Skip to content

Delimiter issue #73

@redmosquitoo

Description

@redmosquitoo

I am reading table from SF using soql:

df = spark.read.format("com.springml.spark.salesforce").option("soql",sql).option("queryAll","true").option("sfObject",sf_table).option("bulk",bulk).option("pkChunking",pkChunking).option("version","51.0").option("timeout","99999999").option("username", login).option("password",password).load()

and whenever there is a combination of double-qoutes and commas in string it messes up my table schema, like so:

in source:
Column A | Column B | Column C
000AB | "text with, comma" | 123XX

read from SF in df :
Column A | Column B | Column C
000AB | ""text with | comma""

Is there any option to avoid such cases when this comma is treated as delimiter?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions