|
| 1 | +/* This file is public domain. Author: Hartmut Monien. */ |
| 2 | + |
| 3 | +#include <stdlib.h> |
| 4 | + |
| 5 | +#include "flint.h" |
| 6 | + |
| 7 | +#include "ulong_extras.h" |
| 8 | + |
| 9 | +#include "fmpz_poly.h" |
| 10 | +#include "fmpz_poly_factor.h" |
| 11 | + |
| 12 | +#include "fmpz_mod.h" |
| 13 | +#include "fmpz_mod_poly.h" |
| 14 | + |
| 15 | +#include "fq.h" |
| 16 | +#include "fq_vec.h" |
| 17 | +#include "fq_poly.h" |
| 18 | +#include "fq_poly_factor.h" |
| 19 | + |
| 20 | +#include "padic.h" |
| 21 | + |
| 22 | +typedef struct |
| 23 | +{ |
| 24 | + fq_struct *x0; |
| 25 | + slong *multiplicity; |
| 26 | + slong num; |
| 27 | + slong alloc; |
| 28 | +} fmpz_poly_roots_fq_struct; |
| 29 | + |
| 30 | +typedef fmpz_poly_roots_fq_struct fmpz_poly_roots_fq_t[1]; |
| 31 | + |
| 32 | +void fmpz_poly_roots_fq_init(fmpz_poly_roots_fq_t roots, fq_ctx_t fctx); |
| 33 | +void fmpz_poly_roots_fq_clear(fmpz_poly_roots_fq_t roots, fq_ctx_t fctx); |
| 34 | +int fmpz_poly_roots_fq_print(fmpz_poly_roots_fq_t roots, fq_ctx_t fctx); |
| 35 | +int fmpz_poly_roots_fq_fprint_pretty(FILE * file, fmpz_poly_roots_fq_t roots, |
| 36 | + fq_ctx_t fctx); |
| 37 | +int fmpz_poly_roots_fq_print_pretty(fmpz_poly_roots_fq_t roots, fq_ctx_t fctx); |
| 38 | +void fmpz_poly_roots_fq(fmpz_poly_roots_fq_t roots, fmpz_poly_t poly, |
| 39 | + fq_ctx_t fctx); |
| 40 | + |
| 41 | + |
| 42 | +void |
| 43 | +fmpz_poly_roots_fq_init(fmpz_poly_roots_fq_t roots, fq_ctx_t fctx) |
| 44 | +{ |
| 45 | + roots->x0 = NULL; |
| 46 | + roots->multiplicity = NULL; |
| 47 | + roots->num = 0; |
| 48 | + roots->alloc = 0; |
| 49 | +} |
| 50 | + |
| 51 | +void |
| 52 | +fmpz_poly_roots_fq_clear(fmpz_poly_roots_fq_t roots, fq_ctx_t fctx) |
| 53 | +{ |
| 54 | + _fq_vec_clear(roots->x0, roots->alloc, fctx); |
| 55 | + flint_free(roots->multiplicity); |
| 56 | +} |
| 57 | + |
| 58 | + |
| 59 | +char * |
| 60 | +fmpz_poly_roots_fq_get_str(fmpz_poly_roots_fq_t roots, fq_ctx_t fctx) |
| 61 | +{ |
| 62 | + char *buffer = NULL; |
| 63 | + size_t buffer_size = 0; |
| 64 | + FILE *out = open_memstream(&buffer, &buffer_size); |
| 65 | + |
| 66 | + _fq_vec_fprint(out, roots->x0, roots->num, fctx); |
| 67 | + fclose(out); |
| 68 | + |
| 69 | + return buffer; |
| 70 | +} |
| 71 | + |
| 72 | +int |
| 73 | +fmpz_poly_roots_fq_print(fmpz_poly_roots_fq_t roots, fq_ctx_t fctx) |
| 74 | +{ |
| 75 | + _fq_vec_print(roots->x0, roots->num, fctx); |
| 76 | + return 1; |
| 77 | +} |
| 78 | + |
| 79 | +char * |
| 80 | +fmpz_poly_roots_fq_get_str_pretty(fmpz_poly_roots_fq_t roots, fq_ctx_t fctx) |
| 81 | +{ |
| 82 | + char *buffer = NULL; |
| 83 | + size_t buffer_size = 0; |
| 84 | + FILE *out = open_memstream(&buffer, &buffer_size); |
| 85 | + slong j; |
| 86 | + |
| 87 | + for (j = 0; j < roots->num; j++) |
| 88 | + { |
