-
Notifications
You must be signed in to change notification settings - Fork 195
/
Copy pathTestJIT.cs
535 lines (438 loc) · 17.7 KB
/
TestJIT.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
// Copyright (c) .NET Foundation and Contributors. All Rights Reserved. See LICENSE in the project root for license information.
using System;
using System.IO;
using System.Linq;
using static TorchSharp.torch;
using static TorchSharp.torch.nn;
using Xunit;
#nullable enable
namespace TorchSharp
{
[Collection("Sequential")]
public class TestJIT
{
#if true
[Fact]
public void TestLoadJIT_1()
{
var input = torch.ones(10);
var expected = torch.tensor(new float[] { 0.313458264f, 0, 0.9996568f, 0, 0, 0 });
// One linear layer followed by ReLU.
var m = torch.jit.load<Tensor, Tensor>(@"linrelu.script.dat");
if (torch.cuda.is_available()) {
m = m.to(torch.CUDA);
input = input.to(torch.CUDA);
expected = expected.to(torch.CUDA);
}
var t = m.forward(input);
Assert.Equal(new long[] { 6 }, t.shape);
Assert.Equal(torch.float32, t.dtype);
Assert.True(expected.allclose(t));
}
[Fact]
public void TestLoadJIT_Func()
{
// One linear layer followed by ReLU.
using var m = torch.jit.load<Tensor, Tensor, Tensor>(@"func.script.dat");
var sms = m.named_modules().ToArray();
Assert.Empty(sms);
var kids = m.named_children().ToArray();
Assert.Empty(kids);
var t = m.call(torch.ones(10), torch.ones(10));
Assert.Equal(new long[] { 10 }, t.shape);
Assert.Equal(torch.float32, t.dtype);
Assert.True(torch.tensor(new float[] { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }).allclose(t));
}
[Fact]
public void TestLoadJIT_5()
{
var input = torch.ones(10);
var expected = torch.tensor(new float[] { 0.313458264f, 0, 0.9996568f, 0, 0, 0 });
// One linear layer followed by ReLU.
var m = torch.jit.load<Tensor, Tensor>(@"linrelu.script.dat");
if (torch.cuda.is_available()) {
m = m.to(torch.CUDA);
input = input.to(torch.CUDA);
expected = expected.to(torch.CUDA);
}
var t = m.call(input);
Assert.Equal(new long[] { 6 }, t.shape);
Assert.Equal(torch.float32, t.dtype);
Assert.True(expected.allclose(t));
}
[Fact]
public void TestLoadJIT_6()
{
var input = torch.ones(10);
var expected = torch.tensor(new float[] { 0.313458264f, 0, 0.9996568f, 0, 0, 0 });
// One linear layer followed by ReLU.
var m = torch.jit.load<Tensor, Tensor>(@"linrelu.script.dat");
if (torch.cuda.is_available()) {
m = m.to(torch.CUDA);
input = input.to(torch.CUDA);
expected = expected.to(torch.CUDA);
}
int i = 0;
m.register_forward_pre_hook((m,t) => { i += 1; return t; });
m.register_forward_pre_hook((m, t) => { i += 2; return t; });
m.register_forward_hook((m, t1, t2) => { i += 4; return t2; });
m.register_forward_hook((m, t1, t2) => { i += 8; return t2; });
var t = m.forward(input);
Assert.Equal(0, i);
t = m.call(input);
Assert.Equal(15, i);
Assert.Equal(new long[] { 6 }, t.shape);
Assert.Equal(torch.float32, t.dtype);
Assert.True(expected.allclose(t));
}
[Fact]
public void TestSaveJIT()
{
var location = "TestSaveJIT.ts";
if (File.Exists(location)) File.Delete(location);
try {
// One linear layer followed by ReLU.
using var m1 = torch.jit.load<Tensor, Tensor>(@"linrelu.script.dat");
torch.jit.save(m1, location);
using var m2 = torch.jit.load<Tensor, Tensor>(location);
var t = m2.call(torch.ones(10));
Assert.Equal(new long[] { 6 }, t.shape);
Assert.Equal(torch.float32, t.dtype);
Assert.True(torch.tensor(new float[] { 0.313458264f, 0, 0.9996568f, 0, 0, 0 }).allclose(t));
} finally {
if (File.Exists(location)) File.Delete(location);
}
}
[Fact]
public void TestLoadJIT_2()
{
// One linear layer followed by ReLU.
