forked from viorik/ELSD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_curve.c
752 lines (634 loc) · 24 KB
/
process_curve.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
/*----------------------------------------------------------------------------
ELSD - Ellipse and Line Segment Detector
Copyright (c) 2012 viorica patraucean ([email protected])
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------------------------------------------*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <limits.h>
#include <float.h>
#include <ctype.h>
#include "elsd.h"
#include "valid_curve.h"
#include "process_curve.h"
#include "process_line.h"
//#include <f2c.h>
//#include <clapack.h>
/*---------------------------------------------------------------------------*/
/** Convert ellipse from matrix form to common form:
ellipse = (centrex,centrey,ax,ay,orientation).
*/
void ellipse2param(double *p,double param[])
{
/* p = [ a, 1/2*b, 1/2*d;
1/2*b, c, 1/2*e;
1/2*d, 1/2*e, f ]; */
double a,b,c,d,e,f;
a = p[0];
b = 2*p[1];
c = p[4];
d = 2*p[2];
e = 2*p[5];
f = p[8];
double thetarad,cost,sint,cos_squared,sin_squared,cos_sin,Ao,Au,Av,Auu,Avv,
tuCentre,tvCentre,wCentre,uCentre,vCentre,Ru,Rv;
thetarad=0.5*atan2(b,a-c);
cost=cos(thetarad);
sint=sin(thetarad);
sin_squared=sint*sint;
cos_squared=cost*cost;
cos_sin=sint*cost;
Ao=f;
Au=d*cost+e* sint;
Av=-d*sint+e* cost;
Auu=a*cos_squared+c*sin_squared+b*cos_sin;
Avv=a*sin_squared+c*cos_squared-b*cos_sin;
if(Auu==0 || Avv==0){ param[0]=0;param[1]=0;param[2]=0;param[3]=0;param[4]=0;}
else
{
tuCentre=-Au/(2.*Auu);
tvCentre=-Av/(2.*Avv);
wCentre=Ao-Auu*tuCentre*tuCentre-Avv*tvCentre*tvCentre;
uCentre=tuCentre*cost-tvCentre*sint;
vCentre=tuCentre*sint+tvCentre*cost;
Ru=-wCentre/Auu;
Rv=-wCentre/Avv;
if (Ru>0) Ru=pow(Ru,0.5);
else Ru=-pow(-Ru,0.5);
if (Rv>0) Rv=pow(Rv,0.5);
else Rv=-pow(-Rv,0.5);
param[0]=uCentre;param[1]=vCentre;
param[2]=Ru;param[3]=Rv;param[4]=thetarad;
}
}
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/** Compute matrix mean.
'sz' x 'dim' = matrix size (lines x cols)
'm' = output mean (vector of size 1 x 'dim').
*/
void mean(double *v,int sz,double *m,int dim)
{
int i,j;
double sum[dim];
if (v == NULL) error("mean: Invalid pointer");
if (sz<=0) error("mean: Invalid size");
if (dim<=0) error("mean: Invalid size");
for (i=0;i<dim;i++) sum[i] = 0.0;
for (i=0;i<sz;i++)
for (j=0;j<dim;j++)
sum[j]+=v[i*dim+j];
for (i=0;i<dim;i++) m[i] = sum[i]/(double)sz;
}
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/** Compute normalisation matrix (translates and normalises a set of
2D homogeneous points so that their centroid is at the origin and
their mean distance from the origin is sqrt(2).
Input points in 'v' are in cartesian coordinates.
Output matrix 'T' is 3 x 3.
*/
void vgg_conditioner_from_points(double *T, struct point *reg, int sz)
{
/* check parameters */
if (reg == NULL) error("vgg_conditioner_from_points: invalid points list");
if (sz<=0) error("vgg_conditioner_from_points: invalid size list");
double m[2] = {0.0, 0.0};
double Qt = 0.0;
double Qmean = 0.0, val = 0.0;
int i;
/* compute mean point */
for (i=0; i<sz; i++)
{
m[0] += reg[i].x;
m[1] += reg[i].y;
}
m[0] /= (double)sz; m[1] /= (double)sz;
/* compute variance */
for (i=0; i<sz; i++)
{
val = (reg[i].x - m[0])*(reg[i].x - m[0])+(reg[i].y - m[1])*(reg[i].y - m[1]);
Qt += sqrt(val);
}
Qmean = Qt/(double)sz;
val = SQRT2/Qmean;
T[1] = T[3] = 0;
T[0] = T[4] = val;
T[2] = -val*m[0];
T[5] = -val*m[1];
T[6] = T[7] = 0;
T[8] = 1;
}
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/** antisym(u) A = [ 0,-u(3),u(2); u(3),0,-u(1); -u(2),u(1),0 ];
*/
void antisym(double *u,double *A)
{
A[0] = A[4] = A[8] = 0;
A[1] = -u[2];
A[2] = u[1];
A[3] = u[2];
A[5] = -u[0];
A[6] = -u[1];
A[7] = u[0];
}
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/** Compute equations for circle/ellipse fitting.
*/
void fit_equations(struct point *reg,int reg_size,image_double gradx,
image_double grady, double *vgg)
{
/* check parameters */
if(reg == NULL) error("fit_equations: invalid region");
if (reg_size<=0) error("fit_equations: invalid region size");
if (reg_size*24>gSizeBufferDouble)
{
gBufferDouble = (double*)realloc(gBufferDouble, sizeof(double) * reg_size * 24);
if (!gBufferDouble) error("fit_equations: not enough memory");
gSizeBufferDouble = reg_size*24;
}
int i,j;
double K[27];
double asym[9];
int idx;
double crosspr[3];
double pnormx, pnormy, dirnormx, dirnormy;
int addr;
/* compute normalisation matrix */
vgg_conditioner_from_points(vgg,reg,reg_size);
/* compute equation system */
for (i=0;i<reg_size;i++)
{
idx = i*4*6;
/* normalise point (pnormx,pnormy) = VGG*(x,y) */
pnormx = vgg[0]*reg[i].x+vgg[1]*reg[i].y+vgg[2];
pnormy = vgg[3]*reg[i].x+vgg[4]*reg[i].y+vgg[5];
/* normalise gradient direction (dirnormx,dirnormy) = VGG*(dx,dy) */
addr = reg[i].y*gradx->xsize+reg[i].x;
dirnormx = -vgg[0] * grady->data[addr] + vgg[1] * gradx->data[addr];
dirnormy = -vgg[3] * grady->data[addr] + vgg[4] * gradx->data[addr];
/* cross product (pnormx,pnormy) x (dirnormx,dirnormy) = tangent line */
crosspr[0] = - dirnormy;
crosspr[1] = dirnormx;
crosspr[2] = pnormx * dirnormy - pnormy * dirnormx;
/* tangent's equation : eq = -transpose(kron(TPts(1:3,i),antisym(l)))*J; */
antisym(crosspr,asym);
for (j=0;j<9;j++) K[j] = asym[j]*pnormx;
for (j=0;j<9;j++) K[j+9] = asym[j]*pnormy;
for (j=0;j<9;j++) K[j+18] = asym[j];
gBufferDouble[idx] = -K[0]; gBufferDouble[idx+6] = -K[1]; gBufferDouble[idx+12] = -K[2];
gBufferDouble[idx+1] = -(K[3]+K[9]); gBufferDouble[idx+6+1] = -(K[4]+K[10]); gBufferDouble[idx+12+1] = -(K[5]+K[11]);
gBufferDouble[idx+2] = -(K[6]+K[18]); gBufferDouble[idx+6+2] = -(K[7]+K[19]); gBufferDouble[idx+12+2] = -(K[8]+K[20]);
gBufferDouble[idx+3] = -K[12]; gBufferDouble[idx+6+3] = -K[13]; gBufferDouble[idx+12+3] = -K[14];
gBufferDouble[idx+4] = -(K[15]+K[21]); gBufferDouble[idx+6+4] = -(K[16]+K[22]); gBufferDouble[idx+12+4] = -(K[17]+K[23]);
gBufferDouble[idx+5] = -K[24]; gBufferDouble[idx+6+5] = -K[25]; gBufferDouble[idx+12+5] = -K[26];
/* position's equation : eq = transpose(kron(TPts(1:3,i),TPts(1:3,i)))*J; */
gBufferDouble[idx+18] = pnormx * pnormx;
gBufferDouble[idx+19] = 2 * pnormx * pnormy;
gBufferDouble[idx+20] = 2 * pnormx;
gBufferDouble[idx+21] = pnormy * pnormy;
gBufferDouble[idx+22] = 2 * pnormy;
gBufferDouble[idx+23] = 1;
}
}
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/** Algebraic circle fitting using positional and tangential constraints.
