-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
155 lines (120 loc) · 4.43 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import cv2
import imutils
import numpy as np
from sklearn.metrics import pairwise
bg = None
def averaging_frame(image, weight):
"""Averaging frame by calculating background
frame againsts new frame.
Args:
image: An image to be calculated.
weight: Accumulate weight for thresholding.
Return:
bg: Image copy as background if `bg` is None.
"""
global bg
if bg is None:
bg = image.copy().astype("float")
return bg
cv2.accumulateWeighted(image, bg, weight)
def segmenting_object(image, threshold=25):
"""Segmentation and threshold hand object from
new frame against background frame.
Args:
image: Image to be calculated.
threshold: Value to segment object from the background.
Returns:
thresholded_image: Image after threshold operation.
segmented: Image with segmented object.
"""
global bg
diff = cv2.absdiff(bg.astype("uint8"), image)
thresholded_image = cv2.threshold(diff, threshold, 255, cv2.THRESH_BINARY)[1]
_, cnts, _ = cv2.findContours(
thresholded_image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
if len(cnts) == 0:
return
else:
segmented = max(cnts, key=cv2.contourArea)
return thresholded_image, segmented
def counting_finger(thresholded, segmented):
"""Main function for counting fingers from images.
Args:
thresholded: Image after threshold operation.
segmented: Image with segmented object.
Return:
counter: Finger counter value.
"""
chull = cv2.convexHull(segmented)
extreme_top = tuple(chull[chull[:, :, 1].argmin()][0])
extreme_bottom = tuple(chull[chull[:, :, 1].argmax()][0])
extreme_left = tuple(chull[chull[:, :, 0].argmin()][0])
extreme_right = tuple(chull[chull[:, :, 0].argmax()][0])
cX = (extreme_left[0] + extreme_right[0]) // 2
cY = (extreme_top[1] + extreme_bottom[1]) // 2
distance = pairwise.euclidean_distances(
[(cX, cY)], Y=[extreme_left, extreme_right, extreme_top, extreme_bottom]
)[0]
maximum_distance = distance[distance.argmax()]
circle_radius = int(0.8 * maximum_distance)
circumference = 2 * np.pi * circle_radius
circular_roi = np.zeros(thresholded.shape[:2], dtype="uint8")
cv2.circle(circular_roi, (cX, cY), circle_radius, 255, 1)
circular_roi = cv2.bitwise_and(thresholded, thresholded, mask=circular_roi)
_, cnts, _ = cv2.findContours(
circular_roi.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
counter = 0
for c in cnts:
(x, y, w, h) = cv2.boundingRect(c)
if ((cY + (cY * 0.25)) > (y + h)) and ((circumference * 0.25) > c.shape[0]):
counter += 1
return counter
if __name__ == "__main__":
accumWeight = 0.5
camera = cv2.VideoCapture(0)
if camera is None or not camera.isOpened():
raise ValueError("UNABLE TO OPEN CAM")
top, right, bottom, left = 10, 350, 225, 590
num_frames = 0
calibrated = False
while True:
grabbed, frame = camera.read()
frame = imutils.resize(frame, width=700)
frame = cv2.flip(frame, 1)
clone = frame.copy()
height, width = frame.shape[:2]
roi = frame[top:bottom, right:left]
gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (7, 7), 0)
if num_frames < 30:
averaging_frame(gray, accumWeight)
if num_frames == 1:
print("[STATUS] sedang kalibrasi")
elif num_frames == 29:
print("[STATUS] kalibrasi sukses !")
else:
hand = segmenting_object(gray)
if hand is not None:
(thresholded, segmented) = hand
cv2.drawContours(clone, [segmented + (right, top)], -1, (0, 0, 255))
fingers = counting_finger(thresholded, segmented)
cv2.putText(
clone,
str(fingers),
(70, 45),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 0, 255),
2,
)
cv2.imshow("Thesholded", thresholded)
cv2.rectangle(clone, (left, top), (right, bottom), (0, 255, 0), 2)
num_frames += 1
cv2.imshow("Video Stream", clone)
keypress = cv2.waitKey(1) & 0xFF
if keypress == ord("q"):
break
camera.release()
cv2.destroyAllWindows()