-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGAT_v0.72_valacc.py
844 lines (673 loc) · 29.4 KB
/
GAT_v0.72_valacc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
"""
DOMAIN ADAPTION Transformer for EEG Classification
Multi-branch + transformer (*cross attention*) + adversarial learning + adaptive center loss
Basic Version of the paper
------
Use conformer as the backbone.
Significant improvement than v0.65!!
Use the validation set to find the best model (with the best val_acc or val_loss)
"""
import argparse
import os
gpus = [1]
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(map(str, gpus))
import numpy as np
import math
import glob
import random
import itertools
import datetime
import time
import datetime
import sys
import scipy.io
import torchvision.transforms as transforms
from torchvision.utils import save_image, make_grid
from torch.utils.data import DataLoader
from torch.autograd import Variable
from torchsummary import summary
import torch.autograd as autograd
from torchvision.models import vgg19
import torch.nn as nn
import torch.nn.functional as F
import torch
import torch.nn.init as init
from torch.utils.data import Dataset
from PIL import Image
import torchvision.transforms as transforms
from sklearn.decomposition import PCA
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
from torch import nn
from torch import Tensor
from PIL import Image
from torchvision.transforms import Compose, Resize, ToTensor
from einops import rearrange, reduce, repeat
from einops.layers.torch import Rearrange, Reduce
from common_spatial_pattern import csp
import matplotlib.pyplot as plt
# from torch.utils.tensorboard import SummaryWriter
from torch.backends import cudnn
cudnn.benchmark = False
cudnn.deterministic = True
log_path = './results/best_val_acc/'
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
if hasattr(m, "bias") and m.bias is not None:
torch.nn.init.constant_(m.bias.data, 0.0)
elif classname.find("BatchNorm2d") != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
def compute_gradient_penalty(D, real_samples, fake_samples):
"""Calculates the gradient penalty loss for WGAN GP"""
# Random weight term for interpolation between real and fake samples
alpha = torch.cuda.FloatTensor(np.random.random((real_samples.size(0), 1, 1)))
# Get random interpolation between real and fake samples
interpolates = (alpha * real_samples + ((1 - alpha) * fake_samples)).requires_grad_(True)
d_interpolates = D(interpolates)
fake = Variable(torch.cuda.FloatTensor(np.ones(d_interpolates.shape)), requires_grad=False)
# Get gradient w.r.t. interpolates
gradients = autograd.grad(
outputs=d_interpolates,
inputs=interpolates,
grad_outputs=fake,
create_graph=True,
retain_graph=True,
only_inputs=True,
)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
return gradient_penalty
# TODO: Encoder is for source data, Decoder is for target data
class Feature_Extractor_Enc(nn.Module):
def __init__(self, emb_size):
# self.patch_size = patch_size
super().__init__()
self.temporal_spatial = nn.Sequential(
nn.Conv2d(1, 20, (1, 25), (1, 1)),
# nn.BatchNorm2d(40),
# nn.ELU(),
# nn.Dropout(0.3),
nn.Conv2d(20, 40, (22, 1), (1, 1)),
nn.BatchNorm2d(40),
nn.ELU(),
nn.Dropout(0.3),
nn.AvgPool2d((1, 75), (1, 15)),
nn.Dropout(0.5),
)