*/
void fitcircle(int reg_size, double *vgg, double *param)
{
/* check parameters */
if (reg_size<=0) error("fitcircle: invalid size");
int i,j,k;
double A[16];
int idx;
idx = 0;
for(i=0; i<reg_size*4*6; i+=6)
{
gBufferDouble[i] = gBufferDouble[i] + gBufferDouble[i+3];
gBufferDouble[i+1] = gBufferDouble[i+2];
gBufferDouble[i+2] = gBufferDouble[i+4];
gBufferDouble[i+3] = gBufferDouble[i+5];
}
/* A = EQ'*EQ; */
for (i=0;i<16;i++) A[i] = 0.0;
for (i=0;i<4;i++)
for (j=0;j<4;j++)
for (k=0;k<4*reg_size;k++)
A[i*4+j] += gBufferDouble[k*6+i]*gBufferDouble[k*6+j];
#define SIZE4 4
char JOBZ = 'V';
char UPLO = 'U';
int M = SIZE4;
int LDA = M;
int LWORK = 4*SIZE4;
int INFO;
double W[SIZE4];
double WORK[LWORK];
dsyev_(&JOBZ, &UPLO, &M, A, &LDA, W, WORK, &LWORK, &INFO);
double s[9];
s[0] = s[4] = A[0];
s[1] = s[3] = 0;
s[2] = s[6] = A[1];
s[5] = s[7] = A[2];
s[8] = A[3];
/* apply inverse(normalisation matrix) */
/* C = T'*[ x(1),0,x(2); 0,x(1),x(3) ; x(2),x(3),x(4)]*T;*/
double C[9];
C[0] = vgg[0]*vgg[0]*s[0]+vgg[3]*vgg[3]*s[4];
C[1] = vgg[0]*vgg[1]*s[0]+vgg[3]*vgg[4]*s[4];
C[2] = vgg[0]*vgg[2]*s[0]+vgg[3]*vgg[5]*s[4]+vgg[0]*s[2]+vgg[3]*s[5];
C[3] = vgg[0]*vgg[1]*s[0]+vgg[3]*vgg[4]*s[4];
C[4] = vgg[1]*vgg[1]*s[0]+vgg[4]*vgg[4]*s[4];
C[5] = vgg[1]*vgg[2]*s[0]+vgg[4]*vgg[5]*s[4]+vgg[1]*s[2]+vgg[4]*s[5];
C[6] = vgg[0]*vgg[2]*s[0]+vgg[0]*s[6]+vgg[3]*vgg[5]*s[4]+vgg[3]*s[7];
C[7] = vgg[1]*vgg[2]*s[0]+vgg[1]*s[6]+vgg[4]*vgg[5]*s[4]+vgg[4]*s[7];
C[8] = vgg[2]*vgg[2]*s[0]+vgg[2]*s[6]+vgg[5]*vgg[5]*s[4]+vgg[5]*s[7]+vgg[2]*s[2]+vgg[5]*s[5]+s[8];
ellipse2param(C, param);
}
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/** Algebraic ellipse fitting using positional and tangential constraints.
