-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvpa108csulzh.cpp
1066 lines (877 loc) · 31.8 KB
/
vpa108csulzh.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
========== licence begin GPL
Copyright (c) 2000-2005 SAP AG
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
========== licence end
*/
#include <stdlib.h>
#include <string.h>
#include "hpa101saptype.h"
#include "hpa106cslzc.h"
#include "hpa107cslzh.h"
#include "hpa104CsObject.h"
#include "hpa105CsObjInt.h"
/* Huffman code lookup table entry--this entry is four bytes for
machines that have 16-bit pointers (e.g. PC's in the small
or medium model).
Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16
means that v is a literal, 16 < e < 32 means that v is a pointer to
the next table, which codes e - 16 bits, and lastly e == 99 indicates
an unused code. If a code with e == 99 is looked up, this implies
an error in the data. */
#define EOBCODE 15
#define LITCODE 16
#define INVALIDCODE 99
/* Tables for uncompress .............................................*/
extern int NEAR CsExtraLenBits[];
static int *cplext = &CsExtraLenBits[0];
extern int NEAR CsExtraDistBits[];
static int * cpdext = &CsExtraDistBits[0];
static unsigned short mask_bits[] =
{
0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
};
static unsigned border[] =
{ /* Order of the bit length code lengths */
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
};
static int cplens[] =
{ /* Copy lengths for literal codes 257..285 */
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0
};
/* note: see note #13 above about the 258 in this list. */
static int cpdist[] =
{ /* Copy offsets for distance codes 0..29 */
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
8193, 12289, 16385, 24577
};
/* Macros for inflate() bit peeking and grabbing.
The usage is:
NEEDBITS(j)
x = b & mask_bits[j];
DUMPBITS(j)
where NEEDBITS makes sure that b has at least j bits in it, and
DUMPBITS removes the bits from b. The macros use the variable k
for the number of bits in b. Normally, b and k are register
variables for speed, and are initialized at the begining of a
routine that uses these macros from a global bit buffer and count.
If we assume that EOB will be the longest code, then we will never
ask for bits with NEEDBITS that are beyond the end of the stream.
So, NEEDBITS should not read any more bytes than are needed to
meet the request. Then no bytes need to be "returned" to the buffer
at the end of the last block.
However, this assumption is not true for fixed blocks--the EOB code
is 7 bits, but the other literal/length codes can be 8 or 9 bits.
(Why PK made the EOB code, which can only occur once in a block,
the *shortest* code in the set, I'll never know.) However, by
making the first table have a lookup of seven bits, the EOB code
will be found in that first lookup, and so will not require that too
many bits be pulled from the stream.
*/
#define DUMPBITS(n) { cshu.bb >>= (n); cshu.bk -= (n); }
#define NEEDBITS(n) \
{ \
while (cshu.bk < (n)) \
{ \
if (cshu.MemInoffset < cshu.MemInsize) \
{ \
cshu.bytebuf = (unsigned short) cshu.MemInbuffer[(cshu.MemInoffset)++]; \
bitcount = 8; \
} \
else bitcount = 0; \
if (!bitcount) break; \
cshu.bb |= (cshu.bytebuf) << cshu.bk; \
cshu.bk += 8; \
} \
}
/*
Huffman code decoding is performed using a multi-level table lookup.
The fastest way to decode is to simply build a lookup table whose
size is determined by the longest code. However, the time it takes
to build this table can also be a factor if the data being decoded
is not very long. The most common codes are necessarily the
shortest codes, so those codes dominate the decoding time, and hence
the speed. The idea is you can have a shorter table that decodes the
shorter, more probable codes, and then point to subsidiary tables for
the longer codes. The time it costs to decode the longer codes is
then traded against the time it takes to make longer tables.
This results of this trade are in the variables lbits and dbits
below. lbits is the number of bits the first level table for literal/
length codes can decode in one step, and dbits is the same thing for
the distance codes. Subsequent tables are also less than or equal to
those sizes. These values may be adjusted either when all of the
codes are shorter than that, in which case the longest code length in
bits is used, or when the shortest code is *longer* than the
requested table size, in which case the length of the shortest
code in bits is used.
There are two different values for the two tables, since they code a
different number of possibilities each. The literal/length table
codes 286 possible values, or in a flat code, a little over eight
bits. The distance table codes 30 possible values, or a little less
than five bits, flat. The optimum values for speed end up being
about one bit more than those, so lbits is 8+1 and dbits is 5+1.
The optimum values may differ though from machine to machine, and
possibly even between compilers. Your mileage may vary.
*/
#define LBITS 9
#define DBITS 6
/* If BMAX needs to be larger than 16, then h and x[] should be ULONG */
#define BMAX 16 /* maximum bit length of any code (16 for explode) */
#define N_MAX 288 /* maximum number of codes in any set .............*/
int CsObjectInt::BuildHufTree (
unsigned * b, /* code lengths in bits (all assumed <= BMAX) */
unsigned n, /* number of codes (assumed <= N_MAX) */
unsigned s, /* number of simple-valued codes (0..s-1) */
int * d, /* list of base values for non-simple codes */
int * e, /* list of extra bits for non-simple codes */
HUFTREE **t, /* result: starting table */
int * m) /* maximum lookup bits, returns actual */
/* Given a list of code lengths and a maximum table size, make a set of
tables to decode that set of codes. Return zero on success, one if
the given code set is incomplete (the tables are still built in this
case), two if the input is invalid (all zero length codes or an
oversubscribed set of lengths), and three if not enough memory. */
{
unsigned a; /* counter for codes of length k */
unsigned c[BMAX+1]; /* bit length count table */
unsigned f; /* i repeats in table every f entries */
int g; /* maximum code length */
int h; /* table level */
REGISTER unsigned i; /* counter, current code */
REGISTER unsigned j; /* counter */
REGISTER int k; /* number of bits in current code */
int l; /* bits per table (returned in m) */
REGISTER unsigned *p; /* pointer into c[], b[], or v[] */
REGISTER HUFTREE *q; /* points to current table */
HUFTREE r = {0}; /* table entry for struct assignment */
HUFTREE *u[BMAX]; /* table stack */
unsigned v[N_MAX]; /* values in order of bit length */
REGISTER int w; /* bits before this table == (l * h) */
unsigned x[BMAX+1]; /* bit offsets, then code stack */
unsigned *xp; /* pointer into x */
int y; /* number of dummy codes added */
unsigned z; /* number of entries in current table */
/* Generate counts for each bit length .............................*/
memset(c, 0, sizeof(c));
p = b; i = n;
do
{
c[*p++]++; /* assume all entries <= BMAX .......*/
} while (--i);
if (c[0] == n) /* bad input--all zero length codes .*/
return CS_E_BAD_HUF_TREE;
/* Find minimum and maximum length, bound *m by those ..............*/
l = *m;
for (j = 1; j <= BMAX; j++)
if (c[j]) break;
k = j; /* minimum code length ...............*/
if ((unsigned)l < j) l = j;
for (i = BMAX; i; i--)
if (c[i]) break;
g = i; /* maximum code length ...............*/
if (( unsigned)l > i) l = i;
*m = l;
/* Adjust last length count to fill out codes, if needed ...........*/
for (y = 1 << j; j < i; j++, y <<= 1)
if ((y -= c[j]) < 0)
return CS_E_BAD_HUF_TREE; /* bad input: more codes than bits ..*/
if ((y -= c[i]) < 0) return CS_E_BAD_HUF_TREE;
c[i] += y;
/* Generate starting offsets into the value table for each length ..*/
x[1] = j = 0;
p = c + 1; xp = x + 2;
while (--i) /* note that i == g from above ............*/
{
*xp++ = (j += *p++);
}
/* Make a table of values in order of bit lengths ..................*/
p = b; i = 0;
do
{
if ((j = *p++) != 0) v[x[j]++] = i;
} while (++i < n);
/* Generate the Huffman codes and for each, make the table entries */
x[0] = i = 0; /* first Huffman code is zero */
p = v; /* grab values in bit order */
h = -1; /* no tables yet--level -1 */
w = -l; /* bits decoded == (l * h) */
u[0] = (HUFTREE *)NULL; /* just to keep compilers happy */
q = (HUFTREE *)NULL; /* dito */
