoMYI64JZxhPv0N+YaJcX4hyCsf9ca3YXww420wy6aIVXPOSSuWqHkNHxFqaNgjrFKYUKX6CTPNkPRCcvoq8bBmPan4hNJUhDSoDtGlyx/DOxG47kfU1wGLTfGN3pTa74X8sOKQ3AbIDIpiA7LkF9d9dkvxCsfGdQS/wgXrjDhsfEuUEwiRMoIXEOWaJX9p6Xy8RXjZIZbCVrzE+V0tySH4lCo550vwEbzyeoeKSRqZYtdNI30BKSAZvwpaD3eULFUP7cvbqVNNowy0evBBFNrDDZ/x9a5UFKm/zIvhD7flCpRkmITe8jxM9k5afCYSXa9RyEnKIHzgNcADK2GYEIAeoNzbYe+CvvT5VgZPQUipfKbyKu5FUh5bvCvVmWspVnIeHP2VzaPCizV6zp9WOFxBVnHsmJzxaz6xW4p3udk7cGxGKaodQaN6YuUl5xAF2kJeo7NL1b5noPOJO8I7lzRZiCnkn45viNTsNUaFKqmAjJJVZqnHX05ZIkwM0+oAjDzSiTsCFzPGi4k7wdQSKIvjsihm3UCWPBBCNYD1O+PJMAQcaBgpYvl8Cv4kQqgMcyIgIMNKwFOA+MYpUEXYeI7JhRoZW9KZgf8WZghnxeiF+6NtXibDeN7DiB8aapighKduIM1XLiVyujaoYQlhhFKOXcrjxf6MvyJ6FwYjMS1Gx85aIVKCsKt5LJzl/odRlRkKIFdGLcSwKzLhU64+0Vp3JYYrGlGZZXP9aXDtyvigGZITDynLjyy26hluStXTwO0xTmGUgtIT7rInJAEtK45CJIbVEbI8oLkCmGCaZJyaQzlrZQU1iK2Bp96DvsU8CBbsvrk83WxturM0H9ioqrnBS6u3DUUfvTuB4e7uNqHiEC98cXW2/uDB6dHJLKDF6dXNrW17i20M0B/orLqY7kRChzna1wgvMYgFITcuGF7b3LQvcP3h5sqDi90t59tcPHny6MUXjz527+aKLQAnR++u7A6+uv3ym+eOFf9omcPt2sXJubDRipuzi/Oz4wvLqd++Pfy4tm3tw2lD2g/MjNt9i7VQPDk6YQ+GRXedj+kapLWHP7w9Ms37J7//J27oEiVTt3xl462MMV1iR3hIOfGcjPTkRXu89q+//e7x/sHGzqbFSH/vT//0D//wD7/769/+8k//469//5sOBm2T5sed3XW0i3RBWbv/YH/30Yf31xu72z/7xTduAzs5Pnr39h2BHBzsOzBRJfvbW2dv3qYp6uj8oQcvnj25ff/y8PiYwTgEdGdvxzmdhsw/bX188fwJVjKwb148JuOrqw+vX51ubzz85e+/cAXBxcXtxurDXbd2WVn06OdsUe8WrxwNevbqlStY9w52HWa18uZQ+L33cYMgnjw5eHd49u13P1idi1K6ZoA4CzaKRl3GaYscgNJC4cxIL3dH/dqanxFTmVE5A/StiS+LQQCnmerVaQGseWJSTI+/cEzS8cm5cyEF3E5zooqn5xcuC54Rfavtr2wk7Siqrq+2A2hmBgzt6758/OCuWPGoh9sPtwJx3mBxhGGy4tQjAfaHxrAVa5zdQpZG0xFF/2GpL315deWkJkekzjhiDkCUzCnpOArsqL2iTIHs9ejV5Ldo3lYEZ5eoTn+8U/wRPBMORcMYgBNjTCIlR/R0VMDK/currv/lZ27eX4jCDctzCGmRfRTtMhBR46zVWTaouGqeg8qhWUhiQsCxAbkg7kvvC01tabB0bk3Yj9P6RSjB44iiCDM6YB2NWV1j84bybVVwLzJHBTWs2F576HTd1knlDyglL2HtXyf55wecxSSsr1pzX2v2JJimsAvo8uzaDmudLHExDAXIaNFr4Qg5nE9tKTRZUTcDL6zOuuKUOb5u6tQDv3q6t+ueL3MC3NTb1xfPf/lobaudY0enJ9s3DrvadPsX3+sgoFovE4YwJNUuFGtiBXbmIzAIw1muSDRn2xAVD5a7Q0scG58JH16o1oHUxtPiHifJAUJ6ioCBdbnBRV1BGUcYT7wLZt8jxp9Z35q7VnZatDp+cgVqWlvw+bjeaciwiK4XeubmAwbUWMOdVcAqj13b4QV/QhMVqbqpEZGEqOrFk0dJsk3CGitlq6bn4C5iRyYWeUcnmxESDnBz0xzATWm/FQSoeADrItygRGc4QBCi0cWnO4grJV0iAUhO6x+eESqnamu4hyqEwWl4wj7iz51zKL6uAN3QlioYgEY/6yfHsErGMbnY4FAXk9CLaTBawEryL+ZQ/mm8YtrSMEU5qHnjRS5IABWGAHLL3qWozWrU+w03VGm9c2TMrT4VHsG6HkgLJYJMCn6DPZzvIU2brlH1Tvcj+CpNuE0Lhx7rAggCyRodqEZZfBw2GBfbMKJ44cIffcU6MRMGhMmo2eSr2iFBRYnX1zCKzNiFlfVXB3ys9qquVOoNsZFgleV9+1NcU+jSjAfwvET1Rj5//vHqwmkWERCaibiOaxwe2setxShQBhrlwcBeJv9S+x/Mz6UiBNVARMRUWi5fywm4yip+N4E49QyPZBiwkRqGoZ6AKjelFPcUrOrucfR5qQvYWN2rwbz3FQ4qJtcaTNm07s5J+C7DMD6NKu/yCUIEKkq7C0qlDz7VNegsQgl+0o/4odYfFeCnIv4RXugv4OQY8Qwak1xCn/BTwbCwAlJkqtIgDBlDW8FcOi2D4ZAhMyH0E7q9rXYUVhH1DUagsgQLsAsKF5SyekWm3ruqi0fRkg1L8XsQQ34PxEHRgxSECfGrJCqQTicWZvWF3mnDFqtgaYGKunAMq7JIgaV6Gi0v+pctmHJBW9zA+/NrPpFT4VExnYChyLdlZrzFH4oNq7zJAOJWegPVWhysGqOYxfYcCj5QysbyVarC/vYbagkOkuIs8BaNX7i3YLAcNMSPdF5bo2OuXK02TqnslrpWGUh5W//GZFAzrWCqGZYhN8yA3tQfZTW3My6SkST64VUjmJigPdA2LfoQ03wLT4wabfFXPF30lLySmjoAYRilD+/QBo4cMlfaZyDjufHCMAinlDAJta56gRAicFBP4zT4acyus7kdLff+gaPm7db9dM/FW/y95eTW2q882HZfpy29qxsiZm224MHq8Vuhgt0cZmPtc3D3Z6fTgDgDGmhxQ61rha2q7yGfeL2+ShnunV2+v+c4SCtkEsDHR4+3DG06w353b9cezx2bBJ8+NfRvtsEtVJtbD7e2N0+O326vr6yvrB4fHj+yb9dhlxdXz54dnJxfrK1tOs/n9OwMqMura4PlziYSoVm0c35x83DDhl1DuR+dOnJ04W7jez87eGpg529//SvahKdWhOkL4qrBVdIvNJypErhZrBzvmm+deM8Cqpubv/+f/ee7j1+cnN18+YdfP/3qhRP5jKnq3GQPqyvFN5ZI1cyvYAhlyY0/WH/2+MUf/OL3/sHf+9MvXnzp7CXHvPzJH//h3v6mFQM6QhD++c9//sXzr66uPr2x1/nj+59++nHU27lDD54/efTF0yeOMyImC7EcVvPVV0/sM7b047vXhy+Pz63uf7S3ob0W8Jk0YEw2MwgfLcxA2xdfvrgxX3N6Ru+ePN6jQI4Sevr4wBD004PtP/7Db5yJZNQvi+jeWUEP1RAi5Bw71nG6wmkvtHwaaGhJnmi8InXIWWN6iP+jigzEflct0AygK3nvvvE6nSyrSKyHF30zLc2/RfXAcSQGoPRNMFwUCKSIgZ4azg4bK+fb3cRXOW2zded0uMkK0TbHZU2PkJGhjePiOWvDihj5OiteNNi2c/hm5qdpC4Pm7HfUczEBPoolzmaYlc4xtCBGD4KpcB6Lc1N7kuUIxOl68iHcKluLgazfxwbP5hJXH27M4Znmvlz9W0uFfDey0Qts17mDvFfn1x/OjCLUzBuYWHno5MSP9xvj5wVZ4ehKp/3MBfVW14g1hRusp+ZwGudcK/N3fpF2vQDovvW7WMxtxsFaJ4GIVVGrN59skm4ZkCMHrz/YIfPB3o968x/ckH3Lk8bnW/e7ibzv6YkBxSCcz8vtybNpCYEcrUaISD15XLBK6LM35TWsshLGfXp2sPfNkz1bY5xdZUfQ9uZDcxZueXPxz+HZ6faDe9883hXD6wNrZpxfibvWWekyoJuDwCisng+Umt8hWQ6VFJCvUq5PJyE/hpgcHdGMx/O0NCLjeUGgLRSlXEskkddunMWHZuYCa0H6YL4stQr9V2GfnHsQ+yyQJ1xeSuSWvYVAMtUGxIjCIyn+KUDZKlarFfJqyZFrsSbs9nWK9CI81degfn2bqbAwS7pEjSzIxY9h27+8Z8FrLSctkE0q4cgQQ/qekmZ4c09cZeKAXyoNZm+HJHAgvwxFwVMRr4ZjoaeAOtTtga33Ypgzr8APjRD/3KAMpeBP2Fo65jcadRdrTpAjYFjkW6mJywEnP2jcwRmWKz1oB2ScTYamrjrlM8UBE2jVgU18MFHVsAhy2FVvtZaJAhAOpZWNM0eTWuICSofR0od/Q28wR0Y1rMtWzN4iE+0JceZDwqSeZGz3f4rELI0gcfidJqzcd3aitZZhVTcDD+IMLAfSlI17KVJlRxWXKjCkmph/jKbhVTM1BYzgZPBQHq+nuKfyTPlFhbwaSoPF+4Wl0lnKXQAQMsPDIAepSut9iwN9K/6Mp9gzEFLLsO1Vefv07u7Rm0FsSkx5uSo5VMgb/coNFhAZNIonocPzL+AWEkhxsJ0KEnmcH6UuV99D/O55KbKgtSTOu9T4jjNTJJQr4r/H8Pez0BIuI5J53SufyClrPylE+dtHpea7SN0b3MTEWLQALRaNxTBUCsZep1uRM5kXj1DmqJAKLHsAO2XyKbOCVbbABpqdV4OX0wyDX9bJpLIQU9HUKR2XrRixIkLzFP7A0Y9QTBg+XIwvxWTVvuBdjcGTMMFs+fpacWkVLufIcvzaBDQ1QJMlWpZugHLAGl2QDpJnXinEJ+6GKYMMqBdDEqwjJ4WuKskLjXA2yWXiSt12CpZp8eOUHsyFMut1IzfwqXeGEUGAx/kp0ndvNJYQy/byevnNRpVKYckxhFzyKZpSEPMpskU2oK2caaEr2cYS4bXTGMIZsIbtJ5PJBDXEw8oNAjUJ87zoRo103Y8GnxaSw8xM/awZ8AApDBh0Q3KyNYYxrJMzlvrcwZyR/pHIrI9UdlzwrO1Rehzl5Af3dw1D9Q26UuBJpobb4kDDWlM7kqb5EQfN6gOr7Q0EbmoELmwC7nSBT4dvjzc39+6/v3f4+s0HFwnPrC6pIX/mYVat2heE2QioBzHjKDOvNRs5+OTOQbQeccO5hx8Mjrpl1h20Z1efLm/fb+7uioSuri+2DFtv7pgE2N5aLRBcvX95fcyHGv21vXB7Y0sIvrbabVCvXr7S2T29vvruhx9Eer/58SXlOL68Pjl3+LsrJNvFa4BZ6PfLP/r5u+NTDbLOg8Hdg4MnTtqxfXlv20D5ym9ffi+0gD/+N2BKgWdGC6qx6XfiGPuVzWpK15eenV9u7+2+efPqX/0P//zNq5dGiEXVDrlv8clDJ3NbeWVDp26Ua88KZF0kRtvE319+/XX7ODOCAlN7LQ4e7z554vDSjSdPnzgk/t2r145h+e63P7w7eqeBdqrP7/3sG+ujSNMeidT3w4fd7c2f/exLi9p1nIRebmz66qtHDtr/8Yfjv/nbV8t1qo1sfVi9urhB6fbuxqMne42Iv7f0f1tsnf4/WH32/JmurJmTvT1LgdaePz042N7aXV/b2dnc2ek2AQ0hVOkhKRNztjPyHhtevAqzNZtk08TKtt3eWUBt7WIL2Z8Y1vyfi94u7Quf67Q+fTq7wKWO17SPlvkZFCdiXssgd06oRqh/+sxe6L6C6QR60mDHSsEFJuGQUYt+FKS03EtmblRZvAIPQT+YGXlj/NQfQWyKGendu0OXexFkNiTmowTh1nOBNMGMh5FVCEqUoYUPBRfNp0GD02vNzxzbUrdnhgca3YdJS1mMmjdOycCokCoswAXeqh7sgIxJHprFdsXfQ22OKOvVxUrrKGMuVHm1T9AEzMyBzJZQ+57xGB5qlP+BE6Fkd+lYm3LsexhX2YodEqxrpFtORQXU9si0qgno2uxC+RubYux41NsXhmu1dGxnquXWscAzRGq1EtbV/LUYxoxW9cLR8rNxXINk8f+qvvfZ5YXLwl0wYebUZKAVdztpxb3zyzO7wH/17bsfX57dXrx/CE2nSjXpikOxqDAumN0PCH4upQ0VcOU2eTgHMNSB8WrcHcxzqjSAhNK5+XhL3Djm+7S/dDbPRwNIch4KmZOIIjVYMmpkIyiWTcHSBxrgNdBl67sHv0dGuYUAYkN8z3uo8u6Zo5B5xvKhWnQhKyB3QVtDOeOWgUrJ1Q4YyJBRRbbmz1SaYmNksDUWC711JCLgcwhb93saCKya4nXSwArfieDVDeTgEb2KqnShlJYXJctcz4TiDRrZQu2kzEv+AE88k2Zmg7GDkXgboTEzOn2LXTGmyhNUU69pToDCqbn05Tk4NCpEWj3LphbIgeR2fM2iFrYEejE0MkLOVDTGMrYCTvkjatrtkUVwlW5AoWY0ElhTLMm6AVQdzNE5NN0RJZuafMJrSOyhoTE0FL4PkqEaKxQXeFRx+jbQ8j9KqyHHmeLlblLL2FI5mlh+mQaGgp6XPkNVT1O+tPjgg4Z7I66y9ZEnnY+NwC5KPml3uA33P2upKqYRkzlo452VXR4An6dIhlLIxaSeAVafrwszIA/NIXQwD/fIjznhT/9HlMNSnJHoE3bVG911QuTGhHkL1PhGAhZEDZDhQ1y5yzAS8WUoBWfwYvVD32TyS729GuSjovQ4E04DcOFPzwvi8JGll7F//vr1/1OEgakDEEWGV2WVKZMbCaYXirQ2I+56zD/dAZMx8Vdb7KMHQUr1ModxT9U9/zxoBQePQS8xlBeEcXwAeKw4KjUey3cqtDBYwFdT1ExNJg14Nc4wCciqHiKraoFW9cMX6ctn0SC/o3VoYUqE5CMvNOOvkYkUMfT9XtQkhAbb6OBfBLh3yrC8D++wnR7zFC2ch4ZEX/2mKuCP76v9hg+ipooK2qbGHVGWpSdTbkggc3gR8g2K+Cze03hipcFYECt/OJedzPAEr1SAHGAg4aXfi5zKPDYpm2fNkAFCmVJ4f3qAUj/GFNUiJZjVHueGUXfro+J5iNCIcTdVFUoxfgZ4gkAXAiabUU0tnEGpDwLT4Xl71xTxsWuH7yhTQUC099R3v9LXhe3JDTNylFELLFkoXibZ4O5T5eMux/oU0N7JoxHieOOJXhChGD40aCpWu70RFgAHfQN5Du15/OzggagKSi2Qt3jjWFimlKPHuTMLuM9OzoUXyooCzK5inOtp19ex9dPt5SXltd7i8uLS3uEZgTK4bITywcnx6ZE7os7Obfw9Pz3esTZl7YFLTd/fXDzad3D/FsUVt1wcHZGUtSci0x0HSnZ858fvnXIjPLx5/+bNibDWYhusc43ApS3CUYPA2rO11fuPdzbfX16+e/Nmb2cbis4kPXfvwPWty2Wd/HN+dd6+KLkf2leqmZwAsbCxRSMxMvn7xI1YiqMdl+n96rH9uj/8gMrfF4w/+0o8tLXltM81GyTOzk7FxBSFRiw25ZTP3f19a5+QQib26Qo4X77+ae/xrpP7zYRtrq3Yw2Cg3i1r//rf/vn3P/3w7KtHf/SHv2et0ZcvnlN33acvnj/TE7B0wqSBldcFoi2BaMmN6ODrJ0+sj3/19tylal9+fdDBqUaqHrh2raU1TMXGY5MzyHBV7eX1OfmJllSH0hdPn2H47fXl8+ePnz55JL7ON5NxZC861DRdCTGlxoBW4gwM6FKBuk6XaaAbypPV4BUm8d4SP2uua2iv1iGeb7n3vqipzdb211ItSToDsdtynYdr4uQWD2TRPg6ctdphohLMz177kIJSfnpoYVLW4NAbX4sT2oxbAw89L0J8RRVNP+geAE80DRHWVWh3llxFiffvG7iDEetQuWQusJO7WvhuSc39FqfMkEecb3jiHiUEDT5ZUPfoUZBOOkICYrgx5C7xFF7hGDjdcNPZLKYN1Gt9kWhhiQILZSZ06A0SRHcAMeQ6N5ZQ9APKCF5DxUOMnX+aEzC3dzeFidBoLGDmPYZQuxSsSL5v2ZW5AHegdS5QOg2UrojbJ5IqiqW4J9gr4BFCCvGN/qwzhKZi8K3NB7nrHDLm6YbQBZNLM7eJAw9evT07PLs42F//cn/bnIW7u/WEfvHlU112C+FenVy7o9vN4e7VfLD+0Hm4hqsSQuKoqeTpeKQ8LL7McJVETNZVyQhzhjZeuyouDzzEpyHylyuv2Djr6CRZ1YpVZMJfTxOJcr4UemHA51c5ZzWWHzun8to6H2Jdfg/DiuR8BVXMWnqO1ycTGLbl/1N6FURFXMpcxm/0PAdYexVREL0b3Cs8QiwgslKVCANQZc2zNQglYQLBcFNcNoh5qAFNdvYcASi5BnHYMnBoTAXr37DdXkM+zDPPuARK0NWWUdQcFKpKkLH/C4EAQIY3QKOX5TEXFCsC4uuwOSBSoAEMUZEUCFx9Ihix+jrNVK1P9bLSnvxXUQ+TYTjdFAfQPSNMZuLAMU1ndE5+D56WJUbEp+qhJpervsE/0nxTAdqYGzwXb54Opw+xApTyVFjZUCpxlErteMc7JUpI3LEmhk0hCA63F0YN33AmtPrcqZBMilOYpaJ45SdSU48hsOcRu79xKPhL212m6pK/IhFeFBSK8S1csWF+96BXXOZFvzz0tv5DYCNtQo/4B05hZDDmP9pi52fMF8SWl4Mhfii+0FW1d3UEtXTMqZLQuQvMyjRfy3H3wZCposByACqxjMkG/A78ZzgRNTQP1YGqyCKgpXZpCWQyjXSitkJ+T9ULTFV6uBMU7Z08sgW3X30q1vRpO0mlLIyQFij/oF1XdtjJUCtEYDM2sBTAxAE1CA2blITToFWwKdtUA7Mm2io1eHhGVboO6ORhTCOt3mvxlFLbmHBuTlOkQWWo0u90chQiFLF1ZtwCjDUJKctBwFLc12DNdKHCU2MYVmqGyRSr2cPdWRE+NVcgFoe+J7/S5oV1vqlLqt/Z/PLJqpMJlIh5tCsEFlZWH4QXPAI3PM7ptK8NRbVFdWMSscqYH1sd81YJ1uVxBo3qkN+/RaLyLy4UyaCEwNAFqWocKXpVVKf8vB1+R0IgI62xPjwSHcoukiY5rRJ4w8zpiNfSwEG73pASfNpl68g8BDbtY5GGjXRNOwKFKHBFFT4ozU0qOcrrMY8vuenCyZ0zvRO9tyPQwWqwLMKb/FiBnJgZj6n1CCByclWV49R0IKt6JtcW7UdP/EsrQiV6fQYC/gBZsFZNdTQVtw+v87/Xj4+OrRwwXur+qsUnnZ0IuL2yyGejMPdBx/+hVu/AJgrLCqztJUrhm9H7qnCj6tamc2B0EMTETr9kSzcXXWp7IxJwILpY5f39Jw5LX723b3T64eoXXz/fck5Id5GJh69QYNH27sG+BSAnDsj/cHt8enx8fC7Qg6wBVIze6vJdt+peOntHVNd40j0BfQGgUbwff3y5sekYSvf/6iBcuLgAuY/2tt03bBGR0MeI3N2mSbypA58o8dIXjQSG00GJWCYuwmf7GTQNbiQ4OHj8f/o//x//zt//E7t/8dFYu0t8rfvf2N5ZtBRLdZPsYUhXWuS9YpeOQO3o+PDd4enjx8+++fLLr7/8igqemDy5ufpH/+jvP957TDNWPrk4aePJ3u7Pvn5xdnqW3Ca6Naextb5uQNR24SfPHz1/8dhx/vs7u6K5B+uffu+PHv/8qyevXtoGIHH9xfO9tLB17dRVmwfHFPLgyb6h76N3x4ilVqLG07MTwSJpHr89Eu5R4A831xixqIna5YRCw66jPFwQ4eJW+jbGIghOMdwix9pL1BR43d9WeIpcC/GYBvVNCcFjGaLkdYHmqC5ekYvuDXxYAlUnGFbGG9gsQkYmjiz6p1oT46f83qpi5BWZTf03fkkNCzsWBBbFLgzqaP8Ea1nldFPBJOVaTWEEKgAMphxZalvtIEpvpXDFAMJd9KwFoCN6F2cXZx5M+OCGQMdPSmLVoDIIiDqL93kwnfy7Fg4o6Tw48j2he/BSseGAVl5ZnMYYJaMCGmaxNEvZkWibpVjALZr59NGRWUhQdceY0cVZqiTTzN3d8iX2FeB2l22NSrNFzNFL1zHBIxNTBPDJPoUmZvXQ6j6NtA3cd+lBks0h6dXBS1sn9hpnfs8Fdg71Uk+nCD00R2d9Zp0C0hHEZzQ6LMq4VOPJ4521rTW6eHh4/MXj/WemoXbXNnfs8b1heBZIEI3pBtVgSNwgpKaY+MMGazxnRMXNeJbuSUtM88EihKPO2wSXvIdUqaXHln77m8aWB5bjCPneljDljMmLaub5yqprIR0ktfsOk9GJ2kdvZZ6UXG6VjsLAkuYpNThmbT1zVdOcVb3Om/EOikoenTtn6qlP/nyq8BuiEQuTmSiGC55oxcDRsxrnrLoqBc6nN7VymA+z0eFpjqZ2kKExM9tliraICtsKg6b2CJzUNLY2IhdXffUr8ucKwWGKKekTUb4Sut+hN2DjSs133lKm2CLrvPK9JLXIFPJFn4rDaTxEwkX1IJCj8BiBI80KJYg+UKlquQfOlMg8VeNt7kQ7MQEGraxzPXhOu9dZZN7KHGHDCb/BHTTGKwV9mD8SRFqkyzszhD2kA/FHfUNPnR/PITBTnXEKqr638L5oxHdgFKQTla3ecpVRmVhRWohxE3eNtarKIxN+TsayekBI9Y5xBtf/CQjnryIWMeZ1ta1q5LfkCMNprQZe5MgHLAq8BbSE9F92WEhc0qM0xD4bhQzlX976kw4tGCx/Y9Xdy4WccZtVKioDubKyRMTy1B8VaAkLUOujsuJgLVmGV7JI8Vn45mUiqGQJ804ORMXQIbMqMEiGxa7lnzrTnKCN79U6LJ+Fz+AHcvCb+ql7+Exyr+or+QeN6BmRYccIYniWROrIIgGsUPRJmoFcAJcQy6DAofRArbQR081OFl4vi9hEIMihDZMH9kvVNW9E4DdbTwVnFQ079VH7tBD8cjypRDzNHJfqB/2xtwEGJfY9KIX5HVaxJvRgLo00IJxMPPS1XOBqNoYRMTCVSAN9FsSC6VlTJK9iCkjxjOMUMewaT+KfEtKCXhiRoWmDrHFGRNVZ61lPYH29JROKB3DGMxi2ov0UryTdCvo3hjSQMziIJCvJowJhO35cQUWggNAa6QEEDIigBXBIKNhQsTUejfTnFECuotQthfAsb6OLVQO2LYM5pnR5dDEFSF75u6SydL7nWc4S8vtLi1aJQI9VLgNg6p3mRDes0TWZ47LfyLQ6eQmqqmqmXJLaXPgw5qNtk3NhC+RIUDWJY3rYQyKW1i8iXvqTxsYzImpEATHLBxz4O2qT6xSZ7T+ynbL9u+cnJ3ISktt6rSq2Wvfy6sNVG7tx0Eihe3wtie/m2k17PdOXLl06PDoEGEvfd8zrqgVAQlGM9Prmwv7dW3Mt+492nn+xpxvVOOv9T1v7W5huh8G7N0furDWsboerUyvp7+nJpS0BcPv1t7/Zdg3WgzUH4e9ubz8+MIa98u7d6erm2slVwX987k54x56svXz7bnVr4/tXrztgyGblC+O7K3u7LjW6f37mmP9hhb2qmy3n6MOfCvjGUNOkaZvZQsqcMtQHOHfSy/37X3714me/99XXP//ix5c/vH37jnx0fp44Akj36GEn1aR3QoFi1rSOlHELr13sJeLcf/Tom2++evH8EWmYu3A1r6mnL548ffHiq/UNS6Lsl7z//vL86dMdfTBe45tvvqBteph2RDj3xUJtEx/fPHmys73pGGwMcf3T7s7m11/u/oM//aOr80/HR2eP97e/+eqpc5Ccc2XgmXTsvHy055Lgiu/vbTu0hnTObGKYC2739re//Nnzje213//jn5OL8W9aQlsW5RcGxh3nxluQ0MayHBTkKSRn4ZlZkLakiqRe4+s9AFL0uu4WM8PTjjaaPtonY/js204Gey4MtYsgZ+sFfW8wfpZtTLs19s7TUn1LaPQE8jItE9TFBbh9RIPSmGYNas4+b2GLuZmohvPXtA4czDgiHooxml3MgvJ4mu6GQbIsA9Jt72F2lrg3ft4N0DJm07URmcxi13mRToDt4jxaMiGBuNz+c90Pe0hEM6Y3Oszn0lLgjL1dB6AUBzV7E0AM5TOEQtcGevWlkU7NWpIY24txU9AHElCDTJG37QzU0E6AzOTj/YJumU11YY7ttvfhg3YdFWubigNyes4kNVMBiK6yVWR1VjrKcwOUmUURmlIQt845C02/I2V1lZsdxRmA4U+sUzz3ghUcc9NK6ykAveWooOoV3ubeH6y6hWPFHcB0HoMduurK8E8rZl6ePnYT9OqHi/ONVaH2muF/IwVrm2ZX6u4krgZKO/uOdsUJ/moCTSmoQD7JMkBOkh3CDFMyyPHP/SGPPHVyDBPqRy6Np1OVWNs7RbzFlSmYI59Whh7o5ggfk2oRbQrhYVQaeiRXmJtixNFq962nJbQCNsH1NkfawIE/+XDfyzy8q00crKb2UPKQTsCUZ5jngd98S99qLxpdWtAHKtUx95L9cIk1H5puXc9KyZ+MluBvHmoRQjpOemYfC/LDCW8UUajaZ6kMgKoDSHUDMHOWyBQlxZwQiJYlvbLpVJl9IltSu+TBXYKBOzVOD72DnsoyZ6rbB5nTqUtSob+AGMrlC+jMafj7uUHMfuCzQAvYMgK4UBF3oxiYqTC3k4ACo+DUMc/wkwWx6FrQUHnjrZUldLhAxp9Mv+nTOLOoj8cc292agu6vWHYLhG+EpzLRH+5LvV4MGyuPsbCZr8P8qSnkR5T0NzQbiEQGCAGBAfEEtY6fsoNwNhcqs3sHSDognR1+Bh6T48+wMZzHUQ9hQU0KBZXklBGpnwrEoTDCE8iX5046gam6+Dh/FtVV41LLUJto/IB+V/ECN1Yv9SmZaH5H1IAcTIJ9JzSVzk+YxI7w752ql0phAfNYMaTC2c+oU5yp1JAg+1JTEKr0Ln15UAXgkzMOY3Ci5ytgGmSwB40cexnkVI9/E1OOlkkEKzx6Go8w/BuwFQGEf49zMSZLkALe1D1uiGhDYcFjITs5AcvmPQyKC1UYR0USPrjahcQ/3JEEq98RE+qRixX508nSL5ioZqhe6MyzwE22EAuFokaFSdSnzCFXhgiwy214XKmxfxKQIMfUKH5qEYtPiMWxO/qj/c6bLBoZXNkGR4Q0ujZMwJe4AZpGt2ZxEAhanxZcOQE9rs53GbyKyj6NHmkvJGIKcnSrUBIyDUL3mVKUPL0RMVSRf7FFrKquO0HAynRqfJkVMqVjRSEFaVjc4kwPeuHHiZ+RBX8/0Kj68ZKKaFNrD1MViNVwJZIipLtPTJ55JJB5wMVmQifNDmHCgrzcfvsMN6Igpt65ErgjQntZO3dXpKgLGnfLr++qM86qP8MGgLXiKELy5sZrxy6b6FiqaQRIfOq4mPMLVe3t7d1YsLG2zu8zjm5FFbm6AFiQdFOQJOWrL7/WVNtVuC6qGNbghXbUILd+gDFCa/wpiwuvDA7Tss1tg9obLvhEnBQa6bxPlu+YTgOrECaws7NLinhth+7q/YODA3w16r+/u3t5fv7k2WMD7DeX1y+ePLdy5N3xmZ0G1reI5y5t8N3c6PyXLvj6aKGSDumLFwfGFrHk3dEJ2kwRWI4uMGpG9969t2+OSMaIskLpQwfUIBQWSStGdPKDfQ61b1iftxy70PSG/+3tm9dvZvDo/u7O4ydPHzuHc29XbB27SBPPLbsmSuJz4wFVUsvZ2dlPP/309vVbW5x//ouf7x0cHL61i+H213/73fn5+YtnT6+7kvnq4MnGl7/3nM7bp2uhuO6KAO/28uyxq4o3CxNd/GvB/eNHj6xf2nWi/vYGJd7b2zdvICTe3Lr/7PmOC8LevLMk+8pZO2ZI9NwceM/HUQUnVGRonWDbATg6GIpRrXhiWcqnT6dvT37xB3+8v79rx7achmnHStLM2eZbfI4J8aZu053fGAeCjal9vqGJshTYh3bgLGeiW0gT6SjVZX009vT80oomkbS8rt/q5jg93DmpI5vKBeUN6O3Yei0ucamePlc908oD3N/a2ODpYLtseU+m5KtTDaE2n7jT2mmYec7s01HiBF+XIA9jPVietdaw+wTq1hqcdtDHPcePFohv2RM8LFLGCIU+BXVgHfVpWxm/sr2xobBWdW1tA48N5qNU7FskV3DobxrEsaVmc8SNSbbKzvZNPLTUBw7nLq/Gzg70sc6u9UWCPUvtsne+OsVuNWPMTNupe0fB6NGhnTikqRIiBug5Bv4wd9eDdVPthgScBLUGxbRaKFY457U7qFRdPND6Q7d3z/FoeXi6/sFN8dZkXl+5nK9QkwOdkbImcOgS2WK6CbRpGdp14NoPJ8paK+XI4N//wkXba0enp3rmf/vy5PlX38h+fHSECrvdb6nkub34Ov86yYX+OFZvmUcl+zxqOoNMrIOnR7+9kkhq1a+jNpPP+bH5pDBRNoNHGtzyTHNY8fw5aL7Lm1rSEtzxuwiPTCmUaDv1CJh3k01lMoOjZRrlqUBuedp9xcs7NaoE2kEFsJkcTUOIkQsIPqgLwmes0mSYyx5Btf49gDbaiwr15+EXVHBjfNFgVR7wvRmXP5HfZANkeBLVPtBG8mT2uJhPBbEDkdI/Y16QTZcykMbrUie4x7yhtJyDVSFHDGqAKfC+UypkTGMd56tTSngra2ArmjA7PkioaqCMR0Sp/IMhJ1v+zzElCElo/svgUcEaI7m8GsYAoucoS1zJw6YPfqZV9a0d5L6CgjS4Kzdg2aNwNwlG5zS4AA7YOD10xhwFF5IVI/rSF0FJHzKBZ24l1w/hprS/IMa0pSK/ESwFw0buVeiD/pig6SqAlGHisVjkR5HqokiL8oyUQk8pfBi7yBVrnuA3VWTMwCoVz3xGwQaLBRccy9F5M8KNMVKCWI2xhVjuqGs8lzzjPRSCNtUgWT7w41B8rsah2rfAgOZH4rzyMMpceF1K7Alk4ACkCKMR4axuhXqT8UKtGmjCwKzhrFSUVunkR778cJloOccrT2+WD0hLziknPYA+fQ1CL6dSSC6YD/m9i12fa5vvNT7yNCE85bxcCs0DSEGISAo6KjI0xIbCZqRXE21b+BvGIEZaWfrdspYxiRArSpPsU9q0rLJRCCzwrxcjh36Nc5SNYdCU8qsIrqO1gb57zoeqV/7cv1BmNocNI+/EGdGN6mlNFhejZNjLraAgTG21ZMm4D+CGkeSmR96r6MIVnjULwPgWo6X7SszhGc3D2n7f9YukcxrS0dsMAVc41gOAdhMkaE+p7FkmLMRh9qZajPUqn1PrpmjAp1PeNyyluiEbWXdeVXU14YGVOS5imrwsEKXeQqy1B3xgAW4tgZTFBsPf82hb4KsdFhFZhqioeUb1IBzdQZsWxXk6EjnBTGlUXuaUmzi7mqDZ4cEhf6rSoScCY6C4dNxHTCKGlCBHH2qAjvuAuSd4KLLoEjbhmDw5l4SVr5GyWL78SMjCoQcECfm0d/uTpeFO+jdqLq/w3XbyqZ2AV6xsOXx3bFGQ8MsQLphOY9SKO2mHWzYyiasCfkOt4mOoXpyee4j9GG6pAVRdF+ryJns5nQq64bBapDGL+P/k2dN6KZ80CQ9/+ae/tBbcEOXjgwN0nZwdWTVOga7OjpxmfrC/9fbHH6F+emkBztnGenp46Uii9/ePz4QnQr33hjUto9jf27q+vJz2bM3vRordrH5z7UyUXWvirw23d3UOJMU9+GqMXHgEBzyhT2njnQIvGh7DS+9QFNGwSY3br798/o/+0X+ys7Nndb/VKcdHh0iro9H4pVMRbxYdwFV9Dpw4sdfh7EzPae/g8frGztrDzavzy0dP9w25nl6eP9o/+PqrnxX2vb9yOL9jQ4Ha3tkZFQ6tVlt9/Li3Yw2VzeipmLASWpRp64EumADOXcui0w1LYGibfpTOjirxBZO//uoLC0gOj9ySYKX3jdZXX9cD5RAZG9Df3dthkN//+Pry4v3l2cVf/9VfchcMk5Eo3lENhpRrrmKyJbW4AYmUabwE/rDHNHTuppngbZzmYoMzqUJndfz4tmIeZAT/vghbvIgOwPX964F7Ak19M0pHTMUkxd/MozEnnQSdFsu+RO/eqjofmAmz3sbEmYhEgboTeXyzPm3xwDL7gMDiQdOoq5Fh8N9gYZSolk4ajydtgTJPBmcSJV+6wdUqPlS0TkIgeWm9Sw6+dKamAbDCRu9Ydp0Z1mEgPOviuQr975pMBgMDzQU+jjdlYc0J+IcNLBeKDMRve28YZjTZ0Q0nXXFzDh+md4FJkToyEvO1w3hx8DUeXoHgL77BzYvaog+fnKWl47Fpf/39jmNPBKjThdDurNXJd2eFYvquYnk7hl0dzTII2ZB/mwfMOTQ32MI/H/tEFpXQQ+BmxqHl8H96ffzrHw/PLy+2tx9+9WLvq/3968tPJ5effvPTu9Ud64JcD7jvumwIMONzzsWucJ2Bq05NoUIQ1w7SstxHNknHtYA5uL6PLY5L7hu/N4nEkqPzGwJEPBIZ9UhCEx6FcvozrzJisFKG+pYV5AgZ79SQ2yTqnOpIXKLvdHtcb42FOoI+b73AxmqdOYowqdKisQr2vVaYEoy53OGphqGlBk7+CjeOlOtfsk3BsJLikzeeKqXLO/kKgOCALr9RhFI/oR2ZtSkKLg8LtukDPtYUhhh3BFNlhytRiPNErJT3IZwZqiMy1OkBIerwoJRPIwoI6mOzbP3hiTIa+JqQXdQec2t2/cXXDlHzp9m2xqGGyYuA1O4ToKEKvVVXkx11PgvN/HkIpOEFS74UWbaBfRATrDehlPxAmqYnKw5fYmo2NVyXuhTA8Ex6PpBUC+FpK4mOh/CtEF/hWciYtquXOcXYyRvxSbb2QslBovxQqsI+YHf+wswjFX35PlKT3TuoohQMmVE0pE/4ER/uaAIDHB7THzgvnAG9VCkBTJMrMNzzImaM7ik70lRDbk3esi2x5V1onoCAku4PVaJIg9GirpMsA6kNSaQAtiokxabhbSrn64JPdYfKkA61sb4ALJhWiw8AvQoOEuYrH1IdA7EMfRJinO3jZTUubU9Ylzho5OUCO2UkEmvZ5l/Jd5X3ehCe+jz5G5dK9rOQ07sCLYQPyXF4/LIaYddilekTN4KlTCaRw4Jb6NxRuzzWyoE9lVLkUWWOG9OSlq9REBZVMYIMp6qH14KNDL5VC9OpQ9EnC2iWgIeKJ3d5xluBV4UzmTWmckcDqzemiN8yaAkiIbOMltG0gQt63AgrSs7gvMKG4hL192bKN26hgQh1OdXWU0jSnr6iV+tbLNQm1xHGFE4eyycpjCYiJKWN12n/4KN83q2RkcTjq3Dq4qzbzuWhnVJkhD1C8rwDrSYhvrQsajgbr/yEzeiuKrz1slB4UdyW0EVh+fwZhwLpzz0TXIo74YGjcGpEREY/098IXk6qWvK5YRXrAx5dfjdoMTjwg6ApkcjGj0w88TtbUm44OH+pE7ABUmkQ0RBwIVYymE9edCTiHW4ZnYMsEnPTKo5YeGXtoiffSAgOlupADWTo1QwMNBm08+AXXoy+iZls+xW6UDyRtEP6N3f2l0U++g7WOMzQ27XDejjbd4eHEIYmGRqVd/qH1rv1BDUZa44kV7lT6eH5/uq9I2jODo9tA7BYCM+ePnvisioD1UZMLfT/9m+/vTq3jsfuVcdE6lPcHjx55NjHJ8+eOE/kzcs3Vs7cfLh1v6+AyJJ+AeXh8fmbkwuctYSBczWma/8r+jRNBmQvLs/tsX706NHV5aUWCg5ORLHruCuBRyBYh290iMZC1ALoGeHtcqsRXP26UewaIZKmb0aAv/ri2f/u//CPMfff/dt/8/1vf/PdD7928w6BNYY2Utbl0+mjUvqlWO10LiupXArm7mHXI2zv7Opf1Yg/cHbK9Tff/P7v/d7Pb2+veAZnlR7s79vmoNTLN4frxvNXPrpfVUQsu+PknQWkH7K7a4fG67OLQ0RZwa/vahJle6e7abe2rRrqpgOnKT19/JjtGIrRJXj+5PGXL55Bi6oIusjIVkwahE4HAVne5Qyg1mZcNpxrw0J9I925xmFrcjAqBmQOUvBmvAddmilEKdMEsE0ayoORuL+0cXzUmAbvJUm4w4ZBo9xo1AdYYgO8pXScqt6V41sb4BoJjVVwpO/1bvAgNWeXhqIxi2K1UD7H59lMBlFJokt3TWkdNuCLg/MVLa7TEnfoEEz0ljKx0OiIU/pDxGq1sQR1G2t13SMF4c6pNO9aD6dF0lOqBx6JUZNLXmkuoCVmy2nyTByLOthrA5C87PjsGcKEzOJ+pHlVW0DZMsk8SR5UNS15z/M0WqTC2XY5gQezXbEMjy8y9aDPr1ABzzieDhfS/XR32taWTi8GWsznLFI0y7exubq1bc3+vatbd+TpBBbs5mKgaZczY9M9S5CfNpU2MoVj96yL38BbnU6TrE4Dgo1+k8rNpH1c6bqB5ld0PxzmZZe/gMkWoOZAdKz2Xr08wqKff2X9/+bDTw/e/PT24kp0aZP01a//9ldnLgTY1qH9ZJmcXfKEGKAc+zR5s6ORaFKAEPxskEurPE1h8h8uUYjEJDH/nJNfdDRoPWa781BM3NOoqBe+VsXIQ3kM4f6lUBoPedRcekL0e3GqSpQ/gF6OZ50Ne2mjn/kzcR4X4mv5asvGM4eGsScx5TICBQGaUWDnPWUwJTNav8wkQKehE36b8jAlDUf+OnUKs3pcAMJBHnXTQ78H1aIU75AgBXDYL2yJk5LCG0MLA1K5hUvTxFByMIEPUzn9r30pEggNtMB5QoJ4GHEpLaOEKr0FkLQ8SFcEHya6I5eA9bXsI4/AIrt/U8/AD68+i8AgpoaQL8wYhO8i77xWzWid/yIeAlN1mrKkD22++odXfk/rWJwWZNUOB/CNgKfChW8gRbK3CWU+HiqQpcQ6D/is1CQOYnUVah3Ix2uk5zACklHL74k5lWKMgFsABVf41dFhNYKsBtIHOY6M7iWUeYU5gPtEZvUGElcIZagIMV/C02fGcP2e5/7IW8VjHUpGNx4WSMQc6QPLF7XJPro6O6l8KcNUmu5Bkp6z9giJXWnCfAYj1Uz5OBCO84lfwZkUmKhi4TcA+FM+r2P68uA77EJR1qlnXigvT5+FnDuj9nVYEYwyj/JPNqqyCCgmxy/1zZ/lbdCm7nAY5g/XA7LkgkRIL3KMstR+UkJlARLfpas8vPpVNd4TNmFMlbV/dMmrhtJUOhAjY9w8uMOutFme6hiegjR4h2SAY0gEpJQjUZAaNqjlLMedGMYbDg2DDdBLvMiwZw4rWw9MlPTL25FJOAvo43v1evtZVCXJxymMmS1iCtWFUVE0bAnunfhRkeUL3oYJ02kJ/R58FiEBqZzCPJQket/IhMO/xS+wqYKJt8bapdRiVhHEFgNIHjKNTiJpRKPlahY32iE6tKSL6oXPaBVxBD7qKsMEk9cdl8Z6GaAqBL4DIkiI53AHXlSraVzkAFEWSjmpEWAICL7LK52zG/aEAwhMKJHNwGFILj+pbHomq7Lgj0C9rZQoQk4s4rzi3sABHsISMU05XmOwCzGK58N1LXKMV0qNRsnmQTFT/GrBDXAWzSQmcOAmNJSi7ByVcyVwssjBeT5v3751HP+PL3/k4fYP9ozVCRxBamCzVS6fnBbaCG0HdKw14C2weGB98KUFP84d4fIQ4RIAAQZp3/vg2BB3gVmWff/gyQHNmCbPapx1aODmk6d7T54/e/f2mEpZWnPPaOnDh7uP9q/Ob7e3D2yvOz86L5r76LoAyHw6O3Ng4UdrYxw58+Rga8d6JOtw3Cv06dPxxbV7hi4vb16+fEMvXVtGUuIzEm5hvbo1tFznOI7izQRMet26qgmUYewl4eLkWFmHtzrq/fjk7J/+1//dv/h//Ytvv/3+29+8+tkXf/h0/4V9CYJUjYyVPFwDyWCmOPby7JxaPXm2L/JGuD3Bxj2vL89Eru+v3+Pai6++cM0ti3FdbDcjuQbr47VTRa2RODs+erTjWtWdizN34lro8vDLZ8/1jzYMoj62RcNFbPY+6JRlgJcn55ubDxy+To3XNlxGa1+vyZBt3QPzNggy9Lq37xq0Fsbv7m9tOLDdoq/LK3U6b9Si8J///JkjqYTQ+kF2XhiExQdKlHOIGu6m9m8YNsaUR+bfCpJqNKlEAxPdfkCVZji+O8WyXQGuzOZh3uuqrXdcv+y1KAa3gYddvU1aqp/JDrIXZIzDhIN/rECvNIulTvQtjVulr4uPzF6CWHDmjgjNWhtew1nA2qTN4jwJkRJO86dLlRWDqy7kGf82IOojRp6QC26ZEGC2iPD04TidcFVjBLqMYWJL91s7PsiAvyXxH++51Ay2SlEadgZDz0jIqOv513qNpi0hZt0ZSkjtMA8tKWQm0xxUiud/RuKwfJ2TLv212YP68w2yNbwQa8u0ADEbR6ku3K6nly62xir0RGkjSNwAPxGXGyGjNEb0HVqKnY3o8HU+JjHscYG0JUcd/WW/+401bBq1RKm4mwxlMLtQI3ZvdXtzo37M/Xom4/xMgbj97eP+I8vQdg0D6JB++fMXj59vP97fvDi5Onx75tzRW9fEmZV17QXvYbol55/A8R8OEMyR+kyj5S8VIso8Yyo3r2rLxsNT/RIxdVRsItTcclTGmtGCaQ3Dr6ZBYp8agpqbbF5uDtbWrtmHABhZT23lzy8Wz+UHKFivpoSSNHERkhf0LYmNg528C3o191MJlECrCaMJsFJlGGLigKU2vvpXn3hoGbrlueNH5M/qGjiE9IANJoD+dG5VkTpVd36or6kjIu5mv2fEJ98fZ1QCJZn9WSilR0BG7Mh1QSb2CFtrI9A3rFLxXZfjHg/jWSq0Y+EoIdzViyCJYzJxXF3g+OtH4lJKQXSwbHUO/Dg35JQLIxhDzEqg0RgXQv0zPGjI0dRuPROCADYRaCKlKlh9Kg51etXbGT30Eq6JO80gi/Yjyia/GqIlv5/UpvJgjNCTl8wKJaNsKvhh1K7r6QXFnH4Ap3wxcxAgHnoNJDg+hJIWYIju/1wL6H0oqT408qXQ8IVoRrKFcGAFvJBM2qAX2qX4jygPPvzAIuLww6K7UUslwesDW79Vo5aQ8AzAQEZNTNJzC6t6pGHU+8WIYviYZF+DOJ+pZyBKDNE47js8q2+AL7SpdVE88CIBjKpf5Opx+RIHPHk74GPC8HgRavhMvoQVnxcOKBEb8q7Bg7Ffi97c1bDUIznGTF3DnInPwZEE84pN/sgY4U7SNDvgsoRaj4hKJ2Ra+pTlvkuBbisuFjVVTdh0IGaMSW597wM8OUr0KqsfseHfgp/00Z1cmPwKzle5GgmM+9OuyAXcYpnVg0/yTx1yxJqqTe0gmLzLvPivgV+O6JTrM17ZpzxBm25G6YxkgNaUZl1jglMdQjjNNLKAdXExoYQJGVJzMdEWMBzyk555iNnKZJBpRHyQT7uLbxUczCvZisa6PX4WQkqMJcOUoUV+35AwyMzuqPs0pjHCHFDLEGe5y2T4nYC9oC0LLA9CpaE5OjENTEIcyHenc1ZjerOoYwiALEkpziUm5YXuGD5AZB+DnyH5YdFdbUMWOppoJPGQhL2RRRyZrraCwyXQUmHwQc7paLTzqlEVi6q9I/wS4cLXGe+XGQJcleLDe5VHXOhN1qBpc1HTtj1Nu5Wpq47zw27ncCPMmoDbq0vRkePttdDHJyd725uPHx8cGewnsggwxFtM2Tnut+/da1tA1jhEUZO1LlaFIcl4ky7E3PjTjaTXl+dH717Vv4KMBZRrhvmv9Tywentny2CiQdm9g30L1m352H/8GJnOjjx4+qQ171ubDto/OnIXwaa6N/Z2HTJ4fHyGIU6Oebqz8cXjnb1dy5MQbgHGrcXlYv0bqzSubsjHofz2ADj/Us3G+HGmjpJOQ/N49UVxnNH6g+lGQ/V2atpjPg7l9RKSIbrC07rizi99/frlH/3RH/wn/+k/FNOLHExNdP/LbUuPQJ45mSyuJc4g3tzagCscU/b4+MjSh44MurfyxbMv3t9cnh92vJKWwdVmVya7Vhs/p7b6ALcXN4/2N/cfN0SKnB0j1Q/vnx2dPt7fZYdQR45FTU5vf/P2zL7Muc3M4LT+V1cKb21tU5YmQN5/ODk5dDSNrXGIOT05NUfxeN/o//rp6QU3eHluPUwXhK1+Wrk4PRUSp5QNWc16OZzNDfTjM2pb6J9W9Un5U2C2Od2qEQRTcttyxj8MHieDMKv+aDOp2L/qprCgfLQzgSGoENIYyBr9Tms/GwOBCTgUZq14WHtPOga6O8LS8GFn8AsiQWvWpbUxGuA2ylMvqimPLijMZRj7EE+D35fs6eMnnJ5ZFjxYqnVhXOvHdFWWUkXdjX3yG3BqoE/QrAMGOoC5235YlqF3+NCWScjJNNU2HfMx69wIw0+n0OdfJA5O8GiocjoJqahYO5C+12/pCrP7n8hrNNG97xZm6cAgHI+b2UBLsyCtWbBvyiUSbR+vf/vgwdWt9d+6NB8uL1xmQs9dTcAumjHLivM/OH3fAMFDoZf1P5ZAdfexnQEmBkF6uL7ayVROG8CfthMI4PUTYoZghRO0REz9NO0KYTdXl99+/zc6RUdHl/rk9z5cHh2fYNKzJ7v2S3z/t79Fo7Umr+3Ov7zQs+VDTJGxkXFuKVUs9ploLFYWZeYGF1kw2NzhaN30lxrlGebKEkvzgLjDGxDmPEXjOPb5vrSnVZPR58zJtqaHe5GBUJNI6XeTzNWbb6h1U0rO6qvKEv2E2zS+Xim6vIPVWAxsSZwlhE0LrgY4COrFrqGjwQV4A2YWJWj52foJaPFVPSTlEUW4l3sfNADsa01Jza6v8GYgAeDg1ep1GSzsTENKBHSCG5nhDRSlC/gwK9bH/MYxIRZRQ04YVDC5ZFANlJg0oz/Sag0Dq/B0D6qysYB0Qjp+qnghRSWTngEq9NmEq3ahReqC9fz2KykO6AlOqyOaBmYE8WPeiqNCleqHT8j4jxWsf56jKNG05IZZhVi8Cj2G2m/FwVE7BJP9+LtQShX6RFuw5eoBNLR4J8kf38pTbu7fJAwRxCvco94MJuFicppSnrKPKBWEodTaViglYujBXxXpfJ+prla7KqKN/qt3eQWZeaggsMvXmBw7Ftzr1fjAs7qGpVWlrsKKFLOSQRktGBlVZPAcGut4jIIXGkV2gONnhAy2EoGY2jOTCgcvW5i6Qmz4I204HEMGc8AankgQIR1oUJORT6W8SMdSs/BM5yfZ66lx0sLHfy8CEY2qxqIhK0DzM3iXBmSQB6tcdRUr0queKvUZrFDSZ1z4IBRtEhSPy3jqe0YifbjruZ532ebTE4gB8H5eAD8QEiEzWPgSOlOx3yCPjJtUXTBaMJ5SKXF6PCLT2HjFVSmFQUuYnt4DGsRgguafBG9rDwu+qxqfZfAMhaqOjjCQ058BaGgs+tK5MgOVMXu5cCACVTPFWbTyErIN8lODV6lpT3Fz5jEVTFLaUNmygVR6ASOjGKvkO7+cDY/4w2dhp8xeD87tMdLyeZ4KAyobBYUhZLqSaZHokKU4UHCP6kmpGv9mhh0KCxMC3uF0AiC05JEXOS6Ej2QByAwi1ruROSATaSzgY1CLYmMI1sVhD/LDkxuLR9MJVsRPmYs+ZpRi4XMxejJLgAVMvFhMGxgxQiKYVRM1XoRzdd/5oIVZ4R8DZjBSBuS3zgdJI181eu2bYUUPNE2A6H4rWwAMz+sSNG7hKtabDxtrmz/+5rdGiTd217f3twW0gAnIZnPpjQUn6iYIUezJuxOVWszd6KpDUW6vmZEUQj49PXYkqEUSQjVUW/njPEOrhozbY7eAeP/x/sXF6cnJ283tDSuDX785Ms4NSTcB//j9T69evd7Z2zu/vnGr6M31x+srFyqZErj3xZMd2+uMc712CPnVNYpvrlrJausmZhi+XTeCO0EnTtnYWoZbp5jzZgmoHtT0aXgCdREIMmIciDUtWsHiUcoRGVnrJ4vumdwXL579/T/5O59url+/fHn47u3Ru0OssyPTTEhhY1zObtz25QsdPfd0eXV4dGxbMFlQCBpza+kzWK3G/mjNNNcKgkH9DuZ/f7O152ShJ9ZNdYJqM3XGX99b/l700bBcHVfYhuR9xU3vOBzoEpK3naC6jAZ92NnekoLhIloRm1kIMzm6IrpPJ+enKt1yB6zDjz7de/v6nZwvntu7uQO4/SBUgkX54AxlUW1qNqEShkiXTQA6JpBV8lm1Ap8/Mgtr0uHYuTiDgvUWlBv7gM14P8zxUlcQxDzFdHqBttGECfC8Wr7MAXKju0xbg0q+Gw8eWKROLFbbk2e4td6pSTOWwoTZCMKFCNNPyOWCKBoJFozqb3vIjetXUVfHHDmaklawaq5duz0IfbS4pv7KMpvXIL0dL0L9uVaLOjmdhzFOWwAZfkM4gkBg2D1VTNi1THkfHg3VnMm4lyI82GJsrMxq5WqCBDTuR0S8ikgXQvGMAju84Bmc998tAXltSFl3FL1twHWsfpWwccyDgc27TgeiX+blPlahgXcNhXL4WO/InJWCSVSBTPhmc8PxPEyeWhb6KEymMjuvaYQVtrVjHaiqnoccga+4ARvcpJCaIPb1w0uKfu3ujpN3x+YBXEt3dnxuy8eXXz57tPfo8aPHjx8/oRKHR+9sAyBNNwNQk3wswQ1t+TqffF1x1agezNO6WqPIilnhDXmClI7NHKwXys2gbGIo07RWw9sFAm2J24ASXIUm0kpGSZ/9DvDG8uJoKJR7qqg6VVSkNn3pdzVrAdr8lrH2yCf8FWacxnfqJyX6sEwBBE+BDo1K1JlXSbUjbcQX8hPWS1IdChPcjFstEJZYmW6ChCI/S3cUXHRMibBlCCCn6vmBZYKlDlX1hkEVwzbmTmA9mPfKf5WG4WiM8r5h7TSOd2XT5Bjo01w3+ClY+hz5CvvgZ6BYaMFSFgF4tTQKvthLkUOMnU5ahZJgRPkLK2UH02mjR9xcwKBXyC6PwiOpiZcmq7KE6y1YSIGKr8xYvWopITjR46NESA+BYbygPX0DeRZOBiWG1CiTgzwLSlP1Hakyl478EkDpj0piD+p8lvqGD2WrQP0F0g8xhCgOPRqSgtCEYCylEjcEvCjNp9+KzSP2Bh8V5U9P8KT3cXWwnfxDm5TFUyigyvG58WciK2WqdyqSuwJByYJUn9ORDVDpQ82A0NZAPB0bgsoPgxCbD3zCQZEKzQd6GQTcqjc0+1rroTY5pMjqV553GBDdn3lYznIkiz45sDvQi1gTsFeDxsD1PD/lXzg8INKcCtKWBARPpA//A5CehEvAQ5GS0adoJ7O8QFUoB2K19V92zmnRmIWMKqh8v5TFv6qalMlWKfUGdsjr1fCLvGk5ZxjoGf2VVU0YMQhVl//yL2VDZHImokVIAZzoM8nNDECepbZEo7JkjoaoCEgFwz+1i4zxbjWY5ViC11C6Y5C0ifX7Exuy5/LNbBQgQE7rUFPReLPPZ+aCkG4n6Qr06o6QBqdDAmWjjkVk0+WQb3KVYXSlGuHM4whTpgCnVmL4x6XsU72mxSd88QaG6sEQwVPukmMd8pNeaKQHqWEqPgoBSBJvn35MkEV6dXlc7G489Z2vWZp9r1OghscW1tXVmf4YyIvbzTwnDzSWqiuUI8svx654OvTKyFZhNojWEoDS/w4jA6fmoqZ3+K+8lgmGY3uQX1jrryhtStU8Q0YsE1VapvEwKnd6z8PVtdOTs9XVjedffX3pOKCVFesajo7OHu0/dnq3K6KMo3cgyspHp9Eb0m848MEab97tPLbqXl8fHh5BziJ3aKUGzuJc27Te3R4DKiunUVgj0+1W7byRjyJpKBZnrj08eLyn24Wvv/fLX2oXHJdpa6y3Rq/fvnn39s3hrhP0nef/7vTp/qP2hFh09OD+k/0tewltGPxRt+CqWgxtmoXY2d+mCDJsu7UAlJgkxCxUhYZsCb4jcVxo6oxE1zxp7HHLhIZDEltNnibIU8joJPr7+zubm46rcXi84f+zy2+++fq/+C//0zdHP9q9KMx7/fqV+8w2t6y/V1vWNMr28cZVRzMUpCd0cnws9u0t1swUk3NVWyQkRvtwrWdCkhYsGYMUJ2G1EVGH/Bll0xm4OD9lPNRpznAkP6ueYp0FK+i1lppqGxtOhhSV+KdSqBKwDuaG61kfPjDaj14qA/L+HlQfugj2zesjOmPBzJJimgV+Tw92DC83ZCiUybU3wkwHqTwjyTTq47XWKOq02XpWs2gevxAoMRqzkMb5pGR7GW02Q5/7N6dP2hbuAEpuIS1uPHnudmjNbgsDxOO8hF5l02X11gAPELFMO5SHYhcCWaqOClCYHs+m50DDeRRzI6ril3BekQpnFJjUsuBcq1rbZdukhDzwwZ/621P1YjXqbgK/47MccvWQ8sDVBxX4KaeJFw1X2xo/WGM28wx8yOJSJmpXZZoEw1kwjT9hwUH1O5+leLoWNYqJA1pvA4IU3e/Su4T4A0tRVjW9y3WEGO9nJgJW7LpAS7Cd9YnSrmmEiDyNU2/XtOGVteMlkJtb9VzIS2JtAVJIA1EIQuYO+yoE5nqVbM83W4L//Q8PN9edOkqX1NO0loKmAsxW5enkpc6CwxsMvv9w882pW7+uvvnaUr6d5wd7D1c3Xx2dvj166xYRbIfhnqOzdveQbNzB7gkIOA6rzgABtO48fzgSw5w4vkjPAwISt/omT2320nxg+/T98JZQY/IIG2a1Ig2B1RbIDDKQaUO63NccRAqVaCAwYYc64JnmKhKEidqJgxQ8z5FTICQa8HoLL8hNGzQ0TkgBN44H/8Tf3HvrD3PcI3kITmdg2ny6yqpwJoRnwC5EFj8+SKoLqmVQ31Ch/ACrxztGRGqjXOl/tka97D2KuPJFIOBKc3QwhY9sCR0754Mn4Pgac6ZDEqqBrJRfw/yeUVRoUrM5GjoqTjHjSPo/VS6w48ByY+BdLcovH1338YrZlHqH7YljwUHpVL12SiXFuEH2DL8S70TseThTi0Y0g1SY9hlE+xLU5UOUuabhyB22ZOxdmdUI2zoeJQwp3Y+NWlTlXRdvZk8MPPybHinRx43ph09K1ukziE5oVycQdVUbMwvMirunxkWfYyPeLp8Khzm9zKtRghhLVyeq8UqfKi7731hh43RxL0+i6uHGHb0Jve+KLsojz7z6XU3Do0IMqoTdsaB20shXBI4gxhLTNKF/Aq+WPnFMKkx7qmQfNXqGTNiFNoOoLL+h5VcoBAcZ2RY4cSMU+h+IqWjySBt55/Gq467eqV2cUAreytVHwcouOrO8gkUvBupdFQMEmsEbjgEamXcOZ0iB2GC4lMuWFI5gH+WzdCRFXnKVdTIM5xfUqrSssJnAbogKRx8qMloyKjjsuIOqvE/OK/Zpz4uG82jxZYoIEMMr4OEJ7/RpAbtoAOe11DX0T6Zht9xTLufCDwwKHFminRcqSBjVVRg6rB1jzp9IzexyVeVZWi5ubuwzQS+Kx1dNoAyf4OSnSLphiUUCedLhflKRo04nGPUFU/GxpWFApfBhpJL8B/mCY29Z+FAaVg6WCQI1NTQWtLgNxQ65qc0z4CVsyqMNqIXXQ+/4r0hK1aJQYy+kzoZnAFLSSLZ+wh1/hgflRw64/AxfkPseohpBNylq7NuK4YRI/CAs2hs2VYXzqUU8qcXUSIs+aq0RgDQAJptC4NdggCOnEpqfoGKBB9wDZ3oLSs0nzVRHMup7j/7gFYCo52ShnM6GCLoboxIKgr/AFNycNh686/zNa6tTVoTg7kW9ffLskXP6rQk0UG/9wNrGNhod4HF1fa7gyekZ6W5ubMJXOHXmXD/jleuGnO9vbFlzb+TSGpXNjsE/uxCFm0LY3tvDZHtea08fGK2/3NqxomdbHLa2uv700eOtTRU5sH997/EjbLEM6ez4bMecwKkLha+ePt91RYATGoRle1udGvPTGzuHRXIfnlg/o7fR1lXreK7Nwjo2h/BwknaIBPleUQFOEYX1QYaVW8aAj8lKENNUuGHvAiuJubDSWw6xct9xpX4jU6FH+ztff/Pz//b//t//N//df/sf/vqv3r0+ckXvwZPnohkr7PHazmlOySEn4pqmoWxkN52iJKis7NO9nW4mNqRq3bkbCU5VFPtm8a5jHS0wV5X9yM6FFLdxAxb/fLz9YKuD0D7ZPYgc2m4Jh+AeQZ03tVII4u3YR9mw+eLizJqrBoDTgVtHgvJ5gjbTCwrShqur21ZSPXj4+u2rJwebe+vuCDvUlzs42Bfip4UihmLBxcI7JI4dNDSgghDoDor4m+7R5fTLQpI80rQBaKeu8RiWlDYlbtkJXjhnhhLKqEePLaGrV5nVND/DCQKNKD4FBNqf2gM/23ZZn9rlurnttmmKTad1QvrTcZ/N+985oLi+oFcRW5sh7xgk0lcX8kYsNXRw0EqOzbUIhFNCAg9JUU282Byc4VuIxabyd5+cN0U/s3ClWtHndu1GwYVWaoohcSq7pkWQVy9iMVN6bIKhT+MgMSF0Y/LizOOmT3FJLXK9ffiCXKiRF2kWcam7q97uM0ktFs9vONZ5PjFPh0A+KgwzwtcrYgEEZeaFFsX6+ysXTOn+h11zRJSRCVM+ejij/ub3+ARMKBib029zu+OU8kcW/Vsr9qD95XmY9x/WzcdhkPEDTgwC7++7X+67H06d9r+3vfHV1we/+JOf6zaeXr3/7scfVx66LaB9RE+ePjNeYHP8zArqYHeIVrYHx5qDHhcf6injqcVYWJo+9Dpe9pmHvGvM7+9YdcFBh+XDHNslyhbURSELO0qUnJ8HfUL5gCW49C0J9TuElmJDZdLEqWmmxIUjwXQPiEXHCxGqpRgjVMkdRiDBJIVefHgGQTpe1ayPIyqu7bF+SLYGqMw47HeKnc713pv0KsMop2cFQ8AndAdCRxFEvrcqVWjelSeMOlarapVauAo0IUsI1UienCoYvvky1QUj5qCGgQyjqhROc7ufXN76CmoYFp/Ew1IAHFsI1fLXA4l2/yvhEzfgI3mAN0O7OB/voOQDl0pUKGlCCUwA46luxiygB5uyKsGQ4+o4c13fGDR0BSR0OKxwgWdzbupYoog6G1nIMGYiCs/sJyT6meL5mbg8folwFqbdsXQIHsJjQos6Y+lwNRJyIUiQMHgutUMtDi8+AGA1YQvw6ETuwjNwplJpEbB8SpliXhaZDKsiZhF0X0NIdilhMm1ciWgJk0oMXV5iAQzjsEfkRNEUDOuJ02LhjJ7IE9PHaXtrzEaLUNSaDQ6nqiqOcQ3iMcv8ImvgyQ8tsAGYuLI6Q/SzhgRklGnYpVh8u9NwZWlQ5jNuL040DDq4hzyAU8vQOyQvhN/9DokQzC0kzcFp0iaDhEWBAwXdaPQzeacMxAoZC7WXj7ceFmGMV4loCFXsM1xJHqlVD0il5cO8kWsduBnAiiqUM2lDjsI23AQBx/2ZhnaR+kxEDJELF9RePdM1BHZUs5xVxJsV18pQ4zpo5GU0KiN78r9Dng7DCJmQSf8z3Wnjxkv66gea/lbT1CcDJk5/tCS+Bq7q9IwSgFUk+okbmiLN2MCMVYlM45rH96oai3QT8OLOFroA9+CzyHuhMRPJlJvfr4g1r10pWiifgobTYNcl9jPeU1N6f2u7kSe5EyokG+VFI1cuBEeptNjl09PA98ojWmLXwhHIpqLxDLekLwLmpyxv8ZW/quwwMI7Q5tEC1HkLGhRBSCJZRXrT+7EATICFV5KTuz+EbpHAjL/OSEn8BBzyoR1f4k41ahfHiXqMhuHzpHhMXpvrm1xDyBi9aIBzYfj9a8Flqx/er4nj2wH5ScrpyYVs5umN9B6eXtpGKih0CI9ZfytS4L6yvnV2eSNwXHMGfwtvVo1er61vwEbUK7QjflRtbu8aEbw4vwR/5+DRmmB/Yzsa37updIc+dIz9HJO3ubOx+/QR/HhwK9dtIbTivkjaRV1C4fNLizOePtvb3LJU4+bRk82nz6xYXnlzdC7sE33xOqdnxiSN1usVrIrXHIHvEPv8NttZ/eRg8tSC6tTzumczLNZbPC84XF95sNluybQ9NU1oEwkmu+kArDrF/9wcwP7O9tcvnu3u7vzFn//77757ef92zbUQLkrbdsvR+prJiobt7304fPf69Y+vLPhhwlcXLUha33SKYjYIhxdffoGJl+dnhO5YdN2aFuc45XZWvAjTrZuCzJP9RzfnV+ZLzB58et91BxtbG9azEJzhfyY3mmiT5Xaxnujz+v3VxYVFWRSUCDyDr0Y7J67Oz7XXrnYmHXQyc4ezq+Xq+uLo+Pjw6PTo7Orh2tZP379xQuju3va5WwNubgzPmlXQ+i7avnhEDgQRbKFPehbTZKCThcAid0o4DmSUPbVMe+Mn1xF3aaBlYHRA6zmN36eljiWUZByiEIrRPFjqC6BYgMSyhsXl5rLp9NK/RS2jExgxh4mE4EO7FGNfaodVXa32VMRfcVtSKBZxQmgp4dYIRJZBjXSUfRcGi++o1eSnoNkYRhjzvrwKXCsVVy2/uT23ucXRme/bE6zDHG5jbncGPs25Z+lUlGKlWxMxZ6OpHK7APRcUCijlmTLkNFVFaLHgzqIadHEV2amJrWRSd8UUh7FzSoUAOycJSxgDjuh95nhhkwgA8csmCX6xAKtQoJ6PkXvIgGxNXs5Z/c2W5HI7W5Yk8sZd9tc/e+u7HI0/ul1fsa5n1aC9UQrgTErokUEJFZEpCr73nrr+9vD6X/75txYD3f908/zF1lcvDvY2d2zTf/vq8PzkDAUU1UYLUY+P4Q/7hVCghuqr5xECqKspKsjwtZi1pPnEqYUVi+srkuZ2sE7pbG0BJQWVYA6Tc9rAliVhpEtlnv5Gwzd9KTGu1rxUb9kSTQQGd9oRX9XgxV36VJonHww/t03xBwQ41GMopsH+CVurepx8iBUG+Qj0i1nv4kKlCDYRkk6CYjW5OupR0+bTEI8vufNlKmyiWGGGYa82ZNUm0uGqmSYGiExj9B8i06WcdnAMWbbsbaYF5MncUBdvpm2FXlFK3EBIAJEwbRntQYTqzAanXTETxVi9GGPLjVCncVSCh4/nw2SgIn7+TP6P9HZSSl2sGN8WPkmP/eiF0TSCKhrplLY8J2Ucmx5dAO9ayVrwauy1n/QEtqJVJE91OB6GMXxkEbgJukYssd6DxEW5fJWZ3BUPhVpzdjeg7qpICctQ96B7V4D1kWXQRwEuJdIlBYggV0OWvgBn0z1nCI0SxoTMPOstAy0aHAarVGlq0GKnw4OM4lUKSFwbVivYZ+xl8veiDN6mF2F4R4hKVF51TaDF1cm2vB0gSF1wM+6X1FKdmY4gOB/ZKQnw/UxlPQ5b6I3qxp+HnE8CinWouKuorH18nafJVM8wlkTvKFEBKlBhNbk9DEGxaBLuYKoagKiI7dNNX1halyYEJv/UVblMW4p0zxNThuLCpkRL7cgswlL3Xg0ClQ+BSmJNgaAMap0MGpo7UKqgaVNrUgzpMIgMwMU0JuWdHR6FtRYZW3BGRKANkVXhU4134+59jVVFjal7ygxVOSbnfI2/vImM0xKEg/cLO4cQih4re9ZZgMCQpuYZWYwc4ApV66andIpzN4aLhgQ4qpTs89RjzJEPYTbZtjbfBgSKsCNfM9xfHmqoJt4NfXCLEkbK4+/CuRYH/HqiPVQ/I5dcP3s+y5+4QFGkq7wKHZNyfqXgnWqOR4sS0k1yxdMyK7U0kCHnf11JxdO4YWFjXVWKsSOpnHXvEvTk7KBJACNnVCoaG4apnZcYbytanQsmskqRRociJmSiUHEwY9fkR0JGWLYQGQC9CI1FuPJFvy8pRkLpEzzpfqOOvaFOe+CBV4Xg5aXY/b5RapjZmWrYD88eOBp+rbP5aPjlqQM03apruM6R9l1CKuCwpvr68vbtu3dJqxABMfd0ANTmfJqTwyPVub3LRV129HrQFDnpm0x3dnbN9tty4Kx7bY+l085bRKHobPvRI2OwZOWSoOuLU6PEgqzby1O3sl6cXuhtWX5khYtjDd0S4KRCdZ6dfzBETnS4dHVmQ8LHrbVNvY3VTzfPnm3hqwBOoGYIf9udXx36bhDUon34t1jZBIchUYRv2RrQ8SYWR0Gl0W5FzO9TCAnLMSqdqDjt8pt3737zm++t6neK/9e/+Gpra82xlVTk6sydxe8PD1//9V/9+dHRGycfWsbDmEFsZJooM6gPuHp7cyEW1zcQB79983rEOqfxGOLVVR4d0N1K2BReQGCsweGJFh6dXYitdG8oQUrTSewzil7cR74fLi4vSTy7rbX7pGtB1rhoDdXx4TE0rPo3xpvxuhf50rYBnRo3Etz+8Nsf//bb35xdfTg8sxtk9WB3x61cR6eH5EqfEvIEXuOv6Uv67nfqN400JaMG8kxGiBTu5KmniYqiycqHlcvXlk9Eh3BCIZGMF7ASooMe9pmnQz/t3O7J6ppUmxlaidHyFULPAwiBE9ZDUw46pVgFgcyZcLkaRsAvwd+Rl1lehFi5UUs2jijbX4qoT3F80XaaTvCiPoeurIA3J98qNWopVEUHeaknR2E5mammTuPpe+eH6nkCxNJn8VC0+JJTwR/41yLWzOFbboCRS/Si9SSIrjuk3vgbtcsHnRJVoBLPGtgiZrWj1C5e0RKCGB4IWFhnxO0EcPp0a+ev+lBxe61fJ59NAhQmyTlyx1FXLML13Pfto2AleqnCxA5fMuMEPT0NghJ4wLwJkK65EMAZu/dJRhJpn26PJNJUkS37SOBD2JGllzfX54j7q+9efvf6zJm8788ubGHf37E6b/9Kv8XKTFiYH5vpGiRjFbUkizgzfbk7DlD0UaGYXxs20Twq6EODYkrd6V5pUnN/PUDUNwATwN00y+cdF+kwR5ksRnUrpBSvCCZ4agp4zXfgQIYSOFOF37CIDyXW2soAyb6mu2gJJxDLCEKemC72wdsJOAovoCfHHWTRghQfRZdiXpEpHkqvVZqOhCp6ADzkFdBCFV6DPOk1Q1V+N6CWBiouhbjLO5GJPPFnggp4TsHYpUZqMByLg96oSB19iTpwQgYxcQsOEySBxsNHx1QN6UUoFfI/voaPRP8XgwIGINBGb8svL9O5y13IW1Xy+8BPdB6S5FIjiC8Uoi7yfJLQUGQpQS0dSmd8RBW9kouk4RYmjX8mdy8kx8PFg5VHWhgOYtU60leuMYIqau5xeYjxYcE2eMKaWnHdhCxTX7gyzwkeZPNwZ/BYCj5E1Drp/Z4QOfjBDj2fRDEpi09gKfCZN6FecR8kpABlXYSonhxZMc+UviNznsEcnLmZMn+2MmlhuxA41oQMILnKSPAU27Ki+YrmvkkmDRyNjvGoC2OAWo7YxowYSx9iWcRWC2IHWyBIDyJphk/I9CrQ4N9xATVxpHrH5MdcKyFtAE5mWeZFcJT3GRxrCpJkAJZE6b7IVdogNhkYY1UPXmX2kzaGxuQs98KDSk3vAURQwrPPQLx7HgqxpiDSK8Yegeof9oQ7g4lj9Rp99Zuylkczx4MHc7oWRmd5Fu3d1FIzVgOQDPjlhDFkxVxW11E5Y7RDKuwpbogF1v/mGQgfhDg+ALVrXoVt+MeZcJQ5XkiftGpP0lQka2x8ud7L0AjkFAG9dmjRQ00jXBYfEVZgZtJQJcBauP4twtJCVCNyDAYM2hE1LinIsWtGx4fnpaMnfKU3O69gWj4To8gyoR8w+RqiWDx4PlfmEfoiYJwa0upQta3QV3DAjJixmLQgHCboV3K+ImEBw7QkCEJFE8uImuKLTBXsucr6FTKDnoLJYBRR4rxYpCA7fOf3APE8HCM7tcSrkMnMFsMYXUyvajVjphd37ZOHUJXi7dIRxwnkL5beq3HlLTdqwUOvJEBGCO7rxs7627eH1lLBxnJzDbzD+589e2qI2ninqp48eXR+erq7v3NxcWRbITkJi46PxPc761vrj+fcHlS6BtWFu3LqPZycnszYUiIwP8ApbO/sQZsh315fO3MSdScdDCIlfu/t71spdHZ0vrm1J7wzOWBjpa7UxfXt6zeHyhmK3n+0bf5AxGDxgE7Vu8NrR4A+cBDFg/t2Bt+ufPBW2Lq/u/F424KYoiE06rOot35lmpfR7biIy7GYjk9Z63iWmHnvVvbyNUaF+beepqHCSMUaQCXpN27SOrsgGtNWh29Prj++//Htu9+8fL2+5UJiC36cSvT65U/fk/P2/iPWSi0P373C6s4IurwEXtfn/PTE2OfJuyPTG29fvcGEvf1tnJ+Vq2YsXNUgspoFPJ/eo8iEADURv1nEZEqhLoqAMPRuRXG0xcA2HasBvv/R6gttZg55bjfDea9sEjA+5/TVs9Mz+slA6L9hXfpgyfXOzubqmjE567A/vHr97uWb48NDQ7MOwl/XzXP1Mh9mJ/AMzzPfxvMnusnJjP6qIS/Bd+Be5lCzQe1lWGzwzh6gQcnH4eUU0GD4OefiQeA/uy2JYKTQWOlsoCU2yLZWaoSTKJBKOlKtHiYI+XmO1GgGWaZpK2ZCnfA9xtbRhVU/9TSsOJrl/pywDLanNGsxe1gzgLxZ/DUaDTVdAotWBcd5XyrCe6+uCnl5DF2FOCmZPx8TawPAe5Ngxss7k4R54kzqU4uVIecBfKT4zPifb7mp5RXvFEeVk6U0vKpn0deJwBr+L2lcQgMuC2SsGFlwU4sP4SL0tHxd1bF3lR4uqa840TXLxe/O93EUJ29SyGUOwNIyReJ1PTcyJOYo1Ur7xYJwaNN02wy1FPB0JCjTa5oPSLjq1OsS29uTjTE88w9zBLCHw5PLf/Or714fXZ2efHCB99rmw5//wdff/N43FkyenZxxMhwVTsmpacNQ5Ks+ZsWWmIFb0xGbliKu1pD0YjiJnjIP4/o9H6yLx7JRi7xoZaZIeRddSi+1tjOCTgvpQ8o4qXQAJthLOkEUp1ZdlgyQ4stXtYWJ/qHL0SZbOeNgfdrBBYQYXkW12kDhcFoP7JKTb1HKGxkVhOSIf/JUd6KXU/JS7bCoFFJP9OlY+l/bOvwiRCKvduhNbLoQznUogiFwlkdialMZ0PyXfb5lxFJy3eAP3YFSb+ox0SpLCSEl/Uri0F5Cmrjuf8k5C1oXIR5UkY4N+YDIIw4FkcyXaiEja3T1opGgODd01ZuGbSSF0mA5KC1R7BhQRbwYsu/aON05a58IMaj2/DSattQ1gu5xiIqRPlXm/2SJb4PwojkqlglFXmP4cBoFCSuG4GhetyZY6VCdQGvqijkhFVPVL6QdoiY+lCpp4Z7ngTwym1qnlhrrkgbEyCvOLJTCdt4sb5MHPEAfULBsii/0SvD2zqzusGBHPjVrKG24o6dxPqMeRp24yqSYPAd7j+E7hKiIxtAHZdQIVQyUMROKQiYpdz/9WqqPszMgMnwDG8fYqbfRuMAeXJdKe6SeOWRcBzktzXCy/n4p6BMm85G/RNXfuQWpA0mqAmPCg1462/QDoL1vUAk4mBIigEuxoITwkA4HL0CJ1MiJxEpN3cPxAXIHJe2fxIpDWf6oi8lTYb+qJ0CxL4lJ6G9mRpNat7cw0W+54RfSUyQmNIQwNJU6YCSNpCdbYH3KXylmX8MS77yZQSmvVDeAOYukVQZot/LWZ/zdULEUSdMGJo0a6PVG1KxIwsuhtMrQ0FR1SYdOVAxhkFcYXRlYeid1VFmNcR+cBNMnDnvrmwUAHpRjHmhVE08hx5jZkAZMGI4gNBtylKtrd3tR4VBe2OJJYu6MnxvNi9WzTgDMNGREOaQXYcuDDsQojj99gB5yplUuHEGgWhT0UuI4esl5zvJzB4t6NAaJ/83Rgz/QQlC98Sqtjd54Euskyz98gHxsBLw2ZrI10xKqASjP8D+JoNSzigdIrQ6iyAqS7clrYE8ItzBZvjhbXGAA9dPq2dtzNuicP8fIOL5S1G1U0MJ7nlaY44h4oeqzJ4/R2jKr4nKX73589HjfihPnuh++eSdWOzw9NOq4ubtr2sryei3Lxo649oOQ1wi0sxgfzgCqVt5CiQ2jzhcXgtq1zTUzA11c9WBDl3Tv4JEehVAABCtXry5O4WgaYWPnwZ6tAdtbxlhvP7bGx6GBbUV0U5E7jC4+Gsm3ZIQkd/Y2DMzb4W4mI1389J4sqRVZmj3AIgPz25ubZ90f3Ef3wdGGcqSLq3bd4Er85P5qLHWek0sqa+DUVEVnGhYMWu9x8/KnHy7fvfs9lxXcfDzUHbk8Pnn56vLk5MtnX252Z9fayx9fvX377vKqeRXisBz/0kW7FqG3Arv13ILYvd29g4O9D7dXFuZDwZVo5ljGIek03Dj5UStmAnl9yxkp99yuiqXYQ5R6erSK+jgcMlV7/8GCHonTGlpVb3n6h1baZPr3LK7XyB29PbTJG2J+iEEKM3z7znXLm+zi+uqDSPfi5vLo/PK7H9/qidh3YQtuShZCBUNYM1t/Tdi0yYY+jYqKlvAvrR9NLAD1dlQRrzI96aOtuAm37jAp2jMFj8LgVoLEaLCms6je+vWi7rlsNq3OY3Aget8ze1PwrTxW6qUwaX2mqR9bai70jqaBMR7P8dik7rQoh5MwW+xpwlCH0FAi/tkdrX+BxppKh+EaJW0uhcXmrVwlQMucWwtP6+PblUFvxh0xBHZ7+9Gmcz2UZmlyLfeRhl2+5H2y2Whn6Q3t+4wujY8dU58GVPLUyMwXb58nUBTfFKoYhDF04S62LA12IxGzonLEoiJdJeEO77XB7l2IrcU5d+GE401F/s5m0avk8TRE5rjqS1zzcBYFXdoKfN2yk25aW8Iv4Q5Mp+Pn+COXfI2Hp5xO9JqOcX77g+NEyWJiXwv6CZDO0d00AuKxz4mkK7rBa7T6L79/fXF/8+DJ7sXx60+r73ee7K1tbllVyTIO3x3ZBpM7GgtF7DBqaYzhgZXcZgd5FaY1IeMTj/ozbEp6KV9i5E/5OQYyEoiBCaBfw01/Y1Ved4GAS57w2o+/dEAVXmlqFvgBz50mjsW3/046VTQnSSxYLf61tmYCKQVhlw5AQlqacSfNsOotFw2CihQYBLOo2cyd74oC6apYcoZDGRVMt9LXbCd99jUA0/0AmTTBkU3V82peoo59TQBdLfLVYvSgplrnFgtVidxDUWyHEHrLlk1TsnDyP/MJRKQoMNTN7zEmaMXemtFEBElF4FlVSfRusGAsvdO0QCazhV2ewz8rLrYjLySoeUEYSpGPUq2Xl/41apkGqEpBOSe/P0Yu6sbrVoalBleTWob5DGMjfkgb4NIVinxfRymgVJyg+EjBW5iUzQ+AVSR/Er4riYoALrRgwcQA/CZnKwf/mHsK2fL79BS8AQFmWpzxkCHQd1+h0/tgL1WPhY0aJGIfyRP65yVahzlJiR7k5Wegxai+Jvck8jtiQGG2fQVhWkCPMmMuUCGlitgdd0rvsNrVg8f7S+CH4+G2gBv8o2lqXwyT2gCjeGb6uVYeFInz1UOqNbyLngytP/Qn3b4joi5Y1u0nfAr4lh6pyqTH+pCcz/xJZ7zzy5/RxAgAbnEuQzImR+Ao9R1HQnIABSTU7i1rquI4zKby4cidluBInAEXZovGV354NpbgTS5nEPvdLznrNQ44I3A0pAz8IBMFhykCIE+imoYEh6dI498htWCXK+cTEZkryXsuAlAh5VNmhJdt3MG5QxUIDAZJRaBhc5jMZ+FhnJMeMhj1ADhOSUNtYQU8xdm1yfmUWDEcTTNUCrXUHahhe9zEb5WlNwR2Z4FLXaMl3i5wmhUalW4ATyqcoQdCoPLtoao2QAzRqb46mjWO8+HRy5iDFTFt8FGRWhqvqq8yvvIu8x17yzClACEI/FykEj9VMZQAfOcCBgnPVPS9w+3AbBQtGWEYREJgiI0WzzMOKqLASwOxeBYyIVgRYAoO+mQJKIiQiRhGLce3TTMTszsNIMNYqEz/I1kRhXxL0YeOxjhjFXZPn8crEsmw8RAQIZgh4Y6njHN0wyVZtCMUQ+/e5vbmsau40rp7juTPrJzCfnnPJVUi7xPN9enlo91tyAs6DNLbXHF7frW7/8hFAZttEm0rolNEPz5yCW5LSvYO9s5Oj4TYm6ub61tbscIRilYJfHy/4bJbcfemtT0r27ubHz6c62/oG9jyK49d0lbj2CNszc7xUQfkSzs7PdQLeffObUf3Li8+Hp+9N/y/vfXQ/lYnymxtrnZV0u29TcsV1tZPL66rbu2BBUfEIliz6t9gI6bSYzH91vpDQZLz6sXjO2A45XNt3VIGaiqosVP2/NplSY7fea92+uuqJay1cmnj4fovf/5737/67sfjHzY295zls7u5/3f+/p+cnhwSyOnLs+N37jrd+rBtBb9h/esff/tjfHZkqqC+Y6E7gyifYtq9WP/Bpb7XxeXWhqttbvW7OollZsy1mJ0HINY8v17bf3R17xoBnM3Oo30yrs0uODYD81DEv+F2hesiNo3rNXCG8FdW3J/Qko9Pn358+dOTm8cPRYdWfF1c2BFNrc4ujlJgS78ePtBHcaQT/XFRgfkGXYVRqUyIjjEGwqWfCEx30tppLEcT8ySjjVrcydxCkcx8nC8dpVGQVI6yjrPOxfjqhHq5mER9AuZAXxugbsgwF9AceyPENu5O96Y5n+mdkScHKkyxcJ/3zHi5Z/ecqdH5N5lARphXQZ7DMqFiHZQ5BGGEQJ5KlI0gBKmurGYkSHAT1vXt7s7mzYeb9kghNntZ2by/JYs1Pg/ogKOi3OLs6gfeyTyMjcIWLzXBxuVyO+MPIaGBil+ZZs5hRpRj27gmrzWfPBezHLONkzgLDx/JPtlgH/IUrg+vu9Kbd+Vo2gDQg8WZzMR2GjeskZHX6sxpYE9rWuoaNzKCZBXmrEwr8QA4o6eLZPtW9MMqZO7CmVhYSuM/rehWFWU+WHG3nYVwO9uOzLIqDqdd5aWzJIDncYquMM2rD6tO9X1o7g4HdHqTe3h/dHHab7599eHs03/1v/2Fu8F3H1tMZ+zBrv2Dzmhbc6guh3+z2vmlI9I67BlgWNQyYlVcxB1f/cEu7OxtyR7H9U2ciufKLvkRQqJUPWXTrwv7z4ydbc2yxVw/xZf9k3+GkAbAp1meWivToIyyeTwxXDPA7SRZPgGPBTVP6bbcDfqMlEdyZLGU8np4XPs1qpLv1dwrklYMMh6UpE4ExC0s1ElSafDjfS16JvS5bG4/IvpQmLy+hYTe16oW8QPCUHozu35ZGU2b6KdWBd6VSbdr42JokcaEI725g8w0YRjnY3gaLQuU0MJGZ1ma6KXLLqkl3WOVyUIW1isfgU4DlBwHu8nQumJ1g5nHGNAK6Fsqiz51ZuEj4hArsfYuhEMwvmM/wWJC0cIE696qyxAD3EPUd6sF9fTiWeSoc/LEBBL3DHSqQgPUBZk7bKZthUv1ThyyTHSMYktRC/C99nthPoyVn4rgGScRMZdLGh1VXRyHTkojV/FS5X2KVth5Xz1JHzIjrTGNSEMw3EVEDVLIBoi8S07ZhgnxqrnBKB9ioQBa5IbkpEdLX9U36BEPOGEQCYNLKEoo9pNC3JMh7SuW43oawDJd3eCCdzBUAmkLBOBhnCetXAyB/4JxCoMtGUujsXAIpZzmcC23FkWD6tQaZxfMYyo/nO5NkaFmQTcVHgWXBzXt+xqJTe1+qXzAQx8iQciSCo8jEPmjFaNMU1nYLXXEIp9h1TA0LEabkwV4QQY7QL4H1r8Bh3FE4oMzFQ2Ov2WNoD5BkIGm0t3kcRf3ext1k2NhR/CXugCXzp4HcvR4xQahs3y8VWc1+D+2B2GvpCur/hkeyM7VToPhN/N0Qer1tLmD+Acrv0VOA7DamLc/8wrLgAvJAZzXls1nwUSeBZmFixxipOFbzBmyE3zNGrRUjEXDwOHoGFKcDP3l7chrIIb09PWh7TXWImGoiy0A4vkgsri8VEyiKpa3SeOODa0Pjs/xqTDjMxPYlsSkUctDiDwNXCcnPHN3lEvUkueKp4oPtncdsPDWjs6lpAEfwU0tApG6dpx745HTrOEbcSg+QrkbGlSLoQs5E20WmIbg/MLkATho41sV1TxibaQt4qt94iyW0CLa4Dy4TvSfpBxKY5+u43o2QNNmb26tE5nyfrnr1lIcx/Cj0jr1uDRH/htxFJtJP7+8evLkiWXDlm68OTzOv30yELhxenzWCZw4JWK4ff/48Re35y65utnc2mq02xVU6w8d0tPBO0zOCUiaNxcJO+H+waejk5dTcNNaHrp8Db/rq4cb24KM7Z391Q8PT4/ORTAZOVDnLis4pWFnl9fnTvRfu7ezbQjynmUyXz1zJ4BDeEx6fNzaXLdKhLCMUxpeJEqBnMjD9IJhbFMiohyLw7UZsfrep00tPzPSVLQS/aMzTfa2t2xsINcbbZFmA5/rfLZ2BU9+8bOf3V9b/9Wvv3v35vDl97/97rffHTw7+OmHH/7sf/yzP/uf/s1PP73WvTEfcvjW9VtX0l+/fONY1bzNxzYMnB0f6+pQvIvjc6GboP/i/KzbgLOsRLre2Z3dgQBOeDX+7QzKexZ1UB7dWViL8fBWY0L89BDXrOrpIFT31PrtXKbTcwKyfeDk2Dbmi5evDr9/9cbxTkRAxY6PTzQWtn6c2tmqTOZmqFhc28mb0zSnFySset2DFKn+aoriN3ecgaggZQvDLIc9ZdaZlZKy5TTGWKSW04uWGhcvJ1FHf9of8umjA+iZaRC8bZy9eD17rkPOhVDjaTkCZ2lBEze3zo2FgoaKlAvTm3WMeVW91JXowSF4XgYa3C2Kxlt14tPibLBKboSyTXs1VNYKK5awsuqVdMXUf3GRIhMZ1ycyseYHo5pJafA995bYWFoNoRqWqHHhHg/JkTLw8nz+NKkSL/yPd1G0IM/qUZlhVbqGilZkaMp3aKbFP3o7DbLEYNwpFFZdPra2t0nLTnH91AoICu92atbGsoz4m8JSHV+OuNXL2w7fZAhA2VsMmGYb7oMTpHJ1BBgPc3sVu9aRev/JhKKdyY6mwjhdYkbBKsC1pEqVDdc7mMExSUA/1INLoD+9efOvfvXd9YOtPP/tjUPG3r1+i22YoKFBvn0Lda7JvFOwUgyi94lvfXKePpgCW8ij1WdhYJo1fniYn4svSEqBelO/Z8K7cacBBtMPSI07DlxCUcorvzzOJGSC6m1SGveeAPpgjbLTMuBK2WjIZI7wRQcX3052EkKkz7SPyKEyS6awTumhglXoi+dzjhb5mCr0cuItYR9OVwUolRjKyp5cJh4Y5AeHFZ6W+kuOe4GolP+lzXePEEYrAPTH+/z8MDNnoocALNbdDXtl4yEaqNjFEjMlh0d3LR3UGl3yUko9zAkKVTHINGTVwzInoL1egmCVx4SFM+ylgfY4vVhEGKfXasOhwcQrCYsmJPQYVZgaZ8sQtrTC/175pkbwx00WA8iV4Y80FZJvMSg1+uJ1Kjf55UFcgH4HO95OBRVkZTlbH/RGGwwGfnBggXU5Mm/mpbfTaYEJKOEsOL4T1uIMZS6MiecVid6gp2MNEQ7mmUmcnBC2t/9rrXfx3pKGr8OAmJAo1Uh0Hpc+Q2DvSoOQAkwKsFAKt95CoRIqW76hTm2k7lVI+tZUxopQYOqIerZQhikQCP/ianKJdaNaFaxsNqSG+FJ6U1jSQaZUEie5KjxMtuHGAnTwDWwMj+1yqQ0y3lctDJNCQHz3OlTmewT1oPrIzLehdIpXWdn7NcT0xbepI4xTiEUDBnBRqdRF7KPuSvVvAVHF4Zh/94CGlGw+KceCXbFyKPgsmqo41OVCmr8NLE39MgC1uAw6ggyiBWQZqJiKBtFiwfeF2ksBwlt4ksaELvjG8zwiJLWoIlDT4JGH/jezb3scWpviv7/qbBOywUmoagIaTm54q8492mUueP2MJCAcAWDIifDhqKekf0dUEUwAiTsLKkdcCU8NXoD6mqqFMkrzREUexoV8j8z+lGUC/VHHkYuEkn04axKvPc6+4R6PPWi5IViDlJmBADg+9xqETNrQ2mwcjEUTnVfjIsThFWDoGj24s//RoZiQsk1zoizmEA0S4OJruGZXLXQeCMUBFF2KQrWljHx2NUA1c4or0Sjz2EOmot0Vfkm9ezVsUVC2xlE8DG4K4Ry5KkLcvqZaw1gA8D2WalVvbhtc/2Qo/Uwex+9Yia4CA/9YdHVxKYDee7T/7KtnpvlUKvR/+sXTzrehNffvffP1FzcXZ1zsxdnVgwfruzvbLu+y6sfi9gfW1q98evP2yJIX1/CaKmjl0fqKvsHe3hNSv75yKmUNud2omjfLhDpg4P7ap5sVi2E+vL++T4Vj8o3DhcQDW3t7W3s7V+8vDTfYqKsZ1/04u7hZ3dy1dMHCYye7GTXc1V26unp28Mj9ResPrGhe3d/fEVDpa1i2QeamIyx0nusiyEJ8Qn9v97aczaNj0FGGdRKcrem0Hey8B0jXn374aASO+0yd8GfD6GbrmxvgtH/gh1cv/4c/+7PL85ubs/evfjr9wz/+5bffffs3f/OthT/2OZDCmzeHb9+9vbq5uji/Ms+tM/Cbb783FSDMMcHrwrP2S9njbHz1UkfG8P+VAWnmJ2YiKZyv9TOmJZq/dmDj1faG/ZqXhEI/65k7lKZDQte2HFH6cMU1YwyQzhnaV86afkAsATGSrxugJ8Zkr27f//j63Xe//enw8ARbRAFWJaHeFcaiWDGHKnVPWYTQCzIFmYuOGViyAGtcE7A0k+ZANQ0fE8MiPMWZfAUlZIitQ7iz19F2Lt6UkWA5lfaCXUJBcFtnputg2+lLn30bQ0hIUnyoshLSszKn91AZ7m7CQ+Kg/vQ2tV8Wi7//QFIUIwPIuVKnqBDg+jJeagYJukV7wpbpOBGs2mSY1VIYKbYd57PcU3t7e3lzRTFwxj9maz0MsPai2M/Kic5qnJwYvtEkfoqTg3E4J8tiBRaHY36HxjQoiwlLYpVsGwKywRpF8siO6qFu+ABKjhFvDFsWgzY+4cAfC+BycRBm2Xp9GONzawy55VHUex0+VPaB075SoxZGK1V2OpRZGC51YuxlW3iNvjoD4NPKh2vWZWaBvl7f2gOiL6H7qn/OaHguSNRB0gVMlOGDcMrTt1lvjTOAkZ0Otc04tNFKuH/97/7mv/+zP393eHh+esFJOlb47ILyX1OlxE4+y+L18diJL8lP+4VCPm2eyRKxeJTe+ZLrHq+cpmCgXNNUDCPxAEY1A1LL3UMiSCaR4Sd2j4akeKO66MY9yjxlBcS0vTqgeJe/OpJRGfL+NZFLWRAJ11vKEC7eypTm+jtNT4/VrtXxu5d+JlpFVkhZj2dl5MVVw0BqKf9E7nc1Nhg8Brhoy6hK1MlXC6UWC/z6O/2WhczhTDmz0FlgAx15oKhST/GU8oVSPIG/N0EMgQm+e6wamruQXDNXyC5UKP+8hG9a7BmG07rVH0hdoyIWLPioOk62kGnoL1Whzxzzreax3wM2Jqs1Mxl8Uq3sKNkxqYXD8BJAKobrnAw8emh1bjXjN04qBZC/uAQbLWUimgB9UBuFG2bmTbxbnnMkINSPlV1ObwIJ6aEJY6UDJClw2WXly1O2Oe97CXPTATypTffOP1QBLzM1A9mr6u17WnT3WSxBSQY6jXtQRydDu0r63R/wVX1XtNQ7MsJusY4wks+voUlFskRU5Az6MSdYU0fHXfZVtt7i3tjbgMgkKxXXp2QQKhhNxSSLzQZpZNdsrSLhHEgYDAretxIv0kApLXDlWbKN80wzAaF+ii4YgiBzdMnRGE3RTr+H2FBLsguZYV6NiXJENXkmZ5Ygb3o9jJMYEQN5CEuaUPWJWp/5A8pCglTYF10t3JGPnHxk7Hmwnq+RE1KVTzmy4xqjUn1goIifkQh2xIWYAMiU8l0Vyiz5F+ApEKrKmutR0ahjiHpeci4jDpqFqpMBw5uhg57lvBn/tIQSdFqqFZ9J3dAmjnAXBRaj27JVF6iYPnX5PrS0LFiRBaUFBEUlC1lDo3+e8DrOpjL0Y0SNVwFZss2fHhE1CheDtO4lxKgFHAIhIknGXMkwbZKglVDG5tM/JAMJKyWqxJeYnMOlM1ShwugFl/cUORYipCg+2gDZZSbG3Fxl08JeNcUZsWEqsBpFDAE6yvG1I3OhWOYUdMmJQcmOz5pVRqoOWorIXtNKEiux2ZKm+VgLZNSlDpWmPen6aNpIFnSQpfs9qA7yvo7LU4aM4k/0xGTYBr4QTXeus330CXUDTAUoYl0+XjvuZnNnbf/J3hiWVdrx5PrCGvrti4sT68LPjk5FroQPvd3d3XeHp/cfbFjLu2PxzYpNgQ8NaYtKhZwuFhBdHL86NtcgZC6Kt5X100dnegrzhfi6RU7A/Hj/dv/xU/h9/HhpK4Kxys2NnYJ3h3Vu79pre3h24vDQLmwSRpyeCPOMZmtdNtbvuTfhIQe19mD36db7+xbHP1CJEz/FLlyNENZ5iOfX5/v7ltusnbt4izLMULEVz6TXmH/s6hKAjYcrVjIvMSFlFi9e3jinfw3SBktdAnZ2fnl2fYVReC2uED9h47t3xz++evP8i6/++i9/fXx19d133/3422/39jaE/j/85je3l5fvZyH+m9cuM3tti4X1R4b6RVeXN5c2JFAp5/Oc2p7rnJSHD92S5lxE6kjK1VI83ZGOJlCMBInS3MAgnbTJMbUpRllxsjt20nRmTf0NShvy1wIa+kXdqVmIk/Pzmw+WTOlL8pDHJ6f2EwsFrZZ5d3L6zsyDvpnzGG8+2Gxt7mU0LRyEZQGFxJgetYQnIxz7W5zemICcXQ6VClPUjCKTyjamGU6le6SN6fdoMvzhmj5Hi1IYy3CEr5mimQ0EeJqwz0P6bg5HYG9+ZjwY+U5l1ZQHNDTedpcUDP9m+UB2C4xPVHCPE9PzeO4HkzaDjh0ZpDQSiZ7CjIkFMPIJAJ71c1jUA1tb5qYwmR841/bUl2LchhKtIuNj06XxANU/7lHFg/hndxDz8mjRDHIeJXPODegbTeT0+aty6Kt4TIj+mFBJlOTqY6+S6kQwJTbum2k334XdM3pCcrqLg0GLFZTnzy1s08G17tpAj1L1Nmla0wYm2diH/qm8Fq7RluVuEwibYHFlG2w9t/SJ91hdcxIQN0o5ODTIhEYrEIwvkJGJnU5RmvvI1JFS0/Ff/fj2n/x//uJ//vc/GpHff7xj9KEuxvXt6elFgkrIdwMiUce5pSf1cCBZ3eOBYRwpMwiFLer123fsKSeOKTcRZAPnMRB7mrxSCIsqkie8GyXxVt/DKxkXMLn7gmO+fAFYOl5KCdp4XUVgF879H1UMArB1YpPZ8rN47zEMRRYG0u+8ah3kkBlK8ZxrUkYCGem/pnhhFdRp5mQespUynOQb/VQWMVCqF91OudSfdJTCrhhVBXHA67RNZpWQx6J72BsJkckE1I5kJdKyGe3KIKNa2TLW2mCslt38WzfBc88OgxplqzVsYAsclbZDZYYRoTLjTcEEWAziCZgawfoPNLmebB4mPOulZDqtfp2BV7VKVEVW00Ot18IJqHYjdXvcR57kqMkGZEWL4DdoYM4nhJWVc7AYnsYY0IsToq2O0AzqL7WkY+jl70ZAwW14ccAQUvmj1N+CTlC9yjS9qpQkT0QwKA/xkT/8LgYLjWQcYvUFRnNCYx6itLrgOaIZHyU/sAQ+Zfs9lTQUO4QQd/xc3k6m8isV8DGHsM6aUvBhQcrgo0yCjQ/yhh0RAGZsY0EpzUTh0CQFn8M0BHKeITYDr2Q0CixnuJVn4E3t0wSMRqO8qG8C+sBEvUqn4uXLyEyGSSQCXPUt3pczoDHQv5hfcj9SScQrz/746k8EJBE0p/93cKoT9KgeYIH0UcPCec/KJccS7o18xgzyFL/zC97MziQVpHkKTE9aSdmmYOYUTIqOSZ0y1hJMuEnzKjyrMzhQ8TSKHPJTfVSNeUy+wS9yQq4FrOzKKLwUr2t+lIvG/Kb2B+Bl3WfoZdvVOIDiFrDDpWVALn60hvjKgKIDfWf7fCW6p4NrX3BEElBSuX84p+uqnj6ruDZKxkojZyhstI9CyNI+vcJZa5cH1dljjtjxNQSztbk1ywBGX5lbLS54eBJMlqYUf4k0gBdz9UC5fR+iUpTRxkotYg638bBjiouFjCUvVlV/saUy6og/Oa8+i8G0BX7GfTEbBuSnQZcvdNCYHGNvBuNLyYULg5IM7brm/IJc36CyE2qkAJijVNoyRbSUmdn7W6hG16J2AA5QcINcvWGOYO6AXx4FINP6J8iP29M+Dd/LSQ1ASxMU7Hsocsg9QqnJuwtwROfNBrQLyxS/4wLd4uEobtHB6vVlZ2VahRJb7628ffsGBCH79dXt+emVbaOa+RuN69WlO63m/JP3FvbalCuOfPziuWDkqgMl1969O3JI4PbOo+KbDyvOAhLGWu3iwO9NR+UAcXNtlGbDcTcfriyJEWGhU6Dm4MLVwver69PzvfVHe9s7L1/94Jx9MYRRTMpv/InOvT+7ef70wHLl3Z0Hu4/Wj96eP3687taBT1cUiJdybLmNnqL5+7YQWGqONCGJPZ1a1y6DcqWuM/hrzCzxX7Xg6dyp/HM37bWDFLXIpuIsK99YO71wI8HKo60tEqO4SuoFMQDjoMT9b/6X/0WLd3x6+fblj7/8/S8Pf3r5H37zEx3Qzfri+ZOrq/PffvvtznZnGF2enlIkB5vubLrAd9Pcy/Gbd1s7mw0ji+QbeL7Zqidqq43TSN2ucCkWcVzjjnPZb242bIAmu3GvVI4umWEw/GoWQbSl5bf90zKPH169E7oVEKLz3ic7kY9sm763uru/RaCvj8/dtra94dDIG5cz6i049xU0Wm1XdK6C6i5hZUZV1MJGWGUDtB+WFtcMmnypVxZHuhNp9ZS3aWQfWygkDCdbmr8oKp30rP9G2fgNS4G2HaPUHuy8Jg7IJx0HqChBq3cC05y4qvxCAghUdg6yt7TdCvg6BnodKru8dl8vOTtSSePQovatzTYssUexPuewur5qX0fDFUBrDlFlN6reA60roJ/mwnYRZ2TZXnzPZcztW7Bi6fLauiC3Ka8JfexRqquyBGAZWj1tp2bF8TsYMcOH+UscSw42rpWhUB4t/mWcRa7jTnPfHw2S5VflyIQVIgXRGFNvvUrhpxIEsEDPP4naZ52eQsZ4hCFaBvmK3ey3dsXEqqust46O39OJQnJL9Ox/sGzO9R1WA1Lz8XyAcPiOOWos3gb7XJroTTRwz+Gx6UGuqODAkUCERdLwgNIHnbH2hukE3nC60xxkGukN/22uotYCf+w9WP3ND07B/Qs953/8n/zRNz/7Ym3HQtP8LXHDjSwUp3Wom9YbCXWG07T5hAWWqB1/JkChYzgyASUXJ63iKS3uxa+Qlsxhtna/6EsaxAMXh5cHoqdZcTaV1tWO5/em76ERbAgt4fiVFaCrn/I3zQJObWsyWxJj3PxLwPcpgMaruDzLgk7IhyC1ySPNqFAeu1qgnETTifgfpaQj97RtBfqkQDkzhsEh7QooBSdx/ny2vGdHkolo9lEM0wa3jGvIJBxiIbdhdUSnlhJgUEdioPdlxtEzF2be9F0s8lJL0ZUvNr6n1SXCkA8hDrCkUFduAf7DYB6koB4+SaYFhDWC+MxP8gZRrV5jFhEC9xYp6adOmxV8GjEEYlEWAEgKUwuuCxp7OZCknyCwpl9qG39STlpB9Il9IhaRGM6TQNxIgVCJH5EAPml661sSr80FMHwiJdKyx9GGIYpOzEorUORJ6+J8oTDIqWhThfIP15aWWlWFRqMLxXjVo3hZmmiCbZ0HApnaqgVluMJU5YFtGcM3ECE+YDF4VEhS1CAUGnL87sMzmA3McAxFBRqkxXDyUJ/trqohgwhvg4Rp6WN0JYbq1qrkgKAsA4akn+OJVBdSg0J4wt1PRRpl9nV5jaX1x8eZyT7SBFm5uyzMoYoM+uRkRutgksmEmOpSVBVHBmZGr4qyQHn8mbfxCAgZkDDULswITmCXb6OhhKF8mGTgAPd1wXUxCiDp1nyCWN1LHZMJLN/8XjL4TfhVzUEMJSOD8iA7tDyhYBZ4qSZCVBeiQ2Sv6vL6hGOMDvgoa+payZLIO7rl4gU0gTCUnlRjQWqqImbgf3wpCq+jEv3D6TKRrXZ3Rhf1m5E4trH0pFMfOcaeasuXZn4QQB9kQ7jaq7HPKEOskVANyvJrGiL2py3PKrAJvBpypaHmt0Gg7FMqWCO/8O97i/wQhZMQY5OqloqQEV3AqiJuLfnjnoJTPLsaiS6HjYZg3ye86K/TFY0hN8g6vPRuxD8UcdatoFCk6VaDHMkmfBYIauhrdXXYvAiiSktLgSJx0aaG+3jbsFOL99yo53GAI1OMsQOkV5nTQlqirWOtAgaflP32UTtIVToDQr2ez+/eojdWjPbXgKkq9rOgIKo9/MfqjNw3BpiKN3Yrmrck1zW9VMjgvVO9qZhoyWi0gP7t26PV9YdOQUGLKsWtFpnYI6ovZpOpK6XevH1LfUjVGDlL7D6BSyK9IW16ZcupWq0w4Hh293Y1LWJFQbUQgjXASKwvrIKJ4JICGJPk0S3qd8T69fkVSTz98unZ1bEFReo/O7dk5nZ3e1MMo9P41ZePPq1+eLS38Ysvv/x0vfLoYB9L2O/6xpZNCgao9nfWXjx7bCu2/oxA0/UavP766r0dR2Y+XBHkFy6srlggpMcBA1HRtp0P1idc3doZCWf9hEuLGB6ubm+u7lpce/veAZnvr682Htz/6un+9Y3jfa4sn+bQfvr+e+4Un//yb7/97au3707Pvv/xFSv84TffOe+fGnfo5Nqni8uTi8uLvZ0dHYTT46OT4+MO67+60h7ih2sT6Ah9A9aKC3KkTSJOapP+u/Hg8oogKaB5A7M3hk6vdHiQ/dFtZdfke2HJ0Szpf3fk/fXp2Y1x4KNTnQ69m1kC8uH+T/9fqv6D27JlO+g8T+bxNs01T4iqphn9rXuMLtfVLYwwVRIthESBcC2EEUYCBJSQkHnv3pvmeJumf/8ZO6/olSf3XjtWxPRzxoxYsWK9Ob+6ad/6LOaZDTHb052VSBbLpGcEzlaZgXN5WyVrjWa4s+ox/7VU2o4QogoLz3L5dkvpqLxcIU9kdQ6ezg4z2rH/PIKeBMAtb7mSXZuyHmsW5SYCiASZxIR+nR9iNAQBag4pxVfhw+eP1w/ssIN42XtuMsuQmHec9fzMrFwCTDNGLP3t+VTb1Dc3LEK2tMkxtc1F83ePg4MJlIGfcabEEVwL4CBAmmtuBXjYRadfBziEqg3CBAw8gYXRolxsriRAxtNdxCJkROa8TrAvzs9Sn0nRalnIxavTIuzAyjcSbkGgbspShBXoiqxmaOYgZL4MXeRbjs/R1C5WeHvx0zkHN9YlT7mCenuyrqiTfQNI9vJ+nwyAHin06PBQVWgIFo1sTxyZNT/eIuClGcTmzQAN2rylYQKhO3O11cVE40xpIK0kzEMLZQyuEjSNPL4/P/8X/+4//f3f/De//wc/BVXQlEWSYFqLR/wX6xCfFPyb8Mi4SCC5JSVUfzmwv9I+ZUW5uqSkyJ+E2klNEmYqWXIlg6L3ipCdJ+eReDbEbPpF6CkokAN3VDElBXkYVjmPS0RdnV556HdOFD5VRDUhArjoxwILTpcxlnf4JNxMYjgDFqSgB9FfcMRSv8k21ANteEBhPTtamqmfeXeMY42nNNUYm3MZ7KEwiIvU4Jbpgj4gGU2UTP2iQg2kkKxHaIDXDOOIhXJddWnI0KWGQIHoDQ6kMyncfuXKar4RwvDyhZsxzMnbUFiikkwIXGVspo4yNOd4Ku3p6oSDAZDsFmd8QrwQY5wMuOJMMCCYY0QAcF1uHPmXIngAvhJ+n2pDGdb2P2Bb5BBGVeM5l4QdPf70Xhh2ySdowKUf0sgTdSZNBIyXh2gS+7rZce6ijcIR4JhyGijAYmespYssAXAgA971dAi9AujJgKwIPJkP3sonWBE13lWdOLH02KwlJP6GrbJ4OCJPEKh9lMHuswQM9KwgvQ/SGa9G7pfyVLMRFFik4dcckRqlS7wpKQNOrKQ0ttf1SB2LCvE0GQ/VLLD5OCEuIIl3yTkZbqQw1Bdo4yMyU3qZIexZ5yDk6IqHgTqgaaqkRC7e1pGShzpyXMjVmzJAo3opbIqgKl77I0fEjMSr7Z96atcvDx0+u0rCkTDC2SAa/iJ31DaFquYkww846KOE2k5OTBSgAQ4pmmLX94wlVIt9o+2SS2f+5fNy1oODQ/ViKiq8lOqhmhvG+mKjI4MKI3HUj5GpXjjAkL52DDfAiEqvDcedliw6HxScKjNlucgbMQCfYkaChVfV4negu8GccWOmoSp7/9Feotz863A5sogUXsG8SBHA1mmYAmTGUZelYj+zVm/So4h30H+0lWSXT/evyGW2vZ8k6RKQ6csR2QotFUF7QJGKqPxEZWa6u0I/GGBrGj3DEa6jf2nXVTkaqqqToqKEBpUArknMlATkYwOn6xG6fow00tGizZcfCdF1Ff2v4vpLvoqmNS5UmyA1Z8P4MF1D7Y6ODp3EGwcOfHctCNSk/pz3RIS/o+Mjn+i2xqY1ncTo9oUJYUmDJcNieo/1usX/wYr+28sbj/V5mvTy5raJYpne46c376/Msog+V9cVqtvq1aMDwcNSH/uImpttj5DPH2z66f207GYfVs/t6uTaIOTZ7tFhRvm54Euy2LWOwNcHeffdo1cT3N9dXp+fW9HsAVf3H+x3cuMVufs7f/HPv7Z8wMqfg9ODH67O7z91I4VCP9x/8JSu1wifne69fnXo+Q8bU4zz1V8eHhv38egn6J9/fHZ2cmBuy10PRdh8cXqIr2s8PD2al3x1ZNMeXZ8VTN6NZl8OWx5JmYDZstDozbtLWxhizZLdy/MLL4ml5N//k+++e+uGwcP3P1y4B/fDDxdvvnt/++CtvpfeYby7vY/B2/vLT71Rzbr/h2bgpF+3t2ROF7iX3rEfVL/3DlXZPcfucG+ENhkBrX40lqBHIGjo4fbOjgyGQ5qb2nXc3Nwatl1d313c3DcasC/Hsx7qvfGuL6+R4swfnr7//i07YxXT30n6m/OTq7nPwIwBhxI6VpSF5RNj+WMhzjUUEqbXIUhhLbfIkku/ZhpivAAQRY35+Gw9qNtNLLCZ5vFv8aNpvPRu6xjPlKqWAQz29glVsSEsERnOsXm0gG922bhxtjIt8chi2ly1helyTRXYrj4aUYDjA0heYTacsnCwoWru4ylCibHBzCPGshaWu3McbgCKtVEEJdQQgkGw4YHcwMBRVmsUiisy0goW4XH1oAlkDrQmvNy/f/gCShkfLfgQTteTWIyNtNUga3AcyA6ATHTCRdXKPEQSvdzC0NNihAOS1j5HyCUKHvhiWTbbYl67216D7QESQy032ky3GPvVfVyyDqvLLCeJifggb3YOozsiAqRsJ+nWDaVaXBYkxGQzkW2BCqC7CqY/jBB6Gsf9Ms+lFO48ifDYOI04DaPchUsdEFgECOjWZ4j/2e/8/i//3X/6z/7171lq93nbq9wasGAcY6pR44TTAlrR4YsEAtKwhGYUdnUdCSGltzTReRp3FPmdTAbgavJM1Bw4e8ielMWYkK7RkFZbiSwg+eP08mPddVUBnqNstfx4+oyFB+ipoPKAVDeyRQ/oRnrwKCFtFDoFimFMdsVCe0B2hhANGCgwRHOVHGSspE7LlWpbB1qpz+kKV4e4OKoC6srH4VcrHlH4hdVa+RV1yvlFk6yEhpNF20z/58J1HbGUjCJ9XHiUwjLIZqbzgHABj5uMEuWK3INqfy3MsUKCgi0aKHi8U7c8RJTekGq+4z5bHifNrXLyaWaTlGOWJ45wOUKUUHSdxWhzILhoRUMKS4sdveVXQVCglqsMWKCEOL5LMuYlXY5n5Aa2ashDz3KvmEIlsruS4qKzYRWouaSqI8wiZORkcoO8bGJlO+Q/s64yqMm+AjcNE+fQr4bzRaZLwcb4hILOEn6CBGeFf5wOjAwbPpQsFfHFhTRxo7WBUBQiamA2g1ARWPJGlcbgYY7suQJFUhqpgQ06saY2RzPJicGnhhEcevKprXNyU6Ob3iqlvK72kZdsLBCpi0886TxCEGkLToIL99x2CNUgUuhQx8GSETJANjYfvJHzgE1rSE5MS271lOCkL3JobkT7AegT1rge90FM1tWAPyMCc7goIexQOpzAugoUFcSBKv3N3xIBY+96VUqIhdouksUK31UYuJvP/ApoPIhl2ugIEauW+kNm1DjY3IgjUSGrv4h0mOoKI9/QClqXI8TgFfrRAWNVTt9TPdn5iaqJa1UBrKq+hu4ho720YsIxS5AziCo4+kpysyNQxbOsCIC1poUQUvZUT7zZYKLI1BqJ+jYOSycJW0o9ryZBZDl6dOaQ2cBYp4Z54xy+FLoYiE3gxui8ryeFcXysbwit4Ryakq1+ThPnSAMkUKNjF+r1C1v9WzIZnpq9wsnQQh2aZxOgEjykI9q0H+JUUBIjom3kXLn/KuYnnfdztNw32kpBCFKjKqjaXY6yc4E4OcRALPivgoMN4GKA1gdoBCNIgiwsC4WGIFQbJ62skEa64a7fzR6SvdnTsqGiJxAm+uUroGnlSQAA3c81Mei1VtJZRicbOzw6vLd1/dPT/fUde9472L88t5z81g0EFbzGx7YielWPIZ57qHR75/XXr//op2+smbDc/1pWinvQn1lXc69bt+bFHLSAfrx2HTWL6XHb4xNZg6STDUhx5VXbh3uHhyd3194g8GCcgM6r92/ODo882HblFcLH5gs/uKmA9cu7zxePDy9fHJPO/ePNN6/Pnu6s8nl2cLz/+OH+7OXe2QuZfpuTHx4ah9iZ1O6lRsg2m7csLcn93FdfsVf3ek1ht+bIbP/u3vnlw/WNt5XZ42fLWwzky6YnPSSBlRka7TzePnov7O3do/TaLqISRrQSrADw5twTEE9W9d9eXf1fvv3W8wd/+qd/cumRx+cHPaHZmw32vZ+qRQ+y0Xnq0lPEVqQYekqNlHn+j/roBWYjhLIZ94rtXGnstbt7cdEIiqhtCmmQ8uDO2YduuUgYbM3yxmL/Oyv9991iubp7vH54+v7dVasq9o/uHr30db/bNJ8+u7PgrcVXj5/eXbuDz/tYZxsNMSTe0DiQ8RffMveMJ6ss4s2ANvskiuXdKmSrKjWoKH0nJqGWoRdDhLhxHQ0zbc5UDy3QtTqFq5tKpwZZ/lhKDbpEwd78NRlJDhQhXRIkZh4g3EwYkRzabHRJm2VjyDOlQt17e+2Sk3rd2fjoqQ4DdBU4VzE5LyF7Gbz9o9ZC6t57bc57x+ui7QGKsgKUDDZqZ1sbPJYaWvIuLVRM22PY1r4UF9BnEkDnmUfn7qHPEwtmxcN1lkevc8VJxsd08DkwvqtZnR67ct4lMpxi5dWp3YIAbmliXYOEREel5xWdshsDOpXtPOgWX/cKkFg62xyKAZJ3b/Tah5KABh9tXlr3J5/b3/W275YGWPbiN68nz8ODXbdZ7Cdklp9vip1sDrRe4F36Ejnt6enFYp4cKIEu/x6DSQqAeJDeXk0oEsCobBI/n8zO2pjnv//HP/zi3/6Nv/eb/+yHcwNpeGFrNgEzqR7A6OwG16AjHkd7BGUqWQaRkKT42YZHfsULxEk+savmL/NsyVnBUHnVBnpW5R+yRl8AZFubO11dKbpv7lxB4eYk664/zfboKF3VCwcnKgbeYEg1C1USYiyDCVXgjytlrrmEvsZsE8zxkpZLE1wKvsNPcBZT2KlFqh/m6lhbKzJVs7fEgmZnZUWtOalTdPCEuuBx6jhlwtAlHFaWYfOmRqQ9q0ow3Ry2sAZpk7srVwG1YEfhYPATzFrWDXUD0MlIgGz5QjIfIMt0IR1Cyi+zagQYIVY0ggGNVHG2dAe2Ol3ZMAvIEFBHHwEq1JPNrBzyBE8NnCApCKPNVKyqX3hzObr9bPcUBdjPUCFQiySr49TJl3ouOU0sFJQfCgdR9YWRRd4G10qpV48/GKufRlAFFbSjtWmTWklhkp0IS55dJUvAOy9RyRyGAlWibqxoTkNZ/YCpVcYcOxXEKhF1LwXSmkd4tZiA6i4pKVSUJbSQe9q6Xv2+mlwIzLIcoo24WIggWnMxgY9eGtLQx6iWBlX0a0iKCzoJYsTCsgHoZ5Ct2pqRBoBDQDAzwjkCqD60Y6WL/hrGzfjdwIXYr8GwoRhg9tyPEb6L/Wk2+ZVs5+j4cMyy9o5Ez0pTUwYQhhHjXAxhxlZZUiouxN7wr6iOea5pku06eoitaOvndHgW0hUgIYgOVPiLsQ7yCuFIS7eBSCbeL6CVj2KqNwT1TQMZd/FPlSgh3xUlx0DJG2SLUF2DpPoqTAM9n3NA5BDJNMvI2CNnxYVonKNokvr9QN7idxSTCv00rRDa4WLpFkUaQ1i70msENr1XLys4gZcdTDnZlzowCJwWApb6+x6zE2rRFB2KBmZsUI9YVjwdE45s+Uq2koU0eZC5CFWBDGNNfECEClz4uU5Mqwh2JC8DhmNGq+kxsrq5IehqSwSlQR45baX4GHo0j7/OnYPu4vkz5lnAE1QJupkwd9i7mCQoa6xHnzHVQlQhhbo48tEnjU7BRlUjvaG86KaJOmAl2Crr4BG1ZiD6qfKGU9x1aexnVAamyvpNAiAHoJqYNDcsyZ7Nf/wkPXeHUNsQiKZ6hdBnW/Lraw0dPBpsiQ8BP97epBCXDvZt/QnCvZ1D9ncvr6+dq+ZWADrNGJ2cnv78z317byPQRg4fjRNsXW8K0Hb5BjwX5+/lHecedz0/975gTxxIeu2Tf+S+g/cAeMTWHYPpVg9PLVL/9PHx08Ptvf09Hz54vdalh2PfXd3AdXy4n/la4dP6ZTtgPn776hXejg/3vv7qG+mL1xXYeh9JNta0CeHP/eRrybElClz88vrD8SncXguVXE49aHxy+PDBxjvPX5wcmig93t/+6qWNR61n+GxXnVdHxzIbOrR03u44R14ZsPURIpPkpydHFGOt+Z5d93uZEc3xP/tCEidJZwTfvPpzGn7/3Q/v3r77/s2bOyumZKOPd/RghYX160YjJprvbu/f/3Du7oCFJpfvz28uvTB4x1z+7c3V9c1lpjjzAno4MGEx6LJ0xxSulyRfGmbg7s6GrW532OrHmMvyll5vyzbad+Xu0UuX351foYgVLa9HHlLdOMHoxbXpYFszsYGeA1n+qBr5S4jl8XTPtOSY5euFnYlRuVc+wHCZGQPLTCemscw5oRPz2/laYbEAW3LXIp/stqcvatFdqV7Wy2InTmS3spH8utn2oDoQUGdfZHHexN5M/Bdpiy0Wk+3bxPazpyOmacMAk2GA85OMZboa7clQCuzeU7Eqet16aY5ThWLM8x3jInjAB8dgSwtrn6x9d1eBiTbHAVkJgQFkYUe0j4cfOw/eJMktcCWR5ctQFakmoiXJzRG+pFbFdTIh3d2wVhxVsioAElNpLlIrdJE4y9h7excQRjWRsTglE7U/dx+MoiXfDbdw8unR0FJt1oRbd4Qs8zvc92a/7ePdQ9ZID57jD7vbYQaXEMz+nu5ZAS10oQPAUYl+cMu7wzKGZoh2oOpNY3qxmaJmE07ImlkKdWKmyQjQTDigvN1HmZOHf3ilsfXHZ5eXH3/11/7lL/3t33h7eZ6JWGPlflGW112m1NgsUuEO6wrjf8zFedKf2UT6Iauhx43iJjj7Ew9HHYSFpAFS+A0AgigyOacpR8plOvKnZnnN5uCuqNt0ycTnhVxNbZJ3J2Fxrv5S2SLVOeehOobtyIWHajKp68GSu5nC0Ez/Javp2YxQEy9dTzfqEw4PGOC/E/LtycshO39JFKjgtsiLmFm1QrawRBWweV/1p1XKKvKPDSZFiKi1pCmMvhA2g/+4mn4c4JQ+BslxKSUzq+GY97gbOBxgpcgj2q6NlsbUUe0iyqO2yB7CWJO7I9Nfy0iiITeMhpV1OIFsCKOmVnXGFNi+IWAiDALPKqExYUzfl/j8r6uc4fEMFRSIDzXtrk6XCATxqyELSo7rH6vfDCrygDmioYvahL++fiB03ZWeWnEUKtUYkU5LdCQfNCaHLM0Xc4J0CugiVnLhMcKwLGqDU32fkgCM4Y9XkBRGCgIalJuWMwxF9IyiZEm8uPKzthBWMZm7CKmCMcUcaa4VRjrrR/VBm1+dY1MTGPAGMnEMhiIq2OkRRdoNoOGoVrArx8Dwmx1EskCUKJrsjsgkP8JysQA+Jg268DRCi6qo8dNJrdQBEEmbhoDFS+kamjelyInhfHN6pRAp0RwWFuhmpd52RBXpYa1HIWefo9+lshxwxDWfw4LgW8+1oTqoSWqGvL40kPDmbOD6l4VN8TChxE8sjA1BuokyTdRkZNjglupXbUGIJRUbJNRwLIMFDz/DY5gSR5THiYGjN+XYDHsCTv11wkNwiUniAC4nCcLkjpCa3I0pQxSP/5rFrOJQNIoP+AhCE4RFD1KzsfA6H93UJDWMOQ7JTpEGdf+c9ntC5NDdx4hdl2860qN1DR5w4WTVTax50Uirk8SXnrgEXJpPmghpKcHIJJIMZv1ePAzG5AZiGs0iu30/ZjTg28SalrTWtj57HfVeorO+06fhgW3sgskGlS/GjOia5lSGoCDCQjyByjgzXBVDSgPOVUlco/quqj+4hrZar0tgoKS2y+amfpIpGBVZkn8c9TYfZ6r6hHd9hvjLz4WUOOqTmgwgsAh2lCf1vMHYbvMfWR2A0AYw5eNXp/vp/vZBxi82rYUQX339jVd9pdSW4N9dXd7a+lPgshbf7X72rJmJxpu7xzfvzmnTU+Qav/3+rd7Lhv7f/fSnX3392oSrjW/OXr7eOzhBrrzz/uPD7uFBU4Z6QMuN7h8TnqH1M3P8z/cODi1vf3poQ5v7W88CP3mfq6daPVqQUTTYpiXiffj261OpzPPPefjZi2OJoG0izTr+/J//ppeRbT1//fqFFQivX5y8tK2tuXYUPn92avBx5DXDn1+dHhr14OLIiMH+pDd3jOPsxDKh3Yi8e/L0rRGCOraRtP6jra8/b9kgyJ6nHphgGkKksZ9379jD//TsmImQu033f+c//Sezo5d3t16rYEHR0fGJWyjnl29l5sdnBzuHe2/e/nB+cU7FXtD7X/7oT8zZ3zWl3/qWq4ur8/fX8iShhdFlPPah98Dm4+P76xt/nru4tW3Tw4er20d5v/fRWvBjiOG1qggS853Ty7WxxOPDm/fvCcsTACzZkg9xXRyQ2lod1EvFjFuM4ZgR5Ym57HKlOJ0IoP63QoQ9FWEEuqy0wLoOvZrgTSfCwthbo4Jil0NXob0OqfihZyqjCo+YhSfDTpl0d6VWCRq74QD44V6vpUVWKKrcnbrW/c+69YbuWa1A57ZV+3YC0R0DwMc7ENREdXjtamVO3+MkADfNOT1dbltu15zIruHElVsoIOfXQ5f5Tvcl9vbkrYIBQyvmxQ+un5G5GfF+jNfEWtrpuUmMh+FL2FFhQgCw+TfbHhi5G3h+zUkc1vtNw4HWRjpqKp/PKgLw35astkowFWPjuhRKP6bvyxqbIrU7qT183dOyuELS2RvojIaNCPYO2mvLYjAVo/mz7Y/2vNWgW01tJ2rxTxsiNbp9Ziw9j8u08riJxTjpYccWbcoJ27RKK9sHz5ZI7tepMzGvrgFlFko1fB2FCSmEFNRJNQQnuqU29wctBPpLf+1v/86/+/2s3TKtsZbMCrLWhZSsjJ0wT+jG+rIaBLHlbI+U/NLazy5njdkSKSUONDgmcipPB3N3K911ZKIj8Oo7Y8AAcI0C6Sja50aDAKJK0E4WhWLGM3jCpjxEoUJVfCuAETVA4x1llJlNsLaJ21IslwcxyIFexOdELjT7LqDFbSWoxOvqBbQPLMKEhxxzGG/oO51+SJAH6aI8jHPnQTGB+R8b5YudI2Bx6srcBIgSLI59DcubfHrESAhJAUhbh899m+G3oDPsBzl8s+Cwu0kjiuJEIoLC5dyqVJKdcPGUolJpepY2miW75LLIDfDQpB7/bSLfT12YYpDC5y+kwG/CDvarXRK1CFtzZ8S11AQy8wiqNswExGmifvfNYFykhnr+Rx65jR8gMdl2JKXKgxQRkQ9vFNZu0cbXFj9+lmZMyhHBw28nkpw11nG2tEy14MwwaSlxrkRqlpBt6woFgDhKtiPMsI4h+XRsOBrpkcMYD9aSSen9Aj6I4MqDnptVMfuZeUVTzAw9EwQxmHeM42x4JeQx2sHWrVpMQ6p5Ip3MnnmNpY1aqzfo0RKSZTLhmAsRrHS4GOxdTw61+fJXw44pzEJSQBUMAPnCCB8RKKyWK/MkPUBpdCZTtE1Z0o/QOvoVMUPOgl9lQAZr9PiBjFBNkkejA7G1szVLo6WViKpmHG3oRPhqW5ZVXEh/hOOn+6Qawq+CSz4CVXiasMI4MqzhDImjlpqHIm0NjrkpqSwaio+xOczjyRmlj/Sa2x6JtM5YiRG/Jr1RMocc80cHK2weqmMMKQONqREyAAM7mx6Ok1BWG9ehZYfD4MrXUQP7LMjD7EhcSCU3KyIgLKJNWMEIsiGfwdTcqRgGEx/9TF5O5iqP3uFMREktMiI62YhWBZXu1SJFZ4OFkcOYZN5FGoY9Pak50mtCwmF2ZdQVD/q9xqzGRuX9aM8fUDrmVaOBmTxj2eUJwZKSUC+TKm1SnkiXuLCJjI1eZnl3sQC985fgxs4iZTp1KAZ1AoViVXAaApilPsWdMZjF/FRUU0MHuPVJVdC/lnIpRBBxS1L8yTBgoDXgSp5a0WsBCuPrZgsNGjJdXV4ZmhKpmWazg9e397aPhE0+/ehJ3LtHodB6IVvIm1d/+fLsfQ+l3mNgf1+abmsRVJgr/XT64oXRnsXyNqh4ZuvAzzvnF/bB/LjntQPbVlHfWRTigd4UaIH8/lF7YD/c/fDmjRcPezmuNTNPbmt93LGMx3OKR0dHr14cynfJxQqm1y8PD4+sbzYPzZxaJJM+vMWpB4v3LGXyJmPvNzBTblt/y+QtgiDEly/dS8j0X798aQRiDfRP/tzXVG7imM/ZndNCI09F+3H24uDs9QEbYpFmMM1iSlgNeziYyXMZ+YSCz8YJcnNatvMMM2B45170dXcve5JyMZNDDyCfnD3bdrvDA8/SrYPHe82N2vfeXt/+wQ/f/+kPFz0Q9OzZnYQd6Mdnxhh266QglsgEnu9tn797L5v1+rOL27v37hVo+87DEah4eucpg/S39f78luZptq7h+Y78mHsxNn7EyFW9z+/o3YqjmWtt00ZqEkfSO3TugcxErHzLXSPxDHaP+bZwn0GxluWGSOV7vHWur2VC40v6ttYCZZdkkdnPXQIBhRkXSlyxK/+spuBjePZkhYrIFdUa8OBXzYFf9dYYCOhrOnbLtLU0J9rYcK/Y3Gw/ikGmbUjACriqrBEaa/QBdT+BxFkj+u88ViL29NBzb1zm5m6GeP+xXkDGa1TJZ42D2D+xs383BAy63C9ppOF5aPeY6rkjAI2wDaXTjc1ZDrr6Kl/zAxn576rnc5WPvy8mp6wKBEu80zzp1hD1yQ0k/E33NnKfn2TTnO7QiOuSvxmruG9W4KIFgnRDSAt+3YulP1jqtmsOmpWS80iVQh9t3uP1z7D11jNbIQll5KC/7IWyXixtbO6+n6VVLfZxuM/s3QLuoxkkCPz6CksHpQo9P/LkNuMMzwwmmGPhVlTfInF+sWtmXFwwAm/Q/GzvSNRl0V7+jda9f/cf3/zC//aP/8m/+I+Xtw86f/ULzrOYhCCJAlMk0Sd5i7pZWvNojlFukhWpWR3pTXFSnJPakY9qjgBljOpPw1Tjb4mZHdYtJe2ymg4V3RCmimklvRAP6hSWfjUUCamJSSjxa5oEz/+8Y2ZtdZDQqZN92nzA7sANMwKVb04HMW6L3tZnVt8x4EpYeCvbmK4Wc/lK16uMldWvsVs4EZY1lAARd+MNCIScqTtJWA4d4wuEy1Vf+dl4FskDrQLoxATm+lrETDgqdcHuEFhNh6uIkVGQEo4ETzQwM9OnhKNqIgVtBic1KAUnrmb3EbxBMrPLXXRVSNIZEWKNY0dl1JaqtL5guOg+cA9YSyomVASwinCzHthWoqwukgSZYdN1UhliqpmOirCLSBA2tqEJvEN1c+HBCEKHFhlJc5d0UhM0+azOkmfyaDrDJ6Yz5kx4oQs1BrVIKSstGdOmFyWdzkS++gPVQ1QI8I91DxBtVPVvhhxpj3ENR65ERoJtWJVU/ZGF+uDqB5qtmKJoWU+bZH5TJxLZEiros5FabE0G9YUSwAcgU50XjDc9Go8KI7VBHe4mPBp5Lj9aTI5oYFEri49TikxBROGXdCso0Z8QfGsR+o7oiLEUNxEg7jtUArBjsKs3gAcKA2BiI+OBBzcgiS1mR3R+OOeSUTd6BJOIQheMzTGirFkxGqqsczwEZatBeBIBKtIKaF3Jqkb0Q1St1FK+PuNhdZxr+FigVJamgKp5f4H0e/5vNArlGq0mE38beoJbm8APJVm2kkXDpOjqtmG/0F8Sw9vzUtX7h2xIIEfAXCqPCV4+Ew01HtqCPjluuBSO3Wvu5xA7WhivZVc9XQmcoBwpUeYXg8sEiGliDdDaZi5NCxoQNe8yuKIsLGFMeliFMaPRGyVeWNdkdqbchbHXUUFRUuv+BgwsQ2Sj3mWmLUVdnvPF1Ba2oSfrBC6JYGtUF0kb2ZKVs7h34GMjmU3Ez1TQgu0BWJ3qDh14d4Ri5IxmV9mGkuUDaMIURjhZg8BkrCy9TFo/2slbAjsaXwEoS8t6OtqNwZdW664umQNDvFY71/eb3LMH6EyL6mzsCQ8Yf/HCKfMBft7d3Em1tdX9kxqV2LbP06TEhVwbzxCu94Da78eGnnqXeXnwAwt+/frUonxT1SzX3KHl7Z74tbkKbo+ObYR5dnd1bg8fCw4si28CwrvhtuwC/hbcg9MXlsp4+vXm+vLs9JRQiVfm5kVDR8dSDq8l63bZza1VyNb47Lx6cfL1q6+FymvzmjvPT07PTo7PbpF0evDz/91//3ibPL969eLq/MIuosa7r//7/ysGXr3c+eqrg88fHw63dw+2e1vws50n63+MGGQp8tLTfVObDf6sMzrc2X2SjlhZdCQ7lBB370J6e2NNtAEVo9VPWXr3yUIRG09+sLCHo1kLJAae7LsT8uz87fu769vyxpuLF4fWWxxufTRy2bl58+b2+u6tuwNmlB8/Xtisp+cI0ppgDL+3klmB8vhw7SFfRBoUXVxdtrTl+a5neY0feKedXjzra+HP1c2dlUre5mVMcUkaz7cO9/clgmZ+SZEB0X+jikayLZ2i0PE/1HsdmFk0KbZxQhloex9NBJdXaLlZoJw7s8pcaVzMMpHVJ0/ekxcW7lVnUyrUV42n1mYip6sOTprZT6hlr4yekYOq04DcPSVZDlMUA6SSeitpOJPmarquRq7zWp/cvOd/jFrl95GVGyNXbAHAfKTbzfJUOkSG2wK9iMdMdElbKWyzhm7etLqi1Vt1SK1xAkSS621qnLb7J5MYTHfmzdYAj2Ys9OKSRWdHbh76xILGZFRBP9Ojo3KlRZ7Vd6yGSoojTKjKAkVzB7n8xoFnHm4FMRVzTT3FzE0SAoQoF3Mao9ROEl+vxLEhg5GFWl7DYWgAfLw04stsyYAcmxLO9WVEW588mk/O7mk0kKAkE962y/zc+LYUIOXMi+phRS7LlsLu7PZAdvEW8WVFhfey9Wiqltd+27nB9o5u4U1vyq5VFgfQStktREKOJZCcuiALOMBbb95e/2//n9/4W7/6j384v8UwzRhyJrsRsk+RcCQ+HU0T6iqtLh8N8e5zRVTUguzPhU0vQ5LZUkCS/MiKfkYLzWFpTgUpkKkU8QU5C/xswFUmrXXGOZV8LH2NkkGq08/qE3SUNPNTSP+z3HqVRFKj3OatI30MaUCt8w2oKCgXb/FHtl6+UW4N3aSSWZZWeHFVZScgTTcdRRhGCfUl/Cbme+wHpzWbI5ua4ceYXNUcSkDNBJZKpnrleUysQU0CAm8whnKXAJ+j8clIr1RVsSozEosYbI5oXcfIeAp7NDM4XERKsw8ry2q/qRUEtFkE6608XE5taAgtyHDN5UgmZRD6n7WPt4VudR/RpgUpJMaNS2uRbqbRMOJqVkjoSyM+VwfKCsQxLAxHnTvBgdpOqjz0BGrjv4nEEZspBfia9JX1KW/V1pygnGCVJn+AWoQMF79qSFBW4CDeyBeRiyBLquldw2iL5qFt6kbaCI2knDhCpCTbiBAFfS+BjcUqHOkFOVbAgaVJYcoWVYKQVYOzgYQQ0cotytJ4IEXNQAi4BagKs7rIy241TBEBr7AfCWqknqE2LtLaZTQzJfirrHWZV6BCnUz9jxU/I3KOhWLVCU6yqoJjuKpJhYNxWmwqgOOvy6u+KP/lNNqicwSyBLhGy9OgRC2iJnr41ix5zuHcfQAmjizVFj4cClLNny2EhYZsGBC88LRieHXoG9aYH/TDcLLwl90PtK6uOgtY6LNt8LJEqbNqTHlkD07zcyNbxWP6M91rkgeJ8gMEDMDATPgLScSVghQ1xt1mhDfjcjTFV8qKktgfQ1TOIV3CpvIWyUx5QqRjCUHDS/XlGj16L7L6HDw1XdXCpZZ6tQ17QAqXi/dITfD+ZtnSWIIEgEEnamST4dhLc96B8n9GKRkWL+nWcDhBSD75XtZZSuEObKlFJkwDTkc7iVrOZ7ikZFqlGq1KSoavHCHram41LlLCiGYeO4sG1b706zhxLRRx1hGF2Vk+BMU0HXUqbt63TCjVz7QH+KsJQSUrpEiexs9BWgy67zHGo2YlYXj+XKfL3Erw5gjINLVTZ7os1XtydYKjnp4w7N5zDYCp1pvrm0Nr6Xd0zG9mf9D9ly9eWUm3f7jtJsvtw9OxPXRayuX9vc/MuB9aKbT1/Ie3F5RxcHrsDZ+nX391317/3i8hHX52fftWHveA2+dm1n9CkF4pIGMzS7i7t3/dehh75F9ZOESubi94NsB0uNzmxVcvrKVhp8eGJXuHdg20d/7Z2andmm5ubj4+fDw9OSVh25Kevjo9ffX60/bH84u3VtoIZseHxx6pff3y1eP1zavDnW/PDt0zPvQMwIsjG42+PDv7i3/hL0hWmth9/vnrb8/aj4KIEokHkrlJYy1Kd9fZ7ocSJB0uDcyTwTumBqXtB0f7PqUw5kSBkQXRmieYLy/vdKkHh4d316Y57ySc94+XXmz8/uIH6xF/+rO3CH55/MokrFcc2NDz+uouO2BNLLsFGcygJwvcRjh/7w1ddlLnUFuqsTZPKpuy9dSv4YCk1xSvcQezsTCoF/R8+vjtz/2kxLfcOjv3lCuLaOcWK8F4TQGzDq9ZWfkZvPP0jkvsyodlWVmv3E29FkbnR6yHSFe8xHlZW4aZMZegjNH7QD7bJiWAWlcuhWJaQiH34UtTn0WzfTNJ/HwobOSgd5zpVMGrLlZFDdV0R2fGq3rL8BU1xvnwpdV44lA4HkV5FgYZqvVCYDPFLAMKq/klebp+rp9/JQQkuA2ABize3t+j346vjTL33DxhuJbHND+UQudZeWLPsWJXLB5fDlwnK2goRkJ/VYqBIoODvKc7WY68LhA5EaxY58wlvKxq46RpyEluvjAOtNRWuaOO2SFhIgeARDTK9HLfPHtuRadVseX5MxvdlmnItLbl+vm5OWhjSN6oN7dQLFn3/jUzqkY4gnZjfYPTEPn99Pnhvqc2u3VjLaIJfM9aCPWzhxvAhhsG5bSnxNNTXN5bZfgQvimORqhrzApYfLrnUGeRVLzvQk5JUcx9y1vqHv/xP//3f/OX/v4f/tF3NBGnbC4TwCjOfTRkQpUiFxTF46YzKsZ2ACSoMtCGo3myEkLQWsnSX/KbpNN1LUhJeTY1ZgcZ6rSPoxqngUnLkrY6E4VdEKIZbCeDuDvYaKNfpKaFL7S52pApQvga7aQ4PKGhXxOu1fcT/hFMWSbaxJO4cOKpWfN3s2BYHVcXR4uLIKAZdNc6LV90OmvNVdlIjOmQGIvijAltJum1SpiZay17MqdL9IWQZqMSu1Rnxi0aqinZ6AUIro/0GAgpq2Xc7mpIG/IxaVNOe4GfUMPpXB1zTkH69iQ/MykaFB9SrQqEAHgSgBfBpOtbP5xsEy7WdTJU07ioxNl+APNMP/aLBt59IacqVCUTfwpBBD0EmQdC1pX0JsoK4CCkk+HX9ZFJ7kx2sT8N6YIMFW6AUMkcgPguck5lUEbkrTGOi6VuNWo3N0aW3ydAPEVDqFEbnGyjIjYL3BhM0MuhaWGuNLyr3gDnAviKwOSiXTS6HD1gDktZxAAurZ8gGyLDMBjKe/jhUO4qUOOZiiNJ+7Gf6g+lsTYURhOYBaj0yM2zWH+BE2Pd4dY07aQDNPnhWNwpGyEnEcjBGYvNJFQYASf8gRwhgRxc/Zi2S5g1H6YhHsjIa1IgTKEb1LinuGLJeN9AWzgytpFb9SfJTL+hinEnbGz82cAs/uItuATNMjZDnBpABFbNRLKZmlERBGh1ZmkkZrZMlyaOeDAAQHO/arXQ+Zrxk+/0ovk6on5sYmjw4WdZ+9xzAdxJbKvf/Fk981J4dKptkmlmhU3XAsQ0uKiSqHC9ZuFdhOU5S3zJddhtdqSiZQflwzOX3M/k2R961ppdQkjsweqK8vBhKr3qpPt0TduaT8WQyyJ1szFScSIZLL6Q0NV5ylbXDCGQGFTNH8hWrUpwSmcHKcHyUoCpfEl2zZ0I2dnNeOPqBigaDMAjNEkS2sSLGPJXiMFsBj3PgcQKd5qpz9Fa0BZ5eIWLOLXLFiZLQkMcspkZS9QdhSu/UuKcBqcsXwWh2DyKIEJIe053xS84IGKIM0uhsgIhGL51gJnIkmtU0Hf0hMP+lb3GiEWQBiCSP2pCAcPTCfhzL0g1z5aKzqdnZzb5tIXoNz/5OfcBWIsXgr67uLIToqUCYptHWk3MypnsZC/PON3d96CkzKmlEQ8PltUc7R+U1NkxPNY/2Fnk5uJKcio5gNlqInn01c3N6csTrD093NmIXpr1fPewtGPrsxUtNg/9bMx8uG++3TqVj+0quP3D9xdmh7/5+a+ki0TlHTTGJeb19w93z9++PTza85AxzZ2cHm5v2Xxw14ocK/6//eq1FUo3jx+8H+Bge+to58M33x6//Pr1ntVFB4c7B/snL48NZva9DOvq7vrqVl9ld/f0W0Kz8+LF6d6hFyc9uV9iW3QiFDdl6hjx2mDqMAvPkUxGuZ1mR1Ti8jSAxJFbWhzxdC+nvxEJjFitemrms3Xnn376p94R4L1kDxbvSL7OL9/fPNzJ8m48eS3J+vTx7uqBw7l51gAgo7FMhQaejMH0r5eXV9B5wFcmbwBg/b+LKLHc300DveH9fe/59ejE9dWNad01K6HvZsPNqWdjPMY9CvY2psh5PfiZne+QYcZp5nHyhzGkopwkRzFT5iL8NBMigII2o1q23707xOYRjuX4E/FUkm/gx1AG6q7ndmbfzRrsNsiYGXq8aAXNGPv6LjSZ6WfkILPmxlfzvH7Sn8XN3t9AOyAwcncNUp5A5JZNNwIML/cMjtTMG/IpmrEXUO+06NlZgSW/8zoIYwNPyHy68UQ1ULMuOV8rxu7QmiclBBw+4CFrLZCSlMB0fDnXbW6ccbofxRjzAc7mvF9k1VFDn19Oo2J+BXeF5EoIqdBBaKqvzyksxK6axOKStV5ooiUXet7J9EqzURy+R84EGRvkeieeuwjSWflzLtwa5NZOaK4bsqlu6WldGDV1d+jArbkZ4RUrptMzFWIplNtNSNOWcBgO4AaQ7uO5UySy0MLQv+VRGaDM3PqoL5reoVVbApdNnz97r0abFNGm1IXOSKloZFDgveOPW7/1r37vF/7mr/+b//iH9u/dyEy9WZEIFFHwCpiczIGSxLWEirDibNIfHUiHImBTYdmnlngfWjPk2vqXZVbZT/XVdARkupGyE8SmqLJ/4Yu5T82QOVG5AXGFKSeYc6NenzWAc4pE1wzvIK3DCv7UzZd42TTMkHKFqgOVQYBA1IXxwTV+N4SLttM7ZxPTO1Q6UBGk4bRojDQ0kHPV/AfIJYBXn6sRiTEPbSeLHcSxvKEESYDwGuM6nqJnHAHHKWiuIoAC/Yvi+YMHFq2AhVR5yXfqAUqTBIsqlxiPpEmNRKfCOGx5RC7b3SusBDlsAo49Yxt9FxPIvvk45TXMmkbwgYiwJRzMORJ6wnYh8rpLg55pk8RGJRGfACOju8FFmaWtTmMh+a3ihWNSL16G+UQ9ZleOXvSIQWjhjMeVoytXr+FQLuzaMk4Nk9oQCD1efGqkKxWPXNI+2keeAjIDCOaUiq7DVZyrMFa2QFWQXt6qAAEAAElEQVQhchfjoyk/AYc6jK5Gak+xxufQCTh3CfkQHUmuxYvCdQs3RUV/Rwj4B2B0tej3A3nUF0OR3e90O27lh0vSEUQtDENMNKWPBsNTNcB56FCiOFUsIn357eoCvaiYVqPZgmVoq57nOhvFjdBGHXm3vyWWEG+qIURLVWoNyogOmrEOlsj/s7AJKP+NUBKy2uD0uRymszJ4XgG9GU2cOVejrG5GiqTQ+XgOwSWLiWKZ0OAciUePOvQEMcsBOCub/8cnR69ffeVudgbxZ5Li5LFBgVVUVULcfSIW+cmCDXOoUgR5G5xAfxmtQZpUZpyU6CAqQIwVWDKQLASvSR9GuOo23bji3SJy7EIaPQYwupcSoCNi0jaQ5BN/K5+INKIQvzKc6ogfzvRhOOrPjzli5vm2CWZ8q6yrI2xcqpLg9R/dO0sqG3GNdaJZ/x2Jvd7IDKLMpZDtEFYQUtsRVJwji6H4B+ss1nSKEhXU5NqgqYMielSCPDUHyJi/MZXd0+Y2sWroiaSOyFJudgGngEyRMSEmxmyWuQ+rrkKtWtR8/kS/Q2zjkJFFAKuTWArlsb7MdMjWRMngrWvHWZNq4NfYR3GLNtyoIRBXE8ynD4eHx73pybzd3u73P/uplT/HJyf27SExc85XNpa8kwEf3tpjpoeDT372/ubt5a2Hbk+2D773CjA9+tbO5dWdMGJfIPEYSQeHe+/evH91fAYdSq03kvRfX1hpvW91sYl9pJqmPjg9vXm40ue8ePkSJa2j9wbi3d2Xr189PdzaatCOPLp9s7m60K9enXosVB/rTWT6giNrcj4+vPnhuwP7/rx8IXvxxKMk9/TFMaXu7Ry8+ua1ocvdw93B0e6+EYKBkFXIx4cmmWVLlvSYyJLTnZzYl7OtTm2R6LHg+5tLq3Xc1nhxemCNsS32jw6MFvZ7zLZbW0TPiXp+2tQpsZoitljoVvovbLa7+W1vPpBFuec+CSsVvLu8dMfNE8/ff/fm8vL60rDg5v77dzeSSR2q2f1yX+uQ7LFoMNay6F7FajpDVzGzD9lqsunpiOjwwKWE9O7ukTnqBD3qYPp/bkWUCankqQCmcX5xAXImitB5rqOFRXqO8oxN1+TkCcNtyVenMoZBZ2hnMdulhAwsph09Wc4u1TR9kOnllq5lWrIcoNicn+pwDrZeMIE+n23koS4RMXxDzfFEDvcZ+4SwIBQhP38mjuy8Wwr1KIyaLLgRToFn4rzS8nbjHj9xZCMk8aTcxSinLLI8ibF3p4NVgUiR81wvmnEBX+uavG+hlVpFSPQYTTGRxCo98Tq228be5r9lsZJ+dEcyQksPcV5fBXAho17Nt78JIuOSSSFTyQld2ZwXCaeOqlUAJvQ+q4ZDxU58JFWOO30TimdsTERTYxKUiW9JafqU4ljwajedFY5BFV2bBAHWev/SzsY/u5hmQx7sPrCkztDAwM0dPNsrtRiH+PiQ7MoTQR+8SMDyPnH20Sj86cH9XXU+NkQGuzRG+3s36KzDbnw6fROkJmXnVhdmZSaMiOsZCngMJkt6tvXy9BS/TRU3iRkghd2UEM8mv6F5q5b+4I/e/b/+6t/+5//y33SfoTmgubrYK9sAvhyr7Ceo3UR1jEm6pKRYJ86TJMb6PZF24rEo+iVZSehZ9zQZQCO7eqi4jCkwwS8B8FXQTlkRoOaEX3rB0fRRquUzQSvSztuUBw5YLmmlHZX7WrSpOT1gJWMDQVbTT71tLGhU5EZlj6mMrqOGZpfamUfqz9L0Qat3QDuus3KguO3iEeF6B8wYwMNQ5ZwjEUFRvzYzYANqtsVLxkvUw1F1FkCQ84N6NP2j++QBwaLdhDdWin646mdN0FmmXxAiowxcOfETnhKtyEsMxTtp+69ocZ2rTzmbOjk50x0EwUF85mKSc7MPNDV3IlXVAdBRXTOrKFxHfOpgG8NKus5uy86/nJuE6InBhM+Iw57so2e5G4RL1MqjF+d4bya+Wn6znkjKutLUFCj30/8ozLrmwDwWycSlBD789Gt+ApjWeoSmkhCVOq/naIMKdpY8uPxGJVARA9EQ4kT4i+zUmlwL/oHqA3wEdE5HrkW836pJLOu1tXJ5NUeBtsNUJqh9NM1oJx7HpLGrsiMrCVq5mW+GqE7l2gW+v9CF3EewsO43FCuziq9RAdrhcTnSNw6bnYPOjIf87gupTI9Dc4RFW5otyx02w5X9j6N1sevRGbmpJio6H1mt87rtgTg2U5suJgUG6WPIwthCBtwoI62gZ3Q6UJMEqad4RGNvGgw+fUewgGAToS6mZD/EOSTCN8OjcMcdAJHoUIIiGPuKlOiTkd0/WIjRxuF+68jUAy3xpm7qAWV1BlELjkUdRvBUSrpmbmgfhchaQvFpGQlyVB5OAwqInXO1FaqXyebaGWJrSZc1oFShugkwi5+TcYgYHW2qH+1IT32dBtrV+QAKdvjQnvUEoXxExXFhJD27eH+lt3CiXPBSfzwzXAMUBifpGPUBBnqmJMlnbj5OjOOOE9ZjmZxDOkIbvELHut0PAtpAG3mmM9BQRvb9Dcp1OulUGpJ2IFtVYTGY5uE0S04dX9oowlPTAGHn8HJbrE4FOhs8CQprJK6qK84XI0MPujYSRmSyqm00QTbs+CbMWDP+idkxqtiOI9DydvnM4sYDu24r2yPo7ubWUhaALt6dHx+emCO1lc2nh8dTq8Uetw5PXsmqfvrTn0E5L8/a9fSqie+xk2zm8PBQxvnT73+QQr17d7576E1k21t3sO6+vbqxpPDDo3Xqj3vH295lS0zbBzJcadyth2mtzOh9sHf3FgbYuZLZEqJ1yaVez3uBkZUoKjcBpqf/9PnrszOPHFpALMJ6/rg9TO5uPHsgAXy+dyjFNtp6uP14e319fLzz5746s/hn93Dv1VdnP/n6hWTkxVcnO4f7tzd3ekBrS969Oa8Pa+4KFfcvX59IcfmGWU2rT81AMwlZiNl0ijI2KDl6+Ghhj7dA2TmFng7dItg3+LHtqc0oPfL4dHggfdq2Rl9OzwbOTg+9qMququ6By9z/9I//9M2bc+NqirTQZPV48lo9pTCH8e7BE6rh8O7ObYt7SvHvraiWvtetp9Qb7z4wG7f13CYq195IPPK5M7Cf1fxsdXpnETHHtNCL6lu5Yc6PU2wic70L+2FX9co+GaWhgiVTzNfroj7YslNYZErE39x/fjQhRfeMDlO8QHfW9ETRXA3WVRfMmP2Tf/TgZybOIrm1mjlvTmqDI0O84rvxwDji+CS7rHesvUIgNWHJYBFEZjwzgpTuXqWrIJrmLwC1uETd8sIcsaeBc4tJ2kUMAo0AHKICDQgG78EE4vaOLZRamd6rEmxJ9cl+TezcbavbhwcjYLKsrdBmY50kJG4GyAFBTujEqY/Vr8w1l/LNjU+umKasWn2t9jUcKPOhwfwVd79cCF+a2dTi7xMZak44zpGSu8t4DGBCZ7Dk2e5i8yZtvW1IaE8ssf9enzPBOzVSsif4cZDJzQ0Qw0zKImfPStON0XgRqfxtyKC07NLzJgYGeX2JtHdoHNTbNPpK5s/IUL/IQCS9iEVwzD89GlB6I971wy2iuzEFTE0KlcavWKeR2Hxur15UbP/w9uYXf+Uf/srf+6dvzu+G+wn4AYxh064Ju7SDWjfvOSIQwT5hRbfLrozNqVtXwqImTYm2umY1wSuRGmVVYeSu7VKQq6q5OH/JlmFvvGZpEIhRTqYYkBo6wO8Y/us45tB8Ay0sFbrUMWngoqc6QSF8FRrGRHo107j60zCNTIoTRoqGfdxM1SiYtPgJ1HQwFPY5U3jgoR9lKioUmOuwZjJrSKkw9PyMZXCWqgk6iqLZNRVwRkPqpCddGD1X/8t7taJCQFCzzp6ShReSkJyPsMb9tVIY1KIQZ6YxPu8coaJK3xrMxgDn79+ZtURPZMDYhubzTo8RybxJKFlpR0gj8rXNt7U9hSME4GJZF2pxjqK4S9tQNZUTjQr9FpC4euw5VoKX1Fe/SQDhDEuC7dfQKdcDbdiNp8ommA031SGBykmefpci/GaNlD0lLpcLzAwDfMhRDhGzRU+PQTSjVxLiYqJJ3pkTdlJ06nE1mTs0WyOM1MfHMrakPVxHuD/n2kaaf3Eyl6dSBA+n/QLC17BaHShrHd1OHWpUeWrG5pwzMERIXVadjHdsH20u6cQjPnOepCXTmr+wLQrmd/oIocKcqUZzeT6CHK8FmU6T9dCrYlmP81FCXxvoqsGQlDqJYpQP6khNRMxx8i7laWeaJrsVZkM/YFOGDtpzTsMhjI5C0kzJJJ3Bqj0oSafuL6sSEQIaESOdaEg7w1FyDs7UhCKqxyWm1mqy1FwHKfO/ubothI7hEn2E5jMaNarDWZhGE3mF1ESYnzElLDms64NEoXMwMR//CBHci5i5OuwgbaIkzWmVO7WPUMQPofmtaDJKZU1x3zGeoHrWmmmqA7VuPJMb1jCO8tFtOXRa3sguLMReAerEkZnhC3uRZwqhHpjD7ExDajtjwYrnUnidZuF9J5oJ+s4mU39mmlAGPABDNddHQ2tCZSI+nCgJq395vlHOGHHlYzd+CnjDdMREb/9gSQjNepYdjUiVpGUirs+I4Jol1AEV19MnmcG0zgMIKnYZZnWqSsiJNGMZzSTS1DBgRoB1aaOWEGpeW3CKm2koyaDcD/dbTKvnk6ZFZVl7V1dXx8fHlu2fX15SzPGLU5Po9g28u7myN72teCS7trC+unpnGxuSuLu5ebq/t6vOxYWnhK0k3vGIqj0sXn798mfvv7+8u7EwQKy6u74+f/eOxT5e2Y982/AAbqL7cP/p8OhYXmJ6m55M66aLMtTtj8YGd9d3tzdHh2tljmU5Vox8Ojk7Onz+2c6f23umxPb3D46OT0+kEjYzEa3vbnq2Qe+DXCMEvDx56tZaftv8f3N2enzKcL0QBO9WKbx6cXZ7da253JrATPl+9eo185T+G0owVbtxkCzNdx+/eTQ0c9umVL3z4K7lVE9k52aBNxTsE/GnJ+vZPRhBI5bzyBntiLr/4dOrnZ3LH3669ezu8vLtd7bw9KIwc6fuvNy39GlurFFLmyQ2Z8/QPn5GMoGw/NtbCyea4GRN5b9uuGzvmt42KUvhZOXGAE0yAtUmEjKYHbcK1ix7z4Z2A8r+S8xmHKBEObNjnEyOF4rOhkAkwFQabk23tyqzUZ6tNmdRPhNU7bwBmoyzmh3ZHvoIKrdiq3mLQFRexdxkeH76L0fESMY3kyOskvO0dN0Ue31CUQs008EgZLqzC6p5eQigqZN+/tztS+G9qCf08xR7VhoKBj9gFuqY1GuXS8Ls1V2bflQFWExUF/xbxhZNhM1oBTygbE1c/M5hyZlrCTi9Lg5QLdUGcLn2QAKsf1hJlMPRnM15zvjlKKlY3qpebvrjZ78dgRm/3kBaPUVRYqRYN5mrDsJCw+ja1wgAuA1AQFRRkxKZK2LdFEKgrkYN9ntITCzDa4G9RQPInkav68ja3GYpXnR33uK3Q5OiOrgPnwySXTIGBrP7wM+2jw+OEpFHWwwUH9qmtiGx314IOKMOdFr/H+XWt7XbWObAWK38MRMtz3PJjZRUVcdU1kXhadsA1V0Ig14cGoJ6Tv2TOPPp7/y9f/XXf/nvvz+/SlRWMu3MUpkxJ8JMMPUs8y6qeq6CYSXp0ZFwRsSlCNCOByTykVtLmKiesUUF/vOR5M/sMzXS+dIeHqFJ8+CHofxbI84Lx4BNglor9lXEALI+LhQlYTVaaQo7n4GKy9NbATi0dZWsN+aUH+FPGNY+JAWBKKzHnKievtJNXZlbcDOdZ3gWAZHnM5PAdZjLg8FZjAdkTo2EMTxvUJ2+HgaTD7FZ769K0HChGt7ivA9W5KeGySovqI5PfZbs3FhaW3/YCktWOCXJsxYu1k+xuvjtfTsmpBLUvOFrYcR6ecTAn4FoIEsiV1GzIH6swCjUBFkIUQlBGd3SZuhDmQSjsI94yPxapuJnsw8VfJmuJaCkXSaAJFMeJa8aQtF3fKnshJEkjbG6jGbGoq5xEMjGBvW8ZpMsJK5uTajPhRJy8TJmQGApVJ1Y/dJODj2qzxmGfGQA73zpDm1OAlVukIwCCtQkIQiqogbEjo7hJYo3w7Mx4OGuCuMUFMEc1I2JICWTsZXEpRJsmkegL/wGLgLClQQ6S74j8wU2EsYyIiaQCW647xdLVLKcUH39muuOoSMKQzAQvrAQtKgZ/XYe2Lq/zpc0NO5PwRiA89CGWXkTAZujOLAgdCkVzqWkP/ZT2QwDNI3/POXLGGui6QLqGi8WFCQlDj8DZTqjPoy/T045vgHd0ICMtKWmCqvJdL5ojjR0MH1ED0HhRqZLqNx4woKjciKbOUsjRgn63KGOWpTGU8D8za+0Ijywvx+Bp7AZnRPKGGEUaYNorVULr6M77LY3ae1EJE1Z1ZaxUGfyih2XcT0t1IKu14Brgc1kMqbvnJMzNbgC1h9WJ8alxHw4hyxilpews43qAOSHI2QlEf+p28pCEgrjekl11B0QofZLrIykEYfW03mHF4+jVtzVYXQ9qY2051Quk7sygrEzD7TBKHoKtU1iBF9BHbBWOHWyDoABc00AShBgg6INQFkOg+lQBx4NCXJQB2EISYM1mBpyF3kbOcgL0U10A6OLJBU0DHSs2WsIoQSquB+W8SuFbQc4bFN6/OFr5rOFW4TZm8dSHwgsrLeO//T0zKS1ndHdXaJ669LfnF96mZTf+ydHklw7Znow1+zUkf03mYedBXdN0ptIbV112pOL7+7+8U9/cDvp3dW9CVRbk1+8ufzwwf53u093MJ4m33tLeB6IlAs/3D24BcGErOimG0tuCPD9+Tmp7Fkm3j45D998+8qqoZcvzk6Oqrl9cHBzd390cnL8Uvm9ZwYkcne3TzYdkt/LJi1+sobqq2++sRrHAwNeEnt6/AL7Jy9lMCbJJTqZioTo/kbKi5Ddo4Odk0MPGRNMD4y6mIa4arbKyp9503CTwc+f27O/zRZNjX6yPgrJXL6XjZsPP9xlSN3PYO0Ce+nU3o5N+r9/d26VxB/9sb3/7cXuHWremcZDWsrKaOhoLWWRjX7vXcSfniRhx/t7tjySjLXcv8GGubrsxNIC66pHw6lcngej1Ra2gZSTv/j6FVPbsRSpfqa4zmzs/MgEyK2sHT/5wSYRL6lqtqjoPz73vMxrJso81BltWRlIxWvYA8Tsl3kzqIm/oh6w6rBLvjnGWpqSf7GJbs23JofdlnDkNfi2yraMj12bAoZDVpHosQNUjlDKEofP2y2ybBYV1ncZfo0cAGc2HJvL5aTTj2EOhRMEPpMblmlQYmVLWRS2HIVMZseJHhUwQtjdtQpJNQafd08A8opit1Zna1VB0H0bNNgbh8xzwujAxJz1Az4UT5TL5RVlMC50IN9p5Qmvc5d+PCok/UBNfdUCAGIVNXDdiVIIbIciYMxUIEgt2CAqmpv1V0EQLtigKBv75iiI1Q9vNZmXHKsIHStiLoIE+RN+IzoJC5l4cMVmn72pqzA2yzcslzNk6/FrIVFlVkpSVIjWgmchyJu8PLrirjJCsjeotS4e2hgAwc+aqXX3zGucCZdX4UeYMxJAsK2e0rb0fzp9gwQs8Mnsuf7UcrUdWvin//Y//r//xq/+/h/0WLBWGM+qupeVoYIHwpIVQY3qR54sM1tLhjAm0VFCfZCje18lx/50WAyAvJP25mo95kDLepxokeTq6CvwE0DAnfgcjSVDBRlJThEN4ZmbbH7Uvc25ap2upZ6btQ2RHYVf1K0OahRGv+L+gomSxQcs6tczR3XXcx74VmqROAy8Bum4NiNSVZOaR3ZEiAco1tYtT6rWJNbW+EGN+Qn64OoTEUPn6h+bUar5yEG5GIqttEMwYAagB4IjeqSUviaVyTyDbqTR3XJnyIOZL6sA4AgoKp1Lg6N2gehLt1WTCsu1ExQxFOqymWKZvFRDljKYjXFjPGp8q00CLeKb5KQtiZGdEl12TLVlIQp6Tm/arVa1B6rqUxmQRP9FUzAqAYmsfA82OmoqFhAN56pT1xIAd6h5pGHER4rEXXrvTkUXh/OBiYUsKH59EX3xaKZ36UNbGoiRZLNRYuCgzV8cXdjIPTEsdxjMDTnC7F8Q/B/hqJ7Sx2CGxCojaBHF3gbs5mNiVo6JvBQEYjjLtv1wvtgR6OM3PNVIcRAOcXhRbzSUrMLShbImkEaeSXTOazOKCF0CXV6G1hGYSw7nIkkNomW+U9vCMs4b3mUYKCKbSX0TzDSoQwzMGNDwlyz8GyPoyuet169eWyW8GAiyKVCPONB5i1XGckONkkGVWXTVUQEA8Ryj86liocS5I8GFYnUHIG/CmXZJrelAhijapgZgI3DYWfADNe2dGM/pSlUAVl3lS3yb+FJiqvEXSw1VBAS3+sUmn8qyNoJeJ3l+3cCqHWZpVDlVW6et9ASuZDJQ8EUgUIPg39yP61L9RYJQL90CQjhhXAYyRhYMsObdQJAP0xFTAJisGrWic70dn190qwcoviagR//8chI9DmcxlSQ9Tak48tShGsh7bnsO9wdECLd6ZGC97aGbnYslJ6h2acmBgWpAI/XHlDjOQ4mLnvAuq/cVoxUnzBXEh3vExNTUVHuMaJitwXhuQSM5Lx4mGqieahz10w5QpEp5cuBGd85t8E+/rf+GW4eMdHNX0NkJx7epdJm81f8ItyWIje297UuOZubz4OBQuut9Qnrmn//6m8t377C4c3D8/txTwk3k3/cEgXd87pqKfnq690wACH/uq9fP7z5ev78Wg79/f/m0tXPy9UsLiO1OuHtkUciW+e8hZsvm9COMRHLdjpk5TrPstsw/PjA/bvBxeHZs2TKf2TvYbc3SyZFl9NYmG72wpaPDE1m/+scnp55GTjsWLViywvfdbNg7Pjk8tEXEkWX99kg5PiJ3tzUk2baJMQN/feG9xczo6cULq48edz89e7F/SP1umDW35n7x1tP+9ufHe49A6PF6OVSeZ1b12fOXBwdeM9a8pmzGsMpdCeuCuJtp0YYMUlRJ5ZaVdxZav3938Sf/9TtT8xyEepkvjcjvRQx6Y1YMzAr+816TANojT7t1O2V/11tTTViTj1w6j3MU0xvo5hrPbaXqeWlmSOFmbW/1wfkTTW95m5vbMghmG5Kcx1LqrSaJ2QGHYWZr7lBdnigOlEnt9VZjwcvYM6fxqLOMOayTNbYWM7zdW2jwD2fJk+acQ0l52wpHM5VYgk4jk6C45OlTbJQR2kKy+/syPV6Mosn1lT57Lm/nVrJXSYmlPnprEnOdkKHLNYxijB8MGMSHSVC8rcpFDOOdVHMr2QZmTVRzDJlOmR7HKKwS9dHBId3OQLGMgSC9y8FNEzg8suX+CQbZXmQJCzmZZxJSbq6VC27k29ePx4hl+Xs1VJ3/G4efaDPnRJxA1mcOWzzv2ACeEjKsFvZ8cf9JhrTC1+zo2j2ZhqOFuQ7WgU9Vp/dtmlzYopIUxKdWX6iaZN5Tvu69fHzmBQje7e01dqSE6cSkbpbMEEQerED3kX1rkH5m6Q69IMA4ny+rLsOzmSeFkjqzsRsYUlk06ps9nSCFBFp2d4vJWcjO4OnHszQaqsCQndAZ8QqzpCD87x6wCf16My/uyf2rf/8nv/A3f+0//Kc/qHvMEYIvEM2aNIE3Iel8REZg/ABNlGIu5OGgdfXnSFvkSiZ+atKPMjOTrKCA7XontYUmXRRFB10iT4PRkGL6qzMNdh+TygRjdVtDKziuqomMmFULFP1LHWIH+KO+lN1JlSHNr5wnoIkPIMAxAOIdDS7xQa3zQOBibNFQHx26yIiR0DSW/9GK4BrN2v9Kw/7MHayJJATUvwzYyIEIW/xg5fcAEoa5ocQU4ckvxA0wYIz3luh0mZSzRhHBJxJcUlyCtG6bzLBvyE8yrmYaaG4MkyAw5ScwdW2DBrUkANKSQA5d5CmBnSINoybsUSQeTYrCxfPk+r7qt5qmrEZ4KyaoHYW0nHbq3RN4lE9EWeAUqJU6Fvy0o3p0w6yvTWHBQfgA1AxVeEb4coeA1woZYNQ4Vx0JI2YkOSATC/TDgDaz4UdA5rwGioIwyKdcFI1bpE1CEqHN/4anypwxy2x8hWEkEkb8BEI7Bf2hZxViRKsvhVWb89iJ/sVF9KXxH+1OPeeDMUKB08oxeglEYPUCiatRQSr+coMoSgpxro8EV29S++iAV1VXHJ34DXhuFf1TFt6onPqqJtuRQlwX08Z+RP/ljEECuZ9FiJFU3NW59C82IwmYeEl4vjKz6UCypMXYM/OU73QXQ18Saby4jiHXOC5LFu/GPRcTw2cEDPVTe3wV/RDnAJCFvmGNc9XW16I4NsOeHGN15Z2Z2cZPlCDDJ34UrjoErsY0gjnU4Mb/ELbqC//zu84jk9a4jb2b9xgy0JMFuIC2WB4hLJkGbrqoJhXGu1yvQ5nYilcdsCbqNAcpxBM6ACop3FjSeEOqbb6xP9eX3DAynj+CCXUvLxtxFRqgoJtRlvo1Kf3d+BleFCFg6uTn1QmpdrgZLkousr8vQAqonCr+A8zYa0Tv9UaDN+LGYjhVUW94X5ABdWiF/FUOWrVFtJk2U38J0KSuCs6FIU0yiUQyfd7Y/fpZ2xEHenGJBoJVTRPEKKkXbIW39LQYoIJvVxEshY9+EigY2pmr/rV/LRVocxuYT46tYN+T9Cz8uwe7B0d7p6cnUt6jI7t5eIvQ3emJDTT3Hy5vPBL7aG+e+6fTg91jLwq492Ip2pSq9uoAPvDd2/dke311/cc/+846ehsHXV5d2g5oe+f+/v59S6y9jvbGdisSiY9eKLbSOg8G6BXozX6gJi4v3r9Fkk11rm8sATrY8fTA4+f9wyNzjbDQR+8ucIfkoFB2enZqmxbpCOXQNoO1kEl2+M3PfS2Ntp2oxR0nr0/p/qBFx8Vfs+HffPUVwQaHHE6MZbweYfvZ3iez0oeHZ3qWfR3SqOzANLMXJHlh9vOtCxToN57ZL3/n2Mi/qEd3BX1aLdRkfN1wFAjOoH625U6FIYPNT//zH/yplT8PVvg//2RpUHfNWq+y484A77DcizHIj91Bb7OZHrIEy/CSAtkfjXcvCLJU3uxdNsPk6jN7VFqQa2Z198jTltZj3LeQ4lk75adsF1uB07sUNARnAoBwPCnz59kMF5IWt0+6gJTpJimll3Z3e523s3MBoccJMJsXycKNB2DoJv5HqZ8JXtBdQdTY8tx1Uls4Ip1hqnicpKy/l+p78G51q565L1cvyXpuDEAERYccv0jYg7wKzXFD12ePNTfwgMhV+Wgr4OWSbsdYWsZ/vTJsznEKwmgHXcYSpN5EIxWZISVqEgWFhMiHRFVGFjjyYNslsBbPAUOdlv0YV4aXFqaEETkQtXqpRfLorF4i3TngCHfVSKWPOTpTPq076dyxadKvaTswxQi3WVC+5Q1c7cKZdObIIvCTYduas9XwnaOT9QiMRNhgs2EVAdsZideERNrd+8637q7v20ppt7usLIVHG9KSGaFkyYrm7q6rkjEmL7s78I4575S2Teos/YdIN4GisgKbL5n4h5xyyv8EXnGpNV0Vducns3c2AVpgb38svtB4ud7ShlqP+s15NEZke5IsjCXt/Jc/ffu//s1f/0f//HfrPyIs2REpLWfGHUkMBPomgvnBfATh/KVYOXVExTlPZsgAIaz1CPCMHqdTUC0z3Viyk+wwfYyindZ8fCIylE5aI1pucoASTUYXVeuq+lwAiEUY9F3riKxgB7NuKYKnD81w6wOHI1CGGIjYgkBWeGiwBHA6jwS8NOU0Z7qkKjSZxVFBqQ69zroRJx2lhhWusTQy0JwMCTjaNUF8iwDFOR9ILg4NzcNLBOO4QEQI4dUIDS0gWbQpigikR0zoWIlOGdkKw80SESWgFTcSCGTa+syizA3o8TyLoowXr3nMjMfoT+tq+muehv3YjXQGdFqBU1KgSp8JJEsoL+xQTqogDIi6acdGERNtgmvqpmCDJKOOeC8YzUhSO/T3u3sawQ+m74qhmAcs02N5TjUn+4rXwEVJT0ZRYCJF1Ki7myH69/LMuGmis3NXy2GqGQD1k6VYNJeSu2OginvA5+waG2JVOlY9GZEfqzkiNBhojXYSa7aTTJDEF6MmXKqrWSssUPEUxazr+UMBYdlU1dJOo7Ww1jzIwV4UjvEEb6pOhVVnUy+ZDMIhB5x4UldaVvH8Dy955qtDVRWmlavhV9PVsDqCFgac9msDYS4FDOEg+5wqcT+Nqqp4/QpITVuA6xPoQCajBDqIBL7ZTi4iJ1bGBxD9zg2EOggmgP6ZHEkuK4n0EDlJc37C0bHp2l10afRd54q0JJ7RD60Jcvxajj1AUFq4F2Xq65Mbz8y8Bub0ckEY2ekjAUwNC/5wk3CjSI2q9V1Tgk3o5f3oAXLhV2ERjDC1ijsjwtx6GqqoScYcLWUmQGVG2rEeEzAV16j6Exo6W4OWKjTvGGpXM3gkjAnGUY3yusa7/GDAggtecSdTiJahxHjDqbYO9b9UTonjrSUfIA5FKWxBIJiROcuyb2CDoBLHRX/+koFqpjI4udzgy6oQpWRsNAo6EmNcdMS6giVe9XUxwJgViwr1h2b2sIQzahjLBgG44XSBGt2OCBIFDjo0ZHJDgWSId/fUAStZ8YtBBXaIgEndu7u7wbVlsQRrqbvtTZ9tw28DHDng+0uv9/Vw8NH+3sF337/3vOr51b0N69WXoF/fXBo7UPH1zaMXaf35b7+1+vfF2aE1+R5/FdgNcK6urcM+tCD+6U5qfdqLV68s7H+Qdt+ZhS8jRKIF//c0bAGPCWwbg1rZL1/xsoKjwyPRnzy9Vsw9iOPT416j+2C2/uyg9wC4dXFgvXfWmhPJYHfub+8t/vnm228O9/c+3tsr5rM5Tnfq7q56jIy6jR5fnJ3ZEMuOMKZI/8L/7S9aGXJ2YkpYauUph/2bh/OjI/2O5eYf0Ce3NifPz6x9KtlKSxJfwwrQGm+QGzO0/IKul27F9sP9bbuFblknLT2fOfVuUJXYN/HtXLuJ7HZJbSUEd6VuGbCZ2Hu3J6z1b0TndbY9KTsW6N5SPuHnmEc+oyDLbqq10ATB+/MLKrYn6fI7Rl4vtTUT2DPUpOhCSz36mqNtGGAzoM+2wP/0zBKQbdkvI+Vuk8QQmpNMbXy8TpNqxf7C9ARlAEvRvVMMa5Em3yAIT3aqqaOSjmuAvshviTNFAZ9kMtgYmFCbeOpiLc5ROz9qSrs5PPC0Il1X7TY7HldQQgPnLgXx1MSh4VYSQDDJUTQVGhCMmzYlWVrvdokEdm7XIHQCLEv0AuncFNkGFfSK0vsHM8Td3OPueMFHi+rVy9eygQ6Wu76/lPgeP0UpAbrW9aGo2nMJjU5WTNhQG4yu9T3W1a8Y8R9u8h631ZD4Invirbi0aBGeCJCUYnVCCtOaxcGm5C0hs9JA08DjFEzL+Qiy8fVub9SDcxZwIVfNPQt42AOc4It8qPZYCO3yPiL1crrZJ1S5uf/MwOosFQzaKRdwN+gEB+ZCeCZ0DUutbXOd5Ce5FGnrfd3b8YwPxbu9UJcSRuPeWMEl+vmCQZ1FSdRCP2yNH3/33cNf/6Xf/Af/6F+YLwAQbVgmKpUzkQnv7NLJ2FSiS1srPI9IpV1kK9gipk5wXpWoCkbSZpP9riVuulBtnQ3ktOH/ujoKqssjGSXU1kE1YenPwT5TaDDqF1YVNMNQMa0GPwxGdKGYH3VTMYKPPNcpvNV0lIehUS9sqFRvKCxkTXUB2SKm1AFGHVD8WDRDpQ4GM4PJ3obC5Ka+qkbeKuRn3b6L5GwAW4lXy+KSyn6QT7ISADmSehEqCokKqhZW0KeFJtqWr2eKDYpQorI0wI8qifyDWluYkOKqhuNSPaSLr8Sb34kHtItfYhvpqOZ8Eq2IiRnCLqbUJEmbBUsigizKMAb+qjCoiz+hm6YIE3T8HLWHdr32L5LGBqoZhogpzG2XEsAZyzFd8oMygoFihLwSkvALzYDEo4pzayupdhrVMR7xDSTU7aEjdFUQD9UYS1YIU+csNrWyhKqhMC0NFbCTM7mp5ZqeJSg9ltCTV1Gf/CHOYgdO5/2NcbjK59Typ3DpEVZHVJSIxji35e9wbi7VwBERYcBELPtfOdUEfyQdL6FTkNxgmDpFYO0CCNG0WgSs5tAoBNDPIA+FcdHfgOrTnzoB0hZwx3heQQBw10ls8Ltaq4VnWF63TIMN0lwdsIsepQOIfaMv/9DYkdZH8Vyh87Hs4RsyFXuibkQX9wNKHcR94XDupKs2Uk48IYY3uaTjhDtYSHAydRengqslwdUlF59jssmS8ic65B6gjcySmkM1het7yBA+agcU6qvQ+WZ6BqHAD9t6BdOTMix7nqumFkLHGgLm6APgOI32fANeP+uhsjyFBZIlxExjgKu9PC0mxg+JESy4wFIp2BkYYlXIpmJjjn6sY2m2oXXBcS4iu/oFsRHj9IhDHVKXhEcWBBXlUxkOEtZME4SN6ZBw9UZIyVYdDgfEiHLKZ+Ikuoa0pb5FF2jUqVeLqgANX8HDWrXjbBI1l/yMAHY9qZXa4wOVJ7QBvuqoAEvwxlFRNdD68KeBLEpNFZA6rqBqiUsqmAgluckOEhDZ1dx37+ycVfgmX1HuXpa5c3DMnuqLy9U8z/Xp86vTV/c3Hg84vLaN1PXt2YE1N/v2jj94cfrD+bWtwUV1nf1P37zbPtw/fvni4tp+9hTx/P37a1v0m2X3PLMbFGb3xSjoBUUPX9p3KMt6vnV5fmWBFbxWXzADbwAwDXl4dIJIrOHh5devaEz+a6XH5cU7wc3uNBYISTXaoPCk1whcozymn528ODaQOHv5QpYA+64VQl+95MPWi0v0Tbc3Vfz5uScK7m9uy6e2vMBLsrFvaYQlJ5mtvT4l782B2+PkuVU09s/VAzIZduDdAYc7z4/aOn1uQ9kqZ8+TDN4Rtr2/f2hw0jtmrdjuKUn7SPaeI5nUbrcTJKQ7RjDyMry0FmKndRHWwkxn+tx6DMvR7Zh0cXN3cXt/dXdnidZSvU/C0HdSZ3mZWJQNU1oj+YQ9ubLc+ebimiTF6noJwpWy6rQm72FRm7l/Pm6sO5nHbE87e7FP50G2OhcuwnyawB030YEhAAqRNLMcs2NR2aO4uFL4LLB8gtmgj+I4zTxmWn9pVMlMXVOX/MetZNoTtvJNwdWoplUrME4Xue5TN7WMnTV9QGC4LpnID5KA8SSEfhAJAFbzd+ugZVpuuRgWJoAJI+VMXvRLvFXcema12t2jZzrk9ES5yiYkSh+nf+A6btrYDZTt4pP0UwCu8pwE4GAe/eSt89vF5dNzzdWpsAqnZa3nZwzX7U2FAkHBAbQArkABYO2LrqlenCw2hsbHpH0Tb9VaOcSMqXpNwWQgYiDXgEJu9uhVX3UWSTUKPz8zgpoRAcAstE2oZN6YNlNPuJhTqCqsQqM8r6eDPrhpNxtY2085+bGDVO0Ff+zCSKsQmXGiV3iPSqKNbkC2niQ2tGP70UYgz7dvGiR4G4lld1oniY+PeZbFtKvHqcz7Cgw8EtK2VYpC1o6VStvP7HP1v//qP/7Fv/n3/vT79+4XpuKwtYo9RWDDvxFepCz5zF0bkdCB51XfSaFSdjkGtgp9OqoGDvE3MGg4EavzBAUXHvgSr42mhoCFiNeUz2lLj4AkJE6qQalw60sdSgmF41N0sXjiNn8ZpGGFqfNu93V/WADxgQZtw+4YowPaBXDgi5SxKNA6dyHs6zuS/MJIvKOlfsFQQRU0FDtQy9/lMmWNGVpdNi5QEsDprwtQmaeq+UJkRFH91PqRVyU6zRPausy3zH2EJAZjjf8xCqhBWkImsJFznIIo1KAhvMNHDXnB2G6WthFILMQ00JFRh9bAYiYClDuWI8S1BWRkmCuBOOLFplYIbihFSi4EZzHrkhIkbeyn5YktXVYkWi1eJu1rhdIIPvpAXn9oGelHWloAKNCaK1HmZ2rEO3R+jyWEq6pENyMlTdjsokEI1U4z8nE1GCxhhFM5k6ukYkT0uZLd4sBYL3xjNUOVMlyXECskpEXfaMR14FJ/LUGMhi8sDJ9u0Tha+ekyW8JUeKPzv/lLwlEVhC4PolUxJwU/ha2GQ1iw+832O5bV+UVEqx5ywP+CqR+qu5oca7oML8hZlKKgDCwfVe+Y9oui3HmE71LSCzVnBGjIWgAH9WralLz6XqMC6iwpSwFJSXGgDVK1nMq5U6/ra9HkgMjMuqLp0DcmsfkJ8zQaEgq3QlIERXzaGBGki3TvZyoaPIBQ4XIzdZ1Do1rAY6Zk0c9yAkc9ijFo1/gd5mnGpzpjhPFW/0rxg8sHSwNHISBiE2kPZAAQHLU+orMjDHm1PKCUkaaT1SQoaB2vmgKtJpalMZW1mn40wlc2o2cemeUqCwtrUy26G0PrIOYsCUw8UArQ6LzT6UG71i0at88cWaFGqvissfojDeXZYq2KPg6XYV8n6ImkGRtAJSFSEBOpqOUTztYRonmow08wfPhZzdKKqsy5M/AHxTQrEI/Bxcjy2NndHFJViXTYScpL7zUG3LWMaaJYAXRjxLHpchlA0R/pscoAJob2wh9CKILGpgjiarIp0flkkxyZ6NK1TVN2juwX3n29m6srudiFl9Pe3b9++fLzh4eTk0N2cHlz+eonryWgEge3N//wD7+zPsc6Xvm/9wQg6UiGfWcVwd53P7s9v7g9ONi7vb30oqqDk5Me+PtwD5s15ZeXl/IRKxIMKGwf5FFjIiJYNmWVg83y0Uwy3kKA24Nj2f72+ftLEV6CR8H4lOkYTrRA5WDP4m1LiQ6PDgnV+wYk1l4wjBjRbNc0vMnww0M+1DoHU5IW8Hwq439sB1LriD5s738+PDr19txevOB9Rhb/nJ5akKQbgpFULTjJHj6ZmPSmra3DnWeneztyp6PeZmppkKHFrh3TLYm4vrkiXtM41kf1tgIzZ6byvdFsa+vO4ObJ8wkefqCTgDvkHpJjvmj4rvLapnMs7KMBgJHVgRerbXnFmDGFlUI2A22htvqCL9sViwHJy/wuFiU0KKjcU9yqjIMXHwHBNfozgIJ/3W04Z0aNsNuN37r/eYCnxw/sBrO7lxtYHdSyn5zT1XG47lmBSEe8chynnsxvM8rKjeVwx2BNFzU+cb97Nvdg9p7yhAtd7BUleDEGyG+sDJO4F+iQJzrZitRqtVJ/dOYFbJ93uB9jkKDOeAQiPb+HPFcFAn7pmzwFLqkwhhtVhs6ROTAwfBCSc8K5sdVlPWneXQBfad/EMQCnrncseDWF7Hg5EbTjRcCNkw4V87G8a2Sy8EGJnfSx/vfVUftENWQpCyKKClBz2edUnd9d+hHKnFE3tdVcOpJxBj2hZQOYKRyX4tVTBLE0zzvg+IwbVsagu9uW/RMlR5uXzs1sYnPSASi22ZbLEjUKYnVH4j8nTezCB1zm/l1hpdP5mAuk0HaJ8OQutyJ5viDFJ2vBqphTl/epFzTQ4LOPnsTJ3npuvjJPjHi+hdaGZTlpQR4JCOGeawoJU1lEANY8axzf3H/+R7/9e7/4S3/n937vP6eJZQ9JojybETjADzthTrpZuJsjZ/kSjfE8gJlzCSUUquVQBeHG6pCxmALyRHLA6SiJluAmOpymtRW0m8pp/ksarW2xnCpqPNIYJhHrr0hex1TTWAON9bnHoheeQj/VGzzTNvzZSkhX/R/nlWqQK7GUTdM8xf2Z/rFhhVBozh3QEjlfcsQpGV7quCaxWZWXRdFARCT8wgCaJuFJUBGx+lYbN5UkYMoKTCjrZ5bSiQBVbafW63HWHTkdxwggxoFgq8mnY+gdsWtSeEr+aX5VmICTdhBBrmioTuk4bsKIHopT3nijMDhXhm0jty5UluThdK6A3IdUFwLgkpOkOU2HrC5oOyaRk4ZCtdL0cnH/lmEMQMjSDoZKjfGib1ijkEQe8CLuJEgCI0+MP3i7NJlbuSXHXOY3VsQdijzJZ5HlOwGS8tCaDCtJqaDxXuT5UcCcKFotsbjX/aoyjdLoBJwgds9z1Ow8YquesNAKzfypO0kOpIgZOOrAWp1IHwYSTAKMvPAsVQ7Ro94kWfmoz1kUOrqW8dUy7YAbwPnVaTRs4C1XKgqNMFPVRi9V5yE1rHDlvQvOWCZ4OSbGAxlsiPAWiEGxkef8js4RgmrZpp9MZehMWDAlwFFAhA6trlJtzCpSxbzZKK3mNZ1Q2IqL1vdPV0Ify38CTOI+NddNYmkEE6hFwcI9bEcg1ICvTBH6stQQB0ST1Q+scKXuvG1Rqyy+6wxzksK60uy6Vdg6YORGaj1GZOQYfD4lN4GXYmO8sNLlOsoR3GI3yNMDRQZJFTY4BlCTmaTpxt9DNt5Rzo/lbUgm3BUFNCUpcMIf9Y0sm27k1/UcLVhyNU6hHp/0izAnWBT0dUFVGOWlnmKQIJj3jiA1BauAvn4n3IXOyTgMvI5Bt8jg54kMIwonAiZAbhasRSRaligiO5kIeeDXTsMJo4BXksuN8FVTMg4PHSI1XJeAgqjAmi/N7dGILXLXaMwidVcyyu62TzG04UR9DbjlgmLClGRsWJi+PJQaqdPv8p3u7Ev9R8uosAD94dBUvZR9xztzC76PXi8hFT7Yv/aCWotSPj/7k5+9e/X66x9+9u75bMTy9v3V11+fWlV+9+Hj2+vLw+PDbEiyVDb/8cryna2P768u7j7cHZ15+nb3D/7kTz8827l++PTDm1u15MNeamt1jO1Z5JfPW3EvxHy4Me9twm9n++35uQcY7Mhu4vbi8vLk5ARr8kLiwPHJy1dtUdJW2c9spnlqr9Bd88H3chxJ4snrr7Bvzu4nP/lamPIuL6aeC1oHYiv0Z9Yamaq/Z/w2IT3Y3jeCP335gp6IRh7APvVo8ht3OY6OuzvfmOfxwXoJE2HeWCYtsEWPaGPsxUcQgS5vROYqRjhoAaSFPSRokUNDxDLpo4M9J25asBOWWLyeXSYozaokxHiGmPWWfdnbvgfU5GwHM0GJF8kHQvQQjtZ6+VR3mTwD43kSXH9FjF467N7dc29rzum1ywGyV9aJBg5qQVVPSZOe3M32TCbXyYUbMsTe6gVbEYkPepo025mObXFhsKBCOFUIJkqcm1q2gIQj8LvnzRMXWCIQ8+1Exb8G4rhhhhqSWVrNq4ygxjK7YVHyztIjuseFE3BzlsUliuAdeYHGNCVfhzHqrE55ujOHsrdLgJ7QaDPCIgBH6NOQgFkTH0q4mYUsj8BEtW48/3QPQYwILJcsX7QW7slV1E4oo+1ImmO+c86ktCnqJ0kUB+ZTcc7/5aeyxW8N+rF+Au0YZn0WtVaADdjmCvqncjEaW0ubNbIJVZ1mh58zPUmETT2oQ/A5+MgUTPaCd/7+fK9ZdVYBZun6ZFoIJQGqdAPlYL1cWTCxSMO9F2Jv/Zh9tiyp25eltwhI4KKT3hGWjTPRnc97d+3l28sG0JSpRTTDsNqtFER0EljccjSaMpxFkrsK0yeKvxEPUrsAbZ4u1TExPH4BFw0AlF1hmsvjiw7/7e/9yf/4137tH/7Wv728Nk9E14kRlvqvmeSeZkhI+4AjhVzqG4qUhccRcYJWxA5TSyLvKOwSUTx8Odh/cytibaJLGaUICW2jKagz9pprGKLIWPliI+dxlqbhRzRVWODV162MmZHb4Jy+AA56xNO47hIoOscsmLEQUCzsSEK4ILHpEYJbK+5SUxRGUtU29fU8iENPtMLIA/qMIjzCAIKTWmceYkkdMVCihEtZ9ViLTsSPEn2/N3SFaPBXgozWgyGOND93pxRlgRoJwzjt6NR9oUiIyBZdJpqUmSsFhcwRWufbEry5imOSrGoSdz1odak+omHoKGJo3g9yMGDA1zgpGigCeK1cUkNJSLM0x9wGDMgo9wtLGFEmHKFnnE77+sriMHOK4EGuVjInGxKC08/5xF1LXieSlk0xPD5UFkNAao0Lk0Z5HJbWLVZMb2S+4avhx0i+ZjgeFjNpgTLGNY0OlPdriShS/CaHRdUQmLyINiprwodiPf0qjvxOAJqsBr8sAZ1OgiLskjm5TYN4GfmHZjGzoSRPcgQQjbPtBEKWKYI1Ko7BUTQK4zukmvuev6XE6sZcx8CeHy2xGb0vbod/CoHVaZKO2lSKhmF17KKfZU2Vg8t3VklxYAQVPXGCAP8yUzXmgLV81KXIyGI6+oE8NRoVVQICrgLO6ypKZSmgRpGlJNERe+vDYMs0cexytYNec4WLlMrTeAcT9CkClEUvC+5a9YfIbuirDYwZL98sBg2L4hW/AFMTTJQQq9jrJHr0DYMCmdjkvcgg0GnrY5ibVLLmKIO3P2dxXFAa2bgUwVwXTdNsNa72DJSzxhIFR3LUOD/KCSMLkcWyjf66Da04SAMreB46bFIS1Nasmz4MYxlGa/cXWKAB0RAicuB7AAZ/fDWOhYB8ciSpkkS/Lmm0xQRjqDBRImYSuFU9ceQy+IEdYcCG8rBLTNvCQstkG2Sgh0EfykGOUSchEevjY/4SwdTPbBDpgGJ0mFFVX8rOYJaJzcRAglWJfa8AMB7Y/JmDKWyC1NwNyMv5Z0OXMa3ga5vqR5VFms+9a3bm8nqrI7q8DNiOm2ZYTa7fXd+8ffvD8dnx5buLVycHr872np4eTCx6LcDH+ydjrz/31Us7/UtBtz4+/PxPXt7cXIm37vJLBvaeH708ePHuZz/7uZ+8xIdnaL1S4NWLk8u356YSrSi6urhyc+D48Ehaad9xPAa22dtYbEbn42eb/BydHHgb8fSUPbWsvrdzSXJsEYorE+16P32W9wKLgw526J6ApPzg8EjebjHx0fGZfMKLet33uHts6yEbmdCUlP3kxeH+2b5dDq0SkphbHfL58aPpOI8+WJTAPehp3xZAOhQp0XYv9jXZzQLmznhpk8cA9KovvEbZOiP1GqUQ8erzfH+Qi+s8OVQrMvM4wxIzoUyd5xQ39vfs7j+rzGvLtO3v+fny/p4FA+4TWIrq0urliqfFaf8BYSGMiEHozpkOw0fFQy9+8nACsyte0Lrsz6+8ohiVPWXFhvo2edRVuwkAoBXbbahfz60iz3HOlosXqGoNKP50LRkKQ5K0gVAgynAY/wpJ/RrEdEkO3rPbwdbBXBbIBwWZNpI1bJs7DBnvhAOyxuYY+Cdi6mZCxLQIVQUaBsb0M8nbAJS3Xd+3TMRyHQAk7rlT8SDLRzlKlthk+YIFN+foBp4tfZmhVA5YnVzKKX9TqSZgDBwqC2BXx3GTmaPKLoTgvzn8WO2mSRemqdbrSif/f00GqBKsrysKChWgDGCFiCkgrMRr0wdNZzHTq+pvDIBC+HNWknkEZjop6hIYrx7u0UJuTL1OoZBlaNTwj1kYQ3reXWlYBOEPVl4Z5RYrCCrOLVYrzWVT/kegQSywCtnmi9MTtt2ET+a17rcYws42o7xs20Daxq8KTJ+K9iUcxMtNAtGQuwSdhRAX400vyO9u0Iq0dgqCn0QsXHJbyfKhnR/ePf61X/qNv/Wrf+/95Tu12lYqmSVF9cSNQuP8TgUrg/wS2JP2KiXjmcNKxq6OyDAwBo/OuScQGP+7RjidV68Od9omya6NmvNPhiM2rX4BFsimqwp+wguzhsCA0GUFOct4WGYQug4X5yhJaB4hhdbd0JWv6ZeHYQUBzdRrEzEDNqmgcUjXJMCBzvqGfTbfLgItvYOWACgQeNfd/BxXaAOuyJvD95zqnYeMVbpwznThyCkgQ0AcIWsspZXofixvTIqNsqOZfuo3IydA2g5HyXmEE2trSlGNgZxXDxtLhnDqcbMZ7bWF0zdeljoAISgOD1EaxhW0pDnaSQmr2QSuANTMVx9OyRkuzRoHsdpwzh2z0rCxx4FQkpEaMxDkxLK3r5S3YAeBk70EMJZDmU7coMsYyrzVKbpUAenOR8vN44xOMd40RUgm3GMYGeMbpXDq1zgW9PxAVDcKFqrJ8QJYAdEla363ZLUqLa5LM1IBPuYfCy8vHXAJdgzIvQXoVzYxWKM90HGPvHQ+IRRhzrHa5TWMASQZJl7jnFRQsw7+TmhQjYTqPQdm4k5BPsYch4fsM/a/OGDwQGJSI4TR8gik9GZF1ISzENU2M+g3CkcRyTCz0X5My6dqCPDlM18qrNaH1ss6Qjckrhqbquol1ZqAGNAIGxH4mqw9VlzPK2JyJasZehLvYsDpKgSL6FJ39Ws0Bz7r9uGIsFJb0bOhbnaft3dp5D6gZogT8V+sig1NvAO/NmOsncRnX/6tTlHQiabElLxC3uXYCdwISRlZYE01nw6ZBFCEk9BKSxrpDl8zBTIxi98cHu0PITPqaMFod6/6w15mJ9Gpw6ujhmlErTyRUHwIw6gzmfp+oiMVqR+pxM7niXdI94UwlGiLISswFrdYUq62v9At8S8VdDO6+RgYdXB1mMRspmukCyrj1VhLoLiokmiLuhXiqld5/gppwrMAPThZmIYJJbqH2aE56bvKJLo2ogjiGEKwh84EWxIwUQk7ZYckHF4nLCdFBz2kqzkstZ5YRjZ+FpXmBoUTraRfdG0chWXTcpJyCd/Zq1OZsBRpWPt0fHB4c3l9eGx3oENLdLwp9tuffy1lPzg4+Pprq+3vDGTvPPR5ePgf/uhn7+8+XLbSIPV9+9W3nP31N69svOiNwNd31xzCTQVb43um9u7K274ezTF//927GPGU4cMDiy8peHo06399fUPCxl8XF1feSjbumXlc9FqxOyv1ZflkNQnEVjP91iT0clMm8+TWAcv1BDOJWbTENW8fn65vHwQ5zxyb7m7zQnPFswWhUAsOK76/fcCsWwsmPD1yYNRBfBY6eeXYqMZYZb93k226obnflaifn52dgEbsyx6yunEOSSrh07SuVJcg2ZJDswQqYA20jh32y8L8Wffi0QM3OkR8915ubu9KUeViZbDMkeLRmak0eGjxXplBxjIqzp6LTtDZ8amhEctm4poIj3Jn4cAAxsBG5ub2vdyNZZiRjQGxksXaT0m/xDL6a5UOAmKktMy3LXF6sIE3MXQpTpbnKXPO2ALflvEwXmOGtbk2A8KjvlPmrRcnJ3hJg+XE9eQx9M5Tkd2UsNbokKQ+PRkgTZBsin/4a54CNUuwjbja+aqF6+hlXV44590SoILckTRboEImY/bGV605Jxq3drw7WTjIGSeaEB+qKI4wpbBuKyjgiDN2KFB/cUACcKX/HRPCEFf42RTldoXsH4+I76DuWmxY+bNaLpBeFQpcHQO6KF0jlwZ5XHjUocFLMTNFs9YCBdOoIdhMRGg1Qe5yf2592AZg5qQsw9PEXREr4KhD0y8PeISGTMnIxju0ykqVZBE7XnT9ycjK0Fa8sxmARfkw2Yq3pQyTlllfBxpcBIVMGVLa917hJwNdMLKooGfEHjECue6iMVg3eLv3ksklZwbfqghmn6Q2sXEmO8f9tUopzJjx78qH3JTgert3T5//wW/97v/8V37ld/7Df0E16PCNLJvQIVqBcMRYatKxfizCkm5yUlgX48xh7mD6guGlFoIqI3FVdWzgN3EneVKS1yyojDmZq1N9/rLJ+TQs41kQRk19ZHiO7D/QQM2JIg0b/CATAXkgvUeP+pU4WcYYuhKUKJEWxwXAzQevEUu9jMK8THejWjQUMRQCTMUKnWgafOUFq0A4NnvUDC5CjrHBx7HRSxw8RauFCxm0Bj3g6KgPQkeeFU0uxVpz6l8kVreVzw6bdbLgoCYuIgDkjNmf/j0YKK88oUHKuRT2ewjucxIXxl/xqNIJJSyhTc3282GOHsdiDhgHddAUgtie+mALLimXaDAw0mYJoV6OSQlLpuktcYyZBGiqpMHAApQvLIlH5DRPGC74Kq3ajGQElvVUVXpk+2MkoI/B9KPyBSHFOY2vjBzLxAXgqIUIGiHgaFCQHV03wB7RxUskIXekyqQUEAPSVvOxb2IBrcqUi+iY6WA/McUkURtbTTSnofj8ErK6czlRSOUgJxNH7fsa8dY2Dyq2wrXMOCMHqlnU2MkUIyHC+oqRAAwx8ffF+JOnI34Xishf0gj85pI6/ua3oiLVjzThORCDJR8X/6q3uF7VFi6lg2qQkXwoHVonmHLoYSYGnFS7HCBgDujJDd3Eswid84hOkM1J+BjBBDPASXXSXycTeqaU68o+mmuJSS3mpCYZBH9LMrkY4iYBzANRsvhNjnNG0E40Gd5GfJXHESDN5USVhpkYUtGejg0ScDe8w4tl83lAhjA+lrcHobDgG4WjH6TDNSACM4E1o2dA5u3QkPrRX1NCUMVZWWP0DF5XAUkgzV+KEUlDcyUqSFBhyrR/tEiuFXdlCROemgaDBbxR7UbUYUskAwrZWXzTA9VJq6UwrsZ1OkrZZTwjHhc5G6VKV9TZcIfv7kaNSTT73mEohAaVQcQzCBlNwHww90a9C358i0SjX+iiYeiL0XEJlEx9H1UbGasWOueqTViO8RRnYi/IqGOuuMs14VoNAZxqcaWkl+BYDnH/uH9wYCmIrTqtO3/58swMsFU6x0eH+wc7dHpzc/nV69Ozk9Pv311+8nLb5/vvf7h4fWpPfa9MsvTFcgJvC/YMsTThgwX0VvlcPTy4aXB9f3FxeXFweOw+zcXlzdvv38vmb58eLu/u3r27NWY5ODmyeMOjisoFNTciTL0SP7lfXfcMALN8+/adR3gppM1GT46YpwyDtcsvdS9lG70DaV9okmT0YuCmtHqN6/GLl3teVrBl+/9TM8TeD4AHtxeaav/86fj0yBKjVjCb/LbsiGN9+ni4v+/Wl2gMGtSGbbrDjOPpwd2AE+t4bGdli6q8q71BjVRuCO1A6Yfbm2t2ZEt1638k+pZEkztSjB9YTxqxz+a6n9BoMBM11oFVz1TG7lVfs5STRujv/Obuna3aaUdq/PBIwvJdhvRgGFlvV8zqRU6MIGdvqXcYmgyYWMJWZuEBC+KYLrI45PFOw4+hXJfXxNgY5FgyF5uV4qyVfTAe5ksVEK04xwXoCPZxqJIf8hczpvMGJrzlcQXBXjI9lwzFEQhL9kkIwHXnpBmQVuQjH71ZODobnJcNKAlrnhjVFAYjVVhMRN30ob/ErPGpYczDPHBqFyMDWSnyPDxQfooajZsmsKTK3QG7fmIKXmtR0BTjuRUHYQ2RXmfUxAEaXVNBMYoTZEeSdkRYVG/O+v5yBKfGqboKfqLb//nc1FuFA6KaKqle5AmLmtOuD9eWJgsZqQC9XYVlUNRKbEu42rnalE3xARs+ix2tMquBrXp1RW1UxcqZjA1wLTKb3FG/qO5aeMATy4GstfPmuIZ4ZgeQZXjw6eRwH6ksxhDdWp+7thICvOc6GDDJGZ55bmXljjmNdR0J7CNLYx6hnMNjOXRv/OGZeyTvH7b8IwWZgJihzrqv1b3c3CENzhDUjZ2Gc+TDbDLjbcR4TpuZ7f77//Tmf/7rv/Zr/+i3zi+vyAT7SEt9fIRomn0kWWV1qSPAlgAl7LHZhD7HEDgq66ym2vgMFpg6kelcEjhjmXgR6VNeg1mTk+OMVlV2afSo+cAGsF4GFfXagzOFKkE072CKG/MaCKr4t0jN6vKU6dTpNG5cyuXmtMDCiWI//wef+oZNobTUJ4fKy4YiHuofy/Crgm7sJLf1J16Qe3QKLxif3L1eNDPM0GJG1ZnkjizqhLmbBuh1DGdzIsJEaO3WX/IS6H0Sgv3Z/K5+ou4SXExxmvbhCr7Ej+n6R9Zp1fCvNDog7CCZuUQ2LQ/ziTTM+8Iv8nh0JgfDzFmkSRYbsu5+uJs7MtvcuhoxxBPvASfVK6LrHrwql8A+kobPaCeS8M34Jxbmzg9Z5VYiTsqNU58I9hNc/yOeCAeKq/4QCU+MDF/lBlmdOY4ZSQ8pfoIRHQ2bp68XIrAGXh6xeKo9MIIaFotp/vWX1tJ34WOYYqiAKEV8vSNqtEyxqjcMaODfdSXGYl1m2iV3YwA1ZGRjOTOar3ElgXciHsEf+lHulIykBkLpCJ4z+HqlJJn1Bpk6NSwoJw26imYlUPtVhbFZzcnNb9VSAZzO1FznU22K1O4bwPWlJoRJeOPjcRoWxueKWioMMwN0biK4ymE2nA+aIUJVxygA9DGF6JvzQZuwhrgZCbBjhjsoQvPfHIM/V69V/OA1cocpBYOHJ0+XRqJOEl6PKPHqkbFOEQGidbNcnHFmAkadCyCYw1q5IApHO3kXrUo4BkXidW3YjkDdv3NnI2LmEhnYtC/EGPRUROUcTW6b1NSHT6abPOfS2F4mmLbGhYCQPY+gClvquQSWSuFKk90h0qN0OjIme22XzhCwiJRUWd2Br2y9aouSgZSnAsqoyr8ziwBPiiwrGvGugFsoGcUNnI3XAehfA4zCa7YKvBnhUGQrzWmtAFpeV6wMdz45822DLv4iPpUliMy9TL1AD2IqHoKV16XhPB4iVvW+llkPqescSxD5J6QFPIOuCUpQC3IwlQVh/KexXPMxAIt508dHDCAIkEkJxJEyGQ9gHuMDSkZsvts6nLMXp3plbwMwGfji5ev9o9Mf3l3sH+4ZeVlI/PrszLKL6ztbYz67efwg9WeH9zfXwp5544PPn49lZg/3N/c3Hitwe0HaKH3f2Tv49PHgzbuby8u799fnt0/35ze3P/3hOxmwmT4BU+IuyZDiNiNo656DffkcEq0Cur+9a1rx+bNb8+I6fnbevd1PpqikHXbYJwTPMZvQfri7seRADnJ4eGzaUt5g/h7XLWHuZu7u6esXuwdgeUT4kNy8B8F8lCU5RgIPngx2RRrLBZvFB9zafcmTFT67L453Sf+wwYrXBZii9vjso9sgMqH729sjW4t+3Dq/c+J1Z7Gv52WJHE5iSsFi4riQHvaDm2UW1jAcC+fpT526SumXJdc7u9Jc0jBQoeqAsCIb0hNEgV6D3LBongHkJCaGS+Pcz/CAMvPsnV/a9QDck5shHky05Gl726MS7bnifkje2mh5BrltGiMpH5fJBJkSgOg16IAzyvOqcgso0VqfKdR0a6Jp2mStO2+XnmhqPNAre+n0uc14NGfAQduRoLfspgECr2evkziqBrJC+AQZ1IPTVloT2sRX9EsjZyjWI+eeMh6HmaFvtw62rqnNOFDq0Ka37WIKAoKxYvmKGymY9ceUrHF3weM8I+5mFpAGc/LI59pQCMvJFRy2TuTFVcdG1J2Oqw4GFTdHPA6E9aF06uWPUKekBFvLfm8uB0u4GHoLa1M3UhcGP2tSxKvNNHdSQEPwBLVaOec1A0tIr3VC+LhltIrywssEB7EZ7mLI9pYbWcDyfVFOJ04yjPT4YM+Y2BgQQCDN0lrtttlNdfiIZe8B8NyMwS1ZQyaUjXlQnNtbzIKKWa3hnwcCoEWKLpRyJ7EzgDMkbrpTd97z+B9bCEG+VO8nSTRgQ5ahnd6n1uRTwiNPc09Sga2H2lCgh8v5hWhGXM+9l/CX/s5v/sJf+7v/+Q+/twtpoqDk4u3KeqQFmmaHo7UqBLkhjbyZoZV8JPwJ5q5WU4v6kFoQhzOF2eyKyWkDjK66tGq6RBlBT8HBG+05bZ4mC28Il3UVFupWgrI0CAbe+QGDn5Q9GlYFn2Hhq4WBAr4CYgl3U2Y06N3Jm1sHEe+SA0cNuYeQsMfLGI2PbNUVvHOuLg0ZUyfzQicESa8ng5yHqPbZVl05HXJkmp0pAF1qBKkHEjKpTjlCxADaU0gCaKcxgOgXj4mowYm0BKVpcUhOPol4hEwaZLJQKMHORKS6Uj+zUsn98AU9HpbEgBVqyiyHBfy51A4E6HVtaVnlUlt8NnZVATkiD2cpFI2EUQ2nCWqmpBHiU110rn52w8KGvJLtTUpdftmL1RwNZqLWONRlUkIb4PEYxjmiGhDV0smywBQCKWRZ8yJvtYqZ1XSsMa2MKCJxWoCpjlqMlgtAOXB8OgvaIpjwVMpJZk4TXtW00xHBnHhgUbRSnGCUBREXONUs88wONUz1E4xcBXMIoFYMOV0/N+wMQ/RdeRdqMADVnCxOGSEnsdh0ObqmGtnmvMphr/nSZAyqr2yqudr5YI1+F/nLkkazXQ5k8y81Rh8TYEekC53PgT+hI+RiF4E1QVW8K1oN7Yk4s2auOXxtcFzw7VutMZImk7rQxzADSmn0pLzRtg5u0w0EMRj6sQLlK4ercvXHQ6oNYZ62CXJ+0JSSVQEZzF2hasGs59B8xhWrcVrPC8RoZK0Uv89xwggdGgCBIgHWPH1AK1IMjC2LQDhK/fvQNtLLLuAjqhxrpDF2C0ZiGZICHoZe05M7oDZG8qYulOzwyJkAiIwxXKqjv3qa5Kg4Px+PToZ6L/Az6LSXTBL+XF6CLpCNmjT+0tDwo86Sc7b4VbuoG/BgqV407MznsNlccs5fAtHWbNkTmpPxhtoiUQZcq7A0UeRykGWosansx1gQhLxdnShJwOkavqhAgbOlo8GRdFwOCHgV1e85JgplDDWMVEoTwgDX3J/FJxqU+/nh2cqWY9TbBWFChk76+vra/LtxFMBCrYl2wfXWBpQygw8fb67vj06OT84s/Dn94advurv04bMV36+OrZh/Oj+/svRCgmXLlpPD3sRlUfq1ucPt7Z+8/spjxB48/PrlC/Pidr75k3dX92bgd3d+9ubtn/7RG+/ssuI/5X/eOTt7hSDEkBUxPtzdw314sP/i7NTUkiXdeHWDIifc3vZMAgYZ7ItXLzS3TMaPD4/m/h8Rc/LipRULtw/XZH98ekbqXhSAWVZXG7uPP324u7kj7sOTE5PCe0eHXjdm1tiippvb3ti1J5snnG4TzO5Y3SD6cHhiBGH9cgl0O+Vvf7QDkBemeWD5qO1KjZ0+vjh5wYGtkDk7PfLKA0I57v0JdV+WVfjkPoTf0LH1YMA0bOOk2ROvn1gpRRvlNEXKFDxk6THItis37aT28hcklbR545IJUeuq6+Aouryq9KIMT66cE2Y1oeNpbiCgRUbota1KYWTj5Qf8YhxNNdXzl+w32/IluKDZzLEtGgsaY3ZqQg0d+Byw/qwBZbcvMhv0RmfOgGHGPNmMabPGmhniiBdYB4P03IWV/BwcRdabqAMy+QNo3MgyTUtDRI7oJUbj8OUJTN3sMiyNlISO7Wc380oFHkjI3RUQjWcYbyd67nh1a9sf9mubyya/mxpIRjlULpj/brzMubJsAFmxM9Vy71W7q8RU27isNHkG5EvgcGHceS6Nt45jqzyopuU0rsJ0mSCRzVQY1RTKcvzAo2yFEXWqHRYHCl1SxhjMPHpRQSZAqry+JQHiu7RbhicgRGHThTRsEc3Onik/t5LMjjNSXRXrNHYkFHt0Yl1+L+AG3pdXOrDDxyejPLt+fbanP3MErdyhOzCsiIXXn+QIxupHSxbuniUaF8SU7lsWv2qTckteBU3qVg0X4HlLuIvelI312PpkI12rw40QskY9ACLhJM0s3qwk02dfsYZnLyV89tu/+1//l7/6d/7Bb/3Onfdv2Hx0grkawEdc/1KDxtNTL2WlzY7pMUdK0bnMQ23UwsVqVSHdpBrY+usCi7qTGMQallb3kYqKycvINRwVjBlojgxSkUu0xAVsYPruX6SGQIVBp0lwEnaD0hjISdUGs+Vt46sp3f9JcxYUhKE22AEHOEkx/nlhSI+09aRQ/aYKhg9TrTrsjWScsDlADY8ikW3plKu0kpPyYcwKAlHz6YPJERqDobvd3daT/xJOgQjlcKlVtlDzJtGdjIK7uQMW7VJlVSdizCUC2kgKXkRFRKMFvXCpjsMr7ZyUYvuBmiixCMzJVEhzyXnlBl+YLQcY1ZSvujSulQMuRyNh0LRCSiJ0lmeJiSqvwUI6QEYUTJ5QjcEicjqZvMY1WSZfJgxmT4VBWtpYMRSZQZ6OeqymqipolaWRXR4REmFQY9XTQmjDslStofOGOZnu8/a5bmuKYWECeyIVwJlJEzdFcmfJKdQTaho1Db8qOhshoyLjY71RnA3nikbmEol0MhI08ptYTv7aZU5zAFGbyUbia+MI2W0/iQJkCi2qjC4Kcdkzw0CYS0BpFZAusUbel/tjUrUpTDtDh3KMDMbIShobUxm8MU90c8cpjoaecNW5l3d1dQiOmqkwYt8QtmjwidXIi/piR7n4NKjNgBg+05rKjlidfBAHmoySsKbCcFUXW1aR/LQHg9Z9+xf81O9LnWwXSCJ2DQnKtcpENBwOh/XB2AO4VcDOyBgj46R+qRSiSCXikxenPIdclStAiTxvseOyn4CPGJubFLeVQIBmWh0aE6hLqFBfW4kAUrUqTKs8YgVQL64FTkZEAaEblGAQtLGAbHpYg6VhWRiQWLc99JeLLM/sSgSPPOsGdCoDXNqXBLUTH1XWetghqE5mfgusRCA70WYkOZ8ZnI5NTNRQnTIza+JrmXu43Ih+tpeeAb3qzQXWmc3DlygHFii0OMkT8JOD5dv49Q1CXKdwqIvgPx6KcB1Zc6gWcXM5Ffj5pWCFGwyuAzBhBWyUgCy/jwUqWLcR5yXzmiOCapzU2QpDpeU0Xttom3AAFAhyQtPtj/d3J6cnLmnlYE7mzqXd03U9+9mbH45fHhy9OHj51VcHR4d6R8/XejDaUNCe/S9PvH3247ur2939QwMd62reXV2bYz17cSw529v2Jt3nF3bv+/jZLvUPD7fwXlxef/XqtWTUe7uMO6TdKCFZW3g2/ztdBQGT0aT+z9+/e7s6UQvwW4tc+CCY1GS1N7IPjg+19Sqrnc/uG5zMJoN7tisldjv44I5s6cdthKMDdwPaNO3ly5c2hfn46PWohjEGKRYue5OBV3jtmr30muSGQ/MAq+ltlByfWPO8d3LiGYED9e8eHvSLWYSBxKy+8GpbBiO7kiRB9+LkxIvKMJM9SMG9OPnBbYoPx0dttfRw+2hulsUcHZwyedmYQSaLoxx3Z4yvcC9VZV1Neu/Ig1Ha+8Iy13r3ssUGDG4RiNnzZyMVnBIjMOwlLdvPd0fsNuN7gDtC7j75rts4+ZgCi7wgKsggZYKHoJMX5FKE1OQig5SYu+hnQ4K6QnULQoQEkGPUZ1KgjeQBj26hwGKbbuhkcnovMgTKoQIMWWH9YkEDcpYqS1AdduMLsaNMvaCUI4JA4JbuK7TZDCdFEixmAIQqt4S6T6BiAbOHkkEZE/H+5uYh3Rd4LPO0xp0YCz9DYIHB/+WKztE+UogmQMbHMYoW+Ks1n2p1rN+bIj+0mUadzo8+Jw5MQUXaaKhwHYH4cozPTtwY4EsXqBsYk8CN3v0cCNS/uiGXsCCL8hgGa5Qfp45utHz6dHdn+JwxuMVvVQ/JY5whkVtbytKvaf++PDCy0a9WsnkicSeQL5AihZblx11qYtLaay5kcnY3euzvY80IRacr2/v04BDby6CEeroWLjQX0WaFRq8GxgJ35j5eVm3k33AyEyZnEoCxF3EwPw7uEFRTRE+GfJDti3hCLSNPA+aAqN4sAk8UDZ5t//T7i1/85b//C3/913/vP/+JNV8tAJppKQGy3mgiBuL4KRWgT8KVn4Af+lFNFjFTZim7CzEzqifAUZdeqV7bVScZdHa3bBi7ijVk6tntwK77dtnnlNciftb6lnyn1nVBMzOVLxBoilZnZWB1wVoNxUkvJBxmOgV1YK3H70xHoFaUq1TNH5MQ7LsW4rjpyfvhvLg6U12gu6atNglObd3fptuqj9aKnDE7PIYy9RAgvgoADUSnH5RBJmxcxUihaTS4yZ2KEMujxYQ1CJpeiXbQb56xhIdlie8MaUxibB4BsV2OhK3eyT5hp/BC2jGBwULZOHoE4ygZznqYJT0SSwjJJ2pFCSCLZ1on4FSZkjQCIIEq9hVG6DAqC+irI52m+hGo+lqDpea0LEprXUxPcU7GSha4FB5OIBOp85G8BhknbihlNJ64p/3oBfokEFE1n8AYTmQ6onC+6+lmkKDuCEOpIN/G7mTfefCHR001Z0pTtbCMn0XwYnkwdpooOvpc2PvhPp6hrP7PXCreFw1TRxsWMk6QZP3SSmMnoRxwnc+xuIRL/N9wONhGtBHsD/xOoj8V/AhhAcF7VULEwGqsfNBs6TYyMM0L7zUPZ7aWxBY5lUZdWlMCRlecMI9V22UFBBQC5aWSjClYK6mqHaTjb4FzKdNJmkPWOMPUD6o/lcYsRm1N3sTdPInvRHvlkOkOhzLV+VtyHLo3IKozPXTGFU2uji8mIyFFoywgXGNyYhxld84mC3McBoNJSuOseUbDA3MTdLQdWcSyakNMMoFQbcDxJDQDwgDQEIyZ0iYPcFRqIXlLcaJwRvZhj58l4ryKDEdbqoC8rsYqAsm0kjw8AWklRoxbrXiEU9YJd7E4f4NUI0SoprrCUTQ0jaDAAJ43Jp9kFTFxMsrys7yyYW3qToQFZXtQbBtPrEqpbm7haTU0Tc0ZFQxHiUlTmtdW3amTcqq/nKThSpwB6I65MQddVHOGwroBHZNzh7YFebMyOtFCDFpAT4tKRlopwmtQUa3nFA2kNkUUNBJctMxJU1n9Bhn9iYisZKtywU+f725vZe0sLSG3g8fT9dX1ixevTApi9OLCW4A+bm179+7Jw/Xl0d7O5ftL71T1zKVZ5Xa93Hp+6QW+s7Wfe/cySqtfXrw8fLq/vTEq2NsxuW77f88egnbz4PGAp10EHxonvPcwMKKnLzOU+nh/38uJe1Z2b9dLxzBlh5/rm/uGKCUzknnLja4FR0kJWr1NjJAl7bhA/+xhaM39oWd/idHkh7cAkLCbIZb3EI7uQa4h5J6dvcAsNU3kaga0l3mVaxsk3La0bGfr7vaOneQfTx9e2hTpeN+Uqo4jiXoXwafW5UuXVDAZ532n8hFSFQ2MJcyVziChPUPzkW0vRb52CrLkKaXzhGe8nnF+8FslJof31U+MDYdGikYsfsqFmQQ2lY75dwuLzdiRSUJWqTSs9UJYNCYvD7aEVyxEskcXGAOjwA1ZsCu9JgPJ/5l43hqSJtRnmhA6OdmKPNaA4EgJrtkS/yIR5kV0PnHH2GaOidmsxxjw2lO/vqjACXvlTNJKhopReIfCHMMoC2FMDtcSyNyp3iFXZ65sVR2zgzQFdnU+f7q998RKOxGtxU6q2XC1WwdyWTcSZlYCRL2dS1iQj0JXz1jSr6Mzfu9x83FMNCjOzUMNmXIyYag5+SbG+VZlPEkNjjVHDb6cV2GaTWHn6UPJpsJyRjCcqFLVOdbPVbnIoMm0qM4XGILUBqNWYwxlMCqgqNo+C/iaM+CUyxxnIRMlGcuTgFgyM6zS49b0F7uebVn2NjFZ3U+Hh2RVa5cYjWhHaxnGjLK4Jz9iABYEejdFwT3G2a3YtOUtXWTLKizu14b1ESHTo7NS+2BmGJnvJ8v2MgivIpbw04LXBndHxswL1ahsRy/r9BieNUSc2mqtI15PqW4uyYlK5oHHI4PPib1ywwSBHYTbqct9wgnmvSlv65/92//zf/wrv/Ib/+Sfn59fkAOaWSPCU0ED59FvH7kTdlxN+P3OGlfgjeLpjDDjqlob9yy4pgufLiX86Vn8Bof5AgMCvYG2IAyWls1UPsqvUf3apHqpO/gsPANBQOmZs9SrcCNwxj0pR1CkpFWVAhayI97PqC2vzVvjet2gnl52LFwz2HFBDTWBAj2OSdyXFQ1H5cHIjwKzWJEdCfEd9G4jI0BbiDZnyaHpW06nXaZVPvCsfdXKAtXlk/6DMHzpw0aKhAFsDGXSRT+6jxK1Fod4TABTNreptfNHmAKgdkNwnpVPx0tDWdRRshJXxcDEMiLCQ1Fy+noSAwFJDD2v0XipJnJXZ51CKyUFOOdmVD1zYjOkiSTA4Iy8OEgJ6ifxObKHYUVbYs8YpmPHWRwHp5DuKGuKgUgDA3cCcvCGWVIfYwqRyAyaA4RIXkNQExxmuzznU7cYK2CFgS5Spnjao19aCJtkX8qaX6eXFUBGVn6CjaBCCkJIbxD1SdfodILVsUOGxHs/2f1CIe8dUElsCWIa6lm6WR2dINRN+TegR9zpPQLiOaPF0BgqCCqK1rHQWc00Vw3Zq/4iph8ODaI4QImE584vzZQDkg2XEoPpr560+oELUV+5xjTPrwsC61BWPNV1AMjc+h2LQ/igVI4N9bULZD9jDh2q6QLnPAWzNgPO4jmLZ1hJpJ5XY61qgBIfKrEVr+ChgLrYWSlIEwvF4FZbE/hb25uSMvFVATQsTHaYOhGmcvRF3PObixtTtqQhhkZs0loyQgRXUDJD/+LChMt4JA0oEkikk9UyUnNOVurrUlVAaCaCuwhzYIe4cr+2mTd32WN8ai43SDwjIDDV8onvOpxRBhhUFgE0PnxlenSKC0lSA5h0THiocSXdzkkIAojdDBlE1RZBTuJwiTHkoeJm8sJBE8npoluizYctYx2xUUUdr9FUix6joegV9hlakBep+DlMt96RxCESZieDURzlECySkuCIongQf675HT2xNGCbNm3w0LxazbOWVL4sOIw1wN4U2wDxztOzDwqzjiEgiYQm4cjhdLMiV/4MWqvMexIQrsNDb7+KJeAlZ0eHx9BcXF8en51cXJzf3tzc3d1++nj77dfeGWbHz/uTk503797vHx4EvUdmZRhegGWphtsCWze3T1JwdnNkB/r7Dw83jyzP4Obd1Y3cnaKvbBU+b2i1HMW7wx6e2qDdA4X3Dx/tESTr9wYrmvT23psbdwa8OejZ7ZVbE7L5j9fXtwf7R+/fvXen4vjkxBY5XINgdw96/vX27tZLwWQFzLr34DbfYeNAbCVK84ZUZieSlt40YMm6zKtb2VMNU57pYbY3SRgtcZ3dez4dndgY0S5ABoDPjmbTIHcUCKuxkj3OG0rvWBeEEg8D0Afw8lWKwIUK9CVIds9tMvvyGP96EsEO6x6OKFO6vr2xOpUHsEPIhSr5fO905dv2Arpxj6QVLHRbkt4N7saufgNOZfry6VRyoVmvXZwZ69bnffA0wvGB5y60MITbspNLLTO09vCxSMl7GDxjzFDZg5SqqXe40Nh03bNWyAkmJCKbn8k5tmR/JFg155VNX2X8TTMHgV1lxt6Y5hEIcud1Y+GSSoxJE83+jpMy7E7GFEs+ATRzPw4reyAYd2Ryua3PbkJ1J8RjE58/X/aSCIMTEcNtjV1zgDck7zkQme54LK03zuWRXCba9fHexOwu0ASeViPUo5c4jMvlUDHMCsYdNcmlJjwonr8ud6zCUo08a1ptSpWICV9Kuk4agepQv8PvcM7pglDhgOpk6sOxND2JWq46FRqAMTW1Jp4n6NCzlrI3rKnHKlKiHF+c7I4RgSCcMZg4KE3BqeS+ITRfCmDxcMVR2jScbqfjdFq2rTmYZNPg1T2Be6PcMAiBV3ftErbfUJtdzDgtulquw7pdMjwzGSJsm6Do9Q4zsuV/0gXBaS06MilAP7Tg+Rlm0UR+XbWyApTUH/FofrpvmwcWxjmVG0cgHFWKFCAbfVwnysb+mtacO+cs4IeLm7/xq//f/8df/tXf+c//1fzF9MYuq4qw+gdnqXoeqmGnZIqS0VoZEHThmCMlrmP9nJkmNZaawXGRbTuoL39pjJFQ+sxU+iRGcJQEVssvxqCdchdrobAuq5GMVg6kpqzJs7OfUZhPbKoMVH49Rg5maMY4AjXDlYpmnYwxdcZVJxi9WYXBXnPtcp2O8YM4QggynWQzPau2PAKSKoKLWhBEzTLhsvlwMZPsT4hf+aba078AVujkC2oO2FLtGSrgcA1QiUzlSJ9MgCkiET1YKSwVT2LW1BbgekbnLhkKIiIz3pBQa+gQmQ0MGlAJfSITsVehP/Wd+12IgLpfGUA1EzFdlLmYKatsCEOF6AdyvkRKqiPjz/SYTYI6qoy4/op4gQ2F+TvYVHCaKwYc5ESGw2I+a4LD/1VHw2UYQVNYl0W8WmVDoXJhsJBVFZoMLfbK6wBEPy5UQENg4wIhg6N5lrkdRlhfGEwacG+kN9ZF3mGuLZzL/QMyYaEpmhhWsxUEx8f24stoF9JsJSILAto6x118EcVMBtUUYXHcpT4Gi5JhJ0vVCr8JeWQCWrU6OiELJ0sKeUqFC1qV0Ja98bWojNQKk0u/HBAUaadVDI72V5Lf1cH0I8BRswFZCVfZMXecMBRjQRk2BCzEBlmZkcoYh3OJOCzLu0gH3SAQzvCxqoVt4Yy+ZBoJurQhrz5VEYxBn657yVrl1IeqOYQJUMFWRFvoMtIN9YCD2h9M4/wFU1xRYqjjLwrLG1Qe2Y2UYSvbHqGpE2V4bLoxt49sXQkRJ2lYkwS+XCqSO9AVIjqfQzEJuTK1i4OQuqwEbYMlUlCNWVX5m08eTjEb3gcgWptHrCaFpOeJkE26RHBdR8BjrsWFuv+nINkuZuby0bK0Uw1nDDGCzMW2jo3J0RENt4vFqHbBSZXGWlnS2rgle9KZDnmEkGSIAcSBllLqIOI9GUKQyIY7FVxNSIxqlvamwJmeh7pR4kiV5eDCkdrQh+yiHrdxTpcVQagpmmHVFg3iI8gKNVEgDjox5ax+6VSAxumR85kqPxv/qGzGnCAIRHZgkf3R/pHlz4e9g/eAinsEYJaNernXz763tmfXbLfe9/T48O7afprPTo+Pr+9uzWt7S8DPffvCBp8WFot/j893L+5u3767dafhxfGp3T8vb9qJ/PTwyBZD795cGhVaVPPp6f76+squoXp4vbM5+xvPBxgdeHzz+qaN/HcPfvj+ezZyc/+wvXuAD5wtYT71Yq/nluMQZ0LGHc6sezko12Gq3EIFK6GpzwocM+8si9YwdHxyTINsINHymp4J2dWI4kiZ5QiT4r2T/SPLgp6/eHUKxeHRUcsrPm55v0BJ8FYjK5hbgEG8Xk5sPZJUa9vDyrd0QfCt+O9gPz4iVBrtjQHH+81/y5mqvmWy09hIKGgFjnZMwuhILCmfkmA18zkPlm23oyitIZU9rlyN8ugOeSK+zVE8bWHZh7cRH0oFs4duStjik/rdhYCkKdqe1/SEd4+KskkLhMawGtYis3giNNeLZDukXco0dm7tbauJJrnM2j96GqFd3jkDiyTjCe7GXPUHGbmAUa/Ty7Y8LrzMerxMIC2nQ8x4cqNos1j3TRx79QEK68aiyp0TmzUFZNsqoPqvlrK08t+tncYSTbA1SJcNIxYKxtPvKVdl5SXdQ/LQgiFB9yU26QsdFfRys/wDR7nq5kPZuHSVxrn7TCIxXu2cvCbTrpIFqKLAuFql+T9lztd3n7GWxQYLhOrnyhMfik0QBYE8/VjtgFrmoWJXXZ/4uVbhUzSAhOYCSRd5WurQa+wlTAzGrlebRRce3v/wzMB2pvzr1Erf7yX8SVvXArqUXaJuJRxc1nrxYnWOD46pBiJTDojR44yWWVRkNip4lkkvE7VEDfa5e1O4zfbQ00yKUTdT9FUngiWuxAFl9N3mW/cf6l/WtIVpmrYNhV0T1eoSvHSvVxI3SiExssIvIRa3lWDn2d7D3bPf/b3v/qe/9Ku//Kv/6M3btx4dJ7PoaERk6IJHPlumW/BrNifvwzjLIzqCFYQHeCms2qrVpjtvSylF2nWkvEqDQyw0m3IKy2JJxwrOnU9Vl0FDMOlpwj6zx4L5Gjw0X57tTxo3yBcYBORWGoIED4xIgmkor8G4byZKUDhAgwHfpHORAZdj/DqlO3iiwglPiBwO5lMkWY8qAS0JcYnhzbgp7zPSlkOYKMFzkwWTPKALxoge7kCGKFwRAzVaStCROnwFR+hIICRQuqwA4WUtZa7DYxItU0lruGRlSET2jHsDKHb2tAmYvawiHCt8ISl9TZqYmCenhGIiHwLa+nar58vQltdpikeU4LVSZpAAE/KYhPOKR4BOJhpqJY1C+iT0YlEXGrckZWRkbCgc80k1zkEZEKRW77JhubxfVR9IVsMcPS2BI1iN4sMdaLVUEH2jsKC6EFElUArhVMvFsVXfeQMWyHNk0yWn3CcznvaKRmNZvppJLdOqMA78qFppzFyPYkFLvMU1VBdXF+6zORd7ajgaB1Ob0XIiHZKCg8QgF/YR7+j3opm8fmw7knMtMjZ/AxDYjqFjwe+nsxRYEJjzvkAuHs0quyQz7Ay2nCVJbVQ5TaIjf/Q5p0uq+QKhJYDO+kqp/U9LfkdJbUbmLKzWCuIzGqNjKXWmaqqgmB1M25Gv6/0ldxafaMaxUZdCN+E8i5gp54COV2hEAegYVgMHgisF/mJCeJfBSpezKUbZTS5KhUT16vipDoww1WAuDJiIGvOK5SbfRmDl1llP62pWSfebwEH2uFlDijmUjBgaopBVR5aR3rUMRZGL4xQBW6xKFvxNQXQUNLtLWQqSNJSoNkwxqYRcw7GbYXWDNJhUkTDkTCYKi6cORQurcn6CtXqMvMFqmUIG1D4xySVQmGnaMBtLySQdEDM4qvkvGuWc9D/0F45isDshiBx+9U++oYUCl51oDUJol4iaOdMNApmiE4VwH15Smj5DTXTOvQ4Gp04im77fFXU2fonCEY+SZDTzEPE/qLFChuTIpT0VWofnmKxCL48iDw2xjZkH6glvq1N0xSbURcAjk/CnJwxKiDc8oBFrhn94c3F4eKgP1veTpYzA3Pz2/s65Ff9bW1+9PH55uvf+/budg8PL+8e31zcftz++fnn6eFuO/ic/vHnjgeOJ0giTtJWZbx96cNMmLSLHxfnFH/3RTyer2H5/cS6HsAJHJXsNvXn3zhpD/LkpYQdC8//WLFmo43GC49PTpaCzl6fyRlOf7HHvaF++j079N1wUqY5cZFYnSxE8etAW5LoQ7NgwhwxJiSDV0K+ZRWUJbMBtjW5yfrQieefs5ZlC76/Q87lxcWpq3djguex5xudZGH1SjPVLbrCUr7fCxyR+uXYZJ+w9bFHWkg3aSqsHD8r1W69C9WRYmE7zlvW7e2B5Ed+rS3ei2HCOHjWxVidTrFfPvqySmL6Oe+NuAsnnh63Pd2ennlg4tE7e0ovcmRPJ2hFnzRKicgW2NLF4Hq2DAroCCzNlwi3v6S0BKPni+0U+T+fmGEZZbn08eXQBGfna2Oja6Mzsg3QfaNTXYeUj+SyO3M0YMvgPxSAID3X2aKGuHe+iAodpwGD9gP7PWNOEMSrTEf0inEft7NiAyvZO/JvnGRsQFfohJB+yYcMElOrRub93761hH8pXYmtknsImbG4cM5cpavFoR87mqKiP+Y6/aqzPtDR/KazcUXEtK/9yFBoVVj515/I0+rPam0tqDvCahjJ4E9CcLQqLGGtqo+FZCCf0kvyisM9xfFFdP6K4sGGAD32qGHFzOQ+vc2vDWoPkW6tjsSwcFSs8gfPcq697grzUpPRCPm1jLOQQPy7ZgxSfCWEn+FuWtLnPltmklzmKNjNc8bZpFDFHOwuryu9oLSqLYz097I8uJt1oqskIF1NjCAywmwmiKCddxtezHhhjw1ZB7PQ48jJ+nzSOW2RgGAnsMT/q6SZPF3lO6f7v/pN/9T/85V/+jd/87WsvxwhIAXxiufuB+W92guV6g1JG1LLFpciN7lKIiuvYqHiKtFC3CV2HC3GQWRfGaR3xq0tydSaVNFqZU3arZc1gHF37cKohRvxpngq/TPBXp36cL2U0Lq3OZaHmE2NkYw9jily8eqipx+xivv/FJl11XYlR2dQaXAkgR+BQRbPo2kxFB2SGE8jDcsqPXa2KI8NatR18Vg0nSSaqJjOLyTwdASqgCu+smO7W1JvrToCgxslV4sFP/C6GBdIQomm2O0M8BrK69cbSLK2fsYuHIQDMfkZAvbx/E2DLU/1wPG8NTL1z1cyI5VaVK2ko3I9QZlrsfYLnyKRZocJ9q3piWQ5DOvjWd0IvwyArppgo5m3igw4oiB0BBh9UkIdamUkbRiPMpQqr2fw92H7BrWvWEof0Nbahblz4BG6BFruieI5hZM4MbGaGReVsUiMxGXnpPVZV0iYgI7mgJytRnVN0SqoLbAIm4TI0YrPXAito35GxUo6TRpK3fxpXcfMXyNXdpN/wTZOhdYZYrGgRTN2uVt3/OqNxn7w1wS1ZAeAiaZGuBAeSRbwKwEIZ0RoHYw0zhISNWKozoOZj6k9yPvTEb+QNC0NAgoh5+FDtB4IAcI5BiBNohMVpfOlH6z/q4fyYkvqbruu/mx2pHssIrkhUYzqMMR7nPFmP0XcphYUne2JQhJ61bOAujlRezV34IqM2wYifPLCGAGkXb0Grr14EZ+5fdElvI3B2Pt4yn1E46TiTBmRDfyG4WI8RXbJUGwFmBNHPHxb9QMEOI3w+XVmMJ61Y1nS6qHql+OMnCi2imEm77JIIly5hju3J6bVdIhhRqZSIxkSYY8KsIxg2/ETBaCd8mo9tZ7aDcMsMlQpKkUn6w4sxh9AQq2X8la+ARbAZ3uAbA6i3CNey6fpaLLTBYjEhgag6NOvScOLAJBo6M/SeVT3qZAOzVQJZUQRkTZDNtDOxAIA1B4ooEWMb2xgDW2ArjHFywY1/Y0glQE4Hfg45kM0WN6WkTs6DHwiMshC0awugINhJ06r+5pg9Owjy92+/3z7Ye/3116arDQrwdnJswNBIzLTNt69eyAnUvL7xyq39Uznpx62ri1uLSw2+PDRwtrf/33314va8WfALL7VqduT5qbVDHx4vzy8eIHt8+qPvvru4fnx/+eh9Wxc/XMk8rWe3NMgrvcjy5uHu4vra+rHj4zMLVd69v5JaHB4fXd/fXbpweVviubV1+f6K0FuLMk+HtxpEMuGNYHv7k7XkUEKEBFz6TW/WlmT2TQO3Ksnzx4Iv27bEX1AmB0kzLSkkaauebVV+cGjd0K7JScJpX9S2kvfHYlsB32OUbiysmaRWqwsCbXN4dHRAvtzDnYeyq91tDyp/bLfST4dHB27LGNuYNJJswyYB6qVk8z5g6tYx0yGqZqnMihi0VKLMSt2+gLPeZsdbmdc9cdbeQILZaAWXmzYnhivNo1lutO1h36ZWe9DWu37bBvv09Mg1lDBMq5jcshibfdbQec49A53JNUfYb2C1cj8hH26ruFbTY79A7P6FWzP7dhfI5ZnK3BPIJB3lmrZStWFAN9lYn+gXAUhSmU22RLBR5f1q7rXbqphyxl+Ja87LF3SAJpk+Si6lpB4BZOW2/rTgpPsOOVw3MAmNfdIdVmFf8+KggYzqaOat1SfMpIqaaPBd8VwQAideqVAUDTaWajvfMFQ4P/uMoeksuzoMIyUEq6LPfiW0UFTXtR9hrUpd7SiGD/AQxsscc+5seTp4E0/C9WWKDvWiR038FYPW/cyiAewkFEc9mWPVvRhDocJ8cwMMSHWvCWvplqScDanHlJ8boMrt9/kR+6Rlno42QdCtOUBVLAcaWVGocC2gyAKRQdE4WRLtqe1JqgzIKYSqonOiLqfQBA3B9zQwwlsTsqYq0DsjimaaG2wwWiiti7MjVb7CGD7YI8vtnN50QJnLVPSRDZi9EmJbWNPf6Xnb4Vxy9X/+l8u/8rf+2V/65X/wr3/3D4Qo98UamK68rtjuGGnRQnPVzmNhjkTKBXCoziisnyPr0nElLkzOqixlLXVigTaWKKpMsOvqTKVnr+0w8UXJM1LS76hHI/AiJG0kq2WQwE4fRNz0XvIQnTUY6jWJo3KMnME1fZzuI7IHjWp0IeINr35NC1hKWeubGAPQruJuEuUgT3bOaWiuicvpbiqHACIxQVtoM7CGAWX2sA1hI0/aJl7cFKylWnMXKCfdBBYwXVsc6MVGJvwxuanfAIk4xm+CLC0hk00WoZ1Qk1gACAxCmrwALIb9TOp6T1SK80W45CvGW02IwZioKx/bJQSsUPK0d4FFDZN1vkNk0SCMldZSoU6viyGZC9AOUBZThVWcTUQcOC4y1pXKddcC+cmtGtnPUB6WOEmuBat+NlFrndwiBF5/vHgcZwaQQ9OGrDGoxOsAOROfHj8ixqTLd1AS2PVHvgBWM7GRxperG1EECh3Zmj/g1MxO+qlF9ce8m15hJpUmK8dGrWknILDkOMsaer486+9vsTzg+12GSRbqZ8xzjDWMlQ7kVLxrwtLdzLlSreyk2V7wonRRpRzJJDGKTpgKshW81WiJwsnIIgoDwpEibNE/P7ruIlhdXhfTTZUqFRj6dlL7sNQfm1UBeUwtWCrLkRP1GlEpYw7TA42/RfaqhhknaSVmwhzoueZnAZfPZcywgpAEg5Oya8XCRltJRCpDQ4s21VXjDz7Z1o8TEiCwNHVCNNQvCkcqNSk2O+K+mXmizlUiNtNcYP3Gd5c6Yx+6GWeRu7hQHTWughSF2VnH6KZYqfsBYtGqQ2IrWvtUH3lOtNGvq5/6Ql/YiuKlENr8EjFHWMu7No7XYMdErxC4rC38gQABe5AiZxnclBQN9WR1nT0bPfOhH/WXE+/mdZs6mzEAUUpi3VCVrvDVvM6s1WPzwKItLIkuVQLOb5c6/KgCEjwc2dLdrvKdApfb6DbtDnbP0mmP2Aa7GxlCPaKrCQ3T3YSPZX5LLArGUke8m5kKElSWYNNJf+BjUodqfpoIvHxXWnp6emxuGk5rsyW0nv19d34uxXPP4vry+uXLk6++OkG5PFF3q9M/O3p2drz35vrhSg+//dwk/cuzg5cn+9ZzPPKG/b3bHnl9+ubFCZf1Ul6zjiYAcXR5e0G9nq79eG+K21Tt7sNNi1K8vevz873Lm17IdepVQV4cdnnlpbj7p6887nl96Z1BpRy3Xj12ee31Q6YEiQCT9kKTTZiZkLwQuOwZw8J0GXPPBDfhw4brtrc8tiuBdE/CXYnWszJs95K1bcBuJ35p1MePR8dHO/s7npS4v7+xww4j0YTvmOTRoQhAWonPgkSz+BJ0N6+bqifkcg9dsD6MHdk6yPagVhxR976V995JfH0nqLMcSY/3fI1leV+VTU6LQcZmRCYsmPHOr+oQnltZ5L0MaNCT2WJVF6CHnyW2aPYay2cHJzYa8jyD5P7Ymqvtj02gSq6ZFWdZUZhYLIgypx7gMU6v3LUQy6lVIfI19Tg5nztoiVN3xnT//uGrOxiWVrjvhy7tn32aOrbv9JhCDxVJ8rLmltrPnJaVJ3VcVJsl+zIwMJjEn3q9VNig3R6paiCaQfSSMq4wr0P2CEBT/gZbWy05syhrrwVpcno+Yicf23pKZosn48Q8O39JjtPRzv7unEQ4pBrcleAXfspRijr+w5cTdCisHFlTiQqmcC6p0/Gl5tRdSLs8sJLvuFu/59oGIETzcyHs6hyRMEgDmnaGDrKrXk1UoIjBK9sr1i841VgBJN+PsBBt7glE2dhPgVpurU1NJ6iYNTcjzt5yivoHJvX5YJ+CMqgszeCWwz55TfJtm4SO5fjw1E45IYW71zQ7OLMGCp25zoa7QBUJI5CZPJloEFFmBPjZKA54Y1TP4KdOynU+j1hZ/S+cSh0FMENr4zrjw2J8GThTwabJhu5dLEFYKeLWlY6lGP75szs6/LEGvTGGrfQ2PSkuryAuPDKi5lgZI5W3Aso6og//8l/83v/6V3/9V/7ub/3XP36TvTkEAv3p9Jv9GnYIWY83UqoKojCYUqrWwd20rkMaILE/XTYZqL/R5tIvsumgTrkQvappRXFaEWlEDJgEYaQx1qsgCbiSiabzORhzR/C7Wn86cqKd6SsnZRwAXcUy1NNk7GRhEf247iSjY2iBhjddjMmpXyMhcG7XIBMo2nSRTVWnajWFiOMyAyc6QDi0dZZI0T02yyCcC18aNEfT8+gZ3tBghjtcGASEcUIQENeht7hRiKqnKpHopL7G6ztycygLUzpu3jwpdS1mGBqrCMBCIuyI7PpfEwXpqQelvmTbSFMxIocnkDXWFrAQaEz2CgO+ZD/CGTnX46duNbBT7bLcSfBYZTx2E7IAxHQ2WpP5sOr2LUskM3rQOtNiIHoojK0bHdmFGokim1R/NDzw1c4WSSs3R+Ogy7T8DeNhTOy+Sis6kkkcqJ4kBwaqXB0UZa2b8xiGOyQbpvtd0Ik9SLoKYDVK9lSvZc7P33AzSgGlmkusGwlIMyr14Ug0WvZ7iRYQB+fuaqew9A3jHBXjqUKG15SEnv/ezyBUHbYAokRJ38oH0mo+5xHtGDo3dCTDhNN9mwGVbzpGXDWaOIAtlBklwzzScaUagyeH6WxoQ0nGmm7iIQAb6iBUkrpn0BmlM7bzcxnTYAqsmkPDJkAk9sEegIFXgg1F+U29cjiXS1OD7GqTzS+rLCsHIYcc1DwBt9zbHE/yzfnDPPqLDZyiwOdIQXiMHDUWU0bGaBia4WGaRbcEPyLgDn376DtVLP3lY0kJOgGo1Hl12AirbQ4Q1yq76iRbmdl9nc2oNnhEtxF1FOW38zNp8wEQ1t1MLMCapEoKHQkz7mYw1pSGq3od2ZMJ0Z7a7JZrAEGchn1nze6QYndXFugqAabZIt0zy6bjqMg3HNbVLoR1ONQxENjQWCxAtNZ5IvGngMLQ1aih+dbt169emfhMZBBI/cf6ydbv2JkhitZaES4I4Cun4OXLcRnlXVpWNPNwA6Xl3YUaWDCFscCtQX8jouawsaH3VW56++TsRBfbspwPH16cHjOmd2/evDx7rZ0nSE9PzzzYB9T1zeO7yxuZWSxs7b5/f72999zmupeXNy+8Tmh3x4N3313eeXLq3fmlt3zaUhDB795esX2Cu7jy/tatnU916+bR7x4/Xt/q68339SIC6eLt3ZNE01DL88F3DwRFYnYTuvNqXLvZqycvubl+kCZ4lzDlyAEMaI+O3TrY8t4vsVG2bdZnvPWzZwpue9z18ej41J0Biw9oVo/glALb7EgYpel5YsRoQQ1bkyatTx89GG3KnKRPXh571houjwGovCAnDbGx5csUZz8TY5BmZXZ29w10LH4QV8wlgSYTzqh22oGRuc2ylp5ebcRYV1ciK1HKfAo+3LVeQH9a9j1mgylOwh3wbk5dfMvoaNa8KRBYcNP5ufea7X794virVyf1/xbyIqg3cFHOc88t9BT0rNSGp0HRcw8kkF6x2Xyqe0L7O15NxhaKOqwz/4XD7QhBQGc8QcVk/9hqJsd+ZPVqgWZ0ZNzS0xuFpmKdagplfci2pDiu7NxC+EHO9wk6E6fI53TxvDkT+DSc/p57msBmHmaur29usIADQEmkHV5X8yFi6AwOuPRGTNEfXLmsmzS5eLF1RoBhn6uEgEL/kYoFRPKGTqY06rvUz05B83OE4xTwodx3RT6qNMc60XBVqbjrX6qv4i8QB5JrqmN7vmqYLzsilENE+RCTUoqTPsZxF1GRDV5K623NeoRsiCDUYwbainbMe8zE/U8Seibd9/Y8Lkaq3rMLY022Prl3RE0A6knkhY6e7igyYytpNKqcrXiRh6gFViQx349KyrUJlwjWjeiJzDpNLLAThBBCSmzjwG31ZZagNqxMRs9u7ryco5uQ8vrmegQo/I82bXLApwGQwKHEn/cV4tI2ROIbU9IQBA8qdJthtj9igLMkr8imM0GAmPP+6v7XfuN3/4e//H/85m//3vv3N+xjIrbwkvo4coYynRJellLSBqEXtOvQyZjPRdVoSwnnXfKfz9SUzF0YcaXf6ct8100NnvjNDDZ9hHN4wyMlGCwTfOo0yb+LrKAwgBP6LRtTlb7UR4loD1ZyicCMQajxKa8AFQSXNFRb5YSRpbfCJGJyi6ZFIhjr019SPVApPFRd8WkeJRHVNDSD1/3CtpkaCbi0RJEPgoyauYEAWTwPD6U0GZlufREDynRJRmzuRS8R4aP6jnHSKKx51g0ScvyFkYJaRkVNFJY09WQsPNFWOZMjMKQ6vtCTivS8DY5cDVhyUG2wpCuQfELODlczdfyDqG69aBA7iEzsKhNGIu3ZS55GtgU2oawoE1g2CWrCQRtSRsjGkDjHFno0M82izugmaptOwUHD0Vm0aTap52EQH+/8PwlAUu8b93gexpN8iWwu0xAOsqgdAU6SOdRGTCaa1U1OlSxHFMktS594kiAnI1ctOFhGAhYJPgNQb1jMmJxPwUg0nAHUKKaiyaE0IDWdSDUtwgV61TLVtKnESZ8aLgeZqs6T5zoPRkgdGrgUkMn3yChH+PEa3pfbriLCW7kTOoasxXq0xZZIlZc5H5Bq9MBZ6XZ0lkoWfAGHTf2cc8hStjkmpR7ChjK142LANlJMfesgFxRAqXIqmpv7c2n4KViUKE9cG7FOpZDSXLRz+Kx+4GSGpmNDORHBdXiTUpYwIlZlJoRGDpF0c23LcNG2CRtVU67my9mqmVegG8aA1pxkZ24mSSUsHxlbg5NoHrGvQBxqwYe/DEhAo1OdaaRywV1wYUAq+FM5RK0FdSnYjKdPXyNnzVmwkunNqSNbkTCBSRQuDfB4xcboKxsdRYSaEagz3GGLUADtOpq6UTp0DqiajBx82o/Cjngfri6u49+6PRORI3B71KTRMVPEMzDWKizromAtuo2Va5JZL6XOQCygVSA0/hyl5jDIyay552+zgnJHmeK8m3BC0QKF/iUBgQC1qw/Q6Q6DfWSaiSpF4E9UUdAN8fFR86b200wNpu3LOGfJ1tzaNvePZ2IWB8mTlE3/W/evo93f3n+8/6CHv316uH0w2v4sw/aUsMhi6QU0J4cHVvra1F8eQTUygxenp2KERekfn+9az3NxeWOlh6n/b7955Rktj9mKgtaPeKrP3P3L1y8ZxA/nV2/eX1PnxfXN+4srC2Hurh/d4Ds69LjtZ3cPoLalt4+H27tMx3b3T7L/++TgadpjO/V4HkG71s0TOcpLr1vh8NxEvl10KEJKYUwgO1EucMtVPedgzMCkzY0WDrkbI9p65vXAMx9ZgiI021vfdkEnHjYoYnevAPumNsltVia0kyHkJtrJ5+VXp5yE66mJBh2siUpz/1IqifXBvhssXpDguQmbcNMVAM3ZWyODCqkzdOwyJWLNkh4GUv4KcitzZNfLOnEt3I/TlgCxQNSXNT33ilYv7dpthWmLIz81YikKcNASQf2K5zlenfSyAzJ4cWYpNTLJthTZCAkQT3uiwgIQiaAdN1kTtyRfC4Iw5HECww0CRGHmmxMEndxam8tM3fHY6rlzJFo3lWFx6sIYdZWE1duJXUNzC7wptGVUbQTEWVSaYZiXfFvdlNUyNGbjeWg4UWBohjPJIR/zAIkbQBTHnPIs4Qi04BVJWubn7QGWmkHTqID+LCsXQ4o9qCJrf9E/IuorbsZnYqqfFU7l9T2/N51QTtfFBarPVbuTaTgVps5c2tSvif9fgMNXaNkcCIuoBbkyP0vdOl2VZqEjYVdQ1wJYvp9plpKWT3RFOsHbp23xIvZbqSzWkZIbU2msOdS27SdZetcGFENBreBqkdXcDQMu1QyKDBJ9UEzupL7Wbe75wUNBik3Q6u89eNCjvKiBuc5lctBSh8kG5vXeHz3Cs3qo2UmhJ0ZQsmcW4VkvzktZxXaj1uZoUOT9A1H70dIvbwmcbbVKTslB/tQCDzTXiftAQQvqlMgqKm0qYdYsSTE5Fcr+6KdvfuGv/fr/9Au/+q//wx8+fLIysGg5iWjKzUb1p3M3IGkAVDaTHsa00t+Ut6iGbGtbmE8EVOe3GoDMSZWXxl1Lm6mn5kRZ06VFVXAuZZ8FVKoJMqqnU8CqX4hSUv1RNKiFLOcDtr54ZsfBUWORl7omS0s4IyhyGHpUCXV0Vqergcl9GwmBFkUUPffumI+fYU5nfeukJr+sFRqyiNgJaI3nZ4w2jC8l/4KibIwhpNEJAsq7o9j19UheKeyIsj7J0YTjiBSdiE/BSbTJiy7DjsThaQlW4zglq2qWb4iLqhUdV88riZzxmEsYWdLwOaKa5EFkS/+xA1WUsdzmBzfpJy7Rjxxeg7XhpfstUGN4Q2T5VzcrEuNAc4kWfKIkGUQPJMCnU9+V5rDpipSwo0D7AEVS9+qDEPeQNmwISPJvjYBqYPV7dFmy2qCutCOsGHBhcIEKPpiVdBG8MPm3ECp3pMvkMuhgZ+vhF0HTUOhcJOJOAhnxUTt9Qq6Iv6TriKLFWiEqcmDWBIUROe3xoqZLC/iGmuZxcFL9aEoei2A/BvLo3inUiFC4gTBfPmIzShfe2uJ9fsXtlCeEfGcg+uyI4D79qxIVVnmDMr35ATShxHb+lhaHiOp1uiQbUQmCfQCWCIPJEsuwwQTEscqYE7z01Q44I6/xlgrBVLLonnnuGqLTNTQoxwTDShmNXMNItsqXl3LCAn6OMHR2xcE95i5VeXlRA0Mgzk1y1ceTlLelCAROUtUKectLC09FiO7VEn8Ik0KmJhVA3aK5xhEIY+YS5fCRweyNWKevSc0T4FTr2SDV2MhoUC+iJwiKKmU/y5i+DCdqFMyQAOYTas038EZQ08SaEIDL4yI0cgbmCErJuHNFNNOw5sPnu6s74TB8VDPcZeitRkhDkcQM0JZm6iY5IAwgLALwqiFJxkxHycdENCha3+xvSLCJ3mOOmqmGBoTkPydJohv3HoU8YIkpVMeY0mMhMx2dinPrZAlxrC9xJUMT/DpIZxGcroLZGrDmqtsnhp3g2TtixRLdcFvoPLr4eHt5bPP7nefnF5c4+slPvr27vlkLCcwbvnx1KmY/3t1Y2v7w8dnl9d3es+f2Fbm+fby6un3//uLy9n42wIHz0/XF7fmlIecdQxltfra35unhzsPNrZsJF9f3wrkTs/AzsXIneFrnK0+13JvzyfmODo7a6Pzu4eJ9uf/nnWeXVzfSDBXvH2weqiORIvSIxcxEzyYjH+QZbhvcWnXw4fHeWn45TpPucZ292WyouUhbW744kifZyvD47NhcozljeTkZMT+beAr+49OFkmyjHUhMDpmN9iBvQYB1SDFshT7bjX42nNvdZzPloC/PTt1/sQjl/uPTD9eXHiYAoBURn3rdFdoOD03Ky5keWQLrohdqlZQJ5XRrlWn7pThkae2h2bqmtNgtjh4sdqZUwcsXx4iS6rg/kQw9tS2J4g56sq2PX529vPWO5Y8Px4e7x1J8FH+0puLz8QFtE4FbBD1iK6cy7GFIYgjHVM60RWbZv/sIJOvBXCvBiI79Oyehehhykbd504IdimTqMiwg6qLgyep8lkDhuRtrSR7FQmK6sqrEw6DSU+czoitZLar5FbMlq4LJdPnJYctbqBqIJ5668qEmVykkSguggo6lM34o/SwDnVinEsMXsfKRFXCcRNcQnNNxjW79oVqxnwN4IM2Hyihxiiks+Omvo9OpvvHcuZL/Doip3/X5STibEwV0HJLAfvH6ThOYC50gJ6rAH3km0vSHzTlWsr/B073lyS1YYh1qA631yT6ZEJ0A5RaQCFrYZjBH7H/b/TjwFbpdhHEOq5lAS8WaM4Me2H22dW807GYOsj59nvl+JtSyNwUcl+0VwaYn0VmgEYGl4JsoZTtdi7h6SZkiMqenlvu4AWVsJ1dja4k9oYl4Vu4BZm2dWQmrxfBxvH/0rGdt2hy5oFa3yzgNvz2E86CTaFzsbtssXWPJLMQSFTXxNRYhT20tojkfMvVukt/9L3/6//wbv/qLf+vX311eMWBzqiiCv3/YGBsmT9aQcCRcnQjBM1pg9VMBm30P5at38xt3bH0uuJgN+NI2rkvlA9h51oKFzNUfg4dl6Vor9bMqA5hZ0NjPOeo76sKqgLywVE5YzoJY4Uzqjymg1+KpVYU9TPV1Lx3NIUBJU0JdCcyQMh8cGDwRyVwEcYPZUMqXhXmN76I89jEXFePmXa07LBVR3CsamqVmCYs8w8zqJgRiTBokpX59KGufzCdQU3+xbGIA1NBUL9vAJJsEJBOagY0YFvU1HK2zpSwEXteBsexNwQi/6faZih2TW323tv50iz7BVAGaJAV8WujqYMsf0TJlMaJJ021YjlbqA7yEFaXjpPUXAikRIxjYkXGqBxq50wicmYyfeDPwS75jLUF2CJVL42VVHVmoOnThB8jqTHm+F9fJK2k0Rh51xMjcbdgQH+KsNDmXw2gWwGF4UsoxgxQHwNhOWGf7k8Q+JI3Qwo6vATC0ro+WgBbm/Y2OVNnwHlUJcz6bt4OhydnkRoLRhYy8G1UwLSkEq8t5kKs+gUfSdJejnlrwlSwRlNA5SXnJAdcqD+q0r6Y/V1JHkPO7IJIAp+iSSkM9+tHX0McsAaGOVVUP2DG4oJTkDZ7aRT2x+q3QpRQS3fiPRjWiRXhviJnaRqkZFpyqJN3mpVpeGTD1IiAooA2eChnNkkkxr6bWMtNWtgsbSmO52xf1ecwU8yM+LuFK+TESlFF7XzDFebE8N9B2pKMOjoeI6K9VjhywKswAZnGenjA8sva1Nh7p0oh+41pjlJCl2ngYwKx/gq3KjT3mxoM6rqUlhNHByAl8cDacrQhYhx3N2nb03GTLsomDWLRd98Ugkk/45JO4d99ZzeTk/wqFuRQw3dTDYwqLvPwnaqmwBT+tTQIEtppN+FMXh2hIiARICi2dpIo8fMAQV9HBJwhANQipVwSjLjCA7C/qox8RqX3OZDN+42iBYgGwwQRjlRNtegRTdSCRATZCXIgw1BYOu8MzuhqlwxfCjHDq+FV0Roy82ZZA6st9Wfv+4dFu2/9sX5/fW+jy7bff8NaTk1O3Kn54e253+YPnu3dmzw4PelHYw9MLzwjv7by5sOLn9pPtPUwGekuIDUAkF49Pb68s2Hn00pD97b1XJyfXdzcm+85vHt5d3BT1zaDf3x3sfH5xdnx+dfPuwgsDbszWmd+9efj0zmajno79+Hjz8PD+9uGTBQZHL96cX17dXvUI79YzuwbZe5TUqMkGQdYn3N3cnL9/K6zo+k/Ub6//T73doclBMty69nIyQwJ3tfePdahPd9L95sgJz3Q4D3bnde/QLprtaWJE4DkCKxdAkKceHXnzcd0MFYK2s3swnUVrza1ZhuDli9OtD5zFwqcESsCeL3DHww76B3qIDxa09PZEmS6JGQZQEOVayaCvLtIUxtDSin9PxjsTNVJxxtnm2apQUIW9Mub53qFbCBa2yY0Ni+yjuk/4RHd1c39ydLhs5fLq8mB3160YtwiMIKyraSf359uvTs/0IPM8pRdimIXLvq1w04q1sX80G8sIMSR4YDji5WvzTDN7sTusAYIWxmNUwyT07ixwMiKScMfp0xFictD6CeJn8AzHFC//Li8pYm17vqNugsfmIm1R6lkNT4U8Pdu9d7fKA8Sft00pS++4C+0QNMfo7kGjG+ZNGCVP0KyAmksivgjp4FATfvPbnCPXS3X44zH8JSP3c8pyK6d9zeH7xx+dzE9XOh1k6nXSlUo7mea+4PIzza3rRLsuhSsAHREysa6KU+53Y6DhqkTZ7wD5a/xUrKFq/2sNYv5fUNA9CaQey+n2jzqbYdj03uwtC2PiHixp4cCDHou1uXtlSt0MLe1YGSZ4dScIbalFJOhpkBZBrrhZ+vxMaCBb79qjKzqziE5fx/SgU25kiw/VZ8hc4gLI6sisO+Jxpg9wkJ1xBM9y3Hs9H91bCQYf+zV+vBN4m9H3Coj9g6ODQ5XF0GHdyjduuePh+aZAmy/Hk7BW7OU9eOw2Ub2XGWKPAmuY9IyFaUO4JR/x2VU7gbE2nnV58fDr//C3/+//y9/4jX/y2/duX7RvMmBpan0SRvJnYCVICZ3AQXAAzSKXDlUgDyVidfgjgQyL/GOZLvudjRBTRjL2MsE/E1j6BUF5eDObKtOL9g1rIymjgQhIFqsKAx4tdLd8Lk33NP34mES59RjM9AXlGygn7UYg6KEbBtfJ5OKxGbi6QmPCQVgWNZXrIxICcUdKrDkZW4kvJKHWGv1svLTSVRRNfjkpQWqY/ggDWacOCAn5fJmSVoNvI1hX8p7cIimIvUNb6OClODJERaLI6xNMJG0cGVpZgciCLTNUommLbN1Sgk0l6mgmJbVsxBbXoCXtSduoniDRVJXhN9nPDGMS0E2UcEMq1mkSkagYYPFdywGXUqZvXqy4wB4ymy4DOESXOqKqnnoaa+Oquvl4YdF5E8dpfOCmufI3b3mXeAiEEzcWeucJoiJ1NA/YaqYgkRK7yc0lNmlqOdIXjOGPK+qIA0oZGcv6ExaB81gJXywRVfCdNw8ZwUDT/bhDml1YgwMgkEEuyYN90KFNhyLMZQlzbOCMHBMcWQUN9skVY11pfM0xUgoLXHkE7BTh+BIwVRjeRw6uZ1qLFicI87cQg4BA50NYvKAazWPv62cCrxIJEcLSExkCkptVvVQ1o184xijhd4y3q7KoX0aa19Ef+hLNEEqUURCd2REz1KTHYnKeGlMq+KpoSAPDQBcC1coWp50jZNUXCpVMtb66MmKKDkiM6cfWYQ9sZQMCmmApJmiOKnMMju6D03aBHDZwKTuxDIpiol7FlaGE5kYZxZfBPlhKf3URs/gP58v9/ISbipvuc4w9+UbVosLUdVDL7WQPZfCoUnXIjshFDjrMSSS/On60ecdTy7ubWyqAzsaOKtWRDKbNIC36HZuGCnVnUHeM1S7JTDwATHudGfgWkNRDs2Jum94LSbqv3COO8rAMchLxqs2IaxClc6mP1iuO1E8XJwptuIEwJxlh4w20mmd69S6Im5FMkzp0Un1+Nf1BLVWY2SmICjbj6uFbgTvTLZSo1qAC0cWIkUY28bmFudvbs3v91tffvjJdZ9ri7dtzfYGHSi0OMP0vfnr2jnhtKPL+6tJ7bq/ubC3y8fRg94OV6Q+tq7EdyNXVnQ7TM79X15c0wnwp1g0Hg5/Lm5s35+8EvNubx5/+9L1VLRYk2NLn4cYIbe/m4eP9XRZ9eHR89/T0w+W1vV8880sU799eMkbr9a04uvjZuT02v/nJz1lX/nD7KAeWKpi5px0LDHRDj3f3pufN44s3Eh57BklNrO0hbXPtJH13fdsGFbY3fXqY/Ua9DLIJQMSaQJwJF1vSf7TGyaDNwnkZg7cUSz48J/3qxQtT63YYJH5gJekCGRXKsI8bUuzsHR0oIs6XLw4tiaeZ2/uH4+ODSUiavy221ec9N0LIcRrtN3Ljwt63mvp4kABTHyON/ogz0mP37ISiOYVJUEfzr6yVATKYiQ5fvzozo3934wljrywuIaMI71QF+3hn90W321mR21DPv/n67PXrlwKGVPtmFtiMRaGqOVQzffo2koTTNHDMzq3Flmc8fbCE6RiPaC6TI6EtS8F4Kvq33SIwUPfEtpXZ+mE2mS2afv5k0TYgHt2y1yfI48if7m4wmBsvK2WkhotYYqzXvfQXkk8GYKV6M7oAi0V79mSkhDzm3aEJAbD5CUWcPMMnR3npwEZblRzjXOxi0xLNqyFJqgKxT0VTNYck3n6TcL9q5dxXZRWq4f+X33M6eCpVY86ndOrP2Y9NwBkyAr0aLVha1rqyQeqbydCxX8DgzsWZrWhl/zAYYGIrAs7q+fIgp49PbjGRKvsU3SVPZF8I7LEfCZvBZBueMKzycqPZ3kdRkIZCLQEHOius7j2I8/TRW8DdCGJ6zK8HQycREV1JrlhvU6nDHr8BnD34RCGNYKkhgRtfbvJ0m5RBl5YZ77HHorlnZz56e8a+CXsPt4hpKPGpLRNgPBy/UUM50LNGLN1oTfPdYJz3SySqyU7yEEY38iG0nJog8KIfmNv1k9o2BppJ1zKY55/3fv8P3v71X/knf/V//z/+6x9/V9pYD6BDT6DpGn0kOOd4nMBZgjIqSj9mMKq14vCkICljJqewoILGKJxYXXgv5kb+6Jc4pvHYRFdjm6oUjyT7lfY3+R8VL+tRRyFtq4ViOED0y1kXZpPEGPjSnQGbNod+5Royg24CD4PBX0l52IKD6sCmjEypoxSyY6QR2ULEUIfGuiexARkuxABzdQaOQ2/TrcTkoFx8HRbDxOqQFZEgoWHwms8ARgCqn6oNcEnAAUuGgXHoFXbTp1tbjBD9/jTsboBK5UIdCaFjrY/oCsH+/7j6ry7Lkiyx7wwP4do9RGZWVXdDzOB1nufDzsOsWRwKYIEECMWBRgONbgIgCBAAmwKKaKC7qrIyhGsd4TG//7brWU2e8Lj3XDtm27a2bfKArHooRSMWprMb7KRqKCsoIZcyPBwCJUA2ubCUuaTIio3VPRL31DgmFgEa+1o1mt1VSo5p3wFPndKMmMI3Eob6slOAxBiJqdgsxOKph7GfGj9B6LcMgwAKYToEwLNK+ucpIOGzKJ2xdnKPF7U//ikVBqMkkhNiCSnScCTaa1gGQA6km6EfJpUfbZwMy/HWUivqqu6JFgeSSkBdbVRPwQkatKNvotwYm82jSGLp8iNK9AXdMTc3nqJt6q2bF85FaqNsU3z0KETHyKpo6h3ky+UJ+NJTZjdSVOk7dHN66brUJxzazLF8Wtrck7kGrHi0dhG7JvDqbuSRdbkdvgOrhnCAEH4uuCgCZgKNjV5MttROAS1xPhhobHaxiiLg+Jqo6hF2r5Z+jOxVUOVowQvExMmYBdSSter8BH4o/ZG8MfXFpBgxMlAaAnWy6+SBg+9KoylFbBQplJrJTU4ZT0LzP1MKvEqfGKUNaBh7sSWcYGVRjaOmy5jSKPLmzRs+ITlALyYXTg2k4EcMUuq7BxXVoEmuxcLkFWRPwJ02zDSIyM9LbOO/0lW6ugeaAJzD2okJ0tFWI4gaF4Y5EYJ3uMoibfyCwqGY3c4+/VGXQI7zivghocGDEB9jm7dHFceEbxQl1vCHuQpKDuywTo0jmCQVB8TKtZp1lhJnFEEvNlTVWO+TcpYYE1GXbGRPZTzVyoJdXX5QHjl0WnKRZVeGdFXEbaoIFPTKaafm5dUlPA8O9/Md9UNzDWb/z068tEuT+/nDx5P7W23/bh2rr49vXx8BfXi4q5SBfpudvGbXexCMK3uPWAOKlqE/fj2zI9h6kvF0yLSvt2UHhMrFvdKXeLi8udVw3Rnjv+osyBcvdpwb+v6j4362nANqPuAXv/yY1J+/+HhyqZn55a9+oEe7O6/vLmxIfDDmjb+Qvby4cGrJxdk5y9o/OMSzu7sbJwXZMBAzIIBRpNnABeszT+HAUKPhFkU40r4R9NqheYOSNdCWFRzvH8UAh93svJJTMG04CiLX7UaAuwMrOe4GbI2Ui8SwdG9v114IDcvB3r79sDYJGzJHq7U/Tj6y6N7LbHn8Ds/Ui1ujo3Xvc/7M3Up7loC5zjnR3IiHNCfCHR2LkXbDThDIMDu5yNBmazD0Oryj4OBg2xQIKg8PD5gRdgm59p1qajfLwfbR6x0TAv45sef1mwMe0pn+jlcy20JB8ceJLYwBGd5ywEZqh6jU82fHb/QdTCzsUnCBW9s+XplX2YMxdmYr+gZ6dDf2I3zt/CiDbU7/xEmzSQZ+C70a+9d+oXnUGPpbdOKeHHRZJ47MTKhDRwzZx/nC+v57q+ta/NbG4qY49A2s6bp7cIbSsqZxiWNjtBUxLCglqWUtw4yCc/XjUbKLuZYBj22k325KZlkpyPzwAYyfypTGpvwaY16JsWWeuMGTEmtRSpsHJXZtHpXcr/me+0BPBtn9q0Gap/OxwFRHriO97iLkMPSjdB/jLad8aW6ApE4AMUwFqIc+WftQ9GC9V6KNHMYdsltKxQ+bXPLONRWwgjbD8Ntfnb/En3DwD+aHZJ4zc1uc0/Wit1tAQas3S//rkE7/aiprWxE6+DHvaOt9XgRhY0wOZE4fgrKuMZQEdnSMdiimAKHXDg7ObsGAIntBjveGq04irRDsuVeo5Uh1Q1Y3xnDMdM8afllvEysBNeo1PEqH8Zo3o8B4hHZcjHVYVm8D5Kn+5e71/Zff/Uf/8//nv/wrv/eP/8XFOSMKJZpbK2rfFDAkgdOgd2WASEjE/gHr0VPrOZQlNo/UVbZx9T5wUfZkk3XMhmNETVgT7wbCQCPPIDKWdUGlsqMnkx38QgKJsFl5hqrUXr2rsYCCDEDJuXRO5R4pggeRocpCEagWWgSnH8MhJgVPva9yFfgmsPWJFel7V9XlS01/6kj22P0iIQKnkYUPHjVy75rYBWDt48iBNqugRwO72s3jSKzMtM49ohiFxT3tSeMOlS4SaUi+cbuATJ7FZ4RzO6iULVidPGe4RGYSaZ1VDVDcaKUWzBEoUTtFHCpeTBCWEDSdUaTK5wKZCpIITtagFJPQsSBg3CBefZixpC9DNNZhASGL5vvFMkioCLzjM+aPn+w3ztfXjbTps0kBKuKHHl9AIjZRh9+SVORjeAAGLLTIVbng05YZIYVYQMKpWbsNzriDklGnyJgrHaklqqEh1ScHuYAjY5Qbz0czwatu4gbdtYnKBtOqXMyLZStDCMwlr+cK+i8BDlLGWqEvBvYQnm1y2FA3fddVxFMAA4B1w4eBEhqALEH0WfBWqEmOKOlx1T1VDyGEJpc4PwW7n8fh5Dbx9KCfMW8DIf3UghWMDh6yzKMV8A1dBBGu01vC2IGQLGHT33BcsUS+gV94uLGEHugdNvc9t5NHTfX4Gw+A1dBRFYsA8IeDCRx27uNNeCZdRXAJqMhRYvRpkVRYnu9u6+FwYVG89C/80wpeQF+2Xim3OzsNDO/xy1mLzm9zUnLFnmm3Qm/cCmRYe2M/MS8WQknlCFkL+kWkqc8MoyqtoDyhZG10g015rFGi2AuT1amAkJxhNaMjAKORxQIuZVNTVjSEx6JohIxC9bnjS2yRAhlggx5DK65NmgJpTCIe7Z6KiqSHrjIAEs2jVVE3oo+QqET+fM2O2zgP1DRseQ2Du/bbVdOyW5WnRQoaWQiPmKlTEc79SqdDxoWT0BnS4wupuQ/xHEc5QPAZhbEixQryWIUfYRs503hwgZAKj5d3jbNa5G1ob8c23PyggPDrs4vLm+PXhzqFAmIbO3e9YNb0w4Nj3bc/X185o9NI+MXl7detbW8cPbu6O9hvXKmD7O/vd1/snF/29l/LZsT9SDauv39wAMsL2zdffrUw5+Ly8uhwn245lsq69TOj9c59EZ3cC0kF019vzAkYVWkn6D01EA/aLlzz++LZDz+81/IYVEfczZWzOu0x6LL0vzapg8wfer+Bw/KtOH/4rKtgOPnm5rbNpOYKeoVt8yFNQNHtHa+XuiWohim/PDt8c/jZWUFERqtSqJYZcIl3D4g1zmR1vgURWZGGg47YUCsbvDQLb49e24x7fLRH6vo0Dsm/vL6yXsLKaQcs0hNj8HUZaUkjWMmHViWLRhNn0ioB1VY1ZEaKy2nUfCZWIVQak/NJ8l4rRl0K456j3fbKZ5/vvrzbPzzaPfCaZP7jN9+8+9nbY0SY4VEbDfB2sbYakMmjdwc/dDaSfBkIJawbQGkon86AYUM7CiCs6YQH9qIZjqhQyvGoaOylBuls7tK6p7oitLQ3ajOT1FcTzarZTh2DSnPcL/Ud8GIMyn4J24vb4m9Y1/waKVePc1d1LJsuKNbEjHamZj3oHrOASvocV+h8TbhrOni+ohTGM9oie9ZBOvEvQ+tSiVr8dUMaUbauZXRy9MR/0pkMPudXbHcl/rmeSoXGgrLSVylVl9mTPss72SYlyCPHac8W2Kk16LCVmUBrRJSE+0yqxMBAGqsZd9QoI2VRDya1zIYWTTSDpfrIhQYsQjtZhiRA90z60dUi9QKtL47Wtt2lLbMWyBDXLDZrnsHK/0WFT8XpiZU49ezC5ek/yBC0suu5d1B4lRjhN5CR4Bwu5UfNcDNd3NdED3GBjiPNmj2PHPE1rFX0621v20j1cSA56lX6aG9OW+07QYyO6m02B7V10IvMY+cSCYC1ZaZBrCmaue7S7RGyqWBdBUXFB1CcpsZaBG+L18N8+fP3F3/ur/6DP/tX/u4f/vK9VQDyBLigNquk/pXaKNJEGOD214Uzg4PbjTqltzE+IDUoU3uPoVrbkwce0dcqw3H+1aAA8PR0DQ1MwFAQ30WIPgNWhQ3U++jW5atw/Mdfq7G25EkPquZYaBV82KYEmp60WmgOHmRKL9lfwBrImDjV51JImd3A7Uc4q61BDtEo5al7muaeq9w0ozQ8V8dnWybUmKkaVjM32NZEFeLEALJRCkHg9LaQOmgEOW06sotPVuQzStQaxMWGwoCZ8ImhOYSyUaCYWTwHJZ5u4qxsrXQC8RvAYUjKsKZNyAt+I166hBeQ4dijCPlp17AjnWqfjIqU9WNRoNL44FmNcvDTh/qxPQcpByWoa8olrwXHmDtK1c2s5woZLXgSz30trgYmtqiuuhfaHvkVTJvKjJ6UI8DVKn9uIBNdPFeXDH4qBcmasyiKJMKH7RNl8IZpICZvNxxpHIiUQSDAG4Wsxx5z2P+UqeJ6RAptODAo+VkzOnTFiiqPk+43CicH9OHLayTBUUVfWekIJYLqtIBXqZTBNZWGYrRjzhPM9WhqKX+oo73UMftBOPJLfGJLZaexlzk1iE+DU2pQlQNmxJaERh1Wvngq9+AMClT8BHyVQs+glfLBoHyUJKqymaE2chPCpgMwUcWsp8w3KwXeMAtjQ3lEOFg+qYjHIb3Gd6N3wRdZdG5ippNGAuWKofCvQ9ZNo841IY396ydx/yDTqciBbKNItl9pbYojk3U6MxRM7xlx8s81hKt4xBCVEZX7CyG+Cy08KcMLF7pMeb6cnpwKzmCISHoDPYiBpqwozmeEjdEGePzgiKPmJNZBKGCsuj6MalRbUxja1GhqHrq7mxZLXW7jUF6pJrGmMX1a7nVkNHJfThD/5FYKAXHPNXJUFOvm16jjjDtqS/R3gOYLwm+crOJppwU/DUnGf055XAH8M4VYnTJEO7Ddj92N/Vcl7OZ0IDnLTwXSLt5mSXw0eJHqE1EYhUBVyBqxyQJJi0XFASoUx6tOlGYsg0e2vkX0r8W3QJxseEz1ONR/75UVOB+JwtuyjOqdfPq08+LR7PvN/WfhgK24tGf/cEdLbFPp6zdHr3ZeelWvgRlCs5jE4Nz11a3g9KBjwVFhTUutOSaITt6+OXp9sHP86tXNyRVkHKRpjycXeXRwZKHH9b215Jb9d/b89x8vNOOWrOzvbB9b/HN5bs27ccV0A6w5iEmscH3pNcFWEqfa43kayCRHB4kQmoNxHCmjYyD2lEx82KK3gTf0QBOQxL3k5WAXq4S+mk7mY/0yEyJRR/ULdo8Pji2lsCjIy7bSMP3hF71QQOijKTx+bXxdv33r6vbzdetZXhgYP97fx2tvSjP7ZRaBOYJHKsRE6DoPWF0oPE0XQ2CDNEdvTBuDODFcil3D6cwcwTb5e5OlaF1YrKQJluevD/d3Hd3kOMXrKx1zbNDVwe83x7o9105L0gBePd61FfvL1uHO7tXj8z84t+qqFw4Y3KVgjE/An4v+fP/69YHzkJqp+epoSF2YVwckQlt6OcOOqBKSkIK+AFM7jVnMRpMMCMoas+XuZarj1IYHjpvZodcKOvfGmwUN1qiwOTVmg+LQx2fndkbfepPxM5ujX9VuOnSooTbS8V6pYiVps4AkJuSvlj2yiex5rNNzfrzoBw+zNtLl0FKvTaO1zMGzwTqX4YlfRFJSUHICA7ri637ye9KjNK5sm2tz/8cKIKFf1fx/yrkKrIxKBco1AOcb4vR2OS61qGY9z2QXNIyC/2q3ltca5KcaBjQAocYZ0nN0yM7QzUSprIOhTPo1qGYgKd/JBGqX60qwHjrY2kJWAnKrvwheV7pORfOEuK0sPTQISnvJwzSDMXqaq1ugiG3b8AhyeBTPGWi3pIjo2s8tHjJbKHJP1l/a7WFBz4yzJqVe2GS5mlxtECcvetI8sVoTS905np9fMWFpydn4PApVO6VuJZZjFwzJJo5EHhNXklGnDHojPMvMfDoq7FHft1HGWM+lNmpi28nD83/y+//u//Vf/dW/9Q//+cWtLHg2sZCMI6wwGE4v2VVoHLLvkZNnidvP9Qm3KJs/CEj3GXPGbxNotZcnPPxPpTea/KQbox2MaHxaBbUSm+rUNdHACrWpezV1BUMLOEIYI0wi2uK5h9uMhkYaUaGIEcJN9aEdRNnJRXPssegZhv6mHWeTwUHmWswzTXYrPHEzHa0/GSjZg8OB8AXVSGps97ljFerIrTgbE+b9m7IBCZnBGx7tblr6WTAS2lxEQJdphBHN1snctIzZOTWupqE0yhsRaDgPSihdKQtJ7KEKHvjjcpUoHRfi2nB4+lHKaa4BqD85zNHzWfypbFFEkqszU2g0TTMfE7a9WIbC1qBVe5gE3gDcNNlIQkn1FVC53NcZiLHT6QIY/6XyYIpNjkFhTEBdla1fMQKKEIjVQAzIwIbG0FJdS8E8GxxSmioqbxWXM9z67xFJLb2aUMQjxgMBtAwmxDSdTCVHf8qs6ipLt13uCzzKHSZlG28MkVROm/RUfxyO3qFmKQAMGN0gB1Q0E1YzA+GprvU1apbSuhYp5auJDJHJN3Kcux4MjQHhTiQu5tAzj6KizCE3jJ3nPVEsjUxmGca0N/OzJz2Okz6m6CDmh6GD8dTp76+RrgDkSCpnHUM5tiG1yNK+fuIPjHTsDkrRcEgtzqKrhm9ks5gSO0ZooTKh8+CvljXPHmcUz70GLvSGOdUBDmomLQ7pj0bfE/BQ9VYlUa+U8b2F69Q5/SzgHmZRghkFD3YITKzpmziF9uBXu8S8Us99LIfSIJy4gZtPsRpSqoMyghlrmcxRrQfFO7gQBlc4L9c5w0KjSMFv8UYcWVyp2ZNxPmCS+PwORghscAa7bKPWDNUDXJBNzUsXhYZ+si5QY5UBqFawthcnETYNQkAR7h4DgiVJPk1Kx6e0eINNYkOCw6jhhnQOJV9Zba2IiEpX1Vf78DI1A00iWJ7BHGQck8ED2ZXBt6nOxxQf+E0OYHfn/TX5rl5PRw+rxdMSCy8Slp8y4K3a0KsSpEnVNMr94Yf3d3e3TgES0N9c3x2+fut8/RMnfn52ks3+4cGxheNAW41t5gBMZ2e+/PLwm99+e3l+47UABseNpV/c3cFXSNAY3lfD/7FNEd14S2XEA82meoms0zmffTlxMIcR3y9fT0+F6FuXt7e/+MH5Q9cU5Ztv34q8NR9qtBrEmxmubh5+/sPZ1dXdh1+eaBpmzNcAsyX+HZp5sH9MPfBRjDntmBDGMaBfvIR4hpC/XF5c6paoniyFMpjiXQEY0moizQyr8f5jO5hFuV+3jl8fI2fvwJ7gtn+JycnUQgZHZToraKafX1jXzp5IluGQ7d7OjjHxC3tjnfL5bOu1YzXrIrQ69OvD14Odnc+3d2Ll5CuW2tns6Bj7rfEgkYlmmlhnPeSFcVSF/viHpSwwb9Dam3m/3f3d2+MD7zC2bN8kBumP77FFAoGdcYiMs2u7kPc+X3/9rbdvjzvs5bPFPzsvD5ys0mqIHVuHLQ7Ry3upO2GJPyVEe6G/85paFfbi7OqCwR/YEdA5sPemaa7v7+SBFQvk70ebvVhg3q4w48RgIkFfqyDeG4Id4Kg58dYbB01a4IX/rzbeiW+hGzDXW+P1ZRMgwlunAQ0Gp5EvYJuxbIJNV5tqo99jQELDbipAel2KSUrheKQSi0sylck25kaYfk35ZUU9xtsUwH/3AezD32qTPOhp2fqurEddC1aPclN+TULZfv188v/4aN3IMaX7WAClG8X3mZOAKJCTJ0+Vv/BjNbfccWMKqbpsveRIz2tQ1RzUxaSMz516Q5nXDaZQHKSMd0rNCFNFwFYWYCnNOKmlU31l8Ghm5D1za7eNmN1SuBZ9QUv/AMRFe+uFGmO2WSXJodu3UI+09PbY+JDZMApZTxegd0TIOp6zNsh0r96F9Wy+SAxkJxxaWKZehlIr0biGjiNT9kfjenWGf2QzOI8ra9VrXKJyibO4axrB0KENFNJqPNB1J7J+itRLxDpYhg7V13j+uP39L6//0t/4H/7rv/oP/uiXH3XWTZnlewqSQmtJP/TwB6KJOAv1KXGlJEo/89L5dnRBGGKJVdJAWsJa5AcGppursXNUA5W0i6jSomCWrQuT/VQ2wmUbNeMvanQmVqvalL+WYjKETF7DmJ0ydaJ7uEJbd3DLSQYwL6OIStOATZs7VRTQb6AVV+RhkwKyJhJVQSG+e7RvblLMVZdKzAo7caD20fAzUsByH+tqhFNaaKhxmJFikBltQVN8EFE3mrldW7jyhAIpNyPBA4ijFh/wKrsJflqI4yp1LwVuPlU2rIg16JVCucIvbPmekWasS4h4EFpzr2CUxsXR71RqUE8v+nPJChI+bYbY/QB6hDtgsjsoAfiECfUqzJjSUaGJyYTwZSRYTjrM0DSZGZaf2Sw8ZJiCuQJtdziMCHyPlqk1xrrCdKqAw9Q7KkugssIw9+Zu2hWP65ZUEg7qRUt0LWYOiyrgJySf0I7sYK2vaqh43jBfrQ754wRekMvi4CbTtA5B6imiMThRyp6YlN0UDb26ZD1xM6L0qNE0ZXO6w8aADGJu5B3cpyGYqgMy/Q26hXcRtak3g/JUenUM5p7E2RVOLvwVUs8IJ8JcoPRofBCMo3LYORj1O7ia4SYE83aeKyVVivrkwFK1zOByd+uCmfR0JegrDI2B4MkwNWcqal+V1sR61Af2jCwVHI7kkedv4Gwap0Er1CCAm3DDCmAl1PVMYVpCp0p5iAEywet/yhLaOMVczeMu8/Akw6/kCC1UuWxkQlj9KKuyxR+IGQHKsrO6YUgsmiC1xJWujikcf6JT3bFizLjeCJRUANv4s1QcqNLVkx5EbEQhS7cBxtBF2HBVUqWbURq6VOFxuA6WYMo8KqItlK36C8fzCO4oGbjVm7XUJRg+xUCGoVmasx1DO94m6FbnIyCn+XWrtSAY6GmL/gt04md4b+Q7FIRZ0vS5PNo4F1rikhY+cy3BJcj8VPhAq2nZlgxNrC96bdikeCt1rHxMRT9oSNjd2YcAFyz3lYUidC/WvXSKpuFC6/4vr6zQEUy8eLm3+/3p5Q+nFwLcZNEGU1BiwB/98OFGUAiJl6/EiGICGi9StinbgP+lvcOIde7NVyf0K/qog/HN229vPm+deAXQixe3D49XV870/Prx4vIPfji7wznHPt7dvv/h/O7mzjoih/cYMz7ePxB5//LDGSC6CE7LeXi4PT85PTs5Ez+qNgF/tQHgFp9MMpBUTPj6+dPH91TjuXeJmUlw0tDFJayTk4NFvP1g17FHTgGyxMBCk5YG7ezu3XnhbDNNTYg7rdU6JTAJq2jk5bYjhzxTXUP1jqg3kWK5/N6encpOCE0M9VlI0NEl5lMayj4+2CMHK+nv7x0u9MoOS9ynhuyWXDAF50mhOmeNNZHeeqnYLNlCCmNV9639zQRNDY2Ub285kqn1Dt7betee45/91k/5LVsXqNbh9qtvj44PnajqAPj7+5/9hhNBj5oSeXx2eXdnq4y5FaQRWa3y9tab1/sCJOuXKINI39SEncpT1da8CyKLgYyRWpsn5LE1Aj8udM+kzo6jfVF+F0a3WXNssDgJPTPDQeWc6YQnZks0aZbD1sKPY2t+QP9AOKFc8EV+TOmhwWPgMIfS4kyuKc6yFTbAXqh8f1kv+uerm2EW0io4ljJan+5nlnmP8RNTtkdjUT2aK/OalHI93UgbYPMRjAESXl39dCv3+p1fgk2tkEdzTb6npwt+pQcfz4Z1ChUi+Dn4VQTELEaDpNUYkp9ggJwHrtZCLfjk8ZQkVgqYP8oxWcHPFqmYh5xDje6obgtpMNmqfXzW3RMTxzb+bsZ3aBTzgZCZKKGlfQM6sb2R766Vedb3tMTOfhXecYYS6mNY4V1dkcsqKCHkOWUngKITgTy3jivMPGWkTXL1E8VAUn+nkfIyLf1HeNEoWbMlWKX0CaDuhzmHOSojlyUQNf+21+wBPvlvS3HWUVvWeuu0K/WosyTti4OrPpun0sHg5OI9Jon9RWx6XmpTSpl//i//zX/+5/7G7/3jf3V1Xee9nGNxClRkkB6Zst9hdMiljWrD5B+FHhr4ie1zU9w2taKoa8Z9wVHaL8gn37iX7tQ6KJuXjnWrOlmYc1jHbflTm3jDaXMaudKusPFQmekwu8ffPtOumfqGo9rDKgLog3QZoLG0tlWFs28HkHAbNmr/y1B75MKuSKvhHiVfOEpR+2KtTyW5F2RMG1TxmV4Of8hMjYGC58KZyBdh8k8X18N0uOpmxBDXpkBdO3xOMvWyiligr3+7aufP1YpzKl+Z5HSTiylOyJNgDxNAeWg06ZGpQiApjwuXv1Jd8dIFAJiRMVLwzC3OYZq7cg+7ZCRCP0JewLr6NhQnqRVdxE/i0ByioUhUydKth6zGivRA4mJHNhL+6VtZ/a3vSCp/EBaq6dIgPh9SVerRSptyA7kIZOigD41ONoiGFlgpUv64pM75m5/BTz+rORBxpZ+5bt2TrkhY2ZAM1NJkSjqQl5cGsMhH5iAgc0iF8wh2qWj9XkgQzrSPWR/ow5LUj7dYiFEhFVWVfyAO7cO26A2jWthRyOHZUjmZ1RuVXfVsQz3/WXoodRHwcNaD+dVTuVWUAuXfh7P53rxX/bONGBYmZRtJTz9BRaPBQBntqN58elEgslMp9Y4VLQcUU+htQNUZHXr4CsijFcwDdkX3cFFdAKlg7Io0RpUDK3GC+6kwfVRMXUup+U6WIwUUbYI8M9SU2imLb6pD2gzSK+G5gsk4hCY/2qWWrVY/ZBRV3igzA/tRSRTVZAgnh8GUm8IFBNuRA0KSnm6S6kAGZvigUjfAjxnhEFGRYS5KSoGPsi7wx9qTlDzxZATJiaBIfr98Ct1ASkHTkULDQKUiiRzVHsafjSBSi0Z2B1QNW5ow+rHp0aG0KwmOOAFXVsCpCrEaWiDqU11yqjSsNFG7DkWp4BoCSb7DUpnzuX6OLg2dcz+sByckQ39AjTcPf6V99rfSqyOryNcYVGiFiboagMEuKy6iIRH3KVhsrNgAdpcMeg7QOzo4tNDfyvt7B+nc3hrX5+F2X768urj4dHKmGKs/tkBod0c4eeU4l4LIrb3Dvev7B4d0okjseLS7fbT/co+bbsK26Zpbsbyl/07P+fzoXMqr61PvHnv28Phmf//eIaOfLfv+YrGHk0LOvfj3/vPR/t5HG4E/f72wM/f+4Wh/n6lZZ2A/goH5DrBJPXVaelOwrY1Xl9fGszHk8vzCYIr1PsYwtY+np2c3nx/2jo6YjrKU05mhZDFvy/pqs2yExo9MQ0ShP0DY4k+sw4T6CXMoJ4UR5ds9q2diW61txzsORfR2ga8GzvePjvdF9mSsp2Shk1QvVL68uN7d3jNwqrkBWwUicCIYMxlRvLC4qZnxouRZ4cPc4BMEIyKFI2l7mlx3xbSGkf4W91v1Y/ux+Ye721uvVBCNkSct2N3bt5DG+Oq33xxZqrS9a1ma1UcWcanlXh/sh49XdmUYO77/fGe0RdCjg2OGAsHa/AMvgpuw/423Olu7//ho8ofaHR+YGzBZ51gto7o5Cp2EqGJH3hHWwGGvl4YzvYU/ldMR9u5m79SbmNPiV7GCBU0Odzf+y3KrcTnDmb1hMTogADUzM/6D+4KeUgWsKfEEweJVVRCfhHRYMvtaWi1H4yn51mmMsg08qeVYmeWfu5iayPvzH/AAjfvyva6y9OdD3q4NEHelzQWDBWJBHkOsyKa5Ks9Cslyuqg3mgruKzoOaj5VTNcgpsd/hlsN0oWQKcluejCPP1+VsW/Je2ynDMLEliyyvHqg5OmKwKZgutWTskX5+bpFbLj0H6yxOL+Leeak73XL8HOMmFucfeA3mKnxrXvOlGbZ98TluTqNpfDQKDJNBQP9Z/bQkMhoWcTAXXSp6FoT5SWym/DhYy4rIZd9huxM+WpkHuDxwY6GiIjbSLJChepKbSJGBgKOWILZwsSp6WaE5wPrsFqN1hDG15D9mKk4jIozojRyIbIQ73k0Ur0GcTS1sCvr6IHBTsHZQ2P2FCVuk9PUPfzj7b//WP/5Lf+sffv/+pMY1BRuZTLOeLsS9TdzD22q3Eg8p1X6N4JaSTLapAlc3w/aygbUEinKwMURK5bTy9D6VLtFFggWnc0Fy6Q+ouLGw8hx1Umq81gXSqPzK7FMekDdVyBPQvKc6qY9ytRdxeEa1p4msEVHz9AZBWy1s4AMDYNtz1YOLdClwMJhhVGwcZGCdTkdm4+KzaHb2UIXJ2GyPY22hg39TRXRBBq8GZo2UXP6T0fCtVriRytrwwC4hLhvhfjzFUSUygWgoPqHh5XQXjY2OzZXm1xZO0BLwQr7y12eBWEjFE4yVwMz8dJELBCQpSuxS3EtEhngBQPVz466hHZ7i1HplgPY5yCu7KgBItjCOoNkSnXDr0kghnVgxo91+lziq7CaRQRfSS53ko0WQn82ECESdIi7PE4Ksg0DioPajf4TIbSevASVrlJuRjyuVCM/hdTeTD6RVI9GovPhHC5dKwKQinsMEprIPEUvVlx+TAQdCDIZQmNrDUIJSIHs6VUyXlSOtBxfmVVowVe20TnXS/Vqg1s9oHVgghS0Mi66H1WNZ7ivQ/+LliAumzInGzVDR44iDIw0arGJ3oCd0ncqnolVNtGJ/VbpLrnGhWpeMRWSTeylT5p2kR/ACarQMZRiSJfdsYschZIDMtE51j0MnqyS9eRzfq7Q/kAGZVbmQn8R0bqwi/Ed5SkctzGhlDiWxmXxSL3wxYcxnZDkhKZ+sxATLoxyjecBDu6KzuHx8VgztL3xCNUrSJyg0sxPsxXhoTHczSxiMQ2z6avImkeFCH8NOsohearZxPqxu81Bd/kqfvLIxexWvFA0JRQEwJxHYIgN3DU6ODbuZRzmXQTNvCMdhQ5WzQ02I4SLBVvZFxptQpF7W0AgT+UcZp4dmfBgEIhw+xGslUiOkEXOX2vNl3WXnScEFz0Dl+Zcuqn8w2ahvNhytKWYKEOWBrAurTCnxIVN05ZhCsA2fdb1Y+OwFlM1Ttata+CVd2yl0wwERgBG4N2+O2eXN9ZU1vgawr+/urfLf3d/54fQT1/kb745x9M1bp808Xt5cb++93D985ax/cdvM8XaKiGPiDzs+R7qYXEgBC2vNLRlyWLjXeb7cN4p89/Dx/JPFosK+T5+8XmDbWPcvL+5+uLgWv1oqb4GQOFar7h3LjvMRjlpx/EcfPp7d3araWaIWEHEkn06uvv+V3cPPbEvYPTzAWfHly519VXv/FSCvnu+fvL++uZR+Q5bY8nD7oAMAK/dYr7EXlooqrE7ReljTM+frPDt6/UZDVL/E/kiBtikAByk6wWYWieHg/r7EXRlo8d7Owfn5nTFUi6fPz73K4NW3r4+I5OBgz6mi4m1QqDGPnBCb5aQUqyfwHKbjgvLyRrDIh9KmavzJIKmd4aTtXQCGugpfDve3j3ae/+T14ZvjQwHz7tHxzE3sfvqk63RnhP1P/Invbu4+7+0b1HdyqMNV9+1Nfr29+/r4zeXN/dujQ7NiZNGboV6I6nZfH3hXsdVEh0F/taXzIEKnFdvbujhb+6+2CTRrtxfi8zNvUmi757MXXs4gG9W1WMjIrbjJoaBFDGjdesQfhLi1hBDTrPwho1nW9GV3n4vPTmsXx1FkEtkW/9vOYw2fJ4aidcDwQTc171pWZtea7TG6jesbc8ucKPwycBno+VL1dD3AGxcxfiIDYd7ufYbh3EzaYFNKz7Of/m8ylNSTLMsD95Ntni9Y3U6ZKRWeag5U1/pej1eKz4E+HxscCPvXmatuIAzt/QrwJOXLugWBmkQiB8GS2zTCH/A2wgi8mwEIU1je5N0g33gtHTEF93V0x1kyTIv9HB17MGdajf/tzVv8HvnpaAJtgg4P613ktKf1gUp+jzYe5Ov6Cb+CZb0N0uwYfp0/fmmaHilWbpuAopkrd6Mqzx4PD/eH4BiKEJjzTFJEJvrBQjH3BWqOtNqjzPY2zLARY7G6rs6Ad5M96ODo57B2FZq8opMtDjSlMItbcEf7Ayz71mxxdjL4LAeVo0cTZloxpaejO4BJyDk7v/+d/+H3/8u/+Nf/yT//X6+4pzx+UTl3G99HDsNnPJ6tXywk8awnE+vLWJC92s0UhkBcZWtwN79NcNKS4vLew8Yk+DQEq0iNWrgm+XlerOyaxi4aCkgg11j+RMnAoyvjU2dmkoBqApjb6MqE1xVqZVRxqrLhMOva3S/mVDxsC6arpUpTrb7KXIu/EPMIS/2sor56rGcmEWJlbpf5OsCg51Jq6mfoMHAzTwgN0P5YVDA1FqLkZFbMJ2s8nGG7QSBU+hnI7EDdPloGV9BVCx6TwTUzlk5M3UMUbpZ/RA/mUBLO8qa0+ZAkhT9UUUaNQOjVW2pBGt5Ql7q4ESutuSOJFcyu5J3Ao2/7MalBTslnZMbX+ipslk50E8+GMYPgsC/OL2ZN3zhFci01DM7EJ8NJcrdprc4HouoZTsQYo1KaMVNIAFpkAUqA5KUPBg4IooKDk6BQNcmuXFCZGaFBL+wCH3MhzF+HdF19eT0Jbzk88njV0qMoqCSQoyQD0C/4h5iHobdiKxkqOEo+YAI4piY5hMi0lKBWeUBD1+eGZPiM2vd8ZVo3uF224Qf0AIgDcgetljc0gibZsx6HShxEwJhiaC2EU8GpVoGJ+eSM5lAKZDCCOwWnIZdPBqWGO6G2KImEgEdGRcdrD1P6wGKf5W6wjAsrLBgGhGvJfTfDIH6TwNcYyohFSJuZPp9CbVoa4aApE3KANAsTkAnfw3ZUM7o87lddSe61go9fX78+sidsbhXBlmSvLFMAZIZ58KmrPHgT6BQUzhJNtPVsIl1kKq5IVSAZzboHJL8WIy1uYzX518+hzjIWxyNkGJKuTvb4OZxOwdzTZsB/ZPvCs1ogPObqxjUuKQ0Y3rea0wXfke9CUw3kJe5ydbpwtCbowu0oq2w+EbkwkdK9PDOrgAHwkW+qrkPpgVoqW3pIAAVVRYy741csnpFLqdDjswb4pq6n5+WSb/6HR9bSdw7FH78UWqO0fYUyqNWlXQtW0dWY63rMfzmZIUzTPIfiKzGR1jONvWMjP3z8ZAuvpTWdKn9thbm2++Wnixvx3MGLncfbx598Y5j4+Z51I/t7l3e3Np5aoqMaLOccTs+u7z9v3eOJCXDLRrmkx+fO13+zt3dgwG/r2bev393cPp6dX23vHrw/dWLn/aXehgM3n28f7OwaLhMoiF9bAvRq5/XR8X/8xQ8nF5bARNnZpxPhAe95cnYhrLFS/OMPH1EHc6zWk+kS1NzffLo4gYfWw7n/1vALX05PzgTE6W7L21pdTiw6QcgUJO17EdqO0fVdI5Std7i/v7y4MtkBfR0p1OlEiPIbSbVj2PzJl+ffffftH/z8P9FOsvPaLzw/UNh6GIdrvXxhKQUR7e8xHxMBUCVznnqLQQnX7BWwhoFi6EjQRMKgNuQ/eefMnwbGXlo4VGTv1V33X4zTF+jd3b8+Pjw7PTPye31+icBPp6J/4fKzn7x+Z/EyrdzZ3zm7uLTCA9XfvjnUsn7/8ZMj312dyPhqjzK++vrCXM6ByQSdj/1Xn2eOyOnW95f3VlNc3Vwb99L36o3KXrv6hbzMaQirvDjihsVpZs2RNVdwbzOx3pMDSVcbVXMIvta7NSQvX6GTI0qBqQSlysaX6yvmI9NhANqLNZZWzzoyaqsVH5+SUwSW82kmcFiE2QNRS4Nihjlm1ecYA8ZmFdlccPoxNlLO0p4+l+lMsUkO0CarUpPvqdw8Ws9LXw99b+Btfg9antPJATUoeDa4hM5TgW5WOvyG8H664azHgntcqXGJOZDxHuNAlqKgUXZw2jfeqhgXnuTQ/NUW95grhkvNE0gHewee52dq/CycIPBH8U3N0PMtM3tsHAQm0jESOWIjms7fnF31jRbU/ImyO4zFoZ9N+KgrdCyoW6ahFCKrcMIv+FkANxF0MVln8BratA2FwhvC1zF/9MqLGgPDEuagtnX3m8LAwURsVCAxq3UiVBXDX9zCJNHGRXOvt5Qqqrb0GVWlOJ7khP3r6JgsvokCefSrpVO5lsD1drB2TZRubSqSVCykboDg8eHVv/0/Pv7Xf+0f/M3f/u9/9f59gipmi039zSKZ+dUouAB7gIckzpMC3irQZyKMkPkMiNQcgrSedI1I8aN2Pxt6ijUHcmxc/ipwhbYuQ4f6RWiJMQlgGlb5kT+W0mBq+tNwD5zLpILVAirCHgcVt3ltotSmkKIi+AeyopJ8TQvdUJ66ykAsfm26E1UHgto3VEwbBJpSKq34LBKLKCWr12iaGtVaFf67il9hjWr6Bsn6mV2yTYBKQOVVReAGt4pN6fjaWqPUwCPI07F4SyQjI/2ZICeIFvmoaLjNP9VuzuBk0Mk+yMkkhqSwNfSJCXvHC7mZGGzyLJJFVgBFL4c2RgeLhJuODdKDZwURWLQQZjXfdLjlA6urRq8QodNeLJHyx4xCcwUhJpt09096lIpGxXCgXlxIKuE3ZMKPQJCf6rvo2+CmTFLW8Ws/WFralf+cd3KHXi+8N+RH1J4k3MkyTB+4ww7pyoBTeDn6EM+H6Wy7CqGuavW2BpvO6IFjYmoWaWNHYc8LmIKQf6Jf+C+u+oRbmMvTR9dgu27irdoCttqRJRdp6RXwG3o9rUC8LXEQTCiAclVggLDhQFT0ZDCndYx0ZKD4JEWTezQMSmpKYFJjLF6Hh5tcKiju1Kp619S3qpdl8XNuyhaRiI/eooqqGEFuOELtqiWE51SNWaAfzOnue0DdlQpIaRKmh5b/baCGlQKs7ihHbXFYcopUmfmJsXAkmIEHZHD31RhlsdHAvLq5WdJVk2AOMChC14fbyR1Ryi5CpPSzQcSc2WSP7EKc7JiPy4nEyVG4AT78mcSsIp6y1dr74UaeSO3Art8+/fbTogK1qEJVfrqhf0hWC9V0G4ZDadJXvGwxrRYoI68NG8tswEzmMqy+NeL7qVCNJcwzhkFYCVDBGYAI124Ftvzj+mNQ0i+Ppym3ggDnGjxrJS4eL2I0qDIjh51oibmpUHpyWHKjJe1ytzEJBV0Nn5Opfyqq3uKkdAW01KFhsFLCZPnulDN0UpLkXgSWgk0F8deJKzd33/7k208n59gqdoS2XbAG1Pd3D8r5/Nnhwfbp2dnL7eeHRzvHh0ffvz+7uXV4qP2sQFkDsA+sl9GSAXgoubi+PLlwRKVja7aODg+3Ptstygm/uLr/ci52eHz2w6eL688mWAnFGTJfv9m32OTVhwvPP++9mr2GX77+4ffvr1Goed4+pM3f/ezd5/uvjrzEU42cwBcLSdmY4u2NTodJ1a2d/T3nC/6n999//8P7/OPsBzg5/SR8HWF1woMzDUX6eGGexzKJBOLEnqteQpSVjNJh6K7D780GWAiksuIUzSp5PNdnePP6zfXD3dcXD8eWGNkw8OXBMmYdHHuLZbRHAWLFyaPzzA+SiBZbt6ct3QBRSE5xklPLOfR30YJ3c+gJYZILddYngQmZ6Evh0E9/8s5bjXHce5hf7Xh38pWf+Kpntb31TIf9T/3sO+pk3kawfri3bxblP33/K2qMruuLK0qSmhejiPzU/Xh4cHB5ff3h5Py1gS4HMt5dX3/58uHS/m3IUZStW8u0Hp3L5E1fL65vH5/v7mji6JyFHmxob3/b0RfWgJG43oIHOm/UWt+MjFmhnRFF/WqlkrXE64o68P3AJJpME0094VK2kt426jG+ZOI5nQdW6zf7CK2xr7yV/yWA0+PNFUtLS7/78uuPX9Ik/J/T5nmpJfu/8qyfUqaCeRx6m2wr51PmeRBG5fajfJ5tyv54U9IkP4GBYlSvrAvpMiPl6TPmoK6fWXvMET4swDVljaoK2XlFlDZ8w9BNiIndQ6Y5515lWHGuzCFdbCc3w1HHL2EDDunpExMpXd8UpRu74fxZInqYRk6QrszhVFwouXIl1qYhl7hZNVWgFbYDFbUZy88JrFX70eYgXpjLZxbHQc/chTF86iPk1hBFkzEGr80QSX92OI+V/eLRFv/oT/uEljz8EkXR/YDOoG9Szh4DzIvpOixtQOocJDsjpeGqqaQcqsxVXVwKQF3xpYbxZoa3NW4OuaqiYebOjqETnOTBHn779/7Ff/EX/vY/+1f/OytgC2WpXVBr49Ou4fm0sxtoNabgwEA+eGuL+ycl1S3KT3BTNynIhrTEVLBRW5cfmFg8KQ7bpxpiDL2kL32ab64i1fE3SsdTZdq1Vpah1oKD5pNvUIWbsiVyvjMclkZxQ9GjXZiod9WFOg5JVsTAnfdQ0ABG6AwtEIvBYNaUiO1UVZdDQ7mantXe5TBlKm8l1oTJ3HYwBkjjFEBdFIRbgGvyfM+YXdUl/cC4HTYW28yIPU1TdaVnGH74tngCilx8Npw9HE5HW7qkTJDwqpAbWFfxd8S0rKVGEwJqhCRsmU/lDaKRQZgWjWDMvLF4AK2xP1FWWpYCKLuipClX90k5WKgpGunPqKB0f0GLutL7mPA9jmWbooepE2/hMe5T/rItvlCv8ZhxJ1CeBMoNLRnYYTUpfmWdRmE8logoGQsWNWCKTbxuQCeZj5hDIHpxcD4HLGF4rizcPVn8pEWqCMZclY/kFTgt4kZvpk819UbZ0txFyOjqxnDjz8ACMdalZkEfVVIKj8M8chbfyj2/5+ZHsEOEaiqskPzKYBtww3ZPpkaPn8KzRAGoQsPNXzM6urQ6hVyhsx4kkiGjSsZUAjnqOzXJlReIgPEXo4jNXcqz0GLTAwC/Qit7k4L+VGQuca3YIHuesYpMV+Nq/DgN7holAkRnd5xTYkboMKg8K9IlZw5iXWx7IqGclAuAOOCfvyeGAowpdAUIZsAncQOa6qUzvqDaiFCqk65PUYWHfAzf4B8V6f1g6kYdiWOcGRxGNEKBJDqgIRLug2cqFaLqGAwT4yjBAJvZz36m3VKYu42eqsdtpaZXE1f9IRN4UFInfA57/MfY8A9XIgqB8Y6jK2nnYL7qktNNGKosPIh1sBl8Rh3j5DxM6bHarxD/MRBPBzLfVG5OywZAh1s9VYHScqcDKjYqnD1M7I4B7lU6pMChRYf0gVymwjQb2IWOlEQenPITQgiE8BibOznAFy+3VLc9o0a1ceeTF37ZV3t7BQ1H7pSxqPrzjuP8H66P3uyJ/q4ub4zPHexv31zenZxf7b856LCRr8+OD6ySeSWAOL+8xHZKSL9uru4cPaltsbLDrMLpeRMJt49fPl5eX95/VjWFMtwnqrWMXVPwdn//0/npH33/g+2FQt7zi0uvGXZghwD9/OYONicnp5cXNg5bV/N4Yc/y9V0S39k9u7y3Ep7bOv30/vL85MOHD1a6X559+dUvjGF7H5KTLhx2/twAtmOFTGfcXl4fHh9hGC4ahueWizQMsX++e//hh/OrU/oqYhWCHB4fyuV1yN98984MA6bhrmNAjU0eHTkgiPk8/+7NT3Dei8fgUkC/9eyqxSv1RHGPZFRjHVGLmu4ejLDe3F479obIklrjkSlwI48jd6BWi+B9wMCJkMaYZ6Ha1guvFjb3QlimXP7Eb/1EOCPcwk2v+iJfsxwffvjIwix0+nRyaYcePTQw/8tfnX04uzo83sMlimLnR3MfzuB/9pXgKIkXMJjN+Pb1a4eHqt95TxZRCfktINchA1lf8Ozm3vk/dMncSpgK+14+97TzIGephpCxyb059d+Cq/RaA2GciA63jFAbQ/UiGa8RpRgojc8VH0oYZc2QR5NHY8urwJiax/NkTKXkyQqVODZFxgCqMR1P+T1yDV8H7P+p6OARjFXMdw5rynICvgfmACjHyjdC6llV1ARIDoO5lgQ9A2lZ/Y/ZNxl8BburUpUPRHWNt+yBuw0ula6iIglX0bBfg+emdo8kUsIGQoR+q6ypKoGyyMtb+WZaWFQMHz7Eciz+XE9A3Ej5i56N5b/yKoxG7+kbMHR72xQWeXg1BOlq8vT9tp3mWxfUQkH9DJKsKukOFKpr2oZLu4isKdCZXF7LLnZL+hmELbYCWq/WppnMon6jfuurJsGsKKMAOexpIPhiZoMlWkF922YSJgRUF8vKsczLLixqUjdO8bDOL1J8LUJjX7rWyaX5WLDondGZhjmm0bZnIEUDfvxwaz5Vx/KazauNMnCmd8TD4xZuN+ShBm8s+Hd/ePJf/61/9Jf+zj/+5YePpibUUDtWCFUgSEN9jFNfrUOtD8nisMpy4+hrqHlG+iZ8n4ZmCR+0FWmkM0sByS6H3zWtktQVQqQoAfTABEjyHmVRA4BL5dy4EI9fsoUDUc6B8enail6Ca5ChSQBVAQ/Dqh6VrnzwcKR4QRG18ySlTx5gPAbWU7x1tWS0WgTWjGJaydi8QRWAnF2NlIdglwfmuKRemlN6r+IZLKbRrEMJKYytsa66BlL8U2XNX+VR1v2gNyXbJj5ohzkaPBKyQDro04FVacQuaB4EsMypxFbTX6AisYmjmeaNqNicuqE0HjEPQFZ7GxkreIjkmDP2GCOmHdc8SVG7phrmddTTqGxWOvVTP8UOW9nqiIaJG3lGbmVUPDgVS8TSRRaqq+YRVFjE1nJW4AkL92Uub92PJQWsDtCoopSVYWBXFWSwTB1uEKQdJ7SUT72tIonho2xLlNI9JWXwx8oWPtAZta9SlXFvKgKqetPgQWDjIT2SCElUu0J/pQxDYBJfJyqbsh6mq5DZNBeKhF84D+SAVe+wcbFjSpdh4MesiTTDRD5F+6pJikfdYuCkTnLshEI4r4dQcOMfsuE+2tFEhpSMJIgLoEfRpmL1SVtkr4dyDZxVhVw97YrV7ctBFYSSQb2ftD60ZAr6NF1NWom0iKpk6TIvZpVPSpjPzQI8Gik/haZ5TRjLTUVCdiQ0/RA/ICzCCJ3wp0D0l7Ri9FP9qSACmInE6s0PEsDcJ7kMNCqQAEwcCHO0kFyo5VzSsJQpY1oD8FE91Vig0iHlSkBzwAYmpQ/bjbFF1sCMjnAzvKp9a75v/G+8JdN8gqarVU/TgUbSyAIyEj2FQzcTqOGGWpQb37QIWURJVIkKPRqZA5KPqm/ttjZmcii+fGItci/caRRCNykkYTs9KImLkLjf3bAuV5wvWHAWK8gia19LYyOI9sOjQin0cBLJq/NNOjSgPCrbXGG8UsCWXeagMHXN67BCw2rBrnfgOscGwvbcGpmz29XCb8fL9z6ee2vum9/kqo/FiG9ei7md8G1VemHFw+13b3bfHLRNQtupP6PZ17bYy8qJW/OC/QaOd156w6733Xr1j/fvvHDApMU67Q5+/tkR8M6fsVjp5OrB1uDb57YRb99cCHHvqfivzq7OGq54bsWR93FtfXk4P7XW5urs+vbMmOLWiw8fTvDEMnlNPra8/+GTZUFn54+/+PkHMa7TTZwTcnl+SeeRrZtgz6PQJM3WuX3Q6ry8PL0Q1lhV7Iwg6enQF+ukp3+VzAs+6va+LFq9vXGG/meaxHNbzmCD7Ldvf3J6aZasOSt7f02Y0CnzqDe3FhUYUVnb0WxJ/9zsh8U5uNQ5mAytA8vFOuyZMHG4/GvnhsjM2ecq6RifmnroQ4xnokIfPl0QwdHhnvORKKNZGh22jMsxvrt7z8UeueOvb70T7OWrz7c2Z9/9mf/bz24u7JO2d6KjqIRfKHt7uHe0vX12efnu3RursTFq55l5M/sVdjue9evj6/192wMQf2ll1f2dA0fpu03ZtMrGjAPr/I0Bi486IfSLTdisd4dkhYlWVjw3NWEl1+O1foPDrygLXcwI8lR9QX0T8UxzWyTaMe/MR3ODDyiNNSQ1dkejJVKeUfOxx1FyiaWPMnc38b9SalGJCzCf4xIHhGdjOAus20pNinz99QMpau3WVY5V/dNzCZuHC2QYrqSp7yl7hZ+AdD/ZFrTuZUPHEFgiEE8I+oazZ2XapNfW5K0a/07V5cHVTB6HIr82aAa8q0gijYgtnlHeOWNHKbtZ8DDI40h1S8nGUa071r959YZOrambCTiMnloapjCwVgKKQShkY0CJxrwO/bW0OsWFgniUv+PKLL+zNV1f1MFQQmid/NpGQoM5t25E9uUOVUiZrS9oIZA1ZujQ2VA1hXh8qDZbCIoaKCpHwCC9npBAwaDd02xYx280ysb+bdqFUrlnrJnWeLucerhNGEerPiESmqzwyote3WdPfFvq4cLIMTIezCm6CQOzJtQJonrT2ZTq5PT2H/6z/+2/+Mt//5/+q39/JznVlKN4kSDiM1aMSHPaNFyiBiJ10LgUBshW5kQzZboDoFIzrJY2T+OSH3B5pLi84ehmgiQcAFLB5cBRKm85QeUgi658+ytImnraBi2NnEBjlk8QwoxAU0PyKbyueVXWVfMnoRa8CFJx3BosNk2MPOCAFi3Z4iCaEpbgX81WP11xo7pjTlqQVwuMTlEjWXFvMJ68eVE5Btn4MEZs+1OtMCH7PU+zCu+vnKIxhAfVoJEHxCiGmmHV/JJi4xxUnXADOLTgOixhpaYeuJ9Yyx3K4DDIK01L1VjU6X2jRcAADyaUS5TiuOs209PE5liQqHylEm5ED/gIVE2fk7bqC7Wy9QHqSLUfysuAM+6rerAMbGh4EtREBpV5tICs2spTUTyv85z2qFVN87PKPA6TWLGQBC1MgKQw4T+IpzxpPqI8pe0gUzJmImVdoa22UAqpAVIRFzUGCoaLq/BBSvmiZoN/Mo3NaS+AbnxO3YVFgRxm9KhCfpRGq6Hqgq/Cg8kAjhlTgMR0BIMcVys0H9WPf92Xb2qq4AgkiB5FQoRkzv1YBGBnxfyFOqSb+MNf97CJ1LK7psWq1spjWroy6dE1TBnUM7yJe6fI04bRsWFkAxpRT2UJMFgzvh7OWKasDCpuc2ACGuzZ6kYGMQXCUj3zNCsdBCRSU09lBRXuCaBHDXWsIimLGFQmYFEE1GLlUCVTuYMKSP3RhR//nc20m0eKcj6qok/JXvY5cWe1NRkdCaNJMRYa0FMEEPUqA3wN24QCA2dpTdwOSQpQ/fV/1AHaKNDwaSnBaIYsyvKSSslftrGwyILY4BbwQdVT9x4t9DKY9LKs1dS/WDKZRwTlHxHUXaZYtAVNVa8WVSu+uconR/UtMH3BmA7A3zno1ZJAFfepNo9UBoO6DXhVr2A8ZjoRGvIAiDQP/ZixpWqYkFXp0PaZLKbhQeLwFolsUvNdcJvqzondzpcxFmuw8OLswoqRq4tWfHk32JGZ914ie2epz9H2rg2zB3vOi9w+3t+7vbw12meTq4jtrTcG7x2cXXvVlDhPw/j8/OyaBfDOxh2FBbXCqv367Obm6uW280AedDY06mLX+8fnV5d3z7+8PN451F50uKRXhHqbsIhkb6dVKKfnfho7P9je3t/uDcEtbni5bYD/5ORGWXGDfbdmH2wQ1OUwRn92+XB6dvvh09mbt2/tajhuCN/rjXdgeHPz2W6Dj+/PmoZ+Zm3PLqpt5q3vRnZWQD3YuXu0/eqAl6sVSNu3TI9YIISfFk/rI7HGq9t7I6PmSo6ODvDxyiaJuztTFq9fH7YMqTUIXz96ecJXsX7NmZUY/pG7o1EsLFCXBRZplLXLRR6618YkprrRTI6nAIX1fXZ6kry9EplOUDKxO+3gvkT/5yeX7eZ99mzNN7w+OnSY6G/91ncKPPSGbu3rM9257z9dXMxxLquDJNWgq3OTXljksPvyj96fGMS1byE76MzGB4r1vXmc2wc9wJRpy97fr2YB9p08ajjMEibjt8+fvzk8+K2ffmdllHVBJK8PQDcvTi/I8btv3mh6dXg0ARW/++zlCSm/INDyKtY49kfTKTnd1g3DJspJc5d719bKX5HaTckz2pJ/G1eAM3MNztna2H2GmYpns55MHf0ay+sBArskxPysqMcldzefTz8nNSjrKsMqMFB/XWbayFV8igalm6nC/aaWBWUlroo8UGxI/BHaSll4bUosfMafgEZH05bpkfrEDfLhTNzksNQqfGbVLF+EHv9bh0nDtN/sTU9S/7xVMBMps1B3mMdPWJejyNW9HnX1c+IHR527RbUE4+QVpuPb8731R4u3tCaUiqG0L8SPplytm9mqe4kPDcxbkaIsEr1Nb80WU2NaULsLebGa8DR80cGVaaCcsyuwciSu2h+cN2qu7IUTfJmHGrBsDQlpUPRXFWMRbVHg4IYzyKF709EQAc9JUzXE8a0xry02rmjbDuKSUUljIoI4vV7KWY/EckRjLkCYSGIjVhAZu6nNYqSP9y/+4A9O//xf/kd/87f/+empw8S8SDjeFN0hqLY0YfqA89A0fEvQTIfikVJP1Q3dUf5qIlao+POQJHEm1NL5ieFSlSa3lZWTlMFbVz6/cilAcHF56q30xqWlF1N1MQkgg1WQeXwSl08x8KUzKsA9UTXHToKw9DOzshGxgYzwoWrS0IKBailx9DPclPeFhDHx0eSYz7elnHxBA/YhnCgUnuiiwdMZqJYHN6BUgxkmiOL66MtabwaR3HQ4zycAQNDl2X+BAnE/lBqHirSJkDDLPR4ri8w4NhfSGl7pmNcYsHC3cgx9eqHgNroXJqave8MROATgnKnqtC3GD6CcTFUrnPshUgin2JFdRXMD1X5G7VhCmV0oT8JJnMuF0cIt4BAurOL1ZIBAEoa9HxRXtrFE4lj3/d7ATAD1+mJP/b3+gQcCYse8VFgNHlfh8GHQqVY14i6zSIhBCu8ATQhRYzRhyTwdiuqkLbXJkulxNFWjQpm47wXAN8UDPFKah0yKoKnHYHT4zP/hyyqbNMJw0he9HixyLBwYC9iIEizQ4loKBpNViHKWopZBssyqi1mLBVlKKqGG9Dv2TmULGawo/6QFHHjg0h4PfHeTcBTnM7LMhcSgMQ0ArZgiOb8pX0FWM4xewHFrE/guzLO0MePwGkcPY2XZjhpLKnomhja2I6wqxxrlGX9auDBIhhr/EsuiJEJHX1OsRRRxZxUZqj4AeLTNXE52KwOwhTCRPTqhlBy5rZkCy9Fl89DMeUFDyWFl0h3c4knc7wFLpBcpVKh0pXtjimEOlv8+l4PrNqqH5DiR2vn12HkFcIiYMQaF0qfY201gx4mkg5GQ+1jid++SFzk1EkAnzNotpdwqoUCl2tnVLDnyFZGvkmMJUmR2H250t6d99vKOMEyTNCRhU9UNsOFAI0w4GSsb2omebKz6QnvEEWfpRqN62qtpLaskOEAo7DQMYZaUOBmmxdYxachZQhHnqQR8T3vQtekfx9BwGQ4EMK70L9fJ2/JozucushTCLoMUGLx58+ajFTMPN7/xm78JMUN639r1e+RVYAeOYHWQS1EEFn5tyel/+P7j+8trsWzyftGbg40SmCIwmIMw7DS1KiBFnvdsXT88XlrBo+AzLwfVEghtn1nrc2UVyvOtw+2dfaLeei6A1koblhci7LR/YP+X70+A0jfY3ts3Au8QGu20M0y++e4bwcqvfuktArYAPH74dP5H339vVNvicxMHeHt+1fsNvv/Fe/0B1nPy0VsEzucUXKPvzy7Oz52d0j7nO6P+xjhfHe4fzcpRYcx2x7Y6R/W2Ta70nf6gkFhrEpwZur17c/f108czAQr91JJRgdorcne4kM7D9isvMK73a/V/m2oyh0ZV6xLz/EZVs62awyRKFO3GSXUNaLmzNuPBdtvnzjcUyFF8ExVIs67bqh1Jl/f3J2enph0UB8rBP/bFaG1eHexZvb2/a4fDzi/en+3vvPpu/8DLlbztzWt76YjcsBTafTw7e/fmaM5osoPi7uz64ZKAbm6PdndMCogaX+1tfzw9Nz2i35bL58oBte5/xyTP/ZvXb+0OJhdadnszM1EdFcrGrfvXH9kSdkZv6saDz8jQcqFwmPECDBGu0XtmJGZlRJS1YaYCpnHCvma0Ysxo2qE4VeLocSYzRu35ZBlO9mOM5Slv7FXE/zJ1LY773vwsad0uiy13KRUqvY+5mR9ZfBWCVp751ccUgthKmRp//XjlfHokb/j8WH6KTq3jecYTBmeM+gnyzEBq3lwG2WYZVe0ojlFQhSVDq8g+p8pF89W8u5ivSMqIOdi0nU/BniIzQLRWjR5YEUSkNt+/FKwQBWvmCvkVspGfCex59wT/YxfLrgWoztksQIz9pB/A8sOYUlNufVs6CoeJiniCPIBT1XrJQK+bKFCnGzNV2Fk0FuMhIbqmyQC2ecMEbhuyWnp3hzzkxyPxomphdfoPDc12fFaNEbvL6GPEct2pxwt6T9kK+lMVdtfyIpLLq/Ph6NrRGoOZGuoB+DFteyzsaKBnxi0KCGtSLIF7+Lu/9y//v3/+7/wv/+4PvzzfaTUUSFyMMuEG05zsyKLI0j8JGXXJozEgTdDPn7iQLDPkZQXD15BQZaNQPYK2T5JqI9BkrpakE3wQKjgQsCUiU8yQGe0CYayOWgaqf1SCl5tS3FVr98u05pSgQIjTKJdT1RMbkLX0qhpSa5G7y5Ogwj0E6KE85UwZoyXchiXUIG0fdVqlqJDf0Ch5pFZl42PQvppLnVGxiSrSqvCa4CRsO6UNv3PF4gtV4WI8cC8XanKqkmRlH0RbjBEOwSGOiIjbckKTi9JPYDfUXFucID3yC/RWhc2iAJ4KekqYWRr2+4ibNCu8576bMMGpqg/4aAWUlmpEw9zDTFYufVJiq0uN6gXU94bhNf0qGmaOV5z0HNAgTk+WlCYijfQqGMkAsigNyeAGefMwyU2cvTgfvuqAajkgMhAGpRRjNBBgMJSbZAYo7tcqRinVVgSxMSEA48NBxFZPZomEouBEZFmiHaQaIxyKkTGwmwVhsAhjeQpsyj/CHTsNUs8W5XEbRKPYxJqH3NjUoNJDOTEtzLvtd/cFRSGxqRuq4Zq/zN4GnSQ5JSs3XNyoTho/+JeeYT+pC9qjofg7ErKKuKe+YrWwTlsHYZ/1xWvzRlFWnfBSXhfCNzTk5d9HQae+4NQXz4IXq6cjASZh5DqwbxZ4VP/kiJKxTynuR8MJsljwRxbgT8LPbhNxIyhUZ3g8gkgq0haGMkaOqga/hYd6lYlFM6YSI6u/gEYtg2lklwzB6PU8zR7RhylW5GpznXO/4eqy59IlCAeVwrGNloRQPKxeFOmJ5qSSaNAzvKBJMUq0Hi0jnwjDw+B46ls27FMQ/eiGEGWCsJykprGCoTZNLXlhA9vTOeksc/bf0vAVf4+SZEXWbDQIp1rVQ0UtQZvOPdr7lRJADheiYn4uzmizY51nWUf6ky+Inv4bNjM6lpbDMJ4zPNiwojEfuYnbg2r0iOpkQYk9tgzz1yM/kY8oZ4Bray2nPbtqG6D28uPHUxt/d1/sWvKiIX/z9g07f/V85+rq851RtMcty9wdv3900Mn6Rqmt7z3Y26OouiupzpajAKY3+PnrUTtVMfPrb/zmNx9Pzu/vHKuKS0o5W3CWoz1+Obu8aQju5UuLRhyhM0eDPBwf7tIPiwx+0muJHQAavp8uLn/p3V+XF2dXl5rt87MzJF14x+/F5dnV9ffW/xiTfNzyBq5fvn9vc6ow+/TEiaR3xoD2Dg608rv7u4xSg/3x/YnVCs7AxbGzM/ue77X2DZNvPZqgwGCDDWILLy06Oj5ybILwQzeJlTlCkdd+9+4bXZQfPv2wa+XM7vbVjSP2TYPcnF3fJAK2oTX9agjfCaG93kgrS9sYjb4GiReOE6uGR6YJTZJuA4rtu5BBcCMcbgKgkVN6+WJ7b9tmCa8+MAnD/nRkTi+uv3n3TqNGh3RCtaSNbD1/dfrDyYEF3c/aP212gmV4g9sP59eaUe8gMyFj7PfdoWhOHPbi5Y64rSkRo560/2bWBx55zYGtCy9efPxwZtGTvpMFtphiJcntwx3cnPEP6yo1bOuMSO9e+PzA2C2mcgTT6PQzw7fsypyPM5YyMZY7s44a4nQ1tW+owqe/oI0ms4G0mfb6ny1HXJ9jEfFomY67aZA2GbOYAorJ6UcW7drYTLfVUlom0N88ysGWKKUMsnT5/OP3JZUpCKV3TVpYbjL3dED2YK6Vt9R5kPVtgIRBVcg2oCRH6fq90qaG0flVuoryZlgzjSjdwbJgLJgClLpZTLD9r1Su4cxxZthpfU8D7bblEEmjCaAZ6SiiZhcqbttfL3qr+wlE/onr1ss395TrfLmzPYP6VhBtO46TG7aAx/oH5XzwAcbX+SA7mvJdxiMabm/hSUNNIPNeVh6ZOloYIwmSlFxpm+zdqMWMojSwXWjiOMGNvnYz3xaYz0snGrSKvVvtHmhHQRyMc/WBG0ImSf757pZPng5MQe1DWoq2WcW3t7efh/buXzN7DdTVw8dJHHW8AQIBA5UuG/q3I5mVCmCMYKS/z3CPv//yb/7T93/+r/7df/xP/wX9TRZU0f9iFI1RWEO7kJehQngai6UANBNAWchgoz7dqRFvXIm7zkwCL6Iq0pDYIsDcBAWIrWwhv16mgVZ1rhqmmSqJvSU00jmWVmaIeboalHlajqxm4mCffnqMV8gfRFKgddED1UsOUDjQRvDWYqF6JrLBqg7nPIeJFP5zgRXla0mjuiitzJp6pYZ1acOEBkH3UB8BOQ2oxcdN5KpymilF8KN6pzGkcCCuEKvK4lieEtBsJFT77Of4SE/1T+XCvfnE2zib3ZQZAGiTROwHYboUxd7joobqyslpQEaotHoufsc4FI2ZMz3sCasJh/J74KYYkVbvMrYll1Dv4qkyWMgP/jM0zrQbh61i8HpQrBhWbiVWLAcajMGoGstWxDKdMebgPTXUpq57YoyKiFUqpzdpG9xLm0DIA3UAJF/00tsRQUU2HZnYmg6pzn8lwzGUqkIYzP7CovyYJQvappoEoRYZQQuAx4NRkuvX2MvcBGBq6cs19MZP46EP93yFEkuUUjwN2uAC4IBSbmwEUL9lKV7SipQriKLnmpt6WUFPLUdkfkIA3QFIE5eWh7/c0vkgRCoGiege/MCvFjwcsaGmOM/ZtzOPBv6IHMRGf30lAWV5DCrmTAP0GDtJbHVTBiRoAVxkMZPVfA6fMvjBPtrcAzs0FPVOCxjTF53lD0j1BWruJ/PyGnMrtZGGbHUYNdhN/IJhIQxKtl3HS16mtBZvoVHCsC4LU2v116cgj9FvaAyKSF36zZbG5luJDpdYMQE3NkMYb9VDlmqBa8jPtVwZ/nCLszFsTH+yybJYpCr5WUjWrHg0LxVfAz9QDb4M3KibGjr6pOHJB2FhdXmwNAlmCw6ClmtDK/j0Hr1JOYlGnGwkMELDw7oKTSYD7cpNRaBa4uG0AQnEP/gt4rCtsYcFra4FsFCVGB/HBhRHTL/6GaSJ78cRrN5LwppaghtW/pcQt0W09Aq+M/Y1nA23UXcV1THwilYdG6fpe+fW7cOeOF7B7Wfab69yUvhnP31nIQ2SzMnrfTh38uHm4Zs3r73H6729Atf3e07q9PqwxgubrsArR41jNgns723v7ew6pNJA2/sfrq1NOTCwvvXy9s4Lv9Igyz/Ujq/bL7Yd2Lezt60O7w7+5mD3mRd+WbL/6pWj/D/ZLOidAEJRy31vvzy//+pgwRNgLQe6//qr97YOf28hzvnFfW/7+vx4tHtk/BydTto8v7h9/+nM7gSvLDi5OKWaRgmF/rhGUnQF1cIDK6Dham/xZa/WusM+4b6tsNbNEwB3c39/Uy9od8d4/N7Bztu376xqEFEJa+CZiF5sn1xc7e3uzRD416P9XY0dVuAIARUnIVezNo2QgIzy6BVkLQKXJAEdi3/aN+JYRpuXx17toMT1L7ZJeDkajlloZKG/o5a4wt/46Rs7KC6vbgRPDkl1hKm6lNd0YuzNw1czHeR4UCxjsZN4vhPQM+BnW68P92+/OPv14Obylod2iqtFVs798a5nXZB3Dg862D+1b9laqb0dA6vewUA/7aB+c3wgnuRqQDk7Q/E1ll7cXFgm1giaKQ6N/bPn141rPDdXQJdrzdRRm0rb/eUQMjxpTDI6hwv5DbkZCXecvmMZnfXYD/9xDHMygbEZeYBK4Zc1TqaMwM0mMReXA8n7lZbtlf3p/6RnfmOD86CyA9GvH5MrsMp42DUPJ6k7RZZVbwrO12A66avAeNEBNO5pAZzSQ2ReImwDBofq7t6/HIAf2Llqccu812sVtC54Uha8UrJdsDMgJwSnadYXYLuwY07rYhDA9rJn4bVOYK7JWf67e9wg8JyEGyylo2r2Ug7dSgaoYrGyrqz93/THliHKenN7oy1Qi15DYZ+leqxmuECrZZNSMKjPrUfB6OzSefD+gR2qxMubNSJzEOohi7ca1rEjX8/hhWN/UOvPCjo/a+KCxFF5JZnOplDeyzZQZ8JNX/0m+I76vW+KwESZNUt6AbbZULf0UaYMMJ1BFupc+V0zkPfegjenRtpvYz99C/PidB9mq7wTwNBvLRFmaBxnun98ffHk1osfPlz/N3/9d//K3/5H33+49ArAuC4YmvCgjrxQjFzRMYPWCbVGoHSY+BtNLk5VxUbKBa9r9CeNQMDqPLhRUlEG5ks7hQQZsIZ2cOMsAlz3M8pQR9rFwpRSkRvZVcfiZFYjZzMAJgBSMqzrBrhSPZow2dz6Vvc8CUlckjcWlQtXSgmfp9ZWouZJfgLyCY6PiuNI88FApfxANG8zlNdlhds0xOFSQwp4zjDMu60PUzsb9eRPEgKYdJ5ehXmYRCm13BDgAX7FbGyMxagoaaBN6IWZssdA9Mlb9jKHtVyB1Uds6syviED1fARTwcgcnuVRR5gwLE/MkXnRrmRXABHdOVcDLrXI1IU0OrGkvJi0keNzc7nWmkaKQoojDQzOf4C5LX5zTVUh5ycuxQl8GxPWXfJ06U10T8QvDQI6Y4k3YgJFiIENHRoCsRnLbllVWoDSob8sqh2FTBm5lOETjwRm9MW9Ob09jOeSbb4lQFUeOEZ4mMei0IYxVncTOhGtCEpD7Yn8/Nvws6cMedaMASYx5ERQCSt3UuJwLPMusgqQjlrQPEz7Bodh99xGr0ypVQD7CjFIBLTE+R27kerEgFEsKgAwecobFwfuID8o5k0ka/HLHlaxqSauUIwUF5mdUCYdaqDJM2BkCGBMGZV0s/GwwzLPOL4m72YCHTAVwLNC1UPNEw8Iqn4SHm9IRIGDbRUZ8rFE4YXFJMHOzCBgok1jkZ9r0m30IP4O0+yn8V1Q7uLX4Ao9xOFewqnyhvPBrKIZeoEHujhl/M1IXDMPy6hgOIWeprBjNRhzATbCkFkVyM99NyjSMAPmABhnngqAmgjqLuc2BsR8Nv7KIxeUM/XMD68jf/g0HWUsCqCjWn7tRyqrTriOEsbehcMSdPIyPddJEcOi5OsKhxHiOD5AM49yhk/Cr1IJI5LmSf1WqXQYwghpWLSGWMBRKBpnJRiBujxcVfjEmdhenkTvZ3VkTrm/Mng2PAFTkwAdN8DKP8YvITaoVGHDzGA83Dn+8uu7794I4+7vbw8P3xrQ3j86+I3f+uneQerz6GVbvNXNw8H+gSUoFoRcfLp79nlL38CYlz7p2eWVcNwpTHYCaHT5/+P9F0f7iHx8d/xW5Oa4TtEEPD6eebWOo4c0QvXH6J9TOBw8eKX91s+8/fzd4evdlwUBP337Vs7z2zsu2n5Wq9bfvX4jp4yOA7LMx8uCr6686leQevjD+1Oj3d6V+/rNkbNKjZvrLuKRN+NK1D2wIKH4eNZLGE8vzr+50yrdXBsgJIstG15NNSTPlyFGojokWCfqxe9X3j72+MIxmkTz9vXx+dXVx/OLN8dvrFResj+9uES+Xqrzi7C4gdM0VofNuPtnbwNgZaAWfQiR6djo59KNKu0wIq4QLp3OYdMtHAgXFAGSNu/i9Go3DhyfnV3MET27u164dnEpBkuzPzt2SUz28g9+/su7z5+/++6bD6eXqqYUB94JcHlN1i3wGIOPM1+3vEXZyyDe9u4DK7Iw37sCLmD3k+/eyGXr5bWR1PsHsy3U6s3RnrIabcds6Yrofc2We/CdhZTJF7uMqUg/v7oVGpA1axUl8jY1HsVXaehS++xam5HfyAdTQkyeRi79p59sNu1exrWsUoHl1Me4li0vO10qn/KPoTEB9/77qbpJl2VjkeqbhyUEZL7LL/f8WA/crp8QqoSv/s9Vtix6JZSzhPXsx5ahzPCfTH0OtD48WPkH3OC8SdmAgNSqSe5F0QZ0c6Rj4Bga24Ov+RpE3fimArZVtOphhWsDmCcsxfzP5LD5pNNaVWEA/7oXUvgugU/Y27ODO3cERcvjhfXKMQFeVKgHGTN6iFEzlHotRl2C1jE3oJ4sIZPyk60fup6sSbjPnNTBQ+lv1MSMx+YnZasxEnDU5KX+GjXI6A/0loBZIG24BmXpBoxnKMqylRlfyxnaNNC7A3tJcdyDnuOAmL+2CIMoLTXSZuVBE6CLlZnQ8nAGU/qsFegwtNg+rVI+s3cMQ6gTkIqMGg/TMnIiWkkYCkrv71/+g3/0+3/hr/32z7//3nN7XkBW69cV2GPhjDJ6RC5jHI2Rw1LVk9KQU+mzslfBbkbLJNW2zKx7Gj6anFD4D6hPE48eUNKxSG2UUDalQqD4s6HHqScrGl0tDpaiFmbrVovjtxKAQKxIYFhEDZA87WOoqya1eYorqiHUpvXfNENDUvXyk02h+C1DpWb1jvJ8ON0IgWk0zf4u+1GTp7mIP0YUZVtBGYCjTmK4ZZ5F3kRoPGWILoZWXC43mAa3EU0dhqokevIaGoc/E2vSvyK0NCrJIjlG5b0irQmQNA1DtJ7QZfrOj171h2zVryUeKVQIzGj94L9oSi390bTQjwvDsWlwCSKGJ5i8Wc9IZIY2ZFIXPFvdlDCzI4THmNVYADfy2Eiz2ICQc6Fjdx53oUgFGSOk8bZd0amlP0+xbonXQ6XG5Y4bAWfiSaJVShWVFsdqGdQhiTypaG2o073q4FWL8oP8cg64Kj0pBzunOZd4oDEjVHjkU8FKE6m0yYUuKtvvtSpsMoT2ZJibXE6A45xc9R8CrpRc1Re3pfsvgydlnJvBv3RPoOvCDBlhWJicAqYq0oimTx8/qrt7mlGNdTE9bbBFjqqfdguI7qUX4emCNeoM1RSuliOUSFC9fkY//zBVLhTn8ajB9KvgMvqR1sgAdAsz7QcdjAe5ZhLAZKWRki4AHLXuVb04S8y5AAYw32WLfZWFLWh5k8WpMGthUlHQSGO4nD0glqSVBQpiHvpHHadKibXQPQV0RhpGz6MF96THQ2CHx1NVgvHUNRki3Z/56RAqr5I5DhiFf3SVAX6sfgZ4mk5VGPDRgV6zt2ad0CQwhAabWce9TzVLdgm7n0/1hu6CO+Mo6grVcesQzKQhk+o0LTCESKYc5Rkd8igSVKppAw08P2pE59egnKUOXeFgJk5+GWJOmhPTdNZCzLJ6c+i9F8wcem/EUYdqqx71cha7V8pNqWOow8qmLGWILk/HK3nsglzUDtFKiBEVDLXRk2wVLcbab++c/iH7zZ3Y8atxYuucRMEXZ+fi3RplQfDu7vHhsZZapH30+q0BN2fGmygVZ+/tGP4xRvxVMJ39PtNk1uhZ1cLteKsWohK3t3Td31I/bp0yG6q7e5yQY4YGdRqtA9bSGZg0WX98sGfY0nu/jDp+f3524RXFr17tv7SYfuf1m9eieecD3Xx5/OH85ue/sh6+tSWHe8cOrr/sjZ2aeTpJhLl478n9eGo7q4UCFjzYTHy387z3HHGISGD3mCe/Ho7F/gIJM/vnF5avOCdHtCT4eNDUYtjVjSVCJ4bE4QjbtAABAABJREFU02FvNnv27Pb64eOnT15RtHd0+OnsSn2OTtcVMZHScZ8OKrXwBbNnaTL/YrSeNI57b0DT2CpS+xJu4l7yArw2I+7RZDZPKyg5V0FP7q6bJ7H2WjdGx4NHhw9gR4dHdn46F8mR/Pt7ry4vr8UHEPvee7/Ozq1gOPbG4rsvRvGplkZZu8uw3x4dUEh7J/TmDg4diyTO/+yM1e39nU4wfdyy1OpXHz/1crEvKnIQe02aqYbDg923rw+t/HBqkMVUhn+NyzoCta7nl682Rehinl1d0Uhbwr2rwaZt2zaEpDkJMx4vjNTaa5EPyZ2k0Fxcw2xiEW0xoTG0FFzFy3xULOtENqP8NRopFfYNB0fL1/1qV6DSz1F/oJYTCcLYbk/6869shSw92ICb/KvMJn/YJKAnmAsOw1iJk76Bvaks9Kq96lzjeaYOtuy7S6mx5IH8VLf0yb4qHP82hAeijJm5WrkRikIgtTI8IRbOkIoq6ZVPW1HIhXMSBEel49uLUTjVTsRi0aAFyNJ6D4ydW1ZuBDv12Oq8Js7Bqph5kzpnxBEZkqeu1usTHx9CUkOUcTJxW8MxxDHtToAZtioK+MN5lnjlc8SFmsav9gB45D/1Zss9eN6R1tOe1VJo68ySweS51UR+FwBZS3bHFhqxEutb5wYHucwn1ly1rkzEBOdW83NJzc9H2PjGMG2lUGIMI48U0cj4Ed4dVZuExKkFTFo0+ayPp8d51LbFmwgcEvNrciaLLaNyNb/qEij+r//+F//FX/y7/+O/+rfkAKpSEINZwUANLpF1tL9H5EWziUTNbqp6Kk8dR/o9SGaNvELbU+yNrZLnf+IcLeI3BpcGlQI1Rzcunqu6oGYrYuWHCzzBkejyMzymtKqkyFNfsQiqNbSeeDxUFASXXwu+OY84PZTnCV8iyo/Jr9Ka0cFpVYq8sI3tXXKiV8oYhgdjJEUdhZuq9YcH2ohhTrYMHwDXhSnpWC8V7qRXmcBPs0aycalOZbaE7ZiDr0iQKh6QDFRPB4ibuWpVRwYVC+JwMpWKxtpTmqogCtwEswuQpDz5i/rKOelAATihXTit2oeWbEZB+gWy2imD9AUrjMfMS3fE1vAWJ5edhl5BOZKqlhzxZ7FRKU/nPqEArXJIDr4jEUjE+/hXztFAVbsF3V9ETOsjD/rLO6GFiH9lksGT8qSeIIS8K+0JdEzQR3IzKpfwOXZlVl2yhJLUVKthsqhZZOubzUozUEAbBOobV+8G1ZU1JIfn1QVveFRBMGs/pEoAKkQHSrjVCWwMW9gjZ5ybmCp8omQA1Fmdf8O7IWvIT1K51yF1iK6qKBsMar7hvOlAJJfIqIe08ozyyE+j5Q+ie1wNq4GwEpUoz3QtCgrrfapxzGO2J0FITfD2yMVIG58YKlfBcJh6olqGWT3iERXxGVOmpug3ophWVV+k+wqb3vxq6Ee0ItkYI/UkJk8QiKtqLj//FdOr4tfINIaRNXpO+xUhCzc4zSsLXVRvXmHR7h5CctG6PDLERt50HSr4NhQu3WAY6ecgGdUAu1dvMoLVIB43R7qqG8mMDafcXw8OvYiqmNiIVJn9j4IkvWoBHFcxc7jQ40BGwqhtdVYjxYJIFC1OhjDwIQkaYjKVUhbv+xUTJomvMLZSCuFmxVxYfUwCkkWzlKosScCqsZxemwJ0d9q/jqWnUVXnbyEIDZdScZvkZmcF1CTX0s+IBSBDjGr7HmTjJEtAogqqM5iBUpc4zFJdsaY17k6410Rq4JmJJjeTfmnd8NfdrYfr86vLC6PnDofZcjLPnQFB5wIdvXaa3vaLz7s7W156dXMtbv5sZXyxtcU/xgItCX+5baGkhtvuYJtKjWaLMoXbht5eOyn8cbxYAR/Ng1i7LF5tfdn3Hi1Db1v3pv+vPt9ffv66t7t/vLdv6PIWul7Xa/HQ1zYjNp73woE8D9bCfDg73T/asz6MYjx4Z8HVrcMBf/Mn3314/8lSGaZ2fafTYvPCq4OjQ6cQfvp0/oc//8HCaEuKLq5v8UfAPYuXxD5tCL6+vDOzYGW/1UEW2u/tH5p2MONrrYRhzqPjg48XZ9//cAoNse/9/VcvRLu6uncAiU0Utr2yGEGIboyVCUpRMD1SghPHGA5lAbYKGKecfrEwpTcZaWDa6k235yiexEwf6IxPWygsFNx+eXC8t7X97Oz84qjziA5sDqAUTnX0eoM3R8c/effa3Kguwe7LnZOTSytwYCFK/9l3bx1Iqj/h0CZChwweq/ub168FdG/eHtt38cPpKavxjmRHs1p8RCVEPb/6cCbCgoBTWa35F9TZlfH69b6dmFnB1jMzHnh+fkW2xWTtq9Q9u7oTdxSvCU/rSONtseD4YB1gZ6F2ostoKX1mnxQzvSyxcAoPUvul8NSYT5CS2q/EeeZxqrwMZMp3z8DGUlLxdS1wc1+NcwPm5ukkSfRgPumhJ5t8fY0VbZIqPQUnfVNmA0n5YPdrY2IFOYHPlln8jGxNrvL1f32OVfYDyfM1YUp3fld6k3n5snzmaIgHI4L8Kt9eXI7bebzGd/L2DQR1SiYecXmt8WP1hcJ1q+z0IdHcmdGD6WTSCkaeF7JMWeCZmFolmWN/bnu37blFmfihCm0g78bG7exvMdEYsJA7nGiLnTP8jxViuRKH6fCexhWeOxagJm10AXfsGto17mOPTaMmjht6uLnrjb8gMG1dXkeU1Q2EIIpebSustGxI1pAUrNfAV7mVQINCngevtWg+0Q1zfkCV6a9VcHZBiKtmOpobQSwSJkSgdR1XDXLuulDQKNJW64zKUMiOeytEpobttEkn+RUCsVaQGb74+ffnf+Fv/sO/99//M2cUJ7gUoZ5WjWfrH3RuJ3SrdQvgxl0nyLx6qjzKjIU0B/7rJ1UJGPymSXCbJky8xDDjSPo2zUTaOiNKVGZCJeLTlVIVCD7lR3xakXrIm7aq2uc8lWuqHl0FlUqkhClgCDTmPWFGPaiRimQwQ2Dy5Fga4U5/PMcu6R6qziNVl38opTxVTzPafhJp0lONOrSNOSlIhZQGsMoFWKPehBgm8RWqT0+RPxiK1+NNQmxKTPFwGArWI6imoMNeGfACp2pEleK7goyT3cQLWjttOi3yp94gKes/rzVB2tAUCVE4ux1QMTniiCt5VWQ6BkmhxVFg+8QldVRdMW0ZQPbIffj3LNEoLRODlAkw4ou9S6s8eIKmEBxS7/o8wYEJCMgl3KBEXfIKzmhgdZWWUc7nRkDygsAz415wSK7uSpf0IBTtV4aUVSUDwwua3xkloF3gZFBBi5erb5M5wRqJOfXwBHCgRb2blGV0MipiQAwZPQkmUMOxKIq3I8yQpDNpVyqn3qExyDm/WDIqNWVoBmgu2E5C94ms+oM+V2RCoBguLHOdgSqlkCXRhM0w0AeczIooOVUOpIwqKXaJ29L42JpsB9f1QH7mgeCqHhwiVclonsrHemVQupM6gLUoLexcGFdOZRORHxWMjPlfdTLFZtrGfrB1lF5NKyermFVwY3KxI9kpVfzXvFKESdRmDJ/HUiE2IgfYYExVpQSxbiEVfzpaa/qyktLA3CTs6JMwyBarfo1JAAIr9Ri4kqjdillBQ9bqTMdo2I46lnNqQUeJauGLh0+T3Kayevwuj1QnW/xRDVk8KVa2PEzDQ8VS3unJxMvVDMOnY/un5zNOZINVBZIO9i2BySNsAt9NNTURpuZIwDGiTJpRCl2WXwYnx8NQIi5WvEGsxv7dqxRR+YTBn+9Lw5JCghyoYRj8UU6JioCaH1bxZB5aIl9BMLuZIqBW5wjSZ1SQURtGqZ+hr8/ta93dsxjAOLowQHFDy7u7bxzl5yVTpx8/hbVjP27Ov3u7/3rn5beH20eHAmjDb86At/LeC2KFsNa86Vg+Pz7cQ6b3yRq/40i8AcxaAnomYjDsZ20Jp4qNFOigwb+o0OzvPX+5++pA0G/FD6Y69uwnxzt/+u2BI3U4Jwv0tWfX1zfWIJnvP7u80LAK4rW4o+svrq8+63YIYfU2Li5u/uAPf3l+c22w3NIj7y8bXj3qLX08/QQP4+BsgiIWElmIfN9W5qOjfby7urHWWW/D60K9FwbVDgx19tH2zZW3B3hHkuRtjeHB4YFR9RefncL5+ePlZctopl/syAhD6fv7tT5WUQs7sDbF+frl4+kpcQmN6CMHaGCV3yCmCqqGKude6E2IJWVmOCsliM/x5Xj54EjN7R2vAxPR38BTv+Tm/k/95Jvjo91fnZzbSn387s2J2RtL723CfPn87aGF/88+XV6KMuy0fv36wLtWncmE8xZ16MBYUn24vffy+S4O6LA83j86tkjgfn79+Hz7wBQ43H/2zaHRByhZxaRoyrX1rPVFj0KxTUy5/IC3BxiJFT4KK00NwF/oOSqNvrSYE+LNCkQaSSmJ/YEn2qOovIDmjSuQmWcYNyVTJiwl6whM5bg6yW66Si2x//NTfoJbPxWd0plBz/3/MQUKYx7rUU+BWgbza2hTZ3C7ytO1EFFj16p/AKtrPSrjeuorQfZ7MJRjtVglPRWdR0/AB4tFUEloqXAeL2Ig7baGzY98aWXdl4kx0xusrZVqUkV/b4IbWWfg3Li+kH2PEruocWsMHM3VkGrDP21I02sosgTtx8F6SRwM6/PU0b/+yCefuvNKN1O8zVmNhxlupHltLbfKyG9yrMEC09vAdQcedXe/6lrT7uLQGddHHcool6Ebg7B7OgfIzDXzrl+dXCpffQndhhkj1PXwU6b1yf3xFrot9CaR4gbDMRqvidTrmGF5LzHknnr21R4Y5/Na0WFbP/7VI+KeURyD+S9+yqk/jb5bs9SMSiKgnA2xNxxuboPPjPPecrjlhbtNPoh2ri6//J1/8C/+4l/7nV+8P61OrRXzJX3R/yhzGpBmQnM0YhzyiDNfzepZSmChMkNmEMhR1+rVSZiyIyQpBAaKD//60Z3s+JzfGbZPapM8qcI0UnxLGpJx+azS6lVSADNjamqRsBhoZCYZNUQFdGhU5UQBbtKr1b5MN+wpIuLL6gb4oKEyBE2Z2TsuRdVBQZ0ZKUCmvXSHaqm4WjtWYxpDE9/0eNOuCdoWRUCgUU1EHJTQTwIbfgwj/dg0hUARAQbCavoDssoO9/lrXAJieB73BmE4+x6GxOdoHrqR4ZGEMqtsJKLyRLZsfB4BNlX4KDBTFrQgzOgqO0kBJtKNrW0Qj6xgTkGf8Azghihg4slA4Cfr1qJebveDs1rDUA259TGl0F58H8EFbaIE+ESbx4BXQ3XM72oHZ/RN5u6gpy4EukaGER0zaEL09lR+T0cZyoU10jZcCmT3IRJuE3UAnHlWROKmug3OG56DPggMG9N6gGWey3dPNz/D/sfHoVQbEf/B14YSzIRqw/Ox8A2B8coVXlN1bFA43UZ1t7FbLWneMEsO+eNUQVtdNyojy/AOF7R2s05mXANoFcswRxDV2h/AFNlN0Y/aeV8wQmLsOTeENVmQhJFpz6IIGd0MhOlDD/ZZyEQLLCd2Qma0ObaOnccI6QOkrpl7rtyjhTvoSkBEqVjAZdFmhVOF1DRZlid+xvhMNA8Rp9ief2lgeoBY95ruIadEdckV1f7F6zrxrjXh4OfyaGKFsfk2xzC5Ss0FZ9+KZLSAw7VWk7sukobQpEurrYKqglAStVVfV7H2AhVyaYOUQWVQish1zTfUIrJQrDGDZD5k+haToMI/VYC0KAV+EG3UzdYwyYk6rxdujYA0aQivkKEwSuKrCkedpp3Wgo5zj9CBNXwWFO4tHva09GjE9HXvESbDAbB8QZOqMtZtGKoHwQEnJ0z8RkhymeBAAoDYuBAG13ocMdebN2/N+pm70UczEucojHevj94cHNxeXx+93r67vd4/3DcsZx/hm2/ema8/v7g6u7r7cHZrMX+DDvQk4eC4ga5Ho33GeMXGOhUCDoE1PDH1zfGxZTzGAHD79vHOwtqD7Z3r6xZ2ud/Z3/l4c3tyd52ANb5eO+AMzd1XpyeXWy93TMn/6oez25svb795c3l78Ue//MFss9cGXFzeJPebzxdn11anJChBp/HL7Vc/nMLxy+7OAfwwwaqe6yuLT56dnFjE//L09PLDh1Mv6EW4owR1XWCoq6A78enjBSCOwr+++XJyerF/cFios7t/eeZFWjvGPD9C6XHLUmmssNzhh5MzynHZWfimB8xBFaIbW7VwuPMxNV1ftxrs5DoexWSNUIq1Ly+usgUxwqPgJodBEEv90rYvj2JuwRkNEmMJ6Hvkjcs2h1kwJoyes0RtQT483DvcPTi7aNWN8fgvd9ZQHb0+Or64uPrZt7i1b9pBw+AkJFuo20fpjcsH+4IhZmuNk5Ne0rBXL09u7k9vzZz0CgL9SnhqIjUB37x9bTbj6urqZz95d3Swb8pQt+HCYif42J99fsFohHtvDo4pvAgrrf1ieNhoa+vx0nHG3sTX3CyHk81v9JMbxBnhKOrkD5m0fTU5o9QI85t98QDUF/ysdfxSXiElXxcIXUv/S55fEoParz42yf3s/ulnWZ+uKdfTHncFd0rO73CYmirc3/xYALtX/wafVawM/UNY5bGjSL7b/pdn4KxbtPczKPNV/k2mcQL4AEyeZI0vFEKnNhQIJ2OgDybJlzYgkk+2/4QjDWxlC9xkbwXOLDvMO2luvnzV8RNUO/8KavRfGaZRPPlynX/V9JTuXGPvqrEnvjkrPk599vHP2OOX9s1PF65qDa6anzQ04KUTEtVqF44RdxSqW0fdThUo0T/DOHVCalA4aoTDp5cJUFfI1owUFcUZxSfgjnmA4IzjiayXFq63Tum5STbv6JDWpBkd1nT0ruKvLSLCt074aW03I6BCLDFlx1+G5rMBmGkIEokcNtBrlFfcb83S/bwAG3LC1OJX2Frx91mPmlknpK8vb2+//s//+ud/7i/9/X/6+//WoIWGPmEW1rdftGZhhFmDO53AkdcInHA9ZXQ16rUlqTpRpQ/QSQVqTQZaGSYOIXVdIMIFVy3EClv3ta2yW08yzh9cYGPXRpdqnQEZXanhk44D8lRHOAg/anzXIwyXkslqRkOyStKZQvxQ7HcpBoNTDVd4Aguu9EbMRoLQkj2+SU/yumwTj3B//JkT20hAU4KUIR0Vgq5oCQKVXtRNLZsYuqyqGfYjto5Z3cCMoHVlE89JVS99DrPVLSlqr030E9une7FIG1arvbCHpYRu2DohNKFED5QU0Z0lTuUBAX6RvbBWRKKqp3ggqjYDHH5ojRJ4olB6UeT3pq7BMKzWDpkYNWUnszzYVcrE0GAEJ/zTCEXhpiIprmBO4NQzCJUzByBPxhgK/YxFnMlIus+Qy32FyDAccNkWBDldw05gqiLCA11XR6mVNy612KGuZooSUNkH7UwrrIf+NM19GFbjdLAnXyWGIuR4NnXJ0hXsdcP1NYrUVcWjh0pNnrhGpVfOKB2F6mc1jnC7D1QcGETBQdrAs4Vn0UUUbkprCn4V9jlwQt2/oXzi9WaC6nbI3FUTxjH4kbOuJu2/gUwH6g3v8tqpeIZaDWN4oKlw+AKzmOfHQEv2AUnAYbT4K0/OfcI7iYlviSGGphxpwaTNJ/bx36McddQorlwVmOB4ahsVmYmaYYLHRiut1UZ0uKZeCPOT7BcHgSBCtUfXiI2E49Xiw+CWOcEShmnb4ntw3MLBjbwwRMCoV7Ul0qFXLS6Ej+KUbyDFBNQsRodDZrBEE5fkmV9MvVawQgHXtw7A6j+gRiEXNKpDo9L0s++6efIsmjQYgMsch6uhDAMnDapTMnyMHNfYWzCHzHIkxrQGELflbmSrzP6rn6ktVP20vh2LPZI+iMS0tGK1TNRhWA2X2ONhIh4ljoNKwCsk3Q8hpcDfZ3hU5/JoAZXNqh4reDTQ5soLIb7cH70+EKi/fXPsPVtQw3irXGpRxY5br74+xKKjtwc6A2KFgwPKLAuoIvjt7b1O1P7ZN9+Elgb4mXNF7yBokNAwHs5+cGRMLwT6uv9y+/ClgecXVgzz2rohzurRmt083uDVvkfPvjjnZ7dj+V5df3k4ObuAinM5jeU7799J4tuvDITbLfDFgH1nk6TBz26ujNkx41fG759v7ZkT8MCbwt68PTq9ujq9vPrh9Pzw+PXWM68Q2gKmuNNy5y/egmzP8VfzBtIFE/DZPTi0UOeDXQZXNxdnN7jXIoQtG2dvtVXG4y8u2qZ7c59DF69cnt/gjFVG70/OrKvb2TNHcamREZ8B7o0Cuhki9F4j3JIG7Iy5gqS1PkEjZhaZVAgwTTbPPhPaMdf4mSDs7sEjgBy+/uDQoS9fvG+L/3Be0KeTM1RY7XN1e3V5dVVTal+Et/ju71MX7b4A24Euh3t7nz58tJOXCzi7v36+82rv0Pu5vOTB8Z40ekdMxtfqBBrHt0FatGQi5NBZoRZR7Fhele1TQJkdFuTXxfW10/gmpLQW6/ZaZ76jTq0lsy6kN0C5Rz5dbjjN8EFjk62mpS4ZQr4sn1sDwzTS2bQ2DZ4rZR3D8WslIVPKKDpMlzp343lXGh4AplrJlVT2uZ1HpXXT3/zvoyyT3sev72QYuONLyx0eA20DfMrkdUv0aOEZFVN0fi6AT08nm+cwGncSBPfgLdhTsNsN9oMM9qBI/QN54TdVbKKloplVaXY3fnJ5DFLQcaRO4vBNYER2rKVgSqOzkH5GXeVvMvWZTntzd2Z+Cu2fO/LfDJIlPeJj8aV+nWP76eFMFOSTvTiAnmxbEEipyiDq8s7eorX7GWU34nPPbOAvwtzfOwCFQlPfzh0W1PMq29umBMNBw9QpVc0JpTk6GClPgRby9CwgRr2tdxL1outw39uvaW8L9E05rW4Odo7DF/81RZBpmkcwTRGoqc+pWF+fczsmNIBpVUlsUHlMUG+NnSB/RVqzRIow6Wg5x5MzAREnIExYdsWn4ald47Q5vf/4849/6W/87l/467/zb//DL4u1TJpNbMAHJ8WmXotiFjTSwZwqxs+kXPo8rMmYdiTuUYnl8EeToNv5IrUkc67LaPuo0FQQnFrgTRX0EotaCs+8JgLmZ7LlMS4gVpsyWhckl7oyyxosn9MOuhvyTfAMYrWAEICta7LXNsHcf8Bd3UuJCnD8LNx0SUu5JiJAt39kTX6Uh8BURypkNlxK52GrSlJXUa11LWMEgl8rppaWxS9M+BMQaoWxdElGnp7G+PBkLItSoCEWomOLjY3U30ue1Rrwns0VwoEZw9QnTWVqdrE7gQ2nFSqX/wp5BAu0qNeNyxOfIxnm07ENsbF5jKlmE0kO5rnZZOeq/sjwH0Z+5gX6Qng+s2zDww22ss3D8KhWecMpIAqyeinqXWRpsPB70r3abDqEgz1K5S4ymbBBWgWBHuABBD3aG7fVo3e3+mCxkmmobCgNicXcuBUFfqs9UgY9yM/aiAgtc4QPerHQf2XqXEVvtf5I0dQ9GgASmW5kk/JU9aoMXVFaQaBJZDRkUb5QHHwWR2PDSBECoRqglNYPH9KiFpGUshomFRD/oCajTzqqKo/gKxgZylNcxctXUzcR/IrfIyHM1LKC0aEkhQhd/R4Od6jhwEZrh5ejwZCRmYtVufuMtGHm6aZHWIBpuTa7GrOfrAIDYm5MsUiDE5Q+0fboMRv1ANwNXtlIbXM1zGTZVDqEb8wmfmHShLMcZ8uETIOom1eVDxX1WH7UmFloATec4hRCcXglJSOMf2PGSaofane7/AsLWXId/7J0qCaNRGr5jFIOQE+pLP1TCktBJnI4grXsHF/DZ9WATiRVLUyzpdGPKl/GocYQGWzxVvKIL1Td9/9H7Rmq/CQmBRo3KvppxKt8o9Cr6uDVluRP/Utb1d6+n44vcDNVJtw4MAFgXGAqOcXixScLATvPFVbjjhO7a2RdkfG2Iq1KDwQ5Dc2tH4pglasR+tsb+0A14ceHDvN5cX93ayHLd2+/Ozv9aN3t/vGR9fSHB2/Xm4P29o2yvTKQv/Ny5/GzQeid85tbSH1zdGDgzfDewc7um/1DJ/BYT0JAGt1Xu9tb+Tp9gK9nltuLBsSsliDsOEzzy8eLi5e7LyxQxw4vFzJ+9bqjcu4s/j8+2hME31xa9e8cz2sHcfzGT771+tvVYei8kWePZ/O23Xzs1tf9g917xW68tNY7CB4/9WKBpGA3r47CydkV6kTeBu+d3nP/+eb6/u7s9u5XH07grydzdnZ5enaJY99+8+72872Q3c4H1k9lPsHb2xHY9PPn3jYgMGFXpjUMktqsa+uAvbAGu3tFmTNW2vqrzf96fX1tJNLriS3asdPGYZ10gAi8bazhUNJtq6Sw+Ku9E708oSiiTZwFz9NK2UtjxXOvRd0W/d9b/OCVy2uHpRH310fW4t/v7+y2ePrh7ttvnJv06tldDsqbf68f7o4O9qB6fnppV6ce0t7O3pV1StsvMNaBTm+Pj74aE7TB2lGv+7vt6vbOgev7G9uHb29OTs55Cp737dEOILZoY7URWCs4dndfYMhVm4OR6WCf7EZH6PKaZFvGVrM9Z8ss5eME0OkvQxzVHP3PAMZeRombi8CSfFfKm2mMKaQ4Y6JT8kcNH4ObpNFtcF1jatkNKxjDWmm1KGMC67kf3Szo45VLeSo9eULNtfKVcXO5nYrXz6mo6p4SNwhsnvZVc+V5wGvtqnQZYM8qt6GjPOOcJ31TYN2PU8rNLgeoTCklTENbx0ATk5MX1upzyijIrTFraLxJp2SES9xd7NUDzR8K27Tb5NQrHXZePbPzv6X2xszaGmTGicdjU7bziKqbEMoR89uc6iM97NshtTaYEhSz0hSNEyueQIqVZM/sBNiXbvssd1pPYN4UBm/NDHQsGoRTm17gwJQSeN7bch3ab2GaeQOxie3iOCdKt4BHHvMMok+7hNmjB6ZekSb6YS8xBSM4Q3t/p49dsN8rhHcD7c0XTrDNWC1I45FrBxHOYc/wtm1jDxDTFbfdhTdGsn5OEBoW3wzqgVHXRmemDk4SYbBwi7e5VkkoW+NHxnEe/+m//Pf/1V/57b/zu//jL3/5niJw9bWk7vAo2SfUhE0ykpKcqtw3exN1szRlNa/D8VGgGmiqg20+gOi/UgCkCQQTH9OP/mYISQ7zbyPAybweeS6YXllbj5CJQiARYwrYha2d76kKYAegj0G+KC3FiwOqGBwwIbtGCewmfcFRBi09rcEqJJCimQJSpQsHKWIGWgxmmc3+ti6g7tpifgfIRGJskmeh5HMShgEyyzvoSRwOqQW9kQxohoBiP0BUddFe/sgVFYvkEYOfsI0bJSaeMJ8ge9gQ+EGD1sVqAOO8XqlRtjFP+aHmUcrZtse234SlK5hVShyedjtrYyJlHNfQjzkr8i6/QnElCAFZnVs3UqoOqIlrocw0kluYKxgCHpVtyvbZ47Cfan10WwFfU3FZll+KV5NhpguUHW0sPpnsfs4kmCqGQsnjhHoONfdlG95CezhZZeAHFMLzaFDSRRzq0xBkecKUQzKC5yPChxw/g58RwY8IIzMO5l2nTMVlmRR+xlnYvcqaYuJIaglywFnc9JkU9GOlD8KBTEZBB2e4N9pfbUXYa15jaMDfIGUn8y8tSXGUU2VOOdlVZbxb1XhGYNZJ6842wJCCkGSIcRBayMU1pdY+/8WpJ6uGUpXmSgZw/AmBCgIyFjAmJL2KuBHiWT9CdXLDS4Bi3EbtQ0GHHngKdRhkFnxAJ/vWA8FBD+E/dNC22KdutQzYPjLdFVWPOioAVFUlkeD6ksFcaH0nqfX5smFcc68+0IJKmSZDqMSYuisJb4wTOYqkzwMNPxcOdTaWVqWprTye8Ck9kzndiy2hU8HZnwQOJHEGK3idcBxwclYkdzll0pLGYKsoe9tYGnxiymgw0jVyKiDuYIZfggh4jRO4qXC0IbVpMt49iTy55rG2+ripxJDmSQahDD6mWbzVcK2PjTOKug3U4oARcUXWX7WpHVmGGaYRzC/Hx2F4IsSx6YdMuOn9v3taaid3njvH89X+9sHry89fDt4eGOL3mjNmlOuWf/v50dtDU/QCfZuGC0xfvrr2lrDHL17LZU+f8Xij1Y6b/Pri69HxXsP0Ew/fX9uQLV5voBFW+0azycIkCNZt50FQ+vqN9T7PXu/tHr/aF1cbwr+4/Xz9+OzcnoTOKdp+fWC64JkxdYHmufPtW5FsW/BncSjXKz6+vbm5vLozOeBFZqfi2cev5w+3lwINIfPdvZcBU4WcjIXpXx6Fwlrsvd2Da/0AYcHD5/UGtK/OUH/+8uzCyL1o/rMZgMtbEyB3qQphi7I6bnD3w7lDgL4cHB9e2JhsLcSX544isj7gh1O9Dq9McmDRy7eHh3xy0YljBHe3DWJaY3913StIt7d3cYPSNAzbi4EbWcyPiyd6U0xdCMO0ltNRPwufRcdiLTVboSQuafnBs8+UbDePv/Xh5PQ3vnvn+enZxeHxkQ25WgJ7gj/ffLHz4E//iZ+dXN95F8Dtw633L/yJn30rm80ax4f7Vxc3egUaKPtQUH15c4dtb9+8YYWYY4yAsHT2TIrsHR58+91b644+nF780a8+fbi8cayM7qGt0oZe2W265QQnMXyLRp7veqVDmxwSjcShw9JqNOsGpKYUOAf5QgxKt5pDo5WI3aj1WJNso9F4k1saCxrD85EO+yj7ZOvD1ZO5wPfYwyzb/QAqydMpWi6J69NXzurp2mT4Md+kj9P4daYxQA82eJVlgKky31BkU/WD0noA/gaR6i2ta+WbT5l/hD9lB0QAl68LgFtO0CfAa0CXFimYHuFzTlwjXROJ5+JUHKF+ynkcLlw4Z0v55FLms15lq4atELMTl3E65p/DEdapbL0FDP8af4da34qrTXP27O7GfphnjughRWqss+d1H9aGcXE8A9hK3H6+NVRvz30neloQY839/YMzslQgM2zTiBZYImcJquOVNUtX8s3CegcNtEjHRlsVY+t6N1mBoWDhhYPL2C5vbXmdgX5LdPRd9ZrpP3xMUSL82lvAnbhlusnBhTzrczt2wNa61aphC9Urushtm38rRUgT15NHjhJF6uKV9Z28/E47UItXFXWKUrTEYuxMc5avphKNWPXz5Yfz67/1u//y//3f/L3f/ie///MfPvE/Mieg1KmWZZRW+CgRKIJR5QwIJlMRNjeeko+apcpwHtzUUg0+k8ugKmG4NDAQN53qRQaSwnIO+oMWKQIybZAiKoZAV3X3M15MuzOxUSnSmiWoulYT1dGKEFBoVe2U6mjFmjNXIBxGjwb/KPYPJ0Nj4R/IUTzJYEhUBYoMdsA22oChZ6LJYXVoNQYH/SquRxprirVUrRGSWkphTx5n6MUbooirKUwuRPuLh5jmNm4FLC5qjmbIMw5Pr4yYpwrA5ZgQCO8T8UhJMlYUiYFQTgaYATXgu/pvmOOnzyK9TWxQABD2wwIw/Rq2lJr4htPxtLJd8XFiTkQ44FA90JvYMkz8jLSkEHMAL/uKTySt4oEoMW3tzv8Raz+6ChcmA4oidsPGnoAgaZ4vRpWCQHIZ2EuBwxxj6rMOAhiS/g+3q8tvTmkE7FN6ViN1QBDugA6FAUATYqxCiSw+DCaVyWwWyYuFyW8m1sqTPoe8FB/MNd6G10YrBn4sAqTU4fZgXr1KhdlgFRVqV3gUXpnBHtAROXTVJGu+ENS4j+BBk7BrywE0Dtd6u9ruBkW6wB3RQjQsQwUmId2SrA3ZFYZ5zWSAMb84odPBg4CRn4vk3AyoPpCqOsijghpGHKxmaeAY0FCy2FIcN6QG2dxN/drhnTF74pq6hgeNYaumzn2X2je6VURedateGuxuhbnYlxU0CBGo2I1BE8QHPLCmvdrisyxnDDJNWnyYMYj8CM9SlV6E5HwZpfIadVSGrtR82B7wjAHVykdTswcamzRztNB3qI4ZVxiIqo6vVmLAYamL/MaxpE+d86UtipClKFLiEaL8q5qxzMlfb0FGcZIcxn09QeQ8qkIgFIQVTMiXewVKrTs77StduptEiSzRpqakNiyMIghCaRkt6kFL9Ucn82rqlstfWp5tx3bmETfGaLOHVrXGnJStElUTAxY0OPNZzV9fnF/sHe1pc/1ZUG4psBdC7VjbMX1I79VK4V9sHXuN7t1nA38GyxVzzKXjaLBY48pLOx3n+cNXTeiRJSPOrHS8jtDQQtWHzwe7XqRl0LnjO7wXDAZX13dXtzeNwOHQ47OfHB/eX12T5fHx0eXdnQj6xbZBuIfbq4vtna3Xb/a/eX1oyP/k5OLi3ItL7cHdcYyoJleA6zSi0Qnt/aPTdw6PXt1f33x94B2poBkAOrPVTr4apFRLYG3xjUGZmxv7iU1IiF6I9eXJnN7j8Bta6iypsxMIini3ScIe6BMt+dUtUm/ub4e/zz5+Oren9ur6QYfk6vqaLNRE5aBtUYCpMME8vsFVl0XAIKoXeFiWSgp1MLNiXc10jxroTOmZJFlihm2dk10wW6BsmeyzrTcH+0ZGnWikL+Rk1HdvX+8cH7y/cPjq3bs3r0H79OlUUyOy1+cikbeYbkX0C69Ou13G5YdF1ZrHu9sb0Qx/4Sx/fbmWcpln8B5fXZH9nevbm1NvU/vyRX/AZmC6pev1kzev7T++vnzw4gWBgAhFi/v+h0+QZ90mc3QfL+5aunbQCTBbplAwteg/44UdohvpoJWNzuqo00ahrDMrY1rmTUAkMSqdDvspaYyA0DwvgyvGBVHCODVJk9mn68ecU8azSq2cQVxwxyL6KWH+r/tJmI//y++nnwNzSkyN7oI3X4qF4Lp/QnXz9AnNVVnlK5g/n5tQRPU8LWHoZApP0DBtLs9oh9wseDFoqGHLM1w6/pbuWKaCObKZ2HHDRbFzLKOPqk4EDaj7nbs3PMAreQmund92mKeL04gUfk/IaLBffiMEzfzNfELbf4ubg4lQwU0H6Uz8ZBeAn/APxxkMZsZMwMhMTUuvxYRGr4yoEyNC/+IYiY7uV8iLqeVgO8OBjiDQfbQxBhXgC81zYE6J0BQ2rpErlhkGOy+nh9AR/u2S4eO9lQ9AHRP9ahplEITda1bMhyxx5USzvDo5aVZDe8FEvx9qQUIeL+7VWEvkwMPIhB+AhSxNv5MV50Z4OZaymzyZtW3P7diRB6Ys0fkFL354f/nf/d1/9mf/yj/4h//s97//eEL1NU28NXSTvAprz4W85J6HDk+XZ5Ik1LYWhIxka/HTBM+YC/tCbWT0WCLMfbo8mo5SkfSE9zzSmM04nGAhcMwTQIxQIaI2tSgfAsU8kyKzINvM0BqoKjgGPObNhH/YRsamJQJNTprpny+UTVsckmjxBRxhjY4BIICmTrTR7H2rtfKOM+CyzAQ91DLZTDV6lCDLETewchSJCtZDqxVsEZrRCRSQi4oUopY6u7DxM0OoIQagXQdwwQTjKvTBHzToJQUACmKrTtFdlkc3iq8Krtws/sATsUZMfS2pRVu49jzaMvhJQXzJ63OeelI8k+y7yaqX+WfRUhjWyLr4QVFUxQlMyRSmR1e5roWqG9CrtVCzxEEktJUBwY2UyfxjyQAurNBEAeLrKBJobpUMxblA8HR0cxRj0F4KAgLIMvQVzfS2z4EUxrK5J64wL1/G5SpODtVh7FMePsetrB4BOlXIU/tR5lntggc1b5UdQMVI4/+XVkxwmJg26CxDjtVjNbFI2YpUQx8Dv6fVodJAo7wcm3ukkXfUTCi2igFY4kJjyioyJlhXiWWlhApWFu9ADL5S87mhCscxmmrKOeIIKf9jWLLLLCuwEWswpwiFDrJHMWdAK5TuRkbETAYsKdNi2YoRpbgJ5LAAZ1UW64pHVQOW29Qlbah8vG8UH+0jCMW11+FIayueThCbgivRj3BI7WQBtrJ1s8M1aQV/8HMjHdqqkCcMp+EK6NQbMa5GprBUtiAoG6jlrCMkWgbbgPP45Yw1mzAiPqqooJbPyBdwQMPd+ODyKz4n81gh7yRXEwuEF5h5qNBOwmWeFjnMYlEcqE8AjoTxMrnU0M5l85/D1fij9uFZdEiMw7mJEo2YdZOFRPeqy12t2/iLkX7k5+7CIn2IliXKlAyaBZHSzIlMhpimriDUllSBVgFF3LoRaY03L+eVXl/ub+9vr8SOhs12Do4okzU81/OuTcPkP//FH5mF12dy1KMxdRUJ+EC2ZcakkgaEF+ZqVSW8hl77S1+0s1ZvAKLk8dkWvS2O9yWF0KraWmBVj4DfSmPvnb24vC4UeP7Cqn1Me328T5Z2DV9cXv7wyYuD9ZH46cKK26sHbyew+9WYt72+Dhmy2t+o/O3nL7qODmJ9/GxD3gONtTbJKuFDp9bv2A4753IKOoXC9gELdNP2LSv+NRso08eYte/ep7slIH7/6RSbVXrf3FKy9YO+fzw5n+3CzhXddl5QWji6yp05MFFP9Jt3b6+9WO3FC10d3RVKReBzFOPWhVFz+pkfoT2l17COXLQmIh6vSSqwEDI7iP35lpOGXJivdmKzZunt66Pry+v/9Iffk4VGy3KcDx8+vNoV6Lz64DVeW1/feR/w7Q1NFxR9/Hgq1AYQuO/evIWn/szh7u7rwwO9i7vPt9s7XsT7eEqcJgq8PPiml79qJ6nT3qsXDvrHmR/ef2IYNjHg7cMzazCeXZ/f7O0VMdo1cHbt5FUvXbLz+xXS0KL/UKtJ08aTED0yny68YCBiIIzPajzRJrOaCUw3Lnh5CRbACjLI+Z/2joOWPrYBZP5nMd/TnEA/84VKSBhDSzojH9lHUj6frkl6+rEeTmZJFVlf6/nUCuwCBXjYy/MEwnc00qixy54OdaE0V+nBXN6/pHLPF9PMJv2WyEz7HshzU11Rs0mUE8z6UcZKp5SBBsAjfcawVRsntAONTqZLcuk6Zo3W1QmF7ZaxA9cpcM0RNkxivJ+zEjzrE4JZmDv01lczUJNYI+PCrvNW77htbKsZQh3s1BV2uR1hSv3bJrI+C8lolNUxjS63C7PzgpLMmBInhJUMkB18tWH40YG2Bn3AwQavAJn+sO60JgnTbSGwNudVw0ytPuIU9Fga+WdkzUIYobY+px6FiTXG0oqyrGraPWhOaM5RaUC4caubmvLUme0nfBnj4KEy8Ht7oEfDgFyOP2pKDTuvIHwgjgPT8M2wC8JJDUow17zgTGW16b3JgEvfNuXwn3558lf/9j/9z/7b3/5bv/cv/9PPP9UyTJOX4GqOO4tMrBE57pBRqxFbcTsTmd4vPrjkWeoBTWirK5UgqKf0rGkzAFRTqL8FGXxF5sIThuDWguBgQ9TAL/xTwmUBqRb480wKTsmNVynZmBjdLO9cg+Fm9W/FG9LSns5Kh0hIoxXHvTCP5Lol3TaIEALhVoWhRLWlBHOV9QDeBes1avF+4vsxJY1C5lAD9qw1lvEjckIMKET4rho45xWGYQNhZcMofPdgNC911GmULbV4moEBBfoJfPCr+jBK8wc1yXWillxgGJueuJdKP0VKEklUhoVjaM6w0XIJkYPqiS7cUKraiGpN9/wNGROPVUB/uJi6MCxsKgsuigeqpMWDngV2cJckjz8UND6dE44t6gqVkaYkt3FekrQi2O5dLFceVIR/aWt0OG1H8CYxgK5QGpwrkB8vWCo94OEpvTySVig/9ZUifUEo81QN4ZXTM9lGb7VR9eHV4+dwKehxbEN4Q3IDrirCt1+TMncQrsDKMndD0ORJ2PEj/5HsMVW3bxqjp+dhJhFYxjYYjAcvUIsmssFmJUJiqIEBLUHOhviw6n+KEha5NpyRZXiSIpZjhlt84pFPH6qDWU+n60yaq0RPVTWiHYnVDgE1oh1LICHwXUk0pHwyaizLHQh5Z/AD7CQ8XJRhPAXQyXJUMVZALBzGSMZhyZipBQTJiqfopfkawlvlMtXCJIrn8agR1QyR0VGiDbtytP/LyYD50DQeFYuQqk4JXIFSVLoC6tHAVFt+JA0zI+wXHBDIUHOo+XR4b7REpVIwEHzKFMVP1xMHSgctjJr17eIvAASWoGXXiqrUz0GoiQj3UvzJVvGsupZmBhjCNuRn5R+YUZ5v5fHTJeTkxiZ2L3EglRzRwQV4eCVP2cow8wPD63LHrvIsNBxYXFNRpvGeg5IMeSj8jSitqPUlj8+KkHdeGYtDzM311cHha6+C+Hz75eryWgj67u2hAfnf/PZbDvaHDyferpXb8VLPPYeBHjR5ITrc27WY3kQlt0KxLEBoza6jPx6tpn2xs7d/b0j+xc68oEGQ/Gpv78XRgbMJn7WS5MVzJw5pue0CswP322MTCduPjt1w+u39w/mZlUac+5dz5/I8++rFA2/eHuwdbL85OnQmvbM4f/LdOzOkuGHRjnXDgnLBieF91KHcn+W/709PP3ld1u3DqQH7V51LM+3lqzNJn01TeL2xhTpOR3l0nKZV/6KUD58u9CLsOyS9q8vbkw+2ANy8f39iCzIVMCpqWJFL1PZY1o/XhCKa76TCz80tCHcOnQBaA6z3+Ip9U0syE3rRImG9cIIBcvOCuYnRvwj3Ka/oh8jYy5uj/aN9UwGP3i2w65VdL19+9/rNb33zVkMP6T0jWF+fXV6cmiH54ePJz7//1HqLfe/tsiDCll8FGwnRQwDhT/zsO5u5yd3I6Ddvj/VPDMB/c2S+59XHT95g1rsImFN7p189t+baiO/R3u7R4eH7kxNh3dWXzx/MDDz3Ouc7nkKGFio1YGd5R/0QB4VarUR7xzNZxkXHGtbFk+XYqGuLvnIe9WTYneKUmWeIm2myhshipaWxCmZBWVKPqP8YSw60J55BOL12zVflx0NlJNlANtI1GXqWyawy8zkPN1nm/sePlbj52Y/5r2w4BHAe9bmpYnAqMV3LABP0WIi0QbyHg1Tf0dL3FB9Droi/Uvqap7Fu0lfMpPZJqVzNQfsIa5LzF09FlJxZR87Q66tub+2c4VD50kTQHMsX/dt5o0VxoZ0/ZKAbd7C/D4ao1fZgFGoPRiJMr3NvFZ/FfA18MHptEEdRP2EaAnvTecZG8h6tykvHuYiWZDhZijbqjeNEyVDVkLIOkd+W99mxF0YidkiL1GHiLPY996Y83Xg9XmnkudAuRjQhdl9Pw6I+agemmYr2LVgiogngncdXy6AMu8AitNiEEKOopcH73hMCzy8sVV+i1WdtP01U6chXb0u4qzqzgjGgOUSQRyYoYiCPe/ucZU2G3Dytvy4iLxKY8DfROPAKPDuvfTNw8G+JTjfCywB/+aubv/k7/+t/9pd/56//7r/4d//xV8jAVK06l5kYZ8mAKJclwKQrT+4vjcIoVJY2zWUKVt09VzQKMqqG7bQd8HGDoUNdmRAyIqtBHF71yD+mlP4oBZWkpUEUJxQhyDlEdo+tCXGWAMFnqaqvGuYGlWJ7UqnNLTjjrOLhvBgY0GU1g2xBxWRMupubOicQnlbYCESaUONLqJADk4+QOY0Nfk2vnq1vNK5tF3FGQDKPwESOZ+GUPjfuWMpgjcwo46H0GYb4xNesRRNQqiT+qowXxUuZY/THoylgXCNQitaHmQhwFvo3xDmMWoFNxeEgmxuXEsOlsOpm4gSpCmU3xWbhqAqf6l3F3CpKAEkLJUgrX8BGEUgt6ZMUFF2TYfDEMs4hmlUXEDjI5gTeetdRNcGkx1EGfOiNMIsGB1vJw/3JMD82hMSfmJwVRFqAhWqUc+YdmEqpCoebf2lPH2kgZIZ+tfeg50Ny9y5FBmvA/YgEioHkobbcsY6sG9WKJPUkzs2Nh34O+rKl86Ed8xIiNAMAA/+jLQ1XMuRlXrCm4hScLhVOSQ6/TdXxMqEa5p+l1UlqsQCUSB22JvjwYAmzsnzSp/q6iXVkXeBwXrV+FUzzZEM8I+nxCtZBlx5Dlyw3uE+fJEwUqaKC1LGLuLNIS7+7myseTBe2X1QlKgr9ZXDT/0G49DX5QrSlIGQgY0oalkjcKLWJTqs91QnDUX7UCWbwZ/1bVDB4lMJl0BmCczF+wr8bapErlGUhiheR3WZiYIeGalK3bMqoPaHNYHx58rjT9YJnVjdea8jiiBJWcJMjMW98Uw1nacPzZj9jzAyyAihnozDaKwM1aJNr3kFTlQQxGPEquBYfVF3ehuFlBhLyfWoKxECJfaPHkJAvbseumpYhOQ8lRbWgSYeosi6Vuiqy4T8cYZOI1RXX1V3BGUAq18g0arNPQOTEMkBiwLiYQFQC6mbZbDmF4Zcjg/2W4jtKz55dmr394uL6UuS2bfPd9qu3b96SkUNm7m+/nHz0ei4UiRuczPn13Ijx/d2x8HnPHtwve86XbHeo9vj555vb/a0XluRaAex4hauiT83p7cXtqTWcew7+1MGwkOjZ19/6kz/DMUrz7U9fG6j2qqkje0+/fr2523p/dilGcGI55B1+o03BlcOj7W/edWCEuNU7sPaO3r3/dMeObME15+7A/6/bL64sysq4xNHZirdzCXmT5PMXDh59uH7gd9FOzFbyCAL2948dHOSnjoqmGjfOLq+EMZ7qddhrYHTbK3K9XgvG3nUsbAD/VycXWvzMl5tK69ngCyfnXHpT77Ota2APHI0k9Mdzy6OeO13TxiTqgIGGJTssvf2RIn5TLb2oyJpsT8amsuP9Xe9t/Xx+7VjSrbtbw6Rffuu7N193Xn24uhOKOBL06uLiT//Jn/7iw+Wl1T+fH3a2Pv+Jt0df7pwypH+z5VCj+7tOSfJTl4aC20Cpu2ek0gsE3r49Mrz5/cklcm6hY6U1powBEfTrt7tvvznUZTIV/cOn06tLS5syA4Ebw+UMqBWeI8zQ8q6Joqb1n1/Z9JkxTBA8fnlZpmxopoT8gJUh7KCXpY0bWS7EsHTt/fbLgFo8lrqmpm7mIwMcQyy9JE64a6yYcqThU2bzeAptDNfDBctnj7P7+fPr12We7v944uAmz4BeWd0OPCAGtwAOirVXLL3ryW12n1fMJ7h8lGf9WNDcL+hPUBfQaJkMmypGweZ+cT6gYE+ENI4izTNdZ6VZI9/Yr4PtzC5eds7drW3LKo13GLasYSC+JhC8AFuDY1mdvqygnEqbg9RZlT9XqatWd9RiibrLugFxFKCHh+3O4OfikCOEbbmXOSjUUsJisILs5xYVOmBqnCEnJubOv62wvlaFXXLMs9THDzbIk/Cmzv5suaQxiQmBmlEAosNSOizYPADGxOPWjudOV1sgajfazDN643VOega28XyGmcdlpxGFI9kVr1hnM0davFFwWZVq0l1HuF6MQN/sSLV4pP62OmAbblcjZDzzx+qWXGCk4cNVVSAnDC0KsrrKwdTPOoJJfUwSSDe/+nD693/vf/7P/+Lf/2t/75/863//R9d3OY7IMXeZu1eESzE/kyKkVEYmljN3txF9DjySKEraMEqYIGoCwJCtDI1/1YIMUWqJ+GWJapnWa3gYUbOAB9TpaykOstxAdxOkaHefm5sWUBLhSNUrWiYQQrVxtW6DWJm7n/ZrQEQboSgVpf5N26m6EOBidDBMwDhtoJGypFSlkJaS6TRPSCgRHWfqlKZJNXPtRCqnz8Ly+ku+Vi3Ds0S/csYY9hLyMDPF1YQFHavYMBMcfFixGZJIc8q6QUv8HPnSspELweX4JyPmxK5ituFV5i7/KkJB4t4AxJfxDJFQnKDvx6yTW5dsMshJIdW2pA+rEGSCLQWfjopc4/pKnfZdkWQ2eu7OY9AiU/rUu9RmuW6pMq86u497XXPTRtCgusbQ+u5JgFQHjhQVLdwi0C8pXYluiKYAG++n4FLegFjVNj8CR3Zzv+BvsBlQpURylyIrkgHWcAMntMpCXvFBKmWTc8AXXMIjLva0a4GJPQ12FO+5VXvfxZkpFSFukocJnteuDEGetaacutJSKEtOF6O1KscY00jl40XNA6B4mLkspntU8E02GBr7Mk5qR9VKnT6AR4vrxBD2Y/0ROdoArPx+NmLiGvQCODWGp5wjN3n4Aj8XIcAs8iKnmThPWm2iiicuDa/Brw1wFc5Ww2AGGUZb2aErmodlxc2jx4sPniYDYdQcH13tSTsRooTUCuxDKKDcpW9ylZ9o8RrmAIKQ6c6jpDdGDogUacpLDL/AEHkF6U+1jLS7mdYOSu7VMr0JNj7+4gWnbD60Rz5dBOFvbs39tWp5XAz/UdSu1lG1/AgRDw+nmztWrXYEhuRIYxFbMzx7z6FrFEtFEU3c44tBwPBIGb2uilImYdWYFta3RPji+ciOxoUqPJEah9ObpsBAAMqveYRDc3Gm1QN/WUcGs+bHsxRqEUUBaAAH8/Ll1c2lUFEE0LjN9kvrWLRYjf95ufLB/s3tlRP0vYbu/fnV2c31zee7b376Vu9YT8B7iyns28N9VuHdU+SnuJbTUTKHh7vm6mn6vuhCy7q1dfBy+2DrpZfZevOU6IG4+fX9/T1vy7KdVxb18nXa3JbX396eXp45pdQe3F5EbGT+4dm+/cq3Xw5f7X2+za+c2lT7bOuXPzjb8xwTwv2VDcGO5qFaWGB9cyv+kWzQo6231Pn5lhH/Hz5Y4m8XMaI+v3i5bVhQ98ACJIuFPn461YxzyWcX97hKDl4XgMfn53B8dNapNwublBAR3V7fdvp+J958OTw8MhrpONV1So/3jHpjloNHzQyQC04a9Udg2yscpNguRMstRimyBy1e71WlPxA6PDhoGruXJfVGXqH90cEhV3xuq8bevnP3Tz6eWSrxk29efzy52Dt4c3J6f3LZmxZGiyxEfvar88tXuw5f/zxzGw+vj3YPDrxv4e7A0qD7+2/evNW02mih2wr4y+d7tgLb/72zvWcWxVZjmn+8t/POAVCX985zcrKq8xqpid0h+GM+RLBoRZFuBHMUL3kjNNzN1nnZWi8iMBHfspO1xJ8BNcrK79XKavtFl602oeDj32ZQkzLPiLXQdLzwOC76+3RlHVSXLlPp7v0fR4R386MMMstTkVHxfq6cle3pKti3spX49TVpkjdXN/m4rh9zuoE0QJnTwCzPXGUfmAuBKanKp/JTdT8WShvPUwJQkz7Fg1oVXd31Q/VDYY+Wz5MLD9HIs031AamE+KiR3fxtzaPw8cVzIbtHVKv+oLrg/+jIn4aU8m9tMrljmcxHCQPq6jSHB4diI+MXdnE00VPVjVfYEzMbqMjdjQla0jCXB6pXQRivF0YyN8O4uhSKwxAY7ZWWBPqdxOPjmWWHNVF8hckopw+jWBNoJwmXol2OgGjWeFmcZs1gxwQzGJGprTK1eJC3C7kF9xiQPiDQdPG8g/7ejGVNp03Ad44ffabLgF2KzN7fViDRopYrtq/Y5U2C3nn+QnfUwWXoWGrFC6mLNnp9B+UkMc0UtKziU0Qx+yL6siFhOK7GZDHKiWJGkcCwcdPatdXJG8MmxjMdaoGAt2Q8/3Ry+w//yb/9s3/t9/7i3/0n/8t/+N4ABPe7AmKNRpOog28tXdHVuHq0oyBFik+J3Y+6ggneT3+FStNYwB9KZudGH2pN/IQlVzg5Y19aMQB9qDreNhrqDrQiJ3oISj+VTWN5qeFFSLULQu3ROvPJ5W/VQAuQ6I28aidsbKCBnk77XmOpnoGp0laqQdXPxa2i5NlpzdxDrQOmaENjXrQ6o2gTBf8Ow2wcngMwcoYU4NyKzmsuQ77eRSHWPFWkgjGyghO/iJJmtx76SmIo06Anx7kQEvmFchXCjNr0OStcjzdokqcp1w9XPLYwjViVmMafyxKqafZc4OGg21VjjUEX7PpQi0fYNeFKQcjUkhICE7aIjJ7AShxUV9duMB5YsSo5FlCVc9yvsTCn0sHfz43rGM6rbuVB5+RXZHxdgmb+I/+lD4PbYJLPgeqQtuKlwqFMoIFFtxgVPkNWuiF7hj36Xe3pVGiE3Gj43OHwxjNO0dRD9T/yU6sz7IpTMkzt6y4gqBh5pGDrJDRIgqCIP4Ax3W28T0OQkEpsCuIYss3m9XvsuTKjSYkv+Y1b1IL54dcUjXFjkR2dA/OIigZ8LAO9T4lTR/ohoSpT3RaQcLULY09S17kASTMm9o3F02meGqOFsPEXZPYgeGZCkDT2A7TJXKs0YYaQEMl6M3L+ZGEVtAlJQYNej9jzXNgqxUjM+hlJw+CA2cKXRSW5EqFah6Qw1I/In/5GQ3cBRCCqE8BQk0IoRxUgU0Q+/gW0iIy3hbAy4/gGH5XAc/SvVl+D05sXTU+DE3HDJ5mqwqfUkHTe3O52XmLUqiqDG9szlpDPojQIoYs/JOJLPSOjjVwsadW0DP8r35DDnM5e/yRHxjhWzyoQG6YuNACIiqptdKpGyN14ZtTosAYUw8SXSkqHs0R5UN3nU+9zlFXoSePq3kRzOMZ8jOhESNFbuJXDH6CaXjJB+ni6OIo3yWAJa2YGIY8xsRxPlmq1qvXe4IXsM7WimbzV8ok7DesOVvotyHgUeV9++WJQXCu7Lx5sgbpg0cEYthpbbXW7t/3y08nFnOvy9fLs4tgBOw+3F9f3RvqbBHj5/PjtoZFpY0UacsPx1shwDj998+7u5vrk9OM3b17bJOxAf+b16dxhJL0uVHgg/qCSotXGKy3Mf3zx0+9eayQZ4S++f88MjDmKcpK71lKj+XXLnAANMCxFIWQ0LyGoNQxvOT5UL86ujvacx+/0e0vkvdDqyhzPu9fHn07PHYloFVQ2+Pj18h6Td4Q5z+4dMHpotOjKqLjXDD1+cc4QOehm1PPaQoujNw0Y6k04HvQlP+3Nv69emCdwkhC5eylaI1R/9PG9w4HMhzMLIVJhUqNu9bVazOOFZ05Nvbn1KmI9NqcGcfgCZbpKWF7wK+jzmjNDqk471SZ8++3bX37/0WH8Lx4tS74+PN43rKjn9Zs/+05k9e3xgYmF9w4AbeDwhf3Z3pK2K9B5/swSI69SnkVZgvg8jsmNP/zVJ6+f4z4s79621tob3F690jfQZ/D6sJ9994YJtATCcixSMxLMP1r75OTEdhIf0iZrpgqexPRfrAOJP4afv2wZcq7l5qMIz0otjYjY797Lgmkso6kXTf9rOehq+sl4ltksR0l7cy+jxWOMGQOAy5et9B5nPh4tk1gWOMmTPpbieaU8K23KP31WtrSuLHbV9pQU9HDs6ZRdNr9yLsOfEvLLw075ohxaBvsEYxUMQKmD7sB7Apv5Z+PlmLBGcbf8fBHP5pJhMFnERgc/hhlpYfHKzHRJkG28F0HhMOv1jxo239XGeStzYv4zh8bu7++wjoLa4PRMe7Rwyub1jXvVmzDU0p68CQG5G/zbTC/itp/E01zNLJxAOeDldGf2oPNb2ucHCDVjp+Z55hCiZiE4QHnaAEMwnWHNGvKuwILRIRAWpNnUXnvUuDh7u7pqX00OzHKjh9m5q4rWC5l2yF3hmgU/JG3ezKm8icGls92x14346grNOiVtKE40qK8rq1VG+6sd2irUaOjHmIk4CWaAkY3hStRiq3TqKbrVSkKbA9SqOERMvapZa8cxezImU4G+oYtYyutlEXw/ITQ6jWWCY47q5OLun/5P/+5/+zd/+H//rZ/8P/8ff+ZP/cmfOeF3WhAjvZBMMXLXms8UAK7T2ahGoi0S9aWy9ECVWVVS9tAPBbUhNRxNGtfuKEWhsNEN2jbWJmfGOGWZJBCFCX5OYvx0K0/tkQuNUxw2AfeQq5ogdYMA7CBMcXJyhmJa5VI/kqJZc6q3rwhvIGVsf5bObuDDYpq+kEjnqpWI7I9SsFXBtYN1JEbPEUVzfCanmvQt0S1kZEK5usGn/Avt+IWupZ0TMMjmL0xGVeLftLP6hGikjegjM6lVOlLQUsa04eNiBbsIAYWXCi4ohCxbzCGwJRm/Yp3uA7mAOWJdKyaquOLwiLUT4vvMJZJRy7pKJTLID1i5PCXqJp2QNeQQQRyLkyFB59zI51d1PX/ZcbdLvghI2wtpQn6qRi8MKzluZGQ6rizFACEmRWVkgldkNvJPrEANk3PpMg0Zi1HE2ADlsKhWD5KAlBqYvmJLDlPVQyNsfq1jJZMrkHMxnVziZAjbVT6UpA0VGEjl0g9jJTPGze7gGfCQrhY/qUcI1E+rOhXHzwipHpBkjL+UL1wjfjP0UiGUyzVefrAJoeCUFibqiSTGCZJ0dA9yCc/zaqw8lySbuxKGHZAIDxWSaNBcvrNY5QQEebp6Vf3UMIOL4CYeZ/uv1htuMquikipfdaF9pKu0FIxAoAyxbd20/Asg8W5VgLnIgbACSofwyEk2/I3ZIZygB4L70ekQBibk+Uu4L+HxmIpM5hAKAcXatdMpuatMLBjBIwFqHHTwB5xmRvMwgBXE6mrPrfsa5uBD7Yfwh2sYDcDTYUAIQGOqTtjjpzaGFAqjXhAGkhIjDQekhnkKkb6qUAYdpITIG2b/Y5bcW5wofTo1ZZYz5jeKFqjQt1gI3JYttdJ14Mcij+ClXhWRztQYPrQWzpFWPZIJtJ+aRk8NmUtLWPGoKAGn9Y4AjMqQ61JEZnlUAj4sJEbRqBYNGdiFex458Vskd3dz2w7aei8ilZSn3trW9v7h67OTj16I5UQgzactAe9/fualsN4fYDWuOqz4xutp0Tt9TxfCOLJzePYtQSaUOid1/urCPbfCv+EHC16+Od57ZovBzbmR9Sh6uBWUaMvJ78BO2KPCdGQfHh8UNGw929t//u7NgbNt8P7jyamYFaMM4GGfxt7otdXNXn8bofWNLeixNr1hJz+bQ7ACV+2fRSGtt/EeX21SndIv1vmc17+4N2BZV4HQz66uRDjWyXi9AeQubq7fn5wCYcifgJWSB6JGxDEQQL3uCf1f6u3oiHkfApS5ZueBErqNk3uv9nSZ7F5QkfXHVlHjrUNNiSe+WSZsxdTBLtZRdU2HzRW2DyROE2V0UqhB0xn63d3x0cHZ6dksH3J40fn2ntchffWC3p/+5G1Ho97eCiDO7TU2ZTMjmfkuK7gOXhw7oufZi+9P2uo8nc1nH88u/+OvPhGOFxxb55NXe/zy5tiykM+nZ14c/PD6+NAgipc3IFgo4xwh8Zxzg2L3F+um9qxsQjun2ekcnfHjhQaOG0qpIMw+UmzD/IYhFZjxBbLMgARMBDGuRuiHtghMecfRQDnJdflKiddVwdVUSJ/nm1wApIkrZ1CmbVCoFD+S2DKoAFXH0195nv6CmL50rQx9DdgNZPeTeeWZjJv8PZlaGPR6+iMyC7Fo6P/66GY5f1WtnKGpbB9DfUFiVjw/fdfDpxJEUOGcqFCVsbECK/nbTFJKLn5YVqz+1Ypf/VJ9USY9XqQvGVis9X7cpSKWCeXDCtQee5mAQQr9vbAQMwAVi+364Lhkppb0SNdfNC2nF4N0LA8/YDeIzt+8WdyrqcnapctKAUz6UHh/2pbVhNlYaylcgZkZCTGi+GCOK4CxjooLkkyPzKyOg4XIDxk6ErwIXVKvF+sJ/dtYX0NgKw5KvthyQKVMu2lqdDinqbSoL4r0ps3wOY403+n1vZYwjgOWB3nVYYXeKCqXYnAM67Q/LM5Tlb6CfCNBHXdojbhP5uyF5WhOFmuIama5ATH51lOyJkEHmyYqHAoUDng9yey08kYCcygCslaeXFzc//6/+fmf/xv//Z/7y7/zT//V/+EMLg6YnyEyUIiiOjaDSoWAKQUnnqRrpOiPbkm/5qIZfedbcoAihnTODYAdvwO3pANIoIIll0YkP9w1beIwpmauZxUurogjAxzDahllfYrV5K+pFUhNxC+b/ONRil8hsRRfhmDV8MV5TxY5pCk/XySpv0hEF18BgYbJKT5CFEo0E2UOXoNhxDbfrmmYFm21j3mc2n0rUWe6DPBwM87YYYAFD8PcOFivD7Z+w0+OeniFBGmOXAHposwxZ4bth2miCzyREoHRXkjQBSMAJfchVRV5geEhUianB1BUozzyS+2BbKHBE+e45ElRk1QSXK07bOE1QqyLopTiSm2aiTkyaEgpuYBnRJa8YDJdo40Qw62CYwuNkbuPzvLkbeA2WMGskElxd55Xm48lqGIhT2lRslAE8tp6ebAh0gcHJAVl1Kk0I9cBDJgSvmVYmXGA89hwtccjFJnmAgJ75YlpPcys/BttrA65mFuE2ZJnhGNelL5AqA5BMtCl2KteUVkch3/eT0qIZFSDzQgmC1k3csaj8Ygj46UWCRUdyi9BBpCDXZodd2IZ4Mhl7UlzQrfBo75IdCVaSFDBmFK2dC5GLaY007TZ5wpjw2waYF4IvYtrIanIyacTwOPCsGvYuuFvOjlRHZiepp3T+ZNd2YSBixsujIHBfJbcebCcVDmGZWkG/Z5ZCIkiGIiOcDsFIiuOS8XTiWYUVygGJ5njWzWhldMPebUokq4kjIgafNKngvr6O2LcJhlRAs2pKAxneIxG4QSMXNPJwVC9zMkcwrGDL0GgB6Hja9iWyqY4AUylgBDig4G3EWUAYy1Syg2lrPMJeQUHTgALeeAMxye0ZQt/HCAmaFSrirqnFamsq3RtK7LDLxSDn1/uqSvE4QzKKjzZCAztYcXUYzoVT2EX6ahY7v5HIDKnQiNcmSebChLBsC5U03zEmqh99uh9nlhpFYo3WB3sH8DIohHBwenp6fO9o4u71skc7O5ZJPDu2zcPj3eXlzdGqb1ZVkfHuY9Gvq+vLvesB995+enyMrE6JcZkwvZzQ9KmDg4Omhk2pOJFYq/3O0Pm/cczjfe3b955sY/Q+P3a7UvWrLZ928n70Q6Ch+eGxgW+GlcbBCHg6J05UDyNbvKifYoPuwf7X+28S8J1veJ1QzjJDsARIIpdW0Imk/hW6Fx5mfHxnu3HYmyMoGFWyWOJ44E03SkR9j7b8lqxGzsftl60HeDRi8q+2HNgMBuB1LdgSoRUz+GZeMsIDxBegLwUrVA5ae/czLI9ePld0NP+Ni67WSkxgjjbo6A+ftl3/s7zrwLua/semKoOi6XYz569Pjh4fXhELSDRSqQbw+pO9qy1e/Pu2DSCHss37765uPp8bTrk+XNbkG1BsBn0aPvZt4dvvr7Y/+Hy2hsQ9g4PhTNXd58/epFBTayjYC2/plKP3xwfaCY+XZglIBHDtNuGYM/PL6mE9eQORyUCDKd6716/FnvaWu1FY0IzQG7vbvD8YPvAEnTaS3MYLrqYOkXTBDMBlkrrhbUOXUy2LSGgmNarzJTxajayimlIRu2zhmww21Amw5ikdfPjPSh5J5i5Vu5VZGwpTa+URxnNuta3tPXXo8r2cDJOrqfMFQ6Rp8yT68eHUyr3ODXTmvI9fVak69cV5yKqdOgad9RzHmzdB2T8+caFUj2Pn4pQHRnyWnXRzeFZU2a5i2isxh6QqSqO4YYQXGzdhB6Vmgr060w6AXZ6fgkUTeDebdHhWATl1Th0+FTccgG2qF9alEE6W1vO2rpjxPrQnYLiXH/LUWVxQLAVevWfjfzbyMt11zkRZr0UynvTRMuHYNhWmbqEhjn08IFpsaLgz0YSQXoGx1M9mx67bMihcHYcydyoHiG3oI5viV8NHNvMa7rJNNu2xqqwG5tGeViZ6igbFw1HcyFcjSDWgjXDqpawATXudctcJ9XEO4asxnxjw0DY4kykjnnhMYDswOg1p1HNxvtzrdyzRptvoeri/7lRotWkZIj5pMDL4wUqRluef7n3ThCoWSQzLVAbLULahz07/+YPvv9v/8bv/Zd/4W//4//pfzu5tguJkMnBc2jUQgFLZhQtJixPnjYwyiKIhK7+0auJVVLI8HRBe2UAb5pURaadWnpfmyWHh6nxDPxFqJ8V55PTt8nAUwh4EKXZHrCSl3arK7uWrzbXJ6LDXkhTjWEBDpxAQI7YQErU1dhNC5XbrOkcL14DB1dSByIi54LbuouOadc8Uh8BZRWIohc0dIM69JPnFCHfAVik0PjxKBKVmWgy1s1cBMc0YSVVmEpFxvU6SDBaalW0JsUh1eoKdJyPEjBRGPCy1fFYbVQ9B/q1bDx+pme4o1QRvPu6JQMuaP4hQB4X7g1wmBerBEaHrp3i/VPGHxNO6wfflGEKQkDB4T9+JFzXij1UJbNaaE31VXGQguhK7ZIjqfnC5jIICHXSrNPLJJECvepXSFF0KKXQ8Bk/W3fngTqCO/9HbFWxCEWa+/mZY596B43Rh9JXDCk3VMCavxoVz5L0cF/7NSTIIg2LoAyUAnSMe5R3ZZiKwHIFKDam2uUsQ+LzwKOeZ5LxYXqxi6GjbGkknPEUD8IvJtZ1Vr1PB6G8fX2MEbDEcADBmkitCaFV2aLFpz9IZG7DBXyOKsEBj2L9Q4OXrHr4GbpKI6+1dPyiVY+BDt28p4cBU6qNULFngANZNRgBW2XZm7oS6HQ94VmEOZ2O9mYNWxPD+M0FQVr9gJkZqJYKY05XElBTT0MSOqQe09K62FpZRZrq7Updqrmg2SMjNqNdAZrnuRhxANaBGWGsMCeeXDcEskyrGlrDU7VVwxsSDPvO3GukYKuO4Ud6KwOw0JA/ta1QgbIa3WfWJSSFWDE4A5ZbR84M+Ucv3o5yGPup2zMNrae47SkjGYPfzDMk+boTCQW5qpRFdfoyI9PEMyPTUMplRDsrVWwGP1SFPzCFzXAYboonXUikIWGMP/3F/5hLjnWhiMlzlQ69Wf4Q1bYHEKQHRY7mubvxPFWhVA02g/ZoCQ3u2Uh3f3dDQN6hdXt1yfpvvfr1/vb1wc5P3+2/OT6wTwtdzpo/tqZk55UBcqt3NL520B7sHfZ2LVO1neb2YP2J13t5CZYtM84CvSjm/mz47oVD6D9/ff327bu3RzfnlyYyxeJeCWzYzrrbxvbu6lYJli1TPtx5dbj98sCxOXcPF3d3Fzc3WPLaS4O9KvjmXl+t0UijgF++ekOZkIGT0tiv7lAjjo6wtA3BVmIDhIWqrcez9GZiT1PGJgpeiaLkBx8stVvLfvvwYF0QNztvGet4kE8nlkEZbqSi6QBuG3nFL4E90YApGHIykJ3NdQofHt/u74vMCI1deAkyGYldRmw5dzsuBDTsLoWnJjOy4q3Ad9YCUx49PYUd9Lm7SxHur++sXNK5MoT5i199eP/p4tLhSI00PgheMM1eYgeB/snf+OnZ1eWFVxgonoNy3OGt1dp/+rd++mz7xf/x/a9uru9+cnT8Z376Ux3tj6fneGLawfYPiw2Odrb/9E+/tZ7BUUkOfnfSokPfj3Z3HSRKPa7unOwqlGSPLeL07ugHKRdXhy93zBFQK8etbOsMWk79aKHQNQbIzNfwBmjDnxS1qJDuFzzioKFU6k+R2BQlTAExK1MdpU7pWdCyD0mj6LUxeeb1M4UGJ0PoqQKb9DHlnvkbON2Ww4+Vtm4nZX14vB5NPuBW/gGgyHxvatmU+jXMSSj/BpkQ+rHC6PdkADzB7HuDc2UXpuvhqjgzlGO5nQyfvmlBfGe/2XhuB+vS7upyxdnGCLqMBfI2WKOxBkRwP6Wso1CudXGagjyMqSfhuXWAQlpxthXvIhgvz35lmXjux40Fh3IUyhT1e1mvSby6HWCOy6wZhg8nk6fib20+cRyYCShVWCRn3BX9Xxw8eq8thCQ0B8neGQfzuoXqnitURVd8vvMJIFqINo6Uq+Zf5r0rT76u4e3ibBP8HeQPLm+2ZSbNHhVvyAaWlckBvaIWxxaZch8n6UXm3s9da7U6/IWh9UpBZraRwIA1Sg2TiQV7I0EtBXXVmicMeGtxYi9HKifmK1LD7d1/XvSp9RhVSQdG9ombGgzsBD5F0DdDtkoPIxRuWbkjvz7/7//hw1/9+//8z/93v/M//e//wQCCpgHikMGB9KgOYdoynFcoHQBiOfOkMA/VCHRcnJAaIq5paBp4RqwLLI/9W9em7SaAmtopwR4pC8Jj71rN65E0FCZGcquhXOo9GiWFiwwHtc8NUGvaampJ8xWOBPIf7U23Bz0PkNH9NNwxepoz+ICmPunuJrkFaWjkPxcH4jCcuB7HygZZbREWhjEhwPwMtAKTcdWHSdDDScWn0rqd8XCa7PUMmeXfXJt4YBAGEtiuyTJoY3v4ZbPqBS20u2L1YlqsgWIepKFGikoW4e7BxP2qi5YWibzc290bwiNk6CKRWaeCxGyiQiwoAqNwZDHMlw5vmPi18oXEFArnBFCVPuVRH9ODxmSPxXBj4x4hf+UdHnI+GQBtTsrD5UBs+DB4jzJETPCHeT1HWXyBAGyrPmw3HhshcTfWjmhiTwwMscCUDaDulCmn/8OvgTzp6fZIYdlCrwqRafhIIjkV14/wAZo4K2H5G7hRuoBWt1SCSQrdg56kU3u/ImT1McPDf+liDjvkDLFNXQ11DKZ405WaFtAvGqp7sGGKNFhVjUagCMFzCFnySjbDjnCawS0gBESqRpdH2JvmbPbMhVbYTUwclsoW+laXUFXVtKUmIuZKLmtKX5xQGC1pIJfMm8tcBVim1lm5lZDy17QwdVF+YDHLhJcK091mR8eYa5zCkbLKgBryF1rBYkKylSdXu2YSluTAccUv8C2WAAH4loGSXuRAdSQSXzbjBw6cGTVFl0CCxwEKnlMyLmVfcTiKYS4dMmowZAsbIpaCReWfBlUW3LeRsRKrM6P96l2DsZTHg5rmhjVaVRJhiQnOI0HVlAsnR31jdzeuoA0fpvLCR4meDg+f1Gxyjix+VLLUFtDlIEBJ7ziLp2oz2BEHMnBGxRg+rMihTF+CxYaD2sPTH3FrCYe50wou8mVqaGz/6DAjsN7XuKw4+O7z+eXth5aw6xhs2wT3ykIg5/F9eTze3xHvOj6khvxrDTwbf+9NN1tff/rNEaYau2k5+gzhWD9jmYA27s2bw5v7m/OTEzPzrfu5vLM39uLeET1frSzw1jHLeFAJTzGMxf0HB5biFxb84v17QrKXFwf2Dzrr4/TUK8naDmgMEjfNDEAYT0kqKaGipcbO69wTzRN+McrW1sfTE9iKbq3PsXzi9i4HzZdhsg68c1Eur1uUpHWhHogSGnhncMdB8aejmN5ASt9bezm/sbc4Y1mk4Hh/35uwsHl6Ml/tSTi5vIqlThh/8YracAUwgV8HUdSJtJ3ayid9D6Lx3iWvXmi7Hk3e2d+1FlkQtzdnowiqfvX+1CA8XKxl2nNYp7MFmzr/+s3h3mFNyOPZ1TWlfXO089bb017tGB3+2Tc/vb59/A9/9MPN9fVv/eT4T337+uLk/MOll76+sm5JnyTCd547B/bjxc0vzm8umBM7ve2kl/efPr3cdfz/NlZ8/HjCaQlZ2q/MEW497nqrs5eCMRYn/7cFwqqMR/u3qSQDQYeugLezkchMt2YBqNXA5pf4itY4Z/4SbMHMaruyR5df2VaW2sVOKf+PVxnmyrA2BhiLZVCkmuZmk2VcxhOkYPwI9keApaQx8zmp/5f88+TpAemu2wXZs7BYxfOW7gd5GI3RTeZwLlfZfkQAqhtQZN/dkAPCdAgHpQ0QxYc5FUDXciCTfwbqGlMs7uFyJArxaw/rb1HPml7FOurnpTe1tSDIc9k822NKVJFHsIPFkJAFPb2NtZF3+kZR/euAoFb5dzAAHWNTesG1iQL61hdZ6/PF3JdOgU1E/Ot+rxKk2U2icqRYwAdTCbAQxg/6A9yfIs4cMohwc+PNFbXcSiFExyMnNj1GSDJMWs/wUY6x/Cgnr42CEivSbxFhKq6Xoq7Bs10BfuqICKHAhCkGl0lo69wt55AOs/U+8Eknp36Qc8aMu80MtirI0T9dBcLS7a+9yWJ1sRosI8PmAGtaag1l1aAIEhzvq+o8PWdX3FlegykcmmzMvyJ6Cg3FFl3J0Viw3w1dewECVhGWl598/tf/7hd/8a//7p/7y3/vX//bP7QBSqdDrflvayJrqhITmOQYDi17SIOkuII86wg8lQ3M0YFlNZVYOd0pDyV48JlkNJZVKwNzyUuBq2SjtAPBfMg0PCoOgkvoMi3pMLXOQ6i2yzHulViD0+oj9+7meeJWT5ocVZ7MSLxi2X6xC56EvLZk/K+U8GpbObCtepKiagUA8tVDM6uJuQsaVTfDtaHYSJ+c6ZicIPsbATb6kFfqabDkHMJDI0aM7OBPtQbuaGF4ljNdYGKzktNjnJYAh6iWo6XadSdcpA/Z4NPFLhGnju0oNo8xldIDSOYMGh2uzbq5vVEqHdYHG4KUBA1irrlfSC3YCZQf7lnBwIhi8I1PehR6fSMa98OfBCeXGgFE7wQmo0XTqYi6IXHVGL0xffiTUqCUPUXnuuDTM7QMjR5AY0QauybPIJ+TDCG1+gSvz4Ec5YvNT+LradyqCB6qcbLLOCyeAY5SpseuvsBuOKxYGEBpci+6Vm3yDMlTSwRF+UKm+GMcN6ghFmgSVTEl8AsOpTWdFK7oks/FeYgUEQwaTyGde5ChsDiEOMyuAGYR0U7xVgLCytMflAP/JNwVJtbmQk/xjt6eQaBwC8LAG/VSsAyrPx1OMrpSxqUuKnE1ONciKrqqtukDNUeZAvIE8KZsE5dv2OFRbK2u5dT8KtuqGkCPFk9yM78WaU2aCrgVycYE+prpKnYKIc8wSHEBB3j8NHXf8GEEl4ayyulIyAApf1oTeORuNAcy6EEZUppgFyJ0o/obt4gv6oPzADHeMv0WmQZvZSNhxI9axDdKVmServhTdhYUpgn8Sgys6kTjuXpjdnFjeuTCgQEYROgt2XisIuCGzDm6GHr53JmFkBoweYIFhyBOF4Vzkh6QuQhx0I5dodAzTKgnMNjNiEuOiCcyuZyuDmnlT1h0cgNnDbjK4woYShUZTWhvnwoNp5uuODo4oIw1onc37759d+5FsOcO5Hn26ezy89bjwZtjU9eXttbePzhHBm94Oe2aV1kNi7wbeM9BrsQpAnB+33ffONn/+bdv9w/3vKz37q3X7To8Xpjw4oWXap3d2na847ViH07PDKK93HlRGG2pzYPB5p3vvnlN+Xe395nRyadzR46aUjg/uSAv3UpBCu4JJewuyEkKKD9/ub65Fh04wuj16yMO1GZfwbdlBgr89N03OJl61LX8cnZug2wLcN6+PbYt8vtffdCTN4SJyzs7ezhMllr6xPTyZQvZRRC6f4VByb6WaR1ieNc+V2EPWMJZ6wkcuX57fe/8Q4sAeFhBUAskWmmWbgjNvUmgQ1Ss+Xm147x/IYjDgvZ3tx3h//LljlOGDKYSKNn91m9+p+0wF6FTASWhyoG3AOyac+js6p98e6S7hvRf/PDBaou37w5RhidXd3cHh0d6VT//cKp39NPX+9+9O7AH4A9++PSD3QNenuygpKv7ffMA2/ok9+dnpXAKN5f3xoKZli2jFhFZ6GHzNEQoCwvRAxBdGt+w9QKZljZZJ6FbGD/D3x7ooiL7EGigRkucWGDGfl6YLdFXaHABQ8SEutVYy5/hbv9Hn+kpbo+Wp7LpaL/dLZN6somxjKXEmd+6ssSKVD43sMnsZrIH0DWWNXq6fq/PMftNqaf8oTHpfxwCi1aiJ3+sisBOynyH93ILC3Zwehp6q4q5m3spnsJ3IeA2Xoyls+gsd7CoWZk6RyXkHwqD2Gg3jzrThpwUBrBcLOaF/ONUeS89NCrBi5FOWuqdbnUC2sBTdn/Ff/Z7WAToeFCnggry5bNUzIoeR9BS9c/8hNf20Xue2OsiHG7F/GfBRVpaZDtdWoG2XisyRf1uBQgaT0rf8HkOqhV6XkTte1PsmR0+e9oCDYHYxWyeIhighcrvWhtjSeE0iPHL+EuTSM276kFoy1h+KoJr9kfoFvTWMN7VET3eyJFOSq556s0DprjcxUFmC+e6JbOMyj3z5RGxBQcVChN+sLEzSlov185idSGhXlbNqB5RS3Or+3PvAOFMIbyReAGDBz2u2ZoGoTrjknbETEucXw0Z2yq837JiQZfExqqG1VmNXUL/8l//8s/+//7h3/zdf/7LX50qCXMMdGkoa0bBRY1gowZKO5iSkaNal1ZVe869pjKVK8colZ/l7ZJHRw1YMNdTZgVcLdq0+8q5tN5yjsr204WAEdBoNEHX0k1gt4YUxzpUidmqd+F2pYQZORMKWzKdiGlVURCS3lIS5MwFARl6Np9uJgMuTC8r5JulgRZdYZaUIGyizSeSq1DRpAL7qTUMpoO3UpY5oy4lwcyJ8VQHksvPINeeTmg+a0t6oIYigKTZ07mKXqYYziTZ0IumRQuMhmNFEaXOsj2JqWiLTeRPPuE+AvPDzfqXEVE4+E9oCqBCkIzeQoANd+RJwhNCwCj3G2/0H1pRIp+CPa+nbZgpF7IYTo8G8yCVJekM7Mo20j+cW0QtFCdpOAAgKhMiwM0YBFZllek7YsM9koeHgUudJmFJL6zicMwfqYVtY7Xr8nRqDRrgcSk83RXCEZDbYb7Sm5uKL0ftc5QNKMpELhsapcJ/umEyb2BiJDa1WiaSwmb8WnF/plvRwqzQkOamkk3/cQhB3kiiujOhCK5G+eGXnmxQj30SaY88alnAE0Y4Bn8QaHS1qsckkOoSO0rkamEP5OL1sCfU/YS2aiBmYrTaxZqRM8QvMas6SXUqs2wwGqvJedFFNWMuOOpK4/IgujERIt0/wHOoHiSILkAgNRs4U5EpWyKZgxSYggQIaAmKvIaBDTnEscj1VU/JnREo7lWRyIbKdDncLF1JJUMPGcEf2kNiFhTV3IUUfDa2t/BXtugZ/ITywsGHHbqCgsgcb8jFR1g95nCQB2LkokGSPjyIyECHeugxLXepSsaMn2ETEOR7jD2jfL6UIhFUNRLFZQcl9U27qr//uOcTAosiOFQdTo1/BLNC6Fa+UZmYg6AyVNeGOj9AK3X8oOqAUcsyAzDdUAklRNbQTeUm5JodejsczMHh4QoXNLHa+NOPpyAc7tkbQFdFn04008AWHVKs/PdXTeAN5Kzmfvvm4P7L3bXhCoPxN3fQPD7cBacDNESNW89vP/daXF203/j2tZcN3355ZsjZSf8Wu7853G95z9WdpnXHO2Z3DzBfJPnNt8fC9g8n57uH+/jo1bXvjp1IZLWPF4c652fr+upafJkds7U5gJJFrF0cbeclV+ud4Xb8uhmIh5YYWXbU+DtdnBMeLJ3XGl1e2+G652xQgLXL5CnosQ7Km7KsfrlyFuG2QOGzuKiA1YmkxgJ3vVLUKN9LSixuKTKnVLyA3bEOArLcAQueP7vywl1LoDs5Sej72SisoIFCjqwKe/U93rw9pHZNJ9Gdx0ezExZY6FER5MH+y5+8e+38xB9Ozk/1zzAT/F1vD/CS48/el/bTt3sO4tG7tRyfof/Gu/1vd1/uv9wzh+VVysZ335994OJ+9u7ouzdHf/jLyz88vfujk0s+Tfx1c3l6ZCXS47Pvz268Fvm56ROMaRylBdNWfF9cnkvxfoXzNvoKhp5jiDbcAi2hVW9y6NDIDJltUHUvk05MnS85OmpYwfMVRvTdtAZLkEelYy7259Vk4cbo/GoMMoLsLNck1+bG/dhOtjZWVcJIfuPoe57ud8mzbpa5PSUH2f36+/HRptSg8VTsKU/ua2V0swHza+CrLp+pYMh0rWxjv/N76is5AD38EVCZN9lXOU82iAOYE0DIcGZgxwh2N84wF5eZ87c5UfsA3HgOQh60HqYpSifkGAJn6C2UB+uu/rhlY/inJ5YS8kksyit7uxqvFf07pNKmmluycmRlmzraamwXL7sXNGh0zA/dmwiyAV6XVxjPtmz/HZ9lrX+zWuMbIsHovoFxpkfnIVjXOtkjz34bK+voO2jOHfYSD0ffekvx89nQkIQtTlNMHkwQwzaEg8AvVigZZZ9guLY5liARITosKIou3sPu+N19TMpXxENG+mCA+//P1n/++LptC35X5RxW2nuffU7fc0N33w7uxjhIxrIstwy2X2CBCTZgy8IJ3iDxVyFeIBDI3UgI2xhj5MZN25Zput3hhpN3WqFyXFXF5zueWvucC/xWrarnN585xxx5jpltJpbHoAPIWDQrjJIxTcVPnamlvcoTNwKtJ2DBrQVRjdM1+jS+Ji1u0ZASuXrlGriqxe9B7UpDBmkkSD5JZWyEP6wLgs9tV62PjTMajVoOA7ddtkF0MTmfOXuZSNhJQf/RX//b/+u/+n/9L//eH9gfjB+ai/zXohvpjG94Ou1CLU/NujrTDV6oYLcHOeAzD8+FU7B0dMEWbcu3BPdJFZn2YBf89D9tm6ZEXv/IyeuelkQ5xhXM1xArISEGMEz65CvA8S7pTNxfBDI2D1ScnHNjKtsnmDLDHEtl49dLXsYxyX5pc5E9m4jkjFCEe0piuV4PJJj+1LnKehgSSjK/EhfE8KpIo6wKTxut/SBi+k8hfRJ3GCkxf6aVh1JQirUyzwgs3q0AajUcfqsrBlYygvyR5l/VxZJYMYFEZRX2NqyiO85QG2WH88+AvXnGocVjQRReIMVz36r9uTLglpxBJq+Eq5bADiKh5EUYSh3sgIBUqjsjm2Eo87wainvrP7AAfl9k2rWZmVH32J1XOAbtyT5BfxPYfdAb/9P0hVGJg6RkHc4iO3kNC0spMbbBP3gQjiEzmhaBwxx/pFdZn/LPn0geBAZn+C4FRkyyITOwCvlTLQynGDuVV2JGrCLSM/MOPzlGRQCSb4JF8zjrTP9TfUvFQ0PKERVpfG6levgvoJvBrNLEzAN6fu4iZ1RioYIGnoYs4/2gWOE43uSOPPIvTAzsJwKyrlxl+Mtc9bMxHISkbsvUti1T8cwi5kEUg6I0hiZnLTpSohFroN2bhbNLH91q0XTNK/8iC/JI9+S5jOgadDjlCkZFllaY3rjCaIB+xWAYQhOkQhbOw5MKQySGzTTWPMS4hUQ4D/oZeITMQGPK/NRt8FG0sEs8M/sc8DBtG2QBdkCKMBc4DVWkTb1cShTV5atZXbw55H0lCMjk8uG6TDNNBdyQeohyTMMwT9X5+YR87ACTjOCYfAfDoeu575ttzNIy3FNXxObFcpeYiTQ4K9SO2MFBJqBgiWcpZxZCSHVR+ts4U/9gh1bMhL4SHoAFgRQUqRXvE5tGVdyN5aR/Q7xj8JBQWLzbgJaqNq1KZ+h/8fd/T0BB//f3Lf7ftmH2+PAAA+UwrmbK/8yetdsnA8C1xKMKFuFBV0d1Z3/nwnbbgz3DEDVsm+sO5GhbgWNDFoO6c/Iu0d+9ON453Ny8Pb9Yebh99WJvY+V+c+3h4NBsgI7Hw/7h7uHenrX43ffbJiS8qOUTrCMZaYi1Gsey5faediKn4c97dxUbOBd5dELRVpeYGt3DYfMcZEVhhPjvLs8E2I0lGbm/u8WDxkHbNdBhEbRbg2NHrPcCX0qj/3N3fdcMAlh0qeMOi8C6Puz+nvFZBaGRN7QNxQZBxwxxf+Eu6Tb39fC4v224c7M1Rx+fHJp0cX5OeFbhOysU78gLt4nNOf07e9t1na0xMGC/Y++vJVj7bz47Ojzac/PxyfWpqw0w582rlzdPK796d27Y1uKmDydne7s7x3F+8+ffXH7z/kJMhf+OZXQBs/6BYP386qPdxqdXVycX1w5H0v3QxXIW68nlzWefv2AKtzfXFoG0USSvveJ2ZD0K3Lad1E96ks52AMDV5TVKNdRGSx2lF1W0ml5R1OWuA67OWFa6t0YOoNHaxc2TYI5ubMRrWZSlt4umjibnH3zS/BQ5Pzz5GIJv6bMy86fk+Z/L8Ly8XNK+f15eSRygWdNz5YHr4/evM0+2pchSyadX/X02p+fKp+ACbaA8Y/cMdux2sCt9fqrMZ4FY5QvhY585//FyQyqG+Mgpcex5rGBIZQXQoDMmcyaw5QRa4sUhSCysb8sJbe1QZ1k4f5LT5RW7i+Ax2jhkaAAj8M2L0+4aII+XNrFYL2SCj4ecwZG8zXw6136lXeDkyO40HTCh+HrFIeOqYPZCyrUdurt1T+C5DDSgVTRmqAIF9NVSoiICC2Y6XSyXhliAFaH8rRhazjHk1ceQKIybB73XpjBAPGHU+NtPY/l11FUhrysETFn4adjMiUMt42y5kx9vOUsRHvg8VncUMvWOmEtI4ngHDCCKbFk/3+jHcV5SdOYdxiX+NOFQU6IRH93uUr65yjdfXMNHXf3Nu1LxBR+/880NF6Th4/5bfIRegd/GtukP7YUemW7Voy3Ht9erv/zq7H//f/zr/8F/9Dc/XJzX1RhMaggEkbijLcKqaSYylsJlZrcYhAxFS/DpRYFEzRmrDYmMOtZ5kNifCc6QgzHgL6WmaUtFk4iKWi6SUXsrBXyJeDXM1BPbjAfzCVzIZOWoVVE4q0L1dv3Nfjz1DiIzoTrG7R3gOBajamTrUlJf8Iek8A1bMyaEM6vMINDwFiraJD0OuT0VFUkKQ6qul+dc1tBbe5EapyEL4WXW8hIfSscANDDPdMTWHBRyh+5Qg6e3hVjj6NhlX0femejUonq2EJMFdUOvN1MLxxlpUwQjfTAnlvY0BNYpoBLJIshBHLjSMYfSLgBxEv5kELMgoDUkt2IHH3GFss+ONERH48isnOFadZ8wbxZuVDLUVZ0nWr4PXQsGcOhNK2ISZUibEzaJ1DRW0INc7QsCIeV/X8NtqlNg/AchFrX0ZrKF30TXHkDqd05pEZPvyJJenYMDmtW4kFCl4QJyLJ3SS2UJd/BKSyO3ClWZTvrdp5rSZwV9q7yHCSyewXn3nGsCxEGFeS+ijyraAjIfMWSiP0UudhyFVhO0YtSwYNGb2Uw4sdrk7PWQQjlgAyDm4H4qO3oWdRjQUpahO3JGQIWMM9IwFh5xMxDCMnrOD9SrrjQKF/MWHSZCxSM1rR8XFnz/ci94MewduUR+sW/yliEMpce2si0R30I4aMt49pJzgMVW1clQ+5EnSvy+qp3uelmN2fMIIEkgPNGrCnyY+zrCnJ5PxIbn0gjBBWIYRV6ZWVgly3pxsg0zAz7akzbXpqg8XQ+rsUb0KoLyqQU6fX3WbzlQS3WG8kE4oVb7sAUBapHOIEtXTFagQh+j0hwJEGi0c2iEhUFWMfEgXHVegCC/0sonaRAiWlIz0XAIpwSXuOcx5zt5kgbNx2WvOAWlF4kr5KPYwmdtKK1YugeYBY1JJw5LZBwSf6UsHC+E4Kx5e+vy6loY8NlnL9+/PzE+bjm4hrEOBFfK8z6u3Vxz9DOfOKo1jHp0AoyMatamHh0cGnfjo63rdYre0dHhh7Ob946pbE3CgwNv2sur5X18EKg3633VNZxOvNlcEYzuCfUdSK852d7RJD68P7+6cg7l7Ud/tKVjwrE3GtOJXC0m4GE9Ljyybmfl0Sn+c5boqjP1z+zTuXG+58eLG7GRjQiEuvHF8bGkRukUWbF2YP3gcN+yhJPzK4v6tPeWOqGbEqjT8ZfUmBoZvNeKWcEvEDjcNYlxQ1LNA8SFlW722XT8ERaPr8KsEaBTktDOzbrqixfu6ekJn20t+OzVS2vxT84v6ybphVHKj/fn5xeH+0d29opOBNnMGTbmIg7dv+byZvsmjCWuWdp0/MWrF6dX9z/5jsyeXKmqQ2Wxx+bD2smHm5999+GrU1chPLpkTYC13eLv3fun9W9c7SZyEnqsOGpp314GqtIg/crj0e7u7SUWiak2dTE/3t01N7O9Yexu3TZxK8JtA+06MNwujEMHWtkkeRFIbVu+p4nSHA3mGuu19YDhPytnU/YkR38ywoxSiXhUWzCGSay9GaPxnBvxwdzlk0cZ8ypTD+Ufu3v+O9pfXpb0qdD3JUp/Lt27/itfzl/nDWppnz4D5NffB7ulXDl8reLJvDhHj/Mw5Ra8f116Xv4GYgvwpfKBrOahNpcysMcpAJCVL9XhHy+KvfkB3qMN4YJsu8ydELWyqoPJQ1Cwduk73mZl1T4X9kVUut8KGwyxnm1xpPoGAlpzbmCD1LqEJ/cBpMLV0kn8VyOvPJC9qs0G3j/M5p+kx0ZgK3uLE5K8rkjrA/OBVsK1VDfLsH6HRxOCMZXJY+yf0TWrPA2uZtQAEz1qbSe4YZhFI8w/Mfw689U1QYKBBjZoPEuVNirDFxfwRjVcBjsnDE6qLn+rE2Mi/4A9ja4WN1Rx3AOs5XbUb7WZEaQugy8KYOJz67zejAFP3iJJg/RZroIeavrTXU2AE0ht44nz5hhShXH4/mpQla1jBJU8k7EQbh6JDmBokFGiZ44FZkygfnLNeL0OIw8mGJW5uHn6T/7LP/pf/e/+L3/j//UH1zxa15A/q5Pmm+zGaj5pCstcNAphSQPUmhJ1pVTVks+Uhbagt6aZtqqzeSHNTWbgv18JoriqTscUzE4V8c4vOZfpDuoqcWmF1QQIqcmDq6QiJ8/h21KwVOmj/pjv2SP0PEBzvg2vFJgYo3qVnRbUa3lwG7pYCzEwISIO8p4iKaMuaaAtjoi2DAkTsHoKawCpByHmbfyrbm9SIlWFGlnXFk9cqEZgfVGavcQrfZ6J4WSQTf6lRjCndCo9MOP0UFGHQUHPlKbKMGYe1J7rKCZp/mEYOzFbqKYGoz/RUqEBkdrN/zjggwn1a2J1oEY0kTJxvBLlybX20sMCpMySYsZoEtIKaooxFqqX9JIWtzzZBvPsQupAHs883WODb/ACXz0LadBV16TEabXBOt0ZxPyR4n9/fOKBzBPYDKplwNgIr9oli+xLNq/wtgwMVqWJL2mWFcCBpn5pqZsBVu+ASL7hX45+edXDkstz8bdfOYxGGIcdqVQfldHryRKgZaZDe0cncFsG1QR06JHZJ2QW2n1JKaOwKuUpqs65VyTxi4omWBwseQWZjfK5H/QZy+wnYsakZcp6C7jjXwAN78EAwawvWp+bkPjyzBPUDgIg4OMwAMx2LaeESuD+9LYhl8FPn6mwlAefoQKV5uP7FAeO6rPMRbOzkISDaRqDHFuK7jO2Tae7lqWS6hiUFacoYGaKM40V4BGnOtE1v6M+Dk10C3zqONyLaoeya8zMn9SH8dfHy6WC/F0cQ2lBsGFaRQfYmMEwH6pjjcq0BCgZVkYheXJS007kKbKnqTzEqtinnkAL7BRTxu/MMoNO1iDgVbWkbXl2ZMvDObY2xQpaSUnMP5+8D4jgYK1SoeLFLBkfCKqs1jGA1DJUA8hBhwnKJwzzJpYudQESCfz79LJ8hZUfgqDJCu3azdkZOE7qPCDHy/MLV9sa+HdDr4UoRvfheXpy6X7Mi1s3hT398PWBrXvd9MRG1latX791/v366v6eFT5Phtt/+INXGIDVzpPB1POzM1ddOY8SSmcXZ3KKPq3NIRYN09v3J+uuAd3b0YEyV7Szu360p8FbfX/q+M37C6sNNLRU0Z27rqY6OfMlDtTYoJDCi3ny9fPBeY1xjBQZGJa7vb0Wb3iFUuw2gCmesDXQqDmdeXG4bzvBwc6OZvbVq2PM0BtxVZaS7Mwqdq2ubA0CuR3sOlzYmiNyEozRzbrlHWQuooEO+K9eHJKqcajzGz2opw+nDtS8Ta78hMO7dpyJSQmtGBRSp/A5xjnynOPdM/a+vn5xeSPEoXB8npmEDyen+h2/+O6DUUgTL19+8QbCtGd3f08PZ2dz+8WxKYKtz169+tHnbxxC4Do2GfTQDMnumSBdWfvm/dW35/dfnV6Ks9xC5OLeI1sqPz451seOYaPBJIXFSHq1v4NebKMcPntbzvrcw0krowiOyrAOakB7rMVSu54MJOmAeIhuDTPWulxZHGPzacNdTmksCiQucylUuRFiEpo+z2Iio/JUGCOzUAIlLLX1tjqzZ9xdHoaTI33ZxxDKomS2WkJwes4+Js3jvH4GtmQPZqDmt2fVT/HgfF9qXpf/GbqH+ZTis/z5vpYl0Vc6/ScTAz3ZnwuGXAr6fTaPKUh/BqtPiGXPRWhMJAcVZv2q+ZCzb7FSklmvROZfA/wtKXFWhIiqJsCz7F7l94o5G0envZI5A37BEh3D/xz7Mm/He3T0Jy80DE7Pa+Ib2tAfFWpTcgPl5s04lYRsUzcX3TqgVWfvyKku6dMkVTHRaSPYlG3u1XX/8eLKZR3E2wg93KywkM2QgRkJs0zeqD2lNIpuHmnOD/W8pOmNwB9OXuGFqkHAAT7ATJd0ITYFpmEKOmPXgjk81YdHXXuOnaLVAhzUlUgElC17XHdEaf+aFanDQIq5l9nkYAy+UUMU23eDo3WTOqLABYOJJg/alX/AdPOx8BPr5GfXUJPuuWvJ7sSX8T1bmYgCz+tRsBADJDPTaN5GN4LiE6tLUVpp6YDmNjmoE06NuNzfrf30V+f/7n/wN/69//Cvn7x/v2mYZawDfzBjGiWyJti8pAdvqQqYFInDkWkJXtNCP9POokLmUdvcVF/j6qjbBFgpVeu4auKXJmwp2NfR0bpPMnDUaZQdCLJlN5BalBNIGki7KhL50xmQAchpOkeORe0ypNfNFdQKhxpQ8bQoO6LKU5epytFeiD+xe88zwqhr5JMDKToa71GHNOALi4Y5AIbKEK775AHtypU0XinJAp4MU8jhV7jhaazIV4VbBTm0BVVfEnMN7jONywKkhvMzpIHjb6UUkddzxM5y8eDBZ/qV5SlbdoirUIDV4g3QFldaXIThkQlHif4+syv9RR/kxAaxrDxRzRgnoycsaQSTlFOdMg96ivqHbb76KAvV0FZTGUNGTd4MVtUa7e2M4xz4EvqjrIQkpqCaJo9iCXngqfyZA4GTyq1Vz/B0rHIRnJfSgzMUyqmugMiZmaSricC/MJr/XoVg/VvpC1sW5qsm0YDFTqau6JEVzEosLXIySqpKTtUT8Vs4iBb50AObKRLZMygO1LjUwaN3yWma8KCCg4LqmUX5Mk13MR7F3TYPhBAlUHRMF+DcKLK5f4je3FooMeH14B0xeX//hwVDKfjRPfRQRs8KPvv/FMD/EcbYEQwTZaimMUtdBmmYKDRpFXL4qQBShZmxDcXpCcTWSOi3bJDBvKCPIVmcmJQNTegZpzeBSMYZXqoQ5hOixfe6UvjQQA5C45CMMi+qk8wTGDh01MPCK8kyskkAFgcHZtgEsN8ZSUOJwj6IuebGPO343IA0lgaabMApQXti3Uw4DLGqy/8aah0GDeRlSVXaoEjudeywsNJXpaN41hpxBHGvz+ANrWkhCDckJ2ctcbLI7pZS0ZJcnouA6IXacjxyxIdn8wB/9H1GBKs2jqKulnI6HsO8imvhFunIMD1yEopBgwLu5WPibAapNW0CeWvXLWAWeFzvuOCztsYQdbt79/YPv3t7dvzqBaVum+vu/uWjiwGORI1uwhJ/nxvr7tgc7BcUWGyw9e79JWEVmK86SP7jwcGWDb47O7sfzm1GhY448tz0DISM5b95c9SI8C3pbFmu8+LFoYGu7y5ujl8fX96cE91dxyBo/ayKWTMEzVegQqcL5gSOQ5wa/RJbMJNmfdZXDDseHdq64KgcYcHGdeuhMzEhaey3bKkVOxb6m7+4s95pbrlqr6qBbXgQX5d8yb2x5SD06Q9g3b3BU+sD9IzGHUOaf7WWaHXPHoZCriUgerCYh8leWBLlPH7dXb6EV5+bcWmcZTPsTwglntBgkQnL33Wa5vbG9b0z1n3Wbm+ufvByX2Bmx+bN3cr1/c3e3tObF9unH05FYHtHW5e3l3bhvny9d355dXiwZeXPz9+d/+LdpT7T+pZrv1xicP/d+c3P39/88tSNzPeCM7GR0KeDSl3Z9bQFPRHXgf0Ea08u/3r95oU9GM76dMuX5sweTcs9LK/4+vzy/KMzU924ZNfBPUVkYPw8/bSenMhNFOl8W0SUMYR7UwYMYlnqY9gZfyhZEsoNqFo+NkT8VLuFC4vtDx9wIhOmlynnGMyobSWfH6bh6V1wst0lv7+LXfe9pIDMy5qQ5UHuClR4bGG8TbkkfA+vr/1fwPfbt/nt1/IVqs9Pz7A+vR445V+Afl9ssis0yWUOwm+8rfYBjSPcwpJhPG5+dylQLJcNU/3GPvygiw7naWJo10RqLXggL83U8R7CMm5cqnVf8tcmWSYxU70iWRK67PAlYVE2YWcLQDmluQ9LEK+4vQEm7kw3CUqEoTXwltezCxVZGZhQuUpn2hYMq50JCnaLaaEbGRov2uS+sF0big1jWqQhOReqxu76WNOzMGhrTVqurpOyHLq13ZL8GRIqsmz9f76C97MzgTcnLeA5TZpqYsMMwUi7y7DhoAPBuTW2QlUeGgiwREdZFifMptXcv/6J3zW5mjmDAh/dQT5u0whEK+zhteLyPY0z7S1DXitqheGWE6GIn9Dt0UlRWW1lojckzzjqFUNAD8nFfLnrCI4CDFQptuR7c/ZJjYFkb3l4gyceNB9pFVMNoDFmGMg47m7CD928J8cA/42/+ff+3b/6H/7BH/5xilC7Fr/JwC+lGhMBu6VUvfa/NgjENN03kmkJDSbXvFCOpUl13pF922j1351rNWQzI0HVuCr7ksP0eVHN1DfkNEinhZ0GRaowq82EmJs6A+W3mqlW3EidWyOQtcaC0WqNlAoLc7G5/POiIuXGbaSQ9wya5GKiKBUJ8aEKWugIpaqqMa2HiKimpOBAebrjhRoMq2u71aRouAFSqcKtvmUSfZNc5jEuMMux/MkUq8p/xeXRXky5sClIRCmRTNgav6fUVBdiw4eS04Hnn4FdQzA8waXAy9DS5Z6mtuQUZxSqumFDEBZGl23w8Xthc9gQ8yCOrhCg73V1oisRT0r5hzLgvUKLFGxa0qsyBj1/VC234j4JHZuCl/9Kq/WF5rfnARohQ2II59Nh+7ywJcCwB92nShGvI+cpvg3ufpFLRC0YBmm4Osh0ghxUkyOkhrFyqtdbfbnhW6QB3AeJo01D6+Leh10yVOPUJJRS2g9omVwwSFrPdfguU1XGkLogYQqB8d3VkGDypDFEVc1ZVGv2HB6+Lbc4qSyUJKgHjanLWJdciMFWRH7Pc8w1dGpaLbAL4QuOE+mO4aWCajXSDGYQuPTFlYM+KRCuOkBVXF+iMxkiZBBDBj9bhqkBKOmLLsbHKeQl7kzpZ81IHVvR2FqLioaf2lVUBycdNuSkqWg2t4I51ewkFDIwWYqDmSDBUMd84owWDK9gM2RS00UXybnqhgOxOA4V0qHAT0Y7FhtOo3ygDYnPqhBRQ0jqMgYGDeYxCAciG86/RNUCxO8qqq5lvCGTg7TX0EWHb0qGSfMtRXJIbPV5ap1PzM2NcBdaRjuqizvDCgPw8Xncx6C6dE97TImqN475DlKu0DWZ7rJpujbC9TTip2S0TzcyRL/Xilw8SCEY4ZE1aj20RxUXuSDXzLUF3JuG96Rvbu7MqRh3Ozs7itjV6/bZ/QOLxVs4u2uMvOu9DKxbG/PRMhkIugaAyh7sOcbTftZjZBppOdjdfvPyYOY/KGSHLLVhl8ie3LzbGTsYaS27NsYC/uuL662Vj8cHLtIyHf50tH/448+/PHt3SbzWxmTeKy7LvDCr3noAt2MV9DunNcJM/qMDixryZzvSunTMKh09B1cLPJ6f3NA4ATruKeV8IVt+tdWGz10evLe75woC8Yrghjq4H2BWGrcWwooD2xDTiGrCR0PzTSMIiYnciaGtSBYLbawhzRRzS/Pj5FYhvqP8PzZBjLeKCM6gPKOn7UBQhaFaorCgiSjoAMggiFX0FuyJ3DfUKsvHB3sJHKV5tLf52fGR245EcpbjH+0fWGb0Wn3tphCcPP3dn/z8H/zsF2enl4e7m2/2985Pb376jf7A2bcnLlq2DPvGmUI6ddgIgv7A5d31xm7LoYVxTH13Y+vywsmg16yElM0GOtv1/OTq9OyCPYOfvlOu8YT2UohaRO4jxJC/cW+YGxtUQCc5X6SlbJ0onyOsw9+8/ASQIlHlCDDHksLmF5+ddVweLZVldNk3kKamMvbsf3/6fF8u4VSkLPPSb3VI/vS7uiqxlA0FnwEiTWKOSMqgMwWXd59+h3HZn2uuEjUE/xnIc8bBoczz/fuH5e1S+Htavwe3gFnQKzEy/A3DyEFlRrPUVkpWOy1Wadx5gw7ivFhN35iwYBWrIaFLLNVItcFkX/Gcndpbn+ntOgXIezteysRLM1K1dgKYycm7e/FWHrUWHTY5oyJhIe8szlapgRVv+FoGIAwXpjMUbYTpRMzJmqYYv6pe3gYZrvpw2CYnCWHotNGc/88z58CFJmhlFGI1O3AYcosQdxz4K+K059+0Qlti+EbYqIi1T8889whVlKZ+nRQsL3o6mVd0b50I5LVJNSAi5IJ1CJrTaKwA7/hjpZQ2C0ERZgp+xT4xXVotKcRikAzemYmti9OCHzBMItbaUHh9gPE8cKilbqQZL7nrThAy+g+4ShtUGs2HD9YnD5viZFP98Eqsz/droaQ3U9EAp4rCHzREalD4k1Tjcf3iZvVv//Tkf/PX/ub//W/8oRGFGqZZjOdJAT3rlQdXnhXucTxeQp9n9pZDA5A3Iy8ahDdoxFsQJGcitfW6cI6LSMOqcTTdN8VwOwQmbiFKGQa9mqR5aN0LZaRPMSmCM60eppEFobK1wlWIEh8ZgF0w8XsRq/RpMeHjbTwaBOMAGQAOw7g8DZ23HiJ2APpVqzHfwnlZxCWmMzZB9qPDUySroRIK44aKqqUFRT30zwdCOnWDswRap3r49yZdjHs+qo6oWuyaIGjEpMXoJGUFYMScCEayymbIWTZ8yx8Ob71HXzwalLBiwLOQhc8FDGDLoPhAWuLgBd1gggMmDvgFmxBLSdvNgpZ0Y4CDL4N0OC9wBltwy6C8r+lDui+IBWb59MoXiEXKEi+FbAwcblTXGHU52YWvRMbYVKcIZlZpYcxzzoVVgcifBDJMimrUM8lhXdylQkiEVoiVLQqm1ML8VKoSle2tf58aFLUPEUNU7GkOB3sSxLB48vY29IAINlY3yidLUKXJuYTX8KEo6JGsyuF2kplsixqFgQLepo6B7QmGgJRtuFBa+dQbvfmRMGpoJy8/PI2YCXFCDlrPyISpV4r7nUhG2AMBfbJVdX59QtvFshPMIFwBr7pc/VkJoDBgUmE1SC7LyEmKQgmMAw1aRcRbIx/jo+OVhhNQmmyQar2QP3kDmNRPTScjARt7kysJn9F7GWJE9I41DmPBL0WmYY/iHJOFEKpY0Ju60jaY4xpL1tkoL6DhH5UUeZxmil4tQz8z9kVx5PikdF1DVn6kl9aLHEHEguZ/ozK6SQFYFDE5IGhqh2cso4vpQN96WYKfwT8A9TfiLyHHjXKGLB3FiU+4ySCnRh8KYRMCtSUqqk0Yd2y+2+JadclZTVOX9rCHnmNvHEiUhQvIofHSImoOCc4yCSv62CHqhW7NETvbHyqW9HSplp2pB3taJS3Sw/W9xWUGmx0/L+K/urzRZ9CMiWWt/AHGUX0ii8sLUftH6CH95OLS7LZnB3I4P1yAeWWk/eYBTrublprYKqptbKzu5bErbveySSLO/B7OTz8IElpDb7PE9q5dALqHKCpPckzN8sO0K4cxrEZqJ4SsHx0fG/y0n8EmXsEQTOS3/EAuzbMLUPVpPq58dGDRSGfF3QVuPr68ujtpY3I+ywGeeGjBz4fL06KJjsK0SGbDqDhg4AhRdBWIjIJusLM5eRBx6Fm3g29r98JyewcfCRF0A1atSVjZXm8IUglABFkW/AjwxfpEGsSHB+H8+YW1Erf27H726qDN4zsG8j8azj8+2Lb8Xq/C6O3LV68cS3T8Yu/1Z69+8at3fLwFOu/Prp9W59qE3Z13p1fn908Gd5ttMXJPAepurb04PDzY3hezIN+WLYO7+bCNtaOj3csrhyk5PHH9xeHRvhsSdup+xHyzHlZRNJgnIGSqwsG+9fG9ybSYy43I0KTf0vjRwgnIJnHkSdOSFDFR2HQdgCxjcQVZSR/vcJdk5+3ysJjtc4YyzmMIVPOS7ndwK7x8lvLZgEwVWd74XVIlJ6lfy5tsZHkMr6kkWJ+KLdmnlnnnabKVYanzU87v61pQ+jWMqh3DXGqeUoNMXrqPP0vigA6bCQtCzBuUlpsh5yexiCJNMUk470ujVAwKSlolzbNiLQvXwXYN34DGdj8e2TzdO9xxJi+lbhBhGa+1dEtxNjIyok8u7m4xvXstzNSJYsz5cDyiKI0NbRSkhsaETUrpnENMfvoAAnxJcpr8quRbRGzmuWxLITmvtD96x2wkO2ruoqbEohfSo+d+eCo0ZvdIs0/IIcVPK5fXrpnrXmEamRN3CO90ZYoArDHbdsOg9Rn20TpK15ZQ814zFjzO3F3mNUI+hmlr2Wmb/rshdoHdlm+wVSVFhiejhhcGRiONNUu8an1/V6QRBA6DYhBBv2TaizXzJFwqijHEW8ypZY7pBQsIRIuyrMYACYHOu0UtksikDDfLJU4iitIMoaUJuTtmzOiSuDpJ/X5188P1/b//n/zN/9P/+f/2zS+/MWOJawhQKm2p0Wbnxi1MWTR1PIhL9NK3Xvvpv2f5/cy7moY8RihDbHRpsK/5iBpMAsozmU5/oIKarQmHzEQVl8vgB4gh4jlKUc5P6C1tKKtFKp8O6ewCyFqlAoew8bJQIVczHJC0ZKCK8nohfSpaCGoQZ+Fq9uKfmooucK0wIFyGQPql1CCtqS0oH9ojtofY/0kcC4LjopVGoBgAltOwxqKZ8C8BtGyzJqi9Xlwu3BN7EdF8mSqpSsREavrgY6/Oq8/eDEsUQUhVQxOLWaWihUm+9yMRtyCHltZXJ3ARWvLIUlKPAT+ZcWb5VGGgY3WdJ9h6VhIS0n3m16hBPF98aSzyMx3mxvUnPavxAKJC6gJqgC8AVJsIAxexsq0cHhweHR2NJwjcSC2fAF+YozSwiyZG9UJmKuNTTb19Jhy0UqdqTICYDL4F0xtMUqNqU5XB51N+QOLN1OVZ2XJq8Orj1DnxZ5GghwiF28ItZRhDEsnEWW4REo9pNQOnA2ieFxLisyWYDd4oZfqc9Ic/MdQzJmojIQhmdRDjnChCihEKLVIBcHQaKlLUilVT97M4A7kgYy6Cw9IaR23FU/RREUJWr5++Trw4NuBbJuFFBSN0/B11GsZS15nTN45i5CMA5Y+OYcpIPUICG77S5YyFQ2lZRy8rEhMflz6fnOosU2yQhwsLciDK5VcvFendUOJP1fjfnEDuzxchu5eyN7Y0MHuNlviEm5Rg+hjFXSUyxHFfMPzEmbphwXoWsz8h4pdaBOVJIXLwozzp1sLD8J4PtxuAOT16cIwykXoZhgyvRhzP2iYd5GHhlB9FquFhZrG/D3w8lZjcZyBBnPfJNuCz5KMwRpTlaTFuAbq2PtHTuzgznBtZyzL8CrUE55tacJreBE2jFBG1KNKRbSOAoF/bzDVouTV+9TKsFdl1mdR+EYFB6Yc2vP72D7+0vr+h96eVH3z2SlNtOEzz6ZpdhCtlAeDt9a2VP4axru6vz87NDLhQdv3uSu/gQgguwLdGvM2vqytnAu5rG/I23Azw2YsD2lKLyV2urLw7PXci/dP20+3Ha0cOXZzdnZybBetMHWf5oyeiJ8QhkEUhIYBsfZLD48OawdXNXddoufc3D+qOMBfx4nnb+kULBzt7Fu67B+yzV8eGJJ3fj4UmqyzAAQJbFNLc8r/YgUVX51fuOXL6kcxkZzlTxjLdUSN18axciV535ur6/MSJ+i0xNgFfh4b1YZrZEiuIwmdl5ZX9toAYIHFgjjNG19YcmboMxB4f7r15cWzLplkWvY7b20drHoz1vz07/fa7b8le38wMjMP2hU5OaHVB8tmHi601PLTMZ90RSY4AentyLr7XdcETY+8C+uOjHYd22q9pXNNub/5S7Z2mqNO4unF0eHC0u/flZ5/pYpqxa5mEzlLXilk4LZ5r4T588jajtQwBY0hreoANNtehTtUyLqKgySilY5RKslLYxZazNjo/RuRhMfnKZf3PHh+MKUJRU+ypMPvqAVp5jB5T6xR70fAMyr/yzydUBp3JNFmXzMH49JmnyV5KyCuzwF0Sxrc/V70UfB4em4xyhok/1boABW1AwXN5uyR/qnSBLgt6lzeDpFLY9Vx28swzauvfLoVpuFqx9PlhQuq+1gY1ukyXsIAueeJQNIj2pvMWLWQjrbaadBF1EdVTMwCyMWwqIpg2i2Z9hDDx5uZm2FijwFTqKctjPQx9EwY1VlJcOzRmcq0oE+rOXR/G1lFh4souAuMCRC8a5oerz+KfmfAU7vvOTaqdl2W+br3QM0aC1geloEWoMYBZDFP4xMHGMId60UM9EDdOPJniyGu2WjXaeFEOSqmryws62UFVsX+GkGcQhOVyul0XvLaWIeobGH/vJkebVrG4JSs6qFQUIx9N+xk5mBk8Ho+F2LtjAsvs2cTea82qmSSxK8kBaAbR6mhbcaKHU1OCwcgGKWWqgP/NB8pPdt4R08BhRYUt0JZzWGV0wzJHq2pzgwjBWlliBa8989X6RQUOFhc9iUCMYhioufnP/s4v/uq//5/+3X/wh+dXl2uuUNMnNJW4Zo6x6Ep12Tt+jD7HmTFOusDbh1bm6UDjAgMaRVxy0gaPCXoapqx50gl90F4spZg4sBNvZPhFwMXvCmP1wFZ7VciW6uZdp0gIzaBbEUVxWFO7CzbeLPH6GFZFCzfrbwCu4tCv4uAkr6XYjBlLCVESJTJCLEshjSwiZoLKc+mfNibWWL6q5WRjYfts79PuT35lQ0SegvA+8vssVolGqeqYtHFBRVNYFqVEPMyMJA/wBE2c6hNWkFR4rXMyzk9Pa9/jtga9SlSLXs1KGcM9sw2wDwHgZmX9CQLkjfImh5xKo4TyZV0h/8zt0AlMENTia+/izfRYfC1zyA85OVXfgQzPyYjfZWgOpGntmXWsuE9IVpYyxPCoxoLBzsW45462K/ZQaXUvn/JMMV+rpVRsEQWFYXWWFBqLnD8VXLTQGxmqUZYwLG/R7JJItN5HAsQKt+b9BLrLI0TwYxiY/xxUR+iyMtlRXDmWtqoXMo/fnDn9pvDvKRESglMrVdOVRPpffvWqfnlQpT7DMI6fCnMFuRksIuxoT1l9kIQD8VDBiA+BITQ6Yr1MucMheFJSBk4nJztr971VkmZ/orOCSb5mI4qeeRRB8AxbSlYdo8TVOIljw89aotSCHo8NnxRxOAsUuqK93hg+xLxwm5F4OVHX6+gK+TJ7B1FfFy7F7XQOlXlJozWt68C4SqFLFVM6WWIMRIjTb43HIrOoSwJavlqJKocbYahdc6BJTLOXYf7EUX1lmt/F/5moVsoLf0fOSRFKfC88qDP4oIQwH9yQZ+DVEkUT9IDmE3OH7REyaNTpitYUg8+pwDJWN/mVqt0aOGE5My2+9cwfNQGCU3017S4JHEZEAjXAySuhGZvGMc+0cWqPdQuTgVpC5GF+sWksJevpMwA7KJe/mlJIJVu/0RKY29siwqP9s7OT9yfvtYTOhTx6eWC4OvGtrX72xcuTD+9Z3PHxvitpW155//GoDbW3P3jzSiv73XcfrNn/waujnQ0OzqE1N9R9W0kTaHPApdN4SPHLH7zYeLp/8+rF+9Mr++0sgNHUnrlDYFuo/eBcUcPh7vAyALm5jYfE5h/K/W9jXHwf9cFhZYWtzOr66tzFX3sW+hzuXrvFTOR6f2/VA+UykXuwb57BGLy1SYbz9cafrP85PtiHmnHzgM1yOCoAlCB/Z9vo+A2+0cazs4uE40KE1hzVmCOdYMVGpCk+NiW2v73reP47CuWKXJtx5yCUj08fZ7rM1WCKinI06s4IuivCrS2ysiixnV9fQ8NRnuYpbKAQCDj8SW/5teuU1zfMDbx88eLuceXczWWbq18cG2+kJg8fPlzSC/0T8/y/+vrim9O7W8jR1c0QeLp/dF8z9bq9M0Xz8cSFaBgpdrqrezCRom0YrmTo650l/iuPL14d2zRwdft4bhKhDdDZC7LrVWUMIczM+CkRkdiSlQkd5ZrVFJkJ7ginMsWamf5K8Xu8VLqbAv/ajmoqxuSxtlaQNqZmaq1mKTxeTWzCKUu//U0XCH5S5t18G0PMYEpSj3/9yPdc7PnFJIyBTtWD0WTsxZSq3CfgU+szxKV2FATfZ/jznDNj/4Sop0GujEPI5A5ICVM6UL9+7v0klCMK5iMlfvR/RlLgppZQy9ZTRy/HTU0B/KvpoajGJqfIEjY19tEyM8P2Dw80lB7yrlOl1XF28uTCxaBUgkyh5y2lpdt1jmmUmFugzF2srTAoG3smau/qQBEy9OgiG8HRDWg+deswU4USvdrfa3OwkL1+gsPvm7obh91whl0BG8IyxBgg0N1sLMdhgqYJnX4pvNtyJNGssZGt5fKGYFe2XVwwDo3egemsAvhtu6f84x2PzpVlkrn01fObqxHnjGrxt5bAhYcK/TPe4URsQ+lNLNP83ti9NruY0gprCHURaghs9EeV2UWqHwv9scTPODLq9ASwuxQxPt0e6UJPHbCqyfAF+2Z8oCZDb8pKzgTkHOGPbZ2Aa/4YmToAmq1aGrbDOUzg1NnW6QOUNA3C/hpzV47Qk/WVj3YurZ3fPP29n3371/69v/G//av/wV//T//zP/zJVzccHmL0zEdPRpEz3ywJmOpKcfuVumnLUiR4sl/IyBCH1TNtfQgWMXtpG0BF4Zz+LBqYF84hyBysmojq4p1Ccc7grvw04r0eFMBWXV9G5PKDpraAgA634rkwWdBWvGbuk0uRCwTs5h3AxmRFAkYsn0I6DBxUAXQ5hmArsFrMYhgFm1JBRWQ3STR1gZG0BkO5Y0heoohfdWgJzyK6Qiy4FdAPG5Vf0AAHLvLHDF/6VLbYJg5kybx+GBSbpVBuTE9YyNGwFcjQLeTIKDs210sZoUShn7Ss/lUdGKY8eeO5kkt9U3Mmv/AS1iKZOCNKa79dOIDZr9SDala7H/Ti06K0U2mZIRCzh/NKAhQb6Ela2/elIpgh0+9qDZECIX3mIhZw5zNVekVGg9zCwykAfWChBj6UnrEDGh6hEqYQrlgq2nOJ4TzvQ0L6qPT4QHirV6qaF8TKr+qADyL9Sf0IYsGwIvkNeQAbHLCYfGERA54JzRsrKywIzgy6hFFvQ0V9FHX5MtVXDXfsVXWPlBbjVJjDrVT+pQVJvvRT6X4vaAGo7MgP7VW6vB3tjH5Z8U7A562vHuQPowB5/B5MtYgaZx6z8Xsv4fB95lHcoTQ8Z1RgOspwwcnx/5UAdILLsIz86adiVGrR5ByOp2EEqfYoGb3HXA90K2qHIrmo0eJXqLm3sXSUV+0p7Kg2IAsrJBaWPfuFZJ8+d/pV6g2SjEayq3SkKL80OMGNGseLGDlI5fKqOd4PPlK1gqk+E1x5sjR8RovqGQO+lOLjQKuU3DNo4TeY8vj0OOpbuD8IDHsneagbrkxOr1tQ1PypxMr7XR2DYfpaFXCWOkD8TZcr3A42o3oRBh/ISA9DTnmKIwuOsnMOnxI7J0SdfBDIo4qk1mQUsA3cz8GgGnXs0DpX19qTdfkuptnZ2bMEds4QFO4f7O0XTbY4Z3vHiPDt9c2epcCPFq8XGH7x5hUWWCD0xecWqO+6Fspxfd+8P6cjrgKwVzhv8HH17urji/3dfQVubk0Rfvf+wtSBcS8xxtnpiVDkTih6/7C1sXu4c9RZgQbVEmAsQgLsjI2hlZVBFbWdxo0RFsPcOIBy5fjo6OLy9MxWgyvL12vSGwoUUFOeOvL2GxsKtbJomyrr6qji/Nx+gQ7IP7++0s7gSwODTYWtOpoT12mQjo1gSKOCIZQPMmrFVRqo0WBTO7s7NtHePVrA3Hp3OLdhUdXtYjRWumNk1GbJN0dHxAM8BFJ4a71W1y/Or1+2COrjnTFSw7EOU1fNw+MPf/DaiUkWYPzwiy9ER3bu2othMBVlv/zgeJ/TzR2+4+H89s51aca5xCvcuVUfRA/Zw+ODz14fwaS1RTfO/CHsbl2aYOLx/uaeNX754th2xQ/v3ymiE3V9BfbDuU6bc1ER2bHZy8gcK/DDHDh0nHM0bauqWlGW08rQaEKWn0ZnzrTZ/+WV12MiuZde9Smb3LIsDZ6kXtJC/zSH8za7KDgYJR9oUhZQ5eu5dpLcfTKE+YTFWIQcKqqA715NtsnCmjLYX6d4VVJVB3cxtxIHRACmXL/CY/4G3kOwpZQ4P/N1SVwo9Wrel9lnKS3DAvI5tSpK6X+cLqOsFBv077/FpTkXuJZwNh35bR2ddF06oELfP62pG69uXck3LjYjaf8rqVEM2za0Fsinh/ik+6qUymsCWoDe0j6yaf9APtlLS2VWrcNxGg1bsLjM1hMGSLX4EzXAVrpsFs/ww6q2M9gUgvegecsm2KiQdhEwTLKwjzaQcDwFZeq3dZV+oMXKGl6OGxIbjU41OMG5I4qR2gosKJnTHVQVseC7lZzyUCbL+OKvGPfj/Y6VQHUxNtxrrs0dPUpJdDZMi3EqtZjMzeUYU5giwXY0VEPZdl4djJhh6o+V19GqjcjH2t7DLMA0Qq87MCJM7bkFMXwiEtuJYmvWx13rFTduOvXkYAVI+j8aOh4JCwK+svGoB3TPX9QDKDJ2VzdGWzi6qp9GIjln2xnEftZPPW7ogfMtnYHKhZ+cPf3spzf/8X/8D/4Pf/Wv/7W/9tf/H3/jD37yq2+dzQplXcY8oIId3VYIgm1Fn/EuhSOOcPemIWTKl1ubKEAYUBMvIdummKOi2EtbYeWBrKdl5EtqcIGQM5HUiKe2mXwNIs2JUb5K9HVR9yx9wmJF+Zba33p30x8ItTx/9Wq/or8J6mmxS4RNcy/TzfA74AHJcczv1sKphqApWI7aJwTFLVVONNQ7w3Fwmz98XXoICI/YEo9BO+ZEwvgraCvoEyifqOwbUDkxQOonLA6NrbWebRS0N4m4T41QnmeW8fQHiyYU8RD3Ph3LC0eZFQgI3W6PYlRMWzfd8imoqAx9ho2DAlyDNdiG5kjg+SvdlZJ+jryjoWpDKayQ0RrC567CmH6yjjr5ZlS0/CnuEvo/a8JSPMOLoMBVNjfuuYIyeDeIEsC4XzX3UxhZpB2VygzD5Kw7VOmBBoM6HqM2cTzS5qX8icaznNWV6NNMn8HGa28XKXgVrX3K06tMA4cRP/njiVuJJDTC7SqubMJHZjnAzjRGJNi9pEMET0cxWnZJdbBvCc74ioVxjDCYbIl2KDbdVgCnLM1QQXyDnUo8ERhvgWsLzUqF33xQmBIFI7JC228l4062gmsLzdGfrUyTQEc7woy9+OQ2wUAjuvhx9hFZS+6YOO33YkudDpGugAVNHnCsPlTUj22dTP6sgkGDnrzqekZw+IaTMg/Wkj1QQQLwaf8xciaYWxhTRRVPZSASdZXV5gngRv6pYkVDyKxewR+e6R5wckgSqzmgnRkxm2EaCLJD1tALuXgOR/+TqrpHD+bah54Yxsil7WDPpyO3DlJiOjUFwR7WDhbT2UvDKps8lJoKlyx5k+gY418IeRbfgPIKW55pnTzJJgkgOfeRxibgEWLoZkhTWfinrjiZBg9yObtmUfgOjkJSmiN/JVQTJpRzqdlbSSJaI0/aezlpD1C7u3vidM2VweBvv3mnD3B3f7G963zfkl8cH/30599wwtriels769++fW8kDCT1GsroIh1K3tE6Vri7h+tQQbdKndzcOAjo9urK8pddx/Nb0fS49s3pmRP3j3f2OXf7VOmwa7C4eJGohXX2DDhhKNqfbD/Yx3Zv40f9zPp1JE+m9IBe4xlWvDw6tFTg7MppmJYbydDCHo3Y/uGOxfdWIrWldfXG5mUH4JyenpsqwCQ3Bj12jIq+sa3D2nsrYSzRQeO6M0OpkcjKugH7X/UnWICqF5sw1SBGub+9fXH4GkEXd64C2BbDMw4Lq+iaCYg2AWxu3D19tI+SZhpYHcvtQjr4dzHC6ekPXh/pmQv9bV3Y2t199+EyydbvNjNwxUyB+frdxf7BIU95sLPtoCHUW50lKvjq7ZXOa7LeWnPm0a2T/p/WdEhEMLrU784uz64uDYsiRyAiBHu4fXTFAVWkNWZBXu7tWFd9Z2evHtjNw/nlhfjCxM60hc0ushJo+EAvVc2cRvWyohH77CPPcGaANLMSMWBzcSEn3gKGyss/cEZQHht2LXmUOKtJ8/te0rQ31JW0PauU5g+MdH+yUXIop8PeSRolr5Udg4FFvmipc/5MqUr2KaUseYheoCkQy5f+yjFmV6YxwnlVUih532eADMKV+JMgFhiT7s2SszxTXb8QuRRavNSweSD3Iv/McsfD4s/wvTZSfFkLUjQJBFfvQmb1+joHrebVa5qXSAt+a+58cO1jsUFjt9l72+7TcHtbNjvkiq56Jgk4gsft0BPZ6OeDWSgo0xqNiyEUI/quuVhTp1VDBabcr34sn6SQi/b4Sfpii3u9jCa20jrmZHLOZBoyeOcWsNkjxJnMQpujvT2JFkLMZn6BfrdqTDxg9RFvNM6TFt096FFsZffhKWpDskoZvviebYvU1cUUhcQUgkfAh2zq7q4WqiainbX24XBtBvZB1qCYDeBACvprcWq+YXtvxOPulmeoZXGGkhm9whdsXnWFiAWDmoZkZ29PQaRTcQUAjfFZWaR/5Tq8ll5Zjp9gNa2puUcsLXMNFjwdFmx8OmFhhaGnrQ2Iif2JAdTknlpP2wRbXXd9MVgYBhGg4zMgPBmZtnvB1R4C0CJDh7XC5OqP/8HP/87tz/b+1o6TfH/4xavXL46/ePPyzetDRJI6+HxD1XCugJJrS5DaI65eOlby9ATiXDaS+qYey8bozKpufzkpzCgt88SBAM0HrzyieDI0VhWvZpLce5SBgIcUnG5jMiUe9a44sNUpBKKOBd8ZZwACanWTW8buRDrJRhsnjJnBuMxBHXXJ6kYCg4EaLODwMfQHMpkGKqVWf7gUyaq98UqfAg8ZAQlgN0BPz0eSf8qFc3G82nXJcNyTsnq68JzAvr1V5CeKqQhiKjjaM4ySMB9pBXLDsQKa/qUNSNDHw54UAEKsAwTIADNMfo49kh39iZReladIaWxGB3GCEK8wj8KAqqxM0TEftUPDC1UESGMjFA6f5X1smzehJil+oaOgH3XlDGwKAEJ5FjHJMJnjIWR69jrseyhz+RI6afUb2jKVsnACK+KnAhmv8awaEQqZSsaPjtwlqZDztaLKIY0MVcEOcRrYcOoTX/opvMXxhVjpCmPsghLKSp/ERVIGJ/s6xhAJk4pCHIzOSYo/QPuv926uXoEhp+6ycFbFw80x584HC62RltJhNVWEvf+0yAPtCcrsSkmvhG4Df4GDYF8plofEEANQoUCpgPNrEgJFeZgHD5HgqoiaesL9XUeAOyACLhPNDhD60bmfMZmPpLixi616WSIAqvDMEwCR7MV5DiPv08pOE8IsMQiLg2hMQgNlfKjhfNWPjIJJrrVeIWYeVX+uXuxiQga1GyiaeiGsIhVycuobCoMBz9qSLp9P7bgbDI9L2W+1iH1Rr+2pHzThTjIMQniEVL3MCEo68aTUYVJ55JSYVHM3KUcjavM8mlDWRRb4jp1GvQMVgvN/VNwX2gdOrFr6e6kFamhpJhQe2rdc8DSztce8DHqTZXmyWG1bH41kMh3xjbDzC7KpNUPCyCnCo8Uuy9LyO9GER0hYavQ1g5DhUzfVN+2vxcHWsta3qW+tFVTCoe+3hsfcG3p2er72cd3G0W+/1Qew93f7/OxyZ98Bl9dG3jf2nUjzcHl5bQnq3pGh6/pPTvMz/md3gptrSUnksbOxc3F/e3VxZ2jcYdvOFHLRppbstFr22ke7u7nrjtKPj87bMWwt9Lh9uBFk0LWzq4sL6+NhqdHacdVA+x5wW2BKtTBQd2R39wgyRqjNhDoex1mj9ha71Vige28kDf06vZc3+/sWEjxdu3/YsKXZipYMrdnIbA3A3d3V2w9XVhBru4T+pGb6wSFCqnICCXUxtubmL/tnTYmYCXF1GP7AlWbkqVe6bNWKanMLp6cXFNEyAsGMQN8agNvrqtNIN7nSxcSafJpvRLHdAdv729ZYM+bPTAoc7bI9y3dFWOduLQbTTqOdrevry5YLrG7qZdneQEXMIeCgxVEkakP8r756Z6QeuY42coKn9Qy7jlPfd3Tj5sHW1i+/fW8IUFcAKDet7u1bKfR4/Nm+u9TO7271PY72d756f2LDxvHRYcaiMdWeuRkAfro97cikPDzDeIA0lALmvnw8dJqkELLtaG0boJF+M0qySenk9r8GcjSWKlspAQA2yZZaMwsaDOgCMuOgnJlkNt2gxtQ3JYMxFuvbQB5VLyWXldX26dF/Mn5OXCAH7flp+ftra63sAnipOlCT0ovl4/skLjDyToHro5Jq9eRXXyZ1AZjhDxKTNi+HdTmrSa/W7/PEueFehXs9v5jt+Iwg0wM8125ZeIUtWggvg4DH/KoYVBBsfVfH4GqQcrj0ABzv3D3HygrtnaOw5s4N276hoSVpUVAxs4EgutrH5FveQ0hKYXV6xf+7B+0nOD2/IFxxqMNrLEHncPQ6WErmMNEOhFgQicMWBMtyhMQsmxmKLuyS5yNSlZAnI3tq9+aO4a6SiBC2zbFn2Ub86dKDaNs9WNYliunuru4shmHC6UVBXtsSxGGM3KRBy/Hpefv+rYtoqTfrYEgaEWNMDzdyruzv7eKiEFw7Ag21ONYXwQ3/Fz+w3Ju2/1JsS5jyis2l61Sog9VrPbpYYM3khhiaHZNS27GK9uf0odwvC97etIJxRdGZOSQHQkRgJ4ohsrUxM0RFvhNz1+bYoAPJFW7fXggsXrd6b21TaFFTrjkxlYjPjTth3RwqwPmYDWmoJwUxNG4a8ALXfvDDF+vbe3xBwr17+Pqb86++OeHvuXB+xt6hl68O7eT+7NXh559ZCcmbOTAN+mlmuljLMiqlQSdKlY5aFlEwxgI+OhhnPKB3aWI0QLzcvOKLlgZriatTW6KpMav1qZnTJUOQwmqvIYrzqXsa63eDCNWsFsA95TCmJfW72D1lBazEMvkXnCJ4iPsfrGklvfJcE2DG2BMibfkgdc0lk6i3k5YWrT0P2tYoE0RIlzk7VMugFzkzTCmlWE7TDD1aBBcXHFakU2FQEhV1M4ov9Zyjmor6CpBneEofGmY8e7wG4ZeEBSHcwB9CqYXvJRc49CqezHXRtQnj4sazylOoVsbn7opKAMq9Ds8XF76QQ3ZqaIQaS0BEHXQ86qqCqqKRhlTF01XvwC1d7JdDxhHPEkLm05ukURC2sG7cUqDBUhTpXgM324Q8Q2hQTUDlifD8VRUNMX6TE0kNpR3OFfHxIDdYoT6DRhFpdqdI372qu2CaKG6QNrbImmfJ55dtNCd2yZ5WD5rokn+KG7IrY3XIzbXKO4/JuDdhbPeJ0QIxS/efk9cwEehCt3ohmYpa29AZHmwf2QWOsTVWPXMzYCAWGZc2Slw3a4zBfSWeRyEAM7qwENPL+YxgEJHy1CBHSnqr0lE70igKikDMmREDDtTYQ0SET0hiqFZZ8SJaSpepp7W8Me8JsjxL5siOgTBKJ9S2aHN6PVECbuJAHsDU27BCJSFj5YcShQJ1NnwcogxYcufDjCQZH/U4PI/GQS8DmDUeKkpmBlCblo3IkFAw2ftUkr2STphMH3iKjK7P6GP8idPj3TznMgmpdYUqGVRJIOkAtZibdF/lhXBywaYxRA8js2oPwTg8fS3fgR/tVBJs+RNQtDQ6A5S2BxMAZFzDOgwoCy2LEUNwgmhwqOGd4WcE5x7rtEyXIASSCEB+J0GNm5SFMZ5jRyuFehci6YAnrEkuE44RMe00QB4Ayjz7ZS3/Nx6W9Bu2whae7VYcPDsEHl8cHb47eW+w2JJUMfrbywuhqqX/IL//cPmDN8cGZs7d4ztHrb2/PN9YvdvdPOByDdvv7OnN37w4sPBn88Shn4c2E7PMlReHexaiWG3i1l/neliostdtVO4LExt3eTDuaN2tSjDcYh1tSzmnbyOitWzYSh1NLfVf39k4PtpzpZd9iwa/ReFXom+0PxrLF140226tMA4fHeyt3Dvn3lh5y2zOL691GTXcVi4RJxfvSH66P9a6KWwSi//g8HjzafP849XGTktvzddjNXEKkG4f7kRUBuHOLl0u3B1YXKKhCzwxpp5+T+CfLOy8dMDOthVEDyL1zIGX+vhgAsScibhcKVt/L+9WLpy539KODZm3+JenjZOrm509LbVl+jev3rx00j6Ju1rp5OLmw2U9aRuu9YKsFN7ZWXeZ8KUQ5+PKN1eXLd7c3NDtv7m63deHM1C6/eAOAUuUXh87Ambt/Nzdrq4227H5c3Pryep//Z/Glu0JTNkMpNo7ETmpEXdRCzfqlGpZHtFezCaCMom6zWNEmkbGo8RoZGskZlhB+aV5wG7RQL4ux0XNlF5UOP+TFcGAvs+PMql2X2oBZKgF7SMhiNmp9H5PSsq/JAbEN18XBJfvOY8ldfk+v0O/4j5B9g/2ecillnDxGXq8Gg9Rlipa/i/vFztd3pQyxZeyS24kLPmDP3WWa3Iu2TxWSqY43CoF1Qnex4hTdc6KBWcH4wENVjcarGMsIH182LcUXmaL7rY2rz9ebq7viOC9pTCURu2zWaVFhHMop3mDfZtODYRHMnodsGM2j2BMrgoRPtpessv8HOdv03/n/a81LPeY2BvWEkDXjefhWxFnxT4dvkHI0shZukbD4Qm3Ikj5bA/YtW+4sR512a6LIjdM2+kDAWha2GOxULpBh6x7ubUcyKQZKzASz2d3LwFYSzviLy5QJpG2kB3LdI3obutjjJlb77SzYUcO9cJGRZhem36fGlawuoniGUrG5b09W6Dcwde2Io2kxfwcOnchlFfQ4r7sYGI7+wVgUmTywB01YLHWMroJSPMJNtu0dISBwjyJO5rTITztiOZbdHIsz2sUo90EpEufXW08J0vqOxtJtD/IME3mh67lyDhckVMd9S6wMLVBh5qli1Sgxmb0GdR2+fD0h28vfvT50c66+YRzRwRYt2g8gS81GfvLb76jn48/+0qDZTbFIqjdrY3PXh+/PNr//IsXplhNoe+5zDE1L/xSXXo44YP68c5XFgoI24dGQdVikqOtiRdNwrgx6hrKPMbEVaWIOCl1AVIa8msz/GTR4hC7kNL3wuvFCYwfCZK1hlSOG23Nai7IboRZm9Awf4G79sVCggxBNxi3MsXBswVU8W+av1pMFcz2YIhlatJDODVZRNJEB7OjGXDJN417kaIicJbMfuO4nmRfyynGYxRLGy2BRyp4ggzV4kV9HzG2Qpsy0dul7eYw4ZCuF8RjZxTSOj9xG5MhPIyNBrqRLoShelFCDkqOQ0LswtUqAnO+Eo9/8YI6VcfQlVRTsIkt0Y/27736GAv8fRT1qXzQFh4ON5BM5erkAAxY8OUY/YhDw8A8V2ElnmSkebO0JW5OmTJG8FLRUos0mVQJJdgu3SclQACnEhUZ1fE0n1ocsOfdICkzecOhIKaqiwyn+FI3cQ9DghXu9TrSgWH45Hey34DzZeSqvU8tF7UIeqJxlG8jkZlD9ddagKamRZ8GelP/apA5ZvjT27xYxdLI3mGRP/2qCmytC7gYm1LpB80bK0q+86FYw3HGj6MZDD0I1/EqkffMVy8ySK/U1bFuThs0FqiJB1liLWgfAOufmvCihQIw6iLehspUN/rpsSUEmQnZoGp5pc7nCLgGI0NrZj8Oya/SIS5Q/C+S++TKIllmjpUaxZpR2Wc5pYtlLNPACagmKUJiZd4BlHCNuz0PiPSmnLxMImehWaR4uvCrrHD1B1ZZVxCCqSg5piUdZV0TK08h+EhHHmUXa1QcZB/41PXP8gti5AyZ6IgdYMJqxFHY7W2zriowAaKBWir155NYhwD45YqUH1rCLgdDTP0h7phRM8I+y0t8Ae+h/hXOhBusRiyqz6D8l04DFn9RnjF1/TPZpOpQGZ5RyejL7MEAcW3j6vzc0p3b1oV0UM/u3o6lKfYEu1fLKfBasq2Nndv7s72DfSPcDvf54RfHzEEMbIpAuH5zeWug3Pjx25MPpxe3W3uWD33c23LV1Zo+gzM1yHzf8LuZM/dqrX3cPtj79vSsBcfbWxYOUSQ9O9pBZLoHmLo0G0JtA02WXLmmKg/e/jyuT00bRx0m0vil0zyJ4sJgYz0z6/0/6g90tiAWuBVIY3z/8HJ/VzvXlEJHEBqhf3JSAd3WdbGlD7tFPnQG+bToYHfrYHfP2KW1Q9w87PDZ8TtaUq1x446mNjY2rRQaaYlpklJiFOPqKhga3DFbcrennTf4ur394fQdSo8Pj96dnEshzrurG9sBBEWW68whYS204FNZjTI08vZC00chVwxPFpToWn28/+q7k84QNbNxfelQUbSS/sHeoSrv710deHN+fadVwvPjnVWrBKx9QFornq1GehQWPN6udTUOlmIjshwb6sIR8w4f724p1aJRdAPnUvh86DJMVee5aauu+2moNR1nwFmBjBl+VpgCMsU0Wckcig+TwUaKO8NjHmk4HWWSeY2az4qwTp/FSWQO+diaNFwdKL0tCY8UL8l/LydteVNVg8L3BRZPN0WX0mX49Pn+cUnMsACPgmA/1zKEVdUYY7X12ieP0dMCZVKlTOESexWyU/4TUsu3IW3QD87kVS5WVsw/D2Rh/Xbfh3MxPC+cN+BOaEPxxGPOOQMxOruyJrjX/ln2L+YdQNRnw3A450ZjrhhHx6k5UcfOfJ3/dSfeCi2mjjzYsDZ8pQBbcLnigB1aau7Lrl/hMri6bI3M5QdnvRBdnSF5wksRKBvDgLKHbCLuaGXwbhkftczstvO35m4B/XNlm5vL6s0stcnJlF+6IZwbXqaTw8vWdUjhPuZAfXoikPXO/vv2HIj/+MyWpVnkI/JoQYW3uGMUAbKt5TMIvdrMmJib3fEDDuhi/vSQ8TYd4YhPRwe0ib9GDJr697MJiNZDzFacWg2di6j2vRFc15hYjlg72NxunsmPUR/dCdeuxd44mtI29NAwQZc3F+3RnlbzF7kmWL0QFzLksVjINMSeVAfGMneB2haG1E2adudJX10jRfwPV1ePf/TT93/q9eEPv+AKzIzeHe9vvT/TusUJ/uPSPqKnNX2Cyyuu4uknv/rAz7x4se80Ng74d37789eGEPiR/b36GtZWMMR2Qwm4hyD4TRcIaWqXwexLoUJa3gfGiMYmYkqjhRkIafODGKApnnjTHA6vEHXcqa9L+rPbiEW95V56GLshBrAJtn0AFA8SVKzaat8JHYZggkaBsRRjIeOZSkjHTBAagIaUW/OYBi4oX5PS/nXg6QZ/HsCBE3tHNtoiH8UzpZTeaouMXOLym6wjpR5aC5nIZLjQ9IIsOQc1CSqcl6CPN+FH2MBv/JmyzTzIHPLyqw+ACe1Cyv8YCQIu9XfoQpF6OEyJcSj8mV2qDhLCsQE5VT8IFESEMyUMz9jelEWNLDJLTCiCi2dPXYbssWhNjf6DjO0eFhyqc7i2MIGkorr344srUl5EmQ0rQI37w5gCt/owcXeghfMiYJWCHp4Lp0FZuJeeIMnbKnjmQCKWE/0LRfO+Qynkk7m3aIeDaKdQLQ4NATF+AYgBsGA7CTgZhxB8hw56GV9KIsKseRHwtFiegW8xZZbJNlKnKae+ZhZUkFDSUpxKF2sFxwcMjYioBLciDuCd1ZGrx6RojGxwFl4zfuIjac0i56KWRKWCZBOF8EyXhxHYh7PeRcvzJAhlqHhBOEcwOvQbXCvQMN0ITwDR4Tf8IzaFK/c0zAk0GaoA3jCZkacOP5Ci0lBKzCiFW/MMbaYp7gfQ86CNCeBVEb4heHRaJfFvVG2egh8vFymCULOnjJ8OUZloIQNGVHsAFmwnHAlvhGZywVB0hi6gqENpAWufMAjp8O7jOS6qLiqmkzAhdUC8UWeW5S8VxPzasgDHlv6x+YVL8TyPnB7GDUBTgWQx2avC53uwcS1e9hK78nfzkYdEcv/PzI4PciUmNWfIKX0cW0TG/44aQGzeVUvPsjUH1VIrXzzAZNxTAzMwDAgCLLy5uTFgYcXO3GnVPIC9IsXHKyv7B8Lf1sYorjrB7s3dzYd3p1ay3D7cbztNZ3t7/2DnV796LyRwKsjX37397OilMFlLc2E42WKBWzcDOPl+/9T3tY9G6l05Zvuh7a0fzs4tCH774TKF29y6udIuap5vOUr6XB9bRND0GoSd06F+S4Hpna7pqmUqWhZDhoayPpycHRjzxMTNzZPza/LAHFSLX5c1u+8vzlxnpi7rbyxm8Nr2xvNr0+2kU3gUb4nBqPbdk3ybW2u1sCuPu7YIX5x9ODtbXd9lyx8/3jjDc9vA3drq5d1Nqw42trutbJpAXaC8xyqTYGs5EziJ7zV5onNhOlp0fFoobH/Dg9FNQ+/3rkiV/f3FlYAFz6lPc3HuTzVNYXblwjlImk8SfHp1uI+ZFlDZjumITuEMF9/WF7br9dramVuTRTYbT3/5z7w6evHaUoI/+6PPNu8ejz578+7dyclZhyT9wS9O/vjd+cX1+c1D2yU1EeYCKK5lRU4IdUeyGGgsAy9SX+0R5yPnYoxZYWNx6fnKGkk2Gk1SstVdod1j4UBQT6ou/tO8eWDP9XPahJHPoNyzuZiKl5XBNImYu/c93cY9n2wYLD95udH5cAmaN8snTe97uTzO23nzKUNfPj1XxXyWsv1WUzWUviT2Z/k/tYxfkrIk+T1V12Gv1QzTTwWXWp6rCqOKyB1k8D9hsTxMWhVWuvfhMN/ly2/0pzr6eDU8kU/e9Lf2hC+bgAjoxixGD8jHCLT8pqTsnNWZJOydfJuR+KIP4tVzsB2UrurxEriYeBp+McqGkHE8ZCjPxxp3Cy8Fh6KoB1bDPJlhVmNTizmvLZte9A22oQ5aDRF6tXcEj4Sa4eIbA0uAAwkIRWJuQm5RGmTEk95aLiRd1YB0apY22Xr2PjVcuYMGpLuKi5rt7e5ajp8e1lo5wMcoeB1gtfEj2hyKa0KyUZ3w6U6D8dJGLuBsahFGWwgHwfQC64d8W3E7z7QJitqmWdSOFsjGbgeWcXe6WzYVDDUwpMm1g3P0J0QtMTRBwaFKVIgHUA+KLL6EBGcVQ9hL8Xs6U1iiWK541XV9enNEAguQi+uxGPMofc1AeoYEDmdhr8LeUo9UB5ITw6UZxpvXVt5eXR/vd7zyhxOzAitGMfRkIGv+lj3TkO11vqgzAwqHNzben16//3BOYL98+24XPRurX745+q0vXn/+w9e2ORmEsPCEuauskX+Yw4uU/ZZU20QRltPAYhd/ljLzCLGHwyggIWrkF/xHU/TLBI5XSCTJEVAA0xCVeVUfU3oZicBvsJ69UK4l4wCBglBuD9osKWrxgJaMw3hZXZH0RKtBBFlP9S3/VBcVcsqbffnAp86D/Fpkk0X0uJGO6qtctRKOYrm3x5nJpyDkO0emhUdNbdhCjSBVUWXJJiF6LmXeJgu88J8iwEvUMTGVgt4zQIjBSjq8ggBOVfUvumhU+MQLL+UUGH6i/YG1SIk9S129XcCWGScwF8UIgQwmG7AqNqgxGg+ZfOff9BbKVJekVzIwlUYzE1OkwZP/Dm2VKTS+A9rykDSBgjRYyECu8sXoSobgs6SWUkGZyCoejdPLElOeUZigDP7jFwHy8WrAVC92DkZD1aIwNCyplgV6oClSplSskb4pQv4g1xD529pu/E1UrfNLhxbsp5pqq8IB2FidLzQtVvTGQy3cLOPmXxJqes811YBVcBSulNFR4rctTzKfEzUpcGQBFQLCiLxo0P1KM33kqpdTzewNWNDACWLiiRYvSzGci8KFWd4FZpzFZKkghWspwmjYQgio+T5je6pNQcM5gEldpdLBCMVRlImccK42geuQTt78LMIV48qkQNlfTIqkkFtG5QObS/CK3afFk3eCA6QMqdEeQXmaPr7WicWVPgtmgkmtQg1OSBEDXR+0iz6WchhhzKcRIKF2PagoyhvLWUWiYX9kGoanBPDn9uQbFxDkKYJ79Q/9oHcpVQaYB6Zg2jjTPIetUtw9xNQ0TZGEDJ5QQEMIHkvBcameKXojQ5Mnac5bOZPJ2KGC6mV41cZJGfRJlCBF4HO43wxy5uhFNctKCFFaI5oOKDjdvFKNKrlhpx1LxqVscbNN1WDh9anQ3KbdvT13xKYy68aMTxBowMQ6HBXy11aTWvNuse7X354aPNay3Vxfif4tQPn27OxudUM0CcFXh3ufvdj96t3V5u76we7h5fmdiNtKgIvH2/0XB6enl08O939cf/v2wvi2s3uwo1WwXbSpvXna2CksMHJvANLOAgHPxcfrwp6Hp/2j3ZdHB2fOvzCp7dLcOar+TtbOSopJFsXiGB4d7B7s2rdwfeOoIvHu6cnpNZ/i7EtD5XeO1e9IEHuWs4Wn+0OXeeXRH3UqLMIxayHWkBEn24m4uXFxfhHbLf/bbd2OsXMjsQIjbMzOSY173bBgycLf2/3NjRdH+xY7McQThyKvmmfft5zaIf5a+9/60bGphsubG5shDLIW02gL7+5/53d/5HQSHaizc90MbG/xqsBkf8OhiqmQgVgHqNDmw3oRtzYrvj7a/Ut/4csfv/nsz/z27/7Wj193b5kAJOu27KCjw2/vLp8ern/2y+/+iz/6+X/xn//RXdcuP709sUhEqFRHkJbhIWFLT6FZgR2Hqm/L4LTfSGsMLTVq56fjjFpf628GphIdML5BCGD81AbEgxfmhHZ3KFsXq4kO6zkxHTsTzi6xu12VZlduP4rhSLTtB+OXNQm0IDNcbLzntHg+UBvFHaMqZSxoVDxt/+Rm5V7KfP97SmeM/18fGQD/PnkpmM0sL3oFrwG35CwrHBYfteR6flvW8kyZwXh5XWL4RtK87WHJ2fepSsozEpNzgZhvXDwwv5rr/r40QuqEJRH20ci37R+eMTCx3zvrhlYb32wvh1Bbz/n8spNrlDPPxmvFW4Gy+SBncIFLxq5/sINozk7J1dQX/GgdDD3QqtFbPlwrwEnqbPMGNszrf1pTbtfsEt3pJ+zsb52JO2lXx65rnqDQwg+CN13m4F17g5CfUT+sbO1kqRdnJvq0bS4Jcchn++91Q7i8Oiph2XqKODdxAPwdGMqZi8PQSH+SWJ9HnesCXT5KF8J4fNeW6wg4tj8fKzzkCoBkwvo9tvR0eOjdLXptM+Ae4WinkLesWAs4HdqGe9S+YX/yo5Z0kWw5RYdphVFp64CMgttUgDkcFcyFzLzPNJLxdQKmgkH3jegtAG32lbkVlTJt74v/RseTL864MUUuzosNL0vtrGmSH9huINZksLElHhDc6pAYnCWXhtWAWbOi6g+/PgNeT8lIjRs/Tj5cb2w37WmREqrtHLalTm8oV/LxVgds6eDxYWJB84Fn57c/+cXb7b+z/ebN8eev3/zoB69NEVA31xuQDoYTnpPARBnOGFKvUJR+EgNxgVmbJuPSLBUJIKXRtxqrGjIMlGGMgNhkyKQwun0glaQNyO+h1ryvqluG4mcYzlf1VEUBU86hH5YyKi0FWUwjZlJWeJFcNWdAdBjDPYdnbXbtiy4f3GLsILIUzKfJOqCAgcvU9ZzSKFWoFaDLnz3rhxvmt8LCpIRpk0GDmXFj4dBPASjaaUCw6h7oD9c0+2SSDrm6viuyiWq4RRrAzwyNIb6y0yIrH7hRv+jIMI0TtbIjonKzFV0+UaFILeEQXdzluW6Yz1RdfTF5AjyZC1d8lthsxNO3IRYB+weuEtem1C8qUtIUKP8MNrn4KrRQJATm18LzBnqSWryK+xiSQgV5yVxAC8upy+/kprEHL1ksso6HkyWZQkb+6BhD85dgfakGIxwNW1TzfA2rkVcdPOihF8+r/hOSy9/Vf/Nf/u8OG7XnS68xWARJbFU5spFVxVytH6vsVIsa7EjKFDGMpzYvCvTbujR8eUZ0HMQIHhuWlmSQCoPh13Mtg5ySqs5jg4k2jBjV9FUSwwfUv4yhLPkmQzI8uMhAZKzsAi0NSFqpY3Dq2/BH8VjiguAowaA64cxEnMX0aicPwCGIcPVA1WcKDs5D5rQqpSNeTvDjxkxxpqbDNF+b4hzLBCd+8QgTKKuYM5SigUn80+MhY1VOiJ4znVPWBLjFScEfRRre5FlG/VWTZnC4UoRK08Ph2pouUBmihgMRsyAa21LB4qA4M44MQ2aFQ+qoYAQtFI0Z+6LQCAuBFScB+cN+QvwRf9TldcBSINn1REywG4akzeBjDRKGnNRh4bDklg956WcADIglDgjeUrbfsSUuqWIxIfgELVTrcQckCLIkFIyluCDgiY+Krec2/JzDfHSUp+0tD2Jdl4Xe3Fy+//bE8RJff/ON425sC5b/7TfvDX1bY3p+etX64C2n5dxd2HKXhNd+eXrx4co5NmvOszxwav2q88JvdQWc+LH+ETIY4ixOR95pLWvtDPG4gcgVo2KXc+PQc1KH0SljgMAViceHbYtXdvnpNgoLO9p4/+b1G7uWUekqs5OLi9MLTaPg5m5Cltln0uDTk9uyxNXWjB7ubX3+5uX7jgg14rFxcmLJjc5QllM/XWvGI6w7BHYbPlpoN3a5w+y2NewrTtLEEPd5uQGVvz+/vPrs9UtT7KdnZy4dcOK4yIXrRw6M62AlHxMm6/sb6z/+wZuGWp8+np5dHBwcGuR7+/7E9V6fvzh0f9HbU7v3Vq3TNTouFrb24PhwX8i1tf5gk/DJxe3xkYH/DjNxtdmbN/tisa++vUTZ7cO1fYDON/rhF0f/6F/+M//4f+1P//DLY/sdHOZjJ7RDgdzDBhFrsj7af12XfvX63dn1+SWjv7toq+XZxf3f/em7P/729Pzu/qtv3huch8bmjnXehf7rW4Lp1fMzpz+iCucZRxqcC7i/bw3xNpWry2PbtEhrfevx6MWx+8hECfp0L+Z2Myecvjo8ok43oN8/nn8439YV2tpy/qOBUZ0rrvH6wflOFlk8uO/V8UM5t5hXJEFpR23T4Ekbtf/UWniXZpM66c37Md6UZmxzSerNSCMA//8/Wcav34zsgvyctLyVOilV6sUzPv1dhP2ce95la7/xveyfcFiSn/F5Bvkn6wn2NF+SZRi3KbBYsMD8nLkt42JcmJBQgWDxhDMvk48DNAzki/N8b9Fak072iBsFdxSvlfpiSzaOybNdtdkqYYNh71Bqp+yeINGnxaLOvLcKbnuPjMX6DRZ0XBh/tqGbPd6n5RNGBGzj4X9EiJRE4zfBaIvKxK9wVER0aPOAqUUkCYx4HS3R5s6eg75otcF6s1r8GKLgpkmd9T8z33hrD0Mn7rePoHatQ43wsLiNL2skov0JahS4u+OrMGhVh8f2oDvdCV8pkW6qo0WxRmeAfdUzsfbPR3eJ2du5u9E1AjCzuoeP0cvVABk9aIlQGzCMBRmHa9SDXeB/8SKXMeyGUvMo481FRfUKBijAScdol1t7hbMoN7P3SS0SgY8gyd7fCS3AqNJqMQlg6V19NQ5EK4gzDMNvvMc4/MRARbEWB0gw0UXItG5GuPT6Vlf3t1c+f7lngMKNjqZ4LTLY2Vt3xceNLopWznXObQhcNSN7/p7Iu6XBHA2t0sD4ascHSelGaajdqujE5/39vS9+8OLV65dGFnb1X9Bf41X8i1B/dB4QHQlC1BrTxtgKMIRG2mtN78K0woAa97pEzbpGIGEsVpz+1OSiqdZBolL9LjGmESnGja/GjYpnXCL7NlrQ5KLY76EBMvpidKLIBzJQpOe0fQFOIGM+BFGnVH5VTP1kl8Tj6yz+RKyXcJiAEoIZ6WhjaQuGIT2NvEwQxkBIo24gB0lWOaq6Vt7LxTqWkd0qQssSrniJkxE1qj4eY37NvrgJ9KNbRX7TscWmqotOTL2LrgWzz6A2nPelxJSzD416flegMfnU08j9b2KuSJ0nONNCxQUMw8dc2IIDtissBzI8ad5p5XT+KSOVcIEGbTEkO5yTMzzj9sKTKubvkfzM2uVVmXszbBwEfVdEWv/R+2xKIRxv5xOS0idn2aaWqTcWQrhc8PQk1du+P6vK6uq/86/8S14trCAM8aJshU3mXMoWQ1UcCYs6wXpR0OgWWtCz6VvEknD2WlnWK7syOe6QmVaq0HbW0daWDnZexMJ+q4Jcx7HXtWBRpCVV7SCg0OhFupxcI6rQdpGr1Om9eTnkBTSWLX8np5R4N5V5x0ISbcAaEWdgchf3Dyh+QSMxNp9/hxKXoyuK8IFb1ayOBSKHq1ZRwDLmYivp2ZKEWNVA+0KOulIsDB11hwv88aGv8I7JcSxAOZE+kGT2OReUNlOKgY3BY4Dxlciv+GQFhKefsQc4RHo8mWg+2HWHqjwhRgc46tX8aBpYnZxlgs2Iukh6TEtWsEAO7ekChQP6x4spuOAP/T5VGjk9Kyh/rIjVowYwhHPt8QJcThli0TBErgQ9ji8Ig/bQFrTFM0IbPksVi6LK4GudKPpj0vx5b0CDVdKn+LOh+opYOChgqQ+YxsDsiLWhj7vnGS/PztX08198Zc2JO30sPTm7vIT51p5TrNdvLq8e156surm0wlji+qYlK9+61+vmVnT/csfBM5vfip1v7/UW9h0lYh2qJewPK9cfhRQ0DrGrV9eWEjX+/O7yuoNE1zebm1aHa4UMfNkN3BSBkWX3E+9+tDPRwvS7289eHs1erpUDd35dXr09ubDjlZoY8nOz8aNNAGZm1h+ODndvnF6yuvbZ69dG22wV+HB1+/bsYvoeTRRY0kzVr4yH+1hPvFurbnHzwcGOHtGlkcZmS5OpF+0KTIQNqWpEaCZxC1uXo/WJdWILtmPbcQERn2RNgAmQMpM+TVpdP/1w7q3DUM2fiFrOHUVkFfbNw55hlZphtzHb7Lj+xZv9n313ajTpYGf38uzyi88OWCSKxG9m8m+u7o+2Vv7SX/7xf+Mf/4f+sX/k93X3EaIP1J5d0xi2Q5y8w5/t3VUTBR++O3m4t6Vh6/zkjhCPD+JP83XbVjp1TdjN9ce33508ba0evXntOBhb12jOwYs964x++rNf/fyrb/7+3/6VY1rndPjHN68Ovvzs8PPX9mKs/+B3vvzw7Ynwjbi39lza4CgZe7Nrwt5/e263Y21trqljvMUKZ6fXH+iDc13W1t65u8BWB2cbcJj3j3aC0oiZEkBAzUDeEs/Gdqgt5VzMXFLGPJb1rMzPGZ+btEXJ/SbSJYPfv/l1RP1sCN9n6EH2/5/kX2f+9HbBq9ylKLC88PvTY1C+T/z++U+8LvN8Kkbnxgv1GM4LEgMQFUM4FZRNRhqIJ6OQtoHZsDJE5jZX7KVPfwKyZqzdqjOGQ0V1eQv3zbBgCYBPqw7miiHBqxniBHTjB5EhaCrlFXKJDcUmBjGnZpHG+tqM1KPFcgXcw21b0+3lvbZ5vZF1+81mHpKFiwDce+00XgGuI2e0Alo0cPzTCweN84QXnyfobDDekLx59UicOTQXCHRhuajdjgaeqhaFtzSSzXhlqzFac3jxtt44zc9AKU+j9i0ENzbvtNOaMPbbOT/O38zJT1scSvHUhh8OasupXzVLRbWkodcPw86HaZKfxNWobK62kwqb+3I+Ql9a7QOLODPdAF3uzs9oDDWpylsTT8M94bCeGHYuu4Fb7lfE3+Vio0n8c46IDEiwesdd24nQfIEFe449Rfa4a1LEScTCtwYo9XiOqpFAxCo/2F1/tbf5w9e7GHLeTX+86cblJdHFEJLCaUeH8gaGYzQXh7vOHtIbv3ZgAPwd2YzHOnIiKz0fGNKug+N9/nBvZ+ONnv3h4asXB3ithxZsrSvla8snGhphTb0KLVrVE1lLdDtdqYVgTTcl8TxOgjBq0MWBE5QTNR4U2fuNt2kh1tQuT7hSAJfZ6CuBniI1eqiS5EvRPIZOKYW5Cd2fihdm9C8+ZwRLRO5JTw4yU91Iz5dBpgbAiUbMTa9L6zxWAlGiJ0MYTkLoyShbrXzYyECgAI5Diy8j04kEKA2phS6aEKJwxdNPtZaYmdc8waHEiV5q7vsa8j6jJ7Gh90NLhPEGwqSp+hP+igRTekXpbTFGzPY1vkNsCb2m7uH2sjMrHCpSzBMa9ThqHxbZxqABHNMQWzxTwJJviTT/vsfW03zUGarzgQBF5aMq32xS/IePWrLDyhc/J7UhPzxDfxAOmyLz0ZYAzttoIuIFrZAfZgV+DFCK/OEZ3iLAIj2fcoZtDrWuqtfQMnzinfTiJAo3CoURwOGvuCU9K38lY26LTryNZdR04W/Y1Fcbs6Mg9I9sysZRtUxQRQLqsCj+a5yAcsgQNkwk21HH2ECPOJuqFdhFQkrgI3ORZXXVl5Xiye9hcbHHs7ZF7mh8CMhLAHCrGYBkHhacEYP8C995k7qVQPHUHcVbGzDqNahNEAxzXg8mmWGapGyeGk/iQh3ZGpiqS8txtNqrZ9E/NBa4F/cn9j6/lrSUeDV264Eelq3aRO3B8q+2arSkzKDLPQANqMTW4U/4Q2NYDzXFyrUZLYj1o1bOXBVQloFrYyM4x8U84xZ7AO9PEOa3/JMMhyiuuigISR++AEN87+PNmFn0F2oWxC8kjEYW/eNVzeNUMS6+PoOvPmliGl9Lg8YFgSqbZ9SZkcrndJR+k3SRNPgM76o9RUoE4bkIyyQDUdxeX1vOz1PDdHd//+7WLIA4XGD3cOqEy4tLbDLX/+G7D92Iucb7vzp7/4Eq2FF3ct4iYGfm/OLb7+7rFa473lNAYNhMZ0Cs/eJo92BvexOpK6sfLq/XNrfNuOP0DLY9bNuN9LRy2SCUENfMqYW5FvLWlGCPqYberz3O8F5jbc7Ke3m8d3p1/e7i8gfHLy/OLEK+29k+uHaEzd0MJjUSXwP05uWBRtJiG92VpvtvHt9+uFjdtibF2sR7AC0/0VURIuSxnlY1eA1APDwYB43TRLK5fXl3YXHF7pYjhgxad6uO1kb45IwNDd/pxRVPRY2dx2LDMSUCiAgUtP0AIvIbI714f3b08qVdg9ZWCe4PD/aQZi7hCo+tzLYWwoBuewZat+Bc09/+8ku9qHULox/Xz08vBXZWH1kj5Oyjq8szyvn50dY/90/++X/hX/inup1NZGCy7yM1Nsd/qet6f3f5sHL/7dvLn/3Rt8Z93339QefnzQ8F965Auv5u0wUFq1u765//qSO9i9fHB2sHK85xev3DH6w7I9Iut4dbq71JgPv7y7//Z6np+btLewY+vDsxBGpvwmdvXkPVsOb20b7LiZ0ne3F2YuLo5K0MdwZyz29uX7862D12X8GT3guGv39vLgWmIjmEblwJPnYOrBY7O3f+khcZooAVT69sGnVBZkvpMnBmtFjOGE8mNF+9W/5mzUvap6RJ90uOdOj5a+ZDoUqSloEuAD7lnr+fMi+JA3Csa4D5laVV0Ju801hS9TwD/r64pOeM378aVJ4B/ImqZZQ8YCvE4Uy9VROm8yuXrY44QVPNoOJkr4ozcqA9qJKfoU8KYZ0i+n661jTTqhtxY2O/TY3WqG2ubFhIY1WdgFMAarWu/mp77lWbx6g1IjWa2RwC4I23yCpcjgYYmhCTzltaF8LVpOq2t845Exza5fW1xlCzBmkQir3WHylpjOo4r2bpLKtprF3or1592xqIXLgbCPZ2dL+7bLC2RuB1Y8GN+Lsdt/Bnoap2/l5jCAbqt7cLAceBM0qexYpE0/IYaHiesRhDzyttrtj3XAxt8pPBdhhohQTRbDXecl56ruYY3OOxsenybydoqa7xiPiPz+vNntSIqFOvpJUeDRE8PDggAdvZulzaFdJxKhJ/Bg18ml5Ao3V5pQmUsRsnaps0Y43LaIXFW5jfSNkglgqpNQc+ygZ6vS/sS0OalWjJ3KIl0z52kOgm6RQDtLx/ZeP0ljU/vHQe7M7K7eW1fqCTG9I2o2AijrZG3JtdRFxLP6HdlSMPTgfmbTp2KfS6N83ZD8fHh10Y8vBow5XxPVT87FffkdfLI7Lae/Xq8LOjA5vBnKJm1CZdxdBGRae5yYPXKOMQhPO1aZAvBSoQzdf2xoQVnlkKP53MGZmq/f3U2haVBaP+Z4Kb9TOBxYi41SMm25e8RP8JLdgFcuRWP6RPLn5ehQNUCr50F1tU1tuQKxOFjgqZluYevuB45Q0l8AA2+NpruNdoT3zCn3tFiEQnA2XTcMgHSN9DH1sqCCCsfPfVS1BiTPYNrxAblkz+T/yCb0VQWusUJ/2Dha/y+Y2yBbH4VpBW1wti1UbpgVUg5OvzB9pnmBM+OmYxMlaG8BC/YKxCXwe1BVIYku8SOCmiYBgswc84n4VaxUIucou1PDWSZrloURZ++NTMYug8hgPIss3vIkf1Qnnqm+IJhAjkD+gERpWab8OHAPUS2bFnPgsVw4fe8Zb+4APEnmWBhijPbU5nOyYnj+lWRwVwoJVn+K5yDmuGV8MeUgCw84XIBr9HSLJzVaSS26q6IexZ/F5GIRpGggQG4xAK2LPMkoP/GO0vD0iiYaWCpfdZx3q0YpQWbQwj2ReJ0uHqhPkwi3lMF21KhM8wXfHyQ3KE9H0XIhKi2luUjsr6KvdoFUvwjMSEx2YRHppZDfS8zeQyDPRITtIRP5gP66enWG8H7UCONACpWSgnDxg+ODFKU+sVB5avAQRKqaRVf84A/PSbF6mPfofzxNZxOBtY/AUOU8EMD9YGdHzl9dRPTHZiqbLdLZE2CDeNlVtBjzxV3J/YQkzVnibFYXWlMt5OnxKrku6Q5WAIxSFcwQgs02SUNpDHYDyH6rS1U1E+C+bDnbG0T88aNH0AsGGQcKs1lCASu6vFuRP46o0YbqwlduWBSDPNGES/V4BBvEMDBOFJblqvy6urg/3t66uVd+9PxZ9ffPHZ+7ff7uwUQt5ctArXYIgWRbT28sXR228+XBpF29uxIp6wKPH+xvaFpmVt5fXRodEkTbSTxT+0nl6rY176dnfdlD0a124u7i4cmtnMGIR1ltYer7M0TeS+DcPobBB+Qw6CJm6H1htBO790tOUevoo6HDP64eL22mLW1TUtt8vQ7M462N3mlhwfrnHadRLR/d3J2aUVJu0kXAZs9LJmZ6Gvzb1bW2Zty83d61cv3DZqNbxgiVBEulLO3p9huSML9UzOG/4kgi0rhegApJscoz+2Cbpc6ba1BMbXXSxAwd68OXLc4aujQ01mVxGsrlgCgxR99yv7Hfd2PuqC0OSHu8OtQ2MJgiS6ajc2uhHrEFVx1tGLXYf3X9uWrUV+WvnR54f/5r/63/4Lv/PZ+pB4c9UpoqKJh2tbNs5vT2/fnp+cnbtJ4fH6osPXD/Z3jer9vX/wzZs3B+4DMonz7u21kbx25e48vXuy+8Iw/IotGjuuL9MFMzFilsPA4/01VE28HLzcPlrdePViN50zFOuStU27xtYswaJNu4fHhvKP32x+/qMfEtLFzbmuwtc//9plC+/enVt/fOJuYeQ7M95SpI6VvO94xDEuJ5xeuN/NvsgN65trKXXQTCOQPwn40NxMPbrZTU1XtuOLtMUh+z5OzHuKTWQelk8ZxjqWr1n184vvn4IzoJ/f/OafBVQQ1BXY34A8mDBBVU6RQej7wt9nXB76PU+//vXrahcAv8at6qY+VfROxVOeg/F3XvI2xgT67U8dtkaCDcoavm1p31PD1UA0Aj4nVl9cXbsN115e9kfAdzp45nlELeOIsLhIHSn6BoIhHztlDQd0EcdgACFaqH6L1NqGay7IwGcdjJ3moFs1bkphxzZ3wXCusNX/SthNf31/C+VyOVb01tZ/YD9qKFtNtGlVuv2VK+bl7MDZ3E52ni0FYjj5qppjF41vXDjYCunibM5n7qimscK8mNimT4f2GNjBJ66CbVvl34KfiQILg0ShfI59BhiKYcJobtKiJhwtzLO+bXO1WzjUCe916/1uAH7x4tB4Qz2Z2NI4CbztTxJIsgJ9ALvxc1lrK3bJUFRRcceL8TFuxlixisboCcPUmtR6FIoVTEAZq2vdOASttILCVQjDJW4XRVjh4zpS1DQKCsMZUzdG0AoWrgJ8PhaiG3MmnAYMjQ4bhdsoi+MSrCNvBZdOgjMR/uCX3/3O5y93zL/u7eDw2iZfLP5rkxV24SSBNuzhmme2bIlU4z53Gn53q1xdmQP5eHywZauAdgfOukQ66jf3bcjGxg8nZnOvfvrLbxsQ2dj8wQ9fH2zvv3l5fPxCn6ijFPR3aGliISuucsbXqBu20BUWRHIeCFoGzoQfJlABDLZn/Pxg0R7ZLaZWs14DxnsXQMeluDZtusxjC9MiZ7IY6EVrwCZL4VbWFC7VlWmhXKoFaRaSxYVW0zWxNtjSfm8x24nYToaAQpF9mEw0XFNbWAgqC8qhwVK1YpUG4PWECtOirOBLbUV36vWoINwnsu0rLawpHzeBCjAWBGLR+AEpU23NuMgKDkNLFoBLVTBR5TId4RX4XtHaBvVyg8FTtVfPTiVwYA9e4gYoRVTwq73aFAkh3PEXOHl8aJ7fMbIVdAVCy7epojwsAhDFES5f2p8W1wMEFj4L5PKoJxFIwFFlCaDB3UiOTaVKR0DdBqgV7GGgFyHk16ChGP7HvaFOvt7HOvVVrIp+/XbaiKkxiqNQfZHpt+cu2ohIBUoYgaU1qV11ADhNkr90aDRgQsBoQXC/Jw6daia7TCm3VwsEORJ2dUXqSMsDnNUL24TkHRxm3s1jaxVgBUW14oT5xDox5IU1QOHMYMvSqoXy8VERr9pBq+5KyIMf3qp+1kW1YVBj5/M2pYx9GuSJPvs9TmoKhVKy8laMPv2W8WtVPgCfpzKCntaPfsRTOPQ72oa6uFroH8ulKF36cF/tiWU0McLreyQbJHpPF3mZhWk8YF2PYf7CMeRTNDQCS8/Swby6eDQU5IfEEJjld7BFs5MGGv0VwzkUUv6p5VlSC87tTXRQBn0CCmINPEzPU3Yqixtc8NJjCb7zpy1p4Fibem4FTgQOf/yNA/g3ik14vQKiDZXpWxiiNLWYHGOKucTRlox+7EKp+JNeYFqrNj3hAKIUHh7np56hVZZCVhVQzn3E+R5mWaqlPrWjK49OyJHBYh1k7h3vX56fb69+XL1Zuzq/e/HyhdDY5VEO2mEZMDw+Pnbgt7X4hoqdvn/lZEE8mYVsh1sHp1cXnUVpM+LuxvHBzuXppQCckn1zct5p5JqrmjG5Vy9uiwjFA5yVf/YNNzndTrCHZp+TpnO2cWfThjtXWVFeJ/Qg9sOHa4PoVqliws3DqmBXeUFDxjQ8OjzY2jcC//D48ovXDXIJQ27unIDneqCLy0srbVwFoP3GtO3NbXPjdMGKGALbODzQHpssb7Dr0ZrpDT2Kk/enRvePjvYdlXN5LZJoh+WV4F9bDgO8Df+kCjddP5gXxz+tifV3iXdn69RMyOXN1t7uwc7MszdjcL++s3vtUHUbIZ40sfJuvz05JdEvXuyTcIvi3cfswP5ZGKxFNzcoAPuHf//zf+tf/Sv2P1hRjARz2wpSoTb4Cb5P7n7+h2/Xdj5us5vDrb/3x99+d3LuWJijw4Ov3n1w85pexw/fHPwT/8yf/upn31yZjtjuqHKbolP8zfXXnzUhuePYpu0DNnR7ZSnR1fXZjXULBQnTrcUTO6fPz76to7mxdvDi6Onj5arL3K4vEU5H90WFL48cp2KNgcjp6enq5Orp6vpch5u12FNg1siZSh1KeHFhMRQwqatdDhtb+ga560chEUfQZlAxih5RpjLdbJYUz/0sVjR+owTMf/6QRI3Zs9OZV1IywSnV7+WTfS+mOQ/L23n8dU7lmM/3QHo7+UqfrM9/Fji/WcfyPHn+5K/frMcbAH6d8gxAnWPqi7/KR0YOEtjPkNK4nVI6sI7VXVquxfPIuCyKNqQb77pPQ89uP0cVJ1vkgM+N67cS4w6XwSz9ruEPFqAM4EJzNvfkTJkh05Z0mQyO6Ib6a0FRi+zF5nMOKe4LwWcwR/NsP71Bo6SgG81dXt7ddwfXwsfaqhmL2djLK3euF6Ffu5g4Nugeb28Kts6vVUziYWTgwCA6hH1A49a86BElI4xQ/GgXzZ1I1iXW+7v7drTb244PWgxrZmo9Oah27j7C3G8zBlYNNUugvZ81OUa+ERo96w4utoHhlgT0FngRUdRtR5l+5CRtzoUlrk7AJUtjv4zfX6jO7R9tPfRFpYCn2xhqTWmdBAOfkOwK4aJC0XCtZDsKOHIMshGaA9PKeItSTqVJfsZQa15jqZqkoLP+vP9erTVYOaDWAkdvz7MsTP18Py92fvP0R1+f/uCFVZsGhh6MCVzM3QSGNrg18be5FvMwUHEnybEtQA5gMjQz97DuruzoNMowTf+q+0j2dtad8CZipYA6PDDl/Dd3dnnYq4fbP/rpzz9ed3LA0dH2n/3xZ69fvNzfN+fQAJZWTN8JxsVXM4IGXehNi/e8ElVKwZW3KXuNYzQYQdVkTDONlYXO2DMDglGM7MbqY1eRQs3gorP+0PlRX420aGEMA8NlI+iqDv5IMvklxIYDNe6tOakBbcJH/8HUuuueZt3XDL1lngA2aQCbAqHoGgAENA8JZURBRcD1i09P4+FTevhXZH7SnxYpeaHqSI9ukp2K2PqctDsV0ZC0zjOlAtM3BOu2Y1t6glIwa42YuwktsQqE4lO/hl09aSYpYIafOMKoYOPZvdSiMf5ZuFWJvqV8YKo3jgwKwcGw2JYMIFX70KuqU2SAgt9xrvgkv7zUub+eRlJ5A34p4Cl3DBksyxi7CqiovEq9VgIrPMtS3BUZVe5ftI00B2rJYwvhLH2hbmqYHoucfemTDkxw6CGsjBEQjzTfaQkVJekpBL30SU+gkprH+9keEPRow8eKe0eGCdhKx8SJgMC1nr5RlvgJ+XnyhfoA5pcpTtnrCYdz+WGQa66qKvUw0W1qwbmoS2XYoQhe1R7QgDEzGVKCharBFrCALKgGuJ185hM8UDteptxLholnwpGf8UtGkpqhpuzBZO5MZQxWzzyEfEQNhJCMoX3GUbfdiJi41RRiSAChaKv1363JA5+o0YnbiRzq/cM5/ZxarKjjSGMyVpurpSZYlU/Xax+xBTmO+iz6MFKQWJKUMGzAAB+wbykOQ+SHTJBlCWcVLekwVVzIFa8GbaDqfXZbq2U2AzkvAF72ktp5aPBb17O1fUXYQHgXb54/MSGKYlYvx8hHSfKP6IZvws0d5CCYB8BwUKG2SfEhaKBVnv7UHSfaxoMwCsD4HIMak2gH/TKr0IQPlKQCroExRI35eAhB1PPx3BmP8OLohesy0bm9/+Lku28FmDmXqVdroc3a3ts6Oz1z2aRVQuH58f7CUDOy3Uhll+GaEe7V3c193XwBxdnplVF6aum0nHaWXjfj3yhjzcaKuFwsrkU1IW4mnTUfuC+gLWhtYtteXb9ZeTy7No1tXLBbfnWS7i7vtlfWX74+hLUj+YxvFb5Pn7AhrVVLGlaEr0JQ4+4HhwfczcWFwzY7ZQZ1lp9ThS+/OL4474HSZXFk8fB4uLutPbMlF/+4tW4VNQZOlo/G9eszufZYVGTcC28FO05f16kwL8E9Z3frBkktJWoLppkBPY0G1sQmzV08fGhBtkVE7g3ITm2asHZoZ+/A8qVuWmu8z7UJ56wBja4aVYNtkUK3emtra6enzgLaNG3yp3/86l/7l//545cH1lw7PsjmXmu07x8vTAyYlLm31/f24ge/s396dfW3/9avvr68++6tI4tubQjWiu8dHq1v7uub2a/71S/eoenDrMgXed/dPH35ozdvv/3w4d3Fi1fHu3d7lurcuBjsumVaWsGv//it4MaZsMikRhhtjuTg5RHC3373Hm6U9sP7E4LAKPbkYKPdtmbShzW7DN98bqHwiq6IOyIs5+BJLGc6tx3ZiS7XF35rmm0bQq4qTk/O6KUl6RwCQVAxdofNPMazJeVgUv5nc2AhGRnPk80yrf5LLFe/EvCY27jBJe35Va99CDypT+4lZUpnp0va+JYlZ4nff1RX7VPn8ru3vwHnOedvlilpyVGJ5XngLACGAqnjJfKCeaQwrybuq8YCqppn7PKWA8+jTIxlw4kxo1nMYA2XMyu1C8JNueKflTYaKR6P3eNtXlu7nTBzRFXVJ5/mhXjXwjNrMUQVxvtrTbm7dLqxEhIkZf+vrm9azcLLOE3IQfPsDj5rDHYbOSqCTgP8xvvHNd1cXstse64JOzlFnPwlT2UoR2/TEAOsKD15CI6bXlizR8Xpum1zNKyeI2wp7NJddIMeH+Ojienwn/YKzDEM3frnhhCdSIakHckJ8h4cmaLqf3IsgfkKGXTpzWWpFD8ZLx57RfXYL92WaLypRblrnXeEcDm3t1NLnsERwBypa774BJzSA9KmzcLL9tVwtPFoht4aBbeWeLkPKdmGgxQui+KNrJlVYZyJRKyoqDDfnQMm2z5+xFXKb5RFLSIBRdrRcdcxvkgfJGvB4TtLgOpG1AGz8fqu+5gFzVf397/8cHK4s/n6+LA5ibtVx7Xpxhsc8UP0ggH+xHDazf3T/v427pvqufp41dFrc0yCyRUbAvoq95olTzSgJpXTayxjY+PS+ExW5Dxg6/cevv724vTscmPzl198/ub3fvvLly8OaSmqKZnRirI1OubM4iaWWC5wtI4OjoOtUZNf0+uByNQpj/IEyh0whqKR/EJN3jNDG7/vazZZFKISJTQ1HhsPliqWg6Ofwoas8NkzeAafQlLFNGS6vZNHp7f4B0d9XRrNUEpXOgrTA7b3RQRcEOIzYoGUkyeKl8JZ9gU3z1U/1g0obL2qzDNFBWTZ9yAmdbGaRDzRGsVRturrLYCMd6VNUJorUR7JMEnffWMveGfhWcufgF34OcPHy+tqKu7HgZmUM9Y3+yuSMjADYoYmR0+9VCDkJrDrG3HIpjqVxdveKzjuayEt3uaTfSJ0qlueEZsjGc+z8MEjIL0ttq+TiQTFow2IeROIwPVbDQDIUL1lwB5/fh0qf18iCGJrYMsTilNKSFkhQicXtcuTUKXCK8GDXOtuIaMTTCpJDU2TWSGAw7vuJLJwYmbt5Q/0MwEJQOHkV7U0MQ2Iq+ojwlxAfhf7BHap6GhVyOesCisxAszojLpKpoZjA0ryZMGcGYBUtixFzWXPuWh9h6VL/hE2KuiHslprwKM/WWUlo5dVl6LXkylZhuGw0LzgUuaFRkQpovaIGbqWmNXzsC4afMDhwuCl8cjvth1NhJALk4TwYtFs3PR/EoFNTv5ZiTOpKmpExL+6iaAXEMeFBDE4g47n+mlz6CyEway1sP1QUY0beOXEYRXhDMGgBXrViMOOOBweYjBQno33zHCMognF78ZsOB0syXPXlBAlcFRh6C3O6yHlqIDvOMa1qjo9g2Hi61siAMrT4oliaaG64uXN5MYApo+i/lIGDeUhEzYhDpZ2us3WpVUkVOXBWBCwy3cuCYEVBKeKsBGsUOEOlld5CDZs0BvhRoOlmui+/2j5tjXodn8F8v7RkL/l6D/56c/Xt/ctcTRnYEyoXtvGttP9rz4+7B060PPacK927HBrm/+5a2DoYdc47+bm6cWlkVw39Rhie1i9x08RhbA8wRGWwRiN2cPKwYHzxlsfs2nJ6poj+bRfTnd+3LJ3kOJakeJoi71dUYjxOQ2j9TzOxNPCod3qEQZhB8Te/ube9DDMYyh1eamX4XhKirVm8YDZdDM/Z6cG8m+c948XjjHSU3WYJn5+Z0mTkw3hoO9kHoDNg6+dN+3QOdPDtlaO2QPgXd6B61QL+DgLR22hyNVIYWsYVldsq9BJIEILpi9vrqnJ8d6xTgj8tfD6PHYmqtG9xFZruENVJO00QU2gyF5zdOMo0j3HwtpBaz/t45/60d6/8a//t378W593Z5dtwyfv7dWzOOL+5tIZRIUpTmxZ2fvq3dsPHy7FAhYXfP76AObfvT/Vm7Jx7v23b7/8wYtvvz75r959ONzb/PzN0as3h/YTO9H/pz/77oc/enX4ctf6TKL77qff7L/aO788//DN2w19IbFkJydeHL48vjy7+ubrDy9fv8RxshNInTqD6fLCNoXd1MvGBvMDLpHecjar0A+HLJZ2WZkFRt9+e4EbmfoM4I11pPvugNOkmTF4fLCRdPOKeoky6au+nwsilvAM8EXJs4h8ANJ8AGET6f88yJXNjz09207fZeuXunv1/WdJBGtef5/864dPmWVQxTPwAfbpjbxBgcHzw3zp15+oaRI+/VqyLhD6nYt4/mTQA6jKsGaBTQmikiflPfJgHIN4UqdaoucOvTIAmot71KXUdcWhLJ1p2GM6jTO70z/nyO4a+TY+lUtUlKciD0YjIuZm7zs7rgaoM5msK8nJuzN4m7r6YANL0ZfmqxkEAPAMR5f1qpWF82ZW7ek1Gvle1gIRP7trYTcSan2oEyMTyqsCKSZL9dDN6dFqVer3QbXG+tFaJocUD5rYxMU65aq7i2uZeZaJ6nJxanSvSJ5+vSLD2H5pW4W711dXOgLiRTaKCtze295jwt4tp46KgpnHjg48hlus1EkbRR64wbrBEebyoCbZQiwvyWWCj/nCXl5wu6GCukkdm4FIAsJApfkB+7LP76+0xjWWxDOHqBo/zF+tbblUDKAagSa220QRJx0C1koYDtOidtEZKeAxqG05tQuVY1IC8zl5UxT0RW16P3w80yEaLDPJGr9to6ojvWFd0On1x8PdVv8L6l27rpFErlo0yhZ17h25YPHJgQ1Wc4lcKYUajEUovuvEhwYohTSwcDnMliP47Kviw/l/Xk4jYMEeAs01nd5cmg4iblZs59Df+6Ov/uinv/jtH3722z90CPMLOwoy/vTZkiUb05cgGAG1p5olNFBdSNKuHGwtUJEZClEzKaGdjKRR+DHLwq0BlV3Qh1nJk4RmUIDiYTxQqdQ0hQkabwILWgFJUqgFrvNFVVKqKYsVKqr5hsYMcfsqsKnJnLr9dkKuQR/iDsjsvsWmShEbnBGbDnuZiKkuaNLRs/wBeV4tGKGp0guGkVwhXdccnPpDdDxobTUPGV+miqQtS2hrqKJqCQ7TV74gGgZhIVDIp08yUFdDda6h2KTFFrgiQcb44cNCcynVVL10c8QgS1FKrBwy/IXngphyWDiQyXGyxLrqGhzkWxjbb33vYEMczcIVZAcyrlR7Yz/L90kcHSmdiMRgTfCJCFoaE3ojvgQZKn5lv/ORBaSFiQhKLkNOvIrM4UOFEkp+b/V/9j/+l4YufKVwBXzRquKgJGC/aUB8LcTXMCyalMFXmXKjx7EtzYk4Ob2oeP6UaaE/bZa0UMvMcEQtiaTk4aNVVsvi80XkFKAuUZTNsH13oJgfHU7h71hLipIXBpsmTO8CoiK5wApLKh6HB5Tqhl8SB9FEBWEExRehGHeDzROFy6jYCKd3g2csaCBf8UA2hRoRS4c+2uSM5Kk9WS+yACVCEm9Rvm/ARnzLUPEnnR94CAGwSgEFpBwDU8G642lADTO8vArKUizORxhPCCsVT7ZnEU+e8vFog1BQZQOirs5IpT4YQ1387nR1Fsg51pFvLcEgs0Tbz28rFUrI8xDZ09/wPR5mbEtfuXE4xVULICoW/kTgsx4m5akCFgpqOwWa8WoAyhVP0DswUj9MWHDr1ejkwimBJunTBZoghZcM4TEDADTAwgBcMrytOG7L6kDQ/e2jX/78j7ttZ33l9fHR9cUFum/F/psb3/7ya1LWUP3hH//CeZrXOgLrBhedcXn95ecHrsn65S/PqLZV+BqGN0fW0d59c3KJv84ixBbqykzcfJdUt1yxqen86IYdhDl/896IvuZ92n4jjHI6NbLTLgQ0Gp7DfatcTO4bGtzf3jq3KZaA1pzBr5Ku7zk43Lm7udlf33T4j4br0n7SlZW3Z2du8324fxLri5hteku/cMEBFB2Sf3+0s3O4uXd2r0PyeHC4fXl2wxeta9Wur5noy8M9Wwj1Ld6fXWqStLLTAcBGYBzkk3JRTjERfUZHNx7Xf7An9/G1o09tpzOPcXFDCK+PdwHsBEyHEV1cmSjXPRDoHzr/5+HJZQrOBt38uLK3tXJ4oEOyevnRUiVnHDnJxCVBt/+Lf/u//+d+7zM3ErSwyOINo/Af72/Ob89P31vh3YCPdfbXl2/fn//iK6LTSV358Z9687f+wc//7h9/86OXnx3sb/zgB4dWRpxf3OztuSyK7okoHAF0+6Pf/kL0Qm1+/OVnYpvN/b2GXdfXf/Wzb225Prm4+ebb9y/sCMG91dWD7d1zq/b18ew7XnnsztCVNax21drR7qYdIzRw7/DQoUDffXdqPfL5ucNFH7/+7oNF306LevvunOEJFU1Z4MmWEUq7F4WS+SKrde/Nw2ifRAD5EfMvZv8tqRIvRVBWvZgrD0D/pRDAmG8WwWr8hoDPfO3V8v3ZUsZkxmMEjHf69ef7r79+CJaKfp3tE/CQeP78RgWlLPX8JvDvc/5m4hQe37WAUdHzw3jCZzDjZvOLHvJ+46XH0RXLN5CfBZgpxVIHd+q6284qmDbQQpo2u5xd3RkHt7layK4DzLtQ1051acSk6QLHRzWA1XjzMpCBhblT0HC2YJrdtRe2ZdAF3J052OgyhA8Otlqo9vBkvBzCgkY9W9q/v99WEpbpHC0Py1QzfCwtIVmWqHZiLV6d+GO5SgwEGw+urq8sBzI7ECfFctqUTStwPiprTBq1Qp7ihJnDFLwKBli/zq89/eKoq5uro8N9VVhLxk3lw3nOYouCQldiCdvaY2oHjlvDl03M1h3tWhB4k1szO7a5qYNujtp9fNpSrZMg3mCDZ+3Mzk6jP3hScJof6dQymtbSoLxrqwa0YTSXD5yduCZGGs5xQMHe3p6opeKIq13teFNFGALhaohJwEu/BYnwXCRi9BcOGjClsKs1nOZI9MkQUiRnjb7JFmMEDajJWWCkE4FgYx5NMujabZglLGbSr9ha5Vq4ylzKdCdhi73WNGqQkXno2DR3iV93J4z7gWsrDAjc3lvMyafo4+1bIGXh1sbmi6PDs6tLYzv69jokBC6CJBtFLE18uHvSOrj4Q0xEi3SZYPdbP/ryH/6Lv2Mmme+15aCQxFAm6Qg1W3CSKRVwx4rGRlGhhcco/FisdSJCws8+ajetZe0GZbwvGx2bXsOEYcU/z5ar+JA/UqHe03DqorK4NKnyE7wV38e61Dz102o3YJqoml4o/u1DHNy+PODM0UyHx4eKnbw/r1kPtUI7Il06D0VfqboDsiyfKwZQhf8kGDAhGfWcfkKxkxe9rhEPSlVGiD9SF3zUwAJwyWsKJSrAingHeUUqH8AyREghK4MaoEVZqZNvcWz4iI4xQxVRtok3Zn2UiZfCxSqitAMuoIqPBg+RgEpTb3ELNHxq2Bc0pC/vhiiP0iOxMAPzk1dR0BCFXJYNcpwFCtiIeA53FZ2y6K5nTvNV+ewyVdnbqVeiCkIpspOlTyjGuimFJ0MLQYRLsvdyKqLBg0+BXeXqqJFwQlYqBaqLaXy3Mb9YrIroI5jp1gEy/FKID0Db0jsbSNURWj7tv56eVABa8CfnsCUOagPRL2X6ES3SqiCZFYirCNfqusXZ4mLDIQYI6xZCzK/Cu3kZN6BKHzNretbrqpq4M2ZBGwLPso9HYCrOMie5r/IjORBDpUKEx3fkekYwJaedcypoGBVPVEUvRn6LbIw2hQDSh23eeplrxqOSlOI3fR22FgeEqijBMIsvY/+i4dzfePzUQvkYFWpp2wz2BDVQrduZStKAMpiisgwUsMmP0UwOnhJT+PQs+rNePbopvgD3FR6DYitzmomz7oCSmnUAAQAASURBVJwNiyuHdmjK0+bsWfCz5Fcibk/zM3AIAgMmQOzJp3lb2aCg6mVaP4jEMVrrmewACc4QKd1flJBdzB0fZKmnZGyHYUBDXtgUkyPfy6jO9wWmvP42qpp0yKsLULpngG9y6xeNEA7Xfqysfv3NLxuHvr/54tVrK+g/3ly+/OLLo82tr7/6pVMfLP//8M6y+/37h+/UbqxJLX/qB0fGhN47YXMDn58MOb8+PDDjL5oWXDrt29h9w1FO1aAp3QX8cctlXDmvjizXqBGFRcfaUyuHkTXNSVrlHDqEOMGDA718uDlyvc26a7+sw12zbkkcCJolQobebTp8acFBu3mf3r4/w3PupMU8D3oa1xo/64IosGDTLsSdrZ3V+zUX37sXU0x8cX/+e29eCUqtLDIg3SCllQya8/y+JdFck2MzjGyl/3YutACAGiwK0oCRvYzuQzXtbpdFq1lslcMaS4kd9cPeXh7sHe3tf/vhvb0DQhWhEbHgSFr9sGqyRTDXXQAPj29++Ln0w6Ndm3mvbx7tG9hZf/wr/8R//c/97pfrmw8W82ToFh+tPblB7Ork8sXxiysn6t9f/eqX3755fcRqjvbWv3y9Z/Ey0f9Dv/uFbtirNz/+45/88dXV4zdfn775fM++6HcnjkM9s0jk3enlycfHo/29+6u7y5Pb158dvNowtupowPXXL19a2evgJv2h/+on3zpx9UZb9tANaLoqmnVndzq4iP57ZSM4771pSffV5d0vTz777IiMrfkRwVFZ47VugqZ1QlPsqN3y0blrDwTVZMG8mxNdLKPS9hMRAzL86IbWK/pMajJo/seusT0bYPh+eVqUP+tjBXUMssr5+idegdBHtvmrXKby/adHb/5kWq7lNz6/8XXqKnsG9fwZp+BbYJbEpapP77/PKCHH9KkRGzBTdwV7E4z+ReMnYGqshRvvncJxjPa/7hV8i/VZYjNdlgE1emrTxY1L2Hgt1mgSbKtWlQejr4Ik0Spe41I9ruavBEASZ+idq+hWh5kEw4vupV5ZM2DMBekJiKXGM3ObtqnkPa1Yg4jWhjNZ3bFgTGKhAObW/vBwRVc1SFA0xl8PuoU6tnnMROVjC/yQZQkbKxYd6uGjPnS7MWxmztnRXSdTNe7W+h+Tn0xSf6YmMm49rll/uBhUi8lcdqtlVFubXPV1a8y6D7hQzCqddkLjaxG2XkoLcYw0bV5cXUIYevoS8MZ3rqDhcrzqx6XIDdtrkbgBK8oN+WbYulIuFyum4X7lmqUkXOv2RmMAmh5DHh/vZBBeI4cwa8VzgS13AVilTCH+T0Nh4dHi62vu/XvuVLR0L1fEfRXTx9ncqRl1d2oPGwR5NERy2NY4dtgKw8F+LZ4BIBjeOGLh5mFz5e6zF07wOvpw6jQ1F5m3RgvVXC73pY1y4UmWxMs4kWlvvzufVj4eHjvjoQAXTO729PRk19Fq7R6p/0Ao+gkOj+P3LON0K5vwBKPv4n6rIYzr/P2fffXLb775M7/zoz/3Z37bXi5Nft1BaOuS1FymTrVyhN66GsziChCVXbN0KiHdsx4IJSwa0g+svZazJtXW4lRiPIPSdMgrbROmYzjwxLO0498bqqIaTa0ehj5nm6Co+GJW9VD7JXpuoBOCKVvtMN0BXK+Awpx+OIM1IY6pThREUQsoq0fn2wgIZwhnf8O/0cCCbkiSpt9e0aZGddue15wDMtQzAKMpaU7T77evtGJhS2jDaVDybIobYNqtdtYSBAViwLNXGeb2awwnmF6pID9MUDOIjBsxMemkRZCZnnj1QFsJbmQJZDK85/C1sqx4DGCqTdGrFC4RnmSp1Ohm6CadTHd6caIg2WLWxDIyx2YOhCaP7CqLfMg0gVHJxQ1WCpSqCr438kczCFN79U6ibNJ6qXHFwLp/8ke07CUPkh45mRGNXDzf+NkQC5M4NL4sC0ZAiQvgge4xvuBEaicUDv+4MFEfC2eEpFGsW1a+rG5N1YdDH1oFYBgPEdU4wWnoRicFEiEJ8gYbNGJu/dRUrVJk1ixk3kS8oqzuNQCgpRwMoLgTA6CR4D0r6/m5eNSMqOqHVIUMmW/Ba6qPoPwvFRsl9tbDcC8yR6UXPoqwVB/8IU2hevOVi7QlaIrzhBSMnG0ZITmSKBe8DJDA1WzWhrXdTCUGaloyd2XHzr0neOUa4PGbY4xXSBO+RQKCtGsFu4k9fEkwEsLJsst65p3mpkbizKSfrHDNDofxoIUVzKFoipwWTkWjTOTlltbamRpUoIcIGet0TTNX0M8DJK/RMK/UDmb+bojWhgzfYgsOqzXi/B8OBNI3FFloGygUoAu2IuYUJgrnfzKa7+kbKI2g8OD0x0eO/EtkjKRZeKwwlWyFRidwi8y0EJu5D97w5qZmd+3xyx//6P7iHChXgvG5N9dnzhQ5t3xeSG9jVvCd+3G9d+SanW2njBirvhPe3j9tbG92+5U2GXOK/tkUJKxXn7GikQ6R4FPH9lnmey/KNz/wKGBh2ZbbaowgLRTQkNtGZiGsvbuo3xObz71FWkOJGNDxHPcfd9c3XxwaikpYDvEwp0/b9HZcXLC6Zrm8MTbG09oww863Tw8Hh3u2rYrvdzfcnHVrXe/RZ184TscRI7t7h46ssabIKTmG5I1mXVrv9OT4UKPVWxTUaLcwBZ/Vv/i2kSCGtJqWQHh85GpNu9Cz9WRrLx2F5OT7kzNjnM7CsZdAi0cTNJyWEtWXYVrGRDdWv/zijU4GVb/Qd7q8ddvW/fXFv/BX/rF/7p//Zz4+WBR1K/Y4e/vN9pYLm7ruSKy/9nTr3Kbz0+s3hy8tuvnq7OxnX5+YE3AuCD3k2o/eHGwdXf/Wb7/4O//vX3z14eri/m5j88A6qzcb67/67sx84c9/deGSVuuPbp42fv7u/NUv3tvD+/kXL4+OjxjlwcH++xMnLJn2Aezxwm0NF9cuXyMOFxVr1rBie8txr1qu1qrWR35a+/b9N50Tj10fL+no1sYmTbi2qcCygo5qXDdlRNkEWEZKMVDbTXYt/RmfcOn8xG17iNdEh1p9K63rdS8mkjfmPdL+sdo8wjiitL0v7GfyLha5GECvPn2WlOUbQxhIY0WL4QUY6KWGMbDsMSsaC3t+9Rt1TM7yT61ZbADm46mCXszv3/hV9VPJb+SQFfoFPCFV08XYq5prmlGSWsFBhA+hajg2sPMnmE/DDdlTTs7AlW5US3GNjEzCXO7LCK7JtPwkbhfQDFaceUFnZ/UISemumB4CQjpGKI/F4rnTXHhtAXcxPeT2GOtyz7UPsCN6MQ3fY1+HmzEbASmgNDJS+6JhW/t487i1Zh9RLZHOKerhDKh37Z95fLq8vNR45TnLg3z0rZottBnBGZ0T1+lpCIUNKcymQ051y4G2BiDy+oZrTX1w+yxL05Gt3VyDfndluiOHJ7DhJXVv3Fdh+4E5kKvrjuIxuWE5D+s20G91oaPOIAkxsZ1h71nPl0m26Khllw+Cffkx1x7almHx59vd0IHhBJGX1cp8fMIc+S2lxNvpK+SZVW36w9rHzmta1QFrWoZ6KMOe6QI2JhWVNCiel06Gc7SRalMuEX2iyAFtO265rfO2aHOcPCcw6xBhOLwTvhW6dxjl+t2Dywq3m+hzQtH9wweW2w6RlW39dwMMs0sBw60GAcLkgdtgHGb06vjQAiqGXKPztGrZJA18++Hd2t7qq1fHN1dXr93mfmMvVxff2kWl02buhZewc3hne/3F0Y75P7Q/3RDF3ebu7tn5x//sb/3kw8nVP/znf/fVq/0aq7Sm2ARtFLY+Wa2VD7XJGNICQieAp5qA8k0Ahwc9TBcRV2o6Y9yzrdKHAoCSGmQhiHLnBOozEBWFWMy51nCiAq/RbrWjgEE5b6mxUArHiSAnL0MQMsYxStURg6bzuTFmIyCIKhIT2nJHPiGagWjsgipPYYMPnGUJ6U8rTSRIKj9JgeNFkVcHzSHdG/+ZZLVMHuT6x7zUgWNcB24HZHqw8iiuCjz0dp5zJmgBFebAoDJMnrkRD9UyKA9oqjYOB0zUkYriasfe4t8JmZDpE/RwjifqJccpOasqkFx4hdJMAGdAIB1qnYzAJ2ZPsO9FDQoc8DvWjNRIeSjyJlSjNPjDYXk+he8j5VgzTK645xjooU/c8DTCVXUjT+xFIjoynbLbw1KkVRFJ2INm2Tpkd8Q2gKaC3iffgR19U0WMAAfBSEmJU5p4PUFn1aSO2WFERr7MZcGfEFAjoEApWIPaKEiU1N9fgPDag0RKU8nh7ZRLeMkmDRjKn5k18BNbGC/gYp7akkcYLKyJlXXygMfKUn1HTUsKEw1fCXj2KE3iZPNm2B1O3o5tBNNHEV95KN/DTQby04ZYl5I+5uCYxFKp1xGeZngBVOKBQKLIP3o/U7qL+Be0g1m4kcagrcWO5fc1+iQxDBUnyx5gB20+erBrGEXl3A06FmJlg118SRsrVSgXl9xV1JgE2qGbBxnvvPjoJR09xmOitOVJuhC0DTlxDGqRMG5C1Ro4KFEDqNVNh1h9EsikBT0snxp76GQw6Bog/o4ljHMZznCg8fZZXuGc0sIfdXCn3AsaS+2wSz0XTW4juLs5jTtrYrdyMesdNX1+cinz689/dH9zgdKNrZ2z8w9O6Lm+tSTGGC0ydt/+6hcXF3dzodWhIyEOLRq5Naludcrq4Yu9z169Zr6X2sN02PJfJ0l3W7bRuAs7y271EtYOd45a3N6sw9PVnLBhEMfkAYeLiyLD9gxoxjCklTYf17dbI9Q1YbYFP37sdB5xy71ZkJXtvU1n5eChXY6ik4PDwwfHl7rX1r65tkvq+Tiaxqn8T+cX7gcFyRDY4/H+jpZBc6V7glt3l51uzR4tTri+uWk1Trcc3GveKBm/5xYzJ3uKNPT3sFEv0cqkUS36k+So+t7BTkG/yN4mkFlYaSsBFtJRu2YdK94If8FN/Wk9CqbfmUONahh0vD/e27HQhpv99uRSl1cMdnd19Rf/8p/6p/+pf2ydoMw/Odb9+nrn4NDY3jbVrFFzhYKVNXZvi9o2Hcf64f7p8mnj9urh5+9O6U8D+H/n69/+0+9/64vjn379/o++vTjc2z65X//TXx58vu+Gg3X3AH99cl7QtbH6yw9WSz+9Ptj93S8Ovnn31e/+7tPOwQ5r/fzlMR376tuzra1dw3Xt/L4ycrz25osXzgE8O7n58N5RP9evEbC3avzW1gsqdOryMP0zQj87synJqUDGjA1S39zdFB7ST57QYF9egats5IJ1YB8ps6COGiEYLH60cyOtXsbEcI8C+0bNF0PhwJbP9ym+lphLycX5eOXT07i7XOqnMs8Pz0A+vfgEfMmp7EAMpoxlWlKes5H/FPRy3j1nLnHSlzqWkoNMCWE4/8ha4nPCvBnMQ37ICEjujDNZUiYE0WlqIINPE9amgpoCeKafuZTmUHyGXTTdGl8Xe9M8XTZZCxfw3SZXTgwvG4PV/S7O0lTRr4bydVC9vaZyLvHa2TQMrxCxabtzK6LbO2dL7nDWNXVGp4S2fVZs5BBTWmdviZ0ZO7v/VWlswPA6nPVtdRMdzdU1AbmkJ9rN6O+HIrhbU9S6vqzF8DYbcexs1Fgs5PBfArWAhIrAEZL45Rctnc6ns1kg+aTTvr+6M5uk5rTQxo9ge2f+sFs4YE+5nDHaVesWuegB6Tfw29vOIWT19c9Na+gkdQ9AnVy5eRxDUTYVWeZHL9c/rjUSQokb/qe/hVk4aVk/PTblgADa0GIih3ysGravf6sHUacK1eTdqJkhACMSgk7C7UQgQHqfwAslNWlE0rIZbVAs5z9EV3xIq5Aw3pxlI1ZuM7CDmoa3r625jkgUNK6D2ZFNYkMTEdYmaIF5+lO78K+vjaYc7e8bsjFyYqmeY0WdwtAwR6HYTs18t6Ps8RLikDaJbmyfnSllArBbDjZ398wgnV6e/9ChZKY6L50mtGqowDSgnVikb/Wg/pxWaG/PbJ4jRRrmd0TtH/38W6Pmf+HP/fhP/ehLRRr//WiMC9MmihV9aC7xS2OYE0B01o4d/lCvEmaLIJkuJp0yUpQiEAnT8ipKwBlVVoOfzCclDdJs4KiSaQoBa1qpHhc/TwDYiLWQ0VbiOfbSUmUX1xGTJ5ygeHmwGeknfqyGgfyDQCBogTzcVlFK8XpxCSKlQUPg1P+n6uUFxBpss/mKXgI9tIxPwALFfWBMImhVb29SkJCMPn8kZdmjWjLTImDGafRuRpm8xTR5qyMkBpm+9gENHGzLhsPet/jlU1z+yU1NpQEALZLSVRUMrhFSF2VhtBexfj4SPVUfVDCko0DqRlRuQdvXoq5gFtVpwid+ntIlToXjySWFbSgtn5gZiQuylZj8gI1RqAW4uOB3ZoOBOc9JIjhUlrPSYg9mPNxE5yJ1+NFGctIwDeA4RQtHwEPAjOyiXaOMqtg3mARqPi0M1Lmk5rwVAUBnVHeJL6fipc/0jGKNlonFcU9kJBbhD4dLEQRXv6e5RE/9k9FIVbKYhv+HG8/Ec4tQSnXY2chFpbQwhqS7lV2EACg3uqgjzJEAG0zDMXl6HlGHfjkTIF62enTaoRRymDhE5dbBB0daFXVMzWCuJWjdXhsGvGIUXDsjMWWBR/LExPp/pilMaARBZqgQyqIoIg/AeYMBPdhl27PyURWYP2RGL+ChlPQJfIoXfJNdiNU71MI0Co4LMSn9q3QkzYojZPcwy09nqU8FIycWhphPgJhvJ7gkGW8LWv17Nr+xXvBjwsQxKqMMc8ZRHgcfspokPnQuMFlcjSMV7QWwka+4fz34CxM1xlUV2ROc0gaZlKoobNAMs8w4AXryG4mTSUF5eHB0kYVmZsvBlOfnglFDvbPX7uP+8ZGbnmyRNUrkDJkPV2fGz759e9Im+E2L8ncv7DfVcB6S16YrgTWNX3z+whqp0zOrBqwt1tVr8Gxve8eqYktW0GEjL33i8sXElG1vf+fViz3hsnkILc2Nief7OwH98eHON29vnQd0eXMlRnes55GDdOy5XzEUt21UkuqIYPdaebAm+kSysWVjkzbZuiUg7+vMHX8+upPIRueHq9vVbQtYHz/uQmtlVTDq4Ast2+a+K3jvTR/v727/8v0Jt6mFs5KfxzYh3oJazKY6fGBxV42zZbvmALKAtNJxJTjXBTQ2RKjQw77uCrDmzm8etlZWz+4ulDxY3THPetrpN0TXoI2ApsC33tft0b4JB9epXrGbBll39y5Pr/7Sn//xv/mv/Q+c33N/fT7jfg9XJ+/FaQ7puPpwvnO00/7q9Y2r6w/G+n7y9uzby4df/up0bcN5hTdvvz1pub9ux/bOT35y8nf/1jfbh/YWGkl/slLr/OR0a/Xh9ZvD3/29/ZVf3H779bUFIM5cOn518NNvzz6cXeP2V+9+4sqoo50tsyumsC/dLXB7ZULLQZ96e5ePNz/9+lvHl9Zfs9B820Lq+w/nV3pOXIT1J/Zlnl9erV5dCk9Or853NzfAocLHm9tnV/ahPgoEVywVYLxmK4w+PtZZwnoLEng8LtcWAh7Yo82h/DLm435NNVtIvUf5Mx5+IxFJy3i8oOapd07P78SSp8NyFjC/P2UuJeGWLWc3AEbcJfV1/nrosf/ZW1X3+tOntyGz1LrAqOAzhuBPdu+lzfOgWHKVlxqocUHzlAnnQiWmeUUzgtRWjKCIuypzRyd154VEEYTeOGsysm7dhhJYBQJm3pzfGwtXhzHdQdy4bzFpDrPdlmuAQAJ7ZpIQlwYyEWxtXF3oEFrT7xhf+/7ZkSaTxxAwh4j938NKkaWtaICuXwuSLCewq6fdW13ua9i2wwQS3Oruwa6TN9cNf/PZxiktGGsZUD6fsxD0b9pXenGt5Liy2JKZCBbmWE/ic/WsupDJgijGiARLEx/np8arqyuYiFctKIKqnqQV7TyDRWs6JPzRsFVU1z24JgOpFk7q6wh6LYsHxA74ZicM81OrIqHVjd3d2yuWXTzNB1j7bmYytRyGpwq4YALBfKIuio6LvoTCxhSF6Y8O/moGmOOymspkBfQZywQeZgJs2KXpbb6cFqQlqS0zaqTJHIWtQTWU9TdYfPMeIeBHi6kyFfMVflSk46AWTsaplU79ohkFz20kQ/gD3+sk0rSkk6CN/ONf/YqnW9FIDN/XSbMYzHSAY1jNcO5suB+QVSKTXFxa6BDl1j093B8f73OMfPtqR7zWd7IpyIJPQdT16keNOgu/tfDRJrA2eLeN2B3T+Hq4v9USqiZ74bzy7uz6P/tbf//DxcU/9Gd/T6+DPKOsaKNVDFnFjDizNT/0yLRwxmMwyJzJtIQIL5tSo70iCIowPKm81gEv8ITa0GmdySzW69S7sMcriuczadmL1yrQFGoTx4J6RaZZypTEDUHHopyAIlKKPCriF8itP8FVpWo8U/SJUwsSmjISBqq9LMUGVQeaYBh84hiTB5DytH1fJsVpNW2UP65p9GcEU71IzPr8DOFlrmLIlDoExkYQ5Im0xe+EUdnUDmGZezlBV8pT8xXrB8Vij+UzbAbTmxCmPZVR0QQb3kbPwr7BMwzSYc3sDDTM8pCimMlXHwYTBjTbBNBX1U7KOOqhTF6+TqFnFNXtafkqa5CfR4JAiqycfLiUsffDsVQiiaNYhlr+3hU4DekmTLSfKAuNqciC5uGCL9pvNBBAYiYvFrWoyzMhUSCASAsKGQEFOwkxPKW8ze0tHF3wjrmFX8WHgpJZ/jGCgyVdM80aywdUwANrkWI7scoVnxciE3PL/UsvW6f1x51h/Pf0A/msB8/Cl73AXawdo3I5wNeYBC2ianLCJC6GfKNCybgwOiJR52VeuTZYIj+FueVWe6PO0Ue4xfAFX0In3F+ma2sbMEfFi9lUJqJCxceIiycINfRiFCOFAGHi9Vla4G1NIK0bRVSRanv2tNySNrIEFDNEEohKEzKh2DPcXoSbeUy1sXqpHkrajdRojAHWHoaKxCUPaPIoFUtTlTjvM/xLUvJonLJXclxIS+jPdQ2N5S98MTKugSzuh3x5M6X0hfJ0EHtSqFPUvwXDnoYhk5L5pUClNiCnZDqwuKoEyGWEnuZn1rlq5HiQmKy+2JJYqlrNxf4dqdYCIaPLUNrdO17btN7eRWB7DNCSboO4B8cv3n71q7PTUw2rTWOWx2wdbL9/915H9ujFwdn5hWbM0Nr+nlVSqz/75lvoGe3qnvn7Bn0NqJ86+rGhtS2ZPji6//Jye3Nnb78LiboOduWpo3LclaVl3dm9eVo9O7PTtKlbMJ1G+PrQ2dSWixOTJT0G35+ODg6oo+ClxSQi240NQ3eGpg06WgBDIjdX19obk+Tb62Lxh43dFcfzu3jYaJYQX9CvtcOtd6eu9nqAuzt3Tcgc6XVrRTWObrE12kd5xAH1QHbenZ9ZMHywt+dwONES7uOm/qYls1hpaY0jfHSEHN8psBGfvfvwwbr/l9tbH5y7smEptthJYJEQ9gy8NWhkdkxtlMROxF0HMV1cuRVr5fDFPm793l/47N/51/+bb16vW5C0s+GOXr2Y661j+xBdoHtha+fZ2cntzdPbD3V4kHZlZv/0+sXxy/Orh93Drd/+8ebPfvLOXP/b9x8ssj18cfDu8spOZkt19zRkkHh6+uZnJ9u/WieYG+cGWZi9suLYUBeHfntycXrzcLCPzHvXJn/2ev/4YPfVi8OHMwcU3Z+cGWSdWwhWNs6u+QmnlBajCOK3tzu7kKJd6AHaK4wdLWwdO3D1297O6fnZ/sbeR1tDnLC05UYht8U5DwS75JpWWUyhhQDMdLbBSZrEWMdHmxqyJ0BznCIvFlWwECH9GT/glS+j/mNbJY/qz0PZej/ZIQyOlLGN0kimlOekHgZsid/DBOcTgAWkMp9ejsua+pYUNZSnSkuVWI352QGiQu5r/FX5l7cSGtKrRVRChrqcQp5QW9z+LBFZvoJQv+ij0XSDrkLUZrQsijPDsmqmxV5r/kmGajSJDfHgNF5/X2NpI7kx+4klHRJqlJ9DyMNxfEYmc3/FplaMQJfuHmaJbWASkVuSrtNro/xd41qFW4arfJiL4W77Q+7ubqwRd/8UBbi+dhiRrkCD8W6lgANDMNLciKcZCZGlVf4yuGCbKT0+Xl22Volzcwmd/oMeBsdZO9OBvTDsLGaLczh/oGpfpuVyAMAyL22mzmxhl1I3jCQCbnSJ19W+6mlYqYSTxpvti1AF8h1dyRtAS3b7kThDd+ehjJtJaOYwt9hcEixAt3N6fdMRltNWxlveG9ldjrYm4M7jWgRYsFtTYl1lOLbPQQPZqrxkyv/MOFr4c/zWCepVKQq8V3Gz2VMYSecxqAaJdP4/jxEpVurXKildQzIuvU5FTVixSg136wyJSTXsyVpM3qZBKE0PNuKYYYcddqmNEL/eXFyYP9hdtav7kRtCkZO9OCgzmRaEnl6f7m3u/XD/yDSCewvNq3QHnBsBHMlwdfvqxSsXOTrX2BSTSsmOM7KZg7V2stzH+zfHliN2pcTNh2sG7QQCCz6N+J9eP/znf/dnZ5c3f/F3fuuz18dcveU29JUf4FMIqYNMTfa2MaPWMFufFriZAP2EGVBDHOmyVNTVj8pdZDIemNGEAXWSuKb8BMJiWnY0vwnInorUUsgRYRP1JThOZ+J7GUiBh8FtiWHnK10EFCefP+UPk9pWTA0HdUmBNtclf08htcSpxW4EgyDYDKQQI2aEs7teFVpIYV1L96Npn3yEuK/fGPGp7vFHowxV7QFmo3uhVA0YCmcd3bmPAqpKFsx8ApF/WTgDsHcg4H+UFjtF7JDqK572a5Q+VzKU4gvjKj01hXaRiegcLXKAQzYLrrDxKhEgVpVVFvSFewvr8AWBk0LdeK08IYqzBqWHw4N46CyfIvORRtnmHQzZB/NHppTcGd8RQUNLdAweVVSXqd4bn1BvxJCjd8O24KYEyT6NQQheUqYZm0mYSJgpGzWpG97VZ4Rm9otE5YK6ScxYP8FzixQbxcig2/WfA4q+cKsKXQ5A0jrUYvR6ZwjC0PuRXFUwAKXiJQKGyAQHLzlUOQ4OQ2CXtjL7dlzVUcGepD861HLriZCRZgABMGUXHOINjwuOOuLpEobGKZ5FEtq947B6G3v6D2HVKRkeTXiBMEMpS2QRyBCGFVZ48DX1yk9m7ey8+tu/1e1UY22xPScuQMiqjQU6c1qeWMHxYQUouloQS36F1KFKHTPFmP/cxCJZo0XCuBKTUlAPSWhoVczfCvRycCMgKHukyFjxnA3SemUxpmxKLGoAJuzZaBpZvOim10hVvDGYnrTJOQK49Xa46vdAjjHQVjThNgjRM9CgYhFu+MaXyQOSzL4OEc8PMQS2NASbxt14oazBJ8sx2b5acAIOKV0aQM5tC0Mg6hTX/gmsFb+4vLLy1bTz8QuH/7i0yekuRw7Lc9zktfM+V1db57Oz4dXax7UfvLQC5OL67GLXFO/G6mcvDnnqtx8uzCFotKmpcSODcJ+9PHISqLjEjwX4JI6vL49eELkRIG1zyD89Oh/T6IbmTXwvloYxindcR1m/eP3d+0ujZVbKGFS21MeU+J0DfS4zB5WrnbQ4cryxvlei9li8fbjrcEBnk6+YeiePnXX3cBmwgqbjaA2q3dq2YEWQM8ENSfJFpuDXVza+OzvFUMMFmlzDNi1UWF1DAjWzbscYUHHA+CnMdKMQyaexllSRyqM74GyC2LCC/3DHfbt7rgDTXoKDARYhlM2snEFKK2laXWB+yeqgbS5Ci2gaPfP++PBqd/3f/lf+xS9/8PLq6mTlTsB0fn93bdO0lTSX35xYqfzh9MRIufZ7U4P61mUMt198/ur13s7u6xc2D3/4cObE7x//7pudk4uf//Sdi4zuT0+tmLIiByMuL11I1Gor7IIQ7Jq+aqRyxQ3Q5+eNblrGc35+1QiAGYPzG8OQJmFoCAVVa2u6ZmMJNdUYGnC1bYPC3lxf0Sdqyy+oiGWyYOMTNJZMv3unr3VnXqJtlJZwFdbhehEag07lGw9uRFNfR+9x8TDmygQisjE7DMZKFTGEVF6Z+VmMMXsLirQcQr8Xcykjg+ztkr2/n15+Si9t+fBhzwC/L1/R8XSAgDy2P/B89Wo8xWTIZcwLaATEqxDp/1J0EOiXMgEt/+As/yRPuQrRt9zBMz3ZLG3BU3LDB96uDJy8PTMirZrGFWO9KWbTUOmc5dgcgmkVdnJ73T3fPIQglWmweuk1X55so98uxoJLuwVmv1Ow8w8AOwZ0ywqt2/u2guRtdNdd7hU060laGymanJwyy2BczY5evUedBzGd1W7r5ioagmFJ7NrpNOJ7gtYb5pp0Ge4e9w+DIGBlt9bHR+EMNBL6RHLqzGAVpB7WjZhywDYQhM54OcoQTy2IBx8fbm/iL99GdQVhonlmrv7rqxutoa5K7+o80E7Ow1wBRFop47cbuOvIzAH/jvrXUlskSYGZw9IcRF2NTtJRnYar8Odp5eLOcikigKqjC6z2rFTil238PzfuKyATxDds0ciXEbUiSIvf7Kkg80A1VG/T1UxHkIVoXoDAZptrzs8vWjV/WiPeFjhOiUzwSy+FlHG3bK36KIzOeBvMftrixPTZDKU3Ncr2olwbawDl4f2ltft7zcw0EbF5tLlnW/adE4EOzx3+8PB4fHQMhRcrdpnfmU/Z39k7PT0nB9t/311cHOzsmR45OmpB6fYu0YqHIs5WYy2CgRKjDzgz4oAkdm/+gz/+zmDBP/qP/Jk3L47ws2PYNXc2fdAWWzwsS7LyXwSVk8gzYA21Ryb64YO6bDRdRUQEe8Ze6uNHEZltCYvtRTuJDEtyOESiwAQM8sTxYol8SvYwCTJIzioHtBd5bEq3jOJFX/nGNSWROqKKqzONkq+ApjopSPFGNYbVBCcUhhxbLKMIn6Zm420TQlSvyha6cgHZeMQi2bY9WjiRjAyjjbqs+KCaYqTqGM9CB6pRdeb4SkddQ9hqAwcf4tl84lGle4eFvkBGzoG/EBBxgMuk6tgrKrNK844V5+TBpMFZD73Vkk5g06sqmppi6cQhslfET848tOVryLjV4DGjlNoN5aSMxMsytQzq8yVRz7BsIOAPWuyPqOokxwEbjR79i7zgl79p5LrNEjAI8jFi/K1XlLPYGkhJXivMtOQG12scwogUJQUMpLLxfVojRseM5VyKxLbntoqbC7FRTQrUc1z7JIawivGlL4oC54nyweKGeyNHidTOt8FEZiiN6lWjyoxeGK0Ee9DJWoiqGSUyW1iWInpZ+zwINMuCg6qt1IShC1Y5O2Q3xqm5jfxmM4czocHddGazv9IWcYTDMLpRmWdFgZRq4qFaIq+yXGE1JqM0VOmhu7rGArARsdHVRFsSzdsW5kpK/0Y8zZ1JGac2cAeNYC7SqUSKJRN6k3Z6Fjuq8fs1bXEzSN5yE2mnipK4AuNoxjJUBEr8ScXb8RaoWVEXmtUQ+TloKBXQpI7EI+YH51kNUofhV3KkghESGFDnAQT1h14KjKhI0FotwFOQsFAXhxAPZVzMcphZ5nJqA/wetOOn6V6ao+T0bbO9vljIO+4qxbXzdW8ksjkj00bN19zlZO3vwdFB7sPB9KfW4Ri5/8pFOYJt62kdxem2Lqe9HR3vHe7tiw/MDxwfHhhD07raUIty1/WyuO9OPxgaP9g/XH9YP3c2tEWgBpbuV26uLx37+WJnH4pWJ2OE2zs/OtTHLISrl90AsGXdv+3PjyeXd3ozWGdaQNxsYQPdQSDOuphMNP5os58NbbrKbXR3PI5lD1uHh3vmNEjs+rpA9mjbeiHHg66dtkDoo8P+cII2tEypE/vsGlzXeRDLGpcnOXhiMreLTdvOo7GQybCiqhymo2cA3XWzFjpLrrh6C872FkLI7/H165esy7iVEy6+u7jGbbuSa4DrIRKIywoOXLrsVD2qxt05IJ+8vnr7dnd3v80A60+f/+Dof/k/+mf/3I9fCndu3p/t7B9c22l3c7G9unN70ej76qardG3mezLGdnVp+cTaF5+9dHgoN/jL704EJG+Otj5f2/3Ds3fbDxBrda2IcGtrVjVN+9glBLUHhoJxEqjmRviSaTJFUU2C00bBFc007m4RcZuAl1uZNtbNsxwdbFtujY7x2dTQlu7657V9Vi06zv/8WkdCL0W3g9reFCo6MsXrDVrEfnRjWA5jZ9Cj/3UbWE2a33pF0mn9GPPQ32JHFEsI2TWsmUA/9Hh03tModbbhZe/7+JvBlOX7z/KlgmXoV1l+/XnO+icSl/JLXZ9KyRdoFQ+gADzDAa2Xk9DvahzLRaznpTIYy/SMmYLBClBJi5nn6/pWKxCACo5j09Gt3ygNU6xGMyyiX6dfMP67u6hwizj4CP0pvkjcrDKZaqjZZa0VDa1zi6tG7rV9iqiFK+rEpRmXsUDOgof5aPU7cUxu/eRt9kIlnCvvsKDVVV3OXIePOlzePMFBBNUwrbsxSnX8qwLacF1jIWAw7Sm/fzgyNmwbwdOTbJZ2UAMvqqjIxth2YKgHk0QuNeYw20hTL2C600i911ntmg44mP/bfqp/AoTeD0jmQKYq+Ouo7xhMVcA5s7KjGgItLcu78ng4jLt6sLdOyJz9zCsH3Ue+6fhUzGkgluJNGFdbOvafuMAyDDgOpKEqqM/CGHeWq9QAuRlI1aO6c3CajTEUWB/AaAbdz4cX2zSyVrDDcqjZhB6kw3nrqJt11E3B++Hh6Bu7rQ1qMBECXBgx43MT7GlpkZ+5Gn0M7VQZllmg4vHvp3xF/+DFbXqV25xGzSnMN5d3Z1c3L3Z3Dva2XXz+tHqzsdnZoFAwun96fW0ykI9nzPyMgZQG85F0vWZ/hXWbb16I8zfuuvEtphhEgcnK+g7iLy5vDdboLxK5HcPtFrfI6XH1V99d3P8///6f/90vf/e3fqDVL1qFNkvvkngrgaObNrUoy2KeoDZqIA2/9XyA94LKox0X/IYPqvFhWsjpAPtGfkXk5JUHAUqSjspwDMAUZhRbRBdrytbgaSY+kFNzj6qmJ+AneHFOvcsx1LJWjcxYSmewx9cCwjHdWuoCIWWzXzhkGuxGxQ1ieq7Vh+e0O6FQzRMJKAtqUVzhH63jMYekKW5ok/IXRwRKtmcng5zgTxBb0vyfgulbSwCnCxFK8XMqL3+cCasp7jtU0n5ksuRZGg1b0b/f5ZroFwTlawDlVCT2VHuJ8UMKZvoaD6NSYgynq9lsb1JHEDAt0U3ZwjbZYJh6L9EphrCHCCsLYIMwAgD0dWojKZh86oeoBRsjqUJlGHoDXdXeZneZYXVJ8gOP3s1nsAw62qCSeik7JMTxARg5bQGZjnhLxkGKj2xO0y/XVFPt/LPi8g/YyocfStrzkmLVW60ljEYfSoY5i20ncxl1E1M5OQsrhpPlDz0V1aq3D4xCGAaIrRHKC6Qf4RIfYoQnD6FHrjBbKvQ73+1bPVQQ0hswKHJ9m8Q8AMoDitaCUoI0qjlYQKO1nQwRF2O8HzSyFCXUX2MTJxZ8omSevOrDq4/NRIg8k3HZaKAhHF6BqsbhWx45/6ZPVROlOCw1FQaYJ62e1qJzFVDTqCln19eEMiE+etrVMN2S6fBI8DPrkCOvfs4YHlAwdxyE78s8gzc+8XyiGFkFVrEopODZetYQm+pixHDP90X6XFiM722GHasUzmVXIlH0LW1etFECuChBZqRB/JNAJz1uLcm9VZZok0D5iC46KUM4xyt8MJKydDBKn5XEitloC8qr168NnpCFVaHG1f7gJ3+kJRYuczAGm03XunH2yOVRDpXc23j79hvsOru5+u7dGbF/Lv3IWNKKdd6bW46Y29WjAIdIT61XmKl/Z4O+2Tuo4+++0I+Oy2w8Qb17tp+tuT/r3gmdztY4bb/punj5w+kZn2iu4eXu9qE+xoXjKR/d9HVhKXkCWhVWsuHzmyudROK6Pr0Ut5qysHnYefw28JhfdfylZUbh4kKA1bUXhweW/+IlnYYAaDoonLbIYESRQHZn54AhQwPzHKGaMC2ucuQdve8urocd64walF154dTOtVa3I1HZG1clXNweOICjISu9JIX1Mezbhaz1QgUE+eK8G7Xdd1/aZ8c7//P/6f/w9//S719fvdcsH7/6TJvlgH8m+vHqaq7LurOZ4ejo4Ec//tGf+uFv768fvDp+fXBwfHLxcHJ2/+Lwxf3V6vnZyk9/8tZI19rDzfGRu8zsgTZBYkmuLZvY2/Wot493Rto+itnW7zfctzARnm0JdJnWOf67NTg4abP0pqMh70QzonEhmdf0/OT8siZr/OG2I3usiujar1Ye24ipvNCQamlxreIw9WHzo86hmIysGZl+gY2SLcqsychxxc+GP/NvBO3kHyfAUnvW57dR28V4azkpaz+j4d5Na7FYyvPv0f6xBW8TonQGVfJ8KgzC8hlD63FwyO4+fapikvvjywLhE5xPAD5lWvCpQNCf4S+FKlLt87fnBc9PSQt6Sx1L+WBV4eT0xF3kfw1d4tW404AFrgUDxVG4Z9nbhLyEMhtAc1NczZRrtke0xONRdipnAA/Y1qOXUOPHK2ibdBZpHfwshsHzFttp4B87G9TqdgderlqwPUeHUXhGAS1wqDMd1ncw3M63gC88qJ3rpIGZh6yoRf4sp0ZBOnXPEcw4FLSwgO+0oYedmhODetMOok4d/ukCWa2UWCZW7iAtkwVGiXO8naVY+5+TWzNhjilupuP6rEzTtjF4a06wMkVq3bOTee4NVLuozpUFMaQ5BBN7Ftt8fPXyIG6YCWnbyUzVGoY3/L4M2jW9z2fndPGqDta9821udMFg/vho8qF9F4Rm2TqTkU2wqkrMzGuYutc5YQE1Fga5GxcAukZWgD/zimSOKDnJQa5+WjLaB8MNOgiEUWo6mDbgJaI1PQ1TTMPKpZcGlqMIbEvYNqDSnQ+V16IZNjL2b2hD46w5XtPz8QCemKHz/klZN5CNn17fGPI/vbo7Ofvo1padw45vOjp0+JjDf4Xo1hRoOJz8s0FM9IF3fLG7+XJ7h/vSIXt1dLyxavf/PXnrwxiSamvK6sqxq1EcUNwm6mvtzFg2hd54e3b9X/79n/zhz75zrXBuQWDJQ7mlri4OA15+CtMjngvIT9SGEpYH9EfeRCfk6Z8f5ElLB7No7/utSFYz0RejWlSxtlZlEygXBQ5QX/F1ON/kFW81jenknSANZM6v6ufszqrIHwYcPmyQ3y6MKLwqQiDVTDrrm52W83KQnpLjdjJvGjP9m1B//gQZilTIa2k5vAUzc331T1ukoCfsbZ4gZxEkOMgeGoD707bVob1gO7sfAmOjrwUE3AU2lJnixcYqXj44WSza/rTJs0ArMExXQ8bvgAILWGxUlVKDDjHOU6hBKRVVIJsdbY/VuenByq+eK1ylAQ+P4j3flMJUPZYgpOmgPOcv27CmBwAjAUeSwLPUhtDq7TMeI8DTooC/YJXN42aY+VRHZPEP0TDP81WxXgE1qIY7ZWLZfB+XF0cXFkzoBiDc+ql7Sorpr4d6k6hp3mehvr9oktIIeHyNA+GdKItzYm+ok663g3+hRbLkZPJMXsnXCDFu8BFQlTUjKQgR/hl9eTI0Alo7F+NiyXEAY7mb1DrHKmTP2dSIMLbYUydLLbACMtYOfgpLH5wToRK0o4KSJkuUxM96R6xoCib7sJ8hJ6gqhCEL7fJ7NomNCn4qhodjAbEEVMULrddE3uDIIDHGdhSPAwc/npydgI61y9t0NONMClgF+ZFt3hyhU5ucXoYSYJ79LhuIHTHRW9xLVxbjmzJwko09LwJV1ie+PIsblhoPA1dyDbZDcwo54/cRX43pWyQiBGUB4L978EEvTc4bpjCxYpFLKqkwwtJAzNceNOsCpXAAuW5FwYEEUMCLF14jQWFln1btM6uuRowqXv1a5IePe4f7Fgls7e5qY1z2iI1ff/MWHI271S3X53yrBv78aH/j5d7RyvruT371q8Ojl0f7Fp+crK5bEd4w4ok9bnd3r1/svN7Z+3Cz8fPzM0fA01KxcMdmO55y50gAcOlwnW4rNTxjsc3j0ba5iFV3TBp/sgzIdrJzLa0bvR4ej4722C5Jnruv0tGfO5Y9dM3N3tG+A/MvW1OgSbZAacMyVnTRV30MetXOn00dj+u7q3ZGanHZsq0FeqluUaKyhvZvrE36uGbTqb5mAbAFtUVJ1lHFFZyLadZMO1hoXKV1Ui7IbORk3Rk1hvBX31/e/PDVoRNDP7w/tdr+h69e6H0aQxQ3t+S6g0H3nK1n8czd5T2JuTCYQhpW79w8Bxc67/Lu9J/+J//8/+S/88/+6T/32x++/YltCdbuibvvr++ODl/qVlydXIjFP3v1hkBtq3CJ78XF+fFnh+fn12/fX/zxr37hHoCtK3MOVmvcfXd9srt3ZDrj1sEdOzsHbjtyaKcFAJubVmagnKNi1bkwPsByxDkk3nSE9RgZSsNljlK627DYo6hMEn53oIj9mxSGH0BKbbPxGHbXQUVyCE8FKZXXrUuq4ozchT2+lKmTDJqbzm7KTg+LpyxbKOqarrLsNHUG5KBAG+lAOhvf6ywwD+BZofwZuKqkjc2m1dnUsxF40bsMoH/lme/LQ/WXPnZURk+llfD8qVCvJ9cCYcB9nyHTW4A+l6325wLlnIzPlQQIOMmZeq/CDOhn57EADX8pvuBI7xucl5YG+iLvMlrMsGtx8kkYG3taWsZP59kYvqUjunAKBM5rzJo2c0L9KBqO5busmOdtSZO+69+qlEYUE1qPd2+f/b4mvxMY1S1qu3Mt3bqDMi0LJDeZWaLq4FEYOOgxVf7tYdX0DgVKInoFjDiFMYOkfzHDrvAxBLxvkhDCT21O1VFnmNbu6RaC2Dqlgu+Gyi1OMQog4m8bj67DdG02rA9p+dAt4hFAEgzJiWCw0gBTswIjgLbndgJ7fgX6+e0Njgbht1c2OjvAePv8/FLjoHdbSHzvHNXuRLfcUHGsoORcDbdLyy0EEpDyYmLrWhM3KG882X+kbtMSdJId6Zw0pOL4o509Iyf1qUTAK+sui9XlsEwwLYCxupphSzAQLpI0T4r6OVYDlo4bYwqDM3toXWurEwTGRXij9jX0GQImE1uxRKvCQJQd65OysQmDFOI2dBOjlVFN4mSxQcZlIlSgwMDAgOYDz5x8UDvy6GQF5zs79Ov6AyoePne3+sPd6yN7N9ZdDbO5bpfF09X5TQur9DHsD1lbfff+Yv94B+etE9Tm/PCLY2pJwVzyDg1cUfbpxf7qmXnNK4qJMOggw0FEH64e//P/6o/tePzzv/ejggsvqRFtFHfFAKghM2LpptcmB0jHsHjTxlSt2K9GNgbQ1ULAGUrArTgzM1Hlj0UxJ3NIqb1Wj9FJAxhUmHPJtvh/X3LwgVLjjLj1XJHW0xv/Dn+c8V7O3siM+8Am4IoBpMYcVjPcoUVNkmJhDHrKKw8aKHACK2Rf6hIo1YHxskxFLIXvMI6EgMtMJatWEWxxL6S/AzymeNCjJPcULE9bkbRtQhG6jQdSprfby1AdLQpgbV31L/h7HKKrXpF+8itqD0K0Rj3yoaRgb3z8fc5MmYbzUAIQ8N5GGo/Sb+qW86jiZBeBYPnuKR56CtIAUaScaK/G+UwJKEaL/NKCTCKeAqlsiPeeukwU6g0hQGbepQb99Mn11Z5hmBxSq4m1dCiYJyQ0TALdRDFl1NBoynzs5AOx9X+forpqhdf0UGUfVD5RprqFozVpDVCMdMYyPwVyyoZTa2bCOKFPqRiF4UbV5iIqHF4m+2gVo/bhzflZWqVShop+xbUXmnn67YGADVLypXmHNC2qMS/KuFIaGm5pTAFuvQsvR8Y9qD8GyOCTIuJrDVXdg3xW23BVbRllC/7oR7RT+hSnctNyJaecF9nzZYMAyIhNrVsqWvd6gb8odIThkyGizg7nJJ6nn+oJyFegFkdbSSB+aZ3IOI6MMAJHhdKMEBrFikLYyxhtPXpL9jlGxsC286WhxldSCu4RN1SENPWxLlClAqNoNFbOG5/FPMpX7QEJ1lSlPBaRZIaR8x3sfSWWEscUsagK6yKWKD8UZRzWEUGL+GXwdlS0sHQeqisIWUOyqy9RbWRQYBue4Tw6AcvBCgvUrI4uuklP3OpiNJ3QLS1wzdCtWrHm+Hj7+MXe333/k729I0dE7+xbX3j7/vTCZPTr159ZwPrd+7dGDS1IEGxbzLKzuSuseOsskfX1wx2Tvw82m1ppoz+zayeoQ+WvjOIbDG4Qwxi5mIJjEmQvw73nZy6usWDTFZ57zv13ZemuxeMGFyV2zw5qULl2edEyW4jbPUIe2nRu0B5UK1awwVHZbqS3jxYBhqT1NjwcHR5AKTN/cIymiQ2T0q2RIDT3n6VI1GDu92GNCTRZ4yOFpNmk0WUF1MzS1l2dDCv+W8/TJgSLZ/y49ku9omUka2wtWXZSkPuSebV1O495gwnjYG/RUStjRAkrt//Sv/hX/o1/67+3eme38NXWltURYJ027eDjjNPbC2uK9o6ODduevv2ACigI8s4vz3Z3DyH2l37/9y8+nFBeZ3asbNpJfPTzX55eXoC+evHu1EJjO/Du1x5NaDjx1OBp1NttbuqMXj03q2bGWDB9FHgVADnfyJ5vao9uBOu6UafUs5VpWpi0TgAqUKgX00hqFk5LqZ6mDk+EBdTSK0UUtTDC1UVejELGWX1O8sr82P5MrKWBBUSy5/QWEzKizCNRDDMDBWaqIAa0gZ6NUe/cSc++ZYyfmpBJmMTe4WW/S1wgZAIj4lJi9fJuvj3n+76InL/xWjVL/pzyr18NtE/ZBpyUQasKnit9Bg9h6OeuPuG2FAAwsivAI+GDbKWhcD5lz8uJ0jF0iY2MLrft0rhyk1zDULxtjsVqivYDtG2d+cAgxbSk/uPt/tpeLqL5Av3eBjogztLtLlkER8eM+t3fNAxPUXCeXKhSTrStq+Z2WnQKjTREJGcaD/eN3z+5B4rmJBe+Rbh093Cjam5GWahC0Ao6C2xUaAgcG6S0TlG/sfF1dmO5F/8mZu70nnhgcLhVNk2q8xl0iwaL3bhNo2737gILf2NYIsJCWnVZ8IOiy6vrZ0/bYC1m1L6zd2pk7oLe8I3qT7s6jkwEb/ajDi3fALpPDsrARuKI6xiW74hVCEymG8795KzHgVpCacK7lUsM34EBJkNMLzTZ4jMKYISVBTE0SsqcCJeUH4zQty8LGxr8whYt3az6oHWtppvNYNp0o/g1SSYTbjrjiNRSRZbP88MhCXgfEL2VLK6jVJvHaCwJ9kb+haHL1e+Ij7Oijzl+Q+MmbCzWXHcZoAX7cnLYVzePX3+8tFHYpc+OgjYg8O704nBj+8vXRy4NE0/8wU++Pb29sGlr9WbNAWJU0t4nM78aazw5v3BWwCOvaKTD/OCLbq97dBAQbpGEKMbWPL3Cs4ePf/sPf+Ug0t/58WfaiAa1YMeWG73mClBZ4wW4/zG7PkwrP1tXpvNDJZk9aT6bf9sJip1rynuDz747ImnRc7LgA/GKVGJIMWhyyTXNtbhlTmD5mBbdTFhJfTnGkrR+rZua0d5e5knUnjS5xnxmulEV3hFI1hwwMImV3EJ1IlEz1EAJ2BbMs+4W/BQUUe0iK0UbU1U0EAMfYOMr5YyqdBF48J6R5i5YgQqqaByHPA32DXAlUgMvpv/TEp/Br4rGQqsoeFja6nHWD0Hf6VXNRl6rqicDYxqUqgXYwvd5rV3LGcCh7A3zT0NdzyTIkuRkXAtVfpMLvKbqIMuAr9DgMGL+VMnteR5SZeFzxN6JCS1MjByZDzi1WTgwUVPik6U2bhQgm0udvIVABEsP9+ibDsDIcl434OqhqvBseIsSmUMouEgv1FsCNb5jpD+Ypg2wDzoAU+UMrCStZdIqhIhHFd8zTnGCBLnos23sef8FyNTZkkegplo+wCZhYWIGHBlIBy4kG2UpPWZU3yg3dMYG4lrRamwwBqjks9Ykrf8PVX/WZNmSJfZ9EZGRMUfOeYeau7vQaDQa80CCAwSAIgnQKFCUKDNSD9KjnvWg7yjJaCYzEUYS6K6u7qo75xTznBH6/dc+WWidm/fEPr7dly9fky9fPkFdW/TuqgPL0hhRBA9+aio/EGKFPDjiq40U9frxX89SSycCqO0pybozAX2zuQO4DPgd/v7l9JO17D4cy5CqxwXAa/MoOvvVEz2gn4MzTfTSRy4H1KgoNCs2HM1rcUS0BPlGGgaruElyZ+yhliqLeyucQykZUTM1QvkZrU8bA1M4QS3910OfiDFYBgU09fXaM9rG95Rkus/kpwLBTzYXLuwd7OP61fl5rZ4GqTsy1AwFZex3LPpUNt6Gl+xVumCyZF8UKcVbxg8LKQYuygEYqv6ttBGc5LzolF6t7W7Xpufd7M5p2z84ODs+djcwfHgGu4d7f/lv/lJbXjx/6lj68+PTV18829rcddTD4d6zY3dBXZ9+8cUXondv3pglsOVz/cXh07cfT7ja1gh8vGzxLifzw4n7oy45y4+bd+G4bH44PdVRc3LpklP5abIeixe5u99SfoqXtDkwx8l0V5ccBLfVOujT2dKcG1FzHXORtsyiHYHWo8Z9Rsop/m1s04VvNoMBpH0Cs4i/I/wPn24f7u1enuf0W3RM8yzxRZg8EGGdzvbIVEdHPYVpkMfOyGt7q+M7i33jgc0w2JMKfzR18PrF4XdvT1D2wAhHoPLuo6i/i8ZaAd9hQSRjY39r14ViInCikKpUG7dMH4Ajfu9uPf47f//v/9f/xX/8d375Eyecs/yORNlyZihPSL8Mdf9trV+aUrFAyVEq1kWR5Mcbf/GrX+87U2Nz7/DwGcfmm6+/58Pp6S9vN10IYC2T5V1rZpvv18T/zy9uHNEjJGkMu7O5xX9C3QIISrYSWjiNLeZM0R0LwNDA6JfGCEOSqpBG6oSNLTHyLAIGfwuUuZgG5NMjej90a3EoVDiMFMl8o+U/E1kwmApOO7Ab94MolospFnPgfrBZqtkglIzn/Fm2XmTBsM/VTiYupOdxWQo8JjqhThuywKM91SgldYTrjB08SfLlQ1Rg2K9JUEdKNwkhPjn6HkMwgNPrAM1nqUJKwMu1VLqCNgVLXt72M6CfAPe7z9T8u8RV9f6swPZm1dVnDGpcPXly2a9KTwNrCYHPpduwXkWcBU02LteuY92YduaF2SdmLaAY2iJ4XSlYM9ba2Npp/KA7myimg3dUbuBnRGoq2xCBJF5eu0qPftn98pE/Znc7n/Li2kJ5VwRgfcpMkAkk9+ujPZuOiD27JqPEfm/vwEYiVgTbiZC8PH7sJkKG4i2tt1e1Q73yZ9mIlp9B1ES6U2MSE5NsdgZbS3NtW07rDwF1ytbO9sXpuaADK0me2yzeXezjyaXOXHYibenahoA9NffKwPLq1sykUbmTOtu1ooFdGr5mbiHhj72uJ//YdWk8EIRlgXTq+f6OR2u1nmNzWrwHDZ4zc9OyI2MGB+UaYJw1L4EROXaW/hPU1lcYUTQ8fvx4WzrV942LFiYJ9BP6ucyxyxZSF7ckWMbtZIuJ6CVZ44M2L5HEQ7kreDGd6mdDhlCNfGYdPADwhDaqsKGS9Yn147PVYBYdR1E2zoFpM6qZS806u8lKsEaGysJ5usimVQkGlsruuOQLJw98fGhpPxJlGe/cHvB0Z+3i4803H872Xeqw/fjlq2d7blZc3/zsxTPu0eX1xd7WU0cm5MWaRD3YujIC2hYQsoVkky26vt1ZX7ske1352HUwI+frm4zs//dPf7N3sOcieTRBjSgRBSJSWZN//Rgpx50Giiyexibn6TZV1RZmJ8lHEqUSfm2jV8gPGoUa3wx0hjzKphCysIUpl9eYRdGqhcFSk1eKTcy4nMMdBdlL35hXZ12eIONOD6OnMCEl/cgWpZkLDnr4wURKDdMR17yck8DIA0IVVaLRdbxYgOYq5RWEJmwHSTVieKXGVVCRF0DmQ7QKYJauZEXCoGpWDufglUPSA7gLTDUgReTyXYByHPTeDU5AjjmsjikyJgUtw0kNPYBW/jIoxJ5pD1jlRywUAUROD0sGWCVsKJwzLDEFBKH6EYgBAzsEZC/DwJUSmKqJO9o6A+OQ8zNo89IfNcoGT+KdnP+uYK303+SL033W/2//w38brOGH3LWzOqZFNSYqEyzt6F1eckImo2fNq0jFY2F4hNZU3/hSbQb6mWzVMZ1LtsGfgDRWA1YuOp9ULbE4KWCv8tfRgqPlapPTNylUlzEs7HoYnsF/aWrk4XF84mJNq9l9Otm3q0wmAB8tkSZpXQwiQDjElABYO4jyeOq1aposAzwLSCDrsFZKTluiMxMmqWLuPlcgZANT6+AQAkMxT1Kh2JeoP1XvU+PAJrtIXXUpcyHbaa+hhtXppTTGjbqprkIJVoD6Trc1YXWDZnmm2blw0TblhVvCmsT7Ln9Pqms6pTex1d8FXyCo2SLei1YMr0kBve3wuH5moJslSGRnxxXs1QKxaXADnhTGSoxidfoJQrxQNMPhVW2ZYRLiAwgirNS7ECXfK7WpyOAQpaaxtaWUhd+aX54A8OlT/Wi7igDJhguMzmwjAz7hCV+qVeytYG7i9PjRybsPJx/Ojo6PnQJx9P5dk6Qbj774xc840Efvf9CB/sVffmMhp0PcnPT/qz/9C2uH9vZ337x5V7xp69H12ZnF9w51+O7o4sPxNRF6ZhPYjRjQ/WkHdD+8vzxHK8t+xOX45Fq38biwImXgFmPGjAr4jx+dVE1pjh1Eb04pb3GO2tSojQ0H+1x2e9eNXoVyIE4SwQnIxVg7OHBcoU4aKD5p3uTu410jhJOTc0Y3R8dpg6b4rTGoU19r1amBJbRdW+tKo0YWRoTCaR8dc86F2EW9j+sOwXDYxZMDJ/Hb3XA94dE123AvT6+fHDg34/bsyiL4nZv7q6cHey+e7P/Zr9+bOsg+32+YHjHAfvZk9/nzw5/9+PN/+a/+t7/8g5883zeNdqUL5sLYlWAx8eXFmVkP/tXDtTPcrdPQya1ZEeRoJvsejHMaRT3Sf5KE9ffHF6ZirH/+5pvji7uNt8cnz148f/v+1EmmjvY/Obs6EqC7vDpzAH/2YdOgCBPJOhXjJehq+R8NqB66vIsMkEzqxdOxBIIo0QjXHNAd+YmcdHphZNm68InLil8RNjJnmEM2jYT4K/Fh0UztJrcCfnLQWu4Ot8/aaFsnJqImhGvUxTGIRM4BHJOSlymVhDZ1kBHgzLU70NgoXU3J9Twrc0bDiHI2MOuy+ow+ZBIm+6Isn95JnAKr35/Kz09AvFsllWsFOkA+Y36rZgEt4+/q/JRBAmv1V/KUeyD+ewgDIDO1vPN31J2CL3YGaQMwVipnxdsMVHGemrSYBQ4h2dDxIrhxrNMwHTrJb+Oh+k3ClcIa9NeKfLuEsL6mcAgGbbZNvL3aaJXRKiOr1CwcNrBmtu7ub9sXxNnxDttmJcmDqSGmE3+BEatWEjGoyc7WzpVbf13vxf9z/n39l+VJfHRoZIVIDidHO4iSvst6tOLTHexj+IH1di2be4QlzDutq/FBWw+JX/prGYl5A+hl4ieoCSt2EmSOqmsBdQ0mssghGLLZkGOgTs4sNXRLAJLat6PdWmt470PGcsenFu8BxzguuoOt9IeGEHx0bzn/VgdlYzuP6IYBT5j5MSP5NBpjrLKzsZWj3k/dEdlGsYb6oGt7G+oYXmRv2vDqKgMtdC3K3i4hNxM3BvPJ/rrVwT3lH93bXQi/AKZDjZsiEOlE9fWLs4rPNowcL9as3qIDP3KhRvDqudSvs5NfZB9fczMophVabSFoon7czUwJxHQWMYia6a7GecU9yk4MmAWXIovT/PiLZ5TRCObN8bu//rOfNtD56PzWLZcwPHPLoNPk7BBoDaaZI3b7QA0s8eXHh7dvz7KdD2vvP1y9Pbt2STBCOCINGa32gopDBeBGv18/2/5Hf/uPTDITHoYofzUnu8EnuUVJPRHdgJX2ImZ95eLpTh8tHZ1JOY0DoGHXUMQziSfFyKKpciAgckmMUHWAtTvitVanMQAIqlZX7+pEotIQU5Z63kEvyR8IfsFO8VjgB01Si1q1URuqnvbmJAxuNUrelI5cqUBeX+VIv0NohZsmrD4MQM1JS1Xhs4IWApiLdQQp5PynMhgESUunyACRDZJLdYDkeKgvjzyHJ5hqyMIsglRBmUfbFlsUWfxXw5YvfW7ei0IJfPUGYqnMrxqjlV5PMaQe9vwV8+hVjtzAXDV18MCgaQhcgsa9jOlBCasA1zrmqgFDVAufATRNmDyQiWgaBAdIyqOPL2MUgt3QevXY+R5LX1X6AJyYN7mjRtjfKfVDX9liRHT0LbGH/I8+4TtwV8yMGQSx8zBgmxA0Ezs880pFoiLD1CmcjWA7PMMxsfOszsFXqWxWw6C8yZWAxTk+a5oCz8UElJ2HZFmFdie7da3S/BnUcjYkLu2Abp57xRtgECM/aOOKZ9WdYPlT3yMyUPy7CqAR9FKGvanKxMin4w+D9M3xIKgVBHZt2orI3Io2ohH/lLh2LVysgRIhBGaSNxQu2yCgBHXjrmmyluoqFlmD/tLMkRhfEYc94cZUR2hERNh3pJoWzfPCJagPx/hSESQDOMPxsR3j99fMkIz70WmlKiNOCUwFo6iHJqlz5euwMysJHwvuO28ST0lf/fTSf0dNwFPRCJgcTornUvxIJ1dVL/USt0qM+FWgDGNxylcNITnjt3mbIEmuvbEzoVrcuEqNaRND02YiiSyNbu8dL/PYQgJd/8X1D86801Fuu+3qsOOxLUbR1X75oy/+P//j/+SAy8Pnj3n579//8OWPXpO2o5PTje3N1y9f6wnfOtFzfcOx9CJ6z17sWgegTfebD987NqdOaM36g+YiRPSZ423LdZrdZmi4+7A0Urg6P3t28MQigEsODfonduTi/vneIc6e37hZbPPIloBCiUWYNNMuAWvNW7y+5n5c+1BNZF8Zl6j6xP61u7WT9XMR0xGGDsA1I4FtGH/58U5A2jqZJIf8C48ZBnSUIh/I/qr7LccsiiU6805wfSuf2H1YOjkphMNkFzhc6+v7DWceUscWKm/uqurPv3l7ud4tm4b8NpC/fvHkn/z9v/mP/9Efvf7s9RevX3EvhCGZJN7Rw60xABQ+nh6fkJmb64u3331nK/TO4XONtPXBWMUNO9cuWTMUOTy8vVj79i+/sRb60e6u6XVXNZy2x/rmp1+8NAVyv9/i5bWrC/cUPNp/bOB1nvDN7OKVrvRxviMRnZ6yoXtixdFxfyf5TVWjxYi6yRCiY/7GTUnkJzlrMWSmaZzREjM/M2kGSrcXNljlhjaGp6dCouLHlvw6c4kbmqvHccAs4zI5rUoy44FJjZNAJ7HGrunh+L3WoUEA71dxEy3+hIesodOf0RO5dPqTsiRKT33ma5Wn38tnpXFeLu8nVbOX/7yd5EVrPpXxdzqbKeQrGJLSL5XPr+XHgtq8XdL/KpypOdyVqbpPdU3jdSUZxQGwemRIGESJKC6wywNbKrZN1/p7xOfRpE/C8rTicatW0E/bWcilV56Og0by9qxjuxf94a4p2JqPO2vDdgwClcIbHRCjRh6oW9Qkb1mGINsxYsWcns4imen7SiP8bg5heMalfth75AAZF4dbSe8aicYhOH7maDBDxsf8DOoS98XwDdo5oKRNlEIE86MlJ3aeu4ypHhBF7p0bmedJiw0UCjcVuHHrHLlismnxuLAL7x/sMjfsSbUTpPprarrufHrLo5u0c6sgaCaltUYtDGwZnV2LL86lARMBADQ/Zh/R7uMdhx8YVqEGGWY75aZAjRbcBnhzzmwSV8kSWTAM4iUbUOEao5HlN7quB6qDaD2964Otq+S+Q2XDifi7C+Tre4eS3TjyuOnuxTctQIVrE7Ds4IHm49JJ0yMGUo6+sdbRRPewGPJsomUlNJog+cAwhGFpjQAf1896iQQxGa0zZm6SVwo70qcIbzzXBPx6dK/HheEOqIR4gmkkcXX/8Tc/vH+xv29k9vLg8Pz8suMPjEYuzp4e7jkFzmQy6ogzvHl/sre7ZTeGKZUOjHFq0JaNQOvfvXkv6kjobKFahoWiEuoU221a2mqxm/Xvji7/3V9+9bd++fN99OTPwCZuhnViP9aJbUHn6ekMZohPz0MQqpTAowCcY5tW1ukRszTK8jcZcEUKuxRNMKo80WL5YJ5HrzCuKnzi2ZzKPzkYy3SKSuJKORfCZ7qArWyjOGEww7xr4u+3dMlURia5f1cZKBlAnzDElYaLWdIYpdWanQuB9yRs2KuvlzGjilzsz+J5jQnmRhYKVLh2Ne7IsZSzWjUiYa1RtUhNebPoFN0aTlfh4N8fjVugBFhBzUJz5gU+RXirtU90GMKVQaEyLwn56H6ilZYV+/UjfOer2EE0CZkhmCc4QJHWRIeBOWiGxiDgTcM2EOAQHIRgn9K86Am+h8r2YAvhdB2lhLzPQgoZZB32DthwzO1ZkOswGVlhrhjjqIUKKBlHZ/AhUQYdGCWnkPWekx+UUIAK37UV8H2mKg1ITuyhnNF25l7KsKHo3Sd2TIvGzrB0ygqSDZFBXygEhZgd2JFrSII7TZtXtWGWfY8LPk2YkHDigE9inI0yhU/Z9CEdumLPo+TFEGoZ/ef6t6NgEVaiw4RBFVn850ETGCo4LDpGIUHIBjTCGdOeVEQRBWQXg0lSdU64y8TIOhxSo5F7UjcGcrRsCsJJ2SVwnsu3SFNcwdVBI3yGMn4hZvKB6j5FYUYsVvxuwJDy9C7pCpQGDG+90up2g4ktAaKPGj1RNSkMpipURPEAB0Qrhybh9klh8qVCAp5s8AwRUcZPFUJE8Rgvg5qqpI96WTrJgCwvIVn+XoVPEEK2JocA8xGDVhlSEhnQMCYO5+YZdIRNE0b/oIArCdpkXioeHpaClAJ7JRq5FQRywKOAmb2D20ZrF7fnVM0w8P27HyBpOZA1JCcXp4dPLTZ5dHp25lzI9z8cmag9OFx/8XJfuSfPnrpP5/sfjkF48uKJiWWevBZz3J21D6t7hwZaNHz/8cjRnDu9hsTe9naXwjgOYtNc8y0XdX/HncPx/P527ejoTBWO5/xwfIYDBtd7m64W4rSvW0vQYYCC41bMm+LnD02niCaMvup0ps7716Hy0C3wv3UcjxU/mdJORbRPwbQ1MZNkdGLkkTfhaEMLixksBLoRv+eZP7Zg4e7W0KD9NjwrmVHMihQ8UY/jV2CiZ9yziFPwDy4P69cXGVZ1G7MYgd5/vESIHz3d/emLZ//47//hL/7k57/863/wzAhHaVFSMVruVNaZSDcWsfII54tAfjyxI2HnyTNtv3RyvwsMtvbWHt+ff/+2jTLmCJxVenu0+3rrm2+PN27Xry/vXzx9crDPF7l79uzZ+bk9Aw8n1i3BZn39+BSMW/d6Hp9dInByS4OJz6wV5m0QUpMz9NEzSeQQ8A5t/yBi4o4j8M5VXFYH8W/SbtKFgvaFy0xoUUZd/uDfKEtTt2NhshuYRdEU6eDFycxE8/Z4BqYxIMJkG3AaB6Q/MEh3shhBJqepCnVAp5lwo7P9UA7iWfxyjY6kAmqdkiPgUddrUCdL9nPJWTV/9bOC4E9wyefvXi4oLOVDvpzzz1e5SlGkp1XWapl2zNe8Kte8/f+rfYrVs/tvsq3MTuVSVaTLEvSYiIZWDS/2QwCpfNxsu1d2wxuDNDVz5HENzasTIXOv6xqhxf6RWMYMm/ijjBqtQMRunCQqTZk613/LejaRZjgwgKTDwM1sD0KK8aqSlqkdjsG0kMbw1AmhTEqHcTk4cksy0SIParEj+OPGvZuD+dOdM8Mtcd+2k7O4R/y+dV3M48XhNHiNblbDd3bCRyNenbb9P48shDEgLCjOVRKdvauZzpGxLqghoQGD8WNjG9UCr8+ylDxrEFV5xA8dOu9lrifPewcRSDl5cXiVHqroAf+8W0poQV4O6lm1J5pAQ6+dGMy5p/RNalHKa2sOeRcnV1dO5n0yx/iabQwiBhHpMfV5bHeOM3IVQC6BTUU6BERWa31KdGa/FyeVL9zahmFXagUEceeLQ7kJunTYy8a/QujKa7uRhSKyoSd1hp7Wc2SZhk2dgMpyq2N6wzjn4BcIJ2cFiVGPHjmdQI9Q9zR+P06ZUE+t69PyVXywSSRIq2mfo9ic/EqJv786efHs4O76/gqxjm85Nl++enbhuLa1c7bxzKasVhFbXLrhLhFVYzROOlTUOkrzKxfWWiY+CWwNaceFixpaiukn6TJ3/qvfHD1e3/xbf/QL0kzGtWtuFq6PHQGwXKpxFAprFczHQOn+0xPc8haLUyGZNEmbSG9TSGlafuQMtDjoHJgkdcYMi64KxyAaqqRf+Ze50RSJJgbPc35uwCkB9VEWQI2R4r0mKFI+oRzT7A22cyQCUqFAxanan0FTLIEZzIkAfGOSVgd5Co6WBTnTGMOcYBtb563WKe4/dFOqzp+45bfk4SzVRdapwneNUjY0QJsBxEwKeRUmES0jkVlJv2sONLyFYGhPG6RMtqF1hlpC4g0mbuLtgJefz5zk+imLt+qFbcSlKGGyQFKLhgW8Bo5/GF0U8w/mCeUIi9eogTWQj8BpDSBKlzkkF4rxUVt8rgr9y+8+UuA5VYVM1TWwVnRKhYQ5x3lTazUp7zre9KdWFX2pKj+LEE/RcRMViqyo5cVg60mGfpa5DzMdoLqxrDOwNWGkob/o0lApUfFRkSy+yJafQDKRNIGNVkmEi4h9CoYrEmsbkLSVZCFapkEbcxan5cxau9Err9S89XpGBVn2ai2dtQgsAbJIkcUpM7WTvjR/XPMSI1EeumdwlOUDDydnny6Nt5QC9KQtfZOrRlDaQj6QGgIAkdRWpZSEGM6jbCusZ9zFRAdgyLA0P2yJ5sL41jgFUZxyZLFhFbDzb7gxU67JZTg3KIr0mpONTslDoIR0ielAek1i0hcvuS42rxKVFashOWCrYT0HfbbpLCqdnifB8Tbu+qpp4PMIdWBAjVQswipbpgSNFBoBGwHB5Vg8Ln4+kDprfNkGSz+jZKV6YKnr4YcvsanMNV5LB4dBYNACKUOZEcGWaVTKSesK0mV95tR8LTJEef/uLT/g9es9/cjRh/dPnz7ZebRTxNtNwHu7QlY8UufoPX369Fd/9tWrH7344fu3elYdxpO9w+OTd4T55fOnlzcP78+/4w44bpOcnnYB8PrddX0bD6QzenYtV7i2PN/MPqpinJu+6ID591cvX/Pdj88v64adP3jz0QwzElr/8ub4RKPdIyubf7YzssUjUPp+E2jiVQ83fG+bgLd3dNgtEGrJU4HPZU2/+4BojaPAXzx9Zp7o6PwMNXEWRcHZcoy3cJe1CHX8NiFcO/aEo8EWdS7iXYvf5DeesbrhcOcQMtbcwx8TqLdhzK1z79fuHu8//OTLZ//8P/mHf/dv/uLnn39utGA8Y5Rwd3pq8xoeijhaMMw3ateO6m6uRAOtRbZP0+SE9UZr2+2kd00ahhqEXJxcREijlwdHcF9fWSXU9BpxvN3fdQbiNlTFR9/+8NaqIZt2d57sn51dOYFbl9gi5uuPeKRdMyxv+R/Hyf5C8XXuvqU3owKJFrlzxv/2tqkhKsJMEr00hTVCGWRJdBlXGyX5NKvhMYlPew06uBc8NxkIG4KxDJsPXealnGBv3cwoESAGabP62ahwNwPRPa+dGUKCs04djUBmo6qAIWuBkUAn4GlxfQaV8xPXcGeldFkVwl6mstWTTUI5Pc7b0j59loKrX6O5y/OUn0eIQbbPpK0gSFnc/IGZXakFU9tAGUXs3b/HZ14uMAaeQjVkNDtHJOdP/qWBXtHooEhcSmYni0k3uo0OM3GKPB7br68/BKMPLTYXpFCNYx/8R+C8zR+Mbumbn11vxBGEoqkBh3xK8I/902OlU20lDX2TN20n8EFoBWkTvx/HZyOHlSrG/tu8/8UutS+826DsKDA2bzepoIcifJdsj35jbZ1W1mny47uwTNuZHUyfHQVG0iDrsSzBN1nq6DATcJtW4nEdJ1xMJjUs61esApUmFlM4I3lt3UvDEnV5ZSTPJ0VUR9N2KKhNBVSvOxCK9zk8TL9vyoL5k9lIA1UNDLAh9PxJFEHuLNSgWRFkPwPHbmebmbGaRk+JG7ZGGG/YZi3UrdVR2nlcN4Ub8opYqHFMdQ8EuoV2DAEqB74tE9SwEKOggbWItkZjffakeYA0oXNpmhMzWLH7SVhD96QCFbHWCedsx8/srRveLKubjACXg3V1LpRhHJLpxOhhnS0trZGBR/yEDMcRoFD8mvV4iFmHSO9S+bzagmU2KtnK+/7EkQsuHznYP6Dmv/nm5NWzHbvHtxtyOOIfdg4dcmRQm6HtFJNiaNLcSROP9hTkHL94vr9mL7qVl/rcxA0B2IAE1Z0wf/7tm5evDn/y+mVunuvKApBHhmb5I+stuwUO2oUGUhy0JNh1cAiJ9RRrpKJuHYXK0Oirn1FgesARaIqnTiqQ/RqdiFx8LaYGKRaPJQhpUOzrYURLcSxQWnHmLbs5pgITPUhNhRugTlhHFfld1R7j6/0Hjdm2nuGQLE+olin+Nolkv41hVwI//2m88UNKnapm9UId75anQINQatpBMBaTFPglcejgkSQxGslqnux4jZDyTxsljn8rw6TAJcS00bfWqaX2Jnd5yUQH36NgbpVBOxxqnbyKyexTcd9lC041am6NxVSVThXVEt2GmEulUoIA+FSwFArulF4KLKCquvkqLwY4TsXAiqtgKDYOcJUOPupUuedphVIPDdcIl9y5FEMYRGykyPzV8KTHW7TUn/krj/TarRCe1LCgD5O0txg2oYaBTFTaWwVkn+9yRjtSmc8K7AzJU/6EZsg0AtXbBqO0vcSKgZA80ZkhWfNNkqGBr5Csd2cvZiWudEiyjBA0SxxzqEx1WivpsN6GCkuoniUbizO8C9caBtSKlAjCYcXyFpg2GoltBWWbko4UiQJgDQS1S3uWJqR749GyX95DXDo0Jq5jq6V5wkUO4gazh4SLKfdornNBPvCfSK1nqENiBjS2Zkf00Un1DIkmZ83prpDhd4xKuPoDlKpas8FPzNuACdw8xLMhubo0XB7KgArw8Q3tmrloyOAz/nehBaC0d3CR0afaoFTbB5mCAVow4iFbprYG1XDN7Gcq7V8ShrZL2ZBJDsNKqSmR/ExC0lWVpVbjSvAT6Ax6c4velnuKBKkg1uAT6aZqnRPHwYawFoyoTYz80R2017d2nJO9dnL8AaVci/P0yYt/+z//L89fPLu4vmSlP/vRZ5+//uzP/t2fffmzH+nn3Aa6f7h3e31p9f4f/fXf06F+9dX7N7/5QS+gl+QrnrpF2HbCdTHCdr7ajAvs9ydnFg3vPXFl2K19wyb6HSztRDNnvoiWuZgW0yzh3TaEONzmWZrEv9TPzn0RyAFx7l1hGKY/mbXeNAXEq4DdXZHM8ZOcX+EIPGFyxxM98HdxFLvddHYO3JmrZ7A2GUBjDo0iBBKERKKdkZtPnj6zSZovgpyyyUdCOyyFEny8PD23bNnJJ87DxpDmdpzB6KDR/+Bv/cH/8H/6V1/86OXWno7h/urDqR2XpycnbvU6fP3KAglBgce2QMCRj3J38cgdOsdaeEYYtdsowoXH9hZubWyfHZ2cnRsctFRgf/vR6cmZuObZ6dqjvUevXr24vDh+f+JSZrcubL99f2Qtsh7j/fF7Mi1QZ2U2DiT6dZY5EowbQedLiZSMHRMzLircJ9mLhvyMcQ0TxcVGIczyoCipIl0clpw044/lgic2Bxy6rwswtd3dzducNpzh/NEUK4hkMF4ZmZzT1q2LMwvHsk2vIB31kJ2jT/aolbqp69buZrdFEGBuRCaIRsM0LRidItMrEV80IXamW4l9+lHjJ3tFkv8pV+k+5fpUvnxjLqbsvO5Lzk+Zy738LrHslfbs61OhBdpS7QJ/hYCiS+0DrkJLhSXy4gMdisvfxTFZNLhKlq5kRgWIOb1JGUFky23AZ8kEXJFQE/3DGATMIM8eKktcSDbweNDUa5PMBt6z2cacXR6YzOYH7M2w19abNteSAZ66FLXzfanAmLnGELBU4037VwsK8Eo1EgxSkd49Mnblr2NiC8JgQTBIHnw6LL8Yh61QMlpn354Omt5gs7OetpkCr5BTonuypysxhnQXh2VGNYG3A2aDkJEuyMJflc4Kg7eWWONixJsTaHxsRmCWpDciZVyTojURa4hZvujYMLdytFrqwawXNfXpbBnKIq05B9vyTX+M7I2XRVny0+15pRscXENzSjAD6d6rfToOE4bdfZEdsuTJMiQbbMyqzfHWmYjF14RgjXc8v8mvta25Y9icyVA311d/zZzREpRNntYEBwy518RNDPXT4XF2scm7BgN0LbMvc9OhLVPSzQkG5T94RMv6Vn2NvRxC8RRHSkKpRS3JbFwnERkZkQHe6IWcjtwzyy27rbaH9feO93HA6PUle7l9u3H5loV/+OLFoe3lj7fMDG8cH100jUSwnQu2LQigfocjb62dP+wf7NrR5UIWtCpmmRBz8Z28ZAYpMRUI+p/+16+dWOByMZOvyI170C+/jSJF7hdnqwU/STMI44/lqqVWWjq+ykorczlQFVb+JBaIWc8bTFhpv2bm/BnnNEwlXZ2dCiijzg6hOU5lkRQ1ihhXclyeak49x4Ip2Bg1ZBqHBLrr0BrGK6+4V/55rNDUpeUJbL/rgMJSXby8WaEwrzgAtSVMp9EpefM/K7CD22A1ziFQsgV+PFh1IcxULWN+IzCJ3TiSxZ0T7lBesJIzApYFkHEBe4NHqBfkmoD9hQImUry0LYrWj0y1lZoiNbXP1Dt/a38QxtpR8MxeVQdcvrigVliWq+9VqXmuck2TM2rW5JgY5XJi57mOieQrl7fcyLWZrui6sDsfD5Q+uFrZ1aeHmQGA29QswWsKqC6IwiMY4wGAXkqy1UeiuhVjc5dHGad0v4isKscoxEUcmLdDoaWNlV88eDiQkgbIQ+vWElQnd1/BQm81fkG4CicA4I2lliMfsXR5DVXC7KfMUqi8/GHTQi74SM461n1HAsKaROobiPv0Y2Vhy2PnTEbIA+bMmq2GRvKTHmDq1JVKQkqJkYWiWF22Bw2J6QzFHIUmz3zghk/wYaYleIAGRBTGtrGjdQlYlO1qrLlQQNaYwgWRLbqwLQ3GdH2aFUdG66zAztjkRke3wKoiaZYlEudee7BKWeIiTyOqrQUaBHmR1HLGBs1+AFsHForxWUPDByzi1Shr3mDUUjZJSCKhMymzqUhxNS0tlQHyQxkMHQ4sCSPQS9cuAw2Pe2G+ErZYoM+eCARVmUYFIPbVDk0t+6LVMq+SanO7x2jDoja9IhUTiDJQtCAVsnw1/aH+4+LsWGxHpyd07szNL1595sCZDx/e2+ZrtdDZ8fmrVy93tncNrr788nMycvTDiZ5wY3fTsnOLzzX73buzb759e2Wn6WNXAu9/+OCMoRtTSvp6Y0UjAdFKU/zsnhBamyMsAX287VYt9gPPUO3s8kwEaV9HtL11cnb5/uh8p6uFH/YOdm9cT2+XArHjaKcO6zNB7Px7R9rgYIETrN7WD4m+6Bu7WD7Re3Kw64fJZUuJiJGj9P3de747a3g/7u/vYhl3pAGR3KTGST53d7u7u+dnpyenZ1JMBYDpjbqsJHLEn1ic3lCg05SGU3kuXS1we/fq5cH/8V/9k3/1v/+n1+ckbUdFN5fn5sqvrk7vnPK5s39zcXP/+Nb6mS5PeqxFH1JmBLnrXrPtJ4drd49uLi8dmonc7799/3j/UG9kMmD/QIzdIoTts8uL/Sc7+vazi4ut7UMHsLw9Ors4O//+/YnlzSbcU6S7DTun+TdWeJMMIUzDLKJER3hoI1QEI8nrZ16jfREtL3Z9Ab+FpKmTM2TsavLHXk7mSHeLDswIBUervU1Em1AQyXOr9M7jAqX8wyUK0IRkHilVy5XhbZqGRLB8x04FNcLRw5JY0ToINfQCvDmWR7Muqx4oRfZ3ME240y3wiVmSv0hytfRJ/vuXMk9CBZanJTW+JgorM7mU6NUqU/VITN0WQKu/v4MR3AFFUJcasgm/A+dR6V6kmwv43z3XMU+hyqbUVVXeeWB4lpfToaBhOAipZmSKKIGrveWRHavqi6ot92JgyM/Blof7jgv83fojYyF+85h/p36hy+2aboVf+1G42jeAzIJPcGfBCJsm8dq208JerXdFQzd5cZEpF8Ts4WfNsod1ovB45Ejc24fr5yTSNneLZoyp2zxq1soV1A1KxtecS3LYGTtaF/zX241jXGE7DXjcoSYChcJdFE2/XAVdDC/PYNENx3q6TxDd6obqYqS3i92+3iJBE51ZZJhooA8DDkllWRsk0lDapjhpdxQw+2FgLHKv0t0WvLVlua4WIhG9focnYd+CmQLElwC49T86JSsbTWyaSbCAxQn+mQSxAHFuvdLsaUbRzS5CTv7ZcysVmdDhnM2shmrLcqZuYqbUYd5dCh3Rw3bjI75KtF4OnOQAnz7e7+yZVzGcUNbOK9OhBd3IEYdh/tqMYYChxCz+ak9IS1xSEzQyk+lMJ4msLSFgcbuQsakj1NDRmIuk+0RNKWYIBvVrqAje9K76SgrLOsOfwyGZDby6OiFa5l2Z1s8ORfQNY24NYw73YI7k+/KdXt2c3VwJ49F8mwzarLVnJKnyj3uOTLBv2nJJk0CufGjE5QI4k7MEcfP96fWf/fabp/u/hzIIjBL5KAi60aHAtjGjE/kx0TGp6TSiIR1qpITyTHRVmh+wySOaN0sKYKlYgoGxsgMIQOOoCYjwKAAqR0LFNvmTCOQ8kAiPRChZqWWpc+owCPB/vPUb4lKkLaDkVFxGEHA0fZ4apKAnjcqfna5ccYKkdkUwiteYFECjnCvTMYDDvZpZ0D5x23+zEqSfY46yliubOWiVmKXV2mWwRNoWyigQHQBdYdZvNdTYkPGjWrJjQSAICDcI+BlllC2hTxkUrIxGNvhREIgsDV7N2/yWBcuIHG1V0ONUowgKLTSXfz7xD5hBZ2rJLS7bpEpPYjXWO+lVRHIGztQAWGZULoB8T/iwTqTG5fQFKVIyHJMaxgWoWNLhhwxysAsQ4mVSwgUjRUKH8K6YHb3kHRIE0G+4EKwsXDzSz4n9g19BOX33HB4KVm9Gf0Ijyiudaz6ci9CJ5rQtbUzO9NDiNF6hKTgLBN+xaqyh5hT0BdfIcrxnQOJfw5aigirxgGqLeUXLPNFlriP8OestCRgLErPRLpwhg6kzT6IKog2x/hUj9BxLWPVp3cDHDH3I7FappeEmgwY3Yq4bSAJywCL06JkMkx7q6UBUzb6zjxknDzn/9TfglDlZnPGPJqGzJo2ysbtQivRD86FS2htxiYs8I9lgRZUq7020nywyTSBTDZkARbR+GFdexTVTXs+1ft7WwGEilzdtQZ8qjzKwlWs4Mg4ZWg3908RFCQdItY+R0MDyR8mqYHoir6dwbqiwPMT4QSCk5xn9e44OGojwva9ewjrlPTM91xcXhYc3Hzlp5vHmzvmpm6T23V31B3/wB1enH5xvf+yy2Ye7b775+ssvfrIrjLOx8dVXv33+4unb798dnR4Lqr367OXVRRPrb344+fbbDwz8weHulz959Ze/+so8/8tnB66PdRCHm3yFwZy2wXvmo5tM73i960uOJjzE3TXfEdLbz56il77h8qzFOHzlwnAZCBPo22dn5yR9Rzx8w25gp0x01LnWGMIjlJM6lyijHl4PiAxesa509bL9eeu7Eh50Q631ujmt6r3DvWQuqZ5da06ccA73bI3gxlw4L7yTy+2RSJyQFLuVNRopvMBJ2t3+8rPXNiA/urx+9tmr/80//Dv/5X/7T+0L2No/3H2ye3P+ft3iV5Mpb45bVnt6qpt8/uozC/jsk3Or8tX5e1PqDvoUd3+8cyDOffTuzYfvvucoff/2w7ujy0ebZ6yNo3suzg+I/5On+5u7jNX96YlVsM3abVk5cH23t7v3bM9VxNe7+49OzzHtfGvHKUm3UowzEqgRlfpeocQ7AeAH7hcjRnz4WxolnOtBi9x2JLv5EKFN/goNc3OTzC2vdHRgGuFqz4PzswtqSAu4C4rLidoIJOoquGBNifCAJRZEtHsamFCde54NeHxQDB3ywUzUMwGva4Rl2pP3SRNdO1pxrZXWW2tdSMJi1vXEfeobJ2Cw6N30Lsz46LUqYz90U6wQ73llaJdfkstAs5YyvR97Hui02ac8/V1KTOYSF21cslHM3ktc8gXFU4q2Aj/97ujd714NRI2txsqHQS+zDv7n/lLazPhikoqqeMoDqe9gt22rblWMRAe7GUHzU63Lms4v1yHTONDIj5Nnxvy17AoHQGI+aQqu5YmSg5vGBnImCR3lJFfL4ru113k5ce/uYM8Sue1uuCMeu50cRaThwHWz0C4PwlZOY2i80qQ744fW0xMG8QrNiRiZ8c6wp0NXH2/MB3JvVIJy+kQKGK0LmnQlMPItnISdc7ad1Ana7HllLaIVOTOZZlGfUa6pABOY+mubieyaR0CmgF3hf6sUaqjkumEQ4CaIwJI/Mpax9dwQM2tsO5AxdyuI7CEKvcLhiaMOqEU7thbeu05BP5h/EQs6wKaNZJxl23RKNkhwVum5vUP6SnH0jzeXDhhw5VmsrO3sMK4Y/ZrANFqoOJQxtiWsSMGqdZpQC4CJP3oat9h0SMtrAP4wZlqONVrEJleG4SrW7x9kOx5NS9VIdnQ0Q38VtuawexVko3pW1Ez3agmWQUmCaoOxPUhEZPwBBrZoJa9otuybXJpQnmAjzyDvCv0TEgGjm7uv35yg4eH2o+vvbp49ORS82DvUjWxdnt0K/jiG4eTDhXNdBUKQ18wQGlqmCPUZOnGlnBdMsLPV+GoZZ7Gy9Y3ffHf28unRL37yGtI2OUeA5CesSAlyNUdhVJrb4y1p18rcs5qTmzReXEKXNzVELnyZ7AHEtUNnQs6qo+SyYqRlHLrpclErTPQTdXwhrI9KqSuJ0nxsNFQin4vRk0Ol0suKBXliOQCwWxVW2j4KQh5+CVax21kkOZwqWyYuE9JWTA+AgK/y8QIWszXAIkW+UHj16X4PTfFETkIeziqIXnmzGgJzQ3nNqVTFaqafCO4XRUMXRIhQECFqmV9Uguwo7Sx8kJhFCsmBsKwQUU8ilLxhT43r409W2cvkngGPv2PB5tXkQNBMX7SKZon0/JuYd9Y+/JPToAYEwiMEUwyDNGdqHPemvIpEvgoGu4ISowZkhiwzHtDkWBNvq7HM7QEoYfhZq4OOHNi81F3S/I+g00A/2Q351RodwY/IgatKsXMxhOWn+lRBe9lHzKgpg7iW4zSwFFUGqdU3DV6QKSGVMPHV2FQAABYLpcoPnN5joj7xIC4GISGYJiWOyWF65Y+CmjqyHinjyrIObPoD3bu1yIDCXkP8I6y8Xo3G84EfsXw0p5nV+SG/joJ9QqowwO8oVsg5ecpMxo+hPjQi5rCt4QdsltbGj+nji/qE5PR5tbTVvwgazkOKJJiWs6RGxpNTi1TXyGRGTbFjwXKwKc8CMFGOf96Wpx8RD/3BRNtiG7i0kHfxzklTjAsNH8wCmMkYGDOXitGjOQvcoVlCnDxp6LAgCGAIarQyJ5mZImWLLGPy4LPkzm6BpQhYM4cV+tmUsJ8GKIUU2WlCj9ZqGjKKnITkFJf2iTsJZO1dSvcMFcyIxiMD3Aj7CHPYHHp9Jd1C1+2Pe7Nf1hVV5T89PXn5+tW7t2+fPXn25MkTBu3NmzfPnj8/c+zP5qOXP3q6/2TfWTTrl+c2Bnx4f7J7sH/58Vrsn+zs7G1+fLRPfnkbEkiRq08s53HXjFDi+JeOuFtzfqRwOlmxXMey/Sf6jI4h37gha3bb7Vo+tOVsORtWLsTJ9NDbJgTWnXvDhyBfaIaDjENHVmuIQQYjLSRnegRbM+aP+MGkT8qzpwduDrJG+fjDuTUG5tgxwpRC8bW0TpMF9LsXy0MdP7/BGI6ENOviCAtb3Iomov/YyYTgw/GHz57u/vHPX/7X//o///LHn/OI7Vp2ierFu3eb2040Ojr9cKqGw939s8vT4+Nvdg/29g5fQ/vq4oRXgT3kLkt5c3n25u3Rm7e6x29/OP3ORPvV7fsP7z9/8ez6ousVfvqLnzgiaf0WYo/evz3e2tsWf/3huyOEtSDBgg2TZpw21waQkWu3KJB0AzyXLpnZ5+2RA73OzFwxJoY7XDR9WTcYNsRtcS0Ty/NsIUToMQh9ppt8sKAbjsaKhMeMBeOQIOWJjr8uBjgrD42aJIhuelfErsNAMlyGCIwMetEkxOPchw4ypwt12wKxwSvuq0qnwk9Uu9sq1FX8IvU3rGA6sispWgKfJvt/+STw3kwCUBIn09B4+T1aUGYNVF25p6innkO6P5NheREEvwdm6tnPUSLisuSUgsKKTe1lnfzJ0ipl6pI5IAFYAZkKFiAyDows5AwtM1MDIauA5FUwBM8CM+kSYtbUwUL2Fj3zdIaAcy5kPVgOEO3Ifjniod6Wp0L9xbWNHLZ5/+hq0+c2IKEl3GMNWEvh1+2Hp0PgShbwbv+M0V0BMqt/WGt3Xxi686edIzQ7/o3Z2urt/UcWQGSKVu3uGh7oENdal+PI1yuxHmv7XTPVLEQrbYAvjNpWLviSK5IAyPaWJUCE46OhPkHtjNpuyIn3vDeFqLzT/Q0vk3+iG+vD11jWABVYA1eSxFIqjoAk0DSv821tE2Z7D3bEzd0PYK2dPEz6mk0DMoAzEj+dsphCwwzXzMOFrn482BG2uFFUaMD6NwMPzDasUhE18Yp7Hb+snHK5b6aDDHDEm+Qjxo21rIox6DLIGZ7WkM5FtaLmrmu1wy1PXRjCj2RgwNZ73pt+7MycFGicOaKJOYQR/VHVIzLA34AwxTSyqgoHraaqCR14ybYdC93XpqAUotHwvgBzbmjcS1CrN4dLgkm6EV2jmpxtBWYrtSVDuoCLm4+/+vr46d7jL57sHbhA4PzusljnFTgH1vzc3TvLyaIr4jKryxwAtWY29fzaIa37WLTcB6Yzaz8iFWiV0Y1lljz6X3/z5sXLZ66SjCV8fOIq2NFUMVLAzKgkeUV/HSlVgaiMZJ7ZkZRyTDe6UuoJ0cpeezh8s7J3/N0UL9HXshnv4ZRcGlnEFtPlHzLmh+QAD9EWzuBFFIrhemN/0TcqDvVGSj2Vwf8LlFCWVw+OnZEx/GmgZAXjzhQYo8qLrIOWwquqw1+YiOk9zb8JEAQN/P4fro1sqEhCDcO74SqZr7oQGMdhwWxJInUdlJSJ5nAOnDpOyAVloqjagCahEEHiFu0klhCLAuVdfXuDC96CE4T5K9HrykAD/gNnVZEMoRXyQ4H5uQKKONIXMImjR6XyY8q81FApxWug/0I8tAebEBioZZWhVKTv7yDnpUSu4FBn4E0S/igGCoXlAUij5KzVVAgGCig4ut55PmJYDc7r3EJGMMFItmVSqCOstphmTUzsqjp3fGGHKjyHxTSMJdcACYP9DBjQTfnAswwJH0EER576zVjMVM2s34ieZ9CgFMzgaMlqOCV36hEBhyYsVo3Mocd1MKk2elNC9GQ0qDo0hjJYXcP8Y0zh3GMV+VengEmyJRftr4VgfqqKpLN6cjG+yzgk2nXASGMSD/BnOGssmnRc0gwHw7y3EdbuoToJ3NLtQQlj0950pk+MH1wASOMnDSNCe4EPdI81tKGRsukSTHsdqRdjuhB5odtwWbsWl1oNVS+7f2jMBoRNWxXb4DjIjL2YLs1b/w0E3tenA09VlzAUifchAuodNvhdW4anuUThObKLXEloRGy80VOfmpLMRLWVFKfQNU5pmHLREpL5Gcrz1PiAJMAsdc2iFAxA8CKCs5AATGfF3Nww3EK398+evTg/PRHldZWVM1r0yl/+6MfQpAtPnj2zfMuKdjg/e/702bPnV8enL54/0c1h1fH5yWefP3dI/vn7U3Q4OTvlRYsDWaR7dtFSdUuB9D1P93bFcPbtiDUdoInYnHu99vT5U9P2ELPq/YIU4TW8PzrGXhz67uLmqoXCDqnR3We167F0zwe7DupEGB2k0nXW5sTcFkRMzYoTQOt39I86fMKpmXxU945xBSDjaP069vbntaId9YzVsdPsA/KJ/euzbbElgWKQaRpKdvWgbqd9i+zlTz9//g/+zi//5Pd/37n+D9bmWAdbQPHM+qJ337y9ePfB7l98OTt7d3NzcfDs5d6Lp6L4cNvgNtgacdbO5uvbs/N3799+893706u3x7c/HAmqWpf1aGd3n8f+6rPP/uCPfsQvMUVuPf2Hsyv7NEy6n7v4WNRx24Vrp2bYD55s/eYv3xEWa3i0y/ou384h3N3de/f+iPTv7j4+P3foSTZGhEt8kZNG36knCiMnV4D2oxJqJj2NX4lQTj3K0+z8sCTNZw6NBa3nqGfzvzXTKE9xQDAQ0vtouztqWz/SSKDws4+uz6AQkqlN843GHos6Z7uJqF8kvPEKYR7vVWKVIj4lStzTi7FwaXGfNKc/893fDMO8mK+VIvRiygM2OSbPknHA9tZDX58+n0D63UualAoxq5+Klb3nYC5pviet39Gr5JVSLtkk+cwrLemZbZkuavR3aeDEO1LnsYRjsVBzup1iKJGJDQdmFhIvtjf6FtMx6Bp6jXUNZv2INS3YNCYLUNLUeiFkVH3eU1wjkXLOYXot1MPBYqVV0wZfl4LtmlAy3r+yO97YMl/WyDNN2ZKfvThwN1bUKUw+mzw1f/QmZ7VAGHlr33ldXcTiGo/UbaSO0UFdFdHfXX+8BsQA4PLiYul8+X9723vG/tqIKtsuCTeReEUmtTbdRMP9A3N6iYcZKk6OggyaqHPTBM4tdUH4nWkuYq5zv0UR13W/fX/ivnM2FUk7nwwWY0Q1mUlktZ7s7Z6fXjAmrY5yx+35BeqZ80RiTqSG77eNwPkEmVMrbK4v2a41NwAWwtEoZsogljlzuckMtAiP0YvOmUPPXGAaaJgR6bJt42bTgul3zNXknq7poy2YWYdEwx4cMzORW4BaLUkYJ8ZPGYTzYd21X2hJuYBtpcBO5y/YaZWLRkjmVBlcIs7TaRtdWJnYmDC91J6ciI2d7Qb8/WozoZi9AVRBZY4iUkSqrc33FzdiFOcfb5/sPd67f8xevH59+MQ8wIWLZQiZ5UNrZ+cXhwf7V1cXF5dngjh4tb+/ffbudFg5OtA4Y+Jx40MfH1/82Z/+9m//jZ8nMrBt4U1DRMTUdBEE27pLH99j7EMCtXBE1uQo22V4NlI9fJBtitT9kSVlyQ97mPxwyVrgVNNSDnowHxSGHK6rWvElZ0pH/qYbWmTPd8PIfCdlxwGYTNNPyEtefMu1YJgnvSRpCyp71fusRi4v9GRtWowikYekOyQLQOMOarKsQPlv+QzopRTMg9ZHDmVXP8AZ+OOvSpv/SpKuSL61VaC23S0L0rI5C2wysDyjEMEIleIUtA2ZyxMHUWOGKEsDl6I0XaNCMfgz54tfWfIF8ILYNH8KEM5BEk7A6K+qV3VEWoKUcYqwYHCfTIyWvsxvSJEa1Pe2H0sRP6abSOlK1xTj/Ujs2atqGueyTZPsOdrVOjTLvc6DF5EYZIujD4Te6w65sFPaS2hV67Q/WsiBqdNqPwMY8JKXhvnuJXM87eD85HIP12tT+YZeeEeeoDuSQAMTrz6TQxVit0OWENQdxPgVHUM+u6Ah+NR6nuqWLVsx7iNQBnz8OcADhfZjFGo4oKimAwYt4ZseojmXINSNAIeUw8U8JyYv4FLQlwfaS9X1J8pETLysaTPyHpx9FfZIGhScgSyayQbnWjh4KidbGjJeskYIOcAChkChE6YMBCLSwSYTR5g3tB0MeSKxFK2JwrFJeYON9CpBzPwtRFOx0YhZxVCrperVlyqrXMOhygUSeqCHhoIDUDUQk7PJVVxQ2J+QL4OHJefix/dGhvl4VDuuyiTPyHeyXP0qGrnqO1QrFB1bp3hrXxViyajh0JOYGkNjpavRvxogOjT0cwE+tA2xWFXv1SZgUfPtHYc5dO8VH253b2/mwBxac769v+tQTq4bz/r156/Ozy5t8/ru668sFHj1+ee7Ow6seXjx488FqgV9T49Pf/ql4cGjr9592N9/9vWHS9UILlUfdIyLnC66tekyTgNmFwu4Z/Pxvbky14WuqYdzc3JxjfgtRV1b00e7dIz/0Yn/Nx22fbi/f2GfK3m0XNhKHnMDIvQpCcDO2nNJlvY9ssFFLy/6pgPzls3SUbuzrMP4Nh4uW+4vpC7O1LnpopF6P16C2YAs+AiYoDi5JCqGJ4jvZVJhMX1nJhLTDsF+9mz34NHGH//si3/xX/7jn/3sZ09efObg0Kd7B8bI56fvLk+Prtzie30+y7M/ujjs5ujK3cSfffaj7Z1XzEox+OL01+eXF4KMzlz/8P3xX3x1/u769v3xJc45dul64/7Ahr/1jd/7g58+PXx0rgu9uHPO5w/v3z9/9eTumnI7033daRvk9u72+u13J8uAmQcgBGtcwW9o+uK6Bf318TcdsYK2Nnm2MdFV0I0tEUAr26qoU9zYsWA/8c7l8sCFd+ypOF5K2sHkRoPEmiNkZ4FRcvMG9HFiBZx/kieWmV4wQa2hlsFwPOPAqYMCOWRtDAsx2YCiovWj5JTtzKvDtUR39I1S4ILRRboLb7khpx+q1ywXCf8k6RS9t4vCezP6MRkmY7owBYBZPgEc67DSt085qmXR4lW+RY/6McrpfRXNy8m5oDJwV69CdUqRor+CY5o9IbDJO4hPthWWKgUYSnovCrsEa0avswBZmBZcpfarDqUAIb3IylCxurpMTc4KStZZZ715bktgm38vNmy0QJ90nHiZuW5aWAArzaEdRrmObJxFeTkldpIf7O+B0zryibvZSRCPtLvlIuALqei/3MZlY6mBd3bJwbJCZ9aSOfLWAnujaN4YN13iGE/HBFv/sz333CVmIJvsQs+rj1cCTJsmzm7uzxwhtPFxi/+/sZm/npL75xChdrNQGTuXWq5jAQ2/cP2RuwjZKGMS1xCgut7t+bMnzqNsT/Dmo531Dgi2QopEA2hqQsdBEGPio9vDA7MNyAIgk1TnAfmjE5tcZbEsJ2NCmvPglV+3tm2J2qzdPNwYnzhlKBUYl4WK6ZdRlUPo2wGYXTygGKC8544Pxi4+c2SDhIbVhYXOR2uZzOlh09L1hNvwOs87sagvWTR60SfxLmRhtaAd1GLkrXrSWywdgbGc2Xg9mSnR1kbitTkEq5n4xO3DTlv7JCcYwVQSIaxtrAYyONplCVjxGb9IHW0dU05m1KGbmIY2O3H+8f637y/dz8Lvf7L12G0H95dqI2Uf3ZCILXt7eyhsDPXs2ROzLeJBLmtjTCcCxAfSONLLn8sioYZjHb57/+7nJ8+fP9nX7UEIGadPTdzxN12g7+stBs4pgfNcuEYamRYUY7g+eVCrfj+cx6TUnFk1kGuo3Kxi4IqxRVZjpjZVkoVgx+TEO90TecDIjKQ+J9lBK1+IFNWQEzSpuDMamjKyfhBPAMZ+hiWijriAL5EsKbWIx6hwuj/+Y34OaCqSPq5bI3ZJ4GWIvF6y+kGMWsXdgAEdWQBWVjUK+ho3Jgc1P4EVVrzPaoU2wdXGEFjfODs/Q70B6ydMhgbw9HpCz8aq3kI4R1figkOIhqrvgTPOVQRq7IRm2Bnlk9+ao6TMhL46w1ixqEhwgZg8fUHRy0GvUIji2qOAz0IgoWegiWItGv2IWnmyYzQ9J83pzlTYN8qgOVzDoP99wnnWmvi7wiOHWPccEhBNocrsn+e88BX7tQSW3o0bh+QT5dWQJb8mhessVYdx7deMgVZjJpCvzLR8CJl/PF3d4gvOQJA5WJpMB9K6aoO0LxTpwMqUtvpqJ5xj+WrVfiwZwqlzaOSdYiFN0djQGsJq19iIQl69T3zV6FlqYGujChxC2ApRP+AMYNAJbw7TDKPjVzcABX+koT8yj7Q1xFEFK+UTHWqH5sC/TMFs0Ow7fs4cVtRUFkrhNmMhdYbJguFQ1NsgJZHWKIPGLtTqqVQrx+dOm6fosEM7MxwJYKgydnFTFUCTnZTNW7WjSs2cJlRLmMOw1WKRo7f8xUDgeJaxfVSm7QScRv0S5+FTkAI1P3/3MESPVpF6QWMxFjO2rOPugwumXNKfAULFExursQefoTCcZQulGQ6pK0zVnM0hJDHKr1qi7TUEHfQ6+Ye7+7t8iJgIidvM6JOnhwIt3ooYvfz8layifa7o+vyXf3B+Yk/AEbo1AN569PqLl4L5rs3icvME9PRPDw6E/r/94f3+4dNf/cVXJ1esVdV/OD59ZLGAyyLtoru8dMIDVDqkz5T2/f0TBwaZM765taoHApxHxQhItOx4AcbeWgU+/e3pSbsUMI+akA6n/vPUO4Yvfyhx8VPLiYHuguOws2+FPGkwSGiTjOapRW+EE2biDw/3z+1dsOs2GluKaumwSQWnIckQ2p/IHh11StYp6SD+w//wb79988bJO//sn/y9P/7j3/vDX3zx8tVzC/HaDr+DCffXV++MpK7P3hijvfn2u/O3bx8JH17enB5fvX756vf+8JmbT+90iBfnxl8PN1d7FudYv3N+fHx2YZqMd+Jn/Sayrn20oPbnP3+9s7s2p/ps/Omffc/T4aYdnXKZNo7OLrkXp2dX2u92Hm4dDJi8nQNzHfcnx+dttU+XuRwWfjjR8H53/zEXSpyPUBjvJNGWQ+wW3ffkAofrqwQm2aYXo0odBWMdArFoogB7+HWFobZNjSZPKmDlZFEw8RJlVluLqm4f7EDY3twhtD4YJA7DXmGKI+OjanMyfMS2WvlODRDeC51lawgboZnyn0n55BkPMxeQ8MkueZRcrR59Vq889DMdkWeUZV5XsPxTUS/neUD4tRRYUud5KSOPzyC2Urv+SPz3lc1bRTSsMsArFE5j76ozEEv6ZOl19PJvRTiZpciH8uHs6ZPRCGpMdBEyQik2GbO2S49eN5RJLd9iZIaMANSh1E1k7y0i70je+jWuDMGg4DE9Ix+q1cgi0GSWWUcrfaFWy7HagFvoASeIEQ99Z5OaGF07y3ONXjvqvsP7szfAMgVW9GRBHzZyjnUL9q87hB73neLgBNv1tIyrbSFdNwe3vq4pYu6+wwTydfKlrGiBj+X8rQwBFuaLFLH06rDynzlE1nxplGTQ7rWLB98Zd1YQES2tbazjuOEWQ1spd9269iaWNbe9fNYLMvbETyIrBAc04YFvEF1H9zZAfTCMJfFiBS1l6fxo+Dla1NwgLWBS6UkXCVMvLPBl6IXygilYMlsRWlbBSm1ttJVO1RqCzeNHxkrVqkUV/nkTna0TylGDTkfTkBHOZfzWFmyqf+/8CTcPhpEheivym0aDG+jpWK5SiuZ9JfpkAaxvxGV2d4QMSJRurzDjBvs6kqJgNu20XSEnORlomkKyPJFtcmU1nNFDLKPCNQPrh1tcdE4fzp1nJiTx6MXTHcJnUziT5oIH57+ZYTUB61wHEoUp+hEy6XyhBMXiH7a+6UdGRtOF4x8u7tb+57/49h/8jd/f3zX7akSVASGZyDcN0kpNtoIX6zVomCoPb34coYAgLIMDW8JHuRYHvS5yMQu1mKEFE4hFB6enzq/EGs3UrWfk1Kvl/R2HYciCIf7mtPTXy7REdRqSNmHA+CceY1zaCp8orAVxaBGtnKJMJ5R8p6hjKDA/KRlng5UwLlowVof80EtzQ0fZ/BsNTTJhOJ5b5EAQSDAjix0K+WrPUADRgGSMD3eGixUAIiemvJohDPkFp8kuPRQHQIOEMBusBwk1+Vvzy+EhkZZUer1zfkgA66VzeMrunRaMtanp0GOykGh4JF0VsVo6QizQpNaK2oApQ8JZgeKJJg7QQQqkCkqAJc6GRWWHePMuIMMI6f4tQ/ZQhBEk0bfrDGvLCFyKhUbRS2LtGamqFVIXFta3DY3wteFXoKAJAlplZsegwyr9n6aWpVxLtpBUtekzVFiQZObUtSC+EFF1SyN8Q4pUzc9GfjVplsdEo/igt5i9DaulRzmRio9Ma4JqzRVad6vSaWkGIpGKtJN1qLa0t2kIQPuHquEcsyV+ysz/Y/VShvLNokYIZMAW2isTdn06c8CvwcQ3RFlAJOo5J22lJApCpKOSsSOJqbNMK7BgBpSLKAAPfzZwNcYIz3D0X6Zw8I2GVbigNxwZq68FIzcT2cFTJbQnwoSq73rLCFXr59ufHuEwqNYQeE/Ix2KnNnXxerzXiSB+cFZ8qYhnpZdKltY2vEXJCL5U7TnJ6Xe5I8FIWmikrnIOEI1UIjKGJMqUf4Y0chCYgnVl9F8wkG0MWeq0khMtlQpP9czJjx3D/2jTpO25xZrW+27v7czdKI8OnlqFcm9FkDUzn/34x7/+X/6dCp+/fMke61F2dx318+bFq5e/+fVvxA9Q4Pnz1++PPxydnoijqXp3y+2XW2bDddCmGg4OOLMfxeO1hs+7t78Tge/vj08vnPZzfnXp7i43hYlC6/lOrpwuasX+pj2GVx+vHTXTCpU1N8jo4+9PXUN/cWXGvwi2ZkVCgzsrhq2idYiRYUYr9dFIb3N+dmVZUeQbavMDtDSJchqJEwE7xoLVNqC1BFmvL3Lj22KfBmxYwH6/fnH4f/6//qs//ze/vvpu/b//H/67v/MP/+azp0jVeZccVbubb+/OLte2r29P768uLRc6vji/cHvax7WTd0f7z54+e7X36ovP9g8Pbm544Ee82t29Fr1ZrH96dvLtu7PjG7cffHzz7ursjB+z8ez5o7/1j3959N27w+c79OmHb47MhKxv7384Nwvx0aIIlx4Zw7aQ4vH2uWiqOZO9vZOjM45E3f7N/cHBATngeSA7ObCXctftRRv3z57soa2TGnlFF13csbGT19XcMhnWXEuEi0PSkaQlzVFcF8btt1ojHSBRaYr5Nz1+BM0NKYycOoz0KsbotRAZkmQUU1gzkwy6Zz0ONnIAsg/lT1CpGiu+MpIGC5lQZyTOkCMlytCRbSxLqAexNKBRQ7JPzvt8ejU/JQ3wVRVlSnv9mcw1rV81EMDlz5LUm5L6VR7/fyrT4/zIJAGYzZ+ngTBPAzRwy5twmXo/1bro4PxaavettsmWYfBIYblHSxLqIQ7yL8ZJVnl8hrzJt8y+mTIE9CybIbxaiW60tjaL8+28rUxDC9bneEmTCYWAONM2vPIdrSSb7AgNdi3GAiM8A0utbCRJBpr6b3aQy82+SKyCoRDP25M1MC7ccHgrh9iZ7vgLGapaCJu8ZNrNFRVEmyDMg+CBSTBWk95Ja4dHLrITFDcMOE0GWPsNKyEHtbbBgLtXqIiedhoY4PJDF6E0lvR65NxmuPN7WvBpPDImMXsYZSBz9+DsmhyyTVuQmsLSBAJslgwl8ELDrUdCIJkRo6VDrU1vnsTQwo3EWs3pBE00PUMx+4Ii+KyYaqqgiZAuLiQPHZM67MVfY4yxP0g40zKzc4ZxB81RP9oLvubSjjmIrEECrPjV9JFLLScKoneVQhqfREPM6ki0udl9I+hWR6w/LQRCKCCqWJ1RIQVbV03VWEW2SbUAxMU21bRLCLT4QukyitqqMQg4ITn0nfa26mERZTWrgqAaB7C9GcnkuTCQ3tCRZ3/x9uT7k1Om5tXTPTH6l88PjV0c2ib04XN52wVzZN1cBCKjJPFWV/DzodVrbEYBHr05Pv/uw/HPd1yhqBZ9bdamDQHzmDzFbWhnsnGfpnDdtTpQI5mGxhGtQBuT5rtRtMYhnQbkay0uB7oChQKaMuEnCGJf3hE6tj1ZRuskxUCD60vjlWlYVon2JUvt6VOcdzJUy+8yxzJlo9UKbWBT5I6LLX3eZKaifx1jVhRICUSqFgyEpclBycQtxSaPhs5HQWhF0sD4JHc1YUIJ8TqHp/HGEDUHPVL44/cyvqqQFgdWNjVWNUzK0ChxGSPJtYgKyFG0ngJKlV1qNTqbflY7a45EHxAixWJlVxkb1UCJ7sYpiQxB1VUEWEAG+YUAFYZ6QpohJPhl+yvkEr+LYlNwyvc2Wql3MA2NmjJYtFZbjd5p2IA0IyVDtpXmG/EsqKuocopN89AFrEgL5qydJZ8slMzVvHJVK8LcjOgOET+hErTGQ0OUqm+h3sIojQOBJVKXN1WkFQqAuTBPL9+dJq3zW7Hkk+zSBDiE88xyLqQCXekUI4KlYFx2SLO7siEv9LwaiSHkuQJ+qj1AI3lQKsIt0mBKFGKZl+yv1sGKz6ZriYyAipdqPqAgzNvlO0L4ZDuKnS9Ni8fJQ4wf3ARReCEhijKLKCQ7ICPXcCy2o3jqF/RKtYes1Rra2PB0qZddGLqhnw6mychP6oS2VZq9SHpSghoLfBC0AAVU6dlbkMuECtOqhCptWSQkdilHOJVlwachxZPKKycgw0Q/eu54aYOEXqlloVCq6JN01kxVKa4VNTkcIhQLhvJ8OIdbSFnwBKZX0WBqy5uarF4kOBFQKfXWbVdhFcWbwUqCGvgBKhKHEwI/OzqzpNwIzQ0ujgQXczh88sSEw7sfftje2UOka266+J99AC+fWi+KYvkTjzcvTo8tnn3y9ImfZydX73443d87JJkHe7u3F5fPdne+/XCifc/2HIwvxo+86yfnF493Hj97uqe+45MLV8rbEYYRLw+fWtmjA3Y5lhP1LFHSg9rFy6yKQttTqBUfji+sI9eQ/YN9bEMu3kCbBR/ZkOzgacuKXCxgcunRia0AbupthLCxu+/G2ba++dkKnHVHUz/e2drjurceySfNTfDQhz+U10/57ShoQ97dP/q7f/QP/tZfe/jw9r/6p//1P/wn/6lVr0G6u+XT024X2u5u7yHCybcfHu4uzAS8f3u2ubULyefP7JN+8uKLH//057+IU13J6V4EtxM4cuno1umJNx/tjfy4sXt8fGSNL7fr6dPdV8/3Ns7XX++/frJz4ORsbOdwi/vLfHZ6Zf7k6Pv3Dt7+/OWL47PTMUNbx0fGOK3pmqX3RLDjUvWvzClrkYtFM3hTE+2zFgg37s91wR+vL6DKuXFDU4ptvUcb/kyyc/dTcCR3zkwL4caGJk8GYcXdCFjno1T/aPTUlShbUcBZT85sBeW3i+/zDETHpOk+FGTYMMLcCwUytoA2woubEsjFTGUXJWl2J8kQefDGzo7i626zAD6jyT2sfvW4fLKd6d1AmT+rPJOwaIIccoVqOVdASgzwp8+86WUqs1K7KZ5O/ft8o47LqH4yV2ARJ6gi1kAPFjjAaBELM7X44dcYz+xwlcyrrIH8UXRySlcY9TQEEHlkbRg/vovMEiU/tg6fc2mQ10JWKGTGudq7u3MsrIVDbGygWgmtAAHOp3RqvisCWP41i+avZAa8EULHcV3jixGDPSCrjQPbG5dujG7l2HKsDXzWDnb2csjvrEzbphIXNpLft9qH40sMNEQ7ciXXukvbanuquvTf2MvJmvg379bstOPqjTf4wgreOlOKDJB9kebxfWsngVxzs21HlJJTwXU+5Y1TxFLZBxf/tQ1GeqPZ23u3abjFtlGKi8mtlmNaeMm5jDkJWar9liDq13AmaQdXJ2g7jcnDtYeT88vp1XSLfNyrzgRijmCJaEzLlkYBZnID6fSJsRgZURg8VGZtmCZPLJHvjLFBMbtvY4xRvTkRs+vw5maNQ48YVIPakkysSRLoGC1DJHuaWWyk0fuOh6AgmLG7G4irhwuiA9BZJHxxwxlpMGmPAdJMh3XbqQDMAieJjtZkwNJHi53UDh70EjNY39cDmosjwMjC2mPxZK+7xExVmEwxuiOHrABYZojwQu4rm4Jv1z57undxVvDFkcqGWM9eHKyfi5PYVLkhcGFMpELAoZ0OBM5E1B0GJRO3a3/662+f7R88O9ztbgOVsCRJv16yCEJNGgcpz4S8NyLNYFGLtCYfLJAaiEZwYAbL1X6GtEyl8Ky944+Q0uDkaHMkWiYdOk2vFXogium735w9jcdppi3sqWck9AyfYUe0Vd2wLxVOT8Mn3CJsCb6XwFx4+kiMy+rC/A6MSU5orgdy0g8pCi4c6qGYoHoxDlYekgpQqsaob6En3ckUw0TqVJoD5tAOpwOfHJ1KGxL6kzCogAJlhKWiDzSjQFAXhP2sqSXFuNIj+IjomKmyJo++F5jyo1KsXcjlZ1Ra2jtNCPbq7bSyEDxdCFvZhlzeL1VlGAfTkKtpjdz6qK4ebiFPKMeaVaGY/wmpNDQilzBNg7Cswc1bAjujQLVzbaeOpfULkpVB3JIQQL7x2KJTPRyRBbm6y9KXN0s1MSoj4LdytDTSpsOTYSleJ1pxCI25J6yBGTe0ptSgAgDqQpwkdQaOeu1eBlarAKEgTf4qO6VUUWV+E6alzSCIyZnaG2zYmRSjiisB8nj2RhoBqcKqM1NJ3xtdqEVar6BLViJUpQbC8mN88VoRYZGpivKh51N6+lOvVnCrIfYn9EZJpsWh2qaxIKQGPoFBxua1+yjOq4Ebxcl2qyPRCNQiNNE5TtOQJbRj4AMQJAYhL+bjx/JX/hHN6D/NbOilXTCHIVhQXYosjKj2DELgoBGtDCEGVRI8HIsciCAP/BeTAaCah2ILvyvvtRaVGekAjeY1aJoZxkyfnqmEiD/p1fcJ9yHpgA2WVqiuLjvYZR5Q2R1N80qKPKx59G/gh/0bu3uO4BebFxuzsHjt8MnTvf39o/fvDw4PrE91TMcPX3+192T353/7T7b3no6/rcN5vLe1RyPNdu8/f3V5t/bt+/fAqdANvoe7uxe3d+/Ou+Tl+VNBrs0nezvWjh9fXpzenN+tXR2fnHz1w5urh4+nLhm+unak9M76I5fiFozSl81R33VsYmoOlHzksM1bcwVWsAjLMXbuDuO/Ys+LJ/tP97f3Hz86FKokpQ+PTq9uXU6vH3N1sS2/9r9iJVcAX5DD8OC5Vu0dAm6MgEa45VVH1szYEmXq8pES6dfXP3v95G/8tZ/t3G38N/+H/+o/+Kf/IV8Zn1hrAy3xLK58ZxWeX56++VbU7/L4/M03HwyEHh8+29h58u3XZ2fHtgc813+ZMkBuXHRgj6nim/Oro7c/HH04Rrcrs467zkq/PXi6u3Non8TO5dnD4fOX337/7s+//u7N8eVvvz46OrVAR1j/4fzcDMCmpRZ/+f3x6XnrLwRSrYZydo4F1jZzquT49PTyxpbfvJbWDHR97614YYuikXJj3cp+dLCbk3RTFKsnzAyw/mSftOsl9ELMAkkxruN2EMrCpx1U1wgZHflA5uiaLC9uAiS3R1y4UxPI6ug1w2IXSPqOK/kwKftH4T1i6dGOcJmF2XgVGEQ4Z0C3GsxjAbXTg+eTNRzzWJdAmlWwqK92LZ8E3Sdd69tn9XtRABKZmk2OXs1TE+hpVAlTUGpJq1wDbX4tX5NRluWvjEvWKe2xGnpequmbjVqVTJ2Xt/On1BqSHsrTy7+SPl3yAFxKFwABXfJ4t63nnqC1upgKPGJNFfcvZhGAHM3kdww4P6Yp4nxhk2MMJVWffwjKCHOpOcpC7S2c89p/PkKwA8fhsN08pWacy8hbvFfAMs+10KndK06oWndUP/YX3TD5NAs8oMF622TVwmU7iT1x682p8RlJv6XfEwpwG6R0Ft2klEkkAiKf8LDGNP9WVJU1QwCbZXksjwzjc6UMIfY6R6fYELzyx1lVspqgaRSV2LHWsBMpybpFc2YGDGlb+AonclQMunlajRU1bw+rxOurWwBJGubodkCXmdXf37eCqYnibFL+BwzunfnD0nvh+DJ2iPiKs5N9RFWX/QY4dnZu98+4boxUPRT0LNfpZB7mDukdKDRMS1JaYJVmNgnsjDIKNDIRX9lsAw4As9fJGZlJXwzAYOUtdchhA0SruC4xjL4tAc0cvtGepMKALftvVxW/fdPmY0wcOag/zcMOFfmMGcwnuNsB3xOsQYIe1r1lplZa44VpBBRjc4Wt7loNxm8fAjo1aN1ixZNLR7Om7a4ydASzdQdqwLRW/Q0UdNbq5DsFT+6Nq9oLgNKukry4/e3Xb0YSFCvkDx3jDSqRVMqvRLHBVEDZkK3BpWppKVhmHLPq9UrPvOcgyp8WZ8380Q9Ojw5MNWj/px5fRqhBkrSwi0PqKBJxqoZEGYSPZzw/h3ENonwmv2wJqxpTJJXBcryUsAV9/h/MG0oS4fgKiemVaJWqtSOLmY8TruSQLC4Z4CBFeikyJMADc2VgQrgK81f7EHvz+e64aZTpk4v1yQCNU0e8Jedo9Romidw8LI5iQw5AKzNIQqxHQHL50HNeZaHnH+Sm9FLLUnAA10bllkYpi1xQihHaC1JVa2ayUddQm2p8HPZfb/1fw+dVRJ73A3NKA+hHj+We/DVjAI2oTMEalWsFHJ7RKznYQIjWkrIsTR0zHPOCYXJ7cJrxxPCS0WTawmBq05Alg2//6jEb5RZ4IFuyaRsqqnuYB2qyMsCrEjGbJZ/BELEbqAGcstOGiRNXHSAqJqOCi1y+ZuIMVcVNAiagK4XpIOVqBwHBUJllJ4mRqubYMdOMqhflnk+NmH+ys15EPH2QRDZLTx/8WcASiKWQlAXbEI5VsBslmYFXdBgxDbdsWZxM9mzZhOzQZPEDFB/4w+2qWyTSxEVOibzKKtg4zQkVTmKeg0eUHXFIEwIedVp8XGb6H3XZkDLhbznT4CIrep0FAQRaBDT2SRzOCtUsylPVtQpCNRd0pUAZ+WlxvHojPqmNEc2Uyck6ypZupMCVBaPvofUQcAZRikWV0WF+2GizKpJ4Fc1nSgUW7pGO7zbNBH0hUc2Mwm2uUGZKz0xuqj4CLL02BCnylCvpUnDv4ODow5HgEL/fShpaffLhyM1fei4H9l85+8IExP6BTaUOArR25fmr57Tg6N3J+3cnXp0cvRUj2TVmOP5eJ2jx98nRMSqQTUuBY3xH/ekjNz5e3U+kf90+Y72Q4baudffRNjq71aq+tEW0nEMxQGHCrYMn1o4+Pjo+a8HKxtpV9wdbIdAxuv6JMIoOdW6P4+2cu98yf309RXWYXpN7bX2Lqnrrrdz2NWvTGxo5tKTYf528fst82o5gis1q8AGNiUMiFD4/Ofln//F//C/+83++t40pmx8+nGENxl5fnqqeK8Sf5XGInFrG+/b7H775zVfrW3sPj7afvXj5//o3f3707vSXf/jXXrh37M61wheuBrs4OrLQnySyMmcXa635e7TluoC2PT96eLK//+LZ3k9ev/jpT35kW+PZ+Q4yHH1/8Ze/+bBzmHdmWxy34/s3706vro9OXLWsXzdW8qZYrLVO5h8I2/b2rp+jbtyj3CnyKcTVrJ95hs1HJ+ennPVRgdWclXXPuRZ8IHc1FP63fLvAMPwETGmdmpisllfx2IRRHVNO7DSb7z6atTLc9fAyEjngm2Vq0EPimnIstjJymYQTv7SmyA0zUcSBjtTLqrVuFjIjyEIASENiJ4w5JmVMKJgj8KlO8CnQSranvnSM8pT+O7FP/JP79CnDuDxUWJ3pxVKyhFWhBWTJK62pEu/67uNhqXf1t6TJEoj5LJUvad7RuyD1tv/7CdpiT1SqTQRvLD8aJLoNEnT4Lcry0fwUf+BoPvcLcfBKY9hMYpCFm23cZtHK2a9yc+nZQnR0N7aC0ih7S9a5xe1sXzMbdX3ZXc6D1gats0kd2FakWK9P+upHdDePGU2GS8TdgBObU5b6nY/GEgTByg5be+iQDTZCvOZ5DEoubq4PQdx2NVXrJHc3W1akdN1W+3bsJcpA1VE6AujSwVMdG2D+TferQZp2eXG3ucOA7ECzC6p0YXNpsZphvLm1TToK0hsJ3xp+zDybW8bta3dPHwIBPcfRWqfUHGOL9i5tJYJzsfmNR+4dJ5yGwcSUe8OIXOqtiSXBbQhq8nZ6zJZOPbq5urcaj626Ous6M+Pj+usGIveIaS5uOoKO91HK885jS/Bc6aVPR43W42EV/cSROt84N4Oltim7Ye0acUiF/CmC9ZTG8E2YtDvLLMroYGQXs0+husbHVWWmxZJGOmGbDT+cEjK/OBgIFQnh14uDTC7qzfVNzEHlnSgwcwv6Y2wwPFoEe9ht+4epufAhIYzBdIejKtMVJ77TharHdgBHRrgNfNC2JHb9zdHZyfrDq6e2SrNONwTCZRL1afd3xpYog7nsvPbWi7EjyX7GqpGqYwbu1/786zevXj15/fwJOtMXrYC5BuTXzs7d8Bm9QCxoI3iG5uHBhCnRkpkpYo4yRIo3QAp5taSpaQ3CohBemO5oh+sMadLMLNJkZiqNq5cFS9O0tNmbldmIvkBGCD0MBAaflL9WcSp6M6xh3AyTxtGSQruzc2PuoFfOmbdHdhaQVEC7+sdKBRNkGE/VCuZQNb2NNTla/A71AeKT+EWV8B/LFr6TU/Fuo1KEyC1AxkSEvTxBmFWd1TK4LYYLTAnV2E6hhEyN8mRhvJjWAUv89DfRM5PAkMxCDIyVX6PK6V9DGkUkNOrvA1JNGEwafSs8VNHyykBksiWEvcvfCdqgVEKw246WnC95yjj6OiXKuXyWykBcWKbs+IKEsKqG39zG9LCVRcpoUhAbIFpuXnRS1clqPt7yiZGxoHmf8F3qQCM/4uWY5hqAtOPhKS6jhKFU+Wt6547HEjgFtzpzc5eWLpVVdY4vp7PxONtBRoe4rWoIGv9mZ9u3kvIQ9xg3lclWRVzemhndI5BieRCxE8LT0rob1akh9zRvaXmb7MnG/EGjKuLKIhbBhnf9dkZt0ePoNiKYixxk9J12qXqaU9UhgOBWZQAxFJM4aTVn9b4Mlmx2vbzMI7iN6aMSCkcUdG4y1AeQYTbRNIpjyKLkfDU2lkc1fqLeIB8CMQ5DQ3K2iNX8Ij1lG+31PWmBUls0p1oQROYyRKusU9NSnJ344HcoqeOTT08uMAKjl6rxzltxLRY8KYz16oyuITaglxYBWP3jE0BzWlOLfOJa9JrBQEWH19JryNAn6kr+BClhrsmDdrLkcRHcBlcdCW2rlg0MNt5dA/7k6Ytrwe3j91y1F5+93hP7Tzs+7uzvaPrV7eXRxaloS+bm49315SWw9uc5gkPfvLm7vruxvse9k+H6dv/50w9HJ0LrzndmqHjCTh/itV9e8tldJLl7ahWK+yLdd+sQeiTtMk6G3IHx1sdb3W64wWwZULVfhUQJRnrr3BKRcYpprzDOt4DgjpElFHfmOXWgc31cp/WNM1gXc3n18WztfGhgS67tz534iU86OXRyjo0PZuEpqr1+/exf/Gf/7GB/l1U8/nC21/W699/+5rdmUd0IpoAI59Xt+dHxxVd/8c3RqXvTbJ2+3917/D/9v/+Ne73+8E/+2i/++s+t9ud013m1I7CF+nxahmF9a9ddOd+9e3tycrP/BFkeHW5u/OHvf/ns4LlA2ftT+4fXLy5sE77bEvvcgLkeqguPbDs8OjrjP9kmgSi2Q5A3e24fGT9RCF17e+o2HEFOsrklJJKAkVsiZsTilaAdbw15xFbzp4zwczA76RwdDBWcnEgkyHcaxedz6knWpdGCMOLmNn/rzumJV4LO99ZMk5yugmJJVERPSTLBsDKZ50QROkc1JwyE4iBA1lsXV40OxNb/zJpPkd4GYYVO6aiyhbQSYk0Zzf2kehWr3LzEuTHpadBiXSowxVZ56pHk1sjKTUnir0ZJdbdZsDSiV4D9DvpkXr6m5Kr4UvWiWSVNkQqtAKRo8xl8ln5EmQWDXoWb3KtciV4JaI1Zycai2BFnDOk0pjJ5M+E8WCoDZUV1E6xNTPeJZLly2odiwtVuf7O/5cY4MSdWr8w+tME6KRHRVxW3cgkkQTE9IlXNJHTeq1VApMsOHfrX7lgzYLPfxpzCEie7urvpIg4uc1rTpiw81yWaZKaGZ+6S40DZAQJLSqVbCgWLx+anjfhF97ccc0V4DKrV/th1MsasMxFhCZGBvbyG/HjEQ8csCPMddASsqFCBgwqEvh1bbGWD5hO4hq5r1pxfGwpxjEUQWiVab/BgIQq3MpmKPiji3N4Hq9OdVQAt5DdSUp9ThviyzZ4hiHyzyMRrwuJ8o1Sq5Bbba61tx9Zc+d3wtWExizS8WGudFTnOb9fzdgQWKW8hFE1GBkwJDjrdfrSBYkSXp04OGs6RQzChrYo4b6vS2tru413dem78nEnIwZiFW5/OxgFrwsyd6zXhZHoNHHTJCZUDloGYIVvynoAYcdn2EFVZgy3OT7KHUfVCjd2TMC3P2yYWI5kytNAoDym/KB2vXwNCSGVcDOUesXSnrlPc2nx3dmVO2JwKY2HixCQNkKzATO7GFaxn2WBO5Zl9sOM120w+19b/9LffugYxUsCr7RlVPKLbWMKDcVEIWi5IaC0Qmohkxy7NT+0EH+bMndZghOceEwIJNdH/jQ2EPxphAO5NHPMdnQteTa8aLWSO915pdUKbhgLAM2kIIYOfahj3o9w4joB+83mXGtWR0hVijrSK+PZaQUSoiumXKTqhBztCp/TRvZoGSgCTlHRfcYk+XsuW8JSn1qZRvanNsvmTF9roFRYDrNognZ0JSOyo105NQzusMMtfiiXv4BA8iE8bw1B1tCTdzFItGEb2mMLu5+CWrAgcx6bXEmk1LCKEo8xSdRnZ/iJEfTRnivYLhIgwBKn1ElKevMGoURcgc2KiQWqRvryqMYPjiiwRnLz3X/s1l0wgJ90R0d+xkvgM0NB+QSVR4HhUspq89TStUgUSBAx+UZDKj289P/PFuTB0NTwgTbfCoObJjBm1atFLRsvIftxHZNBtjkNYW5Fb/2raUbSVlNcGYjSxZ4gkT4iVtNBV8Z4cVWDLpDQejCAl3JqFGeYH5AeUZBBoDMCxgVPfG6hs2cw1ljPEM8EzeJhXJF6puA7FKqk5PpIwA1XlZ7XKA9a8lYZVjdYaAScx3njwNjgJqITwGxb1JcW3T7zgRujqIsUKjeV5yTC0rx7tkGHFmmiQ3NQmPQwPLoX0Mpx6hWujGEsDpyHl9xnBqFFVl86O+zKqq0ZlxcWyRzD8KwIX77zNfAzxVeuB1vXbc5BNRGpJ6k1V5zNolk01yW751F81SIN9nmWM3bM8DKQ5FCjY2jKoDgGLIqx2caAlUENn/WUhEERe1YascbxWETMoifbbJmbFjLrE+Hcs4v94LbqsSzs8PDx4emjCW8SIG4H8ndSz3kEfe48fHx+fXJ53gqeo2JdfvrZ48zdffX9yefn08MCs9ocPx0+eHHDHjxMSCmT1sKM/HbF3e25p7/qj18/2NYo5JjWCTNOuZkV2d7aRwNlBvNLsPUlw9v3G5sHBDtaaluDaiqQlDWutCDIzzyGw2GGH/+CYcLuf9QQ6PNTTybvOsyPq9Iu3jSuop76IF2Om4LHjcTrl8/LjhRlrJGcd6SLS/+xnv/jD3/tyif/x/gnspXP30WDL5MB7va5FQB9MgpycHB+dCK7vOUuxm4xPfvvtD7uvn/3B3/x9dZ+8Oz589dopRBcn54Lrjzb3zhzT497Q+7ULK2KdnMhr2rw/e3/25csX0Hj77v25Wdrz65P3jiNcc3/Axt6W4cDF6bm7fm9u3wuREmFd5tXdOf3UgE17pLc2OTfW62UIWJ+P9lu742nWeaODjTAWueafI4ujUTqWZNcW7Ubsj27OXd/VSY7TUkGeddMgaRDaOmHJVooHOyu2jMa4LBYsrbcCsVtEyE0rssxTJw4EKSEXY6YRo/L6hgxz7g6dE5qalUXO+RsHLp+IdC32NvWfNRhKknxCPfYwqSDwVECz0uBRH4KcGC+q03dKWsp8Upnl1/KdxWVGFPU6q9vbsb1wAvmvFB2QspY0BZYq5rkmTTWTtoAO2AJ38kcwqITF6isjEDTV4pnnFG5ep7VeArA8lDNNZ5nHhM4rWesp+oMOjzOPcAbQKDc1n9MGbZHXM0y16IpwoLSEEjeR31yNNMRHRnEBJzCaoyEwWGmwJrMOWo/DZvLk9BpKY+aM/txR1Y1XWC8s7QZvHAIWo2Ww3scJsWoAVotwx7ib7uh6/OYXChbOqRZMMX0zLDGJdI0MOwcuHXfwABgFpO7vrzS5mVLWuT08xYMrkg+gUZS5TH5lIrysf4+CtNAHMeisSl34Md0I2hSiqeGZ3Ga0CLOby64h+LDhNGGSCk8zbtHf+adGJw7Ol4/162RVM2BGwYYNjg+2aCXEbblZ6+Qdzsuj9KgZf4tkLASyCWH72q5n21rwwHyCEb6z6q0His2AN7BCsOklVNLoHyvMP9rw4+NUpeJ0Lhjh36a1psIy/DnbvMnpw+FABpKNTCjznitPrVShjjyEdWf2Wx/VsHtWsWf2R2gKYyJF4jgCHwZQdSjCpomFzbswX2MoVIypbjirknEG4DA7uAd/DrRqOvi7noXlaRRvaJFCjNjq/oKLTbkusdV2jnYTPTheTNvlXrZTO+xBf6nW27vLiVIlrhxMhinMmfJ+h2twYfCw/v7d+Vdfvfv9n34WQZ0ZhWdqaMhqcU/KM51UtgRb66m1vOaKJnRftUKaD6vRQ1+5dhJHiqJqv8Y3rVNowXPOg09SUt8aMDBpnZZxjSJyiwuSM2Dl8cwNwNYywRzIQSP9nlr99LB8A4uGyLl6qCJ3MjYoCnEyOzjlCYAUo6XkZIKgWNzBe3QZa+sRHN8RIpmYGMHM3A6vdfFpkw/MF1Kwq4rULC8CrtAIUj5GBJQ8yCyEmqrZhIgR5b3SrEEnlKJkzo+OBkJww+sEwydZG8yTCMY96U0yKHaVVmef5WH5nvRqAmd5F8Bh6AibqhNyoGqvHIERbNU1pBpknRVI18arB80HFoO8pJXxDbKiXmnI5IFEQxwN0JlCieuwlNGG+KoxaZRcPs2hLzZIqzSrdiqDpmGjdbmzUwHUqwY0302sk98C0dMglU+HMlBFO5cuCg7jvisP7KgEWlUN/A0VigTMskfiL8mLZokjdBlykujyRzcBIQoSVWzu9lLv9CN81kRMpVBMjEI7JmiY3wuxQCt0wU9lJZfUBK4qpmDEz4WdKRFqsPACD7wd9ieHkJteKlbhOukoZdiZ+exXoesGHQO2gm1viJVYs6TnGg4NkQ5KirNBKzSEH3hirkyH+UpRsx8DZ1AlzeoOkTpR2BZKqa5CDmnXImT1N0mbrGlQ0ht94sAi956wd4VnFFggaAKA0wnVar1XJfOqyVLjZiCmMUCPyJKlKcsi9mru3cCCUOlT5uFkuqrzq9Z5pe6Qnt+D+eSfysKWX0yRh6eBn66i9BkVjDQmnDi7fIZcUcmrJXGJfnMtH3ceiJuwHBbpct/327s7IuIvXn9+8OwVxeA1IqFQ82N7Xj8+XJ1dv3r5nLA7LfT4+JiUGwyw2O+OT1Hz6eFhu+geNowdMPbDyZlF8ALnonMOoXjn/uE5TXI3fz1EJNuzq9W71q883nx+6KAcV2id2a5yaHp+yyQ6R+SxjQQFD29s9du17FwM/Hbr0cXdXQsD7kT9jQg23Bp2dnV5Yq+uEQEPiRYaNjjxe3tfQF2TeQyW4Yr5dCXw3MKDVq1Nt9rYZWFD5y2d4vrDT3/x0+cvX9RiRxqZi3h3zO+xR/qSv//+6Ff/y5/+6t/+6rs3P7jOYGd/9xc///Hh3o6p56/eveeOO2f1mX3LtLALEeoVCNju/l4n3FjFtPvcXoUPl2c3nfh5QKl/9oc/+vznPz75cAZDsxEigmTIEoSL67uzkwsEsKDm4vyjDZSWXtj9yHvDZC6LNVeXV6cfbztvEYtNwgigCrpbbdzZ/wJu0wFbA3wza5QT5ZkNKEaYBLibmQhYYtfKZvrBRGiy0GwKyWhaVMDtszjTSipLxqnPhiOevC1sNnZEPlApZpJJtLGenqK+jcI4SBOs1/Dd0i1AGRXV5iekbgnnaA28mGSVz+sIlnUaA0sjk9uRbTiPHqlfXenIoh39mM+oXorh/ahNdZathD5Mp4YOqn71MguuEctrOftV/sr3T55VSnmWfPMU3FX9U0rB1Kzsq8qCxYZKKV/vtKu0fvpfu/yV/jtbge1TXAoZXJmpiDOD5GkXO6nfWUVPmXqASrEAnXqNQeH65D7QlYKrtrbvCqnqE2aFVh6Yfo3AGGZzBPn/BgJ+jLI4MaZuxKExWMUpMvgc3+aBy5ubmy+eB0NnCQDrfn7uLHjTNjOftrutlokT8dFbbmekwd9jKJwMy2W7uoBO676SUptP4uYjs3CzhsUI1dUBm5e3MCzmoruwZJnRmz5Op+yC4Q4VbaGPm2O7OdjS9hkAL73VWFFmRDdLCDWwiYiWtfCM1xzBaw9Fm1qvrztI/OHOQjukbiiCuHoqklGX59RgB/jUtyZ1QvXWUxE+ZH64t7O5WTVu1L1esukzldhRI7rH2MhBlfQ0BiuYsrhjbEJHEBsGaFTLfa1lnVCOHFbyzNlHNmr7BZSy+b3mCRIIuJmO4HHwcjsFwYRp7g1nCz4JUbsO/GO+6rLFzxvK1afTHxIdKchJEaVGE14SKI1i5xuWu6CgdZjjvLWEaSIEqC0IkIdZ5tBu00SgRmxH4oFPBkgYJMlmdkOHg6bZDKAiXIuRJPCcjs6unPV8fmnVJJvACdGwtg4YoGmb3jIHOnXI0SK09fVkJfGxZerRn/7l99+/P01tEJ1s+Y4243qRpHF1lr5M/hSsjBZfNROkBdOfhyScI8ssv0mv7lGsXhfX0sc+fHpsngjdaDDTjTw5cHL0kb+cUEClpjusQjPopRSp+dCkOYfxnZRaqgdXyVz/TI1sfqh+3gOcfxIJB0KYeByTpLRSfiniI1Ni5/3KWcsvT6fH94sTkPNj/IHxW8s7HKoD0vxaAJr/IgqhWH1q+aP1Hb1sY9c++XChMnSOJ31QYTSxcv1YRiYjUVIGySYxln/ejiOEbwtXogb8UN5vzR+0owNKVHwpPxmmMrVUkbfhG0n8WbAbxGuIT6SbdoOQSAyDFAHTe1bU48L3ATXI5B6Pla7TmmpIXl0/ocnHqvhUX5srzElRTX5dVkkd4q/8p9WAjHAB4lPeODcVj8BJppZYw+3DSz0ohJkb+Qf7T0OLGoYisA3fYAUs3VJpjvjSK5Qa+ORqIQb0JcE2MgQAV2kRxY6sKbNz+hLH+FATGtIoKyNeVqZwSQt1hg0jFupdovtD3TSH2NUZKVdxPy0F0RMMotU5zU8CVE2llRu5hJSy2Q4oJqykdzhaM8Fi/WEY+0fQodfQq1GZrkW9jS4SskKJk6fRHgi4oSwT1qSb6hvVgFZ7hwGSUpvg+4wggMa5UJZIJyUBiVyjY+GJxTPekD9xDNrQYSUpC8WYLItba0h5BjHUrS2xpMqqYmm71N74nWcv6qZbCh+8qF6mv0WuiSGW6e5iByT7JAPBGdEfCUZ8DFwJRrV5LC340TYqVJki4SOq0jwAAjTBAmzdQwRt8K0UHqlvShMJxMa11v9azyPX5eXFs+cvLs7bI7u97xLfh8ePOtjdih3ubyTc2Dx8tnd3c0EOzth1p39sF24xla+3+uzlM8c+WIDPDX17cvrZq+eK1HF1zt3muRXBVpNvbT4pxv8wx/kb0z7s7HEbw/1+Y8vKAT1d0lsbLcwdFmZyibN/Tva+pkL1t7lFDwfbe6+eHzod//righ6jL5okFBOMKmZv3PDx6uDAMZe5UY5LsSpXT9KaHH0NqusdWlWcCKNSdiABWbu5OHNekO2NvGx9pVXDp+/eXHw4drGlTtlJnoyZhVMPW7t//vWxVbV/9hsrgdb+7t/8xd/7Bz///Kc/OTu+fHrwpa2PzvvHBwOPizP7Ac7Pzm5tALboGvFf7RyYsv/Rly/FLk6PLhz36Qq267X144+3H96eCLkfnzrF5YpQHD5/cnL0oa0UH3lFa8/3njoGFC+ogo2btuEe7B9QGASiGdf3VvfE5B37JFqrkM+ihxamoyeE0JykfJzyrs+hpB2BpRumc7npKKdXc6SHSQXOjVeOIZo14lQvd9N4ILHJbixKDXpjck6RStLAZvY7r8xppLyrNHpSFiEfX4F81atRboVV1+OAgwwZp4+k2mcRWuL8OyEnuqpQKmvo/5H5lGH5LaFwVKJekjyLGUnk/UvrS5qiqd/KHvVHKd99lu8lT/ArOInLc7VJUgcMJ7+3S5nVryna2+kDp+JVTTIkuVU9eaeV01JtlOL/THqPkXWpphSqNzPG7EzeUpm91C8FJjJk06yuUMYKlvifTbjHAkvP7QTBN1nQGF+M+Xlrwtmpy9261Wx1HAZ7+NAQkYipbe1yfDK8ICkGBtaa2Q3uFvCtPXcIqsdyMsf+avqM3wSznZTTTyxoQMKxaGEXZrrWo/uqbgwvcVwlThzyzZxAw2teunZw2wGy2k+8wF4C8XhTHFbmEHUOPeEijTiPco14USdGRySXazRZcWEnjLMH4E945HdbloO0BLx12a6hdaaQOwGMRLuLgI9qI48h83Zr4diDB4N1RsdPc1yLYyd4bW7NJh1YQs8mBqgaZFteVJxmGCrOrboEW4fm3FuH6phRWU72S6xN/kcpJw45oQhxbcBwppKG08k69/u1PVot30yMT5Sw4RMSmilVqWpSn5Vz39ammO4GA1aXjvhgfothOhkJj5qiUNauXMv/bJFQfQesdeqnqk0peItmyO7/8ReZgmRpCQZZy6TSaJum5CRku4yiRlxXtdVn5Q5GsMUEyJySTGdExjRNscxopDATkCQkJq3/ERDgwshDDlKk+s1VpQmEFKHrIhQebD27+9Vvv3p6+Ms9AQhoW6bYaU52NxWFRFgogWpE6g9ahDgCBbJhDxKN/9BlE5ErRVFFlbhiQxsrkqmpT2TVi9BJmkNXIQ+M8iwkxKa6bJQMgAdpWcswFVJbmaWM4R1PfTrxmhY5KxVVG+3LRrsavmJ3zxmVoNQSJF1sgFzTGLiCSUKG0xFsKD0EDIcFkcVisOD5cmA13vNmsTFjHMo6GKpI06ITQz/TEY0jjRYhCZVp3WIka2cNjSC+vFmAkHb2RyK0Jaox00KumsXKjRli1pUw/staiZpfenTQxsUdAieK5B/2oDJyRVTAyXqpc6HzNAMwlXlMcmQFkOwF0+Am3CbDcGr8t9BbGl7OPLcyKz9N8neGv7OcS/Ve+oqaeFcH5CdN6RvwpbV5jUQnvqQ73tCPCuQfRwjfUbYlZXkQQx/Z01IQMXeEGr1mTipCJTQpgKyxPQ7JuaDoe8wwz7iUhRa5qphlPg7BtEqOuOCjeA1sf0/KN2SqjMYHdSmeH9Bqfp9cUp/aN20HmdXzg32UwuiDsmA4rNDe+g9shkoKPP46yMlwYXtsTY3JSOxREkZjNfyNu73PXgAzCOv15yaOpQEx0WcR9OhRe6qvZy2KmdNIzfdKFZGNcjcrNA2sOsoWuJrLIkOSf9TNI03LKq4JUA3mNAkEcMI+czfS6SfpQZBZRpLW1cck37ANwWpZYeV54MSFwS0bIXHxTsBUvBw5K2M1amF7vxZeQmGlZkHuXQSUFoYL+uE5DApJeQKWVBQMmFYWke3VtGlhZcihGUGNhoxXfAzsHGigKq+rYtrIC8Q4+cTlXQZ8dXmBFuZW6jc6Ss8BM3NInNt89/aDWwjHSt1NSzwNErjjT58/+eHtER14+dlT+qjJTv3/5uvvzs9Ofvz5KwS4dpR9e+86hJ636fbhtundfzy/vtpzQOHd2tH1rW1h0NJPOJbDshaRQOHG0/MLQQlNuLjW/W9dwE3t+jMDGOtukQM+YwS+/u7IWT7oTKot4dVSjdNknRnBaQGBX2776tz85MgZJo7pgGpyGh2jOXC8CnS3RMc2g69+/e9Oj9/sffFj64uERB3Cd+3yrYszkyTWF18+3JzfXL567Yrfw6Pjy//lV19/++6Ut/H0yfOXT588O3hya/00B+r+kVMRHxk6bN9eHL23v+L64/27oxM++v7h/vrt+unx+Zc/3rGUgTt9enGzuc8t6IbUD+9PbDvWVF71+aWrhZMNLodh2CLAbIzu6vrmsv5+sxl8jphmG0iRVH1u0y1NiX4UdaAy+M6hzyw8rLsR2UJ/fQ8CWqBlGQPvkNunr7TwITmcueOkevbfRicDjTS3cQJyJUTTLamSTSPx3go3c6Okk3HSiT96l7Zs+iRy2XcfDRlQDIhLkDCwzsBe4xgz07gp4wgnrkhLMcYk+rGYFQ91Pv0bjfK+v/1c2Z3Vmyk5xQaFpYzfC5wMS/D9Nxl7PZ/FVnz6MfWv4Jb2O9hT97xIiBYYGcfluQf/KlDzlxyKTOM0Lxw0cME6RJa2fCq+aPdiGLwzegNurAkTn7Y3itMHz4OYiRQjSfqIemPJHfxPMjiCjnl1wM61IR8JwkmqTxuMdsXXOdw89r3dXWNIb/vWbzknv0i23qCoRIzb4ANTrU0ets6LDmbpGiVEQ/MMuhOepeVFnGMh73nVuiNNNx5sbOHkUA5gcWdS4L2jsQrVN/iwFXlv++r60sIb3nN+zqM1+3Qf2xj0sHZxceOsIa2qwzJcb4FTa4tFK1Rq+YTsXpFYTfNgrI8o7IZhu9WHAj8OEoUkG6jTFHbgnbcuvxXnyhj/clt0InVR3ZmWdaVNVgRZKBXiKNycg569Xq+eRcwDvwop12HHxxlHIVRbdbWPdiMsN0XBieuj2b3DDkxmWkAypVsO4GyuIh1qHBdfGwlFOotaM+kNZ4RqolKSZqkqqweHeiOJ6kXflUy2MUBcOl8FDuxGxLcFvD6dYQ44noV5g/waQlQoLyOZVOgfpmMFwc/0S48sJ05PH4RapSV7uY9Ays/Hl0hySRbIi77GYUFPEjK1x7hG+UsH2kqnJLlmVyngVQuh2a0ElAe/xaS0nd0mru9Pzr7+4f0vvvwcxmZDkEuWKasVdf4woQ7kNVRqW8laN+ulYGuoQGBaqCNnfSwpdJkDAwR6MHB2CUdGZERD5yK34z9IiRHxJN3NKsZPxSIN2pEuDxqS8qdfzb8tNkRB7fXf0LAeWX7fZcuI5X3lSFdj01KRo/8Woqq/9gQrN0QRwH0lcmqqLbQFGhNbDAUvY3YCEPCGVRWg9mG8NKQ6ZEl4lVUXBh0+PTw7PaVf3q1MVaCKrkqSrvbBXJNDSXkcDLSaBr0F0wpDWK14FyoBUbVUuMkjLaxWpBrzCJWlyQvQCQTX6LGE8z0EmC5m6JJbpczMadLrQSNBCb6CfXlMwsbAltRnMFqwi9rytAdA1UvDqBjLAgrTMPgUCNdy7VY4NhtcR1lF3K7CFV7SK0KMhhFFmQMAKZCHggMvNsCr2JwwA8OcRCoyxGUa4uZoXQI2+EDWU8rWUFjtIaDJUsIldmJJTZStwU1s8PF2iN+XRL/T2yxVxZBaGnehthSD8tO0p6hAe/jQv/4hiKHBguSqTisksuYxFaRoF181Iwz6sM7WOCUWUUDuEZO0y1KZThKISuTV9wo8VBUjHwu04Yd3YHrRiHyaAw3Cm6JMe3VocSSLWSTMv7gAJuqNkx0dFsgwxMXRTydb61ciRTXm73qOVjGpx5RZ3MzYQHVRKpC9Ldso/6A9RaJSultZpVB7eYwFXmkCTkjUISlbNdPAFDVPw++6Z38ipjriW5iNhMRir7KqwA9bE/ShtnRZB2ZIq27Sp3waBWDc9CBbjJohmRrAgUOypIwH4hs1PKSlQ39gRcg61e705FiLLYaZvpk3ubWzX0+28G6KdBSQiDhX4Pbu+ic/+/H7d0enx6dWkjAjPj98/52B7uHe1u7+UxsHT0/PYPrlFy+/enPk5Mr9HZtuUfyjLbw6SzTXwMODfdXZTcCx0HHm4340ZX+t7zQMyYXd2tZnjz9aVIyqOiTEoiBor8Tg8domGZz7RG1mQOyd3UYZOlukdEvbnD+RfeMFtJDXIhXqLR9JrQuwgd4eX30q2A/CpT/6/OUvf/+Xh8+e0yfx/rfff6t3de7f9qOrtb3Hxz8c6Wv2n76+WXt0/MM3339/tO9Wra0dlyL/B3/nD3/5+0YFz77/4cPm9trtm2+NNea6H3xd+8s//+77H06tzt7Z3xN5/O63P4j97T7devry6Te/ff/UGaXPnyP/b7/9i33+R7Tq4FBXFvCUbHPUoZF8frs9CawyN/yZPZi7e9+9f0teivO1ysmGjI5bGc1vVkdPxms3bLOCYvoYlkFeYVEriEZ3GvU42ZPNyfLxFFPyBDP7jkqoIoNeTGrOfpKUvo2MtVx4idYTDzxKLyqMNexOMsnHW9b4grXMhZIBY8vcphFXcRRzFAEd9wUcYsxMNpggqHCaDiNJzkS0j22y9CosZQdodGce5OoHPGXoQYKHSpd5sPv0gPerlAEVwMnan1XJpfT8qKKKg+XfPPRH5v7vaalmKbrAKH3eTTsqiLrTIYC1wKhGxFxgRIZVfzbYZCm66Dp6ToAJHRJ7AVzi6wF8NtLbTmSEQvqf/2c5mWhR9KIIXO9kvX282CcYLDLfLr3iI9fXrf/GDcNA2HVfrzX/9q3a7V2n2L1ywO8F+8EqPQJpFY55PIWFhifsfSfLNQFYDODHdZJIBIxgYQjtVoG7harVLK7LMvlm3bOVOYXA2QFnyOhL9I9G6+YChMnn5uDGlghqEUpRjA7peeQILwKpATKlupzvrgnUZeiq3J4u+JVNpshMZAuZwHjUbINLyVETLS1nvHAlldrdIiIYTxxm8YAI8YbbtT6uOSDYUhXWYRB3wJHpgvW7K3Mg8FoXNVbt2HCzBCRSh95MgLib1fyP7hsoE2zkIBjt6Os2AGfjmCZwaYnjgDsFn7WkmMlA+LlO8I52IwXCqq4wxOaGIT0nFcUFTlLVzHVC1/SCAUxbMuq4oUKuaCCUovNcTFlvrntPMnqp7x2e55QzfYmKQ7dMDDiBqUViSJAumxsZByMhJyGRaBntp+8JpUwjuimSzyJrQ/AIOy7HTOMzW5RXl9MQYl2oxvykRhJLsxYwDCvwDR1JDwsU7GRV7wzsyG/Ln9QA02T7fuPXv/5+b3Pri8+eLk5RlgXfGoLCIsQGp8pQcUnjuaVfaqyBYWcAkBujKNefJbQIjRTdXmfcVEQX0p1UkghpUC5WAMex8V3bsYHV0aVN9MSYkPpIlw+R9JKKR/SxIVCKLMsswfCi9Emqonnr/TCu9AnZ1ZJBoAd22pi5qhlRKgy3QYlOIUva6F22xkN/F5hj3aNAodwme3FVNgSDT/WHISHWnPE2SYB7czQtQNi+WNRQJSafXD7YDpRFzFbkDgzih1W2uSrG38C5cT5VFzGWf4FXwfgqgRquTWu911oyr0b/lPXTJ3xgBCSBjZCJkwdpSE6EpGgbGfgERkqwFJwU9OjBZ6AtpJqRKiCM6hTmTXZ4os9SB/sSXzV3ap3ChbcHF5lGDmAz1ENNCsCpXh7KrCerX4vWI+epnglJ0BlxTZtXn4ab+bK1Vit/15K4Qvz9AQG2+IVc4+PaawgsCMtnkQbP0Fp65KCNA6sVpcNzoEEP/MDGY3mS2qooS15FBAV4yJZsURn9vY+GD6tG5iJ57mkZQ7JE8CJsOOBEXU4oKuvtRxLYjCuBqBuqxrInH5GTYdfw1EwJaJHI8I3CSwY5ARtMQy3sokPmBhzC5D9GQ7r6g7hA71c5/fMQqhFj3o2pq+h88DhMFxuKEgOE+Vbpqr2VDgSEPCidBRlLvKDIkURY0JeP5qtm0JHg74wfGjOsdBUw/SUAcAt0kKPqKExCUiVmnvrOKhO8ANXCMPZMZDI6/mTxG72kawvPgsK7jrkeE9ax0loWkSNm0qM9ZZxhleZIQAFBLb3y/pOnm4+cJSWhSR6l8O/29lIsULZOAuGJazDy3N2xrScOvP54+/Tpwf7+3vNnzyKUlbs3Vy+fPz14sn90cizkvb1dZFH4jdPLE3V+pficZfi7zw7evD/mB3vL+KKBaKW1Jk6bNvnQuUBuIcg7cVI45wCCRfhmAqC5XV0+IgqWZ7PwcFOg0X83wpeWJUCQoAq82+p2UT+DyCOtCItw+nLxp0whAvKRECcThs7wMF+0tn79n/xn/9CiArtgz47dXmDOwGro23ff/2DK5Noance7P/rFH3779htxls9ePNs+WP8bf/f1y4MXf/THf03vfnZ2sbf//OPHU1eSCYyf2vd3e/nu/dtv3p+eduny9ssDJ2NsrL3ivjvi/PDo/cX3749+/OWXxPrk/ZsnB9Db/eb79zwMsRkdEFydwKpXFFyyqufgyd7J8cnWbj7cu6Njk5ndeICN9jSfnWiXYOrER506imxdcCacmRWbYw1FOg2Nan4TYllTCmgZwM3Hm5ZMuHF5bgyVniJ0ugV/cfP68toKqdaWIFkTMImHb+bEyjgomnNwUiTeMcvKZWfEY1sGTJwa04KTKgjzC0tkGnTGDlQVA+bTV1fiOz4uVvmPFCf5oKQnoenTI1CDM4hpxqQGv7f9WjRlCk2yAgHofUj08XN5VXb/VFPqlJW7LKs/Pfaj0pWd/6s33P7qZzo/aXCTJ00ud59VvrBYcEvH+1F9gQBqgi8jf9M6BFRdQ6Ske8BwL83RTH7SO0RIURPZtpkZtLcyE/0vCp+bOstjGMrLzPkrZB7Q9m+IpGbJZ5LA+e7gWhQPTFvIzHABKX/xAUzeWNt20o+rsFqrbXMwo61/fLBdALONGowEtJkCumGaEuEjldfQ6xtLNZwmtGm014h9o2OFbq4dK0y72VhnkrZE7eziYiO3vD1IGmjDkVota3Ngvj0KfGFxKNQU37Uf3W9y4AAgzSBhnGY6LsavqIU51iIyWOjAnhi5mKuLsg937glEsaVPtzSG40vblbWex9Qi5m8hxrrRxRWmMQbdRa91DYECRZodIQq3u6vi5UTYfIi9DcngjFuRS6B9Zzr4PHKaZQpFzUVhCbY9MOhhfU7V0CDpLByOT18txQQ1BDeEKzjktFR2I6UZacR7bc8tmTm6RlZ1DyLH5jC9RJlGeWD6UZ+bZWskhj46cQezIpxPSpBUFUlJhdNQSSTZ0KpOUDvRWRfOVoDfZ4TZdMusGelUkjr4urxGFIv9BNKnzHW4oaYuox3fWtRwZe4mW9aXa5iyEFaflo4M56qmF5niDjSHjCsei9kl3bNmydXUdzd/8fXXh08c/ezYMTXBfSLcHJuUphHzEKElUt5zN5JEDWqFAsqkCHGkpbaIVRdrkarrbD68ec89W/QYVEV0bc0zjKmkoJ24WmDF6JquNUQBt4amvnXfg0wjn0WTQy+3RImygFm+dCm/pZ5ZCtLOSz/kixH9k9zf6GhE0qdEvMqvGLauKk2oFvYl4EqorWYhqdJko9VlTb1CI/TgPDYknMY3k02ToCSBNoX8wMltGHTRnjDABiHwXc5IM22fKjxm6MIxSzU4D+6KQ7K3VZvxRtGIHwmTW5SHakyRTa8vySiRQiuQhZyHAQBydQ5NFqBVPdYymyipenOT1JKdIq9LvvnT21gx4urvAEeQMgY061GHIzKBDSs+jlgznGSXaMkBhyhroGZ+cBx9hYXP2VkKvIwaB/P6Kh9GYEQhlxFYLIlVA9/b2gyPabrXtc8PjRyBwumhQVILM8WHKEO1BtTd4y2/9MG/MZmWQiQ1Hr6mmbAhDXNqxPQTSQNIMWUobjauXmHoBwdwl6iAgpCneUUGvJ1pUw1XRw1BgXqtJG/aMPKiTAY5g4IaGphPv9S1Cuen1dEeSRMXLAltMKRFIHZxjveKH+3fauf+gIJBxhX9s5rcNs+gDBf9kVzpEeJatui/P+NMe5WFqhGFMdgRz7gwOX1lCn1jS/8KJqVqHtQAOZmtvSAAU1FopAZTJE0OdkVAiNcZl+BLTFdndZYCAMqjlIaGR2514v8JTrHMQTD/2/uQyziV6BNlKzV4TgaPNWrmENDNRwbZ5PHkYWlFL1KP4JV/wiSgJBvTRmUxXQGSEzLedfRHO8lcsivqzyfjBAsvZaktHh1ZNk6eDbStRxfyFzJHn8vzd/bw7bxsloA2XV5caOHzFw7+7jwefsZPf/ylDv43X79j2BsJ3tx/8eoZd/jMut6TM9QfCjhCx6qfx6cXF0L+7u+yakjAWtTNMUA7O7uWANVMMsDf0CpmTThECx2hL8DDuNVfPnIqpV16uy4fcG7m9bXz8tcezP5n7Zv/NfXVzUe5swizgEFuA1SU4XBwgsSndg625fnF55//rV/+EX4dH3/9cHth+7Hg6Ls3J2vrB661dP/Zz378s5evnz/7xdOLk8vXh8/3t24Pv/gMZxDWORvWMN3dnZ8fu2jonlvw4ejo4gpGGzf32y9dhfBq/2DPYomd2Sq9+e7dBxz48mc/s0sYAtP1bf7bX/05rNgBeww/fjy2YsloxPVGBy5jZoju7bTe/+EN4u88fbJ/fHbOnXBXGgEZHXPhy7VjmogkXdYu0sr5I011iOjYjt6lmy/Ck2I+ethFzTtLYOvGOHbkgmykkk1bcmHc2js3H2WN0jt003Ebnhn1k6FsQzKX8lOupM5i0HnOKSi+y+zMfiQqmctiUVWdX5lFH/UQsSSME3r8aXCbMUkrR2c8ewFy3FPbp8+kK6pu9S+v4i91T7gnp7fLC3/HHMmddk2BAEn0CoCxDAus0oPXrwET1EpJBld1U1vvV6l+L4nTAs9/NXPQKjH1Dqjkv1+jqwMGJHm0sb8hyqRYwsHEBgsp2CuCwXR4xyUW/1a8cQHr3OKWu2XtP811no2oIe/KbdV8fgzBfmDJT4P4Nrdmi4CaKGZdlJUugph2A3ZSTcvwLB0qVnS/btuJI2ivk1j2fHN9y9m7LZW5dolgmXWUbGY02TDXYKGbgDYPzepvR10RXdzPg3FajKBywsIuNet4S2ZvN+uTJSBGq3A+Wi9oHzshbXDoPq9Z1Nfidd5zx1WhP3IsYtAMM/kRmL8QKTfgeGg7OyYKKyC1HboaDp9NFPLi8aOLW7ub3GvW8utbVxY/FJtIL4h0Rzs4u3KL5iEcS3LvYGI9L2vJjKd3qQWJdB5oW2PrwdMXDEIjTCI9MVZH0NqBZk4MxJ2gcJtX+fGCEXE+suWOuoaiEsMOUb32HzpaS+TikWiFSh7MLW7YZ2BjUr6y5ZgtFopuuXqozd5CNWmgv6N7457mWoX6bO/prQnPOqykBdqoptRoXGMDmOk8ik6aWGhqsRVaPtN36fVJWG3XFUI4/tq3xrnPN80/Qbdpu7R8hBpV01e+nUpHl9RtE1pW12jFuaZuYdnd2W/EqX9XU51maoiSg2U15Z+gNJOyceeS4QiyvvHu7Oa3P3z45c++sDsFB8dlZA4gnwXTnPpbnKhXRYNCdWkSAi7u5ihf86ZkLSrdX1xcWJ+qvork1FTKswQkQjdGSQgmEzkuHMtMW+u1W46nwZkvP0dK00ytH/oo0IeRiBpNEXS6oz6oHAlRY5IxBdmQMNfyusLx12eVMqzgj9SKJJ9olAUayzBeKwywDFgnQaO87rUMGYk4q1445MmEcNLiF9Wv9hGAYWikltNop6kkRSRkjfPVVOZN5fu/xNWnF/Jl8ahCFkrVhg+JGQYAWEPkcshbaJQxevqMUzQWIGGsOs2GZNPKfqJm2oQ+UGUL6hCQF60m5wosbEgLoOqu+nnADOk6DKRWNlL5F/thEQ3VvuQPo4D3n5k7r7Q2PfSA3PCIEPNe0yRqSo2QBr/qViDSyKJRfvmgs3ISPKtyus/JGRpKVChxYIoGQZnV6H/VDWYeQrrvaXNGbfBVRwo0fPXH21q3tLnvAZsOQK16Vi0aA4R2EmE9tYRbcr8oWy2NB3GlfnppiKFCQ73FZfceRJCjCcjKytaepIkEJIW1qpkjk7rl6D/Mk99PFVHLcEWczlRmVh7pDhjKkPSvtvQnMR0yeZBn+K148T9ZVLc0DYpJBiqxu8rR7oV6AyhkBmBNGdgEXVk0n2rkDTdv9X/ED1blnw5Ye4Gc4ium1pSCN+ohK33Gbi6j6kEgoV90OCDoFoTEJJwV0+4Fj8AO4xCi932GUv2t/TIuXIbdp5e1WGt/RyWWKZsIKYQKqT70XFF+FNOvWyWTdUjTPZYxfRv6L3Rbyiw1w6IKVO6pthfzeORCnEP0BmB7Z3dCOFhWdwsm0y8vWdKwuxtz003iv3n7Rj8qhj3YWkm8c/LmzcsXT4RLnBlysLf9+7/8AwtKtk6333644tyLyT15/uzUTfHOnHGg7fXlweaGmN3hzr7lRO/PT7TNGoUCWzE4kbOi3/4/8PEutZoNdrrDJFknreOfkYAo+mxmrNkXFuwKYYkaOhqFqRZvNN1NXoSW+DozQAV+GfCYE55TEHVCMVd/yX//k7/x1/7v/4//i/MVv/r1X5x/eCft8vKc/tw/7Dz//MWzzZ2zs6Of/Wzvxz99dr/9fIKGa7sUyw4GsxKXFwmai7wQ58mz7euHm9NTCvF4c+/V6yc//Wt//frk2KGK7757e3r+8cnLl3dXt7/59dc//+nvff7qc8OTr377W/ukv31rlKEtFjbcnr0/Oti15dJowQ1Nxj/u5tqwOVsbdwuHuarJtoptVyonovXaWpyrJ16gh+DaX91cTqS2DYJ3Tj5J8Zvr39oSc20xdQ6EArDcemzCgp3AaLJFfhY6t1ZWwJcTFxVYAJWQL2wpBkyOWnt85yjxDm+9dquD97mVOUOYnixnDqlS36XPLBZr4VVuEwkM+UXeR817rFNMZxVmCmhy1S+mJsMFJ+BiuWbPf14n4KNSSTiZ9yIbVr5FfSow/5WQlFVTCNaaeZ60+SU9MAr2LcdkLeF35SZHP0e/FppUYMnhrY9fq95ggJSwSpv8U7R8KgmuT4h5hOj0mr5rLLJ6GEHlhnlPTSJOPUvLUcTsctHu7ndcsGiRlWk3+lsPKhzbxjB8pPAtxSEZaJtRThH4BWwH0UFg52qayZFzpoJWiNA0zp4TaUQOnAhgaY0l2lYCUhhLWMwOsR7C53by4KNOHDRxU+0QMsBEPghPtlUxBVZKH9ulgV3CLTP/AQum8yfB7iYn7eLflqVdkg2SjSayQVgtdZM5G2bhcqRuLk1ztdZo21yD4Nud6/xuBAKMW6lGIRx7GhgsKm9awJO1THPLIYOQdlgCggKdgtBFgVYYIpScgiOeHV+GeGtRbj4Et5HWEtWOUbXx7qbzfQVEOKVxrAuJ23p7b1q18JAV8GZKbEACX4eML3CSzRJKg3rrfXiQBd10KI8szGvvQRlaqYKafeKX/q5hnIk78KD+SEnOKePfEcimRJxxJPhooYtNFVuNEwgGgzRKUwxOmESTRzlSqlKKzeXkC9G2dKEAfMuKNIzi40m0C+cU1/v++CcV5HyeEdHBoRRN0mXpBidDX3FYtuJiscPk6qZjoPeNSxzjpAhpTujrtsJHKw1oW5DGDZEYLWeUldH2c/2r796+fOo0hEOVsE9akaCnnAELuxStUg0op39EqcwImo0TXyeSEo2uDYlnxdBiZ1p2aGDHr0XwxoSzvUSXEQto1zgErLwWRr2pt1hGyy5qKciDjB8J6ehC/hv0qpFhniVDC0pRjLgY0mnp6m1dHvRBqoiudx70dmEMJqkYssSQgc+bruVhkms0D6rOq0aE4UBMiGH19dLibNSGxCdcF6R9Z6YqUzbsCpcsZ00oKYMTUzzI5MvTUDXIwVtK1ojVMBUk1EM6ULVKjmlayPvQuwz77z5QRORQzKBNJZk7lU0bp+Jx1WpbnA7VBQ0JVWEEMq54Wf0c7D+BbyiL1EuZgb9mOKt95QWRNDMxgRsQur4kfgIkkEC1ZWxPgXEx6KZOHIzI0pkqqv9ovBhe/puGpoHaOXq7oOPbz5g9+LEskCb0cWv0xE9YAq1tC4e4YCBP87wcGld58rpQPEFk12bF50hSVlRWTKhRUB26L8pRdB+J8TlaF/hRnORwpKChnlg4c6PqMHI1S1+3gQe96aNl6KqiYUBVLdIWM9SXmZ7+fumlWlyhhsa1smaMK11YsYEJnBICtFV7KhQdoDZ1TEFdV5Mw2g3CWMAICAJfJ89jmuonM6cHq5bRzMjFhCVGdLgm1nDO0FCmemuKCr3L80t5xo5ARg+qReqNTRYmTngmv1P4GsQx3CpShbLyDJ7ZkOQxkAt90smg51olebItlEG3rHB1L4OTUA6akv7zaggwyM9YqyYAOkqOa83cRA2gAQEz2cHAGlWeBFVunyyJBKj9ToTkiXEpSgKy4F+9HzszpgGbhrnpyZgu9HOz3a9564AwAwzSQsLh1K6Rx5tvvvveLPmrz55RyYvzC1Fg+0QPnz0VY7PMZf/pzo9/8fs/fPeG0327dq5Ca0ue7O9qc7H4zZ1v354+3dp5dbh9en1zZlMqERTFtw13m3lyP9eWnXaC5gJgmhPWBe2cRl/gmU/JneCUEglOgnUC6AAEm6Undp0XYK4x4pBnl0z9u6B0a0s8zwqERjI1LsVHIjTKO7Kg1sbnrqx6ePpk71/8s//o1csXv/3Vv/t4c/7k+f7R+3fvTi+evHhx+OXBk9dPf/Tq84P9xzf359cfdz8eg3C3c+AWrUsTKMJzF2fHYnsdcL61+f03PwiOknWDjC9//BlSvP3tOxsDXz7bP/z93+vkxIePb37z3d/663/8k9//iatYv/3Nr99//+bs4dHR6UkByfX1g4MDksML+fzLL51yiuaYQgcwwL0AB3tbHLqz95co1G2jpLZoh6079dUJ3KMi9EMfwaINgw3LfL11zBJPbnfDFIGRLQqLU26fX1yblZjob0cwoXgEfbhD8NEkGpf7ZGDFB4HFyCTh7E6xOpXiOOQmDUbwdliGAunqpliqTeAT9TFcCWYamjRit1LgSEv/W22QLo+RyfqPlS7nojjKEvkEPFOgvBoS/lG/wPZJHVZ/5lW/popPGUoN2dLnAaRJm3KfEpe/U3LK18AF7lJK4hisMQuBG4CpVy3yR2v8V0IFy5ZZmIpr1khgryTWgKItlaPUIZPpaA5kUVXmzDOy5HP00GXYvFHOqX31Nvni+p6x9M1lNr0VDrxzMDgSXEMLSAoAmrgewTMSbnw4Dcg2qa094uoylbb+6NrtbxEXR1p0/uTgwASho/FjWaavTsEmnEbUHX4/7sL0FNLVIsGqCQvP+HnG3efnFzYFmayzu0BgXp8JbVuK9Zvop1UdI2amka+AEjM50D7iZrzTXx62DIyzLglMKc6sZwEezC1sbWurA/kJ37Wl9F0k1jE/fHHSgeDMl/VIuzutFeTpo8z+1o4BjPO1mk3sOjyhdoMN4QLL7lHbjcVOnmHvHnZ3XWH20WoU3aS9DqbUWlPEM7SuSeGCWg9O7N24ZZDJJF75TOeNO0lyC5z407Y7GR7glZGM2lgubu7EMjrgiGetajJ/LTymqs0NMMm/gZgrRzb483OnGLaYHsTisX7LiCh5M8YQBrbNhkAoJfrBQNLHT2JaPwOCWZQ2Z1u5YEuxXpVOO/D0yhDRbexmddLZ0dYOF+6YA13zCPO4c7naSe9I7PSPje0XCVm0ePq4OiPZ6kfqInNYW3Xm5FMURi1vW+u/aZmnBw1hMVgfoCYoXxwNuXWBkXjsgFLsat1WgNevr+5/+9Wbw7+2a8iZmBFv8mYAmTI1E0JoNAwaGZtkCRxdTp4HHGClBrWpMQe33pOr2u4nuStSnEgfxzTJ4eikdARrF3rmTox+1jZOw/TCKW7P+QO1m3Z0Ju/8nC64txDKIGTfvI1Ko+xKREU/xsLWRNjKM0D7O3TAGnk4MI09ZJYY9XMa9SHVGkApfQFV83PBx0ko6lNLRbvxKBxmMIMOGFeFHd7Q6X/AxT20Se/rHOE8+h5xJlHVUZf8LBhKn4JlA9ZP6TUg4xVr8t4bKRX41qYQ8GcqVVNwgxiv48vUjozDo6EJPHxiWESudX2VmjRh29TjWeJY2ThYEaCqOT+5P6qYrP8+X1AEBqY8nZQ7H7HzsqSFkJJQrjaAhygUKVxyRqKaUnL5DV35omafcMkDaRpLWsYacAZWqbgbDxoQmxaM0hEl+FiqSDJUXYW9WTvQdL6Y504W3zItBM2HjyIRFUjPkVqNtcr/k6snyM9EvKd4+2kuKX80p3AaHg38B4DCVd98e4Ke0I+44CgMcZHP7RkXyxYCUI6w/V/rF9rTQOCpVhzt1TAvBGt6EQVZY/c4cHAYPIPVSHpEeehcsooUHFziETuxNHtcBZgYz0SznPuoG3zDNgmgeQ63JEBg1x7NLWTnN6LowK+J8TEali0wn0Y782o4hiyje9PSFX3gqlaNC3mV1PKpaA7ACuFmO2vRwpqCKPMBFjlQAm4KTNnIWMOrDaWYkCZhzJNgaPGjyY8X4YyESRqbPsLmHThjlIYVFcghSQm1upEYKkNtIKu0RZACZI6u7pCD7JEbbnS4Rk66battLbCdQhNys6C3VVmP9eKkekPf0r5B3cOt83iuXjx/urb51PZcB/wR607GfPxo98n++3cf3Bb85Y++EAJzjr5o1Nffvicir149szL+h3cfBIXNWnIIcOrNcSd3OrSfM2HLsOZzQ5mr7r1lt9yR1XjSyXq3+3t7GuVjs7HxgiUuCLa11vwDepriJ1Ci/qKbjV50/pn1jwc7u1rkaEJOgSJW9GKLvgmNCJpEJBtpsQru8cX58fOD/f/+v/uv/sU//0dm6LMKm07guXRq55Mnn796/RmMfvLzL903fHkv7r779s3RNifM5sRHLhlw8qkI5ccP78+/f/fu4dHH06PLk7cn9uV++VOLnvb/9H/9dceFP9r463/8MzpwdXG349o1Y7MrcyTXN1eX333//sqc6e7T6+PzvYNDrbAO9NnzJ9w4eLRh8uH6+cv9jZ29N+9OPhyf7D05PD12JNH1qx//6Pj9Effg7sOZY8r5EDmISbJOXTT33sVoTOXp6Slz1Shnt50YOO+CJ+7+wY6IY/NXh4fbBlEZHw3nA27aDBrBQaBdKRNFSELXOvYwdVv1i5qNXcllB4800E8d0n0iW78ycpwottig6OXoDgxHQfCHIKaN9crKMQ5TtEemv8yAkPT0zMfDaBOp7i8nMruQFZLeP9jKOXl7X5FJly2UfCkaev2p0O8qWnoUBrAeNN3r7XyXz/+BLbEfS+lVNUGREBpTxeBWgWoq86o8sFNfxaboqpb5tZB5SIHA019GcdZVmQDXaSjfbE1/STvXAM1aMNM4at1ANCGTa8MlAEL7RmpD2/WNq/Mri1toiT6IobODJmoDMktrqD6YWk3a2gQ8A0V3XjOYTQfgIaWy3NxMo4F644lHrrbWQQldOOGdoh3s7b5//2F3e9ex99TWyhcDe/AwT+Tb6ERgW3TFsh8cAo7UaSMXLfgOCSVcrVm69a1N9grA3AJ9rrahjUOM4Jf5dIJnO0cn5rVmGQ8J/eiQT14mG9lOXwJWH32f273rdOEdGMq0zZuuV/14eXetKWLk2xub7S/CAFKKFnYzQEtUY93Bnfy0Fq7oMjSBN24PgPZzPMOVIcUdK4eTNNLcHqf1xy3X2XVtmJU/lj3lAwgbxTAr+7RLjy+27G1W1vGpjiaNjY7JqlVG2u7eEM8ggmYeKCyLRutQnlNS52UFkT3Cmll3xomfnjKBQ+D+OesM412lUtBfI3JD05okzp4KMwMEiYxieWXXuyok7BKvepHRWcpOfsyHEMJ8ZMTl004/t3iufieq+nL9qJnn3Bu/VZLPk9C2ZqneKsVsI7U5CQGFxpUqhpssDIIYP99bzeMVcBkgprHmseusxW5GZxCK0WmWO8+6Zm7oMt4fX7x+ul9AL9uBVCTcBvjVKnxIjPsUfeo3x7+aTU04nTGZHtVMVGsNIu+nBTZwlrDo5dKupgvqLEqTlXaERG4JCgzZJrck1EKq3J4hLoJSnIR1SJGcjz9dC1KlYAanLtiveS4wP6+i5zRNjTp6rPV/NlJDY6vffizKEOuXuCdRadXImBOtnIfqyvnME8iEjqTVhrAfSyVDvVym2Nta72VDuBkPRDoQAjJilERMWyKJ1PzfHhvZLThDRzJ5QTcU49hkzOtzJf97o4qZylXjiFMg0KIs/gtPZaeCSQeqNodEuMfWxKbWZfjz4sIPX6fn0KGvsJtapQ/kCs5HQtQBqukjueEKfbjKON5tzPGBDPjVAviohzIRMVTkGZym4QtJF9pBi7BLSXQa70bWESPqsMJs2ZMHCI2tFhgPtMgB6nhsEhU3LNE0lQ7OVRtiU7MqovYkDb7VMpxrEFKBchaXAJMQLChJDL38eKOLdEDDp9K0pZ8jiMQpRxmARQHgwCVFi0YUdfOgyQ/7oUVdtMcMBakYVfFNsBCYJsAlVYyivZVH+ZESnFs1obSEZtnSsADJMmrj0mzC1+BhGl9SRkNzV2MGKWmgtGFQ1c0HDiHdfGun/tbSuE2yZVRkBY8V+B2hcGEFOWMRg+AMW8Vr5ciAdKgaOGhgf8fWBNwn6SK4OID1483LPG/mZW+jQwOe+D5EVZJdjy8Lu4myziPI2ZrR+chbW+A5I4pY7Jmc1NCMRdB64Fam8B0LDVkxKelNqaewbnJlEbCpbe461t2tfRZaINEA4GPnYhWn8T5FmLGFVbsQCFsHaj9aO/lwos0Hz59cnp5u7jgEf//06EyU6+Vnr4u7b218/uWP9p8+cSSOvluU8dd/+mcf3r/dc4bz9sPZd2c2EGqasMXVleyOnGQauMId9XNimXuLXUXdusYF6cZhtp74WqhRf8mB4OR8ODqlUyZkLsWKkNXmuwQM3iSKUWg1ZMJgSa17xgy2nfXR2M9BB91trH+KQy06YH2zyqhEBcx2/PhnP/ov/8V/9K//63+G3bdXVweHT27uth5OHr786dNnr76MQToZMwy3G0+ev+B8maEQzTk7Ov763Vv7IJ6/eM53eeuQfhzb2L65uHjx6rOT4zd/+r9++/1Xlgc8fPHTz5Hu6uHesAG0DDYFz1/Gtsf2C7999+6bb9/afLi1t/XzH72+u312eXH99tuvf/qznz57tvfVV98+3tpdvzf+qgoNcerQ5fHDsQsQroQsL+0Jvjy/JFTGaVTbcaVCgXs7Dh7x0ersWKeDjgK6zKuuwzMHR0yuvdrtMZCLjHshtOhoFo5MJkXMUn+LLEo7bMVyCTR+eGSFt4BimoE0mlQ9SaDYnh68jsfkQpNv6Yhams/pvbwp0rgpcS0VkD6aNe+zYytlGkudTi0bwRnqsaLy0/10XcB4BvAomhhE2fQlJfPHT//3p4R51ZC4n9QijMs/WWUGan4PnKWcUsHovz5+9M///kpEiMoshmKVw0+6WReXkM3DQF2AV7RPta7+A+h3zaek41Q1WlFe31Z3WN8JZDZnjLy3not9sgC5Ee5+ticHg25cLD3WhwlsokxBxBQI39/bnXu1iUYOKxc/BOctQcBYTOVnW0nigE61iKPjjAvEQo7d2Fjb2988PWvgKlJNPEwWxMj7+93O2n90enzB+8+2cDZ5Y822wZl0dXdYC9QMEi3G4WcbeyQe65a0mSgAjFxBMovnxJ6LS2NebjEf0OADDqb1DHQI1RaamPIzAtEROOTnqpFA8oBKLfcXMM8PdR4RpT44yGnWzblkEBKsjtuLTQ+SF2bBeKlgveFHy9uaH4Zg++TrFGZxPNm4ezDDQMhNGuAXa8miM/iYqYWYPP5Qi4XmNr3WYZoDJJgxbvomFtazZP2AVY6WRRmdqVAI3BMs+nb3tsvIu0TMtMwYK+q3fu+gXgP1qiMxKz/X0As9WrFthlPHzpay/xiHBiQt73NSks3xFHGWho58J66Ro2V77YaK14xh/gly6XwYleyDjpJUL348D3gViqLZeQIJNTFWH4LL6ntkvPh04v07sU6ycu+omswxIidEB2I+omzmGVju8usCJkhat5SQhztl1wE5JqmEpcZlWt4RVXeP/uLbNw54tVmN7+c1cNNPrnyz7MjUDjgg8AZN+B9Q6pB8hgE68T2gX1AwVLUu3mtE2pzeYY9/CRRIvYjKK2c0vSZ4Kwr44V/VFfuADp5ELbhlzhY1D8/FORngVeWVJmdKp5R8iz+DbiD6eEjfSe/iayMFaFFtBVn+YPazZs7b6qk5JdaISOz1EreNViEPYWVlYzQ8Y0EWPnb2Sh7/J1mANBadJTDKDjC5FgiaUAbJmZwel951Socm6EONWZ2BqkoqM81U7zBXqZoZAQY3KCHsWHYJNVMBeYZC5dBtanSdiLblR8VHP7MD5VqKDEVXIFc1DqC8ph6qrCVA8cC/36FSnapLEhqIRJFUZv4Lf+SMLs09DR0BMLsSWvAIOKc+NoT0tAewVZFqnemYQl+5170fPtV+IjtjoAY33ded08zkLVAQhALB3EOE66PlNXuqrN8aQRoJKzgwDNGWyJqAKTCNjfxRgDdZ6yJYDZl8sXkpkOQ3BNRsNWo9LVroqzRy1aShoOyKawWaeBrG8FnHHDCG04v7XnKpBRrTY/nrV8hVuz9oK6Wcqg121fW6JlTFIJn9qpaxsKG1GicsKDH6CgMrT1ZJs8oy6I2s+02XIhpsxzosaIwMFAJZqB18Jee/RbB6TihG1kNrVL1mkXy+kcGDjKpOdEN1qK26gTgyPy2SR1nwa6HGaek0Ovh+fRID2bI1iN9BBMbcKXmNGUostNOqUYHo6DFiogygdQc9Q2YoOUi20iMhF+1n7SEhaCuMDiKLD8nWB9Cizua81o/aIWgdP4twe3bOhDumGzj9xOWEiIEFfm//4PD1s5Pjs+u7+89/8uNHW490tODtHRzYtsvb/nhxfX524fpHvin/4fj0/PTselaZ31yJZmd05rzwjqU1zbBpVtiKnxvHk8O1ZcSuEb3ilw9qJn+5rswLOWwDq15KlI6uiYppl9uC9JS61/OLc50o5wY+muveXF2PxUFN7swIX1uHL2lysa45M0Rvc7iz/a//d//yX/4X/wni0T4dcTsgP244zGd/74ldLJwrrHv3w7unLz+/d1Pq6bHV1pdu9ro4t3N6/8lzvH//7u3Z0Zmw2tsf3t65I/n89NGOmf37b999+PmPXr18tvPk8InNiedXV40cP378cHrjJuM0au3etIZrFR7v2XCwtr32IGxvERT/4G/97T/+6jdfHRzsv3792VvXDG9smC15++b08uqEM+I4w0jtxEDCz5lv1Ra/3HJrc4Z8h+w/2TFDYhEU6RCBI5TMfSI2+qcnJCpYJtuMV0kQaeT050xMn9BJ5ERGGNI4Mi6MAOGMA1QyhsVsFEl3CSPGJbC+h9AdiM5m84wUm1yjHaPmY1GhgnTeEum0Yj5+KP47BU+JAR/FH7n3skGFdNknY9VVKpsx+jRwRi0k1tSpvWyTKG1JD8J80ps0sv9K9P8CPnsyufu9Kuxvdkbbx+yXe+qIDKuHv1pqIJaQVZqC80PO5ecCGQtGl0v0PLAzKZoMuaIbFHe+LAag6K0Xb6vr6HvBJnHH5p+NslN2vmGjW4+Qnqqtp+/MpRZmqNGwkQJ4jRncb96MiDun05wAP5kSnZyfM2lk6vKSusFk3ZHKBqXK2NXa+vhElLxjz6097ZZMKKmHzMgzohlWbhXX0Cm0HPf2o8NOCv/VOrTG8GtrBp4GGFSb8+kIoNHPTtAXTVcpBQ95bSc/xY9hVFBJyrSbg9kd3sY2/H7u3oz/185urw4ebZuaoC+IwGNG2oyGy+PtlOi+p2y2I01pOTQ7c9N6lRFmXi+1MQ0y/W2WWFZzknnDHbLUbWL1IOCYNXUsEsI1Fy16YT/0jeU9ZD4Vc7D4DjPOLao7M6bJrll0ZL3TaGIjgOYtWaesNF5579g05pAcCvZnyBNF9MSgVnAlGcMvOE9HUNzKIEobZdQ9SqQFOSOFb5NaVgzOsRjbCuUwG5kI3Q3um+QgKLBNzMbngck4IQUfMVe/hL0QUG+dKlYkwslwap5kJfrpQqFSFErUfMAng16NJKbaNBgg0QWURPxRaZXPYoFykRe9Ddw6cwfO9X3cCr6W3/ldVmXn/52cnr89Otn67IVxKqO3uD5ZpQl0EjGGjyg08kSlZVnBGAX4Qr+2oCxd+mR5UAxxFgghUkS8VhUlnUZFGWTPRolNeOtJz69Qg8AkPWo3KCcV3hSTSvxrdRxRDjz/ZdbULOMYn6Fb+rv0/kuGRQFg4EV4juXsR6/99LiQe0hetlV6wKdzLtd8mOWB6TvuK1uZhXFZFUWzOatobKCWt761MPGbT5SPBxOXqVRtANgf7z2BvDCLnE/G3mr4kgdxliKyVem0IGQ+IVTKmFEvw4eVA3uhkjzqmheAyqYKGkTRAjug5JxcuV9hHpvyxQdsiHpSrzzjcdWoaemyCXgaXw4CxIlQ/cIc6LvB9EbAw7T59unJWVqdkLWkrJ7I/0ippwS6iwmZTlLNLif0chV7Hur4hg1Zam3ZOIgsLPRyRifivmAj2zS6BoOgMZRzwUcSAzLZUr5Fgv0OxYVnU8QzW0STtQOIhraFshvnSA8vjZIJ8GWh1art0+2BMPTtGzVaml9etBxCSm4Eh4IJpfZoYToQDhriV+VlGBccKTQ9kelnbWFixH78BhMCPlKQVJkANezL54AuGo7ORNWxRJN/KRdtIq4aPfJmqPQCcuF3pPevtoxCJqAwrA9ADUV8wjFoUbI/cs6DdvXCsz/TLs2MFDNgqK0Wa8JymTD5K0MUQIILkwHqZ7YvtZff4DA1KzGVzsypRA3J1wqBNGrsb4llqQFRU9nRveAPjPD2nIRqiOfyxSkkXGCGw8j6ktMP4qDNI5ZV3FJIXR62zCi01eqbD2fHR3PU90exZM6/SPaJI3o6r/mx3oVzub0nBvZwfXX5zNH4bmN87PidnZMfjowYDp8cijRbFKTfs0x2/8nB7s7e5XfvLP+Vfmvn303nirjP3ZGhpkI+nFxcdHBHzRQy3N3ccGDQ90cnhQ03Hp3fXlvEu9vRN6bNmwjOad3Y0r07yi9xNDLpaBxBwEfHV5e1fY6q2NvfQfYCWToR94xe6T6TBK3Xs/J1sM+sN0dEH06vRa6d96+73d/a/uXv/eRf/st/8U//+T/AQwbdbIMyOuDnr15bqytIeHZ66VD/izPVFfG+ubIy6NIm5ivni2/vfvGjH9mSy/mxD4Ac89ePjmW4OXi5+/nLz/7k9WenRx9evDwwRrE94Pz47Ouv3liLg9BHDre7vHn9bMc2CHT++U9/vHXw+PSd24IvtBR6+wcHepM/+KNffvWX37m++NXnT85Ory290DJBflhwU6x+MnCCMqdwy5zMrsBYq1dTvMxRfpJmc3jIi5GRxRim+LXTpkDyg5ARWdz5ptkhRNf16sR39re1WhGRS3m5YjwJ3W+LOCwpmmMZAyuCmsC3IYpsE9fxrIRZdY2dXQgZ1rtevOFI07U+5HCx1uAsyk7YiWg64vcYqeS/z6KuvjVosV5oQwvIY/JcjkzSZC219BLm1SQvactjUOdNIHw+pVaqnmK62U8FxpJI+oTDkrnvpeCqeBYyY7hKDyp1XFCc0n4PVoGfXKucCzLTBAizMGMGU+UFXDrqAi1ka+0KMpM91CMYfFkIEzkQdQfY6idl1HCXyl51wo8xpP0ejNDM3tiEY82JM1XGeWm//skpZ7uOgDnt/Pu7bS7XRLZNB1q5w0iYS2rEkQVpzYl9Lu22wVQOq6mGgveFi5eTfAGyzB7DbcbFQRpHi+niuZk3XdVQ2yDegnuHeu2Vx0Sl+uyzEoXFM5KA0LoOGJnQsFrpnoA/3jYcJjGuBrty4pBX4tdIRiZtDLg4tx5NXTekHIYNCpy4Ek2Im+V5DUVMRhJa62p0ug4FumKp7KcxlWcGT1CAy0ni2n1EmB22a2iRkTHctaeAgsng2YeFVLtOWxtzjlvwWc6R75aSzxj7MR9bGIWz7mNixXhMuhGI0QLeUdX77UrF4qZ5aUX7GRxmuvQaDSxMCCLyItTFbsTS8v5FMqQZFvEjMF31Vm8TM72MajSdY02kGrfzevkJOQAZf/Ui19JBmIdRs/bK0xFeGcSZ0Oi0GXc1MLlpHBTbQ2IcIaqT8z2qR3onvomqRDqqVYveqI54HJ669UWzgKjT4xnj/qrTLIm2+oDgLwNCUcgUtGcl+nRqY7RBLh9dmh7Tz5xCaLP3tw9ff/3m+eH+4Z6bUqpnRpUhg1mkiGjBUxWarXna7sVAyztctDaHZDzUQWkxMsvIp/EemP03LlY/oC2zqatUGG2860/0mIUSY+VybevFpq5ypOt1WXidRYrVE6QYMyg5dKXMgCSsMjRTZIYTsJdAGGCCEP7AYSRORcFGN8AxFuOaLFpff/r0iVss9UVgDcORwmMCsDRoymWOMDS8Mr8DefJAMhTmQ88XP1xrFPdGCxRYcECixWMJuYE2tjnkfWA1TRnUPatj4q01QZNr0tL2HuQfQq0QLk8olcFn4K2AlROezt/tfg+vqmVVeDaehf0UmgprdSVndIcFFTfITAACC6v2AMSCQQKg5UEvKHcoU4mOCHQGyFUlp99aQKME6VG61se1gT71L0DoQ3KTcKNcQBYvOZmrbQHXB/c9TVU7EvvAbxQp0M2/EZ1RD3kVCp/8pDLH1OkuFyC+p/4gst2CQ/I0lpq6mJMeQrZOhZGp1NTeTKgmSMvotGkBa1GHmcg2lA0LoxTL0osFbKKfuQnOEHea2+z/CGUSkzOW6eYfZJKG2kmeiVFV9DAiPu3GBk3NYvipjhoeD2qmysNk1gBkMmZOKgCzZkYuz1rRar8pq6UL4/3MFHrD3Eia2OdUN8SKBrVLfXFtXJCSltqRfRGa3jebSd/Q1oOfMPOBG76hWBiXENppzhAWzuxfODBawz/P5ZpKy5J9odIl+B9toYERkXjkEn2EWdVfRdO0Jd1jeC92OcyLDwETGh20F5t0pbyucfVcBXV/dyGAfWuvK0/YSdAQu7s9ZSpcrHNxef5we22RzcXF9bv3x5xO11RFN/1Ku6C7ntfkAI+2ja1f/8oKnS9/8lpA0LoXRNUzGQxcX+lY1p48Odw92O94kE2x/t2To1M0fPnljy5PP1zoM9c+WhhjwnxX7yJ63Ln+G2dXN9+dXF7dXZsb3n602XICh3heXCSLLa/SeWxzQYX3tYcLqpliO6+evTq/OLu5PtaHGKKjhf5df6az5B7hiJytccj3ddAQJeQlzNY3mxIMAfTJWy7m3HSszh/+/s//m3/9X/zxn/wRL0rgkzvEDbq+vHQvcgJ2dXvy4b3JCuII+tPDVw/XNtGem87AGd6HzcEf17vH9PLM5ku3pe5K/PrN2fbe1ms7iHdefoEg+zubT3Yc1vnr337nXrBf/cVvf/yzn7x7f3RmM25LnT++PT794vNnDgEVIH16eGiDIVdpl5uytcmpsj3ScgujFy6aQ1hPTk5cKITZ7gfj6D/iFjF/qJskOfv8lnDkbBMqt5jd3DgEKfURqTJWJ9Xr6zqJPYXIucMidzpskaSh3v6B01fcAtFZK9x8RPJiZ81ECl/CYoykUyhfAHURbCKb8JH5dpRwUlcKSH4JAxGllZ0KqSareFPkjAzy4iJgI/cVWZ4UAH+R40Xgp8scC6kg93R8i9Q4xaRJddwSAAEAAElEQVQyoKRBEJAIOfIP5iTXOXiYSqJLojAJVTrPHtQStE8pIHgud1kGq35+steT3JdWZ3qxYEEinV2ADoBeDX6qHyT6OU+hGZ4B8f/ytWCJXdVU4tSsjVQ+Nc8gtyJCACVToGDL8seg5T2zwmMGI/WEdVAYo3nAVADR8kmKyjdayOFDr+66Pm94RrvHqpzdnO9v7RE5no+ou8UXY86aUkMiC/nYPMNyQkSRuF8WjCGbVgvYc5FN2jkXnwSmWUItGT0nXT1Gptlm16L1ttJyke2EzTuz2yevxQsD5bv7i8frNNHmIrtUxbGhPSEbtTqUzGqZwK5v7m3r+zhzc4oRN9DAZr21QDpS+nn30Yr/qGbH/xgEdknU3QQlaSEX6tU6ZLH+ltRcueuXupG+xLPmcv2JA3uTQ/vgEhJ3iay3tfrj2uWdI2uyJPh+v24p0TYXXE9nvGA7Md99e+OxeAECwh+njC7sLNbpY19rfgxCjAHqJh4O5ugeC/YdmpCaaoUusRF33aiyhCIpSH+5xUAYV/OqNXcC58IqjiG2IaPuz6JN3rBxe93uCGoIIpK1kWJeqKZFGmdU71t9MnMhWqeXC0FQRO7y/qdpKKuvQsJUOv76DEpNwvKnM45IRSZDfSQRt6JgLZkK/AbUt0T/+5Q/CW9klzlVFj7a+cm71ZB4bulZEBvF6VkotLGlFpQmqwlhvpCNS3wS9HIZ8/Xt23dH25sv+RjNOYSvauSMeAwCuYUlIpAYrfMrO6UBcVgWr8ZiFLIorfVIuuLUs6I5J3X0qw69tmc/C2lDftpLRtAko6rmmtxDJk4etG23xhwOjoYIBCNoe/QzIvdRV0WjUAnjX7HPEv0cyxYLPObsTYFhSglqmoaGCfcgwxtuIlINF3M7C8rIuNQOWv95kTuZmzEDwiB71uCo4BPyU9EwNGVUakZBvkEIn4Bkdf2tSMTMSYt2xXoCsMBR9cJ9FZA2n5AZwVv4FCnYUnZkoCioftlWSMxvv8AssdrHJPJvJ4AewDDsTXXOjxIHAaDUDjEpg96krnCuUbLXa+FK6jDiO6nlJrY1c6DDHgj4Q5dEZojr9vLUpZdpQgjMXzyOmQuPB+KKIkGiSlTLf1NXGPiwE+QMmIW4NT0L0uiqMf2wiiwiy0LUukBPoAilDlZqGylvRB6+oVYNkImyBCU5ViJDECeqrMFJ+l8tM17Xw8zEAkTL1lvfi+NOWksZrUCxzvCGkgyLtQLHe6Bk8G+YBJhPsUC/qR/8h4uhXHupCgxDjKp/IlrTETlqPqsqEAcRGHLCHXQwR5NH/kiw/gh8DGiIr5Eto2ysNbUvYpSwDmU03HttTpL8N7ytrmoEg2gmORXXOpgMenHTp7eZFaxPZiTIUaJkfnLjHCDYvogW5E/4aKcXobQAUbPPTPgOVl7KvZC34hEzlKqjjDwtDA/nJKDc0VO/tWI2virvF/OPjjCCSqthHKD38SYhsZPt+rSLd8WwrXsVRbpbd62VoFiXozvd3WZap25vbLju6tH29nNrVKwq+XDBf915seW8/0u+wtXVhw92nT53iOvV9d13X7/5t3/61eFhx3o8e/H05asXe7vbz569tKnMgYC3l5cf3r5/8erF+cnJ0Zs35ILdP/7hzjXAENesi5tLzRQ35rJfOOCDoOuCaIe1SRl3umdx8La32IoKbvmZngdpkmhS6STvt0fvyBUfnU9TdM2+sfsbte87EOQxT0JoFB8707M+x3oG/uzGXuMHq+6FCNmm2/vDvcd/9x/9nX/6n/5Hf+OPf77eeeHGmTamtTdia2sP58QDj969/e2f/rqLkNZunr34EfSysPYt7OngTWG5RWj9h7c//PDtV61J3dy6uTjf29t7drB3eYNq5785+bMfth//9CfPn7g3bXPti8+fXBg4bP7s6OTSQOfzVy+Oj27cEUDF//rrV8+fvrKjgGbtPdlxsJLthh/en6QSG+svXh0ahn344b1VE09eHKDehfC8zrAZGuagiR10yENiVRiA5ty6fohYowap4iJYJs5HYT2hbWhBJ4UYyJYq2IfDg+Ki2g4gv+ry7EpgmOixh/Y+aux0EY+MR/IEpavMnNhYPESgfvyMZDEzw4y0jkIyrjVaaDBsBUfHTdAvLsgIrAvEMggj1RzH6bDTtSx+lmSlNUn+DPMXpcnJ8Eoto8qL1Zy+pJSVpgwQ7YYQNPyZdEhMmfSr9IHcayQcez66B6E0VaYFlfmeHwHzUK4F6FRQ0vJmXnqewgzK0p+B1mcS53mpdym0gMo+Z3QnY4K+WNRo1aeBE8EDx+YNesEpmp4U2nnxqkHluKkfGNtumRwgzalOIEbi2fk5/Wx9i8bSCGfAC8xuGDESxbRGv1BE2Sq7DvkJpHU12cJCjWs7j9dPzy639vctvTMU5+MWcHHQTZOxLS00PhkvwNzBaB8a+o/gdRuuVscyu4rInwVIncdFeK1Fb0Ra8FhL03/Pda+t/u/z4ECwdqqyEc7I0XbL5vPjRcH4iGYFHzX+txBv6Zqh4hXXB3Gs3d/UsPHyORyAHezuOmN3m6ZzOLlxEBDj8EMvo5mGpnCzth7dbu8bz1ttqHWPbViaAYCje9jzxlO6mw7tqYXrhgHK4cNIRHxsPzVHNvTXhf+F5+uJkxl9BBtv48HHa4fw6h41WkrzOYJc2rDplmKTHoIja7PWzpaANnRhSv+N01y8v+m6+8d64CBG70Le3Xx8zYBiZdbUjDfda7cT/sEoIrdrKo0enetGMAxMNuv0h8jT7yd7FDf9fuhutSFeEb20a7xb4pecTZcHIOB+Zsfr0+usuZlJO0kTHVCy5q+8MYkd6zR3C7Dd8msRVdd2Tn+DBE3KYam8UpBBNfUKB2H/gNy4vt/4zfdHT589eX44i5TgxsnxDgK5wmkQbJXsAbBRW8/eIpFxm4qSUwOTidnrHhr+NmUatlmDYASI04V3090jloAX7WgMoPlpQYwn22il2mlz01MTvB9BrVtvOiISVGb8UZkj2sTFfauFLElJZmRJzAb/JYWDPg8YAUZGOX3quZbOmAd0GDo3D+Nin0bEF50Z0LVa4jh7U1uwve2LIgAuv2GJ2ksq7tZ/skohOwvvFpyHtvgyDvC0WxHAw23oBiPVLYTQCm+X9sWXWhxZQ0+WKFaFcW3BudyTGKl8ej+tCI6fhESqxYJBCJSvIETwEUIpXgzxPMilWH+0aklXIqr5YF8NBiQ7HShtHtTH/aUV4+OyC9WhPG0e3xcdc2prY4Ur4rHcqNxcbSgHf/4bjGCAE8hEYlB8CP2p/ajbeMMnBgABrCzUNRkDIx0tmq5e0oFQnBlLDkRP523hgRpYnUGAAIBQ9TjHNUQhn8yiZsC00TwBzRyTltIiU1RRlceU8N/rTPYCQK3x4fyApq04wcRUsJZmoCsZsqQhajKjcjID0JBjZMifxUCkVGg1OOfEA6L4QAiezErL44221921UYnqxc7lW4nwbIIyBHpRTlq08N13cNQOrfAPiWrxf12XNgzZI2kcCAVysyCRCSvHiIWSBKNhmObBn/4rVJTLfyXWvUWH/i+lEY4PvnDLFhs0wQA0BTDbMi3myifNSqm/BlR7EKpdM0YHWrEzelNd1aBEH3LiB0RklNUP/U49yvqNHv7+7tIRluub25cnnEuavbZ7cLjmGLibM6cnSDl//8Eyga1nz27vzpljL1rDYknwzt7N5f33370jHxu7rkm5fPP9sRU4Ang3d99ZEuDqHPF02+0u34np39//9vvdvW0Q/8Yf/fIPfvl7W5e7tpe9/Onr92/e/erf/jnYN9frf/7nX9m5e7DXRlhL5mfISQlu6rq49kL1FqLsbGOlaXtuv+iagDtscJQnijds/HAvu0fQyNbdhjXumy7HTcQswGvCS28taK27dbnPvWh6C2M2Nw72D3Rk1urgmh724OCZTt0SmdeH+3/yJ7/8z//1f/6jX/xUEMxZJPE01RDubv8x9D68/faHb7+5e/Rw9N0bK29evP5RmqGnMXViJGRpLwcmsyCYeo8cFl14ELB79fLg+7f35x9vnz9//vbtyeZ3bk54/PrzV9t7uz9895YTb2XEu3cnV1+/cezdF188+3v/uJNAj99aHHG1c7gvmkDRDGDMZlydX5ycnoiTGl8JhFkU8eHs3Fs+g2AgqfFsKfa+9RZcChFFEvVg1OTmJhMsSVWWZAw73c3lg/ZE/pK0tQfrvPPDtvLnWBzvxFPt4I7kBIvUMSQWljzearfmHMZK/IghQ0THJ2TZHavUWWXkFsdspiS9hJp80gKVJrEEdRYIxUXl62RTykVxCIT6+rHSozq2XtKMGtksf5kV9ZnCvaZO9pfw1FZFgytV7ZMLnkv2yQijBslL0vyZbAvMVHgpNSpZsSoeXIM1MFfdUvj33h86m2KWobzz2Nv5b/WrrOWt0KrclKhU/03VlL45xqbyF4fCeGjMhVzMX0vtWy0QMzS6OZ0a7ZhLs3RRKbvyqWngwpRTb0Mtm+D0ezKvL+C2XZki4xOz6TB/vHZ+ccVf5DOb/auFjzZOLs+N/e2hyVN65GzQruMF0OBye3fPThWQSVS7hk0X7LYLpEkAKpRnv2M8jxWMJf/BjhE+loM/c3Nta1mO6y2objmfTTWN+8V3EmxhCkbIVNque5+Yr2auzCtil3oWyUlJ9QAiCFcX3Yqxnr5TxFuWREC9uY48adjq+jAFMU4vLjWi9pJ8IyhTELsi8T436P74wem9Fvqv7e/stJbOAo9Y+WBVHmUyYLZfQp+rK6M0fhJfrn5iOTuGTaGYMxR5WUwWFptjIWD0gvYmcMnPnMVkhYZbEFpc51TQkg1j2nCMKu64vbwSrUEGRMNTe3/FNIgJOiNbCHTlk4gJeTCvEPDpf1ir5Trudr7RNL0s70KNRCNVgajGpGMzKmQarL/SFWgw3fQmp6J7P+MmEIQjms3Yj48R+0keAElmXVRXRhTGRlu2l6CmZd6nAtVHUBNJNFTHohfIWXG2AvUA96/61Zv/wFEBYlQjS+IYWLpcF5beyAJ9xrjerXBGesEmmxK/zZa7Z/rmh3fv9k1TGkOGKDR0HWE6ayvg4ZH/kSXylu7ocEVJ+KEEEkA/qdPUVjckbwRL06EdrhlO9Iu6MUTjJA5RES/CNkqga8rI1WQL6gxNWvFRK8FXhq5NMVhqTg6eAtXkT/njHpxgy8pNf44MuFEemeWZh+JTZLuUGjt/cwDKQJ+VD+y81NhcjrGEpUeeLHB/xpmZvwi6eBpsfJUNYNB6UALPdIheaL6Ppvn2ygOuQgDuU472f0I0EmSvJnMgaxWklA1KFJ5aWhDqKbCsF9EP1ei7svpSqydewKK/Pra3TYypFytMBhy5yEsvyauBjzMxXdkoU/5y+jmSMjiIlAVcK8WuuqWy6jMwXVITP5QneXjTd/St+5xEPFot6qh5jRNm0FzLZ7A4WjEQcujDtcCtB7hRkCIoeAkfKf7U+U06SU9zRpGU+SROsKz/Q/RPuprUDtgAqi0cyFA9ekqoneCQ7+Fc6fIPJ2q+EB9aKk42g+NPD80Xj6BEMm+jd/5QpOBgcQATUwGLHGXq6oDnBfCgoN6oNOOwaYtmqDbqVTcsqXQyq3j2rwWRzXiG6rAjbKf6/BVyGVv6z4eoDPIaVavRB2SgGsFHQ/ZlSKVNEWGO+xXeSB/8jK20P/UdTmkVuFHe/0kmUMOYFXJSqlqhyg3wqLRkjmtDSVh5Uhwqo1cqklk+v70KyRTPU9qv+AhJ/bbnsBrMlfASHStRWhQjzb6rCEnDvQHngqXy8UaZcsRAGMhvDbCudvvR407D5vqv3z7cXDmZbntji+vpAG/c02Mayt18PD86vfjuu7NL51me3Fiug7N8g+09Fvn65MP12/fXP7w9Oj6xeVUHM7hVN7Nxf3R8un+we8Wr2Nr68vOnp6YHbte/+fpU9Of7H47+n//jv/kP/vYff/7FZ4921s9PT68uL46O3v/5n3/7/tqRfMYKm47I1H9u7T7a0eXPXNbj3VlmCr1lpn6RgQb0N0wPC6oPpqD17npaVNRacffI4b4BgWzrk9a6iSzXqMsMLM0RWkODzjy5ejh4uoc5F2fnOmmNefnkKenafvTw8z/4/D/5J3/nb/+Dv/f6Rz/RuWW7+TognF1Y77ezL0J5cvr27fHJ0cXx7bfffK/j33uWjy0gdyWOrYdWzCKoHVdfkdvHrid6d3x8fff29ti9jCYeXJR2d/nuzMbo5wdPSdylsPv+c2MG6yaePnm6e7D9zXdHFgz9+LMXX75yvdir8+PL9++O6drZyfn19eX/j6n/bLIsyQ50vVAZOlWJrqruRkNjAFwQowXHyDHa/cbfyx/AD6TRjKTRSCMxNnNngAHQqqpShTqhFZ937ZONezIyYp+93Zcv7cuXiy1KOj17zyhl4leX1+WqLEF6sA77/ubylnmsVshtz4P1SiyXECmMeW26y2YpBabJrQgq4h5deXy8vL0SQVHYOefR4FMxBxeWUW59Au46M/Rg/6r1Ti0rL8azesGyaVc6nuYZOknDBqzDo0NGmRMQHCFYx23vhP2+9Lz9qaVkUu0xXhc0qF583hlEmdL5GZx7QvkZTT/uAzYRw1TNEHmJiucKMvvsK9/LnMcJTNejTU57jJX1VTATGaNd4PiaG5nfPZ5Pzwc01XZj6vVgHFfukYlNQY/qgCrk5oIFdFyO7U+daW6eL5hWZ6k8sJeK3Rk0NDvXA5EfiBvVY+q5gvEP7DttR6dA+sDRmeVy8RBg//lwUXpqeWRFeajKMgugICXut/xAfLO90Uq3iRY11I4Py/K4dgNca1gEL2K4drS0dbiTANiTjPir49fWslzft/3D2ZeW1syiwjndf/Pea/sKmVDhNb3eNOdv0alA6rEtBtvFu8CYXrrxSjm772chB6woIfd/b6iQrGNnI1jW0Le7iPYfvx83LTb0dm7cmLx452WrLj3hEKDbK2/t3Xzz+kCwzl1yqQh3wL/AuqmL+uE+vhoW4mpt5j3q5U0vCaxtOtMMB9Jw9elJ+AgG5GNya5z0Kc+o5sI/e3XZenMs9GEyDaasmukyurbGse2/ZOF4UaGZBzEmx1x60tAAkgyWA+WcCQWjeQ/8Z2vOSLVPI1YaWu9uW+O/u80ldvgpyKoXrPeGxxwwVwmc8dvsS049KI93FEwCu96l5L7QcOJ7dZVnhoVuy5Cy+Q1qZQhRcELQhjR2ZznUgIAgoN8pRCWKuhIFDeCNO6ZWUVBa505CS3tnSFZRnVRxC/9i6g8/YnJnyzpSuY4PDlCNBMureHv3CwBKXw6Xop3qiHfKjfJEQE3z2aNEj9Pb8Gz6VnYx45NmBkSIhNfFxsb7T6c/efN25xUnXzk+k7yb+cw3x5m8fqFOXSXDRhUs4YOOprkwiAtdJtkIKo0YpEM7P0k1FFUMXtlxhhYXxIouFxqjZQmfQgETeYXI9NyGukIo9QrnazYfiNW5HZ84o3bAE2nq60FNaC3m+RIba87txqLQmmu1SmwqUKngwdZAS8mqu1Pqc12gEkPahIgR38ff2gI5rk9rCdhVLtDTKVZVzxJWmhNWykOd8g5+yJgge/SqFpe6S720axrzdJ7Uqquar6JuIrWbIp5HkpvRU4GxQaIrBRD+GDytzKOJlNRRN4dYO64h4MfXQrjAxI1QrSLFn4fLTaVZWh0Vno5f9W3C6ChVM3PGRIS7kSKCF4E+gcPr4td5ulyPZv8ThPQm2kb5XAxV8hUKdz/MYg9UqZkWKz/jIiBjwHwqOm2xdpcTRGaf7o8A0OrHk/J2SAYbzt2LAS1bXDauuI6DUE+fRMCVGZ5ax9lYHCILQOjF/ZGQO3Ftw/HSosHWcrifzgSGJTTUw1jNQyBKAcWohLoIMjyWFhfgvvMtmnAzNvqE/nB0gKYTjbVGrkMCR4BznEuSamzgE05MwX0A1pBJTFcVwwMd3/IFhJhVgKkaN7c0PUqm4poi5XlP4ctARkdrQSqf9x5JrRHOeRmDQqOG0pCKJdgUK2SWP3Gv9UgYq5EMbCgKN4Ur3+8CCPfXEHQfM/U2NCJkmBrAcFC4bNmg4Z4ERkmsehxTtF4Hu/14fXaAqfeO1lgZAJGGvaF396tbr7Ln9vj6mOXlnReXV2dX1zsOozw9v3D6BWr5lWu7Th9uj14dnKwef/njiQN1rm6fnKoR97iUe6vNuXhTz5sv7lrWe351u/HReTsWB8nb1xmcnd+/O/WW2//X26Pjn/zk2LL7X/3yx4ubu6t7qXEHXxwI8W1nLEiYTK6MJLs1382vCWwlOL3KUzPNzeRe2pUozU1J4y72Tj/koY5w72DvyTJk+4+PJPd27Xp63LSLzhEcJQgkrw8ODnHXbrmOGUkqmy+PDzXnBaOGGH/2i+/+d//iz/7Nf/yPx19+U1zNqhvz315dXsvm7exvXZx+f/LDx5vz1f3O0/vToB4dHn33zU9fOqT/6v5ytdrbP1ydXPQeEWen4MbF7eXVxupu+9ff/3h7cvmHf/BTC+mdlvjh0+Wv33342U+uv/76F6IcQYn82pu3xxcfHj795sc/+OPvTs8fjg+PXn37E1EHhTk4csDi3en3H8QYn96feWeCYz1f7O4fvH51e37J8a9W10CYLTk5uUSXZTw43xGqTT7aJy0cKaIzEUxtdeH7pbgItgMA6J7IgOZSJ9rNklJgKuh9pVL7T+KeA4cwOeHEK5t8ZeaCObu309Lif/rTfx4Gq8VXEOAQSIZmutSXYjT+OiFyUgpUnM+BmLmUDMTYL+XPeNceI5yU4U1d5E8YCC+XpiZwD3nQcQLZ1fTEbppySaTBAiobrKQGAl617gzE+n4X3c3KVPJ1/vZrrtcPgjCXrDU01rBqdB6tQawL9W0ewVLJkFnQAWLwrcnq9WR56n7fK6jEGn7FgtOjeZo4KiMPVfZFfDbDKFQ670RqDIu53KiQ/L5jLc+PIvKlEyVXblxkO4FgOSZ6CzR9QJS6gkthtdSupmyWCTvBsZVjD9bmya3bY0NcHdeDp5mnuSJv+/JKvptbWiWPfnJ+/uJYsFUSmtB1LlTKUAHadKbQbF7TYVu65WbgbdzfzKKjbZ5E0klmXVxlvvHl0QEqzeOLqcWV3Ai524uCTr6GyO03brlai/KdhtmGfiRYtGh9DvGMV+4FW4btpr1u7LjlLtr47ijb7b3jvZuVkUfTXZMgMEKIwOtbh/Zut07flAnMOVuxONPf3JD+LzY1StlwNuWt+QT0tvKwM1F1qI1ejK+ubEwaueB4Om4Vv8k+0w+lBXkwvWN624L5gNuCLBC2DsfarcRr6SYrYoMmW5/bnuToIV2hJngmznXi4NkYnZQ6SdxcaH0kbWgMwC0yVv4qyy1iXxTHyM87DUguJRJev+g9X8ijZfKwBoZ6DX2KrtBj4LwIUXZYrbSvlfndVd1EkLEHp1p4x8hnDF/4WUup5fxQHqKbGxiGrtyz8UwhhAYyiICONabUQQbKVV1gfcksIZ4WC9KLW6ibBizZcpAUx1S/DH+q2zYVDp9LKZ/dNj844KFOCfbasivtx5MzY+DOfw2TWCByn6dQDwH4BCu5CL5xqTv98qEEuSaQFmbq9xX1k/eD8HNDiVwelJiDax9AeuSq/LgwwLwFQGO3NLKg0vi86ZFIrnxt+spO54ZGTexwbRrFWEEd4aJoGnXLNKmBVKWyByUG54Zh0AiDWub4MSp6fdYFhnBNLGKIPNAnQAqTJs5zMMlmnK1HbgxvYKKVBAEahGs72eY4WrZS2lHb8X8po1kSGRYD516AVM7VDJtCY4kd15ALOGEE4Jq3w+WBF4EBMIhtv9PC56QQBRBa/4cBIPHFhSpdpI5VB3R4uY77Y0mmXc0BXuNLySA0rRHcso+wB2UspA7MP8BhD49mEucW42EStaF8PGzY4LJJ1aF42uAFpjkQh30KpqzCtYmbQaYJNThUBaqSmb2rYjt4fBY7XeECwj2etiRRgQj4TD+XpBbjSS0YaUrpeR/3lfM1V7fsc2gTTNJsBqNW8gXuBASjJkhFb1TEzWRNC6XZOCY/gCuJCoQHp9mMIXbEqSHKiC0Jj04MyYoNb8MIuIkcmC564y0chfWLgWjORbSo3iRJPBlC0vgc3+i6OqoMPyIQ/lWBoSSPRTJMCGf8V7p/aIwuVGhu7WIWox11qfLwvD/DsqJ/aOWmg9btgbXgX+GmmDsmWXbLwwTUaARGUMkC4ue8WMqdCOGjM33HvXRqujEbOtystXQ7wfk6jcYiPUBCXNYUUu4Z3rgfesUx/EKUGQ37TuC4yO1aqcIlWpsBqncAXZ9fyJvfXJ8JZrFDxuvuusM7BFxO6THLr5s3iewAm9XVw/XqVqLfRmCYSG0fHe/88vuTdyc6Wx383ZW9pMRsE61s3pYR4NN++zgfHcGGoOuru/OrO3k6akFbrq8kiPSHm+8+Xn46vfrljx/LpTmRvIRbqTay02EvQjk4PNILpzElKlt1g0rjy16DOW5W6/iTxdmBKleZJeqFxOr6BLPYYaX8bMUb3hSxEPnW8fFLywZu5MzFwprIlZACEXTsj7M6vXvsz//sD//9v/+Xf/bP/vzgq2/MS5hkrqNh4XTJqMle6duLm8vL9+8uTz6uto92f/3jBbm9+kYkcHt5/o7PMGnizV+S/K9evzXKun64uF59+vjutxe3mxfvTlcnZ199efjtd199PFm9eX348cOn1fmOlye8Ptp/95tf27/3+tURxYGPRLpE5dtvvjv8yd7V7SdSWF18OPt4oks6+Xj63uyBxRImaW5uni33TyejRd/HIVuY2+uTrXHa2zzc27t0sOrYgpSkMQHXgSLuyz860nqESb95m0LqmjJlO5lMo59ez8QjmIahWvSQlAkGEKnWmZnxStftXrVWziyNN42Qp9BZp76WFKWndcgdu5eTxFF9Rtpv0CMxYW0Ry6oD0yzJZsL+F1cttkai2UJQC18oXOmx3MIUHRfPUfiWuudUx4dlJowsJCaZ5G/l1QoJANeOovLrO6kEZJZ/FVsqfHYL3IXqTHq5DcbydUw1sMj36bl/Gpm2ptRSMsAL0IGwFO5R+Eha13IdRPgtJbs1P/XuWghZfs+1l2Jwt7FssjiEiDGsntzBy5EKe7n6yR2K3wwc+MgCOZ7pqQWuPraSj8fd3j4UGoYGtmOZxphkoT6n3XL5XraUE97zXt7W2XPXT3dP3vVh0k+8uLq+MopWgKCEEnlWf5vY2r978nqPXkGYXdtZ3Ett25ozQknHFvKJVQ3zaFL7zE6xdtB6Ld2dIyvyftQG8XyUIArDVdcN3/nrZdjTVbEayu0UXSXE2cZHxV7abUl3KsMtm9Kk7nLHe/sldG4oWJ6X4WLLzAak822cwySvHaT8LYIy3H0Q+z4bQhhXtZgH/3eFy7okM2bCfNg0eDKEsCG5qNj711402dLAnjCNOCaZzVMTWouMWrLay26RzyHxMVw+KG3D6F3CPQIcm9ns3U1L9s1BGItjhdZYOUIyHuOIYDSWa+RW3GkupYMWdM9pYUmithUTDbOnLpQIBMGobnatZtkXICYKJlRI02JXOzTkxY3xVSyG12TWFNxygjCZM5dYq5X6JaHSUHq1KJI7Nb+Ey/WDfpqCwHP3ueXP5Q0YCb8ATisImOwY6vFk0nObohF15mXM9d31oWVYRJ25sTy8vsZ3aKNTUb8NLn748eT10eHXb1/qFULMD4HMjC7q1KFUyCkW9W+SaPgwQXuxNbA0OkwX5ozzUQzTQPkcKS6BZtX9gBYnQdNJtWKqZREQTvytvs21hnwmblY5IGgHkbzQHq+aCUgW6salAtn4mc8svmqAEYdzgAAO/orPZxDFyuLGWqQAA3xpLgyn2PjYLbLWW7L/eB+Z1RhtWeLApWyUaxbMtBpHsCswPQ2TZbUz7SQud+MBpDQ9yofDIdJdRTLxwDVOi6me5K6HUnSDphsZj/AZVSWqUYNr3ubi3U12pDCt18Ti5FOtuglVAh+XuuETFNe+hc08nVqA1eBSpgstDdOoNGxIJcbMXb9jXMFxdVhB9wceRtTGfE+xojVJe1qkwqEwjwI4LytplicloNqCm6qHmPpu9GXgLFxI0Wck52IxupqecHNsbEyRmx91J3EuYEnwMFdAfdUQUGE+LAB+MKVzamWsiGMSw+SUACE8rfyOB+6SE6TUhbF1JHEWwh7U6HgBXcSEs5ncwkV8H4rcoVvDroa26IWGh9rVOpXWxiCw+KAGXklWBTjGnUXLg7DIL7DDHtAyFd4vN5K2qRDP4+MYTNFNRbM3KgLt5JO8YvSytaWkjs+Upyh+aiZF6WYhR/pVregabomwU6nKLL8UwQff8pJ9lAtt5T1KuTWngC8zdFRyCtR/D04W3vfCyGjmCmbgNKYyTcCEPtPfyd5FQMqdXEZ/9GmQrwdSZfEykRDPMVwnJ7w2E3DdVKV84O0VOrye6vzs3JtyxdwWdhsfiLXPr27k7K8t3bl7evPFS7y68Hrb583Vw/3ZtWh78+n8am+lD93ychhz007uMyt9SEh6mrtH7+s52iynbrUJR3Vw4P27uxdGCCYKrtv3OS7aGdu7WGywLNSfdZbGS/igBmGuF4xh4pU3VDWh3Pp1DJALMZAWLpB39I916x0bdbMlOiMcpe18uLmgcp+9waoud2vzzfErS9h1mVZC32zcb+/dbt9eEQxhmbI6hPaRhUAd2i19aPPDT49f/qf/+G//+l//q51db+EVCAS75UcPN0KDO6t/LhzMeak9ex74dufury68yuDu9MMPr//9X+//0R9RI0fonN1eHr/8Qhd/en764ZODkX54/+H0xzMHAVk5dP23f/9r5xk55Vw09ns//eLs7Ork4uGnGxu//dWvjt9+vX30k/OLC8orAHr55vDm08XH65M3b45++Lj64bcfvQvAYaMX1w+X3oTa0eyPl83g7zxB8vH+yOlMXl+wf3B10bpqKpWdze7G0qVWSmS7ORDXwkdRngEDphXtlGp9sIYpZnIl3q8pJuysz5XFD7oJy21lYTMLLoXGWdKtwP5+Uy2COf16okk/hQrp5JwuSluK27JntuN+KLESHXzOJftKzD5jNUuv0ZOMLuseO6xMY4bMR59YhUx3sbWlFEvPIXnQY1YwV8DMrRwLnLL9nICPImPLGsj6MMYdZfpxkXn3ZYC5MTkK5TKuuZmDH88wAKsxn1R0KqtTK/757c8CvEfjhXytSq2sn1QxRKb1Wso0lNIg60bPNN11XjWw6O3jeUHAJungW9O/6/2UNsjuOXGyWDZ7KemYLU7vg9wmaoCx+LvcisG4AO6epNYYa4CfGcY551oZiWsvq4YZk5Ryx3xC7ITNGaKjQ1bdphcDdUmEnYPDx2vb7hvmHb7Yt3KuiJOh2UzioJyC6VxlKwwfbuXp07pN6wy9FNg85NPWQeMTnUYxvcTK8gLaA0vvrFXcMPsgBJen1mXYFVNSNSY4TbhazutECx714gDTXPu9YC6NlimQZ/FaYD2yGad5qxcrg4ehTjEZb7bE6qzeu3gbAlBeiuVJ3aI0f87eSLUwG+tk3rzFNqXV1Y2QnyysEiIL4IA1QOKObkyhlLlnmF6/3NsGyMHZxlhL/eENZMJvWZGZxo610PmZO+X3NLr0zq3JebITyxqn3P64uDYV1AzC/J5+ZnevHp+EyTyHyQihCQjx9M/42QjQ/LB5hpYJUDl9FIF2WJtC0ZD9dghb+tcd8BmkZiDA8TbEywvzD9oaJWbO5SzCTdujkkhDlf/DB6QaxvR2tlJjbmp6NL2oAL4IhqdS4Hex1vlNgmxdo+YiJanFSU72uTVpJg1rY/wMEesrYYoNlrckkVaKPt9aCHR6/ub18dIgv1qYMWtu6jxwoNWJ+TpEFclAKy6ErXTe6GxulFzc8XUoAnztPfALn2kRKrTtQTYb0Q285bUWcENs3iOh5AHwPfvyUXGyKrjbd5xJLxJxv+CWvWsmFnmeJyFrhPikCalOLbP9eJojBaSLqBxsuh7g4Z3fG0BlJCsHkQFQRZ+MyTiKOmD0+ALXi6r4BoLiMVmZ/hpQ0Y0oJ1mQXYCBtVVXcvi+hj9HFyS+2vEJEAIUMVwIWz4t5zZ1h8xAghn8KkRqzfunGwfG/YJbd10pupRLgFNQvaibupVSud9h5Z5rbFlUcXlQRYSl3pUi1lrWMRbQYeqA88z9nGYuLTxSqTrFPgtz5xJDg55nSuThIenuDrhgKKMR5E5d06lp2NK2ssQZnUuLgQtaDPDPN787EyNpxA1fWwIRL6AEL7yHOn8HhNtJaIYBXIPrdEUhqZ0m/njthR/BDLy6LA5hJZ7Lh0SFnjePXFt8pWdxMEtqOBuX592NKBoriiGln1Lf1H3YtQwAYtGoRaguMEGN0sagM15CRjL1tUU4rsHHNBi5cLt/mGF8PV4pTN2lFENj/ITwYs+j6wmu6YU4CpO46VMYXccpCUpAiz6wWvOzixcDrY4ll5FXUgs/S89wM1PdryBN86h2hcvKwH2aACCdiZhu+Zf28d2hDmAnvWkixxrTsHvJVn7u4OOSuv1J4P6GsDb8hFLJIdycG8Huprsu5Irs3GwiyqoP3cbKA1tazAFcOIL+7Fw6SPB9tXLYnY2yj3aOQpoTvNZjfjw3N324I+d0Y6uf9az6eAxvYz00WgyTZBoYO43HomEHCK0cgsEjNLtKMDakvrLg92j3w/mKW24b1s72lRMtpfeOrIuNFXVJvdhLP6s/bhoBaUQs2XZ1KfTXEGGnnNNnTLZeLxX7dGBW/do6orl26UG7oGVU9+jlgW5ArIOfMtZXd5eCabThmMUGIlVxrXk9I4CDoz1ytPNAj3+0v/ezn739iz/86R/+7Of/01/98evjfeZxf+NYJMGr1TsXGHuzOnWujjBpa+vo7Nxc/96nkx8ubm3BvTs5Xf38p19+9/v/bHvv6M5MSmt7Hw+ON1V89+v3v/3h3fe/Of10dvn+6tZLwbwm6exXzurc/cUf/uTkt6cP97feq3pycvO3//2Hn35zhOi//9tf/ervvjfOohBXNO5WOvP5H+4eTdPQDq9ne//hypomi7bevEH5zu2l1diWCz+/fHV0eXF5eHyoFbm9feuFTAxI1dOK7CMtTFtxcIKh+mP2b2eIQDCHY0jVI5I1EkByvcjj4/HBYUbKsjwdezk6dgTTs9VHVo0Yelzbapw+ywVSVWk5Xih7pw+5Pp2rAGuiT9LzoUZw8H4C2/XIhVD9djNRjD2xAo1DNZTByHFm2vwD9BhMnZN7qYc/eFY13sxTd7pZ7WjJgseGlMtT9lyJAPYZVLStpHK1Np/lqeIBnztqKVvJ6WOQG6CpkL2Ffp8FTm2n3ZWoiS6X55X73FaIrKtVYv1ZkBk66l+hGP0RNbLLxrVdZ0TJcqpRurhcGzBeUHhuXRQFKWPXiTV5MwPjDs7q/b7ef7fE03u96ssUoPOe+DTxk8EhJjQRRz2sFbNbdmfXmNdBrU740UVgAcWYTq11F7YKaFoTneu/vXUtFn54Ni6Vh+UiL1fnL0zs6Oy8tvf56WDPVoR6aIv65MLMUAnluSb7jNm/0GG2x1NGCmO13r4FNua3tEJBD48ObKlv/o+ELfV0RvDu9t4TA3c4493R7oEwC7JkjSN0UM8jzLZLt7cHWvitlS3vImATjpeRgGALBgk2Ppl1zMNwYvjLaq1i2mgTzhaP5fhRO281RBtBRqlVTPZKeSsxu0GRqUdRKAg+OKgYsLpLrLic/TZ1iC2HM2NBtcLN2ZTCQswhAgcrGOpoV/gv2nbUUm89bH5j+6YdSg5Pknq3BTkFxh+OtRCzftmEANflvOYsF2RDKF0asbWBak76T0l4SAY8qaKZvv6cGcSdnGfa7CfnaRZCz1unzBB1f4b+zaki2dcUnref484pIuar0bwfzDJcStxIQ+FsrW6tKsqEqmCjgN5T0xpt1eDkawnZuNq40byiUL66sJ3WDAbyPwACbY0NbZR/UHHqwdaWZXtU6HjJe3jW6w01WsSsYpvhia+IQcPHk/O3r46+/epNA0Ua0uCgsUG4hvf4FnhpcQxcWwvhdd8+E5m4hpgKnkJbAZjkgFxPanyAZdLIp2LFhNlRm4mDwXzq37tM26WDfWvRsiaK1nw8iugwSsmn5Vi63M0PxKhk6lJFiHi0+J4FZ3SBkxTnE2cGsiBqiM0AA5eI+gvzXCpwMZD8klQ3kqAwtfXMAcsD9W+8U4FoLFynl4riPEoHJlAM+tDiPqNY2l1jpFjWl/+aKmv8K+Q+hz8dTfxdQFQwt6wWCL7UCo2PyRM9JjGQyKJBWpTF58SCInxOvQFdqscpTJsoYggPJlAaiHjMWXqBNQPBoDAUfHqjpZyCVRnO1VoYLwgBgFkcVho682Uj2soAxC801+NJzUilFHEuNCIdp+b+aM4gqxVPo566z0hD+dBfGFcQH240KKObdTXaqXB3CCND7XtGFQaAWGANkxFNtyG+NNW10KqCeTreyddYEbu1KDzFtEUnMDPuwC3AY6/sUDvMd272uxGtT4G71lT0K8xTWd4n5iXvWvTF18ExTs7H11QkYl1M4D7iqU4GMJwZzYBwLqagPxxA9XExf9OGaoTmmt64R0ndmE9fY0cJLb/R5bcqg1TsdkNNPmYpprFWE30eBQHDZyldOXBxPo5Vu9Bqrc2ziswX5CSm0NMSVkDSXXzVZUAK2B5lCoO5Kh4DvMQaC3rTFs4uWCo/iyzWJRWuPr1/lGu3aGf7+e5K/2zljxfBXouDV6tL79gqoKx56/Z//Hh+bjVM7/pNGSCCeTe3LOfux5NTcz9PW2/toCURs+oy8LJx9e4WbTtHR/dmeXFSkY1zemNjGKAsMKAN5+YbPGqS1iIz53vo6jZk4q1KMYSwQNnL8mjaobMyzQb0usw8kTnVuvDtZ8cGOfLbhjHilhKEng6eoUAWic7yubUHcWeG02SwJPZ6ic+uGYyRnOHIk7jE6/kkL3cPd05PLwS5Ah2FTRvIy2hOezZKOlcE/1887nz98st/9W//9evXX21s7l1fXrSM93518fEDvho9mIKXeDz6+uWP//D3z7ubZ6er337/wdJmYE4/rf7qz3/x89/7luGYl29yw4kft6vz9+8eVzfwvXy4lwWkHRjbavmnzd9+WB299rYDMxOiMlMou+f2If94++bmVIfx6fzciuT766u3b4/Yzd/99x925TaPDsy7fPxw1vrjK68o2jaour3yEpKE8uqwnR5fff2lAfnVFRFbrYvEzsy2s3ACQWPCXelHfW8JwokcBT31uwTccqre7KMKmXppa0GKEeajVfv5DV2y3kR4IdiyCsGGjImDEj0+UsS1EeFVRpYykhrL0ZDLxfBrClRWlp6yAwV8YRp9pYFUuihHmbQhlOTGlnzQmEM9WgnIfEqe2ScbzGx/5z08oN19hUkdhubHJ2hbldql/rntUFRX7XBVbv677zO/5u74Vb9qzJ/FaUzbCi2+q0fBqlKFsuV16DCwBtiA72tloNE/Zee7hv4JwFzXtGL1/v75VK6LcWndp8lKpPzi7lzTC2NPTBlvmncVydEhr8uVoQZK9wRCyke+lrUYwGMyQ9gwFbb3cJVn7kz6jrCzqMOK9uuUh/VtvqCk2rYdxRYXpweQjFMaLXQx9rORhkmn2Y+PR4ASnT2s9o1Y8rNl6Y/9QZRNkkWysZU/WtEdaVdXXD84KkHneQB+o+nQnY4fJqC2hgg9t1/0go65q1NDtJFAL/vuNM3N/S1vGjE13Ys+aJojxMTiOCA+BqquSbCyuS0Kl++XZqCnMzynZAVh/Ixjju4ciLTjBSN2tpThpjFFnEQ0cmS2dugaj+CA4/zTN1x+9CZgYyd2QD2HCNkZgjBTYZn9nnwwljdj0OuHHx85Icua6IasDD5IW4yGCC2K+Of16rZTV1660WlIOgnzrF4xSq/rgutVqWwvWFw0wqiNOpgOYbOsJ8ge1PmPLWikGBe72i3gCYsoJNVdKpuFjRUYNkhpNWjJKpkeNjIvtXyFNuvrUXODrSktLUiuHftaAc1qjvrxRQaZVLFazbe7YMEFFVjqp6KZzHRzhSypcyaeMSq12A7sKtLNZgjLi1VmbB3SEzQXNadBACadcpGLbxFxaIf2eig4MsrCcM0YsXr54m9//OjNcV5BqekBmiHDbBxFOQXCrTl9HmUdFvumIUqpMbVQn98skdGUkSLWX3a2RmZaueQz9ihwFn75CLqYD7bU0MDkC7F3uBdwugQZtCA8rhRDjmMqYzvMbFqsUK04Fq5LfCw8mwtIaaVryBFuGMTPuemXJv0eElT2fb6yLMT4uINduJ8/XIuG18oR8bNKQxs3gK0uVrqfPUGVdCEWW+AWAViWS5tGuh/yHnT/c4Yepcqr1RhSzzLGJW6EFBKUn1prbNVKRcK55yOgoEUyuHO/JodbCy1LcaiF6AjO/VR6XGW1wqhgfkyphhY2QjqKBmb4aWH+uNWiOVzCoZ4qx6Gk0zAO3NJMJAagFf8VCr0ZeeQRWFShnlTMrP/uWYPC4uC0c/jredAgVON+ud/wLrUpJVAXuJ4QUJ2B+AWCtsQASsFmGB21AGZY3fG1lCrM4DdzBSE8C0USGr8QqgghxaK0NBAmBve0NsblQ5zq3RnqoQ2WAgSuMVqV7ONOmOSkEpjrpAg9wlYKGpoea/G0fFWf9TAg/erQT1qzVGzZH5AsFnqKxfJ8QQKNR8PyUYykgFcATnM5mrg2Oweg6TOFU0CPkkKtxPxkmxyrwHPF84E/jzSa01Gq1nFRadY1EYxStT8UqbIgA1WQWUt3Pg+4AAAkuGlYbanq64Ab+/xcgIdVd1GSIA4y/qiPbYOpX7BIWXTo6asRSIQSrgMr9jgjxaMs2arnr7SVLq9cXe/n4uBF+jdOxr+5v9bR8Fnt2rTK/8OnEwfRmAcoo8976HweN16/Pry+vvQi3qfNXad+nF2c4107RZwccifhtCeJLg/nrTwCPuMBxmLlCcSxTseMS8JTMsWY4pK6JX2cjr+X7N5dWyeODS07nexCs2HKYxXNMVHgjVVO2ZGKlN853JXi8nrO24P9F/pQPZCwADF6X117/B+tQD6Y4DhsVBKtF/e+fEm8DqspJfji0HvNWqFir5ujBSUjE+l0ZjY2SEpdGidsvdl/8df/m7/4i//w7w6//Zp+Pz3cUAQ5wh/+8RwI3y3+2Xqx7xShd7/+/tOHj+8/nPzNf/6HT59WELWm4fXro5f7L45e7Z1/8p7ia68+WF0K/y+vL2/lEE7OVg5MenyxbWajt/J2mN3zj7/5cLD98NXro9dO1z88IEId+enJhUX+V9cXFjKfnJ3s7u94N/LH9xerq14t9vju9IXdt+M66Zq47NaLSK2wGheBi69eHpPI9fm1fQ7mKAhcglAxK6+27wV2dntgZGt1/Di90RImyktk19dXuGV5sXyqZGTDf7sbrXvu7Um+lP2lXUQsuf/i8IBqRcYongI8QzMwj7MoK+UVxNDrllXwcYspGTmkU7lvumnkVsdGbXmhmvBoOgASU1tDpOvwKeVBc03NsYiklcoLDRPEJvBI+7PN+Te9HSABh7cH040VDI/fHiNmUkGrVs3mHrueTxV8APC7Ihnl+uIzhOoiw9eppIAPr7E4oRQz2w/iGpCvv/t8hrkgsMCftv6p0JTGxuCMJ+miJgcy+g2MVC+MyL1gME/vsimchlu28DqF6WAfxByBOz2L+YaCAAleic5g1aWXXjVNMD7fVlfFRCyQ59kYkQy62T/dg9kDpwcwLr8snQfKOJa5wUzTs87Hwnfdejxi90LW4709awetmhE067htFLYdxYYBqQMIkNu8ykODsg/O3aJuVPXJqb0+YIIEdTozK/VRdIUwJdEiWCcwW5ZSqocH25MwoYm3HfEWrbs92j+gJNfjRdXSlXllhn7YXKZvIrKoNjMwryJ2pOldg5Sng44U45e8P9gKftw3XfDoiB88k1agyxyeJVVGALSXxhtK472+sulT3olyeinB/oFttZiAzwYHTWNsdfaGPVFx20BLn+V0g1wWf64gWYiXYx3ezUx0vpHV2YwlfS49bapEXabcoVuYM9MLdXyNjtgCyeK5kTzqAShfzq6ZVaGyHQJjC4V6SLIL39lE1mmOdtNYhEw3FNsVpEyFAY0k4NNokyYURYyzpZTV8CnuJQp4YUKqSwSKQaNgYM4GhAYM/RsVzTgQtV7rkjYWl2VzZL1EO2uLya2MiwK13i+FbznDhA00b9KpjZpuvSmifWU+MNI3+KtuUw0mvXUegp6i4U4GXV3d/fDu08HeT2gLx8WuwEZru4iRhlNDIDhDFLoKysFlgIsNxp3mIjqcEM6sG4MyvAmdo7+ow50iuKpQ4HUOVFUKS9aSM0TuE2UaVKX1TcMKfAYVNoQe1KWQqj6EPh4ybg5k0drwvsdryY3/4ZZQVuWJoGjAhB/dURF1yrtUzU+FQiO5wHZAhVkFxt3oBiZ8AzOSFRi8Io0txoK+gzSZ/plISUOiLKSGb3kw18H/7GXpCUob4I3n96TxD1bH8FqetiINeFVpFhXtwTRP/+JU2jJt12XM5eKQ1/fTT/+ojWdzGc+V5Oy1GI64rcoS7AVuYUk2M6CrVh635mfQBr/FK7tZ8eVXnOwbHMDFuvrCmKhwZC/RZ5K2/a50geIRMgNcfmSxAfaAPe633FlNs5NN40ZqIy2ozKfMcUtudJDB6B54/oaYy6HHTQ8JvpXBDQlKPAKiQKXmqJwoSVPcDWfIBEwpTrdrsOOdWzPTMN0bLWxav2FrUUEGkEb5CZW1GUwz8SSsUr4xBt8DqV8ZbVA7NiyPMp2G+6lUMsiYY17GlI25IrGhNCJ66tk0qZbyarTAYPyQp0DEfKAgJjpB0qiVUHQNJPjV1y0NZ0HQeNzrrvrTqN+L/aevhSizThqIkEv86dbUcyNiMIsydTsYUTKFMTgmj1AGpUQzitjIoWdTdAaZScXN8BxshcUFXVOkIIYvK7gKmK4HM9GKCmoDIRPKTGZyNgo64npl0rfla1aS2PvrbLt9WpiAueFPH1cCeT387dWFfWMHzu7oTO7ni7tn4f/V5UMZJmnszveR6xLKlwbLg2m7sCurdikg0NEINJ1CZzexqXPK6XQR6/PJbtvK0jkK03x64SCyWsEp8ZAghbOcuGluIwT0+jG4KHncovFmCuwEEBU4287QogNN8n2YjMVFFnwx+9AB69t49P3DfUHA4eEBeRcplmXw3iLneIS1+NZQSShjaCFzIzt54KW2Jqa3nn/x1et/8x/++t/+p//05puvMyTDhbtr6xDuVzdfvj7qtNLVnTS4sMaB4ivbdc+u//5v319cPWwdWCm0YwmQvNK3v//19fWpccLdzaV3CzEOaxjg73TTS8dx3j5JQnrrrkM/TY0QsaHv9+8uDu1K3tp++9WXZxcX/L/Xr56dXVr645fXDB16X+nj6lYg01i1NJuQK/nOeElPZ0W2/CFivWft7duX1rl+ePfRrgY5uvvHC/org0unmS3PRxsRF+eEL5Z27dKIonO6Tz2FF61ATgqpW/fE+hbg3jrgxcpyWzMFSBsfT+2oeyWHWrxD28eZUmYsxvYOChUDifyMutqbVfDZGm5oBDiFL9wf1dFE4+e6YQqsD84oWRn9URHIMYQSRdlLyLPR8ZbUfxI5lYFtbeZ7Q7uubcqAzt2NYeZDKpSzG+8xNUAbQwtWVt9nTLaK3ci/ddGzKTB2mjtyZ91sdaqu4u+svcLzxa2pHYP90/r6vsuA1lxNL//WjaxrD4w80BTgMcIEk7vVPD3HYPCc97j1Zh98jsN5UiLjqiz5ANU4Td7d8fLiJHfUsV0LAczh+HjvcmVRfit/WKiNswAzcyKSCPDSDwNCA4PlZDn2J3I9noFfG4jJYzomtmoiQdZa19aRlC2DqW+y0t26QiEacbJXmBEfF7/sxKWEkvok7qYf0Izwd7f2zUw6NjQFQCE0Ntpr1IYBioRjeY52x6KO+nHVB076krswDuEpeuHAnlq5Zu9q3NjypurCyskl6VjQRxXPb668zxhinAg32qG9NhfZau8dw6Y4jPnNEEiKcxDg9kaL9r9yTjet5KbYvSKAB+RwvE7ESMAgimckZoRz3Qd7hywcePPzmIylR4d7uMSnOZMA4+RQKILlSZ35ubFzLStRZwpo/TwKDU7AvLq5BnJ/94hDlr7ADx4XR9iO/B0/AAFTqeo670tt+7Is+WRBtvnCHAIZkJb4hgJynUKnOeFNHVkrdbPxpROmOJwl3aCA9IA4KFJAYJL+stCMkVDqTNsAAJd0FquT48T3cb2JH8kiB4Lz8NlFlqgSUMwh44Zk4fUIM2sYLSoySeA1Us/oPiQzg7aB+Rui/jJGrS6gwOUvZEw0ZxNGQp9gLpisQ/W2UM/+lgI+PiRQJ6ur/Q9nHbEw67LKeNYm44X8Z/Pruo+/7ucuYssSYsaPSvpPPBP/YJwy0CgPUR4T2zGMoytKqWnM8j317cisCo3hJx6AZohWi50ZM1yqT89gFGT9pKEilnuqBpRVn/b7qzm/9Yk1nucsMOvOmqTKuA9wpcIzHno6N9c5l54NvXjnurbCPxz8DUDI5I2r1QcQNQZP3jvxbUoh4j3Ouy9igXzV5tFUGWrTiuXz2X36Fid16wQLVvCRAs/hU341LsVJggDcl4L4uEHoMWzho9/dCLmYHY590ovkWycSLfU1FXXV/z6eLk24pW7Ah11Bzl0OoKXQmvtVqiZTQaQf3jcsqsEFA5KpxO1O2EwXwyk1WnqmUdLlPKP16bmNqPBOz05/WOjYw0wOBHJGmcuRap9X0uOB+zkU7qkFJ7mc8OKS6MTIGJKugUooMxwMs5BJX6KAFIFJUXWVI3x4tuTGZIW+cRRO6zIWnE66lSOeoUKqxtFjuc4kSEM4HRtKQwQ5XQc1EY48ddKqVD47x2jFE2UG7xLrRDngCudwkfDSwj4jZ0gWnRSLqzOtB4qrEveu516m0fxUMcRnvVk68o3nw4MDASKYCw7AjkpkDCEx4QgHWCtpUU+5dZejd1S0Glqsejrah3kPQZHu5oJb1758ZiD4PvjWVi8wchfIXUML4lxrS5N16lXNtn1zB9RI1yOWOBa1dOQCGkKQTyEsnYYKdclEbwDJ1Vu/fiXR4WzNeyu1VxbjiEfvVICvNeWXl7fWmLw4PHz36w8fz6/tHF052keay/uwnPLmdTn5akvYJbCs9VwGJPyXur2tRjBBmZEFATGbYa3xgPM9YBkEa3f0WOjJORJh7/ZaqIAm+MIRyF87idIABIlDiI5E7t9yAhYgRxUOxTFakABjFhGrQQ4Kd10Drr8pGJ7Dju6NW85W3vvolZ/cPaF6ExDWsj/Zfy2gUb6QlKfrwyUR74uXL3b+8NvX//t//y/+9F/9i7c//QlHdHtx1STBhnHPxdHBzqUXbLlzdHy/+Xjy42+vZPUvVqdeVvC49farNx/Ozk4/GR/c4sGrN8fmNwy6rs4vHZrqHaBEc3p26n2m10JgK28u7+4vr9y16Mg2AJ3ylRcuPNx8+GjZxvPe0R6wP/74Yedg7/zSAAoTdh3kr/8nzQZE47hSpVnP7c/ttdceHdvYIJL/yTdfvDrad6Kr0/dJzesXzA7d3l7aludMFWP483MRiDPdYyjJUhVa4xVjbK8+f84fZDSUR5TGCHIao7cynnSVwKmH/OCXb97ILjPeQu7p8rU/iUlGV2azSkRoB/csUGZEximZC4fJLZBkTmltv1qhEvR5aYtijJNRXqmUhxVkKuPuxig9qAoIeZ76iZyAr5mEJ9nLugAUs7K8XA7Wx6MpXouLw1wK++aWMllt0P1TYAHezeBn0l1UDNrTpnIwn4qfq/Wo6jU1pSNtGlRjuddDhXzWf9d/NOKqlhTtF57hcl/w1B2GpmJApjdjAhTVsFwvwxr29veRavQarcWatvjv2evO7+GzAkzIChxweXdPjSTBzqzkp2+9DRC/uVynxxTM+LrTa6FFmQ1drQCkHo6iXwbtjbd3dl8e7RvWm7Vj1HzT9uPm4Sy/sdrNSvw26z48v3ppgb59K97M9Ly/dzgxACVISZz7WTSdeHYdkzuMMp5Nr3gY0ZbDCaiSTQh2I4jOE+7oj2AeNyArkSHBYCiKYr/NdhW3exHY1Z33cOvDehmCIAzPAH3cOLZbQOEJf/WZRi7GCoeHuVypfaqCmebrhLm2U59drFpHAh1OR1iz08aA+8cbBnT8Yj+J5BhZ0vPR8T6raajq9YOZl7WIKf3Cc7hZGEnf5DoODlV8tJ3BYjqYXD0+HBsYSXLIN9i3oPd1YmaC4CGlG2zfKiS309dkgoEBpSAF2RB3db1Ifry+UcYUIFenc0T70htImcxhdGMLcZTbKCYZzqdRGMiCIAtJ3TEL0zvrjhXL+CrHAFu6XK/mwAdrtZpt4Mg6O4EbtZiruIo/bS/uUqMRgpvQoFgcIIThD0EjNWTV39d5TgpMOSVRXseW2Qgz4DnaryQYrkUacG6nEmuqa6hr37EQVLucv4bFMPyGxaqC0An4hKS5rxxCAx50CV59sd/s6fsPFx/PVkY2BrSOtLbY6+glBdk0FIz3jSKYRPowx+PM4qK4Tkmhl7gRlXmtm65bFz1oxaiUQRGlgAQVafHoBgLRkpYYG3O5GIB8mkzrizsiEq30OkrLyBQFq8udwqcRBQbFlXrb0kBZaaFdLrh4L++S61J9Yr+BGs46SNBicgAHBGAzToBDdyaYHmPqflJLbv3OGPMzSVy7YHRnPGpSxN1+5+FUS5DWanowUUEoIWkiZNqlaPROHez1l9riiYpgLm0tFV0jQW+ViqxFqHZVql74lOtzGTfwq3WnwfdJ9KHNKquS/IfqHoWXyuEET180nNFMmAqPOim1p8BSPZgjqWbkxtQLrN3EnRoPo/lXT1aE7UsCq4FkP8Ir0waomyqCG/b9qff1h/D66nmpqGZDSrfMTFZ7smZlW1kI42zzXI2+iCsI7AUC7MrvfLZhJEseSZikhOCou4cNH8NMnVFiGAw50ZrNEAPJgJP4WjsUpbEqiqAGgq96HY9H1nVIc92QI22bMokmRSxWVptX8BUUutsSm3xWlCqW8LjSRjiVXFiKBdTSd12XevB1X4YS8qNy4Y8/QzuY5UGREcqDJByG59HrPgiMEdUoS6CeNh6w/ODB1lRPp5jWPAtIfGD64yK7GZBCreEUNPEnE0oE6WRjj1Rn2kJydNZIQoeORns6KGXII26/NaaGn5icEbpOnYpkQ8n3dSmYpcphESvIt+tcxohSKxpN9aMuZzRBUjhVMjy1dXe9ekEVHPxj92o723afHnZRqTuXodYUWgR5Vyvz6i2zt4h8dX0vSe/NNchxDozEudjV6XelV1qYmmcPrU3nivRWdgrFIIgS55piaUmA8y4cI+iUyTCBMP3QG0VtzIZtmNNtitE2s9a1pcDE14JfqiGdqWscWShgINO8O/GQVDxAXVOHOg79Or7lVfRNtP+pcYVItDNxfH14co44fTw7W1EIS5yOvaG0V5A6zMex6NKhOoB9vdrh8cG//hd/8df/5t/svf3mdsUcEpAlBBdnn6zMOv3tJwMeg+Gr044NF0044d/LcS5v5P29+fj23KsGiswf//jbb37v6y/2dw9vVu8zGkIY42ISDv6BsLNTHryBYVKsZAUF+miOxfyAw/1++PHD4eHO2YkDk+zElHhFIX/eISRc+KzQkLKVJm0lFShWdbP4zKot2rffvDr+6vjg+PXLXgF2d//p7KpwZ44BofA37q7am7TrpZ7kSBKjTFjhqdEFhRPZ3FoKxnel7yzP+M1a1DkJhL46JvWACuGPJil8oy/yWOJRKslSU3GGYLkRg5rVIw0SCVh/w8BJn/jaR5gfIzbqn46n1a7novAjh9Pz/BT9Dx92k6WMwtW3qzOC735lxo40gSNjFNAAoCqhlL1m7XMtfzKZtnqO1NKzsPYJGVgtdab9aofHuIJ/+jMV4IAChXs+z6qeOxoAY+mf7/fE/WDCSpV+91nfDIgC09b8XWMlcbNAV7oKnLwoMOcy3IvC4S9KQHI7Y6wJTsPZThOwSuB7ROuKyTafD3ftOYldepr9zqN5tDbtzctjp0Px+XYCiYqonG6IBvuNpKUbkj6GPkPz+jkKsxh4Rpwy5NXNITi468X+3vmtrbdGjBavGH6nSdeX3Ejp8AJTb4iyRH4W2NB0QS0I6Ghn7aPdsVSl/SoYKdUkosrGCcwe2XLedtPuWayEuj22bDGdSYYXnTYmshs36PWvDX6wCgopoS0IVup7UcDerhNzTZa1JufuynSAWLHxQXMdDTlsmhfx00RZDG4kKaLOi8zs+mmOrXEXd/EgzpTCuHneNs1pad/15X6HqHmboojQu/BuCJeZHB6aBzDv2DynlJeldYtMreTtFZu2GZgfcBTP9tahBTkOUDbf+OhEV6uSaHFdCQZCwSxKHXU/LUPy8nKe89EeiulYjJFMJ1phqDxxa9nvdmdpbfJNGVmzCnqZrGNREuxxh+0bHuSaO8e+iTj9/FgDRo5uF8tIVkwmjoQ5NKKYiEJihTqN15+cFP+H14hqd1zqEK+UzBzqmlN0kh3bBMFTVGTHg/ZYPOBU8u5FWy41nLorzhz13S6A001ofvq9sKZY7nMOzasUntKvlNCGb7ECvSxNwDBYyNiooYIpnGZfrJ+SqHrauLi9/XB1Lpbafrd5sLvz9uXLL16/4iTT5rD2Y5BLrugopoIw3tMKaCMCCd0v+uoFQQhoqm0JbChEsU0DUc3DbOniE1Gc8ANmrgABmIPLUM2vQrmPAq5qxW/euKgjmZZNLhAqas+K46sS/U5vsCTj7xPPa0zzfgKlxPhJbcJfAz2e+Mo13xCU+QfhiagBGcgVBaDCoQG3KHA9AkgEOBGBIzU8qcD8QyNjGYFG+qDlYqHL1yRM2/FqNKEylF4T6Sq6EvzgOfEYBJSgYMgcAus2jOwXcuNZ6PN9ZKuNBffQmwJDcU0OzxVIiGE06A398ayy/0R1ZHRwLiWIIGO71kqPYFRGfyAyu36rV4dKPH3m5gIrjhfzRRg9Lij0OAQRpzf0bagMHWXqe3mH1K8su34tDRi2uqA5sPQVz7Q4A6nplDUZtghOTgskOqoYSFyVZ0t/P7wJycorHN9gm/ZUMQ2ayb4eEh/0XIR5RNYftMSwy2oFXw9R/Xix1j4248tIsYHy1E2PYdtkAhTjdMqnkvu+zjCufVe8J+DMdajIYTOkSJ7R17CZRNf4LHVDfkACRwcGk5A2Wwp2T2Pj88H+PshQwH/Ngz/GsTZFEomoWZeGdBQRQwAN2WdGTHmYmGfI9zWkaZjuHvcd6TPa1miqzDZmYWgKvWZd+Ey7i0crbk3WuYl4px7n0lBkPp4Mh7KzQKe4kxXQ0phGiA2lKRdupMfAN2rK5JyQgIPWpOrYO83NYT7XDgClbNbVvHp9ZCV6Hnjr8fJ89faLo4ONp48fLzpdzuJv8wMtCG6NCj4EgLzLzzzL/MeT2rJ83Mu0XuR04xXn2N5QvIUYIepQrQ/3xLVH+ZcIcjBbQnfPM//wnBFpTdypHbI2AY23zT6PVVhBo0fEJVzMvTYjDEA8ooMsJSh+JQCHc5dRs15ZZ28g4KHjdkAkg2b57x8+PZwNNoblVsbbWnDxk5998+d//ed//K/+5cP+SzVtw01d7+9vVrfynE70FxYIm/Xl2reTTkLz5OLy5Ozu3bnTfa7tKXy+ebImRwrpD//wp6/evr26Xl2cv7d5YW/7EMnnq8uPJxe//u3Hi9XtDjUsbN2wKKhUJqaUIbOQ3uBAdtP7zh6syDLfInFeEDTdQbphGmdn+/Wrt+UUieLhUv6HCFRlfCb/v/3mzZvXR2/fvrZE4/T0NzdXd1eXl1oz+sYZRZ3+Kos/wXcvqXC/kdZoJD7nb3Sc5ky4OKZiSwZBGO5eWQZBQOIevi6z4mgIgJ6gIg0/2LZJ1IVAkDjySg3nmjB0k1twcGMuiPAWvzFaxIWuW+z4QgpeCo0CKAlsQ40MMfSSHcAkXkyk7CQIUyaXS4FMT4sKK5kq9lWDqdbYs2L+VtdzgLLPeNgaOpcZE6R5Y+qSMoktPpf2dPHSAyEQYTXwMtgF5NweT96j7i2I9K3vUTIllxvr4nMHQ3s61Hz+O2VzPlOrRoaY7Jad5x9wafIpqunactrcnOkjwWtn2+dOraJJk0iSMfV+2R1fA1hAKX0YWGYud8CTevEFvuZ+t56toONKKPnewYEjO+NgU750wJC482m8/laAyQHYGdJNsrQ6xuE/197JvfXSy7aTzuPVjci7bf3DaQv9d62KM3VASEgzfLAAnVqjxOm5Nh932KwlGXOKIojU0yN9+96OTbH3SLaoyXu75eZVN0o1WEW+6Kws+Ly8zDhCx+sX3ExZ0vbxezK7klHCzQ1mJcjLL208vX5xaIAd21oNOIvF7+7tFxpptMAGh5lJ0x8Hu7YHY/vhi907LwDx6m5p9e2towNH0dv8/LDvxFNQ7cS9uiljNYtPuB/5CV6UyTU3x882NK1jzRY41JTn3ssNpCPUYVAObRJjOBhBA4RvZCOIrxcYqUHUpaaDMhfm8RqDPT7Z9o9XxMfT7nmHo0jcQKv8HdVb4ocShXnmwhjxUm8GZFDctSoWJjLG1LRYN2VTzB5B2gJPIrbci+qAz6x4bYLBtjJB9Y2TqTUvwynk6ieo0CW0AoToGRgNrW+az6LnqUA0THVNsRdtKFbaqNc5gzQ+pLFTmGMVz5CuZ3SAlHb0lRL7EGImY5DUYTW+pfYQbs1hHZNLPxlZMfo4EU3nAzTcAkpsb6f4xe39uberrK6PjYD3dr94fUyTSowohh/jCoKSn6k/QiRF4uMMfMKprS+eZ/2DZIFBxbXOBCe3qzm4BSSa0v6wrYYqPghcqnRfFRwyJnY7Ti5eBevqTX2tCj4EeZhLbhpKdqkKV2Fgpun0Z/xq/sptWNW0DyFOpKpo8GDU7yjAKBd57Bx73FMxNz66twBRGC3TAVVmEG7quLpBzyf4A/dUN+AaxMbIV7qOO0PgBAz32zYGu1zAKFjkRfBaWtl0XA05v5ZStTGKxWqwc60Slagm16DAsBSwQrjfQXARaP8qWzQyypCqaAKW3XVRi5HiWo4N3rUR+2YpXrwU5w1JMdlFZXKU44nYSvQjKSgTnlY+8eTKB93aiYqmuSkhh7not2KQibgIU2MUOGizDtxFCMYLv6vYRc0M5uqk3PNT99DX+R0miVwdtTLB9v7HjpHEgjDb7oHYAqXRXTkokHSNBbwOMopSnMSMjzEnwmKlhnneOBej/UonlURT9rk21wXD4UxsWTS+XRaNYkc7QOt6YXs6FPLaADz8wiYOLCwNSR9+YchLULVMM+CcLKAIF8kwd/0MieEdwll0VAMXJQvMFmuSjtZqEwRiBRX9SmCLz1CYbcCz5hZy15RzTEsco1HyrQ+AmmLxcD6qZ6E5lFr1N+kMlL58lrpn7sEzzOE5CKxBhPNSF5WpQTDDRH9JEQv1CEiO2d67k9MzfZ6A4OjtkZdQAHV+csa5v3xzYF+w0/qOX+5//e1rL6CdMcDGleMnnC5/+2Cxewt8m8dhngWdSyMRMpykwS2upU7OEYq7cV8p/aJE/Wjn+IIRmbogYA4NtHKncHz8KeYJ2Yms2vE5/4ItfjsrEOmt+Gx+fzGpxDWZlxAb4TRnkm7EuoSuVzNNvH/YWwqEEPbSkSDWjOjS65de27u/9+d//kf//F/8+es3XzMvvT1+esmusQ1lKYVq4uDWNMjVzt7hwdHxybtPH37z8exk9eHDqYM8bx4evCHIAPebn369uyvIKbcKz7evv/TeZQI8+3RxcXJdTrNYk3w3VpcXgjNE8+x1249eVXz/8cO5pVAi/qu7JzuE6Q1RQqNXH5vMcLKn1P7RIW7YyGskI96wycEeBTpxY8XUbIO4dxan07+9ivXwwNlBsoCAtwpfh7+1efjS2v2x3I1Howjkg6J7Ix2cT6ZmUWY2IFY3ljPW6mVhgrMWLEmBNjPz4MAhM0hIi8Ez4lUS25FDo2BnSkccILBwjwtTSzM4P/aiC2nliZBrIoX618ZpdNsH62hUTjTpt4XdQCI7JnjCzkQqoNUxCUrk2j+td2usL7XIo9aytqH0+VGdItXIcFTPCrteAx+FieueeFpbMOmrT234NxBBrwmfoMzP5wambMVDtLan6XX7S6GKTN1+r5teP6mWO4N1jyrQo8h30wcDoRGHcsk5tOEGPTH/VhJhvXbfGq9xg3Fd1jovRnAF6RAmBt0lpdJP2x8Mclr4vHF57ahfRRuKs3XL1bx9tsy6d2LPgf0zIi1ebFFWr84FBi8yNOoqGX94uN/ErN5Y7NKI0pZex2qh2BV16VV92o0ox05w12ldfZxmmTCHAb0Q4zGEcoJyJWeiL7evPnppDbot1Wg9G59mHC1jwvWIgBu+NbUgDR33GnjqGill833iVIn+USX3MaoJjDgh9dMaCduRR2cLheoTTZ8aJrU099HBo40hrGC02G5SU0u85w6/qmmrhvxEp7GxwRKn0+C5gINpIIq06LYQcwzuRU64A3cmnY6oECEa645aWOV0tgkYrbiCEdOxGNDZabYQWJDpNe2mKyBb/A1JCkHE3BUSsMi8H/7FegTjLTWevhVKs2TFy9FnWzAsfS9uzXkuZhoOAPpNXM3RZb6Ti5kedhnDs/ImAIt2PUYUG6qPHrXmS6jieJRFdIu2s5dZPkDP6o61oKGiyUyJAmUIBQDwGPvOPVc2GJkAAU2wEi2+8z49YUdD3dxkOcVt40DKk6o8Vsgx114KOHmEmpqYyptM6LAECx7TTWqThFxsbZ1dXv/qhw+//M2P/+3vfvXx1DtswtSj3HUURAOSuho8ZnBBxonZHWwpt6Xo9Oz0BjnQXeiJT0U1ZQ/7IKKKdXn+Lm4QBJSx0wKAwhLPR4VmKm0hjRkOewIOnrpcgdYDVhv9V8AdjVdgXMZSpYcJrA+aF8SW32qMWHM1PkAsBYajecuUuVqxIWYkhyJ2T/gZ1XUZfiuzdk3THQ+xC8xgBKRxyJolaQEyY1FOO05NxkFBQGKOhvyj4LWYnAbK0njcmf4hojz3aJ6G6HypOf+TSI+D6clAXEpCbEpM8UGuejVVy3l75eOFUrOcrsqoHYh1MMMjFatDv5HDuvxosZZqOIg46xYojlO0USmgYVxfm/sOvfk/zNW0L0sApHJx/+h0QAObu6fa6nDHS03QQzGOzVxeYdcybrZef1SztHqAo6yMCMRjJafw5vUrYKKh4UQ9MCBpgGF0xKzX6ig8LQz76AFBATdBLcCwCvL6oRYBbHgKpmvQMM1vdzi1pfVYo9VFABNZ+jYIuB0Ciwb0J+ua1uNG63DgFTrD82ieGF3rERVI61ZmobNnUR1eSa0xQJmMddOoqBNSvzIiiWkrKtUYoeifFrrrJ6Rz1mPcxPdPg+kQnP47Wsadeaqo/ghc7Q6qIizDfQWiGp6Lb3LBz0fwovy6z5x74uhH4Ww4RQvH+fErUc1DaKNZQV9DeMZgFMZDWmg6nliuvc7XKtj9g8OXrze29q5Wz6uVVSePr797I7HsBCDnd3fk3KxRwWosojS8oXPmdbJ8oDC4xRrl0SFLgPUQuj18FkseWyY/K7JgmK72Gp0ZPW47dbuRAS0SueqqU+YmRtbhIKg0GBA3Jv4oUI492UvOqFXFEZ4fL+Ac38s36mJh4juuydak4XnLNFJJyIBrzYN1L/MysZS70MCO4ZZyJUrriW0Q3N7ffv36YOvhmocwGnCK4Ji0sFt+8k5CEmSx79tv3h59+doZoBdXF6ubS6/+0g3L+n88Oftwfn7qeI7H+7dfH//p//QHJtuFzftHr4jk5GJlWbO0pn2WkoE6Iq9KhXLzPGVtJ34dv9mKrM2t84urevARM1EOK6yUILZCK5i//eLV8fERt1ECHqLTHyPWlRTcX/7VX3z17ddaKYF1cEBBqckLocOT0LDzQxbdwDFJ28O9/cbcjZ0sb8C9HBnRyVrCiFHYNtDMzZZzV25La+qg3cXWgg1x3KJ3RW9kuW8TopCwLL5evAQS4OlnSaNFUceOCIto7NnQJZM6ZWhyr5zolCo8Hd1oPRhjASB7TPyMwCciCLkdqGITHOlv/k0Z/11nF8HKOylcxRoaz1zVNKYflFUpVfNLu2M+mnVnNLAH00HWYnZHr0KBmVdoeqzFV38uX8EFx4oF+jMgDVXRLb9qfkCmvfNvueHmZ+dTgbgzcPzOvjlAzU19tUPenzpO99CS0UVEHUWFVWUveiNbNRSQPhfZKz8ybaQtaK0HkOnD8yLNJh6d+borV33/cOT1HZzV07P96GRaEGXFiIEWTDqit9O3GKRYGUYYfOnMLu8TfOHlHrd8DnWhU8aMVgAJ7UxaXV06KaiG/MblxpAOvLLnd78jOBsNOFHYPtddoWHry9koJovdDUUo2773hmw6MlgKyXJ3Y5OHi6sr2DgaiKmal4SeWvoGbDdq9s6BhN7NzjdjIKJ9rolWtoXBvlvbb+C9bdkbGxFS00qDIr5X0l92/JEL9l6Oup2k3PF9l9eQ4XnQt8tIpS5yYwY3j0/2TvD6lghhE9LQXJ+XClAhMw/3unKf6UlbEMmj8kZs07kLOY8G3m2rZTCFpFMYkXjVyxBBjIqO+SLHlLwFS2k+uyaUUDSO2towUEATORpKJLBCxjrivCL66xt9Ixq5YYEHH173VIK/QuGLC1RP70ysWJEVOg/KWGXsU5P0J0+rQFqWWSKyEFRDeq5WopbtCslF042tDE6az898YILynqo7KZ34EpKpsQIDbn0dH5o5gUW4geyPPd9KqW7k0shOpwSrOawYdUDpGdzho7TAh3BBNa213gKhIcsae8sbBQQvC8DbR6vI0KtdCcd2OdjLcnJ594/vT/7Hb378zbsTo9+FJ1ndWCOM0p+ZXjOEC8nPgTiYUReN/SSc7JSyRaBHqMKQ4XYlEd4nNuayID9SUjTTMhQYR1ZBHECL21g65ZcwoPJBnYq5lGaVY5m+Wtw8CCjiSTCBjMldTxO/C0V0rrOoYSBU1g0uIgTHoyYb//rpQzp+K4UNy00V0F69hcBSPy0V6RNJGbmLAQLz5TNYxR7WmgoR9rQYff4RW1U8pT6DlGISvTmiWopJgsFKzg1F6diAdqeIaLnfnXxmCCx6oqJb1Qt8wAbRdXlfsXEeut9sWohHgosFMdVCa10T0tXxq3IN0F26WelayGVH4YRu2Jo2g+bjWTfROTqjTP1WCM/DUJvr1iWDtFDEjTFrwJcfTfv4ppVICpeOSR5m2T5ly1cIQC9CNNfJKMDyBU0+ekfSwgG/GacyRUtKBr1BQthSsmZ8al+xBefYKYCeRAKF8JORDh8UiFFD2pq/Io9pHVymrZi2FBmBxSvYAjVN1K6yKqLSB2zoMngsj6NwUnypMRS7oxiYMXlYsW7LzeE5SaEiNRsTSFDkOnzuxlAdu2p4La9FChoJEzvBHY8zH/fLn8jriwmSbAUCF8BAktQiGV0bxBZ01IIDjob4fGA7MozY5aeyi9ZGI+YVRvt4Cvgi1loJ7NRNrBG0qLUKzUYTw/CRuigphkbPgUNhXh71Lh5NTZ7m8vrO8dmb9ztO9f7irbffilwfbX2z6Y3IR0UjS3EoiN0xT26aHnzG34qdh8leFbvLVUOi6E3/JXcreaZryn0Auxx7VeQNIjYFARX+zP9x5UZlaVUrT7qJwEJORJOazk9KHm/wEwbdb5jXRzeGh1eXjg0UEcp6OwQj9QXGcJ0yDpAGjS5U0wRQOkgStYz2w9nq//Z/+X9+/5v/0VrYcaCBtkL3zqa65xsH99ze6BHE05eXV7/81T9+/+57+y0cFOI8JOfri4sYpcw/LL86bNbYSRw6mIPDY5l3e6y5qSsLBW5uvvjizVdv34qgJC2pNUkJwtig8IgSWax8c7N60KgvO4dmXXQ5+hWZHnjttZHmbu+oCFsscHl5t3t4mH1K5RphGLk9P3z11avvfv4TnP3HX/7aNPbto7cI3V2unJFo43UMxyXRg+U61gFhHR7pSahK7JoVYthOmjhDRJZP6E8IkO6V9WhJCZebokLCSuVkL0jykrjSj/xMCXuLIwz3bD9JiIIz2kARxq0Td5l+/qH1ckUNYyglD4zpMpPxXemDf82jrhNLsWpkTZNTehUzjBzP9G3gNfJDEVTpg/tjcKkHQH7c0m6YZKqZI4jrvF1hUPVSjHHXy1MF5gffRhXzBzUd5Pn0N8tef/c3rD9/XcosRp7NEgCM/Z2W/ap2hV2MOSyA5s4CsRuVrpEgzId+ulWFIIQbMJXBVbf4sHEL2iVKo2B8S6ZWVMpqWw7hOTk+Pl7e34w+UKomNtnIhZd8fc6tsiF5a3VZHjXRcmGuOFdT7I6ROyz/YM8aGwZjZ7k5HwUgYpDPUflioQ6keUZvBHBiqOmp/d1jw1gFynbrdI2ehxfE0vs6OjaHmremQrdDMwjVLhe+p+N5djjbW4cZiA5wRUSXvPWwmxtGDtu9j7j74l5LkrouPJjILjtugwEgfvI8qsqGGNqagpvXge3Q3OeOCHMgj4EIpASVi4JRe4tzaDmmGSF7UcmhtT54/vTgPTpYIfYGbz+nw450HJNW6EUHJknKV0oAQYw4uGQV6rEh0SKuPJy0shCUtcyEnrHAjmge4sXl914YLLYsyeiI4hsHpsKpI0Ktu3pEn/NPj2z1LhuSNhfcZ9GEk26wxyLj2i4QHP1RhsyNz3Oz05/UFRpE8/n0xbNEwsRysBYFLMFFeq+8JVhJjS5kttQo7Rt21ndzSmRC59LpybVz1lTRTTBjWe4rd5XCQrDxSyagPJjpMlSz1jAz1PF7CQ+QP9iOko96V8QAqu5VLFHTDWsDUeMeQVzoj44OlFKa5s70L3mI/9OUCTkWeutKMMtp1COaHBGVf2yviHYpp67zfHX923ef/u6XP/z48ZSnw6OYwC5yO2IRUQc6eRg9wXA2PjaxOZJJ4ljhx81h4BrVQXjDW8wUSHDJN44hIyiJLq5MHcgusU1cUhi5i5dbXOiQj/C66qVRTKZhsXoZGAQxxg1q2L+IoW9dDeumbELHQ3f0uZ56ogkiTpJTzJXHg9siFFhW1dN0ouixhsHBelo4OChfPLLGYQ2hVha5BXhxbLUSev2ZS5BDPZiVR0O8nohUldzdAm0GvRWOyjRhjXFMdWPQC8A8mibmS5jHjTjDWeDeFF/Kq7ZQvTRNjz2kxw3Ph5Qq+l/VHFBh63hI5RVtNWG4sp8+zbZ5gEG2SVmK2NJA4826H1gMyIAC4cbABGyMMCMq64aIpEK0TKs8XGaPN801xqIFEgxRktfGQeYReFkfXlSWI4lnZgOaElcmDBnkHPGLnqprkQWqyykU9AOiSBEhyO5nnNk/qjOSCvBWM9epuihZcU2FFMiIgHbrTfuXvjRaQEhqAb40CjgwUczXuDSEuzmoEHMIeKY63CqSIHNYfe/bKFytBXyg9TtAvfKpqeRkQblrUZ01jSom4zH+KVt5/9GkdoWW5loqx+v2VcN+4KxbdXONUvfdZufgx+QaGVsd7MJRvc9ySTnn+WhOEmxewp+kSKbgoCVyiGii/DHj6JlFewqEZFMldSRhNY7PfflUd3H8haBwXsluS9/u7sHxm9fuO/HGLIujOOwEODs9NyFweTGjg42N0zNn2GyIV2WZ7Ci7kOzSzRwdYbtOCbYQ09HDMyG2QLxzl8czyF2VixXeDd9mPto61SSro9AvNiXqKex1p3TDdLaimOQH/sOcOOya3vhxqZWFad2ZvIKCZaAbAbbKjjhUl/pVDDcgwA6s+teiSxD62iqU5CbowRyhAJZSoiJmZ3FY17u9I3N3c/X0zZd/erD3Wg8xRxkqIg/ujZzXZx/Pfnx/YvWEpP/5h9Oz9x+Nog4OXlpCILwmKqRx2kKt1/vbv/fdd3v7L49eH60uT371y1+enZwxNmScX66oy9HBIaP5eHICIQiW7UMb22xrzpPoWe9i8++nT+dnJx+hXbRmPkLExl3cPAhTbKNsuuHk3HIOSU0sSukcJngtxkL03pmGP30kSJ3o6akVSm1GTKc8NGgxpLi7OzxqQsD9Ue0nHOFF0znrrzgSzB/3Vo4Vhh07SoAslk7l+nktYwMBYgEbW5M+tFShy3T6i1evICTH7wb1ZdIq8hZiRALPAOlt5kMZ6yeKGbS7V/uED/hiI/mU9cghc1IYwqTs41qdtQNRb/zF4JwZ+9qHzmTBEYnDvnf/M4iBMxY0zc7tQINFxwYg7cgkq4Sssqc9wLc41wCjUp77qRnlKlrhGurpNNfzbnavW/N7iq+rTGuardg8rTmKPWArv4DyB5umr+pyOhGYqAi6i67dDdXcOx4y8gTGq6cYdeHsQfTDSDxpvKlH2JZ9t+OUyYStX8fHh+5mes9eAsg67OG5P3QYvh3kV3dWsjum84BRtdJP5njB2CEwRWCN+jpgVMUHCkLi3virhGU/pCklbwGMuI+7uXUGv0GFLrI3TrQMQ+RkNtIR+tmwIeiLZiO9X8zS7IN+b+2bSshqNvcOOqpl/8U+62ik+rBxt3p0CK5Bs9EKeCJ1rXskDrdiz8SU1gs+W/SCJffehfbycOd+w+vO7rySvDN/Hr2qzxPuyRhpu0EELZ2cjs6OVzo8tJr/uXfq8UsQfRAQF6h5xkoubr1aoGjJ/ghxoDkEPoQnbA+/9RCImrwyIekyfCw+kSPoVKEs954zJn4FsdH+NDI1v5Fhb29Yejch5pMXDxPmtNiLpfSwHK5tCUuQxktQDUJPdnHJXmt8aMNfWsFkJjDVveq/pRQIq8LzDmZk4qTIhRoxuTSns4BSyenLCmz0mQMKnIx0FI7s+5sFZBGKTcfHVTTy4sybwSssGATWJtB11cnRhbGZ2nmKiTL5gwkA+O+1oRWRNdQrgPbJkQvi582+pDnrqXILbXcueAjVipTjC6LCyV2JNDWZNpZMnqZHci8eMY76LCrngONe5rB18NL8Af7Yia6KI4UcFQ3njZOLq/dn5z+enjuXOSzIJx+X2UT72Hjcm9g0v8iIZ2yjCZAgo+WYPSxRzpWqsIJADFdFcDWsgXRiA7uxGy/a6G/Q9C20e9SHC4r9gQ0SGHDB8mKVeWyBN9vsGmrdWapMfBjhIx0wa2qCWBwCM0z560Sfl+6j3amFX/m5xeEoOpsEghuweB60ivvdtaqABFzfkpqFo78earQ6lSnn6wK0ikVgj1yr25cKFByCM/xruBDMoNAQpfunQuwoLp0bBS1dueVmbFjIDL3ojbqhfZ7PcGIwj519YD5/QmCj6dH41H1orbkNZHYCexHJWvMUAP3Z8mBtLpYAjfKESieYCHYDsC596arMeuhOXegCqPUhsjaVAffo2LuZGjwENmAUBLZxA5LDggXmMJGH+pxvji2TFuD3GZjqblBakCkfcwImaFPbzelYswdcTzWHyWnnYCJSYTjK8m4yfY56o+WwYXkJYwKFRRjh9FkGI83kkUqMrq5b1C0sjBjmYsIQm/hdodpX1CUEBGVGeQq9gjtB8HW6xmDkuCV6+XH22eGPtFbQmRwX3paj6gNo8DLCwLtBWLwqpsxygmGgEmPnyo/FuumOArot0yYdNEFKNSpHRds8DV7VfDxcLlLi+QxJYekjwgkH9tBwrk9VURyGJcCqRY2GJ7SlWiNtf9z2X3dSI+OMPFxkCoQOiuo44fPx9tIFR++wTx5O0s37f08+nJ5++KjRVuHs7V7e3klv4IONvZf3z1afXtw9Xsg/58se4Z1ka0aXr78h4SK7knBPwnrvEWsfIbTNUdOEDuaEwJrYeAK7ZIYROpam4o0WbPay0zQR6C90SGnVLEIYL1DEafvZ0N6WYjoGlRkdWZ3S4bDUxR3OMVxmB602BTc3V7ciCSwVbVgxr4AehsJbRYDT8JRvlxyKFj12fdXD9p2jyne++dmbn//Rzx3jwcmYDbOhtjPHNx69Bk1zb7/6at+6KW3c3+0f7J9f3X76cKKUg5N0MIKN/UPnGPbyo7/6V3/56qsvLy5Pf/ubH2w0xTetn52dX56fUrCr69t3708s8hE8FEY3OiI9IZHpEdFxyQMjM+TmwBrklLjlhm0KdMiQfKTEgYCmdLvVFXMMOTLq0ra2jg4PX716fXF69au/+5U868XVpZ6K9qh1d9UrXsEXG9GctjQ8NOmvISaplxTKC9eurq40tZgJoZjGcBirGC7bSVWd7OThdC1tR26irPUGRe1Zs0YJGUneQgwrAp0wgoA6qdAUOx9OmUVoeF9kUD559Lu8aI7ZmDAbpCumJWeBGVNScG25RjvpSXxarIK20CxfMdp9qh6YRgvdUIgIF9X1XeNFx9P/pc3zCc+xRvcpHF+OhCxRb+tq6aFdKJS2Ztjq/dNFguqz6GpXueKKKefHdfZQ9fCZC+3NU8+ymz6wg5y70eJT/QpVLmcYit2KSQvCk2ZTD/DYU0WI67wT8xOr4Yo8frIVhGFaweVg0GGJ1/F2YK431No3cmjti3M/xfLe7GFJaslxzW3u7u/ZN0+vGlMeeRlcgZpX1FHM8NoQ/hZjGQeSDmWSLrVQUNMPmw/idqdgsjVYUWjz9GzUpKlX3rV2JFfgmJdsEH5NBHEmd6XY2aPpJ6xIpTJrXrGTcqziiy1WqXkbiWEJY9nzNuLSacJa4ETwshiO6WwjwPaOBfTtWX2xQ3vNjdG0+mWMtBbRMEMO3bzWgxcVH+PPHL1VOsMk4v72rlG9JUmyExPHas0r0rMc9mI16abkVb1NmwrC0ek9o+RF68nu8eCgbdaYg0zKiW+d/f/oDOUrQjUsaaQ02WvemLpiy3SjBTdhvGeU5VBguHJTLGbiTN53jgm637CIqMNJr7xJREajV+ONh3tyjHJv+2az+ajJ3TfMw+QscKL2IZ8DNzBHFZSaJn1+Ni2J9GF1e7JdUro8PCVqtpA1t6UB/wtv8h0JRpUwdxaCEZ0MyIFO0yBwVpLhzozVcYCy+K0VnEiZEyqibQuZyIedthwLzLGLjLqLfuz7Ns3YtJWdKmYpJ/RCCWwA/zy64CJ6Cp1tC8Z6CzLEmD9OaA75AcRJZWZ9o9YHi7HE5FiXP514Zq9rldOrKwNCddNlwlZvGDBR/LBhsOupzQC//fHTp52Ln3z5xduXzrkFQn6jvgm4cduAhyTlxre0TgnQu9Rahr4YcguH3JkhiqviffxJbWjjeGl6hxnDEBBgwtB5/sUAJ7CDsmocQtFFrmy4HT+5rjqXPrhUAXixmDFKYPNKcUebfapbQ7WblyiSmYZ9yQgqo0C18jjVHf+Us/KEfvgadZWrwtxv9IUVVZ1mcEYpEtHAAtBthYO5FBokfCHTuR9AWhfQEX3o+ZLtDSfnVw4QTn3WCII4ePVn/GoYTCsNbKDhadS7Gb1T1b0wXZz/9ClVUr0W5zcH41ZxcYOqOuAhO++bZou6rAYBI26OBmhjufC8xhq9DvLAySv4reRYU2qyILp0aYBwduDDkgn5WmA0wOX2FFUdUhGTEHuve+O2MVCYLOjmGstJSD8MiXE/JS6rZy4+x92QK17wM5HFd3QAKC6wGRkEJoQC9wO4dKvUkPLAt64xRcczCqiWm8PNQXgkEG5kE2dCfikw7KRAuUhAu9lHI4MeFSQfQKdLq7erU08I7a7H5yRULw6RiQdm0JbsgoMiNVFQcFHykTlHcuVbcxzOyoZnOpRcux/yaxkHpeuGy0qOmGL+aGQVIsQc7Cx7VSvpNGeSH4vLcBz9juxIy1ToDNH42qNI6aqn3VS+fk5xLIU2jHygNMJcsuNLlcS0sFFrqnNqatcji5YczxrkOMr2xXYbXlR7f1cKbX/v7vpS1q4oYHXm3c67W3s/+fKb65uLy7uns5OT9+8vdAdn59fnKwksr4WSGk9t8Dr0py0JJ4TAk7ObjHvcJyfMGC8XRR4/bnrayZ6tgdlseEBO/I5+UfdWynZCcGg6g7zYwvuAcmjIzGqE5r5McqtXOQ4TminShRNE/ZBEe6e41vRoYB1nXj0rVqitXFyMmX1NSTT26gPT26Jt1uF0GzW9idMShS3HpYOXfrZWePvp937/7Zsv988v3purZ3pWC9gyhzor780SSKeRGl6dn53js1fzWG7UHrJOybjblVF8cXR1cf5Xf/onf/THf0Qg3hDwYnv/x/fvMc/iAy3RsDMHktuP+3DX8t/LW/wk87BLK6m9SW0SlTqMzjGokoIw1BFaVI27dzedS+gFAgQkDEoCE/qqYa7bsZ9nZ2fOQyTr84+rs8srjzVnuoUy64T3CuWJKfNpJDDaT1+065ohUHKs1RzyHRHELI4OD2imRB2hpN25ZoaY/yFWeRaaBjIpGyFYeU1YhXHstEhl19ucck2GB4a4NqDqx9Djm4hQ/pj5sFaSbXyXzqteQ/Sg2c78PsUgVrRqPdvJA4jnpl+B8/Q6QUx9spi8iruMIGv0tRGdq7lffOyZkkEaz+NRMBuKQJtVxtFpAlktaeg+qaT8GR1dVR7skFnwc2vA+brcBNrV8rWSrgadiPld2SkwT+ZWXqfYN4cwVf4J5kJOaFCTCqiQ7yshXhjqRhce54h60ayR2OG+g247Q2c5AIBKi9jEMVa0s+Gs8tkZnZ3+bPnNZGyFUI+OlMWo1eVqIglj1KLYBXln/5tBxht7AgytHb4+5mlA7+UDe40Ps8A54rM9J97bjX+8aEvdcnaY28iFHrYrwKvnnDiM1JCyGNEskTdFzNu6vcRDfksUbs3OanVFOalmy8k6Ah9IvC21jAkmApCAWK/lPX61x97Lwoj186ZxSV0vFGsa9NkB//vQ0JLzT6mbfTaNdB2HagyzsWkvwebO4+H2jkz/zqZNSnbho5wtmKvXEZjBu7anhv9DDTMgqqKqF+L1m/Y1tZIebff2WkVZbwqje1sHvSv9UXZKWWaVURi6ZCD07dHiQGW4cZpFdqZFLAyEM60jO3MjJhiN5DTHbV0/2bXf/KqXlJGegZd5CGOqF3t7Fl4aVINBRzGZXCwNiOGmMloIyUPWBVvuxHvQOwSY7OBjlGEguoWmQ8vg3M30S0tbPTD3gstNF9SJZQG9Q8F84EbBhq7KHW1FC74ULpcnyi0/e4djCz75H/Kva5NlIO/i2gmBkh7d8KEzmW6PuBEaPtCoHMh96aWEs8BLIGK0MJNa7qO0JNHstM4m2xHUzCH5YkV6lt5iMps1jCmlPebKNKTDgW+TdwCLhTb3DneBwP9GUFzrtb7JERgv+D03WAqlM/vaizRpibOtHm9/+PBBium7n7wlwEISYQbrg7DldgtDJsIpU8O353EKIWi7Ros9x5nUAXFNFCAflQtiyku/ltHVL3Qfl3CYASxAPMincX0UqUzuxMqTTwQhnVatiCJBqAoChVfdJ4gjTnhmsH1NVXyt8FxDZOxnyo6Aws2/xfXkjprKAAc+6iekBYgHunKPxh0DHm/iTlgk4vxVv2tYmSE4dFP/oDNeSE6BSizPPYaPmxpxzzf8nIYYdp5MVVIAhHMJSqUWISsNer+jKE+m9e5EBA4spQasin2rje4vLUb4QtrATY0GSujWSTSa6WrwdqM+NQQq7dPDiLHyL22OjiDM0y4wZWL6xLN+1NBn6iZd6FR9HkGIScgfDG2jDdPRAuZnYWs9cViw/1ZZaBD+S8iot07PYmLBojEAJAEMjYVdgNBFHSQgeSVi+Ix2rKnFVDEOTEp41lUzwNQ0HqVQnFo06uqLwhvLwo2yxv1KLbjXH8gsQcahb4N83YxGijLHa2ec7enp1e4GL5VMLeRIJhMQg8pqQz0Om1kDJnHyvmETkVlCSRRoVBon1vJeS9S9GsW4RlJrHxSvFPMgMaZIfg2o4GtkAI/BYN98jSEJPftZKijTo4zTX033obIZQ/4xGjENT2pn1AG3SRqKaAyjKaoAkCntlFGSBBdpKQOI9tL+sj5aa6ij02nc76t3ozzfWQvkFOqihaIix+bp/s1uHm4+rz69++H00/mn1V09Xwu8t169PHwWicnj3noPgB2ftkBxkeHAmyMtR+aLBsSphXqCUeJIyM2q5g1ydDPs6uAwrPQbTuZQBQPcsr5NStEkAM7orNMcbxLY3rV5rhx3efq7OElr6plaMqcI+y5ZYjziETQkn+awUdzEPoqBG5hUoCBdt2GFMcwFnRZWFn5ImK3OVxu28+ka6UwhlPUsOkVzvBsH+8fijVevNv75X/y1ALVxr4PGD02R7dwIPpyb5B2iTkHZPegAdVHX1s7JJyunrmQAXx2+sq9XTG+PAL781V/+wX/6P/xvD1+9ub5d2fR85P04j/eHDla/f1hdnnv5kYGEA8hXq/ZTkwn645qpEGlTbMOZxgC7XjzMMeA7lYJqa4OkKVlRcxzPCqlVxrboP/3BVJB6qdfG4z/+3d999d23nfV0sqJP/MAigl1HBJaeb71ypuTNXLcWL1EQx5CCkrzIVtxP9QRV+u1Zr0XNel2UpYzSYHe311yATK68L+TKN87ImY+hDFSdipVRnjNk+BD837Mug9qRD4IaEuwxFanb9IBRGO0UzHS+huapOqXhPdBZp5pFTda+zi9HamtBJ5cWzTeGz6ukQrmnwYeL6MKvjLqJNNpH19ZWnJUAqQZWls5o4DF2VBJ6rKyiGAt+q3y1BEmFM2I1U8sK5Hi7BL1mKtCzBNZ/N8cDuDm33XXV/c83AqKmP/MEC3yLxurOvxg2z4s2p3AuBULoyfYxv/7dBW/Pj7EXg97JhpKgFREeswiP9g8dYtssFtjkxVr47JyBWvZ9lri93z/cs9xL3vpGQDQpYfFVMdDOjqD06vrSANiaPdFwg84GFXcCWdtayIvHaWghgb1tJqGJ1muHBZjWs7iINj15N/btXu/h2n50Whb7Ojjyzi/DQoj4GOvRk+PUpmljI8M9bw62Fqi4/qZA0z4ica71hLZs8jWtQDPhzH3UQzC8FisBe/jCYZpnZxfHB4fGKRYvORVgHxKbexhFb6lxXCrQbBNTntXwg7+VkrC43yqhzV0b+rf2eQ/HnmKpWTcZ8J37LfMPkkTGNjk7huDdAEiU8C5Xxt1sbe8fvzg1VSgpKOYuW2SJHfVryM1pCxlhwnvcPt7ptvKBueTCcSLUf1HDdlBJt9P3goLG4V4XfLR7sBj56Oumk1J3n3j7tKrxeWK2CFO/GSvJd1bqPe4K9L3r4PqKImisiBsxdbgpHXUSt+jo9a04KdEzaNDBlmumiooXpVFXztKZQvi2BBgFl2y/O9MtUhadFTdAruo1XqjXo7IaHunWTRD0rkFIUI3Gs9AQ6rQndwQN+sGZsqjT84R5TXOaLAvAzy6tN6TJEnAs8wzH6Q0nHExPOFJ+VRCJhpyE7UZ8YkBCpY7LyKqwiiCIQBUX5McndiLTOB8DGcfEmUnCTPbIY074rmneGhhqM7n01On53adz7b0+NhwuccNiixCyYSXbV0lbIM8hwbcJ7zHb/Ann2U7ClLmvSVex/CfTBYFKxA3lBtth0xSgFREzXCgekLhRKfMHPCL9pFJdh0mRGB4AlUb1uMsKKea/Z6UMhpnJCJA8rb/jivuemAaRGaUULo0QajS4o1JBU0a5YXwo1ELtYEiXc93f9GRqZYmUYZDqgQ+IM+pzAXXfEzFQfY1DKcOylBG73Zn/EW3Dul5DuZqrfIo0bFIOxqPLQaiRfqd1+BYlfV+cKop8LY8JkSnTCKqLHkRToVncxJbJ2qaIU8RtXsC/wUC5OKoOZ6lM+MwHGPWD6P+0Hp2FqtHTIwzJy1feRRn6ac5XLfLQXLI7/nVHY+ndMtitov68RtuWRxXjRRnxjKoMvcEoZOQhYKUtv4k8xtZc/6lIUUW44dj8S4eGB+GT6x9ywtZnYUbF1ZwIQEvDA8wFLWtZxARncGAIYTdrCCgxwLCR8BR03X2JAVqew9qx2IlL6ujGQpwkGoThIV5rYhEMgJ6pGOiwiWrXnso6zy0BUzOVBLRwVimIZGNdJCklE8XYnq9LK/6Ms9B2IwSFMaWL/mgCyolWeexV5ndN5CzSgbU0pwBbLT+qYsxHMySXj5qxc2DWI05KPLCYhiGRCZYaajEYPSP0dKiKYFNV54OfGmp6x4S1V9nLkDle2kSA7b/miC9WHJ0HZyc/npy/v7i7ts7nZOVwDwHf9u/94TevXu/+/Pde/+KPvnJupPWRHdtTmGUJEJ+Ab6STTJElLqeKmEIlkhuBFhY0m1Qiqj6AQQrXLP+NC1BFgC5ZMCG3B2tP3RbTiwNgO8fuwDfO8KKUMP6r+XmMyiGCAJ8xEJqj0Zgzb+Bp9V0ii4t0Gi6ST2nc4cGetB/R63QBlru0WljGUpAxLr6jJ23NFSv9H//N//x26+3/+f/0f/34m/d6FR1CUbmAKFmLYp3Bo3/ecia31UEfPn1KRVtkMkcMXXvZsTHT5T//i3/209//xSU62cLerpVOliJ8+fVb+c7z03NswaLV2dWEzfQlVaTe1k7YGED95OSur+0xvkrknTcSq/GzLy0AsFbLfHNDvrSxDxYVfYCLv6+OX0rBv3z7mn6uzr20oGTpy1fHcMcaJQ/3Dhr/zNRWngQ9rd1qE7BsYosuiiadeOQNvm1Y1Js7EsPIFekWXTuQ/Ag2288WJVMAIYdwcI+exOoGAy4OvQZW/Z2Oe6c+SWfbEOuFr8pYw52lCe4jII9DEJhAqbRLRwDBFR2nMbLQhKeKRbnWMW+G0MSFjrsJzRxTnIoVyIualCfPkyZkrE0vKJcea74evWGwOgWVkZuaCewgBRTe+lStSuD61cfTuenR+pNvn2+1Mn5GxehR2M/4gQpUt/9BXV/lIly6PX9c1Y4iCiTRbldGKf9rvsef/yGvYZVWc3cukJG7COFscIBMPAHSgAXamhYsc0EY5mTK98+uAOy1ho0+EyGXQh+soBDbaxojPRW60Xd7OUZzrMj/vD/1ebsRb3KUyFeyvT3Bz6F33peXA/IYbJaQdTAHB+mI93gQk3HEyvJ/22od/H9nEss+UZ5el0QVBbWtjb80IinDuUmDLdBnT3UlhCW53TyZ1du6wc68v7m+EYjjxeHerhfcPdw82hTLTy7B08JDPHMwTzuOZhcBBbu4ZIOIotN80OwNaEyx/3y/dbR3yE1QGastcJ2iMkPJEXQdWwmnml001uuzR2txZ1+EINyLVfiAuiRt20372G5mX5cJjbpxY5lJl7iJriKtUQRmAEn8ObJmjnupRwgIb8remSRwnCZ72Hfe6bw7PqE3VBTWW4aUrjU6alewTHbJb7rC0VrYk65QbVME2qAj3AbFsR4rtSlJBAi5+MmNl0tqRE2IbCTPm8VQolJ4SnIdXAKPQ3Ikxl+pyBLrC4zlKoFvBesU02ROHppOdLgQDzYjat0fYdFRWg7vmiijRE/z5mNBcGOgNQubgvlKZrwDSwfoWVs76vvKQlJU1ceavbOFQ+Af3K670QzPHy21OJGSykYRhlpzDoEmaL5xLaHMXkqrxtJFcybNyuaXmkkeaPktAwk+XxJsgNWDO+Dhx49nv/7xvSRavklUpiAGysSUcuZijDh6N4Kd2+0qYLZ5Gh/hxNQYRP0aCptWzT+ubb8yQ13BnkeUC20eJpigEFOMGf84XArNPFx86ZPfX4gPZn61pvIfo38K5EOrk1ZUHD9n6gD0kV4AfRAL0oJlosi99HUtmik9gtPOEil5tDwNQqgULahZraE3D1bjC+UDwS+QGTs1NnJ2UYGKFSll1OP3hrCuezTRUdQFOviDZU1MbqhQJEoqnELWdLgM/r7N9VQZDKrvE06LHg628T9sJVA8xPnSCI11lFEuxhUUKjvc8oz6CE98c69YYVy55klRFf7XBT1mOTzbRMyLNtSjE7O2QlT9yKFFPFF+P3SxtwSV8LevbsTDKQ0/kCETCfMJy5HosF5hMnDmAHh9MHf5IISW+7TegPqmnRbjEmD0KKUiRrpEt4qhFIJpHmzIg/n76Irc1KmYO1MkzoRBHy6PYQLrRqwcUQnUywECOIILsse1KTCSzbr/9PGULeeStN3caDYQ6iSkZuTE4S7wZELwGuX5OOwhsABjKvALo8Qho4J7SsLEF1lSGMVy/JyVl0AtqqmwO4VcQ3ViTemHCfnNyKn5lHst5VhNEJ9XU3ikrq/kABgGwgfDwyEtjEWDTBM1fU8W3fGB3rjGfruEkqUj7k8vkoa6jv9lzcBb8Iy2mChG0tdYaWN/2dXV3gvnTm5KddyenzvR8+Li6vTsgvZZ6WtZ6vHh7pu3BxvPx+erux8/fTx0bneytaREfIC1m4IISOub3dUQUe4fvgAHhkl4p9kADBBX063pYooG7h1Z43iOBlHhSnzo0+c7M6S9VkiJIIjqT9N53rfel2U57mK6BO5a1bG2YnZyoD1xT3ZnXiGcAjcLR5pQrRvjsnE77uGzwv2I5/nuMmd4mImBa26cIRL5i6d/9y//8C///I/+H3/7//vxh9M/+6tfeB+CSW6jCGrdDNWGaTcV7larcxuCL73KdGP75srBOuey90iDPQr+8s9/9s/+/PcPDo82bnTvD+9+/OGHDxfvTy+f/svfmzoQ90v/W4ptXCXb1UaFzCcXVkArCzXrbWiag07KvBaqTn8wIwEHeqKiKZe2b9qVG92I1gXkDcgAMa13Mue+ZdUEBui4AD/9eIFdWFE8buVxxwPan93ReNTWOiiTMySbyQjie6VQF/v7ysqOmiW4l5Skb7oFllhWuNBQZq3IIke1qGs54DSO1MVwAhfx2bMivSfVcMskgx4w4y7go5ctSmQ+mNwBL8RJ7WEp7kOLWr5knE4LhVDLNqJ0erD6p4Sb4gUhDzh+j1wFrB4pH3BkZ5G0VWEfpaZwTs1135ShgUAjn81oUZ3kEjcMRBqKK+dONuBP7YYWJQzCKP/6ZmbnSZ+uplQ8XH/tT731+pGvwZjHc+Hrujr17/b/CoAv3Qu3BjSVmzI1gjwK4kYzdfCpXH2ewRSAPnUupKSOp3hmcX+vL2y8rq/lPdTAITG8G8J9QLymmsQppZyasNLaEPH2LDvhiqlqZsrXY5eTrDkBs1dGyJB8uDUg5/t3FaZ+d7THbJH5ojIBzSbUZMkNatKBpBs3ITz+hZFaLlhAh+c6IwAtj6GuXFY+9tkwsnGsmeE5mwUjOjlHp+6KnJFoaROUbm9Q9nhwKGLurRQRpT+ydPvu1viZqRUoOzgnFjMKMbSoeMu8B2dBA9yFitgb6TTx+uZu5sTMMMQz/YJjdXVBHuHyHNYrV4J5zXUzrePDQy9ZzGWNSiPUGFfsz0sYtLJ/NqDmiIw2JDIfqmEARhkXet2kk/wn30VeTGD6nYnXd1sxyBX4r7xRO2CGzcA055lkeh0BrgPrVSBeJE5cBjeP1/de666j0Bpdbt6jKLksQ3LRejO0IvWxxAyyQVTqBP7kmOAX06qer+6EH1252ciWho7BzhK+rLK+WOrNcFH8TQdZaQUMR2AdEPHxMtQZE/WIPoPKQBZzFoSQDiZojkqM8TdSocyJIdULoB7PhxVx+iB4bBDS2+LM+jZNgfZ8kiqKEawCNEEBgKN+6R7oZLrQ+rc6NxVYjatl6oCUKlqkQQ2R7EaI5XwV5H69Cf5ORk34dEw5ql3GAeEN56a7N6iAnQ4FH2BLXqPzQyNVKdOSP9C0VlzGoXrHJagAcMw814S74y5so+pNw2kN6msyRTKpUoJ8YXgkzc1QAnciNndwrwZ0ykUvcGi0UN2YEKTa4ACLMDGo6NR9d8CLO0HPlaV5we9/j5cyoeoSt7ur1Sp+RjDctDp+L5RnpBGIAFWP9ONAfWKpIAd0QCUrCGZO2O/MB+8HPioKfvANUfOZFoOVxNO7wSHo/quMOYHwu2/rz1q4ankA+lIYGzyHz/B8KapPU2QBAfZQi1OwSDHCw9MWz4XMNDPymDr8L5PmJthBC11meLocvqtWHBszyPIbnUcoFiw6AS36P0F/ujdBKi+JWrFrhfwbrJdrsErQps6Fzj3H2ZlUgucEo91THajsvL6akrR6Jy5P2hXFonYA/ePHMUPYJ/hwQWVrbfrdTCVSk8ES4bmjUXo2j5IEOhSIRU6k0cerAvoIyRVo6kKEQowIxkGMXS+hMGitYxKYJO9AIbYqeQQ+IGbBYTFyJIRZOjKWO4ITHXF+mlAr0UwRFSHsi4qYGYbFMfe6vyQc05CW7FymrNAubILnTKsNbxe1mvbwJdEoH36LRc3AHbBQBNHf4JS9CPbCtzSsGCv8QUdaEUmz6jrR9HvGD7CnAAMnvR4In4Mh3Al4reBttDzaCLth9bYm9Ee8nqSuAPJe1Hp517Ke/Ze2e5Kzky2++/YLZF7LTG8K/B8Ptnb3X1lOrnN+2rh+0gVeSm6VjhLIpRJg6mf07khwgQyLSWa8jqNPztXGBMSy4LpMy2GFFLIsM3PHE0MmlRBD4OasMaOZhGvnQMuPzBF3MPYi1tLe47IyjbpIZBNHjjjPhWZ1yUuP6B7yuRfYJWDg5WxuHz7dn74+PnhhYZB1yVu6RnG/919CXce2Z8zw5ZvXP/3mp//f//F3//f/8jd//N0f1GU7w/v53ou66sXZZpqweXF58cNvf3Nx5vz/a5sdRRXeHjDi2Pjii5ePD3f/7j/8yzdfvLXk3Qbj1cnZxfuTD+9PLSAwwvWuZX0hEvhVQyQ7LwgaqvwAWq6vr3kM6qsdj4cD4jI7DjuEUdMiHnqDXTqFrFGdpraYWdpZz2b7pqOdds2YHRudCWSuby/M7K8uW0eXdbTqzAzMzQtvJ8vKZNlFch5Y820vRIG8LQRWKVg8oJO1jIf9nq2uzHsojwlOHQCf1JiMcCbENi2qdpxUKqD/ZVnEjULREE3FZvrIb1i1DD6Z0GUexvmz3IzsaSuYoIU/+RkakS+iJmRcQMqz8VcN+Fvpy5wX889GOEDd+iRZSCrFF/oLgrXd/xyO6mjzgbwCLvxWOK+E/IHvFh5OWDNGzoazv8pGi6gyNc6o8gO149/aMWhCOYyp9D99XFeg/33yCiDOr3964K5yU23Kf+7eBuF15SCEfC4uQEPOmP+4iHGVbqMIZpNYSU0H9ellpqIECjTRSAcM3ZsEeJZQv2YYsdoiLgM1nUE7bXS4LfUhpY5VEF2S56OU/7YTck3ZOf+VP3V0LMlql/pwB9ghUyrYorUk2zE9VssYNOp7moJuIRnwzv8xCHzcvqQ/IjHI4C8MAHQHXwuOnQjAdjeezRvZWlU64OnppdlLFbzG2GuJDw476t4ZnUzGiborG5oNTqyBF/d7l87O5cWVl5Akv1lmZqQNzbq2VFqOvG6XpsEHL6kseUhUcZXU0nJHK6Aomo1Bp1fXRwd81g0ETGaBTDfl6cRbx8cHF96jIpxsdb79FXUD/J6wy4DJQb+osJGBXRrlmgOEqHVLUMTdkZLzCe4OOj5JHGy3vYX3nfJJPMyEEptu0QvwZrP3ZnpYEHRdjdBza+atmq4hIM7CgMcWQUzExpbFMtIG3DZzlzHr/crSIQ4U8vrkZoAN2aGUOuXRtNZbkIW8xga0mobbKlaKwdGZ80o+ZGZr8So9Zxq0UPXxqgHg1tLPMYzMYfI7RNO8pZBRjeleacKi7Myd5isP0TyYWGhClwx07DRIXDg/oMsbR6+5xQ8UIk8UUYhSf91YawYYjTM9IiBPEIefwABCqShAfeh4zPr9OohOhgh2CK/7C8pgDUz9BcdTrJRtKkIj3aOKNrNhKNJSoTqanhbecKr1Sg3GTs+uvH7x9779+tXxUTzGBNU7+CnmYXB8gLp+Sc8+25k0A757uaRij3ExY5tpulqFgVn1cLLNA6AVWudXZqwy0VBmqHC+KV/nGlS/+Y2FpljRKKaGMN5gBAQicwf8qB3+q+GOipqukRF312vPQuRpW0SU1E7KGlQyJzReN6c1BHfRQKUqYRXH3EolIDAOsZL5zrDOZkfiyi9ob3E1lRzS1NbmwgqgVIk5VQ67pBBwd31qypchvwK+C6EWtEedl4q1XXHjwCDjY/e7iXvDFgT6qnpk9nvhVUnWSiwEVbRGUmu4tl/EVexQxScKQB8OVmQ6HtNjMZVGEtogMf0Bi5iGldLx8wqkBTRKqkf/ym9luu5rgkYiwoX2F7zBXPeR018yD08X7D0a1iSSPCBBxmgGE4/mmkL7BDk8i05qq+rorTma22m1/Ei7hbLwZKzsQktNKTNiTaRxOBYPe5QMYW6oAWtcSTKeVqsxXwqKOfy1ulNd/Qr4X/lhaET0X62Ag6kiX1BYznaUT6dzB4AtH4/BBNxz18pAEtIjHBC66eNrcNdqbZCQXs9nVC2qYsW64jBcBRUjOWJQM7q2DiCCH8AhkHvwVUnlYUV9Q2P0CecjbrimTDhnAknB38XpBKThOE2rIsBjnMFPN+J5TAfInQWWFlHpBbFOeJMVLzLc271enT82nr6XIBJB8VpffP3qi9eH3337htzFQq/fvt4/2L66vpKZczz2h9MPOPX21fF3P3nz8+++7I2tSCg66zVqOgpscw+jHJJtblzoRuEMn6R+JTxM9ct/0ERtSRGR2+hwXFRdaKLfFRqiOEJEb0N12sS5D6v9LrM1KUzklM5G+nQzUGk0Us9R9gvpBhksRJWx57IMMoXcBq2yGNcCFrgV1jxbb96CYx00cEzt6ODoL//gZ3ubL/7ff/P3d5fbliH/4ue/WCDqj/FT3+PIHbmx+ysvBNi2mvn8wloG3WRxOQT2vVPhYOuf//Wf/OSrLwUJ4uGbm/OH2zOz3c7lfP3mzdff/uyLL74UY5kvbvzlVUm9mKzzNfX0fD11IDIG6ydZYDFs9fejDGldFitn1iJ7HZgQfAauSnUGy7DlSb5z6WYUXV1e6e8oEm2h/1ZdSaNL6JaphIcE/+7Osdf6xraUkxz3jx0Gm4zdcwokW9SfOSrURCwBijT3jvf1sEJvcQ89ZiIEauWDLimrlOuaKUodBCEQbv4pZZVb1AejpJyoHcD7xgqZWsuBMs3J+xJiRLXGSVRDoiYZWmCger3FRLqUHByQFyugbUUjeWJkFohQlTg3Bq7Pm2J+cxdsqkWuDDgYquVpFycVNJfZZvaVw13s1P15Ms33dCmmzNJlZbhdzyfbzQyzxP5Uqav562ua6lOpfimxLj2lujm4L8CqtIY2XqLaObhwH/+3LpC6h8w8GXZnk4s9DdtJU/IY8a3XZ6ozSjTlmvbsME+nQq27Eh2LRWyCV6t9rMXHBdrJTiSVjYNsStE2N+KMIEollGFJjYCdJ3v/YJW9AEeq99pZPfdPXhhoBFz+rojWVP6uAcDLoyOI6VNoH17Xvxl+kotojLPqa+s5nWkjKiUm4hNDy1NTgr3tPYfw2J8gxFNa6w3/mkOySKxNCbmgu4fDowOxoNkzo9TWHw3raSYMrfewCI1WeZeWo3F1Q5c3VxAw29W6760SJZam4DPVEJ/bqbRw0ZCDdsXmDQcVPJ+trvEcr1pNkw+HRUvv6NMSkLS+cUJJR6a6VxPoMhJhFLTg0UpCcy8dEFSyuVFBJykZKwBGBWg+H6uXb7WhNjnYWbBnV+9MXlo5mQdYEsn1yItbYIozZG3NJvutZ64f4hmU0RyorIZMYUq3FfCVNzHEG1MT/loy1OSkwJSWYVqJljGVYup6mBTSk4lAePRGUAUbEwenuyxaN7XEzO73pPwmkFVWNbPDLSjXETDAIBb1ZSuL3ruKD9lUHWsX9TYQkGWfTiHDUqjNEtQgzYkJrRVM3+r68bhjG7DWCJY0cwt5DzIqUQFo/Uv9aTlH8GAxaYumgxu2arCmnb/SxChnSDCSMgR+98j/U+IZWmTJxcpFv0YNDVe3vLj91+8/mQqwDQFcFfmv0UNXBocUJplCUQMxtRjQDHQ+LUwSon4w+OPZ3IB2bk15rPMd49QL8ozcsTn8eSexEOKX3PFwO9LjZCzrsnDc80olSOBCIG8WDEyNJ/HZdaIZfBLMaLanS2xWLc8HgTCeJiKvu/2ib/G6Yd7UJee5D6C7AAa5yG1dIV2bULNmEVaZIC1l06TwK7sU9O6HMPiRV5tTNsDRQB/cnkvQBsrQpmJcWohSNiYEpU4jHVzcpvuphN9QGsjqxbb+DMaAtYLWF1VH/HU8/rEeGP2O6fG5WTB62cELngABHQmL3yHe91Hn/s4wMbAjb2KAAh1FUhoA+3S9DDEHikiWxU3lCguSyqcqmZE07V+atrryar3LM0+yILaICT3GW1BiQDigPAxH6dNCH8j7pUqmQuzWac9giAVdX16LUSRK0kF8W1gcfyJQFSgloIx8PZ7BLoanCYKCO2LhzzXU24+zi8LUt2EJaarrkd9aj2TYcjjT/5VBGOOM2MRZZ08kGtV6hKvOfltoFGngqz08n+5zbTaLJkkuxoQIZjbT/WiUq0yjUpq1e9V0/G9wlU5jdRJ0lytJE1KHtZpq0bYqpGXPadfwhMeJrb5oL0lRA8KdYesoQ5YJjDgp3mZvGoJFoatr1LkZSusxTGgjVI6nWpJQAewYzRECeh8y5TJrbd4y9y5Nd3V6qtN0wI/4/vZG/GvP5vOr14eWAQltj1++EpVenp5yQF99/fY3P5zc3Tx9dfy1yfzL+7vjo0OHRGycer0XJvOACUE+7Nku0E3nWMdbHTNEllgWR/AcVmNhm6JdvTjq3JH6MrrQTQo2HcrJzR0eHBD95dVsB7ZjobMvkuxMKXQwOYc+/EVxKjcsL4TDGrEClRg2E0h/lU0NklKjW4jhPdsUlBweHz50rKmjx5MMxtIra5pev3n50+++8oYtocLx0f6f/MkfHB4dX69ubJzY3z8SKN/dip+27IIkPNEp306Zpfqerm15tCBgWzCv8/jTP/uT3/vjP3POx9XV2af3v7HB+n/5L/9wefN88PpAvnxlssWJhO9Ozi2xkv2EfLaf/lAOvEMQHbcgB2KmdfkNfTCiLBu1jD4ljRf0Qm8nbtHlZVPukcgSgsyK/B1Di/PzCzMUytMcGkX1DAW1QnwAejeTVeAYtLq5Jkf3cEsEZq+cyQHQnPM4cU8tgmzZkiBNSMfPTLQG2UIKGM2x/VLLljul3j6ym3orYR+SYch0uClUDrZZ2ai65SKmhZKBdKFFDBZESbwxM+ussH0oLVsmkCDCjCVjoNH2ImOUkXGmVypBk3WNWVMSMeFjdYQshrrpPxVcz/gpAO/iJ/RivObyb0WHeTh3pyvAkNIydbQ9renBWcynKWCpZhbK/jB0upAefP4kJd/naYjBzr9RuAQ9zo0I3K9WRq3U4oLS8anc38V15GpGUxfhq1Ofgk9c34jcqIm3gY9ifMWoSJCRk28NvYhFgmDaHAxu4A7zcFCKUiL4DeeATvSBajNOinEjmNAUjsLecseTUAyvnrAX4OnByj2epTjltliWqTkMnU4SCkqMZlFFN8b8mp2YtdpeGtj++Ban5OdhKNGSyL0YIEeBxpmvFvccHxzBRGS1DO7MJPDkdMMwxhvKtx5NJaVdht/Y1CrBiXhYhYQAsmx8twSEh9t3klErQDIQ59hst0eg7qyBAaZ0oKTNA50AQymsnzcXwn3SIVsPXBruW7d+dXnFfRgIGeFA0fiBPsCu/MaGFx7f4f++eQBKOcYlnVFuG5pNXpncatoBabYBkAMnMSNbRw/Ldoj/nRZqvqIshh+OjSoSGvRyeE6toZGG7t6WYAGV+co69ZLNBjPkJkGco5vQVveoEF7hvOVVddiFrvWJcECuxqbrS3WMAvItxSQZYz1TQWrH7Ewv3yR/HY58ygzV0tlZmUMiMC3QpUhF3RIM6xYoGr9Ovdj9KF0dhMZZL3YjDdvqnuYlIqRNoDogiBEZPlBd6kPTFIQvdVZeo2IPyCGECmI7TeC/Usj8fP6BrXdWgW6xsU1qVDdgaEOHsi3xQ3pk0MJkCRdUdd2qsFjFd6qrR6u3590bbyz3MGBjTlrxFZ/76vjjrfqjaX9sLfI1WVaE4EgN+qsVMV6wqS9eGfE25AWZOPSPeJITSL1hSd9kUopwsgYuC/uGZHzzFeaNPYra1SiBgST1wi+RZTTjSUi0qfZxLyPt1LtM8TB1nFXmVWig4hKZAFbdAcSOwiatS2Oz0NxOTgl1A2xIoCnKj+vzh81XJ1sGs1ATi2gUfgRt1GoBNWDSMix3HQl9Ci/JwhXPjLmug4fPEVawPtJfNGyNjNJTKkkrgJE+Syu1O3EIHNEQqSFRA8ooG7YLHwY7ZRGgRO0Sz+/gKFeUZYQWVu5XrT/InxqYrUR4j8OlnU2dyttdXWFE4+OC0XiKm4otuojjAHWP7k11mDXT7k5IRsuUx4JyJCYEF06Rynh2aU7OZX4rPTNrsIcD2rB+ADSwBsxXjS6oF3DTBn55YTc6a1+p+bdQNLanw86tLdRGbySgGQl8ij8QnRbHuW9Imex3FClzpRPKR+vy6j5NSf3UV6EoMjnExAkgnUy5s+2ZafLYU6jqm+mBxoOWLlZ+GKZWjjvNaFjfqlZPZ3n/Wj6L0kTWIvhUYExlGBWtwGJQbkuphWkKNAZqnJA4+oEA4Ml8UR4Hlmgu3xE7up32N4aJvcFb1md7UBOkz6sCuJj0wj2P4F6J6ODFasEjkMAFCkz/1HdzKG1guUhcqzyyXznMuvzMFBpROuwGF0GDLKhR6ztwbfJ7cEQDGZR5tUf14ebaFy+CdfjMzY3Yunnhr748hO/+d4fHb44MFC8uTksKWjL+YXW1UuDAy6ROT852D48AUeDwQFLFbPiGNBgsspBN6aiZkkZzjmzTRk8LZfm1ePtUVklY1pF4nGwvzemgB7EmwgsGOuhlRIPVE66opMM72D1s1e92+WlUaZ2jZ2NYJDbBzv4JVuYcoREHo4uZYFE+TGr8VVqwbQmcFEy831pwE9LpG7bLZ27DhjJKnEsi1g/1AqOtb3769tPJh7ev3jpRLynxvgKoF0VLOn6inx6rzJy9xdeO/3n0du27o69e7e4fySgKkq7vLt/98P6X//jD6cW1rlOy8fThk/UJJG6cEHJ1aq7Iqi2wIq466xlX0EMiVuLh7taTQt96VpVq2qdIHSvKiIQ+EJeXQvMtB5Vil87HwSQynNAGUqfO9jXooNW4oNVWyBMetYy3Yw0EZPlQMVbTe1Z/7+0b2XhzsCz8pZeNdDijHC3903VSBOeOF6LGEzARJRY82DX5Cc/rSyOFtoYzLzJ1U1BSmNXLB3Jr/Bt2pvmCcepnvziEZkVRb5myVaAOz3l+dc8Zxea2ZUt2DzR5YzixO74xb5/nZFzUnu6l/5luGQFmSMweoI/bBGGW/C7Hi2VCxcGpqE8+RsnFsiBZcdjWJ6R9/Ytv+F8WwA/r8wF7vsxFt2p72k94qsaiClY+1DLa+Tqdwjz5/Gu5v0COBhWy4uouMONDH9J3wwXuwhlc7CwK5ISp07gIz7gsURgOa5L3AkcWhRRAq794fjTkRj75v3x5ZDcYdktUNzp6eBY2U0dTAWCY+mEohmp4ZCpPEAK7mfZTrAVpyLK+zpNmlPrgXImwV6+OuOib+xuhNz8DM/ZbJ6xkqatb7GA+OH977cRJdxK1t2IbbQNiZox2U0NTVU7NEmaiBZkGpS2O2e7dHWLog7blIjRtwV3a6915NIGOOo2HI05xGwcaK22JjhkvhAuR20JqMLHjaK84mbXlgYttRxMMrxlR8RUtbbxdQoE8MQTz7WewfZkl1RaNtVXd/mlHRvInDgxVt9EvxRful5BHtXlQoym5Azbrn/Rwmf69ZmDSvTTOKH0QIXZqnujbrGXj9fVDGTcgDDLGBbZXFaY1rFjOjeAbL+0+1zmSxAHgW94OdhNNgyfgFMpyQbMg1w1XHBlqv7KZQ7MEO+ZVYIFPEyeD1soT5hvm9/f73gshf6dCJ2a2h4pKNfKjSXxmvTR8F50tfHPJp7mrV2domk5358gpD2nIyGs6OyTXb9bzFS3APnL0hf5R10XhiSfl9LQ5o0KFhrue0gTySvaoa7qvcKUOuhAT4AYwdCaPUNzsX0biXwIdq6x7nU6VKHNxUgZlJ8uHKoMrChgszYjIYM9s9QtzXsjH3/GvwWasDjGjn8QmotM9YNS796dKOFKvoJ+wQNYRwZzjLfbxEvcyZCE2AuSIoJR9KwVDEl/2QMqHIGliBpxPjEgba/MbPe4V9bUtW/+lZODUNfAWi5ILLtVZ5j39SToawtK0JiEMwwuQMHLg4nOcpN7xP3GMewnVmK4qGQRkPvjo22CmZHxNjKokFmWqu+S21tJ0ay1imsDu03Zlq1BjuT0AhjMeeaIY3ZgSPUXbUggK4KM3C0pwvgHg33C1KMuXAGsx+1W2aEPJaaM/FRhsA5vuFk3FPkId9KetgYBdqV1Q8iguUspaLUE7DDAITQs1jBKyqYHAqsmcJkmf+y4CBipa+6dwnf94k5ZDLOcM4n7YlnXObbn2GZygiL8ZTIIPSCRNo10DS+RFOTlrGQWX9cSqwyrWYCuY6xFC8CO4OdlWG2sR2jXqbijWnSFSC3AjS2kI5kloFgQPN8KNWqg5rIzh4IXTkBfePn3vPlZVUn8+gwRPfM148ibQU7vQge1lWkpWcYCBEeHA9uL0FHGUGB88UFFVvhWmGprwIiyijiqP/TMxhCuTBQ5DeFKlgQozzm4jdjUkGBzUykEoEZY6Oel2D7NRznf0PJRUDJlhjh6BVpjy1igSfHRcg1G0ZCew9D1NU0P1VBDqC+tUArpqkxgY9i61layeJ3BLaRuhlgBO7k1f1HEucHkB/XII8r7utqvyVq7HuvUP37+zK0Qi6ouvv7DU9er88v729vWXXz563+TtjbUvTo28unn0QoBTvcfdOTaZAL+6uzw82sWBV4dH55bHStWzeWeIri7Nqlt2EzvkCEVmepbhi9zbbMZ92hdqhC+UGpPlVX2sCrCR4EZy+oUotdO+bVWTSd874DvT3N51sniZRggC9IMto812IicrujFcpTroW8wniYCsg++wZyFCI5BEg4lYWl/ZgMExlswR13HLmRz6b0sPZPd680X93ubRkdW/h6dnq739470szyIeUsqFyXe2jvnx/uBgzxIHR/pwsjYDtHx/89kg6uDlkR5K6c5NsdXi0gmiV+Y7zs/OvLMLF4TGN1YetbahFwLArXwUdcc0VHWiBTuSGyxtCUuRtJBCNtCZLS2LiWpxcGNCiqRvU5VBgdS01cQZVtzTlG5KvuI2SPn5+ACY3ldbk5LnIniwmrHYQJyDQ9jgnB7LczoH0o5ImV1BOAfWiiABm9ChkyycpIID+ksESN96M4GOmWLEUzhjNFLnKBIzFwgTrhkW0lUbOD1Le0sNOKSwmJQjKogywiwTSpGq7ef6rvPpiVdAqbtFw8OLxoHccunRxbmMVWALnmJIIaxIPffHVM2FZhrYhZOoFp8t9svz5JCFXMYdzoayU5ZDYVB5ysQHD0g0aKGdtVwP5E6tDnWQr1AmTGfc90WVLPp3H9KMuX6nyh73tb/TBfhWS8uT1NgXcuue4kGs4NoHVpZmT++dVWvJt1qtygCn4y7Cc8FKAFFwqujECBaqGVfzXTjeGE5SCQOcH88EtnYoNrUTmwGXbx+8ex+qpVlWyGgbd2z0NGT2Ml28fbKFIBUVfatnCJfmHB44J1SE6n3C4xIsTdtdeeOFYJfrJBSmYXbmSWhlE3uvCmYlV/cyuG32hZvlOwxXgoJ+WsLDmdzNxuInRw3ZtZJwEpxxqIEvlRC6CEMJHqcsp9PZocG0Eksq1t/qwDHcQpGQ/dh70ByKbIX900Hxkjd/3bW5BYEzWnyykg2WJdF7e50xtEPuGyZQOR8HYVkVZLO9GQb6QFW83JjPsJbQNlMdgpOvHFXkvITDXW/wxVxZ/70prLTgD09zbMhU3SaHjqFnCg2LEjvIGqXm3E9pta0XwnQuzSuHW/5CK/pllG50UQJCfG5DP5s0mBBKxqq4xr43jKac/0N5wzOByl53YL+cQO8QzAq06uCH3pfM0No0b4rd3STmabaAh6GFEGMbPrmzngpwfdABE8O+RcrayO3S0TETOPhK65gimftwrHTZncVYsEYiB3zaS2J+RuMVnhg9dqTCUFJpMahR5G5nBQzDbyEYCrVRIiWXA3PPLFlbDISS6Hkbd1EUzHOUZ9E8JVI2hA0hJUf0LI4cSBLazdBzyBhYIM24eBAVhgQ6y3/eT8cUdYMZoZidDvr0yYyLfMPx+cHrYX58bwp00+Q5Vc2Jj6kyL6VlKDC2ctOjxeol2M2RiNYKtCLVSKNjuDLqoRxLpruYd8W6o+UaLEwa5AmPIODmH2tZL8co9sCH+DaxuL9TIQbm8YDnf8cvaRG4JKUp5UKnpsHzdelj3YriOpQgcQio91UX3rTSBDBDB6EXpZCsugGaT55q1qF1s8RWoWPcDme9Yb8Q48584BUj/PIV8PGL3QmO+/0LGU8x303/3PMMvTVYqSk3nJmHvuvstVGpROyDzDiQ4F3Xd0z1wWTKh1c4eJ6KK0kPOBr1iimXvnRazMgXKRbatgWKE7ZArdp5zAKVuBIjAFmzzMPPjIgTg32DUXe5G8jw2gsOqFVbTwigOzi81AQzeQyPQPZPdaQiLokz5sIv91vxBmYXrSou3tU0J5US+SiaDOZ3erCeBMcYnQrjTu8auBeLqF74MFzL0P2TJQ6HZpFiSxgCVt4FKH0BuC5yaCNZX3k03NBuzsUzEU6cyf5r39Eiw2cVjK0XBOluT+sJ6tdjV94vO4ALt5Iq4EwBgVchWrCRpJSvm598gzsj9AYbakXt2CFNRh8sCCEM/eRCJJ6LHFOR2k3EsXL5PThBwX3NQlI1UFL9MbnoGT4kWZ4ooajKcNI5KEXB1M8gIV2z+UeAK2CxlhLYMlzj3LB9Bs4JaVEkbc/aR0l6qnLnNAzxNDV6epA9fTg/Pbk6O+dtXhzt7b7cur69Pn9/KeGrUa+p1ubpx8sfP5y0pveaRzT7u3HHUbbU9F4n4Hj21wfHJrL1todvX757f2YhrQMl7DaT2BBD5wkenafhxImNuhkz47vbN3fTcRkht1eOnhdxlp6pX9l69irOekbJm1yzOQDIWq0kFnUIpjBC8EAsmDimSGN1Qc3KiSFwhxDwijBLIuBtvCSPGJkjWFIemcNkR5ofMCqT/Xa++F5LiTWWlkB+U27ey9G05KikLx3gv/eaY9/eObA0oM7VK4QODxiQWQA1tjdemBu5uLwBh4Zq064Y2Lw6fGmao3eMPTzcnF+wseNX+xerPe9OsOb4afPS28M+nHuNkqHBnYAJYmGOJ+Ra95dtwj5LZTQZDEYB1lmiRU+sO01sdEs5+d7UIrdLt+KG8YBAR62D/SNrpi39KqxtI1rnXYrxvNCskvG/DZed3YFrXtOWNdsn+mL/aHlXkncenVk964QyxNOBVj3Z/bmSUGy8cWzUd6f737Jh4OnF003W/IgLIkxoNwVKbW1qJIe78rKoMnLQJV9c3B4abJgsNRk0rod+Rng7gZ/28idpM29KVRTUOYxICbMwglaKeMD3UtUZRFk7m/TZAiVBVPyZfi7DZtP52AwEfnkXtoZ7cwcogTBDm2645up46s4VzsZpDS0CVm1dLFanhOkXEGOd+YUx1eF+euB/jVTGh+Uy4Snb98VrjVmvb3ev4uN8xuSVgXnqvDThd9msjBhGUVEwCDzE2Y4lZPm6ko74X/RfPiOcC2N4oRae0xFWBoJAyNuaaR+70aZxrADI6f+dqv+8JezWVTk6Rk8m0Il71vPcPO3sm9PbNwNDUzr6/eraQhsStMzBCAEufhWvlPVsSefVTWG0oZULasMyjBDNSRlmNAUlGXH7eLBXCCh9gFJlDOztvo1lDrG5MTthIituNq4zKkNpZyE8WYVnPMkcrAliKIzf8h6rYayfRzW5szxRGinQv9Orq8ODw94XDGhS3rm8M2lpeaEziGYYyfDbEWvPrMUSXpB9e9BoQDiVk5IU39s1ntE+78OHbxrHvNjfcd4oF/R6b++KdVmXc//w8uDADgUTJnqZ/Rcbh1u2LxsUp2n0hmOEgaOFiI1Z6D29jUGfGYft73eg6lWHI7nDqRni7G57Q7C8f+MHgwS0DPp8guctoeFJgLJTP4F3uGXriJoo6Z1oNCcVNFNs+TvcKAuvATdew3FG1A0D02oj3paYe4gVdIeeE2LzMGMEPGlRhCZw2xCLvo0SpmMQ4srTZl1SJzWx+IaZ8MzWfCvPoxjNnNndxtX5F5mUfNW8v8zojzJHm1vlp6fzmOjFHQ5hbJmE6++0gp3p+aRcITY3aUg2nckIQGu0PtTGEkphFNA5aYVhRb0Ywyi4rsXrkg1eWTDmt4qND9qrhhF8YQSqBjnBfm4BclwMTDPDdAl+9D+LG5MPWwo2BxU0SAUuJ0lMVO7h+09nbx82vnjVCwISTx6kjkr3xyZ5m0yxOK0Q2Q8GKZZEsnd3GmX5D6s4IPtT7t036NSNKqNXUt69OB7H8nj0qb0cs7q7NskISfmutj0oBsuBkRSIQImBuji0SNBsj3BVw2FdYIYDkeDZ+Khpyvc64kRWfqHl0ySmCcVUVxqcBb4boKnra1Dg7/ukbEh5uQmOtpJF+NHnpbaqOZlBRnPBAWhUrnqua6zWEl4aCNDIDSWAL7iQsRLTMtiVcT/O+qhbla5xCm4jMV8VTOzuuNSsq+ahsth6rILjhYEA18DSQsWDrm3gJrEHdljrclgNeUzztUfgFMd3PRn0ogp8LA43KHlQN6ChLsdclYywctu1pMzClDouAmDJKrQszJOowh2/+9FT6/sHlQhdAlDMxYtMCP7xOkLE1in60gsqGErkARFwIPj2zRf2U11dXgY8+VVx2Js8IiEaZoRX9lNsJ/ZLtDWqa180zhg3upAw99VSM80rLgeSSolj3BnC40wYpp71bYoNz91Ycyxj8G0wiXs42gsBwysKhpPuq6qi2ylZQg2CD0z8mtFFTXR7OOyuugw1BKff9aeJC4CBE+XzMaxWf2FwpdaErWgNxaF6yJ3Koy7dH4XpVqQ3WZE8BhlN+1RmJkN8Axu2axIabDewpEcBx70W0/NvOWC6UWe/b7b6+fZq9XQng399vVqJQt98883Z2bky0kPNTquxs3d7e3WzunNmvBeZWKv+7vLCSRr7r49eXj9609WLt/uXq7vjF3tCN9GoTlVHJqGoCyzLzp05NkNTheJ5FXwSpU2/QAE3BBwUN1vMeZimLPwwP2CjHIb3UmezyXJRzTWXbHbUDe5ZsM7/0hcZw7LI0sPaQnxChzm2p/PDb+tZvUHMgXcNOzFm3Y350ttUvMS6yJEBhlsvHpLMtsDdaj2QuGUyNE0soMbG58M3R0dv9371w//44z/92fPzCmmSpAeOUdrpOLkPHz+dn3yI202M1+LV6jKxppy5GIHp6uxEJNSAZiaCvvvup+dGM+2uuDk9vzw7W80wPpVr2lDdPDpFpEvp2qif+WLAJN2eXmwI0YxCnix2MPTRYY/pNZLHCoV1W1Junor9RT+7Wy9kPS13KA6K0/2jrmoJs0RdZhcF+mimfJSEszw8PpKMPDqU+d+UuSXH87NrVuKY9ktb3u4eTk7v9o+jcXVhkUMjkuPDF68KrwQkAsj7w8OZa97a8TIJrRsXiY3w2ZQF61hdOuo0TGYCo2UeUggEqeMUr0KFGWKDPJzwC15evubVpim/2NFRVWLElLowtsM4FLWepJcHUwPaP11R3RlrzWCn62tgkGIlmkThWysEBD5iSjMk4w85VfqTk62gjqGsARss3zb9JRyodzrFXAZnDPczFoeEqZffWZoa0bnn041MuT8+lfHJnJPZ50fgLMrjt9shmfsVA+BJfqV6Y/juDjI5ihBdiCsXGAQMTLmnZ1KpAbab9w+WhAng8oeTPKKQlaFFaRcqrOVLTI6ywQWTliInqqpVlXJlm5uSCAWY1zfcKPYbYPKmdg2bI/MuL2++24WOUfHjk2EtBeUHJqG+4dVgMgiWAFnrZwUNUJqmwkYk9IZIrq8NxQuRKXSjhOSEM95icQSa+Dh9bhxhjZNFNSLnRoBNFTqQp/1N9aE27bBK00g4RqwO3af11hQJqfd39602NLfgyB2Rtdy9nZYqtRBOt9jJtlEkorq+tNSntT0m92TAqeXLwwOv+9XTYkE4KVbuv2GDDb1NxNmkYyPJ49PhkSmLx4LyVgou0zUJejFjKpODcoyygRoOmMtqRkLnSBRPrLVeI6M3SL9r2PO0hUDuyxs2xPReg7x0bcRHs825QYCnIIvhqqDixa3TkQJopOHFnTIxAhITIW0fwqD8swptwvHeQ3tFHvkU4RaazANwRGSNxmIOrqUuC7J15YvmIkQAwEsgwjTDdCuKmF/lWYpJsD2/mQ9tkT0H7nFJq2STQOPeOlaLKzY+CJF5jem5MES3Bb24FXsyFRVgWKdJdbE+EL5nD23P0G5CKQbL/6O8QCKbsMiZps443xdL/m4fbE9i19BPudhP6QPitfavvK3eRk89I6bFunOqWIeYpF6uM+roc8k6HsMYKWeaqdbFT7+cOXJEvYxiGQ8MqsJ6NBqF7GyeXdzI/ThP+WXdMdbVCQLC59W1SzNlIDwPgKwwN4HA/k47mMUWqBE2etNFHSzbD70EthQabLvf11yWv31IDkOCNH3BuuLcSDzRBHml8y2+us7JZKtFzKq7Zcqsthuf5Hj6+NrSX4TgRRVDOgkWrA+QfmuCksNo6vTUzTBMeAukobJIL2QqMWxZLnyHnkdL0rNHE9cNtBquuKe+z39f0Q44bOE3l4VGUz5k3J4n02io5HyCHyjF1J6veeA1Cv3N0wYz4kft3FSlk7YCquIwnEpN4WFnoTxocSFl9SAUq8guXCYRrArxsFFmLtKkBaHRY869lPk06jdiiv4BosOABR8eyXjc+nBf9RouvC6UXEIN7dN+VldD01z+vUYzIVVcZAgjeRhrNDSArSdIL2N95jcILPSE8tanTx8hAykF4vWM/MZhjGePsylp3WcwQZvk/fSXw1jCTzaFAsXWyzLSpTvNUnxi5FCko8IfTYA2MlvLGx6LXD0qIkoOkTa8yqMVeiCHLdNyAFLn2QY3mOMDPUOaKkugoGJE5c3hHkxEkBV34b7P8CTd6iEd0oQG+5Lu8DLoCRkii+qy2ulMhNb9s5EJV4iwEn2ZD7TDsM499VU66tlA56ZUR3Gg8tHQW7cWXBk7TxqqlY9ZNJNimPSwUEf+rFHU2ekJx3twfOiIDq/JvDpb/eY3v339xdvV5fXRyyNO/uL+4ujlHm+4Wq3efnW8//Lw02r1cHP67RevX7zavXt1b0nQ6adLLvTaynRz0JMrEmxFpAw+73/34PRjr8ThJmW5+AdIUgarUQu5qL5FcKjD1VniInrL30jMOwAemZSkELe+3zR3aqPbLkSV2OvcOn2Y1ooISWGnle7D1GGKPXa71pFzwn0FirJNNpqWjaFpWBuTY8BbmTvuxdJni3NakGAz8tE+zh4ev3h1bevg1rsfvn/5eu8Xr7+E3vXN6cH+t3TCxlnhr1Wg559OzQlY2nR7d2F7nmXEKJVKfPnma/T88r//L6+//pamG9SbxNg7OPjw6QQypQzlhUZatIIaCKeyrNJyccCWvrFKpOsUUwvECAZFZq21y5XLreJuqqc8K8Z2LLKOQmCjgnql/3e8ZJemGFGUA27lBtOf4W5rLczheLHX7rYjPp1g2mZOHDM62tkymDcAMKyzyunj+e2n65v3F5L7XsMkqrrAW33hvZ2Xm5vvL28ODm9eiVI2n795efCzN/ts17piMYdFzzQXJfsHLzHfwoyCGAo78VNuUrBl93gY2crZkK+OpncP9z4mIvQZTxUNRoApkrcKYOj42mxFA8Yh5bBTfebOJNCJZIRgqQEO1kliF8qMyWtA2oW61ZsGAUiGHxOpKDbKguvFtVtE3UissRYMK1PsEQ/zFIVfJJZ88sWIyTYXbxMVvs/tLpVNqzPqyuS4XONEWjm+ZekJppJb493zBtoJSs1mXiDkE7oeV1Z2dulpKwO9jrKdTI1wyqgeevwAWkQzg37riTUqXsRd/mpGnrMzuyPwO4yn9fECnRwwX423JWwaqlk4Uet8kNM8X9jKj5ECkdvtTgoiW9w0S4Yggw1BjI3gw0NcaSLCDbNSWqfvfGFr04a1+jLsQFerhm5sy2HQBdnUmiMRy7Y7ta4TtA7LpiaIGm+sfWvW3d5mFLxNc4+MaDICehojha1DT0uCgH9z+3RwcCgjjE+m6XCNgtmv0pKS1n81sOtQowL0bErCn6xOzjk68yQWKe3bKwUBQ/RWBOFgvcbzufksEynenGjHMBN7fLYS8vrGC4BzzzSqndAIevHi4vLSPMPu3p6TMwg9ZSBnb05o8tBaQIoE/2cnjIHiI5owWQETy95Ilvh0i1m1JEVqWidopG7EQPYGYNxMbEFwNJhnu+UinMZGP1vq8+CI53Yz0/ZmTTa22opdvtwCYKFnjEqbTa8x8qLjJSlGzcYGEn3qKkCt28wt1yeJhI0HqHKjpck6uRkzky7Y47i6ULy4orWC/jRaqHcrfByjGm70pBwStWe/IYAQqu7u9IwpkqrVG6Ng9RmGhnGJlD1EATdI4G4CR1Ssk1KZDmW19QYTkhmuwLODmHn/iO7REpxlp+yMi3NcwSyVTDpzghB7DU9NFnGFVl6l8EC/jz/GGCMBeLD47FEcGU0GEiqo6dSp9x/Pt968Oj7eB0eBJSOmiZAYS6e2BAl/kOERiziBUv7B8cb4RnQJIpMH3O/8ap+5yBPlKBg+JVFp4Z7HcbrOdC7gz3floJOROpQ1UMD6YLv7/Y3D7bhj/r3KbTigXc4xdwTHSoWK/4GpdiPD6d9we0HGw6lLFpGp4oJwTaGl+DsUtDmaHvn5xcENVEQsJZe6g1peBZmpynBOgXCF22hM7O6r7+7E2rAMxeDWChsAob811/Op4i+2VBLceKn0VB5gS5GpFKn+M1EYTMaomLu7StZmjCbXSiWR3D4cpK761uAye2jQnMJMJU9cKFeJEeoCa5AYpjQSKMiuJLOKa9EDY4lS8QfPoOVhS3xBWByiDQWFDV0mW9xFDUVh2sAJCg5wJaMcxld4FMWKDDgsHAEqGhpypJM0NXQjvwtayGtUfWJWjK5YrCv4Hv5Gh/IFIqFO9qr3gxIeb6ivK5/99YPPCI9xUgxyqf4QqyGFlQyIjwLz0b5Gx3rr+OdJhiQk6M0sqCqkKKSKCjSyKVOmkz8OUTjPTXAqhigZ9OlQXceErJ2fq3U/M1rA/wIBHy3Hq7QtBo/SJng30EvxsBexUyDcBuXFhpN3GjNAoBEhww4XFVO4rwlCmYUJAWjwKvcPKT8cX/keNzWnupl4U9mI0DKYOOsw3Z09s+qbktAW+NCd69XlN19/s7m7edX7cZ4OLIHfleF2TOTu69evdCsWBb/sGL2969Xt1eXd+/enlgZpcu/4xebN052+9+7WCg1Bf8OLprna+mbBqybbDth7LUyw9uz64dGy+7umKHqzTxm73kBEbZoHMJ//dBdpbMaaYPxGN6pQoZhwTW+1u2HFDpnUY6kmpYku5E9UU1szsMznC1vUFRmSJEWNsdYEt4Y1vo7EFG8hLAhV7BwKKpH63dxf/+zVGzG6U4B2nx5OT69+XxJze+Pw5RdGCHpj/LQm+OjV8YcPp1q8OLmwVooERDfOtYX2f/3Pf+OtaF5abRjRJPvG8/XF+er6vTmy01MHh06uTjnKQL4FLXkiH9FtosKEWbVOxNrSwyqQaQuwDNHlt/Kh5Xfz+alNASWidlu2T9DppCpiC3xD0pzHQisKehbrpEztoJTZpd639y+PDqUElX3z5hBsb4WwcOLd6dXJzcb7k9KPhMtkl/k3wiQFbEQy7tqffEpm1gU93Oy/Pnz1Ysu8CqFQfKMd5mXOAwe8X47Hyka8Ky19aAWg1dqN7CSc6UmvBGnc6IhS3QeqhOHKD4sMFKTIclbiwBaPtweRDlCC2QaAlWUeslt9qnOlcAB19ERbBKCjhizdqk/tSoUGpbgmUapkPlgvLj1a3MVaZUlnfoBdLV5lOi3+AZ/zugSQ5mScvo+x9oc0Av35YhB2b5Q5W64woa5Fli7SYPJaqihWF+OpcoHXypLu0ZByPMnaGY711xdEhdqIKujOu9aJ5/RmswrdN0y3RjynIrBnbBp7eq6/uLkFH9NkNwesYJ8KEHITaERi0+1sMe84LxJ2rA3u2uNu4drRkTR5oe/t9aN4/Wj/QEo7M9QwMJttIHb8juUNIIuME8RG4bsZMeixevg83zxwCHiDS0gQnSaZjJFd48CsdZTRsONy18zevQXxvIWke+/bNTnQ6QUvnGLWadT7Dt5oD7LXe2Avu6ZecgF2O+QurMlxfC2IveWuISJpGwDb96BdrET2LBz3Di+H9hqNP9iKwEelLzcbnCHdgJ14DyGy8s4gFecYY1zqwU27ORCvsXehoJmTNhd5nCpuP/Kym0/eENLeBiz10kASZEk+wnfjHBIfHWixkOyGMQ9X5EUHLKdEdRupsauuVHiWzrGCeiVCTqu44tl9BCwbIVwGxnJEU7cTH3uTi7k+/EU9H7268fqOhgFgGEGRFTJ4BUMnjRQZ51v6IMbUBNnNFuGUhLy1ntEvL1Jgor2fu5lVBqs3NM6kjQjjotp3gLfTjYKOAGFhw620bx0zcJ68JkJUCfPRirShisVF/inPldEKiPW7Kax25SJhUHUHPF2G+BWEEvxMoMo+eiDcr++GG19kNNhjHBBF1wqeRGuOhJm7zgCmz4YAsKMDzZ8QzEgsi8syJx7QIqT8jGvtXo4rKWS5WKFHVgS7DWVazvW4dX5+o29+sd8EFIgaVHixys/kBJKXibsT49YwhRjqmS21d0djRApVSBKI8qqXme1vrj55T69BWOM7ylyoQ9Rj8rlLD4gmTuKER6y8piDvb5eAyCM41y5oeZ7psNSK590Z7kMl1Q3BpmN7mmLOAoQagfpg4JEiLt30N/hImNGa+25GTh4+yeJ/bhKLmEGtBcevMFErOKPTE5XVnIZqdhoY4KBV371UupQQgXdzWl7aCmCwQctJQ2PBBLzhZACDsfyrbOh1NwfWxUhntGGu0NZf7S3IBrwYhKkmQRVUBRABg98SSi6Ix6fw6WFll8bigyqfket5QCqpFaBGDBsXF1YU6MmG1HBIDAD5hMlIi2zhghb3IDmPsrQMTmsxpgtqp47K8hw1Mx+FpxsLoLpqCSzwqKsFt/xYEZgqHgwbNBHHgep/eiM4HRTAHMi+5oZCstb17CoKw8YOBxN1W55dKEBXFqkMMpXPDy74wHxNLgk1dwkgQvIFE3879UWBBavSJxutZ2Xr0EhenhXAdh0zhFnjCLKo+erOOJpEkzuDaLEimuc5AaZDsbASm6VIh+IR/Yg7jQl8xKbQQ7JqfISSPaD3cP38WS4DGsDEDAI0cXuATLDaulQdzdihwGqyJvoUBdRjsFZIiLd1kJY5W/iR897Z+XR2poO0rvTu5mr3QJS8eXdlgp5T6oVnx4d7DgbZO3rJUHTq95fXr7Z3vjDTv7cr5asnubh5PLu++3RyZo6TV8RrAiy3R7t4HL0pFZIR6uC6cEUjJHlD3WQhAs/eOAF69a+xrxu6Ad2GDWoTy9ok0BIgpOVb8UxvXHaiffBCtdTb/eKRFm7GZC0Y2FHu+SkYdyV0IKOxIMjycKqUu4qpeU+BDkEZoUBs2X34aGXzpw+fnOPxk1dvxSzvP652Dl46H3IPLhsO/cxdQrkJYnPKOxbS3F1dXhOK1txvFebz8/fv3v/j33//7pfvbj98urs4d4Ag9dNJEryW9aMUAG6Z3ih111z8IsZUg05DsOA12cfIPm3TrEeDfyMVdMThfomKJOMa9dVJ13nUqQzsOnc6a3OnrlkLDE76Xz2grNhhQHoiMKR53r5+iQbjOsOiv/vh6r/9ePPrT96jWg9TVCZaIjapZW7BYi272xlm3Vu5dsO31fX9f/7793/727MfPl1e3Xg10t7hnuhk24FRnf1pWXbxnQyyDQ/3MWzml6mYwagJCqptWGHJkCUZMNbpGr0MK+QvNMjGyjJTBIdPvnypE28rKVr8Rpp3kAlsuC3DBig1AzamqmXBATqjX4hPG8pX4MPS6Rf4LyN5PsOI0rJqIwLLL0ZGdaiERlVUFA1M4LV2EYskYJgKj12nWImlT7e772r5mrh+VyUJjyCnbMWWr0Rd8XEqSxmPUneMS/NM/2Ty3ZDNsSRShCF8QVj7aoKhqt8o4lZAMkhWPA/TS5RniXAFxKmG7neUpNF1G2yijozt6ra6ykZSGgIsiSODcsklm3MymUJX7Xq3vosiGZs4EkCQxpMk2mbbvHAjJGSjCtLI0aA2J2x/uRd9kMy2U4OMU6miszkJ4cjdznEna6PelgLSU9jKLKBa4O5CupqiullozfUuSr5l2c8MmNvF65gdismbIdMBOyXFjbSxNTQ6aOXh8vby9hHJnVuNIYYLPZk9lGNN4j+zc9eiXrpddG2lyk1LfW4sUnTsYy/VzpmwFqMYxrC6uRx/wqiLn7HdoNpghLPTSir04LV6e1SizLuNTvc3Fssd7e5heJD4cmfdSoTYMMOl6Kvk823SZY8y5Ya4RUfYUijZ7nzzD5bOFDDtNC3gfV6sheF591khff0LjcNtDCRkS9ux0nQl6piG6vb2ZYxE1aCoBWZMQ81MiOqXnLSEyetpWxhDkerj6P84I7pEWGbP4lUZkLxvIWOpgaJ1zSs6nBwNXsKxdDBtXAAWBow5oJxKQHPto5a9/Klv4lckr8XDdhg/T8AfFFRkixPzkGaAyn8lEY4lhyzIqXdtKOJRWke6cAOtfYB6qJxzXUWcFOvX+yADCRmu8IArqNcAoMhB9ze9NiUy20+xm8wZl0tueVqOF8pQGsTyLSC7kwEjLwMkE3vHa5bvISspDymgdx+8U9FhuFgX22ANi6UiccAZBMaMmIWtCxX4DNex8prADOhkKxMpd1noHIMpfKIrUwYMOHELUv6RoYb6CUQshSTafcbsgI2zURYJ8X1orhmtBqLhQW5qWoCnZgtxInp9LmIhTYXCWO3QJCm1l2ZBHvwDN61UN4nnZmsY5hpPckOvxyGcoJrz7FqZWoQhRJaPez4KDQUD2YO5F4ohkBgUScH8XQjSom8RXXMUAPP97df8qbyiNaT6jEgjNMkNUgmvMrVL56bWElAiuHgl0K78QH+cssow0lbCmECEtgVkPDU+jBKMLAdTeEyxYr6Eg01xNpwGYM49ZOqVCxBiAMFOk0lgCda798Tpr1EfW1FvAQgTsLJeA64RFWiLcrAXkJgNpixUeBQCWhxusyWP+h5ZNbcQhRCOkTFBJUcSF2IiDOcbAmd+1rPyDfHQvyCB0NX0WxiVm2gwp1HQPMJnlWoFqhULc20DO/W0FDcG7ERVAkdVWTbDXvLHJnk7ZKaMFTLVgh5ocQ7aZBoOa06q5ZtnmBDHOZ2SO2u9GVmomyWgUCOorE8NeNBhQhtd9okF7dXrXpc1rCT3BALItTptTRXVM5ucHxeWznVkoYoBH06GOZRwmIuaGSc1pllhAcgbuzbVbW1fnJ6Nb3rySlprZ1+9en0rd6fXnZOkX755+fKLo8OXBw6NcDzomzev33oZ8PbuL99dvP9w/unD2bv3Vq+caP/rb75686Xax8fHR1b+ynt5eVj6Gn+d5eJdNnIqjDnW6VcyJ3dKuhQI6qD9Lg4wfS9n4xQaO1JnEr9RWR1fPbqsnQ6ukJ2QpXzuH8QuTmlQC+foOCUoyONwwUctu0t3JRQVcjue4bzKJOVHw65Vdzv1pPwupwPzV6jaeM6hSM0Ibb/74VwIqCf+27/7B1FSVumQkF0Hqu4XHT5KwDj13Ka9Zv+tV/nq61cvj/YJTS9LhPUTzzunp6vz1QrtAiAnLJGcbZCQOOowODuhnZqVTBdlI3EJQphSDzyRUmR0KXabFGl4i81S5mRNafLU8HSJSVicJo3mL/omSLWYAaBuPzH52zS29anyoB3QOaOXenV6VRBQh7f58lhaTFf9YnW/+d9/e/LrD7KW4kcDJiuv6F8eH55aL80q5AFIkOK1CqIkh6engIKqFz9ebPz995cyq5Zzv5apbYSwa5lFQUmZyzTCaHPt6GlsgCMrvCJj6+r68eZa9ywKrwNyrN6YDUzKBBd4ZDXP1nnD3I8lKMDhAhuzhJEyUA9QJ6+WfeUdiHdevcwT0SsDAtYUV8fixjaLs3MuApf8d+acKS7GqMUhfzHkdEeD3QqVmayKOYvXQo4rlV3QvdHF1M3X5VdULbavUreSVHXnahxLNzWxUI631R1xguyvosmsBetxRGMIJGyNDgtFvW1PVIxZwYGaFfG0kmdLtp63WZRhgsAG57yU5jxaOnKjsgZq+Xe8EE8UsKW3Tw97BzZuNO5wmpNUd4fM2qIzY2j2bG+x6Ov4sOmlduyQudG7dV4IIB2DhNaclIgVz1b94ckOk3q+PjTNtEOrYTTmZpMwbQ6xfuaaDMFJeKMNBEe7lzy9cDAn8GyRj2NGeyOYM3nH5IOEJ9qH8YHVcU92xN4dL8W8Dk1qc7K8sh7U2WAXCx1si/mIha5R8fT1XIDpKWovR87nbH719lhHe3h0iKXOIxDNG2NSIB2EzdPkUS/RoLnRMt5QbSNcHRBPKPliksuq9JEgDSAN3rDeyQgXBkOX2N1mGIOI3g+QWFOY+v3Rkva3qKgOdi+L2TCEpKg/LHB/UjONlSBgXMTPc2XoKkRJkVrrGy8Nerzdbd5jCKHoZ5mClpJxush11gwCQgtEaYusWuyUUcmG1J+6DySg6s4nV4M6tRiS5wuGaWYa5T8iUtSuFwOhyosJ+D6WMFaAZAx3J/GGVhmuLBPPMK4qyaiNT1rME07fARuU1qFY/qRWRbkjEms5OyCz+GdMGEM6HTHlm7h2XACUxizHggrhFiOFbbQWJshEdF8HBxoywAdXo6SOwzBO5fvdLif4AE8u/onojf7en1x+ki9ZAkmBRJauEpBlYDRgSDN7HLqljSgNi01bz+vKmD92oKzAprW9nqmvQ4/eYebUK7UBQ4WJLx/ikx6t+QME/QktbRQtxIe+QFfnO1EQCdbQ1Fyrn8ZKCvGWNLDmfPBlvGFqA6xPsLpfH7QGOvArXITZ05qb9hDoEzNphftFwn2W8S38XcMc5Ql3IAd/2o4gPyxuQogYMLCDM59pzrf1B6il6dRnzKqAgKvKBweLEHUCkPHd/UW7l7YW1v2vf88a04mAtYXZkFBp0QZwfYVQ9pFplbtEhK+Q1fVGTJKT9XA1fj4UfDIPglGP38Hl+JSUwY47Q2/kpbXZUx/sko+sFlC6duFIqcqJRGMvLdX4EiWPDMbpexDRaV8zkms6Y0nI4x0Voz1ZPnnny7KCugWYU9ZitAqjhcpGXUDSOU2HVtDTV/fguyZhJIfFei3tOl3Y6hQDcmugxRGjzJm3T0IAYTzFcsfXkXFPasuPVuejEYTDb7FzyNfseA0wZaIKUidATwnwqXqxGg1MxRdNZDLj13oG40TXZ2ghhFbZTsHQqUrSFeymCalOehR5YaXrHZdKb2Gy1q1K5MQUUyWtSHstB1TAp5o1DMaoukvfyV+ZuVCL+sRzX0lIUSgrpXJCpL3yoGb9efdmVPRtXoWzd7u6XJ1fHhwecnmXF5/G4+zqF15/86WI8ep6dX16Zeb89es3Yuirj2fWyX739WtbiFcXl3bCHR4eWgkg4m962VLsWynw/Bn9dCaQfBtjhRBUGmaVICnjm0N8uq3HxZkiT8fn70r0CeiF3FLiCd0mZktYBcG7VomYq6jPBU8NwZ7sfKyMC8g2xeyMem+6kYCs521hMT/8wrpbK2tJo1F+jCPSJos7W0Eogpl6Qf2d+8rwTqPXXOeTxUvxrvyc1a/UAEP3LQLoPI6N+7fHB9//7S//8JtXekyHa0t5SrtZC2Ej6+1veo8ofJxhyAik2PUrzg85vbAK4PbdycXO4da52Obx1sIqYbI3ogqq5EtfvzoUXMvdhUy9MLxKRxEoJSRzWGZlTc6S9RxFVzp/uiKojhUpRm3TkBJdxM9h+TZxIZ16LiwABzdawKAw5xir8bEhk7zjvnf/7jK9F2QQAwjz7vns7uG//Pb03fl1R2maMRFoAK+Vkrmxrx5sVJQW4arL8UDZBc7KL9xv7VxcWIt4dXS0/c2rN68On73szCYU2m0YYMQAjN0MV7fXvRrVChCuSArT2yqY69OmGAyK02mGp4O2Bfcgq08hsMPFmFcOyKhy+hb0GYs8NJJpFZaDETsWBnsxkO+6vrnBNV1jmhEH1r4ll5Va5fFBSyVieJq3ZD3yzwrUVDYIz1jg23zG0eXqU7P6j4xawf4qMF85B5c1OQOJCQs1WmQcoPETWlS+ksUMU7fW2LtIIkDZvqZnQXDX/ECyz7vmMEbhqbQ6yMkTDzmUok5HINnKz+KF0sneEiUR7TArL4UobsjuUOXkn+P9fTbjDbv7jo7aPxDiCa2MBIj00Eb/hqxQfr6+vCnI2N6+toSv8dfz7ca9kNMKftYKuXIK7Vd5cb661EAGm4fiHluYDklA9p2i02uDLdHuuEZ7U1XVu3jNnPiUCxPT20Ys1sFk4nh1dCTA864u7b442rG7N5C7WwyNxF4eH5G+QQUCNY07dI06WU2m6ZYDmQbZcq7RvgU9dx3D36qJQh/ngO3uOBPh+ulGJoJTMpy8vL4K5efny5tbY0vKgQ8eNGFChe11N+Ipli5IMnlB2i2BwdvHrUPn6PsUJW8bHsG89XPpjKmMlgBZPjUq0Zpb0sNk+qwLcIoQKzP12pJ6HSdDa7hVeNeISGhA+thuzX2Hbm3baIFMZfNc02t7FQ9hESUFV4YTZj60cZweOWhRFkZTyndMaAN2B8S98Jrn6V3y5FGqXXqOnASy86LBVbhMDJOmARmM1MYnVRc6jFD1KEmxs8vrAZBXPsVGbUgRTvGPQN3hqnS/iMIBCfwHODPwX/uvzCKgKTm+UYYJrLM/T1hJWsilMx3wubvC33TGykCaNBkNI6ocU350+FYOars5E6CB4YYyFOwMeXXJBUrYYU4R5uBEZT4vk49GdPnOoOBVEtacmHWtcgpileqMz8juIMjUKMmYdP00VPVP2jV4BkanQrpQ1k1YBfTVq5exahyppvIKEzAUSA1kXIIoJHoyG3Vc0dxcVlGHtixugZo1ouA3QEJirEIoFZKl8c3/wtIBX7eif0YWbOO2X5hMwXxdHIpILVJgUL6s0eyIuT5IhXpe+7jy9IYrS0Npgf84HL9wayqPb/mclRjYNUFwgc2tTu1QULkwuMf1KKFcfzZtRU04V64qCicRokFQ0Aqi8k3oRda0PKhHdoq0EL7Ugh88lVnw1Oy42UoC4mbQIiUcwmcQ7rs78U+LaYLHrt2EdkofWlNpnnrsTm1DfZ9DtfDaLcW4s+npQSg0mk/9XjN362hVxTp/ACmowMUwc06TdFNLGiJ7bUeY7+uBVhqIfsta4Jej+B0xqbpi3VEg0TZEYcQNKlTz4TzTJyRhI5yJsN6uDoZbhAlEhx+VrJxuRO0Zh+S+xjwySHoNUhYz1SdUQNfCqYHQGiEtuK7kDAQhIPrXKAgyFsO6xACHrG3+w39hqdapAswH8XTLB9pIDuYykTLiUTMoqBmLCqCSs1/QvXAexozQwsenCGRxmoPYolLL/SmMqJgT1AHbwKzWqUYBlvKNItLsnB1KPcX2ylSgiossFg6A4hGAWFIErJDHcXfhscKGW54vd8awCw2BXdPtzyAe/oN5BwXATn9V5/D0ePzyZb3X3h7Mr69Wkm5mVK3P8I6qozevbSv+4ic/Oz76Qh/uhE9LSH/y7dv9o8PL63tHucur/uzn32Kq+fDvvn0rlJNsdLp152/qAW8h/fz69REUqAWHrgPVoaHTFC7SBOW4jZL8I5dXx8cWvEu3XmbZe9phHVaoW6Ia+kl6uJlw5Pvxwux4dOk4RfzIZm6Y6BR5CTSTGy+2W6Y/SY9DobcVDiXV7ymm7lDXrkMXWabTBFovJD6w6CfvSnuprjjPh6rBzaGjWmyNws7G5fWlmOPV8Sve4PsfP51eyUV2bM6Nd6jJx3uXsBdjdQTwpkheKPPx9Cx1tinw4pISof/q4vI3v/r+w8cPHz9+VFGoqtFGIU9Pe5udaym40Z7fGk30o+D6NGA6tXOMKMGnvSKM1APDWSVyrYuwIdikSBmj+jyw8o+kzBBmqNOLbAyxoJT6Ucg8ZAGlb9TGqAnfrDgwxc4lYcv9zcPH8+v/+pt3vz69vPY2VGzH8c7MFqqke6EZF/3lhYBp0YfxgO52YlQ3yavDY937sLr///zXj//tl2eytt98efzNT192snxbVDf3DrYhPsGMKtIEKPNOX8gipdGOKX+jI6fKQv7aNFXHFulrEfckQMw4tjpkhpj0tfocRDE7HIET+yg4cD5rq975icIUdlpzPcaJGFKfKpbwmK/oO2jlyymKa08BzRnwtOqpvmQNyBXlC7cBq7nQKRwe75qF+764kxFrXNNuWotxfchn+qxA9SHfwTNclOxGPXGMng+MAS/PL7T1rAlMFeqrAp4jxSezTxR5ooGIa98nCNwmw/QP73TYYfLsfXw3MuVkGy8s+OjQsK03x0fAcm8WGad+ze94Yfa1UIFFxKscviiBsu2IPikqD+BUq3Ui2XKIDWf+CkF2mHjj21vjXmlQuDhJ1pSOoOqx10iRDS0yFiUTQ3M7VSySwRszRdwCvaxbafkfrbbCxU50yDPfJps61f7RQDqL8H02vreeiEI0/4G4lOGYV3G6i7VG+00bdvhs82/N3bXC0M4f55Naq+NkqqdNcwujlt6wjYFIOLdXBWjjGaorDmYnULBLBc+RBj2Lwy7o+UTzaKCwTg6FNMRZIM5bLclGpAMQVVhWJJzwqTiGD6Yl15fFh0uXnuyw34lCs/hN7K1vcByQmIhuOz6VyZMAIrm5WFOQq8FUC1FwM5fSujeDMO+U7Xwth4emariXP7WHYZfXXWfx1UvNC0yfLXBaBvVUBZKsD7vGO2bRIl00AoK5SayzRgo0NdXXVgfkdmgkhdT/NufgDC8nRGXIVhNRwtpSmk47BVb5urtF/aVVvMBx5l3xKsfpd21VBcvgzRRSdWIjgobxmaw7OrqKG8KSKwFZ2jBJTPxHLHS0CNpgVIPxi63z82YS7fRoLEr+LeNUxROhDmV1kykZ74Et2kkXcwNh3FKtybaguri88BOrQoOvWMJiTCWLaLQZIG8bQJKloW1Ms/RRi0xzw+FX158+nbOgLEtODaMIS6lW6RppgEkURuwhsLBCRbwKn9BQS9vjmes1UnjcCiPNzkfJuoY6B7Ddzf9g7HBZ39x3ZfwmPvirjksegBYcP9pAReyvi4zDHEsyMaop+vfJX0VnHinrVa3yyEkllAwbjdZJANAjBTAt3sy332Fb4T7dUCxOFkEoXjzparRiOO6pT/V51AJN5ddV/Jn7UPsMrmI+cPUQFkNs1X3g2aPRJn9iAmQHogBmaUU1ZWLFUgddJOUL84xZcaSxl9L1vmNCgSbIJy8Jv4zuQkAFglKYWy+Vio9E0KU748qjw03fJyivCgVlZxrglHPEatZucfBQGgzI+5VsaJ5xwpg8WPBGqmK8DoONyM/MxVBYT8CV8MGENphGOYiNnrrGrl2ox+CBSaWKYdYmWkpJUaWKfdNA/ic0NcgfDX3wxxYQGJu/a4bSFYxPob3+vbWY2qqDmVFQXEpncuvV9UlNB09whs8LHDzntqZFVeImOP6qMQAChIdsPqJGHbUSBD7Ou0h1imE3ljwC1pdUUqfL784Cfc/iD/6nOnWrBKEKo4qHWo0FfhZBFFW41mcVWQ5CtI5/h6qCC47uw0XL7gGgZPRV2t1h+ERCesFMd0bn0PA8pjX4aSioPmZE8TgFN4spSZnPsw5XuXFnOlkH6dEOQaM1jY6Wtu/r1bGBwYtvf/6LOqjVhZfWo+j8/vnC22uIZn/zePvg5uLuqVMyNr757jttr67vvM3qi9f7OHd1+3jpHZ7O9nsyn36IMXbkybP32pwnL+zUb3I98ldIFu/mkWmrkaBee/oviUb9667DpTpufA5waLSQcfCuGOv8/E6qz5fWde0/CCufHPou03872WJF6WTTCEgYzuWziJj3jr3iSnmaYXshBT3jJZsVKNnDEhJl6qhZml8ih/nJJnllgrNSzz6evvqz33dM729Ppe7vrp04tPni1vZgb5vf6chw0amqLM4eQf0CMY4Jbl5c2F99KzSVQV+tnv/mb/7R2On18cHG7t751Se7L44F7tvbX0r87Ow4DNTJmEyGEChEOlAUms2mJ6MxhEiMJiRTFAzsULYyc831bTl7xNYIFHV+HwBi+tFJQKg95SxXpNjsPmgiUc8mfOEyWQ0NBse5qxpm9rL2//UfPv14Y15ayiEHlcMpEvCK0PE8hSrpsIr6+kXhgy4XDQdC7qUfxSCyTe6cXD1e/frk4HDj586+3t1/+9r00YbXLABjIOPUlFy6I8k7WKXwJZOErQUMWxZypMSStaIyTkCe1dAO4bzMmIyBrjkFbY2tPdyDRvVZj9gQIGfStMq8PJkdzpQ/sEwyNzvui+PqqR4Z1mlHuhN8n+yZZ2yOuyqFRPlTDEnnxm1WZAZm9fylacuyq7X4t7SRqVL69exoLsjz0T0anqBrUIkKqkXmv6ui4ywTBin3NDedd43DwQyIwgs0SqDtYhbqkcuFEWx686D4r2xEcPNuRo+tKYsGEKlJ654d7KM0qz863rO5Fk70XGJ4MZxRDhtbBUOO9zRn0MDSHBfLgSrfYwhHF4VBFqg4+4rFt0AvNmuyvCzV0rz0MnUQ402I2bDTOJDIW0EiKW7ybHPbqyTODBGeN00zAsF+bcM1UvBukEhmDtLeVs8f7L086vhLBbBDC8XTqDMsbJf5/b7zCuZNAuItM9V0wHNxHu3V4Z9fXdtsgCvCrZ19SmWQL1OwZazDJLOXElN+OOAyGKgxSpcUAQbFzm+xDarc/sPjHjPa83pgGyHQoYKTeTcPmjXgGLlB0Gzc70AkIbj1bCJPL03T/TGoDvnx6aVUs7CWRKOCAZo08UJl85+OxmpCFc4kxP6MSSk60YVkGLbgztZ37C2qtmyyxei87q3ZUh7NFMWul3JM7Fvg13vFlpPrWnxFfPTc7AtjE9zjrxeFcKAILJVCMR6uD3b2SRG2iqS0mNzCTIYfl7hSSMyiq8LalJJWibCp2vStXFkeDAS4FvOoKqPsN6sqnrHMsy67INLxREji3gqK1+IexabPujDoopq/WprgIdLgZWp0dB4zMsu6wtwgmwGQ4Pk2jVPvjKhTR8m9DsIwmV+luDXNemeszb00aaMhvJt9zDDJANlpyXXci/sw8l8/ohVdj765twzUfl6CFdbPJeS6aXh74itQwnh4KVc4G6OUbYyyur599+nE2k8zbPV8OIjvtWo4obEK+jNeKh+FcL+NTxDoAl8Mn6i6VmJu7qKmffQCiWDuFnYBA+tZnEPHetqCBShNGKlikyiait/MLQo1l0sJMtygs4jA13zN4lxGxHPZjcDgNRjUeNZWwSVq3BlH6/cgElG8kAdTXpli/SlWv4yFdTHpOmiJnlpWNVFWS+Gpknp46hPyS8PD8AXt1KmOfuI9tE1ziaNVkYPvCAXUWofnQAnWkER8JKIhxHi+4ByRg0hqEULk3iP353fMDcf+ZUL0I7ADS8lMwpOlhXR3lB5m+UPQxjyAXgQMJkaggcfADJ03ShPwqLv70kIRP5bppnCW68SsBUmo8+N+c2FgTkn0pDp5agxVspeSNApQpTL1OFFPBu7BsDFoLmNCueEmArXoAytEj9YCELHwh02CS8PEyLElT5+ASyMN/okaMiPvzqhmirgYnjPaGdjxbwDmfRLk3AV2oZeAF0VPujMwXTipMCBV1FS21gXO4ADmLu26Mx228X0Z+liRHuVWRpcq5hME3o3+9QwgKKSvvkEobVJt/ngIO5jExVgXbgryKWCOK1xiucKQmDzEUN7KjzmBCTa9xP9amITDwYHJnFQFa/zBJQ3W1qLrMda38CpiGNEoNiXodW1xteKxe6cGOIR7/wVjujg71eabr744ODr86e//9KufuODKNm4eH969+7i6uBHCXZ9d367auOddyHZsvv36i73DYxPnHz94bcBKN+ewni2n4R9sW5brZOOLy5Xe7uW+XvXh1bHMfEEs998RoYZezvNBMrdVXkVMsOW1woid0VHT4tYBUxMx+iRspCfNtN9mQqPkiumlXE+vIwrRS1oSMhIbi5W8KXnGtSlkCbINds18jNoUwuJ/rjzGTyaXbQgyKG0ZzgJ3n2QEAmY5FxWDtXW+ujk5+SSL86MszcXpxx/fkYJ+fwIPTXU4Ruy4vFJehICJ9lifnl/0nqPWMFl8unlwtPf9j+/+9m//8ePHc6cntTbC5kWndvD3ewbVdxZC6I/gQ6YiNKQZ+WjeTzabry9OpxLTsSR7xHpqssI2jEOH8OPq3k7nsiD1/8/Uf/9Y1mWJmV6YDO/Sfa5sVxuyKVLEjDAQoF/1z48gQAOSmCGHbDarurrqc+nC3/Ch510nqqXIzMh7z9lm+bX22g7TvZauSwqsxunolWwBapISXcxy4VB2TIiNkio0Nu480C+Xd//8cfXl+pbsUdxkTqHJHRAq2PiX7KHkOONRx8gKGA1iks9AoBzalKzrjVmF9ec//Hh64Vz/ncM3RyeHJ/aZHFhDQh8AY1WuIWDjUUyZ1AnI/BhXGkMCeUnySbs541y86pAzegZ8AwxShs6AYh339lCBbkqpprd+uaNuyvBbzmlug3kyRg5Zv9Q/rYfPyAbMkg09p1nIxdtPGShE7fQre0U9CVa6P8RM/ceYF4SN2r44hMVUxQJUzPirlcCl+rpCsD74efHPlAES42iVnPJBkkGOyr3NCli11RoGUqqNCbCovBwbNmV1ABlgfmu7REDj6AaHq3bQNnuGDsWyHDyfMmUGHniRyfI1Zuf0JOiklZqVVRUK+Gr+UE53cckF3wQeP2Ti6XcRzQiHrkFBEibcoZQEKf0CfGIcbQioNiMBJ0/oxbpNKTx8vrqU4TYAoekQh4tAHk+g7tB0QIoh2AljiCIW95SZFdIdjmrbLghysGHvgfNndW5V2IbsCOXht6xXBAHiR7Sgi/ok1XgYoQ72xHBPh7t7zLxDQg1qdpq9YAFadbbvCC+3mqZYbTR/7WLvRdxR2jhdJGqIHzuLOHc3doq7b1f6IN6tjjDnwHDB0ULcWZbGzzoElFml83L/3B1bRyRTQOshXbjNphgZOCZJmt+sq5PHIpGbSWwziK1sKz5YD4ee7DAZ6Rympnx9fDTbAv/2JODaQyrkyMjVY2cTtRJ9VJoswDm3QERUAnzqjYwd7Up+SMiOwxqQng/iADSUPTUcCgD+d3x6yUR1aIS4BVVYb32nJ+AYmxqplnY9zVBrcdyfT92iWF7iL4WHiEl6cIRKMq8YiFOizM7YBTX6XJogf6f0YvzVWnpvBFcYky9OG9LB8pV1MH+9ZINhT1izWi8r40VfC0YQyA2pCTOY8p6684f64tpLzkjXEWOZWsmv8Gtaa5yo9GigKgvYkSvtGn9UXr+gaLS4SRXznGdXqx8/nbkrYyqCPKFWSMF+Jh0JX61AzgctGwNrB6E8KQLMeiy2IhO3lGQn9aItFAGAvsYCZfDVxLwIYuAys0P6CfQKgmJBbolSUhMdKVxrITcV+62Z5E4jyL8YrjpXSE/+lJoBRf7C1wriTTUCFcB1OvaqYvNT0/F/Oh3uDy7cULDWQIhGSc2BXGFsmjq9+f9vRhH99mQ69dXP0olWwKn8AFQBTQfPSEz9jJWAFlBQOIAiot818NKU1mq5J9yNnipFMAFHZ0gO/EcCuuUUrFzjAsGCts+AYHOHBzLxAaeuZpLhaFQBLSQD8d6H/KtyUyCCeCgL6K2PaoA0+QBHJo+GgLV8FzutsQE1DMQ6+emeTLOsRR69UGmg0mGiBgCtSdRBPsrk/+TpRTbRZXABYUPPshQ6aK6jrv146yfCVTTT5TfkAIqXCuhDp74pgk+eACw2g16Vmu+Vvz4i3kIcr0YUoEUee10xsApTxR+kedynh7BeaDjmYoqNvdAOXvzFIiwDweZtYJowEoIIiLB5qSg/auxDcA4aXinYLbRjl+aVGnUxiMfDzARuVqEfJnS+5oUAy/KkFUEOpqGzr70q8PQ8/rI4rM2MzTgGUYgXCsSLUcWI6QdgcYeSc3lDsWRnutaN+W4Xj29tXn453d/Z+/zxg1Ure7v7+4e7r2wDsFySy7m4MoFs9fz13c3mlkze5ennj/L6B68PJQKd0YEyXXzLsmZ1nrcP970Vn9vI5nzpt8eH5vqtMJerc2nA63f7X3/9/uOHyw+fLs4uLhETuST/kOPq9u7k6BjlxVbYpKk2zrn3h0Rxt04scbC9dJPrLVeW1vBzGVzUKcRw805p76ZlVWntDMF7vt3f2kOcIad5YVFrKUOkViy3tBhDDm5OBMd3GBAavhA2TYxKUZBqGS1rn9QZ1iO69S7yYYzy/+s//rd3736xayGNs0MEUc4/2XRBj3RqSgE12b7rKzfsGmKtWYvsVBWGmco51AY4JBSylv7/8eynq6u7o8Pd18fWAu5C3p+uSdrcMFfAFhtjWysBTutxwDHzqQL0ZrITa5PpRqqFpHjrx0ErDxeXV8foubt7cX6mKkKRhRSSe5kYEbgwNyBoZ8KsryNFhhPcOQTFwcY/Bx3sYhjAP7npefNTly0L70oYgJ0UJsEd/7xkm/Seb8KCeom5i3VUVIujj8msYlQqYVYUkX/8crX35w/I8u0bt77errZcSyfkUt4xhCAssWxGhb/wzKILlEY6WVgygsgMrFYFjmIm6HfYYrpizZK7wYRgLYgCqWmgFkIsuwJoWNufJtqVPRXOLnHJEzpb+N6WRJihcBolPzr2OYzHLmkEJCGVgWIxCg4qmJnvWb/8+BWE4YhJMGcZGunm7frJfi3ORssvJiICegOvlBeJX7xRDU6lv/xf/f5x/d4IQvMpaTxokWKkfVrFSeacPIMEWwxENTSfMzheUg00NogyaMS2IHnuQDCvRZlGiXQAoAZTXa1lDllYz6Tb7Z61R2MEC1D4ClDVmiUWRYTGVlILq5uWeQhpTTJYS2KgpozJPWvm0LW7/wpZS1vCGyLhBRGAtmibLK3d3rjuqmV5BqW6M85xCE9ZT1l96sVPGZQ1I1pS05+t9U7KJ4GzZo9xaALZPRui28sZI5EUnUclHhDuPODz455DqyIV79NIAW0nP0NJpW+Vczq+m+Ya8hXw4hBQmAIqCa+2ybYFwpoiZihjIJdvCPvUHgkSKII3IWoTgEWHvEP077SrjSuTI1YMshrPDxYYGiqIffFdYAe/DhoQ1heNb946zhae1j5R0ua/yDMWlAp0vBWS0vrGLiNfvuKl1qzUYwAPtvewVX0/FlVyCM3EN6eQd4ONjvCavEYeAoWZbHo+jG25x2bcoGaTA8u33ti2ZOdxmevS1cjhYYHcuLDksqFClASPtziFOB7iLeJqh9R4NbxWNccaUSeR7jEISCZIMGTaHChzrFsUObFvEhhf1IOrSKm8ib9a1gkJr/eEs4kpDfqq0YayPHlW1BKdGXVL3puqLRAayzRxAZJqpPjDHWHdA9PhR4STGHil8UGLkfRMXQAAJF3v72JWgMjEdRQST9RsCFJEo7GQFSzQqhZvp5+MwzxsBgz3J/rCIjZaKuPL5ZVR687uV+Q1ixBJVcx88PxD7WAN64lVGOi+PWNPozuNI1MGq7dx3IOpFYjsR8jmOptLDIMJTrCjMGOGUmnkWKYCifJNjX90MT9j7moOjgWpnJ84MB+WFIVpkPmVSvUkgcMN+3BUGBvoASbVS0X9LQSf/z2cx16rEISZ/TobXisGsEin4Ql10BSX6WBL04nv8hOdeYrAU6PntR4x84c1WJP+aBAwvXiBOHjV8S0C9jAgUcyXgJ3/RvamEbYo/nixELIKzcMCD5OhjmxaQSP5p9Ae96kUxBTTvYaneiKrcTTy28MoEpAJlg6Wkr0ahWX2QNhnArGUX+g9sEb7AA2m9AFQFLX2uyxJF3GklXkF9OBatFFfSeqQHkgsl+SBkiSKDIXF0DT5Koo1IRBlY2rEba25rmJYzj7aLggORr5GL7KfehbijMotSA6JAlgZLYV3uA3KQ7SYlFqBU+0pMDqDRwUfpvVf3G19qKzM0t2oh5arPqRAfwWmKXIzhCUQlegXIVuqJ+6+MdDZI81NXo1ksH3G7jIjwCl8LA0/YCujAR31K5r0vSeJgeL8lRBmRgJxpzqJHTS89U9FQgwEz9FQOB6ZJuEKAPAzQjfX8kOtKFMRAGMAaxMvUjRL8wt9NEXN6yS3ljykBqbzdcVJWLsqeXbx5dPDquz+9oFclZ12jvLY//Lpy5ePpzJJUvd7b49u/vnT4+ru/fvXVimynqsrfT5fXN6c//nz6zeHWr2+uDFNDCKLdixceVg9Oud+f3vv/EJC7snhNt9+/d3O3sY332x9/nLaRKtp9EkcGhyK5/PZZV6hYMtvowDuzEIOEQtHLsYRm6L3oQPpjaFbQTTb5iz9cVQ802itwAw4s7ulu8QnCNimFFmQWW9q8UMTYgw5i4xmGuQJ4mlKkTtspEF4SvPgbFuxihKWpeMdD2LvGlauH+zvS579/g8fX22+//brt//tw4//5R9+//f//t998+13ovK71YUMHyyOjk5++Oni9Ms5aIuEnFNu1e/sbxPZCjv0OvNnWz9+Pvvzz2e/+u7EGIDn3b615N1NuiJakUQCQFfYNarJQ4ynSXFIUvMAHaxWCIXJFIqwiWLuVg9fbk/t1uDYJMcPnNDKIDdKt/wPBfh1VRvHCrsg1T7L3Nu9NCFo2WMkFq48Y8X6+vnl7enl09l5sffIPwqPVRxB9QRNyPpAlPnTESb4muwpCvr54DPBVlP+gw0pCMj2bPz+z19WF7f/j//pr7/55sTWjLP9vdPP5yIs63bJuQVdD+erlFN3pAJlx03qkY4Uhj02QrOig9ZpVrctotq2LcRaiCJIwoaqqEMmNvfbZ2zJlp0GUpgOwSV46QXB07LjiLpyDYTZTEaSbNBBOKq6qDNd8k6/jC0dGJ1atEqhUTx2EzVmfKuiApmBZi/zthEhFo5OLgSpSKFAKj4eSCXF+hk7slASSDVVy/r1jgGMwqCiR7adlJscc0F5GmmIonGzpGbD3TEFHEmRGkj0Dz8xaubMOb8Payu5Z6bYuVVGPmqjRi+1/cq6bOIlXy8acnmzbb8aF8p7LYpXH35QUxyIKJkJaoZYLT/xHrefrSRf32iF3s4rGzhA4SI91YhrZwfNTpzo1CUwHe9DhBpFuH/abp8O/GnLh34Q17aajPOM9t1kRZQlMrBVYCkCwAb8bblLusJ0J7QFfxpzcH4BaPdSeWhIYB8C88gzoNHeXtv0CbPEGQMi0EdBYwHHADiarOA4P8luGGmMX85XrtkxhWJ4aPsBW6TdKEBEuHupettq1wxOrMeTonCEkfOCnbvWtnu7rZgYKHbwZpvgXY9cih2CYGC1GuTwpGZpHDNq7ZYSzkO7vZWYLsfbsb8Ylb1rmJG5aBm6QlawuDIFKQyhx5WlgoDHREB1kOtIkUdu/soSlHRvrdFsRDbJUKQFAyELKdARmNDf8AYMduOwzJlobRltZlSTRr2zqxhf1llnzEd5M0xL/TVISROMWXhD5DhcRlrNYo5c1mIp4nFhPFMGkYGbMCJm/lE6qn3nd9gyypKSohZEyF1KnGr2JwM+IjjSR5azUc0wjysuhokwukiV0DAXnio32Iu2DgG3Wswd1Z5SlpkoRiioYIGy2jFYNSVF72x0hyXUgooF0BIx1WOLrDroAqV4FmJIVQU9M0c7iUtoNiyQc2RbQAOMyJLUzmkWFApzbCb5+MUq3L23r4+IU5EiOUdbJq3tfDCBQRa74GchFKoSGGestdWktaBK+L0g6TfYvKr7qM6TFKV4DNRyTEqMoYbI0ib3kBzPUW8w64smJ7pQ3gcU1jV4am0GJyTIc5FdhqAe/ehN1UKgPsRC6eYEycc40EP0q3zN9wV8cX+qZrIWdpPJxlTBH6k17buSpBJlsqXZxl5pHOK9VVSFWi4UfxEyINbbdEe8fPFTz9FqwFB4UOjxIPHSVwo+XXteI5qZXwr3o4Ol08I4YuELbQFZgzb0jhokTj5vhia1noxqaSCGXU0kc3xMvIk69ZHuhZKfkbFA9yTgZhROOtJeLpwpmxpkSAvRpV4LAqafsAqG+Y8r9T94WDdUzpQXCg/GqaiNeFFZ40ItTaFErc1iLFBpkBBrGWYcxqBJUBnVETR+ogMEYli8iTp2jpaRK+czDhiAXiWkgB6K+T9lgNTLRNu8iVU6zzrEgNmWFCgDAypG7SEkmI1ECSGw67HJvhZKDntygqqop8N5UnQRtcZEequc9/JZAaxMgvsvMtoMe7Jg+ntMGAHTabCGcEZLj5gANbyAcyl4KrSAHm215jkACmJA4ANkEaGWFMu7DWwp9kiI9qc1BTIUo5kvqCFgq8JG/6W0w7++BMqoEfWgChnc6VV2EpHs91JGnp33leKX4tl/c8yOscTnXz6v/nwN+OM3b2Ss8hBXZpnXf/3br55ePV3aCfD9KVcnqmYBv/3FV6gpHtretSCUjTUNcLBz8CD9vLq8PD+/NhoXmaxuZRVtjNu4sFdALs3BmiXHm28W6bG25FwaMtJpzjCCmEnhiM7G4xrMtHCmxWYMjkFO89roR7NaDwBrDGsTnlszGypogi+MkAXZJXTzRojKNwgrik0lvcwh8FKvrGfCNCmuhkrDvl51na20TaLb4MQFtJ3Y7RpjW9IvyJ8U4B//+IftzW9O3p7853/8T//Pz//3b776WueAQX+I7YkaHFvU9EYnbYMF29suiA+CthEn7eU0tq0Yvvnx4+m1XM/m9i+/e28V8/dfTpv6BcbaumOCYH55dVfYRk2wcexrfi41XWQ5mcXesDO3YJnN7dWe2363OopRiIIRjrsBmMtJRW+K2Xvp8jRTBHRRWKZywLlxaXvGP0vgsuWooicLdQjkWHkIZsF15clYpaTdV39G8jO1WDMrDioDoKVc78fWU1fgA9v4ygp8kdbHy9U/GElatmQx9DE6Pd1eri4SMS6ZsHDGRTYtN8DDscgaAHB6T5UZg5FuEFnxYbz8gFbS1nO0FxKRGvQfA2yFeXpWG8YGsxYcKKjB4GEOMVhvGUu6hby6UBxGmQaYF9PEYR8gLTzU5oIvEw8pECvmFXXTjWqhPMJJYLNswdwTL4J/ms66JJ+QSXH9HhVf/GK2nfj/paRSUZowYzvxhsiSQAni7LmfWmFDKIJyESp+ZWDv1h7ctoFVUaBqWTAWwek0ZXM9dQrh04M8MStBy4R8wkPGwYI9Osd1puldzqUrhmkWkaYjjZnabrvx/OXy3MSRQE3K25p7Kiw2c2oQmKWTHZAlprQRfGS2qVlgG3obIaNHq8zzLBZ9vdxj1yVl29uCGByk+zwo9yMG1b1AdgjecXkPHbdSMApxCtuy6V1yrrZzbCiQjXbSJbktlCwL/7zuier6Kku7ZTzTqtTIKdvF6DUXUTBUDJVkuHXY5Ma21XQyHIAWhrbll6459GByB4+Iy2iTD6NIYXpctJgeVZN2RBa8tbh/a4K8rh0sdHaphbCZdbXWz4o4IzVlmvk03zVelRKQuDiDheNEgON8mFQBD5qWKc5vrl3uYAJ6z2l1IWkj+DWjjlAbl0dAcHIhBULnYKlOmWZ4kCmdpB/akeOQdTFcKSzEaONwEkIdbGJeNzXUbl2KidqqLOqAO+BksgkYLjd9irTCYl1rO9OSmcBxOqNK9mN8ZVB46VtrDl/N4FGgkoIk6qmqT0VEaoJNaQ+0pH0qOv66ZAk662IUIJHPIeNau4mKMokQKPiFe0E4voZ/OksLjM4g0nm1lip0hyR5MNptp4d5LR6j5V7AaHBqqAlRtithky/TtE4bKSbTo5xgg8zMAMxcRAaGE2Ttm6/CY+gHv8dc0Az+ZWo09NwpdqgGCBKImMCTp7i5ef750xe7aJyVjZRQrIdCRH8JLCJ51If0Euq1n7dXlgx7wRxNp1E0Kk4UC81MQJRJ2cnXYuvUi+DZDU1ObF2dSfGMLfdSF4gAQFaEOCFsEIxh9wq94ax7MNQlrchrASzG+Uc4PaZigouMW+0NTxeWj3OpQGQCjZYzs9qqcMLiV1Z0WtfOtKyuXivcQDoMxEWgDDR/C6i8qtupuMhquqCLZAw4EXeA7Iu21OqfvvqBJF7XSA1Myfm9fA7hSFFbMa4ixnu6AWzsHHSWMAyh9YXowZspzdakjs/Ps1Hp1hTG0htJrTsvlqzwhMuDgUigpdJ1PvBDAFGWyHKgz90GEApoAuQxfu3k+NjOp0m4ZhCpeQkhk6BItrlhIS4FaZXCTAdrgcLrRQvTF9aW/yCr8IJQoz0fIlFqgMyL/kdElB1H6HdEgOdj6yh12rhmgIkvyRpQkzn164jQ/yVYVRHq/YylUIBsKd9P48v57KUPTCR5HNhCfBa+57Kq249XCyH1Z/nksCnye0U7QFuzsBl5RAqNLzTxSvs0GaEUUX7UWN0A0HqUgd8UQ38io/XUuU7Qoc789rS6L8FbRBu6LLgPgVRUKdWtCQ1E0omI62yeLfIz2KUAzL5GKjVyn6jUuXoe1HwsVzXcghYK6MDdbB/YfLvhgp7722sQ7R8eW3N9delYDWd7OHG1nD2tZH0Ojt9Y3a5H81WrS5fa2gi7s3W87SCDg739rcO9Txa7n1852+JwZ+/Nu7dy8qv7M8M9LvP1m33unZibvj/9coXYq5XNptsIu2fm2nfbB0fxsj3Ncpc+RGxeDcw+5X8nSqAXsrUjrjYm7t8xilBDMJubBye+kOOS9qBWWGbkPcMS4a9Mmxile935AC3IlvF3thuCW+ArxywxaQE/ddUXqvEFmhw2NLZgsHkMmqhl+gzCFujYD3d9/vnL1nffff32q39jmRS6PW+i3w1XfGOCxuGSfEkhDX5AZOwY7rCcExQ6xnBnd/fy2pGLO644o3TXG4+rjZu1nz89361frEQ10vdPu4d7ZMGsAibw5SNpMRsESCdwARxzYYYB9UpaMwTcG0HqSMem5qLhTJQLLOgratAWXlN2StxlTUKnfzw87Ozule16dKvSg6wkb7V3vHd1dfvlzMCDhGWyDfkyU4LPkbRFtPBgRCzS6S5pX5Qa3iPOOIVc/yKHAMQ4+ta2h7FRYpU//3zxb/7qbnfv6PXbA4sRTld3P8YpDQABAABJREFUuzt7tipQh7yy63r1KEoyx5UNhJqcd0kNDbOfmKL9SWk73pb6pUB3bXDr/iZJ5OYBUnZjhbUtTl6RNHfDCm64GRHZByDFF2SjuISQ+ng1vaSLRKJeEgZSsi5mFf/pNHtSyxEmR/aibpkBxYpQirYzjzVX9cDOk+QtPJrRgqINVltbnIz0S/U6BZEmwxTyxFIvgojJ90duZl8bumhLdJs+ZPFVYUlhkr6LAIrdu6tWr5Lrgn6KgPQa9pum6UvLwktSTnANSuUNUPXKQvQOpG7JiHU4Nze3Lum4lvOWeN+0i33VeUF1XWRke7vAdc/yNUbUxlBtQjUiZt9b8tOkX1csTaZ0w2mwlq07xfKoNYfKOgNXJMoldYFjoclsiqUsu6+2LeI/u3Z9hFR3FEHxeO00LSL+ClM7Wh4cqiNI944LzNoQvG0IvW+OUVCfRYnBQkCFDw4K3XDPzgIctE3cFn7s1Yp8LU+/Y9Ttiu6bdn+C2RXCh9QLHzcbDFA+J8kSAH9okOmmdjXH6H5LIzsiH4teeGqQ5u7e7S2r6uim0WxmhOrJc4wwyJpjxuNtsVR7hEZKsdV0lEwW9TRx6GzTDVDODAZhY4uw22gFRkghsa4/YpytMKIwKdKWoSa+CAJakK2mgYhVBWPZEjwYDwjuDWktrnolXzEip336oWv5kmSPLUjk1wmA3xYs4f6SuvQhUS5+yMOmzo12NoylEQb/k9747z3lLVinRMqjqooIRPDInx39eJNU98R0CvHBrUQoczl6AqAIGg7L/37Hc20Cu5EDOMW+YyKSB/3O1HE61Q4TINEJvdRErDSwkQViG42yGLVXGwg+vjP7n/tvMNkkTpmIWmmEnwylW2y6D2o7VIUVKqhdXhmHZhCADd5JVEvJyAKmZSSkgU0FyTCcMyGilGlS+35IatyqMghLX2jt8ub+py9ntG+vDfRNbg8RqggYwpD6ZgeyUd76CnzIks7M0yKVme6+DB0i+JijLE4d++EyyEk0r4eEBRA5r4FQQ+xKJhdpawW7Y/oA4+GSENF+D4VwZEYTY/xhRDBqFvoNMl8YqU9kiY4xNqpO9jMp8jzRGoZ7u8CQzuoJGMnOUC076eP8QtKZBAhpYr9kYWooOgXA/IRoVZM3r7SXhAVXDAht8YGZkBG8MRoBoQycF94pERESv1qezrUEir6FzrTiWz2F10R+Pi2QarmnU7e2NDQmOM60ULUFTLjH3jfvpNIok4cKV2a6Ce4anofBN5QdlfuX9gMq2lUBX1U0tIXeFKh7rQ0Pog63YBMeG6OWdwtJfKQqEjmaX7rwW4OjqyGuVoRYAAMGuNUJqBjg1WA6g/utrckkFbMSRfBHjogzojZ+aMFtHg8IgRKDdRoRxvUOcLEq+NGGNGVDAOznpVMLBcIrnlUodupmOlU+yzj070MEnZrRoyZ9oVEK1HKuNyaDmTUuazadajaqsjuzQ2uKJFKehJfGp2V5Ba2BpETO6J5KgFzWU6mARNEqksk3GGiNGKZmk0cpTR9qqBpow/hsCmYsnYV/3VUu+xvB58ezSKIGZivRw2Q2HaiqrI8lognZ1v7JV3uvv24q4Mpa/ZV0xts3b37xq+/29neO3r3bOTy+uLqVArpyerug63lz/2Dv8GR/x4r/p8czJ2zUpkWKeycnJxaUX59f2HnUBla3/uxtO+i65N6GExtvXTHsiD22TWA2CcQAEHSMzrN5hRFQYPpE7cLohsE5j+Bl9QZ+6Li3QIKtgx05YNIj09m6IKTO78pQZvpxVhV0hrQyfifh0kfjF9l3qFvPgCBiJClP/bLwHpKT4Z+pcEGmm274ALm6mC+6inrt621aIOLS+ae133z7a6Lg/iIUN4A6PzP1cf7p4we2xAbUZudT1BHFVl2b3YhTdGGc8dpK5l8oYGp+bd0Bn6eX16fOHtdDHa1JxUEcZWIxMaTIZqi5JXKxpLVGXCWr2FsGsDWn5oiTsfbG2n4ghjPik6VFeKsj8mvWUueRu0dMCOi35S+EiHcby5DDY8Whhhc7R3udVg5fmAfCiBKYKCCEX0QLkUeMR5eBOoK9WDmIj8H1KqARrbArEfZCpmEiM+na//aH77//8cvN1dX+zpaL5IoCyy8SErlRWdrSdpYGYTlZcHojknA5fjh77Qhq0Qml5VDRSx94C2izVav7e3tDDfOaezSbsun4GiEjoeDEs2taRj4h5eDnTrdXFofEXZLTvL/wImy5Sp1QVVjrTLdpVgtvkk1/MxggSK9yjZ5ocLSQEVAF8crJLY9HsRtLVaxHWtCwqpEy40JvUu+8ydLUdJc8a8Jcq8bBUu2A6cjFCiT8ovYEm0Doc7qLQZpsIYTJjUxbYxsJckjrUMcgn6PfoWonDEFFQbs/KY3CLRwCg4UrBLUJvZvbmcRdT5Iki/O7mC4FvhBj0zJxY4lFaCYuj0HQmsuAM4kO/cRiG3pMwenCX6J6a8z39CwRoQQfARl33DpZ/2x1hTLGJwyW8w88JLdcj8Gz/cbOE9vZ2XNi7QX1s+pvy1mlzVR4CwA2B49nJg9hS0awiEZycCmd/NilEO4ARpxZUDaLQEhG8xvRwAp/1Bn+0zvb810cYZDi6t8OLSVpxEA7DA6VCnmDRkvXtjaPDttXcWBWy1XrY7KBITXAnGOW7solj983MWijcxYb5zyVlXPrupEMUdvctBm04JVtxCH0bT8uzsRCtxLjirkOKizR4RkDZ9sAXrOK5JAwOOiUBJANQkmF8JlFtseCsOldlJZJee4gVOAgOcJqj5Ac7O77Cq28Z6ah7GRKp880uQUq0DJTWuSjHZMpiX/jJYxTK6M9SWIfQcIQxYBEfLpOZfji9EOcCh80UYTx92kZPkW2XGpKN2KeWpDDaSR599ATjaYy8FctmqULqVGr/zJpWshKpCaJMUESZUFHzxNW0GzEVKIyiCov74XpZbCZ2OFbWEL+QIf6IlTeCrUJLM+jB/CMGqJCKzL0DB0i5B2goAvilEjfaW7LJYBdfjJUmKX0XdfqUie4ECwNeucftRLMn16sfvp4mih7ns9NnSE/1qCySVPDm3qB+NDfxwLZzJJMWeJcdJ6tCfHsVZK5BGPZ7+Bc7JvGNbWQvQ5JHGjiC//jeyFr1INxJANIZkSzQTw86mMsLpGnIPnpgV6H75mjzFqDAfwL0P5V24c669+QJ5Gpx35InjrAUr3nPi5vWr9UObXife/0Ey5TwNdcEnoXnFd1uFQxj6fpAFO6KkExwNdc8ua/HlXcT1gsnxZAp0qg6LeCL8WCxnqYlFAFUqL1pWY4+JYaRcfppUAHxDPIDnQNATH8cHXGYZqBP+2qNbVjnrpRRNeAAlOrJ6FYsrNgZaB9gRz+qlxdrsqGNHWgVWINQMYQ0IKn+88fPhGIkdNYXTKpxp4lVrUcX6S02HE2DLIBnAD9Bf8ooItoNoQkK96igq6mVBkOPzojasHOvjQNDdQg0a8XyatGhsQ6orFahEtutUMqaiCqRBhtVAX8i39SypB9CidbwfMylCyX4Hs1Zry7MHmIFvg6jBFDCLCMHUGUl+VV9GZwjPHzIQRBjh8L2NEl3ANmBKzhlr5GlNm4ztUKYu0Pm3wIxwiTrsK2iLCz4WJldCs9IDio3xQmUs2P0iRqBMQrTXrD3jFDaOwLD4BQI3WJHBebcvohFc3qBITTbDx0qa9AdG//mMLd3F/cXF6YpN4+ect9OidutbqQ6HY31cPt/et3761W++R6oOODL58/Xt+s7B69sKXu7u7s/MqJEvkk5vLx+acfPgLCmey2B1B6Tp1PFcwzH4wYu9smtqtrFhBxQObcUffwOOsbYDt72ysHh3cEG547X6+bpLBAxErammv2LfY1BmApci6mSlnENo21tuf24Za3hSB34xxnqEY9x9I9GriUoJPbro2nJ4th1LKsf7e9wlaLsV+u7LGcNhkDKikjU6lsJh1zBYKxZuGCgghvkY9n2ztrv/r1L6wwtch/iUQLWJMTp5tDR0xlC4eIU4wtRjFYYalh1FUpmsVXrp6oWneUFK5bLkWHBTU8zqY4wzKGezsc2iqDgFKVpbK9TIylrHgYXB4rD7rcLEmOzTmlIokJkmEkZlrZr5wvKY1tvHd7Y5t1dl3+0iUON4ZopPDp4WR/3/bKu6cV/f9ydvvjJc8SwoZASflQdRFaNpuoZW+8HgupteXDiNxwbEZi8zWjUdEGtLnNQgassvSmBODGP/zxk90j/8v2b7462j1+c2AAiXmOwhYV2KSY5862lRPDFh2l9xjHcJEHn1oUKwJtEbYxgEhXBPx4s5wuTwTyMUKWLJrKfk0y2AmkiagrIBBfnmruiho17e42UooiDYeyc5NDmXzwoF/IQqoEZ0QLAURXIEIgX2l3/thnn3CKwPcd2AvvuuookgJiZroWcvV72gm4bFu1UWpsBRORO4jBBRmYSHyywAhPgGfyh3doHbOtFLg8fdWgIShQNm0NyKh6LJXrGucUAfx8ruXdgbrm+uQdgz3iuNHhkrYQgJlsHKxcay2MlowX7q0va+2MMUIhp+Xwe9drrG2IdLFJ6HlzbS+BOGrLnREkNpcB74eOktxpNVCg6VqPxnHsgxF8Vip0PWHkZfXbxHCxuj5Yc0N2jiJDtrlxcW1dUzTFqZahNL2zC4zVvZnMp/2dfZM/2UsMiXdulXpwDRlqX18kAa92ipwEJKtLF/bFX7H7g+OKbQvZWj8+2Lpe3Ul0eOXD4/bzULKRPxRuru6sLwP91uYOrOUhjOWdWnb//Gq3Q0G7I2znqAsmmp6SOh9dgSXBQxjGh/rzC7ZdUaXWjGxsO4UKEsYfsZipMc3YZ6nrDklDfUIFGepsNkNSQGi+v82wF0wjeICFbdt0abZIVStmBsxyzB4IIGQuCQHSpX5pL9vjp3Q+pHKihZS9KY7DgLxViZjieIeD7dh48GDDhiKOdjYQjIDdzddRp0SipFjcrXFy79lIcekQ8xQJ/+z50Tv81MV8OZpwAxYzlBstyU0coQICgxzF2imncpCmez6kZSO0Iygvn1WppZxmPhSuyLGUQvnQSUVCT6DPGGuBdLGpOcNkEtoaKLBQxrAIJDJJ7X62FtDmcigYtE90inLq6qxQcho3jiBMqqOV5wLsVsrVH3QF01kndARR9G856wBgUNY+kIKihnbyCPrNwDaKBovnNRG+MWzCKIPztbOzS6v13r85HnmMTBwjjWNKsYq3rYVsR6yMH7Nww82Ysw42YOpUEqqjQo0uA4AHQFkdTQAdT2jJbPSFfSYIF8rcAyur1sOIXDiBgLXgybRLxgA9EEuiKdEb5Xqu38Ru/icqGsWvabWpbKxBUogoVR2MqRt2j5JUVaPTmm+tbfY89gdaPhPWIxo6j+NRD98DrChrqgagH5/1m7iOEmgmNmlnCf/GPge5p0XdfQ+cbMmw1bcXrvoQchVJvioT3EE0HfWhTrmEkKmLSEl1g9KPDgCq3TAdGNluFRTSYNFqTebj/a5gBAylaodkarbIzdLT8rJ+xzVSy6WDpZ1F+Ykv3dP+S99c2vA0LD1lQe9YAz0ki0UPEx9ogWY1NGb1Zl4pkJiJl0088XM0r4rT3UA+GINNX0BOTBecVdYdjoVT+TB9qUXFqjz4D4XiXBzKFCUq3kWJ2iZ2DdBTKk8X0BNTMfmQtcI+TMEJXgbLkeYXYvkvrowc+TjaK6OWHup0GXKk5yrGrEQ+2DJPfpbeRzqnp+RgClYyzg8US5WB8GX8DCQlAb+wwIcITDBGVmJn2mCesWyQDwDo3VQDY4imgRmXaIgCQ3Ff/R+ghSNMCiuTJoikYamUBsYY6Ve9x5Z8yW+vzvYPDnf3X+8eHlx9ObOw5+T1229++a2JYA751ebR1vaxwYB8v6OB7lY32ri6vUkiXR48Z07Y2+BUHwuG5Isurq/PLi+oJj/888Xq7Obx88Xqy9XsHO3s9o2jzsgw6riVyhV3is4EFIVBVFrQwxwULCM4GyoJ5Zl1cbnxIeyYUYlYIjdGxxjW8iWiCj2LMYQ4JTfa9Nby3Ctn7THh7XUWP8kFiu42Mvp418IALondcd/WHtnDLNaQ8FjGU2hgZsAxfAVS7PcaaNHfIDRQs3qps0YapKxvXZ2evn19INH4+3/4/vzjJagljQ6PDj0RsxJeQThE1CLnnM3h4dGYAYhsO/MH08qAt7i58STThvJGsGTi6GD/0FVe666flKcX0eJ3YiLJFgnSOBXEuiD0QzIjzK5hEEdiP0WBrlUH9jiKj++dQeRM0jl1BC6MS7MQCKZVQ0SVmj0Zmwge674s48aj1e3qcnYw012Cj+ZQT8mTupQL6RLe/gZSf7O5xcGJaSbxxQSPXsbKpVhalhybvblFiiORl9mera3T67s//HD68+eVhN327u7h65O3X528eX/SiK6VG25uatJmaBjhFsEGFUvVLstF1K3wyXyVTLXNsUGR5dEkLEky+gpVjVC9/d1dGoGlxAyDcIwYYZogqAMXjTk5yG6Ua6Qi/cHlMlv8MYITTlllOBIETREqIgSj8oxJpaChAXC+b4xW4V1/EQZZtFOnQ6YmNHxQa3KUIRf1wGobeBtaxiEtiSQtOwwFA5mgDs8RRceJYiAMgutL+5MogW7roazfCB9oAjUF8MRyqR3HfZF06/vA6L4nV2VPIGl1052Qz6in7cWWyBWjIJ0wbXbtt4q6+cxW68nxi90nt0o2QMT+OAWsDYhGsDZdzpVuKJw3Iqo2VqIIsgiKHSvlXpFCqea0GsXRNVKsKKkWa6KPAYmxB9YaaglHaXp1wdmNXd3zTWsQlSpJ4tNiFW0AuHX1lpuYEkC3FLvKQtS/8ebkCIBmCZgdAz3jYYJqdH3RnX1tOCZj93c3jsM5cCPAtunPfTyBO01WsTCOYE9Yy55omoyJyKn5/tYO3XJqGva1OcpVx65HeNwwaMK7jllerpsAmzQ7Is5y35kaTYG1hNssgPZxXP6egKgCzZZ9s1XNJ3TyqRzC4fbBspyJt2TlL50s0A7gjtZh42ibZk2kiCCooNy/Zyy98c3oO5Jsyv4wFtpv+mV9c3d7j/eYHGAWxH5jdmF6n9wTybBkLpPBfs6qnslk0ZK8tiXO+fEsEdbbH5ULtkAo8RXbG56SfeNO/xfSIDHVW05/zViwDyAoavSHGPiDFrntvisB+h4UCPrJ6adZS7A3Lk+7YY1UNVJsV9e+17z+vUaTTKVjgG2LRBU7nbo9N1vQ4XIzAsaCYpxUo7XjxHHbXQeWRVnnZNxMtI2s3VKfCQk1xqZAaDywBoNiGizkAgBY28UR7qP/5e8hBFI2yqhYRbAtrqdULEJKMYwTLMGNVuWLs1OC51qfpLs2rm7vu3bSxpHSZ/E4w18Z1iDAsixj3FTKUXkSd4oloq6HsGukVBgLGyxRKOpFqlD3RNdKhmtE9C+YpgGNLdxRR6fhGalF1TXs/8jfR1+ms8lxL+IQW1ToVT2+/PJdm6yTV5iAB3UHOD1WKCdTc+g+5B6w8LT6vcS3OuxbxXIpyvd1+fHZN3+nY98Ig3p66UFtDu8UXurCoXaLvv5/rQxePZzuBk3lp8DSd3hHqP4s9AwYP5UCfHL5UmEEJdM5xFj6qm8/FB11a3eySpTB6yXg5qRibGIKw4WjKsUP4MQU4kVKoogylG0y03liA8cZVzDfci0sZvXnBxXSz0Dze3kMFCIQFfQeAkXVAZK8Fl6z9SqHWIICaS+Ds2BCyZhWLWjqSCCn8eWnvKPGZ2AjF6agMkCpUQ3mIko5TJ+srZ/qarnOlScRmp3fS3lfFV6e+KhCUKvRED/zBzBATrG4ENka7wZiDYKEOS/skmUpkkAoLU+/yBFx1PKkpvoFmqLJNLZu+qsdr8AAcZ/AMJ97EpAqQlAHy/CaehV60deFSLVfYnua9srjwWImK3Q9w4z6CozkJyYFmCcxut5HBng71K6MdMjE0FEGAglMAbEvhSXszkPrXlg0/Hr9/rvdg7fSprerm9cn70Rbl/d3Hz58ylw2i3sDp67vLVF6e3Mlnb26PD9lk+D0/Z9/tIDedtjDk13Tzz/82QGhV3/4w4ePX65/+OnLzaWo4/l+9XD6yYmUK9uAuVvOTxopp8O7t6wlxIZcTQ5yk+0HCG7UhgqOR95mMPoR8bSmZajN/VdQg0IvZWUsok5PXOVjaVNrxEUu6FHogQO0Y0yYNrlgoSFet/iASggPAdIyysdidsuNG5OUNEU6Ft8Nm3VGoue3blTmC/1z8+/xybGjU//Lf/6vf/j9P66sUkC5IsJCKvd0+rFgGp8Iv5kOAxKcJD8WP1idMPJoIYGuSEu+049OOcS91Ewo0MpbImo0o0OiO1EsrCDkX2MG/0MqF0IwLAJupqTpC71oeClID8QlIjXNZdafnG5ujieZ98T9rOM9yHZ6PXuXt3b3LQkSNh1c3YDLMSMgB1H0718KniIRPw4DYVKAgQvzktGkdMSUkoyJV1iZgWfY62kXBjXVhriym+uPmy5UE3W6cOL7z1drr/Yshj4+PDjeP3jl5jnnRN09WGWut65JwLr8n22ImIWVzVUib0M+XJNPEhw1FJQxNRPkcwkX/5F/UsEilrwEcJYnkLUAT6BjHB0Nt7F1cFC93DMNEmkWhSS1mXsLaZqECsFinbFOCUqGx99Gj/DVAphVz37NcwjHhGya4hzRvKHsyWueT4P12jxk/FIp6g2JvQUbibYKn2JkBMAcbOyZr4wNAJ9uxGINa4tmIGIgBFUNWxOmuVoP7GFH/qBq+3t7WGt8jraHzsCX3y25a4tI6Ecax/K2Fo6Nyh00jEe1NoyWZUiX7EzN1zS2h/VA8ri317JGjs1yGRtLDOqvVpbBGJ5BqJNhooEIj89q8FZcQn2EzkLfPUryagtg9CITp+MiRj6okNS73X1bETaFwP7s7xw4px+DRFguBbNWBb+dwMkpuRjA2P76uuQWRWdtLADrMCKHPD49ffVOhmPO5yS0a9ura6XMH7ogLF22/Mff25Wrc/VoGUmHImx2lbDLyGykeuW2AHScW2KjAb40ckQ41ajK3NKVBTIt0Gp1M5YurGglPX5KeJgRhBTLMzN5mTjTFVY44RGW46UVVmwhwkCfiPLYGCAsENo7k6fJvmwAMXNm5cyDNVm1iNC6dVr01Xer26yNyoS6QfHGtW4tlSSzJJMrSbgVme0ucPDEA1wzjOFXLk3RSvZZzWjCM9bcjTFNgHC8CJIDrcOsgTVZRTgjkBr1lyCLUeqIoo5AKpz9NcJmcRCGB+J5871+DISoVrij0GgV/cSHeTZxVGrkUXa4OBWcmRwlMkuKzZQt3QQekSqk1UJDSv3pZdQo6gZYefzKGLkhAiLbXo4w3k4aBbXutrXXkvx4Bz4zRcUJo3TpRLFy0Q4p7g8wirhYGY2ktmDTkU6h1exBgpD+0g6F0U8BYAZPHqpkaHzBTpQd5YiEwVnvIonLm4c///zZBdXcCc2UyLG3AwSa9TZPOcFPKp4Brhb/M8CEI5j1tQAb5iAbHwowQGTuet1/ful5XC1II5TvfsMV2L5FdITVRsx6+e156PhP32Nhaip+9lOLDXSTMPgr0bBwvBXgEA3KEK9lhAqe/tRY3yIvEsTrQjvPa9YLb5dy82jK5vG9Rf8EYymqWu2NhdWXhxkcvwsQpoNBf+qXUtG8GnUG3r/IXrwex1G3S+sA8zPMD1PgarQn/ZqBoN7go8GpM2GxytFF6zUdV3wZcfFpsKnxWhjIplX6M5AgECUpoq2s6lM0kRogFgqBwevAGdwU0e/AhnP53WAaGMYVEriET4cZqxpqR5gIRm6j8rp5icziriLoMB2BHNz0pQU806mG6VuMCS4KScprMR3IIoxHmd4VpwwZdYAxPdRJj5xQL4Y95BlIINHUPItu2hopSYs0PgI37xOKHA+sgyFuK/zC5iDwedADqoa8V83nXAvyw6qWZ2AwCx99pszRcJGb8gCyi7EzhqnzFzH0edqLXal8M010knWumNrBQ+gHNpUW8BQTgUIIAMpDzZ8l4K0HL7B0JFxLCsevQcFvrfU9cugnGPtacgIbSka2E9L8+N7ewdExgws9RdBKIn7Dre/Fh/tletDvZn17z9mLHxgfl1genby9dCPr6os4K04+vTo//9x9YQ3Q1u5dDX/3sHdySNE/fPxRo1yYRbTizo8X108btwfHR5cXl5F0coR6lHoXrbCb4lhcJgJzpl6UKjUiScn6Pz3zw5GxeScSZcSiZc20kmGRDTSRRFcNJ6XBQtFnTJQgB5JlDLyKON6eWiO9LYlMzrrJEFJBay0/QBlUYr7Mw8vyXV5fS12hmhIImtceUTdCwKNm7cVQLfCoShVbeqHH5vUAJtn3tFHE8A///fcA++Hnn7/5xbs5O8gVHGXcrRXWQOsBHEtvLYd8ZUE2LqT6oWMxkuuBin5CnbRzUAkJ7udcHNQoi2qqJFfnL8nL/YS2HGGbE9QCUmA7CTE/l0kdRczKCogZWMl2cZG18awr/9zCDWfeG9kQSFLbt/wbCkisEiZ+0uSDMOPW7sb0u5VF8C0V+aoVKcEaEJksPwJBidLgH1vkHaZMiTRg0ZL5f3n2LzKMxkjpPBZHUFrccA89/HHcuoNUf/+HH492tt9+tS/MQ47T02fxR8R00GG06+jPiDuL3YOnEeKTGQ/weNs4M98vDWGo2QGg1jdRDYBB30DS2e3SueohKeI7alZSO3nq/Oy2gaoLRTSJ7+KeCZsK5ceMtI1g9As58Sm7k6NtIGFQMGyco9knq5e59DoRy5KMwKFMgqRsEDSI7Y2PSpB+BZef3FUSm3f0ox8xs3UVrAPxAINaFEDUuBgMegEJgpxdTGyMkXaoGb/NZNtEDpSituy/65ZfmeNwjQXD4MQY4yaD0brY3CZJMte3IDI7Md1Y6G5dNAGwHRi7qXdWkyqISO25rcHAJowYvLX2an/HkjwzOW3Ppb+39rjfrOhmcXGiwwexb8S4c6VsbkxX5QBaocYmeGY/YmMywCoObP/Qn9lSX9A/wtecLaclB4HwhgTK27ZrloCqmgVEU+JgvZ2dP9E5irVuntiRpMjgWEkXWpWQmuB+42GvK4Rh92y9jiFoOybQug3iuEwmaJzg//Fob39W31WW2s6s3TqFX5hk/CXjTiX1XztdG7x7x7R1X3UjEwC2wV88mnN0OuqqNW6vSOmKJbHPahIQE3kir2ErFJoeaovLfueeEWDbJSxbcj2wQYZN/G2ypKGwIymJm5krazmscWIqCVvcWjLuebARbyFB8kCiI10Di/7pwqyi3LcQk/jRbo8MF/obo2eXOZNCoihsYl2sPdUWi9DkQPaq+QSHOJHMPHJaULyI5nSnSGbKTJQy4/Nmy2bSOwCwWhJTM+ngBA1EgvHXiJqLVnaaU+6+R0QUJA358p8ec9zzmLQjZkaREBIoICvC0Hm/vbbFcaSxbmNo0ps6sGKNQbWr153NXfJ+fbdKdVGf/Y9IDEMwmE9InnQ7um+4OnY0A8I3JXoEfKbR+CNfELCQpdigUBhema8W8BStYg4B9TCkcBB15qlBUkUlJgobVHk+u1gd2PKyZ4zr1Rx0EGvBjaZyH3b5vzJLB0gdacroVkfA438RAgi11ywEdk8Kpo4y1fDQUWJGWsZ+kiXEGaCa+wc84VlQBjlQwTykjwghTC3DJFNGsNX0MB+TMfVRiT6wX6PQRZsgnB4mzBuvp1ZiCcbEuN/hAv35sPS+UKcgaeBJZpYeFPVT3ToNIj/Ef5LLgMpJ1VDNROSmZdo+7rufl1q9i+rTQtAHjf+1pDtfYmDk7VX9TL5yJKNitTLdGlQj9ww5lkbqMugUAsSgiaAvoI87nU6y70qmuliU1BSak9TpvrrL/kiGWPWgHEhAPKwsvlx4D7LcPM/ERpQM6Kcgv/g4zi6wYtSLUWC/lyNQRAWPj9erohNiNajBvCmFBHJS11pg4wIpPjvPMQnP5i3kiU5hS7VYt6b8hyiEaWFwXQdCP0K9wr51eyglLWJOfIq4aTi8YtLYuCAfaLWW8gDY8b0qRNOIpk0PlfEk4g+/Z4yhUYVSCXXTVc67KXvGoUPThnoTbkfqMS74uoBBzCYSTehjPKsNyLoAJB7VbqRPXoEQU0YxEafHxXZpp349oTFVnIdctc/4pp0+0B9DtdYFFiX68c6TsH7pNIb05wXXZIh9q+FJKvigUlUaBPejwyUzanbbBbGWUdgSyh6SO2Use2DnZPdFszaBe+5kih3T32ubB0cnFxdnl2dnd7dXP//4WeJKoxaTkLrt41enn1cfzzvzxm0pXOm15eWtmFj/0lNLUdM6K2jR4mq1Ap0HVtYKgrf3t9dWXWuF5mTMZb/R1v5CU9Uj7SL11oSymK2fSc2gU4yLJMMf+SKHirL0+rBYoZLS5J2Ts9nCl8paRN9ZIsYAYJJa1r44RBbbqSOkkRld3XSedNl5wI3PUVOvfrjDEaEEiwCIibQ/Q8EJd0ic2Xn7C58eXQT8n/7Tf7UN0jjrjz/+/NvP37LKp59PnX96fnE1oX9nZzt3CzfELkZcPqBg5CF7JH9GmCJX7CjND85YxnKs31+3eGnJSIEfY4EJ8swL0RYEEB6Ui/sC2sIx4xSiSwattSDWMovFfGWOcuSkizCYnbHyg9y4RxWlvC2MoBN6kOK6vTdCdIjHxc3TD5crS5xdC20ZheiNgwn8ui8US86IMZhaSZSSekPeatODCWrJKQfhlWcJc/8Sd7WqG0LJCSIAzIIcXziwTx+//Pz92Vdfnfz7w6/cqyRZe/L68Obqem0Fw4ZhhEn4ZAZIIGrskLKsYVmN+271kqCRaOUb1pwa2ZULS6KaBeTyBSFWNusIxoChPgAA8aS0W/ODs7XFzReUNxZrkMMqL9taWMjybYtpdWFFuUYIzumN6b6mKPTwITp460Hu2SCQ3I/iZ3thL+zYZmoatzP/IiB99FzgDQ7kaHyS6QQStmIt46AhzWbHpgAaZuh8idxZYN1pRBpcIU1kkJxxIsJKgwSRD7vCXKln6v9KrOD4F8OGRo9aTQWtrrm5c5VVtks6fGJldLMx5NDGVi1sbFysbmXEcylGVLHj1kYVY2aawhCsWdRmhf6j7UD3ujA3o699B/+jYfdmPTt7S0BL2Mz9EE8LXVtZ1M7dFuMI7RgZqgcYrZlLYwRcXkv6rlP8nA5FgKTiUtVAptd8oMk0XshsUHNsc12grd/RI4Y+u2nPrF1ijkolZbTuHCGLGy0L9LOVGBgguTXs+vpgz15hhCtJsrO/m2nrUgV7G3alkrliRliroiWSzH6a5GSdfKsFLAP3kxO17lkzg0rcwziKRlvNV6CAU4Y0j6cKdsQwh3tnv0Rbos1k4X7pFpyvjOhnU+6Z5ONy5yhY8IP6c9wNl3R9vYq1aZkhGqJxtmknlD3xBoKJsu+9q7WSOXzTuDOW3ylNyRaLik8jL4TBUHM0ObHnoElOlsVoSJhpwxWCt+OsTIGcEDPNkhjNoUDDryq5wBFvs/zWZwEvjdIir9pqq2XVR95cMe+Kgw19WT8tJrEq00BAF6/MQhfgeZqeB2ayTZWTaaAvgxmd1PJM0nuox1RjyV+kNYW8ynuopUX3Z9V+y+cUa+7GgDAdBDaSdHYI07Hkhpg3sucOAUYmjZ5hQE2RjIK8SK59IIFZ10PRl6aosAbjTnsbSnVTaXAPQtBXA90hyxQwZVptn1gkGzPQ6+Qdf+Pyp89nTuV6y5ub+kOnzs9YaJI5wlzogJkiR9gJmWiXJugUIMCfoab+s20gWAMghHxUHokGloEZXkm1ZqNJpdAx+QpsCoDYPcC7SfKibEyZFhEwB6fKqFsESE4iLjh7KPWJCJn9qBEL0k9v/I7Ew+g6wni4+Dpun0j3M5D3GJkCISxqd+plbyNvXqlHnisz2OHD8n2Ig3lMip9EQv3Qyb2h/+Dqda14Etbh74+4ugq+RK5qZZZIrg++KzHQtK1cCZWwHJL1URO1jzq9mkaHSTpe4nJNNNhiBHVcY3EyicGDJHUGdqDo7biHGqQYDdsWGgwR9NV8NxL7w87CVvl0TIPYbx9SiFUX10MxFvS1ikAqv/SCbyIR8EVjPQOU/8kp0i/nNIs8YJU529tRlX+tQcRIOV9idNAhwQBZKxoMPSYpuQx0nSKUV9oBC0kVxvnshaZQHypRTNMpwwSBEJheokD0gGLvNYezwdy++/IQTAP5Q4owC7JEROMg8BjWPnuu92Ap31+oJ5CKbR6Gb6kLizE1H6hZHw8nkaN+QU/Qzfgh5OqEFCIVoJZO0WRqhZRGlFE+G42gRfn6LVYYvdVjwVuwRO8AmIBgoZyeBtgmdqfMsGw65c20hmUO+nw1q0MPXx9Kg7Xuc2uP3a4pM+BqCkncUnVzlQmTd7cl7uHp4vLi3VdfnV+e/fFP/3n3ac/g+fzyCtGswTi7XFkhcPnT6Y8/XN6urbmrXPpqRjE8ULp9eXHTzi7hvpM+j/YfbTov5RPIlIumrawnIcCW/JcmgXob/siL40PjTonZQvihZNqB89y2gIFVlD6siE2Hd/fb+7tRDybVsY/TxlkTHR1mr0eSYSdAUut1mxQheruZ3wfD2MxWeM8mBJA4IofwjFmw2MBC84bWS5yH450URB/BSpKf7I8EJ4Iz81ZP/eny5ujN4dX12c1/vPu3v/vNV1/t//CnH1BSGPNoQ1/Hmaj9fHfjME3CEnbN2YLD8PX52YkmHcvbEem2FM8SYwwfBU+P7NWzTt6MRyJZONBfshGXDV95zQ78qbXErTc+ppqshdChRbrccGvt6dXUSjdQz91HxKF1J9WuulNcjQ0vLm9JyenV7Sc3HuTMXjXrkQUrjYjY+EIS9AaeFynVwOgUjTCz5OXYhjHZcTy1xSD9piyAjDhpmad0RxfjNfMj1k1ZbkGcLoR7m2u/OT/51evDnSO7PDccOrP2WvSzclitYEl7eIuw6DhNp7QanyFTeVapZH3vgN/p9Y5Cz6xnCubyJaEnUzDzOZ26Rgy7wJUCwBWXNd02W3HhRLR8p6qcJf9lSKkNFBF6ljVoNX5+UVS9/cpCbYSMPMhK1XxkfhFHX1AgZ8XUSw4V8iXjM1Z2f6MYIrgxV5iYgEOsAhkfRNam7z5pKbiY2XCpFggBTZuzVMst1wQuScuq06Oet9xL2UI38Pgq+ispk1zcWziX9Cfn6a9GMMZvOWZHIbVwxR4e+YJdOWup9gYw9ulaRQbZWxMsrwyutpkBwNnYyPLs7+/aZC9rLq41/pRToC+PThe1QGSWpcGEYDdU6CJvT0MKIkBltDz3wRigNG2Za7EQx1bOCwpOKd6UMzClBm+LnW6b2EHtMhdjovdsYSpqxxSVCLBG22ua8bNVY2/foBbupO7YXSUrB5vuXd840IAJ7fa9VOHRGjwXLK0b9B4dmiY1zDbMfCaYZg5Q12m07iUjBrYn8wVSIiYVmIs2ArsG0VAZT3GquSN2g/3FdlnnPbBogyI1MWW2g9CsdSca3uDIKEnX2C06wi0JQczyyb0zkka4lBrO5iIolKMCrCZHwvjL3I0xYbWaLt3ZzfKQSQtWsRxGQnDJBZQ2JqQ8FSPjcRlm2D1KapX8zbjijicyHPLcX1JIH1g9vBPf2/Xh7FdtAiwTmOPxLZmBo1EdMTD/CWXqiYaIyRvOWXls8OKhSS6kNQ72ls+pCAASmE1AhTFmAFRf9ylCWtKfv/yFRCFRsWzhjZCdClRQI5VyRVCSpmXTpwaftlFRwxSK5aY3kgLAk7vatmYpt1WgpQnaFjOol87doiVobsADg/xpQgVSQpBXViC9Vg0snqIqbdre2UUPk93UVBvIX6ZglhKAj1tqw3MQ9rf6xVNscxJCawKGgCw/yU+hhrFWRE40y2Qjh/0xP34+xT5Xp2DxRL88ZuO6zILTI4xj0BGJihmK+9PBBv36DZ4ZfC4Eya3k17hRTCwUqZ6K3CryehZtw7fRnZKx3IeYUyfEoCh//AFcMrhDTS+KefpPhWSMPfRbM+QY+sZ6vnhX4xndKQ8MmoMqWfjeEyJtI76C2sryBV5f4VVKpVCnRvSjXnTypZIq1rwPODuGurcA1/oAUDVjPmRXYYCphepgrIjF+/73YEAJgAqwSQrNCw2G7zROZKrps1JTlm0PoCLgYmUQlyF76QFxIRKNJm0w4E6wiDkJfYKVYmfL1CPcManWFe2n7LX/whVlS1oHR2U8xVFkI4C5AIevJeKRZmL9CChvWt4rIuqoJ9G8Fngg/Qp4YtMQ8eT49fnFac2Pfimd2UWAhGW5/I/ylE/VhT/Zy3GBKKXNwrqo6LMPqcrABjiEjXzTTcEcPkEHCmWDdoQsf9F/zYFdqB1LipDwbLHy4yKTVC5kiJN0ahDJi7yGE2FaaqeBaX9jK3JOpD6SUptjd4ZKC0ECJmbnRCs/5mEsZmOTgNRdAgbkReTiRMzBoQEzs1QuZAQWIBrBJlqqLuYoWRfIOExEt4QEQRKAZGOADVw/ipCTyFFhQhybBgZfMSS6+YmACajUWg7VflvNOm+ecRbq7Owempu3pN/EP9IUvjw+fP75s7GUrm32la+6ujhzQJ8e7q5utlxfs7b2xcajWUEhXbd/tCsG+vOfP1/frJ+vVmfn144mtjxoW2IsIdPMWCJArW2aCuAlwOyNJTqALP9onsd3nlBQ+fxkc0GOisjBexbisyActrcLr622Zx5jAZ/WkroME2tEtPwJ2Tk0cHfPjb+dDoQjHCGGd5rBs9U4d9m+RcKFd6YanFiCdhF1UnNNAq65gevGhV2I21y/zKhl5TlaBne8+OwGFq9kSfGW8rRYocllZ1xIdzYR8XR6dvXdd6/d1vl4+3QNSUuAiBlNXLOXoNuspvlSStKdE1A2A5DXBEkj512ULJ8zeAGbxli4ROxBZjUyucov2Z02MV9nIDZK7YRv+IhqxuskIQxRklIkZ+mGpGMp2DTTuMTiGaumZ3UQftNUJDo6dDLJ3Ua54G2wfTi3oSHbitDtdbixGoidiLo6ykGNvHG3wiriZ64DSZgjeuKPoiAG7KJtacWIuP4j3vgk/NQUGwtIBZLk5+fLy2tnXFwZCurl4en7n6/tWPzt6+OD7oNdPzu7iHFcONuyU8hOU0T8urZVlLL74XjV5TJYsKaYZgUXiqEoP1o8Hetf4EoESEsxhPisxXiM95AuyMWUpBT/ELYQ1Euptca5pZmzk5GhpbeapZr+kuckbwQd+UdU0vf6S2GblfK5sbAVbp3YFgRgaJDYRIqwuSU6IMllNKDSahF8D8dxlFAn80xJihZLkcNbvfgrUkFe1ZcfYPYV52e2U/yuIUMXh8qza8qZIypWsAy9PEvnxoJHGTBO0GNyRq+t/xjj0ziBEFu1o7AZLUJrcoscmv3wSm4bLqOCzqdSqh9DuWRja90UosgStU2nGTN0x6l9vSS++VRDgoy9vLiJL3rdwLXkuzBhVvgUICXTbw6PcZ/9qEzyxg44ttWZrd02mHgjCo64XddlVQ8uuzW72ylPqGjVTLLxyl0H9yYcVyUmaEobjUoezBlQdo2rTkQs9Dk6OigPUFaboeg+YIksXNvaBYIz4007PHYPwsT3zK7JwkkcZPZR1TADmvYeIPv+riCyBaW+sbrdp2Eu1DBj0xaFLjY2zUX+lRT+0WLOFKR+6Qhl6JcMyKJZyz4NAtPOgccmRnQj+NSmNUtM+/Or24jASrK2xP6xfcw+s4FJOOE0Stjuiitrlhqclbgjn2bX7AjPZo5Odl+4dZJUg33Ax3LSzY4a+NWMMUkWeGIYLYLNq75Sf3clyB00Yp2AKK3SdYKuc+2riFNNwTV7CUcPikDyyUpOyBFrUKpwTW954bxn0UKgIiy5HuPcOBb3w8w/7RY4ZXXzRbMzvhikvHiTh6TakCxmoMJSKbcsXjK0K+5KQIqkeRvK2Cv7Jm0EQwfNiqakFBg9CghophBO5NBbX2fhFu9jAzwPAvtQVpUGqZVbz27PkyKBdBYM8GOm4Ms26c53YMSmvnKJnGMq1YsISE+MpDYur+8+nV0wjDoJ5yKlAsJayD2SHkZv0gqzunv8clFEzbAZBks+sg9DBmKAZVnvFt9OADn0Y21UnL6DfFp9CRcz5KjayCGrghxqZ2tyDUiXnBH4QCqSDT5U1z/mIH5wAlqFfFoQaz9C1Xstew4E7z3NxDXE7dSaCon4hyJxOHWPOn75PVzVbJIwETSwgTLdBF1t9H1K+4C+yK62d776MIyorcFmHnrlcVV6W4FMdD6rQnXQL/+CDXS9An8wJTSooAI6JsT9FJIvCFenvvqfje7l9OFXkNZdgabiQ69o2o9HeL6Ii+owHRCU8aoWayadiXmjft7XqVfBCYT8nFZ88SiYRpOX5hXRVEIZ72P8xdWZZgBSmKYK8KduRK7/mi49NFHdnDGXIrGGFUO+lgwG+IgL20WkGz+AoK4BU9yParkCQHvIgg9ZlmFPN9dSsKDNpgzA+QsPUiqvdJf1mbhnaSHI6jOCLHU98CFZHGqnn0MOHUXYGpsa076aL19CLyUHFZjHwox4qRAtqkQjl9IaD52FPjNPNK0uLVV+0nWQGhklf4NUAAxXF+6ghoYHOeQYmen3oofJIbLTJVXwuT8AGPULlogUGkC19IcNFdvsWMWxJ7rfR6Lb66vry/N7h0DeOyP+6scPP9505tzTrq1zs+XD6njnAl1fXTmL/Wj/+OaGIDzd2EhnCdCaEO3y9PSc1jsw0wZX8wlCXwtrrx2exxmn/jJAd1FDdooMrltL+ug2+0VKmLMCghQK+Cme6eMhQjVFq8Q680RqxDfko8U2IpbSfb7aSExdh1sZ3DxlpnxCvWWLCwshIp/JJ74bFN6KO9BM/itP36k4CYg/WhhJykqSTHE5dyfkGqnWMg1L8MToxXBpjWDPH/pf7kbTfAPyXF2L9B848n/65x+f1/eOj98wvBftf5Y0TIW40v6PLQWmtIsF9CHQzSdJPOaxx3IYHitJyPgPGmF9w/PTwdbGntt5VauxEXu/aE8ZYsOqQBpDVqpq1mDgiwiKq8MAfrZFPsTZEgarm7Z2rQl2vsr2wd4uKRGRgsFKqpvHtev7Z9HX1ePz1dPDtXUIoDWNYGjB37565ayexCsAPIxBQc9JjvRiXUun0HXUBKYjiNSzUVW2JnXrp6+LcCfuFfdwKOQo2F24C2GM1Oyg+Ocffvqn73/6dHpBQA+Pdl+/28+ju19WWHN7KxP59vUbVOSxOh0IftTTlD3gcGrcDHuAsh4YYREjLFYMtVAey4BEQRC1uC19aagPNsztuMtmGGKT+FIym48EL+kAdM810dRi8bSv5UdHSGIp5HEzlUzARFH8KBg894SdhK9e4kg/pa+0gXreGmwolITgfjQOkTHk5GdKG6FKZ3YEUHY04gdRJNVjJJ71jfilOMi0PyxxzqyLqNCmQ8bAjOgB1/I5HfRngqoCLG1q21d6ISOgli4YQGIwI5F8mSfg1wsSzhp1q971VgTpLZMxisLs29YCQ7PZeT3UI4D0ssHzjsRwgy7JDhkHZtoMg2FDpOIXxkDMqvoiMxmBISceya4m40b7qJi2oiXtLcTf7KBMF0ELYsYcszwOF1jd31kvwUba5XFlwU8iTWzzL+bfCGwZVrzIY5aJB6jr+VyqVrL4ufO48OCacIg7bU02L4fCZhpbzcXw+mdh5I0bvy1PWj3oy+E9pgk7uetqZb3WuvkE654gADayJO8Ji44hakeNJIK8DPC4VgbBD0fjeY6/bQLlxcWZ1k52lSEHZl2lZAdbDXKYornWMBnnxyew+eTEjIt8hq3WqMPtsq4A4aNlvRenLGaMYXQDYUujTrZRYQuUwltzaw3/mH1kaVvI+B8EBwaRUsUQIrfEGhjStHsEJRJWX43DtJgq6HUigYR29I10L92xexhJSl+sQcLYz5RKUwI9jItDiFsK09t+fEisgZhSxFCaCMCCr1ETwIxrYA/SCIN5oMAUG5CH6k5cU23Uo+qqEwY6Sonhiw1eKdZSMq/H4JN2jw2EDGOBAs4Rln6XAaGwLY0uuQnvCNEYVTtOozVF0Rgg9Mbx9H++MTMACVpOv6AFU+8X5YIeokEpPPuLJmn0xGB8ysPZ5fWXMwdeLVhrsglq+MIRoA7wIA/jRrLhWauhIaboU3fLN71Hf8gWV/QDBoxEJcAnYZm7uEjSCm8LXZbwPdBHhLQA98xQdItr2XugIFutvUim/+vIWxiFe3wJqpQdhsM8Nice1nacXEQIhv4sDzOYgRo2CiDsS7ta9nCkP4r0Mr9TseUniV8Mi+q1gDMLtEuRys9MxYjQ1KmZKKRd7VUM3H2bPxidnASFZwNhob93vk9F85TDs9jiZziahuNyX1WMuL0oNiWaiGKzHV54lBwx9tN4s9UkpHZYBvMv0n5L5r73aiccOvaRzRjq+ByJk6eBJjeIeGUXfAgrnaiigPIiiYkVlikkJqMYqmWA1IbA542Cd/Ex8yGM+lrk3SCnOcFpM6zws1iZyhltp67KgO7lM1ATupe4HLkQZBJOgYrU0FQ4N7O+7toXzp7Rp4npPApgJK8DPGWXLhAqOQiXxDSCjJhOeE0ZxEONZ/4iN4BJ/IfPQ5tBbYaP2sEbji4ch9rsiNdjqc3eRcBaj4EvACimjN+USmW2b0Et91zRCOntoAbGoAvJ+Y6EiYsiiU+OXiO6xiNAhuBMXUEzbvWjbMkDbVQp9yBUlfZr+p5oacaPaFfYpRaR3j885C4UdRD9/cOKQNgX6N7ZR5HI6sb1ky7s2rQNb3f/+uJaNPr501l9ba7fXV7dra7OL84ZQrInwJX/WF3cOcfD8d6uwdw62Lp1/N3T+tnFRYKCC0VIHJnRmuSrVLtEmhXnbtramfEh07RoqWUZiiS7/F/4I4SFjNviVzkkn5PJXLDTM3ja+y63x6li+hHFCCLGkpMq0bXG59IIbp2prWu0gz/6WK5MIFin6MljJd5YqYCXCGpbAuSFNS1yxRkqxmk+t/6B2KB/mSGXgwrvHp6dEmo3xay6LDsea/IffKp7iLZkRv/048///M8/Hh0c3L97/ac/fzDUMdiYcXSiAk5wtMQ08S/e14LuNaVntsH6lpKeWdl4DalE5U5esD0MOrPwFwEBHlJYUoBuEDCkGVELL+7KiEhDZnyalB9TJzlEHGTridjtw+Fuh7FHqVYGdZmAxKdx3JnbGxj/5A5TcIdYbF5dtmRCsICmEQTPRhoZLkYJMReDQ559BnZuI7MTytDwO3EaZaEdsa0mephSjEcf9tvSwIrcXV20z8QZoMoQwj9++HT9H+5/893b777Zh86eM2nf7rjMaXV1g/YWLXQwKmKgw1pTAdmFoc/DldNaMmAoV8RodRA272w+rxKtgQftZad8zowZ7jFjCJtktCPSDam0qV2P5LSsHtRmqBlqZIQhJVkc9CyUIu5wIpb5fkWlu+ZoGEu/FCPD0J3gOHOdQ+1vJo6oIki7dGZMoV+TRQjFryuScch4tnaRQApv5e4YB+2TTqRWH/WUYnZ85XFB1ISCpVvmSdiGPHEzWhqRffBjBAhOtCMhWUKyzQWYCrCsbreI3J5+WLB5TLqIwnVeOge/Q/yFgz4IlSzfFx2Cz3n/Q92A4bhoqBYATXoBKaJvpOwFaMu3dd230c5SxhW3zB0Mbm5XoitvBOlZEv8azT0e7u3PCLN4SrExAuSzkRu7wQaT83DGlzxs11nAlCVxdyHgj/baHuAAH3Qj+ybT0j0UiADZAcybRT+F5dGzG9BoPBLtUNubx9kIsWZHgbNWXKVXv34q82yOgm9KHyVvJSnmvHxLLODf3h6ZHoujHW1rSGp0ThYE8a4b40f5FrMjcSK+k6UnO3BHjYo4RbuzxDQNMnAKqtIfjfrkJxLXXAWhTXgojN/spPPLXMCeSInZctUN2BqZerT9Sioid5jVSP+yf802dIYpzE3g1VdxQhGoXymnhV47drU6L1+lwiaIqewMCNZgqNjoTkWSjOGEWKuee1jhhhmvxggR1+JImqELsQQxZTJgUHJbeDDtkxiOC1MiykTSICfIqIvg40W1QM7Hk3Lxig/AqJgeRYeURVH/TZRHxCg28VYYD8bgJ5j9jJIyxHghn69DKQBAmSsGZgXQwxZ5zQF5VHAO07Poy/4QxIOuYkClY16zIMUDT02htLqG0SsgIZzPW6anGkFEqOescYI8OsLIG5WwFJGd7M5DgUpSjRRjl2S+aU+iXUTUgK0oh7vg6Z5shX/6+OnC+FzygKsoWmmdKvzTKRPQ2FcIPgZbs8luUpeLmKz0y8Q4ogAKFrCPqqAZEcICbcaQ0ijxGlksUTP2gGYypM5wImvW52QSu/kFpAEtIszjTGKcUXgySgnMrLBdKDH9ilcsjk3+oagjLYdv9KnadJbHpArBkY8ceYja2XOkGlhJ+rIGRAtVna6Hh77MT7BoYQKk5Gi+e9OHIvBa8JMERvjc4TRSAZ/rZ2YeQiFy14uHCacCatdgTzTZhG9PC+Yjeh8kn8pexA