| 89 | + fq_fprint_pretty(out, roots->x0 + j, fctx); |
| 90 | + flint_fprintf(out, " %wd\n", roots->multiplicity[j]); |
| 91 | + } |
| 92 | + |
| 93 | + fclose(out); |
| 94 | + |
| 95 | + return buffer; |
| 96 | +} |
| 97 | + |
| 98 | +int |
| 99 | +fmpz_poly_roots_fq_fprint_pretty(FILE *file, fmpz_poly_roots_fq_t roots, |
| 100 | + fq_ctx_t fctx) |
| 101 | +{ |
| 102 | + slong j; |
| 103 | + |
| 104 | + for (j = 0; j < roots->num; j++) |
| 105 | + { |
| 106 | + fq_fprint_pretty(file, roots->x0 + j, fctx); |
| 107 | + flint_fprintf(file, " %wd\n", roots->multiplicity[j]); |
| 108 | + } |
| 109 | + |
| 110 | + return 1; |
| 111 | +} |
| 112 | + |
| 113 | +int |
| 114 | +fmpz_poly_roots_fq_print_pretty(fmpz_poly_roots_fq_t roots, fq_ctx_t fctx) |
| 115 | +{ |
| 116 | + fmpz_poly_roots_fq_fprint_pretty(stdout, roots, fctx); |
| 117 | + return 1; |
| 118 | +} |
| 119 | + |
| 120 | +void |
| 121 | +fmpz_poly_roots_fq(fmpz_poly_roots_fq_t roots, fmpz_poly_t poly, fq_ctx_t fctx) |
| 122 | +{ |
| 123 | + slong j, k, num; |
| 124 | + |
| 125 | + fmpz_mod_ctx_t fmctx; |
| 126 | + fmpz_mod_poly_t mpoly; |
| 127 | + fq_poly_factor_t f; |
| 128 | + fq_poly_t fpoly; |
| 129 | + |
| 130 | + fmpz_mod_ctx_init(fmctx, fq_ctx_prime(fctx)); |
| 131 | + fmpz_mod_poly_init(mpoly, fmctx); |
| 132 | + fmpz_mod_poly_set_fmpz_poly(mpoly, poly, fmctx); |
| 133 | + |
| 134 | + fq_poly_factor_init(f, fctx); |
| 135 | + fq_poly_init(fpoly, fctx); |
| 136 | + fq_poly_set_fmpz_mod_poly(fpoly, mpoly, fctx); |
| 137 | + |
| 138 | + fq_poly_roots(f, fpoly, 1, fctx); |
| 139 | + |
| 140 | + fmpz_mod_poly_clear(mpoly, fmctx); |
| 141 | + fmpz_mod_ctx_clear(fmctx); |
| 142 | + fq_poly_clear(fpoly, fctx); |
| 143 | + |
| 144 | + num = 0; |
| 145 | + |
| 146 | + for (j = 0; j < f->num; j++) |
| 147 | + { |
| 148 | + if (fq_poly_degree(f->poly + j, fctx) == 1) |
| 149 | + num++; |
| 150 | + } |
| 151 | + |
| 152 | + roots->x0 = _fq_vec_init(num, fctx); |
| 153 | + roots->multiplicity = flint_malloc(sizeof(slong) * num); |
| 154 | + roots->num = num; |
| 155 | + roots->alloc = num; |
| 156 | + |
| 157 | + k = 0; |
| 158 | + |
| 159 | + for (j = 0; j < f->num; j++) |
| 160 | + { |
| 161 | + if (fq_poly_degree(f->poly + j, fctx) == 1) |
| 162 | + { |
| 163 | + fq_poly_get_coeff(roots->x0 + k, f->poly + j, 0, fctx); |
| 164 | + fq_neg(roots->x0 + k, roots->x0 + k, fctx); |
| 165 | + roots->multiplicity[k] = f->exp[j]; |
| 166 | + k++; |
| 167 | + } |
| 168 | + } |
| 169 | +} |
| 170 | + |
| 171 | +static void |
| 172 | +padic_hensel_iteration(fmpz_poly_t poly, |
| 173 | + padic_t x, padic_ctx_t ctx, slong prec) |
| 174 | +{ |
| 175 | + padic_t tmp, y0, y1; |
| 176 | + padic_init2(tmp, prec); |
| 177 | + padic_init2(y0, prec); |
| 178 | + padic_init2(y1, prec); |
| 179 | + do |
| 180 | + { |
| 181 | + /* Horner evaluation of poly and poly' at x */ |
