forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathrfcore.c
800 lines (675 loc) · 27 KB
/
rfcore.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2019 Damien P. George
* Copyright (c) 2020 Jim Mussared
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "py/mperrno.h"
#include "py/mphal.h"
#include "py/runtime.h"
#include "extmod/modbluetooth.h"
#include "mpbthciport.h"
#include "rtc.h"
#include "rfcore.h"
#if defined(STM32WB)
#include "stm32wbxx_ll_ipcc.h"
#if MICROPY_PY_BLUETOOTH
#if MICROPY_BLUETOOTH_NIMBLE
// For mp_bluetooth_nimble_hci_uart_wfi
#include "nimble/nimble_npl.h"
#else
#error "STM32WB must use NimBLE."
#endif
#if !MICROPY_PY_BLUETOOTH_USE_SYNC_EVENTS
#error "STM32WB must use synchronous BLE events."
#endif
#endif
#define DEBUG_printf(...) // printf("rfcore: " __VA_ARGS__)
// Define to 1 to print traces of HCI packets
#define HCI_TRACE (0)
#define IPCC_CH_BLE (LL_IPCC_CHANNEL_1) // BLE HCI command and response
#define IPCC_CH_SYS (LL_IPCC_CHANNEL_2) // system HCI command and response
#define IPCC_CH_MM (LL_IPCC_CHANNEL_4) // release buffer
#define IPCC_CH_HCI_ACL (LL_IPCC_CHANNEL_6) // HCI ACL outgoing data
#define OGF_CTLR_BASEBAND (0x03)
#define OCF_CB_RESET (0x03)
#define OCF_CB_SET_EVENT_MASK2 (0x63)
#define OGF_VENDOR (0x3f)
#define OCF_WRITE_CONFIG (0x0c)
#define OCF_SET_TX_POWER (0x0f)
#define OCF_BLE_INIT (0x66)
#define OCF_C2_FLASH_ERASE_ACTIVITY (0x69)
#define OCF_C2_SET_FLASH_ACTIVITY_CONTROL (0x73)
#define HCI_OPCODE(ogf, ocf) ((ogf) << 10 | (ocf))
#define HCI_KIND_BT_CMD (0x01) // <kind=1>...?
#define HCI_KIND_BT_ACL (0x02) // <kind=2><?><?><len LSB><len MSB>
#define HCI_KIND_BT_EVENT (0x04) // <kind=4><op><len><data...>
#define HCI_KIND_VENDOR_RESPONSE (0x11)
#define HCI_KIND_VENDOR_EVENT (0x12)
#define HCI_EVENT_COMMAND_COMPLETE (0x0E) // <num packets><opcode 16><status><data...>
#define HCI_EVENT_COMMAND_STATUS (0x0F) // <status><num_packets><opcode 16>
#define HCI_EVENT_NUMBER_OF_COMPLETED_PACKETS (0x13) // <num>(<handle 16><completed 16>)*
#define SYS_ACK_TIMEOUT_MS (250)
#define BLE_ACK_TIMEOUT_MS (250)
// AN5185
#define MAGIC_FUS_ACTIVE 0xA94656B9
// AN5289
#define MAGIC_IPCC_MEM_INCORRECT 0x3DE96F61
volatile bool hci_acl_cmd_pending = false;
typedef struct _tl_list_node_t {
volatile struct _tl_list_node_t *next;
volatile struct _tl_list_node_t *prev;
uint8_t body[0];
} tl_list_node_t;
typedef struct _parse_hci_info_t {
rfcore_ble_msg_callback_t cb_fun;
void *cb_env;
bool was_hci_reset_evt;
} parse_hci_info_t;
// Version
// [0:3] = Build - 0: Untracked - 15:Released - x: Tracked version
// [4:7] = branch - 0: Mass Market - x: ...
