forked from NVlabs/stylegan2-ada
-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathgenerate.py
executable file
·816 lines (676 loc) · 35.8 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""Generate images using pretrained network pickle."""
import argparse
import sys
import os
import subprocess
import pickle
import re
import scipy
import numpy as np
from numpy import linalg
import PIL.Image
import dnnlib
import dnnlib.tflib as tflib
os.environ['PYGAME_HIDE_SUPPORT_PROMPT'] = "hide"
import moviepy.editor
from opensimplex import OpenSimplex
import warnings # mostly numpy warnings for me
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=DeprecationWarning)
#----------------------------------------------------------------------------
def create_image_grid(images, grid_size=None):
'''
Args:
images (np.array): images to place on the grid
grid_size (tuple(int, int)): size of grid (grid_w, grid_h)
Returns:
grid (np.array): image grid of size grid_size
'''
# Some sanity check:
assert images.ndim == 3 or images.ndim == 4
num, img_h, img_w = images.shape[0], images.shape[1], images.shape[2]
if grid_size is not None:
grid_w, grid_h = tuple(grid_size)
else:
grid_w = max(int(np.ceil(np.sqrt(num))), 1)
grid_h = max((num - 1) // grid_w + 1, 1)
# Get the grid
grid = np.zeros(
[grid_h * img_h, grid_w * img_w] + list(images.shape[-1:]), dtype=images.dtype
)
for idx in range(num):
x = (idx % grid_w) * img_w
y = (idx // grid_w) * img_h
grid[y : y + img_h, x : x + img_w, ...] = images[idx]
return grid
#----------------------------------------------------------------------------
def generate_images(network_pkl, seeds, truncation_psi, outdir, class_idx=None, dlatents_npz=None, grid=False, save_vector=False, fixnoise=False, jpg_quality=0):
tflib.init_tf()
print('Loading networks from "%s"...' % network_pkl)
with dnnlib.util.open_url(network_pkl) as fp:
_G, _D, Gs = pickle.load(fp)
os.makedirs(outdir, exist_ok=True)
if(save_vector):
os.makedirs(outdir+"/vectors", exist_ok=True)
# Rendering format
optimized = bool(jpg_quality)
image_format = 'jpg' if jpg_quality else 'png'
jpg_quality = int(np.clip(jpg_quality, 1, 95)) # 'quality' keyword option ignored for PNG encoding
# Render images for a given dlatent vector.
if dlatents_npz is not None:
print(f'Generating images from dlatents file "{dlatents_npz}"')
dlatents = np.load(dlatents_npz)['dlatents']
max_l = 2 * int(np.log2(Gs.output_shape[-1]) - 1) # max_l=18 for 1024x1024 models
if dlatents.shape[1:] != (max_l, 512): # [N, max_l, 512]
actual_size = int(2**(dlatents.shape[1]//2+1))
print(f'''Mismatch of loaded dlatents and network! dlatents was created with network of size: {actual_size}\n
{network_pkl} is of size {Gs.output_shape[-1]}''')
sys.exit(1)
imgs = Gs.components.synthesis.run(dlatents, output_transform=dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True))
for i, img in enumerate(imgs):
fname = f'{outdir}/dlatent{i:02d}.{image_format}'
print (f'Saved {fname}')
PIL.Image.fromarray(img, 'RGB').save(fname, optimize=optimized, quality=jpg_quality)
return
# Render images for dlatents initialized from random seeds.
Gs_kwargs = {
'output_transform': dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True),
'randomize_noise': False
}
if truncation_psi is not None:
Gs_kwargs['truncation_psi'] = truncation_psi
noise_vars = [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')]
label = np.zeros([1] + Gs.input_shapes[1][1:])
if class_idx is not None:
label[:, class_idx] = 1
images = []
for seed_idx, seed in enumerate(seeds):
print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds)))
rnd = np.random.RandomState(seed)
z = rnd.randn(1, *Gs.input_shape[1:]) # [minibatch, component]
if(fixnoise):
noise_rnd = np.random.RandomState(1) # fix noise
tflib.set_vars({var: noise_rnd.randn(*var.shape.as_list()) for var in noise_vars}) # [height, width]
else:
tflib.set_vars({var: rnd.randn(*var.shape.as_list()) for var in noise_vars}) # [height, width]
image = Gs.run(z, label, **Gs_kwargs) # [minibatch, height, width, channel]
images.append(image[0])
PIL.Image.fromarray(image[0], 'RGB').save(f'{outdir}/seed{seed:04d}.{image_format}', optimize=optimized, quality=jpg_quality)
if(save_vector):
np.save(f'{outdir}/vectors/seed{seed:04d}',z)
# np.savetxt(f'{outdir}/vectors/seed{seed:04d}',z)
# If user wants to save a grid of the generated images
if grid:
print('Generating image grid...')
