forked from NVlabs/stylegan2-ada
-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathgrid_vid.py
95 lines (77 loc) · 3.45 KB
/
grid_vid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
"""
Author: lzhbrian (https://lzhbrian.me)
Date: 2020.1.20
Note: mainly modified from: https://github.com/tkarras/progressive_growing_of_gans/blob/master/util_scripts.py#L50
"""
import numpy as np
from PIL import Image
import os
import scipy
import pickle
import moviepy
import dnnlib
import dnnlib.tflib as tflib
from tqdm import tqdm
from pathlib import Path
import typer
def load_net(fpath):
tflib.init_tf()
with open(fpath, 'rb') as stream:
_G, _D, Gs = pickle.load(stream, encoding='latin1')
return Gs
fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
def create_image_grid(images, grid_size=None):
assert images.ndim == 3 or images.ndim == 4
num, img_w, img_h = images.shape[0], images.shape[-1], images.shape[-2]
if grid_size is not None:
grid_w, grid_h = tuple(grid_size)
else:
grid_w = max(int(np.ceil(np.sqrt(num))), 1)
grid_h = max((num - 1) // grid_w + 1, 1)
grid = np.zeros(list(images.shape[1:-2]) + [grid_h * img_h, grid_w * img_w], dtype=images.dtype)
for idx in range(num):
x = (idx % grid_w) * img_w
y = (idx // grid_w) * img_h
grid[..., y : y + img_h, x : x + img_w] = images[idx]
return grid
# grid_size=[4,4], mp4_fps=25, duration_sec=10.0, smoothing_sec=2.0, truncation_psi=0.7)
from typing import Tuple
def generate_interpolation_video(net: Path,
mp4: Path = Path("output.mp4"),
truncation_psi:float =0.5,
grid_size: Tuple[int, int]=(1,1),
duration_sec:float =60.0,
smoothing_sec:float =1.0,
mp4_fps:int=30,
mp4_codec='libx264',
random_seed:int = 1000,
minibatch_size:int = 8,
output_width: int = typer.Option(None)):
Gs = load_net(net)
num_frames = int(np.rint(duration_sec * mp4_fps))
random_state = np.random.RandomState(random_seed)
print('Generating latent vectors...')
shape = [num_frames, np.prod(grid_size)] + Gs.input_shape[1:] # [frame, image, channel, component]
all_latents = random_state.randn(*shape).astype(np.float32)
all_latents = scipy.ndimage.gaussian_filter(all_latents, [smoothing_sec * mp4_fps] + [0] * len(Gs.input_shape), mode='wrap')
all_latents /= np.sqrt(np.mean(np.square(all_latents)))
# Frame generation func for moviepy.
def make_frame(t):
frame_idx = int(np.clip(np.round(t * mp4_fps), 0, num_frames - 1))
latents = all_latents[frame_idx]
labels = np.zeros([latents.shape[0], 0], np.float32)
images = Gs.run(latents, None, truncation_psi=truncation_psi, randomize_noise=False, output_transform=fmt, minibatch_size=minibatch_size)
images = images.transpose(0, 3, 1, 2) #NHWC -> NCHW
grid = create_image_grid(images, grid_size).transpose(1, 2, 0) # HWC
if grid.shape[2] == 1:
grid = grid.repeat(3, 2) # grayscale => RGB
return grid
# Generate video.
import moviepy.editor # pip install moviepy
c = moviepy.editor.VideoClip(make_frame, duration=duration_sec)
if output_width:
c = c.resize(width=output_width)
c.write_videofile(str(mp4), fps=mp4_fps, codec=mp4_codec)
return c
if __name__ == "__main__":
typer.run(generate_interpolation_video)