self.spatial_temporal = nn.Sequential(
nn.Conv2d(1, 20, (22, 1), (1, 1)),
# nn.BatchNorm2d(40),
# nn.ELU(),
# nn.Dropout(0.3),
nn.Conv2d(20, 40, (1, 25), (1, 1)),
nn.BatchNorm2d(40),
nn.ELU(),
nn.Dropout(0.3),
nn.AvgPool2d((1, 75), (1, 15)),
nn.Dropout(0.5),
)
self.projection = nn.Sequential(
nn.Conv2d(40, emb_size, (1, 1), stride=(1, 1)), # 5 is better than 1
Rearrange('b e (h) (w) -> b (h w) e'),
)
def forward(self, X: Tensor) -> Tensor:
x, y = X[0], X[1]
x = self.temporal_spatial(x) + self.spatial_temporal(x)
x = self.projection(x)
y = self.temporal_spatial(y) + self.spatial_temporal(y)
y = self.projection(y)
return (x, y)
class MultiHeadAttention(nn.Module):
def __init__(self, emb_size, num_heads, dropout):
super().__init__()
self.emb_size = emb_size
self.num_heads = num_heads
self.keys = nn.Linear(emb_size, emb_size)
self.queries = nn.Linear(emb_size, emb_size)
self.values = nn.Linear(emb_size, emb_size)
self.att_drop = nn.Dropout(dropout)
self.projection = nn.Linear(emb_size, emb_size)
def forward(self, x: Tensor, mask: Tensor = None) -> Tensor:
queries = rearrange(self.queries(x), "b n (h d) -> b h n d", h=self.num_heads)
keys = rearrange(self.keys(x), "b n (h d) -> b h n d", h=self.num_heads)
values = rearrange(self.values(x), "b n (h d) -> b h n d", h=self.num_heads)
energy = torch.einsum('bhqd, bhkd -> bhqk', queries, keys) # batch, num_heads, query_len, key_len
if mask is not None:
fill_value = torch.finfo(torch.float32).min
energy.mask_fill(~mask, fill_value)
scaling = self.emb_size ** (1 / 2)
att = F.softmax(energy / scaling, dim=-1)
att = self.att_drop(att)
out = torch.einsum('bhal, bhlv -> bhav ', att, values)
out = rearrange(out, "b h n d -> b n (h d)")
out = self.projection(out)
return out
class MultiHeadAttention_Dec(nn.Module):
def __init__(self, emb_size, num_heads, dropout):
super().__init__()
self.emb_size = emb_size
self.num_heads = num_heads
self.keys = nn.Linear(emb_size, emb_size)
self.queries = nn.Linear(emb_size, emb_size)
self.values = nn.Linear(emb_size, emb_size)
self.att_drop = nn.Dropout(dropout)
self.projection = nn.Linear(emb_size, emb_size)
def forward(self, x: Tensor, mask: Tensor = None) -> Tensor:
# x = X[1] # target data
queries = rearrange(self.queries(x), "b n (h d) -> b h n d", h=self.num_heads)
keys = rearrange(self.keys(x), "b n (h d) -> b h n d", h=self.num_heads)
values = rearrange(self.values(x), "b n (h d) -> b h n d", h=self.num_heads)
energy = torch.einsum('bhqd, bhkd -> bhqk', queries, keys) # batch, num_heads, query_len, key_len
if mask is not None:
fill_value = torch.finfo(torch.float32).min
energy.mask_fill(~mask, fill_value)
scaling = self.emb_size ** (1 / 2)
att = F.softmax(energy / scaling, dim=-1)
att = self.att_drop(att)
out = torch.einsum('bhal, bhlv -> bhav ', att, values)
out = rearrange(out, "b h n d -> b n (h d)")
out = self.projection(out)
return out
class MultiHeadAttention_Enc_Dec(nn.Module):
def __init__(self, emb_size, num_heads, dropout):
super().__init__()
self.emb_size = emb_size
self.num_heads = num_heads
self.keys = nn.Linear(emb_size, emb_size)
self.queries = nn.Linear(emb_size, emb_size)
self.values = nn.Linear(emb_size, emb_size)
self.att_drop = nn.Dropout(dropout)
self.projection = nn.Linear(emb_size, emb_size)
def forward(self, X, mask: Tensor = None) -> Tensor:
x_enc, x_dec = X[0], X[1] # enc is target, dec is source
queries = rearrange(self.queries(x_dec), "b n (h d) -> b h n d", h=self.num_heads)
keys = rearrange(self.keys(x_dec), "b n (h d) -> b h n d", h=self.num_heads)
values = rearrange(self.values(x_enc), "b n (h d) -> b h n d", h=self.num_heads)
energy = torch.einsum('bhqd, bhkd -> bhqk', queries, keys) # batch, num_heads, query_len, key_len
if mask is not None:
fill_value = torch.finfo(torch.float32).min
energy.mask_fill(~mask, fill_value)
scaling = self.emb_size ** (1 / 2)
att = F.softmax(energy / scaling, dim=-1)
att = self.att_drop(att)
out = torch.einsum('bhal, bhlv -> bhav ', att, values)
out = rearrange(out, "b h n d -> b n (h d)")
out = self.projection(out)
return out
class ResidualAdd(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, X, **kwargs):
x, y = X[0], X[1]
res = y
y = self.fn(y, **kwargs)
y += res
return (x, y)
class ResidualAdd_src(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, X, **kwargs):
x, y = X[0], X[1]
res = x
x = self.fn(x, **kwargs)
x += res
return (x, y)
class ResidualAdd_Dec1(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, X, **kwargs):
x, y = X[0], X[1]
res = x
x = self.fn(x, **kwargs)
x += res
return (x, y)
class ResidualAdd_Dec2(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
self.lm = nn.LayerNorm(40)
def forward(self, X, **kwargs):
x, y = X[0], X[1]
res = x
x = self.lm(x)
x = self.fn((x, y), **kwargs)
x += res
return (x, y)
class FeedForwardBlock(nn.Sequential):
def __init__(self, emb_size, expansion, drop_p):
super().__init__(
nn.Linear(emb_size, expansion * emb_size),
nn.GELU(),
nn.Dropout(drop_p),
nn.Linear(expansion * emb_size, emb_size),
)
class GELU(nn.Module):
def forward(self, input: Tensor) -> Tensor:
return input*0.5*(1.0+torch.erf(input/math.sqrt(2.0)))
class TransformerEncoderBlock(nn.Sequential):
def __init__(self,
emb_size,
num_heads=10,
drop_p=0.5,
forward_expansion=4,
forward_drop_p=0.5):
super().__init__(
ResidualAdd(nn.Sequential(
nn.LayerNorm(emb_size),
MultiHeadAttention(emb_size, num_heads, drop_p),
nn.Dropout(drop_p)
)),
ResidualAdd(nn.Sequential(
nn.LayerNorm(emb_size),
FeedForwardBlock(
emb_size, expansion=forward_expansion, drop_p=forward_drop_p),
nn.Dropout(drop_p)
)
))
class TransformerDecoderBlock(nn.Sequential):
def __init__(self,
emb_size,
num_heads=10,
drop_p=0.5,
forward_expansion=4,
forward_drop_p=0.5):
super().__init__(
ResidualAdd_Dec1(nn.Sequential(
nn.LayerNorm(emb_size),
MultiHeadAttention_Dec(emb_size, num_heads, drop_p),
nn.Dropout(drop_p)
)),
ResidualAdd_Dec2(nn.Sequential(
MultiHeadAttention_Enc_Dec(emb_size, num_heads, drop_p),
nn.Dropout(drop_p)
)),
ResidualAdd_Dec1(nn.Sequential(
nn.LayerNorm(emb_size),
FeedForwardBlock(
emb_size, expansion=forward_expansion, drop_p=forward_drop_p),
nn.Dropout(drop_p)
)
))
class TransformerBlock(nn.Sequential):
def __init__(self, emb_size):
super().__init__(
TransformerEncoderBlock(emb_size),
TransformerDecoderBlock(emb_size)
)
class Transformer(nn.Sequential):
def __init__(self, depth, emb_size):
super().__init__(*[TransformerBlock(emb_size) for _ in range(depth)])
class Feature_Extractor(nn.Sequential):
def __init__(self, emb_size=40, depth=3):
super().__init__(
Feature_Extractor_Enc(emb_size),
Transformer(depth, emb_size)
)
class Classifier(nn.Sequential):