*/
void fitellipse(int reg_size, double *vgg, double *param)
{
/* check parameters */
if (reg_size<=0) error("fitellipse: invalid size");
int i,j,k;
double A[36];
/* A = EQ'*EQ; */
for (i=0;i<36;i++) A[i] = 0.0;
for (i=0;i<6;i++)
for (j=0;j<6;j++)
for (k=0;k<4*reg_size;k++)
A[i*6+j] += gBufferDouble[k*6+i]*gBufferDouble[k*6+j];
#define SIZE6 6
char JOBZ = 'V';
char UPLO = 'U';
int M = SIZE6;
int LDA = M;
int LWORK = 4*SIZE6;
int INFO;
double W[SIZE6];
double WORK[LWORK];
dsyev_(&JOBZ, &UPLO, &M, A, &LDA, W, WORK, &LWORK, &INFO);
double s[9];
s[0] = A[0];
s[1] = s[3] = A[1];
s[2] = s[6] = A[2];
s[4] = A[3];
s[5] = s[7] = A[4];
s[8] = A[5];
/* apply inverse(normalisation matrix) */
/* C = T'*[ x(1),x(2),x(3); x(2),x(4),x(5) ; x(3),x(5),x(6)]*T; */
double C[9];
C[0] = vgg[0]*vgg[0]*s[0]+vgg[0]*vgg[3]*s[3]+vgg[0]*vgg[3]*s[1]+vgg[3]*vgg[3]*s[4];
C[1] = vgg[0]*vgg[1]*s[0]+vgg[1]*vgg[3]*s[3]+vgg[0]*vgg[4]*s[1]+vgg[3]*vgg[4]*s[4];
C[2] = vgg[0]*vgg[2]*s[0]+vgg[2]*vgg[3]*s[3]+vgg[0]*vgg[5]*s[1]+vgg[3]*vgg[5]*s[4]+vgg[0]*s[2]+vgg[3]*s[5];
C[3] = vgg[0]*vgg[1]*s[0]+vgg[0]*vgg[4]*s[3]+vgg[1]*vgg[3]*s[1]+vgg[3]*vgg[4]*s[4];
C[4] = vgg[1]*vgg[1]*s[0]+vgg[1]*vgg[4]*s[3]+vgg[1]*vgg[4]*s[1]+vgg[4]*vgg[4]*s[4];
C[5] = vgg[1]*vgg[2]*s[0]+vgg[2]*vgg[4]*s[3]+vgg[1]*vgg[5]*s[1]+vgg[4]*vgg[5]*s[4]+vgg[1]*s[2]+vgg[4]*s[5];
C[6] = vgg[0]*vgg[2]*s[0]+vgg[0]*vgg[5]*s[3]+vgg[0]*s[6]+vgg[2]*vgg[3]*s[1]+vgg[3]*vgg[5]*s[4]+vgg[3]*s[7];
C[7] = vgg[1]*vgg[2]*s[0]+vgg[1]*vgg[5]*s[3]+vgg[1]*s[6]+vgg[2]*vgg[4]*s[1]+vgg[4]*vgg[5]*s[4]+vgg[4]*s[7];
C[8] = vgg[2]*vgg[2]*s[0]+vgg[2]*vgg[5]*s[3]+vgg[2]*s[6]+vgg[2]*vgg[5]*s[1]+vgg[5]*vgg[5]*s[4]+vgg[5]*s[7]+vgg[2]*s[2]+vgg[5]*s[5]+s[8];
ellipse2param(C, param);
}
/*---------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------*/
/** Compute the min value of a double array.
*/
double min_array(double *v, int sz)
{
double m = DBL_MAX;
int i;
for (i=0;i<sz;i++)
if (v[i]<m) m = v[i];
return m;
}
/*----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------*/
/** Compute the position of the min value in a double array.
