forked from nimafazeli/CompEcon2020
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathLearningNewtonsMethod.cdf
1562 lines (1541 loc) · 76.5 KB
/
LearningNewtonsMethod.cdf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.cdf.text *)
(*** Wolfram CDF File ***)
(* http://www.wolfram.com/cdf *)
(* CreatedBy='Mathematica 8.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 150, 7]
NotebookDataLength[ 78103, 1551]
NotebookOptionsPosition[ 51187, 974]
NotebookOutlinePosition[ 77437, 1535]
CellTagsIndexPosition[ 77326, 1529]
WindowTitle->Learning Newton's Method
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
ButtonBox[
GraphicsBox[RasterBox[CompressedData["
1:eJztvXmUXldxL8pazzeKUCRHkqVWz3O3utWTutWjWq1u9dz9SdbgSZ7AI1OY
59EGMxgMGI9AgACBJIwmcBNCwnBvgm2mvPduCATWevfmvgD5864L5P3Neaf2
WFW79vlOt2RJtrfXqnW+s3ftGn5Vu2r7bEtuvfXlp2/9P57znOd05fS133vO
cy7Ln0/Mdf6vROebOhIlSpToKaaLXecSJUqUKFGiRBeIfmfoYtuRKNHTjX73
RNo/iRKVod8V0MW2LVGii0VF+2Ize2Wj8hIleibQed2X//dCZ5bowtP/lehZ
QRc7zxI9/fZ5efldF92/RIkSJUqUKFGiRIkSJUqUKFGiRIkSJXqq6b+v7k90
3qm7Oq0kSoSoTM4kelrR/3MOBHXkf5Si7kSJEiVKlChRokSJEiVKlChRokSJ
EiV6RtP/XO3+X4kSJbr49K+JnjH0PwT67yvFhHn/FT1jdLHzNVGiRIkSJUp0
weh3hi62HYkSPd3od/8z7Z9EicrQ7wroYtuWKNHFoqJ9sZm9slF5iRI9E+i8
7svfXjueFdF/IPot+x3QNYgicsrwRuevidEY4f0Pgar5dj5JxnKsgIpjsPF1
fK5Id5HcsQ3q36yeajI2iudm9Z+LndViWH6fPTtpomBcz/1/ZGwSzV0sKlcD
fnONp1/ntUoizOPXTlTNjXPNu0JSdTWk/8ht/A+hBv+HIcVn90VERqJEiRIl
SpQoUaJEiRIlSpQoUaJEiRKVpYHWjpzas/782Z8/B1o89TNSfNK4mQNZg0pe
hxvra2nLicvJ+dpynrYOp1/pa7Xy7LgmZVdOg3adWQPvQ+2d+ViXIsXbAtTm
qK8Vnq1ZX3O7ov7mDiUf+PoUtetncxv63W5+txs+64eVp2Uqf5oRGd5+w9OH
7AC92rZ280Rygb/Vyx4AwnrUnMamr7UD4dkWkpFl3weUnW1Er/W93/nncbDr
Qf+Ak2vwaDY8bq3FBGxsNfHz9hFb4beKpVnb2k5s7oMYtWI79XPA+dlqCGEP
fBZ7I1fpA6ybje5mn1fq6XLMY03tMDa2ej/7Wk0ssZ2t7QH1tbS7ddp3u97k
hOWzv838AIqL09nSYXJV+9DX0mH2hd9Dfr3XO9DsZeI95eLd6vMa70ntN35H
a9z+bvd7kuWTrR9eVoeJuZGF4tNnawmpJ23GZpQfsMebWrOBnPraOrOe1s6s
t7lTxb+3tSE70NqYHWhrVtTX1qpjY0jnI8SrRVOrnTO/Wz2PptbsgJrT8/i3
loHlm3clB8vW7wdatc4DLV7WAXg2NyvqRc9exaefvW4NsqGFPrUs4NXvfl2r
0WlssjqRTLe+hY5rm1udTCv3AFmjZfbmYx3tjVl3S2PO02zmmlWuduXUmcep
N6f+Rohbi6kReN+2+jrFahatOW2+VqA89LUF5xSu+TquA1i+zQlbB6E2NHf4
mu1qeIep076eBzU+RoQX2d3cLo+3oHesNzZP+OjeJWudng5qW2Ar9xX700HX
OV86sgAnQlhnRHegs0OwLyKXjwcyMU7CWoJHh8zX3BHOcz1FPsfsxX4HceC2
cX6GO8ZMwGNvTUO2Z29ONY3qCe9qjDwbydhey7e3Uf/eS8f3GJnUFpZzzcym
Zo4jyl0pD4hfHQw7LkeIvYQjty+Qw/0pkhfLhw5mhxQvwQ++17keHFcxj9uz
ECtmO9m7PN8ErMUawuqOVK9idROfF4vsD/Kc7SmOO6+7ol1CzvF9zOsQwV94
kjM890GIL9/nQV3voHJ5DyL285wR/A4w43VCqkOxePB1PHcku7m9fB9JOdAR
kcfjjtdJfEKOi/uJ68J5zH7z2sb/PU6SFeSOhDmX0R7KlOqqVIN4TZT6cLDf
NX9bQ6uidkNtDW1Ze2OrG7dzbY1tlKcBvxu+RjPeqH97uS2eGvUz2Eu5bdBr
XN+yvSjoWw1h30I9jvQy1LdsX9tj+xtei8YUv+mNzp69drzB91Ono5HqqQlp
j/HD8e6V5pBfe708i4PGpNHZsRfxUX2Ngc0coz17G0NMCTb03ODisLfR21Qj
6OZnjb0hLt4ndgaJ+ELjgnBBeUJ9oHHfw+Rh392Y09+IbGP4CfnH7d5j7OU2
ybnUyOQ3hj7ifWDjI9nAYoDPfVYOwVTcT2bNXuqzlZH6Vupbl1LfEvWJ519u
D7eR+UrkS7km2VAQW3wW5TnH5/leCGyO5TLXX4JaGF48j/g43//8/B/UByFf
uZ+8VgQxY5gH+Aj5EeSjZK+wV2L7XopJrDZwuXw8kMnyRYyBkOvE9o5wnusR
bNPnNTjX+bNdW2OrObu1krOdf7axcx2mNrSuLZxvbDXnPgGPFuYnj0U0Vh67
y3bty/7Trprssp3wzGlnjXrHBHOXwW87Z3ndGPq9087798uUjBo0ptd73Ugf
WkPsQLIvszbsZON4jKyp8fZjwrKJbXbOy7xMydhHbcVrEJ+Xvc/PYZt3eUwc
Ng7/mB/7GIYhTpcFviDZ6Onx20f4Ltu1j2Jgbdm1j+piuHsZNq4UH/4uxoE/
XS5S22luorGdnv8yZpfPWR5zn6eXIX8szjRvPQaXobWXReQRP5h/OIccvru8
DThXsf7L3HqbU/uIveEe2udyjNgu5pPfV56Hx2yfk+t928cwxXbsYz4weW49
9R/HCq/1+clyk+cW9oPkiBCHYL/6d4pXJO/RPqF738fX+7BX0669euwPYV6/
w7i19zKEz2XCPg32ALZT2ktYRrB/6B4I/EX4XYbyPYZLaAeyPagvFuN9gZ1h
HfW/L8OxjeafnBeXYX94rUXj3keWP7ymWV5sC+5/LKeCceuTe/K9wHKO1zIp
7iz2l+3ka/aFfgh16j+x/cb1kHq0C8fS+LET1x+cx7xO4ncpHgyvCB+Nj7xn
vM1UNjlTsJwn9RHn1S62H3GOobjiHA9qHMklCQ/WD3Av5nUN28kx2kX1pHMf
50/nvnTuozHC8tO5L537gnwsfe5Dsney2O30efVsP/elvsXkBTER4pz6FrE3
9S0qP/Wt1LeCfEx9i9UbtidQPtL6IvctuY763+l7RSznuQ60D8iafaEf6XsF
8nFf4OPT6XuF36t2L/HzmYThPqLv93bX5rQv25LT7+3ST/UbxnfVmnHNY3k1
fy15wlrFZ9cQuXT9Fml8l7fBrXNraqm+XbWOj89bmW79Ls+DdXn/+Npaxp/L
2oXX7SO6uZ1+jMrAGHvckN9Y7i60dpe302PHfHR83qYt2M/dzH7mw+8xmTY2
W/Bah7u3i+gnPqKcsDhb25yM2sBuh4eYAzSWzl62lvuJY7GF2LiP+cRyBOne
wtZTHjlnCL/dGyjnwvwSfMX5tmufEE8ao2DfRWhLsCcQbrt8HfB7WsrLfSaW
sRwI7SV7Ldg7PGZ8r1CMtmB72d73dUXKnXAv/h6zy+0jJH8LqSthPpI6tguv
zWss1Fn1jp477TgmxLO7xsveReuFsw35QfOc44VjGub6FsbnxpEOtweEXkDy
AuMQ2CDHItxT2A5e5zBvrbC/UV3AvgZ+s3zZ5d+37KJ+hLWI1VZTs7bwMVRb
pVzfEmAR2fsk31g8RRJsdBiw34F8oa5hfMjewv0ijFuAM89N3m9jtmA8CB+v
P8hW0l94PcByad/Yspva5PYxz9lI/4z1ELx+Czlnof0m5TnKS44b7/NbmE20
Ltp+QTFI5z4hD62v6dyH9pS3K537aNzDdXzv4ljy/BJ8Tec+kptBTJ4W5z4p
X/gcjwHfd8+2cx/HCu8dinnqWzymvK7g/YvzndqR+paQn6lvpb61O/Wt0B5O
tR5zsu+ebX2L4pO+Vwg5I+FbZKPDgP0O5At1LX2vCHM20j9jPQSvf6q/V7h9
HmDDc1qIhdH1+1fUadrDnpxgfE8tmq8tXLeVr3XP2nAcj11RhXcP1lGrbULr
tlh5AX+trCdCWyV7YtgE/gh47EEyyZy2a4vzRaA98bmtnE9aj/DYavRv5b4Q
HPn6feypdW3dg36L2NY6PRhP/7veYRPEG9ticm9rgY9b91DbojhI2EXiujUa
TxaTPYJM4X0rtyu6dyIxlX7jp+g3wxzp9DmJ1+4TZKBxw7cF+8xjs4fjK8UL
8ezheSzsNSZjq2RbmT0u1ZGSe1vjVcvWc33M192GrI3576270XiM7NpqubyH
4VyQA1Vr0R5MOg5bRcxqKX8E12o1MpBN+ksJWdVqNHrfSmperVzf8VwkvlvN
fLAejcl1no2XwYlhFa9HLE8LbCN1Xqo7ezxWkpxoPZHyAssJ9rMgS/JBWLeV
68djG80ZbntOWyLxidpk5zlmEh+uuc5m0yeDHhzBKCI3GqciTNK5L24/zuWi
dZs+9xm7C7EvYWeJ+JY793GqZU8mA/dDtu78nfuKc3hrQT2rGuPzcu6T82Zr
TB6WWbh3In5J/bbA7+rnPh7rSA4Yvi3s3BSeD2oL8SV5IdXLgj4R4lx+Xz/1
576Izah2FvXTarkh2iXoKMz7WC3ag+kSOPdxns3glPpW6lupbyGbUt8Kcjv1
rbjNqW+FuAf5m75XxHxJ3yvoXPpesTE8ZX5ak7ai9+furc+pwTztb03byHs9
eq8X1knvEmFZIXGdso6Y3nDNNvaU14dz2wQ/t4k6/Tuf34awfO7eHOs9+fie
ugLKdaDf8Nxm6LlsnPLXF8vei3gcHjb2dZREXfVVxuqoHU5uvZcp6XI8BqM9
1jaE2V4sn/q6LWpXvcHG84W80to6Yvc2h1Odeec4USx47Krp24bW0xjLcYjn
AdeD/ce60LvzI4YlliPFmT5l++M4b2P2b6sqp5rvPOdxDsap2p6u/hvnBPaX
+r4V0R/dPJnTVNbZ26b+fea5pi9sZTEq2tfb9oSxiOWQGzc5XVzfimu65dnm
6ltMBiZprMHsr7j+4tjwca7H+7ktylcvrMF2cayK+pusn2MWzz+qn/sQsyNc
Xy22/l3uwXTtNlGXbHfxXsM+UJu2BZiFvDQ28XEf7zCuNG9pr+fx3sZkUxnV
crIIg5jtZdeH4+ViIdWvdO7jc+f/3Fdub/AYhjkR5kyxTznV8JwLa0txnlXL
GaneV8sVAffg3BfL7XiMqI94X8fqfDyPw3pQjE+8HhTVNSl3yuyZ2N7m/vMa
Ktsq48PrHK8B1eyP48x74Laqcqr5Xm2NTOd+7ov5G9uTsRrVwKhIBq4L1XNI
OsNc2ue+ItxkDOXaFvNr8/mU+pasP/Wt1LfK7ZnY3ub+Y118L0u2xHKFx5k+
U9/i/larv7xGFdV62e5nbt8qE5sYng1MRvpeEcYlfa/gfeSZ9b1C0hfuixBr
v/YPahqzP9jXmG3fZ57mXVENeq8R3vex3zUNfoyM+7Ht+FnD5OwL+USKrBHn
aqjO7ZwH2xDzzWIkyOb4Ub4GTTWM8hhsZ+/w3GYIj29j9AcQwxo0htYHT0Pb
9/rndm6L468P1lt7iA1ct+BH/F3r2I70KHs4Tua3tXW7lbWX2SbZEMGU8Fa1