PIL.Image.fromarray(create_image_grid(np.array(images)), 'RGB').save(f'{outdir}/grid.{image_format}', optimize=optimized, quality=jpg_quality)
#----------------------------------------------------------------------------
def truncation_traversal(network_pkl,npys,outdir,class_idx=None, seed=[0],start=-1.0,stop=1.0,increment=0.1,framerate=24):
tflib.init_tf()
print('Loading networks from "%s"...' % network_pkl)
with dnnlib.util.open_url(network_pkl) as fp:
_G, _D, Gs = pickle.load(fp)
os.makedirs(outdir, exist_ok=True)
Gs_kwargs = {
'output_transform': dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True),
'randomize_noise': False
}
noise_vars = [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')]
label = np.zeros([1] + Gs.input_shapes[1][1:])
if class_idx is not None:
label[:, class_idx] = 1
count = 1
trunc = start
images = []
while trunc <= stop:
Gs_kwargs['truncation_psi'] = trunc
print('Generating truncation %0.2f' % trunc)
rnd = np.random.RandomState(seed)
z = rnd.randn(1, *Gs.input_shape[1:]) # [minibatch, component]
tflib.set_vars({var: rnd.randn(*var.shape.as_list()) for var in noise_vars}) # [height, width]
image = Gs.run(z, label, **Gs_kwargs) # [minibatch, height, width, channel]
images.append(image[0])
PIL.Image.fromarray(image[0], 'RGB').save(f'{outdir}/frame{count:05d}.png')
trunc+=increment
count+=1
cmd="ffmpeg -y -r {} -i {}/frame%05d.png -vcodec libx264 -pix_fmt yuv420p {}/truncation-traversal-seed{}-start{}-stop{}.mp4".format(framerate,outdir,outdir,seed[0],start,stop)
subprocess.call(cmd, shell=True)
#----------------------------------------------------------------------------
def valmap(value, istart, istop, ostart, ostop):
return ostart + (ostop - ostart) * ((value - istart) / (istop - istart))
class OSN():
min=-1
max= 1
def __init__(self,seed,diameter):
self.tmp = OpenSimplex(seed)
self.d = diameter
self.x = 0
self.y = 0
def get_val(self,angle):
self.xoff = valmap(np.cos(angle), -1, 1, self.x, self.x + self.d);
self.yoff = valmap(np.sin(angle), -1, 1, self.y, self.y + self.d);
return self.tmp.noise2d(self.xoff,self.yoff)
def get_noiseloop(endpoints, nf, d, start_seed):
features = []
zs = []
for i in range(512):
features.append(OSN(i+start_seed,d))
inc = (np.pi*2)/nf
for f in range(nf):
z = np.random.randn(1, 512)
for i in range(512):
z[0,i] = features[i].get_val(inc*f)
zs.append(z)
return zs
def circular_interpolation(radius, latents_persistent, latents_interpolate):
latents_a, latents_b, latents_c = latents_persistent
latents_axis_x = (latents_a - latents_b).flatten() / linalg.norm(latents_a - latents_b)
latents_axis_y = (latents_a - latents_c).flatten() / linalg.norm(latents_a - latents_c)
latents_x = np.sin(np.pi * 2.0 * latents_interpolate) * radius
latents_y = np.cos(np.pi * 2.0 * latents_interpolate) * radius
latents = latents_a + latents_x * latents_axis_x + latents_y * latents_axis_y
return latents
def get_circularloop(endpoints, nf, d, seed):
r = d/2
if seed:
np.random.RandomState(seed)
zs = []
rnd = np.random
latents_a = rnd.randn(1, Gs.input_shape[1])
latents_b = rnd.randn(1, Gs.input_shape[1])
latents_c = rnd.randn(1, Gs.input_shape[1])
latents = (latents_a, latents_b, latents_c)
current_pos = 0.0
step = 1./nf
while(current_pos < 1.0):
zs.append(circular_interpolation(r, latents, current_pos))
current_pos += step
return zs
def line_interpolate(zs, steps):
out = []
for i in range(len(zs)-1):
for index in range(steps):
fraction = index/float(steps)
out.append(zs[i+1]*fraction + zs[i]*(1-fraction))
return out
# very hacky implementation of:
# https://github.com/soumith/dcgan.torch/issues/14
def slerp(val, low, high):
assert low.shape == high.shape
# z space
if len(low.shape) == 2:
out = np.zeros([low.shape[0],low.shape[1]])
for i in range(low.shape[0]):
omega = np.arccos(np.clip(np.dot(low[i]/np.linalg.norm(low[i]), high[i]/np.linalg.norm(high[i])), -1, 1))