+/ps7CnBCHiCc1rf/UPIAyiZlQfTQGGAKhLZWIUUEzk1XajPohgPQwX+CrQapmrAKyTEDmKf1ZehlgC628IIo4zZQTHf2Wrh7SFWVFjmFneCUTwRdovcrsprs5rdQ4xYaBieyBc4gE81S79Bz0I8i0UzRDDoiguppWnRiFnXGQG17EnTpKARKLtGVBJ+eXlESNRo0xwA9FiieWssUkPz0Bv2eg1iYIRqqHl7EmkHQ0WGURwrslQyU+A6S2w0s7Co2FAE5BPyLS5gS9bAEXq4jddpk0jFQRPj7H5bFTxIkyjmTEfS4ZfBrRbL68eY9WMUVdYMFHx94SqkZ3EFcbTUaLI3XYeaSCogU/jWhBGJYCORg7ec/eO3XFMJbGmhbf39s3vLk7PxcumTg2zb1/+A50lsZeXJ07Hefq6gqHhI7nX85dzrW5d3z52YW/dgkbMnBrm19Wq1Pr/50eZBjAK85aLybDMhjwz2rLZZXGK1kxU/Cloi0H4uvYy4ZvJcCQCkpoRA5oNDxit59SPsXWI315RDi2AlW2jGQzbOyUNtOyyKGCX4URtihCkXEWewkmeCO7OTGEQyUhGEPiU400a7pI1Jn9VhNPa6QCXLKcADTdDx0x2TAh8dBjXyxaniFxDAJAoqFRTDKO2v3y4cv/+3/9345cnXtrRn7n5OTVzx/PRkpDDZhyjYpjkxNRJQVjFlMK0vS356jaWM5yIKt15wzfRGJd2JRmJoFKRSSLC4Uh2i7E07jqIrLMV6128IWO+LD97S2HHSWDgbkuALIaAM/Pb24vBHzytRtOgXq6ub4DH/StIkAp8wXOPLSt4mrt3nJmVR5KDK53X1h7tcleQ8S1Tv7OJmSuwyAvAvyk8cX8xp9R31HVqAZ2LAJkFeJHagJYvzPWl3K04Lm5LujcOjIBdXp1//zTFxnGXxzvfn1yZPrJXna86xza25Xq4rnQnhn8XPvkOBzknqRJglpY0gRLwwMDnjFAOtNnXTuu1odirHIQVCnxY7uKpBF3hBSMKKwwSlN2vhpGBQp6jMid/uGDMrFhWQnQYLVpJbqmFZ5e1TEgsyc4Poav4vjff0OJhHxORxXqEDayXjxRy8xCmbeWpmcPADmTWhu28otH8whRz2jTpltdbnQ45oiu5yTBhtyER0vAFxHYlKmMZS/ywdAn8xfnVxnkOLN2sL9niRgS+U2QDG65D++siQ8WXUZs1mNuAAiYp+2y3m7XsuHHlp5MomaHQqLkHWYHPDPUbwpUfExQMSp7ADIscYZVrMlpwDSFL23arlmTfg7U0mtri59c7BaF7RVJwlrMzYBsWUTIPYq0MIr9NN9YhGTmzb4OWxH2tkx3Ct2iSQeIxVkrfIAAktv7W1tvXUNhpVtEbW3L+sPKAp4iQGvnCDSV88K4YrVuOBfrhl9R/fbRemxbTaiVM/bblXRzd2Mw06obcsU2bu04tNEEgLTLvjtWWMMWO4YdK+ev4T04OECfk0CDRc565kmAKognRSy+poTLFI9hu71phGazsLFill6W4KY1eAWUN1bwtwmYajOd2jKQQ2GHtnYSaL4hf6GgpIwPCQBPpFBS1XysGTYrBBFTbsN8FROFAmNjSwORNkoskllGI9IbYDbma6jASGbcOgtrkVGmCbsUTukxdvbUiTYn+iAgvC2qWi2M7wZB4qKieTBSqD4QXpSHVwPv4Bw36i2bExgZNducOGIyPt2PbWkCCKlSUhEIJ1vcFAMXd9nAdYYQtJ7iZtVBMOfUMbzKsoHGeJpHf8sMzWQTeyprC7ejI4BtaEdlTQPhmE8JbQagkIViIoVDelLgOXfVbTMkV77NSi2Dywg9zi6aA97oiPRO8IDIuULAwiag6mUGJKJbQgjXno2ZKV0lS+a0vtPzi+3t12aT0KFoImsA70Jvs205ke7L0WQVFRul00uRZNY5GjYjXcY3tmXWcqwxbixhJgh2XiitFgoFzNhyEIvmtNPXJFBOhBhoQ8nsJCwC29d8P064tbt+Jy5SIzaF5tSuD1U8JgRLlJimDZRVqWhDYtDEe188HT8y9ZZxnwoFqvNmeRw++ana1XLg1UJfIUodyG9ijl+hP8WmFR1MwFpHQ7H+VyJkfXyhocpBC9kgRE3I1kzAdh7AS7ectYJISSeXXmp9Ns9pdAxfdPZBE+WKxM75cpVIM07g7UxOjb+vWQDH7OAAEJYURvDLis7qIAYA6cEBXcKhU1a1XXPIriZFLXM8vJnx3+SWxtzklSPGAFPoGTkWer88jOtBoPWG6YE3pPFoasVThKVoUwQm6k+Qg4Axcn48A8DQbp5F3uyFOpDyxQdl+5cvHwUGcKQYgAZ3oOiGEEesGoBzEvAvFT1FnOmwD+AtqBrprDyytM7bvMFSP9xRVA+zSCB2ACawdRBTh6TT03SxKFKvtWBUkIV9Gf8kJf5yaT1vYBOywwteDHcHTU2lgzqskaWvMAmVBFmLnkO5DhLVXhEAT3irSi5hNMCap6k7r+T5dg92j16/LattJfy1ldX3OwdHzqxzrr8YuiMVXYW7c3Djei96aCbfZbDmvne3zz9fsY3OGL64uvrh+w8fLy6PDw4uVzc//fMHt2e5+5dcObIPOHv7uyJ7USJAmf3oDLjsD8veweHAFabBXkAmS1qu3XEiVu3DFTFngamHZVsDZ9DTRCbJQYpmzEcCiDpalI4lTwUHBNYnop7hFvWMqWJU2Nn0eUQleuWStClGlBQvhihTFMkwnf8f4+jcI2b4lYO0iZYoTawdbLxdxKdZnWkEjLjUAobInpLxMbgWdyTRhUqb918urh9Wt7/6q+++XFxauPs//9u/vbq7Pbu67/BtGyok8B2t3RxxieoRDru0nZHqZoC2p2w8tLgcZx2uHh3N5GJwGgu8LlHSYwetOJil1XatLUFK5/9QGQkCe0l5fdsTzXanv89rB45PsUWHQNqEAD4RaYumBLu2qRUOXl87QscaJ7BgFinX9/ru4fbV+aVwBxW4Xb2jZIPGaws6O021y0/jdBmpPIslNHwRADgzuTTBIqLM6pTY6f0MknFDOyPGWSQCk/WjEkmMXuYah1F/4oAL1mgQAEz+9Olyc+vk+w/X16e3X3+7vrp/ODgorpavNWdkUVCKYNmx4ezjw6GDQx1+EyqL3WtackwHgUoe5F+N+liZJj2Ymow5NcxgkAERMSyGufII7OmsY3QBs6P0SriCugge5vhIlkhOmIC/nywIElJAT8pzh+a8hmX4C7zWhbRUQGWUT5r7Y8YJPxPVZtCLL6dlEV/j2FqeXmokuWUlkkz5b+GJNXKdkFYz3k+nDP9ikAFijN5oRryeZElqsAbP1E3h+5VaeIUsLbeT1xe7EAurR0RB3T2X48DqimnbVzl4nbcMRl3xZvw1Si5wkQlIwpuOWnflHGk0oYd8kOLobBKQCTVvoB0r9sVvOOwOChI1bgilOyMYp8xkoLYNkR2NRdUtCmqLrQgbjC0i1csd4/LgdKCdo4OdW8cQG5QaxjhLFPw8oK4JR97QUaSIdOsCY6w33ad3VL9dNWdtk32HZ3Xqa/s6+SgjXpIhZ+FuL4hxmYSGXzVu17WxNA20jMfalX1bnlyleHcHLwlXQbyUK/XWiCfWHJKIXZMG8i7X6bvLzmNOYt5ZII2srIAiDYLLJ7f/dplX6jPbr5+MSU3N6TxTxEY1M2PMJHLg6ATNDXvEFiZtSrB13JOVgOSndpwXQD5yUp5gawfbN8nDQhIjABQek44Sw2M5bHHxgjW7Z6xl95HGfgPmIr2SwcTitgPdF03GyzSCHKbXvopxjZEyn9lLjwg8UwkZpgbRpNmpExaAf+ZOlcjKMKh4TUkJIJok++N2M795Rb8yHYxYbyZtnOEdHx1rzKiUEDLOycWw7SFN42dDC54k1XDN2iPVxLUZmQTW82xUH8JC67prGBYoxT9yQh4ZOZQcIPjZe+A3/0kPoKd9pmDTVTOJfQtd0DZIOUATZbsOQeGDdEysnvYOdg2RZdUwiwSDYKxiXVNjaj+GohF/XgnjKAjsso9EhTgHMnOBYj7XE177abdF3u7T6Tmb/OrEXBm0zT9wjQNM8ba+qoJTfusxC5bfzFDVVY0XDRefxLiep0P4SsDGKeESxjFY6KOOH8z5Cy9EksZOLXxY7LgW8BGF0T4K6AgiPVmACWZAohXVhtfIUYIEdHROPRv+BTrBgyW4NA5Mv5O6CfNokWfY5dHESOAWb7R2xpO+DK1qd2L7nuB3r0oP6Wcw1VgwABaMyhQZKIaFf5E0zU/FkAqIaPUCthbqpKeDcn0MPtNUYNWIzM2ySCZljMpi4sGqcNyHIZsapZ20V+w4ll790JvWPYdVzYG0oQbqNWD11kORDUWS2yO82hQi9IPL/LZhJV1NYgEa3JlaA9fJtWssLxu4Q1kQq0uskBLPmX6L6sI6oxXDsilDpoktapMekgXkU3NIFk34FQdlEMHAjD/9KpYYEtAlSj/wEGkmL8ga1bHZy3qntLHuR/5CZWIL/2sh9RnR0a1XqhQJxoL+Roc+9ONt1B6pZIB8BUbKUy6BGS+q1kvFqbbWavelwaWFVFqJJcEfiyoDYJqQEC6SZKKwZSrNaWofhNChqwr7MLoclXSqgcAjXjO0gA6bqZiKINEapmgcOkD0E+RaywiMMk8YoJG+4m6mg9SSmQgSNP5lXXQEZuLhaP+tw6MjRLA89frzZ692Dg954eIk07ivtj99+Hx5ebO+ube6+azy6adPP/zpj1/94tdcmTUYHMfF6ZfJBt26GVPy4/bC1V7PtxfWtZh8zK/aLWAgcXctJGvCFzv85ixhwXI1f1ICNlqYeueywIp4zKcJLSWaB8PEcEqYgzzR4s/kSyfl4zjCHI9wZXKQmQbMgjVRZO4K1iWmh4XcloB410Ve8n/OBtGahiN4jM2qozzNR6RCW7YPWOjWyaEiuyRZSeYG5D5hCrsm0gW+nbLEkTmTW1Ur/eXsGs5x7YkO0C2A1ke4uED34vrs9FJr7gc7fPf23d989/v/+J8vLy4eX22c7B47c5KCWUUKU3teeVxxvONWQGkpMOKivy5SijK55KRNFJ5J3hQupEp00025W3Ybh0lr9MViEuYNAByAadIbclBwqr5bibb3TGoVbN7ddICRRaOdbNpcBmsQ3Ujhzi7ABRaMw93rt4eMoFhNMCSyKhy21dGwWfD29HB0ePT0cJHuOFz/5k4nEhVYoD5KR/a+JLrD05SCPrz8ePQiraSYoMbHQUExlMZfsaZZ0xpj86zgvjy/Ojw4dBrpp831L49rv/94Bvd/9Zs3Xx8drq5WndX4/HRuUVrj6hYxStmSCgqKTvyjKB+EeiFITem3rZAUlPFCr8ZVHUUvCymB2onx6qG6+mwaLPKUOLtoMpNYSyKD1nVpAS6t/RVV25LouBvSbxh5Z1pE5wiSRFl2NjdmLeLW0pNY6w4HAznjgdxbM1TEEvXUyQmWBurB4peQDKEaagFfSRnfkizFi2LQhc7ekd+lHZhCC3Td6hrbeZwHK/4E1tqkgPFLX5qamMDDBpaimViCa51Cspwv64F2ldRv6EYO8K2fXdkkYi/srsAMLVrjYJ13bps8ZeXwlO4zRNLMlkxAD+U5I7E76pX8pmHrxr2tZWWNiWtn9CYP1vYUbTRM4rzkpOeeb0dzLkPdjjKT3+10X5PD904cKgdOBuVrQJ/VTqgM5Ei3pnY3LN0B8ibNKmAYX0PoiLXJBHK2t72PI97SF1sRctzFrLaY26tEyLs6QyqYMAjU0vp0ka578+r+9pZPNVgwhWGwyuxIcFqlpnFC5UBrXHx4cE7RI6Ol2d39bS7HSiAEMUig+rqzCAeOYrjJ1FKVlj4ips5QAz1fdWeZM9taG0a9ECdtKlDEDRvEiRmA0nCDYZJT+MaD41QhNZvQDDABsVuJfobDREFjvpKk4iE3ADqKtJEe+NLRpiFawm5bszWRSRtOFVsa528XBQfB7BWJIHE7w4TPTCibjNQMvn8NNQ2vyhAae4dIYf94ZF2NYGUp8gtJ2BLV5QsAEf6Lx8/kNjTOm86LlAguLRsr+kiSw2Jxly/ymkIXWfYDFP6IbV3ysCHMYhi6atXWiJbKZDwz5UTFqBUNE27GCPJFn5QGL5BRyMuqogl/TuLYEUAtagK2zpp2IWP7gEEjHC/reiCPteZYCEfQtlnB8LWm8KHll5SxziIWhsbZlrYCC/t6ANEwixrA8KIH/vc0Z+Rcpscvl9fO5wVZCZhyBEUgUxVgqS5ZzadMfnlaHiqO26Xj+FJwomqPAVbVUl8zSNMjUAvEvc2wYW1OgZDES/URI04FDKNn4GoeiV9PllRwfpdbBaVysk/9vPBQC+StnwQ4BAvJaq/WND5UDZ9irQn/wDN+bRGDgbdawT2WSu0oNYTSSNSb7hYQ4ejlwBAivY+0oB+D5ZGGhsK9iraJSUWnmrJTG7R4EWZe+U1CNTacaigF9qQlokzJ+su2qzxoZNlxKlC8qOTSLhqo19+Ir0AVQNHzFy5OI7HT3yqiVPaIPwgEDdEE5SmDb1pr8ou/W+x3RIo69TGNj1PRQFDqqJ80svaJ7Che3/wNmbrwsyCCzVMeRjXXPJGinPcgs2AUTSIsf1DD03IBtI/TkNfT7/Av8EltOMNi1MxbT0I5IGpBGa/rODhxIIgyZzND4hENp3tTvMZV94rUhW6FKw9a9eslKFKhbLlSS7NTyOela9WhpqSag0PjNP0xRjpSLGs7dNbdy0/wBV1cGFJHuiG+38EawEtvyvVnYbkGF8R1EcfHog2EcAkdQIDBE8X6potG3rFc+UU2ItAsCbUR7c3br7e3D1r2Tvn8S1dfNJVsn37+5PHRycn56WkLgxwXurrZOTgG2ercjbZrNgGvru6+fDzDoMOD/Zur+4svXWxlMvt2dQuGQv/7+/OLS+RBD6wSDnLmMEQtITKgfeVZG9d2Yaehh+AD5C1Tls8W1mb3DPHYX9ut5oi6aIN+HotRJqkcQZ47WzY2oSVCdDZOohRTs19MNJf5eMVnz1U77DrmaKmVnagzy29lSzh07tOY2XhmwsG0HExIEVVNeN+29F9AIkZBL9F5w0jGX0IuUUt/Jg7IBAzdi6REVInBvWOUDg5fH6CD8I6Y/OnP5//lf//TP//DH64vbowRUMD5zYhT8ljzMyA3Mvl0dkZGoGngQpGcuqMvSTiPOE8qZLcg1+vuBkORFkpakdO+R7eBlvBxxMneppRkcyWoc3i8x+nK+Xnj3lfrjFaXrTimXpYDGE5z/MJBOzqPj4+c4NQxeWW6ozpgLm/vzy4uI/WMqEHx2umFT+0Zt5bMoRMkRWO2TriFF4mRBGuELD7HtNGpcQwphIdCg0QCfake+MbApQLjDrIuYyKAZ4mCMIJUg4SSihscO0upjw62se1wb/Pj5cWH05vL64fzq8d/+OHjP3352fDGKuuDo539A9FU81G2cliMYFlOCzgsPLu9N4rDSqpq/AMw4sAJE8J2MAoD0iP0bAqdidEx7TaOHG1l97KZxRDNCPnragvJWMJjJUm3RCOBdzSIPvqArwbLpU4MJoqLrABWqfAdYdLrsW8y3ISwzKvA1zKPWtE4v9DMWNx9aleJMhhBIEm7WLbvfnLAor0FpNZ6sfPCd142+Va+/UtjPKkKf9nsTVe6inIcTAWfRuoNxiUazfYZKvAX+SOTQn5b164vGqqDJg6Ktq39a90XdVhAgialNmqyZwPHBb6yOQU1jolkIx7vHSqFlt0PaBmPeSrHADw+XDuc0niptWptnV+5U1BOlH0RIrReRubIsaSPWjOy9bdUQhk8gX6f4cK+JEdy9hsb7etds1t3dfdkwU9LWJUyxyXGw1BLkvDDkCAyWUdehv/Za9wl6uQgjdCZjAJbZA6UnZrGZ9mGNP+t7SKGyHbsMHiyFaC0p5+AGrqAc4L1TBZqRqu1ZzsuD/fdo9KJW52a5YCjm0vH+m87y9fAiEnsHItn0tiOJhx/3rg3RJAiJBpzTgBJQnqmSGElMUOahY0FJCE01CEYkmvEoCsaUi3t5JfRCSlU8/fGysWZ17h1yrPwwMPspd+NdvK2mA1iprcsWE7KLl8zFWw1k5mDQ5/KxxH/k8M+Cm0b4YM1xTTOU5cQIi7bh8hoDjH0J7rLLFCGXAuztxtq5FaEgH8exsPpDlPYB7peU0VO/WhhgOwjq0QEAK4kGPyCadABAgEyKWBArvjrd4aDKrbN2mioHec4Bf8MLsXvAB9rl2wOajpITV2ZQgWb7vVrtMNb0GBl3DiOvBGqPHR+Gx+1bSQiyocZOVRlui5lQMgBAwje1JxA5i1E1+yhkuI5OkixcMsU3OHhHiOjiUIUWJc5GlMZj2AwZBsGIDzaZFs8j0Lhjs46jToxlplZP728/vDlnLaBSqlNO5rI25JEYeTYk5lZ9QoN/YVtgZJk/JBPO/DTrffhWUd+DQZYHr+WSD2aK6yEZgCgzhJ01Sryxlrv23cx7Q0wzEvrrMq+6DIyapJ1UNjP/KcvCA2LF9s/kABGe8W3zUVMJdVzx+gex6o/UjFiNqQbv1FHSa9WFO3/gCp0TJ5qNkj76TMPVSMLPL4OjrDLJS4/sBvY63iejBx6Wg/a9v88/0sFD7XikXrZYh3Mk7RaGzoD/chNi8zg7a2vi5QjHNWKGEpGgaXvQVSLS2+AQ0haMarS9N+oiqZV6C884nX44lOig98kOUxxUVD8gh6dZNZBGIWKMJE1VWe5Z4A9PKUDzF4bA0rt+yH1OqG0VeqnwWu+waslam+pmY7ra4DJNWZ9yInHpDMvhbl0L3IBVysjl6XEZgUUmFJu/eoFcZBgsTWAVIl+Iw5RGFwTcWIaySdwSVvjez+UbYQ1mlG5kCQseVn/+1A7fFmTKiM3mjLDWE0vaj+aRk8fhgV947UyfGmCguDxO30e+vQ5YwTmSA7cKo6dqkoVm7fpc23HFA1w7or5rasoPJyCu/dIFIOGnGoF/PxE3PgUcbz3eHd/6+TN8bYzAGyUXJ0/3l46bk8adecQzaXIre+8Lt/SbUKbl2eXEr0HJ92ypAPnAFn9ecOHbzxerFZfnOh/f3dwtHf6o9BLdFqWRtIaQhhjtp+lgzIAINEcVARPMJwsDtouEnXO/Y7DshHLNUniG0MA/67LxHRCRayQF2Sror84t6AtGyISQr3o2YNBnVSMP4O3RxDORxFCljGD4Ly/nYv7u8vby10puY6kIEi2ThJ6AVBx8vxxbGXBGe9nsYKgFjH5Eck97eSoC30yrqWGyMcYwXLFvFCaa5lBytIBIB180eYBLsMT8unrvZM/Xu05/kdks3d8QCC2rQT68jMb86rNFQKDS4t8bQL67a+++/0/f/p8eaNf66NfnxweH+/9+YdTB4gio4t4WwXwzIVLEm04YQQNuUyTFURFwLi3IVymUCzjhgS/cEL0gx5MWQHY0/P+QYBerpxQ7mQdsmra4ZWRwdOrB7GyyAMZNp5vTfSfHAlBXl1eiv449cc3b/eph+EfJSVdgiTEMbrAoCy5cyQ3Xn11vOXa5g/n54f7lmpI7YgLJsr3KU0oVYZcOEUY0tyEd1QrC5y413SMTfgpe59HGNTCBRVFnuTTaOf45Hh1ff3+7cmffrg8v3062Te9vv7nH89u1xDn1cfzlc2XTlRE8IfH1dcn77BVKGe1t9tYNSq+Y5YIrEyIA3AJPuLomylWyfVLfogAuRNGkxmKDXZ2SaAAVhgQHtZChrW6BZGtZ9MZH09LmSyigu/azP7k84ta9xyJSIadWSQAzEoLmDPyQnCRh9ZwUhcGMAAaxbbCeMvdywIQposNmHhiltGjXoBkQvUSx2szx9hThbMvmaNsTuTNuk5CdSnlZeZLaAZBwwCMOdzfU16FQk7mo5xyKbdaigetrBCXiPfbhDkqCdA5uDMiNEK4KylbFOkiQStMnHMya3JQzenpTFgS2wKyTZG8+Hyvxe4l8IwVX+8dXLjwUVI2M9yhYa2kM4iHe5nF5r5YCkMnODEeFtXgjhQ1jmJotr5rsCfMcFTr2nLGVyES+A3djRY05jBeEfzzKxODe5IZ+Gx60Ni3PS2lPNs2QEix0lCWYCLD5dWVI2dn21pZA6Iu+pJV0Ky0h1jHXEdLmtre+nzdQpwnUV35CUOL57X9zH3DiAMTHQ93Fj2ie1NEz23z8Y59jsCpVVd0m7hraPPYOiInCDlpaqQCGuKqlqfjZV419ZElIU7F2WlWkjZLTSI/mjzcPNzuutAxLnPEMgQtn6MFyS4gEJ4CFsE3oyIQNYIiCIYWgPO1Te8xNk1UWpfEoBU7/kt8UlUlNabzApSsKEI0WDWwSYmiHw6QyIL1xBLX8sgAnJGth+mI3+U3kzcaR+uFMYV52WdfdTX9Ne4Fkyf+LnJe1zncjK0KipEWYFdjVIClye/PlqwGM8IWYDXCzSgR98wAjW4khsnN9AbUqIcy8C+9wrW1Vo2zAlJCyCOHiAWuTmLGaGTMFgduZCWuPEh/aVBjAB1REApgDEZGjSQpJhfi6IWrBptdx+sxwcuFYSikuLaun28ghLDKh1RwN1iFAJb7GwviQXyJzkM3xOFPz86v3AlgutMAg6xBrGwA3LJiGaXGAyJprta4ZcE5ere5jOjqUcuEaWLUOKX/RKcEKKn0a0obtOTh/YmvINL0lAIhejq/O7no/dglMgUp1NI4AJovxRJB3YQ6gPRDtmFaQKju0rYXM0PibSodgMPDeJ7U6dlfjyKBB/2NYP6MgC3+hb0lYJHRbAaj7AMIR/Zqtt6nkUEusY9s00LyEgwv9zslf/oDRD915JVHsSeAami6L2D1k20mtLBB8CkTbMr4iyL9X43AUQRvfAmg6WP6yZB4ouGqg0Z5yNcIsKKh/z0PItKH9thC4WbBJh4AUg3MDlB1BNAjFB6/KE+ilhjhRP4paEIzSRUtGbHhh1FjXqb2Wdz0e/Qzhg3oQ2vvkxX9EDX5Cu3rF6CAhILnwjgsYDJ4SgmXnvsOKDyekf1AgjKeBbcGOb8oGuDjfJKH3kX8pAGk6AvmSoRFPeooARnjnpAuBBySDZpw47Ynoatr1Rl0DTI9QBpGxqWFPtR4IXdKUH/MhUpDloWiC0DzimSHKXRal5UIgtIjLz0PsJnTV2+hNsgSthlJqzUUJDRRftrLzIUpRNO3jhJbhDMw4hU6ZGU0nplD3hEEy3W2XEh7tLt7dLj59Or+5vrh9vrSEf43d6/ffLU9639uru0Ivfj5z9/v7h1wZ86fC8jNje6SZJV2t08/2Roqh7H69pu3HTLw8f7aNta1tdOb++8/fnSavFXj8l4HBweobV+dLS02DixZW3QQNNABuLUwFOWGxWLwDhixfqY1PKweCU1DCCzKyWrChSvqRB/ZSgmnWYaIkMgUVTs3AzHhi+mTSDNjQHpzvJFIxEtQUUNeDZ98Uytg7OhlaFgwzFtUaZQCXYWz9kIeuOVHZrGjI/U/N90QhrV1pMFDAZ5QUrOMNUQAjuxJZAtPOzlnRIX1dzqpjQEZY2fSXH02D+HMUyuv7rb2BOcbX84uTk5eE3/r6rfdxrD+6vzKQeTEpDC08Gv91fc/fTnZ3726uT1d3X331VupU3W3jKMQbu3x8HBfNx0p2GrgzbtVF12Jhyx9tjj91d6ui5Gt4WFnkULoAHdrBXh5uzjY92MXsu2eAOlutXq8W7110P7q7svFmRkF3u72y60Y2qp6OxZXp1ebD1b6WgSLOU8O4HIbB+ly1ZHAmkhv7b46PtxFrrOzMztxv3y+xCP88moxAuX5SLvfRiteJLK0IGXq39guJMU2YoIEZM8LJUn8BLhV0KZzN8GGj4YiVOjs8koc6RGFODtH2Z3HLaHV3flnxzVuyPZSFmnR3d2HI2GUXe/IfdQNzI5dxzv0pOegYfZSn1b9rW2bO+DzR81Yp2AgLW1nhMEoYtDORcIgbka8obmhsw9FwB0m4wEkwmLqFk3qzrCKMBRTbmzdXFvC7iwdb9rBElkzEfk8vO079CDa8irL35Nzxbg1zKzLV50YUf91zdDpB2Es6C8sMDKVDGx3R/vvBZTtgvUEjmSAVSglnksn2zaNtyO5tPrsQBUO0BNXgsh3ohZgfOUmjncMXawMzBahm2XMB7tb1/diHsfCWgTffBdyS4+aC7m4WGmekUqTVZE2obBjp4wgwCOQMuBwaiVcsO9McuH20eQMxYQ6jhi5wQ5aOFK8vrZh/wDjACTQrj9sCJiWyRzL/NW5c7olQer4fHzqhB+y1EpDa4e6Wti6mk5shY1kB1L4gJgZG46JWWSoDTk4AjNmE50YZiJRTnj91eG+DVEP7pzAPfFxyQd9GZiB03jS4vtVB8W0g/9yZfrEZB2w5RTuX3WGqaknn2Ei5sw8PxMew7ZH8ihwtwXLjQfeSz0/OHjg+flqdWmqrpF4+ZEtcgClzOYcv8ecBK1KRdZtuTZJNW5FcD9OwYY+0ynEoql1Z/s2NNou+YIjqaRqHO/EF+S6oxeKHhsq+ukMfusQ8Z4WzDLYdrkw9a3Am7yb56gXGM6E3Wy+F2w5TpaQQGZFxyaXbG4VOLkECVxsiFqarWv0aY9K8oOc9ETd8VnKjkkQmQVkQ5mlnV74YW7HmfZ1Qg7uAqPmXQ5PbfBCto/58c5xDoMZ6ALT1AnR1gjjrmWSmbIVOaTfvATal+kzB9pyoKAZMRiLgE6iNzfJzBnB4cGTGFZuzHUurvLFZ6Px8kRdKFbLmRcLSrGmAc+sD+WP1p1V8N2bkzcnR7Z7YQgUdO883s1X+6avDC0WPLErWxkFQdIvcKJV9jBlLDYne/O4mNsbsI2WI/n61e3Thy9XJq2o1dwtPs2gLGOXLcpEFcOwDAUXSFeyElkMCDW2rDrLZJXVLYQlIeOQCz6JHXqi9XB5ponGIgVhtC9qQhKWM/kkYfOD2zjntcCEqPhA+ElA+OeQdRaeRNcTxAx53ZA9ZVAzAizMLTpC8JJ5w/jptjhCC5ogr8Q7wvkPdjPYIz7DviwtazpDMx/J6kS8SZWfwkg9jQgNPH3NcIsZ6jHdqm2tw9GrBSTU143PWeacV5KPOrCo0flveOdA6zLB85APmSYUgP4Eb0nDUnphfIou/M2C57DqZLqsYniinUCnMj4QVi1jlQ4H1kU3GDumNLSZHs/hqAbmQX7kuzE3pMbd5leGRxEuMFOQVA8dfPMDgLEkWcla8DXt68crP1PhhX/RGs9KmGUaAOIr2aixHGKA1DsbAsfY0agDvgm00iK/cWyanXdVhCD0QVK3ERAIXQTLHIDB09Gc3mZ0YkrAjBAMrZJIT3Gyx/0vhzoNog8gQ6F3mhkdBlLF4gvF07sPy09Ebiz7LwTQS31BLhRiyowfYkjALupMmqPjNAGQPkNqiK4XXfiOLz6kP/n+3us8ys5ljXpUMgKEpeJaD2tfZ6KmplHy9dsjq/6pqYe3t6cOdmHXLtyGy++p/bB+/uXT3f2ly2tp2LblqNvO+TmTqXqSHXMG/MXq9c7OyVdHD4+fP3+6dCq8Gzef1i8snLFKvFNDzc6vykEi/r2l1yXztrgI7jtswZRpWSSTUy8b3Xa99s/x193QNJF51qTySiYEDGtJbiQwv+8okfhrRb4VGo5NEGh1HYSAO6XNVwqDYsF4ymSzFSP8DTZpdIe9niSEJoiHUJhLYI7l2ziyJfhDQIbDaCSu8xmsT9OjGpbCb9RrSECwtMaxxqCY3Hz3rNndIb2yPllVQg4kjVsc0eY8xhSb9CO6MWkOP7O9W/KRblWwS8LSHs5Xi9Tx9cHxxdntxeUNdluWY6HD7bmJe/r1JFl/KJ4zhFi33Xrr+mrl8jU2yzsBgjiFlHVo+ta6Td0GPKIbza7uG795Lc46PmwI8M3bN2/2D+zfFgPZ1Pg3v/3rq8fVf/0//4+//vvfvT/+1Y8//HH/QABzYuXK1o4dzI/np1f4t2uPuPUkcnoHW+/fn3z+cm5GRVZJit3O4JaZ2lGw+Xzy7rWkLzG/34NXBBinWtBKLtO9cjwj9qgwEyl0iadB5EW8aQqFS9oJP6LMyFzN5GgxD/R+rlpTyhn/EMd9VeRLL4WE2L1mF2ZTSlY4X1w9vjk+Wt1t/OHHszcHO8cn+3JxGNvihXWH2Rd1GT+QnHSLP2vgDL6MKkulEF3DdKs9OC+GlSTkATsNM3UPPrIiqOIwc/Xl8k1h7QofcrH+dgrtDOdILuFwdqspKevCS2DPwR95xcVLGOIaq1D2sbYsYdLlVBZEMwwBYpk6RBCUwLkIpsCXy6C2QEWucsOj8qo03COODYHI8WJpsu1BMd6Q6iuDVq02bjX7K/syAYsAe3K39voUrHD2mq9n+QLlLZ3SN0nDBNRmKqWESlGvm0rKfSCHWNn6EAeD4jU0hQFYjEBGiWihyTjLLBc7IjxHYLjb6hesbV2UeLdDtyDYRtXxVhwifdlJNztClLAZa7PokcJVFUJ89wkqmnnpXie9tpCpA30mbihrTAgF0y7q6m4sZ8tIY93vdZHD9uXqyhiG7rv0IjPjloOJCCc7hr1LXGWMlK2zLUf2TnhNMYX1B7v7kLU8qc0kz08WdTC5MEUybFUB/t2oAYLnpy+XK6vioGBIox2jECMT1bmaeO3mY9bt9rbFUWFh07OuWKHWOFVGUOpLvh7n++coI9eNIFHn2UFvZwenyyIoXS520Zq8hCV9qjer70wjdsnlxDbFS8GUjGdkJwxogx9zUl10QDDlsV7K4NplL1CSVSxqNP8grVAnerbSz2QI+PVG8OLKOj7uGCeYNrasMhEqIHPuXLNegOe4WkuZvWxuV0uUmoZ5RX7wuiHrxBwNOIECIp2PxyQ86arIl1mU/dG6z+MKNUkAfO61UAcnvJxwaIywt+SzNXWaI5vmgriBBjxhW2gQVRtOgOeWaBkIuXDdtBitofi4QLImx08TVUGMZ5TktQFfmAFo8ZXp0A6pwOUYgGUoDCywsEzFz4wBujLyTw9OxUUW0Pgs0VOo0KoYbqQqdcCS56kLtIiELtA8TUFGfUDFMO0vP9SJ1uo1W1vgIQvm6NubkwMTjMxbpjRbpwPvlCnZpP1h25A1kr3ED5kaxhDZi3ywYSxSBCfZExVraT4nMrocLmSvkoV8N5hj11IhSzQx5zCouEUrrGbM6p1i8wFQBc1ay04RGL/F5+SitliHBKim/KCAkj3E7wllfcZELYC3JjX1EqkWLA0BatYfFRVIGEynzIIFT2tLa3Dwd4FcfSzQKNtSZ4N0zebLUq16USPg6zbJ9CQ69H1C+pAFHtDDqJKxz8Mib39wQ2dTI1BK0NcUqYV1II6m6U/NUF8wm94G1h4P5MXHPVZqgJr/U6XBlsIpNubf6yHNgFuw5WeQkZKvu54PrEtDSID8yixYIkfd8Tfzk4goUXDsd0rlsfdTPjOEbAsWxWp+IDXoE8YXzul91tyrOHQR+MaDxPSFlCH40m8jyzJzgCEKiEU4EBd9hkRJ6vBymFgOeFBLJjOIQ5joUAuN/mvKz8Iw0GlFX/XbOL6fIq3pgpInhxWGcmMAFWOHdqHAhCWTA9jQUwE8VzfOD/W0v/BxgIsYde01IEkqoRI7SookassQa/hFqQR0Fa0DKqDNys8Yz1NQaEIVvQcTAxOQ68dvXu/tHdbE5vP1xWeO9vrCXYHPUnSSD1qyOubh/vro9cnjzfP+ye7B4aELwTphwzGRZ9fRd3Pzpx8+uiuHX7+8ufv8+eP59YqUsQqfP587Rk5G+uZaIBqCzmZF0luxdxu+Ix5QmWCaAzGMbyCTRQb5LI5sbKVG5C45x7EQdQkkOb5uJ83oL4lPjaCMLgrP0syF0AVPJEf72uDLjf64Sl9uVpbHCDK6B1f0LXvXcv5E1Dn62wWIfI/F2gYUpGU2twmQtQNyEiVv2gpwvk8rUGXvXtkv2MmzMHLnDofvJA8S4pRP0AutFGTx/AZAMvkCYXYJwHerG4umilGlDEkY9nAbtmJ3F+/j8dG+WeSv3hyCRQXeUO52f3vH2mCRFqE6OZHu37p5fvj56sL45eTtyd/+3a//t//1P7i6dH/31cmBgVvFX78++vnH87OLmwh0c/tmf+/dd282bp+uvlwc72z+5u//5rtvf7O/tvH1V0fnt6u1rfX/y//t//rjH/9wd3n2i1//KvpdHhx/feQsmFs0jeN27RmdWRmy//HDJytc3x0ffX349tOHC2ge7u0e7rVv4Xh39+Tg+OfvP26ePP3qm/cfvlzcuznuxm2Uprav0evg6PD8/BKd+VFoIw0uxMpcRTH3iESyJgorNywzF6+zsBFc5oxvz4a0wmQU0BVzLZOoQZKNgh0tted4jvtrO1XYO1NQxjwHpEZFm9pX90+nt7fvT47LXj/dmcQgn+YE5KBx0mpyhiTSi8qf7sU9yahW5k5ckxciv4yPSKGLsXLDgk4mwZKiVsX4ngFM9DpEqLNcGhPIFht8bu29Eu5wOWLoVBtGGa02+Qm7N2wwbXl06WRPSVcRQzk8UkL52ubu6770tUW8LVDZofuIaIeFsNBsD7FnLoGoZdSRIi87K5rUzETSKIRoQg0HWi7nz1mhI9zEBpgKxKAJBoqmz6IOtToyyUQFTFMtMBjd2whN8otBrX3nR0TNYodWS1u9QO4Zk/L6NA4qWhPeW3ovX2/ttNEC8ujR/w2ona0u3nJylFNku47FzbWO1TfSX19ZbtiRqWVVQGYbA5U0sTDqO0lZqQF7tBu8QfoODENNc4BFoig5aujwLqP9chDXlsK7dWuPW9WOCwjZc49fdVatdPv1NajEXmJ60gRsVohumiayEcLqOHWNGZoHKX0eQS5XlnCY6WixuLjq6uqa6TDRiL+OPyiiaAd8a+hLM7D/1s7drAwL3buYBDhqdPV4fLg14WsDLSM0qkCKxtxmG4BBGLkmY8+sz0aLr9RkSY06zHKQXgJGWlkz0oB6AmkregrmvCqr6gY69PM3X+6DbwZVhErYA1OxH6aTKI6ika0bDIj0TA1pk/axaVZt5XHcowwUQsImZ8bJMBVbt2AzNRUYFXTqpQGkUqR6fGDeXR+tmYOM3KX8i3NjFJoJjbZ4gSbv5a0JLnI71Y3d/cwgnNZwF5ykgnELLuPXgKEwjfDdqKk4WOQwgV0Y5wAbIWuY/cE84gQqgh08ltxXplVndNk2DxIOC7QgCeDxNcWEWZvxEVUbVeFHMkjLOH8ykoahrRu1K9jT0MdSWLd+FUgllWMBpmk/U0YwjHDrZd1A9OHi0nXMzJqhkYHotTHfqhtXkEJeTqK2qUbo6Jc8FCJM7x7xO0i2ABzi46JIpvdDJIKaOCE8U0NzpWx4QGc4yWfAHIKhF4XIRcDFA1RDxqCLJf6RMZ/p3dBWEF6Yl/Eysp1EeLUzOMxGdWYAVhWwabYWWCRjCM3N+i5QQWfZ2jesGLM5cQ6hoDnqgEL1JfRFpgEr6IIqoF7A0/V87yva1t1E3sqheY6FwCzhUC3iHsIUrKOVEZQ+eB5c8FDdGq8Ygr10Ez6Y7mdp1tsahUo1Ymb16lTb8NewfgekKRqRk70aHpLCZcjlqwJm+vzKES44Luj5PTz2X5CW4gAZi+mpptRUWr+gjLmeaL1RWq0oUbJEjypPFOslnakdLG7f1uA40BevIBHCReFAYrBe5DWoahGApA6xhG6zsJuDaRxQfDwyUafJUwihisL+ewFbsG5kjNBepY0IxvQ7vrATYDI0M7CBRVwpCZvo+VEuOaAxKQ5CR0ctEF508GlRn1qNqZX3o5dEMGLHJC16Mg22kjhqzI8GyZkgo3f80Bzn76Fame2poLwyfg9oMy9B3Ce7rP9BSMGkoHHoSFtjOd/bDJe3JhTZNS9p30BHPqaF+apu7AhmtNI35sKkrMDU0YlyKCCNyFDCy0/Sa3AwY4nFaEIouMNY39iIyv6VOMzrWOCy9vz6/dGxmNJy0nNRplKPpxfX56eXjtnAfAlDq2svz62Qfzo42e9kINPEa+3lxUZ3hN3dXhgGkBdr4q8sErq6O710jdKza2xNF9xc3SCAI/kwLwkXzey0ZB8scoNEETtCc8QV5MW7Wm+tV4qXEnrLwLarBP+yWXGgZLb8h4Mcm0f1iETH2BCIcATfJzQvIQVRBiW5oAXNoI0FSYI9ymbyXghrskJWqRDKKljtuceUaW7zb9IyOSFyp1ndSHPqoaC9meIyUpQFwDhooX+BaMn1TXGenA2S4jKOkA144QUPloChWuvIRkQ70rRBjzMkVOzgQUuhzC8XoNgLUfjSGrmN57Nrx60WiUoyCs9ERdtHRzZqU4g3h7uWiTtolQVvwfHd9f3m02/+9quLi5uDtce37w7ffve7X/zi3dlPP749Ovp0ef39nz/tHu+9OTy+uL7++7/71dXllaNE3317cvRm//TPP1nBenZ29cs3vzz/ckoAvvvlrzi83//5v2ytHRwd/fIPf/7jd794t/OLX/7w0/effvj4/u17th2nDt8dswR//vBDKf6d7cOjA6uqUfLk6ODdyevrq6fT1eXpxeed3ddcwps3R58+nzqNR0rN4a4N+Ml7NxXmEtPyNE4aVUzg3DxROMRbGWkMLWjCQSKEO6IGQhBtxS2OzGfciU9p4DvcMYNL4ZhxzMwBj9kQL5QqMw0gQIz0d8ycY9CNL84cUHS7OtnfI29Y+eX63Fosese/iqexNsG2GMVpHjlFQWaCynpt74u2LdR19hRQOwyE2BMowKfvTVsRzg5jJYM7ZcQtACAd5o86OAVcjnsRnJmHx+6QT9tJzrZ9rZmTCXfamSBYJoFIRKHnxFszcmWXW493I47xQTymfe2QOtPoTIDwXHmvRBh6LZ6jaQ0w5arbiKyS8sATy+qMSkFPYEFEo6atMq5MNuwkiJa4tJkBX9KBx6e7Kms2OsMa75jRTvDQPx1VIsucqgvBy10JaLFYJSBCzWgEmbw2tnUIvluyTTrAXKeQMI+0+EFnd+Ls9e2NB8d2ZQDFXMr2rmbpNuuelqeearh5oJAOKOLpLXNyYtKSsAZRUVvX7hxIzATEoGjaHI861FOYb5ozUTQEera16UEm3AQdGyF2Z8MhU5ydX23bjETKzobTScd9hnyOkmkyd0gSyKfJMNR5cjcIw7K+Ye1GZ4q6CUOoyUyR1lcbF6vrJN/G2Y2tDmlcz/6YrfNNlE2IHC9zi6bizmfTL+amGlOB4c4xRvBgM4sp8/ut3ytycYTUltuFDYUmTyHNMevX85gdWcsiCdjN7nQX1CbCdiyVONmdgrhn7IKSNnIxq6yiQ5NIAghRKmeTCBEJpNPheruzTaKyQa0Uap6zMDOfLjvSIaqZ5fFiHqsMd6RoRbshkZwEMuisqGPD9u69nQYSRJQA8G4NXLUQSgmOokWLkjjsZeaCSnpf/bRLLyV3E/u8SdClBYqOrEWlASbwxo+URvNFLcqOvgHIwkjBcAMo9mxKVVvGk3xnNmocvGEtXoLXoBQX1h2Blj6CJEHKzaKVEQgRmbNoM3GY08EDY5oCskijmzRwNU8ln8Xb0lAQjtPBVqNrI124ucvcGPfd8+G1uaz1jYuLq1ao+sHm0pe0jmeDCA/CaWqbphOjUd4JAyMBKvoPD3CDfKfg6Jw8G0fYWmO1pIE5Lcv7covR3rRDo/wlrMlZgqpcZ+5Vf3QQeREQGb3UbAyaMSSi+lB3XScSTD5HQE3k6/SvZJYD4vNWA9qvvixq4PYxCmmD9zHFnhxljuImMJCwZppwgkjETwuwq49L13HfHwiN4CbA00IDlYpTh4TYN30PYRTtMXo1dCRIhW5hNEFyQ9kkE82pS+IUDSdvBZqCwDGKuh92aEdrPi7gRdYxrWmQ5JB3iMBcYsOUVK8PMwbL6y9gR4Nl2qLwqAheT6G0lE5iyXHhdbgWZyesbBTDgb96HRWADMLF2xpM/nsVPSYe1SaBYXXApBUYFrUkXsG3lBy9KlfUQ26X7fRqGPbu/bsff/wJcwWXU0yzC481mKz7z3O1JCq8WyTPA55u5IPmiPsjeuFRZCrYGmYHP3flc3pnnFDsGIS1wvIWOqieL5IgTjR7PhyPvGmqxnsYxWCdk4R1EKYAEdMfFNCUVwr5QYq/IFLRGpzfHmrQ7yG7p1AofCecKDaN1l6heaSNSn5QxsP0J6OZs/Ryacf/uouY8wNI9Qf+wAWGz0PM5NLPfF7KJ14LHlmWwPM8C0upwqV11ZGx52D2X9YMIwzun/aPD7Z298ApSea0jt39A2en3FzZgnZoDkC4o+3bqws3p24fHF/enJm6Pjp6fXb+WbL//n4lT8bAP6673/fy9PxSfGC969nZOd/y5fOZnBy8mJaSaxubX71/52YA4SuiyajrVNQicqLI8EW7/N990/q+8jawxLFmhrSD1y2axO8xELNmV5LAYYIZlOzHjAH4iDnZFpaF8nEyccnJi+Bbb98ybuaOBHZfrViDHD666UA+2kx2YYLcorftKpYfhYPA1Fy85KLAa6cN7jjD0LGsBk3owzGLMkmPAhb42hidOiThG5yrV47jkII9kL9pmalhRmIDrlasJcvuCoB9UR1s+WBtkSIdaVVZ9tUMvFiKLltidHnp5iK+1jDj+eTYnIAjybfc23i0s/Xvfvv2nz+e31yvnRRCkoC1p7Pb/+nf/tuz89Prjx/+7t//23srSOzg/Gnr5HjDQp2H1f1Xb09477ffHv7u3//9H/6P/4qcX+0ePK/O0emrX/7mu3/1t5/+8b9b7fvb3/3N+er27TdvvvvFV//jP/7D7fnFb7/97evXh5/ufly7ufx3f/evPrpU5vrWynin3bx9fbz3zZtPH85++nj6/u3Bpx9X7nTbWjfzQNZ+8eHjT/ZTwkcq9n/8jz9b28Cym4pZvBYJzrbEsjHB/Dw1I78MUrmrFGHGWmk18SARS34QBbNUKNZpIot+YJy8ROfH032xNHVY5oHKFMhC8xuCnoeV5yivmrufRHuGAydHO5ZkHOzu/fGnU/Rf5Zsf3h4fYLIRl3Umr6xUuWtJBQ7SRmGrDbIkCzgOiaJjrYqwBF7Q2ZmMXZRbKXFLdn8MbynY1FO07U2JQzqfT6UPJd6oQMKb6j5Yu0JlfCEnSJQFE5EY8AikLTKRcBXj+vr0ZK0FCV/cpMbVArlYvyd57ixQxnzkHtpCFJTkMZCY1U1q7h9txKcR6FVHSE+bRpNQz9p/nhlyZfPzOMYpm3dXs7rjae1wd0fpGwvxs3gwdhaN6zho7YYB3oG4fP1pdbsyRaBNRsEJsdt5cErRTjOrXXTkpMudVzvXllYwfJYApVCNJYBu3bxMkFiJdtCijlShFAIr4+Hy9utdPDzRLlrJkGuaNpmGUt7MARlKkBgLwjQ8KvbScdE2m7LTSmvGZxI06GTuB5McZosxKGxfeb9fWUvWaI25E5O06wnv44LVNdv31yzGo13LyCJ+8BsfSbOkv2kH13UzJvhiSqTZyw5CMdiTK1k5foDfRHbixDYy943hDSP5xNzc2hEsvLJT3zmJ5uDHSWGEKjhijMeWEjZA4TUlskbIQnaBJ7cp6cz4pDLsZ8y2+3+vLcTtI2JZZoaHBuJT7FawmExnTJDdqNkm2fQl4KYDrYlu95QRvk9NsrFsnAjD5GeuRNAExcQAP9BBcUJYwNSyyahP0lAVT7liwxecTnPdcmijEjXAkgBJJvnJca3JrRkxDeYtvNVIjrIQTTuJ0ThGolVNQjUb32GDWUR24sMKo7OSaqM8nP0lxvmFMr74rzWyD6qXFjoWCA7O+kwjGnsAbzH42lABf4DsXyH9XXcC6EshTSmugwlMcrmEwYQAZBkr4RsmIgMdY6DMAeW2IZvS0TN4czSb1heRGNlVTR3tPj/dXtklJnlhmsB7GQxUnM4oURPYiTioNFbyq7AkCAqy8/uKAirsuMTcToSCjADcPJKJ2T17bhJsSY0INnx6GbBN0cbJSy9D9ozqQvcMdkFjPaCffmHjQx4TBHrJzkBCltIXwLGTZVhUI29IxNSorlfPYxAPqnE0bWiRZ/TWvFTiXQJ0spNIUFu1XyAx+LzES9qIvzMMyYyFpuwKvVukBQepTAa53sJ0oZvGtP8CcGAnciMuyhQ9hCHkh4yK+awpdTWSIBXrVyWqDvGj8TxRW6HBMawGds8ysTHmL/G8D3VkCFfxyBCFgwE+gwaEY4x/Y2an9JTotT8Tm46zoQPDoZdhVmY8WqP44or6UNONK2jvC2rKwDGSZTLA0jZctVh7WdKhZa+WqlOKZN9//PBhXKD2A1si1auUrO7ipe+Qp8zRd0moD9QpTNSHHdpF0AxHg4q6g1MwJMOeTTvgJZ2KLoO6XE0kAj5kCVkNjZlIKAr99ZhuJ08Rlk1kx/lL5SL9/Ixj8LrFF/UUC7S5mINC51rxinjN8KMS0TMvU7Ttt09YHk8wS3RSjJI1QbGGVuAtnoldBCUprPmcKBItKNRlasMOJ68hKLhAzPmq7hBGtVqAKWjDtHYKoLWYjiVtMI2FEO+pt7VXeBGNGCBO/WDbeS8eyIA6fJcxuriQ6bc1rSWwiG8JxOXlmeh/d/fdTx8//PrwKy5m37hg1teb0f/86dPFmWPwVoyFDWRQdqiUyPvzqYvDHs5d7blr5feGdKmlBVbDMEHbeweWwhIAE0b8LIyYV1TtY6P3brPKwUxyFybQKPIbDhX47raY0mO4jlK3A9KPkI560KPMXNNt0mCZLTlgjfLFaBmr5HQfLbHOWncENn6RMMd+x6E4lZts8xbxElu1PdFWBPRUlf/D5UWQVBSpqJRvssYncLrvVmaaG2eq4mzhoM4L1Bzm4MFwKmcqYtDtcHPENiE0WihIZZ6kbsyjWc9A0qwHUdSYksHPv0+W1y1BSP5qy/Ick8hPe5tPxnEnB0evdkzRCMW2fvvL95/Ozo8OD06ODn/3m19+/+eH9Tf7BntivPvVzTe//FpC9fT00+Z3X19e3bz/9rWBzenPH+5Wt++//fb1++92Tg4+f/iwa9np1sGlNt+8dQDk26Odk63ti+u77f1WN71//zVG/On25q//7rcPt1uXj7dfzq6Eeg+r1dXp47tff3u/f3T26uLu8upXv/qq08Qf7CK+2t7d++V33zhN5fPF5cbWswMfLUCnRB8+PDkhqnXSFjvJrCehmGQQ9WhEl3gUfXgeGZOZNDGlIKV/MdYpF4HxdGw6bko2b9tOTbJ04Y2QpQJKNH2sPnedM/CU+aI3ctUCPlrDaf28uv10emXoSUpNr7Rt4/LmePvV/quNwwMjAeej31J0kob9jufIbWPGMFGzmE4GSQIFJpCGDYQoTWzmqshHKMDJkBAxbA/afFdM0KWaKgjgTEBBNWMO+XECjsbfEzqXcek8+DkkWzhYqg9NeNOxFOqQX0FpC8elzw0sZ/BvGZhZAdNKZOny9tpqE7GoKtSmeV3yOpEaiTOKI+fVykq1t54cF10yXHZLzwHqtDjDpVNDUJtim8tNabBrp23kTEEhi4GChrXvdlORj+h6f38vw+SgT7dwCXIz/rGFnB+EHWWm420tLYbA7/TUvojOERLly7TCNkwmDiyMlqTkJu5sjmTQ3PIbN2HBxQnc0Lz8TjStl0xlTYqHjOTBaKCHgaaHmMGcCuN25JKv7PUTO5VilqS33gmCMzK3wgo5HOhprN7oM2Q66FSsfNMM1d6eTIIgW4dxGTzOwKX9jvjc299z9rFencsa0jneiZTtRy7b7Uyz7ADNI3Xwyn0327PVDRVZGzYJ+7bcpxIzkbXxT7edYBdQCRsuseSKRzkYim/4iA7VyQMyPC2hmpFGKZaI3dyCDf4UzkhDdGtCICskvmFDx4SZrtFR+lUeT2DXljkDM+ZQG+W5ZfF03/QaPTXx0AE7CVXRIsA8z2rjQEOnYYOcUwImyDHdlMGliWklbdGs8gVnk71K3FPa8XTzkdZrF2dJZ/I7b5UAJM0VOgftzBdUje7wd7pnTIp/iqP4zaRORTRbhrKFF3XS3pxx36p5oK4mjO5Asbq9wTnljdhF2+oTOf4u59WPpvAzEYbj6saecv4DiOijdz6obbZ8jw5UlJdAzDpBTzI8fHzlqk1Lqhqs2aJuF4pJgyfJuLdvDhlAHhndrk6vrTljhaXl73PZbTzTFDk3ymIpci1CJMTPTsYYEEWJkontCEJw9GlmASZ+4Fimac3WD2t393f3eO0JmAro840ZtCUEyrqi24huXcA3z1agXla0L5NjUMZHgHgYbfi4kY9hYCFWVBJBZUMmJToHbsTkuFKwkkgT6DiXkhFFkMaz6c+3aWF+EwHkwmVSG+1zEgEzAxt11O0Vqmh4CQIrJ/RSXZUo0yIFfBoqDRAFSwlEh/8wIHU9sCUVfvxSKyBBFYBL6cjh5QJGtPW2fuPyNB6sS0Pe6Lqfadp7XyPl/PhK1KoWEZey03YMINNeNVrKxuKxMmr57Qed+5nuUCG6zI9PKtEPaDeg5Tem8cDxZwZhKfwMFscYJFWDbNbZ82FGqIChSaMmoEYaBo2GehqKnOVuQKK83kkk/dZ3FIsMysznVLdUUdrfcQGpwsDflDEG51AGEZV6TmiUM4aeTNU4thguPCJbWRyDQiMD3QxXGCm1lx9yFjTEIuqNWANkYIcXeAAb5jN+GMDrLqpkQKkMAHzpr2/gYYOGbyUnzDkEKORyJJFFSwmNJhrwTCAo9kxwNaGthaiBPUDVtQ+9HGD+AnXjnACu7f75PVrQMEmzkAqghagVSgB0URmwZ+OqhBf1VzPUsAkKQFrZ7Cj31mGaiL67JguS3a7yVUWSHjxv3r4/+/zpy6dzRwP9/vs/7hzsrS6v3hy/PfviZMWVYFj66McfLx2h8f0PH2+fH96cHKORG3AAxfEIhh2Jjhiwdari7cWdx4DrWHG7Gy2ulcEewRZAOMsCxCzg0KVfQe9/yHjR/3FvWfZQjMV6FTnJs2/eXRuJiJvlX8c2EYhWKje4T51l9J/syWOJJ6nzJBvqSGy7ctsLytb7Y9YC1aerZgkafszFn7MkbVxYcHb+M8DQnN8Dk5rsvvXEueEW8Ii3LI5qnYEpVI6ffFJQycKFHaqgrWhQZJYQxMriV7nhpMRuM5P7exvuRYauLg73bAawrqqMkXNJrTCwr1HSUUxJyLla2it7t3uwc3K885tfvLvuxKb7169P7NC9W1/73b/57XffnDycm4R69d2v/84ZhQd7B5//9CO/aUH0u/fv7Y1d/fCHo9fvfvnb36zOvhjF/dXf/Hbn5MSkCrjev/uqcd3N9cGbo8NvXl9jH5EWO27tHr15Y0H58dv9n77/8dXa3sWXC/sWnoUDt7dv3p08ru4leh9uH76cfqR/R8eHv/3drw0vf/zj95uPZlQczblz+fBwfXHr1Kn9fWfptM94Zagp91lc1SxK7pJNcFtcq95zbMTcD1EhmYjWLZnNB8tsliOMJEvaP3mnMoQ95cvVaZHUT0yPxdhHYfEoB5PN1l7JqsKsjQ3xpTOnMFG0JT2Kjz57S4yJ67mI6fWuLQUsXyZX0n1rkyOHOD2SDTV25V8naGvUImn97NoDR7YXjeX+xfpGpOl5X2eWUkjNRCiUeJj4kqmViwbenJPbluKwGXtYQhU1gpmIkIp8OWM+hsUrYM05ZgIC4Mk4i4Ugrl2in23JNxG1PtjFP5FNX5M3AicjLt5qyZlm22jrWcDMWf6GISIfIRtysOliFFUkCwsTTY9YQSVPz/45b6rjiVB3w6IIgSAgmxohq1rXlXWDG1bw51acld659SJA597aq8DH2DCztmGu7Ozion2yRmMkokkdilnGu/23+bpZcMWSrFYHk8LYetx1PLCtOToUrGQs2pRlo0rmzih6FkEJdrc6iVi+3NDIsvrS5Lud4u9gIlExXrfqWv4+s2hRjalLi5gAYvgzKTC2EfvsWJC2nv0GunrsBOQ8hJ21921LgOfl5W3nGVsbaSWS3VDjVkTVAJMNOF3dkHGkJ7+ke9MZXAjLYggDI7DVfa00Q3/CwpzmBXLiDOlYlWLblinazcRoc3OIVKye9jR2LTtsXGPrM9QmoeIV5SV+BhORLydlnFBWmJdlKg+kbyRGGu52fFCBXA4r96prYHtX1Jw0NejVC1XKeU1MSYRYYARlorUGeEZRO/pvi4uJ1wlRWiTcoE6saXjWkiToajUVkEKapWLDcaPNNquQV+9zq/Gg+WEo5kBHe1E+NVesQGg0Wse56Vwd5wJ+biQFqa0MQw9JPGqbBhmSwkAB9fwl+SwD+fEEEqwAbmpImyinkjOix9coYvFtecDZ3rOE10yycL3z00CgZ91KBlElXZDqJeFtvJgJGoOgwQoCrSgrenHOLtWJOTEUpzRTBvTHT+ffWrV5tNfZt2v7rx2eYaEngt+kCB1fYSA3CcEJTnCM+9M4xS9EhBzs9DVS1FCMEWVVEYlVz3TasJGhJDxrX86ujxzycdyFMawrqiEebsJi4YJ2wt/XcXxAXfJl4dyYs9hSZ76i/4Ig5U30Z5+k7vC0F35BFO9sZixq8xklY07sgvsSUg/zVVJytlYHD9GMqqgWY1sR6mmIxvr4VZG+zms+PSrkXkZOarm3GeFOM0ME3ljPKBQOLSsCnjKDvmokBMenPxVhEtj1FzB9FbsmQloI6aBVuLZ866+vA3AOSFMejx0mmcoWlPrtOVxHvF+6Tlc9yfW2Jp4spoT+aJngB8Ey6ozYStbKIFbfC2TAmEhIDEqqA0IBgLfqhmFZmlU8IIw3SioDjyxOC21uwYlgXSjTHrvS52GIHiEJhrgYrsOVBtBkbGgU+Qs6K6hMwhHb2lW9AKJArfgP6aN4b3W1zB3m+NWp8YJaFrmio64RYYQ7UIcs4Bns+OaBHWCTAuFXCGpK7jFES/TWpsa16SePhjSDYW/xhu4CYYm8094S+fJXg1RGRMUMAY9VugWbULVaw0INJJ3sy0JqeIPfE/Z3wTpgCt9nhmeggvh0F08TEV3k7CNuZivZrVlgT5tD0FnrxsQMXviS5QWDclUMyAAAhrq1o1xs5UV1sXZyuHUgD5RTcib65uX5Zfso1zeuOuvz+t27bz5/+Hx1dWnBz/nF6o9/+vCrX0kbS3gIQHW0cpP9xx8//vMPn7RweX1pW28HZ685dMVGsU15YoxsiapYoKyVtJDwgmRsuSeYiCUrQGlpEMJnfxWLzsU3HiaHCiCFYxZMSijaDHtrWBtNoZXgpp18eJdprQ7rwGUKF7hP4pbwmITXf7MKjxL+gnUjBgfDWJDz6fSCNT94diqlqXzZXLrwsCFC7QL3dteZ19+yhF/0TUesAXfa/fW1qWqBIukHA8px8GAeHgk1iAHvgXHpcOsN4Pxwb0tAKq6Q5Ods1lM3FxnK0WAksGheDMSdMwl5x40ONMTLfRkn8ZbMolBsDofWFqg299tbebi3/+b98cnrE4R6eLr83V/9wlDLeOr9+/dvf/nepO756jP+Hh6dOORSyPfm6zeOszl8/86aDWt83719c317+4///b/+6rtfH5/sWj2yubP/6dPnr7/7xb4jfWR+t7eP3pw83D7tbu5wPz/80z99uTiH+Mnbtx1hsbV++Gbf5tifP34wi7L3avf6083h0au/+utvT79cOa3m/XfvXh/uHW5tfbm4fP3m4Kuvv/rktLnzc0w/PNpyquPHs/Pv3r4l4C6cJt0zMuRdOu+ZziISo4i3+eCxAEPtRQMSoFQGNTOapc3RE90ykaIxtHuy3XzFssiKJW8T8Xunkf40fMJEl6TWD5bhoFNphansm+3tDoJkxoS8N1xETiVR7aYqBhmdCm4e128erKjKDt0Lqe3XNNpE2PSIjIuSWYkulUhaCt3ine2/L7OyzbhiHNEgD7JRUHZhk/2m2StGcvSXhfGNQJLypqrSl+bBXHxmbYZlxiE7TohYtkRBHmSWnViJxFbCTeMsD6oJ0Yy0geRHLaqkHkKIAtEXiWR9Z8SVoQWAEEdogqYCOIqGCzyRvmwBQL9GPt2Py21YWuOASySEELlu2CAmvSRb1icUjVJC+fU7CqyAxL8oUMRJnafiswU/uINQpaUs43GIkEP32+S9KTo3FGFVfKUJwlkcdh0W6w8emfXMY2xvEgN4zBtS0WFY+jrlJaQp41jTFulttfRl3JDJBNvolSPS5WvF9ZKGLsyaIHUSUjoFl/yXG/O65s+clakP9DTxAik83XF/nM3flbk/Mpbtqtu1zUPTnvjftCr9XcJl8ICi1Vydiy2MKjOifYvnmnbY31u6tcPh9PJylkfmqghysxkOIX21ju8CNUE93bcjQNRm/lEkZ2M0e4jX6QL4OzdJCJ5GRJVxN+QZDWmHtIf5BIH5HlrwdExrwSlPnJ3CdhbE02JfNrxVznlvkS5cxoxl/UgMeOgNMktkA1OxXCAJbGzAHSmcTlIHEkh+GiHh2WwSyGJbX7QT5WNTAyClM+y5pFnTpQ3CzHfF1bGT2mxipp+s53jsPsZ0sfvwWBO+Kl+AICQoVCHk4xYrOEEeSIeyoHipNVamRmm3FtL2sjNaoCbIopp2IOtjK6ZAr3RxLUUfLa4jsyvG1evGXV6SHz4FdFEhI4BbY5rCFR6Na+BrSsT/QypJ1Qichgo2rLJ1XUYnDUjMl2/iIGzstgPk5PjwYePy4fLR7Q0E7uqSnTNWbYP+KDJW1qdOo1SqW0fQKOrAF9asLZUiw0zHRP4VBKFBgYP3Ts+u9w3ObM3SRKGHsJaByoT6ngESeRMvfJn+MMenodtLfIXOeiQf0a6xUEGZqoJLnPBkiFG1uvVo8aLRKmX2NRgnlFcXkUeWplhkj591ncUJqPkcKwO3wWRjg4RgAqc+Y4c62bviYSopqIfFlPT6BYBpLCmO1yBOjfrRDqyn/YWyy+Ocj170qL4RhBBzXoR7XZIZcAYHUCvW2wkUazDo/T/PFuWoQAIQNSrYKDpZ7BPRp0JLIBjd0bJGI5YqU3+BTxXQ+9FAcOQbxIV9YiIQgUy/UG6swyhe7Xirv4Eg96mBThNot+hEkJFXh4GMjnoOgUALaLBVlxPN08y7l1h/ZAYMik5wpyrjFXjzI7wrY7HYj7+gUzyv0fStkFoug4fGMJDAZYhdJwAGGeYt6GPbjAFQf4imFXIgBAQ/E9OdsuxcPyOTME49+kHVYWHlE5LhK+6P7TBHHJojARkB2uS/jnbmv0fKa4b9UKaKC40gqCn1qug98RGvz0gjhcg6dNkHmvgAu/5kvhNVdVWMQgAbcwYoblSZhd3Lb/3pjB1ndFXpRptl1DudgRNhdKrdZQSnObYsC82UHO9vHe45/9Htm0KgByuwbRcxhLi9ZE2chX51cW5Vg0Tv6ub65w+n2+v7N+cmtfctGZDAk+l2Q+GFZT53z2fnl64pXNta+/nDBQ1/9+YQHtdXfBZvXrKH5AHBelL/IMx6QM+XhRewSAmH5Sg/MQF6J2MqOSfBqzgyqCESUgxGoUZypCZaHOzCrOb6o4PgpXfdzmOydMY61JBSjG0lLdbQfzm7ZJj1UEiUdK/t7u4K40RCnLfoBaFBr8iIBpa+rNfHcEQWiKjM347TdXa+Q2nuY9CzA+zvc21pjagISNoWRMkLvpoNrGBsfyMwCfNiPRuKj/8jO6wuESIgkv18tDg/uSEnG4VNuSLC1NjTcSUWg1jD9epoXwLWSeuv/ubv/3Z795XVQu++fbffNUJa3Xn9+qv940P0NE9t6+79yimND95ZOPyL33xtuc7Tp1NHhd5dn/3yd39zdnp6/N3J0YNLBZyq4hShYyprxenx0VurcW5uPwOD/Hzzi19arfkP/+m/2eB78sb66rXT/3Jha7jw+PXrnXdfnWzsru/sbexcBOdXX51cfz796v3Rm69+/cc//fTx7Mtf/eKbq6ur96/fPD6d/ua79//6r3793//wZ4kBbCjMnaPrZWFb7IvKmcvIQpy8pR1INfqU7kxkb9m3/eilgqjfRI0UdlGjEoToZT3IkFFQTqU8GMuQIHk7wYEwhcAsC/F5cAMtbrD18LZFsgLWX8VulDcD4oa104sVQSVsILQv86vXh9THOAGReQFJaEJi3bXRAADkQMW6wqnEWr4AmM0pd5gsLOUbodOQYa1jhNy1sJjHtMU29B17FdJ66DP0pKjcvLD+ToDb2gIN5FvbmJsVpfVZjEb6ZpYMu4uBuM+GH8kVIRUTh7aIFk3GIMrQ3zIO6Ugiz+v4Y2O0gM8SrE5xmbCCKBLEFi0UGRem0IIslXi6I4YM3R2rdXd7uN/Zjkzx66N9IGg2UzDTBUhuk7PttTvrouTxRxm2Ek/XdFXLJUJbzwMJ8aXY+8QOpWqTfZx3yo2jRa3ScaZWroCApBVzsZeNi1bwIwVq2woPIURF7MW4UqPIYWhtbACxtHVj98BgoPRQE9lyokxRh/zmdutxJqAmVChKc28Jk+W50DyLMD6NVLirkIRECBslaYgZtoxvCz7JbSe9rJn1OrCQspUujj8y0iOp7TxedyUeL2PNlEDc3nGtdeIMkrUzw5+CKsvqyK+BqKjdGV7GeLfmHZ9XDhZ15Bq4rTPhv4mCyJlkEXEHuaDm5fVNPMpR+iHMTYAob7iC+OYn8jnm3+Q4irEooBkTQqfkKFNpLy4G1+lgyR1fs2cZj8ym7uCDmEWzawafjT0Q2fYHnaIk/ddF2eXSq2XEcGdo2FiryZlJBOmAYGRFxSeOABoj4EmDN6B43fIY0hHjho92q7U9xht/vPCfbjLoL2PUGJ9mpTr8CNRQMyw8SfjZ0dQ/dHCbqqEEYeJyMQWPkIWuqYVwQDXplLtAZE0ZC3WXucsNW8KEwtimWgPmqJ2BIR4EKh00nYIsjyacBUiuoDaNPAsHJiddfp0/LCTTbevWMAglyZKOOMUWjhZkOaKKAAa7/RFmwyxePdk4gvv52bUVZkSTBDZwGqeFLnCPPFSe3cApEEaAVF5zSRYqAFJ2i8gWwkWlIs8OwH0+u7pxs2QnDofVvEy6C2oRzS9VUIPxqS3D4DGGQ9WgjysN5mew0WSmkuX1qo5BjUD6Rs0A7JPCoav3l3x8QHpSSYqUMyWw6uoXE1kjH41LIohedKa1hKjxXnFvD7y1ljbmokFTOsCIDtYozpJIRbTsOaCYliwFcr0glKEq+q+XgPFKszEGxzFsCbRIzLAnppMZZEkNi1o1vjAxoBo01haYyFX6Eil6pJiKA4MP01pECJjoyhTrz0dIwkRbKvodEJOGnycV0DGwYEIG/Pbcdy/qw3eMBb92U6XyW4Jaqo/E8SCUVGAQp6kh3tKI3/rlu+Q89LLwI/pO+UgPmLqL/hCOTBGln0RgUAqh/BA0WU/zeskcwEaBZxPGDMe0P7RTNdpUvfi44YcewakjCMFUv/SNvZCwvLy80t0IgNcFcIGEUX+BQdckwR+tLVz0ajgE2uSPdqEVxRkJWDIcwq/kkv3KhCXlVVnEZWheRAtObsQH8MhswZsN8JWBGBziQlg0yiw/BAgE1FoIlh8kUDoJUo0PdtXLkBS1R8wBfiQC5tmseORDRn2oGrV1+0KcWgPAUDoYksNB3HPIB42Hxh7bm3sHu66Iuro6F6qZ5Lm+vLSW5Obm5svnCzfR7u2XrfT3+uL8T99/uLws7GXf9w8PmQF7hCWf5Bwur2U6boC88eyyTIeVuT2S73Mox9bJ0dbHUxcutTYD/ZoAEDwBg0j6jFYAT3mCOAkZOkCLrmJUhGARIl8v/Zf0zKontiZHlT5pp/pq+T/pYgAt4bVK2NWYbYyrH2tRgMH+uYxY8LLjEG/MtTjplVn7e6fCW8e9/+zgM3GVRhvX7ZJW3bRRbJZG5AyendAnByswlhITnIkbqJLuxUotfmgwgfaJaxZfRUs9zCG00ALVk2mAWRaF3wwTaP0FeHWm1gx55nnrd01upDFNnZCujhHswBNNgerk6O3T0+rkaPPrb944n+Lrb9+izt3q7vXx259+/OMvfvXd8TffXZ6eWeRTItAZ4Lu7QuSz8593XfR2fCyddPrTnw5ef+0EzG++/vZo7/hx4+HzpcsbzsyO7B9vP1wzSXKCbVQQJZxILrpVamvt8svVxtbe+/dHDNr3P/4JrU5ev3bm0D/8/mf4vn37Du2OXx+JdPd0+Ub+2WmGtlNvrh1YE7TrjJy9nf2vv3pjvqK9oGt7//T9TwKfs7OLg50t99uvroQ5Twc7h18ezoWsAjJa37Cx2NGRLJM9y5ejuiTmK2O+DDK9KPBYZtVLUUfVlCXa4gWZWLQf+55kJ2dH2qhM7PaqQBI4jlKZV/SOlrgMg4YWiydh6/sy/q1xqEg90Bnb7RzAwgY+iEEvDTeNT6iM6zQ1aM8t6hlzbu05AF9gqovcD+Jond00dmxsVxLADxNBQNpOmvQGLsvjHqjWyGUq2wrJFKUOedVWGfWfbbW36UuBmszL2LFOpVAS5cvzoJTpCmt4yg4WIwLYYMTiAb7fCNd+d+l5mzGkx2T0SWw0l5Ynum3ZRDpjFpKdTSbLAKBWMghIYWNPSxaIs5vC5BMxZWPzYE//PO7zai4tzuO6yWsuqaXRQkMIMXz4RfOSM3elFZ1kb3Wdb1t2+z2sm37Ts+ftpUUi5lrl7J7RorAHj+igNnTrzKW7XfFSrr3N03rEKz0iOPAmVLVLmMpL0xdYGF4jIzSJmQYjVAID9axTb22SPzo0ZyisMX6hmXIkNivRyO1OR8QkkGaQRcMempSDaTtBdtbObyVQheWFetHTsKndrVlrjoKJxHLNMlz8gPVO5vrgsmdHRrc7P6qgZGsLI8hacyDsiGCGErGlM8NTZI7g1gVaUrX5yoAHc6UEjLjQfE4iRuPMpu/kwTm3DnkwJspNo5oBQXaYByR1dhOVjCBFSEabHHiAerqCIMFoLJoDK9fNc4mYSSIVowgOOa2dDB6m5vmKApPffD1+NZNjk0b63gEuBjah3UCAU2gkiQv4Nc5KPdaR4bGfuKyW0QjBS33ruMjP6wlx5/NwiojDcRiYHilPWDUEzVFUzwLcv/4b3zuTFqkdFGIJaNLIcTp5IwP4oBL660HvD7MYHsQjujUHf3AFLYAaPWg5IzIWodk2wwOQEIsbw3U3xc8lkylPubBn1lgcJrjQNTbw09qRLOPJdYELLF3mAGqgDCn0WD87u357vE8idvbwZHN3e//h+u4qdrOZuyxMi+eYJqQq8VfUQSSAWqCjrRJbTSZgrB8qrA/oe5OfLXjDNpSoorlNdwObzdo62J0hyIjqFCaKAMIFxfLPJR9zu36G1o2yqCTcaRkWDC/qQ2+AeJGcOYovgkXMbCDSDfvFSGRL0WoOv/KJQ4wO8s7EdbxsyZRi2QCHE1VEuNgQkaMdYcz+1WkZjTFTKFwnWoN1zAMeautpPPaAMeX7tcQk8zWYa4q+B1LMKQKfYAyo2QHwF4T3PAM/UOmqJ2HtI/pEGRGgoj3Tb1Gf39qbsjMiHcuSnYtkdoLMTyK+tJTI1V/U97PoYf83ytfWmJuYGuQMbd5RuXDDpADSpcEDvJPWxDFK6ysOQia6BFlAhoxuWTd0w1SweFK5xuLKjt3UqZWjUyYNcYihWgkyumspMz2EC2s0Un0M/dCxLuKlFmODALoBYhwCfrwMnPBFu7wRwW06eOfOOgdnRHdPJ3MWeoRw6Jz8gVmTWn6hj6aRVcq3P9DSek9QbHovexMREqaX0ZuCYNctOrMF1QLQ/EZSb5chL1x6qGK0JR3++lVrRRsFKwjeCoQoo/UXrtWyz6QhMiUMGeWwVSYcA88HffqgtZGZpf8YoSs6J9rQEC7KHGTTS35IDkbYZRMtJkdC6pKQ1QuVYYP2j44tYLVWxGZO4xop/4G9808MCXBW6ovymlf80z9bo2H6cf2rd2/33+zfPa82bp8/f/x87g5X6a6np9PP5yDmao0Fri4v5Zeuzy923r3Omk6gPzLG9GzDN/Kkb4CJOzlzT6Jzvme0UBwjmYELtArBo6YsGjnNh3G9u6wPdmFCdOMgm0knaUyVBO6lIxXz0Ca6pQ+HDA0eOHHZdE4ILQVVLeUzS353G62xZ2fj6ubO0Ufea9A0q0G0xRVrz7ey4Hv77VTmUOWBePN8VXU48lJ0uDxRfqqRKUHohL+IAcBiAvOOVvETxJFt/p2mTI42phiKjxOL243VazN/fws+XrPAbVZ2CvqXmQrpP77OdgpR5fvjt1+dfP18cPt8+bhzfPT3/8v//NM//eNv/+qvd6xHfjrcPT5AlUY1tnPxP5Kde5aQHl+uXZ19vtraeX/0+hfnp6cHrw/Ozs9tJH539M3xwduzi08353Z2CjY2LZXmuA52jkSx5E8aBUvef/3++vKi45GeN7/+u985Gmb1py/8ndEIfd3b2ru/vv3bf/+vDw9e/fTlA4H85pv3jlQUrfF5jkL6+rtvtg/2Pn34SUB0dXGdaj+vXV2tLCU/2N0+v8tdteqKhEiw4bFAUkC13SU4aOgGZMEHmabrFDO7iWolF8TR5FwkwQjgT0kvHPGOlBD7PmOQz+QphcpGJ0NjxxO1yZHjNclKGTtP3Tq3pm50w1ZeP9zYHpCGrdni2VZhIR1+mT8zqHNVnEdGxRbwPEiaPa329i0fIx1r59fXNrbKSRN/a6KA7YN+iw61lRSPdqelz+7X7jjOVISGP9mzCyNrCoi89+TZqgAfmrKjSUJsNj/Fz+CBNDHiWUt8kkPNdhlcXkB3QGnNRhcJdfiVkYMYt9t/i6qRnagTNuexIoC/qC2OWYjWAHzcHBXTkQDr4cYyqPW9wlIAdwYOylLXO8fAzKCRaUKfnqW1tu86D9d45vGu8ZxU5uP+PlWw1CQXJ95y/0KL7bbgC+N7gezDzVNHNzl4VNSi9Yk7I5lozMA4Q2pDJHo6c6UxmZjVS9zijCxTtEIR9PbOwv78wrGSJe/tvmFqlnWDWqbvjlVHQx3BkMIqY4OzyS/TeIgAfbCiG+u+sx/HrGg3fGJMCIyJDgZ8olzRdbETHI3+FLPezhCx0cuG1U1Mqd2WBZPah6OZALy2gVNOXGb3aXXjsi1XNWSUzKi28G5P8t48o+gZ6jdWaE7+JTUsg6mgiSCMAC6pEMGbAQsCv8c0ljEdz7FunbghJZNo00yHXPEU+dQkgayQcHJRv60pwk1XQKySMyrf7bA3ZgJjZec1N4+hC2YLO+iQZEvTFLMtgYEy2jXbuiWRYg7MxRezT6+4qlizGIBMN27M5DZxR9gAgEQMIysOHXqAhjrGdcS/sSk5T5H2QSb6Ko+KyXijejAQ/I6+JboTYFVCiEJ783Q4mAfwGQqa1AsJMYLPr+CoYrqjUnLzfB5qSJeUUWbhdVg7SJWVdhd4gygNsL4TEmS6WxBlY4oPBsY4yDXojUUv8QxZQ53Wti9nHBHaYmvbi8itY44MagcXiQCgtUoKoyWk7JBbzIIAguCV/dFQO5vXvlzc/qobTGwQZ2xiupTc0eHx0+WV7Xw3TmoiJ0AyEYlQEROl0v3lJ/QnwMCIGdQlRrljAGXzWivhcx8LZ9Yur1Zm8OzBGoqylt6ytMBuZJf2zhhjoaRu9OVZ1ccyT2jeUDy+a7Zexq0PR0Q4Awt3Xz6XbWtyKNEA44QsDWbGKfoan5LS0pA9TypEWKQEqkqP8Hs8sBQRif1FlUUFuJOY1UTYNUZd3O5Y1CrPn6ULZeotyUwJ9Dheex5MCxXWinYkjkOkv3VMbL0rCk2qfcZUXwO7BpGncxe8yQzk7pMi3SlQ61ArBF04Nk+CKvYVENSpd1rR6AJjVdN8Jq1uYjOs58lCIPxoxKzdABs5j/pkmirik6a0mT6HjEJ9rYGwe9EfkHnIBaJrdjfcWorQ85JJmQOaozr7opslJM2l17dXpNaBtROwBnC2X9e0yxC/GWiY9xPC8Aeu36PoYRT7NdSvQiu/AL8gI+7HRZrTEliQwL1R9LBh6iimQM0C0hfz+FZoxI/pcYAfrL2qaxrmLfjrzE8kS1LqPyYmPUs7mkTw6OAhmaYoQ/DYFNoo5mVyoDbbIRlTlSbSB47hUXZoWvSqD8tPDOxrYjrL3OMspoNqIXzwkHX96qcgplBigPQ5kdIrUugocaoWDwK89KTYlPcu1JGzYW0s46XZt+4x31i/ur5xtIm+hJ7WL9gDcHxwYCfT//j+5xte3J0719en51suwvzq24O9b7/Bf1PSHNXuwcH7r07+9KcfKZnFJzt3WzfXd3kISyP5rp3d26sbHooNA4af8It8AMxPkceo17cO8wMzPOIR2nsYIRtbomvRf/GNx5tdkTVi3bjPK7yb8ZuV3BkgRpc4toezLv3vNzXmcvY3t61JlmoDegdqp+HjuB/EscyQHV5tgybwTfVn7KnVw8NVmSqhXiICiIfb/FgjXsuIoUN5El7VCvdgyH9blu1M7pl4lZ5BikKB+N/iXWziO+u6PZcblvEYQiA+7sI+V53bdK2uifVCNPCbmWGyoS/Bied36w/f/PoX//rf/Lvv//iPXLDxMDAuPv9w9PpQzhLRXPZlccHq+rJKJCiP4Kbn98CWPdo/2L+1dP359vjtW4tUdl/vbz66IbVbih1Rgup7B4fQX3exJc+6YX7jysDDXJDxRPKIno+PJ2/eWpZ9fXNNgn7zV7/56fz844fPjpH4+tt3B/Yl7No8QOjvv/36/e3Nw/XG1c7uxj5Atw9uN5+++wrud/9084OM7PnV1W/+7m8+ffzAa6KLvNL14+W+i5Au8zFY0ABv7ck2StXRgag4THVld3LHwJVT9zs9Lz7B6J5AM1eCpF5lcBdpytOM+lRSVIE0yd8ID8FcHCRLgokaJ3i4w9eN08n4CpKM+MinkI6p7yrlGjYdh8XWMZKgNfe1WShByO4tojWBboguw31/b0+4NLQ1JCQt44CU7dl43NncEkBTWgXZKAldMowRLFKWSYxV+qBcXTs5ScyMHMrOwgHMzGylW0tTJLqWCkjYw/DoQObVgpw7cicXrbQD3THAyE28bmDglFMCq9NmVyxIc8KmFnLTrFoX2UrMW1Uop9Bc1OiQ7YleMktLWl1chSNGSlaMEekm1qq+NqHhxtH+gRMFgKdZQyTxijNVjSuEs4c7+7f3DagcrGvCrc2ObcS39P8OJJmExR2N5opKnTLJFJIEhGVcmlTbdeCYgQhaZvFYVLoDQQvIWrYqCiu+Nzzw8e7N4SE1pEiOmrVGqxzVXO1prIV2sVlq32L3WewhzL+yfLFbZm0IuTXxwm+JFrqDw0THVpt9+U/WDiVobiGUc1u65rbRheEKRuCyZYnXgHt25D9JXkNE6FqorVObcUArmi9XzWqU53e8456EC9SxhdQi1dXq/gJBSOlmdxvf3a4Odw8uHm+g6gLy29vrRopPhk/suQMVWlfIVNFYNiS/pXHDPtESEkyU3EHG42Uam6FzUtx6MySAIOYzcCQaSELgMQC7QqeIrzVFGxWkkZSGkdErzaJQrDXlxVn5VcxgFzWy3Tnyhv2dj5YeJ7kG2YI8KlQWkKjoGaQZaOj5kSkXTjSNnzGOoxg75zHk9Mbt4bdmBZf4lgq0GlPSCYCcSAOH4ofpK6HIgIfI9C52ysSyJrWG56IaiOcoUzTtNw1SsIHhSYuGuANi0CGpY64BnNRJO+RPG7ckAKrfW+uXzCEl1QfhjXVirYnQEchywQ0fS2Ql4AySHusUknCZrKjWwOBOkpBbVlJloaI12iHUmW3ltpbN/eSiX3Jy8vbw1e4tq8sgHB5uP1+3N8zksCkjFIcAapGx5qbCKRb4T4tDedAhR7wlOD63gs8CWDzGT3mZu4dupC4fA/vIBg68Y0N5JfqYLBk/MmgxIlQyqj2R/m9PiO5YyrhQPOONRljXdBXD/enL5Bqmf02WVgezpgG5II4Wi+xEqlkCgPWxjA6jrt5bAtRgoOrF/d6IFSdPJMjMSDbtEk/RM+EgEoyw4okdOamutoIzNz2oikYrHF3A0SP/1R9rjZBxc4IwBF0KDRNn2BldMu/AKKqFeJ4IduqHNLFWNxkgCkMS5UNuOgODz0kxOpQeiUhBlnzUTHDwk1jY52ISFcueqgNSTs5/moZ1xXJfxV3BkX1oLRQMInSXftdr/RW+dyFiAA7O/T9ZMYzto7GI1CxTSExGbjIFAPPG90BYcO6T1upy/LHnmldS72XvWvrMSUu9DzNG2Yp4ak3NJg3QbSGHxiumhfJRRhqt/lUtvP0H+RhpaWwuA8Ngt2gUBD0LcU3VUfElJNHQ4GE0F4DzFmxZmUYvKeJoZk5hFh0KQaavRQQhGOnqPjpHPZ8SwRnaVjdyNKfBhmpscNcYW5NQew6qDA757nNk0eVQrM+qFywu0b/vNZZkgLQBz1i3pbDWK+Y/xZZUR8oTIjEgIjcC9mmArVgCyHPs7RwcHXjFD81pJ89XXy5zq/v4//jFfU/s/b37mx7Orq7ag3R/d/blisJfWdR/+7g6vX14LT6W+7uWLZeys4QDtZzDs7Evlu00eke5fDm/XkwVi0Dorm/ikVi+L0xn0kFIgMP0yKOUv+HdrajsVWt4mlvAcahkFZNDI0xpXVugVhohD45eY1uwPOM0dyfpQDqo7N21h1BmxaK7D45O4yb5FesECDnd994gBUUVkmoqbnKMz8yVWyRhaITAGmFcuqu1YTD5YP1JLoCbpMYRIZ910oKhQjfOTFusF3NCHsVz6oxg4AkYiAaPH29kpErBdPRSIagjQCZBtShKMu/+0tYVtK5aE+TEsTwdUSJA37Mo4vG7N998/dXxw9rZ0Zvt49ev37x+8/nslJy8e/v+5PWxaN+owIzg3vEemqCkbYpkjf6urq53jw9XF4546vow+Tdx/5vXJ9hgO6DLwr779a9d9nx12eKlGVdQ1bu9gz1OGZrWIUnsvf763Y//8I82EKOAbQiey/rKcIpgLuR0HQ9lMcP+0cnrw83tkx3XSbzZ/eXh3v/+H/4/W6TKq0PCs3N1duYIU3NQf/O7X568PrhZnR4d7/5qb8e8s8sEINslwTYdSqC6QPrmSpt0tNW6jog52BXSPFzbnZlXwSsySJ59RPa87vykgaRwGZuNocNyb/yKmfmhtDRfnrsVh+QeGYvEqvUmpNKYRL9alb+Xaua9H4+O7f5V154BJgUr1x2YYZbq8oK6CP2xP7kzMHHWDH4rc35pBwIX+HS8u/H1m4OnTvZLBtpbauU0icUk9oH+Pq3tbe0yregPwPIu7p0osErK6YgTwTlXwlpk1H5eGWV4MJ/rO432y361Fsn0ZjHKc3tkizkkDu/sHxUICuiVpAvFFU/uh95mypgeFtP0EvltgFfALxJl2saVzHVZVkWljIt7gxWeiyNZkpLuDYCBT1O4xibZOCy6LmQk6bzyo7kve0juFiCvru2M37FaEKAq2KqPOMYqAE7Zcv93s7A+LESDdNz8EYA0vrjFPAaktduNy+Bioh/3RDqvtq6ubsQpQklBP140cdc8UXHmkfmZltPi3Vabi9bayOtMUlG7YRg2EwBzfajakMmMDdqOwb59vLND1/YMl2Y1aYHigjYDXBzvFuzH/TU2I6cnwhdOyOIWjdtRPUcMrRgNVzJ3X9Xz8fG+S+Z4CEcWwai5nKdNUyQTPDf8M29EHoZN5Tzwhi633V5wabqgtU/2A1CxbhfhMuU4uqnruWtipReIFLvR2E0UXjioBwyiKpHMUl5KgYcxnEULv1wJoUIflkJ6yFaE0n3jWGlc01zuOizrYVoSY6V1TU42cklKZRqaosnAOTl6Q8LXx+xeZi8rrPmGTH3CTRqpTSbUdyaO71CXBGquHfOFTSVBmiLIuiPY+ETgTnCWVvaTblKWxY/4Gjr+06GGK8IY9C0LwCBMxBgcPo5bqcgU1jV4EDwh6WTPidRrJedriKsFKkcsU1Kjeymb7uPCtVqGoOZJXbkLyr7pYDNrHV3UwHW2vgDR+WLaFkfEznGhS6wNxvRrW1csKNFAPhsRZpKoOiVwNQgqclBW/xTdYbcFtndcGSzsdUEi1LIK+vBo3xKyp9WdFA4YqcNDU8iN8+EABrSLDgzBjJ2YOsU0iWRFI0NR3Q7NkCFHBVAG4vPZpT1IZoGKdIBibR7O5rfLuup/WU2EluQPH9G89ii92Q++d9qOR9WN4kNXdC4M8BBUshWIxBCpizxonhYNtAWBZAMVqpdEApuwRWkS1RCuRI5mpkYuXzmZv/H+M1BphBkyiyyAQFNgBe3wgdhMKIIWUb+wEw5ahSKEZpgHdM3XcoK0tFAjWbyMcqD2Fky9Te49CZF5Xs9GFn4DG4gAoFmDu48TBaWPEUuVWkDr+g4wX1MPP554hjHa0+5SCKz6M5BcCgxWwk30DD6dYbzCaiMWKvhYL4OGN8ppJ62Y+rnDGq9c47aaqB1UVcmrQQmccMlCDS4l7SbYDQeCvoQ4jJc/MWz2bKmeVIAvxkuz6kVxusSLNfsGTn0M++J3yWCvkXWgfaHpwp6BFQALXngFmqkZiaDud/SdH53wLj7CEaYYtpRZqvsMBfCE0PDbkzIY+KdZzoYcoSFYGxvUZXzyariuET+q9CQWgizgVFdsgcSHsCNtnjceiKehM08qowRM1WwYhp1JoVYWwms63/6XNkGrdUyrp9rxMQCyKClNnA2qYdCQhe8sda2wtckw9ZaLHGRL5iCw6XP+kNC4nqa7TyX0nHO8t3N0fPzDDz/possgny4lAXYP9t++3X24NU+KAI5KtJDxhss5Odw+OTk8O7uzosOo0pT65cPq/OLa/Dho2Qg65ijFViUkOyXXYeiqAN9HCPP4gGZkpbf7NAmDKDZzMoJ1gioNM2IeHcvYMZO9l8F5srTEYYJFOW3JlTK3LiHnTQvcykMIEae8hX3Opr/xo8tfWUZ6VmTgBrCUhCQ8tarB+fpGB3JvjKtVJ5ZCyvAYVJA0s//xaM1eT4eBOCVDjy3wDaukiGPrjnqwxVR7gfNqsYaOxOscRIt82LyClxJU7LL2zMs3LPfJmEFskY9j6cTugJasdTL6nIzpxbFc6/Pzd19/fXCyu723+c13/+bh5nbv6PhbB/Ts4Nsh454ebP1/efrT7jiSJUHTxA64w7Fwi4gbd8msrK6aOWfO/P9/MfNtTp/pnqrqXO4SEQwS+0pgnlcMTJAE3c3UVGUXUVFRtSPmRkDphS4EKpQdm7i/t5IKfXpeH28c90OUd4th1eufXH79VSj/6Y9/vrj4unVxc3R0enCYVC/KVYqFJbLPTM3a1tGLud7mtPoG04bNyen7u6svv5kqnp6sL9ZHwL+5vr062hf5n384teVAbZhCin/6039VXXZ1fXH+fiUyksIU+L57v/nh4wfUF4HQio/v1k5VlbBDOgCjwkRvzzKmp6uz+4drmaz9g5WDelKhJjaVjSgs8SUK9/4mAQiR44mrEkkrxqSiPCOz+P4Ux/fUhZeriekloYIj4pgRKTeiBmMbc5zU0r9RLzaBAGKYNyEcWW0igidix6dth9KQBHGYOIAEE8iZK9qFWwwPOvJ6cLjzVfb7knfcbmp71KYaW40zdwXLiu6qG8nctP8B9tUTmDqzqy16ocf2y8HO3p1XqnGwTtGtYoEQPytEMGcAzGJKoDJWjzlgVSY4y4AzFlUm6I19bqGlqsslnhp75PjZ1OewooXRR51LW/PQBfIRINVEHJGrB8jvzHTMSEDmXobIrSbm1RoJ2R9gYAohgYhTcVlmGdmL74dbHZT+YJvj1KVwkrb29gY1hygK3TFFNtyDwkoAi5fSd8uV4tMXlWBN3c3TOsyUHXt6kamErUqzLF4n9y+vj2Bd8K/NlOIh4sEAYIjUvtCzdxeMBiKL04pMUeywNHsR0ysGI2Oy6spXju1pvjeaqrCKAxlOBJYniTXNgdtsIAVAVn0wuu3vReazdPP4cE92xgoovfKOcOfwZA1s7rBLn3pbLYOXaYnySwti+jF7ohtXd51GdXi0LhJb3vVmR6lVFMfAl7BsLxD6oL1lJscrWQoFOduO8vZ1jOCUrTQxNnvM5hNO6WpylEATSNarlXPd9Mbl1GR3od5suFdAFbkLn4ofZAZRKjejGfPVGuZoFiEptC1Yn6PJUkwz8v9sDcIcBhypBqdFvJfGuX6vQ3F0Taaeoy65PjanDR/A1S2PQVHqUWta5E50xYFxkz2Zx+y/BRjgTnoIwbP8QOYo5zbmJoEZ7eR7vKGZZmqbmTPVn8pkZn8sOXSSbqLlpqATSY2gJ8ow/kLPZl5YycZ3wKV29MpdQoJiHkH8dN8idPYzJAA3sU2RTypU6NFsZ3QXDmNlBmFrVLwWlKscM5tlW75tXd8uIf3bpJGCNDFzkJ0X/6EDlh+akksqbVWIiG82Hot5iDHcyJx1f6OWHESVEEufgyxjWMjLdyCmqBQ5GCLR+euL6gCn9u10rBfFCUly0+1OVuDUg5pYsFlkbHAoFiKEefeC3QIb1m8YV0WTgcfj10ME0eGs9iAhIxzUkaFAbB7pcX8ADmRIeFY6YvjCiDQWjEag+2wYo/V4IlL4BCrYhy66BG7jy0NliAK3HzcMYYSiCn90NEEda6PHRixIhg1FjKccq85z2a4MYNNDk5wJZXWmt6ZC+tbXDFtArplxITHDLIMmygFRuB54+hyEEnJfmKYumn7Hm0hQ7wAqbiPH1FkDxOnHM9Bypagx0XcLBMmAZ6FXV/qBkg9DoFR6QcI1WlH/NYcXOYhtLEbsLJHWKWxjQKaz6a1UpiemCDvkvd7C2QJ+Jo3teUY3sz0ggk1ORQ8AWNAbAmaf3uhr0FHRoAd/UVFPDqjmFJ5tV190R60incTOB5ADEnrZrGI+z3kwzLQzV0Ywg8YQdllKo91+IxMYvyCbMPiLeJFRh4ZIpv2MkiwglaXzMwSP2n6Go6n6fG9dNWtYSEe4fTBs/TQyDmR6gAojF/CREazDyUqGQgu43F9Txu+cyebGFH+AmmolZ/qPWhDssw5h/Qbt8DdUixPCZ1E8ry89sDnTpNp3bR4eH758+V0P/J6Vx9sLsZeKk8dPHz4A10g4dXF1eWwF/WTlzJ+bq5ud//4jsRVAc/+//v239cnq00+nV09bv/32fznQ/fj0+OLCIeBtdG2RuQik7KAShF5kxV0pomAcmT9WmDB3vFJyxSDaNgUSQEOxdNXwTqIOqlBk2NBwmJKZcuyxzLQFZdsroamBLBfmWYgnb4KDqt7tVZJZeXqyHspyYpycKpiavBYld/YR1SBl0hkSW1hjajrVwImBV7xYOJdwO3jmugQH6ChBSUEwsUyYOYmELdHTpYssnbQcphR3sp7NMDorXVcmNgbJ3DOoMw848A4pcDeVadEjZmNHiwkEtc0D4kwJ92ZmKNE6pl2Zz8cn6/Xu/vnmpPzyt+cP5/9lf39zf/d3pHz34cecxMPz4XrNPgmXSDhk+f4sbHhmVhDnyMscxNdbz0frExb3+uKrjcEU/fLyenf/0doGeivxEcYUFrcmbrRWD8wVLy+vzs7fy4o5IfTz3//13Y8/SXOJDz/89Em9l/PRFUjIVDpa9Obr108//2SFiAMS+BydrK6vLg33/tOPvbq14udjKYQPP/5oinhks+XxyX88fz0T5L043fJO2mmzOXy9fTzuZP2SrpTox08f//73X+yFwADF16/rNawojFARvdESpLyvsCG1gAbxm/iWdsR3tPYbtXVHGDEg3JIusZTrhvCEGPH2ruGQWEsvtOKvwEB+tCGe+G8xZvRKm8KN5i+dWkOcLfGIHYG/I9jhg90Q2bMHhdox5dvl9ZP6qIKHl1cvzbUsammNYCm1JgUMW4bE5I2QzYrZLFa9SrhO/IGhW150lR9Nu8WRZccFcMdeBT1F2GJnssqyiJjFmpku79BF8bSorA3bYqv+ntzwlGoQP2fJowxTcde2RTU22UkWmdwKHxHW5NAGfzbvTtmxBOPOrhf8EWFBsdHpQaTM9RoFZN/2N84MxQZxQD67+sxtkZZ9qGq3no7N2g6axhx53dReB62Sd2KvcswZ/1k0nakmV6yU2yovQBeALt+MCOuVrc/41lZmi40iyFYADnYcYW9jWJsvt55ViJl8SEbAQi7WghL90m0JXcBWL+r1uDSSIdiqZEUNj0ZbImCTqm/41xzP2kgZSgL84jwUQsOyFXWXkSDLVb2jp/4sg4IRYRkUMzq0NC/FScuhBMk0D1amG+YM1dLfd/7pLA/iUZlwUZq0C0XvZBuQWjBxjmrzKMZE1VmvS1dDJYFsc4w1x70dCf7ebMDXkEDTQ8bSuIruSP0EN/k4ALSVua0sECwhSgDKrGcVxQR5KravfBweIUT5GudeYWuHihLpCURaBT20i10qpGQIe1wJJbXt4+QbSFcuzwIZ2StT0x4r/bFAlAMk7BsYJrop+OYQsuRUfdvRxIdvBwpVuZcvJnsELH6RXlI/jRNIV8bx6trnkbiyPGQEVBqk3Z4LzzpJeCaUpSbsAD3Msk0sYTVjYrViibQ+R6/6SJ6lH1pjyqV/g6SQxTAeJczEhN8pntEMnwecMkl+PNtDdJDssuiBLTfKzhva+kkxFIKCjSkAsTeOW6hzF9fsxinebuIkUVXcxTBZny6sDtmON2ANPO5c3Q+nK45nu625uB60GIRlp15Sjg2c39YOLUOOilLjdWtB+im2j1Z50swe/uGJLySPC/QvYuYooFL4X9ig7uj++PDu8CMLUu0XpxLNbBqZ+FN/E3ukCJnWKJ/jQ1I9RUD2ZQLLeNQ6f4zDCogbxEDYBUGt/cm3gmvw1l9GqdCfnEXqzCOhIlWZGnejug9m4YNduFG0iRL7wHmOeGYPgyaeFIUt7Mba0NfF9I/+EAgwPfpb/5Eowi1PJg+tjgYowSeci3jocCJ9QwRkT7D7RhrCAiRCJlmBD1vAJzGFrNMiAYvePV27Bvc/Ls6cpFg/kHXfYkckbuz0ob/RINz00I/H+Oweid9hXVfDA1cauylcikRV3CM8rvgAJo11AKwYFalrj5eBE5MargTnDOS3UbqF5f4AwT1/hjoGrZ/wGpZHdIKSM9CEehuiwHehqWgkACpWA4ahkRd+UAu7hi6IMWK61/SosTQDzxtgrPBoYWTWZ89GC9OV+DEM9sEPMDSxDu62H0Zphm56E0VnXh5G3YxzdHg+9vBMMBrR556KENMpZJaBG7XP4OMQAKlxvkvrYI74fgJ1SIpDhlw6NOgytWAsIkE/4sPRNZxK2KOSEWrZun+eQz/J0BucCW6jJ4D6bv079LqQlnpi3Rr51u3tZT29bF9eXX29uMx57h1cCfAVmdr1dXx2fPrh8o7NCcBD57kcHzpp5PLW3iKehlfjyG4tsEsYXf7+y+O1F1I6Q7MaCQCxRXwoL8qskyxVDtlNHIS4QGQO/cAe7BTcAxj6c3DyLO5z3SLxJDC7YDhSiA+4X/Ila4IUXjSDAOwI0dUwBIHNshTiP4CBZ0reZtOpGpNOr+KECBgO4z+0xDr+stXKtYklAGfKkDpRGvY/q6oYYNmESG2d2+AMcHLDE9jIJfEirDO18N60qb0VzWkjdnRdA79If9kXq96TH9WzLqENWrAr4+ep29xcRNqsVZ305DhJ79at88XlnMThXh98pGTr6GSzcvDzj3/4dPr+w+bd+U9/+uH87INY++Hms+VZicOSUSqoHKXnHaSKc0SPiIRMsEY8ueVVBf0QndMtdSvvmPuUaySRMoPmDKYdZ+8c+XNUyF3k1/QsTJJeCxpPm/P3B+s1C8TNbN5/sjpklkXIiNDm5Oj57npzerz+cHZwdnT26V3cqnxgX0F/cfPe9vnZux8+/ST2tXb05eLi/aePFrK9e3jncOv9Dx88e7o6OD+1PjFxmkWW54e1N4Vt1pn87W0HIL5/915xLToLFlFPQf3Dw43pWConyqEXvfUp8acWxC7IB4G0OKFPc4mB6358pjwu1pbZxP0Ml8AHThkyRdtEVxQ1lic6UD/iJxk2tfUZCgNt1gegcZiS8HL2+x5e26EgQO9A+EOpf0PqxJ5dZRz8lwnY7dPT17vHX67uP1/f3yrq2Dt62VldV9bUiurzq9p6L5yqCojgSv/TRhHghIbCXGCak2TLAITFsCZ2YD3a37HyJkmvchfsDGCSmIqY0VEh8wGUcbRoJS7H62NYylsLmrkD/WmvkXoYZ5nSzpKiRuYlHBgvNrQrxPyqufTruzPnx2dgLehZBoSXmIdX9CBna11YYKd2a+t5y17ozbFyeQc2VGSSYVTeJlPeS4JbdvMEGpnxeo+vkNTBxMYrXLK5RPRfoUTnqKIALmC0YF4E1GmYZKv0obIoW7TFKjy9Jc0HpgE81rA2IlMSbgeqCm2238Nt5EDGgjYzSblZd41FpDGa35jt3VkXesc7eNuD2Z4Xo1J2D2eUhV5HCuoqAUVXG5ykXkVS9AQ8avlOjo+F1lCTksAXnVNp+mTPA/lkh89M4GNKbzBgplRaStNbMsKRgTNRh6+OzXyQlT9kPJoP5AMd1XaICr2m3RSm1Z3SFMiLsJqP6frmeFBbFIrL8wn96aynxX4ShZYn5gAJCrq7y9ok6y6NRtixbRwjYb43WqCrnrNK270sJeeVE3UzM+k5NiW1Wv6MufM4o9qPaVvud7HbRLUpK8FMVsHae5RBktOkdMZHXfTVLZGORNl2gUqOefQ33wc0P+7OAItzRzDtiqjSUKBn55cwK2BddosO648Qx278CrQ0Y7JtrHexBxO3xBjcUIo92ZAshdVdKkYNUmOTOOE1xcHOANBNzrWpde5elEEOQYhh4g8TNsjSnpSXSkXqYqbxeobweA69mEAQjt36hPuU8AE8kUGCQhpMf/7HlytKgNOKOq1+k/+htlVcaQfar53lx31Owaq1XnX7PXMRjdAZ3QbvwGbHIp1PfoF47hocNwIyY+iFG1tfrQLQ3qZFFivCmHnU+7ALBYqI/EAM8GE0EXOQGaucyxL5YE2zwRzkMqBmsRM8XIgYrgTNEjXNo8HlIjkGnWYBWpi+cLiv8EuqXM2qh2kBwQS034GaiJwC1VVU1H5QHtOtbQAUjfibAYghkQIOPjSg3qfLpi7jMZfwrWKF/EVdazAPTp8jtQGTbERDgy4j1ifLk1D0FO7U83fAgtDPNB1Nb3R/4z+40KUYCG5wpYCDH4o3fP+SUuN5oLsDtu/dGeXh0XxB3lREt8Kotq53PgHR14qGxMMhR9ogchV9yJwhLMoRzLTLk02bBq8UzAUQY9owulO6+1rL7Eu8mdx8aI0KuyEmaEAr1matZjKTJUoLTAyAnZEuWvUEnTHWEKWHh3boWtsh3PKh3W8DQGTQIRR9WEgETTghtAauuSfGGqFMLOoz+EeyNAU0IjeQn4Qb/v4AYMjufrei8HTrYcNBLTpEGiNEk/9sT+njhj7nQThpMdDGh0id0MUU13u8DvoQucaaLHR2BT+QbuDqrkfgMm1c9khUqlnzotABvLsYqEdXSzhI2yjpVWd/56XxvUvQrsp7lbgHawdDqvi+uLlW56pEwy5SazirtSwVHsnNH0hCPd68PN4/tvrPq62P/tf/+W93EpkHG68Pvr3x8qyt8xNL00flPzOovROUyTD4rIKgxKzgD76OpABeYNpy1CIhDsZAGaZQyRx0Bh+BhBGjAzNySMWyDrPWAVn+OCJpYflClNxmQoFR54HIot14B1lv27V8+WAoEKFSv2fGD8IYTzBaiUuhwJIYtBZUlsAVv3k+zEZSHbKboBGDtS3Sa6E4gZJ2Fglqy/+WUcuBZQSxGHp5ndSooIo9Fb5o66f5QCM2FnrgEZnl7zuo1In7ncXRMUTGZWHZ5/PTwx/enwu/jve+/fx+9eMPm83Z7p/+6ef3n947fPLy+sv7jz+sj44rtNjHgZVpAI4LzI7WKwECj1Zabo6lp7x2FzggRWAa2BJ6Xq+GQLt769PT/cNDgTlMvdSWoxNc4RGAWWb05/NE7b1ITLhtJdCxPMeb9fGx+PT0w3ub98gS1frxx/M//OHj6ckJbVurrVZIQZY2joi9Pfd2gA/nXlkpPj04WHmJlUKkv/zlZ5MIdONVP73fvP9wfLrZP3+3Eq6pRfY6ev1I9uuleH936/35CVmw7/z0dGMiKjTlZWE3rrb1DUVsBIgWovabhBRS4B81dIfEzbx20dMseG7JzK4W8xmzxSUMBokYW2Syo+q3UC5apVUEbkydhYiZ56PQ4cHRN9GuNAESu9lWNrKhHobo5zqS4dz6ItTMUcaRRyepV3dPt/dbNw/fLJ5d3rzeep2e+ahieaxaHZmeCy+EBrKEV9ciUdaAyhQq0BqOPq3PGKUOoxLCMssCxFJFdflFtTH8vCvSupidleJvs+QveORRzbBVHCvUmEz2CGqL9eLgtsw2T5hkigaMgwDSX2lUOGD6w+1NMwgHiXqXVyEiSh28OGELd0x4HGZ59+Di1NsUmcEld22/bKcl7tu7qpYd7JjgKtLtHzEXiAbIiqfF3uJhGYP1/hrK8hR0C3MEazYtOF9U4GP2ppoHk9q5gCyKeczoxHy2jFuWQkTaib92/yMPVyqtQHZh3R4D+lJm99aGgLltxFYUbYhkNLwLlt2cbJxmjAfjVkfeTbHf1ItlwBFlEu1g9kqEmYHcXt2xHQQIDScHxLVZH7FqsmuJRgUekrNIrPaKXPN+M2UFLTD8GM7nrJ6Uit36EjAZHxF5bxpGvUw4rrdKY53HXoJS2uyoaRcbSoAXz6JvQR5LQp0Nx+DQF9xFC89mJDFpImQEb3uGJR1Hb9pYkam0/YTDPNS+18MXdRS+oCwlYEBM+cz/NWPx8ALtJ7On4zw7qvpknOZZlRhZXJ7HChOtWWQ6M0QB07lMeJFF96fJlQ5hXKSomQ9Mv5s8JhfgSrpcKlpbP/yvp3orfHZ7pibEaUKJSbFledlAkskT6iYfaujs24RSuvGX9Xjzw8yy9Y1cUzGZp7R1JnBxQItppUUGvLxy8x/O665ToXQC6FR7oEUPA8un6IiHBfmc8Dv5LCe5WbDTUevw5mbbUikjukmF1+ol/KoqvIiEy8hhBQwqfPWy9G9WYwiXWeueLtDJVPvYeWH72yYBWQsz5EMligcm3k2R6byHhVVIXO4jIxhe6DFhgyHGArBOEQIwoxnx0Rccubq9/3x5Y06Uhxu9jLb+mjWRJAIkEBoIEQT8A2prj/hEKtBbSzKIt+TYqHHCkLirDSpMvkVmVycLuA09Uz+Sw9eTYCaVgR55APwwbnjpERMWHRqOZ4csOgfMEnpNn5p7BIM0hVVod78Q1wdogCIRykoXR2Wr42aGUcMaT32HBrXMhPkHQkzy0wf8mNhPk5nO9UjC0zhFgIldfWnsznj/QX4cUJd03Y/u+2iESd4W/BirYbuoQQJdqxFPv3soEL/HoNMMUZGbcOlHe78bs2lx8Y3HkRNLnPhhzbSMiDaoMFF+SNZlS0uMyJt2dcG3cWAwLtYplzkSocM2X4/oEEpiUuvR2JGndLWYPlDhEgnin/9mUjW9GQcvhjiwBfxwPQ7pi9CkabOO45OIKslD3MxBGMWOVI70uBwpcgRxpR6H7l0P8AauQC0cQTf1Yd1DwZmA1rwPacgYYmilPsE+Q7i+fJZPMUocGFHwoR5mBA2oBAoZ0s8wNZZF1+mK/FNmtxZ98CGujnzTjmkZwwYtlitB9XwDDQ4++gAq6A5UjRuIdV4KoU8uoUOGDGfDFg+ceY8GZ5uju8tLxSkGdLD03d3tl98/c/fFPa9P9pE6i/DqcktOYWf7VpWqNwZY2ZZxY5BvL28ebi5/+vG9ZQB2QsEqETpYrc/fn9m9+eXz7/wgtSn9P+dHCUnTjSoeWCpGIVkWOcDeBbFvYtPRnFUNgRuS7Hjqn1BFFC0hhywMAt5CRYwPKfBk1JIbzXPY7IhFf1UKKq+vXx6FERIYg7wHE6O+tEF2ZLUbDegOnhqCm8FB/gNAUT8Qmsey6QWJE9DLLLZNEjCtAWbpXNY7pzgJqHARcSuMQfCYtNU+PFi40Sncj7MlowkbYXc8iGxlG0Cz0iyONjvb1+Lso1YkuOR3x4f2V8j2vPM23YPd0/fngiNV9c7s2TlUjbD78eBPm7NPRuEwRfy5TIHFlo2MtzKzjOYQLUgQzkA0OBPoe76Qmtg2Wu4c/EdH72XcyfzmdPM9A8SZyANjYMcDHK82CiW4ZuQ7OjwyNby9sdV753hzLIhS9X+4PiV7j5LfXk3jtWMyUgp4+CvM2zHBIUXfzAT08/nq704kNWWzW8RmAVHKyeb44svKuTofPr4///T+//3/+t9PT89Xr3u3j9eKR3D67ERxU1XvP304fXdy/PXyQlpSovPh5kZ4RPPNmjIaxStYY0qGazCmDm9KOhwt4ANz7ECsxK8ybjZL+OZQGnyQgceKB1tLnbQohH2rw/HmnWJolENj/IWUByW0lFubGfplQk1SpKQUcxMsEewSnLFXCmnIgmw5jntQMGCSIAUu49jKz86uqqfW7s1sn79d3bxsHRffZV7SAKcerTwuCMv6lcFULabCpb3yoztJl42JaRYTgcOV4O/dvb7e3F/Pm3z2ru6uUysGo/pqQiuydZLns3kzc0Yz9Q9Tv1s4rISlo1c1pshHqmUyYUiBMu2uoTHqN8wJO8bnwLaf8ogMiLFRoNcPb6nwsdHcSZcr80lxD3a0YzXZS/gsK1gAEDnMxGSstFWkcgEdYqPonQxLJvSuJU13nHOlWLxD8TMEFRqVapm8hl0K1XeZHzKSfK3JoKnr3a3a+3a7+oZEQk+RPZ3T9njvQJgv/0oXHKMaNHMUgRRt6q/oH4fishmAPTImBhYl552PjHbTf4aqEpfg9HqmW7MsHC6g4R1tE2JSGF3rcGhmBmdc2XfUsyqDAL62wONtTpmF0cNtKdvDG+VzqxYW5Fo7YsVeKVv2LS/KNDsLmKVSK1KJeXGXKWrBJbcn2DU9m7Qy66Luo/liBRW2MRhI/X3bLuAVy8eKZidZVFIAYOshc4hC+mBqVGFnHxmBrDF56RESXfaF2NUF85E3nuAbK/JbE5lm21kwVwqAmBS0MpmEUdAxu44JanI8x+KB2AbZPGtfqc8SWPhciDEKy2IFSs+/eTCSA1/sMnocAtj4jIZL+BItCp83zk/mW3HF4KTXtKuOdEDWC0Yl25lK18IxI9AMsEpauJrMACJrmRkWCL2w+S2AOdfBRrV5V0bLP0ONhT4TCS4rw88icSLRWgFFmipcw7Wgk+8zCSfSDU0XjW/W7SKxCdcKXgo89N19oTaFUUDnMC9Axu1vV1d3F1fXJ5uz8NVG17sHkEJhXCMV6gMdNbf9vHt5deMRukmj8d/4nk/U09O0Xgd5fGbS57bMFe3l7KIg6qbF+WxG8nXr6+XNSQdpbEbOETLxAz8AdFz3qPq9+rrrudTY4Dc2MVr9Pz5UM8/TmMwOfo/a+jBsFc9oSAh0mcyies2mFm4k8C2gDb7AVuFqDDJZ+tioRdjMUNHp5PICoPjQKLoM1JnzN2hPu4B1lfLAO0yTugQlWamxA5eTlmXWzGU0N9B5fRZAJD7JnR+PBvBwuas+DxmjQDx9az8EGcogMJRncA/2BKQSCYRd4o+BhBb6VuJ75gSFTVFwfoYIrqsjJyv42mckI/mQwUBE5BR1V+CT0I0B9gU029uXl5cG1JshIpBLYLJ0NXFtvxNEDYqBwo/IDXwDpz7rESBkAomRyehQ8kE/Boz9erNqnFQFDIXUAnkSo9gxrEKO/NwQktDNuDk/44WTgeLf9DDQNnIoGMfw+owjdRLvIl9PxF1hjZZu6WnG5aUibtDMaDHJwzOdAHwPDg377HTqliBmNpOmMVXsAkAZYG6G10kD9dOw4S4zEQ11XYg5k133jP7GptSgyUREyI7Xj1sDSPD74baB5EfcWZs5xxr1Gihq63VkvVNiVD4XltW5u0QcxViIKoBbTo834R6AJpNilcPD9d3txZlX1e8831SrKkpD3i35uSuJRweFb23/l//6Lyenx3zJ3fO9eEfuxloyFZvSWENIQzof+/XjT6f//q+/SpMenx99+cfFDSMugffyzcnxxeFUcFa4AHl3d1OmhWUxI0KwagcxgVlJFWHKvUYI1JywIoBnau4RCsvP+lqhc9iNWdSbDKl9ggltBEnYxrwW0AkXDN1JiLP1NrkhhOUyMYUGkXZ/C9lyaQEmE4NuMX60A/05x0hPkrRZ/kd2XoyBE1t3bgMAorsTRbNDmLqETdmRTKrG7vsR/S8C2YgEIICXBQ10SOKtJZSiU6dbolFEu7cnc7+DGdt//tMn7XfX63/5f/w/b377bBDVWauTM3l3M6iHG6Xkx/tnKwMeHB6reIqwvSfhSI6uPQ3Yo5RCijJIFwONhtAsNhdBuhSISk3nBE3yY1GjFYN9FobnljPNHCNfEwmF0Q6KytGWECtlkwir4xLbMZJSYr1d6Uiy/7fPV5cXZx/eO26IWFB//DlaHSFZCdSbS3K4sl/E1oq99fXni6uvVy8OgSwfu/Xp5z+aA/z222epVas561OnIFkxPPj8+V+/Xl+uD0/ziZYtHnY+fjy1F/QOUUvfyp21q0epevDnihY7I7JvBxihMvEhulgPhjGkGXfYo0YSxMJP8MIMcfDiBaS8U/cv737/iImq+gWg8v6YVlAlNeFMd5jJ5z6LAu9v5bml9Lbk3o6g8uS1Voly9q24oXUe71y+w33hND1y7/ZeTV272fwWbJu2ypTZggwdkxDcu7t7sP/bQCTMzNZLl3XnycLQsiJ4YwP787yJKdfqQTIMJcFNUvf6Kugc7Xs9Pz0mEWbZ/DUbREDFZU6xF1qQSHYp7TMz6UhQCx5ZbGia2yt3QZorh9Nb4+oVuZHscLXrOZCzvFqiqaU2VDKLVKaP4Ujtt7t4RbwBnJ4WIWexwGm/fRnzHe9YxZlxnB0GUhBteQXsJMqsR9VdZwuHDS5Lc/ei6BvvqdizB1cohumyy3a3Z/dppaKne/X/j4nTmumYRRL8TwY7kTntMw/KozFN3ikhdEcNx3llnXTuDYmJioDMm5VGMNgHzPZ4Z1xqafkUY1kO+gj3FgeaYLbeU7a9d8AlWjh1tN5XD074TdZoARB9Jlxonz/c6STWnIYU5zelR3yNT/ZyqO8vLW+vwEplGSpPQbFUvfrNG0E6rKppbNYxpwltW35K+PkklsSM9EFhndq5NXtlqkFNJK3t9hcIQLM1xix6uZupYWkDBb3OIqu4yhSiZ7H+3UPTDAEwk8EV3vdeAhiUFysQcG+mjhnvSmvAL6rPNmqvN7O+Jk6ZDLlzbj3ZVXfAshLQuZIfNFxWkYZGnAMRNqr6wvYSvD5jGiuVL2uCwbTqVlicfS7G8LeIyAed+Y0uCOZzM96u5nbptR608rDOpufeHaGrABMLcu6TlAE57qW6ptkSCr7oJQjxp4ykczKIIQxNdPlVhaYgrDrejylpWpKcyQ64jjQ6ka/idvQ8O3aSjlwETDzPMdkunPcbBXHUT6dyWDDJNNNq+krGLBQuLWjN/ZP3RWx6u6Ut7AI/MR7gaHITAFNWlXOmPR0Oez/HprHrB6/7rLWlNkw2pLGSQPxGUtzHeVjzOoul9EAzMWBm5hEDnLd3z1e3Xj3p5ANLEz1ObOJF1rUJHhbMU81JsNBvWuGm9giC4yFLnLLgBaUmrkyxzgk9TJEQNPrykT30VC44UuEDQ+L+8oMRE09Hv/YKBgExoJ46AHQxAuYEzxLsEaXihKhdA3I0jO77UGIRvdIfAHaX7pnvMpshNmfYDIb124MaTRjjW7enx65Pa2APTYoAx0FiTnfQYboO4DQMA9juEdfhRQspMcIVqCCdNkWXxSFNAPSR6S/iEc80lCFnxPo1GIQ9YwEID2LycDlLhHD9GZNX70iaxIS0Hz4igtUicnAO6cl4LiNSDNksviisa9Z/+bSezjKM+Po8SkUj9eAm6MlOZccwZGqFJeNoU+ARYndjG20kIaDIlPpPb7r0AwhZ1Vb0HK09h3BPewAsUaCIxwc9tBvUzzDCV6P4YSjRKDiS7ChLOPQOcudzwbTUNTjmp3Z1EcMauImpxkbqtmfC2v+slCJR7sl3N1wcjrpjRJ9dqKX2yWrB7riWvmSt4J3R0aS8o7i3XqarBY5l1cyDtaxPk37usA6jau1TuQW26gEsLuvPsm+zxhl3aKc1eKbjPjQwsox55TCebx+8d+foh9Obx/vrR4dUqieVLt26+HohS0vPlFX89IefOh/mzmbQHUdQHx6fos3nz5/l85x1iCWMv6paY9pZK0GF5ev18dXl7ZXjg8qrHa33dm5ubp25gf5l+TFmqlnMS005IqWIR9zscI8sXWJO8DIgiJLe8g1C4d4FBscsoIQWJ9qxa/L9fBEyoKbNBk9eHZU5Qg1mpbXypjSl1nrPrkdayS/kR/FMhKYAaK2gpyrcZady7kW1CJiRkq4WRlQoD560LEbjWkUC+gly+7TMsNHaDZZiCiEUH9ErT+gfy4hufjEZHbPGwAN+Vh7kuwA/usMc7DkYhLJDQTSp3EO5Czf/7sdzle+s4+ZUgb8Xsq8OT08d0WSLswjj1S7CDtxYNdnbfWiz8BZ6sq0CEEnE5qL0nAQOjAMRurTuV1UeMvsiVPGV7v5n3Az6lRz//pO3QBwbuNckZw5RhlHJkoRvNp3jyQ3MXpqS4Ap/nx8c+v6wdy+/fPzu5OS4KjLn/JQ+oapNUbxvbsdU8+T4VEpY9U7wHR6fffrxdfu3s5Njbu1Q8fqxggiO5OD05PDm5en96dnz3evX365O1vY686w7J6d7/+2//dPvny95RA6eHCrOIZPe6UCiQIiSaSuaLroA1wnxR5MiwqgeoYPuqLZMQQGHgt2MUg48YSiLoVtzQU9MFz1gkkabHXMqKnfKvq4ESTwUmqS4iauc6wulIqQMGNrw/malGZXSWPVVEMBPIB+OMBi7u1eWDswVmXHntTzf723Wj98eBPRTE+DlycdKcEmvJQWRnXyw3lr+GrxYVzGfWQrmcPDZmaSduKk94FF6f1y52N2DteLxffGf5Ti67yXgzfjVKpNVc3Chm6c2x2vCiHTNAMeQJMIdKuJlBd5i1jIX0mEocTBHNI7htFGRwjE5EtOyFQm39MEcoOr6+ICW3909mdbIH9q9KtZQ50LpvZhLEEmV2EyyKN/PDqCnBCqBSh/zCGNdkbWAgItPq5xwcv9NRQpaAh7ji/kkBcDrXaieYbtQ0oQkjd8tvLi6v22uVoENpaykh001qRvzL0RT9Y6qlYBrY0IwlROtQjNQlRJlwIlGu41168gdjwvXRRjwxUGmJnkCp6eRhSUzkLOhMMyhW+v1mD0FMzuiM7GZ+NCap0VP1GbGrQowOIUgzm3p1WhYu2Xbj8kw3q3sSEYR7x95bVXw/uae4CtX8bSNWu2xQuhvr6oEsU7BFY4I+Anyo51aCeGh7OiNKqyZfe0ziESFKUac8X75B9Njy0G9dKxXHSM/OhxKDZgHIrrZ14tSKwI/L49rRctrHRjPebNsMoAXGFDS2iPIxfqTImavmIY7bbWm6BzQvmZXqSnfMBugSQvrKn+B2sg/Cjes13xiGA/2gU5lOD1e6OCz//TmCbu5RvCrK9YNTNP7iWUiU/OTwpLYOU8Aht0fH95ms+JQ+kNHcbTpohNaTZ3qO4hSbqY6B0GZlvwaNRzvRd4KeUX5sNCDzeLoxZDwpw0BRz0Yr/JjOKISSHe8i95dc/J0WUaopTNxvHl/aGpuLHSCjVwDqWApigYzYLu/fbn5p5/ekcPMXffaeewJuR6ovD7fKac05Ts7U91nFvfoPRaIN6ZrDKDRiCpIsubYkJVHSDC02gBehPOlDCZ/ykC5j67bXy7vTlQEvjffZDlwRIjSUk+WsT6AEw3jlAtBVpDK+rm/0ADHXNeGAjIXgV8wnI77b6LnPuBvkVtSlatlilEP0fw2YtY9pkz3RVPu6KD2iI4p0d3A2X+3Oq4DhUZmAqM/HLR0wAJwsFVGhewL5OEw0hAuOB8ni/eISE90q38jis1QfCTzWR8S435y46lZY+lr6HRj4R+4PN0Y/XLL6IxJ1JsA4u1W/SfYhsqLv92lXRGyn+g7wDSELow5fY0za7atZQMbtfTnjOeB+RC5yVE2ELBDfXyGZCoaCsFrS+7Y+vwxMR0qAAPX5Q+AixnZhSbXIemJwpGOL9A3iOotmuZct05PNjIBDgd09ITrfkIOe5aVs9JIOUUX8FZf5AMiguBomcmojNKH+g3UmWIOWfXgoiFEA9FsJgkEOIKE7sK5lArF5tBibZmQ8HTXP08n+qD22fBdQLoeLM6rn0nMAxroudsiVYMyBHMtgxRgfooXCx38+GAE+s+4uetrXr/au3qGfS7NjZl7NDhe8U8CzVl2BEkS0ThaoTbDwbnELF+Hb+mGp0CIjjjihk/6D+zvKpSbN67dQke7V79fdhTE1svXrxe317ewNiQDdWX/7/Wdl85+/PizEyFbjp0XQn39cq1fmcCHu1vM8MbBManFGU+XokRHpaDErvePKLx+/OIYvVSTBJxuNlfXt9JBTtAHHcLBhsvAdSpVWG5cy+LZgEwPllZ+CsuYI3gtL+5/HGEf5YSgA5KQC2g/2SeeN4fdGqsKcqYd1IiQSTpaFXZUJVEywGxg/Jpj/iLPQuoUm5ghW1W8th+kFEVoKDrMwifj58PieKQSrsyyjDG6MzwtvZvE8BMxlSxF+ebMcI2hHW0Rr4V/yAVMdTEetlmZYBhTSF/PW6/vPh6fnwv6O67lh59/Wp+eP948nr7biNTtdN09Pfp09qO9Z6ZndzfXjmRVoOVMwC9fPv/0o1eq8ijPDqBGoEmBy/E7fqdTLy1EK60AnEAcRHiRnqVE/u/9YklPSYSEWXQDCVuDUDi6SXROyg3FtRGCiN6khOMLKj1/Oz4+VgLmOhjPzk5vruULHo425+cf36EHT2z/uHDsW8dlJivYE+HwxJno7YwrqhB8bk5PnUd1vDmxzcBZFuvTP/7t15vrf3W0qKmZNPTNyZnzIffPTx19und1/Sis+Y9ffxU1yn8xO8Nxh5a06id/L+SSGAbzwhPjpYnYlZ2M/xl0gjHihgqagY5oeMwEyy1/M0Y1GjsuvugVV4s/YBaU6asXQnWTsfa+6h+FlUU5fIPCCmUUo5MAZg2L7VBHUgbNF6OTNBUuzkcChBmFTgsFWl3ECeVD366276SB0dnmTrppaMhfXHVmDgE33dBSJCG5r6p+9nmmC8C7t/9hwXCOt8+ci63Lftu6410cSnHK+YprMzJemEX5czFI3BGxAMNMpOJEUVb/3uCMxuhRlCud//ziFDGTB7RN1VopytHYOQKStxWGI5MT01pqZXLhtE2edfvYaTwt0jBfUYYhePSCapZKdUqMGsObppnOVXLDbmBKnLLhtTN85hxGr1xmOaq8p6VlPkGfePMaDy32irWtwWhsenq0LgR1vBIImQZRsO+gtu6pV6pKT9XmZOkS5lSDUIjh+GtyayWBfgPYKs3JaiUMh9TrvSFbG/J0pV/WxHqvltcVP1mEybY95zTfLFWrplODhIDiZjH+iy3aFTdaX4U6uTMoJSA9CEt+2t6xvW3lwToMf5evMbexx6N1azakE0jNpmkNa2nBSfEVwkpkkF7o8/pL5aFoGlS4yb6VgKO27Qgg+W+mLyuKcSRvHLHtWuNqhUQAqwLT09RBcNgkatsJ0ZlHjmOiQ4wvQEyPpXJ7W4UPBQlgJn0MiD8uetwXUxFfqIfBshvYUeg5qcz8WpVOHsA6I3BzzBK7wOa7pfGintNj4M8UYXyoS4adKNDH5ccYPuAs2SE9LCGtjsHJNHi63dCZ6CWvURLB9XJBrF/AZ8XZE9exEiV16FkRGFWFHcqIIlAVF+QEWX9enC5Y0CSNPZw/avJsCGuCdlBABN50nHnK/UgBtCaj7i/nBAmgRSu4WkXnuzNqNMWCs5hBfFWfHnPf9EP66N//fvl//xe296gbu1Ocppr07h6UNmpJgJrAyAR5vfq4mNEkJvG6XXOUjr1EBaSIh/g9mSl4zSjj/xAQboLaiUDApg08GbfPV7fe2ZICZx0Vu8bR6YEAlAvQJWEFqsf1mVnMnBYd5SnhEVtzLoW8rhuQ/xnCerZHABePBrluyWI0C4s6M1UIdD2CPxUq7keqxA4ly6NNQJhs+IlwZBWEGZlGLLhxs4G+R30uIlTQTKUAHADgUQJJloYyPgQXMfA11ciRxcp+f//pY9dm3qmFx8O0nkTnYFsaw1Bv7uttyNNTsAjY6aJbQ4XoRpy6nQb1gB/UGFIuXCEoXUR5SDIcsEi3p+sWmkfD3eKlQiybK5BKBxbEGnL5AxkU7euyjSOPaNC3li4SzQSCZJdrj/qDpMezYuUU36x2fYY+8KMyyl/fXEOPD8kqTJDkNoz1E/2ilLG45DKyHu+p7KNHJ+0dhG84BpLK2En/aByC7k4D/ZSg5SVrPe665MToki7pHz9Xyjg1/060EeUxPS4vQRImJ2oARgH05KTYDoLLnEahoCMgoPU7yJOqZKJpcneKMwAzjBBFRYwFHwNTmOUKMtZyiJw4EuJyBqUurGwYo6fm7nyYp2qfs8yXAVenM/v0WELGzJEGQ3k4esYB1tQ4Lmt/fXvx0w8/CCuty3oUAP7+/vtXhQGStVh6cnouub86Ob7861Xn37RQ+E2dmJJ2aPZ6nSYlL0f/+u/v1nub46OH6wdoPz8+29BpZsgyir0A7oSZzWZNYKK9JLDULydU3JczGrGJRUPbdA9S5hTgtpQ/+hXBjahRUgorpjPKohG5LUxPhcNSrfb9viLyHWcaVpbJwjWiQ/S4w4PehmPEGGaS0MJ6xbsz4Z44WDeZuaIBapRpwAgDjlA1etvUMjwN2DuF1VzFWTh4ShSV4IzpzFX1WpxHVdGmorr1l0bo2cznocnskw2dHGq5IkJ4GH722Nm05Rxx9THnH5yaf378zmE4Z5YChBpX21cnZ83HbP8jC7Z1WabiZVde0qwiRKwU6Wynk5R9sfYCe14qREAjoB8Bs6oOMZggYApHUlKFLIPLLSLPdfKXSEB8d1f6H6NRNyNJIGsJX7LnAuz1hyJaiAsldF8sqaG6uQT5VbGyd7RO/Dk7xTtVS+fgiRrl0ieBNeLp+Tvl+62JHNx4V4AdAqdn50e9fhjfD+6vv56tDv/7v/zl7//4N3vRP/3w8deLi3fvpDgdXHP017/9cvP44p0D7YhktDA0o98x8ApxBEc4kq8J3AIXApYo5pgry84WxtH+QdOPi7mn2BbfhH1dHNUGtuAQmJMbbroqJsgNez1q0bDEqGRqieLqXzoBx/aApkmus+LoqSfhmn5ZjlTA+IxSABqltZTkZJyZgMMqBi9xI+QlRehrK4JX+T7fHex4h64MfnyU+pWBgx+Xzz5ISdM6OwCJnUkhjB4fzQNsS6y4BxpCNNMPklIon7c1P3k1iaO4wlbiT0EsDSCHmMs6m+NEBSdqSKDqlFJxmXU1IT6L6Mwr0NKSzIuQaN4NQLccDoM1No8WeRbUpC3wRVGkhbf/EI1vvn582D6wKocOrX74vxlMqyJySRbx2/ANpzFN6Db5PPGQVcrrG5SHiB0+N3cdDApg8XqWUxyV6dODj+Qha4yTrL1FBnDiljQ5pcU3waUqN5ZNi0CqbqetGiT67vmubQhi1jnO/1b0trdn9wWzUMU635GZSt3hKX9fit+mW2F4ls0eEp0fpCdJDuXm7SRQEzZtg63tns8Ul0ywStBhUsgblUVcE1fUx1DmwgG4Il0qFDJZpB1LnYjgMPZF9yzLt8xBbVSMtEUbX4mNXG98cVCBW0hKT5fAk/lFZ5LP+0PA8cnjR2ITZCd30ryXGDeR69RII6keXDJc2ZwhKVOE+eQ/A8hj4B8JS5vQhMWxElXg7upkVQSRiXrr9qm/PNToXk4tu4sMcQoJUrq4XH9uFUEySkNtxPTDcOu+scDtd0mlguNu6UeQ0BQOtuM0C5SnupVDYX/TM3/Gyucds+ekGJy45E7g5bnxp1ASwYHVBAxgy7bpOdKn/nuxWhUNhvSLVWmK5S2QNn6IPdjYSfblsWaur08VaqmMDjkL7w6/9QIZUx6WMBqmGqrUIEly639sVHTINL65lsnEu2eUrP3Ly+Xd7S+fv55v2tsPL3YjtZ7YijajjZ0nnoUdU4aWTuAWhzrAgwRYl3OkGPk3HHeMr6GLoojkp9/+lcl15mwwxeQiQ2lquYqb+7vL6/t929LQG5we1N5gWXidNigb70Ff6iqcNIrLgZgTCfMu66A/tcLUNx7FhSFNLri+yYzH4wpA/UFMApftGF6TmgyqTgzdWdtNL5MEDzcEHgFJBw04o/b4eDqduZC4gocX4dAl+Piz6S9EEjaiEhoDZtQIq4Hf3VAAJ5GS2ui6C+n+0jjZDvgFftB0G1yeWOi26FQiHWGiDDMCjpFY7Ax7Q7e1C3zjy75H3iTQUzNAADVnzZARBRHkDM9GB7Sb9R/K+Uj4TOzoiue661+EDtAuEa9B7D8vLoECIAu8cDwakfwUJZn2FBK7Nbj1YlSdoB3A2aAhOEibUMaShKJ/wTM6rHFf4TwZLBD4rDc/RgQbdJBDpgrZIDK0wvOI9caVgOeTFulqwNCaNLwRiZ37kSLJI8aTkE5egiGs38QxxTOoh99YqPfpSgNQAULgyoXqeSERaoVFPbtPPMNaDyAgAcLOCFInb0wFU4sV2k6b4I81BCru+28ejzquxfp5NpD0iHQ1b4EynV4G0mHySSgjVJg3Y5n5g09RwcUE39D2YlpMoz3HLeW3QlqJys6O4p8OJ2AED3Y//PjDerPqtAzeglEEuUVeXFapLZ+2tXd1//jLl69y+inbz+8ofNYEQZyHcz+1wleF4A7SICn8nD+VH/DEfBpLmkVjRPIrcmyJBzyb8kUT0guF1FUMWBDbyiyc3YKMfFskFbzgmTE6uRzBVDAhb4dto7l8MHK1oazHkWXLyXoymAqTuGptkZpcDldLQqBewyGuQnZZ6oxIU3VdRfZcRVNHo01kb6k34R83UtoQIEYBGCa0RoENNo0kxgKmVmDVS3gYVqTOK5eVp8cip6lUZlxJ7smZAu/DTx+cgH+kvliF93qjxP/9wdGGAiGId3gp+7Cz7/37P2CIoc0glIAen50kv1vOfFhj8cXlZ9GrtdlMb284urVKEI3cc4UopFPIRpYSezglULlMgl0GHWphXY1yEs6MdBd+QQxTMlkkkhwihjHmLcV6VsXNEVbfr2jgds87gJ35Y4OBtKVKh4PVUUXBBSLmArNrpf1LOt0+9J6axyx1xclHvSJgdXTcCwrUN9zeerWNLcK//l9/M9bJ6vjh2ouu7Hm4dQilg0edg/SpGu7X//P/829S15LatE72VPhsfkXF7+/SmjSOkRl7QtFE6WlH6IcdIEhg8fjoI4E0AcU1OZSKkVZVao85zcOUSpzXlyJpKVH7r5/sxpODVVpTXlw3JKN3h+UjlDDx/wS+3Reso3ycxJ6YgQCzwWMj2oXiR+TM9GGxcA7oU29J48wSM6qGoyzsjuUyCnF983y6XjltRgBrgoghzP7meHfLIaG6JWv4n1nyuo8tW8Ufem0QIoOBgjClpY0JvrBeAGqKURzJemQ5NPO2O4cZOXHcG9l2kV2wX5BZMJdgibyd/EkL7TqAC3UbDXoVsiMm5Oy5d6RrWRHLnhXKW/H4pu5Hwlud/2rqcU6PbRJoh6UlDnlQbDLzx7XOubdHWESVj8yu0XUXaIFXWwB9o4qmlIvFEETMkoBncyQ5Y/7S1JzJYi1QnNLdqdNQ8iG4ehRvyYaiAKZPKm22e17e3Ji7Zmqa4RXp2GGvCszapgmWvY4o4qAekNBvb0jcKDqK6gKFKrheHypLACgeFZaRfgVptoybD6wObAhxti02A9UBUCJrmztYBjKBOc2sPAovc8JijuRBltyOJUes2pbNT5hdkPx7LseL9ijDwa7gnuRkdxxwBJ/cBwJTsm1bTsYUveANnZJ08DqOthLNbg0pCDiaVpuXCmrJjQyF9Vov6+CeQG5+6DnmhTYszt0nxq1UdKlKRAtsekySZwUJYc0hmQekLoJEI188ghSAKkUy4TWNREZtVPwxL3iKwWJWDeKRfAGJ93ieSezczNlwMMLmPGPGJ6+dnW3Leb2BhPB4SBszyCjfBshyugXrWaiYQq5KiqXdhQoArg+w8eOznQy6E/wAuzxssaMJcKWh+uiSFdqKwvTG8fR6YBU+KvumcxqR+yzONmjm0ag03aVv9vpX5+NJPVlZ0BWXCk2zdOIxIpch9ViRpbogbwcpf6H0q002OaYss4EmyMmOZVOgMrj7jFjbf/3t6p//+ENBmXIJm9pvb9fHpRFk/e0Hk5HBLKLrmLWtG6uF3tdpP4YIfYcdgXtLMIiCakZKGi2tIFsjGm+hPIJF8GmHKGHKzN5/+/XzNat14l0eZuyhUH4kc9ejmtPoFl50wkTQO8NkbLEkIoUX2AyO1Jq774fANJ/sHDAsm9ipmmcmtMxyyjvxp9+IE+B5N9eZRhe23zZYk5K28cRZUGOG8dgW/iweC1pIQnfqYKAttEvK9BUb3RxWwqvv0QFRMATMSR4soAWVJH+xHD2rR3/d9nf6T9iiq8enl6X/8AV41rZBR2Aigs59myHGYdFzF+pyQkoxsM5qFKYonlfwkxSUX5HD620vkW38OsAMHEhNcJtG6wg0XQjoshcDR1wf4PP9IntwDRABV/g3XxPikI8WwEB/v/WXW0LGoQ6iLCOkWog148HZdY21ThaUKCgQUic6QucCscMibRbWgoyIgASaxvOI6wOnUQIVpgsM7lLXccm8U2CxIyFfeNPypZbSDr67l4EBg3/DYKIeLRaWoU3DiNeyFxmUMIoanu0WOxiS5R4aVDqq9DZZweDsS3f7KXY3SE9BX8DLhouYKo+LGEweyCEY0hmjQNB9/IqipMQoUdX1UHZvfsh9BFmitybysIFO+jBTr6TTM+MLII3U7HXfpydNcW15h8vBQLJ1evpODu368iIUClrUf/NGr3tr6eOjs3cbHuv4cNPxoGpXbbLrrG7JS6hlEqmqon/7J/71r7857PzTx/O9w4f7S+a90n8vOTnZHMktcfAi7tu7S4vmQmdD+y22iD4JRa5rYS5E0ZWZxscEA9vHUKAD/STVYIRVzXA2gleoHetJAEcSiuIiJEpVRDOeY6KzcExSoU/TCTwBkf2MwKAEcbARCXnU9MdfTl1XGYiga22UJGjgq0RayUVeLfaNNy2zMv030S2PCA3gaIbLZVurHIejnViVHO8fyWke0iFt5LKOvVbUe7veHf/5v//Xp5u7d2KidlaZC6z5bIGy1wfJKMkarjbez+VK543w58IjrzdCRsMp9wSNSEx4cH7+A5HgYEZ9VG4ohtGqrWlesKVSmXAhO5kidyNkCUg/owgJdobKVx0bj7iKTEYg+50eJbSZhWyRRrrvZX85jW88p3VnLdo6Ig2/PkZ/b6loYwK93zvKYuOMTto2Z8WgOE9U51ViBn32/tR3H7/8/ptQ6fS0o6W83u3geGe1ObAWcvJ4+PMP7y8u/tWZ9LT74f5ut3LCE69QVcYmpUXe2qR6uLr//YrflRov1wDELF8LejhfomqRokERlwkVajAaEQGnzEF7ha3jtUt2zkwnodMuJZ0JD2Hp3HrhgMnq4dHTveBLsJgolf22o7PCgMobuCVEJFuOBDok3kw++yGIMIyTK3sDyZ55KZNobKlZz8r+Go7qgyrP1G7dMjpW3kwklaB48bIMv1Dky/WtbL05vKjB8T72F5gCJa7kTG8Pt8Y+O96IWQ15enp2c3vjrXt3YtKHB8trOOggKvwZI5tLLKzC3U4uZ0Xb/o6zwCgsNMFrm42XizptQHRYsJXqaZUyNzEwOr0zwUfUg61qD0jlaH2OneiKnLJxUkWzPAsG2iOafHl8NSuwECKuQGSiiTp2vzgQdIx0GxiqR1IqNslv9KHzt4CXgn3qKMZ8hQoZB5F1PLGCKpUqverbDdeNS2WKAnLs6TKhgCAauq3MhkaBmybZvS2PIFRTZ0TjvQLPoDICCDovEknxL25uLQXAmhRisaHleNlXiVLLiqSajScx1w/EovocJobY5xLMK9maghXrKL3Q+v5WXI8e5sMtoDCyZLAEhHqS/d2TmEvw8lRqhRC7uiZZZGld5BYhVR+FzLt3j85zfmS5CbXQEnmFZZnLbW+XI2BiC9W2atU6YlJ0ZRT2gY8moIGb3W2hgJwceG1v4UF+lgrbckCu1gjNqDpTocgz7FAMARGUR5PYZjSyoCO3KMlFO1iJ77ClhCHHU48hOrkSniyW1riEnGn104oHskjtpYxK6TJAhUJppiBy0U0Dyx4mo8lnfeILq0P2mqTpiY7rzZV8SoFeW0hdSU4nqokkk+spX+6W3osnhJ5JnacwQleNjOgFABPbsHt1E+LMlw1RZpiQMkMj3tmwxDvvjHTG5zeIZFi/mmjptep/wumuaTBLZAAA6PLem2r4RLRjbrZnubo9wxRX/CoSLFQZZA2+9I234EDJ/W/eK8eIbG/99uXq69ebn384C5F0h31MwjZe6ZiX6yxsQFIuw5i2eURqAyh42pI8ShkwsoShzwix+GBfcQJOCbn/oxbkmrpYSeN6bVjy0roTh1IbD/7oU+bIESCNhcITdBWp4orrMTLRSht0458L0QetGhZhmN9lJjBGo7grCBp34hoK3SMGSr4zkqgRJ9NptCy+H9E1MW0DABg0YeTAQGKiHjD96emYPjEIksCxrUd1PtGa2zPgsh9sAQBGWgK0cMskauktkgjzzHCikR4TlpDJkeZE0pSZxxaPgTXI3yBprCiTAaOMCB8uZrPQGdq8DTGxNNgKH0Ec3P30H2LQCvD4RhQ1Al/P+zFSzXL5y2S3ux4ZKkAYCfz29FC5W8aLMENZjPGVkkf05cMQNBDFWlPI3tx6BtImCi+TuaGCNh4nZPVev2RW7pAAAQAASURBVIHE5GBejRskPGe8YHa/nuE3IWAkE4aBBB7DxUUFAl93de4hKJfMEHCoOlgeiSR+upmc8QGQbnA5voGcBSzJpE4OeBp2KyvDNjfLHL5iDKFZ0AQV/BFKb37e8JolUbGNnpFd0+/WpwnDYBzNWBBYZ18mBDGii8lKah/p4IKSgAU8jNxujuEnGx39k7kEhKvqK+77KRAJnSYSfkAF3PqaxtRKniFQUyl9gtmPryCZJULnZNuf54ESJ3YT5tYje5UCOwqOq+e+f3465oBeLi6urq6uvWjm7lp1zz1Pw2U7QnR1tL74evuP++v/+pdm55KI/3F54+QYTlwag1Hwxsxf77wEqcSvyNgiAKsnmIisuAypcj7bAp/4Sbg5TlF1gg9R5Y/JMwIuJdGAJ4qeww7xx1AjN6YfjvzgiDWBfbIq6UUC4rhn2D/pLnY6FfP7YPthjiVtUUG+oky5wM0eRqCggBGL9ZuFN3PTp6uyGFGeV7Pnr7cXz76UZiBxw6hgGCPa7pTmY1G7Fy3jbPxtEQBDGGNmHiDNWFQTeJPv+dmRg/mciP/u/Gz1w59I09Hm1Ok5IPjy+a8K4NfrE6J3c3t1fvoeEa+/fWVhjw6OMU6FPb0gNcy9eg+4P947VrIVJ65UARInbQYCBExvTxiFKvEwe2ngAKUolDwlKqEctcNlxHKR81SHHAqP8hKjsIXtMbHYKvSTZ19xudKTLfu5S1+dnZ+pabq5dQKptXJV7+Uw9/JzKQfYmhAN9TqbiGg4nNHROodWor6Kw7yMWnDjJAOCRxx++HRGZa6vb0yy3n04MYS1pX98ufQKgBfc3tp59+7k9rM3VV+drmxfPrrUxcPj+/cnqFEGDPB4GcaxXZAGWt8Sv0QvgXR/yWWkUagwalVZ7yxJtWkvA0+E2Aod8oJYa83EZhLykB3nTZ3EUUjGBToiULmRqtyIhIAzK4umSrRbY7JgJkrzPj0gCXRFDMgir6PnoB14hPJOtMw07sjir6jk56ub92cbCUIqRlXJNGLzersrQzx//uLsI+luy3UP705W7Tg2KVqZGwhM984PT5x1o9B6q7O7ChOZwYmBMryiZluPzfeZkL3tA+dymG+IC62WOIzItlS2zgmV9vpY+jcTKDrZ/ma9xwIeUhYLpoxeUjyn8ahcOj5AfKXkDB3TLQNumlWA0BtBto/2j2ZPqUWbRNSkycNJGPMuM1Xlj4OJqqJhOkiKSRKYGXCMoeAnip4V1j+oZmkDhWTkGLad8+NVqfCObwILiEScSN0MxjIhaLKRGQUwsKAddimYbvGyy0WiFF3uHIPxUdLQNNtnr1XCheGy+ro2UeiWWrBVot0mwMW1ZjhV3loJpBtecYWRpNp0CYvkNFlBL7lrWWrL+Z7lyx2kayrEQICI24v/YvHisCYw6Cbc9YfN84yCnAcab5FNBmEyel5AxRQ3eX1RIuX8R/kO5h43t8R3xaCgnAwJxFkzwRrZJI2MFCPBrjas6PSBXW05gu1K/ZnDTj7gDJI8o/ugJ6tbWTA2tLKowhOmL7qPApkjsAs+kgIiOyaipa0UaeKKLLaeTDIKdHA737/8pIZFLowjdxlruIL01Qhh2ufcY0Z4AMKtvEALVq6k2mPExMrYqGNmLKec98uANcpMPzj3vGxhA1uXxwQneOsOqm2w4HfyLk1SW3/ItkfYYG2t3AdAEjz20gInCnedFtVGWG8SWyfs2fMDuGZwhs9GH2sbYzM9GxKs9tiTYmrfqcirqLoZQpMTMuyckoMDLzqE66CHrWAmFDygiBP6TTiRm6379evtTz+ew5MQMW66Ah4sLBEbSFdAMga2km28I0vWq/RgtkeEm10HQSQmTTgQUQ0D4rKTTQ4BidMgNUfCLt5ZDGjK+uvXK2946RQEV9uTywWbHzZo7GZmiPUs+MRyRivMitAiXR36F5lQo6mOoV3lx/nlaB4H3Rp40guXmANgCFwQJFfdDC6m15EPrQrm3RrL0IUYWqrlE2G7j6GFEMQcPJB1u3xv0DZKXK/VNHNN99P18CDZ9qzLSUVqMTA0H6tzAwX90EhUF0AMWitgZY6gEkmTM0PXKrz0YUVraGKgRsc2ncd0cNRbgCXJoVNoiGORMJxTjIVKvta+r1oOcB7GEleC9S2a8T0qNUwX9RkJGjMi+lm+AtxdwrY8CPoK7YOggTPSkbuUCslYxvWgeEDvkEGmGTp4YOLLMlZoFHAGATi/DzrtDVEoE8wzCIQbQ6Oog9ZDFAGW2/U2LDcQI4YOw5iCGOOFRmQa0R7EQUFzYkewhmO5t6SxX+4yBzpxS5iiGSXTQSwgLlavZrJOsg3a6EnnzOTgH2A2L5aQC82Gb4xI1by57OmA4yt1Iq6NjrDxbig/LZOJ2IWYmDswe46xYqlNByPIcMRwzLrPi+1g6IyCGoNuv4Z6xSiAKYcwmZ63BmgO39xOiB9s1rfXV2TJgrX4wKGEhwerqytvw91uZ4902mqNcxkdx4o7MWln5+pvv3V0D10tL115cyvB9gPcyfSbrXEBZX0MXkRSVtOhlobbv5UelYR/eLqr0iPFA2EIcg950fJ54MWFJkPZnWRbuGOg528250lQRciwQlMEyaRmzJmwIbkeCtJTjZlfaeuINNpo9ZuTGiVgo7952UWUL2Ml+kdJ2pekCCjNEbh1kfP6UH3OnqLqVH+mTKQr9fUtvs8Rgdb4JXqyVB4vvyULBSYNIIY4YDa7gia/JUWN8DBhb9lJ0nJ8vPKCtR/enX/4wzuxm7qE9z/+iUlDEjX9nLr1sXfvP6GduRjYTk7PyjodrlCaI2HeuWqFKVEqFldRUwhCPWaqw9yTBrqWBFfaK6ncUmaW2dErriUrkJ+PuiD0pUmKQbuT3eiiPnzgF9P9ppEZjaQxyRrBy56y3dxWjpAiubNvU0LbuI2+yzXk2pUVcU2Z5QG53uIgkpoz4M94OSUTKxXgx5sNFRS8IYVHCL5pkBy/EdUU/fjxh1+vL4na+5NzydpmWROOffz4TvxtlgFzeVLrV4IPkwCqJvYyVjMikY9XTZnVTr/xTe8CBU4VwwY0WkkmfY0UnGSb//YsCrlJGdOcrkuKPwqCzVwyC/s7Z5u1sJhwqoERkhbiLXamKXqpPsGGEMELwkjSYm3k+2BN/E0hIAtsWoOEHJWPVviKibCthYsKSxhgM6Xbb950cCcSVWyiEobnKpfx+Pjr5ddzC/+KNFhqQvlskS40vn65end+Qnak6oJXgHuy5QVgt7e3T07HV4/hzUXxQRgoBUBCEKODuby0jRjjP0DUvEOq/Lr3NJdoLx+PmC0GWNGAbPE9mym6xeI2+ZAAArI6OOxFXZPsCLsaKHBLmcW1phYtDk0lRmVOrWmrPxwbZeAKcNp0weAmkkx9E5pSHk43Z3mUe9kto4hfkYwWmUqDl/grsMWE3EZ1ZeptqsTQh9lR513Kyh4od2kmbCZAWVh4OVJiIxZEAMmT7BCuNec/pHHCxAwv1pMJtSslg4pxuayCv24QG8+V1KTrnQO2bU+FfsJLV4i/1zpHkTSN7j3bdlNgvUNv2b4XRT62GfQOVzU5Arsya2JWcDo1iwFqWvJI/FQPmkigHp3L77yUxGXilqNpCa222IpfhNZ85jbZfcxJWas60tKflBet8tJWYCqbklOXlo4xyfOWt4/fLWsmZowIm1mOp6YrlAtXCutzJ5P8Giuh4ohG26/SBui4UAlAp3ekCbn7aoqKWxd+YlhdtYIx7mv2p5mTkICZCnBtWZsJCXqEn+3B0nmujwY1DgggAfLFVxoLoIRZz3oAhvbNHDJZ/MsUZ3o+I72E/tr2BaG4NsyS2s+UtWSTJUwxTaEmjtJOCxGtFWRaMBE/GQNM+8XHwM9h/2Zzve+sqiFegtmDVdEq8C1WCMIVocF9Uub615jgMAJonG+DvzOgS3HtJZvpsiODGG2p+uIxHsvoGUx4J4fu7/3r3z7/5ef3a/vKe6V9CPuXVx6nYBl496DdSqJj3L/5/EXnNO/Aicsmfk6MaGXG6Cng4I2wRSToiVBkI7FvYoDpSc+A0dGcwiNJv6ubuzVHS2Ixw5JIhhWIPY3nxoUXvfKUi9Ot/kZ8UoemFS5qg9H+4sK0yVn44zMGMa3xQ4PhuSewg/jq0wc8rPMJGxJgVxhccI78jArWB/Gb34DsFm3SN2Az/gMDimKornireq6a/01lkpMC9LQjszwOfgQp6fKUK36yUAPSIM+lLr1Fj8A38Zg8MraGkw4lEDSKpPga6Txed0EynHbLcExEuLcCAPMMm58oUtuwjVLNaSqA6QOj80Y7Dkv7/LTr4/JaQYOXrrQHLwgaNNIutBgMy9qkKnFhaOpxYW7gjg90t370zpTQk4xh6oRGeMnG5S7p3zDJZ+2hAbzkt6dioZ6XK/r0HTYwqsHIWTCh5vAet4SYmoddYR/CwKtYnHl2ck0MilIRB6o69DehJFuqCdkFpr0WCU0lhvPFa1kKEarMma39MaNhgw2TRg2GNhEnSr7tI0za5AuDh1jxLlQuIiY64DccXCDfxKApacnFAb6z0qEcbFOtFPvGcaFHSH3nev2P4sUMDYabApWEbGIUV5aJCjhnzJlQDt4DFYj6KbHZhBun6sItiuu1rQRVMbE9gsU2vWKThX2udlwxwTH35Lw4fmffiTr+v731michhCxCp2tfXV+pjeZqmhbu7Pz989fV2otnVaDYDbxWICu6QPXHp3sVBPuvB7wIAJgPECBYsy/oC1VHJrnjCNgyWezTYXnDN7CRIyTicm+hb/VaO7gnDcQv90qKrHJqFoo8kEc5c78Rgw1trZlS5BDAUCruZN07mEpTI6Vt6wlYDPRLGKx7XtnhlhxB5J5JVho8Q/MQIxsJCfgxN5JiMdtIj4bCJZhfniyGONVHItAjHlXt8+MfT+3WdPfDxw9//Jf/G1i4cG9kyBbvO8fzSfAIVFxITDdr5z8IZfBiBk9/jxXV0KQRh/0D58zw04LaYOZe+GzUwFUSyMBDKqHNRkQKwOohaUhIfIC6juJgYjIGgRB2B1WWZ4cdaRow8CZpSn9J06Im+VddPHUX98d1yR3emn2a1aDODEdnjaZHDw41aUfupIugMgcjbmQRGY+OTkBKHizQUZlChB1nIB7fXDvlvDMNz9+dfb29vb6+PvnBy4GLqLwu2DFTdtTx4oImFKtfGM8JG2AudvBfBCho66YSb4v4edfImz6Oj5/Yo4k3Xbbak5TabOqAdu4RmvmTaEVgWlba2I6pSMOJjZ3vCZ21spExcQYUMFWZ4F0Z7cambc60OTSIrkm38IYYmKOyPKUEBhIKYQySWwTqcEwwlRgrcLa4gPTo8+5k43Ckpss7W1fXN1aWvF8Z9x2aKopDN6d9iwjevzsTXMLg9PRU1cjeKpUX1lsHoFyePTldXykHI7rG4EB2nUC1EtarF0dS6mWGg18esUyRiWAPiYEp6d62ipnHexzvlVUki8v2hK3qhTWzO9bk1uYEkQnZRDeBUJGJSEgXbBcpLHLYMscw66Dae0fSHCJd1C3ygrL1kll/iEFmWQCwu+dw3ZsK/CQqiny8GoxbET/Y01O9CoZ3trrSGn3RZ22ayRzZtiS+t/5AyEV4lb4QipTUMN+ej+2J4pdKJFHV8qBd7sD19tjYn+OdXCpslOWpAqqAcBLk5vROkLY+I6RzldlHWFpwfrb2FnUcwfzjtQyu3ekv1MVY6GyDBx04OVkp2jFxpXneS4zOr3dAQt+ciIvsuY47VRZnd22vd3gU4ttF+nqwtUvOr26e1XDZjU13jGVycWtp9ts3506KRW2On/y9jrePVnuXd4+0VYVnU8zRhbaMV24ugZ1l0MNEfs0qZCvaAtM7EyiFCDiLxNBRX5kicz8P0gtmnJaZC5hoebZJFC87tAVQm768uYx4dzJrjgi1F5+Y9ahUvSU4s3d9aQ+qxJKkN+GsAI9YUQ2/KQ55aEgwcAvEsDgjEQK2/9qfmp7WIXyneyfVturFQpPJ2qX+mbEKTJpborAuxSq+mipDNY9Mr42ioqlgJSaYgTAXeWVz71x5YIx1aR3PanBl+h0LIrS3L8NS3tPDav+I8ZFnL0AOUKQjWq2cMLgNSLcn4Yj0RnaL4GqYCGUICm885imTVSG+tJrPJgzkOS8FHtPBotnAj3h7O79+vvn1y9W//OWj21AxRtuTjGXlx+vGVke6goXh+Jp3787s4P926+SqTiPFX74QcRgf1DKiUfxBycgwqorEeQ/H1/AaPiBdp3/RTt7cEoQqoMPNzgqyNJbU8MgFP1juyZboe6/4Int6rGcDQQNDppQUbaNLTOJVc7Ue9VuE07MudyXwqE+cEw9M+QMmRUMPTo/+n7a+cDdh4QLa+pA56qVYScSM4C4eL8NmZoe1Y4JYlQKMPEjOI83r+aDDbBYnAJNVkDRygI9cAkwMkOL0h50pFtTNkAVGWOw3kPzlgwK2QQiK3/4b+g8GWiDgSO50ngj3U/XYIrXRgWyBrOsDRVAmrH50FwgT7PpaxRjzZFY0oBOzwEJRyKXMpLDB6pHQp2XlA+ttUOQjc3i57zAjvqaMxkU1V5BmaEokdRdfuUu0Rq54NvjUP3HgbhOLytaTjaEUHoOXETG4SKfnjdESXkkmWA6ntXE/zPzzZMgVtA+mw4ihS0Fu/I5GfmvrpzIsIAEO+mFXqJZ0+Az+WLSwYSH6+PrID4x+BgupKTA3XZsJLjQzH9ANLnQnxxDUV6L2nW4II0Csi7gWND6PTmRzIbbc8mCZgCFj1Aiw2Oep4VQ0BU6QD9T1h0qtOo0BSgjqfjqPwj74PoRNsl1Jn/nWiFzkbc0DTfiD0QTdtUdTqTG69MLW/ZUTNZk8tEdsYPDBZyery5PV1e72xcWttBlrf6eyhZd7fbm8vP36+/Xeu81kOA6+KTJ0HMWWuG399eLG6Laa3T7eC1SbFYVFgsdoyw0ID9ggKBMG5BnbBcaQDaOsSWwgZBiec36S92oTcKSI2W+Cqvmbnhdb9mOyZAZauFcH2c3qU2JXe1erE/aOWvU8MzuqiHu2QopEkTZb3yQaFfEAkS28ZMfLFhfhEWB3M3CECr35cH4efLs24XVYaIeQiHk6jmXLuYf7krMcw59//GgH4YFzew7Urr8XTClUcJCJKm9ubH12bsYl8GXyJp1ps4A6hpwEBtlia9CifR6e0EqttDaF/svO3axMuKX4bpXeYOugq2liiQ4ITLhCCYWHej61Dp41GOnTZUbAzSQsmSE5WcyEd7pP32fWTX/9nX4Qu5PyYlhz5uw7GgPUkAAWInva3xgU9+MvDmsgR1X9j8NYbNBU6+K6B/eswAh/zcq+rVbHd1dXh+Y99pSsjx4dMLW98+HTex7rb19+/engo/dOCErWZp/eO7U54gVvv1wd7SrmtgNvUqQlgUo4NzsDegC4Up5v8AJz5PBZK/QU4IlmGExkE6aQS3cxlDlSyASG6xunyPeq3WPDOLYj176j+vB0s1a3EAXHBjoAcwR4yxqYeasoGB8FMIvBmRIUcRIzCJYtyVOU49CdigM6LgY8ZnNqDByX7LMPup16j2dVRqhkoN4BJBp8ZY33jw/XQij1d1LxZpQXl9fHx4d3N48nZ4XeNhFQMnqAU1b/vbNZPn+z2dxs3SAIHAW8lgcc/ZJ3nddCwUU4IqpjgoaxuK4yJJmHoW0+pBJGbpl24XATqy2vDLlXi3JE1lfe3YG0r5uTIycCkx0LLwSRHXbWlaccUUgeRJDpvfvkg1FShbRrlUPxSWuGlJrEi+RSYLRZYjJNZ96CWpYa7P3wnmbxNLh5Jbl59U/8IjOgV2PpZMyFOXkLVejfmEkF/8EOHKEqMyIxa0EEDbUyliODyKLX7UpnVK/mdP95u4IPyCgsFPSLccHyeH/f46qnbsBQRNXLKLx8c3ZK0b5qJeQ+mpdlf1OoXD9xUj7e4QqIbK7MSSu6eWx5teULjGiDRxtEilqK+YrMJG2gvLtZmfw/FH1m6vOG4lA89Qhe6mwGRPNid3sDEBzjWs6iJ3oEaFLvTQt30Y1hbIXQhA31Yhv4BCvIOya5Z00FHsA6RU1amNRBg48fsyJQyyygP0idzhpLWz8BSFJExnP9gBpfbKsxy+/fwfahTkyeAeX5sSZoO6beJJN3AHd2o5RQHh++KeN4iRebfA71b8oHYKYZpsbNEXj3vFWUMpvkxtOLU84OCF148Jn7OVxVOrwBuEIwGst4JtY8tot6cwXVs/PCU6zTmT/FJIZrw9IYvW8KxcYjtIjkM4Yc5BByXOlOZ7YaqBMmUJj84+bKWgxp6H0j2IbOS4AdG6HjEWMTMwag/SN461iFvJjhix90asYcrL7Xtt0I//6P3//yhw8ruQH4dpoQdiizZPGkvbU1yY0rwMgxep22YzlM9ViE0hnpAyS1zESHe0TtzxgkSpETZkYRxZzCj2l/QZQRtj9f3Gy8nsZZyEW3OQEmkZYFOuJ4ogfcCdzlB/KLDMILp3INsbp8LqIZF7I9llsP9T4s6NP9yagu/Wg6ZDFQhlcfuO9xZi3wyBz/3jp8H3TiqYFQ/0X1EYbETFwXjAgQFAHqcYDRwzFjRaEusrR4hbZkxbg92iwlgkSMjCmeFr2Ql2awHh4hYHYqNpiABVrBDJC+JhUNx1+/lkeYsUtUxWwtRv6DLZWaU4DSpVwsONGilREhT/PLBMcjPRN9W1wuToqU+dVC9rhHYkBXOA/QvHJoEMT6/E7xoX6ilDB1UaoyAkJbKOyZGWgBKoWo58aFQILigSENZHyKUgUxwaEhALQOLtjH+NDR3vh6zXQBKxq5F+TuLsRiBdC6ocNuGXIajJxlpCJWbENun1NLvnc23X8XmkbIHg+yA1GQSB5o0FMoUeS9QBppkyzdziwldgzzRkOyU+KEGsGh0YEaLWg4nQ+AdKkGczHBDdu2AksGvAlBiLeg0dfpKHiCwU/FG8VVfnSFWv5DPKPMhyHLyAd4lkB/lto8GFmSwZD1Y1wPJgPw5xqdtvIofZQu7UrXa+HY8uenW+3V80HgYG03paPE5TV5uIcHL+9hsl8dHy6uMhatLzHT6iHzsf/N6nIHkjw9Xd3ciIcd2+KdI4cGv3JAYm9JPHxxqHxEl+oBF3Fjx5qTyOcVCvQDHmDClBUAGE+gg1ntmVRiEYdjxa16F9j6YWLQm9xFWN9TwlHUwRndXCN49tuV9pOlVk2bqEi+opM10edvNwJrK+rtI8Qq0u3+CA8Zizgg4pNZ25Y6sn8pMkeV8qh+2NKts/DxKEBNYwFgCy/uGuv4eO/jh9Pc/JOC+JNPf/jj5uTcqZrqEI6c2DPLDqfquR8Pf//1s0wbJISzPCvNxrGZgBEw7/q5M75ELz0nqDhbGz95086PHxVLq1DXg4SHYbcjxnSC9OEXRfhPAdbKFZSBSbKXhtaVi/WZxXLTjyt5EZc0725Ivn0wimEcuN4sycmJnToqa+CAqdKHQviGVuiu2jvhT1yj+4yr+/4P0C6O3ugdpmhwqJ7Dofed33QjRPDi2H37EEmaD/cXt1B79/Ej18kEObD89OREZszEYdNrkvzpZaVecysbKHZRsQt69MFSolKUY1jhkRzEqAdsEIGYjWMLtwVfEuoL7VKD655Iq8nhFJXbV7DIhyTusbo4osPVlbTTa/Z9+twVSuIRG9tpKLM8SPSl8kxg0JXkkHZxC3SAJ93qQBaRUCrLvTRxIsutFSjaHqhkWO28jVftGDX3vrtXrUNorYqgq2Kk67urk83m7sGLNZbTM8kqxPe/XlzaoK/bm5unk9XR1cWNw0A6GKrV3OejY5t6rZ+W3BG+9FKte0e52yko3/ksI6B2qKyMaoQeeFHN4zrvZ5tQEwtOS1hpg0H1NsB/ta1FZGM+i7PFiJQ5CtGkgiQ6yMo+PZhHt8ACYTEc56XKhWEyiRPaPDw7z3TLIgP7YNLc4oN5lsSNgSd3RnjIGrVmCiT6zeEp4yJcVie4afalW08itF5ffLDToewWAwSZ6u/QB6coBmOF3YJ4ogoSm0pONwfyXNQeYdkGm4yF9UdE2jE4ws19FrINA0JwIZBAH4aoh/PmsFVDVU7zdHF9Z90P8HpQDdcSzkyYJ0ps14e18akCZ1vIY7/Q1syTkDtNhdBL8asgsgMLnPSieZb3pGJQOVzSt8sIu3H/7fGwlfedLHWloTiVuSODnUC7LX3TzmayjeamNyrH8kpUHt/sB5Bz2G26gqxUHnU9kxHuTNLMBsJsi+XFxyyeOE+2SEWfo2DnnS3SV+SnSj8Vj02ZMhfs6+SGzNmeWtfkfAk728uIzjtzBMAIZU1UA3exEsDInbRXQ0/nAFwUkZHPgOepCREISRT19ZkZIaLo4DMgD7YSpEKTCRUyWNGgMoehbyhAWOM6zPJ1PniGbkxl9J9taaOSSwVjG71oH47oxHUzBjaHlzFHcZmwAYTpy7jM2JPQJE3jF5YQlvaZ/EQ2/rY9QgDQZ3agaUwZfTGA7P5ARG7rm6TTOHcrsbPCDuk9x8U6dG6JTIlCmXXW1FiUKHcz6Xau+e+/f1WNc3iqWNcufmJXjRM6ZGo706zNLUr2nzlmCjuVTk6cfspf8zuH3t5dkYDpgnYgi1Y9iJY+w6W4xLVCiYiHCRqjJumwov/75Z1XPlqJA94yIfOwRrGgCWAqygh7dmTMFVg23HyAKo2m19mQHFD1ae0sGn7l4iN7HrZb2njaIxiYrS4nVdYPIktoEOtz4JqhVdGCUQoR/PZlvseLSdrWy5QtGaXwbViqvWF6JMEuXum/RkksUaI59LjO4b+7LkWk8beho6Ri0GcESkADrzWQQp+GAAppIOeIhCRotRAZVdPgAVmj4bX/63wI1lvqFnCb5iLEqM2wJCot6hOGSBDm7Ec0coJbghCGYZbj8exCafyIpvOt6yEO2X7qDzgAonusb3B22Y3RDZWuJGAGnuXpuuzxLs7TcTHwg8vn+mRueGLGQ1dMQ+NmI0seJCgoOBMSmBttRKfhqEHm3w/4wBMRmlkaLbsQ+GAOcb15dhl/+keGmFOL8PKxp4tIXKyr2iKmsTwIr7oeQ7Mg21PYM7gNPwgtBiNbLi2ZDUAPGTjqDsy+BAypB5tP9DhZNxSpRdGxYvNbN8bXNiIskGsfhCKDDimTHR/UgrrsyEQaWZPviITzzIgiD/ghGnBNJSNUjNe4eZm4p6xMnlThf0Hh/vXVdQHwgzIGey23Ts/FqGc7Bzv2nkLTu4Ta2PjS6Tdfvl76vFkf32z1BoCpdnyx2s7P6f3z10vr7Lc3V5fXX/7w4593do8ev6pPeTQ6meJKbDmweu4AkgAocOeMyg2jCFD1MZY/9QA6NcPzYQ3Y41/WMn1zYoymKTO35AenIiDqyZrzwLa4TeTkFi/OshtORMLFjmHtfcBmLicnFWuw65KLxkWWXs1DykrzV8c+b25KYvTG0YtvmiWAMaWVGC77JUontDzoMCtXu7JMsLWzPtg/c5iPhfiTvU/vzte2Kx57d+3J+09/EC4I6GU6Jwb05qaVSdXB/vH7D0pZREWmVb2MxhBDjvCjKdYBcLgFr608Otck/MdQIBB+oXKzviaeI89Nh5jKIwKLxIg56gLpkRP0WrQ9QxwBR65hmcwks8t0fcx0lE3uk8ZFlpK0IJleVFd7G2iPJOxNTBPvsWR1QjvijWuOqJHbwNlR8NbgEss3Y50R8KhMrY4ZG9FJttKlnZ2VE2yur49PTsTTJKcIdbU+FvWbEt3c2kV6uFrtrUWrRxeXt/wnVB3beXZy9vx824wutX2xDYC4YB9rK+Zgueo70DIvo93kh9j5jTOTIKxQAJ1Uxz5QTTdEgfAseOkNJ7J0ZhqbCsGzP9vPmr1sX1/dhIvvfjQjjlWhIEl9SbE/3Xaeo+ynHvkU8OCahekCCxrKGzkOiQjkapvZjlybB85ySBTNnnhcIWTBtcB1Xh/EzN/c3394f3z3wJcTo9drr1g+WTGmKh1dIVbCdYlWjsCs5ev1hQoNu8ZNEj2r3Oj8/Pjbw9bNzbXwzKIU7dNSlhQ2hGbUoFPhS88LrIFT5tfc81BRYDI2i92gMzOBK0W1RkdOIErgzebtsGfokRFJREJIAXx6rUxis3La1YETdsiadQj0BFIx+Z6XB2P4+EZ7dvgLLmDezF0Njj3TdkH09lkD5lk4PM7OkZvWH5Bb2JWe2u2svOH50XIfKyb4UTzDhzPaDLe66nhRRisLTwZwv9CXMRn7rOYnlRTGVUx1eHXrBYjkxuxCLDXetVd37du3yc6Q2aQLb4T7zXZKvecNhNe0vQis8jzy5jLZA57zCmkqc/VY0JUBoSVkLMPdGwy9r6AXQlufePBObQcGt/In46A4Cj1NANs8jfqojSRNM2xNQT7G+cZ74g4sENEQoCn/yPKPxQzw/sz/+UDTF4alWdPMlQt/fLTpWc0nSrVbtDi4qRXAhAEMKVNoj3281tSJN7DRO7pTFmwSK6cBrZmb8mlgUQ0NCrnSqrEDNZ6z2vRJUpHMLMM1ALkQRxg4QOmyiDmbM/bNlQkEheMZHYLhuvYRNvctNJ6MfhhSVWDDFgbjLsc4pZDgNK9q04ugF0RY4jeutHGldeli05IOzY4ShuDIi+Smk+Sgm5kZyHpaJNM+/sqlhNcu1AN/CwzqbNwGKYxxHbH0hqJ0WHnecKygJXEpogmbUmP6RwKlO3AvUZPF5hbdBX7iYe6j755y1oCDIp7+x7/+svnffvKOb4QeOBtS9ZApbhKroCzlOlTKe3cjo9fMr4rZVuMYHMdPNe9F1YZwDwoGhPrYfMxggpglxgEd/EEvsM5kIZvz9eZ+dXSamfJAYk76WWXGHO36sHB2Ua6RPMt8C8NZ5ckCs8lGKQp/08FgmNxNmwlIqdHmCc2Q0VPB+t2hoEVDJ8yNhVweJxVdgkWAFKR5grZw9oCvs5ryRkmszvXogh8NSMg8RcByGTjXpKtuPanLghvoghDH3QdJAWoUa6WFMNQkpALbB/TwuSvZxeQQ7AZHH09PyzrW2N2iIDoJqtEmsPvYuv8boATR8MtXjqSRE318Ub7JpeglQGcq7H93F2R1T4XIHaB9WKa/XFdN5gcciNryVpOYpDbIQjKhB2/osXF9ycOh4CxuTGo/lJsA6bzIsbZp5ogJGlQLCOYef/O+eYXwT56mr4gftPBPu+azxt1cvtYSuRd296DHI6uOXI49hYMlR+eWK/rwt69gS/38pLSss69FAZ4xQLyl7bEqeTFQBrqfAJ4fTw4BGpfFXyYM4ThajZhFeMiXQQ3xYXOc1u2gmXS5q5krAeJrJqbBu+JZwFRakM8Am0bgiTuVIaFs5PLU8CKjMFYjvEZuAK1HY80GYjjUa/SsPcoonF2p1bbu+u3m6mZi8TD/+vUrB37+w3mNpY62Xi+/XBpI3edvXjRyaR+vs733t+6teBb3X0o2lrw3GZCGfPjXf7/6y59+kG78+aefePnbW5UL12gsw803X3lzz+09c7xPMAuSuQQsC8JWP4WwMwVvTp9+Yk5wcn6xhnuIr805YV3217QqPRQAlTpiOcMuYkZ2PXA8VhW4gqTanZmwtb6WUosCvRhYSvXJy1A+nB2zhJe3DvqosDivcmDdolJOih0LhP8R/9t6I3Rody/1kYYBpLPazR+ERPDRSC5MxHS82f/0fn16rOry6P1PP/z4xz9vNicgxWIFrwenzg95uvjy+XB16iwRx7NkvF9aEQa0UBWy1Yk4w+RQBB/rfM7/5Zmg6DzEVd67sFJ0ZhZtapUqhXjSlmsR6bChkNUsVwbSRHaxG+Nc0ZGApHRlcUZE3+5iAAF0fYjJbXs08tZ45NOX5BNRx5ARL2MjFTTGiSG6x8X0iEY4s9oiCt1o74oHuzIrkz7Ej/YLyXNny6a9/sRMhF8a9UnAf/X1i63bm5On25tj01RvNlhbpbJZZX/fvODk08fbq9u//v1vf/rxJy+H/eGj6N8CdAEiAjpF6ffH59t29luyrxwMwYIk/wGk6BOKQIq8iV+OEzpaatrRlNXBI6+o1NyL+omjKEI+JPfZMrqMxpMKt1mDfXauH0xkj0xpUiUDIQ8STuzOOTV5VkutTq6iH8CIBIiQpf8W0wSCckekGu0dEItgL842FYSl8vqjCQOb8EXmuxIUsz+/H26q1rAYBVd+UX73xIFKVp++ed2tCZS4bf/yy43TvfyY/rsomd2bicQiYsAVLTzUs3U8AWWWh8G326H9DxUYePmUJQnyYnyPiCnFAbG1KtA2/NMB4JG7FJzwtZ9BOf7eteoux57YDDPLDqYE3mHcxlNT347lcXJUW11pFj6I3iQjoTMzkMVDJzmZ+7F5D3d2yop8XExCF2MBbMQBFgVAaiIo7tyG/aEXltr/Kr9QoK+TNEvB0pKeJ9UqeeYsFFuVuAO4ISZeQ9Ek3zHHet4/hNqBw5HyBcSk8CJxamrx9KSIi0igQAIkBmTTJAsYHy8/WZknBJNTkm2Cuhfmf3OaUOcBAJLge8sFtOR2q9PYebGLUvTIk/oN1HNnKNlLSpp3vPBOTRF2NL8lcshxh91OH1KlaZtQhzEUc9PUzaqMjCoexWCM1P3zA1tpPOGX5UpTWBJp2cC8RD+MmeUI0SGBQR2ODa/Rj2t42H7KnzqCaawub2ytySNElR3GtSMTR7Yiy1MYxubjUMGGJQ7ppDHXxtVHs2hrCfblo+msxeESxBHMPJBhJ0nRPKXJ+SEPbuoVJav4TBNzYykti5FHXkLMlsgYe5zPpuTEsjvjQCeK65BWsXjymnSADphMIh8d7CkXScvUTfSmN+OQDe9ScNn0kscckaxoFoDTcy44yet7BPeU/s0Z6nrUE7RI6nFz+6rjJiWXv1O82os4ewTRJs/DvuTdpbdoPaiSL/DoCmQMaiVVoExkOI4+4E5bHQqxZiKTMemR7V378//HX7/8lz9/eG+6S6KeyTB9Kk3VMkQZtBa61byq8sUXKwFeTsxXAueh1+QdqHZrRmpDXezIgEfyqBcB+5f9THQ9MlRlDFA5R4Jalzd35xvHMujSRqMwiT7dbL7kcZ+FPTBCyajtDgnTEbrRg/mgXTIwti7MJ31ubDf1M9zM06HgiEOd97NAE/GSq+wSo5F3C2yGJSnK8r+hQwI1CKeSaCSkoYCd76uzvup/Yg/fhyHmfswyUY430cZgcEEQxISOrlifBgj1THohZKJb82Z0PgxNDLHMxhd4ZPayV+GmsczmGLdx8ciYRQMLt0EteB+SB+IhBORprKmbwZYgsjS5j0E/aLciARnf+4unOT/9hfzAEq25ucF2KAVU7WCODQgdaVATv5b20/HEB3qcuMr/4eVXaFMVOshGVE04cNWDlpFj2i3hi/YhhsTQSW0zu+JpgOmMhIWR/jwWWTweyRsmTAZxFNeyifgSmhR+UXgWA6ZLaA7yRcJcoTBxK3PQ4+5InS5yYMwWJUCA3DNBDClDLWQZ6vV9KPZGw5nAEFodpiqj0gQopk8nQV4sVZhl6AYNlqG//wrUYlkQRq7Ci/mQsR4b50mkH0GMmaHvunE0R4momxC7jEQxG7h9g4vVhtJwCZ7wMlM3NERrXTOjR4cnnrq5vtJHWbrRZvJ7enympswIoszb64u76yvrwP/4j9+uJBgdDuj0gxdvcVY0XESCvzDV4a3i9Jv7445V/faHH/+wliMsiu0c9Oo3UomW0dVRDGW8NbMDrQHD+oj/kq45OdiHkIz/QIfgCAMSwB1qMGnViLJAprkoGSsmUzs/FpBz8SDS5D3mdUW6ZSXqlpywyPd0XYKZ4MmPqxGR3VN68Xq+2Yh/7qpl4reXJG/edKW+1MGaTtdeOeOPtxUGTIVx+UVUiwU6FliaIygHP92szk9P94+2f/j0/sMPn447o2alnB1g6gekXOFGPh1oQ/LJvAmqqmiS0/nuckevu2u7fhM6yxT3XF9hVC4rvBIjv80bLQ8Yks+XLcRhKVsT3REBNCEAmooY0pfWrKuBiR4k2Yek2r8x7k3AOEKeIFHs7vyCuE8j/yNBbowBwc3pPKk0kHuQGG0d+4BFRRC68GwOkgEBhg8uYoPWPpQl5P8mRZoCxthFNRQpMDK0w5ywrLjn4aW9K5uzU8jg2oePP5ZodVz61aXmK2Jkfra144UAP717f366vrj5bDOAc28EeSenKwJGNgS+ggmn1XsrFccmyxV2zd4rTEJS4zZRJA68Msk0RErZ8RTQMV1MjYtxINZHYeu5o+NX7V/0jicYiWwcHzNSJNwMzeaKDqEf84DelJ/e2WPqHHeb7o2Ef+yVCJVVoEqxzgCIaImA1CKM2bWtpYYsrs7H1MME2aW3ZYKG2jXcgpT83/1mc2QOCQVRO50lsZ2hetiZleipFH2xXZuD9e+XXzfvThTDqH8jL1OR0pIES+Kl3UDBLi/9pcUYYHHGSbUmP7ZA2GqtlYL7xBB11BlnOdlVtexY48VU4FT6xdQQDNXnDgXNiok17h1eVJrYYohXhYgE9lGmKZiS933vx5XRVAIkVBEnpaNiUz0zTi3mAAktjFhsxu92auH3UIw16G457zts1FtWgib3niw2U4zy5n0mvz4JAp3wyOjv7XrNa7jw+w5MxHOomZL5JfdtIzUuyHcoBqP+3lYmrkNxt9v0zPqAHndKVj8xd0egwqqd3ZsKLSynBGZHI38TpZGQHWsURN7oR9v67EXgWh/N1gUPWgAinm0ISmvYgTuWPWASEEY11YRgWaxSG5IkrdigZ+sqrQyU5EfiTgQifs4MbP7JGfbuavuj2eHMtZaIKaMsmKv8SWRWzSqNZj0JJ8q03DmaztQwe4a2SYy6iPPAOaFnOKtaAQknQp5pe8cY8BnpuTimQ36S5JR8jp83oW+De5xFN+qvK+Lnfq4hq5gBH9uRecHlsSf5RyoceNNdgRplYN88kzDkRgHFVpQSSthJZBebm1BYqzQZTKKX/0WhkdyEFqSCb20sYugc2c1JqEvSIdbSGEHxolslYoqDoN0IsjYrYFQYu0Qp4/rTdZrUKkrGBABwhIyysUJl7sk6TmaHE+k9DgBkhPk3JAUeSsFsaktRVmtcmEi0NXOAMCS9TyOBng3u5HrX++/Ihm1WXj1xe/cff/vt9PjPFsKpkMxFBMpm98PIau+Ci0DYu9t9+mICQBY6UAtWyjDuVACGMf4kbNDHmgYmiIUx8IJ6w+skMs4uL8/SyK9fr89Vt344RdOBFTqZrwG7LJUOgRGWUahSC4joeTgelY1LswzhT3cnNELPmoTFcrdoe26OZAmi3mK2lNdTbnkeZzUzVjDrbT6EggFRHmDTLDSMMnamM0LyDNV7w9LnJXLzwBK+0y5qFHEKxopM/AQWwGb66lnIkQHENzrKG0kDQ+QrPTXG3McebE5iIGFBFMYZ08CRggGWiLB2ecCiVsaycdrhBUMQkNSKfJLyhuQSJvcfznoKi6AcsILJH18Dz2/Ij7vVhnrn/BYEwALe4qt5cFilvek+W2uhA1yJT1yE43TWr2QiYNJDWOkEnpPUD45Mqd80gYNEVv33TBRAfP/jLyGLrHrwoyugohYi+sAlLJiCMxz62mEj9EovQTtwQsEQOhnjVMMINSZjAGabMMOQFYT43eNwGEjGbJJUkhdc3/upf92GCzDK2YfjgN1MI3Mw6DMIiRHTyR5qX4YgXBbYpgn50PmIsHv91DOrFU9HmFxauLl8AOHyoJYJdMYOu4MvrCJhF7WJnhq5NVwHRtyhufVAH+Y7ws6rScg5m3fYu4GuJRIEBxMEb6nP6ZW9Kuz39zd2+x47IfQGCa+vrixvexPq9WX7BPTIgtvXe3Pb+31Tm5TTX8SMet5AKzV4dXPFoca1qfH95dff0VDx6O1tRaxNk7K8U/QctYlPCl26YpZuvsMsAo4dcQqxzC1Fch1kRvxJWrYJF1KYhK0fd5AFWKTUU3oGBGoYgf1fllx0qArIC4zRTw0AVjH474+Pri8fb65EKeIRMWiv2fIaH/k18xBvKSg0+Wa3LhebOIvcEsyOp/R6s73V3s5f/vzDauXISxX+71dH787O3q3PNoVrwyEVF/pEP3KulqCIcNKuicQ2pyUEERUyZBk4gZHfZjrBzWqTuhEd+CKb/sbZJTzMGSYmSQxcPhm9EslARIfI0UNDmwyFlsbNQg5UJMr/2oBqBIaNJkczdczyFlcNL+pWv//521OaueYpHdZpHfnJJTBqrpE4j2sCxYauybBTn/VaZO+CuIQHKoO+FPjNmnIdEadMwd79nRoMTziTqh0liGK56d279493t3e3N6dKtXZ33n/8dHx8enP1Fc7yWJ8+vf8//se/52wfW4fdOPHpyzWoyEsl02KRmQZLBIKN9+sAjPQjyoBTj2CVRxCuDamSQEAQb/gqrvaetvfvToUUV9fXWlbqrOr6cN8Rt5iYlUEY/PlPk+vslzLeJmuESnSB0ZViY7kBJwtu0cDomSxeHyOtPGM+BcJlXXmqRDMLUwqjfngHm8nViSeBvBOM9ipjQ+Kbh1u1K+LRO4UjZPxwV00aAGRwzVvo++3j4+m7U1MRWDujSk4fF1h4sa0hSKM9/R36uedgGatiToHkK3e92RdfCroBsr0qRMotCZLQua1WR4e7jhKGJ0qCjRYSIUQz4yIsdgiSELQSMCnaTyggtrclLz5WrAP4GR/rD1JYbE4izNl1gqJ8e+lV+8VBArDUwkzMY/2jEvtEIs1g2Tth1FpKE/hc6hRhaA5mgJtjsAOwltTvZCTl8xRNhlzK/EF1vnoVaYv2njrCbJWkdABROb84mp8Go/0NppQEmPw5Kw0dRKaOu7GeB3TOTOwnoBNReeMCSPLgDkuwskAdc/85AsJpZfVks2qSOeEFga9GIu1wFk1FhlQM1qxBJUCPT0iaAk+21+IxTjvWU6xx9+ztjZkGCzuK0CYlBkdh3CxP8bxRsK0Xoa5PZQwyJvMIlEaPO5uSPItmWTMzncokoxPX/9iREBYrPMKEehHy7BdPM7LDJFXfI6UsxvjEHmttqygLC2SKxL7kBKZZo2wANJDN4zZS977C78Yjrc+gxNhx30xTDr0woL7GjNAft3EENSeN3HWSljwlAgmdz55iGzE9y1VqrFEFxERI9/U5IbWLbqCzBZrCPnJpmq9l73C06lJAaSioDeBEvmARua0+Z3sF7hWdklhst41e58aadD7cJTS3vHzt7gBLGbS0obvJZTLVDzqyDcOd+MOmm7noTXvywkQAFQzQSlTtnzGR6PH9zLsue72DQRADoVpi+p9///LnP/18ak7JJ+8pBnljMZjdNSJuEjRzeHI5PHTcRYabJeQ5CL820oRW5hHWNbIfoMXQxbKRrhlABgCrkYV4YYgrkgmfL2/OzrzHJv0b+WHDC/JApsGy4MPUe9TFaF+gz13Hu37mSv/XccSfm0buWySZGwFm2WTivaQCTct2FfolfElR2qoNuCITOEewXF5G0Z5UaElMJeF0MjDkAnQWwK3jAiKPPITWR0xBkD5Ma3Y4lowTJM7G6MFpFo/iiBKyJvOGgpk/NRpsDDjEi7TgrcEEurVJSaJ26AOiVODijvumEqAxGswPckSblKSvPR1j/ImywyGdgxL4dSsRRkzGgroSZlAh4shSFWX7gfQ3E/g6114DvQZgbqwVotgVbWZCHGn7oXYLGCDHDawqDluAJPR8eVmcqF8P+p7nBvlaIgddbURJWrQAG7pPDsBYDRJm/XiW1AdzQUaT7FH8gAKDhyLvNPWpccedx+9IFqbp3vAj1EBUnzNZjBJ1G5NnoXOhifvcej3XwdseBk4/qEhRvaXWIZs6F04VbUTzSOS6D93Ih1BdHzD1LUbPRRYzJXb+lBUDI4IQTaChf/gNhDoxfNjpkqNBk74sV96uznfqGRhQTnvGejJYNaQYratyV1e/X21Oz8UEQEUiUHgdD8icT5/Lf9w9Wh9++Xx5eXGDr5WzHDudZPvr3784jbHVzFAB7/b13Q0QdMIA/vsvv3HVcn5OCIWvjhuwc+KiUYk1/2cH3gIOTlkmFCa8DqyxD4KLvdBjUyzOvsX6SmKMgnJ+p+YTHYYy1kwOEnI6F8fIcnIIKAMjF7VgeVyKNaWlJKWaCX67ffWGS0vVp6ebMjKvW58+nJ4cSr5K0T31AtrmEa2VAa34B6dVtrSzhy8/+CD+U0Gxu//HP388f39ycrz58OmDSGKO6j/eejlcrxXHI5If+61t+l05bUN04OByVhhgeGRKQP5KZaol6p1BI/MZIDuJC7bcIBswgxDxRUwIIAVGom0stoVxiqBQz0/y2SNRuPZjrxd5eWswzcheTUZgh0L4l4glz1E05UlYI15/59O0bxDD9DN2dhGoWoExC1YHo9qEcwCYLhoVbAsTNfK439N2JH88DXT0nETnEnzi+VMKkaXHTZBUiquYSkgur3y4v7/5qivx2YGj9bc+//KbNOenTz883P315vZO7dX/+ve/WeiuaMHLllBffhekBUDFdCDgGQvJjJIPy+3N/QWKZaUpw3V7J2+d7FL55/vWtU4dwqIy1zMCaIc8bVkHsJ7EKMk7M3zLfDYc4wIJZBEGXXERnRBKoR6m8lFQSyvmzQBMGSYQb8YCnNaY0EBq2EwpLc6dtF9ZLr4pNIZsv1jl4OescxDyirRfXs5OTuycNgk/9d5kJfKOebmzHTkZMqXxvg4LUL/9fvFucwIwtRlqqVSbLxHh0erQNmqH+Fcn8PzoEKHTg1NTfRoBRzRApOR/ij2IIAypGV5Z6KJhinPU+F2pIOqgjAJNsFKltB+hDiMUcWc4JAdAJG6QJT/atx3ZWhAl7/Aa9FT7pHDl5vF+fbTr4CdbE1CpNmzyHB9nusgEVLZM+a1R7G6b491YvZMwm3fc2seM+DwOZfd+wMkqV6SRvLRymXRbI0JbrLEwIb+vFAmcCmRQkhGu9jqWEfQOGjLL9yB2WyBUv0QaW0pkG4DUKtCTzPp6z3FE3367uLDZSNGVTipVQvYXa1AH4i1kIBCyGHhhCyyNsZObxKfZDr50gOoTahxZLvEcYb5x4BVBISrAqIrJz2SjxvIiAbOpjpsc7ttB3lqEKg75jqZPhmDPx6WoG8kT8RcMqIw84QJBAvakYOzwti0StuGmlCB5SJQmBYBYW45IcrDjvCOlsA+I1R21Cld4YwWSGJd3L1yaYBHOGClcBoZUNy3KemdZqsZBd5onXCTz7EpTolnLzTikg8lSQq7Hgoe0j4LO47FCJ2DIh1TY08F0TGZ6oO5IuG9X8WyfzZjNSRPpYlZsyy1DjMFMK7MtM883nM5dR186BcoxVcP3hC0FB0c7WzhyzQobhBldX9KHsQSmDHiZplHqrZeHuyerRRI9pjdgdjdqxK88LO6gLJIUa02CTG/Z0GDN8vF4hK30SCyYac83RTuH6rwMXGzGsQR4ZjwcqSXyqCFjL19fv17f/f23i6Of3uME00dyTGfIAIa1Q5sFKagoS20w7s9K0evR9r3ZauaqMgrTlxGS5vbFJ4OhsXwyTuI6lQi+ZAP4xUm0e1zMTA0/X1zt753qB2wWK7AMFkEYdcMzg1AUl4ANT+tUn3oYyiyhEewbr+CEvmkcW/uZbpbwY/FTrEoB5HKLUrTylu/QHVZF+eBe5Kf87EyYksnRJvcaB7DTJnFqINYhxLvTPz8JLT4SjFkEcAVs7sUGP8TKs0KN0CqEW2hOcL5PVLoAChwAngEXHJgvsLjuB8FAnHw2UBj5Sn7w2nADyRwDSl7B6G/ea1TFlSap/ltuBZHgJTh0NWI8PUx84JMrI5eBDpbO7ygsAUE94MRQo+78DEzpj8MjMIMkuI6yEHAXHNl6KlEFTnpLl9B+6A6FIR6ENAYKds56ghtpVJP7OvED1MbFB9IgQUvTMvfZl253PQJq5IfCIwh6GShWzcR0Roh5WkYKIpUpKfEAKfGZZ32KvIDOtmg2M6JFtAcGa4hu0xOSBM0lZ7DMK6arjnuD5mIPoLUMF9gJSujq1P8BPIAMggG/AJlYBkKIEJ6FwsEL4goNZ9pdLjy1IRya1zqD1Uy37lFGvWBbCBoPhiE3d5enBoL4Gq2y+8jn/zLiVaxsb3357fPz7d3m5Nhas0fG+LJhLMjW1f2DjZW317cOtby6vCW+MnuEFvj3txJtbKnj7R1mjTDcXF3yx2yZ9wk8qeTeev3TT59omXcGnLXRVoYMHzolHZtR1do0syj50DEmWQJcxB/IF0CGMgZFmfiSpiX9BpHBqtx/qBgRtJwpWeoXvqOfXEKLOdJSy1uNEaezvfWZtzB91WfLwYB/MC1htR3t93Cwu3Y8Hr0WE9hfCpInb+K5fzDVUT55cuJsMyviKm12zz++Z4tOziyQeJ0T5ux+/PCpd9U6V8Xp2UfSrg7pc5ylmqcCdK9J7DS6bYv+MMwlO/afDaYFCqJDBwehBB0TxVEAOlt6WMg7Yk8IF4HH4owHtc0Td41Ij9ERHM88c/jowa4vLceCaBp9yFvz0ojjyvLB0GMf4oAHR3hHn+dzNHZjbIULydBI+3LF7wQaBou/Tb+DrcvYRwIyl2PSa6DtRIQDTMz2U2lc3oxB1BFuBk/WYChBAAYRdxPCpgGlGP1ebTaOuzxSmNJLtXo9xeromBCW2Hp5PDs7++WXz5/+8BfvqP/ll9+uL68+/fxJcvfxgY/nXNm9Aq8CkUyZXPX6/vIaIqJeYuxDjMsi+8mAkMdCwDLQRf/KvQxDFV0nz5u9tYGFbuAUpfNq/ojS5eAJCC+fAUptqQGKvtqD+3LnTE7BP5GT3y109hNtZ+EYIVvKLfqPLB6N2R3Qx9GavQcnBlMKCtjxKjHYPPzW8TJ87tXtPQNmxQkWxFawFE0VKa13vt0WadzcOAVo9eXycmUHsUoVL09Y7ex1fF+p3KkXEuPaOyld+qSG7/Rk7URRYuXMsJS+Vo6ZXzEEEEcQz9FTEmVEGf3TTblHoLosIaruoRmvAqwObJk311U7Rx93pEUpCT/yzcpMOU7vJrsHFZIcCh73zWS8OfBRbI3OendIAUqIo5I6+e/qnYTIJkdeA/wo+kYsV7iDXmWQyFG0Nu0gL1BpDPqgKDLBGpAIHlSC1DhLHp7Xx2sH/Xdu0eu2Uh0FfOhsPS6Dzyzcq5u3ekR0IhFBv3uyv/zVqV4J1eOtVKLV0+sbW43XOqkJSy3eIBkd2eKwpiMm06sDhI9xtV3vEQf8XN7R3qEy8TxocCnragOYL+wP2pIEkueZe/s2nm2lQxLJ4EfHhlmw+PZgwpNJSmKo0M7ejXlgK5a7p0frO6Vezw9mU9fXZiZViOnxDmnK5ZQSpgpReBYbmUfcNLRBETopxCZ04Isr72kpAYQFoapczFXsARNhWyFfTFN5Zao7tqMXLSfEov+mbVkHWs7t9codwkOAAEG6CgYowlQsj9L5ThOLpnpkImZfU0rPF693xqLlU98BT8ksy2B9RpToikNmwjyxcf2gCTBoVUpITTlNOCZHbSMmkNkxcWSRWS/oM6ZemSBjIyNQQc0+MEVWBvJgna1EzIo9QB6S3xxg9cwmlXTY2uFCcu6GK9Z2wa9oWchDuQsfTXftq+km9Pku60Wco0DFEhAYiJOusaNYwkyj2jmbCry3T4ASv9AYGyzwRBXDFGFt23DxP//ttx/fn5x5fwQ5gmn089f+e3hiaP50YTrjYcub11xw8FfXjvBtmsqFUoDY5LbfBRgcFGPoW/MfIqvDaGvq1Y5HPGoI0npz8/x57/ps45VAq4hisqejdiwwmXUoh8AyxUhmVpSVYubCWrCNkt1MaWCXlA0ClHxYj3wxfwJiqoVoQPI38GanltuukUkDebinSsBmQhHNs0Q08Iv6yvl62hB6DIUErQSFuE83JEQw4SLj4zeJTrKwMGCSVmF97A2eBExHPvijT785bm7AEMYaMQiXccu+DjyjWG553vD+A9L0oMtyPUWD7Td0e3rA6wgiggOrIRO6fG0iGxQaRtUQs8JirBiSW3WzZtOK9UZxjBjAl04ApqPcnmb6aUx/6rPfiLJQ32KwRXi3MAvY2lMaT5IMDxa96i/hDlUdosjSjMUkyEENwAGpyCV4olX9fJ/ngRZevAwvEEeaivhvJtDae2j0EI6J5oJ73K0Vpfd00LIOylLz5cAII52OQLgzKhhgBo10s/ciYmkc+VqvJTrNYfz2N/g01g84jDvpjGkfzf2QaLpkXE0WJQEGQwwoz7FHzThbM+JiB6R5bMHaoLiWYiyrP0MRF8lNVA2Axg2A+QiYGaflFM3ciwdDjaQUCtWl4XWy4LYP/oZPCPIlnaZxcFQ4vue8xed2X0mXnm1O7v08v66PD66vH4T8uHV3I2Lqj1IAHFE35OAVr7dh/DkTfqNlP+c/MnaNRL/kZA4vr5/+7R8XZ8dHilObvQoNkowdAcLV7bU8v7zd7KtfMi4IknfEP86LymEyrQOVgI+8EagosMhMEhRqJJnukbaMeKZzMhDMPXRTIWJcUCD+iD2znMWQSvZz3p0Y3ckb9YLRDw/8qMzK1tm7D3f3lyIojlLq5sdPHxyi+fy+9TJLou9O1j/++MnQ3j9qg1MJkteXs4/v5HKsx64cUnP+QbT0dC8Dqq53BEbqR7C47+jOk2QDkoIdyO1KKIZHfEz6W7YCd0Y2XgbViHeCgesGxbvRgqFE7iQJ19fyoE78JHJkLmol8C56sP4TEH9Gled2dqpbbvbBYx6vRYIWvSgmSvenn5p1delhLvlcJ/5zm02c3lB9mYf3XCMmh8vYA1GoBZsfHAKhQb+Pqll3pke00309ZDHylHMHTMm0DcH2k9qPYkPF4erh46ePxJbQW8V9//Gdd4NZVPntHxfeGsaSH68Pf/z08e+//mpM87LN+sCEzuGgikoGK5MKFbo5SGGZNTHYQMGVcKM0IjgyLtdQNg4gCmVezs7X7zZHQmNrU2pczo6PxXIleKw0zlnDXCzB44HAqW7M7pGp44+DqskJD3dCYYrus/FQJE3LTgwiQQaiDXzwBUWF27JZwxErvykDlzBRKRluhknoBK+URTzKCulN9QpJgIjFPRS7K7wLfrU5cIHY7c2DxTixuGDFbBz6xAfFmSBkVFAu6esMmfIBHRz5QELtxhauOfpGWtNMQ3R0U5ydwl7fU6vWQtv0gFXlNKvtZiBgyv0wPnAxsuwlUhBfGfDcsBiNem3vy2v6JIgU+qNP0lIf/rOJ2v7jmNVqm70EWYlK9/QsEiIkBHwhDg6iqD8itGwR+8muVjTYqfZ4zJrWbSmyom1RFCOgnp8ky+56FZfFEERjHyQ1rFs4xOz4+OT57tbUi+oCVbrFxKkDYWmVuBvyk6mVgL+1L9nO1y1ntj55g6IKMVy143cpl0d2Z5F6+wf0CZEo1apI0pyP4CBs7nS2Vfuecerhm1exbNm6rXus9ZH9wSxBHn4JQEX56haFfhYWtOl15N4zZ5H2qJ0AmJipbe+VwnxlY1PgHQus2+RdzV8ub2+axiRqXuloApZyMac2BjC/SKc34m0TwKKsgPfJnnUAEWyLWPQiDpbLFMskq53Hb/otbktR2fOECeTsrlHZEH5QEaTreK2BSJfCayMEzICX78CIspn0PuVoakCGbY6yVx4Jx+BkQmpGdfDXIa/hO5EN5FxEIErRGjJZCZeZyZQPom2cDyOUhSQJhCfVn8OO2AHcX/z/2IoxyB0iIgZYfDEc8ynIhYWuNWaJ0bo0VMatdIA2re9BXszjiq/MgpyTtTjUboqQdfGQy8UGLd/4n/FvvcTqlTsiVt6qvSVTe9ZhIMp4lASiuc6ikPr+OQ7OFExnM5HVQSLFDVtX+OX3y19/vzg+fIeNnfA00yrgAb1WLcvEPZT0NkwLMSoJDd3C3b5zfpsS5bIrTOrNJAuF40q+IBpiCDUMdWSc9E3K6I/gcGv7+v7p9wtHtPU2+KRi0vMG9wjic4LoTyd1iFnLB5j1PdbURteGMm7OfM4Bm95r4JKRsSnfNSTtm2c8gBQAJoTmOfHfBZ3mTFBbb2AgMD1c/9xfMeV0JUANO2CMBeqZcWdoEV2nq3oZ9jW+z1UXDcru6hg0eDc2rXhvaWP46I2H6vu5Cb2VaGigbiHfPJu0NGEJy7GrwVYAgwgz5XgbxyOtm82PXjNBekwD25rAoqEDBaYMANWRHof6YQqgMBSqRpfv2gKPOOdKUyho+OA36xGpCvQ9q3H2yCJUBGzRqlfu6R80AU0iQdDUsGXoplx+kn5Xa5BNGQb4HWkpnoTKCHoczT1YpGtRL5gpj0I63fnj7zTQDcDwT7mW9snKECHIhytGQlNz5RYfJu2iAcVyPWqIRWbGVlhvlGLrRAYYAa6TAQ92y2f9m7KGfnPsIDGQrzDWmzY9Nah5kLnRFzqNO2rqpp85dIROI0D2IQn9Ttsldo+Qo7ML2XWrpQeDcOQ5BKG5jKviMnNZxGZEY9VjYPdj9AVsF/SgQxezKX5cWazUwKAzOR4YXH25ZLLNUu8e7377/TOrfnB4fPd8e315d7zeud2/4YovLi4vL69Ut5gA2Pn3+ffPal5tBb69diJISq93QPgFnGFf2Ug572+vt86w/sPHU29m4i8RkSnEuwR1e/vBO4ESlXzhsJH7jR2YBd6RYY6wc6JoKnq7JaobFz7GGx2r+0p1kRAyWgKnLVzkb8y6FmW5eFMeuMl01UT6EaMjCO9FIEQAY0xfLu2dzJOU3xJwrGTot755l5SdwcJ7mf37f3xRPWLe9+d//hd05vBOzt9JtjzcihJY76v7+9vDe0b+gE0VPZWhpMYO7SOZJn6Z7Q6K8V9IC8jgG9lC37Qk35tdqP7NZUviyTk9HzmPj/FznOgYDPLvO2R98JFYjVTHjK432+vD0r8+Tb98i1h+JXUpYGo9ggrCud093XlWS78Tr+R8dGfka7mu8WLQgbqoYS0XG9KQc1EHaQnBqEgXKDgC6BoGV3ILxFS1oUDoWxni+vEz6EcWN22QEAFki5yhdOQ/9Dxaie+fcqyIfqi4wqkyR9ePFyMP6jSeLG1ZHtj56Uwtuxyhw2fWXn31oHZr2ythAcQiTbKfuU/2WDa/+eLJVZNWiaKMOF+LPBWLz+vY8me2VzoY3nqPQhCpS5t0odPpAuWWPJG92DtQnILdOsd37O7Y+CGm6bSIfkyIV/wwJtjXzAJZ/DUjwYbF9rL9Us3IMe41ypEELDNKLrkE6mRJXluVxSboUExnfcKHMJPS1aqonYCCxKnwJtX+suti4pv7200pfMXjZaK9ttbx/xeXV15kJkY9XrPdxn18efQKs3Z/ItfISdumt+5Bwiur2aEybfi8th3IyoZ6mwdc3jo8YgAFf+JfDGxxUrhOBxcFFyBUpJPrhbvDADqThyUyRCbC9FjGQFwDbTh0aE2JTxEwGaAIjC2+kCXV1ciueIE4yRYhjuDb583Rrk0WyW0ZXltresECo4fAwPa1PcnbDu9q/4MPVDiBy3NN1tCTtnNsryVhbQvQzRRxxFbhu00O3mdMhbDbEqJIJsHmF0DGWXx73YBzi8R2Ju9u6eO91hOcPaoq0osRvLp4qtLVj7M6Y4LSt7XXx7FeTSlUlOU4TYmAbZ804MSOLYRC9MVZtJ1w6qs8glS0yTdrKwPPXEIh71QahFK9XN3dbkYYgPb79QWLaozH2wdTnZPj44jshkivoAQ6RBDPGR/WoFJNssJ45ZuenE1k20ZJi8wx0i97yeTFn6yitD5Z/Vh1dWiH9bCoUKnT7bnrlosyNhmBlB33zKOrMDGun0KLGNA0LNX3TJmTViTEMrHbY3Od5EfmbhhEn/UWRJhUz1kwf4kJXAyXpeFVA7h6pWFzsMQyxk/40dmmjhHrGJzM7xhQXbmps0kD69PlfmuZE8mkSRpyKx0Fiyx6z5C2upPRK4FYfUgsSKKq2umoLl8BZVbmfXkppbii1CeRMx0q90tlQO8SbWOwpS+pLc/oWGAUMTWAGkQYSsY0loUtKAbLeRNzQ4IH03Y7nOpvv/1uEcBbKWEK3hAXgU5galzfmt6YcLGkrd53WPAktnRi/QpBbAJIPMxZQAVxww31UMj/+JdR8gs9h0Yuk58mJ6zd58vrD+cbyZE4j2IJZz8xvUd1SeomwGUfilJDys/Sm8ApdxMviy48txDETCZKv63teMrcPLVNADIqICgHOoTKefnaaodPOUqkxqE3Z6TvLAmLPuJDZliJ0AkthO3RhfeeRTbA4EhcFG/MViu2GBO+t3S5wM9TCar4YLL4fdcjo0CYJ+wcHmprlSl/BzJQGAzMQApytO53c8gh7US8UAVN/9oDUI9Yl8glMUapatDwkUoTPQV08C9X/J9mpG/lGwbLBF3reaJAigvBLgD77MEUZyiqiYv1gyCAw6SmdKn34l2GTt2cKQG1mtAkNqTe1MYjMZ3icRhZ+UYxdB8m5QAL2jJNEpRGjNxFLiJF12EMfoO6GyP7FNWoLqlegidQpcnkSZxV1MgY4neIA85Y02G+393gD3cdptNvYregP84fFDpLBpKYGXGiq+HBCL1nF5uVdkEms1U/VOCN040QrdhlYtpSQL+z1Mhh4HqPXIGnixHNQBrYhomu9TW7OKGkzx4fXxnwQvOwM4wbBVim10MjX3z2q2dTLW2iOeJ4ulPw3138/uXp6UJJrND/y6VEocz8N2+nkvjzc3PrPaqTddvZvru9uvjyu93AJRGzy7C0ua3Sdagv9ExAUKDDDBiV55s75cXP9+unf3y9YZUyQjvOv6voxVHlOeUelE+yUOPNlhY9p6xCdaluYYYjGdvOSFzsKqySsPFJfkeNZDk+qhMQM2VpwjVqQ1atglF8Tn5SB8uaiRMeMag8ifYEHmFkE81Mfv968c47eJp4ChEP1ptjNdfvlfUfvJ4cru/vru2uu/z6+eT0xLt99STwzNrv7Z1/fKfzh5s7CRxXTJCc9ck3lwFHHyXFzlkbSRbg8c9gACeGYhYwWB3C7hI4KUGij4UZhR43c4JR6r7YtVjdZ1ciN3ubB0KtFEpL/HbRhR6vq4Sqz/M7EZufZDRL2N9sh2dqnEd1f3k0I+juWKAAWayJlmNGGstPYww8M0RhhAuuBj9gAn7pX9uAGEwBr2WDZlfCRCMPBK0Rwygs9ORpKgY75lRLDXowHgb/wWp9f3MpEt8Whb6+OilICu3XX/9+9v784U6Sm3U6vD1oL8rNzd2f/vLz16vry8sHx9Ta5WiVKROtqEPssr3lYCuC5yKDOAA7AOrofuuhQx3BZOwcG/nZsm/k9HRdbczOjlc9gFYoSfIUdznTXQKCfgi24EYLEIsDxRTIuLUYQ/gYmAh5iioS42pokQ7D09jGW/5DBVf8FkXpg2YINPGIUrQztWVVdCvswxyqxKOjJCKgKMcGETSkXw/b3yxaIRxg5K83x0fPL/T73v7S2wcVBUZtznl2ekKclPeJjJLEl93byxtdLkKjxkNqWaDtPV+GM+myk9g2VruUy+TLyj8+mRTdPz5cXzqJf7+3YNDyzlyiSXuXd7cnazsyWgB58opw84B+kKKcMaUzaWHJ9zpyyXvBeitZ8teCoRdEwCupREPRI8KJKlFLTVhp3WYNfjlhwumT7dE34ASm0quomohZBMBbf70GzK6DZK9KCXZj++RYaL68liENwmg0r9qweKnz4C2SLFrIWvzy9eL8ZG2pQ3qfenIQVjOqmoAJNu4dtK18ewey8v1iYPNAfrkZ8C7JcRJo8xXTMDn1JevBEklUMFaHBZysivdhO4khJWDyOUXsXx9apSlxHscd1OrAgBfH2tr4KyF9RGPQyt+7b1IJ8CNQIYFut446qMZu+2R9LNXlWGGdU8K1NdvKsghdWBgi9X599VY7sQFr7AxYIaOwzNpOtEIXQ9oU67RQDXuodGYSnGGBfOUQBqIn4Cl+mBRsVjouYULarU0sj7O1IdWA8DVmZARqk+vMc40BQeE2ZFd+M3JfLsClVLvJeVPuDM9ENRCEUTEWJuaN6H31daZtLlCigVzA2IRdD2n0GKCccl47M9lj7g6Q/IelKR0WmdAzMuZJkH137t6cY9aDBmiDhmK+bGp6liPWLX51VJwaIbI606G272Q5c/qq8g+2HPr06DgxbqHD4KhRzhPfPZtamKKnA5PeNXK+sBxuUCpSC0cx4iLiHs106xz6WYVfPl/95oXoP57HKpYXvmg9wCO7zkkLyExNnRjMkbmg1u7p2ZsuvplnInuZiDqfhFRUAUrIjc0u/sww6znLvHjnQHUBjhbZfr+43t8+rRhv1M1T0bkvDFFHvY0kuNyfBMnvcRyGGXM1rmVuuAXaGTu2DgRw5FD9Xh6fizmsKYJIBGIk0SBK+vDXt+Gtj80qXdJnch/va6JBn11YpNRlzRq51480JVruYzRth4bhhuwYTwuGs2BM0iIIZjSIZzLjviy0CzAwoV4sTuyWfvzGTb8BsADa81FTyygzCHTXTF6HrbzURXCEfHpoiMQG4bgf9gKHPd8zC/ZuRXpUS1TfSBbPQnVOqM37RoncFSyJflJfuR5DFii4ABnCNHl0T03nM2ZaF6CRPKTChX/Vvi/Tr8YhiShh1XUfgicZYgLY0NIABCLhHPLrxvcwmaf0H4r1rmEFlqFWzJSr091Clu4tEBgxBLV6I1Rit8A3NIUCALui06VdGa/iKpqPMCxAxuY7F4d/iBBWKkDEz26hdhYqKzboBFuGYJ4iHe4FAYsLFqMkA40YNnEkqwf2t/R/gBcqBXIqrVHEGSa5nCUgK6zS0kPEjEYDfGSMO02fokHDGqeRcA2FCbGCv/d/WAnwv/z+e7bgdfuLF3h4ne1q76fNMa/gbMInr56VQoP16/aj8ohr7xU6u3+8dkr4kP9V0bBcPzidg+FtX2AYYNMn+1cdIfe3L5e/XF4IFERr1hZ//OHcCrKiVEXGNgtgEz1s9PFBqDH6MKgXtc8sbTgogAB9yAI0m95iFEzyBFE+grvrCWk+KMu8i8+VAiOgvwIC7aVehCv8AfrjFO1BUI4Q94ErLlnvO9LvdXVw5Nj4KhLyws+bU3J4cPrT+c7We3s86dPt1eW7D4c2KCruME8YCXVkqrTg0cQXChtQP/Na+9Ju7IYMqHQLOUlqMFXctjCFA2rW0DeoFLHhGlx0O3w07XShSQNoNBniJhz1kpvU1oMJf3gsCE9ffZ6ODOn/afV90B5NZpIFU3RWvPtprP8ayKd0bdr5Ms2XLoyls+l8YHarv1QMLOJRoY6bI5DTslueSYKzPD6Fmv776b+eTimiTGC2ibMjO7MhtD4TmdbwHYO0u1O0I4HZ7iDJaSexqJF5WQnYV2vkOn18d36Oa/v/+Ps/fv1f/1EZmvS0Ey0f789PNreX997JdpfYqkyNNs5q4R9TGQBEBDkFcVc1cslYyGRZ+98JMN6SsVlJ4WOLJTKJ595zauP30eGV03JK0xYUGo4HxVvWL8ipcBZsvIerzHlZZA7jW++ZUp3Ad4d6HhJJWkUQxUHdpDmTG+qALKPS+2J166EmvUP2XhUsMNIHaEr9dcbuq8DNu4uV5209O3/QTN6BMEFmWwv1EupZzLsXRERGuwVer66uz8/OSaavV7fq2rfMhu38xz9FyRUD2d1rd5A5PoMwuzKqcShPmF2pjs7bhNsCRC5B3Ku+BPdwYknsLaZiJkSOlMFw7x3cfvTC4A4FchSOyczKnPpFdYpTQcM0gZwNA7YcHazQSrLMLAu6nVwO2bYW2pNgxz8PbiNSmWAEqGTIrF6hkpZGf923heBZzru06PaWciampEoqF7ICO1LRv1+bogjcGX0lH3KlZEHYKllYkktYhNYmLUr7mN3z0xVsicP6+NCGJ0ckWQxHIt03RyWnMWtbOZZQT4qgciS8FRvaWH3XXMsL0R7vqx13XXOinoHa3lVaaeRD72ka32cDBkVhssiAUi6czpl7rCzCq/UtzFVpoo8DlMitb109PKiDcldMat5isqVM3TqKIE7F/6vzaNnL2eKs8BObHD3MwbFXhMEUiPAO+h3yQQ0C71u1xKJY/ZN0mXJXM7Tkc8/BmlokxFy2CbgJHanE0Nm+1MROcYsDpszrPMs/pt073vbmjNp6xOSiiy6TojFS6M74TLSQfW8pu+xezCI0vpostQJmkGLuJM3lphBcv8YMLXbRHXPWpuJ59uYX4z1wQLxkE7/2hZLZUsvIhvNgVXM+dzTFhEvAiD/RWjMsyRsToMxkqeiUlwHpNCqFbIOC8yN1lF31kGlSjmnJYXkQZQBjdgcXvfIABxEYMZ+VKXo5idEAsFjuAk0zo4yGTkqqFvvY/zP2UJ8kNXMYL9B03Alg6oKnE7mhIcO18/vFw28XNz99OuGgszUIPtYMPJmZ5F09XPrjj1Nudba3dwwDiqzbUWIO2kqBeA8N8hg6IIjLsBDRDMwQB9viP2KVLx1j/fLL7zfehWNPO66MQjcpCmZJiuXD2FW0AVLI9myuJMb1SN33i7gM8Scm0KBwj3XxYQFJMzBkNkh7PC3LqU1WvvRAOwl7KinzZ4aDZ39nuPDKeiwJQQ4XACFEaYuvKxWjFKCAmDF0NeggasD4TDxg5TNI/EbPFABUyRSSRTfN8msl9WsWkIg7eMNOTJ+9XH6mNwx1IbLoXreBGDWQd0mHCJhI2gywqMEk15NLTVOD6GgcD3ks+AOuYjLIhJZWNQxinfpc+0gdVAIm7ZtFgNS/ODBtxFsDpbEJFeTiEiqLFWd20bd8fj+h3bEnamR1XbwSWQVgmFfngG21EfgL0YdDCRKo045IFdt0g7tiKej3bNOeukryklqvzzSfIpqBjsqNO2j3rIbEohWltEBjYOGcQWoykZbh8k9JUKN7wnPs7QQrsXO6id96xlSPajnOXomqsMYbJfugZaY20Oo/MEZnfHUBVQGsd3QewgcY5kbwmNFTw4Uouoyop+AcWiHE9ELhExQt/QPy29NLj36DLQWMDh4VSCwPYqUBYBpeQlP7Xs9Wv/y+9dWG/d39L9ePf/3Hrz9+OP3w8ePz3tOdk/6Te/0oiVcooNYBzKkDWVkMRBE8H2uQHVTtBUmBN2Il9kXsGyFUp7w9c0jPyjXtQDs8mINGkUq5LAcw+aSEcxgK26Ew4BdGtNcRzLUM43DTY1ABBXdKQY1mRryh1UKs0OwnFKwOlfSR2lcGseQFmaFEvvCOKO16YaphvJLAjkS9HJ9vHAhory7Pzku+O6vK/OR8c6bKnztS9jB1tcpivWuosECOyuI+2pTTycoL3IhKPr/u4dIKFS5TAiP6u4DqIqaAUKfkv6InVFtoOMKg6SBBh+a5vo78Bz97R+AMkfikSiGcxPWvj8sgy9W50cPTasS7GwvZ+hBJu1cDf5Op5BudR5WSpWiOTkmmVmMP6jCERlcDcbogfzqZB/PKSAFoF2a4GUgnpV7CVZ9ZZE8k5M0Qwm06XKAdSJgXOYvvAEp52jn3svP47dYb1tj6vYN6YMztvzheH2v7y9/+gaU///zx11+vb0+/3d5disaqXn68Pz09tc/OPnRnvOZz7Cd59FoMb0Tyxt9iaBNjyhNhFcV6iQ8GAmK2nUjkSf9L+cpJk8uT8/X9/ePd9a1UpiSuB8wKSrKySZW59M4dMVzU8MpkZmqmqQYltGICQ8B+9NF6AjJGy4R8Qs+xE+MppxggWo25i2rDKx/YRV30HroSlB2+rr4gJZTuPe4YeBNuX1UgWOegcV5H9TBvnnCZ7NBqz94JjPT4bcsKCZE0d2L86KZQWxrbSoG4S7Ic+aRP77+VFmEFRjxsk1UkAwMNWvsQnaHY6+OzkyIdfG/OsD7uJWJsAyaTf7rgYgBPwTT9phlytJSNxomZhO72Ocrgi/DoRh6OVNGizgfq1S5UiDQBWDrFnk+MEa0I9kzgSRSlyMJvOWBA5SG2HvIGxejwq8gHgL3iKjm2JyED6SLC2N9vZlAE0EZS79XS046EQvU8kCUeRJ7dpaF4iFFoayy7MTlWS3fSHFipehBhRJMnDlKzqsAaeOu0WNyhEXmlprLY1DIOU+DdC5XU2/ng9SC8CPI83j49HSPE7r5N6tBEq8oFM+gkVaa/zcoQdx5uMWHiazlo296Jp293nzYnLIK3jT1ZEeOzXl6kJQp8nBav60l/oKdZ4F1vNkjXmCqiyKCLqtFQGyyaqVquCWx8R2dbEY+SU1VSFa4ZVdj4lPHRbHqeLEXWmOggI0DYRh9a/Cxjj9CmUmXoHeSQBzE1tRKCi6xxwBR+ZLflTNyFsak+oo0tSuDhK8Q1LHuLKRBZSMrhZnjGzyKvprQkLrdDpBAIJn7Q0RySsSXZrBld6zqTQgy8x2OUrUBi6mGCFtEZv/4n6ljXLG+sVu4VUQV1sw3X9L/FLKKLqJYBAQMj4U6juN6CkEFS+aVuBEtVBXEiqEJpcibGJQ+GKqidyUORmB+6lh9nErOKA8b0VkqLzYdgxZP6p18QsVyASikFghGPvb/+8vXn95sP70+yZTCZMC/ZrkSr/o2ovYIf98qqmcl7keX6yKsA6CbhwT0re8hF1vQRUNEqxs0ocY1kFl+BYhbtmQMzCOrqxJDLq2sleSwKQ/8GQdzwiGBGlwV+BCboEa54kkmj4vwLMR8vM0EO6zE/BY3j9ebbLAiTb/YL/YNsPGV0LtYqlcYsmxbCEcESQz/uGVznHixxkAdaWF2sBA7E0iYgx/31f1FH7nvijciH6iAErR/mCLH6+BbAMFduFZuOSI++lO8eoiVLejT0G5q5xNDtexGCJ92fWURf/DRI5A6DfshS8QskiDDE6AAIgaUNxYBAUxliOlKuW2MXrvlOr/CHikrwl7vqT6I+D+qK7AJP40RcASMBjBL9AESziQGij7+QZoOMl7TFPB03+wjMonNdNZOjlG64EgCFQZSwNa4kuB+gR6qBLgRRM0lsymCUyONHs0VcAuU/ZdG9aUkzDeljFn7UOH2JSwv43fMTOsGzwBYbaqBnxIk9WUODahlSIVLLRRkRpAf0BJ+g9meyeg3kctfmKZzL1of+cMnnIZGn3zR8cH4b2lgjgaHpMxZoHLKZsqHbwsfGDjK/Bln5G2RskWRYMsdbQK3DFiZ2oU10e9jRMyQhfHI/4tKH6/vdwz0povPN8Zd/3DATX+8f7f37fHH7t7/+uvmXn++vr8Qx19eX9uSZAPjDdNgoBzSDEqE2AbRzMecJTlSOHv7SdIr9rdJaZlxTVdfaoPm1Awj72XLSACQcWxeCpvI5kfGLYwfBz3kQp3x/jl7fpVmi7sLlUoPt8CZ7CFL5K+/VaixKgKjjp+iqIEMbxKQXbumUY82jgJIrPZTQepI7dnL/uz+cHI56bk43JUW+Pf3hD5/Wm3Oq0Kkv21s/fvokulFhrMHCytXR2uiCgMen+6O9TWfReA+iUgCYg3JslrkB4LEXAzUGUmLCUGUP4j44qSJ+KFRAVLyN9R6BV2KbDFRilrSPr83iD84ERU913U/fUszmh3TZH6SL4nQK5vNDNfS8fEbIRbnShabT/m+8ZKl+kvMGjZ3T+TxZ/267MiN+7y1c+gHt2BHXg7+fmuq1f/Wtw7k4TXtqiDAt+6Y1FvsPpWqX5iY4LuezS5YsVwlVh7UPMtvrkzWBsVNwaqydXnu3OTu7vb6qcuP45NvNtZKM9x9Ovvz/fjk64gW3/+mffuIc7j6/eAETBycfqW7ksPeeljBcKz4Zqg60dGqhAaIznu0BrJzm/unscM+r7lza397vjPOOSC9yanWiFENZZMsBTB4kyGr4k+k2A3DOclchD36k0Qyz1IzNPCGOkwgs8CFhENr2TqtqfVxBYLJFbgVm5rItL9i6I87aUpDDSQ8Fm3CayfYG4h54tTx16Gmx/r1XyH5zECrmbl1e34rVSt3LfOcmYeP3g+URVStYJiInCsiI2pw5uSW5sBbp3jSJL6Rn+wXTSr0n+Yhxzgbw43rAC5qvb9ukOT6k1Tkwo65wX89Mk3nXjjI6wf7B3vX1/UZlEXvLnong+C/TfgcRkWav81aUb3KeWmyZw1ClwGEq1UhYBNj1loNDAbfSCB2gMyNA/bMOUvWrVcX3XlswuzgiarM7W55sIqDf3zocVny1zGPySup+JJs6FJ+1QGnHYopnAH+yWYvLmRF+VwajuRtJbfeR9cZ7cf0NazBTU4TGexQD52gXS1JwZJ+uwN+ZocdWZMQgDWs5hQRt2ebieAH7ixHT8ihP2opgSzRbXrirnNL0gadke41u8sF9r/eOVGU+4uK3W3s8UEc0mQb1Yt1EI8SbY/G5ZK21KSiRCvthSv/an+vUh8M9l1rkqTor05HMHLZbID0e28vmE10ewQRBFoVeMIbBPtFBskNfW0zIUINwVN7DOCnqLVNBpjEDSauO6zJihP1YKdKS1eyzmRC40vrvdqy8NcU3ueWyknm8p2JaiWEwGrzzoQ1gnvK9k6pMU0ss5r6tlICUT6ARSzThejoGOTzgWeQWGoO0227+dpqn0E88rZlb4Jm9HJ3dWaw1NCTVS/SVPS8EZaZMXYokTTQ4LvpBPIQ6uBiCueASXtye+Vt4dPzOYYIRONqWJsBM0M8MudcIpicVIGTttXnOD/deakJV+mw83X9ydmKwQuAEv1Wa/Yurm18vbt69O6PrfDHAMzolIBAHUk0f+EebcJgWb6o2+bVDLSJPih0PzAc0KLgcSx0cOaMcB64MJY0Xx5Pz1moQa5xILvf1t8vLzfH6/anX5HRAG0rCwrjTTZOiTH3JLMSYCHC+63zI1RemALt1xQJyLp7u8fnaR+xOWhC7X9hdd6zkfAc1CfExpz/ypo3OsyrZqDIC6QufbLrRlZxOcNdhtJofnG3EoWu/jeufNh404rLjXWPIN3rY6WTZb6BRJj39q4dkUiN/olgdBWnUHZj1BjzDRyM3eiqrJ3lEK/S1DJ1ATNNATBmqkh87E+SaxYAASqoqd0YRWZhkEfKL1wflOFrvLmFLDWVYjbsY/xJHvS98X4iu36BCqyIVctOySHG8x0fTkgFwGJ1d8PzEwTBp0LdYVsORGwyQAAl9dCwEyc0MIwPCP8C7NVKLcNB+S7wv14EGkkG2B0EUWY0rNzBfjFgGriMFlqG1Xaged6HY9LtHjJFEEtz5yXJEM1gEnWh2KBbbIocHB+BJ7zWn6vw6wyzV5EjTCQDtcGXaKE35qlYqXSYbk+ozOv0ZExmNIlhUi+fQHH0wkg5nRFd9fAu8dLKwxn8p0jz7FuFN6B9jJAAmjB4KaVI/0ziXW2/NGapKl7jxChmeVn2uePvSMYhc8dbr//E//51n/C//9Wfrm+hiW+Gvv38xV3Bqnhf0MCCE4C7fyC7vWbscUJl0R1HMqhxldmZIZX9IW8ErWln2Z8HEHLfq5L3Bzc8sF2xbHAQQ+RsRQgT0T3R1mroGKqkg4SMkXcUC/INdqh4DY31MHAFBmYWSuCwTmYvSvXM+OOvtnet7Rc9YE5rMrks5cAb36u7k3fH5u3dCQfuhRGq4fugVoav1066ayHJlEsvqeQ5Xh8IoBkYjUwgVz1svm8ABgzTHvjDOnCAH5g2RIExm4i/AEwDQUoeBeozIaCJs16s1XQ2rYqe8rmZYuTyS9BQLJF19TPaTUarXuEszTefxRZx0lLBoNheXW28mxZVGmL9DaRSejus76vXj2dGj5QvgjLKMtdx7+2qYBGwGTZJHA4xZ474OghrhRDd7tt/udTNjMrycrxStlugAvqVx7ZZu3PEJTG+/RkAUT1cM7dYBI1bqd8eZO1EO6ff2neIqS2flRwD98fwdsRRonpycCvguLm/vjLK3/XBHBcxCnZLd27gMS0FxK6dC1ot7wV56TKRYYvZgX15cze7Xy1snP3lTHv+E5yTYVLnAIEtYNn4JgrOq7H4ey70m7ePKSzSkF+YcHDW85CYWO4kj/WlgOEJeC8olKrWYoK/o04sRzDS4T+d4NW/UgQNoAz51mev7B9ed18UJZfqhQyx7m/Xzs3357LUjG0U6zaKf1PSvpITL8e9s3dwS+XavK+qr6L/sGRoKphXaCGqxu/ISQTxSiJpsGTL74lwKxEYmUUMDKsdKlFe+60Du5j1KX15fNquV15EJ8pqtzzz59tF5qcKMzt1Htrs7xfGLgCf/TIV4E1XlIJxNJDBSjTi3FWkQ0vTCpFvoFJVK9JYE4FIATP0pHGiyxr1woNy21tKBDJhjW6lIFXqrNQaMiDrC/MFd1TIazNPcAV8hPCKezm71QoO9gm+iu/3izQOpeqei9VbjFN+WEsmFtr2htOKzifgNKQhoEcBkwYp6AX3zvTxYblBVjsCdzJlIIYs1JYVhe4e7olGEQgVD2IdgRIcN2K3OYgPYjuGb+xv7AZDA7E7KTpYfguyLo9p0yAA6qclU2bxO7YnItYWYYggzX9MMC5apNGYYVUI6KUkrO0gDbFYPmoeYmogOe9ltWXmihvUoY8qapWx6oy3YAVndCJagT+pZpCeaNIHEhQxNg4JhLByxaqEiAz07ErVPtfuTkJcSBp6omt3QUdO5eW4ZzjWAb6kry6Dqe4JsvRX95Y79nwnRyspKwPQ1pXswGSjW+O5ZTM7jCDgK0RZ3SePIGyvCVUGn8GYgM4rrGafxJzTZOL4TbcJN8fgaaQB4CKqN4qOOEduZF14kE2oKsJqyQq63IPdv3s7W2tlgNLhLV2eH+cSFCBDBFND5PpED4WxaCC8d+AtsfxGb8/e11L/L5WRf7l+f//r54g8/fjrfoNVkOb0YYE4mcFcz8gwp47Z3pWoZXqwTFB1frb2COltdRDRchGOPYRqoBkWQhq3MHRg9nrUMnEit5wjQmtLt3fNXS7AbZwyPGLy5v9y0U4yAWexaWMLi1SeoUNVAoCI5mo3xpNltyCSiRsxG5iKNn5zUEpXBsjivGBkcWT/0r7CHPIOLldXaX1+4CM+B1c/iiSYCnwBjkHKrrMuIkz7MvuOCXBlk68QIiZUO5mtj9gcp/bjTIEYMt/F9k1sv0tGyn6SU+U0frc/yHfl9RPBE8cwwvTAg08F8jU5FDChn4UPMfxGIRM7YgBmBG6va3Wok2goGIFROfOVUoICxLdmU6tAdYRq+BfCwoTlrEkHajB+S9RxjA27YUCA5X4NTgFkiPJzyvM0rXJsH9OjJxbYWsc1se/qvRV7NxZ4EszQCYoEOcE1v0GIyBOgOgul8oMqsG8mISQKASOZIlS41RKlKDMOu69N2mKS3ImMoY36dh1t4hQuTR9uHnpEIxh4HG0z02Wd2sMGa1dHzOkemQKmP6NzlFvLwJlqBhg7zXoOg64mK3jxQNJBg9ROh0LXH0a7rA1Pj+jRqkA54aH5MKur4bbjaLwIUY/RUL/0E1UgY0ScAXU2y32DwnbS52AyNkp9vn++c/Iep+vWthNyX328Vwf/pzz9mwKwV3BcE8MpO/2E9qfTl9V24G/vldbNZf7281hX9a72YnJFOgcUk59hQ7cEjdIYmF4IgpWmwbuB1IYcVEuGYQLaCvCSsmhvQJyAC2DMQRHYkk930QNHettXkPADrJZ+Lp8PR6NkMhDN+ML1hNFuUmCHEBuWQZttGhLQM7cA+NcHHR150tvGqM8Fior3z7ZffPp+/ez45dZzxeTHF4sastq/XpgyxCWYgK9oITN1V4pnmW5WDeiNykBnTTM+wuCBPJjvjiHwaJwMewbuRjb6OgVhEKD5mFCCWHRn04ajzLs7j2aOln1SublAq5ngUm6LtGDx3XazFtKm3hMflt5/l7lwBT+wYoAw1z8xjywOgcm15Mv70bQz3YKchDuLZOM46n7b1WbcDgR5AhW6QW2CmPQE6sDUUmIEAVYv0IIuzQB6YiwxEYJliNePPyh329q+vr/UFPK8GtidYz2fn75WbX11dfPhwyo2vjv/51+vLX//2j6uvtz//8Yd37zdkUTIbemUUZ61sc7K+vvFiioGpYi6ZaZoORaFPgIPHDlfxKmkVDF/+8vnYC+FEy1vO4bEbRPCaAvhcWT8jOcJJMkiUyMwkSMDf0quIFoMkAukRuCOg6VxliCbGsNUhsYlCesBNC0S9HQagHaAjQsW67MzIHYBTQK6CjJWPZjElRx3iibrZSUe1qISRDxYLOheo8n3pPUtXcyqFnK5C9irqO8cFVbcE/rz5ShV7jEAHWHtZVcadVD3ePdI8yq7mRzHDrimw6FxR+14LJr1UZLKktgA6IB9SKmo6LIVd4BdMIp5oxJgjRc0+9J6pI8l7JyJdOsJIDrwlDmfpwrMaWQl1dhvVNxvHv86KzYiWMAUHVae4T2DKtig4sSXZi8/YEEG8xHghKwr2rg9TB9nQkTvTxemzhYgqXRlJOiQiFzSfnBxe393JgHAg8BXfTqSeHCpTsTxhucOZm3baCryV+iiWsLAptDVHsidKKYnJj/lIRFEb0qrH1v2VKil7QIGVg0tjTVSyOqw5K0zGnhzLL87s3Njt183xoVirjQe9ifaIzdXWS0eQxa6jrMqTd7d5mUALoewSmvLxBfRtNu2dpkcrRSZs8P3xsXUMhtcUiJDZFoIwnBqB2b17uPICaWVa2DLyk5mFl18sBTkmDL0RwpwhY55KMo1FVMZIOUridFAlMRa+gF7/Ausx8aypPRXuPz6rilFnNJOKMUTFzZ7ZfT06ju+LTfA7Lc8csWyTl6UWEzwssC3WiLTgFwgT9Tf18v6He0YbuZenJ0zkpplYalLsDiFfLFkwwZAShOQzJh8HmGBuZp7BBCACmcjoXxjiK6Bc9dScIgr7FCqbRSKSZ6Fn8wq2inrO6odJtYU+WDjxqeK0qcZvzcR0C/w8GXrIGMwmliwD1SXrALDmZYASlMGWDGUeJPJDYPiCTD4KjzU43PNKCuPmvpqANVNFBLYMIoamzLqEz+8Xj18uCUzRdMEffJA5ejdbnsMMcniMkhVr59+iwOmpnQBS7683N8aYCVJhmQAjK4hN2OWDroDlS2o81MMmnYMkcen4r2a1Xy9vTlb7P3w4Iz+MUxkPNWzj90cVkGWe8vCIot9ZvoLgRhn/j2x4Uqf69FTi3Db2ZXYXLPNsfI2AWhbXFb8hCPbpTJaTLKHQG3RJLsgXP7VgUyeRemZ6BjITGV/TeSTN5bK3dcLORsIQD3Yf6zkkRsFHxWlmz848w0jTZ+joxRBh0lCF3Ml9OhlBccWVukLt0YXo+p3CzewiTk4xUIxM+HwEBt2sT9eaMRCaccmsQosRgGajQm4ZW6d160uDNrZEApGoa+qPaSQofLtW2yErIV6o76naFLWX+2+NG6w1q32dRhi4zoR1UO0XOGPQjOgXOIuVk+8GS+LB4pEYkLz3of8BGhg5aSkS+tbrPyZ4zWPhq649QbgT5BGLPg4c8WQGCvLMgbaBN/f7jTU6L77vc8SIsOhQFFr7QAoGrCFJMNXDQDouPIahCqqFUG2GQcBNOOJCNYUdgjTPLA/qoA9+/Mcmga3Pw2ZkW6ADD55GtLo3ixV9d8id2/1U5dWkzs0w1dG0M7rrQTFwuJskuRshMkCJnkv+8S/PrycnJ+LTzcnqdHNs51T7wp5f/uOXL7e3vdgSQsKjg7WDzJlUdRevdw79fnBqCt6SEw64F0n6olc+A1z13ND+f1Wa06mJbkmik8KGTY9dIqKCAxZBcxLaZMqlgW0ghwHPlId2VmltJkWnjR9fBVXYrpHOXREXNSgOpPbRzVeY5i244cRI3xovC3PNEpFO9pTA2oN1frp5f3ayWZlv2Nz5bX2y+vDxhx9/+tPaMaDe+nl4pIrAyjVIxluAH8/KWaI+IoBlABMuFCRxPGJQUDHDC1KAjE0LF0bOQmjkbXiZR3m7OTbFRUTUwyIYKdJIV0KSOCNMbhY1XRhaY8hQHm095TPkKQOJx2O0IB0enue7q7dI56kueXI+1PvbRSZMg7dnZtTYOmbXN59G+A0dqMCYWbTfvgIg7vM9PT9/9f7Wc9f8WX56cPmOOKMv4RBEb+E+VF1Ic6Ecz2O33w3ahwZjI7woSmZRsNIX9bWOvxQoHa+w7/rm8s///McPH8/VObw//+BYd3noL1eXYHh/fPze5se42DHq/N+1F96Ktqz7MwhNn3DBaPO3IyCc83OEBpdXd9fmwop8Hp5k2a9v75u4Eq/iSMfniScqc4daG5V9ySNVRE7ghQvL+7kQMNkoS81wlaOisRlYLbidcRuxreCj7CxE/esozBDPmONqSTtW0e6jlxfAA9TT4i2B17VXJTThrqQ++4JFZsQH3gwFSmkM4ZdT58XY1vYOBeXOzRS/Gs5TMiWOBP96fU9IvdciE2bTqHIdawmCW+XpkkYyKTxcW/0qZbBF8M5hSJBgLAV3WVSu6UCVuKNXhXnCQ4GfyNirqaSccY58GXQsMjqXYqDwOMBSiKXlzieUz7NYe2Rb0EK8EpUIWNXkTGdzIfrHBTAHcOSXzHQc/2o5iP+ogP5wxyuKH8RmWy8HjrhhlJi1AsJCRrS2KAlaqd71StFUwowgSwQ1sqsRaVQIsX2ysv7ntVzq71t2iFPWQh1msOUMWYc+4XPLOIwPUZln8df5ad4AKMv+2DHzIwomsxj8kLgAJCvKgKKsCzSI4FmxVBREUFW8vDzZtcxUbnkXNWKNEZV97zCfMTBNj0kE8bh9eAA+ONk5pCjQKi6w5dhbwDC7TN/DazMNZW+WLExIWjQzCjMNpHlZBPQJCLApG34oixvO1YlAVjMbtQW4zIqJgU0bnCcTTlFE4KgEecaKDsoTIxRIEJOMeQW3XRCIQ1BLBuE+eiU4mW1PJfBupcAVACfeE9VAgMl1GSj8PvoB7D9NhKHBXUlSJh83ctmz4MOSt07FkiAPMeZ/aAG2CaGK1yuQLnZOYsYrgWA+F1bRSvYBqY1O3aiRbhDKipfBFfslvUUdhgSuXs00e6tDhprXbkaB8MjbPAoF2c279lg38QA8wtjxSegJjXm3iZ5xyruHxoRtZb6E+VIAiAne3nA81pzLJsLlxJrmwzlLPvYY2FnK3N8yfcH/Sgcduv288+9//92RGIYw+CR8zT/zYVpmjOGAwoyYD81IScOrYt/ed2P7MJiKr3BpoUepBzqY6GLe2KNsc+oYCzLS6JcgJIrIqw7wN68mZqYfnlqhEFYZl8p6HVhmLSB1RYyjH5SmT8MZJwn0HWkDaow+QzAsIyPBMT+B4bmMrV9JlI6KvweKzGhBIJvDSiCbroDqJ2qPVY66wG9w4I3s4Z5vof2GV3JnDP/8PxnhSOCr5yJNaljjyDIQJhsZ8YEeNSI2gDLpHvQdC6I/3KKBdtHQCF0jSGEx9kevEbZaUB+CqCZNuzsw4bvg+lAc7LdRp7fQBtBgDubGKTgcy0c6qZa7jecIqjnzR+9B4W8hWuz0ER399jU2J9pZybQoQpeLahTPlG0iYZG8nyDp7KACecD7Q4zSwvos2T6fjZ6iAlqfJXWb23ja9URckmSKPbT3lOtwgTJ/Od8a1WTAwxpHX03MpxEYbAERDK7EeHc8HFYxO1kalkdl2BEXqRIfQGWo6Yp6eAogHlmwrrvBNOkZIdMwXg/NhyBhT0AbCfuZwYYi7YkX6DwfpkO9ATZiusjk9fhQR+cNkhVc4rke8fjcDZeoNI313OPz2Qe+RPcLpuBAJuN5Sm/RLlMVt8KOpUj6dtbHm5PNh6uvN94leXImW1eQIWHwb3/7VZ57f7VvrXHJElEHq/kKYAQiiITgjJ99lFGIQw24/sVZ30FFN9yiS7adJLXmb4jgssRAK3cgGqq6GAuiVSLEg0Wk+JBwuliOeeJsKA4xqwroruH0r/ygYw87HUiVqgxodObg3aTofLaqg1wyvJPk9hF2z0lnezsqnn/6+cP7j2cffvrw8z//fP7hrJWAoyOpX1m0jbd7vXvPKffmsrZt2W02WGaWS+pAIHGFZ5zyJWoDfFLGzSQHSvdjEwhh7cqIQDzo+UG8p5LP9DoG+elDitxnT/skO8JkdzcocpnGSzHHgEYoPw209LCMuoBbBx50aXRh+hyQBobhVY8DR8++DmChE4f6Z8xQW6DxuIuBND9dn3G/QxuQ/ck4NrJ+ggku+nmDsJ4AM7zu13f5XwxhVzSsjSaBEb+nk9B3idrOI3Mr6UsAZc2PN5sAVY0rvbyz/dOf/kKgD9erk9PD07OD985wmdwkr/7Hn36aVy99e3++fv9hw+cq4xak653FS8sGWpImvGMqWRUbDCiNM+9//XKt7oWzEZOWu31x4q2auuH4cJK4ZkmEMtklgbfse3KeGLdImKyY0hsBnVgz0OtEzA5l4BudP9YmXx4ZInRMT6QjCDh9TtUmgGDMexnf7PUkqZL3RBhRtbaZj7G8E2t33k9qZcgusii2Lgistmxm542hL/1XwHJ3A7VCiZb7Sy4OCGJUEZuFDd2p4xfNSvE6wvD55f6uGmtGj7U3gzLz5mQwBFSDzq5jBpx5L0LVEW3m9yVqeAPRKcUSitsoLB5d7a/4O4eTaiY3gBC4S7R4BU7ZzKBZ0usO4B26+Ki4wYE5bPaLxAUlkKumXyIrr+17ds5pRoW1kf8TYyizufOisYr/2HmpadM+EwOqK6jXXnoYrgkO+2UXsh0CysX4kRcvSpNGKLNOoDDLrAaJNHy8fxH0SpxpZtrIdCrbkSCyvflYrZJXtQl4zRYcTORolf2DlaOIXtVMOh5RRl6gahXG4lGFOoScj5Fpz6jIxJmWOGK1OSYDxh6iPN20j7n8t9OUurpn9cuCcyU6zFLHq1YoVY3Z2khq1dR38q33ryZWUU46fGRHJZXzix6bV3h0n4DZ0sBIKhDKZOuxHRQ7Ko4yV9kEsa/IEPpSJh3VShyEwia0Al8BVu+aKPWDp5ZuWF8KkD33W5lQedBe39HEVbNUgEFIbAvW3XXdoJmZrGgy6zvMiWSsH0dJTTyo9GjsTLaCvmCU3xoVxixeT1zRq9ZtJacxGYG8jp1a1Hlmj+bgoI3IukXuCfGzMElK5iYLbPzIm74DgqJqYKGJ4pqRNhzlneCMeJbaC+w8vj4o6EBe8ko/zUUnUaQ9jD0GUkkjaqj/mD4vSYDayIOn2pAzhq7fLR+hh4UWG4WxB9BhhK1ZP6SweK6ZflkGf2DkJ98chOgMwaZqcliKeOUpRv+4SQcmIMs8Vts44m/yKn3QzqjK7k2Zndktm8CrGhrp3qa1wJ6Ys1EjHUJHQN3hIz6AbS5Hx27A4HXr4ubh65WDxVoqaX5srlMs16rmGDgRUTK28BfkhiQY+rSaqgvU13lXck/KMYxcIGT0poRFuSI39sSgPYUOC2AeGWASGFfwiEQ3C0g+++w//ZSrm5+h5GAWRvkVPGX3UgR9VwnCCVJEvwImliczfuJvI7jp2WjSFQMEFbMzCxFdYR8JQILd3LR7Lk57d4ytj+VK7NTgDdSaLfRxJWR8CynPBkQJbA0aeEaMyhE5C+hKoJIWVgSfNQoQHcB9dphNz3ojmn60/E8l1IwgTvMZoRnz5GDCijsp0AXjcN0tZKpZ/cxqDkGPXh1PkTQv+OgfR/1QKz0n6CDigTUY3Qi7dAxY0HQ5Pzm4eKiSO08Z0SPpmzbBh95pBcqSqb7GMfa6W0PkII4oC8HrI4Chowe/qrzrU/Bi9QIYzGEIUCDEs0SwB3U468sh7jN4XR7sMqvgWfr0mxkKhugWJp7FBuIcUvycx8f8edyF0HEZVHGtK55y0c+QKFEDQBSFhRA/VRyzHcqLWMdc4wIpVsQLY711DhjPDdKobwlXHfDO6dnq3Mvrj3ZOBUmnx7bs4PD//v/9XxdXt95Gae3c7kLpKyfhtNrulDHBhFrYobm6U94FSPqMiujDcUu2ZS0SUekZSVZnUTsjU0JBsW+HWLfeupARpEkv+FgqGJPZLhXXRlIcAb/riO8Jwb5bsSCz61QRDK0S2BXjIhVvrPohLnKNOztq9LW1NxfNfLDLkPDXPwKaRWy/OnDDm4/skjxcbbxd6uzk/OPHHxxo6OWa+hDOSP9jcTZwSn3wAg1H5nUDtuUoRnDTAhxYIAl0NI/ayVLgxJ0cLP+2NEwk3Bw+AiklHfqBLBMPzZ5KsHDYxViI3cm1T93u2ZHeBHiaUPOkxsXa1y4gG8nfKFbDue5+P4v6zMfvrb/3hVw+Er+G6MF+Fkim1zrSZnksYL4DpU1X/esnZgHObWKvjc8e67d7wT+Qj81x19dIMcj4NDIyUh06w7gxyvWQLkfAPBiG8PQFcFjlp+WAzekJBhyvT07PP5lBCtTvLi4Od/d/OD/3ehpLXn/7x79j6X/7l59We4KY4jCnh4r/RNJloAeFZMxPuwg0qN7s5v5eUqLi1HYFyO7VMy8VmiHTG7LT1tykJuSYIasIv8dhLealLNLt5ftqk1gPNTzSxABNON+xP9itW/d9kDVMvsVfui+JY1lAxO9+Vh4f6XKpSkAwF8XxVqVEC62Si2W6jrY8TpuYOwX/wbRe0MsIPD8hGfnAIDTVXqgtma943OGaUjWOB7aSYT+Axb8xIK/CfnN64bcja5x9urO8JrmKcPZIh00bFAhhKHxAjRw3j0+2DpdKkPd7er64uf6iWosDUF/UicB2OIjb4CvAsqHWxlxNv7mVGGR1c3AFbmOEFwn0FC71UuAMD7yRGRVyqywDEbwu1n6dPdOFi/LQUWc0AngasFXP3g3XSyEs7jZjAZ6RxoHpIveBQWM0rJhWVbUomgNUSYgJ0aU3T8/+1FlZwSDHkqIj79ALj7FWrU6CXuZVhjWCxLJq6A1piuXMfQkRCykVVolf7c6SeQndFlg4ylf7qGmR+RtCLpgyrqQdXqhxfWtRB9VfekG52QlWElO6kH8w1jYbPgr37bjtAgJfTtYmBEuaBQKIKjC0y/n6QbXHozhTAI3yQOqwGsQazQUnKoejOjXHJyQ5qp7qQNkVRcMBbZEfC3SItnTRJBleaX2Tw/ZVwz0GBWASXVySXkfVtMaVzFTmbT5nCoSg4CHe9IhFwNCRr7EqjTiCna0i3lkVoBVf+tvKcEqpDffIDeqZDqZNZRvzykY2kovQS0UUwHD4bepMxAaKAgBAauia33XWQRJjpQEP8Apaet+c52fpT2hOoTJVHmzaUPFJJosgw2MxHQuSTE18MAZ4Cl0CD10M3ThZkmjkerDHU6TGiJCQUMc+WMNxeshWBKaFbHKMAE0VfTMJfPx65Q0+A2t6grChrWcfFkxJo8fJunAfFmvzyL1+EzZdrL3Uw+rSOOK47ukhkd8Zo3xZwPnpuu4boD/D4t4J+PnLlR0p5VRzjsFVIj9q1A5V/Yaay2jVqkisTKO74lp9J1R+LUMH8BhAF8HgWX1Gh/K/Bqi5Z/Ue8YeC80CXSW5SoRGU3ZXkm73OHvTVD4TA4ylQEhWUAoQR6zdEs/bYXZtB3P9R2/dg8svAwHRvgblnDFf/DIrP/Ff3tMxKT+Bd31o0Cqri1symAO5rhm9CzTptiLq38jS1xmDMdDYooNxrQ89kf2OApweWGctTOacQ83x+t6hCgwZvIjHaoE3xbtTGTH8St4KtJSxLlF1cis98GNwayQ8whhYh2chF5ImQJxZ0fajZTEWkHfoWhshaugPpddh8OmVGtfYT11FyFeaRbDDBP0OS0Ug4ePqqB6kVBIwZhQhzY7rS56homdoAHgospjHC6TsYRxjRYfbRGpbdAxwfH5TBWXaw1pFubBCCB8EbVMTCfF1LY2mkDda46YrPWjZujw+Eemma9D0eqn24Do+CR6eujKDXA+Z6NEn+HmHMwPU3pJlvQ630YdbK9YKGQT6smQ/oRiizcaJZ6YHjs/0Pn05VJrBT6/197zY6O99c3Tz845cvLbS/vDzcdWSn/yXFV15zzwqURAFg4YucAWNrDENAmw9zUQziCv0FwOHRvgjJ8RcckCZI2azA8vE8wtyQL83EbcATRcCA0YdMxE8ho4IPSDBzxWAhmUOWznxYEoRCMdzUUId6yMEw5+MyF46QbXGBm0IbA52crTero7PNibqOs/cfDlcnTgldbU7ozsnp5vTdaS+d3Xr98vWz5VaxULLU34FqVJDMUpH4NFIz9gdsC4eDOYJEcZSpEba5CPi4r7t+9Fi3GnkwCi6jfP/giqiqazpb2iYhCFvFyCjCDJFS12dcT9r7IXiN3bAu9+OiTmiay4ERYEDPhPmZ329q5iHtXZueslR++r7ASI77XBvXpysd16r+6ypAulQzv4LZpRkDkEng21OLWUxBYqvmy0DzbG0iy4yCuQbQ1fK13yMYc7/d/wo/VKZroP6KzVG6vV45asUmAUdhmsCz4vYd3m02cqhe5nDz4Yd3p87AWjtG6Nj2VuddZqdmj1DZvzH6zWFfSo1niPwtQ3ZIqHPaNEiBB8ngpmlzmU6hiVM1q3BQ5fJQyGTbaFtD+T+BMuyswkNCEhfGBHLi2g4S0rsfnS5kRYTlB7paZq9yasiWSSBAcu0dExmBt25unH+1L64qGJmjrnRkNrvlnVrmCQATPIpRTObbpPMIJ8ww+PTNvh4AMT45lFChhSDtwAsEUKxJjlCDCcexAo5v3y6V9o/nVJPARUHQhKc2SpvWSmuy9rM2UgRpIBG42oeFFK0VZBFIP04XHUmsVkckt9oor86M11InsLAPIW47RPjeFn4UrubbGZmEB9zKY46Om0NJ3HvLLrvD7vP78gsEwFztpuD4de2s1h2Jaocumk48tgG42YfimfK4HiIymO4rXtn0jD4ozGDv7RyZjqm0XW/W/ODqcFd4zeDRQjt6Do+23304xSvLHQO/NIiueSLh3NtcgnXKHHV6yfPBavfoxOsTEExyXbKfqcr+C9tROc+HJrZLpbA2BqgyUslzyITZyOHdIcfHRZX2mIDZ8UuiTxMmMRx5EyHZwI06DnK1N53Ki5hMGJZVcxOCDnnZfmZyDWhKhY+imSrmt5s/aC+XL+jnVNrUID3dspAEDkP+un/kCFfpD2a5pzSm1gyx0CKTy9M9tE6E9AXTgqhdu3LzDl4ms8wDu9yf4qd8XxHLc8IfY/POwHUxIf7/M/VfvZZtWWLnd7w/JyJuXJeZlVVZZLHZZMsQAgFBT/oSEp+l1keQBEHfUICeWoBaYJNNZpbJqsxrwhzv9fuPueOSOyJ2rL3WnMOPMce0a7uByPH6lsYxcwWwXUI0DT1m10B+XDvqVErbBh6eOI4R2SET2StQf6XuKOjkXOTPefrob6XxUupQS2wocbyq2KXdoY46MTUdK1DnmPTjPvXHjZmbaVZkBSBn5cU2Z05wNZbNkmUaDpnobLcc1keh1jI1lFq3r5aozZ0gq6mPBBcIsNYNGN79oGDckZin7imGI1JC5LSJThCy9q9sRG6oeKESFFKpccSxmq0To08DmH/7xw+8m5zdqbGhTYW105tJDNg6dg+nkZHl4qt2FpFabkRArdV2f6OgmPLBvbiDaQotuK1b1FdAcZsUYXMG4M2NmUAYU4QgNnIrq/VB4oiIgEbSM6yDllqEQiME9cIIttePFNaUV7NkLDxV6l7U1I4ENQsq2fOIcEZiSIu71eAZ0xk762b/WLmglO0Vf2gIiiSV8Dd9OeXCMblrZLP4Kk4fp6Xj5fRhjce4DEQqoRg6mjuBd9OjosmQV1460OoJBIFoUNIAUYkCkgBUIKoUCM40R1hbuY4bLA/vCsGnEOvpOwGWnkITnVwjM+nvmAWhu0mLxJ2jITVmRiPR/oXb8SwhIFKACGBa6W8SKKchqXhSwPfAYQ1TTgNalANNgdwAfEjjPIsxfhZ5CvlCIfnn0pHEsTFitrjEDljFPFo2AU4cFRykR3ERj0BkRvKGlKBw9HSnfgui3VFYNSKO/kzcatiVOIoIgVIYuCD21fVUWWDHjPrdRRzhKTbdyqxhzSpidtCQbACjNdoC1yW/VMAftkhBCxOh/VJAsVwia6a+WAjcfJahBHNAVSWVlTcsPKuY62UMS1wKByPVZJpYarDp1QJNI/Uy8YOL0+Ov3r85Ozs+Oz781fv3praPj08/Wb3auOeht4E6/8dw183tnaz5wFR2JydYPFq2oBUCOx2JF43AGoVvZjkzMNBoLIJJkvWoYNGpLslntEtSiEeuwJhPZh4JVkOOsbRJTgoLDSMF6Zf+2ASmkV5xTHIzI21CM0MCVoww9FL6IrkBVtQQZkVAGYY8wx27f60aP3v7xlULJgzcFe1E/5a38j9rRQ4PThTEiSh8e3ups4RwlEyUL0jhEsZsq477sgRUor0xG3zQlA+jQHz0j9bwmqttvKCLuZ2FfKlSDPLxTBVlp1mp5JQo4vibm1czsOsRQuYnsiZYjNegPzjjL+67XlRNtRQwdUu+lcRgECaMxsgq1LN+jL4qTuZdJxpVUkE3s67+95Uf9JSJ105n/0H1mXQ2vjY3hoAepLcNQqC+PN1Y8sh5mIMA/YqDsbyH6fCpQIonxt5aCmzVgbPRzQW0+fbQC8L299999e7rb99evL3YOzzx+tY37xz79P7b7776ygFQF1Y0dI6H1IGuzUWmjLJUiVPLM8RkzGHQSg7tuJb0GBANUqdJ9aopNiNzahjbuouZEwNxQume8CfxNaRNRmycsDbMat05iPUgcoEJUxnFiHWNzTLICWVpRciYToUB0FoUgpLiyAkk5FrNJWEiOD6xQVlOc59hKjmjZSVqYxk3N9cc/+DwWCrorzHeQj8GvfXOKaJFSetnymBsNyhljjXnyt9f3twUUEbOgGIWI2Qui6ALFcwSfLqSjedx3B9HVFD+VfiUjWy/eO2Awf7n55+vbz8biDczIneUjINlQdHzlmmGmwfvaDu1LquVOhJiy0cl+Qf1EHinNNXBWviQs94Yk3g2rffUYqf9Y2HXMPgQzw6eLSJqub13V+nz7AodjXTcPm1dP+4cnF48vjikVQBwbJR3pvVq5bY91MJ0eOuciWIYgp+UKLABXIobZGMIw45kKVvsPHTYZT3NtgfstsqmoaE7ipNS2TPdWIPTk2xaKKAIRluHcirad5B/ZiYV1kBPJmYlVZxmabfg2IRg58L2oZlMSgZVzso6LAjq9Qx1xLSbk7VzVfa51TVHE6lt7v58e4tGhwXx9DqxouXWrs6nHopek3fyMmtcZ2/twuJKhmxaOUOqoi+k9JYzENz0M+hX4YxeU80hlKxR6HQ7SRcg5g1E+xSDFOomyxki0/HDICNk4Ll/uVdvBV2xQuHCl45tdiWUJeeJHrza9JJ7VmHpq/cW4bBGh2IlrIVTHmm/9b38r2wooSjX/JUcd5JBvT7dALlH0MoD1NJGFXYmRPq/KFOjX7hAmAsfBfL8cioBvXzR70m0ik01LjMSDMqYd2g1kZOd5w8o7Hiv4sZgKDC6QGRH2+ikEZkYpXtSoJiVBSOAxicgAGDqxgOTIAsISRttJqWRxsVgHBkCoMGNZCpLPCyzhXMxEJeIdXpyqX7vo7i8v7VbXb8dRZndJE4w1mKUD0TucI8Soxn9pQ4x7M3Fib59wtDTSy9lU3CUXE1wnvrqlqdiHxlohnzYnuSkaYreeGAO4PJGGGvPA6qhA9RDlaqGMPGiiJEoNHmjgojqp8cwSfqHWY7thiy5vANhiFUT0sLr4r8c2vVgAXJ9wEQ2XAwzAtRVelBwptoUf0cU06XUHTdNjKOEsxJdZSmOm7SsqOJTBeo8II422WY3WpZcYxKCwQLbmLZfcUpcK2tKe7U3pdAxnHAiLmVVsSX6w8C0fclsHgSrpL90SzHAxPc4et169+6dxCY9lChkNKlrFre5HlwhGvspyEQoPIoHDm+l2iCBn2JGAaQQz7LSXGPAFsgjIppHEnGYgQz9JbpdKcHoo4QSKzhy01PX6kxTm0FkC1k2H6hKIOo0J4NIyvf8r0Wvfk1p3pyU0TpTkFNxg3ERXAM1H+UXeXgCGj2gDurCh4+Sjeq5Px9loMRm+cS4pW+6IRNl8FSp+hj9QHFlvhw3BgWdJQRcuZ5H4V0KrXuatSqzMGIWQYrRZnXnQ2UJoMwjgShcb4YJjuaqjaOpMqSmobQVm7lK8FE5QnQfzW6iGMDAu7T9S7s8TihDPz97ayOsRaUWCHzzjRHw3evLz5efbq8+XT7bs3f3eH11pxgC7m7urBLUVUCyvzoQpTkh77A/BR695fLlwah/EwOpxxEi9GzAsrlg+Rg+OgBjdSDNfTdC6mN0imqQP/aeSNjDWEXcxwKAoOFAImL1BRFNoEp06lq2sNRdSvFipKT2diTQ2mXl1SIeTqbRYEo8yllAZ2+O3n3z1pgxoqypYKc0QJp3lzewakGNEEsfoD4+PrEKypQ2pUZbgbXJiqLJHHeQtoZfj6huDCSBZ2bjHMqmtB6lCwVoNp3xspRNZxVfd3z3ezS4Cqw7WcP449xcWLKEAd0XUSTCloq6HPhjVIMh/8p0uuO/UPgk1PkMUQvUZPDKDAC3htNV3a9NmSG7msWWQAWQcLpwWZ2ak6FS1uI2y/ylbr+jYVMwf3QdPUCMhYMQt8knGEu861qxqd0jV+omhSboOjbRR4iXIqfic28Gs/zhUMk3EkyDmttb33z/LaP86t259P/jx886gFZ90eqpbcHHjkg3QqxTnV/r9Qnzsh/tFlO9vb7bP7C+RU58Z+UYdq1tZxe6yCwQHWb8GZl2uHllczUyC4dp5rmbNKUNo3X+DXK39AV75SkNZSGefkrvMmWT+B3Ax2DFvTShCq/YqL+xjzIwjRyDbweCo3imt635tvCYULiA838sQ9YRkpd/+nRJGxbVWI8fX0bFrfJ5NkLf5lFJC9tBgBd+WENnbJ5a6PCmpeiMYa+pjDIq6XW7ZmfYkh2NfhCGvBbkxHLtGuKMR1vYc9T8XhtBe/FZbDaiPPt662nM4BxJA319ayqhwRFMYVmngiSub2cQ1abSRjZnGM2SXCMXhyegCsCk58XGnlmjzNpl/whru/XuLgV5NwJw0h5j3dizE+DuxmyJ3d53P3/+zO4RSTUChR3AxjUEAePiUjVcOQVh+7FRElFa9pt65tiAxs9LIrYq7ql/RsTLrSUQxkPqUT1N/r/9ZAu18Yj23WkOdB6oT+mEUaPsiJxO72lxNXuQ13JNGn9++gx3brF7Y09F6xwZQ4bBkvIQZsqCNSv6Fb3Kbc4zaOmO8+l3zo5O0NwCfYuOev3zYR0LxR4fEKYKFGqTufBcg1D+6oQi1mpzgtheL6V9q7oBjWl3/inW1WJV7o40DEs/FDDLy8lBlkmVZYf03wFE8tSHR60JifhkZo1i8wAnLhxDoH8R5AmAsZaD57w+1OFbzDBRULiRoLOtSGCP3dDd5Ynlb4Q/m7LUkSdkml7RSCkTM4Gzd6MO28QS/yfwWuqgAEJeeryMgcpAn3e2NKVD1vQT/zXZ7LlQv1oSdaGGCAz0AogqJNEdSDAmOrRFike8phaE+3oP793jbV5ha3UnV6FTclsW53qytxItA2pC6eAS/jr7y2JDv8mH9KAkfMLxs2Zs4rYf/S1o0BEnaQjSZKDZTlM7ykfX2gv0+PrTJYupQ9WQgclASsVInaMSM0IQ3yCisjTiRGWvlSZBKaV5G916FLNmn5gaMpSDPZoWWTw3MjybsJywiSdSZflbW59un3786LRh9+sQDb0plrDLRpCzGgG32OxATg0zfg9mLcgYgnv+j+9ah/ADxYlM+oCTFU5CXN7e4rjGJZXrSa110qN1lcFzz99pEIEpTYrLZBKmgQ9KCuA1qWzamqwUrLqvSqegIa+CmRu4IxDVycFdZjl3kzZ6FK9eVeczibErQLIc0hsQI23waso9VTx6SkGnVfWE4yGaLen4pjLVPM5iXpyLxxZdGBQTETAflYpHav6GQkD9AhMbQHtmxIyzUnFCnH43eS3KfI8oMZe5RBfBqWIsOZaG1TQUcQbGwMM1UBoVP0QcNTpWb17ZjQBREKgxF/qOPIVVD7Lu3fTdG6BKgK3Q8p1zKpuBzom2oW0kTK2RTtKIqekejLcHbRlOkBfReKeAnDzWsp+ROCbg8pkbeoqGVZo/yVjHRHqWGJcAUVV/fcpXJbEnRCCZxwBBXqLuM5pJ7PO4pzTp1+CyjotH0W6dEHeyMVjGvECIBYwZjWBPM88PCFQKJ73Iz2H8N5JJmzAu1FVnLyqX62vqrL+vEdC3KlAJhUKC8YXXx68urPc7NkB1d3/zm1+/u7r82aY1gfb2+iq/3PFaUAeEHzgsXThAjvlHEQ2vdi7SQv0pUjWK2nIANRZZkSfGGYyptelcAZOVlUCijGI5gqIMTlzEn/vJogEJ8mj3sGhVEM4D3dbLzQ6JVogtaoy9eYwCcNyBDvuZBsPuv+yq9nXmbZBqG5hm8fTk4OKdvYc73it0fnYGdnG8IWPjbFr5vdubG+om0jIYe4IPj3cdhWTZrtbs2XGKRxBCJysoxcsS0mbKzmQSggLkj9ixoXmARCT1OxsYzXUfqVOXmdTKuk5rFahMZgviFMrrKhqcuZ3eAWMDiYhhVKen83/2n9N7LOyNm6BoJcxQuE8dQZhrYF0j0GcRMLyk2QD2NLMM7zAK4HrgN+oiQ+WwLZLmAuYeqB7hkRUhSi7f6QpTKvoTY//VJ5iDKECe9d/6kI8nRBSdm/YjSbs/LXGNVLbhxWBHu5oxhzLlI85iEYIODz7J13/16+/lVFefrr/99t3VrUPifz6U5Rui8w5dRt5ZDWy1Nbuszvt0jRI6Zwj6z5d36NWynEsancDTFFO2uQKRWG9UfjJY56fv9ULbB+tk7hmxl2EzZ5xk6VhLUgX0ooqoXgre4e6kK7BgMH+3kLqubYIQaUVUOYq6rb1AX2+ASZoEaKEN45U+0oQ5jzsvOCi+bX++vHGopWJloqzUdMTDo8FsFDstHqpJkvSoH59uLQE/QJMsKGmb0DD1b+v/o2Ao+TDvUStDkaa6dU/Sh6Eo56Lc3nk62kVIBweLNDU2qVXzo2kv8luyTD9gE0mrWcyzRXqnUBtHsHsWNMuZtD8yT8tILi+vZXiXt/cOpK+7LvY74jKRgUwehVlJnVmC+kLyz11LWR6PeyMECdh01HlQ8lpyK/Wb3FFfrWFRVt+yC0cz6RHRbP6muTR/aW6HkB1+8uboVPwxbDlm2/Gm+khgQS8iWZ5M0fMClWatDVZnvNNvo0Pr+8Vg5yVk7ah0BiXDM6O502psaw4FGR1Dex+krlho+krqzOooL02R0q2wfLh/IpmzAMNt21p0O8tOzLfcXOmRrvVOTlslCvITZOvBeYfXvnOx2KQEV5Bkabmul716o/O5vb37ux8/X542vXnw+fLeHD57YhhG+FkWwvxSQ0rNT7XdXBcvvTMhr2/sk/SBtc8GMZZ7mUp1k6XNVMO9eVVMI5PMOR2+wFRTnOGbTEvKrV/j5zR/7MXap0ajdGG0CHl062SMv87YH2m2iUUO0+yuaKu8eMFuRBpK6SQ2pmbEp5aFy2SUCCdD7WBBT8rFPpJBVVQHwh2CBqVwJSrW7BiRGkec3EZC5D6MnvvTqEJX2qkCrDqgEy1QdW7cqCve/oo8SBCjJdkXMc0bizWUDLZ2De96q7N8JUrqtRYXwdGHR43OOl5okZTQU+9ryCgmwAOvl4FwTWeVciSRvSHdBCZeUdI0HfU6yADuFTwbFMbP6/YPP336q+/OWQBeivjZcokaNESBHVrQGGCIzZJP2q/cttdaf/jwWR9ZbECQeEQRrbJVbfQVnZlHYSNJQszuaYbYBnh20IzHlhPY3rbM9qz4PW7sUbWSQTGx27Fco8AXJDm0oACMzLK8YlQLDYgYJ66U4pEIaaTDmUdqGv8aUoBqTiQyh2mF4CudqxWLxt4ip1mfBNiviNgU9zg203VBDwT0qCQ+kDNtjmcx8WQHKDKYkTjqRtRmMLVqUZpikAWOP+s7NEV4EFdr64bL0YKqzGyZq281AyaCUZDfAiWG1/wRKEMTjJMnwOFjIEEkq3MvaAIcHQoiULTi27CmnsykFTBUhkCGMikdmy44soBI+KLV0PZJPSmpP80qSIZEZEKBfgrkNpODxrFrwIVOGIkvcSTSsZwFawb1lSf6VcbTQMmuZu9a1Sfseiot83TzWZ2QOgtTlfd2IG6P1aWb8fSxjLmKpWEh1iZJhTCCk2+ScUlIyqSnYBSJEkB0zSevKECjDn3wLoBqEvjAiYd0nxOnWuYLG8hq+Ax4IJFHvN1H+hLrgEp3VczEuwbHZxVwX2Fo1AJO618VdEQ/p0ijBawBW7XhV7GuwORs+bScO343LSjmzBsGzWTf1rffXmibWK92wop924HtlwTWUmlv4GFvDkC89qacxnMsk2gcyqio6G/IzRJqNGvLNEIwob6ztHU4LAkyNKWpnhfcyJRbwMN6H7z7RhrAGok1Tg3YrDMHcGislaloYNLKSGKuPKksSox7yRQM7Gk8EcRIlASZ4BlbwYWTOJOhBoyM0kVsa4T3nMO4f350+vVXX333/Tekdn11RepIzQOs+LEbGkm7W5b/amWJ12YA6yZMOVirbaCoNbSdmBGK9dFtEHOT8wifPRJ1BaTFYwZIgHzd65r/Tt6WRY5NgjMun6Mq6RPVDGDCZ2bjubtJIaw55voMBezZ/+q4N5UVaDpliYvZMI+Kj0mAAsCgXQxk4YNh09NQTY2xmXBOvfDFxFJDvwod+F0gXEfzEOB7jDN6fCoz7jH8YAi6CsaHLxIDqmwgpIGAJDtfnynkMhHE9Lo7qCrv437fsIwPzoheQZnz0hZgHId2JrOxyvxY7vz1t9++f//+hz/9wBs0xxfvz2XPXP3r9+dv31j5te8ve7V+xBSB9hIjmvlhh6HWDmtpLXoxqqwRHjcWW4VzHiAT1jp3YO6Ip0io+Uyf0r9JmJaKGUneYTkFo9LhaGTItFxTr7j1SAyYYZ16C6xdSLbSohHtktoEQVbmEJRXWEe9PcE73cGyHmmhYIlUWWTqYcykkFF4UxAkzebznqftm7tH7wGgP+6DNr5sjFttD2+uHT0pWXu8dkB9h/jJcItOwpJ2VdQQCJL/wS63pw+i8ARFch/QK2n9TB3mOqGH9tPbwtjbgusxw4gVjYfNp43+986pzrAXjSyXsqjm3OHh5RnMg0Ckpx3dQ4yRAH3m0LSeTz3yx+erm1vTCBBBJyMhB8HB4KtdDghzTxbrAByZU2NCOjFWVd09Hp+eSnqsj5dHaRdNGV3dPwtyXoN2/9K8BFlyD0eDTdMvQys4SFEJ4ehkz4SSH7WbT8/nh8cO+5RAy5PrWR3vHhvwMEcqEOofSnO3ts8tpzg8uL29EYyd91+Ea89eR/oIfwwZy25m9yUZ2ywDPK0KndpeUorj2FCL2pyO4q0Lz/cIxgjbuXno5NAreybqm9m91ZvOrOwiSVJ0fMO78zNitNTKu/AyqnsAW/FvnwYBJqNOsvWOFBIdH0xMGohaebYhgWUYOaxkt+3LlCgdrEujFAOnQ60GvjwtF2KmFDetoWCiv8SHteAUwSLhqHuQW5uLkFkC3CwLgHXwKqJ96YOZVO2fZ8WKFTOc9ubkKoDF/7oNnvgUEYoiVW92q34tZ526weSnWCtZA03B4sYMUWWjDYUEiHAYquvYmBQw9ynBKMiDXpiOjOQzojKI5r3ybYfh6eDwVw1NwYqVzwIqNgBTKMLrYBnrxLTFA6lWvv4kIXPIkHbsEkKsL8Rfkx5iCpojWwNR+9iqKpwppDbzp2xFQ4rU8oGMX99aDEA3IFyLMVvKqw4VupELUNAoL0ZsYBgxRjEGqYFVm4qx5vdo/8T5GQUlTSh/6nAQvwhk4hBBEVNpsWpzuVLb+n8JwW2z5f73Jrv7h58/fi7uUAJ4o9kCDiZS8/Q5J9SOmeU1GReaJ5MGHLtsQqhMF0qGt34djbA3pltoCuWqUgOxIiEhqO5DPSqqmeRYvmvGhoOxEMVqg/yO3cJsRlh3sb6WG0WXGMuU3NGYS3EAHkXga2MndNs8wwReRaPCH2FPogJOWFcTVjT3lHijG1yBcagf5JsyUZIvTFG5sXIZihQHE7mcXEevt7wQS9qVqCS1aHUzKURKYatieEu7+CzWYKkBHhzyaJZqAEYtAgecx4ZgPBYRI+uNF2Un+iszX5YIa3RzF2hZx9Z0mhHpd2zF9kg0zxsC5m0+2GIcHmCZM60iPGjEMakJgLlRvCMYP9E8uQqUM/2QwrLqGXhwcwoUG5ABOU/Id8x4bpIYJ5q5LmBAB6iSqqBRscyqebRulkxEXmNyPiRMMjw4sdW2hdcnAqOwJJQJc0Zi8BOk+J4UdASQWxKZa7e122Pw2CmV707CmxpjqUH2B+C4i+GKha7bgLtOvKnBk80jF+sRSwjXQA7EiEjJUYTh/0YPBmPT7gyZUXgZ1vPjZ6ZhhOpf/4vfOZuPuXg1iBzdMSn39wfWAqyjO0jGeIAB0IdrbxH3CiSGXTEvOqQngRsenqi9dnF67F04r48MoWTiaZ/SmutMmzPmSQvNYgHiD44oheFpwhuFKiZnHrgUNYg5TWGqhRNzlkrDS44Mb4sS3tND6bWhlNTdOGXySpKthXDUt06DBbGne0aq3r29sFDCGZGGTg6OvcvJKe8B10wihXcRM8lwEBTTXcEiaA4FyqpZO8hITQ/pxL2Eb/rLDRC4vSiyuR9tfTKtYROkePGZR5kUY9HtDNSmzQvoXPvfx1eE0VXqzCXIPdwwZR0EHP8+oPnpQvkKB2jkMD5Lph4WGoKJbpWTvJ8Jfj5A0kjmG8SsC9nrkZ8LZrUHy/DbU5T4Vk2lET1pkVX10BOo8TsXKwS58FmkhGbKQb34qVqfJGn9xlyvUiOfoWrATi+6GbNxOqGmozkbJ3YWkJyGC+9bv+3Fofv7d69XzFyKv/t6Ia0Wiw3VWcFxfrx79tXbs5tT2c71x8urg1uB/OPHax2D/SMpqXyYOLih9bvyIWPtTsp/fHfaehHRzmGROExgxmm8tsl4ee0zhZgzs8TsQOLFIlxwOt0O4A737Sdu2no0MJInHA181t47BEyzwdmwntAnQjSP2gzoiIz2i6K1mwV52mFstUZVJIGCl8JBM65K9k5kUb3EBSEMXPhSoQX9vUurGDjBpsBQ3+PZQmapGnFDQPOWrDM5xNZO4qrC4iq8yvB43zMFP3ugkdpt9q+4oi3ObtowAsjLEjsvW2DvvSyJ41q74izSlytzufYQFz87t5Tg1Efk55tHsSjZFosaG0aXHF1LZX/sw7ZElrvrrGNzv7cX7x/osRgN0u2zTBytY1DNfRp8gE7Wo02zQIjk9+4fj06OJMqfrjofkyrJ9/7B6wvuzq2nOT5iZZxC86jtkSl3gr6YU//h+eru1lvMxK4cbm/r9uH67KKpFQrROtAd1i27thyS4fkrZVbt8f7Wzt1ScJKX803rI3ExWyWPkNkIRFwFLhKzQYAgjSoasQdz3HO5jDOOLlu80+vbX2wQPTiy3/0FLmXYHoqseyNkyiMCfTxH8jMj7bUbeoe0dnV9yStUsWlkPLe1Z9hho7SGHrRxVHm0kZFpK3O5rKJ3vW2mvLJZptDwpKFDu07F4WKgC2LX/8gry33NnAjy2RKqciXfk4r1uqUJLkV+yUNeZtN7x5Tr+zjZCHcGjcnVePWEqdBRR00uwYvN+R4vMCraSx6pGDu1F6wUpoK5HF1qhNSYRwOTJSJ9eLSBGU+K4m9slyMFkl6nWYdFsRoEpBMp1aAzY0YoQFvWkrEK+oGtGgjKbUGrg+COQ+/dpVMJlb9gF3PzjWaYXU1umWDdV5ycusYaRgw1FJzLfalh6AqDqkl7tqnoJCTWQgmmuRHktYMKM9nigvdDP9w7yOvs1PtumlTRoW8h1vSNVSlQM8Vpk4tCFneZOTTc0SMrpuhGo28w4MYaNi9FeLq6qXzLooghuQyR8JIBeB7WeAe2OZtUhFF7XD5cPby5uv/qrHcEJeUURB/crFqlSFXvT4YFsujRbNLmAXPqll/tG6nBNmC3wIS4bLaxxa5VD0Oiolksx86sCIicSf8GRdXCKmLUCNeawDsWhYwIXKylV4GOIc4kSfCLTzU6Lvzta3hWWxCIZ6D8gzTIVQ5gDW40zQe8ytQJx5b3bGTJ2WSMl3LkLDQil0Ct5oMV4xh0qDQ2/a5CUqFufjjTGYje5P0JEV60iPIqCUxNAQxytRCdqQbMVGy9kPhB1ZfkJT/ujOE8VsH69rKzwlYgUOY+U1O+RiVRNWAGoERKhYTZv7hEXtWzSpRzqBD31AR4Azl1fyfGJTjFuL2SU7iUvT+RUBRAYfbNt1XW3bDujSpmFHwSFz6gTFUagQarmujNJur89DALQ5ZaPRzEwKJ0eEy7GUPym5IJtur9bLBByboHgOLUHfY9XY6pELLSlJFS6KNhmiLsqFK8qXNi94V2ujySx+TCX6zN4xDPiELdoSGiOwNIfr/cYxVzH6E+yWJTJFKVUXEIjk4xSxmeibANKJGu04sdKeDNjPeOyTSYcHl3+903X3/726/52Nk3X/3w+79jVMo7848LIdX5eDYET/MgGgK4pNtkQuGAY4/tinTSC5Kw6sYS4EayZiFTnWuExlPmPtGGGs3gZleskTBpLbdvn1Mz2RCMtcc14Wm3aouLPu3GA2uciggypjKK9OGXfsLjvkZfEY2WGdTD3a/fnH717uw3v/3u5PTi+PTMSL9qZJY+p5fogoj8sk+YJY+yujMOlW1ESpgGQTJHiIAUSgFZRehwEbfZVWRkYxt/SVFps2dB4EzZ0hiV32ME1QWngtDnd4MsgWU37vfpmSuiK0dxmZMJt0PJPBJHxt1G3apFkMA06AAbUJFAPJGZeXcz5OPaYI56wjRPQ/AFF35iJGoG0KauguwhRYRuHi86/Vi9iOSSBfqu7qod6lU8zSXJDdcTW4LnHx+LW0QqM3QSLHqid3DijUvimqm7M+ENcxLelzfvLlqB41QWC/3PDm8+Xf/DH/7+4Hjv7OAdpf35hx8NQl84wORl9+rZJpYdbxOzcuNl59iWU7jotDy8CGr01PEp+76vd+9Pe/1zcwH67wgzGFN+kNwdFd96dKRBSILicdKdARoZq0Fr0BpDE+jyh7Il4HmHR3zVpJPhcxKa1EPJoo1wweDLRK2HnAVpmoC6MfVQsogk40weK/QMs83oJnOWNFscwimsSpqwWemG8oqHRotJu301HNneHTYvNsNFiHyw3Yc0w/Cde2M4uhiz1wyzCfg5+6gjNRUQWtJRrbWIIPgQR4ocGvzirxQ4vegXvQsdFUMGMBJY6dCcyGlxTeoFxKkvnlmls+c0Gnl8R17KhLx3uWEBm7zNzLzsGAIXfgy8Gny1do94szHTNTTQunASCLqgKGm5d+SnJL5czIjGgVkSXFze3FoQlQAODihEFRmko8ju73auL1EYIrKyjVYIVOvVGIcXOr06dcdcygl2dCjkfw0SWGDpYwTBQUpMrrY0BkmBw7FSTLFK7RSvKE01qi6w07Gkf98+9bTXhl8dI9MdiVnS4s3NqU91KqfWraNXYfjxfuts/8w6IoufTHTp6xC1XgoavKr57flx63mcnT/L4svCjf1b+nV8YNKDAcn8oLWsUX+Ax9Tjur8x7SuRsYXaFgIYDdccGwrMMKXvk8JygfT7CFohpObMHIW3thkEBUMnPX4JwtlY4oycrjnYZnyzSluluDr9apqZGnY4UWBUkSo4n81KUS8W0CXhNAU0hyJNknvIWR4dzUt9xZbJQHKlyUOmtclAdVVZrLyWhLkBl/JIgoY8tk3IakBXIgVnyUOBF1IB2/2lo/H0oFF3eb4/olKup0ko6EyvNNtHdmuZ+NSsf/OzUA5xh4GyBJxWmVeFKBhpAR6kgE/ynN1OGbpQd3bd1NjZMGMRnZkbPQVUqceP6ABYqspV9QvyO96OXevQmMs0wWYmM3XP3VE8UUPHclBG5qj/4cPld1+9VQbGYOaPqkhs6iy5AyyVEYt0gfm5Q1M6YKyRwPcuTkz4sGqdZ35YT1OUyBDopRMpoVhzIuMH0zLVbtSN4zirCbl52Prh47UOrT3eNMUu0kpM9i6mVjdRjbtu4eVlZf+pJz7k8U2mlRBwI66issK0g9pMgDz5GGhlGnO/nCoasj1geIWFiJbw6TIJvaISXbR+rDY6dQNNLPkswTSeTqVK+ktWCCbP1gjUzsJWnkCYiTrB65rSdlqoqUCgP2BGw2rylEnILeYJchWznCJnjem6yBSD4x6qUI1H0HMf9xUVuZM6glRQyZQQjAl6mmfVqjM69p0pKDTI3B+1NL2XSr/wNk994Z3iQzncNqrqmjMQULgiJbf3g7xIAN+eyl49xfaAR0TtpW90Znk16UU0FKIn6PES8qpEmskH81VRA1yEaWfQ0KlPgw3Sok8a97fQMoS5VNnoElWBCRGuVjG0JtL0RJBZhjIu6Cyzmwkd8DHjXvFu6X6IQ2QKSxzzIQH3S/cHfq4XhWQVJwuFwWQrQVNYqw58L80Ngcp2HwSVXKe+gTDDRZv0padgkRuq2ff4RhXz4SAwcUaTwUmDAkYp/RS+EmVXrGRRnpQW/b5DuLB3d1RMSo2YNiTjXn6u1d/befPm6E8fLq30+YvjX51dnHz+8ZO3y1vhevvhCrMqW9dz1d66Torwdr9JvuvtwoF8tmaktVR/PkY3cYJKzEow0QSd4fZkLyJUabpM1lNrDUp9+2jPtQfopbiyxBhK+GC0Nq3DFjHbIlQrNwh6aRlwluKvgKssLRPGpBMtvhB4TdZLZL755uy3v/n2zZtOgz8+O/MeNPo3NKWxBVmiQMVF9xb1ln/II5HkmiEl+RkgxZwivokOYVFJ7OhLg4nYJ4JdRe9ElundLZuJNfrKEqruzxTD1OAYxkGAdwAsWU5IcxlRc0fhcGalckp4yTYLH8ccKnoEvTuKjXdUlpA9/QIlsHnd+mzIHz8ayJBERioAdyxq4xQghxSFIHgQgJw0pGpt7ovI2t2xzCm/oSQ6pnBGVWnlezQAw+J6UQ4u40w+uS1liEghWoVH8pE4lE1sWSsGiUSN9o1UabtXt9YMa1cPjk8tSzGzfff4ee/k0IofU9xnp6fv3p8aRPinHz799PO1jPDjp5ufbj5YzG3YjJHf2RLQ6gVpUEkiJg0/Wfh8c2cN/b6IKRE4PGzAhvHJUZHi//2dozI0dGy9eDFUPJUFGoLvTHTt/rxDY3qbJnWJQpT3Jixrx+clXBp7AsF4Jph5D++GinnI5C4jIkJjttzLr3GpvOxVxsMUTDjIewiraYR2VTrfs/UVnDc2OKYcq4VzZaHpcXvb8pt6GLmD3KVxXOoQkV2TfC1lusiKcodRe/rfbkkqS26fQC0MFVnmZ0i78E25wS7dp5RaaPG0NnjvkH7k7icHnTNoTH7HEsTdrbPjcy8FlqlT9+291Vlk6RicB+v7vSVMqAbR4DcivDCAaxoklqXcUUhHDHeMpgN7rq/vvNLL4I9TDPZe9uRG8g05nGB0c39jwYxD8c9PTi5lxLf3phDECitGxvaeT3SfZB40p/CkGw4Z8GYsYjSYf3/zYA+FdREsL1FYHLjvNVUP0j7v+cKqHhETYpMM0xxFGUQNk+QjhRal6uM1USz9yEAlvM6R3N0z7VBSo9bpgR3dV9fyJPtOGnKWF2riuKrAga+X+4IbY2NxxmNQoQwL0pCRdl05J7R6h+PdvTVmK4J5yngxqnspjFOgkXKLlK57x3CLqni8FN4pTIQAtRKI1m2YtkUTL0qbTCP7ulwsRIKawHQap4NdOuMkWb0Unak40sewbWZfSpSBdO4Cj7EBo+DHPla0ZNcl9oJJTs/AbBTrpNAnxlM/ILzWjbhKjLUDNRbsdhK+rMgULt5LuElOF98gzngaWXMgs3xZ6gRVLjcyL/bO3IvDr1oynsSyxsnMxuCl1PWMSmEm4PbqD1IuTuXiFKidarlaa/6UkwogQbNF000PSmYQ0cE/LaurqR3H0fekrteWxIoVOGu6uzjefIK0ITI4rwxVZ4xKOG/06+dP0jJpfYHSKb3Ku8prVEty+SLv8l/EFfdWE5PzRsMs93eMLxvQ98QIdU8rKZvdZdhlGBNw+GkOC0YCTKcVNoVoC4rVs6dHmn8aFUV1Yu2SgbOwICqS1xBAuxOfVUVDRhsE8Pxt0+bzp6ubS4srvXJi2otIJ1jlyp1qJFeccbEBlXlTfvpN+2ivDa3kcF5bmankieVgNeJ14UoF5xM7hBA4HjQt/vCb2BUIeIlEylYx6BNO51ZGx1bZ6CCpUc6wvgiJowESdrdLklXOIeHiT7DUIiZP0aNECPyIEV775LaL+EgbQfhZmYGm/YK3ciV7KAkYpidZAV5HBKxOh83O/ACXladNiCcx9T2mjKYMovIes5fK9HG5KBjoBJEpIWEsTEEFzHAZNUkriZuB2g5V57FRfBxmsg3BTgAYkIotzfhvJBkKJPla7EVJf8xraBXV8Qh+XzXVQ1XwTavpLo+7jf6EkRSWKYDgowJ60uLYOBCI4OZ+gY6iHrHjxFK/cJEz/0cit/QUUQoMPeoT8cy2MNWBX2RRaBjPMqoXav+NxHLmni7N1L1rHsOveZpOK4BORWaeJNoztKGt4DjwBsIAzWgWhES9GdEPGUmGqdPEM4ARWoio2s/0FRB/WeTMA4xeBIhoDlEdX5CXuICaTlGDl8VfpwI6DGV3z3qFHz9Ypfd88/nq9PD46sO1NTMcW5v3cJfla78aPLu5Bcix1MitKUrCdNRMVhGnhY+1joZwYOZyFrmyYLRIa3JybiPJTiZGULwDiMwzDhcoxEl3GoAs4/KoKpjgAy1Fxb4Pz4np4ZpkiKj0l6CJSmwiDHDs81OEoWpfv3pz+utfff3u/dcXb99K/Iz9ewemxaQ6P3Pyx4spc7hGcamPuglz5MxOSLFWK4FvPqm8ED5uSZ5jHTnqrBPzq8LxxQLVTdXVzf+qEsVLocGehwphbIHvAlZBcz1aeENP1+NuQQO0oABAxjxWoUR+0UMOo3L2HyoI/VQ6uUdJljnOHla8zJjVQMvkfRQcJPQVF1NrjDM7iPyi0oiqh2HBclcBrknm0oOkOxEAQsTGkeJxq4QfwarZ7jEyF8vrduWK5rlqEKq5+CpouDO0xzL9g6DwgGn3YQCJiJ20FRWuvbvXG+O7zrj6/PPl199/Z9T4zrE2W9uHJxdPH2+MnmpVf/2b93LKf/jzT5QvDTo6P/Wq3/ve3cpEszBykhAYdN973Xfk/MnJgTfdH7d6omDCLMUwUw0tzd9tsQravFwa19NYc+n4kBw7UVKDj3FO2ib4MgXrx9sh41eB26nqJ06ELKHDB26NYlO5pEqj5R7r89Spnw3IzbH9tZ3QJMft65v2/Ei3JWoWkqSpho0gAhw0N6SD4PDUutKCJFkjA8KxqyIVcUvrR9vNM9RENthV4DUSDQ7QaNHuCLzcfwSEp43RI6Bu2JzcheucW2M/LgBLU5udUWMIJrE2q/h0T4OUJQkbaW47j1jPb79M+LUTfe5erJa3j7+3kM3ejH3bdkT3eT+4c37LBnV+zg86gXIONiFnMGVxcnf5jffvCkTk2fHBB0eyovi0W+G5k+A/XN55g619GVvWS+/sf/58Y1ZENtigNlnflrjRgpcNeymwmetWu9gptGMh+6QCu1aUtWMBGcayRw4423HSpHXYjhuChnodw7p6ktZfud/iarZYsEgvDvUQMt6dnRlkIbGHl4fj7WPwyQp/X0Z8skN8NVnqcMUJmLX+ZQT95Yv2G9C1gXzWIIp7f5nEV/xsjwiTyvZMZ9Tf0A8ys0GbXIZ12ZvCjexjPvSKq53eOQWkof3WX4v3o8T0bWhZgzBqtfcdYc6NsSi/NeuoNVzKVk2qGOnP2PKNsQxmX3+eORlG98hd7QV4zODh9qYDcRqg1VKUVQNm4ZeGgKO0eFVzoF9dbOHVdVAlQuQFMntIOHrnTKtmAr3+sG3YOrUinn3lHKJEXsD0WadvtxEAWu1juXGlamEcaq3oynbcmSBphJ4ZoxyR+CVStKO2aDMZocpm2DxOBC27sMCDEzA02vcuAhTL7Wor0VG9OmCmU1rBxdWZEAKYvSHlkJh4AxA5Vp/VZkoz0Jk82RlnMeWEK41jlSNguZAehsr1QwgkQ7LY6+HOYrDUgPlZ8ZHPMrvSxfG4yV9poiBFyrant2uoNpcGjXcwFXyITXXM8Z2glJsdd5PnjEgbC6/tKPeZFgo4tDU1V7/rhx8/OFH84LTD2VRXhQGgHEt8EUmxVjKQbShQoKP6hDFSB3jCpseswy/IpqT4VpqEu+glhpGfC9KnxLS27qrC/ut6T/paOzK5eHLYWAK8yFAgySSO2hqWZBwh1cZ31kK2bioW8HiehnXappXyKRbMyczRE6BxGTSLu+ok29UuYtZTf6YhY2v1/xP8wMRYCXx6L4wy7TrIk/+RgzYj6yQS9+YzxAxC4Po/3lNtEusXOLgjGmhQoffsbkHI/wiCgehF9tZQqKBSKqctv1QaY8tGgIIA5tHBIFO9xjD9h2uwgwajW0NK1OBcVdBhCWOQQlQoHJWTrFuZQqwluJQRF1BV3U06CPFkCcC7Gbn9LKGE2uPu67LPJ43O/dFgAou6UXwcUnk5VstXFFfRX1UUo/OoW7JFZEgyc/eUrBnNIKZ7PU8zvpFM1ZNsNhemQJF3gMJcYUgD7EuVuZcsUNrNqApHFyHqzub+3Fx6xJSauPYojEpKx5saSzvZ2sjZo2BN7lxom58inYXRv/n1e1nxd+++6ZUqr6+fPn84OtmfF4HNSR3jLY1HpoYmT4EpbYFyViMAC6DWJb4hnVnvUNPypMIdDkpzfDsFtMdIfHfDOs7wvTTD4DEusvzp1TDyhhXXOplllsZv1GoDsS9Bz19Dh62yVVOz5yHGhVW2I/43J7C7aw/i23cXf/HPfvvdX/2zg5OL/QNvSnq1/RAWTYWdvobKsJX8wz+mRQ3UFwMx3FdOMVZNM/UNeE1P+huXZFmjMhKqsA8YvtVSLiNNcSsM5RlVSmtBUCKDygCgncCUhfVwbq5nHtVfBRPXYtDQmJ+CEAHCWTT3e6EeEroMSAyBxw032KWD+AuIfz3ZmN/87Ia/2e1wOOQM8IisyOhqqo29Ke7uEI2H4ULNiA06PKuWSxcArJ8hbWgNM5VYuOZx+Fd7HXPltYFBj0+k9XzuqL/k9OU5JXhUudHHlIpm7mks/82b87/867989/V79kcWlvrMvsyHd29O/uKbb7795uv377/6q7/69RuvhDvxMoh9J75rzZMvHU3Dy7yo3lC8kWbzBqa1ru+fzBto9/RrJftCEIYZs8aTXTb2LBBl7X0YbvyKroZSdRgC3ACzw/T1KIzH+6nxsGqiIE8D/saD8FKDx5/7WfKVa0tNZRi1fIQwoWb6D/YqVJToUN/A10QAxjl8lF2NzNIZJMxFKqMx45tKtnkULr2H8EW4vfctYmqMhswQtQJvPidfk01giNtRicjAqvEFaF2c4oDR40kiiQ/A1j8UOshtrzXo9kTyRWOLOhsvn+9vzN3I9256d9XW8emsVXp+lYuHwVSB1TyyqIN9p/QadzdrIZqgytwIi+SC9jteXt158+iVo4e2X6/unHz6cqgvV4joBSbEZCDxpxunE1vM4LTTux0TBBObOtb9eeuTI0izrVcTBVIcce3j1ZVRee7S8LkzOm8sOM9U51VlHaroBca6EPJ8jdW8bMR7ylI6K2TDvKLh8GRuZuP17OjAHgO6N3Kqk+INAEaHhTLiU4cB6MkQS4aXHA/MbB3uH98+3jU+Xq6Zz7SMem/PqO5YlDC2d3NzI9xTCZFbSdO0ATm3nSDfpU/q82IHCnQDdTjAnxVHLZwoGu9Ol8kAjx6MNU4kX1agW5a3i8IQMzCHtr0+3+pzzGmzxqetBckd4Zr1Y3xvtoxL9R4oW0vqL+kOJThcLhxAekGt9Rj6y7KM1h592QK73Fffg845jGhvc6PzKRi5vgJ8/EWoRWk2VyQQybkFjyjZYgjsGnAy8F3WXGhqkgG6UUsbUMpgc5wm38AogsvGs3mQanZxpGIDiHWeSXLioXF8ZjCDbiaFilpUrLfTFAlgxTarIlopN+u02f6MIeVrBrzwAjLtw8duLUxtxEq9tpzFir9kPugUqeulsHuIrx3ZmbekJVhTMRpfS/LERsIo4xcgAEEbbUOXM5bR0sMWI/t4eUdro4OCjsuQRXQrYNUbASYEf8UKViZrIJtesOhqZ8e8GWjNqPs5mytAXuIKLzjyrtqRsTmQV06abaNxWHvikg8/frxqtrOGjOmR02akUt2qo2ksAMzIQ0hkB9Y1jpA1agosJrDXANCMJCqKDBrpIoIaT4RZuQKXB9NXJ1JXqJ2ShTYwR3NhClk9NNVHOPNoSKgdrx+aSHNtFM1AvmL1RbNpsmOHUTYWpRBhDztDQOCT2OCJeNxtxFW8rt48Dk7m1keBCcyeajWUznBRvhnyByJaJWSN8iYx5IsLMZ1pbj5+Fprr3i3BFQlENTXSeNlLguISRfyAG0XLJxrdqpG2JFQQwVWDochTLP9Rs9dkGsptzfdCNuyJGDMvMyTozJPUPF2GUitI6FBwYuVFHb6RBdSMJUEEzXda192PX7M8KEpMM+JignvmrxlrnGJshA5L1/jhZfyyTgt0rcOLMOxmdiypVQqkl60r0E5fL43q4NuGTyCqGzpdpsBlSX5mxjriWVXpOBSDVntXhy6ap6UaCuCJQXeHwvjEsupL+8qgTtxDLy8Hrftg+l39nJBIw6tBno+6QdD2K0hTurFTeskKYL88Kh74sYSZyoI5kNM0C16aGk2Ux6L89OTo4vjk6fT54o2Rx4PLP38cRDsmdkE1603UT7eP2iBNNd/RUMnFO44tYmrul3ykR8KvyIQ1qk1gTXo2Zi+MSBREpJZ11n6JVjnh/tacncLSFPXPCWvtCXHeqEaS35IYfSlsldGsllXS6oUGEfGdM2aoJFNnRGuZI9KyxTyn72xt2Dbu//6b99KW57s7B8NzDdaoCgJnEWfdCWlKw1/LiuAq3NRsjrbn/khVHboYc6AhEs20CJO+Yh8pqRALFYFhCRoLXY92PB5dNEhW5lJgHGUPuCwmgyy3A2LpMGA+Y2yeDeFtGwrz2EzW6QN5lTKbKAuRB3FQ7eYxh9hud3OZYrSHH48rIFbVnfneGHfcjWQUU5yUIpuUphkuSg6zng3qmkN6BhRRKmaNQwU8mWL3J+rUSA9zIxPlhxTm1CWCEgW7bSgtSbgF4HyT9rABMXgJNlyRDkZclqQ2m++KlbOj1iQY2tx62Ln76v25NfZObPdyALbx6cefrl+3HHj14afPUoaLN/u9v3r78VdvTq7u7gwpyk4+XjnoYwbqMwrLs3mrHbVNg796L9Xe9lnnZsJsdF9yvnOy74TEF7uDkVW5qBu5MaB8IShyqJInI/Hm3GTBy2WJTsKO5skQcMJRBHsSE97jrRPeWC8D6FFq62lmwxMt0NA3SU3Z18yemRMTXPb2HZOfXALhT6OezJ53q6izITuVB1IWJ6Ijh5AYn4aC6vDd5lSfGZ9TEfksIO8wwxYzEvo0S71cYCjJFt1nNWDyMp2ABqrnuHSpXrS9eEXota67toYOn+7vZfT2Tuy8evd2DcHVJOjc3KHuWLcCWQei9y5dvZ6dTPTodLhDUabYw3l3OnDGT5GqtUbCu0kdkwztKnYm6PbtzT10FnfpaDEJx/ZI8bmBFx7Y/nS3+/L27PzOIdp6Jsb2nZff8qCClT3kmLl0eKf43blANghZ8SLPJqInkwZaA2/jNZxvyYrl2CwE2Q4Zpes5S6quIPZX8+FcpV3ZhX13+5Y5EerLw+1MYTSTw8hJA0suy0ad+OOO7hkDaDhjmo+7azMMRjia/5eONyX1+HhihztJapetkHTKqMzS2gOZPi+jJGooZzAS1mtbzIqWQRYEiqHen/a0Czh9sg0zFo3cKw5vx93W5c1tA6PDoA9gFylRm/1QrPa1E+hH9dgChN5rZjFRaGXoWalpD4bto/huG5dn5RhD0b/JtHDHkB5kunJZ4817jw33r2bXcF7eZ/m4tfBky3/KFmZNiICcrPQKZhIgLgZPvMpVNKytm21AMNK0uchgupWpccmlUFdabwmZzkjNFjEoT7yFvQqCk3QgmumFtXTEzxYAuU+K9mCQr96gHL/4A6nevaEoxizNsFddSia1r2eYWLjsJHFtFAF/pndixMcqIIdaIqpu1iyxxrKXU/ihpOIpKceqzZWnoXicUYUC7+q9xxcn1ep1YK63eTx7LUa5mChasRUxzOTrZZVgaLvw7f+VmNG3i4IKk9vutABh1Bl4dgAShGX82nSRrWfkPLhQjsDIGrsit2x5E/yLYFFvLuJ5+8eP1/rvlgboSCGRZmBBU+GOlApNfCrxUBDJuEmS4FKoqMLkYITI08HiMsppMdvr3czNoqwxeOE4a6xc6l4UAqX/NwSnevdJOFYlM0TjaWsQGkL1cyJ2TWoYiYEECTa7EF04e6kpzpJpqnE3tQUFwcXaCIDRI+amrvK4SDfTUiuaqCHHwgjQU8WSZiE0OJseC/lQuScDLoGCwwS5tHJ+QldHblYgKQaoyu4Ea36mhk3/eMqpn2PXzwvdtFSKCtEEE689Z1j1egnCG3ByJE1OfW7JlV9N5P1yeqNYw9xjD9gkmpX7QQDsEg2jpzTlkdtEAAtZ0iTaWB06kKEuPgPwJcv3MLnEIzEs5UFC4j1Bk+vEbTeSkBQFDaQlEFcCBoDT9CrFtgZ7TWbySTypnAw7c6CAMPBiwpNxsyJdJ0MPnrmdlMLHUDeZ3wQXFFdp5foz+wNFWhwFGV7HlDvxPR0b131SygAn9lnNmYwyKmKINZ/4R/zYShKjXKNsreBvr57o70KJGJx5NPWg8HuYXeZbA1aJ6cNBm/wSkJC0/d03b4x30crT1YNXA/z+n3788Ona4kWjRERiyMSqeaKVD2mzUwWOkmVTY5kfy0pfVNgbVcQ4XQb6bbQgu48qzQZqRNneEdNeNLPnTaKRJC9gDuAQld9GdARBDfAas9F8GQxLhomOzGe5kXj6YiAkHVsyO3IUAEpNenVnL0TZeesNUAd7Fxe+DnRy3DcOnCQJZSZGCWNEP1rL/t0er4u7USRRJ3gF/cxg5gdCqpdOEqh6PV++3bdfoak8EblwA+gY6KP5Jvzs05OxjsC6RY8BHKUPgGxOqQ1mT5WOkmghLjAHXXc8ISJa8LBaX/xilVEskxh0ocg2puDitFgzBXCjQrGpkOybghBP5shYwpknmMKvZrv5wCxtaA7BAA6F+wMh2XmadWCRTFJzjxLPyHndVCQLnTDv+YDwVb1oBWPzYSBx6NbIfl356QKEBI6Bpq3c6diQsMoXD/dPz0/LGO4fG8eyNPzx/uLNW70B3BnPe/P+7cn56U8//vn7r9/eXd/+9PPn+/vnP99fPjDQrRevZ2LWWnwH+ZE6qjijNTalKk2mPzuI/uigwx+H3poFOkeVpEKLj89ip+Wy06Zo4Q3LEaJB7Nq61hkv73x2Gj170jKrIzeNeOy4BQizKS+g7Lw7m0mHYzpF017yTQgIy3FyrsyjKYNUXxj0KJFOt7ymSToiidAllv0YxKkpzQ7LSBKhcWDceMerSCMvzMuyNyl7Ly5oGdICh4zsqAXNLYEAoftj85WXaY5tR7ByFt4Rivu1oA3xph/N0OPr3Z1YVD/ETmuJjUdG3xt08NLfTi8BevfTte2q088vWXbspn1cCm8ZTS9g1sZpMXcN8tvt0+SG2/pLveAlD7XbIMiWazU74T1Z69DY1w+fryWi5nMs1xF89Ftse8WHBQsIIwcTCzoyZ1svZ8ethxZnDkiCqFkUYeOquc0ZlLW6pw1mAqIXDtxaaHh8KqtDbEsiyRbjUvDkTzHyeK1JCohxc5ZmALITR+t4d4IAvIWYYzkkY9jfOfDGCrrQ+GQ1nVzZW0up0OoUspWys39nmRKNc/2oByb5ruVAhm+sqjo6cCQuS2wND/egbrZ183D95uTN3p4dFFftZM2W5O73a4FZhVv9W4dB/N+zKCtnZNg6bve2PTBKhiEpXP6oEXE6beM4or9tfpNd5YkbG2d1QFoLumP+wwv4TG7UjvDqyQht5nYkFHOteJl3wzwmlVC63j3UGSMOpNYHCFLGBh6CyYMvoce5EtqXHArnzH6m2sjHbLAzac12Rb2/RDjr+2FgGLwYSk0PXpLwrqmjArK/aOEydR7mIsmVazY8igJck2gaMe3cJJghqpyTLpFenyI6DY3lqsN6TuQA2DnSqMF7tDloNntgGf4ZXW3jRH13OhZ2VBWENF4mWIIvRY7zFAEkZGmnyM8BDSY0tQgRV6CwpLS1Y9e7nhu/Ya0RV1pXbTh8o8cdksKD8sGMSf3b3YcGI7Zurq+1qZbQXt8+eb+1nnhddwxNaaTm7UNJkb02dLpGbiUHCIkLQDHTgrT7nz9detsYz9N95fp1o6Kl4ACeEV+/VruDx6WX0Vc3QaagzCMzghVeHKaHmqGBlNJjPM7dYiqFaD+mlSSoupGloAhI3QVzeIGcULqqAOWTrEAQ8ceW/PI7cfmQmeEpt0AqvkbVIK1lX+UBZwWbrku1IttXKptQrAqy2Y//e7gJYN3BKKhuJmPQmwFIku0FTpQTL2AWyaZyFok465QYB6x+okM1H5EU9+K1kjq7rITApKDg15jMWDXhRl2f5gGSQnjJsjabEBuKKLPXNLT5CQKiVB/7uSbaKVJyr1s0DQ+6XUTScKtWzKA2lQQEkyOLNFH1NOiT0TDPTDKNuJmAlxuNspppQkXt2sQeWOqxpTzUJLP5N6nAgOTcuOvpdEKq5grSGUpEpyli34qNJ7SvNxPxGZozrpx8cyfljZ57JUwjDYO3stVIi2Q6mfrIEgv1HeNqPm4qFX63RAjWObgIJJdVe15BipZYYXmTZAcq5hOFupD1FM+DMm9BJf4yuOkgZWSTxo239ASH2C/ANTG9zA0Bbit7dnrwm4O3Ggwvqvn08eNPP119+nBrRPP8TObduxIhhFviIiVwoIpowvw1ZgPKAIzmvG1J4p3v2okZJUIrTeFFYjRRtaH9F+tqbRx0MEtRmyAa8s8VZ+kn/rSFugeNx0QzrrXfRbN8HyOMV1RiRZlXQh8gonZReO/Iyldc7bzevR69s9r/5Pz8jSHe47MTDT/gaxQH/xb/JIRGO4w8Nc0CNlIT6cg51MEnokLUyDMfC2X9kCw0S+ped5aEoXC9Ho2VFS8IT7FKjuA5OhQT7cYqoji0Ss59CgYG0OgLR7/V7n+yomnXq2YAxzvSz1hHVYoaGS0QsHwhBpHAdLNkhNtWJQMDIBYGVhUHkaJu9BPS6TSONsp9h6q4VjDgGeQQPzD63T9fQ+QitHZ0PGUKq7soHMZBKVDwwKqs8oEN/KJhrG+gEu3Qp2HVwBY3Jj6ihaWt6lhGpFTbN6gDJPken5/XxjhBpW15j6dn756ePmjyT8/Ozt694wffXLy7eHPx4aefP/zw47uvTt99/3bv3/9x9yeL6u+0f2ISi7i6vodRGCQ1w2Boeri/fdp6+ubi6PX2uVb2SD9B1hduVWQEnZRRZ0DQbkfmvKdSrrCteCYuTxR7QUq+G7F0O5sqjyeH1AO3JEBbO3YeYyN9nsVowUktCb0InIZ0OfjzhFz9AaB5a8G79k+6b+TIhF4jcLJpoGCUcecB5NOrdmhfquHUI0PmrZJHQ442Op99FyQvNWyBB6NlWsSD4YYMbGmYXZiT0nXKBw4L8UaMCqRPtYmiyqvUtuN6YHFWOWOUy96iueNrFNi5u7or4Tzc1emS5Qog217V8Px8dXs3L+eobb2xFNug8asu3N7na/s6jGpmt/Zc3hotLy5ZDAPak0NaESYzeLh+kLCU6F/JNl9Oj/Y1ZzwcBCP3Y2+vl7YENCn9cvT8auhAc3hzZQ3PntcOGCCH4OP1/ZkgJXOwUl8SLERIyAztHx/cXF6dHJ6KRZezndeWhA+f7X48oSBC1t1SyRxCh/M4s59uzSHc3p+dO4+YMBCgTfBqgt12YXWOseTe+NPz8Yl19s5uzu/Qo/PJ64RNwdZqqAk6DZBnF1rwzibyvxeNHXSig7bl5YkkbRgpaFrW75lUwRuUXmzANWclLb5npOAAIsFjHg75AWLXcN++E2B6x5VQKCq4oCkvhy6XQHQnO5l78DbJWfnDtia66qkAy7SYBi8wlYS0aWQbtWQyjmPIjMtk2kNvWGiMq46BfikbhozE8o6MufCtonsdl8SrW4xnb7QdLJOLz+g+5AxMPB/zhn06nM9tEM+kwSnam5/zJrI6gdRdglOMCJndDZY2FT1AmUWkeXpQSmZidsZElFcxRjmpMDStYDKm37bXd/JU4xTBL/IrQocgGJ/uZxt8W/Vg+RsNFpfLi8yB1F9QAFjc4Xc+VGXU4lEaK06qq4o5yHplT6VqWOWYggDjR5hrZSYWthcCHBSKWmCfsGkPMgzocjcEr3YcRvEJDWM/tbk9yRx0fabvZ/Ts8Pju4fPe05YVauynFBTxUMyb0UCIkZGMprmTw+BBUiWIWHBouRFe7Lc5Pbw5eH9BsYY7rLCbLoSiHqJI/tDkG7KHIboq9BXKZvSWdqgmBdRCJXqVCAHqmrW0RRprnDe0GR2ZqPaFvaQToYWsgm79q2ToD0RKk8JwUw2P0aTyaKb4MGUaESva/vLBnyYpa5nyUCTBEQKW1M/9S0SZjft+Iq7vzLJi/vUTwHmK3igE9ksy2ZIPjxPWmLISjaLRGpNqTKR23cXF+RuvBC7JFwimC7gEF8Uz35TUEkcItFXeCm6eCNswZ1siUoMmdYyG8+Yf2yma1GIOhdFW/3alQcloiawONGHHSSwFBxpmMZYBRd4ywqBCwgKKRymjsBCPu1gAuLUW6bKuy8gFUDdhQZKbVWekMQTLRmHQ0VdcJQoeImX0UPjL7HyDiZrKo4/WMT4WuwhWC8ycvDBaXrgeK+/nIg9PmEWfOwoO1+ql7DrXw/IiXq14H0FHJdTjBp5ik01WTT1BZPSiQAYIbuc5pDzEgLB45LSKuRmRM8obEP9iv0fuL5l3N+bciOWKLX6HZUZcvQymWZ0En0XV4TvO3V7/fHn754+O/7l14obFeoLkqTcDmBuZ0DlVHUAtv8kUHSjhlTkU2nFwQTKDWTyTBwzvFacKU4iW+KRGMjGuoA+gD9lMpxeOeA+QBWbFd8cDUCALYXkabNpmS6SKOz2Q/sswdDZzCVxxhDEP66+a6V6nZAmLxrrevT39+t3Fr/7iu2+///7s9GJWgDRUtxFRYktedFRD0fwv4gt2eeMIqsDC/otgGe8YVQUSa/kY3UyXUrX5FDtIe8EBnmUy/rFwz5dyq5yuK9R/Y8xZ9di/2y5WmSx5yjWXmYKYKeBIGYuf+ss9iWQx4xFx1YQXT1IlVComq3h1c0wFJ+HuZ5+xbaQkdnW6PfFLmvCFqqink7LtEA8osILTZ75BGnpVHi9LUG58KTRFQxcRBZZahVVmRDwMKr+AhcM/Jddvek9TQ9IiD/C8LKRLpNEB+HxY/QSukYzn3DxSaiGT8N7BETGJdyLY8dnpe8X3dq8v7XqXKN4xbKO/v/7Nr50Qenyybwf5w82LVO/Tzs3nT9ctKLJhUc9/UmdDO5IocGRmWrULA62M6r7D8gxxeIcrqUHpPXoZ6uhha+/o9taGutI3j0iWGRXXBJyES3oZGMbkTNahCFFDtufi3iEVQ1dbT0KpyAqcollmQWLUPq0gncNItCTU6hEIEn0Cm1apMS0fDSnB3vO17V3eFzUsDTyWLOeE2mC9tM/zAqNjYB5X/xlcWmQSQBqHEDNxkEKl/pbp1xNVpCpCAU3Fz3Rg4gXY/FpCL51V5/XJaiosOeOrps7w57PBQfME8pcS01qPDMgKCjuAWz2we2DlPe6k5noaj+G0uEWUcjaL9+92GAuklj08vzod0lD4obd03FodtL3rhBzs2XjgICHvjNMl8XI3ObSA4rUPlHn78Hx6duRN3+Vue/tW+BsjbT+w9Vqdgrr76epWkLF56OPl7buLI2aJzuPT0vfrqzvRzFvGMesNDKciXatQ/PG+W/A6+4ZZI1U5CylZXpsltH2O5bm7E6HWWhQp0enuwaPXqLRU0jwbd9mzIF+29/H69vzwTI+IxGmN4b3uizMWFLEozeWcJENMo3TmyMFlH454pkImsHc0mwZ39r0Vm7C8NIC+bVrQVhKkgPHZWK/jfPZ1urwIuxl+kjF8DAXTMbPB/KQCdip4gQzGhMnaWfqWjDqWdAwRlxoX+mWEnmsj9J2y4LJ5GrfttVUxtlwrVkvIzu4ee7u8BHyaaeuSmkzbs+DKW95KI5kvK07aa7xGm1Ljlc1TOoGTo84S+bJL3sE+TPm4UNk8g+HL3M1S0um0MA9purhQfb78VApIrYAL2rU0tc0k2lgkykOhlSmvLTaPO60Iv+mZaK15QdwpKrxge8dr7+VjeWbRSn3yUlMyqgOmc8RJjbF5mAdrkR0XRW5taCYcR0spUjAQ6wTAkuCWhBE5VguyLvXVt1u6HC+toq3RKpJM10XNeMGz93Y/Pdw8PJw9G86rNz5BBojSJFJpnV45cyNoM4rEThV07JJGjvGtU3FLDi9Ojz8+mSZytPbRvLAs2TCCktIJcLwA3oRZJtmkYsa7mg+8+zxvP2y//vTp8uLMrn7zby2AKDEoRtXc42/OnB35j+SpTX/D4B5dASA5yixb9VDWHn3ujkBobmnQ73DVdCbBwq8bNUeAFQvdB0F1pBNjcCiiRUflpYqRBlkQX2D8BmciraJLyAMEj55mNuBGvEIMBqzN32hIu2M0LhkJAmgKFbQDXUUztuFdAJxR1J5v0u/J96ZlzoUURpmuG7t0oTQB6BNq3iJ2kNnQs+YHII6+ibyxMUEbeyThUU/nZaj4jAk6rNuHjsVVnLtJ6Ofnp/wHKPbt5oQS0DLBcZb4wUT2VEdZUzfJPVITFknkky5yTEhrw/KIJaK4GJG7z2iw7RNfJDcNYySpPwruwUggZusRSgvKxXnUTFsnSgoAmQum5yTtZ8obCZS0u5V8e+pel0tK2dNieb7nfvCrXv7AmfXp8VBFWFZ5dT2vcDaaDgIaEv7Xf7WOQ7b72oOxleis2Mz+FDUmhIEcp6FLjAOzwNatgbDhl0rGFgdLiNSPvSRZqiT2qEuwEU+zG4OuVwNMOsgwkipaI7EPgTnDTkfwzo37u/vL6xvDDKI4nZuv7NiKfWuanSjgZUbynHRK5jJ+3W5dBFaHDLEsZUrSpS+HTvJegwTxsNtx2g5G3HVCH6yamZY6antszzPdqjm0qdf8LcmyQ8EHUe3cCr59+/RNFCynxngWa2V/Tl/2k+T1Yu1KtEvpxDa742++ff/rX33/9u3Z+6/fa/6xrDA3yQfo64unkAOx+ZBYcuvJ0kvfPkRX+cRWgRHU+kJdBVJkbUO0tAqgD7NP1B6Nz2UMGQ3oI/YpQ4PVDx28y7z9DuiAyGiHEhYRfzVjIcIxpKPCPHDiYNxlw7V2GxAZRT7Np1yF20//fC9Lq2q1Is0nK+spTqKWt42NLVP3G/AGKgtJiqpWnVU53xk4q1YoBqAvCvVjGBwCpoIEIkRDku/IGy2MH4VcFWSTvCILU+KLhqGwIiC062YNpIQhgBvKNX7puKr+eVbfJkTSpbAxGaN0LIW1v3iL7Onphfzx9Hzv6Gimu6Vuzp85236/tWvf5Nu3b4wGSMWOTtshYI+oGCDXJ4+OgnGSpgPINX5yylvH+NxYbuaN2iJQmB0YetvUmYzpTmveglstWYfvpZbUxwBqihJTJGYwqCdJllqDR6eeFpyHSbGjBruKgOOlRRbaMO6mYkcHJpx47M2E7KEyS0EhGmMWAcdSig/aRS6e9NpZ+GzVnAt5l7YFHOsZpBer34xfgkvFEY5saTra4iEdFm14rRy9/IkGZvgzq2Ul8NGcJAWnfKy8TGqo1rajHjufnsJ10jgNjDoaaa/2tLVE0q3LG92nvQdvIWro3WvBnNfZslX8Xd3c2+Ar6zs9Pfc6ZPkWfP2eTEH6KyeU29kXXK5pasFyIOchOjtFgkUyVtcc7N5YkZixzJnIs/nBrozYN0XJaZ6er17uZfKoPn9zbPM3TzDA+3R/M4dp3r97c27jrjNnSZiw9BNU0QJbSyMDblTVPmAH8rDzHafd79vqwHYtgJFvZooGQKzFvut0fHs6bQoo3G29Xj/fiN7tLX59kaYzQkO4wvmZiUsSvpdEEj/xbEnfcd0QTFowA2LLA256w4N5U0mjFxxTYqsVuIAXIevmPN17LxRayUxhm1hYocEeBBvKB9ewiFeUMcmCOaP1TomZajBTgjwWZuiHltgm5coB8EtrhJZpdea9nlL9BH1qIpEwGKqpYrsHyakj3RQGSxkmAZRMiC1rGDr7csyMAd893WTrdSSIa+KG+efWF9lnXGaT6yGwYFVzDPi4P5s3h+Dwd5Mnem1PTp7n8iCPzTeHwtp9mLuKudu4Ro8zVflEnli8QPLEFiUtRUN6eS0pTyRPzMIpa+dIe72LICmU43tuHZ0XbO/PNHY5Bwg8BNeo7PRYc18ZYxabclz7nWRsQezEX1RJwU0AJeQ6Eu1nCC9ZPdgKj0QO5Kb/GhyxU9+1vy0ZyqfzTDD5oFp2nH+6vPn64pxiEUmzNT2NA0peU5xCBLhquW9DQ3GovUZtvAZX/GCXZ8enfNzGJdemOnshhz8dUeUpKDWhAas9qnmvA5AYo2H+6znwJvH+8ccPB99/fcJw5V1SjqLZTHIotzCiEObEQiEzylAwXVsm4jfuBnAzUdgojmW6asHBYhCaQJQlf8chvjR+EVHEPTsHGuseA07vLK30NdVDiqPRSLwgqNmX0Wt9MzO58E6Kldwm3QJHMWBTnP9D0aATehQdCVcpyJsCEunsJ7ixGFIAuspa0uaSm+d8yndbReviTnzDaiEnkCoVZfyXmJ4sV71OH/+lfrQGdapEoysNRtvM4Qeg7qUSEe1ZI1IpMePWRHnd972pWL+6KypFLoqWol2UoGSC4+HqlTYpAP8USRbj8A0bEEdJKSlVKxrpP/PanDuBCsqi400/zG/Q/Bn5ZhlRFf5kiiginu/RjwcFoCDHLDKwFmfJSmnPUQNFAMcOFPUoNns6Ep/C6TInaVAftRPXoi3zGmNBfySNTNTtejIOisiOaiNnRJb/+mQVNYQsAv8rgqxaBOt2hUab0ToSCGBACk5zM94rM+AB6SIbiTXWjzDUVGbQefrl/wBu7n+Jd+6opcwoHFgkswJief7qq7Oz4/2H6ysx1wCFDR7OpDM8dGZ3MKw7u3L0cohi0cYu05eWm7znOAjcIAb4erd1BIqbsnACUtEU0eGphnLPOdQfb28awNt+1LbrVGSZDEmoNaF/bO+g4Tl9yln9OUGf7wkrxBE/WXuBwUytgT/EWN1rTOG7rw3KHTjt/+uvv3n3zTtslk2xKSZeBx2SFe80lrym/GmjsrFqBZbklsyX7FSyaCKrVQGm/BIRE9MD6IFHAIqajSL4NRJGeyFpNDdOvhKmseGB79mGl5TVJ9qC2HeOA13mEM6BlrrT8kZx7hJu9fxd1jhF1Vp2NTZPMfyCPWWFA9kFvUQ08MNIjE986H50DI+/wIdgVY6uEVFkZIDRPc1hFtXlEDOdc/DCMDEumKGo1gLmd5EnCiqT2JDZ04q5jin/BlHXy7b9pKmJWqAX97/IpPvqqRvAshO4+Ckoq0sGNO5YUW+5MuJ7c3Nyep5Hw2iV+eUHk1KfP34iWy3H+dnZejnqw92NUP2Xv30D6v/07//4fPPkaPq6xi871kALXEbUJIXl9a8Or9QR9jZNzoMKLTZyzXF7i1MDQ5NfiK5jIVpvTbsi3Gdya/SToWa4FUTS/0bf2glA+425JB8FtHBmL2RLywxSVjbuvxkKTXSTN7tF42iifYmRppCnNOmPym4mnqRh4HzHKQ68FCDJniy5d+V6rtvPBSmINCKsMXuk2cxT8oce8QDUrov57BOPLiewN5bQZsFkm07Ss4//wIDUxmpDvFiDbvFSkYY+ax6FBbHXGwDuO6a/PLdEKvudHotfmYwDxfdMpkgp25MwPZz2TzZ8IElqGYk/lrG0eD96UUo13mvaChyupb9R9uHlbnd3mAVB/mwgRHLJCVpp8vJ8dnQknX00aNm+WF0RG5e9wc3ynltB7tb0w9X1UaZ/f2JfcIk202LX8363HW3x4+nOsRwW76UgXhH80AIVwsYp4T5bNmOke2493Fq+ZEGLUeo9WVYB2iCLE1A7z1We0ZYAzDI924u9mIVpGzZG6AQKIr0jQZGZBkQhKSKLsA16UvHelIJZW1nAh5+u0Eqq3nvYCiiHxGR6DQO12dpb0jumac57rWkrgNRlCWjnwBalvSTBuh3SqbfTqjocMr7pPQpQaCmdiu0ZIpWleU4JaGP5tctMdGKIzo/MhZCpTPLKHWhq2VVRw7qlx5dz64Vmdb6xSOV5ba9DqxAL2wQ99oYwtlhqLXimFyZV+44wuXVtEkvoM0m/BxhjS0TRJt5JKcZU2XkMaH0mPogzdERQTComw1k5mnYqgN/6dWgGh50mxj1HZSS9nH11caIRGbkqNyQWPFj9ry082j+aI61gU6RuOTIBXw0Wn6xnszOHCyFwu/dK8DroiZCH8RRAxJ2hyrqgGVRWXWJgtBzGGHm9urorWOYGcaBl4PQcMLJ8SFIxH54rJTPvx2Nm6AecXhSoP3Z/d/XwyTYS56Q5RVcfikztLyYFcaD+QULxxa7qwfslWSUisOuuTCguePeGcgcT3V+cO97qvFDkEWfj4IWRciRGYlzGd13Hjn+tYQUoxgvsmSTCUkEtQAFcOOtu3M3XKBpBCsuKaZwGsUxuQFVwuJ4aypNAACdpbCQCFklWiICDUFxZfYNmHuoDdNuD5pqwCEAlY7nIG2ywomfoBFCtlahPIXQpxHf9UlFhYTZH8wt5K63FVLILdCwVNtIXZ1w+qRVUATMNIpJKIZgTj7RzoCWgMOh3Uvx8UspmdDxRZi4pOgSASftCyE6wMVYuWNNE3CqEHGWnSY7VqK2RScHQbR6pF+pgxmtDQNyJ9NAWrugfcQtD9DmdBzfdMmUEXVwUSYuhDMLHnV+QAg4srROvS/5ZPj391zHoMICPHRVTZ04SjzWnM3sID6zoggsEP/RJfE/hkbU6I1VgMQLj9PurJhYpNozHGhtxK225ufynLk1ppQ+k1R0I6k6BBJZGEnIYu6nwCHLdJBP3Wc84DmjDzpL1SDs7m+YfrcrE52RCSbzLpI4otCk4RGdeAHqmbahuKhNspiQykn0alzmYLf9f/K9+9+PHP/+//4c/fr5ufBCyO2/QeXx2WiKImOeTJUA1n6UpTNk3LllnICwDfnzUWyB9kwDDCBe0zscI2fbx/t5f/va77795a3ffD59u/uN//ONPn29NQj95c69BkQfOjw2jaBrI/Q5RA7R8yEJWsw8PIpFsPBVPL06gEKk0H1T5/vzkq3cnv/3r799/893Zm3cd+aFT0ZYYRpXfMMMJFNivbchxCItQMvVWOftOFXlK9oOnX3S0rNlPwvdFXkEgTzWS4jjLuqDhdFzPx30fMFO2e+5uPum7z+BP+thcDps1uJEHwYDgLxrMMT2bnl9kJAT16iRMHHStxDKkLsM+SMvzhsSFMvNXF/CY3VRwMaJenC86GYb4sOGCSWdqi+Z1CX4YwVJ3fCIus5eiSZwjAIrhcZCOxHKElbRUZtHUd5Ujc9Hc5Rjqkse6D9L6iZBExH1Gd6s2WOoGMgS++52dz2fURaQNC8ElmTs4PE5JjYPsX19d7TP9cpi9r7/9RqTW6F59+vTzy8u7878msI8//mTf8Ddv3n/6850NxbayOZxSYmjuK34PrFKLV4fIW36xdWvdyGZDIRo05la7JWLkoq2/0UBoWlnUaXGzF81AeV6DPCImzeKgoN8YqPgpMMpvWv+JjXSD2ykDMb0Ng40yjFS7kSZqIEEusyBQiRQfbIhcrH1sgWWj1AAlL684LdEHLYC8hhsOCvwldklDDV65OCyFxKSLtnlGwbJXM7GtHZJuygvbcgBRgzvWicwoXQ2APLtV2uUxNKxRqAUd1bfOvN1AuLCEpi4V1EbNyUtOztyPjndfb5tnYCaPz3d7pweyJzuGCRdZ6HIkneUxdGeSUAbmuE8iIGsU83+x5XXbi+CO6o7JSre2HWximUzDsUiydfjmQUIcNBkA2TUu/qSi+GraAfEyYIeNslH7rc1iKiCl3j7efby7v767dbyJMGWddyMhXh0wfSErlBrzwaJEWdez4zUb1NixIYSw7CM35o7ABoxZonyn/LUuS4nl84lXzrEczD166djhDexMQbT0vjME3+mCej2CMMsG9y0EmpBtaVG4zXNZoEYvdghb4mWRpAkr5z7j3oi5lA4kerqb1y9Lys/2D3Wldg6PHEyFTq8YNnxOyY6Q7+QGyrEaE8UseO/p4EgfgL3beSydZY9bd3eaDyaA3MZ0kUz7+GbBWcxOr46uT+bwN38d9TMdSzA9pTjnVapVWikTAjKzy8KJRIeHHssJAC+Vl1oJXx1xowei9cj4xfDmgbUPXA2K+p8snIGZHfLYqxJIhROm0TreTLpOLG6Q6tsHuRDkgXkqQ3BHLb5IBe085q0KIM59vDBzLlFc4h18dcanze/ICdyahezg51wUDou6+CMXMxetni3EbV17B0I9/z2zN/VHEDBNjx8St+4wyNlUgCTVJ5XUADe8ADcR8TlVGA3hEzhhIx2LhXllEspuL9MwjKXFroHL4YeTgpCWWnKk36U0ZaGlpXcJCAEqk3G9R26yv2srS/1GqyLrSE/PGUlcj6OUYRTPcJyQ0hHSE/KEmGUKJLVVim9//48/fjzd33775oyZNiRD+HacFDT6E7N5Spn4BCQwkzMrwPQKUvhzhzpxyZgVA8VNqqA2+V76bdw2W0LJikJRNqkR1nOBsUM3w0pJ9XVbnJN2hv6FjVEVzUb1iNKOQFSswFfjHaJrQmMIbMN/g1CJ4WLC+NwOOuKjJ5NuQMRFAQlVsyRkpWoj81IU0HABi6Yhbn38TiLkRRQUJunPSmsYKEDscJOukOuuWv6vdcnGh/WRI2oy/hmJB1XV4USh5Lx+qsC6eBFyWbcqPSQ8jDNijoLRGgb/xzL5EwQ4S0MVHlNDQ4hHKqgq8Fe4eYMRVNz4tzgvU3W3p/ATddZPET6xnEGIN3On0YXCNDZDGulpkRwGPNElO5+pFbnYCc5wIXRSdw4MB8eh3en0BYFk8gXuOp2HulcRpSju1WokACourWrcUHm8RC04/qtLV92pBxLJtOcmjB4mgcIiUv1Sf9VVnHZZNGDqEi7LqDLJF/tic3C5HKoRMbygqouRcD4wgy4gKzd9QhXzKDCXDBV1QTIDjfmqLldWYc+7bv73/7t/c3zw5v/1//kPxkMtpTURaTzwx8vLo53t00PvfGyfGpMRCOrINru8b1Mv4q3rZNHGXyTl5mpj0uuK+MzW4+nx9u/++i9+8+vffPXuzds3F4cnh3c39//r//bmH/7pT//p93//P//h75G/a4XvEUL4boLKDiXxW2YDHiwXrHXUEMiBEdpbgfVErFg4ZERIsND/13/xq6/ef/f+2++d+IcVYphsiQywyyxbn5C2upEZQ+JCf2N6hhrNREiTI/mJu+VP+XnBBSfR1X03/GowCRSfdLI6kJmC32k95C2c6Tp0CYOyc5j5RBRgmVVREtKNjqYGiGhOq+TR47AM7cWbARFg1QrrUx0NoGUzE8pDklNklt1JIPM7SgYGmouMWX4EsvaeI3KaymJr8AopWcaGvEXPKt/jsUm1gtjdKTZXC0s+EuxBOvx6uB6NnJNSMlcEVTFbSSQHblNucZoA3Vq1oI7rCVAjkY2/1Pht0EWS643YJyOpbn8kOfa8QNzqr8vLa6OOtnqKE9//9vu7xzvYb+sS7P7mL3+nG2uA1DskHBv/W5nL7van+/uff7z6408fD96d2F2XUxMgYyjX4UR9HqzFMFbcPhmm0mk63FAOhbRMIK3V2ERq+skAJKDidL7bINAwLwWYeMXwMaO7rVWoXadLTSXuXDRUNjEtOVrO2wFc0h6QjSIDLdVmvh07kxKsl0cM+83xax7M1DV/GL7khVQnS5Yt8z8VQuFjdJR0IAK57YSqdjCpj5bbQKZspDH7FGQqAUflLkU5rR0gUnZpLlWIqejpTWKsy0/jTThu7PJFRlsD12tluZK1hNO1MBQtSNpl1PCx1QhWgOzd3DbQSyby9Z2jwqkZA2dHtnrIIfqHvd/q6v7u5MQrmVupdPvw4Oz91rDseYuzVwDfooRN77bB+Oj+6dals/ENEJ+8Obtr4xOZyKUcHua94w2Hy85uX17PD60K6yVrJPP24syqe6uS5Vn3d3JLwTTfYQwknPSaQD2SCXoHk/TTa8sernIFAVKyZaOj1xeocqjbaSFZr18ovoNgmIOR2WCsCyRLDmL3U7gjjSy5bN2P5Ux3j0Kiw5Gpz4iL6qTkNFXdFPsCwNZqI0qPwFYWiOxJaEGXQdCGWjvXu1cUe0Xjg1lZnRFbQW63vVugQzaleiUAjIM66NFODptmVurFHCjLoierQ1gARTmmctI2x0kfskFGiHvKQtH+oaWhnXckUKMMh8fHh5pWefPrw6zJVLw6xvhbduWDbAIhwIZ1jKM/NCCtindZPVr/4xheZ76pMAZZ/0T4bsyorMAwlRWhHI3ABkKBnQtoKTLMmVcgRwxIEJW/u3sYb2T1+WBw1oBuXYjGR6KYvltfJL3OuscjYCuGIIlFNWPW0iaaAkana4/F9MoaPjyyqiwPMgZs4ROx6gCbh6m9iFRKl18TVkOxNfMNU2JwmpgaayimDK03dYbQmerTky0bLP5rKIcuggI3UOIIA7ZUnxza3h0JjgG6uXHebtlxCVjvK5zltRkYvO7VV0S0uIE0RoJWYtQekAOaaFPLyxMx69Qsmqp3+uAdfjSsulaDAjMYSkmXaQEtWsmy8C4UKB7El5h3eXP348dLJ5+eTNeNEoYh855xRFSVSurBBaoMinNWueAzcm3EROEpWcCi1vQw63EZTgm6xDIDyZN0TF0BMeadLKMDQeiVsNUthIoQJqmtSk+TWFNHNT2FTZSQyKRzMRmM7rIpZPiOnvj2f3t8hpcBWechdkLbf30gdOXLo8RYDPRphMVD9yg0M9ZA1DxXC0Fa2Zaj+EYRgRDdhNs1OlJaEjAEN9wCREDjslZcYG0+QjPAUcUAzET6xPvUNi09lEhxDfL6qDhtQRQkr7S4klPWXyPGs0Y8JVWwByl5FfSV9tHKQisyoMRHgejPWtJfbp4c67QxX5VTFbD4RcmUibxVd07SdYnzbo1NAMsHRvSj1AgIBlIzxPJ7N2JCvdo3t3zPT5wOR/30ibBITGL+TG9sLLfCHRPUatcFaRgBOfksOjNA3jqzE7IzXUn2V6KVhlMJvc7FyDOZhWrsmNjDGbS5uYDjHkklxAqWn7mtVssEIlXJyFrOXwm/yyG0x6O8sfLRxZJ5zoJHPySxsAWczbvrXYN12Ryu9+bf/tt/fXy+8x/+p9//7d99+nB5LzacHJ7kTCMh4QAE4kxDzQZkrzIYXFt7WQTRPjC/rZ13X528fXMo9rw7u/jX/81/+82vv/NGFN7j2fHF/tnF+be/Pf/Lv3nz1f9369//h3+6vrw/2LGvjlI7jtuayhm+w8mReUD1JifV/cOS48E1Y3sW/b/75uztxfmvfvObX//Frw+OjwtXSZnZ8KrUj0aUWvWawtlbmdYEvVEAcU0QUSojzJSWM48NjBUTcvFfMUJeJjQa9HAEAH7NCnHzkaJA7gAu8W9sEwHZcJ/5L/l7Xsnx+by1h8WD7vpyvToYfQcczcpE89IjMyIoLVx/uEnwcqggZ41Dm19AjRW78ijAypBATUWRJZqHUmCjIYsKN0qLlWtAISsZh5oqIcmDgkvC1Uaf8sNdTCy8i1kw/XQr3IDX491IZmpMXQYRcQEBtGu85CyZq/JL1MOUh0GjlO73KTpEw3DoaQEtHJ4OxkRRLXyNX7DeThq/ub3RCPfqj71mHVkmTPu9G3r7Ydc665eTs2MS398+dTrny59+sLT+m+/PD+50DfQHHDX5sHt65k2rRrPEmKyt2IYwMoRqpMmZ6UnUdbZ9m/+eHCsJFx1YAxQZs3Is+yTKHafId1YbSmnBUocJ/QHCjpQ3pqApwxMnixII9i9Lh9HoJ5eJAGJ2I34NpspRRHqyHCWUypS0TbqwcCGh4csxM/kusUNB9BlzMu6sFTbUIPB4QlKFrVFIQRUbDSVkgw0AFXbmKUbL1H1wV5aDx7KT4hhtz1KPLnvdrxxzhs8UFuf0MawJRCbh9a6spxYKCXbXt3fe01D5mjxnwx96XQO6HciWXyNY48UKdp1Wbkl9HSHqPzw7cZ7q9dX9/mE7vC1ekKLJsJ93DMEax+mYHcb8eCd31xcxCD2pxsvrzfVd2rNuvjdBOLyT7zfgbeyWpMH+dHV9ZqIRmj3vCLt7/WiR1c7xUa8kPzInwXP0pTrT3pSTLaoHpj0/GzR1EtHsYp6XCczrnJ00WqqaFdNdekAQPYu2ne1o/QkZiluNPbWwfm/XucYuegNwKyjrZjJCzas8mQWYrzCs3xhxh66mD8Zw9XArSBvOb4XVvhP9TbvST5ZmQkP/SwDXoveeJq0JKQgRGUVr+oHI4VhaNahzjVkWSSx4WUAInw95P5uyUlD3WcvYuMEgIiKZQxyCCQxnnWBbf0mXQ9ids+ZYJc91yE+hqYN62LP5mAcvJdATrBnPzVN+Fl7MKFiUe3law1LC4yhqmWKvoNMbVEdP3J86PwrVU2UiqtWZhL0gUy4jKAUQLxM1CkbLVLFdd0AT3SZRoWNiUVmgHIrVjeM0Q7BJtDDYGpIvSwwIM07zGFKVEOpOFCZwoceie05rE+S2HFX0MJMqKFBMLd9lGvGYqsqg7LSO+1lhi6DCG14rgy9EFxYaS91Pr7rjxfaEZmHb5c3jt9+cFyf4qmJxDcN4zfQcWgPn45Qn3cDWZoNEJDNO1Ps/zezdkaBVwqaFLBU7P7XffUsP7/Wmw/mYrMZVT0bgSUqRE60+rkfJacInItuusv3Dx/vzs8eDd04DMjbgGcYpqAYe6vYiNWRQs2tNmr4uWQezFqdAJwzO8Pc0ys2RMpiq+4ZJqCdn4uW90ZNUBR9kxaZgRa4KJ4/EmDGjLWtwp1L1LnJE6Y77guFkP9EQg9nh+oASuX6MXlJu7IdOYaVGzqTDH1usRbNgIFKZCCO0jHmFtQoHIfMLAXazWBT9X/9P/8fhqHRWreRQ9UgdTLXibDreUTNGk5gEuaY4E3ymOp9FN4Np6Hd4++WpgtQzFZN1lG4QDU+ocSuni7jEFwFI7GK4Vb15ao9FT0xA6JEGBgo1lfFwWugk4gNdxWIyOAq4qdYkPBvIi5HEFLtpbiBgNDJC0e2N0F1EwwgNhABVAAEAAElEQVTRPYJmzYnIvdFx3x7gblI6QEKLAG7QDEby9GgRv/wwBQRQtQGu7qw+WvdrJ+hj/lQsUcTHFA/pakiWXjxAkupTN4lgPOoVJNi5rsqItLuZV7rznE0UPurStCoAxmAqgt+0QCqxhqNflA5UNU0OroxNiRRXS6ykCrQyFmcyhCPp+ucNGtWXh/vLD5//w7//h9//488/ffp0dfN4ZxPkwa6XWWrDLHR29oWGsGA/s67im0bMv6xHc77z+K/+zb/443/+p+OD3b/+F3/1zfvv3r57M4JiB/WmhkG20Gy7PsQf/vCn/+F//B//4Q//+Ouvv/rL3/5KO+ZdBHfXV0p0EJ7c4/H55MyqXiMRh2dvTnQHzk/fXLw5/+rbt8de2HNyPiZATv5Pnq6ST8ZQLPvFQuDNoYlUqFY0NSSQpQSCVzdrWWInrgBuPgD2Q5nJexUeaeUyQSy0pR0XvpP7AFl2MDfnbt29vBUZCim2uZ54lF5Y11hF8CMvqxjUFfY4yNnvguZJNK0C6Et9PUdGLqYq7hYE5BVf1idjKwyNv2+8bxG5ZBV5A2eAFFK6H66iCiwoJaU4qCGaB9FUGfcW5UsL3YmjoQ31UyI6s8ZRk2eDNV7FoA1r4ZrLid2bIov6YWisCB0p5csHkuUagl70VzA6F2uRsEY3egluZ8Jo6yC0ngGpRsqPDr2o6PHq6hKXGnKDk0cXp5qlzx8+Pdx4x6zjRJ7uPj/+p//wtz9+uP7DP368ub/b3jv+fPu5tdrTo0YPt2JS0GsO5UAyNAygIJGjIDFkflhrIknWGpsFDXWR6jYItc5fmiVKz8eNWvhXCpbYG7wveI5UM54V6/RvGw6oW2tzgjSxRTRcrFDsQyylkoS2LCu8q61MZUvcZTCFflSnKrcnb4jeRyfQ+AwnSiOfReljKiMMKSDfQEnJR+bfbxc4UWllZlKyEj0czICUyTliWxHJ4FSNRNGnYWBBbBEEiOgsjRQILApahtDbebUr7VKT4yGhFFBC1Yh470jS+iZtA7318ba2Hf6DBupGYKKVP3SajvFvvbBMxRzjyen+50tnknrR4T3G66rNbmn56+P97fuLc6yIRfYynb45dgCs/QCzhWPPOkkQ5NHH+7u27eqT2RwsDEKjC7P8MHVaPlTeWXwUZphn5ldamF97mh3gNaFix0zV4eXVJbI9kjYoJ5WWwVOoENF0jSzZtgQN2ZwvpKD+aIty8N7bdq1VkG6PXe1blPJwcnxCE3c39aigEsZ1KczrejEcKkwyiJcARoYo3iEQOsZ2SDfmI0cnE8Jcpq6DI6fHFLOot9NYho3LZWDDkGDIoHsHsx6zTtG4NjiKRVwH8swH0+JScwWYspSFS+TXdjW0Qg0tAFJl0rNsgSOPkGDjQaiuT/3gZX/B5xFOPvUdB3PMTu0g4rqzkmbm1VxWQ7oYlKyyQyKfxrHud5E3yLloImRCWS9zQiRC8gW+UzOx6VS44/5EmyKznF6mTrNKG0AHhVPQ4HJthUtJ2yGQea6bucIMb8uqSwzCVyNDIGGMEG9OqFVFDMLVxM8gbfaAqoawmEY6Ar+QpEHOhlPe1s4///7r/+Z37w1fFtanPRyuVbVyb16B3SqX5GE1UeoXfL6EzWb7Z/0kPk7PTm6uL3/44bMla5+u7q4enz9+vjYvmIhN0xlxng4/4qkArglrqM2G0eZ2/wdfhr337vzwd796f3aiZ18CplYFJuxMcFMw/iekN3fEX5RoLjQTrTQZLiEMVBIoxBUgmeX0B1z1SRH9P4rdNM0kjX8QhqCIJHKux0DMWlF6NjfideEPkwbHfYzhVrugQmQX7/laxZtk0oVuojQLCSN99KCeSWLJqEJIvHVPgz8RciLtL08r4TPlgdr+v/33/07FGAtlWo7FxRtQXWyGWOh1GqDlKhUBqmBa69I3xGQBEmE2uDGOh8yAezT0kSk8bqyADsNUx1vWDGYGyuDUndkKtapNPgTjefwlFJf8itHH5EjC06Jw6CqAk6iJ+l9MBJwmJZp8CUw6AwdtCzXYQ4x6MdfTyvU1fM3QZuX70/2Rpf8ZBAigLAgsGJbsbAr49tSjiA5eRT0h6lrrxdrczoLrP6QIhdBQ2YkCE92mk9CofC20J6l/tEPa7gScnNV1HYKmmaKEJCsYDmXiNnXEoGsaQZtnIZ3meYpFidFBRr9o9nvEvuwyCSy+5mmUgG0iPtseK872i2w8qaN4ah0Lu7WIQr+JTgOlnz99cnyh8+Do0hu1Lt6+Ed9kGIdHp94erJ3gj61CLIWy7KEZ248//3Tx5kSf9Ojk5O37dzjB0mgQ/MYTJsgm284HHjf+/Omn3//h769vrv/mn//u4s07bD8/3Fli5ERFZewQMGBnrbZZXy2jFoUxJ8CSjmQ2YnURFmJcetxIeEwIjxWsQMJR3S/CIRMZyaiJLAI1ZUZg4+TTv4pUPLsrgxwUG2cceGhIkBvbGQ3GGqJKjALoafpyGQ525XcqrlI0FAUq7/Go2O1IWcbj3uZJ5RHfg4nOQELUTzKMlUG3TL6etuZ8xlQy2YLdVC/Ssbcv9IAZBf2cz8gnurrwrMbGowlS0/UVyBT2ie75LPpdogHVEM1FzxbBbkESlekiK+9q9B6g5JxlDsyBGEkZZtH2ywcZBffhtntKLE4TwjQDRecGU4OZlrvasBY8paSmG40sCMiV34Q6eBbHy4F6942odXR82jgkmcmrrq55zP7x0fXlzz/98efPP3/8cHX5+x9++vDh+sohos/Pzkq3XWoOsFJwxnChLrzw/K1DBuZuTyaoIq6udzKAuLXXWRZ7SEGErSCrUyF+R0ruzyRA6tC6AKA8djSiq+ZYhWQ2HKoIuDJpfeey56QfNn5NJGmnboCBQmEn5Zf2SILNdbc/tuKAdLoL6jR1S6oZA0to/Yg4xjtFAMLucrrZ7oA1lshHNJbwWH3krbxtE8r8aj9Hyp2d0vMVtahMXoKXIb3GtEOT4CowTEbY22wMVrWUlRktDbphrQUxgCl+GhGnBp0CcOHKSFK8ig7kMZ7Qy7xYhk4DiZG7NdHXl7fS2Vm9s2/fML6lQGi2d1ZomZn2uqM6BhSyt/389vTUgIWlKC1Z2X89sbXBywFu7w+OIt5Rnscn8tCd8+MjXZgnGwx2D27vvS56V7emhGDGobFUyzo5peza1IEBctqUuB8fWdIkeNpli0KY6appbYalD5nKEDir2zFmPkEZC5VKvXoLmL6K9dqMe6szFWjA36eXY7tf97avLBmyZt1Ube/inSPnx87k9KdlXrVutGh2BQQDLmSI3nnlk+mUbfO6D9ZGIcn88MnB1fVdCu/ctr1OCGy628nOM2/ferOsw2NJHW3YPeGa0KEoC5qW4/7OSiesjNGzrob6c3h6IxigPHJsSwFDKTMblkm1F5H7F4uYfEuzxgXwYbBfRkFe7njhAF3cedtz22cnX5Nza+i9fc9Uj2DYLtsslnDNNRVCaCT/YJrMrTOCuuXBZE3qFEn8mgECKNh2+QCrK7ih17vn90db5o5wZKaQAPXD+waxWbVuc3zitRwurrHK6bBDqhkeQBMDkdEJUauDkrv1KFxOyZ752rr0fXJhT5YQ2EAstLxqQhmIw0GQlxu8bP/mm4v/5b/4lY3c5nv01/AUGQVktRxVkOXnX60q9Ho67HqOQk9Qy7F911Lo8abYrWbAfv7Asl65gFf1ESZJsXM2VpCVONaVTW5xl3OjFsyMoIbR/82vvvzm27d/8f3XnW81YQdCo3tJr0Xa6KjBhZ4dMfR0PpSxisYpQJpFgA0xewJ6eSPo06BMyBIwJybE7oqNi6O41z7qJJR35ZAFOzBAGTngdALUSDANejKBPUAxIVIn8KEo9qavONxFZitZJnQjG29AsT02jin3lYZ0SE48iPNVv24m+vxyMXQWspXf/r//9/9u1QBLTXciY3bJAO2OwdG6sBmQBc04nT4opY2FMeL1P9BdZx/0Oc3ACBRvWM8G8ge9wKTWtODkhWxX3GLZCriEepmg+ys5Xj89wBfzBLyCJDsNWPdzMWcrC2QrsuFwcgLFNn46ms1kaqIG0kaY2FRG9RFfS/DdGQkke7yiKMG1dUNcqgEABQEUqOWoI6j03Mei8SE0KDMSnCx8XL2bgxqWFOMb2DV6ynbHwigJbSlvnHMJOf19SYzqqk5F9A8EaHUxjWb1hsANJRGTSPwfI9FUrUnyRhojCdiBVWYKzw9F6lFsUr0CaIRErsLS4SCQU4T/FxSeRzN+pRcr8dX7yJc2RKAemwMomQCRNQMxXSOjagZy/DJ0x7McGi67zuJMrWhMmnV1kl4qzDJnrhJwtqMIWCPApQ6UW/yAkMBF0qRi2FGQw7uhb1g7YwRC0TEem90aVx2elqxQDRwD0Xt2ja0kMgCTTKYSL11krMW5YQqQ/md9NQxBjMcejnxcJMZRmm9yJoQgeODfLxYx9eZ2ACpZp1rwSI+Gy+h6EG0wIIQ/DljKC98CO2gzGyjCvHBHVYRE2hh2UIZUdp1Pf+Gup/1CYTDnM1QuSFXapEHgKUjXyoRkGcsSy6o6yLo9Rk5uIAMwVrFxQ/WGkiJO1/PHxfpUHhkDIZsJQHewNlG1qj5u0gdE6487w1mPFjsVyPGn+jAYzGFrxFV5v6MhdMXAoHURQeGPjU2x0Pi5ePSomBkuBRlLAx+o6ac2A7UNEIKMbE2ZRw2tsuCOImCXrzefP1uffXt7b0fK1fWtF646suXT7d2Hj7d//P2fPn68/fHnm73DWZP92okZIo8XDBMmeVkLYhRWywmhEN0Z5wmnTGLoQUG0K9rwodR5dlIhH1PgYCIaxiSIFs1sLJpHiR6xQaTyvpq/gljXEDiqZZKUlg/hEzf+TtNVljzhLqFxmtJrcumgFVXWQJIjeqRHhZpSDxKaj1pgDr3uoXxGf/M+MZnIav7JMGnHW9akFDhydbhhKUq06N8C8WZgUCJPpQUNPBWQg4ZTPIECaul60a7LYMkkEdm4f6x6oyo2a60sgwn7s8Sltw3isbNi9u01lDdywI6ktLDkzhAi20meLK0ANWMXxV8VY9R7SyZRFt8KoNlrRtLmaVtyDw+LPSDsHm7J6tsFrjsk5FlQ/qQ3leheWoFzuG9Xbu3otTUx5n5aR3RPAsdHDpMpxkoDREiRYbQwIy4jKCkTkUJLB5Je7DM+yS9DgEUTbwN6ytrZu364r4+n+Wp2NxNAitQWuZnWuFLmNfs6Xre9s8VrLnqDgckVLQVJzDntkns5kFLOU1p5m9mLfSe02kZYULOGyuE80yugI1sXTBrQheVgTnrwtgAcTwjMqUyY8ZnkZfBoZ+fY1mORlrTdKbVs1I+5isCZQYkOzSOGPmnD68buZafCB9/M6mecmxatWCMPGpHBqwghdThjGlRsNoTKAkYOFIY20ZgEa+DrvPvMxD63KNJ2vAyCW/xj2kFyM16JMKrX1xqTsIj/gNqLBkWVucw+GiomhPyuqE6GDZkR5jReuYc7yT8F5s8c3+YTimUmtXH5OwyvB0ctUcuSm3406OBEWsXSFniI8WfcIe/Ut2nGYBqZ/KX39NF3H9XjL9eo0WnUizBq/mAv9AlrLG1a/v2L473/zb/8zZuzExSTgGSTfeKbzpBHKZBXKb4L1AiDffyxLLFG/7HmprZkIo3fHz8Z+9/69Nm7g+zpc55tUsYibSIPDSgBRPksg4xB95h712iirUJnx7u/++1379/Y1M9Ti4rZSwvv02OtYwDXuhKPVvaVkQ/j9frit75MpZPzGvMaYxsCIqNB/QZjisD6lG6hJyFSMmLVN77AzdxuAYUpRF5BHIRZRAV+vCGKceGL9dI4GbGl6G5VD0Mog19sVzQmfVcl/t1KAu6NnMk8AyOghE54Qc663Ju6fSc+MFrOSI6VTqSBnflPF2qVamMPlAE+Eux2Akn8CuVyuUNEK9cmYGrlm+l47LWGJ8RgMJAsOGFSQMioLfkk955lDvUBeoTGYWSB0jNzpzaMLHN1Vaa5jVVCC2xwcpLRnNJuDqs4YpQZIDrz6nhjOYpGSp3CIi6xdmf8PyHUk27rCESgJrmCKXKyCLCiGVpmwQLIBvTCiyIN81S3JGB4yFfG4CB3M1tdslDDVf9IBbzIpxhmksyRsOl8k+zQkGDgHeMydGe6E00zVF8Tq0YfhdFMGmgrm3eV2P0f5wQVhakvVfAO39EBKowz9xePcdf3xsLUir4vwEeGaTJN5cnqImam0srV/BmW0RdJFSgwDYkjPQcNowja3swCEepjn2GokFVou6cqTdWyQrgUYWlDxCumUvjzVShqsYcFcDx13SkA88ZUAdylgAkbhQn2zUaGG8rYxD70RGMegL6HkixZYR4OXRpfGhlc61rJ6ZilKWlBUgxqByz6kNsUS2gKgs46+jfoUFfgzhzoJnGP3nJ+jxQDKTImimTKSrmVsSXJqq94jf5RAhBL78EfCaz7aKumOvW912xPRI7ITL0kPdgX5d2P1yqNudBugxIymQmgY+RpPbOZApXLAEAYc+piVB4LMV5YIAiFMtsxv+y/y2WKuTw0fqYOQGogU7br6f74EY5FScCKC/NxE7PuMGwgC0QZR4WHZ4iAxZCfG110ESU+IUr7IR+dUI+ffRJqBp8xdt0oIH6jLozTKszPJLtAuaDBwTUjLqQ4gTFMidQBk00uSYvMejEqh7MbIdPbvL2+ub+1u/Tw9Pzox3+8EnCOd4/3Ly4eLh4P9y8PTw+8JFsUv/x4bfkxQd5c3WmOO5ql9a1cfYW1/ZKIiG04AKHp55dJvMljom9U0wCiwY5CU6z72dJdchxpiBgk80WHyV0B2musmTVmDlirKOW2nIld8Ws5Y7Ei1ETlKfACAlFLWKgTpY/SqlF9WYhhlcZ2ZxA3paTe3JHQsFAqj0epXE6CTuE0zxyNFPMiu3xrVJ/DIlv62CGqktaU7G+eKFevsNNnvJvWaKKB1fYp4j111ytAdmZT3lZL0fIbN2YVjeUi3udwbPmWeGwe0tB251zTozmQzs2Zbpih+tf72iCGbNmhpgqXBGehlwHyrGhEXdOiMW6vnfiWMZGnKGjXh4kSynGmjtmGc+/8arj65cTKWwJ9dh7/IfnZsuAQBC9OUVtiZ1PySKPVU/Ta+JNzG3XODFQ/3Bjs1FUx2WL9ktUsK/BPQvbsOKFDQ+8PD14xp1o1WjHfeWV2/npdWlW8j7r8pHU+KMWoQbp6D03vx408kxDqKc3LH0tKdVB7ncL+w83d6antVQ/aAhKlBSlI2yeIzI/ZQyDrNT9GqoVNJ/BseUc7r2SyKwvNEUtD0SDU0Du70Jd83bIJm4q0D40boiPW6xzWijVcRNgmDWp76RaG3RYiUMKO1ygoe3jaOTMCpRRFGGCC8wYAfYBOh7QJITgqj5PX9I/vTx6x5R1m3peAIHQENIzMRKO27ZAuJm2JO31Ob3O15mUU4/4aFTZWUq7yJtZo4Uhvk/DlUBndeCQUTEOakyfGIyT46tyc7JP/kf009hSHX6pqBY6hBfLkiRO+iXL36EjRHJtlmv3o/IwSbgJHP4tGMP5Qrp/kbiKqG9zmgdwtsfKU8rP8IcY7XLgL/of2qHy+vXOkh4X7xw3ngTeRVBlYwpPptVSbLoiCQLnk5CxpKg/Q4syCEaEeW8R34qRep8h60cTBriOwhAJbGNQkEFxHT+G09mjCVKEAnOQ8rQekkeBE5qeXv//Tz0z26zfnpEvCOUJplMt6WRhEIzmAV0vjP78xkHAjGxOV8R+5xIzbDFFCIqso7GKB9NJN16OsyOinYiqm0jqSoqPMopYqfUlfC5Vr/6qWdcdyvuJOdi14tt4JTIDRMk1PWqMTevIoXKu7S7twhCeqMh7srNyP0vkILxJiEtd648Q4TuQNaYjUo05s6is3ICbA1vqKjGjwUKQYCLUnUHBLNIEwMkp/oS1AN6bleoQIZhSseIpiGEa8oWTWnqHb3im9cHUxlg6n/LpIitl6Hw/iYX4wP1ddhwF8n8TNFFCR9ybXalckxsvDgjLSQa4/qWHAdH/gjkT6EaFsbagPwlRN91Mza/A4WQV2oVY2WmbfPe78QUOIh360uc4NpuMYjhFFMsmrp5UemLn6zDyLWzOhYUbCiZOChkZ0ohIlJ/QNa8l32uCGB5y8gC43EJ+soCOFdeE2CCkTTtCQrWqEJUgwCgfxymKqURmyzQBHHkNz5bqoZJfJhN2vzqWfI0HqBnmS9eTlNrQrh0IMsO5OxjxDiSohVyH0aeWyxPEcWOu6kV89E3RPm7BGIseCR5hIjZzcs+R10QeUastEiuMjCqWGX04rDufGYY3NCiKC2YxBJqO0gJARSLzEpBvxu/5bKKdAQJJjn7EZ/42/pTPQGfaMmijMQv1EJVWOaNyJ+/6QUnJL5oyGZiomTHzRwlj3JjyhXYOn1lQMYiwEeJGs/bS+tqYylns+ztXvDIM8K/dfKgxfhBLlKQvSeFqiqfYQ60Zhtl/KZiQVV2psjLwznmFQgYGlJERRq+qAG2CehTuel/nFThWV7VGm7lPZvv1bAlJ+sTNKUBkvWgJxiIZdK7bBM4TxcKgXrhgYB1UOIZAs8oeXZfO5u+rgrNp++uNnoohe/s5P5wc5jPmsJxE7oWsuVrDW6rPV6kGGiMAy8Fn3IjtEtXR5Z+fQiUBHx8dOi3fao5GhHz982HMg5YGVbw8ffv7x/tY5V8/fvDl9e37mhEjO8dWJTcNHItHHDx+vPzsivJNXjDsKvM6d9EpF6U9JldnUThUn+dhgLZBhGeuTHzQ3bfepkOumYF6+EsHkOZIht9GI6CX7qlEgmhkZdJ1ksIq9Qk0wR3VZF2aZHW20u60Y22hcjYVCsly01YdVNXOFAkbv7RO7LKXOJccA1CoE+BRCG+aVFQwLhT63EY+IfqSOCJYDIcWFkzqD4hKKjvfE19hP1tG+C65vYKVfKKIdNNcqZGQkI/lEUa3IEI9r7EunDIF5PRRU9oz6pXNlLQ2ELQqH2vixbcF457mKMcUvJ5+GxTtPYqU0eqK05KqlwNxFMZGqHNhk+9H+2dGp8s6/xF27C+wH18ZryZS3pMQ2g63ns8PDTjFtjDkRoPzOMiFJvHdNOzyo3hDNN9w+65qMIFI0F2na04DxJKaphIpajLGlvRbuZqAqCcpLEinpTCeCNHbxR9JWe9l2oB/Kz3UWDAk2Qk+RJihMJngn7uExvfDG1t+/vFjB3wi82GAygzWaC/Byd2cxWxq235mhwrzOCZnLBCahFOQ1HeZVJOAI8OMAzaqxbdrBqgbx4GgGgWQajnI3RWJazJIYq8PjMWVmq1YrEUWJwY7+9e3L1bujN9AaRqbb45OThscbvLCJ5T59v+oyzeGk+0fOdkKDHbSCdqunZtdBWebqkhD3Gj0ZwwsdvyZxUJqG6i1yyJCQdDRWLXlx3iy3eiTPKE0wGLlnXThkB6yCa4jVpJo1jK1G2BzuTlazcJ9E9/k4YVA8jLpS1oeNRTfBobGa8exdL10o3Rhjq+8wYR+nqdMygcZxS1uL9BOnM6NCmWGxTL4+epJZDVYD7fhyG/O5VN2XyayAi/x8kiWxDcBsNf98c/fd9lecigimNVJqSUCrw1QbuuWMw3rdNh5aHEBKhpclQ1yROvlbXqR4/uaso7ZuHcl6bAM6uhk3EeWwkCYslXLVyIvHlSLWwJHlima69l4N9uHTpd2FhMWEHF2gAjGogPmaD/NsJXWMqtUc/iIjgjK63AEKmooft1oMoqIqM24e7WmE6WMo2RpwaWiD0YAs4s1WCmT7OclMF+pHwxh2exsw1xi6C9OHKm7oJ+JcqBw+OM1s1GdDR4kCDaddVyCHOFmmUYI1KGMMgtcp5Wn9jQ6PmVVJKvBczM5QrNjewGjoSdDHdXoiZBFLm5cJEEREwzDQixcrrKP7S1PoMtyjSvQs+2hZDl2JLEmRznxGtnnryLOYiPqU11hvSJZNFN/R0UcNDuk3L4J3JOtXnBNzxSo7wCGuBQrJuIiYWyatdsF8Ehe+OsqMICaR5mpX1Eny63wMNhSkmXkZTksZlU9wBIakaXj8RG3VFO3D7NSq/aohSVy1sXhUfdrR6Axx+QSSJv6MVGuW6G16F2BqJMLfl8Iba5ynseumZyj3XQTUjFqjNbaSquYTOZXzlRRBcq0MWWzuFiuWJFI3ojgRMqudb2RHoDGdKVYs3oCuVokO8sZAkw0IG8GnzSKmWsSLnHHxqfpFUIlsRNSz5pHLVhgAGg22J7LWJ6ABIiKtg8RBWX3uCus0/j0LyGJQ+FIRkZgN5kbKPWycwP3at8laMKUW+MpxYyWYPVAzaT5mCWMSS+OpapQVtpxiAl7em7487aLJOh4U6iVw32gENPRDJ0Ao8J03Fn7WfXW52ch/VKO1KxyLcFljjofZiT9dIyE4jcCthWrR5tYg6hoxw3EaH3MeX4ArEENwhSo5uitLc1nRAkdyyagU7nYIxzsKjj7BHLcqAnYvHywqpe/IUEQtP5lP9asV5CE5H/N7wCaKsUp2UuvS7Z75jnLlQpVeuvTIT7eTFfIncEO17J841VKVAUTTGPDU78tHxQoMYFSPN/U1YW3IQUA85CODJ9UrECGjhIggvXKuLtVxe3zTxcRoNQuya5OhEqomwlAPKET7ucyP7q0z1A24vb09LE96uvl8c3B8Ym2xk1SuLx8uP1waA3NA5cm5gjunZ+cWLl9dXV2cHu4f7+8cHwvYP//TwdXP16+7R04KuvbmgOfXjz9dS5pkPJefrwUcH0Pd1Awv5IbB0Z3fObbPVk7+wAdocJaDp64O8HHAH202cIps9pwT5yYRvPHZ7k+gtmBXK6chYOkj9tFVvAuhEm11ZSfpZfE+S1ppp3RQJJkGO+lkRqkPacX47ZaJI1UsVF3ek6yaPUg1MpYGRLMEVVqrveKk6umd8zQX3xus3BDm8+4hAD/ipEgOoKX5rc8W/C3jcRikZ+O5TgBYacFYbLpXoIYc0gKGYeun+6e7Y0mofhFn2jY74UzPbNJuJXxhgtC00PQFF5ob7s36a25b494yfhn/+N00RlIsWlFSqneE2JfXuwb7y5ZoikwMvZHRsf0hV94PIdfecSByx/WIAfu7dw+35JcRajIONFpO53wwVq/1MFfgAIOO7uEprRSaBSSW1sg4Hx9wJDtjILwGFhuCTUnhK4N7amaJCzSB4PXqhc9Cq7dKGT1tE/DTy/2riQhvLpOpdrAP2ffO4SZPTDhYgi8b3rG8x8Bwwjk0s8797PSlnd7jQi1W++hjmK+YoEOBvfALIpsKCoeszgNKtxiJhCUnOpAk9ZgTyQDYnm6hI5Pod3LTUiiHv1jQojUxAl772YL3/S3rpCyU32tVXjuN7x+8G7JTgNqMXuSs1aBQcwNeXlbTwvB4QXseaIZ8SJclaH3MpcAuM3ZNfo6OUIzR0u+0BYQvMpbHuqdIXLDlmijc5BoK4z7lsl4cuFtsLkFiIVNKda25M3AU0flc77zT/ZYl1KkTWNK4prwg2wtDAOYUY2Yt+1ERL0mpbK8+Nmnbds4A85ECV2lTJXHT/IweVMTV+YkZwmDD3t7MbicGesi6ZvwxNtsv1PpD6inkotrNve3L2wdbTU6ONOWEmF9nN9preyrY35Z2DWt1nlfqif46z7kuHRZ/wMmSnRxlw7tVXqdHiH16/Ph821byZy/ZYz/OuUpuQzHBzbDFF1nV/RaOOTRcRsFQFpGvL85UOD08+farc9LRdaIlYsGW0IZbUEQkdOkYx+tqCGpVJ90tx8NT6vARgqiwqDLZF+JHFEb2gSS3VKbXXdxNR23VUNM3Y6geu6E9jUWb9VHKSKGscUI8sanVXca8yKAyuikLimDyh7eI2aBIbZC7E1+rtaqUXXQAQDOHEZoFFkmESoywipFxBqC8D6ZE2ukixH0DHn6WVvpZRUWF1OSI/Pw4E8m4R86pcAnRU6ZWsoW+NkgZ2iFhANqnNcSRQJUHqdp5L9P24pH6Y4mbh5TfxyogS2psIUzw1t91wUPQPVjAgAs5+QPRu4+AGgmfMqpeC5KAq09StUn5WzTXO/e3ixFh3YNMv/nCMiCF8sDaKsZQdpiS6hioHPspc8gSHJYSiLpu3BrNwic6Uwc1RViiqxKlAVJ0SdnYmzHXHvkkk7m/JNcpBEtoyic6Goh4AIDJ5pYK1XRnyOsRYZYmg6RAhvUlfR8cvtAfkC8/XSIPdiKJHshxGqlcoxbO04UIKKX4QHlB3BdOZihkQ0mtG2tbRkCOlIqACEka5BN79B6uhAxDqP1Nj2GM/eIX6VYo+Fim+n4MwG6qGL9MGq2JUQF6G6EO+0nWhYgDGEwso4gQdjWWLiarKJKOjsdzhiclWEuNUAaZ6kI9vK8MG1sDKJ+MQSUX5GEz+IxwnJMcYySsDCDXcOHGyJmFLMNXIEEZRRje6okFMT4FE61SMsNyQ3GYWnxMG5DEJu+p++SO30ABtjBNzWE4ngfmEBMRYzBBH0NOG2kfGSGOICoZdaTBgUsm/MuHbYzw42KgRuo4ZnVSCxYKVANquFtCpKm5N0KNzuS8lOvCT3rvYvxkUERzpLCZNRZVpWUY2bCrkZX/Kkg48zzyVXdrCBzjpMS8Z2wq/uJygE/NJfkFWpkeKLv5h6mpCFqK4T7qLoJjKD0lolUvKx1qVFnG476srGEiYrGMxLa2+3v5SYfFOJD+8GgSkNezd+fG9fe8Mel0b+/kSE8Asv2Tg62r+2+/sZVt+/BMouYklv3jr7//4fXnq9vrNydnp+dfHx5f/P4//+nz1d3njx++en/2888fDy68eOr458uPH68+8xWpCReCfSU3SwjWHpWOjMBKmsq7SnG6N8zTsrsxOqvxGkSyrdUWXiuna5k2ilGNNAVb8maBcpVACApZYZkHpNTKdOnCVbLiWRRNqYZCbdHbNn5pkN1PlSaCFAr0odP8yNOj5gPQNXE1/QCFEUJFjKZex0Wzp35mEAxZpVK4N5qQdlphUq+G2TQi28Kf2ZBaec1c1GW5GKTluPYgSj0tsEBycnCCa+mk8ODBhEULde6Ptg9ZoQhtGQmqaywUaFYPunYhqGUuozyjoWEiN1WiEcmPHHMop7Tp12bHXPzwwGTOaYt2MJgFsXrnrOs2dMDoq6X/QDydGM+tr2WEy2i59yc2SGoVPg6RjEMjibYOGyruCBurxXrvloF4DVxTqzM/gt3djrTUuqkyUgRavLXhWLIFguPZ4HGO51KrjNnOY+cBJlSCNg8RZ/oGpvE7jcOgvLTZXwHDCacj9UxCMtB5q+QAWc5C0N7A4F3RO9f3twXRzC7FkjOevSUNRTpXLWFyuKGOnsF++sMDePhrN4V3DUhqHXnpIAexh9LYUVmOvcMN5LUge//85PzWjEMjoYUxDc+drtTTllNfo2S6hZJhhhNAkzxWBFlGZU7q5RF2WbLOImUGO7PCqLNNj1kjb2LskE6cKe0ldCWk3QCz1qZ6sKE1aLA2FPpLOGWKdYOTYA1NW289GwbyQIVzuhqRhDHGRzqoN6yrWVFrXElvK2Mm21WQk0GES1DlLfLsrJlfZIDFYo/CTmX8SvYg/kx7QZtg/tJeqZQXRjI7GnTNC6lSfANzUqFcIqFMkMezN1j3MrhOZaUWnYrEAgaxHerGFNK7E9ObjjET2mQa+QqwRhlkgNt2LLy0jsoUyt6+7rpVSTun+70Q+PX1pnfzRQM4BOQaNNyRuQv2Ez0+vmgjsXfAkeWSP3z87FzvXd7VAuMET8itChtuRYPCF2UseMNpSXa/GVzjzC7wNv31MPgNNtxpPy1HSkCnlV/fbMKFNHilnUsfvDGXnuxK7KpkoUP1QiJK3Cny1djFiwuaxaACo5HE65rwPaVktVRJAsm2qMjX2AmbwREhozHzbmda3hFz+Xu6gKwA9//8v/y7VCWKgpTO2EqokQpkUBXLguvNYCNbJa9ycflus2nZkBpTvvy7Pl838usYhIR8CGvsDNapkvkM9ajNS6YtUqzeSYoJQoFhxDpURU8XoWqExv/peNGWKKelr9VPKIueuRkwN11nhVHcCKIiROPjGql+wjueUPn52ZB5yojg2PSp5CKPIc4WHLiWZRMM9QAeRyPMUEz/MjRf5oDIzX2/l5MoT2j5ALIhoWxKm25fxM8ZHQZbUAI7gcOVwLV/oHicCwQNYckj2W2I9DxciszHI1fBIauhuOaTSBNMALLmLx+3XLoJOtoGQJE2DGiYzFilkck0mfhd6IY1dUGDHfIMOtydmqo82gM7KiiiaQVHVhhgA2PlM+imRMyUT2RIq9gGxcY8hqoQbepWBcuIHLNJQIv3JaroVEVMHBV46DEksYkEZPVdg51kJ4qVOiyxrDIVSAwZuTIL4KCN2F9+wooV2KZ8ZObkQ4w7LpQM93w8RbcP4tznYrER4cos2daQeFQkKlWLqqjNDpWDp7wKjAFV2uHOVIcghH75z7dS/zU7Q8bgXsIYCaijDLsdmJ5C0d+xrCiO/X4kq9CO44cp58q2kRE/OCovHMarN6Qwjynjl2KbpygrpmM2CwdwrBQHGzhLQJnfgjvSARAZiSUH3EjDxWIQWSvOeJooZ5wPwJDmYqOGaEoP2fME2fV04a1oPA0/o9BudCuOFnddzE8XnrJe5as4gvFoYfezGD3nAjn0yi5enlFOUwZncPTh9loTJb/c/enHnw6P9+WVjqI58C5Yi3y8b/Xk5OrzJaJPjk/ll9eX3nVzZ1mJJZSGvP/uD39w7uLnawuFzCx4j4BzIvc+fr772z/8nffIUpIZQoOj8h5vqBL2rBvJ/gUbg14O22nFArNyNpf9p+2Ykf5IX3wwKRnSAfBPb6HhYt4vvknGLXOfjYkSkc4aoinsM9dsrbDjTsOoWe7418QuUiIn4qMCtpxks+fSICKbwUWsWxRK4dx+4qGUztjaKCERj8DV0mL4HvXV1PkDZUodW1U3VMgdRRO3GQMFlFs5UxMIB50wI3NliZs8iRFNhdSnT9tpAXjywcK2lS3oREgBkFS9PKvdBeJ2cwW1YBM6ckyoGyzesUO3AQwSkK8bezYgja9kmzexO8CtgdHoFLOUbANvg1LMwz5XLyS566Chmu31bi+LzJ/u7zRbxMlDE0y01TQ09JiPK0sgPU069dss9fbyJh2HJ28bcBKRPAaDYqp1/1oWvLL/Zh/Vt0q+Mz90TIyS9xrjldZ7ZNGCHyJ20wVycrleL0R/tiNXzsHXSKrBvpmrZwSWl0dhUzopC81EIbUW3C1kol3YDo8Pr69v4Nfo68986Qbmnr14wHKahhHTaJvIqSk1t7/O6zFsqpYTe2aYT3/Oa8Y0JnfelEye+1a/HzzcsnmKpchtq8rtt3FGkJ3cI/3WI5mIEA94ZghIlNTIcA7s9mrk1lblv6WA005tX97deN9zhq6sI2uO2tCZHpmerdXa6Dk0T2fMsb6MwTMAZNGsYywV5iw40x+EVD45aKHPH+JSQ9lkNQ19hKV9dswSeaWDlfQfnFkphcyEKNt33lYak1lq05Fh6NAdDmVtmItG6liANjRKMjUAMcVZ70UDNpfV6FpkGI2lTrCKtUmZ1KX6rGn6JwMJA73ZGne59/bWv/nnf/Wb7y5oNaY7KEkkiFTmTAjDmjw1I3O/nGoudDVZfMwTEJuMMi7xfHZxSqw3V7efP15ar2i04/P147U5OMeiiZJej0Zw05+EnOEFcJh0v6yDYymHhI7icqSVbQAnf/Wrb89Nok63dcSbUBAs7SYABiD9Hv0QaQEQv6yXLWVBuMBXUswI2ZDLtDJNeTori0sFLnwTKVvS0vlZE1LpOEbVdFSKgT6JSk9mNXMeg66NmPwEELASssr1oBrIIOjIKDk0JF1oSXRAZicTV4O2WkAosyuPFAFn2GnV39LpIE3Y2/+P//P/gcGt0pkKaoBEL0mZ8lAz6KozxGQ9BThLDGc4nLElSpWrVgCwXbbhj/t0A42robJIGqy5o9QX71J1M7ovuEQi9cEawAQzvYLGXTwCDdgqMOIy0ckzphc45ERBCq608ukgQPNrVDKX7roXY34GlmCtuQ9q1tmtsEduRA4xFat40ZMFdDXYR52uwBuUwfbZYO0/Zuo35YFTtdpIJpWDbShzc+xgMRhYDUHP8q+ArYJQDOpuhrHYHQK4R+qIL0iP5VFjAhmiBkBEdaHCgHPlfwadrnxAjkJ+E9JkuFHaVJoq8TJ5mOLLsMBXeKwwTCOeeFmIlh4jz40hcQMrOcR+ClqCG83GUeG0BtE1bWhJJwQW+Ucj7HPYmHpdJaLGKqY8k5hXjcR2XIzfLpwKujfiH+zshxwIq4oezjcsmdY4Vd8bAaKzqhVJToEdhtJKdiiKATHlh5sNxooNiAEffnDAcn/Z+fTBuq0AGVJcDk4yedsiOMRDX6mzkjyfTACZu7FT3WypxEtJekEhCCnIs/m4H5HT+AT/yyqyzeMp56ZYNvqPohVMA7jJs8kTs7E2eom+YTDhLArdGaluoPpvBJeQgpjw0rvCX+jfFPAT+8NRzpXHFTyW+mKNOBauBXq8IFI2P5X48kEAkQP1pXoPPF54CcYj6Hw2ch0RVr4mBGnzNHUM/GFs2bPymQxoAQFV2XVNrhQdg+GqVU4Fvvvl9hJ7emkswTip6XsI7+5v5TFsQAT2x0uUzL4zZeOX/JkhawJljNoCSfCuDaBUYoW2wyJt8Dt1Utbux48/P14/aS8/X15efvokYt89Pv3//tPf/eOPP3u9BrEZizX06yUbWvq721unULc0/PF+//jg7N3XH3/4YR3VV9POF2Z8V9dX4oT/IZ1JNArFtIyPpqMUmXvH88uzUTotaCGqAeaGh2QPmGJsfirq6UipFLw3a/kATIBtVm7AmEzdGEElQL99QpGpzJA5oddSFJohNxQ9K8jRpcOpVNQGtjay9i8nqero3FXVa048aaC3zERwQ3MmNoilns75STljhKPTNF13R3wldWU7SQm9Dr6ZVT1kBWVy6RBGPbXWShkHlTFguXwEN3JtBlHCZyXJjp6SVlyV+Bn2XaNHV7DFMYkAMGnai3UQcE/aUdTEl2SdRNDiTSWMT4IucEFOvxjjLyDXSbAexwR+4cHY/OF9p4UCRawxouNJ5g2rT+oLXYZZ6pPUwc8I5nBVwy6IbE6jPLKV+mySgAjSOO/9s3N1ML5/eLzLzLxOiyVYBJI2ygjrmhJledIcZgKsVqYUntm09H+//uhLvZqOGJUmonhiSb0TiVcvacmSVx8gbxiJ0X8dgvZyFdymPan1Z21sJpcd82RTI1i5HcOQKRdKehetdUpeSHxIiiWPJ0e9xtmZQjJTmyL0IHR+GGSd3qct66lUIzoY2VsWG4ZiAHFpYE2wpLj6P7BQnh5OTFK+zgstEGrm4tFoliRdzNFD9EYR3vWbJyDaI2lfsWFKykebM6kRx5CxaGKt2Y3Fsgj32vVL5UwM734rBxgVS/pvrSekKmaWVjNmfkaxriSgzHIGe8FuPDcrZ/oAZ5LZrIJgybh0Dl2M0iFetGWhgKo1Tup2JqPiP/v+/b/83XfHOcUIyjRTII1OF/SiI2b81fDhs2VvLhY7ZVw1LUq14IqyvH4Bj1eX19bp6VndPT5byXPztPXZduN6KRET+0XsIsa00rn/sFHiv7wfEZHu9aAH23/1m29/9f5NB40ytSFlbCPh43hCWqwV2eMI/rzeNTG6QDu+IZoOQI6ADIINSGwG0VOQ8ZKEiM6DVvDrCUCJ5DoAQ89odpRW+Y57UqPgpkx14QKA6zfIXvyEzP1RxwCvGPIilu9Hfou+0jL1htuniNas1JLPupNKlEb0alsb8p41ZJUfF4QqiXmcQYlH4fA0exrq8m+TmJATDZ3lz/3wUDDLpNpnuTiZ/CMOS8WUHi+tlRW8QFa2w9EIPaOsUrjYSmgHRqETKDVDnhxqaMLrpx8eolWVaQlS1chOkTHr6gawnLXaAfJdkzZLhnoOdQC/UBiRxUr/kUydl51J71JIAq36qMvv7CaKUhf+/A9vqBeqMZHhZLQ4Y1oVX6aT+U5hIFQJKBqCBlHhdXLBsKAyuQydWVT1WSdXWYjAJBBjei74P2K0iBOgK8s+8rQxeq5FrSEMXpBHF7PqFITRwjzfmFcFBh2y8gm/vni+R3TE7OiU46EW4e6NtAdLchxxTYfNUxyiBKMJKoeP8cSR50ShDz2Sw5g641FicsGMgd3XpVYdgzW7SyxVaWB4sPflTzLK6mp+lnko7OOmguquckRWtfkB5pRAUr99QQSd+9n7wp52eozh4KOhdLzutWIERX1qVWKM3a3lR2m2HgpaxjbUnSnRKRgxo428piohmaFuoAbO0K5UXIVniBngPSF/IWhB3sh2IBqcy5yA3tgtzWi+FjYUrDAKafGCBnlxivCF0pZz6PTWCUROcDyDfCZGsR9foE0U3sTxcq8lwmBWfFC75WqJMUomZKs4isrsh8fZg1Xkj52KNaiJqgY5BjGmwUPaoqR2xQN1USI18cPFlA1bvrBoa0gygFOzyv1NFcsYxgWylyChcp6HUYFkFbYpP0pPf1WtrqfqbES6wI9sF/BxBFwU6+bOAi7Va4eiO4YxYTzadnbejPttWUPsiJKLp6f7zsyZc8m86NXbMuRC5H7+5q08h2Lu7m5PL84ee8FSLyI6P3rz7GASdvr4+vHzw87B7k8//PTtt2/OTo/+8W9/0vb8+vuTk9PTtyfn//T3f/fh8/bJ2ZGfP1ke9Ony9f7m/duL6+trJ6MTuE20VkjffPbOVcfR7FtjMbJ9tnIb1+W0JDydAcEHD6ikMX9xlJ1oS/QwtQIY0sDfPfhJ9sm2ASaLnXZvbr23eN45aklD3QMved3tvVbLtrXWGG8AYx3FndA0KE5Dp14WyXqYiDsy7AlFGRnhZF1J1GCG/0ZxdNi6UIf/zu5GZEXyDCRlR5l0fR4NMpsn2borwHjUCH02OFZRiVgYHykjl0yNCeGo0dZY8FsTBiTU0l/kYcGlg0LBcKsIzE973VI2swzA99h7GYPFLlNfAZ4fdSDo3ckCUbJvsP3Auf73Tgtlb4iQx/MMfcLDQp/dog3t45iOMDD7n+1RtuakRNBuEDtJLZa0RQQ4gjic1wvAgmFJnsVFui/0KY/3czmdnA2nskzzAHC1NmaSbBNBQpkDq+68oriDibyNYasXqrx6S8AalSiwYNITZxtZJ954dops0t7GTszUGoPTcUaE/iztljLYWc0kvDhKP5F1P97zRptCyv2JaEUUcJa9KUP+umPj56/2KtQSNURKhjWsdkoo4FPaYhatXhJKe28dRyMWPYnb+6fzM7Tde8ECCyMWNkZx+rQ3z97k4J4+auuBJKHCSIusig1hKYFpINbERRlUXffSGF13/PYSg7avIH6Sd9ZQ6M1MGV79Q2AgyhxmZjI6p59W4J8DoFjT9C40zVl6DR8EbcjR/Xx5am/ImLqvgBeN1cW1C8YjOlGl8subqklS7RjWKPcHTCCIJEuvecrms+w8CcxZz5aYErAZQsURgoYKBKt4W/Sehkwx73Dgh/7anlJUjGac1s3TlPISlbL/rsanZpSW7KiR9yFDZTBLqb0E4/JGXLE7xf74x0/X56fzRrlP9wbwH5qn0QBJGEgmiLwsEdVybnhIGhOoh5fwWgX584fPZ4d7796c0B2qmKauEzNUt2559Mw4b/JsaQ3RFVk2NKf3cV5oKukazvbWc4/asbUkLoqwZ1ixFKpIXr6hLtHhroxixZxZh5ctSXgUKrYVkRJPgWXZOU2X3K/ANFKPjC83xp6yxtgHAkmR20XW4hY6yz3mp1obmUznmRDpSHGBo/+gR2hGEIgJ4uIX9Y+Exw4KZqQCLd6DNcSMMzSyAoxA1tRwYTHTBjPGKl04BgqKLAOrOm3jvOgmlIRJXtRR5JRgwUWsChOEzn0Pk6Pf6oOg1KQ+1Yn9HpCMuvGScQMy10OJh5lLrOUwothAigmqidTm6XBGgMWp6E1MqTyt1wbMBZAKTQLqySDuSTSP7bmJVPBS40bixa+NWCLUJ0OnuChOY8gm4Eifivmjm0uMqIUPgpFSQSFOOG6jGO4nz1geicyd3FN2N/dB7hMjw/sQOQi5D56SRwT5JArNxzDLrtct39XLTJOYT1z7bpnW8o6eVwz7oa0FHp78ms88HUSExMD8dn+hTbBf3IwoYmc6Gamrn57NxusRl3qENlBHcrUPwUnOivvpgmnIser88N40mmWt3kUUhmBM5L9QkJMMlKwgdQRrya0WJIpCMMl0Rlp8j4yRKKwAKlMqgP0JYYGIy0VbRIa68ulnoyMuVt/Jk83gx1CWbKfyxNlpsvAEQ3dHXZ5zETxNXhvLSwhTBuxcY+QQCaDH70Q09aMkOhSIxx5lG83GqpW9zcdPxeqgVzHEvpX1cZELZ2wgdAcX0exHaPsMqC9MVUy52u9BTwQVqFyQU9igGDmnwtA0xdFgQhDnz9ytvsIse64qGJy0nIoHEyqqFW3ROJFa5a5wWlyqigLIWQS4XiSu/6ITFhF8Pqv81HA5TjHllohcKhUP43PBXZ8JRF/qLltSpmYAvasIaEzUN47YJ7uSc9u6qwQ73Dko84D3+PSUjejV2xpoDYYVGWfzMqaXx1tzBZJp0Iz8y5fevj3bPdz5fPX5/Ojb73/1q59/+vj+/N39w9X+qXWK+1408O23p99+dy7ynVy8uXh38T//x//89bu3OgZ//ukH4qDYH364vLyz8uHo0QsLnr3wKBKxpieJXxZpWLepCbtIhUuIG0ubYf7SL08PjRPLOrSpzqvYPWA2EjbHzHGrcjLm2IH3VuOUU5KD5lam4n6a9QnbSItq5E9jTm1VzPyMXWKfy/C42rlMRd6gGeMO9p0COfnfxgxQiOhugZsHlK8LnSim3MLDDHvFl98zLEqbcpcSxxmaKf7AhKpiNWW2MsrWCq3qkxUvBapAW5MAkuhMTAVntpuPABwvHnQx6Z0qq9ENLJHo9fgIZUTBMKGS83Wyq0hrFH8OVKwhaKF+a7atpX513k5D1NIZgiUADMltwPCDTHyLZgKUNB5hUnZhG2TntKBfC22508ujM4UaSdFkxbKNle21xSWPQ63URUpQ20ak/kOrN+4OjQ2EsdiH5weCsiWd5CiGSUy2tGWNk14KdyAby+5ruFNxXmpQnXnr8tpS8PBgd/D+/pFVSZh72X09vL15wKF3S9w+vN7qajS6UqxE0TQl/UTSuE42FbMzZswhl5r8x1rGucOWPPzzLXA3kDG/9FeS+EiplfFZ3cfru6Ne/vNweiBemIR7evAy4x1ytsCJb+rH3uufIIokjOyTBr5oWXptBVG7mesgrFylfQtPWj8bdp2FSshK106jl9hQ0ujyQMA3szGEH38u+EMKyT5NZ23W+td7mJob1unHkU26MnsUYYbBOs/6ISjUTzNHwc4mO6h3NcbXZlBhpFcht5rlySRSra04wqNmPUmJnpxbSt16Fb2CEXV2EWFF5pobiEtJictF8tf40LEi1GeP6Py+un+07eRg79S+FmcfUQLUrXTsAJ9N65k5Tf8nefgz5+EClSpSX+mf1lhdYuZoBRyk71wbYT4/OXq46w0fum9ot7KsEIAQgsNMDUMEDukrAYsZ+naLofKrj5c3x4cHPOjkUOgSECCdpk2ECgY91dyosYYAOOe0J4TZ4acEhXcykeTOvAIvfPQq6lRbRhcX6Uu0QEzi64Cdpm/W9BRbzvxKrR3zSLdogpiEyAfehKDINPoFxtjLy1MCHqKN5IOObTeEHFiwnrIVhkvbWtoz+FWqwQIQ6KSUavsENvchfxiZkK+CzVgbqlP3NJzCa6BXpShISUOmyxG27yBArA9Xs7UeaAA8cBOvESCiZSzRozB43Yn2yemjKEuDtoCu2RNAAaCS2N/kJYuBEJaypCdPU0kkobL2nhGDIPh6RCJFq0HHwvgonwEkTFVPZ7UGut2Ps6sm4/dnPnMBYBynSmLHWk/jwNzfWrVWfwauVs7FvPL+ptNlECsBLc0KCJH1NAnkaRmJ9mbAZvl9xG4RQQEBTBAPnx/zrTjoRCr6RNVIxhMXfAa9hPYLkCGmL+AUKWDVaqbX1rTNYpVpBZMPcoFNj0NMFA6dLpTR6gj5sAijwYc7LiO7GvSVfNZ8DjLSM2WIYto0xdhiP9tGRg5Bjs6sI5qTiIAievbZgAcknmHhhVq2MtoyACxSbc9G48oPrmAOCcm5qFF+mdUph7WAZR0DFbcu0DB1RyZ5xS8cZbH9jF83fYGM58VXiS+WR3eDRYwrRfCUoEI+kqzujD37CUiJTrzEXTww/rrQGcyiaiP/sNaEq8yqhwaCAT8Dy8iRLux5tmx+0sREP/L0jfRlsUqOchNz12MqLjafavDxcRK3/AgChIgbI8Fk89GNn3nmQxFDOPhMZZqsgOT1SyPA4KWAjnHNbZdj2EBFTJ0BlHLcfEHdtBkWV0okGZ8Kr67jWPKYSth9WDg2qpZaRzjLlhLAjBlkeBWrKZvkRtwc6a0aqoWHqawBbHA3eSRw2ckiAAUxlmVWOMWPNOD+LwQPnCm/qo77xEb3sq2JCcNaugMpbBOgSGMtMiTtsqsRFxRGuLcf0377Dn1wzUmdCOM9GPulwodHR8WG0aj/wTw+PTk6cci3PODh7cFX4v/Vx0sbf09/fXJxenr96fbt27cHh4fXN8cyWi9b/c137+V+Mr+PP/68v3+yc7x18d/9zenZxf3t7eP28Vdv3/Gd/Z2//3Sz9/PHS+dwz4oYS++cGSNlbOUoFiUBuiIl7/lYhkowc7oLEXZmJenZakeApuk9taZCWC+3mF4iBfWoZfcZvyXi6DdKaS21Xa6ENCsrYrKwTBUN/kKbpRGlaMn4RDN5mNLtYC68lOYtTREyCuxSrQlMirWKnZAm47HtUv20pIbURAbfuQ4qCGJZg/AygxpAAS7sNWvhw+3QTx2sUzplRJOpeyqWppB6TrCtSGOyYayuLJmaUDA+0bQDSJxsUvNGBeFbSQbhjI8qqQ3OP4jBAH+ZEDbIVzLdjlzteM9abWLUUWh16L4H1iDVDWuuTH6tuJAfdyjopVTt5sW2AXAUQ1tOVuPbWweUMWxNJ71Syhp6mf2N97ZaayR6c4GW/5cTjSjt9EWY26QK8vM9OQp6yESBHoJOpr0ld5L89IXZGndZco2d41MlXipaHE9iepiNUzfI32r1Wyvatgxdv3gfvGQaBfnjRJz0ksbr4KQKTWdtQVJFXpRQQ9GyJmkKVKxnNQr5ZMqeAb646FFwVR8ViGxl62zv88udvQnU5BybQ+9ggBU2DX0H1dI2WXi7XDM47jenkT0HS8lNRDTBZc9A6d0g1dmbYLZTd43JTLcTYqOeHqWfLJsd4dkdoODwnB5LqZvM4UG7t4/3nMgO9bEFfgRCzBIATU2TlEuiqtX2Ti9t2/Qs+odgjmMypGDXOnz8JeO0d6XyqCqm1aznP/0tA2a5wled87DAhSbuMPIn9vKyjXAmhpubmnNKaj/uHh5tQ3p3fqGwLlwQSnxF5LVUYfSXL6egpVZSJvMmnShp5OQbhYnfeZrziPxOM5g2Fl+cncwckZejtwQLB2l/vD36R9HwloCEKLK5L9rIiymxvh8+352fezPdnrGSPGpZgiqR1KoQIoo2RDCRcpgUBwB6/PGTm2ZCNKQnUMRoQNYTjyctr5Vc7EhfhMz+OepG92x3++q2HV9Cv/49a9nfPrQdKyPrnW4Q28ciAc5wrXpGMWZLYr38uyiRNogVdyWDEVReTQgpslxUiWZiPYHZF0Yy4iE3waIe1D516txeH1E4l/UH6WhBCcgYBBi56igHuW9lKAxNyZdcJpgm8RGHgjX/AicR2D9UY0ayGZu6nfk15Zl4kEs4aw/COA3zwKwnlNBZBv1MdrvYi+EIiYyxe5FOYlGWnMNNo7tJzhKQbKDSBOCLoouSEZlNMIfonCZNx2AYxFlGkIkXO8psYjcAS2rFjm66R6ypuwfTFCajahXiQ0casGA6gJ4JClw4hyn5q0TK8AlEJEXRsrNuK+c98GmJUlupGT1Zalk4u1cn46aFELseiwErUcwHhJgq565IT0znElf99oQzH3StSD30qjGBKq4C2tPhN79ciMBWMb+RuEyjXpkIDm9QV7qGMRQk6Q1BniBE4fmueHJKr4Uwv32CnNUm0rlZ7dSF94E/KIYshVJi4s0kBhy9JeFIj3fEYNZn6QX0UTdg9ZjdnEfYar4+RMXl8nJ1+4xqRqLgFWUW/d0BYdCklBQnNGe0I+SeuPkL8AjMJvqbh03V2PHHPbDROWaClCQSwTVsC4q6QVsZzsgyGAJAzFc7KKGrTFgCCyRpT3PYLzd9hQPYTeBwvaJMdXPtBSLbU4gYnQ+ymf2sfmJRIllrdOCd0X2eO/6rRER2f1AvlUww8Uh5TwdPlA70YX5uLeFUrY8GI47gj4ZlguEdmfc8REsR/Rp8bkChiBsTqSclWTKcm5DFXwSOePN6P/GiRtCT/KBgQlNjEAUxaom6UuFKxtVFWXaJr6WpoRARY28KJ6JUsCFMMXUT1VRMyGklyxHWXSEAv363gXJa6F4dZeNax+EZaG2gWDYApMir2bBgGnwDJcK01EorK59Oje8EGbcfbm/uvD3z4vzCBjhHrTzmYa/OwJAjHJ1sff/rbz59/HR8uXX65lfX3kd2tP/P/+ZvHBn54cM/SSs/XF3+/m93766ev/ru105T+ft/+DMCpRXZhEMqTUiP4Y2S5cP6FCWOLNQalcZBdVnKfj3SjhCG1t0JCuWY3m9FMhXVTDS0LI+VfyTlZpv842WpV4dB2lgMGTMQA2ekPyPMrBtvLvIBw80rk7DmpISsizfXFtaDrczoixIt165lj8KVUJq40C6r2NjQlBrrrkchps2Iw1gDCImvj++aLr81gopl8qNI6AZ1ozYoc8/9zKk++/A2tgSU/DuSMp7MQ60AGBHMhhuHUoUNyNbFQR03+YM3TwXHzbVUxqmO1uI3msUydbTaMSImA3W6dyjIuwU8csfuclJOVcs0Ly5I8lCMS7S9mNDtQZ93SFODc2Ad2Ehc9/dPu8dVNSMhAaU1Z4MeUXEnKclkXDjvvDDrGCvRlF2QiUyUa6Ub69nua63wJ+2aDFVbbQ/0jQSbIXeaVHrv5UQ3j8832MiYaxaFZPLx1yVBZggj/CSWItTKAUNUEpPXuVYEMZJvRGcFm9sqeI5hXxOIx8BIOCKnFVBDXUPkH27uazm2nWSze3h8QNrAWC90VAdylvtvvR6dnNzaVc+RM5yShQhqqNFeW/ttUnp9IfzrcWUhUeyDJQkJl/XELUT6vw5kO5iNoEtgkN/Hf+hSoc/21tG+02kpv2NI0kdwrK/jBUgwFt7Yvpk3DnGftDe5RJTozj3e2ymRk7ImCpoX/xFOfrO6uDS4ejVDVXrzpLZyhI6ATStae6FFQAcRTYsPQM1fxlsSXFxU1evMg1+OQ0DLP9MTeuTxq02ZOnSRbLCGZc9BYz+u4QRhSkaJQz9BOn9z6lWJXg5wohtpczBBOPHs2rIvIlIHhqTl1+Sf6XaBQhUDipKuMlfTYj9+vDzVne1V0iUb2QGBDpiYalhzuU8sqTh20uhDBBHU3BsJp0wBIXxhzCxHdLUaRbT2vQjjpjno69XBDSLiyfmhtZqfb26fb+4+f/ohYc9e+V/95r21nz/+6UqIODraOzi2GO+Zk3c6GUiWFEVvayWzvNjtbpEmXy5nB2p+FM1iB50FAS4kyfGDmJSrto9vRXwUaEQZHGl7ovQgSwt8OErp6hkHtDjdeiGO3SgC0QanmOypMmKuESz6U498Rdtx0WoyGvfpWzF/lWAgcOnxs0/X5BvGYQ4Rk+CIp2VXDWD3DL7KoH458HRkN8M2CAEeGUwnSYhYQYt/1yOv0iZSwp/7m2Jg4TolEG6lxv7drSczNNdfBykDW+19wDOFoCZozi/8o7OSfbLgBs6zhllolEuEN2FlYRVBXhxBoy8KCh8XOiBN4OVeYVE4vitbdTV0vqomavQC4BrYfqBwLG/KVFhd1/ASmEiBkQqmo+YcXUKxQqfrVd63y1gLY6TGW5/oTYjR0E+0+a8cnYLrXXe39hxOeFjlJDH1uAaAu8MF8IWhKTfYRqFLIGpXdpAuMeZso00tiGsGEZ8pCJGTqSfbsLPG6NGoAPFFs3AO/TGCpqVl1UdrseYT0pm7UF3dL6rZ5JEKq+XuiDdDmohVE1UDOh251RatAgEc9muDv5BBBSUHG0mOOAZZ/VV3q1J4ci/sNC7O8j+yHZdNskgjAFGmkIJgOJWo7uIXUsVc+71YcLFIEjU8AcJ/pJRyJ3oF1IWOXAaWR6kociUq6pHUTbwQWEK21KdKY1CjhEBuwEbbsrcvHTDIgCGr9BKNXwYbFs5hKBkqo/0bZUdwnxHCKKwfoYg5CBRWBoWBy6o9TU0LVwWyhP75ID4GavOn+tAwonNVwoPZQMdReJfQAj6G5I6LxaiIsVArPNihj5jNh31ml1Gqlv+Gjkit1NwchwoLmkfIlBjeDeUttT9A22iH2isYX0mv+qS733vB5vWf4S2DrHIRUjCofME5Riylt1Pufn/31M65d199dXbxduvpAzFI3i7evjn0koHrj3LHw4uLX71550VjaDo6fYvcs4ujP/3hH/cPz999teU4v3/7v/1XLdW+efp483J0vPPh5yv58PHZ8eefL3/6eNM4dc15oWsMMyEAZQ9lnmmM3EoDZ+VjmKiVxRsavGh2BoBEAGwyK/I08jftSDueT44OSjpzgfa2sk5yGKGxOlBGMo0XFkwgR/ZGtsmJmkYPE41Jf3yLkBKzdpSxNGrF/ouv9RFc60fLg7MRqjE4MnocvxjfBHDc0/9ZEv1SR6MeacEgqwE9a8SxpmODRQXooBG7aS8s5bL6QiMohREPMDwvhMoS2AbegUMkqMtalnejrdzYGok5klIjJeHuTKQEEK1G9DUTLrw52gtxZYd3bQG2lbbgcHN3j1OrPLQ7jgXVaLWixYLykkUUapbyCmHBkKs9urZf8BQNBHXYVp5MvOqLjLa3zs6kKVqxHW/5MoZpZ7OHc8gpEN6WK/B3OJUmeJb60HtzCzglZwOZgp6/qCUuGwxotmmNnb0ZyjX14KAhr3ew4v/57vnV0S5O6xl7N25YLjEySThp9r/yl1XIjZTlsQZrOWAuVVhI9ePULnrUz6xoCg+0KRBMv+Ypb1Nlcs7DzzeC3O23X52x7DRe9i/l2b6+tl3VO/ocw6rr5V0CFok1DGaqhLBr6s1tEtSMyhmthbFZFDiakGGZvUSiDm+sJXLiSZsWFDGSOg93ypQvOZtzDiSNPTuzO/pPz7opLOQiu+0dzeF71UZvUUgNdRS94CDn4xFsEXYXnES3UHZh+q5pf+vyQXFAam+vm21IMQ5tFTNFPsRESiQTI5EhqEiD6Il+/stV5mdine3UVhdBG64OT9n5+aP3gd0fGscuLU2EMr+xi1RWeMs81C4EkhdC88pGh9vzE6I+nvQHCZyIbzItkvFmgLr6ry839w+2thCLcXQcIIU6RR4eNYJFibpkvdE70UZLbCn99OnT1Z+dn7b7/vS4VV+Q4kbM8f+qBSMpGDshE+JVE8F5h6LTOLjSgusc+h+WcfkplhfKHZmGxUt79w8vP/746c2bs2PbcXZ3/uN//uPJ+dl/9+5Xp0eHt5cPf/z58uaRw4r47UT/23/4J+R9+ihemLSsm2VbTlaytXVuD9fhsTeE73Ohw+ygbHmSfrQV+xpu872yscj0Kc6VLRa9/KCd+C8HziKTx+RlWJtBdDHD1OpmSjEuFQiMMKl9mTbJBQAQD7K+K7CyRgiWz2Qz7jGu/gdjht4nmDYButq/BB0oCu414PV2aQLFEz6yjqxgAgHBcZlFzLiPqssKK0/6uCrHCjswUJdMQ9SgSEtXSbJJQzcdg+ymi7XrQfkEh6KMsRZp2IRLKkk4GRbsihl7aRYwgusZTMUhP7KSFYIwkHxjdCjJhZJ8MkhZURqEVNB9VYpN5TS194hECRrYXvCRpMR0ioY1gDYJhMI8omiSEfRRvn9pYHVscs55Gi0kGYXzcT8fgFGNmr2yW9eLEhexMLpIXOWLQR2yu68ycQyDMR53vsRZ1jK1Bh+h1KIbIpvqwpCHuMcpzGFcZI1OFdkAjGVimbG06BEiGWjCROIyAL9QEU1oUwZy5RN9hESBEkmBjPzq5+CeesSoojZVSfyDEG8TsqfwmBDYQAV3XCAdBDgAo1XSDPgiI2Mwm1CB4aViLpLbSHjdR05P/VmsjLS7dnM+LlT0IR33hq/wInjJJLMI5vA11eZy3LDYlKw2wBRBD4epGfBZqy+qiwAI3EqzoPdZEEd8I+ohu3IwNueY9fCyCa+r5zk8RFYenANGGfvVVIwnBp/XjNSgC4//lr0tTyH2jTxjHgU+w0IkfXnESOQZpFzSv8zAo1/klSpHH9gaakdfbHscHsBsBh+JPsFjWYiIlgGR9iYJ87zPYHUnxY+gqHCKEFCGp1K3/atsZdyr1sIdlC/EdZkAiyoVr9T6HuuLnP4tl9ne9gaA2BwiMSSBKJfsFPPWHWQAEhKyRXsMQZquSTrMsrdmvx0JZNvkqxN+UNV67ueHN+/eUcTD7dX5xdHzg/b4UBP06dM1az09OTvYPzSOdHr65uj4yDEkl9cf//SPv987ON07Oty5/vAv/9XvTi4On26vfrj+dLb38vW707OTo/e//vrDhx/Pjw6/efv400+Xl9c379+9udIMX99yJQN913cP+xpTC4QOeo2Ulbq6BdJTO5WTh9bA/6JxSk6Q87/mIMtEcy2A4D/LZuJzTrT0X+sZrF4vmtXbn0ZajSyflNKuyNnerckalxIUd2COD1PU2WiWwY3cijKYE+GPC2TACJCb6tLQFyyIEB8YMLELx6vnMZrPRvP9MYGpaKh7y7tXxwqgHM2W79VnZmvsDRxz/7hAYYoEoWicX49NxMgyOfQZFsvUW5T0i3wA2XueFeZo5tZSHJhMGhkxavmA851u7NMgVrQTYyZSX7FDe2TkBbROJrLUqtoxfm8l1GP5mUEnr6JzNmjUefsbnO1QztnpyCuX1PKH/9W7fHo+siRJ9ad72Tw6b268NcygeEfpa4jEQAN5DgO19EMngB6e7CYvs7UAvS0N2JKFWviQP5VuvDzfP3uF1dXr6/VN57xTD12iglTx6udIZgXDDGIEmGG46lFxcoYPKKUUu4o+VDNFIr2bS/hUUsByz/N00WUN+XQSJsORtXuI+ev71w+X92/PDk+P7byunGLnFye3DnfS9bX4zOinMV167NyBjCtdb76Np+vTkhDvs1U1kiLVC9SM5EpRcuGG4ao5gmHLlgBB0spA0oRv8YeqiUIoILjAFKKDxgvqYmmhiga0Wt7gOFqPVGbSzMnaKlgMLRcctHp1BPTBpRk62C2xBoR29GPVAkQncOH9rxG5D2HJd7WASXCtTShFEWoYXHrz0bnVmSHVGy9laAGSGYmZcDP4OKvIEKMyKSmcGmqr/WvwtFnQGMOJW7HQzwkRaaQe9a63zBECPVP60fH+25fDOrHPN9aQsdRCovmFxUC183UBgwuojtmyyrw71UOjy/zjp6uTU6MUW146Vsch2fWFZZ0lCp2MGaAZdQKhUdroJorhOlfJTucdGsrhNxZ0km3Plvg/3J+dnF7eXN09P5y8PN196FRYh7YZcfj93/9kr5a3UJ8cC+D2lL+cX5ze3pDbs0PaypZeTU5yrtfjmV9F9+Xd9aeray/Os/LPOc5SkLOzUxNHWDsStPOGSQXTD5k1oJxERyB9sR1BMjnUrBOzYtlfxdMFS5hehF07nSqTjPK/rBWbASIQH/cLVeky01YyjbmP+6aHWoMY5GWps1WiSa4ZK1Vs2t/yFZZZqRJhYqe4+hhToDi0JJyYN/uZCmQJutSwiIDuYmWMpRQcFn+znwACp9cIGXpCJKQNiiUvTOkBL0Ms6HuqdSkXH9N0tFHTZIUwKGAN+vRbfE8ZgbV+QgTANYtJQrFGwFNFVuwL0nGb2I9yRp5u0lSWVm4aZDeEaJR4KrQX51cDKa6N6P1UBgg/Z2FAPBs1TA5Zp9hfkKYo0DLN8TFVCHYRmXhXutxgSWSAhvHMAraJMnkMeUbRsNywYvNCcTofBSJkkzblVFVAS/bAePqAEXEAfMmqoaCCSFUiBTtLmNXGvw8Ao4hY7mFfYYyN6e0QFpmTHkYikOCKnnOECNtTyi2OHV2RXTV/mFZpbjwFJ3KGMNgxVeAHx53Q0E6MtJEo7QDiE5j5n6xW7wUN6wmkw3fNj/KkBDikSnYRJaPlIQ0ZQ2NGiwV4FWBsQLnwCeagXz97BE4tDmVM3VL2XHIEMmY5oSmfIqskqdyG2mFqDMDduTnSyzGXTDCdjU1xBcbyKzgseFiKE8yZgQAN+RAnqmnnXMG2DGyuk3dsD3koryzi3Vwy6qcqwSfApOrOSBbWedQdn/EpN4KgPCxz289lVNUanSaBwKSv0QxhpU1elRECTxr0kVVk225VYPQQyO6LZu0uTXqLhqp5NvYTEQ2jdCfRrE8XSnfHp2gzFkceKWs+qi8w1Q1cHxehjoj43pRcvLOshQIoD4bjKZ+1D7DKMwN1Sa9sMnISuPYs8jXMjRtYY2M87+XYOwQmtJIBzFYK3d6Qxtb5+2MNoVbt9Px0b+fc+273T4/uLu9Ozs4e7rQ7H26vPrw/f39wdOrgxq2nC28ge75+3Hl88xd/+eur+6udP/4RbYzlce/w3TfHj3d3Dv3/3W/fm+n/fH//4+N97aBXE9wb392+s4hikm/jntiVH9diolEdA9GSpGlcJBuyRiShk1qpQXKpfCcwp0yVKkeKPEKiI15N+CTC+j60ymCIpbjdyv6l/HEaKVryXNIsDuiBGKubnCnP0uT6hkMuIa4A1WutVh8B9PqumQCpFk1IefoexiLCPPFWlQwgGac/37NgYNkHSOPAL7PEW7qYN40eh6seDoMglGqXOe25BDNfy2xgxUK4pTv4Ixm9jGYFW1ddn9zoj9xe7CFwd20KxUg7KLZfrF0x0IumO+cvObjTOH82JGmjAkk4k38+PjqSSeQ97TvXiEBasEno/SaENqI4Bkd2iEr7eh/uHJDqkmGJq5VqNXk7pdfabifa1seATpn43ZGmHMqUMUT5T16EgNved+aGrg6579/ddryoNf8yIzQCDe6w/0VG06CMgFPFyCQ6B4PiKiX8Guuk1SPfoV9y7GmXSbY1UPMrb6XbiSrIjOtUzL8M+umkZIlesuEw071OBOoVxu36YP1Pzo68vrmxUs6uHFsvrJsAVzjNqLxOYnuXzJdtSEbNb8xiKvTVpyOJJBx58EWVv/piKEFlGbZAN1F6OCUf5RL4hq+oTDzLSBIivvR6bAW3XOTAK6Bj3x+D6HjR5lINsNCUz1S52ZtoUNeeEPxSJbICNCuRSsBKWiD20XVrlqChnQy7sbjiWP8Uiy5tmUaWjiK0qJQtGoZ4evp88/yNBV61hoSUDmolkTLABav6JePGbGnyUeoIb+5Yf6PxJhd+a+UQaQbPpd9sshXzL08XZ2z49enNkd0un5s8SrCTk9Kv6zwO2XGLz6E5G/AoPDnk7ePrP/7wmZ1/I6EeXGmFcNbZOy5w3Sg/VViRxm/wWl7bZ2AsOQhN/WpdYEck//TDR9Dfvjkh2n/86QM235zaqrV/bcLt5eVv/uKbvZODDz/c/OgNjyNIr/wzum/Tuf6btXbbj96Ox7F1Dx6+ujh7uH+9vnpIfa/brVeyRk7PL6G//tOfP/JfZoL84+NDTq0LZ0KS1+MRubKySRqnTS/gNgOpWwitB9MOjiJH0mVFffDc6rVcq8rsy4m/85I/3EZxubUYXtTwO/9xl6hGgSpmmhohKQupjJ3UtOtulu1lbRLW5QhqL4yA1usIiG5WDXMaLIHOylLh4BY0uojp1SsPQ0SSzWgLbdUDfTkaXC7G2aJc1Qw0bye/qcIWehDkybD9BA1r6z6KgAosG5q4E2jkjrHWMGBmuulJrljXB8ZVqcGqKsSmp8soRwKZkRtfkh5coBTtiQ78Ks1HnQAOheOpIvQkbREzjR/A9UBK2vLOIbI6fYCIGFekNPjjHS96R55t6AF/0KTKKlXNHRXpPgHO0+iHcQS1Unb1Kg94hww0EkOMEz6qMkBGFJ1vvWwu9WFmLKULHXrFRoZfLBL6+azqSPF3qThdeDStrtuiG/qSG7rJLRuYuiiO5kX7pgfowaTpMzs2co75GB1OOTa+ZuuVO7+IP4wDLaqJTeFUsXC1eSURja5JcDL7SpPDYB+lqDiKdjM3GdkuOIMoUUx54pq0e4ADu/K/1R6QT6Kfj8LJYBQFd4SVDIXFPd9fHuIiFYAfNNa9OE2hIMQFWkfDSwwTfxfvlRXRBlgmEopBuNQ6BKjvU+eNK43Y8TZ2goCpWSh3AwrI15ON3tfPsZBN3cSa+hLRcLAgqLwK+KlAQErMEQ53Qb37hYjudbkCdNEoqW7U5SflDbma6phT37Ox5/VzXGO6xHAslGEYgZYIlhWB7wnIkgd0rIdLn6EbqaJluBgYKIq2Bt6qPooJ6ZCS7ObfQK7WwEw1QEXwcNGagtH4Ko8A9eO/jJnFEdryOG3A8ZgBGXRf5qGUnXmGPHiZUYMDL1s6k2zIlAlk6+lu1hU4+fHJ+8j23r59d3x8fnB6+PR0d3J48qQROj0xvNeMsKPaH985d0M+9P377++uby4//dyJ76+7f3bE0Jtzx8d8+vSZmIrhzw+nby4+9YIy8/OvxyfHUiJMo9ycQKzNwQa4NuRcIyT1kQ102jcsEgj8c2rSqLfjv46knK1vCgCyhjb5mJ8O3xgtlICKA7aWEi9lkUDCbYwf+El0aiVZxdwuzcpmMkN9lGWUmV7muiywh+k6ssO1Pmlz9TmB5f0aOAjrQigp4dPFGt3UUqQDn7RZuwY4sylZntZz1jlEas9nLgLkyTLrpcNZI9iEZ420pSbWBmjVndqIWLJENxEh1tudWjwiRa1XVRemUMlJbL2r6aForbkmisXiWqIqr8q4uJFG2Hg8DdOCJ86wAVE0BY9GzLqoNelsjiz7B1AxswX1POfD5GUkhm576YGThqx9suRdmlhfq1Wm2Gzcvyn0kVXjOBRLSHtWrRsbv7p/vrVD2P6B5dcz+qAETxZes9McWV3Gvuw+JRLAcgqXxDWuQ1OpD3MuxllIPN3Bnq43BK/AMX6dmMfpAlE7kmvvElcL1TRYN5Yrvdxayf/uxCSAPlrvS0bJxdkZRHrQrK2umOXds9xfsk9KlEL1Dv8BzXh0q7czBl1Xq25MZBnmz1G4anaHQP0QUZRk6s96zYITYxsKoQ/cKcjLw5HSSMkYfnGvpJ+KDUhP/mKiy09yAQ2vbABdgW2QggESK5NICOzbPxKCP4MkMfJj4QAV6Eli4jB91bhkneVgVDLjEeQVSTV2no8Wvph8s/20An6utvXTx0+//e7ccqm0szyu8aP0WAxa6Qc4bbxBTb1fdycfcKkSweWApWpwe2rcmnLHGd3CsuHvGVlm184GtbNcaUaCqvpRpSKxPwGTGQzFwe0zjPbakO3Lm/sfPlyatnpzepzYoj05NQi3lghmR27kcclxxqZB2SQEA2uslCB6ZcTH60ubik4Oj3Vur65u33391fOdrt3rn/708fT08P3Xb3/++fOxvVjezXFwAdf/n6v/6tJjWRI0PSCRWkFucXSdajE98/9vec0bcnGRi0MOh91dfaqO2AIbIrVE8nnNP+yaxUggM8LD3bSZm3t4eBjB7+4e+nYLmq3mO9h7frN1wwy++/bd5eVFj1e8GGyC32a5NnPY237/y8e9HOiFV7ws+TMLzPw42v2XuxcPzz2W3bltzaG9p05Oj30K0tLEfVuubT1dX94wM6HSXRoo9DFnPBYwsWUXID3N+CopMYcMsHmmCSg+KZrom8LclFsqY2+AdLXE2SifTa9uF1BEmmBh6/U2fS6AtfUcpwSUPemwWXTowR8XTfLFX+GbzzunTuE+m23NK6UDmcVjAy1AsSdayW+X2aowsTiTy7Kz7SgJFN921tpZIiuEjPn6E9fUO7F+1Cz2lm/VbasHZ1LBQQ/IGFC2OLzgWygs5xikkHA/oJKJ8+m2M8lcFPKE4wYq4BqKkt5UA2N9Ui575RtzO98cFpJVLrRCYQ9nPawpFmMKawkw4rPtVDM1N1yjX23IiN7/uo3pFTRsQ9zRaTBq7FjSg0i1Ia2uNKFDEahY2wgq0cZj+uLDvG64Dv8cCWFUIJYl/BEmyLwqdgZUgZ6nuZ7c192wJN+i2KK4ngPdwzvApDnEbPTFTCJpVFAzrdTJPGii7l8ZbYKPEe6bMqvfT3WG75FZioBoQ31SzELUhpSolwTMuqXLgNRbEKu265ZqUbIsfG4BRQQLbKQN7J4XuxgGF3AggKrC+k9daXt0P3ILUQrUvqfA0IGZVS1LGxYW4QFYx+YsThUk4dFF1QSneYyGvGSS7OmUcIZVtfOFZaBFUlSFmijY7UDjOmrBMOaXNqs+frGRHh2PnWQ8kT7dyIKjoUr8MHpClBBAbB504NewnDeIekqF6N0gjCvtisZ19htsTrIgt8ajlSJsKaXSAehEiS4qUQA+/LlHjMtm+h3CQC3uNQGnyiMQ9ypB++pcZx5utdUqUKlpczTLAEcKiv3OIipjGH61qImiutXlv7lpoU8TtQZduhl6ShqcjpCjJ0JKlTsRggI+zx6BMMVe/PIigGfJD75FJYfXrXqo21qRslIGCFePZLekKbYQvTy/8vrg299/b+r25u7Gw9HTty/ZqbndF3u7l2dn17eXB4c791cXz1/s3t6dX5mwau/5LOY//Zf/bJn725fHP/3y8eMnX+m8se28XGZfZ6qxR9V2KIr1kppSsZlkkRKhR75uV3UzEU8yK2uEmmfrnV3ykgwRYMaZpdBmzyJB4dFYSNro3wS6F3bk9Aij0rrgZT80m8y1p2qplD/Z0pQUgYNSUg6DCgX2dl3kXCSfVaAkm5+DZh2jOwIe40kVY4q6OPS22F2/5rFCCfQANO1KO/VYUFAeBdJCjVJV/UjZ3swct0w1i+ZhMcDCET+ZkHaC56RN7RXKqjDENMSuSch6uL1ze+NWW8eCsL8138SdVkZtLcl4aOOROltCKAIyGHoThx73exqQRWagXm+dhwNEgirrIaTxK0jG/MyOy8UOejN2S7JycOBj1SiJSQQeHXmcbirHdwl2fUQijNamzeopUdadEdFOaXEzzc3mMlvrNjwA8O4vZyowWJMiEBarQCaIMQCX0b5CcX6QQDd+lsvklY3nDI5cjEvUWPHcLdiMVDeunb8HYQKIOgJD5glh0skcvP3cPqkSjfavfP75/HGn3X6SSHzJsCcTMGNvj6wrQ5dt34Or+a1lZBYQZVXeqwgUkfp+n6EDpKZ0b5fRZqKNVMEvm0eOl00F4KbD+o6ybGzSYnz1AxLNoy42HDpuL8nIflqEUziiJrKa7KuoCmLsOFKr9QLk+fRghZsWE1c9c5M+gsQvFHqsATAstFzsqVdEQAm0bztgQZIpz8a1JmXRlqC04qAVHBvbCFoT/HCyWysRJN7nlxYG2kq4Jz0EvDymrBo7iWs4kULwOCL42lnP2BLdo43+1r321zgEUzv86blNrw4OfeB5//z87HD/4On26Xbv6ebo+S+fLgirhU1BD0fOx7qxmcLBaRzm/uBPSEgV5T5YCLS7z1xPT3qLGo8EjmNP0RaEhuttiuVFDxx04IgKYJlFVpme4CQkcyeZOC7efXPy8edPf/zNN7z6g5dvnvl69J3Py7EPYxevLBie2IdU4BV6bOV8fX33u9+9+d27d+cX1+8/PTt5+ebq6kH4vPQ+ytYX65RQdH559uzZ0cnx4S+fzmgINcdHh7h9I1xbHOULFD4wfv94cnKAA2Hh5uaj8SIuz9KkyRdDzOf3Z1/evDnxdW++zCLm+RCipJHtAMoOCnDYIHe9UWYfzwwtaWI7XXCqzqf3yjJTIXEoIWZtWUN3Z6BL3hMcCaeAW81Z8amiWpqqkLL8Th3TmY2MU9k4dI4C+oBl2g5EpUV5MMtbtoSk7Cz61HSg4WvuGMFxQfmtlsNzaVyA+pWbjXmUUjBEl0NVqUFeAXtxWx1qzeKRsES0pFEGq2TQVVnrDQGRBl0onI3c3OM5FeZq3eJpOqPIm0NbVf0UaCJMzciL2gl2mMKknkZz5cscNQBFSUY5ZIcxrjJg50tHIBRQxjEol15ibNaq+u0MZGiYBYS4i52IB6nbC2MSiK9IUtiAflJ8pTMkK+dLW3V70Z/A/E2muB8m6iMpHA+iwYyLymqWVFmFIxnGCCAIntYidnBoWX8hHLSNXY8UtVMhCpnfiFHBwMhqBlZKrApRxFU/eFcAlEfnKQLvLeYZrNHSpENpQSpYmlpYgEpEpOKX5gsmgBGbfW8IjhKljbCBXeqLnViBN8EmZ9DWvXKjIZIffGW8vgQ85CXznC6qcLQS6wUnkElpU210EsFDZdEmOZf2t7w4/jc6HQnhelljfVItUtv0BNEwGiH0uoTphiM+GSZFHZX6S1n9aTCPtQrACMtQEJwAZmzdJTSkxnSCVXm0pxhf0/lDNaJTATXJmUDGcoID8bTBnrNgR3HED21L3dkYGgMw4nLLoWfSVPXsLIplmXM5t9EBUXocYfpdilhld1QHIpWnnREtao1uVmVYIrRqq6Lz4I85qD8AmlutpfLFc2i1q8WwObdCs2EngIMf86WGNSsyF2wSw5wP/wrGlmZ4VjecNNoe4ODgYEyllb6I0Rk0ReMTS941TM7kZk7t4fDowJIG0e3+7vpobz/gexYxP8oEL87OTg5enR4d//T3v2l5eXv9y4e/HmyffPvbP/38j38IpLsWhN98fH1y9PL1f/7v//IvZ9sXR6evfv744f7u6ts3L7///pu//vjD+Seb7BSZrDTf0W8f7F+enfcy6CyzXG8iwinpd968cyFaXKHB1FuSPHkAzr34XJApG5aptcS/Ln224WuQU3UjxpZBF8CynDyy3Kha9QiyfJpufto3WkcjVJKcx86yOTPALVRSGcJ1EGdD7hZwJ+SWEll2nMWHUB13c5M0K5trFBd52XbDj7QGPwg5zca0UllKrVbSEW1WX6BtzUB3lL5YKBW7MfBor5gX9gQamMHKmgLT5GhL+M1rmOzAd9tmAGsSFcfE4E8bmMhoIWq5M8wlBGyyM0SMwPnUroWsJKjMNKQV1h4+zBYd9LM1K+DlXtmVDAn3fXfM7vUWJXx52ttPjr7wwHe8w0iqwrutTUAm+fKcBxvdSgnzAmsazq3r0B2VNI9nlEWMjyf1kYJ6zL+LrkdJeX2eNvFK2bqNktH3hD6SGghFt8KP//kOcmo8Rz451ZiMeOS8jrNErkPuMilu4rzw/Mq2S/vbx57JWA6DxoMX9y/ud+zR31IFqzb0vUUo1uijC2TviUwwpYQ9YDGSouuyKV1BocKGSb1X3ViTDMeAKHcSj6J0rKADgZMpRZJCn8stO5rQwlo4CRYywi1LYeMG4FbBNa+X5EcAMqrCNc5ME2c+K0nIv5pGLOCN8fsDIOGw0uhhkARVTt/HE0co9UGte07OJVJFY6DZdpNrZd2peMun+qJBjVvfUbi7ff3skBTyWc+Oepu2QTh0TI5VLHgwQOoSAc1ZlAQWitFW6ljEiip6UQmFBr0Cl4ntg519BL0w+MSaVP7+/tPVffvjqGz8RrhIATT5TEzEF3sb/LwvPpxbFvXsmSeZvu69v/emdREQ1VutdMErDSRiF7Z2oFF/VLlOkzH7AZ6wjMo+ff54enL0en/nnQz74dYSoKvrLx8vL38++/Tm8PDt6Ymax0d2c7Ktwg2x3Fxdnh6eavt4c/Xbdx4sHf3Xv/794uLq3dt3hwenZ59/OHl1/Ls/vvt//K//7f7y+tmLh0uLgZ7vHB/svXl5QsUwH1gOtWdoaetny4uevP1/dHrSWL5Qn/yta2wHq2T55FtqfBnfNrCaDeJ2Dw/272/E1y/Hp0YDngAAuvKe+myKL751wrxKEfTivX7UtGuXiRcRUoF5SkVOXcE0cmnqYhLdBMRg1SfRZDXhLeGNt5GpQjNV/K98rEQ7IOrrDNzq30bQzvMfZKJgUYhm/gDn4E3ZIHC2ia7pdywnY5UvctVFgOY1GcKyP5TlCdXVttCcD214GXfjAKhrBssRzY0H6hWUePJdNxaR9QYL1IJfFjwMsGPC71ZCzfM2ZBvP5NBYqOK4U/OyoRmCFBPFhgtpIsSTcLvbv9QQxJFrrZCJDHeUuwZ2DF7kajS3zuM37dQNYDIunFRYXzjihVtRWctE+lk8KoSl4WhJm6lzDiQWu8vwoI6vZq0So/KEnHiBduGE2+VgEwV6LINA0YFXx84cSxpFnPq2LAHLpZTcXH4TCdp5cDTQv4YJV0tQyFYBAXXGjbgak6Br8qbx5jFbkKdm1DqP7ETuf8GOGNXHKhGJyaOF5jwKTTNlmBj8zIAEunCSZWa5UZ+bMdxvNru6wChkI6OvZSeDMlcikyRezbEijTYEjpgHWvxCRZb/Lvy4rgnIoQtePjsUJbGAzAW6pzy9j1QbdqquuRoj6rQmSA8zGE8+vAM6LESORGM6yfGMLsO1jDNzS8AqKkzbgVkaySqyscCVV7k7bUOrZHrBUdD/gcKwo14HGW6nQZ/ToAU/poY2iObAyFROhiqt+hGE7NmsvSCTNwWHsvxERhc5pL8jhLEEANwnKB1gZrCJbJ3US4mEORjZaNJJSl+KxjiM82/gx2r6ylqKkwvxaG0QR4EqsCe4YERZ6paBWSDX1fo34gVr6Bn6RmjoG3uodXlG2y5bh61CBEJk4mx/xzwfkAINUn0CR13vBdpf0huc+68OXKrmIwMs3OeEJA67spUvz968fLX3wjcEPulkfvf7P16cf/a2mmTf/hteNj1++fb1O58ZePX504ebu2trjr7/zTtzw54SvHg89mWcva2Dl0cv795uXVz7xtTd65cnKHyxpzMwzLjzAvFP7+1EeumhdHOYzC2n1ndvPXiLtWXN0ss9CRbacue2L8sszV2Z6jKtZvcY05OkLSywK/PKJk+lyCo3VBBk2I+JUjLO1jN1CqWpdIrnzJI40y+HV0IPTtL26EauPJ4JMwXVKj02D5oxC0pLvEhHNiVaK842wBht29+mAEIB2o9JIMbhRQkfKPRAoLQppMUf8WFZdYqNF48LWlVkmmNHLlUnlVUUCxp7C7AzbURi0nusNH6Ag653nhP1zDrPx16ElTg2rGHTDREAAgO1vbtMMuRipdbR9uXltRgohVX/5rbFV+J3XcYkke0mFCKrfBDQMl3it52GTl1eZ/WFJWYUZbXSQduF1vtrj6qLqxsa3bFweSzwwZvht7rCXd/5uryyYGZ6r8yejFNEZMZf5cYGKEUfGfopNaRRVfOILMa/qRBLU5x8MEsSKX362io1EZObzZRUeizNTitFPH+zjkgJ7CiXFdi+03b+GYyVEz9/PPtycnh6uI+qpPRse//oud222JgXnck/xI24dm5laU93+3v7eKRABs8qH/iL7ZaMXHttgHojJmx6/K7ryxDnmZy+xZgJ4SzYXeYUnS/kQn3pTwCXKFvvhmzteoKXPiOdqMv6kIIZTYw8500ALiHCZAUTaDAEq0uVdXiAsISJyBNm6u5zDZVQnSQNcUqUe4WbqxCOuzlCTQ1Npq/J18IZofMAzZX1BZa/f/f6pQ2UqusV3jHpPHGWUDJ5JegiClLmTYaq3VvTrIQ5c/bJYogMb0udM+ZWq+XZO2bOmdrx8c7Nl8fjo73bQoUNtxLnUiea8yzGQtGJKnzDl/sV5zuzA9U/3p/ZjOHNS3vzkMnq1sikR5Haadgcf+W5m5ytUCEz6YmBj0c8eSH+u+++Of/42XSKu39/f373/MuPP58fHNk4be94/4C//PUff3/7+lhYu37/8R8/vP8vf/7D6cmB5v/5P/2ehL3GcH7GJR5/+PD5r3//+Tffvnn18uSXnz9Cenvj6zAPr05f4v7nv7//5vvXL1+enJ355NrjzY23mzy1etrieF+ezs8u1fc9GfonKxs0NKRMOcZzdhLzspaFO3TQXnE2bCMB1T5+PDd90BMADE6WA97GzQg/1wIig0xeajmUsCLgGAj1ZxPulTBNmCCw8KYFVkMHCZEGioeFRZbsXp+Ame5co2SchsZPc9jw9qPC3J5zv8ZG8/OiWPVGFbBlhFNIwW710n0xOlNwl/Zg6H9koke7TC9riKyNZUe0GzFZybKeDCX0Nc/+QgxrguFyatbZ6BXiNy/12B0zsKg4whd4w+Vu0cz51wxgAGrrbxJrtqDZ0KjWNvOFLlFoWFzMOWFKpHLoxgPJNR6mvl+REIocKX+Y6CauaRLEWscXFTB8UToT70ifKWEgFCZcxY+qg6QhPoB4SsqjnfypMDI4g+xkpr6at9Ze83Ky6qjkOXJDpsqTv1b1u7UpOK6wkrUVX6qk+VCx6AAgUai/SFvsRmWF8Ry6aEvQZYCTAg4ZKo04ywnib4xwUR2SFJvddisOItH5qL4Y7QCTkSexTDGxKKGtpdPEMYeGySbbUi9EjiErcrvRBYyDJvthRVWrISCbhGDUOpZc2EpWmqwEZRGL2jG+qI9aEEi/PyEIw+AdmM6roULER4brEYtKLkdwX+lfbSNKVpKRMMcgJ8DAxHXQhlR3Q6asv3O4FWoNl8Crmm8Nbaq6O11W5UkJltrR6kYDLkgnqvydOqP3BS16gtetf5e5i6HC7zmJQgX0Fc39D5BQkM9H1/A1zwTqijC7JvNXsyHmK6jgFbuGnJjqWJGnKuCGyknyjL0uk1X8jo6mRkJJ/NMky1wWq1WMBx3keKg1HnN0lDbK1cQtWCEQ37L/aufUztfVWJyG+qQEA68OyhJ8t816zIRZpMk45W25uZTOVg0WNMz7thrKHlBhnbl3BKE1WmhRve8Z2Tvy0TIHmzSasnu0i+jRyxMrHXzb6J9e/uHAxNHBweX5hTUhu9v33mOzG+Dj9aeDnadTk2DHh58+2DLo6Hrv8dJXVH3wVc5hmezNpZn8333/m7evv7l7+O/ywrsb31L15d1CpaylRCEpyg9Ip9wNGUrk90gmC9N/eEQgmbS8p8FOtkR0VIxrEmzelSwEgRTDwDIJ9ZslTVP5OzCjOP7FnuvV3fIMXXoEfutAMjNeP+vu6kE0yl3RQyPGU2lGrSJkEw0AlhCUbyqCXHxAePbPGmOJ1oZytuQk+y/bV1g1hZS85pKy0Qy1eVlWmgAiswUGc8d2OmVDGYBK9Xyl+834P7P+yrZO5lInTWrfHk9RsN+ILvMlhmYIIwv7ONE1WMRv+IdIM80I9aqrpyA78lHJzXV7X/aJAFnFc7m+6pIs9e0jWQ+TrFCaeT9ZwkwK5mLhQdViz2BtVh5bZMEI7zxBsW/LjRRWAxTlpiNOf+qO8wciTG3TjyjE3RIjRBxprlIagYCAeRJWQTWk+QsAGyCopJqO67w2yfTIeRwqrPkU+sHqqOnCGwwxxBOSEpxnZ1d85+7geJ9W5rV1HafJd466dXR4KFn3HoP1bNZ4RKFPs11f2ScJXq+r7jDu/V3vurfzBc9rWDhTLfV6RVpDznhVSmiaj52NljMATKGsm5NglCBoFqdLpSVsxDUDQF8dMAHeG5uIL3CxJ4M0C0Ju7wyzWVr5/WzMKrLIsHnfGE9Ji2pQ+SN/TbSzHGNJfggYifTIQqCYTCCvSezl7r3LB1JBKQsbk77g9ncPrZuavGVJBhRVWE61s+npqtNdsgcK91wgz2O4vLAHRJAkimafjJzZQy9gPF1dWLvYU4+T0z2DauEBNY+Pl4bNRY0cJwJHry7BC7gS8Mg5Z5m4MF6w5T3bf/3pg9dptncODMHIYRMcZhQIS/MnIC6bMVNGCEmrVU//7d9+lOU/vfdlsa3/7X/89bt3r/d9uP3qZn/vhYT/5PCA8P/yt3/7z3/+k+HhLzZJvbo3Tri0mOry5khgLBY9GmN//907Xym+vb99+81rS/b/x1/+hkFfA/RwCZCT42OaefnygEyMMO/27v/+wwduK5hZXbaXW9hIdOf65vb6y00rfBgw+Ta5Yre3vZenhxdn5zdXzejHiP1nreN89qwvEvS06rHlN91IqWDlAsyifpQsEqhfHQ1YtQCVflTKiblKib7iybHUmlKqIun5xy5UZn9mdQ4PD62N6+lSpSoPeNXoJawhBUu+5UQJwQMXGocYoRCw5jOiTYkKyEudynrfPEuZwDSOLVRO3EcMQ0prjWR4er+idc36iwUzi6KEHBpkj74xtcJ5hEZqJIOrsQprnK0QCSqAbXe1NVRdcCDrhzMOqwMkYXbSStDWtqLcmIFwGsfHSvcmXqsVMX6PLvAFsxFeD/qFk0YayO+J3jJNL/sZSZcsqp+Q0kREBzX/bIKQpJNVmgl+wiSMStYpSSdzN6hUwzKkwmz3V9sNSeGuJ07qQzLhz9/g0yMEkTnTFWyXSqOoJHDJNktbQkaGtmKTP9FW7OrWsFZYitZCIaJSeaORcW5kZp4zkHWiMIADZQwVPUsESzslOkFbVh2/CXbJG8ahPoGXLUm/ApSxgzHyLwkAToVKNtbrJLDFkZFGrAw7ZKX1CCSqY2lYUNl9EgZABYyGZZMZjygr7t5qAYK24w7zTGyUGj9LHOiYiokm8mrUTdY8Ukt9U7rIhnxTokFH1MSpttMy6hd0gOfcn6TaBZwVYXZwdToQakkO1QxcQLGQx8UIIx5nW8F044PddS9Yv4KddtmYxjXPWkSnOQkzQVCBs2kbnYuMbAU02LPt2pikcjIsJ8w1n/TVqaMQxW585SXtBHd4XJKf8wAyelgAUXkZGLCTBUKhbo6TJQ03i57wV6fcImSh2fwdawEqnqcI7bmG86bABxHuBgJ/D368IW8TXYfKJQF+TXiLULh0cZvprlasArLioamQ6AsCmfZTZz16y7PLj+vPxsB0YaJQ070tELKOXO4m1zu8+nL7tLdnBvTFyattk0kM0d4Ut23gcvv23TsLUK8vvNZ56WWxk90Tk1V2Wdt9cfJ89/j8+nrvguM8Pz+7/vPvvru9271+Jgv88unsPRq+/fbl5cWtOOhbZCal2m2m54FWluxaF+uwkwpasx4uMOEIW5aie5+S4Kj1dvZm4U0lN2Qoimw3uUhCiXT+uyhHSYrFNB2EuSf9X4Ex4UrO2qqSzEMDRq+f9YIRr2z5hPSIIYI4L30BOVOApWpaEyARym7lYVNCiX0zWLVxqRk5ZAAj/5EscAhmxKYUNMkCEJFBZtgsTtxbW3zqEVhJKi9O1PmCijxxXkUqcw47tZnLaWRU0kwuPUYHqtYNIsCu821JdkMFCZg8z25spXpmmDSQg9zdkYy3CATnct+6UAuHkjHat31qQIxDi8ktKolUHN33oTpG5AMC1TQ2tOBkf49SIEGpxhZYG2AYi8qSpWG+9nXufXAEjXfgHGFZe6SlMDaJy3xn+qmNhItsaTP9jAzzHsjEfAEZPeO9QCCsCl3jSwABaWWg9ekNo3NUCAlzU5l+wzLwwJ/ezmJ8yf7gK5J8ubi8/rD9/Bvp132i3T+SmmVCRstwMcgvrYG3vdJO7zS3kaAtkrwncFDHsLVFerysf+a27cdE4PpBRJaz9mQ7kmfqENtUgEg2UP4zaUlPdQjFU4LWuswTSJxiHiczCIOOFZa7jy2ZMy43cMS9fNHL/Z5pSDhi05CkN1KK6tlkLVaPVnZbSkOA0OVTjXVVkPELEV6f3EHVEpfmSxuQlKzXrRPqV5J8j+L67uzi+tiul9wh4kcSoz50xi8CfOUXfY2cOwpfuG7uv4d+yOgpPrYR0eyb5xHs1cK03pn28g8rRDzINtnh33c3X673d/umWQs+8z7kIJIQqNXphMeJyevuOLjZgrqRJ9va3v7tHz/uUvKRlL0y/4qVokUMOmIipxvovIGFtGjn1al1lXsvduyVvPXO8KSxgQ0Y/vD9N9Jwwqf4d2/fvDo54hANAjHzZeenj59DemHw0ls0x/Ou+S/vfzne37+9vLI+583bo48fL/jp0fHRm1dHZ5+vrx4eDo52zz5e0Jo0z4cFXuzvnF1dffp0fnwoCGQO337/ytPR6/NbszfINXhIvF7dObvEkLDG8F+9fCUj/fDxU+b17LkVQU6WuUykJbNsoogLhGQsU8v1iilmYJzn7L2H3nMDh9/VB2WnYWW+l6ZBS88ZWX2bsNUbaefnF2N8m+c/qjIBGwqzBNkpBauf2qct4BkQcFMOE2ZypZw6NOx+/VaH6SC1e8qqz1UM1VNdNKus58kF1lGEUI50FYyrlBKQc5QHauAkMvqkq0Bs0KGNHQiHUcVKOmHTLGLjVyCzgFnahIxlpgSBZmZOUGNdkT5yKxwkKzccrIMjr2w4UsZ81VSOXgBUVl78AmHYR4CDhL3cBsLiNGduFYGqwV524CpuwByPmyd9RY0Fs9im8lj76CiR0fX4ZJ6zbhF/ptMBf+MW4cZNp6jwg4C8pQ7DaDx3cY5X52AVs4AdpGrii/wApy8QIz5InWuUZOb3okfDCfUDdfrU6ABK3xfZaiUzWKKNC/uBOFgpIuhYGmknsLqVjuipeRFs7EeVupDIGvuPpLkOeihqpDp4o98Z4Q09myaRHVzejlMnE7hV7+lhdpgFKxYxM4/kX2+tZkR2qdKgIS5xf4Jm9RtebkZKU3N8M4VG7GpSU2xr6KQHLyOyjDfgm1rMAN5qwovJOb7Cie1oQJEKHe6UDY+AMx5Fg3Hsv+bB4mZTuYkAKXgiS/QKR2r+9C9lJ8EFIfCdx2tos8/hW9kUqja3GtIsTSauiE7UtBYw9FVWH1JJkNQKkeAiZBulcqmvHU8AB3bsBaWLZQ1kC3/cAIiYfx+Y1RGOphJFeN0f/mCj5TCOMUTs3O13jBV84hpBgyXLzwOWmySwoSD6qzkkDewoGB0Ndy5keUEeXbgx3CnO0rqYRwd4G05pBLbQcMI68sQoYnM3EMABxaFk9kXQ896XtCaGL+c316jYt73MsxcHuye73+xYxMN0EXhw4BucouXD292dX3768eS41wZuL7/sH0kFHw4O3vCJs4uPb377bvsXz7TbYujNy5c+Kv3ZF8cOdrwWfHXz8/2tlSFf/vDNK4nw3376fHl5ax7MN62MOX7xpQI5mBGAUcCsXsfXhNjsoa32so70TIS7Jjgtj20tQZITq51j0PONXnRt+vahLYbMdGYuSSMghgqq55TlduJaD0OadR67CGwfXoVCioY76FBA+0WqBKqTUkKES76jOC6Z2kHgzhZ+yLf4neocEGIacF/n1ZIakK2hskWHXdTBhwNAKkIxIlmAbhsxQkM9o55FkIyOzMnfedRgbX3uX5rT65w6rOcWPwxHrinK4h19ug3JBWdK3O0hzjTxXGVrd3IsiSYDM99PKH1srlwBrbhAvPlba4xBIvSHW8uWrGqZzv3ZM7sPiUceFIgHd3e+CoehPBMrnug8Pu2N2eVul9dSMmD6iBWvsgThs8lyw0QYhhcwMU5q1Ma7iBbLBWxS1hVONAanjYN69yMzT8bFlk7QmmQszi1wptxVJ42laIg69CwtN7AlvMrajXerAZK7eWjUBzDwFStxD7RGGHJRgD6cXRPLm5MDy8xsjzUPSUh520sZ+mImiQUvX3q3M0W3n5InKr2KbV1QOUxc9dxoDcjRQVxYQ4Xx6jyh9G49q1WzSNIMJ8om/jBsQcN4ePUC9b8xxtJEEizZbsgaG8P1/ADjumMVQC7uFaphc4UlQm8ym2WRGva4P5dRQRgQvSCGNGFMyg3ISCUxySUm/q8nAOBNQCsTRcYEyxk/TPwkebn61k8fzr95c2y4iA3liCCiXkaa+kSNdrI2xd27yDkJtG1aqj34sKs/KqGJ7AWD7NFeTalxbtiv7NPHKw+6LIF5aa8Cn8yTZF9eGYZlDONrQDgX0ECPwYneo/18q7c8q0n4Xz5d3v/tp4/b3704OTqQcIWLBBDWY8neU1pIowZ5/r148Yff/+b/9f/+l/Prsz999/rocM9HGM/OL7eexLk933ToTZoXvs5y65VbMrq5ubLy7+PnS1a1tf/8+PXu2eebTxeX1lwKpB8+nr98+TLZPX75wx++94LJ3+8/W8/jY3ufPt0bALx4sX/RvMjDt7999+NPH+1Ua+MhAfD12zd3N94/2dnaffp8ecUdrBvEG90wbCPzq8tL26lJv79sP55dXdqzrQvWwAC2tg4P90RLiHpyxKM0aGuuRJw3kDMVTs6WJVHbkqbHEznS1zyDabLwPkXBmIjNnXEosh0r51X940K5WVMIGWNTFeNwyZmZzKK34CN/JnX4fhXDTHkAaLRJInMTzdgI66nPm4nD7Dzvz+9RH5qa0B3BgpBxT8B1dwIumKHjHQCqid/pLvt0OYt0uImXCOgmmEND7tSbVdXnTOXEcQodgKgqnoZ+fVWgHrcwgYEOkOrHFr9OsKumhouRakzVmG3EoIJFrjZNbubbeTf9TIJbGkqszZc/2PUGg+HVchxmSIiikDyreUJIQXGEYMSPBkKhXrJKd2AWOfA1dYoD2iqBCUGjveVORYRhvzt58EAAn2ZSH5CGLiO5IsicQwEaLBsVoCCzCGxCGO1N8wJfpjh4gXKkgo0QopdlIjWK3aj1qjxabiZjetZICsOwvMIHVNARr0ZVxtsYAQhJeFM/+Jw/4USq4gxg7CB4fhKW1utcuyis2IRcKzXXQVlO1Szsj+xitvjS2O//n0Eyhy4kNViKINWwRa76zaXnROQwElatw80GijmaK2SMMIITlvld/jTCjBQwV83xYuFsuB7lGoA1pk3cAYn3sTqwNhCmE0lVzKbIrnL6HYLncrlk1C7DWHjrC0foSFIyXJa4Y7CCflLogB0uhGw6TqTZUiyPdpwsGS49Lqvjd6llDifVmTXi2ikdOfSbHgkwTeAFuzXpt79LJkk7PZaRDGHL1JNXYKMr0W1Iql9hQvlRElhc1d+XnaiP4OxrDD4mx+oEmUlTBu2IVruVYKZnpCT5asf6UJ+ZDfahN4KHr67iCtzBPbXHv4pIWXuwBkqW0+nCJzcd99fAe8N9eTJtSOTxzAIlq+0RdGAgcMjYzj6dHR6eWldqhQkYZ5cf7LphufndlSmkz7sHz77/j3+6/Hx+/fniz//0p11p0rPdZ1vX//avH3d3X7x79ebtqx1vI9j5ce9g26sCl58/vfhGR+OZsHRlz5DAAqSXe4eeYNdh+87uJHwkEXPpRbJiS7zCkU4w25q+WU+GmCwE70LBGAnlSmvG9fDk7Vu9WpxyyVYzk1Oj6LyecvyWlJIJ4EXGSRGyjvZKzz3FLyoUByYxzukosGAbCWUVkGYOI+Gxoxggv+hqDMFOCv5OBPz6SR+FraNMX3E3xqM5dWTfuoyGlM6cpmJ1omomEXRkO3u9YAAIULCUWszkP5kQFFwZgp0ib63bkSwh9dndc4wrfW7pL1mRwUze9c04/mwVFhwYjg3dfa+3IsY7hHU6nN9+JTJTG/ZkE74vcdBTEXv4mCjlji3rp6WtxwYMT9bDtAmp5ADlR4cHpb8M5vnO1c3DlellYzjywExxuy44UY9kEc3f8AT7DL1G82PdgoYLFbRz0yImbPJGcRC3eUu2G0zVRhFdENoIkFq7TAmJGiCg6lhHNVkXwIoGn13YvffMwhPFCNmi/168fnp4/uH8VtZz/BT7WLD/ujddDKE8j5pXfndk4sZ+IOnv2Ji5doDJRrIEgD10mJ8pX6FBis7AYmh6WH8QgI/RSO//GJRmABGhK7Gk+5mXYpwbzgUKPz3irQn+1Wer4o9BQie9ZFKswERRYvPxr1aO8bZs3McwksGIsxeX5x0DQ0MP1hLchEdW3lChjoy3QaMJkOwguYzFKGJ+7kI3JjryH9ExtI82A+r1395UZrAkhSTDUyuW0IDTHHCyvuEiYqXVZDvwk1z151NO8BpnkpEfbmIZYSOlHmhQ6LY9NXnk0bFvkN2ffHl+4yVboPkOp46Y0Xf+NDZAXGJL8TkRNCXnlrMvvon24qcPnmWd/dE3MFqYjPtlHmmBTVaU0K0Ee2DhZ9fn1x8+avrm1esff/r89rXBtizcmq/d13aJ2t76tx/tC3rzh+9e4d3bIf/46YPk+Ormzp792zdbO77w17OdZ5/PLmyKdnR8fG3q5f7+9euTD2dnu1ve9z29vDaR//jx85UOdts6ymfbr35z8o9//PTp8xU5MGwPl2aGwfc0bo02RzPtzLt3uHV4emB7VKI49kG7nW0P3jzne31ygoeL6xs+apKaeFmLEVRz+enUqHm8iMTrPMYu/SYH4WN63rTExhInN5iDABuy2TmuqFc4XsGRlGWkpKtN0Gb3qOZRRsWaBqu1XfaP7nnCgOasiZ1KXK7/VRQjJgimRReKhHGgZs0PHSAO/ChcMpjm7rLLCRCBBcX/VQK0GIdywJbtBrK2U6+IH3D34sxJUCLDJdoGZkIQdt2ejj96efg864y8rqsatwOq6MPQ0M8BBmbxHS8w8FvCryYt9Lg/4awnEst+c+xITVzxL5Y1hu9pdaLnpdNBzt1YnC4wKoxS8oQZpdSqQcVw0u8Yyhl6UFK4UaFrzfxdg7f4n3Py79ytGuVYnTpbLDTRWE2WM+MZXJEPBlGuHu4a/7Uc04QcLkLubn/qfRdVlS7ytHXuN7lDEJqyuO5GjoupF3YQ0AbXOhn5LMhF9hotCuNr9ThLmAuFOjGEWitlzS5EUiXr+GobaIhbl5PdRrTmszh/coISlbCNcQx5yB7umKWTSa/LztUbS44vTSJpcoi5CuevRDqFz2WFc2SuHW6EzUkGhv60FjYycKZ+tAkPKsE+qfnA6FcgVHXWoW5axddAiLyO2navmgtdnOn28ia3wjvanyohhdr0rEOPMG2SxKZSZhFkLCNrWRrow1oYEFmF6aiVD+RgRFkg/Hwl9yvd/hIAnGAK4ovG0VG8CNCIp2Ww4zAQ8Yckv1l73MG0okJWGrNRmTl9xRWBjpFk5ATIL7U6hbtbHaB97SKHjyE4d9hUW11msQjipjybboigabssd8BnikUG98BwF47IidmNgzAel0JfK907TfKqAziuMVIdHSlcKhi0QVPza+RRoz65KDecaU5ovSew9eL4+NT+nirsHRwQrnJvJx74Lur+nkU/JTcsytT+u+9++OvfJB+HHhN4Me3w7Ytn+ycnrwnj9uqyfeZkHtsvXh0f+P7YtfdEn57ba+/D+19OXh7/5rtvb30b8/LaewI7+4enpzv/+NsPXj8Fyo7VQsjt4y1+TFx5eXL0hm2b/UvWPVnlpHkfGfW6W/q3hzpp881WqycJ81/teGOFNIHr7/N4fcUoNNGOapd4k5yCPJSFxm9Dd6KjQWKf2ELC4+ajtiLAqIatpKuNO6YhFyVM0BepjHB8GaoMg9aSP5Otn2rTdFJUYv8IfYK0V0O68MchdCPDP9iLGCFdZjBWp4YsGP99S80ozur8ulzE6LsbBKRk8AGMNAXW5FiSU2ETl72ta8gAyJ7bKiqX/AkU4zLnl15s1dtqdWN2tl4pMxoicFK3n1NEaFvTyGUNzVq4sr7EkFHNjD4Zwnj/5K2SZze+BPbluTFATaiDaJrNNZzry2CIgTGgswwGcaywsMVEiTevTtcacQO/k3ds5v9JP6qcTMK4RlM1I7S8DZhGfZCBTkX5l6Dh1qaTLfj0Di6Jj2Rb0tJTjWG1uCPhFGBo4ub+2c+fr0jg7esTo5q+X0b+MkWLF4yf9XQGTSb+vnxpFGFI60Mc7fYo++9rbg6sTW+Yhnafb13Lw/Azs5OolYU12YziqJ5UeKSeJ7Ez7PZ1p54ItTUjDa3oXsumTAiwk4lE3vnANX6Nq1sONPKxABtcg8+ejEHWszzjZHpK+45xhCRJHZujgYrLxIUWxiL3TndA08lUWtk/MGAAvQTJXk1R//Lh/OD79n4iRk0yyrFOcuNESvp4CIRjCe2jOnY/PWzpjTtS6uIP7lTKQhtVEzi5wS/KG4TZn2n3cN8XpS2ksfblas/95zdec6frSJeyT5qHfN5cJIh8B+sAq0GnjqKu2QZoTz98ONPwz3/4RjpdNaLDW/2+5V90jc3WU3li4EGDr/eKPGZCbLD/89m1MfD7j2f/859PZdYG276TSPGPN5bp33++vHh1enJ+ef3yePfV6/3rqy/S+POLC5n39v7h9osDb038/P6zCfz9o72T3e3rIm0sX93cfzr3iXdbPF2+fXN89fn67Oxq10q7ve2Do8MffvYlRl/3tsDPvoiihdTKc9pmc2zGZDbfsF48unx4uL6+9Try7s6BIEoMvc9jU7hka5wnFWZ3z5+YiEcMbFJMSGEFzdTvh5bGBpgHurqiaecZ0Jalb7ZwmlSYserlG9z32CVjykBrrh55joGGLPV30VLvNSHBIlynB6GaTkokHHWco7AuACq/zOeL735XhkqQhx63htoaslT6qyTsBSRMEyWO4i4/0g4tpSAgcR+Urbd/whVr00mEGaQCbbIpYoKoLRB5nVPSBLiZIYe245ABBF180UW1RBJmJXExdCZpqCOyHa8b3LvLY1ET3Y4wE4gQWROXOIdRqyFvJLAy9ZWOqD/AozI3G8KwusQyUkoRvD1vQkiMRVAkD5MR2NMJ7VWjmg0xKuVPE6SSDPApUWWqnxkyCk8R/vtRHXtIB9cVTpUIYUCoovVwExwVgCkuOx9dD7UFnehcw4mv8lxyIat5wgumtuOXjQEyC2DXEPMrivS46IymSXYpK7SUO/QuRoLZs9rwDqmxNpfxFBdNXmQ/Cif+VU7FMrpVYXEd2En0E+jwoD9BrUvcqTM4a4uGJLMKl9hqwqpKWDZiT90lLgtaAHnE2HD6wk7xDBgku5eXVXl1hFWjE+QRSRch3WgtcirfeE23gR5LW5A2FE6jUdyYLqpSmMqjaw4VDSvbpojEKqDMMGnSY/Wz3TGvDZ1jAJnxxgYiMg7GAKJhbNslPNnmkNOfUoGOqVCqw/CcLwzciC5UYGOJNNlgt3QKUTWZIzxzbMTO8gBaKDZ/EhF6WZKqi0gtViWZVFortrGHMizGEDxkkWa5xcQZHXn2P+PSr7obtBs9DmvgR5VyNZ0sXEGeJpQ4clErU6mJZCXimMcwOCQOJUUhBAxvaWaZA2FWu8dxwkvKoYKh3x0ELjg5CBRN+s60SI2DFsLzT5/fvvumvL+Ft9sHpvxv76+vLo8Ojj7+45dnt49v3r47fnV/a/Lt6vZg/9DufHKOextQ+PjX7QXDf33qIfPh3YN3Ee+/f3N6eXrw7tX+2+/ePNyf/Nf/77/eenXg+sNvfvvH169O/7//8lcJ0+n2nhjvy6p96EoHduVTYl/2vFLXV2NvsIlUpqD/45+9DFD0nh2TsGY6qRG1BDq/wPBMx9ibvE6JdEi49AJnscwC6WjzOZekNLNf6iy9JKDlRwSSmyTXTGP0pYNzoS6RBq85HXckXs3RNAQV/qRrOfjMr81wgjXWtS27IvNm0XkNIDliS2MEGd9zGK2FVEFdHMXNUo1y2XqKIQzmZvugazUuWWnZApsSuzJF86I5h8m1TFZD1WR+CM0GuuehBLlQfXY8A4acCLqZ9+2LQqacM1PJBZOerYFac0QsD1IT86BGYI+7RlZf+tgQRL0FNw8rjCme2fXHO7JulSQ+f5rPfRKLykYVyVFsitzYXC6QcjuSc848laEj4AT+NSBLwuTerDSqBkiiLzTRXTAFpGqv6Ep+kBU2m8NKaQWWupw5rbr7fo2Kqpy8GFMde4dMs/bPn13f3H8gxufbNowp8jTd/2XXjkhGYT55ed2a252DPW+l2jwU08NB0D2lsQ+jLdiV0Nq1z2k3cEqbK6rNxvPS68goZTcxz9fazGd2yEkAAwdIekpedWolarTjEYH54SCzHA4S1SWmtWK6JCS1MM4qe2FP7LjzQWRsyGGH+zhlsWIF8Gg2ZcwYNFfHJQISzBJJggV9mRWeYisZjqijbl7c/3B2+fvvX09hVaM1gqN/ArK0aVqxorFGwMmUUmBtcno0OOONfEspCgmMbaueoTTSfjK8vLu68knk06ODm4f7V8dH3OLx/vpO5Tp6PCTDqZ4xYy4IY88FBTmcsoI52gxlt95/vNjf3/rdN6+WeBs0G0dJkjt6lwZyCf1ffn5vbPHqwEutVz9efz59dWgfqFfHh4Tbd1gen797fWINpIeaYtLu/sG9jxafXe3sbr17ffxx68Zg0ls2lgrtHJhz2fnpl8vdvSNjwqe755+vz8+vm9F/efrq6vPFbNFWdDq7vbdZ2/GhDwLsGwFcmtX3iMA3QDy2lZL4eLO9gdiAKGdhti2YPMBhQ/e2EOXXlkh5I/z88fmDDXkzkusvXhuNAs9Xkws+52lRMuGAxD/ZEt2IGkow701jMnUipKSdMun6VwO17I86RUWtKHgMJeVNgrsBSN05psZ5I8QCAXWPajMpoMML1HRUmVRPFVCT7Md+BLUmZia2ZgpC6q8ZM6J5xRCjer0daKADWPuAjw1N/meAnqUKx4XU6nQpjvOxYnseNx1nFbpGWEbfzSonHJUEphKOdYQxMIlC2jcN4wVdKmsE/ghw42kF8sw4oMP7oBnwzhbBmz7PSK7EKHsGVjt3w4IAysxj++kStQ2TdHWUMNR8vaUJROs3pJ0MAU5GSGrXoJDhp7Pk6SQFDVLwXbkBSjqqN+G9a1ilrFbKyZBqmntLAwqHNhw18FuzIAuB6unVAStcfHWuAl8HOl6ncaTWNn4HSeNANafxgFWj+JX6HF+bhGUUWoakufpxTBe5/Cj6V720/DQngGg4jMshvPTISajTbB3hELyAEH96WbJi1a29g2FSh4VL80at2XxKjBPVE9TIVhMalAGUdWVpdFTKUhU1yydiw3kmET/8jJ6VYIHpjlIXTBWCugK3s5pUpm5iw7+8qMLA+U+AQXSRZGIoZlXw1/0lyU2t8aYknu1RYwPR5Q2a5PmTWAgXhDBIBkGNB3Le1GghXwvR5M1za2FJO8tcuj/cQjRpFtjQjZDjdY5UMjRmFYwt2aAjKthG7CzvCNc6SL82Q1XaTyhgTqFWCS61lBxsAsVIIICJaFpm/+qM7+d1o6m8Y5okteBonlI6ojX0/gQf7wgbvXQnuHVsgVwa/9rAraE/gCpUE4qqpvSuB+aCPGDhUsHtQbtuAEsxX9lB/HCUjdOCTjQ4IFNf2hzPwhELZ18e3noe/c03PbV3bUmkyQ6J1faL45PjMaBnJ69PSrfv2jr05KVv0T/Z5eHx9hL8OxuoH+z99vdvf/+H7//2P3749tt3f/vrDzzwaOfIxyxfvTp8sb1/dXH/w88/Pr99uru+eHl8/B/+9FvLSO9vn/3lX37af/H86OWxNaVPD54GbF3dXZtLPT48qC99fOzDnxOyvH/JobDosYC3lW2C0TxpTtTu0r26ah6p1fCbONaswWoidhVINc4mxzRIjwjTjubuupnIJwbm191LXOmgG3P9VcPTcGoXV3OwTKWULOCIBKF9K/IbYv+ye7Q7K2aJtnXhagc6ZU3eGdJMQQjMcILYVW2zT78YJEIipXZqWG+sRy1w9MTJbipyR/boHB8VzdBo9tce4JPlZ0VfeuihvzAdb16wuD1vUZvFZM/cmZRa27ATdgkGhLv7s8k45TQjmmcCLknEkcFWkHw3oI2cnvkknQydEz+Zpy0EJkKkzyiip9NWQeQ1FRaa8hGioJl2gIm/SSSQmR4YPUnAla2PlEUgIiUbVEKaeQMW00up6hNOiSZGe3aUgAiL8MpASp2b708xmszT8ox8gBfEGRvy6isbfoTE6i1zvSZ+X5/sU93u7ta+3XKvfdvAIqh9y6nzuT5sXXDJGT3W8C1hb1taqI2+WIpxCahimWIGRbOeBQlnSCKBbQ/w79cYFjQMIZl9jBDwmyngXySq/3XPzlx5aZlfuouRnolxVlwvFkIrVZOTtNBoO7tvkar7jYW8RQCNjH+rl7eQ2Y3UOPkVaJRinEAwemT3ve1BD8ALHXKY1EF9PlHaimx4VW+A2YcDr++3D3dsQ179OaSoWsjZpA0aVpUqi6/1Zb0DnZc0BSzTmx8mkeCqhuXpWFmlKQb0MzJPoXBmGYtl8KcnPj7w/MZexTLvG2sFRa2mlQdL3pV3R24HHrOmwikD1pfFOele3tz95YcPeP7u7alPlmMypChUhX4tpX947nX216cnr/b3ry4ff3m49h6SXP/5/e3RznFf8PUM865pCM8j//KX99++fQmBj2w83t++efnm8tyQylzFl5ODg7PLi/fX5x+v7r89PbT/srn/3Wcvfrq4+nRz+3z32c8fLtFkuRROpe93F4+v3p6+fH1knHNxYYXmjXGA3k7cM5p8uMFID8+scaK7i5trCuwlQFoxIOB5ttLlzC0g9DRjKT+TVMbr8ZudMQ4+nysRTeOzQCaaUV+935rWHW9YBpEBZgRJWYnHh3xldJ3xKUp2ZDzdZPZMoDpsGkjg/Ss+6nFmrwDL1MZ/NxqiMMaBPEpjMBHC9FFXTyCdCSwskbtCM3sqgrukYH/Cg7zYmfns4Ia5fGsybzMf65ljHuXWmnwNDWvDz2q+oEliAB8Hg4J1uo1yJUQHG1njQkmPqYoz9RbNr4zJDe3TnScTN7WO0lUzYiFN5NlnsuyxWgHX2TjVmD/Ji4puR8km2rkdg8mkJAbdw8jIaShPVpCFc47E33nIvo6tc+aZsnIy4LvMYQoklu3kPIZbGtS15BeBhHUDZURHF+Q6YwR6EfTZC40MdsKkgnZEI6fmsYASkFXWRJ3YGXQjUoD9o9lNxo8klGRRk4iDqMTvlDRqipOFCKSMOaOKxKEvQ3LUJG0RYAhSUDFXwxQx49Ie48wCu8hbQKY8+INd9YVaSRCLEeHpH8eSOnQEvMFAvpTjxVrjstL9JTHw+hkW5qRaLMBj/UrHNkKqwhwBLeM37aFe5ckt+2QGU68/X89IKxvJnrR2h7nCnrOM3jdcTLslf5XDM634scpEp9WCMPIBK6r9CyYipvmcR3q9aujQluiUT9vk0tIv6gCQqNUiBKgKrHGixL/Oxo+WDJukiYLhagEd6H6NeLUMQ/Y2VYaeYA59Q9lQGGURhJaBRw7Z3pJqoBxjDxvSq1zFLnGBtMWSiqp1V5aMqjGZhO9wuWoN2hERcXShbRUyV5QVFyJDcXSOlMZ8lMucoAxjISXeQjVCSXQRpe1w1023Che/wnG7gDboUBVfa3xYy8jgdFrD0nt0w3VghwZ3424CoM5ACz5qv7nEOxMZYDG8RJ1vPb+8uIgEGcKO3eifnZyeXl2f6fsliHYOev3m7cdffkLY0Z5P9ezYA+Po9OjTpw+HL/e/3foG5IfLp+2Dp9fHhzvPv/nH3+2jd2xnep21tROvTg4+/vz5Wh5jvtqKoMtLFnDgmwBto66XJqJ6D9SOsfncaTNE+PMygixosaDnEoa9itfeiDoJCcKT7Vd6z3IiYZKvU+CMraVuejtlNa4em0/onSdyZ71CW8SYOYc8Qjkxb4Ak8lGrE6mt/jXFdKjjh8eBPHlHIoNBFJBs0Y6l9aaxKUMTwiWxSb6ZSrERBLIaXcCu5TwC2ngW4I1XtCU0ZVJO/RmuhuKgOXHUcJYhwSHWSsYZiYxfQyudq5FKm7aHz4W1EzKIsUQNyQSSLd8MikcQPE+TpZl3nAQ78/BCt5cd72b3zxIQ8vHarG2FetLSxqEYzrUxkm3jeiNHsNeTiiww10qO0xkRmuyHOUlceFmyntnuUUtSMZuuBYrdy7LDS4zdJ9tVLSAYcFs1QihKdJE7k/ZIWGddfCv3Lt9N68LS+K3yWmXsicDfNCrXscp8llbrm3a3n59u799t3e0cbN3YetVLwE1Oa0GXFFv65SPB93LB6TQJo4V29Rj2/c86KFUtdEnLHKqxD9XWOG2eN/bKeEQWlnuPJR9/LIFG1CxX00ig0GsUmtgmBuvHe82kkQaW2ZdEAqIxf9+X2M0K1ab59cxqhMjxVzUCxemCDzJOxJmEEahU1SjRX7IYA/M7PSfIDMqleyTmS2ofPl+fHh8EftZfsDW5XIY0nZEHdJaMagA22wVzQWbqhN8ipfQREmCZjnPFMJNhBBRUKbxVCYYfjA5wK9pfnx7dPp5t3/VywthHGIysgzAmwa3ypnoofDVT7gQNJAIsdIalf/nbRy703buX6Ju7rFVwax7k/dlHK2V8ZWtrf/un9z/9fHH97Tdvrq8fvn99Sn9/fX8+O2w9f/P69OHy9vD46Kx3cx+PTw6UeCuei/383rb/t76cDtfx3r49lclECVP5dHnhod7xsW+w3NAqYzrsC4oeKD1Zym/LURL4cH5jhZXU8JbEewxlPEljnvX5PN/O7S3doRmlDM5+XFjDm8FS4772iCN/55nds7sbm60JlpmCeDSTl0TcPHoLGTMSTl4odKq8XD956K7Eq7IZ95VN4GlYmAT1E2oBAivpdW/aAzFztFqP91YraOKKGkhio2hUHWTkkI4D8TQHQla7itLWtOx+anOUxIwd+52TpMfaw+XIvdNuwP3GUSYhOnOMpiYK62zUoWRDdOBKdim+JjOeruGIKluaVA/6mo2nmbJGqqCNK1KBy91oGLJdgRyx5UBGPF2CHHkkSW5COaTDPvaQhMvEMONpMi7euwJ4IFRB6SQQQ+wABC1ppTAcAosA1cIyyWg1x4uSc2IBFDNBVafKS5Ir5MUCPCBJBYa8jcATThz2PzVD5O1/106UKGNXESB4UdfICvw4iEVaYEv1eZ1PnQ00dabChLXMTIVFf2eV+h2gqB/LBBP14IZ42Iwi/0nepRR/06aSgRGEdaoCRshzmRewRDEsxFnyB2GkNzUDqHxBDtSStD8zKnCdMIOoWj1fsJUApUtmgZMJQIkBFVSZu2OuA2uwL4mN6VIfCBMHk2n26e6k/jGcXnBHe4tmJyOijRBREsHNBJnAGFmntjApSlwj6xQ8Ihp+Biao5R6kEhm15/4zk2iCwdXk0BnkRqSJIsh++MvIJzyVJv84gmMqBz90+WaaocalOnxq45aOwUnSicr6b4VVTWY1B2dAJcZfaSAc1aZm7aJ4oIU3KU1iPXpWJ4aqGoXREp3pYgiexkqnvAobi1yEa7sC0bStrBP0rLMgD7igZEtxlZ2jYcSVrQIIuxujExcxNvKJ680xNZxP3eCvE2yC+ZWR7k9DFYT8r2KJd2g31rUARlA0qM+kIVo2o4nK/ieokUQcZJx61nu/d3d9BCyMKyMhSabh0zmeTctvfBBA7N3bOdEfeUXVA3ni2t7fObQHtkXktkc83D86Pnn56rXhvAmm7377W7N3pj+19bLB737321ffvvnxbz95WeDdN+9urs7evj22vMRW2SYdTk6Pnl9eqSwS21Xm9NgW6yLyU5mlCGKyKuITMimb3dW9LYvQLVok5IuhV9e3Mglvv/KCmGswn8ASG78S7V2rQbxMyymlBRO7hAVY5ucYc3B37E897SfdJAu01KAqTCXAelQUISwVkHauN0lRPWZ70dGgZCWLKTXqcV4dn646CqNv6dd1Z2PGIZxjo6wGitXWYUV/E2FsQgk/GGjuaSFd1HlJDaq2NRsv9olTltlcrKgw7+klv8kd41esLtcvjuWb9TYuDcAqEHbHemNVAWN8vL2VdekCb7gtIK0+6sa8MKoxkvLcEW+YSSA5Z/BlIrZ/9ZYJtF2OuBJ6hPs37HdRT52QnaWL/H7gwpOpDjEbWZF0rBesinxYQ9yEGsNCs9FK2ningYo3dNtWeyYaEGYT0gYSBb7ARiRhziqGZv2wEGfkac7z/Prh+OBF2VeDH3PNNqNpOIE5G73fXvd6B0UYIVswTjziX+PMyRtEyKUq5ea824eqz9LXnYEw+m2mBlixNjOBtS5uEt/eIZn8m5npU8ZYZp6QWZXXgnlndUOGRX4Zb+RSM4GXxjRy2Igobqj4hRcDxiXCjLmI7UY0oKrfatnyyJciWHLyT6XpYrKh1XkqQD+QUqbMqc/efflwdv7bb4/FAT0WGyUdQu0phZEAG2mYmoJcapuOJvhlF57yxUNKdoCpggcjKka8G+6MYRK5jtbrNJbd9+Gtk33R4uzy+vjh6cICfLOoE8YLZwwK0Fx05FK3UC+TvSmdTImcMtCnZxd3D//20ycPWb55dcxYjJxFrce7px8/nf31x198Wpct/XJ+9cySnrdVkIGenh6/eHZn7Y0PKh4etkGBzXp++vipxwgPzw8OT07fvPnb33+iDoP2G6/NfHk6PT58ffrSY5Xzq88N27Y8uHjyWOzx+tZ2U7dP9yenhxbSHbTkxivaL1gV5XgD4dwSScbhWW5Dqmhu4nnGzx6Wurm3t6cbJZxE1VRyg4k19sMrs1xLYCap8zZRCUQL/kYTacglUQXbJlOtaMwhkSjYFd3ynToF5uB/Hu22/0W65DspXVFpjuqmgBkVROeYJ6EjS5V5YYWm0vUQlEI0hIOxMY8ZFxbvVDYIDloiH72hKoBCedY8FikapNFI6RFiP5ELl+dEHmPN7EhVeLUkVeT9uvI+jONS5W6trs5pFSYG6p+BJuzDbdTG9JAFIwKaUZh5DsmvgjgdJlR1Dhqkw1e8Qa8OyDE7YApJ3BZrbiTnEm6NaluKVqUV6ZLL9OLDRLLFC5lk25EEfhX8GRV07ahy/HUhsXYJfDWndP5uqmEn4lvrxWx6kjPNx3ModxhXnqNMi9gMcM7PQpRRBOgoqUb6MIvgMmZjueBo3DVMUdqEBlwzsCx2eCFna8vUBwABPeMTPNLDSCzIbqmdAytvQAqy4eTXSW7WpbZqkZHsI0WJgzyrzGxmUn9JQw2UjGqqO9KqDRVgCFnTVEerYjFIjXBNJ6oATIjUX6IIYxcd6rNRWl3nETXNNxWm0Qamyomg/msI6B68U+hWHLkeUwqySpWkAMDSKbSLzimZtl9hLvlvDDjotVdjJJmpxGkF2TTbD+54PrBq+6XvgQSKzBK3BKvxWNoicoFUkiDHQsaq65z0PfksFURtbKoTvemrQdo42eoCMwkVIm9qwpLARn0p0mVAkmfGs2pGY0eWO+dAT8MYDGAAxtO67SehLVnRI2YCxXqT4oK0ZLsYrKIbySSSoKzB2IbK7myCYJIZewbEyWoFG2KJq7vitQbBif0oGTEvpF9xd2vmJuJRhVUOWmaWKMK5btFGVGUGlfqfPIKP/pyltpE7YXlighLVkRc/mXM10ki0DezoEtBk8C71WTmvyxDYWeLkVEaofiUFsZ5aeeERSiK/ubo62N0/sYTn1ne+9g+O9vV8P//w09Hh0Y6dUzyr390TWAVJ/45fn/j78uXhb0++OXn7zf/6f/u/e1zw9ncHnz7ffv50drN3c/ryG6K7PL/0jZ3LWy8TNI9JxSa9dGN55gu7Wdd97G/v6vLMem3v94EbCYGV0UzsXvavi5w1BqarZ/kBtvJWix9A04MQRpNp5m5mbhhrSZWGxvXia2RIYLIWSpzyKUzq6//k+mmBlgltrGVCb5fJtf5uJjQmBjL4VthHIi4EFeDSSBVTQrpeSPP3rnG9jBZweCgCeLdyytTJzruD9C5HbZGh7cRkjiabBKF5UT8tBmgBJyTB2UQSwp5UO1i9QjPUOJVIjefigXcLnkItRJn1c/u9zIsGSoCdbr2kKRpy6sFmRMGeybywPEJGJEKL7UYjJcf62ZHhuMmkEhXlxORW1+CkHDcR+z8EK1uJuntoyWo35CnoCXKZY2GZOgrRatebF22CVKtcI18gUL8YQBvF/Ao+I6/D2oR37Hbr6VqWZpbdN7OPj8g0tZZyy+EIuTcJr63+9snene2j4/2P59dsplEYcrKfZjxVj9TizvPGEEP7mluIC8nJbjO74KKtMQqKU8pSruoN1UgPYYQDVCTw39y2N4CxtTI3o6De0UZagq2eLCvFE+aYR7xT3eTl6rhBEX6DVy8wtmEuoISkvrhok/AQHDlj/f6SdhsWkRWDY+sU3fapF1e3r04bdUXQTA+NRhqlWMIUFyPR+KrLCCORKPMf5/gaXfSb7IBeWSgUZWglg0UA4cgOZkD4LYE+Pti/efCRu60bFcoQ8LLYSeBwURwsivK78snkWafLN1S2kfXWi/Pr+3/78Rd2983rU4Hlxa7liI8fbNy5s+ObD+fnV1vPD21ldii+He59e/ry5Yvtk4Ptm52tf7y//Pz5/OzZC/sAEfO7U+t79i/uH/7y40+yfiuLoPeQ8+03r+RXD49Xvifw/evX/OK//tsvV3e+CPzMtxS9Z26B0+HxnljqJauPH2zueXl2e3N9c3djp08PT2a9hqSdGd8/0Q7RPbMpm/z26GT/5qrNQFvR09BdlayIfH0GXnbfvqDzrild0MzMRbPHAkxBpBnDvCL30LDRo4IkNQkrVZBh6kmS4CI9jXnWSnlMkPIKEB2rHdTAgsDI5gHu6gVBKY3oLlWk4ihlN+Gt2EkQihEDkLZaqCeglSvnGVqxLDVVL8BJK7+mYspUM8EwdQr3kZu9VH+YHa8Ww/LLqOVLmcIcPa3jB7WqmZMlMqLMZGMoW1wQtYJu7MxwpR2NQlMGsKDFSBJTPBJzqrJr7BdIm8sHEV21CkW9dbNTC0L8DSSCypOHAlTMNG0RYWIaAU90G7mNBhOiIB6d+omBgFQr9WbwnUZSbn5eHAx9rA1fCK0LKZsZ3EuDoliRuVrjnLhgSoWSSNzMTw89vZQmnKo5fLOTWqlWKKgPiNN1uIbdbfSozngIxHWIElvhpogCWtUKQAr1M2qLzjPfVv8x0cplgxBN4FEfuuSOpukMshxXWKqUWpFVHQUEn6JHBuguxCxJqiGDpKlMsdAwGUCkspCRUyocNrOoXKDmtQrxoIujhFaPCQv02FuZhFqDNDMYwrok+VpjYd3LbBoyLUp4XFCRN1WmIYkMLV/xaoqp8phgVLrhPb8dwEPe1zZfTXQJfVEfQEdBIKZaz+C8A+Ue+up6YyrEqixvIqfsKs4X7d0DZGwskc9PraZaPXGDzGUo6nWjA/+N38dOEnVy0FYmqm3XkaCs8B9GpGYz1epwCpIR6aYni8TseQyi+wUuqMkknF+NWfvuYY4clkeDuBiY30FFWBSQbb2jI5MuUoUdxeHyP1470oLgmRzgKdC4kbw0cFql6jtPqC0J2FROdwHQrn5X26DFckWIVE9grNMaKNlwQoi46IFrkHZdi0xubnYXruJbJuUqRRJ1Ik0aVR4lRpy2NoTxauOKh1YrkNvz1qkNBx6iNjvYs4K27BBRdnzO5rM5OVFJr3l8emqnanHGywOHdru7uoJJT/vqzcvXL15LGjxhODh48Nmvu6vPb799c/mvPxgeWD57Ypm1RXRmxa5vds2o+crO1ePZ0xV7kWVa0motLAZta7m3P4uRPHsQ63q2+tSCZZLxs2fpw+I6H/WUVa6AV4wpZaM7O77hyoRJoO9XFDdaJ2NmW41iZnpNiYSfBkmOuMZ86ok2B1HXPyYRTBeIBlRiL6MqDVnNKS2lqji2SKQuWXUE0M+E60jTMLuKiEylSFzx0tT67U4lRcEMI93VDzXPCn66HRUanVFypE7sKYgyt5K81NwNFedE9WyV4VSJGeRWYdF2zlC5SDMXtuwwsMoWYUSkRnEuU7bl5Kw6mNwAmCAPgETCutp8XWfLRqfjJqWiolBmBFFXq/Kk/kjKE8HsXxIosoiHm/njr2URFBZcR4DoR4l5ptPoEzJnqQMKi2L+sFtmiRIFwNqdk6aAbU18s5/t6Zd+g7DGPE1R6QOSp4nYx0c7tCD32AdktzwR28202pzdavvHfS+fCD6jOCtTWvpqnRtgzXeQWLQ5Cgjz4qK3NXURubAqs9um6DpxPkZimzSnf7eyBeu8u5VXQ9xKFfBAxL1SYr66VM13nVvun06pPgnMnAKrGkSQKWxBetslb+bjqtMUpEMuAV75DHWns3RPxOwt8jk7rhiJCWSz1Iqis3XyPSxCi4zJLvgXVzdWAWGcUWVgPcBDZRldvYmqo/SIz8MCDUhy0OU31HeSbbtccsubEJG75UgRObFx72C+OrdjU+MdoYPTmyu49wZ6BjODRBDGb1MgTOPSyTQMyQcDxJUVlQ61XM7LuH//+SMxerZA2v/6w8+PX+7/+XffWgL084eP+5YZWobvIxk7W+/PPuzvv3x+f/jLJ5sDfXlj7zOfOHx4OHqyw8/9+4+f7YOcOX354plkL/s+f/bW/gi72//bX340bvpvVx8tLfP6Ad390+/enZ3d2XLZp6Z98mPvmeVDpx8vfJf9y/WFx2xt5/rFl/uayt46OTm4sp1Uk8XPUOjDLi10vDT7kUaILTVM+jeGTPOtAhL0rdfQ/tbLBkk8z08ffkamm6Tfvd4mSdJ5TPpPQIUJeXxaHu9hnkr4aT2E4M4EKWvW7osJyjOe0oi0BYTKE9r4f4qEt2BUEMscAU3raTwzHOvXGswsgHZUgwzMwAI89fxSkzqzBjGY8+sbZqmcCuqizYlyFcAeVkIUuAlaiZMFBz/GugW4u9DNt880ASSzCW2dZVTNoHaqRrLC2JiRUn+GOxCdCM5LPjWMJJeNz1zmO0LRGL1b2g1rqgwxVehEzTXsS080lWH3BjYKA4LJqoUrgC0KVFyIcWuGJe4mn0Lc8OkWSQTWMRrVnIMlndGuv4lgBILlNWqaWzHpVjJPs+FleENDKU6TAek03xpVFrBUUu53MgzDhLYhmEDHdoKjucpB/iqoiPCT1tJLdYZH57GI4O4kje6kFHXHXDPEqrul4lhdrg6dSgzPidIuIqf+w6X7U7hUHHduVXmapZ1Rh0bhay1m2zsMolgL10T5ES9KR92aADsP1jUZG4yqOaBLm7EzlGvuMvsGVO0uNFGYDGLQDxKdkQPFIDuT6Bj8qWBpf2OoycDPkry/xngcpLJ0UfewKCr/4w3WNUDNYmHZyASJ2Tb8TKg+DHVRE+MTCMYCh9kkPHTO30VwLQPF0NAM8YguCShXGxmxM8eSatL10xGDQ3/YYXRMk+7hu0YYUW8E1AWxTC0wa+9G0hlmxySyZB2/tsMR6OKPhgtyf7QiiM0RnU4Rmeqrl3Q1ivZx+UgZW5ryoX3Z0tJRAKPKsbgCgUCHvX6Fhwu0fGIo93sK85oaxsU0z2ITxSDVqFtDWGWTx6jpCJ1johFNqsmA1ZlSKETCshEUrfq1GIwaItnp12CYxNWzx7muvdmEdhicPjjPjSVb/KS+8UKj1N39nd19KfmWxT864/c//zJR3XzkPeHNR75MGNswZuf05amFREdHJ7U1oPQBoa1nxxqZk7p92t9++u23e3/659N3370Wgm1+d7i345tjLw8PfVnT7tbxLd/un137fKBpa3t/+8X+rhDDdPc8EOh5OpNsgbLvGeOD3VGbXUGSltm5cjkTsrp1n4vKBIiJoKWETuX/kcT4RphK1CWmSjjNUndSLoPEWrZRMp9MtFkNJ24k9WU7qQzdInAhui4Jdg2X9IjTQ5V5JA7K9AJqTJhN76moPyBs3HXCoEvlAaGYlgMjYCmx0gCMQkddhYnGJvWGASnflluWVCWfZQ8ZT2OEFfpCOv3nGCf8YyosaW4kHeshljQisS4UHBrtW2PqRB5Z1BckGXVgVVyTbKbutRtDhmqJG+qmBpJ7/I5TuLN6XySoNjqZcKcGgQitSzbpMHYQMrWGq4Gggg58CGeHs9m7JpMr+w2NHCBrKRjMm7jqp9N++0ko0RvAAohxwovnl/es7EsbUN5cywUmJS49x7r1RnZA1e2bZNubj+ma8S0FKhGK5pmFf+QXNuMJ4NCQr8LkV6vvvG+9crBKIxEBmTeBIwZhINaJJ7XNgYu+GEBaPN5wuLsyraXU/D3bhXp4GUMtWXI74YCxdEHCMJb9s+DU0TgWlEREkQ2SpfKg9JEIwOvZU/EKX0YahGiD94cffjnrtdLIYYVf7ueRApL8AA4HYLlG6BgwQgLuJHWDgueJ2whTod9ZRIy7NEo3uCEDTFlC77NZmPOpit29F3vbTwf25fc0BnE4Lh8Ei22MJwY5LH4COH36KC2pMJ8oIYpnW5/P7/7x40fx8vrWa803u5S52777dkK79Lbx/b0P96rnO2J/+XD+rz9/3N/ffWXR0+7ux/MLr8XbevPm6lq/d/B821MCZtDuPanu+fsPFz/8fH1y+NoMzsfzvgvcAyuvhnsG8Pjl9enxy9NDdP/04eqvHz5Y4s/ARKSTwyO8H1sx6bnDgaD3bHvPN5UfLi+vrMCkpbSQpPKR/IvqCvxgPt7ctvOsl38KPz0t2TnwUoFkXm2yboaxmvnZmiZRNhpNeBuIUd60fX4ykg+Z25TEplWi1+bN3cuqEiPV8mjlWgU/UOuxmvrBG7uh1Ewzs1+RFN25t3/KqUm4LP4Wxvi2oFiIcjuKw1D4iwuvJTlmQlb5CpSI0RQ9gj6z63ZzJHGhsOQ4vSMlpMMFGoZahUXz5QkruxoChqywjktAqL3DYCuTbr2suagG5MRq8JtIhsIYHKmGK1lj2d/611XBQ0PAhi43liia0gaeHMTvhL+eYAzGsAbC3QSFntrqABLLBBN90ozga6gaMhgFqU8QCrfqkd8vdQyDFpaW1XC3NJsZ4FilmX7AQb4KnxKGhWa0cPIFZ4kOVYuLqVbwzyZ6RDOgVnMo52h6IHa6KEsWt5ZFpssQMTKN9W86j5hI8GrHi4bBbfAW1yjGRScqZTwlx0xl3XXJRkAhHIfLxdc0JLXE6D8yIBE3lMOQ1ChwemLGw0uRRcXuhQRufdi8yBVM7Uc+dJug2thgqSrGh8fGYOSWtrLf0ddicxgbhAprOKymyBHE1B6zGchjqyoiI5xFYWCSy3CRBIbDakwhgB1ZyKZaAh7f6AXLnooidegZCThdBKijXdCSS4QPoCQWfreSFoRdTT9iFDEFipYJscOSjwAsXWgFkkK0s6NgIyEQmkzywZgF41HHCHYNLUIXYUU6eFc7t4bCdZmcERJl/mqrWJPl+KFv0mOeMNB/r4lKwhaG6MPr5CjJNGrmqP+L746vQWIjHbAqhMzJNHGakEZMbrl0BA1HdTnD6ZAegVE6iDqHfUQx1M+tmgssowEqGJE34BmDH0EhciQS8RlDsmlANaVmdootipCAyHBsZFanznhdQQHNcFcM5PqRxZi4Vem+z9r77m8zBVq3fnTimJKmlyw+Zj2BMvnp0fXD8ekJ75DYsEfPxlU+OTn2yR5l52cfDw5Omvx4saNP293aPtzf9T1LBCAEZbf75zbD3j84MLLwRZ7zy8uXR3vH//RbhrB9fqnH+2warDdBt44OdhWitr3te13BV37mIT7hP7MD+ovH7Uebkx7tbb97e/r544Uc/9PZNVHj9fVLm5M+u7xobcZopHFL54+zq72lL6Jsz7Tr+/wsRfSHjMcMCI3oRuMJauSXgzgj6kYWJUxzmaaQmUmDRCouFQE9PWwz3XUcmUDVUtGYNiHpslwqg7oKGU/+R/00pKqK5o57oq9fW9OdxGgMn0mraQ4YOpVdTO+2WAhBvYDyAR3K4S1jYyaDDfERQ7Au9aR+Syk2TLnQKP6jxa6FVnw5j3AlzLW0kB/1Bx40c7BVmcBx5FK/OGB7bpNWquaoKxf/exTQGKlHXMgSYwNVtXFPyPFIbNhtacBIFwRrDbd8DVoK06a9mXey0jDPGjJ874z51WBcw9dOmfnktTZoYjbQS/E1SR1UU2t4vUFgnn74SCRYNwsul2eQwsXp0f7zWRCiDdvjSwZXtq4SZkyLI9G2WuZN93f2fDB26c+LAwADtQwAmZgj8xISTxju5hvMpmn70lYLtzyaoPL9gz1b3DhJgPHlbtOacgxOpyZ9KEQ0RlgE6/OvJ/cjWBrJhhNaCl0HneNUWS6cVD3oADLICGrJEMrK8rPhwC11tBKP0sdvpQ1t91r/CiY7SU1fns6ubrzSYxI9ybur7tit38syEzUxDAHIQEDG7qxfBTL41InOSTaifabY/Jk0cm4pmahlGIBB+ffx0eHNzeON/ci8nn1fmKIz1glSNs3GI2TAJ8SRfH7pNIvyn/AY083j048X9y/eX1yefYDCbvrvPQd4eG7jsn/88vnI4p6dJ191+O7VyytvIRvhZePP//7T2d7h7unx9vnF5Xffnvo2ov3Nfnr/GW5DRI1ODw5x9v5cOHr2+epSDr5lyn7y2YYo83jEB788ZbJ6y69XR+Y2jo6P9m+uH3ww0fjm/sGI4enxyqgHx+zWM4qyfMoygGLg2Shm2i7ZZ2QbuR0Yhvigir2DG37b0iprccI20mh1E0TexW3cW/p2OUlzd4ojI0HgXFcyas2oSsvJtvSLILOn7JCZsobpJ9Kp6flkvRTa2XhvyMJeDakaPW1sJWKAWj1iRKrPd4OcEjP11VfhA1MZU+ZXDOLS/qjpDnaGHqdLJqlZczVrN13m4noNM+JsZKdScafoFDvTfvKfyM2a0nZAB9FqQiKoH5EiL0HoSoYsQDaMRtKMZ7BjxDJidJecR+aG+CNeTUctUKAhdiBveCZihBYBwCc9o6FmodwfQQ5fqGKyRRNCbroxewdkKUi9RimFwtICcDE5ABoXqbzEogkgQA2z8T5qGooGl6CmgusR0IhlCbacvvIiQr1Y8dpVoCIl2qJnJh7w6cjqMB7m4WyxJkRyDWWTiCyBb+BMhSTEohaR6S2844iDAr8jTFyn7znMFSIgC0jC/Y1OASKSal5JoDZ67GQIZrgqtNTh67gxM4B9FtRmKjMn7a6WyqNsUqUAzgAm+kJUnwfzmOWAHzmHZvQzJ4uwHs2BE8AhL9VgloGN1fmdDaSvlDiXJmAoqoczIsJUAy+GB93IK/79KxrSwgybedoM9kaqvHDEbqJ0ugEaWxEiPA74EaD1BFHaH5eO/0Ln1Bip4n+ZUCp3FBv6F4jx/XEEeRxqmUcGgdLFLJDYWDSnk/RZDxEjAEywEmxG88EOclIfvja91ygAuiEb2NjI5TGzfoNa/eiJ6uQcAePyK92ZuwkhG2SuaXbUsak/zSkI5TOnAP8IJ0QxAvKvNuDe0OcGXiIdstUvLcsZc4255OAtwE0uPjYQuBxcsF0E+1OtGNEkwpciEmD/ksRw6o+Cdb34mwTRTGED0Zq5OYak5mwviHiO0ygCncNOTK0Mw4mDRvQCyXfIGak9e7Q7RYhSg3kwnw/bPzy8vLr0MkA9sJmwI33fgaRg/3Bf5Lu7vveFAd/QYUr3vll1e//u27fHL/ee/3D+0z88Br81FNg5ttrhy8ez871DCwt3P36+9BqwHbX3nnxd+AYhZjmN8S3h2H7aufPW7/3T0dHeH3//8j//x+/fvXr97vDIN4w/fDr/0f+rh9cvfc9A3a33ny8+nF/98Muni4ubvb2DDGNry4oFfOvIe4g+0/+FWFYnEyV21lgglZCS6wQ9UlvzUAm8o2mp0UQn8ZyfksYIuDqtUbLRuy3zde7NR/bCGICRP0sy1Fm6mHmMAntKByEUGeFY1GTaC3KZ37xpCsy0RUWkhIttrGf7qAI1CHkSitDvCsCmPSIyEjPglbKrkJGr2a31RwVXfgPLExiGFjM0XdRgNsd0q1wqriMod5BLZIEBWO6aDEV1Q8ccxxxkNAFYMX9Izkt2NOsErFD0vERaLKI7rLDP/JoRgo+EJulUWX5vvUT8D88sczp3+DNL6U7stObHWxjGkBLRXGB1voVavdWsigHSu8sTaoqc1ruU9nTXnNq9xqIJYWrtA2rbz3fseHmzdb9v2hmzKa1O3Bijfg2D4+vm+23iriuTATR2k4TJfxm/EeyEkHpnnEL3witwdZFeObWu3UIT28SA6Z1d1HLSsE9q1I40RFFalJw8ztIRcUGQeFZPugSykS+BpwSYSgl6CyV1ZhAif/vlq1WIHBOTNDN98gSh/jQQYzGhTzaAoSfJY23ukbBeZFhQQJbehXg8v7w9PbZrat1TviRu2FfUFljzZKKYGbvpK/tRwXXGkLxcjQ4nFnGEbnUTAVETEaNoKJ8EB5pkPxblbO0fPj+99Vjm8eramI35kUmDRUTLSBJUHYRXk2ccMiC1REBVsnyoWU0+Ys39X3/4Zevpbtfb2s+e72/vXdcrPhg3fvfq6PuXRz/+/Ondt0cfPtrF2GMIC4K2+xZEu1X1CjLpvzo8Ontms86nI/MRh3se4GDipmmLa/2zr2V46tkkovc+9nc/XjYrwdh8F+Vgd+sZ+vlHBv9kib/JDoNt39i2866Fj9bR0aPHS/0h4ZnVbWcwGwPPNE3qy0G2LEMjI5MyS199w87YoEVHoE9qndrQVdwnAxpxmsTmcnUSypX4tyyPFbQkjvEBoZhu1n2kAMWjDEIrcsFLxIFRdkjGJ+l+odZw5gwYD+y5KEKrPQaBdUg5UgqLosCzlnK07MOfXuBPd9nl6n3Ta1aRUFhwQxp0qO+fkvGc5gC0yshQ25dK8vOJcIw1ZkGrMBepF0SGCjVvrzTkePukWwMnIVJ20zaRuMJrEhzW8uSO4SiwoGbAkzgAgLqOfo9Vw+28U5VqpuFoEj0TcznDzD1P4ggOBtVFgJpadTnJCmNaqKEq1DN/dumxHAcgk8r6GUduziBPymi4cbyLB+SvsgMVUSy0wDLJrsKhk4aXR8VkiArXOS0IAcGXChUVFjJZHSoFjodr64hxgXy0vAoQQOQ4opVpnuRVHJnUImIG35Q19wPPaDPvrYL75IaChNaGD9HW3n+Je7k3AI70sSLCxB0SQyyBIyBioHTtmJrqpz5FEyYyi3qCNL6plB5rvhppTOBgbsw9OEW6hddF0hpBNiSbOS0Ba4WjBVKvU9owxEw/F0Xxt2QL2RAGsJIhL5z+j8qmsuoz0RJSrBHTsFRcQXqvmQ2qBVYR0sc8Vn30s4pVRT0gNvSHklADFsvRU/9BwhriYom6OqYgp8f69e7gW5Q41fenKaYe6tFshI0Ih7lKAc2eYjEsm/JwKu83DS9XGroii9CDDk5kptDOcALTqG8IdzW5XYiLBqANGdVbZ4GaaDX3IjsgWWyxMcKG1KGd7xjV00AqVpIswuU0jeAq/pJcgoJqRSoWvMCCnAOita4qUh0qR5X5Y2Qse0PbFItENYzmgbuoqk5xAATFCzuYaqo44UL1uJhgGKK5G5QuklKiU4gQbqiI24Z6euIlQUns9DpaMfgeBvpWztXV1VGfnbcs9U5fdXh4FAmyj8cvNrWzgxCOfTAMpKOTQ1axt+/bwduXVz9aNWSoIOPfO3v85epvx0d6U4t/PKd+PHm4Pzzc3fruxbffHTS3d3V3fv/s7z9+fvZ4bwdQy2rr/o0Ptrdev97/X/75N6+3d/745vTT2ed/ef+zb3B++/bkUP/ttYJbX9O8+PTpzOthZt32np4O7Rto+cD9w5Xpwy9WbrQNhtR93nMoXNQTMsXE4idlpwqXGSABZXtJy5G2xzIpzk1300li1k5AJHv2BERamCbNg5o9Tbxk6DcD6a6mUIYtbXukwEMllJ37P5Y8lh201KWXMS4qoJfBzlPZL5423PUyRDY21slGyvCb+cPgomCiT3D9o9mBFguOfGVYV4ikfCfw/hfIM8OQJw3mqnBZE2REpCCJrZCVabVKJ6tDbULAl05do7oDoUoC1Nu31QfAjEBGCFWZgwSglV6McPr5IpGB1gZ4zBd69Sn5GX/UO6tCwHqEZZYuE/+M3+q28VwnJodjXbIx/XjGWTr7rL2qV0+rLYLxgZdmSetKbHUnSGEit0XjmvpUcnErw9vdevB4of6XLTJmSC/vDAl2jW0Pn3a8tQJCE1mePhr8YHXCzsSEpFZDYw/D8nZCc/RJLOHixW6v4+v3E8SsHSr3th1L2Y48vn7WcFnGhVqWkIzn6ZyRBXUf7O9arUL0SaN+POMsmxoZLpVqEXgtg+mrZPWVhQrXo3E3oV7XJGbwYDRGUA02gtfEhAEaw1pdD4XKErz48POny2/fHOyhDZysOSpKxyfKRQnOdUNlL5OzMVJ2nIg6ATnvmP524xqZU8NaxIx7ZPFVtvUOqoF/tD3PC18vPz30VYDth5sZftZk5YSZXaY1RpsDByfXxUC3YGuZFhVPvS0fzb3dcd+OSX1f79kvVzdC1puX3gHY/cv7c56xY1XQ7f1hj0nFjeeHJwcmG4A0eX98dOrhmPmEw+ODs/O+DPzW48ebux/ff/So02YFR4dtpEbuNOyrveq6fn3oIcbB58vr7T0z+rqDZz6q0P5Oxr09aJC9eN2iAc8oLZd4emohGUZ696MbCZnYLFhg2DeWFvUELPmTHLsQAHfsl+DL0JV97Sdkh9jWWefwS6/TdUGJSmPNAkUHvRUvGKVz18tcZng9mjOgtDhsur4cb0KbxhS1iGCmxDMazHwnw2g+fOCMLUZr2nEsxYyd9WuhG6kVmIol7K9uLzOR0zgv2WI9AtrQBiwbKiWdyML6/aAfkdZCFd4JpbYFjmxudnTG3ZjF9NMqBGuCVy+wF7kUgJMtskZjKV7BXQvoeEe/wq+ZwYBlc2idsBnJMFa/JEz7RXmvLkgE3XaMy/RQsqC5WIEmw+QzyS28+cgmf2q+P6j8fCoFQ+Xsm9xE2jiYNDg5jlBiuSbVH0FWjPacLXfiD7GcMKMHoj5sphwKjRJRuBrvCQhuYMdJRPoX9mml2UQQnBSnioJDWahToD9Ds5PpLQthykLXnwLWQlpipKnaihaF0TAjzIzW3aRS9xCLRKceu1I/MczHqkVNuu4KsyFCQHSOvgIyUlvSKN3RUgli5glpcCcADS7BMCXXWHwbnE7iItazQ6gpiziggwE6zKUZl1FXSXV7o2O2pl73prKcpqsJgn6jsS5guo24doA27CQkiGEU2TGrcvhTgl/uwLXOqgnEwFcjrpuvGjYivSa1HhnWZnTq99CZuXaOwax702oEOGhIqYSDxro7uAbcAkxEq1f+1W0nKY+ENBXN+c7Qt6xiAaHoLsevR7YZJC2PU7c6eRUOgK60quHQTFrAJrcl/GF1TGVENPFNNE2bsa55clsHSYK27CEKgxOv9SVjh1NTrWF2/mRjo/08FL8DFHmLnVRT3ezFycDHVdiaLNQvDvEqB1klIEZ+FLYBO86yBNxdtrGZtc1Eg7xaZHkbPhSm6HGozoek0Wb1B/7U7JzljH8tjaAQiVkppjswbjJShxaBszJThaJl0YNhPNnVYv/g8PryQjNTU3FdFsentuwI1Oeitl7sHx48nD9at/rmzUHfl7x6vLm+Pnl5ao7z4vLqwCuVu8/+pz994wXdnT3ZfxHm1X/8ja/tnH+++vPBH58er2/OP304uzi/fffjD1f/z//9h1KeJ3ONRbB/+v3b//gfvvvh3y7/T//n/+bFud2Dve/fffP56ukvfz+ziYfknjiLQvfPbj0ueGbfRiKTz7zwoU1TdqblTYz6yyknL3kyPDDPg7WNJvwtevSs0s9XeRJDdgMgWSUp4mlSoEA6suwJtWKxkQRUrf+qG/Gq6ESlfLZUmkrEnKwrD82784hWdEzMDGN5sL8cfhgPkbcDNx69MCqaf/perhLljogbi8x/AYj4xUXnKsSZk8oiblWY6BQ99Qvqk7SIGTg4UOqX/Dw7HPMLaId6QcpMJvGqm/uKAKkKNZqgVG3CsNqh0ZBHOtlaEzruWoBjtsoKwcnx6ubykQkVICBNnzvIxuyHp5Fe3Ey1QKUadM8egOx2/9Am/u2NQzasVFiXgETDrsqlxSIcLE2XIsOoYNIS77p4qGWUIRQlCTtaPpNzl6OjYEaPD29OD+W5e9tePt+lbOVe6jCsLEF7bp2GjapcoT5D5bzGt5YRwSJpR6Io5+48YU4+OkrX6QN95Vq6EtIwbpmnRi1PKiYs52JOOgtPBppsmq5Bwmg6khhNSI/xNo8c1qSUTdJpxIzBENpAYGMISSObkMseJz+ZTXvWuxaLVGonBXCGtungQMan36WsGYo9uJ6dX/pw1uPerpUypa2pvj5rYxtq4WisK/IymkZ/oy6UdTJxUllBVTDwvEv71Y3mAhMpG1BtU5r0x66gLW1gKVtHRwen948Xd+dIdTDnMa3pYlbM5UrmN0kwLHAU/TI8EhrsI7AipXyVNj9//vzp/PzLi51rq/9fnZiGoFCz8h4OHB3uv319+uGXCwv/fSnl4ub2jW8m3j7z6PLl0dEvHz4ZKxmG2cnHKHL3uQ8AH14/3F/abGZ717I1e3d64Cnd93aTbwh7z/jjs+ufPp575SBFzforX0AXlexAhRQ5YUuvyweKDLhgLaUZ7UxrdqWp/WEtuc30QS6PBTHNkwoBzlOEnJMHYZmUqcFTSDIiDrlFqi2msQUWkFKBST0AZ77EzmPqrla0mitCH+2OyUI/2hqTKipUN5qyuQxAjBn9FiUBLWIR9KTgBccyp7Q7yeKKKqV9czahcSU8RZr6Tm3pqImQ3kDFKYIlXqV5BYDykgrrq4plBU0hTvggSmCrGe+llak++41FpxMKx9RCGz31kcsuY6p6GBGww4PCUcYY1caQ0EAWy9nUx+0GUeIs3sFKxKtC/px4gxyWgmMRPMIy4kTUDCEX85y9CYwqhpmC5yJg0Y+Q5vJTGFm1LArZDcYWPZPEpNmpEFUpPWuvJAhupdDyV+3Bpr4Y7BjZKButDbXRFgsJrWPsa66GtigAl6xyM7/r21QCdmnVGQLiIGMr8I2U1I0GzEzrIEdeqCeOrJQxD2nQVRNHxpXK6jT1A5nYoA7fonkFr66mOpibwwkCiG5IaxqpNnOfa0DtIuKHGvKZ+LshbWif6vNryTNLHpxCpXO6BT8mq63LH7EvQawyA0v1JuHrz3jiEA5xih7UI6JF8oDJYobMAjOVZe31zbE9/c0QnncrgSerRpWr4defhRyMReHXtLJwuXwnUazB4thhxMzwFcCMBK1fDwR81SnJcY0q4HhooZd1MnJMDpBHfDGh36qrsBFPRWC4N0VKXeK4VsMIXBuwScaB4GWiAZ2AUxs30Dt67CrewZiuBHfZILNUK+TdT+toGD/qMnqipIqJaAy164E89wZFPZMfvuZySWHBCfICQopfnasmDmQsHQUvWmjd77CoQHKhRvzwrfFw2u9Exk9GH4W4KncV6kXuV97XpdqqL+zOp8MIxRxw5EEbPjUHZpSzEC/vdl7KJE8SSEcwGRKCO+d9PjWv+5D6F5OHBaHPHh3mZaUmpldnvUqh2osBFil7REBKvi/LER7ubjwg32Vuz158q4O8Pv/5758uPt+8f//+D7//5vBg6/DVt28PX9pRxcqZuy8vzj+e351dHe1L3JqzY1cPd48ff7n8v/xf/z+/fOpbAv/Lf/jd99+88qXVv/348/sLj9ClGvZNaNP6h/Pb+vStp9vnOzdfPNW3hHv2FUrSX/YNCEysPlkAcGeSmJOTbG9q9aiUVBzkk4jS18h4UzZGTA7TkZVPZNEZU1auLpyljJOhcD89w7w9NMNp5Fh3UUTKmXKZpYPUkNOkvMELFtkqGF2rlCemBrXYfMYTNrQwobGXbEPzUX0nyIaj+BBR0T6Qa+UW7OGEf/G67lezquUDUyIB0L+obiPLFaZCogcvV4uJBZt/1WqajjAy+CW5yJ2+Cc/tT4IF17n706RxErp2a8VmTjHEBHveGMamnCeaZiZ7Qzn8kmCb/bfzjkYZE7moprm830bx+/aOevBJrF5CNXBiOvOYp4m8nb1wZcu6SwYQqplpaPt25CVGaVLvtQt9UNtIijQI9vnT7eOzs0vzrM9e+LzTrs3vfcC1zOz6zn4wvmBtPdsh9h6e3YJDXw75jiNuIxXmzIDYXPVoAuHz0IMskyYs00ViZm4V5AV7EFyq05TQmAfyfL65XM/wwx4Vvt+806ZGMwVqxKJDVH+C6lLk6BkFSQk95Ez7M7+Zj2ddkziNlll0bDufNULVzjyzjDpNoJzMfL9UA10X1zdnF9cHe3vehsSmCkAStfPwILMoF4ShvV9ZZ55SCqqmE7LJoQikxztmGD0hSXRLim5Vh/SsQXr8cnR87N1sUDwEsJbv6PrWvji+wIU3PA7BeWVIM7exp5EDgDA6CoN4nkQpxtK5NQtea1a/BTwGG5/Prg93d9+9Ovrbzx8N8yx39OTTK7Zee7B9kOeLR6bYX7z8eHVuDsLQ8fr68c2rE/3v2fWNB6VkI8snS7LYO2CL1gKaLim1v7m+29vdv7y7Ozjc8+wI73YMurCYaQaLKZvo5IByWSfs85kJ/lvM+cI64oUXXs2KxC4CJmTvjajrG+oMg9EWfOXhM7eofnPGRNFXeEd51saNg/ZULmTpmqe3oWRvt6S4oOKkEWpulbwoquzQUapWOw2pG3pHRlWjwpa7AZlhcSoM3qQIY4W8mkI0Bh89FkeNWoM1xSmN2iItZKFXeZkRcXD4haUyWHOhYmGqdS/aGgbEaQQ1uUIchg7gA4JSMNwRRLKtlVOavWMu4c0WtIIXnRlQBr1oiNPAjg2VjFYxErIkFE9V19Oqau4vCEw2hhcb/nSiftjUr3lVF67OlUC6uTVjbZeezk8eU6vgDpzsI3ibGNFlYXj19yUZczPG/SMd/Ebx8BUVPfbRIW14gXeEU6OE/3/4u5FkU/vxwqkhWfcHacJgGYW6ZN5qrkqyJHiqmBjXYIMWjLIM6A3nEYghzI57r8yRHrERisZBDREdX5FyaOqb1X5LgoF3lwRmALaImoctTSk1rVKcdWA+3iOwKAbpcFiDdZLAY21Jbylagf4OtSlYw8G5kSfw5QEJOSCIdHd5BtAbDUV4/7MOZ8S2uDFB1Zseo6MNzQMB7xt706hjSaOTuCS6KR0iGRHssTE/UMRgsgrjhsM6L/1cqp1bcydisBk9Dm4e2AbPDWC0VKhB/k7c/ldzDFWt2Mzj/EANYXIg/9GRhpHjf4dmw3vk5XQ4SwsN/msLmFgx3lGyogSzpVQTZwZUcDbQFsaJEuEaZ3S3Au6/qkEYKj8rSiyqqopIjQKVh41Ux8XYQ65IOpoOd347ImRYG/2usm67UYmVFovYjDnBOr5Wim//l/cNQ1GrI5+wOdIZJ9JkJDe8LFmNigYSq/PWXSb8FVTGNpGCyFGxcfnujiKgdAO6TK9jhD+KT54JCaWVd1KFsOdjzuIohtZJwqiuoJ0vp5C1+cG4QIQZBkiv5nGW13PBkUz4SmUdnpWoHeYod66uPFF/EOCFLpmKPTusVeDT9493n64f/vI//v7+80cZ/s2NzGn38+2z03dv1RGnnm3tnl89v7nXpz6ZITNiOH9/nYq32qXg04erk9+//aff7dzeeNrw7OdfPn36dCED0HntPb0wNacfw4ucVKd7dnl7fXVh4sucGdGY41qUB82GhkYysz4dM9eJt2UO5DFyKlMTxshnBo75i2MZEhsmLw5ClGTsnE2qkGXHgblaM391mmORibre1mR/awWTOiGrm9CLIU34Kc8wxyxHKRt0rK6Go5VMFz4vTJfcCo/pTTtenuKbXO+paTaxXGzqV7iZ1RojSb3BGQgx53qI5xyOOusCb13qVEogfBx3sQoThxuXEXTjERV169leZo9Ipo6AGQomIlUA0pzwZcrMhWSHk5IVOVBoCvkoiZFA9OBr4oyLgDey0gmSrIYN7NpMApJkq50XMQ0QRXA2cugZ1vbBq2/3To73L84lVl+Y4oWEC6XWSBvPlOq03g0KLJiSn3lEbJr+R0yfEpMOmRRHK8kkTCwMqR4feX2Xp9n50cpK9aW+Esej/X1bPSJ837fPrHgQP2XnEkqMGK9AbSsrD/89gfo6GZ+okNtgstmckXmZ2Mzw1OMTHaEQLKWgwQhWZpmkMJFIvZLvhfnEtUZTiFWZ8A3G0T2kK0q9oFEi+RPxeppUpMcXZUx/bayF+PlqWFSNNteQrCgN2QTnxgnZMb8YtRpy+XTyxcXt929doyQDajpxwiwFgUN3OEVM2oIk+1GhsKEyUdOCq+yQ5bA6FtiUzfhVPOSVdTE8MXk2m/Duu+//9tcffFHr5HD/5MD6l4ce9uUR5Jz1EEXoQgTAdOKJ0WnaJJFOexJYVqCOJT4HB+0TQOlIefv65OLjhbCy7zOJBYHnRhgnLw8v7m+vPl999+7d7m6joKsP5795+9o+BIc7D9+enmKTfg1Fzm5uJeOGBR5/WoFy3aPIpx1h7sX28fGumGSi0cdPhEmW6oGHJUPFprZv8gUAIjEE7XNvSb2E/pmnCEIHh1qZp2R+nKs1BUTjln9rlXu+yYO4207bN7OfUWwi8BYFA008+GFDhEPGxi5GHoxSiWCksXBfNbibL5/q9cvZRHMq6Kq/GPV4XNX3IN2ZpaJBjma3M9y+GgISEElQU3fKuVNB3MJhnVlgd43L27WDMoAARBtQIMp0grlU5kTomDwMxPL+NdZ0kUbxNL9Z24prYUqpmzxJi6JbwLKr7jobAuoHSKGYXh6KO2N+99GT+apL9O5GfHgiNXFlbkm8whn5xMI8t0IrJJoUfJfdgbdZXVCAnLJFROdUPVKfSp5dNP6O+CWNDAElCIi5Oc9wix0qrPiuuVvl3hsHIB+0DR0RGK5hPNH7wdGaIJqOKtpWKjUaS7CKluiiKUnWP6pGdvEL2vhw4lzeNWdzc1VJXyOwLqu/aGmN4FI0o5qk0/3qpveapxYWlqqS7fBljm5zr75k9D3ETPW6AfyNpgpSAKhD8SJL5SEPrEvH6q4qyszdT9NpXI05sh9Jnhv/bjxjN6lgOj/3pjYFObhMJPnnmL4c2I37jOOorALYqW4ENIxGVxJIGtrlZQDMecASP2v/ysJqi0d8b7qUCXPqAzmYJ9QuFhRlt1nyUlOWOfrgcgljeAVcsbawgawOyO51MjpN4wNJmyU9ZCzJDR5QJhZs9LnoD1Rkb/ryxD46WAYJW6xheCweoZGSzEdPBALkeFPF0yUknaEvoWfkE8BGll1GYibhZCw8eVQzCSB7PTUaJClrspNA17Cq8y/nijJEDbSqL8LGPLo17IRlJOAyBsfr1XWMBmvsVuuN1xGVcZYQxixD5NZQD58Q4dRdoJLCsF8WRzGIgCR9ZauqLf66HGMO4GgZ2YFfDXKEglLXGnzt+ZyQcdwqHEo0D8MQ5netkqFuePM8c7r6iAJrRPdiywKhFbS9ynXXqgl3dU2Sppub632ftXwhTb+VuO/woAevw+6aqHy2s291/vPH68fri/Nzi3uut062Hq4sG3rxx++/efPy5Wvf0yGIF1/uLz/yZA+5904PD68Orz49vjw+/OXFtcktA1WzxXbQk/e8enf8ePDiHz+DdO3BgBd6PanHSlup5B/2C9+980AgM3vmJTzbtHspU2csBzJh6O3J49PjT58v9LU2XWnLx94Z3fKasvCJgEJ7k69jTuD66Rh9LKvIG7NfQdQZ0lXRqBw0bVP5lo38Sncf2rVD9dQ3buU2UQcuEONNoy81UkFQspiRetqZUJQnK4wE7q9ODedu7I4a02B1JhaGr9ou+sDZPDud5GAaKqdWTPEvb7VhM34UAQX4sKiKq05DVIUuRDIOJKGNELcyv5l23ZbobxoGaOQAJmbRpKacWLbbafswbjYOARXsloUI98kkuwWFk2rSUIHfJ7Zw+UU1CEyeCdRqLnHbneo42zvYOj3aeX1y9L0vTp88//bbV96S+PGnj/aD+uWjbf2fnfvCl2Fq4Orf+9jJl/v4fz4b2DeWSHN6EIND+OQE9SI5n2npcaSrW7PdO9ZxK/R5prst+1Let9yCa3nZtxxV2uIlTftiYa30GsDRNJpnSInY5FPSxcF6wpB00+mS8DyFapRi2LzphYonCDJQkdCpmI6QN8QBlSr1znSz/cI+MPhpoNYiou2eHGWZo92CbprH5Ogy2VEkPDgEgLY4QiZdYOlJEE1pQgRpXVVsJ2n88uk9PS2NXFj78vC0vwdoZiaPwhcLWdY544ciWLhSX4lHhZu+FSQ3I4+cB11D67rwYn7hK4tYWm608HT++UJlDyB992P/SbJ+fHdvHX5b3o4Igcuz/E4s2A1nVp/8U+bqEYaAkiXhrkkjvBkDtN++Nn2t4tn9s/urL+byn9/e356eHCDIXIPFTh7eXPsewP35yfHen37z5h9//8U7EAf72z/84nHI1cHB4cerC5rbt17/4FiKZWtQC3LYxJd9LxkbhG2fXV32OpSPquzu/PDhA34P+xYB5ubNCxPZzw0MWkxIAoRLbl5Bia5RthVzi6/M9cWM6BJh+1bZgwG3nrtONxfzrR3Sbp6atfpcG/hmJJ3rMdgRTqP2pZJ58asupDV84dF6OqdZ4Kg8Sy2p6skJFx3iWs3mX5qbygwmvTnf9rbAA8NDFupVGNKDutw6RE5nBIpKCgKJiVAMm5vhKRMWcXQAsICxMabyb5Qw+khJ3SjRsGVxDbv7MEep3lhFnW6GjIoxtuRSJ6eluQCVVXCSAf2a85HtzFCuaqjdyKfJvERTVG1Q1F68OB382XwcYRKp/dlcamLQhjBeTRfjVLhrLs2VtnEwJpu1z/B6aEli4waA6fODykUJCmg0K8g30n4T8EhyFTHFmKonxqHHH6zBk7jq3cqoFnlqOxCQ8FtgguYpWqAS+cDJbGYwI3yqU/QpY3B3rC3HRkCTDYNaIai1RZ4/1ByTcGY9GYeyoQdmpEIZgWMYsQPWTJVVU0eVE8dLsythTQ6d+TeMBNg5gPBuJBkQwAk8TutBEjRwWI3sgsKGiySr1UzPZC3h3Oiu6LgeFH+lecEfbjKShTmah+UuyYcuqr/hWkm2N/3nMt3kryq2IeId/a3ykLTcpPibXc00koqxvxmWq+ioF1kngId3SWYMY1CHYCoENlTLVwZXXIXBHEPPdtRc2f8ig9yqPq7k5bigzC8Cja0hY+oTplt1ODyUDbjAf9acL3eSfssOErUj9ou47gZ/BIDuflSOYEXd8mcgwOjM7WwDsBVbvsqrWmNOiXLxGwHaqx9Qv6fpsNNZkpmgoaTWYavJUBovarjiDp2MdgI9UNZvZIMwoJLb0jWDHHhZ19RlP810VmO5YeSELlxOIBghxNMMLBWqkRtOBVWgYGBL2tMuUHN0azXvMqGniJDlS1VzJnq48lMNx/h+ZH+17fQ+c9y/EpA0YFdjQa3vCE6z5XlbTuG7iRC2DEOtiG9mUVbtpWD9sDUdhy9PdndP+diLL3rPy9ubM01ti3H28y+W39v07u3L49urq+++fW5d9eWHSy+Ifj6/Pjg60AOY0Dt89ardMfYbiHz76nDrn7d8guf85tq8mjzk9en+m9cv/8fffxEU5PSXNmnRfZRztNnD891nl9c3208GHs9127eXd3ItM8SPty331/vpIynKBt7EpPfyVIFJm9vy21SiAdhXj0muNJY9JMCxh85XQiTIrHJipVCCmHEpi51J0N6RK02eIND8Vx2QI2jTMfFc0tN4JJ16/A/l/ArgMhsWUjAUZKozTarlBEy1UmBENmbOTnLbjmU2y938diikzIygFozWuqw+FNWFn/rohX2oAhcnUTVRwMno2l93qhlueDPy6oqxq7RW4QoY4HXvDagAahQnqEtmYw0QBiLNle01+yamBFHUKJ6s4NRQbI1q1LfupbnP+eJE6SjQwqwHRvY+tw/K7pbXyt+9On738uV33796/fbwudXcO4//8X/6o0XbO//jy9NPn72m8vH9BSGVKdtNyIzrXUuLGSdjRp4kDN0rFUakRfwYMWs/2WmTkvfPbDB1g1/z0F6I39/aNfFPM3Uc9tGqV4303WcW5/Q+DMOUwKFPn2KyHGvLBqgyZ8xylpMaiVVWZlAyisAeR6Ck9wfIxWOfzU4RtrK9bUFHffiXHpo9MxQvtZhoDGWA/N9kxFkNI4wt0FhdQ768sQQg/dRQbC7pUm26VzqlgrH9FEV3wURGnBYEGik1GWyt1ZeHs/bM/+LRB4uIDHLivD624FqVmmcIhBaz8rN51451KdA1p+ySk+nLwqNNdSucXGvaBXMGJvYi+3J2fqlQKmXTgcPHh6ODw8ubx7MrI/lMSys4wfgKOcuix5iaGdg0Dj6m5j1vL3ZbG+ZhyrYFY60Cerq3mtB3vl6+RN3B813rypjH5cXd65OXxGCTKFZqxde9pUcXt5KevcPTj5b/951fcw0+k2dL2Sdfj2OgBievXh7+8rMXFej2y48fP3GBPY8D9go5Hz9+llEhdbJ7pi5L5AvmxL0JUjYLIunlXgQ0fcE4Xc8fsp55SJuwnryasrO1z8480WIYCOzpij/rvUNW0OS3HHfFKpi0oYycNFlMlzMhpoyWYDKgcguxvWwzpdTBwEmpRAmrtsydkqOxriUBL1AlscYx8zDBoNUVa8tipmNTjkQ1BiBVgY8XoAbLmG94AMZQXeNgHT5dwhKHq3GBYIGd/nQiDypLQ0dwGV/iKCyJjwbSwTW2b8Pm7DoxGmC0/4agWfLaNVeU7LrrGjolQ5CSOgqKbbYDBWjLyv0kAdVIJosfyjXMVeoDVvY/4tnAVwhC4SChxnukBD+YPY7AerEpmcRztZysKJ/WgFeGNjXnb3SXaeUbHBCRGydXicrGrUPBhf0ZJcZY7HUIAWFLrgjFiGQONeiZCtO7DF5EJI9QI3VsSbvGbOpEUxYiuKMQtpoMZ8HsFJKlyhDptklgeI+WuoVocWiWGXVLxa7ocUjppM5jRDfiVR2oqYyq3CW7CURuE9hJawDCT3wFc+oHOduoGjSjvoVFK/9SbycbqqJ/vEPJuEAMDrqqIywQ/ptTnDEGX1xtkZJrENOM9wANpepkGZZ+nA+65Np5wVHrUKvqt8N17LvE/xiwC5VVcERE/Tuki/IRYExFBuCugxlQg+TJ66e+toCH2Ik6q3CGMYNzUM98Z3EZAkMyQFJoAKf5xomGkWxK+AlqkWGj3xoutwpeRKy4VpOlGjrFYq6EzZKVTibgTItFHr03HlyZmD/JRIuoT0+JLp1WOT4VVRhg9lm1Cofm7KgC/yO1P0PSpq3un8FsFB2QusxsOzRTPZHGYM0jISNVISqUbExr6s7NSoT5TUGNFJdY1HIO1hNNyqI72S4zW1VcOuAYk8vrM3DVppmzjq8NndXnJxoV+/UrEAC+IkxEUcuo6GqMNs9yMjN5bolCaIrETc0G/PXcXKko+kVv5m0l+hIzb29vXr05Mpf2/Nne7fXl2cefbz++t47HsODad+7vn1oE0srM7b2Hh5MXu3sPW6e/+f6mTnXrh489Q7Af9p5Dp/yHP5ycvP77P36U4BldEKspVo+LT7959cvlnY80ydZLsdrt0eqI1iZZir37Zftwb+/x0QJZezvuuNAhqiv9ukX007PTowMpXb3Si+drp7yiFja+PJPSzUoRV8mZkFNGBh/r6TpRJYq0MDKduwnTnV+DucTNBxD0frpzYskb60RrNVG37mDMI+GHhUkMhMAGKfTJO0tI9I70lWrrxWa6rLkAJKhZXf+Kh9NBDGGZ+lJ7jTqrLciNXyy/lF02Fw5qBpZLbcxSQe60kMVwBxLUNGPSZIrJF9splX7H1PwDF+ohJTClAgmKYKbzEuSbiskzmqAjqEqA1I2WiKkdedLyhkVCxKwXMKojAzsctiumCoXQwg7Biq6mYokRFvvwYF5G9dvfvPnzn757bV1Iz51emHc/PjmR7x4dHtsS9NmXf/nh519OD/c/fL6WeGqIfeMGtoH/dqqynMFTijZdzSV7rLW9I2JOt9XulqaZ0WtnduuJLq93nh/ooC3Nxgb88nXTxj7X8IWNY9DHg6EA0OKzRJH2cUgmXgQu88FQ2iYjhDZyk3ukQbyTTv6YXbiWR0mFTfTKJeyk9GTa2HsvqhtXhKqq/tnyiCM0IZiFeEvBUFsxCwKj3CYPJUFcq5YtUx2tyTFmYOCcFxsCJZjR0Th9FaJ/eq5lkvSFHi9JU6NcTsJqucyx7NNYjup9BifldmySn5IZ6vcetgS3yTi3ZqKQbGdzEZGksJl8iGeMLX90rmH8JYb8YCTy9GD5384e8dzf3Rwf7r86ubt99PTOi7YESx85XECGfcRnjeOev5KksCK/683SwqfL8y97PvFLcjs+EGJo1Z60tms9wMrWv/7jl4ODF28OX7H9//2//tvhyyPaeXlw9ONn68vuPn08e3lyYtj3eLd1e3sLv/zcN7yy1f3jXi3IaBPGPf62GJudoB4+fvjInHYbK0XX7t7uWtZPVIxoqIN6erJ5lDQkp8xlFYav9hqtqckXG6q1j/ODKZikVP/IRVpyZpxRqqR79bvWlFdkKCNkNg4jB/ZA+ExT4cifDTUpnjKmMjnJoTVnQpNbqw/P4FJKfjN5z7BAUJn7BYrRWDHXsKw4h5nFA8Usda6CLubB0PzFUVbrlgFQY7Xlq5POsbZMXHzyY6Vvcw/jyWioWfAX5ShDVZc+K2MewKOP4k1D3ipCOJVJqamatb4wt20cDy8hm1tSkCzLgDuIeNG/xgbjw/lv9oVZhK1cWdUKqG4t0SlQYgR3eUxTpB3jBUiaqZrNOEEqn6dhZFBVLXodyXj+TkEYSW3YCJObcxtG9Dtf4i0HHrXqJd1SBbw0NcKcEwLUhYfHEx/nbi0MEBQaghxJgyv9KPBnmYUbg7326gzZM4ICYlPU/CUTgjv2p8eCIqCbg1/GV7pLuoVCl0Q9dYogcxnGmEII61gaEWyiKM6IS7WNtLCZGAWaAEI9wkytKx6pKWYhrMFAGhmjrY+JC5WLXwPRZUGkiBJxysY7ZLrJUEm3Fk0xHDUAcpVQlBuNzvwqCk/byJ05Xc2ikzjjl/jnupkV0ddclOqLI0jVGVx8KGWpKZo7Tzsjk5xiyFGtwkJnWBCgxrBAGPXKo4jkg040KQFQF7hsO36WauqoNg8xqjF8oUc1DSNmFDGRqzCN83WuDghpE2HTkHqWGFLlmHEomNAMb+pd3F7zEol6CKhFP1Q2XGABzesu7GTVuHo4Vku18gAlQ//Qg8Sh2e9ROojk6f6wgCZuO7IKT/QAMFbaUDkei1rdiffsbcxgkef30L+m7tL/cgc4GnYuQx2ANc8K/VYciO7HWVjAgcH/gUba1YWymlVKp52ojAhkAKI0yqNqAYwYR/JcBtPFVAp6jYKTnt1fdVAzz9OShnK/wlKrKjivbMKdvwMkY9i0jfIWCagYCzOdwlzritjt3ZX0vZfd7owEzs8//Xx+fs4O7i8vt7d1pNvHpzuQmGgA7T99+44Zbm8fl6fcnj/bPTy73PrrD5+/eS1nPNo90C/qFPd9IOeX95dmxP7+j/cm3+yk4ZU43yK21+epz3L6kMDR7vv3ZxKfqzN788Xq8cnB9eXN1dWdFUII3ds/vrpsEVFcPTy/uvSWXvU8xZdaCvDe/9XDlmqoQUvByJaIxH8nlY8skL0MY/V3ZCWj7e4SV3Ik81yPiORVqQ4kpbkwaUeg5/wbcDVMfQv81KpmmJUWA/Oi0WhFpFbmm30S/iIto12Uat4tfXn6i2wN3QV+4AgoK6yVxEcn6cO1tF13sqaWtDJ+Xkj9Gbb9cjqBiGwYKtaCTE5zEEvz+mN3OjpVNgIJNXkyTkgjz9DLUpZcbd2Z5ESCK2FHr5yGQuAq5e1bEzrmIhFeS58QVueVzgwjzN6LHmB6a/zV8cHx4d4///7d7755JfPeOzwGCgT5nDGevPPlq5f/4T/8M9QfL85Zv897eZ/XIuk298xlv9ifEUzikNnorM3lWzlVfz1xkosbbaangpL3L58zKJO09Gx8ctA0vC1BzbBakHGrCzNbj/G72ajHkhG2pz2yRVp9MWHo9QqAWsy6fNLTJY1tNENEqKtbJH+XRKpAzfL2RJcenSIIszar6dGrISV1VpYGUZqcMiXPzFtD4iyME9yIEmS1adMrASUnozXZ/wrIKdR+O/pQ7YsPhbj0XhxtFp85CMk8hbIuLs2Y3zdqVK2uoGRS9zeKKnTITlHLIxBBCGyHE63LzKMlf1GYKqdaNpYZhKhgwR7cUmPmKBVKGswYmDPwMORgf8cWPae3d+e7tgQ1RWA4FV/pKtsuuC0X0J7jECWSFHerjl6dhGyXT4jsBKD89Pjo48V7uwa83nv57s2JIHL/4vjkaO+jjYfPPATawS/pHn93YGUZS7DXpzeBr9t+Rzr3/N2rE7YEGY56N9dmoKf7PR169rT3/PnJwT4xYhWTRghGTVZteXzADk37+rw6gnoS1VCqjv7xITvPYYdOsukJBLmP/9Id4UhxMcKvScW5J5leDl/y7CVIZw4qyVvxR3H5bkaY0XunPoMYjSaTRnX1WBRAwQ1xp1GWkMZJD4z5cVLOSpcrHWIlltJgT5esTc0lK/iu+6mHG7STQ4S/Y2kJ5d7KLzB5j2yMQFv/GGIrczL2urdsfmGOgcxl2TrusrB5EwKLC7tbhMIVs6HaRrUmBOZ3TfKnnhqD7x/4iFJO1v2MaQ6BwzC7gT4CmhJzv2CEwSypA0F5VDzOcqOKNKn+vKuB1gyxJoAyxEHE7/CopLV96HFr/H/lpto6NtRG5b9H5NS30UR8xc50TqTqdZGqljPFkdhJQf4ORQkMwCV8ZXV76yishA7vhpIA1mJ5/piH84qY3dccvTAxwgQA8FVhQkTtYEptCJmpRE3BS+JT2SWqYIGnpgk07hadkeg6geECa127BR3srkKXWUVwEo3OKrgRjQYb+Rtiu7cgMyglKxqagGz/BBaWVZNw0KK/GIQDxCS+xSB4USO2DanhHUEpiWBNxxTVyVEjNMJUC1qxqvdblHRH1fq8SHKC4MC65cfVmBCBjSLSEzABjLcIdJnF1apgWnmkjZhcVhHxBBKwbnQrAh2IEeZiDcwxuQWQ5NizahnJyBMW5+7qFaDUImqTzLRWdcQ6CGuw4GwwDl8RBs/QEIjmk5Swc9QPI8lsSTOuIFAelzFY1gJneCKg+h7NikNKYRm8OMBcN9X0K/IUBTZ6YjBD5yM5V3X4wRDOfCJ5Ca0TFZLVtJrmpBDO+XEbpKgIPCRzE6n11n4vyWgQgAgYalwmB82KpyHnDiMgJe5N7am5URC+FtKRp+kxHaSGk+urBy4VoSFpbwQbLpfZT3OHiW5RGSA3ImkqT94W3qQ0ihjhuK9OqWC1hseaJI1lopXWZRbl6ts1n3QtjPFCmqJHMwtZD8VmIYc+Bfbl7urm8oPu89n9mZU215eXYJoofPPGjnnHODFZiWAv1D31pcu7s3OLepPuqze+xbl7dX35/uz6xeWNj9nv7h2LYfBeXF/0jN5j8S9eOrzZOtr/9tvXcrdPlzc/fboowZqdVY6Pj4nO9oQ2zceGdFPednn+GXTLlh4tjTXUzL+sJCmz6CkAOZB2Q276bXbZhLA6iWQ6x3yGziY/w/hin0wUJpnJ1BLhqPlXL/A5T5C9hzBacpuw/SjrT5rpSKr9gW2Ulnllt4RaWMhFNAn4xn4GC7wzEZZGmi5mHwNduJtnf8Hq/5g+ACHNWpQuwD098+AJL5nEFI+naLUsZ4wesxvCcCrrShBqJBjQkkCAM87wLTrBdX/MDNGLcpjVZY2YihEyn9Si5MYsq4YVT7rPoiAypGrauy/AwTBJfpS4xRIQRXce6Ozs+bKSrvbRd1T/+Ic3//zH3x/IfSzYODhpBAFJjmb6ry7DMo+3b09fPP/Df/2v/93A776F+z64K/011frcWFPyYM0zig0weiSAvZna5/18pN8oycqFXNsibX++ut3b3X7t1ZXGc73s/rgvcD2/ff5kw1m9qhzM7jwMk7JdYtOQpHQqpsggtEstpIIrkkWnFbSZonrTTaQNuh79JsExpllm/7D3oi+O3V5KWINJsaarZewIB8fL+RgIci9Ha5fFueWQXBbwXbZwrz4da84Qg27PI9RVTaHfxL4xn2SZSsfNswVYSDjNbr04u7bU5X5rV7oVdnVojRIFMS5YvpTVlCv2gEV3OTNZmCtwBbUgwzyGnmblcoIJzOooTAN5QaYlS2Z/WhFY7yB5lXbvheGfdz9uHywNioDq1S4BzxF/ybLOpci5bruFThmmBLxnkiYXbu32hMgvL/f3fTvk/O5292Lb9732nz9dfr549fLIXIXpghe7W3/63TtvglzteLL05dWr/V8+XHw8uwLut9+/smSINnqb4MXTX//+w96WN44Or86vSOtkb39/e9+iKZKRthPh1bVA52FB8xF3BhoPZsNSDI/TX8tqGbWMzrnHrFISckzbcqfeD0Z8jumS2ZT9G9AyHSajZOZANyGETFsfiWODzVZpj2j8JqG6gZ4cFQk8Bm0z3LSVeihmTDUPyM4S4pIohY0pFFHoNb804G5ZIdipkwoIl+5zrbZiJvNSn1SbKjO62k4apDAE/pd51KNoWhFlJAZRAzGFrWz3a5cWlqo03NwwONfaGhNroj5ikvWwE/e1jeZlzTE+B3J02FCM0BfvMRpedUHIptuWC/WTfuW0eU/dngp5iwpaqKxhJXWMoRt36RWNBW3g9ouMsDiamJSrsgldMat5HydHOMhYACerHpZjaTxTnZHlKDZ3tdB25rnlEDvGfiOB/DSL13S4y9uVuZ6nn+Pu8ni1Y4leYm1kq9GMdtJWHI0qXCSWZJKTD4Mz2AvgTDYMncqb89CQMlQbHUWGY1phvfMl3lSd0IKpsJN1NiHDZVWncqbj+Jpts65u1B8jK4j9GdkCwA9wmswqS4/VnYXRhtpOAMOpW+muUKR6kNaBEfQDEkinbo4W3OVfzCCEJQH5hQMxYwPpNLWrn8GHvobzezDUJyAGdWGPL70C/mum1SDjkLWK5uVfGYVKScyBntFReIf/kUA9V5DcVdpJoupYvA9HXcbQ9Lz4WOQOJZ2uVjWMgSF7OvkhLrB8vLsDOShgDbMKcyLHEkgQEmdCqHJmV1wIL0VUQgKtu1x6qSgb8HvhXSdo59H5yhjGRmjpY3GhWEt15x/nU55UE4LzAE6VSRPV6goRmPsq/2k4okslTCbYcZGFZ5YFNfKpbA48g7tAhXc0MuY0FQa1wlBnYGlutY1T19nMEDV2G6aEHW71qxoJUTk8bLgoEkZ0R1SEeAbwFTBRQqgJxxkgLgIFqNJQBLUj4WwMONOqWVpbEBf6Zavjj9mTKrnjmAMxFScniwO0jS90w22c70XAgwPh29bgl9dXtsv767/95fLjZ351ak7ePnoXFxqYFuUndgPyrrDvCdxcn1+cnV1fXh2/slLjwCrtg3297PbV5cP7n395/9Pfzz9/6jM8TdAiemvX0msfI7s2Zfbw6ULj25t2/yz3ONrZPzYj6gtg5ln1g83x6xaLibsec5cUyNZKmjHJnLymObsoTl858tekGTjcTjwksIyVEvA7QkvmcxDjnBep0sK8/rE00P2kPWY/ik41IzQKSEUZbw9eLAABAABJREFUUsFBJFrQ3Fehc4Uw1qC/AUHEoEBlRRUoIeZIcavCAoVfU6Z4EVmEcHOjtQiuyvhFjtNPMlrcTVUlAxxh/27eCv1jRUv7C87QNWiAiqO6uuifiKWupErPHnm0FjqGSnc6JeLFPnwo8Y64teyRXeUGeBQ0fQSX9XqAqgyNSZeoJSvp7J3ZRl9WbUf8p8ebh4MXO3/83W///Kc/n1ju8+b10avTuHjWk8Msd5aaMJm88MWL09cvf/Pb35mvPT3eOz3wFmYfOZ21LMWlWa9lw6imyZGU1PucL5eMNxQrYbkigV/eLLmQ9Vqn4KtZx/sPPuBqFvOLTYFajOGrAsIqmDjgtrKzkf5zY4Y1ZdtIgHUNrU5Ilckl9pmgXGnGXON7ooAJ3J5zypeaIoz/Zu3lgiPhXpCYN9wxNF124RIo05/JIXY4AiZgMh25rCiO5k13bdSZwDdjneXxWUHRYTLJ+lDEUhlhSC1lmyTE7GmNoV9e9YHbqVOaj4sOyNZLkqNTWmG3oCglhDFeap6EMcjuFJMdWB5bypBd+hWp0wel0Ujwt2xkxpBo/nJydPzKrk+z0sHtWhVCUxvFu+Q+/dbvjMwHUfodeP72SQfQavvs6fPl5db2zp/+/Pv7ra1/+fn6p/f29bk7tfH/VptW9WBHbLm5/vnD2eWNTQjWqzTmeXf3DvZ++ens04dzL5cfHZRx7x0e2Cb25soH4w7sCHB+dfuP958+X/oAsdfE6fvx5OjQpkO2OpD7jliafq0rsN7MYsmCfp2Cr0wgXD+ID49M7b+USbfZj6OFVTja99ZB7wRrFqfU5+MqLDzJNlMxnQpeCSJVJejxN1oWvxzz7FJt0ZY5qsNRCa2OzTA2Vy/jXQJMtPQaIBrp/qgN7CIChHkWj5mM1u/e2m5kkT8QzEo71Iqc0T59Mml1VlAjgkBku4wi6uCCnUT8dUnrMEGHiwUHZeQ2JVm8Yzo/Vho6kFRzDPxcL/brCFlWFpZhDSXwZtbTydbtEVcrlOosw5XkwNaiMwd6wJzCfCwgaZbE5/5YOhQUpWYJa5E/CvvhAposk4VmZpgAsLgW3b3rg89Mv1s1GDLCQQII7n8amL91zA418TQCjC3Awet3xKUd1RAAmppasjKFVAbT1BnoA3QJ2WkENFnmbzYQIyNqJdM2ROyBLaqRUCgnNXUaCdFBUO7GTxZFwixodWDQfjUbjlrvrO3oXTMmviQsjApuKRGVsz4tar8aw8KrBEl2TNOkpCSwabCakThH5MHeJZgxMDpyObquHFj4U1NWlqyGhRplCSoo9WzK+cQZDSln6nf6q0wWUkAG5op2nUfLQAE5FNAlg9TkAKHInpwjJtAjxuFgKhNco/GceoRTeBuqXVFNwU5z5poZjLKy59F2o/RI6D+LwxywSxGQ5VW5yUggpMtIKkdEZjPkZEfjTUkSAEfweFzNncSC5uu8O0vMIXJP9fHNGISw6m4UnaFLa2iuSTbvztCDepYRZUP71FFzqelXsAq0WuVOOuKv380pTFtNgFokkdVwMncmaHameuzmRdlpXIS9hushwKpTxcoD5WfE2jlrWZOgLoIVOC2IOwsbiWlT26FfZfxiIQo3ohsf2cg2XRBt3UOaGvYB/Sr/WAQumyEfANJIkCc2TNvKo24U2p0xm6oOzaPUCEu/agaA0FGYFpii32OK8dpJScAS4pMgpQluvCkn/fBxLg5rwf7FxdWr41eAbpvz2t7XAxkW/P2v/7B417uZgo4ly7t7Rz6BeXlx+/rVqy835n1Cf/np4lYCubd1eXv3r//2oy8Fv//YSltsWaDv7TzfDDYksETDOltLj16/PGwx9MMXa6OtG/K8voVJ1lTcmOryPpvI36xYm+Bhj9e2lAL5phVLo7HoD/rzhWa7BO7hJ10tHc04X2EyHK/8qnTiGCX+u9cw7mz6OVIlD8WN0YJZyeZBXbI3wpqjkbyTjRmkmixx9NYiCreCH4a0RwPKwOxGVJZvDakDBE7GE9/NFgEVS/10t9aZw5y7jFPaDkJ+/ZWGKFl1tFuUJIFpriQq/NI2cx3i4zV79htbYph7juyqd0H5uETVz0R1D1zli9kNURdFM81+LceP+HlFwCrqltBUr00ysGWxMyIGMTNjuw0nvLr53duTl3sH7/blT/tHJ0fj4GrRfxbOjEvpKGdkjnbp8Pe///b26e4v//I386df7neuzMpZ3pORM5SCEvVLwNJC0aDZqyLTeiiXJ2C3FVwy/OsXz88vb05sHSMVtlj8y+7tza0s8uGuqMFRpGKR6SGNZwT3PvDUgy+KUNkYdWkSwjGM0tk0NoqSBW2U8uWRzSf4VhCRL0JMHJv2treM3rBpvmAmuReGyegvy+qdgXzWsdLHxgqTjdBgy49A4TIzrJJumriFloZz9Jn+Izq8Tr9EatnwsovsMT1Jl1MQrF7MFucNfq7uH/cyBLCzAK1HZT22NYdtOlwzYLLh561xdaYhbaFEoRQ2Tc/YAQCMRGF6GMxj7c5cZwbiz9CK+DT26KXHFwe7Oy9P9698B6vNUaMkOqK8Y2ytUycO5A2YPBcKW3QyD7sGI1ADItrzqPD2mS1lH7fvtvd2P5yfn5zsPr9V+cs//embDx/byuz05cn1g48b3tj4wNskFnOZ1jjc3/bWL2YvL68rswKqJRh2Rns6v7kyAPSgxkoj9U99MfHk1EdLbEdGgU1SPDdnUYKIQk3N+HstmfVigkXVt47ipOMpAhPMwAZDMzMbV27knmzpEUe6f0PSXsAtDjiA4TkTu6tGOpQwyUEZ/kSrPNaCPF/PTTCEOAqBqAFVIltp2VfdNFbLDqaf6F79yggdsdmJc3f9saBOuCk/QMzhoY84XzcSQOKMb+rb0nQWsrSnuQAyczZGDpt+MQ7KGPSUETaAx1VSW0NVvpTfqxfLvdSCJPeis0hQZMzgxig0RzHgJFd/hnjVtF+9Y7XGYoYkkAEsfU/SAx0rQGWII96qD69B7wlO5SODThDrFxmOi8BVndBNJuqeH2WpFo+N7KZ+IOlqgUbOiHrqjaCROjl30FKE9FgfF446Nay5QSwoHjnEILDFGoAJ97mHsHmaNk7CBBcsPT0sYPRaTyYhjGqB16KHakEAaMxj2C/WOyCa8mBonsDn7Q45QalyMOYAOctxdEmkWVBEgVAnMbbWUC1Z5+3NwUfc/E5DrTqzZJMcKS6tBbB4VxZVTxD5NVcYS/40nCw5Tj7zxozL1CrwNUFADt1QO2lm1fXQnQ+FYIwMIyQLnLsjlcgfTjOnbMnwI0prgLeaqzzSiJZGDCk0wPgsq+vetJgmZPjvR7rPdhYZDV+dNheI1gUCFBfEN1i+irQaGbx2I9UJvpRupW8esfhCeRVchtCZApAAVqfRcfXEWAVkmtVMY9xNHQYTo0tEKSvP6gi3toPo63XC1Kpy0Eog5nzoG15EG6AUxteYSnJJmUES8DQPr/aUSGiLVqwPMzX9Cj5Wpub8JTQA5uFhjK5K9Ots6SJj7adB+8SoiQlMZQCrz87zDtYRZ4CC5go0cBUpT9IRmDSilhz7nUmo+7XOSFv11ZYp5o7JQaWgROo6SdQLWsoNtnAxMsw9kzPA47glfAFMOktstev/smFl2VclFYYtOiNrEdn1iLYgHHMu/MkXBu+wHB9VnPC7iC43QgzXs5z64Q5112cXJy8Pdk6O72+uH3f3tw6++BKY3rmpUZsBXVzv7e+8fvfasmMr+I8P9i1CuP5o7v+1EfsvHz5aHHD1+fLjh09XTy/Ob/WMLc/4+OmiQeXT1ttXx5/OjA6uzs5v374t6bfhxsnpIdb1uyB7+m3qysu+3MPeLHpSel1Hymmrmadte5VMYWvEGxO2RaMgYO87h5Qq01q8Jpz0m+RHvKTEu0f5GczoeZOOJOp0HTaIdCbCsgo51LxPSYkFz5bBqKkWDSzSlozhVFb0GPF3PzNa8EYdo8VNEAMkRB1yrnG6sb0pp2i3GE8BNqqyKAugej81xGM5C71bWPNbOWNI9X7U5wZonUoKMPErs+KjTpylmr4Oe7WGSgl6f6MwIDMRYBF/XDX7lm37JcQ+SouNFDX2vdJ5e1vmlw0/2+pTEjNtsSwwBSaw3nxA/K2Z12KMFTtbL4/2f/vd6Z///N3bl28PbcG4Y3K9tcdi42IkEy0Azoy91fxPDw38GNT21m++/fbzj5/vrz/ZvbE30mf9iVlcokwJjCGBSE/zSgSPsOXPHeMX0Y7H65v7jx8/He286rXRh8fdR+9iHlRn27hlz8eDn/uWgMxmvBQnvefOfZLIgpRdURGTU4Xmm5phupaNjXAZEvXVKxGp3tPbo7aIYT/lM+4gozxYT6SGLNh8F+EUQLK0TLTQ7SiCwpr8KTfmUnhBbHX6EWAxSV9NxXIPPTTS6VNcqgRqdfQrY6mhCq0RGktgZq28v7y8eXnky99B4AAyB/I3lMJE6X72bIzYy76wokSfTjaIWeELARTdXbJt5JZJdDU9+xBc/iDf19YZ7urkVcHJBL79/d2jw72jKwOSe0OhuaF1nBLWYhmKBWqxT7a4wX5O753au1tPEXDpW10HJ0Y4j29fHim+vLnwRbBdnwq+uiEZI43D/T17CVDLiV0LXuz+8MtH0ebk4PD7b08sWVkf4bL7Ez2fHNqN6uqbt2/+8vcfpaNWHVjxj1mvHPz006fTl55CeSV4F+vGBtcXV0fHh9bvCxzXN+Ha3z+wUq2dOfPqOKU0Yzjyscsw2YlD9NUL8Y+Pdj/rQcH4MtVYm8Z1GFaOSVI5RqYtNpFhgxIwaXYeyjmrj6cS0blwBlUIyRFu+LI5o3FHrSZwgAOJS3Kss8jGNArOlGRw/oXUC/ItVszw+fnF2UUzr9FSKFEdnHTV4Dvjg3wQhanEbm5l8qk+B4i6QcfiAxVyZlpxtYrXYxwapmDpne+ZR10HcHM4Q6qcXt9WW3JSIyR5pn9dZv3LUWMD5NUlRHmRvekczVXGwK995FcsYHa4nDF9XAYe4Pk9wCOqcnRnpiuh9zcbx+yC6ZwGIyiOpnEnK2cqRQsUmoFGT4/GZriCbRRWFnchHmqbJEDwzOENerD+nQBYp1B9ytugQAZ/mFA2JAwc0JaauJXajTdGukNIIk6IjGey7Via7HVDRlKHNoHE7MYxi4akUbtpmPRWIltPV/hI1e4VOBJ+zfvjv1+GXY1VqjNDs6qPbAFMlEW0scPBO5QM784SLkpS70IaK0sskxa4SB6RPJlZ+GLQ32EkolyiCr9LEdEWcf0HfdM2PC5HNjMVUYWpqb6myHQ/GkbIWNY0+iGO/o3EivtTP4KBhL4jLufOIjXImEDBur0Eq140soFl+d1djQaCZNfG2K3ca9acm1c6d6beZEXDU4pLHv5mP6qMiLoXOSOQVNY1CFE+p/GipML5i1cWkL0FboFSJ6taVpo8Y2QkENgaa4vbcCciZX6FqsuqbwwjxvCbhNOuQ40QLXqGhkqVT2mSr5PaWBeqVB1Fp/sNN8HvaqFzMpgDQK7+OImATcNCREZS2ZDRedJYWnaiwRJjtA2sQI/PstqFqCjmnFRinNIFxnSxKImGIIIfrm6NbFZzdwbIBhHYUzLJ8MQWoJPcSHRoi7sNoMXbNFkEo7ZuxdPa+iPdzMP1+S9XH/7x9HApidra20acGffd46Ptw4N//P3Hv/79J9/H0StbmuzY3d/79vtvDvd29SqHJ0de1Ty/ufWB1Z3DA5/Qeb53IJuzEd/dw9P5xY3IbWttJN092ev/jnQPj/rypaAnA3j7Vo+5d3Sw57EAim9s9fPwdHX3eG59Rm8m9+kbS0U8qSc6dmztuJEBxpBPJE0ekmRJa/Jp48XxiPqv+E29zIgtLDOmsI1MuksGGmqXyvqjMMvM2rK0GalWTOqSlcxvdDRxZlSQFqo/ZrN0pNYipkINv5oZyGlcCrg6LIoOJ/yZHFJocGxsQ7abQ50HR9kzcuoCcmXHkDSYgxAvEQxCOMb+xxrVm7rUvVLA6gImWo+djynyLDT6N7GlgT3JyHUy6eE3x5xWE9tNSaInX1Os+x6BmSRush6p9EFuSvO4596hzBEtVWVpgdl6vrez/YffvvlPf3r7n/747bdvUr9FY3t7dmUJv39gD4g1x5ROalt/1+yjlNSS6//yv/yn779/eXq0d3yAUB15FpC0TSE1MAwViaBudFfGbk0PIiwUcafY+8xruz7O9eLyVnrmYZQ9YLxu+MyH7fBKN7i3ORaOGD3AQ1soJEKlXu5PMIr9lgnxI6hp0NZDTXqkKYJGy9gNg0TaaMY4DXid4VAx8tIsERXY/HMxI64mvDIMtfGu/dJCJUs1cKvTZWKZFVBZsuQhgyBQv2oTJRiIpaA3i9rv9CNO4q5dtsYqe2BhIiAlFEKdpOBRB+mU0y+TQia8mA3dJmRNojKBBcJkGFp458KHdU0HRFvUBhwFBNg6eGuuJAaw2uDr8NjMt5TVo8jpppGaOiO9mNnMIKiAO9pXdBLiuHq67eN9O0YRouo3r0++PN4y0/PzC1y+PfURsEP2ZUMn2eqP73vz9+L69ocPZxe3PjWe9ChWGHzzat+a/ivvnW9vHx4esJDPF9cs6/zqxjQJWdiuCKFHe/uUh0KEGAO/P//koc3h8d7rNyd9UdHjTe/GvHixf3RALVYx0qOq67lQWs0YCC+PII5MgVUtE8Oo8qY2JpQzJ/JLkdTie8DmP+KZrz/MVrKk0Q+t0ocTArWDFsKMJzyCgORrKjlD7wx4TTtN79ICu6aQSVRIiKxshbAz2mU9qT/XbDYi1TmquwxjMvuhQAHsqgHhHoKQra2QnIEugPN8qHKyi/kMSzuzy6sQbjLNdaZfBI2NFM4ypjzZrbHg8v6MYkyz2b7mmEcCYw9jmnnZcFfRMIblZpfTBNvNAJMdMmSdIYUlgFlljESeo4lq5Om46U+jRXzPB0ZsiztUDZYsXp1EQl4U19BosCx6ZyykhFL8XofKo6NNYrFuQTwyQRRiSubGRFwqboSA1AHeSUX1Sc2FpYg5UkXVY0pBcPLY5BmpGdQ8JViNcVVtvwr5/MrZRPBU4mZHBhEot8BxsqSkiRMlbqcgldaQb9iPkbFy4JkuGnTkgIUtbxyYQ0MdPC0M/VGRTsK1ahInCkh2+E2qAfGHoEWKMc1qJp/N8/f0q/1ITClKyLCSQa+Y5WvH+76imKpAxE6Q6WLaZwnqxObAASFDVwQhLsZsEs/M6Cw5LyxQDaSppnbY3QkqO4FCBbrJZuYwhGdy4c6e522q6MVv4ycIRs45Tm4xR0DCHT1jdKFAZsSPH3Uvjysh3mhz9AheiJAwpqIWu0J8jbOToAL4q0Eu7bsLYGRE16BlML13qZce68IW+MsfQzloR0pOs5lEENYhpwr8cSgd2YAOfpQ0n02H4+XZ2KAeY65iVEb+2OcSSxRjKgKGyqQ4DTP/ySeixmmyhKJaCWHuLnrGwdXoC0YocTZ2jtfEGJepbC7cJNTl7CDNreEAUmCT3kQ5N0jGw7oVTABc5AdMq7HSX4Wse/hKj6nMAg4aY2bsLVMfsWNM0dRUkiSTq2O62E25qvOsb2oiKQECyPEzlBKYxrqXl2fPbKB/dXH2j4/25NnfO354vHj/9x+8BfBiz7yUmf9zG2Wj1U4+55/PkXpoqyDT/55w9yVKDztfvHv3nTff9I6+sXS399zW4nb73jvYvf5yZ7H//fYXe3CcXV0hrLQHciuPTJ1pf3v3wsYR+3t6TVak3JeGrRcyiYZsUuQR8i3ZycgB8/X65k+BqttWQ0hnbG7QYNbyzA6dpLqsYEJTxqWeakt9qhk54H2MsGAy5clHHcIkSoLKVjfzxxkSBGNXqa3zOcKrwSYcLRpZl7JiyOglvKtp1Am/AAzGaIvMMZfumQEOtWYwKwYutY6D1HNRWDlmJl3DqQkUGrpC61RO3bXMaKYc5Eq0GmqdDsVKJsvoEo4xdvJevGiYD3KT6ZHjVb/pRQzEFpegNSeI0fyomcSKLGgpoI9bZrmWyvAW/abzxpU7Wy/fHH7z8vhPf3z3m998s/O0fXB06pVFO7DQfhjQhwWQpPx+4qBHvpLkkogGBi0/tsXi3sHB97//3efL/85PrXZ5ZqdG860zKlkTZqRkurZl2D1PEm7K3pCbKYgu5ujNwu68uPIiyuWtbWrl+i8OrAi6NEzoVeQ2aI8AA5h4jIBtuWrEUKd3JLyqYhfLzWYbbZkPOhZ65aDNi8YUJVRglDnnqjSi//GKAmGYrtarK9El+QwXIZjTS1m2TiIuK47uWnKGcvagP/VdPmPvIkFROhRExAkIDKeAjzHPO2zW9tAwiseYU/rXkF6rlF9oddJVYYC5C1Rb5xbnPT63vk8+CKX24JYSzkmk1ZY6MbUSIUa9fGrlrHVkIFo0RT4eKdD7kkmlT19sBKxny00B6HHuPJkphM5ENk1j8+mFN2UPvNtz3ch/4cyxuWHaLfZqywyC/GvQi93kj3KTFCLSDCHsZOYLwfeg+YLvnamFpLktIMmmTo4PLa5///H8+Pjwy9V94Wgm9T/+cn19dff7338D1N317eXlpe/EeXng+vraQwBrHY/e7ds4iEUyBLvW3l7feuD56ujIXlXNYxxt//zTmZ1vvUFu5o1Y59vMJIfNVsiPPwoWTGlbr+CTKbJuYiE5JtJozlar++1HRNi8z29QPBsaB0sASspv1sID+khJRFl5/Sg8bJenjHyJbI5uTRbLWeZYpja461HYQo4HVhKe2OfvdLzdnXCBhmUyxkY5EcNQu3sodZM6NW7LKpHKg7OsSVs/ICKSwjKm6qS88gPDPqqMpNqvlS2xVzBaIxN3oi128z2XE8vqX9llglsukSVPhz01MpfMtscReQj5f4VQueA+7yEo535IyqR8Kkn8KXQnSlAhXUdRaWxnzLcy9WJE3ckGnK9Bwq+prTq5wUgTs3is1RIwW9A2CY7KRizDROLHZs4CLmJEjcKKnNVDnlnDk5VPXdA0V8nPeEViUxNGzE+4HzBxUb3pJOCtBcik5/YIVoXqJD+qyYSiK/j1hcWgEYnq2HZn9YvuwrJYc6tXsYIZR/M/cN0NJb4T6WJnwsnIdjEyWDTMqLDLGCK/ChvuRNA6+8iFIc3O4GdoDp8TDRwbXMhfufXmIb5LGq9StE0Pmvl1GjQNN2QP3VMwIDYC/npzZJVZpJyQGmCni/EAAJUEP4r8mjrxXWCa0sgj20ShqLoJcIECTxPyIbsscQNoCofUqtVwDCO+IKxShKy5nNw2a1xNXRRuZlydTda+mpuYMLUUhApf8A6J0TWEVbWzHAfSXDOjzRic17EnTkrJlUbL03AkqZpC8NSY8wwDqGSS4dUq4U9uoXxKspYasbGiVH6dMQ87Edd0CFuK7hFqVC5ppA7UtjJhFjwNEDLkj2gs7LLDEd40CcJIYqmoC3QNr5NRBWwqbOotH4/3SkcI/kIHzzTkE6PQX/PyjWyDM4RXb+QpZ5rJicqXZIDM0oaeSkbqudjUj2rWlaanjhxoTlJ8R+KMqIJRyJJwB4EoiNgZ4cCx5C/fESlGKZOBk4ze2L4pVkrc++yuZPrs+tqnM1/87YeDdvI5N0W2dXt0dvb506fz7393okvWq9u4xWzh/fXtp7OLvf2Dt9+88wz9WV9N+mJBxfnHSy+3bR1s338y2/rli732dnZNodmjcWdvz07ZD483CLRC9eTYu7pZw/ml9eJb+zbh29+5vLc/uAUmk/uN+MSDz+dX7FB/GUC5ppl4KUMmqUMhA3pnkyJ6k9Agrt36SGAlcKS2hFR8S1ncNiMj7dQ6Fih4VDK5BbjZQ0f2H57q5psj8o1Wg9kxtVUD2cVX+/lqVIpqqG6qBm6iYhSl5zH4oUB5yqgeIEOnPxMiUima5/lAKAqkhZEBm4lwl4hRMCF61D5Py+MWKHiaHatitcPNmWqSPc/KhGmvYi5m3CsgDBmzNrV3IV6kKtUrHSNEFJYdcoUpyUNnh/ho8K0eaDcOpaanPXKyo6M9tvLnP3/76uTk3ds3p69eMsdym7aTKluyA2IUJojao9PzH0FS0KlzrmvovgruU8zrN6//83/+43//b/8Dc1st13l2dSvs+XpXbxioZCX5UhMaFuWAMpRRB9IxFE83WZ1NJHHu03XeWLFyJgZLze1u+Txz9X2KWfWeL/nfVj+ThZtvlmOoDFF0j3j1mVr5aYyBmOkE3IO3dWuFpspAYoH4KQmJloA3WMpQWrvLgBNxS4/YZyGILZCGmX6F4+JajFL6W7NgOy8ZSFSuoMkwKkXR0DhTDLWXXZgEVDhR3WuyyOEdSPNTyOVXdR8sKaPx8C9gyb9Didt+oxM0B+7FYT2jE1Zq0D59HBqyuni0/5LVRPTVXGRwkFXMikoosoWTk8Mz+4i1LN/9zIyUyCRGa5LKQFsYCapKcwBm5HZ9ffe0uyVW7D3bfri4vXq4+dYLDOXHjBBrFvD4+KDnQJH30msnOy98iJCryyy8+X27u/WHP30nplD49d3toU2K949vrq9QdrR9YFu0y/Orws/zF0cnh3Ycur7zmbATXwA4u3D14HVhsw8PhRZR5sUtLhpntnPZUrtxY5kD6htKP9AyzbrFP32/oEBGmhTHm5w01+/13rHmxXIGM17tKdO8oZIZKyQTcoBWr0+gwU9wGTHLLWIspc7Lu7AtBaQzYsuwkmMZ+WaINrlC4lYVJyqMNrK/nhhUOfUXmBpNCjArtCnvRWGVI6A23CC7SUuLKr9zwiJmqlcLt5Z+6otAQ4nfloRSeO0njieBgGQiWck8Nastc9MxzCjcgGG1jZQhhtGMoAu25KEQuzqS5WDIiG1g2Wp8brAnyh6o+W5xQ/yqTLIS2aO5yYIsdrR3rxd864363cC3WOvuBv6wvGgj/P6NjlTGTufZXHoqwLfmB4D6clEDnbFJfTPsgZoGtMeCCiPeUWciTT9JktzUMwAbjx3xlmI6if6VemZYcVQuAUxuudHOMBWKeJkX/51Cpmh1EmgbFaR3LSdMqDiWNhMMgV3LzSOD1c7HRJa+EjMwwKfC1pLhLWzRPdXntL35Z/4JcVlC9jGCiuvBG+sMLFuIX4pVJVbcdTB4PKE4fRdNkqQrch1oCVw1he6kg7FQ8oF+bG/4H5NjTqYckJc1jKych3eRG/Ej+xbRxV014yUEA524hkMgAdeNJXkkpWh1IZXmALbakn8iwdTIOSsq1C6BgNCER2B/tdJVc7AOHROLG+QTbXwFoSFK3EZVdpWhArLBEl1Ja8iOMPUqWWQ7V7sZieAktRFiEAwCmWuA430daJ9FrRtfrvIIbqFTB3C/KWMk0OaNGB8kSoIJHnRaTWWQE0xYzGH35N5JxBMBsUQpG0ukQCa4iCFRJ+QbYU67FD0XosUdBMv2QJiSOjw1te2ymDQNNzeH5qhLLHUi9IXToaOqyO5XBjLcKUvY0yB9/oq0SnEYtZ2P3peQCDO+4d60AwlVxQHVtUpAIyOgQ5ThBC2iRobQz0ntYa99TVwNAZ1mSCOeFcDbjcQ80yxHMfv4/OL9j+//1fG3i/vHn//x8dt3b7a2725t3Hn9dHl5+/LtazP0wF3emLG62bvdefVme9s3WW+vnl2ef3P6zc6elT9nZss+ffx883h/5bVH6fiLnbb+qY/Y8Vrf2cfzllm/2Hr96tDO3CbMyOOhd4IfLeQw8DPV6n1izGoriOmeET6Oq52nFqqbhF1Jf8t0E3S6e27zPW9kOhE1svG2LffomwhKfMeOSWDshxzIMHGSzJJhzxOSG404AXT8TAW90lSc6pP0oGC8S11C1igBTx0XqCmDTFNj6pkfbW0K1A/EQEg5ruv1y8DSaIrNJAZOc1LYGEtye8rACbXzRdNXU6m1JZFVRnkxB1uxNrZCjAFYUasOJQwWtHhigwYUFm/h8nCbGyAuMy8FRxYjs00+XzM9v154hdMlAvSX7V1onpvaBKpWcjfkBkH75CDKNUvxQh4mUfE23NHezp9+++6ffvv2N79558sQ4bzxmuPW7tGBN4ZBBa8InARAi/2haJU41/kmYrXYDPaI1vm719/cf/t4efbXuy0ZvDfFv1y6YS2MThAxNlrMg7A1g+JRx8jZgjBr3HtP0tN/bzT4qPTBtrdQkstuX5V48P6K6vb8uby+mwy53sUoRYdupGFoZJIV4Z7YlI2UPsxsI6IzQmA9Ldm2st4KkARSdEkrDNhdckza8hzA9HpkKXQnOgLg21KETIIkjMybQu41XDlSNl3zjhFUz16KuwRGNcX8jmYr/Vk9WoYEfiOmcGnGTiaEoiYzXsMPdmOkd+/xhM88RKz3npuDH/PLX5rPxUm0hpofgqaa36l7heKVcaUbkOEti20X13kBmjDIIF2As8J4UkAMcMEpEiLTEM6HsSTDvgqWXVEfdrgPBndIW5uWw0RFhldfk2ijS2o+GyJJBe8/XZy/8YLR7s77D5/VFjlevrDX56WJht423t/76fO5+UAfIf78+RJM6xLp5eziok8Z2vnnSnJ/+/bda59Bv769f/XqSD54c393feNzxU8Hh/tX55fe07W/KInc3l6lrodnF2dXM5Jnz5J+hPWgE3me53C6pMQ5ivQGdRYsMWEuF0MZSVszEabRu0Vucstc1POu2qfuHC8fzrL57kzITVgnnGCIAYRVhYlGStddaAGCg9RIuf5R6KlTT7lL2SlkwlV36YZKxxXLS5Axt9RHgRsFGmWS6eJsT6Myi9HBmD4A5cqRweBnpAU+0wa8Co4sIJT+/soLCC7L7bHTwAjVBSaD6KFAzx5hhXjsCPZMRD/ga2Kqhqu7QZ1/5BODjoY04w+RbQK71XuaLNMRIme83nAsRqInzGbcO6+3Vjdp4JqxgicE+C3AgaAqpn6Nv43eFH4laPQ1k/ojTUoD0835VY47sxHVpubkPPRrVSwo4Dh6uUcLkAs6nhriGAMLxkgVxAJm0qqTcNCaCtTV/0HXvaStBBaMDlWbwqSUeTn86iGAh4CbTjFE614IohMrKX2G1MEmuUwli5qg39MVrq9WNtkR4GSbGQbFrVWmOFFEEk4WS4mUEJkhlo3uyIHAEzIpa/7Q1AjtrYYTeOl32VXER+4MFxWic0xtGcbqYJZCVQx3lpbBa4bCSbgRPY9BiHER9H8gtVqVs8kxXTURiarkGoXL5ArTiTgJZMaOKI86nM8pA4a3Wv1fdjUVKltuq3q0FNf+/XA7ssfHlc7daae4cUXOmNWFvkAP7a9aUEHD5dFOugtXBt+R5DqP7EEcXrpB8XAxYui5h9mE7CtRLAJS5jSf/V4ZR+x89cSg5TUzFbTBldDgotOFeWzSaYy4hbD4wn6cNmZSeTVJOmMnoR8CInLMjK7jVMRNCwtyiljDkrlLF2EZ8Alo+F2RMAqpZ0qqE9muytPSVLqY61pNtr3IUGWmc0ZPUeTmAInumgNUbASFRGAQtkZ9VU1KmfFSwdwaMpA2h5Lp+RrGoGGo6pYTR5T115+kMmdgrqJO5jw5VCV0HbIW0eLu3jQ8Szj20d8M9P7L1adzvfn147bvbh0f6Hmf3V3cHNikfevx5LQH2TcXV97ctM/2lZD75cXB07Nvj1+fvnp7eWV3bN8L+8y0HzwaeHrymi/Yvu3zePj0Wd/rVUpv4d3c4EUPKIYzfNk/mlsd/vDF1D8Bl7PdNV0q8jQDlvNNqCLCmcbBxAiV9McHK68SjU+wYk4ZCVIzbKGDmsuZFE68S6EjjUSB5/GRAZA3zbGRXVqrkl8jvOmkEnFCTmsjzvmdi43wax8aFSY4uBv90wghQIq4ozkeVxJQARsZW1/uXNvCi5D2Kxz2D6Piot9g71L9VZpoyGNYGS2r2dHMOgJmzBTJwwoqwM4w6usgybkgrABNyOY+3hryNEen3yBfsDV+QFJT5i79Hn4pKyFDNvtaqp/ERH1VU7CPJe1Zxm15/YP10G6+fXPw+3ev/vyH37x782pP0nR4gIW8qqT5Qao0O9bUh4GZOw/RSWh0x+DENCTqyrsT5oYiyx6++923MoD//pe/MBwfEDOLeC5ze3zyMECsXz2mBqJWjOC0MXsqJCIHE1Tr7OJyb3t/Z+cwlgxyvWbgM8AO2+O0Nfa8hjFoSwt2dvvomBXee73wIO1stsgeibNRbWa5NC/TiBVPVBpHId5eu9DpXrgCbrds+Q8af2iKVVaGHAPf1lPp+JBYLmzFuUpYL65mSGMI5NwjCFoAuQpu9PAUuMxDe/pJQLDIROknYaTlikbQWuVRRbQxbYmNj6kZ+tw/eCHVUzik60mCWGDfmNxkLLG3ygMIyLwNChY6wFIIl0E5fKQ0epihOAHO7KcS3mLgoSmlSBvcaB2XB4moePZ42PeGd2/vb+bTMUVs4hrFE0p2u9jUCq4EniCzeUMlQjZYOt7f//ixh5EmjmwhbKGXr3oYSe3bdNaruncPF3e9Y+TVo+vL65Pj4939Y9P3xkC+NXFxedbU0pcvB97H9Wrw7c1vvn1FfpetBut7GgKOu94zfvXypYWdP/78/uLGJ4ms0740NpU6+qIxu+DxhenJP1vg1WfFe3lpHqxlEcTTS073Pjruk9RymEm66KoklSgZml2n6J1uG06bWk5flEusTp0wUKxT2Fc3Z7PjP65Drnqfm17JRklzPRC5JcFk9rUbrjAnJ8oaraM6ZF8gy8CKS91y1gmTQqMKajjwSYdjeFUVCCJ4PscNuEpp0bKwMTs3VYKu5hP0a1NyL+Lkn+FAh46fdjsJIZmFPpqLMpl+XHKfYiuz0Jb/lihrP8RryM4Wvbgdc5wMY5gHc92Fxd2JdGVy6msvoKgAgp8hc87GpxUN1/EVQSFAQdLRZCoHRFk9d142YBQ5qr1EXartXDWHP4U5wKo9vVo1M/dgDlWqabLRHEpGj8sfxKAgMAYLc2vFY2Epqqb+BBXgBtKDMgNMaFXDnmojy3WzOsNWKEKdIMq0qIxYiHaG4zNGqmGEfl2kROCrHEgUhcx/OlINKiQBosESXcTH+iIjscCIIJWKcaYdqpzlqFT7hv5DjdiBGDJPDhss7sfXKlSWrFNHt8OSkSw9rYZVUYkSGztlKs6nxiit7qHuGB6FQ37MOF+tepqp1eh7EGwEvlgeqWbSg6RWy4wierGAFPDHtjfGU0mE5nSjrwjA9OTKQ0BRO46GzoRT91EUjoDx/dCtq3AOsv7EiAr/zktX1VitktpIuPFD1VE7KkvoyUE9FWDTLrgL5gABAQ2KEAY+2rKZEeQYj/ImBR1RG8ByOCgWqCFsY0XxmHew2yFX3Zy582k4nVaX07UCAV18LNn4ndvXFqniK993uhn2LIAj7uF7ZBssUMLKBiYiOQvMBKKKh86kE9iIT+HhCVuhLF1FQaQu2YWfAAM+7VhpFTY8Vc9Vt4CdhjlgAWf6NpBXTRUWlrmM/iAm7iZ95yIpK1kkLVyrpNsjHKg6bSSmS392cXH+8adf9vePJUKcsjXSdj189mX/5PD0aP94x4zj9aezn2H+6cP5Lx/OLYLYfr5XTvnl6eLz2cWHcy8If/PuWxnWy8NX716/Iw8Eyf/ODAUu2m/bp8M+n3/82w8/WSbEve+s+5FSmVs1rbfdh9vPzq7OP19JNSQtZG63jZvbx8urZvyctPzfKxhmfspy9DOdZy5FCcwVMvDiejTovFR3BFMHROkq6QgSrHq4pqKxok1JAqwsIKNr5ZostRBXanZvBLwQdXejvuTvqMJQQ/yreT3g10OFaZKz5DsDavphis5iAd8oMGV2UJYmPHudrhrLa3Cs/vjU0Pa1U0BAFhMFoIy1oSrConasejqC6CzyD4ND7cbMluFGAeQykaTUDNc9ybIN52irx4FJXzmexdII2TXUcDJ/bRMlMcuNGgj0rveEreY/Xh8f/Mc//e6//M//4dvffHvy+uX+8QHyd3wBrvUYKwy0jkDziQgC4PQvs3xXCf3jZcweo6AuwcVFUuQpL56D/Ic//sH7utLRvZ2nEx+h3n0uidyvUt/0VS9pkwN983HKL722HAArbjHOLz4JYKQ6Wzeirf6KfcIvc9urHiG0K2iPmx4NbAwPZsCpRza0CMBEyM3fohNNkHpYIzMLbHV07x1ki8pK1Ge9vnqMvleUm0q3weiT92eazOkZNLeN5SgfEyncGLxNx4S9sWx/QjOPxYq9CuuOIZVgQD/2k+gc2ctEscymhsAO5GfXFsDcmfXHl1XcpThNGduGKWNIw8GBJxMtEwBnhVBCG9AbpcwMaUOmpD99/TKY1sRzh/8fVf+1XUmypeliABaWltAIlZGRYu/aNeoMnkPywTgOn4TiVU5f8RF40V3VorZIGQoaS0sIft9vC1lNDwTgbm42bWqbJh2nZKWpVccrGxn9x27Z9P/x4gveoNPk4J30YqkxDRc1khMJoRJooGiIO2RLBbCSLn1kWSxX/NTr+AK6x3s30wXRESK7HY67nXaPEyxXm/vZfLLgXCmW7Tf73e5kPq/yXbr92vHB4PTwhGVCt6xcXC/h5PHRAL6wNXzq51H4PPmCQwgQFV9Gmc9nF9fXfKIcktCNhUKU107+sK/a7SfqNriFe/bu8Gl0sOmEsMme8wzQMW749AQEOL36sHEU1fFTDhpFKbRFwilbdNhvqAFJ6VLYYYwssUcj14gXNbWy+ALukZWM2fab7W+hEfAeNqkknHfreUGCBVGiHzoWRSvgKe9VC9tO18yoPPFMCMIi6bRRZ/QCQRhJR6bkUhnVlowZRFRxQ+n8+UbpBwdZ43QeCESYvEq0Sn1xuJZN28YfkedPSsIGydSoQNIk7rl475TktrdqdEU1eW+4CXpgxBG8CMnMeQWIUheE4H3Jg3VJazCkBv5KIxKAjbb9vJEcmsxSO7Xov8IsUsyJjiaE1eFaC7gbjsjSdI3MkFcBLK/Jlpz5lcwyXCb5W/4CJT/gKxweQBS68b+JWsggbqmdAlBgtm05sQohtoXkhGp/6wNz8RA+AzO3JMpbyaR2nRjv5TAooDbkURyOY/nPa1tO4HkO7gWlACUbDARD3HHJEdBiCTAcRJgEzK0moNWAKuoaaqSVIkCITwQ9H2EgeAIQuW0xlKfypjAZdDRC8/hPUW6Zri4huLy1G4aTp0jw5Aw4J+DIGtipIswn8NCsJE5K7XSFU06PmhsGKZKwneJhWWFH2Ct8MxROyhfuCp+BKOURiOToGUt58aRcucjPW+B4k+K+yzwDjwAg3WLCkl4TpKOkA4nSvhY+qz8TmtgGBiyvSgbzWNxL6yAvyoSkYI9sDxVJAQIMMSvCgJ86lfilKCdghFA8kszUUyebZFMLr8Q6Uin1iX/BtlAHShoxabZcvOUqz+ZSN3UWZDCPPBHgHxd1WdKAKbpqHj1JMps/NwC0EFZIitSlOmomgX9qGq8FzRv/ozYhmfstDLLx3hKmmBhCrRwcRLSkADsiLmykVkj/D+8qvBIzxIfESEv7FwQFYg4QARX5BqzgVLDxtwaitkuQY8BbpF0Lms3lOStvcNx39pl1ZXV2my1qjUa10WR376DXXi1hz8N0Onqq0rjvsTa6sq60O/3r64vN45IZ9YNBfzNbXP7+6dW74/H4io94Pj0wnL8zpr1csobY+ukWT9hNOV8Rj9NwMt4vD9DJivuPGUdjqS6NIRsnidxpdlhyQTvE8UAM3M7mbNujWZK8NIWw2mEzCC9RiOJxg3aRowwnQXLJg/8v30iCdpdxMiGhBhZJ6jfIjZjljYykYLkio+2z+aMGsDH+Qq6aNexViVNGAFEYntQurrwhlwVLia2ctjigHTAHheaZUoi+qIEpUT5rCq5UoU044JJ6lLMWFiSs3qqLrghJeEFATHjMAzBMVhlgjJeKI1RjWU2YjCKSjP41L+gB0GRQzaBsMUAM20ldXsjGiBPuWAHk+5lelnzGqzz58WaEwNIXljQPOrVvTvofzg+ODvqsE3NBywY5O1xISYJdKUKeNNl6D4AZDoKyymdPI0eZGTXCGO2OkSBIJPIMlnzETkPDplhZRGT0008/D5lTqnJEyz5B2vCRAxgJLTHhKgqms/DzMhpFEa0MkDEEWyzfoMhzky5qdb+57xozgmD0kwVy9mccx2Ebax3yPDRos+08JDgml3SgtJTaKoDTI5BgVIVI+fYUbYoRMBJCRDY99n8gk+qg28MlPVxV3tAr5q0yABY/fDPKjyGECWgX0iO6cLkstcoGFSOuADhwg3aWBTAcyBsd0aHxjGyjXEKOxGEFpKurppvVuugC2drR9AtXs1Njo86gA+t9lVZDO6A854du7B6Ih7R5YxMgUKGqZ4J1HZTgfNy2oQZUIqZjSO5dDt+Bsa0uey72WY7V2q1POaGJrhDb3mQjqGVAp7TpRsNlPIvOho2OFEHOHudvMq3kF3b5jDczOd1qnRU4+KZWo7Fgz+5ytn56HPQa08nqbjRtsBF8MZquOe54cdCu0xNAFVAC4ns0hq9M3I9nvXabDxfiuPzaGCefob9PFdb203Mhmc4aax7R/6zVscOEkemJDStcGKbhsWqECQ7iCldjerTURrfGbgXn49bLGdqCDclTrjCTPHAKqrbjqcoHHiB8Rcs0HOMiSJMIRm5z43vNmL65bs6ntAemojeII+GOzOJCaRBXlIS3jn2qBBEYf/UZmgZOgbxbCOpLklj7TnG8JCLUktQq1IIU6ie/M2IO24BfWiDETB1AT0yZroKeiJz2LqJQ6DxZqDl6ya3ZqZf6+E2WEmekx2EVYmtmNZI8eiXQU9ngYxbnBGvVFF+GkjlZT+YCGfAJOqnUmJJU3Uiu5BeUJhqOGCbySA47KgLQaH1GoeWHSckvJnIm/+IQfUMRu+MxBZgKzinjK2EqjhJhvQQfibEEHDRAHeqgADT0wVzy0kuqoE7b2HpMEgFLT07zDbMKYaK3dQEiJ12yl0SZJiiY6WBzGM4DuXghBjoEcYZHGjDF4qmBpg74r3CO7PgehEsW8+cVN6TL4ZIpTiRMy2txSEWYLvdxzQb922YAnQSkWgoU5UylFAgmaDMImOKVVNNx08IE8SSFhcGHNPgsut7Z6dRh0O+NmVI9qBZeIRFyKV054D8rKMzgJo4mOpOq4oxCRh5lmHKlWEEKDMFki2L+IEqIQnZgKS46YvH9Q4fJbpEEAZQAIEUKOgErr0guFJpPcygp/uZSZIYOaohcRbK2gqAiMl7JX2xKb5UaC5BSu2iHBSq/GPJEMWDLWzlZJPbShwc2ng7wvAE7MSxU2D1x0MHSViucvOVGQ+BSxP8Tl+QLaFuemovLkS4LFIsDj6KKGTtATiU/oYPQoqukUKRciDiaQ3kS4Ie4USOtrxKIfwgXvScTr8DAuiDSG8EUDEks3gCY3AOn5IwEEGUhZFtLhGUNls+ojRE5jwQjoiI3ZAhgFKjGpaDj3LSjwrLgRD6Bbi+Z+EKgYi3AgnlRJ2r2Srr0yhY9XmW5mD0sl3vNBh/DJI6bjSbPq0Wr1+gdHw9vh+3O/mBD9L/g00y3F7esXWhxWnuvfXV7zZduWp19hvYZugLacDLdudrp9nrMD2ClCfERNOffsVEQRBny34DZZMLcO+Egn/gxeueATzjOa9bUMk3PGlKGUzE8GcSHOR9YFOSeAXfxhg8EizCY8cUEGTDLvBG3QuEVepaQS4boBn10SAsYspLjg1zTgpaEY+GKbNzqcKrVpfBP3kYtxR6W+oesvttePEC4D7LTFqO8+COdzKRTrfAARv7YqdpkOQdNMTUeSEmU5utA8jfSAXVBcG/3TB0hCMClAVns/GNx/vPMaxIBJZbRMX5ha5BvnlxkhO8FU+4FjzOkMQ2BKDCVAkmK+I0cnMNXQEAub32hRPF7aWjkB7WLidNrwSLNonbK+GeCGGlB0dnm/eH1+ffvz09Oj/icqutG+ZYWZRxANNTdQhbilijcPW2lU0NUTM4EFdQuFVyGntDIUDplXM7wuMYQYIyEnJydAOgfP38dz+YE441Ktd/e4TQpDt1BCXH1dkChS7FozTAKHhKnoB5U5hb2nZ3G7g474CmADFvN+pJRWY6J9IDIrNwQLb5hYJegjPKgnIbFeAlwUGpO3aN/CKJ4hnBih2NzlTVBCBJURXA+oVFV0UxNxKc4/E/gZMeD4Wf7yRwHhNE4oByu2yfUL/GsUNAztD7tJo0ZkY+8MmCMgcgkKLPnTOmoNFjY9MACgKCEjrMh9+yNwXQwTOHDZMa2LJsqnN+DSptgfsjmC94gjmxO4K3olxE0paaSwBCTjJ0IpCkhAjyrtqqxmBOtJ0RU8QjFxqNFs9bsdpu7z5tOZ3/BJyY88cl5EKpLpTAKJgNf+sEwpECDpJIG7xEt9WL3SqPCN3c5jtO+GQQMOq1MTdXWm8nT6ol9KffDGf1Rup8wefG45hMI6HuzWu33OTqofzeasU+gQReQ2H2/wodLGONnkVG9yujI4914UmNAc9+REnaOwx/mRXBHcV1PfAYR7rAwDGSRCyvhYQtzI1HjBUFHcHeREut3GOv3excsNsNtPu/y9d+4MUzSaSHbfnXiRSTxdFH/+AREQkyvzKMHWKMs8pghWAKDqUmVj7okhI3TKUwED1gMN42TQRXBS1IBESHFMNWxOBrYTUYZHa1RvgpYviMD3lJdEXmQyIiLovEF6KQbbXHBhAGYAeQEODRuGzOlyEMKwmjdgx6NOiXH4nq6+FmNinwC4y33ujZ7YFS4VXNuwBD0CpdSux5K/aHoFqCNd3mlTlmWl/Y9LV74Hx9ELV66Dm8hVtzEldLiSFF+eAgCsr1oa6GC3zxTOtSRBdxMKblI9OKlhg3gAiopKrddvS2cwCdb+pelfir1JfWDHvxRKAkiyRZ+mk3g4Se/yWAK5V5SfCn5hRjtXDYEiOklb5JEHRGkOK+ggGTSTBE384aLBYApXAEAscb01ElOWRbyMQyQpAzMEVGt29dcBQn1RAimkA/2k0IJRSFDBQN88+d30FNQJJOkpkZYPnJFY1OdXFUQ6pXtINUxyctvyop0zEqygr7QoS64Za5T6EAGiPzkCR2gopJDpXJTRDAXshVJ0ZZXhUYq0S8YuEC8fCBP+GO120s1kxhZUGafoAMMSwfG6q0rLJQJWlOw4gWJVpH4mDy8pQr+pl7KyQHJtNKiKmERaKaghZFsGGvt0a5SvCSCBsgjHn5LUTBRNspLvsE0LtIDyWzUJbwkU5C/Vs1d7uFkQEFB7DO5fas0cr2kFwhFiV7ewLkA9G8ZPJNRStaLaq2a/4DK8xa78pYagp6ociUxyEFEAApKSXhZXCUJZsgUhpu0fWtO6zMvgPitRpFkUKW9cFFXuEO6/6K5ZstlTeUiJ3UAjkcLRifJxb2cMmI2A6CSpyAsfAoELO9FBo3lY/e07ozJMSpGvI30V8vFYjZBke5HDEQ94CcZPqs3O9M5L+aXX3/nc2Af/nTeG3SOzo6IzkdzPpDJxgC+vQX5u4z9j8Zj5sQ9Or7eIIaYsu5/pzLiCwCb52ad9bjVFrPrJeTaYVUtNTv7vWThrP1nx89AhM6ANzZ9oA3CMqhwVtKgJKwinMFKZI3sKgySA/yP3BEa9NG9MBj6n0RYQFEi/wBP6fzmpiiMEPRasT7shfKm+KPaxUC24rAq4fBo8YAqGka6eWIIZFBqikDZ2TIqISVmaVGgJAGaD2RTf1Ij90UPyVkQ+AMN3ufttnoAvMD3Lw9QEKASQiYzxyunFCqaNJ2tcWEpnVcSFM0Lg2SEBOKR+CNP8pK71OjgvdxJh4WSsA5q0Bx9HR1BFmF3qq+Pe+9eH52es+u3xQZOAFIApKiaimjZZYQt5tbiQEbq4iV4QRzNwDs3zuQgjMi4sFfSCuMIXrijVILOk+OTv/zTDyenfT7/ymArq4C6zRqxHB98qrtaKeenGTpJDv2RhCzwX/miwHQVsvTd0wVczMT6e+KzKtH7fq2mA0Rx5fATmxyI3Kwa9JRUaZrhYwYWgyl8M9xyZy1RId/AdtmIQ+xQRvtgW4T5Ox5siIY98gjtaC485mAuTqqhRSGQNlhEJXccYy7qBBO4I7s/ETocBR6QsV+QcJzHKADWAZYcqoF/4ZTVBG2yGDbKPgQHKxBmNuxYhAaSiQhKICAERUlNygi3NNMlvre0XIjbgjCeEVOiUVt8JEhl6kZ6KVZsZj4K4ZQfuMpMu0yGv0wZtdvVw4P2Ys64xKzXb7eanMnEJwLAMzoMpoEPGHRsqw+QrXOwR01FwCMiosfEHOJsyelV+5xB3G7Vup06i0M4qAf2Pz5yJMGKsYnaPt/FqnLY/+CgS+Fmnci7wlc6ag02YVApszKNg16DU6s4leh+OvXrALisR75VwjdR1qzbYTqg12o+8o3kpwdQpXoHFsPsnQfG3aBVJiuJ6JodgSqfoYAQOilubnyJb5lyYS6FfiznbdFd5JQihQ13gEZWBnQJ11xmYAI2qUuJQymuJEskgQjrhU6tZDSsyVybAUpEHU+gJiRytQLBpteOWXIZVXvBVZsBWVv+WxcPRQWpIXUVX6LxWFY1pnh0IuhFI9N1AWzsHKrUbhCUMrNSLNWpIHr04GZiIjYEmmrJpgMlv9LWj+gOAAM8pA53yUA6yUIWaRd+iA/hV7qnSiBNBlm2LMLvJAqEn9SiQMBNqM5CWtRG2bpULHOGNtlu5wG5Qk5xYgCE91QMGtv8rqQEDDjIq62vExPQpIpcicyohgyAkg+yXJxZTKl+Y3ixsOIjFBbilg38L62UcwuU8VmPQoOjMySbVDvuWdoVQy7MAsjhknC4ZxiGIgCjLtkSqclYqpUh0T/ID/aWxfwyhK9XjrVZKMwJqyXMZKHZHsjeRMPB3ESy8wvY5iJrHJKhebRCR8NbMELurCjjPUePp/8NmeTXtI2cZKJSSF0SbRkx8U9+yEJOAG7Z4tJAZ9xIDxPgmKiIMT/JbGMGHE1ANKmu4EA2bijFjSir/FYNKDGP+w631cwAk73wW+4L2fVysiTYhsniQPDFby6ykUewrghVInANyEAjXSQDhJzaN4xCCtGEYA48UbWuDMBQS1E28lAQxvIbIGLvr8gdyeaRgrw3j9RFXkgNtQQ0jBLNlAs3gqq84kc+hJO5UaBCTykK4uQCzzqgAtvhlZW8uG+qJAPEUMKCITBMiDqFZNEO+QUHqijcIH/0JKKkQYJ1RabBGEGQ39ojKe+kLGpf+sx5DVOslj/BORwr2Jq0VWZzKgL/hB7QSQEymBBIwudB2RZnItxgZB5l4xO3PkXnLCccagE476I2WJZsL1UAU2hmlIGWBzsSkmQeqSrvQ54Z7dSRLFfNbgpFgI7MIRBMpsMhQ/XtXr/CEuw9jzgj0GDMfjGd0fivOe3k8ZnjLw4O+7SSnHLGp7nY6Fbfa1ae+IYmn/aqP62fX5+d/+Uv3x0d9FigyjlBzRaruTlHj3b2YTnnQBcPOedslKUjmWzIq/Y7PT666Zw3mydVjEKv+sBRb1ksrgGzjNZ1FkQPtKq2krR/kCHTSFWLWIGd8TMDKGbUMeeiLOEVGWALLShelxtFyxRNZsKpUM0Jb8M0ysUBbhmYNFn98l/GyT35HnXIswI0RSmGt2SKE4j1mGITUPSKcnFoBUgIQRZe5KM8FAAD2FvDicqUeIjhW/CQwmdOLfRb8vgEOEJixApIFBJcLaPz0bJs9Qs0s2kgREPibz7J5N44O6zY0pV0s5NNtxJkZJskpEgo1TXrmDjLBBwMs4BIEQrEfqnd+slDpMtbciIrvsX0+rj/p+/evHp73Om3OcSeM2PISEGNN+oc1KhKxlArBCE7nlhSoTuVKFyxF9LMX+tFkhpCIKA/MgGEwxId4M5uv9/74cO333xz7peaMIddTvV5JoxrN/ezJpzeFgaL36MCPmYMsmxDoUG3HiYBWM+NbOjA8I07tAxBoMPwCEapke74QiaaPAVsF2wxZAePVBce+0lj10TlbGzeKiTO86HXzaHvPrkYITYNJcboKBIhJyn8gjy6zVAEo0NaaMMunBwwZxEpr5AqbKfe4r7AjmowNDFDf+wROYPEE+B4V35sQcp9VLREBbzzHyKgJ47yOEGBlsJ4B2VFH6DYtUnaDlIAH0WJXDmexHkkpEVdwNAs+YOwgElOWM1vOEkR4xKPMyHa0fVJ4CPHNzVp7zi+k7H289MBPaCnzd7DfH3UQmhE6YluzS/reYJL8rxcHkaUIbxiC0k0yH9iZ5EIdvi+4C6fNuDwKJpYw32OGUWZe90WsmjUKxzeCTDCdyTJWWLdbv9+uB6ONl8u7qaTKVoD4ezxnTKnyXllnQ7OlHERRAxk1gXd8qExjiV0qxJ7nOAEESlS8IITUggb4AMfN3F2VD9MJhQEtpAHv8daSbDVOhiOr7GHs8LKJWyh3mxomDEzQ3lj+HSyVSl+7HcS3yhvDc/lcTY2xStFYjzEPtFOwxEi14IPiitcXsfwg6KS3ToRcKY4qdRCAWceEGi0Afx5g0JpnLahFAmOacshWMT8D1LIqYjJEVAAIhU1I1OH1BBOwQ5SVBpQUueTDhXUTPxMNsDJNaCFFeoemuSknXESFzZAtqAk1mDqK7bkyyZTYjMGu9ZU6HIMyUsaiVeI41VZ2VhIoKgkC4oSxuWwwyqsaVsXqJHCa8i1LG/xD7xNyEs9IAxwsIV13PhgCx2jAmghPdCgL3YBDAGCGG+ti9r1fgnQSRFiWvdCub8tH/LFytozYCNVImzDD+YaOYx1k4bWWMQCIqnHQhLIhVDT9Uq9Wiy1m5yLRzlWlCQpZJY/Bc80WmDMlSJpbIAdly0ZgSNd+imbZPMCAfmGfRq2aJPX+EYmiJr9N6J+vWRhadwW6WZAQPJfrga8kLmD4WoMr3R/5DU20vEBnWR/yzqqhz8xhIL4VnwWlYNBVNuRjeQoQESwaA5MA40MPPAW0qxpyzNxjYhleEGygAQxEed9TKaQGWRV/tz4m/QwIAS6TlrZgQbXllT4BYoxf0kuVxBnl0tRFXMDJbwAJiRRMRmFTJlcwPCvclMaUid2RRaIScsVc9+o8BQuT7ndWhB1wByYgLC4DwgHm2GIBQONSgWeH7AKNJEpCFhBAmKqM7HUoe2CqzwUyciaVzwW5pAV6NYA68gauWzxDBw5GTXOK9vCqAxVQYueJOmqEEYB/AIEPpCT12Ii4YDMb7kmopSCEiUbt6DgfWMuU5QxRb3MLXIhO4aGGMsDQKiWciKhZaUKdUNIRRY8+Uq4qnSBHzYGcmgMFiKsgy0mr4aKvBKTg0B4ptHiA5fcMQCvlAD87FEn7kV8XM1G4xHj/7MRw25Zk1xZrB6X8wXhkeuejWfqHHlx0O81Wo3Niq74Dn0D+LheMZb/uFw9jO85PGPOUAanJ/KVTeay6wz80/jGOlXdrIoGK9bKEu4gRjQSFPk+Tz75i43biJbAAC4gNx5ZVYJsQFecaRT8YGpGVVznqbnJcljAX6HpsmlTKVtEhP6SGP6p/2ZTRP5XYfMQvv+h5KpfmF8y8wTIwLdsCv9HKVNkcwHIH9VG2ZNOxdaUDOIQGKmW23KpnDzAjIwEO66E3ChIa0gJbuCRrGNCEnq2xAqKWmzXUhV1UkvqKtg6Wkdp5b5FdYsYFZGjlMVURTL2gIcNl0QXkGQzpAtw7sgfjZEtEAjytL4J1uFMmCKNLBqBEMZrGCyvHHRb784G569OG81OXH6ieVt51kALmIp1CIpOAoNMrF6frVEIMvIlK2ELY8ZUQXaSKUV+9J3a/4PZ5Lb5JjZ/YunOj999+PDN226vQRzvJ7eed9l/0G3wrWp6MgSQDAcT/OjlWNJNlJz6HtBVjqzi3E/6pRm4d+E29oOI2LgJ8UR4JGAMNqm5ihOAMcx+KXpoU14KAgLAUz3XHv3RgSl84mAyRuWgxhvYWMZqZS8BpdJMm0NX2CEwgz34r4bQH1SEoRwohYegIfFqgQyM5K0qrEZbfEnEhUaBlrxVkpRN1Syco2utFNyBw7wcyIIBXQh1LwRJTaRGRVQDGUHA+oCBesAMbc5wn46BkkBDYASqCKiCGnkKu3wPF9JXYRwBk2boYP64vh+PN8s5B3cuN3zEd7fdIChnNX92A+uyxIE6xB+IIQH0IJh7+WwOuhnqJCghWbYh4UCuRncXo3tsqr5f3UDdw+O5M5nPfDWix3ekqw7G0dGgiKdI7e50u/XZajVcTJ73WJ/CWn8PveUVgsCL0hR3G/WHxWY2nbe7HRQBh4MB0XFFS0HPw3P99AXuMTjGgatFsGLbkPGXQQ56AXyqDnVk7Z/azugfmx/sOUTJmRGlQ0JphgGkl264IvLe4IySKhE8xURlqKbDK5VJduD74YOch1vUEdYhHuYdbK15gXiCkGimrNmtGxnSNw5wSlMpvdm8AQZk6LKsUV0UDvKmXVG9VHSs1gzWq6j4C+a+QjWpCQroD3ADLH7T6eEXbppFUPAHPohS6Od3YPLKI/kVavkariCpnXLklWSwspkRB9CWCCjiH90AseWETXSThiR9iTgxC1M8HtT8oEpd4a0RpxAM4MIo23sHJKBXsGUhEEXQeBsniQKDAoTf1gIEUgsUfE9Gp3Tf5uSS2/whg0iEWyQal5sWDlBRBGf2eFAJyr3dTZTCaoWmbQcqTtvMVip7uMqTmiAq0ChkZMVtKQsQMwGAG3OkQVIccsMSJfjwXVANAzU59cd+nWjkZbFDcYzaUJIqoEjg5uBJksHE+kwEabsrRZDhvEIVmL+SQyZkqQ9/EvMFYQEiEUEAhKxSRIHCZ7mse4IzGUYKh6JIZLVRDItTFlQUBERuKZLVFP8DDZtcymzZZSXkxb1imPSgKWRmwzg11lfs9MBdik9oRxksLm7AgKviH7mGGwpCCBqCL2JGYWf4FdbJtK0UojZ4ahwENRZp4ssgBSoCnL8u1nx+8vw1inNJYDk42RbXJoWL9O3/xLKyC002XX4KvFABhbnnRYAVfMMfEdf0+AfaZLPNwEj09m4GABh4gqQX7wKAv1oZiaKmJlinObaPQAAzx674x0XPOaRtpWaiEJBLUbxAQmulqiBXAAvHzKQria2GBENGqciJyAsrCnwqLWwJKnKDZ4rrXRSxsHRiL7IIe9UVqmOcD3DAhPBSHNziD+QyJMcZU4EIWrFcpTbPksOOeOQSbXGNJUapLOw/XjI6L/8oVdgS+FttB1AAbGHEMUq4gCyMzEEM5CGCNv7x6KTLwRfUu1kv56MZp7bsP61Go+Ht9RzPdv76tfFRtX77968IlkmCJm1dq4VE+BZY5fiAQ6/r9RbfA2BTY7vHwdj7DJIN78esiL67GzN6P7yb3oxma7e8PXfqtWajxrEpeFSUgTZSmIRKzAM8Ey3xaLCEtjB0DK2obvQErNWMmENMDgnTEBbmhTKZ6Gp1p38pqMpIpkGJfCQECfSwVAstWlaYTO60S/JIfkaXeBW1VBBhaVEAf5MrBc2iNPytCXChZryk6ohGrnNx712eRFoNQavFMGppQceGVQsbZR4tRs4M0iOa0gBBviqFlfGezLp9FRpvDqytpZBFrYiKRty8B2MNLoSIe2GnZOgSQcZWm25YLEECIQbQMWHQIE7ikT4aXokiOPnSLoc/Mti+AUxDIZGRjiLHh4hFws2np4Ne59t3r755d3p4fKCNsMDaJhUs1VVZVpB02MvznbnQAcN8IIS9wLSgdViLjqusfacgz9F5/sI5ADqavodbMIQANpEJLQ8rsF+/Pas2ap+/XN5sRkSB8IhvUMCYDb0tWQTqcl7wjuXrUZEeIdx8vqr3GZWu8WK5RDPJyCcCapsJh+faoWw06lEwzgC1QaO7ADAyIGkXtYAjYCt8BGotPkYRNsHUwioaps2UM9J8znGFzyyaQppyhpaFm0c2wku5P4ZqaglvbVDgYaYOUHBTaAacEyBZ0cYhwNEN4/Eu31cN0F8Y6PG4Uqoemdmc1GTQarJX0UxKgWdY721RSuRlzJNUuAfhRaPQTNwj0ZxlSBI4ZVAYtll7WWHagmijaoYDKpqsW6RXpoj36u26ivD80O+0JowELJDVM6cI9w+P7q4vcRWk840oBb3ZwCLUJAYifhEZJ/k4wV72VBjCpP1FZfhx6PDxsckCxL29xXJ5PdwwdenxOmwKeXwaT1dgsvfMtwVYf7gpe21Ho8kBX6rrtVZS+jRbrnudLhJ34eKaj5Q16TveXU2qfNWY4Yklnzzh63WyVM44oyTtazaeIF+n7tjQAu88AhlsNeqgupnxWYBMEcB89lAxiMIe5b063lJasmrAw2gxHoUG96DMCuLOnGSnNULv5bJcwEEg71BO9Wq0UkH29g0AgPbEbDRqKtZw/KqCKkdWJUU96oHBhJJLe6POUcxaFIDZ7QkAGhUGJloIfnyiwh4rMRl5S+b8JY3S/pBZw3XbHNSClAC5zKEY89LueJQZOmPw9DpQJvA3+gd+EIA34Bkj1xPJdBgE3lZUOCAV1CbbwrdoiYlQaE9GxpSq7XJYUHKkBRq58l5ogBU7UtJOY0gwFtwoQx7+F+7ZwKRCcppsRdLlI7dAJgNV5t6/YmVtJOjpUorf5oy/ED+N31dc4hbUgAAOFKa6QhT3IOmVQJk6RQkkk0ceJIBLpbYKQOM+6mEd1A4oCQFn3wlZ/HzSzkGD5FDkey5xSO/fIjBHoOgfBUsGf/OKC6qFWN5TLHnByFL823JDboMklao/YZIqBDg5Hy7aDsoZEoBMWtRDON5QL6WCjFm4T9TljYkgz1XGJIQhCYHuu4DyMUV8XWRqa2zAh5MIyWYohBTM8SYQQiyOflImMNVC+BkbBJAVEdhwAxsyA4YLjxyLEKSPgrIBUGQGMojyUC6Zl4gBrPiRlRE6tkBeCBeMHkC7KAErGWVIqqb6PArEPJrJ9oIWqrDCEC6i3AYRsKdA8vFXbwNK5YbE4GNB8kdzLFYIEPkXmKArd6BlC0jOUNq8aCmIx/rAoSQCAYiFdPHU8+jByGCipY1XzB/M4bHJwYObpMtJwHKPIUiyCiNMKuXRqnNv7YKC4WLu2y3xiik1mFMo/kQuJT3ML8wMwiGDOvgJb0GNGzL8AZBHkYtiWxMZgjTg0Qf4Sw0sbobnZkofLNgFaMEsmOOjQpuFqaDInffSkoeSzCME4UHFALR8W3hCB+JhdHFz8/mCyNHoLcTTaoISJ/hfXd5N52xwa7759hUxPR+9GXHWnd+7WTbrjPof9I7POdaab+GMZ8vFwyNTBTiZvQrHuTzP55vhcHR/P+ZzmAyf3nhGKLsINsigTauw87RacNYnbSFb8XD97hFgJBWWycNEMzAAhuQECMUnRaVHLcekFynaNoJrzCQchzrkZ175kGwhKhI3gjHclAn+0s0q7EgX4HFyPJSLPLLKvMX7mZXr5Zf1WEsKQoEzz75EY4Xhq6QEfu5JV/viErkhV2C7dKSkv8DD4dlPTmOomxKYiESodBtsVCNlZc0blRxqrUmgXuqqQEUD/bJ1CAzwJNd/0KUbNPL2X/KiKVYTBQtEf5V4gLK08xRHyCgqLiHsD20m2mZRCwaC/wMmigRQ0OAQxVprn+UV5yfdd69ODw8O01ZIGewDZS5HmoN5cDai4CnORJeSpeF2HY0Qgp4yjreBcBKJ0vB1xQPkZosJuk9XQl0Jl62IN7u7J6fHP/7w7fmr406HeN7l1ftMBfAJu9pem9FgQhHaI+2Eo0Ihm0h7F5HYY2XnOp2I6j5zCARWepJ0Ruj4QMdyseQPh10TxtIiseqGJUPEcLwi0cEp6GWLzB593XS3nG0wGJRRcCNtl1lEWynASUSBhhupw68MyYNcjBVKQEp2IFDExAwYQ87QiCTpBID2VgeALusywqLzMRjAnTmaEUJ1O1iU2DnSt1UEhQOw4hIZ2+Lj3QoJJqOBqp46oAZSHBGAABLhd/Gl6iRkg4EthQgob3RD1YmkdN/GYi4kUaNhjJTQC0Xi8L9WqTF2ftj1k7yvz44YGV887dKbYqF+u1U/7nVODlwJBMpOV6pIXlQUuNSmqsAC3bVdq/QjEVgl302zj7pTrzR6tTYGcMOupscdtif5MSEjcvqMO61mw+nK6u6bc+YD9vst9qvsPqw4o+yB9f246NF8CsLs5Bh021S8mC47nRY+C4nzJTgrBhZycNk81uDwPwxFKeALDOc9F7xwJAcF2HGYXw3nzghWVrMkiU3HzJ4BAFeJEhj55lsTcFwrt4cKPBoN7DItk9nkAknbf05lJSDQJjU+WZytG1o7QPTJ6k2xvigAYYmfCQAXDIwBCV9xo8ZH0tTtffhLWdXfXya+XKLBfYmt1dpEaapCSkEeN1SL8Ow/CBggTlzADPkGL7YoGVLzVtmgdY7305cVDhYZlFQ9MsMNRAJRFC/gUkW5lS5yaS06RA2L3yFD58qNZmC7vg2MqMosaWBiTpRJcb1DkZ/8KdD9I0Ocjni5lz+ALLKA5+WGt9yrqSD5YsEkyoiYO5XKcwzQBo50fuQV+UmCV1ykc4lqRENBb0yimLgBjauQH7q2TQSJhXByW6aoiu4H7qGrooFLCizXx4MDQGAOmgp4UYr/pqaEhakCKvSWQggJyqtwEkwoBf7cGI8iX9WJG3kFHwimZZPajIhp2ajjBaa44rno5m3JMUHjSUyTRiIpwCl/t+4wVUhBIVBRq7c88ksJ8uxjho0FqH/0qC74wVsw4dK9gYh4WhavZTMiXQxb2vM0Efz4gxnm88bA5dHCcTeFVwAvQMAKxlKkVq1bKgwXGf4BLEYBTlRIecqSzIW75NHswYY/aC98UyhcRdDSAuryDUq55a/5KemN+ky6QoxGxWTEX/4GYfJ7D4OKQjp45oXBky3KjwhUMTmZ2Ei2CMOUYss8MX8J4uKedPJzD5w8k2SNZk7fQ5RSHakg51vRMU9URRQozuUNqaJqEW7kT1JKehLz7PsSxETY5A0fSzaq/iPTFsOAoUzSlXdu1BzwAcMwU08qpDjlkiLcYOJjySbqskQM0tRtK5Pz4izMsEXko2aUVZSWsCLINFuMJYRaSjTyNvXmUWglvCNNCOSy5YgmS8CLZCiYdMfnuI/cYQf5iw/cmdyNOOW6PTiwGYpsKcuw12w6u7vhsP/x/e109bDT6HHE5+P4dsqyCIb6WSDLsOrlrz+NOOGfye/p/Ob6fsLWXqpg1G1nj716nILHOCsOhLX/rKZlEy9YtxsNp6li+OLx9DBhwRAOU9JtoVlOyw8+wd2/oUtqjIYppRNgIFM+ECtFTvBRO5VL8gonBJncAFwVoiyVyXWZD4ERgKzOq5JRrQc8SZZN8fJbEViUqixXpGntAPWFv0oR7QvGJVtKxS0bpqfuqCu6Q4ECsZiVWOYKhraPBbBp2qkARbv8ZfGqTCBL3BA3qoGGYHOw5QcJ26vQG42QWK5Q473EhhskUgP1cAEHjlEvPgrIYi6l8grCuSmvM665iw7IWGc58IpiQoxFwECZ+PO4ehs4MWZbSa9af3Vw8Kcf3p6eDxjZ1SvITVBxfJToPx7GboC+wwqNfoCfepUjbY0YwsRoMi+omlJkRf+pBSoy8qJj3NIqByPr+HVohcOimqaKqOrDd6+/eX/abtdq9edmY6/Twq0zAcKhkBVWWbs9xbFMO45gRDQHF1hMTSsH3uBGNGL0+7BpNgm3CdsJ5GATtD2yfMTpFLj6SKy/T2Bu0GLViV7Q9CAMB0DesF1vUHny/C3qzed60OXS6LHtl72kOgcpY98xnEFOhXYIRFPgC5GPVUa9AEljzWWRNBA0WGFekaPOp2iimuXEiGaS5vc/5K5wDJ+jHnKdPRhMIJPEZ7N4gsk2kbAGNjFZUaqLzgJN2pGR8sKz2BJBOwNetmVoha9UvKDHe8ZuAEeVGuxeekBPk/G402xwPs/DagllHCY84nx+PrH8+NDt9ZvN1nqxYdSAzcCeh8NXlh0yMN4WY//zW6rUBu/RISYMlRCUsvGaAwnuOeRTiTywuGg6no0Xs5v7Ecry+s0RCx5ZYVPHYTXrs4mbT/Yb+yyFJBz/8Or0aDBg9GI0nNBJ4PsAgG93WkfHg3qLT5s/GMH6qWY2U0EmJGMZnFfGcQaQapyDoUXimOETqhGdZ6kYhuIoDCaGD3RkBCWPRVCWr0xEqvYLE2Xpw8tSH+SnXAkLEAL00wUBeiEZeQFdDuRS+3ktr1XArfGjuM766STQKn6THkXiDo6qhkgtAEoeCbBK4DjwbHVAtqdjmuar3aP93KhBaptQQzw3VA5YcyMf7YQ3sOml3vRWhYOpJeQVnxeMYIpmbN0WpCKUEyAqcZDmnZVjjHG+cFq6nFURvlWRTeUu+pZqUhmxi2FhASL7qKHE2UaHxe8EMukqkUYQUPIHPutDrQHSqAsWyUzA6L7gQNDjfS7pkh8meuN7+wNINyliIQ8xBuyHEBBQvKNFNL9vhSwtiNJQgEsm8ygNaavMBhMMtoSZ6NxXuQAuy9CHyEhr5F84Jo0C1vVh2ykSJ6uAqYm30K7ztWwG0akPflIcqkVOlXAHeUHV6sOuGKeoBggSLSQa5MXdm61oIviAgPyUUq2oyI0chRtFuOYvGcJ6Vs6BGCiFANwT56mFhy9tRpRN8cFt6JLI8B/wcd5hl6kyVA5YuacZYnaUkFnpJBTzgUZyFhUFAGDDgexkKhA0dX0fdJLZsQ/nxv2wIfXyS6j8txKf5Rvqwn1E8AeOlCUbGYHqq+BekKRGc6ewIkg2MKEIlQK9GH/uKVcyW6+1qeFqC4VCrJjwFNxMLfpmVl0pXbttqAqSQVh6FcEWIRUOUGBDqkAFq51COBVRBKyUWNDFi1Gc9+Vx66YCQWS2DBQAGcScu9QkTfLNkJfywUFVCfLmATzlt7rDY1pi4Be2huXll/Qnu2gATTz5I0usKRRIjmgHZ5JzY35uX/CXa+XRt/wL8s7JxPkAh7diHLGWR+EljSLC58m3qjfqotg0YkvKXf7KGSGHUhmsUihlFDBjez4FjqBF3twpDmRXN5REf9NeekoBUXZrMPCzpfUmQTiiMcB+YPp7xSfA5tPZks+mbp5cw1DdZZ9i9Wn/9fnJ4nHJNzV3Ns+c7n9/N2y1O12c/NMO5/oz6g//FsvFdDpnMICwZb7i86ke1aKhhj7uuUAbiWH3YEXcBtng6Fi2GkQarMkCJxgSZ8Jb0hjyV5FQb0JPByCVqeGcBVKSzPJN0uWnoJSkb80jI/NfZBQW9bnUp/BYzTfN4uZP6WQTjDBN2v4p8iKzqgoEM6jkVu9fGR6AYAueqd1soCuJYKc+clcITmbYyMKJ1J5asBGiT8QaX0pWayEmEE1KUwvKw6cPpHiLLDcxdo0kfkF6UoUo5k4Dkhe2OCDgyCuaSYW06iYWBKh2h7NQ/vDqOABe6jHgMC2HsbHlnETFZgBAibAVkyc4Jly2M+DwZWXndNB6e3Z4fnpC5xHStTX7vRSKOhfEsnYLgAxkQwWgwFa4Eqq6QywpIE5bDCVSLb81BN6TD0OQOerKNo8shq4HR4jMKeVOofCIV2BbS71+TvB+cfnl/m7J8rRmrcbx8hYA+8oey4sZiVcxidQ3HF+7Q38XvDrNOuYAEtVanZaerir4MEarXrr6JUpgg4udyW2WhcBqB9PiRWF4sAn3kC7he9SRkBHe42aJgMEzQlJGBIGkl2ALsuG8CCphVS7+yo6QpIUhEa7SwUQEXJ6NFAx7qC7QS1NiMRkpX5NRC3JtPcjxCkeqkLjROdi+UzvdTTkJZ9U6eVrAKhGVx+AHzmOhSARywBmRY9BIJnGUqugiVfXfTgQ00OlXiHu7HBIAccvltLG7h3jmiynfD4Su4ZSFXLsw6PXp4KdPFxf3fJyk11hujqrtm/spekmsusVKIasqRUcAiys2kpZbJV08QZJ+xXg2c2UU+vC8y+cG+d7wTsWPRnPSD69QqRbzC7sVquLVfq3KTifObf1yMyJI7zE5QRvEZyUm81a/s356uL4d2/i5x41+yhqvZvtnR9FQlkOBNDPv3e0Ep6AdHBCxcQ/NLQ4RDTcLH/mCqaDBSaCUY+oFvUVnxZ9+FMLU6EiSa3YUokYurg31JMVuDI5jPtEmB+oUWPyR6pLBGOpRM4Cm+mgyGmY0id/+bBMKSJlIznQ341PYqO76H2tUhazPMlAFzaaSBLIxe4n3e3dGKiBQ9Mfc2Ft2sYiDSsWPtYBsyluRBFs5xojwKGA2kSZIRa1VYNshMkAgspez27qjcGXQ1MrUVxDgAiSQKartFf0NYpKig0OjdOLcCEtfamdDQZEOSoVAtQpM5TxXCJMdxYvJSUqmFvmg1DzDgRRHLFx8uZ39ADi5xCIDA/yxyvxQnQ/CQfylGyC+5C/MFq4YWikXSJTfZhAl9Q8VIZV6wYKbUCHOplOPzBUEWWKz0KiLkdICGYgiSFH7NlZjLWoOQPIYJH3iEm/+QCL5eUs288T55J1vqRoOBKaIBVcz+c7/OGF7PoYIvt1e5DCrtUsRFy/gKsAst1e+CyhjhUE+iYpd+QhF/gYnKIZ9JNin3OYxDaykS/0RPNIOeySIdODJebUo6s1dysJP0oHD7xcISse6wnkFrVaHdThZmlKbDXWiUEs5tCMQMiem83CwSHRt3nQZVM+VBOtVYi9OzVpIkjH5E1GSHbYkl0LnregFQsgpEsHFi4/gpc/yAknVIYc6E5imdirmWUyVKcDKJZniECiWLeDC/5KpAAyHFV4It6y1AjOe0TulEVRExCpplEgxa4IMXwdDYIdhWz6b6HCStSE+QHArbOtKb/yFTOpKZtyL1Yl2mjGycm+NyFf58yflg2RBNBTDDQAU9CRcfEngdxAwRgnhVgQQfiMmAIMP/6KCqSf1CsiKJVCDI3FrkqWgqAag7wW4rWpbX3ArJAjhBVUJUc+jlybHWAQtwiCx5rCe5YQ4Ac1g/T2OhRiFPn91Z281W1X2OeDQwaQWu3vX68litnyYV2p7jVqDUImpZMY+DXpgtDs4iQsrs/Hqy++397cThukXj480zPPFw2S6oDrWPHCMOlRQi0OnIMVwFVbriSuOzIktroJ4K1zNCKrRJwIgmlQG/NfoImvkE38VXunzgQxbXi55ELabEC7xS02isDKjvQGgVoxc0GEeDJcVjzX6iusPgJTwUnSRpRL02Wosy732kgT/kmJDlmI2wRpKXqflhcNRLKGQxXy2wE7reU/0wWshb9+Sn4p4JYh0pcBSpbUZoiqyBT9pEQc5qcKbGEKLiyYtmCQz0HjmQvRUlgqFQyn1JOc/FqLFEBaFKOJmS6MxznKTppJbT/LHwLbHy2APiq1SrVf2DzudH749/f5Pb+lJWq+SZ8ifigiVxTN+wApAgHiQR9K0Ow7HJBqUF1aWlsLKeIBEMgUXUcK6yQTh+GSK+NaX0giXAB0vIRDLEmviagha9KiVs1dn3334/vDggCF/rIVBZT5o7Sj0w2Ojstdu8k08FtTIV1prl7Sh96sV+tlgxNBlMw6EMxKsHvEMRUrpkWUbYmjb4oApGzfBCO9bqgYzAqGShwhzG3HJ0ciTzgMkgR4rfiGKbhijWekH8E1eCOMthMinaDmMNCtJUEflyIXnMA6Woirc87ewCJ5wbxMfzsjprXaqD4Q9PCaPIbI/ogT1BOUsxXIuAsBqrC0VVq9AyWYdcte8oMJFSwdnTMyBPFZqWdtH0kos5C2tItBAEmpQP1zQzg47azlQczxmM9LOd2/POQBnvFjdjEd8e/zq7h7fsnjcYVfy+dHgoMdkQBWq9WgyATBWyS1IAzEKjgLY89FweIku8X+HqQw+UGM2ButbrE0EBVY/Ltc55thJG7pQfACuyf71/dpyuqIbRwx/M9tcXI/ZRc4hoXRW+bQw+6PQac46g2T0CiVRClbnkBlbFFB4wNkXdqmLh54RsdOFQHx4wMxdRNb2fbBHWWtQ7YwTai+72UYIA4GC4IjbDd3RD8Wja/BesaUdIgnFgEpSECaYUNIMRbR5y9K0SFUfpxLFX5ANppESZybLojqKKsoVzym/4lz/yBx+kxecrEvB60fioXlSHjrD0mWxMqVkDu7jXEigSgIh+GV+9V6r1nqSHVQLMvAxiWJCF4q3YKP22glhcYX+iDRSUs5WmXpUK2owb6gjE0bFs3RHEaKw5rIsb4KQzk4kkaOJUVxuCm78piSvzCr4FLUzkji7JBYWY5xBQbXLYrvUqiICLQAVAXXBvQKcP6SDG2qjHAtCOMesFkCUwAEzbnjDhJHKT0lx4pe32qcoE/dLku9cBqftmWoeG27eeUsBqyZXIUdxc5GBGvUA8RSQBnxbB1hBgZTgXaCZnxrFhAzhvwVVyJBmSTNStkCGN5axUi8zhY1mAUckZZLGSRb66KJdMBGAnMVKKEYtPkNYbsjCDZwJHBlCtfIv/0WIDCQnXOCdjQo1onk0bkEFymB+KikJAuE/2VJYc5OT6WTyilaB+k1C2WAp7j7aFaRsiUXWv0BQBDIgKXCWW7thvgOtXMkLRYXnIOo/SDOPv+AHdSWDVHAjbuh2kWxcHmAtJEURKG6ay96FSkUJqYulpDSsJkXqygsRDOTyG8JwHoVtKaegk78ggJyoX5ASX+qyePCV1G1dcNhsJLx4G5HybS4//WLXmgfJNI96GOLU01JNySsCYumV/CEzQtkiQ0ExLs4kKJRfKUS9lAdZOCEAXaVDGECDFO/j4YAsT8iQ2siHfP2dghbj/xYB/1C1XFa1AKJzFvvkKqgKH7R57T+ZBQT/k8lsRe3VJHKqYAgk9xaM0K2OlBdwApOjBUJMJv1Ps+lDYo/c+uhb/vCfFt9WxLaKxQnrnCbCJ26csGZdKGEOzrRzfFxrd5Do4VGHk1sae8+dHh9Q2htPppzoyah/7/CARw5FYV776m50cTu8GY4ni818s57Nl3wy7P763q+AQYZ6CJbMIRDM0Nt/5rRtMWbEx8lxzlNnnMthuHSoHfzgnSzPD8QiBBo+CsMEStFLCaukERZJXLgqE1MsXAlfvVPEMoQfuc8t9y/AY3UKIswR0Eul/LWCFOB34KRsAKOBZgZQhAiKKWf1JESxaWKYPDRTgBgPFYlHr4WbzAIRH+UV1wGDXNEhKGiWeF5Ts6ro+Cu2UNQf0GGB4AtkcgHEtxTmMoPkcpfGQlZwgRjvSxaLOFSX1qDivZhZyI1w3pfnMIrao96qlngU6Gm5SJBA2UGtIGto3KjuvTppfXhz+Pr0hG/DcTg6boq3qUPljteNZmrBlNCdWgVuJHOnQNOmdB1SXXya/Eq7jImAByhSiH9lQA1iCbYAAjxgAlBc48G8gapMTZMFWyAFvFvt7o9/+u7t2zOOgGzV6eK6/qfDif6ygdmvSoOObsBRHi1GoYk3PP5eXiFoLKm+V6njboqUOc+KqI+NLaliy2pFEv6DKNngEaEhPKbJBHlsAVJQcMcDtWI/kYsvkmN4lMRddD1czOOwEdn1yTa/vLQTDTzdmghhIHJXABhInJLZtroKUS8euKhINEHsyEJ11hhZyPPoG00t3CQyhiiwUS+cjqOzrufkt9oR2tRDxCr7ozFWJfnKC7iBTFlbPe+j97bCDM9j+O4r4CNxjd3qoNZv77dI6Ozvc8o+uyjarcqg1dl73Os2Gwdt5mA8tolDvGs7D3QrOb4YAkqtEAEbjeXlgL64KBVESRe0m0o6k1e70xnTTZVas40mUTtf8kJqjUbj+LD3L//y/WL9OKWrwVGkK2/Q+Mrzih2+nXa116ov5uvLqzs6KnQj8E3NVoMer9PkhBBSTBzsAgoQ45H41n0gWfCDGiNxJWjrD3gWmECrYRta1WzW25xztK/D3KzwfDIx5p8blZ91ZWxcR5EzCW4d+vpCWJwITanDKQqSavjtpSjslgOGytLDIFHhmSeKYhjtaI3HXwowZob7wX6sKwBBVTFrAwS7VhF9FRApsTRDDWhEe6KmCptgnj8uEfZ74EyMoQSM0Yob3Rr6uGACmwBOuwLPuAElYMORoi6grYdRdOIhB9Me6CnQ+02GN9JCByXnTvFH4AlF2JvKEGfh26IHCTiEmekqoKlDoRENKUBKERAghZy0PWRTw2ivwjpGApQmvII/4Ya2rYFJGsWhSpgaYMQE6jAvHeOAinAxafKLocoJwtuylCYFKaDCmSuI7CCHgBiQYLBTZ9e50ipkuseDWoFQfLGggKrrhEsqg7IHhzgEJEJFoJFRQjOCBaAKcK3bx2QobAkPKWIicmD+N3PWUER14GNLJV4ASGH4mZCOOpEA78BBVFUh3WfBjRIAhnvE4aTzBoJQFzOos1shiryXhawE3MXBJ8lIOoUhTvLjcUKvNZIJwvPb0IceVPqrmiaYw1sdWbIBVBpSD39gAUoUDTT+wNEq0KgcdYqBeGjJvLUKCtiVJTlmZWY7JMCOFiGJSEH4WLLKQe2ImJtgm+5iFBXpFtFIIZfo8Su1JgPiKqoFGNgd5sasgjSvqDe6JBMtmOImghxpShY2q59yumAEtSCVgVjzxNYsy1WkHE3TDPmRellEey+S5g7OId/8sVDy8AYPIskxE2vkIRgCW36CQsYZQ0XkxetcIT+RR6kCVGNoRRnNAm7F4qIPPCnTgpLKIHUheKul5KIQKIWfKp9Wx/LlzQMzgaLFW52BJIZrqU+OcRFMBZw6R15YC5lZhJO+gSkWshKAWMIrCVEfuVFUxZGRDJJBgI267hQGoskBAARveBX1Dr/K4B9+EigFqBFwlgiSgPqVmuM/pUrCSIvRkz+CVjusgDHFVbNjMG+7hekxpLLztF4tp+Mxo/81Pgu2eD496zO+v/+0x7H99crm+npMa63EGPXstrtzv3zKsiEuxvmH7JxrNZfE6GsW7j5MR5wCumbjmTqGEdvE5EdMUXuSaS3BLxJG8eWtuLk7GAI5mIXuhZalqNBkuCkfsUdDBUVKYZWBRH9JFqmQLVMKJ+P/ZGK4Gs/gpGKeLcNN8hc/KZJqqaAEAas00kiBGxGQwykVNSMzOKBBAoxB8Y7SBQJ5lQA0OS6suwYuaoYN4uWChsEudRktSAtPVm3mTCOkFw+FDIJUGAKGG7zSQ9rmgB7zBaE6bpayaBQ02qQmvWAr68AoKdwU2qmBBOgtPLQgYtFzAiFr4cDc7lY+AOfwfgixfg2KH5p7R0lpl2lJaWTDdnqEHJkIpzjn9bBdf38++PD+df/kaJcOJrMcNKDBiRsQ0XNi/LkASf2wC8R0iZE4RMIrgBcnJbagHDfLKxlFvuTkBY6dBKigNwlzwA2MKB5dKId6s8JKxlLEGWNX9EsJXONUq7fvX3UH9YvLi9ub50f2s6DmOY4duetPqJczCZ/41u/TuvrIh4BZp81GdioAHz4LjLIQHuAcGJzdw4sYHjtMuVxxzjyHRbo5ih4hplFWh2O1GAH9btbbNdlvulwTF8FtxAJdaEI0+ZmC5GRLDDxVvAjliaFreg4KlAtZ+0p1EqDpzGHAjvAzoskgFyIBPVBKuKn8rEZmxkvrxsNPHSZob61H5wlks/GlK5CzC8//NDlKBzgyCJ6W3ojMjsqrZsoOlgFXIwVLIeXOt+60RdvQNzoMWg1XhSFeRr03z8tajeQNH9TiOySctc8cS6fR5Ax/PtrFlqJes8bxYv03pyzWX+H/5shixre64I4YxqZEvFQtpdYvN7AozA35qNiIdWc8X/JiuWIk/qnddQbIoYzVaryegeV4PO23qhsPJWaJ46bfaUs7xxw/PM9m0167hfP8ejWEHITCtgSobzYadNUcuDfIoDa453oEzvvHZDg4iHOXa1nuBfXRT3Lo05hQhV2c7Au+2X6Z0VUi7cR7ZCWoR9xskWZ3JuZGB0jpOB4cJwUS+izj1JJCSwO2+iYuZx/UCoXho1Mvyo5DmISSAJd09EcDQxRxJeAHO0mhKM6YHgL9DlLIGe4azURywAJtzc9K2K1S96vIpIAArIcLSkV1UbPJB2QrQioJ7HjBDaB4CQdkTHYIiWpI0Nk5POSCSH5TPXWBNxkLPqKBi6HhT5VCISWsAQjvgrCBCBiGLfEOPIAzJXOBc0ps+WaoGqys62VDMzSJ5JZX8cLUJT9gAhWihFpRqVCKqUK6RY//kRFkhodxQIXnQUn+KZTgCm9U5+RU/FyGj/IB+reokoPxA6RbupvxCBbX0UarwkmK8ogmisaLQM1RrpIKfkQkTjtojdokjCrk06F0hloBUQJjh1Chxa5IKbIIGPIAgJ9tcfNTSE2wrJggZUoYDeogAEfFlFBDZOKWYylIU5cTdSwnCWJgcV0S+JBEC1ISSXZcB+6ldgGVIjbc27LOlYJJep7WBh5GivxWb+NGvZdQM4YJapmPVAeZVGx1gQkEMQ8locXXFqMAwIWDuKItQrCUWG3xCpskllySLxyKxQIKwmqRdRWK8NS+Ez0vwImiHBB3gxV4CmlyVm6LmFBlbOCQqzhI6ZEnKV24bc3QhZTT31dS1Bu2aDKyG50TFK8khNKgwD8kSNUkmaXgBg3iBhZqalFdym25E0ELR2TIwq1P0mADRid2GxbAPKUj+WTb5rMKSCvaKQkpyw0pYQcwwQfypSXYypMgJjv0kLaWMi4wIQ0bgwI+sMK9qVaYDGIVDKEXuEHDioqkKK6UdbO58JNkVgNcQuCtFeYXOkSlW9cqJ3Rl4FnKyWoaADKUPAVh5Rq+6FGChUwteG/JBgN5TQceQN6WWkOEJOeljImGmCMVgfEjB/qsH7u9QZwM65sVmYuAZBojl08Hh10/tbe7t+J0/zWhTKM7aO3XW/d3Iza6rZcEc5yVzrdc2enLXPb+w2LFZ79mNIMsWl2tcD3MsDNcykIiBguhA2IYQHQMhUXYTJ1BXViqrIgti6U4ZJswl0N++GSPY3eMBUSR5DnoGPvCjIgdLuiFZCKskVfRybAczgOYN0UAW9MDgjw01UKllJB5kTf+4lHHAvNMTE54qPfih//x/Nz5SOVk1b5KgorPj/Zh1Go8rYYIHvN0LIBbRKPvih7EuOE3ZdRbM+t2FBpFcOvQSP5Sm7DRVGBgdKaLJmnk1CTTFoAPfow0CAeIzC3+GXUgo5ipRLQXZkpQQDodqsI8a3B4qzDFbf2AjSZmpXjMR5cTN0hB2+nyrOMQHaDzNaPjfvObs+Nvv3l3fH5OJtf7OCMNZO1H+CJOXbZrEuG+eeIkT1Ek0ij8BEdZQQmduwWlnXttXG/MJUlJARyA8iN8oi/5o8O0FL4lfY3soSQqDf+xdBnM6Axfa6rsn56edrqt6v71cDgejxh5pr4dNiazvJuq/eSZc85o7j4BIp8BrteJnnZWaCT7zZjL4tsCBLXKgc/H1tkHjxIocDGzAYVXRPk4WlDCauXc0y7H3WB2LMqgIYcTgMc/0V+Sk9JtQKx87SOSQDikXsoyHvCu4QN4wBCVqqikWiR7OKcHTgJZ/7O9KOlwu0qj7VFRMEEwUSegwCjyoKu0p9zF/Az9lysi4DoZBGsHlWhBJAQcHSClBB4kEMIypUS6SGMy1oMUXHkOnTmKXXq4gTB2x6EJqNmCUvv7HCzwuHoY9NucI7ZXayyH4xULfgZd9mgz9okbuRqO+gddtistJrNX/cF6MxyjKdGNaImDpIT4sCB9QNsR2ymtAbuTOoilk8URBbDzfjJjToHvBeKj6Xi06zX3XT/s8mkwDLNRb0yXU/ba4O/GbIXiU19NukNPa4Y11s98mowvBLNDmno5H9njCxwfJCCr8O0IJJ8vYDTn8wWcQYZMoyAb9v6CCUPt6DyXWLHgLevEQGix8FBvAl3UF04yecANQhSax4ySX731fHcIom+rJXtCELxTpKibwovXoBj3eA1qR8FIFC61RS3orTLEjuQzApF2T4EXqekwNDPnBBwYY+0SKRRU7YCpc9lmAEtyQjp0F4WjBlDDqaCg8lsTVUepXU7FDwZ/cvlWVaNMXkEc91xApRbGkGiZisxQ2aKmJd4NYOhSBc3AxGU+gyARfirFNVi6B42ENDQEFFiV5Qg8F2+4CjkaCbzextnBnvfyEmcrXWSLX6ecsOJHhaAVmhBo4GA8ZIwu/vxJdmstIbWuQLHyBujc8ULMEtiRTfYq7G0/JHnkm7VThfgEkXRngUmaOFsIQqArVSWEAS2Zr6IXDxikyEEpcUjV1AvCMFwGOSrIS5gEPL0wWXUUigPWmaU4DmHYFKkKohOk3TdlTspTmmTJ0dW5fwUtEmYkBdKooh4OZUmDFN9jTxdyyCO9MVEAcBX0dPyOmFuwwCncV7MJaDLvSSmAk1+jSk9PDQqN4b/ISDgRYQgBeEiTj5TE8cnQuHDzyNW8MA2cE2qkeaYTLCjhlQDX/liyBn9n8LkROHLRDUUBbMNkm/yRGwEuhoEjS4uztrTwNRmoKHzb1hbx6ZOZ81ZwAC7SKQhYZQQSGYu+LKYOGVsC4qJF8hCELQ8EiogPJkDOSFDBgTbAhSSx+atoyB1OkAM/EDjiAM5qvpCAEKqtmtISS1V6Xp2G/qdIkJuIWKYFGV55Szm8mdOc2WWeSoOApHFZBShFWIKP/IovQlHNAjTsghuRReuUaSnLK1PiClRLskErnAQkjcQfoAq9ikQKzE+lvhWMTCh4iJvkST5VxHa8pxw6Bn9SSuBwAbqshWw6IkFHVpJT/pFaxCHC0KASRD1kr5pDgyFPU4GDHbnIKLbRIt5apuCT4qZol4UQSKHnjbKsQY31/bRn89UMTrMyx5X3lcrg+JDNATP2wCH/yn6z1am39vgmAOufcd/gRZTGMX0cdYLKk42eRK3e5JgQxLacOTJKHwByjYsYHF0yAiodhJgmMMBPw4i1qtXu/6FFYOYdijjzGhLogiBI6lqs8vmcDBMEAkQRJ6hpZIZiWFeukgJsmR7y4YosICdXMkt/WKOSm0hy0AJYvM02c/KnhOySkbkQi/dhYZE4ES2NJjkFq7FrLKUq2Cg0gxVOZFdPYDoSd2w4+TkHoFiuayqQWpCJ3G2haW1FCVZs+N6QChHTJg2b0g9j+FYpWJjwhz8sNo6ivqCqJ4RdRnuqdy4RE2mpoQoyIxRgQptouG7bjhkPBrU0Tzhlv2+FQMnP+DEldOwG0wEYZeYkezQ8uwpdQVYhTPzh25P3b990D7oZvkRy1EeDQv1eieyNaWy8EAlJmp6hiK/TUkM1GPlQ/FLEFgvlToZzwRS1qGCCUuUCHlQA2ZJkNaJF38QXHpJWpqNhLSGgK1lQafjgiCr7gPs/fN8a3t99/P3qZjSpPuzMVvgX5jcIQixIQLlgAygzXatHvoX3uFpbUVRb66jJJXIpMuYi/LgdkShUubsGlecAJUjgc9phKGPdNPSqEUzDvFc7LB9HPsZypudzbyAu0i55cDgM9kTNIN1WDA8j8oleJBO/RzY5jOexuwKZ/MCQKJUuIy6XtyoPT4oSeXOlIShqJud1U1y4EnzpPiaJaVM7Zome6EaUm7McsXTjNAejbRHs3stqdOI55yChJYT6no5NF5+YApZyBz9URpC0FnTMmS7CTMKX/fGUw4Kf4P1oMQG7k34fq6J+Fuxcj28ZRYDJLrt/2G81dg/YMnw2+HQzWizd7MvlZMh+vn5DNdEoklEYngiSUQQGV8lW2AIW7HDiGw+NRpWtSui/ZyEEyVazxph9tQ4LGr98usHXnQ46SPbr5ZD1QEfd7vB+hqNqtlr5uJhhG6SyQsc9z/gIBtgdH3luNBscreYZRo9+BwBJhVGoyUssqoEiGb/9zHwU8naB5eaBT6ojAPZr2aFyGnDDxnqYyVcmPD8V1qMA6kQlY/xwk3zKm06ai8NAHErwqnQ9Ud598ikE2xL8l8x5aQK5jTlR3PgFYaAEKgv3vMKOIMrR1rgVIOhTKG2PApoBxE1EbiltNHYWQaflo2p1maq9qA48yQ9snmAcWNnIUl3aYxHTvLUtUiiosxBhzRha8Bdhnx4HPlCcIlRNVvAhC7ZHSdU46qj0S4ClFwhKsIYiJls7ECmYm1QRjQG5PZUZuYKKZotNp0g8i7gZpZGtiDZA0sZQcbpm8fGxFSIq3GGCG9wq+FJXqREOWA8oJlwubP/DtUE1tGP82CEIwBFKUkQI3kG4LpVSMERvDpnOOtHioCFoWEwVnqRnQim4TbnCVbnPpUBi8UoACOaR9hKBKSCZw4+OShK2gQgV6argX7gnY2EpBT2soPQ2lXG5rNdaBU6dSBb8gVYwiKjAiwxkAyMFKpFK30TJhXz+SzYxtz1e9BQZ8FIWmtvXdlC9o7g3IGNZskYxeQGGJTeiUmfUkDR+kg8Y7s2vcw9fhGNnCBABZaXJitSoFFeS8FY9qFSVjy5VrdYpq9ZksUchbAUhgTgp8VThxUKbIwMpNHjgmVZeOrlLFx5Wk4kLPSEdA5SmXNgnArJ86WyQCAKp1PJKRGmSYskIqKAXXsoyfmLrJQMppQkJ9XKIongUisYtiKvwi0XgSYKR0YmQpFKbETXr5Ddg5V5JSHUyvNCiJ1L9fBs0xJTPIQKTKOR/ckfCETM5qsj8nUK8EGFplCXc+zviU3rynqL8AzPYy2/zq1hqiGjgapE1DkctsyUq6FijV5TBG4mKEMsL4Sh/8lG58HwUOJcS4cI25SxgnZw23xZqQKXwH7+oWCy3YhXPUo9wUDnTRciHXNxYlkcNyrK+VzLbC9GXsZICmXdUD4601hw8DT03F1/WT6vD42OcBTzfeaizNMhu5x6nYu+yHHavVmd9AoPxbHeDFGJXJshrTbFkeJhjMRi6mc35njAf03TNKrig8hgk2Dqq4+gJrsAgjnfIwnF94hUx8R9ZaEGlI7QQ//vlTB06ZKgiJkOW9JkH2tQpNUZdLpYLV23y1FDSqUSzChcLLwpbBJSi/AoqkUWykyJ8tQOt29aSxACiJNcfPAeKXd2I3kQGnmCHyFg9NzAZIrFlbJRs8hOLwAsBusxYYv504JMAclqH+kKjpQaKvfQlO5qp3wZgGOQrYyyrMZdelJYOPiDi5OT2RVOgqGDDH15vPY/65RPYuhWWZp1QO7Jw3GQ7oURTFQPkwCdjFFAFhqjitvhwhDi4sAG9IyrgDVU+7TFEu9NrV18fdN+ccOL/Qb3WYD2HzSNh8T57KDdUU6oWJlXHw3MDdaGGZBUDhkBmpCT3iB195B2ieTG6kvLi3HS2vIYn5rGVpOEFL/yY43HIwp43mJbowt5+LFT9AiTE0e2xXjhwdHjYbPXbX74yFbAz5ExbQkkkKjdxwcTgHIrPQicQItJbENKxwIn9x1S4YXbL4Xw5gsJzqIzKvzEW0rHs0h+GfIK0fc+sw4WBnoLgzHtw1JFSE9acfpGtQ1Fy+US9xpdkkl1ZA4d68RfRKMxwBhZRcSkOTcV5IjKcLfWGsS/dquQEK3lVfJTsi4cHYFiJIip1hYEt7/AtZLSaVTKKU3RtctDKtClUb4tFBpTQEioLrgBaMXj7PwS+iEarZkACvU1vQcUSABi6HJzPMHCQ8P5T5bnJh8CemGtkHvGoy0qo1q9fbpkuqDfXfHbwVaO9fHyAaewEYCSeKHm8mBx0iIx35o6jwx/j7MzE2iEDW5gWXwEDlbKEoRQJqxJJPs12GdbHJu3lIpXb8RR/WN+vTKbTo06frwQctLt8BWC45COJz/1uk1kavvcFvgxUITiIyCcldpZ8GQza1qzv4vxPAwD0huOS4QaV0iWMbugXGIkGVSJz2K1PxNAYiHFd2W6+IieS7BXGRLA1sGLhEHbL4hq+JYdocBWGadRNKr0zvADgoh5xmh5cq22jRlBCfcgUBUJgpUHaGoxyKg5TA3OFj5Zpr47i6ZfjJmhuxT+BLsnGoEDjjntlSlyYboCwdBZlxNcMaKvsjpWRE9UkByoB4/RZqpyeDvHbnKNMiU6QEl3L9INNTEVC5j7DyTQruJU/mhBQhVe+iiYVtRUzOIM9y1sps6MCfBiiEsDXxFXqKXj6/Q5Fwz9e+/bFt4IYj6hysSIyWxnIGwztsJHNcp6kUSOJt2TFNKCcUkIGAy2ByUdPbgUnaNf72IrIKEpLr+iKCrBAT+8FsTqvohy8Mb73D/gbTpRZM7HiknWp3aoBkngUwiEnDNS/KxwsFsOLO5A56I8+XbS4Jyd1CypdJhCUBPOggmpAaYq2aAae4tB3qzyUIw3s7LPpxQCo7nITAsnCFdygLmQqodBPpVzUiKkKRv8CVHBzOwcDMMDhEeDBDcSS+TFNhRVlvVmG7WGE1SkUQNkoKip0D7VUq60GWoQgp6SNZ9caqYQRgjnULssbIepkYQozWIZhnuRZNFad4ZXkWh054cW2oVbTZWvotPRGDyg8oYMebQKj4qIE2hlekpMKavuR2uTSQYuicESHUSvKaTNCgt1x4BTkfbo9iky6lF2srShA8APX0lpHvrAexGMEgCKDeG0llbpAhRRfwa5CoXIVRRCmdn0If3wVnlOrWgoCliQVHDL05Y3FFJ/aZcgiRuW/+qPEimsi7cWIWGEZZTQbBfltjaWN148XCUot/4ErPIlHSKqiGhXtpWCpmjp8Hf4VBZAFmCR+T03EbFRrkshPcS6yQQw6HJK3mPg21RUOmC3xgRWV4lajrpITMkNsJClKW8jbDDErqpYxBN3gBmNJxDlgSIEA4wBCBoinCjIaOqg+ZjYlBlX+QiFYiHeI5b3khEOk4C3ombPUdDXbrCZ34/GEj+48D5iqZoOWRVbLFd6F4sThk/HUCWjKswSiViM6x3dN7yec7cOKCB1pleWwD6PJ3E+l8kGw511GzBDVmn1z6AH4s6/Ac4DcB1cSxF1hGZMZRGnttDMGXqDsyh/NwLHnqoGCzkTcw3D+4jnBjUf+8crhNPArLkPpS72Sjer+IX1JUHlUYy7g8Khgwj+Q8TFYkSJjyVNY/VLQHHIyf/3Djb8kIG2K+ETzeeYVzCEX14v+YzLcm0h+Gn2I5wiHCBFjEx+gocH6D5ta+wGKzWlUu9OU5EE3CG2wzAIqG0/CtCp8iun45GAiTAupDNzq5fQflIA5sN+BLMPrHQ+bMK/kadQZUrTG4qp8pxWwmosFKqQHjkhIOD1HPSKNXO1576BX//Du8PXJycmbMzqHEmATgMTtwODZqIVm3a4mWzjXrJEQSUEaFdgJV8QUsHUjmd19ADDwLTIlA+GkCmBB/4MAmha0oxuSKSVSDXVpNGEOXpN00SAr4IUATGVMLYgGnhA1ApZmmnmbRnP/2w/vRqPb+sX15Vf0m/J7kM9xkIzm8vWKWruBJAix2f3JxmAGaNm+ucZJLCAEZHUp+irOAt2vOD8d46VuHplAS1jo8YNgyXEzqG0kztYD3bv0Ymy0feSL83FMTJ3SC9mqJwaLnmCeGVmwCbMRTMMl2wsTIBCRoh8ISjOhjET7S1Y7AcKlEufG7DINEdDBo+fJKy7wZ4JC1nMCmCyjr2QrGKlV2fSwDWSEab1Cpj0FsA20gZn4KBuhAQW1pOWCduZARGWPG4JhwlVGETgwqtZYjSbL571Gvdk8Hhx9vroxrOYwounD25PeQb/36frGLjZrFBe717erg0G/OuOTJOyedtyhstfAqUTNMVB8j2dxomhUhZqJN/ocVfbW/Kz1epzMSWRuE5vY1/2x+HGP48uav1/f8p2TBV8exiifa7PVQ6dV5TMC6INRt95y5+CgyRzmfLF2dQDff2B0xAgdDXFjLT0L+gPwPmchoGz6dlKY/UAlEArs8SyESoV1VmwSiJHawMm3DPwBLi2C+0+UEQeo4TFR7BLPCR0ZamOarUxP7Mg8CEiQAvVoPHJFGNAs4MjJe+Pv9EMxp1gaaoc9cME01NHfSJL/qofQo6M+4sdE0QvX4FolHktm+Mu9tsez1qhjMjNn/uD/ACJA/6NdxbB5Eu2UAlIKgqAF4wI4MVfkhY/ELG2UIx5WAXv57VUKInI0ODDJqCLyAtGSN1hKEHmLjyAFrLTSDLeIcWmDScJsGJphgYoDNHT0MTMbidQoBPhOfsCFFeID7rCJSqkCDJM5UlFIeiVe6N3wQInySQRQmK9zirCoLV5P3BWBNQXjUhHxNYkQGFp8i3mRU5rCOuDgMErtJANAm8TudLJwKgyMPAELEBMDX9QCRkAhidxmkETZqMfJZacIG7S4LRdVI97iW0silRbaA0F40M4rJCFkvZHUgaTJtLuGpymClpBKHgXkRTa1y3ppxkQV+YTttruUIQl/ItSMXal+4aq8VWHQHKBIpVQZPOk3Rcz3fLgRawT7DT26KCnpT0y8YVlcfrADlAyAQMQDm6Nufnj9abPafeJr5KhGFS+GeYGXdDyC2IYPfJg3AYkq43faYRvDospU5UVJjRuUY9CxqRAxK9AEQite3v6qTSgalVYcsPI2fIQueRMGefo0bQq8tYbAzI18ywQRWWFqwZ922zyiKCS4DH/RHOq3xQWPwrPQwC8qIlsRE6+KaUArYuVtUTbSAbLFS7sDtKiSbhW5AK4k5Yc+QS+hdMwj+USA4QVgGeKieDR5WySoyiHeqjlcSHOrLeJYIHPzR3XqbGyW38Cn+QLB6IL15BWZM65hYRKtyz+kytk/QvlwSVzBwrKFA6VGfptdosxvWbNsE7k1Pwgzi8Yb4JtThscrlBpNQUyU5RcvKBJC9A9BWDeSUkFMDZdea+GPV6QpNXkBE2IFPIgSjwwxxi34qd6b+1qn8erwTb3WRLuXyxnVwurFbIHe6g8J7odDhjY4bGA6mU842JNFPpsnjvqpNarEA9Q3Y48eK4oeaJlYW7nLA8jgBMiHq8Fk8GfyguXRW3E/sebHCXpG6eQJKyiIKnQjaxVLmJwJxNF7wKEK8IEpUENYJo2IT6bKFZpEbh3ZtQnH3AoPoK90jag1KeGFjKSYZRWfT75Gf1RdIPCKZ4DDMe71gSlvFflXysphywrKGIJGMOMveNciFxJplIHFK3vgrjAxfKOEqqwepjwOfzt1pue3cke1vDPsE6EtYqAfp6q7DEFCUPCsG87ibzApyEAaMQDIAYTLSq02KPNoE0PkYbxiTv/8YemsbZENsiDK7wCTHIBIngscGcFlitghMzccKgTCkZ3nVmXvqFF/d3r0+v2bKgeme6Hq4hMAqh+NFAetpB4aXIbMtk0J9Mq3RJUoXtmK5DGgIB/rs2KwCyjgksgv2FJQcgavHAxI5iALwK03S6MTcpCPbhY7KO0mVAC0oKDsiMZR6aJLzHLsPR8dDojvq3vXny9vpogHL00fYLWGEQyH02HhKBpUk9gAbITrCJ3DdlSns80J9/SZieYpjbKxfkP0MnmyYevwzqOr5uk7cZRk7JMzmViMBwQmFRA3kQ/55UD6llqwmgLSJlOppbbnr8gpMyAYbpmNYR18VjuTANvJZ44Ug6siLBOLs+LWi0extMatawKgxdWB3eliNV+saOcc2lJZkEckb+8OQajqkY+P1C6aZnRqHXwVAa0wOFu7ecQTbrD/ihYWhFjVs1k1avXZ4+puNGL8/Pr6/uzg8LfL6eXFPXt/6+1qmw/JVXYvhyOcQavXHt9NJpNZt8MZBbt8wO1uzHbgZwbNERQI6jUcw7b9C/gyNEmFxnPyiika5yWIz8mp9JnenLMjeHeHkXjOP7u9f+BjvICEPHo+9epeo7n33Kg1663x4nHx5ELFHofA7uzTZalWGIcn2HMwyFlNeEOvDPWy+WPZjwqCaWLNss7OsCJeETw4MuB+AHjvGTzwS4bplFBHzJAfvd8zJ9C65Ixn8jpDByE8F5dBrIuepFcAtTBAKUfGxFVxo3JbHeAPfoa/IoSk7UgUl6HHCXxbVqo3ZNcHIBr9OPiaOZt0gWJkhXM20gKOIzoxAMWq0iiCrbMwTy6JyekxPNnNomSGN5CBKFFULnnPH0gjhUdggw+oQnkEWmoEbWNcMCRLqlCbuU9mqKfE9qI6aDAfY0tsNs9wMu8ASEXgxD91JCOySbcwpQBrhm1OAKf5kU/UAokOTtMAmJe0bdDPyzC+VA5R6mJg0Fq4rUp2ATZYhfnQLhlcoCSwEhiRKbi9RPkQIB8knHRUysnHdAJ5TP/K+JtqZab6sDXjVATIJKGA9A3SD5S9Tgh46WLSbjAWHl7p7uCneTBvK9WeCyu4RS4wTEJR6kxlFHefuiBPsalkZEFxeJK/CRnDG8tFfwKV/LznWXgvLjlFlRupOlYqVBZyFzaJAiB5MIh10glpqMxWCJ7ZN+INTl8cHa8RlPVQGYTogEihEASuHzesA33cqfNZ8PVyxSfiWW+32Dy22rWHxWS+WtQbnaes2aXseDjDnTWaurZOr42hPz0s2NXT7DRpIR4YQ93ZWUwf6t3aw/2M4wUa7SbKjKoiAU4Vjmewmd/jhEXbDDB2BzNCcUY9cQCYlSZEzhiRUC2uGbzNLkH5nfRYtalhIBuTGF9nZAVgthzhWOpQlroE/mhBtmgyRFbym39FuzBk5RGDIDMZga1lUWmMhZpQGEr5CKytMwFRL3UGWIlaSilRLlqnH1BtrDCkUJoaCj7KTYmiR45raIwuv6NICFdkQtY/RN80Rt2tRmEp0AIy6KqQvFH7ykJqyEyNco2cIG5+E2E/QJC1MTeGDIeDHjC8wD8YRqX0IRLii6J6Pmz/A1eeQaCGbR5ekBuACL6kFYrLK9Cj6sD7gxsiHDMMEIXuta3D2q0ixQUuonJSWlR+hKInhwMEVQgLR6eMCkq8p/awJCBthJ6anDfXbDU7HXXtgY8drRlVQKXns3m90Tw8OhiPJiDJklZ8HBPus9mi1WhzNBur0PngF2Ih8OKbmiz8X3EmNiVVQZoxFYNuMxPZ1I6wlJl4s8J1p07Y9/RU22EPZd18Tns4+MIyV+qicWtUKg1GRkuIgGjSzSCe8pgU7u0paMH8Jj+hCerGvfI2zpFF1rVVRp6hXKlxUVekKSqyQxUAlH6ce98qbmQQKKqK3pjcqr7cLwqQsZd0NqwyY0YKHQ/MR0gYReZmi6SIcDFcZ87E37AaUHhdIgNaQMC7rBvQttGp3GH1CiMO+GEXSxjyiS54FixCB2VMRbVkAuEeqaAEK8RUrShEl3qBbyp5og/FnHjC0BAAwgUIotBDyRoXIgM0FSq4lKaQw/88G4MGHL04kOCeZqjX2H9/1H/NifrdfpOzHNE9giFDfTiknCEKIUqpK20cJBcjgNEV3LDfQGHgCRzF5KJIKbglh4w4JFs32xr+xPZJ5Raz9VgVCnGlaXPLZnFxVLZVevJyuApHSrLK3Mh4y5NiI1EDq8iENtJhbyTqAIP4GsB3775hNcevn67vx25oKXHO+mHdrPER4P3n6g57gknESNbLOd6doWpXXIMbIa/+yvDFCR37e/BABOBh/Zk1eEoREuCRI9ORVrNRd9OjTg+V0Ikb7b0sH7C9NuLbNmsKRR3AfC2trBzgiLD4XhMxKePhtneIU/tXw8lmMIoexs+gBOpKxAwLcB0agvrqk7+Qi/pDj4dFQN1mphGSkzcgtlguUV3KFcWDGBoyZaGy2URiUMBLpytViQMhrSDM8MBSHyZ6KM4eCT6Y5fnBLORhAc9Bp7H3NP86vFw+PXf6ddbfT4azOWMJu7tDph2/XiN67KnerlSrHc4neHt+UL0dra/noKgCE2QCRlVTsfE0jv/q/12eCBvBAiRokcCEGQa4PVut+Y5zu17t1VuMeqzp5y2X3XZ9MVlr1ZXa1y/337wbTFcTBgofV0/Lp82rzmCzePp6cVtvEsbTTVoiZCdUtWlgGvqRooKzVYabR0eTkQR8gWeouj6TRZL8w/QIJvmDwjhVRDvI4Znk5lAE2iiGI1kvREFdvSuHAG2kGM8FNdAJFNMiPXvoCrBMwejmQMJC5NQwi5TJDXfiBMsmSwvZkik3S2ilpkiBxYOYLY1j4iWH7xQ5FZOJNFWfzKgNLC6VAoHuhE7FZjvqYoCILMnPBdgiKn2KOWCZ2gwQdZpRluKgnVQyCQzBwVdwwOVAHiMA3rwFCanL2kFN6MWvkYwFAhuOhtvxTZn+K3VJtZ5ctQgnbRYEBtJaEcX1zlCLxwRvADH5ZyfS/La7IMY9oqdWqCCItBmWkXiiMvwgxfqpwCFrsLIWisqMbYpgJAPIGRcRTjw+sGSPf4RDKfVY3skqkLcy/8MbLZCbvHTmAeFICAg4a6FoIgtesL8usg7wIKP9AEhZRc0KY4HKFcQwaVCKOSXnFmHVqii3/OAJBIKQeultWBrd9B5Uy3pTWei9e6qSBzB0ESUKtsqJwt34MXKSjiQCENagbXRefYQ0DIa3MCcvjMtcM6l8ZCf+E/apzA6m+iUktttNp/c0uN3eOSLjMx906llcSEGWPK7mmN7Tf//P/353fXVwdMLGx8l00upwSDGDB/b/CN477UbvoLd3vdM9OLr+csU+Pg6Me9hbTu44TWLDeWGM8fQP+ozsTEYTVhbyccF2r/003WAATATj+BhYgCb6I+KFTuIZbRUe/UK1poQv4w7NhP06L8UQKeN7ZQZsVhfIRhDnKC9eHuFGmY2PEx1aWIlQxGqUOK/8G37yB6Bhs0rly1JJ+O+TXCZ/nInamPF7DFMNSlXaiEpBNovL5nR1hBbdowEt9hjXrPcje3JDhsppjQVxCStXobXc8w5KASe1QZd7ZA1PTIwWkU73CbgkgoPZIBCkity5j2LxfsuM9CjMFBzAx1pySQSlYiuQ9oIqqUL1UXy2VFjH1pD5a9sPAjhD7gGYxtshFWrXgRTOgHbUPuoqe8ugFSUAC0oFASpDK9KyUj54Zp6WOwCSR18o6JAmztzCzkQeYYGAAJI4YDFdPDyuPMOHAw8ZDuFbRX5t3tlNVvzTCK0WCxSp3WpNZzM6B6tHzyzvdesgsf/A95L2pgRxWAV1INBq/Xk1B4h6FW4riV33/2U1hBbHuC/4SZ1f3iFYkiOwjYW3FEHPqRteVZnktaVFik9Ex/rQ4tiVLG4VSqNJlCrj6zJMx5hLu9YrGltQG9YUVZcpUURZad5g4h+gg5HGwCtf+pa/PuaenILMGL/JwR+bpaAqBAEuZWF1H8dPOIhrFz5FwB/3qJvlMmaGItDQX6dpYMAdGHssPABCrIDWsIgQ+olxGbFAgZNEH5JpSWJWeJfZcqoGjpDFVQUoQIwyk8qzuiOBkmY5yXISWK8VFaV2kpQ9h7nDuDSmaibuBTI0HCuMZdmhAUuLSJ/rSUCA3g6elotd4Z1K5eyw/fa7VwdHB2CB4IhuqFYk9C/YglNDAECdaAoTxpCQvc4ZfjKGdTS9Aj+tNx0SsOMW3UOAJBWMxFXKlQdMxr64L2KLuaW5TStDPgiA8eRPLOUWaiJt1A0m03DDEF7BI7qvwABTEKZPItlxRbxrtCtvXp+iu4+/XU0Xz0uWz23oFVdRWpZ6gBtfklqxliadXgN8JJVPz1JBwl86P/usZodR8o3hZjjI2DNztXv1zVM+l/H0XK/WUAaYjwHjbCAb0YEGJg8P5KIMdJgP1JDvNoaJvM0ZvUovkLzhM2FDCKckpMEZeQrYojiFgSTindQRf23DtqgHOKLlshhnGDVEQJzB+fDUopvLzn0+eIWxIizoIheoYxMoug0RLYIiQQltdMFeFFRUiOBmj/U11Ai7gUnF9ACVI5ZOowknnx9edeoc7LlZPFRoWZt8U+Lhm1eH8Pr+fnVxfUeF8IA9wSyhOT8e4IAXm4d2r8+BY+3KXq/b5PggGlLWU6Xlkw4QgBJ+EILWo3LLs5AJplQqz6HVDUv1vQUQWNJ20APP0ZRz0CrzGQOD7DfozOa7d3MOR+MzBbXGTnU2WS8fVrWe55lWnuj4yUpaW7YBAJRzexA9LjY+xGEXJlSpBz3BlkGGD0qISETGH26UGiyPgUMpGgEAkuDlfp0w+Jn5VkjBUhIxW1gBb/+kdSzzL5o2WiahrlXSkn3imRu7CvZOYldau8KJXSlL1E74kKEfAR3A6vYobkVwkZbAkbqtXxMMiT4a+nvCUXIWvxM/i8XrLuNYZZKYANz4iYqDP4/yTuBiqALxRg0k2UWvCJxEq0lvAU4DEDAgj/uERsBQjrJF1wXupQLGYThbZ4INufoIvlh7yQBk2A5wyiItO/fiJb38oi4uOFOQ3XJSV2hPTN2iZtuJ8MuVUXYA/XJHmn/KxRCEZ/5iWuSh3NbTyBBeAVAex2layvxiG4qMJ5Aj1iI08A2lcAdbipTtieOYgEoRLwsDzrEiueRFKakp1QGW4vpIIBYBRdwiSqL5ZdQ2s1TYioEGFRV58W4r122LS17FRI02JkbhCBXqCkLg7QiETkUsQUUJ8hfuEYcAzc7kDmNH+BecFS8dPSIXNkMHGOh0tInN5QNqIObkUk/xr4xNcvyGgrItYUe/qxzTU6hi+KDFjpjSInAUA1t1mGql0y0ilVaPjwpWnlyJh89deFLiwzOfO6Wjv+FTqIfdPu3caDS9urh58+6EDZBMiDJMAHGDw9NOq7VYzGd+DOm202jc394Ojgb3d2M+gnN3P+v1OpA5HS2eHqasr3jqNGez9fyny9dvj+ejDZxo1/f4w4kG6Ey9UWHib8AhZM06XOZw4Ua3TV9osVh1Wk3MkDYMeonz9/ZrDJ3YM+bA9QZLcPXmfMN187CWnypltDxuTrajJUlFiI4z2H1TPaJKvFEHyAJHoxRbhVRV6D8pK15H1/NXzUgFslWxUD8gVEuSiy6RSF60JW+1StDyt9GtWiWAqCKJFLcsj4EnlCxsVduBDO56LWsAuBqodgNePHnklhvUKFVTL9Xpi0wUrBWhM+oLjymrs3qxC1IoiPVhdPIOksyYP7Zp3qmo+pySKgyS+M9zqSikAUe9Lq9EBsgUti49tvlJ8ZcuC7PVjly9FhdL1Tp/205xzswJ8LcIyzRrR7xgRLb4G10PGApcofsTomWLCKSQabzWfFjY2lg2GrdXtyev33U6LZIJ2dr93s3XS74O5vEmHG6+XpMNclmTwHIFSIR6humBzhmIzYfGcrU3nbHpju1uFdq5+WJpK8ohGISPNiJP3HhkIMhrd2ELuGn5os58Gq9wyDQyAqFbTKthmo1JpCyt5IXnPGvveD+IgHwbpjRnPMSZ81v/4ObmHCgJjJQ1uxDkCjeqRMCRQBF+aORSi/LikuW8U+KWTKrFlK8pco9iPJZ3aAPI6eWshR/Bg5uRTcSUZtoItXDAaNVxh2TlI/QZFCtKSWwktMAHFCIGeSQIcLpH4AY7GEi1bxALAhmAlTCg0AhKwFWfol0ZcQvO6aiT3+ifrGGKAHW6canFDaiqbGxNE0kQS6TOMwB1+A73ABlVBvnEba6zwjHw5azDTv31Uf/49MhjfzxXEAdvz4ey+uYy9AL6vFCxsfqtcFTy7eL1eA/zcAN3XK6MComkCJteaAQHUYpENFVrUdniPQpx8QbE2DhDmWlZcmlzmVxl2qpYIgEvZc0GloAxKy2WTknms4gTNUNcnAJU3T9/dcLw8PK3K/SF5dpgsSZkhIMIkeFe5hoJ0+gRVSusfgLvrPSEAGpQ83LcImtOGKDZp45QAUo2vFgudSE7lqE6IcTkANsGiPlIRcKuKrFP6FQRoMAtztAHlUr/xr1s1LvCOuM33zm3AAeQuV0I6EKaEMdXPqjRWRdoVk9Ilnhl6pYJdZtnIHKTgGeHIBVCADCcLM6ODvjkFcKxB0L/PsgTjnockF0O6IntADQDHGoxF0LT7q2IsrZOKoFUY4A4H8Yf9PKumdFds25qj8U2m8rF/YSB8+NeB3F+GY7GyyWZO+3mfGEX4rDX6rRbT6vl58sJK/S/PR+cvz55vB0vLzfsQsK12wficuAAqJ4LZFRrJ5NDWiPotEfc61ug3Q0bLuVHnIbdDA/uWt3mYdmsV3qdZrvbvPx6x2pFzgtazVcNDkj2zNYaMdlwyhJKl0jRqXykXbazxiYH4LmjCbL5kBkuXybQxXFIkrU0sgWLACU4jsWpbkRr9CPCxiJfSaBQVpSBD29BdXuWUGRsB11RqBzGTIAmxXvNVXGGWmevEKNGuW0Q0yABPVzC15QigKMapaYxQJ6v0cGEF9ZFAhjjPeiB8Sp+2WEecCtsFd/iU+LRwIc8eCcu6JIBDpCUgR69gvUauxec5RUYRCNJkRdAEyWgchcT1SQQYQzA2vjPsylhhflSjpvicLnZ5gNxtVKytoUkhxTYmlymws9Yh0wFXyrCGGhoSxEywIb8FEZRULry1nEgRvvktoqlQzQnrHDCizODXbSikKJ2YgJfXsizWoqRWe8cPCmLDGVCgKBCBT3KgZqS2mIdeUW05FCN/HiEPJUlNlHizxsKUot/bWCoTtyFpFwYmNASVBuZaaX4PGMsFQCscIipT3mT01qESE5qwyk6I2yQussuPvy74ZSKIb20lMJE9w26HaKmwXaQg0V4xLK7lTrLCSAKo2G93ZII3CVbHsGmz3eLYRp4xi1pjXb2CLjR2WazCq85cGw+95jeB2MpVuDM6UUQmdAz1Lg2DLQY1DDQuN6sj8+OsDQwYi6WMwgJPpqVDiQvFmNOGvh083HQ7HS7vfV0cz+755uNp2cnkFGtf/vp9y+v3796//4dSyAmo/HxQbdZ358sHpbLVavbPzk7YjB/dD98++07ljH0+u3LS6YAxsvN9PT82B7h0/rszdHY/UPPfG6wtrvb+/b4H3//5bfP90dnBweNQ1Ze9/rdu7vp1y/XnVadAZfLuykzGmwloKU6PT1ZPyzbjc5sMhkc9KfTNWykD1JhTLXeWC3nzFdwsmO735ndj+r1Bs6BGUy+rM5xLjR70MunmtA+vD9zkGzrRFy0Rpklsj+PR2LNtvG2ak57rxXQjGxFXBy7stBebKE1VLWGlCgK0kY3oqumb03DICNvoiXk9oruOZpFC0FODR4ggaJmem9xUsnpPamC9n+snqpcaco71LKA1HFEwclLB4l6oSBgBQX7qQcNF14UW623YfMvFzc0ntYF5dh8oj3SS6OoExAlYMMxgiQVW43XYF8a3aCKTxdz+Aj43AC5FLQ+oIQq8NeJgr+OjVR+GUpaJM4UTPGReSHJ8BtMzZXBKoob92u81EN5Dd87Lj1EWmwsn7eF7+TghtlkzvbnoB2mujb0Npnuai7XSyhm9J2n2drNfnG3lRnT2SJDX7PiNt/FmrOAQAKTAj49BKyPJT2zGUtvPbNS/kMPcSGbYQxilEtmw3U+XDhGMyS8w8zRMqABmSiC0y0cG7URA0u/E8w3kmSG/VTZjPMi8qUWWVS8GVWhzI73K0iUn98wSfcr+dETJSlz4AjZU7vKEHTCzIib10ors2nkhRshBHmY0UdvgeBfZaYteBkXpzdNNiVDNVJDWIObF1VdK9Wxi7rhEZBWhNjwgbSdhlwKHoOjakDziwwPDLMCGXrt1aDAGa3L5DaNJkYdFoZN0etCDAikHuQFjqZtUbTnLGq+jaNXWdRkhxJ8pSYbnbmjT65JHzy2Fv/xHmCWgSJch9lBlDXzznvsdZq1d68OP7w7Pzk/cnSTENNlrl5UQUGroDTY6fsti1fX2MAm0iExdqr+oEjQyCNvYVSJZeVAVsWkPPfqFby1oDSlI63nAaZSJgP021SFD8AhJWdvCHg7PEqOdPURINQQylqLspNYeeg4FJjKKyJgxoXenh2P7+fr2xELBomjWbA+Xe4067Vs4oJqAMBAdQAOVFgahCmt2PHMEOEuX4rilTMwunL2QAJiBwiMM9IIMvkGh7JDFIY/M9BuPK107GUBtvABMyiNL9yEVhCTYDUOT0IsR5LaR3WyXPcV95EuHPE63gZfY2Ma34UZKgEEHWVBKaX8xZWSBocl3o2zihyZLTabxXJd328gU9wRjbMq8exkNVtyIopgJSA7J2ASyapG3qgHUONsDOiRygNYO9hcYYW9p1/s1mtMN+7WmvPlaLzaLJ+fOxy1xLfWGIKo1Nqt59kd23Gr3W53dD9ixzAuqdOoshqfmJnGAMKbTw+ng+aXmzFqAvKSDepohF7FkBiuwZj0o3F0OCHXyihv2o4oAPzkgXmo8WLTb7cY3aNLxhfu9nerd/dD+P3qrAfXHto0ofu3t+NmvTHDiyEJ+9hwGuvWCyFE6KQvAWegkFlQCGGSg5wYPLGKXSbl5QUvYp2xWldhu7gAXlFwMV/ZRBgz85FptymyTxp5Kr+i5bBaMzNPkb+ylHibjTTS8Juf0gSmPs1s27RrhRSEC5IAFF0erhZ90aRo/lUFA327KVy2iIlNPaoBGoKtjslOnED0Y1q+EHBzJiZqL0oZxTIrvpRsjIKghdCKs6OsGGQAxuGxF4M0OchIJP/SHDocotLhhRODipy1x/PqbLZGAl9jKuqcRm7zJjvUTxUCNK03JBfaAZSxwGBOJMSMHW+1bafUFZGBqdxIq0yNjprQcFIPfAoiVG9YABrBFwxp0GBR+meqoD0bL0nQ2KgaPEWAyNjGA1uUWN8rVoS59WghzawppUS8qAitJEng6rKNIaX9T1UCA1tPeY18hQxUSBFpM1E9iS7RdGwDm+cJHtkWIhlywyi1EE8RfiIF/ZPltGrYQ9DlOBYPHFmlNQo5HScayioj6az26/Ap7RIwOYZdWS8rc2L1Cp8RbXFkSHWXUZBNtcU4Per92Gp6jrKY2PuoDcdz9V5OPWNPlWaLFXXz9fP84WE+mhHeE0bUKLthkLKz33AMkgCHyTvOMP96+fn45HjQGaznczhEGNTrdGrYOYMsK9ZxKaWH3ep8tjzpnR702x7DCyW1xm6z+eXL1+lyfvLqTWfAuune6I424GEwGPD1wX/89IltkG9eH7Oamm8B8hXJ48PD8XR2ez+ttuqTyQL+9NoNBk5a77r393cMUh4ddFv9zno2ub+d//Xn3+5n04OTw1enfNuk3e31OIfx9KD11KF38PxlPhx0aoOD4+l4ePbu1f315O5munNcOTw+Woxn0+vR6ekhjexgcDgdL9rVVrtV5/CD6fUMzn4djW+u7zv9Tv9gb/T5pttpscW5WZvhPrBYjGtyP8KRdNp9Nhf1eixS8qsg2gJqwe/YJlaJfiB9VUOFx6zUJL2/Qs/ABq7AKR0TIRYnQH71IaoNxLg07ZEEHQtqkZdmizCxPd6qYwYZGoimbZPMs+aGwIsXwlxEiWp0R8T32obZVGqjMVWDixszoZ36itiABgEFvlV7SUP7nYotxkt1+jfTzZPaNTex1ZShj4WGVEhKwu40q6mNlwEeg/YhtqppA8ts8ZASYo0kyuIEHzoEMadSm0Mr5UHmiAcVC4u3ge+LZJT5IEEfLN0VlFQfq1FSwEGZUhGYB2zKUa+4C4uQY8PXuugZcix5q83uXHaYudCUcbyqS/OZ1udITyvb2WV9M6jiSljpS6Vo2HhCR2Bt46Tt6BPgJCTBVDbCmZkl/ozlu1gFSsRBrkY6xVWQXSXZ5buqxJOixTYDPxtGf58SeFhg0jIK17jBcUb8dJ4BV2JH21c/a+qnM4UmnzjOdcM0oOJ9iefIbru2ZWyURzWTqepebvHE1AD7hCHV3ha5kBf24oxhJkN6oMBLyS0hA29wqmlVuTVaN5qhuUMi5Nzh/EKK4/fxmYS2FlSXQCceHtqsDdYAk0pVL3uwbBYyJNWmeJ88qEwKyhIZkFS0ZdsiyLG0heQ3ywst0qM6qXj88QntlZdGBYIBJV6hUtgRKgXmrkNxZhtjJjPAkKEdsOcHDk+H55TThOTDU3OfTxPtN3Yr3WYLuaGvvCCMVyhwjVZkq6KGAdROvEvVIJBONeBBJjUw9pwM7vTIDRJRc0pLkSEnaYIIQxEKwmGHxMnDRZjJfRoaUKCUuPHSSID6sLJMvklKuM1fKEVMxTbVWZeckUJJ2WJkZm1IT1PVDveeWcn57vX5lNZk4YG35KYPTN/ALStUwleQ3aZClMxmsiyjYkCrblGQa3CuJYdcIVCykikDYTxosVVHCaEAfOCGVNgYUSOtnsImP0hhtqRCFbJCCqAMwJjYNkKDbAVol9h2HzboxwgHICSuwFG5kKwEZaWc5IJe6AQchcql/5SlVKstJbPRyGrJKqDNc6dB1em3wJkUU6CoDSpEcEjToMU5Baa31IHD4RiI5Onj47tEzA4NIwtL9v7CGWjEqXHyD0vev9zdr1lLX9k97jVZtTYaLVkwCA+6jdqbVyes+anudgkkzo+6jHL1W/vNWp3hLDbPdJud2eO0Q1A+YxaFCjNOxHlS6mzCsOBJ1Z4GAScgM3pICAZjETTGATGMqqE2fBeYVQK9nl9+6Hf4zm9jb3fNiCHzonB5A8+b9dnikZW+1gQoFJ+AltmD+AH2FNu0JbpbrZb4EgyOTc+wiHlVMdLJ6/e0vb18Pzd8C+cZHKHPCMeKNI2ZnW5ipcTqIXsA8G5pjdBshIyqIE7gcMNv2euSAA1eYzCOF5YNGCxAvWA5b2QMnNHy1fdMFEZv8krNUIrqUHRCV6UXg286LXgHWNSuyshxENBrxOwBjsIh+CgZQOw5oMCIWat3MzHM1pug5tTCDX8oQgLJ4Cw+KvHWgKmUqmENSla6BxBCHnW0RCdyqhAl8qIHBG0mYUfuSSmVmtcqyJR+amkvdQsUxGGxuM0OtFUICHwsgDLvcw4MigVbZENEADn6P54lGITpM6A9ABDf8EFuaWk6K9mMumMtG9oG1DjgCl/xs2Vc04CA/VgM+DsVSImQJsDt9EKETn12KQGs5hJPEJ04SIcp0nAqNk2YxthdKQznMoAPhTSvOBmRySOQxD1dOP6AJ2PV1TofwECkyZGuFhGCLMAr6Z24fcBiDNDtRqP0jtLwOGXQmkMhOo3H1eNiPmHPvAUfnmsO1TONOCeoZJch45CEqGyJPTk+4fBBNF3RUT0h8Ip9VC17AJvNl8uvBPp0G1ajKaOVnLvLyVwbv8aOV+G43xoHl7dr1e4R3xKqN9uslnma3K3lxXL90+VXMjfYz9Nof//jjzCm1gJAlS+0Dw4HGOmIz+45XU+Ly5JWZvRq/IUz49HdfL04PH7107//xPfAcUsIh/oWfCCpVWfIsztoO7y+4LyU6vujQavRnE3nF5fX3R4nEuzfTUfT4fzh9qndav5v/9u/EFiP74dsHmj2OvCZg77uh/PPn+9YLPR//Zd/WswYZ93r92u3N/d//c//ODzp1Ov709lyio+ZP37/7evjQW///AD1gfu93h7fRa/whZK9nW+//ebr14uD0wP40Kjv8ckmhM3JGZXHSptNDJX9o/5bxi/Wi9nB67PeYHB3e880BguCRtd3i/nN569fa+3Dz5/+22w4f/P6ENd1fHJ0ejxgSGswgGtV5IVMNQj9ueqPwmAb6BJNGIRgAzwQPvICU7HFUavQMzTeLjFaglVblETVlX9IFU4a+KqaWgOvsQhUyAYDheO3mVUw/qKXpALc9gkAQCML9shDyaJZo+pp7PUlVG7GlKZOzT/IvwwTUAqHUJyPmOlzDCkCLZVLs4MXZKNdKx6GG2FLkJ7QunOjayCrpc0vVoRi1JqLN7LFnNCllXqvQzCRArAB8lCt8GP7Fvi2l+g/jpQ07dR6KcHlX96hkXFlFJeT/DGT9ZJfIy6M4j6SghEUKMyZj+d8uLc/ONzfZ86NaJ5jeHZYwgbevX6fGSqO4eBwf1wb37B8YoQ+7btnXLhejqbL4et0tjufP39mHT/+Bk0AM+AXcTjQCLaGAoZK3Mu9BFZG7fg0nJF+StHbGNMCsbJPXwdseUVvhFW3eFLRdm0uOmMNRPR+OSzxJnxXNcJkZILL9RZLcTiJGzkDSFpD5QpU2Y4UiPzCKHObB8hgzgWE3IGIfEZJeAMVSMjI3kISSDnwVYuCuAEdGsiUf4DgNekgURDG8StvI9A9JtP2GAWBomRUO3XCDA/DDRpqCBRDXQ2NR1ZJGYtTq4poMxE1CDdtUBLCgB+MFUvUgFpDi4nRVehVL3iWFdxbuzllFFeyQRSd4YQp8gc2gkmpzy63VOJQ0W7MlCAJPIDF8P9hv/bh/PjshKUYnN3I4maNDVsQBYcDQD5tPZiELhXdISRG1F2yAkg8BqWsDkexbWu2CxPQAfhPovhHrmkujWdIAv1CYOFkaLIDz4sSMKTtgkY5RgGoAweYRJsSY5cv0E/xhBP4McIMVNXxaZDlhSwoUYHMUVKvzg4xnafL29HUk2PQ06I7npm1DUv2dhpVgkHOwRW9NOLgDzRB5xH2QDWBL2Gg3R58Ja4J2vGlrBJau1OZSV14SJdYN6X1O1cLEIVjkLy1BfgA4eAJwPBcikCZDLUaXQ4HHOWt4sDi3B9sFGlMxBZ+gsOqyiGNW/UI3WEiSV4ajVyJyRAhDyfLgz7ND4GyKifa1LgNQhiDJ3hRkcBS+QoEJsoIchEUwS6kx0ChMQtRr8ESB0PVeZiv6TfCZCS+mS0XB+3edLk6arfe9HqXoyGH/dPdancaBkfUulodDTh4pzLhq4V8hoRBh/0d/BY9M0ICvkrS4ZDN6vOUlT5Ug3PxpFKNlFAqbAQPvELOoZJBKpgDS+Ew+EI3ewz43DPDgMw0ECB4LkjrAbnxcbDLiwkCIgTZmxP6zxnVJ6pg2geZq5i4RxYDsU98s8tOYhZMspwoVq8n0yxUXhYXwXuFCh78EIaAJk6QYSbrj5KjGMvVkmNzE8bv4JNbDZYdObm6+5/+n/87pBXJ5beOUtXXuaAWwFQSgFSM6J+c1fZ8VEuUCRfW/QcQzRXp4+zsNvzhMihLVTqEAEfe3KNY6WAAfwuK9+ahCvUyIyJyP2bA32K0VgmvVUx1D1TwCPw2P9yPFzBL5hnAW54Jw+JWmaYO/CEPDLn8HVK08KgUmMIgewiKU2D5JRQyUzE8oaeoD/SJdDMUfCiVRsrMtkxYLDc0ADBFUckWyQd0MlCepk5A8sSX1I4mbSECRS8jItuKrFSGpzXhxibJIES9dH2YYwFkINHvXuo2cTJWHatFbcVTPWN7uIctPD4yVgc75ZBIU0QLdAwXYOBok8orR5ZsIqIhLmBQE3jCR8AE8dlnJS69V9rd1YJdJoxl1Wih0UfmrRjbg13z+eN+HRvfo2EGA5i7sYF+2mdL0OZpMV+3eg0MAtSZ6Gz3m8OLYb/TYtkc+2F63cFsPlYAO7uj8azTYcmNDQCK1mxw5B/utMLOxPFwUd9/ave7tUr95nb49er67bvXhO8M2zMOsNes3E/mWCM4M+W2mI6+ffualgeO31yPQKpZ36lxvkCl9fXy3nZzr9Ztt9qdJo2W+wdyaDRnGcAH5PzAp42eH5q9BiHsw+KRI8xXzDSuHgjlGY3HrbBI+uLr1V69esb4fLPPAgnavq8ff+Or3zCaOYTDoz5jmE1W4ezsECoxgUDgPqLHMFu/ImR/3Dk/O6E7Q29lNpq02vXB8fHvP38cTkYrtGJ39/Xx6elxbzS8x+8NDrqsg5yun1hBNBtPD4767BI+6A1g2HQ6oeZut40euk6j2bu9m7D0sN5yaQ1jtEuCuW6nzldRHhCIX0+htcAh8l17JhrJQL/o5uoG+fcHPbwJld9d3hMl/fsvH2v7zd9/vWJ+4+zVWaddIxiBB4cDxNboHfWJSvBf/UFXh8CX1/juCTs+VXfHHg0n0G3tBwWEJZgk/oeWjIMseIuuqpjaJWu9MHOHrh0CUe0tgELGZdk08qR2qPE6gdLnV9u5SDeH9ekEMEwUWItNGUzPJgeHUNyOrpOCmrmoWo0GC5b8Ru15zz+gFODlrbVmtM8bETC/GNH+xaGRGMuNAaah4jX4aHtBLD4NTHAswVUTClaASL06Osto1eU3VfhPsuUJBSEIm+RG4uJQKKypZrJCR6SHlwXkt174DAize4GQWKbDQDqkF9eTd5QQeZzHP/7bv89m49fvXr/97p9ordhuS0kEP59OuBmPRxefL5dLFiuySa26ZsB/tSK6rdabFxdXKDdgS//bdUFzVuqxHpdeAafWOMtJvTk2VwlROyxi1ssmmAS8hcMXylGkdTwKkf8oGEg4CrCzt9ajyqLlWgXjARdGdmBBOq2hzOKSq2R2tXrmCQmC8ElsSvYjMzS6idElWU6kBaQumZJHIJJq74NWUp0SW3Ui6dYKJ3NfuCtjVXSfqI6bwMQd+okrmmqqQw8piK9BTIxmhnpwdoomTaoihhPEmlRolMaCB7czyg+hywfARG85d8Xtg0VbfEkrUNw1ApYC0FWuIsmNv0lxLMy3Rfl5JgO/qQ6UrB1A9jocQZdU0okKbF8gJ2YMKP4Vw00FMAdNLP0fqCQEYdK00agM2vXTfutPuODXR6122yOPsSC2Qtr3cRzaG1scajAsyZixPX8kIO6oYgb7uQFzGScZkbeY2B+INanqqAr3YkiD63ozh6IoQU0JNCWfK0BkJcVRSFIUV/yDsoaxMsMqEEcyKxF5KM9ko/fcBrq34mZjjV1pazu7N8PJv/2Pf9wNl/Ml88qVbmO/02DejPaRMa5nWkb3RlerTBIgPrhKR4EOFaOrTk8R5VQqplf25+uZI4l6CR0lFdmUsj30gUOl8ZpEUM6dInGYCHnJSGbpMZ9j77BEi4BAeKeJoSFIOb4SFvAYl8MfybKieACAhdeSCXA5YhkFADAqlW4uy1vUO/PCvb2DdvVP3562aiw8dYEvtVOIovyQgiWCPOpdxp2L9AnWlBShC0Bko0y24jJUml60FHlYVgZPGX3cPNAHYO0NKkJ4QKQz41tf01W315qxEZvtcpxH1q7M/VxXe7iaX9zevx3QuA2+3N6xwIp2kf18i73n3z7dsedOzGNHMA0K6eAZfcENKDMugm5jJNUjhymh3mLCTAs7B+HM8649HpYl1/aZO+00mxPO+2cD8NPTZDaHxhwU/sDySFjBikddxDMfNHShEyuEWQgEA1nfhbBEg7jE97pKuCRfsxGFGxFj4AA2JzLTD4g2E4kNDrCCt8BCtRA7YzFl+lsJwXe1Q4eVlgNyywxRrEiqFBEMh+Ne6L1ijpGoChQMEHLYzdUXBgVN13kfLlyYrkcrEU5+iSUv1JygG0L0O6ggEOSuBOiPCgImRqVI4a/1qlZ4ljItKNhy5Y0PGBid/lJFKZ4M4OvPlpCovnwgKMmJfuDgYsSwlmxxhdbFsIOfs7Z9yucVtXfqcLFdvDM5ybVFgr9iB4PMFbOTcvhjZx1fIZdyR706OMZncTSOVeKowQSiLKpNAZc/fidBsgONoRsH0hipsoBrLtQaqOOWQBDU8J6Ee8jalepweIdxCxbNMDVMgOBcKkqLxGgONSh9h5ynTwxqaIQjLzucV0CdUTir4KfyuLtmph88Fiu0rU53lX19VDiez10VXt+fD2eMSDWrHPZHR4BDu1E6xmGeJ+MR3QG2eeFYp8NJp9uipb26Gr4+Pya6fn5YHp8N2mzWYQYUD013Jt0Jv9g3ntabja9XnN47fnV20mrUjw4IlCc0uHxrj6UyuMqua+npkHA2NCGHI/Rf728JLzqHDEi7sKBSr/3jp593+O734ODo+Aiz8jM63cF0vfh0c9XtdJlSaHcbROGfbq6/3F5//+37b84OEV7aGP3TzdXlfqfXYJF+jQM/94ZjTjVcNGqN+c243+1j7/QCWNyAvlYb1elwNJ1PiYQOj3u9Y+L2N3B5MrlZT+fj2bLWrdLUINdYy/NkNEOjr67u2ke933/9tM+UB4PnlZ3b8fDz1w3zfccnJ71Oa7Nc3V7e//3vn0fz2Q8/vP3uu3fj+fLnj19PTvp3N+NPX261l8rO5cXNCVyqNY7gSYPVEc3lbIQ+c0TxT79eHB70v3nNWp8Gsdrt+Obtu/NBtbOqtegTsleTUQv2KrHo/7ffLgf9DjPQLFqlT7C5vkI/Gs3qzS0jJvPffvl6eHSIejCV0Tppvn1/9Lx7+P6bt48rTrt+oDUj5mOX1WS8WEzxY5tas7laskv5iZmUKfsuqjCyvZxMj18NWPkKQzezNV9MZ5pbV4cyVh5ZwEQ8wGJFPC5bq1FUWjEtifhPE6jxn5yaMbviTOfZmQQMGVQxS3wRzSQDlngkmkG8l/mFr/cElDZlEl5L3y2EMhgRq+VRUMmqtwMPWyv8vomw2tcBVxpJc9IKFIysxHYBqNy9wBfFkie2LyBNkpL4ltKvACIwc/E2jk4MMW4MtNQuEF+JCZk13PQieOQWkqE3w5hiRxI5i6MT+9i2JRLMSXTqAwPSdHTgD3haNEsX9pCmi/ERNOJ/OAB0OR9P7kbTk2Gz22fNDwocTJ6X87lrkVncRvC52X1m0Z79Y4/XJpkDFjknGw/kS1ppQ2+dFR2TLC1kRZ7eFdlJNfjEy8PAEmYwFcZBHyDC2hjiNjsLOm2cIYEu3QJGhcOQUEC15CHHlh5Iw6Uika3YqUHW80Sy7lOuyVu6UKAgWF66y1BZww5kBFHkMXOYA4b+zRgnKYVLCjmNnZU7aOCAq30wW5yoquGo6gh0BAEFLHmKxnKOC6qYBQBGwAlA0zrjQpEO4PC2+QCJtbFO3PwRM9jCCCpyHlSHTfxqwFtQpblJawKujgApXUlXv3yRKyKX6yaCqnnCovKXJsvIQt0Bk4KbCo3uwQ9wdjyLgpYxEDQbHprOYbqHjAQQOcHZ50e2wtImYOqH3RZRP0CrdcY/jT7TKoKe9Uo3f5yysI9EVdBGCpc9GSRNPKHsRKxg67NN55YouCE5CfFpG2GRClHyq8/qvPntD9IlS9Bm51n5UlDjDR9ynJLCKpVyRxVUGsMiOf7EZXrilrJ0Y9AfV/pRH3Cih1HUned+v/Hm7Gg5v+DgWnSPeL9RsztFnIc1MOCG7sFGF7OocvIcdXJ4WNz96G+j3sCWGJO2EfcAIgaYUX8qMuCDV/yj8QYx0gnrQcn3dI0VCE0ZYDLvpfxEmWeCKOzUh6IeOBZm5otzUBx6QEnTWixPFfyVQV4U8pf9bJ/y1k441qbSWgP1QtYeGxs4p5NWpo5s7ZsEB5UQUWhrqIlzd+JpAphDp/OrLKkgBX9mFakHfQC80EuCq/7cncTCeuxpZzlr1qsLVtdw+gXz/Oxe2K2wI265WNdbTb6qxYQB/vfz1/tWt/p60G/V2qz7v5tNB+1Wr9PudCrP00UDCmt7fKFQH54xCJ0gLl2/argLugkbGbUvMwPYIJrP2XvEIu5tQE2RETEKJE2XD8dHXcYB5497V6MJY1pOk7sev/LI3kO82MPmmMEyBk3W65ubEaKgFpS2Wq8227XRPfMGjMjVFvMFtcA6l0zvPKNIen10Rb3kn+bJI+0pIy8wkq6jrARxFQ3WEltlxZr6reDkKYXJwUXEg/qoTLZPMpgS5BC6vtFuByrAFTFYuriGohYk+s7WV+YUKxKpwOctmEqVVoReUIvyFHguswUf8MJdcq/jo4uTdZBW6gVfwFEfrdB9tBBqxIWyOOVJEdd36n+pXUfJJJsNH5KDGry4J4cCDsjco3mOxEuy9kwe2LQ18S1YvAwhr6t3NPnQptcgQAYOecJJnA5sTEfCA5qViH7ZShkjd5UU5W0wtg0/T6EGcrBJJaCKy/HiUQTLagxQLtoA/6L0FGLIGbul+4EFEEsrHuparhb7fNOi2VqtOPaJ+GpDZBqrYBXaZjViML7NOt3suWctIv1KJ93qO3tLrbGOl70dz3brbVax8VG59eOqWW0RVrPKlpFx1mkxFLUaLtiFtN/s7DzXJ0MW99KyV2bLyZt3rx/Zf7Z8XM3XzX6N03D36+R/YBprOBwpyV0icBTjqTHodDuN1cPD4Mfzy49fOBGZsLPZfLj/+KXTazE2woexry6vao3K8ql6d3GHTLr9Fgd1EaEO7yf0gZkXmE9n09HQ1Wx8h+jR2c/xZPTp9vb1yRG93V9/+fL9h/dnBwNWtvz+82/oyv1y/u3ph3a9waH9fBGDgb+nh9rt1d3R8cEepzE/bEbT6+XsYXw7Ou4T4VQuL64cOuR0ner+3dVda7/arTyPJ/euHN6rNmrt+e7iejRqMtK2YoWgy6IHvT7nfy7YlPDE8TubJzbf1nrP672L3z6iBbPF+Oe//0Rz3+x2f/zTh7//15+Wm+WHb99CAyeSXd4N7778ftzqfvvNSa3b+frbp+l4fn52enF59+nzTatTXTKmSoeqW/3n7344Oz389OXqt0+f6I6NrqfDxer6fvT6m6PefuPb9284yuDm4vbT5VWnVXvz+jVKwgqi+/v5YbvDZ0dYcDof039Z3t7O+EBTp13nY0yE8qfvjuluDX+9RdgoE276yz8+E2mdH3Y524Pe5GjC8u3l3XTYxj02O5xPenJ4xJfMD47bzU795uKC8wA7PfZcudzioN+ZTueE3qzOZJKTcan5fP7T9Uenzji4DTWqVlufbjD95XRMhIh51Butd+9OmAv6+PHaLuMOHH1mXObbbwd07wZHB81Gjz0avT667lwThuSRIThI7CtuzGaQG9QF10F7/0xgmmEIAhL7s+nMY/x6EdMJKHViNlXanG12HCtOiEczefmHyIVEPUkpnBEgnslGiu20MCzBIw2DlsylUeonuTUnd/zLmIIuiMzxLULmOU0grwFLOk/F/whUJMSw3HMj/NRFTj1kasfCrIBcIIGnoGmK4zA/7qNc5o+/IqNDosItdJItObfViTg8EbjZwkARw6P1Dg8Ws8l+tY7vIBOw2SyOtDZMN9PozuY0gY+Py+GQ/evYJXN0VeaV+AAAYxOrBRFM3UX5RPsAA67D7bo7pEenAOyJY+284UuJDnUbDmbjH5mgp+tQWhYSPbMHCvXW1TKNACm4w+xXL2xwpJOc8s/ID2plLT4UrGgpcPn0UCVJJpPTOzUF5jiGSjIe2taQFO6Iw8EWfgAxQMMiytGesZi7nq+buboH0TNOks0ttm4ABp4BE2LAoTOngdJmYMR3ZAY6YTGAJEjctBHqUidBLEEkcHib1gS8bFaIdcCUCRJGYWy+UDgGkvFPfh6NlUv0PWCJ9FF9MN62a2iG+BidkLNompUCvzR8Cho0rBrinZOBdmIg4IRN0FFWn2Zk3e5MWXektsiPECv3Ug1VoG0sfVYdOPiysnt62Ds/6b89Pz46GsANmAxKAEe49L8oRG0FE9B2CSuoBLa9KZpyBKgxUEOxCxtuUIZeW3xHKT260OGbtNQ8oidRZHlUepiyWgiSoFEUgCAPKwPZKqwh/IlngEHgpu7auzCq0TTS8YZW3lpWBiDE0uhzK/5gQQaFvlM5PTy8uWJA5mH5yOfzHhgYltsPbBarL9mgyukXHOvJqvQmO8poqVwsRLsc+FDJfno+EMnBQaqH4mUIGULoQLEr5oHDKjw0RtJUuchY/eURTKJpkq+2izzKEUYCh/gET0oepazhy65wpgwWh38BQqRpveiqtmn/lvxwQ3XSeMjkRSIM4YblMCKgMmmbw+GcrbFuAcf76rrpwCsI8Ek3TGyBQtgjGnAP4NqH8LegkZkyVis0UnXY+sAYOdLH4IRiNsQR+cAVqOdUnuv7Gb5ospyfnhx2ao3h9e3DcYfxx16jcXjE+qDqf/3r1XCzHHQZXuziylaMYe5V3pwcXLIVgIn17N9K2AZ/aAyyAs3VhowF05vFE6knoM1jGACTUQCGWX3ijGRiNahnOA3vxwAl+OPpqi26Cn4YkVFLJIal8UH0fZYwoxm2brg4nEllNJpjO0gEL+oHBxgedq0Ngcca26GNhs/0CbEUBE5ngGkEG0U1Ea7IP8IY5PDM8IndHv3Q7v/BEiB9HBP6hn5F3pEBZ9yiQYWteg8FEvGoppEt+ZEAt7ZwMQOpzw0VIwbPr8Tj4L2y4AxNUvoqHPbJaIdQ1A9ThQ+SSE5VsTHiJ9VoRWALqcDmJ8rKm+gseZJuQx5PnSxxPQAs8FMkBYWj86J0aEQssFvrDbBQIzyhQ1bSbSdAxPJpp/hNRzlMIGd6RzKEIgWToP2C1QujCovIoBJrDzJK56Cnsz5lxlgwc4SkwyY7Np6RYrMhMDtBIGId6IIo7e/xXel6Q7Nk8RrBPR8yoZs8GY/RmHqDD8qyAR0IROzP/eMBX+jE93hOwcOadR98b8rhc0as2XNKtvX+8SEh1eN8d/cGq1hO91udWrNzf3X96vURp1Tq6Dg+p9XCKO5G9wxPNFkzs5w3+vVGv//AhzXWnk7W6rewicfFstpufrm6oZ+KvrMSnC7BfHh/fHqw36hPRnP0tNVp8s3sT79/ahA77+4uFpvTN2crPoy3WA2Hk0G/hx/wQ56oR7367rt3fDVxOhodn55c3d0zqMxMX+9gwIgScfaEyYFW/eD4kA54dbdycXG9X9s5PxzcctB+o0WLxXjZ718+312PWGP6v/yvf+m0enj3OYOXwzlr2WHym/7goHNwvZr/8vvH4c0tZ1FgYkeng9VmZ3gzPnnVPTzqff148+svFwcnp53D/tevX1gWf37a44sdfFBkv9G+/Py11e3if2Fovd34+ukrfOV0sS7BeL3JKMV4OLq+uacvhbKspnOOQG73B/RV+ozqtxs3l/doJmcPLzlbfffp3esTxhKu7obPq+fBYR9FZjE1+8NYMXR+dkbXv88ARbt7fcOXWG9v72Zo9PFhezZbvnl7/IqBpeHycbO/36/+f//Lf+n3Bu1mcz7hPFL2Y7h0mKl2OoHzyezdu1OOGaVqDjfirAm0mgj+fnTPUoJ9Fi7uPb55d8bpHMN7Fil1HJhykooxg6flgoF5ZqX38Fn0LpgMYVvCxadrXDmbQ0fTZbfXf1wv7vjs62z+5cvFDx/eNKoca8eiHsNi5jpevzrq2eV4mMyW97cTNkLAl/v15vpuyD7ig1b1ejj9cj+hOlClp8pY0cGgdvHlvsJRCrqO5x8+vD46qB8d91vVNpsuYN3R6QE7a9iFjM6h6diMwZNHzehcMNiywrUE8f+Tvcf49UDaLyzWIdiSxCOVJs0GjJ9clFRhdfMJE3WG+osUJAclMVkw517HqJOwIL9eQMRbFHeRsjzr8kD0j4q2hVLK2uT8fzg06vz/65wYjuC6E8rj4tJYphW0cqsvKBbPU1LwMXpUCdHjiKItbryx6SKvm7L9KIiZheiKZoICNGoVVO/24mOvf9g7Pev1Dx42S+b36LcvZ2NAcXztmC31D4+fPrI2LEdnPT2h6nTemAZgApAhS/Qn3SQxmTEOoXGwydw2LDEET/bW4qQVCq6MJhE0GO8EuzpDYQQNpJld5fNQb7qMHtJlOCLjEmyHCAVDE1OkhxOlvYBjGlUmG2zXE57SlEAxLbcUh3WSTMOMvEuKeIkGUqMKfLgRUtoJHmFsEdaWmTJLxiIXyAQAzLE8pKFpDifZEyODbH3eITIgE+t00fNUTiECdwuSgvsmpz2QhLmG3Mb7igktp6b0AYqMCALMTzRCcVcSJP4LbwVHpeFPat2qpOTxTrbxVuUVW2VRmh/f8iQ3QpTZyewwp0yzePrkjoMSnfCo5hFyMMKEPjm4a2ZuaBna+5XvXh+/PTn89rtX7Hoi+oGHFgAtUZXH1m704T/qCsu9Se2yE875Mt25cEnsTEc0jNE6gZw4VXFZkFd6shdRghjZEQRluVAP8psRTnLKWUQDafoE0tQfOScCUIOhQbQ6wPtwKXUgUOrNWwYX6BtvzaoggKFTF+ShYB+/XP3029UNZsJRWvXKQbfOVjx2gjlfhnt1NT+V05ITkoM4vUEaepbAG1PRrwdhugGqnzgYF1CKnHSwUV4SCa8rbPOCQixHCPINOigIBOqACm7hFfQWDgDEREWsIOSJJk8pgg+1DdG4nkIRZRlkQnqySBRFDRVAyR2JIBFGUrHV2hc1cFIccO6k3/zT23PG/IiBMHmiWSophKjKJSKyYrq1LDMjtGHljGygu6HTCHrhs0ZENjRBWafHi1LwiiCY4JjQglZ+Mpu8f3t6dz0bzearxxUjU+1KnRn6ervOmRvN/YZLsPb3LsfspHn89viYY7v3Ozt3owWDEbQn8w3f932+8eQ9NVwuEuLichjnsl2GU/IVrCHVDpS8QH/5J+1kR5cwUiQIVhTm4JCEu0GeA0x50FLhmg5CAdFnwam73lgvhUwUAWxNjrA0FkqgHdEhN+JttBJpGg06YeKChJiDw22qgWZNlxjMYFeEU/YAIDe0g4uQHxlAiTMaOQu5MDoCkAAQkBLcaIa7NAxAprGhOALwIW2hVYJtwKquHrOlm1BHEuvzlntKUUSri3dWhYScV9Bql4A8WtcL2D+WITraoUJk5lElti51jZy6Cl8JCgQjArFBML40W2nmDQuU21ZZlZZlIVUqUHFyAlaHojDsE+ul1LnYjPkN0x2EBHeyQUhqAYK0khNJSCVqkdE4YOpRda+Yk+P6ZoMWbtJ1MQaxY409y+1kJNBnHP2Zjt50vFzvEFEz0LbTabS+XnwdzedEVCjX2fn5ZDip8aXpnZ1ff/nIxMj5yUGz02JNigSwv7XWvJ3c0Ugcn/R2mZtHx+gycuZNm+HzR1rsPfwQodj1sHvUZT8rXqjb73ca7fFmeX951Wu3+YoEi6AOet27+/GQ0BM38vR4dnyw5MTM/Tqf+Ts6GKBcny6uO4P+1bUrcF6fHhx0BrzCXz3v1VhP9Nf/9hOH23y9vmclD8fdDJlu2KxozQe9JovLu53m8Hb65fPNwaD5/bdv5GKlOl9MUTmGF6vVvX67P5ks2WZ6fz+5uL/75u2rdpsdvLtfv1y9ZTTp9ACbHA1H+/Ten3f5GhGO4/ryvs1JvO3mwVHPoWNGF9erV2dnTPb97adf+vUmkSIdfIYw6eEsZus2hwbs77U5HnjNuCPfIrX9vJsMj3oHrN579frkmT2s6/mnXz7R8+9xSE6nyaHBbMi/Z2cuozrPz0xo396OOFwMzwcT/Ojp3vNw9nDzdczK/jdvThnV5jhOXMVf//YPNh69fX12dtx72iw5MogNCfT00UkUhIOBGfJksz8zkqyt4sCyxWx1cHjAmsb+SZe9uRdXo51ao99rspbx9asTVhf5gZRKhQ8NDnqdk0Hvv/+PX6/v7ggcUPWzk9N2s45c6AkcnxzcD8er+fyAFVGHB//6X/7GUaQ4RLYZvDo8WrKJYbE5OGhhksenfabnR/Ml25IPe/WBOtH6+6eLq/vhn398vxyP8ZL4DNw+I/dfbm7YevX+m/PJbDVazNAy5svWm+XZ8aDa2vu3f//MOnB6Ixx4wYQS+4Y//f4Zy2L1x/p5/+p+spgvGaJgS/CUL5Y/733/3SsmYiZDNlozvLvDkfG0O5yWMB6uj4/pLNQ41Zl5jPPT7g//9D2fUyHmOek3Prx//fr1yaDfJaogWtInMypGs4Py6diwx1hfTBTT02nEcrE8fQ6+SNdiOuYcg42Pwg/4YNOoq8W76yuw1+TZRks6WnIUJ4Pz4TF+wJK0yHoqnTye2nzJZl0B603JHAzNllfbRIqIfrw8v8mtlxEG2VOtkOP0UguJZAMhhEi9gLIUefRdale5hBQmCDmeTZByQFQlATwti18RTzM7NPt48ekXIpK3331g4zwCRUyb5QLNZZ6ab2qysn+2XA+Hi+GE797RB+DMCxbj1nOmp5E8bTFjm7CTlXjMINL0FqKQGAgjEZw/dYmoKEogVPgo654ajSb4aCY4cMnn+6k03Fk8gbnSbsftkR/MU8wmFBGYNWykqEMiGSEm/CytpFEdR3OkqwBUMkYKtMxMwhpkUyNuGRYFF5YgeuwGj/yQs4xfkhkHjueiG1qaMNKZ74IoipNC1WQ2A0PdhecyXfFYnb8dmDdKQ8eE7WvIpQzxI0gZvBJSq6DyI+0mSxqyMdKvhRoqOMcckgkioFTCogkAUaAUNa3oNnGVgUJJwWqMBMhNU+SwNzdcmgk/4pJ31EvDgUCtzFDyRVBoCEGcZiWZVgFoMaEx3CUo7bWq37w6OO21vnl9xlYlPnPOeLZqiRka/omVxsKYtw9SbvHsXOQVPAER21POlmXtGWyTVw5d89YiKoUMC32koPOaNv8Ai1CSTkY4KuvwSPSvrFXKKCihEiCl/iao4iX6kwM1Msngonx8ha0JxBmHhMPkls2pHcjIHYpw/nBQtOmTMHCb7tJktvjrP36/Gs7vhnOGNRr7u0e9lmQyx850qYfk0nEiCHHNjA7caNhlFYgfCMTNOE6qon2BUJA2WnVEfZexa+qCPzA8hDuAZzcMcPRqyG0PofSmw2sFve0FUaqgpwA5hN7ok+VM0bEYAyjItXR9sTDugWRlKIDxoZsDI7AEq9FV8ctiDaCQkZmqVqP6T998c9hlFRB0KSYhlBulohzhYdLVevhLP11flvEAeE4OZAGqilu5+Z/8rohmzpAeDmsQn1ne3Pj189X6cXPCx0oa7U+3NyhMv0XL/sj+YOKZ84Pm/Xg1cHfc4z1jl9UaActyOn3/ZvD1Zvx1NCG2YLiT3Uu/Xl5d3UwYlIeJqBDxtjqGUFhJULBlhRHLVivsydE2iw7wCoagqPyJCankGhF2oR+i7yIU6JEidB46SkBIUBJnrhZxxqsCRccQoqyWD/BH25RtwKc4ORi/4C3fPeCVsLeeQbejYTExpvJQsSGrGg/GdpTVk3jJ4u09jgyArK1nkSGz+bCSavRKWJG6FVsF5+iBmi2VvBKQObnHBYsW4tPlqXa8pCg5RdqalbTxsaLX4MMEa9KA47mUeMkqO/W5YWUUwwRbLH4X3yH7YH1AUYsVxfLDI39ZbRndsT8qr7Xz0FXw8iHomRn+kSpONhtUjTzkIy987aAO2cmENSEkqRPVohYSBy8oGsHwqNsiLfVZDmFotbzAKmQVInGLBmJHiPjfamN/NVsRHhHBjxlNXT1Vm3Va1tvhhC+nsP77999+//a7Nx/qlc18xaJpZo1Q1CEHQ6437/7yI4eJ3X2+4uyb9XxM5H5xP/79+pfzkyMC+9HOQ3/QvLwcEb+PFytGUqfDca1ROxywWOWB06jufv3abu4PBid3X+4+by7oK9Sf9+bPi505o1PLv/3736uNBrtP29U269wns810sh5P7w9P+3/9x0dGqei6XF+Pv/vxPXtZcXO/f7pZPiwPD7to7y0jHvSmGZ5vNt+9PmUPEwdiclLP0+yhf3LMPNe//fRXDIERQYY32P96cNyrNtrTybjbaA/aLEmvPizhBp8PmnTYPfbj66PBMV/GbTV7P/7T99cXl4sVR241RqPhtz+8IxC5vGAH8Kt//l/+xKG/GNRkcj+8HTY7vV9+vfr1tytmBAlSpx1OCkZUTr8ybMkifnrO98PRX/78vlVvXl6MGt0Gq5MOeicEviydW7H1ofa4u2INUHf+MLm8m/36cUUMNJpOOtXGQb/Laik85qK+/ttPv3FqKCpC//d+eLdi+qhd6Z12BqddNgfjkW9uhizi/PBuwHlhtDG/fvxCk/fu7Wu2HXOA+sXXG44wef326Jv3b1j6fzccvXl/dnJeu78atQ56NBLzmfszFpP5/eXND9+/m88ef/t8jTv605/f/tOH93zs79//8fvPv388PuYLAT2WGTKUzs5pOjacT0qbReeoy3FAe5V//a9/Z/3N4SnzBfV/+cuPv/52QTfv5vKGD5MxlsL2KbwAC/+Zm774x227O1nPprggNkz87d8/MWlDIzUeTWgY+v3uyekguzwXfISMT8Cyk5wNxBc3N4//5fH83UGt1qTrVWa9n6erXz/fXd7cs1O0vs+0EEPA7g4kZn/z6uiksnt7xyHOq81wiUadnx4Sqf3rXz8yaMzXzQbHje6gBfjb0RjvcXF39/P/58uMfefYFEdFNap4ez6w8Ob86J//9P792dE5/Y/DXrWKbdlk0Jhic8WJ6M4wxhivYRODc7xOa6Szwj/oqPBatpo6Gk1W/6bztmRppbjDM+ABMHk9OvmBhU/QfZgrORM8AZO/JsRh4FgAKCT+lGTaIlq7kgq41P3He6vOZTqwzcaNFADZpnEL5wVggRDQoMRLEaIcSP4BtCApJF5LNC+hVx9eDlzSdUsRqdREuq1Yzglg/yk8wB82mrUHJq8r7H8hyq8T0y8WE84jpyJ60URQS7YETTlsYwogAj48II0E9sZRVQAnNqJat0Jm7JbFMPhP+ETrA84QG+cvtWXVFs8uq2CEGxMgCHIhurIjK1gTHgV/mKKLZeAAEnlbmAGZtBsZffdIU4qQB2bQciMVgcgduQAO3MZvO/AJ43H1pnuXchk4o99Bn4BEtJcXRJjklcysPkWBjcQUEmxV7jbttlRQxaNrhVMHozw28NTsCLS7AtAEJ38glnqpAfmCFtucoNPWNNVU2QkK7i7j3mNVXnrjfNDQoEL8qa+czS6JRuSFNptKbknKFZGbgwxyIFolJ6IEMN/BR4fVrNJ2ULWEEI6+wQt5CGzpNsgwOaOWAsMlrzEuuAPyDG1wXMNhu/r9u2PGR1rdJsri5EaQMYyGXgI7sSINvmXKQD4h76wCSh+sIEm3k0qQGjUR3YI9LZpERYuJkQBBTnBlV4kEqgNGwzAZirQUu+IuSVA1cskMGBfbV5ksxdS8ZMFJ+VAWKRHRUtjYxfiPiQUKKWXjKIMwxBdjVEhkkGupQftF3XafGYs5OTxgyT8nZLDYkvXoNHpAqCPGstUkK9lYUOc8vuekASBiV6aoIByx98K0J2s/oIvhDioBSb//6FoaEGM8mFNsNFn1Fl6JrF6CBIaE4AzhV2zFdNmc4BIEgMS4dCzClVEYC4zgPTKCQYDSAYTzUgjz3aJlABqOyfbAI66TTWBAYeXKHQf4PLAdbt5rsnCBc7uAJ3OKeqNg5YGsqH0BjvJJmX2nOGkUGzt1poWVMB6+BAoQBffcBcuqUBYH1mqcGc7AArLu1dv4xRGHlM3mnMRK63A3mjzVOLP7kdM/GT67uudMkSbnkLCj4u+/ffrmtM8IGASCOUuDep0GUcGrgz5Hn3F+iGvPdvnoMmGR7hQ0qV2JQLRCwmBc9oxdq0jk5RgUuEpBspB9j6U+dladPNCgEGoCbtTv5TsDGA8aBwKkoXKUAX58sJ9OE4Zs4g+3sI87hAI4MuE/gSqsqLpjKCpf+O8JjrZKjGKIze5/+n/976BUwFBX3DozjK7Gs3nLZe40UWoMaAU471AR8dWp2SuIMwWkguE30EUZ95yeMTmpkjyAxaFTtkArtKlO2JHt638QFBp8IymATQgOMWBBQtCArlREKWmWTFgm7XEfpIGwhW1FtmuE9C+qpnnC3yI8F84WBeKV3kF4XPGDCikdOPsMNjlI09lmey+AF5qsQfsRpdohYqmW1GCrH5EbPBX4APa0etXCPMxSbXb2/VTA+nEyeqi0OXh+1jvuclI7o90cGFNn+IjGxFmenelketjv8rlNMGVUmxwoO5+LYmvmydHg68X1wfFgt1758vPHQ75E1euMxkOmXv/28ZK1tP/nP/3IamzmHatN2zH2vP52cT0bLji1vn/YZWwY47i5v/v5093/5Z//6eykzZw+zrF/erSzevh6ccEHYjk7n09rIMHTs2NaeFoh9gGzsBeClgzUT+aD4wELYN6//X6+GA3Hdzggtsp2uyyI4buhQ+wV43/16hBO0K+dTca4BQZkvvvuG5byf/54wxbZ49PDSrXFigIKjUdjePru/Bgd5BN4LDHgkxasO4Bpfc7PWS2nt9OT05MpsfDjZjWzMw7RhwcDWmG6T3xXl5HFIw646XQmw2Gjuc8QOcsS+OIuu2poL/v93ny0OHx1dHV7fX99x6aFf/7zj1c34+FwenJ+MLy/Y6KW83y+efuOAHQ8G43uZnzVka96YXG3d/cs09x7qE7mc2Yw5rP5d+/f3N/fj6fD2i67jp8nDHGyffbx6eZu9ObsgJNwUBjO9XfTT2WfzcF8ReDi4/WPH94wyPCvf/3tt09fe43WweEx3Z77yfDulm7f4z//+TXqzVYhFv40u83F8uGR9UXt5q8fv15djdjc8fbV+eCwS5tzf+uWW6YQvnnzBuJYdMTQK+z/8O37s7Oj3379wjA6hv/u/Svo4GvEfIyFAY/RcHFzPzk57Z31Ox/ef/ivf/vlb7/++uZkwAQC47Z8ERidn43mf//9Yrph8+4ep/j0m9WzwyOOsPjtt89Xw7Gbolm602v/+ft3X75cfr65ZaP2dLbgKwGsceLLa6PJ4qA5QEYkvjo+IOJjERcbixkWHi8XbLDgLFTmKw+Pu6167W6k3JHYp09XuN1DvC/HRhFJbPii2YRjnFnXdTpgDmqEymFXHCFj9MDBL6xR5iNuaiJ+lo09HMbqmEq9ssd+5TfvjhhufHXQ+/Of3vABtVarHYPE1ekLbEpx3U7NF8vlt76IFHIwo4pBwzq8Lk7hxSdZVvtOwK+lx7r5jXMzWy5S9TPpDMQLCB/g+EPdnflw9TgcAyaeeI6DevFmL48A850hqVGIlZGi97aUDzzqQvO4BRUHCAJl+E0I5rIlxuMm0EwpOQYcQxMuIKTdtTpdqLiZjXYO+EgirRgBwGR4f3XFnvKTeqfPaAV7PGas+J/PWPDG6Np4OucDN3xAg3Dr6vKeGSTmJFkNBLGgSAgGU9aEqw8OdxLmESewEdaRLDhjYGPvi5CByzaF/4mbcaV4QpCAKCbsCfOxL1c9GBEZ1nukAZGLwYloC4pRT32ymMMA5MfgAum8k0TEmgxKyUbINcq2Mt56XhDc4EmhbIPEMgwERqVtZnKb8JFTgCAslQQNgldwpykBB7FQIT3pjyzckOKxRgRkEGDrCZJupQBzQVnKIjmNTX7LARLSMXDklroMjennWAA8IY8WCS7SjU5z7DG7NoZgbtiaQVp8ouAtDqgog3+jruFVJl4IA6w9+gvzJUlGbZcQW5WYQFxaNeHT7BENk4m8gcxaCJCHCl458OzQnmCfnhuVCuO+r/miyfnR6Un/kF09fKglfQDqIAeygCdUriZiH8bgViUXFQgWuu3YkAlaQJ4U8kM21amusKSYWwm5MGpX1EhHMiJGB+8ASohcrMAarNI4oQTumraNusGPtMMZzEbROJSeUjAEacaOKEgMiio5QIscwTmHgog1oLkCJ3GKk/qAtMjTZL7+x69frlhWO54TGwGu166xfIN2auaBMJyVt64QzO9XlnwoDyrZH/y8M+MAGcfE7SgCHI7hG7kBX0ZRuCnBhpNRpZ9jSIM+qGqosUSFM9yDIDBYKgTh8A2S1VtBIS9mgZz4CruosPQoEIpkyE344XqkOECI11624x0gppLAUMFLmKGU9kyaaFPo/Kjz/s1hg8170Tpn5rMNDEQAFokYZuA0NO4UNAjMyIiyyEScHeYAVO2QKfUV58ZNQt8RLF6v+UbN7fWEcJ+u1MlB/55tey1a4BqyZQUSnwbl/m6xvrwfHzHIWNk7P3Zc7G44JYr/9s1rNs+tGfSrVi5uJjcLDtd2P0AIL3+06Cyb0VQ8xA69FR91GOXUmai68T+yBhnIDPkgGJOgT6WFg7xT52yQom/kUGgPK/u6XmH/1kIAGgFZF8RbBaxORySZ4ZLJImBRwMtaTR6FfN79T//v/zs5Al8sVGv1XqmZGBlTvaoGwjE2gPCaeu1saRuGyxKKf0ROwZEU0skIcO6DJBhkeiiSpBaABhWxssfGpQKBq8zbIlskGgfHK7VnS0lUTQ66sIFC8kurA02bfGmzWd6O5RS+WUWw3/7iD/Ct1hdFR02BCGpRHlAgKgANXvYKeExnizSqwhE4EkMp6sJYIk3B85LMKgJPzjnywUs3hBFAA4rVWgwisIefeb8NKy0enzgZ95eLIfq+WnHQ5fzwvHs4OOL8kw69f7oIlecB35RdcNq7H4Tje3IEtRxS2er07m9HHGvFgDhDbHxs7vbqnlXg37599fPvDM2uUcrJeMVGWc63oWy7U2UmgTFyFvjjp968OqXhI1hn01yj07y5u3ncIX1vOr3+4S8/PD80ZtMxbOTjTo/7u9cX1wza/fjdN4z73t3cc64Wjm48HvJhPZR3OZ18+nTNUfss4GFFPmfjsFzkanzzL3/6ZyY/2Zlwfn5KsD6ZL7uHvdl4+erVEWHlzc39ZrVmASg857SZi89f6OOzH7d/fPhvrEiZL5nlZxiQfcAXFx9/+JaFHaeECMvpmrVDJ2fHrPhmX+vtcMTU5+huyJ6BZrXx7Z+/wSncXd8xKmDkOl+Sk3AP+dIdgVGXVyO+xHHQb+BZ6Faxpeb337/SuyI0ef/dO6azmbX4cnGFDBnF5GggzoJilHz3scqaF+INOmK4XJbD8CUNNiHQ4xpfjD98OCXmIdjv97osI7yD4+yvZaXNwxPzjszgHfZYzN+7vBmN52N6QmjZ8fHhkihpvWSNe29wAED8cIcB+nZ1smL7/zWfTD0Y9E6JVduMhXI8FMTyjWF71Ogc2+Zoh/iQ4eHZEf0nlJDzSH/55RO7l+hGvnv1mmBtPh2dHA4Y6pg+PH+9vLz8cvPnv/x4dHLEWUa//fLx+nbCF4Xbjcar0xMGd1j8xbaI5Xr/djI9f3PK7meO9ez0DmgDPn+6GF6PMZI3dDQO2izlYM0Vunp5Pbz8csXwbbfd+V//T9932zU6GP/6bz8zDkWXhu3CtXqTA2HotsK133/6cjscN9qtf/7zOYc1/fY7Zwo9EzWOlpvhzWS12LAn4eisNx2tb++ZlGJFFVNAawaV+cgDI75MlTAk3O50J+5Wph9SYTpCtWH6fvPApAbrykEsjSDOCtvXKPFhtJqs8jCaZL/pHp/deexyBMerwavjwZvDgx++ef3Dn95yRByaxuS5E5b0wzVtjBo/bLBD0MDABYnAwweSA5vGYeAL0DAQ4Jn8sX0dt7XqaHQReBKKgAzc07vGgeBOUgMA/SGRv/gO21M9iWBJ1lmXtzolS/pOqLwqXl4nzg8VFheXBiNDQTov8wTettqUph68JfAF94JPcWvBmBpsMvSHeG/ylLpCo6WMzuMeIXm1XHz58nlwdNRuD+BTDv9Z0qW/vr67uZtA8WrNMVDz6ZRNv4+cmDWazGhtJJ+1hxyGp4nCHKZt5BAxMB1JCSIOCPvc48hSH+bpGedTNrIF/Te0TWSGfRnRgrHxAWUUPTjnvUwrbVnYiDQRFjTKNJQC2uUDz5QDrjUqIF/wBAeUI/XI89QbhtB2BopEWFG6CopcX0+ARbDicH6qBBKmG0eEM/GAZnBLE0BTwjoCnjVnuEAdRvMP7OVltSczqIxlupQCoI6tMkrsgpMsADHsM1ygz0DYhz+UX9kKTG/dZijVwBam7aHFkNT1KUbJBuL0QxL9RW1sdqGbfJAZDQMRUpCwXIKqdBZkAXlsysOQ6CBFoEJtcbA4nWCKyAnZ4nbhlDK6QChUDcLsZmTU65uz/umg9fb85OyUExM6jB1Qn+bzotVBpSBiPGBEKEqG/kBTLUVSgSInZR/9hQ9UDv9BiTflXrE44G0SOuTSH4rxW94SHsiAImtXWykf4DvYjHzDlK29kJFagAmwkocOGzUTVUMX+UtITV0AKT7BsHUrX8+1RHlpcVQqeUsfxorJcXE9/HJ1/+nLHVPrQOaAfNxjRjyYhd2zZWfAlIM8mBVn1S9YVHb8soWRuVoP1aybhSK7RbBcURLEu3QH2SNV/kdRjWeo1GgurIOZ8lRzEE8uYTKDKiW8oc9sN4k7oltKUbjwv3CQqXuYtZ3eQXByFWDwM/ojZHWD4qQABu0lAkLIVIcq4FSZ+/nTe5tmDYOvasIuBxNdlkJF8TUiTFmESCKeXGjABLTq6sW9vx02UEnUDa3MVM87ytAAR+chosvbIUue21WO/2nAmYN2Y7bkNG9Uirys0Z0iR5bmd5sMsjVp74HG2ASz5fVqnVO5iVJo32/H69Hj82davbWqGJRi+PbNjEKpGU5gxWDFjWyNL1XaJCk/uYQyUJxXMFmK9FOmkhJN2zYrUMKlk+KfUhKCTFBx9VCBqXx9F27LBAFulTA+3Dic7KglrAItMgOEX7v/x//j/4ZnARadSARDGmi9oO4CdDJFYDYqcR9SxQ2JhQD0OaiLiTF9cMTrSbykChD8eLT9052ArlWYmT/myQUc5Qit9qNLYiEMWq1DfplffCgsu0GK7NbJPUm8omDBwb+YgZYmDiTmLTqms8GVUquY2L2kzcYq1FTyKBnXC3LgrjlZiwco6sUGrL4I44XYdDOZsrTNpkFA7jg/WitsCDZDIpoNcz2UwS/PMJiEF9ibzdaMo6JBfHuVtfvr5+XXL9d8HPvdW8aVd5aTFdPj7PJkTIkdnyyVmc2mtH+MV0Mk4wLERvfjEeCb9efDg8PpZMIYGh/fcWU7J2Yu+J7r/uLxeTScGUsQnT+sOV6GOLCpnhHW7n745tXF1zvmyLrdWn/Q+frxstvvMSraPzz51//xM4tPTs8HfHkrAT3Dr/vj6ZSedLfbPzsZ0NMAH+YciaVYrn53NwIxlnX0el3iQpzs3/7+G2xH0Zq97p//9CNL8S9u70Z3Y/jJzvbJdHJ4cMxHslgu8t33H64u7/iYFMvB70dTRrK///7D8H78+csX1qX3Bi3OhGFRPvoGUevZ8uz8iMV8rDnhs1wM819+vB2cYJbzi99vsfYf//L9/m5ts5n//vFrpVFlhvHDt2+aTJGwXWD3+dPnK43r8Ylvl9JR+Pmn3+n3HHf615e38Ib1VMenZ+P7Ea6HbgIr0RmEhqVMv64gdrO549tji+XBgNHo+t14y/CchLhoVOlWjb7c3rLGmRNCUZYxZ/2MiOyrzFccHHbp+ZweHTEkz75tFqLgaIaciDSevjo/vb6+f/P2jJ4gysu8R/Wp9o/ff18/P3JkCvuUdlYMjlcYJifO4dwm1iEeDvp3tze/fbl4qLbODjrfnJ4waURP4PPFZzpmjM13OnW+C/C8eiQEo0dUbe1+uRpeXN+xDxifxsoyPlOApjIWDw/9HBgLkL57S0fi9nbB9vH54/JhtT47Yb7l+R8/f3pc7FQbT5xhSiTcbjbenR0z7n55cYfN3NyP2o7X7/352zeNVvPy6p7vtbHvGSs64lygfea1V/Ds5vqOuIRZ/rtrPxqAVcBUho32m23YyJAva67YxYs6cd4FnbGrm1tmP9xx/LxLh4edWTU+aNPY5/xmXBF7B7BBV/3W3O/FgnLcCRs3aC+KW2P9Dx6GHqM+gRwar1GaR16xECUbtvA0LqBdb9Bbvsp4dt7nsyjHhwdnp2zwqP/wwzcHB12+R4G9NTmrtF1nQQmTTpBAgIYPZdcz8SjegFUlhD6wAgu2SaN5oYliPKJ8v0yfjT+lMuxeX6QT0dXFi8U72VDhIWw2dEa6F31dPHh6DjglXqC1VKf7+p8uBFRcHICF6VtgBEjajXggqwNDwZjbqkGdslaazCU9Lx1qy1tBpSoQ1kOSmJY2PMVD8nIbJ+3c3FytH1aDwQEnWDBIycSaszxzenGTyZRtMWuOfOV8K9b5zDjBiqB/s8t7Omu4XKIHYjdwZtUXaxcJY2k4JQXkODMkmGPXrVoTlqDk6CqYwEm8N6d5pLlVEgFj80YRHCDxCqm0ERDBb6RPQx76ZT2OmngY3WCnpQ1ZogrcNYPyvEJJQMmWLoP3AAQZitksJca12XL9mPGlIkMqZACJIj/PCDIsJplpCoCDLznADZnANSnLDwgS7gOUwV3aJBw3hEmAKmMMSvuqw2eXgt8H8FARnKrNFPuaPAGmBoZ0eqmavZ4MJOzTwVDVnVpZLWEvYbeaD0ArQmbYnqfe0QyxzJMRJN7kSosfzZHxIAYc4wb0yyZaXQCxNLW8L5Ng5Nw2iFSEHrFY39wir3YUNYMl9M9IYCUOwmGNECeLHfTqP74/e/uKpoSvliN50Ic+A6aCY8wGrQAaxuViAVo6OYqRC7iYkg2/MpE6x+xRj0AwXEn9CE5/TwbSRTfM53go0KPDQn51ySyEm6o0mYpA4RMVWaRYk+04oR6YOO8kSyWYcAhpKlwqgAmoJvgBlomdUmnAQj2XNkh1iI9AAExK7CNmHICxfPx6df8zC9XvRkxFIcbjgw7nOtG1g/N+zHHBGAqKzC8PxWKnO7uh2OsC0qi6mgWN6DOYsZKAnNkuCAdJJgBh743BE7oBWVKIVrBlS8L1NXoodZhyziJoIuihMzb2EIK8IarZZCJEIAnAaA3MCSQPb0j3NcVQeGxKpHjCUpSLxlj0ycpUCdiAS/7u7SHz4oysUwPco3YudI8MqKF6GyqiGnQhJJZLzLnyHYYiW4pi2KTznoJgoV26HuyRTwGghIwYEgBxBx4ML7XbjU617uDgYb/D2Ruz9d3dPc0jof+Ac2k7temUeMbjqnHxLH+lLeDbWQ+0xDtsFB5fXU7HM44ipi/t8i8sDXWFxSBg1y7hrpzwItF/vDcKxxSkwFaDVxChQEILiJMvnFcKFOdCKOEh1GhBqBqlsAPqUXR6J2pL3fANxlJmy3pdDdWbGOWWuerttkYTGYkmh5VZuLCfDNYNWoAlB1WhUvwWP99ZAXTyp+g0WSFMt1igUw7y4nEEHjq0hLRnQo5RbX9T2MED9EdsYnWpACpDBuyw6m2fWyCBaQmlDetdN++NNAJCLQ2dUTvuRT5O0MxQFIxyH75DNzzVhixNA4POcBcVJysiEWMqFQuq5QJ/i1oL/5EpdglfzaPLddsETp3vO++7HPSZHqZzg09Vjn0lmkcXCWpZ3EyXnjVnTzRkdEYPuwedNts6MWKGyFgpNdk8/Pq3j2dnndPzIzxktdEhkNo8V6cc43hysmYWgZVC49Hgm1P2rjG2xHoJdJMh506/N7qb9t+/3uUYTvbMrtfE9+3D3ser6w/vvznudk4Oz2/urq+vbmqerNKZcSzjLx8Jg/brLUKsv//nf6cT8823H9j3cXrUWPA1z+srPqHVaXFIQY826h9//Tsy6/abzO/PJw+cRMkhM4z1jnnY3WEVDqZwdHTcahG2PS4Xj9dfv9CesCX2+pZptCHB5Z//+Xsi3cl4uLtXY5ssK+3GwxncOD057nR67Kdptqtv3pzR4Wnu7TV2H+rN/XvWee+wCmrvt883ROcI/eCk/3U849SP8cdJv9Pj1PrJZPLzLx9vb+/7nEr0+Dy7H//w/QeOyOUDfzfXV6xOabYauMPff/oVlSN2Ozo6om9ASMcilg/ffdft03WpsjeAzJxYyt4DTqlnVdWX364ODzo4W1banJ8dDrpd4o4q3YK9yqB7/N///rffLj/3ey1Ws7x5/er/R9Sf/sa+dflhH8ciq8iqYlVxJs90732mfroluS1LclqRh1i2bMGZgPiFESR5FyAvYg3/R2w5+UtkKw4CxAiMBAjacqv7GfsOZ+bMIlkzZzKf765z23XuPafqN+y99tprr2mvtfbHz8fnpwNiQoICwWYdSGvmWN7YeXHPz33V55brdOoMNihZW1u9vLrY2mptbjWHlzJ3Hz8dnvT7V5O7587WpiKbL/d2b8c3EsLOjs9ZIDKtkebx+cW7z58VVtpUt2xxrlKr9S8vFD7qtOwEtNF/r9/74bu3aGy12fzw+eDwpEvzeikCfqt92r2UNv3ipb33jvpBYpbqtWVHHooyU0xpc7OlqNSf/vlvhI0RdJ2NxlrjD87PBnZEbcUsLj199frFo+D95spgOPn1X367ub612mg8Pdz2bsZibK4T6EUoPq7LJ7m7v+4/vv/4qTu82V9v2dvd39lQmFTvKhcNBje1xtrvvrVRQK4jt8rN7AN8ricBubqz0caz+uPr5dpyZ22Vtn183IXM1toiJFzcDNlK8s5rs4ub9RQGlbP86eikx3/Dt0iaWcEpjhG9gb+JkarsjC27ou5TfrhLS8UKkZKVZbrX7aNzXrqW+ePbTzQRzEDIh20Huzu4qWDlznpds1JTvPv8cNvsSImvCd6szM3/9Kvdv/aHXzVqjVbDxlc0mYRBFM6EzYYxFq6RXYTwN83gG2iQSo1fRfLieBGLUbJ9CVcptwqfgZr8KfKj6BmawPTwGXKitOYN9zWTxnUXZjv9WnisS2myCKdp69MXyHWPAxNzjBCacvWgrTD5/F14ncbKloXlRu0I9Om9KAx6jHiLNtpqtT6+e3c2nECLVUC9dMvzdDrzyFb3CiUWeMqb2Ey7vlX00AmABTlWdfFrsDz91qr6Pbg0hOTUSq3jHV/yaPU+Q/Whp4OTJ1VgXYrj8bUkLBIWn1locoEotqwIsNELgRh5LCOwFNzEwINebppsofFuOqUkrRk5CnGv8PXoTJFmREXwHLRm6jKFmUDARfYWhBK/mTzoSjKxeDOTE+Mt81KsOEjGOhj8mmCXAAB3l+Kf6hxFmyF9yOmIS8JGbEmpRhoB4lMUd6QBePTMTT6lKFhfFLChuGEOD4qOCBYsi6ChswF1VqGSkFZGq3m6F8FUxu7JqNRegYFYHRhl9AMjDRz5ktnL/xlsaDQDdLmoEQV7uepWOvBvPmYj5A15sdA0hKAMOTJVm3nUT4cV2EV+UmulUZmvzT9vdNQPK+luwTYCg7XiYQx9gScQfIkd8i2ET7+LzqQ5M4tyo4h7yVicCyGoNHeyy1EeM2BjD6iuBqtfRuVXwPKUd3kBCtihsqypTIX/M+UmiNYHD+XNqFBRYd2HLuMx6BLH5WnEFkik2BaTCQy6C2b0bKrQQ2LBi1pecJvRQVXYRCD0AIMRnaqPpczDQJ7f46PSz6plhWVhSfOzPGUIYCICJGSjKtryvYM7Q6LpJ4j7wj0YyaF3JmzMm7zLjkjYhZ7dggOySWBkLjIpQ5wJmp9ykDgEQgcGh/gSRMfkcCW+vKAtn2y3GaZePZYxxsCGOkMBj7FAwlTHApLRZ360X/5GMCYZkWP4iNAXbJwoadUbUZ287DmoKe7duG5i4NCoNJszMcwAUKMi57lMbSyNYD6wgMoVbUCGJ82tX9GeHU90/6Q48fzSrCIgyzOzfJeN2vLAdn/OfFhQhVyBEVYX/5rSW8wB22aCojv1FcrD3eRebKOFeHTe23avVr3q9paen2zJK2XIBgNUmEn4CO4RjpF//fFfWIH1ZU1Nr2YlZDGGFjNefyO6ID0FclLtp9wxoMxsWZHBrItBduHJZaIzYq/7nsWV2UPtwUiZknz18QCy9HfASzd5xotgKFgqUwjd/83/7Z+6AVfIrsAHxQHM5IEuxJruQ0OWVoAO0QE5QLrpSwgxrReo3fMDrPmdK17xNZNVFnl0rzhs9BWSykiyLZAnpjRHdnjFU1qxzoE/JYiMofSgzXw8VxZrIAwCA5cBB7RIpnDkL68UaNPa1FT1gJbMUgEgazDEmybBE1T4En0+IOVOxpuZC3fNyg3YWoYxU8Tqx0w8jNQ0i0pvnXO9VFXokADLrvfwRkFF7uT1Zn2+koSwwWU3eZgNxac4uUIayws1qXHY2GAwILnqtkSXKyfHpzfXt1sOq6osipNB6uoA9AYi7K8Fjm+tta7vbt59PLT3t7m13e8Nry7EqTfXN9bFVNyM7i+EnN/0v3n95qrrsK0lMsRy6p1dbm51iMn37z/e3z69er1TrVa+/+6znYel2vKn4yNZB9fXD//GH//c8U/LyzXG/aA/Eo+x0lp9vr3m+oVtpwV0BxcO0hDP3lhZFXS/ttY8vxpc9Hq/+Oob8SuCZ+ztKg0ppkIBY3hSnIcaivgdOHV9fcPVx15IbUcqeXXJUbg8r3d3zwzxo5NLOkC9VsFXJ5NbYe7WHgSCCwcAAQAASURBVDyQ8AefTm/vx3/0y59JRz07vpVmenZ+uUOT3V67OFUpZyyWVAS5k24FTfb7jiPYsZO6sqzqkeiky292txqNxl/8/p30aNxH3MvXr3aE4xx3e/KC0IYTcxlOG5ud1rrDehdF+Ynvl7/8ktYbD+9jryeZQY0TNS7rW1trLIBPB5cfPx17Xmj+ze3saDD8eHC4ttZW//Do9HLFWQOVhc31tZ++fvHxwyEeJNRLxtv+3ubl2ZXGt3c6nY2WIqHd86vr0fXmTgf6B73J+nr9Z3/wM4naUjvqayuL1QVnLU2Gt83WxuB2KK2ZrGmvzL/Zes1H/bvvPlQJ1YpDDVUB4nsd86X1L/pH51fLNfZMZfZ+fntzzUbNlR2c67HCOEqsipJ3EoqS/C9e73GOyg3gyviTf/NvyBjmS2e5IYxP7w62djYuryZOOVB46vXe1vXVDfV3ZvHp6KQ7mYx/8tVXHJAXp+O3Hz9v7DdR+O3k8eC4u7m+Kl1YSkhoe6X25s3eqJu9Jmr1wefDuaVnBVu//c0nWx87O03aSKOx0t5oD3qjPY5/OVuMt8m9ytdyM6zyRC6d9/f3tsSe8br85vc/TOKKW2quVOX4SmOQPQqMVF7CKsmYpACGmfj6OPNg99YVm/sUTpYARkFXIBlx2/AfTCCsxBvhHn5JSbMXgafgESk/VyRcYTAkUtrFZlIG2InXN2h7YXPDIZ7L8iu2t1rttdrrVztSJzrtukCywuuxDnw9jpmojmGFcRL4ge2U1iJgteqR8NpwnS9/h89kREXU5e+4fwKnCdJC4cSFd5W2iybqrgHmlfK3L/jStBFMVWPa9u6XXsIziwZVwPFuOnYRxwZxJGv68UzuFO7n6eClICc30pAmHticckjGg+Ht5MZZOnc3j2J+JoK6VN867wE7xc6VFhB6eCPbflaqxsTWgJmKak6P5YjCVOlaGbCr0Au3fuAeOk0n1BBfEp9gjIRV9ANaL7M5E0jeR4gmEIJLLtotoANfNEsmgR90U1M8FXNxzCf+HnKe7piAUMLFmxoykdm4XICKECmUET1j6gUr6nKahs6CGiKy7DMEBvQD/2XKCDUQshgJOwONqPFWGtdg1K34RKaojF6TrYB0V/TR6Fe5m5kysOhgNHWaX2BQxir19wBva6tMLpCi6SQ6KOJPcxlIprtMIMFNyUsV+R8Vskxr3qGHTTXaaNa5mJA20Gd2oW46PNj0ZGRsgTxDiHM3H9jVSx4NJRfaKXLQ9GkQjJ7AizJ00zA3w9MgaHSnubq3Xt/s1G27VelcjgJmV+vbg9qaNoto4+MMKNoBE2RqzwX0EDoot/Ti3zLN+e1XgAFxPgXVGakh5XkAR8FKD2kHNv1jYBrROEyWB6LtG69XTH/ajJE2n5CtjDDcIp2mk0xC+iqjy5Ws3KinxfDJDlU0hAJP3rLGdZAdg0Di71ALFdxreXUGaz46VOVhdHLeN2KNq20s5MXutYnWUo7qEaYyuW3UViKP+Dgkvl8rAK8CVWolY0l6p6XoJqOLugUmrT9ms8h52LdZb+jBXYvJAIO7jNFNZoC3YCc4ARD4/QB+IaQpWlBZZh/AUAQGzyNEdOISFE/HZWTTLqaYKZCUpAIAYZ3l+BeoCGQaenxsrVa+ebXL96lN1OIBbRU0lYlIzz5TML5g2299YeOwFJ7gtgcEsHi33EqngC+rVF8iRZX6eLy7ocLSTwhZx+AcXw08TcyN+mPOwVrdru58fzTe3WqfHF91lKVK/N1Mp9V0MYGLs7MbzYYZ7l1hY7cqXE/IkeXqcbePSMEc1gAh9EDzAaSifLtkAiAuu4rh3rFJkJAZAF+IyuWMD/1jHVl+Ibw0Vday79lPCGkVSolu7BaKcq2Qf/TnLNYyBaGxshAgU5vobapIS4EARkzJL7QHn3klQudf/Jf/WNNayb2ygIPEAFdYYVa4+Y5IKEsi/C4rxMIw1MBeHk2/GeHU65POKO4+4V953j3ggsBTBfhMsZ8GnBYKNUQcZhW5FWFYmEtBajEBDdA1TxZ7NOBpIb1OKekLd8vEWwbpqxgevgVOvQAhGkGWeoABK9IJYGXB5AFfLIagxi9gBdfl+RB34c55nD3nfsZgUj3IXpkf3Tz2+2NTuFxryPiUdc/Gdmbbea+nLmGzWXWurXg5MeCnZ5eT8XX2UGcff/LVq9sJVWauubb2/uDzs4K9vMKqoWXLjvrn5NTa8/18rz85OD6NuJuZGU1uRHi/ebXH7UoltAaWK7XFhZWu6I1x3z47ZXRre+v4wyFFcH1jbaVS/e7TwcY6ZanO2ri46Ck1oGKAPcq5RdWm53uj3nqj9c2bN//tf/v/0aB4aIT3+utNoRaLcytiRgTySumURMORLZoFdoVos84ry0u72x1e0g/vPjZlyLaqAheV9FGzBbLEO6E1u4wmWW0DQfrqNr7cp1zXzy8HvasRqb+zs2lSPr4/UANOgo7jgiU42I7otDd2X2wLEhAIpEi82p2j3vie3jA3u7O/Iabl+Pi43eqcnZ5U6yt7e+vsBDFINAb2PbsFLJkfa3Fx8fjzgZikeqctp8LMZov9aaa+mkLy3bMubf58MBC7vLnROjo+VjNEoaFOu1Usk6XJ6HZBTaROUzhWf9irynN4nh+MBsyhjkKijiTrrHZPuqvLjdSWmHs8uxpdqF0/mnAF07TBLx6Hi0BRVAVJbX7oxdZivVbnp+YD/+abV/w66qWoeCmyyGDtwWy01+00zlZm7Yp8+PD9q5cvN7Z3bK1MHC62Un+4frq8OB5d3Xzz0zc7L9bfvz9i9zQbTexrcv1wcHL6/duPQn5unXLSaSGYDZV/djaeb++WVxY/HV6++/Dhm/1NMfQLq/VPHz8/3D5jc8j54NPR5vqG/REkKn9DBLFVc3HVZxBaSZfnwzbI1zrWxtnJBaKy+KVSbDuwebX+3ccPs3dLrOL25ioH1W+//XB6OdjfXpMXoVCS/X7KjiQN1LzeWRP2xtgDr72u4XCMj0nQ/tf++OeS3hg5gpQsQQLfRvjVxdXetuSFzV/ZYDk5/us//XltYbm+sihDnUcZH1MnQ5DV8E6Swp2NrLVGAwZOuudlqUatmS5eP6lgToTM8hdHnXOmyDZ1naNyWW4J8lmpqFDJDsnqno30sqqz+Z5TrlNsnn9RI05i5t52oqLj0ZyjJpQLmqiJ9vytBbWS7FwpbmK7B83v7K1+881WfX71mzcv24qR2ulbyAnH2rQ6LDFjjyi1SAofxw/CPxFuMQZ8wwen3DWsasrmonthjGFNP/LJ6SOajMwoN6Y9eGF6KyuwvB3uV17zJaK64AdHjUQnXMKD3SiMLhw1mlJpIQw54BBg4VlFLSBVdBOdm8pYfPaa+/D+oxgyc2GLb25BDa6R/S6o5mYbj6j9onBF/DMDbnk9MEiLhrMwR63Hm4/ZEkLPToPgHfQjQepM/2ISmE6TQKyCRKCgjun3Od9QDatbDWf5YTmAsoOa2n8xBL0f0ViUtdm75/vwPGuNLcBJgw9kZ3iBah4WXhSm4h4N89eLoSNcUiLfIaBIhKAoJxRHLHqf4gVdoaJQ43Rqci5PiSOH3bweK5Qooas9IKTM8VQCagGBRZXMVJA6dJ3sUXC4cNyGREivInlBQrPPW5mmiB4ARb3wH73Qu0W4GS2aovevLK+kdFpCxolaotA8oaCog9BSlFd9RZlIU89PMvc1Qo6kjmSILsP1nLFGffVM9JpgMpjwyUt5JlCzcFKeJ8q0PjxgjB7/8nA0mEhh7cODEaj7/urVerNS2d/fUKPGIfEcQMSfLT4tREnS/LR1CPd64I/ebBJhTBPR4KMb+MS+KuAAA0CBSzcZoes6nuoDZcAaz093M9d5HoQUTdNojCH68il9RXW2kCzDosCEE2b+JDAkXK24A3LieNRSjmwwpKnoQtMno0dpuWwzQnFoIE1FzwEKesj2Y6GxqFXaNpICOf3+XsG344vhUVes3DWEtgnU56cURg32nHCXwskm0UxYsA+3TBDZMo7pDMloCHjAooAxTdjWcM7pETTKFjGbOQ4FLSF+XXs4ZnNU7KAXWhBiFFf2g2gDc1lQ4gEqU3FeFFoK5KGS0ANSnU6FgWWAGYzbIQbteTEKmK8hJ4hOb5CBXNwN5wsTDwqWF+debW9stFbx0kyjR8ucgFPXach/rmgq7eYDDN9cyY+yhHSacZm3opdmwcJ4bDCve83kL4i5dcnhRmIVMGTlyM7Oe+JCl9VzWZgTglGbr5xe9Bs17LyCcB1VTKloNle4Is4uLkv1v5nrhxsxtbb3B6NrvtAJJ939XfdqEE91RdEtwBpw+IZeg5MyABMIK+VO/gYSBIZDZUihZ9wm5JinjSMDyZ3SWBYc6i33PJy7cFha8yLkQ3ppvKzrdK19PUA23Tt494wLmeny8W5uwXYBUtRgVPr0AVnFVPVYcaJgs5lXP9NfpgEsgS38uhxq4HsmMtOR0QJuinSMYNpgRAXSMSv6SH8BJUAXKvRF40A0Ablatn4yefHX5KPL8M0s3TLBGZenQyB5MU/EtjYYHenRzcjUoDf4K+CVZe97YRdkQCBNG2k9uCsEiT5K2wFMh1kHpQv1lDzLWsu21bNCNzf3M0sO8VOsxjYrZ+HlkJ7amxUecf9EN7K+1tZWTj4eXA5ueh+GVt03r/eXlmaHjzOnl2JiR7MP8wIIOgJgru8Ukxn0+0urjQ/HJ/jhi601fPj405m827lqLSbMwgW/rAiQmecbgePLSysUSQESgop+98PhcPLQaVSaq6rXX//lu+/310VdV6VLfvur75vN2vpmh4NBhcT+cCAguV5rXg4k5Y4cS/vXfvbHv//1/3Bw9PH16/29vd3hZe/P/+JX61vtl7VtCfLCdk9OrpTDd1L1h4+nS6tqAi09XN0wkNcaWw6del6es5O2vbU9fhh/Ojpe63Ca1ze2mtXK3OnR8YKCDs1V0unzuxOVHVW2ubm2ZbmwK8y6Wnn77jP7ZP8Xmyb++OjYbkbLKVfzs7/+/XfrTSmyK7z4x8cXk29vOBT1yGsouJxRAfsrDTUfJ4eXXZN7f3+tfMTXP/1GvO/R59/T8Hb32ybHzimRgXuiysnkyrb5yafz7btHCdC/++79anPlYXL3Rz//RqT3548HjgO5ulDY/lxYKj+x4pKbmxucEHIdHG17a22PBo474DB/f3RYvbn/xc9+cn9/+2rf+VONY1rq2c3SExdW/fT26v33H+kbS9XK7PVMt5+6Ny+3O5eXva39F0peErAvXuyIxUJ0bR6FyWihsnR2drUssF14UOKOQs6Ub3vgTmkYTPr15fbezr4K6Ven/fPL/vhm8rD+IItAqur+N9v3leV/9Zv3n49PX77c/dM/+80f/fzrVqtDOrx6tW3dr9ZejLnR729e7G05qVh3x5+vzruMqYd/+dv3r19KeB0418xS+f3v3n06o2qvw/N33/12qbb41//6L3pnV0TxYn3F/lXvYpws5831q8H493/5Ax6996IpEml3p2Xd2dV583q3Xlkcjm4+nV5Y229edWi8VpNcCPmdkqL5wlcXay0xTleDweXoD3/5VaVSOz0/bzSXbYBI5qisJLz96N0ZWWZ5yoM/6l52GjnU+btv31sjr9pbKrbINzg5m1FcyXpUwU2BpXN2xdOTwC5xnP3hcVxsZVkTkpQB0fhRWsBkYhanalnEHjVL3AEp7NRpfhFhEEw1e/3cUzzBMnQwTOKWjwdPUdsKM6AjMVxK6lhFdW3chl738JCSHUtVQaJPtcW5BbXjWPCLjr+lhj09fbx+991f2g9prP1aDa611drLl9svX2/RCBD5vqBXciYpofgN4yLKEy6N/xH2pF1YXNghfQIHDNf1Y8qasOLcNTDcDo8KX49PKKyvRK5Hm/6RUUOAZ9zxLt4bDp/HghOv5PVIjbDTfIqeH09/VALYiwcH4w2jzBu+6So6Wd7zMB5sPBqMSjP/cn/3eH5eGYDB1Wi+5hhwGyRx8XOHsLtAKWyZ/x9r1qXofkLByzIBDA9CXaVMRxekQsY6yCCIPXOAksT9gNKEKB9LxRHak0uOzOAJNYbnZ5iPqNFWVHNgqaUWjQQnTzsRF0m9DRqDk6iqHvaPcVDZfc+mwXSo/tFvRGdGbdCJ4IxEEdxv78eJmaXZgklXihyJoMpbevwiv6NlGiNJomqWpKtMYbosXjB6FdmX8Gj2ZOoFhxRLJGfEmcAe/K4c5wSAIrOcnxJd0BYWWyLTl2Gm+GaRXNHFyXPavAZpPlKPMi2EmE6LKgy8LAcTRrpq1LAystQdxipRdEpy5Xgsoj/KAXSlzWSspWonCrJ20F2e1FMUrBBkWi+6hcFCWN6KUZkaeaQPI5oZ8nj3XKtlm0e6b6dWa+QkuAxPUCnaR60Mk8x+2kca8JxiX9G/NU5fdhVzjGYZYkMqeTLYjJs8IymrgD8602ZQgVBNBE8xz6ICBucl9Uhroao0+sXS04gHKAxmKhSdCS+KUHFfFni8gCwy4x70vYR8oyI4yerTmA6DB1CZcXOZ0KCcS0AdBaHj6TjLA1g+YUrppbh1f1xZmtTSXDn8RX6UcpNjU3M9cWTyvM1LKbLUF1g13QxmpK01X0hqyWxepNjTFYR5FTyVNWB1lAxGGjclxOj0YaKoUVOcAIy/EoqCxmxABWwXtRA7AmSZysRxuTjFa2guWmIwzGLM8PNJkDqslOdjg5kquCiUk8nxe/qcZwqpzLMnoMkMprlnIv5pfHvfQs+Z5KDG2MPyYCxEWqbEojCDRXUDYoZT6oChD9CkHY+lKj+/ZvY3QillnwqvkD2HGOyKxYDS2OOstJPTy6sqtC7M1lYqQn1+//5oqbb6OHtzLvB0cvfVy81L25nj0evdbSoKY5WYYMWYXF04j1Ta+klXZcJH+cGkg6gMYYuAMf6wz+iVCDXYgQJEDb2RGWUo5YqBZqwZXxTbPAbJ0+dRmu8mJYNg78WH5hP6j3SAhKkbqBBsuZW707bL37FCA4T3g5jcLEsVnsLCS+NZOGHtbv/X/8U/tvtWuHv57YkyE378CFnpP718+T9Ek6gyn8A9/RTPmQ7TQ17IzJc7LsXOzoiN1SvaCYilGw8Gb2k6YjAkWAjIXRIoSx0FFzxqK8+kUS0FY6WTsvamEJS+MdA8WDhE6SWj/vIpL02B8kTpKLMWfsfycaPISJcAohneJbus7Gz8Ri4bvfKGujh+arbX+Ph7F5fLjdXeaFKvLG1srGNaomuYhmJojqgw43H3srfJ599cvbzsmg4x+nJ5v9p/dXs7Gt6MZZQuzd1vdNqfTnqi0PYFdAtl7irmPri9njhwt1pdbbVr3377fa222m4k11JibnO9fnnad8w3h5qNbrThVCiaJS+mI69XGqtG4XQuWg59SOyEMrXEodKRBkdZh8ntzW01YRxku83D2lxT/l+s0WqtZmcA4Z0cn3EnqJpPMJ8cn1erVtACn7pUTh7W85O+amMbQhzW6qcnPakFou1Zby9fbUugOTr4POx3t7ZeWkuKallenBPyb0z6cjI1Z6rq96txIXyVIA+VPzsnSEUavkHKYt2KrC45MfTkpItjVldWne+7ubG2s7X96dPhyuqSJ1XwX1hY7myu07+pRgKX2De8Ie21NZv/llNnb+fww6lJoxx8+niiAKoDfr/e35Q38PnweHGmYoYXljjkJudnfed1sEkQFXtmc7M9Go1Wqqtmn76o9OrJ6dnXX++Lcnr3/oC7WkUmRwRc34zhVlj6hTOOEqIzeqwsfDz4uL7atiYuri6QkDXQbClzBLCZ1y/3cEMKgCO3xO4LX6kuO0Ss/WJv29EHjdCEasSXo8EINe6/3FXI1DGgW60WMNkmf/67336z85V22CEWvpPXnPYuzsErPIYIQxIGJ+jW+mZsdScQz83v7qwfHl8Orse9y+GL/W3nEiAQ5NQdjM9Fkl2Ov3kpNqp9eX317u0x7vTiq91f/uz1h7enDnNQbbO2usRJenpycXDSHV2PcWkioLW+SnvD9ZD6WqN+/XjLrqDnVeYUsa4B4LfvPt/fzTkzmGjNrnQFrY5VT1qtqsTvMLhLhz8qDlurr+7v7mU3ZgZVzPYuVb24Fi6jCqi9nvZ69eJUHBDvF873ZFN2pb7kKDr1qXi/bLkSzVYNZqECZEmvmMfSqdECHIgqfCUcz4eojuIcfqOlwipwi+zcVeJvpjlJxb6Nduko2QV1nzk/H3Vn202cqBPXyC/hKgJAleJYEghqbTP4lY+orYjKJYpUvBVS4fB1uykkikAym/mPdzNrjRp2ZeNOHqwdPBZXJQsIjyJfIxNtDIJ/bXVpX+pbu9FYWv3pz1/ubChRW5f8wImEERdhHP5k4UQY5A3SJUp3BlVERRhaBKFFlAczyKKQhcPlypT1F4ZYeF9YaNhbJOO0lTTlSoSAbz9uq+aHZ6NeTbubCpsA8GMcsC6AGJ8W1hnnfRlYpLBwweHvv/3uN79+P7axWZGpQb9/suolInlL12oX2lSh3mHzzG/8GffHcOzDMIMCGuUv+keaXhS7VaLVqS4sII/RcIwYtCkf5Fic4MRy4LyZdUBeNA03o65EpkAOMZN+4zwymtyP6pCfPvMmiCpsXuj3nmF7sAG8RbmBAkLBG6kor5s8RWnxdza0QYc20k76C4UFr/k3ypBrxlWsm8xckFxwHRdwYtyLzqrOVEnwBZjADO17zV28MRIU9dJcE2Ga5N0CPJ0y4U+aMz4NTUUzVkAvz9l28X+F7Eu/sJQJAtBU8OsZ/BkuRTZvG9K0kSkwbAz6I9AzGk5iUw3/U7egS2ZfC8Ff+s1M52LRWqDGdx/XDaAM/tkmTPZYBbGsCGXN3oUiEkoCSHJ7+aKz3mnHCK8s5rQH+lrxJFpT0KR3gOmo4DW/Si8U/QWLNHgMvfiU4btfvmvEeAGJdO19+EcbxVNeRjHVzguplNbdYlNkVCEybejGWRZa1vycTGJx6ZAfUDSY29F2pgEn1JOyD5DMwPSN67qk0yAn9JDVEwOr4ETjLugET5guQPagBr3j3SgnYAgIRpKpUmFGMpIjMR2veHOb9oWwKgVRrcW4tejKokRHnk1F8MFwQEsStqaqH5TqS4OAMfWetcwQEmLGIcMbs7IyYGZR8Iv9lcnPGA0xhzxlxuGFBgXeslIyF14MLRleGZTf05nK9GRF5JWM12Ox2TyYD0gM2RD8m4mygn3YvIgPrWg/YMB8kCDk+av9TUeAljjAgrwUSmFlwXexXoJtYJiOL1AUEkn7yF7qVbrNGvwCcGahYNVAOYRTCuvxDksGunpDy9Xa57MLw0SosvvuJnZzretFLv/h/c36qqjbGn0HRb7cXses7CtSvcCqjriwn35vIn3svNe3SmybG7No6tvHhwFhRlTRXWTzo+fsqATLU1cD0LKIviAzuANy0fLDbAvggA+6DS2crBCP68FmSNGVPAUJoc/yoN/BZDRenyyWzEV5OMPPhIbSzBc8+unJzHL5wOf0SVWA/kmx6fO217xgTXo9JBs/UFCZn1Nru3SlOdcKvX3pz928nXkvxB52mUFEn/fxbtm3zRMZRJh0+RKC0E5BRG6WlmNqA9tFzxoRuPNK4DOIsvjTzrR/zXjA77RswPhh7pRPCDRPlR/lIjq3lDA7T7On5ytL3H7mGPHePc2Ph6KLH6qri32VeZ6VFrkTuy8TdH2rI8QV+fFs1JZbiEqJRgtM6Ipza5mWhJNInOFQcMLc6Vm3WnPOhJpRCgsuHh6eP9zcqKeuXt7SyjKJJoKcz1LFjGtHUg2uaWb4ws7m2tLcQv9enc9b/WxvNoToHH463tzYcM6XfFax+Gf9IR9t/2zCMbC6mu1uNSWt2T/6+RvVWmjRrU3a/NnW5saJAwFub4WvcblRfPgSqIO1+nKjWUs4ye09yFZrK4n3f0jtiMFgAkeyjdc31y5OrhyL3b08o0ayqNckFrTXzs+756cjacHyTmUeLzkTa6X2+vUe+Qv316Mxrd72g2htSfawwXqut2qX532hIC9f7Qpb7zoddn1Nffy1lZV2q+VoW+FAChnRpHi3bLQZSG88sqlCBPGS8gvxeFHBP33q2jDh8BA+/vnoqOnQr42t55u5iUOLl2c2dzfI/9vx/Up9VYKpmvfXfefCDp0rube7rdqBA/8UPjq56F9cXdpeWFvbvr3u/6u/+L05/8UvfjLoXXz48Hlnb0NNADF9IPEdtxQmiFU7qfckJ2FdS9qTP/D54LxWrSjTBNS/+O1fdjY7TKDT44ujzyfLS/W3zhp8umsJQ1pdmdw9wq1YEV4Zxx3QAa96IwQg9kkIkKNz3Uodh6yO+cn1BG2+ef2SGKOuqzwgIao7FFM2brcaW432zP01a/jsckgzWq4unx0dczzY6997uSXQ69sffuDXvr529MH83l7n8+G5Qqftjfpk9HA7GbebG5On+/cfD5VdcSTWNy/2TPfHD2eXA+VBm85nbtaqnpvj5FAE9GHmZjx5++FEwpNTKV7stkUlff/ueKW5utVu76yv9roDmtH51VDA9ah3u7GWXOFzZ5Bdj7dX27vrK1e3w+7gBm95sbPuzJSFxaXffvtO1ocTu1jYlVV7LfP9s+HOVvt6dF/SuaVK470qlz8Mb8dYdafdvLocOKSis7n5PH+v/AvPZJJPJDmsVvEY9KZwluJFwquuH+6RCr/55cWAt5EEivzGzUnM+BQLK4vkiueSUKRgcYwleKN4yGghyL4wTK/a0L8nLjjAcGqenpvJ7TL+8HRDO5VMERXEpq/D2m5TeFFdShmdKB+rp8rQ8oW5iG1SR04xKxTiiAnWrwErQWXfgP2cKjcKeCtUas+5Mk+HBVeUpKXY2N/8dOev/fybr7c2d3Y7JAPntrwXqhi2WLSIsLJwS//S9sL0w20Dv4uEFY72hfV/kRYRltNX8s4XRj0VNoWZm6U0ULg2Soy3hVhyy8MeC9/UfB7yV4TxlHtrlqTxgG7QL31EK9GGA4rTCPv/w7/87jffno76/P+xixilkIu24Q30nPeJZjYZ4hBSrx6i8kDGRj9WpJVT+gmuVCBL9R4BLTxBlDYcI08UWanslTeJhGXp2rh51O6i+YM+0clEZMEPqPyeU6AsByFFWcuOccqPRhICnmJDjBdvYlBBpZvqQ1FcjCfSUIsRQwZX/jFSQ45VV6wm12m6lCrPT+HMlZIVqqnievwSKKJveAQ28KgsdG7D532nNYOq3EoFz0xVdAes6E4oAp1J3RFNRcNLudsf52gueS8uGRe0IEunrSWm3PBt8magM6VofGQ7iA3eTAaB/kN3wZJvoWi/TaDBkyiSlgyaKRtzIkoMtwLPqYkrk66FBIR8ITy4TVuFUAI10cyiXpyvaQSrenpqri2FsTtofn5uY8OJT/Pc2yu1Zf6RqjKL1GpIm+YIpMkoK2VaSmO+RnFgSnE2Bz9fHshyzsfDJj5E68lQLPLMM/6GYQ9ApmAo1OcBHeUVt0rlnzxqQqOFR0U2IB1xgEVPcisIgbR8Le/F5Q6jwV3eSztISY9m05fSVpQtTek0Kmfg1XxWawjHhawqVsRjye7OYsz44koXRhXqzeQ8zR4cX306OBvfPuKxVHkakFw8RJJSB+pnzlbUVbPr5VFqPT2tNxioaYkqzLUl5QlDx+VC5IaqHpEwIfnM9tmCYCwxaqLr4IyBFx9zRlTuBuaMpfCKmCqGyTwzjrLWy+ilEHxRQLM8LWYj1Glxt2fYaSk9GVdGhfZKj1C1WGrgWnrTOTLe2Bs2alMG4PmrF1tb7UQBxaeRebRqwRkzSYgTqDKP7kQVDPcDKJ6bdZc5NzVghPpow+awzF2escpCrsbw+HA1vlaYpCosojdcqCyfX/ZICcGtNDE8GS0M+5O6zL75WZu9du2oRq163euWnmJ0O+3G3dPcX346Y9yaAC7XXl/hdYSOkRG+NceZHEY+LjnaXKihFQemmFkZUCgNEopGGnBCEiGu4AygqMMI/DRMHCJfonh7tTzoS1llrpRrJi93fabMQ4Npz70pNnIn81IoP11gOlrW2pdJmRpmIbvZ2f/6n/3j3EBrBe9pqFBCTPOCaJ0BA4sJ4yhrJv1k8Ue+gh6Gpxt2maTQSkjAO6XZ6ZRoIpcMCMQes26z2PLxfMYdgjB/GbIoNDuEaaCMwmvR+l2gGnq7PJOcFY1lqWcnNS0HNXlJR2F5lg1loHScy1nQnlycG9/wS+UBb46cAkshFr7j+EnRGBqXL4Yxqx37oJhJ685xRSlehuay+0aDv7t56vd6ZHcOLhG6cHx0eH78U8mvKtnfz4z6fZG+FIub8Q1qsw3ubD98WdWLheVqo9U6eHewvGJ0kRZcmxbncDSoLq2o35/DjHh5zy7f7G++2O2IUxb3bkNB7U62pSoa29sti+j6flY5S1BdjyYbW2uNdRFBix/fv1d2xV6AwNCOyijVmrzU3tWQo8B2hOCPn/xk/8YhTOObtXV15RvzT4tXfaktI5615lrz+7dHq0J4ljObzeW61XB8dKqQHFe+2GZIlpba2mBQLC/NzNZrCX07Ox2sNupondueBhPJP1TJhvthZjweLC6uqAVI4nbabfHcSNF5h+ub673eAIqZHa9e7Dj2nKRiel1dOoN4YHpxh83N5sLTrLJCS8vzdGhqq+wdOxi9nqpIfBj3Gxtt53mJU78eDX72y591ry7evn2Hh7TWW7CqaOPx56PO7mZ7eXXh6eZh/qnR2jiDgcl1s76yud0Si/v5/cdqq+VolRynfGUfo24fQ+8Hh8eqpjbaTfOeuByFWx0VzqEN40VNH98/vPpqh1CW4f3584lYrElfXMq4trb26fAAw3OWuOOCe5cSBhhIi+eXI3xgfa1GJ4UKdZbYP7ubm+rz2OWwdfj6xQ7hyutcbayM+spyXjcbLVtrJ6dXjkv9qbKkGy0JqZa7Gj2jyV273Zyw864nOdSsXnv34eDumsedYVk9VSOfojl++O/++19tbLUdGbaytPCzn+8fH40ZTvzjkqP3X2w+Th56F93X37xurKycfjymU533FGNdqq4ySpWKmx3e3CsUxPkqD/snL3YPTvrvPx292GnZ/LSjdTUera+vbay15mbu2BDVVQnqqXNKVX28dT60VKuHriT1Zu2F/NxqVe3X04vuZrO+tZHTBhyhKM/Ejgud9/z4XG4WD7F5wRRux2NLd9C/TR3r2SeVoR2pQMlWmsqeR/fiksWDydxdyya442Jnvg4uLy303a2OGInrh6ePB6c8PVgsCUz84CrWnVWOsUREROJFw7C06ev4BQGTu1OVNzLCj2hOFib2yUL2gCPwwscj7xOuYyNCQAvXM1UpQ9bAjRbvxPhzBUnkgB88UkbD0vwCT+fd3bXDfXSM4aNoWvqlbBZAPDypXpp/STDc64l4nqnUnhee5jcatT/5k7/2d//W33YQMn26aCDRMDIEzRSAfQX/FNp8mfpENBEW9z/KBmwwLFETUQvCpTPksOs052fhr5GmlMQgJ42nhbDkyJtIJo+Vv5LaWHrIM2m53IMtUqBgOP1wJJI1w8HDn//u7a9+/b2ysJxrnlxcnl+pLWJN5lvj3vBfXJVGJfWwBFhHWgmQCOsOeERbHs6WugRHzuuEEYMwHjXPFOhJtJSQzLTmfMnMMaj9BXKY1QyMG1zxgxoHOkjeIvKKKzSjJdQ8ZUQe9rpnYNkDZVAQlBYTe/AFWgTl4S/ykeYXXV4j03ARyjLdKFZKhHFkmeCZEslD63KV5qQXOut04OWZaU5aVODQQirVqo4CvSZMKboHpg0IcMVAosWgJaMnPTNls3bAkgBD9yvw8z5m+sDnUVc0GCKhkM4xBoIzuIANGhV9EeTIUgWmzLEOMvaEyjTthS1XcV67zqZAwRmJZ/Ig88z8sxPSPQqLXjbwUGHJBFAUTaSWGRFT0W43lKg03YBX1wGKpaBJ97eoVdR1RDfVjVJRq65wRthSS99TFWI6vEAWkAzaCExBgTCwF90o02oAGajHCil6A148ZqbKDIeKkuNxk5Az2M/d0mZQouXMbbTz0n5aCdMobnDdGBLwPBh9vahNeQlRxLWIpKZTHEvDB1Qaj/Kt2WKHZ4aCdu0gtiw6nWXKMoGhqKzdqfKXC+kuxitmcudUROe4n/adU3l8pYyCeW2sIIqc7LpWS4yMFdIbOHY9x2tMh2HVZF8xtT75L1JjVNc+Il/YJ0JbTaLtshDBbN4qQURoyBtRpvFgMIA0CyNrHNRRFrWIvENOmYXoe64D3SvBXp7zI4PO5IUaaczBc14vNjMkRD+01qx5SAj0qRGkH6/FgIdb0EcXenREpqMZY+SIzyztwDyshqmEv001PVDktxat9gwhnh30lW2r0imwyzgKGGU6TBGrXo/2ySzYW1ljjE+ZQx/PLoWjvdhoPtzcH6hjLgjuWXQQDw5Pf5XN4SCfxgohtoj72CNW6+GcjL67Y6ao1MS3dX07E1ejs4MnDw01Eiuzdq/7Q5ucNDnUr714maeqdYgTtchlQonxoRh7kAdLoJtivsxBLFuoQjaFfGJ5BvFfHgsZw7eBZ0xwajKChjD5XDVjWft5Im1+eTb/lInL9bBcJJdp8IAqQP/XfwrQTGLR6Qs007YCIB6EWnOrfKLoe8eNgJiNMN8xtRBHaRG4ufmFWwU4j2mzkEt5Ih3kk3uhq7QMFFeMOTvKWTKFEAnHcMzs7YbE/G9ouE++IzJeBu9X7LhonUsGvYbIgyldggOFTDtJ0QliqD+iblEN5lVcCTmqwa8A70Pc4epRCQVO79OSmqurhkae8fhilxQfmz6UXWGLlj/3rZsb65tae/fuUF2Uq7OeYHDbVtQ1sTuWGZ83jypcr3eaSpp8/+5IjZLN9eZGa80ZlH/5lx8YncKXX+5viIicn12UG8fLv84r6xip/pB+Q2pwXBXD0V7S02R8MxYCT/sby668FcktOEkoubzevRf7qtwo6tLvDxIGmmMxn5WJ5ImkkkVDeRBwueg4a5YOZVGVRltvGuNVUJaDBSMMaqNDD24sL69Mhn1hSGIkXu63aXs0k88fTja2ea5rtg6ckmuRIh/bjsWREB+MYET7pqKkri77kujb600TRaPtbHVOj04tVjk3v/jqxbcfDzhZkfzBeffN3jYPeN0BVwyAHD4luv5GQBSXE2Ngb3ub7BT7npMHatW97S1qLm/35s46VvPu3UE8aLPzPPridsyIKjoSndn0rY6MXg5Ubjl2/OxRVwD8LdsDAzJZsgtSEXJOhZk7YkjgEFbC0Lcto1752w9vX7/Y3RBnv8D7e93urFrFN7c5fVGpsng05mdevVifuZ+7Go2/+/6TuCb5UmjuQuVBAmnO7lAiTFJr+PHe1i3elGPebRDOzLY3W5/ef6T47u3snh2f2FdR/ZP8ZhliQ+bOyS+b221qojMNwoB5ShzyJbZwYUE8IgImPwX5XMsF4EurLp2fSdO9rq7Qnp8+fDghgMHz7vsD1gumJarElu8Ph2efj7tUWfWINqRar6lw6sjeyt6uiJN5kuXzaf/t51NBufc3T2c2SdSeWxET9aDkq9Js3Qtp5XfWv/wN0ggXF78xmnA0zsHe2UUPia5UljrtVVQqT4EJUa/VMAInxLF8VXqf3IwBY/+fG9Eei4C0ldVqbzh28LBiTVIdRGez6C4vR054qC2JUphx4ADSso6sxFZzdRhPmMrLz+LrCJjLbj9hl878urtliwq7ySnXNzd9R0yZqLAqci3Rz1jBlFmZEdwAz427jh808ii8Dl8haaKW4SYPOc4Cb4hsCleJB0vVRZoSlShy6EkEubvPCdJB/dEdS7XRx2csAnfWbdig52LZO6z61gluteqi8324rlUoylEUCxW1RPm87HUzmx1nLdmAPEDSAMAcGfwpVeRwnDcv/k//+3+4v92h2xUFFNcNqeKN2JYRGYL/sEzKhH/8Kv8THnx7kdAgMcbIEp88m09hzWDPm4E5r0cTjsxw23XPlE+RslO2H0mPIweAItrhMY8BJJh2OY35Due5FKXy+fpp/O7Dp//nf/Ovjo971Jginj2KYc1bM5QB/N2jhK4fejWzERzFcuO10YHVypyLSlEKWJrYCKni9NVLnmX0222hg7ocDQ8YsWGSd56BhEVnMLlcdhWgUkdlnOCGGXZghqSz0EMKleglan2UuWjzeTaNZ6e+eKyCGoMBCRZh7F6OJJWhbCApMeSP+YqwKzIxwtsHXfrpMR1ErXmkliloG6dsmakMxHAIGlOW9vxKkLrdkjh645PKWIwkJG2uctA142epQhB4JVAF+ZIiItT47HUU28MmAIvV93Iusq6NFUrTbcyDoAlSQhVF3y3ARsg6Y1s9rs31JXxMdJXEsav+DWFB8H3+fA4qDtM4Sa0BT5fA6KDLxbmnRt22dzKL6froy5YCLUGtt3p9uVl3auWK+QAk1dDiYl1kuBl9ZmQ6X1PwDMrP6cy6axj+hnKgA9v/7rubf8qVfI9SmOWNQDK66VynEUjNK7qALt8z9NJERFhpJzgvSMiThZJDcVE00rxPYSb+xTTizdEHPOjbYGA4I9BOupwuz0y061ll0cOyHpPNgjw8Oh1XKKGQPX4VwIIEPat49vnkvHs56l7hFZlGlZA5G8ShO7bFs2IWiNTJ6Fp8VXjdrMjkpPzqzeB1mrwOGR1WkL3Q6McxELm09MuQju0H5UpmZRcow88F4zKkqOnBYWgCDYa+Q8lpN3nDZZVliWdQJigILgvEjzJ8D2TVBE1wV7gOBPpCZKQvzC7zHQUUsJni8iAeJDPkq11lJWya4yy4jbeCfU1lrvwo6HLVS8Gbf4Kx8HsXzaMlGxyi+RJh6FVzWighCRZGBgtiMaBHvLGiE4p2qAeI1Plxu1SODfXHHy57N+IzeWeIpL3tFr6gmsdKXaG+JQGdC7WV06tL51OKKuDqGtInb+/bnTWqCM2Pu0fUqpBr29d0IU5SfAUwgT/qetl4yXQAFJxlZLBQzBskmipYmYWgZTrqKQp9D6Iy8KkSngfgxRT8iEM3pyw65JpPWeCZwyzP4DKYKlyu3E0HGvnS6r/4L/+Jq6YaiYdSv3yZPhFQipqeZZtJCRz5jqJzJeswUZh56kujgdWTZsOVUH9ZoVOCQHhTetJPxE9kcwSmVgO6GQdUHg1scBHGnB6SupS1FrMegWaT6+n5LoF6yB85VlSPshrLlsUs/de6sHP0qOjIhAN7dk5BOnsY1yOVbWZUOte0+pM87oo6Np1/29iWEasOT22lsbXRprA06oLf59TWtK1/dHiwvrkbX8X13fE57bT/h7/4StmaTx8OYIBhn7GAvTLfv+otV6uOr1qt10+Oj3l5xTHVV2qy+q1Fp1ZZjs0Vhepkl95KZPQiqYMPMnOOz87/+I9+0VoV+UPxFUw+hBsZ6wwD+7wSa29urz9/OhWmnDOIUnPdeTrJdGL/KN9OK1qYi18yBWeuerQbQYDO/bXtnhU/Oyf4R9GK8QDNz+zutR1fpXIOFn4dMyAB+l/tba/U6zTpzwcHu1/ttZuq+y/2e1f22E1Ou10rOqIiNxMebkn76ht11huig9SZFyIvLcGJAWKi2HC8fQI3nN4rlKTZWpW+fHZ8YSr7N8P97U2WSNb/rM0NLIVhM7IDw0Os0Aylcb3TgPN6rUHonXWvrD3al9pnwkg2t9pW2Yd3R1v7Si5uvf3+Y7PTlBd76ThksfuPd59PDvdeKCjaevvh6OPph5+9+YYf//XeDtPu3cdjSdiVpdWtzfWZ59uL87PXe3svX+x++Hx48OEYd79+mt3fbX29t018srAGV70k9C1ULYdKdeHtD+/VV1UGeGlukVZ8qGDNoGd3iC9htVn/8OkY25Po3Kg3e4M+8hXVj/mowKNs5dzi8/b2jkLEvOadTttpwQKHGmurB0cn0hF+9s1L/DXkf/NYW7EXmlqoI4cbXI1R+OWQh88ezqm6io3E1Feokle9fmW2ojjS4dm5LRr1WDlTVO7vnvXXN1ad0FZrrlwOnbd2t7GzFaZ4x5m3wo/4KAP67vngctReX+XemIxuhDYtLlU/fzyxyuI+n3mu8hg93MYkfpof3g7JbE53ZLTNcl2pnvfg6VlFo5WKYiMP3V6vWW/C2GarLVTfDsGCRFgZHsTW/Lx9K86n9RY2Oqs+zxx7eGZJqHvi6hKq6zRraGMwL6np6USY1P+Uh3Wvnf6SiOylJWtnMhxWG8uDq4GoOkoGrLIYWUQA326uYiDKuMCDElKq+gMp3CpMDAsK8zF9/vbxZMRYGCxKJE2oJUy6CNgo7G6kHKQCWdxsNvdY+0ID4/+LtlLip7O3MDfHiUlxz8l0Ejs4X0vB0JWVanyaXBJUr4jYlLzEo7wMFzTPBLUUT5sLuLJFz6Zfa9sq0NGDQzCYAO16g8wgkC1vKZdfvVj7j//dv/fHf/wLgoOLvDDbAFlktxFG8zDGcORwzdzSnYWFlsKkczHCOJy/cGYsevprypC9mufJGy98ufflaRjQ8vSalv3IX5FVYdppsGyqfGmWNCmaUJSEfEDoiDXbrDP/7f/rz/7VX/5wxXi2l/EkrO6G4k1ntAtv+GJA2ISPzg0QuZ4DreK052yDn6gpsE+5KVv8wSznStHtTJBfkB33cxFs0RJ+xIB/M5dFgcAkQaRBYBP9BpoKQoI9vR/EFaWtDFMAkjbCSgk1Q83N/FukLM0hrwScRCjF3ei6257T9BTJmekoJDDppkecE7JoDASMVyyHWBwl8VQj7nsenABzayogve7FcjP064sriFMXejeKMjLusL+SqmY8lCZ0TWsSCTB/xJOSkZkxj/s7dmxWg2/xisWNGixC0XRXJAtECHPM5cxe5LqBPTON99dXf/b1xt7uliEpwlatN4fcScObXm+iMcXH7mYe1lbXRoMei2uxusjBykBorKrrI/atogrFWqMyvhhS3PTIBevYcnaIIsjWCNPaCozEt9bU2v+rKQtSi0pUhkmgE45TeotyAL5QODLJJ9eBknh3SzOoM8JisestZXD8bTA0sNJ8sOADW0GBN2MuagoIoW+vmyNPuqhNZM7fN9VVivUbYwPSAJdugekV0GpUPFiiJ4LItBmNOcPwRcP+BnO+BbGZ4zIvQJtCn90Jz8IG8ijgLUi3+/790eXVteOBb2HgUXbcIleCSCAzzeIF4fBmwrUP7vQyK6WNSRbLESSh9tBxti+sEl1DhetTBhIHaE44eMKoo2knXE1BLechLoIDcF4NKoiCABv+6QHgWh1BVvCGlsJ5MpBcyNCmnMSLvvsT/BY85GZ092j8uVFYTd7yrbCpfLO4FcVaWPhq1+FAKbmjaRPl/9IFuILAAn9aA8h0XnIRJBZRVnSoKd3532vld8i5qKBml0aYKEDVwOZnPp9f2LClwOTQobDr21fbHSBSly7G18bWaTmhgkcoESL4tvxDMQ6D3nC2UlWLgsNwY60xur2/6Pft0douWGks8z+dno2SQcdCvJWltqi7AUfjXZiA+BmDiH5faAB4GXiBMmgBZvD5hQ9P70AyNEJlyMYfVBRMwJUZSf6tL1PqCibzTv43OYUphdimU1P+jshLM/EUZHJ8IaC9Fmz9i//yn/54LztfcOqRPO45UOAReIjW3QijjJ0Qarf24D3u/7hMULA3A0HeDCxpyH+xMks7ZapyKbTvMWSUhaIh370B9IKFGVppSlahwsxvBp+1T2lnzpb9ACs6iyuM61HMQ/bPeNA4NmaExxAz8vVikxDTRLabdmTq2UebqSr8sbDYnwy6J1er9RWTw+FOLUtC4vOsunVvXr6SAnh5Nb7sntdbjYFQfRRAweLvN+crS+8+ne5sbZpRXsyLy7Fd/c2NtjAIzOLyqkchEE+iVCJjTtCO0jStTutcQs+9qvPSQNf4DlezY/uQhu9u2+ud7llvMhpuba3fzT1WHcu12jw+PkVtzINf/+59syU0ozEe3p6fX7JbZIzycw/716fdC4jf3tkwP1RVpW+29zdVCz076y5XF+r11bPzK8hRQlgMg+XRbq/RsN5/d+BkpY1Nh4jdWNX0bOhPp50GWSr/0ytEgbigTrOpoMklj3pvtNZeE2Rvq93xt3Asx2CxtqjwEQfvT795TUeXX4tCVJWhefcHQ4FxL17tqpbvFDIACOE5OznHrVTIcdTudU9QxFB8L232anh9lYOxHtvrLX4+SQ7KUEoaM1d2UULdJnRyjX4of07jFmjx3V9+QFrrL9ZVEKKqUoIFX/AT3zzdKywjgnXhee7ibIh0ZB13z3svXu97Xl5VuN3M46udHfUYHY1l/+DNm9dO3frw8YRK0eis4J17m+vk58n5ueD+m6HDDfbUGvn+3dvDowvnTr35astJYUdHV3Kp1XrHPA8ODvl7zy6GRINTtr5+uc0b01Ow/+6GD8DYmx3l9h+3nRJQr/curzoxlk7nl+YbraZQe0JdLrWcXSvb0bz9S7vud2oEwa1TBlW5sYUowxd3biwtvtrfOLm67QlfS5HOh5++et3vX/5//9W3rivGubsttury7nlR5Nq7d0f11hofBtdbs7Ekhml9rXF4OX57eEJ1Er/oVGBntwksVhLWbo4FGMUnfwk6nxHeI2mYA9uC4sqzVONHSl6fpfSQZWhn/PGx8qNeKySAK7BRXbm+vxbL9HQtVmRWujBPtrmrrxoptdzu15Pqj0ZTeVrc3+uMr2/FtUlPlyEqBM96VQyOj5wJYBnTqrc3mtLEz87taMl1XrCI2LSMc8JIYatub7i7vblIL16YVYYrSaLP89YURUB8P7ZCIkYi4CnECVYVBhOeEW4WKRVPaniOP5xJtrQspC+6gmDrcCDxPKkxL6qBBid5vWyv87ajHEFYuI/guqiYiSC3bB4SkPqoXoeDHyQs3qW6ouL3NnaWl+Dv4uqKPClZj4l3l6gi8FiQGN6GEUQ6LuJhs4qiA4aRbyBa3dlo/R//D//wD9SeiicvAiBjIR/9KeIYbK5k0UaWu2jUYa2FwRIAha8Wpm+ALhZEuBtVyZ7DlGND1PSLFTeVrL6E8eZxf+dTfhQRFTetC7r1KWLJU+mJyPBATmONRMcpIhZuf/3td3/6p787PbCRY1vUJjyWD2mEuPy5MLTwd93Jq360T5KinP7jsY0Tm2IE7nh8YtvoxKjRAzUo882jWaSMcWvZBOaBbGvQmcLIhL2ZL824U6SO96ReeCwKTpSGovTrznfdRZIxlll0IZIpJn2VIpySRAScv33cmiIGnqczks3nNJWamNFEPAzZRR8BEQU9HhgMLo5P0EQX91AJd04DYJtK2MAXtdiTigLF+HQlCjwcAaMMz5uZLFP2XIr22ANRIBKVLk43AUpTgXSWYZlNqihIGTECySqhPcwvagpI8mSSbVHa9VdmXMecy9SLR6n/UtXrP3n1+m/80kGTT8vNyv01kYW0H48/dJ26eOP36AYqaOhqJTMA+KRlpq1vdJhnq05wryyIQ1fyeakmwlC8J4voyQZgsESV9ndQGrJE6yD2Ew6N1WCDqGDGhFA/kmIbaihkEHS5608hQs9I2ysYghurOfcKXUTXgfOpxqMXL/oe5IXACmllTVlnyD7EamLMjreFY2mQuQgjOAACAxhwmVtoXzumGFLLRKMiyJsqRXD4RVnyDLYZ6s3kloia/5H5ZIihVKs+9JXBZskwkbOgaF+z+B4f1unVsJf4WzHoKOFRuiEtAlGDwcQ5zEfjctViDc/NDUY3OdUueWXPFA+w2ZOHQvqMNrULM4mI5meJMQ6+8AkvMg0KtynbHlBU2COy0Li3ypoLbcCzNrO6i8pnUIYQNjK1TPNsWRqZvkxQBhncZC6Mi+8mw6QBZz26Cc9Zqm5lvjCO2dm9rfbuBn98DGbrl10IRVMigf+CnQJIgMxmgh68Kw8eAWQmM/v21pzcaLffydlBlRfBKWHH/RtR3JLmxSpPru3OOlf++u5hNLqTCNdxKNPdozoYtmcddT/3dKd0s3NFh6q3L8zWKUlLC7bdKDEOMyVblWT59bcfjccyosO8frVZq8rlmz22lTAZbHeEEFc0r5QV9s5RKPScdylIjC0EkSHCTIAvWXsQUFhscBsuUZ6JtCpU5uEpyeRxMxbsuVRe0SZSyhPlZ3m9NF9+w0nhNtOmyhNTug2Hynrx+uz/XQjQl/enHYSTBtOFyrHbQDMFL4/jvAExK8ozSNw8FdeIe64DugzMr+zUCPdL2xlt7nzpMu1oMX14VzuMbOZ3+vXh/8K8Syslsz2DINH5vMVVpRD487zDsZ9gNUlEdLMZGzRKyFycXRCd7BpZ72pm1leUY7857R7ubjrStO7wZ5Vz7czI7qQjmhV16N+83P/0+SMze6PeRMmKQ+Fi9Xrr5uba0acOq0Jaqt2//Grv8qzPSyUiwr6RrYPV5UVSme5ILTaot+8/ra6svPnmKwM4/nS4MFtxIhVlxT7v4dEpI4GlYQt1MODIvv/u3SfLZm9nvb2mxvxk78W2coq98Vg+sUmhWFiow/7AIVRqJi6vCBwfc/O3NtYPPp+ORmNWOg66t7Uhzlg+0MHRscgZK0WJF9WCJAk5NkmBeSFABNqdQi7YR6U6vGLzrG5sb7399j1lhZ7S6rSlCHOYC96zDPj2rSFOfYv19vqx17+SEo1xv9jbwQWop6SsECOSsrIkB/pSzoPBKPMiQF/o+/pW6/jg3Hm9L15u16o1B2tf9S7qkkQXq4obv9nfccg2Y1sZR3E4jWYTP6pUZiVKL84REGop9tVPcta2QBLLztkwau3bL2ZNq89jBw5PntxMDs+OXuzvLi+oHCk0Vnbatb9oC87f3WUPbW0PLmQmAEyg1Gjv5Z7pOjvtyVpm4jvXbKVV+/jxSKonwj06VR31qTK7UFua+eUfvQIdZe7z0aVwExYk8XV7N/vp43tRi87n2mquDYd33cE53vp4c6uyzeTx+Ve/+2C8MiiGo+Ev/uDVw82j7FV0JU8X10HPAgjV3f9mf/fbT0c2zUUTvf14sBlaWH39YoPGjHwxIZtU3PysxBPeNW/ez3Wdl/x8TdnetB9yTcLOCs5K6urD4t3j7Xqn/unoUgH8lWplY2UVob/94RC7q3daV/2e2g870nVnZ4b3d5+OLJeBBHQ+viisOVvNxsKjGtJSAiSooHO55kn6i+AXIcAFoGRhJWrx/Hx1qWZjKgFfT3auVvky8HgFPBC5jEMjJMtpFvcCV7Fay5FbCQctbjkcPbh6oPSzhBeUeJJN4eg6y8Qx6+bYLuqL3ZfOYL4cDjVFBAsuw1ecYNBhRZ9eNNsNrO39hzMycFkygFIY8xXLl9QKr3+YE/21uau4LcYe3o+lYSNEFAGinTCW8BA8LvIeqiNowmoCYSR6tJBw2OgfxsUY8pCB8KomsDzRKag0yj1FiiCbmbPYxWaPRteCv6iaaI9khi5u0ZgNdH48MFG2KflF5EhgxR6zCzw7a8uRzi3WS0JIgBAxAqBHBsAtwwBzEnSifYRbUaaK6FSodGlGWOz/6j/++//u3/ubEmZzzLhRhRcbGRxYl6CafgJ6YbS6+qIq5Ykpiy+cGSSG7+npRU2Vr7lg4C76FiyVV3wnvMPhvRvhm2YBHYFa2skVon0qeeIZ5eX3K1BExkddkOF0p77GX/zZX/7Fr9+eKUfFnGUMFaevYeiBEkjGFQkY4NmcmRpKRjSDaEUmoYh+1BhLNcpBGSgDo5hw0RpBks2CIq3Mmt7TSMCbQpcoVoK/jJwa52qc4XQ+06FxMMME1cHwQjZFPLsxJZU4hQNaPpp1EYFpN8ZC0f1wcu3h25Dkn8hHZgYXFt0rWiZwy10286L4fusrI6AdAiG3gq2Mld4WkuOY17U+i/TMmxGR8h0X3fYFWYhY4DuAemMPzyoUSxJhYKgjCh1x6QETB2KJKw5+EXdVjmi1WRelDXmBuuylswQMLVux6UqvrhPZUC9Bek7U/h/9bOOnL7cZ7daWlvFw0p6/WSTq4LLnYe5ksYWo/eqiL6Wi3XG2uEMvHOIGm1aPcOgnFSNUczY6SDRMe85mGQIz/RkrUMN5Qjl+Tvfriv4XQjI1oU8TjCBpnOZWM9Ejg7myqEvwk+9RP3iUTEosh5BBwXPJSU0LIYn8CdJQcnhCdKMoXKVBV7QPBXZvpOm7GFSH4rMwQivlq6ctYWMzvZ4pH1NYjNICmys60zK85qtRF9MOzAUDharzgFsS4TybqjemNG/jGA8Pbz8cHnZHanmYvqIHi/haXJMH9RxH4aPzSWIThhaBCyOcdxgenDOXpmzQdyak7guV6yspkWAJMxTWeF+4N1NdvFDZDor9k9FlRHCofT8LlrLEwjtQFEALVQcbZZln8kLGPqF2UJQ2Ik30lchG/4QUC/Lzl4djEWnHdfcK89fFbGNl8ev99S9FYj1fXgmRQ+L0fY+X6St+ilzKhaiHsbtRW6YjazTlnnVFOQyll00MEyk4R3CphGj1ysVjEonn/QHgBSw83kYwHZxe1Ju1nbWGFuBdLD+mzVEl043zkfvCMTCkMJN7fPN4etFrt1d7gxFXjt6qFXEpVfL/7vbG2OUiVpcl1N11L8bKrQjtHA1K4cNCcqGmQnK4QUFdcBZMhPyDo+n/iLNczyCn81JoNXct/DCQYqEFBZZGWrBEEqlc2kwQo4tT7k1SawXbyWToNQFjRYf3+7/6L/5RaT2bQdOep4D422Z0EJ53ChAJ1knj2F/gLG3pW3sFcF3Gc59pMRrXEUFZYFou5PLj9XDP2JppJ+sj1gHvKYVe3EWQMGUTC4vkx83DjJO1jj73755m6bg5i4r/eKXqxB7g2D8kVWzHy5WvzHF+N6yQ09PLRWbaytLRYVddjsTMzM6c94aUIYm5nBivX+3zrP/mV79982KzslIXqSyS4HxwfXp+0hQ/sbLKuSuouL22SudRw/jlq30y/OLkXN6tkA9qH/eTrR8pIdGWFDDns9zdVPj6VhmpTucPfvHz9x8+/v73v6s368PRaH93p7O25ggw/nLmCpVup7O5t7d2LouRD36Ft3uGy7BZXeleXX377hM9wG4UNVo4JTDYkM5pOjk9dUjW7t6mSobj/vX+zsbSYvXgxLmBV+v06fvnrd1tx0tddPt8ZFzLluIPP3x89XJrZ3cdjhWsTGV4VY7ub+1+rLcbG+ut84tRKhg9yFh+vLgcmD3xJwtzfJYpngAqwTCvXu4OnT98/XB4fNpSjbJRPzk6zUZv9EURn2o/OiAJJ3oejofWGGVpu7NJhfr//cW/MgW/+MnPeUqdn2RFcSExl+s5j3v57OTSpmbb2Xq11VTKz/HJcwoccD2/fL036PXIsJPupTowP3/zZv65MhiNjs/PMWX2QF0qP98YnufUAglq41vZ+vub24dHn58rj4urS+rNu/Lq1ctzR5hNHpzL6ySBna2di55du5xOyvF9cjySyO+I3D/8g5eG/+ntifwgy7ZarwwGd+vrKxe9/uHh2Q67Yr3BbeWALTFRl2e9w5OLeA6U9BneiOUl6pzvgKJhhI6Lv715vddTHvSGkr3y5uXWo7Cb+RludZw4uuDT80n3bHd3h6TE9g4PLgSMffx8yNlD2Xj9cluxWAt1Mrher68qNPr20xlViGttq9VQplMlKMNRn96eY6uxvL/Vubgad/tDjE4RKrE6N/e3+/tbzeXWWe+c6Ui1Xl4RriMmBZLJYp6/hckkyrGTjEsma1ayNBEJc45FNI/0MN5omoR09qS92gTlcMq+nH2bGqFDkTf1FGRqhQmXqCGvIE4q29Xyrl1PbM9s8k9mlBZRV8RZ2IsEKZttsezwajE8ga7DZJiVIeo80IXJeAJjmBYjCku96PcQh8Lr0gS3NloXKoCOebnm6q36xemlokzOvOt2Lx5mliwojC7KC75afE7hP9Q8JT6kxUc8YRbTssVYr5uF6+CAPsVxRX+ih+ra60aasIQs6juMjT/eFLvGCwRgRTioU9VaxWHbdEFpyrwPgvR0bkvNvLeadYta/wS22riMKBHRlCCbYMiVuo+XOqvbFEf0Zh82xXDwPKY1himAipsBOUm+J2tcX2mu/O/+N//23/s3fokCo1MKdAScxVkcKNORFH5Lfyhau6mNIPTMl8BQgzKbsBDGSqgUd5kV9KNcxcf9V9CUZrWrvfz8URL5Ny5kf0dMRRmIoqyt6VuYecSvxt2LLRf9JmocrjCLLIffffvDh09H3787mUj6FquZkBWbkAv2cDF+YIHURSjRPhVCRs1Uv6fKkUHEObUWouLajIqRg35BV3SrIjyy5xN9DuAu4l2+ZdRcj/OzdnICrVXPdVUCPKKsG2HMxZRn9W5cmwYDGrSRNVo8WdkUijrud3AX5R7axLSE0oJeUCMRFBsT2ECyqR1cBIEMDGgXDJBaRv5zWyGUeJqLnA+y2ELxPdszoZbrKxqMZzIFTn69yRrRk2kSik/GgZDeRm9nq0Tnic/aZM5hbp7nNwu00QuBG/O1TGZmrFB8pid6h1aKqg2RkCwyENiuUik8Rwpn1g1jUWdigeaq1bmttfofffXq518p61V3IOPicpJRnIYtlo/+iCCJxaqDVG0dFKpB6qydDJgRSJcasfvEUchB02iidIS5WmPGBSY4BG6BrXgJrcEo+iEziDK6UgWoTEGhvB+JNg8bEOxpM7gI/qPsGoSGeQF0pPcoHpmPmJfGG/2+oMOMZLqLflL2bwJFHtSKf3M2XOgAWytXMoXThZP7RkYDorSnukMpOpMe9I4LFV0mOy2J/UMeZZlkzn2Jwhe8aMF31TmzjnIIUlpjRNNksoeGRFRD/vZ7RWVuuPbD2hI/NlcXgTrzVLO7uxwqQzjMA+Pxd8YCD1EN5c8QNHdFZDkXQg3Am4LLUEtZJjqE1diO8OZLtDH7urFlE3VWqIgRu0DxCKo85Uah67CGrPTgCo+CZ/czR1Zu1FGLLo96I/inMnuMWyjDDGOBQOMNu8hU+tuDU8Rk6SwtPL/eaW2vr8XpHLU+1J5BFZy6AjOWHyRPeVcaDMe23hN7qdks8LLWpkTvNrROeWy8T3KsRe0q6Sa+1UtLy4fnF+ov7Gy3ncdEWxYgKwXTOpDB8v6o2+qs7q7XRXtutJocQqeX/ZNef39rQ233tweHIk7xqtShri5ddofkzdySvEq7ZPKDzdLMq+2WfG5iXfFQu+DCO7ENf6xMnB9Ood2ggIqpANvHcAzKCKZugiAhgw8rKzMQB0EhnvwKbgs2IFEjhThhd+r/8lQIMdhlJGSyQn5TjOlTF74XoZAQoH/ih0dxIf/q2+1CoGEvmaoiEJiW8ZhhxKSpbcSwzqLxl6nKkskER6G3ZrylKeB+oR2UGaoImNPrsT/siuJSAQqgWYrhpa7MV5wnf/t4P7q7V45QHQ6tEYrQenpyRfqq3edInbfvzgXPvHqxuVxdvR3fLFdnhj3Jg3HkEDG3d08iqjuihGfmL3sDVSzlMEo0ebi9/vrVC+V1udwryysPD4O1dmcgiuP6oTugx8wdnVwO1Ix7nNnqNB1UJIBBVL0K9N3zc+ETRB5d947j/f5m/+WmIu6yPXrsAem4YhXI/OVFRDBESg/Xb/b24zWbn/18cOwfJ8jSj9YEhLSag961gyY4z9WfkeSqIjhFXLrqu8PPSFnoMx+KrJDLi75V1Gm1ybAPnw5/+vUrnJOSx/Wu7jXAasurUsEOONX7E7urJZx6odVMQIsqkpKFZWBW5pUqOnQorNti65eqs46144TGowejewbr1mZzKJKqpL1Ld+ahpeh//nwIclELSfqdfZb9OegP1lprViWn/4pIbgrjrVhn5dJn5LZSMK3uyvxSO3nDM4cHZ7YLOHHra2vXk8nlxYWjuM4vh4o8OpDPXLeFlNeXSZTeWW9ppeK8YTqB7LH19Y5Venqi0uVqu922qtdbHTmhVxeX0sse+Z3nZ9WNUar/4qIvwMkqpWU0Y/g9qT5Uc066ijqX18KLh9ePnz4dUDor6tPfPe2tb90+3lwJuL65lazMJd5Yq1lbb3Y3bZGI2rcFodOGMEQb6g+2RASTzZzoxiG+ooKc3VSvHB31Ds8vmRCKXThQEEvKiaTzs7/85Tf2FhWxt9GR/Nebm/Wt9Xp1hV0r7LJaWboe3Wxtt9XCVy2YEatU6IvdnYv+1eVkcnjcFa9vcamxtL62wnXoCNzTru4fT8/OGquVmGpd1QZWZXU/zD38ZGf9RXv7CtHHm3xv94hrtWgqJkq6C7e0DXnqx51zoE2gwjnWjHOio9fydSaNTO3F1Ownsq1XQpFuyoftpOJuf5ClHHlANEVxJ7ZF8yM8XCaiSExkbdl6Ze4uzMk8rmFZ1jIhRI8CBrJpNFeQsbAZyvTO1salkxJNLyEmvLK9powP64V8pbis1uq8idZ/SUx3ZnYTDSgVRdnXmiq9a2wO3pqnB01YdUwGbmL55bEN5p/kcknLZfc6vQW7I4TI7DCZSBfsJvI4jC+KYJQmUh+j8x14AKCFuBtWFG6I+3jLk+F3NKWI7DhaKG24GRgd8OlOrlro1ETE6UHcF1uABFVJK0vLahZZvZgpNfHmWv3WeWcV066yLUb7n3k2InFduhdeyn4OTyz+MHnM6I4Q83zC4kWP8CQ/JzaotvTw9/74l/+L/+XfV5cWH06HRY0AMdkA+kBePC/g8DOjLFLB96ChXPQlOMn1MGpNeMxgC8Y0kV0RMqM8VJAXbEQP/lFnitifyoI0WkRLxEYw5R/alQi0iHqyJtpVXqdD0qJwhpnu8dnvvn379ujo/NzeuJi3Bxsm5LCHWFc2BtiBLK4p2jM6PWSHPfgv0GQGEaamwBNSTDBqdOWiFmR6iwal57g29Z6xBBlToRThhwDwYXZbAMbIUBW2l+zGaPneMBJzOv3oPaOKQpNG/PGwJhghuvCKDans4bhLqf2iVhJ96U47tqzZxlEiyba0Xv4Eu5xWkfcp0x4bJB8AuwEsqo/mCA8du+7VUBc8RjDm2C+CKVMkP1jPLmZyiyrGByzfoOx15IQEVJr7xmiKEu+kEfOb+DR0GSeuZ6n3OYAWtoWLZKKza6FFwyoGGFvDM3qbf2qvVuWF/eHPXuy21tut5dmFmdHIsnUSNnE9SyBCvmGKO2TB8Daw8zUeVSaWW2CLpm4KlNSr2ODKIp2SJYQzw1wHLWL2JRgvyAckNSOAlU0zLXxZ3W6HCqAIJjVmpIgzloChwYh+ig6TTAyNR52JvZAbFr63s+a9VxBbCBjwsdPSVHSVUFfZEckqztSFYAAfg7AAFweKdtJjAMnhdIEBBgNbQMj05Vuh6OnFABB+4y3tF0Uram5QVxS7dJo3Apbtsw+fz98JVx9wt6R6DwYsv9tEUEZZUlZNGCp/4t2NoXNQ+cVtjYLNJlrlUpzSpzh1QwNnMKnxApvRIE1M2szh39Lx3YluTXhMeQDiKbg0pNioEEPd9H5hGmDO2CMkwk6NLAZkJqKkuqLrbN+ZlCkHhhMPQmTYFJIAuZeCyaA8syGnhyGz3WlwaeU8gII4Qgd04SqIKJMS9JqF0El034zPFxc1EasmBlgo39xCqZXuW5wFYd6ZQGVUOGvqjcpZ90LdcimdnDkWrwy0Ny/XcUA7ZE6eV6V2c6t1eNrdlgwgOPV5VupdTuKLficqYvnzySmWtbnZEdPLfby1vj6ZPFaqi1zPLIDd3XXHPzWqS8cXqscP+TsFAvWHt0QzhLPRM56s3yAlQzCx/gF4uQgtGWzZLTRYYwmRB1cGlRkMkUxfCU/LxGXVBEP+88ntLDfvBttZ+0gL6ZmpLLsvlJ+FpmWHYsa0tT7KisoS9fF8LLy0mjWDQ+EYQARn5jzz4UJ6DdUCM7OQ7vUD9PK9TLDe3PEC2sIds5IyW+kRIqarKVUxVdlBFjGM5L+OxsJ/R93xcKHqYPmnwcVotbnQFsKy+vzq5bqM+PfvToztp1/vq3Wosl51pYmJ9a8HH7tdGbGOkt/dbAm05a748OmkUqsKE3cs671a6a3V0+654q8//dlutVK7G7fHjp56ulfo+6h3//b7bnut/nJv1emlK4uV0XBMO5+fb1x2z7BLO9Bq9CLKb17tq9lydnl1ejmgKSkj2V5rMFHub28Pj45bnc7qilo8S+uNWv86h+OsLFfN/MConh7XZuRLpdKoyGnlEdnqF2ejp5uhsIcsvNmn7a0WOh8PBkiX71laiQUsP+Grr7bETyZScGFu9DDz+fRiRv3a+8Hw00h+M+JuOJQo4bVoXYSG0H8HbwVp1+Px9vo2B4wYa9inAN/fPU0mMwfdrqgklsbvvj8ayH2ZzUFOa81Gf3Lzw29+T0rt763bCTXZjC4kxqTCdHZ3diUwdg/PRdrYWZGOQdu1ci4vh3TuueoTw+PqsofUq6s1Nvft6I5Cw3dGMjhAl9tC/tfu3rrwqrOT/uPkTviQQ5WH1wNgrzUadKOryysxSxJq7fPgBA69Oj7vklHt1ovG6hJKuRI1MpqwyEX0AnqtuiJiW6nASmGvk8GDWD0nYZ2rOnl7pwCRqpSW5OnV+P2HQ6kIkLCxsbG9IafDFF9b0jSJ4/HZ6trKVz99cXU6PPt8Kk938jAnkWH2bra+tNrtjgUOHZ/cIdr9nZZZsV14PXvPR769vrS70Wqt1T9d36yt1XCgw0/nncbajjj4SNwKhfo3373danfk4U6Stvew01r76U/3P346++Hj6eBaDc35zVb961ebR06B6Y3tGx5fTsRoUZnt2ghd7B90LZ/OwqLJso1rmZ/0L9VUpChYfFz0Ek5UCK3b+rBPZkkq+pa9CVtBS6enF3NLs7vtGgKTJUy0CEZSYlGaBY3tZnhrKUdrUfx4dfXo/NJ+Jl9/tFtJuhRQd8QzVublz8w/LUweJriI2lmEEcPA3FUW5+0tkU+NRFUiPkHPFftR84uLsOQoDHkk2q8JCniel+EQHf5+Bltl5vEUCivizuK8HA2GVo2gmqveUDkjwojiX19rULvsEUissBXGjiIMTDVWu7yyKAyPqW8TLBGkmog33fiwIX9P+eY0yCQOaeYEcwUrxHkwR1yLeu1L5Ee8N1PxH+6Ev0Zaer5oc2ascFjFaQGFxdFGsvHI9KLuQDLmx1vvlAe1X5mOtiyfFiMvS+r/oxQwPJN+oMYrQzRydvaJgS36SpIhlz9SpilGRZt1XjWHAnGtas0jZwROygnHtdAfPP0//t+/kuLwP/8H/1NHd4ON8M0Iw13LWKOlof6MD3kYRPkWgYAf48+4ZbSxwnYN0o8w7ciFaOoRP0W6hL8XSeMZIvzLk3EDRQRNmy4o0ATtNNJ92ltERjmMSfCmNqP2RXW29UURoPA9Cs/7n6x39j9//O6Hox++/8y+m9gsWiQvIDJKmsAHPId+Rb7AR6ZJyoAIlrIbQB5RiaIXROww9jn2Mja2WRk/fTqjC6o9ED2jiBiPG4WXM60hizIGj5nh0m8INjKLaCyozHMaoTF4lhaF2xsa3u5FK0pzvhflpgSb2QUNphmiEaNBUvDtPztmlNfEaXCG6yPWMfwXCCjoRof8IEr/5p4ywWDXVdHz4hTzovbw8PBfKPUDTRHhTETZFdE4qayJVEHb2TR4eErSz9y88xohn2UbVdUaDo5yLIbeK/bI1S+Kl5eHLvUfKVBRkbURwo6NaxciOOKChcDUIUvYz8LMfLd3O5ycHHdHb7bX//Yfv1bvOJ6hOVtSM1R7B2KaRK6OxMvMZ0MerAvLpJXDCnBjDCRVj7IMnYY+K4wwih3E+d90F8UAZ40q4+MLEILG6HNFwciqM7/moATrh+wQX1432d4wOu9btBYajKURTSTohXnju5GlIx2aJHgWLZJFZDqDZzQYRKE5tIBqKTwWh6uhwug6oR2f2LYoqVBLmXcAxSmrkbK+QvCFAhIcb7D0OXMRfuT/YhZqpDSBSWJK8WdrNSNQ5DszIOYiqq93YXB7c0NRZqnXXCQhgCh5IkXV8TNlmo6lrX3KK+c5qveggeID4jAxlqwLWTh39h5l4CntkOnOnltxf8CEJ6y4cB7E5W5O1GJsm3njyB+fgkUMOCBCL4y55pO1FjzEyDb88KE8EWW2LDkYcznI0XCenybA+FJ258quCWXPiP9qBinrc/3BrWI8Ka+e6MBEl01ZFmxHd/S0b+kKiNrPzfCukEvsBKNBhsgpmrXWg2uPW+m3/EoipPhvK0s1hX34gulRQgqb1fmr0ZMtfSG4lpmloxjd3eNkZbkj8q0mHLOywCtKQ5B/Id1dYRhHidG3mp26uiwC3BYWa5QB59I8XyuHqLjLskCGheZD98S5Q21xtgBf43d1aKliMM/Pp+dDpB3jPRQJdEOYghpaM7QpAsPG4q7LEoBU8+Uft43JrVA1BuxKQbzrmW5PMt/D+vKz4LYwqKnhFEvJGgmFQ1xmMW8IAfpn/xgoVg6U5SqcxcCKbwJN4FPTqxr0sP/LkvuyLMFaaCBjgfcpcUyfhH1wm56QRN7JMvR/5iyMEnGgNkQwdTslwPX0Yji4efhwcGlb/fysxyrd2WwaYzcTsMjt3tloXY9GGmFIQeiwR9g+On/q/GxgVbcaq+sb9VVb7bc2K2aPFWu8naw1qspmCaDGURxOxOU9Gt622k01UJjUd5OZz0enS40KF8XZSY+/8+V2g9o4GNqwUQtcHUCQznTWN6yubu+cZWuT7vJyoJbk9lYHuaAhibm4/PffHdxcj3debLY662Jm1Nx/XHgAmBpDTp7rXthgGPDlq+AOKxR0ObIKya86lbo3hNjUxUjpLk70RQZ+vzt48WKDDqRiabR6atb19elh/1bdwyYfwHx/dCtcoNe9tCgFlLdUVJlVtuWaw3pNiRlGbrXy29/+YKTKFLbayr5X3r09IHAiMVQXpi46Vulphi/cDomzeckM4XcmWFANnrRWU7BBlgEWNeO83hPUvNnZ3926EtYwHspPCO3OPNhVsMNADAl1UPicVFWWlH/X9IqdoUoJvTi30cZR9yxsdMI03misYUWc8SeXl4pCN1aV3Vq8HlxzistRHvT7mJvCmRbCSEHNmxu1z0zW9s6mMqAa5DMe9K9Tab3yrMRqTNOnhz1pwcfyzSgVSnTV1eRyRK5CMgxxBMruV+vzWuHISp2mUEpcK3a9JD6EAxsXVP6f0bmxscrgOj9TKOnRQYCfz/obavbPVrrdQ2QsVQjBym1QfO1G9f2ba8bh9vbWYCRse8JvYsfApgqmSwK16s5IWP54wr9PbsUWj0Pe/t/CM5341mkJz7MJ9BKDP7nutOxILVyM7z8fndkPUuRe3PydUB6FAp9nldRcWV5cb65w+CvTyaVqpoQHKNdt9UmGoUDQVJ1QoWong8e6qC05hGFC1EeFe7hfa62Yji7P6819TbHarELFN5S6qVyPHpR1svQ5+lGF7cvmao3uAqoQPwZMsi7aYg5/wEDEPxo79qoeEf2DbqyUJ6FSkb1RYw8SErNLlSpVvj8eDXsjgFE+FHjCmvGlVPURkqXC+ePz6WmPNrDzou1A2Dsov7tWPUubHw7PmNPiqUgOooOYpx2ycIAs7McBczqx0pHqzeiWgIRtDnr0Em9udCYiCjuK5ECgFm84bBiOYYddxiFUHvBw4Wd5INpGfNhRDcPK8Ct0Xz7RBmJYx0sH03SYiOhInShSZCt1gpFAq0uPnFupc4tZhz3j38wdqoQoIJzbrlHEJqVvdhYxix6k94oK49LTGY4e33D2+gVm2Pw2BGqlLQmSi4CnQzy/3m/9b/+T/+gPfvIViOI/CnPFPJK3gMYyLpKSflxGFvUyY4vgBJu77mPG6So4idZTmtB7vgcGeAswaai8WmRBpCyophI4TxW55Z/S8vS61nQFmHQSQRRhElMqDtTyYNyJirKRQN/+7u0Pn86Pzi9slArrwpMARUFicBIIiqKRYXoErFcsxukkaj/quCOx8G1Bg8FunrDATT0HTVFjHefCjBTB6PG4sQBFubFkoj+DpCBc4941OXmoPBYRW6ruAFjnsQozzUGpMUVgA7DQkWEBTlBYXM7ELW7FVF5MdJYJISAQBr08Y48+FNFX8P1lg8VYpu5Pi1dTZj/rSptR8POlzFTi0LIPEOe9uJq4YPN8qDNZxZm1qF589d4KNYKkUH7wloEba/QiUSLBDPy4gPLtoUVpSwlO6yYkB3/ZvgjNRHVgUFkWNP/ovvLpwD4tukJFwcozBbMvt9t/8PXez36y6cBUHE9PoLAEWEGMVft7phJ78aI2s5DKYoF+LWApN9c3cGJPO5RWIk9gLP61EO90+LCuvyxGQwidTbdfICd2Zhmjd0KPkDxFQOA0R1l6HqN/4zKZsFz0k9nmb83mndKk19Ofn1kUnsy05sUYBoxpqP5iQxbe4NXgHJ5Zq381F5oubVgdOU86lF5a1zI8a0PLXzoJmwnMek1HprmQteH41zM+LqVTEGVcUQR7k8mvf/dBzKky27oGGBW+5qwZ/GB2hsPtQaETqKrM3dzfxfZ6epb8rSWsKbwn4THzwjhDRWWnKysllGN8GX7USd2rkCPaRzJCuHTpOpchM9815cFQd6gqy6FQxXTccQpHDS18I89DeoYTmjQjyCAMwWtpKgTg74w0aPEVWQYYyChzJSp10ZmcagGxLrFHg9aYHgNvOHBWtLeyWkO53ioYjTvAjGeJB0U4eTHADCdEWISCWXsWOz2ZtFaaAkw0S453L/uNldrF8Ia+t7rA49mCpOPzfluyxfPM/v4mu4yLCg/mamMqI3LqzVq7SWWSFKcUIN84h9pZ71LdDSqO4ILKcnaMySflJClRDOCBLXghDP0xVaG1tirUPPEtPBeJVSkkHS2zzMOU6wZjof+g2jgzxIw6lGzI00tmp+xbZp6mZFNouCA2ZDz9knaCvSCfdDN/EEqiEXBT7udWyQFIX26V5YAqfM8vn2lbicKkFvgdRxoGhLA0VxZkmZVwUoBMKT4QlQ8QYz+UXjOWjISIz9xndDFfyDaTNKtS3OD29tPJldOFbAZRT4XOR0kUheFpZBb+mqN5qgsxSwp9LKp95ojmpCjOzVed7Vbh+G+j/aOz/oPCI3TZwWR/d3N/d/uBF/r28fr+9v3hD3sb+2JvBBSNh3efPhw1NpoHJ2fLnJE31xy6OJny8GxuKpTIB2WYtzfXBTDQkxxqAyvNahXcAhuEQWGlvCWOlx1NuKTFMziVktv43kG8YvhunGe5sGQvwQFJcfA4AGnZ4fb3g8GIJqS0vNlpOAugsXwzvj8/7d3NJp6yUVsWRWO7CJ7WOivO20J5vfEkTkJ8tSJD97Y3HLJMbSNsyTevVMSmMy0cEXB4drwupGm99fHTkdKcUjpVBCrutDm2hBE4P0nQPkvAhLJuRVwgZdOi6o5KmgKary66a61WIkLvHlqNFXWQnMYzvlEF/2l7e3MizF9tyGuQz9QqS9XqgsA657lXajljmECmOLI+YEBgNI/U8cGpoyEb7VVljY+Oz3/yeo+dITBQVKiMXnkBCQG6GnEe725tcYSfXVxIkpbBW1+RSbaEnASWQKAqlnbWTk8u1F9x9rbGVX9neCADwWyON9t/uX124pQtpXtWkdXF1UgmLv9scS3OyD+krzN5yFN66Vqjud5quMRSwe75suhb6mk6fG3Uu/l4eibh4arXE5ovu5Uifn5xieHaGxHaLhfclJFTrMeNdv2rF3sOcpZrq+QU5cQ2izD926eb46NeNJpnxbAb4r6Oj7o8xU71Qsk2QN6/O9jeWo97D4ucnRcSJuLl3JEFk/u1tepwCM03QmUkHnEPcwri9RTC26dH56MxEBCCyk9ko+0jxlx1cb6xsnoqWix5uBxjWg1bBuGjWP3nJyVchR4NTdXDs+Aty9M6jwaQMuEPtkRIEwIAr6eBqUDlMBQKNx4hM9V16cJqSKNv+vre7jqpcuXcg4eHtWYTwAq0sgHRpextRWwAYzfGRinA2DmsPqyTDcOlmzh78vjpudlWVo0VfY2p4VD2btYa1jvVUGzS7WqzgV360Df0K40h9SCA/MRkUpH2yZLjlaEwEAZXVyOEq9oojuShSE2sPZLti46LR2FBeE+0HJ/C48KcCk8saqKLqfQSgRyeN7UQvGGg8U1EflBPSkQv1kn9wLtsiXiW9oZTSvmNI4165YRI+dXXwmEpbZLNolAZe6mB9Cx1XoqFbBtWA1YlMAxgSpYRUMQVV+UU1LBTGmuJNtGsixwC8g0SYGPG5mY329V/8O/8rf/o7/+tnL4nuyRWV0SDdvAlYBMlkdORkeWv8k/G4hc8Qg/Elc+X2+WBwvsjuiOfNRWR7FdBU5FBQU65aciaIGPgwrNBUVqg1/o57RIWAUJ2RE6nzQDmbvQbFw2WQ+Tk4vj08OLDu+PBdbZJKK1xkmvbVCadw+ow3vQ5fV2PUdZdTf2AqM1IK12Tf9Fmi3QxSP0U128gTPpsDAO3fY/SG08hHQSc0ZKNKUoPUDO84C2DKhgkLzPpKaLCvvLOMwU3VRRpG5QM7/K4FLPK91iVJjvthwJdR282To1XmzBjZWnBF29pPs1hIiGixPNbjy4YHmVLzolRT7HqYvT4AEluzskwc2EqiLVgGi1l+JiqdCAH8P1TCo+ynT0JYNB6MhuFoIrjjJfX4ykbCq3cV2UOdSLXJbsAWsvfM6K25BCgASBHZYtR6Ab1KjcUqav+/HXnm53OT77ZwbKC6oyITpOslQc5OU5ioYSpyE73pAWiIwswNOkD0WkzVqvlxlQIQWUUrkJC6TCqSEmimG5qZ3YNcEpR3oo+5x8NFqpMe0VBB27AiDIUDMA2ugvscB7kezoY8zyE5IHyZBZdZF7owZSK2/IixAX1eSNrpuj6aRVhoIeyCNJBWVlZW7iZeddbGs+ces9fGZqVjm4CTPldutNCPgXywAmogJRXYrNNe6cmHhz3f//hWG3Qwo4MPPtj3B/zj7P4Ll85OWpqObBxSzsk/CY2JHEb7SXrF/VSSIv5Z2EhMDwlC60QhhH6DuchpiAjdkmEZhmCZ3AWhJYVYWiGm4XtXrFmQ/ywAmchbDQLsdZMfqbbIA3Rej7MBCXpIlgpg0xECO4KyYaMqLSPHgAw7+RoB2BOXe+ioMuaJAHCXmBZI9rMbIZPAKV4DUJA8cvoBz17LIMDQ7yX6VJhaiJC2HCKuc1KwpzgH5XaIpeZxrTIKfxmp1Mk5+Pp+eTlXkvgh0wtjk67+ioiimuwcKgiTr/Rs9N4YhctKJko/yUWgjQ2bizWb20pR587ckpusdPB2MhSBB2iQ/7SegiKZmNNAW6Zq8ZiuvP/lFLyDwzkrxj8qCdOhLAFaC/jKEQI/eH5eQt3yE1oDNcqb5YlViY0jRYMZ9UggdIeSgtVlibDtzMn//z/8p+BGH7DR8oyy5rM3JZVX170WgEoDN0ft9C0GchVU2q2C+yFmcJnQPGYf8hFfpT0mt21kLi+QvehKu0s8P999+7M4XcyXvlQL05jfnWcmnR0wveFxTtd6GrS+8VXOzfX4tonL/a2HOdGbfrq9c6f/fm31zcP6x0qK13tnitWGWJ5hN9/+OyoJOUseblVisQ5js+Om3VFd4R3swLvOe4c5yZmZ6W+8uH9ieI1dA2VngAonzU0bYehuqxwEA3DQLhXyXQq7dZacxkrzh7iA5OONU1zvhldKxy61mpXFqoW3UhRmKFqJde8RIqgn3W7nKAMVw5X0dqD4UhleiVD1Plh/1KV4KR3ycJ/sGe6OLO41RJgL3Ny/ne/fbtUd0iBku038Pz1iw01aKEV9xEvJfFQVtVuBzaexjeCj+fefj7iYlxtNOhtn48/qRq6tdapO4xoqSIz2AatauVUEzHc3OqUOX7ZamP1UBH9ysJGsznIkWEPgpvbax31VRySi7Z745HQoa11OxepLzQaJzb07vq6yuN1p5D56kDkxmpDRRp2Bc0MkxLRcW3T8u7p6PQcV3LiFeUbF1ILjv1jH+Ny3L+75eKqvNrqmKaT04vbmfvtTXFTKzZOupcDIe87nRa6s75HN0MR5NXlVZmmqtkoI+5oc9Ye97hpvxQYPp54V3zIxXnv9avd7bbuJiJnkqx8fCLsCb/4/rsP9nZcOepe1JbtOdTF9Vk2jvFz3JXtkgtB5SWsRVW1pdXqp4NT5Sl58SVgybhg6FNBUb1gG9YC4nfoG/MCDJud9fsnmf5X9m1UDCCf1dcfYw+KAN8/Kv9J77e5QGNpb6ztb7aWK8u2ULBVgA9ubg5Ou80amrUVMLHCyEqCmcrSbKxClFWtNitxq1oPM+PefsvcgrSWi0vht4/D4Q2CiW49Sx/VQgpWSrO26mxh2f14sdcptSFme72+1cdFjQeFIyeslggRrWRxTcTb8LtYehzwAhGSiGbNzj461BefUOzeFtbd/fhy2Be8vt5cHd/cSMdlnqV2E0NlaxO3UrmfbmQfrFaZE1In+E4/FQrGknOCOennhO+Nxj17sckOfHSmQVUgq203in6jUSe0Ti8uZZiTYcp5ieh33AYLanlW0AIQsPXs4GA+zgNmyxNQNC7ijyqN1cjeoG+FXxUFAmOdMk1CIDINj4/U94CFnY0CV/CgsLKpqMbCCk/zj1AhPJoY9ARHch4sbYXhYrPFd0ILsKUeGRS/KoUs+OKT1lpo4FGS9G112WGTd8x1hjAb0sOO/EJF6MQaVB7aoojRgAEmOiR5xok5wHZD4olZ4iI1agIATghUKhglUE3CCJ7H2z/5mz/7h//+3/3qm/1EEqS4BwDDV4nyaCdx8JjeIgA4iormgc8UxhuNxKOR69FBIwZw7+DA7SJyyndXMjqsvcipNOXJ6cPRAwCLhUdhiIj1JkC+dDRl/hHDkTBuebRIiLSZ1zRJQ5U1Mb4/PTg29W8/HEuBUFzedkmZSlQcldTrcmMAAUWlEWsksxnF14XIPo1bnOCJLAILWhJSVcSNLvKIG3Sg9Fq2R/ScL8UHZjje1aB29eUO/VabdKAvmMnI0m5RNiL4IigRH7REhY1ZlUEVw0ZT+VJIpoATnTXzFdsj5WiCSQ+lxYLjMi7za1BTxPrbM+Yuilqh0sTpQHO5n7FkoqNJG5mODGRKz8UCiaC1J0B/JZ0RPBi0hiA9yh1ATdMomuL8cp3XwygghT6hhwSDcx5wDQTKIAY6ElcW6wD1ZVSGk7F7WvkN/qna8h/9fPfnr7ZevNrGEGBGOBDGimUZB5hDMyEA0xQkQCml3xCg0YeZq0uLWBfe1YHhwGfoMUil1n3BZ6GZQk6FaAuxRZ+GbbBmpvyLnAux6broyrAdjZ+Kky9BelZYKCLaZLRP3WRaXY/+hE60Ey+ypqLl077zA6K9kb7yT/nE2ay5vF7uR8nOix4ASGYzsJTnvRE4s0IMOYpdWnM7SPByxlt+Zsz+BGDzIH89gwK0ExE/nl++/Xh8cZFzTOPhnpFQhF+kNFnxyiLCeB9cL/ulOk9jGYq4uiThBEgfHgl0Yv3QfLzishnIBWZAHBB2a8X6Ziw8S4Ez0IT3AtXr5qhgKY0HbRm+UWUVlCEH1cFu5i4ECo1THCMkz2WY+cTi9Q8yC3VkzNG3tP/8kNoTqir+5NV6k2Bzm7CAKIgsLuNQa6ypzKxrIVN8FX7NjgWbGU7XGv8yBbqcDsIubtCvj9nxrZI8Dzy1D7P3kgMUBzy/nrw7vtrfaq/XbGEtvPt8haA8296sK+u3t97hOIPETl0JprkPxxdNZzILWJddfX9/5Eia1Iq/o408qORmiGFR6oH29rbWUx1i/vmsO0AvjDCNq0vJa+lQV9KVWmghTekkuDGa2FRl+kJoAT4/02iW0hc0BmcZp08E2hes5sEylYVQYcJ73jGBER4emjLw0GQID/4K3sJcVAFy1Uef025Rhl7DLDwnqrLUMcjKL3C4mYc1PqVpwriQ8pQ4guXMQYwVrYWYOcmzBgLQlKsCq/QwN3mY/fV3nz6dXikIPq++3ngkWs3L5lnVMOLzcX7m9PMZB/Cb19t/9uv38lqFle9tC3+ojgfXasJ8880+nvLt958sWZxu7m5OeuvyasTayUX2d7jiDbrTaVn937zZwlT+/LcfMDsLnA94pT7/fM+N/by6stBaqQqeObsYHBydOwlCEfRuv3dyeiVrqdOsfvNi3+Q58MQYFpZqBnR03EUW7JaLc4XJ+/t7Oxzl41spbrdoutfv048llXOyMtP3dzYlDByfXKhieT0ZiJhHttJ2FeQZ9PoQuVRdcIbu0tKq1F5nAfKOL87M22wSZV1ZWRDZ2j3sfTo539pZc2Sv2VSL9OWrncngbtgb4qFOgFL+6/BDt9/vi4lCSNvrnSmDcZdyFuVjsULQcsq+erU9Flp4f2tzSh19+RJwLgWWht6MaltXu+KHtx/uxdbYPXxeUA+UXKEJ2m6RrFlfWbhlRamPpA4l0KKgzDAXEJBU++H4XoKmM9cOu91KbV5JeCdJbcrNXVo87fYvJmO10nWy2VH9f7XX78mNrjZXnSFga/j0tGumpNtSrz8fHtdWHYEoLvZWwPpDjmWZoe8n0PRxVv1WEagIBjFiJrwgg6srFUhPzwYkml2EzXZbfB7tipLJQf3i1dbbtwdC/RqNak6TXaq12/WZxad6tc6qZDI5uVkIk8PCz88uMVMpyvBzeHjeaDYoxzy6O84KmZ8/OO4enLP8rnfX18TPODaYMBFi5FhfGy+DwVg7ShvRZbqnV7ECnu52t9aNwgbO3saGJXvRp+fciSKzwqRg03eYWkKhmHySR5C9aCveU3tINpR+/s0rppozf1liqi19vbPlpJLTyxE1UtSQiB9uSpSgPP9ais/MM3qxacH/skupzZ3VJTtRcpWtGxYOBmM5xo6Kk0scGkGgqGu82ZacGJ67EZBl7D2ZAWaJBPe97Z2Dz0eKM61Kabif4eBXLtamkwmy11ykjKPpr+0wJ+nAUuHsm7ehR5xEZ1fJdbWxLLTPQWbRZqkUyoMq6un0SstkZsYqww1ub0Tt3Su3VXeu2cgWEK1HqZDI4HJWqCO67jBLSy+gpmgdBhN1E3uxlikY4U5GFS5ThFPhnjjPF25Z2A1ceT4caSokCkOLgAl3wq8sl8iJsFL7VkvC/+Lwp7elzfiJqFCFcWFr8dAnjEoXpTAL6SgLYoXNEGkbt65Ya/JrQQiWJDAsyPkYJfgnqifJrukYWiWm3AsM+ohdgT9S6uOMMHszzGimNIxyEwgEUlUdsGndqYMLCLLxn/6n/97P9/cVOoNZkjEiRO/+ijeTADccn8AcoPJmESvGbwhwFf2eYPYlilpuR6wWFWn6JW/nXf8ERdO34y6N8eBpVzJeigdUR7Hzb6RLzI/Sb94oTWglF3UZXSrgQJEu5asoKXl1ef7uw8cffjgUAKj2ci4H53SvaHMwRlnUVHTzAoM29REcZnaKuMEdUj4oOl8wZAoEP9yJwkcPkXkU4hRJN9cFTm8FZxmasZvxwO93NNFCaN7NLUMrGpKeg1DCLtmKeSNYK6pklKrinjehIIytkSj6YMlbHgZMvqO3gmQ4L3QYqFg7XoqkzPSkdw9TC7yOzYGH7DAojegi/7GLFHmxa1RwDaWBtrTjFhhZGlrgzwKG1wFU/g2OQJ0gHOslO9fR71BJMED00uF4qSEUBrK1FTDciVcbjSO+xJXQigzE/Zyfl15nnmscRqu1P/7lq5+/kmjWNCtIj1w26LixEbGVUnQO0KEtQzAR5hSs/jX0AEDVK9qPJ33Ml5UIyHwNVfpEK4VMpGlGPOxGcBYyzgMh7TIWaIE2t8ozgTaKirzYhAqGjN2NdeSfQv9eMxq3wjnyaPGvpTlAh7xLaywfvUJ1+IkvU40I/Br0rL99NOi7vsqUBxpg5HVkUpaJsXtg2m8II8jMWs1AQupZuwUMpJWFHBy6yGN9e/vdDyefzoQOiEFQ9ElIm5ks7HD2IUXIktJAabfpJMJzqltnT4ZqLgeAFwYxIIxCQOTpjYi1shsWcHVlDNBRxpsgIsQQIzxEKes4G8X4GIAlcaClqK3G5RladeHHphPaMZysCgy6sFNjAEAh0sytGQxu0UKmO8M1/ASdman8T7/wPssR9p5bq0uv97f4JRPbOt1joVEp9RPTXfPx5gR/+LnRFqZdUBuMaQ3uyCJqQvmdqfEwluieK7ZtE+5xe3M6OH/Z2dmp178/7X48H0ovbCn0V1t41x025uaFjtdbi5PRvVxqeRcW5M56iyduzMcvBFtaWlcll/sjG9TJvb6tL9dUmBQcIaJxRRjQ/IxIrfXV1XMHoBTiWavXLKrr8SNdRXKpRZIA26zBkE1ZrYUWA69LiC17KW4hDDc8a8ILhYSuQoqFwFz3MwPMkyGrjDLUmL8LMZbhFzILenLdU/4P1eXyP//P/5G1HXac5Z8dLg+5DS6E4pmC7nTi4wGrBDrKwtBFVlcup7MYDPkFUGAFGG+EL2VN6K1AaMLiZOFseJz59v3JwUnXWTnKcIPg/clhf3zfqVffvNjmNvPg+WXX3zZNFNDEUykftFhVa4RMKJyys9XmJSIlnaXDer2ZjDc7YlqGqhhSEXjj6Hm8ua9fbn3zzWsVA2u1OQUEbzD2yuzpWfeky4R4atbqDqBZW+UqXhAGgTJEcaBiJ8cqYIjQRTd/83LThvsPB2eUXVU7Z+eXT05OoMtncu201KbzQdfWVuwoqREuSqzVagrjzvwytKFL3oBUYsU3O23w2AZoCrWmwc08r1aXhT1sb3dYlI7V/Ze/f390ePrNNyrEbExSS0g8Ul3tfMYGlbq9UXfA9P7++lqnMeiPufG7532+RptJe7vbBvv+w2ep9CtRsKsU/d/+8Os3L17BHnNaDoKADgS8sen83vWz41NeyN7g5uXeFj+UajPc54pVqefoEIDRYGQroObwhIsBl01vfKnCEGu2Ua+1OvWTQ8clDHb21/lmlXpUuvTF3radl88fT/EbHnVMxbwIHOJ4W19vLM87zfdJyR5RLrbe3jgMuLZEFDCgr6LZXjsnodOoo7dPh+dqg0iRRJAWGItZeNX6+ppCkD2ZEvNPtHPwd+zDcA+vrnw+PnPcMnOw0VyDjrfv3xO7u7vb1O3z00slXFFJp123HaFAEH16d2+302xfXvQsEKEv6hEJFGJydC+vaMMiTPDMHn+/COvnp0uH+CZudh7yndWgIs3h4Ym0ZCmLEkQ6sirMXckk40cXk8BRyQ2mKBP2/enzia2nlZXFF9ub+IQjEZR9UfqTV/jkVLfD6vLCi41tE3wx7JOz44lcWOc/qMXpgHERYvZdlsX/7O3tSRM4OskmEo+7zYHb5xuBPeNxIs6lDoJPxI4FxWIkFew+sCFWl8VkLSiIZH6PzgZqKFEIcnQ8oaHs8Qp9dPaiJ64Jn6rwwWM1WC3tg6pRb1Tx1422xPcrDYm8EnW60VFpdvP02Ozk+CGMWNKUFS+1RvWn3mAiuMWRBRfdnnLfEJu8CMbisyPeOnbkPr77rPq/nHvnxPGXcOk45hdtkxEUFCs6RUIEJ4hpuVVouUqLcMQeAhZYxVFVXayyODAR1pz/TC6LlBQ3Xtwc28FtCFe8KEypsEtsytr0ROE7RE7UDgwoXOiLfyjfwwLzT3gVnhtuRbu1nMj4opq4l+2+tCbEWaIM2yNWgfhU2jnhjWi9TEiw06gFrKYiZWwEXauVxKpRGUBtYgPNmcGKtzgE8H5ijkp4CZl9Zx6d4S1O14EQNjSWcvg0rQXWn9SpkLYhQDfSj5fuBt7EDqX0cCmQx/6s/Wxv99/7d/71n//8tdQRkOOruLxBFYYcsVG4caRCZEP4fZhyWNNffTzqpQjkvJiHynM4OXy6UAT2X92MDpfWciGITRdBZPkUeys3IpyCV3c19qPoSnhSAcPyKu/6J08KFFO95Pn86PTDx8u/+PU7R2TY5TENZEDKBohR02GYc/RQKinTi5rCF0Cdzw5MsoeRW0anSZRjpUCr4SiYFkWujNBIPJCtd3RiFEGSF2iiJYQ1x7aIFEdOcSrreDp8ipF5ouqgVYMGseEk19AztElhNtGe2WdRUHRgRFqdYhNoRpBXii6Yu0RL0dcjiWUdMOVZESmUFMmZefFAopIoXkmgNPNahMkIb/ZAyVw3IwXTUVK1Dx/UCEPTpFbofHAyBRVJJHisZJeygIrJNDUUIcOQkj4BDbqDJN3YjuKD8zcFETaD/uAuWlqJC8r0xV07n+gmYpyeZ4WuqeC+u/53/s4f7dtVzrEzrADY8BjL4Y4xgzimjtsQl9WahabN6J25HnrxMRulfR2WfuE/lBNSmSr6ISrrusxaFngma0qy5f3QWxT7GO2WsEZcyWOo9MsDWbAFdZmmYLtYVuVfs6D/3Ne+W7BiD9/FPBfGEqpI7+lxuhwCrSuh/sx7rqcvl4ptY4yFQaV3qI56VRJnM5GZqmAgkz7lPL5E/zLYKM/cdqUvbzjxVJmlud9+4FaW5aeWZfbGvCv4cFm8yQz+Q8UX0xXokRTN0v78dGjoylDwzZiaJZ/TOjHx4eGRCzhkiQ+JIRLDTwshaYNOmFNWRxlVARhaAl4adDF9hUY0EAwxDw0plPIFCVO2EDRnOor+On0rl7LHkpbhTnQKqyEkzWsU7m3zc/7Vzkbd6T8GuLwILcFWHipITrfaQFFCfHPQivawVsswZB/zILWScVpsIbw0xlTI2MeproJwoUKKmp2nteqa80rPJ9fYy8utBuVK0fmz8c1f23f0kKTh+8Ho8fzi6sWLraVkyS1cDa/qDYWqFw8PTweTp/H9veAeZ2VQ4TCr6MkLSbVXvb1sHz2pG2gS+2rJVCvbG523h5/tD6kmCLWczspdqNUhp5LZZIDBXkgPTo0O3gMxJKO7QllBdR4o6A42ysDLC1MflhcyY9PHgiAtoTH/hE8gNFRNshCFaRj7Cjbpp//in/0jV0zqF3O8YFkrSDnvhvFGrQ+A/gkji0vG9SJ0zZdlGWgtNg2DUR/l82Ux5d3C7vNYGUIIcXb2cjL4s784rMxW97eb54OB3As5js1GA5tfW2vgGupkiNba3tymNlBiMHQBwRwc6iiyDJUHlDXqnHmGqfKFG1sbOr+6uFBuH5RKvFMciRVObkUj63FYWqvxI373UU4nBwkLwW4D3XzuctC3BpdXakrQkBp7m52Ts65lubfTJu8rcxVVg97TpKJ+PBSJUtncWtvee/nhu+/Ory467TYKVMHeakYl/KbZceZifXqSJyoO5FL5xusbKnVlftkSY+Xubot+p+FNqEQUu539jdHo5kgxz2slpTr4Dsmxub72+fMJnKLsyJul+H9YoOG+y8JCbj99On/5YhM3vX+U3LlsuwPC6HNqb9Yc4XTatRVOHbsaSHnhDb9DDbXqnL2qi7OrvKLjakrBcFrzFb7cWT88ZSaMnXKFAREBiMxW7uZGR0UdDStM+JOv9ujZRyd9Gaq4vCqolD+7HxspD+q8qJm9XWeo3ZwcdmUVSwW2G/NiZ2twdfOBOTXJOZGob3+9JRycqYT68ZftjTqNVtbHKCevTTrrbfY0dwYN6dRxYzTHSk40+8sfPvBV78mbdryukH0+0mrl6PgUub16sXsoo7CnGtqSqKLLq3PJDLJrqW6KcVn7nz4eCr9otpqzPMdYs5MKtltFcbTteC/p+W72sdPp3Ik2E5kxSZr4Ha5DWS6M3uIUKnYp3G98w1uOnDc6TQ6z0+NuCrmu1Z0YwK3/cmuryp89PytnAHUpcrpWr56fdCvVFSeCjW9ve70bdULN14YTbWdmlQzj5OYPQCiiiVTIuS1H8Fovi9UqDN+Obhz+SL7aP4/NoC4MA+DxVmEyYqhUEaS4PyUCf7FyeHQGGBCbPlVAlXVygq5Do1OAo6I60JWlLtODkBkMBixkvEAFNACTBNKYRDoJRUpNg4oDLpgaFT55CxoVW7LskclYfNOjaloUk8Oj7vWdHOicJiGPwuq0ZbTWUCZBeLuzmGeTRu+0LJEG5CvRl4/kP5U65+1+YGrWB5NJUFlYk30AZwDfyHEQ7oJdR9mLEPTBgzlsQCPkDJZwbpY9Fh+VIHNj4EbCLvBsFBrXwsoiunzBB9JI2Fx4qnv+4FdxYhUZH671o9lAUuKoU73fjHgelyvqRE6XjC6YV6MjKPiALdiLjJBI5PojHAOYkF1ZZs+nYB9aFckj0DOb7PHciBrKqmbpDCc2c5Z5VdWP8yJTT3o6hQueEv9dzgb2Njeqg/DkDMhEUiZLbqtNkcgyY8NQ1Z7FhDF0pRFajX/r3/rX/52/90cK/VoW4gcijsP2g4SMH74Sb1nUFws1qkZYuucMBwagBZB+TrFU3ivdBJkldPuLZVXaK1gNRqHEAo7WlYAKH69PW4ZxX/WYK0XhC+aKPEmnxTWYL0WlMFE6BpbNgPvnu/OLk4PDz2+/P7nsqjwjCiseFEseVqcwo9gyqXFvAxn8U1j9rR2YRAg0gKJugTDDIrOitICwZBoA1q9pp66kWTON5DKaUCwjAfM0s4WA6aBuQ2AIaEpOnp5qtHopOhZtN/wCGoPyKI15FDCiPcEZwpv647lYswURbOeV3ED4eR1U/kPg7roDGcjDY4BJC1kQwC6vlxwDNg47R8yqjtC6PzY8GYfmx6qBlghoingZLIHNANCAqwGMxlK69ACqRvZxCfsRld42AjYZQuO4CVSllgv1MpFAFl7a/kJcJTURsLLIFl/sbPzNn+3/wTe7tVqUC3KKMhp0aC1KOxe+xoo6UUhII9DkBngQf7qfLtIvNJ6A7+mDwZ2HCq5AZTYBbPp8AQoUgRBrCFbNWFn0huL5aDzoE+4yNpgOK/DNMwaCC+VydNA4Djyf1jIX2vRQEI7YypxO+w/wmoER9yDZGgxNlYcDXvScrCbPBKRCit5M+xlJdNEv0OnLkyGqrEp3y/W8mi7Kz8AKThZirNunk8Hw7Yeziy7Xyi3GZ1/X7ApUsCeiWkfcIHx1trCNUo/3klaZkajUPswTx5PWYCPPeYHOzfYzK+kVyRVrFj71XI6HC+ZNdBASrQ/YYVDogZJLMMJImS/YBiFdhbYQnl0WYDhelHt3whCQQJaRxsosBjV091J1LdMRTHo4kCifEBaeV2cU6NvfWlOOM06v8GEvhczdhB9NZIUE9sxLOgKw25nErHEXvDZlFJnXMmVgpzeKuuwPEjggmc6O/eT+QcAwdP2Nn27fDAeMD/EbLX6c24eN9bV3n8/s521u1Fu1KpFKLdzb2XRqy+FpDgw9v1B070GUh6IlPFsPMw+KrYjoA0qvNwa2bI3N9upwPFat5Ektx+tbPcqTy/HwT7O9/kROIGdWVAADKdzA2KZzBGoID20VmivjzbWwAh/PITarutA8DJgvH7SUxVQ8mC7BUN6GtrSWHrRjgzW8S3ZT4qkqcgD+zwVxmenSUCgyrRUCDRAxW2Nq575PsFm+pOE8lrZNSVns0+cj9QugusenskKyKwre6apeUCb+c/dYkG19pXne6386OOe33t7eux33VFIfTCTFnirgWJdbSo8ZJkrDUQ7KfjupSvlwNLehlN7d7Whyf3Z22V5nlgHCeWxVviNeN1FWVDSlw1Vt/erV1smhwIpbxUUoZNyukg4ba/N7uxu/+s0xTctZsMrFIBc+Jae79ceiJkb2Afgy7mccEvfIS21zCgZYl7tbHXOCNQ8GlMWxhF1JsGdn57yoSytVSsDJ2enystPf1LSxFbQoIojdkFzaJCsv4Fho+qv9Hav3/cERFzXPvZTQ05NuyJqOXqvBuORd6D86u4JZvmR7FD5xMs/PKfQmQZS90VJS/fb26NCBu0tUUjqiOHSh5U5tHDnUWmsLs9JfdUpzqjdSw7b4Dh95DciFZwvuYUZasDYdWBGFTCHLTpOai3xl06pki8go5eIxZNDSM4mV80vhSXeKVHJ2y1Kl6B8c2bi/5rS2EaISYu9yfHx05jpS67RbAuIHVxPzfvNwL0Vb0BDTXMI05ki1h6W1VtV5vg5P4Nm1z0C14j3mcffAdx8+CtDf6Gy8e/uRT1vm7lq97ribq8lwcb5qDLzIdC1hVyLUqeJL8/WEk1xbe0u8706/cohStzsIsUrcXFxyupaU1tGk/+arnZxwpWr+5HrU7zvKWJqsMRK6uJVMAAEbVVr45KbRYoKsqjTP9yKcRdEkWzfCWiisonZajSaDoTcaiP9RMYDznq8ccfYvh0wIOQ8CwPZebqoK+9sfPp2eD8IKLSX296IzrS8TM8ONk7p4S3pGVE7mUslHXhG7FPeziuh/zcYKpm8J0OKEadlwmExGKzmDeY3L93oyym774/ztwzWrySpTmAlzMWQefzWO0OR16hQlb0ErRDAFX+6K8ytQlMpLo6EKErYso+YyqsX/9AZDCSJCH9muGIqoL8ckIEWee+8qi+ZvZZikxdNiqarkLGJQnMcmgLQHiSjEqLXvLAhGJgI7Oz9X45UKnNNg1cyRAhVZEldCPLVRbPm5ZAiwjHgl4xBl9hpOZAQGUjgSsSSA0os8VQQVvsPzSmpZj1mbcTiG5YUJ5lekeGFZEYk/MrFwQ5+wOPdInRJ8jJFphgQDauRMkShgi+owI7opZkY+0TmeqNmeQZ/TpmzQw7P58iSiovp7Wy2mgPTk5C+i854/wo4l/Jvi7E1T0o13Wm9EzsbtpCIGcElp1GuAxVTg3JLqlMS+uCpyoCmWLcLx4d4WWdzA2TKxjSwR5VYOB/mxvlb9wxcv/oN/8CdvXu8aGXWAKpdxR4RHEoPHLBsEsDPy8Oy/Ukfy2I+fovklKzp8O5v8U/ka/qqJvETwB7G5oLVgDEozXk0WvdazpcP8navRkPKMV7QZqV1eivIZqEoXsVNMKyUz9nD37OLz4dl3333oDVRPfs4BygTbvKRe5BElDH6QutdhMh4lHM0TuinD47+krJhN3eG/MW9KaERmbTr46Hbx3APPW7FIHWNr/7QEQ5NfFEF4Sk+FOvNSBiPpUMy6vhJ4nXusl3wv4tLoS5t+FZWonAIW6ytJBVamh3C/jFeXIsRKPkwBm/oUeDxjAEjRBzH7m8iGYknuWcsAQgbRQRHxNJghwEzbg6HoaoEyWC0Ek7nOTjqH6MOtBuxhYXAYFFlEuQcYoxR+phPB0NKYucIxMk2WifmOZhc0QkCWGrHiD/qVjs8m40vQR1QNfuWnjebyX//Fyz/4iussQZ+2cXL2lxcTl1QiuNJgMGnWMut+Fg2+KBuFGHDD6KPxMBpmMF6sr+jciMdvVzMr0ZK1ogX7Jxigy0nayRCSZe5Lpqmo4K5YttrzOiRYOKX3kLI200kZncF5C3Xlbhm1FtJjyCrMKuM0Cfnhsi9aiFocHpLrWdSluQBJA9KwT8afYQaRfmoHWWYcZVm452dGgTCKimW9e9T6NYP6Q5kZ8pzyxzefPl9+PhGJfMNFxMlCEBOaqihDQfhW4Mc4A0oiaoq6pcRCTJri9y1pWrjtbF4s+Jxq88DGpAAIek+CjcKQuUGUwCzT5Z9wyGjz0Ug57TN3+vVCtHY4L3Y5UKPIZrhG7kkkXSYrnCdqYBJYZc8yETgDp6ZkeoYP9UtZL8Grp2aexF3vbXeUj0au6TeMS4SR6aNDZTnSYOJSKankkAzMgFQcN4mSKuWzXNUtfBivMVJ8srlxd7+cU9cXxForsuHMu/vR/R9+tXNFsj7dSUZUcMMWveoLnJurym4scOzNjCKC75r1qtOTLoe3TgK2MNT2a9frT3dzV2PC/fHrF/u0jmlO2nKFpno/vB2tri5uNtYQLUebshmQLy7aBvJY39n6s+1WxExCW0N7BeHwAbPmIrReNO8gE54zudCYSQkZF+zn4dBT0O616aQVkvM1YZRZQyEzb5klnEvbqaUxz4s++8/lAEB7mXiPei4PpkUNQpzfxUNTusxUI7XSX6E0PZaFnZeCfSOI0cn2dEGrVmaZrqxwvZj3+cWLs/Gf/su3zU5Tw7/9/Yfh450QmvX26nanvTw3ezYcfv/xuEZFWaWvcHBIn5q5v01RhTVe7oUFhw7yVJvYwWS8qnz+7OzFxUV9WQhubfJwL3uVj0O5RtmvNN6NzVVbuyJZFHsSmX11NWRDiE+OIWFJTR5U1RVdttVqagd8doFU/LRMaTiq6PDJyp6UTMyP6uLOZgf9HhwftVvyYjvj0WClVjOsj5+Pc2ZWLWfCca6ruP/Ln339+x8+KuouBkZAxOXVEBrEneNP+9vrUCG8QSX7elMVk+q9sglWOEFVkmvxr62tdQXUZf1Wqsv0Ua5Zc2Zvu9Ve3dxp3QtYKemqiNkZw73zyyh5D3iEOnv3Zdcsa0WggShlp5Z+/HD+6tW+oj1XtGEVCR/vnUdlI6IuF9NBCv2co7S10SmS2SlNqeQjlsB5RqK3tVmrKX+RWjSqc8qMsiZ3Nta2NjvUO67vs/OLZUfqrrdFgTu2lkGlKE0OyeKgLes2Ce9zkgdWXrY2Zu6f7fZcjEab7TUkoxwQm7jTqVuN6v5btOIcnY2mNOiwP5Ja+vXXb2i7jJ+XL/fG7Lmbh1andvt0/+HdmenFHM5Eai0LyRM5vfTmxe5F91SIrEgM/BdWLQcKLqLFRhXrXK7NK6RjIVDDVR9yyNzRxdnXe7sMKyVjEefbg3Pq1tpKpSnWZ8FhWYJ8Hq8uKMoRJ1iPlFmKAhXU2Q6OA8B9kI3YbKEaZ2dXO3sborY7jcbbD59XG7UXe+sl43xuPLj5cHDUaMXWZRntbnd+95cf+NNMjzpX4sHo7aQIjVCZ4extKGVaWzL9zDNKhD1EFhcDDu2p+IaGMWgFZYUtOiDMvgVehZYxRAiU947L+cl3NxhM1jpr/cEE9yFOCMh6VZaBja9oMDSTBGAn609GQSSm9IDb8S0IlYD1lmg6eVlmajxU5/4ugVs0JLuocogrS7Q0VepBDlU2vYwlguxpRk0nDEtadWE7D8215uWF/YA7cyptwJYCF1ZOAHDe7eIcpV+9pqg02AOWExZHfuBsSVXEUllQhQPFBnCHSRDNN6GoCWz1wfOi90elzgfrCiuLqCmcEq/CrQprQm8R1UX7zaUwtPyrl8K18DXvlPf8HR06IifvajqKAN6YHQo9RvXE+VyCdOkxMd0iUnFLIHH5lKAVZTokEtxT2iCHlas3MT/MAFUgzL21abz0dK0+3Mw65AHdktb4jOXMMiQhoNcwwnITC26/6gG1K4JESSJw9YgxlliX5EswJUXo/e0//unf/7f+5narpV6WkfHm4sKRI0UQZmDBTFEW4SuICmfWaREBX/ydRusTka+PIgnKS/+jcDJVbrkYVSgo8oVNFXNhiiz9UL/SGzyX6ZjODoz66SJEwWduRYa4qTsjUt0pXcOsfal+v3t4evjp43H34l79bI5CT7IeYRtOipqiJWWT6SVRYgoqeCuNNhSlJYcJhDC8FpqK8Eu/UxkJ7NIx1TK0G9CRd5LpM8shyMx1IJz6yCnx8yqCJH6a6wGhpG/ITexQxq4D4013xUNEJSokF1L0YvqPphhFtnygHESi/GO9aEg37sagNVMRlyn+GsrEcCCH76CIY5RgrpE8zBY1LESoQQZP4jDkh1QcqSYgxHAAZ9czMRgxuHNuV6GkuABDrHxTEdbYl0S1EtbreSTnYb1pltWFTaAZCigGYkIzRtVpgTWbeoAMjimuETkKsElDH/3Zy/W/80ffOLGdI0xgB8QIo81YLeqiLIJNC7AXItETjEBB8BlSNJYpXXnMrHgNZQJSA36Xd4PtUtK0qPtUQG1loqA3C9DPzML0Swgs7fgHhZQHM3GFzMpUeQsdxnbLWgCFeYIxGnlgyuTHM63ZYrVCS3QkreE/MSzL5piGvO4xmMskQr0eQfwFJF8D23TevRvY0mk+eV7jvngn6wK4QUEsQ3/z3ac5RiYH0/0PH06VshjfRenCJaRW8b8wstSm0AJ+yUMUlwFpkk1FWrt5zi0eA9SAAPAQzepjyvey8YMFFTIArxeJzlzKwMOSA2HBHuQYD2BQGh++gYfLZVaCEBzYW2LMMo8ZQAijGMmGno0ad3NryhYARZ9xRXv+KVZkiExb/k9/aPVZSY91J+ys4JWmNZBoy1LVpyHkZ1kyAQEMYhDCOiyoWO9TmDOcDCH9+gOKa7FSSTJ6un2YLNXW3h0ey1jZa69XF+ZPRiOnU/5su0POSM4b3t7LrxCdyCkhvh9VHZ5d8RE7j6fb5xe941yG2Zpw0JvHyVPy8fY22/R78ekikhTw43IVzMKF7MgaGqNiM93LnriL9U5rPB6dnHD+34l34pmzJ+eUn6u+GtnIikyAKRiDOWu4kFMCEiIiYSnjzULJwom4RDNlk9AIw+6hE4qmGj82EqMq01mW9pxgMscZMK/trdTry6LoJQH/46DNNH/x2ReBWti6DlyPL2HqSysXPQatUx5q5YSyzUZIKh45U2SGpispIMtVn/LSuYqaqgxsj3/76cx+yXj0eNG/PTk+lTPKYbNar0imdE4IVzJNRVSFimb1aoqd44m+zC0rgvEgwkCtJZ4M/k2aqxL71Hfdq68iJVTcPdeDmG+csN5cEfzmRPXnueVPMjZ6fZvvrXa7dzVYXVlqN5p8xfZ0Op0mF740gvnFmYTY3l2jJcU5sxJThqU6vntcXqnCpPOdnZJ7cHAiEXarsx2L0OG9d3cKenJwUHQmo9HZ6YWK9c1G84IpMFEOn1C2CKUd2Ot3bG9F/ZmHu5tGs0XPOz67JBi49E6dhpujkVTNeWKZapCtif0Kc2quVtEDx7B0Ycu9xcFMBbT3pOTs40O1XpVMORLmnbBsdPMoxRZhNOpL7U5dwUxh+ocXp2pnC6hTG98x1qKRTv1vo+T21vYi3uFogrWVhb2tre/en5pEYQRLzSVFaFKl/vaWvqt8Uu9CZLyTM4i6W6WQpC8fpqTRjcowXGIjMUIQOL9wo0jZ0jxrh1qKoRKNLcU0nWxaeVYwrnfhuKcUytWSgCGeVKYwiSOTjArlwHipCJvrOVWNmSzoCGukT6uNZzlMFIR9ULlo9eX+1uXliPPeMav2gvAL24VVWw/VOccmqQogx+LeloVaP85ptkejnM3902n34g//4CeqOR1+OFxeXtnaXz94f2TjQu61/cph3+HNAL7nDlhpVjbbjX63TxWyMlH47fjRKOvSRBYrys6+ff/J7o6Arhv43GivrC5fXAzxPTsGTqeSu2K/yuLd2VnHcOVG0w2PTs4tw2wsjMd/+4//+uSq9+HT6SP11zFwl0MCnoYI7ZihEwk2N9bo6MP+EDtzmNrFpWTiB2cNyiSmcxuRSXEks3r61yGC+5WVBt1b5gnisaRfv94+ODzD/Pkh0LBmSSbCwJLQnZxv/FH6iYJLKM3CdctxD4xgcUpqEyV4nZGwXAlPKBmaTOX726QGtWrL3fFYJBQjirEnMJWFZJeMXLDIbBqwA9fX6lsbG7/+7i0H1arnWJ/LFa0KxkMTEYqcCWQE3wnTIwp9DufCQzAZXlJCw+F0RF2Uufgp4nYKL8Re/Gc9l/IUxLMrUSkKiyziJ+wnLiCWr6YU6PQ7QsK/X0Sg7/lT+KN/re7IBAsbRBHPERGRe8bzI3/TJIUPbcc1q+nSAV0H8H5N4SQvYw8k2CDJPvq0OwQGyiilX+u+aLMIS9FHqR/P+NFUib8SR/AoljHZDsW8EadBXvMF2EqObpAkTq7BlMAnGixtU2WfCkZ4g3nuiAskSnTaYlb7D6nbQXX4xx/95PU//Pf/zdfbm/Yh4amIAep4GUUmlhJQxC1fHikeyWLgU3RFpgfiIKOgL8IhuCmS1BVCITol/sgYczXAuJ9JMh+ZL6pYcOJF39J4nsmtSLXSfnl4+hfkp/NoKXrwZ/rJg5mbmaehygaDhw8faD49oW7oHECOuaC/SlFRsjlqad7LDOtdgxGcIQeSKEMJsUUdKaPKCEDE5b+oVyE2gTsaQiGxAElKRVO0LJkVovqmiiPDoCiF6cTOHTODDsqMKwpWNL9ggVr2eI+fuRgoonUHdwEl+wD8j2X/He392Cv00ORw15gctK/o2RI/kv7rvzKqiHrt6IIGh+6MjiVqFCHcaF6xIrRogWP4NEL7GMbFVe+75yn0CAANjx3cbh8A33cg4BSNwZrJyiZSQdpU7YgOoWsiRpSsQXg/gjhwBH3Bl70Ko/Ezb6T+o58YiRQMobW//ObVz19uvxbp2owHly8FBjRjlmmmBEDWfJQbsGc2/NS+Zi09GPDTyEIt5j9zU6Y2al+0c9MfZa4YqLk7RaWf8Q0LU4kKPrUQjH0Kcd5Pa9GZguWscbCzvUP8xacAGFNQEO1SLC4bR/F+xo4t3ZnLsIfc1AyYC7UW+ganf+OJMEwAhjmEALwXvfZLCE0UJR8v+mLsWgbY1Ggxar3ELyP5h5k03f8JzBlgZiDIfjo/73/77vj4cqwPEHMkx49EiRCFacFlXUdJpAcaC25JiOgo3CMmOr1diz6uo7QQHjwXNd0CCQPMzzjLYWoKayY3EMBDqDlf/RueM/XHAzgWlNSpoFjXabrwFj8RG6jpPxAC1aWBPBTDKcSktez3wqMGjS6/C81rDeqcbbS9Xt/baqM1PpQs7qA+5rHxTYeSpsoWXJaCEWS+jMgsRGYFGG94VMv+fRZQOyPO96rfR27cbO8+HzYcKWnb1tTNz3y13cLSqHZS1uRa7G50+GGNWp09QDvJXIwrMff+07GMTYU3OAfD74pNIoBCgAOsnl4OCbGU/dhkVyj43m+vr6ps0b3qGVW705KPxzF+eql65NhCXm+uxTCem5OnijgiR+LuW1T6wpZwrPy54vUoZYXjsstoQkW4QVZ2FnLMtmBPeRiFW7I5Gc6AMlAjDPCWGiMFRz+1xiqnLXc5Ul7CCWIAQFhIOksIQjPZduGzIMMU05sxlmS4yAbYzLxm9rSOrbhdKAMpcgNkgcWgzEjsuSTlIsUyNOdJAdkn/d8dFA3R6a+TG687j0kFQIbUSDCUKo9C1lLtR1yvc5Nm2hutCYEaxuj/HMymkAsR+/HzCSa3v7dLGXPo5g8fTpQMwk/+jV9+Mx5NoEawwun5lZNQb5yQJYDhcSZHjUZtfra3YNU5G1h4Bxuop+Dl4Np4LBpKEeVGF3YSDNbBqKvLVQl5tjI3N5pq3y8QCAlNfroYjg+Pz/n+qDiCGroXI99pRLKEL876Atcl2VhIq1X18smaikQFVX+Oz51IO9xst9T1oPRjntIH6Q1iNlRMkfdJ6Qabg6C450fC9x+f2BudrTVHftCb+Xc9Ly2YC7/VadD/uqrfXyv7uDTqDVTPR6Yq7O/vrvMD9RSgBYKTGmWmLHLZFk5uBxCTSSnGmlAfcVabWw3qI0tFccbaimCYO7rjcCD/8rlSXUjl+GeJ86mr7zBjy/gnr198+/6z3bGV5dVf/vzN2YmwIOeVYyVzd44lf04tIEuNkqiIZpS455ndrRbOfaGarmPN5yyn+erccrO13Fqvy54Vbo5+DEOdXefwqdQpjmKYo6RGa+2WRg4+n2102hubzcFosN5uX/UHNiKGvR5zit3F7TTKhgNVuHp8euVdxPPq5a5mDg6OB/3R3s62qRQxpWyoo9XRp22ARlP0jqMa7sXlsyCoTVJ5FCMi1O3cXQ1HVDbJ0OvrbZUcO+2GLAbEx45U2/fN13sfPx5gu6lOU5jRuppLs3zbk3a7paChbGAhHd1uT50fBYX613fHxxfMy/XNtqMNEFtfNvDZBTZrdTgHiszqtJtjiCuBQJR8ce1WrK2YMIvFBQkA9EbyDc0rM9uuN63uHgRNbtGw9WfItsjwKYcIVGs5vFflf3HMaJCkwCbgiloiII0Jl2N9FxZjeD8+dR0z+2Dz4VH84hL1ArNbWlAvWWS/tbYqa2Q+x8RIfuKBtihkpVYWJZwIGSMxo/2cn1+yZp1ajcepJcBQE7BEx7UunFeAS2BD4srCsAQLKZBvunFnYfNReagy0RSLUM9P9IIFYUTkSVSBSGIiRrxEGKHZwR91h+nb5cA9SA4KMcbng4rSQmFZWA4BXH4WNYIik4Ci6A+e9O+PTIyozf6ylzzuLW1ghhrCymkq2Ct5bAFPxortKs0ZHZfcBJvOWRqBPKw3yhhoVd2dClGyx1tT/OvRMfJRgUjynC+rpHQNj7WgyGDNMh2sHyNU0UC8kFbxb6qtIAtNJxyclzvelqjcCNh/FKui3Lgf88NhM+hTDBI+S+Jm66+69Dd++dP/8O//rdc7myxY8w5SCDER2ZjlTo9OwNCioGTA0Vewe3K7ZNRBi1/GZHDuGYKHMoCIAO1ErkzlfcRtLkYQFKEQDczXNFY+xuBXQa9+yvXMzHS2ImEyWg9FrIUAgsj4AUuPuk6/NqtusKUzxYXFQNNZ+UEG1x9+OLG/Kkqxr/AU+zAalw5S3xD+MatiW6S1/AzYZYujjMhFfYVaokDbbuL7BycxpeBvPlE4YjZMXyljkaZSoRBHxTGitFv+jswkyeUNJ5ocRUWV1KDrLhon8Z4Gg19glgZDqFGygeB/AOtdgyXiI1jmOEgiuKvJ670jWYKWJDLabaNqMgNi+ET+IvVUKnzOGWklEkY7lqaLpLa2cEs/cdq7J8UD7H+Hzp2wY5bMlO0Cf8NPzIBMRMxs+lZ5RoiCVVNqiZYhZwBIh44VneHLyrKOs5qKZgIpjGC8TpmEv/XL/V/8jBEQLwuTqiiNeStNFNwVusgU6N3Ygq6QW2gxV3UU9TSz5hfYykt52wcqfjQhQrqFJt0PcWanAmKjGuZFbXrAd1jzQB6Oi7SQX2lRX1aWnjMi0wQvAEg0fJ7Rl0XgCx3GuwW8AORaGQkwQvDFoNBcjJDQcEDwMaK8rUdUYFpNt2FkcJ4tg9U7IvEkXQ7tuRiAS7+5WgKwNZEB4ORPT9+/P/jhc9eRODauYoMmkobKHynPBkAw3tK7PpR5i4FufYfSotS5p5FppCVz0cuWLdoDQ6HqrELESmmIv0/dYbQRMzPhai4iuDSezHuaYyjcGMIRArTcxARiwb15LNhEgTlGIw6BzAtlFFTRtKmTJSMl38rSz2wahCEWzpGLhQ5UD5/f3+50OGI5M/UY9pv205/54Dk3hDINFgUplmuFQ/KZakS/oab8nXnzmxwUWikBz+trzZqwHotAnGazXacVdZYXDy8TcfFyqy0KiBdDqq5XFeVjRG20W6ng+XDLDeNsJ9D3L2UppRcqi/96/RGRIeyZaNzebDVrjnC54S3loxuP7u3kCxih9XWPL+r1mvgfZ/+EyXPtiZabm7XhgNX7TqthTujd5CmFQpyKyJhSHK+HJYqcytDmqL5mHBISl1coziAFL2R2osMHHwrtra4q37I6vBrwftqOZzfGhUdkmOaQRWRJMAspQVZYZ6kV4GpIIuRKS9BcoduQYbCfoxPjUsqUFLLLuo0tZ148EHACFAHvRRFeMwvdwdOv3g8OTq8oG7RYeYWokscR1xuIka0uM03MVU14c00xShT2qECKQqtbG02M8Hp0P1SkZXbNVDpTNrsJ88/d3hW/2MzinCMklMQ56XZtczgoiiIrQNw65lB3sCiq2F5fC7WS308zdNzkYs7LE6B2TYuNOP1toV53UtJzBPPDTH1lmSuF5ntw2W2tLQNjfn4JHtSicQgAfolKpa4KgEitzsqyyXTY0c3kulj2iSBhobG0tjqd24dbWFVZkqbeEf05OzcYcV7dKIPzYqOzEu1mfnCpNOeEqd9sLG222lyAqoUwY7CHu+tHBSi3Ow04BNL7Tyfch0+XZbPbsaz1ms0TehsLxJ4ENRrddC8mx2fdHJjFFl1c6sUZrshjVmuq0y7Mcjpy3qOkdx+OtbBcXRWq0zvvyx6OTon/P6oj2U6c5+zjWbeHtSG93Z39P/2z97bPaqtLGMJ//+e/s5Fi+dtdFAdCCqpSFzqZVWSgeHoXRIfnXNz+VQ+ZPUzGDkFzpOtowBZ4HCseurzcPbt01teqE4slgqyuCHFRZigcQWT8QxIwgCfui6Qn6xwIIBtEKIlkCZ5qVs388lyztSqDVtbFytK1DJuq/Z1mQxay2jOOGOONpj7hd/ZVqLO1WtVZE5/eH2dfRRaVswjO+43milOTRQEx4dlROQDg7kZRKRe1IwLqaXbBGWFvdjYctM7e4NGYxq5gMqwWTm7FhYhb8p/oHA5G8aGkr2WWg7zXirJF80+T7hUxci1R5PTShgHtwrRgEBKRlfokGqDMSbzVKu1cNRgbkndmxnRgnQeHlyrmyIY3eTazOIps0MfQWHaXwoffPajjWZlVZHPeoWhmOQHAWURPKbCj4MwdDbxYcgvzTEj1UcTl1x+ceXfLxQARy84Ou79j8GD/3EZekTsj8ZomPuhLwnnIdvODuPbJ+uaK/RYGJD1ehn5luWqjBQsSdOTBHGw/84SNsjakzGJhc3flZN9sRGAR/ODhKVQt7A7DitAid7OfG9aG8XGM+04qYxx0EUFx+BARpcKpBZLo+WQA2z3Ai+jfUZI8EP6TD9LBlCJ1ct0zEWpay90wJZI0jxGKHslWe9EeXMvlIouiGmoA6lwxKzdPwZ3nI8NK0BFpoY8YAVEctK+tdJK1kJJ52Wenrhc5l3NP7V/htHEXYL2qLzndTzGDnBCcSIxqRS/2ChY4CaCUHshRobV5A7aPl5QAKCGMdTF1fdHhKYHObL7l4TVK9btAm75N+2wcfuTYf/cvf/Wnf/GrX7zY+4/+gz/55c++WmlURBeZGjpDOHsxsTCrsP2pyC0+SBvyJidqSxAVNh4kFNVH9wVNwWm+RmqXv7l2PB4JEpy7DR3BFWU3aQyJey6NxN7IF46iIiEyoNK+B/J88FdaLPBNf9oYMrMxWZvtZr3loQATnXXmF1/Lrh+enIy+f//peqKcqM3faF4MY9yJKCJBLOWEEOgvVIE1ZkUALH5oXmsX3I3LlO5iWCkuFNcvIDXk78wuGtMYvBqgFZUTtfzrIggxPfCU4KUQsKH7Gd28oJSOFOqCFhAnjktIWNLhDAlTgSaCPwy52A/BXqFGWKJWQm6goH5Fjw+xFrB52fKDQk8nA0XETXBWCJtI9VJEsAUSi9ctC9BkkPoIT8sKQsCR0cADGsLxco4sLcSWsvRE2+zRtQBsN5gfNIHa2YsIKJlTE4j2tI+6yyxF1fYBm5+BeG5WaMrZcPJn338GzR/+ZHe9lRQZXWcA1PoY4UEkVSF7ermVxjVf9AphS5rPjE3x6UmfMhvWfSjKwAvOzUDq8Hpw2iaoA2HpyANTYoJJYOkCMaTJqYUQPJcRIS1YEPMTFGeaA0nI5As/0TNIAkqUqsJSIL28CwVe0XXgw74wgxxsGmskPHlRecM8kjWSmKKM1GPmIEPN4gqTKSs6rSOF0v5U+zeHecyLGWsGhRC8/by7tUFeKEqSgAEEME/Rl/21yK/nvnDWAEqJ13E2HhGwvvRLWQqTQZ6QpiFoifuEXk7zDvkYRzE4hW0EGo09CQ0lZwzR86iRizWTHrA1pLvQNeaLq7tsUnIhDZV8HWukDMvfsRRiWGEtmRYLMQg2mMKiMyPpXMNZPlpwxQ831TviolLG0GqNyyjIKuSiIyLWL2PJVE33BGJRG4o/gUEL07lztcygMVOVeW9trknFpBjVOzUHI931xso/2kRT0Y3XWcfAwXDLiUYz1IBeb0RVXXGUOwViNEdsfhjy73X5T6azKmJJ5p4dbaWBbA9a4Px0nNhChU8vrzZmHaN0rw4kbF+eXwjRohveDdVYT6D15cWlFYalqGdIQFxL6yOS7+93t3e4FHn54Dp4Zt0XkcSnZ9pYXzBJgZ9ud8MGj498MK5+QlXvHE4cqmwI4Lh+dXqOME1gLw0+zTfm6DyCOWb/q3/2j6YTEbSV9WEyrAgEkPkI6pBvlm4h34LKXIoE+LLSko2h7nVm1GUSyKxYv8CG6AgX7Cauwae/eHt8cN6Tw9o9OGNoLVTnO2sb8w/PXS7o0ai90UY7OMLGZkskOgCwZfSCHS1XnqsrfGZKvCeQWFA1MckrBtGiRwTTL1crDYeunfc2N9vieRxRZCNGTM28g7sWKyKb4WWlUWsur5ppZYX8J55ejqyDBUSGKBlvH0hossASZ3jZ3bE0qAb0Ulu6GTrvkjRvhxbnLM84YtUMvb+Jub/WqrHA1Ha14jobDcofu8LydQXZvtjdFLEPa7JKtjbavDGtTvvd52OCizpFYVJHObrg3LPYjt5ovLG+rhbghD10fzu6H4tK+WZvj/9eHMiyYNeFhW6ODeOixWbn2Zo3Yw4AzuF7uyLs5M21htOanCvGh4xfpQ7S8NpMCvqx8nNmOCtlYbHtWFx6IbliQ3Zx/uWrvevRTX9yo5rNzZ0Bqi+2+NWbF5RvKLU1wZNNjRaLZy4ooArDK1PCPSAUjr52kyQF46rT+FjMTBcVJvmMnQXLo/nVy012BlX+yInLzaqooevBtcCS9tqqI7OME60oB7q90Xj1ot29Sp2YVrtVqVcOfjgaU7VnZ6npuy82uGBPDk/3d7aQMQkheWBKnkJNBJ6KzroejYGqhhAD0vaOBexMsWt4MeSlZMv1rvqd9QaF1aq4s8s082TD5ezcMXBqy64L1Ds77XK2r5bYGNNCM/v+w5Hk485Gs9ftZxeNV/tq4GQDAS2OEmRfnXevXr3ZZdEdHp7JqR/dKMSx8Nd+um8tDK6v+xfD33888V2NHPPi7ANuS6tajVqL7uT4qqLc/s1tKoLNOQegiTvZCnM6GG8Bi0XYmPgcMUyKFbBeSBvSjs9ANJFsXeF1vA6cx/2rkTwNsZL4CMP10oxLGLFOnhzOVaFrZadiYUZiQ6th+HaFHmxxYCtC3cAmmV7QEe5tL2Jh5p5Zn2KgDyKjhupNvdrdPD7uSjGguj4vPA2c27Cyas9gjoqr/OijlcoDZTtAVTWBc7NZdfePrbWaXQCZ4nI5CFU1ErB3TqVErTBB+RrLJkBmMFKA8FDyv0KYyAqIQlMEAXsew7X/gNKQHqaM8Xk60kbcamJgInTxq8Lhc0tzkbFWbHSCaZmOqeAvrIxgSYKmpRHRp52wsEJGeGKkzo/vu14adzusDqqtRDyN8sEgAXyYMtLMQaVF/dIjm2nRphBsWHAJs7axoj81jsgarqMi2shgSnBaZd07oxprLcOco8pj76qmWqdKQzAX8G12gsGRtuAqmrTGA3FCUEwj71/UTfDZrHPQcrYmqJiiQIiT4EqBOTbMo0SLxb/+hz/7T/7X//aLtkM2EiZBykdX/IIw7Rvv1KlfwAwWoTEKfvSOoIBO47Hp1fJw5qgI9ZhJhh9GrxFo9EqRBAWHRXakUU9nuvMnbebd6KC+fJmD3I4aQlMpD3kmo47POyX/KBEZu1tTi8IspzGq7YPcp0Hvsvu733z8fNBDa/pENIZpsrxetMyQB2lEu0FOX/SDNJGJizIUzS9DtsqiJhd9EfmhV36ujCu7AeiOkMtAPEANipZWvJhWvVbjfyzara6tO0SmfQ8DHJWFogoCvJt+i03rb71E6Qya05dmp/RpBrVmGYOrgAfqmBNxxlHxC5nTFqEx/dJ9lYwtGc/WEdogLagrLgaPBhh7mzYfywHdPHolUexwPSeVF7Kub5+wPkAUGANPmSDWWiLIM8dBdrrO/GWr3wWSPWo0vETqeUbLsdbw1Ao9/eVW8x/83T98sbdWKMXaiWYwXXcZpg6Cc+9rElanKC0zRSlET+kWtnJmOTmFPEJjobKwAuiYEs+X1wNGlJIAG+yEiOAm7QDXwPJcme48kD+g1X6WcG5mPcdiT5BVtlnS/5Q+i6aeBwBQ+g/GfS9zneYDGFDzgB+GZk5DGMWDEFIplhjYPOZhUIV95K0sYWjQmkfSApTEFJleofdZVoGUUwD6suTVn7kafPf28OxyQkngTbEri0i46iCI7IZkC0TvhEX6iD7mAKP4bXWHwGjqvlsamFVmM5sPnIkpvQAPQXdcGEFujF54DgWmAHQ4JPLzI+YfRNm/TTF++5L4orvAMIBYAmXazFPQaIihW3luqeEWPmYQZQWFjjJH6RHHiJ2j1zSfafIsiEj7Vn35xfaGmulwU2jS4+V+ISYg2f/SQCwBd7xu5v1rJor/C2gFvVQmT81R8Ibj4ZZ4/Qmt6l5pEdp59+KyvbICG5+Gg7XqUmthObGvz/dnFyNV6VU77E9GvGPbW5vc/MI94uezN8IdBqsParNyUaXoEgc9hErhk1fTbqm0MWJmOM5JGIiY597lEMpwpJtrUaBzaqPz4NHdCXciW9CHXRlZH4KUVuuY/xI8qSxPx7XtCe3wTOU1MVAa9w96oIjyjiUrO1UZWUqAspal3W11RKwsiCJRA6rTFhawxOV2fGEoY4qust1VEeC8Rf/8P//PymSg17AKlJ1VgVyEWYrkCcFOZwhKTXGER1nqMfjIp9B+qNMruetPWdhl4mZF/qGwWCoO8fzz33z8i3eHXLwE19nJ1awDaOVbPC8ffHwPOiyZcq+QzM7mOo348+cjNMKGdsyNqZzcX9N+m6t1peyREyWPcUZX/+rVLgAvry73d3YR8WB8qyy9PYfjky6mjw7EbgEN7gSFK0Sz+Ehi30m7jGUha9a0JfSWuRaJa38Gy76/UWC7mUw7lG06bnOGbm2l/uHTkZ0UYdcCXSwPPngWlwKZ1OLxUCJorGQo8G+tXkIvKfXIkt02+8TSEOa0vtHqdrtCxZX72GBkLIv5GR5dXhimrlE9XYGRI4TJDsTgVr5y5cXGuipgrc01sea9C1kGlNIUUpTFfiVJc2wuqyjApkcW70Li6RNphamlhnSsGMQhiNkBLfT/ZTR9Q9MC5szO1iYjmMouyZYvwQG6ElZQk40OLmfBVuKm7hy6rCDxwxPbVHg3fCj8Uqy5xUunH19dSZVWyeYqB8FG27P2IA05+VjkEmJEP8mCz4GuC3A7a5NE+a2vX+zSXmiiZ72JUDnrRHgJwhXTfzWZyIohsVlBYnJarTUGg9KfIihU6Lfb0263UT+7AqOz6wYtFmERPSWF4/5OBrHl5Dy17c1NmRTfvXsn4EohHXSCYsJiFhYOz86VhKV5P1KjnhOTStXmEOw016hWFi3gV6pUsRlBRzwk7Y0cByb+r3spNcUsz4ulIbDUEBKbJH+amoseZD7wDdyMnqy36urSx49H+O2VBRiija+aim1oe+sNnpCD0wv8QpR//2qMchz4IEBfXgFGPHm6ds6DCkhSXCaMLbiS1CvqA++2mzFfsVSF7GPCrH+VlKzEgv+qtGacBVuX7swMuyZ+rCIm9Pwce4zZ4Ohd7gd0a7IYVIBEoYKg4vUvbo+NZk1UikWx1WrwFrfWpMrwAGELtI4ni+R2chN/dkKVKsxFHBOoLFjriyY2Httske4iUCLa8ueTAXZvWosJjBIfUpwuidPx0NBIUIrVbZVBOx5BqNgTABszACvRFFlIA5tqSDoNf+GvKp48t0LgpS4KqkMVflkF4TZFDXVNmz8KVwPN9oK+EKfv/kYSVoJl4l1sPIs3pkUif8IAvZ924xXzDyYHnqndYjbzQjFIiAEbLDgnjRMnkYBkvVsI2H18NCWhMMshkRspA6opCCSRmFv2HgW8qa1kxXNsCNSzRu5vblRuRQbeYvlnQznBVsIzONiSA6CjMF4xQlJ0lsQLEepsv5BWBhw27hMtDWvymJEYLQ6ws1X/5Vev/u6f/OHrjc32ejMYKBGlecczEWgRogUH8S8YOzwZcjhbAlQiFPJ/xGyENHimiz3Ky4/fwgTyXDBv/L674mdQXhQgb/lTpH7QOG1qKkE86VauGET5qr+0nAajRWkkXRU10pWw9nKLbMY0f/Or7wQnXgxEb0IGOFFK0Jbd8OgnURltxoqVs2TwHHoXsg+CsiURWIU6aBCjS7cBGSxxaQUJCd3JqDXqMkrUNuJBkJr1VMArozLX6YzTV35qvkQltQsBmOkDODbZCh+Uqqlt46F0pQtLQ/GcVHZP1U7c1C2AaYHDSwtoCmTRaYqiaZCx8zSeiiImKYpa4useEpRCBIWB07xSs5IGln7piALP7p7lKixBDlRQ1okA84QmDdPD0ftgJ+eGZ1lh19ExSmF7CDC0tJ2gDsCgkqirni7zDEOmzrhDMZvNyt/55Zu/8QcvVler9I8MOvNX1IwwnByQnDnNWKIUUi1QfiYiSS+xnz0cxMJF5iWkEzzpM9SVH6YDEzAKj7ryRb8sVKRBc+F5j/liskoDmcqQZdpJC9qEXhd/bNljtLLUVPiyLjLpU7SbU+9kjBlw0XZ05Z6p8ZAuPGB2wM8g9F76LqMIJNHmgyuvFwpKO2WKYypkoksvcGdQ0K4jaImno+hmWdTg5n+8v/t8cPr9B7ssTpRlCzp/XbKwyJzQUZR7/yYsKDMLAGIX6gsDma670rvTGJkOXkPVkMAvo98cBJlYuAjKKbTAKIgGSfCfZwJ/GKRnDE0L+tBfKoqmvTK8snCNvbRdHknjcGTGM9dBYN71QuYnZqTRc44YjpUfrAE4vDdrZHa3s7a31VnOwFQAyzLx0W8xiJAjbImOK3uk04nJbltRyQp7176nERzYOXBVUlJrRJnh/mRIRaHSOrFepi+nlZ73N1pA4ZpsNZaPTq/4H4USCOzgHSYQNfX9hxPrxZkX4BRWodw2jz2NBdew9SsypLI402qpHLPIVHu10xZOMBljGnHSO4fn/ftj1YQotPIVbyaWIVJ5kJlHfVd0Rkw7fQYqbOkMhiJ7l+jGDGCLiuZJyycQs4kBBcZI+ym4TBgp7M08ibegyrIrbCbICHN2Fm9j2XIhOB4G1yM4325vwPbN9ZDQSfAPitRfcJ21HMFsgs2Qh4wwZlOh4FBrZitL0aeQlPtZ66GAspyyA5t3TaElmji1+J2Xl96fDX798VACNV3kVoJgfYWD8ursiuvYJsjj/Q1Vj2FgGXEq03YU01E7f39LccnmQB3QgaNMh+OaU3UYUsu98UDRn9Wag3JuRXWL20mk1PhW6RI8Rd0YEwYSMEGcYhoetaAF99CAVGeHbr4RhWs+npwpMaPGOH+2zpcWamwvyof6j/NzK5YZlLG9eNPnxjepJ6O0jrI812PiRLl9kPJimB5UqfYO3RwaiJLR6NbmKQ8g3JLsqsDWN0TyzHHKQiexTcALmCbKJw/C5Wft+5uCs/NeZWFi3hQL2t2Gjc5qo6pUjfjtk6OrQX+oTg4yUKvKBpG6kzwB9pjEfNLpvc54wHF4gCQxyCVoNeNKZIYqhUShp0RSxwWHSMtkAOAICiXJyLy6HQ8GPfXmzfx5tycOh5BiQZ2dXrFJ5p/m+z2FHSt0XKbT4cGF0HbNji+yRcVCxeKuReTH1cqhGK4hDhY9hActLizXGqoVgUoWdQ7kCHO8vw7XTRKFzFtVtL56/YL74kpBV8Vf7W/ubp4fX2ajrrKoCCy9H3kL4pqb2F1pqsf1+fOpHccXe1uC+SI4cOG55/fvPv70J9801hrHR8fKwiIY+acKOqkBurHeIVG6Z1eUP4FShrmamKTVk+NL08Q+rEv4fpoXR/zm6305v5fi1nPa2g69yh5R+7H28d2hcXHQXl1OxB0tziSoYGnZ1uH95lpnZ33z9Ozi+MxxEKsct0LAG+0VmOieX1hFmOediKVrVfZXbG4sVhfbnVUWRI6DuxYetsAJwS3eWlMIaF7q9/PDbLc3Orm52ql31NVMUFZ/wEyxBh2Gdc/w5KBPqf6q5eVs32tp1083oqrEsY3E9KnGI+6oWaVHe4A+R2ibCPqsSLDB45hnLlVn5uX4RhuWc6x0lQgroYo2AVZbaOZx7vZpcXbZvlIycbo5qc3ugdTks4vew4wao9kAldgtpYlZQidWsrZZr5kHmeDsUwuPwTcYPzitjAcKTBhW+EBhEWQIMeBh3MUONjrhOmVZgQm/nmpO8dAznFNvUQ3H8BByJZoW+R3JQeySSVl0moo0mHoocCJ3dWONRRr5GdaElrw45Vq0p+kXfxeIInF99xjJAqRcTwuRbXr3xc/yRXt5g0xKLkYM63LXJeqXKJxIdGk/0fJJGS8bPNvFu9ia7oHE94wkDBtO8HobJRgUiKn4WgnTF30St4vTxPTFOZPFnme8pePoRZqWKhCvrZgiBnD2dhajHzzc5BydYKeI0hLCCWJOO7GekdNiPU6OHVD97Z/++Xu7Ov/h/+xf+4Ov90XXWrCorshxUBqVP9EHdDSdKiN12zVX4IeeYyxGmEFOxQFDiBmW58PxMr9FRkxVpTSaOYlyZkQ+mQzSvXhPM4nlremU+Q7+eGRLy94KNEXP1nqBMtWNXYsCkrlLv4FndqFaq7958/J5ruIcvp5tAEo7wgu1SLdiuWkTWuUmVSwTsya4Kroz2yAqjtMwEpqfMWJUQX50LiQZWzCfAF3sRB70yF4VwLjY6VjAL/gJPrRnCIjZCzRyimAIKWNgrZXShEaU6J0cFB0M+McoIHjq3ou79Nm2m5+lfGf0KghJE6XECnJL38FAinVaO4gCvaWqd5yzQX5GgSvwJBlX+nUUehnErAi0YFu8MYiU8dWv5zRo1AaVfEKS0WZ9ckZjeKNOOJruoHoLwKBHe9NVHOObeX9nmEXBmE6WCCAqXFTDxNsI9Px8Ovz5Tx5r9IBQL30jCNWjabUzBh6jg9sgOESSn3FzZk8mZBay8XzBgUeM1p6zSwGmfMBQaCkknEfLEvBiPjhA6S040Zh7pTnzhQCm3EaDWsiyL3SpUa9pxcDRQEAOP5iSdDCgVQNECabg/8/Un/7YvnX7YVf1Vatf1e/mnPN0915fgxOwsR+uE5EESEMkBykhSAkSAiT+APKnIPECCXjDK6QkLxwZ22AscIDY4CiJE5Pre5/mNPvsXX2tvtaqns93/Oq5sPbetVf9mjnHHHP0c8wx/QR3QE0StQmohiV2VP69EcXYBURGgVajFpteOJi5Emhj+EZWp5OieuPwB18Y4BsA4Rx9ZQXVU+GgtePjQ8X07s4mSa6Ru7W7LQkzvKkXB41z/pEKb8q9+CFSc+WOZpi64wCzVaA3ll7KLbAjs/REPtGV6M2T3gvc+mucNN5FXJrkg/kg+ghkXQdmiz+GKZmAoAvjuBowCofG1ow98w35McJjUmK6uEwlUrzllja9lfEF4WYchuGOEW8VbuP8Zi5U4pwfVZZDb1XTyUQAI1MMu7VwB59gbqYpw622Qlj52Ems8PeKm9nelpArMCpv4vlo/1B26/XF5Gm8+L2v9j/0WVnP311MDobWnxW1E5WTvbOliL9EIGa6LhSLv7qVS692yEpo3yEY7E4bh5wO+ijZpLVtvbjX3lb8IgVOIvfXb+5ndr4qjSXsmF03m92wlfJ9GB32KDilBeiHTArUCRmrlR62fni+M6+RGC8SitqhXIQDM7YtKneLXaMrUxpOTCDhAUyX4kJ75NvL6kk1VROqlsr1dEUaOTZU0MdeZWkCtWlfgNqnmS6cg3ULfZkBpFn7OXzzWx5Lv2o7Ii2GegQb4WReI6M8EibJf6EA8t3j9d203lzf//rTrXJHBpmhOgZ5tRD3QmOdfePdaLWGrPXR1YoXRfHHkn5NdRpYvby9EdJUcefnH97n0BP+1nh27ORYie+VxrBl1WN7R+Y6OB14JM1mMr5E88DkuMmzVA00uQ0bG0dH+7esO6FuFs/D45/+8CMLxhgGBwfO1eq/O2IvyngbDlv4bzKeO4jnxdS8cpSfltN7/fS7baaPccHY7XTF/ZJej8JRnERxdjA3gLAVu+GE2axoQYd5JJCA9Ult6xJoP5keEkO3dy4kkV3dDAZt5XGU47GYejWbOXN1dT1lUSnyMl2+3Fzf4Bpkt1hZm5QllAPRcMd0PKUj+DliiolVuJiKJeghWfgfT9Ws2ZNQJBh8dntDWBBPxAEakgDakXUeU+bpYrK4vpt9dTRobbftJpkvZps7rOE1yBkedZIfv90ZcQCcPLa3oy6TPPjffLpSy4hRydNo+Fnw6U3LxefO4YKIMyAlbpbgqDAzuUfp4vgWtpDFNJ0jtC+X53/405+v3Tu5rNMf9G1sOG61HNzrWEsCZf9oeP75cmbJrN1Z6wJ+/fpiyhpGNidH+7w+RYh+/s2H/v7w4uz848cP6PDb33yHlB27JRWH73Z7O8Ul9j+vnh0qRyY8jLLPuPvjjxei/shudj/+2fGHdwdHuKbXOZECZhfGj4vlkaosEmGt20zVEFqoFUDwCbNKF3MKgcqnd3NJ8F0nLDtW8Dff/7jb3lHic27HvvKXqwdH06nNOl8pU/twO73hKQ06/a+OD+zC3Ovtnh50H1ZLWyzE7FHIliMjLCvNsiiJpOl6uB3uDkjaC+U+s+2CsfLshATbP7iQ9oUovvk4temTl79rx7nJ4ivLjzD1NpwMBp0fv1wySs0F/m0NbEInMLdsY7Kz3GlfJBIhmUMANtV3ylESAtbeiopcWzu/uR10BuoS2CJAXdm9dDsZdbZ6dBm5Q7p3231n7XHJeMVa4+iyAL77cokKLEAOh0O5Lug2UmBrg/tHcNRilAkvlYF5IqWeONLioDk5zOYtfm2soEiZSI8s0gjEsmtwJ/ukQn0o2E10nq2W2aRAUvCH3Ce3GnPB66HJ0tBkjw8lJXun+eDZGAT1i8cacZaLPmW0IR7yKddLmhk+2o6OKgtPU3pxKyqQIaOA+rNwkWL8W2YEqv0t659ZQPEnuSXGoTIy0C/Bmrvj4Qii7EzNRvkM1TPEiMhNKnUYIX1MdGToZR9HMnujfADj5VB4lxLXGmRl7cvWBJ5Dkl7iIAGEZYLXDVsCmJxFEhqGITPc/+LimrTHf/Trb//k++8/Hh/+q//yL3/53/hDe42s0XFoDacERTS7gRPrfk+XJE40cYwks+gW1vY9z5cwjD2UXwp5pdSDzGiqwnejOZopISwjqzwNsf5LEx7LLNQDfnhHF6GF/I2PVLaeBwNC/IW6zkaDJj6tcL9cF7LPiYrDg+FPvjkRY/v2+7OZDMloW7OQu2LwrGZ4NiNoEEsb2rbsCKBsrHda7AwdJGYUSNJvcgYy+iz1RNGaDCv/5sS7/iMVAmJIJMRNL+ZbgITqxNH+DDng5S14fitJ2unQk2gTWxmLXSGoJRZnDd7UVyaF3txFEWkT2LDFHoqyjVWVFH9g6It602IQ5VFOCEj9XoRNbPoAh86QEIJWc8vBI6DNOR73gM3WLISNGFkEydXM+eLyFlbIW0sbTv9gZWw+RXVX70DPKrBojuHrPYHqhq+AX+Tq//pDRSlPJx2rkjbFKBkNujbxxguwoEFrmcRsO/ApBLzxe5BsUL9jVV/MQtzd0F/Qm9Hm9fTlVb/CM0UQ+sgU5PlqP/ktufj2YOwWDxdKY6rGXinvzutIHDyViOX/ABnjuGjedOhNm4zjIDWmGGfR+3HbGhIO3YZmGbj5gTGDG62n5eq3gM4TdS3PEvD1FoDNnbGF993lyfM/EwfRCAOdYiyjK2S4ribdTz6ezGb3t+MVW4y9191zoohaIUq77OALDzcohQqyHWAwRZZoh+D1Uy8uZSBSD3alYKSQYCAp5xZgEFtQRDJkZab2N+samxTWYa5ITrONHViAGSh5WY1LIyWg/v9iJUWnZoaXGswE2TVeU5bhNrNWjK/7GPrINnj2nCTny9HYXoChWhWSMDOqTG7YMh4pQy9hjAjJuDQajq/rp+AR6yHkQVwq0iCRtfDo7FCq1flFKvWRzezlh7VnBRjw3Gy+7HR1JHRyD6Z2p8U6mi3m33x9KtPj8nICjUS706Qs7e93e3QonmS+y9fd3ZZtKwyUc2Acqck8uxxPaoeePa5Z0LZV0rk6vrDwIbvf7crj8ro6HyLj8ksEPWXtOzRACAB7l1gAfticthXyI9IgpWqYRavibB9JtooTQmLWUNg/cpOsF/AJ17M0beneUVRKFq4/8/FefvhyJf6uYqypUAXofxHsZzlPdyHckHWJb+hDn7DsuskARKYukx0KQBO+AA3VhlZCbnE6Q1BuCyXiUee2vKz/8Z9e//GXK5x5cnp4+/nGkVV7/T2ourkY2UD58fRE1NbprU4+koojR8nsVTnztevbkbi7M4YS+hKiV6mzpZT+xm4VgXZak0A0U6Tb6coDZUS8br+OJJE8PB4Puh+Pbd+0PpPcl3/yT7776U8/qAKk3PvteNHrtxU5EZlTTcHKw+hmTMZJxkiO++vLdD6hCr95/26yXF45fHuxdCoWVCTT1OGsTt/ectDSbG/H82ophH1FiyGKmcgdlC2DMogMNWey0dJJ6e2OfHdnTNigvLvZev/uiA1pMyuzzCKRHTyMWtuIt3bXVfSxtSEZdNkIKLonh57segpZLdVqiJGE+jGPdxErwSBAS6/ArRQjEyRiigFOTgcPqwdoIc1ns5VsI5Ih6UPLx28+HPUGe8Q044lutLNisLP1/Zcr7O2YBS3bqiG56Bc//5gaojvtWyd/heZUGs3iMiPYIoD9AI6GldGBB5OphpmVmrKFRa6zMwXsq7Df0eQn8uS8iahbqLaZBkXQvCyTnHvU3rAe//H4yE7ZPz07/3I2+snJkdiRZJVPzmtbLKXEsEllK+xt76l8plk5URBFpkC1dMeffnVEWzuN4Oj4wKhzysHmukO7bCgRsf748d3cRgEloWRGbe9czua//XShxD45kCPPhN83sx/anNv8YenjcXl34cS5h7u/8Iuf4gNFZpazhys+wfPj8KDH+0fnlUUjwb1rRdsGbccVHb87YonJwudxOTtQVsyX82usqOCpGPDyWcbOhjwmzrrFdvlMrbUdXh8LOaeR7zJzN1lpvHeMTeHgMAtcnE6bdCXCQa+Z5RQrqX3r0JJncT52dspD5SguSz2yHVBerTtz0orzCGhBn5AE4yY0tqvmZuSOwxZOHcO8vX52dQs2vgAlZYvzcvWyP9g+tt35jv344CxhImjpUOrD4YjYe3q9l5PEYnUgRk/F3md+pf0Jm3tOHN7oqRyUEwaSveZgDYtvTq6QLZ+Tgxnqr0IUKfknqogUEQlNJn2FhUGoW6CkWsxmFC0hziQiXCpfIqIoa4zUFSkfix9vEujRyY0BGPOUUEoUUlNYhUlR6jOih6LXUBRMxef8FxMy6oeIAkIEFOL0aGmKSDztuuitABOzG1pxdsDwjrUycXevezu/l+7RA970mGGVsoz0M8+uICpahnKqrOuUmfekVnG5Ycq7MzDNu6vHElGEJZWcUCLJaX+3cKJJlL3i4EjgAYmR3UhXaWs8DSCm3rFhbcdQYIZkyOrcUYaCLLEdwZrMYHokQ2NbaC51Y4hrOeJY0onFm3/whx/+8l/48//UNx+/+fmxUdtVr2WD1GnZn2avQR1cBrM+gHE3mAgy3XbLlajbmFh5pmz6fGvUR10GRNmpeThfY2TDezNrhcPQctpiWFSzmcv6VXc+qCb/xx8r7Z4R6SIKXmNeAb9fhbHts1Ff4ep2pALvl89q3q5MUBkuzAbNl2nlAKCsDhEBmxgK/I0liSAZxEjclwygyfBJujNuTHEeoKM2g66lDcZlUjuaNqE9IzO2mMIZon98A+POZdBlHNGhZqFoIwMh/Q1bp6y2mJ7lOgYttV3T67DpYjBR5pf5NNC4q6E90xsshWD9TIZxcsw0DgI6zjvp2Q8+iWSS8sryaIrWW45CFGwjBJM1NzPIBAF1FgTsfc9BH9mjTBPZKm0Unud9wEzsWH1ngSv2VnAHIUYa4yFgBewk5Kx9fbL/V/78h5+LM+0Pwa+V0EkMzRjrme6ABjFZR8q30Ays5JYGwRaSE3NEEvVWM9f4N/gqnvUzwPhexmsYoX7VQroIvTUXqlOwhqGa6RGto8X+7IFMERqD6VwHbgkELwce94qezZGuDTwUwj0sGgZi+DXTXAZxxEhZt0nmCTxEMnMoiMpw3ii8OEpv2k2/PgWtCY9BbMhBIwGRpMd8QBSz0HNr9v6+fPtp9Cc/nMkkNFna8N/qRSWSXVOaqpnMQ54bRZ3Me2jWcYgq2WiRvaFhHTWEzAFAQ6yCyOCgPb4liVaEF9lCmsNJyBpg5aKA0BKZVssUzPMi8eQeqWws7pg5oi9kkokwWUWEzPp8SRCgqCYQZOA1axFlGSV1gK3Crc+81IISN1JJ37wbcgMAGQTpJsH/IDNPVpZXrnkjFmxYz1d3fc+kJyplBFh+XRW+QXtIVp6PJpKJacH+cO900LubzC9md/IyvzkeEBn2VrHxQMuaHuz3HL/2/ffXQvLJB1lbE2T8xU8/gP3bzxeQILp8OJS8/3J0MJyMsll0PLtzsBX/6uR4/8vnaydE2bHIwLdA9+lqbJLBosRJTEjkYW3Pxhn+58bmzdhWVqzMHlC+My5gqjyvOCQpdgQA9A89hpwm7Guy50ewk1svyCSlIXszzHaKfcVfFfrAU7HKeDUcIZzFl94QD65NwBCWS5mYfIK+gFbTHJce9sySFmgplAGt7jYM4EvNbqhHI1oJlyb84BR0un/tP/nVj//k+xGzlD1nzUqReKfnisFL1r9frv306/dIkecjf9oU6pzxYseEHMUvXy7fHR+acoUIxHIkDynVNLYt9vFp2Eseld25kHU4tPdh9+piYvddq7d9dTW9X1udDNqHw/3H193HpaTlGd77cHrkXC3FfbK27qQkCdB723JvmA7WYqwubWxvMEZ/PL+9nI0Oe4Pk8VZmlPOPLAmJvROmaLrfH4jA2lfGjWbKEJcmnlaIQCj6E5eV3SVCa0MVNrMRWzTFCgPhpGw10oM7ufsMPjacpBHm8DcfjpExf4ZtzIyWK3n3IB4/N7O4DdmpDcr3oMuxrtApJgFLq9NZ3CXvo9NxVAZjxDxsKMlvzwcjOdaG02T7bdxsXzISwS/Y7t27Q5O4mikWtGdIliIspECpkvxEvdqRF6Orfn/3J+9OlSc/v55+//15r9+bzmfDwZBFMh5PoUWmrPBJiMXaYqy4LDklxCW9YbnEvyiEzoqiYsEf9Gm0k6Ph3saOiqVQp5yWE2FlWtnnEm5g0L88sWs5uLPZVMLceHz/8Zt3slay84ZN4rRuRe773Y9fHUn0IgFNXLYN2Nw8mfAQWLFHp0fOXfj2u28ZOQ20FiAcVGZbvLwdU/b99TUUZdeLJL8Pp58+387mUyJ6p9ulA1tbG3JuHMwx3O8KuciotFZ0e3tHRWIeNhmWgMy72b1aXfvH/UOV+J3qJZVLJdab+TcfDqHCmqx9xkw5h4RL5zg5kccVroblJ8c/CMiK7y4fKnQnfyC+uN3JYg8OsJtNF3X889agJ8dM3tRqHT07226VcDqliQhxIpS291BXfHU1++WBSKCBQNYDkyNqm6lAiJOQAnsPL9Ar4TxpvSx3cY69dnY1rNkz7fhjqXRJ4scOP3l/an1BaVdbIZyScX452d8fzBYPHADODMs+FCfvXxCi3RFX4F5sOv9r/sCHMBBumTiZJVHpdtZ8cD1tEVUv5dppzUi+0gZKMHMAeIyI5oG04PmQcVkiK9OEbAEPec28qBBEFCF1Qv6wTpAbZoWNxkgyI6EyuInEFxHEgwR9pD3hiLRLXzKIY6AEhfnQFn4jnfLxLp4g6nK9mnJLI35SnJgXE0WUabEsMCzEZQKAV0Ph2bKc7Cyf9FpBX0pXq/4SF3FOsiymIrtH8goAPelLxGttfdaWipamBtIITtFpBhdpQDfCuENbwkZyFEX1yk7SK8ACAp23LhbAl6AKyxBhnjobuPS610ueZ5T4JaOOORLMBhJhxVhLMSsfn5G0kz82/u1/45//q3/0l82eEVAZyClWiU9Kd3i1keo6xtRBYNS6j7Hma5gxOI4t6iqtE/OoMOPZWGb+uKh3T0BCMG8i3kyA+p4H/6yjQllaihqrG2neKHKJ6VAGVuYPJPlZf35nR+URaBOwWCxuLhYOqP5ycX3LXebg2/cj1erFymIS4chP+GSz4U1WOtSG+HzLgJJiG1WnT0VO9OgSE5o9ZtaQpQdrkdygPZRfwqtV8A62mTDoOba+eKfGQ66FH9gwIc04EkrXVTBjGDn2Ib0k0uN9e/5y7lgil0DN2M2IP9Ijkt4NwZvECjQDhthMo6mckTw0gOgS1Lsq7WA1lMgZLosjBM/RT4/mKmljxCOCh2dcA14jMEFsBeO0cJ2NIuWuy9ih+YKHcgCCiABpZMDLKxEmhpWFu8yT1umJ40HrL/3Bx198daAwwF6rQw4Rem55KWRgSIWUIg8kHVSahfyPv+TUVfS9WDCz2tAe/MUfSGeZf+QRIomHU5ZrEYVb9A495UnP4BHU//ZkEKrxBMIB3/jhGiusygjOsDxS40KrHg4Bprv65t2mnUBVfaEZI665yai9qanmYaD6EuQEJYkImCzPQJz50g7w3PJr6CyCKJST9ktMNS82vaT7UGL68ReY9o7+6vPZj5dX86laGiGeioPGGmYCaAQTs08iEwJCBCMUwIMGwczs0Q5pjuRVPNcts8dtcUkd+BWOYSNSzzG97NBwYhgBSRM+hSQDAamAwj2qNgQXCxVBbzOnqNQMZ4Ia6RDkWfrMGo7/M9BqNnjTf+E5ZMkBCCZdKsTkegJa35wOP5wMnXvgJieFgwp6aAl6awIK4Rl6M1dskaA6HgjJ5mH5pbpOjVRR3wtm6HKpUosNiHLjbDgc3c1/uB193N/vOyi324JmBVSYcIeDtnNRAas8hyO9rNtLDreD6+Cgc3U5Zt9u7uwq3XHMftjcmYzuBF6O3/Vvby0wWMZX+pwycOCmKh3yz9U+3PvRKat3y9OToYQcEuhPvr8a2DynfLxC8HVidzJoBbt30JK5C11BFKQx8HzxqyI05IPv+F1Qie5QBmJnXVazg1A37R60PY/fbmUerrgTJhlWkkpQaIctNlzWBM1AwyRwRjllevxey5rBom/Bdvx7d3BgMa1f4wfkYZrSd9Qc4kyWjnBJLSxu/MmfXv7m3GnuChCvDH7lENC2YOedFWfJ7sN+WxklBVvu7pcfPn64vrpmOrIJ1Dqhzr/++QfOFC0oEs+R6u3sqaoyW93D+MLAALax7mje16eHz1/OFYGRaqLvzt72Yau99bp5cTGb3N+8PzpQ10ZFl8nynhHHgCMf7fYQ9SHK4jBttqgDuR7i5RN7UkEQ4S48mRVPNfUj8JRSjtNFijsylpt3jy4tKdPaqdOBmiIK13iNcJ3a58LrIuVMM07G9vZ8PIfB2XzukCyeQh0ptiWZPOloceMU9plHVjnTqr2rQJHjY3db286xskWDp2hzG6eCYWoKcJsdvRSY/d1Xl9dYS/kjaRRXNyOSrmyRsARjGkBHxwOew+R2qlSkAnqibXb4Lmd3UGzbO5mjvGUCz88v8C+JUfFMh97IobLKsb6595tvz4SxlU6SnsZ8nM7n0niggmC0vJDkfByIyVEF/CTqL8grzJwzpKJNw39stS30yqZ0KpQTsq6nE9QELWpReXx304l7MupSrbS3u/n54tZaAox8/KgU0vrnz+dEBzzLvOIH9zs9FKac6PHhUH9WyFAFCjy/GdtTPp8/S3exKnJ5dqW4DYfSMcMnJ4cOyv31d5dryh89vjj6QtFMhw2raupgYNsED/a7OWj48Xn4fn88mx0e7n85u3mWQqf+PYzsUmB7Ks8KfJgvyT3C5Qf7Jy8P63ejO1Dbhe0vDAqfrJYP2ZVtsc3uGsd9c/Yt2C2nu237WPZWTw/nX25IZ5PFMibWMLDouVIw7GkRHKs0KsCoCmWhxuoQPncEr3aUFzBWvxLlhgzVNtSaMs5DOIDyt/+klZMxYtXAHulCKGRuXvjJjvS6e7hfjFWXt+Syi7ZIUTwszmvR14YXQFZSEB9MNc+t5dPz9dmtSLNTD0ErO0vC19n0ieMmjGF/kqwK3sD9y4OTHOjzGD2v6042EBqJjk0qP4VJKrAbnhJdhcbGjizBzLywYFoBhGQJYnOEiqAp/cZgBXgUQ8KKG1ZB8SllhuCNHWsaL+TlkzjDW1AtnaWPdEuURZnWF4I+Nm4eTN/+i6grUeYb7NXDQVX0kz+NjI0iyaPaQ+6lMyL0SPBG3CFCi7CgwrFA0rOPX6NZiUewBJAYuCSI+9GLEJpqNjV/bgIvwdcK28dIjhiIUelF6pRhFojDzQYMNBSDofTuQy43ZiVwqeSkg+souRkRx1SFt0AbIybNNZaHScliHQkt9FXgxTphWAJr63Xv4f5Vptr/4a//vz5dPP2b/+ovoy+SrhDzBqXxbiJsg5EgEQwZQRl5TRcgDRUkFFdKwAuNPUQziGGbsbJZvOLjmWDe4LxAc3u3ZEqjd6qTICSDagKrntZbumumKF0bWEMtOmisA1+KNLxVE6wDLKOS8tZOdzD8+NOjXyzeq9WrzNdkMb25nN5SKk4UJ77g97nMDmtxpLp6wa/WwWrlRCCtzhg2K1Z9k+Cf5HZr0ar6Bp1Rp6F5BBc7KU4sfIMutOSn1dqEQg2KVxz5ngSe8IgheMYowAolGSLkoSj4iljNkGvYoS2oEnkyXl6zwQY5RR1ow7TSKZ71AFqFU6YAd5pEKznMLssyURhqY026sxeLILNJlMIGBeBxEi8bNSoGRJowvGxhdUtUCPGbfEOAe3RKxuifQjQTGTIXAjhptOZUHwV1froNVq+tOSLw7tOXm2/e9wWhOIbSkIITD1QaT+EpVrvZ8rzxiuoZY+Y8c7vO+InzgrqqufLPg6K8mK6TmeQnQJCpOGqoJyzQhPCDHGjWPsPHQyHUIic9ZC29CDUWebgpnnlosmaxgHG5fs2xDDaOU/ih/zShVUPwnyGWyPJ6YMK54rJxdANvowd9Me1pOSTB/Ip9lUtmNosk3PhaUCLh33xjnRQxVOZYsFUfV7G1F9EGgjTi1sbLN+8GK2Gyewd32hS0u87aFBeIY5+lY9gTXMs8lIkMqZmwgI33WX05e5FFJL4gp9QtN0MtoU1Ahl115w8IrcEKegLGPBGYUsIKCwb8FmTRrtdCEZleYOjT6DIFhhxaKmIJaQRlAQkcPuFoXVtmBV4IPE17Pg0WKAHXN4UoniWpjpX0cBY9HwRL4irTpwXNvjnY8XUK8FgmaSJwpReyyA9twXxySQV/9SnzQmmcHeE2RwSkzMnqqNfhtbatbG+tf/rh5sPxvigYyXF5M/3w4ZjOtwwmu9shmNEO9zZgtA8Pd8+ubxkqqJcN/PVX+7bbXI2ldqeQqkr2ckBYtovZQhXBn33z8XY6BZCEAMZGyu9tbe8PuuC289e+fTv0dzvq8qmEKS+LjW45R7Z5lEjwVHFVVN2oJLgSbMK6kRKki/Rsmn2uEqBE2u21nU3JuqA1KbIn4IKfoCnJzQgVdGRWJkzbRRblTpkBBFh04iJRYaKC4ExOZgz9uP72pZgNoGir2iEvgGRtdfu3l6t/8Ksfjr46fLpaCPqnEJHgpcKu45GIVamyR0UbZKC2d1uTqxFuaPX3rq6nCA6zOcr1x4uZdtv9XSnttODtbCWfwaGFZs35IjM2l1gpN6g9cHyUQuwEEVsS+8lueXhVkGTLoVF6JOxl16AYZpytRxKHDHfQtQEyGcwUgCgsTxx1M88P9/f5wWxZiOn2unhVNJecxF0MERg06QyXONZYrqNeuyJQOZIWv5C97tqVK7OI4+F3aUOt7Q0rHt1h++zHWzIBNdp0kq3AtMv6OrtPRtOdgyUchrBwLIX0GMXatw/6B476HkvBj0cEnRCWDB9/Y4JZhzW7mftX+4PxsL9ysqk0EeGWcwl2txl/flXlSq2h25sXYfLTg/7R4YENwb/+9vrdSU/lEWnk9Jb4LacTgX54J47OR13/jJynSgDhsPXxaOzcIi6msYMti+OR7v6tsVxNEBuSH0T40qWIIJ5TsiQbVfe8zB4amfdXtVD1KOGf5eHgt3cHH7/9/rPXScm75Yvkr7ndzIp+CoKuvc6md7ZtSZ4ZdtTQVd3fKrmUiYd3705pr6enlfwrQlCJGpsXUqBxa+O73363mC9+/tXXGnnY5t+3eZ6XUmeW862nzWFHAsueY3RJQjLr8Hh/9fxonWWoyGni46+mzJoDf+Nx85kdPL2d0nqyABG+slH7Qwdd3eF/dBI7X0mv+ZzHfz65dlCbswsIPf0Kb/MQj/Z72IdRbF/v8dHB0dFQ2tvpUQx6eTAjqygxaHCjKP4K9w87HdpdPWAbp0OQcUI3bxxu9LzC53sdxTqQgNO+bOPbNj0KRyoNmpi3yXiG4XsK3UlTFmCU9mLZWVaKlyvDRypRr73GedxYXyjzOpv1ewOxgNVyLuxr3syghJMvX24en5cHgyGJPZ4sD4ddfib/vNNWqeZly6LDBpax8fF1YdvxZo72I44WdwtinlpKiCLbUq3bZfM3mGOfsSh8I45tyElc3w6ZvTKRs3xJf5j4xMMSTSK6o0VKTCOemIn+aMoT2sFr6BtZUSeuR6RHeXg8PwHgp9uEEOWEkL2FeTXiEvhiP7JlY9VF+5ZyzXv+mbLS3JFpOvYrPQcu5lS1kEaYOhmk16Sihn54cYmgV8Auvi4oDNCvcefF/lOAxkZPey3McwwZD6T9smgYQWCM9i0jIKP1euyDBG4NMx0Vf3mP7IllSQbLtMZqGqkQDKFE4kcesyFyTFiNqxYHoF4j0eKEA7sqRl0p9ZiWxHs1HduLAwYBSS5n/HG7r2Z3f+P/9v9o7z79tX/pr7b2OCTUnLfNi3YEfeNnZBjGloiaT2O/+s3Vup6VixorsKKzWXBRLiABullyud51sRkLFi80Uz4Mz9jQmRQ9+pmHK8JcmPe7PxVvqt6hW8O/00XwD85EUoskyn4xQRm5F+083Rzu7Ds/+/27d+Z2MVnxsWniG0lCip3d38uOtDjJeEFjDVZrt2osbA2arRo6eELeaCxJvYkfRRi6Fcgk4+oRwkpVgt4lQNaAEsMzMBK2LBJEYUbXBe+NsTF6zZdnvCRwq8VyCoi04BH7oP+G7JsBkrTusEH8FHvAPcjEPJp6UQDzLYJjbQqghgP65FxS9ryRiJFnrhG8hjDgvOjNdBCqhlF8Gl6ATwuWukdCIeBi0k3LBhYlhG2S5wYWI8xocS6jysfkZuJqEjTiGfrAVWGR8e3iQKHuHtep7DwDK5vby+Ec0lMAOuZjpiwU5V2gBo8IN3QFjDSe9rRd/WHwuhgaC1XGOm+abdbY0izgLYbXfom0r/dwUEBs0BxiS4MBW7Oed1cORomFzCCf3t5MkspzocE8nnb8jB1fAjD8WLSokeoRkNV+sBKbysMRYjDVDKooA27dzZA1FvHjKVKlXKygJyC54WJ9zUOuQACsaMeL6GLY3f3m5EgqQCpR6p0kRYOOhqQFkklooMDND5ZfeDq5PXJft3h2gSvWJLEWCyfLTuFTAAchaS2kmplOwCULLGgscFEw5EOgiZb3g3/rraSagA6ReEcCKtHk1cwZWoO4fAJ8Gg3+DT9eH/ESJPAAMstQAFh0E1TrK398jyMRbFvCO7+ebDPKFVavlajMY6ErWAZlDcHP/OZ9X9JWcAkGFG5ywShyKmgJgCfF8gRnNlVQ7FoQcOQYRDnqZ2e/O5ncSRWW3UpNM3/arQ6qsEvAdjndENqULON6p9W9tDgg/fL55Rc//2AXHHZWzny0fPKykJ1DV0/7/R8cYvh4/7OffkWqEMOAUePhvRqIe3vffbna2N6z7t/uZF7WHzY1UsPPCJSLEFwGuQEJ/1a6yqs0bAqnEBoLCg3BA8FEedLpCpZbXghebA7E6ZmkrKWvHpx4GzSWFxcCzgoAVKHD8BJSidsUNAWDbmUuwkKZA981HwEYp8094sMdlF2LxMgMiWNXyw6mcuPs7OJRjHGx+HO/f6JyTRb9VQNtdeyBsCxCeipRTklCovIs22vRqRcX45GBrW+8OzkYTcdX13P22eud+gmI2jlEL0yrh4Xdqzd2Z6LQn384Zlz+8befr0cz/tB+pz2ZjGVotxXNvJZElQxsIXKleFR02d/voM8vF2P+nN3Gx73OZDxjWQ6k+G+K0AvcMrhn6r9GzT4/yoKAU9HiXSUi12ViVdz19bW1ox5tZMreJkdqiRcEUVvbZUsRlQStc8mUm+jvHp6oHz+DNjk/8iZkSrS6e18+X9Vi21p32MEDvfaWVRu5HDSTVQo5Z4Czr/z65soWABjb2WMfbCk0mUmrJEIbJPgPrG21F21dtVFYaQvTgRAO9/vRGy8KROypbMNZkJNPXe3sbBwffKApWM2L+fyf+qd/YhetspCcQysw9H1nbe+7sxt4brdkjds4e3d4sufMkU/fX57sWHHburqfcKx6u4kJy8RwygF9Jn++0XLkEZFgOFVcj6PVjkuSvLRtp2oTy5xjISVBbnuLn+/u0YCzH8az0cHx4PSb4R//428VelKzzLHHVul7LUdU7BsskmC+C9tbhqOzFc9qt2KzoKbryfyHzzfMEqd/MXXOryzxr/g+XyYz1fMNLoceCFyvPX746IC/VFa5s4pha4GUJCrRAqgU/O1HZi7B7vhevru1VPZmUvOhKbF0+S0teyVOjrNnn1p0PtNBt3U4bN0/PTiLGsH//PSrpMGvrX25md4uUhX0m48n7HIchSpwjvQDhjvZzrKvsrPr7w4PcInJkdsGadtteTuvIuggPBrs2Wx+dWMn0J+t9EWxCOlFCMvzirjZdooXd/R+tcJ94vdxtxTNtFrCfxDbX1+zlPT1x6PLC/WiSGYOiQOVH9QcOz4+kvzmxIPj/oHIHHQMB4OYeuuPaEla2+XNRK6hOiTtFye7PX46l/0TScCc4cPLJVN3lYN27wAHWf523yreinAlJGzt8kWJgDzM5BLazzIuKeF7Y0QWjSi6Ggu7Ue0RI+QLiQJFCfY3cjzuqPfY/VwLkp8CMjyzESs/fyuLJgKpruR2yaeSUDFxojGigJOSC2tW4SLcElhyTY8RZiXQEuPPM3k9yxGN8i5rskRiGPXNbcgUxD3g3gQhIhTCZpyYXMyLGZGmQMuCSEelrtKvao/sSCu/KMo6ANMsmGJVZpBljLA2Yv1DlNexkSQVS3xwx5fWDl1qaEARyCGpjCg6NBtD86LYZIaQf8x6rlkGo18gRYxnBHEAaIda1CwBzno2hmxBFvXMFNjwqU4vEv33//bfN3P/2r/yV4jnGAikueEw9LK7DLi6AVdjikdMNopEC4HJeBodEQURwwossWWDmlh4Bbm6TFV1CH3E04ee2BYeaeikAT7TEUsxFmEZuNFVZllbzWQHsSKmv7OZouKj69Oei8ZLx4NP4+ZHT9UPp1sJlDWLcgen+9+QVSt1POyiWlyf3xJGYis3k7m1ROuijDOGEo6DKG3DZKH8RW5E4IQzM1gJnSwf3hTfIMhiwcjrE4ULueY7SjahmDPurcZMT1Z1WOBq4GS+M8aY4kinoaAgWHduAt5ak3fITzxqJlgOmCK7qspahN5gvELXGaAcD4Ire75fd60MZKNw1tnY/8xquZF2DbFvM6v0tIoCYliBcN06OBJtFq8gOfEDJYy2ubIhWkof4PhJDxXAZmZwTZsOg4jYDJ5pljU9VLOAJIzMiypW48OUqGm2TVeBqhApWkojJi72RjAQ4yHVADLXDNIY2eFN4qVIKFhCZV6tK7Fq3t7NfFS//jMxoRzQpnH/4CryoSYwc1QTWnyR14gd3dWvGUvTnb417XZD76izrOcM2iQVWZYPkCe8E8xoAq265R2NgKFytyJrXAmKgsRaZCjUQU8DcVnSvoY6Qkg15JAz0MuH9xpiMABEE0s6I+O54eoswiAnGec/Fbt+vZ4u7y2vCC5KJcctFC4rBcCFFQ8Xkgo2cHIUrXzwCICcOHsDZ8YtBzmal7FEvLsutMLsd8X7iARcCJfFHjFmVBl+wGUP8Dki/ku8MAhKooZ8i1yDFvOSR2GknDFjdEVr2sEmGsPdGotJD6IqbxD4i06Cyby7KabHmWS0IP0SO5k1XO/JCIfCZaGzQIH5MHNICHmlZ/Bt2dbycKuIz/3D0bAvEnquwPfz87DXWayW21ZEAliq7TGsqbfV/epgXz7P1Gnkp8e9p+v1ibjmw+roWJS19etvL+ViGcTBoDWaSVK+Yzo4VWlkvT3G9prSf05iJYW78nG3rB9uPU4jq4+dxNnZnSf1QDYBS/JR8XHgXVwxbjMci0m4k8Shi9GJ9IHQXkaULH8TWiLFoJw/Cm+2P+GMO7CzTYU4J0kBSrITSS8rBJ5xedHMU2uHmH/1Ep2UyQ5XwKXO4aeZJyLYmKDBtd85VRFSZffDs7vlDmY6SbREA8LRWXmQGfLyuDw97l58aQ9b3U+frrkhu3t7TqoSKyVr2NAlu+347J5dSp2YHfWHxG05BipaMlk1pvhgT9hWmrG8mJvpzeHRwcbTtiWT+YODrjbsCPXzV5/PkYeakPuyTFhDB301Li8u53gOswiYi4vLben191IgeuHk5ERT5OSflUW7ubeJCKDGLg17ket0qqWtogPVoB4end2L9pU5t1DjVAhLKqzGhLudbaQq7MNDb9ixbQ5/stonT6ru3JvXJIdtrr8/Oh5djMwXi0w52NgtT6+t5/Y6F1LdLse95vDnPSJPMhhNjNmkyoi1Kwzf2VGzVHr9s63BnAt0u2kLZ44Zkh9mozKMr6eS1cbrxeU1uwKo9iooCZ/Xp1OSIudIZZcCt+RFTdiffDxFHJTUzWiugpWIEFadLxbAthdUdgO7qdPZRSs2jVgAfndwcHLQVa1ynjwzFSqV8+TIdukMdayItqwuMa6yo8HJGndh45KwaAmCoV59EoseJPvqTp7M3LFzFK6am4vRrbi+OZIZdnryAS6//+2Z8byzOdlZWaLd9892A+C07ew5e0Ed33y1S/OZZWdqO7dYYS07nhUyRetgECXPLu0tBUxfRxM1ombUv9Hbki9rxZEOAv9nny5YwF99/UHVHUfrUaI/+dlXjtSaSi95erTRWXKqlCBVeR3EhkN4pC32qDrQZM6rWkxMbksrdOez3SKdQftmsrJHwonCqkJdjqYcMYk89qKQMZdX1yZi/93h999+lhll7YcFOnLS7yTbTkTBR8oGP9jxAooNq1DQZhHD3iADvJ3PKAs1/vmiuM5OedzHXkwRO5VRi/8dKUsKmILIODlFTnVYVzRgtcbjoK0JRabP88unc2fyrnC2owXOH2+QBNjuBSd4NZtbIzt/ObXK36qMpnTsZmv/5PC7X/9gTwYmJbBVi/3+88XR0eGjnCPnxayvXVyOLfySI3f3KoTek8Yy07ZenEhVhflShEoAm0iKqmBA4V8kl3xfYtuhklaZrbHFGmYrR2bQdhiHxEJUDi4wnPjYLBR4MSRSjyaLI9EUeI4pSLTpgOEbySdiGpuJ5EqPEV5lMkbA5RdwND/d9MmFUKwNf1DEJov+i32M0TxKoTa6own6RubVO9FmibBGb5gIRplGveKfIQA0vKg18jA50xw00jbRPstKMec9J1UjFRFiEerXH7nUnkn75GrlNLHtkAMCRjDaVAgim8LIjg1JaLZMYNYIWPLWW4ktFxh4ogatjJKUpNyLf5N4TWR2RDTwYBVOzX7GDwtkScwn/obLGSbOtUskscJYJ6b63/s///2Htcd/4Z/55VFfEfFUzGIAs6qAHGwX4JkHb7z9FjNdF1oLXG+qK2o7PbMnGuM5KNUdVMBehTmDefZe5smslToJVmAgI3mzcWupRMNoCEKMq3Fv4mwmrJWJyMij7L2k80xK+WMmJTCIs3oQHJZ6/Vd40ClxqvJEa9A9fHr46t0Hz907I5KomihFvRxPyKe5+aKS7IB36l8ajoVmM/+anfrcuGayWEuGn95VrV1m55sM6uAqdCvQuD1KaQHJRikEl70AhswCiAOJEDZyokgRIWohsXVC3no5HFSReH4M0BlF6SJTANVQFnYIeisfIJSB6qQLexqFkRhxIfCjSPA9PpMwAXlEN/WEKoLNbDuOPwkStMfKiDeIoYNKlADdrzwZfyAMz7KA0ao2VVCIDZ77acTgQ0i+FTEgoZrzJlHEdUKA/eS4ayJqZV0M1oyQhxGqiruLPNNOiCPUGBsTVAggzWdO364bNBThwWKpDKEcaTzCfAw7GVdM3JBEiMTFwljg8kpoA+bDU29kmzHkSoAEgscgLfxVH0wG3QVZeMTkpt3QZdhER8Jt6S0dle2UXCk9spDTr0nw8w0VEVORHtrQ7O8IuN7K9Vr4wr6h8GBSP/5oDfKLmDPtIWmQV2zeXZQTSEN6ontrsUqfn3/746WDOaUVMRe1bkk/9npDXYkMmAvqJVKX/iAdasaChJjc5ACZgOlc8BSMxddV/CcLgNBSoYVAiG5NGrTzIUntuGkQ5U89VjOZNorbgRjLPg8bWsgUB+d/HqZB1cTl0TxfckNHkXB5O55F+CoYhuJMdIzGpLM/Xd2MJRGINBcG8nwG1Rir8WBr605NTbFMif3gVbJcAjCGmxWdYJnpmKX4vY070XcZ0rbkHh30lAI/H82ODttkpQDfN6dHMjR22u2kmbQstyLQ9V53e3w9TWx++7llotbXP7zb/9VvlOAT1W2vSXZ7Xr+bOydqU1n5xd2z0Crdej2eOjgVHfRarXeDoZM0cTC9JFAroCo+xuahKGWWOxBJmoMYXiztsHy0nkEwL0kV19CGh82r7yX3YIDHTunkaHPLC3J+RCrNqSrkqr+7AqmQKUyE40UH+r3d9f/j//LfQQpBM3o1V8VIzYToINOZ2QiN5Gd6ypX8GskeWR7WisiOWAiZkjfrUq43/7Mfrn71qx+FEpinw4OO049nzkF9fBL0ZXSOREyvZ3cUgZVuaoc/SxquLHZk1wJienh23OyWlRoBHOiQMb9EM+iTb/0iYb3dTabyeOTk2q2N4/0eAr25nSNe2zkKpzayvdbsrjnZtLZZS3ZIKc0YalGUzwf7PZLx/OoWE75/f6jczfWtDLMe7CK9JMHkgLcN6Vm21ma8ElR6bRaWwcYBkOrd6+js5PiAfed0WOG90+MjERrDSrhvZ4caYVSvTAgPIIlRqCelJNi4D3OnDSQzmEGtMBG/yCvseFkoGnM6bLvPo4G2HUF6o8Y39Aj94oq9pJvyu9IaWfMgM5tNLL4uKoxFoSnpNGsb+6q0bG+pO+QULcnktq5OZnOy+UGRyjkfKcLKWACMGiyGO6ZNhF/B2sPD4eRmfjOavpgWPQF67bXbSZJ6QjTejCzE1NRYfBXDY30iEWoR2fmCMEBEDsrcc4yA2ucXFzeq0FjwQm+3kyk9t9/fV+YIeuzO6+ztfv31Yba6p7YjOovfdXF+k6zJtfVOu/3u/bvvfvMdN/r+SbWZpQlMmCax9U1naFkWdEjzMjV7XlRW3W5tOt4MJGVBEv0WJayr7J7dUOuLzu7uhw+nUHp2dqnea6e31+l1hMZD7+trt9djkpe3/fH9yY9fRjLUDR8UB4cdsZDZrY0++xfjsfUQFZ/MoGwpcXHTh3lAziCHTZk1YPvw/vDTl6vIrzI993tdB47YWbu2lTpOZk76/nQ2ZYlYtZeNACSbdUhUtjVLAiPBhkw3LhwHBo/AvfkVwDA6TCGpDrPngLMojFcyRdQPIZK3rOSOrc02lN/hI27j7t1iYRpPDpy2t/Pp4kaWGOnGxREjotTwMt/GcgfM7zbaIrXGHURgXy8/L3FEr9s7DkXZ6xCStjWii8u4tsQqbkVLJGzUBj1NSCQZnUqLnEAuzAdIgqaK9QelxoIpopo21pJiJ9AhW7He1FqyQgyW7GftkTCxGgWPy/zFimRZRFGJcU8YQ+K+QXUQHnmV7x5oFEM0ROOZ5FpRqKZ96nm3opdK76YvGrfM+jxbGohsLAUZU8FSlbvVp18NLx9DKfEpIy7bM2HAAKWEcbON2Xe61RN6wbZe1kLBHliiI7OSkNTHukjMEnQxQiAnfQUnYVXMDyd4Jo/RARkmhl6XZW5nTohOBJrIjN3bwGZ5FlZi98R01ZCU98wFf3E3NUf5S2Fc9Sb1EbdNk44p+KNf/oX/2b/5z3X22ATxHcld/6GC4KucH//H4gn2otpJHUjQULBeP95Ql1884i1qN5A0LYAhyA9uA2fTWmYVAOUwGKwv2gzS8k7iiE13uMzreQnzkxX0TnqFxjha6YidbcDRR5kmz3gXWAgxc5QheiB2doP5ABc4zDoUhZo5A6jRd3Jyej3SAhfNLmIncKuNpk1IE5634Nlk20NDDrlL6pmqPny5cK6lZtmhagncrRxNOKPonT1iGTAFJcrXjcTQtQT97CZPgF/LSIU+Mo/6hK84zDAOwyVUAR+VmSGYxFK7ZRcmK6mQ4EkXWIF5i4AUiLV02VBgJguzGyZsMewq5Oxi/hLmcQ31qGk+ITJGsUxGisPViPqsL8G8RGWJRs1qv6lPBmAQUozZgBTsxi5kLGK7re7mxl/8w3d/8b/6kW5V7twz4IDxPKRX0WiSgWoLLjgkVq7eyADl+6RlT4ceMqf6yuAz2ozR9SAjA8qnpjK/FGCJ/deTmFTjmW73/PRizXm+AzGUHCfBJ40HkbE4jQGAJsK2Ckki+dWFoskM3C+ahds8HXB0Gif/d1CZXDOYTwOk643cIKk85uN179bEpUt/mgeMIo0USWYaw1i55i3PZSz1uB8AdgOxKVv348XlDxfTmUpAWZZF9kAMUMiUbAEw2et3xl+Q711geZs/w2QKdwT/NeJALgJBkcGHxwJqheffRuehwrxbRlfUGGms4RADZq+5BGxgDl8ZWGIQNWkcP3GfSqkyNq/EGAuTgi3DKkIKL0NOzXmuuodqsYJdvyyozY3f+0qaSAfZVxepnGPM2J8yitIPxXqwBmVYsZVpliCS4oKNAludyZyM22l3BeCFsxy6aV1X2RJa92a0+MXXh5eT2bujfV6DOuxnV7PMOGUY33hNsJh18/lqxEblYUSpOdAqe/PWBPOlUqv5C13ilWrv3c4eGHNGMJqvCIGjox7dPBSzbu2cO2zHfEmXShoh1KXIGO7jItk+IN0uMQWFZAxMvsCGNJ5mDyq9zdRnQDYBNfgPhkX06I2UHBFESxJgHOYdJenXnix6SCEOxcHm85rskZPDNuMqhIWIUQvkQ3nQlPkK1kkEI8uF5gqywRh5I4ElDzRYRgxmC/RoLiSaLU9r3357Pp4wFNSBadkCwPp+kfRy9zSZLK/u7yVpjBUM33wUXJLTvFjdyTmUH0IP0ZuLBzkvi32B+IMBwyUBwW1p6POJw1YHbYkcur4Sec5hKIwhOeHJi2Swp+j/ls2XS0VORGgk8acOvSoH5mFzTVlPhGto+/0WrmDknZ2N2DcH+/vZ3JhSWD7bYLMzQPaEAKlIiuIwBH1s3G122JP9oxjGuyo/QibTZ3w7hjw2m+PlkOD+fm906ygkheTtNbP4yWrJdmGMAEnqsiBhOHSo0nRyB7O8AsardtjhtXAhkKqy765ZfMlWBtW9H2x7yHxEqhLoZFYEJevJhAhFoFo4sSIhDqiihd3knd0cS4SXGGRn51c0n3AT31Ev9rjxXcz744N9qLvdfkQDbadHNCbp3ZyfXYw5YyZPdSAbKnSi+hDipwxwrFlGKmrlEWQwwF8CV2jqhe0o7m6zBHZL+tHtYvFhfzhf3EUNtPeoJTJBvq3DlSlSi2jO5eaK2q9sj4zXIYzOOT7al03v8LOw96g7AAEAAElEQVSY4ZubsvJEM8b5dV2KzsXVzenhvoT1b7+/Uk1I/uHn68+mFS/1h1270DUOx/cbd9989fHmduJ5m094QJ/Onq3RnBz2FDidTJfX8lLvHnjwgr9n5zlu4vjgAI5TXkkSwMPalyvTIgz94KQt6z5WShwRJ/9q6u7ro/WmdqfDCeRGcteft55Z3lKtDgeDq8kE39rZcqHyyN2C/rAj2JyqpSqfD7Ngl36c8u2Lm5FCnY48Q3tivfO7u3DbqzV5CwLPMsdQvuAGCkSXRI/lEQSjNccH8qDk8Dgk254Rp5FYLyE04xdJeTZH23ylLN9T2BHiSDYmZRZVvlzI9drEMlFPG05TthWJ0t0ej0fMEiQPD87Ds52dTMsBc4yRVyUjrNZ00A8+ktlnrYDEUfhHG5VXqW2TG+XH/CK438REpALDt4iXX86C8ESjfiKgw0elGOz0xX5sTAIoS8zImxTybMbJZeWKu5Ff7ZHK0nTeKrURUZ+wXBIziCOvRIxS/AmO4g/kjUjZ1mVHBhDqICmYpf7C8ZF5kXCNfoqS9iszJQBWQERfJZ1LyoXy80HS7Bsei061Sdb7yeLnxDBatZcRUcO4y8RFx1WMLcEn0GeMWZouqBr1YfnAs16spkT71uzzMTa4hIl4FHUecCN4eTzseVDSSVmejOJOuqdM1IxWtCzJS6rEgC4mixaoT/0mNLydXLLgCm7iRsR9ct94nFYhvHj3+PL3/uP/vNvd+O/91V8eDq2l0S55MEqGqRCLJdPqbVTaIDCSvzAQ/OsmGjv/18+g1tDMdHDlcqJQ3EU4ydCAmif9EiXCAIc9EibGEJkA+OotPlIeKy2V4fjU866k2QwtjkE9EIczBF/v+hpz3yjjIVS+lvbLkoOB6jY/q+lEucnwnT1n2yGM1xwT8pXG2dAK7dRWPJbxo3OU1qywuY4RvIiMAqW+4wDsmDMZfrwOev3oVIGQ7YmDOHzuVnTi2FGFznNkqWWn0MpLu4iBd5dUaYTEuxNKMLlIPEYVbKBGZNN0EPYpmoUJ0tjcQhPxAvNQhFmTMBK6z6+trArCAzssqA6WBOkTroWehjFB7SS7hHO0ZxIzz8/ZeQ9498wU6eRtsiuupYPMVKcSnOAJECrFLJg/SIjBkInQTaY01EI6aF4ayboYp70JDud5gT0TF80VI68xB2OsmvrGqwkeRfSTxaR3g/kzY6MxE2NjpHk/Q1HUUPBeDF1Gb9YSIRAcedKfcF/0vpeQRGRFmCIFtWL9c24CCSmgmeaT9j2f92Ap+Xt5rGi1FmdiRcQdLbqr8dbcN1OQlxseTBPBmIZC0l4wcINE2EX5BuhJt4OEhjUi8/Kp8ZUB73ZCxjBsgkIS/hI6BuIZ8+Vhr3c7rQ8nh8bx4+V4qpSrfHF7HRl/IopOKggy3rjBtAoPNXwInuAZrnBHZFGmu9CZiA9SzFvlGpHnTCC/vFFRqE73wX8I1Sdj8l9EfIAPyJllJOq3ot0IHHILVnUS1LhTjF70E1QViLnTqBND076WgrpCYDz5ZENtOE1ooHIImyBTlM3ihqLlwnGYPWuiFsZyBVkmVzOoTSexXZEUaxglK8IJn+GUnR2Var9cj3+8uFF7x1EAttVBLJuTFXJ2OY5N7eWEOHOwIGklx/r4ZDgd3TnccW/odKkHtd8tD85WDzqWHqTqhhT0Tr/LYJhMpt6SoK+4kKImjvVUiLD33AkTJYFqG4NwBKQJONe2s9W+XcpKeqJ1lQlRAR9SJIwIOwe7Jb6QPeMEiSWNzUJtVqqz4FYOHtMf7YfNa66xZdW8IkaW9zI+xNXFzLdktZgS8/Y25/ka3BmmVkIy4XhjiWtlUkNzNSVIEWpC1visVv2gF6mYOJmqFMnaQ7ZAKh8v073J/5aQpOwQi+fhLkEF00q1qYKoQOSX62vg9lrdk6R2PI9vR8Ikx8fHAvBJSt7evL4cA8rsKYh+N13RJs56VEfDRjuzpO4KMmH5nxy15UDDl1QrVf9l9rAvOV52M7KlRjcygERmXxzA8GKvR0U4uBzUz9im7FgMj8f7Svivj+Zs7/Ac24PMRsS78fJk4DxOpnPUYJXDRdF5SGaewFfq7rNwOzu2pCroyfAn+aSYsXzk1HuEpWjIe9jkKdWmDMb50YQ3C3PtgfHK7NxF2xAjHTyBOdugHdum4srDvZR6vo5ezJW/dAZeo8fDGfSyWkZW5VJKReHIPd4DZDr91/Zkbuhsufz5N8dY+Wp0rRPsBwuD/SS1s9IhzTqXswQ4NTYMHFhE6Oy5K0FfbF5pJeaN06boRFTB3EQAAvOY21IDHm45tjp7QxXeXvQHA96SBgJ7wjlh/A8H++rKOzW21Xo9OBh8Ob/k1SZrxR78O67w7PjkCKlNJ/On1XrfLm0e4OPOl6sJZ0LMXvmo84szpXatKVg7sEf87nI66PTenQztZM3yDy5cYzoLXq8Puj20aRZJomG3rdB9Y2kd7A94Pwr4PDqhQ039VtveAElNsfG2MWcHSMjaMg4HaTJbQrHB2pQynsx9NWSbW9m9n8+ubAI+v77BI5323u99/UGQYDGf9bsdg/1yO0JIh62+jq7GE6tGg/6OjYbuEvUMY1oGQ/pBOWHg20ebOpIiKLsKbRNhVgM9KN+GB8VT8Cxj9z4rOs/ytAgtOxCs1bR7eyxL5riVAaK2u2UPg4awepYDo0RennqDPtdKspPqWMoL2YFCTKBw6ww5DeKBUKDgV199PLbmw+dz6LNDkXPAxqYzIpwJHXZwVnTS5SRBLuQ77fa76hk45Tqndu3hmuiGmAKelAXBCUdRcCU6DnJZSL4jXQin5Oi7GIjEbi0PIlScxSursxjrmUSsWVfoLIYOaLWqHY1kg9pbdDNyiRmGa/JAVBduiMpBaum0fgs8JFejgvITpxJreCU6ELOwAiPZKqLsNr9FQ4CMpe0qUykR1oi7eiMqhF4BiWdyqTQd8ajN5GFFZqZ9L9aDSWnVjkuGgdkNPGos0thHglOtcWmOJR7+zRddu80fKAs+PWdEvLWEAqI7tSH27zqeJYm9gvC9EzApAG3keSVfkl7PrClRDAByWzdEdaztKgCn1bynx1QAQZeBLnradcEC4wcl2c8n/Jt/5x+uz+//7X/rn9vYaj3eZ4A10nSZbwmEoTh4iD8To7Qmo/CWX/QS1ORW/Rr3IF88likI4PCRfA8f+NE+WKJXY9lAoB6gtMJ+hWS3a971G9PBM3m+cuEiGoMw7af/NFyK3/S4Ua3FPIntAicBI4CZnmaqYvBa2Iki8zQatLsjjWRypDnyqeJQ77RcS40XJr6v9msR4+kuAwBzOq3/kTftsIfx4+KhaoDttJwLyflfUzoAY9rUZDOYo+snwreq9SfhjYvHEI3b6i14MFj9oVhg0OshcLeQYoWiUXmeYe67it6asYO+optYQBtZcCbBGEwYcD0VxIlLZQoTIE5sMqtSMSOyuVekMCPwq5bQXbl2xoceMoWl7iMYm49lW9C4nY69lskKFL5DCciD+Vpz8yIFyKZ0XyQzNiP4Y9+DECXAMkgz+z4hA4JCnQlpnNmBnXkydrMYULJZLkaqpt7m18S/5QW5XNsRM/OgjYJuYAM9+tcHPLqk2dg2ySDKieMxoIu5dJ1xlhhhE1Ni7jYd5bpWGyAjbTTOXDbqmJukE4nhok41DpVht3ojI2os9cTR439mRJVsIzTjGe37tXlMc774EBVwGsKNKwYBpsM265CZHjMRhV43GklQjSQ3gvL+cKpHRK743wqeGxICP/QakRdDLRqN6ZCW9aOCXO2SkhTnFszwy/QDuhpaoIqJqV0eaIz7Gog5xhwMA/gLOF7F0Hm4nBZfasqA5QJuCn/mZduUGxrJ+OAq5EQ0lbMXCtRW0B2WdTGznFHHRteF/7Ajz4Tz5XSP6UB4qg8MINGPJsJseCP0pPI2cjHumjtIj+dvvML/guDba/dza1tMSH9ijmpiT3aNHUGzqVQKNWuf7pXZ2NzDPtRB4Ie6gDbo9m9vppK2HTFqnfDr4eHd7FliiMErOSiG291ljm+o5vPyJF3i8Wh4oPJLxTA3RFK367QuPrCdXjt7LaXpHSms5g/PQJI80siGwpfXq8ktl4Z0wjI5GsCAXBYjF2h2AtDejq1LEJcR+hdZGYcnCR1oR7Ri/dEYIV8oFPZEiLAb4Hkd/JyTw7567RzDfjtpG7mBquLtacs8ZfHFLEF+nKrg0b/cigRv5J2XfAsJI+LMVjjBfYCi/oe718sreQs5Eavv2Kn17e8+XbDupnfioVIAt7Y6e7PJVGIlA1SMlgbpt5Pr7wR3xs1ut/eyee8sJGsWUCkZIrkusJKwH/BeeX57W7aiCrghhUel1BnfYFT1WXYIn2noeLZIAYf4rm4svt4pByTN2klV1JU8hxQz6bZVC3myN3c8m+z3BgxfSFBQxX5QYTP1+8X7pSTAnQwNvFNfNplikEhGmmlZHOejc3k1HeWfXvZkjkplMfwbZ9BSIuiSdb6x2d5ri5Ws721bPYAfGXrTxQw98/wQt+d9x721ACamkmQl5p1SDlxJmx9arW5CMfcraSqcFtW+qjwioWC92XBgoJINksezpaw19lAny2OoE1r2h0cipjf22DoGeDyzS9i2CjW/oDGcYNX6cWM8Xuzt7NoNA+E/2oL68CDkLgCEdEQQ0uOD7QRbzBEML6tGtX6kycdAlaU5Xvc6HeLekguEg1bXtsOGIV9fbidjeV+mgw4d9IY8yt5+537xcHA4dKQ2dSXzyr5TWTRoWdSZEXN7t+hRGnju+fXP/d43knacSrz7YgEHt9i30D6/Xv32yw+O2bLcQapYvNu34uNoOSb5cvX+3fF4cTe1vlRcc7g/KKFPByzsoL24ukaASmTxBrOTyNbz2xFPwEKchGd7emTg4T3ZXMpiRvJimyWEYL+X69EUBSrca7cCL8IGZceNXV9x+Gd70vk5WMqMjqe//+G9mDw38bH1olaVcZBmB4MDyWBKNkkbI1kccidPh+R0jEUTaSPtE51VGsxawcNSeIKi2nCWllMGk5kQigIPbBQbrHMvDdBKircckmzfsMApVbu1tuPwi4paOb34ftvaUbmpFBf5sGb9yepEe08A4N1By2FnQpWDd0e34xuTLV8NbNolOGVyKb86n9lA32P6X92y8BlPaHZdwAM6rAhEdsj3c65tLJXYE6iFTIi4cSWBy5QgpD6iMjlaUQvI3pHsaK1qRLBpGEqpeZw7ET5oOhERMddSkARpQuaxVNzN2Cmv6IoYgGQQnvIbVGgaCwei6F22bwQXm6oulPAuveKBqBkQESbR04m8ApKyKMVYi3ByJxIUhPIo0bwSXoiojZJLiwl+k5CmyK+eYB8Q1mD3mIuxWmh9KRyV0lYiNOIyG3mjyWgibmcUM66JkM1CYAXFYySUXWJUACSc2T3esjNNpMaTsZwSfdQTueQCPMOVdsRT6CGkK47nOd6WeDDBDiJg0+CxllLxIiEDF4zDSGrVHvYEMoy1ITP05pD6jb/1H/2j3f76P/tH/00ut4LLMSa9ErdD56YNagCVdsxSzUyQ7240t4taY88FkzATJ0/Xb9h0C/6D0UxHEICuSvX44sngvJrSpbvVU9BeEq8aNMWSZOuZmoFMgSfSGpSlvXz3KUsi3Qb2PJ/r7qTrxD7Rcu5lGOmarUDbhULcC0aMJVu7dQ3OKFgujLcz8yEh4DWUQ5hrmYUT/y2YjPaMOeuZCM4c1fcyPNgZDAbsDuaaXWe3NxOrAVof3cylaVrcwzLqVwDGbhKFSgJacnI2sQ8zQL+GFuLEDoES/XtGrrYkTC5MqoVCMtMKC7gjBRgZaKGWF7IJAUEaJV9bg0VL2CepZb5jXqFUIcPYgbHAlC3HfXELy8mWWxyq5ihSPZFX3sR6cah9AlvmHYZ9CZbyN1dfXzptBKk+3n2MXkH93MmU1hy9IRDYOkqwNtHGTIYBhJdIwbQcftReWE+X2s91bZSpXySXXxtAAlUab/g3aPMJNBmKzguwTF9m2p2679XqK34big2XGUuBAbFkWY0O3HkjbRPNkQEhH1/ii2YobFAY0UNaDuk2kAPYO0SW9ZbEgPJA867HfC/jqwE7rRBcfqYFLyXqqzkkGfr0OGEY1zhwZOkAlGnk9VUt+bV3wixC1Dc2d6mZQ3u7K8ILd8F4MVJ8SWPVSAy2rBb6K94NzUgLBcqACN8BNgWOIwzRVtXi00mABHFhA2BBUuE948uwSMi4AaQ9CLUTMokKJt/ypM7gKXgz38DOzzJwIRkYWkmDma0QEOMojSZYEaRp2ysapGtG48VQVZmWEGI5CXko3Gls7H/87I+xQ6O3GizpInIIkSvSzQhfF6V6jBvR2lF35Or29mc/eae8y2qx3O+2RPR39vYsxH5/dt3t9e3ulX09ndnLt7vPNni1/fP5Yjzt9jpmwVZS0mfY3XNIM32oTN/hQW+HPSsz89GRU1a/WtPbmYna29obj1RdfdpdU1DrSVIT9FoVEOqSsLG3syc4E00Ncji34s1Rqe06lY0cb9AtBpG6jiGJbIqzeSC+NI6Adag2DzHLBefV2V6pY8nxkEpPCr0ytDsisLviqXsy29EFFIW7tARHJgmDomVXcV7NQVFOhbiKCDPhmX+0Ebcw4h+oBk8WlWqQo7yrDOlMQPWJZbn3zHjdBu7D3VTmOltv5+ZylA2OGnleOz7eT3fPL+fKuCykwexMXheaJYbkXaDX6KcNJ6K1sNfSwa7AcSyUc3CFTtRGd6DD9rZdtp6Wby8+eXzUYxXdnN+KckiVRuIb7XVF0CXJgZXPocKrFArVLZU5TPw1C/c77EVuHMeOaGGieUDJTfn5YqMwa80zbEwwsgw4i6BPKQbHpg6tDdzN7xCZJByl0T0WM+bx1S5f1E+W3K/uUKsMa8gCT6eXk7qNCd5Ua0LMhLJuI5df63zWdrZA8LqvLm95PoS3u3KZsmQRVSTGE2ncOM/mz75SlGHy2ZHkCy615wudH0ox29uSEsgBI8rbBNi2YwRQhwOYLH5tUC8C+Z8/r6TB1Hlqe3erHUk1KdcYDtG3DAT5HlmpMOky1gyO8GI9S4BBA7Y9oAWUhIIYpnvSZGeLd+8OYA/zMEihDnF78qcfj5d3d/ak94Y9Z+xKpCFdbFB+ib1I0vB8NxSEvd9WV8s8r70/PnFeRLejqOWjEBDf6bc/XjEZP54eejTbyhVcfXx1jsbHD4c3NxPi8npx50wzc5XTxqDs5UmcXnGn8XzBmbIApyAmDcfPVXaTE0V+jiZjBYqMk2mLZyT4copurp1ltn4w7FNUNmMI/cn1gQz0LQ46HEiZ2aMbfv3lzIEGlgWk9WMie1LIG27XwcnQOh1PF58Sa5aMeLlff/gIh6OrsUngqLz7cLx6WPH95CBBC48e25k4h4H7xPRf25FPbBCENO4iWhT3l9oDn4SC6VQmDA1oqsp9bjw/SPKLM4SqyGvpa3xICziz5cqEgiNHb7dUFoKnJ8tozmA+cniZIx4Uk1YOa/F4O3Zo9BJt2NAcvC1mFBUnWtzsIfkz2b+bwtIVBlNtKbp0zT5ytcaI5iikEu2x8GDPDEakREgwv5KmUnZwtK0vBItVjoSgUuBIzgn5mddIfcotIps8qVwCs1iKzSPZBh0VUv4AfeZ6LJisWZe1YpusXyLKsFcsGwomOqyEWFRKFI9BvPVmBrUQ3QDQuBB5pFFguqCgNIvF3HUx6jKfAKwJHfHSjZuH5lcdmhSyQYMehmEXNMKrTONvmlJXGgFVkl+jh0iDrGFahnJuCH2VgXhfp9VX9KvxImUPI1EAk4VJoM68BOEYqwEqFoGNm4kTE+OxsDxKeZteCDEuTeHggjCFXDQFiBo7/my+ENoxlHnvhDKkxZohYV+2/sbf+eM/+W71P/0f/DNfvxuokc/qMTJkA2vwEAjgukauK1cNofkEX38W9Sy7w7uNVm/kCagyGwipZq3BcZqFnEJBhI55zMAzNXk89iNiCXp9iW0ag6T6TO8JVNNB+tWCZ3RkwjLctBDrHN7AUmSWK2BmMwRJBYOp9jevFlQuxngp9ymrmllICbS571MU23SW7srOSwv5GrpN7xYWRK9imURpuigXNYS4ut8/PCHHE0a63VCeYtBWbrcbXWD1matbYWxNeZMXB2RmWcwecJYfBSuiTC7qKRQYSBsOyOZjUFCLesx2nsJnYtPZfsZe1GgWi9AnPeRj8CSYIdgyZ3CGUAST+CuIkWXKmMWtCoVnRDsp5x1LMk0V9uJHZfYhJ0CYtQzStr4wkaimCQsgummmma1QYf6agcT44zNHaKdwLQxmdBoKEYdIILvYJ+T8Nj36S8weGDGR/Uk4uYDJzIQyAxzmpAuiRcsnD3k02XR11hVGaB420gwsHBPyyNjCRyGFupOncj8TmNbrP7fyuyu5hzJj6eZJAaTgIPQJIYbe4DNffPyAh2oxFpf3QR9IAF2SM6CTSCBAA2AIZaYFnQUhv6PkNFQN1kCzNxf7e9421rXjNRL67Gry5XL+IkoG4HXHAmw+Eas0u5rdBXUsxcCRH6D1E/58QWiKeNK26dq71g0MTV9Bi5B/Igi4xjDrlaAgRmMhwpC1gGZMTvRX0252tmQBMw1knMGbL4X24FlrYfY051PT6L+QHFmHBGADWCQAgULQGU7QNRbvjaFF9STi7s0sMYTnyIDsc/Wij/ZRQeD3Nk7RUM2y8u6s+XDE07MwrkNCHl6f272B86Cc3jro7AlrjScTli0ZLR3AZPWPulRivyPEvLd63ZzOz2ej+72Dzvxuzo7v9/beHx/Mps4Vz44q2SZY7uw6BSqPkIZmwCTDPYt0jwxhw2b2yG2FSCFprv9BS7A45U1kGUk/xp38CpVd5AbLLBXaxrOYxb4yeykpDsFgWMNeOzi6NnIYaTgI6uBURlAcqgofmOIUjkvC7dX1REleJMUeSIZPJrAhSoZ2ows9VdciTCPXaBLT8TZJkAyXZjazWHMJ9blYy+sin9b3r+VFPT0pvmnmOAO3M0kXMiYVPLlvrT31W3sPMjLsBd7alHAf3cZc2njdi4TAHruz+R1hYruiEI/zg0U7lFERzHD6kkQJ3d7MeRN3qqt+fXp69/zEAZAOzZzdbW8rWPPDlws02hd2UL7QBnnFLp3sunhIWD87EZ+UXnKArob4QYfdfenzjMY7eS/PZletmx1VDpmKKbb48CgnK7o5Z+ZJxd7mLzLpgCwvRKlQfMJXxxy2Rt1N7lnJLAuxGJgU9BBqw7Syu2zVNH2D3oDEZwNlLxirndVWgpEPx6EETwyGV0n8HQVGqX2RV0shrsr6XvkiwVTFT8cUKD2kBGcJ3bVHZ7sRmq+z++lB7wApO1IN0ai0czOdsgcxKuPS/FkDAezZ5YXSODxOzo+DXfesw2xtOCPTKb8IYq/dmqqJmdqmjA/me+Ka8GDK1cYhorg9LEtrM8QEQ98sS1kybVDETqaQghmnEUuj8/TWhmUXdXhkjEbEU8UQff90v7G6uL4wL5ZH1Prf2du1B+LxjkfrYwraXy4v+BibePTxkfNt493sbrzbUsWn9cPlhbW30+N9i+bWbTgeeJWHoPxRb781Gi8vL6cI5+TU3oOV/dPWZ7iiWWBfbghiWxCgOFX9K3q2LC65YlfKu5QkpXOTf2cybFiXF0XbIn0p+AJjhhJRyP95HGsqR2u89He2p/z+zdf9QU8qzKhcypUz79Y2+u2eQ+us9J0c7OMRqCZL9xw+3dob9vq3V+oNt/E2PFsB4LFZMSCbHjasbjk5rCe1X1raw5NsNT3H5FekaINPQJArSGw/iVUChwpLPuLmy91p2ZurNrBh0DnZW2yiV86WdtqloK9aQJb5n5+sCB329y2p0QMkw83tWM46kehc5DLNsDRTiSJVtKezfH7gO1FBgkjEP0uV+CaegLTRZkDoK6cPQhFjgnjwhecSMc7kirSIuICqLBHTrLFCnvmWvM3si6WXVSwlpEouQy1h52cj/ElO9BZvO6ImGoqMI8rhX7N+9X8UFXjjHpemT/gBdjQQWyE6pCIaqM5zhGa9mA5iK5Ti13B1FGXsbvNArIgItuxfjLGuw8pLpiyJFF1rNj/Sfr0IrN/5D6CK9cyIp3WS8vRmXpRuS6M+xuOWKx5NiaTITeIt2zTZznR5PkAOTJ6N+VXi15pUKn6WqUQLxE9uzAUQUmBGHjclPSXDGzIMI/5AwVkxFHcCeqE40jxKMZeigGsQSf5G7Xk5++Qajb6pTPY/+ie//l//7y//jf/uH/3X/tKfg7MaYzmHBg7VQXwGBatBjhYzqaVA8j80w9VbsBTmYLXBJGjJiozCH23EOKC/YxUFAbgtFl6mJm34G5wZgCkJJ4YOXKChCNxMSaWpBIPuvj1ILOcbyyBGAAKrW0UhBR/xG6LKM0HO2xylhXSaF6v/0FLivXWheSw3ynT2a5wWjNjMe3UEpRCP4/IlhlNG1NAe0tK4GdSY1XjVIFrdztnn84e9HWdM2jYiP1fgQ2KAnRhezg6YEJYFVLWhcuYXEws1G5E5QpYhZhG9qhUYmmhQwfqH6ACmH/Z9/FJNGTViMFhiI1kuGjGduNFMBKNe5pomaoPwXPEdtaEJXBY6z3RDF3xu0o8QEnrLMmn6bQab+6FFoHg4fArpLLX7+6XjLDNVCVXG5YdCwOTJZogJKdZCeGPvvvGXpT8NNFQQYsCh6azo2BcoCsE0oEB+EaHRNL0jbPgLiprGdQkd9ltnG71PJlrbaYfbU0fC1SjSn2aDjlgkZiBhLJ14mlIzl5bWGvrI/MRdAUhy9lz0Pa+HnxsM5CdICnOBNrgtDydt1kDSPWwkHh+TF0nDSRggc+CpEKDYTnpxwUwRawEmMwL3rmRaiy8IjOGgLQjgCgv/4mrCEhXAif4qs41V6i3XijBNEOrQWlCZ6ETFF/TB3U3wJBf8ST8ZhIh+VmlCkJorIgnyfUJFsB2zMP6baxw/dKKGJswYl2cMSHuibIg4jA8gvxeWM+i0Wh1WI1rIDNU0edcYQRP5gA6tSyiwv7aubq9t+bvJXzUngrNsoyyMZdYKteYgdJ75LeM2eI6wolsZX8/rTy1bnV6kVS8OjpQSGd9cjVjVe8OOfFkp1JC0bRccI2zx6EwikB4eDe1KndouzB7f3bbH83I2UVZetNUAlPg76Ha3ZooGbtwu5CA8qvxj9JNpkj6cWuUlTstWa13CuJDvnaJjr89WMexrmz49xLFOdp6C6f2yvh7j1+Wj/GBUPCRZOocZypfaTTiD6M9OM4GEV7uOkFymMzXBaT0EID0kRbfCF1z3DeF/leYjjvMi/dJIjCC5mvcyOvXT729iyzRo1d1MMyQXTYdjo2jyel3Nw9CeLT/P88nq6mq8J5668XR5s7i5dSzxvTOzVvMZVnS0Efa3B5JkgUqmm6wSS5+L+4WB7tswIUjZ2j5JzfKV3VIQbbuV91QgUZ+B5WzVy+F3CuYcHuzbUHXr8NTZEpgOLn3/7vDmanLMLjfrGDtRulghyIbNu7O3rki8rHtRbTNxMxqx1xU2Z7FLBELNNLGtxaPlSBkYIYpOf9co5Fo4rTQJchVlt6X48d4CkBIo7avrcYqs3osxbFqjEL6lRGHazjC+B0kR98Ay6sur+eOxwSJL8v6F2Uidy6DQJvIAZ5I0WWXxN1JzwEpG5EvofeOVCWuTrlmVYM2qSCBN+aDkEvC5OBlr+/yiVI2Qe7qxmE3NC5jxgsVlNl8yWu5Wsj68u1rdfX1yDNt3y9VXH95zrpS7kM8k6EuNOBrN0oNVX+VHeUr3K2arrSe+q+NmEwkNJBjvwJFsGrbOAMJUKWIGbq3b4YYSwLOYLmkd0mN8Mz2WZbJnq8CWGj0AqP2ycoA6TE+B4eP3h+ruqbNh1y6D8vZu/vX7Y0lHDuuVSvTu+Mih35ep1vt4cW0DQ3jsxwuH/j59/eF0c/vlT3/1Q87Vlecgu3YVc2uxzALR/qCfHXjLl/H1xJ4EJrE4lGpFt9NJYxLhB3YoMT4aKZQ/97pBDGvrtnTAnVaOeOMq4KqU95HuYrNENyNVtoh7QKAovAPn47kzypZHtiw/2WJxiwDQj63Y7072Z4uHyWS1P+QsRtZ/f3HNZbeZwuvObaBMbHswrXZqFM08W3O0txhQUvaRzHw2jn58NDMCvY7LIK/NfyjCCSMgkpzDbMR+jP67OxuPHK7NLFZtZt1emm67jS8sJ9hYLFWYl8cB4ro646KbGiNPdoZMVsujYccuHeLGLgaNOU8eETv9GlMS3CSEkSpyxm8hOMgHtfwiWNc3MCZIqAOGAD+A2uagYouoKn5yzstL5WwPo28PECBISAvsV9hwgx9FeDA3zQV55ROXJCvTqJuk9p2uYZFoKcqHUHTJ3WKItOyKR1Bp4kqEWV5kRidXCk+5G+GoDdoimkMrJb+imOPTAsNjiCcP1KeUU57EUTCJVHRnkFG9MSMiHDyYfDhWUQLhekq/SW7QRSMfA4n9c9WLkeAU6xRBVJ6vZ6KXArEBEVAyMZ7t3gnwxuqK6InWmG6ZAsY2yx4YeVeb4l4RywUqjdiYYu5GDnsgaEmzvgaBGLbCqUGAKzGUK6D7FiwugzWKUffBJyvek3Gj/CqTlkqJbx/Xa/1Pv5/8b/69v/c/enr9o7/4e1EGYIXm5DpXEBFQrkVtZ1yA9DOSLUBBqTGWYZQQclnhlERlOCBoY/F8zWsipo0xAQxxMqpROxRa6IGEzABjRmc6MjWhNq/6mLVmiFAHi7kExEoR0WPuxTxIGDWGQbGKR6KM3nwD7QSWzGO1BXLdZZxpMANpfm2gNbHpECQx1Nwzijh7aDCP5Q4k5fe6lSF7tqBMmwEjzCudeauT1Hzif+Px/u7qSkVspfrWlD2APud1P+1kr7niH5gLmsy3pFirt6nykwys1PG0tQN64gYDw/zWuMRhgoTS22gZnQqlxQAlXneIKwh0aKX1OiwZimUuZAE5jJXVB9vWFRBEgdovnqJoIhCC8qwH+pqpgcmIg5qUzLiX9W6kmU7QxFG3q4jkt0VVJm1QDxNBEEqLeQ1mvwSrJrd4hMxhskheyGPBVlLU/KzHGrckk5zuYJKSY/Gk+EymMuSmxZBmzJjwRCY0ssIzbtSX5Mxk9mMtvVG+nkImmLdwmAmKxKvecVR2xRg+9KV9c63VICQiKLyuncJMvLLcjPUcl95gYSIPhWLtu01TzAAv6rHYN+TrogeKSN6+hAGL2TPwDCE85U/sZmOL9WXKk/Uew87TtsKSYxRy4dwzqZJ4Qtvsrj1tOJKW4i4WTDsgx4+arVUjTUe8AADnB5jwGnGlgnBZ5Egocjnj00b1nqCP34GRq0Q9MV58Wl5JCflgs3C6mZAlK0j7eTgILmnpf7+7qMWwV2Y6l/zgCEXwxeHIK5X8CXtcXfcCbrkHHiGG7bc8GrLhkIspQDOaAV5cJ5pGByE4fKBn7WA4Tdf6jPxVi+YfTk/tybFHMzFfVXITk912EjDdpbq3/QDbrc6vvj1HYWwgh/kynxT0RxrL+aNMA3Nvy19LvvLaVm9r60/PL5UrtKHupNe+fUl1yv5uV4/XjmmLEoQwuoKB9ai1o17XaVaxOXHi/Ur0TAofdcySFNwHjCAdAiajAIyDbCm23s5wpYSUyWFmlNtKvVKqHB82Z5Q44HAFgyjeifrO2giGU87HEhACCR8qH2L34mR5ejrMrn40gdxDQPGjwrdvE5XJcDNy0QxFRcU7TMzGxYbV6zbnui5lqSj5KdOn1/mTw1znEhR+8+UGxww628sEsJ+Ez5mSUnPkjTwulgCyR9MwGdyb93eHg6GVi/HSib8CGGuzu7l4vCa32lsHQ+vpDkYW7raymX2Bw3bn4nJ0vyGgnAA5flSthd2Ws5y2dXfX77edkYEPuQ9iYUTQh9ODT2c3ENrrdb+c30RIvyojE7Enw0JSO3/DlOz0O3DnFAADz7Ff2QfCtDK09mgyUW6ZSWT7I9NZYs26MMraK0NTIpBSMb1+59PZrZhFbx+jbS5myrhu8B03t3YhhDAV+7HdU9OC9BYmbZQOV2+bdTvPdhS4JAmyAFLaDslImymqJdCJ8ej4nO6eCABJ/RgL7OUJqTL6DvaGDjyeT1cfjg/cZpH3+0eSzHCVI+ighfmPVxTj5zyqBrT1KMjnCN6HD9a0dredpSX5Q+mA0Wiyv7+fqhePjyps4rScn2DFQRrb7ClLEI4sAHxCFIoeWrluq9jDn+EJiLijwK+OT2ez+cnpfor1vq4vFDtaS9kp5KRO/6DX7/d7O/f67B4dt/7k2293tg/NnQV9STgO3P7hy6UA/810/un8ygbf8WzMIjpeGzI3dnfXT3a7D4rbP7/02h08wFCS+XV2duNghdb2dq9neW5j/Lr++Wayud0ioklkO3acZmvS1pzxxQx9fpH9hpHsBEcv7EA2t8HGF3S4hJ3i5Yii+ZjvsuEP+5JxrSeYow8fDh0BptyoPH068v3JgaMULDqpVaSwptSmreXWlaMcbEU46bcd08Y3Xa1+72cfVG6NYd7e+9VoChR/hzYSPK5d3t8KjzktmCI5cgZvd+/Hs2tMyRJCZCLmNu0Ku3MVYJ5m3LgdkST4jky0y9ZZIrYYWf0jVhEtx8De8bPzS2LQKYYWQhcWdO4WaibbjY3ufvvj56+/edcftvaPOCytb397LW7/sri3/BNlRTcgsjUBEiow+QMEK2cJLZGOll8S0I9ejWSoEFFEFMGDN1Ep8ROLJFkqiQtGeLAtnKbW2rMGI+kZLCQ09Qc81EzGlaUQPU13cSnxZqlXeoF8J4liVmJDfECWk95UlE+EFdiYW9GpkfpRJcwo0T62c6kVb0WQRXlLHEIIkWP1dnVHh5UGjizzZqlktAH+CD1s5kZpqKi5tJSXE1PIJ0K14nMxMnWqRT/1RbFCkQfAE9kYkwcHBAwX05MfZf7SmrkSyAUFk6av3WY8+vIiyQ+EsooAnt1hBiZpkMmRJnLaQ1woqCNo1PloPpHlTN/UgE/UEwLhoCAMGoER2V4aMoK/BsnKJ/R0nmhqHKig3Y+X7VfHkFjzIfhloFzPV/+7f//vfrq6/tf/2n+L6NG4vsgW/2s/VmZ96CtyLwMtSzcwBISgAs789Lwu3nCRK7kdtZIprXkM+bBRou9dyZux6YvGKuTpGrYOZdBHNS2e0ERwGz1VBo3fCtXpL+4N8JL0nEmvaYWJ9NdA5sobAaDqt6TqIryyeAJFZG/Bnk7ycBlALofaiirSW2wOwIe02FFFTlDkhUI70krXSCVgeN6TqEDNZSvyii7LVNy6vL1WNzQVhF4G7R30tLij7Lj3YkP3sJxFcrGLrdTmz9JzTLGkZeasCaDVcW8ogKPtjtRWl5jULPZawIyNXhZdMkbocqoEyvgQRkEFG0iM1BpumVGJ46IM779VI61oOrlEHjac0hAVoJo5julW4w0siCYITyVoB/VIHL1fOYxMoMm9WGYmPS/GwM0cVQshZmMPwjNB0dDNA+6GzIqGa47CHeXBoTesFO7LTW0ZECuoUijTQpaG0lpuFE1WpxqOPAFh6KQ+ntELuao1ykgvdStIq36DDQ82ffjPb3qGuoAZsvJkyQ1sVFMTOimyToNVQgcI6QoCyNlqPoKpPvV6Ia8WB6ov1yJMPA+AzB3EFEb84N3DTEZVlB/zvbRGAyBUOO/0dJgqchTt2bXCKqYMeHqP1IyLn3XOBCb0IjGhgicpc6lR0x2ZUPyIRIsZsxQDn7RnAII+/4qw0RckIP2cQw9EKKc3QObu28aeeI9eboYeZgeF4QQRroVXtRni0SxkulLoZXKl3fz29rovJr2mJuxFCU+nswF9uhPhCTziEXtQ6lmYKHUBdYSbESNuDySdJf1tPN07Y7TV2u9QbXJjpwsGj4rz6+1+Er4ZSPPlw/Qm5+kiUqrcRF2Mbv7gq4+iTtdjhsMTa03ZGFsu1fa5ms5kKBwdtKW+G54AkpUJ0booxO1XAcqD4V5OImHQtU3JzvnNzD7H/UHHfj0jpiLtehUBhEyFB1xKaLWyvp9flJWDwBwMJdFdakrO4QkxGFR8eNMnXSLxgUzsmsUNKRVSMGy0C/aKK8S7ZWAcHXTF/lk7AxnOm7F1Y6RCL5QjDj89XNhJo1SUeTUZoZoS3sRa9FnUaTQWVokwR3bRKDU1qdS6OZrdyEu39282nqiUY8+EzIdU0ky98vWnFUtCxoQjV7msvLKISyasnBiFmMTLZJjA0sRGzuWjwPTodgITjHxHA9ytViopHzlINgN6HrS6v/7xeuJkhN2tk36XGACG4TFYUYm/cGqMsODwKQP5zbdfEA3z3aTK3ecFGvNssvAdOZtRo7eSptwS0/Xi7saOrJm9pAo+JM/ewbzLVrdl3zab+mE1E17rOnt1uVRiXomO/kkfrxrFYOC41F25H1aKIosR4OqB5QqzRBUDR1HJ9q61iO0u92acetKgEqNt1nSEGOETdk2P3ZzSUZL9n9PVHtek+psIqHZszroT0+zmUAtyvrGj6tyDdQrhcXt56YuLyxtaofW017eigrEoEfYkA3lrY3G3kuezrcqoNNCtTadZsV0vzi4thggPOR6WncePgiUnf+E8zxsvXYF/hPpJhW6nZ8+CWVO8SDkdqwEUEK60J2+3oz4Mp2JJ6Ijr64aKm9zdse/b/f506jzfOcOT3Hm6e5wvZqj8D376tUk3Zds7DsmyKfXhmw/v2Ltfzq9NZf9992P76Mv5Vehnm9h8nSAqNXAeny+uJ/G3dyV9iUxvTJVSTfYR9cytunfsG2vbSRyS7Z5e7pWu56tks+m2Qp9tvUjkIqYp0TBAUhuTYq45+zTMk5p3iHt/2Fco+N7JcxTq1tqthbxvn63tyDdjwbPnD3vdCz3Js6flLHKrmyXTa2PvNna/KqfcBttq9ftkEqeTxc3NlMzJ+aOLFSgkppF5nX7PWgKHy1EMt6NbHi/1bA+G6P14NO3IUrTLWbHRLY77Csa4KOb93mEICWJheqbAi83AKNwmBwWvEslYt40cXW/epTYwseYshY2Li/uDwxPnEhnw4/ndbHyVZeDYn8mpTIB+Jvsr5hfrws4EI6LhZkRjleLhyZhnbB8RUUKBD+xX8p9CQxrEBWIjRhp920iftEa0PjxPnxdlLLFIQAfwiCY/RZqjUMSjak9RVKORJBYezg1cUSXVbCkkj0WFR8Poxw9PNxYhrYYQfGJHUlqNniC1PGNyE8ssq6t0tjejVgOtP9FGbBUaIzsmvYs1MsrYxTF09enhCEBX3qxzrwROr9fFjAggxhsApM+x4BnKddcVN9MsNJVmxeABOtoUzSTjNoJeMmuF3xBRYwaB2Ys4XkIgokCwUEbSp/RbOozE5qSxmT2UxxIjiECPPM8Q8zTxXMrVePxqyM38hOD1AhwEYmaxm1FrJSgBW7hNpDBDlvi3vb5j19l/8H/5zw3wr/23/4rEtQw2qyVJPzAK2NG1u0FDJrbpKGoJCn3YOhFfTTzV0MvEzw3kGA0SczAU4V8SjRiIUT0AK1sh5nL0UdCRlv0JYtJmvB8tJ4Ydukq035V4AiDJxKZ9D+Tr29jTTNO1Z91JC0WTrte8poV6vaAXDjV9iD9BtkAYCvRAwdGMznUXCgDPVuNeShuBMHcTeox1JfSa90x0SMuZIBaC2nZubir7W+VHLRIKITmmxyLgNoGEv3I4+EbPmejkvEARvG9hnO2wGwZPTDdwxxWMCssJTage35mRMGYBFHykmGOUCF42++mfFWWdB7WAUd62RxCJcv0lHk0ZYBF0kkyL8YXaGhMQeXg3I2mMdXCgmmrcReyckeLirCFyYRxVYW9gCuh5QbMNiogOiDCLbqAIL/DSYKzQkykwnaGetOx7FGjmIUyBnoJkKI0Nnd+jYYNYVGuQGUgmPTTjGgOqPnEFUUjdBWXu1hDMKoSgyRizIZ4QNki04XemjssxeRiOcT41S6oYedSxJoCAfCIJm08xphbKPtNOes+vEiaTwkCCFSG5EXJKd+ksZAzYxt8ICxs1M0+noeMaZcYYwERd0z9cZJhZBoBYuNFxcKADzCOP9+Bg72nDnrfV5a34I1hZ/nZUplS3MGQwk0mzCbPMfYxnmOEW7Jw+3Y257nuuFgukRBJtGOTyA43FQz7UEyGjFX9dqLEbY+bCqDM5cFDIgag0DnX1YhBodvJiOLdaC7r0bizBBiIhlUMIZELNcFZ+vK6ey+vV3DG9ydSNxANL7PwSE7AaWBKzNlma977vfuqXrFCM0StXo5EhKx2py/enA1kZWmUK7nUGG+ozrrPN7rt9Scw48vEPv/nAvrZXDh8xT7OjVcfrW9fOR9rMiqtqhDbwT+/uTvZ7puRiNKEDet3exp3k8Pag1ZLxThfLyJ0rO97uoYuHp0QcoZLRa0pQg2xbJz/CBmsEPc7nI6hnU9FNsUKrxj8KTj67UnvhBSzu8S01bIxdcruu5QlEJocH/YDNl07iCOuMNcE4ZSAcyiF/wXax6EyU13ALNJcER0ThKxjPtMNqkI9xiJiEjYtS4THTgJRJn5IEzhvHMXIb15VGsnlZmbOemoa25q6vdXsqVIRuLbDY+iZUyXownOvJda/dZ+QqZ6gSC+5CH4+PCx05J9ipSWJSFLIz2uPYrb2ciGS2u0SAw6Qu7XTPFh/RBTk2m2c3twrDSBkiJVh4c9u21++ZfUhFxXJkgHbEmDlGz0+zbKzb3rRP3thwFhUYaPhtW8nAuRpJMFPcxtKC7JQoh0wVM25ta9DqS9sw8Qwz91ubO+pG7bbWF3JTHmV7rwbSrGx0tmshuSwP0iMYyaLezA8iWL4TfS8DBGJv7UKdzZmGUGpdJJwdFiXnUi2EYepJyDdPGNt6nnkmoiODIvifd9V7WS2V9YFWdA1sK0yU8fnldQnSGF7TyfT5IZEY4XnHKBwdD9f21n+8vGI04Bgx6f6+nJOUoCI6WNJYMfDgZEs5VpBwGMPwqQ4VT8hBqGBbJU2FjCRZOcQKVOhLkFhR/MlsGrvrMfWwnDcVqnlZu1XuJkeibV1fX9tFwGGe3M4QAMvSZmtujd0In0YXHj49PBRpur+fAnYaH9LGfOsPUo92f/qTrzkkFkY+f3s5HLbZAuO7nGdsE618k7S1+ShRXjoZQbS6nRp4y6ENUllyS/bs5txBPM+7sEvwDYab/Z4jk4Fzj3hCFwqbrj21+pabSokKGikKtsx+PKo/xyY4OIMXuONwiZycihsaGvh0MyE+Tk/3Tfd0JuP/XZJdbT1/tGvFSeBr4vHEx6fvL5iznAplN+XY2G6A3b5c3hrv7k7LmRfW75QQkt/v4Gf1XqY2jvNAbLbdaTnEmjNwe3XLHWUk2ktj54mMACsdrgtCgKbJEFNxDKhWEmzxJ9HC97yLXhsYAgzz5VN32L+8mhLZOapqZQvvs0pcFj8UYiJADJmNiQA4ollr4Jy32oRAYlfsQpNZ9nFUkrR4Vhe1bVMRAnWp4e2orqxxu4ahPB+hYbvCysnB6DP1PUCF8cJPMY6JapoMjUU5OL+mCDl7leIqVJvJQAZSKhvk42pUb8VZqWotUNtYFewRLqV4CLGoibJOPF/CSmZCWUEworMyOGBHg1H5Mk/AV//ADxJtas1jeaAMUA1qyUOBAcz18ZvWGjDSO3Nni42OIqL4neWoXFLY2eOl3jIfASz/pVYPh6USgtO5pqJjcwsM6cybvuQW1AcXGnYjDwn00hQg5Wl4MklNCYKWng48HvGh2CuRweV8tOwnmtFYlHShpnmSttAJHcJIDQDm1zDLmMO75G8RB5Vg0tb/+t/8f199Gf1b/8P/jtNUPGOkOgw00SO6ztdgOHAnoFraNwokeAjOK9RXKKyHdZgH028Ut/+1QK/UNc8nJGzkmfSM1yx4gafB+uHwxXJKC3ARAzWIy3AJycARqysE60UgxdgryoErj6WnwjYwQOt7kjWzi0PbgSEEUN5FOsQgZfQ30GZ+yjhymcZERJmqjDJC0oCCwEBW48lPd9OkW6Ys0d9sEmj8STQnP0+tY2O5VxWDTbWY3dndaOf+Tuvx5uYKv1kkhjviSPa9vlUgKY2GL01BlgVEmjBESJKuy7pQ9lzlnNIIZV1CCv40pno+dptLGaTFRWgWNQCYsINrtHANMBTmeTKTkwgpWBj8abCw52eGqaEwhe6DcNgzLviirlCAU0utrGKoTE8hIEiv6HuxduHRBbeC9jjJ4YG0lLlu8CfdA2pdhue8HmekrEyg1O/erncyOcDwi3czi6HBNJ6v1X9NX95Jx/WaL37LFY/ldixR77Jk6LI8Wi0UpWWUgczdjCVmq3EhrICOgSMu3pbCPAABBuIxD8QNa/gXFRWVFp+Ga00fTNa8hCw17q1A51/5LQ0Q8czcCf2HzvJktojkPBYPcJnTBhiSmQtyhB5/Q5zxdF/cN57h5c2sbDEAx34P/iM/s56XrkK3DuAhtzUUzAMhhqW/ptVGbp0H/2YqiHK3idDrNxjxHHHAVIprk7nMWiXpTj5zrmwaiZDJHv00l3FkUnSaDgJdOjRLyAhFA94FUHk4bq3WAlX6zfuoNx8/19VaZyUq5CMIa82a/VjzYgO62jgZA0kQZ62wgaGLhDJaLqkc6dWTvVg7VDCO/HB6yCeWvvvETlYRT5aN6Mze5sm7wXK62N3c499dz5eIJYspW5uKxXT2WsZ0v3bPqt1X8x/oO5vdTbU5dmQIW1XDLXJD2vhwc2tSm9+Ohofz62vGJj8D8Ezf2IVJvSavSeDoRwH9HVHOnED1LGmDgSsaLtfApgJoSiaRn5kTqX7Oh0lmuAgSQ46daWR2E0E+roMf02QyKOmTw30xWZbFgdCjwoxVmD4rABBdPzMnmcRQUZDsZRMQcvRfOEQrmfUSW2H0zE8+0Tc0hJviV3T7E7t7wqV6bQ32JRtx7ttbuwfDHuivRnObZ4/aQwudx/uHGhXol6nxLImC+aHWZDyIHKkGdxKewCJMrgL9QCT74aHmMnQeE8GJWHIF154Typd7vVCD8qnd6jLrmG1Cw3wdWT2Gg8kODnrOfM2cUp7sqtaOJCgl1BVtWr9TGFS3MQRsMoYK20kXr0+t7baDuqRekYwSaaAYfEbr7GcZKEmJacmR5dh1pVI8LOfT2xVHHkFNZ/eH8uQdieXoq6LSg6MDwC8XcykidMyjo1tT8nLGaUP9zC9YTvSytEKDaRF0bAImcDk3wijMQzLvw4dmQSgxwkLGkTq+AvYq0sjtsrsC5wgZ8QrCxKImr6/MUwy1qkOvrANNZivZTBzKRLvv7+fzsgmktKweFXnfsjySSnDJyZrPVxGbWY3Koa2kDmgJBtU4nYYmJcURehCCkgSbHfwgJpmFmV2bkDrEqV3F03X7CpzwlWPVIHbYH6zvrC/Gi/7OMMkMEYySghyc99xxRsHm2g9froSjBt0c3sw0V+w2ybJOAu7vWZPjiHz8MHBC3MX5nZ9qPUmywW8jG7yXC+ddy26iRAX7OWf2XDw93Ct7avXp8ubWepx0GgsQVp3Q7ciJfArO2ty8ZXXAwWRcOUbn42h8D7swb02n49wNwfR761YvDhZwgLXisJPFcjSZ8vrfvT/+8mU8WtwNVdEZz2/Gs16/9+XyEqKsv71/v28zz8KBzK9P5xeXYUH7KOYP1rLQYJa9cIytL2SKk0EfXmwt2tu1wedVg5L6aYqvP6oUZOuPir+OzJtlx4xSqA8Pg/0elrVcQ3wkIfF5jZtkYw/aQC18lOfVMxaQzMQmsWLAeTNlXDKRJ5uNEPPRUfug176+lsxGOrHpMsemm4ri8ZgsQTuEmWRJejr8ng0qSXVJyn7J+jB81B69hVsJjTIDIpJLgJAEtfWK9KkdtMR4JEdFH5mqBIqO2AdV2igiBXmD04IsaxszRgg5b6hUkT5Y/2XlJ8Cm/bwQ/Y2vwRELDzR1zZ1GscSYi7RqAlp5rpQk8EgQNN2omci36LmowDRJE1fH0TppurkYQVdXkGIGDBsRdxk+EQk5mVsqvJ5Ol9STT5mq0W21GYuk9LzfCE9tBGGxQUMXfsKOF4gYzO5Vw7DAzN/PMBn3xQIZaeCNnUkI1P9ktF+A6qkoe5MCjUAwXl2Hkgtb6VHmpJ6s5Nn+mETkuGeWv4iRDCd/FIlLkdC8m9DRWywWKaIMeK0MAYZd/IK//5/+en+/9a/9S7+0Y93ImhmJBQU30c2ACTeFHowZOAkoJmIaGCp8XiPJdESw6LJmqAYVcNzliiDIGm/oE615qBmaZs2a1SbPZ4CxJIhKyqS0VWY+hFBTmp+GljfK8G1gBXNzW2cAg3xN+RNAG/s1XxiCb2sLme5YWYEkbzbKMJql+orVg3LSpcfSMuzpNTSVfrFRII/WDpBwAvmuRt7Hl46uhZXdaHoCzU5fPrgs0GcHc1uoPD06+fJZBtYdNrenkC7S8Hw9tUZYD/hAroIiCgIdoQOTWwZTsKd69UOCshgRqMBCfaF2+DWL8V2a8HbqRyE8SQRgwpt5oF5hi1CjLCQkhLRAShhqxPyyxXQXCxtOa+aixDKXYah0F/Jmn24O97rWruWrGiXseiow1NQXrtg/2XEe2giGy/bNr+CFNrhsbGLfCSNk6b8Yu0GbzsxaiKDw7HpsPbjOB1w4w2vUGbInPTRfd/N682IAqGk1KF98XNEgJGs1Grm4q2kzIAHirW9PVjuZbT0WSJD2u1i+zjWlU9QF0cx9/6e7sqmM1zTBl1/BlskKwkwQDGguYqQgqREGA0xD8w40fQQ5RhIE5b5b2WNTeICAeCOqx3nFPYvedh8eDUmGIyz+5XKkl+Q6hPEIoqy3AEyzFIX5Nzgfv+I4jfsNHIQYPFAIpDcRrfe4G7BB1uUv7ihiCEhgKTIwAJs11emKisjskOeZAq27UhMd4oHwXPIv/xXCfSkGAwzpmk86y4OF/Aw5zOXXwGr5WvmNYQdNdSTsilva+krDeipeLMCyLsFBtboV79FzrrPlpC0Ifr073FemfLEhqffph7Mr6JNW4AhezhLZ2umAujO9mO9sbPYOu2ejkbNNjx2P2uoIMg5trrNl7pn1svPuoNNTJNSeSlt26Ped1/2j3sWvf3xQ0Xpr7f1Rl3l5O5o7Ueeaebm8V3heFI+BajcmWliKGr4+qWVOzDGoAC6OSIPHY3rh5LjNGY2TwEhWoBx1QSFjScKPK5TpYiZPG2s/LZep2xtcxZIJ1kwAe8aCAYuouYVIVCu5vp3U4ntZAGauoZhwDzzVJ1PbiLniqXBHvIXCfhnWmbU/k78UyOaGfQwXt4s1e23ZMY9JLJbzvXy8++3Vhfwg9X9++tM/+NUP349Wz+vThWkadgeK5GSFfdMuQyFAsyPFvIMhwZWg/MNqaJdiXFzF9O01VL2RI5ttUGLbhsn6lHx2dTneaavnmJN3xbBDCM8p8optDgadnEPMnQ35Ph0Pj+W80/m3kvIVqE91JMp9c7fbcrr0Dz9ckFCdnZ4QnkquAtgkByoQrKGVeWQkanKzJF0QW+q5PTx9kW+jVErCZoTwDt6wtVnOWImFrJqpVsoC47AtQW9C1tYtFLDV2HPgYZmaLxk8RowBqNuguVRamT5W3BAqKCQXOVTNPoRpW+UapiSyUF8IHsBRKsz8cx27XQX7nhazmQwWEXpToPy8sqQMLK7P/HJkhpnFB8Mh7FqxYpjYDBsMmeB4oRYt5Gdt7/Z3b0dTm2IflJItgQjVbOWV7dr0cREZlKSQlj3Kr68nKvM8PnCZ+v2WwlWwJ4ZtB6qGp6Npt9/nhP94fi7tMPuxd3c+/fil0wHhXrfbw9KfLXxvr/3s+BTK7L0+VyR7PD/aVzi0I8FpNsmK24/n1zQXljo9yis4aTnJ9uiqr9MXsJ9Mb2VGZQ/vk2pFbcLp/OpG5ph1F9rK4gsit2Zw/3SHVvGDo+RkJxGqUTuh70TO4GfO11Ji1WKI0zQU7jzZZ+udjSYs5NFsmVm4mXHl3h33meBEJamBaWXrW5