using var m = torch.jit.load<Tensor, Tensor>(@"scripted.script.dat");
var t = m.call(torch.ones(6));
Assert.Equal(new long[] { 6 }, t.shape);
Assert.Equal(torch.float32, t.dtype);
Assert.True(torch.tensor(new float[] { 1.554085f, 1.01024628f, -1.35086036f, -1.84021854f, 0.0127189457f, 0.5994258f }).allclose(t));
}
[Fact]
public void TestLoadJIT_3()
{
// Two linear layers, nested Sequential, ReLU in between.
using var m = torch.jit.load<Tensor, Tensor>(@"l1000_100_10.script.dat");
var sms = m.named_modules().ToArray();
Assert.Equal(4, sms.Length);
var kids = m.named_children().ToArray();
Assert.Equal(2, kids.Length);
var t = m.call(torch.ones(1000));
Assert.Equal(new long[] { 10 }, t.shape);
Assert.Equal(torch.float32, t.dtype);
Assert.True(torch.tensor(new float[] { 0.564213157f, -0.04519982f, -0.005117342f, 0.395530462f, -0.3780813f, -0.004734449f, -0.3221216f, -0.289159119f, 0.268511474f, 0.180702567f }).allclose(t, 1e-2, 1e-3 /*Really it is literally close with 0.0001 diff*/));
//Assert.True(torch.tensor(new float[] { 0.564213157f, -0.04519982f, -0.005117342f, 0.395530462f, -0.3780813f, -0.004734449f, -0.3221216f, -0.289159119f, 0.268511474f, 0.180702567f }).allclose(t));
Assert.Throws<System.Runtime.InteropServices.ExternalException>(() => m.call(torch.ones(100)));
}
[Fact]
public void TestLoadJIT_4()
{
// Definitely not a TorchScript file. Let's see what the runtime does with it.
Assert.Throws<System.Runtime.InteropServices.ExternalException>(() => torch.jit.load(@"bug510.dat"));
}
[Fact]
public void TestSaveLoadJITCUDA()
{
if (torch.cuda.is_available()) {
{
using var m = torch.jit.load<Tensor, Tensor>(@"linrelu.script.dat");
m.to(DeviceType.CUDA);
var params0 = m.parameters().ToArray();
foreach (var p in params0)
Assert.Equal(DeviceType.CUDA, p.device_type);
var t = m.call(torch.ones(10).cuda()).cpu();
Assert.Equal(new long[] { 6 }, t.shape);
Assert.Equal(torch.float32, t.dtype);
Assert.True(torch.tensor(new float[] { 0.313458264f, 0, 0.9996568f, 0, 0, 0 }).allclose(t));
}
{
using var m = torch.jit.load<Tensor, Tensor>(@"linrelu.script.dat", DeviceType.CUDA);
var params0 = m.parameters().ToArray();
foreach (var p in params0)
Assert.Equal(DeviceType.CUDA, p.device_type);
var t = m.call(torch.ones(10).cuda()).cpu();
Assert.Equal(new long[] { 6 }, t.shape);
Assert.Equal(torch.float32, t.dtype);
Assert.True(torch.tensor(new float[] { 0.313458264f, 0, 0.9996568f, 0, 0, 0 }).allclose(t));
}
}
}
[Fact]
public void TestJIT_TupleOut()
{
// def a(x, y):
// return x + y, x - y
//
using var m = torch.jit.load<(Tensor, Tensor)>(@"tuple_out.dat");
var x = torch.rand(3, 4);
var y = torch.rand(3, 4);
var output = m.call(x, y);
Assert.Multiple(
() => Assert.Equal(x.shape, output.Item1.shape),
() => Assert.Equal(x.shape, output.Item2.shape),
() => Assert.Equal(x + y, output.Item1),
() => Assert.Equal(x - y, output.Item2)
);
}
[Fact]
public void TestJIT_TupleOutError()
{
// def a(x, y):
// return x + y, x - y
//
using var m = torch.jit.load<(Tensor, Tensor)>(@"func.script.dat");
var x = torch.rand(3, 4);
var y = torch.rand(3, 4);
Assert.Throws<InvalidCastException>(() => m.call(x, y));
}
[Fact]
public void TestJIT_ListOut()
{
// def a(x, y):
// return [x + y, x - y]
//