so = np.sin(omega)
if so == 0:
out[i] = (1.0-val) * low[i] + val * high[i] # L'Hopital's rule/LERP
out[i] = np.sin((1.0-val)*omega) / so * low[i] + np.sin(val*omega) / so * high[i]
# w space
else:
out = np.zeros([low.shape[0],low.shape[1],low.shape[2]])
for i in range(low.shape[1]):
omega = np.arccos(np.clip(np.dot(low[0][i]/np.linalg.norm(low[0][i]), high[0][i]/np.linalg.norm(high[0][i])), -1, 1))
so = np.sin(omega)
if so == 0:
out[i] = (1.0-val) * low[0][i] + val * high[0][i] # L'Hopital's rule/LERP
out[0][i] = np.sin((1.0-val)*omega) / so * low[0][i] + np.sin(val*omega) / so * high[0][i]
return out
def slerp_interpolate(zs, steps):
out = []
for i in range(len(zs)-1):
for index in range(steps):
fraction = index/float(steps)
out.append(slerp(fraction,zs[i],zs[i+1]))
return out
def generate_zs_from_seeds(seeds,Gs):
zs = []
for seed_idx, seed in enumerate(seeds):
rnd = np.random.RandomState(seed)
z = rnd.randn(1, *Gs.input_shape[1:]) # [minibatch, component]
zs.append(z)
return zs
def convertZtoW(latent, truncation_psi=0.7, truncation_cutoff=9):
dlatent = Gs.components.mapping.run(latent, None) # [seed, layer, component]
dlatent_avg = Gs.get_var('dlatent_avg') # [component]
dlatent = dlatent_avg + (dlatent - dlatent_avg) * truncation_psi
return dlatent
def generate_latent_images(zs, truncation_psi, outdir, save_npy,prefix,vidname,framerate,class_idx=None):
Gs_kwargs = {
'output_transform': dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True),
'randomize_noise': False
}
if truncation_psi is not None:
Gs_kwargs['truncation_psi'] = truncation_psi
noise_vars = [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')]
label = np.zeros([1] + Gs.input_shapes[1][1:])
if class_idx is not None:
label[:, class_idx] = 1
for z_idx, z in enumerate(zs):
if isinstance(z,list):
z = np.array(z).reshape(1,512)
elif isinstance(z,np.ndarray):
z.reshape(1,512)
print('Generating image for step %d/%d ...' % (z_idx, len(zs)))
noise_rnd = np.random.RandomState(1) # fix noise
tflib.set_vars({var: noise_rnd.randn(*var.shape.as_list()) for var in noise_vars}) # [height, width]
images = Gs.run(z, label, **Gs_kwargs) # [minibatch, height, width, channel]
PIL.Image.fromarray(images[0], 'RGB').save(f'{outdir}/frames/{prefix}{z_idx:05d}.png')
if save_npy:
np.save(f'{outdir}/vectors/{prefix}{z_idx:05d}.npz',z)
# np.savetxt(f'{outdir}/vectors/{prefix}{z_idx:05d}.txt',z)
cmd="ffmpeg -y -r {} -i {}/frames/{}%05d.png -vcodec libx264 -pix_fmt yuv420p {}/walk-{}-{}fps.mp4".format(framerate,outdir,prefix,outdir,vidname,framerate)
subprocess.call(cmd, shell=True)
def generate_images_in_w_space(ws, truncation_psi,outdir,save_npy,prefix,vidname,framerate,class_idx=None):
Gs_kwargs = {
'output_transform': dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True),
'randomize_noise': False
}
if truncation_psi is not None:
Gs_kwargs['truncation_psi'] = truncation_psi
noise_vars = [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')]
label = np.zeros([1] + Gs.input_shapes[1][1:])
if class_idx is not None:
label[:, class_idx] = 1
for w_idx, w in enumerate(ws):
print('Generating image for step %d/%d ...' % (w_idx, len(ws)))
noise_rnd = np.random.RandomState(1) # fix noise
tflib.set_vars({var: noise_rnd.randn(*var.shape.as_list()) for var in noise_vars}) # [height, width]
images = Gs.components.synthesis.run(w, **Gs_kwargs) # [minibatch, height, width, channel]
# images = Gs.run(w,label, **Gs_kwargs) # [minibatch, height, width, channel]
PIL.Image.fromarray(images[0], 'RGB').save(f'{outdir}/frames/{prefix}{w_idx:05d}.png')
if save_npy:
np.save(f'{outdir}/vectors/{prefix}{w_idx:05d}.npz',w)
# np.savetxt(f'{outdir}/vectors/{prefix}{w_idx:05d}.txt',w.reshape(w.shape[0], -1))
cmd="ffmpeg -y -r {} -i {}/frames/{}%05d.png -vcodec libx264 -pix_fmt yuv420p {}/walk-{}-{}fps.mp4".format(framerate,outdir,prefix,outdir,vidname,framerate)
subprocess.call(cmd, shell=True)
def generate_latent_walk(network_pkl, truncation_psi, outdir, walk_type, frames, seeds, npys, save_vector, diameter=2.0, start_seed=0, framerate=24 ):
global _G, _D, Gs, noise_vars
tflib.init_tf()
print('Loading networks from "%s"...' % network_pkl)
with dnnlib.util.open_url(network_pkl) as fp:
_G, _D, Gs = pickle.load(fp)
os.makedirs(outdir, exist_ok=True)
os.makedirs(outdir+"/frames", exist_ok=True)
if(save_vector):
os.makedirs(outdir+"/vectors", exist_ok=True)
# Render images for dlatents initialized from random seeds.
Gs_kwargs = {
'output_transform': dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True),
'randomize_noise': False
}
if truncation_psi is not None:
Gs_kwargs['truncation_psi'] = truncation_psi
noise_vars = [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')]
zs = []
ws =[]
# npys specified, let's work with these instead of seeds
# npys must be saved as W's (arrays of 18x512)
if npys and (len(npys) > 0):
ws = npys
wt = walk_type.split('-')
if wt[0] == 'line':
if seeds and (len(seeds) > 0):
zs = generate_zs_from_seeds(seeds,Gs)
if ws == []:
number_of_steps = int(frames/(len(zs)-1))+1
else:
number_of_steps = int(frames/(len(ws)-1))+1
if (len(wt)>1 and wt[1] == 'w'):
if ws == []:
for i in range(len(zs)):
ws.append(convertZtoW(zs[i],truncation_psi))
points = line_interpolate(ws,number_of_steps)
# zpoints = line_interpolate(zs,number_of_steps)
else:
points = line_interpolate(zs,number_of_steps)
elif wt[0] == 'sphere':
print('slerp')
if seeds and (len(seeds) > 0):
zs = generate_zs_from_seeds(seeds,Gs)
if ws == []:
number_of_steps = int(frames/(len(zs)-1))+1
else:
number_of_steps = int(frames/(len(ws)-1))+1
if (len(wt)>1 and wt[1] == 'w'):
if ws == []:
for i in range(len(zs)):
ws.append(convertZtoW(zs[i],truncation_psi))
points = slerp_interpolate(ws,number_of_steps)
else:
points = slerp_interpolate(zs,number_of_steps)
# from Gene Kogan
elif wt[0] == 'bspline':
# bspline in w doesnt work yet
# if (len(walk_type)>1 and walk_type[1] == 'w'):
# ws = []
# for i in range(len(zs)):
# ws.append(convertZtoW(zs[i]))
# print(ws[0].shape)
# w = []
# for i in range(len(ws)):
# w.append(np.asarray(ws[i]).reshape(512,18))
# points = get_latent_interpolation_bspline(ws,frames,3, 20, shuffle=False)
# else:
z = []
for i in range(len(zs)):
z.append(np.asarray(zs[i]).reshape(512))
points = get_latent_interpolation_bspline(z,frames,3, 20, shuffle=False)
# from Dan Shiffman: https://editor.p5js.org/dvs/sketches/Gb0xavYAR
elif wt[0] == 'noiseloop':
points = get_noiseloop(None,frames,diameter,start_seed)
elif wt[0] == 'circularloop':
points = get_circularloop(None,frames,diameter,start_seed)
if (len(wt)>1 and wt[1] == 'w'):
#added for npys
if seeds:
seed_out = 'w-' + wt[0] + ('-'.join([str(seed) for seed in seeds]))
else:
seed_out = 'w-' + wt[0] + '-dlatents'
generate_images_in_w_space(points, truncation_psi,outdir,save_vector,'frame', seed_out, framerate)
# elif (len(wt)>1 and wt[1] == 'w'):
# print('%s is not currently supported in w space, please change your interpolation type' % (wt[0]))
else:
if(len(wt)>1):
seed_out = 'z-' + wt[0] + ('-'.join([str(seed) for seed in seeds]))
else:
seed_out = 'z-' + walk_type + '-seed' +str(start_seed)
generate_latent_images(points, truncation_psi, outdir, save_vector,'frame', seed_out, framerate)
#----------------------------------------------------------------------------
def generate_neighbors(network_pkl, seeds, npys, diameter, truncation_psi, num_samples, save_vector, outdir):
global _G, _D, Gs, noise_vars
tflib.init_tf()
print('Loading networks from "%s"...' % network_pkl)
with dnnlib.util.open_url(network_pkl) as fp:
_G, _D, Gs = pickle.load(fp)
os.makedirs(outdir, exist_ok=True)
# Render images for dlatents initialized from random seeds.
Gs_kwargs = {
'output_transform': dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True),
'randomize_noise': False,
'truncation_psi': truncation_psi
}
noise_vars = [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')]
for seed_idx, seed in enumerate(seeds):
print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx+1, len(seeds)))
rnd = np.random.RandomState(seed)
og_z = rnd.randn(1, *Gs.input_shape[1:]) # [minibatch, component]
tflib.set_vars({var: rnd.randn(*var.shape.as_list()) for var in noise_vars}) # [height, width]
images = Gs.run(og_z, None, **Gs_kwargs) # [minibatch, height, width, channel]
# PIL.Image.fromarray(images[0], 'RGB').save(dnnlib.make_run_dir_path('seed%04d.png' % seed))
PIL.Image.fromarray(images[0], 'RGB').save(f'{outdir}/seed{seed:05d}.png')
zs = []
z_prefix = 'seed%04d_neighbor' % seed
for s in range(num_samples):
random = np.random.uniform(-diameter,diameter,[1,512])
# zs.append(np.clip((og_z+random),-1,1))
new_z = np.clip(np.add(og_z,random),-1,1)
images = Gs.run(new_z, None, **Gs_kwargs) # [minibatch, height, width, channel]
# PIL.Image.fromarray(images[0], 'RGB').save(dnnlib.make_run_dir_path('%s%04d.png' % (z_prefix,s)))
PIL.Image.fromarray(images[0], 'RGB').save(f'{outdir}/{z_prefix}{s:05d}.png')
# generate_latent_images(zs, truncation_psi, save_vector, z_prefix)
if save_vector:
np.save(dnnlib.make_run_dir_path('%s%05d.npy' % (z_prefix,s)), new_z)
#----------------------------------------------------------------------------
def lerp_video(network_pkl, # Path to pretrained model pkl file
seeds, # Random seeds
grid_w=None, # Number of columns
grid_h=None, # Number of rows
truncation_psi=1.0, # Truncation trick
outdir='out', # Output dir
slowdown=1, # Slowdown of the video (power of 2)
duration_sec=30.0, # Duration of video in seconds
smoothing_sec=3.0,
mp4_fps=30,
mp4_codec="libx264",
mp4_bitrate="16M"):
# Sanity check regarding slowdown
message = 'slowdown must be a power of 2 (1, 2, 4, 8, ...) and greater than 0!'
assert slowdown & (slowdown - 1) == 0 and slowdown > 0, message
# Initialize TensorFlow and create outdir
tflib.init_tf()
os.makedirs(outdir, exist_ok=True)
# Total duration of video and number of frames to generate
num_frames = int(np.rint(duration_sec * mp4_fps))
total_duration = duration_sec * slowdown
print(f'Loading network from {network_pkl}...')
with dnnlib.util.open_url(network_pkl) as fp:
_G, _D, Gs = pickle.load(fp)
print("Generating latent vectors...")
# If there's more than one seed provided and the shape isn't specified
if grid_w == grid_h == None and len(seeds) >= 1:
# number of images according to the seeds provided
num = len(seeds)
# Get the grid width and height according to num:
grid_w = max(int(np.ceil(np.sqrt(num))), 1)
grid_h = max((num - 1) // grid_w + 1, 1)
grid_size = [grid_w, grid_h]
# [frame, image, channel, component]:
shape = [num_frames] + Gs.input_shape[1:]
# Get the latents:
all_latents = np.stack([np.random.RandomState(seed).randn(*shape).astype(np.float32) for seed in seeds], axis=1)
# If only one seed is provided and the shape is specified
elif None not in (grid_w, grid_h) and len(seeds) == 1:
# Otherwise, the user gives one seed and the grid width and height:
grid_size = [grid_w, grid_h]
# [frame, image, channel, component]:
shape = [num_frames, np.prod(grid_size)] + Gs.input_shape[1:]
# Get the latents with the random state:
random_state = np.random.RandomState(seeds)
all_latents = random_state.randn(*shape).astype(np.float32)
else:
print("Error: wrong combination of arguments! Please provide \
either one seed and the grid width and height, or a \
list of seeds to use.")
sys.exit(1)
all_latents = scipy.ndimage.gaussian_filter(
all_latents,
[smoothing_sec * mp4_fps] + [0] * len(Gs.input_shape),
mode="wrap"
)
all_latents /= np.sqrt(np.mean(np.square(all_latents)))
# Name of the final mp4 video
mp4 = f"{grid_w}x{grid_h}-lerp-{slowdown}xslowdown.mp4"
# Aux function to slowdown the video by 2x
def double_slowdown(latents, duration_sec, num_frames):
# Make an empty latent vector with double the amount of frames
z = np.empty(np.multiply(latents.shape, [2, 1, 1]), dtype=np.float32)
# Populate it
for i in range(len(latents)):
z[2*i] = latents[i]
# Interpolate in the odd frames
for i in range(1, len(z), 2):
# For the last frame, we loop to the first one
if i == len(z) - 1:
z[i] = (z[0] + z[i-1]) / 2
else:
z[i] = (z[i-1] + z[i+1]) / 2
# We also need to double the duration_sec and num_frames
duration_sec *= 2
num_frames *= 2
# Return the new latents, and the two previous quantities
return z, duration_sec, num_frames
while slowdown > 1:
all_latents, duration_sec, num_frames = double_slowdown(all_latents, duration_sec, num_frames)
slowdown //= 2
# Define the kwargs for the Generator:
Gs_kwargs = dnnlib.EasyDict()
Gs_kwargs.output_transform = dict(func=tflib.convert_images_to_uint8,
nchw_to_nhwc=True)
Gs_kwargs.randomize_noise = False
if truncation_psi is not None:
Gs_kwargs.truncation_psi = truncation_psi
# Aux function: Frame generation func for moviepy.
def make_frame(t):
frame_idx = int(np.clip(np.round(t * mp4_fps), 0, num_frames - 1))
latents = all_latents[frame_idx]
# Get the images (with labels = None)
images = Gs.run(latents, None, **Gs_kwargs)
# Generate the grid for this timestamp:
grid = create_image_grid(images, grid_size)
# grayscale => RGB
if grid.shape[2] == 1:
grid = grid.repeat(3, 2)
return grid
# Generate video using make_frame:
print(f'Generating interpolation video of length: {total_duration} seconds...')
videoclip = moviepy.editor.VideoClip(make_frame, duration=duration_sec)
videoclip.write_videofile(os.path.join(outdir, mp4),
fps=mp4_fps,
codec=mp4_codec,
bitrate=mp4_bitrate)
#----------------------------------------------------------------------------
def _parse_num_range(s):
'''Accept either a comma separated list of numbers 'a,b,c' or a range 'a-c' and return as a list of ints.'''
range_re = re.compile(r'^(\d+)-(\d+)$')
m = range_re.match(s)
if m:
return range(int(m.group(1)), int(m.group(2))+1)
vals = s.split(',')
return [int(x) for x in vals]
# My extended version of this helper function:
def _parse_num_range_ext(s):
'''
Input:
s (str): Comma separated string of numbers 'a,b,c', a range 'a-c', or
even a combination of both 'a,b-c', 'a-b,c', 'a,b-c,d,e-f,...'
