-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path5c_GTD_Prj03v4_Analysis_MapsMain.R
executable file
·175 lines (141 loc) · 7.26 KB
/
5c_GTD_Prj03v4_Analysis_MapsMain.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
################### MAP MEDIAN GTD EXTENT/VALUES ##################
#
# Daniel Schlaepfer, 2015-2016
#
# Map median global temperate dryland extents and shifting zones for areas included in 'Any17Cond'
# The function 'do_mainmap_regional_shifted_response' will plot pdfs with 6 panels each (one global panel and one for each of the five regions) for each RCP.
# - requests 'get_precalculations' from '5a1_GTD_*.R'
# - requests 'get_studyareaextents' from '5a1_GTD_*.R'
#
###################################################################
#-------------------------------
#---GLOBAL SETTINGS
comp <- "dropbox"
do_mainmap <- TRUE
redo_maps <- FALSE
#-------------------------------
#---R packages
pkg_reqd <- c("maps")
has_loaded <- sapply(pkg_reqd,
function(lib) require(lib, character.only = TRUE, quietly = FALSE))
stopifnot(has_loaded)
#---Load data and misc. functions
if (comp %in% c("err", "eleos")) {
dir.gtd <- "/PATH_TO_PROJECT/Product_PowellCenter/6_Projects_Year1"
} else if (comp == "dropbox") {
dir.gtd <- "/PATH_TO_PROJECT/Product_PowellCenter/6_Projects_Year1"
}
dir.prj <- file.path(dir.gtd, "Prj03_GlobalVulnerability", "4_Analysis", "4_Analysis_v4")
get_precalculations <- TRUE
get_studyareaextents <- TRUE
source(file.path(dir.prj, "5a1_GTD_Prj03v4_Helper.R"))
stopifnot(done_precalculations, done_studyareaextents)
#---Directories
dir.create(dir.fig_SAM <- file.path(dir.prj, "6_Results", "2_MainMaps_r3"), showWarnings = FALSE)
#-------------------------------
#------GEOGRAPHIC EXTENT MAPS
#- Load data
masks_regions <- lapply(reqRCPs, function(rcp) load_regional_masks(dir.gis = file.path(dir.gis, "Any17Cond"), pattern = "Region", rcp = rcp))
masks_gregions <- lapply(reqRCPs, function(rcp) load_regional_masks(dir.gis = file.path(dir.gis, "Any17Cond"), pattern = "Global", rcp = rcp))
#-------------------------------
#------WITHIN TEXT RESULTS: GEOGRAPHIC EXTENT MAPS
#-------------------------------
#------TABLES AND FIGURES
#-Figure S1. Maps showing the geographic distribution of the study area in each region under current and end of 21st century climate conditions under RCP4.5 and 8.5 for the 2nd, 8th, and 15th GCM-ranks
#-------------------------------
# Create maps with 6 panels to be used as main figure
# - first panel: current values on word-map with country borders and our 5 regions
# - one panel each per region: response of RCP8.5/rank8 as difference to current conditions
if (do_mainmap) {
#
do_mainmap_regional_shifted_response <- function(dat, dat_current = NULL, ircp = 2, ir = 2, Any17Cond = FALSE, val_type = change_types, var_type = c("categorical", "continuous"), varname, var_sign = -1, dir_out, ftag = varname) {
#str(dat_current): num [1:20021] NA NA NA NA NA NA NA NA NA NA ...
#str(dat): num [1:5, 1:2, 1:3, 1:20021] NA NA NA NA NA NA NA NA NA NA ...