using var m = torch.jit.load<Tensor[]>(@"list_out.dat");
var x = torch.rand(3, 4);
var y = torch.rand(3, 4);
var output = m.call(x, y);
Assert.Multiple(
() => Assert.Equal(x.shape, output[0].shape),
() => Assert.Equal(x.shape, output[1].shape),
() => Assert.Equal(x + y, output[0]),
() => Assert.Equal(x - y, output[1])
);
}
[Fact]
public void TestJIT_ListOutError()
{
// def a(x, y):
// return x + y, x - y
//
using var m = torch.jit.load<Tensor[]>(@"func.script.dat");
var x = torch.rand(3, 4);
var y = torch.rand(3, 4);
Assert.Throws<InvalidCastException>(() => m.call(x, y));
}
[Fact]
public void TestLoadJIT_Methods()
{
// class MyModule(nn.Module):
// def __init__(self):
// super().__init__()
// self.p = nn.Parameter(torch.rand(10))
// def forward(self, x: Tensor, y: Tensor) -> Tuple[Tensor, Tensor]:
// return x + y, x - y
//
// @torch.jit.export
// def predict(self, x: Tensor) -> Tensor:
// return x + self.p
// @torch.jit.export
// def add_scalar(self, x: Tensor, i: int) -> Tensor:
// return x + i
using var m = new TestScriptModule(@"exported.method.dat");
var x = torch.rand(3, 4);
var y = torch.rand(3, 4);
var output = m.call(x, y);
Assert.Multiple(
() => Assert.Equal(x.shape, output.Item1.shape),
() => Assert.Equal(x.shape, output.Item2.shape),
() => Assert.Equal(x + y, output.Item1),
() => Assert.Equal(x - y, output.Item2)
);
var ones = m.add_scalar(torch.zeros(10), 1);
Assert.Equal(torch.ones(10), ones);
var a = torch.rand(10);
var predict = m.predict(a);
Assert.Multiple(
() => Assert.NotEqual(a, predict)
);
}
internal class TestScriptModule : Module<Tensor, Tensor, (Tensor, Tensor)>
{
internal TestScriptModule(string filename) : base(nameof(TestScriptModule))
{
m = torch.jit.load<(Tensor, Tensor)> (filename);
}
public override (Tensor, Tensor) forward(Tensor input1, Tensor input2)
{
return m.call(input1, input2);
}
public Tensor predict(Tensor input)
{
return m.invoke<Tensor>("predict", input);
}
public Tensor add_scalar(Tensor input, int i)
{
return m.invoke<Tensor>("add_scalar", input, i);
}
private torch.jit.ScriptModule<(Tensor, Tensor)> m;
}
[Fact]
public void TestJITCompile_1()
{
string script = @"
def relu_script(a, b):
return torch.relu(a + b)
def relu6_script(a, b):
return torch.relu6(a + b)
def add_i(x: Tensor, i: int) -> Tensor:
return x + i
def add_d(x: Tensor, i: float) -> Tensor:
return x + i
def add_ii(x: int, i: int) -> Tuple[int,int]:
return (x + i,x-i)
";
using var cu = torch.jit.compile(script);
Assert.NotNull(cu);
var x = torch.randn(3, 4);
var y = torch.randn(3, 4);
var zeros = torch.zeros(3, 4);
var ones = torch.ones(3, 4);
var z = (Tensor)cu.invoke("relu_script", x, y);
Assert.Equal(torch.nn.functional.relu(x + y), z);
z = cu.invoke<Tensor>("relu6_script", x, y);
Assert.Equal(torch.nn.functional.relu6(x + y), z);
z = cu.invoke<Tensor>("add_i", zeros, 1);
Assert.Equal(ones, z);
z = cu.invoke<Tensor>("add_d", zeros, 1.0);
Assert.Equal(ones, z);
var ss = cu.invoke<(Scalar,Scalar)>("add_ii", 3, 1);
Assert.Multiple(
() => Assert.Equal(4, ss.Item1.ToInt32()),
() => Assert.Equal(2, ss.Item2.ToInt32())
);
}
[Fact]
public void TestJITCompile_2()
{
string script = @"
def none_script(a: Any, b: Any):
return a
def none_tuple(a: Any, b: Any):
return (a, None)
