A Scheduler Based Sqlalchemy for Celery.
NOTE: This project was originally developed by AngelLiang to use sqlalchemy as the database scheduler for Flask or FastAPI, like django-celery-beat for django. I am trying to continue on his work and maintain a working solution.
- Python 3
- celery >= 5.0
- sqlalchemy >= 1.4
First you must install celery
and sqlalchemy
, and celery
should be >=5.0
$ pip install sqlalchemy celery
Install from PyPi:
$ pip install sqlalchemy-celery-beat
Install from source by cloning this repository:
$ git clone [email protected]:farahats9/sqlalchemy-celery-beat.git
$ cd sqlalchemy-celery-beat
$ python setup.py install
After you have installed sqlalchemy_celery_beat
, you can easily start with following steps:
This is a demo for exmaple, you can check the code in examples
directory
-
start celery worker
$ celery -A tasks worker -l info
-
start the celery beat with
DatabaseScheduler
as scheduler:$ celery -A tasks beat -S sqlalchemy_celery_beat.schedulers:DatabaseScheduler -l info
you can also use the shorthand argument
-S sqlalchemy
After the celery beat is started, by default it create a sqlite database(schedule.db
) in current folder. You can use SQLiteStudio.exe
to inspect it.
Sample from the PeriodicTask
model's table
When you want to update scheduler, you can update the data in schedule.db
. But sqlalchemy_celery_beat
don't update the scheduler immediately. Then you shoule be change the first column's last_update
field in the celery_periodic_task_changed
to now datetime. Finally the celery beat will update scheduler at next wake-up time.
You can configure sqlalchemy db uri when you configure the celery, example as:
from celery import Celery
celery = Celery('tasks')
beat_dburi = 'sqlite:///schedule.db'
celery.conf.update(
{
'beat_dburi': beat_dburi,
'beat_schema': None # you can make the scheduler tables under different schema (tested for postgresql, not available in sqlite)
}
)
Also, you can use MySQL or PostgreSQL.
# MySQL: `pip install mysql-connector`
beat_dburi = 'mysql+mysqlconnector://root:[email protected]:3306/celery-schedule'
# PostgreSQL: `pip install psycopg2`
beat_dburi = 'postgresql+psycopg2://postgres:[email protected]:5432/celery-schedule'
You can pass arguments using the beat_engine_options
keyword in the config dictionary, for example let's make the engine use echo=True
to show verbose ouptut:
celery.conf.update(
{
'beat_dburi': beat_dburi,
'beat_engine_options': {
'echo': True
},
...
}
)
You can use this to pass any options required by your DB driver, for more information about what options you can use check the SQLAlchemy docs.
View examples/base/tasks.py
for details.
Run Worker in console 1
$ cd examples/base
# Celery < 5.0
$ celery worker -A tasks:celery -l info
# Celery >= 5.0
$ celery -A tasks:celery worker -l info
Run Beat in console 2
$ cd examples/base
# Celery < 5.0
$ celery beat -A tasks:celery -S tasks:DatabaseScheduler -l info
# Celery >= 5.0
$ celery -A tasks:celery beat -S tasks:DatabaseScheduler -l info
To create a periodic task executing at an interval you must first create the interval object:
>>> from sqlalchemy_celery_beat.models import PeriodicTask, IntervalSchedule, Period
>>> from sqlalchemy_celery_beat.session import SessionManager
>>> from celeryconfig import beat_dburi
>>> session_manager = SessionManager()
>>> session = session_manager.session_factory(beat_dburi)
# executes every 10 seconds.
>>> schedule = session.query(IntervalSchedule).filter_by(every=10, period=Period.SECONDS).first()
>>> if not schedule:
... schedule = IntervalSchedule(every=10, period=Period.SECONDS)
... session.add(schedule)
... session.commit()
That's all the fields you need: a period type and the frequency.
You can choose between a specific set of periods:
Period.DAYS
Period.HOURS
Period.MINUTES
Period.SECONDS
Period.MICROSECONDS
note:
If you have multiple periodic tasks executing every 10 seconds,
then they should all point to the same schedule object.