// [8:15] = Subversion
// [16:23] = Version minor
// [24:31] = Version major
// Memory Size
// [0:7] = Flash (Number of 4k sectors)
// [8:15] = Reserved (Shall be set to 0 - may be used as flash extension)
// [16:23] = SRAM2b (Number of 1k sectors)
// [24:31] = SRAM2a (Number of 1k sectors)
typedef union __attribute__((packed)) _ipcc_device_info_table_t {
struct {
uint32_t table_state;
uint8_t reserved0;
uint8_t last_fus_state;
uint8_t last_ws_state;
uint8_t ws_type;
uint32_t safeboot_version;
uint32_t fus_version;
uint32_t fus_memorysize;
uint32_t ws_version;
uint32_t ws_memorysize;
uint32_t ws_ble_info;
uint32_t ws_thread_info;
uint32_t reserved1;
uint64_t uid64;
uint16_t device_id;
uint16_t pad;
} fus;
struct {
uint32_t safeboot_version;
uint32_t fus_version;
uint32_t fus_memorysize;
uint32_t fus_info;
uint32_t fw_version;
uint32_t fw_memorysize;
uint32_t fw_infostack;
uint32_t fw_reserved;
} ws;
} ipcc_device_info_table_t;
typedef struct __attribute__((packed)) _ipcc_ble_table_t {
uint8_t *pcmd_buffer;
uint8_t *pcs_buffer;
tl_list_node_t *pevt_queue;
uint8_t *phci_acl_data_buffer;
} ipcc_ble_table_t;
// msg
// [0:7] = cmd/evt
// [8:31] = Reserved
typedef struct __attribute__((packed)) _ipcc_sys_table_t {
uint8_t *pcmd_buffer;
tl_list_node_t *sys_queue;
} ipcc_sys_table_t;
typedef struct __attribute__((packed)) _ipcc_mem_manager_table_t {
uint8_t *spare_ble_buffer;
uint8_t *spare_sys_buffer;
uint8_t *blepool;
uint32_t blepoolsize;
tl_list_node_t *pevt_free_buffer_queue;
uint8_t *traces_evt_pool;
uint32_t tracespoolsize;
} ipcc_mem_manager_table_t;
typedef struct __attribute__((packed)) _ipcc_ref_table_t {
ipcc_device_info_table_t *p_device_info_table;
ipcc_ble_table_t *p_ble_table;
void *p_thread_table;
ipcc_sys_table_t *p_sys_table;
ipcc_mem_manager_table_t *p_mem_manager_table;
void *p_traces_table;
void *p_mac_802_15_4_table;
void *p_zigbee_table;
void *p_lld_tests_table;
void *p_lld_ble_table;
} ipcc_ref_table_t;
// The stm32wb55xg.ld script puts .bss.ipcc_mem_* into SRAM2A and .bss_ipcc_membuf_* into SRAM2B.
// It also leaves 64 bytes at the start of SRAM2A for the ref table.
static ipcc_device_info_table_t ipcc_mem_dev_info_tab; // mem1
static ipcc_ble_table_t ipcc_mem_ble_tab; // mem1
static ipcc_sys_table_t ipcc_mem_sys_tab; // mem1
static ipcc_mem_manager_table_t ipcc_mem_memmgr_tab; // mem1
static uint8_t ipcc_membuf_sys_cmd_buf[272]; // mem2
static tl_list_node_t ipcc_mem_sys_queue; // mem1
static tl_list_node_t ipcc_mem_memmgr_free_buf_queue; // mem1
static uint8_t ipcc_membuf_memmgr_ble_spare_evt_buf[272]; // mem2
static uint8_t ipcc_membuf_memmgr_sys_spare_evt_buf[272]; // mem2
static uint8_t ipcc_membuf_memmgr_evt_pool[6 * 272]; // mem2
static uint8_t ipcc_membuf_ble_cmd_buf[272]; // mem2
static uint8_t ipcc_membuf_ble_cs_buf[272]; // mem2
static tl_list_node_t ipcc_mem_ble_evt_queue; // mem1
static uint8_t ipcc_membuf_ble_hci_acl_data_buf[272]; // mem2
/******************************************************************************/
// Transport layer linked list
static void tl_list_init(volatile tl_list_node_t *n) {
n->next = n;
n->prev = n;
}
static volatile tl_list_node_t *tl_list_unlink(volatile tl_list_node_t *n) {
volatile tl_list_node_t *next = n->next;
volatile tl_list_node_t *prev = n->prev;
prev->next = next;
next->prev = prev;
return next;
}
static void tl_list_append(volatile tl_list_node_t *head, volatile tl_list_node_t *n) {
n->next = head;
n->prev = head->prev;
head->prev->next = n;
head->prev = n;
}
/******************************************************************************/
// IPCC interface
static volatile ipcc_ref_table_t *get_buffer_table(void) {
// The IPCCDBA option bytes must not be changed without
// making a corresponding change to the linker script.
