-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathindex.js
236 lines (226 loc) · 6.42 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
const average = (data, radius, x0) => {
let sum = 0
let n = 0
let beyondLeftEdge = true
let beyondRightEdge = true
for (let x = x0 - radius; x <= x0 + radius; ++x) {
const y = data[x]
if (y !== null && y !== undefined) {
if (x <= x0) {
beyondLeftEdge = false
}
if (x >= x0) {
beyondRightEdge = false
}
sum += y
++n
}
}
if (beyondLeftEdge || beyondRightEdge) {
return data[x0]
}
return sum / n
}
const movingAverageStep = (data, radius = 2) => {
if (data === undefined) {
throw new Error('no data passed to movingAverageStep')
}
if (data === null) {
throw new Error('null data passed to movingAverageStep')
}
if (radius < 0) {
throw new Error(`negative radius ${radius} passed to movingAverageStep`)
}
const smoothed = []
for (let t = 0; t < data.length; ++t) {
smoothed.push(average(data, radius, t))
}
return smoothed
}
const leastSquares = (data, radius, x0) => {
if (radius === 0) {
return data[x0]
}
// See https://www.mathsisfun.com/data/least-squares-regression.html
let N = 0
let sumXY = 0
let sumX = 0
let sumY = 0
let sumXsq = 0
let beyondLeftEdge = true
let beyondRightEdge = true
for (let x = x0 - radius; x <= x0 + radius; ++x) {
const y = data[x]
if (y === null || y === undefined) {
continue
}
if (x <= x0) {
beyondLeftEdge = false
}
if (x >= x0) {
beyondRightEdge = false
}
++N
sumXY += x * y
sumX += x
sumY += y
sumXsq += x * x
}
if (beyondLeftEdge || beyondRightEdge) {
return data[x0]
}
const m = (N * sumXY - sumX * sumY) / (N * sumXsq - sumX * sumX)
const b = (sumY - m * sumX) / N
return m * x0 + b
}
const leastSquaresStep = (data, r = 2) => {
if (data === undefined) {
throw new Error('no data passed to leastSquaresStep')
}
if (data === null) {
throw new Error('null data passed to leastSquaresStep')
}
if (r < 0) {
throw new Error(`negative radius ${r} passed to leastSquaresStep`)
}
const smoothed = []
for (let t = 0; t < data.length; ++t) {
smoothed.push(leastSquares(data, r, t))
}
return smoothed
}
const expLeastSquares = (data, radius, x0) => {
if (radius === 0) {
return data[x0]
}
// See https://www.mathsisfun.com/data/least-squares-regression.html
let N = 0
let sumXY = 0
let sumX = 0
let sumY = 0
let sumXsq = 0
let beyondLeftEdge = true
let beyondRightEdge = true
for (let x = 0; x <= data.length; ++x) {
const y = data[x]
if (y === null || y === undefined) {
continue
}
if (x <= x0) {
beyondLeftEdge = false
}
if (x >= x0) {
beyondRightEdge = false
}
const weight = Math.exp(-Math.abs(x - x0) / radius)
N += weight
sumXY += x * y * weight
sumX += x * weight
sumY += y * weight
sumXsq += x * x * weight
}
if (beyondLeftEdge || beyondRightEdge) {
return data[x0]
}
const m = (N * sumXY - sumX * sumY) / (N * sumXsq - sumX * sumX)
const b = (sumY - m * sumX) / N
return m * x0 + b
}
const leastSquaresExponential = (data, r = 2) => {
if (data === undefined) {
throw new Error('no data passed to leastSquaresStep')
}
if (data === null) {
throw new Error('null data passed to leastSquaresStep')
}
if (r < 0) {
throw new Error(`negative radius ${r} passed to leastSquaresStep`)
}
const smoothed = []
for (let t = 0; t < data.length; ++t) {
smoothed.push(expLeastSquares(data, r, t))
}
return smoothed
}
const expAverage = (data, radius, x0) => {
if (radius === 0) {
return data[x0]
}
// See https://www.mathsisfun.com/data/least-squares-regression.html
let N = 0
let sumY = 0
let beyondLeftEdge = true
let beyondRightEdge = true
for (let x = 0; x <= data.length; ++x) {
const y = data[x]
if (y === null || y === undefined) {
continue
}
if (x <= x0) {
beyondLeftEdge = false
}
if (x >= x0) {
beyondRightEdge = false
}
const weight = Math.exp(-Math.abs(x - x0) / radius)
N += weight
sumY += y * weight
}
if (beyondLeftEdge || beyondRightEdge) {
return data[x0]
}
return sumY / N
}
const movingAverageExponential = (data, r = 2) => {
if (data === undefined) {
throw new Error('no data passed to movingAverageExponential')
}
if (data === null) {
throw new Error('null data passed to movingAverageExponential')
}
if (r < 0) {
throw new Error(`negative radius ${r} passed to movingAverageExponential`)
}
const smoothed = []
for (let t = 0; t < data.length; ++t) {
smoothed.push(expAverage(data, r, t))
}
return smoothed
}
const LOOKUP = {
leastSquares: {
exponential: leastSquaresExponential,
step: leastSquaresStep
},
movingAverage: {
exponential: movingAverageExponential,
step: movingAverageStep
}
}
/**
* Smooths data by replacing each point with the least-squared linear interpolations of the points in its neighborhood
* Can handle missing data, when there are `null` or `undefined` instead of numbers in the input data.
* An optional options argument can contain any of the following fields:
* * `radius`, defaulting to 2, specifies the neighborhood width extending from `radius` points below to `radius` points above the current point
* * `algorithm`, which can be one of
* * `'leastSquares'` (default) replace each point with the least-squared linear interpolations of the points in its neighborhood
* * `'movingAverage'` replace each point with the moving average of the points in its neighborhood
* * `falloff`, which cab be one of
* * `'exponential'` (default) give a weigh of each point that is an exponential decay with a time constant of the radius
* * `'step'` give equal weight to all `radius*2+1` points in the neighborhood, and no weight to points outside the radius
* @param {!Array<number>} data - time series of equally-spaced values.
* @param {!Object} [options={radius:2,algorithm:'leastSquares',falloff:'exponential'}
* @returns {!Array<number>} smoothed version of the input, with the same length
*/
const smoothish = (data, { radius = 2, algorithm = 'leastSquares', falloff = 'exponential' } = {}) => {
const func = (LOOKUP[algorithm] || {})[falloff]
if (!func) {
throw new Error(`
${{ radius, algorithm, falloff }}:
algorithm must be either 'leastSquares' or 'movingAverage'
falloff must be either 'exponential' or 'step'
`)
}
return func(data, radius)
}
module.exports = smoothish