| 182 | + padic_set_fmpz(y0, poly->coeffs + poly->length - 1, ctx); |
| 183 | + padic_zero(y1); |
| 184 | + for (slong j = poly->length - 2; j >= 0; j--) |
| 185 | + { |
| 186 | + padic_mul(y1, y1, x, ctx); |
| 187 | + padic_add(y1, y1, y0, ctx); |
| 188 | + padic_mul(y0, y0, x, ctx); |
| 189 | + padic_set_fmpz(tmp, poly->coeffs + j, ctx); |
| 190 | + padic_add(y0, y0, tmp, ctx); |
| 191 | + } |
| 192 | + /* Newton step: x -> x - poly / poly' */ |
| 193 | + padic_inv(y1, y1, ctx); |
| 194 | + padic_mul(y1, y1, y0, ctx); |
| 195 | + padic_sub(x, x, y1, ctx); |
| 196 | + } |
| 197 | + while (padic_val(y0)); |
| 198 | + padic_clear(tmp); |
| 199 | + padic_clear(y0); |
| 200 | + padic_clear(y1); |
| 201 | +} |
| 202 | + |
| 203 | +static padic_struct * |
| 204 | +_padic_vec_init2(slong len, slong prec) |
| 205 | +{ |
| 206 | + slong j; |
| 207 | + padic_struct *vec = flint_malloc(len * sizeof(padic_t)); |
| 208 | + for (j = 0; j < len; j++) |
| 209 | + { |
| 210 | + padic_init2(vec + j, prec); |
| 211 | + } |
| 212 | + return vec; |
| 213 | +} |
| 214 | + |
| 215 | +static void |
| 216 | +_padic_vec_clear(padic_struct *vec, slong len) |
| 217 | +{ |
| 218 | + slong j; |
| 219 | + for (j = 0; j < len; j++) |
| 220 | + { |
| 221 | + padic_clear(vec + j); |
| 222 | + } |
| 223 | + flint_free(vec); |
| 224 | +} |
| 225 | + |
| 226 | +static fmpz_poly_struct * |
| 227 | +_fmpz_poly_vec_init(slong len) |
| 228 | +{ |
| 229 | + slong j; |
| 230 | + fmpz_poly_struct *vec = flint_malloc(len * sizeof(fmpz_poly_t)); |
| 231 | + for (j = 0; j < len; j++) |
| 232 | + { |
| 233 | + fmpz_poly_init(vec + j); |
| 234 | + } |
| 235 | + return vec; |
| 236 | +} |
| 237 | + |
| 238 | +static void |
| 239 | +_fmpz_poly_vec_clear(fmpz_poly_struct *vec, slong len) |
| 240 | +{ |
| 241 | + slong j; |
| 242 | + for (j = 0; j < len; j++) |
| 243 | + { |
| 244 | + fmpz_poly_clear(vec + j); |
| 245 | + } |
| 246 | + flint_free(vec); |
| 247 | +} |
| 248 | + |
| 249 | +void |
| 250 | +_padic_roots(fmpz_poly_t poly, fq_ctx_t fctx, padic_ctx_t pctx, slong prec) |
| 251 | +{ |
| 252 | + slong j, level, js, ns = 1, nr = 0, nz = 0, n = fmpz_poly_degree(poly); |
| 253 | + fmpz_poly_struct *s = _fmpz_poly_vec_init(n); |
| 254 | + padic_struct |
| 255 | + * x0 = _padic_vec_init2(n, prec), *xs = _padic_vec_init2(n, prec); |
| 256 | + fmpz_poly_roots_fq_t froots; |
| 257 | + fmpz_poly_t xi; |
| 258 | + fmpz_poly_init(xi); |
| 259 | + fmpz_poly_set_coeff_fmpz(xi, 1, pctx->p); |
| 260 | + fmpz_t zero; |
| 261 | + fmpz_init(zero); |
| 262 | + fmpz_poly_set(s, poly); |
| 263 | + padic_zero(xs); |
| 264 | + for (level = 0; level < PADIC_DEFAULT_PREC; level++) |
| 265 | + { |
| 266 | + for (js = 0; js < ns; js++) |
| 267 | + { |
| 268 | + if (!fmpz_poly_is_zero(s + js)) |
| 269 | + { |
| 270 | + fmpz_poly_roots_fq_init(froots, fctx); |