return (volatile ipcc_ref_table_t *)(SRAM2A_BASE + LL_FLASH_GetIPCCBufferAddr() * 4);
}
void ipcc_init(uint32_t irq_pri) {
DEBUG_printf("ipcc_init\n");
// Setup buffer table pointers
volatile ipcc_ref_table_t *tab = get_buffer_table();
tab->p_device_info_table = &ipcc_mem_dev_info_tab;
tab->p_ble_table = &ipcc_mem_ble_tab;
tab->p_sys_table = &ipcc_mem_sys_tab;
tab->p_mem_manager_table = &ipcc_mem_memmgr_tab;
// Start IPCC peripheral
__HAL_RCC_IPCC_CLK_ENABLE();
// Enable receive IRQ on the BLE channel.
LL_C1_IPCC_EnableIT_RXO(IPCC);
LL_C1_IPCC_DisableReceiveChannel(IPCC, LL_IPCC_CHANNEL_1 | LL_IPCC_CHANNEL_2 | LL_IPCC_CHANNEL_3 | LL_IPCC_CHANNEL_4 | LL_IPCC_CHANNEL_5 | LL_IPCC_CHANNEL_6);
LL_C1_IPCC_EnableReceiveChannel(IPCC, IPCC_CH_BLE);
NVIC_SetPriority(IPCC_C1_RX_IRQn, irq_pri);
HAL_NVIC_EnableIRQ(IPCC_C1_RX_IRQn);
// Device info table will be populated by FUS/WS on CPU2 boot.
// Populate system table
tl_list_init(&ipcc_mem_sys_queue);
ipcc_mem_sys_tab.pcmd_buffer = ipcc_membuf_sys_cmd_buf;
ipcc_mem_sys_tab.sys_queue = &ipcc_mem_sys_queue;
// Populate memory manager table
tl_list_init(&ipcc_mem_memmgr_free_buf_queue);
ipcc_mem_memmgr_tab.spare_ble_buffer = ipcc_membuf_memmgr_ble_spare_evt_buf;
ipcc_mem_memmgr_tab.spare_sys_buffer = ipcc_membuf_memmgr_sys_spare_evt_buf;
ipcc_mem_memmgr_tab.blepool = ipcc_membuf_memmgr_evt_pool;
ipcc_mem_memmgr_tab.blepoolsize = sizeof(ipcc_membuf_memmgr_evt_pool);
ipcc_mem_memmgr_tab.pevt_free_buffer_queue = &ipcc_mem_memmgr_free_buf_queue;
ipcc_mem_memmgr_tab.traces_evt_pool = NULL;
ipcc_mem_memmgr_tab.tracespoolsize = 0;
// Populate BLE table
tl_list_init(&ipcc_mem_ble_evt_queue);
ipcc_mem_ble_tab.pcmd_buffer = ipcc_membuf_ble_cmd_buf;
ipcc_mem_ble_tab.pcs_buffer = ipcc_membuf_ble_cs_buf;
ipcc_mem_ble_tab.pevt_queue = &ipcc_mem_ble_evt_queue;
ipcc_mem_ble_tab.phci_acl_data_buffer = ipcc_membuf_ble_hci_acl_data_buf;
}
/******************************************************************************/
// Transport layer HCI interface
// The WS firmware doesn't support OCF_CB_SET_EVENT_MASK2, and fails with:
// v1.8.0.0.4 (and below): HCI_EVENT_COMMAND_COMPLETE with a non-zero status
// v1.9.0.0.4 (and above): HCI_EVENT_COMMAND_STATUS with a non-zero status
// In either case we detect the failure response and inject this response
// instead (which is HCI_EVENT_COMMAND_COMPLETE for OCF_CB_SET_EVENT_MASK2
// with status=0).
static const uint8_t set_event_event_mask2_fix_payload[] = { 0x04, 0x0e, 0x04, 0x01, 0x63, 0x0c, 0x00 };
static size_t tl_parse_hci_msg(const uint8_t *buf, parse_hci_info_t *parse) {
const char *info;
#if HCI_TRACE
int applied_set_event_event_mask2_fix = 0;
#endif
size_t len;
switch (buf[0]) {
case HCI_KIND_BT_ACL: {
info = "HCI_ACL";
len = 5 + buf[3] + (buf[4] << 8);
if (parse != NULL) {
parse->cb_fun(parse->cb_env, buf, len);
}
break;
}
case HCI_KIND_BT_EVENT: {
info = "HCI_EVT";
// Acknowledgment of a pending ACL request, allow another one to be sent.
if (buf[1] == HCI_EVENT_NUMBER_OF_COMPLETED_PACKETS) {
hci_acl_cmd_pending = false;
}
len = 3 + buf[2];
if (parse != NULL) {
if (buf[1] == HCI_EVENT_COMMAND_COMPLETE && len == 7) {
uint16_t opcode = (buf[5] << 8) | buf[4];
uint8_t status = buf[6];
if (opcode == HCI_OPCODE(OGF_CTLR_BASEBAND, OCF_CB_SET_EVENT_MASK2) && status != 0) {
// For WS firmware v1.8.0.0.4 and below. Reply with the "everything OK" payload.
parse->cb_fun(parse->cb_env, set_event_event_mask2_fix_payload, sizeof(set_event_event_mask2_fix_payload));
#if HCI_TRACE
applied_set_event_event_mask2_fix = 18;
#endif
break; // Don't send the original payload.
}
if (opcode == HCI_OPCODE(OGF_CTLR_BASEBAND, OCF_CB_RESET) && status == 0) {
// Controller acknowledged reset command.
// This will trigger setting the MAC address.
parse->was_hci_reset_evt = true;
}
}
if (buf[1] == HCI_EVENT_COMMAND_STATUS && len == 7) {
uint16_t opcode = (buf[6] << 8) | buf[5];
uint8_t status = buf[3];
if (opcode == HCI_OPCODE(OGF_CTLR_BASEBAND, OCF_CB_SET_EVENT_MASK2) && status != 0) {
// For WS firmware v1.9.0.0.4 and higher. Reply with the "everything OK" payload.
parse->cb_fun(parse->cb_env, set_event_event_mask2_fix_payload, sizeof(set_event_event_mask2_fix_payload));
#if HCI_TRACE
applied_set_event_event_mask2_fix = 19;
#endif
break; // Don't send the original payload.
}
}
parse->cb_fun(parse->cb_env, buf, len);
}
break;
}
case HCI_KIND_VENDOR_RESPONSE: {
// assert(buf[1] == 0x0e);
info = "VEND_RESP";
len = 3 + buf[2]; // ???
// uint16_t cmd = buf[4] | buf[5] << 8;
// uint8_t status = buf[6];
break;
}
case HCI_KIND_VENDOR_EVENT: {
// assert(buf[1] == 0xff);
info = "VEND_EVT";
len = 3 + buf[2]; // ???
// uint16_t evt = buf[3] | buf[4] << 8;
break;
}
default:
info = "HCI_UNKNOWN";
len = 0;
break;
}
#if HCI_TRACE
printf("[% 8d] <%s(%02x", mp_hal_ticks_ms(), info, buf[0]);
for (int i = 1; i < len; ++i) {
printf(":%02x", buf[i]);
}
printf(")");
if (parse && parse->was_hci_reset_evt) {
printf(" (reset)");
}
if (applied_set_event_event_mask2_fix) {
printf(" (mask2 fix %d)", applied_set_event_event_mask2_fix);
}
printf("\n");
#else
(void)info;
#endif
return len;
}
static size_t tl_process_msg(volatile tl_list_node_t *head, unsigned int ch, parse_hci_info_t *parse) {
volatile tl_list_node_t *cur = head->next;
bool added_to_free_queue = false;
size_t len = 0;
while (cur != head) {
len += tl_parse_hci_msg((uint8_t *)cur->body, parse);
volatile tl_list_node_t *next = tl_list_unlink(cur);
// If this node is allocated from the memmgr event pool, then place it into the free buffer.
if ((uint8_t *)cur >= ipcc_membuf_memmgr_evt_pool && (uint8_t *)cur < ipcc_membuf_memmgr_evt_pool + sizeof(ipcc_membuf_memmgr_evt_pool)) {
// Wait for C2 to indicate that it has finished using the free buffer,
// so that we can link the newly-freed memory in to this buffer.
// If waiting is needed then it is typically between 5 and 20 microseconds.
while (LL_C1_IPCC_IsActiveFlag_CHx(IPCC, IPCC_CH_MM)) {
}
// Place memory back in free pool.
tl_list_append(&ipcc_mem_memmgr_free_buf_queue, cur);
added_to_free_queue = true;
}
cur = next;
}
if (added_to_free_queue) {
// Notify change in free pool.
LL_C1_IPCC_SetFlag_CHx(IPCC, IPCC_CH_MM);
}
return len;
}
// Only call this when IRQs are disabled on this channel.
static size_t tl_check_msg(volatile tl_list_node_t *head, unsigned int ch, parse_hci_info_t *parse) {
size_t len = 0;
if (LL_C2_IPCC_IsActiveFlag_CHx(IPCC, ch)) {
// Process new data.
len = tl_process_msg(head, ch, parse);
// Clear receive channel (allows RF core to send more data to us).
LL_C1_IPCC_ClearFlag_CHx(IPCC, ch);
if (ch == IPCC_CH_BLE) {
// Re-enable IRQs for BLE now that we've cleared the flag.
LL_C1_IPCC_EnableReceiveChannel(IPCC, IPCC_CH_BLE);
}
}
return len;
}
static void tl_hci_cmd(uint8_t *cmd, unsigned int ch, uint8_t hdr, uint16_t opcode, const uint8_t *buf, size_t len) {
tl_list_node_t *n = (tl_list_node_t *)cmd;
n->next = NULL;
n->prev = NULL;
cmd[8] = hdr;
cmd[9] = opcode;
cmd[10] = opcode >> 8;
cmd[11] = len;
memcpy(&cmd[12], buf, len);
#if HCI_TRACE
printf("[% 8d] >HCI(", mp_hal_ticks_ms());
for (int i = 0; i < len + 4; ++i) {
printf(":%02x", cmd[i + 8]);
}
printf(")\n");
#endif
// Indicate that this channel is ready.
LL_C1_IPCC_SetFlag_CHx(IPCC, ch);
}
static ssize_t tl_sys_wait_ack(const uint8_t *buf, mp_int_t timeout_ms) {
uint32_t t0 = mp_hal_ticks_ms();
timeout_ms = MAX(SYS_ACK_TIMEOUT_MS, timeout_ms);
// C2 will clear this bit to acknowledge the request.
while (LL_C1_IPCC_IsActiveFlag_CHx(IPCC, IPCC_CH_SYS)) {
if (mp_hal_ticks_ms() - t0 > timeout_ms) {
printf("tl_sys_wait_ack: timeout\n");
return -MP_ETIMEDOUT;
}
}
// C1-to-C2 bit cleared, so process the response (just get the length, do
// not parse any further).
return (ssize_t)tl_parse_hci_msg(buf, NULL);
}
static ssize_t tl_sys_hci_cmd_resp(uint16_t opcode, const uint8_t *buf, size_t len, mp_int_t timeout_ms) {
tl_hci_cmd(ipcc_membuf_sys_cmd_buf, IPCC_CH_SYS, 0x10, opcode, buf, len);
return tl_sys_wait_ack(ipcc_membuf_sys_cmd_buf, timeout_ms);
}
static int tl_ble_wait_resp(void) {
uint32_t t0 = mp_hal_ticks_ms();
while (!LL_C2_IPCC_IsActiveFlag_CHx(IPCC, IPCC_CH_BLE)) {
if (mp_hal_ticks_ms() - t0 > BLE_ACK_TIMEOUT_MS) {
printf("tl_ble_wait_resp: timeout\n");
return -MP_ETIMEDOUT;
}
}
// C2 set IPCC flag -- process the data, clear the flag, and re-enable IRQs.
tl_check_msg(&ipcc_mem_ble_evt_queue, IPCC_CH_BLE, NULL);
return 0;
}
// Synchronously send a BLE command.
static void tl_ble_hci_cmd_resp(uint16_t opcode, const uint8_t *buf, size_t len) {
// Poll for completion rather than wait for IRQ->scheduler.