Output:
nums (list): Ordered list of ascending ints in s, with repeating values
deleted (can be modified to not do either of this)
'''
# Sanity check 0:
# In case there's a space between the numbers (impossible due to argparse,
# but hey, I am that paranoid):
s = s.replace(' ', '')
# Split w.r.t comma
str_list = s.split(',')
nums = []
for el in str_list:
if '-' in el:
# The range will be 'a-b', so we wish to find both a and b using re:
range_re = re.compile(r'^(\d+)-(\d+)$')
match = range_re.match(el)
# We get the two numbers:
a = int(match.group(1))
b = int(match.group(2))
# Sanity check 1: accept 'a-b' or 'b-a', with a<=b:
if a <= b: r = [n for n in range(a, b + 1)]
else: r = [n for n in range(b, a + 1)]
# Use extend since r will also be an array:
nums.extend(r)
else:
# It's a single number, so just append it:
nums.append(int(el))
# Sanity check 2: delete repeating numbers:
nums = list(set(nums))
# Return the numbers in ascending order:
return sorted(nums)
#----------------------------------------------------------------------------
def _parse_npy_files(files):
'''Accept a comma separated list of npy files and return a list of z vectors.'''
zs =[]
file_list = files.split(",")
for f in file_list:
# load numpy array
arr = np.load(f)
# check if it's actually npz:
if 'dlatents' in arr:
arr = arr['dlatents']
zs.append(arr)
return zs
#----------------------------------------------------------------------------
_examples = '''examples:
# Generate curated MetFaces images without truncation (Fig.10 left)
python %(prog)s --outdir=out --trunc=1 --seeds=85,265,297,849 \\
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/metfaces.pkl
# Generate uncurated MetFaces images with truncation (Fig.12 upper left)
python %(prog)s --outdir=out --trunc=0.7 --seeds=600-605 \\
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/metfaces.pkl
# Generate class conditional CIFAR-10 images (Fig.17 left, Car)
python %(prog)s --outdir=out --trunc=1 --seeds=0-35 --class=1 \\
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/cifar10.pkl
# Render image from projected latent vector
python %(prog)s --outdir=out --dlatents=out/dlatents.npz \\
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/ffhq.pkl
'''
#----------------------------------------------------------------------------
def main():
parser = argparse.ArgumentParser(
description='Generate images using pretrained network pickle.',
epilog=_examples,
formatter_class=argparse.RawDescriptionHelpFormatter
)
subparsers = parser.add_subparsers(help='Sub-commands', dest='command')
parser_generate_images = subparsers.add_parser('generate-images', help='Generate images')
parser_generate_images.add_argument('--network', help='Network pickle filename', dest='network_pkl', required=True)
parser_generate_images.add_argument('--seeds', type=_parse_num_range, help='List of random seeds', dest='seeds', required=True)
parser_generate_images.add_argument('--trunc', type=float, help='Truncation psi (default: %(default)s)', dest='truncation_psi', default=0.5)
parser_generate_images.add_argument('--class', dest='class_idx', type=int, help='Class label (default: unconditional)')
parser_generate_images.add_argument('--create-grid', action='store_true', help='Add flag to save the generated images in a grid', dest='grid')
parser_generate_images.add_argument('--outdir', help='Root directory for run results (default: %(default)s)', default='out', metavar='DIR')
parser_generate_images.add_argument('--save_vector', dest='save_vector', action='store_true', help='also save vector in .npy format')
parser_generate_images.add_argument('--fixnoise', action='store_true', help='generate images using fixed noise (more accurate for interpolations)')
parser_generate_images.add_argument('--jpg_quality', type=int, help='Quality compression for JPG exports (1 to 95), keep default value to export as PNG', default=0)
parser_generate_images.set_defaults(func=generate_images)
parser_truncation_traversal = subparsers.add_parser('truncation-traversal', help='Generate truncation walk')
parser_truncation_traversal.add_argument('--network', help='Network pickle filename', dest='network_pkl', required=True)
parser_truncation_traversal.add_argument('--seed', type=_parse_num_range, help='Singular seed value')
parser_truncation_traversal.add_argument('--npys', type=_parse_npy_files, help='List of .npy files')
parser_truncation_traversal.add_argument('--fps', type=int, help='Starting value',default=24,dest='framerate')
parser_truncation_traversal.add_argument('--start', type=float, help='Starting value')
parser_truncation_traversal.add_argument('--stop', type=float, help='Stopping value')
parser_truncation_traversal.add_argument('--increment', type=float, help='Incrementing value')
