-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLinearSystem.py
53 lines (45 loc) · 1.69 KB
/
LinearSystem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
class LinearSystem:
def __init__(self, Ts):
"""
Linear system with parameters, with sampling time parameter
:param Ts: sampling time
"""
self.m1 = 2 # kg
self.m2 = 2 # kg
self.k1 = 100 # N / m
self.k2 = 200 # N / m
self.d1 = 1 # Ns / m
self.d2 = 5 # Ns / m
self.Ts = Ts # s
# Continuous time system matrices
self.Ac = np.array([[0, 1, 0, 0],
[-(self.k1 + self.k2) / self.m1, -(self.d1 + self.d2) / self.m1, self.k2 / self.m1, self.d2 / self.m1],
[0, 0, 0, 1],
[self.k2 / self.m2, self.d2 / self.m2, -self.k2 / self.m2, -self.d2 / self.m2]])
self.Bc = np.array([[0],
[0],
[0],
[1 / self.m2]])
self.Cc = np.array([[1, 0, 0, 0]])
# State dimension
self.n = 4
# Number of outputs
self.m = 1
# Number of inputs
self.r = 1
def discretize_model(self):
"""
Zero-order hold estimation
:return:
"""
Ad = np.eye(self.n) + \
self.Ac * self.Ts + \
np.linalg.matrix_power(self.Ac, 2) * self.Ts ** 2 / 2 + \
np.linalg.matrix_power(self.Ac, 3) * self.Ts ** 3 / 6 + \
np.linalg.matrix_power(self.Ac, 4) * self.Ts ** 4 / 24 + \
np.linalg.matrix_power(self.Ac, 5) * self.Ts ** 5 / 120 + \
np.linalg.matrix_power(self.Ac, 6) * self.Ts ** 6 / 720
Bd = (Ad - np.eye(self.n)) @ np.linalg.inv(self.Ac) @ self.Bc
Cd = self.Cc
return Ad, Bd, Cd