LL_C1_IPCC_DisableReceiveChannel(IPCC, IPCC_CH_BLE);
tl_hci_cmd(ipcc_membuf_ble_cmd_buf, IPCC_CH_BLE, HCI_KIND_BT_CMD, opcode, buf, len);
tl_ble_wait_resp();
}
/******************************************************************************/
// RF core interface
void rfcore_init(void) {
DEBUG_printf("rfcore_init\n");
// Ensure LSE is running
rtc_init_finalise();
// In case we're waking from deepsleep, enforce core synchronisation
__HAL_RCC_HSEM_CLK_ENABLE();
while (LL_HSEM_1StepLock(HSEM, CFG_HW_PWR_STANDBY_SEMID)) {
}
// Set the wakeup source to LSE or fall back to use HSE
#if MICROPY_HW_RTC_USE_LSE
RCC->CSR = (RCC->CSR & ~RCC_CSR_RFWKPSEL) | 1 << RCC_CSR_RFWKPSEL_Pos;
#else
RCC->CSR = (RCC->CSR & ~RCC_CSR_RFWKPSEL) | 3 << RCC_CSR_RFWKPSEL_Pos;
#endif
// Initialise IPCC and shared memory structures
ipcc_init(IRQ_PRI_SDIO);
// When the device is out of standby, it is required to use the EXTI mechanism to wakeup CPU2
LL_C2_EXTI_EnableEvent_32_63(LL_EXTI_LINE_41);
LL_EXTI_EnableRisingTrig_32_63(LL_EXTI_LINE_41);
LL_HSEM_ReleaseLock(HSEM, CFG_HW_PWR_STANDBY_SEMID, 0);
// Boot the second core
__SEV();
__WFE();
PWR->CR4 |= PWR_CR4_C2BOOT;
}
static const struct {
uint8_t *pBleBufferAddress; // unused
uint32_t BleBufferSize; // unused
uint16_t NumAttrRecord;
uint16_t NumAttrServ;
uint16_t AttrValueArrSize;
uint8_t NumOfLinks;
uint8_t ExtendedPacketLengthEnable;
uint8_t PrWriteListSize;
uint8_t MblockCount;
uint16_t AttMtu;
uint16_t SlaveSca;
uint8_t MasterSca;
uint8_t LsSource;
uint32_t MaxConnEventLength;
uint16_t HsStartupTime;
uint8_t ViterbiEnable;
uint8_t LlOnly;
uint8_t HwVersion;
} ble_init_params = {
0, // pBleBufferAddress
0, // BleBufferSize
MICROPY_HW_RFCORE_BLE_NUM_GATT_ATTRIBUTES,
MICROPY_HW_RFCORE_BLE_NUM_GATT_SERVICES,
MICROPY_HW_RFCORE_BLE_ATT_VALUE_ARRAY_SIZE,
MICROPY_HW_RFCORE_BLE_NUM_LINK,
MICROPY_HW_RFCORE_BLE_DATA_LENGTH_EXTENSION,
MICROPY_HW_RFCORE_BLE_PREPARE_WRITE_LIST_SIZE,
MICROPY_HW_RFCORE_BLE_MBLOCK_COUNT,
MICROPY_HW_RFCORE_BLE_MAX_ATT_MTU,
MICROPY_HW_RFCORE_BLE_SLAVE_SCA,
MICROPY_HW_RFCORE_BLE_MASTER_SCA,
MICROPY_HW_RFCORE_BLE_LSE_SOURCE,
MICROPY_HW_RFCORE_BLE_MAX_CONN_EVENT_LENGTH,
MICROPY_HW_RFCORE_BLE_HSE_STARTUP_TIME,
MICROPY_HW_RFCORE_BLE_VITERBI_MODE,
MICROPY_HW_RFCORE_BLE_LL_ONLY,
0, // HwVersion
};
void rfcore_ble_init(void) {
DEBUG_printf("rfcore_ble_init\n");
// Configure and reset the BLE controller.
if (!rfcore_ble_reset()) {
// ble init can fail if core2 has previously locked up. Reset HSI & rfcore to retry.
