This repository has been archived by the owner on Feb 16, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 179
/
Copy patheval_retrieval.py
364 lines (318 loc) · 12 KB
/
eval_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import json
import logging
import os
import random
from io import open
import numpy as np
from tensorboardX import SummaryWriter
from tqdm import tqdm
from bisect import bisect
import yaml
from easydict import EasyDict as edict
import sys
import pdb
import torch
import torch.nn.functional as F
import torch.nn as nn
from vilbert.task_utils import (
LoadDatasetEval,
LoadLosses,
ForwardModelsTrain,
ForwardModelsVal,
EvaluatingModel,
)
from vilbert.vilbert import VILBertForVLTasks, BertForMultiModalPreTraining
from vilbert.basebert import BaseBertForVLTasks
import vilbert.utils as utils
import torch.distributed as dist
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--bert_model",
default="bert-base-uncased",
type=str,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.",
)
parser.add_argument(
"--from_pretrained",
default="bert-base-uncased",
type=str,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.",
)
parser.add_argument(
"--output_dir",
default="results",
type=str,
help="The output directory where the model checkpoints will be written.",
)
parser.add_argument(
"--config_file",
default="config/bert_config.json",
type=str,
help="The config file which specified the model details.",
)
parser.add_argument(
"--no_cuda", action="store_true", help="Whether not to use CUDA when available"
)
parser.add_argument(
"--do_lower_case",
default=True,
type=bool,
help="Whether to lower case the input text. True for uncased models, False for cased models.",
)
parser.add_argument(
"--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus",
)
parser.add_argument(
"--seed", type=int, default=42, help="random seed for initialization"
)
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit float precision instead of 32-bit",
)
parser.add_argument(
"--loss_scale",
type=float,
default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n",
)
parser.add_argument(
"--num_workers",
type=int,
default=16,
help="Number of workers in the dataloader.",
)
parser.add_argument(
"--save_name", default="", type=str, help="save name for training."
)
parser.add_argument(
"--use_chunk",
default=0,
type=float,
help="whether use chunck for parallel training.",
)
parser.add_argument(
"--tasks", default="", type=str, help="1-2-3... training task separate by -"
)
parser.add_argument(
"--in_memory",
default=False,
type=bool,
help="whether use chunck for parallel training.",
)
parser.add_argument(
"--baseline", action="store_true", help="whether use single stream baseline."
)
parser.add_argument(
"--zero_shot", action="store_true", help="whether use single stream baseline."
)
parser.add_argument("--split", default="", type=str, help="which split to use.")
parser.add_argument("--batch_size", default=1, type=int, help="which split to use.")
parser.add_argument(
"--clean_train_sets",
default=True,
type=bool,
help="whether clean train sets for multitask data.",
)
parser.add_argument(
"--task_specific_tokens",
action="store_true",
help="whether to use task specific tokens for the multi-task learning.",
)
args = parser.parse_args()
with open("vilbert_tasks.yml", "r") as f:
task_cfg = edict(yaml.safe_load(f))
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.baseline:
from pytorch_pretrained_bert.modeling import BertConfig
else:
from vilbert.vilbert import BertConfig
task_names = []
for i, task_id in enumerate(args.tasks.split("-")):
task = "TASK" + task_id
name = task_cfg[task]["name"]
task_names.append(name)
# timeStamp = '-'.join(task_names) + '_' + args.config_file.split('/')[1].split('.')[0]
if "/" in args.from_pretrained:
timeStamp = args.from_pretrained.split("/")[1]
else:
timeStamp = args.from_pretrained
savePath = os.path.join(args.output_dir, timeStamp)
config = BertConfig.from_json_file(args.config_file)
bert_weight_name = json.load(
open("config/" + args.bert_model + "_weight_name.json", "r")
)
if args.local_rank == -1 or args.no_cuda:
device = torch.device(
"cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu"
)
n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend="nccl")
logger.info(
"device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16
)
)
default_gpu = False
if dist.is_available() and args.local_rank != -1:
rank = dist.get_rank()
if rank == 0:
default_gpu = True
else:
default_gpu = True
if default_gpu and not os.path.exists(savePath):
os.makedirs(savePath)
task_batch_size, task_num_iters, task_ids, task_datasets_val, task_dataloader_val = LoadDatasetEval(
args, task_cfg, args.tasks.split("-")
)
num_labels = max([dataset.num_labels for dataset in task_datasets_val.values()])
if args.task_specific_tokens:
config.task_specific_tokens = True
config.fast_mode = True
if args.zero_shot:
model = BertForMultiModalPreTraining.from_pretrained(
args.from_pretrained, config
)
else:
model = VILBertForVLTasks.from_pretrained(
args.from_pretrained,
config=config,
num_labels=num_labels,
default_gpu=default_gpu,
)
task_losses = LoadLosses(args, task_cfg, args.tasks.split("-"))
model.to(device)
if args.local_rank != -1:
try:
from apex.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError(
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
)
model = DDP(model, deay_allreduce=True)
elif n_gpu > 1:
model = nn.DataParallel(model)
no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
print("***** Running training *****")
print(" Num Iters: ", task_num_iters)
print(" Batch size: ", task_batch_size)
model.eval()