k9poaTvi8zjWk/Xb9vqnw6tIlzAX5Ab3xflTvzm5eym/xXcb0sPz0f1mcYjJ
Btv42m0YJ44LztW9DaL/nuqNDibHxonjofKr3tho96edQ3XNjsdqDOjN57cb
CuxEv7W/9SZGvg8D/fm9lewfPnF19q9fuzmbn+3X96xqb9Cnw49jLlKYC9sR
ERvtfov6yWq0UEur1WPST3idl+qoVI95D4rUdaqzAb03BPzbS9vQIPA2oD7S
kHFfRful3mZ8wv2oyC7ek/2zweSjYIegU+zX1eJbE85tr4mMS3qFuWhe1aAY
ur3LfbZ8DR7rWL5Wyc+orxyzGtnmELOGUDfLOfF3ydyJxjd6bmkI1vFzVzr3
FeEnYBPBT+QTbOS1gsdmu5XDaDveCzG7I/m7neslmDVE1/P9FY1bUS21+VEj
7KdI3ou5IuTddkZR2aXtDPOe11+y1yM1rGwNkvzhmMg1SupNJeRKODM9Qa0o
ygVRdlhzgt4r6ZJizPOZYy5hFcw3ONlBDatpLHnuw32/IKdqQv6NxAdjEMv9
cB83iPIKzzpVxi7auc/5nPpWYb4V1X2MUayec2yL7JPiXxPGJvWt1LfIvovE
LPWtCFbBfOpbT5u+xXVGbJTzKH2viOkU87NafIVanb5XyP5fct8rBF8K44D8
uLy2OduR0+V1TdmOOnjq9x21Tf43jNfqOftU82Zuh3uCDL9OyaxF8+bdzdei
Zx16Wl6sF81r24weN250K3lNRh9da9fYdTuQHZcjvZfXItnIFrxmB5K3o45i
o/Rz2teUbbfPHHs93pCTjs/lMGZitcPs9e3mucPsgx2OB/2uxb8bjbxQtyP1
rvVrfjvu123fp+e07AZ3RgUCW3bYd7u/jF6rYzvx2cxzGwBj8355Pq8xa1Rj
l9f68R213jaNm6/L3l+DibE5GDeYKl9qGxxmNg7bjf9Wl8ekyWPiYkfHNZYN
zk+rj8TP2qB4mhxZHDBezl8nr9G973Cyfcx3IJ4daA2OzXbsB/EZ+4Zzz2Bl
412D9Nl47/M2EvtqG6nPTi4eRzpqqR/OZjfW5Ox3+Dq8cRytfRjbRp1bZv7y
fSa/bG7ZXHO8NudYLtR6vssxL4mXtQ+Nob2zw+4f5D/cZX30bSv5eL0er0EY
231m+H3+NHrf7b6ytqJ9vB3FGu8954f5fbmt2eapa3QTrZG4/uF6jOqlr8vN
pn76+r0Dk+0BtsfU+vp9udFteXa4et3k63fQc1DPqvO1n/cBbreT43Q1o37S
lO3g9hv7rL2XIzttPyQ9DNvnMEZrsd2s35C+hnHDvQ7h42TF+hXr434MY0Ux
wNi7OLE+h3OD9sGmyDg+F7D+XtuE/Pd54GMf+nA5savJYyngu8ONMT0ohtQv
li+47+P+j3LeY8bk1DLbhRz2c+gM5faXnBdu/9VRu3A+O78w8VgQ/9K575zO
fWzfER9rUT0z8v4Q711UR7F/l+PfOO583wo1jsa8ya9lscIx97WY5jzhqWX+
1zKcSFzo/OUBjnSP+3g1IczRXiaxbCKxCveN7UXeHpzjWBfNtch+I/sBx7uJ
2ujqA8s7Vh9I/gh9dkcdwwmvZ3WB1DorC+9bYQ2tAz7udj/x+JI4orz1e7sp
sM/zoDMUqSkoZ2pR7rEa4/FhvvD8cn3Dn238PuD53oRiifZfLfMR41/r9fD6
hs8CtFeEMd+B8Q0wQ3aT/OFrmohf+BzG9eNef0me+3BN4fWrFuPmsU99K/Wt
1LdwrtG9nvoWzefUt5qJPalvoRijvNpQ33I+NAW+hT2H1qP0vYLFq47iResz
xopikL5XsHxB9Yn0rUvxe4WNrdB7SL3j+wDl2K6G1mxnfUu2s8GQ+g1jrfrZ
gN7tWL0eV2sJtfjfTiZdE/K2UBn1wtqcdrlxQRdZS+d3xfxh63bVMznEFjzW
Qp9OJuCBMMzpDxU162edPvuppyX+nsclfDayJ+dv8nJq6fxOQ4GuekxN4W8i
qwnpaUTvjcxWq0+Q5343UTzM750Yp+DZ4m0KMGuqjklAdq7J2Nzk5CqsnI1N
FKc65APzW8I+jHMTfa9FscF6q/nFcahtZvY0UYrFAOeBtZ344OO8k8gssLG2
GfFirBkWHI+oPwWYcj3muTPIb5NDdT6ndrqY+vxSezZfu8v+JqTHfT7q/PV5
i/CtxXh6O+2dEaa/eO9xRfau7XJ3l4bxbqR5ymrFTikX65pYznp/dxosoC6q
2ghjDc2oluPaK9TooI6jsXqhthI+qSdIeqV1Qq+pR73BvbcwedyfiJ31kt5W
hkukfwR9r8gv2ycMbz23NdJzne1CX471qsDeiB6MJ7J/F9dN9MbkFOmV47wr
tg7Fk/BwjIO4x/IBYyXkQ+CvPUNQ27Atu8jZycxh/np0BonlN8eHxJ37x3ns
OaxaPFBOOzvTue/8nfsimPBYBvszkrsF+yWoBWw/7MI5Wl9NpxQ/plfEv4Xp
i8WoRZCF95Hku5y38n6JYCLFg9QTHx/ZDp6/vJ7I2MtraZ5G612RX9F48njx
Gs9jKdgeiW/Y+yI21rf6f/chWDMsomcH7k8BpmKd4zUp1kN4jnj/Y3s4GK+P
1Nto/xXeybpIbHieBuMClkQOxWAXeu5CPJfWuS/1rdS3BJ9iMUt9qzgvU98q
tjH1rdS3ovFqzcr3LWmdgJ1Zn75XtBbkXUEN5nOsx6bvFS0CDk+H7xUx+SVi
YnJyd2NbdkVTe07+uRuRfs/HG9vpswmv0zyWH3j0E8kxevRaT1iWW+9ktpGx
3U5Pe2ifW298aLR2tBvdns/aJfntdDVS/6xPnqc9uwLZ4/SA7AZYn+dDTrtz
vHebXNqtvhdrgm/H9vu4/Vau3t23dERqrCWbW60osvP2W7SXp2sOvGu9+JkT
xLvB2qRpF6LdJsd2GxlKR/48de312anrbiB27bL6kU9Wr7arFcmlOjUeZrxR
26SwUpi1uXHbu3a7f4dpNhh6m70tdFzb0OyefYPd2cr8way5s8PYjW23NrY6
//Fv/8zH670PPJ7qt4tjS65vKOvP9XrbMEbNQRw8LtQ2Xbd0fEEm+EFyxsa8
HsehmdhL49xKfTI5stPYNTXZp/S0dBis6hDGxhZnn80B5qO7/6lrQZho2Ydz
crnr1rcw25sZNlTnTqOruasjW1kYyg5P9ZFYuRg1tpjcavP5ZXLN5p6ea/N8
Cp82t2Y3WdNCfztc/b8XWf1gF8Sf7pkm/axryj733uOKYGynGm9yOMP7YRMH
h1Md3WsWK7C3f2h/ru9g1prnd2yP+/3W5qnR1kpUyxp9Ld3N6yquiayWy7U4
/92I17SRmkx7AB3bLc5bG2N1mMm3/qEeckVA3n5iVyNds9uMEd+EniD7IPSQ
xjbWm7gM60vYn1w/bMSyeGxYvFivt/30Ct7rXA+kMsjT6UXxcHkUkUcwbs84
Xhh/3p89fmHvd364fMM9nPqOzyOux9tzSmM71Yl4dpMYeDkeE2oDz0Nqrz2j
hOcLGluUbwRvFl/sCzpH7Q7s4rmdzn3n7dzHc4T4Le9Z4k8j9X23ZAvZFyhm
jWGdDn0Q7AiwFGoK8Veqc0hGo7UlVgNoX/DxoHVI573Jucb2jMfb5S/pAcLe
Y7kT4BbNR17vuK7Qd88n1G+EB96nvJ6EexTXNrYHcG40SnZIcW6nPgmxJ/nS
SP0g+xTtdVpzhF5H7GNxEuqeZJeVSbHANU/qfaxO4vmgXto6GubQFYHtcl2K
zYf9gPJc0cRtYfucxIGu4XVWrqNWjid/1kP74yKf+1LfSn0r9a3Ut8I4p75F
62fqW5dS3+J60/eKcK+KNTp9r6Bxe5Z+r8C2455H90hYG/Bzb0tHTp3uWaN+
d6KxDjcWzDV3mKeds/wdwVqqB1NsLr6mRpQh8XHdnC+2xuqg62uiOs3vHI89
ze05mWeTpbbszNmbsiz7XfaOd9+bx7HFUwNQa3Zs9biaf+CRR+mdT32rWvO/
f/2/1TwQ/NZyWo2cVkUw9v/+278pnjNnbzTjbUhvmx5ralXzmu8m9U72T86z
J6cHHn3U6bT0wCMfVs+3G/17jB9//93vKrK2WCJ6VO62Olz+/ruPqzUWI6C9
7nf+bPTj8P8Skuhz7zuRveq2I1lrV4fDdI/FJMdveqov++6fXEPWwPu1V456
PHJaWxxWc+uLBw1GHgvQAWTxtM+1nBfWrKk1Wndrd0f2gdctyvog1vm6PYpa
1RzYvqexjdjyqttm1JyN7XX5WtDPff/Y3avG7zYjV6+/4+yk81nbxvxQmOo8
wP7Aun/63PUM3+PZXz98Wq9rQDmbP6cP92Vfz+e0HzNOlvXL5UHO/6pbjxDZ
8NvztJgYHDQxGA6w9jHQ8YW1PK4g8+4/OmZyrM3l1V7ze68ba89efdtRtWav
yzlPe9EaTK82ccGy7dPmS2t3Zx7/pTD+J0bp/Vr+BGyBrmhoVmTnb79uMvtv
QRxOKLy1/35/QV5xHD5295qy4woTY7CvbX9X9rG3r2lZ951Q9Qn8tjVrb06u
5jV3CvWzQ6iDaK45rIVyLS/qAbjuSjXY66e9qBONS7WZ2oh1eDtDG2qkdc1a
dwwbuZeGPYu8N3eg/snxlX2xGFBbOtF6jNNm+m3MP459KKtGHKO2aZ9p3ih7
Ue4FedaMzyESRliH7FONO7NUO4dIZ4fY2aMoXgU4N/Nc53upWD7HoQZh4/ND
ym8BF+F8lM59fD/G8kLOHblG8D3fyeKNsS2RQyzu8bwpwr9anZJrsM8zwb8g
r4rwYjnJ8Khp8fm8l2PWLNkq5UssH4Wa0SxhUZTLMdx9rH2c8J6X8jK+J0mO
Nku2hzWBxitWG4v2B/rdzPVUo1BWvDbLdUnKzRrBNylW1Gdqm3SGCM4PzdX2
npBXwXlCim9EX5RXii19j9Wa8CzRoXpgWLc7L4FzX+pb5fclxST1LQnzEL/U
t+I+S7H2cfI8qW8V5EBBbqa+Fb4/M/pWJ/sd5k76XpG+V0h7qbi2PHu+V8Sw
cbWsWbATjdW2dXtq78qfXXTMjrd3mznz21I+X+fGhLVt3WitHevK12AZSG6b
l+vG27qFp9XNeNu7Qz3q2WX86KI62mW5IS7cNqO7Hels7cz2AbWZZ6uvVffc
+151n/PffvzjbG9Tax6DNve9fG9jW3bPu9F8ox6raWx14/e8571ZV/9BRfe8
5143ButrcrrqBn1P9tCjH8muzn939Q/r79Q5Kd5cP3yr3gffq3O6xvADb435
hq33pf6mDbLtOtAJ9i6uHVf2Yd3aj3Zzj/W4eq9paXd0taTH1IS/f/xxRfB7
X2tO8MzzUhFgZ/HL+eH7+wffsJRVlkeyytJItp7T2SvHsg++fsndYQwP95pv
89qug/k7jMNdy8x0v8L94Eiv+p4P4+093Qo7WLO+OKLkVJaGtZ2K2tTz8/ed
UITHwHewwd672Hha2XeenVLvwyM92cfN/cHM9KDDCwjG4D5lr8FcU1v26tv1
fQm8t+/vVvaDfqsHbADfv/7IaTVn72LgOTM9oLHKcQH7Onu6nD/Wj30tKA7N
Ok5gm113UOHYqp4fNHcysE7lrc3Z3AaFbW4DYDc8fEDbb/3KfbBxsP7APVD7
/i5Fduw1tx0xMWhzMYCn88ngYm2HMfARdL/9pcfUbxgDnO68/rAbtzlWo/Yh
yiuTY6+5Xd9j1bTq+rrPPN27GXN52YrWAH7NPo/1U2Ps4p/bUpPbBTlp749m
Dg+4vb3X3ivCnZK5N95j7ixVHHLcYW2NwmVY4az8t/dPCC+I2fDIAaX/7Mlx
pf8FoN/YBnv+429fV+NnT41ns0eGXK2qbe3Kn13qvRbXZEN1pi7W4VqI+0S7
qa2u/tI6T/pFW+QZ/O4Sekak9uP6G+tfUTm4D1k/8zGhD9WRum94kb0LlZOK
xo7OZd0HR53ssZlj2Znrb8q6h0adjIXKlQ4bGAceLAfbA/8dwP6hUacbZIMO
i5XiN/Z0Dx1S/73A2NFjxFbQp3Rg+QgvWGN5wJ5aZ+dJZ5te53GDNYrXxAp0
gn7ba7Vdmnf/QWvXnMKgrl3Pdx885OzQmGhMQefYzBzBdzx/Vzz2zNHerfSD
XJj3+g1GDlMtf7/hHVNyTjL89O8wFlcaXEeR7i5nr8XZ7g14937zeHbnPhzT