| 271 | + fmpz_poly_roots_fq(froots, s + js, fctx); |
| 272 | + for (j = 0; j < froots->num; j++) |
| 273 | + { |
| 274 | + fmpz_poly_get_coeff_fmpz(zero, froots->x0 + j, 0); |
| 275 | + if (*(froots->multiplicity + j) > 1) |
| 276 | + { |
| 277 | + padic_set_fmpz(xs + n - 1 - nr, zero, pctx); |
| 278 | + padic_shift(xs + n - 1 - nr, xs + n - 1 - nr, level, |
| 279 | + pctx); |
| 280 | + padic_add(xs + n - 1 - nr, xs + n - 1 - nr, xs + js, |
| 281 | + pctx); |
| 282 | + if (level + 1 < PADIC_DEFAULT_PREC) |
| 283 | + { |
| 284 | + fmpz_poly_set_coeff_fmpz(xi, 0, zero); |
| 285 | + fmpz_poly_compose(s + n - 1 - nr, s + js, xi); |
| 286 | + fmpz_pow_ui(zero, pctx->p, |
| 287 | + *(froots->multiplicity + j)); |
| 288 | + if (fmpz_divisible |
| 289 | + (fmpz_poly_get_coeff_ptr(s + n - 1 - nr, 0), |
| 290 | + zero)) |
| 291 | + { |
| 292 | + fmpz_poly_scalar_divexact_fmpz(s + n - 1 - nr, |
| 293 | + s + n - 1 - nr, |
| 294 | + zero); |
| 295 | + nr++; |
| 296 | + } |
| 297 | + } |
| 298 | + else |
| 299 | + { |
| 300 | + padic_print(xs + n - 1 - nr, pctx); |
| 301 | + flint_printf(" (%wd)\n", |
| 302 | + *(froots->multiplicity + j)); |
| 303 | + } |
| 304 | + } |
| 305 | + else |
| 306 | + { |
| 307 | + padic_set_fmpz(x0 + nz, zero, pctx); |
| 308 | + if (!fmpz_is_zero(zero)) |
| 309 | + { |
| 310 | + padic_shift(x0 + nz, x0 + nz, level, pctx); |
| 311 | + } |
| 312 | + padic_add(x0 + nz, x0 + nz, xs + js, pctx); |
| 313 | + padic_hensel_iteration(poly, x0 + nz, pctx, prec); |
| 314 | + padic_print(x0 + nz, pctx); |
| 315 | + flint_printf(" (1)\n"); |
| 316 | + nz++; |
| 317 | + } |
| 318 | + } |
| 319 | + fmpz_poly_roots_fq_clear(froots, fctx); |
| 320 | + } |
| 321 | + else |
| 322 | + { |
| 323 | + padic_print(xs + n - 1 - nr, pctx); |
| 324 | + flint_printf(" (%wd)\n", fmpz_poly_degree(s + js)); |
| 325 | + } |
| 326 | + } |
| 327 | + for (j = 0; j < nr; j++) |
| 328 | + { |
| 329 | + fmpz_poly_set(s + j, s + n - 1 - j); |
| 330 | + padic_set(xs + j, xs + n - 1 - j, pctx); |
| 331 | + } |
| 332 | + ns = nr; |
| 333 | + nr = 0; |
| 334 | + } |
| 335 | + fmpz_clear(zero); |
| 336 | + fmpz_poly_clear(xi); |
| 337 | + _padic_vec_clear(x0, n); |
| 338 | + _padic_vec_clear(xs, n); |
| 339 | + _fmpz_poly_vec_clear(s, n); |
| 340 | +} |
| 341 | + |
| 342 | +void |
| 343 | +padic_roots(fmpz_poly_t poly, padic_ctx_t pctx, slong prec) |
| 344 | +{ |
| 345 | + slong j, deg; |
| 346 | + fmpz_t tmp; |
| 347 | + fmpz_poly_factor_t f; |
| 348 | + padic_t x; |
| 349 | + fq_ctx_t fctx; |
| 350 | + fq_ctx_init(fctx, pctx->p, 1, "a"); |
| 351 | + fmpz_init(tmp); |
| 352 | + padic_init(x); |
| 353 | + fmpz_poly_factor_init(f); |
| 354 | + fmpz_poly_factor(f, poly); |
| 355 | + for (j = 0; j < f->num; j++) |
| 356 | + { |
| 357 | + deg = fmpz_poly_degree(f->p + j); |
| 358 | + if (deg == 1) |
| 359 | + { |
| 360 | + fmpz_set(tmp, fmpz_poly_get_coeff_ptr(f->p + j, 0)); |
| 361 | + fmpz_neg(tmp, tmp); |
| 362 | + padic_set_fmpz(x, tmp, pctx); |
| 363 | + padic_print(x, pctx); |
| 364 | + flint_printf(" (%wd)\n", *(f->exp + j)); |
| 365 | + } |
| 366 | + else |
| 367 | + { |
| 368 | + _padic_roots(f->p + j, fctx, pctx, prec); |
| 369 | + } |
| 370 | + } |
| 371 | + fq_ctx_clear(fctx); |
| 372 | +} |
| 373 | + |
| 374 | +/* example polynomials */ |
| 375 | + |
| 376 | +char *polys[] = { |
| 377 | + "3 -2774119 -2468 1", |
| 378 | + "3 6 -7 1", |
| 379 | + "4 -156 188 -33 1", |
| 380 | + "3 -11 0 1", |
| 381 | + "3 -30 1 1", |
| 382 | + "4 -17576 2028 -78 1", |
| 383 | + "10 -362880 1026576 -1172700 723680 -269325 63273 -9450 870 -45 1", |
| 384 | + "12 -39916800 120543840 -150917976 105258076 -45995730 13339535 -2637558 357423 -32670 1925 -66 1", |
| 385 | + "9 44100 -103740 103429 -57034 19019 -3928 491 -34 1", |
| 386 | + "5 83521 -19652 1734 -68 1", |
| 387 | + "12 22370117 15978655 10666271 5010005 1846306 575366 142702 28538 4585 523 35 1", |
| 388 | + "4 0 -11 0 1", |
| 389 | + "7 3 1 0 0 1 0 1", |
| 390 | + "11 23 -74 89 -68 35 0 -14 8 -2 -1 1", |
| 391 | + "4 -12 0 0 1", |
| 392 | +}; |
| 393 | + |
| 394 | +int |
| 395 | +main(int argc, char *argv[]) |
| 396 | +{ |
| 397 | + |
| 398 | + const slong np = sizeof(polys) / sizeof(polys[0]); |
| 399 | + flint_printf("# examples: %d\n", np); |
| 400 | + |
| 401 | + ulong n = 7; |
| 402 | + |
| 403 | + if (argc != 2) |
| 404 | + { |
| 405 | + flint_printf("usage: %s p (prime)\n", argv[0]); |
| 406 | + flint_printf("find roots of polynomials over p-adic field Z[p].\n"); |
| 407 | + exit(1); |
| 408 | + } |
| 409 | + else |
| 410 | + { |
| 411 | + n = atoi(argv[1]); |
| 412 | + if (!n_is_prime(n)) |
| 413 | + { |
| 414 | + flint_printf("%d is not a prime as required for p-adic field.\n", |
| 415 | + n); |
| 416 | + exit(1); |
| 417 | + } |
| 418 | + }; |
| 419 | + |
| 420 | + fmpz_t p; |
| 421 | + fmpz_init(p); |
| 422 | + fmpz_set_ui(p, n); |
| 423 | + |
| 424 | + padic_ctx_t pctx; |
| 425 | + padic_ctx_init(pctx, p, 128, 128, PADIC_SERIES); |
| 426 | + |
| 427 | + fmpz_poly_t poly; |
| 428 | + fmpz_poly_init(poly); |
| 429 | + |
| 430 | + /* use this to read from "poly_data" string. */ |
| 431 | + |
| 432 | + flint_printf("reading polynomials:\n"); |
| 433 | + |
| 434 | + for (slong j = 0; j < sizeof(polys) / sizeof(polys[0]); j++) |
| 435 | + { |
| 436 | + flint_printf("polynomial:\n\n"); |
| 437 | + fmpz_poly_set_str(poly, polys[j]); |
| 438 | + fmpz_poly_print_pretty(poly, "x"); |
| 439 | + flint_printf("\n\nroots with multiplicity:\n\n"); |
| 440 | + padic_roots(poly, pctx, 64); |
| 441 | + flint_printf("\n"); |
| 442 | + } |
| 443 | + |
| 444 | + fmpz_poly_clear(poly); |
| 445 | + fmpz_clear(p); |
| 446 | + |
| 447 | +} |
0 commit comments