JylsN8MRf+6dqJJRMu5bpydJfVgBCkajz9Nvjulxi+ZUno0fnXrHlnN65erXT1iZMdCiP78wxZIP7xzqnV65PUwF0/POxY2SBdnXBMFPJ49Ujv21QzdfJXp2VRBbNIkoMWzqH1LtEfJuPJyb6apJC53+0SN7wLhcmREFkv3C8kQClIiSNcECTC47qXbtVM5LgFFgOEH3jzM6oHf5LBMeBypbGWcrekrqUzgoxiKantvgeE1r2QCFkkMqVQ1nO9GHOo0cFkmX6Q+1svLKl6OIZnNEneiqSL1KIzGwDKFIvIiq4ikUpZ+I3bSTlFIXkYpFEtVEnAtuJvo17OR6xfEybQY2maZAMSgkyiGl3M/fQb/mgaTmRIM65rPwMsVgdeHqJzsq8rp/OiJHPDonYRDDFZmBmWrm2pT+2BtMCnoheJXGCDIQaomu7CQjIKrLCXH9KowMawAQMRGfw3wr1kvF7gywMZDqCZl0lGAluDn8aYsESgl/ghAAufV0KLLgI07Z4c30ihhG4zY1k1ccm8BLCQgWYNytE0T3/77/2jm8nkf/I//msdvcSmyY+gIsoDQ9BdQNB7Ivf5Vh8ElO4KG+mAsVIGH71rTIVMbWiA0MpjwUkzC7masWghwACwMdiqz7Stu5gvGTVggs6SZ5mwUJ6bGRMoizjye5oyJ0UhmZXSaLzoIpbgJBMHLLoJHN4rf68wEFIxEAh3K3mv9fFEAQAXIImEbB7TuN4zorRRvxmOX/NLQAtsQTJT1Zmu3eH+gcDDarGQHGQbkoaOjg+7z/eL6Wz95V4KAS2zPWzx1xAOxnndszxtIKZN3bTsDIb1JmufpRS7DiPYAZXkGbXpYp67Bvn+ogGBxthoaLo8QHgDufkgeliKDeRWHYAZ+OPeAj748mlmMMPKPzDoJKGiMlDW5ByodGVjVG8grZcU4vyHnS0q+tK0kAkscgu6YK3hsjL6M4OZ1qzKGqrOgvJs4squxyC05hSVN5AEMlcKFCAgaX1pMrZEyEYP/EaxiVBdXmkCCrBTdK7l+Jnp0HRnAvXmm9abFryii8BUBF93vRF0uVIvgAUv6zZix6uaqC/5Rk4XHaURryE8kBaZeiYk4kksoFmi2MMEVEABR7jBwCO/8J9ZrJEmIOLjGb96HynizcYSdzEtGm/mUbrDxvFQjjSZ83I1YZ7EvTFeYWnts2qMwZ+wafwHP0iD5AdGkkRoFZkXupCW0WnZqMOOsJEpy3wUD9UeD+gN4MEXuIOcWiosmMyMe97LS4DMl5qdDE5XKEO0AnR4uRLGiunzGPIRhsgUp8vytSL31sd3D5ejGZPG2Ra0bZqI6IrCgE7xmTgxka6R5xk2domluFLe2yZFAScp89cTSbtrMhtNieL55HJL0kqm98FWUlwjrVcrjosyT722Atmv9h78YPVedUd1rdd2zm7m4nfqaG8+vp7bLTrnk+9ICj8a9sQ7F49PR4c95p9uqHunAcjhk8ZCBYvPSLh9ZYw+pz5YTIjHB15riEfhL1bF46MtwghaWBiTy1PyDJ8ayqVvylJASio6elJSVBZ2yIQobwMlErLA8P6ov1ouoFdew2DYsyavob5NRxGNxXjw6p2IyoZkIwXCY/wP8x1azsfYE5FCtfWWN0KyuBWZkMjgsMt19PBwPRrJGz486ne7O71O79c/Tm4ZMeG0jT85+8TI6Lxsqw+lCLWQMQ3T7rV4TpP5bL/bl/IsmyV8kM00NtqmuL7MJWyg3KHEGgqKucO48YCTVonIOwumne0MTHKOxYHHp+XiUb5+BI4ptMdALZnVvWT3fTUm957Zde2nljUaife0sOWCYU9w9OVmPHYIOvOr29tBWc80sJSY1p7qpaIyKvmwRF2zFVMeElJh28/5Zg9PwjPoS21HpuFGJ846KWxdiQDFLMLVUMRRgy+GNtUhi12M35m+QjiRSim7ltkioP2aUCvJ+uL8FLF/bl9laBj0TgskxPfObguKSqeYEUlQO69Od9lUumrHab6r55DMfobaUs7y4f7u8mqxf9gV3LmdaGAls0SKp50r1AzP5GU0jTmigSi8V3OhjtjlhZwTB2XvxvXgAsk95zo/PdzczL3sAAQE7kxLxW1sFUDQFgQSHeTPtNiXDNmVThzgBV3Ymudin/R4PO+2bH5OaovsJxk1h4cHF9c348louJ+DhAeDA6zL+LatFhp+9pOPk5uJjYnWv84nc7rlbpk1aOsDPNfpSG5UjvMbDnJg34XoOz+KI4VyXtdARVSdnXMqIrIpOXwRuc/3tSpVAVcMxt2CCvymBJ+VbmsdRtraa385OxcvF0CjVlXqI3ccMm2/zmgyOj44kExFaPX3Bw6mEDwLs728yqci89XvtPdI2H447KJP9VXhmY9UHPR8dzczpzay6Ov0/SHNMh0tRSOG/a5CSSbd/hDnNRjF5fXIfv357QgT8j8jIjHky7ozHrUghcwSypuge5IwoKKrY6alQb/gcKtPSxLiZdXhC6qRVgKdL7B/0CHJJT5dX8/YsLYDedgsIzFMTTUyGugS3sGb0pJcVLVBQpDRLpBBqCYlzEz7NZpArqmNLklgC8fyVBknRIFnDB/YrlB1jeYrNUBoRUBH9JM9JXaiQaieqlGNigRXLJXgFZdjEcR5yJ+IHXMWU768DjBFczQGKBhSMj/2Ih0cDaTzOAA68pw/UTSlrvAmKVnqNj/DQYiDdCwrRxvRE94i1PTFSEoeSH6N6LO4YWjxqVgb4RdNR51bzmOrpYWE4StIH0sIn+MyUGswsdXorZz54D3DLMVHeEb3ue4p7EbFGIj5M78AQyqQY15CvUFGadMsZEWymRpIorMAENjKINCUV3ClFtJ1xpgUZx3EXgiCokExMqmoWc/bZI38NBItGZx7LhFQN2N70ca2KJjtnPqsXMyWKnr/0X/6pd35v/4r/+w//e74IBZfQ6EinXy5DAiudQiC9A4SYAQcVJzbueCfWwakW9LHVSPyNTBGAQEsBgRwNAMDvmQaAmCNKwolE8PRqOF7pVFV6TGUEoxlWo1Pm5BTj6VfX0JbZXYHyMx30IsiwZZcoMx+Nehe9esxXWVkofnKDSOzM8C8DcdBu6EZaxosOrG+lGXqyqc1+uCBuiuOqKFoR1fVe73mxZf1Xm8wG4+Nlm9ijXiVogtOEsZXysqpd5YNIQ6XJJxt9olTFqrfVUkQJMGI47TjaPpUXxlsLE4qRlgnA4MUGC7XFKD6RFwmmG4T24K0IBVVm3ijqvX2JBs0OMEQbMQisHorhAINXi9sp+1M7qb8VYefrQ86m53e5l7f8QdvJmKYJVzpjWJPpY3qTMBYsTAcbNQnKAx6NQiQfA9/5Fc/USb8NQ8G4zFT38bVTJHf4DYguZOoZZPfX0IgGGhe9VRNFpu7BBoYAlfeqT+s9vBjQnKZ+D/bMxAjMJjWgcZ9QmMkT76GfoQHNJMB+B4Z4lsFWGtfql+C9kCdZ8roSn9oJ/jOPFpUxOHBR0NafuofwnUUskZFZGCovdAdHvEahg2n+MKi0Gx+4qAQiENjNob912/W9+WdOnKJZUKkApc7yII0HO5JUQKxpoGgOi9WjKMcjUwWgtA1FtZiGdie8X/qqqEBcoKQMTbzldksoDOaDARCGv8tX6DUSP3VfhAbVk04BhaMDWZNsNuQw071GHiCB3SpMY+XiICRohHaZl0W/n5/eTLsog5bIoMcJOh5HVAokWD+hLr8ofLRtp3DenMm93Su3PaaHAGocCapdBImAFiUF13OVSM8kNWiukoWL9iKrbalfqVbSNPffL4kKMTmwaROd0qLRpVsMu5//GEmp/d+sXx/2G/bbw8XEPXydHY+pu4ZU+/eHX2+uBEjg2fZCryRDGd9p2K9LLpoDcv3oEJjMtFFDOGEjaSgjeOqYigiwqKuEsghdUkHRU4M94xXvMZIiaQWxldkv9u+HU+VG6mDO2F/7Zd/9c+LwwUyP70fVOX3TBiyCSWVoi2OCF+4Er+wmRldecs7eICkR25mZUNs+/nTtxdaUacem2t2Ohkf9gZ+o+AZWTZUxmR4eVIhpt9jk2/JoVHhSDlIxx+QBdzT1IFM5fbXbqfPWman0zeCe6w7c5Pobnhvk4FbifGbbNb9gyFfSk6GHGuwCjDTr4qGwsPFzbVIsfC/ZIvH5Z3Uyk+fv7gp39FG3t7AmUlbdmEK8NuuqvCFPboYUIc/nl3yEBijEMstSR5XmG/DlAsTKYWo1rvkIdYQsmM6JrXGcUpcreWd5H5NHR4ekoUq8YRQvJaDG7QQzLLREVwUnTqPNQzqgcdbhkXqP6IwH0RvocNCnvRivC67g7ElgYerQ0jkxNenFEPs7LQ8pqNrWf/qXab27xq3R7kb52U46RjnwNgsh/7uTEaSzGUk3eUgp1RfSUjGy6hFp4LBl5cjcSKlbLhNFRpGWC9qtvIN0bcBeMyLuJJ9c3MzDjjWqx+SyaMN+U5ue3XBRVD96XWj1xteXo1+/d33MeIfXr774fOVE6C3dj59Of9y8cVGXlb+wH6Kja3vP9/85rtL2VrHR0PyaXev9ely9JvPn+8fljBG6kgotWGC6e+gbQUmTk5Odne6xJksHsSkrL4C2hhJlMyE4pnKjYO5BEfhNOIJSpleQgcIPvu2TafKrB62TJk1sZvbK24iBEoqw2MwYBlBLR3Z8sNOj7XNEXY2qmKjV2e3JCSHZG+P/FJJYOHItuP9g4PhgdU9Z4ugSSLu9GTflqPbmxu2EWZmOr7/cICY2CZ77S7qybrSliMmEgE0KfxbGFb51Ab6iA3nhjqlrmrxOCDaBmFuShbrZXEw2Xc2909S99YuaoJOSC+akpB+Xl84WoFB4QQ9tUIdwOZcMBVAl2ry7hIQsZhVeCAmcXBUMjXJ+peCJIwYGR0RkE+0O8lgbS2fsqJ0UaICg4evpQpQRfDqaeJE/43ZSvIS7o3AeCP8srNL2biATKJivRSFEXykD/1SNm67UhKmBHdJ/ybipZd6IPCV/ImCccXzOAsAwUBMvhh/Ef1RINFo+ZJbpb8zqNxiPfFSAkPplcCPxrVWRpL2vedvoM0bds3GUtEyWEM6lv5cMS7YT9fBQIYcvZaYopegSPv6bSCpUYT8XPRcZEoa11LuaxMPakR30O2mq29tRjan2XhRXI7E+z0TQ8S8AxSkOqQbMtwCHbQww5FwhfJLYwk3U5FJ6nA9TFFD9vaf9eJVz9d4q7vog9g0BFElbGSkYPs7f+8f/6/+t3/j208q5YEnA4FOTReagxN/vQX+NFiDSJu+wY8W88mvnsljUSCFosJ27hWc9S4yzafBYb4Fc94IeJBi1IVL19NdfYJRSDR8j/oEnnxiN5i8up0bvseqLS8uCMwsh7DzQDVqEr2cvtJb3q2ki7QaSDLZ+YEAPG9sTWuZg6LAUHjZiGkYqqGinoKtDDdYD21AYWRrTRt0g0hwwV8NesFZKs64VPzaY/ItVRWDb6Ers2d5UOG69i6IU6KAnAsBZLwQFDxX7EkzQav2cV+qjaOhirBm0xe54dAaGwYQaqz5lBMtUJM/Q2CSkUYesR8vrtgKojOJwbwnG+6rgSC8Gpd6pnub744VmbBEjEBscijiM9jMAtlczwlXZr2+Yvxp6W36KsMrExZ0lQfoFV3hjpBaMO9H4yGQkYgnGINYQ3Q9U1VHcTU0nP4ydblYD5iwvGumiq7gCrbSqAshThMZmzis3XQFjKyYeSWP5a/XfSU9vFlj8VI60LVGvFtQJK5R18O0ruBW2M4cBcMoPB2LGHrMXEWGpJFMn+caYehNHbmcBnMrKinw57fcquHHcnARfjxgNguWUFpEdhhHkHjnaL/z/sgxVjmOLprl+Ul6iXZJCZNrgB71cMxur5jUiMogAVWBzEMQCLJMeoR2iA1BvsXyi7ZRWIryRIL6G9kSso5XCQ8Adte+lAY5GQuihDQN6t83tGuKgAQGfekp/3koMq30QmZN5yE8rSSRjg/59KIoyGzhJFCXmunL9nevV79BiDsZT2YnKsYeer+JNAnHUI9MgoHEk4eHg/2uPDzlIfc21t+d9DGhWPN4MeOUCL0ak8RgelNljOv5nKBmZPcHPb3LTzkd9mW1sADlDLMtO8OOoiQXizuFvcjq6VhNIQt6EP/6xcG3s6UhS0cHkswSiOBymFc7/ZrMXTndobMoCOeHOjm3rEflH1xxbrOUnqJ3exxll4j4CSsarVA1sjG1ZHbKeLw+26wFURIENAQM3VUlzpff/Po82iFdmIjiMT3ha7iGLCj2a/AJaQ3xFmU2F919I5daPvM0WM2Q05TE/s2ZwurTm/njtgWUgSwrab9MR1kirBBRDOIXyhnWBuYCgx5ZaCPzteYUqoDhq4zB8E+qFixRdkySjTXH+vKTzLtRKQRrTUzkO2Ycs1xFTqi3JqCqyvI5JxE8PhwM+qwuidRmqN2WXiTBfIKIQ2ghh43pZAVt2hY3XZNMloOBwSRTH1vkzKO+SHwSsB5RjXeUIbKDWXmcYFlVZgDrEnM4zYDRvFyEbZzr5HAxWdprGG/PwV5IGy3CqDmQ7S0PTEIP4kP0IJeLg8EpIqE4qJRxAcPOryWd40rmGONX+UgKKjN1bGeoQPqOYg6cB5lqyNRW5O3W9ny2UpWo1+lytcxEhrilNL5o+/b19XijcDzs9gbDrjqnyFGOlKWS26tpKFsevzSddV6WrWA5MtARlabbHl9pJ7LPrdbYHIDOKgItVdxSWpLme30n2Kl1hB1Ed0To2y9bL3O2pnPsQPL4/P0PP0pC+/lPf2pD2LUCneawvT1RFGg+kfCiDN7zw/rl5TUUTO7siN0lw6xdXF2N8ANXh8uMLb+cc1yWnY21k25PYv7985j0iTaye/TlsWXtJWbTWvegCyqtEQ9waB8dzgUk2Rp+wWbir1lJfOYdoTreZLuzher4k3fGu3rEz8QLR1ne/eh2atps71e86NlRBy9rP/vZB7HzHA6wwY4/saIydypFpzWZLgfDQQTk1stuFzFscgZ6dlo4VWFzc5YyoDYRdGVVOfsLRdnBTLlf3XKQSIRkeKNnvHB4IMdQACD5YU5WBjFvFui27Y/Gc0eSzGXGPd7XsoB8JBv/ZQEiPiVBkiuGuohflBnKtrl5+dwfOI+gZbDqBiF7zI8OcSTU7e6h3midaBpiGOzcCNWTZkvax3PkAxYpAV2mfKRr4uVCrqDVmtfJAYOmDnBQWqNBEyxPag2+aB4jSjwM+R5mNlv+ojfQh3nxpFvecsWL0VsJvLlQVQ5rWdxVlBydFCA9lqWGgButH2nDEYoqEqMqddvoJ01lwj2TcmnRjo0yc1EjuRnr0PVIGC17TJMYOdo7rBp7JXdjuHgkurxRKowk3XmIoNRaZGYBkzF6uizOINNglXknM9RoSuqtnHur20YZUcxySLO6yPixWyL0gs9uaQFGTDE8eN64Qhy1BCEqTXi6DqAo1qwIQ3Xs/oBSGPak2TMmKPKFEGuEvO58wQXGmK8FLXAgMKNIHwFJI9HFsTz9HmPFHbJae0HLegIWsVditG39cL346/+nf/jf/xd/+dOffQg2QBJ0vUR+MRUKCG/5pOGQQSwnXQTCmA70i07yB0CAM6Lmt8CSB6OwI8e8pb30UFdpQdZPOQ/pxM2ai1hDwWMQ4iUISrNlF5JXAUOLMbojDCAwWKi5JgCbVwJ1WojZrR2PBz+J/rIbggStIRWT5Esaq2fYhpo0dK0xYjJbaafAzlPxigv30SDVo3biNKeBtADDEV81FUmYMPOeM7ueFw9yG99Rl0Jjr0oAdQkQ57Q8DSyeZ/+PfFkrxsyZNdub+AJP8mOBkeomeCT2rsQSF4Iq43H0pKiH0+Wk6YAtple+mHQ6KHZSzOhmzYSlEdYzKZkfLIMeQn7YMKuCrAVMp1EPGAaEezRLI0/rrQ21PbLcnpNR835sCX1hbhgBiGZ9AlHQU9Nq0BE7aQ1vIhKEadKFY+Id+iSiraUMJF9KqGeWgRsItZbbhVX38yfBacK/oGVwZ17Sl97RSqwrVxo54FfNxNZs3k8Hboa0arhhRm+mqyI3g8CnRRS1UIaVwrlpU6OZ9Xq0GZHrBtqsMRAw2vVPv0Cs+c+IoEcPnvciJLgQECWvVuCVlDYzLgQzJWZ/NxDoC8TAi3DWAqSFrVwQEkoPQZRFv7XN90f7poOZYZU+I+MGgtkj5g6mIjFCkwIDln/TaBAaKEhGENkvSYiZQc8D0vtxNyNjM6GgCi0hNn5ahSQiowoQYiRw1Lx7Iw0G4NwLAuspUMOMmdZsMwcNV3ooz+TZvNHc8h94ozvj066JGl/eTvf2DgNmtQYY3wwcSCHI6ptPwlIsIFN8UkXEtujpsrVQBvTp3ro91bxr9SUSfsMZRFGXHLSNDYcXHcupXl+zNdSKHIfhq+NjZtsv3h1ejyY8K7MzE4iUqCIlfcAz3yZBbUtgyyFj+fCigModKvILk1bgEanZpHAfcq6OeVX/fY7SgU8hI3Q2iXqRdlwiQtsDHBIaA0t6dyE5iQ1oCAfQ8vcWMbhMYVwSjvhnM7jid7sg3x3tr1iMw/5kdif3CYWobyJ47kjgrG3BKixz/BoMa8K0ZALC3E1zBpGp0mKuQyTe07MpLNoPLSf2JwgnkvvYG7YU/+RYTTfng6Ph7cxmzgW7cHg4EF9cyn+wHOlgMwy5vSWW4XU7AyWTaFYlRNFQVWIQE+Hllid12N1tY2FxeayxTRYzmb0u7p4zUzZzerNy9E5wTkD3ScyeF4Vneuyy1sbl1YR9rRLlwbD/81/87MunHzGUKgoLWdiSxl621O2RWaQ+I9JjQ90urlmcQtrSleU0RRqge8uUwchWFha2kibEZHqRPO1k4mc1iHK20Wh8G9+USt61ZyASE06IJAQHWWY9zJmBWW8yKIu5jnxSoD++u4mv5HWjhO10CanqbPqeDhEjNaCQJbDvZoxKhY5t9u3UKRvWIW4X09OD/Wer8zzDvdZq/fl2PhMRZ4GpeEN53N5O4IQDyMu05CL/yk4TLgrZvVzcW74Q9XUsMPtQNBvstAsrDcAAN+nyWyJdXzfkwDDlu4Pu6HZGLtgAnTLWrRxjWXuFM3xj5F0M2p0Tp3Tstf8/f/qtgj8fTo+ur2/tCrDt5svFhPhlNw47A8DcpG7+va0gxI/tAa70hx1pMN1B68vZ5cfTYyWNVYhyiBsNSdyeqQxrZzS2vVuMUmUI/SqsJC3HWbN2yicyG/n1nF3goUlkZ69M29kFLCpzHjuYZcs6p00cyyDnRa1MyyUu2o9rTc1GncPDfZYTyv+Dn3/lbCx1OSQ52QnEu7DrVzkpxxmo42TBxZZreT77PUlPfJCXy8sxnLzv9qwinadK7dPx4RCQHuP82LfAi/ru82V5rA98Ao4TFnFK1+7mWv+0z5a3ikSTs+JNH6IjPrId+WHVdkTJ+uZipQDoCxJFSlI+zYLwflSeZEfnIzqG+VHJy0fxnu2NHTlro3GOCGZVZvUNZux/sVKpQAGRsZYFPS1AF5GHtmmLucO5nUIaKoyAYWb6iZZBEssmlpxbXkkhIDcih5lV7m6l1AM7Bt2UaGI8ljIO39hxEZdeZoTfvBfuCqWEXLQnNwXvpLXoAgI9JntEIaoFQwQR1iJh8vGdMnWXPLIMhMsAg2eiOLO+XDa9YBJVBI6IKc+kp/QXywZDNIsV7pNrrudvMxCemAYLhjJEGEVBUVYYSm8FylImEYjeKyRFW+dbZGlGB6ueEo4Legow3WfgMRIzChPhEYgi4jQeu8FbFEZV3TaQjGVTszSuAVSPeT3wehgRW3blJMrZyHvu/077NqPgTtDBpIpRpeUKb5vloBlwwXWGDRsxxM1AsptiWPiehK4kcGXTVFAdizrk4FY8VcNZ58aQHc6S2vLgP/gvvruYTv6d//m/ftRtM9w8bPBxqng4NSgDDD7etiVkvDrXGtQ0GGNzABH9hJR0F9LKJyaeujdlomkBdLmapqKAUmwrdFu63XNElSmKu/I2g6656GkPlwWXHn1IiEx28BmiinVFNkKF55AojMU5CWWS6iGzmM6prlJ9hS3cdNF8xUYLDuOa+njAU9pxFZrYYQI+rmXe32YPRqFRYomqJdVgiC1w1asZiy/4yBiIHyuTQhioQmPCQIAhZv20YCgKaG4S3X+WCflkYdERgcoT04DgfaGgmOlGmOnPpIBIO7EhWHhIAcWKJnqXfjFVecgYgnEI9FuoIzjIVjXDLNYMJv0xI5rVmvmLzYe0y/Q3z8gpZdfs/evuHO8L1m20uiqAZpMr7IQs3gYLUeGydBBbKBSiD8jHZbEvg47Cqas1KTpuMOYdQ8AF3napCCL3/A7/ETIajTsXYxQtFD2E++AthkM1k5FG7oRUvOWZt8fKZKzWQlFpM5FGD+W/9Jin60u9WAiJjMiTNJAQWA0wVBSryDqLh9+6qNdD8/5URgxbP22HdLI0HYM1aGkYPj256W4eD4n4V0/mmdpKQR0YYx5jLXLdQldsDFIwOZ7GGClSk5VW/EsBiZ3Tg543Hp9vlEtnbhETKQ6mHHmoL/NjUIIMYMksV+pdsRXcxsHQEGQSzDVptWuu3AYucUAwkYRzohmayTyC0XpO4M+4hM6ifwNLWi7856eZCup0X2rCOGMUNVOgo+As46zxFz6LfyPbQznqbz6+OL1LLPj0oJ9tuGkqcWSQI1EdgVwIBhghA1mmzvYaDEjX+1WGYLVKrTz4VMST4mS1A/m3n66dzBOlG4fU2T9qdjx1UodwzcrJq+r+ve7o7nFsAb+9+7oSlU5f8oQ+X9vAs1L850PKe2x/fz6SYZe8kae1w2Sh7znJKEn8EOKQpQ1hZAnKMWgBncV8e5SzAUzWqN2DkntDxDb84mgjCbslBPZs9y/6YJDAEhWHiwkHYyTUgihct/50OIyV82jhsHSNTYjqFDKosqopFyfzHcKN6PdSSARDIhrzJyQW74qPElGV2YPTmlUTG0g9gcp5wMqYRaBs0krj8YPllv1B7/bqRtLM/WNqmCyXwqX2kj4sJDq/vMIAIIQtigqkOihK2mVyiXdqMnuauQupx7/rwAKJCzIZLBJiu61NGRGOSVPiVPWLDUfDsh/VkUT0KM9+x0CfnEKZVa9cAis7Igeu2A570O8e9HvXF2cMIwdW2CwsbeVg/0BHKp0beAWwk4JlZGaX8qOe0aWcbFkfd9wFSS2SkF4SplXnnfUchDlpwzEEyRxLQAhneGs2lXoR6VJTFaAUnDEqSM02DVI7CR5qSqbeQh5yQ7JK6iQGw9Bub3he20wqBQb2ymQycVOslU/jSyY+Cn6tP+iYeElAOax3c8dhUtPR5OzikhEpDelREWmrDYt7Gs0UFfcqYfnItXUMMK5gQDC+7co4PjlS8A3bsCaFZlst9YUiK6UMgdxixaDbjZNIsHK4HyOnuEyOVDs5tB5iU6njY5977YiHx2XK73z18cRqzw9fvqhPtbW7Nbqbfrm+/P7M5oLb5dPicnyrddt/RbUtnxkqXwDqJ+oLyW952bg8G99cj08Oj5jIN+P51fWI+qd21oOYTTktdrWfvjuCbaYUzrBUTYxIcCGCLHfQ14MBl8E7toln2auxrkgZOsow7ZctEZFFTBaPHdIeMReaMlHGecO4t3l61zLI7OLiXH28jnN0KdGsQTmDrHVxM1L8R5WqwdCyxLpdONajzi5Ig/XBcP9mcf9F0avVUkhB19hEGVNVFN6fHC7mM3R7eDCQ6scn0UJYjJARdJBd/vi6mKsYIJrwqoinKc4Kh80VqfsrnSzbiJH3fHbnG7pTrDZLrlk0Itk8Qtdar2h3en2hQc9zpQCAdHC2Iys0CFFUVrJMc4aA5GFqQmM5ssCMlyLM/1ga3kjdRpr6klvRvnFTi8LpHhIgfgXNl+PmMGn4l1aKDfemDuiBbBKI5Zo2hX9shFW1lsypVOmoK+9EZsf4iPpH4BG5EdalUaiCyHpSiOOU3glHhk6xj8d83PUicWYSPay9DDKSMZ5AQe6R0hY1qsBT3enU22XoJnwIZi+6GJGI0fTryTSSYUFifU9knZFkOBAenCArnUElXAZsA7DMQlK5mUG5He4L5wYt1WpQXQLH3EenRbqnkTgeukuDtVkZ3J6H/SgAuNcU+4+SkhZOgkBCiXGvlN0WaHMxw9R7/kKKvxlyobmuRXpndMEJBZP9BmmsevSOGcltw2hsmuAq5oy+nh+Vwl5ZTrR4mTbWNr/9cf4f/M2/v4IST+T0PD3DiR9skHQU9VHw+JaLNWd+Mtz0aCKC7YIWgOBpwNZ2uovcyfDhx8twF4DfJj0vBkw961hblZtUXzIofaV301qvh6rqWsbl4ZpfePYA1Go3NJEn8vEGYJpZSHjepUKCFn1AAPpMV6aNTZ2facQtd3zRBwqstTVtulaUmRGX3xLd6uO6NjJJmcVg++m+KjUJ1vDhs/8njVh1IT0Eghz6I1QUXraFMTmDpulFrEeMhjDE7dnIGN9SJ+se9pqPN0FgFwplTSYmAmnRgDFE+VSpU5B4AN3lsTCWn/kPSYfwLSLFE0tEBB5Cn2x6Q6kxxs7LRJus0G1IbX3NZqaj/TbpVxZwWKBmoc7H0FlZpYU6NmI8qFBI2bKZjqA6+AeDsQQ5mWHfatbis4VaMtkhafPuur+eKawDKMQX4MPOmbe0gNfSCzwXtgvzuasVM5e5AGV60Ug+4AkLZlyBJ5RJUoWP6Oi0XGB7L/c9X08FwvSeTzUUkDyc9a56K1gCfJohqYovPAAjmg3CvV7Oga4zOryfPMlQSGR7SeNMTdywSJ68ojdyJRNU3m/Jn4zYJfml5Z2alZC2S46DbW8fHrWOT6WcEvLoMAuG3jV1zFDWEd8S7J7MyGpYHCeD8dNAQKhPbxF+LqJ5EHs2EIIWRhuMBWeGCsRIY70Hj0FWEOLpNyRl7K6HzEIWsYGCn0xcHsxXb+WbG77oHBLycC77maZJYPVvn9cuJzOH3AMhz5SFCtSgsUgrr+vODd3UthZPsrU87fQmaerLxeLqZiLn3EUx0+GwDwom/Y7Tg/baSeFO6dXX69vx+WR2u1rNHu+vlR2/f+TK7Hdbzo96ch7TytkeOGtdmsb1ZD51yI9Y68u6JX/bbo/6Pe4HClG8Rp1PsUvMaVDKEoJLToioQoCEEMN9UpBG2BjhBUcxI5ny0A7PDMWSnOiG/chshgSzw/kmTqr8zbNaIKFRKdG7YtwTPyWqs7t67Z71BUnbmZ1Crh8J4BVOy3srjeKiK6BpaDsIh7k8lv8LSv+HI6AYtHqayvy+X/tycWO6DveHEqd3Be+JME8olqIYSmtPZkhMUckkUuwF7O8fRrM5NyK8lfgNcZAJU+xFCVVBbIIMNaA2dkYGye4p6aPmkiz32IU4h119b2BdDXNzwWgtE7wMSnssOEHdBMtXc8c6zR/HotcvL8oTScOwC0Sj4vMcQZal4ZTEFI2NsRVGs6YD7zETUyqHnOHCluFBGkc6M7JsJ5ZjbRMtAw4AjjdGe2yriN2Ie0e6qpSveI/c9PCEwpUqVyrsSkgjRS3Y84GrYQO+UXgZECkOg2SVgLTJ5uT4SAUet2giuMme92jiHAgKtYSxykdcrLPzq0T67SvfFPvvI5vx6m68WM6N00b05zWpINLxLcpIiwKY1QOeEndsNV8qKWPwpY05CQK20MgwfXVyliQu8HFBY2w43Jf9bdUg82LdQ17Kkj3CVbW+pdS9ojwYxbODg+HNZOzUNvwgXv3x/Yk49uZWS2T4fpHCryrjQsBPvzplwzIqTPy7d8Pd7u5Y7pNVFdptc2Nqp8WzPJaOYp+7e+2T40O86Lqx91td4gYJypWnFCXHN/J//3BIPtsmiw1shFg+OstDMt8an2f5uJKXY8cIscW5YkyacVu3V8s7O/2zV7nXN5XJv1FATebYZHJzfW1ztzJdjknQD+IiHc7Oz7wORTxrYq/db51djq4mU/v+VQRSbU3Nr5zlF5/vaTya2POAdHjeZtreaDBw//BqlmL4qzg23qUdRZUHwIra2JCLP57dUbadQY+wX0v1qR3CHhOdHBzjXEsW+OhJ6MOmF7VoeXnZ6herGoHK+DKOkt/RdKY4161+1PYvzGFCV/Y6YduyfPIlGpcNi6DYHM1VX2Pa4HiT4XvJ3aSFMFSagApWNQUecNdPsiJuR9JdslzwuxcjKOKEleLUkdZIjKicyPgs1EaHpeeI+IgTxfi0Y6NC1F6YqMQ3bZI/0QXp1ovR9GYz1rZoEIYwQA97C0Sxm6MjfWCpFHO8AqTlXe/rz+sxoyieapAYdC2MTvI1ysajZZV6PcI3VkgkoufTbIVkXDHSSMuyH/QOWnyri/z1r9n3VgRa+MwUa4MZ57UoVSZsvig3/FZrLyCi8+hXBlbt7kgHQY2ugeF57THv9FYA50pAB3xhMnjQS5kOxpfgUE1l0EGuVZKSnx7Tmmf9JW/d0zoazKBcT83lSBlfmnFp0fqD6DZhlyPsybDXzf/nf/Knf/Pv/sNsmCrkAL2Qzy6Hx6ClhslUMeh0rZegrr40Y/QrPDR9ecNYjbT51YgCcpOUEjzX/MfcKVOvcKK9zGYlNAMQHJmpt5n0Fc7KeoCczBFM5p/r1Xgm2y+Z8aKuBuCmn2YGM6xYY95m92dE3g8NJE6cxumh4NukFLTNsJsHmklJ4z5vPzyV1dXwTaDN0HNHw2sUXIrm4s84mFiPseJ+EJZ9O1iHXGHbK3wc/BFtQCtaomiK+BPIyJCzbrzd8CNIdER1Et1p1mlB5J8CX8hAi2JqwpAB2msZiJfNE5kCd3gKOObHY2WbwXsGAmANNSwDeV4EnOe1acH14EB55RReK0wJyRePgNSrjcmY7yHaUHO1m+51US+AVuPpJOScRzzkiqFlFpJnUhSTyGBc60xs5i7DhtugNUPWm7eBHcb3gFZCVE2DLJMaIDbxkHcCWIFDrpSF6sUsDQE+U6DTej6weC7gB2R/gx230n0EmU9EcYaSJzwQuCCngST3A20Dj3tAyjBDUnlMYybA0Ism3mCuGYjPaYpj9BcSmqaDJIIwABWiIhneBtvgVn+hsRK/+FhE7+PpvtLwPLsMLIZHCNAY3mg5hAV/iUvqkiVjtGgGXgsNMYVTZykk5s3ih/yXsBGSDX4KxfrKUEMcgc4jxodizHq+w4lnG3rILw2QteJUOHRPp4bi/aAWVHk8TGLIGkrTdUWbvDOVXRzNeUe3kVjBh9YLxBplEVRcR2yC+Ak+GDEhknNlyFzbeW/RfNNyyF7U3fYubUmexYl9cdKGhYF16QkW0s3z+/3h10fHW89xjVl2Nu2JtmE0AekUl5GjDndrNl53szfh4cWqvXNa7c28kU2gVPdkKaFgv9txlNHtfKG3zm4y5YSVOfjxx7Zwbk4mZpo57inFchzKqYATKzQVQUNYoQ6flMyWU5uTLsVhORf88cze09LamxuX51fyF5xEBvLZbMXCvbmdKITBhkwmqD/4PwQeRGYuMAPE1VQFiTDtV1iEShdzzwdaa9UYLBVoSQICtT+1A/Z+iSxUf/nux2slER2WRQ/K0hFpzryZZFzAnhaxdrzIlsQD+Ax5JI5S/Mmvsz5AKLHqGMo6tfeRD7G4XzFsJf2YTSLSzEH0aDTxuvwfCwtQzrpV31Aa14fT4Xc/Xkh0txMAWm+ur/S702lNx9fiJUfHg6vLCWO+s8fkXZtlGcXsdlGUSD8MmAP7SoX22VhOn4WFeB05IjFLNdDCdK55yDrZ9p7ATBt+kAA7LoYffU+UKKLvODcVHpf30lFExCEgrPoM4Ba0QzmdHB/PfKLX+hNCixuXGXaCl2eYkhAnzaaxD4lVMkJ0x4ZyUSfPDQ+764Jys4V1IKvAxDbJazMueuAaMUQ8zOewcSHqRIX1NSt+KVppP2hMTgbo2nI7tsT2cr6ICCCXt6w/3Iuiywj3hIViKwOdbhYuDLnXs3JDEFklf7EoYVMBZ8CBtZKyHuaPx/tDo1x7fvh4eEgOKtZkoepxdidbiLMlG90+WfbEaD6FB0diUUmmb5iK9jvXFyMm/sbO09XZ9X5PJpHD1naeVeYiPtbWvnnfPb/UWDwQNZXYHyxyihDALFL+OX6Z3sxk+dv1Aofy+JNsE8sWRUku2/WL1CGQy4yvwhe8xVfca4otOn3+dAbnjnKzQGYEMm1+8XsfV3e4d6VBUX3ThJIV0Xer2+reXE+fRuzzxWA4hFFTKYrAaRXjVw/AShfFAHCHL96/PNxejpnvsPb5/NLKxvp9dhPwLo/f92xiIQ+xr7QiE8Kos55m9Xww6M2nzj2wd3pug0GvLfWoc35+kTyCV5i873alwTn5b0XZEP8C7ObX3pL5zPb01AGoKjTZBdUs62U9IOE8w0VuobGcJlOmkWnPOQmlhShaj8QiiZyNJWrgMW9Mg2ulhNxCsJFAxAJhmh0g+QAmejoKkTtJjUSAaI1uCJm7iPJloKXajx03iuqSWGEqrNEIH+0SzRrXH5mU16uv5op2iBo/I4hKPVT73sUruDDqh72SgcRWrRGV2LLvnxYs5VC6IcBH4iRYqsLBelLsghevlcLgzIcjI+3CoB7O1zIuWUjR9xWMzPXosdzynyFEzpXyjyLHSNmCFv0MZi9K8Hh7NG1WYDIKJyASGhWyAXekh7vs62A43YNUHzBHWvuJaxM2i143N6jB9JQn4DlPexY+S33GvCBzgOTVMtIi8NNW/mYSIZmmBwCR5NHMVBqPZxJtFLenYC0rygBNnNBD1iPiJ5h9G8te/+5/+J99OBz+8i/9PtgSDopvCSFZENCglkph+z/0UOgKVjOqwioSFWJApV5v1FHgy630LswFD74XFiI2SUkwecDzlbeiIZ8M06UMQduebkapK+ZjpsZ4031orCAxJWAK8oPh9BfOz0PRAlpEY2AuCg+KgqyacahhPDfvaEGDbHFijQmU6WDV+RkLNgYxsEIMyVnKqLXqZ6EuhJTeax70xaYIHSZZQnnfVBDzrNALusUszMM1Z/fWlq0yOR5sXorJYYJV/1TbmCSp2ccONECMUlNeSAjsuZXKB3pE3sRTJgdze8cYMkyca7ihHz0Xcvwu6L7tGGJ6Tdc6gybjQF15KigvjKbIpm2RrL4N9ccepytrEHFAs4E4OTnBUAyN0K3u0oiaholz1bSWDxxiLk8PQ3jR84HZ1xg1MVZ56pmXtJkTrF2RZhtQS9YYBshRml4qQuGtmPXe1QiaSb/R73GQtFnfEwbKoIwmNq42InN0XaYQwggyfC+rW1ae3nFWEnoDbBGD8ZtfNp+uGn7xJdCGd8J32tdKXomjkv914W4mrvAMBwWq67lFZ8WKwFyZvLB5cCxab45gMzFOmXoxxANYhTvd0gI12bzleTIh3JFpx5JMr4bSkiDU32t/ODx4Wr1cT3JGOz3uATKQ2rBIxGbQlyieFIfmffOtIy2DuZCDYKOnDIIfmbAFMon/n6TM8L5PCNv45XTBudFBdibRiyII0SlBhKeFGyLrOBdgIFsiAxu6AUSOaqHro4w0nkF5RQtGDfPBZ5rMakjCjuuKknR25qdHA0VFyPFCl7a8A6uQleeAJk3A4jf+UDyEcbOav9gs2u1ts9N++P7MscnKoT8/3ztv83h/69zyeDLVt5ToOBtZ9t896fQlCX2eOL17o/O63dvdG80fOoO0qVjM3kYSrZ3DMb0dPa/vOGSJ+ZOTvGfLyXzJXto/tA6QqoyI3/O4YMGosC9ucU9JsR/ZVv2OWPn9fCHPM9UipXEEqxIcsioY49+XDEgcxPRm5Rayd/EQqmET/OwnH3bxo1ONVdfZ25K0cnYzOT06tOgsqxDe//D3v4lXF6IMaiLXQnmN9xxWgCkElAdgv+6WHCmCg0FTCAzCow7MA1mSar794daOEpkh8/ntdCmovHs3V+j0iSdENNS8K0FgtrPOECNTttOTM1MbGZn/UXYgenm9u5N/Ga5RJFXE2hwzahWYlkWDBJWVJL9k49TSweNOu88xu71mULZFb3HN+a1zmMiF10H/tLe7tdhO6SsxYJm1MiZWtjk+Paqsby/4l7Mb+7vFnxEHis9Icwpv3CpxU7suxYZ3JNYvl8WYWVuImEuI64VpK9EC2KKtyBqoeI0qFZBUT90SjwmgOcQqnhUDDeWTU7YF72pBjLXqQOEWBvCWMi1Emr4wMMMupWA4Dy+2wzqpN1VTySopH+hd/VCHytlTIjOJJEDBgvD9Dmuxa3KYBdP7mYw0+BGlDwgI+X6GUB7vn9d3eSYJ3rbaeti03wW0O84ss68C66o9j56Qe7icqxMJRfSIU8qDR2Hk9sauY+r7+JLZ5IoaOPK6lbVXARfxjEdTYfJwuYOEVcBEPxubl7c3JSP2xrYijBYanswUfXrAJOo9DZyW25PXxJPey9bbLYW6Nh6Xa+/2jyQsSlaUxg9zHdVaD/pmULTftmRqTyfSFsyTri/Or1ZqcUn129mar3K+A90gKK4pKlCia5yqCHzFoLJuIgGPP8bTgCTTacHBNl+pX9nPndqLqScgcm9/yHTyeDOSJnaHRezhaXLXOUI88nv7MF4edl+ddtDijdhM4GC43kELvSguZoZl9hM0q3mVg7x32HAPCLb/Oy4NhNDZ7u+2ep1vv7+8e34YdtrwsCGsD+HbNvXJv9pQEFDOG05HGBHQuw674GGyTHeJbGs6KTjPok+1voSXTDb5JpvOFJN04Z/SLqYqKiQWOjM3Bwoij1IYxHLialHy+aqNCFYMT376hBnrCjXEP8QRmgjjOxma0by9pTKVK57SCJNREoLHyCMKkbesEXpUgxHGESnRuKyAjIWgsqHRqlmtJ+iRnNFmPRV9kPlK2m52dOAcX8oAMkY8FX1iUQqEiDzysHYRBNos/lLzOok1E6bDtxH6DKRYE7SnSx4kxIADrWInhh+ap1QSp0wzfispl1ganPiuNWMhJD3pbrg5tkJAzZuWLCzjRt+nax0RnjX27Mw2FC3IVmO46jS2Y1wmoTXAxpMBgxnRjIAIhKTtLLi/rWbUsKrN4C9YjMzHFqVo+aI6Re05aaHQrHeY8XpaaCaxcB/Pq7QF4D34NpuJg2bFhmTgB6sBkGFFZ8ME8Apbsb1i/hbigiLBRKB40pBNDYRN7p7/3b/1f1fB9S//138/p7SolV0Cz0QpB6J/EBfk+q5Jjh2W2bHcqvHQIUqrjIVCdSyM2AaVZgCOqP/Cc72erk2DuzES4AbBBH+Jpud7XawhFAGX+ZWoa9l2Wg6KYp4bSyyzEGc+Goil466v1FADcCghpkPG44koiWyPxkG1naCQWahpGo6BpYUapUe1r7EQQCjcd9vN01zmssboa2wgH7Rt0NSNKm0INXmYyuPu2lyUIoN1GHlsIFyMjxGNRVoaTehPPEpJcerL6FkSCqERDoRbVomLr+AkVngsB5vW5ArDWIB0QTFs6sx3fpTGwYW0cDEDGr3GBsjY15gl5ogny8wNpzY0hsTRe1Ey/KA13nS/u+MvfS3yRIWE8mNfagSph1+KP7xmLORyY5TrN3Z5poCwjgVSEEVcZHYbSijaz5MBLFxg+vIp4szo4ND3NCE0l8SBiCaP5ZafRBd9kOGEkOm+sHksy0xOkgeAx0XJn/SYjpMElf1OGohczJGdSCA6XSf607umvK9LHYU8QoAmHWzx7ur/PFk8FaGagQVSjfqJCkIbGmqua47SJhZCLoUuUITrMwIvBYG5lZ6zalHJDrrNMD1WbYcrjDHNhuDyrlfYhgyPyOmA8HI07GBjt+MDMDsSMGJyvYFNWsbgcT8M5vE0HvMsI6mLdTnsFpxHtBYI/hdZBTA8RUcgCdHJ4KggBhJM5k5dMwTNelsvni20hASgxkpCKMsyezbSgCOAedtzmvCMNvO3kQExJ9n7gugbV+Npty1W3A30hbHgAjYi07IvJzi7f5IaLaefNd3e3ZHwI8xKGYymY0f9dGzYfVpTKnR3u/v5YvnDzfUffPggue7u0Y6+LsK2yMBG7w16ger19cfrm6OD3p5TYm1AfXp2ROnWy8bny1vJ8IeD/eupkI/dhutcc2SRR6bZZMH6z45jeEJpu0aCeDYf157U+GNJzmwX3JBH1BO5vXvgtBs6uRGZoc/4Wfk/3qbNn0mVk5QFf6Hm59Oj7lGnO1IkhAOwqzDj83SqaPu29GMxgkpFEQ2NvAwyvBOMl74MuRTpgCq80iA6zAhpkZhmIpPR/HStyMIsijp+9+lKNoilEhUPlQOyti1Max4ktFvSxAiMUT1iicw6wDfts04lyihh6jIuQXl1zayxSEr5EELmj9EjmYdgIo4YVY9rL7e30zJipK9tja5vhYHtfbaNWDrKvVN/zZBjmbutq+vz1WKHouGHpcCLwjJToe9UU75ZjPEqex4KDE3ZS5xieUhcebV4EPAOS6JdSekJ7VBO2SGHsAkcoW72DY+QlGNQk861OGiVw9AcViUzhAUclWnO4AF/VLiCWYbONAidxmVTVxJ5WRFSaBoGN8+K0Ee1xB0i5klPCTPZBEya86kAGTMidkkYjG1tfcq0ac6MOe8J6zrDDptBHbJmgDEl+DPhyS3DvO/3Zftw8GMyGgYrPFlpmezMLXOfcWk2GNNiSAjTMBULIp1t5RRdpvnQohSsnScn0XaU5RweClQrfzr98PF9p7M3G09/uLx6d3TMOp/O78bTO4F8hxBIiePX8oEk+Xw4blN3J0cOCIufLjcM4ZEFzhETmP/47gRGb2TSLJY/+8k3Th1wAtrZ2S1CsGvt7k6UfXtx99zCoetbMu9VANve23mSppNQWWQZrCJw7BApqpx/jvvdHI3HsGfphOsljonexkn0t0tArcxFdBuCZWQvV3vtHfWiers7nz9douEIVplI3b4dxXDo5F2nTSi7cfxuP5vJo/92HMqLjGcLqYKMtye72G24VU7M79apeu2W00eA3eurRiVj5xkZa3aa2qzbTstWyNQCsxbcork5gFq4z472JPirYYUeHLRnspJnJe9jky8hG2uJYLKMX5kw9G9l++QQscjQxPl2zRtKyHL/eszc2AGlgSNQ8CNGw2qlfkxAw+rhd7QbxRZujFjJPMUedDlhndpsQ6kwyn2H8GCee+RW6LNEVTWhRzwOWg9T+dGmuFc0KuToYrY6ecUDci0TuOdLpAccma7EQ4ACSBZJwKjwITgjzQNz4PXT82bdRGi/VEXKWEVkZv064cB47AArDIfKy8T3s7Bn7zyaTwiwoDWYDDaGePRNBgtYEFkW8l2/mKVBlEe1b7ycHSwWJvKnMTIoLAOJfe+dkKQx+ulijP66Zh54GEaLMHRpfDwrXVAU+P01fBZkojCMTM+md9gocxb2TBe0uOhFrmtgCu2Lf2f/ddpp0mbI+ahnj+UKxEa8FySGH4xplllDL7Kr0kPcuTSbYeZnODMiJ8B7MQA06SVJMwMD2ysDOrtZ/a3/8L98f6p8tvP1ovt1aLimwbvm0zPVb12J0Ne1m2WHabwmpWymjCIvouH6GIr/wQ8a43bbXfodZXsrU6K/UGBW5f2Wa7mf1uu+N/yWcWgz34IFAjMzCQNs5wI1REq+gZst7hUemhtBV14i3PUPNNYJizn4psaCrxhb0W4mTD+Ay61CKfsotFpYDQhoP3KbOInm8h0v5JW0H496IyXu4h4npuCwwq0dmXBaoiAUybaYzKi1Wo7IiiDt+1f9c3dD9L/SAUHCoSIEDAxoAQGWExqgKJIslPFuycyxB3BNpqhVR6wBmEAW0zyGtaghxBhEJiu0H8qBN0PPbPBns+Ia/RK29QQ3nrvLIUGNDs/Zlvywe3ja81QCHXknSDDmQGOJIxtLMvrqtGxfNynEMiXjhjRkxoks9HoiJJQwR/g09BmrMZQAci/qAA4DXs1rJiSpDYmgN4RkJPrK1SAkcgYlFm+GcLRhQvMozi1KM7dQAci8kufLoi2uMblptWAwaz6ZX8gSG8wGvyQGezm/h6KbHwlbRG9aJEpWdkESexfaPRaXwVgK1LxX3JerjVFUfaQrw0xYoek1DBJ6NmYEGWKMARC3BAA1ca7nlcCTTiI3Qm9BPtLPAWF0liCWxGABzLI4svLvLY83BiFnMm4SbUJWl0IxIHBWs+EgWikoCgXnS8nMQJRhgCfBBXRYMJRDkgfCdDmTrphIaw28aTMjDWrNUnhckxmgsZmEtFaUEVQHb57PHNWMZviQENfUcJ7OrkYYp28fLjsmIiev++gZEhiKYsPxT9ut8/PrjZ43s/w+XG8xJ2ynkaPN8BFllqSwXD4MdtuL+cP4ZeZtrqklbdpWIkl/m+e8Nl0wsG2LFEoer8sxSCK1MPfq4KhHef/Jt5/iaETUIQ06nUG3JgPi+nIMAOwzX4pp2p0n410JlsTOkNPteNLpti3sKQIjWcOCk66jI4ipBqX2Yfsu74a1sJbYTaY6NL/OVmA/LObzZKBvbZ1fXB/2B7YcmGiZQhgKv8ga+PZXl1GihVkoBF9hH8ZLhZuhWLImuEGdaWiYE9YJlZKxvgIXijXCDLKs6BQEheE3VXbftpux6vjA7OPreMGJiUSt0KpJjcBNwKza18gb+bxRGNrJ9PoPwMiqUVH2p7K/k4KlTTFdIkC5xkTvsszBhN3SbyReOKDb29vv9bafX5WdETmXr2pee9kCvGkFxDtWD8SMN19pbcIuUk8LeELYXpqE3glMZt5OTlzaWCyEl+X8IJ5nThXocIxwmUmCHldASEPjTk1BnYCMVCJ0RxP7PZLXcxI3284hyEE5aDgYxpU0RlCRtePtzR1eB9iY3RAsB11YV6oNiW/uJUSpsGlRmORCNPqP9y5TbDuVYUazxfVoNhrNocvKBlZQxFNH7EU2q5nSIz9EStPBwb4pk0YTGzb1TO/NbPREkC+6g5GMmEn0FoWhS1CqHQAPy4QJVWRSdeLq6pq/2+50f/Xtd1KCMI8ZGR4MYenHH85on0F/QMaOxjMzyzczAU4O63V23r8/kpd2enggA94KAAv+4vx6OOyB0HK1qlB47+v3J0xJ2xbg5Pj0dDSd/8n3n7KZ5vnZLmfolLVPhTBCnImGduLIr72qcuUioYkagV82VsQfLBJMTj0ezyYumw4r4JBtIYFksOhp6A+Pd6pXkUhImWNMQChg0e137CGx1IVo54s7RaWUHhKEWy5WAOdPeB3r2/9h3eP8YqTb2dwyAMf+HnIO9uXd7Syh93FdLpMJwM8MzX6/TQQozoMIeJvZ3EtHYOSHxXg2NcitHASrRHFOk+ZJEgh2ClhnsvGcU0gCiQVolo8aYaEYVepFIrDk8qGNXAtjsmAiS40X7cESy794KsrHF/caRm5+JZt0yhTzPskbIRC57lr9T7zhWWu+dn4kZJ5CXF5pNF8MsgjlWAne4fvEyzAwcZAE/wJbQElrCXWnA48V5RcYcW4j9yr6TuoE5iiziEIMhajyenURPV0fEDYfDFe3opXrYqQ8MeaVwA+2AIUSSg+4VEpFY02b3i1shOZrtNRNyMavuo5yiX8aLZefaTFGZ4SQSGLM+JhBmrQSiNVcDO+YCfeq5Zj6dfpv3owOi7L2TS+ZER+8V58IwUISwEpQ48WappzlGStfmwCrQUUNNSDBOSShoBhIdK3GMvsRqZE4ATD9+sS4JOQzhuDaMy42Yl+zsZ70693wf96oMRYq6nvTO8vU3GrBI021KEEFXRTstNz2f/Hr83/3b/+DyUJo3LU6JSXfID8STy9pOzAlDguzIZo4QYFLjybdLTiifdJLqRhvZEBaMZq4HwnZlFskwhKR76o7zTCJ0/CAlmIZ1vXMfqbDdX8z6pKHvnsvbRZ5ZG0dVDUduVHthQZ0WQj1YkZamNV8hpNFNvNPFvmRmU2DeSwxNde86Y1YswxrF9m2MVS8a5iZXJkeeSt9pL8M081HFZlpPZX+JUVaJncuXrCXCH8O7OMYKD+HWLL7heqRySNVO8dUPliazggs8LoeeZgh511uqi/gC5pDK3CvgYQ5RXRgsYE8CLeNpwZlCGimsJjcd1ijOLSRRk1QvIuG0igOE2IFJgQmgDJwViMLMx41a9iCh45QWOwE3RtxoTFoMBZdZQpiT2O64lbABVd+C7mGYgrtrjJ6SOnmrrcg3qteDnUU83jGwLUcMmheRV0hJ21YYQhthPSC8HTrl6DIl2ZQYVZ/c6UBElDmEa0G/bJMtQbpFhkwPoMmmMjT+Cn4XHvbuZTJ1XIaykC8azbza+bCf2ldKxmvu3BUawXFsGHkkn/ea8RFYK438q6mjC7vg68IxgW34TF9BYGh77pGHlbUo6bQaMOEGXEkW9O6aN7hoPvhdF/BOYTBvjJY44SsmASlPhSpCR1Vp7ooBCaCEDxDZnrLsgAwtFk9pG2QFM4DJrJwvVg7PIiGUWlaisMZadNIwMCcdrSZUeg9erxpqIhBq5p7m333608Qkjn1UgnrBJpfR/P7i/Esq2ZBOYUSvPlGblrnyTyurznt/vr2ljXI0pBf3WcAbG84M0p0kprHecqoqKC3P+gMWm0xQX61vRPK8F7ejtvdPUX1poq+M3sZRTvSfVODScWb55cH8no0z4k6KuBYuibIumKMcPvwyBSyM/D+jg3yyO6HR9hjMsCwpPwWZmSOcqHF1SyMs5lZgzm3I9v3/RKar1xNqQ3mNpSo2pyTu6nmlFWUB7J32Os83sll2FAFkxXRbfc/nr6vyBqNE5tfJgg8iD/ykE2DGUSakQ2hwgQAsujmKlSXAimkx9LgHRpLnmymw3y9aetE4LYub+x5viNGJXKY072kXz+pr4os8yR3jfgrbga3loFiho0jYrpaSLydV0NnprpwJCNyJJ9MGgvIUsGLuAV7aH1FCXlYeUQJMAKpslZAbN8jRBJnQvi3k8lht/fNycHKRtUrBSrssN5k/x/0Ot99OTff6l3KgcHUepNVArkiIuYFCdumbMzS3w2VrAUyQ42NDkuM/AQgSOe1DacTKANv4MEY40lhJv4FwScgkTFl24DVothuWV9pwhsGGAme5VGx/zq5wyzwzKSmQAjFj/f8Fe/BJMx8OJTxgbTV3aN7760Gra0P+314YxoxPbPhYGdX4U7ckqnZ2JyO52SYUD2hgEIEHriEGZfjY9bX+4MsBZCcpCGC8Ax/0YyHHE1vCSUv4C+KFpBmLQsaCLS7PRy2URK/9b/y859E5m1uf/3hJ477ur26Oj4ZijbzKKxf8/wIv6e7++PDgePVJguwZc+rqZI5N5Dbvrs5nc750FIFDg77yVvlJSqEe7/8xTfvpdx8ubr95uO7tZZ1bSdxrN4dHk7Hs5988+Hm+gZZHp8e8B7VE7KdWdEhm0NEwAkB46K6sE5IN2NkKFjWDOVpxK09I7GoQhuLBHPiZf13Nk0i6J7vE4vDgg79ZszZOudEXeLn8GQwGc0O20OV+PlSSHV/p3dydHR1fSs8L5trf7+N1W35twGP3FLolz4VxmVrWcCwxxpT2rFnZUWY4NYmoNVKv+/fD0lL4HFquZd8odftVwEDgswkKvJnxWP58ABRHtsfdGUojqyDLOZ4A/2gJ05B8jNjFTgGwcll5jPGCsrSDhLFBSgqnOEheEhM0bcsC5DduL2UVnadutpYStgxvF3C3Y5tXOBKLhgZ+17tcKzx//uYZJl0qL2RGyWevZLAqumPeRGJXp8saqepCvzHbkBQkcdsCOln1A0SJcMbnRpphMoDS4SPf6UtooRsKKoLMTiMKhonOIjwr4cjMYgpT5YCSqQ532vvoAcytLd6QXiSUMvrRA1qCeK1CCD0kohgTAZvl7jLTf8iQCtkHrCjcV0L1aV3PJ8YViABm9FRe0QY/tVjpUUFYiMxF54O/xpQZSmQLFDmxaZ9IAHVi1GVgLAUXr6Q1mssUeoZLDRZHs/wSfaCzdfoQnKbt6afFIc2a/mSGHCTgZMZjjyJqI9WBhIBBN0EToOuqOAo1PzRoqEnKJ5wTIVU43HFmGO8cmHSPc+B6SN5KatBr//xP/7jn31o/8v//B/ZzQRFzI+mOQZIoKskSgiM8ioLEqY9FsrMlygFasKvxpjG6x3TUc8k5OyL67Ch38xAMEoTpQVjScvVFCALXWkcc2hVW3r0DCBIRjaxZj1DTLob47ymhsw1/FjM1UG680IiJKUW80za8CdvVQaLX/BUyKZcDeRvygK/G5kJpO4rSAKMV3KnDEQMgFZAZexlpnjEHdkpUi4NxV8h26hF0kyjYu1EF8zJDqLsxAv4WNMU+A5spogt4ZX4MSlIvasAia6QD288VmHUbjYJgAgNBOcpBZFi3Oksi3XlgSSVSOJWY4cRlQEYrYYl3s66RtTRAKGksImG49BS2s4+3ZPbi+Ttd8oWhtyi6Dzp0aJPjYREwd7gzVy4lbl4m9aQXIDMu5k1ZAkbEOjJmnGR0NzPRGCcYD48jngiVbyM1MrPKV7IKPKe2X+jomISkjMPGnAZJeWe+D0IT4/RIG5pOSQHvtjlbNJwDeDqRY+HSgGKaDUGpLRovGCA9tDwWyjCM0Utno7/U3+Lcr2SdzOWtJnJTyOIIV8zEZAcvIWcQudci2Ams5zZfFvukzQSfVd8XZKWBcXrS8JFntRiRprGA1IYrQb4rMb89ruco/p4+TRBTkBmgDW8GU70pOeLQtNCfC2QRb7pJY25aG2h4EMLLqD3AJZhFuWnb9qwJGeso4SMvdt4p2k/o9FwgaS5EEkRAElbBiq4IyhKvOaO/oqk0nC6DHKCsoDrSURANG3cjhf2xx2pCurlCLoUkoEIoKc39llKm9hCw8ZRUuVZxspssjjY7wlosAWf1qTj7+z3utQeO+/wuFfuwJNk+pMj5yyxn9auxkvp9Sf9niKTMOBosN7u/5epP2HSddsWvK7s+251uznNvedWT0GJUoA0ooFASAREGBiG4QfyuxihoggUovQYJVGApVVUSQnV3Fv3nL336rNvV2b6+49n7ZJ3r5355vPMZvRzzDHHnHP31f7Ob9+f8tjlHHAnhed1u3+0d2M+8iwTYc82RW6SFHFacn13zYkiZOIMzNV4oa2/Gc11SubJYfcTb250N65ptEc2ATU/F84v9NIhJNHn2fEozheRo+GsECl4KpH5HNOV1ZvnByHL3VV7DK64Pi9OrDesvP3xh8msQkX8wTJEcmpxc7XiT+TGC3zC/iyUPgplReYRHb89T+49dG4Ul+PMkLUqgLrmJqPnM2qzeSGRv+AUQRSLz4otJiY5IpU0ekRyJuTiox0ql6U2ICQTeFU6I/OH2joWBtdd2RdU0TZPPv3OrmuwGD9nqdjC65l7EtjJ9oOWW9UCpGNkzCB4bzsb61j4N34ndC0QLvdm/f7qy8XNpTSV9ZXOviA+E67D/XWwwhnnhJgc/ypOq5KBIfcinBs+kQ0S4vbqGvzMqChKp+vTSekM2zvMQDsHQM4yPnQdog/DKhOJOGqqU1n6RGeynlg3plZQzhZBL1HLkfb3jy4Nk2nuYErRxlKrjb62sBgBrA5zo+NGBtZddWohnga1P27dqsg1ufeQr4aby+k3dIwatwps1UmkjD73QLN3B4f7tsWoLOtKa1bR5JienDgxwNLOxtnd9YuTFyiAJyLcH9+dkjOn9Oj+/PPF2cXn1y9fUhIH+3/35rVkfFvObWRxYY25r+0B5MiH/sia+vHt51///reWIVxSLf/q5ctjh+Hrjlb8qd98j8e/+/FTvqxLE+7urWH97sPbyPK08Ud/+A5CsIewVUc7TJggpDO2Gc1XXJ9jyBcMm11iJe2MqDE72Mg62ydhJQlXHJJpyQ7ZsMAxPjIZrp/k6VjbcSvC5sn+5uHB0d//6YMTLl+/3jk7PTd5Pjo6xM1Ld3ZIyd3dSadXV379+9+71cwiDF03c2uDuEPKHc566AK/54/np2abL14evX4j5d8EZP3v//jTH0jlWnEe1IP5xqtvXtBbyTyS2DjCvtw6O3WXYTAPW3UbiOy21muE9EvVDM/SvnWM5TaeycXHIwxug0J2H3emZPZeL5a/hpubZg4jvFnYUWVCU2SUJSfbzQoI9jgxJAGgRHcaTNeIqd78NBgT0FoYudWVJ9ihKXqpLZJgtCL8AGakZvhUt/HegkeSzwS3h4/iYGL7EcXOBbmzCBNpw3HqwQqlHD6ZohYDNQ2w9I5Dzyg0WPi/4XPGiP6ekT4hCz5+hvFSlzMaMQ06VUP7pKsvKi9+ZIWXN9PozI5oEujBy/31NPVIfBUs3tY8f4LyHiCaOTNTpzB116GiviNSuEw+MSvPHRcU6GklMi/0kcRGZAbdYIHIqFygahWC9cXpeWoXgYFPg0oiB8LDCzgTjATOsMC7QQkq3mh8RtGI4D/SqHpTjMXqVnhKF6nMS9BK74TrTAj1AT4QAmVmUxwiBchJMpBfGAEBWcnmA4jpzhanVPGzGfHt/8v//W/s7J/80//9P9N5as0iiJxhAkhNTY2d9Qh5tjaUAnEgSjKbo/WwJ3ElcxuDk7dxI3StWNsn4rL/Ag11+pXsAd14FjE90BFUYwQ4Mr9VbjFM3amiVnO9ieWPRMygM1O4ulcZJP1efJoFzlQGQFrLbv9Mdk3pyA/lBwxoll7vPzuW8R2e+vWlJ4MTPRnwAK/9kJzyYlKM2KJExghyaGn6zqbAWhDmYPxFTYjOkwTgKEO5uIBWCSmy+AEDbnhpcOq8jTvwKN0og2YlNXHoqMaGRrSG3kNBUm0vRxohv1ngK3DaOWDwiqS4QUqZGpoK48jSp+/Vj4fPdNg1s25fPHm1H8VcVW6dMGaGfYXGjMQDLNJVXScDXxvQzwDARgBjOvEg4iu9aHGSkno26GlNMWYHWeGr9dqpRM0kmeUe1yg6GBBB4Xv0mgZ94U95n9FrDc1bCpj2jSBNS7CepB3vWA+DDposZqFiI2D1+dWkhIgCdA2hkNZzraKND0gGUSa6dRuvQqExv2tVFKHyKlUl7Rh1wzO9zJPlS5Sp2/D10vfCwzWPFIkfYvD7YuvM0KLJiPfoqVIpAvrr20BSqQ3H02388vWJSdXb00vZKulDFqUUtUAHif+o6uRueYn4cdPTrKtPkpA9VD6NBsZXm8kDU24pHTxDCnHGMWUkOUTQ/GeGRCcIo6DnsItsoyc9iTdV0dtUUCS84TUGo06BQsLV0ZFInGP0JCRnpA0lkSg8yvZsodvdmkdlWj+vyKS1xubcPE6yIwe392wpPOMl353eXXNk7m/kX3BfDcEyOF6+4D13us6L4233AbtXVN6O8wx5FN+/2X24X3t7duNenhdHW7apAuf09Ow3v3zj4BCKsbl7dHF9d3p2jQLEw22nbeq7v5Gmy0o644VjeuuAE1tSicSm8LGDfbsygL+USA6yQ+css3M0tk0t9raLYq+tOyDk+soWyvKLJC49nF2V6d1h63s//Pg7Rwod7R/eX17YWfr61Rt7Si1amDknAKhppo48Q2Q/s18GKl0kPeTMLQPNvxOETFlrcM2vSe1XGbaKcXv327/9g5OMoCbAawQqeUkQC81n9mYYZMVGYmNtPJgPrvWbm/9k32MT/VnhbIlTbN0/fE4bZssOtzETNjJBDIiycEadrK87c12ZzNOaqwa2TYbQzhHykqjhqYDziQSaJcCQXSOxI5X0ub+zb4Rpxz33Qt6FZJvJOQYVx9GMhhpw/fmE665ftnpElJDD2SkG/LnUWmRZn1ACm3P3CVnB+0nMbWdtnvSS7IRWqau9UWgONsYYCgX3mZhJcsAB3bHZqKoX7SPUskYBDpJUWtGKDexdn+wffDmCtNEJP1ijU3E4MMpH5zePt79KdgsY57KkHgSLuFu7ADDTHHSox8t0zVYLTV8EpyXAAECIXf/yjhae2xsLNluBTZ8ctw+Sdw7Cf//ZefbGm27wXduUoPTdq29ubW2/NePcIy9vf3gvvOtcVLNBd/W9ff/ZDA3X3n902fKDafH5mQuLC//v7+4TISJL5Uwb2RR/TpLYmsQn8sGRuDq/dK/uUdchSyBZdY2faZ2j8F7sb599uGBGEZYPTVyIRgl3KGzRJjYZHCSR81Dd5SHUn3nBKQJtiy0xltjiDADzbNQQx//2xREz++H05qePZ5YRZ0yQMrQrtcmi3oePp87qYeyODw7ff7j4dHr5x7/96ePHc2/NazacYLS19vrVK8d0ijB8++Z1Gf/3T+9++sQS2wvx6eNnK4lJD0YxTOMeaZayJYIcQT7f7fP26saLw1bpKNG7D59lA7/5xjRWajWryeyOSsQ6RriUXwqVwSxQl6/GJlJkhRPOjGmnQBKSVG2ZdYaWT8MAqVCA+BEzIAGrwuNqLHbTT5KvWersSAJffOi1xtSblf8SDEhUBkMw0tEvNrs4mFXor/EpOJ35pWtP6KNACDgJHGRSqeZgM+ZMrv8Ic3nY+KbujKS5bssIrQUwk3y1gmKwq7bJMZiLBPtrCNR4M4Odck05BLD7O7v3deCJXLr2yTmaic3X0bfyRRwM1TPGFRaBXUUbar4O8Mtgj465F1GWvTQHWGrZoU6/qXD1skKOGTBBXYjpUWeJRHf/TLc8p6KKqr64CDiL5J7EQTYs56D+AZ29LDaZ+dC7EhlShceBxhZFVI/uy4IP0iz0hHjcIzrRvMaHOIr1cHyIqJRVDu+KztdaW77N63iBzTk5NTgrPmO0BU2eVk7Pnv7N/+tf+ev/zR9yBxRbZJYk+CoQFONGuhZ8eTuAD6jkNkctpsxop5ju51+4LV9Vpz0BNf6fWtN+Ak9EPIeSLzU+sOPr+Hn//y40GrJDiqV8P/2ngeykv/qz/oY6vgxI/k66ln/1mxQpFqFIJbQYN3WSAzUNX61UB/5I/sA34jHSUts5xuo3CPLGWIDQ5Dc7UEWfqWd8zMlr70CKb5u4pERnTggdFpUOT75arwyOXTw/UCUWGk59BG6MyDnJBXczi4V4ZbB0N0WumHFzxUkUDR9CJEA3ci+SvyAIJNIBGLqAObEvWqbWMasUuMRJO6Jhrn90npuEhNDOb8RdZmMSkNSKpqirYm6rVQyGayFgkNRGFNDvIAaWPn6Rd93BgWKrkxNY45msGBcLpnBTjVx2nyWwuLQQ+5QOJKDWJLr5gvI+0arqfoOzI3EqPD/qVAcAm1k6wFiJyJIkTIuLrExlX3UUZZpOjCBpZJHtOgVnDE1hA1ncEFsb66sBv9D3zftskR5DfNphsqo/8tYDwE+spGczCRkRihILeAPbV7VSXm/eBdCoFRsciUehp4UVV1u+emmk7WgZlFfM+AkaqDJbuFlwIKPaJ+vpzEOco9LxBbrkUWgqp454LJ5h7QxrkIKURMEwUDxFG671PUmrxT7KD2o/FwWANzPZViwiQeFnsi8EGUJRBDDDSf/I2wzH5uH3518+fL6xIblhYZwB02AeNYGV3Hu/Iqx5DA73JQnk3d6vXt8+u+jXzEzMxXC3s7Mq1Todely9urhny/MPHVZ2a7Phl+svTxd3t3IaPDaXuLz8cnP1zPlxTNWrN8cCoHsbOy+Pdr779oi2qtIe1g0n8MRZmKaFRXnK4HfaKOqxaSLZ23mIbelkAy4ub/MGk5QII6vHH5wYO1i/OT6QR73okef7e/sfPlxJgeFVOC7j4vLCoh4Xy+VP1E9w/Ls33+rOrUGv3rx0a6qcJyNT07WF/fg6TMWUeO6HHkHpN50AAIYYbJA1jo0hBf7IUx6+WgTf9p8Yub55ff8orYqHhHVExBRT9XQMl9rXQrAoSn14SjpJj5GKjGnIn9mXAaBoWpoSMOAgm9g6KpoYEPX2BLBXxT9SZvDkK2yuvXx13OqO8MZWU1SQv/3hLboSV1c/j/GdqUsnS3SqV8GkmXYK9ltVEFdzqjySK0/s+NOoX0ZEC/VJn0MwYSRSCy58NE9AM4BRBoi2PJQjl6BBVoVkvpl6O46RiLvGt2iMnyUeZFGrYiWF7/jCZUcygoV6qL3TiQr2vF67Poy1vL261p0TgaiXvnCHa6EvswhrvjxFmhlbgU7SOmjM2aaX2sEy1hG7cEk7ufv7ZZemxp21YsnYjggH/lwLjXOIiYdW2ySx0eH3Aj9nH09//atv0dNRjw6hW9vft+MewBJUBM7PHFm1sWUa7YRNfiSfdAs6K9LRnEp5YUnEdPxgf1/7dKmE9hVpEu4m3LHNXzQLkW1q3dzoUhuCJh3LvhInAElie/XypTn0/uax7LKmcSy/9YfNzRfHu+8/f/njt6f2zErxYQHwp2bHp5wkijkLj1e9ZabeJMfJm4JsZMkSUMMPjrXtErWb/pm0lsq9aqtx48v9mU3t68cnxzZcmHPh8VsLBTvbpt2IT8gtazRurjr32goTSbgh5Xtb2+9/+ihCf3Rw8ONPp86wcnYniH94917OEVOEnmY+Qnq2DKgV7x7vGABvW9lyj8La/Z4w3srax4tT60VMh/O9mwuzAtT9qdN4CHw62ziRSUxjljG+5TuDemGq8QoytaNQKW9DaHFn0vF1APMV+qRXC1RTWdqVuSyEX6SKlCoyc1R0p5SG0sSrasZYB9cY82bUA0ZOrnfNRGVVSWUu0JXzynqMB18ZNoo21ZU2mJfeogPN8kdaM7sSc9NnDA/6itLI/mfjlgH+qzsCVM95EVmK0MtMrZnTWhvsjvS0YIA1bEKcVKcDxbmUzLjalO+54apidRI5IlXAZFiyDsiSqUpJFWluoEAuCMcPrbPSoSb80LEhakAqSLgivECoqyVfwOwIhWg1MdCmcVGYzZelX71OwdgZi7Q6jnJJSsr7A+t88LxBcSGKMgWtm301haABxkJP6lRZVAIGK+dtphWgfErmv0OKiokKPuleW+D3Afl0OiwrZokYbHksMiH3Kr73LDrSOCBx75TWNjjblr+FIpvnN1/+rf/kv3DG9p/+1XeI0vQJWpHYoCBNpaUVf/WAYXVCYZ33gfZXNL0ZgtTluEURIDFnKnKYfF9keXiX4FU9lA0rvqpkROiEbLwZ9WRz0gtvhzIV1m82owfD9/qKtgHWq1rxRJlaFggjo0MlbUa0kZDg0mZao73cjeALwP4vyOJ+tBZu51Geisa4Sou9Snj8lYAQMYuKxgWIaE8mzZN4/10ZntAq46u8Fev7lkwVZtAMQS4h395oEc9OTok/CgylR4UJHIEwIqDk3HfJOACPFIMBZfwsSJQJ+iJB0lvEB7YhNTL7xxqIjESIyJG5mXkFmhDzVGIQUZjkWDj95uWudNBOoGsMjZpfyTUBjhoYemZwFs2akVdB4hHOC+XVi/79l6mKmPWFcSQvsjacLewOC9JZnDAWEeMmnD7NmjxZvMLRyuQkQ8dVbXLlLW3BRm1qXIcgCrugnsb0OIHKYRtYFklQICc+WiEkfeH75oGoG6SsH/2o3Ujp+xKtT2mWZivVoI+jKV1iQIpQthlR4QPf56+EE0jz1ix2zir1kmHBHWQnb3X51UBpXFMeZKB7mO5H7cDWnfWZzoIL1DZ8pfbKaZxrCJ1Xx3JcLUJ8Mm4CmmZLNcinr4koAhnyr7omynyedgELBsrlSBFFlk+u7VTsUXwfOYmJoNdUXpNXFfc+Ny86RP14nn3DoGlZkRz6+Ux/dVDN0WIwTpV0UxqKaFpv4+xUMGp/OLs+KIhp0C6y9XAvI0P25uP2/kG5wx8/8Fsc2vL6hZPMd356f+peI0w5ON4VqeBRcBv2DrduryTVf8lPmbg2wZZVcXp61R1HK86rvJK38Or18bsPZy8P9qzN3Z5e/fqbb9DYrPrqdrLEtrZ+++NHiwaHJydtO9xKSrlzl1e3JuSY/NVGdZMs1+jJUZZ4Iou+MN2wG2HsQXQmu8z+PS7Z+qa9xVhMt91Nmh1YlbW+dijbeK3UDIvtUo7NbS6vL21BFO8uiciOAfyzi/Jo9/b9XAQW52fVyRdNpM49apxAwxGgzNk8jqrZt4UlSTPGeeURV3LjL/4P/iQf0euri0u3VpFT4jX8jiFK4ZYWlG/W7ktyNf2zc5QmvsbQWs1WUk7VnftfrSouRn10SjVKwjO1L8CDibnTihLNReOvuZhr6yLdp1fuj7rFoV/+4o08fvJ9d3v95s2hRRxywKm1vtI2zDnJLsFGemczWTZKRal1h+KxjB7Kv+BJz5TAJU0O7czPBjIS0WTmLm3SaLOYBkLfCRww4cuAhijYuvNV8ayDIXkIUGAPxgy5PDwdAUN0U7OYmq47KwkWDjBtsKaPRRBN1TEzRbUjYq6m4BXRKZtSBIzrwdaQjPqTG6YMAeYSYs9C0aBCaQs+eGrJnndrou8DzsMjJ6saCUoFGQ4AnUhtHdpXYtECHiur3/7iTRGfJtFPLnrTmCWn3//uxYlL7xygdXV7YQr8+MTn/Xh58dsPnz+dX1mLsd5kTvCN0JCtFHdfrJmU1CbD5WnV8tnhrhy426en69eHO98e735jy/3u6rv3n37QolWA5/uPZ58QC5guhUb2j2dnELTPzLj2x3/83t0WJLqUokjOVLRaBfe2XjB0HbJkQ23pJeYsRE4BwxjmQtKCA6P96Qzg12xWO7Cd4eWuvqYJ96hk2UdinUumP39weRxP78vh8b6zvWiHAD/ZsnhqrV7EznbmWZ+RP8iwPlGwb968kMzHpXZZNa1xQ0Z39xzuHJ/sfZafeH2Fszx+wQZnjLprLCw66bLTYF68ONqzlefh4Te/+t7mAuv69iVIZuOKH7+USkVFlv2pqRW1SIuSlLK5fGI/u8oEiys0325kwlalRnlzfFEAGWdsbbSgeKQr3Z4hUbOZ53mImGOds90a0bZ/ETpHhBVgvPtORNBQyWyIJmWg9prp56fkglg20ubU7Rgllk5rxhLF9WsulhUDfL1M69NmTVOsBkvwax9a+Neqhf/U9AVDNUsFlAVzaz+zzV2xniyfgYx1mflMFFrQoblpzijyjJshEg7oE1VRMnmZn+N8KJqcFekvfwmQlSk3HQMWAGgeKobXzIsSzRmkVbFkrH1FGZthQWka/mx0nZk8qHxQ0p+EFQj9SUPHcvorH1TD4z2H27J6AI4oVRjJl6FobNUG4MN2huEINfSZKQHXJlNQ+ZnseaX9oArCLDkkMAVqGDAKlW8EGDYAslwI7Rg+KhAHmJSNDrtjHfgVX1Z++9uLf+Mv/eXf/u6t6jim8/HhcpUwNS+noEnSBTxowmFh2bBxgE9KGxACZtYwQ9KHHDU8FV6JBtofyYELCfFErRHNBjL/AIuAGbpE7qtLoa/FEdSDFv3fADDQqI5ZUVDlIdriVERNBfzfy17FuqHwwN8zn0CHYcKZ/1TzLfR9Fe9KqN8ijrf9YX6lcHWMp+MFJpMdCJapdcArH70rZVbcKHTrLEv61Oj04GhOvsjW4cmeE4f39gUm3B1eZ1SA0aN40LYnirSAQneQKurfppfGlnqHDa6IJT2wP7rLM46hrWMMuy2cGq+TjYRRdTYKsgE8zY44zziytnbkCvJNntLO0BvXdEAwRhrQI7Y1MPW0mGEjJtlDTu0PqYHTB1/8xAU0wxMMSvwxTv38+wSV+nmKrQEw49OMyAlSPKoLX0LQk1of+ka5poXRWcue10sTpyXkYRQJamYpKQ5H1REKKQrhTVNqfA3kJwtRr3b6MrCp5Qsc9arAyGoynET1PO+2Iv7lQYRmFWqLUWoRn01TdDG8KtI4UAr2KaKRai7YKVSgEVTNQOiHnyDxGRAUVKP/k2tVMnoZ7QUYYT9ki9WgcoL22urrF0f+LTdEaSELVRN66QNrYyszy3CjQxZvYiiZgv6LlKy03/qccG7DBFsMngpnRuJ1sAW531/HETU0lbb1CeSFxZ73oB+ezf+5/lod+vsFpv5KPjRZ0zEvH1E+sP8dTfjp/IyXSObFHciuKCyv7/H+5uLz1WeHkj+uvjna/e5k5/ry3At3dJ5fd0Pm9YXEZ4Os421uTQbEIq3J3Vzfu83z29eHz84pX396/c2LyyvpDtTg6cKhKzcPH7mb9/dGbyL5+f7u9Prh6vz25GBfwvJvfvkt//Pjh1NZ68bxtGD16eBgS2F3M0MPBbLt6y7/uhOdly/NPbMrUiyfWTDzPT+/zvt3Qfj2+vXD3cfPEvqlb/Gttj99PJMmTUwQw2QfKSSN39zf/r0f36l9bR/mhcuERE8fP38689aFx5wcXilhp1SceB9EzyZEzmVyORSPuP6b6A4uoz4yYwWLnxRgezXse37+i3/+m//mx5/+5n/z2bx4f//F+flPnse5NDmXV/uKjkjhN56M0WVZvlqTaWhAIkiJbYt9OTEqGiaxULfEJoemPA++Xrk0+zKocPX+QXRZzgQlEns+v7loQVqo6en5937xBs3efb6gSDYI46rFUzmZ2sRawihtiYhvbDog2cbZBJOgQ4wg0SedQlY+TBL2ZMhP3n0zQh4eHMioQQQH32bfIp0fYedfWleykJWWlllxl+ZPGZ0OBcY2eai08U1tPh8SCQPrdSYAy+i7xjX1VnMGeHbg9tMlFfKkZRYXu0sBZxdKl+ccdPgSEDKXmX6ZVQ9rD0wY1pXppDuiRjjcCC0tzfnR919udihGo+GjsDSROjp0UcWtFBfheYMidZKHfvdoS8MXs0+h8naeO3d83X3vxxcXbWq3YoDbDVcTO+J1Hu9vvjo8MId2IojNsmwTn9vUNumnaXutiXH73AkA/m+///b64vrjuwtZLnu7Lod6enN48GLHIUsrb08/nV+eY65rgP/oj982snUhwoZ81429o9vrqj9bH3DyjjPLLAPwxtDTZN2NVObaOJL3M76Cvc7tx7VncdWm+wzjl3ureJxsKmfG/7y52hbwWTSXVGcKy+Kt7wvm58Q/XnXDmqnUxdmDjQdUzmqBcchE4f0nG16uWc9ffPuq1ZIM4fp7F3Cfnr/55iUw7m4eT45O+Ppn9m1vbx8fdredMXnlvnRJus44O73We7NAUronI2ln+6M4ahQ19WiRB+3d6nzV2QIlatuIRDtgnaSOxzbOqJ2yLdZZiyNGuJtxTjLnR5PPNChnLPcFTxoz0IR5HhHOBSSryWHDkMLprCLERjGs4XgxCJgoHGpc1fwMQvRCtozcGJrRgi/NZlIzarlW0JSNlkeiM4bGVJdZ8FFFXwqAMK0pPFx6lJHGnmM2YpBqhIMBWkENygjMOKhIv9Ig0BYM+Lp6MCNGLsvMBkcjDDB6bgk+7YOPAUFrC+7LQDPmSq08Hj44DfKJk6iXOcgJmOHSVy0MZTBR+vu6ZM0uAUAn5b1UwJqJPvGigZz666kY4TBi3HGvjEnLyIqQcELn1vHMV00qhG4xYhKQ4K7aOBXIiITZVYWRS6vsNPi4k9lw1rRDYTPpYFYgQOs1WvdQTR+LFUN5tB9iTDClI1bIw+IqNeBmyxivpUxh74SH85MbPTHUGkf0eKflfErfmVcEs0XJas3f+fvv/u3/4C//r/+1f+HkoNv60DY2zVJtiNtjNQP/OIEikSQrEsENBX5mjT7GOYhy/gth3EG6OBNS2VRVgjZB9XOYa2lllrlinwzSFjl51VEAYRVGqGpAqRaUiTC+s3gEY9oEcVhXZamYJa8eawlaxEH7RKV1LXwfO98QWaNZftWX1JFC18lVaaSg1e8Es5MZ1crDDG79MaHqFMeSbED+4VM2HSkycK1t79qAKKTzuH/oELNUQxjCzq8nZzdbHpeE6jQD1zm5xFRoU+Mp9fQ1Htj49qiMZU3uNc68tYJnWmgwHbDxW7MTTR2akPAGcFPWed9AB9CSV5M4zBieKORqylfHuy+Pdu2qww14aPYr9YpwZ8HQGSBITVwh1o6thLlX2bHynKK2Ap6jjFpxRHMVjFsxel7Hk0fZGpmRlqqtAxThjpIKa5/uZwYzKYbd1jQ8ATruk0GFMA9/YOODm/FiVJ44JEZkmBySeR2lDH33hIgs7jQhIX28kjoktYQpmEJh5Kgn+o1cqmtiClBJjAtEHEhhc/f702N2Y3wOauB73B3PPi1OuXLYGqW11kE6GtBSoyqglAFe1mTSOPlWYz10hgfjYvFdxpvyp8/ygsAl1ypnoJyIv/Hdy0P7FX96kEMSDQuOzi6IxgEkiLzLh4rF/cQWbnNVXE5tczNGIL4GXHPvTET94KyHmkv7gkFdlAeKb2m4HhShG7WYGdBUHCcMNB53ok/MqmbCpdFFHNJ/7aFBrJoZQqe7q/m0cnFz71qe493NvbVyRvj3Hz6ebW0Iq604vH97pzN5fvxwwa2i9ELJ16e3zof0Cr05NtTB1JpzIabMhtucY1djh15KUrg9tzdrc39TFJJLsX9o++KXX7heYXef/T+/unz6cv/dt6/cSPXT2cXOuiSiHeRw1KFJAiNpWfDN8YGZ6NrG3cW142QsiooHhn1xHFknHbkhhJfICCyK6nvlUlBwCG9aaz062N4/3HXevzPQfR5urtafj24u7zef1m0Y+vDp45uT45f7h44yZcLPr06XUMJux3w9EO7kySfqywkj6yOgC7cSifzyXAQCg/FmcrrPzvsoGiORmN4K0lulQut9ly/cP15QkLuLU0ot/tpZhAayGd1JZN2pbXhrubyR0t9L1xioU0rVRJZWNzCoWs6MXph7fQvg5ENQ9DIKCAO8zIwdwmqLsK0Zo7dOwPx8xePNsXOoP/hX10/PL5kITjyBuLx0dHpuConRxoI/ZoOH/03ekNIkjMEdCEOXNxJZGgLlVDV+IIB93MoXQoPwxBJIpXlVYjhGDTrgV48rL5Em/RnjxVRBM8doEPTcbz89WR7qS0ltCLfgDp9gRgtFmvh6a3o9o1Kz3sByFxc7VTulJnPRsuBRstkMUAnWg1OUEGJjbWd/SxKO/rGCq8ojCl8h82WD1wyqDqjd3z1kwS+ub0z5u0XCXpPHZxlVR0dC3c4qvfv2228AeXVJp9y2tm+7snm1U4kE9V4dHWEKeGit/QmOJbUy8Pbz6dbK+quTkxcvjj9+/syThoTg+oN969srH9+e87DOrm/jgyOkdvhGbUPjINm8oik7C/7whw8W9ezdt5QJbsuVZ5eXOMhd8mGNszHuc0htIO0aSvuww9/b3AVjjy90b8MOfVsOuPr3NvJG/JWVjx8+mXg42Ms+O3dAUwVn/jgXyKqhOwHQDnFfvTj+sT3BRei5p58+fSqYaItIV3et//IXr89OT99/+Mw+4S8wbG549eaF9RxbhPf2ZgXj9lZSRIsy6+vXMoDmoj6U2N1dl/FkLD85Pjk83DOhN4iCWUrSyQvEhO6640el/tq54tR4VtPoB1l2J3mgjH3wncvDwDZCoaelp6Qrj6lwl+LkxMdIQNlgrS4CIkvyZgzIdM5gNq+i65TnPCHSIr30pSqpS1kcuhtiZ0f6f/rX5+KXgylOjMGm1+SZsFJh7QKRozi0R9qpnKrlMVNPT/TSi7EP2tEM2YSFZ2zl0ojvzZMzKnXjJ9TFpJUn+zU1TShGo6AyfgyPJquCcypAVNWI1CxFmRmTaDK8GMYI0ugIGN+1OR3N25CKthryUzQhYrEhJsqTkwPKDNlSZaqNcWsFT6cENt2Nzul+36a5LIBnJR40lkka8oIIY5RCwRAiEQOSSublxGwvg0QjsABMf89jDxfG+elJzMjMFgjPZdC0A2pdxcCwqDHeDEyiZvBp2NemgsGnX088G7OcJwHz/EjNAsyo38St0GxGF2C4tfbX/ut3R7v/z3/1X/4nDx3EZnh3wpu2qxLDBkqjANAzzvUFkRy16IKi4Fy6Ro+KAyBZhXjRjSkPJIwNTU0ygMwy8VNrvIWCJl5VICkCNWBzLLBmQaj2wTKZXYaV1AG+EWqGRWWDplO0a2B0rX6rsWSfAicXVBt14Xl+j7qZ56gUfC2wm4+qwldFdzHzZGNm2R56Mt6NOS0+cn6Ma85f3tLIyuO6uEyDp8GqW0aeRA2laBwc7YlVPtxeiSmyDDvPDicgOdzKGS5FM/bcBuME5CdWjr6QflBTw1gIGN4SfxOIMyr1lFs5E2z65zH1J/ZaMBcHMxp1Il+3tqVV/8C/D5dRhdcv9r//hq/Uyh+MdREhRkoX4vtK3nqCfL6R1dz3iO8vHXmjY2B6FFz0cdiKAfqIiTCocpw1fABvabNYQAxDXNLT7yAcLHQW07QpEQ5bydjoeKKfhCQDnijbseKD9UIQbfjotP5GDYZU6SB4NJeBCpqvxRLgmPtYSmHcbIkHGFF9lGlxe1jS2ECXk6+EMXSQGacX95rMZzRCGaPiRMqVROkJvnSLlH9d6o+kYRTxCm1kshAnDkNzPGq1EsSImxxivMUCPxPWIZUfeK0jnqW76l8cH1/ePFzcTCxSJUUjbVZFM1F+EihqsyNJGleNVAQs8NCRdW0yPO77Yh9CMV8lZFPfLFVf0SvlBlefRBIG9ReugAetYWKhkd6itSrRfADCrHES/cElDHmfpUyIwTRyXd08/fTh/OjXrxvrnh8/n12Varuy/vB8f3i8NxNb2f93Zw4tfLmPp1KGvvnNwdmp/b93N4hQ3oYFg/s33zuL7/DT2fn25s7dzfmBW0qfuUnyHb98vrze6YDIL692N37xar+FO1OFtXW3tTpV5bc/XWxt7EoQsH2RYymzn/Mjdmhwt+jG63BTsOAllxMwsnvcCuSsQDMBZkBuX/L26HkWDVpITRaIFhGD3ulnF59+kWrg0vBvX32zxWXhhm9ufvhw5ugRKTlOMu3K4cd7uQxP618cgPl8vybSbYoRG7WYHWz2m02MvPPUlwwxRsad/khwELcp86JfSWJTaLWEQ2Zn9+//8s3/+2+/Oz+XnugGE3qwsbpVVHuYVyP+JYJjKMmBho0YeO7FjHxkMj0Ajb7S/xEU1t3mjTYtPPPOCwEKNKsCDTCa38+QL93ly+ktWpdb0Aj3hUt18/q7b+BINIToxE6OD7vOkNtJCEpd8GJ9zdZvIPG3SJIFFS1DlEPJOsirZJwBRRu1GlSRI1kFP7EfLWaLIhNg4ZQGMM8tNBTF0giDyEJNtWQXgD3XqUdRAEESaA7EDBll1GlKlWktE9T8gfEvug5iTjs/Ce4ZeuZXl/M88+1z93RXu3HSbrk8RE4238uqsmLuEJCaordUdKP70U4Ojwqdf3lAuu1Nl1Be8aBOb68E9a08f/x4ZmVl4jVsjZGZUD0en5xImNGcwN7VxoPzdMHgcNLXr174YoKrOSPcuQnEnTW0tpQ51QZGny7O9u9tAF159/7z0fGRSdTJluScskzcKea8TKl68vDOr01Rnl69fAUuEwHXgbUQYW7x+PDqWEIbPaJihSFbz2x1u9P940jnwJriNl00JHN10DidMWV5uLe7APSEn3x1po7M4OfuyTO7t0WB4B/u7Tte88VBRwfY4+FAqW+cJHv38OOH0677Pjs3z5Qhpl/XGkgPY2JUdPcFl5azxjU3UBom3axmuvKLb04Sr8aXpMNmg7OPlyf7Jv3rb3/6dPN4Zc/V7tYu0+4SA2b017/4TnbZp8+n7ld2L+H9zaPdLPhFSnXq5jsrFS+PT66vH92NQAzLm+OLZrhL5Mgl6QMvkzpJ6nabWBZs+XhULAtKGIo6KTsQ+ba4O2R1kUb1KR3Z8DGa0gOzBTopp6AHaXp+v/+aATT5n1E5vfVxUYB75e696TJI75vlObLwrng+2aH+QMAcj8l4Q1Qhf9qkX0pL9+ti5sYgNXeitp5lecD3zAZCNuMwITzqNg7EEBkIQa6BgT6M3P9QdKDydV2HM64Mkkpmjnz82af0hqUkTDWiJRUSpPHH07tWKnJQ8jLnSnLfGR8iVEkxMxraukQzEO3XOL7qAdZ5JHkMPi1+LntGQzwrDNkBAXw6bTCjrotSqxyakIA452Cy+Se4pqYl/EwKaJOyAmDjoMTvZQCuWXgryqsbC6OzhsoEwbexEqxlazXJQED6okoUG7rVwtCc2Huiv3HQITjU6wk0MuvaxD4FaHozAMYHTR5X/vLf+NsHrw7+xX/mH43WWN7GpBw43YGg9iPLADkxUcK0EIRIecOriEhTtD/D+KvzF004eFEwx0Ir/OXwVWzgL6423pUq8A5iINBSdB9cSIZv3gAEd4No/KeFAlMsFxJFpucBecoCcRqrRlBF8EZE3SFgDyNV4wVl0U4ODRgGBD0w3rpgmphi2KG/wsGAtS6Jl38cu+X59Fws46a9iiZUj24SPDjez1u1MclpgwcO3aB0t+ydqNbR4YGLFzsKedvhWu6Pt18oT24QiWioZGjTP5LJiJjdOMkV0R2NRMZgzjYO6QBJpIHNeSL4uh1k4VtAHd6I74mgyY6LC9a3Do6LHMFELwthE0yFxu1DOaynLENejaSYGSaEi0iJ0vArWV1cgp5FVx+w+ZfERNHCGUmsJ7wjP32yHh4CqHYSRZY/5gTD9JGofWW1b4nNNK33oEzByYAv+MgnyRfX3vJcF0n61BoYxj58ndXkTsMG6wfCQWbQUdKrf1ArbEe5GLbFxQetnqE2XAp2vYBnNCms/Z/Rg3XHNHWe75iyhBycmiZgtQHvDGA1atN/ciCaOPo9Y4SSUFAB1s0WfhbUnEDOT+cnYJpDLfH78adPXFW2n9QSdXj5PnoHHHMYM/DusOv5GLqwzlgC6Su+OmGEwyLYM4OpsybSxCCf/xcY9Jw4ZT3GTCE7++BhfFOjICbxM+DoDjk1WHdw1kslWv2gECnL0F/jDTKoyl5e3N1ftH+JM/AkgzZKrqy9eH0oJd7FPRxV60imN4KV5XI/Pb97f3brfr2NjZMjSdJNb3lQrt45ft46ebH3+eONDungBxlET45gudL7ye6enNfd3Y2rU6v2d3tOEVrbF7U+tetAdBDIknuzkh3qiVfJfydzPPFtDO7Osj971vsObBgAKQ6sixuE7AZwlwbXlYvPvzFnsCYh8O/wQpzaW1+7acq/sr2767QRsu4eEGcBcYysCagm2dgkAOWbP4girbqkTw5qR4/w0fK8KYUCiS6CpYcRO0H2B63LVqd71UlguqlULdCjsq+K+h5HfFlf+TN/8uQ3f3vvr9sy7QotIa5J6sXs2FYIP1HGfFUaLzUw+qarxcPAUSNHf84oCxRg9Q+cGWeGpRnSWArOAeej4Sp9txOxWx/494dmohs7Cpse7DhXUvhn5kCX+t/f3z062Lm8vdx3j4PLCmRmOBPKoumXJ54nUeIg2h/DCbPaInuexI+YCmjJwUL9J7OasWvsQjDZ+skSLYMZ/7N82fFdFu2D7uIEhPaYCQI9Spvi0uixxlkyMwX0ZGERRNFcmDFkSWqEzRxQ40xiMdRiV809pPx2R0wmxQ/dpf8tRpsjZaronURCOMqF16ZoeuohXcoQ1WVqd5vbMmF2ASnSbrFE8iaxdLA9o7i/89r+gjcHe1gp/H9zfWk85/T/YDVjy3zs4ZXTZLc3PlzenDrBc3/fWG/GvCxXISBj5NJft4xJPJPx8vLk4OMnSexy3Ne5y469R2rXNl+viYjvcM0hAp5jm2scad/+GDkw25c3tx9Pz/a2d90/8OnMiLj+Yvcl1AQszSpMl21RmCyRJ6EyCwJZwdb9cXPXiJhb8Wz1XEhSRHBNm0MRawDWyq7k1M6yjGsNuizM2oJ5CLYeOMt3b1s+khQgA5kcPMs+hzt7ih0fvxQLpxbLaK1WXubz8/FBhPvGZMipoluOYPpiaeU3v/7GS3O207v7g/0DR3XbweBKAKTCiO/2Ty4vtzmW7hA4/fDp1999RyOur84t9704hO/+Tz99fHly4naRW3L48OhGCKJoBiqvCfetZSV/mJ6ppy9ZfZqbuDw7UsnMYssGCn7qyIOBf4KyeYHi7iakmVG1yKNBzgfNEY/k8e1Q2J8UR0fj5WS2ElnRv+lE+Zl/amCy1+oTLKSPfLm7t9t/suAdb/BFlgeBTAWyEpRlFtZ00Lx0zHT57ez7qHnyWeBYdzXZ6NXVQsrpbIzDqHwgB7OaGrTv38/UoP4bZlTHEZTxk9aADRHDypNcxj6ADNMSA7CxhKJMc6Ns4QBkVdJvRUJ/QQ+RJcuNdWp1JSBpbaNgLZUBUkheZZJGBX0BFQiAN7N6tC0/De65HeNAZzGoaiYwSMT2VIqxiBWHs8QGz75QcK5A6xvBVyOomGFQGI8iXRRQqeYXD6mKvpKEkgyhXjODlDbnO1tiemZ8WFopaFFgG8jNBLSHMuFjIjUhYTY6FPLn8uEBZbJnMSeBDHPtTA91IhGkCNrd0+O/95f/2sH2yj/7j/+57socAjW7XFwQvzSjweZfLfJgbtOB4JznE3NdqFGPHqPdYB7Vl+6iQNDkQ8ArbHSQ76hNX9EXqcNYx8ycQiiz0K4WQR6NpxFvku1BplMi4KSdmUd8pQnCa2p8zRZ4MWWeaMW/CKiX7E82GQwzB8wyr1naiZjRXndBAM4R1WDAsw5xePiyty+wsOXMMt8ZLv/urq0KCh5tOg2M4bea/8wLuD4/eXHyRcbds1TGrXsHWNx9cWIA7piHt7TbaciNhjqK0a0blSwOhkSnwaWwGmLkfkkcmmuGhr+eOnikBDaFkbYg60RVsh8TMm/cTgxcU7fx8mD/z/7e9xInyHmdjRQggpoLnr6gaTYi3sTlhsDhDtYsbjj8k2iUA6fvkziECx5Wco7bzvSl+PU9FMsCQMWf4MSIiB//tJ8m4rw/ibPCiVeaNnSP2KwKJIZhwBrTEQAjfVAYUwBUsISRfxpEELjAY9yfwGhqDs3BM+7PIfee1BQrU9GQJlGN4/CotZZQPQTnCGRiULEV94p28bNXi5RoYcb2VFsPzRmmtRHyyquo6tAiIV960zVMNTj6wpSVFeZVKpkbakTIOx+VjQBaQO/M/KODv1dPdndv9g8dQHn9LJgYL6PW3M7ERjUD2TSlCsHhavsQtDntj9ZWXoFlsSi7NFjHxyKSETYDBbFFEyNLiMQJ/5A9rQEtFYyzQa58MI87OohVBCf9hH9aX48Rxw+sTn8jvkVgfvHzDz9+/oNfvDQQEQRra04vPD60l+7pqsS6LmzRnAnPqxf2O9pas3G7ev/x/OLNycHrk513p5cO7yCNp2dGrCcT7o2Vvc/vz9gFu/Otee7t8Yi6ewuxrq6f97YOXN91eXbD6f/p84UG7au439j88f1Za3oSZG5bTtSvsY4bIjufneTaiVtSW/fldkvAmtX+O6omt5krQpT86zKsdT6FmcGXo0PX7a3Yi4pSrvM72dq2AJha2RhwtONkdcevc3+5wTZCkGFXjI+Vf5L5wMl+saP62MGFjguDR56asmUCshrmDL5MntaMnclaZE6GfCfElfIdYKsrJ+uPL7a5YrmwUjVcVMtlic8zM8NFLKxRLMUbJrU/NVXKBAFoDBZonGXKeDjqEUd1zaNs6aE5og3OBA5ibZDg0DQk061un+XtFSexC2Fj3e5Vdvf9p1O7QTVu2uRStw/vz/W+s/l89ezGqI48o5Sth5gJ3N2fSegfhdIp58yoqVmcAgJImUhMCgv2KyBtbBRcabeuNRdQ+qlxdQ2cgTQONxXkrOurNsfN8iUS5KVERvRBdl5PkwvtZz5ML4zZ9Uvqoe89APw52i9ZU3pxVl4J9ogaDAFXbXi2owQ6kltya4Ctew2xybQh7863tpkyDqY/OocuwhpvdGKTrk0qr14enRwcf746e3/mNLgL9xt8/PSBF26AsQXt6v5qa/dQrMCh+PKuZKcc72weu/Jld/fd3WdAXt/fQnb/YJcolmpiAXtDyhr/9cmtHBSaGbcXllNzeX3Hq6ba337zChyEhHu9crtycLJn6c0o1W0yrUGhx5rMGJsG3r/7YCcLiK2f2VJfjB5tjKttgHX7bLlbLuddeyhFFYbSfMxvhcPZLIODxSg+hiu+0cLM2ySwxXRXZjw/nZ5eSOs/tE6xtfHj2zMUO3D20d3tyxevLi9u7VN+dXLA0r/98fPu3r0B2Xho27QglE0gYjl7+5t/9ONHtlxfpif5Ww+Px3v7TzvrP757bxnExFewH1rv31/sHQltN5fcsdRwef7m9S8d8oO1u6+P3n/85ACbm+uH3f3Dq7svbkigB3sMDPN0f29xRjEZrTlPzB35YQPGBv/sjUUPRGjSAKuCWInirLNlKxVehktjCbIxjhiQ/SUGP+9dYWQICnkg+ZrCTWKWlmdyG+VItifzRU5zStRg5d+EUCl3+WWTrmMhqD3LWG5aPmwaGTbcl4SjQpKebNaAn41XZb35D4ZtIRgj3pgdYmMInKJA+PTumVodccj6jIumTOIcYYLHc6h56InOe1mJmWMYKT1CxbFP2vJNEFQFVpLcju+r36qTJSmOyGhw4/PSp4aicVYUS6knQEnfmQga7Yme8RfW1bLoVyYDXNAxKBiz4jHcnhJ78le8As+Mo1keT8DPeFKo0PanXyyswtMCClHwAdvfIai8L9rRu66DIUsbyhnzBtfMb+3MAEwwIlRkbrBUGQApSHt8G87jQWRn3TP1fatBpE4YKFffR5+pDIb4LLWaCHndiVKeAcm9G5109+/+R3/95vz6f/zP/eNSjckRxYzqUBviuL2jEWdxU3RW10mFluq1vKYNmFio9Ey/+KnIzBbAvgCpM8VLZgB+EEN5nMhKNLWI6ZAI6wg1vzQWAWNLdK8WsELW6OtLveF1pFNskaJA8AEMMvpMxeFjxBkeRb++V7GZEnALHKByvSY8gDRiTMbmEHv8Q6GY7sMRO7v54obDVpQ2t/ctREtEJHoHEhQ2t924Iqbj2OEth4VB9WHF5sV3b09ZOUEZOwRND5h/aDp0IQhXWcR0gfgOfylJsAkPZyNmy8Too718ZfaPXBF4NEvsQOeD/tqHbNqZm+dXMuOQN8GzP/F7L77/5pBZw5VYMB499qEMyVxEWiOIBl7dMiWjxanrKOlX9xdL45VQw7AB1L4MpzBEyy1CgnwASz51YJCImC0KZdNy60drPKxknWLj/IRZAcY+WssrSrYbsj2h9QBW3buRvnSQYHvl9TwBfihTkJEW9fokMSX6hmm8b6kkF0pn2o/u04MyU3iENqIGf4K6gLho+gC8QJQcQTCYgKFNjSXbesCs1jY7zWewaS9vFkZRJgWPAjhVTWLDoFKtaejOK3amV2nTuG9GaDTnSzDs4bSyt7X+zclhA8gpf9EKLVWdhaGQqy+AlebQtUIl3Br1snUUa9Gp0iUkriQ/JCE/hEvYJDO7tAAWT+d1DBMgimcLzNXJg4wUQ1EcQaShg5/KI4F/qutaG70e+wZRf1NzT/J+muABInqxP+e3Av0d5XdyuGcZZduhtWtrHyUCrHaRtqszXAAsfsiGc9yubq5evHDQ4Dof8+ru8cXBrr2mqHd+e1WCjRt8vnx5eXS4v77hFPIfL2/O7+63T/Z1LDp7eXX30wfHhCYldvXu7m7JO7olbJSdHkm+gFgDPgV8lB8BUTNtIi+h2oTUJB/EJlXNkp5WT6/vOh2wlGqy2sDhpJW4uu6QwHsVHAqwyxQ5k3SHLq7+7u3d3WcXGj1I4JCEf85jE6K155LiRq7SE0qMF6vK6kVNM7/FxKMVGvqRwOIDCrKTzQv9kY6xJA0wUZ9kJWWFwBJm1qb95Vu7a65v5Xwx/8aSdgpqiTyg8CgwCJbJWWzLCqiX/sR7kPj0vFIZiMTIAPJ1Mpd6VV33zzakOuPvCc5CJuJP9l96LFNIoJpnub+xgTYfrc4ITrzaE/yyg/vsM1/tYWdnT5JWdgZsz+YoOrHUkq42XDsJfpsHkABKF+HhzXuUIGRUl8cyUVMsbAA2t8Y8B924JLwPukVblhaLFBkdI/cIqGpEa7iF6CLQcIVoNshvtahTr+DOeEzgTeyHqo9ZAhwa2uOlbzRKFSEyTVrKwFcoWPxhAdruJtEi2S6VSK1q7Ow53ejJRl5dHB2501ezzuFxFtW1rZQ2NL9999589Pjli7c/vqf82N5k8+bhaPfQwku3Tpr+dq1Y+y7uNrYuLs+tG3DuHZHlmEwR8QsXXbQP91oaVmk9z4+GBLdff3j32Z3bovu2HxgyLs5sLVg7OXIorv3NJSwduiHPVcemVRZmVtcuzpcEm1UbBj59Phd4kion6wYv3rx69bu37xwVVNx1o2NxqaL0sOyHudzG1peWbmxQ5mSsQKe5AfpnoLuTlb3d2922RoFE1gwOdw/0a53CZh34mqU5p+XC1ojZm3W8v7MnGOCSjgae1Y+fz1+eWAxwLlCRgN/97u0vXrt4e48+m+9q3KB7+v7y1XcnjgmWsWOWYqtxU3xXVrtIgdHZXX+8ub++cqTUtfLOBXJKkG3+jAMd+eEnxxJcnxyaWhx1dOvVlRknLG0v3tnafvPm5afTUzchUCr+gc6oS754n1wQoyxXrHF7MuNVZA4TxcXpQZ7EbbwQjB/Bo7+YhDio5IFZQyanBvvNF5lJciNW5qAPa1AGuZ4ju2OG57MItrd2N+jyvlur++xv7pHSLDwWjH0v6sA5XHPTkEUXRgzknXtryhRE9D3bkx7BjdQqmbH3r/7b3qpWZgt2ozUDWEM+1uoROArEZsI3jqAn1cxWJTKsCkhqfxxlmGrNWwsjSFDhvMmgyjDlaHaZrgK6VpdojXGCMYNaYaO7Hp0Latf1YrOH6gaa1D86qwxWxgLYWb8cZQBlzoQSCNaU0VS/85wlRNZ9kBTvz1UFJ5OyBGi9GMNYCdpSlgidaVJfILAPuOc/v1XMZRrHvQFYf5Elg1+ZKB33jJoRJBzHYuvAPMcgNl5Fw+7gQJUQGDyxi9kcKL0C28iUr/Gidp8YPS03UhgA9Pbp4v4/+M//9sre4T/xF37z8uAgjxjU+SUdqKB55eY+wsYCnEId4qlBLed1aRcdeu5NTowu0/IZOyCPftSBcKrBTCP7jF8hCP3qzJdgih4RQacjWirXauJRn6gddMr0tAbA71f/QKtS6C6DESmNrUOfmYfUe1OjeE0+YtDPIheCKjcU9mtpX+PLADeK+NjavZnYjeAfEVo/eSkCmFxtbz7vHnC0tj59PDUwceXdYQIity+LXym8dbFl/1LiTY7inquFHiwjgAfxZ8V4TuAxz29sVXRIBj4piRtbKmptAPM7dRh6l/ANN6ASs2ixTCPZrj2rEFZW1/e2V3/zi5Pv3XIot+JJTuyWlLnG1Kjd/II2Ixf2qcvCeJGQgNJT7Xqe5BryEGTStzA3Hw6J8sYUqNf+9Bk+ZYUGvGErj1Dj9SjooEj7Z4aDCzIj2+g9fB9VNXBPSyNZIEk5U6CJBupX2X6M0uEVCi3ABF7yQNrH3rI/45OJXIJ/EUXWl9ajk6ETBcKpAT1cQgCBk/r+zpFYTM1YqqpTtkFkrMSQAoWyDzEL9cl+oqPerM7FjiFhCDfTzPXXqkAaTR9hH3BLkU3ZoRG1R5hhFGviQTTpldaIgp4K36zt7q+/WN25vr+GQkecyLUWksOOpgWkAkPzYmmKtnVjKqtNjBtkm8fpi1lgVypj7qFj3dR9v3TkTwDHmgALImiQNmClIpioMHX/ytAsP/e6VtTRq96HsDrSRY0rMDSpkxjVB9EFsF2uefr5tjmqkXhj9e/80e9k5PKMfvfuQhX2SQzeCsfhwcb9o3uKLika2cNUbDzc33G11Jer23Wz763Nz+fXH04tDhyik8nN3z+9/CB3aH3dpUB+OpVLFF8Y1t0+AvDHJzs4Z83BOSOi9VbyxQ2txyiDhnpgeIFsG4Du4UPbjIZYTPc5VGMZShQc529GaaVXVg+dqYART/wr85KQvfjy4BoHqrqzu+mMdmzUPGmUCACMF0dHyPPu4ym6ypznlV2f38zan9YSzVEwNF3ouGhG1F0kZmz1IjdYhF8ju3Q4Q1lcKmOWdK89f/PdkTMS3cgUBmW2LBOa5tf4R0d5A9MLCVh0ghxkiOt51YWmHCk8x7OfpyXJTBEFtYJzbQXt4vcAndqUzr7izKb5PN3cfNk90Hsh+e9eH1v5lwUld+fi6sHubQ2Y0JVDz5FZkaLs7ll58DeAw+8Mq5BqoVBXfifNskQAqmXAEXFi59gXsXDpIsBpSQX12aORWoIIR2pBQ8AHL4XHdrXxET2guLj11RqdQTavkJb9Yt3lnWfIdD9eRev2UaaD21CdVmuDZcnHG4q7/RHU4kNoggsO7DSTaTjKOwFAE24ZKdrb4Xu6FNqVF2Xng/8L3kg+u7ogtWsi0O/fvpsMqI13796ZB29viPnvXZ9fUxejxfuLq6sV+feCd9uoZB1LlHljbVMM/vLO9RMdtkNej48Pfnz7yUYi587yX8F7sOuAS0PXrlPz7959tq/gcMuVddfmXsL8vOM9lqbtDQj1bFnu+vJWCy9eHMBQstD2zi5v26q3P2PBtuWIz/SShriODJ7l87u429beEo4Jpj0ALaSI5jr+6GBP8Ozh6u5md3f/8pLTn58grIZo/P/j4x0x30+nZydU3M14jm1Z7xSgk6M9p/SYauPmW3eBPT+fvH7BXu0e7l6cmyyh38bHj1dWH7a29zjlH85OnXxxsL8NxW++eyHLbntr37YClLm5F+K/Jh37wgOPax8+vUUlGUEsibx/U6Ub13Zc24u8/+mD2deGVQIXBF7fPEgiotv42BAql51cbWxY3hGPwf/0IBbTxMSMNvB4CpFSpNHixbCSJSioDl20MYNDxpGOZtfGm2zmnL8xxlql6EPayzkvivSze5ovm0OWdPsYzueGNWTUDN0EqlqUl9nMErDjs2nPUWxgzADXK4XCxTHKpNrgoE12vwC5uVz9GWy0biqjkxkLTecZB7sIagieKmsQ+mrDdMTbjbxailkziGfNFoXVYFVSlfINmB7Px4bAIDTSoUaMxlEt+0On/WXcIgwNAEuPyMUe6DgsBrVswoKLuqgG6bR+rJi/FC5JA7qdE1JIXsWY0qAf9OzAvIVHo3u910RC3sAFnJj7NWgXQfMd8oeWkiGY5alTJYHlx1C+Fnqrk2KQoVhrGsivKnsnxE3vhyW8OtoNAZArUkn/j5mq06Y9BvhgKxqCNcEa36bBPOaRCu2NIBaFjXeaMWiB1jcC1mRHah5z8fD0l/79v/rbH97+K//SP+v0PYayiUR9gmrhWn0FwoAyeHs9BEAdb5KgSFEvObK5EdonfPAFj+rLB008XJqJmFE0ijGAJG8IFk08BTyONOSMstSpjzdRJIVCABwUV0elUB6AkhxgVC+Ykhl0n4BX5CrsLmxQ4DbWTXukq2duyHYleZMN1Gy9xJdhC7qLqfZ3PPryZe9g1y5AaAnT4JHBiDN0eHQMhQ+fL4mEd9qYaFu7mDa/OL7w2sjfBSpPbf9dZJJqBGpEAEdeNzxa3I65DaygvXs0NDTmggQzNQta5Xm7oEw8QiFCKt/bWdOT3vxyb/0f/oPvX5+cuPdDCflAikQzVOGk5TLmNMYAEHsXG3LVoo8iiBUHa3sqLcTVjmAWGpDOnvMjkboWkpRZK9OOcbLqqWUjZBqT/GON/8KxBOml/awGFCACzZg7WEjcVUv7Bb89svw+AqxYIzC6pZhhk4KNRPjphQb8g5rHo1DDsnz0vP+FVt5OqeQKYTVPKcjPQuF6/Sp7YQbi7EvQNLklPsFb/7Wmrm/ZZYDnuYriNQ+By5ClRLUFNc1TUD3WaVKFF+Dnsue91GBNRCKze1+RlMeFQ0SX01Qvk4HJYkmauLON9cvZl+t7L4CQNXC8XgyDDgLpnXuAoO0YATmV17L/9Ju4OIV2zbmFpVtnXyKlUjF0VDAMPfIfSNOioB1+qKykOvEflESuqUXQqzzDhz9U1lF91dCwviLK1ZR2/YXg9UnIqdK6M0JkED9/8/oVAft8edch3eVAPXEPtneO3Ohzfv5JSj7sbm6cufHlcHfnpSieTre2Pl66Iulpe23zV9+8ubm7fXsmqVm3xhTFS7B5seOQyVXe5MHBoZ1vjux0IYYQZ0F+Qx3xMzOco714Pjxhw4oUXy/K0+dvSJRYm8D8Sm4hlJFFPKjpk1EnxxiFcQG7hfHZJNMVUb/1vZ1tp6RcnN/sb24cHey7q/XqeeV9ZyruHhw64RDeXWItcMjdknzA/dg/PsBCRqpsGcSLUiWloWR0JCr5B8lSPoHnUgATzlTIQzKvRoWH4IBGYYh8+RO/9/2f/NVrgepx+M0OihhJJFBSmDZmxD7sqq4f/sD+ho2GxfKTidb0m5oZZOGs3UkjThBmoAkqdUmVkBj9p8YSf7ImK6vb+zuk5vzssyHcga/u9lLr9ON5ayiacjaRM0AlU0oLmXwVh6rxw9AWklm/8aXy13PXm5+Nw930oGzyFsdnzjoW33QQRmwTKOFg2kJtYEf2zOfg5RNhtaVpP7ICzVtThxHZeSuJsnhaSdsFSuNBBJ9Nk1aBnVejfapLpYWxfTNVUMQ8DrRsin9aLBdiTjqSyJI2/XwyiZ0PbrmQkyXQzZuy19b5lnu7G7/85aud7XZLOw7fzaxHbsbe3r5wpNTz6ncvj2B5eXlqw8yLY+dJP+zsrf36W7POtbPPZxcX5xz+l8fWokmGc69e7Nqs+fz09/747cfTc2dmyQJyN7DsM8k25tnvpdfA7eHBGbZIQHP2D+0D7mpeGgK7vP/VFVvmUdwul9/83neOzjXUbbq3envr9ZsTiUkfPp1ypJyTw2NBSfuV1/J4Nwy/zeRk7OzuRF+3YOzu3N06AHTl5Oh4cS8Mnzn3OBuTnj98+mzXgR6dqHl21Z0VjiT99N4BPqd3TbW5FRRg9cf3H3/8+OmHt6dPt1+k+FlZvLi5enfqAN0Vu+ssiB4d7//O5cZnF+mugyAfOqXj5vH+4+mptRJHAB7vHUoSQPnNXfK2cnYqi9eFDDugvbiwHf/2dx8+XdywQds7K1/evDrKF3PA384W1cN9suTyBLOpJtbPT2enF1cX1zDItDmFk2gyPSAd8VN8FAlxJjamwpx4nJqltqx0KjYCliDVOhoZsCfxnWwSocRsfBHlx2YmqMRVeVZTP4iGWTOJzWUR2AALLpAtPZCGVLp/lF5jqSvi6DdN8BxIto842dTxqe1ygdeMag2ARYK9UnOqtHqjCkOndw1rTSReGSql1uz9CDwd+ShTP16MHWNoso7mgRrMkjVIKbPonTJAIoHqZ/SgzOLoocGHLOWStw6b/02JOx5AMXURKY+lOXnVFVCXovkzltR5KRz1FeK0+Mlo3bLMVFkIM/TMjNj3Ur0ZxgBUqDWjEfEC5h+AZ622G1tLtK3dAj9D1er60lGnA2p0CxL/jw1pRNTxfMAOxa9/it9zg0INQ3Wa3qiBPgvkQevJ8okys+FvyhfBwYn5hO1wzc9pXxNF7nvZjFGAiXuLOPrBxVYTeJIWu/7a3/rtv/nv/qc//PCTIXDEpRZnwRCAxhG2s2w9rwA3t1810s/zpjSEpFeh37gKA4AM12pMgaURTaOnTzLlKWJF3EE5eev8KM9rYVGiCGXICxXFlk9UA92Y61SmIbJozkKb6T0OIiZXVZUQAAyODFt1AMg665/eWigWszOqxOFkl6x99VH0GbHNftefhfUEO1j4Y+uk+3siDvhsex+ZlqWDSPd39nGtCf883D3YsPjxs8Pt8jRMO62N64WCBM8ylOeXo0WybcgCYnDaN+Ayx2EPvWpUX1buUWEkgV2FMYL6K2mh0Xl0CVGygHJPT/I//+Jf+NO2jfputXBu+EboWY1KCKN4BMRVDmI1hrSpQ7w37sfhXNsYQRKRJF9/FspigsqYnAmJj77qenRa6j+aJ/+GxIls4EL4Dq2noxjnC5jTCpXj9/yd2UyRYmD6bJrTAU3BBh7gKpl9+Nqa4k0tAkcj45OgiYf93cTVy6RiyFSo03c9Vg3OxCkJqTpIlFRe8yO3TWwonY6VBNHIj68RwXMl6QgE/Dl4DRh6y62Y3gu6B1p2LIL7fPXg46x1BlcN9uGmN5taZFvLUBudj0WxlqXi5BaqgVDhy2zg8+qLg/03Mqd3RQizk/DSvkYCIRjKt7Es0HJDoI2QpAUL6/UYHjAdwiM3iHjb2KRqZB/l6BeM0pVMV/j2k62dYsv3wW4AA3qkH1qBeOBQBp1rbkSt5uI+vhu8St0kNXuHTVLE5I72D14fnqw8dp+m6LFXfGheh9Dp3/njj0LJ9pneW6MXSLdJ7+7WmTzvzu5+++nyVD7QxpqD+joWT/pJnrTjWTb5D5zyFy+dkf7cdUg3X04vLg38APr0/uzTp+u7uydXDzfbhNVToWTTy8Ur1rW6/kRE6wZhPIyLov4n9rTJYMTjHQ8QW4Xw2QG5Q0uSBeHiA7rIzJbLj85bFAtWhRsgr8UhYQ4CGVFzUsv+7q77ZA2+biJ4eryPYIQIKREqxSbOseAr2bEcQxfCzlDdAI+8ii2FgeKJ72zHlKSKT29eb/8v/uV/5Jff29C8ifl86thsWtOIgmhNbePKsmoDWX+Hco7v/KfBHJH60llGwWBUpIeAaCvpzPsvszy6MZdGwYCyH6JVAJH/h6tbzjpmvft0c3Z199u3ny9uipvyr9psoV23OjzKvOCnGU1yRGQqCxA64KkBpLkmAZolZiZzrXteIXh+fjky/iQeaUgmrt36IEkmreAQsHrhBl9ZJwuhWDRoUOQKzHRk2k8xUA/pwjRqriYddU27hEUzLEMiDXafPCio2Wg3sVCKtS2txRkOuRtZA4L16K44YiTNhheCSvriJzPiD/wtCUHF87bdGFNgeVViyZ09D3sHB/RSUJwYnl9cuFvXftcPp3xjSSab9tVe3D2u766/eHn4evfgaGfnpaz5vQPzI97yj6dnB06d2Ns1rzHaS5g5NL902s/jk5D63vr6ycEBrAvfPq4e29W7sf7+3SnLckt47x5OTg5a8RJFXlvb44Xv7l7fXLey/PTw7pOTM6/OnbZ1ZVgTcVhzUNdnNwZYu9raRie31oi4y9FzDteWJZ6dLeXdzdWE3K4QV2VsrHdWkDN97u956sRJlhRe4oTrlplq/zoiaK20GczZO945OtmVxcHR+v7bl0Z6gWnTu+9+8XJrf/v0+v6Pf3t2d/XlN99+t7W+41gjkxktl5vbof4HWHh7fefONPP765un37379OHqHJtQ3tF5VgNsq6C3371+fbh7dHp6++msK/3kRp8cHmP51ePDpR1/j192pDpZSrcfYHMLYc3+riUd5qtTig51kmFFSshnjkLqm0qkxGyFMjNQJUg0l8KlRehNQLwc4RyNzpoXY0jkmhjUuIU117Hlx9TYjIJqNVBVuXkrcgCDNPLQWDEq2WiTUuc29S/hN7Tk0ERf0VCCUeTbm2BD8PyXGnGiLA1S0bjecj84jVBNukfB/Z1ikubnmeSPzamnIgVZefyFe/fSOIAWtAOHn0Ge9owZyYSCCzNTen8ggpGe+1HJFMnvNG6BIf9jnJ9kkpfZq6xRqjS6FzqMTw5K5wdkugBTX9rOS9akL0OGevCY5De2eeF7fo/HNQgRlAuj0GwUqlCUrq0hyBg9JYLRYmO0GdeBKwyeWJx58QnJqgyQIxGxYmmkl5Fj3M+vD/2NhRGKkERMdbwCATszBi9jpZeljA6Ah1SeFKkZko51Et+NQvWsDQPpREYVWCQjCWmKGs0TP7Zw/Ely8V/9rd/9b//P/8nf/eFd50SgJ9uOLm2KELX1u3sYfLGmxIMZbLLIPL34WsrydBFpgIpwMTSnzWkeeULaWejW8A+jQTynJxLP0i6Axydu47snUPBKI/m2caUVEl9m2pxrRpE97UWeX+PXQm/PpslpOhZnt31m5pkHgDRRz79Jnh6ACVnIUinEIZQKGUO1g4CBkwA9urnSVeInxy+ax1oBzD3UhBDJ4/VNN5Qb0z6cFRGxE0hAGHFY1as7d66ncCgCb99S7vojQoLzdk+12YwE6oMMG1qGXEmfQdEQqSdQ22sLeLUVhVs/GmQNvlFLAzu7LoHZ/tO/FP7Z9SwR6w261Smjo5HYFDnhlzuLeolQj7xP0zAzptUjLwaxky5KrSnPPPcnouYHAz0KRc941Sdd0hbxGqlIBqo1i3yAMC5P5rSxdbgxIC7sCKiELidemzEM350YM2HLFDaQUIgVamUAm1SpCHaDLZejBR9AKeaT/Me1KmYzIro+fHgo0cEnycpWiEpE49qayPeivCoFfy57FKnCyD22z8TGEkdAEfk8whR/sQbZH2UWoupH3RoYgAb+GqQFgYJcA0SyPeDFtK6Bql+Fa6dp3oKIV6su0H15sCOwbYFVoAeSJE1ftZODa0rzVWWwnc5y0UbskgfNQgKyqeIETvwcyBnAJKSGYmtWJz4TMA9UHOJDXx+eA8lcPfgWKVRCw+NZBeJIiIq+6rEWzGKSleWPaTD9klb3+PbDOwFfKH74fPrh/MLJDAJ4sic4qx+uri7vzsU9+SGXF8L3HY0A2Qvnc/M2yObjjb0uZu6OBPx0eb2165IiGRCTsiwZRI9fVpxP6Gxv7ElJ757eO4Gfi8mfFKhEXlC3evN0fWvS7njJRALYtGxna5eC6APWCW2Tpjy33GYUoBdO1ZPhjA+lyRlVnQMLpvuDredfvDqmqbrm67dI+Mzvh2L7eVDEEoccQkF401IJKRp8+fLkQvrB+V3ylSHoV8Knb6YBRf1rfMVE36Oj/yK634sx9cITNRvJRuO4DDXAj398+v3vvv31t2/4RmBPNcTFjSQ8qmaXQIpNcXd0KQWMs7orKIUE/quhOe6m/hucamgEgmwk8Y35ZgXJRA1qHjSYrBxhlwljiiT6n4+4u80/R3Q++dpmgzT1Bg0ZI9Cyo4gX08xRdIoPly6ZLF7i0JhWI+I76zOGIJ9bkvqDncqWZZI2L9kW7kVVchnDxheC6y3JBmYkYBQgXx7kMh4aEI2IGRfYctaVTmTTlgKVaJWzlXFMmyEFhuiWnfSZUOiclUF2dCUVxzFPjaALcbhXTqh8WuUPczMcz8+pNFVFUhw4PXdzGVLrmRdle8r5x8+nAJL/w+MUwnkn6eXR6bncaYfQfHHlrWHCzRcfz64+W1rigVoUmbnWyf6ey6gku7/9+AnEAu2y3ESeLEjJrDo4OCCIcmb8+atfvjm262Dly/buhoi7mNbe0Z7M+KbjJhTubb2xO9a5Y5emZu/ffhbxkrdzdXH75tVrm3jj/7PkNrlDN2YpSIUs2QunWX2xS8nqQmaTCDhp5+bu2qjlsg2648uuWe/FTd9nmOIqOqrafl+ejxCbZm+F1dfXPl9Q/k3Tjt39XfPF3/7wgVB9980rVv/dx48XV5d7h+vfvTp0Hfj5ucUllGmoJCQwMgU8Pth69fpAJgwLRO8oLSk27SLIkgjfn13+vd99dGyTiwsury7l5onw2cpz7ARvkvu0dn1uLZDl3Dh1curdvRkMASCiH96diTXAjrNOv2VwWSMzB5KFlBHPEGcyiEYpp4RwJtIY7SF1JD6+QGS+ZBZpMuqRoTH040YT/4aH1hx8ll0TQgpmzJpN2AoAJ42k1ZMR8q+jh+8+ClVSE5iCU8uf7MP4zbCgQjPEENC8OkpBy8YhQCeTUgTj7GZlwJa9GMuQFx5+HdAGcqox3kyKEvwWiKzIZQ/qNNRM5kS/iorYAWWhgi53PFRGYVKQAagRoM640kPfqAEdy47lbuYspmE0LXUcnW0Aoy0NeR0d62yAjQ4i088YRhCMc5OIEslMYsBEFv8sIY6lHN8OeQGpKRWF/xfTOyb3K8kUqNfIPlD4Iu3tZ48WKRAKybwGTH/6RDoILaH36IkWATZhHa1oMEbAZQzswsEQZ1PwM2r7knmR9goXpqDuwT9g1EVMGfZOTNTLCc9Heu1MKY30B+ph9CIBavgCo141JE8TDe05MbLw/ujtzf/+L/1nf+vv/ciJAE6YMZyW/H1iEYGYNaVQacaGPUg7cKDpcDE/qXEIC0HjmaqLqQzoXIfFjfO4cox5XPdiaDiV8KyxL5rOBxoKeKjF2kO3pnmd0aFJ0uJhAjgtBNmiEUw0zOsOprhcRFZPjWJw0mCjHxiJHwXotNyhmCfgJbEo5MFMtlHeoQI7uy4bKQeQOzOgCFuQHCcVounB4QF70GDhsna7p+6uBZeokTmp0CBvCZzABjCdRZhc/0aHemMPxC3YS6xZCoA5HYg1qd4APATJI/Sis4Pg0thlNi6UxCDIEV/f+HN/+pd/+s/+Ytd+u+3VTQE041fpSyCOFXoz3Ki5UBIth6C5EGQPMDFzpGwxGktJsugDtbqcgQ9IIPQkpsycgTAPl2PasoxD9UaEPcglqLw121iROmNnApNAkuRY5qEvhCRIcC71JEt6yIZEgWxR207yTMZCAjJhDosgAiemKgnN+I7JyWb/lsY99lfyiXTTJonGsTaOtzi2FBzFGQJxJBJSxROXvJRwDJaxq0jvMakbkzX96DIsEq2GmxQHJAox16FQM+6BdqsmLAMHSUM1s9d/Wf3mv/k4HocD9GlNKKQkCyRW4U9eHL54IX4+TY5qcQnYJSW0qZ5P86MM0fzSGZ313utYEIQ0Ioy0nstoxamJYooPWWjUxlDeL8WbEEcOLfmN8sv3pHQwA4pXUX7wCYwBV+GIo7mmJxpsPuZPpHAx1P7G7vffvvndb3+yDCbJt3uhHuQO70p5Nns+2Nqx1KGFI3n6Nt2Pl0Y8aCFHTda0jFYX/3I3nLMnccFagSiyx/Jw3NzrMq8Pn2Xv8uciBf2XzMuxNKOl4eOiSNAuYwVLuYYZ5C9PIsiIlXX0DwobhoYx84MQWgGIl7XwHt0MbDZtxmL+7MbGL968kn8h5+L04uL1y2P7Gynr2eWNfw4X9UQOtptUJWDsOeh8Zf3k5Jiru7N/8N/7p/5ctmnRlkaILFsmYOiXwdalrrGH7CCp76MS9MqI0puEPfhkE1rXZRRK/5Wk4g7Tf+Q3v/dX/9YH7ceAGNyKsNUWThNSKtZUoXW3nPgG7j6CQB5lL5KmlpZGTxqenTO2wiPhoqgu+IE1LlZA5ZyJIE/6uVIMICMoh5pbgZkuRuRGkBS05VlqedZSixdiLyNI7XOd11euH2+Jqs0A4HQGE5+DB4leDNrh8b5AMnnHeBQxchNroox0SBKORMZqqet4O/TGCJDtI7zQpCdwojKVQrfsC8XjI2aS1GpIG31YkG2EMNJZYq7NBJcLG9bFMEwMGv7phvbTCPI/g2LXwDUDtThemEpg1xFPLWko/PNhLKIgzL6j+q846TYAyEW7hCxj8IXP93B749Sq3Z1ulTs8PLBMpA9B+fwnywiMEci6EJsa3L9sSRBm5eEQXkTZPzwi32fyfu7vf/m9pFBB+qfT83NAT2R/84//+HfgP7Ft3rXYzysOAP3sQoDt3RfHL6xRmZ26LeCPPv30i5dHL8xh101C3ltbOTzcffvjW7MyQQbKB9bkjslYWXl18uqnt29LvnsWjLcSIFR8G765Vbz/u+PDfYP1xc1cctwGCo/tqnsEuYWBm+vrzvF9/178+NXLkx9//CgrqTN27LL68iDVz4TJFyF+C/BXl6b5JvEc2ZV2/6+svjxxnffG+ZnbOh5k9Lw8PDbFur53y8a9xSL6vufGwJ3dLgykG/q2a8Jksns9dkyKXGJgvePk6JAj/9sf33HxTUU6SLFkdwcV3FJG7OTgsnyQYqHJj9kFiUKIiSSwq53WIjHNMzLXpj2UJTE+KW4WhV5jBJNMTUgdEoyL1qClDIuMYBQGPfGXxFWeP9KpQamVlohcvolmjfolohi5cUDT+ijIQDKzk3POr/NefdURYdAU+04dkVEtpfmXsggnbgHg/IBFyP1KzmmCyxEZAGenGuzNTmnu4AJabWUhSkJdcv2TgyzJ+Bm138S7Rfy0ZsqPkj5KPUxNU08Kk6eYPCvZAJmR85tW9qrQVm4TOs+svimBRymiJujLYpFMPYQACFx2pelE5xG7kdSifyg7+9h/HQuWNZikWCzTBWI0jKX9HmcdUGHInsmNmmEYoX2Hsp86DablS+/yIzGxsp1CVDMVyk/6WkVHpKK64/z5PdWUMrQvPkSv2Df6CDBvF6M0zVYvf5Q5Z7LgHzAR9edPBXxHwFpsXGzIMPhqKfTzmQhHczPWJvCQeLSX+vpAPSLk+QFs7e/87tP/8T/8K+sb/8yf+uUbKd84YkTSSN4/SqjOgPmhNIfA7DEZTlrG8o+TBMjZ39FsIY/Sp+hswC+otS6RufPBHsQZXCLLz6Ru/IjUERN2TY38qYFMagchFHILlkQlldEkjfva/khgoM4nxrHtOm+tEZd1pxGIpZogqNuErXl7TaJxjMScYEdB+AlfCXY4X8FWgbwze/Gd9H9zgyqaE8f7+KPjl2+UMYC48Bz1Dzd3i2S27UTv6ESLo4A+W2qrl4DyD3Z6GbFym7tMhjifOhv/Zqw3OalPRsAbDNXWTMij0RSkububa798vfcrxz9vC14KoiWuREFfqcyYF7X1N1Sg3SQ5OQqghAIdlnE+HaSecTYaDlXBwVLj1NBEJY2DGSlUz9xFwkrPD71w32PxIvxepSGxC/4Y3bxRZ1GjR1XVaV5If339gHahV08qGO/QRGOoUYdgSB9hJKDZWUnKIYUxQmvgz3tSgF2afQXJDzpP8wtgWiDbqGkUy6CBaVI9M0pAyRmDA+jCBBkDYqDV9wJRHGilMQdmsUKek4qFEL7XI16MN9/ZAHFEs0gLHe9rFf6NAsEP3CScShKWgMS7HltkQOTIHrTrq3KE2bRWvL+Y/w0tanRSG3An2gX2WPQaqdb4SHoEcioaiAVJ2WwATC9kUSdczVoMHixTvuy+wAOqYSiY1fQSfI1a4aEtMu4nggbnuPgDsEcTEAl4zEPxUFNNeFdw20GRHz9+fm1LoXPJWvDCwVVbFMyrZd5msmxgvXL8xq28aCaeG60r2yo5X64wxfqbyxuHlef2fPnSgYQCiHfGu5pKsARr7tuGCv2EeKxXkiwrwbbpceRVtPK2YDGUd6KHeQAZaHiyrDyI4DMiNdY4lYS08N74xmRMGFCytv06rmB1cxISuOX24ubSAMexmdNNIjWNElpFGiHHXT7K1sb+5ta1lIqzs9mxufk3/uYfrv71f/1/k7gszugwHvkRbmge9YASb5A/ik+Axx8xw884pIz/8WfKzpcEYuP/8O/+V3/pv/hviYQLDTx1tg1SZGG2OhESZTKgiaBmlP/ZLc77H63gtnOobXht/TdV0Yo6s5KfvDS4jgud+cjgpBUMZTYrA/0s60OCMsAFrGkF8NRgPxg2GB12RbDLU+Rr3J8cHsDJqo5hUeoI9uT9NDzGUs2iAhbCxJxyIMEXAsGMpofJWT+Ty+SUcZ8BuO+Rx6sR3QR6qmSeLchWD1jhP4pRdQrcGFZT8YUQhZ2KrZxqR4X+sDUE24ujdFZD0xUJCSZCD/eurhPGdxKLPbjC7Q6o4cN/eH+GYVok0y1VzHm3NQi+9S4blnuiBbTdEdDe2LyQrXZ/z6m2YVeiDrKbIXj+6fyyWU7W2T1sdpPsMMhXN+5McEgtt8Hq9OqrV0eoenlpF3hHXGWPBkMjk3HCXhpxLGbEBABXf+3kiP3dS1k+kl/YzfWV48Pd6/PbHOuVx42dTSd1IhQ/hXvMvZZwZaJnRYuT7ZYG1VARfUzJbm70WHaKuCzv0/zHFMu2Hj6lwLxZ8/nnS5vrIGlRCNcNSG3DW1l7dXJEeq7myL2ry4s/+NUvqJuAv2WOIxk4Iu7bG+b6p5fWENqeQnw8+cVrB0k5a+H5/OISv16/kQq7+d4WeyNbI/K9+ygwynFE0g1tOPn04UxOknnalaM8b4QhvXxEENLlSIGGju5dtyxgvE8dCucThLEpdhek/OJVSJ/hbP2HUMCXHiEvqWBHSAeuJW3pZ3KFGpiMGiM/ESpFUH0xVaSWareFaO7T4C8IY8wZL/rSJr8dNjNy16mHI3LxU3cklCimuQlnbimJHWDaUuY/AUrYETYRL0eREHYnlNesAWCkFwXS6hkK8jjbtB9dEkhURqNR1RQw/3ImHo512hmXCBBtS3VcGk9H0JrRT9kGtXSW3YxikSUy0rj0ZzF0DXi5KXS/FRud0sdcxhw+Olh3M0kwq7bqMoyALOOT1TbnLilva4P59wrYk+VVyhkYEazjjyMXvQFl3PAfvYEoSW4jFSfbmh+6lWUR/v5EQrU0D0p8wzXF4tDwc3lexUlo0a4eqpvNSBJ6UqfK+7e4dxGzRlhO2I2LxqbpCDB1KsiaF4KJE9imR+616Ht8VN73RLGTH4tBxPho3rRzqQUxDWamZ31meq5D9UlIXqgqY9MqJuID11AkAPgmqTELjjm/eLH7r/3z/9if/7N/gAYzHLGry1xlfMZxXQBDYNSbLzjF2pdFGQVCEROLEMe/eqyFOiISQVggCXFGEepUr/lASU/eUv8NtavcOkZe2rAjYaADBoWKxFLN5M5C7av11knZCHFbI1oG9ABWCx7rvVUghgwAy5+QHG0ypdQa8impDYEbkipl2F2UL1+9oD2tDpPkbq+/Wpo1cbh00eb102nbD52+tsm5sPR/ffHw8dNlx4OvPp2fOR87NYOjPE99j266rbzbYACVGIyw0A/eqs7jKNTTgjkJas6NgIr/QirGJWxNyR9XzfJ/+frQxt9ff/+CU4VcRIYURcMkHpGSvYx/88Nopu2h5zLkD8WX5+P1qjEl/UYHIkdbVQEXyiyO69C9NvghCiU3PeqJXhsWMW4kHzo99BKadTqQ+Jv3yjLE4PQC9/1eeL00pkt9BXYNJ9vlBtdjUMc8wyUItc39yGJ0hLxKCclAhUQBNPIfJf3lPx8GUcuqLL2TH116t8iJYqiX3PTtaxe+eziQJDk1lWfc5MZ/8aUzFSJ7sNUtmoSuT7JdazUYW5LbsC1IlOyF1EKWRRim/XBME+JBc56UaYi//BTFeffx4qeP57eC0GIlHXm8TKtU04XCHV+TmMc7iKTqGmXlGQJdkjH0JIBfQQ7SAXIEVVEQRtwhcfDnqkzdmZkMbgNhcPUWgZUfLJX8au7ihbYGhoErU5DurK/+8vXud/YZSoN2judbNx0/CMQ6PPfIun4hkdUPn8+EgyUqc7C4H1eXZd4ZpeWHv3l1+PbtB++YNb7W+eV14BWGbqlqEI29OmIdkUBIFvt5pPgOe2YTOYgN6Yp9rli6l6HQqD2s9KSVEAZ5ODUH0lgAz3A8S824vuTGqkt1Vza2uxhH+gCqfvvi8A3o99bPzy+6Nej21s7CV0f7p5fXf/jjp5PjPbuIbi5vj492RV5/5zyT83PLAicnJ+fuCDAjCocGntQJKIuALkLzD4Q3kUvfsiaQaexPdvvkV888b5EViEdotH98dNyS2LGhecZBiiiIS/eELxCFh71NVkg/J163vG3NkiH4lnLInDYSkNXS1gkGEIy+NHB8DGEQUpSy4g1gVLcHw3fBU1k5kn6OD08+fvwkB0CcFbUlhws8EwnsYAJEmPm7N9IpHu7aHtou3y87rnd2H5hj6KwG3FyXHNlt25lLgp5wGt0L/7c7jScYiI0u2Fu8TfG8jHSelnIwyoFGJlKb5mcGRytQba5YQnS11EDB0BkDGn0SX6WTV0tvJEZAhzsVzbVm6fzhlheNrMYV8yDuxAa0fFBuY/3lq9dSxgWCT3+bLwABAABJREFURO7j2Or62fmlnHIbHkgr8qknE2jr5bb8+Jvrq29fvWTVP77/7DYuS14/vP3kuFv6KbHegTyyg+xVffPqhIxYcWZVqD4NFwKX2WaT69nVmTnG4Z6VlkdBfxEpawKPa9avha+MDFufzj7f39x8+/3ro72dm4uOzrX0tvdy9/7pVh4QPD9fncuik1khxmDx7flR8PV696AFhI8fnDHqTq5NG9s+fDi1m90qHDmxLPP506XNF1ogK2L5zKAIkP11mx05tXaw00VmdjCvb9oV/eAgIxvByQ61cWaSNYxWYe9ZyW08FKKn0nLEZBEdHB5Sq48ON3Vq0Ma2+cWH0ytt2xbhfgB7DXAGke0qcQUgu+YSEDssbEFgS959OHt5Yi+EZNzHhxublW+l+P/y5ZGFgrPba5NPy0fnTvx9Fv53NpFJ2qOUw7mS2b6G7cvr8rJIymiiyAf+dvOiPwsW9snos+8FX8eCsmKcAzokf9F0KIVtHEksaRaCZG4KaxXwJjwo4K2X0FVK0H50OAdd+V4V0m74JMU2EKVxiWuNskxEDN2mBR1xBYwljdZJNwE2b2lYXlyfctO5yAlsVmJDfhfnssYbXPI/KAdLKE+H4jQgZADpQZnf6dCMYe0eaEBLjtsRbpFLQKfMQKt5zsBOJ0HrX5hz1GQSmUmlhLm5ANO9PjMzk9yYujX34Knn5GIlkFRclA4uLQWmpyuuwlGmWYQWnMDocK2W75vAsAD4IlkwU24MdmfT7p4gsWltba6Yx6BDfISHmXNZW1EJfRrvlY+G0TvfAUW443P2ZcN8VMXxlL0P8BbeQTk4QzPXc/kKUa142NuEJw/D3yCPHNmLxkVv0aS6DNMEVoEfyk2ZohxmKK4ujJEjEZiPiiBAJYhiGdj6G83HtZplqGieBTTENevIr2oe6W9FNTaDC4L7EHvQaUqP07A1i3wle3x/eH/1r//7/7m95P/wn/il142npm8kIWRNmUKq1hZ3BN1KNTFGCjwbIJtJNIXT94LsJHSBCrWRyNOFRDpdvvj53yFjQorvTJPyVWHSRVam2oI1Tg7YqtGiMcSaas7eSD990ixjRNRRRiNY4uciAyQp2Apg96UIVHVMwDSL3c1qkpf2/yeyNMXZw/YCUTcHiF2eXyQDLWGt3Yjg3d6Zcy472uQAiVgit7QDH0k45JBl23NvgDMLWVVNz9wvHDssbmJh4RENitmUegCJtA8lA1tYN7EXiWzAZUYiSvP2lkDpn+LOTPgzv//qV98eisukIGmo/TxLboOuEm4f1RdSazr5j2+11ZQGBJ4i4DhP6EZCAIDgpG6qDzET+z5opVG016rGjGvtFskAKYtOFMEwOS77smI5KqQi7DQHeBxc9J146l1fX9/6Vo/ZSeJqoReDABmsmUpd9h9OSV4ABvZKMUiURknDIf3KwngW8Iu0NvjniJOIKZtusj8q6nf0MeAWafJzAFA7yxl41cbaVNFPoHBCBDEol3Ww+ydn8rR+W19hPRSPPoWSagV+I4foBzp/+dTvnPIUiaNk5WNC0pjmVlKxfHQrwNFIy6iKbuSA8X11LFT69OOHbsOC8KJcKYr+NIDxqX96Oo2HayyWKc8al/X3KBrsbdICk/ItrU0hPDroV+nslcoI5YsqaAzHMCIhTeNjcWYs2SK6C6pJV8G8MbN6BU5i0QAwjYrZra5K6hCbt+TF/znjIN/cvj8/f/36heP+3rw6cPIetv75P/fr/8/f+q30Hxdp3NwXYXTQvz7O7Jy9vYocDzd2Od50FNCqRbmR1oBAR76KHlkkim2M4BsLksKLiyIwDzszIbE8sMITS3Jk0AaBQJvOdMxD5gWSXCzUcZS2sfLZeSEcW3mwzT2sWhxIpbYsIGd7t+0ZF9fXa5u7rw6P5PoDhTPl1gJbN0kSQrt/oOub7h5v7k51JnPpH/qTv/f3fnib3e5GhMQ3BDAM3XWfpAwICVdjaiMiilbAqTJIrBB5VzxBD3faAuw0xXHC89Sbf/If+5P/k3/iz1ittONYKFHgt1EwmcKTOMe/HvlLIhLBSNCGvpGhhGYga+HeW6RRVUdj8MurSTdGLyjMwJLaALlR4Xnl9OzUdzMno7I0Du4ocQGhstgmld9Qp9/NzW15XXZozwknT45cWLKNR0B5bJlL8tTQPqNCyAYXi9Pi/pArTfMVhD4oom4EA0RIJZR4vLwFP3pZ1kVbZA+vBoPAjhS8B3UJfVzIUpJ1tjhQJxczbXySK8JPXpNH0UrFiLluENOgzrp8/Pxpch/zPzpkdmXjYNt526DSJ5ux+urNic53drdksRNuGTiyZfYPd79srv7RT+/4gIJJvFKx1eubOzC9PHGZ8vbp54vPp+eZTLdZ7e6wCHL33739ZOh1hcbJXJ/sUMzTm5vfvf9EQW8f73/8JJnIDrWbV69e8CbvDUePzx8+n//07oNTxBwPv/qwZpPv2x/P/+jH04+X9+/P5P/fvH/7cfL1HWHBObYEYWrepjdbGBCVy9sBOmjl6fr6nOa59eLo5OnOispML9matU0LeHe37vHdW3t8OHCLHsWgrm7RXDFRlmD/tLVn4WxFJpz1jXc/vRM4vzi/cBKPs3KH/E976zsv9o7Q316SFwcnO1v7dvH/+On0biZs8LdN7ZvX34ru09eLayekXnkmGGCNwmySDBBr5DJNObu+/fTp4nBfStaaVfvtrb1XJy9JrPORdg/3CDUJRxyzFzo/m9UIV8LAQCZR5d2lawaAlALco3XkRPl0lDBY96eJCY0/K0JotKBM0uVJv4lE1pMMNbsoVYM9yYIxPRpJAvMIE92xml/FUhfjnjSwkE8fhQ3h+tNIvQw8BMxv/ZhX6Eu2HiPHTFIcokei4pjJ55bzT8ov0ixlnFr5dkHYk6wNoBi7Qs4z+UEOaxiLHUBYLAOq90oq4Gdf4NH0Pqc9DULAnBI6lL3ynW2Zwo0lKe8ksbSLN48fbX0yI8oMapVRknpC2R6SqBqaM8bMkOaBxkHlpxa+fpZBMZ5SoIIEXjFWyBZh67oLOkA46CNzroC+AnTmHv5UDhYKa1MjCUEbW+Eb8DpUPUhyKbONaAjsKVZdXxRThoHQ6AKYB2BJorTAjw+bxnUl1Yjs1dBjllwjCRK+//zBEdiDKoFBavSfyRgYlvaX3rOWbFdLJaDtWl/QzirNjOjFRdowNh1xoxrB6VOgPW844uvf+vf+X3/1v/6jmYugIH8O53KRJcSv5JGCGo/MoJYieYthmnVNjEN66GCBOzy/SntkHLEn5wEbfRprCk7DBpL+TCaRcagYcXELufI5sjZKKjAdjNWOlRnoWprPeDBqp7M6gSLJUS9KKox0PEeeQU6nQUvz+Ng4QuJA5ZX+/GMiHGfM+L5889pEl8cpOaEQU2wVvxAWWZGaiBIaN0ngk9mV9cW5Y7cPzOfplZsDmaA7xyEYHdSRE9TamngkjeJ9jBShBrwCs+Qoy5g6KbjY4J7bAZjAZkNGEhqzEKpInunzl1Xpn7//S1mTB9037BFWW6nASL/qC0KRbmq12K5ulB9xipZtTogTKJewoKtC4+Q1uEu0Y1t0nI5wyqlM7K3RoSSyI+iycjLq463fTfw1GFOaqNfogBBgyvvgmNYISnNQZoGdUaLdLNQkwVC7cG2t9B2kgACY/xRssjQuCjBEQhTw1hPFFax6bA8IlJ8W1C1BLsuUiCZH+h1GqxRF6iUZ8JXihLMCHrL/SeaQCOAg8M+qyMAT5LXT+j+xTOrUXAgb4+gNYsa+FMY7BA9Uf5EDCz4QS4Oiv+L98H9/6n0siXbzdmq3DWUIxT43R1qRXv7iYO/F4b6j0fkW7AYKIVrQhH7B0/kHYm2OlQuaRSqkjblIKwrUvlGmNDAdJWzVH93qxfhRC0yBFoHaSxMV+GxjW3rUzA658vUTitpKUVRRxl9MR70NgRgwK/a21G9u7IjdyJn45tsTmTyU4uBgW/6PhkQinLIlbAewnY3du+tHcwMuYTmrDZURngOtX8CgqcMM05HVHEVMdwMVZxfRRL7olwT1MRpS/F2JkzjBvaGpDIX2CCzggbOhJyJFZFRXN8s8y1aZ2SXbZea3SNTIObKHLBLhN7e37V3WplHm/Pra/kwF7d5jSWxNlFdhS8CrF4enp5ei3SILaKk0H08EDRuKKyAiIJIFmCF30tN+u0zwLNagbm+yx6DUuQfoWslFTEfsEr2EiCGYqIa9zv/cX/gTf+u//eGH9xfmsGtcNsKyIl9WwqzDNFvghsxiKTCOT6JTIwRZwkJdzFBHDcZTkaYlFJFEBaeOkAZbePfa47i3409mkWtBN3dNOciYSLYz8jl5HiajGl0RGumkVSpvQeDj6RlQxfb40qVwRUQcwlkgOAFQFm+mQl8YklibdzpZ+aHzTDFvZ99tUDeNdqCCyMwNKE32wqXRY9OJF/UbeBE6UYYvizPU48R30LjWFtPgSyS0xEN+OfS8Hm0aHtCeVHU9Z+OumZ/TWjxXdtta1IxkfolPY8xD3JHg5OKzbJalgYQ1a/xkb7tB4NOnj66Uurq85H9y5X96+858iFh8OP3sfi7NN+ZwYR2Ce8sF38ZwTi0E7Xp1pdw3b47lx8vMQSs9OsHGUsPf++07Yw/tchPM1uEWpx9qFBND980WVtfkwzh507BkNHM60Ifzy9uru6uLu+6QlBkvo3ofaZuWyCqyq63Tt1rq2rDDhscuDejweO/086WlDwLttjI8SMkc6XV/07jLghT9tWayRQnN8eBIejd3rVKsfgb3PWhcmaEKb89Y7xYbCX+PUp62n20a2HQZATZd0um7W7SikTcPN9bL9vb2SZu9DeSEK0NmLSe42I+vfHN5IbDhzJ6nhGiLY/r69Ss/L60ffJGKs2Lz7zVpY4nFx+US2ZJurW7VbSA34nTGGlZDupQdPMwTNrEX+gJwasieeor3NKJRwVCdeSM5GDQaV1iLbOtoGe2yL0nMosvUk2gVrJ23s+HvZ99RO1pNJqJcI2W2lQKaaI2rirS9a/qRG+0L2YveM+ooT1CIMSciuzZaohf+8MwIFoGFw0DC+Cf2qRWscj4YnMnzoYhoDguyDSRWbIS81c8ZIXLTdQlOjSMOa3V9d60KxZQz4y3g6QZlpBW0XrmUNJJksLRJByin3hVMi9huoS1Y+QzdgIRIxkVdRIpGsWjo+4JsQcFuu7QDpSBl/VqNeBQ7SPeomPZbObScygY7nJHuOJ82jwEd7Oi4G2Lm4dVFg/DMIhC/ESXboUOdhGSApe3pdsTLx/VLDY3Ne8Ck4NWcsn7HzYlTeKFQBXDEH2NIEZxg+N7YoikAaMjXGUdqA84TSfV8OK6qJz/7H0OrSJK/20OwASbhjJ+cg1IFVAkGLYMrk2kg4MTHCQX86Wd0GK6ETraOYJge1C0i+/+3787+rf/0r7r340/88o3TNszOcl4LKlGN6AwX/X8ViTgVJesrdi8QQmFcxrGcwAr9GU0Aj5iqR7e8Ut/hBNMexCvMjzDJFVoNMaNOVUJ0SvzslnmoPTVjywzVZjqEAY4oE41SxgoQSEWQKCgxTk9DoOmoiOwwBRH4qbzYFsCZF+M3x+HOif4PjzbtnZ9dyCiQ55svZzXTSRWrq9eXmT43NDrVR/RRmqJjBEg4V96aQLJTWN0w2tR2ORI0EQjy54arMaG+p00hlyObrLWiwoiAdIwGf5TumyE652TTcYfrbw63/sQvX716eSynQRctliTSLQWgdFiM5umXK74I5CIDeA6mRDFXx78hBlJG9v5WEeGWkc7f8UnbI+1Gw4WGGNeL5RO0oaOQoS7BqNXgwLlGRmRtpSgd9mV6ic3DPkUoTvN/TRqWde25PzVAn+t8yva0URjphjxIPBLFcA1PWY+wtvbCFajvFoaqM4CMha5ZYJq/5gJ6t2C/0AGsntRbepHI9fcImGKgiizaTMhH0JtIBOQivlXRoF+1UDfepqrw4ujzmdKRgatEhPACMG9nea6RSJo9AESNBKgKmrLckZWYkSha6cB4t/3aIZi2yZ1dswHZr1K2suSEAeahjx7kqn4XsY+zZATMwQG1cNRJDYLQ78WT9BrYMTp+pWGEuSYXfRwBTaKLXhEtbNHmsDwMm4eoGOi5YVmboV4mNKZJwXfy5sPtq9evbPX01kZGw67DMe24sTdSS1c310oWGJQUzaN4XpVBB9qyFaw5g83RUiKIGQlbg5zEmHQaffyZgKXyDFQrAxGE0TPQBpL/i31Ez+yorgK4wSjgglovjS+1kXUVmxaplqKCN5ykeZh7wKUBnr4kYO8f7H86v7Du5lgXzgQfUdKyqZKUavtXNx85ig+Hr7YvO7SdX+SkeNlEuw7EFxl3UGTB7igDtJHxqBxentmE1L0HwB2aJzTgypIQtciQvCoGYr+XUSp1zhSWn6AqBn1zsv+n/8Qb8q7NEaRlZsYDNmNqfxgIchncxWsvZDBUUjNyo/WjjG6YQcsmQ+Jk0nWbmRqKYIgtyFdWhmSe6WJtb2/PgTGahVUnr4pPyHHXmnx06yk2rebLr+070yqbVRQ259/caIKigugZBGPJnMGvd3aHHdGfuHKwmVhzvwb/YpyJFTKEOOphI6VKncA0L2BEwSKvuQNO5qAk3zUQptHaX4sAIZKwN0dHU+YzCk9fzX21p1nDZDa+A9RJ0GNbQ2xtsSKsRcHUtXV7VeVBdfXslhMwnW1z+bxh9cpj99Xzcbd4tELXPBUgOr3+7OMVC/P58+WHD58FqA93t2+vLs0jLMPIkrJsopu9nQ6j1CwltX2WTZn4xKqTsVilU7ctXJyxhK+PX7w+OXYw/83lnRvmePy7uxt7W9rct9Pm7//4FuRpVBGIZ9dVaGX3yK1Xm2amR0c7+/vaX/vxp9MzF21fX3/4eG4KAELnh8LV/c3nV9f7R/tmFLKSyJhkeqsUPHfxDbMRxJk5mr86LY/Wsc0OQCIn9stzk2UbsAa5mJklAFgi4KPjQIapE7Fs8/3y5fT0CojdiWCfwOODJKj9gx3j1fffHf7qu5PtlRX3l9n3w/rYdoOuxoD9/Z1ff/Pq+4P9E4J/f7tvdcCsfcNlC3sCYu3Ipx/ECMW/dFKYJL2b2ysP7FPH6A4dcHNWEpMbahpK3MY4mrAQgYZGqpv+j00haIn6iGnmzx8ZfZYls556ZhcTLxLpz/lJ+0o/qO6orX41jGJmztOAHzSGoWm+2sA2uumnFoHq3xTo+mekpvWeLV4Cm0DwtE+Bar/A80xLfBtTTg/YB8AvLkgVrRHYeW3mlYEuQD6jm4B0O4wLQw6O5DwTVNs+y3ACyBQn62OAb67io42iudqa4S2ipXwIxxwF1Qxv2C6tc8Mm4z5eFvek+1Ln2O5mCGmj2SzPXg8+ysDMdnmiokqmnL84HmFAOj0iwvTJHI6VAADXLTuOFo3QsaJveTzs59dJhe7qANygwrFhLjhhAjt1e1XluO/jizdR0jwjsfCtoKxXE2RCpvFZG3uyX6G34DA/B5ahytCtZwycp2ORpm6VdDoV6zHueZTjXrQiwL5ae2nHdK0Jm7d+8K5wMBTAA6qvS6PlsKlPWjwDPzmZNisP65DXbP6ZkMXUzla74+/u//Tv/Gd/+Ec/IhhcTSHosKg2SgUOOk+KUcB4EsB1EX1nhFqwSCLyDMZJmpwEZdRGUnLvA9SYkmJGhUo3A+zj7RRDjQYIYb0pOa880uMAUbV/MBlo3mV8YbHzMhXIqlS/DaD14xN/9OdlxE8cRviX7gDvBQshlqRQcShDgBsEWxO2paSECy6XHvcc5OGk8MTf4uSGvYCOMdO/ZQHHqjlJ0NZGgttJwnyTUczuBZglL13OuG0vvp0zwTOo8NtAUY4NIxU3nYM8Ie38Zrjwq8itIXXSYBzY9id+9R0XcLLzIJMDPZKKwlFv6BW7MyODbgLWmxGhsW6t+GmuD3pEC7+TsphoWCcP2pmJ3MKnmWINT5VNEz1eAiJqojPSQbZaYRWN9UjLsBINQMHyR+q+N2mZUIv28q1HeIKwEl+1z+8grmIcXUSARa19/wQD0ruMZJAIhZAH1nt0KO/fSz3WhKGnQE/yQOpYm5RT6SgQ4fwDruaU9k3jXqvnu+oZ1SBcqDp00dDPmI6wZfwH69xhxNGsH0vjWtYseNj9sakNJ6BUYoaIEFM3MMm/GNPYlv4EVe5MoXr8yK8mtDMYqX2wt/XGYR57ztSh45VTIVfIj5l/aleFsBwLGThUYvACoefBOcgOCr77ePYVqhmCStAY7zLDAhJ8buhOodAIzPOocaFgubf+XpDSDu5UJoLVLfjoER/z6uKKV7N7wLFZPb9+KBZonvCw+vrVC0Q9dcOPEwXFelqLEy4XymfZ2MBMFBdI193IBPhV4dSipeQrVkWA4EUcv5mCy+t2CADYT9YSkIHr1bJyLlKkWgaqQT/kAYTmM/Qbi0pzdUdHt6dlGTAYOyxQLBMGMxAkshU4F0TWQQfwiNI+2AZpHmtQa7+i40PcU3Qo2v60v7u54+rhcnnE+OZyxucV5520Mg2syIf/ubzRN1Cici7FiBGT9FVihq9Za7WyOulOjKyRLHJ+SeuzkGr14Gln9emY4HXAvMwWMX7t849Zc5guPgTIC4LLC8eyiOTvwjYuStzgSRBOpEvArQH7vrXd10wRaF1ghOyErHkA3S54ufLsWta1J7dc7fKAT88Z0/IWzc/jz5pkkpISLvjQV1dILpKC20V22YJ23WUFQEDuFcO3zS13iqUkTIgT2Z0MdXB8LACvlMPph6iFMJVGiFyB2T2W3UEf5Gt49xNZQwQkcCk/JBUwySs45GurC14iO9JVrjueoCRxgoZ451ky0Ngg9wmDmpK6zavrb9dFf4SQTW3vf/H9K0zryJoUcPWb1y+sAR3aIqKXJ2HsC7sjjvZfkEjbeSWx8UDl+XQx7daeU28vPl8euKL2ZPfm4k4MfacbEWwmvv3h7NpqipttmS1JqC+Odmc/47aM/qdSMbuw2ly6WYeDQ6+v3VzjQgqpNkf7Ww4FctWADbJMHOfy9fEJov108ZlYk208wn6b6KVVWyvAArc1y8kimih6dSXT8XbTatzWeqPYnY0wD27AtkengOwdXb3f2JHW7xJ7zOR2Gywz9V3O8OXGuVPkmiVwkr4MNBLtpCFbNWmGlQfn6Knxw09v6WGyQwfWVg4PNo8P9jh8NlFsbWy73QaLbtZXrFy8O/9kPd2eUXslePlOFH793fH7d+c37MjTFU9FPER2vxu9Vx7WDradjsq8uGbYwNqpHNs2WG/uYavLvzZW3UWOIA5VkPfjfcdPMXOkGKdJDiGZaGJ+LbnIt5zwAIlisBarraAOmSdjc4uiFSkIirC+pZWekfzFfGelssJZnGSsCBCx09noXCqM115lBwxagANYqTjNe/lmtZYg939DEJ8nm9jakYVPlsmYp/HkviYXDZoMCo+96DCcr0sco8160x1LksLnNZrwNzcouTbbsuIQ9J2MvQW0BsIa9IoVG31sEqJNfXmIWjxx362chZe5AFvTiNV/cKRiqXBKhh4sOmn5GdAUlGJlf9nDQFUvpjhxeStsiYVqqcIYbN2j+Zx0pApK5og4lXhrm6eFLiqKyDYiLN7Gg4yOrZotBbHOWHyBQLTN7YngQp5FuUxPPEKOpaJ24lkQI1OMCxe8Qa6vGRG1hiChHNFiEVLEQkM1e5FMNLSro6QGGLR5mAFvsFGAcCJQ68wwnOfV8SzCoqGhEKmjo79RYTzvCc2wWQU7lG19VdE+iozdQ/CgzU4kdf3SlPotsA7WSRK4M20DSXgN3d59vviP/x9/5dXR/0jk2/jb2NThcWUjQKLRDr1/7iy/Ah3HdWicDoyGEu9DOKhh7aSyVupzCbKw0QMM3jazyjvMU1xEG01IYzKTSxbBoa07ptmThKpaQQwu3z0soTRMhuxcdrKaq4R9UZCfGM9QpllBg6a2dMtP97jzzIC/QFL871Gkn+/ufMEOsjNgWSUmXFvd135wfAgh8Q5zFmmZcDGTdlwbAy+hWSpPm+zTHrmR4lokPdojAXZSDUc7NBo27WruihAGrthWinx78BhQsgzsUIjZkRm1wI2kWmCHX5/s/OoXr1gziklfEAet9IG2I2lwqV9q5s+ULSrSj8CiQkPkXnmeIOTcJIEaUDRZklMxmqo8f5AdQkoQjrkATRMVXSRM2qpflI/4KNxnfJMktRO6hS2iLWMyT8LIi0VWMR1zB4z8zqk+ZbWKldP4oM/eFpoNeLTDPJMNzWK5IEItlqW8QOF7liTsMn2j45BZlGum9wEZbDhfe0RmhCvxW6S1fqNGHl+iWIGBaOQQJqPgAFMlcL1OykKzyIt2SB9nA08ryaVyjIr4JheD6n3V09R23JEosnwQORFdpNivKVz1njAW8gk4JHrRAzY5qwMFfnwvl96Al8Od/oi78qPbrVH0fbQAJpL8om+cGnaMn6kllPE2T6X+6qj/4aGuryjrp+ejowvZoRXJFkihY9KsSKReGldx/vMDmUHE3gBJKwTYGPDNK7sY9r9cfjn7dP7T2ZXti/Kfv/lGFvTtT58+Cq8LW26Z83+x5NshKAsWueOR+knA1VWpAotnl04fYU+SzMTMAXdzPgTQYEQjxGBJtUWhZGAUINJVrEEQ6SDr06tSRRAsgaB9ahl8BCwXYbXmZnhXCCplocwOQCeLZD5mZBQpP1zf+P03Jy4Udf2rULiriUXJqfieHBkQ2ijoSuDPH1/tH6CDZSrxA7HOvX1HnrqgqGESAyIXcoPSd0JDgpMwDxXg4lHRoTFuLDwYihSem7qNGYCEGGWI8HGRrKzzOMWBqTJmu+Ts9NMVNO2gpVEqO+II9xEEuvy/XLe7rrwVweZV+Ml2W+7Ul4wOOxQtoQnrc9kdVuFXwh5p8tCFXyBDJCS+N91L8tfa8+nko/u7nY0t21Llc7nUzZnxn87P5X/d3XYTG4x4i3DP2+YsttCTX56Gl3WWUnHXHMFWPm5qqk/kUra5P4aF7hieoWD2Re0hI9TSYDCCZ+xKNEHAfKsUoBAfYfVXWhxBkipPAsDhU/fLRCjHyJSUZAjPFEd0E9zmOn/dSUcIbQCGsfkA2MwI93d2hYsmqmpvqJMxs9GIo0ve7c39uRunEPz4+MAhOeKsaezjqvQx+VMAeffTORC50I4pP9nf//jhgjTLzfn4+ZyuHR/uOOGHRVXS1Msqlf2sF5/Ps0ClMjuNaM0dYrHGSUQXN3DZdUnX9tan03MrM+Ybt/cXd0/3Fnn8s3lAHEHmqjFv16p3vIX3+t7BvmH4ZH2zrDqn0Xft5b0xDxkbxpCAqq2uOrDfRIMAt8W3c2ZnRiv6zyFzttfjs1yb/YM9U0CN0uuD9sls6AQKCPzl9oEkOjiWr2mxxerLq9eHX1a/SFVy5uzuwf7d8+PnUwssK5/PL8BFm48Pj18f7//RTx/unx8/fb7A1YO9neODA8se119kK127OuLl8SEI37sz0BzR5GZtBaY+VvDlOFm7uL0yS+etjB1bFtzh0BzW+EeuEmmGbFQMkUcCvZzNc1E4F5AEVabBJkOf1AGPGEDVoKlMk3CDCW3gNGufm9dSUjFajRHKxd9VxpyIkEpcQzcF6skF22Sbck7ujdZmvDTT6HwevetobZ1fmwEDKSOosESohF2WTOmyX4ftdCNlSKT9CrBAzaCiPIkFI/OSBZwkaXy0QZt90CC74KproXq6ojwsJuCI82UEhX7j8egUK8lE0hOvaFGvDCbAq//wyNeheaUdNnKoCSagg4oLvlXkotRA2pd/vypOhA+QpeZmQXREQUCOJaT3LXlnj8w71zcyGqudhZpzYGSYEIZTkXHHWkdrj6uFGCIXCo8fyejrqpGATxGBwshX8QnE10sDINTqpEmF71FpfO5aiNPlZmSOF0KMkA82cT9aj2egJonSJjKEbKae6GkpZ4UkqN8T/uDMsuC7mCBsrseZbyiQhPQXza4wAnvkAUkOxnw4LYeIHrxtxJ5+NTtiFXcaLPGw0S6wKjacauDJts649rT2X/+9i3/93/4v/6V//p/4/V+9lGeOWyBmGghogNs4yPTk6EdzMARyId5A8pWYzu9GYg9HHhID7wrQVAjkjR2lZAQzMAJfU7AeFDS+uFMzzI9POo2HXATKYYry0/vU1kpjTsyKueMvkg/NhyncIl2sjrAxKJ3yp7653skzlBgxmWUCGSuP1+5waf3TMf8btxc3h0Ku+3vn5+dCIc5MUx0ZLy8uGC6bAOZWy1uJq7vrOxKHjGsFOmKrczKQuyEfrbSfH5SXn2qnhYlw5A0SjY58mnCwHUACdsIonP/4xeLDy/3t3/v+5a77HUNz5nK5QewPvBdDhAXokOVJiiJMf/uSB7bQeeF7HqGV9mi40CrKRKivVij57M8mgPFmyDgkitD/QNhja7P37CQolGqGoKdy0jKnuvC3GiDxWSyYL1qZ7uJ+dPBz1jbBmAc2Iq6QN96BZLEkAwjSK8xOfs04QkyiiCjhF/h9gmdaCc0A64UH9eXj4bit6DZ/ZZESbfK5TF/DuI+3qmkYAWsHMKWO6NozNoF65GtN2chiSDA380SlBL2OE7tI50zzMvGQJG/Ne70vXWggdFqyyrNBPgMWQdUXuEOh2EH0gKzChtQXxwcy2d1FKzZbRJfdpmmi10Vh8GJ8vNhQVCWliI2RTo96VyO+DNE8x0QiwxwB1n8+C+WjajwOiFlhCIiBAajNbBOSmh5T5s1Aq1ACOXyfByqtCXHCQqjO4v3n8zMnobBdJ7bhgRrOTeTWTs8u8u54z7IXNjcM2V7ARNzz+GBHWoPcoIsL0X28Aph6lNekFD99CjnG5ImzkENw82HDfTihijHaw1EXGhTeyjdLCAn6N9vQlfBkzEhWKOZHA/MSNSfgbRSTNRMZ/Pnm5MS+f+c27j9xkbZ+OrueIJmTgmx0RISVs/NrJ5qQfCZGePX9h1Nt8oyN4PHGH4tsDThjNLFt/tA1zGi7n2PBUpXIPTLNLviS4Qa7H18lvHl/aGG14Zb6OmNEKNRGTgbXdQvrovgRzJ85RlvC8JKzc0EcwojqcHDH6qdO6NsyD3t+vGf4uJBSJ9i+iWEQNP+e15DAUTlZukAgDfKsGS9aYVempkwtpGqI5uK75J8LOTXl7ax88/IlUXBWC1Ln6DSadppveIgTuxfawU/bO8QJenRNTrutC/EJlMLe4exlw4fWZhBlwSf8v4wf1GmWU7L1VJQnMhaBH5waZr0Sg2xK9KfXqTFx9M0YCVr/iYK33/GxQ/ppo2gxT86fPFq4uODZJjArbLxtnDxw5v2tU95WDo9OnO1jNy09dK9Wx9V3fYFc81tn/PP3r24uj/YPJWHlzDyt2MYKK3vHNnc2TVidqCNNgv2HqwU+1Ds8Qv6dT58uzRMP+K/y8jsK2ID75fDICT2bl59O6/2Lfbo7MtI0hS52CZV640gcSTJ7thxcWVAjMCeHhz9KN9rbOdja+LO//N512U5PMV/98nT3/swdN7dQNUU4lc/W2fSuNL5ydiga2hA8WpBkyphyG/H7d5+haXbKx6Jm2frNVVl9Nzbru/5pd/P+8tbF3FbIRWpa2d7Bo4dz1xo/PNgcQl9x3H0fQmXW1LRJw8xYjHNm2mOf1j5/OnNFAU3f47dbl/d8feXv/vTJbWiHO9tu/3b2lDPfJVbJKNq3cr+zc9GJpvKQJGvZMEx4Mr7bFgRWzDA3bTJed/6pvXncZPsbxrFglxtMTaiy5fMwmWoWSh7JJGOaNWRsRiA16JH/kyQ/MxcetXxfaDb7Qy49Trr8ZImKqzWMVdM/Qx2nNi923HG6icIzeDQC6WUgz/urPs0fl1RVRNOO9qM2ss4VeGBNG6yysUN6YGsb8KpFU7Sgy4lzJOhtuZk9dASMQHDcWNEGA8OlOga5GXuU5JBnVDlpY/xnAKMdbqc2auVBRoPGz6HQBAsFC8x3hiolbyCM3SCBXPoNdBzqtYzTQ0+2OE1sPwOBQQraHtVaqPWKjRpumAu1zqY6ekdwTpRfM3IjJGRb3BuQAFq0VvSO0IEkQ+i/WbRBoJpYs29n6+7mDuyp87j15LB1tIhsJbS2EX2wSngQavEVUDZ+NQfqg7DD6MrGpsaV5MJH3aUAKoGzJku1qjsERdvF5vuDoCUVOVHlnywSEi7JXmYKZeJUZ9g1YnnlT90Avm1ksaAZXQJGjln71C1ikoqvjWg/oRg3ItRy0SoQFDFCg0oAoQQtETsrIU8bf+vd552/+bdevPqLR83lB+nA9P+oCiFsLsejzURrY+CtH/2a4oKzko1TIRj+dRIMvZqxFgADIZMSSME4kxwPfaJSzplKnues+B2be5g9r3wf8OfHI4LG54EycZOrXU3v1E3QUDL3iJzNXKjRZMBDxtiWM7TytOd28Kfnm4srusDKtqH5IW2l1czj59MzkwIhQCJj85u0AEsEdhtOFKcra6j6AOpWbwdvJ3KA5fTAiLQAoGREt8hv2EkcXFAa67EMSYHPpoFsuDyO2oTPSabb3n/zy1e/+u5l9FINzH5HKpXmSdSJssOO3uiRJZkCAYAUSSMOVIGm150qMB1SxI4Kxa4Oy6qTcU6UIi+GUV1REnTG8Ng64ledXlR6nvOZDJQFCNJB3yYoS/UM2b4Poxd8c34SmBzmXPDhpG5jWr0MwJ6j2ahUoPban/ltC+aZU7IyxeflIktaSF+Gws1h87LCV9tDKF0mYHWk8YDLCqHG9D6l0o6RjSg0taqvMPendoaM4T7+BjyLBXHiY0L019oiw6HXYQzEIWQXz827ng6MeMG0EgxVlApsUBHkftSpgmjlASwAi/f+fHN8qMaPH08d71coQs5r1iLKqa6dGQRIdeKNYws8Necz0EEwoxcOkE2TAOy7BwrrD0P9qXh0oN3QA0r4pXF0KirroO99neo1PY0UUVAWqCWuP6861N9wYpefi+vWbHe8a2OSKl/Kkd7Rivt+RVp5YjILHBa5YnnfUAc+dLPh3t7E2y/8nItruQnp996OPcGrdyu3cI4xWkiWYMdFleWu89xg0PIOtF+eoNE+7iT0KC2CMeNhKChJXBlbFoy/HhlByxPmDOHE5Ndo0/SPKtu0wKt7465AfvLjo8yIxHhFdsGOPGXAGQk1Wb6924K3d3R8fnnOIefPSceVyvzpk4Tn6LPEgSJzbgfoMCdNG6sU8EPQqJ9CoiR/NLlQcwZXLAtpj7ImDX7Dm/j5p37z3StrLrftxM0SdRnQ+r6LcyZQVy+OQ2FaGmUfOP+oIEQqbspR0Jr4tL644zwbMTk5jgQO3c3jDm3Q7uKGR/e+ApELGHBxc+3qohNgdoq9sZb5dtu7O9J+nMfCjxf7J19B09j6xUZYF9NCFsX1iFl8UM3c2eLN1398tLVaw1DNkRJGLvgN3YZb0GZd5oMaDTwjBFmiyNinkvPThlocXbKGcXAm4tFcF2ZE4Dam+hu2I5RZQIsSJ06pdzCCiQtgnr4cHe0n6Y+P8vJtYICACdWLl8egoMCcz47ecVXknE/y4sXx5u7W5/Mbw+DLb1/t7TtA/Y73zw++f7xjJO2Jt33l9vbajJ6HbERB/N2ddUe2WCkzEl87XmZt5ad373HGVjE+MOq75IKoNbVdeZCEZsna0bPs8qcLd3vJb1l7fXzY4bibm5JYP7lOGGfhPgvfv3v77v7h5siJXKsbf/z20y2wV6nl/fuPl6h6cnQSbZ8e9w628KWLb9yytLPmshmYXl9et0ojJ/jh8Z1ZbOF+93ocxhxXCPDxNzfLiMtTWSUV9vdSQMgW2yT4SMxJLTjR5pgf352mpzHt3tzEJMtBpU+3hg0r4ZbGTOCgvL67v7Vjm12Km09I/43Hr3f2fu/li+9f7Jvden523rqGKcLOxsrDjR3St6enF+TDwab2ErAU15KZbm+/e/PSUViW3eRKlVxIMAgKr6tZfiJm5S8TzWTo6rE9bdloHaB6E8/2uGcQvSYTqlK3sTeWVkzaqjsymQEO3LGGGFbAHnkiAEr5v2AAT7rZSSuYLI4+GmOS1pwhr5BmEWxVEV97WvdQM+S1EFSniy6DcfUIsl/BA7qRf12kZO3X37CpAoLgl+ZBiVgWbnedQY3pVzOrYYcTuchUZ60NKDy8eQshaSrgBac+9JtL2mBQENETBSLMWDM9ohCakBB9hfLQLcB6M6/mG76DRM2eTnRwDNLK1u5mq7BNV0yf9Zsl/JmC9NS6a7W05wvAcSm5AvGGtfKBBqX8PUeaJJgoPnsk0JaL1lAZ31N9pQWAlQg3g0jRxB4jeTCOQYm8uisoa22lcZSyqximoRxTlI0GGIXqyBU0eV2qJfjzpXbkqYOhwRgU4VUjfW3W4YPLyQk4/JoP0HXtLZhiVMTsi+fK6RG4aK2EzlOz5ETx6qBPX9DcWBeoA8fCEQ3mjldWV2RdjnRYNIK4tWflv/zrf/f/9h/+FzIbxRZDLpLzbiILyoaC1CDiMF57jftoMSeojvxsFaU5QEAQvmDS1/CccAZLNZY493jw/dW/ygceU/Rz9a9PYplGwqu6Goh6usCxhGHwnWYbGvWigqLKjJC1FQe9DcDaC4v2LtMv0OK9UUCmTcLhJgmNkXIhm1s7Fm+ZlLOPH0+vHPeZDwqlteubLyyPlGUC7YfbRWwcIzVIKcJi0siDwVcwWnclUWa/htvYs7ouF9F0PfPY/ookHHui6YheZiK6Lf207rW7vvGL44M/+atXhlkCpRvUSQkUm5BB0tizniRaJEt7imkW3aMMY+XvvgDGg6F+FEYKvQ9lfPkKiGJoOUapdgw504IvxLcq007gDs0Tm0hdtXSB6dDXzOBzV/pukl1voRjDVMvfmlW+rxwPpMCOf8mPlnxVZoEw/Rxeg6dyidx0OLLnm2KDYvLs+3xSEC2FbG4kWs+0M5WssNY9CaNktY6iTPAsklQsRkkMihrzfWlw+i9UESrEL1clWR0A6lEL0+eitpmv6U2Zwih1rd168ZNW6HkUdrBSIL935DZy9vEXqxKWZC+OZe3WjvcPbAeQZZ4FKiO/kknwKB/pL7z24FYfIRi1Ul4GKh2ctqIGSFox9mB4v5BAAc8WCMdcBF9sacLgcd1UoCUF1O2vCiNpCC7UW9Y6zPAqBmIxXzfSlEr/cPTyoNSS1Se5AFdXUnpKDY+M+VZNHbX28fOFc1Dk67Shdk0iQ+en64KlYAKQZ3tnX19yFECQHMbbNQmBXg5NA0/wCCXZjHjH1K878ru87kHkqxAay4wpC0f4oXEQKcMhSyv/wtnlyC1wpn1qPYwu+A4jl1OdCimurZZMIaq6tfkHv3r5e9+/EjgQvf3pwwfe18uXJ3wKKQ6GMiS0PCggy+3hVhlf6wbomht+J52ICCXPR57mu78Qd4RVAeQhkJiZjWi2PToMHVDnvWQY4tPK43dvdv/gD16d/80f0OXeFebcwzWnrmyYWSEXMWSaypMuqm5kbKODHcy8H17+xt460TIxEPwmsc4AEsZGHJqiBV3dXt3AuBW/VNpUraQFjrszcCQUORZI0LfNWaKthueV50OHtzw5fOZG8OjKla1fHl6cHMObKeRr8ji53lIzpNcj8Z0osjzL/Kc5pIIIz4c8YQMioQcgGdNBN90LixFWxMvSKJOMLlNCM+xmhB5yLgFPCPAdPwv8m6BaVFNbCwZLZ2uWv5gaX9/c2Jl+CKYWcezB3/H38Ysj4Tc3cEmPsZlSNCivt/uwnCLnzPJNqUFvf/i4dg8ol+R25OXZp1NCxA8Tn7YF1g6C7a2dctBNGbc2tCNkKWls9+Tlp9NP3Qu20sHJ/B/6wZiSWp4QMbWYgDeHuzsv9ndw8PT5/u3pJdBpAkTcM0Yefvrps7iu4Ctv7sQVBLL31+3J7kA6Y4edtaYVl2fnPKlmgmMWvn/xgg/kFm0hLvfjvtw77J7Lre39g0PoiGYZC9e33YEH70eefclrK24E2x679wUuLAZB5Eutbq1+Pr0Bj/x0Bp+AmmHbk2AYg4RBlWTSsj1el9Dvw5eXNrTtbLkr7ZR12NoU3zfdOtzb+t0PPzkPWHUKTfiurx3B9PzNN4e2c9Ous+v7P/zpveQU01dKbqHh3afPJy8OfO7vbl+9OiGxZgXsqMOWmAAqZU/zH7/74Wj/+Or61kSYqODw/JyRAL/9R4n6klwRN9IDEahme3PXG8wyJ0Bqccn22UQxeRslSp3H+8q0NMaoJrUnVV4GKQKh9cX64EuFRphHaWcwzvMuyuLNAAA2rlIarTGmykPGm0SpWd057Qp8IZMhCR5Y14g7Hfi+W13pQOx9Ma5QOnYjY0Otwi6ICT+RU93GCS3IIbLypcdczCISNKuEBD4im07qkMdkWabRfM+L6tVQzPfaEfvsM7RBh2IcHreFACTopx3CHAIRJ7JxiQxXKOw7bNzYiPotcwwXKKXnMGZLMnwa80f33XZAjU4xLVekYKEQjleS1opZzDSnZQ24LwCQltLOTBVMzBq+EE+zpW8ZQAik3wxrBmRxCIZn5X+KEdZVpCfCwVh6mD5jKHAABrtY4G8MSYpit29hMWvN3lagl/ELtAsyCvqvklUesdTPkGbaSjawI0oqOg6H70AdUangkDviRiWbg4wQ5sezr3QEQI+5OMGJVcxF6UARe1DQY+GnAcvAtvokyfZ5/a//7d/+uT/7/V/4U79pbuAUDy9YEOkWm/L8mBPT8iQcojkRoagB/4daTcNmAFYskOZcOwO/KjmIEXj8iX4DQ63RtNJwUzEmB9GVqk1Ij+c01PMyn8yvIRcA9Bl2dT9SRbmUHBjwJOdCfbXwGMWE5IfaBpdlfzNodW3EIaGr9vdhgR1v1xfnaA7sn/74x+NXr12e2DSFM9KlLgnDzU1CZ29pGDux5OpKp4QjUphFuHWkJSCeWm6ogUgUKbqYa7ldIUY2Dzc4Mgl5ZKr6mX42uwulZm7M5rpLf3/z/bGsaDyiJP4L9YnXEgwV/QG3qTGv6qW1hYSlkTH33bMiaM20G/oBBh6cAJuHlR+J9wXFvI1s6BIZv75AQJii9BC5AdOHEpvGjBiE4H/HQuowtxgBI8cogZ4ofrI3auIV+HPFm5fNv8rVLCB1B4YFEg6fP4ONCDLFhY5Cis4OUi31+9NHjzlEoKQgTfsHO3LRZKxEL42TKc32hQTGox7WrHowKutJz3U3XMqthyaAMoOTeYG2CANIr/SotfhXja/GJEjhn/RGvhFGjA29SrEG1Upca4FhAUlbuYpG8RRRA49QRBGDCzEAeGZKFmj+YRNLXfBLvll1hN/juy9XHGp3T6iCQ2nSdKYdEoskYowIyMzGvwwtaPOCmO6lMARBq1UAR98EJnBJyLAnqLETAJmBoV0sq/xUWUxdMgvNbhfxWOcISWnAinRmyPuHh4+rTg0hiuda5vnQhiy9A2AcmfLk2L57d0PpQ+ZI5xekcBiCX0Ycmrs1l5wmk0Yz4DaFdn4GsKJe41ZDgD+sPhlpQiFUTNUK48Nw8uQJC1zTiwIZMOONdMwjfMIMv6pSBritbbpAtzZyrKyKCHgGzouLixcnBzfOld51UPU2cTTftUjoti980z/Hb++5cw+NRD99+vR9Fwuuc6XosOWCrb3db7952Wo6SoOJdBKThCCPIaCzU56O7uDlyEx0T6pICYFojjgSOoIH6mhfVf83FJGqjfWt47295qmy9lf4VfvOj7+EEKshNGioXOuCJBOXG+HeCOEoxlvBe6wrbZF0EvTVkt7mmIUy9XVgLSC2b++YoBloSCpaS/cAXunfWw5CuhbeYwvWHN63YnNnx7GwDhdnHQJ1dn3F9xQ0tYux4+nv+eIdKkpaMNJkINnG+XKKbheTmNDnScAt3nhJ/8MecJkj0DQE4hzwYMF0RLvWqSfUN3bEq+I9xREqHJVQnnQorQPKwC1x0ZgMkpLLD0iA6ZqjNnXr7cHe8dnHT/ZzfTw9lfoJDuVs0mW1pVFtbq/ymMFFaD6+dxKl66v2CCs62NrrJ+myQ/u8rJ4jnq7zI87OLuU7STFyq5yQ+SvziqebzR1rMkf3nNTnlZMXhx9dMXd546BcQEoqyw9/3DT8XFP1BOHLN98czzT/fs/ZSh0zeh5m9ptzIp/NLhD20Uk3mweAbGC9+HzLLO4e7Eq1R3wHcb7a23n9Yufv/vBBoODlK2cDbZ7arn99g7gl5j8+2LdBtugATZTR6i4cKUECxsC4vb4zKWIR0NMSwZC33dVHRydOv8IsiTd8zisbofY2dg/3L87O3PBhwwFymyLPxqkV9wBT+9tlcDJJaIzY3N03F73F2u9eHdvzeXbm5ryVs8tbnOvk7JawnSW6fvvlvrwot5vZEes+79tbN3JgnAWb69v7A/7+wSHSEW/n9P3Z3/9T7NLnz1eOOYIJhadNJCZ5yZXJZCQYhuBmNi0IkCVCxW4Quewj0iZFNJHM+StYCUfDIsmcKb5aWvSMJUkWcxzpchZ5pG75MwH3v34bydY6QXUMkGJWusaB03nvjQRB0ltNjmXWVG1uNGZoP8vRIS4zZjOoXVPSaVNlY9uJYacNw4Kb2UevtlKQQQAIgSmtS6qDXyYFsirNuTqPayPF3PEdPZApOjVgraw7WzPdakeg2rTJEFUmT34AOBvMGloCG0FySWesnXtAw0fXWl/PR+dQ+zLA1AiQA61TSifEgj3Y1GQAFwh7cQ3xAnzIzZpTPqVMyNcrKmrsQ1FHdYnHUgArYF3TlMHUJyplQOJyoyxWxvY8zAxvRoDJXbbxtf4z05hBDTAgHgLkKMTOmoyxES75QbW+z58aC/3pMVe7YRjxRydZBigo76GaXEufvidfHW7dsJYrbHSMsxFzZptEhVMwXTcuLGIBYtUUjrMZw9gEs3RxXC7tLq+mYuDpQoPDnQQMyir1BBuWnIF+m+15nmPg/N7/3b/5Xz7/K7t//s/+ApkkA4Wc9YEKJLwEngwk2WhFWYZNkbZPHpXvzGnDcVwO4EgBef+Ct4/nVU+/yFr/oTH0I2O98XUWiUpbKz8Wf9EaqCKIh1VfpuJa0dzUUl5hs9XoW1fV9w4HxQSz9jiXyCfVoN8/OAJv5vbqEsAMy+7u3tnp6cHJC7IdFpsbllQfb9uhTrwxlJ03qLMWcLC+LaNVRp81Ut1QEb0SNfTXP3r6LxMsuFOoyxtxn3HmqNHkCxFfQBIS2FN3PCJB26vPv/725M3rE+gMyahUG8qJjS+D0ey0bkefHkbX3C8+GgRx9AKA5+NiRGswAMXYF+WjVp8szLJ3KPtHkFiAZjL8qfqgFB1qiXQ+M6NohSSjhDJop5maWwDM+uX36z2Ri69oTLCt1iFMg6/OYxki9kVUJz1BsXSc0agbYKBHdsATjWAdQFiJLA7ZG7tRPY54YaKEP0SjTB/Vg3lA0k+VDM9aG08RTDF+Jgw1NTP75ESDhSrkJcZErQwNCVgSNDTRdgOx51qL4jSBaE1T0BxXUnu5GYriiZfNHKCRYs5Q0a+kwi+tfS3T5oe2SAmP1PKSbdVct6FqNGZZ6YrakdesfM2ZjfYD7Diw8txWFMesC/4tU/sEkKrysHWyxvCgBGhFgSFVmiwaDsMiC1pojMT6Bf9+6RBwJhcZ+aEErSwQ05ugwZ7Rr3GmUQMFQmZmrX0pIJIp9lWIkoDrc6YoneezJ8lnxTl4ljefHDfJN7EXsWhsB648O3NccgIh19lWu1ifuglMIDJ3nDfr3JFAzLYgDp61sBEvys4iCQVwk4Rw0oFQkeFpGqezeuEexDZDneGbRgLdJ4mLF43/k3hJ5QXAmQlffOjsSNdwxAnva+s3V/cvTnb4iRqRPQ9rufY2ZhzasSD+tLv1x799655Q+UK6kN6MHSYJctFlc//wRx8LRSNiFE1QiJgHKNWgPI+HzCMf8y0z16smxwvQKDMsG90YWo/A5dCEv5bfHO4TNDMt3LTTMF1aZYUJZFjzpRCOeNrW6kpV2ya3njdsF8ZOyoNyNl747gz53f19piAr6V6n4m3WNEUdZrBRomThLf46Jb68vSaFc4BPfgLXf7lrFE9efvPGFimMnhPh13mx7bW6l2xjxeARk4xY5GhELpbrJc2Jv40fI8D5Q8MsbUcvlgcR4/9MEhrPhpG+TKZ1sRY6mblkO0bisxKNsnIzzOtwt8GjcZVE8KOcU+M9DZPEvOISX2PNF/MVzuve3q7WRe4nbIMJ7r0y/7N2wX398unjZ8QxluhL9FobAqvWMRy1yfNCKXbg6OQQqA6NIuKMiKwqrUth2DvYvr0VQHo6FHn6bEvwtfuiP5xZKBFtajz89OH85MX+gfjTlycJOh5x08H7Ymv//fl1Sr66IfUFl7Hs9MyEQea++dSq6wdOzy6BMWdZXAL9xfb+hf3Hzg9Ysa9g9/r27m/+3TMrakS87Iq1tXefPsEeHSx38FH2DnY7RNIZO6Yfkte7A5t4GQuvybSJnNyn+yvbP0oba1TbcNrmLXHa294zXpo/dybe89PN5TkTgcpICl6UtLKCFGB78WJH+lB6KdohPGltZMYKqWhm1sJ2lkzm5YqdeeYIztnjJRMV+FrpcD+I+MHl1RmwTZYcMRQfmIPHJyR85dCE/R0gWc5abX8FvDPrhJbJKLwwkuQrk+hprwnDkhWaltDFGQMnZIIg874xi+ixt2PhmqLDK/oZtGsiHWX0PW8Jo6BOFVKY0XSGjI8znTbqU7elDrHBNUWLF331WdVeF30aMJJzJRG58pWDaFrQEtcs9ZrEapbiwBf4CR5gx2K2iz1WqNm8nVcJynZ0YmhGw+hY6HHYNANEuMUycr4YmtYCBVArYYhrzNAmJ2D88ildU4ILcy2RsM2d0DWLxS+dWl9j5O4YL4V9tr3xU1HC9JIvG+XxtTCTPUZrLrAzxXPz97aiRm4wCmXRuuQdDLnFxc8o8eQoY8EMdAxUMeBWR6l/BijzN+sY+Qe5v6ojHpZFv8Xqw3+CpvkZ3OXGD5YHUmheOGb+KrqjVsrP8zaoaL/gokEtG447Iy+w8CV/p8Z5SLiWzY6rWRqU9/cIygDQbIo09yLXKi/Mk4XX+vLBXR+/F+78gwdLjxWofoJKMvsajv6YOgRmphMLDOFV2F6dflS10yCaRTQiQm22sGPj6e39v/dX/tr+yd7vf3MM2QbZXjVGaTyXi1hHwoip82R2sJ6W07I8S3qhaSg3HCd4pLUJan5beHmrTKxLSQpO5bdOXLxxPeoFZQpa+wsuC238rAWDvl9Z8krO6J430GFuWkOWIV/xwihfEQ/il9HEt6cNZkffLP2D3W4toty54manUbAptNV/2/7WhWnE9X0n744J4maYZKeQXPat7Zt7N5SiReF4O7kImuMIE0LSyCEmJJCPJ4BClIEBOgk1DxgKeY3EspJLCLxd+OvfvDo4ObHFqURDoI4LHfBEk54PMbUPr8G9CU9CJNyjqRjT81bh/bm4Neqikj9JckJDUHvUE594Gq9qDW2GP8MSLO7P+B4Sy6GKE9QYGELEQ2NjwuVtAQsPF5mMC6DwPAeODUpgYhV0o//wIlZ6HiRJIwkGj0fmV8w0emlydC34K4ZjRRn8Tu6jO3TM7Ua61EJS9F9wICSpU43rMB3JgOqPOBGJNnBEB7j5oXe1lEeHkaDyL5KiOlUHFl/93eVvz2s50VK59oGkEb8StAEQtoQN75X0niEG8Vf3jXWLFEv/G2QO6SiZ1pQA3oBZv7izxAKiz8iCtzKuH1+uPn08yymT92KGVm7b2MhpRQPJXqKV7ZrBPZtIHbwYmgQkMx0EESdjD5xY5Ft2PmgXmsQkb7WP5lM4+Jb/54nnyyeRnnbQEHVth/302ZmEq3kOHhlrWop8diQimcABmuEJ+iEnb5AJwKutHVkM1M2FAAw4PxYXcIY3l//Hx2v/hI/NrvMx0wA1pMKmKkiROWVUwcPbHEucMFC0aLjWlNgoGMVwwfhY4JjxR22jrmbL7zXC5dOa00zG+OvXJym102sMRmz/xtqHs3NbqOZ6J2lDNvw+Om7E2QG3sigNUSb7WysOPiL5PBdhbtuIy6MdBjfNBXEAYMiQDEWhCWic89aL4U0ygcjekrblcRLLOA5rx+hro7JQ2NlZ/e5EsHn99slRi9Y0LYvz9Fec3aK3yR1vwiq/V270+cUFVovxd1qBLSZvjoWrDcS2OHABhdMQVELZqZtrXfHbJkHjwZe1LxK4tw4PtwWD7SJYt6vYNegP9wLXMkXg983LI861q5+vxGBxykCNeyYdXNGxVkxbGsIFsFSxKpS4w7YuGg0MxMhfgZIy6IO32GgoyZXMmtAonCPKY84Wm9W6hHQNdFMr5cwzS3uRpqibFw23DczqNkjkyaUPson5Ko8C31+6UDpBlHuWVXra39syhyFP2qmWc9xdxuik/8+X7aZe39h3yKYDfO7ujw92GSoB/vopPPTsQH0/HJz6xbEaOdBtLjnZPRT4JtKxveQwGahrl1fnDqJzwM7Z+RXC7m/vHR0f/fTT2519twc823f74ujAdozrqxu+uBj5p9MLQvLqeJ8iHezv2w77/sOZwfXVsduX9e+U/Yjp/i9Ys6JtPt/ZEkrnZnpPcUR5r2/E+a9sDbiesdNSOAvkeH7nZbIKjvVkUgkcNZD+c7CzLovmvssfaC8dFUFs0IErrFMvuWQ7zRHvrom+iYhtPdcr6w5q/NLm94kMDW1NhFydw6V7vrDBwLIAFtw87uy1V7sUDlN/9tP935YFN9d/9eaEybiwx+L+6f2nC4Om0fZ4a9d13A5pwjtSavpg4k1Q3r59b7pLzBzSh8jujLMev7XydHEqAc+cqpBPzi7FYm8YAVBhC9dwGTASkWIwi8xgd1KXF1ggyDsax5ha3uo5Z8hQlTQRTs0UUs0k0kxGv1WmRq+fJVAJykyAk+3KgHIKazYhJ+s1OmuvuartqPOPeI8pQBvSKupcD4Cp7rg+xiRmizKbPs0W5wwI4UY9vA7ZBmDXrJSHUG0+n0EN8g14Rf4DnuATicWYCEQ9SOsquoYdvniJcZICqc1MnBogwUAX0t0sUvNoQC0EoGK7exROHKXUHQszy4jP09cNmREgpP4QuLmj/vZIJknwZ2dWyiHrGB9xVzu7AUcxG3etlmx2koFQK4cP5NpcsRjS4CH8z5uCbte2N9y2AGiqglAEKThjWOiPOfUU4gBWQm8Nags5/YEYBsLWNLCgOqg9dTU7/KkM1KLeMI5sTKP1EB9jS4rdfz+HJzypmAI/j7JL48OpPBVl+dlw9B8JVC6B9KUJ/bhK4ZuD0p9RU5M5ZAvBwaLfBWvPmcfpMS+kwlE04PCosX9ghLN3HvU6YUzIxbGNgZVb2/7d2/N/4y/9J//L/9k/83u/fI2IHWKvx0b06XOYzhzyiYlvoj7PQyWGNJZ7DGBDiT6IEPD0p5mIP2MNuMI1BsQDfwyD8mB0BotA7pNrgkdaa1BIveoygPT3cwwYyqmtqUoUi48htcxaI7AuzAk7CBuA9UVkNteEbPJwpeZnEZrXdjAVsbQc4ziRHUcp3Dhw2crIuaR+a5DwAyAbwHt/hn7bwHSE+q0MCFS0e1jQJ6fNGnt+VgrWtNAXuCSNvNsO0qZ8Lbk0skCoVayAhqnp7pujk/2NfUYVqLEzvIteRQ09Dzt+JkDev8aRJ6cnavUaxvrynbhGRRAnRQhjomP71ow/iFYPWoqWfmegsCRiRrFhVYVwyntYjDgNBJmsspgajlPtIA+wxY9PcWI3RaKVWtWNjgBC0mY8HaYH50jyoGRQGye7GU5KqfWZ4agIuDiYncE/X4S9CXNxWV2OhEyAM9C/Ou6ooVO8WACLCOAIj6Q+g+y/EQzM9xk5rM/0NEb4RIshWodB+1oD+YhZb38m3R5wbzIPIxsBXN2QXaQuUhhiFh413w6OKeBbJJpXqfYwog56juYTq4rkwaODpP653WX0CaAH5HPLSOf9Q74R8dQEGEfS6F20ETK3IJCFyYoOuMCOXwyyNoe0+kxUo2408SmMNdQJf0Y4bn7VtQQjMUANRcCcQ516Dlq6iDJKNIStbIhQfTw7f3XImbS388vJ8bppqo2OjkPkOarrg84gtA2sqzpxjBjksqeSMEIyA5DnuE0w5N7wIvFcpJNhAUh2hqPfTDPIIyngQzXlqovy7OIQqvkYKb0zOsI9go1w++qVQcQoQw6rW5dsBU/+wRUEUnheHO/VdemQyCNmeg6Mg/2dp6u7i0ue8K7jWyB9d/l4cXnpyCa7NYy8jjlq7Ht4un52Vky7AoCVHKOj3v1OvaJClutrpL8/G8YqPKKJpADVL7M/wkQj51X4qYdO+GGqt3J38/jq1cHLl7tvz1CQozW3zNqltL17Y6L6JEO6w0gJtAM6+Z2I5bxOQ7p5jESdy2u7sx16cLt/cIA/JlakfVPKipicqYITFU2P5O9+efj06UZT+46nfVpzExWXGVsa9dzudCEj3L0P1yqbMEAT6bN3AnzgNmRhnRPiJbiMwrCbKf+ENLwXPYSUWs3YIo2BMWThGU3yP3whKd6lLWiVzmAYdvv48XVgTnbJQMMPES9HqDdNQzCKg4voDvjs+i3HxLSz+eb6tlNT5NDf3Z6cHDp7x0FILLJTfkT9d7b2eFo8cssCaC7sakr76dOZOcz9841T5zd39p5unU95px9v3VRN8RwasSWbfrVcfMltpl+nF2ekgytjmilq7iouQ5UjLNFBINuFyhfOzZKX5XI4y1j3X5SRcYQVncePkDTB9Qty9s0xpGB2k+WeyDqRIuP313f2WCtNzWzpBgm8TC2ME5nXMoWe3364cIBPG3wtBO1un5+JYz0I+a4/2VJpE7v9tYYIDBM93nCOvjkUUTZU+jMdeOa+33LfXVNvRwlyU1cjJD6YZfm5JXL1ZELAEFgZsLm2q6NdXcyzwSzx3etHd2oaDrtUjovvSs0ZuzdP9ratefz0+erids2dz/uHJjOfu8Wu7XNrexJ2bbN7fD67MZM9//6bN3zFk91jUbqPn85eHJ84cJYllah3cdG9ZuYsaEv4oDIhkgwenuMXOc1bSWAyzSNJfhAkeHuVYJGyUGO+Q8Qgurie43cu52mSuExMaPqPQGqXGMtzM6gY5nkD0cQnh4Ay1jCvN92nV6lsA4aH5DBdmcnYPKk1MurDJOVQc80LpAGu9Dn+p46oCvffWKiJYmAc9u3OdTELl1XIOTGGFy8pa0NkFMFbeXe8kg37xoTj14fa+fzhrNurt9bJX/c3jwbpHRc5I5EKAJJKmRP+RFZyzYUpEOYZmfcAOnPS6QceFokx8Nj/lPUu0Sh5QyBqP9oZvvZscJtId/EaI1HbcVtl6pKQ5/u9uXtELqE2qSkaKmxD9rBmzHkLSrCTNdTt3QoAIgH2oemTjulJAND6r45RFiM3JnPqkyn0d87r+FT4zao0j9Cm0WfxHArlDhMKfgePD2xi+pjdSJVT+FWE8BrAyhEe1svzyuNrB7t78lXYan0+SeHiajTcagd2qtS2vsaeVW6eaMCLxja9G/PM7ugSGQsZ3G8ArhHQ1Qy8xMuwRkwkYLE9YR4s6whZaECg4sDQheKgzBRG29U/fHf+l/7j//x//i/8D3/1zck4OAIE5Md5oM3owEQskbumCWqZWoQuT0UvNd32+nxNAPuik2BDnU5UbKoGTtLY46Hn1ArrGAFUP1HGDLZP0TTtRIDoibARaOjpwfQyLEBNGNUF2iifNi6UZ5e0EA0RTxkfERznit25aNApnwwQh2lz8+L8zOKxXYAMi47gy+6eXd0xx+oKpV1Zvb4tWCtV6KYj0TSYfwEN5UvCabGIbrV90D94sqHKN+CMGQFeUgdJk1UIjt3IIYOzbWHShXc3Xhzv7h/YAznmZSFUy1OhLDwJZ35qFmMmex42zUeBaJnjMx0lREljNhlb8Lt8MNYbFXWHrHFpRDoWDKFV9A9x4kmWbeSDh8IGmng3K4tDms3lmtBY6GjGWy3TfHI+QzN0yNUgvcjb1x51UBu9nW51koWs/1GtxASDoGMUDoAaCrvxzArkecSyKUHmR54H5oEU5MvDaTxPaTieWHqVZE0Gg74nH6xFGN9UDf+kA3L5LE0j42ehxgAbB3fIMqUgPOWVnB7CaEEH8AsenmBehFp8jwEgBsGaHtVRH3+CxE/tDEa4A4rG00Cfea+WF+FXsUnszKtZYCP0N68PuXgfTi9ubyRvS5+2rSuxJ4EzE/aXPuqUriHggmQUzkVGhrEJON6fWaqFCKDDft/BoNMRKgScpn4GO74HdKLiGXEcdIaS5NvzZq4NcUwDwTg+3Mvzev5yblf9c4nlmUGDqqOBGF7hCVFnU9PVhjPn0ItIOvQufiUAyViSAnQWJnZ0RsXG6hyst6CYe8xnJhIEn1FXKgi/SnLAJcaICt4o/tz+VbQFnSeRrTu97vSgCOfQpJ6QO9XG+YpvZNW3s864Fv+0aTscLp4cHF7K3HCQydrah88S7e3V3Ea7I8709sblzbVewe+P2zUxNP/ZmDEK0LwehH6kDGOqBoGoOeSP+z1eHiSX4NK50gCYyiHDRyNkGsLgMShM6rqTkozNUqxspz453MkRkTJLMWXpODica0hc1p+sXxw7MNIu6s31m8vbz05b6ZjCFecXSAYRmXtwrsvh/rNo3bpErhup1fzRpwtunDGSy9Chn5J7sJD+UyR20CqqDJHbi7vdg+2D/V2nwpdPiAQ7W7bDfv78OSspyt4OjIZezhAMF03TIIbZAM60QREZfEk/MS8PadbRYlWCh9YQMfeOx6hDafOKsg7t6x1b0vOJ8xEplohNTzd0qWrLI+tdaDU3uWXabGVwHOWGIKT9kTa5ShSjmytCzRTDIQ8SatRETNcbZLjlqF3dkQqZKrwrHLF5GH9Ir9gPbzkHZfa8bm7sOCGJMSw7aEfO1e3Ri0OKb58Apfn46dwqAWZxO3DCnfRXV6ZOd1QIPeS6P6xJjzszAdPI6cWF1Qmjw0UX5F6r4rQpAi+lZ/1OyBakzy+PeXdNTx2fw9V2BBPZkWtjydFc0JXMJrImFRq8ebiFIPkxCgulF/JP/NIxTr7RR2IYUjvmx4QwlWqC93h8st+BP44JymxNLiYyFw4sQJUVi6QongHwawm8Wf2w/o8oDBOVIAMSiWQZzfMtW9DX1h/2j3ex7I/efzAcG0pfv3xhReKHD58l9/DzjiX9WB452Pvd7z7cPN+zHOeXl8J1T8dmI5dmpFvuMjiwueLuznh+T9DkkK2ZpYDFQhQi8FhpGxhSu8YDMpZwZfhybpK6qo16TbFEt4gLCjFSkaQnVUsJ/Uh3Z8CoIVXyhDM6JBBJfEpYyRHfbBqgjgfURC1D3iL5miMqgfezJCMsNTT2DAzWQ7elqmuP593wD0xyXoKc4csw6QoiADorrdMbg2rGC4IeKwdcgxAD6hgrtN/f3Tp8cWBJyvVqZqTWYfY3dqHspNkLyXnXjwcOQTdnvSk/R8rpzmYRF03pt2G61Htqyfql9+YMlsTCpOmHAXUUzyLzjP0CKGVFwNyAZHPSpL8TL+hrUC6iLTRfp/Ykp/kVIruJKtJxwsEMAaxfDLecBj4VhJDFiDIDhqNbYJzcGctZIWBG7XGIyVunVuogWpsIyR0XedVmUyPw+GkM8Qr9SQZ8h/8zEDZGlvKLKVqD39ePrkYGPAeGduucGKBVQpJg+Rk55iKnkbNloA1luuaXppTv72HVCAuca8ErOCK49mvHk2ncd/RZelmEi7r5e8ZdlcA5dJ59ULhcR3pg8IKwOWd49KjPtDBfqlpdz+rHM7xK/PB05//7R5//nf/or/6v/pV/2qI2qPUGKaQer50LuMXNhQSykS82XBfay1BoqFG0P5LVce10oSMTU2gOIAu+ukxmuEnRP1/WnCFnAsaAoxkIMYiHSNziD0S3tE8HLPLPRCiqpz8aNl4gNUtawDO8hX8oLALA/ErvsaPGUMB0UFRlVCgFCI5cFfedX15uOamw4GHDCvsPffahcdU127c3+oco4RQt6ekkBxYfydV2PRMBAWnaPgVn7G7+0z1ucNFpCg6mcQg9Mc83Kr1+fXRwsMOOspzYn9WN7AoOUQpFI9QQd54gSDQZX3+IPDqYZ1kvXH8dGQZRLJqiCEnL4qFhXPc9IMsHK8LoSRYQsRLn2vbJNKVD8U2BVLW/awvhRmypZJxVAR3VRaqRwySiAnG/0dxnOKfutIWHX9tXDJSN5oqPTYHnjDqBkCbWvo+3OQZ9RwY/Bw5gJPYVIFFJYyGVuA7Q8aTHeIyIJuGlpVV19G6AacD3hfTp1qukokbGbo/HnOUJqIF5+AEd/YVgriQqjWTm0kyUFyRfIaxN3xMMg+ggki87WlkEpIbCUTuZdcgm/bU5U11sas3ZM6CRCLEPFCA6h3sWSx2NzYB3jHiGUNR0GcQwD8+iGzXBGvrn/47oyLo8d6BCkMNnAXKAiV7Rp9EQEQIshWViGuxIlZqj6RmohFeM+ecwhOc5XDWQ1pMmdDi/vPnu5OjLwx1h1Nzx0e4HkwDbFN09ZfO90RiENeLU9YZLmDp5xCEjJMowx3c1BGBKk4lhFjRKT11kCRDJtA+EBkdYEGbNGXQGi4g8IX8PAYa2pAqQPQ/75JnAaCJmhRAMrRA6RAfMzqgUYN1xF4ERWeazVe397XWb0u6fHn73/iMsuRsObIGaK0oF1K0R7NslubN5dnmmJd6/SC5HSD7Ti5f7hTQiNyAHuDr2pf964/+gamqS2AFxUROoVX5gQ3a/UaFxNZeC6Y+JlLGfqysnRzv/0J9+8/c//JEVlcura1r9tG4nsnAh+rnXSQ5GDtbhwaGcJKCfnl6KeVze3DV/x1JMOnFhW/dA2RmqTfi4j+ny/HzDfMIJNjcmT+5a2paktbHPo737fHlxaAft/RdHhe65+OkAFKunF+es5X5noJrJCS7exnLMzL8Ut+MTNdWKA6Z08G1ALU6jqJNfNcGOZ7EH63BEt/lr0A3W0E5+vlImUbXoX8RX5Yic5zNMhTtIbAyFXX6BPSI8kgK0doieyUmguSIljLeQquM+xR8t6XL0X50cvP98oRNgc0p0Z+CwrGNssZ1FdJwal9GUqrBc8iWEYDPBHa8Ieoy2b/j66v7u7tXLVxLT3WrbFWBrjvx3i2+nedp2K2PeKwfKyoUW6sUEUd5d901eXptHSn93N4C4kqmFV3jK+7cNYfPpWXsFY0rYcNSJs4PMyr58vnNlgVnF0y7vf2XFPoG9wx347ecTZclc8/B89WDPuujr2eU51G7FDiQpiew2RpOT1EnU35yQ3Hdbn7HqsS3ubYmDJwHlYTdNnjE1oW000B1a+b9IqrHH2Gg3Ep8vXuhNholVwcZCLWuDGMOL66ZlRgr36Mvq8zXGPNxIK/tytEuY1h9WHy/vbsxUzcEOj7YPVrZNPVDs/Z3N59f23JirfP50SsMdTyQQQudefHPy/PGCbIuVJwb6TD78alkLH8EAB8KTjo0RrwBNo9PsWn5GNjOVCKlF6djlzP3IITwaMICXtjaFaI7KTmlD+75b0qlQoz5eFTj0MOoaaqa8BaVxW7Ox0yigdKrOOIs1zpg1trkJAgSmiMZWT0Fu2wBZL/BmsyY26O7LreWUpszIKpODsPAj2J6Hx1/94s2rw/2bi8tf/eLl7vHe3/xvf/j4w9v9z5+cFPTNmzcS8C7ef/7ewbXbey5/e1h5Oj81PXz4dGYh6mZ7b0fAY1meZVdFgAl7iZFSJ7JLBCHUmgCEPDCsFDWZd7KnzklyvlyoG7NEqlwvbv6/1Y6UTm3jlHODcpLQdbnfdxkCSYjMOB0inXittYeG1fIpNVbiQTwqlFIgHPHRB8LOGtApOUfhZUT3lMYnr0ich03UGTCkMmJKX7znOOLxsGyGo7g/7FC6w74SCXzsv8XVhkimCXXrehRQ7T5eLOaIn+fPJgnTYw0mNhmlpcBXIzbyAVpdtCY5o32o+dvwl7iCvNF0mD6uMyJzFgUm5kN0qOECf12EGfbPDpNJv9YaZdSOCY9mM0oRChkWny8y1nveT2s+0ylgrKRs/Y0/fHv0l//av/o//ac6CQIDjRyTmOS7SIdGPAtO9f036qAtdUEA18E0dwedtTf+GQHJrdGNJwr0p7Es2MDRv3w7TSfkUX7EOZUIx/npIZHmHww5KxZ1gOHvWggdZI4afpGEPj3SZA2O6rH/4hM2WGmUnUEkU1mREbzgzF9cSP7ZbYQilrGaDFuMNeEBLAKzsokhl8XeXoePseH5O+L0qPqz1wow1adD3esBBXjGUSxgwrAfIGi5mMPurOf9zaN9kYxdA9PISwW4UdimrXy+QTWENL64AUUlIyn++hnNwBxNhgpDB8yGNVkN/cjrVTPY+RJV8aq6w1w2lqjreOnE6EC+MFHPKdRinQax1F1v8B12R3gBgiJI9W7uocrQkxZU1/vGiL5PosXY2NjkdRpXW0Dza9F0MMASeoheoaYoxYK1Dza8rULiLoEtxsGq0orNRyOBF4W9GXJAPyEJ/TxpkBuW4tCo51fRTRdqbHpHZ8Xj2vQUtCAcSQMMjsSFLEZQ6VbjtT+Fo6w/Fqcz3FOBIKmxHHql0oI8+9RLIw1V0A+7RCZMVdQBuvk+1kMDsASf45H3njaObuXBPth2iODASddoBrpVNQotOA4hw4ZE5YC1wBRtGMYRh5n3MFagU2kAwHqeaSIYYYcEUTvpquWABwisR/v80eiWP4AHhgYiENSPne+58mx92BCx6kxIgwlF04zCcmOgrkq5PTEx67bxuOa0XU3zOgKkmH39LfGaSU1vbh9UHrae5vdwcDiT+Y5mQANuFPBfRF+q6ExFMS/Rq0IGxZiwgPxzayg006atx7tbEB4fbL15cfhwe3d5e5OTsrH2zTcv5Y6fnd3IoRAps67fqSdVXH1ce/zAt3u4+/6FCYMs6mdL2rzNdTH1R4ejOAWmACBjl3oEVzIRv8kiKvvT/yCL+gusmcncrDkZcbAc/cNpFjaqh3Dt8AVCF0sKSKz/Q3/m9//Tv/oDt9tLsVapIBs72wd7HVlwcryFyeJn/t1d817XvvvmRHQNWWnrZruq1ne3ts4FTs0TyNhsGLi5unRkDQtiY6V89P3DHbM3dyhe3dxYHsVYQ7v8f46I+RCuk+S8vuyRjBHRkBVDfQsFHIdWJLn7BYz5j83UZqabHCT2TmawXWTt2l5Spy50IwMZ+pkmcRW9hlsNNOG+OAHoh9R4mYgnkX5ET+bM8G4JQjFP7GQgohwpCTRgk3NPAiR6yilJwAyVsahwprkVxrnJAlWpiRvg6QxwHP1mI6yjkx5uDIHZ5XaQt6F563D/QNooJ6n1ghy0LJlotGHVvZJAcmcA6i0QongOnHN17mjjDrN8cZe7n+sE6ceVy7MrHorbxEDrZNJrOdkmmK3t3746ORRnV/7+i8NzjjZvOzbUXV3vPn5Cy/fnFycH20e7h/b8nNqBfmQ4Wbu9enh1dHz7UIYSF810iPZIu0B/wnd1dW07B/Rz88c0yhnDtxEuBwjYSbKT6zBPcjdaoH1qncRnxgbToYW54s1mQajtgx2JueHFRCC+EGhb60rOTSfGc0UED13VZAKwtpcTsukk03uJIk8W3txBIP3JbLMN9UIXXj+vm6/aGEDUzejcJU5jCXlnH29sXEneuuFxbJz/+IPVR6cEJQk5ObkafnEus+y5O3oe393jxUw0jjadJp9kp2qNJhm1zOn47gloBq6hyBclVYFLIuJpe3jQKVPieRXzbOh4xq428D4nWeFkNzduaqGYdvEi8AaapTvgdrpatrN700giyP23LgW+gSur3Vn+bC3vpA0OnK3c2WTWMs7G08lL2WF7h1sbh3sOXz366cP50WP5o7/+5qUd/BxuPLSp4uiweAwjtqR4/ObXv3jrhuq70+/ci7F/aBP8j28/XVzfsC35dZv2cjgnCqKRq2Rlxjo3xUs7uKHH3Ged2dMEADx5jlWg/h0/5jiI9eV81faBNewZe6xSWXToNsdWLPWjoSFIBDMByHKurbqAnSQQH2l7fHiYcvoXiUIhVG8ITNllyuWOGxUJNb4wmfGdBFFY09eGgT7oGJUzM8zhIgBCTwkALmCQNrU/4gMonlY2Gr8w1FwRVApp1mdUpzeLIOGk/wgJ9DQygrP0qJ2G3eRhASNnLu8Bgr4mNiQFTSINsL+6iuGl5jIGDwgJW/0TPPRZJoeStkob874WpllcMCcZZBMv/U5tRAZ0WelsNZyK3BHIpB7BjYpb/8V/9ccm4f/iP/ePIh5+8ETM4b2oVLECdMtd8zP8EWF+ewuVEX74LUpDCiK0Dpk+0Uc9LQDrlsxTIgY2uJSv9XDHL1B9pZJXRogcIco1672aUzZ6R8/ep7mpdh+sgU/EGXakywYUaW1CelIMOi2NzDv5ymJWGrPmAo3u25Gi9otvXzjc4927UxE/rBTXFwLkD1Hm5Zw6IQZOQRRq20x5aIJBCjChALaAIFIW8Oih+znzpANxwmwcPjpcVlK4Do4g1NTa65P9X3x7bHUCQRKNLFWbZJKxwT6WkowZ33oGX/y1uO9xLn70ArAPKo0N0Y7ayxwSfRAQ76BOkBbzReCaqWoHH2cijU0BqvGoEtR+ImbS4g/9el6PyUOE9r2XiZpMwtJUewA04bxWLzNp0MT6Zh21x/7XHqWoYFBVffnuvZZz2fAu/yc1URqtxtKmiUqmKTk8y/e0LGKOJGhhquS/6isqeTL5YPWe+tRyQhI9v5oFX9NKIposWRmsAIKAXPGea0p9RQK1Lgx2EPGW2OPgDGrBBWNwKeAbCOqrhqs6/cLF11H/ViC13MjmFf5F1akenlUZAkmNLsijSA+FXHzTtjS2o4O1i6tTJs6iur0qYaxG05Ia9NFxzEBqf/e9oxf1aI1KZ8BOOqanWP1VfYJf+8orSVHRpIaG3cpGq7w7rSfh0T2Upkys85/+B3Yq8yD1gKlmglcfL5zxv2adjiTYL8Oh0WoCOmlLQud2/M3k2qzYebjyqOtoCNL0CVGzbIabCdwAqP36Td+zv2TKT635yXfCjqaOuDBjbo40UW9CDyewRv++FvDrbFm8BozW+Lz/P6r+o8myZUvw+0JrlfqqJ+q9qiIM3Q2CJAijGNA445BDfk1OOISRBpqRGBAggDZ0o6urXj11700VWqvk779O3obxRGbEPnv7dl++tC9f7j5M1pFZrWpdfn5xsA+uTSc72dfo7FpMnMdLdTj6SWzuflUMd9vGFR8+na88OYS3Dr1+efjj+882Y9/fEyF+ll4unaQZAP2BQT12vUBl0Aw94FEZiB7qxiK6o89zETYH8+bTc7aGIjMZF7qHUxrerfNGX+1tfPN2948/iqHKEOCaw49tVm28eM/PkzeytrN8fHq5vLYFfdIA7BtTSxQrT7E9zcjKysXtxQ9vXmuayrNeCnKpQLkgUPhwKfci7jGSE5elcw7EoleXnXn200e7sNgD3tY13hCbtGqWiV8DCDfCCESGNKpQQMhJKguVEVquB8oMwfjoyMvwMxIpppRDiAonFMzQNSU6yAGwZAeCI1cDLTE2NZ9w9eHob3LPvMUpL1HHUgcLOkDA41+5xkacb5LloHcp497atuSLaraO9tk5vwapne/48HwnkG0IQS+DAdmtka0VqFhdtu8O2gl2AkJ0/O7+FhPbX+n2tpW4ZdEM5GATZ+S3OHLy/v5uh0sLDl+l5Wy3S6OzAoioYD/XJFP9+PDq5YEmeNq6dr10Z1Ks8OwXyznWJfR8PLk0zLBK/fjk3FKA7968Nj/FDinwFsdxx5ck0N9dOVLe8GJp9duXbz58/mSDHavZZKrx5D58PpXzJN1VTp7pEGJi2LK1sn4t/6MsHltJdrDr3e21uQIxXQkiAruIYqtTXSfP5pEQFJnTKuMVxcbUSVredCeVvvpgH1zZKVYv3Jo3wxXiP8TRWokODtNl0TPy6QAv7AcbzYJLSWrb2S9mTrA53/GH79+q1NZGsgUbul5+kY2H5X7z2+/QiTP54eMxMnOC4d6SIacYPzkt0KTBZkcuYKEgpBPjy77QKMMgA3lqbVRftyqJxxZXyO2TAkmTjwJKQeRjqo6Qu6v3yvTi6ESiUzo04WTzslL5XwzzSGhlNN+9sZfawlaLHBttTZn8OaqSOKjUZyZh8FjwpwG9XhCB/BV+EAYiKVbQEiPzDOQcgSRH3l4bPa798P0beY3yL1H53JlGz0uHR4dk9puX+2/evBSuRObT43OGxfp1mV1Gp9vb24zQP/zjP1rO9O71652NHcKFn3/9zcv3Hz+9tL7fLOLl9fLR7t2TjQ0er8/LGzT2oBAzm/aR2Vo3o6Q7aaPUcoYHznQeeOUryaCwsmW8uygBw+VPU+ukSHpY1tt4wZsUFc4pd3J8FvMAsGJTWmiRLuFgaAgMpUCcjLvWe0ykkyBQP64jng8j5xfcKZ3m7CIAn9sZmdoZLyxd5C3EzdOt6KJw8OcUoHHkxg1VGT3y2lmaaoh8U6Bn3l64rXPpRV9zsuEiN4s1DRYQ6KV65042oBYpluxdZbOtffXJqkGFqjRUwOXLZJnPQTnNI7GpFEcAZ8z7OsyZJuleFjEjEYR+BaAbDSVVa2g1u4WGB2zJeytli4dNYZpHXP6//3//zXffHv4nf//b7iyExfCgLsJGr4ATfZltRKZmceg0wbgSk9xPlK3dQbsWNScGwfKySwwBz2xEKp8gOCtZ5SqpbgYntv9CbetjsOOoUvlnKg81Cy6EqKz6CK+O4KH8F1Aa54cNkEsnGK7gNjFBWWBZrxym593DXZOxJQjARguWVth0utyANtu2utbMf+CYoaJPrGtqAzTqzbZ1WsQwcVnWKZ42OHKVfkga0hJx1BBX3zSqVzQIyWCtPFVzVFvtfJgDp52bA84laT1ihOth6MNQSrpgyxqb+Qz3oC+U4C6tLAzrgtyBGxZDpNYB5rGvXqu+wGv8pvJQl5bKzWdu3EQOwzzAa4ReR1O3NPRLLxZl2xHLsCUixcqVZuF1NXL8MugKTEgw2vFy9PAkeGC7VhJ08TythCs1mEKALeUxQ15dteF5OOx57QwS/KrLqixRKvjlSaoCnIqNHkpkwx2dMq9kdRKGeDWkuanCroDg4fAcRCWVDZvzyEdZqRBrzSuLNxYvInmFq0m3qiQEugIVb0Mv3MFnfmLI+lcnUSE2jqSxgRYW8AWzV3ILYzm34xylxu4MAKkyFwvXkY0AKDd3a3Pl4GDjDsG88rhum9oFLetQsYrw4JVQNyOuUOjT3apKaGo7Lq0Xg0yPjWZ9DWg/9a//4Wv4cOCpx27VI+BOjxSBkzCciQv9lIhzfO2SAlxp0AjEEyLoghRLy+aWHcERf/CHlLffetHdhTefohBNhIfm0qkylm3RdywRxdLKsfAvERLIV1fMDZ4RGh2P8aYP8JF2qvN6EcCN7oAa8DRYmC5rmjrcPdgXVTSGF9E+u7qiDY0tXh6wjRuWusoI/3x5Tim9tdJ3Y/Pny7Od3bZf1CHraQW/Ts5O9cE2jyy2eOTxiR3z12VZa3iiwgEQuhf8GATwjzNAisvrQnwc00QmVAnrfrkO1jiuj99pE2UWKwHGGo01eXrz4vDl7s4fHi+mgmV7lFKyyfXzmpQsLlabMspyebxxply7hnPEOXNM+vX9wcEOGtuKz4FNZi35+U5c7XQwTM1eOi5lZV3oeSKqTzJ+2BBn+M7KaNtIL3xHe4w6ShbzWZjC7TNoG5K023cbCIKdeKSbWOuKwQcTLC8zn1Fvm8RfaJaYbgIVHsieRsvhw3i/wyBaVdvCEXw84SduxNJGnCG1QGZIiBqhqvtTMwGj8+GNheO8ckDNy11fX3ORDA04wJB/Jbgv/rO05KAu+Vu34tNijZtfOuLZEcsrNu3KhjHDUKc7cjZVDkVGWEV5ElEtfKkS4cx1h3lJln5+t37EZ5GQbksTZXhRatjZ37M8xJ5SmxtWlBtWPl+cX6zbZylE5THLsNredqrAjNmLGS+7NpPQmtebm/OzCwlqrOlHJ/WurMiH4aIJnLNlHz5+gmPB1Lfyhxy2wE348mib/P2lZVMBn09PUEFzmIJ7LhZAJ8nIf14vpdVsl5lt5IBsHYXsy6tLJDvY37ONj3ATP1GQ2wK60RcGrVl0pIFvA04r5xAic2pXOynsDK09XhCdb/+0VKR53aBg002FrQcyhmRTG/07L/v+wX66G7vbxqv2njFaPDzaumxVtIUHO59/PkHGF6/2Pn66O7aIBfvba+zyggDZ64ckOIbNSoCU77NWdhL4wkAL1Za7A/Pp69RD3QewCx8kw2HYNMWYkBE3vJDQeUrFeGvKJLwkEI95c6E0/anv2NnvmvY7wIhwBci7eryf9s+OLjR77k6b95UKldQrkZGzBR7Dn7YauJZEI9TD31eMH6PCGVvghBa/ykV0Aou9k0jE483SwdGWpdIY8dXbl4ZCW7vb189fzk9ubV2MMfDQ4f7u1fnNT3/566Ez1x6br2tvw2dQPB6fXm1ePf7t718If8jS295+QTguTi/tifXy9YvlfVpsRbjp06eTi/Ob129f034Xq7crT+a8JMvJlTQV88WYwFQMPZNVoWy5Bwn0CnEq1MRHpEyz252T6gfn0BWklawYT+JDVDCQf7yzgmpO6GutpKhzKgL5/IGL0ISG4zyVywHvDgZYtpZm1KO2FWWHMg5QCf1jlc0751EgKaLwyBfOAUGfGcU2IDIcDfmeRnLOZQpHvLQbMQqV2+A2/az1+KPZhTTYwqsYkOIThZWJcxbquov+qWMxOHENjEoCiM84tOTxKA94jwK6T62CPutcFelAOhP1wwDFB8rqXcD39Q2vQ4DyagVGSm6MsTskxXUEAH8OyvgYIxXYDKq7r+ryCJh6Tsna1c3T//W/+G8Ojw5+/fYFjvNQgRx9pj9+TtlJm1nAo+7qH6lZ8PlCMHRGv6Dll4vkIuXfcBeX+DTUAVJCOjabvXHhZngfgHU1JKgxTIZkFySjx3l1oaLHGfWq1BiDqv4MbIIbspw1vmmH68c7u/+b8ILzxDV7uCRz8srBIysOvvBEzVEfE+3tbqrp9PTaWF007W7pTnwHVkUruCZwWCCsXUHFUqRgmwlviI6P6epbc2P/YWATaHm9eTgl7cTJ3H2UIDsOsXspnDsDZmGm4dXFIC1dBMnhJwYYHeKrLulRzlBLjbEhcrsZAgdlOiWuqYk6N1ICO6ROMZ6P/uYTpug4Gy67jlXyp1JNXlS7Cn0UJL8huMqpOIoSJ7dvT4RTVs/HZQzt+NWrU6eacWMMGajJmoZijFGnvtbEsO3IPrLymuJMRkixmh6BnJmE0aUDaUKBJbw+AR1RoQXAio3KFTdh0DSlN+nSAWDEpwobydS9ySULzz65/hCTyONK7+hIb+qxsROlm/8aWqAIYKqOlBGlqtwR3NJ0vW4/Qu5gO9JWpaRNYITMtEQFkr/0DydeJcAqzJfGCBBvVL04fUrGF2NdYT3gNf6Z4gEXAvOu2xlWZsDO5upNqml16ZZAmINCwzSqTgy243AwGBI0Z6UFQ+JWTibvMIC9XYQuLRsMhJzkKZYLT3ywdE5oqS8TOGjoVWk3hhxe8DDCVJVOzoATd3EYHOojiFhOgKG7nqlL7oMgI5I+W+eW42dIEL5FXe/uOIq0s3O6YQAMbBxM8arVTwbBbxdGzQHA/+piIFuDlxJQR45WGXFRCgpVniBYYTazB0NVPJFaIad+80SQkbsvO8HkIILCgLRT1TJPF+JVtw9vD/ef7x5t529FL87HoUcHh5TEl7UlG5rfrzy9ffPCOO/s8pKaox6lIgtKIwjPGWHXnlfOT650IByFpbDqM1AMkaZR4NfhYbhQr4NfkTsvzhvp3EH1jCb1byQthhiHQydB9fKo4+IUU9qRSRf310ZQhjRfNpugJJUcu+uL2+d1aFqzQvdassrN1c7+jhCioKNVmsyeQ5y4rlAzpC3TjqshwEFJ0x8725zJL9cPty9f7pkHub55vrKJd+c+ChtzlJNlVIzhG+390vX6jaHDO85WRAlM2S40WYLiDc5hoNHwHH/Re0rq8kK6EMY/pponYXNZjOEpz0ZVQiOJhcqLNSbn9w+3SqpiwoWYalW6c33pnGcskfQATkB8p6Uagt8WplpnmSgSL/T7snyvs5wMIqpCTixwABAF2Aa62BgmMkUL8XEyZMwDJIWa4Fo2SLASmuBarX9OjYBUSoapAM3z+gXI176sXzmNYRvHG1c4NG6PeTg42Lu8MD9xf33viF/rOixgeJT9L6tswz4/29ZImIHpICPt2QzUHqxGy3sHe9bXiKmbrWhdgZOY47OVYwfd3N6/ePXS4oHDfYf+3tmg1yQEZ4fvhRMMflwbI1isYvVCOoB2eWw5i/ki7vfI1fLx2Rl82XSIZpY8FBL0PZepcJGWCD6cjJjBRPkeJuumWJYvpczgOZqbSrCoduKXMMc73NjZ9a5xXDGLlZXPjgG7vTZKsLX9yq2U//aceWCWn553D3ZPz69tzIdFzi5uL2eDIxS3nRHTZqZezzGwpCwWoMgTP4wIgU/jX4WpYWdsNGGqOpvKj4qRtqJfbRJoh/OVTXETS7qmtY9ALBVEJXWbNaVt4wi4Hr4f1g8VKqDB01yjhtQGWRCyOGUV25vK9A7/pQh6gObIiky79PqoL+4mzat1/DQbohXtFif/msqptPW4RNtQzt4hFuW2kfImzpS3dkVtvv728Lc/vHr54vDjZ8tDHnd2dn/7+7+xKdsf/vkvYu72StLb3/zw7mB/305UZmuQ7OWBYdkWdQgfNOTJiZ2rLqwaOr+4sQj+23dvfvpsaczZd+++Xd9aeb5bfvHyyBbEJ05QstKmicaHWTeiF5kBIznBJoilBtkAnE8woGhGmMiKG+o6ZU1x3fKx6O/NTQQkc6PHdZ0Mx5NUV04n9112GTrpJGnOm2dl0SAbhgQ03zRHccjptKtElG99zsK4RpWajExIsQg4ges+zxuUQ8wcx8JUOlE5tTP/PfUOSNz2bWDAfTOY9GUYJhUUP32tP6IPa8VYaYI+nrnpIgs09WS9gDn16y4zrv5hSJV6oXfcqeaMXF12GUQs8ZgxSjTuymWJgae2EKv4tFgNcxUIKBMVwhVF60FLdNxX3xCiLpeGVCLv2vuTm//b/+O//b/8n/53Bzs4kPfRgDjnYiyXQvwSpCFr+qW7tekPMBq4oJE74ds/JQCpX4Md7Sm6wIRKpqeNupuKmapMheYbkQm6KXzAUhEl8RGKehDnWWgk3i7G5Z1ydTwEe5TkduHGTFZQ8HnBZpNMVts461nEasukmSNqgEicOSbKtD3xYkJJiCRXgAVdlfymQdLJrlOeFJ64idkzdhNsZJQhnfF+HYYfvwbXdRhi3cBuagcVS9d2KHi4VfUrNtk43DM62cw/hEZ3vTP8PL8bzeZadVeH1KT6mqh3fVFls8c+8Khgjyu5GBKIuca16KuG0VbeDUj10aU0ZqpSPUP1YdmFqYM5wPi1aDmyAysmUZ0q+jVX2spnHZutloUfDzaFhzd03sWMPRKQWk/LhZk4BG9X18ycNIyJjUNU4kMX6GYIYbiV7KfrDEojE29GbuUaqOgdTLPhtIdHIWRxiLXGhmXAoDfq9VKhRtJUEl0CqPfhoah0akrF8c6oZZVBljqjTisZUgghKnrnufbRF4CMbEb6sUEcCegCj8eEbQhU37XWQHpBJD0dlKpTQ+qY536DuYwJ9xvyDD/UUERotLC2uXawt23CiqOBRdqiVn9wRCka4QUBKB1GhEEH6VdUQ9ZI4rQTF+mI9/wDjze7DPl6E6Ru1jkdyUIX9Z8KcnuKgKQSWJxGOEm7txaYniZM54gJNroxZN4wHuCCNgmsLW5foU18gZb62JGUMhE24RNxRjXF1prXe1P6wRC7YsJsI4zwzdIpHjTzNmyj+Tg9znHbhT8xUpp2Ah+K5yUmjYQQzAMEsiDBo1iwhGs7gTXsgLzVDTaJx/nZCU13ty/2Vh3VaqDPi7M3i9UB+9ttFfD57Orywp6RTgST679in1PN2x6HxrC1wM3ttfSKy6XbRnyD5phVTwa/4RwWGstS5vqgx0Ab72QEvgLIEIlG4ysG13qmzHQQUgYxTjdB6hiUO9AskllyE5riqvnue+uQDl38XYf1GDRbsiuLRCD8/ccTcUiek21q7EFJte0Ihm9tW6gXjowhrc/jGMpAkcz0dLOyvfL61d69rU1tasO4i5o8W0Jql9Yt07q5U4/PDkamNvivtqwCHSzjA2GKPIzyYtPXhiKQkN0aLcZvcxMeiOKYNAyD2E0IxsXkB05l6WS00gk8V/cVQFf4sMErVoBJ6MNrHU0l2tYwtIMfMKbUCC5pGeq6Eeac3fAg1GWjFW7HuWNok2KsotEvJaAv2QG6SiB6oGoXWwyKLYy5q9kOPDb9/CIf2g7QILem5YkrVtUySmeDFB6/aCvgz84vaTmAOzeN8TYGNnAFp+yXjUfHId9fXVzv2i0LF7YtqaGUqKhkH3x/9yybZYN52Lpfev7587VEiUl/WN7dd26A1Wn39lA3zHi4vpVXYykCt5h/L6pvPPbp/kL+ElxdOrh+adX5YsavO/u75Pix7K8doHbwcB5B+Qz3VnGstzmUfCKEG60hjmh8vHl2frG1Y8NXYwyoLvbJiW8wN0oCFajsmHLhgqRKSp9NrqjE9vYpXSr2Tkl003tUO1qTGa6qbzu71ts9PTsqziljqZNMtsEMeeQR2LaU0N/d31BpXEzSYaDolCiCpwECi+dxJJjjFkJDTdkXKl8qGcEeEycbXvKQP8qCd9HzwPkajvIaQ/bVlqRu6Bpsx5KV0pr0KaA79XdGQBE8xvmqxGN1pfVnEfWZM0R7h0mLIdNXMMDoFoMZ5zIvv09Kz02cS9UGnkGnV/J7ytrk4GPRYiBPS4TbQODh4eb14UsOvvUPBuDsHvjOzm6NR3/44VsdfvP2wLZR5lAM50iWzWOd+3Z+ei2UL9qxd7j39u0+fWdnqYP9ze2NVXMCDjQ5+XRuWOzfacfNLH34fPnx8/mrVy8swMB171Zf/vD995j2+uZy/8Xh9dnF/f35u29fUZq3N+tGpJjHVNGnT8fYrC1+yVI9XzEcpO2wni1LyTt1ROR0usxHYrVtS6g0g6VUmXzh1g3zxVLtU/JcpqSubBPPYBHOyypGDhfDaQZaadE0K9MLxcKxzTAYZU3OwKgOhSE6gjlngA7CHiP2GABPZijGQ4XiBa1hFL5JojqV8B7G0zqiI1Z+g9bojtEpvAe84xEmjCXyPNEwmvvSQLFi/0GZx2nQ4qnWPcSImmOL8geSmrIvvA8t+q47agiRNGq7VgchSPIMYsq8LsUA4F2tu2mSLbes8afXPRl7PnYjhh9wtO4NXKdaFXlxEicMCeo4xK8ubfzhjx/+zb/703/+n/72q8nxB6pm91Ul9CgG1p7bv4j/f8AMxA26Aq9IwKh0wHqttmYMBoBGhvUlmqoSgUADVfV3MdTxDAZKjGytCBMACUkCYs5EuvK6r6pwMS6a0OKM0pXWeVAuCXaAm4yw3qqj1qhaC94EbnjIu3sOpSnRtdk2q8VsI3azIikSl9r6TBYiILGgpDF2U6+4+43Epj2iC3wmBx11jZazer5hlTCShRN5vrwfVqL5bR2hQPQLic2IWqH39pUkg1mNEHf6tGkvZgHkEB1LSP0a/Nb53K5I7HpoOiVH/0SOXlnErQA1/PaVBtUIp8g6MTLvUp30TZ3yBepAluqqS9g0nhwFmGgsqBsq41LfoN1NEoRYKtYooidAiUAU9PoUi1e9l7obXbqYtxm2FBgq6OY+dTdtZJ2TawAY+JkIX4BSV7FQfU+TD9Ldgynw+AryKUnn9Qpe6iYmukPKylDVARwmxirlJ+hI46Vo0+5ilHuY14Q73gA/VVx/EMK7UbxVGTnJw1jTO+PVBVjJeGBM0iOfdmRZlcHmBVBC9UIz+OYlFFQ1lGNOFeaBRL56Djld5MhOGKueFmkChd6xDTrlNBTt2SDPyii75+FG+7bZ4T38tNGZemqa7tEFnaoDjWFcp/8wacicDx+mp8qPWgMLlNDMvZzcaXGGdov6EpCwCzoVghAXAjadGdfU41ggVNctPkxH/Ew5kWi54zAmWdTM75oztHSEq/dIZ7Y3UZVOAvbwYkihFIYd47qYLR0FDVE19bjSJija8lTDXMSCSgMGCBdqDRx88WFCHcnVWRBK71CODuI9qUHuMTefhJLtrW27cW18Or009Uc8eD3vXr2QbqBb8mu0zfvd2djWY/mzLJLjijYtLtp0+tbFVgcorZljp0+KRsry2Hr4P/wf/2UhljR+HDZkD4rEacHGOvpVcvJBsxbpx8G1/sYosR1FNjrae6E7y5o/HSFn/m40Z7t4zxhAW1L8BRpNSVBDdlmBOGZberSUl8OD/T//dMx351c7f3mjLFxnTa84v+nGPqYrzwf2ib+8grI1DvEDx/TL6qbDVVc+fLI16C2/0piB3EglQIsvz/ec5SfDadvFPEhOALUwLi4j3DESBRygzejrSvTLx+cm8ii7lTGAEnFotJzRECRw5kzH2DXyTpYk8b1tOCUr6b7DuCRi3gjz85Y6Xxax6WM6mgxyHiRt6TLeLKyyZJzisKHVq8c7OT2iObsNNHWzsWe8t/xgPHGwa7McQZ2ygHIOi9EyW4m3nDCZBl1sOR+uHAaKzoRyeWPFGIgBauDKNk/kwYgQCZfCkNUstvN5kCjFW9VJE8T45cvznrD3F0k+95yz3rTpvl2pO4BMMPWKQ4P6KtYrdfu+cq/Qsgx+zGrhCVCx1uW5jPw1S2de7e0byCrcgTTxkx1OWCdDbRkaq1x8/Tk42gGzwyKYN//D3tUlQSd1uIlUJNXexDQSgdYsH783M0K7uwtJNgTEoWYarWqhQzh5lo03A+CtmSfNn7Ptz6R2uIlVzTqR3UQO7Ckg+FsozlxdhFuoIbMzFMfEEuR8g8Cme/IEn+z++eb1S7J3dnZhSIom9kLlGkrOUs/56QX+s4C4NJiNjTYVFeUdn7ttpsT5Ms+dk8L5SZrK6R0lpbE+ZMd9b1SEwe7WQhqxpru/2Dkc6HqhoP2hdLiN9Ug9UXxU23hmCSxeN1rhDzV8q8NJaBHKiV9W0cJEtfEr3FGUCEHKByInfahQPl6JUoZqKu8chIadzZO6tn0VMTIJebC7aTy2u3Eg+H9+9snZbt//6vud/aPLT2dv3sn52XNwhEXoH386PjjaA/bnk6vj45MPnz4DxVh/b2/z9ev9779/s7u2cn4lfLRujsi6gMMXr//xDz/h8BPnmn443tvZefvmbatw15eOXhwQBdNJFhUYakkNX19/e3x8ah2LtcZXzpG+vjqwi8nutmDJrgDIqwOAPx8tXV6eS6ezbPf49By/YCpzXKXjKWdXsaWng2KfO+zE6tbWRSvvLU+hs+M6c1EmN/JEh3vwFX5uHwkmIPTn2GE/UUxkogj/Q9ie3KJhMcnxQhRvmmWYAYmyYFGQIIJRnlXRX8RpqBG5Rx0NUVwr4y4CUQWLi4CpgpxabxV3wDmAmQ8uyoHwQDW+RNr0uT9emWJ+VdgfzKnpgByGjOKsHABYr3xEhWI5hUBgxKtFKm4Ka4Jq/RoXVxBOBoIqnw8w8FOZEtAEXqrYmixVLyDxtuZ8dILEYTCVq0SBtFkwBKZ3zY78F//V//A3v3rx9uURBc68oIya02i0CZea9WlXpVvRAxxca0nQaPlxpL7CpKEZmCUp4yMowwV0ST0mDIMW6HLfKzqtIZ2AxJCP5kmoLoeHHK/6uShLQOcqcvFmmjZEHnZkyJzXyE8at1vK44P9ly0zCcnLy445RE++OisD8IxSyUJWPzHwV4yHTT2oUIu/JIjSCkbLAIsBBqIwBrFD3NA5pDdHGq/5gRng4ywzG3CZHSywUrq71DWy37Tq+tHhLi1A4HUxWhjITffTS2mVeqWrqsRIqlEYq6MvMOLzKTNcFLthv1RoXId1hwpJkJcAgsTYn0gb4IVMFYTUEJlYxI6DZQ+BHyXn5vxWGTxXOqs4NZOXRMe3ou/IUlQ19oilQwpouxP8beLYJCquYTpiu6m+dX8jro2cWYsgINT/E3VNFM9uLcNuRsbRukJTUuBNI4mkP/riWwTU03hYLYMBOCQIi0i8jB2PIVg1RkrhtAGaUC9hmTHwQgDdw/z1NgrCA+8/J63O1kjxC18CBNlgD7GU1jv30leuWTr4b6dsv1FgeLgyAyF+CUS0UKwhd3729CrEdaW1XHHNpHxSFEHFM5Cgu7XT8OuxDb6v9zp9BRdDm9Ah0xEpRmnUYhEMrn8w0J8CCqS2ZhYaY4ymDqpz0RfXg8lMoJYH2dhHvwqGonhdL5zXAKAYWeW9Gl/V56nGLf2CFXQ0CYAnlFrdskluKQMpsaUOSKU858iZIf2XNufhtpkcswnN5f0VcPVL1fRL9IZm3LiQgiCul0Ox4AxH+W3R/Su0sWmIiWENn1KkIw5KpP0WeU2WJbMgS9++eWF7mP0vLQW9u3403Jc9oeHNzdU217e/i/0zBbh22vwdMNK0rIy1kkFw9uHx5mDFzpn3Dmag0oWueCNS7rVOadt75d/+238adycodSCRnqAMuECcGQj5dEadjHjoNCD6uuAV3Rh2qXdhOOH8ejW8H2pU1Zj17ZsjeJMUYUMl7xhOYPz1ZfrGtvFy3ztkVOrS5U8fG+M192GzF0hqNgSvXJzdLNGP6/aHMVYzTWomXViog8rF3L/cpoDE+6HARoEIJuzNO2Sz3/94vOAwtvymAffjJh/aTpeckTHAUmwil2EGsVvaSKpl87dor9l2PYQj0/v8OZkklILmiBy54WJYSIozZhmxyRXu6UOB6nU7+TQQ8i4TAmnWYxBKlL68vsI4FMrKtoSlTXsWNXGwmIVE8OVnB703dnugucobsw2/lC9e5sX5NdUVenFqGtnwsQ3REUI3cJAZNzSiu9hiCOSazfIRJkHxwghY1bRyyW3L9koqM8qemIa84utfrCqwwMA5XLJu5KLysgW8t9fYHkW8zMHFER0fUBbG6snxmZqATZqNWQ5nCW+dlGd2C8PEZ2XHTqYaXbXNqwNqDE2A+rC948gCJFq64Wg1Y27xwHm642lJqEm6vEHU2rP0faxBn6wBBDvpY8vwR86kchHweOPp0dA2HSWJzz+gxKZmARRuCxG4wquE3y9fdG3B1VpPfSJDigyR7bmBqyEvnwbN9L0x+jLTy7KK34vufbHqmIni5F3fXp2cmdWB9xW+Y6iPyss7DjO+7dS29hi1sak1RvLpHx+vbzqyJxYqdQ2YqRhtpYLbSys9kiwUowLv12DqQnGoWkmawlNcNIrcCzRKPUqz+GHmR0BUlSKGEdVMB9U8F9VNU6n/q4T2WhZxcMOx7QJPFbjonfQQswGdkKYXyGiMxZ3VYMDkj8XyarXR2Pay4AId9mT1DqXw3Zs3diQ2tCc3h9tHe2s7L4x6XyCWMyWSarOvLwjm6uqH04ufPpw9E6FbM3Ubv//Nt7b2+ub7t4ZPf/zzBwRnlZH44HD7w08fnSVnC2Bezh6PacN52A/7L3aMSZAPG56dnJD9m6fr77ffic/Rhltbe4hIvSzfPTspj1g5sOL8/LMdig4OjoRXeZ2fry/fvHzpVDdS/fvf/vbn9x9tKEx6tw+3IKI9IpaX//rp49vXb3Z21p+ubFQlsrB2fmrJjiElfibb9FaaM8KR3wwLLGP7HEfoIvrQhwAJodSjRfic/kUnHJdLlM1T2B2sAPOjbqvQK6RSQUTJ/xYRT0WPXpk4U01MAG9B8Tgxv1z5tLGniIk0EJTeiMXV3yMqPZ9CgfkgfRrJiwMJpvPuohm/p6p++1RDfsTXr0a54/kVNfdIQ4q7xmc5DYlYPcLEfvrrqxZz7lt8NVU2e4lvq7xS2eZERMFxFELIDKv4EYyChtlMfXSPK+jwwf/n/+ff/Z//j/9Z/IcEDc9GCkJF+JQGbQoxSBihOl/zjbXqV/8TsYCsdU0rRwGOQkWdhBSO+eXK9npdCP4Br65VydRLWdXlHlZEQyDpKpNKvoJAJuO0iiJgZ60zuHLjIG+07o1pRlNopsYA0AkABhh3D3iXbWMsnjoPbPvhmrLrCBGBaFZG5U5qvDzP5CkmU+38/JKQokfM5vhHg3PjmRQoHhONEg0T7YLMsmtgHkwUdhpiLJWuMdOU9KFx/P5mW5F6UbcoEO57iKdgI7Q6Qmemk3ZJv9FR2BWWBy89/IrxRhSxBByon87UHFc75KBTDJ52Up1KFQF2dG7Lwlpu0KSyXp7EtmARzwjyBe08iJJxF/HQXaAOt0eCqBFfKR5WIhCi9juXAajN9xIFPDk78km/JmthRi/6r+kkeDhkIEw2utCBpGpK+I0TFvcHqoWYjOenA9OtcZQNKb08XeVLkPHapuWHmVIWAsDaa4mRXStS/8A1u87zgijeXoMJrQ86cDKMw4TWah8D6KM3I8CANOyH6AQEnEhc3+FgnBCeVX0M9IFwkDNDuUZZC1qkGaJQ5GPXaQZUxrGg9mbCXk+1ip2QUGUSaZ43tjf92XZu3WojIXNcS7dfRAtJwCwxQ/copdcpuTDsslvqoMeSl2qlC3riorrTMaMU+tMt7/RdSb+G+OiOZ5CuIoNXkKsiMx17LOoMYmrHc1NS4W9Zvu6G3TyQHhJLAJH5aUCeK9NcpQrbnhHS5OZtcaxxZtoynhcK2ljntzQJ/BWRYOKGBBYmoeimWKimxReIHQSmv8kcbuLDTbjHe7RogST4QX0Bfke+su+1u7ZysLNl67tWU+R37TjKwIm/Rgjgl1PjLmiRSUOOiGWyD6w+lGdxfSyCrIbz8yubCL08PLy6u724cNDq6odP180AoKLXhswL1Z+1iiXgPpXnk1bWuwRoxHVQ333YnRfjolghFMfT0dWzbof/Xs3nyFvNQ53tzy5u2vnThMeafRZ5CZtr5+e3qQr/1LBmK9atnz+dxUDrUszXOkOA08TdgYLyaNGA71VMEkOhBCbQEaM0HwEMG2Xe6+fauiOurBK2zR/ILKYSqNnb3bfQUC+IkPHjuKydIqSqMS3sbzy6uS1Fp/XyopP89LZowNZbuzOFIhVnw1Bs/+DgWi7L1Q3BsGxUurGxbC6xtZLWmhoTmHaVh2OjccOO4oK40YjiSRYzZxFnCps23nh+vrW5gx4KWK0sCz9Kk7LBSAoqXbBGEdM5O9vbjkTLQjOjtvnvpLBlR1AZLcDG8hwCJ8FGz3jxtnDQmkQMnhKQOn352sm8F9w3TggO9pXbx7pYYmGm6cwRBB3d+ry9t2FUnX5eZooMf+9ZhUj4+Civoy04DT4ZPIt6N5OQ+weuloMn7nZ2ty2cPbvMFTbr9enkFG4Blm7EQTcWfFtuSW99OXy1f3tlYQrhejLDgLUAzMagXjOv8mruOpXDAEQ/cRbvh5AZXNGbfDMutNMHYrMEbdWIkP+RnqaSmQ2PY11tQpS41EIZxNdDckarSdWkMbWgMNfZW+qy8hKJbL1X2KPV9g+k1FlsJlViZ4MyQ5pWCd892arVEQ2727tHL/ff//wRTVIWjyasDKWebNcEGNxJBjS0s7cjpYrSSmcJyC9cpUxMSs6HldJivw1DKEHxqnSD++kyEOKDuHMRHkstpgYNRue+jN+C90lBSKgj3qanstYmrNqm0JMWsXgrkYGZ9Iw+VRgS8RLoKYsiIeO/eDLAAwDYlS0Q3FyuMTkedu6Vsf36t9+8fnOwLbVOm/bY+jd/+afvvnn9q998++Lg5acP7x9vjJTjLjsuKC9G1EFpV5fH55cfT09NEv3qV9/89tdvL88vHNNl5vT489XPHy+++f6lI97MoQmA/vzh1LD788fT9a1Vm4Dq1M3VBWgdxGaf2p8+f/rVd++2Nrb//OPtyedzQ1xQn56cw6TdHt4ZkHw8g8q//fvfPTzf/OHf/+X88vqi5Sy3Ng/mIL48PIAGjAjxny4unVp3hKRbm4f725+OT//2N78mwuZA9iyoeno+PrkwUG3BDIVNCpsgLp0P5qHRSBIpw3Lub1hFGh9oQcQ2pckkpBNh3kctbIzvYwnQwkWP/E0FjlODXb0do8boWTINqdPrLjA+cubfTCWeBgB+G5XuPf8YElBoNp8JoeepBhaALaqiu0YKYsT4RquKE/7ajffcx1ouBkSA6JOPyrpSOexptOsBr1qGez0HETiYXNiYr1NLoquw63GtMC3+lN8/8pJQ1AhIqkWhAHPNTxWlSbBBJUCz/F//+z/95//Jf/Tdm4OkYEpDSb4ZEauT/ImQUztNvo84jOcNojFoyta7tGtMrgdtY0UIq4Q3LGKEsTOISlVTtOSa59tBffTSwwmm5h5p5ytCIluQqzONXwRtSO81CJnqiq7QTtYVmQ2VeLPR3tB3D9f7u4f8kLubC1XlITznuKsXFLNtmQxJ4SwWbeP6+R5IjJTeobub4LfmngsPUgjwkonfmmzYAHkZGo2biUQwr/gxyw79jGa0GIVIiF7YKDGKKo9jdLSuw4k/1dbQtKAyPcFAuUNteuS5ax/cspgx1nOIDVXGyaEaYKNvETp9EnvHVfF8/Bak4srKRbiqQqD4uAT6eHJgTje6WawHZ7XkqbKJCVI3msVsE+P/ej/HCDJVW8nA8b8Lzpwrq+KgEPDwTPepiYBXTMFYWdF0oA/VZ3Xn3AWJnkCYIjG/5zrYl8r3rnr8x6dKKlAZA7BkpMriVsVGSwBNdxAYHG6yTmpt5/OZDuKfqRLxMUF+LbXPqupDqK0e7dLbsJtR1pgZxPFc1eRavTWTY10fkoixd6MWpmRgVyIVM6KnXmVVonbvTP/U7/mCiPVrqjSeqy9pvN60FC+G3O1Qo/Z6sWrQ4jn6kYfTZhLtgJf1oUvjLdOJTQIgfYkXmL/2q7m6+4+esUx6zx8yHpCJ2LT/dQ5nvoBRCcw2qFdmuhLoLupLNXQdeofHLGIUfhDWCXDRyumpFBJMiDENC4QRLSVV02qbHc6EZLCrpErz1CkZbNMynpl+DM/P1v7xt8A5bLzAjK7VrzqesOhtWdnha0G/PC1qJT/cb7WwKrx/CpeECfVeXV6/e/1GIIKJ4eXLZ329v3N2CR1fLh/thmivdkcP7R5fXHEFzWZLxNLf3a3t08srSRa05cm5VA7eVQkpLPXrVy90gaPYACCeSGuGObwCEdEA70aCIYfedN3dsJ/q7LcSdcCnmwudVhnXQw6FUGsYtjmOhZh3LMCr/a2Tm1spO7QMTefwqpPzS6kkNjm9HLPquKtSRyxbXvtiZ1MZwJ+vJZqHQfAhklZ4rdSu8ZBzQq0d4GGY03FCrsPE5JxsrWwJcgvP69rp+SWscbP1Xod2dnbEn42ZIrWtQjdKiqIbkdIdIuOVzEmad+n+xroo42pC1rS1PmenHL82Az5e152K7h7sV6g1NfCt18U3nTNRMsHduv3td9oNF94h0aaQYXGdU14URXR/uyj8qkNPoZedB8meOLtOjOLjbmEvC22xjUEmR4qcPNoWIsFOGo2DDEswhZgr+lJPMviNQdBJzrrTrO3eQ5kkycvLl5ZFPz+9kOogBxQfPNk0KVitMnetUaEoWVhXlh538Cphykdx1SoFcZF0pKBFu6giO8xD1Nml+RxiYBsHRBH6teOi1EXIh2ppIYVqmCVgmD2wR1P5rE6S+rJib5b4LYlNiiARftp7a9jEfnYZA6sZ0s+w/sVEWBe0WBqzxe7pU5IMJP1Bn3RKHhiYSydN0UevODMe7INv50p9PInGAHQi57gYulHWIol5RJxpEVAMyeowawJUdd4/GXMX9hXRX7rf3NsWP/Zz+Zdr6kDV5NPci14Yy8GvPU3pAou50ZbDSLC8yV0EPDuNd7FfMBX3BQwAc6EUxiOZi4U5a8GAwUfzb7IJZ5DTgNAqmnk1cdUN4zVVzdbo6JMhQSPypzaY6Y9aLHjCt/BY4ewBeHxVQGGrY7Qyva8wYDBb/UdESHWuSJslZHscTc3rkGq3t7NnqwGrAB7vrjqowQj09uZ//h//vWQwE2ZC9p2WbD333eM//eOf//Z3v9t/sfWP//z+x7+eQMvBy4P/6O9/9Xx9Y6cgi3msGdAdYX67yv6Lf/Xrw5d7N8cShM5/PLbg9+74/ObNyz0DLfsh3pzfyJf7/W/enV84LuL6d7/9jhP/7/7hLzjQnfMfr+0Q9uqlHREOrh8u//jzT6uPdhC++2/+9b9+fbjvBLw/H5+8Ptj53Xc/kBdLzx3fdn0hu+l+f3vtX/7u2/OrtoEzriP1L02/mjqQzWUrUvJ8e//SmdlLX5xu4Tc8ZEoWijFULyKjDbrgbmHhxgtphAyZBLpgJmxbcUYrKhXDpNAQBQnUkOZNrqG8v3oUlcU38EfcEKExbZxRDsMw8ER2az2XJY71NEkZlY7ENTlOv/te7t+4i+CMEbBbDNdchPoXdcaA1JNfC4PkRX1IvlakwXnLo6/QugRKPEjOxvqOzajE8FU+2byLtd3B8MyeVqt5Bhi6Wc3juvUKDOhgclsN9VeArERtqitxHe9FTJp2zjE9O7/7t//+vePk7LAAhWCgLKuNv8sLpKhn2XTCzj0qWyZaaIQr7E49quMNpcAzzRkDy44oYyes8j7hOaAiMRjyBJPfwIMF13O1+DYYcHs6Gw9MaBz8CwE0bEAi4xCwA16GLl1hqhZIWuGeLz8uHewfMkGGl9InxQ65pdQXUE0qatTGbnJjufZCZhb2NTcr/1D45tHuV9bPm72UjSi+w031mn2l22RC3UxVhDKYEIKBqWFcWiJgat5N4U+8bovwpQ5oPzgwaUbucWjdjCsrmBcBy2YYgD0U97VnYBwOQSg4MUBbFNMEcuTEz4cqUiDeA9ZouSg8QwxfCcbom3wFbSipIe/lP2HaYWM3GSLEhV70g/dCQrh9UjgC8qurp7ROQjw2LsUAJJQ0VwsMi8lzFwWdJvYfXEoq4AXrSOvQUByYSSIOTGxCgeuoXtM8MDqR6C16gbUXUtDrgRLhdIGudacGhnHUk7wsRIN+LSMr/5JshtkG6uSxNxFLq5ZMZkqfCoGZBmr49hAXQQL2hkytzlAqMtRcORNQFxTAXsCkdrABIMME/55ptY+OgkfnK6xFt/K6m59MSEeOYqHIMZC7GBaoKhdTa1hldyZ00G7sqCaitscblh389Mip4NHhtocZARgmKA8lYEvosCh1GvUDJgkLogF84ARdgAaNp7CqL4vpVmWmaCzauKr+w0Blu69kOs3fsO9+91DQMI+rz0+Imo9fruU8Jzkh1YvNjaSQdaJcA9RN0Dnv3uIzT4qgIY1qs4ZMKo0SAHaZXzeNXA94bI4YcmAhtMlPwc+poBBYb/sEqT+1kToHfAB7TpHv2hjYvITFA8aAz0vfvXwtb8UGoN6XCWAGXXYr4+zh6cX15cXdb77Z4wGeXl8in27tbm4TGLvjnZzfiGQdbO087a/bp8Rhr4/bltqajxdPvzHxDgFDvsXALvTNnCySZIQy/IP65BDyQ2wQQ8Zw/0g1hGIB3Qj99atyg24Eht41mXeULQPKPdoWgbh9vL1forpsPmmjSXVcXZzorVqdT9u6WQTL416Wtc+b+umTxKcyUnbMZ6xtnZ1e7DZsWL4w7imysk7x38h74gpyQPld4+Icfz4HKxnrt6qXZOrfcrf8k8DNXdw93GJcERfnovfN3Y3UAluOgpzvIrnSXBXW5UzxaEV4CKhdR3QTaDfnl5ITcI9kqyStXVldSW9up3CMcn135aCJly9eAID7m3KZMbfYoq8meVP8m3KyO3P3+PKSyrFY264PSKWB8j5nBInbqB7epJtyktmqW8z0nEc+2i8/XpdAijIejFBEhdhvplz0XFSj8wfWZCBcHx7s6azhBwPB0zrctav688nZeQP0MYS6Kbqkhh1btRrmNlR4ltItgAsGSUCcQivPkNhXv7fMKsjcErgiY2bnl2zpZd8eqmDFLDYDJhzFGbTpLON3rWMyriZILRtqOCrV2DqD1DQndIBvapt+txSsgCd+YiwXnIgxPRpx0cHRcuP0Y7240vQOKzrpMWBbsGuhdEydB0xhUfDlzESRVi817R1NY2HsqlQZRMZPPUlii1HNY2OtcX3WViQFmayQV8wbhygrT+TmSjprgyp1Lq+ZD2I7YuN7ToflA/S7XUFv3FGrCFW9oOVH0w6Lwh0x0tXOfyCDugAoFmEGMHBNVac5cGylMlQFh5SCg3TiXAd8SY3GKguceQl2y+xn8FhklgI29RfqYBQ0C/McU1dJBhZ+4ISmQ9OmQqyg6Kh2Es2QeB02nl4e2dt088Xe9g9v36lNPP7Nq3emTh3OdXljEPjw+fMJt/aHH97u776xt6Gh/t/8z35/fHzz3/3rP0hqsKBYf3/49uXRHufbQsZrMmiK7NXLPQM/xs1ua59+vvj06fIf//kn+78bw759sf3tq0Pa6kcTARfXb49e/eEvHw72rCt4AR+fP58LdFPfxMFGVfAl4+GT1VIXl1b8U4m7u3vfvnn77CztjS+/+nb/h1evDMz/9T/8UQqRNQsmH3dbYf/86fPJ0d7Bq7dHV5f3H09uzm+tS/74cv/AXl0NcvhkXK0t5+vtc7UsYAohDTjhzJCMk+W6IJYfZIoHSiMiyenDbMmDKTvpg6mtQsglXqdgEQJLuFYeGxCEfME8lWpDy/ENhj/VF/ePpYjskdNvr6PeGK2aRz5lYo/G740TYi/lcm8ChjmP5YZBsCOFPVxRQVUlk5qfEn1VrJYW/BbPk0cMmm+dkxTMFRgWrl0guc8pqfXR7PlhCo5MupoL0Pq4hbt8wL+AM6wOANnL+Uw92SlOF8mFPi8yBq55wwyB+TZSJcSdcqS1Hjhm0QACqUWvW1GrsuZA5Hk7aYsW04Wk3yftEiHDWN3H+/wCbeXXuatK/fvaATDWWy+iu0aRLOTnYeihki70nSRBgm6HWI/FCdSop1pKlEJG39Rjk1qwwYGzrpvQXtt04LqvhO/OMHtrS9JsJ6kLD4G8PgIAjOSRaIgTm1i99KJpK6EiuevIEvcYIk5zclY16m7qdLglUrQB8gTUwr/W4iQd9YgDYdMte4d44iskL3SDZjPLo2S8Qg/X3byW+L/+LxgAq1N9g5QoNu64ijG/l5TTmuLu6HbtZenKXfR6DJwnr0Z9jO38Hej6Wsnc4sbYfg9FKgB3gPRW1n2cqoVYJYRqGIZNq0twFbVqEkU77friie9qzNM1MqvhWmfF3DZUULeEBcgkT17RIg0/bdV1zam8MSHGYrPIWyPwOudTs+oY81Q9mtDHAS+Y45RAdsO/wVY8W+iullED4jBY0gSLUl9NNmr9/rpZZQUtEVa0NjvFNirSGTpGwwyeB2+NVrMzqYdQtODVlq0bOGJ9kLRAroU9C3+6bi6qHep47pNwwMDXKmor6VZsMN9IiMcv4RJFwQNL6rD6lLVafrzeoPceS0AgFoHhfIsmUnIXIS8UZeThh0WLyL7KDsZmKgk90bn/YX+6gRyo41LrC3oBbOgGgYM6CpDQNpiqzHQhhAet5tIeZGgqjNvUYmND23CVO2/Fl/WZNmKQfdHZgGOLkVolvIV0w5xBBiS1+yKXupqjF8DbzxTya8U3/CMOyf1YyOHAoRLRei8uGF7PhqEKPTdiGJARXpRcJVfXtkKxOs4GmE/vbdP+bHHCsmNU15+Xfz62aFZAefXF/vbrnT09N3VlKbAFBHaBX9vaOj07p3NeH+0B6fP5mZ317ArU0hLa4WnNRLe9Sa5vpDnBamwxqnbcLZiBdh8EBt989C5p4BN0UW9hJDlPvpAirRZPIAhGH9QqPnV4DgQBbM7hMKj2LKrbcA4oxMyouq0C11au75YeDQ8e71/Zxj6UyqjZEeMjub4IOx9t75/aq14SiQwNhwjR7NGl/TQoTUwhxAGbGnYOwqTy4+m0uXikYej1ncHgzNUWAikOZ35HphC3/fBwZ+9LKwLhwalSJeQYdkdadYcc8Fh9JZw5KT1PtqzhyJZhzJ3jWmGKZ3lXDnOUr/Io30bGWJalpa4d79XEjXmktY07ixLvbi3ZSIVxDp9XaaGbW+TX3B2pcF+mE80EfqM01LpfWhan58Cpj/sMyeAx8YtKeEx50yB0m9GLQL71x5iNL0W0yZlRCups75iduDMMRSZerZHNxcUlQeXgymVyhC3kNPliDCBbqZiQw2Ws0bYDUilbAvZebzfHp9WzCyt0DamTDFDcjaGCLh6uE2+LFSVXXP+Wkp1fXcODWROWxPSFyom7mkEFYSVcyY0npo1M7giax06sS93jI/fz49nMhByHjbyjNyuh14mjQhQ3SXSV/nUnpRvDopqr4VKMmVLwwbHDkbpVAYyigEsci8f0Iv1C3gyufHjYdn8SNN/KqzCQyTaTWorPEC+7sWKTPtlTDjXQBGWHeDZ1FchIHaxaQWjoy9OyPpuRlkEkYFCwKrnI+FXetY7lD8TDJdl3Z6QoRcIJoBfmo2X14DPdSDj8TzfpWSFAiOXRkLOqpo4FZlSSqxS1iKD+qgqnADUvIB+rvNdpPdOV1i9gWbDEm1IgPByo8kMbhjLfRp4rKy/3dn/1/TuDo/39ErdI++GrV7KdPnz4bFR7tL5/uL138vmD87P1649//tmpHkYLx58+/sM/frDtFVVrrPurb74/Otq6uXLU1/YbpmP1i53MTz/bUco2VzdHd3emBA2c2+lpY/nNm/1v3rz68S+fdg53f/vr7/Do5cX1zz//uPTmDWDNwBkWjTP2dHlxBe3v3rySgHf8+RSWD3d2Xkl7fLVv0uDDT6e4ec8JgaurP77/ZKz+xj4nAq3r22Kp5hkM5Z2ovXt5J13w9ubq/urq129ekyWL48VOzm+vGLHO0sD8hmntHRQCISfiZstivy46T7CAlit2ZaFLMY8xSozceCCDgVh5kCYmZ6KSVPnk7EaroozmiEapovZCwUZxhPL5yuGqUF9Sk0HBRmDwNA4JFP/GKKY0EKphLd4NnorlIizERCW+q7OWFrwVi9V4qjJDUD1TA8tdpYRCj4K4R8OlOQR56PEmOHGakaSbU5P63GGlegXbNNppvg7A8axngad3CfD8H/kdrE6xwKu7dILQvil6HfBlaekv7z9cXv2+RUfGX+7lNpGAKk40AFqIVyhnzXxdO6uq3yHdJut4Uiv21jDTV9Uq1wQUkZ1GYhFAmNDEJq+IOK5OHiBV5wa/UDdrvSYZljY4J56LTsUVpFadGvLJjSsE0QiKhy7fyD3c45xKUFKAT45NMt1t4wuG3yNZl6zC0tPhm1e3V9eSJ2xvJVFlb/dAxTxXPsHZxRWoYMDMs6k5zRnqiEdHV63qSF2Khu40ZALxcAnAc+bSfunAqUPk0gL5Qb4svrVVR7eYAbO7BojNtmLz6spdns6muOqXu77jD10DOaxDRdVimGE8F7ocLXhmcV3vgAz1XQYbIvWA7kotzmiq5QGA1yPWSg1Bq6EpEIc3fC0e72Y4r27/arDahsN9GdOQhmPdAAkpTCpaYQlujDfc9VKaPD+eZNUhoVyf1CzRQODoHgJxbfq2FuvI4l1+f+1qrIfDxXWzs1AXvVOfT8yj0/G2PoN6MFCv6giMcWXcxHZgnoeAAFwI95duXnCaDvTV0ajWCGb2YuQQNYMEbKsY+FgMcWgVql9rdaub+NqykGQtGW2Vndy2IGXvwg7gNDlUxv9JSF0LKj+e94ouhJtpNHIwKupK2/jJFE+4nTJvEIkXG0LmBW0tb6OWHHS44FULlsYIMYC3MEBoSeqSpgDRfG+OvHuGW0Z8hgDMUWljow+zZNn8eCzwkzK0BfdAzfuOv/VJhepRwGUc3H4hucJElDTpFc9YTob+0gnE+I642ROvMaP3gm/0OdURfZjRPGmsE++P52BF+L10lSSroOVEcMJwlWYLIE01g95gUQuYqn5ifL4PwmVXaN1qzPXXLw/Gr3uwIf7lVZvj85oebsTSl6+vL50ttLq5emvXlqX1o609m7Hf23BRysnj06vD/bOLG+YTsTS4tefsqaWzco8JO2P0tLt7yN8RDRdQvrq4ZaVqfSCAPoLtM98A6NVBHEIMHqmIJkPdB1z9cTWKflCsS2gxbw1D9Eh6PVKsrh1/vvinf/5EvUmYsUcsuXPCF59VcP3Uxp0OM1SqRbZ0oOMMbwSn+edcIk67eign+7OeOtSLc7mxRQXojBUCJuXjMznBNzcot7e9DUALXA19TJEc7rH19kxoUYWMbMJhjifPn72EnbWVnf19uVbrq7vca0DIgRGqpCPCU2yUk2lVFqshuCIhhN98fXm3ub3lqDH2g9iYscCrUv8xPAbGMYaOxG9ny16WvH8nU90f7O1T5aL++GDmQJzNJpmrrS9g97RFHvnZ5m8NMaRAcJVjRDl9cQkOyf2CVp462lipzH9wkzSwpsQZx7cAIJsk/2wL1lth+/ykNgvI+BaT5yPOFMXOTy+Fh7d2tp2ODCV26y9HZXOz+WKDc2kOd7fgNJjBxwSFX8tN11OiQvGRdy3OEuhlkwj7R7vNTpBxI7cHS9Ba12ovJ9kuFxa/GqmBeHnFfj8rUilmnYO3fXVtPbJOGM5JYUqpJvPxDVGBdr66IBrPxj1Czr8b6dd6qoFSjU3jPkhMfWFZ8qiMAqnsGNcrdcHv1JhJ1YmaI0KD8iyW8RUExub6JkQEABxIbhVQ86jFxmYw7P7CJvHPXGdu0WJ7m+FWLS8BqLQ5VLu/cEjTUTGTG1lmiABhYllMqHEpGDJjaWQmnp5SxwTJciwCOWxQbNmAhG3MEGHKs+QaZgUzGKq0HLVoKFwhRTXXatcERXtVUe1IXMwPP4Oh2uGrsGR+mNhSkDWyswaD31mgAqZpESMaoBsgWkJ0dLD95qU9PncB8Afh+Y2Vt9+8urKc9uKa1/L23RuTIdYDrqy8uLp5FndYXd+5Ojs/Pj/jeRFPAcu/+bt3e3vbf/7Hj/ju8MXLzyenljG9OHrx8efjOrvkGPlrJvvs7Pzd2xdbW7Q/87n2xz99gOfN+7Xtpa29zYPHdSt9n2zp++NPx99//5YV+Pzze12S1Ch692BjlBVs+cVooUnO5aWT95/evn5lXPry7cuP70+PTy6tdfnmYN/ktBaNOs5v4fKZj88ASfky//ogSck2VqtbTuU+I0f2B9jbac/1WdjdCA+qMIm5v3th4FgolwUyR5cXwZflheU0H4/hgLTomLdYLlchj6dwHY5jsnCLUqRJ8ag5QwsMNB7PCs2Y3gtFSKb2TG86FqVjr7Gp8b3/M/gssy7VoUBGNQD8pdf6aF8dXVRTlSw+C1eDbqyhassyjdgngAunyltVEq0mSakdVOJy1Q1Ldd1nnBXdjwl1aF7Dyd1nI8UlMWRCQng9m04x9hNjghnva1E1gTcI8W73w0ja2x9PvXj9YHsMKDAL2uJJ1dICvD0iKitTFySCphEtTpfE15x6hIAZubKaln5PuoBAkKgjVXZNpvLGvybQU3DiRKo1zEapxL/FjbAXvlUoe24wWcrQIDptRpWlulVH8HPBOQNg9FYdUT9xS4o7MfV5s2lti7KuZUYTLlm/kgbuT81CWelkNFhVNzraMZcFI0xhfTo+0ypVz1qYQGIxjdNZTEhRv+4Y9sgypaFwJT/Pu1FR4Dp8B5cPfsMIqS+FYpIlE+wH+2ZtLZ5euH0th1AhFaoLvSOUqz09tUZrNA9uGaUaszcj3fkVFXOdULsLWx76K2zX3FeN+6W5Rg2xSo8W+Jx3mfWGXqBMZOpTH7zuPWI1nRzuZdwnywhVI0sSrU7qPBYWb6JMVEC/9WihBgeMaR9I2TSsUuvBEx1D4bQY+/U8zoc3hFBzL0b3WNc9BfVRvxdD94EwaCFtsB3DG1coUG0ZuiR6MDXWvRazdBkuDlh/ZjYeTgAELXFraMgtSCTS5mAIpWDItjSOKbyUENX56zvWwe2kWYuaw2Zh2Lh3QXzWQWsMKxkpfYAmy3ZqRbHwoGRcGipghi5AyiaXveC5xtWlEiVB14A2+fVElI9Kk8BmqMuE2Lhy5d5xRmKtrCSnWSt2J6NdW4FJwKppVEcV9pnORqZMGybDlgzu4CyZiqiaXxTNgKZR0xBAAFt4rb9DoWobcIN40Qptx/Z6CpFoBvVNJOInWCjYsirbCr3wDvwsesuJGA1ZVGEMPWSKL1kdSpOko9SixeKGdQHZm9YDj/Ia1mL2F3gIOZDHrpOy5ffgeGDPROMmL1JHiYTtQ/a5/zu7mKu97PZ37p9szn63tWe/f8kxTZgcvthxZNOfP7/f3t0V3Ra3Qib7g9kDE1d+9+odGEDF8F1cS0WW02Gq5l4ID6QisvQDlz4O1vVQGZgLjokObga9ixjJL70bxOs09IwseQXcC0z3+jBWWPgFed5Q+I//9PkvH04dEG0VloiLZHsCmvtakqWlGFzY1eLichytfLX7ig1ZH+4FzETNyZUVT+ox9GkK93lJBFH/Pdvf35HXDsfccetWjQekYnBeqTykEkHnRNuCpgkrO1asNtqDTV178XIP0JyA8nGhSojlziYGpvDbCzlMLH2x5druzrqtapzPW85M+4I97u3vjKvUOA8HcOhF20VLWsLY5p4bVPTa9urF+bk2pTlJBJIDgwqS4AFhbBK2rJq9vSFARMZuRS8Pdo9Pzw7sgWMOyomn9m29lSH/cHjg8CTsZYu3lhLTB0ZB7FrtMh3ZoRIPgKoPQjhcHcjk8WM05qEOrq6V4nx9a15rxZkMD/dv3x2dn9mUp+1+jFkRb1b9tqqMyKlKhBb7snxQYIDIFbJN68oE68kelrAJI4obcWEdB5+hP8skR8rg9fLaTnb4R14q1cJYrt5c3tqEo7iOnY3moA2dB/NwWTtbyZ+J70n4RBrJy0LGSC7JwnM+oBqPIYWr38g3RgVm4EEQL5eXdx2XNr9cPH4u2LMkTg14OFWQTxznGgQ2DIC+2BkpFy6XilMFONtd5VKHlPjAOvooZxSJ0vsmCrZopVjCP40IJ9qf5uKi7ZW0hfm80hA/E4JWGkG+pqhnTnkZd0lasXwn0JqsTzF5Dp5RdjoiMNm3gIw0Jd+DsGFA16mYkJPCwSUQWFnMEfDp8nGwjNzyOxwXaidE6CDOWVa33SfCBByWKD6xef1StFPXVFGDT87uoDDwsPTNX//2zdb2ys3lNdkx2UtFvnG238GOpP+L4wsZ/Aevdu03bJ7o3e7el63946sPR/vr7386+fnDiZj7i6O9o6XV3/zNW7uPvf/L9f7+/pGFQCcXP7///Obl/vnliWVR//THnz6fnjnHhD/+7fffWAH//tPZt28ODQnOT69evDgAlB2OP59e45wzQ+WHU/bm8ubi/YcTdh4IGztx++fTq2+/P/zm7SsL5E8/n2Na2Wj0wK1jrd8bjBCvx+0dml8OIalcMV4wjWCPhZffv7aw2zZit/y/nfWDl3vnpzeOgCN0lk+wtCJDAg5hyeHEaerc62IrJfPAbsiMKO3jlesfBedDlUKvx+iH95TnjmAuZkMNeMAD91XWl1yc/MhFBWMkxumZAFvEKdFruAPxU6Iojn9Qv31s4xgt51ir1beGDZhHbXh+UTJgJjTr9bhlGE0Nbg48468kBzmImkvh5HIMSGwuJzvjbykUCgQ5yYo182OSnSmQIGlU9AYPYrbh0EVbMZ6+etqJbH2+wpY9rlNf8/4hKjHMVhdIBjwVzdOl7by9aOvk9Pq//C//+//t//Lv8bj8Qgc2OEqlcdl4gSDhAlY/lCYXXxtCU4MBuL1Zulv0ztMxa6GOAqSmUh4jm8Qt2W3k0c73rlK6uSKpI09NtamqYlHLUzMM+qjR5NGAgpcPE6QRNnr+ZWlrf9eDVrHd3zWHanb06nZjS46o7epuhJmsP5EUtLe7R+esrEoEuhZIYgLaX4C7L43akkuJtSsrThvM85n0wmSZg8U/oNs72TCeMnXMroENNnAHa0tHw+do+pxZX4DHP4OEo71tWcJRwYyY7FacPVoQYxg96Fp0hP34PWQikDvRt9udcKVpN6sznazcfM2j6KK3Jv8tD9mnIdU4W72s6nwNmAUUABZqqkpCa5hb/NUR2FNlPOdxjg6/LYVNIYv6p/UWOT/kq+SFcWNymFO2C+YvObkIWv2J8+tmwABjaJRp8ML4O9E6aQrGGcZXCldV+Qh9Y6GA0MW6k/iFkxkEhplqWdRaH8NQmePT154Motg8QrRwK6e7aYNhs3od7Qw82982SEbu4uwA6XhnsOsnMuhLzpVG+9QoQNQQFDXst3tZQ9iLYbkmDKu4dbGDRjwa4qvpALusQDRM3qMyHpcdPcaEXzTDIaw34cKGdnw3Y1VmeFvSmmC2l+7bo3ai7GLkhNHAg8RAAtwFT1dBqXtA0q9RpKEW/oMQqqYnUy74c/pZbe8QSVMKURCaQAdJiYIewBw6x0WVq6H6jQooPvyiR5TA5bVVLrkdLZGZ8QYXOSJXWhBJvc3ihpHJpnaDmGuFsnUvlV8cJ/1c9WALpHYeawAwBNYdvehhhTE/4LBW1FcAkMSCGKlfnWJPbb9LoeQS72InlN22A+OmHON7ST9cQZNy/MlvXzOITyLIllaKIe9vrTu2zw4lb17tLq3v/uXH94Ju1h1y8zrs7PHhxdERkl6cIsb1weGu3d7PrIMFUGiFpLAZfIkWUEEFLnew94xcA300YCiubK9Mn9JixRWgmwDEvovK/HHZPiH//Pns85WlFvcH2+vvjg5++nBqae+JE43Nm9TOyt7+5tG2DBk6ULbJmvmFS7uYXl7Lq4YoeZBiEVYm6ZHa5OitbxUeELbH7hTe3r4tC5Yvx26Wkv7wsLdlKw+dtCTDMVLshW37oWvJzOb2+spWzudK4W5j0wcDjHtLhC8cI7C2Zu8kcwjSeiDl6l7G2g0lxO87Otw31SqXg0LUHG6FOwnBgt+cwPqg/8tLr44czXBpi5KERvqN/bC42/dmvtZLF7Or6fqqeQZqyNpQsdW9rZ1jvgxOxO6kxiY/40GyqWQY8GsdcmD1ZxZnVJML0heDkzO2mTZibAQp7ju2tum/lghRi09NCGgIMJhTatPh3vb5hRS8srT5r3rPAEygiwihcSXB0HLbDRb02fhKpA2O8OuGZbuyd8yEbKyRZ1NbcAoiLrh1G1giOWFCiqNnzMkOpsfldAFZMu0AtiQ5HURXGundkqXYj8ptCpjwF9smwkhJX+uXp2rQERcY0t7e7unyDCEwqqogYphxVBvFhyuGmzM/pAjqNBeSvIk/hQZJD2XU8h+Qhcb0SXUZmRSJaRJvkv9AoN1RkQom2Mo4RaEKvdFJDfyfe6xVsccvn0/OaYuFm77YgxWpmHafzlfGdnkUYpD2StqDlxgDXCDzFqrlpqS/6JeJnBXjHx23UGQ4zmdhguc3MLxZb0090Vnw1lTjWKDZw4RGFIGzytnm3mNUDB4HQhbQe3Br2KB/XkqiacYQ2rG+E3t7NlanjrZfvTj84c0rq443t1Z3v3+jJsGTFy82Dg+NgjY/fHj64VffnJ+di/K/evVWL348Pf/0yRZfdxenzU0evdz7viycvbOT28vPt7v7mzvfvHJU6RNfemXlX/2r3zuQ/PNfLz+8P75+vHv14siZH7yhlfsvL3b23vztIfr9+cOnSBkzbN7cXRy+Pfz442er8+0N+uZo6/zqkl/zN9+/E7CXdbZ3sH1pEc2SJe85OdSAzVW+XN6dOq9Bgtb62s7h9rLttlYfTi5ttb7+zduX3+wdOjAASvTeyv2xwkzC5p//9B6CYYenKLicwou5eO2bDhyjdkQWzATk4ABu3J2IyIzh79z0fEVRDGwS5eZjMIzgCyogCpkiIgt6YIaoQosYThB+XBVfEaXuedtX9aAXzkU4Nc6FvyltT3NiYoj8P6146lPULUPYfRdq0cCCbzT09d0Zocbw1akVNGama6WaR4TrPZvqnRqqRSUGJPKjngCYLvbrl2tYcT/XhYtQ73IbvZvftGBvF1PjVEVgIA16AL/MeQ1UMPQWHKknd7N8G6PoaQW4tu9b+e//+ad3b50JsYcg0GmuPJTEyyqv634nfGP7VUaUVe6/J3QDrS5aOYkVdRBgkiNsIKubFTXcMzYjf4NzLOQ9AWUutdZ0JYfGCkKzBzfCbNJ3Aat0hEQsC/dZdpUIG4pMQa4SCEFRKyj154mQpH91M4UkhVTYfuIpZ5o0wJbww8ZH0/L4hWi2bh2WYqvlnb3rm5PWlnd4OS4j6wArNdfrMeq6UzXbdNs2B1qU4wp46OCnIbj13JFk4YzW6wLQOwx053/ZUw4vjeOFMmnO6T2cxWE4sHzPGRlKfrB/Q6GqlOgwKt5oN8hGFJkAWgeq3QOJu03NEPDMIxypGSfHcqN+NJOzGdvlG2mZHen1BRF5SI1IPVSFnZoFlWYOgSehFAQwTF40BvAb5dSqv9mdvJJA4v15E2+4CaL4AMwg8HsKxLEKxh2Bqxoc6XvwBw8zVPamr7oPPG+pMYbKTa5AEpr0TAWDtvqCifVjuhxczc1OM92MF9E6f7Jdm2SYBNhCdsAcdyQHEDimf3jSy4OH+DN5zJXXSvFmKAhlPtpNFSmZZalTSXfA1Kj3eXTt8qxH2sHsdpIq2djjChOYwQWGhUa3oSyk5IgU2KpMGbl29oMKWOjG0/WDiVjQtvuFHWieRWNXnrhAPCXpPxwSswMGgYRIpd4J1oRymqp6mFB1t/oo0//B+aJjeMYbjZmBOT1N7utgKmmh6xA0lquawXv0aLw6kq9fcD1TSVpxNpIDKw04BCL1Ucm4BG6CIp+C6wKMzKX9C+2VZ1Q0U7s6zqRij9yMmoqZo4tFDE3V1IG6Y2TlIZzGKGD+KiZYXfcXdDBaBxPkQXiZMk6t2dyUTPvj6ScZMbzHnz4XGia1ZyfXhvr7G3YQ2BEZe/vihVxZR2NJO7Gj9vXdzcHG/sbK1pvDV7amhJ4STwSCbU24ufp0Z02RZBaZ59xATul4OhEeoEY7A1w8VICH9g/gEVF/owHOWFAiwOPgGcY1JGrsq/9xVohHFH1WCgD8pGVBZ7sjOePp9m7p/PL26uZxu4MYiGn7Y0an56VrCUkbG7xYEJ5fXqiAd4V7Jeh3Ui3iQo/VMDec/qVde3Zsrt9d3tHCvFKOOw/M0MB6Kaub2ytcHP3qhslHVL5vGwd9eXYCrjahwBr0D8en+3u7CdTyF9uGI71QN2fXpiMYAI+KIN3fqN+lRPB8ScSkmnmf+me9iEeCIxdXlyQIrmwIaWri9OIKBnAMf9zwwCjQ8GDijJZwWTn4uM7i5+CZNZYNv2kAovttUYqZeJV3d+mN5lEtnFbvik3VsZ1WW1kvoavHIVYlYDaBhwpIKvQvfQEv2uif06MAn4XGTzqR98uXb98esR/INB1CFPze5JbRs+QrDJduyGroHAb3TqMLZhiwIBA05aTSTVefbzAPO3RxfsWbQRPEximJQY4MSXBgapxPNMw94Xvxp0gM0EmeSbb62nBttpxO9+kLHks+Y8b6iA/xXyYfhbwy+QyQzyPq/ZFtqtZLcCXGFovGpPM2DZa45YSl7KozZlaPX741fk8X0Aj87BaQcsWUoBmKFM4beocMKm2AZ3JzMficFsTzHsRiWibbRrF0RDBM036rXwVgxJz19elRQjwWl+arnqz+E58ynDRamBhMCPFSIpaFJohTA7xmjdIY+XBlX4UaOtWcb5UHDQoroAJ6HwW+0k/5VI331ZW+dkAvv8CgcTRUJUdZ4UaWnJ1WTv1CNM3sP9zeOLiD7364v7djIu75Ua6hQfPFxwtrWVR4fSwiaX1KWz7vbun5/avDd45KvrDhz1/ef764enW4c3359Nu/ebdh6/2tnfPT8839NbN8jlq8v7miN//y8+mHs+t3Z5uXl8VmDaj2NnedbHd+dra9v/3i1Z6EMiT5688fEeXl6/3f/+2v/+2//ifif/L5jEN++OLIoheRJqN1K1jw6pl1T45gk4h593Ty/myJ9ltePZtdzwX1N7ZX3rzef7V/+GV96Y9/en9+7tDEtd2tvd1NyrEhz20LezsIGY8ZoRG3G9774ZZwwhf5GF+sR9goVfDazgSN5zV03667OXPZjGxeFnW+lFG20JYYGAUT+LE3SiJtU4XCuGxhwwN5kiPVQ3WcGgdWZ3w+7mbkJwN4OMlQmxsN/hVL32oXfXtQPXGcEoQt9kiBxz8jQYuRg1jvcBFBGOuo5DjWVR1Dkd9s2Dgx057KVVoDSWiva8hMnYZ83F40inXBkwdfqKJS1RUPBr6a4RbMyQs7UtBrIFFv7BnM0Bcy9YLg+3xdZpBFzwdKhlMynirTc/2mqoS1bp/+X//tH/6zf/H3+845nBlcUITzkCUsmrYMzvK9IwCYfEClz6JaE0kpBO6nHk1bLlbaKlOvy6UJE55SF0XEsxoxRqlbbpOd27aFMDXnjGchdnpBpahg1kj2o4RKbgQFznTLa3ii+VmR8MmK3V9fp1s4WYbrzRgEmDvgTDGWSW2mRYhqY83Kzzz8e4OKO3sACSuYhlyxN/n6zaXKDcz1jFLkrwSvQI9IIVwxBJR2jh2MTOdnlKuh0foLYs2IToKf3Nre17eiLaU4Dw9PwBgfLPxj1KNfiP39Xd5PdgRJU63pVc2AZPgxb1gz9HnpQOUU6R1HAeEgKDLkm2K5gq2LzJ6Ud58CtOCFb3XhHxTRCiaJGcWb7PnB7Z9VzxwaQ0OwJYFTGFkCFUvOfcocfqkdBAAb04PthX7HEYrKCnsx7grtAZ8lTJvWdCQe8QaPbgXCGCC4zAtihbwSq8RY2MynKgpx5EcNJ2AS99SoJ93vulrqGMqAkNCpHgwjbNWR0PV7US9B8qWhAPKpoc4mxDXmq7+JRGBME9UzghNsdQiZqqpiCICT+hNUBB/MsX3VJZhuuR23hAYKSuXxupoTnNroaxTvG9wooxKTS5aT2ObF1LDBpJGMTllR8mRgYUjQMlleaEat6JYJAyJmiKj16Wr2XDtBq8HgRzWvjI0DU1D0CWAT74Ob2CxULPAAZh9dGKZ2GZJ74evLQ5FfMOqVInH8EJiRfuIt07qNnDvmSKl5l5LpbcDE591NxlQNWdU0/9MCpgJyDjWn0a+IghwSoXJPk04w17tGaRMnGGrqe8NGnW3D7uKKTlDe2f7Dzz/b5VGUzRto8vn0spzG5yWmz4GkDlhCA1nugmJy9rRvPGxK+ePJicQZTovNuS+v7k7PhWvvBSauL29Jt6b5obSK+SqxePrjl4+r5DcOCN3hJgr5TOe/DgniWFzkprJf+cFfr9C7Y+qwF6mY2SWMoz40Pj+XLXKjm0LcP7PT5dqvX9zd7a6zwFuCIHstV32yH46zrxZMZg0S1LaHzMrW5t7z+0+fNjecEGot7eTlP7VaN6EWoran53WHqEv4A8nBwS6IbQ1Bo8pvMW0qEMKjF+KxlcLhy5fHp1fnN7KTN2FHkobsL6sRuGGWyVIXOal4y7FHT09mQuvkinFFUXC0tMnm+YXwrjhD2UIwxBJKMW1BwtPTT59OJuKSJNB3qgVYenRmaScn6dliRKMR2KOyhG2E+pyF3K5YTRil3RKockPZrScZ/2IcRTmoEr5ZRyNtToA2psRYREVxEym8OfUSRJOfsZoI6M01N8URAzjRuKVoUJlC6yaJqMsmnY39qW4EapIIz0v+WTk++bSztQs2folDyAgBPWkoYkn0A97mmwjutOxZzCA+4IlmzjngOcsJpKXbt3f25TDQ2pIRLpEjAR3eJ5YkaqALQhMOSc/CXuhJAlbIk46OsAhhgGj4OCKU5Rx1lg3Q8SQmd8FNJDIz3jzLQtTVTY8kjzGp54X2syJNFMuGAkuhuDCHUikLL2qTH4WaJNMNr05fWx4k9kY7S6Fz8/rGMlN4LaqHV0hdJDSONQXFUSggkBLXeICNyNeR9JU6o5a8eSrV8NLrUOftwU/GPlO6sDtAr2tpEWXgXA0hPHWTNvKq8lrRBYoYJVhQnUp6F8IZYhqW4T7RNpV4i3OLwzzXAYiBXOBwj6AtD0Xp4pp6uvLm22++e/OazFgCe/RiD1cByAzDz3/99If37w/3Nv/ud799un68uboibA6G+/X3by/vHv/hj38ykrxaetg93Hz3+mDvNx2R8eHHjza94qBbHHLAnz57/Id/+Kt8HLM5t49PZ5fOgf6yzfffL75ycXK6sbuxvWckyrov/+OPP8mS2tvZP/l08W/u/xEnPt1YItmAt6PBr2/PLs6JPxxsy6D+8nx2ff3mcP/N4TYGluV4uLP+p7+cmAmw3nflafWF3KTH5duHS/Pl619Wf//dG/0+s0fwsuMsNo9vL83uvH5h1nXDFtEnx1fWf3PGr8/PrBK2k++VjEnagc81zGwq3kc4MP6EwXEo3YF1DIOSof8rM0cnHv9CUpCIcBmHCwcs3I6hc1ZqqDfaNb4dYo60LHgSaWe0kYkaVmkIrdcLNRyhm+jX7kgUpeGKW+ZDT5V6i4jaQOgM28Kmdj0Bw+qBR95YM4ry0xNtUqRH7mA8+hm/Aio9P8D55T7ZBjl4VD6sF9+68KxW1JnDkQVMHgTL50AsgrMQVtKkoJAtLvbPD5Dw9IhDxntEISbP9HgrpVdJNQriNd6TkLC68eny+k8f3v/Hv/sV3ew5AdFVQOtR2oQp60VSljMBjjzGYBw05WcklYQxO54sRFDwasMf9OVJT2Xh2JOs41SglfxUW8PZNYGI6a9zeW7viZhL51QS6LWOjzT+4Q8tlVHpzEqOkuAIzuFnCC4WpFuV2gNXThayn1yOadEP8mgBWpEXav/+UnKQYNb6zoYRbzvTCt4sXd6gVBthPzy17YAYLnPCwdJbsBkM5FbCZHpJt0KpDi4Z0BZOmFgC1Jf5h+pbKzZitn/DjbgXgoHL6gmPlKTt4gRaF5ROR2kuCyowXAhJBJRD6cEONjPgQQFmQYvD2rWGDhSJG3R9TKL3UcNldFaRwuAHkHYJMVWMKCpnidSNrm7qhaRcdcT+zQBUAJm8i7iGERjAfRCq1pvztZrJLw3t9ZFEd7y0aD1WSCLqT7BMxUmQL9WpUZ4bo5DRqTdcdu+quc7FL0TvK+cby1VzDVagKoqmdQvffmW4AtBjyApa68Lwds/GZqTPa0/7zFAw+jRCBmAyrqbEwUsRuaS4LLln3l+04o+qZtzid3TzpF7mxbrwjAPwVRsk6J72svqSlL7WjGvlWX2ar5frViojURp5bBDV4oqEBAwyLlYflg6leRdN5FjzNDfu7u2Ah3QSJ7m30iiabsVs5c6Gn8jO3vNZ9VLD6Mmke1j/+zPON3DmGibdqaTuhq16ld86/RoYq7bu9KBPPRnnih7py3yGcFEnVkxy24eHRwhZtpL/BWe9mSQVK0Sz2DWgFrHSIQec+at/I1vdApM/XgEUaLU2KM3rW7Cc5uikhQrielEMnH6N4JySWbiUnTlzyTHb3dtti9KlLwZR4xwlBV536mg+18qaiDMlI+5xen3nxEuhBz9C4hbXOX+NU/fwcNGJjZOSSnldnNldo4STg4P9/IjFxMoCh4wWpKgdSrSTLh5JgG7kD4Vpgdat61jsM+hNuw6akcSj4PNaSPByAyyTrEmznWr2Nm2TYvJfbfabgSWYNZHO3725fuCyXzzbv39lZ2Nz30KB9XXWXSzw6v5GXa+ODvOzVp7sxIe6tDwnGcdY8QiSJL8l5/wAWyY9s7WXN3ccl6QDrKvtqCrCd7v6dPqTxYKMRvtvii8y/FsTE6dQmkiYAavFnbSGV9zg+IrRtwNgY6WVTx/PeQBeElO8urhCMH2X5L+55chY+5H6iZ0ItRNMrdZylJh0AxxgYANaXv/hwT5xsqoQngREWAU4w65ZIFgT43mQtyALAk5uKLz0cLvo5Fla3sCptrS4ZsawgRlnwidNSakVwafn5eVs2GtlV4jIGokGGLf3TojcZiQcl8pQ8VWh8tEWlteNJxwFsMW0P5ydyocaJUJNWzIh7mRJw0SAwIBfRyMZ5mLl4mvxOlKLe9VyYjxMkprDajplacSCWTxBNWRacEsOUHkmC8WUjW9BM0LmRvRB2OmNImhIOUBE7o6hTq6k+Cu32LK/eC6h4kIkfm0LWOYAqYv0U2Ec2bocMCZyvFhRqxi+TRgotVlEMYtGnDN1c3UrdMdHz5/OP6OKhGlJ1BZAZOeG6noJhwaLX+2dN6hmg1VKDvzgoOwMsKiM5v3bL3LW2I2913TeG/g7LKJMBlBF5rRDoTfA+xoOE8R0U31HcKrELcj6RflGEcLdlEIBiVT8lMkWzAU82bldeeONOgs4xollNfnQAb6EEwaMfXNEyLEdxr775qWGDw4dELHy4Sfp+xs7hzsrm2sfP56e0R1P9z98++ZoZ89OJhcXZ9+8e61FK8s/f7r40Gl05iE3/u6H75B/f2vX0Pp+fcVafOGH9yefbz9L1peBaCssKAGBNTNrqvzhmzfyuj+9v7i7fnjx+oDIP1jEtPx4bI/324dXR6+wyaePpwa0GM+w12h2e33j9POZubOdCfnyl85OLvf2dv7+99/uba5fX92d2Tv4ZuXD59OGXivLjg97dXTw488n0Pvdty/fvbNKx8qa+/Pb+5Nj5+K95W/97HiwT9d/++6tVEMDjXff7zH2NnpyIJmoP2an5mzjS9jNQsB0uosT8NzYJs8mN84S5LY7ZPRg1Q/ZQcosFklBSQ42usA2Z9qjeBRJADVhP+2N9vQKycLaqZOcy0osCqYrsDc3doIdylB3pID8TfwOXAmR173rRbpDpYQi5wPEY91rNBYijHggKdZuDMdcydjEuz7Df8oEMLYj743zFyWnnnnddy1WuabqcSNzP6RLreBOEqcjbuYxUxdfw5+V8GjemgFqsGfTCZ37INN7cCjg/mApk6RHvuN8ZacRQ/Q23lLr//jHD6Z0fv+bN9Csi4olj8kE7dP8g/IWKxEqH1KjBpgk7+S0mmcDaCYOy6RzKLjcIUGwTndpOJQDqpvJo95VT7GJELTaARx60ZoZLVJ9E7lYuTVDGzI7tsA2ObhhXehpY+nF25cCezp3L/cMEb9Y2ntLu1s89mDLBIRZte/zrjZp6QfSDyttlpzrI+FTMqT4F+Cp9wUj2tYD25ftBl/I1ZYv5pqboIJP7W6uOkKRsdSFQBUr0ASawFQMk85Z2z80snDqkCnbmFMvaGLdnMmMhhSYIWYcxFOorqAjGkXtsQWT/zYUDHsDSuVVlrLCWc2E2OwZRUFJj3ZlCjoNxjuTlm1VibTxK1mTDL70a0GJXN38fjUZeWgsTosA1T/igNxgVYPv08GMgaUgC+R3X3jtl/Iu1DSMnRaPyetFslnlIykLJkRKz3L6oaNi+XnD6fU3kz0vx5Tx/BQo65JDDa7A9VNRX/FoiOuROlIaEASlY05c646vxFk1OjOgVDbGDPKpb7yyeDL/svHYopGhZFXpxTwZuvvq5cnFnUazOLDmZb1m3DCAO2pYSFdYSprDox+dqQPoPW2IcwEhga1El2P5i6mpombR30KCOmzrcF6Ik4ia/+fKcV6IOm8kbVYKpTE/sclG6R6C04WIvWhpYNAw0HoahecCZIFU+9ryCa7FNagw/HCDpz6BUz8GrC7hYbwUZB3ioFfMrZjlybSjmF4WuT17Irf4XMBNFaQDnr1HiNxyobXYphIxf5pqltToOhKgBSzP+BtFYilw5K6kKlMZ4HNTDcWSqiEdoj9cC+/f3dztOYbvaP8f/vGv794d0k5nLRxdXt+6tRfw3sH+zx/Pbuybvb5sjWg7721tHTQbcPP+5Pz1oVdXPv90zMX95t0bicGXdxeiDkCigN4cHciDPbu63LOQwLh66fnjh5O82vBEhmfe0DWsJBbzgOAtuNxtyNcxvS0C4HownYA1LMbN2CcxWPCU/oRyb0H408Pf/ctX/3B8nLeOUnRh+5QsH3V618PPJxek03lBUgWeL6xzWgefMYFMegfE+pycynM6NB7468fPEJ0nWRLgs71Ezi7w05JiV0xyKr6VW2ym42l3dg41bxaBa82PY0aaBDEOEX8tU/BhY2Vjb3Nzf2/vsoWYz9Y9Ke+MUh3c2944dpKosL2g3bq8K9h37MBs3znHPt85ewuIiYDAvEXAu2Lqgi/c7lV+VIy8fHVh55AnJxhjW3UatkCJxRy0uK2BpPTgOWsPWuk1A4Bc5lIwDHCkM0m5KQrCxRAml6N69+XBqQ2b61sGULDKHx3mDMeAx8u63sTR8z1gyKGMHcxmblk2Z4f1StpxRAW7cX+/v7tthRwWxXqCQOQTeEaZ2YO1ZTn+dipFXuyYjLYGRc5VdI62RVOMFjYQzsdGQyAQsLEvleFNq7epdBnPDVgtZJFGVWQdOmb8Qh/FOT5+Td2Kt3JaeRX2hbCSiQ7pKBLPPwYALZKVFYojN6UOe6QYzzxSQjUxG5n0KiQrY1jVaFu7hUhTrMZptEcOSOEl47FNqTvQ3LkDCK1HNPIiXxbH6KnUW3UiaLTMizKV304x5gH0ggOrKhpAaxrCWqk23D5HXOebhP7q8Q/mgC3hjc8He/QAmVCh8mGCy7UwpdQqWJuvaPmEqiCK9tH3KpmueUORZDCPs/E7TFY0FmpGijquKIgrCh7g9zFB4Q3wuw4iKIWWpVXYoI1tZmqgYnOA33//7fY29/HJUnpj8u39TXM47yXcSxLlED1++fW3b3717WsHKv31wycSKrK+t7nzu9/84DSS3fuVv/nutT3yhSb/+uH90/6RBbVb+1ubuxvvf7o8vbk/OTnj9xh8nd/d7e1sOthrb3P19PScwH48aTnvinUpAgMX93/3u+9vHbWxsX64sktFX1w2tuaYUtAGsVz2K3tzWY0NL2IHNkw0XFxZPnyx/eZo/8e/OjTsbmN3xxInftur1/t3144gXvmHf/8nu359980ryLKm3oDq+PRy/8Xer3/4zsHW5xfXb17sPn0ip7tG++aSHpwIluMhPWzTYmVsRI3LMEQhc1wUPm4pAklm89cRIZ8PRHQ5hYipSr5Sej4FLHiHxJAZGWOQ0l+MEIR+C3WiZH6wP0hJ0S0opYyqkbRHXRLcBXHTzEjpDxKzlqjag+jeX/DgJSV4q70W3bkX8eZCV8fAi08tBShu9qJ63CCPbi1sknvBoH4aiv/js9A+1YX9clx6Oq/77bZXVOIajBOI7don9l2oLEycAvVWg5zpeDBqG+pGDgjQNJNHBQP5AirolXrTo2m/GvrK7Xha+eefPv3ND68N4BSazQaTwDCBp1kwBOW1ZsUH+VAavuu9H+1CFz0GsUlvvdC7BmCQjvq8z3TD1yGTW1BLCN3oryqE8ShTaFRnNQJsEvNMsll1RIfdL92tP64eUrpiTRMCw978fvPjBND2F3KRm8eTUXRzs32wB5Lzi4tXr47gX2xCrcDc2Nm9tpmbDSF8BKfuqC78RueJj9i/3KFXOtIv3QySFN/s4IuvsBCYhj4UPtwVhcr/kLaUVkQtuCaMJiYRCrfSkxUMTWmMvMZSznzn+VHW4+vASX7gbHjqzPpQNy4c/UP7TSoXvfpoN8LGHu4u3k+NATW8E6JhQu4+CJXhRCpNq8Jb6rKqhkUbNIbjuAH6Y/9wjaHyyPSlm4mGf95E3QIeyS/Ha8HGLQhRzB0jrDqmkEoUmGFzXU7caiN+G45VeFiuFtTvAfQmXVizkUBAabJZ2MXEuJvZsuyLR8DRClLV23ADY6gSNWo88ES4hjCLmQG3dW0EdyBpAOYlnNCATfnGSywg3lLlZJDEw3VEb2N1EBp0YeYs8EhPb3WhQMkqCx0RYD0u0MQ8xbSBPfipPhf+eGXEhE7I7CrlJXAjTU1oTAbXPcRaB/iFlvSUZaelWSXW1+JC+lwVUaS8zTgxXmLvmD/sKl42ZAVhEWvwa6F6Bu2ArJ/zu2v1FFODNMWCjcb7WjhHdHFn3qwS36tnqqqeXnJz0IVTmtxYMrlGiZaB0xCJxxNa8QtmGFbqZixVPQOGi3CMx2BVkQQtfClR5QVoGzyU11brvTYALb6CUDGvQQgsKQqJNzcPlN3m+s3u7rNFTZ0he36tPxxhnOoM1fv7i3T98qOEdbufyYQ/2pfEuv75+Pwt758K+PIs3Z8Rv7m8Yxy3t7afrKztMMkvZuNtPcJ12bZX4erjxfXVw/ldGcEJJU2N49PydQZywZPTNcgahksYYrhBpe4ksVrTz6Q9FltgedBUd0MFK6DG1Y0//9WqP8vybo8ODQtXzFlSJSW+U9RlTJr9D+XoaZqIkbLXGRJvWUprtlT6yubWp5NTFrfFTW0wf8V9tsQBt4lqTEh7hfaUrGzTNFsGccisB5BcBNrTM/t7P720QnB3ffnmluBJKnj1+gh0EmysShCMF9hDsXI0cfdqG9ZyEGxd4r4zRPm6unF4cAADbcVA/gWWojgtwKLYXSdPEh7aMz7PNg7jRpA8ifm6YE8eYvBwYXXuE9aHK1k1ZgwSZlrVYXJsw73lEPYUWue0ql/kFfKZA9M6Wm+8sLHBGDAOppbhBACCRhByfX1v9Zt4zOPNw6G92Te2LYUU8lft69dHbBLcQooxiBURBlcRuxO7C7RQc6is40Yjapakrls8lSK0y7yZ6GGXTnoBYnRMj7KIwmaTgUMS+TSN5r+wQqlfVsgYA2puv9jcM7bH3Yl9rgDcxmrkHFc0QZw0yaRxw9sLJ14LZMLq6k31tTM+pZaaUCSVk0jpqVCWK80kaGp2f1ROTKoprFgTCZwfOyTct91VGmVUG8E1JcZywE2p3L4DPVPkEN8mEDCVEYhXNcSJVKG5kJAhVuBLIdcA8dRvXWyfJzlFxYNLkqpMoOUD0fgUnCEoX4Og6Mg8TAUpRkAgCRr1wP16ozsNV7qaHng6n1Rtj7wPPFJQz7xJDwYqnyn86K+3YAY+F/oxeGHSLEESVl5T6AJr2x8/76ytvNjf+e7bN6/f7sOyhDGF8fT9zfPnj2fbuxvnx2c769vv3hw5weLFwZETtf7840eD4pPz87cvj169evXDt2//9M9/vbh1oO/BXz+e717cEWlxzKurs42d7X/6h79ae0sR2aSY0D1cPp6enr17e/h3v/3m+vzm4vTCbkDNAtrmpGyolgVdnF3/0/KSVTwoY8sCVqRgFblYXdnf2bWDsSOH4RNb7TnhwgJ3y2RW2kVRnrP4RgGnpaVPn86gQsxD4sv+nJn67t1LS5FtZjpKSyx25fe//1bQwXb/FuecfD558WL/9+8cq7JKLs+unu0tY0RIwAn10Yv9i8srrEiOrKVyk39k1AHVCI5twidlMHyuXbKKstwzREQIhObeoSiDh5kDfQbYUI3c3sIEuu+LC/QbTihCuXiaLyLvrln+vA1Sowa0Vi3R9kkVo+4wVvc5MXmkzctp3YV60Fo9hqDuqAMHuO/CE69PmXhTT9zBm9PQwiLon0rH9ukg7w3T5ojEWfFhFqko+0ACfCpiWHHY1s3yauaT6tA7L9Q13Jjku0O3aHqKh4upKQnykmLuw3K6Nq/N6wPbMPy8UnwuHKYOnHh//Me//uFvf/3r/+CW8x4XUgazCfqIZS+SgHmEeohXb8A6EwWhtkAD37eUcXiaVZLAXM+jMqBKcvOVRrfxzEanZRMHtZqZ3VR6ml9ST11EwdLQ7cK8u2VCv91UZtlWXi4/41FKG7Bs6YFo9uiwtS7b6VCLoKkmrtLG093d6acz09IWpV9d3DidxloSB3EDOT4pWbGYhUBACGyRIj0QeuM6ZeirxegU1RbIxTx6SMMvLQnDURyYIPcPIUXi8VLKZFiobj0u5dzhkCilVH/L5IgxYiP0LZKDGvE5JFXTYCzKcnBdIwnMsHzd6o0MQ7cXROg5gmdP8qH7RFr/AASyBXcNA6sdVqdZjtPMJqh2oWQ9awzDCc40B6G6eGWcjbJrA3JInkeb/q+n7tQtBfOLAoe2HM4f3z1JyR5pK2MyXSCnXhiWWHBRMxKL8YOysXUjjE7NKzQzXfZLt6OOnmkE+yETJI7S1l4QmFIatMJ1HjZQQQg63Jrs5InVn9ii/hbsr8z0ahrOwCVBHkXLsK1rUTO6pPxdR5358SxJSXjrmns+aoOZKgnwIRYE+EJOpsVRfKOvwi44W6OC9hQJ3Sn8R3uvbzzbRc5eKzt7m0v3AnBUZ5E1axsDIvBazJ1A1UoyvoABbOEpqa+c3g0eBtXdLydFvxqH9mZPR91ViesB2Jvkok6FVn/qcL8WnyrFQiKGv7BTPYWkwnBNhLZJJCqW7tuwB0Bq1usaak6v9UYpMTqx9sKmF7wewnFRAjDABOKCgoNxVaMbO8ActHyikUz1NFpyjtMm1HMC7u3SU1R71SKhb16+bDNIw/tS9RwGvOEYe6ssHPTL6gEbP1yZc7ejqTCTeDOnY5gPuZ2t40Qwce0c2dVVeemHh0dPZ2KWd2YAyGS6TKddxFWEbwQO9PqyYAV/wBHtseLIUr0dpHtlURzh9bE+R48FQuq0lBnp9ZLKv3llEeCWBctbL7aOzzmuD/xi4wFdul2xwd+F+APX9uT65nH54aVjtyxlyHvetROfcRjDj5+cqGo0aZZeaNw29qMSGGMBfvOfm7zZjU5wMCq4EAhAbME+bwndbQiRrix//HghpmeDfI7pVeJBpS2J/8XwojVU/bOdLjdtJ4pT7ZND0Qrb+mduBf6VMgOrbTqM/7e2tY5uwvh70Lu9JSmCJjVcaRfn5y9HTgztGGDwPAOAg8I7kZK5s7EFR3Ap1ZZftbO7a5bBVjqycewIwQ3i/n46PjnY3UeIkrc0urwmIwjn2Z3BjhBxfQtuSurYP9zHSLJoLbMW97+8RtgoI/necILNkLiiB+LzR3u7HqCIVY/SYAxLjDr4+phPZ7WFyhjecuKiSWUOoKVEqVE8Tb4ooXVLJlunYmV54rdkj6Ztox3VGnWh+/rmJlbK54al2BKoyYCGw3Bfh3Pop1zq7DdWyjViur6qV6c7SRMc/2CkOq1ATWYBZsjha4KWVBNvk8tqSHuaYQ/yHmVuTTblJ0N2o1lpt6pnPvRzfX3LBlGwZ4tLjYKK+GUsS28mRS19K7aUdQwvRvlKyAVip/XFszhhBglkJNWZnornI4yrlNJcgB8KLDNqHr31MF4fQ8J1b1skXgilOdEd7VAE4SPbgH2zEE0fKalHGapfBFJPybIAYBY9zZafp8vwWd8L2sViwoShe36irhUrG/Bs2PC8uS2kv/J6f+dvf/ObZenNj08fP9gh82x3W1rNzvWtPbOWXx/ubm445GLl7bv9nz483UrzX8FODvq9sX71+7evzi6v/t//1X93dXu5Y339tq2KbWXw9I//+NPh0d7lzf37P3+CWijZXL0BgjEA4P7+t99BlTXnJxc3wutk/+Tz573DnVTY08bp+eVs0SsjwgiWeBobJXccaNizzNdv+BOmLc7h4ImlFfsLma893D/cM4Be/2LDUKEB2Mb8uwd7Rwc791d3eNKuLgd7JtNW7Aeqir1tBzl/ccoS1cRIvX71xsKVx6e7Hz+dsMztvuX46p39Kzmtz4/Xhlz5QBYemE/bVD+KiDLgphEcpMi4IHvivxHb63d84x+ScYbQ2jX5YlJiD3wygqAQJsARCDmcbCQJ+PE7vZ1s9B91oWLmY2MVNzXZzS414xWcqf5uTWEXPYqfvhrORXXMmMKLt/WoCvKoAo4Cn4tcdsBUgeeYLkd24T8lydOnsW1jdRZQ1KjPyAICLcq4oYVgGD9eVzU3nlbWMa6s9Qr4O35D9/o6LwJS11wnL90Joh4qwWjgrKYxx5VUH7zaWOH5y3/9P/yJavztd98AwsQoUrDRsEvxRA/AjFOrhj5A1majkRIkyKKGkjhaV4U+o2iwIn1ft3JueoEfqXKhO8TzCPj532ONpvvc/SRXF4Q2UwkwkLpaMZ589fpF6K0jtMoXW3foIJL7Oj901IPI8tb6pmRU7zh/xlBB51k385COiQfj5eXl9u4mG8oMyVUV3sOkgeeYG90Q4Ghmt3zFesSy52kV3KEnKDrS0fCmdHx4KwprrlgyMuATurSNYc2k5dBgCz8I9G13mFudwh0PhpMZOvoKUzlzOq6nBTEk/+JxuB3/OMq6U5ZFdEyxMgrIx/pY7uP1qBFHTxODtArmJ8F8TaghvzwmVFg/hxCpR6+jVq7taOy5My+OIq1TYBz7pe9hJPEAQNTVHPkLmJlJ9qjbMxiGOa8BCWQjCsAjk55mvod75tnidiXmXi5jOJwGXHg3qwPaCDzWZAD2xA30EHnEPNS1wguCeEfRhHnml1rLURcb2sWWiWS/IdkfNfajmxE+VgxBvTwIBEmNwltjjAYnWleSjZvuhJswTEd5AoaRQWWYFVX5aW68ruWaVzWqqyreyiTpnSGcn6q1ONAQC6yD2sZgJvnthqK8vItbarAcDbyB4z2yj0Kvl56nrqr2HcI1B2v1QEfqzOB8eHXuhh+ommfhHNy6BhW94ld1DPq9qOasIYgW3c+2RtM+FcQAWoaVCDsBOxkzZBfDNJoe77haU4+5GdXXeAACphm1oW8wlMSfHu6tXEmPNe2al9VfI4dg1p3aHiXf+EC54WYgWQGk39JzeE/rkvyuOhDz8fDF4XhEy29f79iF8GBvl1vLwZIM+/H4Skflsl5cXEj25mF64dPnc16aswLFeR0m8HZ7fVfKw/PSiR1y7h53RQ1ub14dHV1ahhnfj4XQn+lhSAEHTIxI1DF8EAaLCMTBcXYf5UKkt5BhxFLRaos4jVNpLAzUxKQg7IaEn8e7lyvO8ZG6c4m8rGyNQfwX+/KlSa1ClYx+c3nvZF6sKOvm5uHOBAf8mC+wygoDsn8c5aRy2QEHa3cC6l+kBQvcPjs2uOVrxkf25Chw2Cw2rwAVwdds1Maa5Gabbgr7629hOU9aHkH4DSHsprnKJ74SpW9PIcHsdk6QnSQB7qyd/kXuOzKatApmyMkRIEeuvQNhdbHLGysQ5GKahXBRoKHMq2XKO8Evn2TdqNcORQYv5BUn8dj29+1EBAVxyY0tnHyF+rvbN6+PeDgfPp2qJNMF7RIGiuGVbWIwIcdGrzVv2YrxDJcUTwvHc+9IlNQOzgqX60msqDSbNUkg9oESZDJHrGnySuHbGSYhTpyTY2X0jnRK0Zp14nYUNZq07xWbEum510yIb1gCEwAj4o+4sYjkRwxXxhEI8RBVm2qpKs6EXjRXBphk20X8Jh4WGugroXdecvFpDNPvX6ah0jLl74748PVpkkCNyfKbMU8yxjL1nw5Joj3PA3bhGzZVWqMMZPGECNEWqL7qjQvAqICm8wdFAIa3mDFuNDKhmm5gd5k5fk+P3C9LJ7bRWolGBEReljXTslYXzrp4Nn6zlHygHY0D7/oFY8AHIQ0YIoA2aeJu4dRBDuSlzuAYdra2DT/tAZWwABIGooHBVaOUMpdc6Kg7suoRiLVOlRJAWxWN10L/xkJ1M72P2OZYd7dW3749PFzdvjg9WzsUQnYC6PrhzqFlgDJ/jizh3d19+2pHjgGX99/9w58cwm1bIEPH5RUJMM8ydH/6+OH9p/P9vY1v37x7cXDw9uU++P/9n3989fYFuTi9PZ9d8qEurSfJiuhJ7DXIvzi/+ennnx5tNfT8uG3DfesGnOOxu9WkmZzRtQ4NuL52FpJti1ZOj8/1D9OxESDBddnLRxp6+Zb//mVl15ohh2zwg5aXP3y8+HR6zmB8+/bF/sHm3fX16eMdPieef/3Th2cbj9pG7PHhH//y89+8e/np3Ezr9jevD//88wfzN1RQOFxy7u/W2sPq50+nd2t2E11NB93g1YX7EsMudDfiFCNK+2OzeCytzpzQli0gaR4Mg/GFFElc4J3Dxx9Kl2KkXDT+EB7zaJyenBs4xBuIhcGGKasZbzZg0PnciEyXp5QBuyFo4d24N1i0H49j1NgMB03GajcTVHfs3tse1XqRBg/eBIbhV5JEBVuZSH5PfVlBqla9mEexJgx9RxdA1kpuU9Koya5d/E8Goj4uWslSzAfwi7+A0dC0EWIX+qEaXC0A+yq5KldzvrVi2qVbVMJBd+0RSYICL6JPDt7Sxt3z6j/+6XRva/+ldSza8O+5nNEQ5H/jmhqnjVIyo5cKQ6hmsBEkpb4s8rVKRHQDAAGZs8uj4eEYMeeQQYjy5NLrI7nwQ8kE1QI20NG0vmp4sfCeBDk4ErwYtlPkUSQ9fK8h231e31/Kr4Prnf1tayuLsyBnTOjojD2BLkBS4+eCf7vb18Y7t3e7h/JCJZI2PsFqsnuLV+GBcfIAowNYp97Ttz5tIBZPhjR0HvWIGNwCGlBh7Xk3/RwtWxgd1iAMxfPnwp7X8wWgAHumFeOZ3vCCW228FGN7J78K8Rq9zExIDcctX+/F1MGGqHgxhlGH/1mMCOGLvuSZ0eHp2+7DqqJRhFwU4C9Pw1cdHGZU4Wjmhg3V6a3GDr2ZuvZrpEE1Kk5UUNNdMtSdRYFh04DNJUXc5tOqR4G4CFp7dVZ6LAAeDTCWkgnTjJJ64d0wzIT1euLWJ9nEPLXkTiLve02HeTfRfLauapiIXkpFizDjg3BJ6zBkcj2YTLmPHoiytbjgwIWIQSZgRkLjSy3M/Rr1dYGNcQIHtOJsClfLIHwRV+rF+AVGg9qrUW1mV1I+8cTC5UUUhZ4Y1uWVIxadSVqy4wObUVZHHQ+HfmKosv/NyrDqmL16gR2C8VJemVr7Xov9r7PT+nBugohL6+x0ULFQWh+ykkPiwFKlIguWmFH6MG4Eqr2QP55AWAkei0gbwsaPINReLQ4Ro8JCskZ/9sid2GHo22o6FzVRPFbguBXnfaWrF7Y+XlN1uJ3OZqaJlqNAqpg5MBPytHrQiVjLn07O7ZxP1Ra6X1++u7h79eqQX/lgUayd2ZdtYbdhKw1Lam1wzXgd7R9AC7dFUsPWeic/iYOzqm1Btirn6u7GKPLh6fWLfW6ExQByWM0KjAkbxoqfoG5oiTZh39e4zq9UWFgYBq5kmEkTDJePTh0sJLMYOjjiIS35Jcbxw+/f/rc/HduxQzjv8lIEw3Y6Gw9OibKZ2u3dIShXOdnrjjr/fH4hUeleDsuXL3rewEJCGHGQx2Sd5fX17s6OA31Ve1YepCx2w4EyxrjssMvpL69jrYNmpfq06enS6unl6bujV+aiDIAsQOK71CX7uc7IDJxccoshcY/ZIKERgyvdFvRLb6+anxLmezArUNeMLh5Xry4MVxqEry+tC7Q34JuzpXihTWlsdsQsMORzFTnkCj8bonRSwfqWExxkEpMNmE8nYioDD0F6tJGCiS0MaViYVwdHl51AlBjApVoEtxUQtj87OdVpG75SDCwQlx4e7IQoqG/Swul7hIfDbwyL1yAIrgiBFq2mwJSGEPjOnU/H52iaNinHqV3w/SZz4AGXzoIqv0Q15mG2tvGRk56MheiyWE0QlEPmUDPal6OcPW6vDH0frad3T5K76IjRPrz9BGmU5wwX012Jt+Qmb0iXUKm2zBCiTrENbl8jMs5TggYkeaEklpcGky7cXMgS4QmVFIetSxrdPIlmYdhFfA7+TRZpYjg8/8k8WkqDmkka5dXlUsMkMxCoEzcUbmfiG9I82rxFTDcxxWkUFgUXQG483AnRqdmoE4IDgT6iU8gOhFi8kTTwCO9ZcSJtH2/LidEkr50BYD+yOq21UKxeww99gZlz78InwPQLU7PZYMtfpJ7NmHVWlXC+ESyYowewMVP57q4JJk8FkUCpR9JUQKwtMyQc8NW1vdX13/3An9+xlyEds/3CpsKWO6xKeXFGo2UyfKqd9Y2//uVH44Wd3YMrq583Vj+dnx992aO5Vx0TIRR5//Dq9e7vvv8GGFfXt3/++WfzQDcPX05PLwXhDez3d1YPXhwaGX34y7H0GwvKLcJ5/+mj8be0ZieDmQx0UodcJK7Q2fG9fUUPDrZPxDYNzh46vcgp4TAAX4a1u3vbCgiEGJm/pOxWmybaXDVuWfv06cSK/5PHExKGpOULSUK7vDk7ud/Y3RRHgLi17c0fP50i1ouXu7/77u3u2tr10/LJxf3PH/98fHneTMfGqpUKwbW9/eH6lgRdGqG0Y1JJYkbUGBWZjE6hscEsG2bQOUHTjiuROMefGwuEDwI7FQrrfAikiML+R5PYNf8bQf1Ccf/iiHgv40fhSHtEKpzsZn4qFRCFSxTBKFUxQc0qzIKwcMXDpoaaxXju49nKcWt+sWSZwnT7qHUysLD6+Cn2WzhqPe06ju+iP1MPblTMl15L8PrViDvfoyZS/jFxX3s2b0/BjLg7+IQg6EIgppMCj7qgBYIoZoUN7K2p+qvHI0/VpL0FkGpX3oupznqu/bxw39SRSlxe+3h+/m//+Jf/9b/4G82QZoahpfy1SBa8VDFta6Nupp8bcXkwEXFCXHQjhQASt3ktgzTfFuJZa/qZe0TOhCcKP2TsqdwFMDm+bF/6TZdFHBBSd3YcXkmTbrHJuLhZWXAog84YpjMocoWX5EvoBp22sbsq4s/6vHn7WhJaE61LKxb+Fi9jFp1nt+VkjHvphasrG24DADCmdYfsxVAiQriKiBRiOB1W0SGWbvDsETb2Ytto1N1B7JQLfb5CHA7SBnT5F7lTJvk3cDUuUOOZEIJ/5VpaRUAWILrqDG5z/VWzGAaLnVUV3MXwPqo1Zp478B6ojEuEdb1wJMI2ejW90BStaxXz02pinJDo1eyTjrqs2aod75CQza3YynseUIm1kSjkPo5TowzOKAYdraeY+ueVCF1UJ3atwV8G8zk/8OyWZvWut+IX7QIjAaz+LG+cDRhl3Bz+V+qr76T1BR6GdQEXtGABT9UkdExnhbvtWeWHnMGyGAmkAdwMRSEnvzwE6aEK5pWKqpp8DX3dg4ipAFZrUJXTStWHozRA6shFPkAxvEKfSuLbgW3sqY4HFaZ1pQetKhyDlJq5v79/9eqAzl++aIsMw1kI0Q/4YDFVC6vJe10EsKYTNIJTZTzREcAWVkXuGoJ5+CZjYS/VwIuDT0wZ2vUnignVOQ1eOHIK1M28f+/3rIpC1rDQiHB4Y5xTYhCQegeiUbov5CiHAMCLEVpYj8yQ4K8vXgnBSBymExyWzLUiNIk7+uC27yrVdhBwGicPUx3TYDWRWqj2rox8227jTuk9/LTVLw+yrw727Ptysb216oibC8deXt9um+d7uoPq40+nlgVTOc6sX5d48bx80uJVOgHo99b022DT2qHf/eY7yejvT67O7q+2G5nQkcsM3q9+9ULQdJgkGkzvovh0TGVxburJneHuiBBbBHv2JgLkGyH8IBQLhKAF0051KcAePt8/HHCN923wfy1ibUNMuRd727s8G3k7XPzT8wvokHl7ffOwJ8/AdkgHO9xfvt7J2WXJD09LTvaajXlMSD1Jxo2VuKIRrX0wtcT1QQzIt8ORbIHWDtj85/L67eEL455L+tWolFdpjxf7CBbbcARjSbFwUMS3U8RJSMHdmNRuUJyLVQsH4FpS75c2BLKIdk9stB2FHWoACRiFzyn7AapkR0ipgUHoVDjPL592xSEM7ZbFJR0eV0DCorGBDu5sbmFx8xX7++u2FcJOnHuwvf/rBw29fPXi+NOJ7Ux1NBl3cN3J+QyaYVVd3NMCTi5uOiuh0JE7MI3GvEwjJRNJDjnCZGDTOYAlCbZPng95UEA4u3ooxALGpbZjU+6Nipk27xZpdteJlTz6VccsPezstCkeEhByoS3INzNtyNG2DfgX8vKPQDymmn4vf2wEfdSrAnynBEmXcJTSZBfaC7dQfmGVyzvil20gz7o56jQxI9vZ19FltEgelELjey3kikGFDXMg5jGsu6B3CtWka4LKcBxBrOYQpoKgEl+rtBVvVAVza48hc3Y1ytltw6GxYWP/NJRyie6F8AM702if2cQbZRefMgR4jc3WF6dPcAxdCit6tYAlNKKB19U+lnXh2ZtZyjiFmIWhVT3L4QvGDGuoMR6hZgSHzKGxWPWJF5QoI0+SHNEm+TW3g8Z0/NX64dEBh1onXr16uTmT/galpjds+rEpx/55mTe+yfnd3dxeWf2nP7//H//yV3bn3evv//BPn63AkdhFVB9uzsj35ZUj5JacvLS2tWb8SRIQ0+ay+HS2xlo6dCST5fxtzmqAev3qxfbl2QWhfvt2j0q8QOnlL7YjsA8u1+zegYCU35LUu20DYexgeS4GZsAQ1+BcwjRGnpGkbb6sO49rjQ0gxmJK6Pr133z/4afPhqqyt8gVKTxbtmBgS89/dEiwLb9yx/Me6J2V84e9HTr/2anvjg2mOtqOrh0DxVp2TXb/+P6ilZhxm2WRG0mpJbwwO4o76UjLIbfwlktDyWzhkJUEtX69pxnLRtdol2ihKU+gIXk6NO6vhljRnbgocQZV4X98G3mjoXvK8pLJzqIW93EcJsnmqRw/hhnHEicDiXeWpZhMLO2dvudVdycjGWsJfjccJxjcU2Vy42Kv/lc7CMdk9nqATW1ebFIip9pFpbtTO9qrpwFYA6rt9TKhv3rYKnAHNT0NGPBms7PiC19weh/Pq0BdKapcRr99ArhucSubSc/LieF7UuxlPCugCIrVQXpYI+/PLv7w559//e6lgM3ajgSwHhgscywbi4cE/5RUr97VzWp2qU7LumiVcc2T0LCZ/KZhlCDSg3+vBMTEp+kX1+OgBBeaKQMjAi51tlrDjhqsJ9neKe314YECKphiOtrYUs6kDUBgVVX2imCqNi3lW22ZPvr6ChLjTCWbIv1ijprqlRGEdZbMlUESWxlaohkI8nIwxPQxPsydomtnRijPI6ymbaKj+NFsMcHOhna1RM8USLW5qqMTzB4qxC0c2fDOaV6gLjxWZyIxGIhtcyLTYyXNtzWW1hdfh8UWKIEkNUzlMa63Y7MFH9cLqI7iQ7AqDouRaUG6vnutP/EUgvrKdY4aUQobRtavJBiBiMTMW5gaiocGl9Qki7yoXx3c0wRKtWShQM1wRt0NQv8xeR1ASM+SiXoRQ/mEsAW6cse9muKOaTNtjFUXlU/Wuh3LoU8GrC/DbNU4CT/hpBD3qIuRnQUOB6Qc6F/KR/GBA+qDClDVBhxfWddI38e1miOwjgm3/cL2oXRBdHAAaN6CHJcDVIZYW2pGRg2N7Pe0cU485+0665G0A5P65rqoQMDDu2muFZkQIU3Ib82eyrq3gMeLElq8V4sCfoPAGg01kx3koiQITwMxNTVd86f73Zq3JrzodW9NXwYPUDBImN8R3Y8X65H/MdiAPFIgtsiaeTz+xqjHoj9JgeeLNS7K+1AeKamqCDAg66NmPQmYGXMOnhsnDzRKRIth9nhSN7zRgLbrGasP/n0xH+hQWpvI67Dj7RHq8PCAyvjxLydmUsohXbHQf+3jxYXGc1+XxH+3zk5MlYuS2z1sU3qzqKaZQAMA/f3p/em7F45iQKzl3e1thk8IlTL5cHzVXNXgZAE3QgZjvZrfC+yRAYZqgUFwf72Y93SYoS7HL14LF72sinzcaEM2QPz+xzNp+m7e8rkZbdG7yyuHBzJ1TLDFDfQaGTm7vtpZ25WXdHCwaVpT3ryVr/Qlawm10GT0Iz5NY3JdpEacWjZg2SLFYnNAPt2amJl0o+Xb+xsxYK5AB6SJEa5vXFzend9e8cUbhNrTczNfQcwg1lxftUEVMVM/lYcoyBOpBhf+SPZ12wJtTCnQLpm/OLrDecuv5hyDnOQ/OdOKyuTZcR0ImwNfMboErHYz8A9YlHsaor2JOBbmIhDbqgh6/PT8asfWFXil1YErdix1v4meSUAiQtYGxPetc1BspaUFkM7bcUbY6srBji2MrBuTspQvoFrd+Dr50KEPEntYtORfoB2/ASzTO2bAkIXwQgVZYtpssMg8qEgqlTIpUL22PYsl6A0Fc1BaKetdp/lycNG9+A2Kz4aS2igBTkBooVVdGiA4aMyaYPzQ4xGM+GsqjAS+qCVRaZxM8sMSJFKKM70DkJAa7+GuhaDNGAD35smk6ntRGS+S3rSOyDqyGdXB6QS/OYINETU1gRODGRjgQwPXVchASDhONdectfR82IlctGbUY66gwbqJFkSnzYBntED26CXW0AhJthjg5eUWJIljqQ0e3vQIlkW2yhxoUJ2EgbmAEAAKd3BuSBkE6azxg44UjJe+omMFEtJHEAVLg62IRdg8TDEOWtAQ7kc/fzGhv9Tp0c9Hrw7bxRb1JQk8P37/zRvmbGNl6e3bI6SWgSO/EAD28r9pG6Slx3MZZdd/+vGMyj7a2eUKfzz9fHJxuv+49auDg6397ZPTE8Sypt5m4Q8nd7/54Rt7d95f350/X4qGk4b9gyOTCVuW6j7efvp0blLCcNE+Q6/fHjn+F8/a3AB6Gf3vvntrm/P378/2DjbPri8tAHAwtkUI97fGYBLO5AQeIpDxKpf/fatirDU4cPLXhw/HmPDo4EDX7CC0n2u5bJqCUyR0Y9hOPvU5BvvyRIG8ePnyL3/5EcYO921vuvTz+2OZgdbM6LCBytHBvvIWFNlJ2ZlKW3tbtp+y/t78IQ8Jog1sMJmF9WLYqtYaTkF9jI2KuYAW+VzfNj2kdtqAsKUPyQvlgEBNGedOzGeuYYjETaF8gnE6Eb61Il/ZGP9UslAW5YxEGCMLk8mP3vmvY0eKns1zpJ86uVzlvn91DlzQCLQKsBXwwXepdFxlxEvuhv2rPKbEpuOvJFW1k9ANfwW9x72PX12PTs7cdj8zyitoWFHpGhmfzB8VLMr06uIpS1+IN2hysHzyYwhm746ShMVqqhcTOYN2JReelkBtfR9AakZFOhZIgeeZmxTjv//TR1lt3747GtW2TM3NwEKVohvlf6qZew0P+qgGslmLdMXo/7IIEj1oIjeaU2uOiBuuKJghcV5LwqX5AR6ydWCkciGbFe5mfV/GUea4dBq8V1eXD5ZpmRluDHATRQQUHh8PDg9L+hdPEYZoi58ni8ScolPi9Bx6I6BB7v3c2WLi0corm3+0lkv/jU7R1CTfeOc5Zz7TpwzAAlGKkYvRtGiju02YW1GjJDLppj67iVm8XbmK6ERvDaPNdV3qAucV4194w3Onvi20Wxzi7ewOgLMvw5N+f31teBjfgRMOka9aB9yIupiEV9Xc/YptpJqFBEN8lGkcQkQNgwN1GEDJBD/OzQN2v6uBbcHSXdbAglPyXYJvXvDga7/S0r74nyeTd0Bg3QoZMPS1ihl86s4I40gTPAVF6ALF1EelZyLxeAgJHmF1EyZMaBiurtRh4pCrveB/j1zr4UD5P3VNYTgPT1HrK7jdnB8X4SHAe8/vcF+pQbKu5tBXdh57LcxoCAnSWROSdwPXeTF4QmawqaSRc66FWzOMycimeDylQ0KCAXabEqlWNM0WNJtYmrmyVeX1/TnnJM5Q03iGvTf/vBKrm6b+utpNUw3Vq4V/37AoOPsVkYhZSFzQq6EHHAYeEtK8Q4uRNlDV1hSvBgESbp8AAQAASURBVMgcsrlbv/rtNb/VrEu4NKeI+vWk3OnEn04JQ18RMJaVsPRWrqM66usvuI1GokRzOxjjutH8yriMLcAzC9gAkMcVjUzORwpFRRHNEIoIHZ+fGHrfSli1vN+2MW2Q+Gzh6+5+yX7HFxc2m3y544QRPLJkA1A25y7jLc3EwrVN1TY9/aVgsUW2limtbiz/fCpe9iT5kCYx7W40rv2//PzZ3CU8gVBjCWpWYIGUtAApimCUb32NcGzDyMowGex0FykKlrnqa9KeetcjVRejl239pw+On7J1kWMO9nIN2Tk7DW4795dHtWSDD8sNP59drX9hXB3bs24ksMVJF2x+bDYceBCRYjX2EeFugmbV9j7luXgkGXpjTd/RDxNLxbZJP4XC/9valQu1IZEFVFY4Ldkd6fR8aNdOl6K2PF1Df4cKgZpvAqE6C5VwQnr5gQVkw0DJRvqC6o8c963sTRwjBN7sf+kKm/vr716/5sRcSs9YWxq/MJ1LPZdy5MwBMrK2QWfDzefjC2MJ3rztnCHKTAUUmqJQv6+y9U8uLo1MWAiNFm0wwGiNb9Os0tfJEkpxYuz8hHstWsAjRntgspKL44hSqAAqkyB+o54FIxyMiETr+4f9cpe/2LtcgfLXBb2WN4pCzQFqEKhRMJDFmGvMYbqDgfuy5BjgdFOMM5+xgolRcjtrYPKYjcx0S5wJlXNhFVgIZG3h9MQht4ZpEPH1NMeXJZBDmfbC38aW3ksgfZl/4+LOjuKpA+/MOkD4IAbEqgrN5EQuC51NlKugeXHkFv3VpXS40qMQF+AbgBlPeoDlCRWa69fLly+loTg8j6PJ0UM0XVNMnwWY9RlKsZvecRysOLV+tIQcKBt7YwDhOnfRIT4Rh1K2qsSyPvtwZaoXwgKZujWyZZ4xUVQBgHmQOiNXALzyAv3G6ny4BVEUgBMGSeYUfHox02n4dF/eGsQuby7fC7QsL1tAv/q0QlpEek5+/PCv/tXfHexLjnqSgVNKmkkWIxBLDu+ejs8uDw/3Lb/h5kL//+p/8fs///X46uLy4+np/fMjF5/CsOLw4expd2f3++/fGXweGvPcPzl3j44+ubw5v7y5+nzyznLaly8vOdPX50bg+0db3/3w6v726vz89vz0Wvz9xeHR+x9/3j90OLJjhjfeH58evdo9O7G38SWj+GVnWc4i2Tn1/sXdvqMZ7Bd8tI9isLEhdLq6ZJWNzViNXq6uL0/OLo4OD+Fww2nEq5vWNprMwmqUAwaA/yMN7e5++vxRyPXVwd43bw6Q7/Fxy3ieBNn1k/b5sqFrd482aryzz8/jzeMVPFv8DO14uHGxnzJ/MuT4MsU76lEWFDRyJSHN+quyD9n4SJ25pQxZKheEEekxEOISBIKB5wkSrVDYr6wYTWkrbkpkxu80MlwoXnCmdH1wHcqPAzHqFROl/XBT3Dv62TXewn3DctUEiqbz/ARXMPTaOKHzNbZnnXoLL5fjnqXyaXgwCt8cSKvher05Gffrfl4L/gdYtrCXxo32ykhHxbXsj8bm2uta6D4W7a1RRr4Dnv8PJz0LlDGu3svL9S6xzsnuqU+VZlvc746m4WW+6XUeap3ujg0cfv586jwW3vkoKytHxqmta0380jEwzLLQ8K6RYuDLTKOyRoz+punEHLgLYIIh0BveB0D/BubxoiKfxgNxoJ1OYhsMYBL/zTvprtvy64xA7D6BQxvfxhiRKyjaaM7E8hKn36YXJ6fHgZqH2iumv2wU+vx4yxvgBNwwS6tryoeP0t9LVhQF5BPrMm0PZ5AJlgDGO9y0ib9oBYagKj8Ed7FNDgrge7DkvurVgmiu6kXfwAdXqvS1VxrONm0+JCpopfoCkK0TK1NOOIN+rPVYRUWBAE2L2l0TBLiaunN5QyM85DeE0nDaT+97ONW4nKEc8rUmO8uggp4yE/m1DXuGzXNnQ2WsOESreZUGh9uYT9WLjrigWD0kgnX3q1zkjILH/SooTJOfHmw1V3DKBfUZ5wzZQlQsUXMNHVWk3OIdbUVcJXP9gYGpCJTqZ+A0QNZ9JqCOs/gqAT8HBqiaDdbFB0H//8UNa9UvYI9acF3RkUHkjgV8r6tfMe9xiPFdsaD0sgaa7VG+0ywqXh8Voitg8mvr3snWjQuhQ73fHb9GlnVtRsEDbXfEB5dstk5h4RnYK1DHnVC3pDZqXPy3AUzLJGb20lbtKpt9DgJ6xB1LEnxoxG6LjmhFbW4mmG71Sqh3zSBGhYEzYFIjCcBXbhmSpC2nwz3tKuiCVhIqMJJo5ABFFXjOJKk5XwXcbe/2lStiNkdAuuV/ObrN6iOhT3iBkzZ37jo8RbI4QD1qUzVYosC43IPqBBxy4YLLYBmACbnLs1vmSVT35f4eBpRWC2livH4fvtpz6Adpe2gHwuf9va3Tk0vThkZhZFBsPFGKiQoswbGtd7Aqyxi1npTfEeR6/+GYCeTZB28KHYzxTeiJ82OCRLQeTj/Dh/cXj+pZSrmODFvjVFIRKnVUIfSIBrHvh88XtjczG2qmUoFdx2itrn50EM/9neV2O6sylh5PGd7Q93B0SD863PDu6M2O6XQROougb64K+TesLBjfanLx14jx9EVmsBXN4o7XVxfcaCafAtzb2bUm+pt3L7l/vP+fT072dy2ubWWnlbWpSKODNk/IR0iSV9fNsfJXpos52bEBXizUL/jnZDG5Q3ociF7iMesnOZfvT2khvZTd67tOZy/fRMb/2g4/r06XvNToLQMjG8eGPFSzYMz6pgngx+u7txIzLDUuq/vO0TCrW44xEuwRrkIYbZX71KqpBreFsw0SDEQSWeFeQazl9iGxMrrNPoEIPlFD+z9EzmdeUgzpZSrLwKWeIopLgaKU4AwuOi5+KJuzkinWVkN5rqSNe0t0QRyjHTp7kU6TTC22Ohlu1+P0FKMSs8GSzn51kTECroARbI3765ePFgID133daMLWT9DVfFg7HiWQJF7w1keXW9SyxRsTQ03RwyfxAyEaarRgfIOTArF6ZDEBMye7iseDXkLyfGIl2Ztc5jg9BQhQhaFIDQaiPtaiQHmmnpyvbcpoWiRrgltVhlcg5gRbbUefGRCxcwLOksQMBa+uL2bxUNvA0we6RqR0Izmc/dQb10cJrZL+RNMjTGi5SL7GZK7AiYgy1jY/A0lltc0HoFEtYIHMUBW20w4kqCW9Tqd1EFFxFLNQjdkYIbO7ZrHtdNvYeP3Fdy/+5b/6LbiPjiw6X/p4fLLTWprt22tbiVmr8GwwjK0c8fVlaffm/umf/+DkrrPd3a39/W2L71+92H+4vv93f/jnf/F3vzOuuD2/koxnsOTIoL9+OLu8vvr55+O3rw8U3t3fkZH/55/++ublK7F8awvgfGv35YeT99YJvHq5d/zX49/9+jva4OPn89ufzn78eLK7eQUvtr364dtvudR249FNS/f3N+131o63aOFArtbUNKO8sru7acbs6uJ2d3vjpVXzO1vXZ5Yc2CdAuk7OkuDsqzcH7dT7RV7T9ePdteUtv/nhrYHw1fOqTCdTi1TAxckVN0riiNj/sCUjiTjoTOasw28JSEmE+dBLMkL6m9+OwxOpxol8RDVJnzMVO3uJFNfHmumRpBEb5NwUQfB+NjKeniiyAvgqfyGuUG9yMa8Dg0UhCT1MXLQV7bPXwMthdctLw8ZxcwdfNA9pxf90JAXuwitZLeBi7DGZLtVEBiqmgBZydNoy31fi72kS6HVtg3vUCNnBrlPZ13TYOfdlqlBaPTlPvnY97ymclzOP0iSuu4V1aRhCkdz1w+lJYmqw5/XXj7918Ou9xS2P4/nFtHvvqj8h0kSV+97/fAJNVH8ew/KfP55tbiz/7Q/fiSKtbORDKFEol4vxZLf7B1Ic2EEiOlKPcIARIqVFDFU5HkNag/IhsNBnpz4g5TANqFnuPNH8J8JLy4COytEKLNvTbYFt1Tu/+tCSPPK4tXtzfZEmaoPmGwpNQ5b5Enm5pkAELdNjqpn3IbbN+lxe3FhuZNJA+qWRrYVnVg3jFn2QTcotFzOyjhKGp+tgsXAOH0bNhh/jeWhuOltqMjYP5tBoSz2RqExA5APKoFT1+q4L7i4corC6eH+85Jg7fk5/uaK7VapOF8NjaSYtqt/NOIpSH59hqgnXkbEWF8w5ojFsUtF0bl4ReiBNFBoW9ZdAdTdaxUoLozACkpNblz2LH8JqTJJ3+DWFAWFDiBrncDT9iojjPmpTjRnWgFpcqEU19f9rlSSO9l5YqJLjR9wUz4udfKqQGEprEXiAqQ53BrtzAZ7FvzrQJwQv2kDLKgu9wQCK7pObuuNfiOmtCqQJPV7c8Yf3orMufLSo3oUD6nruELqqAFsARZD6Xj3cvMUL4O1iUJ3w9qPYEDER08eBgflv/KwqN0fixjqhy5BFe/YzF0m4v7sWoUQHaOdHbdsCkTtQdlY4V7vijCkLziVD8tionaOgbkV2bkReoHrAqqeUVR/v9gvpkdL9qIOrfkFagANUb1x1WYt6qgWC4c3hpQFDzdrw4ewVo/RIrO+LaBtTaiZ/CD/PR9vEU42CuAnNhiiPZHUa4GmVlH+j+hzMxRAFeMWLvOeipo0/Z1m5q5wossEro4XSIW3nhQPs7pN021BuXdRXhHb58s4G2tbn5bUe7W3x/u0Iv7Eqef6LbayFikToLi9uz06vDGT2d2DFzjaWs+qTHTW23xx2Juzni4uXL44AVvbsPb/X8Kb9T9kh2AFfwjw4H3zD2rAyiIHYNdxB1vh2X8VSn7IoCSRERv7UTWy0EEv4xCvn13eONVaJ4cuLF3t26z8/MwnRxOHB+o5KO7zk9k6kVdADluTLv96z7ZGESJHgLKtoHLkLfRCeVgJKNpXRly+FMxtNUsyFNHk1m6cX54Zb1kefX11yqowH7Jhj7dT1nY3zV9uhIFYQ2zZTTGyEEm9hzMuYDyoox2GL+mZTTnIiPs1H1NmLq2uZCbbuMePPNbThDzCa/pUmsLJ+T/DbH9MaRCBi1iU7BsIK4WwcW8LM087WppRm0RJHou6s79gMFZ/xlERSBSUL/8Tndtvc5acQm52DTQsnODac7zSNZamGqq3FWTUSMgy0KyirsKr+ZvnThPJG+JCOT6LBJTmMQkl9BtIoJIAt1Gic60WuZ2mvnNX2cCa9+TSYm+jn3Bcnc3+EibpYZpjaP6nVNhzPdISHYawoWvbPo27ghrhigcxYrNFU9xIFgCIm/k8bCaGvb/LwMBJB9Y4HipEjMAMSJMkyNXf72JzO1vb11XX+SjaO5KSMps6c4IQ332siPaqLIVPGTdpYM9Q62tHRk1MU7LOSAXyPt5NyIyVxTsLUMt8ZRehMbiiGQcf6mLQXDMZsNLx0O7wBYzjTSlnUF7/nTCU2WSBilVlka/gHVIRtIo3ZIJ5wYhupYsq49lsdUORCgIlaHMjBWi0ob+GP8Sj3I/wW+nW40Ey80pIN2pI+YTypZL6aPzvYlYj/+O6bI+dq69HphwsTZaenJ0srjxz6vY2t9x/PjbeFyMnF+c8fEUiil2D6yeWtA8Zj3+Wn3b2N779/c3V8vra18r//3/ynUvz5z+Lu8mr4+zM5ZAPbx9eH+xjp1YtD0xX2y9qRKrS1i9n+9KefDTmM0O4fbn77u7eWTX/zvVeXPjip98G4+trBFCw2H+bVy1fD+V+kP+ClPdkS5uLENyQs2glhZ9Xo6ub68fz8DtYc3/H27QuJOVL4ZWTt7x+eSJs4u+SgW8RLxaTSntpZ4uT88nHJgXXb6C9w8OHPP8WrxmX3jwcHO5J2BBekTGC5fTuD7lt9dYbf5AE1Hm3e8cHeauiONC21lPlXOLBgRdY2TcGfb8jtvPDEAI9mnbIqKOwLC5cGKBwwYzasaWxL7B7bVZY69trIF5oOYUffNlpehDMXCnaG1tWfcGTtXKfBtMRDdPr1JIN6y/3pYCY+YfRHtbqEg/JLtIVNKuTahbsLceiWovQEfeF/PctofZW+ujXOFM7TQc+mZlX4MoWr1GuZ0jF4daYmYl4119Birj70D2wzMzGtVpti4CRE09T4Fs3I0636y+yEcNUtelGN/fSwy0XTBCGdA7IZGGOC1fW/HF+/e/20Lp3e+xPoTVV6VC6yLMfqnp56MbuA0B7RIf7CEcHM70FH3sAEj3FOKCo6mJdP/fiqWNL6FajgUqsg52g8em+VdXv5+sXuweGED+zvJxQpWGGAQOlFRxKKGnaxo+tkBLV6nmt//0AAlzkVW3Th/cXV5fk1C+NYjyhL/0CThT/FSQRQBBAzM5EM84hQ0uu+RGrKAcggYq1ymGAxFI49sZ2dCWCnMS54piAltHovdnKtXk5CihqYwwXTT/V4Nsoq16pPBOmT4QhFM9ijivMrQNqEOhHSchLUxFWsBDgNqd/rgM8sSHaiwqdRlUQ237wWnWuiYvmSgaTiqgFMTCWsns36yri8ydipT/UDY0RGiwJS0X3ezLmZvgwbwE09ji2mGq9MuxWth8Gr14FSUTX7nsBnFNxlBlIT46q6ORDCg/bZskUzGSwlo0VM30clfk89MxehP36aKlzMyPG+BjN1GQZmnwkUAmZB2IrC65AlIQmgqMgc59SqHP7VHhU8W5Rzv/Du6JnaHimbV9Sw+HixysepW0hEXchVxcX+Ri+/qo+NmhEPrpaDJm4O2VYzXV83RqLo7FmSlkNcUWeOGi8sb7YpI1FW3hz8iXaDEG3V9wtLAD5iLmAe0viq6VwCf6gaLo/+x88AGvVF0RjBD1a8OgSKwtPtScft7vA/PKlEtWiX1Bu6WBXXUs+MThiLYWZYXXZFrLhgsxqKROn4KskxTWrYZ+3o6fBg7lC0bpAScRcAw6qP2ppNaSqoPiOkp1xBO89DLsPjUA5W+vLynMKWCb/jaAWpCtvbIsW2/rFJxsEruS1OV9gQhHqya/eznamdYm4PUWveypOHdkaUfmfTrR61IxAv9vjjCai27ePBZWY7tAq2MFLUdbTYfFncCWkJedwZR43fjLmmM/XK/yQkRonz+qRx/PInDOFfs+3tabW2wr9/TQO2/fDylmwYY6XlNcd4ilait5Rrc0P01qvXhxd8Zdv8PTy6gzCY3+af3KfnZ6sPyzTmVMkOJ4Enp+KUFJiTvL58Oj0bhNpftJNunfFFe+CzDhRrRG4xwJY9ExARQgM31eFvREJI6pLKFTt27q9+FGlLXZbIISjMzzCsw2iEyoAFCkgnVG7ter4ik6eMoAIeXuGnPmy1B52Rg31FxWwkZoVDB+0KZ4otYZuDHccEL3OnQGHpyQ0NPwCpE6PhQoIEHfcX2aj8YFiQYjBsiRImf/mfm2vbQ40i61QAxtIluwwZCUK4EZfgDgDABmNAh15jHlDhOW6N4i5IKw8NAmuoed6UhG5OfnzUhPcUWBlEz6yFDYF4tO6hsC5H5iH5MFLKTlFMvWAMFFE2RFN6jRBA4nlCQlkXPzeKozSzGBkJDwmMvtEOA1G2HM8A2VeHiaCX9/Ue5FBvhLO1sTnyTPPDQ/oauhoOwZ6Y8OyvVy7XswGSgU1sqmuYxpRLp28SO+gKYA11jPGWzXabB5gVeORqu4X5jLF/mJYoQJQaOBC5gEJtMyqW3hOK2vgbqMUI4VF3kYavgElMUCmp+cxDWgFu4yiFRwV4gk8ZtlYFABMu3OlDoyEiXBm1G7Ia/hF1gp39c++L050j4t2t06wcH+FYiZdvDv/4D3968/bF0e4er92OWFb3vnh3dPz+XIrOt6/end9drW4JvT/L87HM/e3Ra0MRdeipMzT+7vffIs3N1ZWti47/+gmiDl6pdmPvzbae7e9KpIlf+SOHh7bj31p/LRXh/vj8wvYFJOXVm1dXty1MtMDg4e7WmP/w1e7y7Zer83uzOR8vbs7un4hnFtSSHOf7bm8Rx5Pjk62dHR2hGAwJkQ9K5Uwb330+lsN4T82Z7sR5siG5UMuP5v0kLBGfJymGSSbvfOnJUJ/sfP58CrVHRy8N7BkcQ+jra8cXLC3cnbPzc+Zre3f9/PTs5dELoRe4tyYYXYgMBD/cXwIPAcwM4smcdaN78znFSke3FfJBMkRqBmfE37qcTAsw/EPAchLUOGNa9JpxYC4N/kHVwvzop+GFd5X4f1We+jiET7ZmMBszUMAcozyrYeIRlqQPANMI0qWD45f5jaMz62OrkslxMnAazvRIHfEXKKs3Dkzs0SxvJu1Y+SCab9NREqIe7eZONpxYFFCRTyVV1s+0H1DB0dNAXwRrB4Y6pVoF5gfZ6tG415Mp0Iupg5kK46b4TqCrv6pSpD6u1aEjae9FIuAAoO5UQ66O19YYg3/6+dPe4a7tNec+3TUemLbrfb1OHlWsnpRAEoWG0/2v8y3hMKBzzsKqr1wfzSE4bUNdGzyIlWT4h3AqHMbmEATGF9re9rLG5ual0ktUiVVw4FhfbQ6ZMNlRDQuxXDfX1452iUk6eIQoRxjJP07Qo9bN6OUs0BFsIQ1+JwojNiEtiC/VKezRi9k1Xho21DaVW1/DVQ7xcGZg1hF9h+YpEH4HGwpn+/IF290lDV9flTct2WJNJGjogVXyYFKGNCfkCEepE2bq9fBGbtwoMZXEA8MzQ5jKa129XqGcMYIhgdp8B2H85wcSFl4mIcAFed64Tv9/kY6c0QUzAx+L8QVzSBoEzBgEOHEBkkZtD4dMyaZPtAaXlsHsV/Co3TP/sJTXSMFwhUeZJT3Iz4eO4d3hNI8gJ0maYVZOYl3tZvXDtBo4mdnB3pryiIO1En+Pai+Z0TvF4ufpZh0ll2AKnnHQB07tTJcD9OvHrbgxsGtA04gPzz59D9ykpj5gWZiqxfpPIjKzbCpABkGgraTnqgy2vgVPo7ioFfIrXJthacEzYV+jRMPAzhO/GxiPwXeW+p3jVxhf7/snzXQBqNbhn12dUG/Bu1igHKrxH7B1ffEv9kvowOJa6+m07GYP8EaNFvvwFdb80rGFovBW6NPZ5Dq6+Flo4AUSqlFHFCIgE5GZ/hqK579VYz30v+JVVoMLpIKj7k+z2p1Zph4pZvhBwU5TaaJwTjkM5zdYGY+qtF7YVkWgorTdfu8fLvnla8vFyZcYmucr6dm7YsEWUQoW0NxLprz5PswkFSAMenS4t7y9yew2tFlZerV/aAg8xKhd4Z71rY2//PT+8HB3xxFbF9cyYI+2d8p/paOEOIeJ6lKAA1OnBtfTxyQtfQFpUw4WIgMEL5gsuRqEzttpTJ9FJWG90pSI/fWoSNrq6GCbJ4JaJvGPP52t2+A8XJUhDfni88Da3N04u7ZusFC9wDyvV6aCPUBbCRgwPEMIlHzc6bYU6quXLziv/JsiqcaVcYP8+00LHaTKc9f42UYIx59P4/fl1grbIgmmOvVWJuUmz17MHh44b9XfQDrgn/d2t2mRMg9Mrk2AB5qadJhZKmwAwrXNUnR0PGe88V+bW9WbVqEhK4+9UDrYbGl66xBhzuj61tmlbJOnva3tPIRZ9scbbiNoapf+sEhXR8yCUbdJIzSyMcYVWQ7fBPg5nJKWg4FaDH0JloTsuJ9mrpZIBkB2ousS0LmnNJDx97gny3lCOsr46K+QDCEPD15Le3xVTxNXSGl6KV/diHHB2YVZyG4+uup6IJ98YvYkwghHv6BCW2DCUp7inFQbeSb3X/cdav1ZJLNm+vHBsJVIwLG4GNUx2lBoE1GMwk3FZHu4hvriTDQ9LW/HRo0i8QZYjsK5vtGybTGoEX0pMNSOijcqJQkaanqnEQ4du/Ti8MWNo3Nsm2qldbl9Lf2lGNIXrEeZgs4ouVMD5kFBszHD2jZ86bxkXOQ8B3wEM004WE0orzFVUcxmoVhZ4DLWE+9CUygEZZzd5uujgPEVjEQdfOtulHdzMr/HVAjXNT6PkkPhLlHcy5OCu7ezo0EDGLy6K4D9cl8+0t6clre3ufXPf/znX/3Na3uESWXiFHy6utuWEHRw+/0Pr16bv7q1JOdu/2h36f7x+vJmZ3/v/MbetrdP9sZ9fPjuzavtGXRZ124y9OiV5AWcv3R2fGXOSUjSCntRiJOzs939A8NBG/JefL6AO/F4A/2WCvx88v23L42Ijb9R1b7ERvI49+r2+fzzZx2xqOP1ywOn4DnN1DiKR6SnRy+ObLpPiAzxP5+cLrSSQeyO2IUt0s9uc9N5C6MIRTsoOoM46V6pC+uaGSqBJfy8vCLzBy2MHyKqKb4LQwIrbaxGy3GBNCxqGoHf8vLlC0NBu6dhg+tblinKS8tfs9yjUR/O0yfqe/XJNGE5IUkKJkRShEFuACMkFzR3B//88j9dOjkkMf+ouMwnxZtdUXeAjSLF3alRLOHt3oIgcMdNdEvBMHcyEAWKBoCiUwEaJBqkjZUd9sNR2DtTzQLjzkL+acWFTiBo4lH4c/HWWPQMmI4AqF+puF9ElaEa5kvhfrW43qusEUD6ZT59q8IBaJ5mTYGUk5MDpO2FPR4wAsV7YAsHyWJYyrLCVdqyt3yl+kBeN0lQmnmCU4smRwr0RSuwra+VCjnB0AvNuwz75Fp++fHjsVHq7377Haw18yKbcZAFNlM3oFVJAIwi0hdyKMcvnxDa8X02hfNXR2DVwFe74NHOoIfGAEo+8URtmlj2hpfZEgTQpo5ubazu7G6awUMbu3/e4M/nLxibYbctnpGnJS6UQOxRzMghP7n+vp6fXnokVQlryAIS9j85uaKC8L/Axf2jpef2a8AINvq7W7CK4QTwMi31iz6sSEGr3LFmG+oXdZSmIiOkSh4UBsm300sGrGAtVhmFiTvySjOP0TTyKZXqihlIQUYkz5K9GcpPlwdVS2a+w1JumTRV5ZQc53WBuXEV1QeifFAn2ORT4uv+ae8X32Oeh/tCLfAJjOGryupC/NvdhjeYId5snjYuqrpMuwKxNyrmBIzW9S7Ll6+Uhcpd6zOUdbvu6A2L0OsR1+CK2l601ZMcX2ionLa8zxL1AibTmxGm0A+GGADqqkwfemE4KpdUJQ1g4F5kRxZ80aQankHvQnzqYAIS8qs5CW3iF/mGaCDUuT61Quobac/XNAy2HYR7EKzTNiTMt24sBr1Tm2eJUoUmhj2+h0bDHjNn4xBE54FC6KIaj9xKC0VC19Qp2PRLFYMH+RPX25u7ddpY0VKTdjgUs7f79AMrjW8ZQYNZDSzYIEmKlF8VI3h0N10RZeK3BTzdbqYx2fRJDbozcA3SXA2cCgVe36KVl3pxUdKtQduigzwEbpWMj8Xsrj7oFVtTYhWFUPXQVcfrKy4KxUPwQFJtWj0zwCsbEcuBSUtXuKqilwoit7q9vugRFzDTT800lrKWU7K+jQH4Npx+tHxxsM9+8mYhRjXf2G/D1ji2pnz64pBKxVhLHohqIc0QlTtn/xgaQWQcgq4vr7fGNT2X/3J7JrXe0ILPY7GgtBHWLfcL9IvOgBVURgWMBHzhSoBCig/FsZCKWDWcay8EdmloWKisfqohfKSA8WEF6EQJL7Y++3h5dXl1d/z0+Npc++aqVEiMeoOfjBB2tmYx7uPhwQ5Ta18gLAACawXoUHFJHEPx8nw4Au5TwdixnfULFXAKNy28ffHigBNpo//SKE08fHmyt7fahIClF6vf1oQc9tMr+yvNclgTVc8S6E1HYCOeKDIT8oYZrtG0bhgfi/cLe1gwYKJdgv7l9eOXB6cMPDlJjJ5dXt3f220y9+rZmaHQonW5SCnSgrVN8m5b/iXAaXYJ3exT5MheRHP4S4WaIcEBPvhTJpicaSDJ3dF2GrBZBYxHMWoEQeNE5CCpXk6bpnLpSk6wEGajTPfiR9qw8FJ7zOe7+CJvdzh+yBRKhz3bwIEzhJMEwhdsgOG9X1u4dxp3P96YpsnisHJRQG2rfCFdeGTUO6ygVJ4rroi7httJOYwyNr0rrpGxiOP9KypvXxon8vK87mdboQClTFIbjRDmrACtzxTNl9ksL3foK1RLq1f8UnKVZhx2bnMeVtWEz/r+/o65MNOMTQolvAZsOHz1/OTc6Mx3W8WmB/WzaQE7qDpsYctAC9hOcQOIcWSXowXgtjBGcyaN1kqbn0Om9Y5zqViDeNltDTZKpipkRIy0114uDUtEl8vaReyMRBw2GqWujh6heUMO5KvBY1Cl0O3BaRdXpGxL1uXDF3ty3D/95TP0WdT7zXdv5vy2J8EA6uQaOm4fv/nhe0N/IyUThhLgfvPdGweFHB1siaJ/FP2+utzd3t9dWX+Q6ri/c3J9IUfwYOeA07G2/OCkIsIgz4rO4Ex8/HT24sXmlpTFrZVdRxJeXh6Lx5vTcG915/M52Xo+u2zfq9/++q2OOXCa/80/sq35hw+nDzh55YELI2RvfyHjd4OUrc3dlK2NC2zmtbkmqUxfjHfblTNPo/Ez0rfOx6GnBgpNaDaQKwgqnXt7zdjzwiZgq6vWALT/4fIXWpNoG9+h4PuHU9aFHpNlVFomhNLIMqAuxEBuTZNYu/vF7qdOWb95PD216bJRGG3XwgGOXtGBElYQ0KgeI5cM1IqqTi5GKa5MYovzc7kqirupSnyRvzUDyS/lJS59mfXllYzGDfeSzWFdZWMDXg4Ryba0u+k6fvMUuDFkofrsynCLVpPIUUzVQcRcF4UdX6Q6W7RX2ExlvTMFCLgv1eO7z+IhhFVDlfvtcppwUbXzmacxIAWf7HsC4KmnMvPif+DheX1AVQD0I+ZEbdFkDfjMK2oKbB9yUPXqXZjPQOtpmm3AS0zGfYGiBYSVriMLeR0wp4ZFn6oHQvKgJiA3w++idysbf/50/PLl/std50t6mQ7D4DUWr+VVZLm0EkXyd+omsADgoxkmtvS90VdhYAAfmgZ0NfUsR8T7rhYug4g+vYuvtrfXXr6wFp0BMmN555z4lNjSkhMvzs1E2Rrc4nVr2+5lvdKZVGMjLoEn1Rr86v31tRxa7GWuH2fCC8FdJ9v0lUw6FkqzuNx5YgAA+3SnMwGr0K28B33Ew/XaNV7PmZa5SvU3+bBCjDEP9Ao2fe03AqZUmcUCT1Df0MJunog/k0ixHxJPc9GFlYpeyUjEhZswpaNAMG8b5RXDkOoMZb4Nb1dH4qE1ZXn5dSFyjOfuQsls4KJYkAznx5Z9oK5X9SuXWlBtnBNtM6mZBN0oQpyXgr5Eutob/4AOGwArVy2W03iADJKCR7MZsaoo0OOZt6CTRq+S8VK82FhWw4EQ8GpJDAcqkNXtr3IKwjpYWWYabBGr7rgDPFVqqm++13rghZaaci+QtKIc3eHW4qvKqh+GeyGQo/h0BbA1jvATjAs+P03uGW7pTv6oH9ZNsUW7mqEIyQXiqF8nVK4yxUIw5954XG0L4HOSMsV5jIE5zkndE1nCyAX+NMiGmeASzBaVRTSVWG4MbQys3/h2xC7lGI3YiYBG/V84ZrDhLbCCKt8ydnZAJ7LqawAPpy0ww2sK8oAY2KJsVadZKt2n9xGoPlZnuB5fN/IyO1iHIRosjjoKtwvsxg0YJ1I12onKHgVJ3Vcs77+rPuBXby9Co+6Mpq8m4tPwXkXFfWKjCMY9lEuMu2RZ39+dXl5KCz/YsU+MZXH3guZcLYbs5PrKPhzG83tbmwgiPzxrurPJaRSqsp52S77C04PjAj+dXxg68QE1eXZ5Dgc8T/nAhcxs9bG0ZIOEEo6hNSLpkd/hbVgw0iK8RwUm4UxPwqHPoF83dbt7HZMxNdTxBLU6eqEfqBXOvV+F1hXhvV9998aOlrTuviV+z840cZ5RRzu16Cn/aeX87PLly4PPl5fCF6XuPOFFecnL9gK3TAq7gAiCTG0IkDu3iHq1Bb60FMejEb1ff/vu588nvL3dza3Dg+3ra7lR9sd8tM0PDnBCkcWEG0tGCHlaDlKUf+aagqM6hkiBLx4iFcyiXuziNx/xKzs+2HPNIb7yNfPZbVuOuIZT0iGsGKUT2O+8eepyMTWMZztGl7iSh8dOp0LddhP/8nT3eH1jQXfeIY9figW+1vYzDS5pJQyGMUykAAMU04T4WNmgedAb1ySVAtj5RqkaxdwriWzkHwGAQJghFpURC4GEvUdRJvzqie/hVNbNBBpV4d0e0EXFdRr7pcvydZTM+4exmEVbxm9D9BLfMyfBDXWK58Cn5TBGTdMX8SfzmynKAgXhyK0OwEmWbI6ogJvJbgJ2VkSXRYjbSlVTz63TwC0a94rk+2Rn6Xlna/a4ld8vPTd0YaTECn8a9bB1saSv2b+UjwOkSan0cu64ARvSdDSbALWh5KbsMn3VQSbfTnxjwpfapkkHEdfrZo3Q1M5LIvzWXQ5dBjn2m7drPR5ovFXEAydg1SamhMrKdDTcgqVAMm2lmySLxoENl9qsfvuWz9oy3YwI7j7XL31uAcDq8v7uptSXs/fnUvyd5CUE7kdrQL84ObWm/Ve//f7q6unk5OKnf/inH753oq/h9trm4fb2XvnuMu4+np3ah+TVwcb26jo3xE4pn8/P37141dqB5S/nVw8XJ5c/fP+N7l9cntqB/+DFjveuLq6NgI9PJdXfHBwcHX/+aFrg7rMjv663t1deHO0fGV6srpydXiAT9fXxmEbCwNGgGMbFnYkv2QaHB2u2PzTO4gM5E1CB5euGdpzryzPLf0k6kWGvV80u4TY5cl7nid8/P1jzgIVZcgrc6zZ5JP6o4jdmY5WJoZNENrfuD18dXFycx8LI6USCzXULbz6dXDgHe1dy3vqG+UNSI8FQGPXm4ZkkG46IICAFLw2HppBodrK01JbJ+CajP8X43Gl2ui5jYKm9yK4QQXN+Yq0L24xP9HykpBHFWJdcTGzsPsomTTN6B6FbGqt8/c6DT4Cxoe85cDP/lvOR5xR/LuKUY9eBVLupaK5PHlhmZhF6TyMkp7DqrcbqyR+GpVsSihR+n8rU06YLmgPUuIY0BwAqo5Kpg69i67n6FwC6UCYxZ+WbuK9GXyvQTcjLtTI9XTujbUCUDkkiv7a7uO/3wgB5hB3YyPQMJ3q9jXoWfVRV9jUnTvFxTXJiUpI9mmu/VYRWNatjQFpeErf5H/7Hv/zLv/3d0aFtkw0K0DAggcpk6wGkhWdDgrpS6kV8Fv5CaZjQtyAvM9MTsW2P3AmrE6vWkvGfSgxKiXB6gKbNvNjSZ+fg5V4OVVEYGt5sZxF6I3FvYX4qTjSfe31wcKiZbASZt5uwybHmQnIV9BbHXp6d7ezZnFe4n27RAzmly/cCabRHealBrEZDxzAExEQJ9cOKwu5M2qTyeZBYWJQEvysYC0XKUKu4O/7DatZh3FDQqxmVqSkv1ZhnxYZnFelcx59x7jxTgX+w+HWUm36Loznf0dGz2KOm887GnfDFv8BcwDu2CTy0xHjbgPTeYmCsjOsoOF2uhmYAiG4vIxqvIq4edg0iDbIKi04VTWtsEDNNc55XQCsZnUIwvvYvfggAHDFFjAabQULGhTx2nas3n6oHTa3HkzOYqzNzc9GE3FS8jW2Sml5L9IaSfZnBxIjtL5kwoFlUviiPQPkCC5QWHS/FABfpp7sqUBjO/da6Zr2l3eR91NGiqoiiQOW1nBpScpAc+RYodZGA6LhSQwFxDbwIM5S1R6R4GlKmm/ql59h1QVXCdF1+mi3WyjksphZkHatabh+ea1OuBZyL/gJBBYXnhuGJ5IRFFjyi4NfO6eAADygXg5zeW8Rr6nFOyxA2PIRhykYxJJqxB3wopEx8N+UrM+f/wEEcTuAVChO0dAKMb2MAj0cj6KtPWmF4jwzUTDu+8P4L2EHEwtBXReyXcoYzzUQF7XMcZhAFb6pduLULFScv+/b6bnOR08vQSDnwWrz0vL2z8/H9MZ1QcnGB7zU+pL6wyLBpx0I7cHCMrYYz37JlB9C1VXOHDagcyLOyIQPfjIYZdQ3Ze2Bv39K4rUlL0rHhmwVqRjtDxKzLwcHD9xWAwNEvrkPQXOtGhKifsDh4TrZhiwzAybOQ2ocP1yefr2Uq8si35TWtb388Pr+5l54ukeB+T7coti0nfe44b2hnZ+vStj63t+n9BMM8XdOIFN7Bzq4QiC3wxfLNeco0cKiKRYQ//fhwYJMfw6a7h4+fPp/dXO2qb2NLahlMce9AZh2waZGlL1cinGIweIs7h9XYULwpwUDvhB71xFgCRa+u7OeT4yJxinQZa+D+9pH0QlNWNhstF4XLAJtIYn8V5Mc9jHqmg6L5JRjAv/9i/LOxdnJ1ae8UBC+3vuMFChHmutiLCa6MHzY280TdAkm7qrVuYYgCtXFfCE3M84ljpq94TwwS5AkNgSG97A7O51yORh4lhlXUkMUCM2KOlWzH1q8KqBcpU0VMJCFrJdMffagYNE53p/aqzlt4Omdl+CLaa9Wd7GsYCjiweiU/TZ20h5XWhMEr7iZXDrhtG1N10tze2rWuFMOK1jeaWJyJ9oUlZP9qi2dpHhYWDClvrsUXdvYkiDNIbnjq1ZoUzXWubaMoKYVJY7616gwz64RpBXEsEsPXXjHdZNqt3XtopE7zYu+hzYK7u2ub2FRnwx7p50bMKX0NbSWBS08bm7jRjAwdp2HS5jRr2s2BnWYzpIyTgIUuAC8pgjYIIk1hk8PBxhdiyOFLVvBNNiNDyCMZv7UAsh6xN/xmG8JSRkcHO69e7pwen29tCHxb/s21cOL1nfQnE1WwAbmylT7+/EmPfv/77755+5pbr59i+Z8+nmxaGrxi7/+V9d2tk/OTv9rf537F0PrX331rdfX7k9P3F5/f7h8a4xiHQ6w1AI87G1t7+5xH+ub44vL4jMuy/Jef3x/YdWxn/U4m287a3pbMqweZ9++vTg2rbPZFqKl4WT/HjgQ2pJKkb0ZkadUJp5+Or4YKt7hW3zGhhuDGgD7OE4ls3iwFpyEcZZCmL5iDf7S9yy+0CD4auu1jWGIMZyd0fowsf6rDPPr60uPNpYSmezvjGJERq+OLq/cnZ4RJAl45eI5OFyy3voHtG8dIe6yaOUOS3rRv6QSTGSgvZfYJGMCKY9AJyqAUYOP4Z4eeYjM+yUTfY7tomkiO5qRfsA0OIVjp/hFbL0fyiuTQZ1cImJmHRiAwl+4FkuqpHff960+mQmW9iF9GVLu7qMSfZLfCni8+4ROy0gZuJxx5S5mfgadCITkD5LYySDG2TbuNlROoNEsGwlM/ABtQu+GjwiQKKZOnrz7T10f531XaOCdtM2qq0uFcJd7C54t2q3Zx5YW5UrCezLBHufoYMF7/apKAtWgcWEEwdOyv/+FN04v+RgvG/vPFzZ8+ftzf/1XYzgctIiBJj7Y3FdxQv7WndRIGRlprXgd9ZYkiSsXMYdbAdDZqDuoGD8X/ADEbLWBYQIS2OGVH9r9Ig+35ZE3eimet2LsDDGhID1Ac9ubGJjawEE2imUxjXdvnpyCqowO6ad+POi/Tsv3KWDQzvfeMh50khEJnFdU9DWb6TBNNdio9eIxP092RAGOhO2YIIaPQrbS3jZ5eu6s4g2gVUExZqIIHFofrwmCSdsph8rsADL4yxsAk/ocFDYY95cny6Opu4RyYnOca1uY4u8GkpgBkeoqPoBrszagyjV27sSKcq3lIgF5kT9pkUub1+hE39D+Grlh9nqoCo05oefEZSBAR1dzweigAoP/zqze1muGND7s51bIUYK16FnAwlhZPpGqYfYz3Yt16hOA6Wy/CGn51q+ZJRuI8GA6dyXDvL3qgrpqe/KUKj5iEnj7+/DKeaQzaB+J9iJsqlHUDqGrXFig0rYz6lYk7K/8VtkWV7oOl7gJgWN27X9GUd7HoNzGP3L5Uz/QCMCrSVXUjYGSN3PqSnycfJ0ha0gaOkt+4mDe3AthrTmRXys0W5LE3Q2UQmhq151s9/KUN1Y5qLV5WL9Ibw10azm6qJQ0aigzvvRXF6r4eoezXk7mG1sqSMr8HQ3UsHh1iq1lf9GZBZb/ZdIOXuuxLowVALboeI/kUZnI1gf9QPdpbHdqvnPK9WXRP1dE6WciuYeBA0PDgFowhTe9QEMTDjSqMbYQBijdlUOwozYrIdnFiFg48vbrcEntz82lJOrvB/6fjU56vGvLQ7DRzY8e6MmKkvLD2VvKtba/RORoxtX7/fLu/JQO9FIVLCQL2oRGKzj3+4mDgksmiTvyQvgY0aBdUiS9dRr1QkqyOOanLIbRHdXiMilIJz7B1jLsoA/HPT8fHZyhhMaQwqmh5c6lLy4dHduq8OrK7hxnGprGXb8/Oa9ca1uu7l7v7hOvs7OZhwyGl61ycl7vbBw7hKvbuxJ/7Fzvbgo4IgwYu4vICwKZAnw73HJm8LTLL0Te76SBSMQ/9MmPAG5CSVDy9qDDeqHMx+vQnP3iEp46vPO1u2HoS+N5on3hDW+gQqjeLQCk7bpSiNQkgkqRPHD6s0wJbe4zby0j3jSu2NjkTfMvmDUyr3TfVgD90WegZK8i8sD2EkRnlJ1nDSoZ0dO4uty/RZaLUlHebYYYJ59qWaARUiMIrdOKQJyO+YCyFUYtZwVU0kp7I23etp41KiQc5w7EzwCNioc47rOki4Odhy8MZ1wR+wQ0pnTATpyZ//hGRpDQBrfLRtYycEloxPpnBWyeO6XHsUzFrryfWZD+rews25MMUVgfM7v5ee7kKXyNIgXYBV27begn6TaeyiRLjTMzZ2am1nqa3zCX63ejWmoESfsreYYHGPAcp9DBPBmg63gAkLQyHlj7nPNFGdnqBOkjqn4TdVbG0W9fZF+Kg3rXlvY294/MzbnrRNQeabGy+fPHi/v7m6vJS3hpnl5ZFYlN1+mINg0l5YstJhCLhfz6lkF/nM+gkT6h1C4O+TiDi6hWNIzWWjHfgF2wbA/BETEEyYBNsAwmMevLqhaHuxsHO5s762uEP74wxPn6++evPH9hvq2+///Y1gsg9W19eP7+8IyoUhIQrS4CllKSxDFLx7vYGAeQJOIZiq9Osnz/aIfd2d2PphQO6pSb/5rUzw2nx5+Pjz7/+4Yczp3N9vl454ZrD0dLJ9bVNgN68Olyz5aDz8u6/nF6294hzDj58OhMYtSSxoffm4cnl1Y9e5JZv2+eqE3/1lK8ky3dYiJPE1n6x4n6hQzhH9Icu40OhT7iGJhTsnIKZCDGNKGpN/G1RdSV48Pz/Y+o/mzRbjgTPryq1zix9cQE0Gt07szPkcDhcCiNpVC9oNJrxy/PFLpccdk9PAxe4okRqrfj7+8kL45NVmec5J06Eh+vw8IhwWurqJq1nCyyCeCUhKTtqi2EceXd5+1rK0cqGFf8P6PB8g4FlYJOdDaM8fZkzsykpUNGi6/trMqDiRgVmsQpKJSCLK9OqgwQxZtfbokKFySvDZ6p8olLiRIE94GYD/Mb26RO/uXSmudXhfl+zKwroHLaYUPeLN4Dc8e4o3WQsLCzKNOFNUH/9JCmqWtpicW1Wi02VgMDyVkc2x9i8lBtFrQwca1w17vs9Uu+tUeO6GKNy4NIGfKjK+I0eKfY8M+hyUz2BopmMWT+VmP+p05RNXmA4SpWJmAbuwFyhyi42nvpVSePgF/9+HtWV+QTn3IGtXx3E3q4pEILhBeRfC04z2X6teVUBxPYwGqyv/+WXr7vb63/4/hMVKf2AVNgAtX7wioRhNviX5f6F2IRxpgWm45A2XdGsBodYkSUCjLorghN+mskqPj3j/4Dzj7H98OZwR87b6L0JVxTVsqvt1oQYrIsDLeF05q/Ak+M4gO2a2tNHiKKSbbprlhm27m/bo8xE0+ONVCJhMumOGTgpguIm7A5d5oNS8eFimqUBhLF6hB7GFeAMsc/PdgRnU5hfKsuL0bwIqCpCMnZVv5tUEJXugnWLb9fa2SLKDAf6nVD3XZXxUl6EGmohTOoCjiJE8c+4+0MXtxtPx02yADhMM8Uat+TS5ej7rVJ6WF04Og9EbQt/ein72FT7KHYd1orIa6yBaRFqSgZ/vZkoOHjgwHUc4ubw7vKUIQyQxb+WgtiQL6PgFdCEjYnTxxjNTQ3Pj9/WM+Ig0VG18Ruubxig3VAyo8daJEcDhhqYfijCd4Mzd/u47b/mwKa811WSZRogPUdWxcJa81PjaOJwnwUkbSVg/sX5rj0JFPyT2xbI2KlGOc3zYC6WF3qOOO5TcqooLgN+79QDzkCCHDCq0Tp10fchLkQrRbnPVFV9mq32rK86vb7++LyR8t+2n0ZUtICVs3opHoRm5V/Y85GplWP2KDQNA3Laaf+8mqIh2kthLmgCMvc20GQxMF0MNFXmEwAhR4FB2gzi64Qn/YSHpUAIDDX97U+/dG1uhiPMiZ8YjAKsltR3AGVxkEiPM2DO93nXlxGT0XKRJA4PhGZFoD2iLUpjWgvrgeVDKjPuaBzWrPYZ7HWtmyTJKZmyCI5PzvLJBAJsSfTwKH7Ay5fpQIi+HZ863upc8J+yeuWoH7sCNGzBq4d7O86h4gupbUP2uCQb4cxWVlm4aPHeHs+fdhI0FHdgTEX9iN/gYjBRFwMxrOlS2MM0Cx+kzFIooO92tiHksWnVkIzDYxYOiyW+7U3Pn7M7wbVQy/be5t2NeOLz2v6e9B6YOLAj//r6G+OUjZUfvp5c3r1yzKc9m20e8uH94eX53YnEbuf7CnlYFdH4ZeObJISZfAMcB5cS4/M5E5Tbf9BRyWvCnHBnlQM1daY9+wPubB/JmSjqb23gEL5hFszxydJPKT46kUOAzcYJ1hG5ABurs6700t4+Zizwg6SRdRinXODLmIDCgi3WwBlA0OFgIiuXvWNTeeFYqkx0Fr+KKjnTYXdr9+T0lA3nb2jHW9Kwbm+ut23u9GxbVvw8s2n4bzieJ8vnhVdcgtEjRiGZpQcF20aSCyi6iK3QKSr8/8kqKo7oposXzvvViVfdWPFGayGBhIwjoliCBx3kLmQIbXJSjTtqjtYL42RgoKJ5VZIuqPlRB6BMAPNzYu5RIqqXs+4tC2qNTmX7ydfiKkEdecEpECt2AEi18fuNgSqditFOBpjPbcw0vJ6ZIQns3CW/k2EwzEgTOPUsVRsc/RGVyZNGbBy2ZmVCO6jebezsZieCJxI2UlyR59dq7AQvkRXZeDZE1OMiIXel1gr4iYBn7doiVlvPn798JqC7O4HB4zdogUCcbYOYizFGeL7R/uNzLujKmgUsCA5CTXAPxlJiIHgLlePcm9lXSVRqeDRlZ3AaIETO4OX9O7sC7juLQPK6sRNrYmet48tvf//7Tzsk45X9c7eNUP7H/89//s13Hzrs9vXani3A9nd//OmreDyAzs7O7Y95/vWybDsx8Ke7/Q0TBgYVm18uTq4frs0K/O6739A1X8++OsTr46ePZmdun2+dpW1JDqSZl8QT7/e3vjuwdnz1X/7yi5w2qQeWX5x/OdXfFat91tcvbq5eG3s3Y0ZPO+qjle885mV1jVUu8iVWjPRwN3S0CAz+iUnaP+pN2lsUMkLQz6bmYnJTeTktNkaQY9bATBLkTVMksvzv2mWIC0QJkq/rS6u6X8n0uxBfenjcscjz5sE+BCttBbnF/z85O9c2L0Mu4rt9WH11fH6M6+zOa/3HT5+/JhQMYJ4QhVbUMCbHb3Z0kr4xQcG0X4ov5yOey2aznYVk3J8QLAEpvJLO5Fg0rdMcsWv96FbykjeZiOUu5DNNo0m87mNhGFESLrSWuMUwuQXxyuhckpIqLvd6gheYb0kTwpTpZ/WH1Rod4V2uVV9kbKw4qMAxSiTL5CvRHIFKA6idSKvH68j0Iia946c23NHpAmy+j9Ar7IFWXbxgKQNVzWMRczGXlwEw9VTMlVeA53/vLbidwQPocqtHhBTwaSwEmpGrfqNCGPa71xVZKpgOgCpLOvEIHPr4Tz/85d3RnqPTowfoG/nDRa0rM9iijrKsQ9OUbcp5hh9pt8iBe2YUVMZU6rE2cxQaqmoagabjEQ7fvXu7++bogCpgZYT/qafr85uojVj5TBmqN0dv1GlCzvTPucS4e+pqRzXnZ+dIbKYx/YsdHSHfyXivTYOjuDlkWxR8OSZrC3Xo3BQrJb7oGSyjixDSuDRk590pyoSzFeKFLJsdOhqzRbNhmNBZdyo+mQyYQtfaqqW3+6iT+Yu/svYIPa7q+AkxZBSIngpGF3fGN4pRu9s4BLzDBmqqhloeXuX99xo10Okrteerrk+19TI+K2oTtw+llZj8lqEL5Cvvlo8KGSm0GfYYqQnyMES94DH1qLBhSVji9yWAFRj4o76mq7Yq/a/OTPDLGAZwasZ64TPJGT9bsdRUtK2/mmFn2s1cTXpahzShHddLW76omZ5JxMAz+cPqrbOeuUgi1DboCznz7jTkTRV73afgl5EJ/E6XBw/ers14wP3gyTK55SfQEcKX4A8f7Sk9yzw8BibrHlEStCDRrgt31FmExp8IXLUqsV1hk7nNzejYOJ0tCnuSv24zha3DQ9uRCJsaulxfW83CBYOWGreXSZNga6/Y1wIffFW9HXzGyJphA3FzQUafwmFeTOgqlJVPzCmYyQMMFqgfnldZkIXwZBa42VzPh8T1aEZlYPBQ/zXnDW0DB8faKCJk1suFpvEGgsIzplg4PwyEmMZswPMvQXNjkgKqqvGtDzDcTrEgCEn3JRlcJi4mWVEvYjbBSiElwyUZ5utr+xvbJ7cXR7vb6PD52+nuthNmM5r8IVrAdvkG8ze31n+2MpaRPLu8ObfdnzX9llMKpBVIfXq/v28QcWCJ7K09hYpwGUsYW0l74YJF8wER8JOiB9KmV9Q3m1006wFBjUcViy+KhC2IgtYMZD1vswtZH4pV0gsGAPflsxcVxy6OGVw3Jnl0iu1tkUlbHDw/2kCzVXr3T3tbO9bQnl5c2jqWFGxzhpued0xSUYcNAm4RZ7s13m2vbRtT7Itlrm1YyFgwfmfn6vTetuVYywbgZ+dXnz+f4verx3uMZT01rSuNeCGznCd7v4zMhEfjTt2KYFivraO4JAUkOHZuAjVWGxbgZxo52cybr6ZYKz4bra6axJCTjl0EcQ/2dhtm2Jl1076RR+Yx7O1AxWvi9lKWv+nXFAJeK9ohdXjV4sVVCzxg2/AGlzcHZGpsZ01mEawqjNMlnAr5eA8TjeLLzcBSVTWaBoAqBqnv1FlOfEt2XlRhmgWsCWe8mGfpk2rTApM8SsqDhb01ALLUa5ForaclEveUrPJK9ba3yugYFa2C4YFabH6YfOS7aI6jDEJoxBMEYwwlRzrUwQCOHwW0Ir+cAojfLAff3oZD7b9/8+bzt28IsrVp/udJ3BrPWEgkO/v8TDi5fS1sjiHiTjlJjxFChgTwpdxflYDrWiaZGjC4vhgBt2/sCLOpwQOn1dq5tfRimq6RT+8uE98wmyItUVFgGI53dredt2DKXQDM4VMIo59/+O1Hm9+IvuuFXlulevDmyJhJUvzm601eeM70txM6S1QDFgUgxUKgCFZzl6Ex16R2jRJxe9ibqR4YBj8utSJcahl22lrbfrp7tMz9T3/68e3bPUNaNdirBx7sgGMH/a8nZ4b+7958evPmED8aXf6Xf/lp902cKJvOyOXd+yNJdGYI4E3NR28OctYvLiUFPRghrG47MZc/4ZzwK9mBe3tY6l//6V/xxdt3h07Yot9Pvh0bV+webJ/J3T+/+3p8tX7+QE9hGSvZeUK2NjHFa+gam/hP22EDxi9fdtQHDdieCqukSc0QgNDQMcXT1cRD8/CZQQDB4yvpjJ7DBuOBZZADl9Fctk4xJeo4JLryzf4Oikh+OL++/O1330nOO728erotO+twZ29YNYY8vT7fdq7wXYLTJFmD//ULW5ZaSWRX4o1Nld/cnmUC2FSLNBKEsZ9gbNhOL6qyXB93sYimTWpHs0X763Ni1C8SNzKY6OE4qiaJ48fk+2KujBa+UqVG6FQ/Xqx+rDX2DP6UYFcGcWP+M0UNA+K32MZZb2DMNQ+BWZMGzEqlk6kOGFU1t0PpXBx15yssNXi9bsaE/VS1psdgwo9rBXTB75HNLKjb9S+Ax+D5om/TikoLkk09o3ACyRP15CkGnRtTg79prrkxLYFHw94KCFTP5UrJKBSoOQOj7AarCgBiwWogDTi++qf1EDuVgKwGB2CFcFIYcGV77Ien/+Gf/vK/+Pd/pHyj3WzU40VcW18aRWC/pG8+IbwafEJHRfxpLay3DR3gc0YOoUbCbiGRwhvNYr0yUjX3u2pnXh7Rq5axUHKP9uqlfKkyC4HNcLrY3Vu3DcLXr6c8ICprNqtYM19tRt9pMJS/LS5MrAmSMukcgKsHL5ombjwpHcgM1vn5NfM/6HIyGLJmqHUBSwEmXA7+MZvvMxYD7tPBvjw+u1OESN1bcEaNx6xjIGKg8T7Th31K1ldS7+BNlwFQj0wUNBJCOx5CQ3oSAaU4uaTUau53hQHteKMN88OGWO7mTmkxHsB0w3V5V0WXatyNtDrhaBDSJhNzAccR17PkGGgDeqTJFRuZMhgHUDsjqjZ41EYAFYcQpPEVWJ4GJP+7qE3djsDVo6ZFCsCQlzychc3CjE+vg7shfwhRv5tuACnhr4RfceMIde7F8jJEKJPMDj+6j05JqCkmgvE3VCwUm77VxVjPF1Umj+ncSganigEcfiO7/ibU+gwQmHWtZppYZ2Pj6W/11fmqUzAqYdpRLC7Yyul+ZfqR4vg4ccDx/lXoFb89lrPi+TAVduCRRlDuv4Jmol1++3rzQdLzgdPZ25SFLNhrQjEerm2/g8GO27Zxg5IBo2ge5EB39esRvJXGo++okkgSZC1lQVyHAd0MUC+E9aBylbpPf47y7F71J63L3NTgUfUjGBCm703DWrsDoVSCYv2b0S/3S7VknOzFUH00VINhIKSheF/T5FpCC1W7CJJKTmHflo+uwBs70n0Fg7mfXIuYYH2Nb/6Xn8/Fo1JPEsVZbLHvkws7Z2wLO6Jp04APO/u71s1edF6lTYFWxM6xhOjbzuaW7Ya9eH5xBc+yhG0VenZ5/fHNgQ0SL6yGbfj1LNNez/XLGkdQvIA7nQIoXYxvcoXB5zsPD0rCIzkZDqiPHBc0IdNwVy3dy5Vxh+9/X+YMJNFx//yvp3fXbOHT+w/7PJ3LK7FXsy1uvP56fqmD1IJ9jugQ8fiVx5Z8lW0IUHMxKIB0Ii6WABqiO4gXSjbXvpyfUYGHu/uS5a3TJRV245EawFOZrYOSkg2Rxaubnb2ti8d78Xgb8Fv/uluaSlqS3jLcADR+EhdMqPjKxNdgtGSGFjeM0/rq9ppqp5Jei8pMki7wcw5uL7Q7Gy84tWE29cfNpE901sbrhvL7e3uQwMMQaTV6gSPaspDtagYG3xgv5HqyKFLbQcHJVp67n/rkzT9kfbOILCzizPA3dZ7oxG0ekF78jzcJf75+HfFbp2I61WhGWehM2ONRXeaAewMGkjZ0KArSK2RHSdg2kFDUi2ryFqInPJE2JwPTz9BWibjdo/RZGiq+HuljmR9e3xOtJEn+TKNc8TVdKVVO3UrWL3FcZSyQ4IgbY/H+xW3Fcy+ur3d3dywwdaoUBuXzqXYygmw+s7azLSpvbqmzlwCT9mx/Vf76DZOmI1JV7AiTIAdtUzqmZsTsNa2nJO7s/CwSNG9mPSB9Ye74jrTcybCjLEys25gyTNc3ROfHUNoSyCWDQRIIv51Ypn9xeHAke8c1lJ5fyW4HaqJ41jaUj/K8nG+hFjF3q06jy8tUe+cYqJns5MQVUUutC40vCkFrpF9Giiz2d0f7dhGxHf4vP3777vtPNq2/PD+H1E9vjr5++3p4cPjl/OJpfeXNhyMOLtVgM0/hZppse33N/jlYV1aOzUOsmtg+sFXo1vG3M0cyOlTU+QAbK6v/8P0f7189fD4+Ozsxw/b6qFyj7evLcCUZkTYwXUKrmdDg410I6lzdff75lJsD8rImOMGRvQzmtAKZF5B+YUIs1BggBdJOSjQobrcBBPpjywKb8UHa3/0ciGQwS5/Ph3MaN7ZCkN/dieBl2JHclXhAQzBPSZIRrHdy7qCT3UtbTNuMyzzCmlPSGJ1orvK11xs7ZhuaulMtbkmXofIp/OSordtDhfIIkIStIGX+urnylsMkVrqmm0OrIpq0XsyV619en5d6j94AYGLXDazp3khEIuktvzyCHEjQO8IDP4qnTTDBZDjoLe2isOq9Wz1qA0/h8HQFcUuQezJC5yncqVkd8+M+Zg3mABjajJjUIhQv1seXeeR3XF5IAhTkdDoi+SR9UdVJbP+ViiI+Sk4PuznaYPRD6EAH4IOcC6JJ3/TRBxQ9rcK+vXxPdUzIQ5OgnbZqSuHllV/vvIAw8ATAAJ75HMWzlKppn3DVy2GpluZaMTDDHsAN9o/PLv/1x8//+Hff814L/TBFNLCg2ijPamk04GVAVd8QImyAMQUSjqaDFqaPI0ve6cOAqcnUGvIhlX2oHH9xcLiDTwKrjaRwvwqfxbMeb+gHw9gtC4dO7LB7dh/R2fK9PY1GO8z9/Hx2cWEe0uTAWcGmVYMBy9OQmnxKWtPVTnZ5cXja2xr4w4HRetWipzAvSVL8fozIkJt2oaZsF0iC6kseUseOQkdUwmpR4YXTwjc+J9TLnlRNn+lcEpQTTLk5O6lPcRCNJhRRIUT2GYXglRc+cCf6K1MJ/wfL3otlKm0er8TRJmGWSuLkASm8VnnGg1fgjYXnmp1YeAL2A2kwME4tZIfGqZfKqpl5HTcmywEQJj3XisrrhhJxZqD3m8fFuS8vEqjV5DXcoAsLdysU6ApNd9DZHeRPE1Ay4xar3IusvwqHqsFJcalskTgV+BdWlacffPI8gwBIyuCMtEQ3hqJeVJcG+j2Sxe0G3zjKdXpxYesabBRNGLTDASmgj41gcwJeEKKVVHFeLI1bZwK71hYYYFyXPVXt9CUS6mAdndnLUYUKGwMXOgltpmEfnq8en96O80YWaG+Ou9dT2GZnMfAW46jkULcqi44jR/19fM0QJ8QvSmlYZTqfJOrNINaNlCxBfWFGME8mTxwTiqIBHottXAyYo5dC22BT+emvx7XF01CeJ4keSkyXp7VZE4WMgzH9jjYqj2qxUTpQ14Z28WeyzHjgpkQpPC8FIse8tNyET1/VEO7GEMhgFYCAWwcDWkHHbrezeXnkrfDhKouDYn6hBUEAmhv+NCK52EohUYY6Zz89jrARjW1vjs8h+e3bI2FWL+48bQpzGaNBMtdLAE/QuRdCgb+A9S+XLtIP8NXXTbpyMKQ9RrUbjHHTkjiHu+/axqKAfr67tZ0Z/cYxsA3l4w8/XfAthMnF7BGF8rXFw/b6yt7uFsZ0TC4H/NtJMXtLCQ+2NmTn8L1NcYr2yk18c7BHrZrNpyVnUeazJZuPj7IRXn14s0+GzRvsyOa2QTIw7MVesviqbX9Yb1nZxm2XV+cy9emm//rnY1FbeL6DN+oXG1l32wbJYicolE+GErrCHx2FOAE5m7jtWhbsiY4mgzx6zls+qzEGrSngapcr63dvrg197GRKL4vrc/XMr9xzR6yBbM6lcKDxpQuODGwzSJBrXassFxulWzlg0kBhmGdFjbVGz2KXVJI5kCAcD4DkYACcOrNURDDX3E3jB5UThpQjQEl1rkm6bSREF7JprrsJlvX4spIUXMROz2l9yuQQuFTx8CieJtoTOJ3JMuUXhrau1/SFr8hkkGKIk14BZ3qnhAncBcJq94IYkgGdE6acoMzZBRAWXrGjC8d9k+mYpKPKC89jPLCZ4xYDE7rjHsGYQRzclQXbKOXJ8dfOfJBxa3il1fcfP1yen0nswW1maTa3O2XQKKLsJcbUZqN58OuyYmaGdkZcLf83FF7ZPtjVU06qVqzAM5AgOZpLEfqxfLngwOrz7dP2fhknDuPb2WHay27S2Z1tukxq1yt7bjLQzDQNs7u5B41SyKBC7IOYG97EMbkaj0aaE9KAlZb4WBhyfnba9vPk4uJaDr+E/73t9aPDnXIlHx6//7uPh28Pjn8+NvKBXXsUAZgGaOC8s3F4YFH5q4cr2Wsb17Tru/3/+vPnm6uH//Qf/vHY6pq1dekFP/30y3fvX12cn3//6Y1Y/ea7w62tnR9/+fr5+Nuuo/TsBLW5CfjPv/z47t3h4dEmz//nzyecWKNWi4lOnVp9fIHZUBhpjGwlvaNrlMYt2Vm304PLsBMh8aWnL/p3nAMvoToWxV3eghPMTLIKKyIqo8iuVrKVOmPPhfypss5Bx0sNBYczLh0DstEUHx4QW7KoxhDLpmGDKifL5ImSAbMS9oCnEyQMmvDjRTE/BnIcMMKMSahyG/iaObRNkHAshZsVnmUz+BV/JqfJBo1XNoURO4KZfcLHdh3g/c8OUUFKO/vE5oAQOGzSrBoiE9Ro74HztDgxMOVenjcuD4eqTvWm0aErVHozkzR2HUa9jsOooUKS/XgHLfoaoipLTU1AISeJKvDbI1Ul3EoPYFGqBkogrF+euAZ6wcVJmNYO/ywfqILpgfkQ1gXIqlRp7F4Vy8edpR8LBjIpeczjmnhx1jJ7FGsQDJ/p3tQzKJv4Qp2aji1lDBCVh+e/wbkQQkPTrV5cWgcRRPmqY6PIltQIWKptgKqmbsEZpnha+eEvX/Y2d3/z8UB5KM6t15dqoAqsaO9MD9yI4gbAad28yfHOBsuLCgVMFXaKSBp1gJn0pLBLo/TwQBIq9rWPGVVyeS1oJjLGiRe2V0SAv8bFPm5e0QAc2Q8f3hcgT42vnZ6etoQJk9gLWx7euKomvdHYvBVux3wKlNsau6spQdNsExS4lsLCLXXunoqIewatEKWUpEHj3ro0KPIas143M4LwwH/F0LAb9vBczA/LoSk2VUD3ejsZb/zR03GqNBnNhuG7udBjmFC7OevUKL05MSENDCvFEmOFVRlN6QFw9ijdW3Pgr/40Da5oS4lgSxfU64hcyCweEEmss4oiaPVVja5kQDnmRcar5IUfPNen4Uld7rWGtYrVZSCpXNGIqS9jKLUOfOL8q3T0UPXA80iHqrp+RRQXeHjiBXC18FiICubplPbIbeW1QJAb1dTUdNONKk89Zo71xnAF+ZJTj+K6qAF1vZtjEHDeCIdBWIWJobambFFF7WDppbbpbFAqARG0R9VhORpgor3qVQ8QAby8lED5unQWnOqP+N6eLqckO0LUqhXSIzhr2/o1HM7N5wpJE+FjzOI3zYyOsrCkDJ5AVPUM2yBQ983AKxO9hsy6poBH+AfTCg0bT+hIGnBgbkyELsQ8NRlHhYihvh7pCCRGxXpexXqhfCgyTitcBAzgMUT5EnINDJuKXboq75REZQgIVyjy6fWGc+qGIiDFjKFugSGkYNIAmH65mEYXwvV+VHihy1Cx6YPHLdZqfe305OzAFjfbFs1es7rIAVe2/GOkMDXkCO0xakey+jfWRQTE+FHEYV/F9ey1vbrGn6T3P74/pM2cL3Z7df9stu9Zus22nlEyfKTjL2fpOPBBw3BG4PimbxmTroOs9J4UkS/0jWGI0GRnkFzdPHZYr5XFN7IwcgcKqRDC6AQtdfmzE8qKeN+/2z68vL7/88k1h8ZycDsYcqGauby+tE8hg7q5tnb1+HzNqEq5lqEoVrry6pbfYVmtUCrfi1g+3otrQh7Z+vrVnt5XNh3ftvkiHxRnP611DulkWO9ZD7i19uXqcp8buLJuie3f/fYDHrOKlE7e2Vv78acvmKkNZEj4rEbK6t2RLgHLJwhCG1kT5cK8ckKbJBwD1jZMltMNv+gnrQki6El+gz0HScL+vr3eLNy+tNgV+12cXZiw2ti1tX/uhqCLGJChEZuK7eg4gzb7oAvD0ORX59c4imBLfLJ2G49hOaJLryzmXa+9SB78w/px/a/c5p673kUs5CusLE4KZXKOx6dX0qOE3L8UpeepUR9vLJrXHTEJ5bC4YjDQhW6M4MUM6h5tBfmkQadYOtjTlUxn+W1koIWVfnjh4vlc85BsYbtgVePpsmwNKlQej7R9mNNwOGEOwaEGUqm4AnYDTPZXslCQ4Pj8/O3BYVOH6S8rJVYuzi+4VG2v4TDgICGBTxbnXqL43j7vHX5MCNw8XuODlUdz5ddYXvxNlqG5M+vOjbNBBRFrWMSszNraX3/+fGTSxvS9reM31406NbdtHMB+Sz/b2MC62N/8+7eTS8KPQL98/vm37z8kn/f3gFE9gXGcX9b3aY10GHZcnjTv2fImMNGqq1x2aMd12GCZJLH++MqOso71VqS2tl+/e7st89/r+v7+6AAqHMf19cfPsIax3398i0ZmBUPayvP7g10ugtmSw7dvlTc1YvN+K0zefNiQEUd6/+U//5fffTQD9+bx9vq337+FBJqFXFzcHl/dXP7uu0+23LVJ7tn5yeHe9vu/+w1m/vz5GJUPD/bl/Hw7o8hvhQ1tVwvHJOzmSkQBaahMrJd5wHxjOMloE0ov5B67kn/ps+T695dRQce0DW7kD8SYYj7d6ubYLaynYna4+AKcuBgbZAjZrlwyGrHQxuaz3cMae1ujYsCNJ7BxJ58/yLAze729u23++WHGXYQRNQkIm4EV9U6ioUVUrD0dKuAEmUQDRxWD6bjKjtNmCnhtTDitQ1JyJSSVGbW2nLqRjDfd1xUCQsr0hR0dX0JX+opjDfrr4mKfxhrV+yR7vH8InDGV8qGAyZi+j5uUSIbiEeGkjVb1meQfeM7M5ICFSXYa/CrI5C811MyCzwWbM4xPirWcJVZyKNVyzHohn4vmV7b3xtxyiie4q2VQgHcB1Ztj6goEBIMaIcZrfIIM7d8+uhNv+Fna6nUEWAAO7vGl+pr3s1Tud81nMafn43+oMRJpZT4aA41LLU5t7LSuaG3+ugjDoTL8zCsLEt11rM4Pn395c0T3ZIVbv8ntQ9y8jTJGxinTi+gLpeHTlzRskx6am/4WWMgjiTYe5jZR53LJ7L5HHx/sbcqsoysxpXP2bh2DZ9Y85awC+cF8F5scmG8U3rNC/e5wf59lYW3xMNWFhbS6vbnzTfZdWXCvvnw+aRRs2uK5/QPa32JT4OlWu8YYt3dXwKBkIkddbSJscJOi1wV/mGi6l0aTsIreg93BVC/4jGmIJ13WKRBgQvAMNklXmCavdXah49/cfUqTosdsC06qQufSb9AW3hpawCenJwEcbq2DHqG2m1obQmYmFrZVJZELlPIkxUHz1wJADY1vh1sMmJtLp3pjySBc/L9kqj6Q9VhmpMCrQIlk+hW/oXNrkOrjZKUHf/Ha9JWbYWDQ8MKQte2tUOU+tNRiIt+DejssOzWjwuiKEDYcC/tx18KNdZQUYIyZfwpO0BZuUyqYgVHrg7mBXjVaTcrDRvAAo9yYEKjLagS5V4KuwUUveBASJqRCqnNhG8y4n3mFAy+CXxmVVJ+iAUAkI00thavgr3deCPPTemgJQo9QnNJ4uQ5f7cscu71asSH13Y2Q2abdGN00VC643irk5iKaE4BETsH0q9G4UYFhXHznU79UC2zkdnN6vegSYjgUjJwv8ENnbB6HQAFuGCGNYno0OK131TtVxcZhU8gl9gsHKzLTvTs5qBw+H5qcJcfYMSpHJjF3EIcQHk1ZVwEc/6gnQkRefKMjaoTheZC/rn7v4v0F8+4PwpQKIC/5pRLSS3nmu+9uCrqJFJiNlxWr8zYONgjhPdrJmoHiTkjiLRj+JB69antATriVd5K9bq4fPr4VOF2VI0/dnFxesrFHRzYhqLl2XmrWrvgaqO0502RHiFjGo4NQjJlr3LBDL6KSP9riG11dlR0j49nEhBiEWQmzTDRG8phi1AbC6D/skAFZ8rerD09/+P0HJc5uL//wYQ8W7m/sDXqqHi6qpAWmR1yMO392e7ctGr5lF8JL8xWYT+2i5xY4xlHGMGtre4ebZxc3d9dU5K1wu9RlicE//nyysy+GKuq/ypAXchEyv394d7Brp4WTk3PjJB6eTQP3dx1/ZKGVqKFo9IbgXz1/LkASSgwEMSapbqRzBxIurOa5p6iq+0gFd8IYfASxZBEYM7u4gVeiDE/l+vJayrgdfaAXyND2cFcCGQ4gQUY3Lri1pZq87vQofbS8cuFv19CnFQKBxhiM1sO5OIyUJL2sSuH/xBg/heoe9QXmfQL9ZaT7K2+hdrG+pvYQGWEN3tQczFmmiW0ME+q9VlyCM9auznCjSvwHwkV3m/xwk9hhR7ICW8L55F8xSzMwgT6alCY5rZdggGxJZNSUausoVu8qvBXqLNJoy3yY1GWcTXjyfXe2dF/6l2GVbsoC53vtbrv5bEgh0CtzfbXjaJoEAezF5SVcTd/alZXAAMnptqijG8ZXtLK2xvlbt1TD8l+j5vfvj76eXDgeD2wyf3i39w+XO2o33F9bfffuyOFx2MnMksLNKV0VaIet47NTUT0raBHa6rzDrX2+I0yaSlfOiVdme5xdfXS4f3x+7XjdjLsJijqX+TQ0Sv2MfiN94C8SmxfRx6BXMeN+u2O9OTzAdm8Od61YxIVMhbU7BT7WrIsoOmjG4NOHI7n/307ORcD9M/n1l1++Oatue3fz01vb3mzbL+uXr8e7O9v/3b//I7T/8tMxw+84jW8GrBeX375df/xwcHCwQ9pp5cu7U0Mnw1qr53/h8t88bm6vfDv5enB4RFcaAZwJSdoPZNXo7pETwXzM/LjusENxoC7EWmjsX+YwRkoXjO4mDsvkdjy2lMFj5KdBXepS6QR3MuK8jtNch6E2A5VmYFzaZlnGZnTs7t6WdCepVsIL9KDNA/acJ9jSHSeFeQnLJXH0o13PCK/Dz2ZYKIaR8dGiOcYD2y0/PlyftceiFMEcQLpLm8QcrwolSoCd9AmykF4nC+UUFS6p2w51tqaC/tSdRVpYnblKh8x94ll+dqtcGr1niwoxFq0kYqiZ+s1yh6yEV3RgaotNKMjCTvBWyEBFS0OJNIuyfIW2vmY71eHCxx92kHHwcQmNA0/o7icQA8X1GKfR2GQcAatzKnlh0fQ4nARdrh5Xyevzvt9TtO9DdAADEjBVntHNTXxprAZfeq8JlzCwPFWHaoO5F1GAmQwb/YC7aqYFjYSwGMd3zFJ908pSMPDGrI7p6dWgzLQViB0wYiSvqERD306v/vWvP/83f/cbj8K/6GReKSbll/dDXH3F5Dz1iDVgp9J1s4eq0mZw+B19ReDJmLRVtho1Hp8/vH/L/NxdmdNnCXlOTKj5oo3Vhh21qNoC+bcGkPjBQdTXz3afs7GuRWXNZps4byTpBD5cETEFWCwQWl8/bw5BFH/XVJ/O4P/2pDOVOR3UmOLwZBNuqolhmpdjNh40t+dIQqGgmuzTutMYWyVoC2XQrHCsjqNgGiaibn3Ud51VxE+V91K0i/7hMEy7GDJnIOZOIwpodFfQKiqP7XAHhF7XkOa4GfEn3qNzqxpDygNsJkEZaNM04no0ASAtzVe4iN/UNDwzfFKFkBArspIeNVu+dD8J8pnImjsqiY0QMHMzEhT4eRoLaRdGrsdQwfEt3qxWb9W7mM2jaRStA69ZGBdhBhoGheXbJZr6OvyrBm0OjrTvU1BZD0LjIiy6Px4UkPQyeFMXilVrjfrzIiNF0/NM5xWEUq96SN3SQEDURMHjikS1Ebp6MN1M4ehBLJ38vfQmLdSdQK4CEIA1swWx7ZExqmERswpMGexRP3sjfU+Hc5tKEy1M5h/D0RZ1z509KaeaBwUPagWVgEsMXEKLFuoQ/sfWMUnbhPAf465oR9DqbdMORAZgieGA7l1YUmDBDw7wet0LoOD3COgq72cg9WLt2aWjFOIHsR4PGCNmItdI7U57jLtCrA+HRDYBGRo8xRcqNt2kz7Go5sIENbZAm+bR6AsSw2bNDVNV20Jx76ZE6s5YU6dYrotnb9ohRhxygjyvRRPE+y0N0gQnWaBcqJEXjhm/3VzIa+UTOPZq8CwL10Lh1fPLDqba3dk5PbmEFtF10Qshei7H0CvW45nacWjt1rbEI3v6ACzwCO0DCT1QZcK4xhxetgE//0oucUmx+aWBHt/gh87PnK+AqJIYDJr7u7FlGtTE+pOBy9XNzd7uPhbW4K0jmza2hTupLntkrm2/3tvbQifDHMcVcS90g4WWUIQYQfLqnjJN/lJhAi2dlS7U/cvZFfQ545TvKHNDbTbkcQjCtjAy4d/YPDNkcfVq88u3b9QeOdEHATwIrRNSzTpPLN5Lm+i6BQyC/ZtbchExcYrpWSLKFoTotbboF507uTp9fNqlTwWI5Z/wem3IaKXizdP9tU2ezdqsrBzY1T4q4lcSuGKgQqX77twWQgESNxs4kUaDuOdXrXAMe/g2LgdTvAopw8sxcisWMIrfpX8AhPtSiaHgcDaLvtzprCvk9Ko/yuDjiuUQVKX+UqbcCxqQjnaPOqki9Sbzce6EiF5SnCuQK9BTFgUs87TRLved54wLTXFYAkt6ZdroWgem3bTTvze9NrxRojM5sUWwrw6EtR2moL1iS3/lBQmAyZSwwl09lAqAJZfrwNWl6aKS7xlFHUBGGfOeqk0YjDmj0wWG9ZYlbBZFbuzDs+yqewlGt7fv3rwx1eIpG0PQjzvP6hoVwIx2hqAF2C1Al2HyZK/6b/SvDB/OpSG5s285o+b5L0652nXnsbQ8sqSXK/mgW7aQ3zw5PTO8cuKE0axdNelV28ow0LLFbu+vGbsOtpOfJ4FN16hpommH/8yN8d4mB8QWH7bxeWVta4MNu+yAbsOSkp++fsGVv/3+t2/ffHd3d3H67eTq6u7b5ddT6W3rG9//9rdn5xfHf/16dnnihOnffnrPG97Y2f4vP/xi9Hl0eMDpvyEbt1ff/+69oMDnsytnBEoXFt13POnZ8Tmb5eQR9uX6zgqW258+H5uqff/+7cnphdCj5b/G+yCUI/PqYSxGM9Ti6rqPbgvXZE7TlYl9Pjvew6SIQmbi4vjH37gR33aFuN2J2bwxni46Y9HJW8sqd4GNKeAKtFHyWDBu/Swp215tZ08ca4hlw6CY1irtgx17rUj6l4nIFDdYeH6+NeDHLSsG2+L6QPVS+dw//vLZ0MIX3glWjjVypyhVIvL6ySmCXJNJigUuD0zfXGiouV9mIxnz4RzkrLBHvqtmkUGMGpZGkBeNCQZpX7pcSAnz1K8q9Dt+IF8jnQuLujW9HzsTul48LYW7npc1DenBOsaMuvCotsbAuyYg8Fz98yxjw0fJ2xh1p/XFIqqNH9LswVAEHbVI1ehSATq35/4o/JTSUicqz6NFeVII1T7hSWVceDik7nUwoPP0Ov9pakKKEO6h7z49TVuOVwP/6h//DCTByaAPMlTknalq3hrMACkN6f155luvuxWQeQCKViScxH48+h9++XJ0sP/+aB/rJtbcjRrEbpOoP6shKVigiwzpztQ98xVtE6KD4KRf0WVmTVnxsIGIWOV+b3fdpocaxPJNwsuLvTeH7PjsTUUw9devXw/237xe3T25PW1C3QzAmwPQm/IXamTDnOxzf3VlKnx9a/P6WHqgnJ/CcI+3t7yfQZWBKNgwuLh/g2dYDJOU8xhi9lGIJhIMZPgBM0huFFzE1ZCTcVITEJF5cRx7t2nbBckwj+1JQeLQeDUSJ+acM04P+1fVvPxOVe9CyajZxl+KmTZb5BoOPR0CIYh6UD7S54jHTfF2bMnENRgwBhv+TDWMpx5RIyhsQ7GKeyXaxsHxFeYYGydUoeYo77/OMUPTBDCr4oUBtVl3dD88QBCKDH0TXqBM9gvaKgA4H/AQcP2iwMMnNRUT9sinmmN1WSuyOnVCM52a7AKGendYtEJpzLjXddBVMoc3GMCqd9UDgQN7COuVaVG7wTzv5vjWjH73u4oRAmgKxJADRADjs2VsgzlnIDTtBvcClUFrjiuYhkDaXdSFYrBNgbsDhvAw4KUi6jtsqXAu2suSDz2qx+Q8FDVR0wIvKRnAZLCBpBamgJMvRaIdQIdoeTFPg7HxEHTc2BnT6FNghIlxt+pqOF+cH12KRVU3tmYA90iNKWV48KqQ9bwSZkIRiEfvhZ+UwULEedbgDt4avyNOeXH6+/Ao5ijiNsE5YRhClt4wBU5D8INDinoyGTYWFwwKwlGAxUn1PUqpb3FgRk6UyeWbF+PYeRTXRnLl88FwNRGXb7KxsXMm3ie7JCu6IreH8bP2/2C/WIB1vRwVCsVgYOv1uuYdwuPkKx6Q6cd227+7lQcBEp7Yl5NTuTlbG2umybnNa5uCjOWVWEJgvZwNRznQ3H3JiQWwc/EF1lIyOMewjEk1BU9PGOUANqRDakBTLQl/uH10sugy3TjDKYV1Wet3UgWcibi+/vNP39a4P+sbgvdbpupZ39eAPgOIkKM0HuOqTvq0IPhe1HPf4sJvX495doKXnQtw93iwf6gCqPnp5xOO0T98/+GHnz5fXzhd+vHN4Z7wAqIJzD60kzvuGyK/WrOu0ZzswdstiN7dfYuc376djfzhSSsyZZZzKymkmIDdRGgsaLoVRehrrAMLaJPnbcuqmW0hOub23uwdOJ95Zf359sro9VlIGytwL3hJbIUpGu3yTmiB88uboisyi6QL84xxaNknFBMhsYxyA4YxDPbFIj0VG9PqgmgcBOkjfhCNy4ZJQnrzrWle09BiOrE+kcirnPkBdYE7/izEkk7z0R033B/WTE3Q5V5n77SrEpGM2hiBibYkaTDprnoK4aSiXKrGp1E+A8n71yMOJY9NXpB4/DwkkcoR1WQ11T1rIbhxBWLt/uQU1ucrYw/Pxu+n0/nB+uL8ukY5rBS/FvvXyCyzg5cYj0VeedrZ3xEk0wMjAtizAJehFMu3hvtgb//45Ny4TsfPzs/5Yc7OtO/38fkpuUcCgabLGw7f2pFz5DZWj08uqQ4JP2vOqVvrdGobTH2QH+D4aF4BvfDYNp3WJx+9a59dFtrU0M6hfaguzcK/PbQ4XCju1gqi+9uGQ6e3HVZwuLd19Gbn1J6atkB1WoVNN44Ovn3+agCoi9RDg9nJNxCfLb9t4zVBkPRGnJzO+4d/+O7D+/dWBJycXa5vrxk0Gk799a//9e72mk2Uu/BvP/5OfqVen3w+/vHnL0bmHAXRxIszGUcrnPazm7ujt/tS2p00cXbp4OGdr8Yol7fmPSiUvQ9HgpEXJxc22/3dh/dfz25/+sGSLbZdLKRh/NWFtRKXACtdcEMyw8HZ1c3FN6e6YJThkjZ84AfkYqa1Y8LmpoaHGqNGdXd1c8wJnsUMOGeJSKUi5zMlcz3xs2RFjOoFdXYRB/IqANXMW3qLXHT2FqjLWiFBWvKqoRpqUIsCQ0L+1KVRqgYgWUO008Z2x4nQRYUkF5v3+LS/u4eH1aituZcNrgdsVekHnb3KuQFAvjtQ9CS4MsnENzOJNZORxcdi/8qDZAL1PQMWMhIa1wQTlvBkX7vdx+vezSDJNikQNUZXyCu5T8xVoFGfSqo38OZTiDGz6uWKAWwsipoJJ6Hq9dHU0aUqqsXTJN1nKnfPE5BqBXg9qNmAqWxdwJroSC+MExNBC0ZOVf1CpqnKdUxRI5PH2N+UBh0ynV0eVWoGSYOaWh80aEcxLwRmLfcDSz5AoxGrTKuLJ1eDA1++yfQxqCPOAD2cA/DpyDSbK6MtNeR9PXeArmoVuL1f+ed//cJBOdzjlOvar2gJlmWKv9GIqU76OBVZCYHAXNu5TrWqOFpRW0U6zAilh7Hq737/bsOJ82t2eb64Or0uw0quWU7qM7mzexhot3e2bfwPwwiLyUyGu6PX9rNiya0AZPLNdVJlHecjo9KK4SfxpZt2QWj2wAZ3t7JnNxyMfcnyaX1DwKaRc/CBOBetP3zrXCk7r6/ZDTyAB9vIF1bZiTm9eBAQusaJUpOtKZgjI5pBOkkUvpmNaELwzO56XRPVk/tVlAeedUFVmjWAjjnznjsmWbGEIZaIzmG5JgfYmfzJ0o2nBUCKhZnQviKLsatozJcPp15yyVZXG4adMW1R4Xi2/1O5vqs8nMcBsRXWpRmyI7GWD7Pu9L3w0SuqGpAbK0IYcEEfIl8q1HYmuIIc7vq8AAWauDdkzA9I1Lm8BNqg6hW8MX1WeZoizelnimk+QQYmoOLY3vIEV8e59WhkJ21aX0JFv1wO5FObFyulRfWPFuq9ikwtIU7HtbJgiM6x/UmOREqqZoJLfZwKu1appO9L7/8GlTJAcHPA0icHmDrNpo4ZPC+FY6qoKkRrSkzAsLGW/B/RMME4iOUkdB9LBhlWkSRsZ3qTcFXu3sAZfkDLRSkzsaKDrKXv+lheQ7MHoSSwUAM/t9PUdHnB3MChutGTKtSczkJrfN57bsTAYMnEiHuKW+WWcG3uuWfigq1rvbljFqlc/xcepK57d5ZOdRMvxCZIrKbRQvoyjVeqWaOh0/JocMgzqe3MSjMJ6KXJyxujjqeP796ffznmyJqf3z/Y47Xidl66bbGLCyVrK+0ANqxiQnJvexeWr28v9/e3Igy0Pd7zAfi4Tul5+8ZGeSUgN1bhyq571zLZR6sZ1/7Ln78SAK6UD9/FLGLgh/boMEybiRh+dos9SIiSF8puxNzyeF+LFo3UoEKKsI7176tt/03/PN9/2t/H8jc3F9Ie1XB6eSsKIRLhbAKxdfUbfKhPrJ26MsQxFSKPCankJNit4Lu3h3/5ciKmR9FilH/5+asOlxi9tiol4/LiSi4fJ4kHYAdGkXgZuldm/w/Wdmleuy60Ayk9+igyajZDBFrgz1pjPeJCARyoHluC+SJao2Im539FEpthEwI0yKk2Yz4KZ932bfix7f+3jBsaOZidPT3nCLYvgxTOAtKcWjNcZUXL9Wyob0hAaZlGgQajAvKAW/Ex14AC1Xp+QJKRqiqMEVehXTw6DAetae2hwczVmvTLp/GJbCFXLRh+fP1qTJJTylElyiFi8oDH8V+/x9y6Y7inaZ3KYNhasa1dkzGuGx2K+ackewFSixnk+T+aTFbANLZ6VGqITE6chstlTHtQpx3sem9DJG2JfgkwG03a1wK76r4BTNKLz2Aj+1HXoFpM37pvIBlBINay3Pa1BRuvTI4L+q76LQ9N0yOQpq1ePdxeWlmOJb788i02b7BqUGE4pv5XpiYkh+AMg0DxObpafon9dG1Tf81k3raw27TZz1+ORd0/HR1Ze2DCikRtrO+8PTpinX2x527q0szSqw07Zp5fXh/tbr3b23VmxcXVhTH3zub2ycmpuaDDg10n7tgbSp6RseG6M7dX1n788a+2oXGch8F3PufT7eHh7scP7y0qKI3q7vbt3pZU/rXd1T+++SR8+Nny3M9fhQb/m//m72yVi8Hs0sn9Jdxv3lkRYZ71lWk+uxHtSDd+ejrYPSz34OkOfU9+/mo0/f5wC/DXNxdcVrzyWoqUBKfv3n062vvXH375/PX8zdsjM45tWmVN8IEjLK5Mu5gaMvNwZmwAyw1mN86vb2Q0xZOj0xazgRExXtzVJyJSqsOllHg3XbO1MQsTnnbOmgrvLG4AxlgYNfqnHzFeSgRBs43V1qjbhfs5ENruMEF5UlgmpU8gChnAx8OTRK03BweZhlevT86bqLX56j4qvLZY6IzUyvcyjlG/1yUBmlCyN7ENKW6lqT4VFiW29C9BASD71KgctYl6RrpfxL9e9tPI2cTEi6RQkDrGnOv1giCQ64WS09neGrOUbplNTgy0RFnsE1AJ+pyCLfsQrlO0zpPQ+4yHW1PiBckz9aF84DAb/crd4LuTGvjMmQhvveiJt6thohgpB/0cg+F2UlM9y//opSHVRgoKoa9DAH/0aOiioelg6qV3x0tOEfWpOWzJIE2DNYo6fqplPsEyMLiTqqJ/eJNhrI4s7fMSqmDQmO4YJAwkgNOiUmktwA+0lYTk0XjBvkC4NAcexbXt8XIHG6p/WgSvAZVLa8au/vLzT3s7v2tsqYXGmIFe20M7a3V7KyYMS4sHDEVwMmVihWHQxnhpsecH2/683d8ld+IR5eednUi3PDw6FDikJ/f3dyHKUrRNm1+TO/2Rt2Z2ngCWIflMxi1Vh07dZGvOvp0TDnEddySs2gxDgMqktXOAtGuAqnmQ0rolEw7dAMIxTlwi71C2v+HPFgymFUl3uj8mqbuegDsDMdyLmGpkgYZbBvM5lIq8OGReaTQ24XOVutS8p0yYYhoybGiInoRW51ii9vZRx8KW6lIMx/qtTS9CfoOHNAT0gJ8dJFYhnIrXYhwrXbBTRHU3WpcYmcwOQwZdrnvWUzPKjFEbqGKw+GDGIf6SXJ1FT7jnRcQneklLka+Yv6F1cqViXSiC1s3qnGjaXHJ48lsH8hrDtyAErf7ynukOXavawBXnCXXsJwwNYGIBY7vjqJJjF3Lj4bih2hrDD656H+i9rEdI1YSPt0Was9H6DELgob2eKVNn/c7+ZVvrR0RJqyuQNk5feaNHORpD9BAUfrSC3SKNdr0aBdPJRTS84WbdWQRzep38CrA0/+mSZY/iQqJwOLW94mvu7+xJAfPWADPHwrS7RgwWiqdaf8AAbH3kEOZ5G9Yq1iduWQpMx13WY30ZFqoAYlWgWFrqVC3aGrqPdgUNu8/ZWEgCxLrw0nglXeP5YfZU0CpvsGNe3RAAu7sjjzVCawA596nW6n8MUyEIhs/UuvA0YPA/koGWXPrEk5AZj0VEDfP4VcAjR0stiorjJyjHcWhixE+eGCxG02K8b2fHB7v7kKuX4onSpDGS6ICzffCdkwQ5CXkmz888HN15XJXIUgIz+3W4K39Yyvoqb8QCDArOTL4cQg1zfdf+/ONX0Ei7CKORVjf0x7/gG5LAvsuRonimrzoc9nMWFcSIFfQPU04lCuHv1QdbiiDRw9P+nmMI7nV/d2/TzkZwCE5TAW92d76enQsxbnM+7toRknIyiyFQt8UZMh6x34vDjR8f//nHn4GjVfv8Hezu3TjuR1ZTOUU7kpJM7tut8O3RgVGmoSRmPNjdvTqxePFy/U3h/ONvdg256+QBJzzpg6UFj/cHFiJbnJJOEWZuUyrse3N1JZ3FOoy9gz1jBkF9KNFRBORVQDE9TlvasFzfUTHK3j+agnnaQezCh3BtAIACXElyRBooXK8SJ+/iFBvkc//LhWGSeak5yZA6LGIUGOssSrhbsGrUMReokOgjAl8E25HeRZ75wcPScXxqK92H5xIsPKnFhUwJhi8e6YDWS9KYgA2N5eyJsk5jaIIb6Ydti+lG2hJhNR1xm8hrLsDd9pdsvdqFCsGAv1GZmt/b3Ts7OxNixyFCp7vbhkBySGJNVHBYK3Ha3tnVSxDGH1I1JHlzXZ1cbZMl7teq076scy+9Csi6n8dFgNdWpPeQGr2z5JobZxyyxe/eFqQH3euvX07ltWBQh3MRHiNEYwzcaBuYTbs5vS7Ve2dn/d3hLrsFjAuDwNcruzvrttw5Pj5pEx46f7YbkkP05uDIcpHjLyc4TyXGmXjj3Yf9i5ubbw6J29g6OHp3eSln7Za/abWA/spTc6LUKh55vfbj11MHyr1/f2jSQDjs09t9G+44fHPFypMtEyP3Tqkzr+W0RBHqT28/2sfn/d//9vPxSVHpx1cWkZOo7z98DwkO7dva33f2J6p+/PTh8vL+9OSULf/l+KuEM3MQjqT7cGirtaefP19H+hmTfv/x4+cff9EvhcxL/O7ju49v3vz40/Gf/3osx9CR2TauAr9FMqwQW4iN1fl3f/ztlQnIa/uxbnAzjr+d4xP6oCgX+4p1k4dhszFCeADn9D316jJ+Szk0es1KRa2xFpXxfqY2VkT3WH/K0wm93tt0dZdZuDRy8bBujiPmxRlpLmdGMv/P4vqHphDX1i+uLr0moEs2xE0d+2ABCVC9IHS69sgpoVCcR9Pe59ZQKqy/8sdwDqfKcC9GL5BTR8hRrRdTJLj5i4lFN9Pz7uWduTFDdQajYu1uwSnJEaf608McmYE/GUTS1tm3Gl5XqDjsiq8HM2MUxrLCj7KLFlVgBDks4cmxctlaHfHWvIgciQ+ooCjpLuXXWClEjk0ivi/OkztT4fgNvTxe3ZBmyJLblxAl+xUcOHVqlEmTkN2FceKpzBAOF8QHmvIXrL64tVDWb2hSXQ6KLlfdFB4bkbEo86F7sBFoOAgB1FRvInw4G5xoYuoPtnpR7wK+OoO4n/nbiz71PVACRpkgV0GAacadLG5EdmTd8/NP38jR1t9//85w0FMgcKrI3RCnwIoXqET9VQkqeD6eR/Eg89xT/dSWg2Xect2pv47kNM8p9MHlf34QuIj/zXOiPoa0AGx2JS4ujT1LDnp42D/cExF0ZeWfeje3dqXMMqy4SbDICHw0MXhWt9bFJuw9dkt9V4NNjiUNTdID1tRZi6+whN4T2sa0rnMF7TW2eXh0EE+pJcktvRbysziDGQgdB8ucgwlDPdVCTi1WcU0DF28vNj8jvWxO6aPoO85lRDH7rkgmY1jChdZVpfujBFAtb0v74IRMT1HGK6qKYvPyC22HunA8hMv+KvFi6dSBFUN9Zcc/j76wsciQBoav2EdcFeFQTf0jKMjLEmf/prWeua6W4ZnUTPAORG5n+kfwp+AyUCfIBfWGryCnF8NPfLXIE/7CZjN7BvDsdaqqgUv4GepothfZXtUsQ7fhTBMLMXbFGonVRVzfK/NpxDKGU6EXJp+mPQx8ZeEhVgf6y9hAVXWnEW/uStVB23Q2rPbsRSj01ndPo3JSmbyALWUe2GmhGhpiKQOf3s6JiRZ+RV7VBTRfgktqv2aT73mLNFXHfoEK70FIAlj3l1FTkPOXWKWG4m2xMKcwcahwZK5SeEuXjsJUAR9g4Fw8FiwXu6gx8NQQ4hqaxrpEnvrGkimZMS2DIxXOG4MldJnycoLVw6swtKb8yUMp4t7LGEG5JtpeUoXjiOW8qF/Yhn4QZpJJrGUgcyYhUBCJ8xaCiQwANGLvkI7iURF+ayn/w+x+wdkgKHBniX6S9vjs8FttwVfR8FXOsA1sbvxDOnZaFEuOCTN3dW7V4T1PCVfbttvBm1BqkZ6sw/1tayA77kqolJ8sbQHaUzjmAVZeiVfy5Ky/jGALmV2gW6Owheum3zCbBiylJwuU8JchABsJ+aC3PQgaiirp9cRstsAD0Pr6h3eHK5d3J9/OBXffHjmf9LUcCnxoaCPLSjDicC93Dr1lkkhAannuJm9si63+/Mu3dx/eWVN7/vmLvQ+/P3oPgw+rd7tShO7WJDWLAuyJv17I83E4KyO/JgIs6cKmLukKKT6vSwIxghUm3D/a+/r1ZLpm0xUnc63aGgmypJrgrm/fTlEYsc2iQro1qfpLbgxIUGt6vcI3Mv3KcncK89NDqw9NkkLNq1cGi8iPOyFhZlHuN7bNC6xaY+0+jUwAzsoRN8202ctGIPd3hn1e51eF/1BJKcdh/nVjLOXwNcbJpfAE16Y0R58VGhmBz9D6GDU06F/0vuLJAVEZ09XzEQ/ciEKd4SB6mnSNb5GXPfIAa9WZs9Jix9FcKQ0902auOQaIE8YDMIStRyJShaYkuBrqqJZJ0t9GFat2Wb2lF9H0/EICPbGyOIHTeWUWm3PclJPaN1Y3d12baLu1f79YsA6JASxoWBZV67XJIjiwYKAjvajahk2vjRwYCcnu+/s7uu80LhDYUwmeTVCwjti5sclaq5N1yPAAJojvybmFdGWMWk1vk3sjQ/M8es64XloYetPJ201BNWJ/fXWXo/nmjaSgta8nd8dXpzbRhlAAZ4n4xnePLPfHd4fST745/2ttzZ4e968dIfEkg+30/OTj+7eg+Z/8u3/rldtd44EORcYWJ19Odg/XP348XH1acejuhi0+V9duzm9Obs918+jdfsHp54fru6u/fv6l1Px375wEdn125dCrQgMXF1xYc0s03A9fBRwvtta2ZAoe0Qj3z/+v//efiAkX4M+/nL7/7r2NfD5f3P14eoyT9NzxBV9P7NtbbjHlZALD6kAc8+c//3R5bq2tXTYNae7Ma7WKZnYCiDUyM32yFnFnX7uJf4ad8CGNsrATHsZjeDsdM8qXBcGH3sHlykx9OQc43DUDQpFVuDozLO6RA5EV7EQMBUGdzea9iV6ZA13fa9nGo7XPGqKI768drk7lA4UCd/SZrU2tObkFP2EjkiJSanc9bWG0tDKHCnXAaUpRKzk9umGiAfAKU9mpviwAPiQFJEALVnDojHtAdT+GlEGats+98HErY537Rys23nZ/gkP5TAsSoEUT3g6V/c9jXiyrbi7CCxgXoB8ZT/E2STK+BgWinibfxzBTLQtBtB0CxwuJIIsHHyARAvDTwTDsRdIf8AntAEbWs5plbqAA+DU9YPIux+qPoVWVznsZtEOuFAtgXMO0GnI36n6deuGc4YRxtdiguRee+6+5l95lffJmhg3qzbCB74Oe0WLVGa6qoafzEwzdGgZzFQJ0du4qkDpc6lQghnQLjLyUP3220n3naI8Gj7eQFkcO+cQ2l42VsnrgRAXQYB5V5fCNW8A24q6trZVPv/34cHnqNHEL9+ky04YXbXv9amuXanqkoDjW5RJM7IwtZ2tM7mNOR1iafHN0uUGEUIsEIWvuNCG6QXwFqEwrS/IRp7DrsYki5w2KJTURN/g3aRqa00M0NbFi+Zp2Lj49XKGz/Exm0U6CFCYywwc0k2AYws+kJUyO+cC0ZG2+jX8/vizM5XzPR53DrPlV2MK9RcwxVZzps0xGzTJ0TbvfPVurMciJ/KD+hQMzT7Cphkma9zy3zG8WCjdiFbjN/GH4uG5x4IAapzV+zrF7MXw8M7KbuPW0X7HIcLvL+KUbMee8nq8Snw1XqD055GEUiMVfwdBbsXT8T9mhiBdpKC3G9/oyjqObU3/co/5lUESrJIPDaSqp6qVOLQZYb0DMIr+aRsr8qebzE5ipvihbbFZngrM64K0eDJMPYNP23JLpEK7m6ci1R/qFW+PmeQ0hKg+eGQO4nl6rLZYHvIZ0cCYh63fS5OZIDiMaOsYbHOR3G5y9MpwDkbEELRwbxFy63XYRo8NLkp6RcCre6tCNjSuJcMN4/FQulbq8uDSGRX3Sw/iznMYZvpiiw5m55RGrjiyf3hkkDQc2/TVapyJhvg5Utt4Fa1mpw6gLknVifipcIQ/1dJmcgfJVbnoLkdFWinMOzFRrQxFeDRutOzlFQF9hbdYRfcZKJdQMmV6oKTa9oKUJa70R8SKos8BV63lYPDEBgjZQaZbBlp88Q86CfUj40xYtGl5o3UlJypcQsLJySXlc30mvYN4CsO25SrjQWY8R5exCigOzaMNJ+TUZOBjQI1xAULBFU86hJkwMJX2JZyNkiEvKwNovWFdIN/RwGN1L0QsbR2fdpz9hMGntrnHpxfml2QW5jey1MD/mE+HgfMjbMSq0YX5n665KrhUXt33H/dfTs3dHR9hCr6DDMSl6bJ8TU4OfDg52N/MsQXxycnWkmIHMw7MNvNPImH593f5HVkza/GPfaEOS/WVr9fa2tpzXKp3SF1mYYqjyp60W0CJR58btbtsLUqcKIp6cnrp2Pot9lu29n6a2YsViC4tK722f9Mo0inUININjDbgJGKANbe4fsIK1G5O7IjxzaywLjVdtUNOxUII8o5QdiWeIUWIlROl4eG5iKK5v7BDWYHJMF2aNCjORgobIES8mre73e/jfHyQP2f6F+J6qHK9x8TLzlOn46xn4GYkn25NX18hlCXqNNx8v2kdqhtpEQSVFvWtM7Mq8BJ61TY9Ne5JMT5/uX9lKFmT5j21yOlMvzZOY1tSTOZnr+hqX858MDEBixwtNgxczxDdCpGyP+BMl70hdWVizipcG5GcTY8tRipjODrMW59Tm/YPB3kTXWnjXEC2VSOTK0QKalk26myUQE/MMMHiIryFKASsQZ6BtNfn5xalGTJtJ9IcZF3v7lqSvZFZhEVgb1qXYaO9udcNU2vrDxe3Rm93dzVUHSWOAbfNMDytOQzZZz2Dz0c8tFF5/7fi987NzjuKnD7vc4b3NlZ+/nq9sbXz/8f29yaSSiG6sO/x2evrLl5PD/W1nfD1sv7Y96fb69g8//GxEW/qticG7EnPVLBVdBvG2Y8Ffv9p5s/N6VYbfzfHXX/a6VYLy0aFq1g42tk4v1/75X395WJUO+Ors4hRjUoPrBrc2C7u++se//87ZF3eXl//840+3j3cGabwAa7EslDB5Qho7aIPCYm+uX5ERvKRyC2TcTV3OUHORa0Lvs3g/sUfciDXzIPGgD87HiSk13aErFmbFjGPpqYrK+IwR8tADFVZJy92yTyTTt6xnJlNxr+RYKKZS1wUmO1NPsIRktHTs+vzGTkjwRkVycXrh9bN5PAu5bGeEdaudgrIsSfU2Vqc7mqyrJMCAUa9aDYyqyeCI0iSYToodoCpTaHAclEYF+UNaTwtqrO2jOvJZ99kDYrLItd5BX/Z2HGVdUo1G09eBZCIIpkfQYK7+hUXvct/GZw0n6oJw9yGBrI0ILtFT4c2Cc7/iB3zqDnjvAi+oKf4SDkOI/ykKF5WrQ27WIkiQGOjjo7gdSFGqOvwo3EX+RE6eFiEteIc8Xu/p0HranxerlsX3pJY8Vxh6FKNqUiBQMQ1MO5XxWWAIQ7W1UD9gfQK0Kn1qbinztwu3KqPsXHi3cr7EZn8zSb2uC6ByAcnj1Dlh+ulffvjy7/5gwN95IzwVul1Vk7UC2mjkTbgoLC5rvOCIpxvpHPjlgD/dHx6+swOfiMG7N9t7+2um7Pwr4GeJVBH99IxyeBIFM3wb6xYUtT5vW7rjjcN69Pjk5IRatEzX8htLAqwQIMfGBt7ERdyhS6EIR4hZSLC1xVAGG5IFW/Y6n0l474UciWH0KXVN7pz52g3KzZKGeDIX1nsI7QNLWSJ4HsQvMaawR3t7CMnQSEsgSp9Bhd5gcr+HLHO7UFgDR15amS3BBV0ph15iNSPgkAAz568ArEG7BtRT4eTCSFsNCVWANV1DKoKs2GTt+NSxASu+UqM+kBG1VX5GZZ4icKGNYK8HkOPKtXZirbGGbDaBrmUeoXqTmmzu5Jy79m/h2xHSGQKBk9ZRFhyDu+kR7VT3FQ+v8978UnGudoCHbb0zkVIgoPnARjikhkgpNC9rVzGwhUDqpheHUC8hhlCqE/6EyaSyustEmHri2BH8OjhgTBPTwepPh/iATA0uoiCuGllTc89UGp374lEwxCNBpappfb4qUtcKJahUPe4SBWqQjUcHmdtwzWHzD27EE2E9s2P11o2sigVATMhzC0U0EKHrJNhlWXC4XZCG2DpfMlhbveYqF9pH5eAM7c0hgA3oFMtQILT1UyeGHKOLfIltDEKGpmFWHyClgs1LSISRfvKqDXUa7aMKJz5fFfNYexiMtSVY39rUePWlCtUOPG0iJPyjacPV8C9dgkPPkxjm194wTEO0+Nwn5A3IhYeyLzz5MSnIagLRAkvjjfWvxxcN5lfFo/cE7CAAixQxd/wRjJXLPFi/v7cZSRHY2QnGhAH3ZtPE3+aGdF/0cyqu6UesZTDSzn9Sg7TzIjANnhKqce90LXcJUkYeUtyDTX5UnVUMBED3O7oseE5d609DaJPtsnVtiHL2X21g8iyaaMLC+Ojs9OJg1ySp5KrVSxHaJ2scz/e3bNVv8eXFd5+OMI9Vjw6QzsmzEMqejyuWPG7GA+21YwS2zY/8019+on9Dmu9bFgmsXZxfiUIfvdu9vnd64vWFtI3yAda++nJzZ7bB9ogmSiwYsALXCIPjLu7yYAPIK1P/K2YqRGIEm79dnFu3Eq8TzhfmiO/xLl6ayYq2qvQeLz9HBzUwvHNq82BL7oeU9c1tayghibvJYnsfOXEV9OAUtBSSxoYYKgYYZGouTnSNDGtpBzhP1DyfYUAcTaIMsBoQxzceltAMhom1JLmL7ltsnrZSSbHXUCot7HqqrE6aiP3weUn+mYUEyqpf2yWlKYObcW3yFHVjY13tRfkv4tc4nf/UzAB2FIZvYYDt0tZWnFtt1QonScKZ7hT3atjQEnUl8gDYNMelQQcnfVX+j8BJW4IaHxfTnxkPEycSsc7PpaDwuIsgPK5YU16vFAYk6QpbcPn06uJSoluOHTy3AdDd3cHeDhFjXIv9jaUkuid2hLm2sy5dQ22ZvZDNdSvPz0Lz5/tXdgo6OtiVFySrx7Q7eA6sarBcb6PI6IkFA3c3Bob21Uk/PNxagJcFfPX09o3x6frXb+cl4a28tpKYDjG/sb+z8fbgrb1AvxyfI9WffvyJatFBQ1DOn+UHFlD//u9+91//6S/Om/vN2wO4ODs9p8fevjvkkfNfpTfhkz/+5tPGzur/83/4zw61e//mjT59+fZzSHheOX1++unbZ8vrz+8sinjtRN+9nb13W68/vTs8vbz4+uXs028+nJ9efv52Ik6we7B7eSyl7n7zYGvrYEUykukWYQQsY7AhOo6OG7tb1BwyITsVgOT5cXAI7zg5xnzhKrdGfS5xqb7BSvxWPCmTma5oYYDfXonjmfo0yNwfblxGCA1WvTsqaBzfMeR0KEHAs/G2SCQoA8Hha/b6NA2F9mv3dvVy7kxHhdDiomX83RjM2Oby+i69kbXTvOGlodl8TDRraoRFi1PAd4Js+69N4qlQ9wd+7/KDdBoTEuQmAvCTII0OJYVjiaHGP6+NSRaJ1Nfh57DhYzKibCKZlmGuOfNB5qCx57OgecYhjVQZD9ABL5RNEy/la4MU9oZ4XgWyKO7CZ1CP1R/6zAuFz/L+lXyR+gCkNA1O01p93Ei9mWNp6iBjW6U14OYopPGHJu9LK4os4IVtjxWvUAAAeqqfAdX0DIYVq9acCBYvQRw814N5VI96KyzPzaVxsCno5vhqqDeI6G//fanpIWrvTUdcuDnNDTz5RgG5NDAV9DV0RbJahetoqc+vvh1f/HXr6x++f5+lL8LYtL6nIdZoHBeNkxH3iiqhfqGEolGWlaxu3f23f/z+7oz5WP/4/nvWAbYpVbLjoDq93j840JxkgU35uKk9nOi3cX4yQhHyGkS8MtQ7OzdXbTLCaJ2fXulkcSX700qfYA4vnjr10kSBoCPlSU2upb5AiwAaWoJ0Cav9TOYgF92DSuxEpxow01e67xPbZK1jnkFn87rJ2guOvZTwMjTwpCFe6ghihIFoNSAuLQEPag+fY84iE+d1ZDmqw5sKci28D/f5vupUM4T4Sj+PDeposxwP6AB7Oby1w0Qlce6Onxc8M+ystcg6/BtmgVr2FFjQfGgbGIsgRF1g5nC3fsA4gWDm4KUWMvTxcMDEPe7rh35pV/WxpR7DSiKG88lILB1OYk6OWO31T4/ArvkhBOyFl96J7XsahpZ6Aiy8BVks6jP9nhERKNQSPXt7IIGr5V6oWNwztEgZARZ0I/hh2OMp6TrcgypQ+6jMl7A9IqxpLSqOiIp5UXnFlO96lA/emKcB477PYLi4terrK/crGKwsXxVPBrJ3c5xDbI4CG1Bi56sapYX4V2bb5u1wO422IJVXxm9g1vOdC8cEQF5FYzZczZvFMG5BoxFFw07qXQ3t3wDf02TEy+0UwwpLgKjRCZqEY70OYC+94GS+xpYx0uhbgKsqf5pRbR9IceHoJEOPHQ8LRtGg7GiODolSJ7+baHgwnYpDJsfpVwhzwOT42YyC5yOZB5K1HoeBX9xmQTiTneqeOvJsKGeJyldcG0sFbUW4zcsn6M7tg4QnO+jP8G/TFjtlqdSyKfzyIKASoTsbc+Ph3A4/ZdSvvbJL/vPXsxMVQwPwuAzA2t3bkBqDSSNgQhWK4HiYpgBorDksFL68Q8CG7TVQF4hoRPBxhKozRKPDMDGuadzC2yPbDz9++eZ4AlYaIdiXkxMp2480GFduAuqvee0MeRWZPdmyRuH5+OSC78gRv+KXPz/+5rsjWkI+BiqZIuCXYqLzy4vk8Pn53ZHk57WDA0qt7RfevNnXJQQ7vexIFHu8yOpHAHrV8szff3rfWs/XzkJb/f7j0R9/90kakkRnMQJOkExo7qCJEpyDs+HCAkijpWV8jJMWanFk0UpkmsMBNXZ4EYbBcNZxjkik9/GWu8Q+HAonlG+AeFD6uv0xX6Z+QneayDMJBjFh2g8zeYlId9HAepwOZfG+7/hO7bhp9BxudDM2jeNH1GPdChbBUky54c65jp5cpXmkN6Pf2+JkUn3GGcq5b2DKlBfqBBiZUPvI5GuxqwaXEKpJ/g3D1QYqr8VfjcHEHmKHV6vyuIBjSMqmxZ/DOPCGb5LneIWFGJaLuXjDDQks56gbr55sTMl/0nGPwhEVGzyvkQNKj44OlLL3vzW4yhvCybwnHlJEoESfOqtqYwejW2wHeToOBYUfnk2wm4hgssOVHFyg1fm7B3voAsQ40aJMfbQ+Rja5Ytu2FRLGuH368uPl3aXzYm2MI+9rp0Pr9m1aJdNsbb88PGYJyXD8qr2obHuFf472D/y+uumcudPL85+/fLbnqaXMZqFOL+UF2W5s8/2bj1Yp04R314amK5++e++YqjYZE6Hf2TRuOT89W99Y2T2yxMFutpd//stP37378LsPvzO99e30RPjQivn37/fwjqykr7YPuH843Nl5bwHyLql6PL+8ROPf/v6TKMyPTgVmIB27QZvYRH/XEggTMlzl+6vLG9sMw5PRslG3ZLxr2U7lBXFQ7rLBY+riJajsV39iJrwVAaE2bY5zENtDuhErIx1yz1uj60fDzAvZsxlYRggfN2PsUUTjZXQIBhZwT7W1XoGl1Ngn3FCg6NlMhUMhlDF4i9M7OU7oES81DE0MLBnHqgiNs0bR1w6LvzimiQnWLsoFOj0YKctO+OcB5okDk1zIwRGJFT53E5yG+pATKupkAozluwJpanVepNeNoGCIEBVpy2x7Y2CrQI1WGP80NdGrSvz6qWQRGXcGBYP6RUtHhEFK94KUsP/6Gb3unpGC2hQcAwPCalt6p12lu15gycljx/P+FdF3HyXq/jIz4HrGGxXvHTYeSaohyCBk6nLL69GKIph5Ql8Vqx2fOjq/lHEZVoBdPa7d6ObS96ndW2qdm9NQmgMqg2CQ4HKq7X61L60o4wL4S38XYGpiEN8rw7wRol74tfh4zz9++Xp8fqHqMNeITXC9VKucOYf32VAYS0wt1pOs05p28xJxsQvFwbu1h82D7Z23796tb29TVxJrKVoyZOcAMnUnynR+rR6iTeVYSnRx1sibO8oE8GnWX29iLQoVm3G1yd3NZYP7PG8D10wqO2JovmUuh1DqXXEWFp31sfmf2Wn9GA8jHetinHKIGTxklcXU+DSKjf5O/WLJeq+TOb4qw3tTfvH8YptlrO5tNYznm0NPKDBVH65Yj4amCKgHqoo8cwcGMFKAxRJqL06s/KBc5ZDJ/2u9LO9f6zDhhUg+FseXehHVYgp0S4K6rkI6LaKjH1bJrDQm0Vk/02KqQ99cD1egaoZymKwUCJgBgKnligFkGSepV/sCsDWY0E7TDXrV5ObCaCDJhvB3TfRVVwwD5mDLK4lHhvndeUGGmwlxesOdPuqu/phxGntB/lTSjfoIGzA2RVQ5WmuWHXt7UR31SGsJaQAvb037bnlDLdWziKrvNH8QhvjAGE2T48nahtZemLCCzoS98BmsC7RGC/Ug3DDxA7uDFgvWqE3bGlQ7e70md2KyJZFGS4/Gp5HS3MbSrJJSMYRTqzhENKVZyhkVpIw2B5bWUgdm26hM9yreUnJ/FxYBDAdD015UKWh90995PbTGqMMA4TqER6YKNFZZYK7XkKxqyMx+ue818g0Uf7Y3DGKo9dwQBrRgFihy8dv3vBMDJiaSB/DMRQGoR9mXjq4vubtFI8YBo5QMLXAd3giS7AtnK6jUSPuCxL16b62scOJr2a1b1qAet48ntw0IDfIXmyNUZ+0vDGsMlgGu6yhpA4wvJ2dyU3f2d9+9feOYXOto+T8y5HEDcwkyiR6GNNRBm+7HPgMc1FSJ80qGP2APChPC9oQy4sG7EzryNKOY/KB3NE2kyUCdQS3IAo3R2l+PT/+Hf/lJ0I3G4WZtIMbTo7OLtX7x6u7kkse2YtsW6SWXZ7fkS3tE6u2bg8ur+2+X505dpRptdW4JkujIs9Wlgrgr63zrlee1ba706qtP7/ZPpfxfYLHXBoN2ReW9nVxdouquxIu19dPrK0HqPamT3MTXqzYMBcXWln7Ls7T7R0Zcdgr0irNcXp/qGA/SLu9Ju64hxwiSzhqnRnm34yphRcMp6dGdZpeowAZlkAfcbkKNauxPkiscTnjSws3UtIkaWg6LjP6KebWSJGSAOQoTKoi7Z/A9T9QcEyeQwxtah7gx1ZHBl17KR4k5Rjtrjms7woUz8BXkTlPJBDxHcVeqHdcH2408551UWluxpa5PW8NknVRPAErHjKGrqJmwV8+y59Vtjkt2C27h69jJDpOqk5+MIrizyIHEVmOjUowemhboSOWGWBqGiuQFkDi5VS9wVgX10RGt1+dj0mpcKEy0ZkGIHaISpskg1BlO+XJQwMrzugPwOIJsGpOBZ/iioqDe6yzd1JeTemyX2dLx0RSvAaZtylG+HWfYEnO9s8gbCQ93dwHdsbDOa7u//+6dY2M7nbv9tiwlfi3d6+H6XpqTwIAdRUw1pDTg6s8//mxcQoWdn12b+5o9YZ84Ab/58BFvfft2cXjkgM/PNzfYe/3k/PzjpzenJ1fs+L/+9K+2SSIlHw4PPpgQe35ycPXPfzk2EPvuu/eGk+YW/ulP/2JptJ1I08Pmsjbs/f9u+3KDLOCCTx8//Mu//vXLz7eH7w7s+itQfnZxJnsQblEctpk9AGEEi4OpBqkIxia6jHwGTngFA0CHuhczlsYZ07fwg9/DP82DLybZjdFaOQf0gHamBopw0bMexrxVQhh+5VU8qVh0T7cUrMacw9vjQ4zx9pYy06KgdbzuOqXUaJImzitJc6hHyNOR0sUXMe5YpYCpXWySIVJw8Y2iEcerDLGlRRdie3W2xUh8kQRZ57SSdtWjeLhjrQ1zU8UjwuQ9Ltd0OMskK6+Xmn1ouni+9mpmaboZ/n286AN1XocT15rQ+5CWcM9ggCCOHqB7FywRh5ALmDEhWqJXwckATD9rQm8Ra6mf7umG/1A+7p3lAbUVgBEp2R8SqN8tNQ2ZFvM5tamOmss6THlXtfGiFrAHkCqRqqyl/kRgtIneigNOf3Cawm5XzGf4EErq81jrXvLxDcxeq+RCMYjN3vZoavdrwWHl3Y0tx02ZMuEZQFNi6pjSA1I4nJozM+qbkr0EwohQno8R8g8/fTXXuO/0Xu3ScjNjNN5Vi3zGI0nrcDZQQ2aPA/v29jfn+Lw1R9xs7bS+6P72llEzuXh1cqqholdsk339z0WbHAaM16itZwv6iJuhKoVpvw4v2r07h8HIQqifX8qXem2PNZGPM3piEl3hg4PSgSf0lRGCNFi3BOP0pRXJIbDYP+xARGSDEbEPm22rV8kVc63tHogocBJKQvC4RBm3wjGpcTQK6+gTc2QXyMHgEJ/0sJrHByhsn+kZp7iLGJ48ZE0QwaXYX1ZvpC/aKFP7Uc/1cEPU6hEQFnjmi7DOlDTjnY8xfFiXhhXogeaAJ9BbsyiySFwgYDx3cDUyqtGUDiMHck0YS9U0zVD/3Ghcgfr4ejrrdqoiKqdhpqd+ieKWLRNzeQs+iBrGqAuaHnOsJ0t/cZSmVRJrgXZyoQL8BfZuAswdIHu9+NSII4exccJUq/BopyCssHGh3uaPBDTa1jS+jar8Jk7AcHV4auSgjP56RScr4GLwBjvD/Eu17uXjmdNSrH5VcpGpXhzmUbJXveUTWkaiVTjiX6SHs0HXR0GdHqSFI2BreQxrIJbRuk4Fwb9KoBruePMth0wvcaZ3RK3V4iXwo0gIU9CfuWl+Pg9BKzUDPdAusuxvd0LtNIpNUcor2aZir6nH6b5agqpiQ53Q++u93l7miPCV6QgArTrvVxZTTjky2ntuz74d9inhEDxD2AJEAQKSpRR+sHWhykUnnb83ig0+8wy5mUjKxY/bmwJPkyzA+A22BQoEVL++IaZ1rRSTwQP0lCYKyabvbSaw8mpzf1vYU5ByyzmAXMqnR3sf7lo/fe+En9MdSUI7m4pu2Gl+be1n247nAEtZ2rm+OzcOS+BAGY6aEFiz8yeMwyHUc+9ModONw3lhBOo8jRAtW4B7KJMm3A0yUNcoizgmEsdJnTJQnOz5cf2f//zt2/mtxZ06eX5+t7q1engoMebu/PJeapD8I+6wdby0J/fJrChl84ffv/3p87nhznhvr21uqn9atXTJqODSTuhPlxN0ebbC1haKFmvD8cW5SRKrJG8e9mE7dWOYYUt1W7yZD9nno9/enz1fSdTGQAI6ZlhtDxJyXz98+s1bCjpIrm5lHRXDk+J513ajgjEJGwlpYY0kafvXZibxEHajgkeQIh/5x1mhccEtm92AMF3sBoTkAWMvbU+BWLCDIXN6UJCTagkBwYNHURCY1ESt+DeSPOwe0y+PIH1hd8IEMK0HxEhvcIR/N8aiKzceydTUdfLgWcLZpL+OpOaQVeMRtzJemv7oOgvQ+3wWPcpmlA/S7i4mmHhDVuXSvQVc7V4f40oot3IlkdjZ2jXye1nDxqRNvItYqdl0VYxrTOhKzuJt60P0hV6Acqc1ExUjVxzJeyYgprTMD4mTGUdaOSc8PAOJNJJ4Nlzu7G3z141ooRDQswBDUPxkZ71zJHDXSrQyXXNtYMCLo3CFHQ4PHDfAizX5c7Wzt4PoDd+xSF6fvWV3ycjr9UcDiD0LPB6f3mzuv93fdLK13DMOHmLePN44T9dq/e8+xEX44LvDT21k1Dq/p48f33z7ckYvcCzWNteP3u6sP2/95uPR568njqk62N+24+d3Hw/29vb/9Kef725OQP7Lz9LfHj697QDR5jpbg/vww59+/vjpnaMMHm8f/vrDzzfPt2Y93m+aeqCU7G557mxskw3bV08bh/v/+I+//f/+858cXby+Bv/P386/3d1SOw5ItnfI+rfj08zj61f2aMJ13AI7MjdnZVS2ZuDEU6GnCfKwd+SP//EUDpnrfNPFm8QXXE/ZYMvD2D0vqmT3xEMby+9ezUaizKKX49X5gASiR3vguXgPjZKaJIWV4KawAtg1zsTkbmVy+lqlDEl+BheBwW7k0NhGLHHSI01APSyhmJLm/pbWqNBwyIgSQfakHpE7Dekip2/8Zn4UtdnAGHwZMWkDlXPOhUYpc/AUuyULVLnWCaZ4Z2CphNAA8kVP1GuvhpwJLxmLkMEpmHb1CiDgRNdAhTHV4BUGU/2uByFp7JFa7yWGvZL9w6sjs2MC0Wm691KrcEQ+UJRQc6+r37PmuK25Aow6cL+rQTJI8oTApp4Z/Hgx7QVHmvUreNMq3VLtjFvmYUKn25oPSOQYpQc50BKgkoPqXJ7fEK9rL7oZtRcyxCW1US9ilvnkgHYJpVP9EEyRMJzG80zhGHReUPZv13W5d391Rmco4q0q6q3wXD2ZZJ88G+0cn11KAt3ZeSs4bM1a7CeIN8FvuMKTPDHBOdPOR/vt7ouzRKIO9/cQ1wJbWZEynml7P1b7WsN27gBqJxj6TLqFa1PHTkKlN0QRYB6ZLOLnA3Xm9MO9AwCURX0GxIEjVg3pAcN0YVW+eWdbWdjOymDVCrrdHQmEa1IdH3ClvfKKjKIOrOq7SsocMEWcXIlqtVsGIBEhZRuXNz2LB2L/wpGlE7imLNUTQ45MQTNghkOjV+RFqCQmNKomk6S9sWsNAnJq2+xFYX1TMpM8FMQPy1NvxhtDkR4VPtNyh2pHyAyTFVBVqvWYIS6OZnHdryyh2PAGAmqBEkhSYr+BwbOoWw3DkHSS6uLAyD1M6K863CwLfWDLgisCMG9l7Ly7OLs4IJiTmC7Km6o2j4szjf11I1QP3nDy0jzAUixBlq+PBxQGNkBdeN+FftY5oDVbDHmNdlQ+WK3TKR+qoO+DXs3NOKRgY0fOzd4xA05KKzZT4YK94NScCj0fjVH9wxFJR/fjFpCPmxcQQ1Cw9qIioQjwCXtwN9yql7l/nZgWHsaFmC547iGA0T69J2giumr1S/tJYCRbLUjPaGdPVaU5uT0UNgbWcEtXSrsodSJOKdbu89piy75gGOwUJh3BiWK4c0yDZw2iALdQc3xXYITAIdawRG/RbM1pYBXP4lKdXGxKfANszjHeS1GLpctKLgW62eJGFGV87m1v65F9vRAtmKU5MDOWDPFIZngD6yLd4n7ZQEfPzuxNBB5Imp3OddZ5rw6ZfIlFg9+MNYAwgLV5FM3MHAopnh9tNxlwZeNgYSW7p9zc76ys3x7fijB4x6Q/ey0KkBhb72rJH0/15s7yWvP/jjoV1y533ZzkreyEp7KoceDDw+nZhaUBmlvrsMsl6DWIadpvYkhwiLa6FuVneWXDNZyHp9utrFOSkV9hqMGLxkWAt+aGBy41/uv57RUl5VTOu1vhdtuSSJG5dgKu3Y53eZEPO/Tr/a1hikCmRGeqBNBnZ49X+ipOvvr62/k9ztG+ZI8tx3ze2Uf/iTevAXuIYiI5/0hkge/F3f3WmoUkssAvpF58pI5ldJyeHZ9dWR+NzyV200a/fDub7q84zmhja600j3b0fz67NOTAbYZtxou0z6OxU/t4tjI4McDkoxwd2jU7hLT4SWvQg9sKM8M+9ho2IrrZkox9L/ZRDJdEdl8ay/d1HuCL4gp+I4/64sn0V8yLJ/IrXpg+fZE8xjvpKbVqRTnFEu3YildSDS58H/aep9VWy970GvqpJHWQSGiFKa3EaPmkS1nuB6jU4zM+huNLHWPcDrLTltMoNlc287pUJ7eH6y7ABCN2lWL69HT/YJ8yEOrWdYOp5sn4PeXxM372WbXPXQByxNUx/lAKZaTSWgvLKwtzIYRQuoRXYwVGldaVykXQUlOdMp7uwyDtMmTJ0daGQR03l0T6Sph35dyYtHn96vjbMbffZATA4MzyAGLcSMD+TgZyV9cKAnt3yzab20p8/faFh/3x7Zufj799Pj0+2DmAMLMK5jl++AwU51ds7u1uOibY3NPvv3/3Zu/w4uTM5MHbwwNa6cvJNzt1vDk6ZK8NGs3kOd/348Hmm/2t47Obv37+JjngH3/3e4Te+GBOf8cxZDJY/H//dufTp7erX1Y+vXtjQPLDn392zpfOznET93/5y1+s5tnYXjncfEM/wu0PP/71jS2NDvaQxiDs9x8/fj0/PzkJTruQbsnjd6qoRa+m/7b3nHvN+XBogC4vHIKWpmIog5vrGDX9aIorjk5Z4BgUGuMd19GGrHIsqlhmrjCGa8bGtX8YsvJjz15qS8/GZsOKWKFiyO2TmYmfY0aVxNWJ2KQHxPQZJ2lgWLEqsjeEbAIQ3uB8kFOF8jKTC3yithz2kSwaLjukA2gZP/cBbXfqVeLWWBOoyyerrw1SA6njXmvlV/NTNTpHpc/YN9FJTdcFbwVskTxDU4ajvvzaCPA0mG+Tah43ouZpjQxq6OvxYCzspXvDfB0u4tBcc9CN3SWbKoGMnsLFVBImg9ughLO1EKXGSVMUzr2uY6E2QYOiIA9+d7LR9Rrq9E8zkWeADHNzMX8Xt4BuHAsWaP73owWvFO8YkL2rknmEJtN+d6LjwFjl82YkcydtNh+v9GggULhSKp6euZqf4OE8eAYMj5TBOSoJAdMaLqR80BRyGilSRHEWAJRaGlqgqGJvLTAEWwhWyYJI9Vf+l29OAlm3foaQYTT2MpxXpS0fLPA9+G//zd9trQshCTvdS6s5ePsef+BLXg42wHGUlSZEAZgVfbUnuEHEmBvA2UbMOuMHG9Cxz3uHOxvbO0bgl1dnxvNbkmlbj3PJWtlJgrzhaGFO6AaaRAhhQ0BnATF8ehDoBslSbOtv8hXxCV2OXSPTlGQO02Rp2glZBWMUBh9eIXT6HyWHmWGLblRX4jn4GVz/iiBlcrbGm+TMDj+MLA9rFa3CtNVkKy3ADDFzpaigxVlU8yKbmmwMEhhTCyp4QFpSGPXKfQVypPSSjzHcpeOxYuNWIbnRNkTMYHUY8oWXhqG0zmmudwPwSysqkaFinkQjrDuxsaPuZB/VUGa6UdDY/WAIdRAaMDEOBah1XR3mGm6c+YQRpdCC89IiOCyk9ho0xnCkOJlPWIZGIQkGpvvdrFZ33BoiLjDHqGqJ56trPvNK6kJfe78CdSrwpgZ6dbl8QUYAhNg+KgyI5CjTGd5TIv3WI6+ppcd+QUGGnxfUhiW6nASOOhn4Ia6qpvkACHteUYHKJ8cs1LIVa6v7+5awmTlx8E6MBoEg4mXlw+cUtLjWzo1gnISxgNATZagtDAAc+36brR16RXq2ze/hmokCxJN4VQ/6p1Y/CgOlFqc2v/l2igVznzCnNAg4JtWVRkp1V3wY1M2ER+V55MCsk0ih49SCyHodjeIUbk+IqiGBbAC5JuSOLpqhvV3I7XGCj5oQBqTaYaZ+DQfC6vDbsEy8gas3cBBMFl01oSD1Zrat41Y3KcEbbBTQ0N22dYgvBLjb5uP4+UGSSwMS2xueXr3at1x4054j4oyGYLIz7IwiCKuPjRJfPVlwCAgG3u5C1zCuD4OW/FGVxSVjjcw8xAlynuiZNbY8DK3cCKhGbqLZqJ3FsmlryLNaqgEW/H+7evp8fMUZ2xVxRRLeHW8vbsnT3ljdujq+3gXyxtrnL98Yez1Rk6iIGYltSdnbWyfHZ9H98d4K4Gt7Ga1ZiGkssyI92cFbbZD0cLuff7h5/erZtuh7uxtvbQTJ+aMTV1ZOzy+s97UE3VJO6mfjwWQK1LYcueOZzvhJVn5uXl7aCWVFKNTs7Mnp+cGeQZ5zqstpSXOlb9M+TDI+GQuR1EzvZ2YgRsHDfRCYoSX8yUNbc3TbLT12J1cEWyWNS+HkMHkbjdEtIjlVZ62npWGO6vR+JbHh1KFsDNonRlafizRAQdD7ZH4+6KhEbw0kwTeavQ6UAVmQZrpCo6mkamohLudP5DSo3Fy2elksI1qyF2C2v2hLzdZCON25EStXi0IvD9vL3M8VK6RxIqGypmKQkh/GNVlG/6LyGFVLkmoMLrGW9eiUDJQDgLACp9jXvWPd1vmi2Dq7QfAesm94xcZYZc6ygRhitTOeDo52HQtgqfnp6RlsoInZBYMN2DC/ziTre29JJWu12dqcIWBHDXt9MrpV5aaEnJblmct6Xvl6fq1HlNWVReVmjUBosf3D7Zv9bZly0m5vb7hRRtcbX7/FwFaLnJxeyuz/3e8+AYAa+suPn0nR5sr6bz68sW2pAfGtUODa6z/87nu4M+2w9fxw9fkr3Dnk2oCEydrcWT98v8s9kFX07/+nf2+czQ04vrz4L//yF0dTrO7NbGbgPv/1py9iEKurWxe3V99Ozn774btS4XDzuUU3Tw4ofn1uJP1s6V+b1Ty9+uXnL3wjmhEmTJgYWmAKXC3ICFE7O3vHx8ftvo/1uVPYYgzJsGqcwX6hoN+IFbOkGZcSsZ3/MTmeweW+xJsxpj/inTzUvsdZUdb18OtSLMsxFWYeutVeEMO3sV1+jPtLAcacz780V0gs3laieWHFBB0xg5orwRq1hGQsRNJIWrpLbqcjDB7HN/an6hZwhv/rYP1qU3/l9XGxGY061JBAzci8Spb3R4Rp0lrkhnERmtOoNQXq+PgfWqI9uVZTJ1SE5/Tq0vZogIF25G+gJX3TRFjVXPdU6stoBtWPiuglilkHgRNUC3qyLmn3qbMXITDnLAEPMFGYQhLV1j3ITBMoJ7qXSzEIq8XRDO6NsR9XeJAQKJVhzHS8dzTnxq/Y61kFFvdlKDjfNaE0bERQupA6SpnYaqmQpnsLqAGC1iBja1wM7/VWaFhwq/Ze9wceprHxgl5Un069dFVDXtS42l2EyJyDPi9A9ggeLDxlzrLqAnxfj0/eyOhv07kyAMSzhIQ+/Obt99+/py5spWMvWvm3srOEDJzd6fhtwX5T6XaPkCVJ79m958oyXrv62pnb3PT1zZvDQ5t9be1vSd6VhadbLLT4D3QL+FkXJhjQkQC2/bZD9MWdfQjMaAX7xuwZYGZVKu9krlOA9GcZkQQYDi1/v7cPqUMnCXBo4aMwlWR4OCLR7HAi6MucZUpwUVgtfodXikYppE4WBz5wxeLKYyNKO/+FMic7GYTxtsMiVq9wFEkS+1B67ud+5SUP0ieLGNwKaX1krlnu1EHQJJIZjxptlriRwvALhoSZBqhjiURi0QuYIJmmFkPqPTcT+WiHrWOGxTfNi/IKo79wCGzoSLolB3QYvXXtFl0so6qlmsTKSxwITbvGSLpD8+iMrwGTpCs87lp3FgwE/3BXcA6PTpflhbfMjwrKydZuZUahEZhpq0AepwtgHjAng78mJVARuiljXQ4Sj70C5yPL6ALDwAixET2FBZjQ7l4Qolf4jKAhc34XlMw4mgJceoRaA222QOXd5Q2PE+it3OK+RnqfdE8ZQEN9fSeSuaN80h54rrD6gwA0dnFsI5FcKcrh6voCPPw1lrTgsYxcjgIggx0hOgvPiEGM7+nVLSUcGz/OFvXsfhqjHtHMw4OCMRxKt2orNGk7mqbwZRW3XqvEsxgr8s1oVpmganQxWijmf3HSVO2JFuPqpTGJ3Lf3FgHy9/mTKuoI0ddWeN5LEefUYKzD/d2L84uxhGYC4y2RwZGRYOUjQW1ZO7MVjTsOomq7vc77W7E1XQOVtDI3aTlovEFIOdYT1rQCUN7DzvoGW99Smoentke3wcmgoNCD/UD5VpHaHOLryzIq0PDRbjcQS8sCVSogiTg/PdGEDmpc6jWnGi+Itqvk7Oxi7dKy10QutvF5NiNAkrli7YQT1/kfFzy3FSZUMvstVHrqlNbI3b4W2Ks+N7/x+lHaNwT9y8+frfqg+I72DqR4WbDM2zfkkiguMIs7bD7YPsn30oG2HfTb9Onm6uevZxIk72+Z8vs3e/tNM7TOxmHdF3b61Hba14lUFLM5hL3dC9Ab+mxu8l2o0tXXW05N+SYEOyF/jGbWBs/Zb8GMjqHp1VWBZKHfQU3zGLr37t0bWd2puVdNWsX0sUrqiaxJzwk3ejr2I9lo/0BP6nhyV9/H/IyakIGAdRusNRBKwXnVC9WgXCITrkZoSZR4JGYa7OVhgKdyKS/DKoFS16NlcEpaII5HixflotUugZs+8qp6klWAuP9C1HS9bz2q7THA6uA3gMLtzAamA4ObiQqVNPuBgHMmc4s7dbohddDevdjMGVu0iO2XGnCCLKXl7Ngt0RTcQ+rbxtrhbM6yYr/Kwheqt+5i/d6RODa67iRLQwoqoNG8CsA6u8F2uJ0hHS7D26PrbA7rtGYRrDJTMYNkMJwOVIQ1cCAberFsTQuI07NTmDMRpgnT8dJe2GCUpXmtLDdOsAOmwtaDcLhvJfkZ07x+vTcz+E4ykD/35eIMx+Ax8wTES3NOGXNM78f3H2ex+h42MR75/PX47377XRU8vd47OtDG1p3UYcfc7ZqUsPmM7Xd2drd2V3Y217bef/h4fXN6aZRyuL335hDGj49PT84v9m4dl3b89o2Tei/3d9/v7B/+9PWzjv/+t98dHhzQmMjw3//TXxjT3//mYwcPX11/Pf364cN7M2nk/+OHt1fXN1/PTrmXP32RaWB3o3ablXQnt+Dbt28G2ExP56mtrDo52KrejtvgVzhcb3Q9DW+jLqTyMsvAWDZaiAXpsxfG9me+x3a82Bh/Bpbj6aYxY9dqS5+mhWPn5AP7kckRpZwSn78xsBpjOGN1hEkWNFmQnt7HoYYsDLMCsfu8pUxsNqmHNJrCaO3Ch2Y0B2qQLmRACuwDBnj3OVXZZCxS9CUR0ciAUaVJpV4lXLVL5IPPRyfHvOHA+t2HaaFwDMJT0GgHkMSzYl7PrvupJnJUOnSd8mpeDrcShA02qksJxaoxx5fApju6NQMY1b7c1+Uk02fKzJXyAVaGePkA8DwAMI1ermue+q2Y6kEOUu9Ns+BMtH2bRoueCpUvFUYddEfQQK6e+ssyjQbo9VQL2tZaUKUxqso9ANNxXQ0+XSgREH1SK3UQYhbXIAZJWaVhKhAm4KK6u2zmvZdmwrP3K+PzAsFU2+uKDpZGEw7aFRpMVhUg1TfaLodgqcFbXtfKApoCC5Dq0cq8lflaLr2CyqbOP3+7/P2nd8bIHAn793/33Zt/+Iffcl3R/PL8UvPW2TOrLdi3MzWxaef9dcuBdERyf6rm1gkha9an0WBs7Y5lN0y4k0NuO1LcyLhh2OPD19NzKbz7e4f6aiZQhqEs2bNLhihrCnSQFQGJ+iVQNylsjylqgpDS9gYd7Y6gV+EQjQ3RQ8lYLxRAbgcgCsNCr95l/nMBxyhUZT8+iVWIiVt8hRl3/J5Uh3CDWVFIE/g8xI55yk+1dKHc5AWZNSEHslDliEdSO0QHL+7EfJoAAJuRkDbiAsA0WoStHvutfe8RwYV2Da3TMxqJTZCSiDGO3Ikp2d5x5GCc3ZEBfKjmXPnoPlhsoswFtlxa19JCfVzI6gbEIqHDTlp3Y3hmYGsyO+GCkxHhEAXZ2a3g7f/CV/nKIe9FvzXFms5ICSQ+lYUQtYRFVbGcWlF5AjvThQs2DEQBNBGxOjLSCvve7dPXrhZcwUyTEkFG22QQh7j1G6UqpDV//Sw9QpSaJHRGU7A925Km2+Z1qABc94cr3Kwlva1Cr1U//LupC+OwNFxHX1DxEdoAxgI8NYBzkrdHa+pdOkfI7PWq3bMcYcFCb5ARRgdmKX5sXY+eHm3CifY2C2Wj+RfghFz0Ao+CsCckOD1KGWgITwFPsSnYk7g0N6z+ogigAa+factmM9QTF0Ha8rVX63KYfNFwZZxaccgH7hQ/sq0wbBVo39q+OrniTPMD+dOOj1Ezd6YqGipkeUpCJvym7uxsfn8Tasp8zrFBQmlEYRh4I3KcdO6N8Q/6xy+NSvJ/Wt5jvxkonuyJ2S2dd8kNa4p4GwYn7wZryosQeeR8CSzuSFumdmwQvPq8u7ENsLeHe/yZ4+MrY4vR2B2FhMHBIzPZzgaQG7epN6ToJBsGpYhh9FEKWmyEU620rVjRzVA6xrocITodS9WlQnfOF34+FR69uZTk89jew+sS6nljBoLnZxf6/3D72tGwZ/nRdjHfp6FseXyHlwyV11YtCxZV1ST9Srlqin6BvkN7LOzvNqIXOb65MSogPc5tPTu75WByAvZ3rao8Wdl4JRPDMOPs5qys52dZIyu2dOei8WypYDwouGy3VI3YmdF0xO2DpPPV23Ouw+sNG7XtbQgRXF7enp8js24t4X9+rSZHs4acVBWqos6YYBnJOLXsXkgyZgiNOfQvIqd472LTZdJnhCfO7t7IsRoJTHY9mZ1v/UKLYc0MZ2qlCrPkFYoKQB7xduHL8JOroOvB3zyJlAi7n9xSoktQJP+jplEETggNvvPSQnmkYQijqUK6VI6NlHG5+HKdbT5deMkusxrFNkZTCqR0G3BL9LKmFnhhhknD/OREvbJcmQtBc2dXeX34rdXYfPQI31INQqct1Nx8vnZycONXhtD+G5xpm9VAKcOoGFCNG9Ho4s6x0PKP8PL6hf3zHOe8Lhe3E7D5grb0ubpogYeYGT9eDox8pDUrgVdXvv5ywvqCHm+trZv2sQ2+lm/fvT1gsImWPfzubkuK3eoI4Z29vU0p+7jPApzXN3f/+IffGe1sb642kn68+/L1VKxj4jf3cgN+/MZ3f310sE2lHR3sXF9dUnKb1ro0Lb96eXJpHPvp3/7h7ur+wL68t3fXZ9cr71fOz8+owU/vsfmOLYmcMGCR7tHbzbdHR69vn75d3dpc4Y9/+HtrnaX+2Q3w7OzUOKqTfVa3f/nl2OThwfsDS1mkQhF17gaOhM+jN/IMoHLVcF9KEg5u/PzaLE2HkZXx3yAuozJxAizd1PnClWmEsVtxAX4ZK4irYrtRX4mEQFobv6LVGL9hvhReT4qxLaw7Y0y8FnNqi6JL6TTaTH+PksHeWZf8j5TjuCmxXmp6cVmqFpcnlGDIypJQ33Sh1vIIu69CL2Dd5V3vuL/U4N383Rifessq19kZxsT/NYspij/1LZMMSgNOFiPLoZFF+JT0LYlObHOfpb8BxooDd+oRmUoDFH8CEH4MtGSzz7RSfD0PgCSPLIJQPTkQFdOgvyOe/R2J7r0o5XGaIXkPvqHCfAkDGl9K99dryvf+1AwtWuydBg4LGmAmpIU1dY4FJI8gq5rMv+IpFO5CCmTaVDjG8BmcK+lqKgSeV1IaXdTSQF/r2VfEitugb0ygCvLt8IOT7AruDqDV22eq8nc6qAVABrWr/vbpj5bHcldhvDTthsalTJAUec1F8HJU1vEXVqmWauxHpX0bG7Z6fPn46XFlZ+Px3cH+f/qP/8bqtbaEe2iffmIiLVcc7Prq4fL4msP96ft9Hbu8OGOYrEM5PznD9mTdMMAUqK6L69Ft5rf3JfrY0kvK4dPKyZczQwWW/mFfqLFpnK9fTpxjI3rYqXszzLaJt03Rjr9dIBxVKfahv8KHMGCuQSCySfJB8UvHu50lgmR+MzCwaCyP/crqXD7+FtH3ig866gJCZbPwxsI1r5jFpojdHMaCGEVjOTqWmQNA7WKmGbcTwDjnVxXha8TSB3j2tyhhGkTxoYIvyQsdQi6iL38r/2wYprw+nqTae+NXPulCJcoAUmhPPV4hHtg3jypFlCRN/eLK0CJyT8mAsMFGTeLYkS5d1k0S4GsIKuRfpj7U4c+wgouwSe1jp+bDQe79/LxkIs7i7cZFimOtkYWKDQ6LbTexoE3qFLvPtHzGkbOV+lQD0kAfSPQkh1WYJ+SkUoK220U/R7egZthoXWrMHrTqcJWWG3LDmK9LTwEfp/d58Sj0Jz1CQvMiBgmwqRdTjO2tqH6g37wHTiQ2xFJKcx6m2Tzuuv4aevVFgcKCeaszM7yM64QPUCL0iuraykX+P4AE0i7LtS54YS9adMf44/0XhutIWhnmJsjXSsew8vPuKvaLQWtSa+qoWzpOADGWmyBMcJpntixQeR1Jg4HUW9DoZUAOKdFx+uvW9Br4wxWUj76Hdk2NUDRsootShLNMmVtt0xwCvbO1w8rJvXHirOaunByPAbCBOSVEnWEe8LxFCUAAcHjxoBojOLDx/tuucOZYkpYojWrksVCYnvE2c4Hyq9XQTiVAIRqxjJ8VM/i66GyQG/nzr1cPd7fhmQ7g9J/ZNnPj1enFxc66vcLsUyZlxg4Ej0LmBihb2zzdMp8djmpv/e3dHVuqIHrLqCECbrSKERf8zN+Q7n4SkptrK54FTdljBPYSVHLQ/EFwLOkFFLu6fz4+v3p7cCTUYdNE853NLQ46GVLHLXGQfzmx7/irD1ykrc1fjtvIZ3d3x5G/V5dnH97sy3/6i/OTkGh1hTfJe/n47og3T6qu7oU8L03zyG2yU6oO6PmSkP/t5NyBTbIPZ0jjROV1ZLFwSjy4wd3Dg4wg7qDJWYeoybqEzxJDzLeuOKy3PdKGy802IIcw9/2eTIlORxLIyagqjJYBletahA8PuhhdhZbpr2QCB0ZLxixejLnI3Bg8yMG/3Y+nlx+3YHMR10gQ144Jd92L6bUIoVF0WAqCAUjV4WK4XBltBGf6Jc2+3PE1Lq5oboovCJzoV627uVyqB6Z7SWAJoL9WXrPjBgHDvAcXh1g6H60knOYBOEbi4xb4GBYX8H9+tO9SWG0sJHphlbf5wgA1eLi9fTy9ulgzrIMlk2Jl/hmz8rspRyNap7vWUVlvsMq08detLsD6XHuTRXgodZGvecd7lveGKQ08DwX7Wa8nJ95dqMG+nE4dO7bXFRNI2TBLq6/3t3aNIpxJZ9jyZl2EXm0WlLyy9Q2YAXR9eXFydbG3s/PL6cn+zcbh3h6Plug5FQhKbdUhvcjYVVYS7qWkZAGYH5QaxPQYpH/58u3w8NBsgz1tS1VbN4jd2N7b+vT+zcW3q+OvX4xDfvOb3/LIz09ODUcPP727ub5qn46WlDzcPD7/h//470t5erj/7tM7ffnhrz+R+jcHRxvfffr87fSXz8f2JXjz5gD97fr39cvxx09vJRgY9795u3d+c2vcu7VHC7+STUd1oklkHA0oHkMVnJv5sA1zhxa/Lv+n/Kys7oz9I7csPcRO3kk624tJUmgxSTjsk33IgKk2j3YKpwAU6TGWWgxYBXIF0KckAebPU+yorEfKxVWqGtnJpueLNs4c4YobhwGrN+6NfzkSgvRTVMlGEsE8T3p9vhYewznEh6TAanxOCCcPeKYUYCSx8PEriHszLKmob+6PuqvEfKZ+E9geTG/H5yg7aHyktB+IvKiiig7GJjaZGf1VvublSvENFCJftMN8r5/znsIvPa2uBiQJSB1MlfjpE2kYgTCpqnDF2AbmjDE8Uk6HlHQPuKn0pLsy6sBOsMFvUE9AF7nwanZIYXe0BTuNBPhVJlWK00c1UCqsg0GFaky++qdXowbFfLrzgtPo7p3AirJ1p65BhkqKfoWp9M9yP9j4c4tTtbgm83JvhsC+VFHA9QmSYapIN+oReAq/1LzQdzBQ33wNiBfiejd4qnTq8dp8AlbHe6TWNDNp4GrZCPf04uQ//m/++A+/+/7N4S4xtfvchDOKODrb2/o6p8LD8tqa8IE+OMP+4uz4wl4CMg+BJdSujAEAtcMGqdkjxpzr43Tfmwe5iEINNFMjwJXnc3OkHHsn42CfwmmiLEbJkSylzfvnXYJuHMoiTUihQiw8s7LJWjYChUINnGMzogwP6MhKC1dGmogdl7VZtleUnCFdaOIGK+2fCkLX0I7SjQef2+Ej1OCDVWsaaiWzP3V51BVsT+Ba+cHk4uPykBa7E1TImlOLOc2kCRfGY+4iY9KFNGjgJr6NHkEa12F7XWMUxtTGDcls5Rei1Z1eQ4zuup928UzJaokV010she/8zmYQUmI9G34Q4yMyoBMmG/NXf3otNiRi8X/OtzLhkFgtwbV4ifby3EXjT1exdE4Cj5mq1AGvA0anyKDa6rKJI5UHa98arECSizo8PjdQ1KmqaqOs81YbXaQTFBCUfmrvkKW33iMjrheYlVHYpxqrM0ISPywluNPXUv3mRxPup17ykgHfW9Oud+FouY+nqjzoQmYYELYYheMG2Nh0tXMDaANIjliSaNdef3y3e3RgrxqGz8aMlss72UlcTy7ujmiUrhrftrkNBxcY90SjC24mY29ijaNvzINhtJwgNKwN1aNO6gJ3FqpRFgDR3rPBIkmAtO4NQww5AK8AfIzLPrpiCv8NQ0vfMwnNQ+py75OIFQ70ysqGw2nNnYtN315cWj4IB4RT6PPOzvxS4pPXTB5IjEmQILBwNYTG//QkDsiRBww0y+INt0UEId7fSOCv/vGZjDdaLSlw2QQSdPKi78h8HYe09Q4bJg6yr2NG2+Jf2ZiEC5vKUDsRdQqOaPbJJXdXUkCbEDrBiD+FkwgvT1jl0gcMMwTQMCjcRt7wF9KwTrhM6ccTRYvcpnpA6oansSzctJXNdDZOAlxh3s3nZ5n0oiUcdRn9NJ0zkjCFtHtplWqwd/7u/o4KIevbiSwerLwiNvvjlxMHo1ol9Qsf/7qbMGjvJ2sAzB8IGeiAHB5g2tPUzmlfj09Vq+ctd7h0mJe0kE1ZWTypw0M7f264uHq4O9rbY7moXdFPqLTgBKR2deTcm53Y2d0tVbMTZ9l2iV8CH7F6/I1ZeCdzQfvhRSTVW2oumhX2w/1pFgVDX/yFXIluSImi0NVvJaN7/NhF38nMvFCFNRXGB71eTPJHfmMNxGEbvL00W7W1lqB6HIi9u1TQH/BUtzdphVHlL4Wjb62MfhyAfQ+SJF/lE5OoZljSSvV7pU7FIa/vn+0z5aaee4+s5v23uWRHH5BSKysAMgiCbtsTVBJLGC7zp7VhfUzugjkAelEO2Q1jV81F7ze3xOlxI9G/smr8wcZVIu9O9aJVTOlJ7TCr4FwtA4P2BODN3Z5d4XmOui3vcBTFZMBmKuDnr8er686G20JqE2F2ghKEoIV59Js7HXmmFiPd3b3Vj+/2bdEh316g4sOn3zp+S97d/t6+9F1cjes+vDkyaDm5tDHogUC73bXwgLMssJ/B7aePb5QR5LO+1nZSZNkRv5LvMcX7/V2JcGefjwXhvvv+ww9/+evDEzf9Ytui5JUW5lIqX345s5SFb2ovfwuUrX1/8+YNT/xf/um/vntnYeFby2H+akHxl28OHZP2gxZMiOn+T5/emX5sF6WVx7PLG1gyuLIT+BrWfrX+yLjctEErja9eJ7NxR1BFzEbak2GUECWOwslULQ7kuuA+mB/2bZSI9C9sExenFhd21b4PvlQyxlvM/8JCozFQdrgYR+AZzJltiHkieoYyVvfpaaxJc7hgOWgU2EvYhyuVx4EeKOO9Ybl+dz9QhmfpykKPWfGRl9g0mBSqjfi8ime0OQkthSO15ZNp9o5CgRXL+lCZ3Ia5UZpvt+YTjl4Kkm0VRAXvTjvMNSZPSFQXzAMkAE0Lu8Yteu2rgILK0gPhLdjgXg1Lb0ATGvRUsyXnFMxL9+ashP9l/BNRerVGRv80M6kzSwAvqJLmkWhgDe08qkdpoT6hpY7DNtTUr6XvSweXIt77tVhUnvK6psLeVRlIw/U4zTlzQ/Tuz1Ck36PfUnXKpS7