PiPddfzM1E5/W9keC3amCvZPl5HZRdYH+Z7OfZHawHEJ4xLUnQg+ZJ7UtRhW
tL64GoxrsWBHneGpE+Lt6zjHrZvoiNqD4yTOdwW6CmPbztcw2VKeMx/CXOgq
8AXbgfGgOsk7t4fnIelTsu66dpR7PJdE6vJ71+0vipuLr8OC4Sj0bbIX2pk/
QZ6yXJX2MPO7jmOEc0Baa2uUs0vIoyLsi3I20CXFFGGF9RJ/fF6SPSXVA26j
4ed7NbCD7yuSO1hnDAuBGG9dINufY4K9xOJ2Mc59qW+lvsXrSOpbHI/Ut1Lf
Qjypb4n5k75XYL1dLj5hbnvbeezqSOyEekdiwPcty2e+h4OcwrZG5lkcw/3G
YyX1SlYHXa/F2KFcae8m79yOOo65w5L2kTpio1SrqN11kr28vwSxEPzE5wi+
h4J6xGtxGLun4nsFxZbncFHd8PIaOno0dQLt108yhsbVc3/I2ylQbFxax/VL
/NF3PF40x+3b7/V2lNETk+2pPpdZ39Gd1dve7WpmZ/YPjz/u/kxT9+CwukvY
Z+6V9jW1Z1/7q7/28wPDbg7+fBXMqfcWT5/58z9Xc/q7fEf2znvfp9bWtnYE
BOPvfO/70Fhnds2Nz1Pj8FTfsNV3bPPM5f2DuWOy8rX+tmx8ZlbLu/e9yB59
JwVrsA6t52at54abc7lIj8EEqK4VcrYTnWu7POV8MA/f6197x6y3VcnSuuC7
PMzf//pl9b6vWdt8/xuW1Lf7zt7uAL/O3v16fYuWcWJF3wnA0+kwWHz+visV
WV67zq45vjSi9A2P9Om7mduPOlysLY//yTW5PWBfu5HRbnw6GsQLxmDOvnfl
tvo4dDjZ158aV3yzM0N+7e10LY6F80PFoEPHweBodTodCC+w3d5/WTuOLxvf
8yfwW10w5zHQsh7/5DXqHkWvbXe5D3iAbC5Tx6Cd+KBtP+HGLSbcz3e8bF7F
vM70EppL/gm5BLpU7rWZPIOne++iMvAaMm+wzHWPHOoPYmp9AwwgH3EOunvF
Zl8LHNYkXztUvlpZNv9IPNG+6OrrcXsMbKvLx+3+sf5AjarPe4GuWZrK1rmg
Lkr1M+ghG6nXTJ7YK6TeFNEt2sH6kCQ36gPV+bFPfjr7xje/pZ6/+c1vs6vz
mgpzr3zdm9T4Bx58OHvy+z/IekfGlDz4bWUB7wcefMi9q7mcp3d4LPvJv/ws
+8ADeq2SmY9ffYPAnz/vftd7si98+TE1Bzpf+fo3qfHbXvQS9X51Xoe5bqBv
/J22G2z85a9+ZWyHdX+k5qwvet1+5YOy60Fr181qHN6tjbJdDxO7QOfyiVNq
7cTsQgb/KHzyOeAHsviCDGsnyNBx0TaBXOBx+h2mDzsfsc02Rhw/ha1btx/F
Yn+2fPyUWofXKJz/zvqzP7fx3dRGkx8Yb23jze7swWMBpDHpUZhADpTK4Vhe
S+c6cY+kc9/G9ZaJRQQPrL9aDKLxKGNTzL4CW7m9GCOFncW7hA0dRTJj+CMb
o9hFancR1tzmwt5kfJV4i/RLeR7k+AZiF9Mr5nVRvGP2ST17k/ZxndXqQ7U6
EYxttu5E8qSoNpZ532gsNxTnKrxSjGLnl9JYXSLnvtS35PHUt4ptTX3L+yrx
pr5VTmfqW+cQ5yq8z+S+9TT6XlGMS0+op9p+6eiR7XLjJXEjOJeoo9H44XrP
bdtgPQ34Ir25Wg50FOT1ZkjsrzE9HM8YvpEa1lGUWxGbSu9V3t/L9Ge2h/Pf
zd0Hzhs1ieO9m14vy7tQVM1uNt/VmzUp6skaO4FM/OGusL1L3eX857/+unre
+ZKXZnWtHZ5aOsz8X7t5+FY9eXRO4O9U9IJ8DOYmjx7L6ts6s3e9V99jwXf1
evVNXj+BYBzm69u6FIE91930fDV+3c3PV++atK3AA7b+0z//2MmoN3rrzL2Y
ktfqddg7Ka3DjoMefV8G+uqJnu6c/4nsH554Ims050zArNHkMoxhgu/wr7tz
DtnapeRZnz70hmV1f4Ht/ZtHzqhxi1k9JmQjPK9c0X8OBp5qDMn+wvuvVGTf
LV25csisOaRkvOjGafW+v68nf+9AOjqze14+r+4yvE5/N8flvs7cl3AZnG48
PaH4jh0dcn74tV3OD4uX9QPH2sbbrutWttN4f+G+KxVh7LjvmFSswK+cd9Tc
7dx4asKtt7G44ZS2f3S0X5RZ1ybFAOui+IAv97x8QeVBQ0d3kEOa9Pjr81wC
XcBnee1vTHYN/HZrTP5S6spe7OLfi+Jp4v8yE3+UgxZXu7e7D+g8f+ENh8l+
l3IWdAAv6Gxg+4rbBU/gff2ds85/2GdNeZ0CajS1ayO1ejP1uSm6rleQWcaW
3sjvjcqJ2Siv5fb/9F9+5n5/8bGvZNfmtQ7Wfu8HPxTX4/Frct77H3rEybVz
8Pe2vvoNb1a/Dx9byv72m99Sv0H2/Q8+Isqy1D864cZBtrbH8zdFbNe8zzO/
Hw7Wxe3qFfUU2YUJZAJuWq7GDfNxfFdPngl0YP3XIkzt+yc+9aciBliGX9cb
8aE3u+MlL1N2VsuBajaG8rXOT3zq00o+YAvzgBnMbWyv8bztFfP2fNGz+txX
Go9zwbL8uvODXczHMtj0luQN7Y3Zvtlafu6x3oysjft97nZtNGdD/gux58rm
aHVb4n3/fGD61OXb+fKlDD+Xe/5i/tSd+1LfOj95tDm/Ut8qH//Ut86HXalv
nc9Yp751rvEpG/en9/eKjcdEllUaz65zi125mlO9VmzU12LejdXNc6UyGJTL
0/NFof84hzei73zY1tbbn7XnBM9WQ229A+rd0wB7RqinYM6sbQ3G+wK57SXk
tgvrYjrjtsnrW3skOwYK/WvdD+v68ueBrGV/b9YC8e3qyWl/dv3zblV3OS98
6cuyf/vFv2Wf/YvPZQ3tnYrgm/RZc6e0euJk9utf/zqf/ws1d9bcAZ01d02N
ljq61Jidg/d3v+8+9a6/U1OCcZiH79dNnZquf94tahyeTeabdnMnntfy/+rr
X1c6MHl5Xe5+4LtPPJ7TE0pfU2e3ktGcP60ceFrZTV2agB+oubtH5X5rTi15
zQPsWmwPAwzzefgO/4YXzOm1Srb9Fq99fPFNRxRPb/8B7Xe7vid64I0r2cnV
0ZzGslNro/r3mqbx8QGDSXf+Pqb4T62POfubjPwvvv9KRfbd6rRr4NmI7jkc
9u0+BnRO343ou4U5J7PJ2EJ42z0/6LnpzKSafyfc13z++uwbj5whscZrm2AM
xfSL7z+pSMegx2EJdGDggJL3N4+eyXVMOYxOroyq+0DwX8Xb5B/Mad9HtR5E
/s4E8eW46/WdJm+6EH6j2r9ViifGysYA64FYAy/E/g253xBrWP/OVy6anNL3
9DafWlzN7clz6Zji1XvUUKehHBf3jub9mv2ELI6QnzCPcyeIi4qn9t/7pHEF
jCx2Omdxvo6pp81vyFOfr3RfNTH7gPT+Oeb2msIjr1Wt+/t03VK1K1ZTB8Tx
sJbjWlutNpehgbwGDwiyq9fwcn0q3tdaC+Rzv7//wx863g89/Gh2Nq/38P7L
X/27egf60lf+MnvBS1/O+PsVL8xruQNuzsnpQTp6Bgh/m+MfyGYWl5UOeP+7
b307q5y+mspxtv5IybR9Hmz6k09/RvHBWs07EKyDOxUsz2LwfTP+QD5+veXv
0fYCz9HFFdEujOVPf/Yz9Vtj9Irsnnvfp2yy+q0ObhfGEY8TjHr8OksQFxtX
KRbtFtsf/BDZOhDEBZ8PYrbAeLtgexuKNSfA6bVveovCCrAZGp/K5PNHbK8K
cz1h3qdzH9vXmzj3wZ6kPlGcid9ITqutqZLsoD5Vt704NnL9tvLaC/XhuYGC
94I4VqH2AEeEQU/IizFtZe98X+oeIuVBMY54b/AeFORyD4uj9Jv0xD5qJ/c9
4A9zsb2nP56XPQW9uWzN4LLFvVhCtvO/L863gT0qyu+R4hKrZUUy+P4t8rUI
Y4Enlh/IPlnegCyjNMX3fXGu2bELfe5LfasoR8QcS32rCqapb4m5nPpWXHbq
W/GcYPalvuX1Ph2+V5yTLURufN+ItbFUX5ZrR9jnBwpj19pDZfBcbO/Fdczj
FMSvKpZCPyzVlzC/lNPl64D9vtDWE+MfEPpLnNrJ+pJnKQmXDX2v6C/sC5iP
5roe7+wbzGkI0WBI/UOMR+ItMx6Rb8f77RONkTUxGZyXyTPvHZK8fkkHGwM5
lkRbBrKOA7n8A7qO6V59QN1ptXYfyO697wPqLmfg0Fj2Z5/7nLrLajL3DECP
fvSj6v6qqaNL3evo+S53B3TDzbeoexu4F7J0g7mHgid8p773vverd8XX1ZO1
5GOaetQ4zLeo8V71Z8dueP5tev3zb81t7FF3SGCrfvYo3he//BXZ47k99u87
xKTl7TcyexQfkH23BPKtHnhvNfdVQI8/+aQifVY4oHDT2PUp/Bzt139f3xtf
eIzYqO3sVXLPrOu/Y+/M+pjBSt99FdEbX3DMYeLXjzuZinIdX/zASUV+3Ooc
Q2v2K3nw7v33+IRzPcgGc69g5HLe/sH+7BuPntH/H7DPX69s+eQ9FcUHc1gm
X2txAvpSvg6IxFvlqPZp6dghJRd0cKzgvqXZ3HVCvp02eJ3OMWgh+YbuTHJe
j9GYmnN3RZ371Vo8h3mbWR75GOh3sNXa+cQnr1VzD75pNXvp846qfFHUg+mA
f+Y+Qy7BWp1PB1Be9aK9APj0OnrjC+fZGsrrZfa4PRSLC/hn7xUtJhaPIrL5
eWZd/1m2M5UJZMuB0HZ4z/3V+2de+Q4YtPf4Xt4BlNeuDqHGdgV1saAO9+M5
qX6zmm35cX/p92s7iIxYP5B0cPvQez/WPyT0hCJbZb3/8rOfu/cv/+VXsxtv
uU29f/Pb33E8n/zTz5rxIXWXNDJ1RMl80cteoeasjVYW/HnX17/5ber37NKq
kgvzIMPydzjdQ9mDj3xYyeJ+w7i1x8vneOrfnteuu93JApu1Xffldr01sMvr
H8xGJqcdvx5/ZTR2IEPh1K/xAppdWlO6tZ8hvrDG2WTiAnpuANv7MUY8VkPE
F/sb7IU5FYvPfNbJVHr76XrwRftPc8zjOmhsXAtsB5s8RkeI/XbtiauuNTYd
UXIs1vKZB59zhLOMeLaR3tO5b1PnvsBerq+objEb+ofo7/6Y3yy+yLYOETNP
HWXjR2pdEeZFsY2tYz5H/eTjMRyknC6aL7N2kO3LAv5IDhTajn3ul/iq5E21
/VQG//6IbUVY91dby/OozL7R1EX2TlG8ByP6i+rURmrTRvOlTDxwbZD2T1xn
l6Crq5+vYTKD3I3EgeBJxy/OuY/Li+mtgnvqW6lvVd2LsdjG1jGfU9+qYvMG
9mthLLjdRfUlglfqW5uMB64N0v6J63x29a0YRpIdJfIvyDmv93x8ryiXM2zP
9Usyi9aGPsl7ZKP5Xi3Pq/m8kb1SYGeQO2WwpPHscDks2Vsyh/q9zK6gxpXF
rWxOsnysinNEXvC9okRekjWhf/sHh3M6qJ8DiAZjdJD+Hjho1hwM10myBiQ5
gg6Qh+1y4+iZU7f53T0gyTwY2juI7Cz0M/S1e5DZ4eTkcwNDijTGA1knfBfu
1f8d1uNPPpH9809+krV192Zveuvb1L3OzPyi++7/43/+5+yvvv43+e/u7N77
7nPzx0+dUb9vvOUW/W28qyeX0aPk3HSLvh86cebq/P1A9t7367sy9Z0aqNtQ
/hvGYR5+t/f05nQgu/kWfY8Fz/b9fflYn7a3p0/Nu+d+TW37ezXlur28Xqfv
8SeeVPdYeq1Zl+u6+VajJ3+2GbkdPfrb+RNPPqmoE+5Tc7wUdgc8fpY6Dui/
m+5NL5o3dlnb7LM3u6oyqXiuOj5pbOpV9xtveuExZXOrsR3o8NSw4r3l2mm1
ti238+oT+l4Ans7//frew97/WF3t5i7kquPmLiF/wvubzD0H9t/iAbb/+PM3
EHycT/stv+f1cnqzh968lv1TvnZlYVT7YWOM1rQpXb3UBuOD9+OU86PD3F9A
fno+b0cbirn1X+FnxqzvV1UmHK4275RfcGeS/16ZHyUYaZ5eg5+OGfDgd3g6