z = 0; /* dito */
/* go through the bit lengths (k already is bits in shortest code) */
for (; k <= g; k++)
{
a = c[k];
while (a--)
{
/* here i is the Huffman code of length k bits for value *p */
/* make tables up to required level */
while (k > w + l)
{
h++;
w += l; /* previous table always l bits */
/* compute minimum size table less than or equal to l bits */
z = (z = g - w) > (unsigned)l ? l : z; /* upper limit on table size */
if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
{ /* too few codes for k-w bit table */
f -= a + 1; /* deduct codes from patterns left */
xp = c + k;
while (++j < z) /* try smaller tables up to z bits */
{
if ((f <<= 1) <= *++xp)
break; /* enough codes to use up j bits */
f -= *xp; /* else deduct codes from patterns */
}
}
z = 1 << j; /* table entries for j-bit table */
/* allocate and link in new table ............................*/
q = AllocHufTree (z+1);
if (q == (HUFTREE *) 0)
{
return CS_E_NO_STACKMEM; /* not enough memory ........*/
}
*t = q + 1;
*(t = &(q->v.t)) = (HUFTREE *)NULL;
u[h] = ++q; /* table starts after link ..*/
/* connect to last table, if there is one ................... */
if (h)
{
x[h] = i; /* save pattern for backing up */
r.b = (unsigned char)l; /* bits to dump before this .. */
r.e = (unsigned char)(16 + j); /* bits in this table .......*/
r.v.t = q; /* pointer to this table ....*/
j = i >> (w - l); /* (get around Turbo C bug) .*/
u[h-1][j] = r; /* connect to last table ....*/
}
}
/* set up table entry in r .....................................*/
r.b = (unsigned char)(k - w);
if (p >= v + n)
{
r.e = INVALIDCODE; /* out of values--invalid code */
}
else if (*p < s)
{ /* 256 is end-of-block code */
r.e = (unsigned char)(*p < 256 ? LITCODE : EOBCODE);
r.v.n = (unsigned short) *p; /* simple code is just the value*/
p++;
}
else
{
r.e = (unsigned char) e[*p - s]; /*non-simple,look up in lists*/
r.v.n = (unsigned short) d[*p - s];
p++;
}
/* fill code-like entries with r ...............................*/
f = 1 << (k - w);
for (j = i >> w; j < z; j += f)
q[j] = r;
/* backwards increment the k-bit code i ........................*/
for (j = 1 << (k - 1); i & j; j >>= 1)
i ^= j;
i ^= j;
/* backup over finished tables .................................*/
while ((i & ((1 << w) - 1)) != x[h])
{
h--; /* don't need to update q ............*/
w -= l;
}
}
}
/* Return true (1) if we were given an incomplete table ............*/
return y != 0 && n != 1;
}
HUFTREE * CsObjectInt::AllocHufTree (unsigned size)
{
HUFTREE * p;
p = cshu.InterBuf + cshu.AllocStackSize;
cshu.AllocStackSize += size; // * sizeof(HUFTREE);
/* InterBuf is at least 0x1000 in size (5.9.96 ab) .................*/
if (cshu.AllocStackSize >= DE_STACK_SIZE) return (HUFTREE *) 0;
return p;
}
int CsObjectInt::FlushOut (unsigned w) /* number of bytes to flush */
/*--------------------------------------------------------------------*/
/* Do the equivalent of OUTB for the bytes Slide[0..w-1]. ............*/
/*--------------------------------------------------------------------*/
{
unsigned n;
unsigned char *p;
p = cshu.Slide + cshu.SlideOffset;
if (w)
{ /* try to fill up buffer .....*/
if (cshu.MemOutoffset + (int)w <= cshu.MemOutsize)
{
memcpy (cshu.OutPtr, p, w);
cshu.OutPtr += w;
cshu.BytesPending = 0;
cshu.MemOutoffset += w;
cshu.SumOut += w;
cshu.SlideOffset = 0;
}
else
{
n = (unsigned) (cshu.MemOutsize - cshu.MemOutoffset);
memcpy (cshu.OutPtr, p, n);
cshu.BytesPending = (int)w - (int)n;
cshu.MemOutoffset += n;
cshu.SumOut += n;
cshu.SlideOffset += n;
return CS_END_OUTBUFFER;
}
}
return 0;
}
int CsObjectInt::DecompCodes (
int *state, /* state of last run ...............*/
HUFTREE *tl, /* literal/length decoder tables */
HUFTREE *td, /* distance decoder tables */
int bl, /* number of bits decoded by tl[] */
int bd) /* number of bits decoded by td[] */
/* inflate (decompress) the codes in a deflated (compressed) block.
