forked from junxiaosong/AlphaZero_Gomoku
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent_process.py
225 lines (187 loc) · 8.84 KB
/
agent_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from multiprocessing import Process, Queue
import variables
import threading
import time
import random
import numpy as np
from collections import defaultdict, deque
from game import Board, Game
from mcts_pure import MCTSPlayer as MCTS_Pure
from mcts_alphaZero import MCTSPlayer
import time
import os
from policy_value_net_tensorflow import PolicyValueNet # Tensorflow
class AgentProcess(Process):
def __init__(self, conn,id):
super(AgentProcess,self).__init__()
self.conn = conn
self.id = id
self.msg_queue = []
np.random.seed(self.id*100)
self.temp = 1.0
self.learn_rate = 2e-3
self.lr_multiplier = 1.0 # adaptively adjust the learning rate based on KL
self.epochs = 50
self.batch_size = 512
self.kl_targ = 0.02
self.n_in_row = 5
self.n_playout = 600 # num of simulations for each move 深度mcst模拟次数
self.c_puct = 5
self.best_win_ratio=0.0
self.board = Board(width=variables.board_width,
height=variables.board_height,
n_in_row=self.n_in_row)
self.game = Game(self.board)
self.pure_mcts_playout_num=1000
print(self.game)
def run(self):
buffer_size = 10000
data_buffer = deque(maxlen=buffer_size)
self.agent = PolicyValueNet(board_width=variables.board_width,board_height=variables.board_height,model_file=variables.init_model)
self.count=0
mcts_player = MCTSPlayer(self.agent.policy_value_fn,
c_puct=self.c_puct,
n_playout=self.n_playout,
is_selfplay=1)
def collect_selfplay_data():
"""collect self-play data for training"""
a = time.time()
winner, play_data = self.game.start_self_play(mcts_player,
temp=self.temp, is_shown=0)
print(time.time() - a, 'game play')
play_data = list(play_data)[:]
episode_len = len(play_data)
# augment the data
play_data = get_equi_data(play_data)
return play_data
def get_equi_data(play_data):
"""augment the data set by rotation and flipping
play_data: [(state, mcts_prob, winner_z), ..., ...]
"""
extend_data = []
for state, mcts_porb, winner in play_data:
for i in [1, 2, 3, 4]:
# rotate counterclockwise
equi_state = np.array([np.rot90(s, i) for s in state])
equi_mcts_prob = np.rot90(np.flipud(
mcts_porb.reshape(variables.board_height, variables.board_width)), i)
extend_data.append((equi_state,
np.flipud(equi_mcts_prob).flatten(),
winner))
# flip horizontally
equi_state = np.array([np.fliplr(s) for s in equi_state])
equi_mcts_prob = np.fliplr(equi_mcts_prob)
extend_data.append((equi_state,
np.flipud(equi_mcts_prob).flatten(),
winner))
return extend_data
def policy_update(data_buffer):
"""update the policy-value net"""
mini_batch = random.sample(data_buffer, self.batch_size)
state_batch = [data[0] for data in mini_batch]
mcts_probs_batch = [data[1] for data in mini_batch]
winner_batch = [data[2] for data in mini_batch]
old_probs, old_v = self.agent.policy_value(state_batch)
for i in range(self.epochs):
loss, entropy = self.agent.train_step(
state_batch,
mcts_probs_batch,
winner_batch,
self.learn_rate * self.lr_multiplier)
new_probs, new_v = self.agent.policy_value(state_batch)
kl = np.mean(np.sum(old_probs * (
np.log(old_probs + 1e-10) - np.log(new_probs + 1e-10)),
axis=1)
)
if kl > self.kl_targ * 4: # early stopping if D_KL diverges badly
break
# adaptively adjust the learning rate
if kl > self.kl_targ * 2 and self.lr_multiplier > 0.1:
self.lr_multiplier /= 1.5
elif kl < self.kl_targ / 2 and self.lr_multiplier < 10:
self.lr_multiplier *= 1.5
explained_var_old = (1 -
np.var(np.array(winner_batch) - old_v.flatten()) /
np.var(np.array(winner_batch)))
explained_var_new = (1 -
np.var(np.array(winner_batch) - new_v.flatten()) /
np.var(np.array(winner_batch)))
print(("kl:{:.5f},"
"lr_multiplier:{:.3f},"
"loss:{:.3f},"
"entropy:{:.3f},"
"explained_var_old:{:.3f},"
"explained_var_new:{:.3f}"
).format(kl,
self.lr_multiplier,
loss,
entropy,
explained_var_old,
explained_var_new))
self.agent.save_model(variables.init_model)
# modelfile = './current_policy.model'
# return modelfile
def policy_evaluate(n_games=10):
"""
Evaluate the trained policy by playing against the pure MCTS player
Note: this is only for monitoring the progress of training
"""
print('eval')
current_mcts_player = MCTSPlayer(self.agent.policy_value_fn,c_puct=self.c_puct,n_playout=self.n_playout)
pure_mcts_player = MCTS_Pure(c_puct=5, n_playout=self.pure_mcts_playout_num)
win_cnt = defaultdict(int)
print('eval run')
for i in range(n_games):
winner = self.game.start_play(current_mcts_player,
pure_mcts_player,
start_player=i % 2,
is_shown=0)
win_cnt[winner] += 1
win_ratio = 1.0 * (win_cnt[1] + 0.5 * win_cnt[-1]) / n_games
print("num_playouts:{}, win: {}, lose: {}, tie:{}".format(
self.pure_mcts_playout_num,
win_cnt[1], win_cnt[2], win_cnt[-1]))
return win_ratio
def treatQueue():
print('treatQueue In ' + str(os.getpid()))
t0 = time.time()
try:
msg = self.conn.recv()
except Exception as e:
msg = self.conn.recv()
print(str(e)+" "+str(self.id)+" "+str(os.getpid()))
if msg == "load":
print(str(os.getpid())+' start load')
self.agent.restore_model(variables.init_model)
print("Process "+str(os.getpid())+" loaded the master (0) model.")
elif msg[0] == "collect":
data_buffer.extend(msg[1])
print(len(msg[1]), len(data_buffer))
elif msg[0] == "train_with_batchs":
self.count += 1
print("Master process is training ... "+str(self.count))
data_buffer.extend(msg[1])
print(len(msg[1]),len(data_buffer))
policy_update(data_buffer)
self.agent.save_model(variables.init_model)
print("Master process finished training. Time : "+str(time.time()-t0)+" \n")
if self.count% variables.check_freq == 0:
print("current self-play batch: {}".format(self.count))
win_ratio = policy_evaluate()
if win_ratio > self.best_win_ratio:
print("New best policy!!!!!!!!")
self.best_win_ratio = win_ratio
# update the best_policy
self.agent.save_model('./best_policy.model')
if (self.best_win_ratio == 1.0 and
self.pure_mcts_playout_num < 5000):
self.pure_mcts_playout_num += 1000
self.best_win_ratio = 0.0
self.conn.send("saved")
print('treatQueue Out '+ str(os.getpid()))
while True:
if self.id!= 0:
playdata=collect_selfplay_data()
print("Process "+str(self.id)+" finished playing."+str(len(playdata)))
self.conn.send([self.id,playdata])
treatQueue()