# when run evaluate, we run each task sequentially.
for task_id in task_ids:
results = []
others = []
score_matrix = np.zeros((5000, 1000))
target_matrix = np.zeros((5000, 1000))
rank_matrix = np.ones((5000)) * 1000
count = 0
for i, batch in enumerate(task_dataloader_val[task_id]):
batch = tuple(t.cuda(device=device, non_blocking=True) for t in batch)
features, spatials, image_mask, question, input_mask, segment_ids, target, caption_idx, image_idx = (
batch
)
task_tokens = (
question.new().resize_(question.size(0), 1).fill_(int(task_id[4:]))
)
if task_id in ["TASK7", "TASK8"]:
batch_size = features.size(0)
features = features.squeeze(0)
spatials = spatials.squeeze(0)
image_mask = image_mask.squeeze(0)
with torch.no_grad():
if args.zero_shot:
_, _, vil_logit, _ = model(
question,
features,
spatials,
segment_ids,
input_mask,
image_mask,
task_ids=task_tokens,
)
score_matrix[
caption_idx, image_idx * 500 : (image_idx + 1) * 500
] = (torch.softmax(vil_logit, dim=1)[:, 0].view(-1).cpu().numpy())
target_matrix[
caption_idx, image_idx * 500 : (image_idx + 1) * 500
] = (target.view(-1).float().cpu().numpy())
else:
_, _, vil_logit, _, _, _, _, _, _ = model(
question,
features,
spatials,
segment_ids,
input_mask,
image_mask,
task_ids=task_tokens,
)
score_matrix[
caption_idx, image_idx * 500 : (image_idx + 1) * 500
] = (vil_logit.view(-1).cpu().numpy())
target_matrix[
caption_idx, image_idx * 500 : (image_idx + 1) * 500
] = (target.view(-1).float().cpu().numpy())
if image_idx.item() == 1:
rank = np.where(
(
np.argsort(-score_matrix[caption_idx])
== np.where(target_matrix[caption_idx] == 1)[0][0]
)
== 1
)[0][0]
rank_matrix[caption_idx] = rank
rank_matrix_tmp = rank_matrix[: caption_idx + 1]
r1 = 100.0 * np.sum(rank_matrix_tmp < 1) / len(rank_matrix_tmp)
r5 = 100.0 * np.sum(rank_matrix_tmp < 5) / len(rank_matrix_tmp)
r10 = 100.0 * np.sum(rank_matrix_tmp < 10) / len(rank_matrix_tmp)
medr = np.floor(np.median(rank_matrix_tmp) + 1)
meanr = np.mean(rank_matrix_tmp) + 1
print(
"%d Final r1:%.3f, r5:%.3f, r10:%.3f, mder:%.3f, meanr:%.3f"
% (count, r1, r5, r10, medr, meanr)
)
results.append(np.argsort(-score_matrix[caption_idx]).tolist()[:20])
count += 1
r1 = 100.0 * np.sum(rank_matrix < 1) / len(rank_matrix)
r5 = 100.0 * np.sum(rank_matrix < 5) / len(rank_matrix)
r10 = 100.0 * np.sum(rank_matrix < 10) / len(rank_matrix)
medr = np.floor(np.median(rank_matrix) + 1)
meanr = np.mean(rank_matrix) + 1
print("************************************************")
print(
"Final r1:%.3f, r5:%.3f, r10:%.3f, mder:%.3f, meanr:%.3f"
% (r1, r5, r10, medr, meanr)
)
print("************************************************")
if args.split:
json_path = os.path.join(savePath, args.split)
else:
json_path = os.path.join(savePath, task_cfg[task_id]["val_split"])
json.dump(results, open(json_path + "_result.json", "w"))
json.dump(others, open(json_path + "_others.json", "w"))
if __name__ == "__main__":
main()