Return an error code or zero if it all goes ok. ...................*/
{
REGISTER unsigned e; /* table entry flag/number of extra bits */
unsigned n, d; /* length and index for copy */
unsigned w; /* current window position */
unsigned ml, md; /* masks for bl and bd bits */
REGISTER int bitcount;
int rc;
/* make local copies of globals ....................................*/
bitcount = 1;
w = cshu.wp; /* initialize window position */
/* precompute masks for speed ......................................*/
ml = mask_bits[bl];
md = mask_bits[bd];
switch (*state) /* depending on state in last run ...............*/
{
case 2:
n = cshu.save_n;
d = cshu.save_d;
e = cshu.save_e;
*state = 0;
goto STATE_2;
case 20:
*state = 0;
break;
case 21:
*state = 0;
e = cshu.save_e;
goto STATE_21;
case 22:
*state = 0;
e = cshu.save_e;
goto STATE_22;
case 23:
n = cshu.save_n;
e = cshu.save_e;
*state = 0;
goto STATE_23;
case 24:
e = cshu.save_e;
n = cshu.save_n;
*state = 0;
goto STATE_24;
case 25:
n = cshu.save_n;
e = cshu.save_e;
*state = 0;
goto STATE_25;
default: break;
}
*state = 0;
for (;;)
{
NEEDBITS((unsigned)bl)
if (bitcount == 0)
{
*state = 20;
cshu.wp = w;
return CS_END_INBUFFER;
}
if ((e = (cshu.htp = tl + ((unsigned)cshu.bb & ml))->e) > LITCODE)
{
do
{
if (e == INVALIDCODE) return CS_E_INVALIDCODE;
DUMPBITS(cshu.htp->b)
e -= LITCODE;
STATE_21:
NEEDBITS(e)
if (bitcount == 0)
{
cshu.wp = w;
cshu.save_e = e;
*state = 21;
return CS_END_INBUFFER;
}
}
while ((e = (cshu.htp = cshu.htp->v.t + ((unsigned)cshu.bb & mask_bits[e]))->e) > LITCODE);
}
DUMPBITS(cshu.htp->b)
if (e == LITCODE) /* then it's a literal ...............*/
{
cshu.Slide[w++] = (unsigned char)cshu.htp->v.n;
if (w == WSIZE)
{
if ((rc = FlushOut (w)) != 0)
{
cshu.wp = 0;
*state = 1;
return rc;
}
w = 0;
}
}
else /* it's an EOB or a length ...........*/
{
/* exit if end of block ........................................*/
if (e == EOBCODE)
{
break;
}
/* get length of block to copy .................................*/
STATE_22:
NEEDBITS(e)
if (bitcount == 0)
{
cshu.wp = w;
cshu.save_e = e;
*state = 22;
return CS_END_INBUFFER;
}
n = cshu.htp->v.n + ((unsigned)cshu.bb & mask_bits[e]);
DUMPBITS(e);
/* decode distance of block to copy ............................*/
STATE_23:
NEEDBITS((unsigned)bd)
if (bitcount == 0)
{
cshu.wp = w;
cshu.save_n = n;
cshu.save_e = e;
*state = 23;
return CS_END_INBUFFER;
}
if ((e = (cshu.htp = td + ((unsigned)cshu.bb & md))->e) > LITCODE)
{
do
{
if (e == INVALIDCODE) return CS_E_INVALIDCODE;
DUMPBITS(cshu.htp->b)
e -= LITCODE;
STATE_24:
NEEDBITS(e)
if (bitcount == 0)
{
cshu.wp = w;
cshu.save_e = e;
cshu.save_n = n;
*state = 24;
return CS_END_INBUFFER;
}
}
while ((e = (cshu.htp = cshu.htp->v.t + ((unsigned)cshu.bb & mask_bits[e]))->e) > LITCODE);
}
DUMPBITS(cshu.htp->b)
STATE_25:
NEEDBITS(e)
if (bitcount == 0)
{
cshu.wp = w;
cshu.save_e = e;
cshu.save_n = n;
*state = 25;
return CS_END_INBUFFER;
}
d = w - cshu.htp->v.n - ((unsigned)cshu.bb & mask_bits[e]);
DUMPBITS(e)
/* do the copy .................................................*/
do
{
n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
if (w - d >= e) /* (this test assumes unsigned comparison) */
{
memcpy (cshu.Slide + w, cshu.Slide + d, e);
w += e;
d += e;
}
else /* do it slow to avoid memcpy() overlap ..*/
{
do
{
cshu.Slide[w++] = cshu.Slide[d++];
} while (--e);
}
if (w == WSIZE)
{
if ((rc = FlushOut (w)) != 0)
{
cshu.wp = 0;
cshu.save_n = n;
cshu.save_d = d;
cshu.save_e = e;
*state = 2;
return rc;
}
STATE_2:
w = 0;
}
} while (n);
}
}
cshu.wp = w; /* restore global window pointer .....*/
return 0;
}
int CsObjectInt::DecompFixed (int *state)
/*--------------------------------------------------------------------*/
/* Decompress an fixed Huffman codes block. */
/*--------------------------------------------------------------------*/
{
int i, rc; /* temporary variable */
unsigned l[288]; /* length list for BuildHufTree */
if (*state == 0)
{
/* set up literal table, make a complete, but wrong code set .....*/
for (i = 0; i < 144; i++) l[i] = 8;
for (; i < 256; i++) l[i] = 9;
for (; i < 280; i++) l[i] = 7;
for (; i < 288; i++) l[i] = 8;
cshu.blitlen = 7;
rc = BuildHufTree (l, 288, 257, cplens, cplext, &(cshu.tlitlen), &(cshu.blitlen));
if (rc)
{
cshu.AllocStackSize = 0;
return rc;
}
/* set up distance table .........................................*/
for (i = 0; i < 30; i++) l[i] = 5; /* make an incomplete code set */
cshu.bdistlen = 5;
if ((rc = BuildHufTree (l, 30, 0, cpdist, cpdext, &(cshu.tdistcode), &(cshu.bdistlen))) < 0)
{
cshu.AllocStackSize = 0;
return rc;
}
}
/* decompress until an end-of-block code ...........................*/
if ((rc = DecompCodes (state, cshu.tlitlen, cshu.tdistcode, cshu.blitlen, cshu.bdistlen)) != 0)
return rc;
/* free the decoding tables, return ................................*/
cshu.AllocStackSize = 0;
return 0;
}
int CsObjectInt::DecompDynamic (int *state)
/*--------------------------------------------------------------------*/
/* Decompress an dynamic Huffman Code block. */
/*--------------------------------------------------------------------*/
{
unsigned j;
REGISTER int bitcount;
int rc;
bitcount = 1;
switch (*state)
{
case 0:
case 5:
NEEDBITS(5)
if (bitcount == 0)
{
*state = 5;
return CS_END_INBUFFER;
}
/* number of literal/length codes */
cshu.dd_nl = 257 + ((unsigned)cshu.bb & 0x1f);
DUMPBITS(5)
case 6:
NEEDBITS(5)
if (bitcount == 0)
{
*state = 6;
return CS_END_INBUFFER;
}
cshu.dd_nd = 1 + ((unsigned)cshu.bb & 0x1f); /* number of distance codes ....*/
DUMPBITS(5)
case 7:
NEEDBITS(4)