def __init__(self, emb_size=40, n_classes=4):
super().__init__()
self.clshead = nn.Sequential(
Reduce('b n e -> b e', reduction='mean'),
nn.LayerNorm(emb_size),
nn.Linear(emb_size, n_classes)
)
self.fc = nn.Sequential(
nn.Linear(2440, 256),
nn.ELU(),
nn.Dropout(0.5),
nn.Linear(256, 32),
nn.ELU(),
nn.Dropout(0.3),
nn.Linear(32, 4)
)
def forward(self, x):
x = x.contiguous().view(x.size(0), -1)
out = self.fc(x)
return out
class Discriminator(nn.Sequential):
def __init__(self, emb_size=40, n_classes=2, **kwargs):
super().__init__(
)
self.clshead = nn.Sequential(
Reduce('b n e -> b e', reduction='mean'),
nn.LayerNorm(emb_size),
nn.Linear(emb_size, n_classes)
)
def forward(self, x):
x = self.clshead(x)
return x
class DATrans():
def __init__(self, nsub):
super(DATrans, self).__init__()
self.batch_size = 64
self.n_epochs = 1000
self.c_dim = 4
self.lr = 0.0002 # original 0.0001
self.b1 = 0.5
self.b2 = 0.999
self.dimension = (61, 40) # (475, 20)
self.lambda_cen = 0.5
self.lambda_cls = 2
# self.lambda_cls_irr = 0.5
self.lambda_gp = 10
self.alpha = 0.0002
self.nSub = nsub
self.root = './data/strict_TE/'
self.log_write = open(log_path + "log_subject%d.txt" % self.nSub, "w")
self.Tensor = torch.cuda.FloatTensor
self.LongTensor = torch.cuda.LongTensor
self.criterion_l1 = torch.nn.L1Loss().cuda()
self.criterion_l2 = torch.nn.MSELoss().cuda()
self.criterion_cls = torch.nn.CrossEntropyLoss().cuda()
self.Feature_Extractor = nn.DataParallel(Feature_Extractor()).cuda()
self.Classifier = nn.DataParallel(Classifier()).cuda()
self.Discriminator = nn.DataParallel(Discriminator()).cuda()
self.centers = {}
def interaug(self, timg, label):
aug_data = []
aug_label = []
for cls4aug in range(4):
cls_idx = np.where(label == cls4aug + 1)
tmp_data = timg[cls_idx]
tmp_label = label[cls_idx]
tmp_aug_data = np.zeros((int(self.batch_size / 8), 1, 22, 1000))
for ri in range(int(self.batch_size / 8)):
for rj in range(8):
rand_idx = np.random.randint(0, tmp_data.shape[0], 8)
tmp_aug_data[ri, :, :, rj * 125:(rj + 1) * 125] = tmp_data[rand_idx[rj], :, :,
rj * 125:(rj + 1) * 125]
aug_data.append(tmp_aug_data)
aug_label.append(tmp_label[:int(self.batch_size / 8)])
aug_data = np.concatenate(aug_data)
aug_label = np.concatenate(aug_label)
aug_shuffle = np.random.permutation(len(aug_data))
aug_data = aug_data[aug_shuffle, :, :]
aug_label = aug_label[aug_shuffle]
aug_data = torch.from_numpy(aug_data).cuda()
aug_data = aug_data.float()
aug_label = torch.from_numpy(aug_label-1).cuda()
aug_label = aug_label.long()
return aug_data, aug_label
def get_data(self): # get source and target data
source_data = []
source_label = []
# to get the data of source subject
for sub_index in range(9):
sub_index += 1
if sub_index != self.nSub:
tmp = scipy.io.loadmat(self.root + 'A0%dT.mat' % sub_index)
tmp_one_sub_data = tmp['data']
tmp_one_sub_label = tmp['label']
tmp_one_sub_data = np.transpose(tmp_one_sub_data, (2, 1, 0))
tmp_one_sub_data = np.expand_dims(tmp_one_sub_data, axis=1)
tmp_one_sub_label = np.transpose(tmp_one_sub_label)
tmp_one_sub_label = tmp_one_sub_label[0]
source_data.append(tmp_one_sub_data)
source_label.append(tmp_one_sub_label)
self.source_data = np.concatenate(source_data)
self.source_label = np.concatenate(source_label)
# shuffle
shuffle_num = np.random.permutation(len(self.source_data))