nHo0js4Gg+sTn7o2+9sPX5UNDg+4nFB5daAvzyeaPy6f1Hi/yqc3G4w1JqeM
fP0E26cPj7g90ZE/O3N684sWDLY+h+0TcPRxQ3vH/IY8dPE3GHuf9N3T4amD
xv9xt9f0HdoBdT8Hc8rf/H16asTk8BFnY4e1t7fPUL97B17wGXzvVKTPfEDd
/UOmfqF6N8Bq78BBP0bm9bN74GDYPwZo3aXyI/0Eyw5qNB8X+gOv0a4PCf0p
1qMkGhD6lRn79Gf/LPvWt7+Tffozf5b99re/zW6+7Q6l/yWveFX2re98R89/
57/oHpXTD370j9ljX/1a9tCHP5L97Oc/V7+B57G//KqSAT1tdHpGzQEP8N98
6x1qLciGcc3/NcUP4yevPqv4gP+xr35V8c+vrhtdXzU2DSv7YC3QTfkY8MNv
qwd45lcrzkZYB33Pzo1OH6V2Gbn2/aFH9RN8J3Y9+hFkh8+lN771ruzd73u/
+w2ybbzU75wX5r/17f+i7IR7LhuvmL3gO8Zo9PCMWg82KN8Bs0EvQ47F1xAf
zXuLM8gEm2Fc2ZjHGNaoWBsff4Pw/sGPfqTyhGDE9hLwAcbgwxuUbHTm4ecb
t/fCfdId5GrRfiuzD9K5Lzj3Id5uwe5uws98M9QtxpbjwH4jP7qDnED2DeCa
y9azuAU4YruxHyIf7wsHkQ/IxiAnYnW+SmxITxJ40Hh3LL8BG4I7taWb24X3
mvEtwN7xF+T4APsd2ycOOxsf5BOOG48Pk+1zkPVvbkNRn5V84jJ538d7QIp3
2X0Y2FWAubS/uf1oL3UTX4X1OW8P9y9WQ0itYj5H685BH0t2num2dQfvLzFf
sD6p7g3TeZZfsZ5yUc59qW8Jfqa+RdanvpX6VnTvp75leVPfuoB962n2vSKK
P6vp4b9XSjFEeznWlyW/GNZ0L8h1uXuQ2hucFQzFxrkvgX+BzTj/CuoF6SUH
yXpS/4rswjUS9zqpLsTyS8orvo+lmAzaenuQ1habIzwX2V7ye5/HUN6jcl4h
PYX9Vsqf4ezAwUOahg/536VpJPKbyutV76PheqazN6pHWLthu0eE9xEmZwTJ
G0XPkUI9vUMjinpyPHsstvBtGP4bhL4BdY/z0Y9/XH1nHhmfVO/ve/8Hsvbu
3uzowpK7F4I7C3u/9Oa33aW+1//6N7/OPvqxfG3vAf+tOieQB3Od6rv9gex9
H/igWqfuhHr7HME3bKUvn1dj8A0753nebXeo8bfcdXfWdWBAU58h87uzz/Bb
MjK1vPu9rgP6TuoXv/iFHuvrd3rectfbjZ63K1uxnl/88hfZ3/zt3+ZYDSq8
fC7nv/sNhooG1Hf4t7x4IV/X7+zVOgaUnmtO6DuQa05MGUz6soffsqbuOjoQ
HkAvf77+O95mjhzSMnKZ11w5pcZefssc87lf3ZkAeQz0uJWztjiudMIT3m+7
9ojjsQR2fOpdJ8ydipYNvGCjvsfzBGNw52Hx/fIHTymyvgaE8LZ3LVZWl7nL
gSfIeOJT16EYDJKYOxusPIPjl/J1X1L6+9yYx3vSY2JsUHcmL5534+DLva9e
DuyGMe9nv4qdisHz55wsKxfwV/j1Ih25r50oH7rVncyAyR1DNqcgv/rNnU3+
fMtLFlxOwW94vtkQ6IK5V+S54LHqVzwwfjTPG4Vdv5nr1/rXl/Td3m3Xzfg9
ZTB18T9g7mzzp49rn4s16NZY9RG8ISdUDvb2K5kgG2L58FvXvR2c0Ljy9SWL
yne1v+CsO3jQ1Sxbw8QaOMxrJ6/HQm3F9RL/HorU92Grp0StH8Z6RwUebo8g
h9dzaUzqIQGf1nXmuutzOps98pGPZs+/4wVufmn9uJrDctR7LuP5d9yZTRyd
02Nnrw/4gEDWxMycwwl+L+YylypYrrYB5oAfdFqfiD3DWrfls37AmOMx8dHr
XhjYHNg1rHs76JyYOab4ltaO+77J7Rqm+WXtgffx/OlsN5hQHM+SeP3wR//o
3rG9E0YOxUjbLMaC+DNiYnmDnL/INmxrNNZnz3q8TaxIjA6ycw/ZN1XyuCjP
ic2jkfEyOV9N77P33Be3aTSCcwQrXiuHuX0xXZavSt0U5URyR9Rv3odwrBA2
QzEdVXTZ8WiuIh1FPUjCsQgHm5PDjAqxi+FVsBcIX5X4cBoqEVsJN77/RAp5
Azyq5k9krmrNsvwlfCqyg+eew8mQ0KODOEblx2I6QmVLOgqp2rkpgqN0Zoqc
QwpjZXEX5y+Rc1/qW3FsU98ScCnSn/pW6lvV8InFKcaf+lbqW0//7xXxOBbU
V4xTqf6ife0tm3PVerykcyjUV8iP66jlH7K/BbuGhfwyFNSpol4l4lXC3mrk
cr3grLQR2cHeCTF5Sr5XbMZexDMwMqb+vjtF5ne//W3eBw+FPME69z5OKR/v
V/PjaN04Wzvux0bQGJY5Iui0tuW8g8SO8bi9WMYhbDN/9/YPYhucLd7e/mHw
cTTry/HsM+fN3sER9d9E3HrnC9Q9zstf9Zqsu09/1/7JT36Sff0b31B/xgPu
kWB+fsl8u+7R90Sf+/wXct6+7I8//nH1fsvtd2T71bf6AfX7N7/5dfbHn/hE
tr9fj73/gx9SfPvhW76iAUcw/v4P3q9+7wfqH8pl3KnG4S5pcW096+mH/4Zj
KLvrHe/Ifw9l49Mz2ZPf+1525tqz7g4A6P33az10fEjxaj0fcrxjh49kP/np
T6meXAfgctc77lHjd93zzuzA4HDWp84/w56GhtWZqDd/9g7qP6fy1j9aNOu9
XmvD2ZPTigeeai7387qTh933e8CpJx+vrExmT37quuzL9592du4f8Othbvbo
qJab4/jKW4+5v9PtrUoOyB7KDo0NZ3/34asVP8bHjjkZ+Risg/V3nD2qdGka
cnKdzQNg34S623n0LRWlH2wGv2EMbLf6QTbIBTuUPDXudWHfIJ6A2ZfvP+X8
sDieWJnKjudy4fcjb13PXnnbMS9P4WoxXFAY2nyz2MJT55Rfg7EC3e99zYr3
s0/bCb/Bp/e9ZtXZTmIwM6r9zMnGAJ427hC/v/vI1dno+IjLqbGJ0extL13W
Z2nIn4P62Tdk8knd1+h8Akw9Tvn6vkHiw6fffULZdwjkG/ze+kdLas2fvvvK
XO8hNQb677j+qLYh5wObwP652TFlE5DVhflAB8QDyGJicwX0upzICfLGYWp8
BTmvvE3/+S+IWc+gvpsCex7LsbExtaT3z1LWm/P0Dtl9ltervPf05f2gP+/t
UMOCuulq4zirw+Okbg6idYOSDFvjR2htJXX/EJeb13XSg8apbl7rg77Ce9OY
kxddE/QGRiPjmdwv9O9HP/qx7NYXvDDSG6VeymWxnhfwcnvHZbkjuo+/9e53
ZFefvYnJGvdYjEiYmnXX3+h41W+xR/KeH+I4iMYHAxlCDsTyguH1o3/8P008
x9V/p/GKV78291mwQczlSL+P4R+sk84sFN9i4vKlvKLjgzbOI2x9kT58VnEx
lnIrnfs2eu6jv1Esgr3G83vcrfU65L3j9mnEl0FnK5Lh5vgaIadHIpiNhPLC
GjSeiT5HcWdrwW4xd6vkc0GtCfVxjKVaw9bwnONYCfk2aOptyFd2n1s5Fhcc
e5x7wtpY3yrAZlDMff97sLQ8KUe4/BBT3BPCmjIe8VUYI3w8twpibP2M9nxW
h2K9SsilQVRH+vmaWP0cQfVXlCv5qam/ar+RcrBajvCeIdlxvs99Qh4QG1Lf
ErFKfYv6lvqWjFXqWywWIU/qW6lvbbxvhXF5unyvkPsuzneOcSxmUm9mutH6
2PcKsfaU+F7BeUX7eG5EavFT9b3C723Pm75XSGNC3Ynllhk/ODZpaII+x+3v
iXB+fFJYh9/9uiHy7mmYvQ8RPcLvcT82HMxLNCmQ4AvhxbIlf8DO0Mah0XFF
g6qOjebY6u/CcKf1wQceUPc1E9NHs94BfS/xsU98Qo3Bnx35/Be/qO549vf1
6/uAnOBOCMaAd/zwjLsjgjshey/05Pe/l00cOZodGDyovst/4EP6fql3YCh/
13SbuUPDBOtgze13vlC9f+FLX1LP733/+9kvf/lL9fvue96ZTc3MqjF4/+m/
/DRf9311dwbvH/+TT2YHhg6a+4IR9RvkwnpL8A68sObqszdQPb/Ser745S8r
nAaARhjZb+vwPHhIfYe/S91RDDud4Iel608fUTw35E89NqyerzLf+p/89HXq
+z78huf45KiS0zek79BuOHPEzdknrIHfj76tkl25OqXuF7AceL9ybQphMZy/
T7t1X0Ey7nvtmtLTZ+5V4DeMw70HyIEnkB0bnzxkfB3OJibHlCw7Z/VrTJaM
/oNk3NINZ2ac3sfM3Y+6a8nt+sqHzjhsYP59r10lWFnb4ffYxCGXa28z9zmY
YExjrv/OxrvUu44NYP0Yst/6aePQp+wfVrErioHGQ/OeJDifcTIBy5uuOopy
6ZAmm0vD+q4Zcgn4cQ65u6789/ys/rN1r759wdyF+TUffttxpQf0whPGFuYm
FYYn1w4XxH/Y00EdDyCXzyanwVeOFcTmAF6vZIxk971uzcUMx1PHfVg9eayA
T+MyqmtW3gdU/RrlNZrVwPFYnQ3r8bBYX4vG/NxQVL5Qz8eldVJvKu5T8X4h
9SbJLm0L3M9fd+PNVWyojkGR7cOiXNyXY7jx2MSwCW38s7/4nOl9ct8sjnNx
T/X44R6r/RzC68apPLDJ/p6ZX8i+81//Psf/nYJu7rOUZ7JNPPbymiLsEN84
twHHM5YDm8FZOrOUybvJdO6L5Kh07ovaXE1WgGPR2mo1pFrMi3QVYVMNS0ln
lVwMckuWPxToqbY36PuwqKM47+WeE8OqzL4rWROiOeyfcv+pjkMs14tt2RjP
EJFdvC84L93P0jOCX1BHq/ldBb9x2fYh0Z7QL7oG8Uhyx6V9EounvM/oXuF5
MhH8jtnqeamOi3Xu45T6VgznSUG2nCupb8VskfZKRF7qWxEfYj6Ftan6Gsnm
WMzK4VnEk/oW9xHxpL4ViYeM5dP5e0Xct1jOFNU12faL8b3C53RRLYmtL5PH
Exv+XhH3NcztZ+f3iqJ857lL+Q9NHM4OTSLi74qmQh5MeEzx5jQxZd6n3fwI
5uG/ka4RQQ/8v9idzAlu5xS1fWJK9oXb7WzE/OHvESYf7BvBtuVyhidMfOFb
sLvXGsu+9wN9b9N/0Hx7hjukF+g7JLhLgnueL3zxS+hb+sHsgx/Sd18rlePq
e3f/0Eh27fU3Zvc/+EB2/wMPZtfecKO55zmkngMHD+Xjeg38+Yp+oIMj2dTR
ueyOF77I3RnBb5AzkM9Nz85ld77oRfnzWLZ24srsHe96V/ahBx/Kzt50s7oz
Hjw0qujsjTdlH3roITUHPOvHT6q7OnVfZ3jg99kbb8zO3nBTNjg8mr3mdW9Q
/PCcnjum76pyHlgLMh4weobgHtVg5facxe9QPma/sY/o/8fS3S9b0f6O2Luv
Eef/a+7Qf+Zl8diUubcY0ZTPLS5MZa+5c1Gtv/mq2dzeQ4rAfv0tfzQ7fHhC
3X8cPjyeLeX8b895gf9UZVrrMgQ8MPeim+azqXyNlqUxsFjA8+arZ7O7X76S
vTbXu7Q45eeRTrAFbAPdwGflDuY+AY5KNpJ5+vgRxaP5jql1isfYdqpyJPvI
XccVDjflsoHAxgFj3+l8HngA05uvnsventv3ulyvlqN1gO/WFu3/EY2xwn1E
YQsY3/3SFROT5ezGHJPF+SkXl5vsO/gwPOrwAf3Wfvjt/DRPHYNZFYNFEwPN
O61lDB8iuTdgcH77y1ZzX1azm6+ZUzmDa7ir4zA+OqZyDvwE38B+yA/tn94z
joYPkZwD+wAb0AeYq1jkOu/OdS8vHDb/7cG4izHYAna99s4ltc7nh/3vPHQ8
nW8joy6WIlZoPRD4oSj3aXnxsIoj2PPim+ezw9MT2p6cD36DzeDLR+46oew6
c+Ko2mfDQOP6XD4yntfdvIaNmPo5Molr7xSt2VLtRTTCay+vt7hn4N4wKckX
ZEk9g8uc9Dp9P/H1fiSQN0VrP/GV67P24nVTbPyw02Expfbl71OYF+E4McX4
pyhmga9TAkbM5wlkg/J/iq51/RnHE81JseFy0TyNJ+/PDHcbE9Jz0RjSSezA