y52Y+puYW6tBg+hrqFFtenjqDtRqWfr4AOJCGIEUCaUouMFdCpbVVY/RNvQiNqbXuVW4hfRxYoTRUcFQgGMKVkpV2oTuFs57tF/0///e//5//u38bDp6fTr5ewjbfQV4yE2ON05u3794evT05/rp3sEv8r86uv305MWXNpxfwYtXIWeaVZNnJZGeXXTpY2To9MUtwfXJ6ZpClNVpUXwndLNy5u+ZJCNG1eYDJhifmDAEN5s1/ljPJiSgNr9CsJcIhHr7mjCFOgE+7Eg0C0MsIo9U0dk6z5dPWq83tnXGK8WTZcTCMmXUbrVSLiBQkeMSv443B4WAu7IWzTtLq40QC9OVhuAlf2l/QBkU+AWQ6jqfezC19HqgNSUItrC7hgGTHy4rGp4il5eECJLZbJz+n9nOPCBRqDHnHrQkCE+zjLC/8Q0DioMlmIcLaIQecquQsfzc/21N95Da5cD+KAzpXMnin+oBxodXpQa42fCOfEoAFpKEUAgy3KJK8DyePzNbv6aEKw2sDgJimf/HbvJWtSx0o2pt6p5svUsCVCEE8i/BZJf7FzOgxmQWhAi7yuAhNhT0OhFRIFFAxFRo2lJmahy4gr4vd0QsKN6Os+JLW71nd1QRIhfDTOYMWkpED3ZAykvkNHp2SdIKamtRMBBpWUblq0rGqteSdsNum3ZK1rZUPH/d3djfpMNHBcZ9Y4XS7GrRmOmt0ZlrOzLiuS1lf31wzZc+/ZSutxeQeQ6OB80KXcORfEm0EMnTsFOQXqFSrO0OvMLjoBcA3dh0+4qzlzsF/+Iv5xt4VHEkERiEbt2jDdxAmGrZ0B2U+Em/WpjV2E9mk3TnorHHupKnL9dL01QqD2uK0wxzZ0ylCJ1QfUYTtWwxr6qm5Jj8kQ8pjiE0JOC98ttnoHOV71+ifi/9kK6FChUOictgmuSoSW8sqdHL1UGa+1y1hVS1/jPaxjqnECgG/pyd7hZ1LSBRvf7R92T6NzacqL/rhXr+MoGzvmEeLPbAQpAz6oEejicTf8JLICs2mLEIzjET1EgpjVte5wY+vttfX3h5u/X//5cfbx1eAK2JQim7b84uY2tB/h2emvebwbKz5wI83tfntyylONaBBNVFkcyRSBHIvpWvsJn6XHPzbG6ui+eOOd8XKZg34jTudl5R5NW0k/M89otJt4Cg0okLjM/k8dCUfyBIK6FOXgYFwjb4Z2K0jgFvcp8mKaVNKY8pHI6orTGqBl0Dv4pfAwwjl6LsRhjCTHLbiG2q8OUyJcIkKjMTcOG2R6Bgy7oXY0Bdbh8nu9H2xbSHS/eAc/ehpEjtKI5YhRZh33umLd8ek9f4ooPh6Ud8uRrloMoVRtYth1nJtqWzgTw1VYcAZV/iWwHvLx038ABspPrEfaTyyVGfWxbSImRbMZBTVHHSumDWOlMjkAemawXtKTf0OTbMHP+63hqbR+mDMbIwNaTaNQXVVPdfXsrA6NqGN9NY7F5DM+9Aj4LhueqE9MdcfVzjWUoAQFPWwsjHt7trKrpkkW/vf2GH20jAA0hTAze8/vN08X5WOZhvNa8s/eEL3Tw4II81OEDOoMB4gBqB95DQ/Ph8d7gXhqpOnzZht2oTU9NXhrsGqUyBslr/17fj4cB8Lr785OpDqY6QFlTar/fOPP+7/VqqP9bcPf/zjx+e7Z3uAfPj07uvJmcD/H/7wd04H++Xr8b/7h98zTtYKH+xsastpsucXJbP98F9/RNcPH3ew+b/9N//A1fjhhx87L+zp8d0bGcj7umCpMdvneGAm4Pzq8sevF9ZnH+xun11esEuUzvn5JTcgtWJKdA6IzjncjAoUTYckSKBiTsjs8PJC9wzKOKOj/jK9ylOp/el/+hov+IJSw0o8kkm6TSfGhgy2Cewp3csLb2NqvJRnn64Fg5Ix29izYdh4doaa+C1DNlxHXEb1KJ8MqC3dPGZpBCrpmM/o2zxLdWHeMfSxr4c1pFdCbzlsLF9TQXqBztWZWUjqXFQ5ppyRTAAX3U84gi+B7ZM/SDcuPodQ08iX+zWLLfBllSZRI+kpEw+UnyYG2pE4Nam1avsa3qp8QNIXTzAGyGlRAuiR+vweDKRSXACYEY1qjoMZX3xQna6uYp9+Ddqn0N8QqFMkdKis49MjBeo++7KEWutBT9zVSvZe21NyvDGN9xVB8dLcJlwRd0oO0kLmVAKIimOraG54n5VxpiZrRUu4OagbYCu3YGRRX6OfIXRADSfVCZ+xay8Ec3BV+fzttgfVMz0YtHALoslLJVqLwSs/pKnXAZrmjFJVHQx1EBG6wY4+Pfyf/zf/6f/w3/1POtDIhL6cQFK6uvlZwr5Ddlaf37w7+u7Td3/6859Tc5N9fudcL5bg8VlKKla2Y4JUgbvzG81tbJXfcrQrA1DmgIdre3tHZx6la9vR/+zVKzE5XErnoYG5St6zDgzLGObdgiu2wldrFgprRwdmz9b0bBt5t7V/RxexRFG2rGSyU/5x+71qhUfl3Avn25SfjVUhVkcHt5SGUQBS+otiENLT4n2+kzpmrmtojhwxJpQQMEwSgRcqw069f7yn590CP/C9uDAqqODVO74urBi53G3be97irIKVJjRlpgeRacDpkR41T9JnKgRrWiKMSBaoRo6dfSYBqWvIEd+Bl8IbUgMuxuOkGvvkzmpCHaAPDA9GDFXOjtWlph3oTHvgiJdDhtdNXHSNR/T3V7v78ldjIxopOhXWOqOWxPVVp6oyAS8wHBV9oGKehUYSJYuDZg5dQEujKjfXVcWHGmS5490i01PJWGqDCqqpt6YjKlfXQrtfwUw8Y3UdfVHsSscf3UkoSAfEq4NC9zoZCM4kpr6osv9RMIUfDZIZ+f1w28CtvtcvaFpKqVk1z28PrIeD+PaaNJ9vbsuAykZX3hIy13Qukxl4aOEX6j9e1Y6pAw01UGm5VfYCQsbFr1H/B4B6vSAZNBqfj16iBeRWapF5jS3gUmvYYJATTvV1Oh41fQs/eSdcASiOMaq2Z2KbFqSGFj8y8sUpH2SSy2ta//b1G8DswsA3DQ+NgkCrZtHi+FZ7WZQg4P9Yz0DEy0yxUwAIpUVkHnVqRE+1XlxfWd8WFzRUxo0NQnWoyiVI4yBfZwyzbrWh+Qj8RY2Ndn0tu1mqFZdAIVv+20ZxJmHqnJr3trfEMK0htNivFKT7x3dv7ZhiD/cHq7TrKh5fuMG3AHoR3fCIlYfGZjdsfzK0f2GFBev6h/YxwaPlUFsbMjcgziTAq0trf0cr3D9cXt3aW00km7CU33x19927d1sdoVpyPtTbkOdo195Er//y168MIOwJuhoqlIvRuqJHvULB8/NrmeiOBDbu2d91bOrT18vz/QM7pdqZ4ZoSZEfTKRzSXfFOjj2XTD4077PRmM6bW9qRc9lwV2Dg0WlqXNPv3x2VjhZ/v5Ip3ua+a4KyV/iXo+qt6F6UpZ0TR4uNMz6SASqV40j9gEP1Yxc48c+veGm0ki8vQr9oMbzekxfd4UXlMaV3yVfCz0jFGcOufaMr8WgXC7vH2F4bmIfpo4Ovabt5osDIUrrMnRcSZ+A15NWXQUuc2jqHqIxa4PRbG1A0gpdUpIWn0uFyO3MJYbcCd1GL9plCJj0l161o2ez4DIyudz4F3aH6yb7Ut8bNDZ2fLECxfu4eCoyor6/PkMu6GQrCaI33n5po0x5bjSbR9tzg+jQIxrq3NuNb397ZZeQE/knWla02VletITEmNuxje5gHB0EIq9tlZ+P10/bBroQZgnh/w1NsvP3m4MBeHOYHrm7sSyBcZoKCmbT10OX+9tZ3Nvbc3/r6+QTbHG0clqUmEn9y8rvffDrY27+5v7u0w/f901uzm1sbj/cmCa7kCYivs6+GHM/XrwQID97ukfn3fzy6B580qZWVt//4d6x7obP7h6trAW9HCaw2BHrl8OB7a5rtC/Tp41sOwbevxx1/8Wrlt999vL9g/lcuL06RwCnaJ7b4urg1WH//Zg+/nJxaPmPgc+VUMoIENtyv57AomHJ6eorL+F/399dYAAdDIMYfJiHJ2GksYiyUYPugFF2nQBpwYS8AU1Kx77BHbFk4Kh6pWM5BD40VC1YNy/kDfFXkMUyxaQI7qH34dxrAri+WI7v74h+M6Z2X4+dq8snvTF58gKEGQuJrSnwAU2QArkVckphMlEsN+AS76pF7nua0EAG1jB1Vs7uekm6dwvFepMk8p7oJELyxdLi3vlRJQ0GcX0d80pMBo9thS4B25n97MM2BsOBPJTKWdaS/vQs27y5gYUv4roIXe1CnJwDZTdD6CsNLi2qewhHC69PlzIwCxTUhUNV5GNGA3tKFcT589SikefwrSFFcE1PPQv2+DnLqrBqgC7iL26RPdWEI14Vq6kheIagWlNZTt4biuTJFHvWvaXqPyH6EHr3nlUXjFTzS8e7Xllf8r5NjjLr8G/lUvjx0L9SHRpcIMF9DbPXEV3+Dh0UfExZgwRNs+jVOwlJJTWhvOmDbs//9//I//K//w39rhc/VheU0DswWHuAKPApiIcXHD+/Mtv3Tv/6Xr9+OHVn/9PWcwiXITuiTwX/R1r153gKZ+YI4Z3Xj1Y4tEzZNClxeX+3utSbv0WY/spadUGK67rIYoX6BWpIqJwMCDTn4X5N10JYJZvnYYVzKJTCgg/gsji0VGF2Btjqmv/m4qlqya8RQNO+rlr6cngkWmEo1yBViiaqcb+dFFruZ0QWnJVyuB3HxOasoVRjiYUVzcUPthiOxSViHNEWGGhBLAsp+QAq4TV23C1xJBJDAROYdcH/iighG4TP6fdNvXkU8NU72CxEIxsKWOER3CyTqWpon0tWEofiwQGC5T/moeciYIGC56Dw8BEHUEwniTg4bq7xqe5y4zXT3IsW8uUkorW7vzh/4iDWnCxqo/CDZUyB5oKFFB2pwZDtXcpHWZfiqk1DJ8EARNCXsU7t62GqvxPaDl2qudE4k+SUpKgd5cOZm1CGI9baOJLl6n/AQtyEHRKbc5jNyrebUAjYYyPGP6r3b/drtPT/V4DNtLZotUN0NGDVrp2qT1va3yVaiD4BicPT9FfMV7S0Bqdcf3xwe7OzjXLNPal6ynoSoKU+muEZb2+qUu0bOdBXM51BUY8NCwX82shSq4ZIFvKQ1LyjRDnGA8LjZ1/pSnVA1I1Wg+ha5+01A6wlQo5C6XnQyRo9FoaDKptapbbxZhVkE7tA8loZiGajYo4QlW87pKfdAWglJMSfQ4rqpmJLm5poxA6GAeEbEIt2yjnOXmGZYh9rGGWBpZJdGIj3j7D+KpYlztjyvDYNjd8Ip60FCTdsMrLZNGAJdnJ/bQYfbYzES1xRjWwfpQKFvx994R9YH8oO2d0XenUp2w+MyMLh9uDY/2QrmV7e2Q1Q/0tgj1JRCFAu/qDif+dK9dO0sBzE2wX8QDIM5EEPnBDK1A2ONC1CRqwGHP59d7Nt8Z3Pr9EL8gwjw8W3l2Rovgxu7m/HLP344OL28PJUWsrnmFCLyLaJ81jTBivNK7q8uBWCZbTkn55dXbw8Pn67sa8JllNiEssS4oerJ+aWQydPas80cLSL+8Obw+OJa3PTt/srB7u7X0zO+pEjtSrkkToyywfIFFSt5CNudnp4vgiQ/W7ecm3RbTkpLfPBB3dbVp2frtpFA5i6YrVKnI0kvcRCZTvA6UxZUeBAWMubEI8Kn4Fa8g/M07alK8HX6K0Q12Qr+8Lxg3p+oEBvGzr8+8Z7r4EgtUPm9Vbk4vbd7Po5IxmHa7RZgKtBFrQAgGkVdFaeYuqASxxHsdSquuMj0uHlkT3VfBbCr2thAGN6SX0an94KFp65rojcVqLnB1Uim+yzW6eUNV8lSdVjiP/GGJcwA5+0b+17XH+473jDCpi30GmC09tXt5ZvDI7bC9nnYWgYbz/ipA8JlvTzs7u8C3pAXxqHfXk9k9PTyShxIUNwjXKrND+/eyNpjkh1HMDtwODf+zrsX58eG7hq9ZNgvL8w1vX+7B4UXF1dH+ztUgc2oOjH7+eny7Pz9u72Dg/3rywbmR+8Ojp6dBrZ2eLBvm00xOK4/03t+eX7wdlfu3Yf3by+u778eiw9agrP2u9+9J8/y7wyHPnxyLu8P5jek6l5dX51IiVtZxejHJyc5ZqZKN7fev30r31eFZkLM/uuL3dDevduzLOWHr9eXp9/eHh2ub9FEdgh82nTqmRkBW/9TKrjRsRXW/2JNm/uaneQ0XF1b0XJvwg1ZWvJ+4yAhOuj6+AYy0Y8EGXdZdYCz4k/EY9rpQTYH3RczgFVQy44ii1JgLuK5VAQWj7USFFdZO+yVEs+0TPIlHktuVBTfYp74MNFNbHEar9RtJiwPSdt81uROsbFaE3laxqU4c2lxWJQ0xaWK9dawsYvgD7Y+IwgJXQY0GzaWNSHqDdwIBqUZ0ync3YI+g4UZYKqp6qoce089dcFLOdakHsY0lhoaoZre+V6sB+pUPe/3i4YnPhmcQQIvOOuLnQRqxrzmWujGAJOYTzvIGIQZrXlVldUDWbMocBHnzPOQKcAWirSs0VXgg4SjEVqWOt0PGx4MTVEunwwOlR343Vk0T38qhhoaB6rfQ7oQAlQd8Xcp0atBmkqpqxnc2CIIXDVtMnZ0RlYKK1Jtoy4wl7KQQ514I55TIl0VCr2rzqlkqSuEd3dIPyC7r/w87d0e9vLQBZCejANaJR56pPVqUU2Ov78V772Urg+M9te2f//w/bv/+//lP373fu/48y/k58S5hJtrfH0vOZ1wc30HaX746fMPP39DvpVVGyFbaGYGnhl6kGarEezN+4cLbi4gaSeBQlOUp+dnUnvkLWJQYYVZZdvaXiugWTokGy9Z5kzHjlIXNv0RaCXrVLDAid2HuL04XNc2Y48wODTSTSv0JBhngDLtJvh520MaOONLiBeCDZaMQ8BPH3B9hOQ6J7xZfcyACPEH5iGVvGMwqwD82YKewl3U7+NKqnKcuqQMNbWYb9uKwSxR8e8ZfOKBdALYgqxBC+ToPm5XTZyjG4IyaQ/vJdcKR9mZj16IEhRSn8uXaBohposJlc1IRcsX0kZ31YwSiP+HsSoKZSOYsbH/xbNG7kBBsQw3eJPgYCN1xuckZtpSy9QUe8fDDJ6n4I+T3IqpQNAlKdN6kuPO3ABicomx62ze6vKWKnR2ejGqqR4FuZfUBEbhZlFM9QzKqxAV/AZSjfkBQ+I+496GMRGu3hshOM41kxqClA9EOOFZBx4KT4ZSj2KhEDKtBlD96q2A8cwnwxv6hxBUXzYiYmm6pnp1XphukffwkOJjBPdLuXi0/dTV7fXFBYMlvRfv0oI+HT8v1GVpPGuuJQa6AGxW3iC14Atka46TwsOu0pdpzCYeVYNwYR1gXH/XVIsXfqUp4AM7FNU/9fjqacBOJKU+Vtic3MIt4bVW+kRmfBsI089uSUkZjSStD0HbS8Qe/O3xL96bpC/44bOGcNsbtkzZwxLL9aFJO7sb2cCwTSaTiBhAQp3bkQkZOGDAbZRrQs8Ub2xAHdh+lOVu4WTLAGAJnHSIzBS1GHhISWLfVcdvubm6kTclE5uLLda9s8WjLh/x6HCbjLcZURMJr3akwrUpQJnb/NH29Ysvo7gOhzdAAGoZCg+Ou72YG2XgPk4ZDIPcvsXyHIUilJHtbank5cWtU3iPzwtiFi27bROAkPVkl0arj7dlOOkLmjjAqDWcr9KGWpQWMiz8WpaOjVy0cXZ6aQr229kV9NkpZUcaj0MN7h9TxJtr5+e5B3YNOj292tnfObZo6/JKojbxtiAY9ttfdH3t+PjC3qgPd0LRYgEP+6XKjbDYJKEKGml9Pj7XU06YvCP8Il8CbdCIc892WA86+MGZAhvlw2AmPBojNz8R5kIekYgLC0VADzK7NbiliEJaWiOlnOfd/XnPZa+OLJKAiuGI7NHIfE84Tf0JaOTBqdHHTuczPhzXP8mMTYNjGnqps+/uTlPExiAqmZ0aVBEMvacvulkSNi81VaJ7JYqrZJZGxNPNNFUSCCTDDNWMhShPm1B72lBegPrp1cHBDnZEXDqI5oANvGt7bPkzaqGIbd1j0QWZxftJ5yQhqPjaGG/19dvDN6F0wrcmDOW2QJJGLabDS14nYpz3u1c2FGJdO2jDaoE8g0GjbH7Fj3nhG+s2+TcERRLm+fBw3wQR3ts/3HWi3PV5hzobv27ubODXo4M9JtPMw4Hd+Hb3QPnt+NzORl+/nuuXhb9r9rG9uTs8PFDGFqi//c0nDu7nz8fcekGvvcP1b6dnNin69PHo4GjfbJExt4ScK0dMvLo6Ne92cbFnwbGUvrUNQ/Yf/vJTJF3dePv2yDpA9OJnGmvZHcRyXuoE5ul/ciIZ4PLuSiKPjcmpK9JuoSFb3oJjG2fdW8Ri5+S1szP5BwJ7awdO+7q6etaO6RduPmLBKYF/5bTj6929Xd05PzvfNoSIBJEYpYabcGajU7AMAw+/YZtueeBmxB+t1T3Ii0YTO1G5Z3oRGyvuIu2aV+E71hpzi6cSblABCrvGzwnRsDQY8EKZoGV84dh5uvBH3KvKlHjC5WPQqV/FR+dOmpKsVRudXmpsXKp8ladFSRN0qiTv34dS7qYOz6oelYCGVZtGlZjVb4mMIrFV3OUz8us33UUfNzk2arOnY2BYbPfBp2zRLFkcOtIdRYLQJYRAZ2JUZKgPlazAGOxBaYgZDZAL28ISkAOj7o9L7ctCli50Y8F5CHS/OnVw+d3FvFmxuemVwQaqqEylS+8CL1tYf8dl0uLUs1AwTe9Jna0x5QCsC15Jh4SfHqoNkN0YU+GdSBV8i98wD9SMmrkRU1v1to+NpkftzM3eCTwvuF/LlGceVCON5X6QTGfVppHhJn0JgfVBoUgQ4lz6NWhY5rVC5dwOnimowEszNvb7hz9++H/83/5Xu9u28rwQhD8/uzz+csxI2M3nw/vDA1tn3N3+8MPPP34+M9sp0daeY2os4z/fkTLctE0FZeLIPnEebKCzQvxn5843/Qrfu3Ihnm3jw4I3x0eo/V21hkD+z92DhGkz24A2HaqEWBsOcDDY7uaGQAadCVaOHM9UDGny+wXdcIgcazDSyiNi+F6PsWsWygTgumRXk6isn+Ba2RdPDjGw9FLOgMNAt4iM6Jt0WLOBJn3L7cIM5NSxJ+Qa5oeBdUTzwzPDV3mPw+0j78MiYVv5Kd5UsG8AAdpgOLTrZkpjPrAu4vNESqqGz1RHXEgZ9psT0mxcTcU/6l/cegTWv1hoiLcQnHfbnaGrXsSQfau2gXokfRlFp0pqHpDJIi6at7oY9I6wFCAo+7xSC48gpa9tlJwEeVN6JZ1jTyS+YJ/4dcAc8JIRemDh2HCg8QRFFQkdABsteE0/F3+ABKgZ9vw0wTIsWY/mFb1DEE7YjKwSCtioh4qP689+YOw0bmPFVjsoSdsrBmMjGemi5AV36FPAhBwrVEbUkgE498DNQU5I0AhwsQGquebRaDsMLNKt/ZRAKASJhvBSnSrRX+rbytrumpC5zfnULIpqJ2s8ucON27Ajny0WczmMZotgWxPogkWzgWbogcCgrH5eWkYjCLs3k9h9aTKEKjZOjSIQFf/NMaaLMo8swTud1QcvwkDi3yeGGVs0fYlnUm3VWlcGSTGedsEWH7xaEeY3DOWx8ufz+xFvgA/KlQ45xQzDnGYIHGWAo1t0TkwgiJiihWsCpoycZuSImiire2GYxLwoMR2BdzlC8JKieP24t7NrJZHw4MaOOQQCAuVgau8TEHrf9KMYqwUEt5YFknczEkPXXZk4XRDoFUuX9la20ZES29reMSUooXqEjCwP8uIgnxAfh7hd3wdlgUSrtiPvyDNYQeFhaEMBHTIRuSq1cX9XhPL2XHh38CxUgB4yD52cfvUkS0EKkuHIo8bftAdoKTfCBxra2Djgz9FN0jxao3x3mz/qEFbpQ1urJo6uWiduH1bZFusnxxe0nkEVLSIVg4t/en7JYfxwdHhs1cPtrYnOtksXo97YuroRkrml0HfXtkyu2i/SADR2t5/Dza19Zw0MYIAmxKyCJ/Tgw7PuwC3wLsRJdJLDRTmSBHQyukBy2Ityg5+QMKaoXRWikHEqMUi6/OApzKmP+OFXDkwUFXAn2U4tpcXiv/AWUefFeBiqo4lK5v5CC835cCz6gz3jpOIxkWwprDmNplY06gPE9qClIFTjAd50rV86ojbjSWJAIF3zb5A7HlM0RNUFKg/OMUL8bqPMx6aeyYC+t5BXgQ3rzdcNN5/Wn2zNRUgKVbwq1KTBk7PTo6MDE0CWt27vbIOOnFgCOz3owDwcTEKa4bHZ9sU1BcHhrmuFrNDWatcbRzh/fP/ujBt+dQ01BEnSlZ4Zaeu3IItjH27xk2MHnA184TCsHNCz83Mw1OL1jUkASYlv3nwgXRbVWspnpw7u//e/e2+KHPXF6an/C1NPbw+1bjFNxrBJTFGKRxhrKG6PoJJ6V6wOtNGnqsw1Gc0e7Gw74cP400zhwdGR/bbMKaw+Y7CnvcPDv/74+firbXtu37w/ePfu3ePNvWW76PXXv379x3/zd3pnnsAQTRqSyXv7fv7phy/48vHxhuxsrb92nhBtt7ec4L1mMcMhOcc8Bgbggylr542avCFsCe1USi42TuQ8rHTsmtQE4nxNI6NiTAK1YixNkacA3MIx/qQGs2ExYjf8797CzC6T+fROqiC+qnhsjBrzYhYCUyqWa75oAtVnP/IaMeqERpSKN91JDArGZDWnstRKrUb9XPnMZBwrnppHkr5emhjJ8kXR3lUXHwIjgf9lQjyJ6DlZrEDVgg2si3BiUfVhEje95bduTi96y7ekWJM2lo7BkgL1KN9+Cuyr0j0Nn2QHSvVCZEC/4GdA1sIgcHEL/japvQQ7l3anpUFGiRD6jkCgCI8zklFTEEwH1L4kIupLWBrtAM80M7B9Bj/Ft1wAzh3VgzOijY+19DRqjcpKJSm4wBDacURV6WnXLw5cjYebQaCqqnwg8EdF2YCe15xPMPQ8iLubdo3QFe5RFwyop9P69MG9gXCpecDJTBoFVf+oPjWrpFeqtsq78/KZh92r1WAIAP+DvCvf+xZsng6DhRR3oVYk7N3u1v/1f/ef/uG3nx4frQK7d0L35y9y7Gx//cq5gQ4Wkap3ei4SNQn/968P97aow8uHK4xOfeV22LmP5BdpJW53QvEpbSPyQF0x5Uhe2VDmxhLh24enMzv/stb2QFzZsNcZKt883ttUgOa8vG3FoVkCtZ2zhbOfMtIP04Zs6T8GRnSdgCxzxrkpvhLvNQSFoA4459ObWnwyA29GQX6ulYs2WDYAuBM+0q7oF/J+OTsVhRdgtxefoFnFxoerlWVS13JG7MLntLhhkmRmS7ZQi+uGOkOX4ZBwmocaK4ydAabXZ+zvfqIxOE95DF7KZB42riYsPw7TjNJ91xxy4w+1xrDjMUfNuI0Ry4GOoRLB4sAqJ2Gk3SXeCe8xC4+SJulCR7CB2zkAeZOZOpI87BSrqERzng0W4w4QTdlSVtyPk7LmsVeoDt6MuzsvAIx0BIdyU2ZcvRc+BJWi3QfdBAji6PzYqXieeNgXdJ7KgxlUow+0Ut90MJwVJFavehTI+otoAmbQYT1RkA49wvkArFgvv7goi//QvUSjGjLoGQVf8rqn5DyjBqNnfQzaIFJI9WExOHEvkMI/MZAOtrpmn2uHrdLZNswCRvFxEbPNVRtQQkJTUlqRPmffD2fpSRxqNsxOlw+2d9c/CXVaaWRXEygfx+hxsWmyFjgRcWCIEOFzCDFUwIGNcPq47Vb4iiV9tB5lhg/nToWmFxV9KQZdC+6KNemgbYxWDbzbi5AcyAW1XtQGr/hvQ1IotZ076o9rdbttfEt6B6jmRrAZOR0usWF0WYJj2gKNU6mLjeU7DKGGIb8X0UkyO6fiXtrCtTxCphIaMqu8UPMJc5AiTSrrzibothXbscfw7a30eKnHhiev7mavwUywQ7QclbMiYohDUBnfb+4ZAAyOcFGobP6qTkN/xmwG6zBiLDNpf80tKh5b+4cRrYwA58or7rWNNq+v22nL4mODljJAttZOLqRdCx7DlBhwWyJIQmtnQmzbgVxbx6dnQEPYw/19qJO0Qx5xCb98wybMjWxs7yO2xj+gB/VRxP7VliXnKLayasJh39LgTSt9rQp9Lc767bR9gCz5tdppd3PbBu1UlVANYtjef2+rPSLp3/KpXq/I/EEY9N3bXLUnajMy/OOiuoIyLSoiVkZKOMYMVtgwYwJtM0HPk64P2GUiCowlFFHXSKO8HqYs8G/il2yjJjLHO8tPLBLq3VBnFF8qwqOphbgwLPufkY4ZaCVM7w7i/037jPwNNRrQZx28jqUAPzxfrqQfYFINLnb3dni0SqIx9OYEWyv5OpnHyqJExVa9magHPLz5MnBkA4zsnbgkWuXFEaQGA81w4+/19YOD3fPTc0pAW+W/EYmdbdM1OuhcZ9EmOJF7b9Y7HICqWG7MDHP8clbx4vqCoOzaxseU9zVGoXNXxPUlw1w5Ond99ehwV2PG/hSmaa9GZUYdm2vScw3Bf/fdB/juCN67Z3wuK4hNdtrFzuYe4Xi4uts52Dva2zGuvL2yUPf2cGfn4HAP3bXC78fYb98cPB1uwR08X107KFfazAZTqn92+VzdWDEPsLm68eWns/WN10z1/p69gVO/ektQfvzrz1hl/3DPIuen2+uP7w6vne+7Jdf/7s9/+isHYn137fvfv5ehJDFqY8umnLvOnz56dyS0Lx3qzz+dvJ3lCz9/OTZQlg74cHGzt7n1m09vPx+f2jZJMg+zIgPQPkPmzm6s+3XUwJHAHk/AXIfRS/sCja5GwrFhbTbiJIQiKxg8Np4pTljERRAYe6CxPiD3uLCuFxO18GGEFsBY5mgxTotnxtbm0o2e1aTqVPirB+9GNhVxU7IYMu3safw8c7suhssmTk+U08hLzCxHXynPcxDVO1YmD3H56D/71pxpoIBtGqWLjDSKivH+Faz4xA6nI4t/PwBoX3fi16GxQoubPT63GtUNCWp2jeGX9r2kTqopaQzy161s0amUYWB3keEMDbWgzmavuAtEIZ2gvqBuqFNOhjdAW4VpgOr0Vm11NeIWRQYDDaNq3yt+XuqZuoCoLwrSO/RP6gV82QdmIwp6ISwwJgpBVII+3Y9wNEKOas/7SR2BDxx1wY8e1egwhrtg/DXcsJSpopdqewUwCni09GVhqpDvqtvLg6WHDQaiGvin6QCOlDUBBh32RmC8VNf1S70uh4HnYYTUq/pY9KS3lk/Av7g7EQLwflQ3lYRDlwoAQFvzd9WWv//d/+yP//YfP8Q+r3Z++sufnJApGr2xYyF97Hx9acX+/efPzIu1dNfbm9salz0oN1KKrXcMFWTW1WybROOipo41QFDB01j97nZn+w1XgamV639qlO6sgOsO/bX+adfm4jbE28RID+1IL5fvVSeuGEyeX14fvm3fBFOpj84LylNfsyHI6eklsjsrnQ221o2SUTIXyMJFITeV3+Z46SeW1gfzFNdmQm/uOPowwMiarTAygBCGnU0+Pr/4ev78/ujo3eFeurNdjwQ+jDQyB5SkzrGeqJZg4yYTvP4M6UfQYoPhaLHqPDM8WRw0B5Elipt0zIchaEDerKOHxZvyh5Cj8XADmO7mrqFjlgRZvZ13O4zt0QvnZGql91RsAQOl51F00Dbeh/AgL3WkOsexqjueKupi4fjBk3qyeklLUjNyNCIzfRl3cyABzIjVyJdg2sxjA6CrxKpud1E9bs+JmNU65X/tYOI1HZlu1mu83BvThCfhIei608WoZVV7bVTGlKzW4GVxx+VNkXpAY1cD0tC6VfgywxB6U7aLzOrRC24jUQSoMZXjlspA7JRcpMn8EEox1gihybCHIqRpgXBucFiloZcNDkH2p19ZvbJbRmhXrNCMk2qgJwgx0eaabdldGwZbRqj2QYWxMTesOaHpWERBJ6EfHeRyuvYy8DCDEmNWNFDZ7Bcg206mJ/5zxyuGBpqBf51rCm0QOzfTDPPpacT3FRUgbAaW4wSaPruZJA70Jb6qUkJZexbxdSGkWZI0riBmuxtBZasiB0KpOzxDggAtsC1MEOT4kdA2LVA0R53yQqHfLueTa9Q2Hvov0X+9hP5gLkYN5yDTH1CJde5uWpJQRow8djJ+8bB1sJsBwOlCo6+bVDFrCc9X51dycIT8eQibJjHWOoJN+PXbt1t0eqFxJI+xoCmaM04D6EyXjz0DBEQqk9VVbOYJXVnxfHsmQWLnTz/9QgpRzrIEA2saSCIJKdvdoyEdTma0ZMI0RbzjkLDV1fOLS4jd5dTIy3+97vhDDb/Z3xTaQCGbOfLJuEos27/53W//x3/+V4fIHe5v2obFCMOezBrgLL0xrfnwKDFCwdsL2zVYTtqqKZpuFhAXFJcyIRPC/CpNYq5zfWMXPWBQH09OzjWmQhj0LiVIvYny2sXe8M5clQwTcIaS+jw+VHz/JFab2vXieORNjHBoy5OJXDgKObEUCQljmZxRDTEWXhzTPioQkpHAb3e7dAGyeHXGhXg9osTKMWggVCwKLMY13u1LBZb7mtO5QvyZUh91pjD8MiR8Aawd6MSENP0Cm/HPLNluX1pxndn0wCWmNj0s7oSnsGZPBLvykZZcT+tadigFW+Jw0j9/OSEAk73qgLxiNg3WzT1dXKlccPrs3AbIJoKtxc5l2Vl7bX9s1k6qlc03zYHhe0c1vNndorWNksnyjHGNMM3N3B7s7gHCQZoExsJ2S7m3D3YIjoDZ7e3F/sFeJ13Z+PXtrk2i7q/lgG0Lvq1aNS6W8Pj09hNx2GTrXj+us5S7e1sbe7tY0CKVzZ3Nn37+8off/+72yULbc1G6mfl8basi+Wn8gLOTC3vLsp1Y68vnb3SMnYJ41fd38sUwgyx8+bCvnPXz4e2brZ0tm/c7LXh//4YJb7IeS9uDf3NlZ3/36HDj7NuZpVE49evxhb6grMGzrKGPH9/ghZ++nthYwBBI3lRMtrb6w88/Yy/SdH1+Hp2fX8srokziLmlp9lTOL5oUF5rBqr4OK5BJ1+Y/SNCyjmykMuWwVRjLDEvHjYs2jLOopNQrjhl+w7HDUhjsxUoODw8LDSvG6/gHbtPRYzaGS92PIXGdrsefMXcioJHu1xRlFwvhtoKIyo+MqAT3qnDeivXVUCHfM4djzOAE0LUb6hZNBTK1L2CrvSbieM1pUt/rSC/Ru0liUtYdn5wbvZlf1cBUZZ/cw9ipU7CArar8UPNFx9WtzDTtb28x+QGZ9DVFQLPP13CpcIoi/VBYoaoDasQc2FMxVLhbnIVymAqni6OTJ19IWyrXozqxjAQgLWaYkQn2A5gOjeUOnwOWVjJ6uq+/2q1E2Km5qkO+LKi74aRXlpFDELivQDUMATwMq5qetBCvu+0tP/gqfMy/yNd7CgZNdfpMbRp1a7kTXIFRxDE2GIT3luc6tdBr8ByQA8EAvFRXjfUdzH9rwB0dCsYXcqvVd/eqPITXyrTfndoZ+EUwON3/6T/8/f/p//QftncZ46ez0wtI21p9lJBD3n75+Rt67h8enZzenpkQkNpqwn+cS3PdgEeTlKfZwksJe+tb2/v2FF66AIdrFuU1aaxkEzu2nP52Qh/e84jpSJPVVh4QyAtbUb9esanozt4OSplBZ/ggkv/w7vDw4/u3f/ebd5dX98cnp999OsBGVlL95mh/c2vj29n16fGFMMzt3ubj210n5NzcPH8zqigxRnPgfSo8YEcjQR9GbXO19GTOyubmrXCMMFCLBp5F/huwbMqxvOW3EVMnozN1SFfqAmBEG7B3M3UL50QLaE0qo1xfh+1dxnTEJ34lMEYkhRNN8BpKkNiJ6LvmAMVkfjytRR/gDh2n7nxdQvEyJvTH2+maZWS+lENFr42LAlL1qQeqSa7YFobLZ3XXBh5CNVhmmiRNgK6NWKZxPp7QQXDkAibvacLcNGV4PuyQ1kmVpl40Tzc1MrXE+4omC3akEHDhZySJKSVtD5dOe6mXRKwvI30gV6ZPQj3wDEpfGHSG6IpAmrewcHWGhkqq1itASIIcX0F48/7inIQh8AFb5K63FAJSBBlJDza1jkf3AlLhbT2GC6UQ0dv4ZIgcdb1YUBkPVH1A+LOgUYtQMNfpse2drRFNEDqRara+vroXKNM6e8QnluQh2A/x/FogWkSzKs/NJLWxUizH3+WINbHWK+QUmuI6XtoyRwqC7EscCR/1LC6Y0ZHQeLEYz2JXahnhQnecYwwDir6EmQbGvTnukgpdD2tBQb0ZNLsZGKwV50SrgAFZ3qYFDLpWXeEBkh1zJPqf6sLU/DfDmjKref94zz17+9ZwhFfGTun3s4bSuvxNzCbtpcryrNYtMGjkrxjBvbq+bky1gRYcrzsnCQqhInsHJd2JbpfKfnF9yQQhCmEREOUiESexzt2NdYpAv/CdzjqjZGttF/bl4JSkJ5F8kDF9CElhKhkAiCElJkBB8YzWLmAVI+YCGxQKWQrYGUtdXV/sbNvB3NIl3tam9HmKAtaMAfiNDtw1lSmViR2/fboV5haxt7W5gK5honxaPhVszdzIk1TvvW19q/kczYenA4kVG+t//ekL6gilbO/Sd6cQa0UpwEQyLuWUFA8Og3Cxt79jcXArI1/JiLLigY+3TbJl9pxdCIdw6VqHzvtsrtYWyVu2Tn8ltkpe9acpjYdXt4Yis1E9FrIuEy0tIb2+cNHIEo4RsWmNUNFosiEgM9yoN+nCc/RCQhfDxkrh0/+XH3wF00UEIRB+ve5PGCZOGpjhgTvxuE4Oo/ub1DKZRvbJ1ijLkWHXqSfQF+OH+LRqLURM8DQzEDmLKFt9GEnFfS0tcd94tKfaTS+kkb01DFDGoW76UVtGvwoUFGY2N71m2xkJsu1UvdYoqNWsxlHi8c+vv52cQm8oer3WttjyZSTFGv5aDt6c3gMwjPHAJ8JNO7TTVkC9MrdgRxtb8PCJ24vJILhMOsN5ym317f5bsvHXH38pyQfm7p7+m7//eHri9B1z9Hz9g5Ovp6yvacTL83NBK8U6y3n11Z6NiVQk516Cznr7Yuokb97A5vj4eGtz+9/+8R9++vzjd999B2wHfkmYWd14bXxhA87ZysN5nze292lFX0nZ8PPKcVp7B3uPN1fyiaxD/3Z8Svk5BMDuorKDzn65JGAy8kWB9d7gwWB1T+7O5u7Kw8q3H88h0rDj9uRCXKwAwv3T3//+N+SCZP788xdtSDgGnqEOjAnNmQzZ3d8+P754vHkmAoy9vEnr9FqVqvmtdiG4x7gr5KhJanSUUHR5mfdaLFBznSEaA6XlEvAMYawWe/kflTEJcqNyOgg9KkpHpEfnOv0+jLdYvu6rSkFc60+6uDYWnvcwoxy/dUk6m/pXoQ/h6Nbyf2DAPFpfvAeyo6IGkCM+ceekyQVepnf4Wa3q0HaqIlNHOjz1tWuKLa7Wl9hM1drC3oCpwNhd9+tA/2LtOqJ0IoDdvECa8js89/402t0uZow0udJNoNXhRP4FpcRI01NxuAJbGArHC+oCdykMDC/SkcHLbM8W7HU1HqvT8BDs6pqbgHNBNOraWPOMv0fph4yOV7QOnapl2FUFn0MgumV8jmIKeUgKN7fXOwEfnGmA/B7qIy4ITVVYWwvq6sTg1mOXinlx8Gnz76Hh8k5lvJ6Z7c04ptoGzsr7gsHqRbQAOFPiN5arjP9TutbyzuuykvXdd117aWSKTQdqbLoQ7cao++qjfH8iXxDE5GmZ3nc9cL0oUgr149v9//V//MdP7w5g5fbq5uzkXIKNHJ7js6uvJ1f6ZxHRzz8fM6vtp3ErdAKRK5JVAWc5zcBMlzbCNgF493BumT6jWWLkRiMKXsvd7ePem33nWrLonHMbV+iTvStyFeQHvt3ZP5SnY6/h9Z9+cryH1x//8He/sWvQzt6+KUcbif2P//mHta1tWYr/2UZ5144P3pMc/PM//4X2p7jWbYdw7DTDvZKFOh3zSQrAx3cHoHGCWTbOVnpOMiowR2Fs8sCgfX1z21Q2luCNwdLbwx3G2G4Yp8UUni9enytt32QqJPTnhOHVyQIgkly3SJaMuI+T4VwZZghCrNlt+nWhhdkKPKu9xDRuwEAoOvQn5lXszYUz8Wo0hRemohmGGA4XZVIfR5qgHklMoRaEymJ5ErnVj4UXScTM8WkMBsLGHvm0/cQkyyuSJONCsJAO/EGd1Z+0zoCJQFXfVHn8oo8qVLgS9Vvly6Qf0Kd39Sstglpxnl4oOXyYXE2i0Si6bjZ+rNVK+TpOfLcpUwBmc0ejQI67g7dptPKNb8NS+grS9BMyXcghicuZYl3RfrKPTBxnVQAAulMp9UKjULdQZKCuvPuplgHKGz6LIfCq/tfrFIT/5Yv6VLtaBy3BBXtOKMPfdqXAkZtbtI8lf5Ebc6walqyLYpN9E097e3ut5ZNVLyb1dI9C7oto8eO0kEVJ/MN8baoB48UWBqucz5lTSr+FP14CEUvKUryGfDN9Mb1wh9cbCdXIQ4u1qgUO6k+hE1XFlm7DZdZ9LuB0ccWmfAIGsYnqcLw3EAF+uOj8QHDempvzub41ToYedn+ySTreOFUeJfxtM0l5Tu1FAVzMI2DcGrD40oBHCCFzQCVyuky0tJFAPMaFAkbAE2MIrJJqFTZ1UAj1wMkCmkrs/AGqhqrt3Zh/wDMVVBITxw7lJliBsbNpoaCVaJ9++7uN7RZSqsokMmGN3WEqhNTw9HAsikrDS/dS3DghWQ2JRjZNHX78+O7b2fnaxrZZSJkMssnpLxOaNCDGvLtxmIK4u3RqlF6z+sky6rGzr8WP7XliFaZ0C97pxsa2Rzu725fn9lppsS+xtwmbzd0Bpk3DBl3SHx4msYdFeUHUl3UvOTqyHdx8LOdH8NgAgru/uWmPS/kaK+f3F6iy9VrW+8MWb4xeWzcvYRwF1dFjb3fvafPRrEq8IWFrb9dsL69UdEdGOJrBT7QhqVoTAAEAAElEQVSPCnaEtdSaPkqu4lEIt6PRdbtBZXfjFDIWR2LlDNhiydzNa/cJ1d5Sidd9jYFC/MKIY3fjS3dC//IrTpm3e5m2wKZV6BOBUmxklSGkESiGXusT62uiRgq7DmDYDmqnDFafEKOWRiG+gg7yW1u177Ze2IYfoxvnqDR5I1mo7DFPPX4zXrpEbusuZKWXu6LLamPdoY5XWoz84QEbvnpl2dnKw+t7rGNkAPkGIUoaSaCcqLoulNJATtLtJNZQkkpbtTiEipAwZbGHZawCCf/0p59skm05q34bzmzIaduwDY7dPLHZmKT11yYB3h3J/FrZWt8WUACM2Z2zs3O7DOERHVrZWfnLzz9z6gyy9dWI47tPhxc31qXcX9441/Npf2/r49vfgBlHn99e//LLz3uH+6Tx5NspmLd2dm5aiNNyZFbJHp1yeY09Tk++WGVDtiwytjmpqY1nYUCBQGGDTXuftejPruJGfQe7Dj/Y+On4WFhEpMyYCluixNn5JanZ3d2VZGC3rvuru13j+X15cc0owBhZczY5BUR4/cFthltUqvk08UVCPSJMo+MlpMQf+VL4JB72OPXtkeu/8VcPUUjvhiV66DuwezAvDkuDYF5yG2OrJb1RLT3FNy/cntp1JzZbdn2O5ZIfJam5jGuigaXQOR6bBIBsL5qXrLK0S/eJ4TFdZGRUMKQxkOmi4Ky9IFw+YPBqbvCvojocPC24CZD63m/Vz3CiR0Ui5x3QJj59puusi3F+Z6V5w68sgZfzJno+shxyRh+mMBdFP6gNFdqqOapgccGns9ibtghXiZ5CjdsVUXJBpTvua04DAU12x3EHQXMIIfgFjXU6UOsLrEYO9JitLbw40AavV1Tmo9razXhrPVJMDGxBeQqiigdFmgBjHVfR0CSygbLfdctXhQcZuh1TVd3CdRDbtyhbdcWD8lH6DE7C8PQryKpFZVUekFO/6pWdRmqqepcioyen8NxUuJeXl+pP9XsyfZzXu4MqimioauLK6hqKQLptc1/9H/+3//j3vz3K+7+jEm5Nan47uTs+Ppc1C2LbcshbcGrpt9NzXUmfou1r59iUMMmzZ/XtHmGXcEFBOF8mn9FEegCdubYj9vFMkG944Osd2fPN2R0oK1wtnPr09PHt3n/7x0+mO3/+5UTw0g51oLA93enlmdMGUeu//x//fPvq4cObvYNXm7/78OFff/gJH/x8euaUQxFHew5tr25+/PRmc3fViMUqX3Hbvd2dhzv7ETu/uHVB4lwSkt7t79tS74dffrZ3mMHG6Vnbgm1tyDC+NA3CoTeYmQiHpQiZmVIHbejZCT2rEpAoc4MfPLG6zguholmJ5g/+xuW4C6qHcOPvCBTG9igCzfFmAm1izTJKRCnEtKwogIsYHZMkzdE92SkklpP32CLpPFcSvQQt1FIrUVPlMalnOBnMhLd0X4xEiXXbR434v9JxY7Tvf5KipThomM0XbNK/4voGOdn0aWFEJkJl0fzWqMoVTZvFz0s93QnsGDaGB3m3RjCVpNULStaJwQNOKn7TOFwUTCeUhFXtAJJTO4Lza1Uj13oxFb7InWfjOCT1kKxLWqw2xiypDfMDDOEsjg5OChjN1DO9HvHslyYjnE9YnV5AmB9dSR8WJk6BeB0AcFLvGFoQpP7rYvq5j1o0RJOvn3w7O/j9+6K4zT6ph/0viwXe2Tuy08ybUfMDTy/B1ATZ8RTw1KPC3lN1fdMRmgoSglDx0WYvgq+A6gdrQyCmgW9Qx8dhBZEaQBgdUJbpKnKmvhpyT/WwAy21DKWWN+jZVB5VlPMAWmbEJc62RLcXLL1wyOIVT/Q9Tah80avWPNQXKydT+Ex6scyuZ04C6xMrH2Ik0geg1vEkAnlfsCaPSlaQ9uQ2qxXvAc2cJHa2jMdsVrnM6qKRIkitCMjzogUWJGJ4Aq02/pfEIM/w9vlh33ag6+tchPPzMyP/X04uHn9xDkAyFd2GBNhkeouUavUrFnv5IEPwmWCiXkdylBKjtMsA8gttFPufmFMDFOeNWbBrWejqytH+rpDzGfe/Qwq2RD8uH+646zI6UMugRJ38pDfv922lcnlhSWbnL/ALRS8M7UjZjj0YRT05disrzvaSxgg0nbG3qSkpy0rs2cwf/fLlzLp8vLq733kTz9f8Ld77g1Duwa5sDY7tk/TNBlJxzHOLNW+49YZkK/s725q09/+nd0dwZ2GKGVLsQqljF+NOKeyGUJSLYDbS4k/YIXtpR7N+7WmVpsEwBfAaBpSVGDuQ+VgwfVSreR5xVbKfxIV+JZb7/npEnXlliFDgIoTPJyINm/oWdapkUU/keKYUUsEKFyb0OvTmMQCa6LYFWwPE2ir0WIpXcjOTpF0GQ9D4+C2/xR3ZbblHQjGjXLibJIVVEHJW2DePmEZvKk/aCZrUGoVa7Au5j21WRR7PLs5dyKcndHJP1Y8Z7q/vnLZmhgdrlM2/GSeLTl3QdDUq/aNFwIZnIjiMiLVCqLy96fBmo69H6fx7bw4AwO02Djx4f3h7c23Znq69t1TAXNjr598xm3ubhj2GhWkEuUYP1+/evbU2lwf/3Yd31oxw9u2zubGzKm/H5Nj+6+237/Z/+umvV2f3b4/UtJ+ibz8+e+tufP/773LT19b1//Pn01eWudw/vJmTyGDj4kz08MI4xND+8uKqTT3W1v7dHz5t7u7cnDtV2DLoPUcDXpzf7G5tHe6aoFt/83b3Lz9+lfPDI3vz5kCQADvRH+enVxY52EvotGPpnh12YT0AaUWbTsOw7F2UyBQqCbibc3AMhx/KgJfdh/ZEEUUYUYhFOwPidDhNmoXOZix0RlUxHOTDP/l7FKKvU8yXnOxUWiyTjph/Bfbao7qgCA5Jk6p5MSqjo3Eo1lQ/5kwMVT43FocQDD3Duz4u1amhPHptaSINilqIWA0Jjsk9NVQSHF7KXMUpxU56YQJUyuiJ1rzlqeq06VkY83te9MRFkjhQJZADSFwfhMvtYFIZwfF9mkgVgmpaIC/dDC1jQrwIce7APK2tjvESpszY2gWSxeNHiJrkrOgshh7sgCLspSaohsL209OUbWAt5Zt1VMBXsNgtOgzU5ZlhCIWh2a8KeKOOp0i6PX1LfBSb7qR08jyGRosuqqT/yDzv6FEzIb2s0MAwIxAtBM60u7zoa5iJg34FOCr++uoCc+pQ+9PBqS0AxpvJgo6TV4lRbpHB44igniGKB3MBM0O7l8qXgsujpbPhpH68vLXcVEyv84iwa6PhIOiOW4Omf/uH3/zP/s3fHeztmTTD1OJVdiQTU9vc2rEVgdVl7x26sbtJ/B1uwwB4lZvur9i5qMf/j6v//rE2SfbEvjrljjdlXts9PZy5jtQlpRUgQAK4kiCJBhQggD/wPycIaJd7d+7MdPdryhzvyvLzjedU70jn7a469TxpIiPDZWRkpEZkNaD+tAgND77v9rjeAGLE5BaaZDqS9ZiiOH5oJTt2zucfCeGl3C4G3R/ej8D89ctss38RhY+oLybDTz++c6jA0antfMly/PnLsnvWn/RP/+Nfvnz5dUrzJLL46PXicoS5F9PNz19E2L4+uQAYpo340WZ7a/0ghrirX0q0P+yMeoN7l58/O623uxoN372/3G83ThOdD0Z//tMXKtawCumSM2bRsJX5+VUmhlcOzuVyRnoTJszCxFCenw6JWAsGVn4Mlag0RBlmBJAwj1gwVn2HrI4QmxwsbC2SFOnVnmEjkUKTtU4IdRF93uKQRGCbNbMV6olkUvuNsJUJnKF7Qy03fNr2Vxa0nhKhEdq68TmQvd+gYwKqm5ZqpHZfEnhR8OdBuK/Y3xqJD9Esh6CKVLwt/kjVqG46FMaLukKWxRYgqBqo7U0Fp0HGXhSlwaii+aZrTBApmubzIb2CoQhavzxUXPwnRj6so4qoalsvEiPllAmnlMwxHkxYrJaHQVxZa1RnugwLkGkxJPSeLoMYlbBtww7BVIjbr2J2vKkwgD0Bf6YpgjQGuPlKoymmSCoVW2dmwW6Fczeb996PprMl/S75nojszXZpb4ztVANloRztJHXJKLSciPRY3VoEE/RaXaTZyDvGmcRa1AG1ZGEHvmbYGUXNrLmmeTMlNVWaqMGF69NW5tp4PUw+coD7I6Lc3zHS6uQJf6G/i+AUNjTfg6LaaDXpUYmWa9yQlhD1ThuhmQqmABsitRT3QLVCjcqJRPI3C0Bhnv6QSM5lpyOLQb95ojO/2TmsXV/R9Mp3u0ZzAEACARRZRrWYFysBIK3l9RbSwELL/iIHRLxxMGaM551aS5q1XNeQY9bZ8cvVBCerzdO5g0MOEM5XzFe37BJePJz/6Yi9wej+QAEg4ADI0YQY9yGJZm/I04ZcwxesNEczXdB74nqie6eH+Jzc5Sw88pSMEGuYu6KGozYj3J7m7mnvNKd8Ooy984GM65IFPdzOZu4MgEqmD6+rzP7kzs42AlEQxRoCsAjkiW9Em6NQcn3erTcypbjbe9iLw1iSWdmH9ncLkWdWI5vl03zpnKvBumC5vSSPn5+nZT5mel6PBr2e6SEExfobB9eyc9YGjOA/fbzApNPFUj5KIUN1XP2kPxzAO/Ko3dLsnZsWPxpFitPZyeFZFJfFfVAHOSG0cJmfsBc2jo1UPIdEUiTKTzMI8bCgUtZw0GX+5UtRtEnRHGpO5bwJsRZtKq9lTOVpRHPKKxqZC4hwBS8L8iUXwsz1jaVC2pbSZeJo0tt0ozyVT94XWZv0UHNgi0DXceyY7HfTbbk5xmCycNb7ObUR4WIwetN4jYkuyAEgIDFQG11f8VPiZDZalWvCar896phkurS2XC1y+dDgWGCbJFFit3rc+9mciZcrsdFIS9AXwwSjgAiFqiMpjkvAnlu9+WpNofbkujw7+emHa2k4nDI3BFs8qOnL7Z0IoHbPWiUXSBM5GxIo8Un7y8kF5D29umXiSHCaLbbO0+lF79ppJhOKGL98+z4a9zdLB+yCx3cfJg6X59qfB9d5YmHWdT8zjCNOT4TlWkZy7rx/d3nzZSrKaXo/3f36zaTL/26H6KxjCBsBgUh0Np8L6rWEcJrYZNoT4O9/nQpBe0C/dsNW250hO3ksE6hkVigtm3jDka2wTHGtvdsOMJJEGUIWDxar0TP5jxI17aGcopnMZ6anrHmv+AqaWUZFb8QTimrswCK1osGQZGp5FUFT+hVBVnNFP0hckeibbD366FGD+eF5UXkCcgkI/RVVK9bMKTqPVI0/LJ9ol1JdodbqtKhTYyWain1YVdE+KC2evrLL01mVqX51nN9ADhmHkYjvtKDJaIfafDBbvoWMA2JxG1otH7+ZqE3RILMYIU2B0J+GnYVK+dgim7I40QNofAFEGizBoMEqWVKsAFJTg34COvxY3evaRDEOMFSz5il8ZRYCasbkA3ExPpQMNqLy/SvFliE0fxMR+ZIhxfTJ23wBTRkKqV4f5B054gMtKZjnxuXBYQWYWv4qssnSq6Y4ujgANQ36qUyG6qGWGlukYPOn30obIOXlL0OpBvMjwlGNAl+BWOQZacGjtaZyhvfbJx3pxS8lPW2+15fqqMyGFGreZZab/5VM6Yb+02PhsIFUSom8yqH/7v/t//RP78YDYoeX4+vPX/ar57mUErmUULasp8vL4cWgZ9bsuzn4y9OASAxpNl2SHoaXoTjj8eq+sJxAiw7MRSVwAKe2jZMxMEJULr9h99e/uKnnZJLEAqzu9vMRNj9ZJZC3w60i3v/o5Plq0P0v/v73nf75z4uvR+cnH//wj//zv/+Xq+FYi7eLBTDJwdyvZE+zdTK7sZlJ0p9SVpcXg9ez1mydSNcjwYKthKqS6nKPUldstYf1rU1X+6FuNwTeLKJn8XB0+aHbvr6YPDzsjp/E1ro40a7jy3S1IGJ1R5ujaBTuTLMjwUXghdkzuTGSaFwIN3LL5i2zIdt9+GhLLMq6ATO57lcQZiVNN9Uwg8xih4XNHRckwyXXRwI5ymW2wGyea43fmOOmM1oljFNoDQFU4jJmDvSiqJgoYNUgxsIkmtZeKK2cYqYrT0I/pgXVpwVSUfBqZdxChY3hHBlFo2Q+Y+9h61B4wkIUt8wo5s2jEC6EcKxpt6jNwjKS1SgAT0D5ElYpUaN2hhSuAGrkm+cZf7gBU5dtHUKKzziwxCKvAszOCsH1LiiomjW8MJUG4cOf1Tyg0xxOTKcRdzWsNNXwYO1chUmqSsZQxVI8IkIFlqYxB8KG4wJDoIJkOzmBNiOolmNta/b/hx/VDY8ZZotrdTHsHg/aVh89vlwzKxMGCQRx1DNjMCzfipP7eafvpMcRBKNV60YIiV1iP8QFnfnCtrfURUtMm9g25qU2eRILBJsxkMtEBpwyWWsZgkLNRCafbBK2gtuHoLMQjbyJEow+St2atdBLJuc3iaFvDbJ+c+eXsgjAkRyJ0m3saZ2lUpiJIyzkpPWsY8v6QjnBb4iJ+UJNN10HaR5yz5W+M30MHOEN0CJShWrlcbbf5SgEs92Ma5/fIbHlki7G0EcvlGx+0JeGbUNC3LufBkP29EVBvLZEGOK+loD0NNKySygO6KKbdH+2DIUtDAd9Jp3NgezqAR1yQtVgDL1GGTcLMLgg4mDBYMhHP4M6KKuJJlAyMcj99UV28uw3O8u/g5yn/mmb19/VD/tWgsDlzpYIWYoY55aeRSbl1LMUKUIeHsWPlpI4lk1BpBPbxrFg2jCs22p1Rd4vNwiZi5fwccu4rQ/dndtvPT6SfVkgo1jDzplDDw/42Yon8TugfXiW7ahruRlSMq+28ttPEkw9PEzGAyxtxWnhYW54/ckm4dq58itHrjt3y6VwEmmp+H5gxS5wv99F0OR7lpoAK/uXjWPaoAMCTQsbHjqQLsLKA3MU+sNsYZJie7gLDSHiWBU4KqyHeELicoeqB8Whzayhw7Qh2jdjqDy4aTnP8r/+bE7HLxg9pEfNoL8sTCLNdOEVVKAh88JuC+xoL6JBD2GwsifibU1XClPGxA1Yc4qoqkSX2dyIZWzbI31HcnHJW5HDQ2xrrKuugaMQTRuRKBQDgWT2um4sc/EklZeg0wirGBzW9P1x15zmnLf0F7nMMmdFtFybLTYV3CDxkHElSjgXDzvubuGLqp2YGXT60H1zNzvaPHDdBf+ZCym0W4NzMT/dx2ViseT9kTvD+m+1Xk4mY+E3co4K/pIy//7m/oPrtzqnd3dTSvt2emvFPB72Bd1y/GAHMOtbJn6xs2GHJ2dXzp1aF8G3XmynM4l39x8/Tkgr+pVQ+/rlZnIxHl9foKjv375fvbu4vZnmajmxZ7PpxcXEldLL9eKvf/n+/t3YLYmO7//6/TYnEy7GSe5vPb5ydCGOYdeNCRaYL5b4m+qV+ePrt+9QbfTuXZDStCJBci33arVKtIA1EHdj1mk5zxcyCqajAUKikXZR/6EsE+gP822e0FIM9WiAmlaV0Uv0XOgh4j4fU4BQQnRVmHwJgeNQtP1mxSIwVK2yYmleGf2lkVAX8vClId3qNoZs/oxIzbIJiaoVG7qoK4yT5gOmmqFkY4gaBpJ6VT2QIcUG+ECXfjP+sKSKkJB+q4AugBKcZFiRYJppcIDAybQgjFjVSAg8zaaX2oLg21Ed6oIDfaDGUk/g0GGaAqyh0ysoJgpAqajYfIwidcOG6UKb/qoqXqoYBVZ2uY69DSQV4q+W4g16YVuzqXWwywNhg7dw2RvMDbabIRSc+aHrBsji6AwgSCv8pGJGUOiqFR2Egq7ALMQqacZr1FXSw5rIaiSta78WTqkSxOm8QWCwraMA8DZB6a1Wmyoq73nQAtVBn9+hMfWDrlI3Ke+PEEDNbDX1W11f6nOYL9+bitVpWki/aTYvqoUU8MEmek8JMbB882etf/zps9s7MA0nxGLm0r2MBjvLTa2ABAA8mEz2O454kX6J/BQZGIHAVYFC5NYgVUgt7Gz6HT2CRvOiN9aBazrQF3OH52HQHwtHvH7/Sg/+9devny+5lTqupvwP/+v3iw/D6fqO9G13T//5n3/qtE6sQO7lGtpuxteDP33/Rc6E8UW/2+8s3AcSnL3Mlyti98P1+N37kTwqziK+//Q+m64b1n/UC4vNXTroTgAtCB0wQOjr2VLOYubIcraxDhx0xSV1DNjzBxuqMiJIq8cBISeBQCLnnod2IDeid6X2RgicMXR6fyBxQwyLvSxGYi1xBrphNghfYQ5k+7vOxsQfeWxrd7t55O4EF/y4pSjs7PLUcwncWDu2XLI2IJnQOT+lKcrxaPNDHCC/nKpL/A++4E+MFRrZIukCzx2KY+25mCncx3jAFOjFw0pZkZkIP6KC8GYy4mPyFCjy8CUOWt+LVTP/qQp4FjAJE3MzGi0siVzTGZEa1KNjxYqzvCppGRGRZouky8YT4B9+jchNm7kGGDcRFuBROTDprVgmXJhPXnmcBsMU6VRJQ0PAfkJHGtFcysKxnyFz4Jf4yQqh+DCv/a8DRTK4hpGql1psNKyZTmNPl1GpQgAr7KHqhnOqn4hKAqORx8rrJYAFIWk4ePA5sC1QSwCmqaPd6nHjUNvQlhR7zH3AruA08Iw8poZJwTu1PCbeMKDJScsNyAU5gWrq2YqmL/dXZOlYLpjWm1tHc7puNih06luJbiiNMMunjPJgAnqVZF8dJAs8R0SY99hbhU418jq/0nCmT2EPIkN8GKyZ4zQSrZRxswWPnm3Ub9eaqN1FyMp8BSdQRQhY1REJJH+YhL7zyPrQW4iG6ijO16QLc4XgUbZH0H8loqQaMoUaQffJnHn01O/lcjVbetL/44jO6dFiv7kcXRiZLUVyhxlRI0GkYlge7TqwGVbypPumMcsEF1yIfJYwkG8+x3KfooEy+8DLipYTJG4bozUgfYfc4/CwZMkSRylLNBiDMhYhWJNRWB8brtDsjnjDdgO1tbyIn4bWAe0EpF7FRpMwUEos5kAqbKZSoat14kjz7mEDrRmbiJ3H54RGuQKwxXzstnru/GJSnt0sbpMeRuQJR0vuYN/KxrhYbvj+yZccqGxxA1ulEQHP94t15+T8ajLKeBFKt73cbRcbtwVP3C9mwwBtkfDioiwMhUh9vZ2vGHwJZVkj0H5vaHRfv94FSFt4p8UIkBUaDjYyaM9DKvblQzSZ+fq/Ic3Qe54VDfLJZLqrgKlGK2og/eA2FKZq3ua9v9OMt7qo9vLTw0xNCQVfoDE2RMrHOkAqCYBMA1GouiY1Ik4iSVR/CyB2jMbR2rNTy6UwQKP1ST2+/QTl2d4VsZ/UtgaIA5UhuFzrEWcP+OrK52zvyChBRGod+QRWq6wW49qNYM6ZqWYlQHnksLwjauF+nJwYNjQPHmsc+tUmTPJoPcufxRuUY2VmmerKbvvjfmkTfD7//OFDdNvD9v3lRH3A3JvXrdsh+pPJhVX77fQ7XpI3tn8xGp53ev1k1HbXrzsZ/vL1K2Hy8f2VnDtHIxfmtYXOWs6NJ5OkQ3Vt8Ltrif1c8OEmabVgBo0lyN7dZ+e5tO7k+fjju2u0JIsp+kNfq82mOzh9/34sLGd2u6AVn44frXA4/p3cOeue/Pj7H+5uZrA+uRze3k77Qm8vR0KNTIWVDMh3rb17r6FcBK5lke6kLUKLLu1zjl7gm805wQcY5fr9pfCl2/nGlghSxOHtsw6SETskyZWTDDQhpcvqN1EHuzOkROBEe9Fa2PlNaoekDkZWdHho+LdPJjku7WRobWjPekALDclhYZ8D9UZ4IQTPtJKfDUF6Us/RC44oMq9ayLEgKZKupjUFVI/DG1VQmVLP/vKfBqOqUysdB0xs5K/IkzBUGI3Flr7rkwcKRPaqHj2Ux6mpRm2PgjR6V+sZSH2UKBGfYQQKBVTzPiwZsxvrpH+VgpIsy5WPv0c36YXVUryX8Sril4dpgwSjfwI0yQmN6U7pQBTV7meVJUSztoFVCNQXhiqg03gg1XhqBdWeVBsZry/69du/gq2Zpto8yQjrORFR+zD+Nhy1fJpWfUlzJUMKJylAUGgWJOlFlyR/Gi90pcOgEsxVPq3lRaDLwyDbiPx9+HgVKL1PX9ohjspyaUYUAJtXOkgBfzSDreLViJ6bP+p1iqS9qtXUaFDUvPAqpJKhp4RWfZpmmkbSWmFfmVTPzqQA5Ne//3zxf/43f4eLN+tld9TmrLLpx5e0nK8d/mGYMi/5pV62xzNqY//o9hIb+/qAKDgiwYQUwq7/ZCvBPLmSni8j3kFZFqS4QHWZLHeTj4fjf/nXfx1OhnNXmNjhHPQc9ZXD4Me/+3R/f7ucrS6vhAd2f//xxz//+7/+8u2+P3aZYe/muzdrPCnIZjWfXw5HueKj9SL4kTQABMkJEirSLZh2LCQE5G/tDQcm0NkiOvxuvuXXcAbOVQJZRfQ4CdnVLUGK6IvoI+8g097t/WLluhxm+c1iDvjumSuEZDoeI0tGmMtEaAR+PYKO0R9PTbb7sohH7eORSxJ3Y57Flydrhn7HQbuoh6vLwdPQJV9uLmPKvQgBQOthTxZCrjUVC5Ho2d3jVtIFEsw6iuZi7SAaRo+5YjQltDFrkphIYRWGhGHGW+9wccwrhynih+JMjPHCJDPDcX0r3JCEp2hPDKiu0UbYLVQQJxc9FfpJEEhojFmWHAjh67CLkSqZN0VXfochU1i14poY/UpwFIcj1ERy2Mc/Lb3RpO/6TaNehQgbes73yMBS1kW0pdzTY8MQeVZSvVHfzYHRvDuMS1eoK9Wz7It1G4IPN0X+BGqTzS5NF+GLGnjDIIl694TbwrRmpBGP6ViZyLBG0pZhmFpaQDZxWCRQMxCGlZqm0lEJdO3H/DBlXM8S64n1j/PZJpJHbNSz5263d3MzA02ZFUcCCiDW3CFiQUCRejnEnLOUvjJuYAjWshg8YX/FS2gdy2EE0757B2SNN9OS6HnREFEEwUQz6VS8pWn+zv/5EdAzjTWtBhE9gligNb1rskrWX3kHM6HwWMbULqPbk5jpTstnoSjAAanDQDRhyR9NGR2rPWSQQAxO4cj4HM+TBqTbzaV+JX41olhFcACtIZ7Ql9ACDIjMBMzopaaFsSTziuz+rxL+MKjG/RH65RXAJjiTDWIkInvcUdR2B9uxSOBN97yrMgzQlZIdvhfp8PwgGMvWIQMPng0yzk4DBjmZpS8VQGu2PUcZBpHxhBci411aaJDSpOjA1c4AhQeBDXYowmGmHq/by9uG9XjoE+p4+nrh+tXW0d3tQlYxwf0kiPWA1JBUgyUB3MCIPrXFrBSb4cpSPeIs/7A6Q40/ZdgbYuiFoKVjVw2Icn7tDt1r0BLRKI6IxSqWkdt4s5bQ7FWSdDb8XBD2+Znsp84hvzxptk3mupn402RijSUB41xwCKnUSwqE3eZpK9GieKncxSSCSrrQ3GThDnXAm8WseGEpR4ERZA43RwbEnscs+RLuaf6HzjB76C1kVTrSqyAxRfIiv6pGQ5dK0fUNESmFlgrz8IyDEwioONRXw/UaiPnPUYSIRG+Ut/hBPQqxpMEYGzGHiqzgHNjC50Ji2vjQIX2dle0eIaU7ffiYQCm4VDR2zKFdUpTRzybmaCjSyPktYMNGVEK5NcPax0kApRQqpzOPuuKRIoXhB3NeXgxdD7zdOt5BWyIqC9OT99cXSaQnk/1GtmtBWV0e3twiMTi5vh7tNzg2csQs//jpnduddw+tq6sPUGCLR88GFYfr6fFiMQUtdT0+6XaOzq4l5u853Lamta/ejYi+51+PZcW6HI10zIO13UbSHZ13ufbjsjLzJ5IaiSUbPe5djxlpi0tPc1bqxDVAsOM8gJ3Jwioc2LLYSsgjGg/MMoMPpd57sVm0d0XA08b6uzXqSRc4S+Dj6+tff/7iul9DJlal51tvl6Nhx31zTvutd49jR9ufHr9N5+hocjm2qlndCbQVnvRgQTLGNU9H9gVsC/AgkpUPso/3uvBNd9GyGNgZA26h5CEJ3Vr2hBishfBU2DBLuOzMhdyAbhcoRqGpjLZCMsor5hPKJOvjeg+N+j9PS2eE6KI5SqrCO6IzN1o8qJNIz7B+Hnr2ZpuGrEMyeswvpYgU2jHL2GjYRmr7rm4pzFTM0Kp7UxtdklekWrm7CqpotrjMA1tgKXVVjEBFRMDryc8MoiANywXyPFEhWs2nXuchgs+RrMTz2B/z3BCCqqK9at4mWzhZhzFC6nVwm9HFrsUB+Ur6lyMAnxbmA1vGX5pJMbjUeIR+OK3ZdC6WSosHs1sZ5B28Vvl01XRxgCoCNk8CfvkLmgkyBvAFlBqyapFH+K5slPJSGamXkO8lGHBoyZoAqS1tEh+sM40EmnwCRDCRxppmA4wX1bm5To8pp+XCcJ40z1QIRRSqM4N5rh29gzEt5uMrSLSmZFVI8+kgFHL4WgUbmamBFKuKzQ8CrKGk31YpXvsvIz0AXOA3gGq4eiwjpgoQ8w79n/zn//g7WeY2m7WoF7LBcLK7K3+29BrtMwt+gfv01PhiDCjmjNhUs2jiAY/TZOmwCGcK4xZDfUpAvMQ1scPk6UNRTNvLSe/D5XWv2//y/UaYn4SelhicKbvl/vbeheRPy+WUVjpqn/T6R5/ej/70H/4k3PXzp0sm/7evM+pSqCsy+92ni/XiHIfc3AsJOB5MutPZ7PSsz6alAioI9Ohi2Jfof/t88q+/3tvc+Hw9WW8WZVrBXw5lQpCLzNyaYjL2p49X4wsGf8e94A50bdzY6kzwGXUX4dZ1c/lr4hMI2yJ3w3THEHx/vbm3icrT0u4MI3lqBttt6RZ6mPIlFzoddyxeWrsejdtLZhpBtmshAP0eGY/I/XNOgvDnckLWOLd76vhXpjAkd/R8Xnei2U4R9hyasXqQWCL3dTr7SGflrknsDs+28JFCuJt0iYRr1qixhtESKYExQ4TFFDpAZN40xMPkMK3ZME0sPkpOpmYKKhQSavI+ihVEeF9n2szMkoqe6CwH7TRHpBC5fqoS+dZ0YYzheo/qGJ5R+BTxRkhX+aSAVIswDO8XkTasqqXYPlgboMW8oatkeoj4SDsZSTFv+K7cJXlgJhpKzwiqIOMt/ElcpkrES2AwiqwBw5fqBk7jKA6NHGMuRFI10KbFpqm07H9lldRV2ilFUPMfSZghgDweax7e1/7wXMKZTENtp2fB+MIrZ4/KBV/2l0ARDUWANAqL/qKgNew/cwtwYslP/2vEz2wIMP11Wp+m93wtwDI86UmovKxJs7QL9qIUyngrhCiaoaVOzWY0SwRYTXdWOM0s1dBDI2jD6xji8v0zeoWglBineaNIa0soqoGDPxvJrshAAUGRP6Lj4g9/FQKoZfZ24OdhSbYOD6INawZCuFnogI3ctlp4ZhWfC61L/kNqJdbd8dLavjcgW2aLhVRYbB7CFHIwCGsBb076AznO7+9nZxYY7h6y+9Jx59rxYr5j3kmfImae93Mz21pgiRLk+u717ArKr1i0hWQy7PJt5FfoK+t+DzKvZhXShPIUk4CI9N7Jf3701B2ciYQ2IMjK8GpnzZ+AsmFBOrJWIm7ccpplXKvTkdOlJWTf1oEjlewpTEpAmKpQ95GFDgvp2PFPskOmAntDkruLxVmbWrMlx5mGWmI3L1CvbO7nZ23RQzzfLlJBWGKonUMgmiMZXo9H7c6k29vJ37KWP+3ocjg8HmYDabqYrrePEK1Thp/Buonx5aw1ny5Mu1BxMOy5cwXZ5GAfe0xIkiFa6kFVshqH7PwBK7FaQkc5qBodlhBhCDPNZgjBecvOVDTDC54jQRq600tDfPlJlhdj1VyEM6tkiDXtlDhTyH/aQXaMez1gG0kqGt5L4xFHSU3lk6LJJxB3uP/QlmbyLyqK68hJLwQmV5IIn4Ck3fjnuXoqpigDl1vJUol6CxenNW4b2wMA4MY6PhW2etanM7i/iF4lXlt2kAOGuzMHveLDB4rWguL4Qc4fW+fWhGfDXlvii41reo9a98s1BsDYnz9cirQzqOn9MvC0evd3C8MR4ePeCizjOszt+sGFu34ZpGzWPD458/74yLb+8f2l4BwJO758uZc5E408P7hmbomLbYv85c+/Oo1ksbZ15hvHhU5fjWOxmaNSCLN8e9gdDSwpX11757KSB9dFt8+cTnkmsP5y8+sP7z6Nh5di7XkrnEN2UPBmtbHagFpeeUFPbrKTFUlWjW9fb5weybrsuDUaOn/epSZn8ylL/rzbl7T76XnjIDNdSl6cS8nX44Bcr7KlEfnmplHa9zz2yfFii8WO5FUi1wgdazcHV2wgSpHk/I8vj09uqMhYcFkoSml/ZPEcsQxpvoTW8rxxz+PF0ioEEACL/GriIs0zxRqCdI9irqmaRrTZNIOms7KN6Eml6hrFp/XomPqo23Rb+jWSI5IOkCHH2NM6RXaaBJbGQVMvq0DBqVg1nbpaCzEUGH76pEE/A1I8Eg0PFqiB1lhRXdoy7lo/KK/jjLbIEhS6Z6Z7oAWvio9AUcNXzxj1X59CUZ4zStTKr1io5VeDZ+0fBhL2TI3yfmnKfwQgrRAgC1Xg8b0BybfCIl4lXYMPTJm30U8GmE+4NMPMR9VDdZBlwyd2QyCp5/nRILmKlkJStxCUyVE2QiGDrYWNhhWE+bTvA8aCPbVLzKuQSj6FfPXi1kMPmYiU8fEyuH7b3GiKe1Ars9QNoMFHtF3zpYz2VGzAVr1IK+34H7iqpeVmLk0HDV7wqJIZrJr5nsbzo+A5/MzTAqtpJL2HRvz2oKYpVTQT6yBfX14kgrse9e3p9sZ9LvTNlI8MObX40+LPftoLs2H9X129h2qOfXMk5Zh83Kvto5A9d3087Uiw0DP/FXGkL5rBA8shwLvS6/2na/uKcvve3N3bTeSuAxP7+/m5PZuvj9xfOd88bYQQdKUa+HR10W/3n92pM5u2zql8dwXsP7+/dl35WoKNx6O/3NgMIAAeP3y4JnJZJMv1HfehkEbuBnkyrEjGrdP2cn817FkkFJxJFGAj4nrSP273b++mhcd4ebjGjo7PGdAvc268R74zByHaXYeseAcg3l3sZPmOVBO76DhyZ5g1N2rl+HDAaf+8f92xyY5Ho+FmtZ3dzagDLnaLhMlkaIZOjeX5dXozs9VvS9MZKlLLBQsQyMPC3z9dzCWM9oX95/wAlGVKedxlDDs6Ie1H2R8+pXRjnRfdSZcmZpKnsgR4Vs5l4rOLs8Evq4qJddbiwMIhrMQzFw2EOvACiwUG8F1pwzAZAyDCiJ0Tay3mJnLEkjgmS+V6gqoVzfBBaY+j3M94H/2nMWWa9HihNYDGOlK4LAGlEuRcdB1JoqcIWIyD4EV1+F8sfBOMlP5DskCOZmbTWJZH1Yfv2I/hyrQQdk5HNSLsyHBImYAdB4TnPlCBe2J9BZi8VaE81trMX975FzHDm5aNzRpK/iIcimfT6ZsNU7xE46pS8icthA0NqZZwGCEjK9KxST7ud8a9gVHYFxLZ1e319gsnao7kVGHF6gTdMkoAb0VI3kToPtRGAdePMRoJjYyA8iKQRTwE4DgpoVTHjfABjPaUyJjJn3iOMuVgAZqxBNW2WWobXKMsegMo5Ggs4IOh0BHkQpdPJq4wkGIukBKNXGnvIFSSw1CjwIeMPYLR+pwwibkvyU/SWzncZ1ysL/ZiwAYXQjYgz3kh0UUIMZABO1PKCwkkE6euLJYZI7hip7kZN1QnRK7v/xwJyEH/cuK9kAQsBCcMdS2uTz93s4XtOwkDGXpK+z1dygnwKk4GGziQ+evN/Xq/tTFDC7f750IM0BhAST39hYgCVkR2yCer8+DHm+AJKqDqSVLXOprA8yEqg/pjrpvmoA4lB/BwDPNYHWyKJkwJFdvvOGVLkDn3nWRpPftD2WzdO/EggWNQD/dZ4b1yvxqSRJ/ieWwNSuBfJ4dFS7VY9XaFtEwuQLotT+GYZsoV67ZrmZICN6HJMuDkQVYftw1Yi57eLjlFHmRHm/TOYUpueHKUSd45fxkL8LfngPJOzwjcreRsz69y1pB8ZsM5rWRuPLVU6jCXpXcwK6x8+Kh5i6lkeBY54I9jIE8TPwqJCC54wy2Q2VhUyLqoyhsPg+nQQBD2NxyFgqNIgsqwd2nmCKhofeXDM6GzCCZ9+9LwYdMLmNNJCepQZzOn6SFU6INOfQ+vOBwWJss1H05ds/UjTC3bdtl6IxxDaijdv+xrJxafErReckmNI7kuv2yyXhKAqNjMO67DdW19wJhgqoIH7sRStXtd92pJmJ1NHgOLdArz83oxzalcawIDG0+GptpmYC4KeKaA+wJ4kD/9GaH29Pz9Di07MdK6u71HX1Ja888Nz+11d20Xnvdk98c4PKwJyzXFXEqOyboFoj04RyTdXl9kWKbOMbYzsWQdBCn7q1Vh52wAri9fvwl4bXHEnSPJVt+20cAREifl5ck4+XT5O8dCkk77+cliQ3IDjE11nnaeb1wS1HqVJhxsjufb0LDaRuWEl1Cmi5ETCFvndy9Go8n15bebWRL2W3q5/efl9er66uZ+AT+EHOmQuznOTgfSBe4ZH2urOOSE/LSKp5Or1nmg6CTehac6rhSSIMM9MYSsOrMW9Q8mQljRWzXd/oxw9jIWTgnSor1GStYLujJEhG5V8THzftI6kUppJHURgVL6RC3VShhAFd99yE1dkwbpHVwRH2YTdfgjnKBmkXrzXpGwSQi+WqDymr5rCMUsIEjFSOiDzCyyDyWDM83HVAlUuekskAQVpcAyBqMGBG41BO34HqgOOrJa9SonZDIENauMNoPBAG/YqQEvEA7WWncrpmoinjXYDOdQKPe/1sNY18RetBREKVXSVfF8tA4OfeFWZdJLuj6MyAwCJlJfuazQoqsUKECUUrMqFBM3A0q4UUyAjE5RnTdVSocWfmr200YJFuMxxkObavheS8Eatqo6iMEf8guCg9J0G4xkFkzjb3U9SwUNVwtGWu1FavmeWn6kViZC/5no/zQ7QPU4dFENHlpVK6Otma2mg5x0bshA9DMNF0yK+ZaBBQiQptv8kd6rGRXzsJHXIUAtZF2RGfmn//LHD5/cY2K80pHZznYxR3Y7SfLNw5LNJk+5EDvH+NwNQkAyEE/renIWTJxqKXy+l1EbWZRvkinuuE46S8jv8U8/fHCglhH/p59//emnT+9+fP8v/99/7TLMZRBeCBm2Qb0WnW8f9LLfnjhmdn9vQU/MDy56SRS22kpWsdmtnUATTfvt2w0pbSeQ888CUMirboQEMIbF1TjVJ4qVKUS0Xo9lYHvJTWNPD3YvXTTu25ebG7LL5DHZ/ccfyRS7v3farXUxFs04srMtLMiQGViyb1Pgo2vrIseT1sZoHxweXW/uTgDjIxQpjMFohLfQCQid9GN6DduJGjJqDHB3cy8c1D3ryppz+pdnycRIcvp8NCcbTdVgMGJkQ9FitVU4ZyueBDq7iP15PBHNi6HCDeK/CcZs1p5IK0JSJnEffVRWa3akkf+rTdYy3KGOt80oE7wZcotUCA2Ir47QQgRx48fmLs8asYOEPBeHCfiiYHt3IaJIvKxpQRom8dsvQjW6EikhCXSm/xQr0hTjb11tzyRUSgYEMJ37Ty+GwiNAN6AWpIgp2L6KBX5UGgFep4GB0vi/qTTFNB2XSuhYrehQvFZiRMW89aYh+pzfS8whoJSiJVEpC0/98AuuyZY91AmJjLLwQdU1uvB1mCwQB1X6Jd+qxxQDcOHBzzjFga9w4TQ/lQ+IQU02cwJLFnGyfTzs17vRoI2hBHdkMZNMoIBhG1DMzvvt6SuDovRFxj4wfhMcH7PHl+CPczbHHtJZ2oeBQJI+y9QpgP0FB5EhmirEGqR1XQNJUAO6wFysXyL3NyFW2iSCIjZPNg203Ogu4wFtmotAdhpR1kpr0WASEdZaMW+ZOhCF0hSEEwThUtF0GWvYr4pYoj4MG7azCAnhGWemWO8Ji0KtibPgfdCGKU1tBx07Du5bAoR8gaQHXIAr7c5BF5xEFLOcIx1RA9KEW8dnH08eRQp15dLUu0EBv7V//vTxcrl2mIfJ1JnEa5kwb1ABJrnzLVWAz6kIdWw9ALB+ULkTPEjIZgFtxnQUHAk9iayPFAXly9XkCp74KTP8zFjmAB5zFNfYkX1uaa2TQWxEIiBOK02GqDPHr6+ivbO6hjBs/fgsqocEJrt8pE7xMDOQ1JBnl4PBX2/uYS7kd9yabVba6edoqX8atHYwzfbxhQDJO2P5EZ5au8TXNsrzw4WEQScnjg2vOPx3YZyBSCRnkl5a6/1ub9/AhD0d1dbn8671yBDEO6S13kOQWeOH31i7vvhnmmMGmWM4NoCs3aGyCA4Rh+w4WrTqiVEf3uRLCNikhULyslbhVSIEbba1boBpjHRAC2HOWHgKo3A1yqpITcLQTwAgxJy1td1qPgpQEFcjNkvLKCkrBP1pP4MPpHbBUt2iFI0VIVooErCid2AycREwm5MN5FSySsnvhJmJP0fUz0yx7wrbJc9wzk/c6mFZ5oJefprlajlfSG177NCAs7OTgYxgU9cBCx9Ff6j5froQmaJ3nif/2du1dTN2Y9vz47uL/tVwALTT69Nfbu4uhyJleqPx8HS9gVSxbiZhKKFd/9we7HqxsQK3QSC1haxzt4vd3XzVlTA/6f+71PCX7/O/3nzjSHOKWxr9vlk/BcPQtW5ozOL7693UVtjvfvcO3Ek3tGfTfxPqR70tlgvLmIhpFOUwHXBfj2bPj/fLra38y8veer00mSggRpgj7G0Ofh9+uv3l9QVu+HZzt7NYaretfn75dis2CZkKyRXPP5/PbNhZHFn5oBLSAcNLfIs/TE/uDcg22oOo3OT6klbVqUQsdpp432jrzCFh4RPayl+gK1EYtOZTDz2PxisBqiDeiRoruiU0UW1q+zQSNnoiTWVU+RdSQXjNX35mHzzCNE6GODCQpZ9FqOmaAIj4DhgKp2XscxDfoSXWTTULNIBoNjSd5kHe/A4wvua/xrtchapIAS//U9YM8AH48BzJiwHCbJYfpcZSIJI0jesjDQeSA4rSWWDzZ/Mqz38btQrqhoN8DgZq4MzIfACrS70UR/gzjB+dkR5BEmDqTzxMJ2ineQgkrVX1dAscf2FbXaerehWYy1OVjgpClho9V5gsIJtRBD3R8tVaSgar4CqgPQ54EZrVdg2kxEi6yTAB0siTTH1NjV6bL55nAZk/PUh7+U8P+d8jfwDSw8BbZcDgZf4hqlBCYentbbpsyhbVpWy0f5U3mQViWlc/urCosermEQjqHeC9DRICRIFRf6bhDCFl80kNn/qe9g5f/KqKKViF0n/w/3p898uX9Y/n13/M2Vnyn8EoSYRjUaJibudzSfTPT7uc1je393arL8YTgvn+/u7JhST7B6d9BMkTm1YT1CiyZmXmOvLnh9P26/ur8efJlczAssl9nS6zgbc/Wk137y7e/fzL1/lmi0sYvnxbdjc/X/f+8Z/+uBG0OOg/CD7aybFp2oWsPi92c3bT1eWrFch2/ej0sEHu3Jq6t3nOteKAcp/HgUPmeb+RVo0UntnTlB+MG6vdtsXPJ2YNaufBiSKuFReTYpLWy8l0umYa0IufPlwLNiBmEJuUoySThMioWqYBGm+7W9kM5/qTOYNnpdN1B8vC/eeDzmWm7+iJoOOtsPYQ88NrQzghf5bu95vZ5XhkmYFUH9yestkw+IT7wryM5IK9JcRnnOT+1+TMESNB35ijnKekF8QU8CyCWaKjpD4sQQQp0lhoXH/qgl+gaRJbcLoJPU5WZBctCYCmxPt64T+1J8CUUNiEmysxFQAgKLh18DmujCkSm4RvtfziQCCzHDBk4odIItliCbKY0TD2SbQ8Zo/B5y06q+V36A9rgDDPua1DqdGqkRsplo0W1Ql57QOFqayu57FY4noL/WI5mI+CL+4DS/6sjoq5w+Ih8frPHwAkBtWEE3VKw8fyMMVa0C2jRW9kUpqy9apC2CLx3wb4m9TSC0g8r6FlXCA2cJB4Y9yaKtbOiI1cE1Bd4433BEBpKpCAPwLR4kLujF+/34+tbCcOq8hZS73J+7JH3jn8adNMUC/HvyOtg/5xcrfE/Y+LED4LkHz1VfACerJK8bRkFziDc100rG5cPvyVMc1KrKX/4N4oMhyGajRFUOBfcAQMDajuEc2e+j6azYiSjDD09NsPxdR1PN0YTiTnSbwo9J46r+/wnkMJjKUI/GZlxXgLqlUBMzqieUUTBPdJp1me69O23TCAGBqirMMARhpTHAPCm3E4y6p/J1aQbsUEZX+YbePiIutwU4H8dFoTkWQ2XAIsKDE1TAsZCyBq7XryNB/XabIRn51JKmBtIFe+SKEBzpItfboydVkAaMviBtRSLsKDc5lFgfjzWNAeLRyytGcp9ZhrTE7OxUGe1sXF8YLwvopwikFgtZ3dMYEyWXnW2txE6UAoA1HFsun1O/slY/Eld5TknO0DDzsvRTv3PFlgZOFocWQi7A6I8hdXAimuBrufzhiJv87u/JkIcM4IE+NqVVkGXH9oWZIYvhglfLRA5U2BFGDfz+VNP+r3XieRTdK6bTcwsbGJc2IP0srkl7slM19y/+X+UfI14ePoIha4bKw9U8S+lAmZnAwpNRQW30PihhtVFxu6aLGILksFFnT8DD7NBqIn0daGnXhodFmipNRRXlHlIbiQderUl1QMSerz8CoKtLFLQvsgDKH5vNXKUr6KemXJFFWKM1Msgin+AP8sEsykYsAgtgzPoR5TVgtTw4ls9VxF5Kg/tB6OLnmHOK0oIFNqPMtrBzNCrFpO0D+5mAFahlFLDgNwc7Bxb26nimEyWzpMWYJ9t21dXYxQsNVagt4c8OidvRtJ/yrRzn50dXF+LqDtRCDQgmg/bu23zuGd0Td6ILDeXU6kDLJU7LQHf/93HyWu5vJ4dzkEmxgwdM5Cx13v3l93z46vBn3D/8uv95vnx8lwbDvMjdJ0iez55Its/c/HT5fvh9TQammHKUfh77/fG7PIpYurwWq5+eXnbzaWXM6J0jI+6vPoyBUHdzPxc2fSCn379lU6UZfHSfVji2Njj1M+WkdyXp3wsynFnAh19Psj/OVwG/HXMQcdy4/OrYNQz8eCnXI/Wju+xuJ5s3ss1qCM6CPphyzTjQtsIo0jNRJI1rhtDp4hNF9SN4rHeJXEfggjDALm0EicnZbrZjMkjAozmvQQFVqaNXqh6CrklxL6zISiLsXSRBlnnmhRR5pVoaErhbG/MqGZGKPxLKWcWvF8ZPVkaP41xSJ/i5U4VtN7Qauk/lFfgKy1kC69DiRF5OBAVYCMmsqb/KPSAlEoNyWbD6iQdEaT+og3zNJ0XWVSDnzAaFhDOY3nYTSCEauTMn4Xt1b10uK6LNGbJmEwRTmFVYrXo9BVypuvhP2WT1ptmsrPfFTxQ+0Qf/7KWFTN/8wFKG3Q61UxMgia4UfqA46Wyli0UI2lKYMJ9krxZFymL5IpgypwU9hzKjTwF+aCrgwy/1K0gPc9LQfhgVphTXn729CaPwsMYNdY/DKGGk4aDqWl2WDSc1/Tur4OyjsEc6C0IFoNHamhsXyvvlK/ajY9pIG0XA1VbwGu/gqOqlaVSYl6VfWAlGp5o7iC+VXVPc5LqubsaNh31uwdAkW0FDm7X6ipZNar+e74pWf/cCtrztev1Of50fG+W7dzyIO8f0geC2SWy/iyeUV9y2iBIcq2fn3fv/zDxw/2V3UFAGGWn99fPj2u/vzn6WmrvdjuptudKBr+Vfd0J4b96HS7cVtvTkOenh8tFo9ff5myQWk5G93cD9+/TR0tvr66tFVuW+D7/UyShOveeHBuL30zGneksFsuHpaLnbx2soKJbc31ItL8uc336OhiPLJcIeDcGIAu7I4CafRhAjGb9X4+X5BURkRWMdmtZ/jIaEa70hREf9RjGHE/OCkxW67nbibbrHrvuie509MmMF1xLCMCyrEzQJu7PwEHN3t+693WjTtyrwkEl2p5PBhyV7FDcjR5/TI6FcnzMJ2vnjqn73P6uXMzdWNRokk5o9j/rpmnj04c3bIBylUsZcV6z+1k4yUWpK0zyK2757t9hr27HVdwLvUfjFmTkMNcWsGvsJMKKECciSRNbF68yyw6wtn6wbltllBY2YG37JCj4Ag+pjkWrl0TFmTkFsbyFmdH+RcpI1UcGp4r8Rs5mXiYZg8flTVeXkKC+5+uL7IseiT3InVDl/HThXLil8GERoV5iynCwKFfT/I2AASyKpnn4Xosn/UP1y1ZF4ZV3ytQle9f3SxR0lLJWHCDX/tqeZQ2UjOSx6cEUgmH4qCAEai8z5rHTwCWwUJWhMG0Siz4YsiRVNY8WeGkjFp30zjs+PXsEhkoYm5tdgJumaso4ZFn2nG73PupUbI/skyjxui39vyOf7PkeQZF2pbfQ7kD2vWVZEsvCY2FR6qEzxmIaUahWoxBitEFpiD2AHS5z/O8/K3N2L0Dv9LKGEyqwU2sqpwPCW2wlW3qlv5lCSPCzKu1IX9prcT44y1idQzslOQ/jrkFDNm6c2ZSFdimEw04ZnNEhDGKoxHLUYc5HV7tdkBihujsIzl0zi0VRUpkny14PpY/vc8bwDomuCFNOD2jK4WtWh9eB2w8CTb3z2LW8TFsC/3nmZXPPkgVsX8mc+OSIY2DREaIsoqt6aLx4AJVZDnF950gHKn3g80sVkiAKBlnMe1sdFjtpjTZGAccDA1WQ/Ssdxl/JSR7eYhd8iLEOVH7PddCMc4eXwUcih2EmISD7HKiiGko/GYb4wZVnGZJSO9mPddi8R+/Zs/F2pA5n1RrvCMOHLtn4PzkYuLSlgfh1Mx+9qwUoQlpEXrx/DASDin5f/vU9sH+9WHS6VwPusJ9bm+WdlVYZa+dI0gxC3aXnMFiQFmbfXKk2n0Cy+1pW0Buq+/4+vHZ4n6e2DXziecrAjtEgQ/RbAgshBvaiD0dpjL7ITHkFl7yNkRn+s1cXlE1xS1eowMv1C1qj6Yw8Go29BfKC+nkYCISUfdNwad5bJP5ViAMWJTqe+CIBAlXq6JyAAg83giLzM94GvwLGIGqdgAVAYPC4Uk5VWsVqj8FrV21R1ygM7QDPwAnVa1Ms2aIRfJCuLN4GXla/fx+rEv3zJyN2ovFnLnN0JfvmuErltbxMjdcSEmroyFX/6mNZlfWtu9v79br9Yd37yZ9O84nL+OhlQMKBxixLAfTuG9Vdnzz5Uvr9QJCbBHIEPAv//qLQ/G/++F6ei87/xY+5NZA0+7Gux6PYcDhEAtIEsJyWtt89L32oxMNd9N7TvW/+8Pv7W5JvNXpu+l+YPaEOdELzsG5xXdycbXdCPV5vbq4NHh0Mp0u7DhQSDezhfm3B+IiX6i9vLrQUbzhrdaN+Npn2mWPOO2V48YMuW4Pjfbi9np6ub6a3M+m/+GvNxgzd23WsnVrr+Tp0XZ/I7KTC8sZaGe4O1xfUJgkQW/CMdOWfWR184jUy5mniJIIr0yDMaOEUGNMuprahhSLIEKRzT8Vik5Qr4rVWsRm3tev5qG1aJqtwpn+sq2xMCmG5fO4SP2t7RBSPQv9Q0qaayjWCADGa4g/IvILvkj0LIkzTCUZiPVHxsOJUsGsATbNZBUErrQQzuBsyDh81AhUKDU6I064lA9/IPJUJqUVqz/Dtr5oXF3fjUjZ+HB8z9LjDRVloIfL0lT4mkIKw/kr3Wbdq7TKWovjpljPE48iubNjm4BdoytFUqPKANNdif005ZW/A0ZVTOPFv+nQ83QUEP3pt4+BetrUAni0S8bnRcGodUP1P2lzwG7w1NRN+Rq7v6tMGqyHjUALCFUrPda7QJWeM6GHJ5oyXj9TUfX8lwlN3QbCarOEktYiQ7zKqFM+pnL9nR4OY6qmC4wIwIjOt6b8borlwRsa0lpTt4Eh4NXrt+cKK5NCGa/vBps+9FsFtVmhWS9u/335u7//MPl4xTlPtTOLCR/+I2arGX3cu+DS8TRXVj6dtI/4Dmygi/ScL7bW+AwOWECfFBxMW6UHnCQPOL3sjf746f18s/o+Xfz0uw8OCf/udx/H3eHN/ezm/ldOQ9M+5tLOkZ7WpHPy6cPk08cP/+7PP1t/uOKGvz9J6MjV02PJPU8E6vY6+5XgFJPzfD9fnJ3Ywe9TjlKkf1s83m/Xf/h83j86nfJHUHDykPGa9yJpsytx+nQ1GvF8ieu5nAziBZNyZ/tk+5H1RegZSNLfvZ72svspBPHhpefesK51hRsYGffmhJ59aD2Jj51u5tyEH999FAc6nUuY6iICd7B0Pn/+6FwCU2y5sqI5FkMpsreZSs663cOWVUQpE5n305t+dzjpStTWRxCL9Wby4WK6WHydrr7NVnaVw2Wtlm0TWoKzBrUtlnMP40ZsCxboyOBhVlk/0UBxXcUqXGYDwd1qr+cnssjHiuGXJJ0U4Jepo3uPm7UdhWQTcbzYVKEN4ZSiccRKm75YC7uySOlbLFbHRmEme8rMmmenru3F2XRF2gwIxFSu6nJeICiuZKpBszBmmCHlGAklNkN2EVhxlIekI0KNiEhBp4rF34l4QtWIKP4YNmdJGw/CAsUHIV9fi0fCg6ngGeVQgQmQrw2AaTVMl7Z8U6a6CdQlE3TdOIyyNE19JkFMNUCkr3SWhoph9YK1iUpsSxlpg/Ql29KybyVpM5CMI20pnnEk/YCiZsNC7MjR1el8M+hMYjTKaG2LKpn0zjarlfmxMFFFLLvJjCntaldryFzxmVGU1cFx9qAt+oB9FLxCbGJywKtQilmgIgauscx4zU1sUcON7ymIigSoUTVVNFb/5QCvd+krqEvTKRqIFMhPM5uaGa9Bxsft5J7DgboKO0YAx0vPxECHHHnCRBp/VnpDJ5mvVBaxYC9Aq3G1Bs956Cf61UPhPoIxRFGdAUHzMSsP9y3BP+cpi8NFhH3+d1eX2pfTrFVE9L/WXl/lJsnhzFokmuXsMJwdy75iYSxYpnfeuZ6MO6fHgtvleOEwXS1cVRQkxweMyYPRUj8WI/P5HMVrIZcXCgd/kOLQhUqxp5wOFZBgM4NvAOGu1ongt2i3mjcb0Bgj8vgsuIkBZyx2cMii2LKsXICC0qKnJ/9J4p6hjOkJm8/DvkONOJZ73rWDLxLyJ0JD2kQbsR2XqAsX43EgCAxOChQr/NjlsCSfAIQ7RsyjLYv/eDzgh3CiEoLsQMHibPVwvHmQL9FC4naxRHb8HfiQd4BEpNHsP5BQy/USjbG7WN22nszhcDzSL8PQXGI1ZBf7I0uUChom5HKFx4F0EJDNBIXCbeVYDUnVR19FUMFGkVOpxkJ4U9JTAzHrviCd+BgSQFyUgvqAmI+y6h8cnzgy32EOa+ZLdES6FlkfPod7fBK6A6DCGk/hnEB3q3GuYlCraNHbZqJys7Ji/rMLhObZNSqRZ3CY+A0ijTrEcpGJqD0XplgTHveyMzXsjwkLncqqOV+vMjfPL++vRj/9eP2nf/0iiWjtHT6vVjsrNoH/8k9fXkzmt3PovvrdJ0wrMbXF2HQ5Bc2YZ30ggP/kl1+/i5TV2GjAiD+Vpqd1wrZ+XAmXt7brjmiob8ulbbmJrBSn54Pcuuk6ua2rdu3hCGqz9fz8uLOR4EJ5JAHF11fvbDzaDbpZLTjozI2Af4dpbLF1T4ciqb79+hVrQxrCDjU8P//hpx++3U4fto/ydZgVFCjKyHQvZmvbU64ayF6zc8DjkfZnM6lsrfhhu8djFYlf0VPOGEzv79ebffu0b6nM698bdm2pi9HCZSCEejoY573wJ+Zir4rviiI3fYmRQwHKRD5EQJRw119NcZmxQDvohsyyQgqHcGJ/vX2CgSLE0EweNvoHMWsn3WY5qlC+lBXlt7lUsOg6TghYhIEi1yoVai9RiyZjI2YPykcxlAMIJUNspUvSdeg67acDRPVmTIf26nmRfKhOySaS7VBYxbJBAwlhVaF3mvdWdwd2q/VMmk5UxkEBKKBQtR+RrB/wqNhgheoIi721rC7MBcgguTScVyme5yXS4y3M3/ooi1xdf3oZ3ZPfEBtfVA07OC6Aq1n4riF7EjUPAqWa1iA/vWZ3IuOlYgGQBwHDq5qitKaHgFu4ChlUGo0IAR1X3cJr5rxpJ6BGZ/uR//O9sFRNpFrmvkTWb+U15XvmsxkXCH2NPZ2BexUoGvRqNzBlrJoPiiKICtiiH92lT/NVdRuwq4H0H4jqd/0siPKuPukoX3TX0Co8NC88b2r5s8FAGqpP86qATJmm6wCstYwiw2ewvR+OPwyvGLrdUW+znz+yB3dHszs7fzsGmut3hZvYU9c6qRGduNhwkxOo3Aq8IXYP4r3mYxK+nDzVL92z8/Fw8J5HYLdzY8DFxcWae+n19Nvt/V+3X9iXWd3IW/AUjUbhiir54d3k99fvmaEcVITCYu9eXYl9h0ebZwmCInV3r5uXhWVGry1JaYcqtYHAlmLAE1MCbI42re+3K5YUj1qvp8bJOfe54Je9c3BkbJOv84mDjynmSkOrDgTLIx75nFwCrffvLly2Tl2GDiwJkjHinuKQ13tzevzpw5X4fnNKksIlYwXpJTDSDYvttsCk13N7wrvVekNExJDICmbumDJHzGR8+Xj+8uXbHXebrdTK8+FklvvOWtP7VSJTTk54i1xQetGTEOFI6KY5sn88chS632cS3tw7LRA/nWxFCMDmAxjkQiFU41A3qSTWy8u4M46VdfRsTSK4YLrcOGAozojhEeoSx3vmnN6RUwxAtD1v+D72K+iv3fLR7WyyN2mfhcqCciDbwUAbvLkqrqg+BB0dGg+B05zEVQy5mDR4T7iycXPikvGJzOQ0RmvBUyLdFU5fZcvha0RK9YcI1eEjAAF2IVxIg5BvqDN0HPkTaVNblxGcjclbtgczt8z38EJKFR+EvKOvoxp0F6K1ZRrhyXZspIpBMMjSWdNFWf9KcuUEkTi3sVLCqv4LXIAycLZExl+MrXyVxEuxWJQFOfykQPgrrJoGVCY9eGbFVqz2Rx8xnFR2Yth6pm7LveeuepHeZsJqTWBNOD1eLZquGixUFFT2YUSIwVfhRqtpPW8Y57DciOhSQMYVUQB4T4255FIgCRGQpbGp/GkgnsROCp7hJw9THNLiz43YVMifOEVFDRDUqoCAAaBK5LTvcioyE60Ma/6cRhWpoG3vAQtz5j1a0sqBRSvnVYlTMGRFylbLRGg8/UWR2dqVrpMXH2dKcJIbf4VN4dDcgGSVyuCBcQhLkpWg1hSzMBqEx1crcmG22r6sV1bOAuBlD7kay7Oy5Xfpn3U+Xk44I365mVqotCRjyVFLSHx1qWjrf/xv/1/cHgbMCpFuHwSoCH71myWNBoIC1I/iz5JOU5Q0nL3mQhObEe7ZDW8nq0CbscxlCCuM8+zfQaKmZPWCCa5E55EtJ4xh89gTgfMkjdCWkxQGWElZ/mf/oVbTh1MDNhnO4TEgQBXvhQyhvS5TDwnN5gv2Efp+EQNZZMGAi1Y958fdnrVcVN6FQY4b3g0LpfaJM0Zu97LlKDGow1WuYhVMIqk6AzEhPcLQIXnz9NR1tuucy1Yk08lqvo7iLKqA7SIniIsODkhF/aih+RKqqldhYgKpyf8FzTDogcr13B9h6XoYbo9qPLBNyBDSvKoRNRVTq+r7kbdpLC3kWRYAoApZByw0VRTMSgsXeAL7DNAyj97q5loNnapsfpvvZqc8dBmUqVIyjacEOZKQBg1asEYyOE5+7ki7gIwjF+virPVqFenXbitOpi1Worv2dmk6p+fXl2M5Kqd1/N8YkwhCbNVpJ6vVc7552bXOZdCxagWOvJYC+52PsRONWexTO6U+oxUi1GTJnBCHX79/J8pdqEN8W855hVzpTaa7WB18BVS2+8jNPvuk3TUhw0nPDQKidAr418nlCM+T2kt6bL2Rnj+67eVZ75bY48EAAw/HfYtPDi27Tu8+vNvGRSHhByINfSIy5xCcCxcyh9ojiuwjxxn4YisjrCNO7lQgU9dZE5d5ORANJmddjBFzsxJlRpZsKgwSpzU6wfBtx4BMCkaJSMraOOdO4AWv670EVmbHDJsZkx55zczMdlnJ7qLGIoCYaORUGaMQYopL8JUFVrWVCjUWwWgqC84QSqgptqa3fpagRDxpBy01krGIItSeJnyKFENzRa75M82kgPLqekU1+pL1bUOlHqHYhm6LRKNcQ6jRwWkpspNKDAyaisD1KJ3llUZ8qg9dHp6mU5/qPf1npovX8t0wG3BTLaUOAw8HQU6gTfWmlPbjjEnRYuTo3kCSWEmFMopSdfbBAKlU3sfqDeQcBA2oLANvvc+oCjN+gSIorZar0/xpjKnoeVNU14WZAOpDMqoFYgCVMsq8vEUBZTgFfM2aftIE+GuAGbJvfqriSbnxCmM12NQMXwWAA/aiDuOR869gyMDTg1aCnUJphnP45u/g9W+Gk3aAeZBmeVO9+Fkv3krmcfNJY+kjwwuo+dfg5K1EvYwwTMHD/NW75s+qTTRX3WpHOX+Wbk2lwyudwHCgBQTz62TUPf0f/u1/9V/+4YqL47TddaBWtIpdcgf6ncgRQy8zBcf47c0dFFEcMvQ7GjAn2h6fs6WY2T6WRxj/YkKetnb7+B9+/LHd7txPl4PBOZvm28yGs93LwfevjrI52JNo3krvzSJLOsvx8Px//8ffsZA2tlAfn++4FqT0ot1jXz7YPuVcF/TiWg54cbkh6bDnqaPJnl4ngzYlLKhSLaL38xXt/vr1zukk+dB6/PiiHdEpI94VhTY4DN4H0VLQTusORgPyja8Oti+E6Jyf306nBBjjmzsP/19eDdbLnQjYocSBzsIJD04rTwKQKIJ3V1d8/KQr05/kdzxgMV3aC9W++wrjVT/vDNrnH99d3t3Nlst1unt6XK/2KMbe/GJ9n9j9bGSqnehhuuJ2Pls+chXLQsQ1Q67mwAEO0i94yMT5ds4OshDineNt7EvYwNKimJ+feh1tLvENg4y0JGuEPHFwkqNJRG8n4ehoxeSxUfB6xHgwdoSgNaezIBm5nLUTsCAgCsGABs1HflqAxUdtfmOTsDQYNdntK4HGBiOf2Q/F6EwUTsNTELGTcKhC4dxIe5RHbkQCI8zIZF1UXj7kqIt6TEaFfMOKFmjFVmHeot+sQkK3EQV+WaSV7Xrga4QYBj0IHvUbfvXFWKHEYtW5PGIhayH1gZW23j5pubgoD0ryhGt83qRQ8WOAN46So977lArIs0Dub8Li0FKB6gkLN8EgR0cfLwb/h3/68eTo8fZuniyZiZR7leLC5BKpFqrUawTrqdXgynaMOLjt1gH3iA0Ip0DILl80DJhGqfmSLgJyDUurUFADY7dqOMM8wIbtEqBRMEbUwEzqZMAZVmElziYF6NmMBH6DfKiMuJa8C8pqARKPUtn9LBdHxqUkyfb4VqLLqMuE/CQWC5+UviskIJv0oDteZphCUTEUAmvmMb7yINs0Kc60SKagVI+yyNQAJ+AmKsXUCzoIQQoj1ijjQFFyBV3YYVDSuZfzrrCLZHg31Y7TiglUz3JZd/YnyZ+9G8I3tWuQa3TiNpbYgA2B8zggY+iK22YPGb+1GtNBspTpfE56sJilbZXZVK/WyIWfoEOqYICyonCNfRy8hIEb6MFqT8fhyYrRyqlwWVWsbzhWbbnCKm63Dod258Wt6CwhGGHkYafTc7jIuu7stG+ipFVx5ILBhpvNirSM4jM1BO9wwxatND7iLJj4Dpk8jTlDWjKJvb7spUflfjj9PpepNNmaRZNMxn38TNIcJ1cBQQDLWZbIauSqRSFA63muN8ePxHTwT+fW1VcGFSor1oTQVDa3oXj/xZ/Hnih6aqgq7kBvsgFSWjb1TEs8qM1qOzRolqNFSvV6VTSZXrI9pq188lZfSNIXVUKaWV2UC4Sl1Rhw5r+AUddXy3olweYtS1rXZFDBiVwiAgJDyI40sxHS2Hk6cpX9Oejreo6cDEEALGz9MmqJW9svSSpQAd/Z+Xlydm5rCIK8uGAyR4zmp4d+vz3sd0b9obxJbrhDyNz5ny5HAmYtDr9+u8OD/CymZuE4HbH7fMSeHnV7pLMlnGjSxWbH/kafLrcXeNqWT3YnCf5uKFfdx7FD7mz3zWotfxENdXVxJauGKwboKjvA8pSqYoTLuWUGQo2ItBTMWZnz9lJg4snR7ezmdx8+ff50tVqunLlbzJfn5x35RjEETGdb/PFFyjyBSdiTs222WDpRZ5+A70YYa9sdOWKbCDg+pK3MXLj7xOlyDPzp0zXTfT7bcV9b4EIwip3Npi+DkeMsJKBTAtlMQ3Mhj5xtEK/mbg7UIiyV8rDHVwopmiCyQYwjrYa7LOQaB7OJJW4OEjDEFhGBDIg5kqxkh5kLAYRaUGm+hMbKLkchzXOvNN/85ZdiISKFw8n6zRPtZPajNlCvmU+gs7Z8SZWiIl03vfupXgAjg4sz4o5KAFeQoMHMRehWPwdiVlIvZdw25JmOPVEyw/EpNvMsq4gI08NgC/CIfw1m+PEu4z4+9aoe3gyXBaTwSz4ZRQGtVW914i1QgFYjTtsZU5DJ+VNMEg4yTeXtq8WM9jGX/5TRtBp60Xh2RnTkX/rzw/itWDOCZoz5ljaxQyD0wX0NPKlezNuACh0wlOnOwaqoOutM0czarU3I1NIOAOIZsU1fHK2kAaYTQqYBoQabnoo86kvNTtVP9dKFnuurGsTbGUsEUVPaH+lKc4HQJ6BnBupL8y0vo6tSt5TW259VNsNvTIfQlXGpXzNV9AHWNFxTnz4DXn6l23rh72C5KVyQFHKrQkBRMoUb4FKsykTCHaAynujf/KeUQdOVrz9+Hv/008VJv3Xzbdk+i/7KaTVpJ+4WIu/JkNVO4jJ+MiGzQgLbdvkAqgFTZm2/Wu3patcOUm0yHn6+Gn64nhCVW3t6XBxkZrZhWwOH3tonf/eHD9/v5eF5vVvMMD4nm5OvsomNj7t83lThcefk291Mzk+KTJJrYmo0HLybjL19cs716fWsc7IQwvLScjbJzZVihMp/9yqvMPtVdmNx1Pc3s9l68cGloBMQnPCwCtm/mvStUjjC0LAIR0oTVUMVx4pshqYCOiRV43e0vzgZDn64vvgucFuCz12uRtGu48tw4s4W6lCe4ovLCfaHFipYSPf791cUJel08e7C9shsNu+dt91e4hL0lx2Lfw3VjguuBHysdrZzJSpfzFYvx9mV5aFLCI9Zge393GK831bWdWarx3KibB6dVahAilcXCq2fWuaCjoh37vvtXggAj2FM//3jck5kOmOV/BNIUJBxjqHxmpqSY2cV1gxut0c66sDGcO5R2JUgUzqeHmEdumuSc1pauNw2Y6HP5RHZjKssPE5YIzSgFspZEAEYl0SIwTzTgEkMyMhhv9KGXiXMuJvDA1lzU5QyUjdB6jI32HknoOiYbO0SkckmDgE2dCId7eOJgIWP8soRbARMSZYDMSO/kHrNYNgjIjHyTc1GQXjEGRUGK286yYfa02y8Bg1jRdZpodrwM7yjBezvtbrES1jB61IimioBWcWhI9Kb9U5wnQIy7OSh4cXxEb7TlzbxSFUw0Ph9KMqYvgbX60nFyNiwBOU1pw33a6vsXF/jYKcYb1RqXfn0tCX3YA9rIDaj0Lj/Ii1RhpE0Uq6EEuwFzdi7onUMBHV5D4wSJDXCWL95oi//ospipuWVSYaz6I4ogFj/iulDOQWMHQV5gCgS5id95WP26ksiZXfF+GHews/uRjoUVlf4iawIFrXkP1Iv05SFGDrL5pHFY3qMYiF6HVx8fpLd1kETbOtRnOAkhYQ/viVFbB3mzl1eXsUQcyP2crEXrhKospv31B8PISJZmGy1uc0wGX24OeT5zUSJobgYOTF0jMRZXC4GzqFHFma5wNzYmvA48k/f1vnIkbBg0bD7mLT01LCfQCJRRbIcOOUv4ybbkGR5XPFfoPAcrj87Fflnl/Gh/cwTDH1GmeHZ8+sOh2s7lHtgHbkexB6rxXeRGccJm+dYblCax6iCMyTrDzRpk67LYHrmbLCbyRY3Nl4BXnr54y08MjmJDpRGgPuZ2eouRuxnI2Lo2CgZZ6U1Go9FAd4tcy0ZPcC8t7CHcwCK30QVorpkOUO/PLiddh8KvYUdJTiJ0QRBABJjZ6iFyDMwxpuhxXgK20TvJ1SG1Mpb/dRHiYYKFPA19jvqwvcHDgzzVAuhFO8AhdRTKdyYJ6kYYomYTqHiRi+QVNrSju/6sDgtcqt2FOavjTpPd/H8xPrPTKBwn+hezeKsF/YsSWT+8lqB7PCEU3Uc6SdMtJbd2mGpMvdHUrZVCtT7+Rx5XI2GsjjLpPP+ehIel+z14dViS/hQ+/xY9rf72zlY37+btBavFgCOxQp3WaLO85PL0YDktYZDFdSkuB1z2esK0Be8Qzdhh2zXwNH2eXeMSCz8np4vxpLdvmqZtwj2hmJ+uh2m881sc3NPR2z+8Icfri4vfv7lG0oQzW87azKyFeA02Ik1iY2g2+8z9/Fdjy7cQ3B9NV4sGfqkwNHH9+8giOPN0ph2H5wOUN3F1fi8c7aYC+jdvL++pDr++tevhP/VO8fauvdu7AL5pHs3E0+Xqw/slT880HZWRC/OrfkP8p1Tdx6tez5+ECAmRYg+5ACt7Uu+AAODajSMlm0C5HzPwlIkPoy4AWKfhQZQj6mD4tBMxJk5LFNPr2bOVFdMKnT5S0WFva5FYN5nXUpUmdwIN8SS1rwghmJl5sMXnscRnWksZULMqYDaQ95FkjGmQ8Uhkdo3iIZJMSSXpUJTrIzXFAzlhPyiCdBxPWk6BbIvaR4gpVeISE8Cn/bTRZSQH7FN/aWjJoq2rFVlQBsaxwL+5ZMn2kO7of/CAKCBFD1YXaugnjFkqP4ZaMg9jSeAqjrO9yjnPE6jYTHMUmoyWIkjKs0EMPxi7P7IbATJKR77wOoxw8G21ZGx+0KMaIfI0uzbNBTQQC19UDAnO4hmlNdmU50e9Mr3ILM2j3WTAsFcwVK/018gCCMHiw00tQ9Tr9JCwM5YQlRRcwVeBpNRB5jUP+A2K6uGHjyEkBTTb+3qNL0GhkASzKW5ascTmPG4kFTNFUqb6lU+EkYLYGj+TLspE3CalhUOPPkjMDd/mtx6+yYAmwoFlQKgPbR2KK+5mnh1vOJIz4rVWczXUff1//iPn8eijee71Xzfvu6Eek/O7r/fOTaED0QhLxZbu9W5uMrhIjlAawrAIyjc2QCtmZTw2XFrctFzgNVgpvMFDT/pjMW0/Mtfvn56N6SDUrWMAi4V9A4xUu21OkefLy/G3S4B+PWbNPnHdhZ4qeTu5wYTG2ndfStX9XLNrPnw7hr9rE+W76+GknsyEYgMh9/uV4uPl0OmJzr+5eu9/Acfx+OLTt9lI5wufBly/N8vbCE8LV83x5wcJWwJT1S0XDoczMrlHyN+O5w1xK+7ir/dz2cOPTiqu5d2M3TZdxDKPSQbgc6ti3dXhJp2ht1zN7Kz/IThmkYEZ6vT4Vz+e26d0+P2n//lZ5Xdo+bhcrl0Cvn6cshy4RsVCTroXcpCunCegT/GPebJong+Pku8JlfLUw4HthfyHTulLZF3vydrR//pnPMSGctrLtoZdbMjOYnuVzmmiCcI0m47C2O9SLtsNa4RRGErNhKGXZ5E4XI6ndzdz2+dSOQPPD12UstBC9cSJJqYxhcIffSay4wrjIe9/vyg8QdACoHmFepIEnJyNlvOaDr+FlQrjmpYVzJb4/TaluulW0XN1oHRq8scv86RanQlnIO/XzDVWTzN6MwCpoQxNoAtyD5xEgxXx142Ehz6JgTKFo0QjriKTyGKAdFan+QJMOoEgnbUq39xAuaP4hEEWCxYwiFsAlHZ34jsKmFRZTOPVT74Sj91+qtaK6FR3oUIzUinuDYa4NVKu8mMn7szoxAion1Htiw+arHDrsALEj+hCfm29MlmS+Q3fZmNFK50lqeDoLEAnZfVcukBEi/729kH0O8beMalgAH6jwMNPkqSRXqY00CfgTVCoxY/Jcea1Qjc+QLdamNn7ZR4iZyJEMbGzDAvUzvSKTqXSag1EAlQYn3r3cXGCUe3Esh+kP0JA08gUCYl8xZpFukcAaYj6whmv8tAgkJqsCzJ9GLZHQisJEM2GCpRWwkyAkndM1CoLt3+euIB8uKgFUAhV3ss5KdjKXyAmUOwT8IQhbxZDjgBy4W6j2cWjl+d6U/K/fNTuTrtq81XJoIUj54FJtVvi/DZTQaQyWKgvEgiqxx7hQmD2cX2PpNhi1QqwzfnbPnP3bLrnK6M+zYdXDgWRyZnuYmPsxw6GM8ANEj5hvL8CPMHL5j86GUHdRCdEMaaioQ4PfNT16lkj0L61oU54I1//CHJEaDjZZWzZecq19zLFfsmk56h+I8BKvEnm8/pXZ5sbaM/5zLNdrfdlVDYQun8pM93slxuLRnsZjJZOs/J5QQe+SDm93MTTGDXRBKOnJfJhxMiebU6jBavSQ0/+KB2L/K1YTrUCKMpEm3kiz99YdcUnKXtyqBXAW2pF7orTyfiK6IpsvHu0MyhWNFccvhUy2rldTz6mmgIiKskzoYsUaA98IZD9MwYotFCiOR+Zj2+TCE9xhgiMFkgVN4CDnUmaDLoz7InZo+W2uCC7CRjy2r4SAbrKQKxiyLhLY+LiCzHZx0zoUhOZX0eWlA9OsS1WN8xqq7fDde5JrNFhjpFZyuKY01Y1/18I9UPy5i7KGvsCETzIqXUxh11FoWiueg2OhX0dSNEz3j46dtn53/68zcG/dXVWOqw5WweUfi0dxh9MpGBqPMvf/qZpGZgS/QJYIkrZATtT/r2IqToGYx746tr8tIm85fbubNrhnc5HIHASsYi0JEPAf1QZEaytKU1d4/9wdAi9ObmHj33mQ/PLzKauoeO2nO8wXa/fQboQwZQ/cuXO1tPEPnxw7WLhG6/31OKQpPKk+SMdXbljlyjA7+xKjFR29LFlEL+7d0dViE20XYmMTJKoyEDv+iI0FVEFZSZqPxf0yvbXQgoj8qo8qXmuvHcKxdi8MrzkFkBeiCyNByBX5+8x8J5ZaZrZ0nZVNGtn+lOK1ECbx0FuBLNKNLryDxlqovY4qHPMivzMyWVz3C0mRdhh3wJ8NUmYgxb6bAq6gkYyvkJ0Ph3fMJ3hprhKOk/BTTsTeg/rJe/019JX6WoX10EMONQPX2n5RhxBG9q5l8VKKbUdpg7uPrtgxFwjCcxxDV/8DlFymE1pbWsY+U1VbX8zpd0VtIvuCpsFNwATCmVDd1/YTrt6iDDN9IMTJsiRmIvWIhwCtI3aSHjTsFqIoVrHpFUXrEPihg8b+bcIAJAukqH+S/1FSt0pZVS502z9RMcTRcAbpRZM4yDGNRRXqemPvxUKgBRYoeaeedvIBywUSCmcHr2JnWaWVMFeKFq6AnEeWCkzRftNF0gjBrPb3gLGTb9Fp4zKDI4rQOvHtXrpkdi3Bdpkp//6afP//DH31mELxfPFu38Apzcy/nKDrLzievFkvljd4/tQBFxH3D7ZU1evMbOjRVW4LUFw7xz55UrepweZudJFNH6X/78pXPWvp70HGCS2ma6Xn/7co9qqGZnWB8WrNmN67ZcRM84chl434W9xzZIz+b3CyQgrSf/vZjJLUPgKLeeOxFrE16uBRJh637i8/5ms+TV+XB54UjuRorRs1JYfNj9PnPq7k7m4vPZk7vRY9ZSznbyczIKGZ07VkTKCSvisaP4bAK4RPL5sZOY4//4r7+4hxCObG1ikvi0Wyd33+5yjuGcrdwjoBj0giQHE+7C/WYtF+oDoj3vs+fbZCk5ySKyJ8wHTqZsXC+2fxgls5A9fMHyolBaua1MeqLZwjSh8GTl1LoNZDhqnay2K9cSx5Q8PnHTMAvry7e5oFCBukRiogOs30Z9Th9BRDbGAJ8zgU4L50DkPm0+sATOxBQwjoSYU2ngp91W26cumhL+5J4zreTCpddv9wvsJQcscWtPQ2ommwC4UJ5wgxWlfDo4dnE7EGW1jpA4Sn4hlCW5itWL6Cb7z1yJsREBjVIb9hQE6lxIjpLbOME+zx25V4Qwx7VqEHYbKoQjN0c/EHaCwjk0JUtk0WBhIsYisfkYUZkZ+DfbEbgJ48TbXByUHQ2IxhWh8VIQEZVM4mgKdAVkFQMX8wBSag8zEiZyEmQwkn58LebCe1lU0ADqeOtVCmnCz+q7uDpWdTyqRhaU5KVRoIRwYBpPqbB2mLoSqevnRCSI3H6JB2CkvTzz4YYelGdls9yE7eiGQR1zv+Rk1uI1CssAxlvA0HKJBQVqEKld3RGhBecBgAI7reULSMEZ7JUeMeOaMS9eRRf4XkJbUx5FCKepSBKPUZyejJKGt//AM09lYBZ8pCK1G5s5mAjKPCHLc747mznRaCRJjTE7h9FBYI0jz0lxphqBlwfBdYxbK3lEZOzGqCPp0aUAyc16FMBJovIRdrkPQoRM6GwOsM4ZY2wb11Q+xWtt+s4+XNbJQxssjuDv9uwieg0pzsU4vnI15pBrgt1joWdwdiZepRgXOyiD0Kms/VkHZ23SlgJxJED/BfVbrQKVdLfOwOqO8J50ejff7+FIO7VQQxYnnTO3e4So3AeuJ/E9fAwIw6TmXlNT4kqzXlsmNYl4+92RhbsFhp0//IFiJDsjfSAGN7Le2HnbuCKsCJlHNszkkX0wq/nO/WYzlyzJdEY2o6JRpXj3drpcXAwn5p1327IBeT1LfSDW38WrDq0K+N6K9rHQf1nuXbNyDmCJknAph8FZ63x+n9tVw0ilSEiVUETIIvSB+NgBSKoIJYoqtBQWhM0qFoJoyEGpmC9aK5oOw+RLSNJ0N1qqQdhb3fQY0mlIv2kcjtFvtZoWGvYLh4fi/BfLptgz7JS/Y07Vp1KM+dMcqZ4X2RMM1rKTFOGisQiLYFBUg8j7DspNg5q0HPIwE2NrK+ecZH2V8tUpsdZmRfRb3PcX0wXLhJfVBQ5MYZaxm2o1d/1+SLO5P2O5f8DV377eXV2OGegcTLe3U9dsuavOpWx2pmb309ubb6PLSx4B50ksBl2Sa407m8ojlHNacMb4Jv6xxKlbh6WIOzmSKSh7Vq3jZJgVKTTpWkts1jMkcDUZoDUBO5wK7e6JPHQcObB60kV4j0v3fT7shAx5MrnsO0QvBgmDuquLaOiedkXFLXdzY3H/JYSICpOkb3Y/N9NyVKPMbF+cJOuci4mFB11fDPAmOWCFc3M7N0wWAxop3w/GysUcGNvqVQQS+eACT2NiKaGuJLQ6PuuftKwBoLwjORVVYC1dpn8mNzMaygN+zUkEDUGbCUU/VcKclo/H/EQRxvwLVRStRrxEqqaRhuRiPhXpcnWIWPIpYW2WfS36CY35U3epUp8YZ6FazYIoP4mzppjGQmDZJ43grrbRVzoGoyeaDalrqiqmFcOhxkLA2oj60X6Efb5EtYBJfRXyJaMPGP5sgMkXkkSzoVqVQB6AvQ5vxHt1gCJvlU1jaQfcaeytlYKqwEpX+YcRAGA4voK8VE5EeANP2CRNayQDJD7rexg5xrlGIgwPgwJvhl8iPsjPiIKedA4oTRh5usj3w09DKTBSPKODtMaezgCjx6tWhu2/Ejv6a0aWBvM+P8GAtt7+TEd5juCgK7wf3X8oD6iMLe1V+Tyvrxn7W8XmkceN/sqfYIMlvzRV1FbPas3kYQAJ9Blr/vDd1KSvpiuF/ZF+8iqrxnyPUdYUz8+UrNpp3ieQ1UQH+OZ1xt681FOVSUuZIWMqVHqfP1GDXri6tDgZt//5734IjhST2T5T7fMs5S4Dlb5Mm3qo8gxNRpuR8l8k7kW4i3jg8OEj/8X78cXVhFeeOWl6z/bb9eeLKwYDtfJu1JuMR2B5WLPwZBburPYu3cTEmn+WJUw8/q/fpvYfA9XDqzh3p1cF1QinZToILxbfeHU9keoH7PKbjV7Oh235AY++3d+hM4GUF8OReH7xFYKUBNCy7+446pdL9d12YhdVmPXAaVoZi58duz3KdquDwl3GQRaxbHPDlpmfCW67g4FlpIPkz3hIHiHu9NOze/dl5qbO199ff3zKWVexnYJpbOTyKko50huNRnjbAUKpUyluwY1Pz3sXtiRccxlD2ZUCBq3BOWN5tbu+vGThElKUuxidrUDwFlH/pFGOwdlyTtsgEiZ7r3W+d12CdBVlpWwetnFxEWQSzC9dm75l97st3dXvmhJKZKnw4B6p18dxd5DtetkUduuItBcKwtEAh3o3IixLpiX1JIFpwfDKNNg7LrnDp+4+Y/Q/iMOClG7Hia9Iw5eYLoTfeDTgrhIvagYtGaMrLUVckLx1DiRAZFniYKtjAM8vKwbafuNEuIierQSsJ8fOrDFnY661JJK2Tjtfb9aA67TVyBEFIRjSP1jROWMpUmt7srMylXidpYgtwizZ/mIqIweioHnUStqPYvRiEdKCvGjYPBID2VuVhDE0G3Yu90RG5euBl8N0Ybs4jJRTJ0I4HBCniQdGl669CTuS22YvXB+ODVjF1FEWJYSrnfiiqn1N8cYaPv6ivv20K463GJOUhQ51YAkUU5TbSyCNJI/qxHq2AAqV6iEPGjGezugUHTVroWhAHcVNWfiIzKxPxAzoqnoBGm0a8IPFSJyD2PBnOP3wZ2RmrYvqQYgtAy1Fo5BzyHbvASwYLFQIiNp4yXJFf6qmdGmEiCmQ5E+TFbWWP40DlvzUfOQFOGLXidXBoNWIejZmIkRjmFk/5nikPi3FSe8AenzE4louF+44QrFOAdWy6InhCsnMBiBp9WYuveeDW1lVwd/AcLx9u3QCJ/MFhCyeNVYRN/4UWCNJwLlJAI3B+EuoxnA0MEyBO+Qi05l3mVPWjYMeCLVmOTgB6fbT79OluWUUK6MjItZ2F34Q2W/XAT/p0DoC22QWX5/QNgxYgvcdWu51racdwHKsKnL4wd4i5uIQ3ZNrcApHFjoJNhMOlPbhFwJLpsMhkWBT1RS9uHqwZ+8k8q7fcfXS2CnOfvv2bgmMTIzLDZwEOIdoeQqyHWfRwwQlrjquEHWFVm4PiEqQLlXkmWkLAZtT1BYVHtIJarLgzix6Hfd4aCkUl7fNjBYbhCAy0W+voji1HbtML5nI+gTbzZQwFGqwGCcdp73IwZTSYUj2rU5IlnjEG8Wlhib+D3IPEDYVUkvL4Sq/C7YCNGCDOrtadjREKRStxeKJvgxiYJ/9bdWL7Gw4hC5fW5J1CuDBnLzgXJ8a5gNyozt6ct2kkBaXzDvvJRhy9uycyM7edtxq7WzkmX9EsVzuJM1wxs0WMM3U7/d++vxuu9h9GI9JZGWvP39arXfT6XY0kuHaOa9TuSOMWyv+ZGhb5H18fyWoVDY9EavXHyeydaA6MW2GiRSpz9V0xW/34cM1fbAjjCVxQ4b2DWTJeDlypwwaSL6L26WodC4kQD6tn+kSB/toO0xn4YE2v99OkSE1lmCkFbWN/Y544LpAoXhHXHsW6yf/+pdfbcMp6Zi4O79mCm8fEbXG53fLj++uLFa36x0/li+WUu8/XC9wJicejtzLpLG9tB1vZ4wFYS8vaYaTY8satQic0Kgg+LhzQgjxkEWylKWrBAGFGiOOvTmc9/W9mcrMfL7H62AekZB/5lkT9SV0bE+/SLQhtzJ5omryKcKNhaewjkLgXunNi/xsSpWRij7CGCRXrH+fhvCV8DhDsJ1JfZRgNRCPQnTh4KqFmxqOyFCyxVkkqZ/ikpBlOk2zFaqU6o34LoGafi0/8rD4hdLgQ0svZQTDQNnfZFzWBYbuSZmtvsbjFR7NWLSvEfOCNdJXraz02PAgCR6zRJvx/StW+qrqHXBCmJalbiK0o9Wqy9o7KCRlAwmYyYeox5IDimWeoic80TKpmLFE1Bt4wRa+bPg9/ZWQ0Aygo1cKZ/kRHGWxFEWbL4WuggTqmtVXM9f5s7CfMauj8QKyaSK+Q28zwPyC06ALMCSeNn1VofAffAdLTd8eNYRTYifkGwMimM0XAPkF4IBZ/+VHWi8I0dWBpEMV9T4Ef6idDnTUPK6m8sTb5r2vhy7qsU7SVRAbeijBnX5RBCAMAnf/9MPl7396B1XNWUMZM3jZWSOS5MwE4jw+5E6Qk856dS8zMBe+5AFwymjWJDPVND0l+vz0x/cfJCFgHxNubtahU/4v//V/9e//3Z9pE7rr+iIR/PPlLtY8X/Nx0trc3d3TID9+eif/NXN63O95ZftZ8D69RD2x7FyY/u2X20G3/fnzO9pnuXX8KQ4XBLLbSbewzgWf0iGPhpvVUrBObrN5PnZ/7t10IXbM9FC2QlHWLw/j0RCK1+tHylp30PL+3aVYfNXjAsyAeKlp0dfL8YSod6W6OaYKGcyqmPXJpNfZHX+4GltEvCSRxuua6S8NCT+uUElC9lj2nKcFEUb5Hrc5ibh/MFsiiiyt3PB19Hi0lzGpffFudHezmAqM3C5/Em8pZ3fr5VraaHmMHqU8mjGPBSPKpESSQ+zGPcdh0g7QabjEHDiRmGSKkic9UzD4KacHj2QLxVltHvtu5+Tj5MoGC8nPizLq9bGSrKgOExqNjKWzxYqhJPkyx6LlHpYbdgQpsV9OLXjgx3JH7NPKmofZAJXPkrCH66lzi4p9rJGWuFkZXVAUbw7zRi4kMT7x70jQrjVxHi66soV93hHOxJ/Y7zlzHCKhUx18EPni/OK5qk8SVISJHQigVQyf1cYMQ+QiRiINBFa5PY3myM5/uDrmIldcc66pJDN6J0MiW5g5YiEipRt5CHmYF+n7M9xotok2bBx5W1EAOCXiPcxhMhJPoSQfLsKwptJLZB3S126xUCRBcGG353BY1vOwcWmGOHmROREh1kDTJQ+xopZ7PSuciBrQceL2JHHKnfbO/jrU5wyACvzrbZNGxYWfnRduzl4WOxuzcZUUAWve54+SnIUrqls2oRxxjhGWAumrJEaNOuMPcvyf98mJAs4qW6X8yCvNWkjE8lY/Uksv+V/JMq90kY024jkHFZjaUbugSFeNM6ggiERK655nCqJ3UibyER49o2Iasa/HsiTzU6UMQVenVkH2FkTHnDFMTJVVK2RaL7NqjE1OEQUshDtuB39laScCt+4BcPeubP7BvUkTEJfu60i61TjXuVUXpHNWJJomp8vcXHKeQymcl47qf3x3EUSdtMQnbJdsuFHG4Dzl495q2IrZFa+gc9ae7126RpISseA0rViqmTmhNWVV4EYUmVAfe5y4Cw5YOCja/auOUc6WgsEy1zZkyCxzI8w6bmYHSfs9rlPLcdangD2E6QsqPNJymfGMCZ5XXAMRR2chi5xIhVPYwf+Y1Zw9PwtWwXr3M5GcT9mIydliwT4i1B9Wm6WgcAsPyBEHyek9HI45gMlHnGzZRINazfKPhxZQSykn81Z/HM7RhOVCQAfN6s+QFZCsjwsEtTywQRF/Q1jGqxBZqLDoIKo6o8g/kCifMo1ONew47KOYtRy29DJWhU/CtTOtof981xoK00oovjpVsnmrer7XR8W4SSyk0lfDACbT3TdOrzYr7aifkSzUXBcirJD9CX0TU5UUtHlswxeekY/DOyIDN+uFKe7Y/Xx9urweky/LnU1b93A9C46/fjchrO19ylw7m62u340cLzNuZ63IjnHH1YATt0DwLp20T4T/kwH7rXQKZ3/4w3uiwWEymbaHlw62OU3+KCuG6K328bmQLRGow1F76EZnWzVGKBrO1vDD09/94SdIcSpYGBJXetT5amPIgnkSNHGe9Jpuip86SIf0OV2Ql7DD16SZY6U7Rdfr0DE2oDe3s7tRd2ThM1ts56spSrge90TxMgqQzexubkUiFQclNb5wn7HAYmv17pwhEEdgciVxoP306TPGgTtbFpweDrX0xmPqB6XFEiRjnGewAD0TobRKMfkutqG6xhomYmLJhXBC3rHsoo4VzHTWDEa8mMFmfpu59ghp+N/vVEAzxEdRUVMx5Fck53kID5GFKss6jnlaLp/QbshJm1pKb1UldnwIM5SselooI9vLdBgbP/8aYvYln4jddNQ0ksYUzmOSpGJvqpQf2s1+QgRMhCOSVCzQYaJwShrRnU7ThNcBvkCvtYWHGg8T+RLDWDGUn78CQTFL3nqfJg7splgekd0pk08qonxrgAaw+nUA2+vqAWZU8lfzMmA1TJa/9Ru0pGwz0kAaqAJfwd4U1lMaCZrDxdRcvQ6bH6BOG2mqKaZ2DVpD9SKghJGbqavxpovyj2hAa5GQPodJ9AhU0UEe+9+5sCZaIWjUSJ6nr9gjDcCBuWah6uRZBtWMIg37mlrprIE47QZmj+ttyja1Ak89LAxUs6mbRlTJ/zXRvjaP6mFa1VaBUf2kdP56K2S0hwfp8rfHNZaCSYWmdk0rtszoWv3O8X/xn71jZXrtFKmkFFTSgyC/5+PtI8OeBRZvrgdUYbzIOaZKI9TdJvIfyDax479ovxtfmIFfv98kd293SKPZwP/TX74yN1k2/YvRr3dzeTyN3Pbg5WhEbSNllwPSihj3l6/fJdHOPuGr829+74lT+4OhgFN3jwx6p+du1ZKaU1wig9exOxb2F7eDMZVswecI5gM7lWZP0oxdIky4JbjD2YeyKZhGLdHa6/n2ejhc7HffllNm/cneYVNvolgJn6yeE4qx7Z0fC2SCbu5qGQ6kbiPbnez6/u2eQ9wpAqmHzM94NBG4/i9/+pNdYrujcHhveUE7n7aI+gdhAh35zZ7385WFUlZNOVkrV4+jT6+JEjo77708XPXe08W3N/eMY8ekJw4IDqXuSR62zX774WIof5FoKslROufd9dJmKfe1A/CCstriDqazuzObuoNxJMbJkVRqEMsyptwpQ7I3nH/8IvgehTimGF3jJuBKdb9nRDXqDmmdtGgRN7w8bLfJExTJkwsBwG+nw5qCEHYgRO6g+FCSIfCZH8cdkpp1eQ07/y6ZUY65+T9eXG4Fk7HgZIyxUOglHaKkIWxoE2FFR2qSx/4Ql4Q1pVFEePDDa+m5BYvDi6R19mm5e2NoxebTr49apy+WWw6fcFGFsy3SQ9nM+4gIDBE2aeQL6yeBLtmbLTEUJ0+sFJYFbUilRFodjAJOWC4bI6BZcukbDsFKumNT+mlyYwqVkMqrkgzEG2nDR6URT2IEhfeUBH8MPn8VI1OzZcsfvTi2Z/lny53ytnvmaAoTgsqWNkN6QHUBYP3k3oYMRFYcB0WcvHCddhhRJHkwAGxM7huoQNxIbKqB1AIP1PnqIXRlPAEhAlPFfIlwKGECJYVAWjstRJJHmB8ETYkcZWvMjcDK0NQQPBMAInDUUs7hU6d+UUTBE22W87lBL4XM6qsY7ExNtFjJqUaf1lw0TzIQtlyJMwZ9+onZHGsuLu/slzAASkobA2jzXBbzbOKxXxVm/toEY7YJwr67S4KsnJnObsrT8D1z65j726VXHATyBDyeH894ODjK5ds1WzEcJCOx25nGTy8moxrc0WPuGtDriYS5kjSSBdz4iWJL0oFjRH8/FZ99JI5C7KN0pFYUDubm5GRs1pxawIyEHLRiyK5UYJ0evrBVIX0BXyxkmEUjYbrgJYtzA3DZCg4U7IHNZo42Z19IOHuEY9ZO3MDnZzmXZB398OgOQWiypYE68ADSFeCgax/La2DPb25ZXU5wWpbz4Enx1Tk7dfuS7DQCHq7fXVdkFRexEw74tGvt4fQQ200B9MJOREJICYZCXyYqn9jiobyy9T0NlfvVkJQZqnLojViJPsJxxU55gQBTIK1kjoMo5FAF6P/aA/K+eV3TESOmKDsWXaPCQ6zpNdERCFA7qCReRh8wpGCkQF419Gsg2TdJe1p2JNHxm7z28acJFWOWJNAFXCCOreAFA196e+SXsXB7OHJh2/T58e5+hSGJYu4W8ai7VbK+8qCPRHNtH2RU4GAXZiqaS7y7DWVudVa12f78wxU6yeorF+Vu2ucD6RjiK9/uhG527RI8Pskch4XcuGKK7T9QY/L/uBKyc3q6ls56v54M+oKFbAhLqnHlMuDVRsoL0ok/7O+GPw0uB7KGrV1veU65vtgdI4mYVV+/zU3CfvcyGl3KVZutRjm8HBM/Fw+6s91uHbF92ooOmi02bZf94GGhRINL+wDupoHUnnhcy9fHh9l8TZI+uPtiMpxawu73DsWcnHdQ5XI613ACpB4fbXrI9YkOce/cvUKu8tnvhr0BaCy+7QZY3myf9hfDPknhCmFhw+nyVbIgi6Cii8YF26x7M3nmPRKctoDwonQ2vWiZipuMPMu8F1EZ3IGOkIS5VkaLqZV1aYQlgvFbMXIk0x16UJe9G+dH+JfSi3jNSqMhKiCQBpqqnkKY1aM+035aCPmpGjHX0HaOYXmb8RDH2dBMSUVrOBmJsXhQTYbBGiqtPz2s5ykOlEYD+aK1NFkemsBL1VdiU+U8VSVDPkjbaAhdVrsgSuuepNeoikBMWmjfA86EyOcaiD8LlrxI70F7GKXBWNjMUywRBtRUIMxEpJkULqEf9GYLwpz4Vx99Ab3BakpGLKQOklAm8Ou3QV1wmFrh4GL89GPg1XeNDoTgIbwzlhQNYrKtpwVFPdAXYgGG8lmzKZH2U84nvUeS6K9hfDXSTHCu0+AehAFCv2/TkqdNy823BqqQpU9ay4iqZzXBEIynuuaKOL1TJfhKH3nu9wHCIsh0X7ioN/lmUMaUTgs5gSSVAlI9CYRGHMibOvUzFQp6vbw9TwlNBVALzJejD5OLnz5+prvBMb1frFYb8ag2xP/yyxemnoeXkwvCR46cwaB/L5n/Mt4QGOPFZJUmI1C7+/nj+7P28YzT+lFWicTu8jS1j7sPCYg//v2HH4gjaTfoWgJN4A0Jyf1vFmzHV9L9x1H3vYig29n9ycuxhMWMLyrRTp1U4ux1e9C3t9L9u8akLUU9J9f/7g+//+u3bwk3P5aeP7rt48WEQSi05nln99tNwB3KlZzXiKNrX+9FQibA9YdPV1C22m8+X1+xg+2a9jp9SYF80R8NwZpzlokwcDSWJ05Ovl6/x1OzJtlcGGRmxRkLlznJKOTdhvnhxUCbEm1DETyXsUrcsoxjiBNrvD+WM5jDaQHKfLqeSQ9RBsLz9fXVbrnjo2FyIEeZOi1vrGNkaSa0B+22FH4ve2b9xjE/QTJZHD09X7nAbJJUrff3M470iVQQZ7EQzA6jRywxugAMB1BNdwxR9zYyKvh1iGWQs2iUT8yDQ20J4BaXJQFJZ7NZu+iT6HTnqbTSth4it3IiHIc4Bulwl1VfonqIGeHKKGM237HGkutC4gu3D7kJQfa5hFklssUaxvY83RxdIylQ8vMkXfVw1PvyDcFQd4nKoI5ZT8vZhm8VL6BYfE0m6AZsDL9kdyEEPHaoIelxWkml2CI32NnSRVgF4rKII6BGSoTz8HU2qwkJaRG0F57xClk3LFF8U9waMa5fHAPSrBlKU3jvCwnmuZqem18DUTD2fGqWKAOY3uRHqpOEZbJaWKpVLcbiiVAGGDB6HbdFsVtazEh0BOer+1lTMaGu+oqs0i9zOsdoeUQCmOwzES4Jsq/0yxErIAGYwr6TZ/4LxrKMqY3ZJmuioQLeqMm+grJwUGOJ+GkEXJrwlwazCC6pEeVY++I1ykZQexKjKA16CigznYi0FwErIKGJ/IFB6NDgKu9NRdZCBuh5xFQkZHSsd3kS1KRBHz2aBi00uiDQJQ2JMUK64wY5WGLRbLy8pbUAyLi44zVjnemYJaHkVrI4zJMMFD2LIhOudipWzXlMxHkxjnzi3Z7JTLIT5CLUMKOFBiPCtFniOT0rJIPrgnBBg5wZeAZ8H951wSISTmFBcag5hOgq8/YpV71DwALwiqANIFe7aZRQEFhPvMupLALJjGoKftAKIJxsJtqYmECwZyruaC0pGVd+TExsLtxfbjWsnT1ZkNnrI2dDY8FaBtZx7tquX2lKLSGskCQCgshMYxOwThKSPywNROhe5YF7Bqa3M0FOVkK2KlfLBQRbFhmozS62cTakhE8laWg4LejRKsIMwfgjCknrmc9MTl6VPs1LT/xCjek/atWTPGzqprXSxFHcB70byyZYLyeNjtCMiQmvKZvx5JNmo3hCpmoq4nkYQIMppv2sDdAQAyOPgFk0yRBRvbERDyW1lsDTgiqmXhqxWtZsjc55IzKF7HLuYiP2znpUKGQ8UQq4QqLXR6u9dh/xo4Hjk3N70BZrg/7AdR6Ddm661RqXlVig4aQv9NMejbU7AccUFDAm1ujBPcS2gHp9F1UwzonO/rhtZrnNyTQJpCPNEwTPZW633SUyRHdfXV6tq+HYYvjXpNyRxqe7tSbYO68yZIu25aS1SbXfCc3kXgIK6mUmH+3tlT+KU9I3Uv6PP//88LL/cHF59uoWi+3rPpH3693TzfRGOlmGvEv1bu7XD6+7q/HESnS12+CNcW8waPclALlfTIl2My4yTTyARS+N+P2bKzmxfWu+gjSVJO026BOHviTjs7ZGwhCP5CShsgyBfVtMpvcsmSIw2qlVh1kTGClXRo5GhXxCS40ANO94Qq2iu8xdiKwiUXzxqVl2lAd/hdaiA8okRSoNJaWpbPv8zY1yqkUfxCSqOkVtoVmfZqkZatROyCy2l49+I3YBV50WTZZ5qpTWGkhC+UDCNbU48TA0GbZMgZSst5pJi8UUKZBBeBVYUhyjUTZFqWk5D6sF36MLggtlNBV+9KoZclYsaSitGJop0Y4/qzPskIo+GVEeql1l876M84yoOmdRNg+tfwKv/6u/tF0V62lTtH42YKhUSANPurHlaDkYiGLGAzGf+ls/WCqqC57Sli+AqunCxyqn08i9Ar7wALQsLYIej1PDTyW1nNGmujGnk+qo6c37GmYwmDJ0A5eSmgckBOdBQhpsfmXSfaqHt68FRHotgA/dV/G8+e1L1Sqwg3gAvY25eZGCAdivGChFCYVvY4lkSzv1tnpRLJOuQAYXE7/GXH+m5AGKBuqCtnmq2NtfqqSXGnghtwaZLtBm66cf37PaSIzjTjuXx4steT26cWwpnq8nfjw8lw1qMUFBtbOeHSzP9RRZ1HGaqH89vLTa//rlO9086A/NzfT2fnDevuiNv4lObLupcL9c7RbzTY8P/4yzYxfF4wpb/gsHeW2du/O73xWiOB5d4V+HkRQzZH4TBupk0L1fbMbjnmdzBu7D4+XVyPU97hUmcIySnJBpVLg8+QCjsvqQJw/b59Goe7+adU+69CODmSXvCO7SobqH3WkC7ElpCGBx0aQ83h2HY/1BVnNtUC19h3O7Z4Sw6BqomG/2sjV8vJTN3/HfAS/1lnEiOYTDTjtHck8vLy8tVyTlpGxZ2A+tl+GkfXlh7/R18bCi4nrDAaEkN4PdiaRViEV6cndz/+329sPVh9iQ8Fu7X/wnVLUIBoFV0j07NHXczSFAc5tAhU7n6FSaf8596XoYmvHRLe5XUM256UIWs2c5gWoMqjcc4cbdXO4eVJCMKXYvMIuTWKyFy2HPkmOzXZkImdQdM2OLEKqOeyGQlxNpBuXAPj6JUmuLvuY65M9hBPLccGrBfe53f3qV+ERsGNORsNljUOlFfJE79Ul4cwi3zRpzo9PTowttnPFg6DoyF2Pl+OjiomfgDsLlGvkOS9E2uy7RvJs3QUoAsnBwh2CHcA5axj70oF40zkJ2QjNxY8ohl1gFOgzbJeKKzGHUxsAofiCSEBb2wV0KwPaBP/FXmvU4AhMk8dM0/BX28Q1p+eVZBGe4MUZ/3vlb2JKajp3mSUppP1TUBBckziiYYfWxDdiWJV04inO8kvnBDNjuclUcyLUbpYm7stY6o9NhE6OySaJlSyMYs05BrsGG0RFODUQCvya2E5h65OYI4vRc3yOOM4JExGQgKZSx5jhjZH3+kmLI4ypVvhLVU7fQCCtBtxAW+9U1Nb5YubE82VNCm0qGgoQpZVxaLETqVATOmaCJmL5ah5n0kjkAkjnVRfAPAG+8rbUTiILkmIWEgfXtE+p1e51dJbs32QBMONXRq4QrMqyT+rCDIOytiUODWUYRTcEtbrZHg7G1OgucD1wpGauYunYLbN6w6IS8B1WM3UZPGQuesLQt21r+/tIuR0du8NCorTHzIXY5NGpXkcVnpt2G6NLWdtvRFvHZTu0aIDMaJpVi/Mj52R8I6npkGGUZLYPkeLCcz9l5TE1s7LmEkHwbqMbiL7tOsWWDE53au8y8ZXUYXUkgQ5WFu9dW+cBwWJOVyq4lIKwoTIxkDkKMLIzFaYiu9lAcIyvf3PLH2IUylZYl/htfDLVM9VROROf9icHETsEIcExMTWSYoOiAfXBQVOxvjwKSiaqPbz6ewFGWJSqE5kod4q6sLxOShZ4906wnCCGWd9aFVTI15JbKk3RZ6wG0AJhDGR0htBBGqiBgbagCIUqk+xBS1SUzTF5IrMy4ZoUQOstH1wWpycxpy0iWLLazqcQ3D5/WakAxCVU8UV0ARIMCKsnBzKMY+q5TaO5+d/rKTRG2Vgaq24aRVNPiwE3A68Wa70q6uosL60C7AtkQt5a4vhw5NWLDhzU6GPVcXiOpEiv5y/d77nb7M+bLnjKbeTrbWNeS3lJWLSOskxaNLLBGMWN8J2YwSUPtBGEzCHk9Xtka4GeTP0G+29mcT4ShblPZfQ5WBc4qIBU33UjhbxXa63HnRJRk0UccU+lkjRsyV6vzQVcYwM3tjPShKsjfuzVN8tIfj7P2eXx1FsJCtHPe54jibbNDMZeR29ZTOwcMBh1xwC9GvNruT9rkmh2SnvmXKyMEhqVNjw1WG/XO68QMyCUbqIeGLiMt0ZlQXtNpKiKaPQkRmkpPfUgO0+P/ZoqzrIq0Mp9+RISEvmLfm/VQKNUScUYwxufd0IYqDT00X1KFf0LJtHuoe2C9UEz6a9oJBcYUC0Wl8fRRAB8UDFURsVoEV6qliDniuDzlxhsQaxwqAwxNQwiapvaywCim8GfxWeS43qubGnKgy0iBfQCj2gpX5kXazYiKU/xsAAw0GCKsEpJvOjqUT0cBOLXDNPkHkcXB/m6+VLxc2C72Y62uQQ7ggpz0zotamGVyICsrsaZrb/xrelTFqqD8QAE1INUnANcYlWxmqlAd7GXpQquhlWiIAPo2lTXeBm6gF7jgA26QWQ/yxScOqnQGRVUXFUQ3e4ssm2mM5Eg35WKIpAMYCA/SiUwOQSjg/5BccJLvBX6eFZ49amDL86KiwqmGglMvlQwkgTkt+wSS8mukZGD2OXwpwHyHoMPDFKhCHuU3/Od3EFm/0qlP5q8RdID0r8o2zxuOcODy+mogyzjpQUXfU2rSh+1305mrdp+t4B93+/vpvQNQlvM5J4Y9xX6IfkxWlhNZJX73/r3sEW4MHg+GDn3eu25cTtAjO8zj+eb+7Fx6k7ZEmmw+koplYxrdMzhfrKUS7px3xPvd7x8lQb5fSf///H26hmE3BdBLNLQbfKih9cPznOx74JAWZmBDsi8NmT1H54O5tVDY0LUFD4+7l7POoOMyQbfeEqHrh+3takkFfvt2/07aGup1vnj//mIVQ+t19+zQgrsOeG+SGj8hRyXtuWB7w45Gf/h07U5EJoSlijTEVK0LAehW08YL/3T+sJwuHpNU59HVQnwzNNrCHQTr9XCU7GrUnDVE56QlKemX+bQ/5Kjj4d7KHQ0h/aHTANKW89E4cnv0+f0H4ctiFYR02u01phg6cR5N7PbuRSps9zImoQd3kDU6brmYe2OSzao4VTxiTZWFlrWT41i5391NjzkL9+3rDaVv0eXQmmZdtc54sCtrL0LgqEAs5po4LsKOp9aMCLuvkFeB0YLvczcRgyfZMTjIuKY4lZyQ8OX0xNmLi7EjEXyum7McPj7mwZQZAhlbbGEUVn45sOwMIKTX7Yvz1oqdrtar74uFFvgiWbfzlUR2WWD4gcN3zI8XmxIYneNW8jqTBOu5KAC1wyuxTPkS0mw50p9fE0l7TkQ4RIdlww61M0DjaPU5eeTLVIiXIaZB/gx3RYyHURonYFYXYVfCQd/+oPqNRcvFeOGgiE3LhjI5rB3TEXPSsjPsXj4FfFVWTSYm+iNM52WkERS+PDvliTUkx493MrAYGmuNHZ8t0wQglAJJtxF0wsjDdIZPPzIb/IyTvAJiG5lGbijQjCKOj5LY0W9KBcAosAw4GMhfJcEiS3yJKPDCey8UzA82NM0Q0ao6EKN6PFUwq458rSFG5tOSHhsFFqrRODhhtb8zxywonQMsRmmwaq3cXCkQDMsqmQH6lzz1znQz76LXDZ/rlVBlkBhllinx2XmJLmQrSwiUc/oa1gpCyOBEs7fbYLibzh2lcGrffRydbi8z63YOUS0VR+MQo24FaGAQroDQS27KigXoyA/JYwYB6VNzJu8qYTUZLHK0n0nhfOSDDbXOcLTe3Vg3QDqaJs7YiHwkgwGHxA1qS0biyMpzrtL1aulYjzQGDDGGDraMtSPfky2MuJwNzdLF6QbJ/g2R12QKX8GjOEsHPhJ369K+LIIFffgezendU5nCpVyRit0xdKJda4YEWgR3jOxY2VIpw6nQslvbuu4oyZED1/flooQjaQ5c92in9uSx3e+xxl5drswFss417tkVkRouN0yUGokWRzemnIwoezqkbAi8A9FbCCTPQyVFY2auWbiolZrFY17HpkvshE9pLMjOqxpymNYsZhxloqWHtFlzTC9mN8qqIhxYRF1NKQOn0YqprlNlorCjldMe2Hxp+KSaDxBQg4wcudA4AMCOwpJJHN7SHcZTORZ2aD5Sr3bTYgegxWx9iupR2pqOM0y4ZpYBIYU4p+Wi1e7z6auMB5Ke0Xam8eKifXk9sOFnFW85cDGUPu4cu9tfub2fX4xGC1fMnJ+vtwniIk9dASHPnUEd7ZxGP/3hd5e5C4a8fxIGejw+H5BLDnZrueMI/PHR+HrkMhU3fHHDOJS7lgbv6VF6ZmeU644B8i+3W9MBjHb3rIiotL/BA2dp4QRum3Rm+dc5G3H8g95oKf/fZjV0HpcAWj1cc75125xSt8utGsQawiCpbA5Yp4kKSKQnRpXaIukdTqy2H14cs8kJALIbUdMZQu+O26+4hketcqpy4TjPsEeEgpXIeqSTmE7z5fIRtBISC/ngFAwUoilLV/tekggRRc3SsYRayasYZKoRnYgyP5sWkv4/EsenIQbthz7Ca/mn5WL7osA0kYCcUjS0i7/TUwrnV740j5Tz4CAxws5pKI0mVpXUK50UTvfRUWgynaayVrOqLAHYiL7AEFiKkgOdYaaEegaUr2oHCcF09jE8iUFcbeap58HaAUp/axyWGrGfWmlB1XBKg4f8URrIwFK4uomyaFRIowVTr/kEwPRAqB16L7AOgGX0GjE+4i5ofYOFlZ9w0NqUMHQwGJohaYwITqcNcAUhEGuhlbnxwLj0qOUUiagI7P40AGLOn4DxzkT/hgFcXDPbICeYr8qHTlKjYWf9F8aDkzSoWBoLQtJpPrpuJroaoeZLBEUYptjbWKx1MnNNhYDoj+ZfFUsz/o+hkMlt/gRNiCqz1Qj1dBrcNU9wV1P0MMBquwE0X+tdfqVWPWiehcACvJ95+fZWm4d/zXLFc+UhML9sII9654PhmF6Rn9ep/q0goK3QRJZwNuLLY9VmfGHtfn/E1rmfzs0gp/j7y0vxXoIVicpLab4ejv/017vty4MMoD+4JFiCoN0jR4YdZrfe4++hWFt5MLXs6o8cRWtdXw9IhpvvK1ba929TknlkkSDlDL/7Svyq7ftH54uc12POUgZiYVj2eo90dSHQ+fl0vpoMiKkY8QwT4Lm0snsuuWgyAkZBuU9gleHYrB8O+xSdG4R2OYzkuhtZjMgoGQzbLOaHZ7JIbiJHk0mPpy/fHViYyuAnX7Ygjbhg6Mb9I08cR7vQHhnenlebT5fv7F1QPnZ315uniw8iDKwfBG3vx1fdYW8kXsDZBpwxvZsL1yx/OVPWrmncunofjLpmy2YIIYz4uUhaTy3S023EVLGLkC1DzKbofJ7MpBrJuM7XlQjesqFZRpo7t0PSHSx+ruOLbiKROB1XcZcenXAytevKrecnQVPDUce0iuW6nd52aTDx6K9tmAR1rjGO3YYs44rkpjRzdAZWlfR8sdgII7DYmd67t/jh3eiC2mLtQL6BiPBsrSUexdNiSB9wKqE/GVlachI5LbCJO+q19fVmlpVuq+NmUomkWEDsEr0IZwqhevV6TJ/a+rAXrVnXuBE491PkYa8DgfMaJNKGYKZZIhzjjqx0ruL2hUHGCxyWxG3yy1pFAp5uoUfiPM4eRVkVzItwQoRhhEojBCInGmEV8RIrKrwahvaXFhlhgFQlVk0ksMWACcFTUSyeBLyyzTwM+7Ysq8lqTaUHOm3Ukxj8yO6H2Xa4kB6T2Ohu6hpQQSWCL2gGd27sY6QZRhI5NqYqe1ovWDIBOjzuXloPsE/4fKNNdOrVG1/7M37vwFUgG4D/wGwQARgaMnbflYDJIAs6iKlEm1sRNNuyESeKQXtJJ4MshRK/TyP8Rf7YMdBTViUGy/luTg0chLHXEY8RZiARnpoNHtGQcWU4GnHDA3Zr7N7MSK7iMkUVNSv8GhKyfRJlUaugBPaY4hBCLYdycQSZYWaz9+UGUtkIuG4JAjfHOXmfs46sShsIbgqLPea+DnDlikEUVMISjflnScmkEdvMLAFH0pzd3t0jZmi1TMdChk7YofXpbF5p0d2tbXPgud1q//nXr/YiMBVhRGYBL679bCYKy3s47w0tI9jkti3c1PqysitxprBjVSHMRB1BfrIOG358724KE1+ULJ27CbY77+6OLXvAdGLzkY/B6sSEEUYSyAgiw4MGRkjBKC8q8WQy6OjcHmLLQ2L45TbrjZNT6YcXiwXU+Et2YZwUK5QjVtqy9fLxaWb1GUKJBR8LBkHrNwQTAsknD+ufCcgUIqlMfD2vwspnzlI3HGLWzTY6MtIoe6TnYdPKgeSKLrXReB9Dx+WlMwHRtUW4ZUWley2ncmwmWkUBs4N8AyROKHj8kS8ZRSALvKkTrvUoxJ536CnhgGnSFDrlpIujIxEpaSzwGkbMRxXJFLWUSyt1Uwka4JjpWRCetffMdlmW2xYKryMedaGW2437XN71h+PhiEsIA4RJnmy2iJJ3/YJrXITvD4h7OTNZ4rLgxF6n7pwkOOuRUY8vexn/8Ta/msyyYkDnLgpx94oroOWZ655dTS5tR9zezvbHz8Igd/N1raKbiaCb2+u7e7dLYgbBrQx9C47a07DSPHbyyEa8YNAb98fIJ3tyupxvoBFuyVnn1OZ333lbXB+QG+dfjv7+jz/YdDAb69nOJsinyYUT63YnJhd96yXX3GFJe8p2QuhSV5qZcZfkOJ2P9+x0IZPVRljnOdMfYQurramg5UuRlS1okjBhpCNSCf0wJfNBzARWFpE1U6bbxBRxRdg1tFGrPmWz1lXdVJtUpfSSWQuNleiJqniT3eAgsEIbRFsYvJlw7TeUkroHmRiUasegvIKiUAYIi1xDykoG4uigUJU2PYtzVAhfRWyGd96qNPyS92nHj+pPpfzTRUDVTgYbydR05M/DW38XM6Jk4KkbALyrZrXGcyjGDwN54FUNASM07cVoBlyD4YzcHwV/wCn0pqD2PQ6XBYQaWWnkvDvY2b6kSlCWYWg1DZSnIJ2WTI9eyaipqHSUgjWiICfTnNLe6iujIN3tFtYKTfUAViAZWbWQJtIAJNeWSM1yKKRKpQXtlxkUDLwRSRCoQI2CFMpfBXPa9n/GXEJJiYwa2dS4MpzoxPwR8ABXNVL4zftQBYMoE1IiqoZVeGsaUaPpLuSU4TfgH7rVYQyWBvqmaN7kcVXPj2o2T1I/LTdQpFjhtrCfGQnpBjtNgZDKAb3NCKty3gbP6saGSYlqJBRC6Yz7A4ZdDuA+LQmqiph/cepJQKCweDuKuFiQvZgcfjuJOMFDyr0TXpOYBCk9H3jExJY+ySbGx3Z+dj0arJcrt/AwUvZfp4SJ7Um55O0a3N/ObIbzwPBTjEe94XlnsV5T0LSSuZUYYZ8AnyfbAsx7gaqrZIXfrW4IqCOK0OYkv4vDVE638tPLncFTRqKfiQ9ArZILn5x++DhyYoGvnTehKP51JIubaJLznqxc374tgoeTl85xLtnKIaino/l0aTnByYJaHIHt2AEVg8F83h/JgM+jxw8iQl6yMrayqA2bD047ILnLiWtVjtaCjuPreBnL9SbFY0v8DzMafTrllezhUG8ZIEOOSI+VCKQnV78n2x5Tg8SyHyswxjJDL71R30CcwLZwYiQ8Pa6iCHqmrEVi0+tiLAyZDQCrCcU5OV7OZi8P8uUncsPkGinBw86iIYWbSwjBQncCgfbJzsDx8YCZw4IUJ/EizwyvvcVz6PTqYpLQCNeYmaCTuNgRvKybFlf2H1QUjkVnsULu5wtLBHFZi+XKWWrLPOSU+J3j4+vLC1MJ+17ZPlIZDHSlHTuB/XYpsgIQCnXeuhwNiXd9CRNKsENC4mNVWwsk1TsWSLQS2wR4SV/hmByBYV2HeEyMquQAOGuTKgFT67WzlzQzse/AsD35rt0DCGMmaDrnNZsFQMuNy0zwtjxiksVk6wNMVg6MaeWwSIxNqZpEffhXYiT8mMtjvYs9kxUGfiyxbHyJrPI+Mpn0iXDzVtXiOAHhlr6Gw2+LDCyE7G5RVFaAtzdzG+Z0vqU2FZL5CJlRWumHQqcfSlQi28TZe1pxLzHBNU9TkFQRUARAjJMAnp51HBqwLkIOuCLNIir4DIWAJdD7Z5ie44YI4JJe+d60UFIn8gGB5Ukq+wQ9/syCIasvH4HDFDnvpKvoSMjTbMrEE3okxpeA5EbVA7gSYoMInsXbPWaWhLiTJi8S8PurTcXHoNNJvCygAX4DN5vk1N8EshWF9nBNCIQLXqYoFksWqEeY13hYM6SA9jherYGB5Ui/w5PJqnRM0JGVx063y+tljyumTS6rbkdCYtRukth6wjAyEHTAQ5zbBLRiXgyfPOIZCTshgdxjasmxAXqn37eM41EYnHTFEcLjaESeygsUT9iJ5l6OpdbBzABwDpQhgUYFjrP39GhHbzpPyixbsfz33Axfvt2ct/vmi2zgSeButsoQRGs1g7uNM0derB9kX3ZCNNHMOWviGEHLwkZyl1puPjg/LrWCsSGRU3cHyrBFSrpbcSPuD+YESJ12TmGBXwcdHCY1A33zwJntVDd7oQr/ozgYQuihizf3qjLwUbYOJgguwwlleGkz7dZCMQ/hUSNRqL6U2dR04VH904nqNR3pK5WLFarRUJE/MzVlW8BDQG08oEXZabvaQZUA9AFYOCGhTVlDWxLqIixcTkpOyYhIXUUepqTq2FLPIXesrwXfis/QO1TEPx3r4BnbHrfjRDd0QVgXdKeNuiOa4HEmbuxpP+4PUdcvU1c37mR7RTU5fHh27O4I54CJvLv75f39VK4HwaNAtXNNFUmJkxW0pNG9weV46P4vsEk9jSno0/cX/YssL/c0RU4mV1TYcr/7fj+VTnoo2ys+KI/NrdBYxw/ksOvbHkjgDQe4U2bIXYwPa4fEIa9dLubsPCcM1sJTWo4rB3pfTqw8OBmklOaMu5kvprPZcDAy96PBUBifPQSbbpYt64UrJ52SSQTfdLG2RrcMxu0VCYi7sIezZeg4EoGkt/Ik9CF7b0XBi4Xi2zKFJ7GXdpyLIFNeLDIy/SiEQAlpqet7M60oQPuNpEYYRQaRkkWscRJEDJm+RhCHcIGWh5lND+sTwg49ocTmQcodCI6yLnlXnSK2+qANDSmPXNSNsMwnJYt28zOCIlD4eOV/1EeMhYDK7M5PGoztwe1N0xQZp1MjbwBD0ukgTVV3+VHEGDI0xPorK2rEWH1b0TMyyq6tRkLPkZUl8TPAAi/cEQr3tzY0X6CGGYmOZmPE9wa2cGchR2FQKa2ZggfOM67AUB/f0lf1DlxQeUk+qA3h6hJJKVg8nmJV19SkgabZvE28IopsCueV/sOJ4KkpLcjBnvU5TsTOGtR69C4Q0m/hwkN1I1XUNYRMQZpJX+lU4Qzdm0xT3hpdXGgHAqtKeQsP9T21f2ukqqexevZbgynvUf0sbKT35lk9jmCpRjKhb/DkTdrJSPM4Vaq073lePw/f642H9XlrQYkMvfAfqvBpIEjNGlcQk/8M3MvmSzoKWg69paRPou2iU91Uy/XzvOO3Wt3eLHqDXFeCzPAv5bbbolunlcbbzYo/6+Jy9M4h2cmEqkKBSWOfAO5nIbaMm8vxWPAG5X5+0hMAPrtfXX4cMcB//n7zcHQsJlDiC0EyXCTL2Vqy4L6kog8PLhZ/dzVGHIzsKEeS5+RkZif08UWsj2EIEJFvh3Ck/M9a/TMixLVg+8c/fvxg49PJZFPvUF/H8Uo5TB/3JBWamU2nsnKzKsbjiZQJf/71BvvJeCdM0Z5AogwQFbPbcS5ae7rkWyECRbqv9muxQz98uKa7ne7jv5Cd7/JCFjbKpeXEF3RejsZ08V++/crNPx6NCEbGq1uAxCwx6O2O0tFie3l24kE8M46t2+KRro5/uZOA6KTcQG47OBrZdzg9d4HArQxxm61on8ctj8+LcxLpL1GiyXiIv9rS/Zwk2F072rePPXYtcCduTqeDYRIOqSJnFxyUxt3mi7i3lDpvdScXtna30CIiSBj6bL7kmWI5JPayDG4xQq5O4srhs6srBTo2IrQJQoFVroOxjUwe2yUQ/YV+RYfKhOT2I3PijLSzim5oSISRYC2bKlg4LtjzXAPPrpNoFZnVvbaya1MH8tr1zu2jdDHj3WqzeMzxOdnkLGZoBl33xPnEqg7P1uFYgf58oHS6JcerQBonpw2S4WM1QJsQbVZljFZqkBdRFfPLEBNXIvtSFnxc7I9eOH/mEF4O9QmBCANFZcSgxlcYppKvogsGRnPsBVJL1DQyPKUbYzsKIlLS++wrFiPjuuJ3w9dewjgYKtRBuPR1OMQgdWWbdCOdY6g+O3eubyG9vQvlTAVUWDizax/toduCY9GenWXFCCG5aTYSnj2Q+OTE1Di7kjvSS7jE4k4fjOkYYCXo6vywBWGkTYnB0keR7RF0pQAb8RHJUKPXSvOJRmAzByMHaVFDZYJG6GgNp8CV2BKHJNkAjHKbGog0h79tE50kTIZOMJsgj44+spCuK5XijCPh8yecC5qxphEimLmKoZi0K7qMmJf5BuzpEBxo3ElFkilZPpkKGTjz9rQlPJA5zvEFLHlr7GGUtyJpNZ2XYafBVE4WnByJuhfmz8du9IZGY2JP3XGPBvRMU+LeUW5OGHS6whbDWgz6XkzmYXSGOLxBX2gg25mwWu9dxnHq5iamvARbS5E2MaJaXfN22nEWmZFNy1njGjHCkU0sxmLWMefii467nYtRt7Wxn2YpzQJzEKtteQtBlla8v5wZ2Y8DmdyOj7kOg3a1Ms55oKQutkJ2Lwj/gZXGs5RqUvjf3k0Hg66gR4MRZciUdR7zSUCgaKGXOHJESzqn7+SlMHYkk7V0UuhwwlHIkQQQgIFq4rMmMCWlS+AbYYVAMh9RQ1nRmrP8TUgUKR30aym3ojkllS5CKktO9ShvE4yg8iaz6xPqTUsG2xT2vekkZaLpi4pTMo1Tb6gzJdUK6wKmcaBWLYwR9RnIISx2f/4rGmNToh6PrfsVYYKgHlZyo035V2IHZ1lVo077R+LrMR9CUcl0sE6F9JBGzppYF7RI0f2jgHq+j83DTrjMuNf5Nl06mOQw6+frCSN4zs//uCezpJG2r/XrL9+urkYkI/l6eTmEj60lvvtQRKcd8RDYMHiRRsNES9jsWI577Jwbs0J4/+mKY8MNjlIodCWHIEmPHyYXQ9R9O19Y0K42XadNxsPe9cWIG2Y+XQldm8+pn8dTp9IiHAxf7tqF08OyW2xXa7dPBCfYmMQ+O+mddQU/oV4RqHfT+41zKZKZ8iHZxRqSc7kheb7eCh9LTil8+SRr3qbd7rIBURe7n80guC762K6Gq3C2G0xrPWzDgZi2OndTgZ9mkF8K40WyhHlDXqGZkm0I0ndzkX0ANBETMBTSEIzyIUvyLhNEaCb6K1I5FFGyIi2iiVSt1suGbtqPLeVdCCUNhhpTxI9mvZHlXygHUUXG+ChWZfIceF6llzxLkcP/aTQFNII8UWCKabz+R35Ft/pSJj8KTE0DMOTtrampQN+0il5rAAdqV0gBjWSARDMmtbpQppbW6eSw/AhaVPQ8Rr2HII/MZkNY6OdZNVsDySol8q4BwKsGYAPyJXUztlpmFxQZZ6GpwXb4EcVUmWZJ42WGab3J+g/SMijNKggXzBe8Dhkab8bvYYkC055P2o4CUwRCWD5Zn0fC5JMBEotVxCggP1hsBm5YhZuU8YQmNsFBa30KwnAx1HmkJB4gAXSW6U6fWs1vxX1PEzVnHqd8/ZGxNKMtilA6XVdrKZ9vaae+Zu6CvZgLmoKgFEn1YOxQzNsaVV77NKjJBkZqVZmStAaR1z55oRmfDLZaCrR5UO37oVqVqIb1+Va1SuSHf0FUushUsC5WqwcB5u+uLnCnoHyFGHnz+RLx6oirItub0aKn0+lUJXrudz98FEM4nU3N6/XVJa8Ws5IL0I4nNUQZn+zdcP/aO6OkX//hD++s/n/+9RZxnbdeJf+ys30jG99m/ePHdx8/vJstF6b8p8/vh6OuLU18IEkfqHhcu+7H5THNXYoPstEftzgsut+m87vFaiSRSuf84/WFG4UtSlqcXN22fQanBaxDiF9pQCUeKGeyyNYkYbu/56qO3+9sF+8jGn4+TXQ1dOSE8zR+XK850EROJsynfBy83rY3HFziDWzL9S4HIPO5fcxvwjy9Z0MnjxGVHxfmdDHzs3/WFzDErLFmADDbnQEU6+xYRtEdk4/ivRzKdxwnY/DMId3vfv8+W8L1SwL65YNjS8krCP1x9rHQl9uzmBRndhs4/oeOHdjnb504bBA/ehSTcPlHJnU2Cjhms4CLfTNbMSpO7Wj0LhyC3AgisPwg8+UKZmTDsBjQ2CuV/s5KidOezROzzLlvKRHRNdVy2rp+PyLbKQL3BOPpfrefxD7HxzaYbQeJdvYnkpre3WHuvtNiR0wxKUWObY7YNLGnYZYmDmJ0Wojk4YXJ7pAwG/Fo18oCj8tdDhTnCB42j4vNWkgYkcIwo4mlOCGkQUF+oUMX04swsnEtemEi7/vzC5qkXsFpKrH2QlQrauxZWnZZzIktfT0S2orTHIwjHrjfc1TWCWlbKDYfEmTPnXdKOVp9hr1i9WTGpIthG5FXNrPKIoowwzy4VP2wZtAcHiVzYi5HxOChMDlmLZFRkrl8KUY0GttZd7oxSkSuJ0lct7v1Lrm8E4oWq4QH7EVsuo8GcnVuOizBEVWmR8LB9TiJp6ddxLTEXC3GT9iqPyJQMHg5zpi84I+Q8ArEkcaxuwKnMfiT5Rdhe3DjajE9JiAitUqqK2UBE2NIhbSfFYg1VXpJxP5zck+hDJYMrmdiQUyCfzhrNJ18Ssfng3YuqwVdlgSJpTSQqLxCNebJphTxm/tqotd8j4XmHgbDhISIRWchyBNsaAmXIBmXXYCRDGPmS5/DOnKv9mr9gCteTt01EZ85k8p4s7KiK89O5RiwCQfFVp8y91ge6rPCuXUY24HIM0g4gazTb7O5DT5XEUCEQ+/ihyJALFten27EHV6MUYxNRzYUd6lcXev1erpCuI4t4ayB/Ob8+iSLpl0Q8HAkfkNstDwG584/wanDVePseG4NzzodV9vDQ3x8GI9Ss9uuIqGi/MwE96dTStLGtIQeWVFYwzBbM6FHErJa9OOBAdTYGdQ5x22nd86VkJWI0YqFSiC2xXeUa783Wa8XbFmW+4MI7CRYlf0TK8J+NKS+rIRCLqURkXwIxcRDS9RQGvElNFWkFmqnyLPlFPUf2gJWKezADkaEWWVCg1R4UV59USj/GuryM6XyLAVDnmXc+DuknreIsHLAVzWFlCmuMJHVZxpIZa00YCMy7KohIlR7yBdS1S7swW2Ys0gaKWa1iELrVfCgJZkP2O7qkqVwaXtX1A+xSPBpiI1L35w8t1Z72f33UvwQUdeX/den09v5erXf8m2cPB3fL9YW9KNL53mt7843M4L9+eOna6KjKE0QmDvXEFL7okuFdqUHlrIqNzsmGfPJZNzHH6KA8pQj7dstrw965j6jc8ys+wTghlfm8Xl/ccYf1Oe+sW39/S5hmmM3/toDRX5dl7PEt9Qn9nu9d+8vvn+5vb+9ubqaQMPCfZNPz++v3+MZZ8pxD1npVM3zy24sOKDTM4nybyNySw6WnGSl2SA/tQcnePb1HGcdSf/co6NmM9lFGfrJAecc3ubJSTtc7PZH6iQ+RVKOyLBvWOaXBVXSdsN4SIs91nhTiAQrC54A1kdIgTkYStFUaKkoBJGEXtJ2Zjx/5l0kVTEOsWFyIo8V8FAXGvLxZ32KZpBnmWtphBBPXyFBdJFvofxqP+SQdgqA0BsyDwVGK6Vj9K+dkLMGY1REFTWkWAyh4SxFFQObGv7UrsJKZtlSVFp/pZF8wlUxVTNY/9J9sUd6Dkj+jDgtQtVhKgSscGh+N00E6lh7utaUBn28UcSXMLVPlWnKp7rnjanuTcllhJGwvECaXpT0NdOhgKfFa3nYTF52cTOLPsFJ7EgAeA2fgVv7vtABfgIgIyHik4WawV9vq8GMtgZUACtzGFRJD+8iWTRXxVKy/goQUaGZm2Cv2s/LKhlQmQuK1owHg2m0MHConpFlXBrKbKb9BorD98yFaoEmHVStNOgPD73yPXNZRFelDp2nivIkbCY6rWrggMMSs/Wgpi3wHrrTVcrV4xBLgZt5zvDRQQN+CqfJooEAGDD8nS8ZRZCfNlOlntZ3P5BE0ll+uV+8c7e94Hw5PVmuuyXtiMtpfQHiwsjlDzh5arGWeFDef5zg6z/96a+X7y5M28+/fOe1HcoNJnEYaek08c5FvN13bvRon97fTrlA//zXr865yo0zuujjyeUNF+/Zp//sx+vJmHTF98x0sLF42G3MX8hLSkj4Ok/0Ee+MNscjAfH7b/cbWoY8MihSWWZMgZc8aOLj4WAr/uBo54QfWBaPG+788XgktJ5XjlnMW40WhclL3UeY23BnibKUxfHSBzDDFqSFZVMYdkecaDZXMdf7i5HYoZsvd66/ivF9ej6bz5V0rHXpopYWvcCe3tLe5sTW6PXVFe1s68KS17UFOxGVN1PnjA2WQLcBu3p86fReJdtpSXMQjeu7LKAJBubHFM2MRFn33NShqmSJEA7eTiItO4dxuD4wQxyE4FqyAyCPee5pc2tXHDMvthGuxiPzTCBwabKi3l/KQSThz8t2t2QqEIlUtB++M6ZfN/ZpuWzO5U0kuoXTxIzbP97PpuMhF9MI//LyLFbLctEcf53OBPczrAdOhz88dTqT5WZ3e7uENz5HyxaGBjV10u7LD4v6tJwMT9YAEAYmYuT4VOQpNXJ0+ixiNl6s2I1HA8c7GXnbxDWdS0mCHK1tdi40iPXJmxlyfHJRaceo7HzEwGPW97uiOfjpDUpGaVGmVmOd3oDFxVjMNsKTe4XZZhszboBMf1FLaGx8IWP72kn31l5oGZ0rRVJyx7FcIxSyjXm8e9wSSd2zvrh8uwu4CMc1UpR1SljFiOdiL8Ymc7xCArFVY6iQI5ECtWyJ3ZKRn7fev4vdyLoXum6bI8T9Yq23tw8iodPOMYykSw1Kwhhn2WMhzlA7diWVSZxoj1raBV8R0GBgFzhry+3uNHBJdQPIc4TAArS4yyFjUPHw+hMHRYUcxEJEBMDJpYgzOlfgOiSUlIv0JkWILE1xSWY8iYdhIymj88xQoAtmYj4zR9kmickhdpRlUL3sefqPlHTvBBvBvdTC3A0nSgy/9JIKizqIQLOJYOlB17O3ubZhyJaISyMyCvECNnqaowV1CEfeXwcotGFB1XV4lXZ/EH6clQOHIVidOUxUnPV8QvFPLEFzw7Tr/15PTaPpsu7Qi1lknmPoJpRGgyQP7LX+u//n/1VadEgRT+j0El/IfCdWISElFuICerDQwLWpjjM7MVSR95YHOrsehQMlMtu6PUBjJ+KgYh+MBg7+RyMmBP/kWJ61Hz5eChgUGLHZ5yoyR+llUeA2sN0DfX5mk65OyYhesZMiII/2EDIoiC3zklVa9K0fzmCJnRQqZ2XCwsBrhJewS1IAIJDHxwHqDx+ufv7Ll8RjndlyepndLxyXYqhk90M7DCA0EMrIjPuK5vxudLwvOvU9ZJKXmflSz81fmf7mY3QhimpDYz6eR/15lLa1k2bTms+bikqrVcBsN+0ogAPRrlJRnNFiIRu/4dMf5jftZDOhPlkn+KTZ4sCDnVFdp6IPgHVkWhBgfc8SmQMA4aIenyxYEWIueXhhPbtg3caL7eAcU5K6WWxZMrSG05QVtyL0EBkZChKnUAgdgp62IBwuc72fHJhxdUdin54Oe0MjomhFji2ldLZ5fb+SxV/8DqKkbl/29n43TpWBIbtS4co4Ib5+n7Ulyg8zP11PhugP+dmwsRuQXYLtfigPNMnu9t6TXJu3XLumk+tNWoYzcip7P5aPgn8SByXwLPmI7IW9/3i1XmwkJuLu0c5oPOZsc8QF/YAZ7aJ3yT3MnOWHQ1oeopTajiR145o1Y7aqkCsJMxr0rXs5J0yBGF+JK2ynEMHseAtj6IvQyQT5lAOOb41QiYkS0RkCKXEaeUIAarrmSB8qmLt0Z0hlwnplkj3Mq3yPuc9oKflbJBwaKmFehpFyDaVptWjGy9TyCb+UfCzKSQchlHrryW/EoyQK/e0fMIoWtVN0qTfvi/ZSN50eejdUHKGLGmfZizwj4KkG87OpWJQZwn5bvnplDvK2PhlPQZWR1UcBw2/KRCFVvJPyDXeo7FMgBSG+BOZqDMQN8PpWTGPFo1WmdFvqZljFd1UAzcdbmRVHsXPD41VT23jHY/9BF5A8TgMlS9IKmNJFqjZQ5Zm3zan9tMdh9iZqDCQNRmMpFqRpMGA2TjV6v+gl+M84vCHEG2op0LSWvqAl6Pqb0Rl+GvTONKVPPzKfKV8yob42taNzFEyhw+ykYtFeGq/u6l1qe6Kq/xROseZRdd38mVcK1CCyHKre1UrNAiM1CiW/PUjFdH2o2rz9rXFoTA2vm87e+g20IVq/0kfK/C20iusPAoM2beR42/Hn6/H//d/8gxRld/MtNv75r1/IrN3jEcUhdJLbjFKDY5dFxmfcpqeyU02nKdB6bP3zH3/38+1UsA5TkvGoXcTODUjH3C9nFLHkBcJR/vnvf39Dtwm/fXwSecgSSuw76uWm4hdot51DMI/RzHyhSIBRey4XUJyhiUSXWNOhhEomCNO04Q+fPthJ8B5l6pTBZ59WFIVTdEhH/G98qnt25J47zJYjCY/rjNeWo7MNhKu8yUvODqanOE5Z/Le78XjQ759R50Ku2WfshPiGT9suIV5sN3Q6a6XfP99tRaXvzKIDXc4kI35G7tnx2WTEIJbSfeUYAwSry7sn3wvTL5eJSdkZiSoLpNuFQZKrUbK2mYyS6oeRDlkwlyhf9693oZ1OoUc4TFk6BCQLgYdeQK/NWMrCzDZlyGQuUPaUYNCrYf9ykivh9a01lMDvkzQP8Ol8cNJAPCbd+Onx99s73kqWtBWT3UFolx7cTzqOSHR3jbsUFtBnf+HhySpBDsN4mY6e+OmZK/hPYOp85VIIMx4y43WiRHBS5o91KOqm3JR2lUUnCeoiFXhqXRYp8FWOOMOksHnBKTL65VKGoPbJfL3BXlG3NifL3e3aSzFavaGIsixO+P8pXOqUBuKb4xhFHjlucHIaBz+vuBgHobe5nM6RvDN7D/KuJnD+5JXSvJpcoBY0w4+WGBHBGm7CSyqYEwcmUcXatc4vD7Z5si+0zxrYws80Z2gl4MNDpFIcpuExlgCBBEll5EdMhStJrGI/hnHhhJ32/PnjxX/+9z/I9RRj9cjlYhxUp3e337PdE0/2Ezci1N9NEUuc5MgDtwo71yj7vpRRfFvKwCXhmV2XYyrv5DXJb0mE6A58HQlT3Uc4lIAIHZSI9gDWgBQFRFrH+I4xk1nL/QxZZJbQ8N5Of24xU4801zqLkeWpcT5+synghT+aEcC158Nm58tjY5gX2LFMqBO8ArBz0Aj6V5tdqK3tjqwc3pCBysoQfIZmK8zUClUgj+IczCgcNEqa19lm2u8PXC0nNUF0oUE6DSsizsWmggPlFXRr6n7DcsjSIzH4rh9SplYgApNE+EQmOGPpglSR2DaizlyLin5RmzRW1tURINEm8EaPRBdEUP9P/8N/F6GDBbHei7yZezQNizsZ34kfCGgdj53Bf03qLhyAU2AQRm0OrjdOC3SgBold9PtTN4i8PE1GuW+MtJCEjEqDzcGwc2rLP0uCU6cSzHgfBz7miDD02U/QqW6syW21MKGEHQkRENhjjnRUUhIZJTEzn43wo5wDpgB09vIoZASdEVLmTktt4T5nZw1vCmFyYML8sSwTbmS0WY9VMM+b9QARmmoIKBjxF92mlCYhK3hq1C9tkr+0oTQMKJlpyst8icopEgxgocs8fnsSqVF/v7WQ3ynmp2KZinpisDB2WHYfjHgl0o7pRg31O8gHnue+ANmI8mc+fFUEayBkvNrA4odVNxXTRN4ggoT0H+HDvXgtQ5XmAiXTFg5kiwGVQs5CUwSqbDwGxud1ORysHx5vp3OGidNKSII4tfOLZISZIhV305DU15eicca306X5IpLmy2gRkovy2+w2H9+/j5p4fboQAts65kwyFYIoox4SlYbFs7yEJnLg8mKMFnVhEWJK0LHcEQ742oxGKraciDC37cTKt+bOkThkE/8HrwqeB7aRWLUbOChjMHJfrUWFvg5GskYcW+3oyFvjdOvANCEBMCSt1s7wTJ6tShPD1UeIyLVhvPGudXLmBtYhkpohee35wrv/svKueDYpzrgPqRba1LAAb2pIyaC+yIRvACXEp1KmjQmy+WvSG+vcn8g4BZrpDBEiw4Olrt+8e7NTG4Kj+/Llb4gtK4145Ys8asZj0YKzaMZAtYjoGiqNkVQWZFMgrwrmdBqcxBYsyyP061O1DjSPuLRqWMqAyiiU92e4oymdRlPY27RVAGQUwMnOcpjIesnY03R9lHr7EvgPvFC95FXDLCV/dBZY9cuhHuP4sEJoqgMm3daiSLFolfSbMXiuCnEUPq8xeuJ53rJCaJ2G8T0Cyxti80eBZiyFiYwoRmbQ7StTvkFyM/bDkAGmGQNsaqWKhqodXxqkpUx6SVNe6t1XFKGJ6jPONl9RbwHbFAha00L9f0BsI3ZqIjKiKl69BN3+NbPgSz6p/hscGUIh4fAOMM0gQZJXwUzIJkCGjDME3wvU5kmw0VRp6EprilRZnVW96vHQUaCrlnz5m67TfPWVL+nz8LPGGXjrYar+Bq0yB5BqMaYnT/wPtthVdmtzxDBHfqUy+Lf/5h9++jBkopJm+PXbDeWwBzdRY+YtYD+9f9c+cy19N/5KE31y+uuvt64mldOd9+77fP7+csJjN18uxLUnhvD5iQddKIsjP6zn8XXHBU/T+/W5WErWCo/vaChlptz8fLaiNb7d3AobJDkpXA4RvgOysRzhnFAuqOGmToRq0enrcrG4uLwAG7Obf5o5yuCjk3uy9T8/T++XkhyInxRRIJwpmBGt7kywTXyJZZbydhjR/sP7dzyRvPh0KpvPYLtnwmyzC3x5McxBBKnN7frKG7jdEvX85eR5DIuT16U838wNLrZBl+HObnu1F+pmAftsuf0wKbx57MltDqBOQgI6gM0+Rw7UZpM5mVJej+aLudhh5xiFVzGA9OVU2Mx5Boknzk55iJhF8YM+C+LNJkmJkudhrysLCE+Qnbb5WuwNY539L3DfgoH5riOu7lyPyjJmuBMBfkeU5jic1EnxRoi9FE5BhnP/sPNYgNZ1LH3ecVZEbGP6Q2wnsywRrSPJGyyN4IfRSTe5BdKyitESYzlhM4lx949cMrrIlNygvENsDCHgzXOJpFVKZl/UEKZVi7udho7b9PXZKQjBGyKcY5C8Pg+63WzKW7G52zVq+gXYzC20zOGf2PeWFCxbq5Rm85BhGqaTN8UFahDjWAt/r0sFmEe07fOjXWlT3Dk5tceOfgURWVvW2k+42pNhzBd78TmPidaQCzXhTpAqkMmKbm3/na+aFSuISyxsWczCAeABkCw0JBaBHNs6Xaf9rGkdSQ2z+xhTv3v6T3/84ePVYDVb22mRBMcJGRpQ7/JfUaUo6vud7fOtI+Zyg5PgMafjU086Fg7xnI5/EK0ke9UJlY+2jD0WuS2aGcXdyFQiK8YNlgEWea4SMQo54KSwcBDSwhLmPOR47CSJ09uRov4zEAP3C4pjY0Te8vdliW5g8cNE1BAijoIzORMZyPVuAbB72FjyZiXonhB7U7lCKqs3vIbuLMNMTgLVKoaHJSIFYaW9SiKsLGUdv0RyVgzaNMKEVEU6+aAQj2KJWZyhA6OLAz0BbAaMZFlPjA4nLLOdeGTgZ7BkrpVkKScLGIifXogC6muxXNBw6DTbX8USGjYLsJOR5kKt7CqYVDnFjpLemBsBKefaPMgSPGRrr2VHD44Qeg4ctE7mrgvwlm/ATaiOLk3Xml9LinZyPBpaPu4JnieRbptHOQTg3MEByw6OBOtR6pnXn29VxzLqonlXzPITWHljBpxslwKjWg8IzFDYMoD6SIMJTYl9kJX40dHsdiG3F+ZhYrpclvVAxGhTJjNBIUA2NsFwFT30guc1bt1iIU9pRbNYuBkw/JWbMFQbJo6p4WHzCUJBb4q9VoOdUDMUutOCR6RjSehIAk88ED+HyvIJJfnuOb2UUocnVTeKK12no3yL/w8EyuUP+krXaLEiBJCspqporIFAqJBZy0PzjgrzXRVwIZRMZ7NkgoUERJEvKQsU2gKEjk1ro+uSSCvFlxcH1NipVkQSFMA+yUtfzKc7Ri3akjuZnMel+EXA1czdlA97LvnrycgsSdL/fOZyK0vbJ3JXfv3huD2yr5rtl5Oxkxg6eH25ny2vLsYvm4d//OPvxfuAh+pxLQsxbcQkkKgheS10J3vBtcQXNq9PWh+uJsK6rOUsDKAQuzlGdfVOv2fblZvprG1OIolPLbWd03112MCJAirYnPFfOOBFq1P2lYHgxfpQ5jiBmQyqBN1uduQYZEKLeY2EfH3o9E5zuiYZ80LwiUF6feE9cnzahrNlhgqQLijIjFEGESfkC2Ywiu2DzVyMbTpwmL1pWFUY18jP4LBEcR1aYn6GzNCqLqkkGkJ1issDs0yBmS4RbH6aNR34mYnWsqKxSgO2dshlvWcIrN5aOwWaEEcZaqHGskE9qOpETOitPloM5cQQD4GGZnKLRWPygtDD9PobdWnBTKIbwDSEXdUOLadXmDHT2imqBhXGDpzEIjKOnGx6DtlrNpyHyB3YDyd6EPmVn1W4RpzIIlAcIEzjtX4qjtNyOgu28/FVjK8vKqZTv1JWy/XxJ7isLuJlT8eaDn8Zib/ixsv2Fm+IV8WJ+dKsllMkLamHs2rJ7XvAz4+8zdIj64r0VSNpYDYpqnmVzqmFYDjjrMYKUcFZTW6YHcz0x5sXX0s1O6rWcGr+yhzSQ7UfAHygqCDMd42qps24AuqTp4HpzUBv6ihZY2peHlpTqKRZqgexBUB+H5pNQwYDKhWMJeOqwQOtvqej4KkmV4lqoSGuwJx2Ik7TaT4A9T0VfKpefamWA7Jegvnmk5JabPr1S3U/9Ftf9Jhm8tbzqlEjODzxK72iusxDbAJJdf7df/xL9+wHG9oUxGL5ILRGVAntICEZn5Rl/Jl9dSZvvzNj1Z2fOQDw/mKC/v/65ZvU3ykpZwBly+HKk/XcohOpobGbtPq5JPHrr84B0U09yQ93u8U//O5HFqQJdLuw1AV//fmLNAb9UZf74MePH3Yyp+0fuDNOeq3JoEc6/vXXr65TtLRw3IrrRHDKbLam5AkWTt9+71UifpYZX68zce2uJIDPy+mK1dEdyAEir42OHrm5GW1ZLiYJcjsBBIITnR/l1EhS77MuH/6pY3Udd5Df7jYSYn8aXciIOlvM2UTOBnDDCbJ3Xi/E/PICNq58J6RFyzzaChZKhMBfkvJBjD7vIff8sNVjBoraPazEHQO1lJATQjDPgjTumY7n1sNY4OjRgLEkfJ0c5Eq3U0LFMO/46l9kd967TvRsNBmwGqH6XKDIi4SbSZcs5bhBMXsFkTLVOEWto8x/biZNEnDWtd+vliKMAFOsR2sW5xt9edpK6wl7wh8isbYJegrpy/Jp14JkHvYHSNg5NMje7EJNxA4gacpHFy5D7QOvpRE7WkByxAJk8UvzzxK2HOoPuzSRoFarIE7icMbjqyTVVjsUonwsTL7zIwdGWzIWbvYibdAa1jjun5w7Wycq5mI8QKeWheRP/CFZuGLzXMJDXVpoMdAcO2bzx0MqC7bVUYLDI2q4kHNdnfuMnbQcDyNZ3cK2cry7I/6bvxlesvdtlcu2a7/czW/aLmQ6s/fCmj3aTuc6sFMhFaT0uNYDtsodbmPyymPJ18r8k/+JUcGEo03wTq9vdYVO2Gu51ZgcZLhrUYgZU1CKpW/3nHnP1mcsjvXcGu1BW26VWL883t9vv9/PnUJhJAjAAxH1D+GgRs9urA3bcxhH91tpPIhPQQPiWNxo4R6hmItlzlmMMPeoGfNrQz2nNcypMxZWvfZk2IG0ramSeiQHXF9MGJywSNkbyAnseCrhUvzNMtq7ycdiciNEzdwmLx8vPs4FpKwjAESuGArSHIMh0Zjv3IKtnROM1hVsgSBUl5Bsskhvs4AfXUNHUZSAPuGyBIz5Ij7qt6En0kG/WUwa+OOJXQ8nzWPw2V1AhMkz6KRgjrwnuEumrOzHJOiL4oowRc3MPmIrV69CWEtIdQRrsmNZeRpAfLDqKMOLgObNI3qIfmlUyn////i3BFE2KBM4mjO7jELnbKgluXrsC+RMUKsy/LQtUHIjurxmFrDkqaA9coc0tC+1fNhbprkRnQQZDjoO/mZmrBZcGZaUQ1nhWWd3Tt2hKN1X6366QLyGKWBQOEd8otjXCuxV3Fv2YKVIM530AbTmhUS5FyMV5BNlOPLfkQPjQRdWSD1T6y5DKy6Lafe5jIdjdrFRINaYEIm+je3FPmiUWXRG/VGKw4/8GaQgPsUPSwLzFcUWTVNqqambMqV1YD/f6v83HRfqTTFPY1UU5BHF+ZdaCCPN+zToV7wBKY16G1rPMeWseVKotG/ASEE/M+lpJy9iY/lYoqrrO9nhtINDWwAz7QYRH7/zH+5w4KJw1XmGLwsNd1fukMceahLyaMJns9rZDeX6sYXEDhWZxwJ33dtsyoB2K9ypUCs8FwPq6MgBJt6f68sJhkBqpkNeZykObu5nTiwFW5aWWbQKLiTQx3/6+SvxLqM2h8R6ZfeTFSzjG/l8TlXgHxxmxY/yDc7u+S9fb358f0X6sRWxNE8RFa5xa0IETbb21eLVE7D7csSHdDOdu2r+3cXk9nZqyqHHhht/Chjwm9gfahNno3L7SJqlRmezhXttmNOhe7vSoMghYCv2jaQWtqdsn5HvcAYAXjvTgREsL+NUIL7tUjl0z4CO1mHNRwyAnwMvi+fkVHXbGODRWWJvsHTmOksPtNHMbihI4ygCfXpbdGIyG+p4swJT1uQ3v+pnsTEy8FHUz5AoIqdVSow2FFgP0zL6SbVQZjgK1VglN20e2g2Nly9Bg4RF0W3TeFX0zH8x07WPTbzK2xqOGcv6M2wW4XIor/W8N85Ubcbla1PR3176pNvAlR8FQr7Um4wrwVQIO4Zy4S0NpqiSPmHJqv23BTxpmk3DcflngY1tIl4CeS2qq18tpKu3RppaxbPNaiHgVz+B+dCOtT2vStWC0oa707w5Lbw1AiRLjuJPgiQtNIgFdq1h1I/UjpDJWDTuW5g5yMlayJ8eo7Swdk1EM30pUfIwZaqiH2leQzqqxquu6op66Vf+BYzqPT0dPhlUFaty9TjF/ZWWfUmB5mdTLKLwUCB9/vapwr/9lbo+DZ59KfBqmpgqNd6/bbN6an6kVlV96778Jk1P6e2A4EP7Kfy38CsHYOMsPCh/WHQEZQeqjbI9cjVN659+/+4f//h5vlz++//1V4cSRVzoWEBMpy9T2Wa33owmI+5ePmmR1jLOcxj+y8/fk15CXr/TM4H43GTuyZwvZiTe49Hj5WRE+3OZqcKvvE7K42Ourt9/vhbNy+NgauzLO535p1++OA+62285Tdk4X2+++dLrDsmx5FSrkADCCR6kDiLoeDfFZpAq3vKb2pfFTnwBxBhdBgesMLKdVouf71kqT4nOLBV27BWC3/KWiOaUIZn4aKh/p2lEJlhCWO66K/3ZauVhO+50rwZihChQN6twZ5yz6haSamS1QEAnMON+LtKGsO3Y+rQL4dQBQceDzuS5my2YcMiDxLy5v2PNv7+6MmG+sAfZQ+QvVpZEhSBEweBkIiP1aKZXMTBJZGOvlcvHLrAuUJdQLI4Vx/f4KwlHPimBlY44xtiAHzZPSTAz4h8csokpBSI69yIlBwsTeWeDJvdLcvwK25Brtd9j/ktfwqwm57EOmCGT8SeDg7eWQ7zg5P9wPEI/MMNrJOqFbmJauQWVy9wqiGGMzeP2JhZec7cjwW7lYEZg2ylnxyfu7xewQc3wQOJZcR3UxXkTp8oLkbitV/mXrCcmgwlNanbB5HwsxetS0yxBuT13O6TYGbjCbMG9jQWsJ95dXvEGQRH0zmWjctTaOYoTV5Wt1bKYScL0xG9bWj5R8Q7byQHCeWrsFBNraLl1uCI5rGk2qWkpOc0CFU7MV1kOCeVF6papWOb9ZERau4uaE1IAFxJidaNn9V3zc3U9Ju4skL5/nwv0YItKmCrRKM8i3ybUodXlQtBXZCgURQDXajwSj4lsgcXu4uf1M7NabmtkQSS+trrD3A3ltDR2pFJtReAUKpWSIdTczsmVzra0X2elxryRWKrM8ZxxNwT+RIsZ09TYP7H1XcqZG7tAg5NwNiMRB0U3CEUGHpyQXWiGRWolBP5EELA5rYyPHb3djPqD0K1FRdu5C+ua/cV4bGdIR5vlEjlqijfAMgNr5Ty4nQeHV8OMjsi750NIUjayaogVsYzAyi0VIpeuN+ceyyOmRESXdWXCfa0BI9ZgY2+J0rLLhwErKp9czRF/sXzKR7m7dSvZci2NJNeCLml+sqAMJIlfOKhvApQtk07+P//9fztfJKBZxzg6PqsYyvoQK3bmmtUsExP6LAPuI/dqIvXQfZlISQ5g+WmjbZt7TOxT2IqCGuHddqakION8MwEW95YVFTkHM7mLPLGAIkOcHmanCtAEXQ6hs6ioUzH9PWzpVFMcnzFHYnkInCOPEB4+mdV23uera5tarDwLSgObjIYUg3SfqN0w54uV1axRWXhEg1iGmfMyvKIVzCICxFXRFsF4VGX9K0USZNb/B1WTcvUVpIqpgsKiecEbQVa2Ws4SANibeuV1qfBDRdMZU6SUWVY18hClh98eGnvajnmQhw00pRRT0CuYYaqmfvOvqusrpJC8NNkEVF/pomCRhdona6RHs5x1o8JxPDSVYYDE1BW5Fj4QqLe2LThwv0k0hpmGm0S3M3Qj2YlioWuX4wEBcT9bW+lyp9sOtoPMWWXJYbViNBRb+eDd/iZF7IimkHbAcJng7OOb6VR8Ku61dCRxxOoA1kxRn5w389nWBe2IgkFPcpGRSYF7KqQyd7SJ0okv5fFhOl3R1KaXJKgtDpjI9GV1WFaUw1GwFMcSv9xuyWc3mVzSbdzmeiNt7AzYuqesV6sVFGeARye8I2xMsoUIyOpffqSzMyyNcggUXlrojUiyOUDIHtlzGOE6KqpMUw6hQGD64phy6j0uAYvsogsN0sORtolxgmyjDofH5DN8q5RwU31nVZtJhKR2wujRUs1zqMuc+Jmpz6+D2eevEA+ZaoFk0rIhkFCTUEDoLLOvQEi0rMMCKO2H0vIkgqwxslM6C4lAkg5i/MU4VjHUXnaVryG0SJBDGU/yZ36qUSyQMaQBZBnmqH02jejRn3lY9JnGvbXkS7xpZlC/HoEh9GzKFSbmI4oi1wAbGGpUzTKjGUt6re7CTemWco/Q1ElwmFEEZn+maSLgMMA8h+YG7BQrqEDioU4yUk+9Bpg/DLBQkZ9BbCmq4C+o1nIeFfj10vc07knjeqnWwovVUmazGS80FuzegK/BWA2zgUYr1XCNMBNRIz3QTcmfPGkmGhAKFLbTPsj//+aoEFDNVTsHiNNtGmiGUL8L1xnU28AO0x0EHsqFGIK6w58ZezptXh+gLlpSo16lN12plV9vPQZj5jZk8rctHAZfdfLjrfHmgV6CFa28dZQnVSdPaoIaMsmzoCcv41NUTIZqTCV5/z//8eN0Jk4/YX5MpffvJuwdqYzFY4gqXazJDW7Ctlzv5OPP376zelggVsykEyfILVeek3ZnJ+weiQP0Q4zY4by6HLNWZTVgpvz0u0/b+YLqIo6UFtq93CbOXBQQCcbYzT3i0dlcp+eOgZKEnBFEn1QHolJIJ5ATjIzOssrcODswxbQbVcpN48ZL+t+Of+zOODXtKGYD3wMKE5Kog+1qgx2YMmyCy+vJer4ieViBUCK+g3RNpPLZCQenbMXD0eD5+EXeDmLK6jPuHnEsSYJ+akljT9NSR2zGx6uL95dX8+V8tnKEr/NA71Pnbde9jx0JuLuf0eV2Pl1CTPR33ZWQi4DscuwoG4ZB3PRRRsI7Xu3PA8U6BM5jLVkqMJEZE9lFtGAPSSHjRvTxysSxSj05t4bBhZK7HpiXqYK5MTu5jb4oBaEBdtSsM1wEhluYIhQnGFmZYmkS6Jw0+Q92hhPE+vQgJicr9pARw5F1xVg5M2QqQHfWA8wecU9kO1kdMU48cwDFOZ0lYpRUrT00VhxOFcb1hdmpDxrTKoUGUfJlZ30oDKxjXPa3WT6M7+uri9VyiXOdRKZNZDplnqMfqhBn2GQQLe8WHaYnwrGEpXMZoCyi73dTby0haCvUaK2HKyL54nNLrFdpCalQkorHJa2wJzWGNWR5S+nVfW6YPrNnEGhjGLy2nB1lBzpeEp3Fckj8hcTZ2SJGWFa5hgXNnlhq2quxXDQT4+EEAnI5Bidv/P5E2Ylw7jgf8zUBCDFxzQVqMYYEleCYE8tt+EGScTaTzCXz+cGoMn/HsFRG5cwOgUNT8KRp0QpIcazsts04+tmK0WjuLHrYaRkyo6aT0V7vZSooEdjCZebZMVcWs30z5F32dCYUVP6Ev2ifYJH8MInRq2wP2bdiFMX7KWNSFq00EwAYyijAmo7HmocRGdojQjF+T+/nZZKoFM9gGhTznPwmWT2S/NkpKicXpNUK1jCL6EOLUUmoWgFxG6G6aEkb51L64Gavw/W4yVIn51y4F62IErIVXYwMiEIgW4UaUZzgFVwH1QHCo1B7/ve89f/+b/4bS0nbKXgV0hF8M/IEu1E+0ldZ9qEG53Gl1XevqqFKNXPE64BEj6TmVSBO03P7fVCWdD3iSYzTnmRuL3B162wjszDmlMbAAkd0ONLf2HnJMaacgDHTUX3Bf/Bkk9JGTxCePCo8DcI5MmekknKExGy57rmmL5O6FbCyclCpzlJgNjGCnX5vkQwtNj6r1eeYBQ1qG81R6jMWU6PESlHARmyFMG7Gre/6B181K6VIomOCwSiWlM/3UkV++iAXhZvnaKneB93pqFHw0Xl5DlpP/NKdJ75BV55E5KFR1JVNzxLl6R8Nmaq0laaI+NhJlmlaRqEMCtSQfSU7pJsHayzjZchkb+tRtuOcwVLSckgVoQ/wyYjfSrRaoNhKJqr0IXklWC6SaD9edgtf29bIS6wOwBjgrsIZJRA/KdUml+Rm1gmGhyan04UzAAMOGKpCMoRuGya+3t67DYCPgq+dhuBXWy+3l5cjeoiLPBcNPz7Z1BZIRzViZVKWSgPVdD67uBhzLGkWJKDNEZUnsmaYWs+59+3m231/PEGE2IPwFfYj1yf82L6EMMLRkeBy4/WFGpJqBL1Zcy6ZnUwwocDFzpGaiMuSLcgwc01oRJ3IRmU7WHM2jmRPy6oIwUhbloRxNlZ4FzRFH9WE2jNDY7FlQhPx+jtoHhkaBrIIzH5B0UzMbosV05BieabRIhviBHU3NJB3RSEax9wNWfoOfoVJHjCmRMms0Ek1G+iL/N4IyZEb6ipVGnLLPmNW7zlapKR2EFIAKWDeIAw5eXJos4AsazKtgr6BJ4PyNKMpq6sx4yJSYhznaX3C0k3jBW1aKAR5TMmRR0D3PcvmGpFKWoUKwJgFP/NpoI9RG+s80JbFrKPo/IjsPFY3w89ypSR4Cmsq+y+ZupD6ARplMqKI1Cw8miabZnVRhcLFek4XtVXiewOhJ/AJcvB7GM5KVGUw6XOArBECmY70WYzMNRBXoieeNv+C4cKIHqEJzWmhQGqkRKa1YEilAFzitfnZQOtt/VnTr7EgIqOpVpvGG7S8iZ1CVIOslErxvyl/qFi/vGqISt9psfl5EG71LD8CYQgqz7VUDR7ASMNVMR3U7PwnwBQ8gJoyzeetkQz5t0c1HH+lgTzU0W9QVSmYa+ZFgcJqahcoqZoi+VOtKHt/ol5WzMQluO692j7xcQxdaMuZl9hffbQ2D/tfb6f/9PlHEd8yHMgk8MvX74KU5Zfvd5NcBe+yqVfLFTEtZnAiWMVhKgJV3Ezn/OZ2jtzefbiQ25L/hG8SGCx9yujm/p725CEAkGWADXCNJfrghXXYY4M4UMcjRnGqZZfSQdhYBCbdmrb25JG2w4i1nGndzaeuU3UTuYNPPCMMMEKJn6UZMpxQqejNoH2YDL6kTBjG1VdndgmYLCEqwxGawrWvC3v4+bjukOR3azKXSI6ZEq30uOUGM4XJxJMhvsllBTynxsXvFnH2ekzvB/sOxXIEvrxuMrjQfMyOjPoIpsEQk53w4VfidrED0LYl4sitkrl8hj1twUMC8FYqJngj/lEmoztV4n42zSiBTcn8ptoS/s5iARKw4ZaF7vQ2J1ZAZ1wet2SIRqbwqYYL4l3ZkqMROceby5XYE1LYMaTE4ZDnecr8YPojm6OW0UGHm2bZxzpilNMCtguMyExm5zixtLbprG7E6rSpOYcNyATayhTQGTmm6SgqwyVXUzJGW+wW6ygnv4VFsTtlt0YCtGpMmyM4DNnoZbV/FH+B4C2+HD21S+IQBdrnd4MSZM8yFtrquAeJvnl4HPcm4xEA7ge9wd1sCYGsZLs3jHDxYAAGjxBW1O98s3xCaKxQ54YJpwF2cTDbzwiD/W9k/VuTpbmSmOllRGTGOSIjM+vQ3SRHY3Mhk+lCJnKa7CbZQ5pkRo1MFzL9f9OYOGz27r2rKg9xPmVG6HkdK7J2kyurVnwLH+BwuDscDocDiMTahTRYUQxFARro+aZJwhhUp0en/F2O9DG1YdwiZ6FCLYBsuwEaGe9uiwiwCUEwgVB/MR0Eg0R1f5SFcD2NZDsVdr+QdwtTfILMXF0IGm9tt+UabqpGKrKwuxLbqKeHimnZ3jV1YghSq2J2yS9G6JPGaPPnZhxzXogBwOqZVSOWf2NJxjElkJ4yIIhYgw9iojN94hNHaGANaPI5ikA4vfNElCnExlyIZ9x2i87CmfUEe6kbXxCL+sAgm1HxTwayh/Pi+m6YUzxc29si1tytq+/D01Z4pTgkiA0vg7f4jh4m+qHUKk2rLg0uE9BhZGwS4EgS8XJNxgodMyPF0KTEhGCnyAiliETDph2eHcGjyZbv3BX+5ur8yigHKzWOBk2w0yra76+B63/9v/1HksobUWt0r+jESuSpda+Y6wOERvGDdquZbsU+01TyC3uZHYpm6wxt4p1vq1EGbfzb3d/lotADuobj83WbgF+LBXQeGPxs8sik++3SJhYcFcxUywkaGrEC/UfJWluYWSiGcRMWFEVdUlh8rE366Ms3bz5//ER9e7ba4DQuGuPiyi3odlpYpkQTRlgLLtOuGZ20fQaT+SqFxK/RQvq87I9knPWujz9jlEjscdJq+gTW9ydCjiXR3wA3zIwt2ByAW24mFSR4M1YljWXyKoirlqlOeSyVH3gy5F1FKLXskCLOl+WH9+nB8E7ceemF9AhOVR3xrVEk0wwxcUmbK+2BhOkKiEkH8WORfXM2kkinO9gOc8/P2yXGD9EBoI7FoMe/Ojfq2dYOZ5M5ns09bY6tevfuZGRAj3rc3Xr9ww9npK5laHvUDixgfXVQMWG9urv++d17zq4EekYg4vPLr5/5tyzKOapHf2eXC9z65z//ZG5pDHNltZFDJ7RwwGJX1jK9c+/01vrlzvaPH84+ffzMt+EGOp2frDhqU/ckbxwqxg0+FYdCkBb0Mw8UE2nMSOzdSvHTWd4bu/kerdU7/dqCvgWoTHwjsKBAmjIOd/YUwcu2M35YfcMTXc7YwhWHSnF4IJpbyO2ZosQjwoYp9JeCpKQsrSRadhi/bH3VrIDDL74T4+Fhs1NczGpNIIah8W9ja/ZEhMoxwkkg5CdmsT/BVDurUfPVIh0OMqqKuPipmPG1It9BjI3kFQ+GKdN6Veapop/gLvjqmFrWXwiHgzY1quUW8hLokc/UBZhLv3gLsd69tGIzexk0FNDMxsVktWFezRWf5lTBytZD6dDRHG/lHNQSeP+gAVQNH8RWXVqRCvR+mrNaPRSOYhtPc69XjfW+CtI+05sW/guyFEz1vfBEFi31Ly6+FNdkxfHRx3NwBucoNY0CKlxf5vbT9rr04FwuNcrjA/Qqk2aIyCHcUxSQM7746Sk6a3ZqYQ0/wzLZV8kpEirfkam0YqHqpXTfA7Yv/8tcyqRt/sgzpfydQpvXpDYgm1cjSYtZAU7GVubvparKq2nLwK9saeWfV34MSnWocns1srqeNyQoNbQn89Bwnqqxae2U2sDZSHJIRkCl+stSmJ1/RoxslPFDO1n+rdNnHIV5tH/+5dJZYXxfdANraPdo9y//2dnNr5efP19/ujHSqSgrxwgk3OJjTvxHV/O+eni6u7r56Z+9Y105/ubG9knHmok1eXi0L+4vf/hw/umc0WxbGkvUK6a9AzSZMn/84yfWols2RfCyBSku/MY/LhVHbbJSqCLjIX1OxRm8qHAqumxYtbNl9dLeAm23vi1FeLcjd+AkIpzR2SmZHKIifcUZU5pvRCTnjKyvcN7tddKR3tfZONyfPNByb2eaTCvRtNuOREM54gzFz5hiX59ELrFa+CGN+CdHpw6UzCG69fXk5IjWzxp7nWWpIxRazV3KnLST8E1hnGwD1p4BSxWhFDfmqB8inNePObiF/o1SzDjOIJcQ8RuKRYcQEQ87ERp0dsFXUCIhirZdzSDU/D9zkhiAAEHD0K6AJU6TvCTmGpZD81fe3d8wW1iWvO7GPqMhl3PR++yExwfxsvzoxgvU1nAOA+q+3atsMkZYu3vtyNixYqP728epdeP6mXshedky8voWOpUrm3iOL9ZMANFTIJSYz8SjD5KGy69W000+qSsiRjx+fndsAmakaXLl2ImUnoUFfq5OBRX9TZCFUgN1aRu3OG/3ygl+Nv68ejJsT51Ws/19vhdp9SxcwsSAHSk0Q2i4ZFuKxcPsWdA2UcnTUJl2jOhC+X0JoU2uTkxxcF9zlUJf0IGtRahwVwtMZnhjaae4kJe51SGjcKM2lY5lCjDB+SWFzjbS3uptpkbMePTn6rU5hclqjE5Ruyb5UE1zLPIoAAO3ERN7aFV2typQoIivb9+sIJluiUN+f3KiM7JJdJUZUnNZ6vFZ0vYuu2mH1OC6IwFxIRuQD5CRmxdMK83ovF9Ds6oJCcw1lg0wg3AOHZM1e+uJnFmK6Qdq6+MmJKikcRpbfcz6fQKT4cPuFwvH+jXl5lxo6SNhbpG9O5zdc+U8EF5aZhJRyYdo+BRHoObGbrRkDKOq3osJeiQ5lI5HDh32MPNe045oNCSCrD0kIhdCmWZipOg7ehk4QOuP6UyWNjk3oxVC0ZFinfpqSm64wSWaUB1pUED/47/9GxdMAHVzffPu5MiBuwxK3R5h3JzCQUChAKEm0FhACMjW5gbmhYUlklErVppMIdAIupTvrGjAOZuetWcuYtMCKbBSoC5rgnL+dt2+Szj98O7ss7uUZhGKXrTjSFcX9ciy1Cr4IriHWX6xOeSVA4CRU6/7cHb8h1/dQcu00tltfnISVqqugyCfzHrdIcCMZmQUUk+PrzFseKrddQsfkoE0inkrpTElo23jWJKB9OguWFmv8bBx6c0Q2Pgj/yrXaBS0GDNJ2Q0l1j24ROa50d1LrzISUw0Lciz3bnqXWhKOeFRAkdA4AgxtbyuZfbnqKrAM2HpoO2IWP+0IaWJNkhCdaKl21HRKSuekB9GVU4fytfzKFmRSc7bSatSNabp7oHVP2dBD8A9Wvjs2ld+6YKG79+6NWLd7I8iEuzQtUbUZGbm3zCpS0DLiz3/x4fLiktwbXyHqzFahlVptBBKPZERwarUzt3/7+MkY5jhXfADBBpc//fKroDqDmZUibhQd2KD75cL27lPLzF++nFOOxjzDhU7krc7cHXMtMlGdOqczx3JTcRmZ3hhIBOOa4CCduDRks1/PPuBmAnSKM/vMmubkYMaBDo/ARlt9iSHAEaUbIa+jflwiTGVbna8LzZCsGe77aPScjSV0DLCQULVVWXfSMQuRxThB2WBYYpa2JkzBxGgA8UW6XmrqGseTBHqWXzyzODZT0YllphUJJbHy9yFByDoZ5CmhZ3/7P8s/CXkxLl/se+8UAZAKCFwG7TJG15uQDM68GnirK2T0ezVSWlGyt8kGh4HpTylq30g+3KSFzIKmGyouex1histN4AfJpL5RvZXS1aww0S4fGcBRK/A9E5dcufUlpJ8aygnpkJTVx1eUKz849aj5Gch5gKqOsKgkm58IsR7GwKist2Uv58a1PyjhQHioXoZQYisUjS2KwyjQsg+sJMLB64g1zYxdaDuI1NDFSpmmDgXDE+S0XFoIPtOVvRk6DiZDt6H3NDGi1f4XpTRyskCF2ZAmmgwLpExmghPI0v7se4PPgPLq+yfBG5p/T5mHARlNy0st9H8/Id/DvAlj+Xyi5MjVBvA81w/mUy+JVJsaBmLNk9Kz/7+/myyb9MkRlTZAPPS6Ij6J8CrPeiRlyUDJafwOQvj5p1OiQ7E44MbuTH5GXPP+l0+//Z//j//jhdiVpyc7d3/5cn56+pY3mUFACVjsubt3pqEDDDopXR/+P/wPf/X5T+fMDYYBi/X/+//7A1vf4EtT2SNHP1kFZVZ++vWLvWr6OwR9s0b0952D7av7u0PB8Q+v3n94y8TJpnRbKyN/27GVn1ntD4+coN/evTu1Y8rQ5syGnVf7DuK5uLykK6ks2xLs1fRP68wTMCsLtftVlksUmQlUH9LCGypUl9q0Ak+1aT4nOKcxRedITXHtdKZD82hIYzW/jCuumhB9+/bu/TGTN3fS9s7xyYkRwVGlny+vvlze5Kp2L+/NjbB1MRN2KYD/9tQhS1yzCT0NaZLTOCYM69XTpZ17FNxc0+5oD5YoJibJYzYzKpAPhUiHoWQNYaOqMz8U1MxsIz6sHTMNfb5RA0EZNyKgjAfsUU12iSTjjNOdq4tRRSwsJ5BuiyeMWpGkdkQkk2x3ix73jweHIhpsshQnI16cv3XHPgBzA25EwyUTlVYXKuVAJOQ8OnG+xbP5HllrxY7bpcMMcwyZ2hio9W8aglnM0q3ifJ2uP7NmfsNfdmJFaNt56zdwtk7+7j3XmpuT85EdHgqsZWPv/GbodAWEXbaFaG1bcTk8tkHi3iiqzYYoazIzsFpOvxYmc+AkKFG4FvZ3D9n3ouBZ8KghM+mF53I2HRwe2idAAjHL2G0kpTtu3UlsU8gb1+mY1OX8Zsu5FerGBvCuj6pHYci8FSLbHkKmlIYTey01VrI90LN9I3M+eAo7i1ZXYwo7/PL+ZNe9xPnFmKLKFovF4BZYy0RrX02+wiNBCAzfFOmeQdxMx/5aO0BMJkmvYIFUqo+789iTjsJx7xrzpfhlA1mmlK5HJECw3VhMAYVg9YD9KYt9qo117fW3g1ZepqwRaY6uEoEyUxcFCSYFbnTGPoZKm9F33egwBFSMsW/9gTB0uKJaTJ6hbJtvEVM51LoY+LXpZ1OCJgAiohkMFBPbLSxV4XhW9RJMVQCS5M/ZoCCLbc/LoGcaMroeIRNfd86YZSv6hwh159apNERJb62hAd4I6rWVBE49tTWCYPrMbSw7tCpIkS5VaiYbLwg8u1qpsPpP/8vf1cOY1Dtb/+LHsz9+PDeVE/kPIvJBxQxVZRbjPIBrYaHrYCdCy/IHw91cH9JOqP3pw/v/7e//QZvxTwTeZ0tRuOZAq4fHH95z/e5aj9AvkUDczt//6U8dJCqY5O3xp4sbqJlPcX7o6TCzpmppL7xm9maDT2etNO98FlRyb0+6QLTT3dtrJ8HnNrYBX3dxJ0ZHtVi+aWZbZ8yuatDFCVKQ9QNC9vSMMCqaUaa3k+InXUN8l8SVrNMlfD2u/+uGZR6oydNkkAJaAKuuT88DSP7BIaUTU/swBDemfwXZCvoNWR5hWcWhAcIyQaCfr7GQR3Jf7b0iry17li4rmDITDt2SWUlrWU80HYSerphx38SgUPhWscfx4+T73y4+2+NvG5Wh0VljMjivLCeBZay7W12UR4oFL6wNjg6D26U9nx7N2dT6yek6JukP7v1uc4ZxggvBKQRnP56KN1W7PM1B2x/2hkfEM7vZ/jnHFsP/+ETP3LIPid/FsOqoaa2E7d6b/S4xR4vdnXOHin597hCKQsscI3BPO7x9e0Jx//rrF4ONcUUGy012uhBRG0UcLdbycD4GIOqxSGY8plna2hL9v2qvabTxROdRtczEhmFHkNjwDdMEKFeToQLPtCKzb/FR56Xckwm/h3ME1qqLGAJORUci4A71SgssNTncpnR0yxSWhvuogTA1GejCP/evJTOAyUxIQPDBOdTQBRIi38Y8WrOf9edVffknmzQAQV6Stioa6at47wAkUWC8yKRErdKI9bYa5hkESUvM/FV0UFt2c5X7jW7JJFFf0qtzTamyksYqKugFPnWHtE8U8/b7z3/yAIPJs8FEn0oVhl7pSr/IPCgqqmNEq3Tlsgy0LiWuAZNzAUeYIMB2xVbJtME2akhff0CYN7U64KMi4LooUxPCu48/Rq+UUmSvQbR2gOq8fST5TJF44XkY5MmvBqoSWacjS+UvT3Z20DaMGhCDmbfyeIQSAFUwRea7bDXTR76Vc/NYOnzi5gtMGcCRc/Nd4SVFAfCBVqIVhH7OY4DV1e+XT+Sdpi6EJcujXWHY57sEzi9foE21m6fB55+AXS16yd7fKP8dgfUQ2A1Kvf8Odii8lkmRdKEOhxkCZdRdyloC68C5N9t/+fNbtoKTawwOlJq7yc/O3j483P7jH/90cnRy9uHUDVyfPn9x85UDyg92uWmLKnAZbydjOuWGK1qdjt1v9//z++Mz5uGX86t7xrIbu8Tri//5gX/KMXS3zB1jnTkAZ+3l5eVvHy/EgaCeLaGONPhon+/17dFrWxjzozkLm6Z0dg1iUhzIzoak0CwdsBVQW2i7u1Aoqdg0Co2y5VGGEjVH8/OpcW8zAmTQEdbSFEiGABanYY8zLso18ANvkNzm/uFYdfA/qXa0kfgFRrzh2E/uE+LDlXpp54ANeIeH51cMVSvwTqa3y6vTKmlUvMh22XrVuoDdjccHzw+8Sxm4P//wjr1NCJkBgiGwjUGtfiyZmCD2cf5IJiVjjvEgs96aw5sfdC6mVcSoJ4PentTN5VOKaD/b2iSI4QW3Ao1meSAFye9LyWN36x/WIcRLmFw5plNQqPElITcemQlQ+wYGAcwoIJZGrSljZqgIB4Ng0tYEhoWqXmcEVW3C6UicG3rbjzjV8rt/bbdVp9PjtC5nyYQkkTHkV6OGK46qaG7/mLODGExGhOP9N+9PDmEMWxUxKz/fOEll+/7q6/t3Gcf2oGs7PecSHt56YyjusIuYUp8+2md+x++diNq92VBli8h9nlGnQF5ZUNr+ydHsTnd1ZB/bVsPR1kIWw2DushCP7iK69r0w8POQOuSqmQPKdT0ErZTdO/pHUEYOK8IzK5DjRcpn1Y00EYBCpghYrE10TVL445dSRbS2O6o2mdMReMqRQxmBVfzCBX9598rBJM7YsBeciBYdygzOn9KaQlw1pJBMsewJzJKinPMO7oRDmS3AEYa4NkqPRGkPRpOD7GcviJ8rmXPnZ8camnmK0xhN2FJfWmqqtnBz+iVuOhGICdw80q70Bxa5MwZNubMifPDF1dAZpLqTdZv65VOGuVkoITQttIgEA513iFaIQS6AZumIE9GIQ2OY00fE15k1aQgvkqCbXQwJXINXk2EUYIcvVPVr5nNGj56RJoB5s1xgmxTZONRpnK3oxK/pOGhk4ksqUFMa2VOvtZukQUP+09/9nUUt8dMmao+3tzZji3P7dHGlMNeFldKO6eWLPbbk8YorV+R/+3EP9+wBeX929NvnK0LC4oGoaYjNJbDAd6Rhy5takEf+UwdIwcpZLIKCaCsfnhU42wBPq1ma0VEhqpPob/DaeU0VmjXa/K6lyGQC6v4mS4pfeVjP3p1BHbMZnW5pMZHQbczJmHEuTZgt0s25IJL09I9cjQQnqk2SIBB9lj1BaDaf9WAsSQVjZAMjIekBqRvqlAKrbx1uhkNQ1KCZvn0qMVIYyHJ9H702eap16gbNBzLgr8TEVxWxTf9dPKwWJuwaBqYtC2Do6eyzWNwKAHoaHdSH2R1u8/WrcH3YXN5c2lT99ujEfVwWoXAfnjxIFoKLY9kq0B+ezTft0HVu2iH9/q0jg+aGYKKs8ekxohz8V6c/nl58udI5nZNAoH989544UsfjTXEoaO3G9z/99tHFFjjb5DaT2WGyVwQVebidNBPxqE49Sd8UCeYKSTjjosHj828fvz7buvDgmDnibaj+dP35cIeSJTM7LjS5uLgwYzROJ/dznfs4ZGgo/iF+EwuX/EnUmdM8+GXr2/oUDa/J1Hxi0bGe9zQMeaOPchh1tFZrx0iNxTiSfrcZ/c4BfMfYOjlTjO2ya4snAXM7mNmWYN+jX3/9jbaiZBFJ720iG/u1rwGvjj5rwQQv7QIWw6XZSLKpqyu7OvwITB0bAt6SFexP0dRdWyLA8VySY6qCWZ7JqcRCe2BmNW6kC8Q/s2s1v4qSwY1weggrCCfmfgWntyDP3HWTOFom6WmmWj7N9K0iGUCAhk8FJ309ZJLPNpX102ulVjbPGyRlSEGn46REgU2/lXPTrdQhfRWFKlKUR7Eq3DRkvV4wJaoaBeqbA1OmstY7ZzJT4nTngbBKlbnetwELTz9DrHLlq8ZBO5rWU6cKlIn6Rkfun1yV6u3nQleZIZ10nyCAkWhE7SUDEsHv25vRKtW3aXKvgK8tMQjgoAyLJvM0qwyxdd4NfIQGvOrWR9nRS5uSA8ObaVbwVnWbzP3ZsGkBkO0lD5GGag3xsNL//LmS35uzMpRUkxfOvz9Uy/d6FwVWSt+r3lUGmGlI4OJa0IAr13z78mbzGJ49DoC42WSUkfrzh5O/+Mt34uU//fKFCfXu/dlPP5z98oeP+04AOtr9+OuFe2o/XnfMgFsLHQsDoEXC9g6+tqG2MFerku8cirl/8OXyUgT5+9N359d8HeJPbRPshiPB/R/OCpLUIfjnICeshVLlDiiuhv7qpFE2hY1VzMXCDBgxhM5qODtgzk0QH8JLu//l8wU5ZzDx3Ih5MAQYJCl5LaUihUvS5EZMwmj1m/lCZnOD8laI4Lea8OYNZwScGxb5dR26zVPO+OO81NN5x5+eGH/Xt1eWBj6cvBN3SRvxuRiIrfm7HsHduiSmhu9t62wfBdM7bPE1s6cgQBRmiU7XLkSe0uUTRDGTHwqKjcJVaYrSPgBmUNJFacaVDC9YNkFxtIjY40ImXr8Sp8QyyQEka5wbHUCTEzTWYXy3fEpdx/z8aMZ2QOpomcip2TzbDUN0YwFIjvM3OQFJCFODKhd1x0tktceHOlQ+3cJyrFxQKFn8YwhaPGdjPT5Zw3GMjzGE09woxXPpXFF6jrlMuDgODBrori61Q9XQAU+mK1ZCsGaKUFXeUXj7WdVIDW0x8rS9WGYTNrns8RU2Zv7T2PH89MEVSfffPvxwwk5FPPOY1Ahqz9QOE7H+/dszawLkmpMd2QU/my4aqkxy2k4hXvzuUfCTBS4DhzzcdE5VpfnFmpjpoR9i5s9Nk6fBDH85wLK0UhpkXnM4Ydmp3jZa1b8Mo51VrZkYlDKanpwLhgU4WwUYmWakTa46l6aoDYG+ZF5hzkSxb+dfLszWvPbRYCqLeQ428jky1MqAhRlrUPaTMEuyEHe2XJxHbJgKYeDaor1mfQ2XgwCMGRNMcwALA7c4UBCsVrT33WSOJTp4mnzVDG+bpaSci5JIIsUmzKQo4TXdM9pqqT0PxQtpGT+doTmTSVdtwkmC23QgJtBSjSi7e2jyP3rTRd16Uc0CI38/MdOn+Acgr5nse3pURYRExbYWZfN0iI4DGNuHAz/SCKlYY3CJmVKlp+rMrRAd+MaIAhqLqsMMLCGLGRvm7BMdBIgaAVE/QbT8wgQawwYNAPQyYqpi63/9D/+BLts7Orj4dEHLWPv7wx8/uiovgwA5XF2et7JJObODBmFe8d06fckcVAPEcqQm3Nhne/vW9peukXKi/DdzT8y4uBGUf2i7dyeGNbiSFkTUwu2/+Om9E8Q6aNd+IBs3m2/kfBW5LczDwQg0hB5Lm5g5JFCEwTEILpBy4o0NH2P08L6giGkxOjnBgM3W2WGvbQZqSIb2DBsQbPiMjI36ydvvr4YQsqV6ZlTzWkdQGTGKbQvEFKhLy9QHiB6GjooNKfMCN0ktkc6b2rXX67g4ozhgPhL9IgReydyQXkXyVClEBnhVawvJqi2qIMu9TffhvUokak4QJw4HrWwkc1ITjWlGx3Tq/Dj6q7CYTq1yBBi/B3lFDRNjsW4FCREpAvLg5nOnEjvKzfECu+ZpDFyn/x6dONnMvpKCsswKSPDD86Nd1/jB9HXKmAFhyG7Z4Y2DAegxw5d9w9SiXf8mqpZ3+N74SBwKpGluRdd6UYzNkvWpPacLH2ArpazeFQ/DReFqLxSUR4pRRKPVaCL+4cPZx98+CWoaKW423XyRJ5tooWAxKg7eetTr9BDWvVfHJ4Wicvnb/0SKaEm42yGgj5o+8CtYsmxM2HGNtJ1nmW40XSRp2xOXFdmAaMdZsOPH5RCj8cVQSrCRrq7IT9B81UqI8X7mEq3aZO7rmLFKJ5rb+GLli9RhNPk2li+ZTKDsFpgBPeWXkJOK8i9xIpbpJluZZc3ma6mXBlgZoDQ2QZlH+vpDHhOQEtZXw0nyNjmqjwRl68MzKZ036+0C6zkRWy8CMnkG5AYiTEYO5Q+In4n0iOuMhHEBBaZrNGOZ6oIS3DYEF+a3phBhNZart/WaqS1gY1X7nr4gi46wek3YLwIFeVrmhWwJeX1IUgDmJR2KF5PQq/BfTVNdVawlkcWgADcFkqu6BgH0jwKjBhbyQ43aoiyF70FDNkVUke2jaB/9FkqVnh4+lAy9oVg11KrVwLKH3cJtHkuADNx7MdngV72RNmFYmb9/y+Pt/OxReX98lTJ6DJhp1lCmoTHgk7EXtX2oV6WrqJJVXXdYkDa5S1yN7H0MWgVmFidPjAiF9bXU1ga31bQR0bD7XlD65P8d8rTlz/KE4XhPBrfq35B6SfTMwcg25J3Zt+vy2v0zsfusUWbPq+2f/uJHA3zxkCINvj3+8uXCFSWO66EoSCI2frDZ6fnV1YVLglvBNpTq8KdHRz99ePfLb79p5ztn/nzd+njx2YycX0wTfnr3/se3B3/406eTD0dGNL7zH//i/cP1g4mFEBxbXV1j4iyE92dvf/tif9MVj4Pj7w3nDGiNZbkK5bBiQM9YjCULzinXo8ewLnKSdJGsxvLx5dNd3vKw0EUsLkdesjIFLwnaZsIkVV00SxGJCN8zDqAdiwQ16H/7Ku2O0r24Qt5yFL3ZtjZLw7KJO/Kjkytt23v9j3/8RDG6mgBl7EZ1wMwPJ2+5/e3QgwnjGav54EghB5xRhB0p5sfMh0HH9OCQpnbDs33D7P5CRqHBtBBTRBJpBUMhgWFPGRQwEZHJG9N6GdNtYMCyUWvsrlyYmz4+xo3qSUERfYDkV2o9eu5Tm2OQWITFxuggCY+lBG0XoqqZE+LDWWlyJVLEzCEzhG43jePZggiDVTTmq2d3lJIgK8bOwAiOqI/8Ra6X6a5MftiGpyc7UA8REGrQ8I/Z7A+3JHfsGDzO1xcUtM3OoxwsoTiVFZdOnV950+zh5iuio59bqI841X92QVs7nrddbWXqZkWFBWZIsaONmDsIiGAQko5k7Grhxy/O73Yf1msurRprk7cqWnl3hQJLer+j+kkC6rUg3wbf5h/p27h/TLaZasLcJyjfvNHmbMvjPPTsMQwZV0tLRw0+tpxg07jqO10Q76QbuJ1PRWOwLcyOxgONCBqUZ9DHhtqsFv5xd1YcslI63Yf5Y7Jt5tPkTCzl444pNLNIhAt2TrgJVNGFWu4cDn1ZJzRcGse1EA6EhDAT9RUapB/pZWYaNBwTokG57k9NFmevmzQXoGJyV2Xgzc/lJQk9q2eyMSApqsaPmRqpnDpDL+LKguIm1A2Rq/ksGyqOO5YIr+oC1pTqVQVKEXur+xO+7uDU7axzVE2806fclR3Rw2i5ci84QG0kMDlnLViaSFR11Sb2Xw2OVjY4Rt3NxUnH4h97AEkTHLBSdxkaKd4CgRCqoP186OZIjWgDkxt0xqb0GxgTkkDJAvb/+A//i7mZKA8BFZ0mW3dSBFwN0VR2UDNjwSanzlB0hpHblIo8tBOYPdcE1y0Y5iRObnGlU2s9oq8e7o5OjygCWoO88ohYf3l3csjF4gg1h7VbnXPeuuv8+JBNSA4Oj8huM1VbrQ8tNuy7anFsrGda7aSJ8iszCs5+Z1cVrfHtm7ATnZX0RK/chymKhmcDQf82JtdmHJnxzCuEnhGwUUq56enS1jDkbw9eNfINmZB3JXrwan5NNoRL8DZDqdzD1l5VQTLWgDdFFO0hLBG1qUg55JPuZ7IYxRtxaeSlRMhHZQNLoa0hzsFYyN9NE9xXeiaIgvwZndPJiz+fyak7Yhxe0YX2jkKCRNpWMOLdVyFtlCt73Sk/2bbObHWYF88T2rb0/OxQf5qFx4bSIUv6YePQ7O4XgMjJDQGbkKzZkA5zbgsLdyYcN1c//fSj9USTQOjZmWtgMA/k2jHI2Y0k3u+HDzY5PRtxc9HMNJugCuz55eMFBItAwz4b21vVdQWIlrtGmgqsP4gcNbxxqZjdz6jQMplIJ10CGYmCI5jTy9+cuWbBTpgsx5u9a01azBsN3rBak/7mFbT/TESbaXCH0AuPwVSt1QABAABJREFUukrjpSaTIvSK6FYV7x9tMoaayTQKV6OBiiDPIQFaIddR+1WcuXaLlToeiXKYHWbWc2ZXbkY8lnEiulVvc6tlUwKlFPE/gcMgPzUKbuhAbejbmkBfRxWMGZnECDnVT4gJ6BJsr17ELMkvZ2CTTN+qUNy3xwGSwkI0slrBwUGNoTEZ5u8I8KYXzCARNQZIr5ddBUC2bBAWKNpnul4ZXmzokXIVVSft08+Q9V9db1A1fisRngufyTLSvkTe28G2TJNDudXRNDMQg6fvmjif9Vy2ahrQiNG0uSpAXXX1PSRa+ddP+GFNmQbgBoVYtMptsFgQIKbJ05enVRUJuM+ijEIR5wWTIUvMWW1cHJF5gC/cQ05lAyWdvlo6GMoQJYd4oxkyd2vjC1WDE/B4X0FgSlmlEjdU2DDrpZINKSrS6xq5ofaU9LzSw2re+/M75MEcAptXqtjQa4B8T980aNOsJY0Dd8F+wfl7kioGnVi2kdJpkeqkD8umxjBZNISsx0gxLawm/7/gg/6Hu1v/4z/7QVyC0Pa//PG9U9O5/J18bah0A2bB2fuv7Vt08o6TvC8/fnFkhY7PLytawDLpR1dxffvqdIS7O0fLH9EGf/zt158/vBcdKYWOFsaQlXx6hN4CIrLFjw9tguIrM2r+4R9/cdYiw5T9irWmHB7Y//wwJ2dv+UEMsG/Pjq6v+IUfGpZMPjqpkKXGR8jx2VKw8ZfplsXAMHpwiDuN8Qw984fLqysWrSbQjVqeNsv5nJuTreLi3Nvb69XHqUpArC3YScySYsjSead+v3712+c/fd1xOc/2T+zB48PPFv0Ve+DUO6rDu/L89T4TjTKzjuFSLAiwE0RE68rsOFrOYTca8MMPPyD/VXMSWtYwTI+uOapRGiskxLd67kzyMZtaoxCwLE+ZOHrQClQoy/SvypkGJHitEaiLIyg9OaqYxYnmnRDYWkQemUzb2kvyX7WfEr94zdGEPcqmE21unwMKa4IxCCyucd8MR/OvH6xmC3O4uRG/AQHoEzrCYD5zeX1N6dHh7A95AJygaMMLB7BZFl7ZDa5Io3iDiOZH4ec8u1x+W52gqFM3cXiza5sHx5xDP43CAoTIz+nx/o9ioT9dGA33Dvdsv0RVkxV4OeaRlX9yxK9q8Zm3WPzMDjvIe/+0gnGVqNyPbVdHaDeCxmo2xABXCT6r3UROiAdGcJu1RXAOdyJqiNEqSMcuuW1aA/nUDxAAWQiVGQVekk3cwQLFBYDX0iLsiztQC0MRKsig7Ump7cVDQYix1jitDAHAjiu0s7ZVZ4XBzMGg3NhX8FWSIGNnWmEWcIVgiY+tFrVHWZat2aCOxc0fd7tDoHQRIljvU89obT+DdQKrQGcbaQtBVVGTk8z0jCvjrGc8lXPGa3ttnRxTBwTRkA1h0F4U5AyURCKbrMAeo1eenvyndTpB11ZeSIBOh7Cfv5ybqFeRqeCui3HNh51PiD7iAk1dOpKLqUO3LFVNFtkkmqxpAU2LZdDJpnXIIlaOf7yNxjOBwRGUV4qkUy01YSfXYWqzzqX5jUShmnRmZ+oIYOp0Lc7oc+V8lWzpCPZZIq0t+T/8+IG2uvxyNUdTIQU+kGgbefOrO3np61enDT9SDzDUzrdnJ1jo3hBh3sli5/w+np2dQI4qaWbCnfn12wfRlqeHl//4288/vaM4zj9ectgihaN69V27Ub98+UeGo/UdUvT54nz8HLuuYjUnZ2MSFx1Ut0YeEWKMUSmWeMz5hiP5QpAMpZjQa+RAhRx1wz2ERNgySMx5hiKNjr0mMMOk8vvZYFI2nxlUepDmeziyMrRYNGXLrEof4iiPWoIwTi+iI6VnZQcaJgUEwB7GOINjuIzKmvTByqvyVW8ULPyJ2liQG1eIiCh5KkYkVert9d7hoV6DlCTYBAlfLN3ajmbMwC02O7mf3vJM6Vji1RttzmEri3U/fntERmiBj+eY4uwzrqqHw+NDxvS0cfv8+u6TkFAHZTx8o5hIjXVg9ZoQY8jZhx9++fTFQQs//fzOyPGLmylz81gvujlyxvPD47t3Rwpa2EEnvgU4Gbo06r/+6aOt3+aHNjzJZp5Abj9+bklHt9CLDFdt7bC6WVfMPkbSQixMcDKz3G54T3yakzc/MIMXuXunYxu3zUKQxe6oKJBjoMtN0IOu0G9MNC2Nm1/rhnwneEGAraE5D9TOfnMPUxGsNWSaBqBzfXXi85KYV9HK4R/4TrWBsQguTFNXBBadcVsrLPjSXDrhjrDeBiRYO2y37j2DRNIpa0iM1djxpHOIap3ZjqEEKtnKegZRGt2TdqqHEymCDJLEAe5nwkyo58kbwH+f4q66fHsReiOQvkc2iyVb+iLxS6ZlC1aphH0WVctaSjRIM5YRHODqUOEA3e9gx7e3egBhX/kDW/FqNZouVDbQcFbPNx/WreWaefJAndwDrSbl0k2XfbOiq3ZZ56MjGNE9QmYQjLAVb5AatKJbAGrFUGb64Kb4SpddA2Rbr+BcUwOH4DR+XJAzOINhPwMpgcKdVY40iWrV1cTdW6DAmYzoA5cBOXqgSv0L/u8fZYdWQ3hwp4XRtlrSJF5H9u8lIj7EGoMDRqePlovCaRYpDfjzEIPkWSyYuhf8UXTljFwbwJu/jV7hANpqflyurtpY8qqlBM/BnsRQmZRJ2LTCe6WmXG38DuQFzkYeBsfIFMAhT02IdAGN6StxgR54g2A1juCGRjg2ZeCne/75h/dW5PTVwzeHVBc378UVL8q3fbakC2W/3m89bL1/e/qQv+ri8Ig+dVbPFxpEfOPH84902o/v3nK5MqZ0ds4/lzHRZmJNT075jvfdwfnh7Aisj+fX2escb93sZJC9P7/8xGC6vjw3Mfjx/RlGCMdnaHWq9sGeI+oN+X66MR3bhIDrlzucqvr+sEHMN0O79Yes7S5310KLtvQSWhArMSK6EcnnKrmba2t5WNhBVoBnHHSkgaMRchUhx+3D3fvTt3rJrRh0B0ey9U+EKVO8NOXp46uHHz+8o/+cmePf9eX93smhU5s1+O3R0d6h4xfvv921HzRLzmnxpisHtFl2mhFo69ursx9ORUZlHrr+1CW+HLTYPAePDCfHsZgZpzP5GnYmBZlTijCnSF8GfP4aR3ePACTxWupYmNwrCZUfgSOQI8hzECRqEJgR/iApHnzmGeXJiGTu9FCkR94dtMhKZZbN5lQBMzZKPjNXnHvBWX5ry4fy5mBsSooFor5whQeKFAI4EzG3s10BZJiBkupDLwy4xgwkBScjq2MRkYPdafP08YmtDs6n2WPP2KVsJ6bAHGU4w92wc3J4zDo3sgBitMoqxTJ7Wo3dh9sOvqNHhLvb4iwQq0MVrxHi1Vcmny3o0Ev6W9I3DeBddXOOc3hM1kyXHBR7uM88QD2TRt51syzR8FGPXBngtBdlvjkBSZkiZjXwjRUPRJCLm/ypBXgngtg04Og/loilfnE+rWkQt8db1jaCuieq5RZWnCb7KcxnDaBsD3695rcijU1W3ZpnyGvDd/dtyalLz0RXKQLmegeES9myJFWMU2jeXcIF67YCwCgaKUrS8IjFJ7O0oKUbW1Qnl5hlSPUhXiSkiUpC1bGlpRqBsihwx+skJBsycUw75VbeaneNj8ReTZ9UZav71lI46VKDkomE0uBrFEwLyXu84QjYZyDYhuKLavEqCQELBtbxikZLokyBqEX10UhkvhmBvht3mgsRV5n9sxfcebTOzcITgYJJtQvvbCycjz44fSougK9p6jL9bAQYDOHpftiYeNs11TU/RDJEt/72f/5X796/s13m/OpCdooGcSGiH3Zay8XV6ekexYSmgkB++3Lz9uSU2oKWk3usCbD1mzDkUDFRKCgN90xnkZtqs1J17ACWJ/tH988/f9HGt28PmVS//nYhjt8dUsT6/bt3f/z8ifRYRdFm1LDjPo4Y0J9fCflwW7nhnmKjfx16BfK4rm0+5r0GoD7pW7Mz77RMsxe3Mo8iQvzvg3xD3B5IW5v/ZPcZMvaAIIEaAL1CLT83v8sW5RRPmHqo7DzPq+j5AkpVMzoOsSdxyoZKHYv4aQnhT8BixsxeBisylOpM5iJ7uOg5nAFuMMegpohZFTjFwCRbidXM8s3ULebpBGac+t60mrXKZe29CCvd4tUeFHeEBrnt4XnPvow3bVVxn72W8QwV83r/6BQLxW1SE4glHtX0zGllgkZhRUbfOkI40LhqN/ijZd+Q3HotaPXy7lrPsRItzMYMtVVIx4PyTj12vIBRBMbX1wqxiOksC6mGuJ3Dt/uffmvFAA4ue/t0fqEv2WZCGTXxNc4VpbNjHo+flKnR1avIUlymxI1SYBYOKWe9TyBdI0c8MgbjGHnichDBREPQ29jHieJqOV2GEqQv6KB47aUpaXGQLbEpzoi3psbSb+4R83xkoARahjPfjYXcP2WgfwzG/HYtO6RulFddk3gca7gD06slD4NtX1DNd5Fpm9NIkgwKL0lQJWwVTW7GrAEsSElgZKi3V8jPkfOy9TMgHqVPSq0jn8nzpuxoRiVX7am5YFTRkvPQBMk/ECrrE5DG7Eq1OLCK10Apv+df1Xpb1RWsa9S0wXHQU8Rr1KgV8wnVUcTT3N8rXfhPQ6o9Sg78ml1b+z9kKjsOxUnXTdS4qsY/xGykxG+Ap2/KD4fIuBo4xjfSaKTvSQz78Fh/+xHpFtj1piQQvfInu1+F/fQnyJWMsMwm+G/erQIDU+YpV5LnSnmanFNXPzb45E79veEJ2BB8Cm5gxZr5RG1po+KrNFiDdvA2CK/qJucUV7G/fXD/z+C8lADn98xNM2Y5u2ZXFagyDEpT14x2K3/1r2yTTy0L85f0+RmEqX9J6QaTkNm8GfwXcQbJl6/1fpNp0y+afHEcvhGWc3z29uDq9tIk3DWxzCMnF3ASOyId/hYAOQV0f71Z0AX3hDm7TXB69d7+vtug/vTls5u/Tg9PVMIEsQr4P/3zn/7zHz/96dPHv3z/4f3psY2Yj0/ZMe1QNMztZ94RNftr+SnFKhrrCaxDGZxSziPwxQUCNPiWHXhPLEiXejH7O4+YjqJRx3Li+OjEC51j7RqcKNAhYPYIQdLy/LBlj1P6P9nOl9hxC3bKHT3ajUqGd7avL2+4+rl1aRf6irKlnN08RVAZKOM7YqBsw/nNvjP4nU76TOmj3LlNgE/dvcqTaI7CjrGKz9RpWHHk5euWRsXRMIU5Ps1ikqXxz3KC5R0L98SIdxa2cE63JCOpOK/gI8UrQ5WMWYQzNyDTLYJ0aHJxwjJIxxkDld6UvvJp8rP8QTP9zX7qDMTe0Eukq5wmTuIoClICE62sBpNGpgvbEJyTk2NOJ/+A0L/GWhVxI+Qm12wutuQnn3YqT0gJR08LyEak8WdMLSjOdDbdYmppAos/S9g+ODbmM4duS+IaqJoO55BIwFrC6NSmnN983Zz38HvaImYW5w2X0njm2e5O0ycp1lKMffndLQnmjC8y3klQ5jkgzADb0GK7HYo1q5lgVLR1HCttx2qCPlPHqXjOAREmpkWcLGyIi8uLlgCITssjdjJwseYXM4fUdqjOBIBENRPWMHRAftY/u5YhnjKYk2fMowib+RI41PAUTX/KXsuyTmweMCtocKEi5DJsmtaq3TvW44yU2awY5J/Gaq5mGmXpPPgVzJPSiBMaO7IktQV5vWrSDL/fzC0YnYeHZuNbJF/NEhuql8IbRaUNacJkKDkBVHKjgD/QWyEYfqQ/AdCCVWyU+UbcagVM/B+ojKI1ZHQtXTOi6Q4zdrPBqoI5TRJamekwn0qBy5xgIKGGhrMilqyicKtn1aByNpLo972HJycCf93dyg43wFnagf+aioPExkJ5/1gs0U+FjTusZeZQB40QPJ3KCyC98P8QoUE/LfHv/tVf8zTY1IupzvaiNax7/nh6JBzyt/NzUxCnQL47PkH03y7OP97euq5BLMepSG4bPpx+Sm10b9Tqrh23wrdhBaV9R0+Obbn7+f1bPcR8EUMxXr+26d4s1bzzEAluugn4qvNq9K3dq4sL2mqUDHtty/ldZgR0lj4gfs6eIq4Bi1MW6eDZgs7EtyCH9g0Do1yka5BOXiNHLOxLwlAgBiw1IWvZsWS0qgzDp2DI4zs4wA1DImvP63eJqD6io45JnppGjpObqh90wEzeRmZS/qMNKy6TSyhMY9jsnWfPf0we6u0KBnwCKHuOfWPczNqisqRfz0SOKD91gUySkfn9ybGbkk3GFeILUVAonHkXnet2iiN35b529s6NsU9PQvTE/unpw7u3x7tvLpx2vC9C8fCXXz4/77C8H03zoWJa+vOPZ1hAqdtR8OnzuYgsc4NP51dfrq75z66uLqmGnb3Xnz9dtops65srmbd2XBNj8ZRIp+ya9ToKoLXIgm4I6pw3zPVVOJgJRWc1uHdCnNglZWojio7hmGv46HrGacKGqsx/Oo+PxLzCymZELAD1icBgVkSbG7xt+pnVeRfF56vAJM1k4w9bslaoiVEp7RngVtEbqWkMRTcavAXR+dC5niRQo/ohNs5okcoYiRgmTqW6Yh2sdjV/iGs4bwWgI8YySfBU0hipTfrNNKLCuLTXANZYgrlYOVrNgJJ4JpYbOYR90o7jyaWKYJFvo1qT2JH80PYTjL59RlWVox/+ljc5lj4/DHx+9Qlq3aGcU9UUqqrKBHeV7cFn1SEpe1HJWgeZOs5YAaMxp5NNwU2J3nrEjkotnKtWp0PjFpqpMz99gjOQJ+Om4d7qTWpHGXBQFW6gDRpjZxij0+mb9hpL1AKDtGfGgUJBfXm/qq51KO97ichU3ashfu2VspGegbbS1eIztYPqYUO9TRWwfOEdbJRDSN/Ql16Kz9DUMyBqWfnB9Lw+NVPbNqQobQpt3q4/K/+gUUE/V54XONXz8tyrBf6FCCEyYJWM8ZXfILDAfJereFSe4PU1GetGIyFSKjqgev2CdqIkfVGpZwL2UsumglX9oP1StaQ+aVSVzgdsxZO7GX2lKY4R6+3AX2R1gjvls/eXH94i64HLv3lk+ea3d/7+v/7Co8+Xxsb6P/1P/+Ljp8//8KfzA/uWjt/8/d9/Yv/xu3G/EsKOBdh/feuOEfbv9rPB0S0o1KYFavz7yXGJ6SWG9danT1f7zt+8cbb8gwPVXGL4x7//07c33LPtPHSgPv65Zz3T3xkFuztXny91krenx4zmLzcOX78/eCNIoDMYDIMoTBtYvcwGe7U1A2JHjo/xb/jIrPHJPz1S6VSbPHSCKru8/H40SY4SBiiHs4hNAuctB4pBXFTn3e2NWnI1vOq6XC4kAub80OumRkjktIZ2qb79cPRM0d5TeYJCLYCw4V7tOnPG+QcFK+cZoVbNqSju0bsZrOYV5kKQZ5zBhMKD+TCU1NVnF6d0Av/y78wRRopTmA1hpKbRDXp5V/RHZdlVPp41CrvB8X/9YUwaPQ4c/V0ysoxB0jnRstD3dYWkMMu75XHX95oOca9udzeOJgBlJG0K13aKUdrWw7tlbD9rg3dp7gBGutHGIdN4kZeNZZwpXOu46YwvItQLyDE2dW8aE80mSYOg/CG2J0aXIJjztNHTZnHmv03kVgO4OztyykFP97dmpEx/QQ/O92QAXl+2mnR6dmjRqih4N3ndOLB7D1vHIyZI2wGJVtRfXV5eU6Xv3lrHEAPD74dHOfMdVNl28F0TvILmURRlxhizW0940paI7mzvAuYTvM+fLigpswvttXyEU1bUpzvQjVWHYuhlJ+1osALbWfPtk+50O5EatLe4mlz7+JU+nI6PbqoWXoAZBkTXRbfA32639hjoz6P5J0wlTZibnHjhrCgPEAy20szi4FbfZw90xpTn1hwgifKUATPDqEoPsAdIiIdR9gldMMYGoC0yrnQtBZKawm6Tqob+pAqzGllHUSddMyhoyXoYJaMRo4k0rf17fpqyMkc3o94A7szGON7kPJsETmywZK9JWqMMRiCsJ7XCUL2DmOmoPQMThoSBPL8uEny8P3h9kDybFgmBwEeXollsme3RbB4Aa9acLwSyhwS/zlS6P8r6LQelgkTkWaWp4v/nf/wPSMBwx0LHxFxcXOcWdnjt4f6180+EOr524A/r+4442vACbSW7tq+jTLuEi0Qx2dlZDqbC05O3J+ZrSiCttjYbpsUOX//4/ujjx3NU0jcFqenKQqiTF3U/PoqbJFs463jmUQTbB8fVCzebUAkPM9E58up2LvKQLhMqfUF5mG43ym4GJw+omZTMwBDD8DouJQYb/uEcfVTGeTOvUj6TMoQrKZhjYXiYzxoIh7ZI/mIcIAqBWZ+hLOEYSIMJNOT0e0axvMsLNw1PzFqxar1PwSQATedoyKk+OOZ7Rh1vZ+izJ9s8snLxL1uiy0poMNgSJvIhiZlLObu90iqJ1TSclcHqMxRcZWJuYKFTHB3tYHLlukCWW2GvPPhu4qCQtnePTg+uby7tOzGG3TzemARaPRRNRFPoeGJVWOrUsto5VqwNwp2+sCfbTiwTOdgKvDk+PdTZLTd/vrjoCGQDjgWfs2NbhUVe0sX0Z0GHPP3WXt3QnbdMr+1yEN4fZc1YbDbQXJ4ma1p3D5qQP4l6RQ1XzaNtoxG7oS5potLYmJsmEXdw2EPy6bQo0jNbfLSOJmVTuCSPJNAXFjAoCU4sjChGqEQax9wbto1hehf+ahYKe6ImEyGjS/I20sNNMbF6iUvn2iUI8NQUD6S05vTxa7gm36jF0UAClmwE7IJB3Any5ExB1EW1NYYmPi+z0xG+UgKXpBLREbA0Yy/DgmzAL+kpzyirEsMzadzkQTKqRPrU0IIDXD1LT942TeilT3hF/HwYayyf9k03nNk11Va9ZU0nyjyFKriUaQ8vFt6qSPumXwREpcqUvqg0hevjg4YagR+YAZSt7OpNaeYEWuQF3ytwhg711p5eiJSybm4QeuUcvoTz6IoQX6h6qND8P+SqKUufwD/eyVjrBvTwNLz7TCOiPfiTUJMXH1aW+Tklh2uTrZrXg/qHfjO4RtVBaUGaClBpjWma9vJ2iigJ1XB7+TkITKOUDIRnb79nWOh9/5YuSz+zzRKqHpeQv2CVTzZKh63sL42ukN8yT/6K+ue5Fy/1rud5tRIn4aVO6UlC0rvBcxWvmtgXZtU5la7EOml5Vyni0Wx5sjsS7dX/8FcfHDsi4BCh2DW//fbF7P3t2amoGUri85dPP/74g8iaTxefmS8MHfYWU6nQgc4CvzceURo8CGpgTbHyj06OvLMMbn/Qj2/fuhlKb7BYmn9v65Xg6qubK9tvz06PPxzvu9jrk5PjH50geWi5vOPSCFuL8ltuWtRK/gsd/7dfr67ssaNOLQXM5kvN3LfllCpvLYsl+sD9kUPUZY7dYi4e2qkDmccUO+eryIrhhmOFHFbGifza+TBxYU5N0FJrATZ3EhbKhFuZ8BdZQNVsPRmt//L9Gbc/u8rVq0IfDc16DHXEU1mNhgNOHZvKiqJJw7Il1MgdLaLAQu/t1Y2rcXdcj3V1yZLjAiIFD2LIDcqA9MkT3Ogwk3aIIa+2STPqUTgWfqmaHPzEYXTXKIBEK1FHtIze5gMypA83ZmUWFSWvFjA90fY4NbybTVqzg5NDttOZbrgXC2vBPjFcBJMwGXHwtPiW1P6eqHFWBzyZzjxZUCE2FoVQG162CzspyrByc1PkDQwNciN73UrGIjfRMpprKV+qYUg3FDOmal5P5+mnt0YvmAloOuNKuzglCGf3+z47C9/4g9+uy33z3t0UQ0GICbuyUj532HOxP7r0+f7ZXHH3p/fvLpyfMifQa7tlLGfXqt5CU/McEw/47btq0/72rkY21OsEOodDt1uxd5X13TVKOiWpsztbOuBP3CnyQnG7E6JK9itVYCbBmidI8cIu7TVPQ0SGaJHl+e+JpcgaDKVL2SeNnRnEptCoJDit2+I6BaRhLtEoCm56rhSMqW+PKZXQzpGjfL0kRymv1Ats0QTJjFG4sam3qlVLx640Ksmj84Ks7wBHSSpoptEsevQepiyd+aI5AxEWqfZR10QO0MYUpOofQSFfKCzPiCd57tGfGUlhJ7uaS0/o9Z0x6rKzFWiviJ0hMruZikhByhbnAhlMhODMe0CwF2X4WOt3UwFphRMAiQ30fLSxQGgxUSbd+qGiqN4NweicRSRF56y1RS6hD+Tg2qxVZ4pidWAgmzyshleByym6xePVFXOMsrl9EGKoZ5uDWpzJisnhajb/eHi6P0uKztjq6EOyRWQtKKmKpri6uXSBCoLalmSX0k0HB6VWSI11Il4HMnR35QAtqnj/xk2zQkfe7H35SId+m2noRrCcOGpGpF4G682lPaMu6RA+Ljrqm30AJ45dKh4kjqID9BOOmIZSqTTpMW6xqJE7IuJP6Yt1dgc3RAzfE4iArBLIjLAr2xTpjYyoFrxRf6NtVnp8GRJ7qKtEql6vZa9q8VEosZjqfEMVJ/LNt4wYegSUxBcQlqXYZ80OBxH1ZtyAwqGieHP3IssV6ogb8yWLaBT80RlHVFtsES1T0qZ4akvX4pjIuNQPY5NSOuf5JRXm3IM3xqGkZSxamv/+xkl2r08P9j9/OnfqMcv46vwGTu9/OPtp98SasmsUXRJ3d/XgWpPnHe4taVne1onPTk7/8dNvt5fXZgnjak/DkqfPn3XF3GATDW82YsvB148fr+gFZCGFjDeTPn6XloBsUD501UhH8iO3QDeNsNHK5vDGwle35J4VXpCcrfGcA133ve+OQAJNrThuj0fk8xfr13VFHNQtwewAh5mCIrSO0aUVjqg6bDINDrmga3DQcADVdHsfqsHiSXe4UHzTFS1edTOi1+a9iAx5TDQuFhcUawovMehgVksZwWsY0Jx5u0L0iFGdt/TpLLSD/OTZp1pEKSWQTacTJEKyvPsjvTJnlGvDaEA/o1IIpx/BGZW0kXkFkz/JMxL7IQEyo6rK0ys1jU6cl3qW92GbvE66v/gLtyrNm+JNSErUVzyCU/7Qk5hjWGY5AzAOeCiUpcr10pY++jkFQ3lwrKlTb+lKzshQ8ZCfjld5DyFcTo84axYdqFgFFH0QGtNGzZaiLiQKw9Drp4xgBDKpHSL0W0rU8O2zkB88fI3bRrOrHOzg1N5e164aAMnhci8WnvOw8q382iKNPARjcgHpcYCVe1W3AJfozRBBFVPV+g4BKkfK0mThNQj7Bjf9h0GDa+2clga75iuy3gyKwV3VT9EBt7JJLmmK4Eqt67O+e4nLzX1XqwOzaDKlphmqDusRZpXW0pdPkDewyu+D2kPMkFkptVye1YB5CJT3dYvaUvN7C3K1DzzJja59aWaXnW/bpNtFnq9eXT08CImRzSL8g6NWnhkib379+Nvh/hFdxA9iPHx7dHj/WjR2Z+ZzSuh+P/1wTOk4A43Amhg0ilmx33p9e9GeJXbp3H3z6q/+4i33gktIvLe38+LbtUH9+vPd7tc3TgunfQ+PiqHJ6nMLgetRAe1gFk7oN4Jxf/14waNiziAekRZcHTmnSCEktNQ3S5c0KuUf73Ny5QRlROKC6bB1YpE3CS9l5RrHw30bggVVypsLhhWHaPqdrmKUEVBuSeFbIRxMBpCN81t3XQDfvVpbXjUw8SUjC2IynL+1X9SmhBY/IWXjlvFFQLlvjbq+vfl2j4M7Dso0QotKl4ETnUnNpjfWDOuTPWxqUIOKvpvUeuoGeshorCEIgktch78pCtkYf+qdliZQWecUEXkrSjl/rVQ0UpAJbh2cZtA0njLH1KjD0gPKVJlDUV0YL+Dz9p5bPuVEUefxSi6NPixLWxqp9Fe7jF1ByvX6DFBDLaN41qhNyUgdCqF1viVu18aPjCpWkxFZeJhE51PDT7CNkcKUwLKJGVTTjplKJdiF8uaFWeOFqyK2tm9Wb0E0g6cwnGfbA9zUeeMcvwPWDiOKt975c8Z3w7jLA1jZmgUL5EE/w9HVlRNTirVCdZKW9V5EWLdukSsWNunFwlsg3Ae8t++cWc0R92uj4LYbiemmcSACa671Zv/58s6ht/Y/dACrjpPy3jGlMUfSlg6hX1xkV2Bi9tFY9tQ/TyZSzyREbyyGZ4StQCPCz2bkWsZf3QDQRk8/qOXRKMhLITAk7T9c5w0iF7E0r0iGrOEwG4qlcUmUyTAzN1EBB4lYU7rVV4CTiwa+JUu4JAdVAVRcT/biQ4LUV5rTv0asqJoql5QENgqnABUHSi0+SCqL194G0J/cUnRRCioRCsyM73kBgypRKoB6JdjoxpwBCkD6CoHBMe2MgmlvAHHNgkaXGOhE1AUjJTFsk3dxxQhBYmu2PRKjJyQSWnxgiCCXZvaxTJD2boUhaszQmbUxG9nZNjWtFj1t/X/+039ijoNFUvHYvkyOBAE8goJ0fez6+UdXVzyw6Z1GDFXdzAKGNQdWowVB0zsrj3htucCiEWIzmy5vLDJ2B4pILMtVP3x4mxYSEXR995ubA22y3GrzJS5aO3PmKxocOXh5f//j5wscjnm6Wo4K9BriZH5QlN0xgUqzcjRDyzRyCLd0zWJzQ4snBPetocqmSvyMAnFoJKCKfOItArHfGIxjsq9ETEFJIuAnzsilWDmGwmDOg68J1xmjzRt0RyXZJlfiFWOruKLVB1qfag1Pomau3LmTmcuSfYEwk90eAJDVxxzROzPIpn3d0dtWWtMnlqzwveRgZNBmpkO+f14Eh9I4Q8BiXjMx65NJI3UJiKPf+ArsOuLcQg/uLoEu7vo1f+actyOc6YQgXCS6FF8+O5h+MefTCR0aZ/LwcPPgRAgUE+5/dXtHQM4Oj39+/+HzlXXsa62m0exe0xa3qOgm9hfZXCxwSGgYG7x7u9JtnbarNchErdMLno0++hczmrqxCZhSR7mbhxtxaruvD60xzhBlOaqea81dP6EYcbtJ8vYrV9h0kVmTY4Fn7vyhiBVBY14r5yLnIcAH0kWXOc5Kumd9G5zphnAeo3JYl17FgYlsQTcP8iA1Zsk//Ep0ABt9IUENYzHz/+j/nWwQ44kvxqoIIeuG2Y2pleF1iibN4jdhS9LVOW+X3Za9lYmTHFWi8iNHI0uB72cvXjLMz15sRJ0MNaNo6BpNM0Z8RZayS5FVemCM4giSsp4nsRebt+oaLGBYMya9v4Ozb02Az+i9Tb5w7m3DP8oqEjW8DHhy5kGhHkd9gea57j8Yrmz4p4TnamSsrZMcpgehV2ussyPKW3j15f9Vb6TrX2ArO3TWCnWVcfMBY1F1NUrqSoGafgQ9LVog6viDIiLWLkhORRIl/960qWsIGC4hP9xckH2/0Hah1OvV/CUVYC6Clz+c+xmIAPVcvVFbQ7J8o7mkDW6lQ3u1emqsPWUO6O9ABmBpK2neln1wnZqmHkmTOCOfx9oZoPW4eaqGCg6OvVrpC9vJGZkq1VfPsC7f8Era93YtIJOS8vT5rr2n3BQanvYOdxSg/YxJr1zduvUXP76j8rz47cvVD+8dF3f062f3iV+/fXvsEJ4bYaa3t3/1489OSf/10xfOiM/nlzlN9/e/nIuTfi2gsWMWuSr59a/5HbhO3nTXoQt0920PFbBrmOWQcg7jMbXKm3n+RVAqDezdt/dv33J/fdv6Ksb67PhUSy+uL30f7tsWVdTyXNJC76btuGjB4rbXJNsS2E6YKXSHHqQPqdDan1B1p9jE0gjy7DZZhRsXhBBQMVbvrSZ0PciDgV9MDkp0dEIzICabnlQ0J3+Hs+HTJc/f3p+dfv7ymXJKhibYHTLOgKaa2bLmBmX69tWmUoagQcQ4YSnVVIHy5MujnC6uLmlvJt6NECNd1QR72Gtj2qPdATMdrYv5mHVRPLN9i7m35IPKVjHc61/ppLnwVZRCymN07MwK+HQpdpY04yRYwGS+K6T7FHhcQXTHdyfV2LrIRBs5z63WpIYGM0Nogd1opI1J3asnfvfuLy2qqoOt0SfZk932QsbMrIvqjHo99vA1RUo88N9arMiXW0CFkcjAbRjDKeSCPAzRkPEyaBQPyUqOMHayWcaZ9XnNMCZrCIdWi96Qy3p/9eO7d0ZJw6Y5jmagumBs8jlHgpqIbRvXGCk3t9dz4iRvlK3XmG8CAxnpd+/fHcOVpaiYB9YP75tRvB3JKN9VFSYANn+0LUFpEwNGV3LuTllTqe3OCYVDdokw2mQmnTTsG50AIvLjb+OGiYo56uuOR0WW7tbVimcRHPYUMxcsv5uRmXp6r1S8zuVXGAxkptMnfEhqYpDxZ65750z5pSNi9uwSZvQbNVqpVjNhzvq/M6tBV2R3w4PZVH66prtP7NImBrqsSpd28VOeGTLG1up4n0iuouIIyk3+UpixKfFYSvLlx4wUDU9eJSQQ82oUXaZ/tp/EJodsGP7ttjt3dvCCj46stXpgB5t2JMnCR4aEcWABV3dwPkrXEZBZNgI0sv5DjikjmxagLpYW5rAGu5iR4gt/rbXchOx8An5lwUwDYFFRJad9y7LJmNbKmc+8eu2UA07Wk2MXge3c2ymv5zw++vX2cFcXMl3h4HBWmTkopuamnUPHSJK2ia1kCQGUcS3ordsWdzo2fnvHqfy3TzcaTj/dXF1bhSQefxIz/vR4sLNzuv8Gxq1VpMZeH5zuEkFwbAsoAJFgWvVL+uroBK5ZYqd8EjMHxL+2Ztb4ln7RwGEcGmEVQfOvITpGDpu9Rahe+KmItxEluUG7iaKZDIv/izReAD0AljQQppoISggPOO9lQBSvMtMTnWQ3UcOTkRW/4oQ/Y+2VaYAokuJTmA7W2Ok88Xx8lmHYETTNXjBFlZwzUmysTwTHdCArtK4UgDjW81UQrQJj0sa2Eul6IvWXT4IHCmwtYCRZ8AGPsjRjFuEKEacKge3ABzMz8IyX77sS+PGcL4WD6vGrrcD50sUMvSGjTsw4PD+/sEHFCPrl6urpjpqz0u0OnP3/+qffrDITtkxNN2gedG+I+H93CVNlVKXOTK0gjlEJrmaPaHj07gjmDiBlbRuE2hb2lIXdVryjPccdOahCXBDKd95Zq1p1YEpEDpQEDR19aDaKnG8J5MbX5usiDltAwAX3Dwgo0hs8Q7hg2VT+OIbtytrOu499xl0FUUw2jBjeEZXpPyNSdZ1YUIydpzDpxnXjVIrGxwpwzB3/kGLJjEyZqpXvW24FR1pWYunGBunT55cobuz1jIrmDAgZEKptRIj0VVcv6gp+LiVFgMGsvukYZSN7CeFoBEpx824qWeIYqOYbkkBChaDCpscFZmqfHCFZciJKE/mWLBMk1RKI6X8blJp1l1tfq80zEfKgTNjWf1e3nTJq7TcA81VvqzIqAAiGjCrmtUqCKXO1EwB4bKgaVlXYoAW+mVhApy7UGi0o/9QGVLhWVyP9QO5L4fUzKH7Wr8ML5ED08Tg4yvCCxgiP/F4l+YN4arfHaU6pJU+OaefvvN7Y5V4FvRKNXn4ETbGe/Vqw0jla0qe8Mk3OoVbNl9P3YFD95CIIAUuDDfYbSKv4VBmOq/bJUJFBpErB79dgEHIeFybSRwMvTKQRvHmzuCDXomS1EzDZfKZf9LByDrBeefDpISGs/qnXw1RYtUOKjWTWyjCqkmRx8qdVupmEkuJIO9z9aYcX1Vln1iYvHe4plOXjb+dvT49+Ptj/6cOxPQACeK4ui4qZ7uxUuvx5bugyJNIaXGr8Ym+51gW77O8IveBEuTElcJrKkXjIV58+MYJ3XIAuVEPsDO3MEuggBF5wJ6A7f+zujgmoVzAred3O3p2ixKUzQJ3V3UqkGRpl1jGLunLHgLhB2HK7cB0hGY4fKBY0OC1LFEXjDG6amZPG8Wu0cWMigrkxSb0wkB+ZUxZbnKkZm64ofr1ll6oB9NXJ+33R5Po/O895pyyJx6dbJiYicIM8XvOfNoRl5+/qqdwj7jdgmz2knLjvnHlvpbVeFEcsTXgHy+IFnDG9vfP23X4HPNzX6QT2okwsGgGukGlA5whmxSDIupcKv2J1I51xi+fYwUG8jgWCZytzl7oyaAYL+iRbYq5wAgpZOJuhka5DrOSnPmluxklOIhhScM7XQ+dQHJ3/iDytyualNqi603nBbAqVKzrTYsd84KvdsynMse8hBiPP/J4jbq1vQBJYOxPHn+3YSknZnUxSjjkeKwpJK9mCltxJvlki0NyjYy2gn4GMH+oRgQreNluDj5u57q5rt1vhGrxEojoe1KEeFtoNmc6w2jvY4XXttgHG0sHufiMp6CZ5reo8/vDehNRGjpsf3p9qsOi1PZMxa1ycx6OcVcL25nvjcBULxDMrvBtJ8ZEY6iY3j86pzP+G9I8d2tNoJdSAq1cEFKYssyoWo7SDnhj6xdzUU5AXB/XEvVcGfSKSA1vjndVuDjDz1WJpAaRdSUVKzLRRLxPj5B4n8j2TN0zXH8nAGuUpZnIhQAvBG0QI+twNZWhHlqIdyJbCyKAzkQBGonUJbR7OkQTl/JhxL2rhEYZUS8jgMlS1OV0i0XOaJLmVOuN4BkOcB3vKjU6DvxqT9EZG74q5gJ2D7R+6k9ikMaPLhgUWycziVWDm33Z50qMZqmifboF2cClKwoBoPpeJowcjMJyb/WKZhsJwm8lMQ5lryZnOox9cU9gxqa2J1YKxEBiCVRHCiAZnOYfmqC2ch+OYlFEPzjkZtfnv//ZvTJfbu+OA30ebkLb5j09PDs6vb4SLICddWJm5y4Ct8cO7U6sS4sWx0sYivOHXZ8J2/BlivbKdiGW17QiZyLCzZUmh+G/++51X9hRZkLJeCZUi1ziB6S9RQ4+Pn798oVM0+fzijqdBD9BmxhQBc7Io45Kk8nPUP1NDMSu/Ly5s3AbN0Q1w2hUXUUCzN+Z6XI2jQxRf0Qbn003zaxLkThomySvygUdp0RifoSOvb2WljIhsMk+R0pf5HhHGHMGRjZBNDlJPxLEq5wEjMR9nA62PV+G8qg5v/3UsrhQkrC6TCld7mEJNxoIIm/kLkeKqKbZHcctAOgstY9VT++Ag7t1vDBKH6vRPFzPa1wHa+ecLU/ODo2NnGNu2YYBjQ9GVRwx2dRO0ne1Lfnx6DesNNBw9z+4EaPs/u5u3HwOs8HCTcV3p3xC3SwXimOOTYrHSNxfocAMgmgNJ22PgVnmn8Migxunf7QPgYtlzNnNbnUxalEIfNKSNmS4EFbeNHBEHVzXz8Zu9eUl8g4rbKDsOediBxdmUQst0G50y10hxO+kc7h/DJFrR9vii19FGpEMPVEQT4vxEDZKUYXGE9m+c5mkYRJY+U/NeqHK0yBiX2diko2HSaJaWhFDTt8Trd2syZUF0kqMqnTEm0ZtPApb2VXuKxs+aE4SmKSk1lYxUV6LiMV1aBQaIAlPlsrpmaMgOnnFxrJDqWcZucKuiGleVcvWcXgPm+6dmTRNeuoC/VT0OsHTYtGX59aMgCNIiR4iv5kxSNZaiSF/6WhlGQ00dNXm0VeQCAqxRYtU+8wpQDIuVWdOJQX7laWrbR4HR6RhQU6BGQup0wasV0gd24MuBiVSl78EuVb6IodIKb7AN8cqDMn1zNQ+eq1RUrwmLmOt7ik8Zb0NyTOEFCFL9rr2hHZ4Lqe/gqg7nfhchqE4VNadchLtSyT+h9Tw4zNsw6WFgbIBvyvai//sZa+LBZO/PKrKQ2eQfArxAC6zMA2DqntahWJW9oLdqiBYryxQZCOWe/xduq4ZV6YZii5UvnWW1KsR0Xl10OLnJOYWrAbNI2rTKL0fTvPoXP78nDD7vz95d3l1SmPj728eLd2cnRNveJSeEHPPKbz/94e//gV4zuHz8/MWKKUVtnGfDONKCwpxQHThErJ/enu3uGc4N6LTBa2vUTqQAjepw0I/Y1o8Xl9YzEYGeZKm3h63bfCye56+yDZS1Ogbrm5zkrgt16+rTzsX1lUbN8J/3KOI4akZENc2YcivwhgVpDotblF4umPYyMNSuPPA1OmrBOchpm1cuPv969+3ujUPRtp3qxiXfqoU9B7whQg54jlNz5iHu8PmCLFnVenEDdIrFVSrVxbiUQlHTcmpXHw+gxVrKx/DgZEnB+Hwj1hn4/jEgN3ZnaMpOo+oOAui7YSsT/EWLAp5tkE/dnATVkkl6srFNlxzpkWdUB1XFKPL/kh4SKg6zgyCzmVoQHoRz/OfoQijczYJUSB1Uus/YkVxgOc7g8Lzt7DpzCVnGkSDdtkTbXu+EXDnvBqREiyUeOgkkOjHombYS2EUo30St7adifyzUNPcIa5uluzqqY3PUJdRnlA9V1filcWYHjTVJZ8fawBADCdHuPqKRtuY2KXbXQRwezA4AB1q4fIAr7FmIhNgxeoY3FpctLpmIMQIoc+Tx3/HBkeItETTOEuO2n2YC9HGB1wGM7bsj3jaXo7o5rsEdGeroT27nfbh6uBK95rwPu18ICYE3UrPJjc/2rDNnGfhmOIiDVigRdWanaPa2m63sujZvYYAVodEaHC3K1icqOOEWPOaEtvDt7mZcKNEvFcDXVAjXcBax0E4/Qn1RBqSinh4/hLc15KF5Jkcn4bj4SDxVsyy2BJW+pnaqNjpEzSQoZdB4R3www97ikKL/6bpg4qwPsGhktuGXucHU1ZmkcJU29l46BxplT79RJ+P6SWWOmIDu9UZnSqEonkR8mZALqjrYyyeuIWKPASBL6tIQwo72YYDF5GG0qylG8oEnqLOQfjbhRxgB1naNd6qgBk7Ai6Gt8VJLTTAAMTPUDUdoIW8xSi8M+DRa1poMzTqyoe/FjtUEHzQBtibrHWiOc7AU1UeUvZN277pX0pvidVaacB0XjujoX518QFAuztcFvg9Eqc7mZtW52UEjVQmuWeHpyb5Tbq1M6g646sRP15ZUvc2WJiJm6uY4Ytgq4I9zsmqVqQF7FO/ajYQ/UZy22324bc8TBHSJTF8D33K0107qRtOHFIvC/YjfRWPHrD7EY+XAfnSSIo8WYvbKLoUEDOs3hvuGoFglcwUSiJUBcKpKwcDEuo01XwcMfImGok3dNMxcn55m11kS9BCQz4Nso7aKOAecqUpXzWQEblmygOc7H5+BFNE6XFIWy0Y3ORF1T0yNmjSEBiHaaEgFkPPZ4LR1mJ/fEQcPZ6dvuXNsbDMq2athxdCuMsezUuhqrucaD7bfWB9PM431vLe960ZMC0Szfvp8ftntJC027zzRSnYFOAKv1We+Mcu59hsd7jPs2e/WmkmU5tkTAjOkvr/pkgt0Od47RHi+/wYDHbaL69p0S0FpIyEp0KwpgN1LInZ4bpzf3N67meAhRVML1/fQsLHeOCQIij5wu0HnXSTcXolUxv8YGp278p3ytL6BM9L12RGRWGXAUxjLdIY1B0CHeM7MLdZRxmzH2Jqw9ayKBpfpbLrWjP5ylWeJx6qX5oDzeq64AvFd1yuQWoGRSWljRQVg7G8PQJHGGUgqMgpIwVF2WmTwGY0h28hhJQY/Ncr/vcYoP+1q9Mn2gEApgR/R3BQsFZU2rZOI//2YJK0Ce1UtQQ/GJhVBvkbMbKfnaXtloYTopSf/tS7gtVcLRuTHaAF0/m3wqQjiqrPkam+Mr9GQqSuPB2gQ6z0elkG2tGe9OPDNq2Ou7gaOcugRTco/rAzlFPnC0y9v5QzdobP0Wg1hrpcZkFQGrlKryeEXRaJgfBtcp3G/gyrPIOwhNAezWhRuq3gwa2HV9a+296+Pwr6j7VBgQGwwXK/KOcDkCje1ZN29EHm1pRwVJQLzuKkLzH6+cOR77VM80v2OWOj8zjvNB7iKoDe1D8lDXKo6BsKwviYkpRDrtZ9lqE3z3QNQjYi1dNo55QbPgCtLxsofaRJOZaQohn4SR8xVEqh+54/Ydkev9l5fXh2fnvzx18/O+WEbCc354cOPhpxffv3VmRM2rJ5/+Xh5Z1dZgennXz6//eHMQWaAW8IkLEKQsxW3d2jZ66urtycnzrbfuWaCjJP2mfo9dEklb5d9loj10eLm2KOHu933xEqhZ7JdnFpxfWvjHL16fu6EtF2kG6fA9rmDm7Ww/bKFftjs9JptNpqf4uLVGikZTWKSP0YkjctUsp5weXMpqOJg/1CPpr+1EBQBS2jEaOuqHA7CQUCgEHV4d53dRL0ZQbpphb7uRhQbd9myHZ/SEUDFKOdcp0TFTObKaYxirTLYvpnAUGFvDve+bRdQqkvjgH2i9HyWMTuPlPKq8luyqIx6czMU4ExeCgegeMe0GibSlhmxOJysKcLZP8ODlMXiuK07d0IiXuORCqlhZJGDW9CEg/dqeA64UE5GAmkRi881Tn+Y0Qhj5wnids9zVH1CBoyW1smNb6PbalELxQk0dCLaTBhy95gMgOIwfsvOiWIH2uCO0U0oKULpCPPZyfdkTWYWFmRkhcNzhfREIveLdepOYycIEG+OOBugSVK/3Biwt87g7hppNii7PEPWitAcdodw6nUVMYUupqJpImSdZProajA0qJ0Xxu6dJ3t5IaO3wM6ExSx313H9bOtuWDYf/OoAbmKjw1xeXXYM1cHr0/1j46jbnMxnGs0y3+vgyiKYZS7xJJZzunM3ZBAe8FfCtrlub+xdIBjuM+6n+60Ehzy5KU8qG30GUxxkBNLA3x5uRREQMLY+kQHbVhxZWKXPp29PjdrtlLcPBOqiOjsoFRM7gJXYgIWNDJ+CxCxX3d/ZTWoqGJlHI7DiKfnUBQFLrGbsS1ORtvqXLjnipzf5m9ylgVdq8maHQP0anqpX6fAwQhOBtFMg5J7HATAweiWTSgZ84KyrkBAeWKeNBe2N7nlLSkVcg68hOWjxs8uI9oCEtg9564xXNjprVhxyh4a18Qbe9kP251s++7GDu73LXlp8wjNVAxVB54DXpSWb28zOUu9groexBEhWJIohY55rkdftTK75vrf+09/9x6ylrW+pj3q+WV2XDopWsszkhOCJ/DYDexLv9fZ034rnxbmLpXYElpkYYBuzUjdEY/XpLD5meKxCbaHayBByIY8Z9LHYu2r56g4B8ms2TKlBDRrMSlFlnYjcNICSarYgkRK5Z/4/mqcWok2TesvcbpbVYNTQh7TQWAMCDqFsfWeFcCQDa8ygnWbsjnWxNikK2UaXxCSuBizOesjq6id6VYPnsknxdz1mSmJDhcsGgQ06lsOgGo/HdxvYwC87cmpquTCd61Xiqo7xBwcAD+YV7UP90aiAGEy5UTT4+ECUy7bIda9oz/bI3t27XPnUVS37h/W3+zsLgWtOZSqH/VSBbsL2riIXv71+nbPdkqLC4h1F9t89eDAfoICY/qYT3PrHuwdMRypM4zQThvci2zpCh7C658WtXS0966DOB6IdMC5F2ZFndwRsjHJSQJDcLCgoLk/82uOL+CkAy+QJZ4Ol1VBako3+9t1bZ1Qjab4o09y2sHQEGJogMOkSHYR8EDI9QTLKbcOX8dAQ2bQPUqch1snr+j0pad1JlTL3trXddvSmMvIuWHe2LlGLMEUWxTVcq2Ocufi6VHzkaAlKwjO9CfJqTCCWnVqXbpLjs2Fzo9v8wv1Z8MEE76TCxhuNTTzHMyFRXSgSjpUrPeFDgdZwc25ME3ohw5QlMNU1QlpyZfpN7bTMKr1fCe1AG6kesI3ImripqMrCcFF7wQiLiifY0uc7UGocrAI8Ajuz3xdQpU6lHnz+HL2pZLADrc41nDU2NC5azVVftbQ24k9tDKPaJPPAXJIQ5quV0xlxVveXE0vzzwluaPdIoQvRYZrQiOvFIv7UUkebzovN0gfZrI/Js0FS4tQzf8Apuao32acMqNLmsQcQhm+LszmT/FTXZCtX8EHQrqGAlH7Oi+8PG4Cgrszz2tsyTN0bICtd7dFn2dO1N8qlshJ3bZznUUHQq8nrM5QZXKfJMQe2Va1A6aNFR2AW2l7F+gEIMiiT7sHf//YzMIY0vQ3txcRVaoluLwJURPGiRvxVctK/P4CClepeKf8ttM48eG1fo1OJDZhY/+vn82O7CPede9ZeXDW7ScZkgJFnxfn96Ykom0/d72vbT5N5xoUaxQa0g3Zac3nlTLwccSmqrU5R/OnsTLsvLm6YdAagDku3Efam3VFb1CX5y+FYFC+hpZWUpQ8NTHOEBj4+Oxfo7MyJ2Ft2zW7LBbE0vVLdB0RvGOk5v+DfcW06PhBeFqLZCTOoBBnpdJSDNOhUFEu8J49vURi6kOuBuPNIALOLxQW9FSFo1Mjfr8EUmjbAIxdVcQsAMndYV0luYdbMqc6PhtuoLEdb5n4yZKgw21jBRigLImTEEFN3y1lB5PKhjtcj9ZszMdkYgWJoeauKpgCJWYtv/nHMJFYWcPb2k3b3DgsEV2yyGR8gC0HFCQqbvt7asrDTVPaNUKkFTh8bhBKbpbrp8PGF5yYpxML3TBJwp1PxGZ2gawvkwtyf6VXEw0RLHOwIeZQ1LBkIgJUtgrcFMTcZLU2YQkWkGec0YuVQjqUw0DheKuhSQegJW3z0GUnLsU0rmZlwe2lXQpglz9nkkYTLXFcQV3NyundyfOQII1hxkDP7jo6OLAYRv6LcuivAYataiu5fTxyCQeCvblVkcsAXxrAXmY04FuRJayFH5k77bU2m6FVXTahmd7gZhZF1rSRATeDKMIh/71Ltloa+PextH5lxMEA1VvyYRTPyL0oA9Qnxvq193IHOC2ppvS2K7txwF4VxXCXY3thFSVl6YwduvyGoyIIpd/e3OmXcsT6A2hYHiPBoLSJa9E+M1w1niWM0MFEkjColz6YbKIyco2Lp81QHThBpprX5i/YbFlAogUqNNB75qJFgAqT5yqYliXY7PWKkHiQPKZJMJcoGh1FjyZ6qSSmhKlFmvKsf8E2r3aJQwlVMQVpNDzLGmYQTpDRDMKOtyGrRHJt/RT7XBNg72XMLJ+TXdQRoQJ4lDlC7ycnnbgazeDO2NNuT7xIiLJC0VJ3EDMqM2jQm+2f6A7sxszxdgawwiOENuxI8RJb/9//rf/31188roiv7n9Zw7M7z85mT4ynUr0/moHuHByb9qIgrBALVcz/PMQWzSuAwLGGIr++u74VB2Tn09q27zd3ThZw6kYVXPuMIjN6fv1yKNCHstqFi05dOs4qd5Jv0QKi2i6nap393WKNEXWBVtBK9t+sSk+tMQ/EtZpY6SnphmjH9H/uxZL6H2SklnOvbB4wIkQaJc0lO7E8m0C7y1PmymXwwtZxDI5lLk2ekJ9ADZIDPrxnLK2XyF++TrQXfA5kZLZYvRG7Q5AzRUUBQLjaRvmhnbJmXdCbLNNxUbZ8+NAlIVr71r1nDFT4zK5Wmm68PTTRbT7QjvglSA9O3J3FcLqbBJod7gmXkOnt7ylH0y28XnPo/vX+L/qJ8uPBRwPGvd20t1tNeO3a1yo0dJiF7b1wR8PnTZ9rpvNObMqR4BcioCx9Yz7dXt8cnB/Sa9V+XYlJtHBsuhmPgiiYEEONNA1xlZzkM1MK+OsLHelm91wwYKQ7dHGf1sWt3o4YD6ZABTRpp8lBgWZ0Ud6gXGXRUHQMxW6oY9pGuzPEW71OjOUgQ0rylzdBrmaXmAAWcUcGiQRzXY13aZVDKXxXxfeOgnA1KgZp+U7kMpoRiYyeV1C4uFUZ5WiDhqBcqMx8/PatFhjUIUR+eEUFFkE8iwauOpFH58mtkU9PeJ3KNCn3UOx614CeaY/ONmKVoNm8bWzME1TLi2hxroQFLlc2AF55LdGWEuaqlDMq/C+eS9hDsM3husvQ8vFg4TxWlQWGypoXHsg/rWhEZpxtKl4IWcgCpJavJkT0lW3GAhumxFaPDdVo6xI8Cqom14+PXzAqRk9ScOeEo8/F5AK6KMWJrXbiEJJMsQhON1eT1alUhQz/TJ5EjJH0vpm/UQlDj4OSsOeX4nWjSq2ZUisoaLdaYFP/7GQarsIqGU/IvHECq2kmv4vWz3JXxKprXEG/6v8z92fzyZ7Ww5LKFCtqt15WpZEWif7RJMqWQmP4saKX0YwGb6v7cb9Ibn4G9cFh9JNhTqJffkRyYCmzeeocaGAoL+aGxiLNgDtxpbMhXqQ9y93ZBD3YZ/FcTFjH15e2t9++Ozk6OLSq+f//Oaejc/3/583uu5Y8fLywsM5KcO2xnGu+JcZEH6tJ1N1vOrrRKz0/vSsQnS5eUqv1LLCHYfbq4/WBKMaGMOg6nBuuNSXV+cXty3GHUP/34/j//l19sNJrFfT02W8WsIJfEoz7V2b7sQYJye++EGXEjznjZh7LRm5vfKI4zuShbpzXKKowa9M42Jwz34fiGkCAzWkuzeNKHFJTmomOHzwwBc8PrJqxKhCKkrep3FjTLgzd3X4zG+cUNOo8hZQoR+UySUZQqYIWwYTL/s3jyUJPtWYqn7FS7LQSozrvNXjEEFzlpxEkTi8nExQ7K1N453dzB8Pycs4tAHZSizLEKs/TZ+BVHM+c6353O0WGXHELbMi905MCKRujR4S0gJAkpXunZGzSDlDGaGUDRZ+TEQzKimXBGTl9yjxoveMkrKyvMBiaUc4oMXvZ2k0PBojKLQeUQQ0Cw4YAmPnq9uhoqakF+3CZNrG1BLeP0mZlUBBHiAY2hUvyUybPmIFCps5BozIqYlh04m9Lnpl5Cenk9RLHnvIB4NEHPOwerwCqPj4Bom/nYstUy+hw5H+7sU99fW8hPThxv9erywuHtrCkHt9w5MBSLPp5fqsXGFYS1OK/VTCzr/Owup7wYwQE0/Lj02n7LyOsMU6M5FEwZt7YcC37XTJOn/856jsV2ixInR29FBLmRzQ5vrOD1M6HdPbCXkEmPZ/kiNYFYpncIkhvlrojXmLntW2uejVLtIOXzNhNwXGVm8Y4cwhJAmMglf5NROX2MAU1353SQtBXXYfYJauUNjNqNvI2kGdZLN2RHNWOExgzgY/spoYMMCroKRJZiUUudibjoFBNLhi96azAHgeRLhhksXnRPNp7iS//IlYimkcyTg0d2auahu4PMy/i97Vdu7s0gb2bEXO4TeE3Ltqkf2adtmEnpIYjKyZDepI04Mh3WAkWMTNDbaNBSA1GkmhQh9pBhPKbI63FG29dMSYBIFrFNkptxLfO19ipIrMDSibb+9m/+Bkc1b3xwT+sOQnqM9QaE02E60da2ntvsJOCptmYhHSXm0EZnuegdu7aJOAVIr5GiFzkzYf/1/m8fP2OMaTNZPLJWYML3+Pjl8yUeaMmHD2+70K5tEi6zdnv63XEn0DtW7IbvxOYtKs+thIcHR5Ym+Ej23uznusjy6zIIcwPeDcfuaqH+sPg0KsOjRmYjqmWYp6Gb4TaG+YV4M/5p12I06myeGx1fnht0ZZ8hzZ+NM6wMSzEopK7G9iy/NdEcyKmESKx4SkDRMdFUjKmeMZP0Q4QVm3EYgv6jb2glV0On28Y2pbEfTO6d/CCbVSaSzPIOJ0KP+Iiy/0Z4TGYJjriNZv/o6vqSvjfa6fzWBwB2Dk9BioaNFoQfrCa+e+8S4IPzi8sZ6q2xtLnWM2fEqb79+PCH8z/+1ekHpwORCk0T1WfV4PLmShPM/tP0Y6QS8Yhl/kZivn09PT1JnNvV1I0hdKqFI03WKZjmypo9ErAvX86RjKqiYprDTIxTGtaON7H/AubW1t28FA1+Q+26OrpSNCige3iIch07Xdgc9Md3JW8zhC7ybBIiw+J+fY5rBCeUJhWggqzrYx8JhiWOQDjpmU96Ia+bBioqqc6px9ZcEkhRMQSH25MTtDKtvr3gkAuZh7dR14d+0fA65GhDBSWOkEwFk8doniz4ZKfWaadXByelRjCW1BmYGx0TLyFeiaHak9WNzQeAIuqS2nygHCyqvGLwlP6CcEVkDqyKpwnTkIQc+KXpVoomr9p9zytQNzUOd4KUaIZs2CyAgC8SgTcFw6yS2darCPALpcFNs3PGzJQAUkPYEBgVhncLGcBxJ8jqCVdVTxEDKfSGhghSTS+fsqyfUapXK0XxlXP11pc88xogVY+iWA37DgRidexp5SYxssjeR2avULYf4C88h2vRrPRQmVwrSzmVWSXWqyofitaaqamsL5+0yhBcBbi5QMlY+pSaWqqmymDqd5Vsqu5p+P4d8EAoz6LAn2FSld4GoFaH+Xo7TEkUB9gL/kEczCfnyvzStO94Tp6p6Xt13/OobeEGymJhtQM6w/Om6uT56S9/esdmvb68dqO84Onrm2sOVcf1MPU+n98QS28dlcac54z49PmS0+L8SgD0m7cnx+wh59QdOXmd7rEb8mtBDtbLXfzNF2/TnftijTIZhXW87rq5tuNtTkWD6tnZKZeLHcb0mPUHncvxdzwPlso5FQXbKM75+qdfPnKBwcT4ZZg7eOPcttbxKUMtYmvRnWTZmdcEl6I2bjBbnYrCAJJCL/J0MuOQ0cqnCAEjSywwslKzcBWT3TTB6ivj6atKg1Mc5/IColpxwLq8gVR/UZQb20QISfWmMvPLdrZP41GEsJ94zBkEblbz9QF3DbssyM/nHw93j5znwI4kRpaNd3nin8UCT3TQTM7NURg2miTD2AxIFbbZdo1ayWdVG/m5oglugRsK5MgwbaNYuXHS1bNK4B3FXhums6e0NbVz2xRtDYUYjbSM0Z8xJ9pk6qJpu1XzCU81hxihCNcS45wIa4JxBIQ1TwC/4Kg8QaFacH9rEwN6ZsiGJ5Y48KYHY9B3COkaEZCONQITw3r9IzXE8LF9s0Ymsq1RzCRn1vaZhd3Gg60P96xegpEXSdzsblMOuKGnxOMjp3Mk/Pb18qiy+8VkDdtfuU/69ORENgw1Op6e2CdwmzRw51/fftv69uPp6fXd45fzizP3bu7v39rI0dGZzX6JjjilLEd7Ax7u3x4cneweQNfcjS/WDaFvdk2xUo2UinmZv2bFasnk44F2YYQlcV68pChC2Ud+fHJEVoWEmITbrhl3sjuLHRJt53Ta09MjYREWBJAC+5JN6/k52jJntRlLjfxO8POAbPySQmVINnZrFQZjt/7FPky5mbaxWBB3tpWbj+oQaCgbPi7NZ/QwxbKJsYaOCkxKRoPJBQi5Y2w3ypRcFSm1zCojJIU2mdfbCRKDGGTCfsRXf9QrMbeMFu1Vy9atUEP8VBo2Og7aemilqN0O9UOslyf6mAR/c4AV277pgXfWaTARl0mEVpmTNYlYp3aaNWVVNoLrjPii08kKIJRIICKgm8ojR3I81n9OtGwVGcMLorCYDhi5IPx//7v/aCasy11fmc43SeXsJ9mQ4j3VWHjLf3bieKxXV3z8oqNy7rKB0oxn9leJvLyz/+E2dL9+47zPTnneuri5Ygi6x4SZfnc1l0Vl47ZB58PZ+y+fPjukds2h0Vv01+HuAYahF9cL9MkN6xALOFrcRWe9I9X07VlUkrlHKommLOJc121j/vpomyoiISZAYgbUGj0jyvBOhtiN00sgln7alIoom88UX0Md6EiFfSMoaySd3ZAEkkZQYED5GxaRd/l6dZIRMlBGkWWnkrlY1iSF3DmgukUcGRSpAvRNfT84WDpZ3BYKv292qAHGD0zVc/Bb5+S1Mnyw7yBHwdEF7mHkUkBAoJzor9Wd8+n2R/utTTmqxZkV1we7O6dHxxz2lLtwIJKHrSc2A9zfwuLd6TG22jig+6peXFDdlivr4ZbGtgoJPceO6l3abOjyTS4/n1+DYCtMdwmPRCI/MdRqYkP7UF66qMkDeabKOak63sDyvWV3N+uYLQiL4g+YHkUbmJPUl0b7j/I1WgxDDZUND+1PIg7onzTrZuUsLhNiEMAJ2Cf3+XVar1AKL3ziUIJRR4ra89HNdCotxk0FfSLyjFd6oZw4VhcdExZ7ZclRpPEjaaExUT1e+ejhqyIYqz1Cjt3vAWLwrZbxAchWhbk9+vg5lVe7IjWYHBOKEK5SeZLDcBuzXq2JzPpEh/LLnjJJ2GGiIDAQnV5Qe4GZ75BZjQ3pKe07JJP2adoAlicEplK5wknfqaONDgml6gpzZSvXxzu/J8sm26CaOsaUpZZxbZFUDumDeZkHQNYJQg3y1TVoqymp8FmUl1V+FamPPxXmGajDlA20EA5mGtDr+UhR2SA5Kb6GinDHC+l+b0pNM1fVUnz0wSoMSbDKpjrfC7Y/UzzopUX5yR1JKzMpniqxcvbUJx5NKS9QeCX2YiVC+DvwVWSgeF0en03ZHn4vHpWWrivHyrVRfRvEpqAXIUYe5ntA/L5OIstwPJnctGJEAoow/nNSgOPz55BXwZW+Wh054LrIsklKIOVJ9gYfFU1KDY0QSSzSJV1JTil8/69+/HDKWcr48ILWAvfkbVvI+CDE7TjLU1anF7wzeL1y1qFjyAW10nZ3Nj19OHu79ANzSNyj7kLnUEnGYAER1MjlxZ1tr0cHu5c2DXx9zAZ780aUBduXhccatn3TIQqzw9HpQ7T0xPQwcLde/3J5boX66PDQuEh785rl7m2BIPGYddoiQDSDLdXKJ2ftONTCYJzTxnK8oywpVcoC/oweNqJvw2Luc8Tnm+F42n7mQ53tvG0bjeN14R3TlpGy1seM6SkEFUZAEq5cN6DTkUYisxejamuqRhS+w2DyX9qUPKXsA9y3oxGhxa2IPhVJw2OCLYSUUqeE89ZRz0Z2FRvPVEPfi+rJV9OBgane+jKPuIiRA8HxT86bhkxO3JnbII56DWSkQDrzqGPrMxSzkJL8EY+qI3MZISGA4/6oNxM6FztlW5RPES3mMKOSmP/6frvmjGdZa/RDOtnYCBT9nBigWmBlGP/ozExMtxLwkUA5UWxEragPWYuGpcqanLTyAqiGTIXtbRBvI3ihFR5HuKQlmiTjeD2oQPAclwaNjMII20DWQAPF1QsEL1lLN+kCZNkFX4mck6xYyfyv3f6mr77eF2Le8Z1dRtY1AqZytjc4ifHAJEHXPD04Mcu5dgVG9LF+8SygRG8ybXQSi80DYjPERJkbG804Ey2XGfAtZ+kCjw8tlBEaaCh97Uhu6xY7b9yWUPMfO8g7JJjau5iLP3HJOeIkWaOwSDPdZIyEhmbksd3FFN1P/MXTlvP1pZkQYn2eTXMzpkExFCmfRgfSmYXTOJKqGQVAKEgR0UqK0wsbrxatoBnM35FJuO4S5uSqjcJBmA9WLB9/bKmjSIe7T/z3M/NM1XEWL1qiqfh0t0x2bWlArGz/TX6bBkd6aC/YpPizwGUGkLRoJyOoeAH8TQBqx/yvziSHYkj5z+Hptn2DWaQWdjWzX8LWBXbqwHo+9+kLYy3osHNEJCqlT4qlYpoQWwmZGeGHdE1mGQxeVJ+GTrP7EqdIBZjEvr5+7u5etJDBKiTaOmTGBVBDZZZZ65ImuexBLpA3X7sV3GwvnflNXxL5DQOLRBY9HIDQolWVuXBbN4tYSjuJZc6uerZv6VrjDrYPswUpjki+Q4ihzTdjY1VBQ+46dhLZ7a0bCexN+fTpszYQDna/eYTJIQd7xyAMaVFB03XSxcKWnhpqs2/AR2LpPlJK7SFPvOcYMPTotQ8ZqEh08i1bScvimrKkIX2BhmjaAZQb022BHWDlD5R6LcHIQH3jZGf1NL7CJNGhhacogP7hbp9cB4YE9yvva0sHe1KwPDyjUukjs7Isb5fgunneYXBUgBW16Y38Xib0Vvhop2P32hfS1x3vXo9Au+3PDjYb/Lds/HK+E1oypSkTyv2DCzILZ7RWc4BRhO7y0riVeuMk2zuwn1tcph69bRuZEDQrDQahXz9+0Y0pDy199/4U31n51lUbFTqmrUAande0TRhrB3oqru0Md32yzVadXMtR522rsfl4aMWMezAVbSjDNwSZ3VQ8FjLmAxs1ilAxtyXsIqxwkoJz/FBaWGN0fNPZYkAdKjqDpf4V5fUCPqF9K+X1k9G2TU2Izzyrrw4Q/00VuoVELY1cEE+QiFLL7r4pgiAnWlR4k8mRMTkRnG43tettEpJAJUwDvBFL8WZ/M2eQKJvigKQeJmMKC71KHhKETpcrKtd79a5+LEO/NTBoSkEw+UxXNr+RrQb1swbWsmqnGlCsB+VB8reqgeiz6iTETe36OahW07zV2hc65OYJRBgFf7FmIAVNspZKVvsiFGALCAipp9Yo4NSgK8VHD6g6NI8cGyvfA7aOOquNQA/aG7oiQDj4hEiNmgylgK8VU2Nv+13ZocLk9zZE5+OvmkNiENgU62UJ05z1rNutEpHek3f+LhoOEqVkQo3BsUo37K3aV1F19VBGHxX0Z0ngYLqp8qXuMsgSjX//DGovyL3AkhFMTexbkSqNpCtdfR6QCBQZ+rkhV8/B6qPQBuw0Lzixr+ReNDr6KXWlhHZgS5hmbVpV7ugCgZU+pTfcmiJVBgukW0XiTHX37zuQATvoVXlyrj5Qz96e0GmEXH9Ebfn5F348e/fpy6WDDoXmn+4eiNfZ2XXnUds3aWHKdAyyxEL8A4clA0vD7Ec0ptwy81lkRF7AupM9RPKIyWWEbL86Oz744d2Jcz/Z58ZFg3tOdKaToX3m6o7CdGhHJ1U8PX/87fObQzeId7Zabrw33CLXomQhw/tKTdY1x3vi2GtzjdZR35h+3JGrOvgs7ke7US+UE85gQMdjJHoamsIxPqJMfURjqAq00c8KfWFo8geJdHc+B12an9KZasq4KVbxPDpuJN0xxBSMYkgBQLiTGtncCJ9phd+Z7arNcrEIPwrC5bVHMDfajnlkusxpnZpFZVpyCglTbzFWTDpdZOBqD0OGCPykG9Ns1L5uy59TATnafQrno2naFWBCgEhkg3s842/sGm3Et+nXq5GARX/Cgl0EhcajRUjZkCbbkcsJFbgloQQYRjAHhwjCsQxhK1Y+ZGA/skXjpHZgBZqdmPTSEkVQieXBoaAXt0xO32nOpwuoJlXpqNKaUKBXkQip31aBxHwnrEy4ceU6ccj6dpcqZAnNViXWdJOQV1s868jerMaCUJ7Ntu0ZTY/22YKMjGfG949nb61tXF5ffzq/sFnF+pXJ3h8/fmbfvz06+vDhjMNU+Xfvpe8J+Hl3+hZdBPa6+doS1f5rgmbRwyqHs6LewDLnrPOt3uxcnN8glmUrI6nTh1DVhMqQaqkqo3zb4Y3OiWo6ii83jqfJDnHMRzfGmgP89ptOMdNW1rJJndmFEdatFLePB8zaZnfWvkiFy0a7myjr0qS3jaMmBnbLa3GabeRQa639RvxkhjwMqQ2oiXgbNpKE+sBs/yAgbSrBKKcGDb+MyvBkIiZCTNMZVsBRA2lnXhT+1B4ZItTkdRhKTtfaftKOrZUajZQ8EMH43+StVxBliAvWKmR9l8yawUGVLMoAK28ZBjPbbwYSKCqENtFPzagfn4S31IS0SmqOqPTDUDtKlTHGiJOuW+idWRqul8bRdu0np3vNWLfvHdQS1TRkpExjChaO+OCAq7HTOmqZeiNN6WENAAEFoSqHsoH423/513AiE/AQTKLXOWSq1QS4f/125dhj2zd3WfZPD08umMh7YXMV7F3g4Mx4ROmaiW6TY6/vt4FJnLfIy1v+BRvSD830HRhPRIoXrEdoV9YI3kILrmJCEJntqOD49Ls0znFRd482tjdXgoAxPzs4Z0MBbUDAWegPvGHV/gR4RzGtHcXZyDP/ZsBLC2BANfc+StbViWafzauhb3l8hq6+h0xD44yhhr1RQ8jazzI28s2YxGVFBFMoZVP3AEL7hjd0xgjoEUGWcdzCWnzSqbJKmyYS2RG4ctIUXPkFg7aNJs7pDnrj6ZnNN2jSHny6gjhKb2UNBEF8ILu6spBBzIzE5ndF/l3d2TJ1eipmJr8L7YNBYnpc+EcLOFaIWLDIExUzwtlogVmHR4eO+bcHnDogq7RYywhMfF4oRyLQZw2V+mpOqcPDA/cImPpDllqfJRyi8sbRsvqh3eSk1vKrvs8HoEuppd0hjqewEG6p82kO2gMyv3j4g+xV3ctTvbXO2eSbWGpF4YMmgDCu19WLpkfIQIRkt6MZ9aKbuQHikJaZhdtMRbb3dztVtlGEP8MEBiemwwNNlavRGO1bcQwiA57rTnnxET+dPPgo1EephaOcsg/Hs/shHevjfnLuQVkQPIKGqQus96rB/cmSbgJcizxojmLo3CgFSJ3W29WrPbdS22ekuuSXn55UOUZ/aQqC70k6ki5/wJSEUsOVFyrR2IBVQ00MOMjgrBr9WUIeglUJ7XlPgCsDDgGTJ2mfSjetxoD5eEtaFE0t1trw8WaKVFdoa+YkDsKLnvVcpJNzTQO8V8kketVJUN4uhCd91TZ4v0BbtSjiA42Xh9WKoWpI96De4doGiIR541WKtQIaHp4+IT7I9raEYEyL9L71Yki4XgA9HOzNat2qcQpWctHBW8DknHT1THp/V8bNd9kkYs0L1/4czuatQhuZ+b2sV5JfiDBAfn/Z08qwkPFdk0ry+F3CYtPwa1KHFy95BlZYJd6VWaUGQLAH7b57XeZNhj97+D2xUtOEUbYGWUqtlFdPx4cOKDvlu+Sf/PL5mt47Pt776ad3f/qHT8aZw5N955txZjKsrCx+vrxzVsmz4waevjoQxVFjfs5uSK6+5yNHJBah6lAgk4J7NwacHR0wGckpM+7jp0vusbO3x+df2vTLsDYBiP+d4yImhzfBWdh8W4L+7Ta+FXOhxfwUfHXv3r69vuB+fTx7f3p4vPvls3OQuSS4/Mco50jvfEBhP3ZWmZlQbKlTOiwKGB79Z2Uyh18jhWXwi4sLraf9xHVwwK2NeVlKuoZ+YDPVwd7J2YkZCFnTFbU+XTqbqTJJu/6lO24Xs3yDS4vwyNT9jQC4lkWbH4GHi2YKQ+ONGqijiZ9khPH+eG/cD0/QlpqzNsszbYcXv5ETyll4sw0A6yCsSkus4LPv6V41ayzvYRiskMgGehMvWFsZyJXOVDUI6m3hO9KkFOKksTctSBrS+Ok3Q2HSAaPU5oRtlN9ouO5eLcbJaS18KGmu5F+TmIkOLNnfHXyaVCDmUMyGQ3HbqZXxiBsBzVLgVd9EVTXiVhKQxW/tgiBlebnuzUAxtn7k7KElaFq/mCvw1GlAEu4FbZD91n715mITl2+nytnhjbspZuD78MM7p/CPDdFFvHjB+crsxmwMciWm8dK2dAtTh/vgO7jTPl1H5ynhvp3mxUz/bztdNf3+6IjtQUwuLI1l/aOkWWfmPgWj+RxMJDCRdqATPtpD0j5Mt8xun1/dIR2Zh/ZEkXVpHf6YFaAgLhudmBXkhedXLEnsmp6bODX9ymsu0oDYY6Ypd/boDNzlw2YLJq65bW0eT1gHym05SIv4s6hJX1qeHjPZX5p73GroK5kjKzkfPa8YmvtFFiQxoWFtSQQWa+DGMqxAc0aJeQCYKJj0TilsTcynek8xqzCn/K1rfFmtYsoifk1jJ8yk1y/PhiitITYZWB0cYm5jxcALIW1dxNbZQo1W/YOf2jeQEyzkT06aCGQEZd/65qLIgdFxAUk+hWBdk4GUJLffpgm8opkTCFpUfx99mDAqromEc9CGBtBZHUvfql0LG6b+7V//a+5btg0vBS4a3E4cDmO37t0X6wmvt97gAiVQVq730ez0VcL1/CTqQwqZYMTDgKqZRVRpmADJxi5nRe0evrm5vp9ZS1tzSAO6O3eIcGADBeqUs8LBGbUBaexEX/aNLflcsNjmvwkjifQIZL7hOLZb55Z2UmwXDCNqrEuSI2ztRwhqYKMIvAI1wL5jbZrLSB85wlZmNdZI7fDV90hViQN6Eodl3q5Caup5BOX3UoAlSRjQZtPezhyDZq8ikMf947lGzugub08Tlg15+nGma9VCSJEI9vIQYosCGoFQRIw+tbn2y5cLyYVOhohNNmzvN9f319ROrnQOlekRhMYoZ/eb4CLGtyJUPqoaDomre3bfn7xrNY4U2Tngqg+fry4Pv4XwHCsR4VwG4nYAtWKclRmyh3VaV+/yeXp1YwHo65PzRhP6h3uHVZ9fX79zzYdNSG4wQYrZB8LmH0MQ/VtrptBn7hqfCYd6EYZp3rS52SoH1SInyjV5HSo2ftAAkchSXUQLBQ8+S/imz9OEs+UX7C5lfEOj4Ob0QIrctKeoTVLT0DN9ppEmQZIpNYsM2JnQEJuEKuvQ74Sw2Ugm+HcpiqFQUnr+h3TykaKapGQshNNOAw2DVIYRU6pGorZK6zexfNl25QdhEqFWl5cTrxMfnWRZ1ZRR6wN9av9MVjXezxo4ngwwE835llY/STKrKrGcz2BS8RhUTp+hvj/eTT4FlJofL/PqaV8w6oe1WvE6LQq8aJwBVf9UW/mm49BQfiByXfWlY0az4WxFenhpxaAZWcaIh5fWIX+0iLYhsZry57WEanACNn8iwzR/KLOSpzPCahVXJMBRqyZNufm5yq9MUl8eFJsay7kevn8P+GHlNHCgLZgLoUXJnhX5p3UtZBA/afFSbS/ZBtEBvUmXZUSrn9LLuoG/gRuGkTqgg/aq7jvMIUp5Y9l8ID1FKrEKjvQGAk+lyJmwLfpUYbLtA5OVVrE/a1M/5yNPf8N5U7zf/t9A7v3CfjU7UR8fUNpSF3l+/PDexZV7HA165P3TI//V8f4RH6zw5T/88YvzQLvpfP/13//xC0edmb9uamDmgxTqc3byFuJ/+NM/Wg2lB0iiEwxlMgBxXbNCTQAOWTqvO6/98+cv7GDHbqpJdZ45k3kCaCfrqJz6lJUxHrb16S2er6I+Cm7pRGNhFO2hdBuZcQiel3NICzOY9mDW655EGE5gcs/yntLMtIUe5A2sUYXPhbs0h2LmcmeMqkznYj7qatbMaTnljarufGRnw6GIUkpvLcLXRyydNdJFTLfq3t0zPlFbCzGUBgbbdAWdKFIYm4iYdlBNxg+TJGsI6JDqy1OQW9Hw7ePBiAXVpi0a75Pw5USox6GCH04UZ9PE2ZSpUYDzy8QAf4FK2ze7WFMULOYHYkabGrEPzTg6z4TNBLwxwmdJjaoVVBm1mJCQ0eQt/UxsDWkboQLkq2lSWy/GoDclK4xTdYSW6ma0aJSRcMzT0pANsGXS+Q0N1B7OpshKqWtohda5lqdOMmzJgiWBmBhhn7aD7E9jNXsuz2bNTGd20Y2QKHLBHGyElTQwtYWQW0AaNvUChuaNqiAAp8f86TvG1hx93/KNOn3DcoSDr/jHufgd9k/SXN1D7JysePHlOi8h8tv39+xUGVEC1h+eWAVu1iEQMXc0BmsNX81FeOeZy7qGs7SJBefsLSFqdxn6u33s/vTQRbEdb8Xoz059fmXXgQkbDMEXVKcvpss7j6FTa8YCfgN+Q+0s2nuHJrjoW07tbjKWmRJT0Pnx6Z714vwO7sVkR7RBZvSetQM8SydkwlIa82Cne5tqLHMBiG6WClqHADtp6DNF6i6jQesBKol3Q+wkZlQOjOidJGmkqZKrwEbg/E7KGrYQvw4zU4gkcMwzrUva/SCoE/AjZZYgpp3dQdRlHfUQvZIF0jR1aqyft8FSqEQjIAS1yBqBXZe6d1qi7kOi/eDkztE5UQnpwCYKtiQJxPnqGFW9K7S6L5lpPoshWRCdiSsbDYVl0NuY5Bk+URwBfRPcp9nma3Nk5wozI9zyrasgZFfNaueO+aIDE147NFZmlzfNLFNknuAKh7N2+HoqS2DP9S2twQAY0kz3mYHl4suVMB4rBGaxCQGSmiptvzHZRtz2rxweoot1WwVn/bHBik6sDVZbvlKs+661aqPKa1cPzknwN9fZSw4omEXYlKXcGgZE/NrohTV4zGCWIMR+A2oc9XMK4IVPSZsBacGIR/KMse6tMnhf4jB+lajK+plJq/qSmzKQs5wEIyjUUBZkKlsRvRyhxsIDJ8MFPb2RgRiwuKvGaxIdwyqJDuDpweNEcQiALrHN8YIW5gBuXEQpR/rw6lomUhSLcMSM8/2pw4CfD1zn3A5pnWFLYJUObDQyrbq3haDbunCQSb3zw7sPDkYwR2e+m425SQA/66gu8mA1z4QtlTxDnQVcKejYELDfXhHjhBmD/odAirvMLjERjn/82uXkloCvLimaxBFuhPj48Ng61+39jb1QejtSEG6kI/bEIBrk+a6joo8tYSmMVEbMNVSHF2jj3VFt+h3B6z/Z5fXDcUwbRJL7vGlYg65UE70Ih9Z/mdF4xM+HaA1wYIMvfcs6YyuAmt/qQbzzqy6K2x4a3tbwmT6qTw7H433ylH6pdzVfr5bUUDLi/YgLwFoWMi8LmpR1L5O39ETZVkXKjOm/BC/1BS4068hTk7y5KDRFZIExw3j5UlFqUl4Zg1cDsqlH0eSnlwiO75oJveqUVO3llzf6ezEzhxCI+P1TwYI3JQZyT1PZVIg7Ku2z8nnTp9athIg2AGv1DNjN+kYtlnfy18bpfsAoONbGtECRwGw6IwhGDy8W6pWuluqGu1ywleIzKZgTXrJkUI42SE8mCHXtisSddE4YV4/E4E0Vm98RaLBaGPo1H2Amd5KTGV1iFJsGqRL1E5jBf3CIqgD3vUD2LU9Qeqz4tFRCj+uDJcr0cobSSRyY62mTD5iFzjRES2vR4nitW/D7VvQFgVWAPCzgixQbTEJMMqgShtpouJGcacLUDtzvpBuSBn+yD8yQHnIMoGlTCcO+QM/7adc8kz1ll92gbk9h82w9mc4RW8xdRe/85PKvrVdH7ld63vp4/mluvzJqvvov//jp05erCOhGwvtH5yDyjBzsHn/6eMGuOTg6ZD04V+Gnn96bKlz+em1h4Pary0m+3fB37r0+Ot7hGBZDVM+1o8B16K4+5RPlUXbiBccqLdFtUKR9lg2pL8en3N/r8v477Ubi/fMvXxyVRokJTGQWMQuoN/v09H2mFTuH2a1F5J9aq30zGaYwm7IUwJOzTB7/qeXwoJAMIm1SIArXdCZLbpwvisgAT3CYjPwv3StsL8G+eYIuYrSwpol+WdUIboqCey5Z10UsMDJgmHEUmckDmrsmAHOt0KI+HcioUIrCAlxFmuIcatjy5asR5BwZExeE2BEkvVi4S57I7PkJ19FOxtAEyYww6A5jCWj0yKGKSPZoHby2+ThDX5tYmene5C3FomepBfy1ZYvwSZSa8telAWuNJRyMb4QqT+V8gNJSms2vbgUjUZmjrvjl8jLFKnpHSBh+ZZU3XsnfYK2EIdJPFLf04cCFkXwjO2u7W96gVEALKzTPrmMqdu2sUwT6xnuRRyoyLqsM5sZcD4VapV/DbJa1ntk03P/SVQq+VhsfvNV2FpFxU/rZycnjvTAk55mys9rCfnN/YwH9x7ODL6aj269F9F7fXrc5b45MdAQ4q7hAo9viwfYdJcJMf/P6yBnzBtaJedL26+5s3To9Np1gkLlE7+TT+TnHs1NG2ZcSufB47y+vMdrK0x7yWEVwzAaRgHD7ql9vnx7vMyMbU5Dh6RXrIvN9BhJrQrpA6b61brPZ79veoa0jRZDCzXApNiJ+NPLnhbTb3lt1+cm7R6rxjDzOSII8yTVWoF8d1Jgy5ix2QUFPiOi4z4GYAtIMZ6I20yC0sUamOYodGRSXZcb3TAh5DPDBaYDwPcoqGcsuh2D/aUfhKlnLgz85UbbeygriMR/DQR0EtdAppVUDIdKIJPXE/JKZMcSAX166n1BtYWhveqg7BWtKQ7b5OZwYVfZcVNw4RUKKlAsS2MlSfSXlasOt9FJJfhNXVbQOU3NAy8e6OeK8HgD7f/83/w72QiMGiSa2erze1QaR3b3LmwtysLd3QF3SSqhH3pX0cHToqPinq6sry1s5MJSHwlwp0tyhAY/mgdtjhyJ1jpDYJrMZwY5febVpMc9F582O+7yzDqyc+SXr1oxGqImtv6RKFIqQFRoAkjhUn0SbmWSr06QE2OlLi0Oe0aXGJT0eaBr26hgE8U3WuNzQEDNh+Wcfv4Z6dcIRi+zgGpKU9EkB+dS8RlQPMRh/pMxHfn/p5cm8zPiKk7vqLJsBI90zRk/aKLYJgp8D8pVbr6gDPIWwJoNlqHPkgpO/VFpkJ2VcBFsaigpiUAoKghacSAY2s+6pZpGduij2qZSVHuPo8RasLdVRLNUgTIsNSZtkSee0eDKbV4uAWvBSVUNdtKSiCb2m4ZS60lJmI7cmIc53akvT0cEhqGA4NVlQUIOGs8Me7s04ZDeQoF8Dg86p+xnGbm8Y2IizuIApNG+Qhc217ocxcYkoDxcS33koysg9BujS6JS/pOly2lYoarMBTInCMSjbvU4MbToC5joKJoKDWOnkMYy8VdFog1gPI7h7LTMil/LyoL96Ba0Ba3GsQ7KRWrvgX5H5k1RkeNX9QIHGekWaatV8gIJOA+WsWUGwSgZIxWJ76qhPPXqKjXEJBADlbOSD3TiuQCl3AxsZHrFNWXhb+ijO1Qo/wF7f4JhKyrNB2G8mxfTxqvR/FFJVDoOlWVQuXb3plHCMbgg+GVcfTPsopMg0CLYAJPkbtFfqtGIe61xT3dJJTb1S6PPplWbUp1LHoYQ4Q4fqrOeFz5BudVKI0TtVFfqD4qi/EPdR3rvBFgH9CFpN7LG2AoYcG4otGiz0epUwDJBKhFtV9ARUD6sOYLwPgRc8Nk8viSMeC8KLNAZ8IAz7GsAkyLKpZR4W1MD+t5/JC7f++m/4uykymQd4CMXoDdgF46UJ+FgT6nHTlhrjs9o4j9Fa0e/tDebkmLe/f1VkUWBlHhqM8AypN9ivegOwcNtgGJgqWeDCJ3RaeaMyrRW/PzsCytUistiK5ETOX377TGvxuLNpHCChW93eP/GY2iFGLPVTx6TAp3BWQ0EGpV8iR+/Pjk8E1guedoqEkYlPArvoRtt9Gz6ZT1QeWs6gpqkGeM4O450hedzb7dps4BfW0kHduWne7HPQcls20mc2mwZcX1vtNoUgvMBaiWUvsuq9LEqYv6TbOimc+hdVzJVD0Wm4U1XQe+fJMmnDZV6VAkWyR4GiqcktHa5RBjg0NiiMMoi/fKMoR5F2N28XLSXPOgvEtIIMqFdBreAaMRzztdBgqjD0z9JKjiH2LnW6jHiYcPnlrYs56bT5Cxk7escs0y9iu3oTwmFhvJNS34yRcVzf9GgyNMrWyFUgvpQ8QUg2/VqhJIgcNosBqQ5v5AHNmJ6yyhNE5a6Dd2a1pPE0nKu3j+KcPw0EWmqspE8QnCJhmGoInKWrqOMyGb5MNjoT5jPcMH0GVVpOVdhCXhr7opupwswf/ISIDbl6KmjG60AW4ivUqkPMVm9qQKdj57xEkincH0X44JQdk6BIV9aMaYNj9UHw1so5+lgB0PhKW9g/2oehOaRrABDMoCMC4uLyyoJ23sI3e5+vLw9f7x/tdi9QfLBM9vwkftdagVg4J4S6SLNFdfx9s62nIJMplmGrZZznb6IzABWvS9gP7AnJgtJIgvd0eXsHCF9w0bNEIjNDBPw3hl99NItvu9nL/p6R2DZ6fLGTUKC4CSoRcYcTESJDR6cHhmHrP+wK9OHKTMWaERVEsCXWRZ1X1xf7h4dMPMTHZZOhsUm6QpjBOSNYNcKLjfwSKJFvG8JoQlIURCiZ4jU/6Trxj1pT5ZjOmKYiQBTScZXQHMUaiYuUG6sA+ZJu/3lTd9NSvMOx0mTvX7IeqduaZz8q8YwcBMwaIXlVVo0DYY2Vxr4SJWF9YjyiFcA0TH1/7KkZUCvqbEYWtQ6iasqpjexNY3q1ZZGO7jAl1QXoCosGup31H7ZEE0cFklhw8yfLn2N0Yqrz0k431CPqp1jy7/72b5WmuZoK4ce+fZmPTs6yDDqczu0PkgmAWR1CcxTjzhgtZrehpaxlTAtYTRHWlnCz7a9uH9x2OoEIyzF9O0h09UMEJd/IiHpaSKmlB7FaP5sjexmipI0iZsvRPshjDQztsFZrRzjzjuQUZ1YyPjKW4nEtMMDNegfk/VppKE/TabnViWiNOHNoTMRPemJAvM5sSio9KS6/dyMe4MRNhCpzkFUzPB4BquDYKym1YbDSRAp7/NPs1EcLbe15wml6ZGaocV+fTMpM2Q0gHQSRNemEH7Uxbv10ww2THXk478XZD9vSg4DEftx5fuX4T5rCYZ1McKQgOUJUm3TmF8ELunUk1vHAplJUeReVv3LmF4mHSdPWZzOBA73g4up6rnYuOlbt4EPDua7UDLcTStUTokcz4NF42d/Ejn6x/EzePHG5KQuyJuefz/u+64SyvYOUePtvUVZ0oc6T/AJV18pCb+98/yDZHAtjN5Ou6vTDF8hR27TeCmMTieFdIxUn3PhdZHAnlEPTuo6ndaTEwm3E9N3EZQ2QRmgwIRI3gz6/h+8qUgs8/EoYiMWaAyDTmg+MViNQ9G/iklAGYASG+mi0WGC1Dlx11UxGc7ZyjcLBpFaxdEI4wBZ4JCUkfhqPvSDzYEaE0Ykhpo8tqZsa5UGu6ebTdtnGUocMnZQ+UvFIixQfuPpWpwcYKyjDJKTRIBMa41CQSXVlKzXp99d4Ngkl6jq9WqQbQg2AyEh2GoY2vCuLfPJ7WrwbnqwGzGRPC5UrIY54XtRDRkhEhIZnVW865qA6fZCKQMkEo0+lqv/3z6RkkaxkjViZPZQygCo2JWr7CwQNr8HT7ilb7lJGgdbsKbOA+LkAlmM9VXZhMmmL7JNYbXFgVStXAqz+5Gh00cJ2kkIragyiPczHQ6BVShZWJQOt5JefSvgFoBLTrs3PIPqEw2QNyEb+Ja+0QXC1T4ps09RBwk9vJ6U338Gsot95N01YGVB+00NXqX9Sy7RIujyKzKvVgEhUo+G2mFvgzStH9xSU65Tx6wzx42NOza8sIc12S+i7t0f2nl3e3ruxhKKhRd7Y5bj/JoX41G24yeOrdKboEur04tMlhAXPGOEAsbcyN1jXTXacHWRomGkRf2PKkBORvUh3e3YOesqdZx89GlEINot/MrxyiMKV7b2ubeQrNaqJvTSkNpSOBibOnFzF8c+5eZoKhFbOIJg+p21arqQ/v95zRL85OHBmGseK4dxoPx6fOoY8K6KGMmUHjmGaM5LWTXvQkd2rwxGb8tSJxIfEyfqtP1phRZ1GUv03QSygvXYOjH2A7LMOHl3nvGX3yK04u674+7iOtikNphhm8PTTGtlqeXjb5LBYl2JJLBoKQaDcsTinAP1gEHlRZdN2xkZHjoLJFbkUGvKaZ6mIxhjRWF072KSCZz2O9IpZufwFpVNVvrV41GciVJcYfbukK8mcTgJh9KRV1lxCRvQ3eKWgGnxT1Cpj1TCKtEM2BjFGi0RXDIxG86ZXndioEFFMyzTE2FqWGWpcVB3RCWempN+U83gAZ2V+CNegEBERj+3IDDAOwmSwBUrQQwepX10LB985PdljL7DXC5bJbWcjQM51e6q9tYLBmHBZkBWca7eEQbrTJNlOBXOb1SDmhR3YbwRssylN8BTavnbZq7y4bU/3K5sPNdH4W4xA7lWNLfS/+3ttn6uDsHeha1DTA7N8W3m2z76jrhx0e3Pz9vQUABaa8B6oCv13pquZ9vn5NSlj12mdWS4XpLgDrv2NlM5E2qit95En63v6bHKbtzGdU72GxM6aR+bOeNUX5IRJ0qUlUpsiNokqDmVGYUgiNQgkSRYfcLAD1GmCGvpkT2MlAmUoNmlUEOeSH/ZrXOyDojKP1KTcctAuAVNO7Vubawr0WnkpChX51/CfKPmQqWx9n6YVdQEZEmzZ0yEzAOkd3OMS4SNcOi0h1rFTax20xcxmzyXqIskq2LZjxwGbErTRkVbwClCJYZx73Lgp/Ezr212ps0x1RKsdL1v/1//Lv9RbBOLjrOu094+ayLab+dXz0aEr3vb0hAtH0T48HjMut55dJSEDUkHFZNQyKaUAY1QzQaHHdP80DCI1se76YuHgka7e099WDLXn8T5pgJf1ByCaNqXrLTt0McQQBEtoJRqZGdPe7jpPHRKYoR2Oti3Bpy0jxKFZGp00pgaNkj8sJ33WmjmTw79yVURun5BcDBrTCunTSuCOwvJ3wamTj/2UELyMRh7x0mf69WKb3+tXL+Qswwx8i+3QkAGG+eBHQU9CyKBAU3N3xTk9+uGek0BBal4sj/kxD4EpAWfMeLtpum4rdLCus+sQ3Cun8CKstZCDvSMHAU2TO9HZCCRQ1YFLRbSSp+2ts9NjtGDio1UHOpmk65yIWLyrLqGPZE7N4mnRilQdfcS8B1O6cQujcOH46CivVYQqSAadKQitUCU4jmy6dqbsw0N3mqSAFDfFvzdAcvcTiSJfvznnpx1mxpWhkhEUvAn1mQhIuhJ26kV/LyI4dsWULs60BlLnmwUBioyuaLTQCYsoNWlOySpT4G8rtKQIJ2KoVkyPrXSQZ0cdsK1xOzqj5Y5kZUGrlxpnlziRCyBGokZfY1kYq0sT1rSb4h4ZKX0kJI0fJtTTmg+kfab7eY1wm4E/0IoM8EkdU2CSMoC0HBwFAgsZ3TNMqkI5z5oUbuN1oNvSOH2ymIdqI5cj7KPUpu4hJmmPIJWt1YFIFFGd+puxnbZa84168+A2/UIR2apbNTPlgMnqJush3OQEcnCua9cNgzCKwXsFGe5NhKeKmiIzINBBEIwjaXKtxOnLSlAsSkSHaeeGzvEmTGqIV9OKgSN1YTlAa/mQscwG8pmjKKXS0bzl1XrPQXkp+B0yvDxXz1TkZ9BkjkfrA9v6vB/RZ/LLMwBrYKaA1FVw5fvvEZv83yEuMlbln6H0gqe6+nzHv7o2s8p5EaK/t2XV68X3B881YfCc7+r5niFoCXysCo3NZ1oN6oKdSpw8gU1cp4HzdgANxFDvbZCqbp5fcPsOdwPTn+zIqva0QY+36NvP706pKhdTimk2iDAYri6uhOxznbIEbIjiJTz/fLV/uH/3eMsFSnOKNCZhgiuNGQwUbTi/dP692Bg8EWXs1PxDxq4rfi1os4eu7u6Xd1ZDGqe6V4irEiYwqhvmiOwka2Nte1iZRFaqCSnDxWDLRBaZzSiHJDPd4I3hrJbmDG2pygRp1HZQPTPLKJpRpZ50e12BMfpQWDPhGQftsmtRi8Ls0EwTEdzmGaWTKQCIIaX8pA5hzSo8j65rEc9LcJCxt6L/H+wi7bwHCb5TjOsKFEbGbJCl/40TiNkxnZmkOXpRIKfpVGF8VIT3rkjx1nGp4px3M0TOFoWNro7x9dWkMTt1derpykuFpodZdMU6aJwOlE3GoExbTsdsLNZCtStOSzQPmLb46x+SQcDDqPfflaFWj7kG2BMCKj7TpNdiluCOXFmrkFPtGgtyt2td2PoYzQyU8+yrkzk0UsW0vFqNXFIVNRbjY0NhrsasxpzW4kknvh+zGojqHv3DYr+Kwm8BvNhd9JQu2wz0QjsMII1K5mCSodNdsDygTm5lDu03hOGYgchyFbJwrr09PcI9he5v1Hn/7vQIQDFqYnC/XN9j3ZFVrP1dRjkouw74cZyGuQXbY2Ys8OelY8orAf1ODlR593XaALNnOLl9eLi5i8Xio1jCgu0wGjIZERbK7mcqcnriVlYxxg0attU6OWrxy8xCSNW9ALsCDHDPHBgBG0bwPM50JbOh1jwFU/TiLAQiMBO/SSG9W7Zo6DcO0s0uHTbj9gg8w8DRW6NEdOTO+ox3+EWZGdZHqddJZ5hwyc+evDjF1tH5prv0lrhhu6LNp4vOtxoARMeTzDafmIcpsrFD2mUwU0GyqFTfxHe5+ZoJ18myZMY1oJi7gBHKkKjqZFRu4oC13A9NJ0wmLafwF8wmwKbHERbJpsIyR0s3BEtNBnOkJv/tvVFdojXdwhFeOWHTJNEXIo2MtagZUW7vpXinJXRHR62Y6KM45DdF/uav/43XoBdHwYxnbSTu5uhfOe/PTqw0iR3/dnl943YVsooJ9pyIy7GUSRQAevv2RJWmkXWhpqP6IDgUX1zSLcwLj4+PYDkrrWRP1LjuQDVrWp4aZjFbEELMys6ancVQuhUkqF0ToKaydgIw97Pf4U61QCaBRDgLfO4mzEiNEOmU2q0oSvkz+AzJ9DQk0cDRgMkTnOPeZK7TTskFYH5udCtuBDby9C9TbzOWL2FSeZ5X74eHWTmwUQR81MB1Kl6euJkwSVeQyHXzInzo/YpMZBhPvAcp6RaT8WxoCCdMNlt33ffrLXd76b5CA6l7ri+HWlzeXr0/eQuxz+ef356coud1t3N/1UWvL2+l694GJPU768lx/i5ucwOipjtMA9+cgGHGagicSWSSgDO5fBwn55rrTu195mDgyKdNUhzFJiZFjhwmpJdXl/A3h5loSDNLWFNEOot9bO3uwnoC3aYr+/33WrfBBwRBokymsWnrtK2LxTTVoXUkj92ZTTKjvLroCxXH4/pkV9sAUcwofSMKdi2zCJgbfxJFoxel4WctjygSP0zxW29UdvVnD+pD0hCoP0zHYYYiBCSWHH3vTBk9ZEGzcjNAA0DZwryOK1/4e/QtvdlX+Ce2idDk8Fcrqnf0iDQ/4bagAbgq9ZOIAxrFVJCo+gSNvEkAdJCvgaGaaC0NVSPVhfWSJ3GoAEaNjQByy+KfgsOrUnuujjJvmhPCvdLgFK0HKntIKAPIK0UpiZLpJs3sWSsG3ACs3esfaJAPYqTa+PX9kn+N0AuIzHXtgfYdf2DBrAkzZQxG+MJ2wwIPoVfDaosqhw4RPn5NYhVPq4GVp8zzUypoVdHfIU/zhMgB2mjlHl8+U25+kMEFyq+XKl5EYuCDFjj/Aiyzt/KuqjfwpA99oLSx7DcVaGI49Ks8tTQN5vl7dS8PVeD/ydajz+RKpFdDKpiaqrhXA7Nv6UPVTakp+J1cIyov0BYLKuwz5cNsKupvmPZmve+5TrGyrGzxzu/VCqST+TsjYndAkWZAecfgfuOC0jfMGv7E/BWz8mza7+bBx+2nL7/89hc//vD+x7P//L//4+WV6OQclkXrC4bkGkDM7VccovmY2HM8UKx2K4T2U/KJbe/wbdFqhC+nbBlkiTRpksS0CTZ0UzMTZA9dCMgyBqGjhxuLsw4xFZEXs4ZfVuDrBNNS42n0j8EdVc4zZxkAEIa9AY9uQBAqawjZkWtwtt6rKFqNdVIQsHXuXAENYQ1AdMIMsp3FCXZjX7ow7Psal1aPuUWqHViK2/CviSkfja1M4Stw4bI5Ep4hesSGgYamUI+JxK1xuH9BTp324XsynMhQtriWtqw/6wsWY/OuzEg9irdeyY7PGG40rL16XEbCaDzYjM5NKqCFnisuMetSywrm9qq3vUwsfVQB/WKQMhDDoaybkRd0ZlHB5dRvo9hwTRbBJ/PcIKVOiPs5uhQ+tWvG4qwUhKbcNZttx2pShVZkPc3GYubHElBxEOSEfVnbJ847qy2jNlNMbuO4nGqDsIZgyJp14BGa1PRaPXGPomtEtx4VRMSV+e1BrAUS1F0djO4oT6f7C2wi/qgHGilkTVjPd77m+d2dTR1gM69Jhf++XF3j5s8f3rWD5YE/8dERVQS+Y4CoVvZSCw6W6+8cEth+6VfdHcFe12ZU4+mN57HvjbnRCNuOWH+98+bm6sgZ8A7Tm5PEDfpIr8lMESnulDjYFUm0I3qc3fHgfFucTg7FkOs6+gvKdggMMuHr1eWNxTBmEOKwQjWN05kkoaL1ATbr1Y0TR8YVFYvwEHnS0ppgiuI54xvFxvwljk1oI3gzKB85VW4adHt3Q/AOBSpnTxd0x5JJasoXRfACC9MDbj8QmpVID5Cx74dRuncrdbPXpXJQqe/6k2RPX4gptI7OpUHYvWUuVLy7jpNmnhWAhpvgaNeIdKV1MwUijlyqbsOMcJWNFxJWhDASATRTZ9qLj5j20PwsN11KmMNDcY+QJNsRurRUUx1thkJv6alKjUWx9e/+zd/CHddnULcH1NYZl1zY8KGXukQ2/4qIFAek6dFKMrXUB6IJgENtsy70nu0tTpQcuvTZdOAxo4hXksUJbcqOBNojiDDVg1VZ5O0rSmU+bzlS1j1wnUX53FqVLlGfbCQepZF3o9mkY4sJJQ8E9Z7HX0uaBe04IAqrUBEdG2+S2/kR+3VvYpMdiVXaPxIUK4YiGdZaivzo4HuxOclJnVQKthrej1QPVg+3x+L3tMoGLB5mz8UAoCM9XMw+LdDMBW+OEz5wIWUxPzmtNXDr2Uq0nTtE4ZBbvThI9GgkZtxDgfWcw9uWjAMXczRJoEL5XPgqrq6ulXW4r7ayg6kqrRP6b8XIbuyaBrWIBrXcGDRCfojCg9hVVFnc9I6PQfiWBSZHZGhj0y+DYpF/r0/mUjBFlt2cOjPhfrbe5+RgyymFLTnc+vrq2saDxqTnzsfVKM407CAniUbzvdze6gMbBKT57mv3jLwIjyb4B8jqdYiZLT586TlR7gPOVKTJdV3gG5aG4D0k+JiQi46HplEHzzZlq2Fsp9T9kipIrwJIgVgpzrEdDYGYRwFpBQyThfpz/rDpWhs0kqc1aUlQaZys1VUdwajFG/VRb5TD2zUJwJMBSyeqd6aOEcB/PimyRIwMbcRyaKPilYwIciSo6dVoMvkVlGMDdqUn/M1P+gWdqcIPgidF00pKgA2imN6wCmEpCyDEeq5aNnrPk6eU0Ky6l8+gVg7/v6TWFyq1eFctigV58qwSqoAM4Qx4NPEJp7IN9WDoU20p8Q1AWfycrL1aD9PEyk/CghabvmeAAPoHarr+1BPC8lQo0Vrw+yElMQpXnw2QeS7/ZF6/+h6AAVlJwXohd5lfMlZRb/osSk7OEiDm++Xl0HAg/PcpL7mU2hB66gqrUUQbIAt+NXm9aK7AtHSlgeznpEyRQX/9XA1ZiMo2uIXIQv8lT6VwpD/TpGBvPkMuP/Hoz1K9VHaTu5wL4kuZKT5clqe3PlqhC9FabqpizrNQXct7fOBM9sNPn86djvIv/uLD//a//8lgbEfiJaVni/Dbw8vL+8uLG135+FTo/w7zYumirDLRiS7S2nn91t2lzB8G0O6bi7vOZ2z8KIBbhI++gSOvr+4L1HbGIoVjKdXoa7l77PKuRKSrwbPJyvDzcG9QmxAjQeGdm2zIu4E7tJFIsJBepTrKXI1oZiuXFdF2vzEKwWp8aVyn8UxdrKBCw37iWaxv+mEygySrP8oZHUlnzsXGC+nU1uoRsmnG8td8dTmodD7RlByCJnXwEVCahRpx61ZMzGC6HHfP+fFdpAiikZWpYcJAMcQJnWdsI7UyBw0E0vB2ZKPiIwnhZaigXatsxKVSM11hxuXvTFfPEn2KNWuOOT1Gj1rSheD38CIdo9KTmyrSkoHm5RDAz+WdyWKCj/TM9FnGzzjcIjm7/OQzBLDkqk4eeQMz8mmJGOQZKbRl3iFE4FGqn43I81FCFbBFNM2Xhjap95kDOdNCdrvpMpOny2RzeZxlBA9swQgCQ6rWNsi7OwMNGvglWfP8Z6NtvnmIuCHBDm+vXu1au+IBZ5qjWpMB6mTrSSwGgaQ5Hf5AVDjULq5vX5sgbAnHBzintdgAtlezfgs1dvg9fuPP9UcXcpWdOeC742PjrTB721pQAzKqju+PxsEGvjqFmzpbPbBojy7JJx83i08V9w+3BwfHjq4iyYwA5IEg84OVwngwExCU4W3XfM3tVDBhzVt1QEFEY7CCLtqcXkfkg0Mb378eH53cOtExb5eZAJ9ugWf8htihoz08vgSSRNDiz+UECknZM/DGNNSYUdM9Eh0yznBlvEAtexcu6TxrKXnNmWGmKKQGqbRKP+qK7uZEzAadCGzLC/pJCrxukqXRipZv5pBqp1Ob2qXmEtqG0fI0mDb+jHwmu2SxgpG0GbuClZjuTEzq3cKioIFXSfjATzLhOvwr+9yyB20FtEF+mz0Kg5oRzbSNLKBrTEwhwCTpSqzq6MiYGKtr8vdWPTEY5H/9L/+aYKEg6VTAVMwDFipLoAlHE8q97c+fr06ODhicmv3bxy8T+/iKzhWFWb/a2rq8vnI1BPni2G3XEmfDnH76/u273758pmEssTp+leEvT6cTJJdNMdUIy8e7R2gMk3h5Tb6f3BuHIvarAN6hk/w27RrATSTLZZIsN4vQLeqcgGvY9PaaqnHTtSzzAINLEy7WpXGxdhSNJiNINpkmR6ChACZFijH+YmOMXINluSA2mSmstMiQNbWV/M9nPS8gJEzx7G1Tc4iibyfVcJ04Kd90qf24/P2d8aQ4yiQf1Gdl9IdZ3iq0S632vOoVs60tpQmCaUAToNYVTB72b2/aIU28/NRT0Yc2aSbtGP7DXdcxf/p4rtcRPtF1lp0Z5ZhOoTn0rp5GQ8+M1VI4sAhpoo6Kjs7WTqdeiAtiveurNhegJjrrVEa4y/Mr3IS5ieJmYaq7BY74FRCP6HtFWItLTI5bJnB6XTZfnt9UKn4Q7BmrEkqNR9WInNLv43kEOjYluygfD8GawakMDULmMZjLGWSkgb/KEFoVqGGemWIcvUYYdItmU9WSLsNjRMNlPJrnOmqSMeyfaXOIqRRz4/gMXXik+PA8DAeZ8attRpJaO83QnGYCMlcwMQO758FtElW7VMILyOTTiEV7hFEKaHprGGr5COSqfyEQnWoNstS4UTm53BrTgKp2YOSoMcvuL3cp/qQXEFDdVV+lY1t4HDzD3+d7pZtMgY4L8//UMrwrd2ikMUGuZC2Yiup3q+NU1WQMjUVo8IfsFQ+x6Xe9XXZ5uXuxWlq9q4roOHWNGAS3NvQlvUyL5op6HjwAr8xGG678C2xZppL5qTAuTBNWkbDq/T+Bv/CS10cGPzeEClYpUyLVWp0zkHgIw6gUqPk51scgv1JXqYEq82Z6EPSF4rzwOK/KO69WoaCu95vap66VIkcSNcT4jp7EBXkDdanBlF5NCNEqjcUDN3DTkGmaBr6ox6k+6alJgwV6a/QQprSFmJTVoqoLLuTryP0sYbhZmanm6fH92RnHgY6vO9uee3Z8+IdfPzpw5NQ9SS4HPDy8uX0UsXB540Imhizzafv84opepbEM+jddKcVEFgdyzzJmwR+3Fam7ihiHF9yVD05GtpWHd7ZuLl7ZSibrwcbE5k6t2tcJj46Zd1162O2T9IzdbjSzodMw9O2bt8iT1W6ps8A5rXiyM9KDKUe3tLZLuHtanOutbQxTNE8Gqfqv9oYytX12bq5uVZoDoj08bVI0JlLUWTb5o3GhiCZo5KFrpvLK0MmPkZsWW3gBCQsWjTGt4OrCvlGwIZ+KbLXfv2L8HNrG0lcjx1wZGitZIRm4DCvW0GK2ZWpIarXPaJWxVHC+kaI5Bkn0ClDCoo6JO++BYlfRlErDoKRvpgkkUtFKvUhXeaKzUtPnyoxQyYDsjQ6zshf8ObmOXczrB7gxRZFpc1LM4KnxNXTcMZ2lgtTUCAsir1BD8PhKlUUWRQymCuRebUBtiZiBYbKpYDZvzI9fUTK/Zb0AqniEFPISS/xYljxEvOLvQ8acoaG1yY+yKuQoY+CpyCvfxmgxJwxOoy9XGmlAZvE26YmhqGUiUkT+DcHsPbAci/nT2zNxA+jtaMQvF9zsT/tv3EvdlXaFIgGmGQ70E9JzcEgeLd2TS61FbZR8amDvxHBn9wkHqOGCL8YOrv817rSYY7g0GRbHa9dBk0br2F1Shn6JAMqYTTh9HP7F6wsP1pzCcbPpzRH2Dtq6iZI4iMLwUT/0b26+ohqh0E9bj3LqIB8nm5BBZJ9hG/fju3U+zRW5hBA44twqQb16gfNzbVPJEtQ141sXcaBkLB5+ki4/kYxMqK+uZALQkppFv6ZiVIHMMx0oUlpLCRjjoVOfCE1ipk4NycSy9GHkhy/WzNRAy0giBOfg9fRX1gv4QHsXu228EVvhFFjynFQXvQLPZgUz1U+VqqFQIvkT96wg0vyKTzPLBA4IpycQEnNGpfuZ6Pe7zmaer+8XHgI4N6viKm6mpcOkp9GQ80M1udH1hsFzLqXGVj9pBsj0+Td//a+9HHH/KrCEBrm8/+KaQJJsR/bEiG8dd78q67IT2V2pgsWpOTUw51YEJPORTFuMs8Pg1TfKV+PPLy4KRN/t0IOWfRhkc2Zqth8izQIZkngBy+R1bx97MlltKZb/eTs/w6sC14xQmlE755hj/S72x6qWPzBt+hmV0fZTIIcCS0mhlYT8InjTvE3vH12DLEgGT6pkitfhtAlNPCzajwj1E7HwqXdAy+T/+QJBwiqYUNAUE8ZAScFR984Zn74Q1j+qq3N861iandyMp1yHBZbW0McMW3rLWMz23e4IrNJkifpwrJ0+bMuv7jrboA0OEVOvNtSm4OyscC3I4b7NcNpn4sRG53XH8cT8laNab5IMBVL0aWTzEtkwxOLPegUB7bPQbvIgItY6g7bGO7XTj2273bUYTtrQRNfj2YE8VYiTEsxtzEb0bQ6zZijF5Lj83GnB15YrCXc6Na9NNIytY6cSVSmo5xslMSU2ZvpEdl/YPbzsWVviRG9z8KBCqmEOKqbMGy3IcYLfxLchqiKp5nhU8Fj6Ny63pNtdv9MTu5GAQlYEsfIYEdk+M+ZBFZThdfI0Si5xESM7c5iGqdoUUiDMcygkjaX2/zJwV2LQsrSYPqEyOGQxT6WSpibvwMOpmcFP9w7n6QgzFI3hLqlSEXPyR5jkMNRfLE7w1serqaW61JqCGPvPd0rEoDzf0wRgxzILbMxash+EPlFyQAW63zUIkaenaEDSMl1906iQkSXB82g8wI75RKEpDYPqlTjwV3Wq9m/ep1IxZpFXloXkAuK7n4PqyMuoy/RxIjTIJy1+bhCtmRqCSsqtCqeqDbiKBHPgglDrJl/fm8/k2DxvQK26RqQ3ENb7VceUXchEwwgYE34H+ectmnpeMAyD+QzU1WWwWP6FlHc9TQ96SRyMf6fJ0PAFZXm/1yt/zYtN0QqQaXv8jvKLKVH7xUyPIyvfqnS1KBr+nieEXjINbiRc2uoNC/PvWapHYcWHIIE2wm8b9lgwe8YD3kAuTWf72xGVOfyKceNSpG///J//1d3D3d//w69aoMPn3/z6ZGtt+oVyM1aTNDEthMb4C+jE4wF4//XmmHfQnkmDAp/LDPx81+5jcnEN47fuA38nVT8+sVEA0OkgmUfMlswu7qW0hUff0XIUr3svDV5jAbTvtoNWyLn7mLrs1n0pAiFaVoigzkwTPv68dXp0LCbh29e713YkjHWe+TnnlqTT9M1Gk4TceAEURhhQ/GXfMFFTCwVmFNAyLU2l6iDWFVCawsfMamsrLd6mIRlDEPCxLF/U0HhG1JlTehOeXqjnmLZOidnm/Ylj4UZtVzDADR+Zosb8cWpJTmH2Ghu8TiU2zkbAERBDQE33ecnjsZzEdeOnzJveywQ4baMhIxSNCEn7DKxJI+tH2WRVPUYEfxvIItScPwFVLxA5io3IjdIw+rflTBLgmAI4WWLViH2A6lh4xkhzmCQHJhJniuUUw3EGZWMZEuIhcxcFokldWKcocBGXkIcVBJOg1UAsa6l/9tSFeD+d02ofee+47Y5FeREeeWTNGJ3VdXdGy2yjARlgaLGhXKPaHNgtCncPjrSSH1P4uHd23b3jAunt/Vfbf/HhWOzOx98uGfRUq0u6OOas7RvsLi+FDRd3dCTcIO8b5hearTlxE/djBBGvtyuMs2iYaVcLkKxeyyfNEmPWfvr02cYb+0mcGlQ4w7Bs4ovnkKWv93mv8/e3tKtbJDWC9cf5yC6f8JGZgna6w9PN7RVmga0XTT+FEEdwG2wQwXKUgkRBn3JVNhuD4Dcg74gluXGYbxpDczBuhjy9Na7NFFEPhrzGeeCMFrsMxNirDgA4XKEoBLWu0mDUiElN6GJL2CpruGGMjqIm8rZH+8VhjfOhh3rNHDoFi3jqKW3OMdNomM8mRT10g2rcRcVYvLZ5NK+g7diLUuzTQCKgTB86SSVNBmGxNiTX8lTCqXFEnGiN5mf0hzAqQBga/umzZJLlg3csIf59czaTy8QRcBO/uZNKLXED5rrIzA22/vpf/etEQQ73gIjhsXr09cFlwNaM2HCwPD06FDN4erR3cfNoCzdSkj+cx9R0Ypf4OqDqNV8BQWEIWoSCAdrYkDoZ2suPepqBDhU0tUDE3AdtA+JdcPonG05bNFj/1hDiCUf0k4esYYPWamht4c8x69KwdnmKqHmgFVYnV5AO8WZeFjslJ+qMk6Oiq5eWEpw4MNJZfxzlk2TFCoTOOiFbMwysavsmZ9JHK40zY+msRGFegY9L1RuzxskxtTA4CZcFJYJCERNo+ZE9KWFq53qhU8a1b/5nXU+T5UhmKFPjh/llHy2dOwFIFE4+dbZ0Sq35g1Hq6vyKH4heAxOPXFxpG74xk0Zgx2tyVjVZIk0dRjFjyajpiX2nX8w+838YriCWG4Po65YkYZYsNEJsD9JjJbK3uUeUrXGtDdY7fGCNHHUDPgCmSTpd01BDcSgZIsAneIgz7pbi9pb4yjXtS4nje0SZ0RoRIaxTkQ4KFsB5GR8Xm/BdQVxbQ456p5lNFZB55IF2GHFws8gArtIinTA6EqOw/xptKqJ/OsPUZQUDFvBqJBUoUbERj55kT2GOvaKWwASnXEEaXa9DZVS15qPp099GzPBawUqpHouTkIY9s0L5kUuGCJA2biRLGuH3MqIgkc+QNLGPIv4bPdiLDLtBOJR0JvgAX+3Sq7pun/LpTS9Wf8mUjAhTvBeblmhUXUMKZIbaUx+kqzMY2uD1NL1SoPSyquspsiC/DCuPbIuGPSxMiIqWVmQaGwn7DAoyD7YLA4QKs6Z/owenzCZjBYI51CESQAZ24IZnEKIAFH0GtypabyalJiz4HubVpMzT91d+9ezP4Ky2gQdOaatgL32iZX9W/hApV8PMBvmXWso1n1XLdyAeav5Lth6CIWt4+tX3osGAfql/XvQjoJNznua1nyvF96ozaQFneCB3ElmWaebUotzC/Dti83YDfL2N4AsHUFe9I5DThIXq7/iselVIHhXqhR+DT4khYPQw8BcB7P4h8QtMCvaBn/TYydtjxxoaR2wQNAwzNVxqLqL47uqWfXB0cnh7LdLX/iVHIBQ0RAxpQGgB4vmbnbj5zrlFbxywsXe0xzv57AwNl6ML1Kwj0UJ2AshiGM1ZCUFYGQ3psNFFdVJiXFNbwbazNgcTSpJMHijKjROS5YGqKZNt51m3fmt41zwmYDrWcjm3ulNZLr4cHB6BIFSab1LbTWm6duf1LqdPhElfJgk+zX1UujlpTdA5Sai/NwFI4zZEGtSgYyajf2lv3pAXiYhLiYwRJ4LQKsaaobZ9rrFFtIUmINSaZdHezX/yks52iB12WFMmYs80AJ9CMNAglGdo+KCLt4FFGv3U7+nCjKvwn55br6HxxvSnHMJyKoen0tLVADJoS66CsMmPluy/8V9mnYYVe2llgFjFldfNR6xAxj7rNoNUA3pu2qDLSY3gayxko6WoxyML67VcrMaxOCY4oo6Q34qzLDuFuIVF8TwhNhpMXbU/9uSIZHKo1ATNCK1xSXSeQQYAETO23jdF3BFqe2Odfz0LHgNaRWJCnDuklc4FxSWjKrCEl7vY3ECpxtdv39zyy8AH0ggviMKI9un8Wju6HIpIOOSDrcXTf2C+4W6HnXXSd9WPntP4EcWiNjIRuM9YFHyIVhQcRCqUoKYyiBEwF6ThjHtXO1BbQAGbzZIaTNp24PgodnoX/lxprC0lJJ39wCCu807QL+Mna7LMbrD+Ch+iYemALLSONlHKLZ+ZjDn3xcq9tbh9kUVNwsf/5fK1Dkdit+Aae7HFK0ZUmwsbuBm+eiKbtdWAmQkjmg9hlh+0mP3UwTYyFKiM0DGO8msLgR4NH+KNQWTM8KpBmMn6UJAeQQFH0sstvSPUTcJnzc50BQ4gx/d2Sbc3BuDUGEEj84z9nIlkAGgA0ipaXUtV+oYTYQ47ceWutuIfpNcgPuYHBHC5N7Nmkc5sbqZLJivyBqvOtmTMwzcWdVLtVTFdbUFmbuRCr1eOuq13NFb6naXOo2E+YpHFkWPWMs5Oj7xz86DfmSR1N06E1muuL64y/h6I7/7eQTcFoizo5IAkohQxwr8ZIfJ/o4E6iCx0z86ObWCFs+cJAe8uA3FtN3cMTPWnqqin6SSIVHy8Oety9cernMKmXwdwc8YCysb1h7t6JvuvQKoMTfxLeTWiQT1iZVcpswYkBEgF9klrxLYIN+Qondz5PbRMQuDf6Chb9MqKmqJxMomanrSGLj8ngR1Pe6q3hDI0x2idlC4CFnjCpGq/vatdQL+a3cwrQEVojbufqXiS8s0UOUf7EkcHftldwntkzefA6cXFCAl+1Q12Li6uCciBM3Rpdn6pIkz5B+rPmiCga8ieGaq2b/e6VvfsOmhWc9RjSUG0nKPrKFPq4za3eqKM0ZQHuuvc7hPkbaIkH58fBeo56zqXUusqHUKqoXZ6aIzbRkB0Hr929R8SKFYHK1JLEcpnaTREyB6dnqE7xYXo2UCkpNqJFuz0k4Q5WiWLDXAhrRmJ3LBOhYUwmXhoL3ZQhQGZWeJ49zTB8Pg8nrxUQYNIGeLRjEPJZ7Wn1us70iHgIbGp8tBIYLydz/oDllcUijRCqOphOg5UZCDDsQF4WqF1xCZhKFtyM/1MtyShMx+oJQ08DTMQ9JGnV4kUbGfFZuRWnsFlBBsxGgVBjGgDI0jVkLSHLGT82ZRaLxbFI3KWfZXJ2dC5CtZsScD0e6gOuMzlQRzY9FxKD6u6nsJ7da4eB5EYmkDVGrCitk8kn5zTzFV31QWvupGrbHWihYDWTVVplYqjpOokbvAbJMNlGt9D5Tf4h/zA9valOb0b+IP/vJ5WhTQ0Jp8aPfhZyrRn3k2+2jUYb96tqqt0mgDPWjG1qqq3S6KmrfN2JU4TwiFkJuMiwuanP/MJ8YABu94rseHv9wygeJan1gzGfi7R3RQfdvVuYGDIeoqyL68AQPz1cwntwlyOYcEgMYgmBZs2Vv53AAn4JsFD5Jj2DmaybdCWg1gkCfPZjI1e73SJIaOB141Lw1Fy7B+L4z/+/MGlIp8vRCSKb/xmp6EwVE4ywcSWPV0C8PG3c73J0GBVk2ju5OQt9pIxrEp3Hv3w/pjl6Wb6t10JnIa6vWZJbx9g5eh4VedV4eGYqAlKcnpNhgUg4T8H/KPb1eVtEdJP31hCRNF4nDy0j809Ynt3tw12tmSB6zAie4WbQzw7Fq+ZAVeDbaMGMlaLvuka16N9F6eIYDYWMCTsm+KGMAvKm5u1gRT8wdyrlnPRb1SBb15thpaGyCaOI/0ZNTuL04CfjlX56kcVGR319GRqMZ4jodhtS7Buso62pE3QKh2CiNqaubNnAT9ZyhSIXSrNl6OaPKbzpJ29izIoas/hMDSU5AvafOTIJzIlPacOspB0YRBTJ8Z0D0r5LHHxSsXq8XPJMFopRddWx3yYbpn82Q+NLNoby+lMT5Olqgr/7Fy7IVS6qwWW0e3KIgrGFLPBae3a1jS5/zMYMyVeJqVw1SeE4wMYYgaUHKaN3UxtI6cLLim2GbJDzwYHxgfnGQwX11By7OmCbCBsF0i7zyf2zN5NH41tkWtvr8s8vxG8dtAiARIqY3ff9Vhpw1NGw1cHer47Pry+uL7f+soEQDu2FFyE4gg0y6p3Hr+gCtwRUI22NIHmxDvtcuhnM598YVvWOQzBZphOT+KETlSQS0PVTshZHV/vOv7bjEP0EZMN8sYkIXlogswk8/bBCv9WJ0cWk/PIxkMxPXc0MDgpCubF/eOdJm5/M/m5/br1KPAJw2DElni0P75Junxt+GQW5pJji3TsUpPb50L3deu2tSadmbB5P1n/mmq+gR3NUBy/Y+5gtBXId2tdBAwHxxvlmzUpSh8gL9kOVGecOH6dULMp9F4MrxNnQbnCr5PA0EAbOziYUmBmCHdyGS76EVsthRi7l0zQV83iHJi7u2+0IRUwqkvJUEx157SKnlFvVjI3RMwyqTD+iv4qEGsG8CZKZLgZV7N03LfCQD6hlg6kpQyg/guwptIqrXiwfEgmu6WFI6URkX9BY9J8dRbSXJekA7xCNB1T87f+zf/8b3QtNqJwFC1BZHMdXl47uA1Wohxx0rYrmkJMJFa4ag4gSzmuUr+7ustC3y5gjkAY4xnepCRtWy97tX9oycl+LKKbMz5T6Rll285sIkXazCNZ9rJbE6DQtaSuArGZyrM7MRPVuExqA+yKnKvxGXlNaYoHSL3nXWh9TdvKVsbkKAtrKaBYWGdOo4wlB6CiS/tAoAJwHv9cMObjLwS8KHNgUY3KU6dEeTbmVyVHi0mGPHRSvsuHEVN1ZCl5gnNLzznN1pEB0RDKVxUEm5Br4vInOcDLzgsSg62E0mI37mOdJph1kzNKz7RfFkBs3jUBsFZOjKy6tOelPWeZsNh0f+s2GZuPbXCxHueUmxzqOGXI1GpTSZZ8gVsjD3gEJV0bibTF1FOsESrbY6ArtnQev/KlWfrRQxwldHR47EI/o7JOaE5wdvruyirjwx1CQz9NPQOjUigDYZ4wIyto0/zMXP+iI+Jr6lDWL8xuejCS5EH60DuYsRhjJu/kNNoxkWcVbAWhDvFzyc3t6+iPVWZSWu0BtIY2bK0j5G7BPayRtKoIUZLiowmt1kQauX0rJ1nK6lB+rSmHxZySp4yiug9mrV8kWWbvSKn6dAHdQRUw8aU5SgGsPYmlB7WnUOSBasIjq8TVj5Xyob+j2Ii0UqqGm3QpMviWGaAFsBFuZguATOaqi961q+p6WuRdfUSVo2IWMM8wWZ+BGeRwmMRVi+ILAVCj1dhbwV66v04R5RbFZY55oVmf6U/0rIFgSoFkpNxkWRXND+8Gj+DgUAQIslQl5k1fA2RaWqP6VME8+gk3GE7+GhIy8z0FF/iAVKDCPQwEDyWH1mC/8vy3ZQd+5afsn+Xxu1TQFsAFc+FT5ujjUxb/+vlnn/XCqI8uvfjvsBpoqy0VW9wHKF68wFzE/zOo8zgtBLE+slAcJNezegdCrZYhPAcvfxZKQMSIiryo2Q255KshXv/5Z4QNnAC9yNWAmhbhZHwpasJBh8dUh2HV+viHt2fHR3v/5R9+ZYjstRaagWlGYAuZ8HvBhow+vUhmutkvLjPxvMwGCoqZS5xESBvfUfXy7vbtyaEDJdguBwdvbM+9s2iZFeoUhId3ZydZT6wMh56Lt+EXc2PuKwa3Q5NrZdtq6WHiZlg0irXwKBbIecfttmqGMN4fQmbbFsMiPWliQOW1x9dy6WuoEl7Z0GDGdTHKzvFofcBJLOIz7XJGOHuo7u7b08wWHGMl5Nf5Htosp9BwlE+9ZgwBn8lOQiBkVFUvGhokvAEEhGSeQbFDX73JhlC2DQl0YWVHzWLLnFGjh2R7zQ2mnNbss9Ryo6fv3nUivjGrD7AjAPXcOqX/XwZQEgISY4kEeqq3YtsIturQRIpPspQ8TBcmb5CRDnI+AoN7tcQtRhL1SLPmylkiNDZAZIQbRHItgwdsCENljfIRoOgGGOTonUB2taMcrchESxmmhGGiajYZQ/uV/YcMElNBhs1CwDdUIeABGYgl8io3CPdKvQiEnkDVQ7PboMGJ2SBrvAMqk7qKsHWXpYgysCJxjcgmhSyaLqop8kSLVOZ/69ZukIBPjcpc9+eZ942gYugPH87cZq3xVzcO9WOwvXJi596OC6w78r+BQaTQvWM0EVC5Riu5CUy9cua7BUWuPhuD4iz8GCFzXZ09AkUKbaJudAEDZXHkBDhtoI0AQpyRYBbJHkVUAPU5NiTBOr+6Jtgnh0cGaLZHVgvKlw01XBHW9aD6JiFBGTav9S1wiwVCnHZELE43E9NYiMVcYsG4mZU0wrwsbAeZIBU0iFp9UPedmBw2QBaUSVomk17AdGmjs8xYzwjN5nz+agUGZZ2ZWndzzvijmJwWiDSTScNs0LURPklwXPusj5mikxZtjCGGVx3UOCupCUtSa4Lhr4pa97OkcNcmeFghiFYTV2Jvypd+FmYx6zsz4wAmjzYgpAuQjJHEaf41rW1nY+zLbdeKAYMOEmrUQBKeEjAPNPWo8+Z11X3QMZB18KVvZ7Qd5b317//t32EGigKgGcK6RI1bRDi/uFEtUcQv/9r5ND2JZmtjwOsdy0Cq1G3sJuWnEUlH81J7qjw83ru+vNbg4SCEttiZWnxxeWkiQeJ1iaiJfhAmjlvPotNMIRNK7X72istEuKe75Wwbb4qvD3lG8CiPvpoy5z1FHyFZ2VV6UazSzjE3NZVaSfdFwjRCPTNqRt6sK2m6g1fKpnEa56Bf193YTDGqFL0eLwdMcgCmWl5UTH0ofk4NSsyzhoyZiJ2UqOgaLNEnQ6FuP5OlAWVl2DmZat4urkbl8qA4698cyYCh1QgFLFQJVHOn/Xb63t60bQjFkDlS7O07jWdsXEs0BRqKH9Qb3bdgNlwDqf3qFVDesjVkoJS0pj+/mbVDzDkVX84v5XLoELUBJr5Ta1wjVMPuti10rYjhjokwLYb7Jne2vn17fnRtczT07xWVYb8/lDrwBwTLC94o4icyRdJFypixnjU/cnmpqUtYPdd/Jt33aO2x0REwH75GD5vK1X6gURGLXfpG0kVa8pYCq5Z0SzNgxcLBmxSfSw/2/RjuVDtYVEUAN0NRKYMYCL/DGTmRXFSf9wQVT9UHz6VoqqLxrPMxgFrisaQrcJngjWcvKUOYqSFJm3SvRnQbVxR5kcAEBSbrp4wgh2FCJb+3qu1TpRKDNm1J5suwEd2RQ2VDI32oj8SC4caA27AmYZYqTw9DHwB7LL1WlrHG9gBARKzpYTXviZeEae+IDgVNetXrQ/M3ZM/gWt1kMZs15BSCfCU9z/SgZw0MyemMiKp181kCE2Fj0ZRaIECaHlyRRawAgu2/4AR98q/kTdlk4/sb0GpAnylUa6v0e0q/gjVYVXCjAV4w2WSd/KvQTHJewG7gr1wLSLkixlT8UvnUuoHpvUrRbSUOYhXxEDJItMGyxv039UuRGkkJUi2qLepdMKu6z0oKYq97HwEnuaSprHwL4Sm+yTmJq9LJP/zC1lVmcvZ2FfQE2wAFNbwpbI584+7D/R0lSIpZI5b3rsXv7mz9xfszCrvRamfr8/m1EAkBz7ke5uA/7g+uQhuQGAtuCCZaFzbV3tz/+OGDVXlAnH/iiiLVcItqvGm2U4zZDYYkW4Etaos0dqQJD0Xmu5E7i6Kj7RzNrkM93n97w3EDeb450vn0SiSxtQj/XTVcjssjqab6KJp8VQ9OANxyccqh3ZZUBCelcUu9aG/YdbYpulBWa/6VudxMQ4yE/s5vnJ5zYgxVRnHngmGVtHpgNDFtyEFkVuCtZ/T0Vgo8deYhbC5Ga+ZStJkuqvvX0+OeSpebvc0MowSMLHTssnvoDHetgMlCUsR4hD3ZLj4jMVqvFJDQlYa/qVafVJAs/0TsJMuMx+nDuknvlV/IwG1KeZ8KGgW1EQjDFlQb61sfyKWCF9pYV575D5UbetkhpchAMDhlydELGtiVZT/QfRnr0qWMbBlS+2ET5jFh6GCkBZ93jXEpPWEX7VPweooyts8kQXlGJNt+WkZxFaWh+thn9oXCljsc6l8As60gD7MMIEQbhc0GZ5OJSrvIyNSxjSKN3a5w7e6jcR9ZSnnx1MCbJb530HEduB8aUxYrOtgnBV/LXMBr6F+mstEW6eBuuitAwnKElmujiWqkkG4JgTv/dVs0GeXOuBpLI3fkOGe1FKGaqiUqKe1snrzacwGtWhAMoF33QnwVjye0htDl3UP7Y0ebCA9pqgMl3eubbAjuSeSIFTP9S9mDPff+imo2X/VTr2R/PnW4OTOd6Ssi3/yzEYLzuC6PMc0xugzqUYxfW4QL1yH/Gf3aRRLIjLajpv4qJVca52BHn3D28TuHtwNLVMeS4iNAf4N46mfrSZhDFBtNRLS0FZflzDzTeXHOnmwaA6LZdcgiIjr5uHfxSPL89fTwMCq0TNGJmoReBye+0cqaT2d0wlH/jWGaa2LS0kOWSYOfyR7mqFetJIV85uRtcW8GNwwlHlqU/SkjZzPB6KJg6MXUpaRJA4RnkmbyE/q5+WALw0ikg3iWDs86wjJZUK1IL5uBivTqzCmySFIdBq8Hgq5rZy9Ejxz5qKB1qWNkkVMvGoPM5NjxP3SNBuja9lQd7u1eYfnTN7cBdCAVnFCjQK4nMv3KuUFbnQyDnvsHR58+f2YvNgEl2ePGAL/bVcxNtRAhiWMTraVikjjnphEJ06Ct6T/eNDVvcGz2Q3zplBH6WaBEjjpydl66pk+08CU/umOGGsqR2prE7Iyg6RvpT+mhMt3I18oTiBJTB5lfTd0UJo9pvdZAHMOZFYsssdmREUkhaOUlt8kNdJ+eHL0KDiHQB8zjqB6+ozuH/JghWE+0M52eMUOwtvzquSWndqm9uXFX25wktcGD0LHKkbojtzrfQF2pbjqlJUuHOzHfmzIykRFcj6KnLF1Z59Ib+bowl7V/eGy/r3hZu4u/bdkhxvLn8eo+P2vfuqsRGENEKBbT5+YBEzm9QhXuITe0YHOLXbuvb89vImFmAFdHywLwwUgfTfZpGuiDFS2Z5wqAr/SN3k8N0a2V8in/2ILN92JRF5vHsGGoP3p7bOhiaVvfaLoC2ECA8/CxYDOg1KUPILvnWFw/THRjcSubVm1kSvurTno5it6DVZoBQDk34xOJxPuGkz5hOK0FfSQw3BqVvPafh2kpqLVp2UAxCAA1ZKlr5TCsISfIw7uaan48g5CyqKcJ6pJDWb+izkQcrR4ehoEM88m2qvUrdTPQKjAoq6A2TitYDA3YEWtJOxzgBquFeCBDBQLlmk/tDdAUmwwLK+V6KNd0ujFHBjBR3PBUk+e9PNOEBWYIHuyATtKwqV+yiVqgc6aAmiFa28o9NPToH0Y0zxqm9BcmMWEB9nahPm35vSAgU2KT4g/ImzzVUzo4HvuTwgjpMqwKpt6eJ2XVMtiXMGWD5oN6vkvyGXx//7mAlyt2yxUNV93/feapcWG2MuOFAsr+XgqEEY9YPAOatxtIGMuAi8XRb0rNw1KbI9Ur83wDqc9GyZW5uppdLwwVjxl+Dc4yLWGucsV9vtdSpjWTXwFsM8t9I1x5e8d9opSkcZ266mzKnTeHqcxvl1e3zF621OePDv3hpHdv/S0ivnl2PN3Tm+ft9t4KQzzav7y6Yn/xTe3xlx68uf58yZTtbqKvrw5Pj2xZk1F8whxEqEO3t+/YzTa3zMevrx4cu+7WsOe9k4M8C9vOr2OZPO+YBmhA9n2uNXQQ3+zf3Y31cwessVja6MWFiwZUEJIe8qUZX1XWhj8XrRolWyEExr1OQJ0cC/p4/fn8MkXEjS2uwM7CCWQtnEUHcZi9w6/zLucvEz+A0dQvIkz8gPEbATYzBDpXZcZiH3YXNlHsxlEaDPVDghhkGdCxSJt4cLjSOGxdGVBW59BFMFBmHISnzAZiKj1Z3/QcEuNVe9LKEPOXEZogepYIfvI0El5VmVVJyJRIychSFSNIISAP7ORaSsa7nUx/iSNoC5+x9YPU0kQ6ZHQXDNGmfp3DhYHUmf0q9x2S4zyCFJCpMDYQn3bTlfxixjpoqQLZakXWfzNRAx46jBHvbdaO3sBaqqsTbYR96oZg4mH4VntkB78gnKRf1a1xs6ac0QSM0b/5RiO8etmP4DS9yY63mo65X7csbhRvU3QuF+DXDqeNGHObRNdZ8MuyzZhXWuFMRdTK/y3yxA5AUr+37+wQ9rGxWy3pE3OnZoxMoYSryQnCZcYUYG1PDTQhrZfhDDFhJ4igyURhjsuWnOQyMzbbLo8uGohxjJnmTzlqi7y9fbQCZmEBESAMPIPm25cvl9rLC6kXmDhZhPDuoHsD8rSTS32CTBJRwLBKP+KpJM/R2lhdOI2NiNgad7KOxvoX4IRW6MYkGjo05Cmv7lybLacIS8/qQA092kZhBJCBrW/czmVZj7DNIKsGS4l5jGvQpxxUhm6NI0sGB5mkr1qIQgJsSkxamcemeaYDtMKTvqgyFWsg+k5sBXaJcTID6ZRPefC3WtDIpPJNYR2JYhsmzcrSCThYWhHTaCT0aBfLmsttOXigCENiR25gEJHZRS0HFTilJok6ORQhTKIQlgTI5RfJo8dGkWcA6FSrY6qkRgH6N3/9N+RGnKU+iqvmE5BtpbVbG16bxFipSfmNFkAuVir7Tz1FaLFr7fl9vXt5cQ0bhAOS/B2dsAIdOMPngXlwMI8E1UyrTcoWcpOx5nyvH614Pn07OzmlMNWOqRDXEJYoteX2Fo0Rvaelcwqs3tItuaqZLRFqtHRw6J5iHBE13xrQ3L3C6BwMawsIaLHUDRLEhn4BEgsINAbXq5P4Aqq8Az/dMukE0l/5+zV6ykOaS+nxf0gd8ciY9ljmatFkLCde0Rk/SICxAhj9jYYyu7G0Ar82YLdcmOMftqcnJxAQbQU3gwpuEIHRg8A0cOjhxhEjkM6jveYZ9SU7eGQyB9a33WHRgbv1fPXDPMerFZLooAZ6Z9v2Gia4twZazXtrX93sEtaSERYRWZ1BZLMdu5ya+/jp06znmEh0hKjupGfaIcBVQBhqpqOE7u+MVY5yspQmUogeNFRTZ80xQqLZF6x0UxTzW3ets9FFqkz2+3+4kqWiFfUWo0haO93tEygM9qoBD0GyxUfT4ViTKymQwwKKCelBDtCwGAOCpmqVIFPKsR0vcFMRFwj21nYg5rP+DlLJg9ogr71w/f/z9adbmxxZeqYX8xwAMlms1ZL+6Awkiuwi2exuSUvnfxZaq8Wuykwg5gkRuu7H/I1AFil5AO/nbm62Z9u2bXSgZi/5hRS34aVuKhML2dvamxhfIgCpYT1kpUaMNyUfUF5VTShYQ5h8upJa7zMr6VJ2E6XYx0/F1YFdwVrWiRO05JB8BgT9kBLFZB3lsZYlr5k8cobwIidIx+gVPDnBJ6jx9SOl4hLH5mFESRKFqFLzCcMSXteIjHjikqB4OHeFe1XykkswE0G/5+7kjOWuAYBhQEJVcdfwBit04H8H28sBG9Q9HdjlHNCbkAMUsgMqmXv6nseN7DOqCu5Cz/L3GBdX8nkZ7JPz3PQLxHCeHCMgnG68PRC6n3z+CFDiZPt3CE6pAyrgXUfFu7v5K5Lbq6OFQxXzmNQuSi9S/4jxBvAmZzmHPDLnD1F9IJ+KRi8j+2LvVG05LzgrHgteSPR4fmPet2VMDRdMGMz4s8+W37v35u07h//86cVPb96/4mFYliPmCNjgkfU7fEqfGRQdWNPxoKULlkkUlLTG3Ye9v9icmLN958zyZ/ylPZd//vlncwFirD/9+aW56/dv31tm75OJhkDtXDIOtbDgjoPJ0SWe2IhswX071fr4a0tiIlkApxHuPEH+jYc9Qu9bje7lzEs6ot2RaD5UnGPJfQletNvGTQyh/fzyqcZbHeaUBSUWK1P4Q1sFWljPKTXRYX4DFnbgvtht/5ieWg+mGm1GXZq4nySJHRN5kFYlzEGu6aF1SfJrOUjegnSt/HYJw2+BhF3R1RPHxhuT0gKezgxqZcaLcFn5lJ0H03Oqbc1nupmhH427JYK1d1GbF6pJvbx3as+eASSpjCHNr3qKDXoi0fOHOTGwqsj+725XJbr4NLzJX1CFzYkiF5ldVjuCFGSOOhvrgrpgqMEdHHHYshvwtnVV5SgkuLx6bAKr5dIxsM7btIsgcpTTC7gDNbc/LIztdwdnE4z8IBd0Qc5nxiYR9SR1JdGhkSKUtIhCXS+Np0AIxjobXXXbKhGdqVgkppSISKiQ9hfYmZ830Gb1MNSm3zXQr3zMwoZIX720LEOk2qEjeX6E3ZxttcT2YNVHEGoUz6wUIXXg+xCrE3gXlrWFNO01gM3AVBlUTsVJ2PZcHEIRmslWl4RYkAdRTXMH4zCYpA6RQNZSDgcAqtTrm2UAhjU7Bf2h0wLfraXW/KIieKL2TvJqGkT/lmSMmhUn6G9lTtbzJOWqht01ycR3CaqG2XgG0+UpiYs2p5GYoUfksRVQlK1fdKkqHjAOexNHIBz3lbUw3cukG09sHDnzkL7ZhsUb+LUPx559wVVOgBm13VF1ZniGZrOxFlkXMINVxNZ8lHGNxqH04W2lRk5nHNRFz6SRSxjV002pobYKstjeGm9BSDi+/N4qL3fE3sKk2MYg8hQPVRVIxck/4FA2HTx9ZhhtyWSrZS7YswnY8ZECzX3JmSNQtf2alPn6TpfRwIDOn13OX16+eAaFqJI1zEQaxq7W0KejnrinmnzB6EOTmGjSOeUa71vGw3XqYDzQI8tVGaY3BcDumQNc1q0/3nIxlveNWCLdTKsljnmfbY1AZf0l3JKR98yM/crXcVoNLxmPQb/PAuhY1o8XWItuM/0uMlGiXqOcou35tTxXMpqbqH7uqvd3bslspsDMKZV9T/fy53DQUH2opsepG8+wuwdGFjAyWu6/rw8uxPz2zaHV9Xm2pabmYJTTsWrJKmgjndsB7Hs3VtS0ftRaKaMMuS3ktLZsy+N86N4jvciuzWM6KjMtqDWRow/TGtq6xFX4acj2aNtOKL+WRR/HJhUbhWktT3T36bPHVOwMnzdv3jXwz1Goju0A1iPGtw9S2gTiC3+m9vLgoBGbGrTA33Qhc//y4U2bQJTiS80VJADnPlm15aPxNWBFD+w44aRjcFKc3zYWzwejjECpla1nztOE/IQ8VdX2JPFpbfM7NYgSWPzp50Q0GJl1dDJNjzVvBsE3RMQ+2+5TX3TS68VANNSREv0Ow0GejQQqoN37W4pKoxQyeYRbK4hCb2XzZnAUiotKKtWEWYYVhEEangsgo5cZ6Tm7wTksQESdSqWDTHTQ13qwExgzgI7p6MhwlwwwZtFgKZGJVsQvLlAt/6EhIryYhNWtQHsVryt+2FN0N6WLeJjSlErDEeYZL7nWQfE0FvI+0en9iMknxDhiQh3IrhK1eOXpgZZPql+8+ylDYsHod0bK0tveBKGypycXjICfxLiOnvIvqWyDSZ4HeDUlGQQhXBUpcz/nPuDnOjIj0CvCGCw2VqlE6uZwp7wEQOcryjCB+wvQ/t8d+JdqzpsbxhET4eVe9oBfBS9a/Mk2et2Pe/kvRoJTQS9csJzfW8m0O7HMEG+p5OD2ogfmFV8KXg4uptfAZJI/hEG5KnayfcdShT9+7aCGDJnoQMiNIw9KXdd0FBdcEpn93gIGg/UIddbhnx3y//D+q7emDX9/8txBKO8+vH1XQ/r0sbEFe4yExypgg6MWGb7/6BM1f/qTVQffXr1+m41Y+vi+j0VanvP29TtRyPNnjx58NC74XEj90y8/8WlWRfzX7Ri2CoIU3r754DO4j18UQVv9qMFVH1se02YnX1LPFPlksDV8bn999Rpb5hC0Ns3CWlBksOPTl/cOI+Jvn9yzkFZDZvrCwASWG/MSU7Z5ijx2YjpHhHgjn2bMW+9rqLjlImIMeajCqNw1Mq8Ktlq5eqcdJa0sGU2oVEF8//FpJzhTcf7/cyEs4fhPq2TMwqCbcSZjNeSPCFqpK6Imb+0oBRD+Vlvl/KkoZTS2lfICyHKoqcbE5C3KjpsqPIVRUx4d1dNszH9nzm2F0/dxl9UFLwsXWgEFHCdsOVaFm8HYSwyy+Vxu0UxYM8lMGjRlj6PIGmeMvN+5r5RsI0ZmCty+whiIfiHInAwx4FoKsJTywgxM47WfzByFY57WhzSFc/BpKRQ3rHvMtbAh15fXmpRASkJPnzlycd62RmeeCzBJfdfZ0HwOEXbNs7FSv4oJw4QrNJiXZhYiBwcwPjGkXbOdE8FOO4BbPCwGRphlRrB5iXVDbv68dqb2nTtv/mLlyZ1ndhIKf8TmVm1gqY/fJLjkvBujgkgVY367X+dHrXFSuBzCU60zHRjL07CvSEsr0rjDtRwOrmHQ+XQ2zANf+DLYWAdvTLbjBa7JrH2bVQ8zSl99xbVN6ipOOYVjG8mWzkww6NkEn17vF7ucN/zvBeOib1J6+eKl+m6slyN5Yw25b/HO/zOVNhVo6q6IiNEIDvXArSZqFVdVQzPbilwyoybRfCvVFW/zqtOU5OocYaKC1t7i++Y4ylmXJgXOxmbIRqWFibqy/JxtRfVBegkHe7D9hpzei4UKWpTiKBoTFwEDwrbkZnzgOQ1MF+dpWz0ZjmF465SCbxWQrrwZA2cfuW8CxPZgnYoNIMpMUK2p77u/baHBD7wN4NbxVisLpfQcJZKV+8ymxQhpAI9rfLPSOeP6J9OnVfc6GM1r0W9K5wqa+7p399//u//godqlUIAalm5k4O5dy6ZmeTxgh5qpuwaGrUJBJYfy/OVzRV79+roBA8Fdhzy2GAshfpmURSZM+f3H90YNMuu7d16+eG4Jya9vXusVqksGj/VXrXCpvvz+zSpJB7uSoLPeVJLJvT4TiOY9CQXpqcNZTr4Y4AhRQzff+vIihaE3z7PN3WyAZUqZ2sRBmFLrOiMIC3oC1f+gV7UryNkhOteT4cOCfW/9SzJJEH2l+zdDqXj5dwnNZc3652Vovcqx1WmMQ+1CKtuwBo4WnbRkxpePEhn7mLYiDrSz8oxGtYNM0yv2AlP94DMYY/E9t2TrvXGsJ0/r/6rjNTlF2DW6/lcHfJv5yWOjIdXMEJrYNbrzWYWs4yTHGEZ5nCyc46EyQQttt9VJ7bK+zRSDkbN5Is2T827NNlJKi2LrwiWMAvFnT545woIU9RbXPW2amIclFj1afVyd4tzrxzZwsxANIaGYLZrMrtbl5i8XTKeQ/unwYGF6iNKkmjq6VPtZNu6u9oBRYZ5BputWlqcgKTUV8jTP1XRBqjvx61ZkwTTzqEHK6Huu/VDEE6zu1dUEtlejq3ulTo5elZCFLM/+Vqp2Uf7JgahnNvKgM8n7G4VuZPBbazX7UhCIU1Z6+foFPAbxXR0hgdVSrzQcVam8QNAiUxH/7wrqMgfngB3IIxkprIUVxU7h10LVSMk2wpk8iEgnKq8HJLQsyL2nq5ZALV8yCcpBV3jRwEaOtbeHCeRF1WpTtbjcAxWTg0YEEYqEELivbKXC7Wk2u1eDGr9JDeru3JSvAqUn2CvbYLKfXucf+MhTNrl15+dc0CfJ0aGwawr6TsdFs/RD1pg4RS8yPQzPpd9lwGam+z39DzdICpifEax0KqSDsRm13YzAgQq4/BIH8MJyKLh+E9RVPMFNaN9fXWSfKhdJR2SH5h+SuGFZSkAij15ibspaFfN2EA5B4fV+FO6vt6miPicBxMWVv783ks9dGqHKTaM/NBzLo2hlDFA0EP76jYbAQWcOFfnyDz/9ZJDztS6Bqu/I/48OBPTlPzHGnc/ffAn+80uHD3Kzjx797//8V0HOP/zDn9qo1HbPez/99NJ0tLFMCyfefdBzIGcuouEkTqzlAY5K+/j7y+fNZ2u5BeVoEm9sfJ1bdqL2faf0LIr4Youlpf8Eg1az2aY7a0xa0aGmmYFsbQPi1VnB+m+//UYOxjtFLFgrDGodCJ47dk8InlkWBYvvarNpcI/aE6ErV2xy260VER026j3J8KWaTqLlsWXmCpABI1HjV0vqg50LYjr7X+uzBZ/2i9nb8KnBiKQcUlxviXBdhRMcw649JhzaTMozwiye4dHjjGXugi3krECY9WaaHuWTQMH5GQVO23r8z/FW7jMA/1dEBu0R7gFWxIv5mfxndgj+RkDkVRnRdllRr1qtFM7jwGVfIqYkAQ6s8O64LyHUQLX5jblRR8K7d+fxQ4fX8Vga2raE8lpGq5taf/c+eNmzFRokWiQX1OLZebbxUNjTwlrBWYdWQq0B0uEkKVKABZNCQ9pxg0XNuie01W9ZLa4yrPYPniLsqLCy6GLy5oRkYVcbytVDEODpqtm/7pggGv4kpmcJ+p+u+kAb84bCwB166NWK968fxQA2NNcfMJK9JRiW0zUf9f7dexxjE94j/8KDRvdYL3PN3AjKOCzRie5iH0GZuqbBuzsbS05YFGfVxsygHbd6ONSVQu+oZcztd0sKlpALIJJ5HxQSR5+mJiX2aTSzMXJL/3VWhbaf7bSOeVDEMEIm7gh3IgpyEuWsjRYiFgJFUm1Lu/IAT6kzJwpgPDJnD1Qxx8+WlUJ246oWTRUkti5K5mM22c/UlNKde9kXsnX+q60GWDFFHkCpQo9YUWux0nfuBmsLx0WhLCgnODXbJK1zUpUgKn806AzLisF6g8wAWEaNmFqoakNWrGSj3qeCELgcI6ClOvTFnHgbRUBCtuJGLqrMG2bd204LTSn2OfS9gvqbbpDaP/ZJHv/+3/17aJLRFmKCp9drnujeQ7F1tYKfombL9yGURxhXfvXNfI0him7O/k50twd81V7/tW4AEftUCpe0vlFH2YBv0qp5FKvWDKh0COmjIkcLxZrpaDJI+CgsRrr6Q1iYRCiHy+TNiElpYMPabj0Yy2PYZntNGjqyQsRb5JFOTUhHDZB4/gK1klPnjBjslJFTY+7N4coYSxlzsVoCnbBzzfNYSet4vQFhUkHjmDRIjvex0us4VtQnA2ZaHE9ksmGJTlU2e+ydLMFelQQ3ma9rriYwWZtjnLejWqDfVpichkEInw6pK9X0HLjHRllZymjpXvOVG91vtf1Yz46ba8a3dTjZPbk9xo2hMt6JxcfkrhyiRWPJvKO1nlpH2GEFLdRRl/KNdKrKld9MUSMKMMpjxoAFep+aJmGdmNlsPxXmVS1/1IMkZlXIYbctIjy9r+qkPFiIkpTb+kLsTsjpS4ocaExHs9dZXYRyJ6dUkV6NjTd5Bo8qv+6HRCk1csgoS9n7kZjQtjxmMNdTKvexBIBUWv/kHpAY6fVaZTCjIcLrfgQgqEUwMgxCpTz1wzR7cF0gFZCi+IxxOfYYq0kmh+uO5HHkNU49uk9C7k7HHfuEftBFdtR4q2h4Iuy6KcoZiTT0g4gRNFkEs/xHmNKVu43sQn+IPnjHClihg2nFD3PKtC5NelyPTgXVffA4Q5kqUjxR/jHy/ZbKro5ZspoYR13s3HKe+8qW53jEqaCUI2bwblaTQoZnuK6yGCTJ5a/A98vDMbB4HO/Rny2HS7ZJYE+VCRphf0ca/tR0w7jcwzVqsaCIlzd6yp+0+jOZBG2an0kcUCFO7wdsxKx8JXdVtqTN7hLqfJ0Epb5nTgJX9oEJQs3LASWp/INz9OL+8DVUvXJlzPScaY/BCFDuAj37DDtoCaHkmIr6SzvBObgiYlBOSokB32t1dgfCPH9m7N/Iu9WuWjKRgJigM+WqFVuVyo2Iq20xqmFu5b1GuYE67YZ1+SU8+Gb5isW4IicLR0X8Divkn96+B7ChKxPDimsMNfzajq1xNcr4eo7f7CgnpUdw/6MzD+pd56vdGCK1UoK8hVmlf7ZN7imrffPmDfFYg2QYDy8EiCR6mT/8/PL5S8Oxmjl5sMt7OzHPLmYz1R86y7lhLEqgNpELSeFIZ6aKuMOFnAv/0QmJ6PQtpQcNGZoYsQjbMBrhfOx0vumCzrXuDQca6e9wEgTkjU/zZBDReHPh5ialZ9cnRR7MnhoHULEGzWZOFKUNbwgjXR9/JKn4nD/PzDKVjTiVYcOFDEB+98duj0v3zvsZEmj+Fh5JU9yNhG64bvRnDyH2PhuerfCBEaiBkLVYv+ncrAthqx1g1tjBO2bl0uQpNSTC01oizLosj3EPv9AniHPdkNOFQa1aecFtq+obItTwsStz2jBp4xTEaywf2qpu0ZcAVY4Cs5owXKAXEnPp/DVxkiJTQTwmsKthldfaB+gwAaziBcWFUh5II+ORB0P+NcbHLstHfRSSAWNcMKaUS1NbZVsRS20tqvf2mYP/W+jhzO6+LMaYzWWw69ZiUB5wC4uF1HjoZI6nT7xwxCKkVTOb1w/NIkgCqhFPwhNyfxFtFDKViSFEwWIe7LRjhKtvuoMQaEHRtqS2z7BBQyu0YXn/5oN9OBiUHd9Mn7TVBAgxQkoiukYBuYa+hdxoN3PydShJW+oDrW0EfabjRC8y1AzqAzxoFRZtMiw3R8JF8/WC6sagpyCbq1iBcdoZoGJRjiYlpSZBTh0olgABIS6wptyMXzXEf4QhVxeON3Ck6H2rE1tnSHsJp95CoZHwEkZACYTq3FhgDybOZr/EiFIyy4q8LUjuUKCMgYIFsxJJAZwN6kaACRb6ADwXWgWqtikyXmhe7UCYjvTEx8KRu44xRQCXHy/WatmPIrC7Xx3JCO/+u//Lv9OXleP9u74o/uKZLzBbAqSXcM+OKwckoEAbzwOSphVjsOuAIoWCIdQHqC9qI8gju6aijv2zwngmqgRx/5teESr7XoPQtn3Ni911c5MUap4/fUYTbz8YYWn3Q8ww02+bJ2XKfUqjTzBWA3QxuLY+ldU4OlvqQC4rs4vrupCJFzWf2UXCNtmQAmWXzv2XFWEpIguAuK5kyxwxSi58rh4LFqqEi6LkUJZmpUBBecHdZguy0nfJHVRLleNIrIFSaU0MOZPrHeU9f/5cF804DHCG1u981nF69v7De9mBwkgKs6Gtg2LrGLWYHoH1s/I4uIbOK6JytrTJE5QQFK1qJHwxRjo4VCvKt2BRNai3l3nxBRZHfTKnyaOwGGYIF1B4z/uQkTy627rXZtY/f3758gWHQiMvnj/nGgCxJHZNZqv5hZ7qIc+Afwp69+GddrmBkAYmLC70ZU2WoGfcPiz6OjoChPqQg0KeDQ2olQJKxLRLYbTNYog2degPzdaPHVMVS8uUazky83TogWPX9S90ZkggHx/aBib2Jr/XG9A6vEe2V/2nivLai1OJQs6sIYgpF4Zw7dF9hKTvfo8AVWX5o0ZBRnbC6LLGVUAGp+zLxpmljRGfCR1ChgKWY0wTS0gVkSdlcSRoaBhVRd3ca2+Drc5ksbsUHORwjexS5wo8rn1FgyuA0Tpmw3IyXwgjOHSgy7a/3yVwqtF5dUlDcfbzvSxJHpc01BMDQisRSH8HHOdSktiVurdxlBjrJ0ThcssmDyzfyx5QUoIwAFeKbNNXcHpVhhW9sIR+Kdjyd/dBHvKUcQoebOdt5IXZu2OrwSjxj1fcXBSSM4GfHIE7SPaMtu8w3eztH6CUt0evjqUdJUgchSzlvN2fk3ngj9JlnildTB0442f0r9D5QSwthupAhm9ivODEyAFyEF7Fh0qhg/gwK9vJXP5UeYBW4eL0vJ2N3cwgQU0vq2UhOjXAnZQcl+WRRtHuOq/Hu5+eG1t4YgBIhWl4wVS4xJfPHeDTCYXWGDx4YGL9t99e8V+ckcwNxpmjdBTJTy+cXs2/2bzUScoPHztOAgyj30jV6r9+/Zabsrrj9avXIuqiDOe92NHrABARjLW5jXAV/tpe7KMBnBsnBZYm5uOn9yJ7OJ0bYqDYNoP3Hw3BPi40vnfHehLt/a+//qamCyEtNdWQHdGZ2ebP2QeviOJ3v3+0HPTJwwd6CHD50Mq//fOftGlvBEk2U5rcEDl9cbLFC1Ije55ZXTM5LAK3nliwQsrzJ3N75hy2q21aqplDFrXyyUJAN/TS1uejxPlu0HSu8rGLQmaTRxFGJWsTGDOCEU9T695/twoEUVoaBW/3/e7/DA0oftVjcs0j655ckUpw6z/krE7xblaIUTIYrzxJBPAPdiVFwlVxKqlUVOz/UA7XRnZ66s31N/ibjdTKhL2ikTTCm18hjLoNHaTXYpK8ue5Ew1jO3aZkhiGuKEL0v0zm2xuz1Zlc+E0FBXuLdMW27rUnGl+hR2xjfJUOSXSBcK+LFgTLhdCdtFNIB1nca801muK8njnWnKHv86gXWNPM2+viRHqbUvYRIcO+/must4bs2/stE6oP+8DXeJi5Q1OsaotbcHSBDK2/+u0NNsznC2fpnigQKkcw7evDEnlYWx9y0UsRVCayqMMfjwR3HB0ta+/rc0+o0GLE4OCgJegknKR947XI2yP4KCdA996JKdQOIdZHHy+yrMBA+AatC3Mcpf+5xSNwtRIISR818epPXmN6BJqcRClGaY0arJ9WjKEabn5mmxtxUZRvQNCAfa6Ji646EA5DMBFiXQNSbTzGJY4SVmJptYgMlGuQQcRPU81CtLzlo86+9Q5sERmNq4JE48VEY3n9YS9FU6lUhNyHiToOkWwxpvuAZVFZSl7AJp05ZSwc2AIzeONufRJ9FpWiiDfDXL3b9BHJ9si8qqp+M29y60/1qF4Z9jNvVqToqnMs1vs6gQQmsoG49iVg0EgXF9T84oUReR8yBMCHFWzDfWuOVUzN/kTQmZwxm8/tUjX0bmm4yNYZ8C/t+n1w9+3rD/WqycYRWsmleRnS45KYXUMa5kscmdz5Sp/trzEMo5NoDc/O/PkiBBXSGfYhKV0yPQfRsIknj5ZPcc91czZ6QSDEWichIRQ9WNjFWDFM2RIJTl6SxD9VULBlKAyCRgGlA/rIGpbnwIyxKk1j0oyP6ajtReCDkBT3uufLAus/ZIiLv1UeV10p7uPTh6poZ2+JszM1+7gbpHn4SHDfZ7NUsKaLCk/RY9wLRnMIVS2O3nIxvN/xZZkUaSkYDP331QZc2u3LcxSmktSV0jJYI/TkYdMsFg5tm4GWBvFM2cgZcdj0q0FdLW1s4Iyd8PXOxF01nuVsxMg3CX1DjDdrtY8OMepNKukPWkekWX3fWljSI5w61LYs/6QnYztZtQipM0QYNXatRMq8Mua5uDlxGdRSUs49UFWiToPE6J/EvenGv5quBYUpKPsNA62RMDjViGYzlIFlfYDMmPBOA6ZE+k/74KzDAKNKAOOMpGpU6cUl7pARtUH2nwQZTmI5R2SJykf3j8BOnsiTp0Kbookq/5ZZKsscyFoCcFR48LDn1QSS3MKOvBOyr/xBUTraag8ihoUz00GOL1ij9brK4Nb7OJ1WvdbwoFn6KTXesWnkJudw0v0eRPvbvWyJjmxXQE3xV/5eQaympMqEX7YUF53YYh6kgOC4zk8tW3gQsMfJRilljhD+yMTAJhkXmH6DSinDdQyjVzB5cHM85ri7wfmhLwCQSk6DJHv5bzxd8EdWNnSKj4vBnwahPqYZ0OUY13ldj2W+FTyvSx3SgzHiSyrnYeew4N41NRUwLcO6EFfu0nYb8klJ9rJ9vwIYmd+ldAiE6VC531vukzMNBi1725uZlttTBCx3NzDV21jrunERDe5XB6M/9qOzgt/pOQnHNkAr2w3oEd1NY6lVjPrsGddiQYKhMiNKd14+f95Rnpbzk/w2lT592OjDP//tjTBKZPp/+rf/RhP66vX7t58+5Je+3nGOzof37x4/e/zmw5fXb4S/mmeNhfUJHZby089P31r/88Y+4Me8vklIj+hluXzZLy+fW+37l1/fqaXa5+c+OuaTwNyonsDXr8+e+TSURf9PXr052J2Z4wO9JjNXg6potbs8qhtepsbl7td3b5xnbeC/taDkwxNq8kyuKmic3sENDk5TQkXVIFKGmXC+VJPkl0B1PMwDKuWIDcArLUpzqKJPLlo6q4LVDBoS1rh0FnPLR/PVTURzKmcRAgJYukvDl82r742/8B+rrc3UU14m51XRw5pCmpTCTqgMlsscyKqGtfAov1GTwv5zLGDMH55gopoOo5eZw5ynx7Ld7o+hZBPH+Lu71WwlBv8CK1JaHrhI+RjDVSr8VWqopXir5C0POg0yNl4Odo6oK9/lPt7LmzO00sBRS0yxoPHOtxdPn1Oho/Q7etCJNcVJmSV+yE7znLde8aI9DzI0BRGnNBUfdGEXSy0jleVw6+91pRTRBV1r6JNNg9zmBAoTAVeyVri2qy/QkXlBc347sYPsw1pkYt0XXS/m0Vl9LHL966vXXOzzx8+EoUIBYcCTlw6/al1uy5I/iarZj090WWn2QG1BMAMDqvNzqpnNNiAY/8ra/ieegbROkSulNUK/sXYg6+0kUqlE3PhaYsxKdYdc8+0CAwJLeoVTsc+K0LywuwIE1nB0iqEDalP5Ooeq5/RlKoCUm8/RS99oOGLazquzrJAg5dlzmx5N2tSig9T8Hgn6OhaMZoqqAhe6iBERCdyVFJv1ueROMVnMXf+vHgKuxIo61/htz8wO/13NanKuJnIG1PaSuFbjm7aJ0swGxkTnYJsWWfVWlfeHZNFmhNQAwaOn9QHEUVRPFGSCBASpjISWF3CtjQYRcCpoa9NUL1ZSN4V2M90mglLEljFLaexVFwXp4NhKSlvFNgU5uaN5ADU21kA0TKDv6bHM7K1YIvP9z//xP2MS5zpISMKn45ItT3/9tm+Yg66imM1oCce+O4holu2sZVVFDCqOBVFdiUZQC0/tHq7P12MfrehDKqRjVpdUDL/Y9WQG4//40y+vPnwxXq1n4cg29RFknV1Rsiqip001hn+c9iDO0yfh+3Qi9RZwQqBsp2s64bwoYapsPRk7ZqZsLy8734GLaoIOt5rMxDfzgroOPkrW7W0SW5IvrRSRf6LRtsBjWS7FeWfelug9Q0crKpB7BfwjNL8EyEgyqft33n148+xR0xqqPcUbTcdXAs9O73Izao58ejgbPeemdasopz0lDBfZBM6qsrIqFwNu6ZTeVO7GJOC+m1YP2EDsgk6mr6NPJAqwsMauWtPWYTisxG/ET9GAy8M86mYUuDfodSyP9FCopQTH1BVcfNOKPnj75g1pNj/aJnfnZfclFBvC3757296Du/e1W7aIFN+brjFQQaQB+ZQvyO7Zm4a7ip5RrakgGRKu5p+WA6M5vhxKlppfGfeYZ8QyXtnbf1xj4cOBeuTkAYgcgPgy8bIereUi1gcIDoZPn1D9OqBz5d2tQvst9zKuVcvln1fAXjmllENGFkXyOEzgh35/q/eZ3NoY9yDzX1Xb1vbE+yDk6w/qgcqXhB52dn0bJ8OP4ueChd16BxCxSsxoq/h6+RnSKnZmOiFHVBmiJuKTQqVC427yKo5PnnMCe9tT+ZeaNLvHUX4/qk5+eXKLEYzTyTngOayw1W24mLqkEbWlBTyOvC1DpNx+x9GVcFJPnqXHTHkBWOr3wufp0DwuyjXd/si5UjO2AZA5mYX3ug7sCs7A4m7I9kdeoC78p0w0YP/W5SOX75Am8xuuW+of/l5CXgo5eCxFdZid3FICOAkH+hDwBxi7RRXlRtYfrj8kRnMNzMXsIfEgugpMBjAepD9ejVuJs2HFy54hHUXc6uCRX/SN1H4nKNYSSzH1d9hLcYGTxV7kuFGDnvf5wsbEhD6W0/B4ndb/4dP7T+/+h3/zDy+fPn31+o1A9PWnfb+zD40//OVPf+qzo2/l+fDixTMtETdt4x0qmKj47f/wP/g60jdR/uNnD9++c1yERUFaNKeKchpb0VijdufT+1ZBfPyiXfhkgTS3bIWkUP7dxzeG558/fRknq8o6A1ZZ5LI7lqeT+QxOvXtrNGTDew/7iqU9BjL/9OKlZkL3wR5mtd4ahr6jYrBGjG8LpqsFJ8U3L32PrO+lNOfw6+s3ptyNvP32+r0loFxxZy3nL4u6SIn/R5hwjT+fvayDvcYGyNq+WK/q5QfO0HXrqXwroMMKSSZzaxWKStonb0FOs7oHQsVLOwUKNLuKfCzH/WWEU3HWoIhcKbOWtB7+UeuUWrUjs7nZ4wbjWJ6umcjsa3kaka2uBmc+Sr6TIu9KhaWCs8Zujk8b9j2dbL2J8IzzIiA2Aa+hqTVAbBIoNmpRrlYDRpwwUxj1CWuLa4oLakHC9ITgcatcyB2oVajhbXYFquJBxKzyYl87CbxxMZbcmvYFqDKIIlY2cUGXmW9pGRMkRCNsoNhq0noKTPR9gGbgLaxgY0xuvRARakPHz1++aIHrJi5qABoS/WzqyQicia8///ISzkUaPh/EUnRLGjAzD/9RLdD0O64HBmFVAQwRONi+sX/0FFBV0Te2RXbHUSdDypIfN6DpeDwCsxXnhTn3rWLAsxUKYzMhwZKEZVeqiTL9WzDqsjKW2kHKSk3tgpVT4B+DoikLfra65M3bN22J9tmoxpKYklZWASFW0y/p66EIs7FUBOvhC/awahcGXB25Y0FEG4SMOD+BxSuaFQvhzaVKVU0KvUDycYZOkWLiyoq70IayAmBDrUDrta8UFulTxXfwDjegzzgLUStpICvVNDNlEsEqAWNTPUpmkym3ABRxZcEJpz4QkVkrYUpklNw7B4VROYTVoM0MMa4sJ3EWC5EAUrkOsmLM0E1fGBEDJHbTN5TFplkv0sUvLArSmGAshff4869xfFmKFhT5T//jf+JtKJ0oi6viulFw3SxS49q8ff7sMQGZuOFJDYHYivqO20UmvK3R7GvMGDTjwwo+OqA5OtpKy245zBZczojkykSsJt/WUWuHfFNazQkRD/nowa+/vkJuu3vvmFECrLVleFBteFhTZM5Pw2xg24IDVBW/f7nEAvGGS6rAdNM6P8LSt6FOMahaxHCtmSGeauhX6s+q9I+zXKP+9ekN09Yv7LXjmXzre7UlXgOrQ5ZnmTeBlqpmiwul6FLXnPGAZq7nqZq5VkMnoRRWW0C/Dxvvg5GjEGoSr+EEn5BAQKpPQmIhp3T1OJvigZf6aUXgzihTZ268zh9jY1JE5y0yyD89J2nSmllo+dY7rxrMrltGOLyO3pPp9Ws7n+TNDBZq2v6rr6Uz8MSsjqv9cN++2Z+tkWaL+mJUn501eWj92Eck8S6Z1FZGIkxXAUmIYP0qqeJEljWv24tBglQGS6O51iXBArcm4TLfLLW0vArVuiPNlMyQm39ZaJojh5GKvcW5ApszacKrOj9c4K9wFcM/srqgZcbLkzhL84uWc+9J8VtiEq+a9Su9pmXZK8KuPMBX2SVHpP+9G+Xl2dIjL5X1O/EEXBHZgMr5JoguSj+volfZevYberkxsjKhqjGuRD+UJRtQHvcbBYl011gfQXEP5bm/GFSd2BCACAY1Bkf9IWOKKNF7MoFE4UNtGWQdov2tOHUmjyNAWQNbiaxy9wesXxc/NyJH8zJIHFMsKoEffjCx5HE0QSl1iJTFq3SdH0ZPxQNS0Z6W7fozaPKft9fLQZ4eppEeF7YuhADm0HYJzdubYVzM9v4USRpROIyT4EV+2K9S3ZaL1C6bCcN1jc2pvSxRfiP1giafgscwrsy3sufv0f6VhqxksHox+YAWqcCurpVtWPwNWkqbJCHodi/lPvlHjGyVisMy9DgIjCT9Sp2Ru8mky1aAwKBSTRCs9rTrsi/A2KtoiMfAjLbaHKnI9rETMg1a6Rjcu//mg/PK+h7Wz8/tQ/vaERz2xt1/+PPL5+KDX1+9Mztsfb+pSBkMm/7j//DLq7++43N9j5zXNZQzHsxaf3r94cOLR4/+8R/+bD709Zt3AhrfFxPu//T8abXGOOvnL397/dvLR0//4ZdftNR//e2VmlUsdcdJO0/emzpoiNRgGUJozoAiWr5qH8nSaJXxCMOZJg/sGBbCo5wJOCXdOJbWii8igMLQmmn9nkbh+HVBkLbm5fNnPtRuHRQfCxraBBuaZOLSCIoFxXY8ag1XI6yFrMlb10ebR6AWM/FpRVp9d4XYNT6aFA5ZY5pCqoqSZzaZbvWfaqaWdDkbiZ35SRSq6Rk2b1c92yhpVlO+VXagXPmB2kS/sq1I8s7PyzeUcgXte/8wci9byi52X5kVoIiThMfIyullhXIFnGXOYsNU6389Vnr1ES4SAH1ly3/DHh4mak2ImESHsfaqQ+V9TK34GqiaVSOphc4gF7AO1GkmisV26TFuz+UG7GHVtGkRiUT0PzuXEcFiiYIiskGpPKslhur7bs7p37Fz/wQtbswOQanmEaHQo2go8+8sGoNoL396hk+T83QvTBMs+boFA0aesz8dBpo2mwX6ZpE2OYmX0MBaxGnTFd6aRNIRxQRuiScqqUyxlfUX6o09qq3xTr7JcE1SQT+Tm+THsk29bc0HqhFNV4ulExDhFFrcu/tx8wA+wFVciUcByEPfPH38/u0bOX1tti/u4dqgc5/7UPSerTUW5wgwyEX1AVX6kZ7YLF1ojvyfLTDIo03qpjiAMz8vxUhJu2UrKqurPo/+VTUWXWhTseO9mqjsWcJtmRQe8BMxVv3ZUIRBgeJmS3TqNuKZ8cEK0Rn5XaNX9RQH1kZYQ26dWP06A5E1AUAteGFobQE/iMlpC9U5uOZtkEG885mH2Bq740J1ggA7NdFvxakz46xiVY1MobSJOX1RDoCTUJJAaczbLb0x4gYi+YkTLVXRggNe8axHkhPwMliOZifFfv308T00dPn00VM5rLB0sFqB9p27jmIgW0JxiPLDZ43cEG6ehoAx3PasutRLMRicItmAzq4gjYXVV+Ob7zjHVgXD112TXLplFm7m1pobXT25d/ftOxOvYvp13aTXohT1UxIbqMInEo6FpNkWFORg0kq/Cj9Zgs/f0hVGcKg+6BJ0Ipq5CFjXJ+8DVqJ8HpornczoAwpOn1k15H2/qQP/KT4SCKMVaZNZm07U07cf3v707IU1P9hiQ9o1HVV+fM66DlyWts4V8nyCXivw9MnDtgF0LEDEZzwWntpHf9cxFPZdpN+Y8Y445k8ptQ5MHaL5GiM965+QNl3E4llf2KY3dtOsgqqtCPl0LP+3+mmje3aoQjppbx0kXWfdA9QyZbLCbZMDbcNgiFTWADO9k0k7Fhp1RkvtoorKt5O6VhZsBGdTC78q4tovetzCzk20aRpQtjJ/V+KxxShLLSF1w3bZRmnBKBXfhb9u0oD/kZrVT3Z0rcLRXXVvLVbZ55Uy9Gw8jGltwIOibM/h8ta1m6j2XBLCwv39fWUhJTSyWjZU9DYVgx5FVdlgp7SkdxCx1nmumBoNF8Y1D1FSvkRU5wHLV0oeZJB5ZHfHUyelReGcnHERozfrGMzrBbZ2TcjFhYDkioLD2p4mwHEHy+SZsxg9ybrcp2AE7/rxNllFoGucrg8A+A1BlMuBk4p2358Y8tCdx5uwz4084QhgPZ/a2pF7ZTsFgvD9isAARyrEl2mUJpuMeCeQlbhKrXhwo8NV4cn8PMbUOBhTB1VFDqJqeiXgOq/cgHTQ+d1NKeXYNXGVGxW3t4NwXn//jRbvA3YI6/cQ48VlEj8Ag/cDxwHyr5/DeUAO9HdMu5G5/MO4v5CV/1Ly3pZeUTmPBJPL0Ka+vdmf+Vw1n+8LSj+9XGGVPSTBSLmhPWpdihpS4b5k1Mdy3759Izbw1a3PQvOnT5xj+NyXJ1sZ+fCff/2tRuvh13ef7O59/OeXvzgK8NXrV5yxViJUAvS/vWI2Tx88eff5/VNrXT7//vOff/7r//5bY3s6z1/v2sIrKuJR+WnLPPhJof+rxhrv2GqgKTDOauzABgM9EKNSOgkvWhx876/vGvTntz47xEKI37F9939++fOvr14xkzWpycZ45JMnzxEvxpP98YuHpk2x/dff3pGDxqdVFYKaT78bFX72pL2DVWMg6gUQKlBmDD6v8TK88s4MxtNtw2t3pflMgYM4UPvb4u/iRc53HkTzpqnNEcnTSG+eMFXQpxnmqaPQLpdokKsINTiJ7YTR8E9lvHeF/Wv5UBVQ2LRX8yLL70cGr9Aus8dzJWQ9tQEOTj6wdwM8ezi2UYKAe+1Ir0+9QGn+UDtHEDnnAZ2IyjKop1ThVli+e/D4qKYfbJBGcmkhPbRlgvljjxlhQsodH5m3K9dEd8t1at3NkDe3TyQT8iy2Qf0H5lMS12ALB7EAoCiCtLLvwtM2qjaJtFNP0NDRsRc1myUQaNh/mUM+IyZNy8O+scL6nNA7nVNBKrZMBQv6fsz1i3MUTa1/+/bTz8+ZYiYjrHckkTUFd+++fv2uqOTTBx8OQt76LPaL147L9u7Ve/MWLA9AfcsjJyeNgkOwzAQBrHDBl28DtB6JIT3RVfaB6g+WIjC8BOIylK6fKhggY4/iQ0OBLodsmqlaevFGUkq+UwLcBvX03tnKowc///RSb+HD27cG5r8JbaQ9vv/82Yu3Rg19KsvYvzAtmbS8/umTl2C9ef8eLoHlbCUbELiKYdBQ5Skmds01Z4vpRw9Ku8yUdJ9aG/N7H6SqqnBwagoRpDF1KpPTbzHpJ2AjQx9DY14f+mwwDRs+A9DCjcfCxwqoDhbhYGe+bo0sbIGb69TMFyPwhMwhY2ZFibfDhImFw/EaR2pHHZUOX9JqV16yfiAGM1rCO9bbIObqkQxbKaT3PvZXt1moBVEOXndOYyKotdP+E4VMFGvooXCxtUb1FgzdGlwwJpEra/g/i63CqsjFL5F69z/9h386dfudjeEG/J0NnCk8ePXm3RPTS5Yw3X9gM/CbDxbIfbKpalOu1RMzMDMv2cVeLc+iHSu3+HcmbVpHNcIns0MqCoxnUDDP7bg2gyVO4aJ+hV8afdmyOSEOCqmKvNgikTmGSFVCM91jCWSWFqtbTKJSMffcR3a3dTjbK50NSpG7qYZ9Fxq9Fz0CVjUwa02HNCbjvXsCd7Uui9HDVs3ydBTWRzo2sgLV1ZHqXID2NnhZLVfZ9GKR1AEUOYI8KHqyg/W5vRIwko3aqhIZH+I+dIpwyu+zD8SIpOs4qlAZQ70dDeD6UU0mnC4p/VM4l2S/NQZPbcR2Jdjo1oxW+HiZWQABauGYL6eN/hRfr6gB9SWyG8hQkhGzIJaEHs0Ry27nO8tdW06z6xwBUfBr7RdpivwBzBCzBY44XVNVNNCykQmHdq2aCo4JBIXIOfSWqZrVr//R7N4zobmBlFSl0sWqWUY/kWoSmXpuSGYlZfDXY4U32VotBaQKi5SglmeRJcq9kkoUgBPyCqUpN4cMLJQjDpB+XnmUXSl5hit8gd6Lw3GPy5OXH0M1Myv4B+DZbdBP5uFZs9odOP3JSwFFYPQ4HKXjby3dyl4ZjiTxglUgzyMQJJAHGXlHUCH16N2VOOLlmDRGTESezDdS/pACP4Ffkun9gF+i2MMZ3isfUY/98UiwublLApUap6cIOInqJo0ejhoGPYxV4Mq6EoH811hj9Kx48ON8EgvWcMt/7k9BlnNQJ8Mh9QhUiSdjhCfhAxa4g07mcl5Eyrq7W5nDV0B29TjlTag/Cl6vAxV812g+/IywzDjIqTLOJvmb0MLmpd8p+fYwqN9feRppV9lB+E7BEVW8/yHPoeoQc+Afri/eT85CsGR5afCgW8khcidJ6f5VpwJ0y+yh2PMgxXJedlLmcJL8sxfibSs8PwtzhcJOlG5FjWCoxTPO1m8U7dV7B+o/ef3b62fPnv38oiXaXMo//+3Xpy8tgP78j3/+B2tcftMaNYfc/i6TyT6VKp7XCor4VQQfOG83Z811RxRwYxtbsRr70SsfGHvvVGVhmC0B76y2n/vK52gDnTEqJrNGyLChIEyz+NbnBfaNLYOYLdf89rtxWXDrNTimo/PIP4iH7EgWdLw3qMiJ2R761fmhD1FjzAt35JYrMxXafPtdnxCwY8A3X3598/aXly8tDfrUGI3BLwQEXCsjQCHbdoHyoiyIeSnsQ5lPnFVP4I5z+ZSo5b7VUM1xjQeHW+3I0Z2YJl16Ti1KZnSZ3K0qTYl5S+pUVqmjVp6wVnfeUkrVJBpaqBkpwiBFrtA2C+h+Tuy0HZAqC2/0nftV9JqEWZcSTMN7BV2A1dDfYruMTvHyVH1AuFDM73kEFiiwT0DjMRICuGGm6C3eTRIXqCjBkTZQIKX5IynDVvRVSHMo2KB+JttAX/GiJlgGMwMeidVi8rhjkAawW1xe1A0OG5AIPV1pZzWmkAsqKbRQz1m3oiOL8z9/EpUx2khqvJ+CGhuuJjhZUZdRsPHZORxPimY7tMqhk/7eefXeuuLH4iUL/evytTi+KfqPdmR+6BO5tpfggk7AE/Z1rvrTvprnedNWdcDScMFS3Uq4kdrYeoPQRTUaayu0E+Lmb3C72FLFbPvKWvDCSsQakvefAXIAZUrQlrVYPMI2IPjy7cmzh9Z72x3K1hqAF2o7/6plGsWjRCszWdGOGRhGZciel3PCpsDpw+e3Ymhj/EElbTquk5iXZJdE7BGNInhyEz6R2IZAdaKctWQr5v2P7+uosKWz3DqbVPCBaE3tmN1sfQp7mdS9rPdLElWNvnZVCVakT0WPJiVIEPtqIgNAR9YYcWhqZB3Hwe9w0mpQXUc3qyc4xBiw7KRAH08bl6xaCloK32u1wQdrwFWZy/NSJhxTk1lHQ7/pDlo/JGbFOCxH9BHdZqR9xE1M1+F8Zzx3JMFfRyWjPQAJUxDHJd79j/+3f0JcsxiCwy+///LLi19/fauPwqhN0H50JH9C78MT7MOQc7rUA+tAqHwhmZATO/B2wNUX0iE8y/E7/4iHdWqyT0U9fvCUzCzi/8UnHi2L6oCkTz73wr+/caLCh89PdbvaI3XkYmFRvo/IkK0mkMUo9CFhVPhIVniJE+NNPeSPit0JsfEPJzS33iYBNb6uA2fSYB9NQN5kZSFNoqs73kosp8zmfGGhkqOAMLYVrFleu9Ag03FU02nBpIHKrMsOqbrSSFgV23YT7809WeX/wQ1cpr7I2npVNdNMN4C4MECVFbRzQHHvySMj3uxk39GgpepGJnTi1LGQ5TWny/tzKO6XMRkEQda6Fe7vGE+SVa+ahKqWbdLPMuZC13N1C3KHONVBmidHTF+LoBTCNH+IBDYfRK2h6tiBtae25xNINllxS6A0uoOEO7SYx7nvG5xWvtZQtbhwWBHiRh7SU9zTOgalnDfIZtjxhLT+uApBIGJaS0rYsIGwUgfgaZBSQTzBFeLgKDLpoWzpE+mBGRnL4PeP2Cu+52EIzzIkfNpxX6UbDyN1UA65brEyiioWTs4qDzvLREr/jjoAOGEQgLjzi8Hpuml0j9XtBhWqrQgEBEeHtTGV62Fn9HkI81t+6DUK62h55tPDeaN2QHJb4OdADqcJaZRDlI/oVTldxe7dHHq6Oexe+atuCks/hLk7wIN//s/Z+Re1F9ly30RUwcj7I4QYXwt60iPuwD/Z/A7g4cnT7YJvOT1HQ0hwk7R7cVDs3aCdUgsmfkQhE8SN1AEYqFNqJjdq48w1qXQDW6inHXdhPAz28u+Iz3ZL+CGlMhz6RvMKVH1vwIM7BL354xXS0bAbD4feP2bp/lLxheN6/FcEREF6nxK/Iy6eO6bSq0QYEBKrSWQVeScJ64+l4HV+lmUmcKRAGoHt9WB4vw1X32z68pGsJ1Yk+wyM+dd/8w+//G//+79wiTyMhfp/+unF315bB+ODNZsfvuOITJEyd6GpceBEXpord9S9+XknVBt9Km5ohXELLw3ZNoBqWuHhHVs6DXo8e/xULTOC2lkUjth88sTgpV3BGkyNSwG8CF7U4Jhprv7rXbsMtYPvEFQwsWCRP8awrI/ufXlv1NUorA8S6zw8dnIFXOq6VbwGVzXq2mYX/7xJVLX/gXVI4jb/TDMTN9+nMRIY8rQPnzz+KOjnbTm6T5ZT3tVhcGCDXQHCl0WltREaC/JmZgs1TBQbf2Eb51NNkXbzM3QVU+nH/00C1wTx2zmc+RPDZUDxElddW62ntlPZKUkFJOm0ObUPFtWlw5zM6jIzAHZ4m96fbcwkbtG/AjKf9IwHNLkHpd+ic1QCykJg5l1bul3G0PzRCdQyan28ke0AOIRJOTArhKrDiLLMNNrAG8qhu2poSJOklxpnbJKbczKKWGqIwVBmA/x1ukjqEks3BRnIzUEbYJJ1HsZQ607ZpkdrYqOejsQqQCbugTQJ30QNgTAVMzwI0GWoY9HwbYPZwjm8z3U7idv34z72adk2dIV3rQDLKiTvjESBUwdl5u/ZgcFEBcVkGh380bUBOzsb459UqCyqUqvOZDTV82lY2kYbzcjxk5GaHmrdMNv4ccIz8C+nmtUMhs7ABnGbPSjSbYbEWZEGGeWdcVqtUW+qxfHWFvybX55oCJn63/76q2hSR4XMLYtQSYE2G9A4PWJR2GL0MdhIYhAbKUVkMxuA1kr6glkiz3RDgVrCzAYWEoxVuWptxVcIsx3Ruhoi0sNRlRWlqZRIGlsDVM9c56y9Q986sGtH4LCTWWDD8FQAfnaU2bdIzx2hz2ybVWtxiJpX67x45gq3skYeKZq3wcbIr/4/89KZOz2c/Prgmj+pam72g4FnuyGElZ0WQ2iDxVZRUDC2/kE5ig/Ar6tjoY1OlXqnRkcu3NVNeQBLUEpSTh0JwDzWSKXoTELejPPuE4cdOM3TRuvXTcsYmdZDflCnlC+gIOR8/ennF69fvfOtkplC1itw/PT5PQ9jQufRs75MwSzQxvf14dnalMQtyhY9O40BO1yb/QBO+1GbrYx0AhSn/7ffXpkbSC/3+irWxqGF41sb40OuzMUOemdQFpjLVdWKDdF9RtMEqP5A4yMtFiKLEl++fOnYJvM1yA9HHRWraYgm66kH0TBDjYpN58XdejXVQN8+s6+0msnWRdGIEkj5lZP4+k5W2vD/1zev38ifDxvO3Ku8dkrw8r5S7LN/aPrSCij1UzOQamZktAc+sXDKNKIf5o2+qVIGgaYe1nWCMFKs1U2IzZ/mNOt4LBCfpTYx4jV7HVGqB2Ibdkgcc0BKGW1A/2m/1a6qJSbbNu6bmxokVYMXqxMIGUtAg5ZU3SMIrV6wxnV8eDLDpQEz8taBQp0hoCyIFGQkD48Yr5ohJOmwgHxuiRac2WWRnYKRFVadRuTJS7IrtZ/59FPhFalmBLOKM8M9carEktU0GgEUwOPFAJZSgWAm1VCu5smHkig7dBzQ/cqyOrj7AQ78cSt7OQrK08sQ7VJw0LL2gHBSDZtlJ9Acetwzg5LGY4jqiJLAvFhsJRcpfhOz370qJV6irRboNHUZYEmKnSLcYpgNsbQpXzfAJEiCwriM/nWfGo8kI3T83v6garKCeOKN60iNuugZqtCVjV+oKgIXDfLLu4zSJgFMlDOvtIb1pB/UZQgGyqYUnHgRHPxGYQ1eyLP2kQnlAZuEKl1JRdxOBYcqb9DsN7pOY+3PsCUomfdTyQg/kM+DV9HQi/JdeXscWSX25rwe00uSVlL/TzJx0QsXmUw2nns7AuLxvJWC2VKlKN5/qC/vnsrZm5FyK3JokW8Ir9RLROBm+WS49AMW/W4upirVywgt0SONlXF+aTATy2Uzo/DkH76Z7ZqtaFRKSWpa+SCPgdEfzdJVjRNDLGt4Qb9b89ER7FbMt8DwtRFKrexfX8nv9DkDJ4Lqv/3VWZ2t0TRRrNXfuZc+06tR+vzypxdaJSVbwv3l99fvPr79+MFqy3/755+1xBboP3h6X3iCTVMEj+8+ePP6/fPnT4TbPKtRUpuFP9h01hayjMtMZu321grffWSBdR//8u/trx+MHHpTdS3NYqEnBuyNp35688WJapoOi4VQ+8E+45ZEOrfng3bUuA6wRGN1f6cTNRGnB3H3qWnVfUoMOsfAfPj22XY6o8I2OuyzoFYjNMxh4erLF8/+6z//jSt3nkzVP+Rtkyyqa4iaz2gXqdqtvwG4lPnPKTdJt0Zi0UhOmHa4fW3gUeses0BAa3+Mcxe9NPDklSuM3qk789hnREB6xpED4ZUqzlIzgH68KdQIJmPLh5QX0AiVMnmqyqm/5q9SGcLsX87V8ZU9tX4NR2C5jtsABBTV6yFD76FcQeRE6yCPmIt+lITRu9Ejv4scpLhihbXRk+CNFVKfxvau4576lLJd4Mqya5k8kjNoRsRr+JL01crEVkTqiZGJPpv2xzE7zgUi9rWJveeZN5TYXtu5XyB/t6exSSPm8durdw36TkYsGnyNMhVYaI0y4/Bf7jrx5olQ7H9//erfvHzZgKalOfq7wspvDgT/aBHdESreMPz7JwOUTRzVGqb01n1R2bGcREUgW3zipsbdrsiduM8fyJ5V7JOgmF1mw6mt8i39zN4DKJYzjE2eojSxFWlqfIWAjfR9FvNqKF4+K9KD2JQcKW8FuNp0X2UUkRNbMdIX9dDQYK0NaHQLQvYktGid9gNHfxogmJDJXCtE9vcs8JOSTu6YPdABaAH9bEP01Pm5Bc3OS+3YK51//XEUwVIpktD+Mvg6zpl/Ng9dVWoGphllZOipq4z+JkPIMOPMzNarUYRJqICqo6C38LMxVyBgyKOB1XKJAjx4sltFopypn4UqwV6TXSDbdyfGe2a2mYisnOKEmoE08F4tbm+qhSeAo0aFrldfhIHwqAdQuEdGzBZyRLeKp/iCrQfNnVBNZjeg4bvgr7u89N3/+H/997aGEGQ9lU1RcXToN2ThrUELcITcOH311snKmETXV4cx7wu8fXXCmkXAzFou2jZ8EnbCbSFMRtPCFfOqtDU/VjckE7l/xxdwdSIiyTlCDx701XTyQlz1FHPFQyRokCeNOUHIJyGZHq0Tsb53/ac+L0Vq5AlXAmGLi/xEulQVGa11a2aAjKr5BFrXsx4k+CJXcxp1xIvP2h1PiAC6Ua0Yua54VpQQ7rAtOn/j3Jv2mHchj3UrqwHIgvOOlqg+Vl4TpR26/0ic3WIyNMtA06mkNrJxX9Ri2cWrMzhcKgUXSLIpIEVToSzGc8IYpBRL9HL082sXHYj44U/TNXu3c25nN0HKcAGVF+PgkwybzAH1yrds6uGo8IDkkup5q4GWeLk6O4xZuXqq41Tfj8TjR9N123IKIxNSfOnhghfF8U3smWM+NzIqOKXJvUhIxsmyQt5mu7cIG5vFuCuo0N5WewPeY/CqBq6qa4AvLMMQqmWWKMv1ji0M7ymw9BX8A/zAXE1UmDCRzBn/CTqX009yH2CYyzMKLjKuPMnhoC79sC+JRc1zuFEljhi/s5m4AFSxqxF5AxCCs1bt8HKkJEUG1gINgODg8ggkHCt4YfcQ/vgK1KrGgCzdi8OId7PAUF/8RkD1KzlXPEEGJ378Vq1CdaXvVbCOcj0eek6pi5GbrEbQH2FWegQfWgeU55rY4bpeyXW7rsTpF2eSjwTO+ynucH1JY3mym1R3oxnYiztJ33k5Mr+VHv2T3yRwWL5RO+2M5cFMQJNPcjv3R26H2vN7RHHj88ILW+nVF+WWuBvYbxi7yTa8nOVPCcs8WOcOEyBh9sIC3jGe6LpAH0R+ZR21R7sRwIeEplJEeN4enV7yg6WCe0LIuY8kpS6C6yGXXuKpJl9t/uvUSyvaH9hxq7nsoAXbAUwFv3n76dWHT88cNiCa//j53/7Dz8KVN299ROh9u6oci1w1acm19UOk6hh+fssnya0wFsaJ2t/bzan7fefe84dPdYVffxHP/e4E6Xef+q7WDqBrXeJWa+9AwGE/R6zQn5OCTFCvFjtd8VELk3e6S+3Ina8OYfM1zJ3fZpKhDrYdlkZAHJZG1PgjqD7qqTr4TE2rxA1j3jW+rPlAqvX/QovHT56+fvvm6eOnWmonajjUSPtiwkIrybf+pkvUESv3Hc8C4INvui7JV5OXojHTuZ++PdyZ19NZHaETr6fcWt2aldrNXJxrbUSeAXmZ4oHD1KfVKrhMl4kyOcwrGc7ceKWmeqmzhcXic3rHtE7ZFC7bTPEUlPLjitDLAyxxLeCIQ6dSEkMi21o4oKAr+J5H7V1kZEUjI64QTL5SInKUVSoXIXOtgyudTGjyR0Jwyts74hmJtZEa/WaBWMV92jdYqe3TkJ1VYQUbjTrXGRwd697Uf208jjpsJKjJXoMi/hHiPLDRw27ydt/GgbnzAo8W2IidGr/UnStbH2lGcGueLX1QI9QhMY1ghMOwRVDNQbAQQu9UAy2ziTFxgi5ofYg4+eoE9qZHrGYJFEtjJ3OV8x5EgOyoSMZriImrkyv7apNIipBaRQNRWw7W2b3TiaLAo1B6a+U3xocA8oay/MIRAbHYZavmoXUgKA0AAQAASURBVNY9ziF99VEOy+4sbbpndstr+wdR6PgWX5VFeGa5xVcpq4GAB6bwpBeq+AL3p/YH0KgHFv773VZe0IKXLFugSIu4I0UKzV4ir6Xt1bTmUvYBIprcNm55hOAShctUPzuvodxCJl9cFcqSv6AuP0Bv9IxIK6+ePXkBiVMOhT0Jc3YXCvM0pKgHAqDwe0N1vu6EExMpml2MkLElI5lKIZ7/cHAiDXHm0UM1CBnyR5XwrxA0ZzIDrSbMKlKYt845b1k/8yMPf/RzOBfDKMYYN4jShFKVRSScxwCnTD7r9MkxyrU7qDI2LeqLFwqBZmFShC1kffDkmYNrZO7TWvxn5X0O7Pljn0bn4Piv/+M//mK95Jd7lsE4CCnvQ+oPnz5jwdae0YPNCkJJfWjft3KW89svDmX+YDbTpM+WvrUW5c5HfCU0krZ6BkHUQ+WK6kZvs4LpJPpu75MakhE2qLxBFDbP6yehbC/Jfm0VpmlenBfFdvBZu1iw7CeJtGgkfVEf1qwTM+zEzho4mZ+SaqPC3lrnyYcymHTmWqhcN4SO8BjqXu17cmrpt7s/9VHkvOM5CNVL9YR4OXIc+uLGzy9WNyxhqrLtkNo6G1k2aUlEd7g9VG9zWBbTS69+ZBBmDB0sUCNC1ExfifHNgrOYLKxmZuMcARJLBsc/QMegHnA7EyQxQPBD0ZfneTn1OAfKOBlHvVh1qDX63J9p92/aUU5jbV4eii5ApoFAGXlo1MgMuCNN610nr1mqLoG5AFpTkUBWhDIgZXJKQapYeUfs5ZAQpgO8mlLOMYJ4l0c/yz9nDQS/gID0cLS6P4mhVwmHc9VmwaWk/Mu138VSlQt35G5or6rgTvGAHIxXOxHoEJ0ioahgqYoEv9paWnU76xrkQq1T6NIPiqLlXAfFKadYoFOikoqHNz+ereY5wrSsZev+/D/wklZ6L0bwkQAQEzikYRxwKsooThA/LJUtWz9uvRoG9pB2Vja+jrKkoCdi/HqImZM9uhT3H0XBthsZr6vXcsJYLalUFOXZL3S9U2a/Xg7yLGFFhqMMXoWjqzxBvSmrtCslTL3oL40eHUgoLVmuzNGE9xPvMK7Qyhwksp7cR1J7A0Vp8Rl94ZwQTs4bMV6OvP0cYmS9lZhUD3GDH1lT9MVaQC/iJyhQAnRKDNp5LHsA+jeDX55lO6+O0r0u/65bwT88BsAVX/JfGXocf3F6Xi4DUssd1pIDWzb/BCRXwgRy3vRyb0FbHckAFKzmEtEdGwobxXR0xMsXT60xpBS7x4yGPn/82A7fL19evXbWTe3xJ3OthiPsidXsPnv8zCjLR+dsOgj/xcMvH+wRtNrZiuqHL569sHng7dtP9g18+Or8k3uPnj54eu/un598e/XxjqUSsH8wlPjNBy6fGcGxuN+eOAb+xJkhDrN+D8wm6Gt0ftds8VodGOqYCr0T4Y4Vqo8fOxTot3dvRCytbES3kNHafYHP185F6KtGlvd0HJzpCue1f/BVFgNl2iLzA3ea9fj8859/ym9b9uNTA8+fWTturvv5k0dPnz19/ZvVRpqT5Ekf1h09fG4i4+67t28tmjjCL2pZ8/bY4YmosnidZub/T506iiJPIqoxEmGIBTu0GkNr+4n/6G5DtvJzvvRCT50bSonqp6GnautcED1mZ+m+gtVfEcOqM+03HSGeCLybWob8hFyZi1peWHa1O3MyodnbgWMl+ScmMYdwHGH3re4GoZg4jP1/aAs2/wSjf1iSIdckKS8xIoOW9SLJc6x11S4siigF8hGcjSK7cDSqjYT1qTQJaNJKStRSa9wBR4I2tzwyk5jos/UqRZ5eAdq55MUMencnWtnUa+Onj+wsDycY29THQmhk7c4qA5BO3dC3bM7ks7FFdYo1WfpiaTF1C1D66KeQKHddq/rLixfIZLLacWXh12FgDGgjw+C3VKFvQnvJ3gqtBQzz4XVKHmTkefnWKXT8KEZjxHCn5Xaek3BtOoDJzdIUwFO9uiJi2XHh3xpZJyLfi03avkMnyGyBzYPHT+45Pt5RRS35/vzVp38//f5Ol1hfTZhBFM9fPLcqD0DrOkR3i5KRAOwXlYSQdUL8OuZEOCf20onySruhE5X6ZlcfLMDjGrZPAwMYJGICiNX8jPsiJBj1vuvYNKJfi6ZpaObQRmQpTrlsT6bOnrpnWmBLt2ldbydJ1hUROANUvJTB9xldkvTbzIQoTK9Pv4x5ZIFJj3xo1P3CPNaR6iOuPuZCb0upCVo2ZaFR57S6G0JFTzZm74HoU6UPrz8yNWwBkd0QabllQEGFntF1EFI230FGTAIBqLAfSbytGTRXyCxYr7fYgaGoVeVaPQJtZe/c/ff/l39XVGjH9eLsN6/ftkLm4f23lq0Loy07e3LvJzvBfbf5k0/2PrFBG9nc3NMnz968eSd8/8mX3B/c+6///BeGxPKMxzQZ0P7xR/xcHaxvvmnH7caVWaCq1r17+hhvfbSCOzNE02Em7VqAmB1TIvtr20uzbLGBDF1SNPuHFcacqKtZzY/UdemYp4ROMRZfZtzEo17rq5BNC6Ypb3ZDiiwbfLAU6KpDbwUUJVhrRMyLjetJWzZU56SgOYjM8eUzZ0S4WEkUYMT+GJahwstvTF8fH9xVT+y2lJDG0m74zAZ88hlpavaoEjLB0Pe/QhuS1ynPKbAq2m+qjijkwOmoZYGXl8w5bmihGt3cUAO0cE0yh964Q+rAz2WPcsTg97hFpsleoVcWu/kjrNFe4UEkqNgwM5ojJZ0ERkxN9d0ORuDVcCKYepQqa+InHr9x7y4ZSJTHXyxAHNNXtlPEo5fluURyvT3lR+TpeQ9kKMbaMI1T/AYiQYHTbfcBHw1L2M8ha0TJgZ4r9ZQ5EA6sUzJgscmvgLX81BX6Q0RA6J2RXS4j/5uWoZ8cZj7BkkN36sAGSrYor1+xBjVHD7z7suZWDjGxUx4kE3ToDlPV+YiPvmNjHtyNXtncIyB93Cj1/paju0va467HkXvUxCS6WVWKZTCv98Ea2SWkgwEPHBNfTkQeQR3292poDx2H3Cv1v/PnO3dhGU1HYm7PK2DQc/6NOc8RV/7djYxLQQdbvzcofyA47Edg3V15QCrRFbRdP4qM5Thd5fr+NoumihU4eAAjQKoPXORlL6P2Ept0LBxbZaU9fmfwll+KshdfB8qF8pDwneuEcTOzi+z4ugE8N+AwUs1ROXfd0ssZcaPyJC4lFwd099GfHYoYl/HShVflqXgQuhniKow2e1vShcRePPRNnM8fTWn+9NPPXNqvf31lf62PCfLof/v1lfbnLf/y3gePzEk/5v5evXntQwH2CGoguAw6dYjzl08Ce1t1HxsW+vXVr8ZEn7142uKNT04WMtPc5kILjX2NpnF7w4L3LdJoxsAq7Qg6H7W0ZdNpJyrpI644vg21Ys8uXsPBnN6vr94YhheWbSfhfZDfvn3Pbf72ZkODKuOcXoH+PFlDsFpf87VFWhpT/iDnX7xiiayBKgM5v3/927tf/81PP2nitAEvnj3/7c0bMQyBaiUL7O7de2k/tIXSffLFrrO+twiRIT2FOQTSPb6XGyFd8Qp9FPnNe2AD8hrTr9ujPIua3aa5NCsHVU1Zs8xapW7o87iRNL1hHZq+/MnKzlQynoXXmUGlMqHsAfaVonpIwJ8VVcazt26Gv/vc1+yk19+vQnYwg+at9lrBeC9utUBlzuTY3qBF5TwtsJcL3cAqeNKJsS7Q2uAbXtJCbaFtbi2qxntDpNGbUQd0hMdW1aSy0aOnVIjo5aBpYU+UvCGtWICxBn2cwsrzs4v7NvuKXsQJWKbu6DTE2SmTwtEWBtPDyxfPdTl80cJHuyypaHmXzfEN91rr24F7rZW3OKJQwRbCR5oZ4ISR0NlnWKuhJ9e6F90G/ZPWpYiApSOGAAvttuU0li4VKyGWZTOz+5r41JfNbj+EsWRGURiWSAuZNiBbWAo0wDJXw785uv2J/sXPT19Y7+BkyEZvjTOyvUKpNAipw3Pt4Xn7znon3D2sAWvb7hd2btG4I8iNMovFQ9QuymYwxD/iRoQfAlpT0zBmtmCRCMYQrI/UcpW730w1oJBUZ2Id2G8iJC1CpI6wFpTSZdptCYPQjGNRRcV22KUKCnr4wObs8UR5LvM2mLGk/IpwQCIuXe75vdk97YEssWgbrTNsSqmXSGaNPiOUioVGai6wZyWSPrmnYpJVWVyhue1PEiDmBGZ4zQcaw6X6CNepsHelclAyYEuzOhWqnMjsIGDfe/aVZVhiHAo0NBprRQZ1+b/QP2qrZqlgwNiztefO20EEqtgfVf38s15awfZ2UhUWf+FuHzw+QO3WtbJeV2Eh+xdTsS1TE8l++uqINCx6H6p14iWLmFs0osvSnokmF3Se7QfgYTFm+vMpWB0bKpqEFJm4UCln1G0oZ3Mqf5UZheoM/4OxPmnxzdYCW4F9rYDMqw8H79mZkRSrpeQgnq5TgRJWrTZMgmd4OaWPJMhNEfiYLnOob5dDY2aY1B2z16KPTaixlqU+kzM6+zSBnraetM7i15+fP0UPEnCOFhrVWaF/N3hnr8iBmnZ1iqjKTBNlhd7nOXJzVVfao5/tDmrtnSs5+m/2w5IoMEPOfZV8tKjCqJOCflrtPivIMbmvvuJjX3hgCmRUNavc/EfetotoUehqFnJfImSuCEBqVcH/Fkd+0PiJA5ouxJAtelUUM902DBg12Vm5o2ren3UliwPenygO62zv2J/78zqjXNYMbB5q9pktz2CzVLzg/ugUHEpVp+oln5YsJsq2//EfYE4uRJl6v6UFZ7Wht9Fy8EbJIa9iZNjjSQxt8iz15F6x6JIlwG7GVvVu7oZ9nYutRtDa6UMnkQQv91AZYDN397iuaT8NZ6WPC0B5vl7TEgUQLHQb2nETkScPz43mK7F4/ZAwLqrkk0KZ0yYajnrYTSzgrAwBCI+HurvjSqLH87NXymZp3qepiIqR7rrGVJDcHpYP2BAfqsoXyyf/VaT8K+umop6iZvQegqeFW7YROyRSDp2zjSnrKAa6xaPTI2ixvHhF9pRyEI3KEF3oLoPc2xhDi/uJK5LQ1qsDbSQHZhmBlY7g8+/kHZMHxoEziV3vKhjE2F3Z4VqitPKzw0mixym61OW9HhUO4y2X23GyXBTU62EYWUG+5aT3Nh1+N/ulM85DfOkrusLBj+uBGkmFgHnVi67eZhV5M7l2U58xyjLj6qnjFloi4Fxtv42ccuOfv7378N6iYGOSTzWu1vwa3CqKssSFU3msG8Ch/vzTC2NMwiVHC+hBvHv7+fM7iLRNlsu/ePW33yya0EA9e/rNoMqTX1p2r6V89eqDAIQHfu6MFEP9MWbLIz+movXxXb2R129ryWwm6Mu9aqIjqtdkGk568+a9MSxYHEakH6I9+MvrXx88+keatzBJhCC+Rz+/DVRjv86+a4CS0I2LfdYkC+McnsGrazWePrPGx4KQD9pZ8633HvxJgyIqMAL6629vfPBYYGCq3Mrn58/s/vzw8f37ZlZVk3sa0/eivloCgsJFbVfRmP4bT94OsxrHmpWINyqsJbRipR5BJ2SQv8bVHwq9LtrMm/ArGYCwKt8zy8q8s7v+uDgKGdzgq0TXXiN99zOJBOsq3Mc/oEqIeWSEREoYAldxGIHRKF22MQIULOc29WmGKhHEOgny1yye5qlYsBqBYFjYG7pqVT0MONA1bYVQ12T+Wv+Lgyy6SEKTbsC4WKJCtbm5KXHHhrAHNgh1NmDAiHBAjmiAJ7Za4Z0icjhGHkWTyLQeoyojVX5U0E7ZbC19+gSDQBbKExjzLghBSaeHE41OgtPlOf4t6/qEZovhvKkjmGLuvX73Tm6Ho8jtmEtj2q0szgDax9hIKwMqAAVMMy+UtCVdpKiSkkPVEEkwI1ksEG0tNnbIoRD86z6IlJvVfDS2OlEL2ZpSYD+tg+/YD7GpWqB7Olvo5PHP79n2nRcvn5PA+/dvHz/VP7Gsw3J/+FuprHXuyJWttEMZq7XywAoJknlg5s3JWkapfxf9O1xf6NeIPvLaQcOAGwmed9L2addqGvtHcETNyOfbNpco9/SeeU4Fui5SOCGD93wUk8n7NHxZbysxzMvRP0XopKksbMqkTrNr9fc6eBTS7CoazBaaz1GhQuCyJqPAo4tEKYi/aXRYrURcZDQjUXE02CvgJlubMydMoDJSg+BKZXpbZ0VWhV+VYg/6iDQLO3pym9UurgxgvZfUxF003u+Y0QFhPCwTBMxRt+DUXznJrb243NsVNqMu+2fy7EdOZOOCcO7+l//wT4AYQEef5ZT0wT+2vPKrLedOKWjxB0YWET757ZWD+dWK+88edTosY/JJ2r/95Ve7l2zU9dVG0Knr44ffTXRCackN0m2yFgpjcztIchscaKf9GOKoA24/FjOuwrPLEnxRb7pR59Vw/oog0Gpof3W6zcSC884CMqFDc6ul2YnubB/zosDqswMf3HSkGvHMqRE6mHrYSaJqU/dAlVJlFHflMWvSiqgYZ5Jlus7t0VCRRQvi9QWzrTI3fkCo7TjJATUv0eflsAwcDLBnKTjiTdSltjLXuWRRast3qmY5zf5kRaTm/7m/bjK92Zuf3BO7pNSrNpZ9cbBXywxXLkwisscRrc/HN2Pcab5Q34Cu7Ab4VZRxnDuorGv9B9Yq+1xJjKtGKESS0axmBqBMkJJyMjiNhkR9/kaJzEResrugH+Sh8MiIIer+VkRJ11GNejLJ5fRjs5GMMsaaTDfIbkFYQgXlPJEQhF3yDTy994SShYPuIydB/V16oPLWF7EHMrBcwpKCQTr9wV2UnxQ3aGB1tZe0HFcZmFyo8sBmxvXR70rJyRzxlqc7XMRo7yKqQv1UY9dcxeP+HZHK6mZUhWVETZSnaJNC6woWlg1olJdfQaqZkANZX6UM0S/Dbo/MSgzXpBRlY/cGrLfgRfnEfoQ2OKEj2LnRCIy8ruR/ru/3Fd81GhTbe6jkSF/dTW2XZQbgyGq/tzxDPjNQJH15eyBd2TA+2a38YHu9vwf8ch86V66fg3kAJ5a9KNENwmC4hdpSpo4MYy8T+dg6mX/wdTJ8/5XnKPV7yrkBMIqirffd3og+2FewPFfxQ+t+/y7nwP0rUAfaZDvIAen/7wVXaK8W68ySJya5kqdX/X/Ii5IRueJuUyiqmBOf5gvu4H76+MHgvDEt7a5BToNNgm/hsonTjv23rbbTb76+9W1ROQxDOLz87v0XT57+9dVvtcD+122527JdjlzALRBhVb+9e6sG8cvWHlg24HB0yv/y1SS9OmilQV9Nuv/kvgFIvQzzAJ1JLUMxoBBnYx+1nR3E8SfHKz558munlX8y9qFS5Py/6aH0SUwkbaS2bXIc6vZWOW0QPe2SRIAWE5vVKRFVlYZMajVMZoiTVFOmBa1dDw34OVE059hnhlRiYyv6DAyUzMQHyGvpLPHpQGkvOqWBs41zo7yCe2OqKrsURVSxnMCMu0q9Rf9S3E9raSknk7O6XF+IdhWsYCAnTGMSYURCnsFjRW4WMYUeC68sXmQTZE3L1B0Fh8JyQrV6INPsJO80mNlEZpY7zdUkpTmlko9dHTM+ogB16TB6ywdqXiNsBobGwfcyyqUfwvwBd9I61UbZYqM5hAtlRQoI82y1YRHVowskinKDYHRvXW7LP5ZLKxkNkV2RJI9rjRRVsDelrC/TzgLjXi9ANGUKqYrw8FHDsZpkbep2M5IA2xRasAGARHWwMGxcECyiRQj2KL94aqHEO6FIMnWw7OePepI8MRpUAePfxYqTwREOsgxv2yV46EfJhC8waEmJeSYzS+sB1ui0c6bjMzu0KquowUop1mh0mp84rTHZzICcwGH5aHtstkKxugf1qtmXXOC/fvXacTeiaj1sSwk67bR9xgUe6aZ1xQ+rlJ/6jodwQgX3RSbrdFC1iEvHqUaWDgQqaaai4ecTyFmKiiMxvc/osC41ka5fJ7loXG9CxbcVWMktGGudhbozCSNEncIqLOs0jkfd5NRKJCQQeNoBOry4bt+jatJxKTn5QqbxA+ZnvND+qI7J9ILHuC2NErStJZoA8VZF9oocdPKHwsbxMvAxZKJEmcU5UykR8YWry+oofZUzKSA9fTQKsE6dnqRxjHUa9E/ijFkloE5LQFVnz9RxIVkPo7WufxRol/+n//BPJkzl5qBZpC/J+bUkC85/+w8vjdMQuKX/pGJJjgVeOrz6h86LYR6GYUxwtQzu4b1Xrw1XUJwg3tloVo9lcMlBgfA06Sk67oMqffbZSElDF5Gjb12+VK7HqQPA1HHmLf1bhcZJgNTk7+ZJY56ac3zCpiJI7BFTRqMu09A6+orwvI3zUDw18KR6mtyrCdNCE0r71tp6FX5zXrrpT/o4l7Ft/6oN0JqzMvGmh+DzxtaGdsCoDdA2sVmmBGNzJ3Un9B/9hwwmgmqorbejYq5Br05t4Pln5WpaxMCAWmJRqunpy4LYU/NHwJFHLn7+Dg7UQECDtECmuMjU5uWzmMtZT7M5tewxQ2ynv3aFplFLagkbtYrDTqZamuTMNpoJkb/ZSgQ3mIQjXbm2poGUNDwmGDC2HkhWJIwcN4WAUcsoZnEARnMI+5UNtWU+b2/vVtklajzynm7+eMUpcZxAVsnx6+/JCdq5YcW7uR5DgqAw5kyXrd8LdX//DtF3CgMCJkKrh6R4wB4IqzqD6Q1gwThYbzxeqOZADmo5aLjM6BhSRSeiYAxRhbyCzgUeSfdM3MSl1Mlff1CJusHVlo1LHQmXdZx5RXer7hKAShNYgFsewGvDXDVaq5gwr/IBDA/AbiKbLeUfSVv+JABUcLoqf/S4t+k14BdTAwL5wI6qUbafFb9AKBLX+ak/pFQahivjd0TL0asQSR0RQbhdA09mOZnyyJsUJtK8SiXHd+lurrJAuRshEVO2Yb/lCdQuMjk3Q7jSoyIJILf7H9dBMU4uXAfOyXFhh4LEZP0DL71KY9Hg36gJwil4ZR7cK/EQ4iHWK3jIv90EJdSHlMNUpjV9KbO3A35B8GfoLyHP/PIkBzWyMte1naGY7v41tCg4BMPnX8ET9ym/cNk3sJ485U1b4/Dbm3ev3r21cJQvssIHNPGNLgFcpmFRLSQCLDcL4O++rNQqCHariRNOGYh5++atUkZGX7972+L+u3ftCvjy7YuRxX1c0ra0fFejY8VMDYtqdN++a4mFwYsam0d37RD29udfXqgojr67L/YQ2YvYtBLofHDPGXXYcIjnmw+aeUuYzmhfrb7NcoKcn39+ZqDqtROKuNo2sNUVES6I9FuKdPfrv/zt9c+//KznIB7qEKE1i4Snipll93Ex87JfcMgeWvmpx9EnMr3i8xP+RmHxYERWrToRQHxVtXlt8yVntQw11Uaop/LQz3zX9LVDflL0TKWbmVgh5nf7Gj3kmann2zK/U+UlutkbcW3h1LGHK/2qGreqM8P2cFWZNaLQZYfHEE/tu4xylAAYPWXCr4I3FhaQ1VDm+DBH+zFVxpzhd7CjOS8X12K4mou5YNhLkz+YSl1MjYEZc45L+0iWC0ZxGRTtrCy0aTnNRh8VbkS5ptGg7NpT7SR61i63TgkDHhXPJxQotoORVg1y7/TCueXxCZ0OHFWVoQrV/snEU5vTfJHl0MxESGKAtei5FQT03hD1iZjZIb1re422Q8lkNiqctQuWFjr51N0nnQzzA0xdOUEIQZzIZ+o1kt14k6F2FDx/4ZvbwV+f1hhrK8i1MH0lrSHalrjgXLxvSHNWaR34IwPcQL3behCIhEKm7Nyo46w9PbFnPMrz7j0gIECqghhrRbzgIoDhxYv61NpvuaAANqXUjGiqdJEbb60bpgmiQraZ3aurVQdK1kaR/VTQip3MxZp+yrCT/vNHOEX/apfYzH9iGzpSbZDUmi42t6aNCjxWllNvUXQ2c8wYIOnJdljQguwKZV8kgs5DVUapCJG2TbKV5wqK0cXgahRMIOg57CxKr5hV1lLDmo37KYXEsKvPX07h7oOHW5tUaq3GEQLDayYp4Nl1VOsz8I4SrZrBy7qp0rexpI6BPqH+DxxoQA91BPDUo//5P/1P760zaxEVpGLWR05oYjQ/2Zn1+OFffvubNV40x8R2QGi7DciIl1IjbPnGsBPWKA4npm5hc0wy58Qn8kUoQGchpiPgYPzy+5//9BPkb175VLt+SR4eCxPc+gGJNSOIq/xLKoWdGunAlSzFhfnxxi2oYQkyuyeLOouJkDQNVOeWazNwC5cOkyjWW49uWBWwKrA82V9tMFLb/02CkHbMc12j/ADRZzd3rXuzJ/+uqSu9CxtXJkkfD6d0rPSPiYAvnj5HMuXWH25TPBcGU3HzGvvsGDFoaA5BuvIxWGXNEaOne2zkIRbABf+0xA08gMPv+M2Iswb13JN/QW5YQu78YNDqK7WSjFBrkms+9LPtFneghGoxmWfIxtbrhKuohsE037WXSONZ1CiF+Z1Dlec6M2qfDlqx6Wkhst+IRvFIhWV8nLToqwotsZxdSvc2IVxKX9kC1pQ1GdRQ4DJ911RkvruZNqk+KPs/2R+g+3N+vFqqH7fnYjChOc9B7RXVSQLD/bD0eEoR74R5FZGfygikauyKuIM58Kepps3o73XzMORCa3PHc+HepVl6LI/i/iTwFputLqwaLJefXBLIPfZnnExigGf8aNdaU1V5RnyiqLIMdlSNwyPkQ2q/CZmjPfmWq5/BTxoh3cOhb2QG8f/3FbNVxisHItCUSE+pAywio61MUbzfiFlZz25OkevVLYfEy3lV9AeFWD0wh+X7j8jBv8Aueze7u5lWqUN/bkbV/1/ubsVP/kN6Ak+AF4z+jPgjurBLyZudTGlnRb7nX/HvT90cInE6SV4SAuem/d2CfAr1/iJh1jrZlnTLcOBN0iffxPtHjIe2PypOysF2KsIfqYpA0A/ZYSmni4lWrXJzSGozGJSff/9oxefL5/bgPnjnfE/2ja/7TrAuwjbUbnDKCKdQ/uWzp788f2nY/L3FOc7a6/D+L44Q+fmnZ0QGiOjcOhpDP+JvroJQDbZpJ7W1zpMQsmgIP9nm23Trt7YROHinZqNPzguqDKl2yLoDdu7fd8iPQbMEzaU/fmLT4nvfanHu2V0LHp6Y+u77vE5xs4146yWs18eo4+PevXfuipXZZpXNJzjxsLkGa/bz5M0B37OwwfCWRfxg68PYi5BOWruvVlsU2kbShWQK+irORyGOxbGcTk6Uhmu2WndBd3kYcVdLStL0rVg3HfrxrxSk5PgBIpXNE/KoR7O1DtQiHcdVvRAdxYHW2EEWtBTva9fyHd0MdaBpOffYbRC63PQYsL1d5mBf6Vdt7e3NwGqkomPsCDggO+6ueU7Wc+UdhLxjN4M4pIed4+vAmOF5y/BqRneTXQ7K3NqFdzJR66IYDtG04CZeRAKFjXPLELEqxQoDeilnXntcFNV9c3irdcJFJghhbPAi4tZo6jMaXC98d8bOh7etYQPQGjDjmYb/MFsjUivfKgkROfLNoWxhPJDWfGuLw4ssnDMTw+WWhwnDTG0xg2cvnzlwVgzBnEXl+tKoQ39B7oPifqG0kFcM5hVZymc9DwiicNVOt1V0VNwihwUkTiMVGjnN9v0Hx1vJg5EJg8D7UF0tDjaZtQCh5em66098Ps+JXGIkUtEH8hEnC5Q281Y8+urNGzvbF1fY55mwM+kisuQomhIQ4g6hR2UoUcvKs7kFfwieTekXTfo1bQbLG6ZsHUzLYORtt4Nx0k3UWL5PVvVzzq7ZBVGqj3A4Jfrsrs+5fvuEU+EPdclMZeJg7KCq5Xw2Wz+0OtFN/RHkUZOq5yUs7CE7a/iYSFui4pL5rOCQgcJIe1bdFB8iGRXrou6xEutqdHW5KApbOaVVnqqTlIoo5FX9nI6tzyLr5DS14mI0fI5XujPA1crb+aPrWFCR8UPFUURrw+gBdxfUgmOnEMSRlAqycAPxrfpuloks7v6//u//d1Hdr7++EfD99NNzhvvmg21YDljgvFpT9adfXpLwr68+cNNs3HedBcdv3jiDmRu+40jnP//y3Mzkm1dvGV+fv22fq8OCmEj9o/M1N+Pd2DXBRQeoMSLjkwNjcl+3HaP1PgvHs/61kdhOZ6uC1VXplEJSWF4GssBPHmJy6c86AH2YjGwoDCZ6a4Zr7ZOC0iRNO4rzzqqrOR6HgbY1ef02R/kuKIek7/l19uj6/7xMcjRwVYchi+n0AApEFKbyEJupQU8ufrLm1+rYQuP39G2K2OZYsHJ5UgIuvAvUCf6yvx7zQNxBGp8+lVy4xuKVRUNFBmSgiGjh4EJDryrIejJkNtw5FQIiREo+xhiKlVxnrPVn7J5w9D4tuOJQ6kR2tH/dAhcBhpEA8TPI6JGZaoIEI0r7A8wej5V5FbMelqNMwfM3dmKNpRZG7M31arD6kS7bbgZB/uFAybkB7pZhJCSugERqg1iDjGJJh8Y1kLJgZ7lK331FDsaoWoGT4tc1FqKxAuXt/2NUy1868e5VpM7Lyw9Ul2qtDvvtYZky9RFPPktPcNKydln8LazX183FVIg9cEdN3bTsL9CTD6SXBMoU6nOlBI8AHr4yntt9ry5+AckkXT8yX6KTHkmH0OEq8wE7LF5LOehSIhAgLUH6EdN5W+K07fH7K0VHRaL7roJlCMz+v5X+Dm2UTkB7dZDfuA75yYmwKbpfbwMalj/QS1M1yec6pb6/doMer9xcOW5/vhN/3h7ZLBtYw5Rob+xEUCW/c9rDj8QZ5w/WYsN1MnxH/R3jXo2eQ/dok3jTSPKnhVBEyQ/gFZR0tDxiiOVS+nL7qeBEdBJOkUoNy+w8xk7BPPNehV31vD2zTlp26oMoQbsjIGbAxei85cdWPzOsGnK7jHZcnSY1G5NVRRARBf4IPmLEP5wwpMJ7E8tCK75M+Muvv33/AdvGWThwLsh/AP/04km3v3994WT3r/fMDAjrsW4lDml4gxfie9rZKUaLHln44zhOBQQlRU737v3Dv/nFEhxPr99/dOyd03gsPaJL2xp9psCJQ5pR/ZDYbeG75bytX5JCNI7LUzdbVvGgRsfQiibLgJrZiU77vIMFAeLvlhqbcFZ27dRdk9sWgAuKhHU8Bkn4EUV9+PihNpuH2acYiQOdmjU5SF5xkRXW/IspbM0Q6SITumnt5m04geM9+r1qxMqWn+r5oZu1XJ5kplJ61tLgUYgY1RoXNHzPL8csEiW7iRAa63d3mclgNlDVv9FGgMe3zMXNZ+rzKHPAJd24C06iZjVNAgwpAOXSsvsVRWiPhjkWNHBrTBRkUCFjXARYeywCaQi/V7FzGxY0BcCKrFnA2wkBYQNq8Vay1dqqVdHjb7EVsCyCMVu6YxOgNhUtYgaotLOxiew+HSVAYmkFf+m1AEzr0HIUxy22rAUtjVjak/p1H6rr7L9CFpzXIrMlwWlfGRPAwJtRIdsUlN3peBeBEKwo36/1dWLeWGM/9TL1OR/pFJAQgpmlN73VbyGNHXWvfbfsDXeOc2xLo/3HjMS+RHGuvb8f2pADrShHHKWwnThqLlBOefHIcEJhyLSvYndIDAmosPoapAFHzE5HerkgaKQkprUazQRLJ5dgWVjt5pEh+0RH1q6PQxxQpSPFdNgWwhE2J4ALnJKnAG1KyRHJzDh0WGhBLSJGoK5Fdwk8R0X7s2RFE8VsNWtENu6OEYO5KLmODU0hWzZuQQnanTPUw6shpi/EEz6hCx0RKqkxgtruFIQ21sICGNXqE4w1mn4B7SpQCTDQKDt2Aqn1J4JPgqCc6nthAJiNj8wCUyvC6szMrvGGHgUTwIy5qcxTreh1rK5O5QHCJtP/67/8L7++fu3rCz4+4lgecsEpVT00z/P7lydPn1I/E/mkP2uM/96dn1++fPvuk8PXiLwxkHt3/s0vz5zh0OodM5hfGJPN748IEXdUeM8O68IspXVML6S6Cm/ff4RJ2zABRTIxZCI4S9b9kFFLVtbvcS/T1A0eyYOf/Khw0U9PLhJPcFyCl37ML/u8QOdwNeUEpgxYpwz5kDSkFgU5/lanLetQIR899Vk0vpqHrWM1FFVFE9ZcvIONMpVLYxuMz0lhkCdw1zwasmdGHV50qjry56fyXLPCjQHgY+1fxpVVJYRyVm26uiGSTKH1Z8FU3G8//SMKAwDKUBL+LnPG2HqcFTmXhmgDVNB5ZSZRMnbVawAlnYKToMeG6FBCobJ7ySOo+dJddbHsm6kmXHTAIiUJKD/KZNttsQgqM8fU6uZiP0RxelF3MeXtqY7JMwiugbpyug/8kBykARmPFHJEI49rxpOchgGo5HmQuTlEXnK8SBid8s8OT/4DJ2ksj/IRRG4zMHmPvganl1K8n5T4C6FM4BTNG6LykolH9UtCVko2rJe/UDw9bCiLdSnGoVQNQhdtk/1MKFCgenNEMdSgD3sEzIsDIt+Rw2FqTCDpKKICNDLIdeamnUC50tfuyiPHpFeBK7Ebl5Tv8KsOSxmuaLuu3SL55DyJYA5YyJZfcje9lT8jCXHMZxJjda/KvKe936sD4bydzURxoCpcfvX30FDZ8i2xu92UFqIe+z333ZWTHHr3PacnvIyyH4kH4HiJao+yjc7d3pgdzH4O8efxB+Q9R8LouFDQKapr0aJjBF75vtN5S/T3e1q0RcoNZjeREeXRv5ro+QeW5S3DIfwio/rr9vJCiAnoH8XCf1bvZLr0i96WZVqg3AKGn16aR35oeYDmsFU5Qvx9QbLh8KL9u0U2jgft6EMhEWCWGBcw2R7w/LkTIhwx98S3KZ///Oz1b68EM4bl1RFLjdFlpbLRxZ+ev7Sd2GYwewB4U18WMx6P0GdPntjIpnUUKKDPjdEb9z+/MKEdnN/evbdA33p654g+9U3ie4+F5pizOshHi6zc9JDz03pYH2sfpsPdP7zFqWAiTr45xlrj3BBJyyQTbEE5ORgYE5joeLQyVxSn4dPgFZPddZoCEQaBHeWHaxHVU30P7lOdFUws1mqU1H8kEuhk3pVa0sh0uadpJM3PK+Db1c9pa2oUbmYjZwOWiw4ALONM5Dvk/26it6EfAd/zAzVDqfy8zYWkfAObHE5jNEmt4MUCfhDuF9dy++cG80VRx5MX659WLw41N1C4GyU13AUVtfsJgXiUOraHtd1UitxAnayWtUUdzFIgaPwl2oS43hZRQVdrB3KghNFFCW0CbsYe5lTdyGPJJ8JmgjgAqujK2bIfWqKmLE8Os7frmElIdCdMSPj+aTkbL2s33UK3WIMsfk8cIcQ0T7WDaJ0FReGMy6/JgSRFqfV42XMyPPS7FfOBRohuxIvigShnfhuj1KPQN3ZYC82L0c9ot1e1LzVMtqrg0lA5edYONLZYZG/NW9Zn2B5xlrRZlPTly0dnP75/64St/JEv9hEN27ZkLktILEqQZJyKlddRt5GhXa0z3jpFcOBjkkFD9kg1rZ1uvROKOpkUnwyH2Cf1IEtPr/W7soSkOv3WL1uwxEkC1aqIGU/iIbGkrjMX8LAsIKSYXqblcOyXwAJ/yh7FsQFp/pVBfETkW6uigrLAgDBOQqqo2lCAASSbSFnReLTf9Bp2UtxyVnEy27RO1ITj1h4A1FYmvfqJKaZuwlC6FISSQN2AlnzFQFOT8qEysP0PNXLTgsStJpAcF3oyfc519skTttino2+H7M7d/+f/bAagw1n3bGxGUO6UTLKqcphwYjQ+YmK4nhv/P//jnz9+uPO3V6/FuNwdXXP07TsycP/Nya+PzSQY6UGTeLEhDxDesVdXOZ45ZK0jbNvgoqOVe7rmiZiOql43pLOWY7kqV1ya4KeYMTD/kuhHHaH4+EWdv2mr9CTYNotWU9E66yQQupeeEpyoirwjuAo1Ryb/8TKmlrRLJOgxQBmh0/FNnN2VjeKaJEJ3ewP4kZYVIVJ9q/ol2daurfN8uubVaRRSA33jKDLXq5lAsg8w/ZtCewS5hNllbEx/pxTiPab86nmI5ATnlJDuBhaFA746FoSssII0jovycEDW1RnOCi6ONHOszUN2xYMEuTbpTIMwTd/LNGgXKA4OAk0ZMSgQSZtxc+Oq1IQT3GBkmUOJ0Khl9wmknEcY5fnOrDLRubIj4RAfk+P0gjqOQB35+zMg5Rq7MxVyQ/CghSNICeeADdrVVIB5CpYpSjwl82SITm9juU7dyTBAZUybw7iHabDUsazmjORYXpPQSVPKH8uJEhlums2/XADdBHLAG6IYgtEzm9kbeakicoJQBYm8U0RJL1CNeKo8KghgvE0atL9xuxJjNWmDlIWE+VwxnhMp03U1KhbkP2a7ZZ9w5TvPh5LzW0rgQ3RliPwfQu7dXhzkNxrY1WlLhvGQecOGL28P2DEVJ3sux2H2ED5ZLhH2ylSvhz+ISekUKEtUkNnKJ71D7aHndp+oShlHEvdY2ZP//J7E7ylDe/Fy4FTgD9cftX9KnZd/vL+l+BvJl8Su1BJBvjG+vzf6k89Fb1SWrfeJK/gk8HfVDS0HaJwGV9lZ/nd2Sj3vZA1gPauBzUoxO6vhQ0JkQNuRmoYmRAxGGl69eWvnYLsGfab9uV5BwzGOnOY3NYGNgoiGGb0o8G47zfq416O+H//+na/5Pne8hK24C24E8i0+lFnY8viZ8dXOvmCcviWsk/HXv/wm/eXLZw6v08ZIRIuvdxm+evHcCL7VFG8WpjesaHSRexe9/fzsSY1WB7j9biOyiEETYMKBm7Su6E8vXzjc8JUpbyl9P6ABVwug2ZVtY1by2DgnFLDbl0CYmaFYVV5zYGeDEV3eEo/A4wtbhOMjA5SgaWhDwmJcrXkDqL/fEWZlFWI+A8Bgrd5VJXHFRCf/amIC5yLkKLyoClPJtPx3PiEl1r5c5rc/ikxvqbl7MOcfMolBkMJxzXoD6tF1AfE8QzkpucjVC48n52Cukpbv4N2rzPciI9MK+dKPHXrqiqkwnIc54ZNZ4iEAojEaqNqXniNof/cmZvnIdTflXftWNIMfsB1B8+Txp8UYjA1FYtDeZeqZYdA2KFMHoAqSLuoidPZi4QqWxbUN9T5o8Juf9pJlKlhMQqLx1UlQxsgs7qLigPMuwcl7C0Utm0GRJMp6/vIZW3zz9h0NyyazaNuZP1TTOuoGdElOl9LgtPwiq4BDMXtgVgkz7xXm86+eXh5/TQpzHdyCkD5PVgc2VaO27vtigEdPWgu92llEZOpJBGUFsO8QqGiAOcelvuS9u6qPHu+Ln1/89rfXZhxQy1Tq3eJXVJAmMipRkFUe1vdr872UYFVMg4ZiMwfb73hTW+2tPlKzSNik2cK0S6W1mGKv1sD8bkm53ggDQAq7ELhu3kOhsNMcnMYXCn81uBBGZp1JlyoGznxLQWqs5C2VmETbYRv9GdeG6smNRPyT6KIgQekJWpQr3vMSmvohsz0VsdAPbUWMXRlLDQ5plLgqJgOYXh5rjbRtq6Dco7Xhh4cug847o2cduYIoKMfpOtsDgjaylkFmxCguQ9ObYlTHm25AgmRmYF6afikb+5HhaKoQN5P59uDVb7/1tbX1Np41EmJr9leLvdSLX80IcF7M2sGx7z9aReKMBNTZ6gE00p49bmiTX3M288ufnhvreMxs2kJTNK96sEtjPVRmkkvQL+xHf92dMZr4q3ei5AgkdB+4xpqaae5GtJ08MV+Un5JQP6ZSYIpPbIXjmTtBLypNKPLdHBYlElai30oVKgHBe6J2wdK2esd1May246Q6FYYxGbWqIq+zrrr2iu9Xfl4EFqRuygwJOnyaksbUOQK0C/XoQGLrfowKQFbfYESOGDlHf+bCHieEROKK1P70b0qKfkASRRARWK/9NABpIW77p5QnIqlOzx0ve0YzOad+tJKt94Mgp6eqi3LHtQ1z5diXKenc6EZo+jzbIn5/VI1ZcyugICIS1GB5aCMlUiNn/x+qYupgKeyoEq0SHn79njIrcXsRXan4JAYriBebxNHEIEYSTFI8opCwbD0td4ggP6REQzKSexkGMkqieq9K6VqB8lxqqhIqFBEHXLjnY3sevKWouEtIoAmvMiecTSTFgpgK7lD0t9JQp2S45KlS8m0NRubvGrQDLR4uCDrFNV3RkkoyhcGBqApxuBnY0VU2JRP/3BaUIKu908KhBfgL/vJcPdUVj5yBiAbXYI2Z03Inhh/XKPVYkUjYmx9Zkn2vfpTJi5xmSGIusjKIHfChGxAF9nBqfTn2f3B6FRrvL0QR+eMqcTL6TsZ0/SPDwTKsJcq2EtFwIC/xeuXP6mftvIvG+jNi+k2VFxm7l1YwFEX+i5DoXc7ub4mHYHQtpfexM9ZWbHRE1tJTlZfsKJCz+GENvwynDnj4V1BXejhOxlE7QKPvenOkEfFeebioCNbNYGJwJpQklt/bk1PCJHDnzi+//KRxNBVsZpgnMWzATrloc8ZiYykOvGyS/Tox/YvhfK+U38oZVeXTiydPREX2HP3uczEFR99evHxmMJKPte+yFsu6Ye3J778/f/Z0n+B98PlThwhtVtPyjDs2+Hr9/n3uSfQvXciiw+Esu2fP79u+xq/bZmDp9q9vXv3tw6t/eP5n36x3vPhH8dfnzz+9aJuymmiHgG8C8HzPXzwzrr/RxIYkVTarZFXFn188ZZlmHjryUwNj/lsY9Nmi43tffAO4VUzaTxMOQj3Hya/JcFy5urVWT5BkFZMxNedF2BVgsoRvY7NYOUPOGQR/qLKvMqZJXoVvTJOr2L3PHjKqXu8mpZV6U21K6v0MSeqlsz1O3dcrTUYwbqDcHFyK3opH3jHsgA9sb2cyB/680ghQXu5zewFVIAghKf5GgcdsWtk1dvm9kQ044V1NmLe0L5M+W4llie/+j9n+H/YIIVrjmITGg1GLt4UWtiz29VKowqUraErp4Y63LojP5/of0EJAYBnT4to6B2xNyIwyispfi6v6ypLlbc63Ee4XrqTSBQkoOwHYOHNspYNARNBN/vjgnP0plOvDc3rCGrLXr15ZgOAI0ONsJ4m0Zq8tA6gzee/hVsol6Xx+wmxskawsztDmWMnTdnKNSOFWDU/w7SdONr6MZIxSJXTe6FNhAChmpcx1iAgA0TtlcnSMeVvbVagXT55zxhao2YvcwScP7r/96Ht60aXqqU5v/z9/8ZegNrVmHq9KEXHtZY/clFFs1mKYYoMFLY2di9C/fjW5Icb64HN+9XAioEjOTh1det0DDVya6MgjMvClWk+oFRRG84YpW8tMsqZD6kJ/Q3Z1SQOyc2ahqBri3YJt/YWGqiUAU8AgNkMoMVDhsRqM2Oedg8rNZJvDf41oJOyqAHAZGpmjmdZWmJpr6LkyLxdbKaoA8jfpNFYWRpXTm0yM6TR80YzhUEqHwCs9AjMn5kLtBxBWFZHqwSCPoJp1WPxApArEf/0KY9NMdFR73oYjmY2lp61mYyJFQfcNi0dCshhPwN+9+0//7t/biuUFLVqv5j1EXncMvO/a2hrCmz99gn1DMJA5A96OimY2v9pxojJQnjWRuogOAnoLEdf5oMMcHhgE8k0Tix3VOo7XYDw3rZpJwe+WDFkvdWmdAbH16QPl7KZ5lgkyt8LdF9tkr9Mrctc8V0urammozHjd3Ba+WJQ4XpDqXQwT4k7MhYX2pNA31uAiHbu+zNDqooSL6CmmKRXfmyiudXwnLNYEwUBNuhvqpGLwMXx2qGcZIB2AdfvcJvR5kCUrTUM5tTQxlzD7SM404t+sYjxwOsomg+mpUeQcR8/HQ67AwY7NU+tQSzJ+Y6qAIwt2H5vu0bf+TxDqLGV1rU9lusuDC2MVCa0VhhpZ+SJYRsP//Is7JIbUlbTj5jB1SJC/XDEyV16+UvxL+L2LnitbDCswMHszBmG7uDhly1ypuhkHLLT1Cg6mC3w4y9/fMoN3OSB3ySMtKz5Os6VznULjEVUXMUdch0jQKIvcvGVLICgYeDQsMWIW2yXhXk7sYwqSgRrl9aCS26G8zIiZpaNzdpKdu3rV3wkQRM+rCG7hPVxLc02kEnPfl3zwvishBKd/ygDYY8R32+9JLX2vQPfvoEs4skfEQTGQFR+cHzCmgbItd6UP2bsp/b9zHfx/eDGcg5lhHBL6G1+z24vkGxaCidbbNTIvjogxfv5wxfWoWfKP+9JWSF4Zso9uPJUnRR3Bn7d+LwwBj6oy9rO/E+yeQKCjg/F6dWFPWUlpj8rKM5zBOUaFhv+24DBMzCsCyQ/Oz7sA3MBemv1DpvNm2o5gCP54f8qCE9BjEkcuHvp3SDpF9nv0rFj/eGPgxB6HvipnpbvITyzLrhcId1CmbYtGcnhXhirdELihbhk3/f3o55+ev3r11jSyZq/BoQaotOq/i5DkFIZLfPXqnZWfD+4/tp6onbqGenYwrs3BHNvHD++FgpyzIz41DrY8/n/++a/U9lJMpE26f+9fXr02ZvmLzsOdu6/fvtXieCODT/D2CUsnNHy98+vrNwaDBIIaYJ80Uq8Vtvrow7svVvD3JTJjZHfvWDBkr2SOfR61ccq6r+3/9fUAftKnmpLRLi2bKKH/HrS3TauqOEN1dIpz82ikBq/PVhrf1OIUCwhxTk5kE8XVAqaA+vwQkRohw54NziYkTvCUJiEHAgVgWFDADVoGrWBjmTPxo+yjtOrOksDJGKbIA7ays97zau5uFpBFZVM5VX/m86XJwLYZjxtlgzeqADmtYZijP4wy9lSDtZarZdbcLbuqfkQiJQWtgarRcwqFcWBDhxoQwthSevIJv2CN2EWHZx0LYCsSuo0qppQ41aZ/+mj7BrwsKmzrj4lgveOTtLxQCF7dxG201wCJwEQjHhvSnvxVCLSzfgSUMyUQzj7UIBLaObAypMct2UdwrfxXI57mkZpUh8VF41Ss2yw0T79soLAvjjyLT9C1hjtNFcm09qY2qYBw9I3MnFaJU5BsRz+oasV/4i0Ys6dTpQqd0z5a3dC+W2aul4s8jyqygFKf2Qo7X+h7ZnVd21jsVXCsVuGZUogTuDWAC6alAZGUcgVRROIELfemSoz9CsSf2Pny+LEubvqqIqgFnVSDcRK2OkgUZLpAPwHYRbwm3O48efw0isMksaBO5wF/hpMR41c1tK4pO7JjvgrSdn8R9LES2q/01jUhRmB5ZKMFTky7DHGf0UxUKUXYxiXSZrFHof/+r4AMiM94/G+4b4RN1+7qWnQvCq8pYQlFPpJOZveYOo9ryRpCpaaMO4NZz81zVhaKQImbO4lRKz+FXrN5alMHizGc+D3tyXZRWx2GNDUckS7MqBXRL5DovNdOL2DA5TnVCpr/8k//WfynHBdMx8zUukzrHgnyZ7J//MSYh7BXsPLOB95qAVsRYmusna1/++21TySmD7XFJ5IdzWbDilplznX7pqWj1RcxoKBp87k4ZhxWhwVnXbHsu7FzYW51x0XNfk/sddwBozhC8UuIOiccJQtnOuOkXreb1f8FRtXbVEWIOAIcCrf6JBlYIve+iL8MaYiV2Pq1gwjuZyXHtVSpeGoHyTVU5SglKAsaGL2uvGycuZoLXpId3IS9voGSs71gpIxV+Mi4DKLKAxT0+TgWgwivFf/+s0c/3gbrxxvqyqxPOijdLASpeKPjzRKc0mWLkmwCnQX3w0QLq1Fi7soeG3f8a3DKMODwZJcBkw500jbVlpEyxnUneheqEJUpwrqXtGf3K1weCT3+8QrsH593LyUrBfP2eB6mtuQ2XH6JHNSokjE2yBOKlb2gHhDXe2nefi8uc7lk8R8hLdece5huhMm+1wfg0URSHPYJbmScxuyKKWcLI2xADyNTwpFSZJDGSE5Bo/JSKMgHid8jhQikFU8ojP4MPhLc1qAHakIIYun7N/nkfc41rnNJ5JclLBVAjxU7NxInhKFxTw0j5jBwAI3oMt602c1Qnvd//B3SIO7mvOnxXCVSwWF+OpU+ydxyjN/bwwFyUR6FN1q/Zzg358UhEwqJ1PFHDk65sFcgHD+ySRg9/T0kZVYrUebr+s77yXOKn0QVfIkDM1AXnBXtHrBgXpZwA9nff8V7Sr/JeUIuT3xlDD/EWOJ3qm8gfqQcRuSZtV9yGHbQ/0DG6PEMnP9XHtKersyUDO9VZ06W8rGcLeCRDW8Ndn60VlgMbyWDbawtuDf4pBxL03pvBhguywaOL16Lu61stjb++ecXHOIri+UXKPOxBll9N1SUhm0HgPJXEo0U2rjr67ywWHT64ulzoby6twH6by1pKKL4+vTpsw5jqX3jop1P99mpJS+ePjXUJlZcIH7n/afP9j+Kzd69e6v9Ws399uzRMwcT/fr6rQZOnPfTTz+Zoyg620AvXn558aI2yLKKjx8dgmcM1BfMdCCM4KtP7UtuXWzjaBsb/uKUae2a5kx7JPSp1WmBtW+cmSF4bJrk/fv3HRgBorMz6Hfxh9rXqOCtfuV/ZxLZc1kvD0PwWV1WUTOX7tKa/wAsm1fLf6WXkq7SnhvqHoryK97z3LhE+p9/KKu3tFaRNaySAjr4s5EBGaaKHSCLM9yzkoBW2Stz81oXBH+8kgd7oBzzQ0a8RM28+rgbRee9QrkywETPfmGutcrGHKjfqY7UJQ4BWLofI80L2dsJYBOjmf5CgRURW7oFxIwABSXlVuM0uR3LaKqVtHjho0RgW7zRST7KVNmFN+lzA7c4sJJMP1a6cVGQGH+RyddOOS8ybjuscc/EBSWT4MzR4twpiTqtT588reJs46lAaritnHmklxuRjT8+eP1KRagG6U1iIQqJqn3tESqWO1HBpJf3wyqdYx/DJzxgnjJ71WfsOgvraVuTG1FuFfupdwyeTapHKEs9s5PWNalS+z63go57efbsaYaZ0LI3/5MF+D5+zbgf3rcbx8leHcqJnhgwvbDtyxHge6mfnYLfeiHbXc2mqK1Yo1I5CwXBYpOu7IbfqO3zvqCccYKUykpJ36D8/imBi5hr5up/o2qqod0ipZTF2uqwlWG95YZupekxHiDVifCdjrfg1kOdavAaR+4TUMEex6WPtDp1yEQKdXuFAb+i3F6TlF7dIpYFGNUjxMRDyNzLnE2wBGwAku7Gdeqh3k7/XAd30XhQFeExNkasVAMNRt9NSTXSb532JwP0BFx4L1eBXOzD5sY/XYI4+l//y/8sDra11fr8/9P/8Od//utrAx5cEgGau3UYaAfT3rnPwb578wEnIPrIlzN8zNWavutcyDp/TLx1L8jABmlaaUc3BomyIBgZT8bBudTRVxOQsk0CNR7IwRsSmyCrW5Qokz6BTrTZQbXYjEHzSkZNlsvLeUBU9YUI/aUGyys44U4HORHFmQhhZm9aAv3+KnAVQKPAeOTMyujURnhQftdtFWBl+uA5H4C4d/RcG/mxRT358pVS3C2w9Eq4UMuSbl0bMwZ2CejKKNlZhjCfWApS46O35/KWsv1KRPPAXAVlOG+9ACNm++cpazk55XGT6eQcg+wfUibJXDBpS8YrjUTMRm704CiiiZL6tRmirDgNgguAkQ19OuzKQAe3Pxc9cXE4iRiQz7X3ZSaykXPxdXEn21Womx8s33gPKBCxeUG85SnhvCqPDHFZznDNZtyUNPg3gexh0Hp7sJzCN4wDUe2t7k22eaFqWgJxE/yJV7IUV8B5tjXDRxfLU89dbljYjF+X9Ar4la/H8XW0EIPZ4bEoeJalIkQ3GkYwTCMYmJQ1puX5Y/5IAvx7zrCE1nXwsx8mv1ySrr/j9+SLyBjpXWWDPmH+ADS8A3ikcSn9wD9FvD3Xd1BBHcyDMqp/pIzmMC1tJY+IbkX6K0UJBnmVu/gaiYpcj/6eurXfqGHcRwVH9uU8pAZ0kr69uGg+ZIyAhHBdykgC0DXiI/cPBI+jk+Um/709cM7vBXlcyT9b+m4YVbKD5OLxhvlfCS78N9l5BXLquyVODhfM0XpBGQHXfQo97/Zn3iDZHob8kfngGD0nPVEkW2VvVeB4wkri+I5w/LGvpmhi//rXV8dvVE1Yqi2G+X/NhBHETluOUwHD2Rl57+5PP780xm85zEffBvZOPKRVM9pScH/XUNTTxiEVu2+E/pWNBT4Y/NUqap9cbWm1ENoGSsNwn95ZslBcYuXO4whxTqhzM9uMy7k79xMHABrQUUq0NO4FHp8e90Xep008bGvB53nF2tGWgH97/fGDpsCAvf6JD48Z0jJypfWcRAx+OfO6wMNAoWWlv716bYFzdqWm/d65kwZFNTeWNBgg40mUF/fJ2SmNPqLagS3NmZCIBnStCPELHzuiGtl8Qs2rGH0x6+VwVGH2SLKrDbuhGQaZx1DQ2x53TfXd09dJS4lXLZCe4ntNUrcMWUfSOW/3zs8uDUzuzksQaq7L4/FgORaSRWQTNR/n/kZhIGi4QsvgBjHhHSRAZlQwFE4tW2yKNAAUhIHoRqZ54Ap7S08Zlx5Uzv+IJRfHhLK67ccQHi0UK6KAObHGQJKQByB4CyQ4i4IwLXvjr6tZ3ozqWgFvc9Rr87OlBizNnRNE8VkVB9nOAF1M1umckIhsiqyKqo1bi1ju6Oba9+gGN+ya3mlNR0VjoXdKtV2tAInN6EmIjh7SZWV7fR4YbgOXzXVsGDtVQe1XLI+cZFJ0TCACZffsR3VAKyuw7sW6O9KU4wRsWnxhnS34IiUfGbsj+ya+Ciw/6cQaeBWbJi9oyETBYiE9hC1AjzzbPj/64IZv/Zoe6VNL+jDEqrNi+LW5Fwo2yMvC+7CXU24KuGr97ALwwsiwcNOcGK1ZSzJSSbIP6wrH+uJqBo96XQv18t2Hd+Ooo8YqGcdmIaiMqcSoBRWZ3FFc2iKdHtZxE20zp6R8onPJsARQUKcPNYDA6mp16qj2lKcyU5F/jqdq965pUFKVbvzF5jEXwA/YRlpXAAGKQYFmedCJqGq3vmX2JsZuiuNsbZIX1XVENvQMWnqsl5d/ZP8xCW9j06lVaC3WxZOupf/5FRkeP3xC9R8+NSGDBmZGwqRa9PFP/+Gf0MFXIkKF8O1ejumXp899Yvcvr9/YDCAfonwZjG4M/toOrsL8+ur1ixfPmLrtWcmXfx5o+m3wg8qReO/++/etFyL+03klPto++XHOppMEXewGAQQen9HVKzEp6j1m9ePTTY5hpeRJ3JhWhDmpyJLAQkT1CJB6F5y+ZFgquF+umyKIrA6VNG8HsbVoehEtPVLb5j986+DaIcDCvzoH+ioSTWe9ShAQhIrQVV/gCqYLrT0uQR76mSynBb7nUBXqbvt7wYzhvUw4Lq/j9I9Jt/TjGpbhNP9Bw6kULGAfXUdKY106vwXZyo+ysa7uRWoWvhaFADK7yjRFkNSRdPIz/8irAyABrQn3+n9VJoyVRcLeso3rMawrtbexfDH+PfPkUKkbs8nix9vQhPQG/zyOnqD5HwNhOCh77RrKg+w8lnAjPRrSkPeUeNC5ITSJR30jAUm9lU6kEXH9Px5H9nd+oqHrrObKRCN4TMEFQvjlYRM7xOnQIknbENgqd+I+xPaMjrgeylgDIGNT5d3ANNqml6GuBEQ1nFGybG6Uj0aXtxF4kXQRnvVOFHsf+iyn6yp1BFn5G4Tp4iRE4agcgivt0HY4uSX9q1xeJo5+KxlJJ+GY25VY4RD8QSpXiT8kjp3D1A3oCFAomKfDU2T1nSU38gd81xHt3o6GYHfJEnK/N826CfQN4wwmylesN0otz/fi5915PHIebWMK3u+WduGczG/wLgJucgrIub5n8PiDjb0DeGQceCt6sXF4OS/LdAnhlvE8Hk5jeVwpzyYZkptGsNQV98qeUduUs/I16g21ri0UeGnyG/5kWvwwT9m4Y0AYZx2ABgAbg3wsDNBEIUWj2gD53YYqbQTWghhHFFsbie9YtvsPnj5/9re//Yq8l89efvxo1Lzwpe3FKNQGGnl19s6nry+eP1HtLECiYHsZkXfXZ8IMRGr8tFDrLLlHknEwbPrO+yrmQxMCmGkM9WsfctJFcNahgUUuRRAvoCGHVx8+2BugPmlpfeNMk2d7pcVFH3//8tQy6899MYClFNmYBHjUJ5AFELWJfeqoMxg00hajdyLHlpoIknQnEjImBBltnyOkFIlwck7Uu9ycRIq7skhv7Qr4C8fByJPLn5IwlWCmHQVqH09rMlyAMV0AAybMvQUZ4Qh1DagiXo8YeA72VO8a5IpfMEfq8HJlZYiDU8VWtBrhwuRaTLTBLj/ij3ddPeq+bCN7TsljLETFd6uOYoD6AoAAVPired1Y+5r1mrNyOOepFrDokORdhfLFXTTvdMgmgsSpdRrc6A2yZzTChetRFU7xgAFBQJTjPoCAK3ecfISODf8LeeXJuuqkid4KIlHAvJWrRW5jo2/3Oq6qrzuZKSpeO4hEz+6qUg5+aT8x+hRXBdQFofka9OK6pbctWHR4pJRY1tzFW0FzaytIiWmBQ2TPnj6bOf3+7Pmzd+8+O9xQFXOarmFN7GvbfbQiCinfTkVFCtLaimPw1rK6ju2JcR9CfW4M1EoHfJ5abMO6aoJySAvWTQ0YIEfiZ4fZC6whp2ELoeo55DiqVtaOG8AVImpZkmSKsCDcCpG2Q7Tywi+ERIbH6V2gbW9dapEUmHW9gBeVHq7JFqqGaWcn5uqsM4c6+7CyyZQQmzeg3dIgpZtvYe4GjElJZxIFJI8Q6FJfkWSaJcaZX0YhkT6Sj/5PDavhUT/JOizzjc1FRALWjp9cy1shcwhthAA/a1p1rCADvZZ8Mzy8NL3gOAHEADWtIs0SsvaXat0PECyHkmk9YoWi+fadSgCZQSEQQ6Say+OD6j5/cUKBIp9+73vDkslEhzRb5pZZfd0gwyfvPuiwFnXfffDKysq+Pn33V1+g+P3LyxfPm5D59vWF8xBMg3301ZUnyn/+2tltuKQAODGtJ2O9F0epS2oOlzE1Q1ocnESwF51ZPTXnrZLeGHXP/GcNGTI1YKyamEATGitMbpdKkqmXxktUOTWROGQ6bOOlRp7fs6RMt7qoLiML0TkKqk9RqCfTG7xYAMujfCpCOTn/rSKTitrOZOjzcrUKQuptzI/xLCx2vMovjLx0HGmBP/+j4ITpQIernAeL9+ksjc4aYu9cEw0AQMCinsrGBMv2Y36AAfXej8SUHZ+L2GapHncRTK+S43LrFOsljwz6GUCC2omf6DwAmRtSknZWKnGEARGcyAxWd/3pEQ359EP/+JB4BZRAXpmUOvxGuKtSgx2n599QDG64viNYdhgjO5UltEGo/O7LqkDgppj0thffM3t5lWJWiWtcncQZWhRJNWbnX/cXbd0tG3oU9LO3aT+qyWcvlqfb8O4db+iRo8mMpR/4tf81kErT7CnVq01ZSFSkIY6ssE5dhWCovtQ+pWhVgdWttS5fUg9a1xF1ZUdVr1JxPHkV9Ye2ZR6urCZyY8zNUWJyXtlA4pEuci7HUMMlpUSZ+nddSk3I12P+8cfLW6bxFS7QvB3wwwOg8Q7cd+BX/Yu+isRIt+W4st5QL4OHCzIXPOHvcUQcEdxKAxSpt4qjYOwc7EHxPMhSojO4yyJXefv/iDp64+XIbb4OmEpcEAbsx8MojCromHGVazR7vOGoOAwXgiAdeIfEk17qxUMUrcjoL3k3QVjB5CbH4JRW9v7LHldwLJwMK9O7gB84q3MZDntLHVNq+OJa/kMtpCqaoXq+SokNZ3uZS+fMkVD0tGaS5+fLkaT53pyxcaIPfcbLmmyL4786EsSi3gdtD3j9jnyetUrG7ljHGtpK8ODXv/5mNY6o+t37N8fI+bJCuK9t03KgBeeGWF8MQ6CjRI259qXhj5/evf6gORB8aFA/vfvgtB+BgKOKtKvmDTTqPnujyEsfEPj29YPz4jRoBoAauX/4+h2YNu1p6+58cKi/ZaLahwZq962bT4Z4SaONvZ1Fcu/O+49my/umjz4M8jSO6CcE7aLhJzm0bqRLIMb+re4wcq0LVNSIDy3aBter6expijjqJkNRzhISO5ophSYSbMd6TPVHkam7wDcgLOtoPS3Kk1MaQNo8hcqMlWPcPVz/X+ZxEqbi3uAHBHfZF7m0fPxAzgbAR2fvy3tds5ZYOanegjZLKKfYCIG3AhLKLnKsZb25+iEt4MqT6Tn0CvAcaRM0G+ReGCryJcPCCatV87Sz/kxlngepvGqmrdEWQrJWvkKkVEteF8h6F3c5bLJd2x2+JGld+VZ/CHOFx219tIFcyI7GCBCfnVjtywcxT40UMPoVEhV3ox+IBofuF+q2xKBKIQQvckWnvgQqV0fYKHUYbn/8TN+4tRUqEYxFdjo4orR6jA3AC97YNuPzxtyUD1KwIvDF7uJA9UiVMWn25s1bQbpA7/mjh0xfSM2YbUepEck2Fkp1wD8rJaZ7Vo20hfJjpqXms9KPH6D9eq/l3qdx9MnXOhtkjkJzen51DHIRRSvMoEN+3fg+dxt8fTCr/f/2UGvyRNFNp9MM+8aFNVv4MsgOoOMVSWGTJGRTE9le/ALopABBQSz7KAxPyLrZoLWTgVHNME4Xwrdv4SO6wrYG9SfDKosTCNq/ZBaR2O1EBmYDyIyhxSkZdQrxP5tIAmTLcBfBKyc0T0h16WsZskJ/EEan7jA1vRcXu0iFqVMT3WVzsqJh3R4kpVHNuVUtgv5OkOcuHADWwf85AUu3xrJzxo5UzzRONVE/BtmpWFenOTHswQUDAhKQCrJ+CE9z3+e6HOL/oK3SFawnKZZg+Hfu/j/+1/+FQi37p0LEZD0d+fS77Rgt5f/Kh/qWywNrvoBFKHEj0NFs9oI0MdRYyj0DHvqkIwLS+scI4PImjmwCq9Lm9QistkQGREjlFUYN4eTv4o310G/Rz2pvbiYGYD83PUhZ7J4VxUwREkaWMQMNHINQKpg1QtuLgylfbQw6HtXMTfRQbeWwRscB7gJiTqI70EJNfJ78W34cBLy3h3J35byKR+TADoCHYKZy5RfJVTw/pESi8Nh9tJXoF/AgTyBhdQ2+twfcEsIJeJKMmOhTillhpQw3pBEwgqVVVTxFXkzhVGOWLfJH+eI89YUdXQtGwy0fUSvFggf50Ak14LAfsEcE/VY/G245JHl0VdibUz6YJUXM8nv6fn9uJLuBTQZXd//NJfG8PWSgMIwVHNM3ZlNWyDPjfieBmFoLceX/A3DEp5eJlz8Acx4rpkbFaFr+QAU2pF3dXWTLPBSHbBmRSmA1k2iWTa2pJhY2rdjIHuqjyhj/TjnWquRdydwVzjmUyNxDiUib5ZQywpY5yk8eydXxU9ifI6/9PXAOC34Bu5j6w1spYb5d53GsxVFlb9eVeHv8+7+j/igCiFvBqD/mMI4UiX3XDWsMD8ntfUz+95DehHMq6VAcUDTgZmACHI+Js/u/u25gDxdjWdb+jciJXgEF59i7PUDIJ/h/IPAPpnugeXuAHIz/fwQVGyHJxn6QNxV8J7Aswz2wy3d7N6p6J6G3bgGaUc1Ieu/fKThm+jmV6EIa7MPYKRoQV8UPmxvQ0ao5bYWJidi1I5o1y/15VI2YAcVMeofQOV2k+EaAw6kK4Cz8fXDviX3Aho4+9LHeP//DT40afTN+/953RdUTK2cEE5YGCZQ3jPft6VNT1r//9tub589F+M767BQ489gf33WCoYHNT58/QMHp51m/ffvbqzciD0sO/vnXX//8889OBu0cFoebP7YuXJN/5/XbN5++1X7//LyP27x+04GCjhKyq2BHFTpBRTwkDlH9fgfpBR4N+s+KYIS/7xJohe4/+PXde4tSRVjixb4D1Q48J718rAlvKLFvGBXWcC46DFrjtmAa7PQ3MzoVPPHe7IdvFejlYQsR2szXeiGoV50luk5mv3zLQish8ukS5MEgTn9lDM/t8pCVZBFAHRsIlNtjCHs1m5nLul4dpZ9sypd3kAarRy0J4TOeQpCgX4b3vVKg86RLcQE+IODXJvWqUpfZYaRMNRkgsZki5uOKxU7um9I/YUC1+CBjWVG7Hedadn02A+fRBgRFACcmM5apm1BTqe+q5dsAPFQ6nKLRovwDrx23Rr4dlNGxPEdmigivBWQ50joSjHyj8qKbTQWoAFBMrg3c+IcAnIpHZT4COO0g7bhoLaEVaN611gWx6Okkkq3qFmsVKMddR8Q6Tx1kfOFYKf3hSS4tW2BkANYrY7XmJYoE5LWH890HEOxiIVlzboWdMjuT5/17/KoajFvorQ4UCOnHIzhujZSL3XV2C9nV8WhlUFuwxF6xwo5Jg85qLV15g7PCZEEw81bsCvbqkjVomzLj3mOdhxbikXCEKq6ltb9ZoL9D4YuSzzpyzDa7+CAbELmRDERMpZm0eQASa4S+M2ZMqrV+hMCJnbqxo24inS+CnZjFPLlg/WhsrwZZ6tOX3cIiBpaYlSniD8LW5uKkUezwYnSB1ipC9hmyZiP7trGbShWVFZ2eCyg3h3dEKqPGt+qvc4Sav5RSR2jrAmRTfZJGYt0IeyE0+QvtEyzH1UYqpaAoVHaZISEs5dpLgOUs06v6OwX9BK++uBhHFPPW/+U//seff3qpG9S2GN/AMl/5/tPDJ48/fPn47s1HX2Px0URUiA1tBiBx1pmeOqSpHiHZmaxYZM+XOTzBgjbzUKwOOjWwen5+4SMgifhGX/qfESBdUvV+JE5SUU9/Gc3sGhDpkPrLBnnDWVQbqqruk7IMYAxM3oBT9tThyttXwR68YhCMbyiiAUoAR0B3BJvA6ljWjA1nzoLwquSek+ia9rV8Gc+NwaNaOSN0P39IuXjNC4fObyhO2XOzgpn1smZYR27BUiSX18yUKweQTcxpqqKrc1fiRD2xX8Ajt9ugFbTgjvzzLDlcOlV9vXF78vgdf/EVKaf8+pQHjqzlrgNzEQZ8VFegIvtHtvP7LPjW4flBhryTXtlH8EF9IP+3v7294B5yPHRFmleZ/qiMnpG9FiB+lyHaRirhr9AksRLdxeMFAP1SlhBrbtnbKX6ywXXerkwZZJtOgwNKulA7ZzBxtxb6qGO/ISpx6gh+DqMh0tInFhAOTCigu2gbMQAq6Bo7VV73Y+DUi9jMPHZFWZfMp2c4ezsWcHB1HwPRn3yyvZCuYJAvYY6wkB6AZXJ9f4umgUmnJUfyyXKQ9zK6pQ3GrWBoMpi/vyRW7ySulLtb/hucEX8VuvKMsIOh3yOSZZH5Ju1V9ktBYI2iUylG11IOvAv4IH0n5EpE8yTjsZv/BteVHscX5bKllHqPXeG9QQ74LGSgxvLQlG1ScHNEdwRSrZFw8vQb/spe7FxJodgFuL8H+Mm2R4RE3rlCIdceb6BOhqOGXk2GFfX/YfmQ54nnLFrVNjao36kgDd73la7WJWfz82MCCygt43n41CKcWscznaU5qkW48/tPzx2G/vj9hy+/vnsrykfJO6dOr3EjOeukVZPHTx/4kLAgrKN97oi9HhrUfOC7wJ0rbbm/c+rEW3d++umlpvTVb68teCV2h1hYkfD8xZO3NgDD5DjPBg5/f3rvAYymA96bWLjXiSh/++3Xh08f/OnlT84etWKBj7OLQO3QPa+hg6bTRXQ8ntx58FWHxISFkLE2+95dreT71x8NiFGF9uXuA0eY+3SxhUNrCjsEtdmJx09tXWuI7UxmazQfCTQbym03nvCRhIu4FtIR7yLC9Iv9P2jwpOTJT31PiSk6xVGWyIOqSpJQSubH1axdm9NYYu1aHmMe4Oh15vS97Mof/xakY35qOKUPfPYAKbDHyZ/EkRFBKB5dh7p81NDNQXiBnwpwO1c9KuEkKtF72cfASZ6VHoDeNLa1SFQctlC1R+ISnAlgBB8cUUdzCnKxXyeTlopfkUGWsVM3wGyNaKIlQyJ1YEFDgtFmvwIGp96QsQFUsSQ9x64rtjtRsYii284Affby8atf300dpgiErY18E5RDVNLiJnZOEfs9DDsarra+hTHAmysvqhEd9QZEZyeyrGsGoE8G1DcWnMjl/w6s5G5l2IftoAFEeJC80vYaxG04prJ9YSrti9NkhMsBLx696nfbl4VZ9x71qV1xZZ9DDklUJ6IHhNY0XZJtfB5b4muD3/C0uJqqDM8zYLir75o//U93u1iKV+YZ8n8Rx9hMzAnq0iGFtU6pnOqWcwjvd37Alztv372lCB0SpkHI2MwF1cEoGONkvnxuK7Z5HCRtoqAev5hza5O1mn31lV2Et5Ba6cggfzUOZtIGfz231piAxHAArFqcSacrYjxdiGY22JsM2dWIx+Y4TNTRFhRg+reVXayI/2gnT8TXDYgMudgXENkhMSfhJIHUhcveACNwqj+JURR61oVkn9CxRsP0EkBDcNbAk4FPLEx6gSuLjr1vM9bIgW6LbvQf6JTnqRsGa1Uvj472//U//ee6Y/vKse+nOPq/uRTn3H949+KR09Ne0gEl/OWvryyrQq4NKOaUmMWHHfHJbfFoyGQQIGbQbaviMhO8IZtMZS5sDJNL/SRE75FMZMN3m72O70OVikYwxHSAAFsRjGXhWZIr0R8u0CQp0+uzuwomjE0IkmboiGELkJSaoOsSVCiAPLURGprvJYEFMu8QBcvfgDd4jBU0Kb1tiKVRWA/ezjqxMSKqBjlcZc4z5mcEio7m1HNE77mUMRHg7qOktyfdL4X53ZtQg3lEsVvZji8u/8R8Cg7UXHNyvHnYC+xQLD2SjojnD6qQY3Y1JkjExmpCemMhnvyr2KF24qX5abF0VS4uKhSIaC7xUp+nwB7ZTHTLWVpSSQBdFZwcBuYHqPNqWa6f7+Ii1lEmHYrQ3fAE+QY97N8R3YgJFDV5hU03PfshWtYT7z+IP/dYUgmXSdZZcCSv3LgYVaVngQN4BEhHUnafGcB34Urt4T3KCpb/Zopl6CoI+KHi6OsaO7uHt9o+IJf0/p6kk6uGMJfhGrPsProTxQweHVexEoPZn//uFYVITO5dl2Z32+M4WOIPqq48AK6Mn/F4IH3/vd7G4wEdTLfRs0znxaG53+/ZDgh56xhH9pGnG9KTcxyFdFcO5A8ITtr3t7sJ6d/ZzMEAOOkpMJIOtL/7PXoJ30XbiMn2ova7pq4yy3UQfYdS0Sx5zHXftYy7O9JwOxnu1TKV43p3ieWWs9c3cpdlcstU8tvXdSQ8PIceDiZj5gAZs2LLGv0TLx9uPElZbyywtXmsfbfNbltd8Fk4ox22doDdWhTa93G3vbWF9X0M66MVAT8JwxvSvuecwZYSbIuwVaOq1/MHD/70pxeWN9gN+dOL5wbJPn784jSeUDmf+s2Hv/z26h///JNW3240IbQzKozIAy6AePvuw88//VyY1T5CMQeH3eGAHn/+6Sdht3VE2qZ3thV/+uTw/uKnoo2vTx49dVT5W4NbLSsXF923JYC6zz4yDauY0WT9549fvH3y/AlKzM4bHRXYCzKcE68CPXyqqhoy/vbm03sfJC5sy403emv5B+k2ZZHkcdLMhlEz5oREFHIsxJujmLRXP1IdA/abm3BtpfK5u4xkVbUXl7lejc4eS6ShfhuwAKfbae0Yx8zSLZ2GNHVfJlG2k1hS4G9+UsN0oEmayR3TCMjNgbiZ5xywCK/WNKKpoCdvD3AJxVhFlmtPRTYnTJkcQPNIJsr6VbaFBvW8CnD06MQepvPZBAIL4EWJi9blsYTBr5hEqO0Fc90cUlzT6eKwnGoQ6irgg5gWPKAVIxk2hRKCHdvy2Mr4sfUQj3TbAANgR2FqN1MaMPcZAxSMx6809oU0kX2ip7XGroUcTf7gHlVHMyg8soLCghDfBDBKjZ0IHktaIhm8UqVaz66TsfF4QNl0g/e/2wHfQP7R4VadfLNjnpDe+XCvSBFf99ryrjoAif5puX6RiKJu0Gysk7PsYOkzC6Jeb9R/aoLeTFjzG7HZKnnrVKz+D4aT91NNwuqUISyY3wOtlP00Fyey+lpw6KAsQRp6KK9+l/4GAOrapmvYwCer+NoB3P5mQwn0IYxWDuPqlOAXapyAcexHdEqGHRNMhteos/dNGtCPLoqYHpEmUhisuqY3Rfs46+1OoYza5iqbcjFSvrU3mNCj1D0o3qYFjynoOOQba+zwmKUMrqxu9arExuNnTsXVyY3Mlcvu5Uk6/W3sP6Ro2RqqsVYMWlem8jErg5S8EbB1PMLf+Sxf7vf9ijtGNBI/jNWvGW1rvM3teKS59iY9fGANUHUPiEMDjSAK3rv/y3/6z9b5YODF86fKv/qbr1R08hpHZHKVidq+1KjJtzsWZVqZ9S9/+/XZs+fv33169uyRDqKVQawD2tPrtYZs1CD7h0OpXiGZBg7fi2YmimIg/Pc6E4GmpVqykQkTyaT0olb3jyzUXIKWH+dJffExUDEGo77d5j6Ol1EEh4DEt/qT0ShYgI5IBpLI9iopryGMkolSqQMwshMe7Tbsjbal93bQjp6T6urYsoySPEiKiSpv3VYwG+IW63Ccm706jvJyxAOryMRS4CJnVtKfQIAw4vbAu9JeVPdYxBZTxYKeshVeBL+9uxxr2Mt/LGFA5Zt3zrykH77Cm7nc0GadlQla3P64POUU/Ln19GbjFxz5ksIuGdy7juJ+gBjkkzNF7JLt5L+y3fLclJvjqcj4PCRNrbGw5NLwmRSWErQjFOpOBUlhjIzeZTq4lj1TSWErPmL2cu2Zuwp6myvPnAAnwzD5d/g/spJrXM+Q5I39zHJ51SteVpGVPRILiyJ+5dxvKeG6GCm6DU9viy1CenxThco4Iq4KeLDDwty9RauUkX2MBIzhu9R7aOgh3C4wZwYHxSGs5Om6RxkvcwjQKeHvrXww/ruXsheSq5xcsXhlnkxkGOxyDvWNrFuRChz8N2g3iv4IXFlqUqas4c2GbwXDt8RR3Nv/LunDeAP+d9wdYz6knqKAAPodzt/BvOBcHJ08K4ugsX4UXfk02KuSp9O9P0yM/mRyIPwRY8zWOMfVil8WIeUgioQ4uSj8+7J/T/ksTTkgqizRlshHz6GmdxpgTtlKDK27hTwCaqAFaYY5BULa+5q6TlxZJIK8xk0fPH368MWz576lZSWPcSrNN6KfavZFNA/v+7qW4XmnTVidILIB8dmLp7+9eitYL7DbtihHuAtdnKvzl7/8ao+jZstYPgKt7jUeb/MAelqL1FharIOjv2FrgeN5HHXtOI1Hd78+e/zQ6p0Gtu7c96fheItD+hIrTpnKnbYw3tN/cFDPJ10CT1YnfPxqbUZjVobLTAUI696+fSvch0L8Z1JCKHSv+ObOZx/WfPb8rQ+SGdu7GhoG2IyuoKqxzrZHOyKlXge5TTfVU5lPbZVTq+exiHN2XDbEFQ70T+vpTosm8ag4lU37Ms5dlH+FSld0GUtwB6N3ANFLbz2pH2u/TtkD87udKBaMYseCHjlReFbBVVqAtYNNln8ojpXOK5Xz8BX9tXFZk/+DeLU4KxhZvUXNGJSllnxth26ne7tUJ9E4pFe7JzO/jzaFExvCKklu1EZmpJyXboukIX6r4R8IduVhR17FxNZdwKqf2HozqZ0alPmwxoFa1LRl4o6fYtjCOrZxzgb11SqqRGQ6Knb2392Pn2V7AA+A8DvdBXLWfcQlshO/WpbSKC9qNsjIKn0Gm2gd40jXQmR9REseyKYw0O4Rlvrls0pCNUIhy4G8mnk0qMyQMC+2FlHV2dhAe61Oo5a+5fW5L2roPRT9fNO1tZTIyHC2lspbESQaXbBZxCwnEUnyMvfJyqwhMSGQzqtT5N/O+Fp/AVtzcbVop8o34s4gTzSSMsh8cm4+UNPagiOadd8JNoVqE3muQ3UESYc6JdbCFh+ir+mz5tOo4wp7ml2RzboZdSS7zLpARYaAUhnx/Wnnnf240LHN3PKoT4L7HWba6qnTkYhFLiX2qnE80my2MXuvVPcUwQJblMVmqv/xvhkklGKhUgkRRcym+J49zIyR1SWFHKIRILyfM2S7r4GmJlCYxILV7AgsDLbMhk3EodDF5lt7pXy8DHwzkGAUzHhFpOgBynN9Oh2JO8yDIdTDzApwt74rGYZdHf8f/92/53j4ymd9iNFW4MT09OUzR6rhxGYmfsxWAIckPH/yhFzsIieFfZiNdQLz0JwpxNGqANmv4w49ZJNIhuUfZGkRh5MOcrv8QR6rRfftefJfXU9O1WFwaMK1/Ikx6g/bE6LnHmt1TM810+q/6mBzuOm7InnUy9H4qz71lL3WQWeFkZkgJxeGuWD6qM19WMNbppMHO4qv1NgI6OVtyxawudRerqAUqedd3C5ThW6s9/5gyR27TVwDFO8jD8ZKVh27xkcpbuUc1CunpIBdxZcjpq/uQQWLikioNX8e41Glr3/SFVVBqhsTjAQ4IQSpqzyuSqUjt2cl2EiNsnEdj0pLPPn39KP44Jy3Vd1zncwDkdZOpT5gD5BbxsN4pC8dqoNNSvc5l7Ew/NETVf6mtZC6Rk+MlLRrBnx7GJtS/gA5EBOUQmHpT9C6X3YSztRgOaLzy0fIID3XT/K1fBU8YBkSEPPR3EXrfYND0SOPFSPyAB9K7y7JczQewF/2EtVxSfuHhOs6BB4QNzphgHIZ/O4dioalxIoc7o4iL0j9+V7ue5pSESZ/xnkT5sznBmQYyhRp/v5Bp+Es795dMN3LecKhVaLvuP6Y4b/DZrBwMbHsZsKJ5uua6NyP5qVNIjcibrnKMSH0N9KiuUw/bnp9ya1S39/28P36A1MrvULfOTpEDMG5/V4uKa22JrNRf0sJU8TcgHy/qezkJn/EyHRpZDR7exX8u4w9KDYrqtTKJjTXYOQl5jp/AL8Mu+hNCbbuY0qnITSGHVbt6KqkAT+92wP1QMaVFFGReMh0eTDFDhq5vq3+4R//7Z+eP37isH8DqED4JhcLr723pFNL88ie3RcG4F/pFegoiNtsrPz0+a+/vfapGa3l+/fvfvnpl0ePn/mm/L/89X978egX+wMEiYar2l5oJQBXb4mFT31ZXvzJF8F8Sqw9x6/fvMN3oV5HeRZ/TL6iCseJPLTUoNU7Pjn89JmFslZUq6T43KHbnXmKWWQIPSmq5UO1ApYJte6cqrgDc/dEaBRZH0MNz3v05U2DaE9Ve4OdrTyet+eZJr+UTguuPMbuaUf9yle08qpDLFhIHS/DsxnDGSSiyWk+Jaz4gpgDx28q7oWfcnqUuPvaBdLO1w0yZPtbzqO7wJ2xmywzz0wOXl7u7oIsywUZ8O+vSg1vBJz06AhBNEQzHGNIFHGmlUQTXB+16BImA1w2lyIrj9cZIUgliyK8bY0Qgmv05WNcxzEmFOLv69EFAwWgXmTc4rnWriCoQLCRRu8tlxeFb7vq4/t0T7zUITq39kH3jIrRqXfKXs38MFFmjC0D/+ap2olrodojS6A7KgcSXBluJyVCGI9obxmGbygxNdWAmVVt6imgsN4I+ShoUdJDRtbYqIgX7ekIMcZkC7Q2uswacd1SF1HWQlF2ojA6rVJDmi8JPHy8bgP27ToIskCWAJLn6iSB3n38pJ2fENGVSTi18vQNisdSWUHtpRg12vL3RF5pcKDW1acF+dRNQOpub9CMKNRr4/S4SLyxhU1V3j6ZzTC0z9VsQBzKAoTek3OEjB8QE8m27mWRNAxOCBCjEmKxdeP3vc1V2VMEuu8u+IJTuy0a6a8HSHqTFTIU8F9abtwN4Q1WckKOCquLZTN/gLLApgKyrmyyPs+iO+/gZKgjMoGEtTHiOjweUgwrcnx88XKDkuo3bqXijXwi+XKY1yiw/FhD27F7IAuf+vh0/aXqVrYT8GPJyZe4JSMXVXvSe9zK/s5uqsLVWOZKR05j/Y5C0ivWAalzF8RI9X/a9u9Ceufu//yf/lP8WVVJlg/u+VYXU3zyzOiLFY16C3ZM65I+ef64oN+uKTL0iWlALbtEsC8g4gTpPBHj5p4SEYrmqtC1q3VObkinR7xETd0R2bDWzfFEDGuhwZF4TA/aGKgoSZ2cMZMgSKM5P4kqf0Mp2fgqTI4sU4UMrrTKwzaOovat6Urvp3Lm6TzIJnfSmomvqAxhQkU90AgPjt/Di6dRksZchyqJyVymaWbI85iHl1PC48l/kAKZhY2MCt/8LMlUA29+P5IypiOuQycvl19QKyb1sKJYPulHwn/HWuzFyPkNaQuNspuJEYdBGG25DNa8EuPoojmBTERyXTrNHTD9mxJhpCmJcpIDYpCHeBUD6oAPVBgnTSnB7O2oH4IEVM7+BaZA5EK9x16d4ssQyCPzUXdKX9BSH50O6Xd1JMnqzlFEqir3fsM7xJHV+1M8ySzLkg/WW7nMmLx6nL2tmIL+jnfJs7osNg16kdBmupXdxYUcEgKSQCj6NP/1HDKQMTzhB9n/N5a7VaKfw8jeUmEQug7l3QGex3Uzq08AbssQ/MPWIeB6KmvpF+BgLFuJS13Cj8x79BOQqtIcotcu2VdnR85S9vMjJ4BHk0eMgb8B/o7+JOzx4P9OxeAAMDkc8DeMFyWy/uG6gC/tvDiUXFkkTeDzDYeSH4Sv7I9HRaCgpnPj94D6DvD748lw6HF/rqBJGsL+XjzeXvt73pWtf0dlkis41FHqzU3mlRxLlzR6U5oSwxOmk+FK9fqWcmg7v96GeWWP3fbgXYpNm1pejZCjIVpyw4Jtr7TU4cwKepC7nWcFvtp1hqdRsVBbKGBk3jCqHNyUdKdN7DvBLS0QWyuqXX9mfFHLrGG/W+AiLHr9+p1dci9ePP3yUWBj3XznZkNpXy9iGqz9ZjnEW63Zzy9++tTXvqzO/+Jr9x/fNj5pFLPGyOFCz80f3OtLvxt5NVPudH6n8n94/14g8/L5M7GhoVZOyfSGdtQWuF9+/slwrAIk6JW25qfnL4URYkYNZUPC6vXde698FfjbV30i0jFITiRFBgJM1JNk54kbQXwkWmrH3ZcvRDFRHj3UVuYHCi+wUt05avTkvsbrNEn5cAqJlykHUTW+LDA1lfm7k3GzWcdjCsrVTJdXeraWzVwDB8cspECbOXg7RBnBrek5ebKAYFzmlIM6YAM9Z84+ahI4z3iIzHES5EqegseSyz8+4C0zNgSIuKPjGVGRt0by3LdD10JqY7iN39POXV21FcpTB9r4qD0A+zLqyGSjxcFG4WvnYDBQaARVxPnl85sPr4F5SZWU+sVJ81qu3yma4ZGhoMiN8I6+2I/HLQi3T/QxIM5OFORB+fZj53ViHBYWyWRaYVLEaXS5ozN1EYjKtIJlQnoUDx9ZG2aRiSwtTkOfaJ6dI/7DZ+vEqhOY9R9yBXNVQ/0E3aEFs+BSIbAotK5MbhUwxmY8DpuyPcZeAmoU5+La93aznI6f+v3uIz1hVVG79FCvGyhTW/XIH7SPueX4+7Qr1GwdqTKoI+hJrp2jaAYgk6vJEnPfL242m0Ua4hCKpBs1tT4qoevPtI6fjnaejxhx/Zn7D2uYkg9GNIJ1qIoGOQqpKj4asmchfpGD44k+2kMEoToMBua3vCdti4TZWTF9XcfW/IiYyIqqWZkuCaUwPt0h0lwHjDPJ4HW0Ft7o5sUL+u0QcqXgjIbtMtgkJsXbHv1Zw914h+qzwMyNCR+/G3SuZmnWMxVhvSe5IIYRxNOIqz85PQAjk+z8OcA9nUVH0itVoSoNQa/+tdvWDZuvvpg2rbo0ycB4iN2cmO4u4lmtznKCLf+ppmTFsMGbA/SHAgjqn/7dfyBKM03qmy/7Mi8DEqZZDM/8yZof4ydi+4zFfJatLYR458PHLw5KMNTRsIetS3Y25EmOp+gXCXNm+MLYIphuBIvxcwRZtklTurK5vEL5fJZXss26LlciJ+0mrEUq4CSIOTjc7QaYgtGYPSi0kVGS0CWMEjAjo8fdgMk0E6U8M4KU6v20XZGh87hShxg0lAuoC9dBd+xjiRIOj8Ck+hUfr269GoYydVtbTs/oSTej8ztc76Kh1j7xZn8H4Aqfn6BlBX5dJDD+DtIVrz1IHb1O0gn54FpakA+F560H+W40V/CUPfR7NRme5H5H+SU0b4toM9ww9QP17AHAJcfjHyGEq6qXCuQ5rA8LS7gJhGSSm1+0FSsHv5fQ92LUeg9CsHpbAYZUW7i3verFgFSoalzB7oLVTWXDdRL34sbvgFQcPOyF5kBYYYnl3gVC4Lp6DuPAd9NcbXydrvLy1DB7FXnLLBGDx2jDdVnvJQ0QGpwItP8itT/TvTtPQHk89HQ3vkA+xFz0nLKj8rwayVKP6sOl6CnyBxAhPNePt6VcYvyeWNIpPhorcrs5AEbz0drKJqELSGVnMN0MHxc8//69MkYcUk+GaHa3vBnb9fAdYVxEzCRw7Kg8lf7+9yJvNGdgXk2SN6GN3KtM5bqOqA+awxQ03wk4eb5ni+DvCih1ZnYqgser/PdCY1D+ZTsFD4SbQFLTWBjQi7yxebDE8hwL0Cniyh/EC2YZxt7R+IDt56D4AykV3+MpUX7GXxVgJvlsVV57I12uYh0xWQFEkYH9c0apnBHBpgmn01qiQL/3sQP4stIPvg3/+auzOJ010WJlNaMBwvuiZ0DWkRB3fX757LmCbz5+dGKJCV4VxOE/GmVhmcOmsWroVtOZBu7defPW9+mfG2KlDvlVcyuKhEEf33/Qw0CwVdwN+3rbcT1OAAS7CFJjZ0zXtoCXL58KuaxyFkglSLuEP360yEcWjDUI10deHxFiY72CjDv337W82NIgTWxNfVFUI8ot3HSAoqkGo4RfvjprowiIZDDsxnkb5CbCKHRLqqcirmqsOUAl+tG8MEhemGcu0xMB9jzrknwUtZv04jl4PfekmPy77fHoNHVkLT15568Mw3h8SJzc3mYI7uc2va3Fqfm6SELzbZDiciNedR3ydlsV9g+c0fEDMMF+d1leFW0441sE30bbRlJzisl/pHZCq+Dy21MheIvgyzM64qH4aYOjygmDs8CNmrdawaJn3+gVzZCD1iBleL9+y3ip8apqaje0FzpsFQfTxNEb3zuyouaeL9DVZxDcWx5jJNT4WB9wEMlusAzBnNBjZ1c9eujD0qTEjkFTL7CFSiFoAfSde5aYCfBNCjVuvnNbVAgLMbQGRrvpisTqwNRIrZ8mFD5n3YzAIhA8Z/l5LNGkzoOzfSBlRSYiIHVN7ItHWds2N5Ot+ToRv0kG3K+LUtgAlqA8Myy+ySCmuNLr+Xw5EXnWlEy8L25q+6xHXyVTwTvda0cpqUf+C0D831PBi1B8sMy3adXtVgZ+udcJnEbNOwaXiGjEbKHGzaxIMky653CbVAtri5E6grIFLQ47rYkQBLY9R8+hiqlX3lFG5ti+qa12UJDJrLcYILbk7wuwHQs2akT2Qsqqt8sEBMu587tJPD4te5oryRqK9hplb8/GxvhUEMHq4E+8bjeE6o9KUf+8YUV6qUZr24PmP/dbetSQR+Jdmh+3VQoDAfseeRyRp+LKeCDf6YQMlOqLzvIDyEBs11a+zyd3IJUBhbJ7wwE3JVIlUlubKMM9sVqsxa3SOUo4HHJG3t3//O//x0dPnfrz7MP7dxgwyvKXv/zmY8xs0VTnzz/7yPO9f/7bK4p59txH0Qmob0yg2zdWIEQ+it0g4vAUQ7MgiLMVyl/EljH4DnwH8MdwFzEXMhaPsqQjjKsR5bsy8S7qa7JMx7dTvXYY1jrHJ3/AWUjdLFyVBzEKRsIiocuYjw2WlmLQtvRQuMECaFUYr0aV4iCjUaL8E3oRZM5tEcLgpFd5Sh5ejzhawfQ1nZXHzfhKhaXKs66OV6jtca48kRzveQLKAyHkvfCL7rDN40fYyD2PYZnYI2w5R3k5ZFAIAct5QRjMUVv/LQb8AjI0+1Naj+nq6Gv0IaXAulddAZd0ezykepdIF9T2Bps7CaRsh5fKear0ik4sgyP1kvmR24VitKVyZYJ8aJA6sn9QmT1MDsM1sU+kh9YbS8Nd85UIDwuBuHERmRd9Vxo1XQzfhHHovFruRLeobiXT9U0yQcVXoTzOa0Io4+iO0mWrBVJqzadneFXdrD/S0BYk/1Lf1HTw3gwm4g+cw8VBF7OAV3YAZ+0XR4frXiCrDP7s1cn+Pe2gi4Yks+yRcRVJVReRFY+8K1v3J3egoyoQF7ZDQy8OnEPD8pTzRlJ62SXp+700WbqWf5kr4BolF6XReyx5lK/IjOdWbrhH12guww8cg//f/Byyb9RdTP29NCD9g3BGllLRO0M6ILOigyuRdN3Ic3ulLPHYZxnKSAryVXCFB7QX3XRF3lH3eA/SJfUb1OX8LswJ+lB7afkCBXyR0cGlCkfGgA3FhfFgDTu7ffC4uXfhslbPan6TAOI2Tl7bsonxIrkNt7UUE2A7bgU9+nSGLgHSiPzyy/MXz57+y1//5nu4FpqKQkwRODLol5fPqfXXt29Nrf/pp5c6G7+9eWPgXGP+66u32LXUwWifJv+9U1PsWHthD9uDt++cXS0csHXNKZ2/P/Zp+W8+yPrElL+tcT4r5hPFwrVP75HXkYLa0TfvPorGtKw6KYALUTQFb16/Q/hz09yPnxjgf2vY9tN7+bXNz5yKfd+ArtPeG7mX/42ORO2fHXEWRt/XwWhTKi6ePjNqFszy+2ir4xRNyn+zzrZOAifZoqGCaXIvPiDUkpPZtDozSPsbTeQrigsSu1IcbKN/u44BrGzQLv+5el3ioKViNzOVgoe8SZayH4hqJlycyay0Nx5rnV3uc4By5Ssq0/sGL6A7RTy7EOu5+jjYMtfSrUhgcTpwo6g7vk4pj+CtJazt1o4DAnjYG/irQZPNLgmj1NjCIN7ZkhuKptpF0oY7i7+HrYmUYSG0VmxbyiVuA6QlGS0ZeuBAKmZDEoaNGbCDZc07sRAs6N3hVH46aW4HKMr1QavO73E+yocUjUa05LeL/wS5DZMagN8yGJEW5bBkUVaBdTzCRZOxIsolClrwQyIBwl2d3+JKkXqiSehW2At2s1XAp32akrdjbUjDP0W0KYbP4VZGiAykwd9utkMGOijbnktosNWZPKQIuqIG+4xT39iHvHzFSU5F1GIQ1VkXSsSOkMLy8b2vybKKdglHYYuXHJRkmymsDdVnkznk7DMjmOjEo9b88xTcw+f3iyE7kNPVwnc0bOGcKT+QLIuy5so2aA+gNUOCbNMT8n38/T0H8fD+Y3UAqVIYwDA04dMcxj2rjFDUsU6mBxFIxYC3v8YmH8ZGA+mfOzKA3h5r80roACoTi5Y1tTHXuL4K59/sURS6T24VVcpM5bSV26/kDoYCpwHxVaKEk3WwDQ0Ds12BzRUcuc0aqx1K0Tj/g2ZwyFXPMxfKDA49BfvVSsSyFj1G80uG8xnhZjkc3yRggMv7s5khLeOzVZKPW1qJEgZzpK3XBAwRCJhRomPcJ5pffXz9/sP7P//pl88f77x/+152nu39e7Najz783vfjnj15lofElWU2dxwmFf9ZlqqhS5DxSV7YMYHOSrGTFJTyHwaot4RV9apUMvKqPycwIguJVB4u/f0d9+ts06qTTJNyf1QT/wKAjemu1qYKEA0jQJcNOpVTWrNFqSHPAUUqzTLKn5W3kXwt6KlbEYHEAYq2HF/1hEsCBQTCT8JBcxsV/V+hkXa5yB4ldPV3tnXLgwaQ/at0KPrZNVH1Kq+6TJCVEZRcW/RHT5EE05GjzAf5sI+Um5vuFeMJfxRfOGIuz35hLHm83KDM7CoUdBjzc/4uX3lGzA3Wxd4tas8e0DnyKjJBAUR8/QY1OsCNkSOaQPKCR6ehlB6yYewms9qAE51UZAWSfNYSsFJmisvNX4DnNgKWEhfxcLr+snuaNOEqR8WPquLzKjLInkZkVFHJJO4v2uQ6MqzEaB6YAR9NR8jDEwpFGZtqE92DeTBOtJFRmtnDmTExQhDB9XWjrscRKnHPsDXWWKGTct1M/qgoV5KEpfyu/Y2OE6qe5GG95Vj+ye4qh6zQl16eW76ghXSFdxMRkB5jOzlH5il3FY20G4hKBwZX3SrbT/++F6lU1PauTP5ccl5O76aO8LqJoguoxwD3OBIvTOe+3yNSOa4MIGROFXGd4h5DWNSiRG9v/0fMj/sozLrC6b9DDDOaA/kjYTLUcqyoPwdRpa5i+3OYkXZ057FQMeaU3kMFyuV3/8pbSk/fr+EtZVI9BcbFpdBwTrAjPJDfIRyUKyox4V+oTqZT8FQxVVSz65x8vtS90zB9eFVLm+Mt7qlNIj0L30lXosXJRhucNvHoyYNf/+Vv4uInT411ff3L3ww5fXv6/LHNayJuUb6BzP/6z/9S6/Ph48MnTyzOQcqzpxZdPPqXv/zVSpBfXrz8269vfKVrZ3U8UE9+c47/N/sm7/uEpU8UNeB7556v9Nbof7VU46MPZxoj1H5iVcOpZdC7kIfYrHw2ha8+05v2UoUW96Ocv/nttV6H76EK/h68ePLMAUMf7wtEPv/25oNwA5L3byFtrUNdiOYTLJr1FbB7L54/wzLOLVqAouakGRKxYtoj2LmQxN7NmieS9ugZecdOuIsTIpQu6eSYbeQSZ6vp2kherUEjbq7lrQUpg99GiNd234AEa051VpqTScn+v4pO5yN4resej5HMyA4Y1lFAn5FInbHNUhbZKJLllLCK4D63mVOvfiFeXJsVecxIa5LkEEHKWaSLp4sVa6t0qEAlCoGsPhOCOd9iHSBrN5zgZIpG4L5jNMsqam88u8BaJAP4VuCI5M6gfgOu1un4cJ3l/EJG6U6OOmPkjFnwBWbxlk+JaXKR3RglVjrflqSsKMM0M5/2UmjhgaFuxdBfCNOgNNoKtojaH3/blfvAODSi6r10YPrnp86AYoRMoLNWdFl1SiIgcd21KcUXo1tbgkuxOPiCmRQloBZUw3u/g3dh810mwkSmmQCzWPLY5JuKDGyf0J98RZkJueVqC/TbyP5hB/CzVZ0YvdlHj9uUAjh6batQEQBh22p1h1/VoMflgoLaJlROs8xsNBehIhhiXLe3t16KXNKJelPyQk/zggbj6zjNIHS9WIShBEEwMTeAfdfXAONUB2v2hhzqMwMnDGttenYkbXGDoX9LwWwAt5mG/VhnRZWGDET/LEF/TfQPqV6dYgkzcxQ1V99QkEHaaNoEU9w12j8mY2yJvarT5VCctj6L/kUkrEHHvi8P9mWPtnBQeQUz/Yy5GSRHDmfhp+t+znQyb0kKiQT3NBJ/NFnPtgoLzrt3DkEWtdaHKUwVWbcSe2VIfpZBMJYdgaxvOzj3cy2f6iypK0qtknVewqIe6/ORlLiBwWVd0KG7+1/+w/+ospnKIkkRv8lKW9d1W60JevnM+M7Ddx8+0P+znx5/ssztnY3kHYWqm5JKAzVHw+6a+0hi3VSjY2Z+J0VJYb5YpeDdR3rFA7DWF9iNN8jjVeXlW8WTR/VBu8ckK73M1/hHAhss6RlF9MydZZftiQFIP2+GRnbLerWp4HVN5iH0T0gHEXpBnVpAZUbVz+MdPPZq/5atOoci6QcU0nN5lStlFya7X0pO5PYGqNMp5yXTK0piIUJgH45KHXbKc8BhLOKmWEW8vyHt/cnP7qEr0wSC8ZTfE/gsaQjGc3hWhyloNPROSnkm7STcFUehWyvlEbgkffluqVKCIMkNLMopoaSc9egmUcj36hLCgY0b2Vg0+K4LW63Felg9H4JDt9ty7b4anoCmglITCL8/OBcfSbAX53HgbwD9DSIAvQ1ob3Z1p8zBUmF1LtENSvJvWG4yTYSHhFN8mH4AGRyKPjODp9S0I19KTB1xUR8pci5Fj6ZkDmX19tjuAVs+9B0tVwSc0xjHRtcKRphbb8utcvjtpgwnX0+x9v31IeEA6L6yZf9xnfxX4jEJLyN7YJbxghneFFONiKLeXdhu2a7Uva7UuQ70Q/4BcvL79Zgk3IyFlQGkpO9KvKCVciCV/4b6jwRcOb7jvQpeZID9nbwbhMnqh+z+f7AcrqusvBdtVfzpQsKxowFFOityG64RfHiK4Omsx+tNYM993B+9eU6o5SYZxnOj+ZY4EyqTf7smkwE6XnoZvD8Fh/1kvGD2cLGRKWo6S7j37an1+fa/diaPKmehcSer1NjuY/C+svXm1RvNqZNGHDDNzuP099+FFFYni+wlaBMsXMD+m/cf/vTTz//4p1/evn2jcbEAR2OqJRN5/Pzzc+Por975fOkd2xsbtb2Te9k61c9vXn/UPorRtc3CLI2gpb3PHz8Vrwi+C676UMDvj5484ZZEP1p/BJtVqJ2yb81S3Xv3njwp9tAoqmTV0jUQeNEqCj3NnGvb7Tpw0h2pvf9o9Pf+By9EYLzA3d91WfQ06qs8fCzKwZcI3gHTFh0Jv5p5v3//1eu3soKYpRaDMeMcfsimd/eu2vspyr30W2N0qWaes4ZPHkJLnvuVTiFgCuCKupDN24saCtBqB/3mKy6tel+rfbz9fMiBc4wsE52+s6qbRXV/PMzBKI/rpESn1D0i6ZT+o7HxIDkHmtCSZurJYD8ZpFdcIwg1HQtP6UZklfc/lWLkQED5eGppmF2soDVUDRIXGpA797cDu8yipPCzxdZ0CWYB72SVWltullqpUjCMcnJyY6UEy2k82IpzS8EbRTZL4PH+x3apFk/Rt8CPJ1MOs2gtSi42AFzYoP0zdWDGqSkLVsg8ipKdGvQJCmlbx9XWWLtl9PCwIKxsukZoEQ11EmVr6gNeSIXFWEtRRnbX8ZBB7OMiCqi92MK2VoyIPvWIWn2HILYtks4GiItTqO61I5+c1ZPGvpOPkE+cLKqulyLsFm5mSFdbjIywC2QfPdR9EuqKZjNVn+l498GIMlvV67UgPOitzCG8Og+pZpohEzrdzBYeNgSuNFQyqDYIQUKqLwVwTJlnwYu9MdmAvvss3Ft1h5igoYrZTIF77fwCScPYTAsN+mQMjK2BKP5eCyk6r8/f+HqdE8cuFbLH3bYqXW3rTD0LjMGWnERbgRZsSV0i9pBazfqG5d5Sje4EXG6ZBGoByIQmzBkzDTO8I7f0qIdbHd/FQsgbZID0xOKuSCzFSaFotoRsPim8aHZs2XgytI+FIpARnLFlSrqDkUCcLLNFVPUuTkjWTBpKTmAWPeYSci/f2k/NRP788wsDFZacqSu6UQ4z++n5s598hppP/GwXtvN/7r5nNtPi2Ky1lxvBcQ776nBOgAyxQtiknmKN31e9y7PI9Yi0mjPFS0xl2X6Zq77BqMfpwR3GTnF5iOashKMR0AGpGq1v0P0MTmkpiSTZ5QmWYWijKcKZ7LGwi/jRvAoTJW5kwMDJdvKgQZ3MIPI5/ZeVR/coLyXQsT4R5BEK1EvrTznLvxyXQ/d03gBSjkGUIYzxrTam5hUKzQ3S3i5bpTijU3Z41jL0fMg+0CaBymeUp28gS8CzYznPjd8bCTUJQekq2zjxE9SSpmkZRmmKk5Yhjyq35RtDSkqONSrjXPrtVfBH/SWRA0uRGYn8IQ/huR2si5IZEqJA3nwx1ZysMmdOjG22MQTJIeJ2RSewLKq0EveysAka5PQWluluMOXIDMpZmbVjsVbe8I66fiDD4XeFRnxptKdqZBOnzK2xHPZR4EWs5gdLjGNcLJJrddbeksmKe4sYOYIr9wg7xVeuzN4ObtyDOZ0MOWtMp/G5DIegwJxSN91fmFZlR9KhakXLugJRiePAgdf/F0z3V5b+JN7YySvtzbJdZQ6kkgfhyjBGJomSZb2uQAEo85R1DCmDk7J3Za/ECDmKweuR6mAcCs/vRT+A4/MHoiG8ZOg+6ME/UIHp/d/nOShG2x+yLU9oDyyEKbfCQUsqXe5LXvp5TuGEWbG98GplD5hyTqrlWbFD2wXgaGFFln91bmhALM9xCwMysAi+wPszRqOJvso9ED8EeIQwh4+ERs0b2eqsiQIIq26a6beM4Y6zdID9+uWTxf3CtOeW3Tx+5HgJzerzn15YcWPnrZlyOyFb7sBXf/v251+eefjnv/1XM/zG8xzoMtO9Y6HN5y8PjZS+MPFvwfS339++NVp1783nN04EKjBzeMgdi44+vXzxRBBvR0CnAH20sfLTs5fPeYi//PbrTy9eGDe1VtzuNiOFLdlw2voTHNyVceK++/79B6ktQGqPI/UUjjw3HUcQnW/x+68O8nzvQ8XWPHVMdruN8+8Gp/rWWB7j7l2LkTRPqua3j78/d5LG8yexcffer7+9NiophjEvIf6bv0rD5EwAgBxVepw9eKP5CjzkAMgvkHVvEFYbdLOdSh1byA24Uzn2LORN03RQb6Z/lJ8+5zCPGuk2PynbXM1Mox/XUnazMsOSMRzaADqwvjsfxF55jlef+4ITfBwtc1LM7fp7XFaOKO/dWzfjNLc8NNtNix2qiDE2JuZnGCgW1IjjRUvvPr9/8fiZ+R3NPpmcwOD9B3sxfNjhid6AAByPWw5udbgDSyzZ+vji+ZPJs49eYafP3N4xqP8eUU8eQmutiI2OlqTA0gFQvvgmE4U9fGofCXitSCmg3CKTrXsRFz4CufMW2/j75P7X+yaRdAlkckj6w0c2katDNTwiLHsDaPaDz1Mw3A4sUnVaruM/Ed2CNj0NPQoxotCtmYUIqJKcmLWV+jqcZLuakxzxSM7sqprTArxPzvqEkTWZTlBrapm1L3omBaJfxe5iPPo/2IWYHz68Tw/KmAijzUTqPQtsB/T2uN8xLiz61O3AzeOHj+UBxIH/2QjqLM/+RsItWC9g69gui2vOEf6wG4pV0X4XWOLlNJTqAYHqc407MNSFdq5iFGQS0ElTmxhOZ27VeRQT4rsWjdSYzjEwemzjte2vzKdd9xodb5ogcn+8e5qr1RAxFsK5B4NJPOGgAIU3M/v84JH1gfRjKAES+es0bvlJOnJuGDuBlxEUxNfLSrLi7xn5bHxmbsSBtVf1q4JCemE7tAkq4/neIFY7ZWzMnojYuVfIALz8x9qayKjFx8vd5lTFtToOjXNY2oRR842pC2MbJa8fq8unw9p4eHbHbNf8ftsCRXBQlTGhLC7/p3/6z//4b4272M7uv8/O/md1/NQ//Onl//t/+5d7jzm7/y9df6JsSc6l6XkxZMyZfw2kSOka2OzuqmazKVKU0WSm+78MDWY91J8Z86Tn/eB7n5PVJT8Rvt2BhTUDWIDD4bB4PsUDeg7ViylJcPoNl8lOdErEN5rV+XUMmOYtq/gFNw3gsLmFNITjQLL84Z65prwqCi3I0gtIdEDWT0OiTI4USAc8/KYrhxTKqkExB2S0hIsaF9jG31VKhQl2ZGUp1Rmqxso9pTXszjdyjhhb4dmN4SYdGNk4udFcczVaCQ51AyTl6gzAdEzSUB0Wywp9Kf5fV3EFQ2XWgpMVb2PVRcrJU+oeFg9WNGGdK5HHZ2sAAyy5y6pwteVGOeTgryIFzRcGKajkRQfVlKkUa0EbuouBUFV83VJ0x6RSlCYVqY00NsZVcJDxvFJ3JOEsa9HhnKCqe0LnxBwVp5i/yTjg+KzoQ9ldlniwxdwsdyO9+ylZyk0VEmOq/nX5uz8mC/mOCRwdsLF/frtPq+kqqrVfYeFyzoPuGtsppI7tonETGZ7+AjZ+gIfUkyneyLiR50Qc1KrVMetlylhfgTGVk+8uPitx6eHQCH8Z6fliLsoHsPKKAojcKVBCyYBdnSJSQhLuq+DKXYQGe+wYByse+B22VMcpfq53fzx57N1SlZo7kQi9+Dikl38S4blgDuePECdINSWBJ8Oj4jGRr0oKLMluRAdcEQhvNg0mHh7EOdCXKg7wDcXhMwL3lKPQWR+ew8008wBzU8gBvdQ7mHGYXP1N2HDf2T14SkgDeddjrio05R3r3bMOWLmVPEVCSRPDE/eAD/xwx+pur4vKjH3pBVtm/k2o9wSsJteFtRl6HVNcVjJE40xSPn3y9t0bHYhJdwvxIbB0/p9+/6CAnTGttLbHD0/gxoYK//Rf/mqO9/cPX/7Pf/83Nvm0Ouj3v/5uTst0o82urS8yfviP+w6Ax+N9i9e3mXyFyBvDv5ih/OI1Yr2YII4Z8UAR9gDVowGwboeZVFW9Lzl0peQWyhu4/P6htf4th/Beb9sn2vpdrI/DH7++svmnQEcQ9eyf3n/44/N7pPiFCt5sosDBxke2DRXr0EV79p3H7oYBH71+8N/+/d8x38dPX/HfDLGA9Ot53KGP1lduSMw7jien3YdmU3+kM8XY6Q3vzUhdmzpSv50bc/jK6bD3B1VOnkkLUBi1kCJzwjRzXy1qje0a7WGrjcqLJSnuWFYpJR43WJss67pdgXDSxh5iHz+v3VtrP/bGCRR+jyevv1hMVrtnNT0LkGB4fm47GitePKipI7EKwax8Ea23FfvImqse0WDL17jEOkzVNHnr6W1QE6MnkPBaNljjLmi9lb3lEM/O2pXmR/epZpDAReFkbtQEqeBYf9fWQC8MIV4aAFAS5SqhoY5FM6t6kGK1lH2F4+lHpFuAQvcWmXgdFmqs9j2MVuMwBO/IwfQYjSUa//XALLUU2vLSgpbvP95/+EBIUR2dCJT44WaFi3N66gWatjlGn6EQfZpXzY/NykIu4ssYNRiFRp5wyUPEIjphT4GNvVu8p76ADCoRNsbS4JingupvniBu9qruC6QLs5+/6FvCHIzKoEP+R7v147YUc75TERKLmD2maAU/pPhYP0hA4yjr9MAp1AcB1VwjuOK3TW97UFYErkaY/m9Dz4V8nLDFWq2oSaQsFLktW6IIZipmI34moV/VusijfjnlFH9WhHpE3xjiMx4SKsiX8pOejfUeiLKNo3pTtu2kqMTDRvwwtzreNMUWWSVlQSBNWoNUHWHVMZaXMNdqWaN0E5IiZJ+jqIlggXmvepO8vaySm8LVsR6G3zCKG2jwgLFTu6dYaVf9JTvSPNPDADLX0fkgSYb4tuVjtAszFnHKN6vgfml8o4ISI+F/kjQKMndfR8Hl//f/5X/1GnUPj0j/4oW5GsvpnO2B8F/ef/JY4o/3XzRFkSTMl/ZYMnQYsXzSfxipJrWugUCm+j9iMkexvsrfwBSq1ciioc28LmJ4XIKfK/TZhWoCRS+OkcvkdAR+NeT0T9Pmcfxo9ZTt2DhF02r/TouWhtBVYHFtvsJ0bB5jm4ZipMkCMv4dbEOb9EjMuTVu6W2jYwpceJoCJiyJHC53W6LjUM9XTrgsafDLKiQFsFIJVflJMaArHcBRdKLUrl3lXZQ1qtfFGHB9mAdOtK5RX6khj6U7ksPGhfJkSxrbYCTMPseglTqoowDvMdiYC2eet9TRlb2aWQ0BOaLUmwxjuWIHW9RdjYkQL1XhEh3KTjNdT7f9nJzZK90eFzolupvGWC5JHwjJOBIlWEgecik2uPjc7xjueiTLqQioigwm6cfFwf9gl8P/0QQqD8fF1LjNc3Ks4U1vwz8fOIhBjdL5HZJ4vh0lV6r7ThfsBT1sGaMLhC6Vuj5pufnK3c9DcyBj6cgY8n9+HNmnuoufG3KNYJd3Lg+k8gfARXivWxdzzgfLXoRwVNZ0G9CuS5qMftj0NC/wQngjOdTDIaX0Xf8zZo64y7lU1vXhajXrlD1op6sHnu/ML3cKV3a0DsKLLrEfJB3YWDn8xe0t917qpETOsVMuMPu6PXTLQWttWmC7dV6uMhW4EByWbreDveDH+R1jF4qM7RBd1xeJY707N1kkKsNEuz4aI67p0/TPX/jKlVdkf//wh718Xmgmnz759S82M/n+5dMnL1baYE5k88F3f9eBeVwgOG4e/amvfnrrV/P7U5ChUWh3nzpr4cIXfZvv7H75sFW9W9kibjIH6Vu8+P704dPf/83fENgjB5/26ku6v9iS5b11rjrU5l89nWg/RE29LlmorlO5tu3X5xNE127ltG6OOxmcFH+YZqNzOvKAvw/j2NDd94xteK1f7MGfiTfL/ffV3iZf9PLadCMQQyHzZVPrUxEtbDbQM9GrPkBus1MFo1j41T4n2NYT0Sz8YrvTBdSvTeXmgjdLNsembXi5+zrKIqo94y+VLeag7FYjX8cf9My07OUXMs4fYJiH1IKBQ3Q4u9aVlzgBuq3g6LpQPddDSZ6fhOS0xm4Pz0uvQTkAzkp3FJs1VgxM5doAbB89M3YCMyKFbVtUXfHGP2tgW7ibWrYQwkKOonbTkFTXGvEXmPBo31Yw+muhm3itJeNm432DucUqNvD8TDo2igcdSXPWkLX2RRGRkyvPbNp3xUOotoX5LpZGVLTaOKPvN31//4claiKz1EspGLPmpdVEP72m4pmPqdxtYtv7kH01zKoVI8Avm/oVaos0EBZKpujWbT9VF/744w+ocOAFALRExSFRQ6ydM4zB3Cbym3W20U08N2fKG9uxtIUllqFbKcRHvgkIyUZwNYIztZypmXI56lSDKAOn4lcDpL5BRocbshcgvfS5jNh7rk6EszVLvT1iHFXo3CvLrcUF4i61QMI+IloCUh02WUvEhOFahLmEMkZZPOtrwzYSvRIHH+ekK/hVbRxmx4JazUQ7COFW2EmpocajlXYWPVncVzj++su3T1YT5q3VZfowk5j6UK8O2wWoEQJXnjfH7lF2YBRuDHCGBNggkST6UbbiTX1qHHIRnBACbF5SbRElQiQt8UWG6oY7DIqclQUkELXYT51Iw3K3Oy1BgsTM/Jt0VnBgHQz9k9QNMWEwsMEokyWUqpHZOVhjfkNEAqWxHGXDDIwmV2iBA0UfBZ6BHNZHpdVuXa7XAEBjYQ5JtRsbWh6Q4594mRTS/v/f/7f/jVAGANz6b/7yFk8fPuTQ733M3RbHXgT52AbPnn/yQc9517Xi41TjtQvROJyFGvfRrZ2tWjvGdE3JDeySWRYlpzXW3LZEzjUWp33E+MyLybBcgwEqjn9lEAIvF6DspJlzAFiQGUA6XQuIBy6eu64xdSFriogrR2q+lFIyPcB2VJTjZVqFKl6tPlZefhLsOISiLsH/4I8javQVPFBjYMilXUkBdx2GQF3l327Dnfjp5GDuTN5BHRhgOfTU6NztxpRkGtZRWamDgbdVPsQj0eUEHD+KT7pJsKLLPzCxCMkpCMcq0nAd5kcvbIfASLgLvlolJ1lKDqYe4g4Z25vJCSBGLyQDrQQbMeKN5+EcjBTIQn1Z1u9Bj2Akk2iSLv0QDv9KuZgyHwEos7am6jvZjoAXq+EmeH1PZljVBXBMcGgFcLAeAROtZqVuQFZ+u9qBu8CUlnzOFQ1G+iF0zxvCKebi96HMAZZ8ipTfkdTTCmw3NCfnwh+hcxyA2/0kzcor+ID2ILyVGf0QA1vt6WJ0bhDdjJkVdHWDOFJf5riKr1AdtpAl/tzPahVydD87nuuIH7OO4lFOBUbxCHIAbmXvxCVcx423AoWbFWKVZUGMercXoRu5BzZu/NzwHVZuyN1NHfGWI1540kkSdsTu7ZBYveu4pDmlTspSL/x/KjXkmB+mSPAnzrZSR6iYOBhPvT4Ejlx3xiQeDCdX+nBGijY0PgNIM/pL/17ukzQmX32Ft/UL6mZTtV7wfa2TE338/l9+l6DXF10LU2Avwq7GPP313W/V+xbAmvH36qTtVZ6+fNtUuj09PWouHjIfb9GFWbRv9vf3jubzf/rr77U3W4TQd8espbGgR0vsxYDXgvUnv//xByWLFy2wLsLbXKv21+Z1//RP73VwpGi1M5Y+fdZCgrTqVVxuChYbvfiIuTq2djuhAAFE1bzQ/4mt1g1swIkYxS3eBIXMMwdqM7gBDjkE+W9TRkyJgqUgnzUQViWr8rRhek+yppr9m8zS3G0GnVbXIKT0GTBjnKZDG1M/tXQ0anLyuqxx/LDEzWqtL8hYdXlzIWQgcaT0wJox3W3ud3qHGmMaXDs201cSzPGo46YH8hCN9WGZV40LoHOXmBJlbDGDK6QxJqxb3Gxjyr62SSk4NLsv1BMVCZfVvZh8xhP6HC+L0GCjoKfWrkhLAJtF2lzF6OmVlTyytt1q39ZtT0MjPiZqSlIgjpfC5T5pmghW5nil3Hzip/efPVCidV7YvrF5Xx8R4KGy+RCfNWWPFRGqttljBGOV5urts2JvnG/WubE/5D9546++ING+K6y2qXQe+OYVtGZbv9jJ1n4+1pD04mwTzLHE1S2R5xB5675yJSok1VTp63LVIEHhs7agXXRXF2lf9j0DyEJv3tIiNmipCeK+G9fHJzy2auULGm9fvaMQDx1eeuSQY/XcgMvRjzEjpzdOon/WozQmyFs26w+bazXUWMjKKkvDU86Wn1ny8uLlS8ULs7EtAjaD7t0cm2u9MlKXoNZ89JUuRegqRzA43+CNqemOiYtaRTum+c33t1k+tdf5WQWYmxm9oK+W7X0JWdjmghb2cePPXz+ynT+W5RUsstCLGEXAgnvAwmhObYzNtYqeTRYI1Fuic96F3QIWK5tsk7+XcwiCIm41JQYAtKoMtvO98+zocijyLYZenLkK0cqbVNvgSIE0yNAIUSthLawiv8rCZY9CEj+OsFUK/RAKbLElpnk+bI2TST1XqypqmJBMkwa3BmPVUEE331W16ccumj0q7HsBDcY4ZQvkRhoFrlCsKBVBd0bRUBkxS2tRvWtueBRID9B60dhcTRnfXnCS794l//1Dr8Ao+5uN2D5/9k61howX1a55AgGlaGaT8cQeGW5exFxTteYjizI1XS/+DmYs7QSz38KgHAZz62NWF0rnDuAhDlUKShyM4ic1Vgg1uMtxm9R5VNegT3Zt8B7YTWsJHGAF42QUsxkMBKgGRCSlhdcPyqcmqOR7uFZa49NGyVcWV4aKEg0eA6PhcMfilBBLjsQduzEdmolcuxDnpcXzGopBSCit42I5oKlgeK7EA3YBRmjoYIoahujERdcRTPJbiZNw3YGeCtPm4GLMv5Wtv1ceJrYKmdSchnYTPIo7wj+nRxKcdA4QWKZRGyd1+GMlJDNcCaM5cjFYdqUuzOXPR2e1mokhGuLwHH73s5KSDl1ZVRtH5j54RzeFp+2o9BOSBwiJQ8bFYMp6AfVTVcn5KyeLUacZ0MgcvgCufR1Wp9WuO6tJ5w+Ssmp0OkpJKWsyRuuoCBm0xlwSd727Slz/uxgzZe1I0PITolBy3J/n23Ow8Xorr0SXjuGPua47RTY0yt9gxsn0NICL7qw/qvKnVblHZcpPGzCFOJ+4zpEr76AczlEdnige5Mt/oK90LI1KGCMt6TAa7kPHb+mXSNJG6qKVdOMj8HN9+bA7ZgQ7PrPsqIX1snvlLkl3pbhCR+o7ztJykhIea7USN8pH/AMTE3fI0brfwnEwDP5CkNbA3+gdgPGQuSuwZkf+ubhuKe1iNYB4ObKwmPQUHtqDwcU9v2s+cySaAGauNH1v2q77iQDEbHf9W418kTXt/d1/+5uPWikjhDaD99HmKlnbovyXv9qz/dWLv75/b/fxD+//gPhv/+ZXVcmjA5H4Xz99tBT/ZRthWOrTyhCxvR7gP//1976h26uGfVnp3Zs3Wlsrg189efXF5nR/fG77nu92wr40o6a2m4UF+r94ji0UkSFma1cfPNvBXSTnnQJ1G+/atHrTZ888Zvj6/ovFzm/felPZh4Qsf2h6mIHNL2nz1diXC0k8NPjj/fvX7a7nneN00xin5cj2kPmY6rYsSlxrSk2kVff17Mevv73+8PvnIlUdCBu1/3sNwQKjmgItSC6RcToEbeLZrFODxpp6qjr19eLT+GaXZbupnT8Oe9m9hvfY9LRap8VeZdUpns0YlFuUwDjCx3kIx0Jo9Oo+lCVOxlvr56qODJvScTQ3TJbdAau9bGKewoTVmzhHwx9r2NixAB1RM6b0Kg6xDN0Sjra29HphIda+mdoQpcbVQOvtPlxlutHLkUaIXy3GUhwT0HAJI0JBsHXuDbOe2/KljfZx4GhbQ4PDnrx8bwsoT376DsNrAShtFeJ8txCFr7WbOeasOhH/t+mkxz6vfCai6J9AmfDrV/vAstrzXmkR4wLujXbSe37w6pdXyeefQcXnJgUFtfHYZHmxviEHnMIDK802Qdv7JwL3r15/b05a7cnCQPbRVYsyPCNqz0oTlethep81AVKQrbYMonyetbiZBrkfHTJucdSPJ9Zvo+xWIGmFjdUsxi0skmNVHlPGs6LVNt4x9OV/eyLScjhUDC+q6vtq7BD2puXzt3Ya9Sa++t1ioMgIc9SQUfHoBZdGzmBEovW0dfrGb9VXYJyU425gk/coSfPUS15yU74thrYPDyusR+VsaDSr64sZRR4iLVG7zYM2aMlLFD8wVvpVTQT9Hoioh0I5cXNe7UHiix+tnyIzmVqLb7K3qXavWLB5X/bwICjHVBss69emnRgF3wmyDno65wLtP4looyDUKdJ726fqCJxMTLR2q0cibe+bWFk/wjGvWifyng+EJ8/DRY+DiqnW0VT9gSsI3h5REoFwH9bBeOPemte+YE29dG+FUTVV1fMWU0V+cohPPzRfPMUnF4h9hhnVayVqauiBXBayVSUFG8xoHNg6LplP/5//x//RiyOG3lq+r16x+vRLezs/f/Hmly8fNFuF+7WbZ9SYTnKr8R0ftRSTgeFdOJJ5zYHruqtVCddJNUMnCHZmThcJg9eW+mT+lFh7c+aDc0vCq1GXbZRtmN4zFIgJ3WiVIhRiJzW8Ry2THMOorNlCb1apXgEa/R7uKKKQkkqM0e5yG1VigyrZCiaEVPMZxpFGuodnPzxHGzTOATjwOofLovUPE3+VIZlkTVhg9dk4x8lKpST5u64UbA9l3TzoPCploZUldjc2jibLTOpqWikh7qICDpjj6rq9rkeOm9Xlypkkle0i4K4Pg4dt6dNqxRlaF1eHkWhHfLfsIhfcFJsOmSB0teBdjAUkstFRy8iNxwkV7I1zV4Au5iv+IAIwf7IAoOjnAh7MuU6OHbfbI9QRVNohGgXX3U/MC20OcSEIIJEv71XjBn1OF4lHclGI6la4P1VsSLDieK6xjcP5g6I3+6AUHx2TavcHPldZ2qBjGl8wJPuuU+rN69LGBQys7Bvaod5tYklNb7m0jIPngpQyIrfkQEbxsBeex8fFzMpID/n4CebobSTOLShU+MmhVdn1QzFzYzUMiRa5XUd+xS9EE2tyTZDlHvDKjP75eVwopkJYLbjkqzW7YU4VN/A7J8HHcBmPLiKdkCUfcrliEkX+SH2VGkDMX/IeBy7hdtyKjKdTNvEPwsPJzuAvFd3Zu+eCv+QfeelB31V6WAo3bi/aE+HW8igVTNrg5EEVYNWLH7SiO0veBQYtKrD7pzj3m+fGL//+7/5i+0XQIu721xG7m+b/9aX2pKlTS2ld/fjyt7/+Rd/1n//zf7aLzt/+7a9Wa/SFXpPBz37agvq//2/+Vtj4+u1LYb2usxdyrcD5XLCiGRG3vX3rBV9fU7J234t6YvcfFlpYfGPmvihLh/nzxzvvGLaDuCVCLXcmy+mhTc5pusm0VR49aseR7wgXGuzDlzpWQaH+lVAUAFZB8den91/UMHsWvn3xykytWd76jN4ZaOm2mBE/L7174CtRPTdA5Zfff/+j4G8Tz8VuXo4sXmuKVP9PsXwsz18zonul4RrJ7ZKHGQXWZ6f8bNHwIIu7cGahgG+tSs1IINcxMG4529WBroFa0eMGLlE6Zg7dIGHP3H6O70O2eZPivb1SKWQcI9UarVlR1/aRnARN/BkXHaxngr8dY9p7x+qIOlYBlvRPX5iVhZEqVJFDK/A0y+8lVEH310/059UPudzIaKcJ12dN2OOulfGUtRVTZ+PFIp3W7grkqMG+MQI1qqXPoiVjOq9viIpYHHv44RLHkU9EJwoQEoP3kMETBbg/fvn89u0bgbZUnCJqcRk81QfhFuuZxfekoJn4J15Sb6b2qe2nLGZrutMIxEy/aw+g8GmFEp0buuhYi2Jtpf/mpUl6DINhCPXSgni2aES0eIY+BTk+yWotDc9hFfzzWw8bvH7uHhvUCS22LcowDrrVWF7QtrYOXt5TtX1ajp8AVqYV8C8F2w3ObNqDGbRUwPxyLaHqQ0sM1BKd4pzTZ6UhbVVdmEBIGPbCZD/cjex06txnPDd9jIFDKx9rsU3WWPSoxrTMnV3U2cRugFSwYbxHOmC522aK1eGGIi1bwtpXL37MuxsJgC8EIyBchd0Gk33VKy+1mt9nsL5bsvXkzYu3Hz564acX6z2uo6hVmF7pzqtTezxjMm9XkVscuN110msPIrBUjn/rWrUrjGsAYOCeSdjOzLIxg0oW6RYyNexVf73mEUqa6LFHZHZ0i8WpI/JebV/FzNa+2NXrE5TjoYfnAEmqELY5XSFZ/VGPEFNfDwosx6KslsebYpHlVvvpnYo2eKLbb81oN9x+2pizIQHmpaxSY15lmyav7w1j6+n/4//2v//9f/fb//v/9Z8+ffj89te3KowRpI+zeBpl3uLF21c2PuYWQCNHccPm1w3+GNtlFzMhQm5rDpK7M3b9OMaEu64mWG0gi8Yi3HRQTbu5dPILjxJVq6gCl0U1x7PWOI6Z6oQ/Kkvx0QvLftI7tCk/tkPYAONZ+0MBNXJlCT7KwvBjGSQ1Vnx8Y6yCOXrhq1sFc/9UENnDzyjevaoBQNqQWlwe4ZhJQExOuqOPJaYs+YueTwLzhHkhwjhJHimHq2nxSFfCUeAlHUPskJEEcRfd8OMeFoJcRKVGop+yJuPMdcsP8tgFaRpKxfIWXyoV3WEehkRE8pQN4ShSQiW6vcuYKSA6Fom5Y6xxevQsrcSxOjGy4NKaiqt4tuA/xwsp+5CO6HiIyRg6P1PVuVakkvHTIOS6UL7jwN8vEu6UQiDFzQcOYzLUK0RqGJY+VeaHG2ePgajHj1NNRtYcnrSE4gP+G58DkI7h4tFKp7p+/b/LWGI3c4lbWaIAGRdBBn8SIFv55Yc6zMvfZSq78LkP6OTdyIXoz0f5l0ovlv6cf91dJHaHyCF/h4z5m2hlJZDM6tQpoUCsbXiQNuLnlPZzYA7/KxXwEAZ0SZGCLoSlnGLhqDlNBGggOukH/53Jg+3Qu86B3mFPWlBSww7/GorRLjfih5UVchcP98QBAD6EXKwxjPVghuVkZasrYWjjd8el0lRRReh3R2XvOLq6ZQVxcB7AO1AEEmCC3GCWGOAQ40p9YQaftbLrZ3P2bTTexiO+FvP8b969/fu//U087vHr//fDJ5/o+ts3Ft2Yoev1QWGw75r+pz985PfTG6/82iXTvFmm1ixbXfGqrTS+2RsE6vr1//xf/oulED5M+Z/++vtvb+zxAoFZOrPA5l2+/WHKcJ88EjvaktG8rPncJtQsj1YXbcdZO47VZ17B1L+eWTcTsQYJjVus3mhPj0KI4wF6luYjddYmQJ/+ECfJFAXiT9MtKHVhQbMtS7NnS3Ktrnn66fNHA54Imf3fJwvgffO2b6/qIfH25u0by4TMNb7//YNwzKBIcLhO5HRV2r95CAUfFZ8m8WbeY7Vjo2OatTNzj/lHnVo4Gj/PAVbiMjIrJhxKa2Yvy84BaltCxdMagaBemfrEjgoqCm9gOCwOEvK2pEngu4oohwFadwAPsTaheHUuzLAmumDFhx7M727XnV9D2aT1aS6jzA8EUOwOS170y4u//vGHgLnQ/3tO5RkLlTYTr6Rhp0HC8xcGXbaP4gBefjQz2vumfUY3ncdz7EfKD6sQSyR3FnWYbPbUCEKdB0ieBsoXvUiERLUPZXG2sI3TNAPdOwbJL+7ra0ovv/AfX7CyItoSHfiLo8yOG3+28J2vU6VdpAQYdEFHrP/axokeFHgmgDMsTsPc2EMOAMK+/NDnifStSuSQBU0qhWcLagbeDBgEe/SMKbG0Odkss+3qi+3aDr+hLFkKlLcMm/yeS3z++kllqpQRSy/WtFYeWIFOEUjd4FjK9OqN4kLZz75z9/w116JrlbJvcXguZ0G/gdS+8acgj7LHruKW+LNy1VCsvT1/UezhjvBM9gK8LT75YekUtTQ4Ej4Zuu1NAK5b3GwDAPGdTYSf2EyobpZzpXY+0oarhgfFlp4nhHkvWL98+QqfdCVcpii5BKRPnKC6qNzmS72A8fxnnxpuv69WbeSy5iwg8af+G3HhvFFHy7rSy6LNgvycqG+l9dSqDv1414Jcq3+qVgX3KBpRYLJHLr38v2JK5gNrlgsO1vtjj11hK8F4zyY/fW+3rYE38LPIsEhJg8O+Gai6JdShhd519iP2ZxEwBqsYUAchGWNWSX2yUi7facxhEKLG5GEYqZWtarZuxTYJip9AjidsEKtqFfE+/b/+z/8LE9IBcJ9k/Pj+k5WOvh/2/o+PEL2yOcNfP5xBA4C5cQEcLvCKSQSS8OqK4g77aHTR7+rDWTRPMgVB90mL5HE1mDVJrtY2FfDNgYgSlSDYozoUFSU5dqZopJiqauh7dCKXaycevqMuoUK8FE2HhHGagymbKrcus3qXn6lLCk9NRb2VP3hoMq/gdmsGQwhvja8mbDT2LGK6zoxxsAIQHgwulpYKkL30NpYOk4db1+eWbkchHS5limp8kitc7MTCvOoQSz3Bj2Jspc8jcFhjiBc6z26BgRmbc5NxeMgd8Boq2ZxcVi+eV0lCU9U5Unb2vw5pZ9cucP6gg6OfSZEkiT8boX08JGRHi37lX4o6SCTkJOU7Lm1cBUoJWJGhz9aH7pAEfxCXSpSDQ2pgh5dQHFut4FU8vJMC+nDcqAcdxcYcSz/hFwR44BKFlsMc3WE4EkUio6T3q6CEfODBXqE+/Adzu75LtOxDM9Tdurth6/ou3g1KYrYI1ex7YBR1v/IPp0MmZqpERxAX0RniHOEiehWK8m0gc3IO0l1fFjylD54B3/FH/yZmtdIRC7V943Y+MKNfnN6QXyiVLaPUUvq5MxFnjzQTn9Wd+C8deIVuOrmUFQdDUvqo73aoL+QXrRW/+DxFwjgFD+cd4cXqHe3jC9fniDGI/b9Ejlgp41DGJddAInPj7cq6Qf6zdJzEDFRD4Bp8RfZ308/0thok2fHYW06BUZx8FbTrf/2PrlP/IRrz1a+/vLNPpp5Ve+1zV1//4/s//vLm7X//93/5q716XryyEIYL2plxDmGK6xdf6fVNSXPnWk4f/X3rbcUfT975wLyA45fnH3wK2BpUPbyl294tsKW6SRqfNLJQ5PWLD54WfGpib98V0hTZ4MWM4RNZyG8l99MP7z9aNSt2MScmRhOBrlX/8eFjE6v6xGbsBF8mGl/qd/XuPaPX13uw0czn/gSOdbFba950YI8XHD35bSBhRPLs6bs3AlxLOSzj7omEmd0pvKkBE8zmVq2kpT19E22LXvQkBkjhyCQ14AJbV6dmsbbEOr660ZqFGudZ67q9qrBS2uHCvgN5iLpu3mrNSw1LFIryjvnBsPQJLBiuNg3keTY7F+AnILO4+X5RprJs2qqrek2cEArXm49PXfAL/XsE5MNQX+3FZFqsRTjzspB5F1z89OnLJ2iNyN7/8R7flm8xFkNbK8VhjKCg3azzM/sYColMZPZx5S8/7MWJGiGUFaYZA371iSsLacTDmMxR2/nHjk2bEC1Ian9GHpF0Py0B+v6F2jX5BiQtanCFuuGD6M66MLov+F5IIIwjhecO7hZECpt6D8EIhPX4mwU/VPf2zRshq3c8fByL/g1VNGiiagW/e0uS7raSqhBTcGCo2ud4i0l4HYW0BxEVRFjA+spMcjOqHgWk2+26UxTL00zDN4jy8Sa31sx5NVXcQwp7z4Dd0jJxNQcQfNdGqDUshaWq+0J7vHgN99UvVh81V8mmLgIqRhpj1rBT5OIfBZVSdzBJ40E2QaKvYveAef7Z9wbzujiPB3oHu2hHpB4a1cQPB4Dp9OyLj7EWw6YABLr1KnpgNqZlkdXXXD03Nv4RvrXGq6E1rwSjyky7YOk0+zVB7mXlLZIZR33X+QSfsDVnb1bb0UfBfTXZSLsJC5WbHozqX//yOlaFxW0W7DsJ1YeFu2pr7w/0NkXbDBC8iH9NXSZlCBw2cBWIt5q/5yEJUH9CSqZhn9PJbmnUTFxdggKu1YfqXcu9tAu1PkYK/G0T0O27Q2p+gr2vdlMgZxP23NuSpx5xQF7ce6pzIVaIDYbhWRtoLqNremaEBk6CNEby3bcNzDk5L1341ICSAY1geY8BXg0dhRbbPTEA+A+ZefLDqw2tcmKrQLw1Unw6E+wjfBBio+68iLDhUY3JCf7idC2ai+ZU6oFSR9rIIdwwvDPnotT8SPbRUyAXTE0YmKkP+zXy3QLONBx+oG5JUYB+bp1rQHUP7WZVm8VaDRoArC/M1d0BoeOlnDqJLGCloq9V3s7U8LimlursnmzgIVrGWb3Bna8s5QS+Z9wWIxJn1Jp+13hWihNMmrGaLxIwzTuSIulqV2I1DGW4OApwkQ8N2jnHnHKAHf0ta6ehP+mDixnwQ1qlPoYYuYOf7RIQcCZsuWHpjxJRkBmrRyH/FUsDkH3jHJYQBldJ2OL2HuhfCcvY9aC6qiA4dFZhjhLG6sFx8FQZDjMuQjvnk1JBsh4Z4Ztyjh5TyNBV5DZhVlIwgThQr8gpfoBvbEsfYJDxU5lSkK5SLbH7kzsFXahv5OY2B0kMgLwwVijWUsfh5hbhTfCRC2EQB2fFV3g8HpnjKGkS/4YmzEtf2WWXckgFf0u6yF9ESj1gyl0ILoKyxucpHOCYv6VdmQM+WYfEYeOIcyt6mDyEKjdG79hveAc9qco/iMdV/hXCxzpZysk9tBjtMcAhE2M3XTNdyO9k78w9pjttSAgyRuPkwn/LunLHn+sbVFdBjuApfgkxiDg5vgxsGcFfPLtfwaWc7NCnmOqpv2OjuNnxOPEOf2XdOH8swpCF/WJpgt3lmoZGYjJGK4pm8iwqFj1/N6UthH776sV/87e/CdH+ow/6Pn9qncb/6e9+03lpW//4w3dwjQg01PXd+hRx4pvm/n4xYQ/X3/9mw/4nvj/6rn03rbT5+dc/PgnJ9tDfEoUvHhj8zd/8rRfP9LG/vHr96aO45LkVxb70qZvTjQlkxZ3iTzN2NlcR3bz/ZGMToVELGz5/+yymsWhEP2r2Sjgl0NyC023FSFS7nYt1nj/1KQBzkxCibsZPdyuyXIssODhdm63Ze7re3K0oQVj2UlRqs0KzjFoNb/71HrBMjQ+nWu9TJ6XRLlyo6UvfGjcRQL1egWaLIoQEYBzKpfMaXna/GsDTUZa4viN3ncVqoprBKYQKmO2zTsU7woedDldrD7tfjmZ8LWSToluVgafDklVMr9pQnEu6wHa9Z9GJBOFC0+2bKRfHSLG4oN6KsqmIWBgZVYteCqsZ2CQ3lYoUwG+qVeMu12x6GPSqVvrUtw6bUGrCxTPGNP/VjPrNZzZTKm6lTLGyMcmL873VrMC9yC++JYJNnyy+Yoho5XPNytvMkWuhYOGVr1B829ItmhDT+8BsjtrEML+eIpG0U+21GAMblOYzwfqXqboBruhvc7c+RuEl85cvP3x8r6TP1QksPSI4ehduCtvY1i31l3jq8mzEVgJTcZ4PZlhIRMMMJ9AXKPjNZAAKeiVLLMDPN4pELcNvan8fHPgELbl8qKoaRcRGkjguhOVCnlHQwIunuWUR/KYLeQ3SzNh8+WxK/5bVtcBIRM6fYhsLPpEWO9k0X0XI2IDz2zN0/JnItkSnWf/ekCEfKRkCzq8/vtr7B8NUEMwep5BWnmc1Vublh8Kzwrk9zYhljEfOo5Cmcw2Vm8EWchWIs5ChnbOCaqczPRQUo9GMe4u9VQ6vKYvzM1izENTWe+cciCstlvOCbKSpZTDV2krfZmxno+JGIktFjnWVpZN0bxzhPaI4ldWiJVwmGlKxSeH7bbBQG5JxtU6k3uvvUZxDNq6AIeZLIQ5samGrsOYGVZyfLXfM4byrUEurjuEKJCOiXL0rLO9hjiqDLk6gqyKYCjEWkYu1qnHOpO3EYGEwI/OE9CMGViactcPYqBr+h39nANCoS6BPcdp0hGrvnnqB2lBDlJ9e4ESRMuKLDkKUo+8SSPxg0/3tpkwsB3zKVCQnqMwtfhIow4PRkSh9LJ4qlLqTcvu/ukhW6M/fuCJDHG3RuZZiUwIVMXTl2Z7TWnaWpmm+EU5FTSnhCuJFfa3qk8pHZc4w+Z5BUmxjlXuGbzedkxAbs/HGiBvoY5oU2JgXpeJUmrpO0Q0eYhi2zrVMoSwf/kPB1WqdrIrdqd95CHwYYyBXCoGr+1lmVXelcQhb5OMjyfF+CJ0ipc8pM4rLSnG/mSOcmCkJp8mVT0eP/HcjRgvMrSxgIJA7MjjIY/0Vw/PhExgA1+PpqlGuT27MjlAyHgnnBRcReUeGq3QSHUw9LV2B8TzPdItdkuQ2gUE53EdLQyHjHBfmRD4aG4exKuHwdgHWdV0I/YRlQMFfct3xH2QTdoh3umyUOYYnHLfcQy56QzvK/5yHES3/4ifYi9BhZ+clXVBH23c8HPhPIEAxk1lnBbeXjifRRebgu6m/Ivt/gxw7y12hQV9FxgQsD/KW8QA2z0zD42BZedFKx8rlxu5LK+MIfC5ut9Ph3RDB3bw6DDirC5SG7hniXhRW/ti3MxpSdhwOZ4qw7WIEYjg+Tqlgb0ycgmPw8ueTckHeZD63Q3gwh81x2odDa5QuEsl2ZD5yza+VODCPqd8wQ5YOL7rhnhX8kPGSvFTHnY1ze0pd4onceEWhTLu4mIXTYehWXP/9X36V87sd7p8++e2d5/J2M/Re5rf/73/83QIg3d0fH77+nc9v/SJs+vLm1RtTeToWkZSBhObe95qs39C5iNJ0sToeU329X9BzAC9UNltj7qkH9T3zNAuhAXdZs4cbotv9UKP9iylmjyO+6adaf4CZVkzjvkfHOukqWZHo6+e+YW8tf+KEoTO/soCnJk8f2/t8Hh00C2dhy6dP3h8tNqItzNCMddU41xdrugmLNXMGmEdAIHWmlLFyljqQlI7xM2XWTRxjua1ZRpga88Mq3dF/kdMazdMHHXOdPoVHZjWcuwCzdjV3qD1vxrqshbQpJ8vVyun2bhUq2Mv8gg9I629r1sUfp22Pk2P4uLlVFibYji4mQekiv+nlB5HpT6t08jqk16jadtOSELwJRq3o8XwAGnoVErGoXmB7KBVCzoLCkeRp3CWWa1H9k29WvZtbbsX/e8ibUa7b8VqxncfrLpFuTk1Y8sT7ACIlSPpiafbNhclC533nAW4aV8Kaadoypx7Id8F673aDabZeYFTIuylQfZzop/XGTcxHSgaVWaP/0tIUyKQXRYmvxAYiAxE/fngNn0vJrr3jIT49USB5RBShyqYpKktlu9YmRUcy6uEp+AYiiiiwi648gT37VNcKjk25ivVbYs5rtWRSSCEmzPOtp7O05tULDABLF0h76/qZ7ZP8rUnpatSL3T29aesYWmpkJZbsPZa0AWr8FC/hFmbVgRZS7yrS+K8SEzsf6YWBpDO6NoG9RqWWlv+0pghmMhJ8wXqpVSKBpRxj434wUItgtTrDNKqvgS6M3uwtlnNsFdDyudLIvuVeBhverHiqtvYiuCEKt6IN67MMkaIo/POCOBWaUzDM+uYzcC0vi6YnM5B7uId9lFR2e5VGtuaCpyK69R0NpVIa6+dPDYnzFSN+DljbcpbgWxPBUXnmZ5zikTBcrql3dly4j2g1tVc7Wj1e7S6lDqkXsl3/tLTytbOFhYYunrekC/w3z/LVoyfD72lv1ZrsdhM2t16Majml8YBJDTUdiFaizQNOmxAF7lA93yNBNmSc2gEtQwLXPGp8MPkf/v3/qsaqoh69GagZ6xf8r2HKHZmUkdXtBXO1UblE5ozWta6oAd9UlpGWjhvkgAbcUYPbFRWcUgQ67nU6GwVBosI/YjvVb3hea43dKi2ktaojzRPVkKgatFjiVQPRsGrOXuXpOYvVb308uVdAkghS0Bhpn92sntrWaKp1GMNJRurR57O+ueCe260dB2b0XGXNxsmIfZUEwMGK5yVWc2SiE35xVYPXmIyWjF0rxaExLEUaORyTL6DUW/E0Fv5pCsiUfnQKILIrnsZoO0Q7lnWnNXzDeoqf84HBs5IVGq1+V4WJHVikMFD+IOLKFT4PkrTtmKsEsT7scFWJ9UMTOB4A5voVoPabLPGM96lm1zCPoZU/EgE+FAPNMw/OgyROjwSucrp0onAOE0uxsXKH8gFeAadydu6q4wjoQsEb2pMR2DgP6uB9YPR+NXp3HuL2pOzCJUOX8IjoZA/fQX4vAkgawJMCIH6un9BKl3Iu/szwXd5TJMYnQ6h2EVOHheFPu46TciAfn5U6vB00B9e9+OPblZpx7ySXdDAcnI+vsTGFXEVuHEjuuEPyiKniOgM7UifGwJyPEx7BbvAhOTiDS2ZcX0oIw27+hCoj9x/pQ+XA32FKD1MMO5e7v4O8lKMXGTsewG7wJ/04p+tQoVa1ODmdl+j3snI4/6XjYuAR5oscLk6FupU6ch/4W1oyPtTcyX0vHsyd6BxN/t/85c3XPz55LVLY/bd/886X420M/fvHL3/59Y2mDLovVnybglfzvn9///HzX/7y68tnvr/zwVZyAuYX9jwxc1yYUp/qywBW+OjaRB5vXr/VyumVLfEGqbnWaAvWhBFWvW69hM0cjT58HKr4zJS/9+j+y8e/cgjLijT63KM9+OzJ2P4tzywu0QgXSJlB1BWg14qXnv3zt5rxnrl/efumj8IKIilMz6t717Ss22wk4+WDGvSfPhfVCwBeaoDfmnJZtTktAxYC1RaKTgR/YFr3r/8uuhGxtYvlp0/NSYdFHKQQejN1ocTcOArsv2C99r98uswHMsJadbFO02RnMqVuoCOA4NbQ3RwPETOgYa7TCGZtovaz6EQv6Vw8sVctBZmUwAdgoyG5BUDNlXoIYoGN5eA+/VmIp5e19quevUnlgndrkVERt1lH5VNT6KOlx1TQkx/xQ9tELu5597YvQuCUhkXIvbFNCT+f+UqyJ0NUzBbN/ha7Wk9iQPjLWTbjmZJhgCbQKNHLsr4IcUTgXkpA0UMGCmuCk25sZmhYYdavhS44F/7Rp7cL3n/62AqP5rAMX9ONuNm/3KP3vy3cpxbBFvxeNhC5shgt4rkQogVvGzLmNpxVwE2WdolldHPeRlBPP3/vnV3M5DCUCbUA26sOL0R4JobBNBjAm7dg3n/8Iy/ggX2RSrmc53RquSsPmJ6NggwmeZLHF7iGodFLVihkx52gn+DEZw7aT3sWO51gKRXzwKbqxZEcDJmMNakxR1KJHGQj7cZXYaibLbKMGRWvXVl7K4bgWeHL0o0otniMQ9FqKkbYPkoGirRp7C1MLkbSsGdR+TifUaJ3DnCDaUnMpmVrPgyyjKG8OkIeh4cJqWja5iEkFevjisa4fW6mzjYB33M2CivYW0tlONBQjVrFfh4Y5HtNamdOUV9humdQ6ruyxeWnG8hkq5+e752Wp3IpvUbysN2DhTkSo2VN6vUJiD77YGjRVgHsT4UeRmnKlOIq6lOWpv+m1PlA/n4LzHv9wJGu55wNKvaaxyajxe0VJAU2jJR4JacC0KiKjSQXm2c1SFX4BlH2BfL5kb1xMd17TcLkRYFx/lqDUV02FFG0psPgwe+//df/E0cz2f/O1xdfPvfAlAVV+0LnGgRKzpBMRHyKJYBif26nru6QMMf8R2XO1D0PveDhWdmkqueLjXSQjvZIND90LIyDretrPOD36CpHrKo04G4+BoLQYnTHRrGtwNOdMNJVbMMD5ROkGp6TH8xZqIKzdDbRFFpJ1t8RMy/YsBs2z7K9rsYv/WOMRhEmhD75DPiMiwvaCVlTHUpNTzKJRa6UcPtB6FTbLspaf3+uL57LSRu8zRmTmAY5FZ2qVTFCOQKYu5wio9TlLSuBD5kBnFLrPNxzXZxOv3kjPBtRDjItxECt4gMShI9LkOiQKBcbF8XQkTXMsZ382Ot+fXDqSLTOXR6RSg0KzHUhC9uZq4yln5wVPFgkRCvNuKzkhfPCP+2FAnhO90AtyucI+SlYWsoEfdC6j6dbqS52M5iQujg8LyU03VPVjBV0CXGYmLuF4EalC/9Zd9Id0vfEm8gSOkIMx52cpMPAygawhAC475yuhDz5z5Ddj8nxI+8UHStBlnnxrHoFXUrpB3bXJZZzldrlBeD6jr7rcB6+rzLnriJpOeUDmXi7GqUYSL0BHQHBhimQ2Ntvp1vu5DjpSzoYDjB7VOTCCWHzIheGEkMzyP2OaEmnvboyx+0wSBix2Pd3GJB24/liOLBHx8XzXEHyBbyrEY+LO0zcdb/yu7jEJEX6eUT14BrglaXoPFNapW54bsgn7sE9dT3m/4Zm7nrEywd+vnttkreuT5T2d7+9swjGulxhHU3aLK4V3s9+/n/+4181HR7K2vPz17evROG2R4RQJ2CNhmnD370U277qtZZv3r368MdHE0IfP337Yjdx8bIF0JZHFDP3YLZ5tGeW3X824+iVYstAtLp6NM0xPjQs7361aaNZ6s9F42Tj6L4pZtcXM8geaHsFsxDKQOK5ua11qz9NtmnpBcEEMccvcNF/M7La/sl85o8fpsA063vZ1HBFi6Eb9JanMcUvnz+ab/a0PUpm1968LkbRFxq5RLk3DQXZvxiEYMlI6ftnMYDAvUlcfYgeXdymViItkjTdCVPavllnml/bm75rshCSGQgWS9x1k25naqxbsQt1ykNIn6j/pzmApGaJJuMBY0A7PMdbXChuLnKkWGENI7tZGN305EdBvxVfgmcrKZo+bGkASQDQnocGDc4aBaUGNMj1+ZPJy9bzGzqYlPeVN+GoQIIwlEkBR0bNL80ky3kPuCiz8Vsq7o0LR+ohy3m5gi+5K1br2c7TdlP94M1bkQ6Rn3+3DePXrz7VzPYNwKpzntJwroJOViA1/RxJcQs5g5piLC4vtU8NFJ+IqHrTt10aBbuiKM+gaPT0erD2XGi9PH5E/I0A1i617qKgqB1nPMZY2HlaEt/c7a0GDo0ZPBjPvkw/L/94/2ELdp54n95Ykl4NdxD6+Kn9+/fSC02YZP7Z97NFkIXUPmzHnZot5v+ZsulLYX1mEUBjAEfoWPNRs99mrMZg+U+eYOzB4VrP9sM6KNRZQZHUjLPVcil5BYeopyg4nma81NuWo6scsDVIYHp6a7RsFjmtcLkehW3rGmYA0ou28NJQTh5kK6IovxE59cxRM8yo82ye2YxrnmwzgOYXABp+MIEC+e2GE6eA+ty4x2hzr+jglyV1IPD7Bz5VxL6pes8NjBZIm2fEUTrKz8FAS8kOHsdwPm5g5BDIHrywTIoEQJ5iSDhTOAXBwU3h1G0pq67wBh5oVEA5HIofIgkVYEcoE661akYgoeSH2qYNGWvxDHK839KnS1pbDollbyqEmli9psoaYYe4FPEG3thWQz1Z5QZuxas0jZpkOpSfuDl2aj9jmM0IzCRW7nmXpgF/Y+CU8w//9t/PI57ZiuGLjdk8zPXNjp9PTI1Mrep/JCFFgdHJdibUN6Yh3loC2einGMrKuXCgVJwfd4jrNVLx2XT7WJyvrPWGF+tTGd3VYvAw7W/NAgv11DBNp9S+9SCLF/P7+IGbYwJbSi9dzZYmKvqEhIIpAnyj/zMUm+PzuV7ljuFYVw1uTzlylrUjXSimOchTG8NpXFYliNVk0sHgzAHjbPLGEx2c+7ENB3jn2rLpUGYqUgQA6NytQYi/siZUKbuoMQIXyLi9nalyZdNAlMMVHVhKiWD3JWefIC5Uu1+p0SaSzMFcwPSfGZXi9NxuDFQp7qgieNAscX4vYXYMySkfjo5RLxvRaE3n55b+j+bcjv/D8HUdkYv50ITvIDmpMelqBAC65dMZrWY9kVb+EF3REib4A96TPsGDn8L6Hd4xfGE++C6IiFXZLtO4PTJWsuMQuZCc28FsWI/k6O18TodeFr+0sbp/ihyMzm5R5TT9Rj8yLinBVcAlPTjASQm0/Et7B/KOc4zeIo8atHJGB+DhH8qSz1nu/eKO5FyMmcoHcAq4vhWOz8Pk4f8BS3SUOQCH0l1A2C55R+OCiZ+bsDep5SfvmJ4QFZh0seI4TWqkOEkI4lPOEfakHySn4IVtSQ/s3algeJ4Gc5CxdB1HbzdGIuK4JV7kboyVcwjt/HA7Bi9xVljWlArRLiM3WcZRaY7DzLlYQjrpdn+HUEkKYjsdVqb0xxejtCg0LVnS8trW+s9fmTEV9//9O/vx/7B3p8Xc2kzRg25Hx22zFGDvfnupQ9Xe9mGs+suzDvOrpUEt5qaz83qYVs50lEXnQqr2rza1aDLFmOGziVLzm/PjNn1nNxr6KBzBpyZoMfuvr9+e2LF1tBblC03MH3uDaxFfVTxx6lX+8utrUYp4qx0GRf+iXsFtn+Fs0S3VvH//HkpcJOOrlx8/eFWhaX7S6RaIgmfPLjTX+kTa8O1hTWJjgZoanYgtQd9mrHaVMbSg6BzWK611CjrnIobW6YrnTIyTS/aZyyTCTJN5jmnWi5m0i/0ZCawrf3iXUpexrCzXJJRwqNI1qIIK1+whiBSKEL/CvcL43A6t1ja86u3JOkoHGIwVKYZA6+3zZk2ccWk4jbsEvvpGDwzw2279PeFoyVa9LkZeWJvRlvN2UWzl7bRnzt7BDQgrhhPJskssCEYWPJkl5UsCjEZWX75bwF1YRZ4GReIXY5GewOcLqAoYtiaEo9IH4fIqHX2bSPbtJ2y/feOlBZ+Ksz2UblXMWA/bwyWQ3pVsj/+nJjbpSn41DpLWEfSEyK1FAmjbsceQJn/78eTLd1vo8KkX+PE8ioKV1c2a9PPpAPpf99IWRnSoDhljiiAJKzC1yB6eVnTMxDjJ2B4fvaETiuDpX73N8vJFX+olLp3DiGc1CHvFvpPOLeu4hrbApLixCOdEI+gWrlRd4odhnRup0WEUw1xMSeo6wYQ+RlfIYOw8nZjLrAXI+vDgI0h+BgmvqhzCHujsOQzm+QYmuAeZ4I/jZtPpqdZDKd6Y32JEVREQ8xdheh6VLXUsXoA2DOmhBAajQhAvFn/x3CwYtQZQVq2Sx0mbqEbGYzcjtDgEJaO3mRsF2dUfEYlUjS0FF1zx7bxWSO3hEK4K6xu4B4BbnmOMw5kndM8J6Ym6TqyvoGdZvDV1DKwLH1Lml780r5/FvhbBcw36tp2U+XMC7SlW4lJRlWsPKJBU+0SkBiPcu5AvH8fuV6/L9FwRblT8bHVWEhYfNbzz/rTnGcY8MGqRTGuQgJPwtAWSAjPL26xNysrpOMgUpBiiMZmrpEpOsVxC9e7CNE2s9P303//jfzA6acTModOxRI+TnAv33S+B3592h22oJVcDlutM7ewb165rGwrBwZQdwY6usBKbhy2wJysQwLnImcxInkXAq2qqBgyR220wsIzKTBidFSz+pnr3as78gMY3/Rwl6BMYg9oJ55okP1hY9El0RdQx3JxQHu+chvfxwGrOvtFNcfU3mGGlyuYli19zW3RS6JF2EstVnOSoYzl9qvkp+NTnJkjSr5RbQDwTnIAg/cE6+LBXduSSo8Nd/F8AQTgi7Gcw4Vnio9MhMJBYvcLNxUarglLGpPalqj7OJfQwKOdcbY+wlmbVKZIjclCtdN2vC/qvs9j1iszQ8pSuSKy6y/odNXBSS+Jja6kTIx4TPCqnYKgDkj6AvEqCIgcS4vOXZkq7DHNwP+BxP7uNlzuJCTr+RrTMEXbuWmKaOZzE6e0YlYNqXF28hwTIQRMroYi/hKrshBi6w+dSVmCJgVwX/cAzM1yEupXsKIEa8ocJ3e2Mdbvwq+gQPE6fgeTo108dDy5CIXQM23XudokXol0fgJPcGXtN6o+fQ+8h72Ipxi66D0wGdXQ40hehCXYJcvSTyIM9YJf4B+6qDgd5UMs9suR2d80k7+HxwnbX1VXolhlLSkVw7GXNOLhJfcScnOd0o4j6KbWEeLlZ/Krd2P8XiQ71xdVIjTTkWfaq0Qf5YYKT32wVjYl8WS9TjIsgd9zzJxVgqTecjziXe1Bo4lQtbfBv717bneft61e//eW1bkds9Pv79+/e/mra20z3J1/b+vjFFu6W8Ztz0Qv++pe3Hz/YR84ahncmPTzitwGLzwj87V9+++OD9a6f+Gpteg1yAU2T9fs+qDPXUKU/L2JuZYrFP33zlyy4Atsm66aZP/T5pb5AbCbYEiM9nFlWGtDs1JA/aemIvgEz4n33H71VTBbrRfvCTtG/XlYnWiCy6cYmpMUjTev1KmEtimXfh7J4RUde3Qdey6a9kiUQeWt3JDi8AiEA9GkCx1aQ/njW4oe9sMcI6RNxPQ8JRIw6w9qsn9/A4FlfVpPHWKzQqdko3Oo5il90RgVYELeSqWfUGR3rve/48fNHMYEZ/1it84WiOTITmVgBD3Nx9zpZA6qcpAhC7wZfiyvq5Iqvogva4pz4xFfzotZY85I6LFKINEWc4mNqF+zSdMjm2z11+WarKM9Yvtv1NZR2CqLLxSAYNnigc3YxzUk6tPXBphy1BYK0iDQv6tmSjx+JwYu9kTBoNP8tUzjqyTspFPWQxY+gjX7yo5Z2mNdkzyd8LJ+mxAKW+lp4PtqU6VkxnOdMClj7lBm3JIa7tTa9b1XUrZutp0OPuw5aHbYhTQ9S6Ma7CsLyqJlJzBEZAhZK2CKi3MYOVxE1Omxx+ZpiBBZa2IAKW95TtwUkZoiAR39xsrgo/deEF2o3TM0DWxkzz8njXr1uZZNuWHwpEaEiyTPTD3EFvabCB7KjmWhOB9Vwxjzsi1zLRZO6i1NpJ1xZKWv26KNQyuFChcsuvYTQHHNex251tJoFpKkHqpZjdMt4HRy1TSfjAc3RolzYlJWLdN7eDDpCDYyNGyH59PkD0VoxNTzpiqeyKlW0nPuEc0jGHsStql89x2YIt94J3T4TpyIL3l41TsNE9QzjhTAiSaNWuyRtI9pEUrRvlaCEB66JLCUjHb8MURtjwb0UbUrq8aNmWIJ1ln4czRiA2ePYa+sxXdjcY7okrdY4qnPFT31VnEQapd4AAfvFzmbtl9B789SQ23KwtJeiGHjVmQ8vUKwaIoUxCIuaTpUhhTLQa8iyrFBqq/4wA4SEInzu6iCaM64AxKoBEvEMTz97haJ9aTUDNQ3g0IayCoQUk7SLruFj7igNNlw6asLXkk1OSdi4QjqolngF9AqilTIaWrAESMeQDAMy4MHwMVThRZeLr1ROBwoP/K+UbTGWzNg72km3HVXsGuhdxz6FJD4l5sFJg6g+CfESqzulqwP5d8V6WEE31JDf8grmUcy8RP3UeOaUMKDYMDckqDTNkE4o5QhWas1vxto1U7lJaWrPlFx3l1LwBSIJsOw8PquiwGQfkQl/BEuEiBRrrfCGAbBoVVk3HBBwhbInXRwd6RStGYmhEeq3C79odXE5yowfY2rhWMaIwqgA3U+XI1Eh2iv9OuKNaA6Fgupy55XPKIwYQBZflbuDHfYUmxwV3AF8bI7ihTGG0mYeMykiFjkMdV7imL3JuJsQhwHsxdv46z5ElSzTUfrY7he2IQx5GEba1dqYfpWN6C5c9bvrcFwISzoIVz5M3VbZgN6lGHyFyyvDIS2U3dPt3Cz4UjYmmsIn/imzrMPrEmLsoJCY6JN0FLziFKGViIRjXIXZcc6HOvLdkmIMlz20p/DBXMqt1PIHc7sCGapjxxvJ+JzmdkHAvPdW4mL74uNqhW4izFyYcj+eQ07MeJyfX5i7T5i7EvNYKZipR+moVDBhvm6T85ZahUjwVYYbgAIH7R1xOSsPUThPo1dSqI9MwwrsxkxlVq6yHWNDeciDGYnrvPyrYKyt5MXag9oPQMnDe/Ac6op0oezRz/BfhA64mjuEVVLqs7e25fUMkraKtD58+PTq1Vu92z/9l3/yyUhrI+zkH+TPH7/9+tZqEOWb/Wv+Rh9sacqrL0+NAT7/J4t8PJV9+v2tKXzvz/6w3uOzvkZ7W1PmbePnvsj76+8f/lpQOIX30PyJDRnbuN08na2vBebv31s+5B28wu5WBWh5m4BcLCg9kStVn2WZgp0Hi3SNQF7VrD9/8urpi9as91FYiw1+8Zmq3KUvoepNtCWCaRPAX1+cFt1kZCunNdzeOtBeIVPfNJ61/z90n5RjWOKgNnrwQSs7aGjZ8EIrtcBrDAnU64RLoH7UdCfbaC0rwwws8udJ9dM2xUfx1evXolPReKv2C+6taMlAREBCzNTyKfPiJOqF3efWqXqT0MKn03uyGbracEubinKbI3zugYy1NwJfBDGJuy2qFdX5mG4LMCyg4iKm0RkVAYzpsvgy5OsETWgW/QuJWpwQfOupeoMwjXsfsZ098wRhfe8eCDBM838lfk8Amu+kBso6j9afEjTzbctFBiVXsSzWPWGg8LrdOBWwmftmR08QTOTTOQ+buoxGvBmq/zKp3KzwK1kmvF03la7v/qkb//nFrLadW7248vSvfbxZAPDE9049G3n2w9KvXjyIdCEKNXgE9OTTp48QYr5qhz26sr+IdRoEKD7rC8SFyjOnZ0SJb9TS+8f2Ei2d9fespnVo3k323V/dbO9k6Kw9FGiu/5vVL37IxGqUae99c7JNlM+DMkrh6dWSFBHUmzz3DEbMtoFW759IFwQZxyKUp+Wy+Vg+qmy+jR+enCxSCm5qPta9Syc7hghS7NDzDqznf5VoNKGLWkerCjT286pFrUHhmMCs6Nk+PLZJao696A4DITorMpo5bbFc1szJF4ylUm0BbRm61U5Rmy/0fbGKTzQaOWNOX7xKjZoI1IwJv/YMQd3uxX3VvhkK8wuqXqj2Ho5w4lveN7ePP8G03IncoLYnFZJhY2fDP/gbkEvcoMYFBW9AlbxqZoRtO5BXZHrq9IgMObdUYVirRpjV4Ajg0yZaTT1kfbfV3PaZ7JN5ORVSsDO95wke06l5P3tXhCpNP6TsmmWVlmZ6kpbmNSD+sgSmx04so4cpQ6keoOFG7TYmlezJWw/foDnDCbCQ9irC4kdMakZy9Z9P//Hf/s/73HraNamRGcD2Ak0v0Xr4UkOwNLKlI56lVnI1pRtqrJmWxtUSt9AZerfypSjr1lnBshovpPogk9MRSABXrJzbXQBNDLhzW/PpAljSZzngWXT6gNadrNbP+HEb8iPsOhLgh7HVoiJdt8ZGUEU3Rc77WHUHbENeVQPg/xnqVa/iJW5rrx273q9kjbcOElDdwOQNDyEQxCC7q7AKY+PgoVLCgQwM29WwmowjF7oOWN1efEKGSKpLFTCPalweXlJl9h0n4YnbUnbazzHWACN2aGWvNSwRjFyikiaNT5O0GxoaXuIKrik55GA+pOIvWuSqwOHzJAE5fJbqZj5TubrV2DjAy10QNtLRTZ0T6kAfdEPiNDplIIddqEfFz0kE3dUUE92Vi+phI+wr6/dRysXM4B/rVsLDgafhlTISyzlIwokjarwJFuXdxcztkBTxG+lx4jY+T0EAnOfgVBqOA7OCiRzO/nYxXCfrZMB06A/fJeADhotSGhieWDvFj0CH4UcIIzDmAP7piNwYOakH7H6+gz6o6Z50EN7EkHyHeUwXW7LGZxqI3Hi5S/5Q7mQdRd2snBL4WC73gP+wcFF5MGXJD6RvRA9wNKfrEMbRpbojRIwdAoO++ASjSGQv/q+L465HjihKHsaBdTMRkvTx4e6ofqwoESeDRq7fG3AMlvvIM5Z1gEPykNu19FPfDw5l3a46/Xj7q8319d1P/u5vfrWlvhUNFnoUwn39+dtvljToT326yFd/dByLXYrtNLm//PHHh9dv3phBszzCU+w//vpBuhU+Iro/Pn4QetYKWGKz5SXo+yyAtwL++PBhbGtCROdffBNMkKmfm45sEFT0h38hR2vPmxZpSoi0NaBrTPRnouKULlD+ppNu9kenyAW0tEqZGqugzl7b25LXz5YAgRZP9TVYy2R7DzKYZmH2arLGdksF6l81g/5TmchDfx4z7eze23gmlXZRQCE4ozZc0Az1YrBeo6a/Gn26SkbTa5twI4WpZWULQ4W/AtgMsN6vOUW9cwvBmcVMdm2CTwuIhyzEeiqK/YQHg5tWT9VeP3nx6jWtvn//Yet9cyk4i1wbJgl8eyc71MU6wpFW+dvy1EGwYpE6xzp3S9m9buEJjxERkwtUmqYF44NfBgOFGoXCmw2HzTquL2ZnAXAugko/DonEHx/+ePvqLdkFTCgjb6iAMTo/LozLxbHb3yYxhqZAxovFezfPFR+meOjxqgaRWrD41BOeT5JVNC9y6F91jDoOtvBYxgXYRoDizsU4PE2YyvGYam+4Vht4iOc5GG8IMRKUw2g0b9gYqb6QQHNm/S0v6XNjdq1dFCquhYFF8MXu3LA1bPRlwRgchXowmTk21d22NrkC2biHTpa1hCPxbAwqfN7e/MyR+GxlfrN5/ZymBws9MGn4QO0CUB/ebpSL7J7P5P2Q2KDWmhlb6FBD74f2MIofKgXQP9rgPEGGGUpqKyxVRPUEYr9TguSQWyFTNcm2QqZW+qse2KuGY9a9WiyGbTQpNrCApNXXqhVT0XBVECmVoVJFlQiMbkESMOVb7aPyiYUNQFpvI5Xvoc9QoVTjGZHOYZOjLqlGSF+CKNtMvcEPuTry3hgzSkreMSB6bsSCiIyEi6keCUZn885BVqOlqBFpxrg6uuoU+G0XKTDmvVJavq/4np0pBQl8nICq1YkN+WpeDD2hV5oX9YjSs5h8M32aVla64c/Pry8NXgWMZjE2H4oTQ1WjL/UrJFriMznRcqCU7jiapSpEGYKwokoKrompetai8/YEoKnGKkmX1lglBmYg7wA0krborWYgP0MQoyxd+9hyoGa4lZSvOqWjCqvVeIRRtajlqimvB5ki1M3C7kARPIZKxZmyyqwyuI2zWGqaJdiNEMqabaAdtp6kBFVzskHFXEJxB7ZB+VOaXioSC46iz9I3lkClhyAoTECcr1Cc0AJoPjh8yeJWPSE1DKwIRm8j/ThuwGu2j/ABuDqy0PyaRTyAkQgtpQGYkeLNDUxJWqeF16pIJ6KZZTq2KT23V3QXaTKjVZkqcuSVNb2FRvELU7rdKChcxyBRGJVKDzK0XZfRddRHC+bVlXJASweWLFtCdxKPESEnxUjU5x6Mgx+VtHiOw/PFDAyToqzJMt7CcvzhsJR3ShmOio9ukJg5x00VBxtlptKyDt0DduPhlFLccaQeiw/4KzfkU8gEH/SNwxuisbycAC+N3QsO9SFwE+5i76CNfEfMHdibiA/3pAhY9gx6ZL/Bp4rD/+UIsX3nbajT1Z9SDicSU+mDxYMZ8gOMpZEtdUzdz2HtOAld3Fh3XWHMbsQtWeahfsf8AAsU/RgAtmMFS71SygFSxXTxZ0Hut+fCOSinaelCWMKFLF6uu9LC2P8YeHyEYywdusu9iXDj5JQ6bKfBYZiYcXGOc4vOIyd8EBQRrgLG8S8JcjnQP2fuMaM3PqUdJMk0FT0wMfjEuTcFUsZiRc61q1BM6l1MoDJX8W+yD3qwl9a8L/vu7QsveIKwHuP1Ly8/f/v54ctHG3f8+vK15vCf/tN//r/8d/+t9wH1HQq++fWtrwFYAiTcNEv/R0/Gv/z25p3IQCT0y8vCoM/ff3gn0syrw24zHrWbGKZ1W3mbqH735p3mV6qGUHipOhSImGb++qlpXV2iudi+bfTzrV3ev/70DFs7/sa1buybPmufE9K5brH32kl79nuk20cMtMFf9LjPn9kfUKuLuF1H6i9aGvRVqCe+1xgL3ViuyEN5kb3PS2nnzM760NjmOOvTWxuNE5sUtXmRdpRphN1Hp/Mrwb2+kuBe2gtRncVW5uil37wRTry0dAhtYXCLE1qj8s3qHc240AROc4aNd77o2oMyOaobaTmN2GELU42smkP8+dRnFUQeQh/jh340iWiZ4uaX5s0bhNiI5sX5sLFIt1FUc8+WuzBs8/SKo078rfERkohyfniBAtt7pkFbbe5p+b4AAHW9G1Oc9TC6Ns9CxFgnUIGzzo5vtdtMX2ojofU5f/z+njK9+woXMb10wQHEtfi1oob+z3S+Yj43a1LZAyJvkHMqbOUhfWzhq2X0uvsMKbDximDjuqaQCSiEpQeORJmMpYI4JLM9hriN79OJA3vJYWMy1aXoquiTyu3+17wySJYlnVRvpKi3BMUoheYttkh67oUQjws8qVjPxTL71LQKhQhyC4eqaJv/LhGOxRrp+SAsaV8s5uRA01XzqoZlvO7rWzVrTimdclqDQG/iTrxRbo1KQVcz3b3hkCKKFPXFhSFmlJvSZdCkK1Fv3mS+JiBzx9rq++I68gpk80za4ORy+LoxrUdz81isFeiu7UCdS6PcwK9BbCtY4LSYB03z6xLDg4aKW5yzmCdVGPnk6NxJeO3YeCAFkkm6WkN6tcScukdGdMrNWDknqylTVxXfqj1v+/ToBGUaNzyLKMYWKDdOYwH0LejTnqjdRg6TnUqe9aXkhCmSpkz4hrxzn9nKCK7lUEBxKdkZGj8osbJqSz8UQEAH4RRUL1TJ+DdWpJoXhXOGKdg49RFkbVYyTPVQYFaKHc2qx3OnZz4oQf8YS5ZGR83A1qAXvveOk/c6su+UT51WDYnbLZkTh3qzImdU5BRP1FgssmU3hwuJkk9siVUDjqf/+n/8xyOJdO0Br+E6DRoNA161wTMsmaFJjno4gmEqfIS//W88sOoFdjnrUa44u4D+SEGDysTXPDKnX+jp/lYq75yjUg7QJS8GDb0CGQyJE7g3QULPJAnPRUWpKCjLbS60uSM1Vg/hOMOsIBBZLE6h8mv1M2HjHPDsV0tqQWSOn7DzhsW7bH4m9UM7KfABhM8s1oKBusG7UJzK4UHXdZ5cG5GitFwNghhoUxSIos5R1JCuWe4cbhAab1Ne9dntRS/HujQlGeCYOCWBxWGQuXV6uHN5kB49n4KPAC7siQ1FZddedIOPTHMB39MPTwGfrEArtej8MYaDaufBHBrjjchxNXKHLj526+46bnRGSFq8AIkxmjh2ISP2/KfnCMX0ksKW//QXb1mhi0fiSDkMNK6Y+FKWCPJcdj6lbkyEckQOQPh3e9H1c4oenCubckAfWhPgT5Je+MPyJ9SHwEUmzv85nn+GHOSVMo7uRG/pfmemNBhoEj0+JgourtSjqf8K8DHa6aSEG8qZ9hHOw88R645++uluqgj6AjumWXHZMTKVHKU8phuGoxBYbngOkml6FG7ShWOph9s70UPX+Sj2sXrHQqcbzpTf7Z3c4ekC8LO6duoOuJulQnFJMR0dTT10RUFegozDO28Xw0MFYDyifdDt4qAK+yVd/MufWvq9NaqXXBGq8VEiocKUMFS8UuPkiYXdz333V/so11SAVkukIUY0Zf7bm1dm6wvintlIp/pXgP7kp4UTr1+2laQ2WFCuH7HuVtMm5NW1/PX3T4JWPPztb3/74cPvC27agKVFlth4rgW2JthWKvpGrY2WUIuPOz1DoZk56VoVjx++fH3z2n4pPz/Zie/pU68oiJRbud8Hg+sZzHpq2sUZpLPVo2BOJCOoNUXqW2aeyDYg0XsiRDR9dUuEzdq+tNClBTXfvn1sZQs1abzb/nKhuVZa02FD+l/sF6ILqWz9SNzB2f/igD7UqsfRl8jSN0Orbz1W8+YxVei5yYtha5D0qjQvThZHbwI6qjjyoxHTI2BGfGy7JPoxrvKistiPgF++ffrNAxrBaJN1La3BHkkQKnZIo+jQqHcevhSdt6Rns3Vcrqm947/t1m+MgUk6waamWCgo5sC5wpzCEmcqefPW/HrugR/vFvOV396+UfDjh0+pRSf79PvHL5//8vpXQxfi0xiBXttJyZfgPn/2HrnVRzTSs4vs24hIMG0JdTEGE7eU66uHIMYyZGccSqAfHZ/ueA6cPHROL3pYbLCa5wbCAMOJeLAQvBcbPMTgAr17UHdscYh9n3qnoE5COgM13KpX/5mpbfbfp3x7RF8PIUILcmMt26JsFi9P/vyZy+nQWUSY3jAjizZjuHh1A5s2H9fSV4vyCKGIaAFQ38rAn/C0zNO/E4Rf0ecqYDO+GKMElmoQAl5UhxhF5XVFYqEsOoTEpw+83Z57V2+rtFEFqerlP4I1KQXchfLLjZL/vB0RshMl/TC3NRGGUk9Y34Q3vsQlHZCmow5raRbPFMM3Viddg+ExxJd5nmckSgiyQWgKkCK752bw4HzRTQPRkG0bFcAsmErwVFzHZdM82YutF44rtuU03L7BhgaEkLUL8Va0F3+2wmz7/ypzk+yG60XDz3y4gksbmBvWRuF65rBQthltHqg6F0kzMYP28K0RxTbWbEVN75nI8k+Vd42oUilkDFBuCt6YDnpHba1zJihYD3BycSZ5aYDnpnR+CZAE5jx4EdHJ24atRFLInb8T+s9DFIeg+DOeKd0XAHr/AeLsoUh2NPgTD6eWhtyYM4RHxMSNAb+6AgaSIJPKNqD/5n/iGCoPrjb0f2FepIEj+l4w8jV1AzLPDffoB/sx3LMGUrETRBoYl3MR2sl+uEZ3vUgUpnboykkAVxur0UJVwjUtQSuTWqhs3F8BPWAibVDGk1JtyEmcP+2Rwg0nQv7umCVDnE4V0+TtQeQpJQuudLZWNXcHFPOUOGGGX5oqEfVhno3PYEa5cZVEIcseG364lUcWdBN83skv4c/pgTNbGRsA9FSXZ8NS95JvTaVDkm4BY3iMKVIpEkk5iGEfgVs7Eppxek9Pk4EomB1mGjAxHI6LkwNwO/vN7kqUMkrpMP00jImHI3Jshwya2SW+FDyY5Ty6CPAwPfBp7HArNVJKBR/i/WeaIR8ncfRwEYZDRdGanzE+hXezhLhaqcnYZWh3RLCanCAn5Sp/u/F7+LmlX2ATITyT60DfaC9P0qR5hPhCdS81+BvwMcsQXbY4dA+nR+TRuvMea3P+mwYqHM4LInNlsJO486XV0mbES+gHyHIcd7kS4ZJ44tyuD9g5T4xdHsZ3eRIDP7Z+lHVKLedi7XB50ldEmVNQCzgNHzumqxWZZDF5w3X0c3EynmWVOIAKPRLjCDVMNUoXJ/3E64AVXsaK3/QZZP9j4daaLemCreQI7aKckE3HWN24955Y+lg6nN/TH/iU9C8dAA7a2eOcwjXWbgoYl0M11m5F/sx2aqrA0B26d2bCe4Q9FSRN9sff1G8TF7++ffvp/XsrD3RcJuwtiH334uXbV28WY2hnet3t9099pObv3v3l0xcv3H76y7t3Gj2z1xC3jloX4an3Z/261g9+3bsmSehsBsv6BAu4taLbUdEj+D4ZIMysLdWVIqsD8vakNlsUoVk2PFhnrOG00r0w1BroYo12yy7iM+Q4piaZ0F3oTBShElitNymEFB41eHqg/df7FXKYWe8pgT7XS37NxvnKrGFEXqhh33zs5nkETyJ1+9/0qoDslQ3szWs7wNQBCyt8uwBFcWEPQYRoOqw9GcAbmbBAYxp0QbWG1TIni7/tQqT7LwB9Khz3tm7rgRFAxFBGUPL2rf2Xnrz/8H4787W1Ig32MEAviWoLlqwkqVuxFJvuUKyLES9bp/SsEJA2LIMR7uqxbXP06tUb32SgW7EGHYrC7ZlDHFFUq5yfmE1/9fv7jzRKkJawazn7s7zqVdFED3x8kqldJMXCEHrBIzZYgE2tyDYzur3yBN+iN/tjkl2RjbueGyLywL05HXm9m2LFW8LTLeEw4Q0TGewNZZCZt9iV9dUrcnnmw+tEGa/eWK1Qf4ptcvEl6vJAAQOUI/T0hgbb0TXpRTjMhF+KyH8afjSV7K6mQ0xFVw0APOkyArQbTC+AgiQscWxUr2JntvbBFIGUikUuiuc8QGoBUT7GG7vpQX21AHclNkHeQiyBJoSzSN063aaybdwp6MO7sEEupCK6wl/eYGi12A5tpqGZL+mzSoohkFTd7cIzLCuOIieKX0v2EzoGDXW6aNVZ4eiukxHowpiwVRM7XjJ7KBf7SuaECyQEWkobgyrdMCz9I9OLyA3hpBJVijNI1NQL+pGbloYRw2lNocWju0kVs0PDNrrlk6oAEGwj3aCAJhq8NUmNvxzc0hq+US3OFvK/t16oWgYAPAOTHGnB4Wpx+7lDKHfPbYygXqgCOOabmPcTWosMqXYTteimpTU+CdzIM92xbJVTAUdT+mD2aqiSpZ5m1W9GVJD/0Key8oc7X9EA0rYWKTVGJvXkSoW+NWhaH4/p0pQWIyZ5YOMz/PArUsA1945zjFO2oeyXz1Mao/Nm6ui7Hw1W4wsaLTAsLv7xH/69FB8B+2D/s2+N1DU2aqaBO6SkJN9eF7D0sNGGJt4FjLMdhEMX01nQ2S8pHGREwzlJGrhMJwMCdcm5W8bIC1ZwWKIg8SB0Jup0nEYPmBT6WNYBaz1M5Dhajzzw41TD7eLw4KwEDqEGidGydhAnzldC8WOcEBXQp6lyFKevcPYgoyGOsnhO9sNd0b+akJ2CxHadRvUkWzY6SlK5WFkR6VIOcvNSVZgkjWH/DpIorvYcNcqVEhepCxdVWgCDKivBynIenuDlH6y76s5t7HcMoSJH4XgghFvZmWxQ3QZQczYS4acNhW+qKwfMoXUDu7Af2kfnaxMPa8EPMlZzlxk5FtGdAg/OA3PDf6iAqnTKHzJsV+zc7eogX9m8S9YwJ6+ryj4CBlYisBB2d5PlzmSlT+LOaf6QHsadSjmlx0rgoZV0U9puShoqF10+HCtwyobpZN+IBjaeQ5Koh/90Xkq0VvTR1YUkVMEUILHXkNwoV/SGeX7ezY4h7Oqm5MQdmpU4so3ykW7MxUE6uLiamHnRVHCk3u0pcriagJUi0ngJLrpDdSlhLI1ZWckS6hW5KF7qiDcp4yupR3oyVuhK73ccHtLDPXy7Oj4wlk/OlXURIsqFL37vkkF+x3ZS7yRGeKDj7YAFs1vnaezizg1Ca8QQcnkVjBUlst51HA4Pnlsa8JsgdxkhVjTozquwwzVNDekDwjv6MpesjVHtC4xFGK/MeYt6enbfxjvWlGsTnv/wLSSP/vWjKOhct7r6+bvfbBzU4ozPtt8xzflaj24ejmTi7FhpCNBjc4yZea15EcqK5r1XIPHdu1entdSp91KjVn19T9Hm02cfLPjeklTMaDct2qxz/eoxfb2aqUkdqkiggKDdTiwwsCa+15Sht/5EKEA8E34iGKIIgIWMWyH945XdP9ftqSx6erNm/OGEjIJgBlCwAIp2tuxBfE+WooFnbTJjEhpHprv1G1alG3iYexPaa6VFvYSOJQ8r3toliVqKeBZs/Hj7Vh/fS3dN6RlXzV4+sPDiWStkMKOXb8p2AX3fOPqaMq1u0PS1GEPhjOc7aNbJGKTZPlVHVvyEK3Y3FWoRlUUOuu6fX/tuV+9IJEZf/DURbmK7gQrreAvCi7HFKZ7IbGGDnl9sYE3UPvilG7VIGLX1P3XuZlg5xGkoamz7kLPJbvOpXmfN1jQpkRQiLZcIiqNM0+KhpwsslsBPDBOKqvOQF/bJodKaLJr2FMJsoZUSXz/1cq1XRS0H4T3b5BRY3WbxQEdPY0hWhGSxmbhHVPPLx17sqPXjRd+MZBAzMKyCmfqsVsly9CvoNCeIhn/1rX3sWVmG80zDGw4t/d50mClwkVaBuI8e4FAVgTVM2a917aZhvSHa5GnrikUDxNkQY2GiJfRbaM5vT3RuJ1ZCqlxFX8LcM1BpApS9szAeWxhGh7XK7Xe5gNWQLymsszoqwL/AsVVn7P/Eyi5PJ+QXUGJS2JqKm+A/zAqHrmvKl088GLC0b19kzYJvRw1QAQxFgVwFbix9VKc+DgBO+ixEdpFRPddqXBcCODcfWtgjizWmYTWpyh0X0z/IRsG1/8VsmkMZ7leX2yRKncILiuqUdCm1mrN4j3Qgao/XhoJcIw64qDdPtAPagzWixKQEDOS9w87vzPef3ZnWsdCqcnlRxUN/NcDihNyS/xnMx8Zyexzn3XdEzefmCcmOE/0COXo/x14JZit4enjVCGWZcpib+E9kswqFIeGstYtrbhob3ImzYbvCDecaZGeFJGedBmRpYC9VRVS9mYY5aA8V3cQQgJ4AZCySg/t3//Dvp1p2VXGWheEnveQ+98tpMEQAxsM5/s+zBaDC4Jk8dNSUaukrfqcUKa4ku50Gd1mJwwQM2Rin7HcGkVGKWMj9HK1fbpQlZOI2HS53PKQAhLY8q1D4cALB3DTBsZRnUy5Tz48wnNY0cLVhIQTsgiQRbUDSxSGXSZqqb84msFr+a3A/ESR0gGlEyHdivsYOhsNG5tgg8mgj2VYZ5LLb0RhUdx5ooypyBHdOLXGuFMONh6OhVATXCJVybuPmFE4iubNDzMxTI34u4nPAS1n6UITzwCTK5k7gRly5YwUuknIu1Bf+O4KVLfEgvyC7uadFN7DZ1IXbI8XF+f32zxfhOGR2gb4qBgc5IGHNeZq8Cz/YTJzJZnFA0zyW5rRllTstdXWTC1h3COxwe7+WcOUO4gLIZCNa41EGqDsbDzfl9X8InYOav2WmQ+IgvxCE6tJM+lnJLioZ+MXJv2TcAQ9l5INfimKHes55k28poxS9c9yyIzE0Jd8kmV9NkKXJCfmdp2GOZEm3vNvvPaHc2/EgyC2l39iO+B3VoRtHGy5eOh6DB8MFf+w1UQ8DtTthuTgK+eHn7oQ3Tg9Xw6YpuDF9UbpUF2eXVm5kR+uup5N66CN00sdD0h+JLhYm4iFTeiIHE3tT48DG+YQqv+P66XLgV9mbyLzp4uzGxI1oXFzXI1ALvDoSprUVB3caVp1ODfohQHxhj3MTxvoFy6y/+WTk95+//vpOvFpn0e7sGrOayte/tkrEEn89ooAYTuk+deRDsKI4kYHOT7dkOlZvXexS+LjoHMcFxK13NxWloRMumKenMLVYw4dPrSW6ukMaqDv09asC3Hae6aHBLxbyvuzNyHbLnp5tNPSlqJFqPVJoFw4s6lCbcbHBzit7E2kSMI6cKLWZ17oJ3Stmn5ge1qFr9UVUrS1oxk5VF69U201DWfFgVxkRhy5G0NRYpZ5FlwywLoDs1Ar+lanimh0rs1OTmfoJU3iEBG1b40PCOnLBnEEDhnRKP595/9UU+BcPT7I6qbV4BW2tNe5baSbdY48bsJ4BAHs2WtobjwYUgv4oEEF82dTpV49E3r17a0hAk6LGYvUeJljoL1B2s3lcr5kWqwhckp9laMdspT7T7DVTCFkQJK8nQR6kYFuMK10KKcC0IWyr5HGdxk894yqZ8XacyJJlAJh2bU6WY7Twie/pc88KjR+fzXQulMtPTztLC31nwJDMlLZ4UazdSLVRi4X7r8/uU3VXlI/gnjm4NoI1CLEZUAGi+7b/8a72s2fv3rw2uEVaIIhDNmM+Hbozn0QchsM1LW9lDp9pWr0/ftyXXI1eLEZ6bqhpjDEbVYOIQnWegXx4b2PcfMvRRrR9+Q76ioQcIEZzqjO5WQhBINZW3CG9GA2ClFOVcFQXfnz39AiQ5UmcPIYsSRLebsWOOgFAoiPN5YFXFKfWuFbwVPwELXTu7fMCTzrQt/YlY+lNWpc7z/e4iVGVY1c8NF6iL4FfK7IojbetkTFlfGbltWSLW3CiXA7xkzJjCqB6RvPqExfZQwx1A8GeI/F3A2cV3JPDNKBC9orwC0NxGDUaZIKSsAquyN5L8SKBsmMJwxyyhT21Lb0GDfl8KHFYmzqTZXPQl7k3V5uS01UPPdhBaVqiQ4Kl/AxVbs51wsUq32KAfs1tQMsWrckppwrZu+PJe6TuaY9M9a4DNvG9ER12DhtslZpzipqa709UPbI3kmObnpDVNwFoeTkp1J34oc3xU72oIe3VjpS/YcS8K99AxUA0Pv/h3/w7RnL4NLoqrbFgjNpkHLeplqYqfbGrQT8y1DeBGaYnWVQkeuabaHBMaqry0FWcTa4pUZGjQc6JKo9BxMVxvukxNz/jIRqp0tRw5OuwpMTa5FUd0wC+8ts4pkQwtYo70eyJ/4ic+dPbcsgZqjEG4f7yXe9U6S2yQoaE0J/EQxHSO5Wx0xA/Sfdodf4whyDY9QyrykBdGTgF5CUw4yVHH5NKSeCdR11jLhlXMaK7UpfyDqPHcfO8qDQIATZs/YZ97hs/EzcM4b2QdLtqX26wgQ3m0HpILREDgGa6fhwH2zCOvaWO6GwTzqWfKgHHKGQ2FmzgPiTBLCPSi5Av5TzW1Y00wLGh9M1tDmOQXgTCdXDfNAYxL4/uqsVcQ5KCDsBJp3h8uT3autKH7CbF0dXgDwmgB8PR25/lPeLQ8IPFD4eKHF86yDvPh0ofRiXvjI2jAMZbF4dBCjyYlX5Ai4ObHQM85W5k/qzDSqECjGfvNydP5ylgx0Fx3YRMET88/fBwcsoY5GGjm2G+sBxZlgj+wCBXqXEo8Vzcby8GbkUCTi397eIR/kPoMHzgYZlvXFyvFkiLCoDbMTU9uj8kJshqH84Cv5M7xePihmtNX+gmS/h2MQmPyKN1iB6pl3BoXLpZ7jHLDdWR5QJ9BDxu/msMS8HTXdkPHJY1vc0PCFPWAycrFM+TqrtHbFd2AJij9rWcFS7xRsGVdLUQZo1PXbupKeHpL3W0n5sMsu2MANWuNd/EjtxVdGGF9tdPOnhrZOLZo2cNIMo1TBqxIgZ9ofZfmLvFpSptHbkwpTXZ+hxNLFpA9EeFhk3dwSA6b089OHU9BSWz4Dp7ft3ssnWxNekeGKDXMOPFt3a+t5Zdj1N0Z4JV+CvuIhSuRFRklYHcKzsYFph3jahGToctTLQyB6+Qm0hrnlLX99P2/2/wNs3oGT3Z//b+o7dCzfj6tNn3983uawD35OHlS4wKx2K89trHyPoU0RWy1HLMQC2JVjULeg1CSEFff3z4WDz33IS9CcIXtpm391KrMsbbAhJIG6nohg3JcI5qSF4891lcKczk8X5q/P7t4/tPnhiIG969fcuIQv3CNcFoc9VYY5jeBECPWgwaTIiuwRQyc4D+mfGzmFb3LXSyB6ncXKspuVOlfnjLwbMFDiE4MzKhhJ5+pLLM5WJ9rocF4dGXiXgonFKa12en/CXT6ZMZmhDWkrEdJeA/Fmu7DAvbC1JAwjEaoXmM0zL64ikngTUrMm+BoxcVPrVCTL0wDuJRfMZww9sL3mZ//TpODERzqTbtaVXJ4rDCE1eKtUarSCAngYbnmHotS5VBzOKpDN3w2DiKanBIILEKaWywToeGvl5+wDgxWYYmCjFaqiQsKahFbKOL2lxZhBWJyTHM2GqaxgMK0o2y8AvMTFRX1r/NcNOhZG7k1Dw0fxAdgUgpLTDmGKqhO5YFyWzw4J9oCLILjQmOVwex0Xs7YAomn3vNtKUjDrYmLWSMzaS1k2DOsLY6W0KtTYAin97rlVTKnKe7LU9KQM8u/FAKx8sx6p7oHsZDLnkZljPb4cmzDs4GSRSc4hDHrlQiqoPJPTuSFMoGJK2q6svHPOpGpWFtUmt6CqLq40IpNa5qjjCrgJShb853XUD8x7uyhf7E4/JrE/FXVnW4wrJi8xYDTyMBZ9ijFnQXKtR/VQZORpnbK75A1zSDq+4UiZb/dN4LzT1Ss+1NGZphhJlz3LptbKOBsijIYkKDliYZamyKQ8jb4wVY1wLVVi5MTZP/+G/+HYOpKjKtAqJ3LmWhpDoF3ksvtdeMrMH1WcQvny0DhYiT8SRkknymT1PJNKr9NBIFiRKQ6S4D7CIlMRT2XOx/QpIk5eV2SS6FObG+LJjitql6OMvugK0QKdzOAABqP0lEQVQCo+VXShT57sBDFQsNjC5gKimMbp4+J4ChFZnEbDyKZOyNJZigTblcsL6nGY6qdxLVnlSzijj9RQ08j4+TWdSZWma82rPa5VrYZhTAYNS1X3bN1PW+9UM9GkoEHPUDwVDkcehIxoZD3hFcyZgs//CwgtfpAO4mxSjkr6O74LuI85M73Ce1xHBGfaJV4CIhfeKDlCR3ZwCHuyG8YbyKjd3K5yAJdXBWEMR4oItdRt8xWuUscVkIDUapNBHbpfsfr3ExtM5H8zceLoTXeODU+QpSPuyMrmCULrjRHNIL4ZF8fNyEPVxdxP9UfGC3gsNy19vJIsJKj1wA9+Kz9YDuzFwiXDA3FsM4/YTjXhzao5+YVPDuD8gdoKgdYwGdmNfpAQnAwC/5wj6tzBku5WfBK/9CfGPjUuBxiQS54A5jE3ipnWJ1KTlDValz6ftzUWYFXS3rIDnpZQcafBxWPIWUUMHjFzcMM/yBL6mjoleBUm7KiHbMDOcdbIWG/xHs4VNCtPZzrqMemqico5QxdLKqOztO7uH7EI2jS4ZlXkimmCPm8NzxjvZ19+jnNGMXww98n7IXxzdwnNx1OC6XkDajOlGOdEUzpNK4Na9mzlu0XmAneLZKuokobWmSiZubFdbKCYbgWBdbXGnKccFEbazQTTtnQlusJKidM7RaHa3i8hFbY3mmr2r6REJ6bQvZj/eZ9PQuAkZDZR2GYKL5w/7qazHUl4nNi1tJbN+MH97oJbOYSWL9m6XqXwqtNL5NY2c1tsR+e2DUqkNgC8VvT+yzLlIXaLbeodBHL2rnx4+C/7Yq1woXb3kX2WuvHm4Q3W4zxZDeQLh6rpahG+3U53p/V2Qs672dbfrcrG3mWw/z2TKjL18t833tTUSrgMycW7zR6MVsX70kJoHI8vkzIXMWKmrqLLi3KGV0qb1nBWQXMSNo+lAU1LygBT7fvLL547mVSX0V67N+hyUs7NjTg0IHsghH9eqLE+oxhfi//fqbQY+XjGu6Dbps17NAnjasuhZiG0GIuCZdmke3106zQP2+SItOF9W5xExxUzWGJN2Z2+6rWMUV4cmU2XRBRa7atOPXTTtituXOPJDWZ+gCuAWpbMAKInXseBhitNBHysLeSp2e5zT62KbvXMPjDoZGvxec++zUAqJt1YIxIghslMIzrzAdWV2omq/aVm/IVTNBasU5Gu14iMSrxfOZ/2eTmOIW0htOpON8Zh5p6roVIAZOjV6EDdS4YL2QwwG71xv4yYLRmgOkqQUqV1WAPRpCd+1UEYWKZjRIfNHw6UOzrOdme7qlVHhV0EaITZg6lKIvtKSnQCwGNquVmvPwf9EdoSUsTit8AhYnxWBnOtWcc0aq/tIi2wmFeiYgtDPIxHtT736BYOoUpxnAHTUn46iZqZwxXe0NeP4BCZ4hzk8LvQ5MOlGUJhSHMStPOUTu6d/mG4AQli1kIU0yH+2KVI9KmokYrXGA8fCBTA+QIOQ8VnviMWqd8+RloBhjIywD2s6ND0/ZssJIPlkLRU58OD6RLsO130Rbd5O/eabx3Qp9m4H6UMk4b13DONlr6DCdaXvaJp320Oc35EvUoMFWazPUmpWjmVrU9EW749P4M40fmcdk/HsJ+F//Y015s/gwNN7NOz1cq56QpK3KMrO6VDN19kTrUWa4kp8hE8uf1op0kmtNGFhvhxeZO+Jl3PBjKqjpD3gaPIxNKfkTv+psRGgAkLEdK9Jyunyo+Y988WTJZYZTPRL3cBM/HVP97WKgTDhFhPZQxthSTnCZzylbpnoxAbKrBibL5ringVAjp9zoAC6ID2N/B1Jzm7HL7A9ETUPtclWaB6CD7Vyu9jcWmJO3QQPlYZLjregUlUrz76kwJA54wSgL/og29kc1yql9LHXt/5HID4pRiemJMCaHMFaje2X6HfVBygo6v+/vwC/HdZgO211lirg66gV5yC9FeoWW2EWJydIZ4KlIZQxG+rk+5wN5cjpXPFONt3DuuCFZ4VR0XCtUN8aOjJPiYD4MyJ8xL6LH0+5Z00pI71RclDtvH6dX7lXkYjrXidmVfCyO60FOlLF3sE3BD9o7mAFH7sgwyV0eetDIGnvLPgYtN1dRbBiiPJV18WDEm9OexMtnLmwHfUo7ufsNR4rCiv+7c7FWL70dbqN7O8KSM5bpLyluRpf0GDKIZc0QYVu5S0wIDkOlD1VgwdcUDvMBONcXvSOR3HNE/UDH1GWUw+sNJDJxdZD7KeGeWQ4xQhuG/ssO5V1kt/FamsQ4dF/K0D5CFjNDXdEDP1qUKUHDcCXDV6N3QUyEB00eKS5UNQXTxvCMg8PFJfXYvlGCPbau48j4yJdLP2GZvkvVNFMuUvnx5YdXZL/sOzhmnzVnQkZEX9qM0lT0Ns7DTIF5c5odgjnfZLVyaPN/EmvHGE2WLs1eEzWWNotsxbx2v4kxsbX+CDMObqxH0DLUF1rr0raM360NEPBtH/1WtCgCn0gCVU8kdOtv+zRsLaSmmGiCHmLrnUzt9+5r0GsJdbh7LbKepQ0B22C6KAh0jWGKx5iwS1n72FiQ01T3wN5bFy50eGGN0+em9hdQiwuLXJp+M7b5+catQF5I3nd2n/7lb351I9S3kbwZN026sIzehF/1nIKVs2u7aekW+NSUEbJHEMXZ+t9eWiAGs5HgKPhF6+11H6I3B2v8eOUbbbzguw2LXtjohmAGA95LeOvLYnY4pYvvT4yOUBSVgjHE+vCHbTrrhrzQ7HmL4VXMtfS/EQgcZMmqXuz2xsXTJ6+btc1PdW00Ricn5G1e9tnTN2/e/PH7h/xMLLvxjMl70rAXPlERkX9uyU2L3KnFEyFWxrmXAdol1pME73O3R4pP/BbZZL460A58wnn6aOvddZseethPtmHZIM1w9/SJyuxk9eaNGHDxtM9OC8FFotVHxAwREuGFBwtkxKlvgOWZG5QKCaqAKh1OECUqpXDdlQHMH37SsgDODfV6BqR/p4+6G1tF+bCAiL9BihfZmzb1doQp/Ej3KnlDsoYBByFG48bItoExBjjtFNsSppgMuMcU+blVSb3f3FAyVhWrimB2Xru5Lf4ABe3JXEBZo+NaCg6rbA6fe2rPTbQLYlQxIBSFKxwylqcrUKuNHEFBWspeqWKYkOhN6CaIjUYIcoJsdmnso/7HEba47gZme3dWejFnYVvYQthMbxpr2r5HMrVI2gGFeRR/pvmNbGcXZsoupIh/fuzsGq1wtgSo6IXsOUPVZz2ggY16GmCtKMywIC0XMLZTXJWd2ipCIc5z/8JI92s9mS7mxnwtHj7jpiMJulxL7y7kc565zRWwzWVkuk2f2Im0NXyWRZHfG0ahmjn2K1edUJviinvkovjJXMyjyihltDmEPRKhNE7CDnnFhnBxa4iyhVvNUyQnusz99On/8D/8m32uryeSnz5+PBFqY1OfyO4xour3SbszkRMuj8h/iE/dLnuexQuN9jiB4shIlhZUHCbLESmyRzfpv0R6kTL4Uuh6OIGFv7KJOQwL5S9kihcKNywObsdBLh1eNs7SjTuhheGwfzHDrXtcImMDPrVSz5SBKTVF5QBmDmAFMm+JkzGZVSZMfuY4TowKcmRf7TWGPgF6VQ5wLClUO527wVmIXzPTE7cRTVqkLuSo8exGKZhPQLdDESpsVP9X1Q8rMIBxHDmTV0Ysl1LJo0gJGTDsQILvR+qOA3bSVyqy3d4AFEvn2euUw290bgIeuIN2VIZlaC86Q8USygeWVeLucHWkeETsgW0miOQgp8+U093BIwufG7VJYz3ptETbAVQ9D52j3q5DtrSLz4M8Akc/txKHwkGw3ENxl53O7dBd+jwIbxYBcLdjIiuRQvGbsa/bx0hu5Ic8uCthWjoYSj316V4wlAfxlJRupxlYOHl1YEKTSn6Qrqr808KdqaHY3YAUvm7+JNqEjr0dyYRW10fyg3+aHvPLlXVYOoW7my/5+ZeOIbzxPAKnOBKhm+q4hKpQczkcTqcNOTByD1uwXH51SN31eXhW+GIhVTvSSNxV+iK6lDJvKcs/6Mf9MECkyO47PYYZztKu3OBKO0lRcfWo7C0zEMljJrGOaBcSpWpjS7wuYDlSzxMqG0DHY1mGLpQXtqPSBQcwHx0e5ip48zRZevW8qcjsBa1/+vrJ96BUMnigi9e4rQ8f6U1S+GiRnRZf995kQaFtPTR3epammcXoTeG7H/K6DrFaLW8Te2v0PBA1EbhJpSjAvufG6wHrCE/zfjSv0fbPHqBqvhcV2KpYC7nvmtn2S3F3eijscgmiIQmVvmBzzCnTGEZE1Vr/PfL9+vXzS8t/fjHaqU/10Sua1LMS0UynNyBaP0PCzT29bk/Pn98+fjPLLhbFjOl+sprmJ77N7D2Xb6/Ppz419abIr930i7qa/+l1CF0s+VpcvoiF1SgVo19ftCMR0umAQBoUktC7r+oaflh9xFB+//r7e6oybiGeiXBcvX33lsWwK57VDHz8/MFCE0t0RFEij8+9+dt8v+VBxmOppO8rMfpT4a8nA4Ui3u/+lqIsuNKrN37ZyoHUmpt+3+eZC6jOwECAywsXn4sa7QpJo9wiX0vnma9ozD21IGoMk8xro+ypyobiGIDacMX0Nce3zGdXRkHLEsSCP75/+PjVG8sMzF0MTX2z9/NHy/rbmNKjFzPQfrwnyo4iGet8qg3ixr2+K/juUZLXlD9ZMZ8jEidGfKjVsqsWGHsnxLMjQ5GY24WPI/R+gkCTEjx1MbrzBrlyIIhgdIfZvmlNKZOp4Y0Ppb1uiyrhE+yB5qzb9JMvsyQneN5inrx/c53ww2OxRztCPe1hERHIvdFU77BSgZnfhiLGx6dFSrRqOkjeaHiJIzp3y8oNJWua+kVEGokUrPoYctC8mL5q+CiQVR7GqnLDZqorWOJIIpzFyhHagqIsct4PWTCauQqEchjOsfYnu7mgNrCkTcDWPxf4ZGHSrYFCLBHy7b5udiJaa6fiW1Zqy+HAjPtk0qSQZbVW9fFJ7HLxkFC5ZKroopBSGmI1LOSKa2JB2IHPxWYCm3MvA54EEQGufTuuR0stIJQCcNycYOPiK7qhHlpnsgxfcpE3PY8AjtDESACDd5F/INuESM/3UJCIrGSsZOAMFP9ss9eZSFcKgXODTJzF4qX1JoZ2oTQOmDCLjeLDnfzBCD4r8dQn3L2HD4s6TEDItIoqElQNRDTKlfAYpY+BewgApIhfyWxp7GLV5raqDSBunzd2IH84WT4R/QqrMaASxPGi9rjX1rtemJ7Kc5QcMXj0F/Hnc1GUmIAEILCLhEw4kBmey6a4mSfueFvvrVPXAkHsZsvrVpfA/yI/+PxVgfBcTgAZ9qIGotYtMZgQtxS9rEbnVd/M3LDBxWEgOWZOuYARQZdcah+w1fZcgfsyT2zPV1CaZWIdXfK65f2xNd4ArNLOkarF6SE3TooJ7HouEMXK5BOua9R3jQ3/hr5C18WjrMBi4uRE+YYpfBM8W0iNo/KkO/rd3VUH5rJI30ql+SMD+jlx0lV2xY6K8njFS76OzHUQpuAYXrbEdBPhBlSAQ9O/ga+IPNhklXgdd8iDZjoZg8rHcMiPSEPtTnrde+UPY6fkDeHAKnMncSCTQeKSZVV5b7fDQ97lD89NL/nneJhU/P8gOZZAt9w42nHZ57o79A8To4rvSvtfwet88ktVerRuuE7aWLrhD8NR3QEO3chAmJ+nmk7XcfJud8vII8s/YAw4TmDp3wqOB1cPhd1QVvXtJlIo/Of5RYSrX0dLx7jzovDVTKqAl4zEOwqMIwQvE04gOh6fUR937jJrFDuX71+OFbYH5lwn01XmbpFRCMOKVeZgLuF2jVLYlxKCbm7Il0rqi9B+oFIgn4fiYIk59fhGvjtSHlxDeIGOwfRUhQtZDePI3zBBoTD5LotErNbmsFcdhBXwTDbqqVc71zxiE6hFGQJEH6WBuNZgLqYJ1TBtEirvEvbpsZjkdTvbtNL4i53de8isZxJwgxa9ddCqNrB45kTrG7DBtnliinniy1U9706Q768KpzB4uCOBR82t+dWYt2ZGA/vTt8DsTNosaRKZyCzYrdtS3HX8NqHY7I8kzuZ6Hc8TBWyrrdsqOvYmQVuCvjH/7AG4rsTblWbDPB63eSDk+gF92ZsGBt4SFoj3Pp0omjgOGjdqaLrXnKhl4F5gbd18zSBVQ48GBoT8BYvPnry0sj5mCpZl4Ry35OLUvfvw4lpdkGka5DS3Rx1hWSSDmw8ff//8VWDa+xhpxPugdq4RtHnd9fO3XqxomlbIDW0TpKJSwbC5QwGH/UZdWPOik6qWKdV6a4GpbT1745CAZ6fOgChZCFL0QH+e2fSdHM2kG2yjyJRN6tOUxQK+gfqjfYdmsoLOPLOuuQXNZHQniLa3q6cN4GkE59Ye0RjSnFLMavU8pnSXCrfI/m3Y/uZvfv34wSelc2Z6NnFP0oLRhpk5M1Yb5/CQFyazm2vPHXS23qbY9we4KXZoLM7rjj3B8EE0erH6ea6DjGc+faQsXzKOzR4Ga62Q6XVbXmCmL2zmXI0aC56qXcJ9zzXombyN8XorN69omRzpOp8OrFoPOSqeSIhSuSZzaAxQ8fv1G8HJsuif80BSm2BJVY/a6tWPTJRYW5AGWgRT+JQZUw2VW/zNZMRTYCPVASxRNSn6ijBt59O1Kqt0wK8XCvhe/q6supCAa1IkotAiOIOu6i8v3aeytJ2Ll0DG1AL6qt4eWRjGNOmJEpVXi514E/q1rtlorzoQkg5zNigmphYKW+Abnw5Y0RM77T48MBCNqvNusnA+NgA2uSKUDyzcEpqOqEKKNwgZWNR2wNTjx7ULrIcFxFmflqCOAaD+smaacV05Qq2NVhxCkIrkQ7iOf7nkKGpdKaz2LTMMJFelezmqw0zxmkFXILUznqYqGap2KWXP5gsMRGt1KLcmsedv6g1W5MNR0MGrrZBsaN/0PUA+HkuzzagWQz79h3/7P8GowtIah6avUmMbqxrQ3B4bCKuZqOUNdEbT+wZByvIK9qu1FD2qSx1zwEkGh/uFd5R+8mRUB9THUmoWwcQ0q3S1IloghknXKs6kwXJxf8Y7eFZk9lDn51JKBrQfxV0TJtShrGF1yUHJKAFAoiIkawUxNaVXM1HhTpXCFQRprdMYnH4urBtLLDgI1YNcaEaW5cKeJAl8NAM5nbM7iDrROU5qA4vNDZPqQTd9cm7ZjjQJpXD8B44hFOc/UE3AE8umt6k1DjrwFnxGrZTc6/qekxmCSpRdxc3AnJGO2RVKVxPrIN75nGTLStpD56SiGKcz4i3noDpMrVTsBQPg6PARv4fV4T1yyUPhSBHqxAkXShPfZfVlh/x8APYjWKw9FMFtWXckB+04vvAPietio5EFfMlSqbLvuQdb56hiK2Kh9+eYgGWV3N+5Lus6hu7IUq7UA9xPBQ6e/dwwZKwLz4CG6eIdTKRTR24DzCHvlD0Ego/s6CVhWAK7UYFh+ReZSksanrKWd+CPIcbAdQo4aCiPjZLC3Y3jC4yqXFVRhvyirNjSK74DFb+H/QNzGtYKDeYCGMgd25gc4nxi/Bwql0AnaWVgieJBU7r/S+syGZd7F+diZnnxVZR1KAzPRe26PjSHse4hQodpNEZzKbecfiN5+BnSkzQ2zuXBEEsdd3zxufthPdSnnUEQoZtDOojKPj7knDazxAPQ1hM1MmgUlc0uaw/Geetu6+FCmZFFFV7W/GkxRtMvTTTW3q42iB575VcT3Ozdgi1RhVZOp6VOCWBOW7tuCr3NIgtTFpPhGe9iWJPe/A5Ok7+UfiRoMCIm98Lrq/aIbJ6lBUVr51tGr2vTcbbdjWOLsnuv4PWrZrXifSEsErDodX779Z0k8+gNd57+NLP7i89UWRe0Scc2yP/509eFfBKLd1lRo5O0iv3DZxPVRbd1yc27iC8tdSlcTzB7JdEMNZ33SmvoM54oytvEYgsPCoSVr169JpHwuiBfv+vjWWLSvhD8OiXaLsmTk6c/X4tuvZb6ud1szsIhE/vJQQTTVX2JiQZe9o6tLXKi89Q7BsQsGg6RCV1Rr0jCbvpNHAHxnEFGgaxwh+StFF+EurdjWxNVD2aduucJUNSXCUQUX+TFb+i/KmApgSUlVurkF+JI+DYa5Algp4AWCQvzzR4mUuHBFXjwLvH0HjW0pRIlxw/LCqcK1NKkByxm9+smn3y3w+rnT0ZEvV9t51P6FiP1mGm7dmJoS9G85rEZw9zU9jt92gg2mvnlWZ95+vjpgy1QSWRVfF+kXbNWINXzGVKQNAV1778u3j5O7d7Ym+jSaE/sFGTzhuvWRfCWm4+TxmOxbTlZn0SAgs5JjQM4x1FT+8dwZlFRQh8Vcht6nFo4HF3mq7lkgZBSs2R2hCobr4mSvgVOxb6rkj3aqm8NqKEOQBfKsgh5crPmZikgQ2QmXmTKsuVVrbfJZmTos7gchIwpQc4AasekpysDdfbviUKdeC5SEBW2FLiyuwA1gMKYQkG8IMsRYAcNUCXCZUZfDEYiwoeK6hdDizkhoU+CFO6vCGxI+x+cM+GKoZMcXbcuIK+12RGTOVeLf/Ck0kk+4XtI5ggAFFV4YNRYjEJtACQiJmGMpQRG4QiRxUFa1/Lgr0hSKRi8klS71zv3jQRYUoAPe83pBgkh1wBt5heeWmD/0RGKVx9hHT/ViCqgdNQrnrwphOo0Iz2E3Por7IVz0sfqGe1InMli9V/9q39UGua9Tq5h0DK1L1UyNGp8ZgpDrQygFS792UmA2Rpofd26LmZWzyl9ovIhTkNm6kxzdQANhqIB5Y5DEdMxl/a78j9hkhccLUzFJcfGtC1DCfkljusQpiLWqiTei9cz7RXxnP5MmWwGTG3ZmP4UrAgEM2selo4SPDqHt0PI+Zg5JPG8Nj2BHA2IqkUu1mQMZfrDStlqV48L7iKEfeiPJCOXvBGFop/Yck6BQI8mXGjoqGUVQzcwQCfHcIxWFA+GJe/uoDtgh6Oj3ovMoRJL4/xWPsxdp+BMkAKn2KWObvBT/A3s4uNWcDovr/+cLn848Dc23Wf5alHeDC4lgLlduGlmScnKVmzMXABS6W3JFb0K9zuhLsrLOY0CNiRCM2IHY5dzBJjl5qsTIN5cxE3iD+t167qUcMVPAsZxiW4v4IN2Fbu8HXeAGwnFyyh98I/BTroz4JEKOFcvqUQsROvkPiY9ltLZgRrv8bpy52K4kkprcIl8MNykiMrFWGgO56N3CC6vnPCFeke8HM1gcbxd5wEBi+1TzU/PcSt4lToqlxjOjDUC0bpfJDKz5xS39BIuRH4TZ3dLvjLCNrWE2nHjO366D3aYTz+EYMkVviS6m3WgJ915x105Az6nK+vOifvAlhwnj46ROsSWGi9dOI23SrpxYqylkEUHcGEDeZWYexyJTtl4X9t46EVIA3+r6RIPJxf/h04VKpiD1dU2km9ZrsazFvKXpoedT4OPREgaYtfyCjndtahSO1XcdliXbubI7Gl2Fbk4EDeJpecV45pLRlDkIEApoq2L2ULeH096La3Jml4RXlxqfeY3AwwYipyYu+Y37dTjOrajA0VpVURCaOng4RcMYwx1DGFUsPju3Ruoms31EPv7j3e/vrMQHBcm172SJ1IUL+uuBSp41fP9+vaNtR8GBp6B+MSBSKJY6PnTDx8+Y6xuZcwIbX0UAekm1HxorKXwL997+QG7k3z6ij+duj8q8YUvZD58fP/m3RsT4R4m0Kbvg+rZU6sI0rOC+oan796+8SFky8pFPeLsreexZeovtOuzA5Buwx90mvIUhprCKwJ68uzXd56N+CZD309QtrU0gjwfLHvzci8DiOdarKWkZw7kImO9fasITs848vV1BHruTeIChvY+bxYTPD/Ze31VP3xutLMqh9rm8pUTIxatanOKw4KDq6c9WU+Q7kmLwMX44SzCKeCIeut8tj3UqfXFbbZ8+cTcNlbHj9XKnESwx7qEM1uPgnGT5WrEqdux+Ju/7Q1XdCRalyO6+fbZei8vJPSYQlj25dtnw7HmOouuqiocmNKS/JqzK9bsBZg5vbNx5ScDv2Crkf6/emvou3nNwt/cxtOOwnaxl3eRN/CjOnjwo2AXBcHF9DyhYLe3q3vW1NiH6rxvvVC4/PYsMrSoEnHdPeAySCvac7a8S2CJeYw5Q4jEijczy12PXHCyGgEnIxBqBpwr60wpUEEp26V0o8E80ICkmd9sRzk9bCkaVnF03ENU68rEzkSuMcBifV9GoR3VEiBjwV8NhEgGBi81nDEeDuu4qU/GUTKuLsi1WgDSQp1IybBd1FepUEIDh+X1v3iJb8KJjkgKDtqpUaoZjMqgaiSlw8YpE0ThRc1MMFSJ0EXh2Q53e6CnFErxEFeL9VdT4ZKyjPmexPjQQAkUFY5CRuK0yPVRwdQYk40oY94NDbigsB5sbSxd26Iwh6FFPpWwjh55AVepFXMfV65gDmve5TB7v98qFMZUvXj/V//qH8o2NOyZGwZYuQcK5kokIqORmlMWfWaSo9ixF5VQ9t9JprLFiI26HDhAKORkdz+2TockLSMNoCJIOVJZicapNLWkyZAVd0Sk/xtAXw7RM7MDOl+8UYFq2FcWLx0junTM3MiVEfuxiqjzuZcCAQ0OefUTYFypIW25moiQO2XaGTT3knRGtOYOMF/FygvdzBJ8LBLpL0PuRQ0UB3PwA1uW1PjFA+YoFt6uUunR0mmkorKUSCujrNvggHcf/1cR/O0WzP0I6gZW6ZW6zkOAiUrd0Pm96eQBNPFBpHCI+z9E1+/4XdL84eLn0LoIXgzHeQ3EcdEzzB3GjBY5Z1a+IZ8Sl4GlGLwxWdpFa9a8BHvEww12JR4xfUQI1V3PtThVSggvKoeZczu2LpEvpKgTBFKlknJtYF5xZn1GLRilJtexzl2osCRAFfXhIkZ33HjDUJiOaBJDdTTXxTli+mI7lqRfLeaxV7ytAc1hUlSOetha+ZFIglEJ10FyUY3eoXqzcBhO2s3lLlZCiq2KT7pxfkNzSI/nRH7spcEN+egcvcw71N+06xi++eR4fhD+FD0M3PEMZqRWF9weKU7Zbvf/yIX0jdEZ5GL0SJFicbW/Y4QLx1g6Ghvyg3OZR4oL7iIdkrVvJXcz7i6YIx058/nxUEpwk+gkdnMrWJ4bPesaKJdKDXp6Hfb4H5XSL3KpffQv/Gt6TrnmzNSAEBZL8eJFEtXRPFz6mYPUsq0lz6NMtwu4BQSmrj9+fK+XknWCAebDkV6qaMAbjc2Keuivj2jFtkw9kBX7JqEW/xUm6t5EeFrgekHdoUZ1yyf2aqByxSJkXqgQPzjTWgqa9QwU8fKVV1UtJvnkTc842e7vb976au+T97+/V83evn4jscU2G0lY3S1YRwQqSATZhLdPvHm1dhLC8yvjGSIkOLCiJLH6jx++XUAneoea62/COHGme2uL6rCQ+/zJtHcL2SF04WVc21ymdwppgCSkjge8tLbEzy+NfyxmNzec1PN4vx5lmK8U/zVn/OSJhxJNBxdjNcSSC5jgwlNbgArrj/8I+5Q4HmuI5b0D8/qK9VoqI1hpYLGWCGNeYYGSC7J/+iDAxeNeC95sMWzMV4RgsCQ4YUFBZEHmnCf7FgXyAXZQlDro37MXi+yd+ZHtkPigVfixYdn6916wroihVzF3Q0Vm5EKEpV3/TDsajViFwL9JgW04vX29zqgnMKbXLQX3aQRSN7hoTnrrTbzj57PM3kr/3HfiNr1ac+QPCR5t1rTYiFPGOTO2rADHyVxN0Xz7mmz+b9CSvRe2EpbelIXIQVdNllOIJdV02fsMXoVv3Au3UlwEBoLzKV5mCO2DdHPdFCTEWufSSh4BG//xciVmoG1RWlw1Qc3v1QIaE6FRFHcpds9tUj0fwF/848Oy7T1YE+iWB1OVp2bB3zjmmH22QjI+FBkzSqeDHLgqVI3Gg2s+kH8e7tu0vhV3YtBs7WWYBFxAUnuSu9B0gwTqW7VPvVPcycKEQ6l00cv9LzA42ijeSyUW0vC4ICms2EG3vyjUncWh65kgoypS1I65xiqSEwDEbQUU+Jl7IsACLFFrJONnTzyUqaGYjPJA4QCrjXAsvzIf38PAYm/cXsHqetL0sPAXwYy4Z2ipt1sOXFCoBAZ4qNbv+s7eE3rghzhtrx2l1LsVUWu+0E9PO4eKX920FGUsANMqcBImbMR4uNpILHvFe7afnuk2fZKCnhJZzr/+1/8IpgmGpKKaxkC9TT/CUMcxl6SmPCd1M4TC53FwYxjVZvqniIYKmSDbzDCmbTaG3rhKRsD5UKVAUv2Mc7gcTzH1MB6YYSJ3wGSyx7k+ic7nIhSjHc4cYQ4CtKP6U26umYAz8JJyKRLlAbOT3womwg3BEK8tkMYOw4b/FaSSVdeAyZLNkVCEJnkD2vPbIcwbq4FAz1pPrS5yTIc85aZnbdI0E1jJaSwGNAIXv4kfH26xMoTjfGx2OwZCexqqtAcydXfqFuohLWV3YyypizNkgbjDuOCYfwIbqZjqb4yt0Q/nGCAC+PBIiKi7bsvfQbDydrgafjcH/IIPV0kKhuNiILkgD2WKOm2K+woddDzvTmraLvkx5lA92FrmRJhuAh3DI7eri24Ea33OrRwX5zzk09tBMfYjOa3PK070FnLH9HExG4XBhTaEewwytT7QTQPDcHhLFGj6WakQhueie3EYe2t3ohgzRzsxcCX4GStKlje0Qfo3J4xI1qxogDeuAhxc4pfcAciR/1xZE/Co6E8wmW+SXgpc2QtiGKaQIRz+Y/3V+ug+qP1cj5WgYzXLX+I/yn3wNIk53o2fsT72j4QTsyqXeHD2/+A5KdgrfcfSh+gmY8CzyKWTx5xokeaT0VF8/xH5E8JjzSGHIUFgZIgbgyt1TitY+UuZF/tH/+P7MOkcx0tfPUqDqam02JjpY/vgvcgdJd9QxEBTHlVSobgZOjPHQoe6nBapF66tOl96OxEJ/PWX9bW98ougcE0np6WNH/XIlKT2ceGdPk/HsX5UN4kOcOFKHGjN5oBiBW1jU/4iOcqHlgTV4ivwOo6xTqcmt2nUrLd96NESSlbk5zMb+HiL0oZ28iwBGtHv1qCLdcTijSj0o1vY85d3VqD4xJWdQ396SIDWH398FNSKQNcVFuib5Qfw+p3FNtTy1fvHBPpo8/5iCWA9MxE62ouS+AQTg+o39e4WKZFCQPz+/YdePuhDsXQrFqeuYinct1RJbNT3ent9Nt9pE6HmfXlO6x9IZI1+X0A7XSo9t2S8jSnTTmu7Bdk4R8u4BVYLgeLMm6biU2s2moREzTt+rKMMlRXligvttq8fi9XWFrd6gf3ph2XF1RSHQ+KzpEZLZwd5I4q++yYUbq4RqF18ileSJZ5RYGlZYIStTCksNvIRG9W0Nu+OZhGWkY1wVlhP6nWiOlkK5xMraYGWeXeFt6Is/8V30Yt8O6boeSngp+cqHs64yNf9K/B10VweX1J5bG3kUY02t62FGpItqtaHt8aeMhecZG2FUKhBHam0N0c9d4X+cHYmh0HntKEOewKDnkhNTVmwCEPLQkDiSYA+29VwHAuqEcUAhc4L1FZx0GUrvBQ4YrI4tYgFT0oC5lrzcJWjwQDMJ8ih7jEduQPTsqzFHiDw2FBmHYtSbh1cm0gQNwDo49y5Sg6iLp8GrcyOaWPT16egkoWC2AdfCFITw4FdNgIJ/MZzlkCJrQ/yVLbmkVZDvfYKzRoC5PxbRVYAKZE3TYbixGxFul2bI0c0stMMjC75ttKkWPLisSb2KzqA5uZDf2ufkUgJsJxj5o0jjlvU1yBtA6U+Xn25hZxoxafMoytI+LApjJoc1hwADcOUSKikNB8d/8UAgJMwlODRYyicOGjDuN10A6C2S94DGXKQzNvhsY+TfGCC56fzTn5rHoHLmVAhh9rEiI0Jf3FdCjWmiRjGxGlCn/6r//EfEu9I0IoinuoWg5knNZV50qufSGXSJJm601cG9sPP1xCc3otfNogx1pkta9SG7+YHij1EVDlNbVxoYqU8SDOzy2lw1yM0Fvh4z6QySOb0c4xX6SMkBjtgVgppKwuJwxhudU4kYQM5c6ajgeBnY2zvYWWeXFYamwqPsFKkYiwaNd6N7cgOG2tJk5e8KqsdmjQWtSZEOjKVr1lXX7UsU0JhX3wOCAM3WL/Tw+yBbQfEQzOnDFMMO6Mnt4vodD63KWv3FFnKEBLnMnokE8FBgzftJ3WauZAt9wZDLngqF6HUXs6sMzwXicOGzDgJQYLsutIuHJXrOEwt92SFL/yzTmAxuZ+V7f6wd3Am+5SQCAkoOZyJwXZ3/Lu/soYubHnyA2nJUB3lxFmazwke8F8FL/EPn1Ecouido4yku/BfpEM42frFKscI/+6OMiZ1YLF/GXEyTTMjh5mkO8UHNcuO4lAdugfHUN1UfXKdSaZpWENwT+viYj8dXlpbWkgiScxL0EtjfyoSUBC0l4NFtNulxu2F088ZmQ5CbQwu6W6VjdTZrNIdJO1cYtQvPAdZOcucgS51RevY7lwMQeLcUQ5zFOPvQdKD7Ega/IVkHhKVcXSYCVTBx1xeUozB5Ub9JEa7ciNX0QlxinfruETb9UWIwqbGi8zh8wCkyyXPK0InYVpNkzUFd84ux4yCtAN/ODnFYoZuKxyL5xh/N4FJYZ800ZEFDVZOm4FfkytWyRzhKvRpskPh0/3XFyBWk1vAFjeaXCya/OHzNZibaYJKAG3xB56ZSfuc1v14J7XmsS5jU5L5PA6T7jqfZrBURfmb9hOwP/0CPkRXzo0rrHxQx+rjf75++7YrG6W0g7422Mx6qxqs/TDFJdz37ip9SY5cw57nf/zxO869A1Av0/TO8w+ffJX2mcGDPtZsUut8ej/124vX7UsjUU+vn5lOkt7KpWQXj68HzDTNjhdaBcrt+04tFllBljigFSwbQjSH/rm1Ll6E+PHl+xcDBstVFClyNffe3pr6kV6WMHNMM5tZR2Gfr6piZfGUQEHmJqeZFLiMJoBbCmJwhaJRSnvmCwltLCmIFst6z4C9vj39KtC3RaEpf5ZRVqzNFs0BPyH4Z3rGKFGZjaRIUl7rtfDdk4FQkY4y++Jw8bk41EvV64pXucQnzC+Cx8/8hKpziTkMbn8KlQxF3vuQmXn+58/sq5SLezWR30a3fxZrbYMULRuHEPM0TN2IpXGCGf1qX87CVXhIziZEyQ8LPOjmW9HvKuKMFYYC4EYLzVXj1KLnhM21kAzZcU4+JXqDUKQuhjGConiJiDEW0fbUZw5gdGf/Ju/ER6gxMLdnTfyT06haleIupzKmR+RsarTNYaqHPxrU+WckqTwKPSg7RAi2QBM5VY6AFE0eVpxU+JFWyIsutNQ2h6y5YGVGqz5XVVfFVpdUloLBpuprfNGhLnWQpArFXJkn3mtYEiOKNHceskzUYKz0dE/UqmrRTn/9a8xAt03JhysABYvS/R3sa/OzwjRZYvHYFbZNlBWMk9qHCFUBrzjztBjV5ryUfIu7CDmAw6TUcO9IzpRw6IQ0DGNYzpKB3wI2lycxXx3pIeHwqbE2ZyacKFQ5Deef1D/BqdKI/Svq6iBnY3rWlYI8MMqM2KZRMMKH4aNfpAJANETzkJ4tFH82pNHozF7JVKtVswXMHIgivDfl0L4CfOFf/Y//aPQbxuya7aVi5WhAK5ZfdKyFPeNLdWYLQFGqIFEb5B3zNyF0tC+PACxn0KYGjt60OSdItbVOc+I9qxqVy4rlzcwwzBcOD8kTl5XqAeXsUnQ+8KrcuE31UMf0YDJwGKMuNQeljy6jkh6XcZBU6mTsCmRmGDYJGHA+jcJc1O3lc6igAG28pQQD1oYZiFzFR5Fyxl6SrhLFm0SZWeXCF1d3ucBBp5Tz1BZlOMF3cYk/L31UweL2VInESUawUuI/ny5/5BJXssSDcFkXz8MQ4IQF169ipw4Qs4YA7stJwjOAsCM4al0v9fDQzdBmelw5Kha8C21WVf1CeDxELkFS7+EKeKhKjvbBnmnuMBU4sh/OgbJ4XHQvK3667SfQS2/dlBIz++ki+IvJB5HKRiVH4kIAQhZDf4K/iodSOpAsnloUzARhlnmjcq46x0YkKuVnF8f34mxMXsBQDPSGds1reY7atZsmQe2o+BCOqKTLiyYmXKtBAbiO+pEd3AjlpoefpC1xtznPAbkx7G650Fa/3EzZN2bhTwMrPtABIAvyxumFgIJj+MoJ0/2Y0t0dXveDVr44EVfqkB6lXV7aw+ewKn1DCQZ9Fl1FqPBR+yMmK5VaLg5SnZtHAFE+mvEzAQ/9w/4p23kIMFBxZTRX9WiOTtB2ecpcJfuRd/SwvEt7J1EGvvOQG5aDI2U86GJInQacuvB/AXSHmaSJmZDDkDNkPmFHyOlGCCI13gbpVwtw+hhNlnRFqtdjdV2YCEAXJSQRicKV3ZVdgPvMS5eteSA8rE1kVjQGCofw0JgwhDOVC4Sbn6q7OVS0iAsvkiyaMV0cbD/H5qGb5I5W08O9WFgo9txuQp68vn39yr6QcvWL/+Wvf9VJvf21fTUBe4nOhDyeP300/V1IJ/IW0ZL7rLLQV2uNf//wXinRWCQgr9F6/tG7qL6c9R3FF9/MLE9gJn3zog2RWtjTvFivMVCWoDYZ7Q6Hk2fNbpLhORbUjsRv4r/FKUmXbDrw+oWtuyiaERP0CaEraPZhWxzYeUbrog8y8QShnlA+cTBCIagbM7R6p3qCWv1Ue/1lL+hMERY7gHfViOCHOcivb7bZ6BYy0TZISvvqfWXxyubgSdYkI5bkGhWJgAUhs6VgtLHfpKSG4lGlGHcNZ3zGA+B0Yhd55dg2M5Lu1Zs2gmygMM9geTP6SuaA6xBzCYU3a9nenj4AZ6egFjOnrjnkqrmHLT7B9tFYZaFha7d6bNHznOpCr8DqtKGNlTzqqoJESM88aDXi6CpFjXv4abBo9aiyWVUSVlOIVdXxQWsxfQ1Cf7BRPvGo14su1HiszyS45WCwpbQkrMii7WhbVsQW8AhdGI2OitkGQ2McOA/M4duY6Zhy4WY1CKerLMeJoO22lMZihYOMN1R5AzYqku26EJpX9WIp/0hWksZBFo/V1T4pbvkiJwAe8zsGGj0FAVd+1ONhyYM6yc41L0fvIVRzgo6l2fvwdkmBmWORWBlMXAEJcSHyAqrS/G+M5+I2JJggs8iYAaMY9rA9VjonQuoheKaNGcVTvt8eE21UMx5IPL1JgU91iDQeEhLeUBKKU7ml82Q5LW1DQSOlPsfGAUhP4dQ+7V1RAmJoKThD8Dpz+dwgVrMRtjZGrXLNJY+ujo4uh679bE0+L81G8Z+StQnH6A1bNQ3VSVxraltjlwrCBbxr/wD4UEtLP2XV2NHZ8YhMVX0+2ska860Vijaq3nQO4dR90gfVCzJEjiGeRFd3S5NmPlT6XGEGgAP7MeYYsvoelzWypWTs/WateJ7AJIBte5UmWTqoTjC5S+pmmqlbgY1HSZ3SEzN5tXqH+cgouQe7GGMSJjdh4SBCMHOF2EjIDj6vfrrjgkE35UOTh3/5UT+yuI59P/O2Ll2EI6KygBFqALuX44b07pwndmyc4sOFncpWJkShvlD6qcAwd+lw3XkFyw7+wKzoqI3ISq3QOAzNSFxIYLggQlDZi0q0QSbVEJc+X7+YCvQCPkWCZt97YoSyaS4h8Rh3DsZjQ1yLexiXPdm7v9LOj6Ie/vQm1pAdXpI9D5E+j8dgAUY4LgFcXtcw35iUBMtJVy5+lhvArSzEYYPsArhypMx0EQRNylE65SsRjgN7lBgHj0Bkdewn7GMwtS3lAHZdPVpSTFz2WDnJRyTJWEx9IwhDpecPV8nzsxQ5se3HEfpgI5rx03gJpUs+V2Pxz3wtyWloVvYgOYViJ3w1KQf1UlgEVMeRceQi0h9MkVZulMo7oBeNFQtdDN8yD9QgL92E5jQ7Cowb6I68F9GTHKlDYPh3AyBODqXQnNZgKeNNUbIm8/jFaSlHLJyvH4VhyXJcHNjJi0RlVwQGCHO2Q3ABsgIdw3qRAxY3pUon1x15hEsvPyo3tBd0yZWSEVdNRh7u2pZ7SyXqUNesqZwcSYHaQ0ljUUcQvVr+HuoqritqbYMvWAmuzPaJ8+yf+MVooJlg+/VJXtupeUS71njtOiqaRxUL7+AK71YggaSigc+LVWj2QFhiD771cPZp7AWDJpKR/u23t8YhEs3U2rOO8L7ABTESotx3v/1aS/7Dl5U+t/LBrHl7dJpm/fbrb2/h+Sje7eG7/vdLz0J8mPbndwG3HswYwSjg++eCsFevnmFazPvilT7y6QubafpSbPN2v1jcTfYF4vRVl6NLtlcPWnRpD21Y1x2Zlf9CQuFhSqagvhhgMz+Ika/rToC9OWEZTK8oF4X7Yq4Nc3y21x4zPr9Aag+Zzetbl/LlF6t+1u4Zb7Q6qAniNkT68vWzz1SRVz+Flo34scKIHkFAa+BhnZIAMcwRLlhsRNBDFSML+5ye+V3DtuIYZT2jqD81SLPBTrOtrTva2veWLmCibxKn8rkHsouSCACU+Ja0iwKMyoyp0PIets8f5ey+mNb8ZhOnVKjDTfzCGmOfdoXiHxSKVJhbaSZHDTFqbYNOGjMk4HWckMuxi4c/lG+Zj+543bfRTjrDWcPRre+gCLfr002p5OH15ipMouaSahRdoWXFPpwo4job9vSjrVp7ZmCUV8+SU/MLbLgk4OKWGmd4ViTs1aN2f2pVMG80ZK22eMLDGO321DsqsqoRp070iovgzQO1apkDxy5WoavdS5kVemm+DXMaHYFpMUkVPG/cwR6nq62y5Lnt6BSGcUXM2gF4U0pVL7XULDSqjO0i4+LjIpDUIq3DBfR0F2O7HVM1bqVDODYHnxyFl27O/eE/VAFP8AqWgHglYyY0y15lSXxZ1BbUSBxWU0qQp/8ylU4KAo5iIzIMRsUvkXOtaTgCB/3a2yMd4cHLd27Uy/H3dIKAKyt5gps6L87MWjnxlpNJoFtoq5hes/Zwcj3d97Yn2DKt4lSPIvuWHM9UDmxWVjy7FkbCXjwZz4XyyFkmScHqKaV8+fhZ9VSWOFFTHY+6mMoFX8x9zzCyFB8C+4ckSVssmkYo6qgjX8yz1cIUdzdhdX1WOeqOs/UoKYKjpgkg3CJVnlLQ37sNcmAioM6OaOsg4mDencAjN8TBuI23rNLFKXJypaRy8EN2lctNhrcf8lRdHXTWwCgDlKvgKRpQV1cRlx41ch1NP8j4ATE/ZsuajKlV+uY2sDQFKo7EjjtyxknzHckIIk2eKoGgNo0uKxZDY3CtS8yGSiKh4XcGg/pMXvogBrfLI/6FqmZWQoQhiXb6qFQp0N3ElxrCMkvrD2zqOccwXJcHm5tRDz6sQ951JecoJz+dlFjOfgYz+OQ6R8QO4ejPearYoG5sX7QkXXyOU+UGtTNotZFqJE1EuJN90uYtN/3UFpy8/YzzrgKI5q6dYmUau1JCFpu7fYCdbit9v1irdKXMrPOIg1/5qGTNmoOOZFQhR25quFBdJOCdtw9JLB0YegiDYxiGJxJHP8Hc2Q/kEida3ewYqtBeyo6xSXeZ43Z70tavKDeKTocN9+E8SCsX5tS2Cz9BhvWwP/7XXqfNupMYu2MLckd182A4TI3AXdJDw+10GObxUP691KEbetW29u46poEEPgwttdv0FtNDMjbcOuAJJpH6O2ov4UqsyLBdMJM9RDeElb6O5UEV2gS9pcMw/7x4fqS00TzEAz7MPTqXf5f0QnfX5+AOmaPLQxD1ME4DXcf4cm42XTm08KkFrqtIQBOBzwQ3lpKarXoq3l2d4oU1jPFRiNVC5F2Oq614jr1qQYfADB5oW7mez4u/tzZdD2WJarykcEsjXOo4XU8zx8fSWbxoSU8/ui7w1PhV6ng4TlUbqbXUJGwHdGybffn1t3frJQ0vnraFy1zgY+/jNi4ZJzb9tO+KZrZZqddv3xRS/ui1Y3+fP9k559vCfb1HXS9BvCdcoGzytRjMC7VmcEWpPrqVar1EzBqeIhQU6o/te9/qoGZIuUf2NIOnO9gN5KR/0/jqx/MnPv/0TVCr5/6473lRDSbEahoLzQedZ4gi+7bwb0HW9rhMhXwv/VAdsYot0CFiu/g/8YUEWxDm+/osAa+1xc+MUiQYbrTZuQ8MmTzG+Hev0W4Pn+Yd9dp4pnpDkNcAtlZG1aKB+pGf3z0ygcNTDzE7BsoRyWVi5zpQuQZAZ/ZQ1ykyoRMJsnB4KYE+5iJUJHgjAqrv3r01AjPG8VDi09cffbGYpNHthWlxuJUS2Ve4zNbP2mE2zV4ubazQtRIA6lryaofEHry4wIogizK9iNzLBpv/kYt0nXZNSyr1A4+Y0nADEvonEXz1kiOWIlr83OBUSoLUX+dlgmmYZcNGW0J5kGxttFDNSeR6hOB7jKa9ghmfahZlhj1yk2jnPSUYP2hJMXM8uhGqIHxYHyqsZAQihA37LUV2T+SS/Eso8R7tpJwYrLb6q82c77AFi4dwiNZ51ag2SFBwbFNIjAKZqo4bhsBxMY/COWTSD/6XH86qOVTXCGHNNb3Il1zU6wIe4McYSEvgYCdxaIqOLoB5Qh51lVrBZOsIw8iF7/y/ZbinIZpBFWDZZaULIrDJvamRQU8DCeGBS8zFpmkb6RPdHQyjrET+kLX706RwAHh4LwwAz7Q7QaYNZvVYz1hbpArjrBM7YdcScBjNUN7DfxTtsZ4v9rY5ssG/DcS4t3nmw1tM1hrWTIy7iX60MTnbBvR4DAIKTUtHARhTPFeO+mbHQxe2TEuSwWXRNJLSa3EaSufEkrKNtA04btUF4I5QRa6SjlTP4ErevDZUQzJjuI5giZ2OlfoZiIv03s8t3ouHsmNycDF7J3ehiHIcK5tElF2pEpknDPHfA+6jhCFMsfAEWdWqzzjKufDfOKGoXPPU8Pi83MWVAke08KTQCEUUK9tfFQfsBeHFuhIjF2sPQu0uxLeY40FTl5oulqaDFHU7jgJvd/uNqcNaZ8e5vSvqljvOK38B7bLC10UF/nlZaan1Af9NFWM+6PBd1cPVkIXleEUIE/vx8SjhGDnwFDiVnjH3DX72unCetDHPslXmm1dUPB6gSNsAEzm3jfWyxmcU3C/7JAb2J/tmoQAewaxQCDuG6aSMxiGxrOloggS3pJUZ9UM5cmOg2zAGNgWniCNFBQ+xf1ZG+lUqOQKei8JyL3hd+An2QdhbwRsVxOJjwh/VKZLGQpv3Hh4idyua2o5Q+70ozHvv2JKl48hY2Thc2pKu3Cs7Fgc+EnUP3Vdbx/q4O6ATdqAxcWQfrVP+JN4IXTgJcoQMuyPayViztqvTqFJ+/HbqMqgAS7ton5SDA4+320us232oTyHMTpbbbcRcD2WFz4W0tHs7PxC7wwU76HPhfGg9Kj8Zlz7lYf8gPKC1p2JKE5P102aCegVWx2OG0rp9vVGLh3fA7O+0kwJHWE6HCluyQF7LfERsrQteNKHjHjebrigeRquGt6TFNNjQgurrpA1hFTKZnMbozT1grleqC4JksZSSIk0biu7rYLrVZ+/ff475Aj9DmvaIJAgdnndZTTy3yNuQwCp/ceizJ2/arKYvvM7+z7bVTEtoYKAN+E1sY0/oj6a0DSie2h9HUGnFuL67qDSe6L15uxev7HbiYcA1W0xjZqkXJS8U/tmXIjfpe9aHmBhPq45YbmOiQjmRs7BPtdB85SYNonhiyw/wZtsQMF4pFh97q6FoYwYo9mutSGw0n9ggYvF0w6ocCQFCYNVaJEwiNbs1s25pVE2lmX7UvGDw9QvtU2APVdqopwhfBnbtTFonDjSLp7Y0WWTmpedKR4BGdGcppc9a4ZzbqLJecOjNDc8NbE1jXruNm+ygKSJPjegXj26h0VE1bETGD4/AJDzjri4bfiOEshYsYoNbDGAumqv0sjMwrMPWBwQCqDtIo7090jrsijDkzYQcjObJV7RQVu0nRRVbD3gumYNO2IbN4iaA45NLF0iMAJUUcqBE60lgdZCNnjhJYYx6EWWgjHVamySg01bJNRqRpWxiTssK0NJpf5RMiLyDsC4aImaUBiTN8AKoUFJWm6pWZLii6kwzfs7wIA04MEKV0PJwRRTH9ojERbzdxypRPrqR7MgcI3c1DsOWeAmYG1R2ir9KxVf/0yFuzzWVQEJ7+KyVGPfpaZoiTS7Rw5nkXUiWiR14doxGsvhPE/sNW/fdRC0jT8bMusQxlnfBIGGY69pwq8ZvHH4asYMVTAall0x23KhCJEyijZqaQbBqsFrpKltH6ggFJvUaNjd/n7wQ0nwMr1dFsYem2Knc/mLNhSYg/lO15WGTZUVyt3lI3B8pjkvcBWz94si0TCVnbyYeFp5BNrGvtZ8pceOqUEy81sakX2zFah5GDHzmFJM/sEXJB9vFJj1uFjylOMBmv1jQuuGpVmYmdCkr7lNpRk3iIddAd+G+rAHFQGVRWc6gyyy9QQlgZKoz/R2iB1IxZcqVPnJuq94wx8nQnnG/jFxH/xcKDLpO+a1qDR6O7srctaraLlrDXd7tOISjiqN4qWyZ6ZlTuC49lhCIQuQImxwlT8mXGlZeZmXP9VEOyLGRXB0r65rrYDamkzrYkYvUKIybwZ9yV9nJdbFZ6TgcXxXvIinRiObuTjkqrOQRciwk0gNASHL/mN9B81iCJm72p2wX/WRNUFHw3y+awZZW0mEBvsA7ZDBN/lvp6zgcyHMxTGNobcoNETqhlRvlw8gpXcaYhnb4JUs7ODsvs/Nwh2LHDXPFD6dyxvaBSJjud74K3SBKjJOLXpijcjuOrGEN4iF9ZNA9SRMkJQAoZRqh5Bj7U6FkOaj9/gnbrWBIwhDJQ/YIXvqq5M1MlQ4Qv2GcdF08OmSv8ElKAen+IB/1bg6WEJzj0sBxhlJTSOzs6D7WKzmQbHGp4VyM+2BTyqGfCvwDOhyHAeWm6rQkOdA4nDgXdonDEAv+whdoBcs4Jt310J/igc0sQxLghfRGu6IwHEpu5sElXAC7OCRWdBTLO2yOlIzH0A9p429ZYYhIoEd/8RdkinFo7tavlKJjaX/0rZowNSWS0N18t9V6M95Fii3AaCEHA1ppcPBowdfchDTfgHGdGaIoacdg1sUUelp4U8SGUDzUDiyw0H5qEespa4k3+TpepZ/WGJcSpvAK4FrkjoenvaXWootXb1p51DezPHPv271973IBT+8zBNvaDAkvPn36CIGQTVBq41BtutjImn6cbDN1s92tPGnZje4vMtqWAjidF/ZEssJXAWIjBExjqslI6yJax1+0LcAjd/v96VbbHoeaUwst+MpBK5IW7miL4OpzBH0VCy2LvMWp9rJUWjggom79vVEIXbW4NBQtGnnxEjnzf1HcjvskjbEn4s5i0PA3FWixC3MUy5o5F4jQmsUcLUQ2pPvll6+f62FIVwTgk2e28uldguBOmEVAlgLAATyyEJSgzvTfDS5WAfzkFY1S6NUSJgOqhnwUpxS6ydw7Dz707LsKH1nNWIshZaUhQYXIogVDY7mgvyEGu0iDMqn4D26KehdFNVxpAJbfok3APCmHAFb6ws38mmkWGfdIhr6LMoqBMWaUYokU6kYgeXLc912LXrRozGcmM9ysQ3OeG8CUDoUNbcPfMxBkkw6E9zp6s5utmKcVWVmUNhsY9RAmbWe9Ytk4tw9m3yHb+zAN0uY2V/TPPxKLTurM4NmxylI1LPqQWdsbqqrGZvmZomtSNgqpKIok8oOo6+QvYH3iGRzWCCixdUpnPpQMtxavUm08lREbAfHvCOUGCgIMQNq8IoqFUtjKg3LvCRAzETymOcTdHCrZCvVkYB01M7DKuiXAQVLPMuZPYiLLSca5qxsa6FjcJb3oFJ8FFSk/aodcPtO//Ci6q4wnN4hA+6fYgU/nMohQuni7z0zTQ0BS/dSO8LEejMBWerU8VHmgXGcFbe9T4iQ78xocW10ehsbw+RgyU4sipAs/7sNEsegzHx7WmJywrYz4bPJd9iJY4rrmxOl1dWIXFAVRXpdApOtDYKHbeCi3yM/4YqJP4q7SL46QV3WrW1IqNLxjaG20lLEBlH+gEQVogr9IjkJw55ghIzYhcxqQcdZR8RjtuuQhHNHAluXnJlu0Rj3o1asLTamJMJnjJ6JDCHIUb/TAgRS194RrE/81aMe3xkR2PQ43PNcc1Rg9qG584qoCY8g56CUccVLdjgss/pS8qms5pE7eXc6/00VH1F0tYxJ3dR1HzG4qeVG8ZZ5khkgRzuE+BQ6ZpYf5ntj1jUTQt+OSTPGluH2EMPyPmRyCy3CBH/qVnEvMibsp7zoO8+fmSh9Xt/x+Jxwsw3zH6eJ4xQWaoZP0kEufuDvHHO+6OY5xmLwTvGRXdGUGc3QzkOE6BUP4+PZ2LTk24z1/C0oVWqrT8I/bpVSo1BQUw+jWso//qVduHPYzuDvkwTwSwz+IIyf4h+Oo7EEhcTdW+61GhNFp3HZ9U9HITrGBXP9X1HW3R+c3zY/mXYpYQPkxP4dsBS8lDEuEY+DwfODHzOlgjkqSIQ5ux00jF37wqyyykT3tCJDDwshd+gQQh/8VrYNf+ohkiDBfYDcOT6MUh5ehTqkjzaxz87P7LwyT6AZzJL1JofydmYvXB9RDOIBLYSAO+ze+7vo8+A6Ni1J4bkJdmovW0B/wafTBgtE/ohFzFMUszVjV6repualWzWPTV+ET3RUT6N5S5hQ1WZvFoB8bs1i8Iv1IP7Fjp448qcHUX058K4qiB3OI5s8AQNafj1bZpyeqWAYuJcLZPbCQPvG5ro1VRHVNeJunFmjixHcAfMjLGMVGRiaqlRSXF6bUcdfgJ4idgtZDL8oXv/Z2ZgGfadrFRgI6GlBAh2jHl3VEPj9caC5GPHzCmZYKST0zcbaL/DdCevnYK7DFygX428v/aGRNPbATu3/98tlCKcHoyxevIGx5gNeFz375bUVfH//6zWuBaW8oN9ZCqhCEsJ5oWKulm37x2paClIQTU5UFrPLrvjuorbDA4TNYEl89tzrICwzX0uE0uRCqgYQdPz3NsDrry5cT+IpaoJAiFhEs0gz6lsekz54U5SqCd2xgnl3oanbJUmgBKBw/NNr5pxeGIaMTaUzagKRZOaMF0+qbv8zGMy0cTwyu9p6lYBhiTyoMt770ovTdkar4UbtiEpYaYjWhUYcscmHJUdBG1DQnTi8vRx65aamuP55QzaYt/SWCWpDCi/bkVXdoWMgEO8X5sapoY0JDvl/wNk0XLeOrly9vB6NgfpoozsMYWuiuWuCJ9ErEzS5dlIhfvihNFs89EWckbmFfJUYSb0YxANwdJcCP87R6PaMb3YAzaLJchaOJse6oqKPKRTNgpsDZI+YqGtQ1+Rvt6JW2crfTRAlclT4Q6AWcdjvCf7XeB29Yl9ypm7EkCUuHDSVnoBNA0l4Mry0K2w3vmHS3UV+0psODMNSzr+RQ7fGIrAJIfIYCItLH4Io0KcDhJ13IypjAc5uuJ8W0tKclp1xtUW+w7AVi9aWnhbA0GD6PZU71JwKvmFpmYv6wGfPQjVduhFA+E7aqiWScK0VkGI87U7KcQiwybFji53h4mlkr6oLCeG6UNhKtQKKdvYSUXM2hGWNYeBsWJLLyaQAT2WRZZV5H2Bnk+Bkc0dttTLucUcfUCkyrrqrhVYA0neqhacxQoH8QT+Pyyo+HiddNig+kxmDA7vDV/wtJN9Wac8y6LoPpZ6cSlY550mqDqIEIS8Fif+MtyXeLHAaxerLih+1u6Oi/lnUsXKORyOxAcPVQZrShQQvh+63EpSRkF9na9QO3Y+DcyrqkDtHhbDiXPXrn9rQvq8NpSs4RfyCKlnJT9ZV1KqcMRGJhR7ocpccE2BefFYcni1ZgAAmVVpe4c/fIQTOwCh3IOBqSwEZx6RdZCRlnWqp4eUEdfx8q9/0tQ0IGr8zKhftkVvYkdwF4fJfrcrcHR+hXIl4VONcAHAEP9ma1Jd7Yk6fE/g6qu4gT3DTOKV2hiI/lflwP9UXrUmkwNwyVOIgpPNiKd3ZMrrh6jP0kBlVzJveYfkAjeVEfnpsSIhGWg3PFriwp8IzsTcDYOJCKpJibew9DmKTFxslVTHt0LHg4qsQF0MXI+fGXVAdyMK6DGwkJ3fa/y1ux9eZDkTqOfm5AwWSvSsKTAg+SA3iqf9jOMfl0a48KrKDcZssqdNPD8I2FMTJ+ylvZyI/NFVE6jl33K/3gmdyHbpfHL0GktOZj6Ky/Cqz8QCPbxVANdMhP2kPiNHTdJnhcoTuEUHRE5rqvLy1lHJ70az5yW9cXpFezeqt17dtiWQZV2dYjhKzFA6dvE4jDccRHq/ivaW3e0G4TgGAzSddqG/RhsGtKD8FDshREQhBLpeFKgzvHME9WYqi62p283vF9aW9+HVo7M8KK0NfP362F6bPDbbdic5veNBjPzfJo0pvlrWGvt0WHMOLmBfFtExSrFqu017Pory5AGFcP2MP5TcA/ffLZuxFWcbTzdy++UnK6ffbk3Zu39cW+apxADSTMKdngvv7R6wmFgwXKJBEKMIIgx43Y1/ShBymFd+Tz/7OJqYVyCf70jz/+EGKSJz+egSiZ6l7Z/mgvIhD/4+eP4kumso0PCmfaHsNibkv2sccWvVpg+byNPV++NBMv3C94XVBiFRH2wCBk5p7XZNWOZrv32zb2PUVpAvtExPRnnl5wPJPUmbbwHXXySvK0B2N1nEBqn/vf048INGTyWvM8USTWSgnjpcQ2k25qnM8x1tYm9cyhjUpbbFyEnV+nuzyNus3LuiglJzrqdVldwiYV6N8XB2MicoH3cCOmsxKLC8uI5aZE8IZkALFZ0MRltgi+aeB9KqvRwL5rscVZPdghZcrnyXPmUC4KYq8Cg4iKXvukBlCK3Tgqh85t0nECtXb68JOSk3IMFhVM2gUSOFlNPOJTMwzpYXUdG3RXqbpo0hfegF882lq+AZPz0GUmKlUja+epSC5gmYs1R78hxHlUVyE4K8pnZ+Bs233EhjM8coEdSCViaGMV5pqoAU7pYzvBgimlo3LglldUqSz1wh+pMuragp8JMuthJ+zhH2QCDlihnCSwss6AbWgPVyekTvzT0Lm4uMPITJmguw5nzMWfZiTGjtFdlDqu8IA3bnv4lPjSx8bVktaM+W6G0XVTDCzaa+k1oUckOBNv7VFkkiJDwAN3PIQZ7h4XLGvaaBZjakshldNG1VKFagU55C5iFQMAahCrbZqPCebqaF560N1UhN6uH+Ktos1I/CMvBCZ3PE3l5woLO0LVf6hkHJw1jlIS05Eo2Zm6057Ekst1jIdKBYvvXdzTK37Q7+IAU1ZW0uaItjLMqtwFAM1oHTrTVNT8V2ZEnR3Ncp1ncNS69uuo5ih3NmB6xSrtkDKnHJ9TLialx1L40vMAu3bgKlakH53jJ2zYDuOBGYbp7TrFeVjdLmUIL6z9RLCcKKaW7rucRksfRHQPmkGVJq8CQSyn3+BPyp+zHtKHPColHeBdhTAKh4F7XpgPNyVd1r9wH68aKKKgjhNcCWODHisWz9E6aW6O1U6i3KQN8hBfoZR2FaiU6wvBQdX9yp2CZZ7yCXaBhP4U7LzE8RCvS69EMOc3Jg/WCI9Aua4euA34lL2KVlz5wA+Bw1bFHiAPhTDuuF0cAfl8JKJ+qAbjrvu7SldkEMNV1hgoyeU0P8ZW5xNjHMlOtUcMkC5Wws/l810pX4vzcAy+jMNhBCo8kPg8d1eJYHZkgPtxS7xEOuIBuGAvuLF82AovxLUWab+G5QDHhqtD5oF6jF9YLgGX4jpukzqOY2MCLsWNFMUq2e+d5cumwWe3c3uQjMghcejt+sIbfHjKOaXKGETnw2IAJR+yNyTnd6npORSxNdArb0nDHVIXXR9XuRiuSG3+cihKuyRJ0LApK4XIImhUvA/OrjWrM0Okb0xtvUfuVzvWZ0zr+8xY93amvvZGo0esWWGtcnPeZpf7CG7rFoRholgtoCaxVrHGG7VUmNi7rxteJYqfMpFr7YjM169NlBfIehmuWfmnTfw3DHj+1OIf37UyU/zx40eRuu9hnSBPD+qJvf4VgKgIJ1/E/onQVtdinR7KFye2MBdhC9+n3eIPPD5vBs3u7+1IjxHhsI5C6CxELMbyrnAre1oDoAcSXDUAaBbfR2QLMTOA9UVerq2HEVdlEizpTMTNxGr23dggHta3pOmst1jcQtweCCBn/x19FQ0ASq+gdOi9D9DAZnFz1qwfpOc2o2wBUp8YC1lv0z55kYrFPZD4A9anaq0gwoo5+oLRH5a07DUJEvx4+dzTicgRm8lIb5hkdx2ipgdhgaxr+rlAE0UKSXhT+zbg6ZWDXg9Iuj5B0Cqd9kItuDnbLGL8mbcpnI1qBMm4Y28YoMkjwqA/Ja8ii5zInN+N+0WKmNClI0HJnjzQgCviE5OOiJYBcqtVh8B4JgQtPeEeZRYwI2U3p30DQQFAxiRbyU2HL1++JpwHMV748GmDJ5+3cKD5XTrr1YUk6uFGfKdiFBb64BXviYF5SOMhsybECGdK5KspihUVXDUTjgMh9wTE5cyXlKnOxmRlhnOqSurSThw5urnJaika4CGglsoDkxLJtD3dxhspRIg04xoeCKOOlP8SN05Iuul0Eoyr0wAGdvImzJAMphYmisOSpJNOSlqPG6XWCgzvVEKWA6dYQVRsRP+MusHXiI3/vCIXcVdfgFYjtaK8KSn3mCegO/opLsnnTofgdByV0qub4mkVC55CcNJuKJV0af4K0yNZyhRAgdFHU7U0kuyLew2xyJxxocYZn4KfDiOeFcbyheeq1xWJE+fDzFFgXK2hblBqeDaHKQtNuiuqz+HkYlXBHAnt2QsbJJFYvc95LhnSS94T50nC3eMRP5RInuMxCRZAmpqMh+R1O2DwaR8q5x0hKat/D0dZF5Iujk90lU5D3rGfk/2QWMZBNfQIRdM103d1fCX4BEUzBZ7izsPaLxSJlXOXVvRfcVrb/ZAGFRLZEb0EmqtO6UdHMmWv9IrO/KBxkqdWbgoZk8O0W4WrekM8Scck0KE7NINe8UN/0OQ6HHdX+sUeXuPnHNJD9wBw6JYJBsrTuBzgkbhwVvCG8KH4LXG5R2PRitVxG6Ud54Jy3N2yDvxYWy08gBfkxaY0YDeF3Bi4MR3Lk+y0UzepV/ZiqeJLn71G4p8JUllH8GP7ui4lOo943u1BMRnLHJnrQtbhJoppc0fY+x+rM2WIS5kTRiNCIdr1sk6RlTqQp/zR3iS6MJR+wLq4q/eOZLVgdUepQ4SB4Dl6i+LBcLs4HA7gUFuCU9V/fHZ5I3pwHl7+GbdHurBX6oHJGXTJ4Y+B8881bPeULsoN6EbFZUfpZe2GMGupr/Qr747WfQ45Un7GSMysIboxMERraZDqQPJKuxM61DqXPYmycl3SgGPnCILlkeksq/SQDePt9nK5ODm5/dDYIIO+px8kV8pR/a3I6nslTqnD8r1gbF3kLpgDdgD+q7PSISg9nR8hj0RdC+6LIZq3ps/TWQJHon6ovtHrsB26CwqkXj2JdBjIWidS4NhS78NVXVTNUsVFrnZ5T/xDVtkOnV/zrHAUVKYHIGkWO52DnkuXqm+DMHMYSNiTx/S8bWNE62988Gtxrbcw7cjp3+dPX+zu/+Hj58XAhfXYDnm9rXDtF7uCevd3PWCtIe6bql/HJwaMpi6x13+/tXxIB2oG3aujvtpjN54+F9CO7+39r0xhflvniZjGMxYJ8qzt9psqTWYMFw2v9yhebsPLQn+lMWOSHqAnyiL4yF1dcK8E0DtrYN/wpuBUnzKNpnGfAf7chqFyyYsL8B5xSDeXT3mi0vjo2AMBnNq91IvIhkNhAXYNxhRhYY8yvkBjUOTDwClaMlH4igC6qWskUhb+TJn32MQOpBltjrCVQvV7Bb/eGyZlvSq1mPWk+ObLbL5kxROembXBicNTIH6SNO2TaPVRROl2nmaUAUUyZPqtaMKVBH6hLNX1g8HjjcVnChROVWjTtIYjbicIepWNP2MJaYvnDIcyFyxYdLV/OVu7Z4KHoHcQ6Mv8qaVP1vrjCrgBTE9E4Nwqf9P37vLYOG6YpPCYUbqgNtWE8QjgJyYzppyNbRIk6ZPu6CF0MUZ2R7gdmfNkx2z/pY/WwZMsYInjX+iS/kJ6dA56Wemt3PAWw7iWAmVXxdCxd+iCBzWYsgY5pNNc4IqFaSyGpNs0sX9uT8qt7LFbqCbBynbqmDcM4ZjhXr3GPoeXmwqm4YPxoMXnpZ1GAx2lK5iAKbDs0471TODyvaReQUwSDWB308Ypp0L1MKRndAXxDjAXe/iJ4RJcME+1YBjgXCKdqa1POPx4KTSHJZYqOWeYN8IBs3PJU8IExEdp5+CyityVAAyMAtPu3Cybxc2YbHVT1DsaOYc7/p49/R/aBUjJKClMCqIdGtJJm42HSJmoKkeP10Kl2Ub+IV+LnECxdeEYJtjvMKtSUcQZ2xWOHyebZE7sxZ8Ll0u5m+GO85SVdSGBKpxup4Ktyz82CGZWjL1kvCrGHdXhaiwOYGyfXPaTXtUqp/+poqtboWjCX82Hv79Aa2t2mVgaSa30SKfBsFCmAgmY6k7xVDGFjNYN/PSpkIZopV2HZp3PhQ+SK1fWdBzMwXZZ4MIs8QEJUOxcfrkC1X/FojYMwz9hL68qPQmG5LGJIVrJfio1MXcxfMEPT2iXeT9fBQ+9aYNXXCRGa05yLHiApK7QUMRPJO/HuR39yxxqSORvOI/tbiQmy8md/x/+7yQO9jE0uR7ROlzCC9VMc2fh4eKf8TbgKegUm6rHW8w9Pg57S4nDzDJWdv2gyRs78XJzj4SZe0xq6h/jefWuDs5jhXuRQ24euGoUBQjVvsOWokeHkl0cpBdknN1c9yJ21+cupv8wjLHYSIqRjJnH9TFqQR6dlPvPj3JXQ1OHI0Zvg+quH2MewFBV6oA/BpA0Z5ATxQky+qVHZTfLAtFNLndPBFTyupNhGOd3qJB0jIpzpZdwEgdMb6G7aK3ZeFRiCKaNg+nKGhdXyrl2c2fvZByiiXHJNQ080IfqMHDnkiaWXaWRdbgdsilgC0JC1pfULd/ZLFpdQJNhoIur1kmArn3TbG6ZwaU90WeNpH6k2cRsnnfl1mdtffwqOLYXnkwi5GqAx+rayVkglEuUXsOLbtb6+eTt29dQIlG8ZyPLl3betHHnS5yY8bcJJfjt66JQq342AGiaVqxNU/AIxAixBr/V/NJhgLs+Uvxk8gy5iPc+Hy5EfluCgoHESQ/FqRQSD03l4hHm8W2ZCk6wKrOH/nRpHTncxkYrIsoPdxFsAb2lOLDCL3AfV1aZn1Uim3HEwCY+UYAWg0LQggvh/VgsnEU7KJz09ragNuVbpmLgQZivLVqoJHnQ28us6JN6Xk0bCvpI1g+DlhD7/vDLnpCEsLer/dJ/QzQ6tPUgLAk4inlTYleX8W9Fljs7KVmchQENmgMGouqA4KRW+GkXyw1U+j5aX2J275ZcaSNbV5MD8o8fHCJ5SAiTZSnAFMHekqsEMtzhJ1XTPL/NrnGyqdhbmxPPEF1mdreQPdeAPHLF64UBc9CczfOQ3tmMpROuzDsbbqWlbJGw+QCfzLJxCiY8gfqfa13RJ45ys1SU4bo95I5cjdQuViGUG7+rD2GMd//C6hrDJC3hygLYEVCBTWAUtlIuu+1IyaeSdhH63KOnTDLPYGYuc5EK4TjhDiDdHiSXRDfSMXkYHku7C7DjYjnQqA9MMkTxdkAP2oGXRS2ybho4RE+iM7aB0yCVg0pGqBZCQDi13JCrH1VbYNlOlWfZ0XxMPP4AqCuCYmKAybVa9tKzSoURjcGbuodTie7L8O8W8o0ro421WGMvxvLEBOaKiThUzv0NayzNUmGa27hVt6KBemXS4twyn5Q4JaWEvCjgAxKjUioQXxWN/wYAAVSBy4ZitKOaNmuPlrCCI1ixYVhWeEc1gCCB58qamKDjJ45ubNxgSl26U4LdeDqogp+346FByZAc+INwUk9LU/2ubmn4AXpjO/Z2/cCnq2DrimK4whPhdpFmA9mB3uX1CUN2Nr7nSJp5QpO63azcg0KAXuTmiLPlAYL4AE/8aMOeyybhsJSGZgkXOzfsh4GlJkdHGhupig/Bfi9cCi59uMoO0ykYdAm73/lWZhhvYHLuxwVQMf/hHF+RgHcMPU4/YCsTixeW69LtKbCL2Cijc780PSZD635sLmHps9cEv9Iu1IetY9NDvIwIKHHwHBLTQqSughPjuvYj+XB7ODoZY+/i+lYOtoeUMX8wHxyXRN080s9jPONt5Ebv4mcowxYbmCxvdFZ07J2CzsEO7lL/IzzjJ4AY2HmIdjtzVO5kB3AjOMiwXnVh2Lu9UKyE07mP+iMkD+RuiC905+fgcn2wXQXDnd4OqrIuuSRG5aQ/XNwdLbjD2CCvdLXpFHSOzxDuiKWl4D2lLn2JZd+pDPbclnnBndTuItrvJXiIDolLnFPiRui68zNEjzHuOjSywjKYCyoNQDtaZZz8+/kgq0iF//8c/3XujecUQJAxfKgkxKGSMPrIdWDr+VYZkSlYF7D5ZI35TW8B17rG2vbSUX4tdm1abZm8FkJcsdRQ602zCLI+rGvmeNOuWuJgIg9o8p4rEYmQ66Iwg67D1g4DZQDx/IvnPi9QWfGWL2FZPPP213eC6Jh/YhPPL+Zh8INnXRJZ6w2a4WsQ7CxCpj0nfVYBqPZdyBxc/S0oZ9/I8rptUroutitULaQbY5AaUYi5RMmC5Z4tFPs6Wkekb/aH4dJDkWbMsr3Cd68Xk7NeWdexaN+yovoXU4wK4mvaAm9IUDCreFKQoHdw7f/9y5ePTSiSG/t4zxEa5NTJrKdOpW1XUn/+s4X1ClN9C1QWfN+GFsWspt+Lj4NoUNHynhYnNxgo+i86zyyZDKpoCHZx3oKZlaJD8SIugCkAwEVmOC9Px5kYvH73aG4SUW+DinQjY56BGnMpCyxbS/eviM1lRZd19czkSnAlF//hT8r0PAfEGB5iqfC+4U4A2CavdJmITjsjE6LEHMkVmRs0pporlgNmEPmGo4lPXE75lfVv3pUw1tlMkPHDjmcxCZLBxIPLU1FGt6JlLjFSjoPyXCDbEYsdU+8GNKVeJcfbVJQh4qGVIbEV0Ym0woLOgrRlpcMqGsWsliVZDB0WXKf0EIyZ4ez2upA4K7lfmWkgPO4cGDjA3UzCmWOETpZUqCK9C4mZLAc4PCdIJVf8hm3YB4E4GasvgcBDF+XGwNKmDbej09kR8n6SyjHIEh0S3KbOFHeBjiMJqyMbPMgOWHVqX9Rqx4XKz1SH6QpcRzrk52sAS4oSPUdhDhmibphgTE3rV2ApL6+ei220AG4j53A4bpbq4gILHjoFUfGDNJJZWdE8H0BtDYAwgHbd/zvHkaxtOlRHB4YI36gmZwOiEQjvLQuSXR/yV3qUYvRgimgU02scuLgyYij5uh1vAe44OENyTwkkCU8h6cu6bAgqrDGzo1K7ToYH5HEdaNkOfIZNGtTzwomVEv0L9MbAvVRpV2W4oylpAJVAfkgPQ8GMgxG+yRiGJQCOj0G4Qrb7fpY+tLsK5sZMWK6CXZTev+s4JYdkqfL3z2mJt/yDcCUTf7mj/gjXo8uKX3LtKpaHsrtHhZd4cT+65alnkh7AjwKPmGl6LPbzSK7KPRxK30V+SJ0by3rw5PLQmTngu1CXFHW3o/KA4dLGlZ/L3PMOPxc+BY+cR44b03c7HuEmQQhubrPrUh8dj3iIHznzN4jnFHfnOfSu82Hsjuk4yFHjUMd2GC4BjhRHmPT2IPVNvguVvHvKlHbHdni7UXwMNpCdljv8x3AXqhvGB8BHV2WecuNqPHZf+gridrJcZR4jI91up3ZorhutSkot9+LzUmwoliL7EDo/yh1EF41+pqIy7mkHpPJLDqDMbl1ePJ8Sh+N70ZUAGcwK7eKBJFQXyF0XV9mSZy73g7oQXNkH4bD+C6d/Ibekyk4/u+ryorE6dSKqXQYoS1Cpg8Ktfz0A1zRuVYNcYS621t/UGTabtW7yzGqZ5oagWdR58qFcOFn/VG+E1tXPLo6IRETWexWkdR3EZd+YIoB/Et+8tiWmT2h1hPHnT9/Esdfe8xcvfCbr01ff2CzyDgeWfvShK0DWbIybRLfuxlMDJxoQHwudsdq+pFmjPeDDUCzwtG1A00BiEBnamAiHUYFgvO/vfPbKraHRnhhgTHIz7rBF0dd5W92CF8rGiQ8CHD3oQxcp6qkajwjLFHTpi7eifBbvaUMLj7uwDgF4NL5/f//+45agNFrwdwZR+IdfLo0J0OvZ24T0F2pBKErXfOOUSI1ILRCMVbwmbLqlCCkGVJWol2++/wQQi1jASZ11GgtlIx8pXp1Kp9SSfjDTuOsy8nEh5CZUqgaaSWDc4gR6xoOEaaYwTtHw+JeWJF9xjZTFJ3Ero1UZUSxowdgumbT4xA0CR3Y5qT8rZJG7G0Ro92GInZoRsP1zOtddlL7clOLKnYOfxDRpQruLNFCnfxhwUYzo1jALJf58BbhDXtN92A6hpBvR8XuxkJhy6TmYXcdJou1YQWJ0JI2svPhIllquMUz4AykErKCso5CD8sh0ZA9JaKtx6JZ4EUj0oeziIIQThus6GSvoFnKnk45c8KN0nWMFQOk7AF7677byyXiO7tawj84xQfUiZeImxOFxO6JuKnrZOkxzj9Ii5vbCVrkDedQVt/+/qs5l220bCIKbLPz/H5pNvE2Oq6oH0g3sK4JAT88LJEGIkjAKTk2gJ6+pGLBMaSQn0hz9GS8nEmZXcqVflLTFGBYurTIOculLcaauExBs2OSKhMfpgNew/AVmRuNwY0U6DIy2RHkezmTzZql7KKu8HemtbRInnAny6Qc9OoAfkovI0fS5Y6k9p6g/ktqvE3ajfQQZIfAZs84AakNBLJNw7yObRb5EFyNY48hB5lli4BNQYUV0zs9Nd2dmcbUe33rb26BvzEp6eGmsd6iaBAHq70hzt04gr2joQlJL3nX00irVs9CKimkrKuOJ3x5ZHvoEs6TmHVgZ/zBuj3L2aYQ8T2fbD+roVeFfhJeGLzAFt3sCEZz6Exun6r6SZ/y6Pna6m1OfdiVmw492qf5fVP5p+1RSt4QIeKQz48x5pn4iSoP/sP2jgr3ONu+Us8H4g/KBAz6xl7Tb/8JpOFtm9Y3m1/jpe7AsSsUMmZb8fdg5f+lQE6UNXuTNuXn48WhYDb7M628QS9c0expaSDbqktnwluKVqVikHFa5hRFZc8E4rAGMxc6N7tnwDdLr/3pxsgOWHarxj+30R6nO8F7uRGH/GqihsLptVsYxkYyepocf1iNaYy3WVtb33RFi2x3IVE9KCW2R/8tjo8LfI0OJqZFHqtP5s/YNHr0PdgBDexRRf+U+uzZVHv00GpVqGLmwzbiiFNSLBhMVL2DO/JijsXzN1ZB2n+nvQtg7AVxAfZd4xYfcPRn3heXM03zs2QSIL5K98DCRq+OsFM8Il+4cQ115QCPhe9zG00uobnepS0cMauRSChQiF9F5PMlHLJy0Mv/+5+/fXBBYkeMr8MMzd5GN2VmTWr6//r+/fvGcCX453YQfbczPwLQQ7kIdTjvb5p0BZtsu76lr4cJgjTI4ziewDmNcT80Pp9d+GBVzAfjGAl98BJI/YokBruTz8Qk++mqItzLHk/j46vSQNsKCrIQeXN5AtNzu3OFffmjL52d0nnwQJr3waXiDubkGASEn7MHCLQ3viXhXAaF4Iwkj01Jk/TFeru4sy3Mz408W+KyRyWpGmLOu4vMdoNiDIueuzQL5rWJAGEbecGRjQBV+bMDHjQyPNhIH7eKrmKBVFj0YbHJ9qIm7LXxBIVvQhGdjyTQ11aertPPAFcYpiV78UgX+OXq9czMIDFFT2b2Fodd9Qm7mkzM5e+xnK992hnd8UtFQc2S7wla2cXTaIxCVHTJ445GvCpOGkgIeAXtExMcpXP6n500BlZQ2HjZ0ydg5xI3jwTgMUsStAhzMDjXo8bbIpNIeqHHWgClibAiV6UwAIW7vPCYEJj2nQudIUspaQOip4ExUkWS4KXV6rQUVaY0iXRJR0kp7LHFNd0I7NcstniYjyJ7/J+V5+FokGVQdlBqqRZ6YENxfcKApvDSaXNKglkpMzXtTaq7IIeUAkRWcGXdd9tuFcWVWLxLhRaAd/JuZNI2tTnTTvZ4F0ARC5TEiJ+YJbLDTRTOp8hDzsKarm15VBMssXWEEd8MgS+zKymlQKoKMiSerC4zgbt5Q/weTFnEBdE//kwAAAABJRU5ErkJggg==", + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "image" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/flaim/lab/refiner.py b/flaim/lab/refiner.py new file mode 100755 index 0000000..41ae56a --- /dev/null +++ b/flaim/lab/refiner.py @@ -0,0 +1,76 @@ +#!/usr/bin/env python3 + +import warnings +warnings.filterwarnings("ignore") + +from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler, StableDiffusionLatentUpscalePipeline, logging +import torch +import sys +from imgcat import imgcat + +logging.set_verbosity(50) +logging.disable_progress_bar() + +if torch.cuda.is_available(): + device = "cuda" +elif torch.backends.mps.is_available(): + device = "mps" +else: + device = "" + +prompt = sys.argv[1] if len(sys.argv) > 1 else "happy students in a computer lab" +loaded_prompt = "concept art" + prompt + ", high quality, digital render, (magical), (nature), (futuristic), digital artwork, illustrative, painterly, matte painting, highly detailed" + +print("\n🧼 Loading base pipeline...", end='', flush=True) +base = DiffusionPipeline.from_pretrained( + "stabilityai/sd_xl_base_1.0_0.9vae", torch_dtype=torch.float16, variant="fp16", use_safetensors=True +).to(device) +print("done.") + +base.scheduler = DPMSolverMultistepScheduler.from_config(base.scheduler.config) + +print("😶‍🌫️ Creating initial latent...") +image = base( + prompt=loaded_prompt, + num_inference_steps=40, + denoising_end=0.8, + output_type="latent", +).images + +print("\n🧼 Loading refiner pipeline...", end='', flush=True) +refiner = DiffusionPipeline.from_pretrained( + "stabilityai/stable-diffusion-xl-refiner-1.0_0.9vae", + text_encoder_2=base.text_encoder_2, + vae=base.vae, + torch_dtype=torch.float16, + use_safetensors=True, + variant="fp16", +).to(device) +print("done") + +print("🎨 Refining...") + +image = refiner( + prompt=loaded_prompt, + num_inference_steps=40, + denoising_start=0.8, + image=image, +).images[0] + +print("\n🧼 Loading upscaler pipeline...", end='', flush=True) +upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16).to("mps") +print("done") + +print("🧸 Upscaling image...") + +upscaled_image = upscaler( + prompt=prompt, + image=image, + num_inference_steps=20, + guidance_scale=0, +).images[0] + +cropped_image = upscaled_image.crop((24, 350, 2024, 1550)) + +cropped_image.save(f"{prompt}.png") +imgcat(cropped_image) diff --git a/flaim/lab/roberta.ipynb b/flaim/lab/roberta.ipynb new file mode 100644 index 0000000..b9b8a70 --- /dev/null +++ b/flaim/lab/roberta.ipynb @@ -0,0 +1,97 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline\n", + "\n", + "model_name = \"deepset/tinyroberta-squad2\"\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'score': 5.4909184837859115e-11, 'start': 0, 'end': 6, 'answer': 'ZxcSDc'}" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "# a) Get predictions\n", + "nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)\n", + "QA_input = {\n", + " 'question': 'How do I use you?',\n", + " 'context': 'ZxcSDc'\n", + "}\n", + "res = nlp(QA_input)\n", + "\n", + "res" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'score': 2.875038965580168e-12, 'start': 1, 'end': 1, 'answer': ''}" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# b) Load model & tokenizer\n", + "model = AutoModelForQuestionAnswering.from_pretrained(model_name)\n", + "tokenizer = AutoTokenizer.from_pretrained(model_name)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/flaim/lab/sd3.ipynb b/flaim/lab/sd3.ipynb new file mode 100644 index 0000000..e2955fc --- /dev/null +++ b/flaim/lab/sd3.ipynb @@ -0,0 +1,456 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/rturk/projects/flox/envs/flab/.flox/cache/venv/venv/lib/python3.11/site-packages/diffusers/models/transformers/transformer_2d.py:34: FutureWarning: `Transformer2DModelOutput` is deprecated and will be removed in version 1.0.0. Importing `Transformer2DModelOutput` from `diffusers.models.transformer_2d` is deprecated and this will be removed in a future version. Please use `from diffusers.models.modeling_outputs import Transformer2DModelOutput`, instead.\n", + " deprecate(\"Transformer2DModelOutput\", \"1.0.0\", deprecation_message)\n" + ] + } + ], + "source": [ + "import torch\n", + "from diffusers import StableDiffusion3Pipeline\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "df3fdf8a5dbd49bba16d20c478c76084", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "model_index.json: 0%| | 0.00/706 [00:00 3\u001b[0m pipe \u001b[38;5;241m=\u001b[39m \u001b[43mStableDiffusion3Pipeline\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstabilityai/stable-diffusion-3-medium-diffusers\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtorch_dtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfloat16\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 4\u001b[0m pipe \u001b[38;5;241m=\u001b[39m pipe\u001b[38;5;241m.\u001b[39mto(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmps\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[0;32m~/projects/flox/envs/flab/.flox/run/aarch64-darwin.flab/lib/python3.11/site-packages/huggingface_hub/utils/_validators.py:114\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[1;32m 112\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m--> 114\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/projects/flox/envs/flab/.flox/cache/venv/venv/lib/python3.11/site-packages/diffusers/pipelines/pipeline_utils.py:881\u001b[0m, in \u001b[0;36mDiffusionPipeline.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, **kwargs)\u001b[0m\n\u001b[1;32m 878\u001b[0m loaded_sub_model \u001b[38;5;241m=\u001b[39m passed_class_obj[name]\n\u001b[1;32m 879\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 880\u001b[0m \u001b[38;5;66;03m# load sub model\u001b[39;00m\n\u001b[0;32m--> 881\u001b[0m loaded_sub_model \u001b[38;5;241m=\u001b[39m \u001b[43mload_sub_model\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 882\u001b[0m \u001b[43m \u001b[49m\u001b[43mlibrary_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlibrary_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 883\u001b[0m \u001b[43m \u001b[49m\u001b[43mclass_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mclass_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 884\u001b[0m \u001b[43m \u001b[49m\u001b[43mimportable_classes\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mimportable_classes\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 885\u001b[0m \u001b[43m \u001b[49m\u001b[43mpipelines\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpipelines\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 886\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_pipeline_module\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mis_pipeline_module\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 887\u001b[0m \u001b[43m \u001b[49m\u001b[43mpipeline_class\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpipeline_class\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 888\u001b[0m \u001b[43m \u001b[49m\u001b[43mtorch_dtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtorch_dtype\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 889\u001b[0m \u001b[43m \u001b[49m\u001b[43mprovider\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mprovider\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 890\u001b[0m \u001b[43m \u001b[49m\u001b[43msess_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msess_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 891\u001b[0m \u001b[43m \u001b[49m\u001b[43mdevice_map\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcurrent_device_map\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 892\u001b[0m \u001b[43m \u001b[49m\u001b[43mmax_memory\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmax_memory\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 893\u001b[0m \u001b[43m \u001b[49m\u001b[43moffload_folder\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moffload_folder\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 894\u001b[0m \u001b[43m \u001b[49m\u001b[43moffload_state_dict\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moffload_state_dict\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 895\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodel_variants\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmodel_variants\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 896\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 897\u001b[0m \u001b[43m \u001b[49m\u001b[43mfrom_flax\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfrom_flax\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 898\u001b[0m \u001b[43m \u001b[49m\u001b[43mvariant\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mvariant\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 899\u001b[0m \u001b[43m \u001b[49m\u001b[43mlow_cpu_mem_usage\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlow_cpu_mem_usage\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 900\u001b[0m \u001b[43m \u001b[49m\u001b[43mcached_folder\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcached_folder\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 901\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 902\u001b[0m logger\u001b[38;5;241m.\u001b[39minfo(\n\u001b[1;32m 903\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mLoaded \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mname\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m as \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mclass_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m from `\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mname\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m` subfolder of \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpretrained_model_name_or_path\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 904\u001b[0m )\n\u001b[1;32m 906\u001b[0m init_kwargs[name] \u001b[38;5;241m=\u001b[39m loaded_sub_model \u001b[38;5;66;03m# UNet(...), # DiffusionSchedule(...)\u001b[39;00m\n", + "File \u001b[0;32m~/projects/flox/envs/flab/.flox/cache/venv/venv/lib/python3.11/site-packages/diffusers/pipelines/pipeline_loading_utils.py:703\u001b[0m, in \u001b[0;36mload_sub_model\u001b[0;34m(library_name, class_name, importable_classes, pipelines, is_pipeline_module, pipeline_class, torch_dtype, provider, sess_options, device_map, max_memory, offload_folder, offload_state_dict, model_variants, name, from_flax, variant, low_cpu_mem_usage, cached_folder)\u001b[0m\n\u001b[1;32m 701\u001b[0m \u001b[38;5;66;03m# check if the module is in a subdirectory\u001b[39;00m\n\u001b[1;32m 702\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39misdir(os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(cached_folder, name)):\n\u001b[0;32m--> 703\u001b[0m loaded_sub_model \u001b[38;5;241m=\u001b[39m \u001b[43mload_method\u001b[49m\u001b[43m(\u001b[49m\u001b[43mos\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mjoin\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcached_folder\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mloading_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 704\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 705\u001b[0m \u001b[38;5;66;03m# else load from the root directory\u001b[39;00m\n\u001b[1;32m 706\u001b[0m loaded_sub_model \u001b[38;5;241m=\u001b[39m load_method(cached_folder, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mloading_kwargs)\n", + "File \u001b[0;32m~/projects/flox/envs/flab/.flox/run/aarch64-darwin.flab/lib/python3.11/site-packages/transformers/tokenization_utils_base.py:2110\u001b[0m, in \u001b[0;36mPreTrainedTokenizerBase.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, cache_dir, force_download, local_files_only, token, revision, trust_remote_code, *init_inputs, **kwargs)\u001b[0m\n\u001b[1;32m 2107\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 2108\u001b[0m logger\u001b[38;5;241m.\u001b[39minfo(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mloading file \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfile_path\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m from cache at \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mresolved_vocab_files[file_id]\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 2110\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_from_pretrained\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2111\u001b[0m \u001b[43m \u001b[49m\u001b[43mresolved_vocab_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2112\u001b[0m \u001b[43m \u001b[49m\u001b[43mpretrained_model_name_or_path\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2113\u001b[0m \u001b[43m \u001b[49m\u001b[43minit_configuration\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2114\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43minit_inputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2115\u001b[0m \u001b[43m \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2116\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2117\u001b[0m \u001b[43m \u001b[49m\u001b[43mlocal_files_only\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlocal_files_only\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2118\u001b[0m \u001b[43m \u001b[49m\u001b[43m_commit_hash\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcommit_hash\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2119\u001b[0m \u001b[43m \u001b[49m\u001b[43m_is_local\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mis_local\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2120\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrust_remote_code\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrust_remote_code\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2121\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2122\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/projects/flox/envs/flab/.flox/run/aarch64-darwin.flab/lib/python3.11/site-packages/transformers/tokenization_utils_base.py:2336\u001b[0m, in \u001b[0;36mPreTrainedTokenizerBase._from_pretrained\u001b[0;34m(cls, resolved_vocab_files, pretrained_model_name_or_path, init_configuration, token, cache_dir, local_files_only, _commit_hash, _is_local, trust_remote_code, *init_inputs, **kwargs)\u001b[0m\n\u001b[1;32m 2334\u001b[0m \u001b[38;5;66;03m# Instantiate the tokenizer.\u001b[39;00m\n\u001b[1;32m 2335\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 2336\u001b[0m tokenizer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43minit_inputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43minit_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2337\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mOSError\u001b[39;00m:\n\u001b[1;32m 2338\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mOSError\u001b[39;00m(\n\u001b[1;32m 2339\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUnable to load vocabulary from file. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 2340\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPlease check that the provided vocabulary is accessible and not corrupted.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 2341\u001b[0m )\n", + "File \u001b[0;32m~/projects/flox/envs/flab/.flox/run/aarch64-darwin.flab/lib/python3.11/site-packages/transformers/models/t5/tokenization_t5_fast.py:120\u001b[0m, in \u001b[0;36mT5TokenizerFast.__init__\u001b[0;34m(self, vocab_file, tokenizer_file, eos_token, unk_token, pad_token, extra_ids, additional_special_tokens, add_prefix_space, **kwargs)\u001b[0m\n\u001b[1;32m 115\u001b[0m logger\u001b[38;5;241m.\u001b[39mwarning_once(\n\u001b[1;32m 116\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mYou set `add_prefix_space`. The tokenizer needs to be converted from the slow tokenizers\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 117\u001b[0m )\n\u001b[1;32m 118\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfrom_slow\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[0;32m--> 120\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__init__\u001b[39;49m\u001b[43m(\u001b[49m\n\u001b[1;32m 121\u001b[0m \u001b[43m \u001b[49m\u001b[43mvocab_file\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 122\u001b[0m \u001b[43m \u001b[49m\u001b[43mtokenizer_file\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtokenizer_file\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 123\u001b[0m \u001b[43m \u001b[49m\u001b[43meos_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43meos_token\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 124\u001b[0m \u001b[43m \u001b[49m\u001b[43munk_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43munk_token\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 125\u001b[0m \u001b[43m \u001b[49m\u001b[43mpad_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpad_token\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 126\u001b[0m \u001b[43m \u001b[49m\u001b[43mextra_ids\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_ids\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 127\u001b[0m \u001b[43m \u001b[49m\u001b[43madditional_special_tokens\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43madditional_special_tokens\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 128\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 129\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 131\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mvocab_file \u001b[38;5;241m=\u001b[39m vocab_file\n\u001b[1;32m 132\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_extra_ids \u001b[38;5;241m=\u001b[39m extra_ids\n", + "File \u001b[0;32m~/projects/flox/envs/flab/.flox/run/aarch64-darwin.flab/lib/python3.11/site-packages/transformers/tokenization_utils_fast.py:105\u001b[0m, in \u001b[0;36mPreTrainedTokenizerFast.__init__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 102\u001b[0m added_tokens_decoder \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mpop(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124madded_tokens_decoder\u001b[39m\u001b[38;5;124m\"\u001b[39m, {})\n\u001b[1;32m 104\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m from_slow \u001b[38;5;129;01mand\u001b[39;00m slow_tokenizer \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mslow_tokenizer_class \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 105\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 106\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot instantiate this tokenizer from a slow version. If it\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms based on sentencepiece, make sure you \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 107\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhave sentencepiece installed.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 108\u001b[0m )\n\u001b[1;32m 110\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m tokenizer_object \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 111\u001b[0m fast_tokenizer \u001b[38;5;241m=\u001b[39m copy\u001b[38;5;241m.\u001b[39mdeepcopy(tokenizer_object)\n", + "\u001b[0;31mValueError\u001b[0m: Cannot instantiate this tokenizer from a slow version. If it's based on sentencepiece, make sure you have sentencepiece installed." + ] + } + ], + "source": [ + "\n", + "token = \"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\"\n", + "\n", + "pipe = StableDiffusion3Pipeline.from_pretrained(\"stabilityai/stable-diffusion-3-medium-diffusers\", torch_dtype=torch.float16, token=token)\n", + "pipe = pipe.to(\"mps\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "image = pipe(\n", + " \"A cat holding a sign that says hello world\",\n", + " negative_prompt=\"\",\n", + " num_inference_steps=28,\n", + " guidance_scale=7.0,\n", + ").images[0]\n", + "image\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/flaim/lab/song/song.py b/flaim/lab/song/song.py new file mode 100755 index 0000000..8cbb81c --- /dev/null +++ b/flaim/lab/song/song.py @@ -0,0 +1,111 @@ +#!/usr/bin/env python + +import warnings +warnings.filterwarnings("ignore") + +import sys +import torch +import torchaudio +from diffusers import StableDiffusionPipeline +from diffusers import logging +import numpy as np +from PIL import Image +import soundcard as sc +import soundfile as sf + +image_width = 512 +sample_rate = 44100 # [Hz] +clip_duration_ms = 5000 # [ms] + +bins_per_image = 512 +n_mels = 512 + +# FFT parameters +window_duration_ms = 100 # [ms] +padded_duration_ms = 400 # [ms] +step_size_ms = 10 # [ms] + +# Derived parameters +num_samples = int(image_width / float(bins_per_image) * clip_duration_ms) * sample_rate +n_fft = int(padded_duration_ms / 1000.0 * sample_rate) +hop_length = int(step_size_ms / 1000.0 * sample_rate) +win_length = int(window_duration_ms / 1000.0 * sample_rate) + +logging.set_verbosity(50) +logging.disable_progress_bar() + +def spectrogram_from_image( + image: Image.Image, max_volume: float = 50, power_for_image: float = 0.25 +) -> np.ndarray: + + data = np.array(image).astype(np.float32) + data = data[::-1, :, 0] + data = 255 - data + data = data * max_volume / 255 + data = np.power(data, 1 / power_for_image) + + return data + +def waveform_from_spectrogram( + Sxx: np.ndarray, + n_fft=n_fft, + hop_length=hop_length, + win_length=win_length, + num_samples=num_samples, + sample_rate=sample_rate, + mel_scale: bool = True, + n_mels: int = 512, + max_mel_iters: int = 200, + num_griffin_lim_iters: int = 32, + device: str = "cpu", +) -> np.ndarray: + + Sxx_torch = torch.from_numpy(Sxx).to(device) + + if mel_scale: + mel_inv_scaler = torchaudio.transforms.InverseMelScale( + n_mels=n_mels, + sample_rate=sample_rate, + f_min=0, + f_max=10000, + n_stft=n_fft // 2 + 1, + norm=None, + mel_scale="htk", + #max_iter=max_mel_iters, + ).to(device) + + Sxx_torch = mel_inv_scaler(Sxx_torch) + + griffin_lim = torchaudio.transforms.GriffinLim( + n_fft=n_fft, + win_length=win_length, + hop_length=hop_length, + power=1.0, + n_iter=num_griffin_lim_iters, + ).to(device) + + waveform = griffin_lim(Sxx_torch).cpu().numpy() + + return waveform + +if torch.cuda.is_available(): + pipe = StableDiffusionPipeline.from_pretrained("riffusion/riffusion-model-v1", torch_dtype=torch.float16, variant="fp16") + pipe.to("cuda") +elif torch.backends.mps.is_available(): + pipe = StableDiffusionPipeline.from_pretrained("riffusion/riffusion-model-v1") + pipe.to("mps") +else: + pipe = StableDiffusionPipeline.from_pretrained("riffusion/riffusion-model-v1") + +prompt = sys.argv[1] if len(sys.argv) > 1 else "a slow song with bagpipes" + +pipe.set_progress_bar_config(disable=True) + +image = pipe(prompt=prompt).images[0] +waveform = waveform_from_spectrogram(spectrogram_from_image(image)) +normalized = waveform / np.max(np.abs(waveform)) + +sf.write(f"{prompt}.wav", normalized, samplerate=sample_rate) + +default_speaker = sc.default_speaker() +default_speaker.play(normalized, samplerate=sample_rate) diff --git a/flaim/lab/whisper.ipynb b/flaim/lab/whisper.ipynb new file mode 100644 index 0000000..0b0d71b --- /dev/null +++ b/flaim/lab/whisper.ipynb @@ -0,0 +1,142 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "e7885be1", + "metadata": { + "id": "e7885be1" + }, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f32e8d5f", + "metadata": { + "id": "f32e8d5f" + }, + "outputs": [], + "source": [ + "import torch\n", + "import torch.nn.functional as F" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "93525c56", + "metadata": { + "id": "93525c56" + }, + "outputs": [], + "source": [ + "# check \"7. Pipeline.ipynb\"\n", + "from whisperspeech.pipeline import Pipeline" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "49be72e0", + "metadata": { + "id": "49be72e0" + }, + "outputs": [], + "source": [ + "# let's start with the fast SD S2A model\n", + "pipe = Pipeline(s2a_ref='collabora/whisperspeech:s2a-q4-tiny-en+pl.model')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8f760666", + "metadata": { + "id": "8f760666", + "outputId": "35440e72-ca1e-4508-dd2c-65d9b8836cd2" + }, + "outputs": [], + "source": [ + "# this is very slow right now since our inference code is not very optimized\n", + "# but even without this crucial optimization it is still better than real-time on an RTX 4090\n", + "pipe.generate_to_notebook(\"\"\"\n", + "This is the first demo of Whisper Speech, a fully open source text-to-speech model trained by Collabora and Lion on the Juwels supercomputer.\n", + "\"\"\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b731876d", + "metadata": { + "id": "b731876d", + "outputId": "64462c9d-b2b7-4007-e276-d16760b80880" + }, + "outputs": [], + "source": [ + "# The model knows how to speak in Polish\n", + "pipe.generate_to_notebook(\"\"\"\n", + "To jest pierwszy test naszego modelu. Pozdrawiamy serdecznie.\n", + "\"\"\", lang='pl')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e856c446", + "metadata": { + "id": "e856c446", + "outputId": "957a82ff-2014-4b2d-ca45-212fa8f3043d" + }, + "outputs": [], + "source": [ + "# We can also mix different languages (e.g. for borrowed words) in a single sentence\n", + "stoks = pipe.t2s.generate([\"To jest pierwszy test wielojęzycznego \", \" Whisper Speech \", \", modelu zamieniającego tekst na mowę, który Collabora i Laion nauczyli na superkomputerze\", \" Jewels.\"], lang=['pl', 'en', 'pl', 'en'])\n", + "pipe.vocoder.decode_to_notebook(pipe.s2a.generate(stoks, pipe.default_speaker.unsqueeze(0)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "731f13e2", + "metadata": { + "id": "731f13e2", + "outputId": "dc0fba00-c4db-4d9b-ad8f-4b24bf2d0721" + }, + "outputs": [], + "source": [ + "stoks = pipe.t2s.generate([\"I love to eat eastern european food! Especially \", \"pierogi i bigos.\"], lang=['en', 'pl'], cps=11)\n", + "pipe.vocoder.decode_to_notebook(pipe.s2a.generate(stoks, pipe.default_speaker.unsqueeze(0)))" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "python3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/flaim/minify-steps.sh b/flaim/minify-steps.sh new file mode 100755 index 0000000..630a591 --- /dev/null +++ b/flaim/minify-steps.sh @@ -0,0 +1,10 @@ +#!/bin/bash + +# pip install Oneliner-Py + +for x in flapt/test.py image/image.py; do + instructions=$(python3 -m oneliner $x) + echo $x + echo $instructions + echo +done diff --git a/flaim/sd3/.envrc b/flaim/sd3/.envrc new file mode 100644 index 0000000..87f610e --- /dev/null +++ b/flaim/sd3/.envrc @@ -0,0 +1 @@ +eval "$(flox activate -d .)" diff --git a/flaim/sd3/.gitignore b/flaim/sd3/.gitignore new file mode 100644 index 0000000..e33609d --- /dev/null +++ b/flaim/sd3/.gitignore @@ -0,0 +1 @@ +*.png diff --git a/flaim/sd3/requirements.txt b/flaim/sd3/requirements.txt new file mode 100644 index 0000000..abf4289 --- /dev/null +++ b/flaim/sd3/requirements.txt @@ -0,0 +1,5 @@ +imgcat +fancyInput +rich +ipykernel +ipywidgets diff --git a/flaim/sd3/sd3.ipynb b/flaim/sd3/sd3.ipynb new file mode 100644 index 0000000..23a1529 --- /dev/null +++ b/flaim/sd3/sd3.ipynb @@ -0,0 +1,143 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "from diffusers import StableDiffusion3Pipeline\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d7a856536b7549019a42f3f33fe3e402", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Loading pipeline components...: 0%| | 0/9 [00:00" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "image = pipe(\n", + " \"A cat holding a sign that says hello world\",\n", + " negative_prompt=\"\",\n", + " num_inference_steps=18,\n", + " guidance_scale=7.0,\n", + ").images[0]\n", + "image\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/flaim/sd3/sd3.py b/flaim/sd3/sd3.py new file mode 100755 index 0000000..6ddac09 --- /dev/null +++ b/flaim/sd3/sd3.py @@ -0,0 +1,41 @@ +#!/usr/bin/env python3 + +import warnings +warnings.filterwarnings("ignore") + +import torch +import sys +from diffusers import StableDiffusion3Pipeline +from imgcat import imgcat +from diffusers import logging + +logging.set_verbosity(0) +logging.disable_progress_bar() + +if torch.cuda.is_available(): + device = "cuda" +elif torch.backends.mps.is_available(): + device = "mps" +else: + device = "" + +token = "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" + +pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16, token=token) +pipe = pipe.to(device) +pipe.set_progress_bar_config(disable=True) + +prompt = ( + sys.argv[1] if len(sys.argv) > 1 else "a computer lab filled with plants and vines" +) + +image = pipe( + prompt, + negative_prompt="", + num_inference_steps=18, + guidance_scale=7.0, +).images[0] + +imgcat(image) + + diff --git a/flake.lock b/flake.lock new file mode 100644 index 0000000..02513fa --- /dev/null +++ b/flake.lock @@ -0,0 +1,272 @@ +{ + "nodes": { + "crane": { + "locked": { + "lastModified": 1725125250, + "narHash": "sha256-CB20rDD5eHikF6mMTTJdwPP1qvyoiyyw1RDUzwIaIF8=", + "owner": "ipetkov", + "repo": "crane", + "rev": "96fd12c7100e9e05fa1a0a5bd108525600ce282f", + "type": "github" + }, + "original": { + "owner": "ipetkov", + "repo": "crane", + "type": "github" + } + }, + "fenix": { + "inputs": { + "nixpkgs": [ + "flox", + "nixpkgs" + ], + "rust-analyzer-src": "rust-analyzer-src" + }, + "locked": { + "lastModified": 1725258763, + "narHash": "sha256-7s5RfYlTljWnKGkK4hOMJCJ0sNQoLYjMxezX3Vijy/0=", + "owner": "nix-community", + "repo": "fenix", + "rev": "0774f58cf1025bbb713971deecc7f07c856be6ed", + "type": "github" + }, + "original": { + "owner": "nix-community", + "repo": "fenix", + "type": "github" + } + }, + "flake-compat": { + "flake": false, + "locked": { + "lastModified": 1696426674, + "narHash": "sha256-kvjfFW7WAETZlt09AgDn1MrtKzP7t90Vf7vypd3OL1U=", + "owner": "edolstra", + "repo": "flake-compat", + "rev": "0f9255e01c2351cc7d116c072cb317785dd33b33", + "type": "github" + }, + "original": { + "owner": "edolstra", + "repo": "flake-compat", + "type": "github" + } + }, + "flake-utils": { + "inputs": { + "systems": "systems" + }, + "locked": { + "lastModified": 1710146030, + "narHash": "sha256-SZ5L6eA7HJ/nmkzGG7/ISclqe6oZdOZTNoesiInkXPQ=", + "owner": "numtide", + "repo": "flake-utils", + "rev": "b1d9ab70662946ef0850d488da1c9019f3a9752a", + "type": "github" + }, + "original": { + "owner": "numtide", + "repo": "flake-utils", + "type": "github" + } + }, + "flox": { + "inputs": { + "crane": "crane", + "fenix": "fenix", + "nixpkgs": "nixpkgs", + "nixpkgs-process-compose": "nixpkgs-process-compose", + "pre-commit-hooks": "pre-commit-hooks", + "sqlite3pp": "sqlite3pp" + }, + "locked": { + "lastModified": 1726239536, + "narHash": "sha256-agQZh/B5VpwMtYkFWwtUl1Iy7ctBU7NHuVCBdDdx7YA=", + "owner": "flox", + "repo": "flox", + "rev": "b91c3f1a2af8fbd2b100f1462b07b75f6936f4ce", + "type": "github" + }, + "original": { + "owner": "flox", + "ref": "refs/tags/v1.3.2", + "repo": "flox", + "type": "github" + } + }, + "gitignore": { + "inputs": { + "nixpkgs": [ + "flox", + "pre-commit-hooks", + "nixpkgs" + ] + }, + "locked": { + "lastModified": 1709087332, + "narHash": "sha256-HG2cCnktfHsKV0s4XW83gU3F57gaTljL9KNSuG6bnQs=", + "owner": "hercules-ci", + "repo": "gitignore.nix", + "rev": "637db329424fd7e46cf4185293b9cc8c88c95394", + "type": "github" + }, + "original": { + "owner": "hercules-ci", + "repo": "gitignore.nix", + "type": "github" + } + }, + "nixpkgs": { + "locked": { + "lastModified": 1721743106, + "narHash": "sha256-adRZhFpBTnHiK3XIELA3IBaApz70HwCYfv7xNrHjebA=", + "owner": "flox", + "repo": "nixpkgs", + "rev": "dc14ed91132ee3a26255d01d8fd0c1f5bff27b2f", + "type": "github" + }, + "original": { + "owner": "flox", + "ref": "stable", + "repo": "nixpkgs", + "type": "github" + } + }, + "nixpkgs-process-compose": { + "flake": false, + "locked": { + "lastModified": 1722813957, + "narHash": "sha256-IAoYyYnED7P8zrBFMnmp7ydaJfwTnwcnqxUElC1I26Y=", + "owner": "flox", + "repo": "nixpkgs", + "rev": "cb9a96f23c491c081b38eab96d22fa958043c9fa", + "type": "github" + }, + "original": { + "owner": "flox", + "ref": "staging.20240817", + "repo": "nixpkgs", + "type": "github" + } + }, + "nixpkgs-stable": { + "locked": { + "lastModified": 1720386169, + "narHash": "sha256-NGKVY4PjzwAa4upkGtAMz1npHGoRzWotlSnVlqI40mo=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "194846768975b7ad2c4988bdb82572c00222c0d7", + "type": "github" + }, + "original": { + "owner": "NixOS", + "ref": "nixos-24.05", + "repo": "nixpkgs", + "type": "github" + } + }, + "nixpkgs_2": { + "locked": { + "lastModified": 1718530797, + "narHash": "sha256-pup6cYwtgvzDpvpSCFh1TEUjw2zkNpk8iolbKnyFmmU=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "b60ebf54c15553b393d144357375ea956f89e9a9", + "type": "github" + }, + "original": { + "owner": "NixOS", + "ref": "nixos-unstable", + "repo": "nixpkgs", + "type": "github" + } + }, + "pre-commit-hooks": { + "inputs": { + "flake-compat": "flake-compat", + "gitignore": "gitignore", + "nixpkgs": [ + "flox", + "nixpkgs" + ], + "nixpkgs-stable": "nixpkgs-stable" + }, + "locked": { + "lastModified": 1724857454, + "narHash": "sha256-Qyl9Q4QMTLZnnBb/8OuQ9LSkzWjBU1T5l5zIzTxkkhk=", + "owner": "cachix", + "repo": "pre-commit-hooks.nix", + "rev": "4509ca64f1084e73bc7a721b20c669a8d4c5ebe6", + "type": "github" + }, + "original": { + "owner": "cachix", + "repo": "pre-commit-hooks.nix", + "type": "github" + } + }, + "root": { + "inputs": { + "flake-utils": "flake-utils", + "flox": "flox", + "nixpkgs": "nixpkgs_2" + } + }, + "rust-analyzer-src": { + "flake": false, + "locked": { + "lastModified": 1725191098, + "narHash": "sha256-YH0kH5CSOnAuPUB1BUzUqvnKiv5SgDhfMNjrkki9Ahk=", + "owner": "rust-lang", + "repo": "rust-analyzer", + "rev": "779d9eee2ea403da447278a7007c9627c8878856", + "type": "github" + }, + "original": { + "owner": "rust-lang", + "ref": "nightly", + "repo": "rust-analyzer", + "type": "github" + } + }, + "sqlite3pp": { + "inputs": { + "nixpkgs": [ + "flox", + "nixpkgs" + ] + }, + "locked": { + "lastModified": 1691154329, + "narHash": "sha256-nMtwh/G1/Zt70rl540jn+nFVJuju0NdXJwk2Y3pNB+k=", + "owner": "aakropotkin", + "repo": "sqlite3pp", + "rev": "775e48a6c7a63a51585cd628f6c9816ba634a246", + "type": "github" + }, + "original": { + "owner": "aakropotkin", + "repo": "sqlite3pp", + "type": "github" + } + }, + "systems": { + "locked": { + "lastModified": 1681028828, + "narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=", + "owner": "nix-systems", + "repo": "default", + "rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e", + "type": "github" + }, + "original": { + "owner": "nix-systems", + "repo": "default", + "type": "github" + } + } + }, + "root": "root", + "version": 7 +} diff --git a/flake.nix b/flake.nix new file mode 100644 index 0000000..c3bcc64 --- /dev/null +++ b/flake.nix @@ -0,0 +1,120 @@ +{ + description = "Flox example environments"; + + inputs.flake-utils.url = "github:numtide/flake-utils"; + inputs.nixpkgs.url = "github:NixOS/nixpkgs/nixos-unstable"; + inputs.flox.url = "github:flox/flox/refs/tags/v1.3.2"; + + outputs = + { + self, + flake-utils, + nixpkgs, + flox, + } @ inputs: + flake-utils.lib.eachDefaultSystem ( + system: + let + lib = nixpkgs.lib; + pkgs = nixpkgs.legacyPackages.${system}; + + mkFloxEnvPkg = name: { + path ? "${inputs.self}/${name}", + packages ? with pkgs; [ + coreutils + flox.packages."${system}".default + ], + }: pkgs.writeShellScriptBin "test-${name}" '' + set -eo pipefail + + export FLOX_DISABLE_METRICS=true + export FLOX_ENVS_TESTING=1 + export PATH="${lib.makeBinPath packages}:$PATH" + export LANG= + export LC_COLLATE="C" + export LC_CTYPE="C" + export LC_MESSAGES="C" + export LC_MONETARY="C" + export LC_NUMERIC="C" + export LC_TIME="C" + export LC_ALL= + + # copy self/nb into temp dir + export TESTDIR="$(mktemp -d --suffix floxenvs-${name}-example)" + cp -R ${path}/* $TESTDIR + cp -R ${path}/.flox* $TESTDIR + chown -R $(whoami) $TESTDIR/.flox* + chmod -R +w $TESTDIR/.flox* + + # switch to root for the test + cd $TESTDIR + echo "👉 Running tests in $TESTDIR" + + start_services="" + if [ "$1" == "true" ]; then + start_services=" --start-services" + fi + + # run tests + if [ ! -f test.sh ]; then + echo "Error: No test.sh script found" + exit 1 + fi + + echo "👉 Running ${name} test..." + flox activate$start_services -- ${pkgs.bashInteractive}/bin/bash test.sh + + ret=$? + if [ $ret -ne 0 ]; then + echo "Error: Tests failed" + exit $ret + fi + ''; + mkFloxEnvApp = path: let + name = builtins.baseNameOf path; + script = mkFloxEnvPkg name {}; + in { + name = "test-${name}"; + value = { + type = "app"; + program = "${script}/bin/test-${name}"; + }; + }; + manifestPath = ".flox/env/manifest.toml"; + allEnvironments = + builtins.map + (x: + let + xs = builtins.toString x; + len = (builtins.stringLength xs) - (builtins.stringLength manifestPath); + in + builtins.substring 0 len xs + ) + ( + builtins.filter + (x: lib.hasSuffix manifestPath (builtins.toString x)) + (lib.filesystem.listFilesRecursive ./.) + ); + environmentsWithTest = + builtins.filter + (x: builtins.pathExists "${x}/test.sh") + allEnvironments; + in + { + packages = builtins.listToAttrs ( + builtins.map + (path: rec { + name = builtins.baseNameOf path; + value = mkFloxEnvPkg name {}; + }) + environmentsWithTest + ); + apps = builtins.listToAttrs ( + builtins.map mkFloxEnvApp environmentsWithTest + ); + devShells.default = pkgs.mkShell { + packages = []; + }; + } + ); +} diff --git a/fooocus/.flox/.gitignore b/fooocus/.flox/.gitignore new file mode 100644 index 0000000..3ed9fa4 --- /dev/null +++ b/fooocus/.flox/.gitignore @@ -0,0 +1,3 @@ +run/ +cache/ +lib/ diff --git a/fooocus/.flox/env.json b/fooocus/.flox/env.json new file mode 100644 index 0000000..51e4353 --- /dev/null +++ b/fooocus/.flox/env.json @@ -0,0 +1,4 @@ +{ + "name": "fooocus", + "version": 1 +} \ No newline at end of file diff --git a/fooocus/.flox/env/manifest.lock b/fooocus/.flox/env/manifest.lock new file mode 100644 index 0000000..6a4c73b --- /dev/null +++ b/fooocus/.flox/env/manifest.lock @@ -0,0 +1,490 @@ +{ + "lockfile-version": 1, + "manifest": { + "version": 1, + "install": { + "gum": { + "pkg-path": "gum" + }, + "python3": { + "pkg-path": "python3" + }, + "pytorch": { + "pkg-path": "python311Packages.pytorch-bin", + "pkg-group": "darwin", + "systems": [ + "aarch64-darwin", + "x86_64-darwin" + ] + }, + "torchsde": { + "pkg-path": "python311Packages.torchsde", + "pkg-group": "darwin", + "systems": [ + "aarch64-darwin", + "x86_64-darwin" + ] + }, + "torchvision": { + "pkg-path": "python311Packages.torchvision-bin", + "pkg-group": "linux", + "systems": [ + "aarch64-linux", + "x86_64-linux" + ] + } + }, + "vars": { + "FOOOCUS_REPO_GIT": "git@github.com:lllyasviel/Fooocus.git", + "FOOOCUS_REPO_HTTPS": "https://github.com/lllyasviel/Fooocus.git", + "VIRTUAL_ENV_DISABLE_PROMPT": "1" + }, + "hook": { + "on-activate": "\n # \n # First, we check to see if we are in a working copy of Fooocus from git.\n #\n # If we aren't, and cwd is empty, offer to clone it.\n #\n # Failing all, provide some education.\n # \n\n git_url=$(git config --get remote.origin.url)\n\n if [ \"$git_url\" != \"$FOOOCUS_REPO_GIT\" ] && [ \"$git_url\" != \"$FOOOCUS_REPO_HTTPS\" ]; then\n echo \"You do not seem to be in a directory containing a checked out Fooocus.\"\n echo \"This is required for Python environment initialization.\"\n echo\n if [ -z \"$(ls -A $directory)\" ]; then\n if gum confirm \"Would you like to clone it here?\" --default=true --affirmative \"Yes\" --negative \"No\"; then\n gum spin --spinner dot --title \"Cloning $FOOOCUS_REPO_HTTPS to cwd\" -- git clone $FOOOCUS_REPO_HTTPS .\n echo \"📇 $FOOOCUS_REPO_HTTPS repo cloned to cwd\"\n fi\n else\n echo \"Tip: try activating this from an empty directory ✨\"\n fi\n fi\n\n if [ -f \"./requirements_versions.txt\" ]; then\n #export PYTHON_DIR=\"$FLOX_ENV_CACHE/python\"\n export PYTHON_DIR=\".venv/\"\n if [ ! -d \"$PYTHON_DIR\" ]; then\n gum spin --spinner dot --title \"Creating python virtual environment in $PYTHON_DIR\" -- python -m venv \"$PYTHON_DIR\"\n echo \"🌏 Virtual environment created in $PYTHON_DIR\"\n fi\n\n (\n source \"$PYTHON_DIR/bin/activate\"\n gum spin --spinner dot --title \"Updating packages in $PYTHON_DIR\" -- pip install -r \"./requirements_versions.txt\" --quiet\n echo \"📦 Packages updated in $PYTHON_DIR\"\n )\n else\n echo; echo \"❌ Python not prepared for Fooocus\"\n fi\n" + }, + "profile": { + "bash": " if [ -d \"$PYTHON_DIR\" ]; then\n source \"$PYTHON_DIR/bin/activate\"\n fi\n", + "zsh": " if [ -d \"$PYTHON_DIR\" ]; then\n source \"$PYTHON_DIR/bin/activate\"\n fi\n", + "fish": " if [ -d \"$PYTHON_DIR\" ];\n source \"$PYTHON_DIR/bin/activate.fish\"\n end\n", + "tcsh": " source \"$PYTHON_DIR/bin/activate.csh\"\n" + }, + "options": { + "systems": [ + "aarch64-darwin", + "aarch64-linux", + "x86_64-darwin", + "x86_64-linux" + ], + "allow": { + "licenses": [] + }, + "semver": {} + }, + "services": { + "foocus": { + "command": "$PYTHON_DIR/bin/python3 ./launch.py", + "vars": null + } + } + }, + "packages": [ + { + "attr_path": "python311Packages.pytorch-bin", + "broken": false, + "derivation": "/nix/store/sxl02zbn8rrr55328ylw7iq6vnw6md2y-python3.11-torch-2.2.2.drv", + "description": "PyTorch: Tensors and Dynamic neural networks in Python with strong GPU acceleration", + "install_id": "pytorch", + "license": "[ BSD-3-Clause, Intel Simplified Software License, Unfree redistributable ]", + "locked_url": "https://github.com/flox/nixpkgs?rev=25865a40d14b3f9cf19f19b924e2ab4069b09588", + "name": "python3.11-torch-2.2.2", + "pname": "pytorch-bin", + "rev": "25865a40d14b3f9cf19f19b924e2ab4069b09588", + "rev_count": 621993, + "rev_date": "2024-05-05T10:51:47Z", + "scrape_date": "2024-06-13T21:31:30Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": true, + "version": "python3.11-torch-2.2.2", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/kfjvzpm47702msj2k4b0psmw80dav3sm-python3.11-torch-2.2.2-dist", + "out": "/nix/store/fjpgjzm9s68y85csvyvdaxn1m4ppz50i-python3.11-torch-2.2.2" + }, + "system": "aarch64-darwin", + "group": "darwin", + "priority": 5 + }, + { + "attr_path": "python311Packages.pytorch-bin", + "broken": false, + "derivation": "/nix/store/mxmasv0340wihcrd30h4b5xwhr1vii28-python3.11-torch-2.2.2.drv", + "description": "PyTorch: Tensors and Dynamic neural networks in Python with strong GPU acceleration", + "install_id": "pytorch", + "license": "[ BSD-3-Clause, Intel Simplified Software License, Unfree redistributable ]", + "locked_url": "https://github.com/flox/nixpkgs?rev=25865a40d14b3f9cf19f19b924e2ab4069b09588", + "name": "python3.11-torch-2.2.2", + "pname": "pytorch-bin", + "rev": "25865a40d14b3f9cf19f19b924e2ab4069b09588", + "rev_count": 621993, + "rev_date": "2024-05-05T10:51:47Z", + "scrape_date": "2024-06-13T21:31:30Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": true, + "version": "python3.11-torch-2.2.2", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/cv3hpmxxl6nac1wqj3vczja2s6z0sdsh-python3.11-torch-2.2.2-dist", + "out": "/nix/store/33w1s44203bffh1wqprk9xhqr0pxfv88-python3.11-torch-2.2.2" + }, + "system": "x86_64-darwin", + "group": "darwin", + "priority": 5 + }, + { + "attr_path": "python311Packages.torchsde", + "broken": false, + "derivation": "/nix/store/wx3v68lxj8v51j448s8vjn1ykag5vy33-python3.11-torchsde-0.2.6.drv", + "description": "Differentiable SDE solvers with GPU support and efficient sensitivity analysis", + "install_id": "torchsde", + "license": "Apache-2.0", + "locked_url": "https://github.com/flox/nixpkgs?rev=25865a40d14b3f9cf19f19b924e2ab4069b09588", + "name": "python3.11-torchsde-0.2.6", + "pname": "torchsde", + "rev": "25865a40d14b3f9cf19f19b924e2ab4069b09588", + "rev_count": 621993, + "rev_date": "2024-05-05T10:51:47Z", + "scrape_date": "2024-06-13T21:31:30Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": false, + "version": "python3.11-torchsde-0.2.6", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/jpipl479njq8050j5r1pkadv5ga9lr3b-python3.11-torchsde-0.2.6-dist", + "out": "/nix/store/pyws6vvm5fmdilwj1389k14nshzzxs6z-python3.11-torchsde-0.2.6" + }, + "system": "aarch64-darwin", + "group": "darwin", + "priority": 5 + }, + { + "attr_path": "python311Packages.torchsde", + "broken": false, + "derivation": "/nix/store/j29ib32kr365i89ypw8ah8rvaf8x29sl-python3.11-torchsde-0.2.6.drv", + "description": "Differentiable SDE solvers with GPU support and efficient sensitivity analysis", + "install_id": "torchsde", + "license": "Apache-2.0", + "locked_url": "https://github.com/flox/nixpkgs?rev=25865a40d14b3f9cf19f19b924e2ab4069b09588", + "name": "python3.11-torchsde-0.2.6", + "pname": "torchsde", + "rev": "25865a40d14b3f9cf19f19b924e2ab4069b09588", + "rev_count": 621993, + "rev_date": "2024-05-05T10:51:47Z", + "scrape_date": "2024-06-13T21:31:30Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": false, + "version": "python3.11-torchsde-0.2.6", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/ixk31npzrxj5vjkgk4dfrjjkasairwxy-python3.11-torchsde-0.2.6-dist", + "out": "/nix/store/mdmiwk6zmhc4nsc18z0vqalr632raapb-python3.11-torchsde-0.2.6" + }, + "system": "x86_64-darwin", + "group": "darwin", + "priority": 5 + }, + { + "attr_path": "python311Packages.torchvision-bin", + "broken": false, + "derivation": "/nix/store/vgwg13xa3bw2p7p849yhjn1n6j42papv-python3.11-torchvision-0.18.1.drv", + "description": "PyTorch vision library", + "install_id": "torchvision", + "license": "BSD-3-Clause", + "locked_url": "https://github.com/flox/nixpkgs?rev=a58bc8ad779655e790115244571758e8de055e3d", + "name": "python3.11-torchvision-0.18.1", + "pname": "torchvision-bin", + "rev": "a58bc8ad779655e790115244571758e8de055e3d", + "rev_count": 665011, + "rev_date": "2024-08-11T07:55:43Z", + "scrape_date": "2024-08-14T02:08:40Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.11-torchvision-0.18.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/4cgd11az1cspxpjz2fkkrpzpdbhx84gc-python3.11-torchvision-0.18.1-dist", + "out": "/nix/store/3y48arzm7235pdgf27nfsdviwbksy4xc-python3.11-torchvision-0.18.1" + }, + "system": "aarch64-linux", + "group": "linux", + "priority": 5 + }, + { + "attr_path": "python311Packages.torchvision-bin", + "broken": false, + "derivation": "/nix/store/amx4rhmky0x4p0g5pwvi9fv5djwzazsy-python3.11-torchvision-0.18.1.drv", + "description": "PyTorch vision library", + "install_id": "torchvision", + "license": "BSD-3-Clause", + "locked_url": "https://github.com/flox/nixpkgs?rev=a58bc8ad779655e790115244571758e8de055e3d", + "name": "python3.11-torchvision-0.18.1", + "pname": "torchvision-bin", + "rev": "a58bc8ad779655e790115244571758e8de055e3d", + "rev_count": 665011, + "rev_date": "2024-08-11T07:55:43Z", + "scrape_date": "2024-08-14T02:08:40Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "python3.11-torchvision-0.18.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/mfzgfdfslm4qzv1l198wzbkhjsqvq5hz-python3.11-torchvision-0.18.1-dist", + "out": "/nix/store/hjj4m1n4s2in5r24qss9m3cchb65gs2b-python3.11-torchvision-0.18.1" + }, + "system": "x86_64-linux", + "group": "linux", + "priority": 5 + }, + { + "attr_path": "gum", + "broken": false, + "derivation": "/nix/store/sarvhaq958mwadmd26i1wn7nlr57ipi5-gum-0.14.3.drv", + "description": "Tasty Bubble Gum for your shell", + "install_id": "gum", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=a58bc8ad779655e790115244571758e8de055e3d", + "name": "gum-0.14.3", + "pname": "gum", + "rev": "a58bc8ad779655e790115244571758e8de055e3d", + "rev_count": 665011, + "rev_date": "2024-08-11T07:55:43Z", + "scrape_date": "2024-08-14T02:08:40Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.14.3", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/nz6k85xrxacczcfnq0kigcsigxbfpwhk-gum-0.14.3" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "gum", + "broken": false, + "derivation": "/nix/store/nidddmjh6qkn34y0fvxs7zzy43dbb0h3-gum-0.14.3.drv", + "description": "Tasty Bubble Gum for your shell", + "install_id": "gum", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=a58bc8ad779655e790115244571758e8de055e3d", + "name": "gum-0.14.3", + "pname": "gum", + "rev": "a58bc8ad779655e790115244571758e8de055e3d", + "rev_count": 665011, + "rev_date": "2024-08-11T07:55:43Z", + "scrape_date": "2024-08-14T02:08:40Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.14.3", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/81bzbzmm6ryr8319wr9vikrvxqlzhcdk-gum-0.14.3" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "gum", + "broken": false, + "derivation": "/nix/store/90ic1xh74zrqv8gdcr2yw4kbvi86qyaq-gum-0.14.3.drv", + "description": "Tasty Bubble Gum for your shell", + "install_id": "gum", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=a58bc8ad779655e790115244571758e8de055e3d", + "name": "gum-0.14.3", + "pname": "gum", + "rev": "a58bc8ad779655e790115244571758e8de055e3d", + "rev_count": 665011, + "rev_date": "2024-08-11T07:55:43Z", + "scrape_date": "2024-08-14T02:08:40Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.14.3", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/ddzn78h6b8dp3b4sv65w75b4c4dcxsbi-gum-0.14.3" + }, + "system": "x86_64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "gum", + "broken": false, + "derivation": "/nix/store/c989ar42jj8z7hsdj1xnbqwm5sagzqq7-gum-0.14.3.drv", + "description": "Tasty Bubble Gum for your shell", + "install_id": "gum", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=a58bc8ad779655e790115244571758e8de055e3d", + "name": "gum-0.14.3", + "pname": "gum", + "rev": "a58bc8ad779655e790115244571758e8de055e3d", + "rev_count": 665011, + "rev_date": "2024-08-11T07:55:43Z", + "scrape_date": "2024-08-14T02:08:40Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.14.3", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/8d15pvy5v2r31izz0jgfjl3s4a5n66ag-gum-0.14.3" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python3", + "broken": false, + "derivation": "/nix/store/mhc5h81w16fnibsw9qdy75dxq8aavw3a-python3-3.12.4.drv", + "description": "High-level dynamically-typed programming language", + "install_id": "python3", + "license": "Python-2.0", + "locked_url": "https://github.com/flox/nixpkgs?rev=a58bc8ad779655e790115244571758e8de055e3d", + "name": "python3-3.12.4", + "pname": "python3", + "rev": "a58bc8ad779655e790115244571758e8de055e3d", + "rev_count": 665011, + "rev_date": "2024-08-11T07:55:43Z", + "scrape_date": "2024-08-14T02:08:40Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "3.12.4", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/1sgajx2r3bkriyxzwsahhva63p08pmac-python3-3.12.4" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python3", + "broken": false, + "derivation": "/nix/store/psrcdr7glp1rxwd1586q75nhljpdbzby-python3-3.12.4.drv", + "description": "High-level dynamically-typed programming language", + "install_id": "python3", + "license": "Python-2.0", + "locked_url": "https://github.com/flox/nixpkgs?rev=a58bc8ad779655e790115244571758e8de055e3d", + "name": "python3-3.12.4", + "pname": "python3", + "rev": "a58bc8ad779655e790115244571758e8de055e3d", + "rev_count": 665011, + "rev_date": "2024-08-11T07:55:43Z", + "scrape_date": "2024-08-14T02:08:40Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "3.12.4", + "outputs_to_install": [ + "out" + ], + "outputs": { + "debug": "/nix/store/rshmxwibmxqvf94w3ld05yqnsijrmk4m-python3-3.12.4-debug", + "out": "/nix/store/jms4z7lzzwnv6gv3y0795365haicmh8m-python3-3.12.4" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python3", + "broken": false, + "derivation": "/nix/store/bs2ygcjxw88nq9wakc1rzbxjjqiirknx-python3-3.12.4.drv", + "description": "High-level dynamically-typed programming language", + "install_id": "python3", + "license": "Python-2.0", + "locked_url": "https://github.com/flox/nixpkgs?rev=a58bc8ad779655e790115244571758e8de055e3d", + "name": "python3-3.12.4", + "pname": "python3", + "rev": "a58bc8ad779655e790115244571758e8de055e3d", + "rev_count": 665011, + "rev_date": "2024-08-11T07:55:43Z", + "scrape_date": "2024-08-14T02:08:40Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "3.12.4", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/dh1i1387ibdzw0ala5rkl3s3ylf8i8pa-python3-3.12.4" + }, + "system": "x86_64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python3", + "broken": false, + "derivation": "/nix/store/zakf7g0dmhlx4qbvv8h157d9d0k2r591-python3-3.12.4.drv", + "description": "High-level dynamically-typed programming language", + "install_id": "python3", + "license": "Python-2.0", + "locked_url": "https://github.com/flox/nixpkgs?rev=a58bc8ad779655e790115244571758e8de055e3d", + "name": "python3-3.12.4", + "pname": "python3", + "rev": "a58bc8ad779655e790115244571758e8de055e3d", + "rev_count": 665011, + "rev_date": "2024-08-11T07:55:43Z", + "scrape_date": "2024-08-14T02:08:40Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "3.12.4", + "outputs_to_install": [ + "out" + ], + "outputs": { + "debug": "/nix/store/myg0p2vf2cj2jsb663qswnygvgn54kbc-python3-3.12.4-debug", + "out": "/nix/store/l014xp1qxdl6gim3zc0jv3mpxhbp346s-python3-3.12.4" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + } + ] +} \ No newline at end of file diff --git a/fooocus/.flox/env/manifest.toml b/fooocus/.flox/env/manifest.toml new file mode 100644 index 0000000..0559cc8 --- /dev/null +++ b/fooocus/.flox/env/manifest.toml @@ -0,0 +1,121 @@ +# +# This is a Flox environment manifest. +# Visit flox.dev/docs/concepts/manifest/ +# or see flox-edit(1), manifest.toml(5) for more information. +# +version = 1 + +# +# This environment sets up everything necessary to run the Fooocus +# text-to-image web interface. +# +# It was designed to be activated from within either: +# - a directory containing a clone of the Fooocus repo, +# - an empty directory, or +# - a directory you don't mind ruining. +# +# On a CUDA system, the FLOX_FEATURES_ENV_ENABLE_CUDA feature flag +# must be set to 1 *prior* to activation. +# + + +[install] + +# Let's get Python +python3 = { pkg-path = "python3" } + +# Since these packages are accelerated in the Flox Catalog, let's +# get them from there instead of from PyPI. +pytorch = { pkg-path = "python311Packages.pytorch-bin", systems=["aarch64-darwin", "x86_64-darwin"], pkg-group="darwin" } +torchsde = { pkg-path = "python311Packages.torchsde", systems=["aarch64-darwin", "x86_64-darwin"], pkg-group="darwin" } +torchvision = { pkg-path = "python311Packages.torchvision-bin", systems=["aarch64-linux", "x86_64-linux"], pkg-group="linux" } + +# Use Gum for user interactions +gum = { pkg-path = "gum" } + + +[vars] + +# Since we are managing our venv with Flox, there is no need to +# be told about it in our prompt +VIRTUAL_ENV_DISABLE_PROMPT="1" + +# The location of Fooocus +FOOOCUS_REPO_GIT="git@github.com:lllyasviel/Fooocus.git" +FOOOCUS_REPO_HTTPS="https://github.com/lllyasviel/Fooocus.git" + + +# This portion of the manifest runs in a bash(1) shell, before the +# 'profile' sections below. +[hook] +on-activate = ''' + + # + # First, we check to see if we are in a working copy of Fooocus from git. + # + # If we aren't, and cwd is empty, offer to clone it. + # + # Failing all, provide some education. + # + + git_url=$(git config --get remote.origin.url) + + if [ "$git_url" != "$FOOOCUS_REPO_GIT" ] && [ "$git_url" != "$FOOOCUS_REPO_HTTPS" ]; then + echo "You do not seem to be in a directory containing a checked out Fooocus." + echo "This is required for Python environment initialization." + echo + if [ -z "$(ls -A $directory)" ]; then + if gum confirm "Would you like to clone it here?" --default=true --affirmative "Yes" --negative "No"; then + gum spin --spinner dot --title "Cloning $FOOOCUS_REPO_HTTPS to cwd" -- git clone $FOOOCUS_REPO_HTTPS . + echo "📇 $FOOOCUS_REPO_HTTPS repo cloned to cwd" + fi + else + echo "Tip: try activating this from an empty directory ✨" + fi + fi + + if [ -f "./requirements_versions.txt" ]; then + #export PYTHON_DIR="$FLOX_ENV_CACHE/python" + export PYTHON_DIR=".venv/" + if [ ! -d "$PYTHON_DIR" ]; then + gum spin --spinner dot --title "Creating python virtual environment in $PYTHON_DIR" -- python -m venv "$PYTHON_DIR" + echo "🌏 Virtual environment created in $PYTHON_DIR" + fi + + ( + source "$PYTHON_DIR/bin/activate" + gum spin --spinner dot --title "Updating packages in $PYTHON_DIR" -- pip install -r "./requirements_versions.txt" --quiet + echo "📦 Packages updated in $PYTHON_DIR" + ) + else + echo; echo "❌ Python not prepared for Fooocus" + fi +''' + +[services.foocus] +command = "$PYTHON_DIR/bin/python3 ./launch.py" + +[profile] +bash = ''' + if [ -d "$PYTHON_DIR" ]; then + source "$PYTHON_DIR/bin/activate" + fi +''' +fish = ''' + if [ -d "$PYTHON_DIR" ]; + source "$PYTHON_DIR/bin/activate.fish" + end +''' +tcsh = ''' + source "$PYTHON_DIR/bin/activate.csh" +''' +zsh = ''' + if [ -d "$PYTHON_DIR" ]; then + source "$PYTHON_DIR/bin/activate" + fi +''' + + +[options] +systems = ["aarch64-darwin", "aarch64-linux", "x86_64-darwin", "x86_64-linux"] + diff --git a/metabase/.flox/.gitignore b/metabase/.flox/.gitignore new file mode 100644 index 0000000..3ed9fa4 --- /dev/null +++ b/metabase/.flox/.gitignore @@ -0,0 +1,3 @@ +run/ +cache/ +lib/ diff --git a/metabase/.flox/env.json b/metabase/.flox/env.json new file mode 100644 index 0000000..e93c59e --- /dev/null +++ b/metabase/.flox/env.json @@ -0,0 +1,4 @@ +{ + "name": "metabase", + "version": 1 +} \ No newline at end of file diff --git a/metabase/.flox/env/manifest.lock b/metabase/.flox/env/manifest.lock new file mode 100644 index 0000000..b97d5b6 --- /dev/null +++ b/metabase/.flox/env/manifest.lock @@ -0,0 +1,159 @@ +{ + "lockfile-version": 1, + "manifest": { + "version": 1, + "install": { + "metabase": { + "pkg-path": "metabase" + } + }, + "vars": { + "MB_ANON_TRACKING_ENABLED": "true", + "MB_CHECK_FOR_UPDATES": "true" + }, + "hook": {}, + "profile": { + "common": " echo \"Metabase URL: http://localhost:3000\"\n" + }, + "options": { + "systems": [ + "aarch64-darwin", + "aarch64-linux", + "x86_64-darwin", + "x86_64-linux" + ], + "allow": { + "licenses": [] + }, + "semver": {} + }, + "services": { + "metabase": { + "command": "metabase", + "vars": null + } + } + }, + "packages": [ + { + "attr_path": "metabase", + "broken": false, + "derivation": "/nix/store/2k9hr6lj4mzm3w7fdsqpmlh43bl7x087-metabase-0.50.10.drv", + "description": "Easy, open source way for everyone in your company to ask questions and learn from data", + "install_id": "metabase", + "license": "AGPL-3.0-only", + "locked_url": "https://github.com/flox/nixpkgs?rev=cb9a96f23c491c081b38eab96d22fa958043c9fa", + "name": "metabase-0.50.10", + "pname": "metabase", + "rev": "cb9a96f23c491c081b38eab96d22fa958043c9fa", + "rev_count": 662544, + "rev_date": "2024-08-04T23:25:57Z", + "scrape_date": "2024-08-07T02:06:32Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": false, + "version": "0.50.10", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/90qsv81lwaybfcppjcd9wp0xr59bl91k-metabase-0.50.10" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "metabase", + "broken": false, + "derivation": "/nix/store/m14ya7xalnb29jzviaa9g0bl6z5mqx2a-metabase-0.50.10.drv", + "description": "Easy, open source way for everyone in your company to ask questions and learn from data", + "install_id": "metabase", + "license": "AGPL-3.0-only", + "locked_url": "https://github.com/flox/nixpkgs?rev=cb9a96f23c491c081b38eab96d22fa958043c9fa", + "name": "metabase-0.50.10", + "pname": "metabase", + "rev": "cb9a96f23c491c081b38eab96d22fa958043c9fa", + "rev_count": 662544, + "rev_date": "2024-08-04T23:25:57Z", + "scrape_date": "2024-08-07T02:06:32Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": false, + "version": "0.50.10", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/ncjq901sdhq88m0zjhx183qawdpimsz8-metabase-0.50.10" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "metabase", + "broken": false, + "derivation": "/nix/store/x9d9c4lm9lwcp34bcq8cqc5j0kn0irn6-metabase-0.50.10.drv", + "description": "Easy, open source way for everyone in your company to ask questions and learn from data", + "install_id": "metabase", + "license": "AGPL-3.0-only", + "locked_url": "https://github.com/flox/nixpkgs?rev=cb9a96f23c491c081b38eab96d22fa958043c9fa", + "name": "metabase-0.50.10", + "pname": "metabase", + "rev": "cb9a96f23c491c081b38eab96d22fa958043c9fa", + "rev_count": 662544, + "rev_date": "2024-08-04T23:25:57Z", + "scrape_date": "2024-08-07T02:06:32Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": false, + "version": "0.50.10", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/z8rxkid56hgvzf3mg8r1wbbncgzg1gmf-metabase-0.50.10" + }, + "system": "x86_64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "metabase", + "broken": false, + "derivation": "/nix/store/yspk4vx5v8kwhvp1dmw92fj1n7vd3vkd-metabase-0.50.10.drv", + "description": "Easy, open source way for everyone in your company to ask questions and learn from data", + "install_id": "metabase", + "license": "AGPL-3.0-only", + "locked_url": "https://github.com/flox/nixpkgs?rev=cb9a96f23c491c081b38eab96d22fa958043c9fa", + "name": "metabase-0.50.10", + "pname": "metabase", + "rev": "cb9a96f23c491c081b38eab96d22fa958043c9fa", + "rev_count": 662544, + "rev_date": "2024-08-04T23:25:57Z", + "scrape_date": "2024-08-07T02:06:32Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": false, + "version": "0.50.10", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/fr652q0b9xvn9rc1w2hmzrh5s2x3hj3v-metabase-0.50.10" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + } + ] +} \ No newline at end of file diff --git a/metabase/.flox/env/manifest.toml b/metabase/.flox/env/manifest.toml new file mode 100644 index 0000000..f116ea8 --- /dev/null +++ b/metabase/.flox/env/manifest.toml @@ -0,0 +1,25 @@ +# +# This is a Flox environment manifest. +# Visit flox.dev/docs/concepts/manifest/ +# or see flox-edit(1), manifest.toml(5) for more information. +# +version = 1 + +[install] +metabase.pkg-path = "metabase" + +[vars] +# deactivate metabase tracking here if desired (I keep it on!) +MB_ANON_TRACKING_ENABLED="true" +MB_CHECK_FOR_UPDATES="true" + +[services.metabase] +command = "metabase" + +[profile] +common = ''' + echo "Metabase URL: http://localhost:3000" +''' + +[options] +systems = ["aarch64-darwin", "aarch64-linux", "x86_64-darwin", "x86_64-linux"] diff --git a/metabase/.gitignore b/metabase/.gitignore new file mode 100644 index 0000000..f21df56 --- /dev/null +++ b/metabase/.gitignore @@ -0,0 +1,3 @@ +metabase.db.mv.db +metabase.db.trace.db +plugins/ diff --git a/mysql/.envrc b/mysql/.envrc new file mode 100644 index 0000000..a27f86c --- /dev/null +++ b/mysql/.envrc @@ -0,0 +1,43 @@ +# Usage: use_flox [...] +# +# Loads the environment variables from a Flox envrionment +# By default, uses the ".flox" directory to load the envrionment from +# You can also specify a remote envrionment as follows +# +# ``` +# use_flox --remote=/ +# ``` +# or +# ``` +# use_flox --trust --remote=/ +# ``` +# +# Where / is the name of the remote environment on FloxHub +# +# You can also specify another directory to load the environment from +# +# ``` +# use_flox --dir= +# ``` +# +# Where is the path to a directory containing a ".flox" directory +# +# Custom commands aren't supported, since we use the `flox activate` command to dump and load the environment +# +function use_flox() { + if [[ ! -d ".flox" ]]; then + printf "direnv(use_flox): \`.flox\` directory not found\n" >&2 + printf "direnv(use_flox): Did you run \`flox init\` in this directory?\n" >&2 + return 1 + fi + + direnv_load flox activate "$@" -- "$direnv" dump + + if [[ $# == 0 ]]; then + watch_dir ".flox/env/" + watch_file ".flox/env.json" + watch_file ".flox/env.lock" + fi +} + +use_flox diff --git a/mysql/.flox/.gitignore b/mysql/.flox/.gitignore new file mode 100644 index 0000000..15d71a1 --- /dev/null +++ b/mysql/.flox/.gitignore @@ -0,0 +1,4 @@ +run/ +cache/ +lib/ +log/ diff --git a/mysql/.flox/env.json b/mysql/.flox/env.json new file mode 100644 index 0000000..423ae75 --- /dev/null +++ b/mysql/.flox/env.json @@ -0,0 +1,4 @@ +{ + "name": "mysql", + "version": 1 +} \ No newline at end of file diff --git a/mysql/.flox/env/manifest.lock b/mysql/.flox/env/manifest.lock new file mode 100644 index 0000000..d0f9ee7 --- /dev/null +++ b/mysql/.flox/env/manifest.lock @@ -0,0 +1 @@ +{"lockfile-version":1,"manifest":{"hook":{"on-activate":"\nexport MYSQL_HOME=\"$FLOX_ENV_CACHE/mysql\"\nexport MYSQL_CONFIG_FILE=\"$MYSQL_HOME/my.cnf\"\nexport MYSQL_DATADIR=\"$MYSQL_HOME/data\"\nexport MYSQL_TMPDIR=\"$MYSQL_HOME/tmp\"\nexport MYSQL_SHAREDIR=\"$MYSQL_HOME/share\"\nexport MYSQL_BASEDIR=$(realpath -s \"$(dirname $(realpath $(which mysqld)))/..\")\nexport MYSQL_TCP_PORT=\"${MYSQL_TCP_PORT:-13306}\"\nexport MYSQL_UNIX_PORT=\"$MYSQL_HOME/mysql.sock\"\nexport MYSQL_UNIX_PORT_TMP=\"$MYSQL_HOME/tmp.sock\"\nexport MYSQLX_UNIX_PORT=\"$MYSQL_HOME/mysqlx.sock\"\nexport MYSQLD_PID=\"$MYSQL_HOME/mysqld.pid\"\nexport MYSQL_ERROR_LOG=\"$MYSQL_HOME/error.log\"\nexport MYSQL_SLOW_LOG=\"$MYSQL_HOME/slow.log\"\n\nif [[ \"$MYSQL_USER\" == \"\" ]]; then\n export MYSQL_USER=\"$USER\"\nfi\n\nexport IS_MARIADB=0\nif command -v mysql_install_db 2>&1 >/dev/null; then\n export IS_MARIADB=1\nfi\n\nif [ ! -d \"$MYSQL_DATADIR\" ]; then\n mkdir -p \"$MYSQL_DATADIR\"\n mkdir -p \"$MYSQL_TMPDIR\"\n chmod -R 755 $MYSQL_DATADIR\n\n\n tee -a $MYSQL_CONFIG_FILE > /dev/null << EOF\n[client]\nport = $MYSQL_TCP_PORT\nsocket = $MYSQL_UNIX_PORT\n\n[mysqld]\nuser = $USER\npid-file = $MYSQLD_PID\nsocket = $MYSQL_UNIX_PORT\nport = $MYSQL_TCP_PORT\nbasedir = $MYSQL_BASEDIR\ndatadir = $MYSQL_DATADIR\ntmpdir = $MYSQL_TMPDIR\n#lc-messages-dir = $MYSQL_SHAREDIR\nskip-external-locking\n\n# Memory settings for InnoDB (adjust as needed)\ninnodb_buffer_pool_size = 256M\ninnodb_log_file_size = 64M\ninnodb_file_per_table = 1\ninnodb_flush_method = O_DIRECT\n\n# Error and slow query logs\n#log_error = $MYSQL_ERROR_LOG\nslow_query_log = 1\nslow_query_log_file = $MYSQL_SLOW_LOG\n\n# Query cache\n#query_cache_limit = 1M\n#query_cache_size = 16M\n\n# Networking\nbind-address = $MYSQL_HOST\nmax_connections = 100\nmax_connect_errors = 1000\n\n# Security settings\nsymbolic-links=0\n\n# InnoDB Settings\ninnodb_file_per_table = 1\ninnodb_data_home_dir = $MYSQL_DATADIR\ninnodb_data_file_path = ibdata1:10M:autoextend\ninnodb_log_group_home_dir = $MYSQL_DATADIR\ninnodb_buffer_pool_size = 128M\ninnodb_log_file_size = 64M\ninnodb_log_buffer_size = 8M\ninnodb_flush_log_at_trx_commit = 1\n\n[mysqldump]\nquick\nquote-names\nmax_allowed_packet = 16M\n\n[mysql]\n# Interactive command-line settings\nno-auto-rehash\n\n[isamchk]\nkey_buffer_size = 16M\n\n[mysqlhotcopy]\ninteractive-timeout\nEOF\n\n if [ $IS_MARIADB -eq 1 ]; then\n init_db () {\n mysql_install_db \\\n --defaults-file=$MYSQL_CONFIG_FILE \\\n --auth-root-authentication-method=normal\n }\n else\n init_db () {\n mysqld \\\n --defaults-file=$MYSQL_CONFIG_FILE \\\n --default-time-zone=SYSTEM \\\n --initialize-insecure\n }\n fi\n export -f init_db\n\n # Initialize the MySQL data directory\n if [[ \"$FLOX_ENVS_TESTING\" == \"1\" ]]; then\n init_db\n else\n gum spin --spinner dot --title \"Initializing database...\" -- bash -c init_db\n fi\n\n echo \"✅ MySQL initialized in $MYSQL_DATADIR.\"\nfi\n\n# XXX: --defaults-file needs to be first argument for some reason\nexport MYSQLD_ARGS=\"\\\n --defaults-file=$MYSQL_CONFIG_FILE \\\n --mysql-native-password=ON \\\n\"\nexport MYSQLD_ARGS_TMP=\"$MYSQLD_ARGS \\\n --socket=$MYSQL_UNIX_PORT_TMP \\\n --skip-networking \\\n --default-time-zone=SYSTEM \\\n\"\nexport MYSQL_ARGS_TMP=\"\\\n --defaults-file=$MYSQL_CONFIG_FILE \\\n --socket=$MYSQL_UNIX_PORT_TMP \\\n\"\n\n#\n# Start mysql and create the database and user\n#\n\n# Temporary set the password to empty\nexport MYSQL_PWD_TMP=\"$MYSQL_PWD\"\nexport MYSQL_PWD=\"\"\nexport MYSQL_HOST_TMP=\"$MYSQL_HOST\"\nunset MYSQL_HOST\n\n# Start mysql\necho -n \"✅ Starting Temporary MySQL in the background ...\"\nnohup mysqld $MYSQLD_ARGS_TMP > /dev/null 2>&1 &\n\nMAX_ATTEMPTS=10\nwhile [ $MAX_ATTEMPTS -gt 0 ]; do\n set +e\n MYSQL_STATUS=$(mysqladmin $(echo $MYSQL_ARGS_TMP) ping -u root 2>&1)\n set -e\n if [ \"$MYSQL_STATUS\" == \"mysqld is alive\" ]; then\n break\n fi\n echo -n \"..\"\n sleep 1\n MAX_ATTEMPTS=$((MAX_ATTEMPTS - 1))\ndone\n\nif [ $MAX_ATTEMPTS -eq 0 ]; then\n echo \"\"\n echo \"❌ Error: MySQL is not up.\"\n exit 1\nfi\necho \"\"\necho \"✅ Temporary MySQL is up.\"\n\n\nMYSQL_DATABASE_EXISTS=\"$(\n mysql $MYSQL_ARGS_TMP -u root -sB information_schema \\\n -e \"SELECT COUNT(*) FROM schemata WHERE schema_name = \\\"$MYSQL_DATABASE\\\"\"\n)\"\n\n# helper functions\ncreate_db() {\n mysql $MYSQL_ARGS_TMP -u root -N -e \"CREATE DATABASE \\`$MYSQL_DATABASE\\`;\"\n}\ncreate_user() {\n mysql $MYSQL_ARGS_TMP -u root -N -e \"CREATE USER IF NOT EXISTS '$MYSQL_USER'@'localhost' IDENTIFIED WITH caching_sha2_password BY '$MYSQL_PWD_TMP'; GRANT ALL PRIVILEGES ON *.* TO '$MYSQL_USER'@'localhost' WITH GRANT OPTION;\"\n}\nexport -f create_db\nexport -f create_user\n\n# Create the database if it doesn't exist\nif [[ \"$MYSQL_DATABASE_EXISTS\" == \"0\" ]]; then\n if [[ \"$FLOX_ENVS_TESTING\" == \"1\" ]]; then\n create_db\n else\n gum spin --spinner dot --title \"Creating '$MYSQL_DATABASE' database...\" -- bash -c create_db\n fi\n echo \" -> ✅ Created '$MYSQL_DATABASE' database.\"\nelse\n echo \" -> ✅ Database '$MYSQL_DATABASE' already exists. Doing nothing.\"\nfi\n\n# Create the user with the password and grant all privileges for the database\nif [[ \"$FLOX_ENVS_TESTING\" == \"1\" ]]; then\n create_user\nelse\n gum spin --spinner dot --title \"Creating '$MYSQL_USER' user...\" -- bash -c create_user\nfi\necho \" -> ✅ '$MYSQL_USER' user created if not existed before.\"\n\n# Stop MySQL\nmysqladmin $(echo $MYSQL_ARGS_TMP) shutdown -u root\necho \" -> ✅ Temporary MySQL is being shut down.\"\n\n# Reset the password\nexport MYSQL_HOST=\"$MYSQL_HOST_TMP\"\nexport MYSQL_PWD=\"$MYSQL_PWD_TMP\"\n"},"install":{"coreutils":{"pkg-path":"coreutils"},"gum":{"pkg-path":"gum"},"mysql":{"pkg-path":"mysql84"},"which":{"pkg-path":"which"}},"options":{"allow":{"licenses":[]},"semver":{},"systems":["aarch64-darwin","aarch64-linux","x86_64-darwin","x86_64-linux"]},"profile":{"common":"\necho \"\"\necho \" ╔══════════════════════════════════════════════╗\"\necho \" ║ ║\"\necho \" ║ Start MySQL in the background: ║\"\necho \" ║ 👉 flox services start ║\"\necho \" ║ 👉 flox activate --start-services ║\"\necho \" ║ ║\"\necho \" ║ Connect to MySQL: ║\"\necho \" ║ 👉 mysql ║\"\necho \" ║ ║\"\necho \" ╚══════════════════════════════════════════════╝\"\necho \"\"\n"},"services":{"mysql":{"command":"mysqld $MYSQLD_ARGS","is-daemon":null,"shutdown":null,"systems":null,"vars":null}},"vars":{"MYSQL_DATABASE":"mydb","MYSQL_HOST":"127.0.0.1","MYSQL_PWD":"mypass","MYSQL_USER":""},"version":1},"packages":[{"attr_path":"coreutils","broken":false,"derivation":"/nix/store/55ms78kc0r5ncpa13wbpya7cgi6i6zx0-coreutils-9.5.drv","description":"GNU Core Utilities","group":"toplevel","install_id":"coreutils","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=c04d5652cfa9742b1d519688f65d1bbccea9eb7e","name":"coreutils-9.5","outputs":{"info":"/nix/store/ps81dqzr6fxafmxih1834v545dh4apjm-coreutils-9.5-info","out":"/nix/store/1l41471x6rlf7l544s1bxkqqgpprd28m-coreutils-9.5"},"outputs_to_install":["out"],"pname":"coreutils","priority":5,"rev":"c04d5652cfa9742b1d519688f65d1bbccea9eb7e","rev_count":683289,"rev_date":"2024-09-19T14:19:46Z","scrape_date":"2024-09-21T03:15:13Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":false,"version":"9.5"},{"attr_path":"coreutils","broken":false,"derivation":"/nix/store/fbnqx9d9skgp22g0xkc53jgqy0804afb-coreutils-9.5.drv","description":"GNU Core Utilities","group":"toplevel","install_id":"coreutils","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=c04d5652cfa9742b1d519688f65d1bbccea9eb7e","name":"coreutils-9.5","outputs":{"debug":"/nix/store/g66h1ajc1wx18milg2290yylbivq2jhd-coreutils-9.5-debug","info":"/nix/store/y311wv5dlqakkq6hr3yl6zmiiprxb3v5-coreutils-9.5-info","out":"/nix/store/ssqdazslv2wjpybnk0pjwnpq0dfpa6q2-coreutils-9.5"},"outputs_to_install":["out"],"pname":"coreutils","priority":5,"rev":"c04d5652cfa9742b1d519688f65d1bbccea9eb7e","rev_count":683289,"rev_date":"2024-09-19T14:19:46Z","scrape_date":"2024-09-21T03:15:13Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":false,"version":"9.5"},{"attr_path":"coreutils","broken":false,"derivation":"/nix/store/r3vjhg84a2d0ydf52038pic8wibaxbpr-coreutils-9.5.drv","description":"GNU Core Utilities","group":"toplevel","install_id":"coreutils","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=c04d5652cfa9742b1d519688f65d1bbccea9eb7e","name":"coreutils-9.5","outputs":{"info":"/nix/store/jgslj3bb2rs55xaaxarqwsg7bppfxg8p-coreutils-9.5-info","out":"/nix/store/mw0amk6q5v2401y3s8zg7hxa2v0ia6vw-coreutils-9.5"},"outputs_to_install":["out"],"pname":"coreutils","priority":5,"rev":"c04d5652cfa9742b1d519688f65d1bbccea9eb7e","rev_count":683289,"rev_date":"2024-09-19T14:19:46Z","scrape_date":"2024-09-21T03:15:13Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":false,"version":"9.5"},{"attr_path":"coreutils","broken":false,"derivation":"/nix/store/57hlz5fnvfgljivf7p18fmcl1yp6d29z-coreutils-9.5.drv","description":"GNU Core Utilities","group":"toplevel","install_id":"coreutils","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=c04d5652cfa9742b1d519688f65d1bbccea9eb7e","name":"coreutils-9.5","outputs":{"debug":"/nix/store/73i7cdbz2w862wx1gfxxvyrw95rmmwl3-coreutils-9.5-debug","info":"/nix/store/p1mj9zdizsa605xsy3jjx4db4ya1wnix-coreutils-9.5-info","out":"/nix/store/0kg70swgpg45ipcz3pr2siidq9fn6d77-coreutils-9.5"},"outputs_to_install":["out"],"pname":"coreutils","priority":5,"rev":"c04d5652cfa9742b1d519688f65d1bbccea9eb7e","rev_count":683289,"rev_date":"2024-09-19T14:19:46Z","scrape_date":"2024-09-21T03:15:13Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":false,"version":"9.5"},{"attr_path":"gum","broken":false,"derivation":"/nix/store/rf7qipzf7sani2690rkiprm4d0ikrypi-gum-0.14.5.drv","description":"Tasty Bubble Gum for your shell","group":"toplevel","install_id":"gum","license":"MIT","locked_url":"https://github.com/flox/nixpkgs?rev=c04d5652cfa9742b1d519688f65d1bbccea9eb7e","name":"gum-0.14.5","outputs":{"out":"/nix/store/n1gqffrwdzr3vpsmwmwx3hmw814c1k6g-gum-0.14.5"},"outputs_to_install":["out"],"pname":"gum","priority":5,"rev":"c04d5652cfa9742b1d519688f65d1bbccea9eb7e","rev_count":683289,"rev_date":"2024-09-19T14:19:46Z","scrape_date":"2024-09-21T03:15:13Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":false,"version":"0.14.5"},{"attr_path":"gum","broken":false,"derivation":"/nix/store/igrp0rimwsnvj7l72iv0sagbbyn3kzqy-gum-0.14.5.drv","description":"Tasty Bubble Gum for your shell","group":"toplevel","install_id":"gum","license":"MIT","locked_url":"https://github.com/flox/nixpkgs?rev=c04d5652cfa9742b1d519688f65d1bbccea9eb7e","name":"gum-0.14.5","outputs":{"out":"/nix/store/ggp10jr3l6higs0gqibp6ypjlf7yakpc-gum-0.14.5"},"outputs_to_install":["out"],"pname":"gum","priority":5,"rev":"c04d5652cfa9742b1d519688f65d1bbccea9eb7e","rev_count":683289,"rev_date":"2024-09-19T14:19:46Z","scrape_date":"2024-09-21T03:15:13Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":false,"version":"0.14.5"},{"attr_path":"gum","broken":false,"derivation":"/nix/store/a93pnfn8q8r8kpgbkjn94x8mqa2vxc5g-gum-0.14.5.drv","description":"Tasty Bubble Gum for your shell","group":"toplevel","install_id":"gum","license":"MIT","locked_url":"https://github.com/flox/nixpkgs?rev=c04d5652cfa9742b1d519688f65d1bbccea9eb7e","name":"gum-0.14.5","outputs":{"out":"/nix/store/jq8shghha81s1wg67fcjrfnf4hbliimn-gum-0.14.5"},"outputs_to_install":["out"],"pname":"gum","priority":5,"rev":"c04d5652cfa9742b1d519688f65d1bbccea9eb7e","rev_count":683289,"rev_date":"2024-09-19T14:19:46Z","scrape_date":"2024-09-21T03:15:13Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":false,"version":"0.14.5"},{"attr_path":"gum","broken":false,"derivation":"/nix/store/sxn2f2zrjhzi1b47qbp7llmww0gqz76v-gum-0.14.5.drv","description":"Tasty Bubble Gum for your shell","group":"toplevel","install_id":"gum","license":"MIT","locked_url":"https://github.com/flox/nixpkgs?rev=c04d5652cfa9742b1d519688f65d1bbccea9eb7e","name":"gum-0.14.5","outputs":{"out":"/nix/store/f199acwir08z47f3d5kf1fhmhajmd1ig-gum-0.14.5"},"outputs_to_install":["out"],"pname":"gum","priority":5,"rev":"c04d5652cfa9742b1d519688f65d1bbccea9eb7e","rev_count":683289,"rev_date":"2024-09-19T14:19:46Z","scrape_date":"2024-09-21T03:15:13Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":false,"version":"0.14.5"},{"attr_path":"mysql84","broken":false,"derivation":"/nix/store/w94k1vcdcwh32g7nq8jb8gws35pln5cp-mysql-8.4.2.drv","description":"World's most popular open source database","group":"toplevel","install_id":"mysql","license":"GPL-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=c04d5652cfa9742b1d519688f65d1bbccea9eb7e","name":"mysql-8.4.2","outputs":{"out":"/nix/store/bpakbqwc7vjrp8gxji2q4vm49xv7a4ya-mysql-8.4.2","static":"/nix/store/g1jfa17i5kwr69ahbsdlpfkk1rryyzpi-mysql-8.4.2-static"},"outputs_to_install":["out"],"pname":"mysql84","priority":5,"rev":"c04d5652cfa9742b1d519688f65d1bbccea9eb7e","rev_count":683289,"rev_date":"2024-09-19T14:19:46Z","scrape_date":"2024-09-21T03:15:13Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":false,"version":"mysql-8.4.2"},{"attr_path":"mysql84","broken":false,"derivation":"/nix/store/wk7rvxb32b0jdczq0pqd4phpm6qcnqby-mysql-8.4.2.drv","description":"World's most popular open source database","group":"toplevel","install_id":"mysql","license":"GPL-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=c04d5652cfa9742b1d519688f65d1bbccea9eb7e","name":"mysql-8.4.2","outputs":{"out":"/nix/store/3gfacqpayqb3rdph64j99rif81gjx9qd-mysql-8.4.2","static":"/nix/store/1jxj921a8yn83phhig9371bx8gqai53w-mysql-8.4.2-static"},"outputs_to_install":["out"],"pname":"mysql84","priority":5,"rev":"c04d5652cfa9742b1d519688f65d1bbccea9eb7e","rev_count":683289,"rev_date":"2024-09-19T14:19:46Z","scrape_date":"2024-09-21T03:15:13Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":false,"version":"mysql-8.4.2"},{"attr_path":"mysql84","broken":false,"derivation":"/nix/store/00hm93vsw6650v4wawvxwxq023blx7l3-mysql-8.4.2.drv","description":"World's most popular open source database","group":"toplevel","install_id":"mysql","license":"GPL-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=c04d5652cfa9742b1d519688f65d1bbccea9eb7e","name":"mysql-8.4.2","outputs":{"out":"/nix/store/dl9rkx76xdjkjvax2l3bxmza83bfqdy4-mysql-8.4.2","static":"/nix/store/yp713qnc43lsyanim4qrra4cv4vnnx54-mysql-8.4.2-static"},"outputs_to_install":["out"],"pname":"mysql84","priority":5,"rev":"c04d5652cfa9742b1d519688f65d1bbccea9eb7e","rev_count":683289,"rev_date":"2024-09-19T14:19:46Z","scrape_date":"2024-09-21T03:15:13Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":false,"version":"mysql-8.4.2"},{"attr_path":"mysql84","broken":false,"derivation":"/nix/store/k0h8cwmwzx379p4154q2b9zbw8bg51bj-mysql-8.4.2.drv","description":"World's most popular open source database","group":"toplevel","install_id":"mysql","license":"GPL-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=c04d5652cfa9742b1d519688f65d1bbccea9eb7e","name":"mysql-8.4.2","outputs":{"out":"/nix/store/yfzblax58n124j7lww374k0njca26nk0-mysql-8.4.2","static":"/nix/store/ljmdg5h86da6x8rks7h74rsm942jdigd-mysql-8.4.2-static"},"outputs_to_install":["out"],"pname":"mysql84","priority":5,"rev":"c04d5652cfa9742b1d519688f65d1bbccea9eb7e","rev_count":683289,"rev_date":"2024-09-19T14:19:46Z","scrape_date":"2024-09-21T03:15:13Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":false,"version":"mysql-8.4.2"},{"attr_path":"which","broken":false,"derivation":"/nix/store/mda6wiyy8dx8272z259y8yv47s6lg1bi-which-2.21.drv","description":"Shows the full path of (shell) commands","group":"toplevel","install_id":"which","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=c04d5652cfa9742b1d519688f65d1bbccea9eb7e","name":"which-2.21","outputs":{"out":"/nix/store/cj0cxx9nz9wzfb11p4cgx1a1igppplvw-which-2.21"},"outputs_to_install":["out"],"pname":"which","priority":5,"rev":"c04d5652cfa9742b1d519688f65d1bbccea9eb7e","rev_count":683289,"rev_date":"2024-09-19T14:19:46Z","scrape_date":"2024-09-21T03:15:13Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":false,"version":"2.21"},{"attr_path":"which","broken":false,"derivation":"/nix/store/6knb8pgd2vnsdbrxisnzybg3annx5cic-which-2.21.drv","description":"Shows the full path of (shell) commands","group":"toplevel","install_id":"which","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=c04d5652cfa9742b1d519688f65d1bbccea9eb7e","name":"which-2.21","outputs":{"out":"/nix/store/6dijyk860kpfbsipk147sz177aa2qjwc-which-2.21"},"outputs_to_install":["out"],"pname":"which","priority":5,"rev":"c04d5652cfa9742b1d519688f65d1bbccea9eb7e","rev_count":683289,"rev_date":"2024-09-19T14:19:46Z","scrape_date":"2024-09-21T03:15:13Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":false,"version":"2.21"},{"attr_path":"which","broken":false,"derivation":"/nix/store/0cf3hhdivb0bbwb9nksqdnkpgrdlxw65-which-2.21.drv","description":"Shows the full path of (shell) commands","group":"toplevel","install_id":"which","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=c04d5652cfa9742b1d519688f65d1bbccea9eb7e","name":"which-2.21","outputs":{"out":"/nix/store/5zvkxaqr0ihiic42ngnjb9cy44120pi9-which-2.21"},"outputs_to_install":["out"],"pname":"which","priority":5,"rev":"c04d5652cfa9742b1d519688f65d1bbccea9eb7e","rev_count":683289,"rev_date":"2024-09-19T14:19:46Z","scrape_date":"2024-09-21T03:15:13Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":false,"version":"2.21"},{"attr_path":"which","broken":false,"derivation":"/nix/store/7rpzsplw6amzhrxbipx7yf6yhqays7an-which-2.21.drv","description":"Shows the full path of (shell) commands","group":"toplevel","install_id":"which","license":"GPL-3.0-or-later","locked_url":"https://github.com/flox/nixpkgs?rev=c04d5652cfa9742b1d519688f65d1bbccea9eb7e","name":"which-2.21","outputs":{"out":"/nix/store/8wgpy20nx6ainhjnirb044k9chv0bbkj-which-2.21"},"outputs_to_install":["out"],"pname":"which","priority":5,"rev":"c04d5652cfa9742b1d519688f65d1bbccea9eb7e","rev_count":683289,"rev_date":"2024-09-19T14:19:46Z","scrape_date":"2024-09-21T03:15:13Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":false,"version":"2.21"}]} \ No newline at end of file diff --git a/mysql/.flox/env/manifest.toml b/mysql/.flox/env/manifest.toml new file mode 100644 index 0000000..fe8b4f7 --- /dev/null +++ b/mysql/.flox/env/manifest.toml @@ -0,0 +1,271 @@ +version = 1 + +[install] +gum.pkg-path = "gum" +which.pkg-path = "which" +coreutils.pkg-path = "coreutils" + +## MySQL: +mysql.pkg-path = "mysql84" +#mysql.pkg-path = "mysql80" +#mysql.pkg-path = "mysql57" +## MariaDB: +#mysql.pkg-path = "mariadb_110" +#mysql.pkg-path = "mariadb_1011" +#mysql.pkg-path = "mariadb_109" +#mysql.pkg-path = "mariadb_108" +#mysql.pkg-path = "mariadb_107" + +[vars] +MYSQL_DATABASE = "mydb" +MYSQL_USER = "" +MYSQL_PWD= "mypass" +MYSQL_HOST = "127.0.0.1" + + +[hook] +on-activate = ''' + +export MYSQL_HOME="$FLOX_ENV_CACHE/mysql" +export MYSQL_CONFIG_FILE="$MYSQL_HOME/my.cnf" +export MYSQL_DATADIR="$MYSQL_HOME/data" +export MYSQL_TMPDIR="$MYSQL_HOME/tmp" +export MYSQL_SHAREDIR="$MYSQL_HOME/share" +export MYSQL_BASEDIR=$(realpath -s "$(dirname $(realpath $(which mysqld)))/..") +export MYSQL_TCP_PORT="${MYSQL_TCP_PORT:-13306}" +export MYSQL_UNIX_PORT="$MYSQL_HOME/mysql.sock" +export MYSQL_UNIX_PORT_TMP="$MYSQL_HOME/tmp.sock" +export MYSQLX_UNIX_PORT="$MYSQL_HOME/mysqlx.sock" +export MYSQLD_PID="$MYSQL_HOME/mysqld.pid" +export MYSQL_ERROR_LOG="$MYSQL_HOME/error.log" +export MYSQL_SLOW_LOG="$MYSQL_HOME/slow.log" + +if [[ "$MYSQL_USER" == "" ]]; then + export MYSQL_USER="$USER" +fi + +export IS_MARIADB=0 +if command -v mysql_install_db 2>&1 >/dev/null; then + export IS_MARIADB=1 +fi + +if [ ! -d "$MYSQL_DATADIR" ]; then + mkdir -p "$MYSQL_DATADIR" + mkdir -p "$MYSQL_TMPDIR" + chmod -R 755 $MYSQL_DATADIR + + + tee -a $MYSQL_CONFIG_FILE > /dev/null << EOF +[client] +port = $MYSQL_TCP_PORT +socket = $MYSQL_UNIX_PORT + +[mysqld] +user = $USER +pid-file = $MYSQLD_PID +socket = $MYSQL_UNIX_PORT +port = $MYSQL_TCP_PORT +basedir = $MYSQL_BASEDIR +datadir = $MYSQL_DATADIR +tmpdir = $MYSQL_TMPDIR +#lc-messages-dir = $MYSQL_SHAREDIR +skip-external-locking + +# Memory settings for InnoDB (adjust as needed) +innodb_buffer_pool_size = 256M +innodb_log_file_size = 64M +innodb_file_per_table = 1 +innodb_flush_method = O_DIRECT + +# Error and slow query logs +#log_error = $MYSQL_ERROR_LOG +slow_query_log = 1 +slow_query_log_file = $MYSQL_SLOW_LOG + +# Query cache +#query_cache_limit = 1M +#query_cache_size = 16M + +# Networking +bind-address = $MYSQL_HOST +max_connections = 100 +max_connect_errors = 1000 + +# Security settings +symbolic-links=0 + +# InnoDB Settings +innodb_file_per_table = 1 +innodb_data_home_dir = $MYSQL_DATADIR +innodb_data_file_path = ibdata1:10M:autoextend +innodb_log_group_home_dir = $MYSQL_DATADIR +innodb_buffer_pool_size = 128M +innodb_log_file_size = 64M +innodb_log_buffer_size = 8M +innodb_flush_log_at_trx_commit = 1 + +[mysqldump] +quick +quote-names +max_allowed_packet = 16M + +[mysql] +# Interactive command-line settings +no-auto-rehash + +[isamchk] +key_buffer_size = 16M + +[mysqlhotcopy] +interactive-timeout +EOF + + if [ $IS_MARIADB -eq 1 ]; then + init_db () { + mysql_install_db \ + --defaults-file=$MYSQL_CONFIG_FILE \ + --auth-root-authentication-method=normal + } + else + init_db () { + mysqld \ + --defaults-file=$MYSQL_CONFIG_FILE \ + --default-time-zone=SYSTEM \ + --initialize-insecure + } + fi + export -f init_db + + # Initialize the MySQL data directory + if [[ "$FLOX_ENVS_TESTING" == "1" ]]; then + init_db + else + gum spin --spinner dot --title "Initializing database..." -- bash -c init_db + fi + + echo "✅ MySQL initialized in $MYSQL_DATADIR." +fi + +# XXX: --defaults-file needs to be first argument for some reason +export MYSQLD_ARGS="\ + --defaults-file=$MYSQL_CONFIG_FILE \ + --mysql-native-password=ON \ +" +export MYSQLD_ARGS_TMP="$MYSQLD_ARGS \ + --socket=$MYSQL_UNIX_PORT_TMP \ + --skip-networking \ + --default-time-zone=SYSTEM \ +" +export MYSQL_ARGS_TMP="\ + --defaults-file=$MYSQL_CONFIG_FILE \ + --socket=$MYSQL_UNIX_PORT_TMP \ +" + +# +# Start mysql and create the database and user +# + +# Temporary set the password to empty +export MYSQL_PWD_TMP="$MYSQL_PWD" +export MYSQL_PWD="" +export MYSQL_HOST_TMP="$MYSQL_HOST" +unset MYSQL_HOST + +# Start mysql +echo -n "✅ Starting Temporary MySQL in the background ..." +nohup mysqld $MYSQLD_ARGS_TMP > /dev/null 2>&1 & + +MAX_ATTEMPTS=10 +while [ $MAX_ATTEMPTS -gt 0 ]; do + set +e + MYSQL_STATUS=$(mysqladmin $(echo $MYSQL_ARGS_TMP) ping -u root 2>&1) + set -e + if [ "$MYSQL_STATUS" == "mysqld is alive" ]; then + break + fi + echo -n ".." + sleep 1 + MAX_ATTEMPTS=$((MAX_ATTEMPTS - 1)) +done + +if [ $MAX_ATTEMPTS -eq 0 ]; then + echo "" + echo "❌ Error: MySQL is not up." + exit 1 +fi +echo "" +echo "✅ Temporary MySQL is up." + + +MYSQL_DATABASE_EXISTS="$( + mysql $MYSQL_ARGS_TMP -u root -sB information_schema \ + -e "SELECT COUNT(*) FROM schemata WHERE schema_name = \"$MYSQL_DATABASE\"" +)" + +# helper functions +create_db() { + mysql $MYSQL_ARGS_TMP -u root -N -e "CREATE DATABASE \`$MYSQL_DATABASE\`;" +} +create_user() { + mysql $MYSQL_ARGS_TMP -u root -N -e "CREATE USER IF NOT EXISTS '$MYSQL_USER'@'localhost' IDENTIFIED WITH caching_sha2_password BY '$MYSQL_PWD_TMP'; GRANT ALL PRIVILEGES ON *.* TO '$MYSQL_USER'@'localhost' WITH GRANT OPTION;" +} +export -f create_db +export -f create_user + +# Create the database if it doesn't exist +if [[ "$MYSQL_DATABASE_EXISTS" == "0" ]]; then + if [[ "$FLOX_ENVS_TESTING" == "1" ]]; then + create_db + else + gum spin --spinner dot --title "Creating '$MYSQL_DATABASE' database..." -- bash -c create_db + fi + echo " -> ✅ Created '$MYSQL_DATABASE' database." +else + echo " -> ✅ Database '$MYSQL_DATABASE' already exists. Doing nothing." +fi + +# Create the user with the password and grant all privileges for the database +if [[ "$FLOX_ENVS_TESTING" == "1" ]]; then + create_user +else + gum spin --spinner dot --title "Creating '$MYSQL_USER' user..." -- bash -c create_user +fi +echo " -> ✅ '$MYSQL_USER' user created if not existed before." + +# Stop MySQL +mysqladmin $(echo $MYSQL_ARGS_TMP) shutdown -u root +echo " -> ✅ Temporary MySQL is being shut down." + +# Reset the password +export MYSQL_HOST="$MYSQL_HOST_TMP" +export MYSQL_PWD="$MYSQL_PWD_TMP" +''' + +[profile] +common = ''' + +echo "" +echo " ╔══════════════════════════════════════════════╗" +echo " ║ ║" +echo " ║ Start MySQL in the background: ║" +echo " ║ 👉 flox services start ║" +echo " ║ 👉 flox activate --start-services ║" +echo " ║ ║" +echo " ║ Connect to MySQL: ║" +echo " ║ 👉 mysql ║" +echo " ║ ║" +echo " ╚══════════════════════════════════════════════╝" +echo "" +''' + +[services] +mysql.command = "mysqld $MYSQLD_ARGS" + + +[options] +systems = [ + "aarch64-darwin", + "aarch64-linux", + "x86_64-darwin", + "x86_64-linux", +] diff --git a/mysql/test.sh b/mysql/test.sh new file mode 100755 index 0000000..8d28d3c --- /dev/null +++ b/mysql/test.sh @@ -0,0 +1,52 @@ +#!/usr/bin/env bash + +set -eo pipefail + +if ! command -v mysql 2>&1 >/dev/null +then + echo "Error: 'mysql' command could not be found." + exit 1 +fi +if ! command -v mysqladmin 2>&1 >/dev/null +then + echo "Error: 'mysqladmin' command could not be found." + exit 1 +fi + +echo -n "Waiting for MySQL to come up ..." +MAX_ATTEMPTS=10 +while [ $MAX_ATTEMPTS -gt 0 ]; do + set +e + MYSQL_STATUS=$(mysqladmin ping 2>&1) + set -e + if [ "$MYSQL_STATUS" == "mysqld is alive" ]; then + break + fi + echo -n ".." + sleep 1 + MAX_ATTEMPTS=$((MAX_ATTEMPTS - 1)) +done +if [ $MAX_ATTEMPTS -eq 0 ]; then + echo "" + echo "❌ Error: MySQL didn't come up in time." + exit 1 +fi +echo "" +echo "✅ MySQL service is up." +mysqladmin ping -u root --silent + +echo ">>> flox services status" +flox services status + +echo ">>> flox services logs mysql" +flox services logs mysql + +echo ">>> Run 'SELECT 1' query." +mysql -sN -e "SELECT 1" +RESULT=$(mysql -sN -e "SELECT 1") +echo "RESULT: $RESULT" +if [[ "$RESULT" != "1" ]]; then + echo "Error: Something wrong!." + exit 1 +fi +echo ">>> MySQL connection test passed." diff --git a/nb/.flox/.gitignore b/nb/.flox/.gitignore new file mode 100644 index 0000000..3ed9fa4 --- /dev/null +++ b/nb/.flox/.gitignore @@ -0,0 +1,3 @@ +run/ +cache/ +lib/ diff --git a/nb/.flox/env.json b/nb/.flox/env.json new file mode 100644 index 0000000..1605c7b --- /dev/null +++ b/nb/.flox/env.json @@ -0,0 +1,4 @@ +{ + "name": "nb", + "version": 1 +} \ No newline at end of file diff --git a/nb/.flox/env/manifest.lock b/nb/.flox/env/manifest.lock new file mode 100644 index 0000000..9f62e11 --- /dev/null +++ b/nb/.flox/env/manifest.lock @@ -0,0 +1 @@ +{"lockfile-version":1,"manifest":{"hook":{"on-activate":" if [[ -d $PYTHON_ENV ]]; then\n echo; echo -n \"⚡️ Activating existing venv in $PYTHON_ENV...\"\n . $PYTHON_ENV/bin/activate\n echo \"done.\"\n fi\n\n # If we see a requirements.txt file, install its contents\n # into a virtual environment\n\n if [[ -f requirements.txt ]]; then\n echo -n \"🐍 Processing requirements.txt...\"\n [ ! -d $PYTHON_ENV ] && python -m venv $PYTHON_ENV\n . $PYTHON_ENV/bin/activate\n pip3 -qq install -r requirements.txt\n echo \"done.\"\n fi\n"},"install":{"jupyter":{"pkg-path":"jupyter-all"},"matplotlib":{"pkg-path":"python312Packages.matplotlib"},"numpy":{"pkg-path":"python312Packages.numpy"},"pandas":{"pkg-path":"python312Packages.pandas"},"plotly":{"pkg-path":"python312Packages.plotly"},"pyarrow":{"pkg-path":"python312Packages.pyarrow"},"pydot":{"pkg-path":"python312Packages.pydot"},"sympy":{"pkg-path":"python312Packages.sympy"},"toilet":{"pkg-path":"toilet"}},"options":{"allow":{"licenses":[]},"semver":{},"systems":["x86_64-linux","aarch64-darwin","aarch64-linux","x86_64-darwin"]},"profile":{"common":" toilet -f smmono9 --metal \"jupyter\"\n\n echo\n if [[ \"$FLOX_ACTIVATE_START_SERVICES\" == \"true\" ]]; then\n sleep 1\n jupyter-notebook list\n else\n echo \"To start notebook server, run activate with '--start-services'.\"\n fi\n echo\n"},"services":{"jupyter-server":{"command":"jupyter-notebook --no-browser --IdentityProvider.token=${JUPYTER_SERVER_TOKEN} --ip=0.0.0.0","is-daemon":null,"shutdown":null,"systems":null,"vars":null}},"vars":{"JUPYTER_SERVER_TOKEN":"floxfan123456","PYTHON_ENV":"./nb-venv/"},"version":1},"packages":[{"attr_path":"jupyter-all","broken":false,"derivation":"/nix/store/37mwvg35w97iyaz9f2m0rsbinlzihi63-python3-3.12.5-env.drv","description":"High-level dynamically-typed programming language","group":"toplevel","install_id":"jupyter","license":"Python-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3-3.12.5-env","outputs":{"out":"/nix/store/sks1rgnfnkvvj5k1laia610sf2iabazy-python3-3.12.5-env"},"outputs_to_install":["out"],"pname":"jupyter-all","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":false,"version":"python3-3.12.5-env"},{"attr_path":"jupyter-all","broken":false,"derivation":"/nix/store/31qxbsfz8wig20kx1jr1kb9hi1j4z88k-python3-3.12.5-env.drv","description":"High-level dynamically-typed programming language","group":"toplevel","install_id":"jupyter","license":"Python-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3-3.12.5-env","outputs":{"out":"/nix/store/wdshplg190rzdk2bzjc4mp5q98m4c2dy-python3-3.12.5-env"},"outputs_to_install":["out"],"pname":"jupyter-all","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":false,"version":"python3-3.12.5-env"},{"attr_path":"jupyter-all","broken":false,"derivation":"/nix/store/nrm07ym00y4fw4f14a0004nh9bg6nb1m-python3-3.12.5-env.drv","description":"High-level dynamically-typed programming language","group":"toplevel","install_id":"jupyter","license":"Python-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3-3.12.5-env","outputs":{"out":"/nix/store/sqsb1ajk15crhn7njch48c1mwnfzw0mc-python3-3.12.5-env"},"outputs_to_install":["out"],"pname":"jupyter-all","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":false,"version":"python3-3.12.5-env"},{"attr_path":"jupyter-all","broken":false,"derivation":"/nix/store/xd40yjdn52ingvzacw4xc7mw1r8hq41w-python3-3.12.5-env.drv","description":"High-level dynamically-typed programming language","group":"toplevel","install_id":"jupyter","license":"Python-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3-3.12.5-env","outputs":{"out":"/nix/store/d010vhn5dbh5gnm3la6pvrw96yrvdsnj-python3-3.12.5-env"},"outputs_to_install":["out"],"pname":"jupyter-all","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":false,"version":"python3-3.12.5-env"},{"attr_path":"python312Packages.matplotlib","broken":false,"derivation":"/nix/store/dlnapp2wkmx6rc10hcd9k6cig95s3mxk-python3.12-matplotlib-3.9.1.drv","description":"Python plotting library, making publication quality plots","group":"toplevel","install_id":"matplotlib","license":"[ Python-2.0, 0BSD ]","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-matplotlib-3.9.1","outputs":{"dist":"/nix/store/5wyy79bmbc1rpan2rrnpmbicf1rnyxxv-python3.12-matplotlib-3.9.1-dist","out":"/nix/store/ks5v01san4zfmmd0fw3lwgg12h0ycpkr-python3.12-matplotlib-3.9.1"},"outputs_to_install":["out"],"pname":"matplotlib","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":false,"version":"python3.12-matplotlib-3.9.1"},{"attr_path":"python312Packages.matplotlib","broken":false,"derivation":"/nix/store/wcg31ms546n8yinqbmxn4ncimxbggisg-python3.12-matplotlib-3.9.1.drv","description":"Python plotting library, making publication quality plots","group":"toplevel","install_id":"matplotlib","license":"[ Python-2.0, 0BSD ]","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-matplotlib-3.9.1","outputs":{"dist":"/nix/store/1a5fbp2327ygkpc915hqd2d68fivpx29-python3.12-matplotlib-3.9.1-dist","out":"/nix/store/pwa6q0gi7g07v2ig6hm6zmccjii1ajk8-python3.12-matplotlib-3.9.1"},"outputs_to_install":["out"],"pname":"matplotlib","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":false,"version":"python3.12-matplotlib-3.9.1"},{"attr_path":"python312Packages.matplotlib","broken":false,"derivation":"/nix/store/ida0dhgq9p1mqb699wr9mff54hkxhkkk-python3.12-matplotlib-3.9.1.drv","description":"Python plotting library, making publication quality plots","group":"toplevel","install_id":"matplotlib","license":"[ Python-2.0, 0BSD ]","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-matplotlib-3.9.1","outputs":{"dist":"/nix/store/08ran2dd18vs13fp7g3zscg46jgfy13h-python3.12-matplotlib-3.9.1-dist","out":"/nix/store/hzciy95pryl56y9z0nvc8iqhqyjx6pgp-python3.12-matplotlib-3.9.1"},"outputs_to_install":["out"],"pname":"matplotlib","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":false,"version":"python3.12-matplotlib-3.9.1"},{"attr_path":"python312Packages.matplotlib","broken":false,"derivation":"/nix/store/s9b8hyri9c15j2qxh010bgm8qybxr1ff-python3.12-matplotlib-3.9.1.drv","description":"Python plotting library, making publication quality plots","group":"toplevel","install_id":"matplotlib","license":"[ Python-2.0, 0BSD ]","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-matplotlib-3.9.1","outputs":{"dist":"/nix/store/c4aml3sy49rh24arr7fgyf7wap3c0kk9-python3.12-matplotlib-3.9.1-dist","out":"/nix/store/blrrlxdzlq2iyjk4j857mczp98dahqzi-python3.12-matplotlib-3.9.1"},"outputs_to_install":["out"],"pname":"matplotlib","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":false,"version":"python3.12-matplotlib-3.9.1"},{"attr_path":"python312Packages.numpy","broken":false,"derivation":"/nix/store/9llya6jwj0ilg8hmlqg2drkyab3ygzpj-python3.12-numpy-1.26.4.drv","description":"Scientific tools for Python","group":"toplevel","install_id":"numpy","license":"BSD-3-Clause","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-numpy-1.26.4","outputs":{"dist":"/nix/store/vyrpx71v7jh6rz6rv6qyfsx7gihxxzgq-python3.12-numpy-1.26.4-dist","out":"/nix/store/fvxlmgcjanv8j0qxzxxgxigq1344zn39-python3.12-numpy-1.26.4"},"outputs_to_install":["out"],"pname":"numpy","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":false,"version":"python3.12-numpy-1.26.4"},{"attr_path":"python312Packages.numpy","broken":false,"derivation":"/nix/store/zk0qs5xd7g2b6xard7vh84nc7pldawq7-python3.12-numpy-1.26.4.drv","description":"Scientific tools for Python","group":"toplevel","install_id":"numpy","license":"BSD-3-Clause","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-numpy-1.26.4","outputs":{"dist":"/nix/store/hd334srhf1qhzg5pw6923m70asgffjv0-python3.12-numpy-1.26.4-dist","out":"/nix/store/7nahb555s2ll14mmjiz062xrhh6ibgn0-python3.12-numpy-1.26.4"},"outputs_to_install":["out"],"pname":"numpy","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":false,"version":"python3.12-numpy-1.26.4"},{"attr_path":"python312Packages.numpy","broken":false,"derivation":"/nix/store/aim4pmywhpyw416qn6bg90b95qqmm7kn-python3.12-numpy-1.26.4.drv","description":"Scientific tools for Python","group":"toplevel","install_id":"numpy","license":"BSD-3-Clause","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-numpy-1.26.4","outputs":{"dist":"/nix/store/kz9d3qja8rplhsi3c512vqnlz69hssk5-python3.12-numpy-1.26.4-dist","out":"/nix/store/ksxabbdqc6h4r3jxz6pmhingqyz868pw-python3.12-numpy-1.26.4"},"outputs_to_install":["out"],"pname":"numpy","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":false,"version":"python3.12-numpy-1.26.4"},{"attr_path":"python312Packages.numpy","broken":false,"derivation":"/nix/store/p48syhccmj2waqlh1xjp4mrbvcnicf6g-python3.12-numpy-1.26.4.drv","description":"Scientific tools for Python","group":"toplevel","install_id":"numpy","license":"BSD-3-Clause","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-numpy-1.26.4","outputs":{"dist":"/nix/store/wknwwy20b8iasl9q9qmqq67b0zyw2wrg-python3.12-numpy-1.26.4-dist","out":"/nix/store/8blnjqxylcgz9fcss11f9n6sn6j200k9-python3.12-numpy-1.26.4"},"outputs_to_install":["out"],"pname":"numpy","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":false,"version":"python3.12-numpy-1.26.4"},{"attr_path":"python312Packages.pandas","broken":false,"derivation":"/nix/store/hgsp83w21sg7fh1szrgg081ml00g0lwl-python3.12-pandas-2.2.2.drv","description":"Powerful data structures for data analysis, time series, and statistics","group":"toplevel","install_id":"pandas","license":"BSD-3-Clause","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-pandas-2.2.2","outputs":{"dist":"/nix/store/1vwi7847vm6yxwjhi8zxfh9dvdzg6zcq-python3.12-pandas-2.2.2-dist","out":"/nix/store/v6qwrli608p7v2qaxn3vhphzq4dw3s8l-python3.12-pandas-2.2.2"},"outputs_to_install":["out"],"pname":"pandas","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":false,"version":"python3.12-pandas-2.2.2"},{"attr_path":"python312Packages.pandas","broken":false,"derivation":"/nix/store/76ilq4dz8465s6lj7jcg7zczbvf6ibal-python3.12-pandas-2.2.2.drv","description":"Powerful data structures for data analysis, time series, and statistics","group":"toplevel","install_id":"pandas","license":"BSD-3-Clause","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-pandas-2.2.2","outputs":{"dist":"/nix/store/f5cjacmdakyqlvc57l5am3dc606cjq84-python3.12-pandas-2.2.2-dist","out":"/nix/store/dr9s7rx2mbps3ljqa8ssdh3v6wczz0rc-python3.12-pandas-2.2.2"},"outputs_to_install":["out"],"pname":"pandas","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":false,"version":"python3.12-pandas-2.2.2"},{"attr_path":"python312Packages.pandas","broken":false,"derivation":"/nix/store/37dsd0hiwfzk2bxsfkvm25q9f8b0j1jw-python3.12-pandas-2.2.2.drv","description":"Powerful data structures for data analysis, time series, and statistics","group":"toplevel","install_id":"pandas","license":"BSD-3-Clause","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-pandas-2.2.2","outputs":{"dist":"/nix/store/hlzxakilxfbkm54b87fwgw8v37ajylda-python3.12-pandas-2.2.2-dist","out":"/nix/store/y7smv842v5yj2jdl2c0s7qb5p7ngh5zx-python3.12-pandas-2.2.2"},"outputs_to_install":["out"],"pname":"pandas","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":false,"version":"python3.12-pandas-2.2.2"},{"attr_path":"python312Packages.pandas","broken":false,"derivation":"/nix/store/4fcbs667pql6kvqxf6s85vdl40lamfv3-python3.12-pandas-2.2.2.drv","description":"Powerful data structures for data analysis, time series, and statistics","group":"toplevel","install_id":"pandas","license":"BSD-3-Clause","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-pandas-2.2.2","outputs":{"dist":"/nix/store/3yj10bn4nsqvcmwkn6j20x9rgx54am4n-python3.12-pandas-2.2.2-dist","out":"/nix/store/fzyghs952p5hxyrwxm4787z4irzdzxyw-python3.12-pandas-2.2.2"},"outputs_to_install":["out"],"pname":"pandas","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":false,"version":"python3.12-pandas-2.2.2"},{"attr_path":"python312Packages.plotly","broken":false,"derivation":"/nix/store/7iqsad7scjgrsv7kg82yl6gj4dzp80lq-python3.12-plotly-5.23.0.drv","description":"Python plotting library for collaborative, interactive, publication-quality graphs","group":"toplevel","install_id":"plotly","license":"[ MIT ]","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-plotly-5.23.0","outputs":{"dist":"/nix/store/pa1hvdc8wr69dwg136i0xnjjfcvlknhw-python3.12-plotly-5.23.0-dist","out":"/nix/store/idzr38dpdgj18414inmpxwmb9am7kjs5-python3.12-plotly-5.23.0"},"outputs_to_install":["out"],"pname":"plotly","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":false,"version":"python3.12-plotly-5.23.0"},{"attr_path":"python312Packages.plotly","broken":false,"derivation":"/nix/store/0c7ij5qfqpv7iafik88nkc4myvqwrhh6-python3.12-plotly-5.23.0.drv","description":"Python plotting library for collaborative, interactive, publication-quality graphs","group":"toplevel","install_id":"plotly","license":"[ MIT ]","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-plotly-5.23.0","outputs":{"dist":"/nix/store/8dsdc85zwnki9hs0awif61m4whd1cvjs-python3.12-plotly-5.23.0-dist","out":"/nix/store/0d96rai71s725c4gg2s70fgbwclnhfpi-python3.12-plotly-5.23.0"},"outputs_to_install":["out"],"pname":"plotly","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":false,"version":"python3.12-plotly-5.23.0"},{"attr_path":"python312Packages.plotly","broken":false,"derivation":"/nix/store/0h9kd67jinq9a2y13prygr79nnrdn2x3-python3.12-plotly-5.23.0.drv","description":"Python plotting library for collaborative, interactive, publication-quality graphs","group":"toplevel","install_id":"plotly","license":"[ MIT ]","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-plotly-5.23.0","outputs":{"dist":"/nix/store/2sy7mimi9p1lg8czbf9g78v5c7gki74v-python3.12-plotly-5.23.0-dist","out":"/nix/store/pla844ai7613hq7i9wfxz6n126jqccw7-python3.12-plotly-5.23.0"},"outputs_to_install":["out"],"pname":"plotly","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":false,"version":"python3.12-plotly-5.23.0"},{"attr_path":"python312Packages.plotly","broken":false,"derivation":"/nix/store/14b9x7wr69y7hs3mnlrzdp2z8l4d0vv8-python3.12-plotly-5.23.0.drv","description":"Python plotting library for collaborative, interactive, publication-quality graphs","group":"toplevel","install_id":"plotly","license":"[ MIT ]","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-plotly-5.23.0","outputs":{"dist":"/nix/store/9yb3vijsr94cp02c8zkzsnlp46shjgbp-python3.12-plotly-5.23.0-dist","out":"/nix/store/wl70h7d9xn1lns93x5k93an18sbbflk3-python3.12-plotly-5.23.0"},"outputs_to_install":["out"],"pname":"plotly","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":false,"version":"python3.12-plotly-5.23.0"},{"attr_path":"python312Packages.pyarrow","broken":false,"derivation":"/nix/store/a3bjvksawskqqr276q6d6rydk6xglwbj-python3.12-pyarrow-17.0.0.drv","description":"Cross-language development platform for in-memory data","group":"toplevel","install_id":"pyarrow","license":"Apache-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-pyarrow-17.0.0","outputs":{"dist":"/nix/store/36v9rsf04jcvxn4hzsqrf1xp13kbrjrb-python3.12-pyarrow-17.0.0-dist","out":"/nix/store/c32ml1y9mcln5gaxmqrp3l0adfmys6da-python3.12-pyarrow-17.0.0"},"outputs_to_install":["out"],"pname":"pyarrow","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":false,"version":"python3.12-pyarrow-17.0.0"},{"attr_path":"python312Packages.pyarrow","broken":false,"derivation":"/nix/store/d0nd9i25f5y42k15v2i64hl3dskkmxz0-python3.12-pyarrow-17.0.0.drv","description":"Cross-language development platform for in-memory data","group":"toplevel","install_id":"pyarrow","license":"Apache-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-pyarrow-17.0.0","outputs":{"dist":"/nix/store/qy98h5jjg16w8q8nybc5vm2l9fhivqbj-python3.12-pyarrow-17.0.0-dist","out":"/nix/store/c95jnjzfrgjyigc56b0l7ngc3k0rxsfc-python3.12-pyarrow-17.0.0"},"outputs_to_install":["out"],"pname":"pyarrow","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":false,"version":"python3.12-pyarrow-17.0.0"},{"attr_path":"python312Packages.pyarrow","broken":false,"derivation":"/nix/store/2znx9arlz4mpkdn8sndwrxw3n5l19via-python3.12-pyarrow-17.0.0.drv","description":"Cross-language development platform for in-memory data","group":"toplevel","install_id":"pyarrow","license":"Apache-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-pyarrow-17.0.0","outputs":{"dist":"/nix/store/db60vkaqwdg6wb6bj117jqndhd17ddq8-python3.12-pyarrow-17.0.0-dist","out":"/nix/store/adwkmii2lfc3na8w2rfc08ib1x9jza7z-python3.12-pyarrow-17.0.0"},"outputs_to_install":["out"],"pname":"pyarrow","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":false,"version":"python3.12-pyarrow-17.0.0"},{"attr_path":"python312Packages.pyarrow","broken":false,"derivation":"/nix/store/bwig355pjwcz9fsnd9j4q67dmis1c6pw-python3.12-pyarrow-17.0.0.drv","description":"Cross-language development platform for in-memory data","group":"toplevel","install_id":"pyarrow","license":"Apache-2.0","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-pyarrow-17.0.0","outputs":{"dist":"/nix/store/q4bjaiqm7bfh65lsvkx5jh1kd5jdfiwa-python3.12-pyarrow-17.0.0-dist","out":"/nix/store/s61zx99nzdbh49d0f2p0smbzpfvcr7pd-python3.12-pyarrow-17.0.0"},"outputs_to_install":["out"],"pname":"pyarrow","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":false,"version":"python3.12-pyarrow-17.0.0"},{"attr_path":"python312Packages.pydot","broken":false,"derivation":"/nix/store/q9dhjrgzrisvq30kq3afx8limj7a0v1h-python3.12-pydot-2.0.0.drv","description":"Allows to create both directed and non directed graphs from Python","group":"toplevel","install_id":"pydot","license":"MIT","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-pydot-2.0.0","outputs":{"dist":"/nix/store/y47x1z2zsncbai5nxrpkvn07z6wlm9pl-python3.12-pydot-2.0.0-dist","out":"/nix/store/6r43mj4cgmw8q8jc714c22iz7lv5nwxp-python3.12-pydot-2.0.0"},"outputs_to_install":["out"],"pname":"pydot","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":false,"version":"python3.12-pydot-2.0.0"},{"attr_path":"python312Packages.pydot","broken":false,"derivation":"/nix/store/lha1fa6avy78zhkai8azrc3nkd35lwgl-python3.12-pydot-2.0.0.drv","description":"Allows to create both directed and non directed graphs from Python","group":"toplevel","install_id":"pydot","license":"MIT","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-pydot-2.0.0","outputs":{"dist":"/nix/store/4ckwhagwp6shcvz9pj5pgr1fn4vf6sic-python3.12-pydot-2.0.0-dist","out":"/nix/store/jjazl3izy8c4jy8sm22957ibx613d5s8-python3.12-pydot-2.0.0"},"outputs_to_install":["out"],"pname":"pydot","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":false,"version":"python3.12-pydot-2.0.0"},{"attr_path":"python312Packages.pydot","broken":false,"derivation":"/nix/store/nasb5ydb22ckrp76qpvg1jwkssx7amwr-python3.12-pydot-2.0.0.drv","description":"Allows to create both directed and non directed graphs from Python","group":"toplevel","install_id":"pydot","license":"MIT","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-pydot-2.0.0","outputs":{"dist":"/nix/store/mr6cnndrzk120ln98fw3r0pwf7lw41gn-python3.12-pydot-2.0.0-dist","out":"/nix/store/sbm6l25z3rgry0ngyirk2kp8lpb3j40n-python3.12-pydot-2.0.0"},"outputs_to_install":["out"],"pname":"pydot","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":false,"version":"python3.12-pydot-2.0.0"},{"attr_path":"python312Packages.pydot","broken":false,"derivation":"/nix/store/7nassifvpl4zykc043pxqi5b5zm38626-python3.12-pydot-2.0.0.drv","description":"Allows to create both directed and non directed graphs from Python","group":"toplevel","install_id":"pydot","license":"MIT","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-pydot-2.0.0","outputs":{"dist":"/nix/store/sh51mh7x9qm94xmgsp17amz7i0i6wcqx-python3.12-pydot-2.0.0-dist","out":"/nix/store/f8d6305sx8h096iz8k9f6p96n9lwxfav-python3.12-pydot-2.0.0"},"outputs_to_install":["out"],"pname":"pydot","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":false,"version":"python3.12-pydot-2.0.0"},{"attr_path":"python312Packages.sympy","broken":false,"derivation":"/nix/store/2xjgihw6x0p03j9drchhkmvl6rmq831g-python3.12-sympy-1.12.1.drv","description":"Python library for symbolic mathematics","group":"toplevel","install_id":"sympy","license":"BSD-3-Clause","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-sympy-1.12.1","outputs":{"dist":"/nix/store/s8s01jnvsp21nxhd4zh8na591fqwqk8g-python3.12-sympy-1.12.1-dist","out":"/nix/store/9jsfyflpk4qbwsy0rgnlnf79vls2zabx-python3.12-sympy-1.12.1"},"outputs_to_install":["out"],"pname":"sympy","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":false,"version":"python3.12-sympy-1.12.1"},{"attr_path":"python312Packages.sympy","broken":false,"derivation":"/nix/store/zdmdfx83wgcm7y3rwf71w9vjpyk2sfi4-python3.12-sympy-1.12.1.drv","description":"Python library for symbolic mathematics","group":"toplevel","install_id":"sympy","license":"BSD-3-Clause","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-sympy-1.12.1","outputs":{"dist":"/nix/store/cd1cq977bpjzzm4nfasaiga8z8y1cpjn-python3.12-sympy-1.12.1-dist","out":"/nix/store/krgzfmqwfmdwyp2ichlvm522h5b0fmmx-python3.12-sympy-1.12.1"},"outputs_to_install":["out"],"pname":"sympy","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":false,"version":"python3.12-sympy-1.12.1"},{"attr_path":"python312Packages.sympy","broken":false,"derivation":"/nix/store/x4dp5kirrg3rqlkz0v9b5k4wbs7hzv5q-python3.12-sympy-1.12.1.drv","description":"Python library for symbolic mathematics","group":"toplevel","install_id":"sympy","license":"BSD-3-Clause","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-sympy-1.12.1","outputs":{"dist":"/nix/store/pcw1yhcdi30qa19aw8dv23l46blvfycw-python3.12-sympy-1.12.1-dist","out":"/nix/store/px9zq4vb4q2gfr4hn0hpyz88l5aawfm0-python3.12-sympy-1.12.1"},"outputs_to_install":["out"],"pname":"sympy","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":false,"version":"python3.12-sympy-1.12.1"},{"attr_path":"python312Packages.sympy","broken":false,"derivation":"/nix/store/mnb8fs4qps04brzw6mx7ah3csnph41vm-python3.12-sympy-1.12.1.drv","description":"Python library for symbolic mathematics","group":"toplevel","install_id":"sympy","license":"BSD-3-Clause","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"python3.12-sympy-1.12.1","outputs":{"dist":"/nix/store/2c5jm1hjl2ra9cyyx8r31x4xm9i2gs2v-python3.12-sympy-1.12.1-dist","out":"/nix/store/rk4scjsw1qkvfbppjrrksffgcclga6db-python3.12-sympy-1.12.1"},"outputs_to_install":["out"],"pname":"sympy","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":false,"version":"python3.12-sympy-1.12.1"},{"attr_path":"toilet","broken":false,"derivation":"/nix/store/wc7l3cm9fh0p9bd7gbr343cyh0m1cdhc-toilet-0.3.drv","description":"Display large colourful characters in text mode","group":"toplevel","install_id":"toilet","license":"WTFPL","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"toilet-0.3","outputs":{"out":"/nix/store/7saj381wmizipfrqw6l7i08wpvip8f4l-toilet-0.3"},"outputs_to_install":["out"],"pname":"toilet","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":false,"version":"0.3"},{"attr_path":"toilet","broken":false,"derivation":"/nix/store/jbjl7chwxq4s90liab7mdvzxhqsmfs1m-toilet-0.3.drv","description":"Display large colourful characters in text mode","group":"toplevel","install_id":"toilet","license":"WTFPL","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"toilet-0.3","outputs":{"out":"/nix/store/lznkyvw9gyiv0zacq4f1xj72pm42x9c1-toilet-0.3"},"outputs_to_install":["out"],"pname":"toilet","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":false,"version":"0.3"},{"attr_path":"toilet","broken":false,"derivation":"/nix/store/gjl7160b21x6w44i27082x7pvwxxbk76-toilet-0.3.drv","description":"Display large colourful characters in text mode","group":"toplevel","install_id":"toilet","license":"WTFPL","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"toilet-0.3","outputs":{"out":"/nix/store/8vfja99rcsql5222wr2m2znb86mnrb84-toilet-0.3"},"outputs_to_install":["out"],"pname":"toilet","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":false,"version":"0.3"},{"attr_path":"toilet","broken":false,"derivation":"/nix/store/xiyyqcgiwxfaxms2bzl7z7ybwbvqrv9y-toilet-0.3.drv","description":"Display large colourful characters in text mode","group":"toplevel","install_id":"toilet","license":"WTFPL","locked_url":"https://github.com/flox/nixpkgs?rev=bc947f541ae55e999ffdb4013441347d83b00feb","name":"toilet-0.3","outputs":{"out":"/nix/store/88983dkng1p19bjk8zq83cl57d9x8q3g-toilet-0.3"},"outputs_to_install":["out"],"pname":"toilet","priority":5,"rev":"bc947f541ae55e999ffdb4013441347d83b00feb","rev_count":688563,"rev_date":"2024-10-04T05:06:13Z","scrape_date":"2024-10-06T03:50:36Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":false,"version":"0.3"}]} \ No newline at end of file diff --git a/nb/.flox/env/manifest.toml b/nb/.flox/env/manifest.toml new file mode 100644 index 0000000..8c4b3c1 --- /dev/null +++ b/nb/.flox/env/manifest.toml @@ -0,0 +1,64 @@ +version = 1 +# +# This is a flox environment manifest. +# Visit +# or see flox-edit(1) for more information +# + +[install] +jupyter.pkg-path = "jupyter-all" +pandas.pkg-path = "python312Packages.pandas" +matplotlib.pkg-path = "python312Packages.matplotlib" +numpy.pkg-path = "python312Packages.numpy" +pyarrow.pkg-path = "python312Packages.pyarrow" +sympy.pkg-path = "python312Packages.sympy" +pydot.pkg-path = "python312Packages.pydot" +plotly.pkg-path = "python312Packages.plotly" +toilet.pkg-path = "toilet" + +[vars] +PYTHON_ENV='./nb-venv/' +JUPYTER_SERVER_TOKEN = "floxfan123456" + +[hook] +on-activate = ''' + if [[ -d $PYTHON_ENV ]]; then + echo; echo -n "⚡️ Activating existing venv in $PYTHON_ENV..." + . $PYTHON_ENV/bin/activate + echo "done." + fi + + # If we see a requirements.txt file, install its contents + # into a virtual environment + + if [[ -f requirements.txt ]]; then + echo -n "🐍 Processing requirements.txt..." + [ ! -d $PYTHON_ENV ] && python -m venv $PYTHON_ENV + . $PYTHON_ENV/bin/activate + pip3 -qq install -r requirements.txt + echo "done." + fi +''' + +[services.jupyter-server] +command = "jupyter-notebook --no-browser --IdentityProvider.token=${JUPYTER_SERVER_TOKEN} --ip=0.0.0.0" + +[profile] +common = ''' + toilet -f smmono9 --metal "jupyter" + + echo + if [[ "$FLOX_ACTIVATE_START_SERVICES" == "true" ]]; then + sleep 1 + jupyter-notebook list + else + echo "To start notebook server, run activate with '--start-services'." + fi + echo +''' + +[options] +systems = ["x86_64-linux", "aarch64-darwin", "aarch64-linux", "x86_64-darwin"] + + + diff --git a/nb/.gitignore b/nb/.gitignore new file mode 100644 index 0000000..d2766f7 --- /dev/null +++ b/nb/.gitignore @@ -0,0 +1 @@ +/*.nbconvert.ipynb diff --git a/nb/README.md b/nb/README.md new file mode 100644 index 0000000..69a75dc --- /dev/null +++ b/nb/README.md @@ -0,0 +1,7 @@ +# Jupyter Notebooks + Flox + +Blog: https://flox.dev/blog/jupyter-remote-env + +Examples: +- https://matplotlib.org/3.1.3/gallery/images_contours_and_fields/barcode_demo.html +- https://matplotlib.org/stable/gallery/images_contours_and_fields/tricontour_demo.html diff --git a/nb/barcode_demo.ipynb b/nb/barcode_demo.ipynb new file mode 100644 index 0000000..a52aa39 --- /dev/null +++ b/nb/barcode_demo.ipynb @@ -0,0 +1,72 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n# Barcode Demo\n\n\nThis demo shows how to produce a one-dimensional image, or \"bar code\".\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\nimport numpy as np\n\n# Fixing random state for reproducibility\nnp.random.seed(19680801)\n\n# the bar\nx = np.random.rand(500) > 0.7\n\nbarprops = dict(aspect='auto', cmap='binary', interpolation='nearest')\n\nfig = plt.figure()\n\n# a vertical barcode\nax1 = fig.add_axes([0.1, 0.1, 0.1, 0.8])\nax1.set_axis_off()\nax1.imshow(x.reshape((-1, 1)), **barprops)\n\n# a horizontal barcode\nax2 = fig.add_axes([0.3, 0.4, 0.6, 0.2])\nax2.set_axis_off()\nax2.imshow(x.reshape((1, -1)), **barprops)\n\nplt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "------------\n\nReferences\n\"\"\"\"\"\"\"\"\"\"\n\nThe use of the following functions, methods and classes is shown\nin this example:\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import matplotlib\nmatplotlib.axes.Axes.imshow\nmatplotlib.pyplot.imshow" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/nb/barcode_demo.py b/nb/barcode_demo.py new file mode 100644 index 0000000..9c71084 --- /dev/null +++ b/nb/barcode_demo.py @@ -0,0 +1,45 @@ +""" +============ +Barcode Demo +============ + +This demo shows how to produce a one-dimensional image, or "bar code". +""" +import matplotlib.pyplot as plt +import numpy as np + +# Fixing random state for reproducibility +np.random.seed(19680801) + +# the bar +x = np.random.rand(500) > 0.7 + +barprops = dict(aspect='auto', cmap='binary', interpolation='nearest') + +fig = plt.figure() + +# a vertical barcode +ax1 = fig.add_axes([0.1, 0.1, 0.1, 0.8]) +ax1.set_axis_off() +ax1.imshow(x.reshape((-1, 1)), **barprops) + +# a horizontal barcode +ax2 = fig.add_axes([0.3, 0.4, 0.6, 0.2]) +ax2.set_axis_off() +ax2.imshow(x.reshape((1, -1)), **barprops) + +plt.show() + +############################################################################# +# +# ------------ +# +# References +# """""""""" +# +# The use of the following functions, methods and classes is shown +# in this example: + +import matplotlib +matplotlib.axes.Axes.imshow +matplotlib.pyplot.imshow diff --git a/nb/test.sh b/nb/test.sh new file mode 100755 index 0000000..8d41ce1 --- /dev/null +++ b/nb/test.sh @@ -0,0 +1,7 @@ +#!/usr/bin/env bash + +set -eo pipefail + +jupyter nbconvert --to notebook --execute ./barcode_demo.ipynb +jupyter nbconvert --to notebook --execute ./tricontour_demo.ipynb + diff --git a/nb/tricontour_demo.ipynb b/nb/tricontour_demo.ipynb new file mode 100644 index 0000000..a6ea504 --- /dev/null +++ b/nb/tricontour_demo.ipynb @@ -0,0 +1,158 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n# Tricontour Demo\n\nContour plots of unstructured triangular grids.