LL_RCC_HSI_Disable();
mp_hal_delay_ms(100);
LL_RCC_HSI_Enable();
rfcore_init();
rfcore_ble_reset();
}
// Enable PES rather than SEM7 to moderate flash access between the cores.
uint8_t buf = 0; // FLASH_ACTIVITY_CONTROL_PES
tl_sys_hci_cmd_resp(HCI_OPCODE(OGF_VENDOR, OCF_C2_SET_FLASH_ACTIVITY_CONTROL), &buf, 1, 0);
}
bool rfcore_ble_reset(void) {
DEBUG_printf("rfcore_ble_reset\n");
// Clear any outstanding messages from ipcc_init.
tl_check_msg(&ipcc_mem_sys_queue, IPCC_CH_SYS, NULL);
// Configure and reset the BLE controller.
int ret = tl_sys_hci_cmd_resp(HCI_OPCODE(OGF_VENDOR, OCF_BLE_INIT), (const uint8_t *)&ble_init_params, sizeof(ble_init_params), 500);
if (ret == -MP_ETIMEDOUT) {
return false;
}
tl_ble_hci_cmd_resp(HCI_OPCODE(0x03, 0x0003), NULL, 0);
return true;
}
void rfcore_ble_hci_cmd(size_t len, const uint8_t *src) {
DEBUG_printf("rfcore_ble_hci_cmd\n");
#if HCI_TRACE
printf("[% 8d] >HCI_CMD(%02x", mp_hal_ticks_ms(), src[0]);
for (int i = 1; i < len; ++i) {
printf(":%02x", src[i]);
}
printf(")\n");
#endif
tl_list_node_t *n;
uint32_t ch;
if (src[0] == HCI_KIND_BT_CMD) {
n = (tl_list_node_t *)&ipcc_membuf_ble_cmd_buf[0];
ch = IPCC_CH_BLE;
} else if (src[0] == HCI_KIND_BT_ACL) {
n = (tl_list_node_t *)&ipcc_membuf_ble_hci_acl_data_buf[0];
ch = IPCC_CH_HCI_ACL;
// Give the previous ACL command up to 100ms to complete.
mp_uint_t timeout_start_ticks_ms = mp_hal_ticks_ms();
while (hci_acl_cmd_pending) {
if (mp_hal_ticks_ms() - timeout_start_ticks_ms > 100) {
break;
}
#if MICROPY_PY_BLUETOOTH && MICROPY_BLUETOOTH_NIMBLE
mp_bluetooth_nimble_hci_uart_wfi();
#endif
}
// Prevent sending another command until this one returns with HCI_EVENT_COMMAND_{COMPLETE,STATUS}.
hci_acl_cmd_pending = true;
} else {
printf("** UNEXPECTED HCI HDR: 0x%02x **\n", src[0]);
return;
}
n->next = NULL;
n->prev = NULL;
memcpy(n->body, src, len);
// IPCC indicate.
LL_C1_IPCC_SetFlag_CHx(IPCC, ch);
}
size_t rfcore_ble_check_msg(rfcore_ble_msg_callback_t cb, void *env) {
parse_hci_info_t parse = { cb, env, false };
size_t len = tl_check_msg(&ipcc_mem_ble_evt_queue, IPCC_CH_BLE, &parse);
// Intercept HCI_Reset events and reconfigure the controller following the reset
if (parse.was_hci_reset_evt) {
uint8_t buf[8];
buf[0] = 0; // config offset
buf[1] = 6; // config length
mp_hal_get_mac(MP_HAL_MAC_BDADDR, &buf[2]);
#define SWAP_UINT8(a, b) { uint8_t temp = a; a = b; b = temp; \
}
SWAP_UINT8(buf[2], buf[7]);
SWAP_UINT8(buf[3], buf[6]);
SWAP_UINT8(buf[4], buf[5]);
tl_ble_hci_cmd_resp(HCI_OPCODE(OGF_VENDOR, OCF_WRITE_CONFIG), buf, 8); // set BDADDR
}
return len;
}
// "level" is 0x00-0x1f, ranging from -40 dBm to +6 dBm (not linear).