*/
void min_array_pos(double *v, int sz,int *pos)
{
double m = DBL_MAX;
int i;
for (i=0;i<sz;i++)
if (v[i]<m)
{
m = v[i];
*pos = i;
}
}
/*----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------*/
/** Compute the point belonging to an ellipse, closest to a given point with
integer coordinates.
*/
void rosin_point (double *param,double x,double y,double *xi,double *yi)
{
double ae2 = param[2]*param[2];
double be2 = param[3]*param[3];
x = x - param[0];
y = y - param[1];
double xp = x*cos(-param[4])-y*sin(-param[4]);
double yp = x*sin(-param[4])+y*cos(-param[4]);
double fe2;
fe2 = ae2-be2;
double X = xp*xp;
double Y = yp*yp;
double delta = (X+Y+fe2)*(X+Y+fe2)-4*X*fe2;
double A = (X + Y + fe2 - sqrt(delta))/2.0;
double ah = sqrt(A);
double bh2 = fe2-A;
double term = (A*be2+ae2*bh2);
double xx = ah*sqrt(ae2*(be2+bh2)/term);
double yy = param[3]*sqrt(bh2*(ae2-A)/term);
double d[4];
int pos;
d[0] = dist(xp,yp,xx,yy);
d[1] = dist(xp,yp,xx,-yy);
d[2] = dist(xp,yp,-xx,yy);
d[3] = dist(xp,yp,-xx,-yy);
min_array_pos(d,4,&pos);
switch (pos)
{
case 0: break;
case 1: yy = -yy; break;
case 2: xx = -xx; break;
case 3: xx = -xx; yy = -yy; break;
default: break;
}
*xi = xx*cos(param[4])-yy*sin(param[4])+param[0];
*yi = xx*sin(param[4])+yy*cos(param[4])+param[1];
}
/*----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------*/
/** Approximate the distance between a point and an ellipse using Rosin distance.
*/
double d_rosin (double *param, double x, double y)
{
double ae2 = param[2]*param[2];
double be2 = param[3]*param[3];
x = x - param[0];
y = y - param[1];
double xp = x*cos(-param[4])-y*sin(-param[4]);
double yp = x*sin(-param[4])+y*cos(-param[4]);
double fe2;
fe2 = ae2-be2;
double X = xp*xp;
double Y = yp*yp;
double delta = (X+Y+fe2)*(X+Y+fe2)-4*X*fe2;
double A = (X + Y + fe2 - sqrt(delta))/2.0;
double ah = sqrt(A);
double bh2 = fe2-A;
double term = (A*be2+ae2*bh2);
double xi = ah*sqrt(ae2*(be2+bh2)/term);
double yi = param[3]*sqrt(bh2*(ae2-A)/term);
double d[4];
d[0] = dist(xp,yp,xi,yi);
d[1] = dist(xp,yp,xi,-yi);
d[2] = dist(xp,yp,-xi,yi);
d[3] = dist(xp,yp,-xi,-yi);
double dmin = min_array(d,4);
if (X+Y>xi*xi+yi*yi)
return dmin;
else return -dmin;
}
/*----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------*/
/** Compute the angle of a point belonging to an ellipse using the focal property
*/
double angle(double x, double y, double *foci)
{
double tmp1 = atan2(y-foci[1], x-foci[0]);
double tmp2 = atan2(y-foci[3], x-foci[2]);
double theta;
double tmp3 = angle_diff_signed(tmp1,tmp2);
theta = tmp1-tmp3/2.0;
while( theta <= -M_PI ) theta += M_2__PI;
while( theta > M_PI ) theta -= M_2__PI;
return theta;
}
/*----------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
int in_interval(double x,double a,double b){
if (x>=a&&x<b) return 1;
return 0;
}
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/** Determine if the gradient converges or diverges to/from the centre.