def tuple_tuple(a: Any, b: Any, c:Any):
return (a, (b, None))
def list_list(a: Any, b: Any, c:Any):
return [a, [b, c]]
def list_tuple(a: Any, b: Any, c:Any):
return [a, (b, c)]
def list_tuple_list(a: Any, b: Any, c:Any):
return [a, (b, [c, None])]
";
using var cu = torch.jit.compile(script);
Assert.NotNull(cu);
var x = torch.randn(3, 4);
var y = torch.randn(3, 5);
var w = torch.randn(3, 6);
var z = cu.invoke("none_script", null, null);
Assert.Null(z);
z = cu.invoke("none_script", null, y);
Assert.Null(z);
z = cu.invoke("none_script", x, null);
Assert.NotNull(z);
{
var zArr = cu.invoke<(object, object)>("none_tuple", null, null);
Assert.Null(zArr.Item1);
Assert.Null(zArr.Item2);
}
{
var zArr = cu.invoke<(object, object)>("none_tuple", x, null);
Assert.NotNull(zArr.Item1);
Assert.Null(zArr.Item2);
}
{
var zArr = cu.invoke<(object, object)>("tuple_tuple", x, y, w);
Assert.NotNull(zArr.Item1);
Assert.Equal(x, (Tensor)zArr.Item1);
Assert.NotNull(zArr.Item2);
var (a,b) = ((object, object))zArr.Item2;
Assert.NotNull(a);
Assert.Null(b);
}
{
var zArr = cu.invoke<object[]>("list_tuple", x, y, w);
Assert.NotNull(zArr);
Assert.NotNull(zArr[0]);
Assert.IsType<Tensor>(zArr[0]);
Assert.Equal(x, zArr[0]);
Assert.NotNull(zArr[1]);
Assert.IsType<(Tensor,Tensor)>(zArr[1]);
}
{
var zArr = cu.invoke<object[]>("list_list", x, y, w);
Assert.NotNull(zArr);
Assert.NotNull(zArr[0]);
Assert.IsType<Tensor>(zArr[0]);
Assert.Equal(x, zArr[0]);
Assert.NotNull(zArr[1]);
Assert.IsType<Tensor[]>(zArr[1]);
}
{
var zArr = cu.invoke<object[]>("list_tuple_list", x, y, w);
Assert.NotNull(z);
Assert.NotNull(zArr[0]);
Assert.Equal(x, zArr[0]);
Assert.NotNull(zArr[1]);
}
}
[Fact]//(Skip ="Doesn't work yet.")]
public void TestJITCompile_3()
{
string script = @"
def list_first(a: List[Tensor]) -> Tensor:
return a[0]
def list_two(a: List[Tensor]) -> List[Tensor]:
return [a[0],a[1]]
def list_from_two(a: List[Tensor], b: List[Tensor]) -> List[Tensor]:
return [a[0],a[1],b[0],b[1]]
";
using var cu = torch.jit.compile(script);
Assert.NotNull(cu);
var x = torch.randn(3, 4);
var y = torch.randn(3, 5);
var w = torch.randn(3, 6);
{
var zArr = cu.invoke<Tensor>("list_first", new[] { new[] { x, y } });
Assert.NotNull(zArr);
Assert.Equal(x, zArr);
}
{
var zArr = cu.invoke<Tensor[]>("list_two", new [] { new[] { x, w } });
Assert.NotNull(zArr);
Assert.Equal(2, zArr.Length);
Assert.Equal(x, zArr[0]);
Assert.Equal(w, zArr[1]);
}
{
var zArr = cu.invoke<Tensor[]>("list_from_two", new[] { x, y }, new[] { y, w });
Assert.NotNull(zArr);
Assert.Equal(4, zArr.Length);
Assert.Equal(x, zArr[0]);
Assert.Equal(y, zArr[1]);
Assert.Equal(y, zArr[2]);
Assert.Equal(w, zArr[3]);
}
}
#endif
[Fact]
public void TestLoadJIT_Func_Stream()
{
var bytes = File.ReadAllBytes(@"func.script.dat");
// One linear layer followed by ReLU.
using var m = torch.jit.load<Tensor, Tensor, Tensor>(bytes);
var sms = m.named_modules().ToArray();
Assert.Empty(sms);
var kids = m.named_children().ToArray();
Assert.Empty(kids);
var t = m.call(torch.ones(10), torch.ones(10));
Assert.Equal(new long[] { 10 }, t.shape);
Assert.Equal(torch.float32, t.dtype);
Assert.True(torch.tensor(new float[] { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }).allclose(t));
}
}
}