-
Notifications
You must be signed in to change notification settings - Fork 3
/
DESCRIPTION
34 lines (34 loc) · 1.14 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
Package: codacore
Title: Learning Sparse Log-Ratios for Compositional Data
Version: 0.0.4
Authors@R: c(
person("Elliott", "Gordon-Rodriguez", email = "[email protected]", role = c("aut", "cre")),
person("Thomas", "Quinn", email = "[email protected]", role = c("aut"))
)
Description: In the context of high-throughput genetic data,
CoDaCoRe identifies a set of sparse biomarkers that are
predictive of a response variable of interest (Gordon-Rodriguez
et al., 2021) <doi:10.1093/bioinformatics/btab645>. More
generally, CoDaCoRe can be applied to any regression problem
where the independent variable is Compositional (CoDa), to
derive a set of scale-invariant log-ratios (ILR or SLR) that
are maximally associated to a dependent variable.
License: MIT + file LICENSE
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.1.1
Depends:
R (>= 3.6.0)
Imports:
tensorflow (>= 2.1),
keras (>= 2.3),
pROC (>= 1.17),
R6 (>= 2.5),
gtools(>= 3.8)
SystemRequirements: TensorFlow (https://www.tensorflow.org/)
Suggests:
zCompositions,
testthat (>= 2.1.0),
knitr,
rmarkdown
VignetteBuilder: knitr