*/
int int_ext(double xc, double yc, int px, int py, image_double angles)
{
double a;
int dir = 0;
a = atan2(py-yc,px-xc);
if (angle_diff(a,angles->data[py*angles->xsize+px])<M_1_2_PI)
dir = 1;
return dir;
}
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/** Return +1 for positive value, and -1 for strictly negative value.
*/
int sign(double val)
{
if (val>=0) return 1;
else return -1;
}
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/** Compute the pixel seed for new region growing.
*/
void px_seed(struct rect rec, struct point *reg, int reg_size, int reg_size0,
image_char used, image_double angles, image_double grad, int *pext,
int *ps, double prec)
{
int xx,yy,i;
int adr;
int xtmp = pext[0], ytmp = pext[1];
double lmax = 0.0, l;
double gradmax = 0;
/* find the most extreme point of a region */
for (i = reg_size0;i<reg_size;i++)
{
l = fabs(((double)reg[i].x-xtmp)*rec.dx +((double)reg[i].y-ytmp)*rec.dy);
if (l>lmax)
{
pext[0] = reg[i].x;
pext[1] = reg[i].y;
lmax = l;
}
}
/* find a pixel with strong gradient, near the end of the current region */
ps[0] = pext[0]; ps[1] = pext[1];
for (xx=pext[0]-1;xx<=pext[0]+1;xx++)
for(yy = pext[1]-1;yy<=pext[1]+1;yy++)
{
if (xx>=0 && xx<(int)used->xsize && yy >=0 && yy< (int)used->ysize)
{
adr = yy*used->xsize+xx;
if (used->data[adr] != USED && angle_diff(angles->data[adr],rec.theta-M_1_2_PI)<2*prec)
if (grad->data[adr]>gradmax && dist(xx,yy,xtmp,ytmp)>=lmax)
{
ps[0] = xx;
ps[1] = yy;
gradmax = grad->data[adr];
}
}
}
}
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/** Compute polygonal approximation of a curve.
*/
void subcurve(struct point *reg, int *reg_size, double prec, double p,
image_double angles, image_char used, image_double grad,
image_double gradx, image_double grady, double logNT,
double mlog10eps, double density_th, int *pext, int *ps,
int *sgn, double *ang0, double *spir)
{
int convex = 1;
int reg_size0 = 0;
struct rect rec;
double reg_angle;
int flag;
int i;
double difang;
init_rect(&rec);
while (*reg_size != reg_size0 && convex)
{
reg_size0 = *reg_size;
++(*reg_size);
region_grow(ps[0], ps[1], angles, reg, reg_size, ®_angle, used, prec);
if (*reg_size-reg_size0 > 1)
{
region2rect(reg, reg_size0, *reg_size, grad, reg_angle, prec, p, &rec);
flag = refine(reg, reg_size0, reg_size, grad, gradx, grady, prec, p, &rec, used,
angles, density_th, logNT, mlog10eps);
if (dist(rec.x1,rec.y1,rec.x2,rec.y2)<1)
{
rec.x1 += (rec.dx+rec.dy); rec.y1 += (rec.dx+rec.dy);
rec.x2 -= (rec.dx+rec.dy); rec.y2 -= (rec.dx+rec.dy);
}
if (*sgn == 0)
*sgn = sign(angle_diff_signed(rec.theta, *ang0));
if (*reg_size-reg_size0 > 1)
{
difang = angle_diff_signed(rec.theta, *ang0);
/* convexity & smoothness check & non-spiral check */
if (sign(difang) == *sgn && fabs(difang) < M_1_2_PI &&
(*spir = *spir + fabs(difang)) <= M_2__PI)
{
*ang0 = rec.theta;
px_seed(rec, reg, *reg_size, reg_size0, used, angles, grad, pext, ps, prec);
}
else /* not convex or not smooth */
{
convex = 0;
/* clean last rectangle */
for (i=reg_size0;i<*reg_size;i++)
used->data[reg[i].y*used->xsize+reg[i].x] = NOTUSED;
/* substract the contribution of the last rectangle */
