-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraphicsCrawlerDisplay.py
333 lines (256 loc) · 10.8 KB
/
graphicsCrawlerDisplay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# graphicsCrawlerDisplay.py
# -------------------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# ([email protected]) and Dan Klein ([email protected]).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel ([email protected]).
# graphicsCrawlerDisplay.py
# -------------------------
# Licensing Information: Please do not distribute or publish solutions to this
# project. You are free to use and extend these projects for educational
# purposes. The Pacman AI projects were developed at UC Berkeley, primarily by
# John DeNero ([email protected]) and Dan Klein ([email protected]).
# Student side autograding was added by Brad Miller, Nick Hay, and Pieter
# Abbeel in Spring 2013.
# For more info, see http://inst.eecs.berkeley.edu/~cs188/pacman/pacman.html
import Tkinter
import qlearningAgents
import time
import threading
import sys
import crawler
#import pendulum
import math
from math import pi as PI
robotType = 'crawler'
class Application:
def sigmoid(self, x):
return 1.0 / (1.0 + 2.0 ** (-x))
def incrementSpeed(self, inc):
self.tickTime *= inc
# self.epsilon = min(1.0, self.epsilon)
# self.epsilon = max(0.0,self.epsilon)
# self.learner.setSpeed(self.epsilon)
self.speed_label['text'] = 'Step Delay: %.5f' % (self.tickTime)
def incrementEpsilon(self, inc):
self.ep += inc
self.epsilon = self.sigmoid(self.ep)
self.learner.setEpsilon(self.epsilon)
self.epsilon_label['text'] = 'Epsilon: %.3f' % (self.epsilon)
def incrementGamma(self, inc):
self.ga += inc
self.gamma = self.sigmoid(self.ga)
self.learner.setDiscount(self.gamma)
self.gamma_label['text'] = 'Discount: %.3f' % (self.gamma)
def incrementAlpha(self, inc):
self.al += inc
self.alpha = self.sigmoid(self.al)
self.learner.setLearningRate(self.alpha)
self.alpha_label['text'] = 'Learning Rate: %.3f' % (self.alpha)
def __initGUI(self, win):
## Window ##
self.win = win
## Initialize Frame ##
win.grid()
self.dec = -.5
self.inc = .5
self.tickTime = 0.1
## Epsilon Button + Label ##
self.setupSpeedButtonAndLabel(win)
self.setupEpsilonButtonAndLabel(win)
## Gamma Button + Label ##
self.setUpGammaButtonAndLabel(win)
## Alpha Button + Label ##
self.setupAlphaButtonAndLabel(win)
## Exit Button ##
#self.exit_button = Tkinter.Button(win,text='Quit', command=self.exit)
#self.exit_button.grid(row=0, column=9)
## Simulation Buttons ##
# self.setupSimulationButtons(win)
## Canvas ##
self.canvas = Tkinter.Canvas(root, height=200, width=1000)
self.canvas.grid(row=2,columnspan=10)
def setupAlphaButtonAndLabel(self, win):
self.alpha_minus = Tkinter.Button(win,
text="-",command=(lambda: self.incrementAlpha(self.dec)))
self.alpha_minus.grid(row=1, column=3, padx=10)
self.alpha = self.sigmoid(self.al)
self.alpha_label = Tkinter.Label(win, text='Learning Rate: %.3f' % (self.alpha))
self.alpha_label.grid(row=1, column=4)
self.alpha_plus = Tkinter.Button(win,
text="+",command=(lambda: self.incrementAlpha(self.inc)))
self.alpha_plus.grid(row=1, column=5, padx=10)
def setUpGammaButtonAndLabel(self, win):
self.gamma_minus = Tkinter.Button(win,
text="-",command=(lambda: self.incrementGamma(self.dec)))
self.gamma_minus.grid(row=1, column=0, padx=10)
self.gamma = self.sigmoid(self.ga)
self.gamma_label = Tkinter.Label(win, text='Discount: %.3f' % (self.gamma))
self.gamma_label.grid(row=1, column=1)
self.gamma_plus = Tkinter.Button(win,
text="+",command=(lambda: self.incrementGamma(self.inc)))
self.gamma_plus.grid(row=1, column=2, padx=10)
def setupEpsilonButtonAndLabel(self, win):
self.epsilon_minus = Tkinter.Button(win,
text="-",command=(lambda: self.incrementEpsilon(self.dec)))
self.epsilon_minus.grid(row=0, column=3)
self.epsilon = self.sigmoid(self.ep)
self.epsilon_label = Tkinter.Label(win, text='Epsilon: %.3f' % (self.epsilon))
self.epsilon_label.grid(row=0, column=4)
self.epsilon_plus = Tkinter.Button(win,
text="+",command=(lambda: self.incrementEpsilon(self.inc)))
self.epsilon_plus.grid(row=0, column=5)
def setupSpeedButtonAndLabel(self, win):
self.speed_minus = Tkinter.Button(win,
text="-",command=(lambda: self.incrementSpeed(.5)))
self.speed_minus.grid(row=0, column=0)
