-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathtest_meltingpot.py
152 lines (137 loc) · 4.75 KB
/
test_meltingpot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import pytest
from benchmarl.algorithms import (
algorithm_config_registry,
IppoConfig,
MappoConfig,
MasacConfig,
QmixConfig,
)
from benchmarl.algorithms.common import AlgorithmConfig
from benchmarl.environments import MeltingPotTask, Task
from benchmarl.experiment import Experiment
from utils import _has_meltingpot
from utils_experiment import ExperimentUtils
def _get_unique_envs(names):
prefixes = set()
result = []
for env in names:
prefix = env.name.split("_")[0]
if prefix not in prefixes:
prefixes.add(prefix)
result.append(env)
return result
@pytest.mark.skipif(not _has_meltingpot, reason="Meltingpot not found")
class TestMeltingPot:
@pytest.mark.parametrize("algo_config", algorithm_config_registry.values())
@pytest.mark.parametrize("task", [MeltingPotTask.COMMONS_HARVEST__OPEN])
def test_all_algos(
self,
algo_config: AlgorithmConfig,
task: Task,
experiment_config,
cnn_sequence_config,
):
# To not run unsupported algo-task pairs
if not algo_config.supports_discrete_actions():
pytest.skip()
task = task.get_from_yaml()
experiment_config.checkpoint_interval = 0
experiment = Experiment(
algorithm_config=algo_config.get_from_yaml(),
model_config=cnn_sequence_config,
seed=0,
config=experiment_config,
task=task,
)
experiment.run()
@pytest.mark.parametrize("algo_config", [MasacConfig])
@pytest.mark.parametrize("task", _get_unique_envs(list(MeltingPotTask))[:10])
def test_all_tasks(
self,
algo_config: AlgorithmConfig,
task: Task,
experiment_config,
cnn_sequence_config,
):
task = task.get_from_yaml()
experiment_config.checkpoint_interval = 0
experiment = Experiment(
algorithm_config=algo_config.get_from_yaml(),
model_config=cnn_sequence_config,
seed=0,
config=experiment_config,
task=task,
)
experiment.run()
@pytest.mark.parametrize("algo_config", [MappoConfig])
@pytest.mark.parametrize("task", [MeltingPotTask.COINS])
@pytest.mark.parametrize("parallel_collection", [True, False])
def test_lstm(
self,
algo_config: AlgorithmConfig,
task: Task,
parallel_collection: bool,
experiment_config,
cnn_lstm_sequence_config,
):
algo_config = algo_config.get_from_yaml()
if algo_config.has_critic():
algo_config.share_param_critic = False
experiment_config.parallel_collection = parallel_collection
experiment_config.share_policy_params = False
task = task.get_from_yaml()
experiment = Experiment(
algorithm_config=algo_config,
model_config=cnn_lstm_sequence_config,
critic_model_config=cnn_lstm_sequence_config,
seed=0,
config=experiment_config,
task=task,
)
experiment.run()
@pytest.mark.parametrize("algo_config", algorithm_config_registry.values())
@pytest.mark.parametrize("task", [MeltingPotTask.COMMONS_HARVEST__OPEN])
def test_reloading_trainer(
self,
algo_config: AlgorithmConfig,
task: Task,
experiment_config,
cnn_sequence_config,
):
# To not run unsupported algo-task pairs
if not algo_config.supports_discrete_actions():
pytest.skip()
algo_config = algo_config.get_from_yaml()
ExperimentUtils.check_experiment_loading(
algo_config=algo_config,
model_config=cnn_sequence_config,
experiment_config=experiment_config,
task=task.get_from_yaml(),
)
@pytest.mark.parametrize("algo_config", [QmixConfig, IppoConfig, MasacConfig])
@pytest.mark.parametrize("task", [MeltingPotTask.COMMONS_HARVEST__OPEN])
@pytest.mark.parametrize("share_params", [True, False])
def test_share_policy_params(
self,
algo_config: AlgorithmConfig,
task: Task,
share_params,
experiment_config,
cnn_sequence_config,
):
experiment_config.share_policy_params = share_params
task = task.get_from_yaml()
experiment_config.checkpoint_interval = 0
experiment = Experiment(
algorithm_config=algo_config.get_from_yaml(),
model_config=cnn_sequence_config,
seed=0,
config=experiment_config,
task=task,
)
experiment.run()