void rfcore_ble_set_txpower(uint8_t level) {
uint8_t buf[2] = { 0x00, level };
tl_ble_hci_cmd_resp(HCI_OPCODE(OGF_VENDOR, OCF_SET_TX_POWER), buf, 2);
}
void rfcore_start_flash_erase(void) {
uint8_t buf = 1; // ERASE_ACTIVITY_ON
tl_sys_hci_cmd_resp(HCI_OPCODE(OGF_VENDOR, OCF_C2_FLASH_ERASE_ACTIVITY), &buf, 1, 0);
}
void rfcore_end_flash_erase(void) {
uint8_t buf = 0; // ERASE_ACTIVITY_OFF
tl_sys_hci_cmd_resp(HCI_OPCODE(OGF_VENDOR, OCF_C2_FLASH_ERASE_ACTIVITY), &buf, 1, 0);
}
/******************************************************************************/
// IPCC IRQ Handlers
void IPCC_C1_TX_IRQHandler(void) {
IRQ_ENTER(IPCC_C1_TX_IRQn);
IRQ_EXIT(IPCC_C1_TX_IRQn);
}
void IPCC_C1_RX_IRQHandler(void) {
IRQ_ENTER(IPCC_C1_RX_IRQn);
DEBUG_printf("IPCC_C1_RX_IRQHandler\n");
if (LL_C2_IPCC_IsActiveFlag_CHx(IPCC, IPCC_CH_BLE)) {
// Disable this IRQ until the incoming data is processed (in tl_check_msg).
LL_C1_IPCC_DisableReceiveChannel(IPCC, IPCC_CH_BLE);
#if MICROPY_PY_BLUETOOTH
// Queue up the scheduler to process UART data and run events.
mp_bluetooth_hci_poll_now();
#endif
}
IRQ_EXIT(IPCC_C1_RX_IRQn);
}
/******************************************************************************/
// MicroPython bindings
static mp_obj_t rfcore_status(void) {
return mp_obj_new_int_from_uint(ipcc_mem_dev_info_tab.fus.table_state);
}
MP_DEFINE_CONST_FUN_OBJ_0(rfcore_status_obj, rfcore_status);
static mp_obj_t get_version_tuple(uint32_t data) {
mp_obj_t items[] = {
MP_OBJ_NEW_SMALL_INT(data >> 24), MP_OBJ_NEW_SMALL_INT(data >> 16 & 0xFF), MP_OBJ_NEW_SMALL_INT(data >> 8 & 0xFF), MP_OBJ_NEW_SMALL_INT(data >> 4 & 0xF), MP_OBJ_NEW_SMALL_INT(data & 0xF)
};
return mp_obj_new_tuple(5, items);
}
static mp_obj_t rfcore_fw_version(mp_obj_t fw_id_in) {
if (ipcc_mem_dev_info_tab.fus.table_state == MAGIC_IPCC_MEM_INCORRECT) {
mp_raise_OSError(MP_EINVAL);
}
mp_int_t fw_id = mp_obj_get_int(fw_id_in);
bool fus_active = ipcc_mem_dev_info_tab.fus.table_state == MAGIC_FUS_ACTIVE;
uint32_t v;
if (fw_id == 0) {
// FUS
v = fus_active ? ipcc_mem_dev_info_tab.fus.fus_version : ipcc_mem_dev_info_tab.ws.fus_version;
} else {
// WS
v = fus_active ? ipcc_mem_dev_info_tab.fus.ws_version : ipcc_mem_dev_info_tab.ws.fw_version;
}
return get_version_tuple(v);
}
MP_DEFINE_CONST_FUN_OBJ_1(rfcore_fw_version_obj, rfcore_fw_version);
static mp_obj_t rfcore_sys_hci(size_t n_args, const mp_obj_t *args) {
if (ipcc_mem_dev_info_tab.fus.table_state == MAGIC_IPCC_MEM_INCORRECT) {
mp_raise_OSError(MP_EINVAL);
}
mp_int_t ogf = mp_obj_get_int(args[0]);
mp_int_t ocf = mp_obj_get_int(args[1]);
mp_buffer_info_t bufinfo = {0};
mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_READ);
mp_int_t timeout_ms = 0;
if (n_args >= 4) {
timeout_ms = mp_obj_get_int(args[3]);
}
ssize_t len = tl_sys_hci_cmd_resp(HCI_OPCODE(ogf, ocf), bufinfo.buf, bufinfo.len, timeout_ms);
if (len < 0) {
mp_raise_OSError(-len);
}
return mp_obj_new_bytes(ipcc_membuf_sys_cmd_buf, len);
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(rfcore_sys_hci_obj, 3, 4, rfcore_sys_hci);
#endif // defined(STM32WB)