forked from tuwien-musicir/rp_extract
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rp_extract_batch.py
426 lines (312 loc) · 18.2 KB
/
rp_extract_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
''' RP_Extract_Batch
(c) 2015 by Thomas Lidy
Batch extraction of RP features:
wrapper around rp_extract.py to sequentially extract features from all audio files in a given directory
and store them into CSV feature files
Batch MP3 to WAV conversion
use one of three external decoders to batch convert folders with mp3 to wav files
'''
import os
import gc # garbage collector
import unicsv # unicode csv library (installed via pip install unicsv)
import time # for time measuring
import argparse
import numpy as np
from audiofile_read import * # reading wav and mp3 files
import rp_extract as rp # Rhythm Pattern extractor
def find_files(path,file_types=('.wav','.mp3'),relative_path = False,verbose=False,ignore_hidden=True):
''' function to find all files of a particular file type in a given path
path: input path to start searching
file_types: a tuple of file extensions (e.g.'.wav','.mp3') (case-insensitive) or 'None' in which case ALL files in path will be returned
relative_path: if False, absolute paths will be returned, otherwise the path relative to the given path
verbose: will print info about files found in path if True
ignore_hidden: if True (default) will ignore Linux hidden files (starting with '.')
'''
if path.endswith(os.sep):
path = path[0:-1] # we need to remove the file separator at the end otherwise the path handling below gets confused
# lower case the file types for comparison
if file_types: # if we have file_types (otherwise 'None')
if type(file_types) == tuple:
file_types = tuple((f.lower() for f in file_types))
file_type_string = ' or '.join(file_types) # for print message only
else: # single string
file_types = file_types.lower()
file_type_string = file_types # for print message only
else:
file_type_string = 'any file type' # for print message only
all_files = []
for d in os.walk(unicode(path)): # finds all subdirectories and gets a list of files therein
# subpath: complete sub directory path (full path)
# filelist: files in that sub path (filenames only)
(subpath, _, filelist) = d
if ignore_hidden:
filelist = [ file for file in filelist if not file[0] == '.']
if file_types: # FILTER FILE LIST by FILE TYPE
filelist = [ file for file in filelist if file.lower().endswith(file_types) ]
if (verbose): print subpath,":", len(filelist), "files found (" + file_type_string + ")"
# add full absolute path
filelist = [ subpath + os.sep + file for file in filelist ]
if relative_path: # cut away full path at the beginning (+/- 1 character depending if path ends with path separator)
filelist = [ filename[len(path)+1:] for filename in filelist ]
all_files.extend(filelist)
return all_files
# these 3 functions are to incrementally save the features line by line into CSV files
def initialize_feature_files(base_filename,ext,append=False):
files = {} # files is a dict of one file handle per extension
writer = {} # files is a dict of one file writer per extension
if append:
mode = 'a' # append
else:
mode = 'w' # write new (will overwrite)
for e in ext:
filename = base_filename + '.' + e
files[e] = open(filename, mode)
writer[e] = unicsv.UnicodeCSVWriter(files[e]) #, quoting=csv.QUOTE_ALL)
return (files,writer)
def write_feature_files(id,feat,writer,id2=None):
# id: string id (e.g. filename) of extracted file
# feat: dict containing 1 entry per feature type (must match file extensions)
for e in feat.keys():
f=feat[e].tolist()
f.insert(0,id) # add filename before vector (to include path, change fil to filename)
