-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_utils.py
184 lines (156 loc) · 6.37 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
__author__ = 'Zhenan Ye'
import tensorflow as tf
import numpy as np
import cPickle as cpkl
import os
import zipfile
from io import BytesIO
import utils as skutils
slim = tf.contrib.slim
def get_data(dataset, type):
datasets_path = 'datasets'
if dataset == 'Realistics':
if type == 'cross_placement':
return os.path.join(datasets_path, dataset, 'cross_displacement.cpkl')
elif type == 'cross_subject':
return os.path.join(datasets_path, dataset, 'cross_subject_target-16.cpkl')
else:
raise ValueError("dataset {} have no data file {}".format(dataset, type))
elif dataset == 'RealWorld':
if type == 'cross_subject_5':
return os.path.join(datasets_path, dataset, 'cross_subject_5.cpkl')
elif type == 'cross_subject_9':
return os.path.join(datasets_path, dataset, 'cross_subject_9.cpkl')
elif type == 'upperarm_to_forearm':
return os.path.join(datasets_path, dataset, 'cross_placement_upperarm_forearm.cpkl')
elif type == 'forearm_to_shin':
return os.path.join(datasets_path, dataset, 'cross_placement_forearm_shin.cpkl')
elif type == 'ideal_to_dislocation':
return os.path.join(datasets_path, dataset, 'cross_placement_ideal_dislocation.cpkl')
else:
raise ValueError("dataset {} have no data file {}".format(dataset, type))
else:
raise ValueError("There is no dataset {}".format(dataset))
def show_label_distribution(func):
def wrapper(*args, **kwargs):
source_train, source_test, target_train, target_test = func(*args, **kwargs)
def print_label_distribution(train_data):
y = np.where(train_data[1] == 1)[1]
items, counts = np.unique(y, return_counts=True)
print("... iterms:{}, counts: {}".format(items, counts))
print(" ... source_train:")
print_label_distribution(source_train)
print(" ... source_test:")
print_label_distribution(source_test)
print(" ... target_train:")
print_label_distribution(target_train)
print(" ... target_test:")
print_label_distribution(target_test)
return source_train, source_test, target_train, target_test
return wrapper
@show_label_distribution
def load_data(data_path):
print("...Loading data from {}".format(data_path))
with open(data_path, 'r') as f:
data = cpkl.load(f)
source_data, target_data = data
print("...the size of source data: {}, the size of target data: {}".format(
source_data[0].shape, target_data[0].shape))
# split source data
source_size = source_data[0].shape[0]
source_train_size = int(source_size * 0.7)
source_train = [i[:source_train_size] for i in source_data]
source_test = [i[source_train_size:] for i in source_data]
print(" ...source train size: {}, source test size: {}".format(
source_train[0].shape, source_test[0].shape))
# split target data
target_size = target_data[0].shape[0]
target_train_size = int(target_size * 0.7)
target_train = [i[:target_train_size] for i in target_data]
target_test = [i[target_train_size:] for i in target_data]
print(" ...target train size: {}, target test size: {}".format(
target_train[0].shape, target_test[0].shape))
return source_train, source_test, target_train, target_test
def normalize_data(source_data, target_data):
'''
:param source_data: [nums, seq_length, channels]
:param target_data: [nums, seq_length, channels]
:return: normalized young and old data
'''
shape = source_data.shape
ax = 0
if len(shape) == 3:
ax = (0, 1)
all_data = np.vstack([source_data, target_data])
mean = np.mean(all_data, axis=ax)
std = np.std(all_data, axis=ax)
norm_source_data = (source_data-mean)/std
norm_target_data = (target_data-mean)/std
return norm_source_data, norm_target_data
def one_hot(y_, n_values):
# y_ = y_.reshape(len(y_))
# n_values = int(np.max(y_))+1
return np.eye(n_values)[np.array(y_, dtype=np.int32)]
def convert_seq_data(data_x, data_y, seq_length):
'''
[n, channels] -> [m, seq_length, channels]
:param data_path:
:return:
'''
data_size = data_x.shape[0]
channels = data_x.shape[1]
# round data with seq_length
if data_size < seq_length:
raise ValueError("seq_length is less than data size")
round_data_size = data_size / seq_length * seq_length
data_x = data_x[:round_data_size]
data_y = data_y[:round_data_size]
def slide_window(x, y):
'''
slide window without overlapping
:param x:
:param y:
:return:
'''
num_x = x.shape[0] / seq_length * seq_length
seq_x = np.reshape(x[:num_x], newshape=(-1, seq_length, channels))
seq_y = np.reshape(y[:num_x], newshape=(-1, seq_length))
return seq_x, seq_y
def define_label(units, option='MAX'):
if option == 'LAST' or option is None:
return units[-1]
elif option == 'MAX':
items, counts = np.unique(units, return_counts=True)
return items[np.argmax(counts)]
else:
raise ValueError("option parameter is invalid")
seq_x, seq_y = slide_window(data_x, data_y)
seq_y = [define_label(i) for i in seq_y]
seq_y = np.asarray(seq_y)
return seq_x, seq_y
def batch_generator(data, batch_size):
train_size = data[0].shape[0]
pos = 0
while True:
scale = pos + batch_size
if scale > train_size:
start = pos
a = scale - train_size
pos = a
yield [np.concatenate((d[start:], d[0:a])) for d in data]
else:
start = pos
pos = scale
yield [d[start:scale] for d in data]
def get_vars_and_update_ops(scope):
# is_trainable = lambda x: x in tf.trainable_variables()
# var_list = filter(is_trainable, slim.get_model_variables(scope))
var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope)
tf.logging.info('All variables for scope: %s',
scope)
tf.logging.info('Trainable variables for scope: %s', var_list)
return var_list, update_ops
def lrelu(x, leakiness=0.2):
"""Relu, with optional leaky support."""
return tf.where(tf.less(x, 0.0), leakiness * x, x, name='leaky_relu')