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\nimport numpy as np\n\nimport matplotlib.tri as tri" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Creating a Triangulation without specifying the triangles results in the\nDelaunay triangulation of the points.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# First create the x and y coordinates of the points.\nn_angles = 48\nn_radii = 8\nmin_radius = 0.25\nradii = np.linspace(min_radius, 0.95, n_radii)\n\nangles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)\nangles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)\nangles[:, 1::2] += np.pi / n_angles\n\nx = (radii * np.cos(angles)).flatten()\ny = (radii * np.sin(angles)).flatten()\nz = (np.cos(radii) * np.cos(3 * angles)).flatten()\n\n# Create the Triangulation; no triangles so Delaunay triangulation created.\ntriang = tri.Triangulation(x, y)\n\n# Mask off unwanted triangles.\ntriang.set_mask(np.hypot(x[triang.triangles].mean(axis=1),\n y[triang.triangles].mean(axis=1))\n < min_radius)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "pcolor plot.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "fig1, ax1 = plt.subplots()\nax1.set_aspect('equal')\ntcf = ax1.tricontourf(triang, z)\nfig1.colorbar(tcf)\nax1.tricontour(triang, z, colors='k')\nax1.set_title('Contour plot of Delaunay triangulation')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You could also specify hatching patterns along with different cmaps.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "fig2, ax2 = plt.subplots()\nax2.set_aspect(\"equal\")\ntcf = ax2.tricontourf(\n triang,\n z,\n hatches=[\"*\", \"-\", \"/\", \"//\", \"\\\\\", None],\n cmap=\"cividis\"\n)\nfig2.colorbar(tcf)\nax2.tricontour(triang, z, linestyles=\"solid\", colors=\"k\", linewidths=2.0)\nax2.set_title(\"Hatched Contour plot of Delaunay triangulation\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You could also generate hatching patterns labeled with no color.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "fig3, ax3 = plt.subplots()\nn_levels = 7\ntcf = ax3.tricontourf(\n triang,\n z,\n n_levels,\n colors=\"none\",\n hatches=[\".\", \"/\", \"\\\\\", None, \"\\\\\\\\\", \"*\"],\n)\nax3.tricontour(triang, z, n_levels, colors=\"black\", linestyles=\"-\")\n\n\n# create a legend for the contour set\nartists, labels = tcf.legend_elements(str_format=\"{:2.1f}\".format)\nax3.legend(artists, labels, handleheight=2, framealpha=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can specify your own triangulation rather than perform a Delaunay\ntriangulation of the points, where each triangle is given by the indices of\nthe three points that make up the triangle, ordered in either a clockwise or\nanticlockwise manner.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "xy = np.asarray([\n [-0.101, 0.872], [-0.080, 0.883], [-0.069, 0.888], [-0.054, 0.890],\n [-0.045, 0.897], [-0.057, 0.895], [-0.073, 0.900], [-0.087, 0.898],\n [-0.090, 0.904], [-0.069, 0.907], [-0.069, 0.921], [-0.080, 0.919],\n [-0.073, 0.928], [-0.052, 0.930], [-0.048, 0.942], [-0.062, 0.949],\n [-0.054, 0.958], [-0.069, 0.954], [-0.087, 0.952], [-0.087, 0.959],\n [-0.080, 0.966], [-0.085, 0.973], [-0.087, 0.965], [-0.097, 0.965],\n [-0.097, 0.975], [-0.092, 0.984], [-0.101, 0.980], [-0.108, 0.980],\n [-0.104, 0.987], [-0.102, 0.993], [-0.115, 1.001], [-0.099, 0.996],\n [-0.101, 1.007], [-0.090, 1.010], [-0.087, 1.021], [-0.069, 1.021],\n [-0.052, 1.022], [-0.052, 1.017], [-0.069, 1.010], [-0.064, 1.005],\n [-0.048, 1.005], [-0.031, 1.005], [-0.031, 0.996], [-0.040, 0.987],\n [-0.045, 0.980], [-0.052, 0.975], [-0.040, 0.973], [-0.026, 0.968],\n [-0.020, 0.954], [-0.006, 0.947], [ 0.003, 0.935], [ 0.006, 0.926],\n [ 0.005, 0.921], [ 0.022, 0.923], [ 0.033, 0.912], [ 0.029, 0.905],\n [ 0.017, 0.900], [ 0.012, 0.895], [ 0.027, 0.893], [ 0.019, 0.886],\n [ 0.001, 0.883], [-0.012, 0.884], [-0.029, 0.883], [-0.038, 0.879],\n [-0.057, 0.881], [-0.062, 0.876], [-0.078, 0.876], [-0.087, 0.872],\n [-0.030, 0.907], [-0.007, 0.905], [-0.057, 0.916], [-0.025, 0.933],\n [-0.077, 0.990], [-0.059, 0.993]])\nx = np.degrees(xy[:, 0])\ny = np.degrees(xy[:, 1])\nx0 = -5\ny0 = 52\nz = np.exp(-0.01 * ((x - x0) ** 2 + (y - y0) ** 2))\n\ntriangles = np.asarray([\n [67, 66, 1], [65, 2, 66], [ 1, 66, 2], [64, 2, 65], [63, 3, 64],\n [60, 59, 57], [ 2, 64, 3], [ 3, 63, 4], [ 0, 67, 1], [62, 4, 63],\n [57, 59, 56], [59, 58, 56], [61, 60, 69], [57, 69, 60], [ 4, 62, 68],\n [ 6, 5, 9], [61, 68, 62], [69, 68, 61], [ 9, 5, 70], [ 6, 8, 7],\n [ 4, 70, 5], [ 8, 6, 9], [56, 69, 57], [69, 56, 52], [70, 10, 9],\n [54, 53, 55], [56, 55, 53], [68, 70, 4], [52, 56, 53], [11, 10, 12],\n [69, 71, 68], [68, 13, 70], [10, 70, 13], [51, 50, 52], [13, 68, 71],\n [52, 71, 69], [12, 10, 13], [71, 52, 50], [71, 14, 13], [50, 49, 71],\n [49, 48, 71], [14, 16, 15], [14, 71, 48], [17, 19, 18], [17, 20, 19],\n [48, 16, 14], [48, 47, 16], [47, 46, 16], [16, 46, 45], [23, 22, 24],\n [21, 24, 22], [17, 16, 45], [20, 17, 45], [21, 25, 24], [27, 26, 28],\n [20, 72, 21], [25, 21, 72], [45, 72, 20], [25, 28, 26], [44, 73, 45],\n [72, 45, 73], [28, 25, 29], [29, 25, 31], [43, 73, 44], [73, 43, 40],\n [72, 73, 39], [72, 31, 25], [42, 40, 43], [31, 30, 29], [39, 73, 40],\n [42, 41, 40], [72, 33, 31], [32, 31, 33], [39, 38, 72], [33, 72, 38],\n [33, 38, 34], [37, 35, 38], [34, 38, 35], [35, 37, 36]])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Rather than create a Triangulation object, can simply pass x, y and triangles\narrays to tripcolor directly. It would be better to use a Triangulation\nobject if the same triangulation was to be used more than once to save\nduplicated calculations.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "fig4, ax4 = plt.subplots()\nax4.set_aspect('equal')\ntcf = ax4.tricontourf(x, y, triangles, z)\nfig4.colorbar(tcf)\nax4.set_title('Contour plot of user-specified triangulation')\nax4.set_xlabel('Longitude (degrees)')\nax4.set_ylabel('Latitude (degrees)')\n\nplt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + ".. admonition:: References\n\n The use of the following functions, methods, classes and modules is shown\n in this example:\n\n - `matplotlib.axes.Axes.tricontourf` / `matplotlib.pyplot.tricontourf`\n - `matplotlib.tri.Triangulation`\n - `matplotlib.figure.Figure.colorbar` / `matplotlib.pyplot.colorbar`\n - `matplotlib.axes.Axes.legend` / `matplotlib.pyplot.legend`\n - `matplotlib.contour.ContourSet.legend_elements`\n\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/nb/tricontour_demo.py b/nb/tricontour_demo.py new file mode 100644 index 0000000..3459382 --- /dev/null +++ b/nb/tricontour_demo.py @@ -0,0 +1,161 @@ +""" +=============== +Tricontour Demo +=============== + +Contour plots of unstructured triangular grids. +""" +import matplotlib.pyplot as plt +import numpy as np + +import matplotlib.tri as tri + +# %% +# Creating a Triangulation without specifying the triangles results in the +# Delaunay triangulation of the points. + +# First create the x and y coordinates of the points. +n_angles = 48 +n_radii = 8 +min_radius = 0.25 +radii = np.linspace(min_radius, 0.95, n_radii) + +angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False) +angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1) +angles[:, 1::2] += np.pi / n_angles + +x = (radii * np.cos(angles)).flatten() +y = (radii * np.sin(angles)).flatten() +z = (np.cos(radii) * np.cos(3 * angles)).flatten() + +# Create the Triangulation; no triangles so Delaunay triangulation created. +triang = tri.Triangulation(x, y) + +# Mask off unwanted triangles. +triang.set_mask(np.hypot(x[triang.triangles].mean(axis=1), + y[triang.triangles].mean(axis=1)) + < min_radius) + +# %% +# pcolor plot. + +fig1, ax1 = plt.subplots() +ax1.set_aspect('equal') +tcf = ax1.tricontourf(triang, z) +fig1.colorbar(tcf) +ax1.tricontour(triang, z, colors='k') +ax1.set_title('Contour plot of Delaunay triangulation') + + +# %% +# You could also specify hatching patterns along with different cmaps. + +fig2, ax2 = plt.subplots() +ax2.set_aspect("equal") +tcf = ax2.tricontourf( + triang, + z, + hatches=["*", "-", "/", "//", "\\", None], + cmap="cividis" +) +fig2.colorbar(tcf) +ax2.tricontour(triang, z, linestyles="solid", colors="k", linewidths=2.0) +ax2.set_title("Hatched Contour plot of Delaunay triangulation") + +# %% +# You could also generate hatching patterns labeled with no color. + +fig3, ax3 = plt.subplots() +n_levels = 7 +tcf = ax3.tricontourf( + triang, + z, + n_levels, + colors="none", + hatches=[".", "/", "\\", None, "\\\\", "*"], +) +ax3.tricontour(triang, z, n_levels, colors="black", linestyles="-") + + +# create a legend for the contour set +artists, labels = tcf.legend_elements(str_format="{:2.1f}".format) +ax3.legend(artists, labels, handleheight=2, framealpha=1) + +# %% +# You can specify your own triangulation rather than perform a Delaunay +# triangulation of the points, where each triangle is given by the indices of +# the three points that make up the triangle, ordered in either a clockwise or +# anticlockwise manner. + +xy = np.asarray([ + [-0.101, 0.872], [-0.080, 0.883], [-0.069, 0.888], [-0.054, 0.890], + [-0.045, 0.897], [-0.057, 0.895], [-0.073, 0.900], [-0.087, 0.898], + [-0.090, 0.904], [-0.069, 0.907], [-0.069, 0.921], [-0.080, 0.919], + [-0.073, 0.928], [-0.052, 0.930], [-0.048, 0.942], [-0.062, 0.949], + [-0.054, 0.958], [-0.069, 0.954], [-0.087, 0.952], [-0.087, 0.959], + [-0.080, 0.966], [-0.085, 0.973], [-0.087, 0.965], [-0.097, 0.965], + [-0.097, 0.975], [-0.092, 0.984], [-0.101, 0.980], [-0.108, 0.980], + [-0.104, 0.987], [-0.102, 0.993], [-0.115, 1.001], [-0.099, 0.996], + [-0.101, 1.007], [-0.090, 1.010], [-0.087, 1.021], [-0.069, 1.021], + [-0.052, 1.022], [-0.052, 1.017], [-0.069, 1.010], [-0.064, 1.005], + [-0.048, 1.005], [-0.031, 1.005], [-0.031, 0.996], [-0.040, 0.987], + [-0.045, 0.980], [-0.052, 0.975], [-0.040, 0.973], [-0.026, 0.968], + [-0.020, 0.954], [-0.006, 0.947], [ 0.003, 0.935], [ 0.006, 0.926], + [ 0.005, 0.921], [ 0.022, 0.923], [ 0.033, 0.912], [ 0.029, 0.905], + [ 0.017, 0.900], [ 0.012, 0.895], [ 0.027, 0.893], [ 0.019, 0.886], + [ 0.001, 0.883], [-0.012, 0.884], [-0.029, 0.883], [-0.038, 0.879], + [-0.057, 0.881], [-0.062, 0.876], [-0.078, 0.876], [-0.087, 0.872], + [-0.030, 0.907], [-0.007, 0.905], [-0.057, 0.916], [-0.025, 0.933], + [-0.077, 0.990], [-0.059, 0.993]]) +x = np.degrees(xy[:, 0]) +y = np.degrees(xy[:, 1]) +x0 = -5 +y0 = 52 +z = np.exp(-0.01 * ((x - x0) ** 2 + (y - y0) ** 2)) + +triangles = np.asarray([ + [67, 66, 1], [65, 2, 66], [ 1, 66, 2], [64, 2, 65], [63, 3, 64], + [60, 59, 57], [ 2, 64, 3], [ 3, 63, 4], [ 0, 67, 1], [62, 4, 63], + [57, 59, 56], [59, 58, 56], [61, 60, 69], [57, 69, 60], [ 4, 62, 68], + [ 6, 5, 9], [61, 68, 62], [69, 68, 61], [ 9, 5, 70], [ 6, 8, 7], + [ 4, 70, 5], [ 8, 6, 9], [56, 69, 57], [69, 56, 52], [70, 10, 9], + [54, 53, 55], [56, 55, 53], [68, 70, 4], [52, 56, 53], [11, 10, 12], + [69, 71, 68], [68, 13, 70], [10, 70, 13], [51, 50, 52], [13, 68, 71], + [52, 71, 69], [12, 10, 13], [71, 52, 50], [71, 14, 13], [50, 49, 71], + [49, 48, 71], [14, 16, 15], [14, 71, 48], [17, 19, 18], [17, 20, 19], + [48, 16, 14], [48, 47, 16], [47, 46, 16], [16, 46, 45], [23, 22, 24], + [21, 24, 22], [17, 16, 45], [20, 17, 45], [21, 25, 24], [27, 26, 28], + [20, 72, 21], [25, 21, 72], [45, 72, 20], [25, 28, 26], [44, 73, 45], + [72, 45, 73], [28, 25, 29], [29, 25, 31], [43, 73, 44], [73, 43, 40], + [72, 73, 39], [72, 31, 25], [42, 40, 43], [31, 30, 29], [39, 73, 40], + [42, 41, 40], [72, 33, 31], [32, 31, 33], [39, 38, 72], [33, 72, 38], + [33, 38, 34], [37, 35, 38], [34, 38, 35], [35, 37, 36]]) + +# %% +# Rather than create a Triangulation object, can simply pass x, y and triangles +# arrays to tripcolor directly. It would be better to use a Triangulation +# object if the same triangulation was to be used more than once to save +# duplicated calculations. + +fig4, ax4 = plt.subplots() +ax4.set_aspect('equal') +tcf = ax4.tricontourf(x, y, triangles, z) +fig4.colorbar(tcf) +ax4.set_title('Contour plot of user-specified triangulation') +ax4.set_xlabel('Longitude (degrees)') +ax4.set_ylabel('Latitude (degrees)') + +plt.show() + +# %% +# +# .. admonition:: References +# +# The use of the following functions, methods, classes and modules is shown +# in this example: +# +# - `matplotlib.axes.Axes.tricontourf` / `matplotlib.pyplot.tricontourf` +# - `matplotlib.tri.Triangulation` +# - `matplotlib.figure.Figure.colorbar` / `matplotlib.pyplot.colorbar` +# - `matplotlib.axes.Axes.legend` / `matplotlib.pyplot.legend` +# - `matplotlib.contour.ContourSet.legend_elements` diff --git a/ollama/.flox/.gitignore b/ollama/.flox/.gitignore new file mode 100644 index 0000000..3ed9fa4 --- /dev/null +++ b/ollama/.flox/.gitignore @@ -0,0 +1,3 @@ +run/ +cache/ +lib/ diff --git a/ollama/.flox/env.json b/ollama/.flox/env.json new file mode 100644 index 0000000..9b68d86 --- /dev/null +++ b/ollama/.flox/env.json @@ -0,0 +1,4 @@ +{ + "name": "ollama", + "version": 1 +} \ No newline at end of file diff --git a/ollama/.flox/env/manifest.lock b/ollama/.flox/env/manifest.lock new file mode 100644 index 0000000..8d04401 --- /dev/null +++ b/ollama/.flox/env/manifest.lock @@ -0,0 +1,158 @@ +{ + "lockfile-version": 1, + "manifest": { + "version": 1, + "install": { + "ollama": { + "pkg-path": "ollama" + } + }, + "vars": { + "NEXT_PUBLIC_OLLAMA_URL": "http://localhost:11434" + }, + "hook": {}, + "profile": { + "common": " if ollama list >/dev/null 2>&1; then\n echo \"🤖 Ollama service running\"\n else\n echo \"⛔️ Ollama service not available\"\n fi\n" + }, + "options": { + "systems": [ + "aarch64-darwin", + "aarch64-linux", + "x86_64-linux", + "x86_64-darwin" + ], + "allow": { + "licenses": [] + }, + "semver": {} + }, + "services": { + "ollama-serve": { + "command": "ollama serve", + "vars": null + } + } + }, + "packages": [ + { + "attr_path": "ollama", + "broken": false, + "derivation": "/nix/store/q3fizi2dyxr5n9jx3ri279g3gff1k039-ollama-0.2.1.drv", + "description": "Get up and running with large language models locally", + "install_id": "ollama", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=ad0b5eed1b6031efaed382844806550c3dcb4206", + "name": "ollama-0.2.1", + "pname": "ollama", + "rev": "ad0b5eed1b6031efaed382844806550c3dcb4206", + "rev_count": 654036, + "rev_date": "2024-07-16T14:01:16Z", + "scrape_date": "2024-07-19T05:30:25Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": false, + "version": "0.2.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/652ph0hsah1qjw626rr0fp42fkr2d33x-ollama-0.2.1" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "ollama", + "broken": false, + "derivation": "/nix/store/ll65s6whw9nldwh07afr6z6rxrj9i7fq-ollama-0.2.1.drv", + "description": "Get up and running with large language models locally", + "install_id": "ollama", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=ad0b5eed1b6031efaed382844806550c3dcb4206", + "name": "ollama-0.2.1", + "pname": "ollama", + "rev": "ad0b5eed1b6031efaed382844806550c3dcb4206", + "rev_count": 654036, + "rev_date": "2024-07-16T14:01:16Z", + "scrape_date": "2024-07-19T05:30:25Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": false, + "version": "0.2.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/ngcdfays1yrhy53g7y4xin32767ngf6i-ollama-0.2.1" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "ollama", + "broken": false, + "derivation": "/nix/store/z3v68qpkj3i899r7ahf7i8p7i4rxpwm1-ollama-0.2.1.drv", + "description": "Get up and running with large language models locally", + "install_id": "ollama", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=ad0b5eed1b6031efaed382844806550c3dcb4206", + "name": "ollama-0.2.1", + "pname": "ollama", + "rev": "ad0b5eed1b6031efaed382844806550c3dcb4206", + "rev_count": 654036, + "rev_date": "2024-07-16T14:01:16Z", + "scrape_date": "2024-07-19T05:30:25Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": false, + "version": "0.2.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/znvrbh3875h73dl36szn0v2i7b59vz0a-ollama-0.2.1" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "ollama", + "broken": false, + "derivation": "/nix/store/r0kpk24gzl4i2kjfhs7qg4n3d29acrb6-ollama-0.2.1.drv", + "description": "Get up and running with large language models locally", + "install_id": "ollama", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=ad0b5eed1b6031efaed382844806550c3dcb4206", + "name": "ollama-0.2.1", + "pname": "ollama", + "rev": "ad0b5eed1b6031efaed382844806550c3dcb4206", + "rev_count": 654036, + "rev_date": "2024-07-16T14:01:16Z", + "scrape_date": "2024-07-19T05:30:25Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": false, + "version": "0.2.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/2ih40ris6bi3vaz3bkqvkffmdv178dbi-ollama-0.2.1" + }, + "system": "x86_64-darwin", + "group": "toplevel", + "priority": 5 + } + ] +} \ No newline at end of file diff --git a/ollama/.flox/env/manifest.toml b/ollama/.flox/env/manifest.toml new file mode 100644 index 0000000..40cc855 --- /dev/null +++ b/ollama/.flox/env/manifest.toml @@ -0,0 +1,28 @@ +# +# This is a Flox environment manifest. +# Visit flox.dev/docs/concepts/manifest/ +# or see flox-edit(1), manifest.toml(5) for more information. +# +version = 1 + +[install] +ollama.pkg-path = "ollama" + +[vars] +NEXT_PUBLIC_OLLAMA_URL="http://localhost:11434" + +[services.ollama-serve] +command="ollama serve" + +[profile] +common = ''' + if ollama list >/dev/null 2>&1; then + echo "🤖 Ollama service running" + else + echo "⛔️ Ollama service not available" + fi +''' + +[options] +systems = ["aarch64-darwin", "aarch64-linux", "x86_64-linux", "x86_64-darwin"] + diff --git a/openai/.flox/.gitignore b/openai/.flox/.gitignore new file mode 100644 index 0000000..3af4dbf --- /dev/null +++ b/openai/.flox/.gitignore @@ -0,0 +1,2 @@ +run/ +cache/ diff --git a/openai/.flox/env.json b/openai/.flox/env.json new file mode 100644 index 0000000..43f1bde --- /dev/null +++ b/openai/.flox/env.json @@ -0,0 +1 @@ +{"owner":"rossturk","name":"openai","floxhub_url":"https://hub.flox.dev/","version":1} \ No newline at end of file diff --git a/openai/.flox/env.lock b/openai/.flox/env.lock new file mode 100644 index 0000000..e529c46 --- /dev/null +++ b/openai/.flox/env.lock @@ -0,0 +1,5 @@ +{ + "rev": "f77f218c01e61627ef9370559971394f2c18c04a", + "local_rev": "a9ebdfc6ae3d86199335e013535382ec7afff2ac", + "version": 1 +} \ No newline at end of file diff --git a/openai/.flox/env/manifest.lock b/openai/.flox/env/manifest.lock new file mode 100644 index 0000000..ebf4176 --- /dev/null +++ b/openai/.flox/env/manifest.lock @@ -0,0 +1,219 @@ +{ + "lockfile-version": 0, + "manifest": { + "hook": {}, + "install": { + "gum": { + "pkg-path": "gum" + }, + "jupyter": { + "pkg-path": "jupyter" + }, + "llm": { + "pkg-path": "llm" + }, + "openai": { + "pkg-path": "openai" + }, + "vscode": { + "pkg-path": "vscode" + } + }, + "options": { + "systems": [ + "aarch64-darwin" + ] + }, + "profile": { + "common": "\n # First, check if $OPENAI_API_KEY is set\n if [[ \"${OPENAI_API_KEY}\" ]]; then\n echo \"🤖 OpenAI configured with key from existing environment\"\n return 0\n fi\n\n # Then, check to see if the dotfile exists\n if [[ -f ~/.config/openai.key ]]; then\n export OPENAI_API_KEY=$(cat ~/.config/openai.key)\n echo \"🤖 OpenAI configured with key from ~/.config/openai.key\"\n return 0\n fi\n\n # We got nothing! Let's ask.\n echo \"OpenAI key not detected.\"\n \n if gum confirm \"Would you like to provide one now?\" --default=true --affirmative \"Yes\" --negative \"No\"; then\n OPENAI_API_KEY=$(gum input --placeholder \"OpenAI API key\")\n if gum confirm \"Write this into ~/.config/openai.key for next time?\" --default=true --affirmative \"Yes\" --negative \"No\"; then\n echo \"$OPENAI_API_KEY\" > ~/.config/openai.key\n chmod 600 ~/.config/openai.key\n fi\n echo \"🤖 OpenAI configured with provided key\"\n return 0\n fi\n\n echo \"An OpenAI key is required. You can provide one by setting OPENAI_API_KEY.\"\n echo; echo \"🚨 OpenAI client is available (no key)\"\n\n" + }, + "registry": { + "defaults": { + "subtrees": null + }, + "inputs": { + "nixpkgs": { + "from": { + "owner": "NixOS", + "ref": "release-23.11", + "repo": "nixpkgs", + "type": "github" + }, + "subtrees": [ + "legacyPackages" + ] + } + }, + "priority": [ + "nixpkgs" + ] + } + }, + "packages": { + "aarch64-darwin": { + "gum": { + "attr-path": [ + "legacyPackages", + "aarch64-darwin", + "gum" + ], + "info": { + "broken": false, + "description": "Tasty Bubble Gum for your shell", + "license": "MIT", + "pname": "gum", + "unfree": false, + "version": "0.13.0" + }, + "input": { + "attrs": { + "lastModified": 1712670302, + "narHash": "sha256-iV3ChPOnUTEx2Bb+hsUoTEMUT1u4uOnwdssvfNI95Zw=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "466b061d6faf82721ed437865d081a57908ebebf", + "type": "github" + }, + "fingerprint": "c0a5815c4843588f176933d9214312afd0aef3203db6f2416ca44176cef2a5ec", + "url": "github:NixOS/nixpkgs/466b061d6faf82721ed437865d081a57908ebebf" + }, + "priority": 5 + }, + "jupyter": { + "attr-path": [ + "legacyPackages", + "aarch64-darwin", + "jupyter" + ], + "info": { + "broken": false, + "description": "A high-level dynamically-typed programming language", + "license": "Python-2.0", + "pname": "python3", + "unfree": false, + "version": "3.11.8-env" + }, + "input": { + "attrs": { + "lastModified": 1712670302, + "narHash": "sha256-iV3ChPOnUTEx2Bb+hsUoTEMUT1u4uOnwdssvfNI95Zw=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "466b061d6faf82721ed437865d081a57908ebebf", + "type": "github" + }, + "fingerprint": "c0a5815c4843588f176933d9214312afd0aef3203db6f2416ca44176cef2a5ec", + "url": "github:NixOS/nixpkgs/466b061d6faf82721ed437865d081a57908ebebf" + }, + "priority": 5 + }, + "llm": { + "attr-path": [ + "legacyPackages", + "aarch64-darwin", + "llm" + ], + "info": { + "broken": false, + "description": "Access large language models from the command-line", + "license": "Apache-2.0", + "pname": "llm", + "unfree": false, + "version": "0.13.1" + }, + "input": { + "attrs": { + "lastModified": 1712670302, + "narHash": "sha256-iV3ChPOnUTEx2Bb+hsUoTEMUT1u4uOnwdssvfNI95Zw=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "466b061d6faf82721ed437865d081a57908ebebf", + "type": "github" + }, + "fingerprint": "c0a5815c4843588f176933d9214312afd0aef3203db6f2416ca44176cef2a5ec", + "url": "github:NixOS/nixpkgs/466b061d6faf82721ed437865d081a57908ebebf" + }, + "priority": 5 + }, + "openai": { + "attr-path": [ + "legacyPackages", + "aarch64-darwin", + "openai" + ], + "info": { + "broken": false, + "description": "Python client library for the OpenAI API", + "license": "MIT", + "pname": "openai", + "unfree": false, + "version": "1.16.2" + }, + "input": { + "attrs": { + "lastModified": 1712670302, + "narHash": "sha256-iV3ChPOnUTEx2Bb+hsUoTEMUT1u4uOnwdssvfNI95Zw=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "466b061d6faf82721ed437865d081a57908ebebf", + "type": "github" + }, + "fingerprint": "c0a5815c4843588f176933d9214312afd0aef3203db6f2416ca44176cef2a5ec", + "url": "github:NixOS/nixpkgs/466b061d6faf82721ed437865d081a57908ebebf" + }, + "priority": 5 + }, + "vscode": { + "attr-path": [ + "legacyPackages", + "aarch64-darwin", + "vscode" + ], + "info": { + "broken": false, + "description": "Open source source code editor developed by Microsoft for Windows,\nLinux and macOS\n", + "license": null, + "pname": "vscode", + "unfree": true, + "version": "1.88.0" + }, + "input": { + "attrs": { + "lastModified": 1712670302, + "narHash": "sha256-iV3ChPOnUTEx2Bb+hsUoTEMUT1u4uOnwdssvfNI95Zw=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "466b061d6faf82721ed437865d081a57908ebebf", + "type": "github" + }, + "fingerprint": "c0a5815c4843588f176933d9214312afd0aef3203db6f2416ca44176cef2a5ec", + "url": "github:NixOS/nixpkgs/466b061d6faf82721ed437865d081a57908ebebf" + }, + "priority": 5 + } + } + }, + "registry": { + "defaults": { + "subtrees": null + }, + "inputs": { + "nixpkgs": { + "from": { + "lastModified": 1712670302, + "narHash": "sha256-iV3ChPOnUTEx2Bb+hsUoTEMUT1u4uOnwdssvfNI95Zw=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "466b061d6faf82721ed437865d081a57908ebebf", + "type": "github" + }, + "subtrees": [ + "legacyPackages" + ] + } + }, + "priority": [ + "nixpkgs" + ] + } +} \ No newline at end of file diff --git a/openai/.flox/env/manifest.toml b/openai/.flox/env/manifest.toml new file mode 100644 index 0000000..22e39c4 --- /dev/null +++ b/openai/.flox/env/manifest.toml @@ -0,0 +1,55 @@ +# +# This is a flox environment manifest. +# Visit flox.dev/docs/concepts/manifest/ +# or see flox-edit(1), manifest.toml(1) for more information. +# + +[install] +openai.pkg-path = "openai" +jupyter.pkg-path = "jupyter" +llm.pkg-path = "llm" +vscode.pkg-path = "vscode" +gum.pkg-path = "gum" + +[profile] +common = """ + + # First, check if $OPENAI_API_KEY is set + if [[ "${OPENAI_API_KEY}" ]]; then + echo "🤖 OpenAI configured with key from existing environment" + return 0 + fi + + # Then, check to see if the dotfile exists + if [[ -f ~/.config/openai.key ]]; then + export OPENAI_API_KEY=$(cat ~/.config/openai.key) + echo "🤖 OpenAI configured with key from ~/.config/openai.key" + return 0 + fi + + # We got nothing! Let's ask. + echo "OpenAI key not detected." + + if gum confirm "Would you like to provide one now?" --default=true --affirmative "Yes" --negative "No"; then + OPENAI_API_KEY=$(gum input --placeholder "OpenAI API key") + if gum confirm "Write this into ~/.config/openai.key for next time?" --default=true --affirmative "Yes" --negative "No"; then + echo "$OPENAI_API_KEY" > ~/.config/openai.key + chmod 600 ~/.config/openai.key + fi + echo "🤖 OpenAI configured with provided key" + return 0 + fi + + echo "An OpenAI key is required. You can provide one by setting OPENAI_API_KEY." + echo; echo "🚨 OpenAI client is available (no key)" + +""" + +[hook] +# on-activate = """ +# mkdir my_data_dir +# """ + +[options] +systems = ["aarch64-darwin"] + diff --git a/openai/.flox/pip.ini b/openai/.flox/pip.ini new file mode 100644 index 0000000..7905638 --- /dev/null +++ b/openai/.flox/pip.ini @@ -0,0 +1,2 @@ +[global] +require-virtualenv = true diff --git a/openai/gpt.ipynb b/openai/gpt.ipynb new file mode 100644 index 0000000..991f6e3 --- /dev/null +++ b/openai/gpt.ipynb @@ -0,0 +1,83 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "ename": "OpenAIError", + "evalue": "The api_key client option must be set either by passing api_key to the client or by setting the OPENAI_API_KEY environment variable", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mOpenAIError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[1], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mopenai\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m OpenAI\n\u001b[0;32m----> 2\u001b[0m client \u001b[38;5;241m=\u001b[39m \u001b[43mOpenAI\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/.cache/flox/run/rossturk/openai.17b1f2ccfc2142096b6bea24c51d100dcf16a387de8b70aa24158e9c165eff7b/lib/python3.11/site-packages/openai/_client.py:98\u001b[0m, in \u001b[0;36mOpenAI.__init__\u001b[0;34m(self, api_key, organization, base_url, timeout, max_retries, default_headers, default_query, http_client, _strict_response_validation)\u001b[0m\n\u001b[1;32m 96\u001b[0m api_key \u001b[38;5;241m=\u001b[39m os\u001b[38;5;241m.\u001b[39menviron\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mOPENAI_API_KEY\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 97\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m api_key \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m---> 98\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m OpenAIError(\n\u001b[1;32m 99\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe api_key client option must be set either by passing api_key to the client or by setting the OPENAI_API_KEY environment variable\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 100\u001b[0m )\n\u001b[1;32m 101\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mapi_key \u001b[38;5;241m=\u001b[39m api_key\n\u001b[1;32m 103\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m organization \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "\u001b[0;31mOpenAIError\u001b[0m: The api_key client option must be set either by passing api_key to the client or by setting the OPENAI_API_KEY environment variable" + ] + } + ], + "source": [ + "from openai import OpenAI\n", + "client = OpenAI()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "response = client.chat.completions.create(\n", + " model=\"gpt-3.5-turbo\",\n", + " messages=[\n", + " {\"role\": \"system\", \"content\": \"You are a helpful assistant.\"},\n", + " {\"role\": \"user\", \"content\": \"Who won the world series in 2020?\"},\n", + " {\"role\": \"assistant\", \"content\": \"The Los Angeles Dodgers won the World Series in 2020.\"},\n", + " {\"role\": \"user\", \"content\": \"Where was it played?\"}\n", + " ]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "os.environ.get(\"OPENAI_API_KEY\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.8" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/openai/manifest.toml b/openai/manifest.toml new file mode 100644 index 0000000..919f986 --- /dev/null +++ b/openai/manifest.toml @@ -0,0 +1,54 @@ +# +# This is a flox environment manifest. +# Visit flox.dev/docs/concepts/manifest/ +# or see flox-edit(1), manifest.toml(1) for more information. +# + +[install] +openai.pkg-path = "openai" +llm.pkg-path = "llm" +gum.pkg-path = "gum" +chatgpt-cli.pkg-path = "chatgpt-cli" +mods.pkg-path = "mods" + +[profile] +common = """ + + # First, check if $OPENAI_API_KEY is set + if [[ "${OPENAI_API_KEY}" ]]; then + echo "🤖 OpenAI configured with key from existing environment" + return 0 + fi + + # Then, check to see if the dotfile exists + if [[ -f ~/.config/openai.key ]]; then + export OPENAI_API_KEY=$(cat ~/.config/openai.key) + echo "🤖 OpenAI configured with key from ~/.config/openai.key" + return 0 + fi + + # We got nothing! Let's ask. + echo "OpenAI key not detected." + + if gum confirm "Would you like to provide one now?" --default=true --affirmative "Yes" --negative "No"; then + OPENAI_API_KEY=$(gum input --placeholder "OpenAI API key") + export OPENAI_API_KEY + if gum confirm "Write this into ~/.config/openai.key for next time?" --default=true --affirmative "Yes" --negative "No"; then + mkdir -p ~/.config/ + echo "$OPENAI_API_KEY" > ~/.config/openai.key + chmod 600 ~/.config/openai.key + fi + echo "🤖 OpenAI configured with provided key" + return 0 + fi + + echo "An OpenAI key is required. You can provide one by setting OPENAI_API_KEY." + echo; echo "🚨 OpenAI client is available (no key)" + +""" + +[options] +systems = ["aarch64-darwin", "x86_64-linux"] + + + diff --git a/playground/dune-for-dos/.flox/.gitignore b/playground/dune-for-dos/.flox/.gitignore new file mode 100644 index 0000000..3af4dbf --- /dev/null +++ b/playground/dune-for-dos/.flox/.gitignore @@ -0,0 +1,2 @@ +run/ +cache/ diff --git a/playground/dune-for-dos/.flox/env.json b/playground/dune-for-dos/.flox/env.json new file mode 100644 index 0000000..e1df1b0 --- /dev/null +++ b/playground/dune-for-dos/.flox/env.json @@ -0,0 +1 @@ +{"owner":"rossturk","name":"dune-for-dos","floxhub_url":"https://hub.flox.dev/","version":1} \ No newline at end of file diff --git a/playground/dune-for-dos/.flox/env.lock b/playground/dune-for-dos/.flox/env.lock new file mode 100644 index 0000000..d4e80ab --- /dev/null +++ b/playground/dune-for-dos/.flox/env.lock @@ -0,0 +1,5 @@ +{ + "rev": "c80524184f01ded35cf0aca71941ed9c1628874e", + "local_rev": "36257d029a95b890b4dcc23414b1198b9690ad0b", + "version": 1 +} \ No newline at end of file diff --git a/playground/dune-for-dos/.flox/env/manifest.lock b/playground/dune-for-dos/.flox/env/manifest.lock new file mode 100644 index 0000000..6a74a4f --- /dev/null +++ b/playground/dune-for-dos/.flox/env/manifest.lock @@ -0,0 +1,156 @@ +{ + "lockfile-version": 0, + "manifest": { + "install": { + "curl": { + "pkg-path": "curl" + }, + "dosbox-x": { + "pkg-path": "dosbox-x" + }, + "unzip": { + "pkg-path": "unzip" + } + }, + "options": { + "systems": [ + "aarch64-darwin" + ] + }, + "profile": { + "common": " GAME_DIR=\"$HOME/.cache/dune-for-dos\"\n GAME_URL=\"https://d2.myabandonware.com/t/aca2daa6-fadc-406b-bcb4-bc649c43ce00/Dune_DOS_EN_RIP-Version.zip\"\n\n if [[ ! -d $GAME_DIR ]]; then\n echo; echo -n \"🏜️ Downloading game to $GAME_DIR...\"\n\n mkdir -p $GAME_DIR\n curl -Lso $GAME_DIR/game.zip $GAME_URL\n unzip -qq $GAME_DIR/game.zip -d $GAME_DIR\n echo \"done.\"\n fi\n\n dosbox-x -c \"mount g $GAME_DIR\"\n exit\n" + }, + "registry": { + "defaults": { + "subtrees": null + }, + "inputs": { + "nixpkgs": { + "from": { + "owner": "NixOS", + "ref": "release-23.11", + "repo": "nixpkgs", + "type": "github" + }, + "subtrees": [ + "legacyPackages" + ] + } + }, + "priority": [ + "nixpkgs" + ] + } + }, + "packages": { + "aarch64-darwin": { + "curl": { + "attr-path": [ + "legacyPackages", + "aarch64-darwin", + "curl" + ], + "info": { + "broken": false, + "description": "A command line tool for transferring files with URL syntax", + "license": "curl", + "pname": "curl", + "unfree": false, + "version": "8.6.0" + }, + "input": { + "attrs": { + "lastModified": 1712670302, + "narHash": "sha256-iV3ChPOnUTEx2Bb+hsUoTEMUT1u4uOnwdssvfNI95Zw=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "466b061d6faf82721ed437865d081a57908ebebf", + "type": "github" + }, + "fingerprint": "c0a5815c4843588f176933d9214312afd0aef3203db6f2416ca44176cef2a5ec", + "url": "github:NixOS/nixpkgs/466b061d6faf82721ed437865d081a57908ebebf" + }, + "priority": 5 + }, + "dosbox-x": { + "attr-path": [ + "legacyPackages", + "aarch64-darwin", + "dosbox-x" + ], + "info": { + "broken": false, + "description": "A cross-platform DOS emulator based on the DOSBox project", + "license": "GPL-2.0-or-later", + "pname": "dosbox-x", + "unfree": false, + "version": "2024.03.01" + }, + "input": { + "attrs": { + "lastModified": 1712670302, + "narHash": "sha256-iV3ChPOnUTEx2Bb+hsUoTEMUT1u4uOnwdssvfNI95Zw=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "466b061d6faf82721ed437865d081a57908ebebf", + "type": "github" + }, + "fingerprint": "c0a5815c4843588f176933d9214312afd0aef3203db6f2416ca44176cef2a5ec", + "url": "github:NixOS/nixpkgs/466b061d6faf82721ed437865d081a57908ebebf" + }, + "priority": 5 + }, + "unzip": { + "attr-path": [ + "legacyPackages", + "aarch64-darwin", + "unzip" + ], + "info": { + "broken": false, + "description": "An extraction utility for archives compressed in .zip format", + "license": "Info-ZIP", + "pname": "unzip", + "unfree": false, + "version": "6.0" + }, + "input": { + "attrs": { + "lastModified": 1712670302, + "narHash": "sha256-iV3ChPOnUTEx2Bb+hsUoTEMUT1u4uOnwdssvfNI95Zw=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "466b061d6faf82721ed437865d081a57908ebebf", + "type": "github" + }, + "fingerprint": "c0a5815c4843588f176933d9214312afd0aef3203db6f2416ca44176cef2a5ec", + "url": "github:NixOS/nixpkgs/466b061d6faf82721ed437865d081a57908ebebf" + }, + "priority": 5 + } + } + }, + "registry": { + "defaults": { + "subtrees": null + }, + "inputs": { + "nixpkgs": { + "from": { + "lastModified": 1712670302, + "narHash": "sha256-iV3ChPOnUTEx2Bb+hsUoTEMUT1u4uOnwdssvfNI95Zw=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "466b061d6faf82721ed437865d081a57908ebebf", + "type": "github" + }, + "subtrees": [ + "legacyPackages" + ] + } + }, + "priority": [ + "nixpkgs" + ] + } +} \ No newline at end of file diff --git a/playground/dune-for-dos/.flox/env/manifest.toml b/playground/dune-for-dos/.flox/env/manifest.toml new file mode 100644 index 0000000..5c5ab89 --- /dev/null +++ b/playground/dune-for-dos/.flox/env/manifest.toml @@ -0,0 +1,31 @@ +# +# This is a flox environment manifest. +# Visit flox.dev/docs/concepts/manifest/ +# or see flox-edit(1), manifest.toml(1) for more information. +# + +[install] +unzip.pkg-path = "unzip" +curl.pkg-path = "curl" +dosbox-x.pkg-path = "dosbox-x" + +[profile] +common = """ + GAME_DIR="$HOME/.cache/dune-for-dos" + GAME_URL="https://d2.myabandonware.com/t/aca2daa6-fadc-406b-bcb4-bc649c43ce00/Dune_DOS_EN_RIP-Version.zip" + + if [[ ! -d $GAME_DIR ]]; then + echo; echo -n "🏜️ Downloading game to $GAME_DIR..." + + mkdir -p $GAME_DIR + curl -Lso $GAME_DIR/game.zip $GAME_URL + unzip -qq $GAME_DIR/game.zip -d $GAME_DIR + echo "done." + fi + + dosbox-x -c "mount g $GAME_DIR" + exit +""" + +[options] +systems = ["aarch64-darwin"] diff --git a/playground/instructor/.envrc b/playground/instructor/.envrc new file mode 100644 index 0000000..1b9d177 --- /dev/null +++ b/playground/instructor/.envrc @@ -0,0 +1 @@ +eval "$(flox activate)" diff --git a/playground/instructor/.flox/.gitignore b/playground/instructor/.flox/.gitignore new file mode 100644 index 0000000..3af4dbf --- /dev/null +++ b/playground/instructor/.flox/.gitignore @@ -0,0 +1,2 @@ +run/ +cache/ diff --git a/playground/instructor/.flox/env.json b/playground/instructor/.flox/env.json new file mode 100644 index 0000000..56e2a25 --- /dev/null +++ b/playground/instructor/.flox/env.json @@ -0,0 +1,4 @@ +{ + "name": "instructor", + "version": 1 +} \ No newline at end of file diff --git a/playground/instructor/.flox/env/manifest.lock b/playground/instructor/.flox/env/manifest.lock new file mode 100644 index 0000000..910b812 --- /dev/null +++ b/playground/instructor/.flox/env/manifest.lock @@ -0,0 +1,463 @@ +{ + "lockfile-version": 1, + "manifest": { + "version": 1, + "install": { + "graphviz": { + "pkg-path": "python311Packages.graphviz", + "pkg-group": null, + "priority": null, + "version": null, + "systems": null, + "optional": false + }, + "instructor": { + "pkg-path": "python311Packages.instructor", + "pkg-group": null, + "priority": null, + "version": null, + "systems": null, + "optional": false + }, + "jupyter": { + "pkg-path": "python311Packages.jupyter", + "pkg-group": null, + "priority": null, + "version": null, + "systems": null, + "optional": false + }, + "ollama": { + "pkg-path": "ollama", + "pkg-group": null, + "priority": null, + "version": null, + "systems": null, + "optional": false + }, + "openai": { + "pkg-path": "python311Packages.openai", + "pkg-group": null, + "priority": null, + "version": null, + "systems": null, + "optional": false + }, + "wikipedia": { + "pkg-path": "python311Packages.wikipedia", + "pkg-group": null, + "priority": null, + "version": null, + "systems": null, + "optional": false + } + }, + "vars": {}, + "hook": { + "on-activate": null + }, + "profile": { + "common": " # First, check if $OPENAI_API_KEY is set\n if [[ \"${OPENAI_API_KEY}\" ]]; then\n echo \"🤖 OpenAI configured with key from existing environment\"\n return 0\n fi\n\n # Then, check to see if the dotfile exists\n if [[ -f ~/.config/openai.key ]]; then\n export OPENAI_API_KEY=$(cat ~/.config/openai.key)\n echo \"🤖 OpenAI configured with key from ~/.config/openai.key\"\n return 0\n fi\n\n # We got nothing! Let's ask.\n echo \"OpenAI key not detected.\"\n \n if gum confirm \"Would you like to provide one now?\" --default=true --affirmative \"Yes\" --negative \"No\"; then\n OPENAI_API_KEY=$(gum input --placeholder \"OpenAI API key\")\n export OPENAI_API_KEY\n if gum confirm \"Write this into ~/.config/openai.key for next time?\" --default=true --affirmative \"Yes\" --negative \"No\"; then\n mkdir -p ~/.config/\n echo \"$OPENAI_API_KEY\" > ~/.config/openai.key\n chmod 600 ~/.config/openai.key\n fi\n echo \"🤖 OpenAI configured with provided key\"\n return 0\n fi\n\n echo \"An OpenAI key is required. You can provide one by setting OPENAI_API_KEY.\"\n echo; echo \"🚨 OpenAI client is available (no key)\"\n", + "bash": null, + "zsh": null + }, + "options": { + "systems": [ + "x86_64-linux", + "aarch64-darwin" + ], + "allow": { + "unfree": null, + "broken": null, + "licenses": [] + }, + "semver": { + "allow-pre-releases": null + } + } + }, + "packages": [ + { + "attr_path": "ollama", + "broken": false, + "derivation": "/nix/store/qf67xipadvg0rgaz7khzzbfn4dshs9f5-ollama-0.1.38.drv", + "description": "Get up and running with large language models locally", + "install_id": "ollama", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "name": "ollama-0.1.38", + "pname": "ollama", + "rev": "3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "rev_count": 629267, + "rev_date": "2024-05-21T12:07:05Z", + "scrape_date": "2024-05-22T20:43:04Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": false, + "version": "0.1.38", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/bpj3lfb4979r8x6ysj0h1lya6kwkrhaw-ollama-0.1.38" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5, + "optional": false + }, + { + "attr_path": "python311Packages.graphviz", + "broken": false, + "derivation": "/nix/store/03x19zrw533ihxrj42r17g2dlljkvvz4-python3.11-graphviz-0.20.3.drv", + "description": "Simple Python interface for Graphviz", + "install_id": "graphviz", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "name": "python3.11-graphviz-0.20.3", + "pname": "graphviz", + "rev": "3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "rev_count": 629267, + "rev_date": "2024-05-21T12:07:05Z", + "scrape_date": "2024-05-22T20:43:04Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": false, + "version": "python3.11-graphviz-0.20.3", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/cdjd0m5dci565srr5maxqxykl0ig8xpd-python3.11-graphviz-0.20.3-dist", + "out": "/nix/store/a5jk46yiab7gj7n98vs9pl5mzx1ry5pr-python3.11-graphviz-0.20.3" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5, + "optional": false + }, + { + "attr_path": "python311Packages.instructor", + "broken": false, + "derivation": "/nix/store/iwr3k9x0lxhp6fac2hid7wiaaa6r89gn-python3.11-instructor-1.2.3.drv", + "description": "Structured outputs for llm", + "install_id": "instructor", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "name": "python3.11-instructor-1.2.3", + "pname": "instructor", + "rev": "3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "rev_count": 629267, + "rev_date": "2024-05-21T12:07:05Z", + "scrape_date": "2024-05-22T20:43:04Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": false, + "version": "python3.11-instructor-1.2.3", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/v2g8kjh6r9zn0852iwifq5smclrpi6dz-python3.11-instructor-1.2.3-dist", + "out": "/nix/store/mmrj0hmp09ac6ppkkgfyksdx945f3vp5-python3.11-instructor-1.2.3" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5, + "optional": false + }, + { + "attr_path": "python311Packages.jupyter", + "broken": false, + "derivation": "/nix/store/mlpy67m9fsz3q5bdnbh39v30nx93g6x3-python3.11-jupyter-1.0.0.drv", + "description": "Installs all the Jupyter components in one go", + "install_id": "jupyter", + "license": "BSD-3-Clause", + "locked_url": "https://github.com/flox/nixpkgs?rev=3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "name": "python3.11-jupyter-1.0.0", + "pname": "jupyter", + "rev": "3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "rev_count": 629267, + "rev_date": "2024-05-21T12:07:05Z", + "scrape_date": "2024-05-22T20:43:04Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": false, + "version": "python3.11-jupyter-1.0.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/dpxbv2zb4lh59mylkfbbvx2gr3ih7dz6-python3.11-jupyter-1.0.0-dist", + "out": "/nix/store/a4r7c4a1akh2ffgm735zrbmnncv4dqkd-python3.11-jupyter-1.0.0" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5, + "optional": false + }, + { + "attr_path": "python311Packages.openai", + "broken": false, + "derivation": "/nix/store/kacrfzd1xsnqnjda6ygy3kqqnz245nxp-python3.11-openai-1.28.0.drv", + "description": "Python client library for the OpenAI API", + "install_id": "openai", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "name": "openai-1.28.0", + "pname": "openai", + "rev": "3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "rev_count": 629267, + "rev_date": "2024-05-21T12:07:05Z", + "scrape_date": "2024-05-22T20:43:04Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": false, + "version": "1.28.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/czr7hzylfa03k4lbbsx52i6bby0j1mcx-python3.11-openai-1.28.0-dist", + "out": "/nix/store/kmk3q3v1gndxv09nfyhc74ilpz896q3k-python3.11-openai-1.28.0" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5, + "optional": false + }, + { + "attr_path": "python311Packages.wikipedia", + "broken": false, + "derivation": "/nix/store/1lalwlpz0bp43jqg2w7j93f1x8lrar57-python3.11-wikipedia-1.4.0.drv", + "description": "A Pythonic wrapper for the Wikipedia API", + "install_id": "wikipedia", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "name": "python3.11-wikipedia-1.4.0", + "pname": "wikipedia", + "rev": "3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "rev_count": 629267, + "rev_date": "2024-05-21T12:07:05Z", + "scrape_date": "2024-05-22T20:43:04Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": false, + "version": "python3.11-wikipedia-1.4.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/c2ss305bcb0i59fzs6g64ynqrwai3c4x-python3.11-wikipedia-1.4.0-dist", + "out": "/nix/store/vkzfyz0hnwi3y4jqz0zhrk6sar7kx0kr-python3.11-wikipedia-1.4.0" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5, + "optional": false + }, + { + "attr_path": "ollama", + "broken": false, + "derivation": "/nix/store/rgj3fbkmxsvls6g52jkcr65nxzj5kz8k-ollama-0.1.38.drv", + "description": "Get up and running with large language models locally", + "install_id": "ollama", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "name": "ollama-0.1.38", + "pname": "ollama", + "rev": "3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "rev_count": 629267, + "rev_date": "2024-05-21T12:07:05Z", + "scrape_date": "2024-05-22T20:43:04Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": false, + "version": "0.1.38", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/cfwqqcdslq109c3f5m0cjiygp0ag6rx2-ollama-0.1.38" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5, + "optional": false + }, + { + "attr_path": "python311Packages.graphviz", + "broken": false, + "derivation": "/nix/store/kbr9pmcqdxh6a7plibnbsh0sxf8vblwa-python3.11-graphviz-0.20.3.drv", + "description": "Simple Python interface for Graphviz", + "install_id": "graphviz", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "name": "python3.11-graphviz-0.20.3", + "pname": "graphviz", + "rev": "3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "rev_count": 629267, + "rev_date": "2024-05-21T12:07:05Z", + "scrape_date": "2024-05-22T20:43:04Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": false, + "version": "python3.11-graphviz-0.20.3", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/k1rn4xz64jsbpisxpyla9n8wh2ikirc2-python3.11-graphviz-0.20.3-dist", + "out": "/nix/store/6vzlw7a6sw05ngqx58yi9pxss2sp8ira-python3.11-graphviz-0.20.3" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5, + "optional": false + }, + { + "attr_path": "python311Packages.instructor", + "broken": false, + "derivation": "/nix/store/s3hri0xkb7fnqacjxrp2qikvl05hhkww-python3.11-instructor-1.2.3.drv", + "description": "Structured outputs for llm", + "install_id": "instructor", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "name": "python3.11-instructor-1.2.3", + "pname": "instructor", + "rev": "3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "rev_count": 629267, + "rev_date": "2024-05-21T12:07:05Z", + "scrape_date": "2024-05-22T20:43:04Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": false, + "version": "python3.11-instructor-1.2.3", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/ccwnsw3xg7xjxs68bhp54hxqd04nizxs-python3.11-instructor-1.2.3-dist", + "out": "/nix/store/fr3kjjrsry35awavc42kkqnb80q2n585-python3.11-instructor-1.2.3" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5, + "optional": false + }, + { + "attr_path": "python311Packages.jupyter", + "broken": false, + "derivation": "/nix/store/wwmnn4qwmgw0hv9pc36n11y9v7jrxbqn-python3.11-jupyter-1.0.0.drv", + "description": "Installs all the Jupyter components in one go", + "install_id": "jupyter", + "license": "BSD-3-Clause", + "locked_url": "https://github.com/flox/nixpkgs?rev=3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "name": "python3.11-jupyter-1.0.0", + "pname": "jupyter", + "rev": "3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "rev_count": 629267, + "rev_date": "2024-05-21T12:07:05Z", + "scrape_date": "2024-05-22T20:43:04Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": false, + "version": "python3.11-jupyter-1.0.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/zfsd41xn8w24jqy0l5x58fiwk07678ba-python3.11-jupyter-1.0.0-dist", + "out": "/nix/store/9zjg6ngm4zkd7k2wwgah78xlchrg0mjh-python3.11-jupyter-1.0.0" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5, + "optional": false + }, + { + "attr_path": "python311Packages.openai", + "broken": false, + "derivation": "/nix/store/kgqr245xc1y0ml9vs44n13n76g4sg0pg-python3.11-openai-1.28.0.drv", + "description": "Python client library for the OpenAI API", + "install_id": "openai", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "name": "openai-1.28.0", + "pname": "openai", + "rev": "3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "rev_count": 629267, + "rev_date": "2024-05-21T12:07:05Z", + "scrape_date": "2024-05-22T20:43:04Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": false, + "version": "1.28.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/2j43d0z7vx9ipzr55hszm57bv7hyms8s-python3.11-openai-1.28.0-dist", + "out": "/nix/store/9jdm9vh9z5611s7zg0ijn4sljbwlxsjn-python3.11-openai-1.28.0" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5, + "optional": false + }, + { + "attr_path": "python311Packages.wikipedia", + "broken": false, + "derivation": "/nix/store/00qf6ypafic7v9v41y4nxrl6yy4ghxsi-python3.11-wikipedia-1.4.0.drv", + "description": "A Pythonic wrapper for the Wikipedia API", + "install_id": "wikipedia", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "name": "python3.11-wikipedia-1.4.0", + "pname": "wikipedia", + "rev": "3eaeaeb6b1e08a016380c279f8846e0bd8808916", + "rev_count": 629267, + "rev_date": "2024-05-21T12:07:05Z", + "scrape_date": "2024-05-22T20:43:04Z", + "stabilities": [ + "staging", + "unstable" + ], + "unfree": false, + "version": "python3.11-wikipedia-1.4.0", + "outputs_to_install": [ + "out" + ], + "outputs": { + "dist": "/nix/store/llvb4aavifgq5nfzacsj9170c3b2kclf-python3.11-wikipedia-1.4.0-dist", + "out": "/nix/store/jxi20d3bnipyslhwkfkdsz5zw2i3q5fx-python3.11-wikipedia-1.4.0" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5, + "optional": false + } + ] +} \ No newline at end of file diff --git a/playground/instructor/.flox/env/manifest.toml b/playground/instructor/.flox/env/manifest.toml new file mode 100644 index 0000000..60a4b57 --- /dev/null +++ b/playground/instructor/.flox/env/manifest.toml @@ -0,0 +1,84 @@ +# +# This is a Flox environment manifest. +# Visit flox.dev/docs/concepts/manifest/ +# or see flox-edit(1), manifest.toml(1) for more information. +# +version = 1 + +# List packages you wish to install in your environment inside +# the `[install]` section. +[install] +instructor.pkg-path = "python311Packages.instructor" +openai.pkg-path = "python311Packages.openai" +jupyter.pkg-path = "python311Packages.jupyter" +wikipedia.pkg-path = "python311Packages.wikipedia" +ollama.pkg-path = "ollama" +graphviz.pkg-path = "python311Packages.graphviz" +# hello.pkg-path = "hello" +# nodejs = { version = "^18.4.2", pkg-path = "nodejs_18" } + +# Set environment variables in the `[vars]` section. These variables may not +# reference one another, and are added to the environment without first +# expanding them. They are available for use in the `[profile]` and `[hook]` +# scripts. +[vars] +# message = "Howdy" + +# The `hook.on-activate` script is run by the *bash* shell immediately upon +# activating an environment, and will not be invoked if Flox detects that the +# environment has previously been activated. Variables set by the script will +# be inherited by `[profile]` scripts defined below. Note that any stdout +# generated by the script will be redirected to stderr. +[hook] +# on-activate = """ +# # Set variables, create files and directories +# venv_dir="$(mktemp -d)" +# export venv_dir +# +# # Perform initialization steps, e.g. create a python venv +# python -m venv "$venv_dir" +# """ + +# Scripts defined in the `[profile]` section are *sourced* by *your shell* and +# inherit environment variables set in the `[vars]` section and by `[hook]` scripts. +# The `profile.common` script is sourced by all shells and special care should be +# taken to ensure compatibility with all shells. The `profile.bash` and `profile.zsh` +# scripts are then sourced by the corresponding shell. +[profile] +common = """ + # First, check if $OPENAI_API_KEY is set + if [[ "${OPENAI_API_KEY}" ]]; then + echo "🤖 OpenAI configured with key from existing environment" + return 0 + fi + + # Then, check to see if the dotfile exists + if [[ -f ~/.config/openai.key ]]; then + export OPENAI_API_KEY=$(cat ~/.config/openai.key) + echo "🤖 OpenAI configured with key from ~/.config/openai.key" + return 0 + fi + + # We got nothing! Let's ask. + echo "OpenAI key not detected." + + if gum confirm "Would you like to provide one now?" --default=true --affirmative "Yes" --negative "No"; then + OPENAI_API_KEY=$(gum input --placeholder "OpenAI API key") + export OPENAI_API_KEY + if gum confirm "Write this into ~/.config/openai.key for next time?" --default=true --affirmative "Yes" --negative "No"; then + mkdir -p ~/.config/ + echo "$OPENAI_API_KEY" > ~/.config/openai.key + chmod 600 ~/.config/openai.key + fi + echo "🤖 OpenAI configured with provided key" + return 0 + fi + + echo "An OpenAI key is required. You can provide one by setting OPENAI_API_KEY." + echo; echo "🚨 OpenAI client is available (no key)" +""" + +# Additional options can be set in the `[options]` section. Refer to +# manifest.toml(1) for a list of available options. +[options] +systems = ["x86_64-linux", "aarch64-darwin"] diff --git a/playground/instructor/knowledge_graph.gv b/playground/instructor/knowledge_graph.gv new file mode 100644 index 0000000..fac0979 --- /dev/null +++ b/playground/instructor/knowledge_graph.gv @@ -0,0 +1,3 @@ +// Knowledge Graph +digraph { +} diff --git a/playground/instructor/knowledge_graph.gv.pdf b/playground/instructor/knowledge_graph.gv.pdf new file mode 100644 index 0000000000000000000000000000000000000000..f10d2d1004ea30056532073ae42e31ba93e6813a GIT binary patch literal 952 zcmY!laBV;o|@;1uhukeIk&!kp8gCqz%MGHCKK|KLi^ zOMxl^vOvaz%mmRuQ;p0((jbm8+-{JmP(gFJpn`r#WkITfzJF3ya7ixMK~NW3z+LF4 zU$lu@_*kXndKsxJNwJ4 z-uv-rB#LNxS#0PMJhtFQLD2OH`{UJH{;05RVPW_bel_|B1D}Z1kDe75Kfh?0_}8v% zPS3maPBtOUDHjhIZ9A)>BK}-$_vz0b?8?i!Cz)MN^SJy}viXpv?Y2XTDsTIO<1TgC z7susxz3QCSKV{kKlkqwgAFeI@ufo$NqZrAOe?z?gX;4#F(U^Y#;}xR4v!u~L|TF+n~0#)G~`5M zYJoEnKxsWVvno}=5E5(Q3ekoNMhZr;U>!mE`6UX5hVZ!c%uCBxFf;)3k#j?GLc)*# z^E(?SH!`{y7#fur8yFaUXznnYAYt9HmBGV6tC6F)!^%zI;F%L! 9\u001b[0m user_info \u001b[38;5;241m=\u001b[39m \u001b[43mclient\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mchat\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcompletions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 10\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mllama3\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 11\u001b[0m \u001b[43m \u001b[49m\u001b[43mresponse_model\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mMovie\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 12\u001b[0m \u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43m{\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrole\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43muser\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcontent\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mThat Matrix movie really blew me away. I thought it was unique, and mindblowing. I remember it like it was yesterday, but it was actually 1974.\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m}\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 13\u001b[0m \u001b[43m)\u001b[49m\n\u001b[1;32m 15\u001b[0m user_info\n", + "File \u001b[0;32m~/projects/flox/envs/instructor/.flox/run/aarch64-darwin.instructor/lib/python3.11/site-packages/instructor/client.py:74\u001b[0m, in \u001b[0;36mInstructor.create\u001b[0;34m(self, response_model, messages, max_retries, validation_context, **kwargs)\u001b[0m\n\u001b[1;32m 64\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcreate\u001b[39m(\n\u001b[1;32m 65\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 66\u001b[0m response_model: Type[T],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 70\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[1;32m 71\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m T:\n\u001b[1;32m 72\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_kwargs(kwargs)\n\u001b[0;32m---> 74\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_fn\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 75\u001b[0m \u001b[43m \u001b[49m\u001b[43mresponse_model\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mresponse_model\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 76\u001b[0m \u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmessages\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 77\u001b[0m \u001b[43m \u001b[49m\u001b[43mmax_retries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmax_retries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 78\u001b[0m \u001b[43m \u001b[49m\u001b[43mvalidation_context\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mvalidation_context\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 79\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 80\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/projects/flox/envs/instructor/.flox/run/aarch64-darwin.instructor/lib/python3.11/site-packages/instructor/patch.py:147\u001b[0m, in \u001b[0;36mpatch..new_create_sync\u001b[0;34m(response_model, validation_context, max_retries, *args, **kwargs)\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[38;5;129m@wraps\u001b[39m(func)\n\u001b[1;32m 137\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mnew_create_sync\u001b[39m(\n\u001b[1;32m 138\u001b[0m response_model: Type[T_Model] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 142\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: T_ParamSpec\u001b[38;5;241m.\u001b[39mkwargs,\n\u001b[1;32m 143\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m T_Model:\n\u001b[1;32m 144\u001b[0m response_model, new_kwargs \u001b[38;5;241m=\u001b[39m handle_response_model(\n\u001b[1;32m 145\u001b[0m response_model\u001b[38;5;241m=\u001b[39mresponse_model, mode\u001b[38;5;241m=\u001b[39mmode, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs\n\u001b[1;32m 146\u001b[0m )\n\u001b[0;32m--> 147\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[43mretry_sync\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 148\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 149\u001b[0m \u001b[43m \u001b[49m\u001b[43mresponse_model\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mresponse_model\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 150\u001b[0m \u001b[43m \u001b[49m\u001b[43mvalidation_context\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mvalidation_context\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 151\u001b[0m \u001b[43m \u001b[49m\u001b[43mmax_retries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmax_retries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 152\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 153\u001b[0m \u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnew_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 154\u001b[0m \u001b[43m \u001b[49m\u001b[43mmode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 155\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 156\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m response\n", + "File \u001b[0;32m~/projects/flox/envs/instructor/.flox/run/aarch64-darwin.instructor/lib/python3.11/site-packages/instructor/retry.py:152\u001b[0m, in \u001b[0;36mretry_sync\u001b[0;34m(func, response_model, validation_context, args, kwargs, max_retries, strict, mode)\u001b[0m\n\u001b[1;32m 149\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmax_retries must be an int or a `tenacity.Retrying` object\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 151\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 152\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mattempt\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mmax_retries\u001b[49m\u001b[43m:\u001b[49m\n\u001b[1;32m 153\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mwith\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mattempt\u001b[49m\u001b[43m:\u001b[49m\n\u001b[1;32m 154\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mtry\u001b[39;49;00m\u001b[43m:\u001b[49m\n", + "File \u001b[0;32m~/projects/flox/envs/instructor/.flox/run/aarch64-darwin.instructor/lib/python3.11/site-packages/tenacity/__init__.py:347\u001b[0m, in \u001b[0;36mBaseRetrying.__iter__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 345\u001b[0m retry_state \u001b[38;5;241m=\u001b[39m RetryCallState(\u001b[38;5;28mself\u001b[39m, fn\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, args\u001b[38;5;241m=\u001b[39m(), kwargs\u001b[38;5;241m=\u001b[39m{})\n\u001b[1;32m 346\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[0;32m--> 347\u001b[0m do \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43miter\u001b[49m\u001b[43m(\u001b[49m\u001b[43mretry_state\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mretry_state\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 348\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(do, DoAttempt):\n\u001b[1;32m 349\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m AttemptManager(retry_state\u001b[38;5;241m=\u001b[39mretry_state)\n", + "File \u001b[0;32m~/projects/flox/envs/instructor/.flox/run/aarch64-darwin.instructor/lib/python3.11/site-packages/tenacity/__init__.py:325\u001b[0m, in \u001b[0;36mBaseRetrying.iter\u001b[0;34m(self, retry_state)\u001b[0m\n\u001b[1;32m 323\u001b[0m retry_exc \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mretry_error_cls(fut)\n\u001b[1;32m 324\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mreraise:\n\u001b[0;32m--> 325\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[43mretry_exc\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreraise\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m retry_exc \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfut\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mexception\u001b[39;00m()\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mwait:\n", + "File \u001b[0;32m~/projects/flox/envs/instructor/.flox/run/aarch64-darwin.instructor/lib/python3.11/site-packages/tenacity/__init__.py:158\u001b[0m, in \u001b[0;36mRetryError.reraise\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 156\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mreraise\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m t\u001b[38;5;241m.\u001b[39mNoReturn:\n\u001b[1;32m 157\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlast_attempt\u001b[38;5;241m.\u001b[39mfailed:\n\u001b[0;32m--> 158\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlast_attempt\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 159\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\n", + "File \u001b[0;32m/nix/store/nmy6fyvrl4lyvn69nsliigpk0rhi4b4f-python3-3.11.9/lib/python3.11/concurrent/futures/_base.py:449\u001b[0m, in \u001b[0;36mFuture.result\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 447\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m CancelledError()\n\u001b[1;32m 448\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_state \u001b[38;5;241m==\u001b[39m FINISHED:\n\u001b[0;32m--> 449\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m__get_result\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 451\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_condition\u001b[38;5;241m.\u001b[39mwait(timeout)\n\u001b[1;32m 453\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_state \u001b[38;5;129;01min\u001b[39;00m [CANCELLED, CANCELLED_AND_NOTIFIED]:\n", + "File \u001b[0;32m/nix/store/nmy6fyvrl4lyvn69nsliigpk0rhi4b4f-python3-3.11.9/lib/python3.11/concurrent/futures/_base.py:401\u001b[0m, in \u001b[0;36mFuture.__get_result\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 399\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception:\n\u001b[1;32m 400\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 401\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception\n\u001b[1;32m 402\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 403\u001b[0m \u001b[38;5;66;03m# Break a reference cycle with the exception in self._exception\u001b[39;00m\n\u001b[1;32m 404\u001b[0m \u001b[38;5;28mself\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "File \u001b[0;32m~/projects/flox/envs/instructor/.flox/run/aarch64-darwin.instructor/lib/python3.11/site-packages/instructor/retry.py:155\u001b[0m, in \u001b[0;36mretry_sync\u001b[0;34m(func, response_model, validation_context, args, kwargs, max_retries, strict, mode)\u001b[0m\n\u001b[1;32m 153\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m attempt:\n\u001b[1;32m 154\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 155\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 156\u001b[0m stream \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstream\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m 157\u001b[0m response \u001b[38;5;241m=\u001b[39m update_total_usage(response, total_usage)\n", + "File \u001b[0;32m~/projects/flox/envs/instructor/.flox/run/aarch64-darwin.instructor/lib/python3.11/site-packages/openai/_utils/_utils.py:277\u001b[0m, in \u001b[0;36mrequired_args..inner..wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 275\u001b[0m msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMissing required argument: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mquote(missing[\u001b[38;5;241m0\u001b[39m])\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 276\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(msg)\n\u001b[0;32m--> 277\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/projects/flox/envs/instructor/.flox/run/aarch64-darwin.instructor/lib/python3.11/site-packages/openai/resources/chat/completions.py:590\u001b[0m, in \u001b[0;36mCompletions.create\u001b[0;34m(self, messages, model, frequency_penalty, function_call, functions, logit_bias, logprobs, max_tokens, n, presence_penalty, response_format, seed, stop, stream, stream_options, temperature, tool_choice, tools, top_logprobs, top_p, user, extra_headers, extra_query, extra_body, timeout)\u001b[0m\n\u001b[1;32m 558\u001b[0m \u001b[38;5;129m@required_args\u001b[39m([\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel\u001b[39m\u001b[38;5;124m\"\u001b[39m], [\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstream\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[1;32m 559\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcreate\u001b[39m(\n\u001b[1;32m 560\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 588\u001b[0m timeout: \u001b[38;5;28mfloat\u001b[39m \u001b[38;5;241m|\u001b[39m httpx\u001b[38;5;241m.\u001b[39mTimeout \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m|\u001b[39m NotGiven \u001b[38;5;241m=\u001b[39m NOT_GIVEN,\n\u001b[1;32m 589\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ChatCompletion \u001b[38;5;241m|\u001b[39m Stream[ChatCompletionChunk]:\n\u001b[0;32m--> 590\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_post\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 591\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m/chat/completions\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 592\u001b[0m \u001b[43m \u001b[49m\u001b[43mbody\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmaybe_transform\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 593\u001b[0m \u001b[43m \u001b[49m\u001b[43m{\u001b[49m\n\u001b[1;32m 594\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmessages\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 595\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmodel\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 596\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfrequency_penalty\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfrequency_penalty\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 597\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfunction_call\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunction_call\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 598\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfunctions\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunctions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 599\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mlogit_bias\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mlogit_bias\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 600\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mlogprobs\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mlogprobs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 601\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmax_tokens\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_tokens\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 602\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mn\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mn\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 603\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mpresence_penalty\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mpresence_penalty\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 604\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mresponse_format\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mresponse_format\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 605\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mseed\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mseed\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 606\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstop\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 607\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstream\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 608\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstream_options\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 609\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtemperature\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtemperature\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 610\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtool_choice\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtool_choice\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 611\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtools\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtools\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 612\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtop_logprobs\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_logprobs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 613\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtop_p\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_p\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 614\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43muser\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43muser\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 615\u001b[0m \u001b[43m \u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 616\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompletion_create_params\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mCompletionCreateParams\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 617\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 618\u001b[0m \u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmake_request_options\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 619\u001b[0m \u001b[43m \u001b[49m\u001b[43mextra_headers\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_headers\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mextra_query\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_query\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mextra_body\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_body\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\n\u001b[1;32m 620\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 621\u001b[0m \u001b[43m \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mChatCompletion\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 622\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 623\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mStream\u001b[49m\u001b[43m[\u001b[49m\u001b[43mChatCompletionChunk\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 624\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/projects/flox/envs/instructor/.flox/run/aarch64-darwin.instructor/lib/python3.11/site-packages/openai/_base_client.py:1240\u001b[0m, in \u001b[0;36mSyncAPIClient.post\u001b[0;34m(self, path, cast_to, body, options, files, stream, stream_cls)\u001b[0m\n\u001b[1;32m 1226\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mpost\u001b[39m(\n\u001b[1;32m 1227\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 1228\u001b[0m path: \u001b[38;5;28mstr\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1235\u001b[0m stream_cls: \u001b[38;5;28mtype\u001b[39m[_StreamT] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 1236\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ResponseT \u001b[38;5;241m|\u001b[39m _StreamT:\n\u001b[1;32m 1237\u001b[0m opts \u001b[38;5;241m=\u001b[39m FinalRequestOptions\u001b[38;5;241m.\u001b[39mconstruct(\n\u001b[1;32m 1238\u001b[0m method\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpost\u001b[39m\u001b[38;5;124m\"\u001b[39m, url\u001b[38;5;241m=\u001b[39mpath, json_data\u001b[38;5;241m=\u001b[39mbody, files\u001b[38;5;241m=\u001b[39mto_httpx_files(files), \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39moptions\n\u001b[1;32m 1239\u001b[0m )\n\u001b[0;32m-> 1240\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m cast(ResponseT, \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mopts\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m)\u001b[49m)\n", + "File \u001b[0;32m~/projects/flox/envs/instructor/.flox/run/aarch64-darwin.instructor/lib/python3.11/site-packages/openai/_base_client.py:921\u001b[0m, in \u001b[0;36mSyncAPIClient.request\u001b[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[1;32m 912\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mrequest\u001b[39m(\n\u001b[1;32m 913\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 914\u001b[0m cast_to: Type[ResponseT],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 919\u001b[0m stream_cls: \u001b[38;5;28mtype\u001b[39m[_StreamT] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 920\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ResponseT \u001b[38;5;241m|\u001b[39m _StreamT:\n\u001b[0;32m--> 921\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 922\u001b[0m \u001b[43m \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 923\u001b[0m \u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 924\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 925\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 926\u001b[0m \u001b[43m \u001b[49m\u001b[43mremaining_retries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mremaining_retries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 927\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/projects/flox/envs/instructor/.flox/run/aarch64-darwin.instructor/lib/python3.11/site-packages/openai/_base_client.py:1020\u001b[0m, in \u001b[0;36mSyncAPIClient._request\u001b[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[1;32m 1017\u001b[0m err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mread()\n\u001b[1;32m 1019\u001b[0m log\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRe-raising status error\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 1020\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_make_status_error_from_response(err\u001b[38;5;241m.\u001b[39mresponse) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1022\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_process_response(\n\u001b[1;32m 1023\u001b[0m cast_to\u001b[38;5;241m=\u001b[39mcast_to,\n\u001b[1;32m 1024\u001b[0m options\u001b[38;5;241m=\u001b[39moptions,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1027\u001b[0m stream_cls\u001b[38;5;241m=\u001b[39mstream_cls,\n\u001b[1;32m 1028\u001b[0m )\n", + "\u001b[0;31mNotFoundError\u001b[0m: Error code: 404 - {'error': {'message': 'The model `llama3` does not exist or you do not have access to it.', 'type': 'invalid_request_error', 'param': None, 'code': 'model_not_found'}}" + ] + } + ], + "source": [ + "class Movie(BaseModel):\n", + " name: str\n", + " year: int = Field(description=\"the year the movie was made\")\n", + " review: str = Field(description=\"a quotable opinion about the movie\")\n", + " sentiment: Literal['good', 'bad', 'neutral']\n", + " director: str\n", + "\n", + "# Extract structured data from natural language\n", + "user_info = client.chat.completions.create(\n", + " model=\"llama3\",\n", + " response_model=Movie,\n", + " messages=[{\"role\": \"user\", \"content\": \"That Matrix movie really blew me away. I thought it was unique, and mindblowing. I remember it like it was yesterday, but it was actually 1974.\"}],\n", + ")\n", + "\n", + "user_info" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Extract structured data from natural language\n", + "user_info = client.chat.completions.create(\n", + " model=\"llama3\",\n", + " response_model=Movie,\n", + " messages=[{\"role\": \"user\", \"content\": \"Last tuesday I saw the new Seinfeld romp about corporate america. It was trite and unenjoyable, and I wish I never saw it.\"}],\n", + ")\n", + "\n", + "pretty(user_info)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import wikipedia\n", + "\n", + "content = wikipedia.page(\"NASCAR\").summary\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-----" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from pydantic import BaseModel, Field\n", + "from typing import List\n", + "\n", + "\n", + "class Node(BaseModel):\n", + " id: int\n", + " label: str\n", + " color: str\n", + "\n", + "\n", + "class Edge(BaseModel):\n", + " source: int\n", + " target: int\n", + " label: str\n", + " color: str = \"black\"\n", + "\n", + "\n", + "class KnowledgeGraph(BaseModel):\n", + " nodes: List[Node] = Field(..., default_factory=list)\n", + " edges: List[Edge] = Field(..., default_factory=list)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "from openai import OpenAI\n", + "import instructor\n", + "\n", + "# Adds response_model to ChatCompletion\n", + "# Allows the return of Pydantic model rather than raw JSON\n", + "#client = instructor.from_openai(OpenAI())\n", + "\n", + "\n", + "def generate_graph(input) -> KnowledgeGraph:\n", + " return client.chat.completions.create(\n", + " model=\"llama3\",\n", + " messages=[\n", + " {\n", + " \"role\": \"user\",\n", + " \"content\": f\"Help me understand the following by describing it as a detailed knowledge graph: {input}\",\n", + " }\n", + " ],\n", + " response_model=KnowledgeGraph,\n", + " ) # type: ignore" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'KnowledgeGraph' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[1], line 4\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mgraphviz\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Digraph\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mwikipedia\u001b[39;00m\n\u001b[0;32m----> 4\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mvisualize_knowledge_graph\u001b[39m(kg: \u001b[43mKnowledgeGraph\u001b[49m):\n\u001b[1;32m 5\u001b[0m dot \u001b[38;5;241m=\u001b[39m Digraph(comment\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mKnowledge Graph\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 7\u001b[0m \u001b[38;5;66;03m# Add nodes\u001b[39;00m\n", + "\u001b[0;31mNameError\u001b[0m: name 'KnowledgeGraph' is not defined" + ] + } + ], + "source": [ + "from graphviz import Digraph\n", + "import wikipedia\n", + "\n", + "def visualize_knowledge_graph(kg: KnowledgeGraph):\n", + " dot = Digraph(comment=\"Knowledge Graph\")\n", + "\n", + " # Add nodes\n", + " for node in kg.nodes:\n", + " dot.node(str(node.id), node.label, color=node.color)\n", + "\n", + " # Add edges\n", + " for edge in kg.edges:\n", + " dot.edge(str(edge.source), str(edge.target), label=edge.label, color=edge.color)\n", + "\n", + " # Render the graph\n", + " dot.render(\"knowledge_graph.gv\", view=True)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "content = wikipedia.page(\"NASCAR\").summary\n", + "graph = generate_graph(content)\n", + "visualize_knowledge_graph(graph)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/playground/minikube/.flox/.gitignore b/playground/minikube/.flox/.gitignore new file mode 100644 index 0000000..3af4dbf --- /dev/null +++ b/playground/minikube/.flox/.gitignore @@ -0,0 +1,2 @@ +run/ +cache/ diff --git a/playground/minikube/.flox/env.json b/playground/minikube/.flox/env.json new file mode 100644 index 0000000..4c3dbf4 --- /dev/null +++ b/playground/minikube/.flox/env.json @@ -0,0 +1,4 @@ +{ + "name": "minikube", + "version": 1 +} \ No newline at end of file diff --git a/playground/minikube/.flox/env/manifest.lock b/playground/minikube/.flox/env/manifest.lock new file mode 100644 index 0000000..64aa954 --- /dev/null +++ b/playground/minikube/.flox/env/manifest.lock @@ -0,0 +1,765 @@ +{ + "lockfile-version": 0, + "manifest": { + "hook": { + "on-activate": " if [ \"$(minikube status --format='{{.Host}}')\" = \"Running\" ]; then\n echo \"✅ minikube is already running\"\n echo \"Stop it with 'minikube stop' or by exiting this shell.\"\n return\n fi\n\n autostart=\"$HOME/.config/minikube-env/autostart\"\n choice=\n if [ ! -f \"$autostart\" ]; then\n echo \"This Flox environment can automatically create and start minikube.\"; echo\n choice=$($FLOX_ENV/bin/gum choose \"Always - start now & on future activations\" \"Yes - start now only\" \"No - do not start\")\n if [ \"${choice:0:1}\" = \"A\" ]; then\n mkdir -p \"$HOME\"/.config/minikube-env\n echo \"1\" > \"$autostart\"\n echo\n echo \"OK - minikube will start automatically on next activation. To disable this, run:\"\n echo \" rm $autostart\"\n fi\n fi\n\n if [ -f \"$autostart\" ] || [ \"${choice:0:1}\" = \"A\" ] || [ \"${choice:0:1}\" = \"Y\" ] ; then\n\n \t$FLOX_ENV/bin/gum spin --spinner dot --show-output --title \"Starting minikube...\" -- $FLOX_ENV/bin/minikube start --driver=qemu2 --qemu-firmware-path=$FLOX_ENV/share/qemu/edk2-aarch64-code.fd --network=builtin 2>&1\n\n\tif [ \"$(minikube status --format='{{.Host}}')\" = \"Running\" ]; then\n echo; echo \"✅ minikube started\"\n echo \"Stop it with 'minikube stop' or by exiting this shell.\"\n return\n fi\n fi\n\n echo \"🚨 minikube did not start successfully\"\n" + }, + "install": { + "gum": { + "pkg-path": "gum" + }, + "kubectl": { + "pkg-path": "kubectl" + }, + "kubectl-images": { + "pkg-path": "kubectl-images" + }, + "kubectl-ktop": { + "pkg-path": "kubectl-ktop" + }, + "kubectl-tree": { + "pkg-path": "kubectl-tree" + }, + "minikube": { + "pkg-path": "minikube" + } + }, + "options": { + "systems": [ + "x86_64-linux", + "aarch64-linux", + "x86_64-darwin", + "aarch64-darwin" + ] + }, + "profile": { + "common": " ##\n ## YOWCH! this is not shell-portable, will have to write versions for bash/fish/tcsh\n ##\n trap '$FLOX_ENV/bin/gum confirm \"Stop minikube cluster?\" && $FLOX_ENV/bin/gum spin --spinner dot --title \"Stopping minikube ....\" -- $FLOX_ENV/bin/minikube stop ; echo; echo \"✅ minikube stopped\"' EXIT\n" + }, + "registry": { + "defaults": { + "subtrees": null + }, + "inputs": { + "nixpkgs": { + "from": { + "owner": "NixOS", + "ref": "release-23.11", + "repo": "nixpkgs", + "type": "github" + }, + "subtrees": [ + "legacyPackages" + ] + } + }, + "priority": [ + "nixpkgs" + ] + } + }, + "packages": { + "aarch64-darwin": { + "gum": { + "attr-path": [ + "legacyPackages", + "aarch64-darwin", + "gum" + ], + "info": { + "broken": false, + "description": "Tasty Bubble Gum for your shell", + "license": "MIT", + "pname": "gum", + "unfree": false, + "version": "0.13.0" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + }, + "kubectl": { + "attr-path": [ + "legacyPackages", + "aarch64-darwin", + "kubectl" + ], + "info": { + "broken": false, + "description": "Kubernetes CLI", + "license": "Apache-2.0", + "pname": "kubectl", + "unfree": false, + "version": "1.28.9" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + }, + "kubectl-images": { + "attr-path": [ + "legacyPackages", + "aarch64-darwin", + "kubectl-images" + ], + "info": { + "broken": false, + "description": "Show container images used in the cluster.", + "license": "MIT", + "pname": "kubectl-images", + "unfree": false, + "version": "0.6.3" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + }, + "kubectl-ktop": { + "attr-path": [ + "legacyPackages", + "aarch64-darwin", + "kubectl-ktop" + ], + "info": { + "broken": false, + "description": "A top-like tool for your Kubernetes clusters", + "license": "Apache-2.0", + "pname": "kubectl-ktop", + "unfree": false, + "version": "0.3.5" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + }, + "kubectl-tree": { + "attr-path": [ + "legacyPackages", + "aarch64-darwin", + "kubectl-tree" + ], + "info": { + "broken": false, + "description": "kubectl plugin to browse Kubernetes object hierarchies as a tree", + "license": "Apache-2.0", + "pname": "kubectl-tree", + "unfree": false, + "version": "0.4.3" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + }, + "minikube": { + "attr-path": [ + "legacyPackages", + "aarch64-darwin", + "minikube" + ], + "info": { + "broken": false, + "description": "A tool that makes it easy to run Kubernetes locally", + "license": "Apache-2.0", + "pname": "minikube", + "unfree": false, + "version": "1.31.2" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + } + }, + "aarch64-linux": { + "gum": { + "attr-path": [ + "legacyPackages", + "aarch64-linux", + "gum" + ], + "info": { + "broken": false, + "description": "Tasty Bubble Gum for your shell", + "license": "MIT", + "pname": "gum", + "unfree": false, + "version": "0.13.0" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + }, + "kubectl": { + "attr-path": [ + "legacyPackages", + "aarch64-linux", + "kubectl" + ], + "info": { + "broken": false, + "description": "Kubernetes CLI", + "license": "Apache-2.0", + "pname": "kubectl", + "unfree": false, + "version": "1.28.9" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + }, + "kubectl-images": { + "attr-path": [ + "legacyPackages", + "aarch64-linux", + "kubectl-images" + ], + "info": { + "broken": false, + "description": "Show container images used in the cluster.", + "license": "MIT", + "pname": "kubectl-images", + "unfree": false, + "version": "0.6.3" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + }, + "kubectl-ktop": { + "attr-path": [ + "legacyPackages", + "aarch64-linux", + "kubectl-ktop" + ], + "info": { + "broken": false, + "description": "A top-like tool for your Kubernetes clusters", + "license": "Apache-2.0", + "pname": "kubectl-ktop", + "unfree": false, + "version": "0.3.5" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + }, + "kubectl-tree": { + "attr-path": [ + "legacyPackages", + "aarch64-linux", + "kubectl-tree" + ], + "info": { + "broken": false, + "description": "kubectl plugin to browse Kubernetes object hierarchies as a tree", + "license": "Apache-2.0", + "pname": "kubectl-tree", + "unfree": false, + "version": "0.4.3" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + }, + "minikube": { + "attr-path": [ + "legacyPackages", + "aarch64-linux", + "minikube" + ], + "info": { + "broken": false, + "description": "A tool that makes it easy to run Kubernetes locally", + "license": "Apache-2.0", + "pname": "minikube", + "unfree": false, + "version": "1.31.2" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + } + }, + "x86_64-darwin": { + "gum": { + "attr-path": [ + "legacyPackages", + "x86_64-darwin", + "gum" + ], + "info": { + "broken": false, + "description": "Tasty Bubble Gum for your shell", + "license": "MIT", + "pname": "gum", + "unfree": false, + "version": "0.13.0" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + }, + "kubectl": { + "attr-path": [ + "legacyPackages", + "x86_64-darwin", + "kubectl" + ], + "info": { + "broken": false, + "description": "Kubernetes CLI", + "license": "Apache-2.0", + "pname": "kubectl", + "unfree": false, + "version": "1.28.9" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + }, + "kubectl-images": { + "attr-path": [ + "legacyPackages", + "x86_64-darwin", + "kubectl-images" + ], + "info": { + "broken": false, + "description": "Show container images used in the cluster.", + "license": "MIT", + "pname": "kubectl-images", + "unfree": false, + "version": "0.6.3" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + }, + "kubectl-ktop": { + "attr-path": [ + "legacyPackages", + "x86_64-darwin", + "kubectl-ktop" + ], + "info": { + "broken": false, + "description": "A top-like tool for your Kubernetes clusters", + "license": "Apache-2.0", + "pname": "kubectl-ktop", + "unfree": false, + "version": "0.3.5" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + }, + "kubectl-tree": { + "attr-path": [ + "legacyPackages", + "x86_64-darwin", + "kubectl-tree" + ], + "info": { + "broken": false, + "description": "kubectl plugin to browse Kubernetes object hierarchies as a tree", + "license": "Apache-2.0", + "pname": "kubectl-tree", + "unfree": false, + "version": "0.4.3" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + }, + "minikube": { + "attr-path": [ + "legacyPackages", + "x86_64-darwin", + "minikube" + ], + "info": { + "broken": false, + "description": "A tool that makes it easy to run Kubernetes locally", + "license": "Apache-2.0", + "pname": "minikube", + "unfree": false, + "version": "1.31.2" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + } + }, + "x86_64-linux": { + "gum": { + "attr-path": [ + "legacyPackages", + "x86_64-linux", + "gum" + ], + "info": { + "broken": false, + "description": "Tasty Bubble Gum for your shell", + "license": "MIT", + "pname": "gum", + "unfree": false, + "version": "0.13.0" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + }, + "kubectl": { + "attr-path": [ + "legacyPackages", + "x86_64-linux", + "kubectl" + ], + "info": { + "broken": false, + "description": "Kubernetes CLI", + "license": "Apache-2.0", + "pname": "kubectl", + "unfree": false, + "version": "1.28.9" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + }, + "kubectl-images": { + "attr-path": [ + "legacyPackages", + "x86_64-linux", + "kubectl-images" + ], + "info": { + "broken": false, + "description": "Show container images used in the cluster.", + "license": "MIT", + "pname": "kubectl-images", + "unfree": false, + "version": "0.6.3" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + }, + "kubectl-ktop": { + "attr-path": [ + "legacyPackages", + "x86_64-linux", + "kubectl-ktop" + ], + "info": { + "broken": false, + "description": "A top-like tool for your Kubernetes clusters", + "license": "Apache-2.0", + "pname": "kubectl-ktop", + "unfree": false, + "version": "0.3.5" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + }, + "kubectl-tree": { + "attr-path": [ + "legacyPackages", + "x86_64-linux", + "kubectl-tree" + ], + "info": { + "broken": false, + "description": "kubectl plugin to browse Kubernetes object hierarchies as a tree", + "license": "Apache-2.0", + "pname": "kubectl-tree", + "unfree": false, + "version": "0.4.3" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + }, + "minikube": { + "attr-path": [ + "legacyPackages", + "x86_64-linux", + "minikube" + ], + "info": { + "broken": false, + "description": "A tool that makes it easy to run Kubernetes locally", + "license": "Apache-2.0", + "pname": "minikube", + "unfree": false, + "version": "1.31.2" + }, + "input": { + "attrs": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "fingerprint": "36ae6b8ef32912f213ef81267f76c5d5d77272af6eb3b013c0748d7c10b7da2d", + "url": "github:NixOS/nixpkgs/8ed72179617b1b4dbd15134371daf4e9c4c039ee" + }, + "priority": 5 + } + } + }, + "registry": { + "defaults": { + "subtrees": null + }, + "inputs": { + "nixpkgs": { + "from": { + "lastModified": 1716702362, + "narHash": "sha256-1iExBg0gqYHqSEwALu4LYPOKlJMbUUbsfhsGZf2mi0M=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "8ed72179617b1b4dbd15134371daf4e9c4c039ee", + "type": "github" + }, + "subtrees": [ + "legacyPackages" + ] + } + }, + "priority": [ + "nixpkgs" + ] + } +} \ No newline at end of file diff --git a/playground/minikube/.flox/env/manifest.toml b/playground/minikube/.flox/env/manifest.toml new file mode 100644 index 0000000..760ace5 --- /dev/null +++ b/playground/minikube/.flox/env/manifest.toml @@ -0,0 +1,65 @@ +# +# This is a Flox environment manifest. +# Visit flox.dev/docs/concepts/manifest/ +# or see flox-edit(1), manifest.toml(1) for more information. +# + +# List packages you wish to install in your environment inside +# the `[install]` section. +[install] +minikube.pkg-path = "minikube" +kubectl.pkg-path = "kubectl" +kubectl-tree.pkg-path = "kubectl-tree" +kubectl-ktop.pkg-path = "kubectl-ktop" +kubectl-images.pkg-path = "kubectl-images" +gum.pkg-path = "gum" + + +[hook] +on-activate = """ + if [ "$(minikube status --format='{{.Host}}')" = "Running" ]; then + echo "✅ minikube is already running" + echo "Stop it with 'minikube stop' or by exiting this shell." + return + fi + + autostart="$HOME/.config/minikube-env/autostart" + choice= + if [ ! -f "$autostart" ]; then + echo "This Flox environment can automatically create and start minikube."; echo + choice=$($FLOX_ENV/bin/gum choose "Always - start now & on future activations" "Yes - start now only" "No - do not start") + if [ "${choice:0:1}" = "A" ]; then + mkdir -p "$HOME"/.config/minikube-env + echo "1" > "$autostart" + echo + echo "OK - minikube will start automatically on next activation. To disable this, run:" + echo " rm $autostart" + fi + fi + + if [ -f "$autostart" ] || [ "${choice:0:1}" = "A" ] || [ "${choice:0:1}" = "Y" ] ; then + + $FLOX_ENV/bin/gum spin --spinner dot --show-output --title "Starting minikube..." -- $FLOX_ENV/bin/minikube start \ + --driver=qemu2 --qemu-firmware-path=$FLOX_ENV/share/qemu/edk2-aarch64-code.fd --network=builtin 2>&1 + + if [ "$(minikube status --format='{{.Host}}')" = "Running" ]; then + echo; echo "✅ minikube started" + echo "Stop it with 'minikube stop' or by exiting this shell." + return + fi + fi + + echo "🚨 minikube did not start successfully" +""" + +[profile] +common = """ + ## + ## YOWCH! this is not shell-portable, will have to write versions for bash/fish/tcsh + ## + trap '$FLOX_ENV/bin/gum confirm "Stop minikube cluster?" && $FLOX_ENV/bin/gum spin --spinner dot --title "Stopping minikube ...." -- $FLOX_ENV/bin/minikube stop ; echo; echo "✅ minikube stopped"' EXIT +""" + + +[options] +systems = ["x86_64-linux", "aarch64-linux", "x86_64-darwin", "aarch64-darwin"] diff --git a/playground/ollamamux/.flox/.gitignore b/playground/ollamamux/.flox/.gitignore new file mode 100644 index 0000000..3ed9fa4 --- /dev/null +++ b/playground/ollamamux/.flox/.gitignore @@ -0,0 +1,3 @@ +run/ +cache/ +lib/ diff --git a/playground/ollamamux/.flox/env.json b/playground/ollamamux/.flox/env.json new file mode 100644 index 0000000..99be3ca --- /dev/null +++ b/playground/ollamamux/.flox/env.json @@ -0,0 +1 @@ +{"owner":"flox","name":"ollamamux","floxhub_url":"https://hub.flox.dev/","version":1} \ No newline at end of file diff --git a/playground/ollamamux/.flox/env.lock b/playground/ollamamux/.flox/env.lock new file mode 100644 index 0000000..af32e70 --- /dev/null +++ b/playground/ollamamux/.flox/env.lock @@ -0,0 +1,5 @@ +{ + "rev": "e24841312da630c453a2ff60aa5c814a6b5475a6", + "local_rev": null, + "version": 1 +} \ No newline at end of file diff --git a/playground/ollamamux/.flox/env/manifest.lock b/playground/ollamamux/.flox/env/manifest.lock new file mode 100644 index 0000000..9f56f09 --- /dev/null +++ b/playground/ollamamux/.flox/env/manifest.lock @@ -0,0 +1,416 @@ +{ + "lockfile-version": 1, + "manifest": { + "version": 1, + "install": { + "gum": { + "pkg-path": "gum", + "pkg-group": null, + "priority": null, + "version": null, + "systems": null + }, + "ollama": { + "pkg-path": "ollama", + "pkg-group": null, + "priority": null, + "version": null, + "systems": null + }, + "tmux": { + "pkg-path": "tmux", + "pkg-group": null, + "priority": null, + "version": null, + "systems": null + } + }, + "vars": { + "OLLAMA_TMUX_SESSION": "ollama" + }, + "hook": { + "on-activate": null + }, + "profile": { + "common": null, + "bash": " autostart=\"$HOME/.config/ollama-env/autostart\"\n choice=\n if [ ! -f \"$autostart\" ]; then\n echo \"Would you like to start the Ollama service in tmux?\"\n choice=$(gum choose \"Always - start now & on future activations\" \"Yes - start now only\" \"No - do not start\")\n if [ \"${choice:0:1}\" = \"A\" ]; then\n mkdir -p \"$HOME\"/.config/ollama-env\n echo \"1\" > \"$autostart\"\n echo\n echo \"Machine will start automatically on next activation. To disable this, run:\"\n echo \" rm $autostart\"\n fi\n fi\n\n if [ -f \"$autostart\" ] || [ \"${choice:0:1}\" = \"A\" ] || [ \"${choice:0:1}\" = \"Y\" ] ; then\n instructionsFile=$(mktemp)\n echo > $instructionsFile\n echo \"The ollama service is running in the top pane.\" >> $instructionsFile\n echo >> $instructionsFile\n echo \"Use 'ollama pull' to download a model, e.g. 'ollama pull llama3'\" >> $instructionsFile\n echo \"Use 'ollama run' to run a model, e.g. 'ollama run llama3'\" >> $instructionsFile\n echo \"Use 'teardown' to kill the session\" >> $instructionsFile\n\n # In case we're already running\n $FLOX_ENV/bin/tmux kill-session -t $OLLAMA_TMUX_SESSION\n\n # Create a new tmux session\n $FLOX_ENV/bin/tmux new-session -d -s $OLLAMA_TMUX_SESSION\n\n # Create a pane at the top\n $FLOX_ENV/bin/tmux split-window -v -t $OLLAMA_TMUX_SESSION\n $FLOX_ENV/bin/tmux resize-pane -t $OLLAMA_TMUX_SESSION:0.0 -y 7\n\n # Run the ollama servce in the top pane\n $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.0 \"ollama serve\" Enter\n\n # Create an alias in the bottom pane\n # (and clear the screen so the user doesn't have to see it)\n $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.1 \"alias teardown='tmux kill-session -t \" $OLLAMA_TMUX_SESSION \"'\" Enter\n\n # Provide some instructions for the user\n $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.1 \"alias instructions='command cat \" $instructionsFile \"'\" Enter\n $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.1 \"instructions\" ^L Enter\n\n # Attach to our session!\n $FLOX_ENV/bin/tmux attach-session -t $OLLAMA_TMUX_SESSION\n\n # Cause the Flox environment to exit once tmux is done\n exit # im dead\n fi\n", + "zsh": " autostart=\"$HOME/.config/ollama-env/autostart\"\n choice=\n if [ ! -f \"$autostart\" ]; then\n echo \"Would you like to start the Ollama service in tmux?\"\n choice=$(gum choose \"Always - start now & on future activations\" \"Yes - start now only\" \"No - do not start\")\n if [ \"${choice:0:1}\" = \"A\" ]; then\n mkdir -p \"$HOME\"/.config/ollama-env\n echo \"1\" > \"$autostart\"\n echo\n echo \"Machine will start automatically on next activation. To disable this, run:\"\n echo \" rm $autostart\"\n fi\n fi\n\n if [ -f \"$autostart\" ] || [ \"${choice:0:1}\" = \"A\" ] || [ \"${choice:0:1}\" = \"Y\" ] ; then\n instructionsFile=$(mktemp)\n echo > $instructionsFile\n echo \"The ollama service is running in the top pane.\" >> $instructionsFile\n echo >> $instructionsFile\n echo \"Use 'ollama pull' to download a model, e.g. 'ollama pull llama3'\" >> $instructionsFile\n echo \"Use 'ollama run' to run a model, e.g. 'ollama run llama3'\" >> $instructionsFile\n echo \"Use 'teardown' to kill the session\" >> $instructionsFile\n\n # In case we're already running\n $FLOX_ENV/bin/tmux kill-session -t $OLLAMA_TMUX_SESSION\n\n # Create a new tmux session\n $FLOX_ENV/bin/tmux new-session -d -s $OLLAMA_TMUX_SESSION\n\n # Create a pane at the top\n $FLOX_ENV/bin/tmux split-window -v -t $OLLAMA_TMUX_SESSION\n $FLOX_ENV/bin/tmux resize-pane -t $OLLAMA_TMUX_SESSION:0.0 -y 7\n\n # Run the ollama servce in the top pane\n $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.0 \"ollama serve\" Enter\n\n # Create an alias in the bottom pane\n # (and clear the screen so the user doesn't have to see it)\n $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.1 \"alias teardown='tmux kill-session -t \" $OLLAMA_TMUX_SESSION \"'\" Enter\n\n # Provide some instructions for the user\n $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.1 \"alias instructions='command cat \" $instructionsFile \"'\" Enter\n $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.1 \"instructions\" ^L Enter\n\n # Attach to our session!\n $FLOX_ENV/bin/tmux attach-session -t $OLLAMA_TMUX_SESSION\n\n # Cause the Flox environment to exit once tmux is done\n exit # im dead\n fi\n", + "fish": null, + "tcsh": null + }, + "options": { + "systems": [ + "aarch64-darwin", + "aarch64-linux", + "x86_64-darwin", + "x86_64-linux" + ], + "allow": { + "unfree": null, + "broken": null, + "licenses": [] + }, + "semver": { + "allow-pre-releases": null + } + } + }, + "packages": [ + { + "attr_path": "gum", + "broken": false, + "derivation": "/nix/store/43fpvgbgqd8imi47gwq3srvq03x22way-gum-0.14.1.drv", + "description": "Tasty Bubble Gum for your shell", + "install_id": "gum", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=57610d2f8f0937f39dbd72251e9614b1561942d8", + "name": "gum-0.14.1", + "pname": "gum", + "rev": "57610d2f8f0937f39dbd72251e9614b1561942d8", + "rev_count": 633517, + "rev_date": "2024-05-31T23:09:26Z", + "scrape_date": "2024-06-04T09:46:16Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.14.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/h5z17zm21lz3qkccqh4mnkb9xsx27ds5-gum-0.14.1" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "gum", + "broken": false, + "derivation": "/nix/store/d6wz8nghqkq32a2624w1pbf3zpwc7ay6-gum-0.14.1.drv", + "description": "Tasty Bubble Gum for your shell", + "install_id": "gum", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=57610d2f8f0937f39dbd72251e9614b1561942d8", + "name": "gum-0.14.1", + "pname": "gum", + "rev": "57610d2f8f0937f39dbd72251e9614b1561942d8", + "rev_count": 633517, + "rev_date": "2024-05-31T23:09:26Z", + "scrape_date": "2024-06-04T09:46:16Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.14.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/0f0na0sdmp64p5ynd4j1lpgx57a1jwd9-gum-0.14.1" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "gum", + "broken": false, + "derivation": "/nix/store/hwpf1d61s76c215zsa0byv8v74fbfqrv-gum-0.14.1.drv", + "description": "Tasty Bubble Gum for your shell", + "install_id": "gum", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=57610d2f8f0937f39dbd72251e9614b1561942d8", + "name": "gum-0.14.1", + "pname": "gum", + "rev": "57610d2f8f0937f39dbd72251e9614b1561942d8", + "rev_count": 633517, + "rev_date": "2024-05-31T23:09:26Z", + "scrape_date": "2024-06-04T09:46:16Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.14.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/08rsns46wcxyqdwbaalprzcsd355vw7n-gum-0.14.1" + }, + "system": "x86_64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "gum", + "broken": false, + "derivation": "/nix/store/08mz1c0m1bh40h4rk7akzgq43zch5kca-gum-0.14.1.drv", + "description": "Tasty Bubble Gum for your shell", + "install_id": "gum", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=57610d2f8f0937f39dbd72251e9614b1561942d8", + "name": "gum-0.14.1", + "pname": "gum", + "rev": "57610d2f8f0937f39dbd72251e9614b1561942d8", + "rev_count": 633517, + "rev_date": "2024-05-31T23:09:26Z", + "scrape_date": "2024-06-04T09:46:16Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.14.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/vh7sq5jganhj305981d6w07l1x6iclq6-gum-0.14.1" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "ollama", + "broken": false, + "derivation": "/nix/store/2s3ppwvi2fp1y08cvw88vxhk4czd6myn-ollama-0.1.39.drv", + "description": "Get up and running with large language models locally", + "install_id": "ollama", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=57610d2f8f0937f39dbd72251e9614b1561942d8", + "name": "ollama-0.1.39", + "pname": "ollama", + "rev": "57610d2f8f0937f39dbd72251e9614b1561942d8", + "rev_count": 633517, + "rev_date": "2024-05-31T23:09:26Z", + "scrape_date": "2024-06-04T09:46:16Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.1.39", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/zc7khcr0mdl71rn2hx277g7iax8rsxqa-ollama-0.1.39" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "ollama", + "broken": false, + "derivation": "/nix/store/hx86zh9lsa9l5lsv2hmb37m1v9lbr113-ollama-0.1.39.drv", + "description": "Get up and running with large language models locally", + "install_id": "ollama", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=57610d2f8f0937f39dbd72251e9614b1561942d8", + "name": "ollama-0.1.39", + "pname": "ollama", + "rev": "57610d2f8f0937f39dbd72251e9614b1561942d8", + "rev_count": 633517, + "rev_date": "2024-05-31T23:09:26Z", + "scrape_date": "2024-06-04T09:46:16Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.1.39", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/b90m6q5ida1dd9a5dihgkzghv9wphxkh-ollama-0.1.39" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "ollama", + "broken": false, + "derivation": "/nix/store/hj1wm6ah4ps0wsq12axxh6dn7qw2sggy-ollama-0.1.39.drv", + "description": "Get up and running with large language models locally", + "install_id": "ollama", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=57610d2f8f0937f39dbd72251e9614b1561942d8", + "name": "ollama-0.1.39", + "pname": "ollama", + "rev": "57610d2f8f0937f39dbd72251e9614b1561942d8", + "rev_count": 633517, + "rev_date": "2024-05-31T23:09:26Z", + "scrape_date": "2024-06-04T09:46:16Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.1.39", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/2s9sqyl9nvl08hq03hiy52kxrxvdzxmn-ollama-0.1.39" + }, + "system": "x86_64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "ollama", + "broken": false, + "derivation": "/nix/store/91yk2jhvyh9ml8pgh7h3jzj6zgj6rfi5-ollama-0.1.39.drv", + "description": "Get up and running with large language models locally", + "install_id": "ollama", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=57610d2f8f0937f39dbd72251e9614b1561942d8", + "name": "ollama-0.1.39", + "pname": "ollama", + "rev": "57610d2f8f0937f39dbd72251e9614b1561942d8", + "rev_count": 633517, + "rev_date": "2024-05-31T23:09:26Z", + "scrape_date": "2024-06-04T09:46:16Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.1.39", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/1jk62s23zjrp7xsabq6p7g4cai8610h6-ollama-0.1.39" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "tmux", + "broken": false, + "derivation": "/nix/store/hd851gilk6x0dgkk48ddpmk1cy4xl5rr-tmux-3.4.drv", + "description": "Terminal multiplexer", + "install_id": "tmux", + "license": "BSD-3-Clause", + "locked_url": "https://github.com/flox/nixpkgs?rev=57610d2f8f0937f39dbd72251e9614b1561942d8", + "name": "tmux-3.4", + "pname": "tmux", + "rev": "57610d2f8f0937f39dbd72251e9614b1561942d8", + "rev_count": 633517, + "rev_date": "2024-05-31T23:09:26Z", + "scrape_date": "2024-06-04T09:46:16Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "3.4", + "outputs_to_install": [ + "out", + "man" + ], + "outputs": { + "man": "/nix/store/xpafbd5q828wajgv0m6rgmz1f3m5v62p-tmux-3.4-man", + "out": "/nix/store/qm7b2r63shfadhfi6ng806xrwraxvdhh-tmux-3.4" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "tmux", + "broken": false, + "derivation": "/nix/store/9sw36a9f0i6c41gcai85k2hbriqpdn41-tmux-3.4.drv", + "description": "Terminal multiplexer", + "install_id": "tmux", + "license": "BSD-3-Clause", + "locked_url": "https://github.com/flox/nixpkgs?rev=57610d2f8f0937f39dbd72251e9614b1561942d8", + "name": "tmux-3.4", + "pname": "tmux", + "rev": "57610d2f8f0937f39dbd72251e9614b1561942d8", + "rev_count": 633517, + "rev_date": "2024-05-31T23:09:26Z", + "scrape_date": "2024-06-04T09:46:16Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "3.4", + "outputs_to_install": [ + "out", + "man" + ], + "outputs": { + "man": "/nix/store/x4klz4bqxkm2a24lff9vir6sjm5k0xyr-tmux-3.4-man", + "out": "/nix/store/y4gy0j73z5786c6iiwf76yv8abik0lwr-tmux-3.4" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "tmux", + "broken": false, + "derivation": "/nix/store/c4y69pcvyhcwl10l53z85gy4d4qgv367-tmux-3.4.drv", + "description": "Terminal multiplexer", + "install_id": "tmux", + "license": "BSD-3-Clause", + "locked_url": "https://github.com/flox/nixpkgs?rev=57610d2f8f0937f39dbd72251e9614b1561942d8", + "name": "tmux-3.4", + "pname": "tmux", + "rev": "57610d2f8f0937f39dbd72251e9614b1561942d8", + "rev_count": 633517, + "rev_date": "2024-05-31T23:09:26Z", + "scrape_date": "2024-06-04T09:46:16Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "3.4", + "outputs_to_install": [ + "out", + "man" + ], + "outputs": { + "man": "/nix/store/7rr83m5j2avlvqmh7z11filzp0axw637-tmux-3.4-man", + "out": "/nix/store/3l8g2zrr66mpv02x6mdia0v282p450by-tmux-3.4" + }, + "system": "x86_64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "tmux", + "broken": false, + "derivation": "/nix/store/sx8gm46pgl9vby44i024h7hck7f53d4g-tmux-3.4.drv", + "description": "Terminal multiplexer", + "install_id": "tmux", + "license": "BSD-3-Clause", + "locked_url": "https://github.com/flox/nixpkgs?rev=57610d2f8f0937f39dbd72251e9614b1561942d8", + "name": "tmux-3.4", + "pname": "tmux", + "rev": "57610d2f8f0937f39dbd72251e9614b1561942d8", + "rev_count": 633517, + "rev_date": "2024-05-31T23:09:26Z", + "scrape_date": "2024-06-04T09:46:16Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "3.4", + "outputs_to_install": [ + "out", + "man" + ], + "outputs": { + "man": "/nix/store/0vb8ywcwpgiavqrl80n44w64wn3jjam6-tmux-3.4-man", + "out": "/nix/store/dxy57vc4sbk1zb8r57firz1sad7cz1vn-tmux-3.4" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + } + ] +} \ No newline at end of file diff --git a/playground/ollamamux/.flox/env/manifest.toml b/playground/ollamamux/.flox/env/manifest.toml new file mode 100644 index 0000000..8a67524 --- /dev/null +++ b/playground/ollamamux/.flox/env/manifest.toml @@ -0,0 +1,126 @@ +# +# This is a Flox environment manifest. +# Visit flox.dev/docs/concepts/manifest/ +# or see flox-edit(1), manifest.toml(5) for more information. +# +version = 1 + +[install] +ollama.pkg-path = "ollama" +tmux.pkg-path = "tmux" +gum.pkg-path = "gum" + +[vars] +OLLAMA_TMUX_SESSION="ollama" + +[profile] +zsh = ''' + autostart="$HOME/.config/ollama-env/autostart" + choice= + if [ ! -f "$autostart" ]; then + echo "Would you like to start the Ollama service in tmux?" + choice=$(gum choose "Always - start now & on future activations" "Yes - start now only" "No - do not start") + if [ "${choice:0:1}" = "A" ]; then + mkdir -p "$HOME"/.config/ollama-env + echo "1" > "$autostart" + echo + echo "Machine will start automatically on next activation. To disable this, run:" + echo " rm $autostart" + fi + fi + + if [ -f "$autostart" ] || [ "${choice:0:1}" = "A" ] || [ "${choice:0:1}" = "Y" ] ; then + instructionsFile=$(mktemp) + echo > $instructionsFile + echo "The ollama service is running in the top pane." >> $instructionsFile + echo >> $instructionsFile + echo "Use 'ollama pull' to download a model, e.g. 'ollama pull llama3'" >> $instructionsFile + echo "Use 'ollama run' to run a model, e.g. 'ollama run llama3'" >> $instructionsFile + echo "Use 'teardown' to kill the session" >> $instructionsFile + + # In case we're already running + $FLOX_ENV/bin/tmux kill-session -t $OLLAMA_TMUX_SESSION + + # Create a new tmux session + $FLOX_ENV/bin/tmux new-session -d -s $OLLAMA_TMUX_SESSION + + # Create a pane at the top + $FLOX_ENV/bin/tmux split-window -v -t $OLLAMA_TMUX_SESSION + $FLOX_ENV/bin/tmux resize-pane -t $OLLAMA_TMUX_SESSION:0.0 -y 7 + + # Run the ollama servce in the top pane + $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.0 "ollama serve" Enter + + # Create an alias in the bottom pane + # (and clear the screen so the user doesn't have to see it) + $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.1 "alias teardown='tmux kill-session -t " $OLLAMA_TMUX_SESSION "'" Enter + + # Provide some instructions for the user + $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.1 "alias instructions='command cat " $instructionsFile "'" Enter + $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.1 "instructions" ^L Enter + + # Attach to our session! + $FLOX_ENV/bin/tmux attach-session -t $OLLAMA_TMUX_SESSION + + # Cause the Flox environment to exit once tmux is done + exit # im dead + fi +''' + +bash = ''' + autostart="$HOME/.config/ollama-env/autostart" + choice= + if [ ! -f "$autostart" ]; then + echo "Would you like to start the Ollama service in tmux?" + choice=$(gum choose "Always - start now & on future activations" "Yes - start now only" "No - do not start") + if [ "${choice:0:1}" = "A" ]; then + mkdir -p "$HOME"/.config/ollama-env + echo "1" > "$autostart" + echo + echo "Machine will start automatically on next activation. To disable this, run:" + echo " rm $autostart" + fi + fi + + if [ -f "$autostart" ] || [ "${choice:0:1}" = "A" ] || [ "${choice:0:1}" = "Y" ] ; then + instructionsFile=$(mktemp) + echo > $instructionsFile + echo "The ollama service is running in the top pane." >> $instructionsFile + echo >> $instructionsFile + echo "Use 'ollama pull' to download a model, e.g. 'ollama pull llama3'" >> $instructionsFile + echo "Use 'ollama run' to run a model, e.g. 'ollama run llama3'" >> $instructionsFile + echo "Use 'teardown' to kill the session" >> $instructionsFile + + # In case we're already running + $FLOX_ENV/bin/tmux kill-session -t $OLLAMA_TMUX_SESSION + + # Create a new tmux session + $FLOX_ENV/bin/tmux new-session -d -s $OLLAMA_TMUX_SESSION + + # Create a pane at the top + $FLOX_ENV/bin/tmux split-window -v -t $OLLAMA_TMUX_SESSION + $FLOX_ENV/bin/tmux resize-pane -t $OLLAMA_TMUX_SESSION:0.0 -y 7 + + # Run the ollama servce in the top pane + $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.0 "ollama serve" Enter + + # Create an alias in the bottom pane + # (and clear the screen so the user doesn't have to see it) + $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.1 "alias teardown='tmux kill-session -t " $OLLAMA_TMUX_SESSION "'" Enter + + # Provide some instructions for the user + $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.1 "alias instructions='command cat " $instructionsFile "'" Enter + $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.1 "instructions" ^L Enter + + # Attach to our session! + $FLOX_ENV/bin/tmux attach-session -t $OLLAMA_TMUX_SESSION + + # Cause the Flox environment to exit once tmux is done + exit # im dead + fi +''' + +[options] +systems = ["aarch64-darwin", "aarch64-linux", "x86_64-darwin", "x86_64-linux"] + + diff --git a/playground/ollamamux/manifest.toml b/playground/ollamamux/manifest.toml new file mode 100644 index 0000000..8a67524 --- /dev/null +++ b/playground/ollamamux/manifest.toml @@ -0,0 +1,126 @@ +# +# This is a Flox environment manifest. +# Visit flox.dev/docs/concepts/manifest/ +# or see flox-edit(1), manifest.toml(5) for more information. +# +version = 1 + +[install] +ollama.pkg-path = "ollama" +tmux.pkg-path = "tmux" +gum.pkg-path = "gum" + +[vars] +OLLAMA_TMUX_SESSION="ollama" + +[profile] +zsh = ''' + autostart="$HOME/.config/ollama-env/autostart" + choice= + if [ ! -f "$autostart" ]; then + echo "Would you like to start the Ollama service in tmux?" + choice=$(gum choose "Always - start now & on future activations" "Yes - start now only" "No - do not start") + if [ "${choice:0:1}" = "A" ]; then + mkdir -p "$HOME"/.config/ollama-env + echo "1" > "$autostart" + echo + echo "Machine will start automatically on next activation. To disable this, run:" + echo " rm $autostart" + fi + fi + + if [ -f "$autostart" ] || [ "${choice:0:1}" = "A" ] || [ "${choice:0:1}" = "Y" ] ; then + instructionsFile=$(mktemp) + echo > $instructionsFile + echo "The ollama service is running in the top pane." >> $instructionsFile + echo >> $instructionsFile + echo "Use 'ollama pull' to download a model, e.g. 'ollama pull llama3'" >> $instructionsFile + echo "Use 'ollama run' to run a model, e.g. 'ollama run llama3'" >> $instructionsFile + echo "Use 'teardown' to kill the session" >> $instructionsFile + + # In case we're already running + $FLOX_ENV/bin/tmux kill-session -t $OLLAMA_TMUX_SESSION + + # Create a new tmux session + $FLOX_ENV/bin/tmux new-session -d -s $OLLAMA_TMUX_SESSION + + # Create a pane at the top + $FLOX_ENV/bin/tmux split-window -v -t $OLLAMA_TMUX_SESSION + $FLOX_ENV/bin/tmux resize-pane -t $OLLAMA_TMUX_SESSION:0.0 -y 7 + + # Run the ollama servce in the top pane + $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.0 "ollama serve" Enter + + # Create an alias in the bottom pane + # (and clear the screen so the user doesn't have to see it) + $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.1 "alias teardown='tmux kill-session -t " $OLLAMA_TMUX_SESSION "'" Enter + + # Provide some instructions for the user + $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.1 "alias instructions='command cat " $instructionsFile "'" Enter + $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.1 "instructions" ^L Enter + + # Attach to our session! + $FLOX_ENV/bin/tmux attach-session -t $OLLAMA_TMUX_SESSION + + # Cause the Flox environment to exit once tmux is done + exit # im dead + fi +''' + +bash = ''' + autostart="$HOME/.config/ollama-env/autostart" + choice= + if [ ! -f "$autostart" ]; then + echo "Would you like to start the Ollama service in tmux?" + choice=$(gum choose "Always - start now & on future activations" "Yes - start now only" "No - do not start") + if [ "${choice:0:1}" = "A" ]; then + mkdir -p "$HOME"/.config/ollama-env + echo "1" > "$autostart" + echo + echo "Machine will start automatically on next activation. To disable this, run:" + echo " rm $autostart" + fi + fi + + if [ -f "$autostart" ] || [ "${choice:0:1}" = "A" ] || [ "${choice:0:1}" = "Y" ] ; then + instructionsFile=$(mktemp) + echo > $instructionsFile + echo "The ollama service is running in the top pane." >> $instructionsFile + echo >> $instructionsFile + echo "Use 'ollama pull' to download a model, e.g. 'ollama pull llama3'" >> $instructionsFile + echo "Use 'ollama run' to run a model, e.g. 'ollama run llama3'" >> $instructionsFile + echo "Use 'teardown' to kill the session" >> $instructionsFile + + # In case we're already running + $FLOX_ENV/bin/tmux kill-session -t $OLLAMA_TMUX_SESSION + + # Create a new tmux session + $FLOX_ENV/bin/tmux new-session -d -s $OLLAMA_TMUX_SESSION + + # Create a pane at the top + $FLOX_ENV/bin/tmux split-window -v -t $OLLAMA_TMUX_SESSION + $FLOX_ENV/bin/tmux resize-pane -t $OLLAMA_TMUX_SESSION:0.0 -y 7 + + # Run the ollama servce in the top pane + $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.0 "ollama serve" Enter + + # Create an alias in the bottom pane + # (and clear the screen so the user doesn't have to see it) + $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.1 "alias teardown='tmux kill-session -t " $OLLAMA_TMUX_SESSION "'" Enter + + # Provide some instructions for the user + $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.1 "alias instructions='command cat " $instructionsFile "'" Enter + $FLOX_ENV/bin/tmux send-keys -t $OLLAMA_TMUX_SESSION:0.1 "instructions" ^L Enter + + # Attach to our session! + $FLOX_ENV/bin/tmux attach-session -t $OLLAMA_TMUX_SESSION + + # Cause the Flox environment to exit once tmux is done + exit # im dead + fi +''' + +[options] +systems = ["aarch64-darwin", "aarch64-linux", "x86_64-darwin", "x86_64-linux"] + + diff --git a/playground/sdxl/.flox/.gitignore b/playground/sdxl/.flox/.gitignore new file mode 100644 index 0000000..7e3b24e --- /dev/null +++ b/playground/sdxl/.flox/.gitignore @@ -0,0 +1 @@ +run/ diff --git a/playground/sdxl/.flox/env.json b/playground/sdxl/.flox/env.json new file mode 100644 index 0000000..008960a --- /dev/null +++ b/playground/sdxl/.flox/env.json @@ -0,0 +1 @@ +{"owner":"rossturk","name":"sdxl","floxhub_url":"https://hub.flox.dev/","version":1} \ No newline at end of file diff --git a/playground/sdxl/.flox/env.lock b/playground/sdxl/.flox/env.lock new file mode 100644 index 0000000..8b0c62b --- /dev/null +++ b/playground/sdxl/.flox/env.lock @@ -0,0 +1,5 @@ +{ + "rev": "f74b8d51a0184f9d1673b755af2ce61f19db8c2b", + "local_rev": null, + "version": 1 +} \ No newline at end of file diff --git a/playground/sdxl/.flox/env/manifest.lock b/playground/sdxl/.flox/env/manifest.lock new file mode 100644 index 0000000..45200ab --- /dev/null +++ b/playground/sdxl/.flox/env/manifest.lock @@ -0,0 +1,315 @@ +{ + "lockfile-version": 0, + "manifest": { + "hook": { + "script": "\n\t# We need a directory for our venv and models\n\tmkdir -p $HOME/.cache/sdxl-env/\n\tsdxlDir=$(realpath $HOME/.cache/sdxl-env/)\n\n\t# Create a Python virtual environment in ~/.cache\n if [ ! -d \"$sdxlDir/venv\" ]; then\n echo; echo -n \"🌏 Preparing new venv in $sdxlDir/venv..\"\n python -m venv $sdxlDir/venv\n \t. $sdxlDir/venv/bin/activate\n else\n \techo; echo -n \"⚡️ Activating existing venv in $sdxlDir/venv...\"\n \t. $sdxlDir/venv/bin/activate\n\tfi\n\n\t# Preinstall SDXL requirements\n [[ $(uname -m) == 'arm64' ]] && pip3 -qq install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu\n \tpip3 -qq install diffusers compel accelerate numba imgcat safetensors invisible-watermark pillow\n\n\n\t# If there is a requirements file, process it\n\t[ -f requirements.txt ] && pip3 -qq install -r requirements.txt\n\t[ -f requirements_versions.txt ] && pip3 -qq install -r requirements_versions.txt\n\n\techo \"done.\"\n\n\t# Create our own models directory so we can clean it up later\n\tmkdir -p $sdxlDir/models\n\n\t# Set aliases and educate the user\n\n\talias gen=\"python -c \\\"[(importlib := __import__('importlib')), (warnings := importlib.import_module('warnings')), warnings.filterwarnings('ignore'), (sys := importlib.import_module('sys')), (torch := importlib.import_module('torch')), (__ol_mod_wdqhequwqx := __import__('imgcat', globals(), locals(), ['imgcat'], 0)), (imgcat := __ol_mod_wdqhequwqx.imgcat), (__ol_mod_mzyrofanne := __import__('diffusers', globals(), locals(), ['AutoPipelineForText2Image'], 0)), (AutoPipelineForText2Image := __ol_mod_mzyrofanne.AutoPipelineForText2Image), (__ol_mod_jmipndipfc := __import__('diffusers', globals(), locals(), ['logging'], 0)), (logging := __ol_mod_jmipndipfc.logging), logging.set_verbosity(50), logging.disable_progress_bar(), [(pipe := AutoPipelineForText2Image.from_pretrained('stabilityai/sd-turbo', cache_dir='$sdxlDir/models', torch_dtype=torch.float16, variant='fp16')), pipe.to('cuda')] if torch.cuda.is_available() else [(pipe := AutoPipelineForText2Image.from_pretrained('stabilityai/sd-turbo', cache_dir='$sdxlDir/models')), pipe.to('mps')] if torch.backends.mps.is_available() else (pipe := AutoPipelineForText2Image.from_pretrained('stabilityai/sd-turbo', cache_dir='$sdxlDir/models')), (prompt := (sys.argv[1] if len(sys.argv) > 1 else 'a fox in a henhouse')), pipe.set_progress_bar_config(disable=True), (image := pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0.0).images[0]), image.save('img.png'), imgcat(image)]\\\"\"\n\n\talias purgecache=\"deactivate; rm -rf $sdxlDir\"\n\n\techo; echo \"Run 'gen ' for an image.\"\n\techo \"Run 'purgecache' to purge the venv and model cache.\"\n\n" + }, + "install": { + "gcc": { + "pkg-path": "gcc-unwrapped" + }, + "glib": { + "pkg-path": "glib", + "systems": [ + "x86_64-linux" + ] + }, + "libGL": { + "pkg-path": "libGL", + "systems": [ + "x86_64-linux" + ] + }, + "pip": { + "pkg-path": "python310Packages.pip" + }, + "python312": { + "pkg-path": "python312" + } + }, + "options": { + "systems": [ + "aarch64-darwin", + "x86_64-linux" + ] + }, + "registry": { + "defaults": { + "subtrees": null + }, + "inputs": { + "nixpkgs": { + "from": { + "owner": "NixOS", + "ref": "release-23.11", + "repo": "nixpkgs", + "type": "github" + }, + "subtrees": [ + "legacyPackages" + ] + } + }, + "priority": [ + "nixpkgs" + ] + } + }, + "packages": { + "aarch64-darwin": { + "gcc": { + "attr-path": [ + "legacyPackages", + "aarch64-darwin", + "gcc-unwrapped" + ], + "info": { + "broken": false, + "description": "GNU Compiler Collection, version 12.3.0", + "license": "GPL-3.0-or-later", + "pname": "gcc", + "unfree": false, + "version": "12.3.0" + }, + "input": { + "attrs": { + "lastModified": 1707863453, + "narHash": "sha256-vfc/bwjCQgLARXKBVVJ//iuTu2cXlnJQA+xVBw7BpQE=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "d675ed1a08d96a8828b8f8fd2323e5ec024fd79b", + "type": "github" + }, + "fingerprint": "ded957dede996490458ec6e815140e8497dde4329bbbd9ab3e5debe56f299c0e", + "url": "github:NixOS/nixpkgs/d675ed1a08d96a8828b8f8fd2323e5ec024fd79b" + }, + "priority": 5 + }, + "glib": null, + "libGL": null, + "pip": { + "attr-path": [ + "legacyPackages", + "aarch64-darwin", + "python310Packages", + "pip" + ], + "info": { + "broken": false, + "description": "The PyPA recommended tool for installing Python packages", + "license": null, + "pname": "pip", + "unfree": false, + "version": "23.2.1" + }, + "input": { + "attrs": { + "lastModified": 1707863453, + "narHash": "sha256-vfc/bwjCQgLARXKBVVJ//iuTu2cXlnJQA+xVBw7BpQE=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "d675ed1a08d96a8828b8f8fd2323e5ec024fd79b", + "type": "github" + }, + "fingerprint": "ded957dede996490458ec6e815140e8497dde4329bbbd9ab3e5debe56f299c0e", + "url": "github:NixOS/nixpkgs/d675ed1a08d96a8828b8f8fd2323e5ec024fd79b" + }, + "priority": 5 + }, + "python312": { + "attr-path": [ + "legacyPackages", + "aarch64-darwin", + "python312" + ], + "info": { + "broken": false, + "description": "A high-level dynamically-typed programming language", + "license": "Python-2.0", + "pname": "python3", + "unfree": false, + "version": "3.12.1" + }, + "input": { + "attrs": { + "lastModified": 1707863453, + "narHash": "sha256-vfc/bwjCQgLARXKBVVJ//iuTu2cXlnJQA+xVBw7BpQE=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "d675ed1a08d96a8828b8f8fd2323e5ec024fd79b", + "type": "github" + }, + "fingerprint": "ded957dede996490458ec6e815140e8497dde4329bbbd9ab3e5debe56f299c0e", + "url": "github:NixOS/nixpkgs/d675ed1a08d96a8828b8f8fd2323e5ec024fd79b" + }, + "priority": 5 + } + }, + "x86_64-linux": { + "gcc": { + "attr-path": [ + "legacyPackages", + "x86_64-linux", + "gcc-unwrapped" + ], + "info": { + "broken": false, + "description": "GNU Compiler Collection, version 12.3.0", + "license": "GPL-3.0-or-later", + "pname": "gcc", + "unfree": false, + "version": "12.3.0" + }, + "input": { + "attrs": { + "lastModified": 1707863453, + "narHash": "sha256-vfc/bwjCQgLARXKBVVJ//iuTu2cXlnJQA+xVBw7BpQE=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "d675ed1a08d96a8828b8f8fd2323e5ec024fd79b", + "type": "github" + }, + "fingerprint": "ded957dede996490458ec6e815140e8497dde4329bbbd9ab3e5debe56f299c0e", + "url": "github:NixOS/nixpkgs/d675ed1a08d96a8828b8f8fd2323e5ec024fd79b" + }, + "priority": 5 + }, + "glib": { + "attr-path": [ + "legacyPackages", + "x86_64-linux", + "glib" + ], + "info": { + "broken": false, + "description": "C library of programming buildings blocks", + "license": "LGPL-2.1-or-later", + "pname": "glib", + "unfree": false, + "version": "2.78.3" + }, + "input": { + "attrs": { + "lastModified": 1707863453, + "narHash": "sha256-vfc/bwjCQgLARXKBVVJ//iuTu2cXlnJQA+xVBw7BpQE=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "d675ed1a08d96a8828b8f8fd2323e5ec024fd79b", + "type": "github" + }, + "fingerprint": "ded957dede996490458ec6e815140e8497dde4329bbbd9ab3e5debe56f299c0e", + "url": "github:NixOS/nixpkgs/d675ed1a08d96a8828b8f8fd2323e5ec024fd79b" + }, + "priority": 5 + }, + "libGL": { + "attr-path": [ + "legacyPackages", + "x86_64-linux", + "libGL" + ], + "info": { + "broken": false, + "description": "Stub bindings using libglvnd", + "license": null, + "pname": "libGL", + "unfree": false, + "version": "1.7.0" + }, + "input": { + "attrs": { + "lastModified": 1707863453, + "narHash": "sha256-vfc/bwjCQgLARXKBVVJ//iuTu2cXlnJQA+xVBw7BpQE=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "d675ed1a08d96a8828b8f8fd2323e5ec024fd79b", + "type": "github" + }, + "fingerprint": "ded957dede996490458ec6e815140e8497dde4329bbbd9ab3e5debe56f299c0e", + "url": "github:NixOS/nixpkgs/d675ed1a08d96a8828b8f8fd2323e5ec024fd79b" + }, + "priority": 5 + }, + "pip": { + "attr-path": [ + "legacyPackages", + "x86_64-linux", + "python310Packages", + "pip" + ], + "info": { + "broken": false, + "description": "The PyPA recommended tool for installing Python packages", + "license": null, + "pname": "pip", + "unfree": false, + "version": "23.2.1" + }, + "input": { + "attrs": { + "lastModified": 1707863453, + "narHash": "sha256-vfc/bwjCQgLARXKBVVJ//iuTu2cXlnJQA+xVBw7BpQE=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "d675ed1a08d96a8828b8f8fd2323e5ec024fd79b", + "type": "github" + }, + "fingerprint": "ded957dede996490458ec6e815140e8497dde4329bbbd9ab3e5debe56f299c0e", + "url": "github:NixOS/nixpkgs/d675ed1a08d96a8828b8f8fd2323e5ec024fd79b" + }, + "priority": 5 + }, + "python312": { + "attr-path": [ + "legacyPackages", + "x86_64-linux", + "python312" + ], + "info": { + "broken": false, + "description": "A high-level dynamically-typed programming language", + "license": "Python-2.0", + "pname": "python3", + "unfree": false, + "version": "3.12.1" + }, + "input": { + "attrs": { + "lastModified": 1707863453, + "narHash": "sha256-vfc/bwjCQgLARXKBVVJ//iuTu2cXlnJQA+xVBw7BpQE=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "d675ed1a08d96a8828b8f8fd2323e5ec024fd79b", + "type": "github" + }, + "fingerprint": "ded957dede996490458ec6e815140e8497dde4329bbbd9ab3e5debe56f299c0e", + "url": "github:NixOS/nixpkgs/d675ed1a08d96a8828b8f8fd2323e5ec024fd79b" + }, + "priority": 5 + } + } + }, + "registry": { + "defaults": { + "subtrees": null + }, + "inputs": { + "nixpkgs": { + "from": { + "lastModified": 1707863453, + "narHash": "sha256-vfc/bwjCQgLARXKBVVJ//iuTu2cXlnJQA+xVBw7BpQE=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "d675ed1a08d96a8828b8f8fd2323e5ec024fd79b", + "type": "github" + }, + "subtrees": [ + "legacyPackages" + ] + } + }, + "priority": [ + "nixpkgs" + ] + } +} \ No newline at end of file diff --git a/playground/sdxl/.flox/env/manifest.toml b/playground/sdxl/.flox/env/manifest.toml new file mode 100644 index 0000000..946c327 --- /dev/null +++ b/playground/sdxl/.flox/env/manifest.toml @@ -0,0 +1,57 @@ +[install] +python312.pkg-path = "python312" +pip.pkg-path = "python310Packages.pip" +gcc.pkg-path = "gcc-unwrapped" + +[install.libGL] +pkg-path = "libGL" +systems = ["x86_64-linux"] + +[install.glib] +pkg-path = "glib" +systems = ["x86_64-linux"] + +[hook] +script = """ + + # We need a directory for our venv and models + mkdir -p $HOME/.cache/sdxl-env/ + sdxlDir=$(realpath $HOME/.cache/sdxl-env/) + + # Create a Python virtual environment in ~/.cache + if [ ! -d "$sdxlDir/venv" ]; then + echo; echo -n "🌏 Preparing new venv in $sdxlDir/venv.." + python -m venv $sdxlDir/venv + . $sdxlDir/venv/bin/activate + else + echo; echo -n "⚡️ Activating existing venv in $sdxlDir/venv..." + . $sdxlDir/venv/bin/activate + fi + + # Preinstall SDXL requirements + [[ $(uname -m) == 'arm64' ]] && pip3 -qq install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu + pip3 -qq install diffusers compel accelerate numba imgcat safetensors invisible-watermark pillow + + + # If there is a requirements file, process it + [ -f requirements.txt ] && pip3 -qq install -r requirements.txt + [ -f requirements_versions.txt ] && pip3 -qq install -r requirements_versions.txt + + echo "done." + + # Create our own models directory so we can clean it up later + mkdir -p $sdxlDir/models + + # Set aliases and educate the user + + alias gen="python -c \\"[(importlib := __import__('importlib')), (warnings := importlib.import_module('warnings')), warnings.filterwarnings('ignore'), (sys := importlib.import_module('sys')), (torch := importlib.import_module('torch')), (__ol_mod_wdqhequwqx := __import__('imgcat', globals(), locals(), ['imgcat'], 0)), (imgcat := __ol_mod_wdqhequwqx.imgcat), (__ol_mod_mzyrofanne := __import__('diffusers', globals(), locals(), ['AutoPipelineForText2Image'], 0)), (AutoPipelineForText2Image := __ol_mod_mzyrofanne.AutoPipelineForText2Image), (__ol_mod_jmipndipfc := __import__('diffusers', globals(), locals(), ['logging'], 0)), (logging := __ol_mod_jmipndipfc.logging), logging.set_verbosity(50), logging.disable_progress_bar(), [(pipe := AutoPipelineForText2Image.from_pretrained('stabilityai/sd-turbo', cache_dir='$sdxlDir/models', torch_dtype=torch.float16, variant='fp16')), pipe.to('cuda')] if torch.cuda.is_available() else [(pipe := AutoPipelineForText2Image.from_pretrained('stabilityai/sd-turbo', cache_dir='$sdxlDir/models')), pipe.to('mps')] if torch.backends.mps.is_available() else (pipe := AutoPipelineForText2Image.from_pretrained('stabilityai/sd-turbo', cache_dir='$sdxlDir/models')), (prompt := (sys.argv[1] if len(sys.argv) > 1 else 'a fox in a henhouse')), pipe.set_progress_bar_config(disable=True), (image := pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0.0).images[0]), image.save('img.png'), imgcat(image)]\\"" + + alias purgecache="deactivate; rm -rf $sdxlDir" + + echo; echo "Run 'gen ' for an image." + echo "Run 'purgecache' to purge the venv and model cache." + +""" + +[options] +systems = ["aarch64-darwin", "x86_64-linux"] diff --git a/playground/sdxl/.flox/pip.ini b/playground/sdxl/.flox/pip.ini new file mode 100644 index 0000000..7905638 --- /dev/null +++ b/playground/sdxl/.flox/pip.ini @@ -0,0 +1,2 @@ +[global] +require-virtualenv = true diff --git a/playground/sdxl/.gitignore b/playground/sdxl/.gitignore new file mode 100644 index 0000000..2e1712c --- /dev/null +++ b/playground/sdxl/.gitignore @@ -0,0 +1 @@ +img.png diff --git a/playground/sdxl/manifest.toml b/playground/sdxl/manifest.toml new file mode 100644 index 0000000..c6e5d96 --- /dev/null +++ b/playground/sdxl/manifest.toml @@ -0,0 +1,58 @@ +[install] +python312.pkg-path = "python312" +pip.pkg-path = "python310Packages.pip" +gcc.pkg-path = "gcc-unwrapped" + +[install.libGL] +pkg-path = "libGL" +systems = ["x86_64-linux"] + +[install.glib] +pkg-path = "glib" +systems = ["x86_64-linux"] + +[hook] +script = """ + + # We need a directory for our venv and models + mkdir -p $HOME/.cache/sdxl-env/ + sdxlDir=$(realpath $HOME/.cache/sdxl-env/) + + # Create a Python virtual environment in ~/.cache + if [ ! -d "$sdxlDir/venv" ]; then + echo; echo -n "🌏 Preparing new venv in $sdxlDir/venv.." + python -m venv $sdxlDir/venv + . $sdxlDir/venv/bin/activate + else + echo; echo -n "⚡️ Activating existing venv in $sdxlDir/venv..." + . $sdxlDir/venv/bin/activate + fi + + # Preinstall SDXL requirements + [[ $(uname -m) == 'arm64' ]] && pip3 -qq install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu + pip3 -qq install diffusers compel accelerate numba imgcat safetensors invisible-watermark pillow + + + # If there is a requirements file, process it + [ -f requirements.txt ] && pip3 -qq install -r requirements.txt + [ -f requirements_versions.txt ] && pip3 -qq install -r requirements_versions.txt + + echo "done." + + # Create our own models directory so we can clean it up later + mkdir -p $sdxlDir/models + + # Set aliases and educate the user + + alias gen="python -c \\"[(importlib := __import__('importlib')), (warnings := importlib.import_module('warnings')), warnings.filterwarnings('ignore'), (sys := importlib.import_module('sys')), (torch := importlib.import_module('torch')), (__ol_mod_wdqhequwqx := __import__('imgcat', globals(), locals(), ['imgcat'], 0)), (imgcat := __ol_mod_wdqhequwqx.imgcat), (__ol_mod_mzyrofanne := __import__('diffusers', globals(), locals(), ['AutoPipelineForText2Image'], 0)), (AutoPipelineForText2Image := __ol_mod_mzyrofanne.AutoPipelineForText2Image), (__ol_mod_jmipndipfc := __import__('diffusers', globals(), locals(), ['logging'], 0)), (logging := __ol_mod_jmipndipfc.logging), logging.set_verbosity(50), logging.disable_progress_bar(), [(pipe := AutoPipelineForText2Image.from_pretrained('stabilityai/sd-turbo', cache_dir='$sdxlDir/models', torch_dtype=torch.float16, variant='fp16')), pipe.to('cuda')] if torch.cuda.is_available() else [(pipe := AutoPipelineForText2Image.from_pretrained('stabilityai/sd-turbo', cache_dir='$sdxlDir/models')), pipe.to('mps')] if torch.backends.mps.is_available() else (pipe := AutoPipelineForText2Image.from_pretrained('stabilityai/sd-turbo', cache_dir='$sdxlDir/models')), (prompt := (sys.argv[1] if len(sys.argv) > 1 else 'a fox in a henhouse')), pipe.set_progress_bar_config(disable=True), (image := pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0.0).images[0]), image.save('img.png'), imgcat(image)]\\"" + + alias purgecache="deactivate; rm -rf $sdxlDir" + + echo; echo "Run 'gen ' for an image." + echo "Run 'purgecache' to purge the venv and model cache." + +""" + +[options] +systems = ["aarch64-darwin", "x86_64-linux"] + diff --git a/playground/sdxl/minify-steps b/playground/sdxl/minify-steps new file mode 100644 index 0000000..43514ce --- /dev/null +++ b/playground/sdxl/minify-steps @@ -0,0 +1,6 @@ + +pip install Oneliner-Py + +python3 -m oneliner ./sdxl.py + + diff --git a/playground/sdxl/sdxl.py b/playground/sdxl/sdxl.py new file mode 100755 index 0000000..f8ab9fb --- /dev/null +++ b/playground/sdxl/sdxl.py @@ -0,0 +1,30 @@ +#!/usr/bin/env python + +import warnings +warnings.filterwarnings("ignore") + +import sys +import torch +from imgcat import imgcat +from diffusers import AutoPipelineForText2Image +from diffusers import logging + +logging.set_verbosity(50) +logging.disable_progress_bar() + +if torch.cuda.is_available(): + pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sd-turbo", torch_dtype=torch.float16, variant="fp16") + pipe.to("cuda") +elif torch.backends.mps.is_available(): + pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sd-turbo") + pipe.to("mps") +else: + pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sd-turbo") + +prompt = sys.argv[1] if len(sys.argv) > 1 else "a fox in a henhouse" + +pipe.set_progress_bar_config(disable=True) + +image = pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0.0).images[0] +image.save("img.png") +imgcat(image) diff --git a/playground/vscode/.flox/.gitignore b/playground/vscode/.flox/.gitignore new file mode 100644 index 0000000..15d71a1 --- /dev/null +++ b/playground/vscode/.flox/.gitignore @@ -0,0 +1,4 @@ +run/ +cache/ +lib/ +log/ diff --git a/playground/vscode/.flox/env.json b/playground/vscode/.flox/env.json new file mode 100644 index 0000000..66f8564 --- /dev/null +++ b/playground/vscode/.flox/env.json @@ -0,0 +1,4 @@ +{ + "name": "vscode", + "version": 1 +} \ No newline at end of file diff --git a/playground/vscode/.flox/env/manifest.lock b/playground/vscode/.flox/env/manifest.lock new file mode 100644 index 0000000..a5ec8ae --- /dev/null +++ b/playground/vscode/.flox/env/manifest.lock @@ -0,0 +1,276 @@ +{ + "lockfile-version": 1, + "manifest": { + "version": 1, + "install": { + "figlet": { + "pkg-path": "toilet" + }, + "vscode": { + "pkg-path": "vscode" + } + }, + "vars": {}, + "hook": {}, + "profile": { + "common": "toilet -f smmono9 --metal vscode" + }, + "options": { + "systems": [ + "aarch64-darwin", + "aarch64-linux", + "x86_64-darwin", + "x86_64-linux" + ], + "allow": { + "licenses": [] + }, + "semver": {}, + "cuda-detection": false + }, + "services": { + "vscode": { + "command": "code --verbose", + "vars": null, + "is-daemon": false, + "shutdown": null, + "systems": null + } + }, + "build": {} + }, + "packages": [ + { + "attr_path": "toilet", + "broken": false, + "derivation": "/nix/store/jbjl7chwxq4s90liab7mdvzxhqsmfs1m-toilet-0.3.drv", + "description": "Display large colourful characters in text mode", + "install_id": "figlet", + "license": "WTFPL", + "locked_url": "https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093", + "name": "toilet-0.3", + "pname": "toilet", + "rev": "30439d93eb8b19861ccbe3e581abf97bdc91b093", + "rev_count": 684846, + "rev_date": "2024-09-23T20:13:18Z", + "scrape_date": "2024-09-27T03:18:01Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.3", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/lznkyvw9gyiv0zacq4f1xj72pm42x9c1-toilet-0.3" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "toilet", + "broken": false, + "derivation": "/nix/store/gjl7160b21x6w44i27082x7pvwxxbk76-toilet-0.3.drv", + "description": "Display large colourful characters in text mode", + "install_id": "figlet", + "license": "WTFPL", + "locked_url": "https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093", + "name": "toilet-0.3", + "pname": "toilet", + "rev": "30439d93eb8b19861ccbe3e581abf97bdc91b093", + "rev_count": 684846, + "rev_date": "2024-09-23T20:13:18Z", + "scrape_date": "2024-09-27T03:18:01Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.3", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/8vfja99rcsql5222wr2m2znb86mnrb84-toilet-0.3" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "toilet", + "broken": false, + "derivation": "/nix/store/xiyyqcgiwxfaxms2bzl7z7ybwbvqrv9y-toilet-0.3.drv", + "description": "Display large colourful characters in text mode", + "install_id": "figlet", + "license": "WTFPL", + "locked_url": "https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093", + "name": "toilet-0.3", + "pname": "toilet", + "rev": "30439d93eb8b19861ccbe3e581abf97bdc91b093", + "rev_count": 684846, + "rev_date": "2024-09-23T20:13:18Z", + "scrape_date": "2024-09-27T03:18:01Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.3", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/88983dkng1p19bjk8zq83cl57d9x8q3g-toilet-0.3" + }, + "system": "x86_64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "toilet", + "broken": false, + "derivation": "/nix/store/wc7l3cm9fh0p9bd7gbr343cyh0m1cdhc-toilet-0.3.drv", + "description": "Display large colourful characters in text mode", + "install_id": "figlet", + "license": "WTFPL", + "locked_url": "https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093", + "name": "toilet-0.3", + "pname": "toilet", + "rev": "30439d93eb8b19861ccbe3e581abf97bdc91b093", + "rev_count": 684846, + "rev_date": "2024-09-23T20:13:18Z", + "scrape_date": "2024-09-27T03:18:01Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "0.3", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/7saj381wmizipfrqw6l7i08wpvip8f4l-toilet-0.3" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "vscode", + "broken": false, + "derivation": "/nix/store/xkrvzrs79lkgkz0bz4k68hz7z86pqqx6-vscode-1.93.1.drv", + "description": "Open source source code editor developed by Microsoft for Windows,\nLinux and macOS\n", + "install_id": "vscode", + "license": "Unfree", + "locked_url": "https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093", + "name": "vscode-1.93.1", + "pname": "vscode", + "rev": "30439d93eb8b19861ccbe3e581abf97bdc91b093", + "rev_count": 684846, + "rev_date": "2024-09-23T20:13:18Z", + "scrape_date": "2024-09-27T03:18:01Z", + "stabilities": [ + "unstable" + ], + "unfree": true, + "version": "1.93.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/mn3azfwmn9j3rgwjc6kwbv6wvyi5z65i-vscode-1.93.1" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "vscode", + "broken": false, + "derivation": "/nix/store/937fz1394jsb0iy54zdv1cxafqqkfpmd-vscode-1.93.1.drv", + "description": "Open source source code editor developed by Microsoft for Windows,\nLinux and macOS\n", + "install_id": "vscode", + "license": "Unfree", + "locked_url": "https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093", + "name": "vscode-1.93.1", + "pname": "vscode", + "rev": "30439d93eb8b19861ccbe3e581abf97bdc91b093", + "rev_count": 684846, + "rev_date": "2024-09-23T20:13:18Z", + "scrape_date": "2024-09-27T03:18:01Z", + "stabilities": [ + "unstable" + ], + "unfree": true, + "version": "1.93.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/62pf7ljx23603wsk51h66sllifm39f0d-vscode-1.93.1" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "vscode", + "broken": false, + "derivation": "/nix/store/7cfybsiw7rjajsz98ggxg8h21ncqa02m-vscode-1.93.1.drv", + "description": "Open source source code editor developed by Microsoft for Windows,\nLinux and macOS\n", + "install_id": "vscode", + "license": "Unfree", + "locked_url": "https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093", + "name": "vscode-1.93.1", + "pname": "vscode", + "rev": "30439d93eb8b19861ccbe3e581abf97bdc91b093", + "rev_count": 684846, + "rev_date": "2024-09-23T20:13:18Z", + "scrape_date": "2024-09-27T03:18:01Z", + "stabilities": [ + "unstable" + ], + "unfree": true, + "version": "1.93.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/ij2561v2k7brvzavm89xcay56w5kd8wn-vscode-1.93.1" + }, + "system": "x86_64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "vscode", + "broken": false, + "derivation": "/nix/store/yixx0syjss82lw3cv020rni6777pkc5x-vscode-1.93.1.drv", + "description": "Open source source code editor developed by Microsoft for Windows,\nLinux and macOS\n", + "install_id": "vscode", + "license": "Unfree", + "locked_url": "https://github.com/flox/nixpkgs?rev=30439d93eb8b19861ccbe3e581abf97bdc91b093", + "name": "vscode-1.93.1", + "pname": "vscode", + "rev": "30439d93eb8b19861ccbe3e581abf97bdc91b093", + "rev_count": 684846, + "rev_date": "2024-09-23T20:13:18Z", + "scrape_date": "2024-09-27T03:18:01Z", + "stabilities": [ + "unstable" + ], + "unfree": true, + "version": "1.93.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/vynknv3hmgdviq3rvaqwap0c4da2g5mr-vscode-1.93.1" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + } + ] +} \ No newline at end of file diff --git a/playground/vscode/.flox/env/manifest.toml b/playground/vscode/.flox/env/manifest.toml new file mode 100644 index 0000000..65ee07c --- /dev/null +++ b/playground/vscode/.flox/env/manifest.toml @@ -0,0 +1,22 @@ +# +# This is a Flox environment manifest. +# Visit flox.dev/docs/concepts/manifest/ +# or see flox-edit(1), manifest.toml(5) for more information. +# +# Flox manifest version managed by Flox CLI +version = 1 + +# Install VS Code and set it up as a service so we get logging +install.vscode.pkg-path = "vscode" +services.vscode.command = "code --verbose" +services.vscode.is-daemon = false + +# Print a banner +install.figlet.pkg-path = "toilet" +profile.common = "toilet -f smmono9 --metal vscode" + +# Set some general options +options.cuda-detection = false +options.systems = ["aarch64-darwin", "aarch64-linux", "x86_64-darwin", "x86_64-linux"] + + diff --git a/playground/xquartz/.flox/.gitignore b/playground/xquartz/.flox/.gitignore new file mode 100644 index 0000000..3ed9fa4 --- /dev/null +++ b/playground/xquartz/.flox/.gitignore @@ -0,0 +1,3 @@ +run/ +cache/ +lib/ diff --git a/playground/xquartz/.flox/env.json b/playground/xquartz/.flox/env.json new file mode 100644 index 0000000..80a4551 --- /dev/null +++ b/playground/xquartz/.flox/env.json @@ -0,0 +1,4 @@ +{ + "name": "xquartz", + "version": 1 +} \ No newline at end of file diff --git a/playground/xquartz/.flox/env/manifest.lock b/playground/xquartz/.flox/env/manifest.lock new file mode 100644 index 0000000..9f88e02 --- /dev/null +++ b/playground/xquartz/.flox/env/manifest.lock @@ -0,0 +1,214 @@ +{ + "lockfile-version": 1, + "manifest": { + "version": 1, + "install": { + "quartz-wm": { + "pkg-path": "quartz-wm" + }, + "xquartz": { + "pkg-path": "xquartz" + }, + "xterm": { + "pkg-path": "xterm" + } + }, + "vars": { + "DISPLAY": ":0" + }, + "hook": {}, + "profile": { + "common": "alias ssh='ssh -XY'" + }, + "options": { + "systems": [ + "aarch64-darwin", + "x86_64-darwin" + ], + "allow": { + "licenses": [] + }, + "semver": {} + }, + "services": { + "quartz-wm": { + "command": "sleep 5;quartz-wm", + "vars": null + }, + "xquartz": { + "command": "xquartz", + "vars": null + } + } + }, + "packages": [ + { + "attr_path": "quartz-wm", + "broken": false, + "derivation": "/nix/store/7hxaib869l5xwyb1i2sy9gc5xh03yry7-quartz-wm-1.3.1.drv", + "install_id": "quartz-wm", + "license": "APSL-2.0", + "locked_url": "https://github.com/flox/nixpkgs?rev=cb9a96f23c491c081b38eab96d22fa958043c9fa", + "name": "quartz-wm-1.3.1", + "pname": "quartz-wm", + "rev": "cb9a96f23c491c081b38eab96d22fa958043c9fa", + "rev_count": 662544, + "rev_date": "2024-08-04T23:25:57Z", + "scrape_date": "2024-08-07T02:06:32Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "1.3.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/qy2z3rv7s6yc9lgl0w0fh3wcc19vj00j-quartz-wm-1.3.1" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "quartz-wm", + "broken": false, + "derivation": "/nix/store/pv26zcayn8cicdwrgs3k27bivisdvrsr-quartz-wm-1.3.1.drv", + "install_id": "quartz-wm", + "license": "APSL-2.0", + "locked_url": "https://github.com/flox/nixpkgs?rev=cb9a96f23c491c081b38eab96d22fa958043c9fa", + "name": "quartz-wm-1.3.1", + "pname": "quartz-wm", + "rev": "cb9a96f23c491c081b38eab96d22fa958043c9fa", + "rev_count": 662544, + "rev_date": "2024-08-04T23:25:57Z", + "scrape_date": "2024-08-07T02:06:32Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "1.3.1", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/x43qpazrhaxfcrs78ipbw114v4jyw3nn-quartz-wm-1.3.1" + }, + "system": "x86_64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "xquartz", + "broken": false, + "derivation": "/nix/store/qyip1f5gj4zpf8ssliiiz8yzkr49s1j2-xquartz-21.1.13.drv", + "install_id": "xquartz", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=cb9a96f23c491c081b38eab96d22fa958043c9fa", + "name": "xquartz-21.1.13", + "pname": "xquartz", + "rev": "cb9a96f23c491c081b38eab96d22fa958043c9fa", + "rev_count": 662544, + "rev_date": "2024-08-04T23:25:57Z", + "scrape_date": "2024-08-07T02:06:32Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "21.1.13", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/ih5pgsknddbl98jvfd7w39lp34wxwd2i-xquartz-21.1.13" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "xquartz", + "broken": false, + "derivation": "/nix/store/dj3i2gfsmcp96siqvswkg4vh1vwlzzqs-xquartz-21.1.13.drv", + "install_id": "xquartz", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=cb9a96f23c491c081b38eab96d22fa958043c9fa", + "name": "xquartz-21.1.13", + "pname": "xquartz", + "rev": "cb9a96f23c491c081b38eab96d22fa958043c9fa", + "rev_count": 662544, + "rev_date": "2024-08-04T23:25:57Z", + "scrape_date": "2024-08-07T02:06:32Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "21.1.13", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/vqgxyx3167zramjlxsbvbwmssmp1fg3k-xquartz-21.1.13" + }, + "system": "x86_64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "xterm", + "broken": false, + "derivation": "/nix/store/mcfdjw6playfb6zx5ar0ihzd7l2x35z7-xterm-392.drv", + "install_id": "xterm", + "license": "[ MIT ]", + "locked_url": "https://github.com/flox/nixpkgs?rev=cb9a96f23c491c081b38eab96d22fa958043c9fa", + "name": "xterm-392", + "pname": "xterm", + "rev": "cb9a96f23c491c081b38eab96d22fa958043c9fa", + "rev_count": 662544, + "rev_date": "2024-08-04T23:25:57Z", + "scrape_date": "2024-08-07T02:06:32Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "392", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/ivyrbgpwyrjllza7b85wnd9aj4nz7iix-xterm-392" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "xterm", + "broken": false, + "derivation": "/nix/store/n3vs4laz2gdv7xsbsf8ikl3qgn2rnzzq-xterm-392.drv", + "install_id": "xterm", + "license": "[ MIT ]", + "locked_url": "https://github.com/flox/nixpkgs?rev=cb9a96f23c491c081b38eab96d22fa958043c9fa", + "name": "xterm-392", + "pname": "xterm", + "rev": "cb9a96f23c491c081b38eab96d22fa958043c9fa", + "rev_count": 662544, + "rev_date": "2024-08-04T23:25:57Z", + "scrape_date": "2024-08-07T02:06:32Z", + "stabilities": [ + "unstable" + ], + "unfree": false, + "version": "392", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/9nc7m3qcsb992j84y2vmgyil20hz95a5-xterm-392" + }, + "system": "x86_64-darwin", + "group": "toplevel", + "priority": 5 + } + ] +} \ No newline at end of file diff --git a/playground/xquartz/.flox/env/manifest.toml b/playground/xquartz/.flox/env/manifest.toml new file mode 100644 index 0000000..0ca9d93 --- /dev/null +++ b/playground/xquartz/.flox/env/manifest.toml @@ -0,0 +1,17 @@ +version = 1 + +# Install XQuartz +install.xquartz.pkg-path = "xquartz" +services.xquartz.command = "xquartz" +vars.DISPLAY=":0" +profile.common = "alias ssh='ssh -XY'" + +# Install quartz-wm +services.quartz-wm.command = "sleep 5;quartz-wm" +install.quartz-wm.pkg-path = "quartz-wm" + +# Install xterm +install.xterm.pkg-path = "xterm" + +options.systems = ["aarch64-darwin", "x86_64-darwin"] + diff --git a/playground/xquartz/manifest.toml b/playground/xquartz/manifest.toml new file mode 100644 index 0000000..6549baf --- /dev/null +++ b/playground/xquartz/manifest.toml @@ -0,0 +1,34 @@ +version = 1 +# +# This is a flox environment manifest. +# Visit flox.dev/docs/concepts/manifest/ +# or see flox-edit(1), manifest.toml(1) for more information. +# + +[install] +xquartz.pkg-path = "xquartz" +quartz-wm.pkg-path = "quartz-wm" +xterm.pkg-path = "xterm" + +[vars] +DISPLAY=":0" + +[services.xquartz] +command = "xquartz" + +[services.quartz-wm] +command = "quartz-wm" + +[profile] +bash = """ + alias ssh="ssh -XY" +""" + +zsh = """ + alias ssh="ssh -XY" +""" + +[options] +systems = ["aarch64-darwin", "x86_64-darwin"] + + diff --git a/podman/.flox/.gitignore b/podman/.flox/.gitignore new file mode 100644 index 0000000..3af4dbf --- /dev/null +++ b/podman/.flox/.gitignore @@ -0,0 +1,2 @@ +run/ +cache/ diff --git a/podman/.flox/env.json b/podman/.flox/env.json new file mode 100644 index 0000000..201d48c --- /dev/null +++ b/podman/.flox/env.json @@ -0,0 +1 @@ +{"owner":"rossturk","name":"podman","floxhub_url":"https://hub.flox.dev/","version":1} \ No newline at end of file diff --git a/podman/.flox/env.lock b/podman/.flox/env.lock new file mode 100644 index 0000000..f27d6ba --- /dev/null +++ b/podman/.flox/env.lock @@ -0,0 +1,5 @@ +{ + "rev": "5c20b39ae4975959dc5d5d729f71d9a8608d147c", + "local_rev": "2b11cab30128194bc076cf73e8a6804f53f8d962", + "version": 1 +} \ No newline at end of file diff --git a/podman/.flox/env/manifest.lock b/podman/.flox/env/manifest.lock new file mode 100644 index 0000000..200c3d9 --- /dev/null +++ b/podman/.flox/env/manifest.lock @@ -0,0 +1,714 @@ +{ + "lockfile-version": 0, + "manifest": { + "hook": { + "script": " echo\n\n # Confirm policy.json exits\n if [ ! -f ~/.config/containers/policy.json ]; then\n if gum confirm \"Create podman policy file?\" --default=true --affirmative \"Yes\" --negative \"No\"; then\n printf '%s\n' '{\"default\": [{\"type\": \"insecureAcceptAnything\"}]}' > ~/.config/containers/policy.json\n echo \"✅ Podman policy created at ~/.config/containers/policy.json\"\n fi\n fi\n\n # Ensure podman can run\n if [ \"$(uname -s)\" = 'Linux' ] || [ \"$(podman machine ssh -- uname -s)\" = \"Linux\" ]; then\n echo \"🍟 Podman is available.\"\n # return 0\n fi\n\n # We need a virtual machine\n autostart=\"$HOME/.config/podman-env/autostart\"\n choice=\n if [ ! -f \"$autostart\" ]; then\n echo \"Would you like to create and start the Podman virtual machine?\"\n choice=$(gum choose \"Always - start now & on future activations\" \"Yes - start now only\" \"No - do not start\")\n if [ \"${choice:0:1}\" = \"A\" ]; then\n mkdir -p \"$HOME\"/.config/podman-env\n echo \"1\" > \"$autostart\"\n echo\n echo \"Machine will start automatically on next activation. To disable this, run:\"\n echo \" rm $autostart\"\n fi\n fi\n\n if [ -f \"$autostart\" ] || [ \"${choice:0:1}\" = \"A\" ] || [ \"${choice:0:1}\" = \"Y\" ] ; then\n gum spin --spinner dot --title \"Initializing machine...\" -- podman machine init || true\n gum spin --spinner dot --title \"Starting machine...\" -- podman machine start\n if [ \"$(podman machine ssh -- uname -s)\" = \"Linux\" ]; then\n trap 'gum confirm \"Stop virtual machine?\" && gum spin --spinner dot --title \"Stopping machine ....\" -- podman machine stop ; echo \"✅ Podman virtual machine stopped\"' EXIT\n echo \"✅ Podman virtual machine started - stop it with 'podman machine stop' or exit this shell.\"\n return 0\n fi\n fi\n\n echo \"🚨 Podman is not available.\"\n" + }, + "install": { + "gum": { + "pkg-path": "gum" + }, + "podman": { + "pkg-path": "podman" + }, + "podman-compose": { + "pkg-path": "podman-compose" + }, + "podman-tui": { + "pkg-path": "podman-tui" + }, + "qemu": { + "pkg-path": [ + "qemu" + ], + "systems": [ + "x86_64-darwin", + "aarch64-darwin" + ] + }, + "undocker": { + "pkg-path": "undocker" + } + }, + "options": { + "systems": [ + "x86_64-linux", + "aarch64-linux", + "x86_64-darwin", + "aarch64-darwin" + ] + }, + "registry": { + "defaults": { + "subtrees": null + }, + "inputs": { + "nixpkgs": { + "from": { + "owner": "NixOS", + "ref": "release-23.11", + "repo": "nixpkgs", + "type": "github" + }, + "subtrees": [ + "legacyPackages" + ] + } + }, + "priority": [ + "nixpkgs" + ] + } + }, + "packages": { + "aarch64-darwin": { + "gum": { + "attr-path": [ + "legacyPackages", + "aarch64-darwin", + "gum" + ], + "info": { + "broken": false, + "description": "Tasty Bubble Gum for your shell", + "license": "MIT", + "pname": "gum", + "unfree": false, + "version": "0.13.0" + }, + "input": { + "attrs": { + "lastModified": 1712069209, + "narHash": "sha256-GLIuAjkJgdMe3shzk23V3pYnwrHfu61eJ+bUeZdT0d4=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "cf8af60ce6b44bb88e4d0608f11b82db4769a2b6", + "type": "github" + }, + "fingerprint": "3941a6cdea31e68661f05d90f6f6cdefb05ab88d096197cc8d6a1e73e9a329af", + "url": "github:NixOS/nixpkgs/cf8af60ce6b44bb88e4d0608f11b82db4769a2b6" + }, + "priority": 5 + }, + "podman": { + "attr-path": [ + "legacyPackages", + "aarch64-darwin", + "podman" + ], + "info": { + "broken": false, + "description": "A program for managing pods, containers and container images", + "license": "Apache-2.0", + "pname": "podman", + "unfree": false, + "version": "4.7.2" + }, + "input": { + "attrs": { + "lastModified": 1712069209, + "narHash": "sha256-GLIuAjkJgdMe3shzk23V3pYnwrHfu61eJ+bUeZdT0d4=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "cf8af60ce6b44bb88e4d0608f11b82db4769a2b6", + "type": "github" + }, + "fingerprint": "3941a6cdea31e68661f05d90f6f6cdefb05ab88d096197cc8d6a1e73e9a329af", + "url": "github:NixOS/nixpkgs/cf8af60ce6b44bb88e4d0608f11b82db4769a2b6" + }, + "priority": 5 + }, + "podman-compose": { + "attr-path": [ + "legacyPackages", + "aarch64-darwin", + "podman-compose" + ], + "info": { + "broken": false, + "description": "An implementation of docker-compose with podman backend", + "license": "GPL-2.0-only", + "pname": "podman-compose", + "unfree": false, + "version": "1.0.6" + }, + "input": { + "attrs": { + "lastModified": 1712069209, + "narHash": "sha256-GLIuAjkJgdMe3shzk23V3pYnwrHfu61eJ+bUeZdT0d4=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "cf8af60ce6b44bb88e4d0608f11b82db4769a2b6", + "type": "github" + }, + "fingerprint": "3941a6cdea31e68661f05d90f6f6cdefb05ab88d096197cc8d6a1e73e9a329af", + "url": "github:NixOS/nixpkgs/cf8af60ce6b44bb88e4d0608f11b82db4769a2b6" + }, + "priority": 5 + }, + "podman-tui": { + "attr-path": [ + "legacyPackages", + "aarch64-darwin", + "podman-tui" + ], + "info": { + "broken": false, + "description": "Podman Terminal UI", + "license": "Apache-2.0", + "pname": "podman-tui", + "unfree": false, + "version": "0.12.0" + }, + "input": { + "attrs": { + "lastModified": 1712069209, + "narHash": "sha256-GLIuAjkJgdMe3shzk23V3pYnwrHfu61eJ+bUeZdT0d4=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "cf8af60ce6b44bb88e4d0608f11b82db4769a2b6", + "type": "github" + }, + "fingerprint": "3941a6cdea31e68661f05d90f6f6cdefb05ab88d096197cc8d6a1e73e9a329af", + "url": "github:NixOS/nixpkgs/cf8af60ce6b44bb88e4d0608f11b82db4769a2b6" + }, + "priority": 5 + }, + "qemu": { + "attr-path": [ + "legacyPackages", + "aarch64-darwin", + "qemu" + ], + "info": { + "broken": false, + "description": "A generic and open source machine emulator and virtualizer", + "license": "GPL-2.0-or-later", + "pname": "qemu", + "unfree": false, + "version": "8.1.5" + }, + "input": { + "attrs": { + "lastModified": 1712069209, + "narHash": "sha256-GLIuAjkJgdMe3shzk23V3pYnwrHfu61eJ+bUeZdT0d4=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "cf8af60ce6b44bb88e4d0608f11b82db4769a2b6", + "type": "github" + }, + "fingerprint": "3941a6cdea31e68661f05d90f6f6cdefb05ab88d096197cc8d6a1e73e9a329af", + "url": "github:NixOS/nixpkgs/cf8af60ce6b44bb88e4d0608f11b82db4769a2b6" + }, + "priority": 5 + }, + "undocker": { + "attr-path": [ + "legacyPackages", + "aarch64-darwin", + "undocker" + ], + "info": { + "broken": false, + "description": "A CLI tool to convert a Docker image to a flattened rootfs tarball", + "license": "Apache-2.0", + "pname": "undocker", + "unfree": false, + "version": "1.0.4" + }, + "input": { + "attrs": { + "lastModified": 1712069209, + "narHash": "sha256-GLIuAjkJgdMe3shzk23V3pYnwrHfu61eJ+bUeZdT0d4=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "cf8af60ce6b44bb88e4d0608f11b82db4769a2b6", + "type": "github" + }, + "fingerprint": "3941a6cdea31e68661f05d90f6f6cdefb05ab88d096197cc8d6a1e73e9a329af", + "url": "github:NixOS/nixpkgs/cf8af60ce6b44bb88e4d0608f11b82db4769a2b6" + }, + "priority": 5 + } + }, + "aarch64-linux": { + "gum": { + "attr-path": [ + "legacyPackages", + "aarch64-linux", + "gum" + ], + "info": { + "broken": false, + "description": "Tasty Bubble Gum for your shell", + "license": "MIT", + "pname": "gum", + "unfree": false, + "version": "0.13.0" + }, + "input": { + "attrs": { + "lastModified": 1712069209, + "narHash": "sha256-GLIuAjkJgdMe3shzk23V3pYnwrHfu61eJ+bUeZdT0d4=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "cf8af60ce6b44bb88e4d0608f11b82db4769a2b6", + "type": "github" + }, + "fingerprint": "3941a6cdea31e68661f05d90f6f6cdefb05ab88d096197cc8d6a1e73e9a329af", + "url": "github:NixOS/nixpkgs/cf8af60ce6b44bb88e4d0608f11b82db4769a2b6" + }, + "priority": 5 + }, + "podman": { + "attr-path": [ + "legacyPackages", + "aarch64-linux", + "podman" + ], + "info": { + "broken": false, + "description": "A program for managing pods, containers and container images", + "license": "Apache-2.0", + "pname": "podman", + "unfree": false, + "version": "4.7.2" + }, + "input": { + "attrs": { + "lastModified": 1712069209, + "narHash": "sha256-GLIuAjkJgdMe3shzk23V3pYnwrHfu61eJ+bUeZdT0d4=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "cf8af60ce6b44bb88e4d0608f11b82db4769a2b6", + "type": "github" + }, + "fingerprint": "3941a6cdea31e68661f05d90f6f6cdefb05ab88d096197cc8d6a1e73e9a329af", + "url": "github:NixOS/nixpkgs/cf8af60ce6b44bb88e4d0608f11b82db4769a2b6" + }, + "priority": 5 + }, + "podman-compose": { + "attr-path": [ + "legacyPackages", + "aarch64-linux", + "podman-compose" + ], + "info": { + "broken": false, + "description": "An implementation of docker-compose with podman backend", + "license": "GPL-2.0-only", + "pname": "podman-compose", + "unfree": false, + "version": "1.0.6" + }, + "input": { + "attrs": { + "lastModified": 1712069209, + "narHash": "sha256-GLIuAjkJgdMe3shzk23V3pYnwrHfu61eJ+bUeZdT0d4=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "cf8af60ce6b44bb88e4d0608f11b82db4769a2b6", + "type": "github" + }, + "fingerprint": "3941a6cdea31e68661f05d90f6f6cdefb05ab88d096197cc8d6a1e73e9a329af", + "url": "github:NixOS/nixpkgs/cf8af60ce6b44bb88e4d0608f11b82db4769a2b6" + }, + "priority": 5 + }, + "podman-tui": { + "attr-path": [ + "legacyPackages", + "aarch64-linux", + "podman-tui" + ], + "info": { + "broken": false, + "description": "Podman Terminal UI", + "license": "Apache-2.0", + "pname": "podman-tui", + "unfree": false, + "version": "0.12.0" + }, + "input": { + "attrs": { + "lastModified": 1712069209, + "narHash": "sha256-GLIuAjkJgdMe3shzk23V3pYnwrHfu61eJ+bUeZdT0d4=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "cf8af60ce6b44bb88e4d0608f11b82db4769a2b6", + "type": "github" + }, + "fingerprint": "3941a6cdea31e68661f05d90f6f6cdefb05ab88d096197cc8d6a1e73e9a329af", + "url": "github:NixOS/nixpkgs/cf8af60ce6b44bb88e4d0608f11b82db4769a2b6" + }, + "priority": 5 + }, + "qemu": null, + "undocker": { + "attr-path": [ + "legacyPackages", + "aarch64-linux", + "undocker" + ], + "info": { + "broken": false, + "description": "A CLI tool to convert a Docker image to a flattened rootfs tarball", + "license": "Apache-2.0", + "pname": "undocker", + "unfree": false, + "version": "1.0.4" + }, + "input": { + "attrs": { + "lastModified": 1712069209, + "narHash": "sha256-GLIuAjkJgdMe3shzk23V3pYnwrHfu61eJ+bUeZdT0d4=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "cf8af60ce6b44bb88e4d0608f11b82db4769a2b6", + "type": "github" + }, + "fingerprint": "3941a6cdea31e68661f05d90f6f6cdefb05ab88d096197cc8d6a1e73e9a329af", + "url": "github:NixOS/nixpkgs/cf8af60ce6b44bb88e4d0608f11b82db4769a2b6" + }, + "priority": 5 + } + }, + "x86_64-darwin": { + "gum": { + "attr-path": [ + "legacyPackages", + "x86_64-darwin", + "gum" + ], + "info": { + "broken": false, + "description": "Tasty Bubble Gum for your shell", + "license": "MIT", + "pname": "gum", + "unfree": false, + "version": "0.13.0" + }, + "input": { + "attrs": { + "lastModified": 1712069209, + "narHash": "sha256-GLIuAjkJgdMe3shzk23V3pYnwrHfu61eJ+bUeZdT0d4=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "cf8af60ce6b44bb88e4d0608f11b82db4769a2b6", + "type": "github" + }, + "fingerprint": "3941a6cdea31e68661f05d90f6f6cdefb05ab88d096197cc8d6a1e73e9a329af", + "url": "github:NixOS/nixpkgs/cf8af60ce6b44bb88e4d0608f11b82db4769a2b6" + }, + "priority": 5 + }, + "podman": { + "attr-path": [ + "legacyPackages", + "x86_64-darwin", + "podman" + ], + "info": { + "broken": false, + "description": "A program for managing pods, containers and container images", + "license": "Apache-2.0", + "pname": "podman", + "unfree": false, + "version": "4.7.2" + }, + "input": { + "attrs": { + "lastModified": 1712069209, + "narHash": "sha256-GLIuAjkJgdMe3shzk23V3pYnwrHfu61eJ+bUeZdT0d4=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "cf8af60ce6b44bb88e4d0608f11b82db4769a2b6", + "type": "github" + }, + "fingerprint": "3941a6cdea31e68661f05d90f6f6cdefb05ab88d096197cc8d6a1e73e9a329af", + "url": "github:NixOS/nixpkgs/cf8af60ce6b44bb88e4d0608f11b82db4769a2b6" + }, + "priority": 5 + }, + "podman-compose": { + "attr-path": [ + "legacyPackages", + "x86_64-darwin", + "podman-compose" + ], + "info": { + "broken": false, + "description": "An implementation of docker-compose with podman backend", + "license": "GPL-2.0-only", + "pname": "podman-compose", + "unfree": false, + "version": "1.0.6" + }, + "input": { + "attrs": { + "lastModified": 1712069209, + "narHash": "sha256-GLIuAjkJgdMe3shzk23V3pYnwrHfu61eJ+bUeZdT0d4=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "cf8af60ce6b44bb88e4d0608f11b82db4769a2b6", + "type": "github" + }, + "fingerprint": "3941a6cdea31e68661f05d90f6f6cdefb05ab88d096197cc8d6a1e73e9a329af", + "url": "github:NixOS/nixpkgs/cf8af60ce6b44bb88e4d0608f11b82db4769a2b6" + }, + "priority": 5 + }, + "podman-tui": { + "attr-path": [ + "legacyPackages", + "x86_64-darwin", + "podman-tui" + ], + "info": { + "broken": false, + "description": "Podman Terminal UI", + "license": "Apache-2.0", + "pname": "podman-tui", + "unfree": false, + "version": "0.12.0" + }, + "input": { + "attrs": { + "lastModified": 1712069209, + "narHash": "sha256-GLIuAjkJgdMe3shzk23V3pYnwrHfu61eJ+bUeZdT0d4=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "cf8af60ce6b44bb88e4d0608f11b82db4769a2b6", + "type": "github" + }, + "fingerprint": "3941a6cdea31e68661f05d90f6f6cdefb05ab88d096197cc8d6a1e73e9a329af", + "url": "github:NixOS/nixpkgs/cf8af60ce6b44bb88e4d0608f11b82db4769a2b6" + }, + "priority": 5 + }, + "qemu": { + "attr-path": [ + "legacyPackages", + "x86_64-darwin", + "qemu" + ], + "info": { + "broken": false, + "description": "A generic and open source machine emulator and virtualizer", + "license": "GPL-2.0-or-later", + "pname": "qemu", + "unfree": false, + "version": "8.1.5" + }, + "input": { + "attrs": { + "lastModified": 1712069209, + "narHash": "sha256-GLIuAjkJgdMe3shzk23V3pYnwrHfu61eJ+bUeZdT0d4=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "cf8af60ce6b44bb88e4d0608f11b82db4769a2b6", + "type": "github" + }, + "fingerprint": "3941a6cdea31e68661f05d90f6f6cdefb05ab88d096197cc8d6a1e73e9a329af", + "url": "github:NixOS/nixpkgs/cf8af60ce6b44bb88e4d0608f11b82db4769a2b6" + }, + "priority": 5 + }, + "undocker": { + "attr-path": [ + "legacyPackages", + "x86_64-darwin", + "undocker" + ], + "info": { + "broken": false, + "description": "A CLI tool to convert a Docker image to a flattened rootfs tarball", + "license": "Apache-2.0", + "pname": "undocker", + "unfree": false, + "version": "1.0.4" + }, + "input": { + "attrs": { + "lastModified": 1712069209, + "narHash": "sha256-GLIuAjkJgdMe3shzk23V3pYnwrHfu61eJ+bUeZdT0d4=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "cf8af60ce6b44bb88e4d0608f11b82db4769a2b6", + "type": "github" + }, + "fingerprint": "3941a6cdea31e68661f05d90f6f6cdefb05ab88d096197cc8d6a1e73e9a329af", + "url": "github:NixOS/nixpkgs/cf8af60ce6b44bb88e4d0608f11b82db4769a2b6" + }, + "priority": 5 + } + }, + "x86_64-linux": { + "gum": { + "attr-path": [ + "legacyPackages", + "x86_64-linux", + "gum" + ], + "info": { + "broken": false, + "description": "Tasty Bubble Gum for your shell", + "license": "MIT", + "pname": "gum", + "unfree": false, + "version": "0.13.0" + }, + "input": { + "attrs": { + "lastModified": 1712069209, + "narHash": "sha256-GLIuAjkJgdMe3shzk23V3pYnwrHfu61eJ+bUeZdT0d4=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "cf8af60ce6b44bb88e4d0608f11b82db4769a2b6", + "type": "github" + }, + "fingerprint": "3941a6cdea31e68661f05d90f6f6cdefb05ab88d096197cc8d6a1e73e9a329af", + "url": "github:NixOS/nixpkgs/cf8af60ce6b44bb88e4d0608f11b82db4769a2b6" + }, + "priority": 5 + }, + "podman": { + "attr-path": [ + "legacyPackages", + "x86_64-linux", + "podman" + ], + "info": { + "broken": false, + "description": "A program for managing pods, containers and container images", + "license": "Apache-2.0", + "pname": "podman", + "unfree": false, + "version": "4.7.2" + }, + "input": { + "attrs": { + "lastModified": 1712069209, + "narHash": "sha256-GLIuAjkJgdMe3shzk23V3pYnwrHfu61eJ+bUeZdT0d4=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "cf8af60ce6b44bb88e4d0608f11b82db4769a2b6", + "type": "github" + }, + "fingerprint": "3941a6cdea31e68661f05d90f6f6cdefb05ab88d096197cc8d6a1e73e9a329af", + "url": "github:NixOS/nixpkgs/cf8af60ce6b44bb88e4d0608f11b82db4769a2b6" + }, + "priority": 5 + }, + "podman-compose": { + "attr-path": [ + "legacyPackages", + "x86_64-linux", + "podman-compose" + ], + "info": { + "broken": false, + "description": "An implementation of docker-compose with podman backend", + "license": "GPL-2.0-only", + "pname": "podman-compose", + "unfree": false, + "version": "1.0.6" + }, + "input": { + "attrs": { + "lastModified": 1712069209, + "narHash": "sha256-GLIuAjkJgdMe3shzk23V3pYnwrHfu61eJ+bUeZdT0d4=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "cf8af60ce6b44bb88e4d0608f11b82db4769a2b6", + "type": "github" + }, + "fingerprint": "3941a6cdea31e68661f05d90f6f6cdefb05ab88d096197cc8d6a1e73e9a329af", + "url": "github:NixOS/nixpkgs/cf8af60ce6b44bb88e4d0608f11b82db4769a2b6" + }, + "priority": 5 + }, + "podman-tui": { + "attr-path": [ + "legacyPackages", + "x86_64-linux", + "podman-tui" + ], + "info": { + "broken": false, + "description": "Podman Terminal UI", + "license": "Apache-2.0", + "pname": "podman-tui", + "unfree": false, + "version": "0.12.0" + }, + "input": { + "attrs": { + "lastModified": 1712069209, + "narHash": "sha256-GLIuAjkJgdMe3shzk23V3pYnwrHfu61eJ+bUeZdT0d4=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "cf8af60ce6b44bb88e4d0608f11b82db4769a2b6", + "type": "github" + }, + "fingerprint": "3941a6cdea31e68661f05d90f6f6cdefb05ab88d096197cc8d6a1e73e9a329af", + "url": "github:NixOS/nixpkgs/cf8af60ce6b44bb88e4d0608f11b82db4769a2b6" + }, + "priority": 5 + }, + "qemu": null, + "undocker": { + "attr-path": [ + "legacyPackages", + "x86_64-linux", + "undocker" + ], + "info": { + "broken": false, + "description": "A CLI tool to convert a Docker image to a flattened rootfs tarball", + "license": "Apache-2.0", + "pname": "undocker", + "unfree": false, + "version": "1.0.4" + }, + "input": { + "attrs": { + "lastModified": 1712069209, + "narHash": "sha256-GLIuAjkJgdMe3shzk23V3pYnwrHfu61eJ+bUeZdT0d4=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "cf8af60ce6b44bb88e4d0608f11b82db4769a2b6", + "type": "github" + }, + "fingerprint": "3941a6cdea31e68661f05d90f6f6cdefb05ab88d096197cc8d6a1e73e9a329af", + "url": "github:NixOS/nixpkgs/cf8af60ce6b44bb88e4d0608f11b82db4769a2b6" + }, + "priority": 5 + } + } + }, + "registry": { + "defaults": { + "subtrees": null + }, + "inputs": { + "nixpkgs": { + "from": { + "lastModified": 1712069209, + "narHash": "sha256-GLIuAjkJgdMe3shzk23V3pYnwrHfu61eJ+bUeZdT0d4=", + "owner": "NixOS", + "repo": "nixpkgs", + "rev": "cf8af60ce6b44bb88e4d0608f11b82db4769a2b6", + "type": "github" + }, + "subtrees": [ + "legacyPackages" + ] + } + }, + "priority": [ + "nixpkgs" + ] + } +} \ No newline at end of file diff --git a/podman/.flox/env/manifest.toml b/podman/.flox/env/manifest.toml new file mode 100644 index 0000000..d09f3ac --- /dev/null +++ b/podman/.flox/env/manifest.toml @@ -0,0 +1,70 @@ +[options] +systems = ["x86_64-linux", "aarch64-linux", "x86_64-darwin", "aarch64-darwin"] + +[install] +podman.pkg-path = "podman" +podman-compose.pkg-path = "podman-compose" +undocker.pkg-path = "undocker" +podman-tui.pkg-path = "podman-tui" +gum.pkg-path = "gum" + +# for virtualization on darwin systems +[install.qemu] +pkg-path = ["qemu"] +systems = ["x86_64-darwin", "aarch64-darwin"] + + +[profile] +common = """ + if [ "$(uname -s)" = 'Darwin' ]; then + trap 'gum confirm "Stop virtual machine?" && gum spin --spinner dot --title "Stopping machine ...." -- podman machine stop ; echo; echo "✅ Podman virtual machine stopped"' EXIT + fi +""" + +[hook] +on-activate = """ + echo + + # Confirm policy.json exits + if [ "$(uname -s)" = 'Linux' ] && [ ! -f ~/.config/containers/policy.json ]; then + if gum confirm "Create containers/policy.json file?" --default=true --affirmative "Yes" --negative "No"; then + mkdir -p ~/.config/containers/ + printf '%s\n' '{"default": [{"type": "insecureAcceptAnything"}]}' > ~/.config/containers/policy.json + echo "✅ Podman policy created at ~/.config/containers/policy.json" + fi + fi + + # Ensure podman can run + if [ "$(uname -s)" = 'Linux' ] || [ "$(podman machine ssh -- uname -s 2>/dev/null)" = "Linux" ]; then + echo "🍟 Podman is available." + exit + fi + + # We need a virtual machine + autostart="$HOME/.config/podman-env/autostart" + choice= + if [ ! -f "$autostart" ]; then + echo "Would you like to create and start the Podman virtual machine?" + choice=$(gum choose "Always - start now & on future activations" "Yes - start now only" "No - do not start") + if [ "${choice:0:1}" = "A" ]; then + mkdir -p "$HOME"/.config/podman-env + echo "1" > "$autostart" + echo + echo "Machine will start automatically on next activation. To disable this, run:" + echo " rm $autostart" + fi + fi + + if [ -f "$autostart" ] || [ "${choice:0:1}" = "A" ] || [ "${choice:0:1}" = "Y" ] ; then + gum spin --spinner dot --title "Initializing machine..." -- podman machine init || true + gum spin --spinner dot --title "Starting machine..." -- podman machine start + if [ "$(podman machine ssh -- uname -s 2>/dev/null)" = "Linux" ]; then + echo "✅ Podman machine started" + echo "Stop it with 'podman machine stop' or by exiting this shell." + exit + fi + fi + + echo "🚨 Podman is not available." +""" + diff --git a/podman/hook.sh b/podman/hook.sh new file mode 100755 index 0000000..7c86549 --- /dev/null +++ b/podman/hook.sh @@ -0,0 +1,44 @@ +#!/usr/bin/env bash + +echo + +# Confirm policy.json exits +if [ "$(uname -s)" = 'Linux' ] && [ ! -f ~/.config/containers/policy.json ]; then + if gum confirm "Create containers/policy.json file?" --default=true --affirmative "Yes" --negative "No"; then + mkdir -p ~/.config/containers/ + printf '%s\n' '{"default": [{"type": "insecureAcceptAnything"}]}' > ~/.config/containers/policy.json + echo "✅ Podman policy created at ~/.config/containers/policy.json" + fi +fi + +# Ensure podman can run +if [ "$(uname -s)" = 'Linux' ] || [ "$(podman machine ssh -- uname -s 2>/dev/null)" = "Linux" ]; then + echo "🍟 Podman is available." + exit +fi + +# We need a virtual machine +autostart="$HOME/.config/podman-env/autostart" +choice= +if [ ! -f "$autostart" ]; then + echo "Would you like to create and start the Podman virtual machine?" + choice=$(gum choose "Always - start now & on future activations" "Yes - start now only" "No - do not start") + if [ "${choice:0:1}" = "A" ]; then + mkdir -p "$HOME"/.config/podman-env + echo "1" > "$autostart" + echo + echo "Machine will start automatically on next activation. To disable this, run:" + echo " rm $autostart" + fi +fi + +if [ -f "$autostart" ] || [ "${choice:0:1}" = "A" ] || [ "${choice:0:1}" = "Y" ] ; then + gum spin --spinner dot --title "Initializing machine..." -- podman machine init || true + gum spin --spinner dot --title "Starting machine..." -- podman machine start + if [ "$(podman machine ssh -- uname -s 2>/dev/null)" = "Linux" ]; then + echo "✅ Podman virtual machine started - stop it with 'podman machine stop' or exit this shell." + exit + fi +fi + +echo "🚨 Podman is not available." diff --git a/podman/manifest.toml b/podman/manifest.toml new file mode 100644 index 0000000..d09f3ac --- /dev/null +++ b/podman/manifest.toml @@ -0,0 +1,70 @@ +[options] +systems = ["x86_64-linux", "aarch64-linux", "x86_64-darwin", "aarch64-darwin"] + +[install] +podman.pkg-path = "podman" +podman-compose.pkg-path = "podman-compose" +undocker.pkg-path = "undocker" +podman-tui.pkg-path = "podman-tui" +gum.pkg-path = "gum" + +# for virtualization on darwin systems +[install.qemu] +pkg-path = ["qemu"] +systems = ["x86_64-darwin", "aarch64-darwin"] + + +[profile] +common = """ + if [ "$(uname -s)" = 'Darwin' ]; then + trap 'gum confirm "Stop virtual machine?" && gum spin --spinner dot --title "Stopping machine ...." -- podman machine stop ; echo; echo "✅ Podman virtual machine stopped"' EXIT + fi +""" + +[hook] +on-activate = """ + echo + + # Confirm policy.json exits + if [ "$(uname -s)" = 'Linux' ] && [ ! -f ~/.config/containers/policy.json ]; then + if gum confirm "Create containers/policy.json file?" --default=true --affirmative "Yes" --negative "No"; then + mkdir -p ~/.config/containers/ + printf '%s\n' '{"default": [{"type": "insecureAcceptAnything"}]}' > ~/.config/containers/policy.json + echo "✅ Podman policy created at ~/.config/containers/policy.json" + fi + fi + + # Ensure podman can run + if [ "$(uname -s)" = 'Linux' ] || [ "$(podman machine ssh -- uname -s 2>/dev/null)" = "Linux" ]; then + echo "🍟 Podman is available." + exit + fi + + # We need a virtual machine + autostart="$HOME/.config/podman-env/autostart" + choice= + if [ ! -f "$autostart" ]; then + echo "Would you like to create and start the Podman virtual machine?" + choice=$(gum choose "Always - start now & on future activations" "Yes - start now only" "No - do not start") + if [ "${choice:0:1}" = "A" ]; then + mkdir -p "$HOME"/.config/podman-env + echo "1" > "$autostart" + echo + echo "Machine will start automatically on next activation. To disable this, run:" + echo " rm $autostart" + fi + fi + + if [ -f "$autostart" ] || [ "${choice:0:1}" = "A" ] || [ "${choice:0:1}" = "Y" ] ; then + gum spin --spinner dot --title "Initializing machine..." -- podman machine init || true + gum spin --spinner dot --title "Starting machine..." -- podman machine start + if [ "$(podman machine ssh -- uname -s 2>/dev/null)" = "Linux" ]; then + echo "✅ Podman machine started" + echo "Stop it with 'podman machine stop' or by exiting this shell." + exit + fi + fi + + echo "🚨 Podman is not available." +""" + diff --git a/postgres/.flox/.gitignore b/postgres/.flox/.gitignore new file mode 100644 index 0000000..15d71a1 --- /dev/null +++ b/postgres/.flox/.gitignore @@ -0,0 +1,4 @@ +run/ +cache/ +lib/ +log/ diff --git a/postgres/.flox/env.json b/postgres/.flox/env.json new file mode 100644 index 0000000..51a0d3d --- /dev/null +++ b/postgres/.flox/env.json @@ -0,0 +1,4 @@ +{ + "name": "postgres", + "version": 1 +} \ No newline at end of file diff --git a/postgres/.flox/env/manifest.lock b/postgres/.flox/env/manifest.lock new file mode 100644 index 0000000..dc861ee --- /dev/null +++ b/postgres/.flox/env/manifest.lock @@ -0,0 +1 @@ +{"lockfile-version":1,"manifest":{"hook":{"on-activate":"\nexport PGDIR=\"$FLOX_ENV_CACHE/postgres\"\nexport PGDATA=$PGDIR/data\nexport PGHOST=$PGDIR/run\nexport PGCONFIGFILE=\"$PGDIR/postgresql.conf\"\nexport LOG_PATH=$PGHOST/LOG\nexport SESSION_SECRET=\"$USER-session-secret\"\nexport DATABASE_URL=\"postgresql:///$PGDATABASE?host=$PGHOST&port=$PGPORT\"\n\nif [[ ! -d \"$PGHOST\" ]]; then\n mkdir -p \"$PGHOST\"\nfi\n\nif [[ ! -d \"$PGDATA\" ]]; then\n mkdir -p \"$PGDATA\"\n pg_initdb() {\n initdb \"$PGDATA\" \\\n --locale=C \\\n --encoding=UTF8 \\\n -A md5 \\\n --auth=trust \\\n --username $PGUSER \\\n --pwfile=<(echo $PGPASS)\n }\n export -f pg_initdb # This is needed for gum to be able to call function\n if [[ \"$FLOX_ENVS_TESTING\" == \"1\" ]]; then\n pg_initdb\n else\n gum spin --spinner dot --title \"Running initdb in $PGDATA\" -- bash -c pg_initdb\n fi\n echo \"✅ Initialize PostgreSQL ($PGDATA)\"\n\nfi\n\n\n#\nif [[ ! -f \"$PGCONFIGFILE\" ]]; then\n tee -a $PGCONFIGFILE > /dev/null << EOF\nlisten_addresses = '$PGHOSTADDR';\nport = '$PGPORT';\nunix_socket_directories = '$PGHOST';\nunix_socket_permissions = '0700';\nEOF\n echo \"✅ Configure PostgreSQL ($PGCONFIGFILE)\"\nfi\n\npg_ctl -D \"$PGDATA\" -w start -o \"-c unix_socket_directories=$PGHOST -c listen_addresses=$PGHOSTADDR -p $PGPORT\" > /dev/null\nif psql -lqt | cut -d \\| -f 1 | grep -qw $PGDATABASE; then\n echo \"✅ Database '$PGDATABASE' already exists\"\nelse\n createdb\n echo \"✅ Database '$PGDATABASE' created\"\nfi\npg_ctl -D \"$PGDATA\" -m fast -w stop > /dev/null\n\n"},"install":{"gum":{"pkg-path":"gum"},"postgresql":{"pkg-path":"postgresql_16"}},"options":{"allow":{"licenses":[]},"semver":{},"systems":["aarch64-darwin","aarch64-linux","x86_64-darwin","x86_64-linux"]},"profile":{"common":"echo \"\"\necho \" ╔═══════════════════════════════════════════════╗\"\necho \" ║ ║\"\necho \" ║ Start PostgreSQL in the background: ║\"\necho \" ║ 👉 flox services start ║\"\necho \" ║ 👉 flox activate --start-services ║\"\necho \" ║ ║\"\necho \" ║ Try to connect to PostgreSQL: ║\"\necho \" ║ 👉 psql ║\"\necho \" ║ ║\"\necho \" ╚═══════════════════════════════════════════════╝\"\necho \"\"\n"},"services":{"postgres":{"command":"postgres -D $PGDATA -c unix_socket_directories=$PGHOST -c listen_addresses=$PGHOSTADDR -p $PGPORT","is-daemon":null,"shutdown":null,"systems":null,"vars":null}},"vars":{"PGDATABASE":"pgdb","PGHOSTADDR":"127.0.0.1","PGPASS":"pgpass","PGPORT":"15432","PGUSER":"pguser"},"version":1},"packages":[{"attr_path":"gum","broken":false,"derivation":"/nix/store/rf7qipzf7sani2690rkiprm4d0ikrypi-gum-0.14.5.drv","description":"Tasty Bubble Gum for your shell","group":"toplevel","install_id":"gum","license":"MIT","locked_url":"https://github.com/flox/nixpkgs?rev=06cf0e1da4208d3766d898b7fdab6513366d45b9","name":"gum-0.14.5","outputs":{"out":"/nix/store/n1gqffrwdzr3vpsmwmwx3hmw814c1k6g-gum-0.14.5"},"outputs_to_install":["out"],"pname":"gum","priority":5,"rev":"06cf0e1da4208d3766d898b7fdab6513366d45b9","rev_count":687049,"rev_date":"2024-09-29T18:20:51Z","scrape_date":"2024-10-01T03:19:19Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":false,"version":"0.14.5"},{"attr_path":"gum","broken":false,"derivation":"/nix/store/igrp0rimwsnvj7l72iv0sagbbyn3kzqy-gum-0.14.5.drv","description":"Tasty Bubble Gum for your shell","group":"toplevel","install_id":"gum","license":"MIT","locked_url":"https://github.com/flox/nixpkgs?rev=06cf0e1da4208d3766d898b7fdab6513366d45b9","name":"gum-0.14.5","outputs":{"out":"/nix/store/ggp10jr3l6higs0gqibp6ypjlf7yakpc-gum-0.14.5"},"outputs_to_install":["out"],"pname":"gum","priority":5,"rev":"06cf0e1da4208d3766d898b7fdab6513366d45b9","rev_count":687049,"rev_date":"2024-09-29T18:20:51Z","scrape_date":"2024-10-01T03:19:19Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":false,"version":"0.14.5"},{"attr_path":"gum","broken":false,"derivation":"/nix/store/a93pnfn8q8r8kpgbkjn94x8mqa2vxc5g-gum-0.14.5.drv","description":"Tasty Bubble Gum for your shell","group":"toplevel","install_id":"gum","license":"MIT","locked_url":"https://github.com/flox/nixpkgs?rev=06cf0e1da4208d3766d898b7fdab6513366d45b9","name":"gum-0.14.5","outputs":{"out":"/nix/store/jq8shghha81s1wg67fcjrfnf4hbliimn-gum-0.14.5"},"outputs_to_install":["out"],"pname":"gum","priority":5,"rev":"06cf0e1da4208d3766d898b7fdab6513366d45b9","rev_count":687049,"rev_date":"2024-09-29T18:20:51Z","scrape_date":"2024-10-01T03:19:19Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":false,"version":"0.14.5"},{"attr_path":"gum","broken":false,"derivation":"/nix/store/sxn2f2zrjhzi1b47qbp7llmww0gqz76v-gum-0.14.5.drv","description":"Tasty Bubble Gum for your shell","group":"toplevel","install_id":"gum","license":"MIT","locked_url":"https://github.com/flox/nixpkgs?rev=06cf0e1da4208d3766d898b7fdab6513366d45b9","name":"gum-0.14.5","outputs":{"out":"/nix/store/f199acwir08z47f3d5kf1fhmhajmd1ig-gum-0.14.5"},"outputs_to_install":["out"],"pname":"gum","priority":5,"rev":"06cf0e1da4208d3766d898b7fdab6513366d45b9","rev_count":687049,"rev_date":"2024-09-29T18:20:51Z","scrape_date":"2024-10-01T03:19:19Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":false,"version":"0.14.5"},{"attr_path":"postgresql_16","broken":false,"derivation":"/nix/store/6wlxc9lliwl6b7h85nmmdvgk7dxc9vha-postgresql-16.4.drv","description":"Powerful, open source object-relational database system","group":"toplevel","install_id":"postgresql","license":"PostgreSQL","locked_url":"https://github.com/flox/nixpkgs?rev=06cf0e1da4208d3766d898b7fdab6513366d45b9","name":"postgresql-16.4","outputs":{"dev":"/nix/store/63r8cs0kjscq50r93k97aijddx2mjwm9-postgresql-16.4-dev","doc":"/nix/store/akn2wpw56q2cwwpa3kdd4isklaqk375s-postgresql-16.4-doc","lib":"/nix/store/5i4svw3nbn239hhzrl857bkbqb5h1aq1-postgresql-16.4-lib","man":"/nix/store/npkdasdws60qy0j0kznqwnbizcjx5m0q-postgresql-16.4-man","out":"/nix/store/fln3gcl40fwynfjr5fkpyqjhll4jqyhm-postgresql-16.4"},"outputs_to_install":["out","man"],"pname":"postgresql_16","priority":5,"rev":"06cf0e1da4208d3766d898b7fdab6513366d45b9","rev_count":687049,"rev_date":"2024-09-29T18:20:51Z","scrape_date":"2024-10-01T03:19:19Z","stabilities":["unstable"],"system":"aarch64-darwin","unfree":false,"version":"postgresql-16.4"},{"attr_path":"postgresql_16","broken":false,"derivation":"/nix/store/05pf2qmik1sg85z8kkl3rmxz6r9pg22c-postgresql-16.4.drv","description":"Powerful, open source object-relational database system","group":"toplevel","install_id":"postgresql","license":"PostgreSQL","locked_url":"https://github.com/flox/nixpkgs?rev=06cf0e1da4208d3766d898b7fdab6513366d45b9","name":"postgresql-16.4","outputs":{"debug":"/nix/store/w6hs71a695sf2n00km946bb1v36xc2qg-postgresql-16.4-debug","dev":"/nix/store/ycbf1qw3x8wc3a7z6mjwkzmyhc43s2wn-postgresql-16.4-dev","doc":"/nix/store/bh5km6cln45kf1pfwahdslpc9cydrm4v-postgresql-16.4-doc","lib":"/nix/store/3crpddg2akfnpg19plbbfyxny13ygdaf-postgresql-16.4-lib","man":"/nix/store/4i96xjnrsxgcpizmr6v7gmc25zminnl2-postgresql-16.4-man","out":"/nix/store/7bm8jppsyml2lkzzbw5kg6ahmvwlnxsb-postgresql-16.4"},"outputs_to_install":["out","man"],"pname":"postgresql_16","priority":5,"rev":"06cf0e1da4208d3766d898b7fdab6513366d45b9","rev_count":687049,"rev_date":"2024-09-29T18:20:51Z","scrape_date":"2024-10-01T03:19:19Z","stabilities":["unstable"],"system":"aarch64-linux","unfree":false,"version":"postgresql-16.4"},{"attr_path":"postgresql_16","broken":false,"derivation":"/nix/store/2v9zdgagajn3x6a9wg0hxz5smg9j75w2-postgresql-16.4.drv","description":"Powerful, open source object-relational database system","group":"toplevel","install_id":"postgresql","license":"PostgreSQL","locked_url":"https://github.com/flox/nixpkgs?rev=06cf0e1da4208d3766d898b7fdab6513366d45b9","name":"postgresql-16.4","outputs":{"dev":"/nix/store/sb23d37zmmymsn268d9lcpgd0j939117-postgresql-16.4-dev","doc":"/nix/store/ayarhx2gw8y5j648r4jfsl8l54s5nb8i-postgresql-16.4-doc","lib":"/nix/store/k5n25gjgfbxwyjhzf2il0b93q18gdsr7-postgresql-16.4-lib","man":"/nix/store/n66gp6v6zd5fxwh2j72jjx5d427fpibp-postgresql-16.4-man","out":"/nix/store/ywikp0nf87afr4qs2dvjxiknwzyf6n5b-postgresql-16.4"},"outputs_to_install":["out","man"],"pname":"postgresql_16","priority":5,"rev":"06cf0e1da4208d3766d898b7fdab6513366d45b9","rev_count":687049,"rev_date":"2024-09-29T18:20:51Z","scrape_date":"2024-10-01T03:19:19Z","stabilities":["unstable"],"system":"x86_64-darwin","unfree":false,"version":"postgresql-16.4"},{"attr_path":"postgresql_16","broken":false,"derivation":"/nix/store/vd5dp82lyrd1s0lkbcqshy1mjsjzbs3w-postgresql-16.4.drv","description":"Powerful, open source object-relational database system","group":"toplevel","install_id":"postgresql","license":"PostgreSQL","locked_url":"https://github.com/flox/nixpkgs?rev=06cf0e1da4208d3766d898b7fdab6513366d45b9","name":"postgresql-16.4","outputs":{"debug":"/nix/store/isrqqmd5ckwwsgk708q981h3h7ijixkv-postgresql-16.4-debug","dev":"/nix/store/45if5nl708nhayxnaqh7h2scz9pn4mn8-postgresql-16.4-dev","doc":"/nix/store/plf9diy9a5l5fmfl8pvlgmpxkc3ixhb3-postgresql-16.4-doc","lib":"/nix/store/l54jqbzqhghvy3g9kqhmcha9z3vzzrxr-postgresql-16.4-lib","man":"/nix/store/43pzfj4xv6r022jmnmx2n648ycqy8rhx-postgresql-16.4-man","out":"/nix/store/1gax5xs6h1b70gk7z274kx4qh04hsn96-postgresql-16.4"},"outputs_to_install":["out","man"],"pname":"postgresql_16","priority":5,"rev":"06cf0e1da4208d3766d898b7fdab6513366d45b9","rev_count":687049,"rev_date":"2024-09-29T18:20:51Z","scrape_date":"2024-10-01T03:19:19Z","stabilities":["unstable"],"system":"x86_64-linux","unfree":false,"version":"postgresql-16.4"}]} \ No newline at end of file diff --git a/postgres/.flox/env/manifest.toml b/postgres/.flox/env/manifest.toml new file mode 100644 index 0000000..2bc31a4 --- /dev/null +++ b/postgres/.flox/env/manifest.toml @@ -0,0 +1,112 @@ +version = 1 + + +[install] +gum.pkg-path = "gum" + +# PostgreSQL versions: +postgresql.pkg-path = "postgresql_16" +#postgresql.pkg-path = "postgresql_15" +#postgresql.pkg-path = "postgresql_14" +#postgresql.pkg-path = "postgresql_13" +#postgresql.pkg-path = "postgresql_12" +#postgresql.pkg-path = "postgresql_11" +#postgresql.pkg-path = "postgresql_10" + + +[vars] +PGHOSTADDR = "127.0.0.1" +PGPORT = "15432" +PGUSER = "pguser" +PGPASS = "pgpass" +PGDATABASE = "pgdb" + + +[hook] +on-activate = ''' + +export PGDIR="$FLOX_ENV_CACHE/postgres" +export PGDATA=$PGDIR/data +export PGHOST=$PGDIR/run +export PGCONFIGFILE="$PGDIR/postgresql.conf" +export LOG_PATH=$PGHOST/LOG +export SESSION_SECRET="$USER-session-secret" +export DATABASE_URL="postgresql:///$PGDATABASE?host=$PGHOST&port=$PGPORT" + +if [[ ! -d "$PGHOST" ]]; then + mkdir -p "$PGHOST" +fi + +if [[ ! -d "$PGDATA" ]]; then + mkdir -p "$PGDATA" + pg_initdb() { + initdb "$PGDATA" \ + --locale=C \ + --encoding=UTF8 \ + -A md5 \ + --auth=trust \ + --username $PGUSER \ + --pwfile=<(echo $PGPASS) + } + export -f pg_initdb # This is needed for gum to be able to call function + if [[ "$FLOX_ENVS_TESTING" == "1" ]]; then + pg_initdb + else + gum spin --spinner dot --title "Running initdb in $PGDATA" -- bash -c pg_initdb + fi + echo "✅ Initialize PostgreSQL ($PGDATA)" + +fi + + +# +if [[ ! -f "$PGCONFIGFILE" ]]; then + tee -a $PGCONFIGFILE > /dev/null << EOF +listen_addresses = '$PGHOSTADDR'; +port = '$PGPORT'; +unix_socket_directories = '$PGHOST'; +unix_socket_permissions = '0700'; +EOF + echo "✅ Configure PostgreSQL ($PGCONFIGFILE)" +fi + +pg_ctl -D "$PGDATA" -w start -o "-c unix_socket_directories=$PGHOST -c listen_addresses=$PGHOSTADDR -p $PGPORT" > /dev/null +if psql -lqt | cut -d \| -f 1 | grep -qw $PGDATABASE; then + echo "✅ Database '$PGDATABASE' already exists" +else + createdb + echo "✅ Database '$PGDATABASE' created" +fi +pg_ctl -D "$PGDATA" -m fast -w stop > /dev/null + +''' + + +[profile] +common = ''' +echo "" +echo " ╔═══════════════════════════════════════════════╗" +echo " ║ ║" +echo " ║ Start PostgreSQL in the background: ║" +echo " ║ 👉 flox services start ║" +echo " ║ 👉 flox activate --start-services ║" +echo " ║ ║" +echo " ║ Try to connect to PostgreSQL: ║" +echo " ║ 👉 psql ║" +echo " ║ ║" +echo " ╚═══════════════════════════════════════════════╝" +echo "" +''' + + +[services] +postgres.command = "postgres -D $PGDATA -c unix_socket_directories=$PGHOST -c listen_addresses=$PGHOSTADDR -p $PGPORT" + + +[options] +systems = [ + "aarch64-darwin", + "aarch64-linux", + "x86_64-darwin", + "x86_64-linux", +] diff --git a/postgres/.gitignore b/postgres/.gitignore new file mode 100644 index 0000000..417ada7 --- /dev/null +++ b/postgres/.gitignore @@ -0,0 +1,3 @@ +postgres +postgres_data + diff --git a/postgres/test.sh b/postgres/test.sh new file mode 100755 index 0000000..dc2d330 --- /dev/null +++ b/postgres/test.sh @@ -0,0 +1,41 @@ +#!/usr/bin/env bash + +set -euo pipefail + +if ! command -v psql 2>&1 >/dev/null; then + echo "Error: 'psql' command could not be found." + exit 1 +fi +if ! command -v pg_isready 2>&1 >/dev/null; then + echo "Error: 'pg_isready' command could not be found." + exit 1 +fi + +echo -n "Waiting for PostgreSQL to start .." +MAX_ATTEMPTS=20 +while [[ "$MAX_ATTEMPTS" != "0" ]]; do + set +e + PG_STATUS=$(pg_isready) + set -e + if [[ "$PG_STATUS" == "$PGHOSTADDR:$PGPORT - accepting connections" ]]; then + echo -n "\n" + break + fi + echo -n ".." + sleep 1 + MAX_ATTEMPTS=$((MAX_ATTEMPTS-1)) +done + +echo ">>> flox services status" +flox services status + +echo ">>> flox services logs postgres" +flox services logs postgres + +if psql -c "SELECT 1;"; then + echo + echo ">>> PostgreSQL is running." +else + echo "Error: Something went wrong." + exit 1 +fi diff --git a/redis/.flox/.gitignore b/redis/.flox/.gitignore new file mode 100644 index 0000000..15d71a1 --- /dev/null +++ b/redis/.flox/.gitignore @@ -0,0 +1,4 @@ +run/ +cache/ +lib/ +log/ diff --git a/redis/.flox/env.json b/redis/.flox/env.json new file mode 100644 index 0000000..83171cb --- /dev/null +++ b/redis/.flox/env.json @@ -0,0 +1,4 @@ +{ + "name": "redis", + "version": 1 +} \ No newline at end of file diff --git a/redis/.flox/env/manifest.lock b/redis/.flox/env/manifest.lock new file mode 100644 index 0000000..f7e24c8 --- /dev/null +++ b/redis/.flox/env/manifest.lock @@ -0,0 +1 @@ +{"lockfile-version":1,"manifest":{"hook":{"on-activate":"\n# XXX: https://github.com/flox/flox/issues/1341\nunset LD_AUDIT\n\nexport REDISHOME=\"$FLOX_ENV_CACHE/redis\"\nexport REDISDATA=\"$REDISHOME/data\"\nexport REDISCONFIG=\"$REDISHOME/redis.conf\"\n\nif [ ! -d \"$REDISDATA\" ]; then\n mkdir -p \"$REDISDATA\"\nfi\n\ncat >$REDISCONFIG <$REDISCONFIG <&1 >/dev/null +then + echo "Error: 'redis-cli' command could not be found." + exit 1 +fi + +echo ">>> flox services status" +flox services status + +echo ">>> flox services logs redis" +flox services logs redis + +PONG=$(redis-cli -p $REDISPORT ping) +if [ "$PONG" != "PONG" ]; then + echo "Error: 'redis-cli' PONG not returned." + exit 1 +fi +echo ">>> redis-cli -p $REDISPORT ping ... $PONG" diff --git a/verba/.flox/.gitignore b/verba/.flox/.gitignore new file mode 100644 index 0000000..15d71a1 --- /dev/null +++ b/verba/.flox/.gitignore @@ -0,0 +1,4 @@ +run/ +cache/ +lib/ +log/ diff --git a/verba/.flox/env.json b/verba/.flox/env.json new file mode 100644 index 0000000..f7d3344 --- /dev/null +++ b/verba/.flox/env.json @@ -0,0 +1,4 @@ +{ + "name": "verba", + "version": 1 +} \ No newline at end of file diff --git a/verba/.flox/env.lock b/verba/.flox/env.lock new file mode 100644 index 0000000..b2e61f9 --- /dev/null +++ b/verba/.flox/env.lock @@ -0,0 +1,5 @@ +{ + "rev": "552364594292a5d5e70a229dce44dab2161d6123", + "local_rev": null, + "version": 1 +} \ No newline at end of file diff --git a/verba/.flox/env/manifest.lock b/verba/.flox/env/manifest.lock new file mode 100644 index 0000000..64ada95 --- /dev/null +++ b/verba/.flox/env/manifest.lock @@ -0,0 +1,593 @@ +{ + "lockfile-version": 1, + "manifest": { + "version": 1, + "install": { + "bash": { + "pkg-path": "bash" + }, + "curl": { + "pkg-path": "curl" + }, + "gum": { + "pkg-path": "gum" + }, + "ollama": { + "pkg-path": "ollama", + "version": "0.3.5" + }, + "python310": { + "pkg-path": "python310" + }, + "weaviate": { + "pkg-path": "weaviate", + "version": "1.25.9" + } + }, + "vars": { + "AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED": "true", + "OLLAMA_EMBED_MODEL": "mxbai-embed-large", + "OLLAMA_MODEL": "llama3", + "OLLAMA_URL": "http://localhost:11434", + "PERSISTENCE_DATA_PATH": "./verba-data", + "QUERY_DEFAULTS_LIMIT": "10", + "VERBA_INSTALL_PACKAGE": "goldenverba==1.0.4", + "VIRTUAL_ENV_DISABLE_PROMPT": "1", + "WEAVIATE_URL_VERBA": "http://localhost:8080" + }, + "hook": { + "on-activate": " # If we export this here, it can be used later in 'profiles.common'\n export PYTHON_DIR=\"$FLOX_ENV_CACHE/python\"\n\n if [ ! -d \"$PYTHON_DIR\" ]; then\n gum spin -s globe --title \"Creating venv in $PYTHON_DIR...\" -- python -m venv \"$PYTHON_DIR\"\n fi\n\n (\n source \"$PYTHON_DIR/bin/activate\"\n gum spin -s monkey --title \"Installing/updating Verba...\" -- pip install \"$VERBA_INSTALL_PACKAGE\"\n )\n" + }, + "profile": { + "common": " # Activate the Python venv\n source \"$PYTHON_DIR/bin/activate\"\n" + }, + "options": { + "systems": [ + "aarch64-darwin", + "aarch64-linux", + "x86_64-linux" + ], + "allow": { + "licenses": [] + }, + "semver": {} + }, + "services": { + "models": { + "command": "# wait for ollama to be ready\nuntil ollama list; do\n sleep 0.1\ndone\n\nollama pull \"$OLLAMA_MODEL\"\nollama pull \"$OLLAMA_EMBED_MODEL\"\n", + "vars": null, + "is-daemon": null, + "shutdown": null, + "systems": null + }, + "ollama": { + "command": "ollama serve", + "vars": null, + "is-daemon": null, + "shutdown": null, + "systems": null + }, + "verba": { + "command": "if [[ \"$WEAVIATE_URL_VERBA\" != \"\" ]]; then\n until curl -s \"$WEAVIATE_URL_VERBA\"; do\n echo \"waiting for weaviate ...\"\n sleep 0.1\n done\nfi\n\n$PYTHON_DIR/bin/verba start --host 0.0.0.0\n", + "vars": null, + "is-daemon": null, + "shutdown": null, + "systems": null + }, + "weaviate": { + "command": "weaviate --host 0.0.0.0 --port 8080 --scheme http", + "vars": null, + "is-daemon": null, + "shutdown": null, + "systems": null + } + }, + "build": {} + }, + "packages": [ + { + "attr_path": "bash", + "broken": false, + "derivation": "/nix/store/samcvjli1l02v5q3wkh68v6icvn2nzqn-bash-5.2p32.drv", + "description": "GNU Bourne-Again Shell, the de facto standard shell on Linux", + "install_id": "bash", + "license": "GPL-3.0-or-later", + "locked_url": "https://github.com/flox/nixpkgs?rev=c374d94f1536013ca8e92341b540eba4c22f9c62", + "name": "bash-5.2p32", + "pname": "bash", + "rev": "c374d94f1536013ca8e92341b540eba4c22f9c62", + "rev_count": 669741, + "rev_date": "2024-08-21T07:22:56Z", + "scrape_date": "2024-08-23T05:11:04Z", + "unfree": false, + "version": "5.2p32", + "outputs_to_install": [ + "out", + "man" + ], + "outputs": { + "dev": "/nix/store/gz9bsxa8hlk7gjgyl7yy3bbn444b7wdj-bash-5.2p32-dev", + "doc": "/nix/store/j73xsfyv5pndsvfwk2h1mwgisv62h9rz-bash-5.2p32-doc", + "info": "/nix/store/62ximradwflgggsiw8rz9zcrkb2r6g6n-bash-5.2p32-info", + "man": "/nix/store/w9cd4fgk7ps1wr7rnj38jikhps25vwi2-bash-5.2p32-man", + "out": "/nix/store/b34ianga4diikh0kymkpqwmvba0mmzf7-bash-5.2p32" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "bash", + "broken": false, + "derivation": "/nix/store/v277hdrvmqgy8gl2mbpd79sx8f94dd82-bash-5.2p32.drv", + "description": "GNU Bourne-Again Shell, the de facto standard shell on Linux", + "install_id": "bash", + "license": "GPL-3.0-or-later", + "locked_url": "https://github.com/flox/nixpkgs?rev=c374d94f1536013ca8e92341b540eba4c22f9c62", + "name": "bash-5.2p32", + "pname": "bash", + "rev": "c374d94f1536013ca8e92341b540eba4c22f9c62", + "rev_count": 669741, + "rev_date": "2024-08-21T07:22:56Z", + "scrape_date": "2024-08-23T05:11:04Z", + "unfree": false, + "version": "5.2p32", + "outputs_to_install": [ + "out", + "man" + ], + "outputs": { + "debug": "/nix/store/rc834ghw7bqizg2w3k0fhdbh9ylgmnv5-bash-5.2p32-debug", + "dev": "/nix/store/wkf859q107gkib0pq9hv7jjlbg48031c-bash-5.2p32-dev", + "doc": "/nix/store/752vimy8vav8sqq2xjgxh2853vnb9h3l-bash-5.2p32-doc", + "info": "/nix/store/70jzxpp6ssnyfddnr07yn2a2gfsl0b82-bash-5.2p32-info", + "man": "/nix/store/7in9hv6iw4qzmdk5gxk8l9135zz504sk-bash-5.2p32-man", + "out": "/nix/store/q2xy9y7zsqx2a1harmj0c021chdyfxbw-bash-5.2p32" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "bash", + "broken": false, + "derivation": "/nix/store/2miv8n4k7nram4qnbjfjcg400dzkzcdg-bash-5.2p32.drv", + "description": "GNU Bourne-Again Shell, the de facto standard shell on Linux", + "install_id": "bash", + "license": "GPL-3.0-or-later", + "locked_url": "https://github.com/flox/nixpkgs?rev=c374d94f1536013ca8e92341b540eba4c22f9c62", + "name": "bash-5.2p32", + "pname": "bash", + "rev": "c374d94f1536013ca8e92341b540eba4c22f9c62", + "rev_count": 669741, + "rev_date": "2024-08-21T07:22:56Z", + "scrape_date": "2024-08-23T05:11:04Z", + "unfree": false, + "version": "5.2p32", + "outputs_to_install": [ + "out", + "man" + ], + "outputs": { + "debug": "/nix/store/p18acjw0r4sq1yrj0vlxv7x5mgx2amn9-bash-5.2p32-debug", + "dev": "/nix/store/pz8mq2lgw0lg2n9dwjiiryi7bmcmz0k2-bash-5.2p32-dev", + "doc": "/nix/store/1klrlhcxd6clwhqkpbfxbq1dk50ayjlz-bash-5.2p32-doc", + "info": "/nix/store/a8f97v60r829vp724nlkqfnk036rif7b-bash-5.2p32-info", + "man": "/nix/store/v76rk8m1d1wm4rrygfsgfkkxfz9hahkp-bash-5.2p32-man", + "out": "/nix/store/4bj2kxdm1462fzcc2i2s4dn33g2angcc-bash-5.2p32" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "curl", + "broken": false, + "derivation": "/nix/store/7x8c1hykfyyh0zqwndq733b61a8s816j-curl-8.9.0.drv", + "description": "Command line tool for transferring files with URL syntax", + "install_id": "curl", + "license": "curl", + "locked_url": "https://github.com/flox/nixpkgs?rev=c374d94f1536013ca8e92341b540eba4c22f9c62", + "name": "curl-8.9.0", + "pname": "curl", + "rev": "c374d94f1536013ca8e92341b540eba4c22f9c62", + "rev_count": 669741, + "rev_date": "2024-08-21T07:22:56Z", + "scrape_date": "2024-08-23T05:11:04Z", + "unfree": false, + "version": "8.9.0", + "outputs_to_install": [ + "bin", + "man" + ], + "outputs": { + "bin": "/nix/store/c8zjxnirrs9w62rh5mnzd54rx9w31zai-curl-8.9.0-bin", + "dev": "/nix/store/96h80z8vhdh6m71n74dxqc27vf7l542d-curl-8.9.0-dev", + "devdoc": "/nix/store/wlpdpn2y8p4xi37dmbgvsvfb9midqj90-curl-8.9.0-devdoc", + "man": "/nix/store/s7mcf5vjgqzfvpscw8s182v8vf6c2q95-curl-8.9.0-man", + "out": "/nix/store/q4j78718q8lsqavm0jjh2qzfd4jq94vd-curl-8.9.0" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "curl", + "broken": false, + "derivation": "/nix/store/kzqvhqg6bzgdppxv2cmnkp4vabxx1hiz-curl-8.9.0.drv", + "description": "Command line tool for transferring files with URL syntax", + "install_id": "curl", + "license": "curl", + "locked_url": "https://github.com/flox/nixpkgs?rev=c374d94f1536013ca8e92341b540eba4c22f9c62", + "name": "curl-8.9.0", + "pname": "curl", + "rev": "c374d94f1536013ca8e92341b540eba4c22f9c62", + "rev_count": 669741, + "rev_date": "2024-08-21T07:22:56Z", + "scrape_date": "2024-08-23T05:11:04Z", + "unfree": false, + "version": "8.9.0", + "outputs_to_install": [ + "bin", + "man" + ], + "outputs": { + "bin": "/nix/store/kl8rbmykp9qxr9kf0kxbm17zkca3v370-curl-8.9.0-bin", + "debug": "/nix/store/d860jgqwk43jhg7x1b2aq4c30xx23wli-curl-8.9.0-debug", + "dev": "/nix/store/pliq1d472pvylaf4gln7nflscghgndhs-curl-8.9.0-dev", + "devdoc": "/nix/store/gaq5wfqpv8civ3v0g58l6h65wbji14vr-curl-8.9.0-devdoc", + "man": "/nix/store/348y0w2ffkwf28fyj316798bk979bajr-curl-8.9.0-man", + "out": "/nix/store/f389sfk00in6l1hvq6jhbnysy0p4l0mg-curl-8.9.0" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "curl", + "broken": false, + "derivation": "/nix/store/hcgvklb47frrn2lszxbga772zmrsw282-curl-8.9.0.drv", + "description": "Command line tool for transferring files with URL syntax", + "install_id": "curl", + "license": "curl", + "locked_url": "https://github.com/flox/nixpkgs?rev=c374d94f1536013ca8e92341b540eba4c22f9c62", + "name": "curl-8.9.0", + "pname": "curl", + "rev": "c374d94f1536013ca8e92341b540eba4c22f9c62", + "rev_count": 669741, + "rev_date": "2024-08-21T07:22:56Z", + "scrape_date": "2024-08-23T05:11:04Z", + "unfree": false, + "version": "8.9.0", + "outputs_to_install": [ + "bin", + "man" + ], + "outputs": { + "bin": "/nix/store/fv44n5lc7kgz8ivpqzyd857whggdfy17-curl-8.9.0-bin", + "debug": "/nix/store/8py8g44fwn1ssp3i576rr6wmnw48wnaw-curl-8.9.0-debug", + "dev": "/nix/store/wsv4nk804b2gwglgzvgwp8h4xqjk23xh-curl-8.9.0-dev", + "devdoc": "/nix/store/prd1afjz6nr2dmzdhxkrndy74whccf0q-curl-8.9.0-devdoc", + "man": "/nix/store/8md42r901syamn55rsi16bb7kxf7g384-curl-8.9.0-man", + "out": "/nix/store/n6sn7yf3kkc0hh463w74gi6lj51p3cdc-curl-8.9.0" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "gum", + "broken": false, + "derivation": "/nix/store/r31lkf3q1qcmam9zmljm5a1cy3hmxycy-gum-0.14.3.drv", + "description": "Tasty Bubble Gum for your shell", + "install_id": "gum", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=c374d94f1536013ca8e92341b540eba4c22f9c62", + "name": "gum-0.14.3", + "pname": "gum", + "rev": "c374d94f1536013ca8e92341b540eba4c22f9c62", + "rev_count": 669741, + "rev_date": "2024-08-21T07:22:56Z", + "scrape_date": "2024-08-23T05:11:04Z", + "unfree": false, + "version": "0.14.3", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/rkf4cn71s3pd82b6rfn2q0nb8vl4h4qv-gum-0.14.3" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "gum", + "broken": false, + "derivation": "/nix/store/zzg6lwbs7cg89102324yfy01qiqbvxfq-gum-0.14.3.drv", + "description": "Tasty Bubble Gum for your shell", + "install_id": "gum", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=c374d94f1536013ca8e92341b540eba4c22f9c62", + "name": "gum-0.14.3", + "pname": "gum", + "rev": "c374d94f1536013ca8e92341b540eba4c22f9c62", + "rev_count": 669741, + "rev_date": "2024-08-21T07:22:56Z", + "scrape_date": "2024-08-23T05:11:04Z", + "unfree": false, + "version": "0.14.3", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/5mx01pjljxp7xynjgjvygbxs4czq0k61-gum-0.14.3" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "gum", + "broken": false, + "derivation": "/nix/store/r6z929bbgcgxmn42ydana6xhgvl8qq50-gum-0.14.3.drv", + "description": "Tasty Bubble Gum for your shell", + "install_id": "gum", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=c374d94f1536013ca8e92341b540eba4c22f9c62", + "name": "gum-0.14.3", + "pname": "gum", + "rev": "c374d94f1536013ca8e92341b540eba4c22f9c62", + "rev_count": 669741, + "rev_date": "2024-08-21T07:22:56Z", + "scrape_date": "2024-08-23T05:11:04Z", + "unfree": false, + "version": "0.14.3", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/6abhjsvq4z61y1v16l2y9fbcd6kdwc6w-gum-0.14.3" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "ollama", + "broken": false, + "derivation": "/nix/store/aldcj085lgmncj4pfdggvj7d7k05r8j4-ollama-0.3.5.drv", + "description": "Get up and running with large language models locally", + "install_id": "ollama", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=c374d94f1536013ca8e92341b540eba4c22f9c62", + "name": "ollama-0.3.5", + "pname": "ollama", + "rev": "c374d94f1536013ca8e92341b540eba4c22f9c62", + "rev_count": 669741, + "rev_date": "2024-08-21T07:22:56Z", + "scrape_date": "2024-08-23T05:11:04Z", + "unfree": false, + "version": "0.3.5", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/9v27wavfppd684ppv1mnigasxxiza756-ollama-0.3.5" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "ollama", + "broken": false, + "derivation": "/nix/store/f1j9j0g9bqz00404sj7xmsqmw1n1fcy2-ollama-0.3.5.drv", + "description": "Get up and running with large language models locally", + "install_id": "ollama", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=c374d94f1536013ca8e92341b540eba4c22f9c62", + "name": "ollama-0.3.5", + "pname": "ollama", + "rev": "c374d94f1536013ca8e92341b540eba4c22f9c62", + "rev_count": 669741, + "rev_date": "2024-08-21T07:22:56Z", + "scrape_date": "2024-08-23T05:11:04Z", + "unfree": false, + "version": "0.3.5", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/3ww2nbsf61ag7pw71dnqbqvk637c9qdf-ollama-0.3.5" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "ollama", + "broken": false, + "derivation": "/nix/store/0c2i7di39n8an35nxasaaiya6f6byfik-ollama-0.3.5.drv", + "description": "Get up and running with large language models locally", + "install_id": "ollama", + "license": "MIT", + "locked_url": "https://github.com/flox/nixpkgs?rev=c374d94f1536013ca8e92341b540eba4c22f9c62", + "name": "ollama-0.3.5", + "pname": "ollama", + "rev": "c374d94f1536013ca8e92341b540eba4c22f9c62", + "rev_count": 669741, + "rev_date": "2024-08-21T07:22:56Z", + "scrape_date": "2024-08-23T05:11:04Z", + "unfree": false, + "version": "0.3.5", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/sm5yn3dmv5wm940xszfhy2w0i7hfbv77-ollama-0.3.5" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python310", + "broken": false, + "derivation": "/nix/store/lrb1ksx0jasj1fzmfqx41lsprqz6942n-python3-3.10.14.drv", + "description": "High-level dynamically-typed programming language", + "install_id": "python310", + "license": "Python-2.0", + "locked_url": "https://github.com/flox/nixpkgs?rev=c374d94f1536013ca8e92341b540eba4c22f9c62", + "name": "python3-3.10.14", + "pname": "python310", + "rev": "c374d94f1536013ca8e92341b540eba4c22f9c62", + "rev_count": 669741, + "rev_date": "2024-08-21T07:22:56Z", + "scrape_date": "2024-08-23T05:11:04Z", + "unfree": false, + "version": "python3-3.10.14", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/1l73sya48bffkjv10rf7fcn3nvnz1zvl-python3-3.10.14" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python310", + "broken": false, + "derivation": "/nix/store/9hghr4d4k1w7ipvsv8ydl71ilsqqgdpd-python3-3.10.14.drv", + "description": "High-level dynamically-typed programming language", + "install_id": "python310", + "license": "Python-2.0", + "locked_url": "https://github.com/flox/nixpkgs?rev=c374d94f1536013ca8e92341b540eba4c22f9c62", + "name": "python3-3.10.14", + "pname": "python310", + "rev": "c374d94f1536013ca8e92341b540eba4c22f9c62", + "rev_count": 669741, + "rev_date": "2024-08-21T07:22:56Z", + "scrape_date": "2024-08-23T05:11:04Z", + "unfree": false, + "version": "python3-3.10.14", + "outputs_to_install": [ + "out" + ], + "outputs": { + "debug": "/nix/store/zccb88kbi1scvs2rqkza6b81j3vw1sia-python3-3.10.14-debug", + "out": "/nix/store/fa9jr4mkdnmn0m5f41yzwx8qba7mmzsz-python3-3.10.14" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "python310", + "broken": false, + "derivation": "/nix/store/3aqw6396x44wr6dsprxfm4ck6j2q101r-python3-3.10.14.drv", + "description": "High-level dynamically-typed programming language", + "install_id": "python310", + "license": "Python-2.0", + "locked_url": "https://github.com/flox/nixpkgs?rev=c374d94f1536013ca8e92341b540eba4c22f9c62", + "name": "python3-3.10.14", + "pname": "python310", + "rev": "c374d94f1536013ca8e92341b540eba4c22f9c62", + "rev_count": 669741, + "rev_date": "2024-08-21T07:22:56Z", + "scrape_date": "2024-08-23T05:11:04Z", + "unfree": false, + "version": "python3-3.10.14", + "outputs_to_install": [ + "out" + ], + "outputs": { + "debug": "/nix/store/k5p6bi63nzhydp2srm86kzsky8arwyfm-python3-3.10.14-debug", + "out": "/nix/store/25j36x4pjsn1sr3597gppa7sdn2c2v0n-python3-3.10.14" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "weaviate", + "broken": false, + "derivation": "/nix/store/x81zkwdq6akd4qkgavl2c2kfj5a85g5x-weaviate-1.25.9.drv", + "description": "ML-first vector search engine", + "install_id": "weaviate", + "license": "BSD-3-Clause", + "locked_url": "https://github.com/flox/nixpkgs?rev=c374d94f1536013ca8e92341b540eba4c22f9c62", + "name": "weaviate-1.25.9", + "pname": "weaviate", + "rev": "c374d94f1536013ca8e92341b540eba4c22f9c62", + "rev_count": 669741, + "rev_date": "2024-08-21T07:22:56Z", + "scrape_date": "2024-08-23T05:11:04Z", + "unfree": false, + "version": "1.25.9", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/s3p1dlraid0svng67j7npwnsqipw3kay-weaviate-1.25.9" + }, + "system": "aarch64-darwin", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "weaviate", + "broken": false, + "derivation": "/nix/store/qy89q18dsrs7z7az9rfswn0v3ramlz4l-weaviate-1.25.9.drv", + "description": "ML-first vector search engine", + "install_id": "weaviate", + "license": "BSD-3-Clause", + "locked_url": "https://github.com/flox/nixpkgs?rev=c374d94f1536013ca8e92341b540eba4c22f9c62", + "name": "weaviate-1.25.9", + "pname": "weaviate", + "rev": "c374d94f1536013ca8e92341b540eba4c22f9c62", + "rev_count": 669741, + "rev_date": "2024-08-21T07:22:56Z", + "scrape_date": "2024-08-23T05:11:04Z", + "unfree": false, + "version": "1.25.9", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/chkxkhl8s4gvjb8dip8zpx3v8swwc3d3-weaviate-1.25.9" + }, + "system": "aarch64-linux", + "group": "toplevel", + "priority": 5 + }, + { + "attr_path": "weaviate", + "broken": false, + "derivation": "/nix/store/28an6l5fkg1ljx7v7xp2vby9wzv5p1k5-weaviate-1.25.9.drv", + "description": "ML-first vector search engine", + "install_id": "weaviate", + "license": "BSD-3-Clause", + "locked_url": "https://github.com/flox/nixpkgs?rev=c374d94f1536013ca8e92341b540eba4c22f9c62", + "name": "weaviate-1.25.9", + "pname": "weaviate", + "rev": "c374d94f1536013ca8e92341b540eba4c22f9c62", + "rev_count": 669741, + "rev_date": "2024-08-21T07:22:56Z", + "scrape_date": "2024-08-23T05:11:04Z", + "unfree": false, + "version": "1.25.9", + "outputs_to_install": [ + "out" + ], + "outputs": { + "out": "/nix/store/zgmk7fa5x324dx2bl9h5m2bfad5wd9hl-weaviate-1.25.9" + }, + "system": "x86_64-linux", + "group": "toplevel", + "priority": 5 + } + ] +} \ No newline at end of file diff --git a/verba/.flox/env/manifest.toml b/verba/.flox/env/manifest.toml new file mode 100644 index 0000000..db5596e --- /dev/null +++ b/verba/.flox/env/manifest.toml @@ -0,0 +1,160 @@ + +# +# This is a Flox environment manifest. +# Visit flox.dev/docs/concepts/manifest/ +# or see flox-edit(1), manifest.toml(5) for more information. +# +version = 1 + +# +# [install] +# Let's install some packages into our environment! +# + +[install] + +# Get Python 3.10 +python310.pkg-path = "python310" + +# Install Weaviate as a vector database +weaviate.pkg-path = "weaviate" +weaviate.version = "1.25.9" + +# Install Ollama as a backend +ollama.pkg-path = "ollama" +ollama.version = "0.3.5" + +# Nice UI for our hook and profile scripts :) +gum.pkg-path = "gum" + +# Deps for our service scripts +bash.pkg-path = "bash" +curl.pkg-path = "curl" + + +# +# [vars] +# These vars will be available throughout the environment lifecycle +# + +[vars] + +# The name of the Verba package to install +VERBA_INSTALL_PACKAGE = "goldenverba==1.0.4" +#VERBA_INSTALL_PACKAGE = "goldenverba[huggingface]" + +# This configures Weaviate, and configures Verba to use it +WEAVIATE_URL_VERBA = "http://localhost:8080" + +# Weaviate data path +PERSISTENCE_DATA_PATH = "./verba-data" + +# Leave Weaviate wide open (for now!) +AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED = "true" + +# Weaviate query default limit +QUERY_DEFAULTS_LIMIT = "10" + +# This configures Verba to use the local Ollama instance +OLLAMA_URL = "http://localhost:11434" + +# Our Ollama models +OLLAMA_MODEL = "llama3" +OLLAMA_EMBED_MODEL = "mxbai-embed-large" + +# OpenAI configuration +# OPENAI_API_KEY = "makealottanonsensequicklylikehumansdo" +# OPENAI_BASE_URL = "http://100.0.0.0:8000" + +# For other Verba variables that can be set here, see: +# https://github.com/weaviate/Verba/blob/main/goldenverba/.env.example + +# Values that are *not* set here can be passed in at activation +# time, like this: +# +# `OPENAI_API_KEY="xxx" flox activate -s` + +# IMO we don't need both Flox and venv to augment our prompt +VIRTUAL_ENV_DISABLE_PROMPT="1" + + +# +# [hook] +# Since Verba is not (yet) in the Flox catalog, we need to +# install it from pypi using a venv + +# We can add a hook that makes sure that Verba is installed +# before we try to start it (or use it!) +# + +[hook] +on-activate = ''' + # If we export this here, it can be used later in 'profiles.common' + export PYTHON_DIR="$FLOX_ENV_CACHE/python" + + if [ ! -d "$PYTHON_DIR" ]; then + gum spin -s globe --title "Creating venv in $PYTHON_DIR..." -- python -m venv "$PYTHON_DIR" + fi + + ( + source "$PYTHON_DIR/bin/activate" + gum spin -s monkey --title "Installing/updating Verba..." -- pip install "$VERBA_INSTALL_PACKAGE" + ) +''' + + +# +# [services] +# Services are defined here, and are started after hook.on-activate is finished +# + +# Start Weaviate +[services.weaviate] +command = "weaviate --host 0.0.0.0 --port 8080 --scheme http" + +# Start Ollama +[services.ollama] +command = "ollama serve" + +# Start Verba +[services.verba] +command = """ +if [[ "$WEAVIATE_URL_VERBA" != "" ]]; then + until curl -s "$WEAVIATE_URL_VERBA"; do + echo "waiting for weaviate ..." + sleep 0.1 + done +fi + +$PYTHON_DIR/bin/verba start --host 0.0.0.0 +""" + + +[services.models] +command = """ +# wait for ollama to be ready +until ollama list; do + sleep 0.1 +done + +ollama pull "$OLLAMA_MODEL" +ollama pull "$OLLAMA_EMBED_MODEL" +""" + +# +# [profile] +# The profile scripts are executed in the user's shell, after +# everything else has been done +# + +[profile] + +common = ''' + # Activate the Python venv + source "$PYTHON_DIR/bin/activate" +''' + +[options] +systems = ["aarch64-darwin", "aarch64-linux", "x86_64-linux"] + + diff --git a/verba/.gitignore b/verba/.gitignore new file mode 100644 index 0000000..4d743f1 --- /dev/null +++ b/verba/.gitignore @@ -0,0 +1 @@ +verba-data