if not id2==None:
f.insert(1,id2)
writer[e].writerow(f)
def close_feature_files(files,ext):
for e in ext:
files[e].close()
# read_feature_files:
# reads pre-analyzed features from CSV files
# in write_feature_files we use unicsv to store the features
# it will quote strings containing , and other characters if needed only (automatically)
# here we use pandas to import CSV as a pandas dataframe,
# because it handles quoted filenames (containing ,) well (by contrast to other CSV readers)
# parameters:
# filenamestub: full path to feature file name WITHOUT .extension
# ext: a list of file .extensions (e.g. 'rh','ssd','rp') to be read in
# separate_ids: if False, it will return a single matrix containing the id column
# if True, it will return a tuple: (ids, features) separating the id column from the features
# id_column: which of the CSV columns contains the ids (default = 0, i.e. first column)
#
# returns: single numpy matrix including ids, or tuple of (ids, features) with ids and features separately
# each of them is a python dict containing an entry per feature extension (ext)
# NOTE: this function has been moved to rp_feature_io.py and is maintained here for backwards compatibility
def read_feature_files(filenamestub,ext,separate_ids=True,id_column=0):
from rp_feature_io import read_csv_features
return read_csv_features(filenamestub,ext,separate_ids,id_column)
# mp3_to_wav_batch:
# finds all MP3s in a given directory in all subdirectories
# and converts all of them to WAV
# if outdir is specified it will replicate the entire subdir structure from within input path to outdir
# otherwise the WAV file will be created in the same dir as the MP3 file
# in both cases the file name is maintained and the extension changed to .wav
# Example for MP3 to WAV batch conversion (in a new Python script):
# from rp_extract_batch import mp3_to_wav_batch
# mp3_to_wav_batch('/data/music/ISMIRgenre/mp3_44khz_128kbit_stereo','/data/music/ISMIRgenre/wav')
def mp3_to_wav_batch(path,outdir=None,audiofile_types=('.mp3','.aif','.aiff')):
get_relative_path = (outdir!=None) # if outdir is specified we need relative path otherwise absolute
filenames = find_files(path,audiofile_types,get_relative_path)
n_files = len(filenames)
n = 0
for file in filenames:
n += 1
basename, ext = os.path.splitext(file)
wav_file = basename + '.wav'
if outdir: # if outdir is specified we add it in front of the relative file path
file = path + os.sep + file
wav_file = outdir + os.sep + wav_file
# recreate same subdir path structure as in input path
out_subpath = os.path.split(wav_file)[0]
if not os.path.exists(out_subpath):
os.makedirs(out_subpath)
# future option: (to avoid recreating the input path subdir structure in outdir)
#filename_only = os.path.split(wav_file)[1]
try:
if not os.path.exists(wav_file):
print "Decoding:", n, "/", n_files, ":"
if ext.lower() == '.mp3':
mp3_decode(file,wav_file)
elif ext.lower() == '.aif' or ext.lower() == '.aiff':
cmd = ['ffmpeg','-v','1','-y','-i', file, wav_file]
return_code = subprocess.call(cmd) # subprocess.call takes a list of command + arguments
if return_code != 0:
raise DecoderException("Problem appeared during decoding.", command=cmd)
else:
print "Already existing: " + wav_file
except:
print "Not decoded " + file
def extract_all_files_in_path(in_path,
out_file = None,
feature_types = ['rp','ssd','rh'],
audiofile_types=('.wav','.mp3'),
label=False,
verbose=True):
"""
finds all files of a certain type (e.g. .wav and/or .mp3) in a path and all sub-directories in it
extracts selected RP feature types
and saves them into separate CSV feature files (one per feature type)