/Vo6U+DzgHhWYVhL78oGfE6Y8nw8ZpM+5u7cIJ6TQoyD/GV8o/jMEZzPfE77
vRee2Uawf+ncx9Zv/NyHYxzuHZQjZD97v0ei+0LAlu8BkiMUuxHuf5DXdM/J
tVOohVw/33dIjsMK28niNIL3jK3VrhYJ+1KMFcPHYR7B0e4T7A/by36foDxE
+nGNl+rzCMFmiumxPKwmkdyI5DGLndgLJryN1EfMJ+UlzymOG8+DKdrngz3G
8Cf7dcrrmaB6Rgr5D6MaNxXV53iwv+IzzF+rn+gQ6iGtxdMeU3E/4xof1oGg
vwvnjbD2sdgE+rlMQQ4/D10S577Ut6J2p77l85XnDrFdiDfWL+x7nGupb6W+
FcSJYJv6Vpi/3D4ui+P6TOtbUt7EcEnfK+R9xjBP3ysiuR/B3tmA6zHatzxm
uN5MXhrfK3D9D9aTOkRzZvzwEU3TR/zvGE0jqsa7GYrJfar0bdQOgcamph1B
7EZNXsH/B2t2flHdIX35sceyoUOj6j5Gf6s+5P5sEjxf87rXq+/o+nv+oezO
F71YjcOdD6xR9z2WRi2NE3rgoYfUmoOIV3/rHlXjcHfk5KB1w0Bj4/pbtvqe
bWhMpmFDsfGQxj2NYx2T2SEg9+8nnPQ8fGcfGdP/L6Z3vHyV+W2wyH366N0n
FA/HZZj4OE5sq2r/OLOfrY9hoX2cLMSxGLNN4pz7CRgBDoHP49YfGoOYnVgm
wdDg+rxr9P8bDJ4B1iyvzhuNC5ggP1TOVMmnESPD4kT3iqfpaZ9zsRwi+2Uc
xZyTxFsqByaRrkkmYzJCsnzw5Z5XrJF9B7Vq1PScscO6hl20mnteaObcavzF
6G3n3Oc24POm+C9Rmr4QvpSQfzHz5ULpSee+RBcY1zH1xPvvwtStsXPOg0us
vkb37Tn2ygvtw8XG8YLG/ALmPcf2ksd6A3amvpXoAuOa+tZ5xD71raeYUt96
2uCfvlc8vSl9rzgvNBYZnzpyVNPMUf8bv894mjzCxsz75IwgQ/o9E9HDx5je
QF/M5jJUzUYsP7YWYzI9k/PPqOdEjueEwhW+CR/O3vDmN6s7pHe95z3um/KI
+eb/zW9+0/1df7PH5tV9zDC6D1D3X195LDs0PqG/OxsanchpHJH6Hj2ZPfTw
I2qN59ffs+EJ4w8+/HB2aEzPkfWTU4rA3rHJ3G74po1o1D5hfsq/e/JrRtm8
/p3LnjBkeMbzJ2A0PmUIcJs22MF+sOOTh41dU+47PNxHjExMGj81XXNS/3mT
P347/H+L9J2F8mvCk7MD+8RsFX2cmKJkx6dCjMamGEWwdHiy36PCmgBXrhfZ
Bn6+85XrCgvnt8XAypjycsaRTEm+k8uwBLr1Ov33NcLT5eFkyKtwx3o4NlPI
F+6/s2varR1lvCqXwBe4S85zasLUNb8XUT7Z+AJOr9B/Hx++73H3P/nzHjO/
vjyD9pnHNMgDwXbym/OxMZd/kwJGQs5ov/0duo3nqMAL9oIvkBtjZh3QhNl3
qoZB/copWpuFOmxr5aTtAbHaat4ni+p1rP/E6jHXNYN4S/QYbAvuX5NIDvmt
eGdFO8R+hO3h+th7ke/iu9SDBYwm+W+hT8d6XTRWPI4zrP/zuVifnRF0R+RW
7cdFMSF2zIrrA5wkDHi+SGeBmL0xvGdCOyaZTMknnkuxs1HAH5Er2prOfYWY
RLGL1MhYbklzUbxK+hTU4phPji+sa5NMVojNLNEXrTUFuYL5gnoj1PTJQvxn
Zb+F+HJb4z4WYx7siwjusZoyGfNdwrVMngp6nQyh1kR7V9GYNF4tX2eEnGR2
8LWu3854H2K9RKq71fYTyQXek6rEMMYr9nWeqzOhPpIHku6If/yMEt1HZfM4
ZncEv6fq3Jf6VhW7qsWvAJModtX2SCQXU9+K50fqWxG9VSj1rbh9qW8V+3Yx
+1ZhnkfwTd8r5LH0vQKez67vFYWY4T0j7A/4++WOHJ3Tz5ymj5qnGbe/7Tx+
V7xH/Rr8e5qtmz5KZRwJZM7mz9lQz1FPWA62geuI2oB8xfZzn6YRL8bkyCzF
Ss/NZodzms5xPWzzw9xp/elnP6PukE5ddbX5pjwV3Dv9y89+pt7HJibdd3+4
C/hZPv6rf/+V/j6d0wTc+6jv9PYbdE5TmmD84UcfVfLGDT++T/nWt7+d/fa3
v8ne+Ja3ZM+75VYnB2gSnuYOCe7jpo7M0Oc0fcc0Ze7v7D3eVC7HkpU5YX5P
gvzpI2j9EbUe8Dpsnwa/w0fo3SDYCN/hP/aOk9lt1y8ouv3sQvayW5bysSvV
3D9/4cbs+Oos8W3C3GtMonsy7gO2f9LYPul8mHb2Wzl2fnKaYTCtf08hzPj8
5DTVO8XGptC4JYK9fTd2Tbp7CG/j7TcsZe9+dUWPHT4S8E3ma7E+HtcpYrOP
H9UznZ1Ym8ve9apKdmJ9juZSTl978OrsTS9ZI3ZNTjMi/mDfTQ5JNkmEcD+M
6tthUnMRP2CR75l3vUrf992W5xHQrWfn1fOlKqdOqrkPvemE3k/EP2O/ygW2
X6ZDLEVbzfOBN1+pCOedJZ+HLFcRuTw5wvKaxyy39V15TtyR54a16zDC6/CM
qWFHZ4N66WviLK27Qm0N1gn1+gir5a5uH2W1t8rT1/nZQL6ty2IfiNR7seeQ
Oi/0i6PCk/lwhM+xHhX4zynmO+qVQe+265DN3H7sg8KQ9TiOBe+vhbGO9Ohq
a6WeT+IgnS+OynqDuLGeH66fpeM2r47KeX9EwJLgLGEi4HKE28T3C889fNbi
TzbGzzgEE7yW4Z/OfSXOfRJWJBdnqVwhpyXsY3uC7+/AHx4jjlOslkTGOX8s
rgSjCJY0dqjHHJ0VdeJ8l/Y1xjeUX7w+VquoDbOET6r5vLaQWs/mef3jNuOY
HjkqYO/eZwlOQY1me4Xub9rbpX0Sy0Weg5xHysUo7sw+4juzK5rTTM8RPibo
xb0Q12nApWgP8vqGa3CwF7g9zK6g5khxiNRwUg+dDVXOZEIeiPtU2l9u/MKd
+1LfCvFMfYvhIeEo4JX6lhBjjIGQI3w+9a14Tqa+JdgpYPps6FtBrglPj2f6
XkFqB483y/P0vSKyp55B3yvkPkn9F/s7sv/osXmRZo8toPcF9WeG4rzxObu+
aN1shDccl+XEZFa3q5ysQj/mjimaAVL4HtPnnJx+/vOfZ//+77/S39WP+Dse
uEt4/q23q3unRx79sPo+ru4X0Hfsz3z2s2r+qmuvc9+cLU2j3/b90Y98RPG7
u5Qj+vs2PM9cc2327e98R83/8Ec/CmToXJl1T0VztH8ov2b5GO6Rs46m2W9M
R0z/BZpRdMw8JZlzyk4guFeQ6GsPXa3ubRYXj7q7DOvf9Iyg29pqfFJ6kb3Y
fr5Wnx1mA38D2xle4jy3p4iwjKiNpoZh/x3fnJ9nco8I/oexM3XSvrPc4/kI
cXnPa47T2M9G4lCVwvwitrM8Vbk0R3NqZm7O+wM2Hj2q7CvKqVfctuLu07xv
swhXbtNcAa6Sr3PZf37oGkXTUb/D/cL34QzG4CjPjzkaA7YHHVaGoI65uj9f
vsbPxn7Pb6zWzqIa6+Q4GfHaf251fkHsFdSnBWZj9b4m2TQrrPFj1XvbhvpS
gKnXIfnKe7Gkw58JJDwEHOeLYhPaLOET2hLDaUGIGT+3LBD/JF83kktFOUPs
FXDgvsZ8L5vvxftzI7mVzn0b2V84dvKe4TLLx2Jz+Ub1FK9ZCPMuqNlF9oY+
l8G/ONd1neH9gPsU0xGXXS6vY3jpXsZrTBz32LzPB6kPFNtTbd+EazfWV0Rf
5uO2lNonG8onqWdFeCNni8Lzx/xm60OYg+X8kfagsOeCmEk+CfkyL+upVu/l
vLw0zn3VsIjLSX0r9a3qvsfyI/Wt1LcIpb6V+lbpeCM56XtFCX/T94r0vaLc
muI897+PLSxugJayOfN7rgqvND8n/MbPamu4LdV4NmOjxFPENze/4Gh23u8X
/W3YfGuGuw5+94C+/x8hdw7ofsTckeDv8UcJHTM0R/lmqV5JnpVhv2HbfcKJ
144YT9F8lAxmsxhDLNfeERpf5O/94X3SDMKmrA+4hpb1KzZfbVyyp8yacN7b
OuNywd+ruvcCDMrgQmoMl43vcYXxsH8U699sLuF9OIfyKvDD3TfP0fsisw8V
oVyj+yWOqdRryu6huIyF0jGL5g/Lh9j+s1SmD6h6uBjW8DK1s0yNLytXWlck
Pya3bE87lx6yEXm8T27Gvmp9K2bfxnpwOZ4i+zerb3N+L20Kk7LjsbhtxrdY
TKTzUqn4LJ4LvuncV5ZXqk1FMat6vtyAvRvNr3PVu9l9Gqvf5zteG9NRPa82
m3dFsS6zJpyP2yrVoHOp6XKdWQp4iuSX8ftcan6ZPAh/L0XXbw6TjedfXIbc
pzYTx9gaTmWxfSrPfaKs1Lc2htcG45n6VnlKfWtja8L51Lc2mgfh79S3LrW+
VVZuWZylWrsRfRvFdTM8MR9iObZROWXtO5caUW3ufOXy5v1+9n2vKGOvxLOw
tIxoST8Xl9h4AS3y9UuRcb4W61pi/Hx9EcVsLfJhyT8DX5fCtYuSPP0+n6+f
z2ukfmrS2KLv6vDNeA59P56bJ3dRs8cwoW/z7vs8fy4o+Za0DkzHDM0jmceM
vHnFM2vWaBk0J7wvi5oWzPvCEvHT+n0Mjy1gDDAtsLWyLL7W3295P2YJnsco
Xsc0TsSv+YVQz0KBD8ZvYv+8xYavD30PfVokcrW+xYznTfC+wOdxjvG4LRA7
yRj5vYBiwWMtxWEhIpPm4DGWk0X6i+Mv2USxC3GPreF7Eu3LOZo7R9nd56x5
+j3I98qC3ytSLsRsxfYgXKmM4rjIeYXlFuPv9zi1Ua6Hkbop1ezC2i3U1cjc
fLRfcBlLEdlL7Aky5fFyfcP4ivyal3gXuQ2CrFJ9zds5X7UPlcW+hI+BjDLn
gCJMy+Ad0nxgB8eTx30zZwCJZ6P80nrJTuRPNP6y7vlCPr5nC2wrPI+lc99G
z31V/ZP8WeR6yuZvgU+LiKJ7xPps8qkqxiw2Ab85+5aKW7WcKjvP86tErIJ6
HK6fD3TF4ifldzE+Un+aF+NdZHc1vKrtO6lHFvdKnC9xmWwfR22slsNFNkVi
UhTfahTkyUawZ/ylem2VfCkVt6K8kmwvKwfHumTdlGp2VTyKYl+lhqa+RfFP
fasKTqlvifpS36KyUt+qEp8q+ZL6lntP3yu8nel7hYTnRvtmGfs3wy+tj9XX
5YvwvSIWVyk2VO7SympOK9ly/lzOn0vquWrG7e8VRKtkDX73YytofT62zHkp
uTXLbG7Z2rQS2LaM1i0TH7A9q8SeZSJnBdlmiftBfcFzywiTxeXlbCnHcymX
tbgE7ysoFuYbsflmvGAIf2+GOU9LZo3nXwQSYrioyMwtLInr6R2A1mFlLaL8
UT4sr2gf0BPGlR42vmTmPJ8ZXzJrgnksI1wXyAY5DsNF941+nt/H2HsR820e
cHD+OZ+WnV6sa2lJto36T+0N55dDuUwv1iGtW0J4Of4lPLdM7JBk23jofND1
YonPLy0j+1hMl7xNNGYhHjh3lJ2Lyyg/l9x7aCfFgdq0QjFeCvMwnp907dIy
j5+x29qJ9prKm+BezuaS4UP1ktti4yP7gPEs4ENjPt5SLPweW+IYkDjT3FW/
F5cJH9ah+IL6v0LqMK7BtlZjfl6Lad3kY2jdcji2JNR6LlPqS76OU5lF/Yn2
HCNnWeht4K/1eTnscU7W8krQc1SsmJ1h/+P44R5D55e5XufLCpMj+L7M9UpY
c/krTvbySgz7cD3lp/bz2HJfPc7eN7nfr2Q87ssMv2Xmg8+VVeQXi8myPxtI
5wieM9L5gOqXcJVwW2H7Ap+FwpzB5yMec+ksRm1O575zOfctYR+5DwxzYuMy
s4X4gDBc5rhiWTZPZJ+x3TxGUp5IeUj3C9+vzM9laqeEY5ijguzlMJZh7qIa
b21cpjlL85r6sbwcl8/rH6+1dJ8yuUxvmI90ndinSD1aIXZIsnH9DOuNr3G0
JlG8w/oR1nUeV4sjwXx5NWInz11sE6tly2EexvOTrl1e4fHD9QTvt3gf8/tO
qvE8DjEf5Loi9W4uT46F32NSrZN7+4pbQ+sH2z9BbvOz0YU893FZ0t7HcUh9
