-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript.js
155 lines (129 loc) · 5.75 KB
/
script.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
function fitness(chromosome) {
let attackingPairs = 0;
const n = chromosome.length;
for (let i = 0; i < n; i++) {
for (let j = i + 1; j < n; j++) {
if (chromosome[i] == chromosome[j] || Math.abs(chromosome[i] - chromosome[j]) == j - i) {
attackingPairs++;
}
}
}
return -attackingPairs;
}
function mutate(chromosome, mutationRate) {
if (Math.random() < mutationRate) {
const index = Math.floor(Math.random() * chromosome.length);
chromosome[index] = Math.floor(Math.random() * chromosome.length);
}
return chromosome;
}
function crossover(parent1, parent2) {
const point = Math.floor(Math.random() * (parent1.length - 1) + 1);
const child1 = parent1.slice(0, point).concat(parent2.slice(point));
const child2 = parent2.slice(0, point).concat(parent1.slice(point));
return [child1, child2];
}
function selectTournament(population, size=5) {
let tournament = [];
for (let i = 0; i < size; i++) {
tournament.push(population[Math.floor(Math.random() * population.length)]);
}
return tournament.reduce((a, b) => fitness(a) > fitness(b) ? a : b);
}
async function geneticAlgorithm(n, maxGenerations, populationSize, mutationRate) {
let population = [];
for (let i = 0; i < populationSize; i++) {
const individual = [];
for (let j = 0; j < n; j++) {
individual.push(Math.floor(Math.random() * n));
}
population.push(individual);
}
let bestSolution = null;
const generationStep = async (generation) => {
return new Promise((resolve) => {
setTimeout(() => {
const newPopulation = [];
// Elitism: keep the top 10% of the population - tentativa de algo
const eliteCount = Math.floor(0.1 * populationSize);
let elites = [...population].sort((a, b) => fitness(a) - fitness(b)).slice(0, eliteCount);
newPopulation.push(...elites);
for (let i = 0; i < (populationSize - eliteCount) / 2; i++) {
const parent1 = selectTournament(population);
const parent2 = selectTournament(population);
const [child1, child2] = crossover(parent1, parent2);
newPopulation.push(mutate(child1, mutationRate), mutate(child2, mutationRate));
}
const progressPercentage = (generation / maxGenerations) * 100;
updateProgress(progressPercentage);
population = newPopulation;
const bestIndividual = population.reduce((a, b) => fitness(a) > fitness(b) ? a : b);
console.log(fitness(bestIndividual));
if (fitness(bestIndividual) === 0) {
bestSolution = bestIndividual;
console.log(fitness(bestIndividual));
resolve(true);
} else {
resolve(false);
}
}, 0);
});
};
for (let generation = 0; generation < maxGenerations; generation++) {
const foundOptimal = await generationStep(generation);
if (foundOptimal) {
break;
}
}
bestSolution = bestSolution || population.reduce((a, b) => fitness(a) > fitness(b) ? a : b);
const bestFitness = fitness(bestSolution);
return { solution: bestSolution, fitness: bestFitness };
}
function prepareBoard() {
const n = parseInt(document.getElementById('nValue').value);
const boardElement = document.getElementById('board');
// Isso aqui em algum momento funcionou, mas agora parece não fazer diferença
// Calcula o tamanho máximo de uma célula para caber no tamanho máximo do tabuleiro.
const cellSize = Math.min(boardElement.clientWidth / n, boardElement.clientHeight / n);
boardElement.style.gridTemplateRows = `repeat(${n}, ${cellSize}px)`;
boardElement.style.gridTemplateColumns = `repeat(${n}, ${cellSize}px)`;
// Limpa o tabuleiro e cria as novas células.
boardElement.innerHTML = '';
for (let i = 0; i < n; i++) {
for (let j = 0; j < n; j++) {
const cell = document.createElement('div');
cell.style.width = `${cellSize}px`;
cell.style.height = `${cellSize}px`;
cell.classList.add('cell');
if ((i + j) % 2 === 0) {
cell.classList.add('white');
} else {
cell.classList.add('black');
}
boardElement.appendChild(cell);
}
}
}
function drawQueens(solution) {
const boardElement = document.getElementById('board');
const cells = boardElement.querySelectorAll('.cell');
for (let i = 0; i < solution.length; i++) {
const queenPosition = i * solution.length + solution[i];
cells[queenPosition].classList.add('queen');
}
}
async function startCalculation() {
const n = parseInt(document.getElementById('nValue').value);
prepareBoard(n);
const maxGenerations = parseInt(document.getElementById('numGenerations').value) || 1000; // Valor padrão 1000
const populationSize = parseInt(document.getElementById('populationSize').value) || 100; // Valor padrão 100
const mutationRate = parseFloat(document.getElementById('mutationRate').value) || 0.05; // Valor padrão 0.05
const result = await geneticAlgorithm(n, maxGenerations, populationSize, mutationRate);
drawQueens(result.solution); // Depois, coloque as rainhas
updateProgress(0);
document.getElementById("bestFitness").textContent = "Best Fitness: " + result.fitness;
}
function updateProgress(percentage) {
const progressBar = document.getElementById('progressBar');
progressBar.style.width = `${percentage}%`;
}