forked from jupyterhub/kubespawner
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjupyterhub_config.py
55 lines (43 loc) · 1.79 KB
/
jupyterhub_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
import socket
c.JupyterHub.spawner_class = 'kubespawner.KubeSpawner'
c.JupyterHub.ip = '0.0.0.0'
c.JupyterHub.hub_ip = '0.0.0.0'
# Don't try to cleanup servers on exit - since in general for k8s, we want
# the hub to be able to restart without losing user containers
c.JupyterHub.cleanup_servers = False
# First pulls can be really slow, so let's give it a big timeout
c.KubeSpawner.start_timeout = 60 * 5
# Our simplest user image! Optimized to just... start, and be small!
c.KubeSpawner.image_spec = 'jupyterhub/singleuser:0.8'
# Find the IP of the machine that minikube is most likely able to talk to
# Graciously used from https://stackoverflow.com/a/166589
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.connect(("8.8.8.8", 80))
host_ip = s.getsockname()[0]
s.close()
c.KubeSpawner.hub_connect_ip = host_ip
c.JupyterHub.hub_connect_ip = c.KubeSpawner.hub_connect_ip
c.KubeSpawner.service_account = 'default'
# Do not use any authentication at all - any username / password will work.
c.JupyterHub.authenticator_class = 'dummyauthenticator.DummyAuthenticator'
c.KubeSpawner.storage_pvc_ensure = False
c.JupyterHub.allow_named_servers = True
c.KubeSpawner.profile_list = [
{
'display_name': 'Training Env - Python',
'default': True,
'kubespawner_override': {
'image_spec': 'training/python:label',
'cpu_limit': 0.5,
},
'description': 'Something description of what is going on here, maybe a <a href="#">link too!</a>'
}, {
'display_name': 'Training Env - Datascience',
'kubespawner_override': {
'image_spec': 'training/datascience:label',
'cpu_limit': 0.2,
},
'description': 'Something description of how this is different, maybe a <a href="#">link too!</a>'
}
]