-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathget_genie_ckpt.py
56 lines (50 loc) · 1.9 KB
/
get_genie_ckpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import argparse
import sys
import torch
sys.path.append("..")
from src.models.collators import RebelCollator
from pathlib import Path
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert old GenIE checkpoint to new setting.")
parser.add_argument(
"--input_ckpt_dir", type=str, required=True, help="The directory containing the old checkpoint."
)
parser.add_argument("--output_ckpt_dir", type=str, required=True, help="The directory for the new checkpoint.")
parser.add_argument(
"--ckpt_name",
type=str,
default="genie_genre_r.ckpt",
help="The full checkpoint name (e.g. genie_genre_r.ckpt).",
)
args = parser.parse_args()
model = torch.load(f"{args.input_ckpt_dir}/{args.ckpt_name}")
hparams = model["hyper_parameters"]
hparams["decoding"] = hparams.pop("inference")
hparams["from_checkpoint"] = True
hparams["random_initialization"] = False
hparams.pop("model_name_or_path", None)
hparams["pretrained_model_name_or_path"] = "martinjosifoski/genie-rw"
hparams["hf_config"].update(
{
"min_length": 0,
"max_length": 256,
"early_stopping": False,
"encoder_no_repeat_ngram_size": 0,
"no_repeat_ngram_size": 0,
"temperature": 1.0,
"length_penalty": 1.0,
"forced_bos_token_id": 0,
}
)
hparams["tokenizer"].model_max_length = 256
collator = RebelCollator(
hparams["tokenizer"],
max_input_length=hparams["max_input_length"],
max_output_length=hparams["max_output_length"],
padding=True,
truncation=True,
)
hparams["collator"] = collator
Path(args.output_ckpt_dir).mkdir(exist_ok=True, parents=True)
torch.save(model, f"{args.output_ckpt_dir}/{args.ckpt_name}")
print("Checkpoint saved at:", f"{args.output_ckpt_dir}/{args.ckpt_name}")