parser_truncation_traversal.add_argument('--outdir', help='Root directory for run results (default: %(default)s)', default='out', metavar='DIR')
parser_truncation_traversal.set_defaults(func=truncation_traversal)
parser_generate_latent_walk = subparsers.add_parser('generate-latent-walk', help='Generate latent walk')
parser_generate_latent_walk.add_argument('--network', help='Network pickle filename', dest='network_pkl', required=True)
parser_generate_latent_walk.add_argument('--trunc', type=float, help='Truncation psi (default: %(default)s)', dest='truncation_psi', default=0.5)
parser_generate_latent_walk.add_argument('--walk-type', help='Type of walk (default: %(default)s)', default='line')
parser_generate_latent_walk.add_argument('--frames', type=int, help='Frame count (default: %(default)s', default=240)
parser_generate_latent_walk.add_argument('--fps', type=int, help='Starting value',default=24,dest='framerate')
parser_generate_latent_walk.add_argument('--seeds', type=_parse_num_range, help='List of random seeds')
parser_generate_latent_walk.add_argument('--npys', type=_parse_npy_files, help='List of .npy files')
parser_generate_latent_walk.add_argument('--save_vector', dest='save_vector', action='store_true', help='also save vector in .npy format')
parser_generate_latent_walk.add_argument('--diameter', type=float, help='diameter of noise loop', default=2.0)
parser_generate_latent_walk.add_argument('--start_seed', type=int, help='random seed to start noise loop from', default=0)
parser_generate_latent_walk.add_argument('--outdir', help='Root directory for run results (default: %(default)s)', default='out', metavar='DIR')
parser_generate_latent_walk.set_defaults(func=generate_latent_walk)
parser_generate_neighbors = subparsers.add_parser('generate-neighbors', help='Generate random neighbors of a seed')
parser_generate_neighbors.add_argument('--network', help='Network pickle filename', dest='network_pkl', required=True)
parser_generate_neighbors.add_argument('--seeds', type=_parse_num_range, help='List of random seeds')
parser_generate_neighbors.add_argument('--npys', type=_parse_npy_files, help='List of .npy files')
parser_generate_neighbors.add_argument('--diameter', type=float, help='distance around seed to sample from', default=0.1)
parser_generate_neighbors.add_argument('--save_vector', dest='save_vector', action='store_true', help='also save vector in .npy format')
parser_generate_neighbors.add_argument('--num_samples', type=int, help='How many neighbors to generate (default: %(default)s', default=25)
parser_generate_neighbors.add_argument('--trunc', type=float, help='Truncation psi (default: %(default)s)', dest='truncation_psi', default=0.5)
parser_generate_neighbors.add_argument('--outdir', help='Root directory for run results (default: %(default)s)', default='out', metavar='DIR')
parser_generate_neighbors.set_defaults(func=generate_neighbors)
parser_lerp_video = subparsers.add_parser('lerp-video', help='Generate interpolation video (lerp) between random vectors')
parser_lerp_video.add_argument('--network', help='Path to network pickle filename', dest='network_pkl', required=True)
parser_lerp_video.add_argument('--seeds', type=_parse_num_range_ext, help='List of random seeds', dest='seeds', required=True)
parser_lerp_video.add_argument('--grid-w', type=int, help='Video grid width/columns (default: %(default)s)', default=None, dest='grid_w')
parser_lerp_video.add_argument('--grid-h', type=int, help='Video grid height/rows (default: %(default)s)', default=None, dest='grid_h')
parser_lerp_video.add_argument('--trunc', type=float, help='Truncation psi (default: %(default)s)', default=1.0, dest='truncation_psi')
parser_lerp_video.add_argument('--slowdown', type=int, help='Slowdown the video by this amount; must be a power of 2 (default: %(default)s)', default=1, dest='slowdown')
parser_lerp_video.add_argument('--duration-sec', type=float, help='Duration of video (default: %(default)s)', default=30.0, dest='duration_sec')
parser_lerp_video.add_argument('--fps', type=int, help='FPS of generated video (default: %(default)s)', default=30, dest='mp4_fps')
parser_lerp_video.add_argument('--outdir', help='Root directory for run results (default: %(default)s)', default='out', metavar='DIR')
parser_lerp_video.set_defaults(func=lerp_video)
args = parser.parse_args()
kwargs = vars(args)
subcmd = kwargs.pop('command')
if subcmd is None:
print('Error: missing subcommand. Re-run with --help for usage.')
sys.exit(1)
func = kwargs.pop('func')
func(**kwargs)
#----------------------------------------------------------------------------
if __name__ == "__main__":
main()
#----------------------------------------------------------------------------