Now that we have defined the schedule object, we can create the periodic task entry:
>>> task = PeriodicTask(
... schedule_model=schedule, # we created this above.
... name='Importing contacts', # simply describes this periodic task.
... task='proj.tasks.import_contacts', # name of task.
... )
>>> session.add(task)
>>> session.commit()
Note that this is a very basic example, you can also specify the
arguments and keyword arguments used to execute the task, the queue
to
send it to[*], and set an expiry time.
Here's an example specifying the arguments, note how JSON serialization is required:
>>> import json
>>> from datetime import datetime, timedelta, UTC
>>> periodic_task = PeriodicTask(
... schedule_model=schedule, # we created this above.
... name='Importing contacts', # simply describes this periodic task.
... task='proj.tasks.import_contacts', # name of task.
... args=json.dumps(['arg1', 'arg2']),
... kwargs=json.dumps({
... 'be_careful': True,
... }),
... expires=datetime.now(UTC) + timedelta(seconds=30)
... )
... session.add(periodic_task)
... session.commit()
A crontab schedule has the fields: minute
, hour
, day_of_week
,
day_of_month
and month_of_year
, so if you want the equivalent of a
30 * * * *
(execute every 30 minutes) crontab entry you specify:
>>> from sqlalchemy_celery_beat.models import PeriodicTask, CrontabSchedule
>>> schedule = CrontabSchedule(
... minute='30',
... hour='*',
... day_of_week='*',
... day_of_month='*',
... month_of_year='*',
... timezone='UTC',
... )
The crontab schedule is linked to a specific timezone using the 'timezone' input parameter.
Then to create a periodic task using this schedule, use the same
approach as the interval-based periodic task earlier in this document,
the schedule_model
is a generic foreign-key implementation which makes things very easy and efficient:
>>> periodic_task = PeriodicTask(
... schedule_model=schedule,
... name='Importing contacts',
... task='proj.tasks.import_contacts',
... )
What the previous code actually do is this:
>>> periodic_task = PeriodicTask(
... schedule_id=schedule.id,
... discriminator=schedule.discriminator,
... name='Importing contacts',
... task='proj.tasks.import_contacts',
... )
So when you can use discriminator
+ schedule_id
or use the convenient property schedule_model
and it will populate them for you behind the scenes.
You can use the enabled
flag to temporarily disable a periodic task:
>>> periodic_task.enabled = False
>>> session.add(periodic_task)
>>> session.commit()
If you are using a bulk operation to update or delete multiple tasks at the same time, the changes won't be noticed by the scheduler until you do PeriodicTaskChanged.update_changed()
or .update_from_session()
example:
from sqlalchemy_celery_beat.models import PeriodicTaskChanged
from sqlalchemy_celery_beat.session import SessionManager, session_cleanup
session_manager = SessionManager()
session = session_manager.session_factory(beat_dburi)
with session_cleanup(session):
stmt = update(PeriodicTask).where(PeriodicTask.name == 'task-123').values(enabled=False)
session.execute(stmt) # using execute causes no orm event to fire, changes are in the database but the schduler has no idea
session.commit()
PeriodicTaskChanged.update_from_session(session)
# now scheduler reloads the tasks and all is good
This is not needed when you are updating a specific object using session.add(task)
because it will trigger the after_update
, after_delete
or after_insert
events.
The periodic tasks still need 'workers' to execute them. So make sure the default Celery package is installed. (If not installed, please follow the installation instructions here: https://github.com/celery/celery)
Both the worker and beat services need to be running at the same time.
-
Start a Celery worker service (specify your project name):
$ celery -A [project-name] worker --loglevel=info
-
As a separate process, start the beat service (specify the scheduler):
$ celery -A [project-name] beat -l info --scheduler sqlalchemy_celery_beat.schedulers:DatabaseScheduler
- ✅ Add
ClockedSchedule
model - ✅ Implement a generic foreign key
- ✅ More robust attribute validation on models
- ✅ Add Tests
- Add more examples
- Support for Async drivers like asyncpg and psycopg3 async mode
- Use Alembic migrations
Any help with the tasks above or feedback is appreciated 🙂