K/UtqS6kvpX6VpgrGMfUt1LfOn99K6z1QWyEmPF/b43V7tA3lpvpewWTv5Kl
7xU8LuG+5D0nrMNh3KR6RvcFrV3hurBW4LhJNVPCisdiZW09W11dy1bXLK2r
54qhVYkM/4p95ms8P12/YviJPPu+aoj95vx4zOrD9qxwu9awfeuUb5X6tcLs
x36srFIfVo2N3L7l1dV8fFU9MS0tr5C42ae9p1iy90fmPoDmt+dfMfKtDv17
zemB3/xMsLTM9wuWuWrw9raurBhaXTXz+h37huO0GsQEEbKX2rxKY7rG8gjz
OVv0/vT3NPbbu38uWvwMH44BxWnV5xjWTfJk3ftgaxiyh+RXsDfWxRzzvOsk
f/A+WEW48lzENvMcc7SC5lws1wj+y0JcloVxu1ZatwwyV2RenEvLK1SP4llB
7/lvWnfoHrV4aN/XI/kSwcvwL1t7kX2knwX3Tcvkjsf9e2NOdn8sE7/RGN4H
1v6VEGeC90rxGPaT109avzD+a4ZCW2N2cCy5bFL3V4V4ReKi98N6IBPXUYxZ
UEtQfwnsWQ3jTmv8OrHZ1y60B9k+DHxbDeW7cd6jVteZzSGOK6sCDkwm/x3G
3/aqdXkdwpvXDz4e8KyiWDnM1mlcV2kd8+NhD+XY8pjyOirlOO41q0xekDuo
jsfOLitMVrCXVhl+OJcwBgiXwF6+X9coHz0v+ZrF7Qzn16n9axIWjC/IDySP
5Hs69+EejX2InfuCPYRyhs87vHj/F+qphL8fo5gHPkXk+RixOPN9HGBO4xSd
L7Q5xIL2iTDH/G+5rhKbWD2mdZLmfrCP2bnP+Sf0BMkHsnY1nMM5dS7nPqm2
4nqF5fEaKNkkxmyV4kDjtx6PDcqloMetrdPYsZob1DGLPetlpO7E8CL2rAf2
BbWK137s8yolXmukWrCySv2TddO10hi2L7Apmg/+rCXVRdEOhmW0BgkxK4rL
Zs99qW95eyQ53s7Ut1LfSn1LwjuMX+pbJD9T34rGJX2vkP2hdlKZ/HcY//S9
AseK5I5Q86L1RchnXEep7KfX9wrJ/iDfWDxXGc5r65VsfX09p0r+e90RHlt3
4/a94sbUs4LnsIwKkbcWzGGdFaSvQvR5ezx5mRX39GvM74psC/cz8LFSQXo4
PhXCu17Rc7YOakz9GWON1RNfE1cd2fsV9W7WrCFZa072uhvH5901p4vqw3JW
14HWkU3reszqqYS4kPhV1on/6xxrEquKw9Fi5GRX4rFYMziuEb9szUI4rVEM
+RzF3ttkYxXGlecOHVsPcFlnuWpzphLwrwW+hnnq10m8FWJjFDvk9yrKF2Vr
xftK92Ql0EX3JtNZobm4ynNzfd3Pofxcr4T+hTr4vse1JoyJj6mfWw9km98m
1/HeWUH70ObPqskznFe0rltMWc6z+udyo4L4KhRruj/DWqvrKscH5WOF78Ww
vq6T/W5rwBqypYIwxPoqDvd1xCfnsucL4mdxqWAseO55/WR9xfvp9geSsW5r
UgXVImR/2Ae8T3wv2v0R7k+af+vCWFj/cD+qOPvDmkn3ttTfwt5G6yiPFY6F
3D+5bl4bpHoY1nm7jvTtShyX8PwQ9k9bP3m+4bG1YI7nk5SvtC6E9T/MZx83
X2NCv0Ks1tdxLGyc+NoifMI8prFdR3264n7T2kHzD9cTnn/p3Hfu5z5eR2Ix
lfY53+O8d9A4ytiEe5710oqv675OIjmXyLkvGhOCeYXZEeHjOfsMPvfJfUuq
7TxOvOYVn/toT2O5GfRdmzuhfxfy3If7Eo+zVK9iZ6noHtzEuY/yVohuX1c5
PigfS577iI8VXAdQzbjEzn2pb8m2SPs99a0Ql9S3whimvoXrUupbfu+EfqS+
5etM+l4R9t1YP5B6QpCL6XuFsHelfKV1Iaz/YT77uPkaE/oVYrW+jmNh48TX
FuET5jGN7Trq0xX3Wz7vSbka5vea3UdE3npWOV7J6Tih43ascjx8VhAv/23e
j6tnJeThvBXQFY7BWpBxPMcn0Kl4C2Rz/TGqFMxXzHwRj5F/nGHj95rPp4r9
jQnt1UqF5p/nQU8rl6xn/BW2FuV1pbIu8K1HY3s8hh/hgecJeR7FEuMlxq1C
11H/cd1e8/tnjZ6JOB6AeWH8Y/ZK+Ub4KjTmxB9h31RQjhDc8O9KdD7AjdtI
9hy3tyLYGMbmeLCuxH5xcVpXczZm9Ldgl1RHYL9HYhOMV4S5wLdQXrinUE9Y
w3VZyCeUh3JuC/Epk3tSDhbkXaVSKeApsc8K9txxFOPjZfaFzTspZqQ+V9uH
IYZSLhx3NTmSq7Ga4myga48H9S4iI5qzVbAQ9ii24fhxhBP7HbWB5TjBpyje
FTQf1O8qeSLFC9st+cp7p1QzeWyL+gjHuay9Yn5E9lCQwxFZONaVKmclglUF
EcKsStzL1U/kV7Q38binc190X23i3BfYFu19nu94UX8+zuTi9dVqUQXXGckX
ppfUhIt37qN8FWpvLPfEHCxB1fpbwJfOfdzn0B/Pc6mc+/h60mdj+chqUgw/
cV2Z3JNysCDvni3nvmqYpL5VFNPUtwr32PHUt1Lf0jJS3xLWlck9KQcL8u7Z
0rfS94oCv1COE3yK4l1B80H9rpInUrzS94pL/ntF1Zou7mt/pjl96lR2KqfT
iPi7Gzsdjms67flOnxZ5JJmnC2WGfKJdp+NzgY4CXTH/TmHbT0f4sc+n/fjJ
UyezUycNnTKE3k+eLJg/ecq9x7A6hXRJMk5iWUwXiV2JGFB8ThM/8VxxnnAs
5VxxvOCD8eckx6sKxXKP5AnyoShHivJO8uGU5D8ey/Mluseq7Zdqec5z1MYr
sAHlbiSPq8WyeL8Vx1aMd1HeFGBq/RTtRe8n2d47eZLvuRjJtgQx2gBWsViD
7FNV8SuBrYrraSpfyvEYriT+p5HMTeTDKW8H8a1wn5wO4ivhJa2PxqcoZnYN
XxvLJxGH0K+g3rDY0TyQ8S3V24rGeH+K8Qq+nWLxi8mJ90ih1hkcXH4hvSLu
RFe8lp0qxF3IE+ZfWYrVqWjOnBLqqmCfs+W0vC6699z6SG5BDIRzWTr3PTXn
vlM8N9l79AwSxF+2/5Qgs7Dvi3Iu3XMfxvBUtRhXs13Kw3Tue1ad+3DunYrx
i3RatCWd+8rSZs59qW+lvpX6lpiHqW+lvpX6VjSP0veKgnwScUjfK8Iemb5X
XOjvFdE6ejrso6dOYRw8TUzPJEqU6FlIk5eADYkSJUqUKFGiRImeekrnvkSJ
EiVK9HSi1LcSJUqU6JlPG631W3bXXhi6ojb7fUV1m6c9nraKVL9JMnKRrufW
NKnnZn0tot8voC3oGaULFDMcL643jCX3MRbH4jwIcRLmCuwoWi/bUeBL1Fe+
Pp6zYcyr5XkJnoJcf+5eoAZCW/cyPsKD9gCRXyfsi03k6gXM10SJEiV6ttNz
tu9+yuhi+5YoUaJEiZ559FT2rUSJEm2eLnZtSJQoUaJEiST6/wFtJUc4
"], {{0, 0}, {1714, 38}}, {0, 255},
ColorFunction->RGBColor],
ImageSize->{1714, 38},
PlotRange->{{0, 1714}, {0, 38}}],
Alignment->Left,
BaseStyle->{"Hyperlink", "DemonstrationHeader"},
ButtonData->{
URL["http://demonstrations.wolfram.com"], None},
ButtonNote->"http://demonstrations.wolfram.com"]], "DemonstrationHeader"],
Cell["Learning Newton's Method", "DemoTitle"],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`d$$ = $CellContext`f21, $CellContext`n$$ =
1, $CellContext`x0$$ = 0.6, Typeset`show$$ = True,
Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu",
Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ =
"\"untitled\"", Typeset`specs$$ = {{{
Hold[$CellContext`d$$], $CellContext`f21,
"function"}, {$CellContext`f1 ->
TraditionalForm[-2 + $CellContext`x^2], $CellContext`f21 ->
TraditionalForm[
Cos[$CellContext`x]], $CellContext`f3 ->
TraditionalForm[-7 + $CellContext`x^3], $CellContext`f5 ->
TraditionalForm[-1 + $CellContext`x -
3 $CellContext`x^2 + $CellContext`x^3]}}, {{
Hold[$CellContext`n$$], 1, "n"}, {0, 1, 2, 3, 4, 5, 6}}, {{
Hold[$CellContext`x0$$], 0.6,
Subscript["x", "0"]}, 0.01, 6.11}}, Typeset`size$$ = {
600., {171.5, 176.5}}, Typeset`update$$ = 0, Typeset`initDone$$,
Typeset`skipInitDone$$ = False, $CellContext`d$30969$$ =
False, $CellContext`n$30970$$ = 0, $CellContext`x0$30971$$ = 0},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm,
"Variables" :> {$CellContext`d$$ = $CellContext`f21, $CellContext`n$$ =
1, $CellContext`x0$$ = 0.6}, "ControllerVariables" :> {
Hold[$CellContext`d$$, $CellContext`d$30969$$, False],
Hold[$CellContext`n$$, $CellContext`n$30970$$, 0],
Hold[$CellContext`x0$$, $CellContext`x0$30971$$, 0]},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$},
"Body" :> $CellContext`newton[$CellContext`d$$,
N[$CellContext`x0$$], 0, 2 Pi, $CellContext`n$$],
"Specifications" :> {{{$CellContext`d$$, $CellContext`f21,
"function"}, {$CellContext`f1 ->
TraditionalForm[-2 + $CellContext`x^2], $CellContext`f21 ->
TraditionalForm[
Cos[$CellContext`x]], $CellContext`f3 ->
TraditionalForm[-7 + $CellContext`x^3], $CellContext`f5 ->
TraditionalForm[-1 + $CellContext`x -
3 $CellContext`x^2 + $CellContext`x^3]}, ControlType ->
PopupMenu}, {{$CellContext`n$$, 1, "n"}, {0, 1, 2, 3, 4, 5, 6},
ControlType -> SetterBar}, {{$CellContext`x0$$, 0.6,
Subscript["x", "0"]}, 0.01, 6.11, Appearance -> "Labeled"}},
"Options" :> {}, "DefaultOptions" :> {ControllerLinking -> True}],
ImageSizeCache->{645., {241., 246.}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
Initialization:>(({$CellContext`newton[
Pattern[$CellContext`f,
Blank[]],
Pattern[$CellContext`x0,
Blank[]],
Pattern[$CellContext`a,
Blank[]],
Pattern[$CellContext`b,