self.source_data = self.source_data[shuffle_num, :, :, :]
self.source_label = self.source_label[shuffle_num]
# to get the data of target subject
self.target_tmp = scipy.io.loadmat(self.root + 'A0%dT.mat' % self.nSub)
self.train_data = self.target_tmp['data']
self.train_label = self.target_tmp['label']
# self.train_data = self.train_data[250:1000, :, :]
self.train_data = np.transpose(self.train_data, (2, 1, 0))
self.train_data = np.expand_dims(self.train_data, axis=1)
self.train_label = np.transpose(self.train_label)
self.target_data = self.train_data
self.target_label = self.train_label[0]
# shuffle target data
shuffle_num = np.random.permutation(len(self.target_data))
self.target_data = self.target_data[shuffle_num, :, :, :]
self.target_label = self.target_label[shuffle_num]
# val set
self.val_data = self.target_data[:32]
self.val_label = self.target_label[:32]
# target set
self.target_data = self.target_data[32:]
self.target_label = self.target_label[32:]
# correspond to the number of source data
tmp_d = self.target_data
tmp_l = self.target_label
self.full_data = np.concatenate([tmp_d, tmp_d, tmp_d, tmp_d, tmp_d, tmp_d, tmp_d, tmp_d, tmp_d])
self.full_label = np.concatenate([tmp_l, tmp_l, tmp_l, tmp_l, tmp_l, tmp_l, tmp_l, tmp_l, tmp_l])
# test data
# to get the data of target subject
self.test_tmp = scipy.io.loadmat(self.root + 'A0%dE.mat' % self.nSub)
self.test_data = self.test_tmp['data']
self.test_label = self.test_tmp['label']
# self.train_data = self.train_data[250:1000, :, :]
self.test_data = np.transpose(self.test_data, (2, 1, 0))
self.test_data = np.expand_dims(self.test_data, axis=1)
self.test_label = np.transpose(self.test_label)
self.test_data = self.test_data
self.test_label = self.test_label[0]
return self.source_data, self.source_label, self.full_data, self.full_label, self.val_data, self.val_label, self.test_data, self.test_label
def update_lr(self, optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def update_centers(self, feature, label):
deltac = {}
count = {}
count[0] = 0
for i in range(len(label)):
l = label[i]
if l in deltac:
deltac[l] += self.centers[l]-feature[i]
else:
deltac[l] = self.centers[l]-feature[i]
if l in count:
count[l] += 1
else:
count[l] = 1
for ke in deltac.keys():
deltac[ke] = deltac[ke]/(count[ke]+1)
return deltac
def train(self):
self.Feature_Extractor.apply(weights_init_normal)
self.Classifier.apply(weights_init_normal)
self.Discriminator.apply(weights_init_normal)
sour_img, sour_label, img, label, val_data, val_label, test_data, test_label = self.get_data()
sour_shuflle_num = np.random.permutation(len(sour_img))
sour_img = sour_img[sour_shuflle_num, :, :, :]
sour_label = sour_label[sour_shuflle_num]
sour_img = torch.from_numpy(sour_img)
sour_label = torch.from_numpy(sour_label - 1)
img = torch.from_numpy(img)
label = torch.from_numpy(label - 1)
val_data = torch.from_numpy(val_data)
val_label = torch.from_numpy(val_label - 1)
dataset = torch.utils.data.TensorDataset(img, label, sour_img, sour_label)
self.dataloader = torch.utils.data.DataLoader(dataset=dataset, batch_size=self.batch_size, shuffle=True)
test_data = torch.from_numpy(test_data)
test_label = torch.from_numpy(test_label - 1)
test_dataset = torch.utils.data.TensorDataset(test_data, test_label)