self.speed_label = Tkinter.Label(win, text='Step Delay: %.5f' % (self.tickTime))
self.speed_label.grid(row=0, column=1)
self.speed_plus = Tkinter.Button(win,
text="+",command=(lambda: self.incrementSpeed(2)))
self.speed_plus.grid(row=0, column=2)
def skip5kSteps(self):
self.stepsToSkip = 5000
def __init__(self, win):
self.ep = 0
self.ga = 2
self.al = 2
self.stepCount = 0
## Init Gui
self.__initGUI(win)
# Init environment
if robotType == 'crawler':
self.robot = crawler.CrawlingRobot(self.canvas)
self.robotEnvironment = crawler.CrawlingRobotEnvironment(self.robot)
elif robotType == 'pendulum':
self.robot = pendulum.PendulumRobot(self.canvas)
self.robotEnvironment = \
pendulum.PendulumRobotEnvironment(self.robot)
else:
raise "Unknown RobotType"
# Init Agent
simulationFn = lambda agent: \
simulation.SimulationEnvironment(self.robotEnvironment,agent)
actionFn = lambda state: \
self.robotEnvironment.getPossibleActions(state)
self.learner = qlearningAgents.QLearningAgent(actionFn=actionFn)
self.learner.setEpsilon(self.epsilon)
self.learner.setLearningRate(self.alpha)
self.learner.setDiscount(self.gamma)
# Start GUI
self.running = True
self.stopped = False
self.stepsToSkip = 0
self.thread = threading.Thread(target=self.run)
self.thread.start()
def exit(self):
self.running = False
for i in range(5):
if not self.stopped:
time.sleep(0.1)
try:
self.win.destroy()
except:
pass
sys.exit(0)
def step(self):
self.stepCount += 1
state = self.robotEnvironment.getCurrentState()
actions = self.robotEnvironment.getPossibleActions(state)
if len(actions) == 0.0:
self.robotEnvironment.reset()
state = self.robotEnvironment.getCurrentState()
actions = self.robotEnvironment.getPossibleActions(state)
print 'Reset!'
action = self.learner.getAction(state)
if action == None:
raise 'None action returned: Code Not Complete'
nextState, reward = self.robotEnvironment.doAction(action)
self.learner.observeTransition(state, action, nextState, reward)
def animatePolicy(self):
if robotType != 'pendulum':
raise 'Only pendulum can animatePolicy'
totWidth = self.canvas.winfo_reqwidth()
totHeight = self.canvas.winfo_reqheight()
length = 0.48 * min(totWidth, totHeight)
x,y = totWidth-length-30, length+10
angleMin, angleMax = self.robot.getMinAndMaxAngle()
velMin, velMax = self.robot.getMinAndMaxAngleVelocity()
if not 'animatePolicyBox' in dir(self):
self.canvas.create_line(x,y,x+length,y)
self.canvas.create_line(x+length,y,x+length,y-length)
self.canvas.create_line(x+length,y-length,x,y-length)
self.canvas.create_line(x,y-length,x,y)
self.animatePolicyBox = 1
self.canvas.create_text(x+length/2,y+10,text='angle')
self.canvas.create_text(x-30,y-length/2,text='velocity')
self.canvas.create_text(x-60,y-length/4,text='Blue = kickLeft')
self.canvas.create_text(x-60,y-length/4+20,text='Red = kickRight')
self.canvas.create_text(x-60,y-length/4+40,text='White = doNothing')
angleDelta = (angleMax-angleMin) / 100
velDelta = (velMax-velMin) / 100
for i in range(100):
angle = angleMin + i * angleDelta
for j in range(100):
vel = velMin + j * velDelta
state = self.robotEnvironment.getState(angle,vel)
max, argMax = None, None
if not self.learner.seenState(state):
argMax = 'unseen'
else:
for action in ('kickLeft','kickRight','doNothing'):
qVal = self.learner.getQValue(state, action)
if max == None or qVal > max:
max, argMax = qVal, action
if argMax != 'unseen':
if argMax == 'kickLeft':
color = 'blue'
elif argMax == 'kickRight':
color = 'red'
elif argMax == 'doNothing':
color = 'white'
dx = length / 100.0
dy = length / 100.0
x0, y0 = x+i*dx, y-j*dy
self.canvas.create_rectangle(x0,y0,x0+dx,y0+dy,fill=color)
def run(self):
self.stepCount = 0
self.learner.startEpisode()
while True:
minSleep = .01
tm = max(minSleep, self.tickTime)
time.sleep(tm)
self.stepsToSkip = int(tm / self.tickTime) - 1
if not self.running:
self.stopped = True
return
for i in range(self.stepsToSkip):
self.step()
self.stepsToSkip = 0
self.step()
# self.robot.draw()
self.learner.stopEpisode()
def start(self):
self.win.mainloop()
def run():
global root
root = Tkinter.Tk()
root.title( 'Crawler GUI' )
root.resizable( 0, 0 )
# root.mainloop()
app = Application(root)
def update_gui():
app.robot.draw(app.stepCount, app.tickTime)
root.after(10, update_gui)
update_gui()
root.protocol( 'WM_DELETE_WINDOW', app.exit)
try:
app.start()
except:
app.exit()