-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcreate_tfrecord.py
221 lines (176 loc) · 6.38 KB
/
create_tfrecord.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import logging
import os
import shutil
import sys
from datetime import datetime
import apache_beam as beam
import climetlab as cml
import numpy as np
import tensorflow as tf
import xarray as xr
tf.autograph.set_verbosity(0)
logging.basicConfig(level="WARN")
# SHAPE = (46, 121, 240)
SUBSAMPLE, IS_DEV = False, False
# SHAPE = (46, 121 // 20 + 1, 240 // 20)
# SUBSAMPLE, IS_DEV = 20, True
def _array_feature(value, min_value=None, max_value=None):
value = np.array([1.0, 2.0])
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
LOG = logging.getLogger(__name__)
if isinstance(value, type(tf.constant(0))): # if value is tensor
value = value.numpy() # get value of tensor
"""Wrapper for inserting ndarray float features into Example proto."""
value = np.nan_to_num(value.flatten()) # nan, -inf, +inf to numbers
if min_value is not None and max_value is not None:
value = np.clip(value, min_value, max_value) # clip to valid
logging.info("Range of image values {} to {}".format(np.min(value), np.max(value)))
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
def generate_zipped(name):
inputname = dict(
train="s2s-ai-challenge-training-input",
test="s2s-ai-challenge-test-input",
)[name]
outputname = dict(
train="s2s-ai-challenge-training-output-reference",
test="s2s-ai-challenge-test-output-reference",
)[name]
fctime_len = dict(train=20, test=1)[name]
realization_len = dict(train=11, test=51)[name]
if IS_DEV:
fctime_len = dict(train=2, test=1)[name]
realization_len = dict(train=4, test=3)[name]
DATES = ["20200102", "20200109"]
# one worker loops on all realizations
# realization_lists = [range(realization_len)]
# one worker per realization
realization_lists = [[r] for r in range(realization_len)]
# the actual use case is where we want all realizations in a single example
# realization_lists = [[None]]
zipped = [
(
inputname,
outputname,
d,
time,
fctime_len,
realizations,
realization_len,
)
for d in DATES
for time in range(fctime_len)
for realizations in realization_lists
]
zipped = [(i, len(zipped), *args) for i, args in enumerate(zipped)]
# np.random.shuffle(zipped)
return zipped
def process_example(args):
try:
(
i,
i_total,
inputname,
outputname,
date,
time,
fctime_len,
realizations,
realization_len,
) = args
xds = cml.load_dataset(inputname, date=date, parameter="t2m")
xds = xds.to_xarray()
yds = cml.load_dataset(outputname, date=date, parameter="t2m")
yds = yds.to_xarray()
if float(yds.lead_time[0]) == 0:
# remote first lead_time if it is zero (t2m for ecmwf)
yds = yds.sel(lead_time=yds.lead_time[1:])
if IS_DEV:
xds = xds.sel(
latitude=slice(None, None, SUBSAMPLE),
longitude=slice(None, None, SUBSAMPLE),
)
yds = yds.sel(
latitude=slice(None, None, SUBSAMPLE),
longitude=slice(None, None, SUBSAMPLE),
)
print("asserting")
if not IS_DEV:
assert len(xds.forecast_time) == fctime_len, xds.forecast_time
assert len(xds.realization) == realization_len, xds.realization
assert len(yds.forecast_time) == fctime_len, yds.forecast_time
assert np.all(yds.forecast_time.values == xds.forecast_time.values)
print(f"assertions ok")
yda = yds["t2m"]
yda = yda.isel(forecast_time=time)
xda = xds["t2m"]
xda = xda.isel(forecast_time=time)
for j, realization in enumerate(realizations):
if realization is not None:
xda_ = xda.isel(realization=realization)
else:
xda_ = xda
def to_feat(arr):
value = arr
value = value.astype("float")
value = np.nan_to_num(value.flatten()) # nan, -inf, +inf to numbers
feat = tf.train.Feature(float_list=tf.train.FloatList(value=value))
return feat
tfexample = tf.train.Example(
features=tf.train.Features(
feature={
"t2m": to_feat(xda_.values),
"obs": to_feat(yda.values),
}
)
)
to_yield = tfexample.SerializeToString()
print(f"Writing example {i+1}/{i_total}:{j} OK. {datetime.now()}")
yield to_yield
except:
e = sys.exc_info()[0]
raise (e)
print(e)
logging.error(e)
def run_job(flags, options, name, outdir):
# start the pipeline
opts = beam.pipeline.PipelineOptions(flags=flags, **options)
with beam.Pipeline(options["runner"], options=opts) as p:
# create examples
examples = (
p
| "generate_example_args" >> beam.Create(generate_zipped(name))
| "create_tfrecord" >> beam.FlatMap(lambda x: process_example(x))
)
# write out tfrecords
_ = examples | "write_tfr" >> beam.io.tfrecordio.WriteToTFRecord(
os.path.join(outdir, "tfrecord")
)
def main(name):
outdir = f"outdir/{name}"
print("Launching local job ... hang on")
shutil.rmtree(outdir, ignore_errors=True)
os.makedirs(outdir)
options = dict()
flags = []
# ----- Direct runner
# options["runner"] = "DirectRunner"
# options['direct_num_workers']=0
# ----- Dataflow
# options['runner'] = 'DataflowRunner'
# ----- Spark
options["runner"] = "PortableRunner"
flags = [
"--job_endpoint=192.168.1.250:7077", # sparkmaster
#"--environment_type=LOOPBACK",
"--runner=PortableRunner",
#"--job_endpoint=10.0.2.15:30090",
#"--artifact_endpoint=10.0.2.15:30091",
#"--artifact_endpoint=192.168.1.250:7078",
"--save_main_session",
"--environment_type=DOCKER",
"--environment_config=docker.io/apache/beam_python3.7_sdk:2.33.0"
]
run_job(flags, options, name, outdir)
if __name__ == "__main__":
main("test")
# main("train")