if (bitcount == 0)
{
*state = 7;
return CS_END_INBUFFER;
}
cshu.dd_nb = 4 + ((unsigned)cshu.bb & 0xf); /* number of bit length codes ..*/
DUMPBITS(4)
if (cshu.dd_nl > 286 || cshu.dd_nd > 30)
return CS_E_BADLENGTH; /* bad lengths .................*/
*state = 0;
break;
case 8:
j = cshu.dd_jj;
*state = 0;
goto STATE_8;
case 9:
*state = 0;
goto STATE_9;
case 10:
*state = 0;
goto STATE_10;
case 11:
*state = 0;
goto STATE_11;
case 12:
*state = 0;
goto STATE_12;
default: break;
}
if (*state == 0)
{
cshu.dd_jj = 0;
for (j = cshu.dd_jj; j < cshu.dd_nb; j++) /* read in bit-length-code lengths ....*/
{
STATE_8:
NEEDBITS(3)
if (bitcount == 0)
{
cshu.dd_jj = j;
*state = 8;
return CS_END_INBUFFER;
}
cshu.dd_ll[border[j]] = (unsigned)cshu.bb & 7;
DUMPBITS(3)
}
for (; j < 19; j++) cshu.dd_ll[border[j]] = 0;
/* build decoding table for trees--single level, 7 bit lookup ....*/
cshu.dd_bl = 7;
if ((rc = BuildHufTree (cshu.dd_ll, 19, 19, NULL, NULL, &(cshu.dd_tl), &(cshu.dd_bl))) != 0)
{
cshu.AllocStackSize = 0;
return rc; /* incomplete code set ............*/
}
cshu.dd_nolen = cshu.dd_nl + cshu.dd_nd;
cshu.dd_maskbit = mask_bits[cshu.dd_bl];
cshu.dd_ii = cshu.dd_lastlen = 0;
/* read in literal and distance code lengths .....*/
while ((unsigned)cshu.dd_ii < cshu.dd_nolen)
{
STATE_9:
NEEDBITS((unsigned)cshu.dd_bl)
if (bitcount == 0)
{
*state = 9;
return CS_END_INBUFFER;
}
j = (cshu.dd_td = cshu.dd_tl + ((unsigned)cshu.bb & cshu.dd_maskbit))->b;
DUMPBITS(j)
j = cshu.dd_td->v.n;
if (j < 16) /* length of code in bits (0..15) ..*/
cshu.dd_ll[cshu.dd_ii++] = cshu.dd_lastlen = j; /* save last length in l ...........*/
else if (j == 16) /* repeat last length 3 to 6 times .*/
{
STATE_10:
NEEDBITS(2)
if (bitcount == 0)
{
*state = 10;
return CS_END_INBUFFER;
}
j = 3 + ((unsigned)cshu.bb & 3);
DUMPBITS(2)
if ((unsigned)cshu.dd_ii + j > cshu.dd_nolen) return CS_E_INVALIDCODE;
while (j--) cshu.dd_ll[cshu.dd_ii++] = cshu.dd_lastlen;
}
else if (j == 17) /* 3 to 10 zero length codes .......*/
{
STATE_11:
NEEDBITS(3)
if (bitcount == 0)
{
*state = 11;
return CS_END_INBUFFER;
}
j = 3 + ((unsigned)cshu.bb & 7);
DUMPBITS(3)
if ((unsigned)cshu.dd_ii + j > cshu.dd_nolen) return CS_E_INVALIDCODE;
while (j--) cshu.dd_ll[cshu.dd_ii++] = 0;
cshu.dd_lastlen = 0;
}
else /* j == 18: 11 to 138 zero length codes */
{
STATE_12:
NEEDBITS(7)
if (bitcount == 0)
{
*state = 12;
return CS_END_INBUFFER;
}
j = 11 + ((unsigned)cshu.bb & 0x7f);
DUMPBITS(7)
if ((unsigned)cshu.dd_ii + j > cshu.dd_nolen) return CS_E_INVALIDCODE;
while (j--) cshu.dd_ll[cshu.dd_ii++] = 0;
cshu.dd_lastlen = 0;
}
}
/* build the decoding tables for literal/length and distance codes*/
cshu.dd_bl = LBITS;
if ((rc = BuildHufTree (cshu.dd_ll, cshu.dd_nl, 257, cplens, cplext, &(cshu.dd_tl), &(cshu.dd_bl))) !=0)
{