# path: input file path to search for audio files (including subdirectories)
# out_file: output file name stub for feature files to write (if omitted, features will be returned from function)
# feature_types: RP feature types to extract. see rp_extract.py
# audiofile_types: a string or tuple of suffixes to look for file extensions to consider (include the .)
# label: use subdirectory name as class label
"""
# get file list of all files in a path (filtered by audiofile_types)
filelist = find_files(in_path,audiofile_types,relative_path=True)
return extract_all_files(filelist, in_path, out_file, feature_types, label, verbose)
def extract_all_files_generic(in_path,
out_file = None,
feature_types = ['rp','ssd','rh'],
audiofile_types=('.wav','.mp3'),
verbose=True):
"""
finds all files of a certain type (e.g. .wav and/or .mp3) in a path (+ sub-directories)
OR loads a list of files to extract from a given .txt file
extracts selected RP feature types
and saves them into separate CSV feature files (one per feature type)
# in_path: input file path to search for audio files (including subdirectories) OR .txt file containing a list of filenames
# out_file: output file name stub for feature files to write (if omitted, features will be returned from function)
# feature_types: RP feature types to extract. see rp_extract.py
# audiofile_types: a string or tuple of suffixes to look for file extensions to consider (include the .)
"""
if in_path.lower().endswith('.txt'): # treat as input file list
from classes_io import read_filenames
filelist = read_filenames(in_path)
in_path = None # no abs path to add below
elif in_path.lower().endswith(audiofile_types): # treat as single audio input file
filelist = [in_path]
in_path = None # no abs path to add below
elif os.path.isdir(in_path): # find files in path
filelist = find_files(in_path,audiofile_types,relative_path=True)
# filelist will be relative, so we provide in_path below
else:
raise ValueError("Cannot not process this kind of input file: " + in_path)
return extract_all_files(filelist, in_path, out_file, feature_types, verbose)
def extract_all_files(filelist, path,
out_file = None,
feature_types = ['rp','ssd','rh'],
label=False,
verbose=True):
"""
finds all files of a certain type (e.g. .wav and/or .mp3) in a path and all sub-directories in it
extracts selected RP feature types
and saves them into separate CSV feature files (one per feature type)
# filelist: list of files for features to be extracted
# path: absolute path that will be added at beginning of filelist (can be '')
# out_file: output file name stub for feature files to write (if omitted, features will be returned from function)
# feature_types: RP feature types to extract. see rp_extract.py
# audiofile_types: a string or tuple of suffixes to look for file extensions to consider (include the .)
# label: use subdirectory name as class label
"""
ext = feature_types
n = 0 # counting the files that were actually analyzed
err = 0 # counting errors
n_files = len(filelist)
# initialize filelist_extracted and dict containing all accumulated feature arrays
filelist_extracted = []
feat_array = {}
start_abs = time.time()
if out_file: # only if out_file is specified
files, writer = initialize_feature_files(out_file,ext)
for fil in filelist: # iterate over all files
try:
n += 1
if path:
filename = path + os.sep + fil
else:
filename = fil
#if verbose:
print '#',n,'/',n_files,':', filename
# read audio file (wav or mp3)
samplerate, samplewidth, data = audiofile_read(filename)
# audio file info
if verbose: print samplerate, "Hz,", data.shape[1], "channel(s),", data.shape[0], "samples"
# extract features
# Note: the True/False flags are determined by checking if a feature is listed in 'ext' (see settings above)
feat = rp.rp_extract(data,
samplerate,
extract_rp = ('rp' in ext), # extract Rhythm Patterns features
extract_ssd = ('ssd' in ext), # extract Statistical Spectrum Descriptor
extract_tssd = ('tssd' in ext), # extract temporal Statistical Spectrum Descriptor
extract_rh = ('rh' in ext), # extract Rhythm Histogram features
extract_trh = ('trh' in ext), # extract temporal Rhythm Histogram features
extract_mvd = ('mvd' in ext), # extract Modulation Frequency Variance Descriptor
spectral_masking=True,
transform_db=True,
transform_phon=True,
transform_sone=True,
fluctuation_strength_weighting=True,
skip_leadin_fadeout=1,
step_width=1,
verbose = verbose)
# TODO check if ext and feat.keys are consistent
# WHAT TO USE AS ID (based on filename): 3 choices:
id = fil # rel. filename as from find_files
# id = filename # full filename incl. full path
# id = filename[len(path)+1:] # relative filename only (extracted from path)
if out_file:
# WRITE each feature set to a CSV
id2 = None
if label:
id2 = id.replace("\\","/").split("/")[-2].strip()
write_feature_files(id,feat,writer,id2)
else:
# IN MEMORY: add the extracted features for 1 file to the array dict accumulating all files
# TODO: only if we dont have out_file? maybe we want this as a general option
if feat_array == {}: # for first file, initialize empty array with dimension of the feature set
for e in feat.keys():
feat_array[e] = np.empty((0,feat[e].shape[0]))
# store features in array
for e in feat.keys():
feat_array[e] = np.append(feat_array[e], feat[e].reshape(1,-1), axis = 0) # 1 for horizontal vector, -1 means take original dimension
filelist_extracted.append(id)
gc.collect() # after every file we do garbage collection, otherwise our memory is used up quickly for some reason
except Exception as e:
print "ERROR analysing file: " + fil + ": " + str(e)
err += 1
if out_file: # close all output files
close_feature_files(files,ext)
end = time.time()
if verbose:
print "FEATURE EXTRACTION FINISHED. %d file(s), %.2f sec" % (n,end-start_abs)
if err > 0:
print err, "files had ERRORs during feature extraction."
if out_file: print "Feature file(s):", out_file + ".*", ext
if out_file is None:
return filelist_extracted, feat_array
if __name__ == '__main__':
argparser = argparse.ArgumentParser() #formatter_class=argparse.ArgumentDefaultsHelpFormatter) # formatter_class adds the default values to print output
argparser.add_argument('input_path', help='input file path to search for wav/mp3 files to analyze') # nargs='?' to make it optional
argparser.add_argument('output_filename', nargs='?', help='output path + filename for feature file (without extension) [default: features/features]', default='features/features') # nargs='?' to make it optional
argparser.add_argument('-rp', action='store_true',help='extract Rhythm Patterns (default)',default=False) # boolean opt
argparser.add_argument('-rh', action='store_true',help='extract Rhythm Histograms (default)',default=False) # boolean opt
argparser.add_argument('-ssd', action='store_true',help='extract Statistical Spectrum Descriptors (default)',default=False) # boolean opt
argparser.add_argument('-trh', action='store_true',help='extract Temporal Rhythm Histograms',default=False) # boolean opt
argparser.add_argument('-tssd', action='store_true',help='extract Temporal Statistical Spectrum Descriptors',default=False) # boolean opt
argparser.add_argument('-mvd', action='store_true',help='extract Modulation Frequency Variance Descriptors',default=False) # boolean opt
argparser.add_argument('-a','--all', action='store_true',help='extract ALL of the aforementioned features',default=False) # boolean opt
argparser.add_argument('-label',action='store_true',help='use subdirectory name as class label',default=False) # boolean opt
args = argparser.parse_args()
# check if outpath contains path that yet needs to be created
outpath, _ = os.path.split(args.output_filename)
if not outpath == '' and not os.path.exists(outpath):
os.mkdir(outpath)
# select the feature types according to given option(s) or default
feature_types = []
if args.rp: feature_types.append('rp')
if args.rh: feature_types.append('rh')
if args.trh: feature_types.append('trh')
if args.ssd: feature_types.append('ssd')
if args.tssd: feature_types.append('tssd')
if args.mvd: feature_types.append('mvd')
if args.all: feature_types = ['rp','ssd','rh','tssd','trh','mvd']
# if none was selected set default feature set
if feature_types == []: feature_types = ['rp','ssd','rh']
audiofile_types = ('.wav','.mp3','.aif','.aiff','.m4a')
print "Extracting features:", feature_types
print "From files in:", args.input_path
print "File types:", audiofile_types
# BATCH RP FEATURE EXTRACTION:
extract_all_files_generic(args.input_path,args.output_filename,feature_types, audiofile_types, args.label)
# EXAMPLE ON HOW TO READ THE FEATURE FILES
#ids, features = read_feature_files(args.output_filename,feature_types)