-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathconftest.py
192 lines (170 loc) · 5.9 KB
/
conftest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import importlib
import pytest
from benchmarl.experiment import ExperimentConfig
from benchmarl.models import CnnConfig, GnnConfig, GruConfig, LstmConfig, MlpConfig
from benchmarl.models.common import ModelConfig, SequenceModelConfig
from torch import nn
_has_torch_geometric = importlib.util.find_spec("torch_geometric") is not None
if _has_torch_geometric:
import torch_geometric.nn.conv
@pytest.fixture
def experiment_config(tmp_path) -> ExperimentConfig:
save_dir = tmp_path
save_dir.mkdir(exist_ok=True)
experiment_config: ExperimentConfig = ExperimentConfig.get_from_yaml()
experiment_config.save_folder = str(save_dir)
experiment_config.max_n_iters = 3
experiment_config.max_n_frames = None
experiment_config.on_policy_n_minibatch_iters = 1
experiment_config.on_policy_minibatch_size = 2
experiment_config.on_policy_collected_frames_per_batch = (
experiment_config.off_policy_collected_frames_per_batch
) = 100
experiment_config.on_policy_n_envs_per_worker = (
experiment_config.off_policy_n_envs_per_worker
) = 2
experiment_config.parallel_collection = False
experiment_config.off_policy_n_optimizer_steps = 2
experiment_config.off_policy_train_batch_size = 3
experiment_config.off_policy_memory_size = 200
experiment_config.evaluation = True
experiment_config.render = True
experiment_config.evaluation_episodes = 2
experiment_config.evaluation_interval = 500
experiment_config.evaluation_static = False
experiment_config.loggers = ["csv"]
experiment_config.create_json = True
experiment_config.checkpoint_interval = 100
return experiment_config
@pytest.fixture
def mlp_sequence_config() -> ModelConfig:
return SequenceModelConfig(
model_configs=[
MlpConfig(num_cells=[8], activation_class=nn.Tanh, layer_class=nn.Linear),
MlpConfig(num_cells=[4], activation_class=nn.Tanh, layer_class=nn.Linear),
],
intermediate_sizes=[5],
)
@pytest.fixture
def cnn_sequence_config() -> ModelConfig:
return SequenceModelConfig(
model_configs=[
CnnConfig(
cnn_num_cells=[4, 3],
cnn_kernel_sizes=[3, 2],
cnn_strides=1,
cnn_paddings=0,
cnn_activation_class=nn.Tanh,
mlp_num_cells=[4],
mlp_activation_class=nn.Tanh,
mlp_layer_class=nn.Linear,
),
MlpConfig(num_cells=[4], activation_class=nn.Tanh, layer_class=nn.Linear),
],
intermediate_sizes=[5],
)
@pytest.fixture
def mlp_gnn_sequence_config() -> ModelConfig:
return SequenceModelConfig(
model_configs=[
MlpConfig(num_cells=[8], activation_class=nn.Tanh, layer_class=nn.Linear),
GnnConfig(
topology="full",
self_loops=False,
gnn_class=torch_geometric.nn.conv.GATv2Conv,
),
MlpConfig(num_cells=[4], activation_class=nn.Tanh, layer_class=nn.Linear),
],
intermediate_sizes=[5, 3],
)
@pytest.fixture
def cnn_gnn_sequence_config() -> ModelConfig:
return SequenceModelConfig(
model_configs=[
CnnConfig(
cnn_num_cells=[4, 3],
cnn_kernel_sizes=[3, 2],
cnn_strides=1,
cnn_paddings=0,
cnn_activation_class=nn.Tanh,
mlp_num_cells=[4],
mlp_activation_class=nn.Tanh,
mlp_layer_class=nn.Linear,
),
GnnConfig(
topology="full",
self_loops=False,
gnn_class=torch_geometric.nn.conv.GATv2Conv,
),
MlpConfig(num_cells=[4], activation_class=nn.Tanh, layer_class=nn.Linear),
],
intermediate_sizes=[5, 3],
)
@pytest.fixture
def gru_mlp_sequence_config() -> ModelConfig:
return SequenceModelConfig(
model_configs=[
GruConfig(
hidden_size=13,
mlp_num_cells=[],
mlp_activation_class=nn.Tanh,
mlp_layer_class=nn.Linear,
n_layers=1,
bias=True,
dropout=0,
compile=False,
),
MlpConfig(num_cells=[4], activation_class=nn.Tanh, layer_class=nn.Linear),
],
intermediate_sizes=[5],
)
@pytest.fixture
def lstm_mlp_sequence_config() -> ModelConfig:
return SequenceModelConfig(
model_configs=[
LstmConfig(
hidden_size=13,
mlp_num_cells=[],
mlp_activation_class=nn.Tanh,
mlp_layer_class=nn.Linear,
n_layers=1,
bias=True,
dropout=0,
compile=False,
),
MlpConfig(num_cells=[4], activation_class=nn.Tanh, layer_class=nn.Linear),
],
intermediate_sizes=[5],
)
@pytest.fixture
def cnn_lstm_sequence_config() -> ModelConfig:
return SequenceModelConfig(
model_configs=[
CnnConfig(
cnn_num_cells=[4, 3],
cnn_kernel_sizes=[3, 2],
cnn_strides=1,
cnn_paddings=0,
cnn_activation_class=nn.Tanh,
mlp_num_cells=[4],
mlp_activation_class=nn.Tanh,
mlp_layer_class=nn.Linear,
),
LstmConfig(
hidden_size=13,
mlp_num_cells=[],
mlp_activation_class=nn.Tanh,
mlp_layer_class=nn.Linear,
n_layers=1,
bias=True,
dropout=0,
compile=False,
),
],
intermediate_sizes=[5],
)