cshu.AllocStackSize = 0;
return rc; /* incomplete code set ............*/
}
cshu.dd_bd = DBITS;
rc = BuildHufTree (cshu.dd_ll + cshu.dd_nl, cshu.dd_nd, 0, cpdist, cpdext, &(cshu.dd_td), &(cshu.dd_bd));
if (rc)
{
cshu.AllocStackSize = 0;
return rc; /* incomplete code set or no stack .............*/
}
}
/* decompress until an end-of-block code ...........................*/
if ((rc = DecompCodes (state, cshu.dd_tl, cshu.dd_td, cshu.dd_bl, cshu.dd_bd)) != 0)
return rc;
/* free the decoding tables, return ................................*/
cshu.AllocStackSize = 0;
return 0;
}
int CsObjectInt::DecompBlock (int *state, int *e) /* state, last block flag */
/*--------------------------------------------------------------------*/
/* Decompress a block of codes */
/*--------------------------------------------------------------------*/
{
REGISTER int bitcount; /* bitcount ...........................*/
bitcount = 1;
switch (*state)
{
case 0:
case 3:
/* read in last block bit ............................*/
NEEDBITS(1)
if (bitcount == 0)
{
*state = 3;
return CS_END_INBUFFER;
}
*e = (int)cshu.bb & 1;
DUMPBITS(1)
case 4: /* read in block type ................................*/
NEEDBITS(2)
if (bitcount == 0)
{
*state = 4;
return CS_END_INBUFFER;
}
cshu.blocktype = (unsigned)cshu.bb & 3;
DUMPBITS(2)
*state = 0;
break;
default: break;
}
switch (cshu.blocktype) /* inflate that block type ............................*/
{
case 2: return DecompDynamic (state);
case 1: return DecompFixed (state);
default: return CS_E_UNKNOWN_TYPE;
}
}
void CsObjectInt::NoBits (void)
/*--------------------------------------------------------------------*/
/* */
/*--------------------------------------------------------------------*/
{
unsigned x; /* number of bits in bit buffer ............*/
int bitcount = 1; /* bitcount ................................*/
NEEDBITS(NONSENSE_LENBITS)
x = (unsigned) (cshu.bb & ((1 << NONSENSE_LENBITS) - 1));
DUMPBITS(NONSENSE_LENBITS)
if (x)
{
NEEDBITS(x)
DUMPBITS(x)
}
}
int CsObjectInt::CsDecomprLZH (SAP_BYTE * inp, /* ptr input .......*/
SAP_INT inlen, /* len of input ....*/
SAP_BYTE * outp, /* ptr output ......*/
SAP_INT outlen, /* len output ......*/
SAP_INT option, /* decompr. option */
SAP_INT * bytes_read, /* bytes read ......*/
SAP_INT * bytes_decompressed) /* bytes decompr. */
/*--------------------------------------------------------------------*/
/* Lempel-Ziv-Huffman */
/*--------------------------------------------------------------------*/
{
int rc;
cshu.MemOutbuffer = outp;
cshu.MemOutoffset = 0;
cshu.MemOutsize = (unsigned) outlen;
cshu.OutPtr = outp;
cshu.MemInbuffer = inp;
cshu.MemInoffset = 0;
cshu.MemInsize = (unsigned) inlen;
if (inlen == 0 && outlen == 0) return CS_E_BOTH_ZERO;
if (option & CS_INIT_DECOMPRESS)