*reg_size = reg_size0;
}
}
else
{
convex = 0;
*reg_size = reg_size0;
}
}
else
{
convex = 0;
*reg_size = reg_size0;
}
}
}
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
void curve_grow(struct point *reg, int *reg_size, struct rect rec, double prec,
double p, image_double angles, image_char used, image_double grad,
image_double gradx, image_double grady, double logNT,
double mlog10eps, double density_th)
{
int ps1[2], ps2[2];
int pext1[2], pext2[2];
int sgn = 0;
double ang0 = rec.theta;
double spir = 0.0;
/* compute right and left pixel seed using the ends of the initial rectangle */
pext2[0] = rec.x1; pext2[1] = rec.y1;
px_seed(rec, reg, *reg_size, 0, used, angles, grad, pext2, ps2, prec);
pext1[0] = rec.x2; pext1[1] = rec.y2;
px_seed(rec, reg, *reg_size, 0, used, angles, grad, pext1, ps1, prec);
/* scan in one direction */
subcurve(reg, reg_size, prec, p, angles, used, grad, gradx, grady, logNT,
mlog10eps, density_th, pext2, ps2, &sgn, &ang0, &spir);
/* scan the other direction if a complete tour was not scanned */
ang0 = rec.theta;
sgn = -sgn;
if (spir < M_2__PI)
subcurve(reg, reg_size, prec, p, angles, used, grad, gradx, grady, logNT,
mlog10eps, density_th, pext1, ps1, &sgn, &ang0, &spir);
}
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
void valid_curve(struct point *reg,int *reg_size,double prec,double p,
image_double angles,image_char used,image_double grad,
image_double gradx,image_double grady,double *paramc,
double *parame,struct rect rec,double *logNT,double mlog10eps,
double density_th,int *min_size,double *nfa,int *pext,
struct point3 *regc, struct point3 *rege, int *regp_size)
{
/* check params */
if (reg == NULL) error("valid_curve : null region");
if (angles == NULL || angles->data == NULL) error("valid_curve : null angles");
if (grad == NULL || grad->data == NULL) error("valid_curve : null grad");
if (gradx == NULL || gradx->data == NULL) error("valid_curve : null gradx");
if (grady == NULL || grady->data == NULL) error("valid_curve : null grady");
if (used == NULL || used->data == NULL) error("valid_curve : null used");
if (*reg_size <= 0) error("valid_curve : invalid reg_size");
int ell_ok;
double vgg[9];
int dir;
nfa[1] = nfa[2] = mlog10eps;
regp_size[1] = regp_size[2] = 0;
curve_grow(reg,reg_size,rec,prec,p,angles,used,grad,gradx,grady,logNT[0],mlog10eps,density_th);
if (*reg_size>min_size[1])
{
fit_equations(reg,*reg_size,gradx,grady,vgg);
/* perform first ellipse fitting, and then circle fitting because circle fitting modifies the equations 'eq' */
if (*reg_size>min_size[2])
{
fitellipse(*reg_size,vgg,parame);
}
fitcircle(*reg_size,vgg,paramc);
dir = int_ext(paramc[0], paramc[1], reg[0].x, reg[0].y, angles);
nfa[1] = valid_circle(reg,*reg_size,used,prec,p,angles,grad,gradx,grady,paramc,
logNT[1],dir,pext,regc,®p_size[1],min_size[1],mlog10eps);
if (*reg_size>min_size[2])
{
ell_ok = check_ellipse(parame);
if (ell_ok)
nfa[2] = valid_ellipse(reg,*reg_size,used,prec,p,angles,grad,gradx,grady,parame,
logNT[2],dir,pext,rege,®p_size[2],min_size[2],mlog10eps);
}
}
}
/*---------------------------------------------------------------------------*/