self.test_dataloader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=self.batch_size, shuffle=True)
for i in range(self.c_dim):
self.centers[i] = torch.randn(self.dimension)
self.centers[i] = self.centers[i].cuda()
# Optimizers
self.optimizer = torch.optim.Adam(itertools.chain(self.Feature_Extractor.parameters(), self.Classifier.parameters()), lr=self.lr, betas=(self.b1, self.b2))
self.optimizer_dis = torch.optim.Adam(self.Discriminator.parameters(), lr=self.lr, betas=(self.b1, self.b2))
bestAcc = 0
averAcc = 0
num = 0
gamma = 1
best_acc_val = 0
for e in range(self.n_epochs):
tacc = 0
tnum = 0
self.Feature_Extractor.train()
self.Classifier.train()
self.Discriminator.train()
for i, (img, label, sour_img, sour_label) in enumerate(self.dataloader):
img = Variable(img.type(self.Tensor))
label = Variable(label.type(self.LongTensor))
sour_img = Variable(sour_img.type(self.Tensor))
sour_label = Variable(sour_label.type(self.LongTensor))
# --------------
# Train the domain discriminator
# --------------
# if i > 20 & (i + 1) % 1 == 0:
if (i + 1) % 1 == 0:
self.optimizer_dis.zero_grad()
(sour_feature, feature) = self.Feature_Extractor((sour_img, img))
# discriminator
pre_dom = self.Discriminator(feature.detach())
pre_dom_sour = self.Discriminator(sour_feature.detach())
# Adversarial loss
gradient_penalty = compute_gradient_penalty(self.Discriminator, feature, sour_feature)
loss_D_GAN = - torch.mean(pre_dom) + torch.mean(pre_dom_sour) + self.lambda_gp * gradient_penalty
loss_D = loss_D_GAN
loss_D.backward()
self.optimizer_dis.step()
# --------------
# Train the united networks, including the encoder and the classifier
# --------------
if (i + 1) % 1 == 0:
self.optimizer.zero_grad()
aug_data, aug_label = self.interaug(self.target_data, self.target_label)
img = torch.cat((img[:32], aug_data))
label = torch.cat((label[:32], aug_label))
(sour_feature, feature) = self.Feature_Extractor((sour_img, img))
# classifier
out_cls = self.Classifier(feature)
sour_out_cls = self.Classifier(sour_feature)
# discriminator
pre_cls_fake = self.Discriminator(sour_feature)
# Classification loss
loss_cls_targ = self.criterion_cls(out_cls, label)
# writer.add_scalar('Joint/cls_target', loss_cls_targ, e)
# writer.flush()
loss_cls_sour = self.criterion_cls(sour_out_cls, sour_label)
# writer.add_scalar('Joint/cls_source', loss_cls_sour, e)
# writer.flush()
loss_Joint_cls = loss_cls_targ + loss_cls_sour
# Training accuracy for target data
for tk in range(len(label)):
tnum = tnum + 1
train_pred = torch.max(out_cls, 1)[1]
if train_pred[tk] == label[tk]:
tacc = tacc + 1
# Adversarial loss
loss_Joint_adv = - torch.mean(pre_cls_fake)
# Central loss
cen_feature_st = torch.cat((feature, sour_feature), axis=0) # source and target
cen_label_st = torch.cat((label, sour_label))
cen_feature = feature
cen_label = label
nplabela = cen_label_st.cpu().numpy()
# Center loss
loss_Cen = 0
for k in range(len(cen_label_st)):
la = nplabela[k]
if k == 0:
loss_Cen = self.criterion_l2(self.centers[la], cen_feature_st[k])
else:
loss_Cen += self.criterion_l2(self.centers[la], cen_feature_st[k])
# writer.add_scalar('Joint/cen', loss_Cen, e)
# writer.flush()
loss_U = loss_Joint_cls + loss_Joint_adv + self.lambda_cen/5 * loss_Cen
# writer.add_scalar('Total/Joint', loss_U, e)
# writer.flush()
loss_U.backward()