Blank[]],
Pattern[$CellContext`n,
Blank[]]] :=
Module[{$CellContext`list =
NestList[# - $CellContext`f[#]/Derivative[
1][$CellContext`f][#]& , $CellContext`x0, $CellContext`n]},
Column[{
TraditionalForm[
Text[
Style[
Row[{
HoldForm[Subscript[{
Subscript[$CellContext`x, $CellContext`k]}, \
$CellContext`k = 0]^$CellContext`n], " = ", $CellContext`list}], 14]]],
Plot[
$CellContext`f[$CellContext`x], {$CellContext`x, $CellContext`a, \
$CellContext`b}, PlotRange -> All, AxesLabel -> {
Style[$CellContext`x, 16],
Style[$CellContext`y, 16]}, PlotStyle -> Thickness[0.006],
Epilog -> {{Red,
Thickness[0.002],
Arrowheads[0.03],
Arrow[
Most[
Flatten[
Map[{{#, 0}, {#,
$CellContext`f[#]}}& , $CellContext`list], 1]]]}, {
PointSize[0.015],
Point[{$CellContext`x0, 0}]}}, ImageSize -> {600, 325}]},
Center]], Attributes[Derivative] = {NHoldAll, ReadProtected},
Attributes[Subscript] = {NHoldRest},
Subscript[$CellContext`w, $CellContext`opt] = {2.706, 3.686},
Attributes[PlotRange] = {ReadProtected}, $CellContext`f21[
Pattern[$CellContext`x,
Blank[]]] := Cos[$CellContext`x], $CellContext`f1[
Pattern[$CellContext`x,
Blank[]]] := $CellContext`x^2 - 2, $CellContext`f3[
Pattern[$CellContext`x,
Blank[]]] := $CellContext`x^3 - 7, $CellContext`f5[
Pattern[$CellContext`x,
Blank[]]] := $CellContext`x^3 -
3 $CellContext`x^2 + $CellContext`x - 1}; Typeset`initDone$$ = True);
ReleaseHold[
HoldComplete[{$CellContext`f1[
Pattern[$CellContext`x,
Blank[]]] := $CellContext`x^2 - 2, $CellContext`f21[
Pattern[$CellContext`x,
Blank[]]] := Cos[$CellContext`x], $CellContext`f3[
Pattern[$CellContext`x,
Blank[]]] := $CellContext`x^3 - 7, $CellContext`f5[
Pattern[$CellContext`x,
Blank[]]] := $CellContext`x^3 -
3 $CellContext`x^2 + $CellContext`x - 1, $CellContext`newton[
Pattern[$CellContext`f,
Blank[]],
Pattern[$CellContext`x0,
Blank[]],
Pattern[$CellContext`a,
Blank[]],
Pattern[$CellContext`b,
Blank[]],
Pattern[$CellContext`n,
Blank[]]] :=
Module[{$CellContext`list =
NestList[# - $CellContext`f[#]/Derivative[
1][$CellContext`f][#]& , $CellContext`x0, $CellContext`n]},
Column[{
TraditionalForm[
Text[
Style[
Row[{
HoldForm[Subscript[{
Subscript[$CellContext`x, $CellContext`k]}, \
$CellContext`k = 0]^$CellContext`n], " = ", $CellContext`list}], 14]]],
Plot[
$CellContext`f[$CellContext`x], {$CellContext`x, \
$CellContext`a, $CellContext`b}, PlotRange -> All, AxesLabel -> {
Style[$CellContext`x, 16],
Style[$CellContext`y, 16]}, PlotStyle -> Thickness[0.006],
Epilog -> {{Red,
Thickness[0.002],
Arrowheads[0.03],
Arrow[
Most[
Flatten[
Map[{{#, 0}, {#,
$CellContext`f[#]}}& , $CellContext`list], 1]]]}, {
PointSize[0.015],
Point[{$CellContext`x0, 0}]}}, ImageSize -> {600, 325}]},
Center]]}]]; Typeset`initDone$$ = True),
SynchronousInitialization->True,
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]], "Output",
CellID->197594186],
Cell["\<\
This Demonstration illustrates geometrically Newton's method for \
approximating roots. The available functions illustrate places where Newton's \
method yields interesting behavior.\
\>", "ManipulateCaption"],
Cell["THINGS TO TRY", "ManipulateCaption",
CellFrame->{{0, 0}, {1, 0}},
CellFrameColor->RGBColor[0.87, 0.87, 0.87],
FontFamily->"Helvetica",
FontSize->12,
FontWeight->"Bold",
FontColor->RGBColor[0.597406, 0, 0.0527047],
CellTags->"ControlSuggestions"],
Cell[TextData[Cell[BoxData[
TooltipBox[
PaneSelectorBox[{False->Cell[TextData[StyleBox["Resize Images",
FontFamily->"Verdana"]]], True->Cell[TextData[StyleBox["Resize Images",
FontFamily->"Verdana",
FontColor->GrayLevel[0.5]]]]}, Dynamic[
CurrentValue["MouseOver"]]],
"\"Click inside an image to reveal its orange resize frame.\\nDrag any of \
the orange resize handles to resize the image.\"",
TooltipStyle->{
FontFamily -> "Verdana", FontSize -> 10, FontColor -> GrayLevel[0.35],
Background -> GrayLevel[0.98]}]]]], "ManipulateCaption",
CellMargins->{{Inherited, Inherited}, {0, 0}},
Deployed->True,
FontFamily->"Verdana",
CellTags->"ControlSuggestions"],
Cell["RELATED LINKS", "RelatedLinksSection"],
Cell[TextData[{
ButtonBox["Newton's Method",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://mathworld.wolfram.com/NewtonsMethod.html"], None}],
" (",
ButtonBox["Wolfram",
BaseStyle->"SiteLink",
ButtonData->{
URL["http://mathworld.wolfram.com/"], None},
ButtonNote->"http://mathworld.wolfram.com/"],
" ",
StyleBox[ButtonBox["MathWorld",
BaseStyle->"SiteLink",
ButtonData->{
URL["http://mathworld.wolfram.com/"], None},
ButtonNote->"http://mathworld.wolfram.com/"],
FontSlant->"Italic"],
")"
}], "RelatedLinks",
CellID->71693908],
Cell[BoxData[
ButtonBox[
PaneSelectorBox[{False->Cell[BoxData[
GraphicsBox[RasterBox[CompressedData["
1:eJztmjlPZFcQhZH8H5z7LzmYFGkSyAwZkEEGZEDEkrBEbAEgAjCLxS6xCbEP
Bnu8SAYaRoIEhPDnPqJcvm/p17THyJp3pGnVPbdu1bl1T7dGo/nm/Xffvv+q
qqrqa/78wJ+/4ufn56enp4eHh7u7u9vb25ubm0KhcFNEoQiCT0Wwa4wA88kh
WCYhKS39eKAtCUFCSUmW4AN/96T6sY30qa1gUCk6NdiUK8Q+ij9riFZOR5YZ
xu5yFsNgG8zzXMTV1dX5+fmHHDnKBLbBPHLR2dnZW8vJ8X8F5pGLbJkjRxbI
LfZpv0U5crwauYuEpaWlmZkZPt9ayN/Y39+fKeKthZSGXPRj+WhoaHjnwHJi
YsJ2mUBra2t1dTVbzc3NvI5tQZKsWLu+Znd3t+LZ2Vl2fZBSFlIyCIaHhwnI
hEdSTU0Ny46ODl/cgyLKEYitbFI7JOkIu6ps12HLKtNOaXV1dTYcApaQlOWs
dEbBlkkik0t5wYgRjwCrAK9H4dOrKtmRg/39/cr0j5gdctG5A+R5BiCyra3t
+xcQo5PAdhkgd5+cnCRG/8HBATzL6iKISdYDaUunenp6FMe6yMpyWZVlJkxA
cyZTw9cAdZCnJNDYoy7iOGfZ3dzcZMkn70KLlHbwkLwL+lGrL4U0+wloi7Mw
UrW1tUUsQxKwRQJzi87WzhIzHJacYnRaqiNLElCi7uJVWfniM3bkOpxCIQl2
hRQEJom6KCP8iwvIQwwBYvw8dUHNpK0IlsvLywMDA3omzSeoqev7IKksdShi
VqS+BmiBQHIgGHBWlvZQl5RbeN538TySKO6Ho++al8QQ7O4GGvk6wWzlBLus
hoPUgMc2sUOI7Wh12GVEfpgZIRddFMHyIjMaGxvp6JmVlRWUbG9vS1JsMgqn
pqZYjoyMcFNI+Spa04pEg6Ds4eGhfrEp3viCqMKoYIBaZHtGXSBTbqFXFgmj
dgHvY19BRTyCHOaDH6I64YN2vlHA2zJLR4HnYIwEdO/s7IzNSYJ3UVmIfRTd
SPPncY3XD6ZsBi/z6MfTDy2Li6JlFVOcUvoq2QD9NHxyFBznp4MjtJCrU9pl
dJHePRiat7rMH+REfRLs6q0F5JmLPM/FbQglO14UXcor8NXWcwTfrJKQi34q
H0jq7e0NSBTOzc0RyM8iEQa/uroK09LSAkOO/tqpBJLJUU34o6Mj4sHBQSWQ
7DOjZXd2duDVF2iAqmDVVCQqGFDBfsrwj9VJauevCaipduItn5saTzKl0Ikk
ekkSoJ0G4uELxqqVP+2yVDZe8qgPaUMo2VFqAWkMgSNJ3ZMgF/1cPuQizzAl
LsIn8ejoKHFtba0eqL29HZIlvJIhqaC4vQjVJJ80/SaInJ+fJ1ZmbFlVUEHx
6nJ8fMxS8+STU4FguwhYW1uLbiW1I0aVYj268WRaQTX1d1E7SWKLINqXpvAp
k9dlNSi7rB8CxyUjY0cYLMS4KIUtU1onQS76WD5Q1dfX55muri502nJ3d3do
aIgcRIpZWFg4OTlRDEmCZSpHJGmcGhsbs1MMJ6WsMD093VcE+UbSjjqQnIoK
FijujxCTmd7OX8TEG28aiHUWbVGpbFkRD8hA0sfItOmoCjZDX1kD9LdI71g5
KnER5l94gb4Iwbj+FQQuejWSXATPN1HPwWd9fT3LyttVAr6P/GjoeyRbRn2V
jsBFnxty0S/lo6mp6Z0Dw8dCr6hTEnJR5XUQzGyj/Pr6OuLtIqSdnp5W3q5C
IFX/mKZ/LRwfHy/3OBf5TNqikIt+/eKxsbGxuLi4t7f31kL+gcUiMib/Z54B
QevcRTkqh1z0W44cFcBc9HuOHK+Cuejq6kqmSsnMnZYjgFxh/2P28fHx/v6+
UChcXl7+EQf46+vrpN0cXyAwA4bBNpgHC/0JwypFcA==
"], {{0, 0}, {194, 22}}, {0, 255},
ColorFunction->RGBColor],
ImageSize->{194, 22},
PlotRange->{{0, 194}, {0, 22}}]]], True->Cell[BoxData[
GraphicsBox[RasterBox[CompressedData["
1:eJztmjtPLEcQhZH8H5z7LzlwinQjiCwIIYQQyICMRwRkPCIQCRgIeCa8At6S
vetrW2aXlTYAhD/PEeW63TOzu4wxsj1HYlVdXV11qvrMLEJ88+n7bz991dXV
9TU/m/z8ab+8vDw/Pz8+PjabzUaj8fDwUK/XHxLUE2A0XmEeofHPwnPLQhBQ
pFBqLT+crELaCgaVw9OOZGVOvRR/1hBnbtlpyxmm7nIWwSAbxPOSoFarVSqV
H0uU6BDIBvFIRR/NpcS/G6WKShRHqaISxVGqSNjd3d3Y2ODzo4n8hYuLi40E
H02kNaSinzrHwMDAdw4sV1dXbffy8nJkZKS7u5utoaGhvb0928JJsGzt+pxT
U1OyNzc32fVGTlqcooGxuLiIQSR+KPX09LAcHx/3yT1IohgB29JmlYOSjrCr
zNYOW5aZcgrr6+uz4WCwxElazopnDLaMEpE05QlDRn4IWAb8uhQ+PauWFTk4
NzenSH+J7UMqqjjgrLQBSI6Ojv7wCmx4YtguA6T3tbU1bPhfXV3hZ9mdAJtg
XZC2dGp6elp2qoosLc0qLTNhApozkRq+BqiDXCWGxh6riOOcZff4+Jgln9wL
JXLK4cfJvcAftnooxNlPQFucxTMxMcHWyckJtgSJwRYBzC2erZ3FZjgsOcXo
tFRFlgTARNXlV2bFy99mRdrhFAwJsBZyEIgkVlGb8DcuQA8yGJDx81SDmslo
Apb7+/vcvq5J8wlyqn1vZKUlD0lMiuTXAM0QCA4IAykwcKpKThfe76t4P5RI
7oejZ81TYgjWu4FCPk8wWynBmtVwoBr4kU3qEFIrWh52GZEfZpuQiqoJWFbb
xuDgIBW95+DgACanp6eilBoszbBcWloaHh7GKV3FOS1JbARpr6+v9cYm+eAr
YoYxYQBbaHuPquDM6UK3LCcelQv83vYZlMQjiNHrOuaJPyjnCwV+W7ZTUeA6
GCMG1Xl5psZkwauoI6ReijrS/Llc8+uFKZnhl3j08vRDa0dFcVrZJCeVHiUb
oJ+GD47B8fn5eY5QQqrOKdeminTvwdC81CX+ICbWSbCruxagZyryfhq3IbSs
WE1Uyi3waOs6gierJd5DRdUv9QwxPd14EHw1uSD92qkAgjVwtayL407jV1Bq
Wk3Ars8GSAbLpiSpKiKDvcr0vWNbqeWquSqyeDo1v34DhCeUqGXKpJwG4pGv
Ij2Jpk/K6RmUX/TIj9OG0LKi2ALCGAJHsqpnQSr6uXNAcmZmxnvOzs5ohE/s
5eVl3Ut/f7+ebpws8SsYJxlk60tNOYnXs2Ontra2sBWZmlYZlFB+Vbm5uWGp
efLJqYCwNQKYf7yVVQ4bVrLJaY3gJ9ISqqjvReVEiS099XFR/DmTV7MalDXr
h8Bx0WizIh4kxLhINTk5mVM6C1LR584hFXkPBHp7e22JnBYWFog5PDyUZ3t7
+/b2VjZOAixSMXISxik6slMMJyetsL6+PpOAeHNSjjw4ORUTFkjuj2ATmV/O
N2LkzW8csHUWbjFVtiyJB86A0udo2lRUBpuhz6wB+i7yKxZHERWNjY1tvwKb
3oNx/S0IVPRmZKkIP0+iroNPnmKWxcsVAc8jLw09R5JlrKt8BCp6b0hFv3QO
vagNDB8JvSFPS+zs7JC/eB4Iz87Oxv6joyN9YQmE3d3dFS9XEFDVH9P018KV
lZVOj9PIO3GL8WYV/ceAlpDr+fn5RxP5AjsJPppFa5QqKlEcUtGvJUoUgKno
txIl3gRTUa1Wk6hyIkullQggVdh/zD49PTWbzXq9fn9//3sa8BOctVvifwjE
gGCQDeJBQn8AEYN5ZQ==
"], {{0, 0}, {194, 22}}, {0, 255},
ColorFunction->RGBColor],
ImageSize->{194, 22},
PlotRange->{{0, 194}, {0, 22}}]]]}, Dynamic[
CurrentValue["MouseOver"]]],
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://demonstrations.wolfram.com/versions/source.jsp?id=\
LearningNewtonsMethod&version=0017"], None},
ButtonNote->
"http://demonstrations.wolfram.com/LearningNewtonsMethod/\
LearningNewtonsMethod-source.nb"]], "DemoSourceNotebookSection",
CellFrame->{{0, 0}, {1, 1}},
ShowCellBracket->False,
CellMargins->{{48, 48}, {28, 28}},
CellGroupingRules->{"SectionGrouping", 25},
CellFrameMargins->{{48, 48}, {6, 8}},
CellFrameColor->RGBColor[0.87, 0.87, 0.87]],
Cell["PERMANENT CITATION", "CitationSection"],
Cell[TextData[{
"\"",
ButtonBox["Learning Newton's Method",
BaseStyle->"SiteLink",
ButtonData->{
URL["http://demonstrations.wolfram.com/LearningNewtonsMethod/"], None},
ButtonNote->"http://demonstrations.wolfram.com/LearningNewtonsMethod/"],
"\"",
" from ",
ButtonBox["the Wolfram Demonstrations Project",
BaseStyle->"SiteLink",
ButtonData->{
URL["http://demonstrations.wolfram.com/"], None},
ButtonNote->"http://demonstrations.wolfram.com/"],
"\[ParagraphSeparator]\[NonBreakingSpace]",
ButtonBox["http://demonstrations.wolfram.com/LearningNewtonsMethod/",
BaseStyle->"SiteLink",
ButtonData->{
URL["http://demonstrations.wolfram.com/LearningNewtonsMethod/"], None},
ButtonNote->"http://demonstrations.wolfram.com/LearningNewtonsMethod/"]
}], "Citations"],
Cell[TextData[{
"Contributed by: ",
ButtonBox["Angela Sharp",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://demonstrations.wolfram.com/author.html?author=Angela+Sharp"],
None},
ButtonNote->
"http://demonstrations.wolfram.com/author.html?author=Angela+Sharp"],
", ",
ButtonBox["Chad Pierson",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://demonstrations.wolfram.com/author.html?author=Chad+Pierson"],
None}],
", and ",
ButtonBox["Joshua Fritz",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://demonstrations.wolfram.com/author.html?author=Joshua+Fritz"],
None},
ButtonNote->
"http://demonstrations.wolfram.com/author.html?author=Joshua+Fritz"]
}], "Author",
FontColor->GrayLevel[0.6]],
Cell[TextData[{
"\[Copyright] ",
StyleBox[ButtonBox["Wolfram Demonstrations Project & Contributors",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://demonstrations.wolfram.com/"], None},
ButtonNote->"http://demonstrations.wolfram.com/"],
FontColor->GrayLevel[0.6]],
"\[ThickSpace]\[ThickSpace]\[ThickSpace]|\[ThickSpace]\[ThickSpace]\
\[ThickSpace]",
StyleBox[ButtonBox["Terms of Use",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://demonstrations.wolfram.com/termsofuse.html"], None},
ButtonNote->"http://demonstrations.wolfram.com/termsofuse.html"],
FontColor->GrayLevel[0.6]]
}], "Text",
CellFrame->{{0, 0}, {0, 0.5}},
CellMargins->{{48, 48}, {20, 50}},
CellFrameColor->GrayLevel[0.45098],
FontFamily->"Verdana",
FontSize->9,
FontColor->GrayLevel[0.6],
CellTags->"Copyright"]
},
Editable->False,
Saveable->False,
ScreenStyleEnvironment->"Working",
CellInsertionPointCell->None,
CellGrouping->Manual,
WindowSize->{750, 650},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
WindowElements->{
"StatusArea", "MemoryMonitor", "MagnificationPopUp", "VerticalScrollBar",
"MenuBar"},
WindowTitle->"Learning Newton's Method",
DockedCells->{},
CellContext->Notebook,
FrontEndVersion->"8.0 for Microsoft Windows (32-bit) (November 7, 2010)",
StyleDefinitions->Notebook[{
Cell[
CellGroupData[{
Cell[
"Demonstration Styles", "Title",
CellChangeTimes -> {
3.3509184553711*^9, {3.36928902713192*^9, 3.36928902738193*^9}, {
3.3754479092466917`*^9, 3.3754479095123196`*^9}, {
3.375558447161495*^9, 3.375558447395873*^9}, {3.37572892702972*^9,
3.375728927639103*^9}}],
Cell[
StyleData[StyleDefinitions -> "Default.nb"]],