# - attr(*, "dimnames") = List of 4
# ..$ : chr [1:5] "MetDef_Any17Cond" "MetDef_ThisCond" "trailing" "stable" ...
# ..$ : chr [1:2] "RCP45" "RCP85"
# ..$ : chr [1:3] "1" "8" "16"
# ..$ : NULL
val_type <- match.arg(val_type)
ftag <- clean_name(ftag)
ftemp <- file.path(dir_out, fname <- paste0("MainMap_", ftag, "_", reqRCPs[ircp], "_rank", ranks[ir], "_", val_type, ".pdf"))
if (redo_maps || !file.exists(ftemp)) {
#---Prepare plot
# Data
has_current_values <- !is.null(dat_current["MetDef_Any17Cond", reqRCPs[ircp], ]) && !(sd(dat_current["MetDef_Any17Cond", reqRCPs[ircp], ], na.rm = TRUE) == 0)
if (has_current_values) dat <- dat_sweep(dat, dat_current["MetDef_Any17Cond", reqRCPs[ircp], ], val_type, circular = grepl("_doy", varname))
# Range limits
zlimits <- calc_response_limits(dat_cur = dat_current["MetDef_ThisCond", currentSc, ], dat = dat, get_ircps = ircp, get_ranks = ir, Any17Cond = Any17Cond, type = val_type, probs = c(0.005, 0.995))
zlimits <- calc_response_limits(dat_cur = dat_current["MetDef_ThisCond", currentSc, ], dat = dat, get_ircps = ircp, get_ranks = ir, Any17Cond = Any17Cond, type = val_type, probs = c(0, 1))
# Colors
mcols <- get_map_colors(var_type)
#---Plot
plot_mainresponse_regional_grids(ircp, ir, mask_global = mask_simulation, mask_regions = masks_regions[[ircp]], mask_gregions = masks_gregions[[ircp]],
dat_cur = dat_current["MetDef_ThisCond", currentSc, ], dat_shifts = if (!Any17Cond) dat[shifts, , , ] else NULL, dat_Any17Cond = if (Any17Cond) dat["MetDef_Any17Cond", , , ] else NULL,
var_sign = var_sign, zlims = zlimits$zlims, zextremes = zlimits$zextremes,
val_crit = switch(EXPR = val_type, Mean = 0, AbsoluteChange = 0, RelativeChange = 1),
cex = 1, # lists of length 4: current + 3 shifts
legends = c(has_current_values && !(val_type == "Mean"), TRUE, FALSE, FALSE),
legends_type = rep(var_type, 4), # "categorical" or "continuous"
legends_text = list("Study area", shifts, shifts, shifts),
mapcols = mcols,
relArealBar = !Any17Cond,
dir.out = dir_out, fname = fname)
if (FALSE) {
mask_global = mask_simulation
mask_regions = masks_regions[[ircp]]
mask_gregions = masks_gregions[[ircp]]
dat_cur = dat_current["MetDef_ThisCond", currentSc, ]
dat_shifts = if (!Any17Cond) dat[shifts, , , ] else NULL
dat_Any17Cond = if (Any17Cond) dat["MetDef_Any17Cond", , , ] else NULL
var_sign = var_sign
zlims = zlimits$zlims
zextremes = zlimits$zextremes
val_crit = switch(EXPR = val_type, Mean = 0, AbsoluteChange = 0, RelativeChange = 1)
cex = 1 # lists of length 4: current + 3 shifts
legends = c(has_current_values, TRUE, FALSE, FALSE)
legends_type = rep(var_type, 4) # "categorical" or "continuous"
legends_text = list("Study area", shifts, shifts, shifts)
mapcols = mcols
relArealBar = !Any17Cond
dir.out = dir_out
fname = fname
}
}
invisible(NULL)
}
print("DrylandResponse: regional main map")
for (id in seq_along(res_names_ranks)) {
dir.create(dir.temp <- file.path(dir.fig_SAM, res_names[id]), showWarnings = FALSE)
# get data objects
data <- fix_var_dim(get(res_names_ranks[id]))$data
temp <- fix_var_dim(get(res_names[id]))
vars <- temp$vars
data_current <- temp$data[, , currentSc, , ]
if (length(dim(data_current)) <= 3) {
dimns <- dimnames(data_current)
dim(data_current) <- c(dim(data_current), 1)
dimnames(data_current) <- modifyList(dimns, list(vars = vars))
}
rm(temp)
# obtain correlation with AI
corAIs <- if (is.character(res_names_cor[id][[1]])) get(res_names_cor[id][[1]])$median_tau["median", , "MetDef_ThisCond"] else 1
for (ircp in seq_along(reqRCPs)) {
for (iv in seq_along(vars)) {
type_list_mode <- if (res_names_ranks[id] %in% sa_names_def2[1]) change_types[1] else change_types
for (it in seq_along(type_list_mode)) {
print(paste(Sys.time(), reqRCPs[ircp], res_names_ranks[id], vars[iv], type_list_mode[it]))
do_mainmap_regional_shifted_response(dat = data[, , , , vars[iv]],
dat_current = data_current[, , , vars[iv]],
ircp,
Any17Cond = !(res_names_ranks[id] %in% sa_names_def2[1]), # FALSE, plot shifts; TRUE, plot MetDef_Any17Cond
val_type = type_list_mode[it],
var_type = if (substr(res_names_ranks[id], 1, 1) == "d") "categorical" else "continuous",
varname = vars[iv],
var_sign = if (!is.na(corAIs[iv])) corAIs[iv] else 1,
dir_out = dir.temp)
}
}
}
}
}