self.optimizer.step()
# update centers
deltacA = self.update_centers(cen_feature, cen_label.cpu().numpy())
with torch.no_grad():
for ke in deltacA.keys():
self.centers[ke] = self.centers[ke] - self.alpha * deltacA[ke]
tacc = 1.0 * tacc / tnum
if (e + 1) % 1 == 0:
self.Feature_Extractor.eval()
self.Classifier.eval()
# self.Discriminator.eval()
with torch.no_grad():
vacc = 0
vnum = 0
val_data = Variable(val_data.type(self.Tensor))
val_label = Variable(val_label.type(self.LongTensor))
(_, vfeature) = self.Feature_Extractor((val_data, val_data))
vCls = self.Classifier(vfeature)
y_pred = torch.max(vCls, 1)[1]
loss_cls_val = self.criterion_cls(vCls, val_label)
for k in range(len(val_label)):
vnum = vnum + 1
if y_pred[k] == val_label[k]:
vacc = vacc + 1
vacc = 1.0 * vacc / vnum
if vacc > best_acc_val:
best_acc_val = vacc
best_epoch = e
torch.save(self.Feature_Extractor.state_dict(), "model/sub%d_Enc_ac1.pth" % self.nSub)
torch.save(self.Classifier.state_dict(), "model/sub%d_Cls_ac1.pth" % self.nSub)
torch.save(self.Discriminator.state_dict(), "model/sub%d_Dis_ac1.pth" % self.nSub)
print(
'Epoch: %d Loss_D: %.4f Loss_G: %.4f Loss_cls_sour: %.4f Loss_cls_targ: %.4f Loss_cen: %.4f Train_acc: %.5f Val_loss: %.5f Val_acc: %.5f'
% (e, loss_D, loss_Joint_adv, loss_cls_sour, loss_cls_targ, loss_Cen, tacc, loss_cls_val, vacc))
self.Feature_Extractor.load_state_dict(torch.load("model/sub%d_Enc_ac1.pth" % self.nSub))
self.Classifier.load_state_dict(torch.load("model/sub%d_Cls_ac1.pth" % self.nSub))
self.Feature_Extractor.eval()
self.Classifier.eval()
with torch.no_grad():
acc = 0
num = 0
test_data = Variable(test_data.type(self.Tensor))
test_label = Variable(test_label.type(self.LongTensor))
(feature, feature) = self.Feature_Extractor((test_data, test_data))
Cls = self.Classifier(feature)
y_pred = torch.max(Cls, 1)[1]
for k in range(len(test_label)):
num = num + 1
if y_pred[k] == test_label[k]:
acc = acc + 1
acc = 1.0 * acc / num
self.log_write.write(str(e) + " " + str(acc) + "\n")
averAcc = averAcc / num
print('The best epoch is:', best_epoch)
print('The test accuracy is:', acc)
self.log_write.write('The best epoch is: ' + str(best_epoch) + "\n")
self.log_write.write('The test accuracy is: ' + str(acc) + "\n")
return best_epoch, acc
# writer.close()
def main():
best = 0
aver = 0
result_write = open(log_path + "sub_result.txt", "w")
for i in range(9):
starttime = datetime.datetime.now()
seed_n = np.random.randint(2022)
print('seed is ' + str(seed_n))
random.seed(seed_n)
np.random.seed(seed_n)
torch.manual_seed(seed_n)
torch.cuda.manual_seed(seed_n)
torch.cuda.manual_seed_all(seed_n)
datrans = DATrans(i + 1)
best_epoch, acc = datrans.train()
result_write.write('Subject ' + str(i + 1) + ' : ' + 'The best epoch is: ' + str(best_epoch) + "\n")
result_write.write('Subject ' + str(i + 1) + ' : ' + 'The average accuracy is: ' + str(acc) + "\n")
# best = best + bestAcc
aver = aver + acc
endtime = datetime.datetime.now()
print('subject %d duration: ' % (i + 1) + str(endtime - starttime))
best = best / 9
aver = aver / 9
result_write.write('The average Aver accuracy is: ' + str(aver) + "\n")
result_write.close()
if __name__ == "__main__":
print(time.asctime(time.localtime(time.time())))
main()
print(time.asctime(time.localtime(time.time())))