-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathutils_scraping_tableau.py
542 lines (489 loc) · 24.4 KB
/
utils_scraping_tableau.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
import datetime
import itertools
import json
import time
from json.decoder import JSONDecodeError
import dateutil.parser
import numpy as np
import pandas as pd
import requests
import tableauscraper
from utils_scraping import any_in
from utils_scraping import fix_timeouts
from utils_scraping import logger
###########################
# Tableau scraping
###########################
def workbook_explore(workbook):
print()
print("storypoints: {}", workbook.getStoryPoints())
print("parameters {}", workbook.getParameters())
for t in workbook.worksheets:
print()
print("worksheet name : {}", t.name) # show worksheet name
print(t.data) # show dataframe for this worksheet
print("filters: ")
for f in t.getFilters():
print(" {} : {} {}", f['column'], f['values'][:10], '...' if len(f['values']) > 10 else '')
print("selectableItems: ")
for f in t.getSelectableItems():
print(" {} : {} {}", f['column'], f['values'][:10], '...' if len(f['values']) > 10 else '')
def workbook_value(wb, date, name, col, default=0.0, is_date=False):
# TODO: generalise what to index by and default value for index
name = name if type(name) == str else next((n for n in name if n in [s.name for s in wb.worksheets]), None)
res = pd.DataFrame()
data = dict()
if date is not None:
data["Date"] = [date]
# closest = {s.name.replace(" (2)", ""): s.name for s in wb.worksheets}.get(name) # HACK handle renames
try:
df = wb.getWorksheet(name).data
except (KeyError, TypeError, AttributeError):
# TODO: handle error getting wb properly earlier
logger.info("Error getting tableau {}/{} {}", name, col, date)
return pd.DataFrame()
if df.empty:
if default is not None:
data[col] = [default]
elif is_date:
data[col] = [pd.to_datetime(list(df.loc[0])[0], dayfirst=False)]
else:
try:
data[col] = list(pd.to_numeric(df.loc[0])) # HACK: shouldn't assume we want numbers
except ValueError:
data[col] = list(pd.to_numeric(df.loc[0].str.replace(",", "").replace("%null%", "")))
# combine all the single values with any subplots from the dashboard
df = pd.DataFrame(data)
if date is None:
return df.iloc[0, 0]
if not df.empty and date is not None:
df['Date'] = df['Date'].dt.normalize() # Latest has time in it which creates double entries
res = df.set_index("Date")
return res
def workbook_series(wb, name, mappings, defaults={"": 0.0}, index_col="Date", end=None, index_date=True, index_value=None):
name = name if type(name) == str else next((n for n in name if n in [s.name for s in wb.worksheets]), None)
if name is None:
return pd.DataFrame()
try:
df = wb.getWorksheet(name).data
except (KeyError, TypeError, AttributeError):
# TODO: handle error getting wb properly earlier
logger.info("Error getting tableau {}/{} {}", name, mappings)
return pd.DataFrame()
if df.empty:
# logger.info("Error getting tableau {}/{} {}", name, col, date)
return pd.DataFrame()
# if it's not a single value can pass in mapping of cols
renames = {k: v for k, v in mappings.items() if type(v) == str and k in df.columns}
cols = [key for key in mappings.keys() if key in df.columns]
df = df[cols].rename(columns=renames)
if index_date:
try:
df[index_col] = pd.to_datetime(df[index_col], dayfirst=False).dt.normalize()
except pd.errors.OutOfBoundsDatetime:
# Could be a Thai year. Hack to convert
df[index_col] = df[index_col].str.replace("2564", "2021").str.replace("2565", "2022").str.replace("2566", "2023")
df[index_col] = pd.to_datetime(df[index_col], dayfirst=False).dt.normalize()
# if one mapping is dict then do pivot
pivot = [(k, v) for k, v in mappings.items() if type(v) != str]
if pivot:
pivot_cols, pivot_mapping = pivot[0] # can only have one
# Any other mapped cols are what are the values of the pivot
if index_col not in df.columns:
df[index_col] = index_value
df = df.pivot(index=index_col, columns=pivot_cols)
df = df.drop(columns=[c for c in df.columns if not any_in(c, *pivot_mapping.keys())]) # Only keep cols we want
df = df.rename(columns=pivot_mapping)
df.columns = df.columns.map(' '.join)
df = df.reset_index()
df = df.set_index(index_col)
assert np.nan not in df.index
# This seems to be 0 in these graphs. and if we don't then any bad previous values won't get corrected. TODO: param depeden
if type(defaults) != dict:
default = [defaults] * len(df.columns)
else:
default = [defaults.get(c, defaults.get("")) if defaults else 0.0 for c in df.columns]
df = df.replace("%null%", default[0])
# Important we turn all the other data to numberic. Otherwise object causes div by zero errors
def cleannum(series):
try:
return series.str.replace(',', '').astype(float)
except AttributeError:
return series
df = df.apply(cleannum, axis=1)
if index_date:
# Some series have gaps where its assumed missing values are 0. Like deaths
# TODO: we don't know how far back to look? Currently 30days for tests and 60 for others?
#start = date - datetime.timedelta(days=10) if date is not None else df.index.min()
#start = min([start, df.index.min()])
start = df.index.min()
# Some data like tests can be a 2 days late
# TODO: Should be able to do better than fixed offset?
#end = date - datetime.timedelta(days=5) if date is not None else df.index.max()
#end = max([end, df.index.max()])
end = df.index.max() if end is None else end
# assert date is None or end <= date, f"getting {date} found {end}"
all_days = pd.date_range(start, end, name="Date", normalize=True, inclusive="both")
try:
df = df.reindex(all_days, fill_value=default[0]) # TODO: work out how to have default for each column
except ValueError:
return pd.DataFrame() # Sometimes there are duplicate dates. if so best abort the whole workbook since something is wrong
return df
def workbook_flatten(wb, date=None, defaults={"": 0.0}, **mappings):
"""return a single DataFrame from a workbook flattened according to mappings
mappings is worksheetname=columns
if columns is type str puts a single value into column
if columns is type dict will map worksheet columns to defined dataframe columns
if those column names are in turn dicts then the worksheet will be pivoted and the values mapped to columns
e.g.
worksheet1="Address",
worksheet2=dict(ws_phone="phone", ws_state="State"),
worksheet3=dict(ws_state=dict(NSW="State: New South Wales", ...))
"""
# TODO: generalise what to index by and default value for index
res = pd.DataFrame()
data = dict()
if date is not None:
data["Date"] = [date]
for name, col in mappings.items():
closest = {s.name.replace(" (2)", ""): s.name for s in wb.worksheets}.get(name) # HACK handle renames
try:
df = wb.getWorksheet(closest).data
except (KeyError, TypeError, AttributeError):
# TODO: handle error getting wb properly earlier
logger.info("Error getting tableau {}/{} {}", name, col, date)
continue
if type(col) != str:
if df.empty:
# logger.info("Error getting tableau {}/{} {}", name, col, date)
continue
# if it's not a single value can pass in mapping of cols
df = df[col.keys()].rename(columns={k: v for k, v in col.items() if type(v) == str})
try:
df['Date'] = pd.to_datetime(df['Date'], dayfirst=False).dt.normalize()
except pd.errors.OutOfBoundsDatetime:
# Could be a Thai year. Hack to convert
df['Date'] = df['Date'].str.replace("2564", "2021").str.replace("2565", "2022").str.replace("2566", "2023")
df['Date'] = pd.to_datetime(df['Date'], dayfirst=False).dt.normalize()
# if one mapping is dict then do pivot
pivot = [(k, v) for k, v in col.items() if type(v) != str]
if pivot:
pivot_cols, pivot_mapping = pivot[0] # can only have one
# Any other mapped cols are what are the values of the pivot
df = df.pivot(index="Date", columns=pivot_cols)
df = df.drop(columns=[c for c in df.columns if not any_in(c, *pivot_mapping.keys())]) # Only keep cols we want
df = df.rename(columns=pivot_mapping)
df.columns = df.columns.map(' '.join)
df = df.reset_index()
df = df.set_index("Date")
# This seems to be 0 in these graphs. and if we don't then any bad previous values won't get corrected. TODO: param depeden
df = df.replace("%null%", 0)
# Important we turn all the other data to numberic. Otherwise object causes div by zero errors
df = df.apply(pd.to_numeric, errors='coerce', axis=1)
# Some series have gaps where its assumed missing values are 0. Like deaths
# TODO: we don't know how far back to look? Currently 30days for tests and 60 for others?
#start = date - datetime.timedelta(days=10) if date is not None else df.index.min()
#start = min([start, df.index.min()])
start = df.index.min()
# Some data like tests can be a 2 days late
# TODO: Should be able to do better than fixed offset?
#end = date - datetime.timedelta(days=5) if date is not None else df.index.max()
#end = max([end, df.index.max()])
end = df.index.max()
assert date is None or end <= date, f"getting {date} found {end}"
all_days = pd.date_range(start, end, name="Date", normalize=True, inclusive="both")
default = [defaults.get(c, defaults.get("")) if defaults else 0.0 for c in df.columns]
try:
df = df.reindex(all_days, fill_value=default[0]) # TODO: work out how to have default for each column
except ValueError:
return pd.DataFrame() # Sometimes there are duplicate dates. if so best abort the whole workbook since something is wrong
res = res.combine_first(df)
elif df.empty:
# TODO: Seems to mean that this is 0? Should be confirgurable?
default = defaults.get(col, defaults.get("")) if defaults else 0.0
data[col] = [default]
elif col == "Date":
data[col] = [pd.to_datetime(list(df.loc[0])[0], dayfirst=False)]
else:
try:
data[col] = list(pd.to_numeric(df.loc[0])) # HACK: shouldn't assume we want numbers
except ValueError:
data[col] = list(pd.to_numeric(df.loc[0].str.replace(",", "").replace("%null%", "")))
# combine all the single values with any subplots from the dashboard
df = pd.DataFrame(data)
if not df.empty:
df['Date'] = df['Date'].dt.normalize() # Latest has time in it which creates double entries
res = df.set_index("Date").combine_first(res)
return res
def workbook_iterate(url, verify=True, inc_no_param=False, max_errors=20, **selects):
"generates combinations of workbooks from combinations of parameters, selects or filters"
def do_reset():
for _ in range(2):
ts = tableauscraper.TableauScraper(verify=verify)
try:
ts.loads(url)
logger.info("MOPH Dashboard: TS loads url {}", url)
except Exception as err:
# ts library fails in all sorts of weird ways depending on the data sent back
logger.warning("MOPH Dashboard Error: Exception TS loads url {}: {}", url, str(err))
continue
fix_timeouts(ts.session, timeout=30)
wb = ts.getWorkbook()
return wb
return None
wb = do_reset()
if wb is None:
logger.warning("MOPH Dashboard Error: Workbook empty {}", url)
return
set_value = []
product_values = {}
# match the params to iterate to param, filter or select
for name, values in selects.items():
param = next((p for p in wb.getParameters() if p['column'] == name), None)
ws = next((ws for ws in wb.worksheets if ws.name.replace(" (2)", "") == name), None)
if name == "filters":
for fname, fvalues in values.items():
product_values[fname] = fvalues
def do_filter(wb, value, ws_name=fname, filter_name=values):
# return wb.worksheets[0].setFilter(fname, value, dashboardFilter=True, check=False)
return force_setFilter(wb, None, fname, [value])
set_value.append(do_filter)
continue
elif param is not None or ws is None:
# We will force param if it's not select
if type(values) == str:
product_values[name] = param['values']
else:
# assume its a list of values to use
product_values[name] = values
def do_param(wb, value, name=name):
value = value if type(value) != datetime.datetime else str(value.date())
return force_setParameter(wb, name, value)
set_value.append(do_param)
continue
# TODO: allow a select to be manual list of values
svalues = ws.getSelectableValues(values)
if svalues:
product_values[name] = svalues
# weird bug where sometimes .getWorksheet doesn't work or missign data
def do_select(wb, value, name=name, values=values):
ws = next((ws for ws in wb.worksheets if ws.name.replace(" (2)", "") == name), None)
wb = ws.select(values, value)
assert wb.worksheets
return wb
set_value.append(do_select)
else:
items = ws.getFilters()
# TODO: allow filter to manual list of values
product_values[name] = next((item['values'] for item in items if item['column'] == values), [])
# TODO: should raise an error if there is no matching filter?
# weird bug where sometimes .getWorksheet doesn't work or missign data
def do_filter(wb, value, ws_name=name, filter_name=values):
ws = next((ws for ws in wb.worksheets if ws.name.replace(" (2)", "") == ws_name), None)
return ws.setFilter(values, value, check=False) # TODO: untested
# return force_setFilter(wb, ws_name, filter_name, [value])
set_value.append(do_filter)
if inc_no_param:
yield lambda: wb, None
last_idx = [None] * len(selects) # Outside so we know if we need to change teh params or not
# Get all combinations of the values of params, select or filter
combinations = list(itertools.product(*product_values.values()))
assert len(combinations) > 0
logger.info(f"MOPH Dashboard: iteration combinations {len(combinations)} at {url}")
for next_idx in combinations:
def get_workbook(*checks, wb=wb, next_idx=next_idx):
nonlocal last_idx, max_errors
reset = False
if max_errors <= 0:
logger.warning("MOPH Dashboard Skip {}: Finish iteration due to excess errors", next_idx)
return None
for _ in range(2):
if reset:
wb = do_reset()
if wb is None:
continue
reset = False
for do_set, last_value, value in zip(set_value, last_idx, next_idx):
if last_value != value and value is not None:
# None means to skip setting this value. #TODO: but does it make sense unless it's just reset?
try:
wb = do_set(wb, value)
except Exception as err:
logger.info("{} MOPH Dashboard Retry: {}={} Error: {}", next_idx, do_set.__name__, value, err)
reset = True
break
if not wb.worksheets or len(checks) > 0 and not any_in([ws.name for ws in wb.worksheets], *checks):
logger.info("{} MOPH Dashboard Retry: Missing worksheets in {}={}.", next_idx, do_set.__name__, value)
reset = True
break
if reset:
last_idx = (None,) * len(last_idx) # need to reset filters etc
max_errors -= 1
continue
last_idx = next_idx
return wb
# Try again
logger.warning("MOPH Dashboard Skip: {}. Retries exceeded", next_idx)
return None
yield get_workbook, next_idx
def force_setParameter(wb, parameterName, value):
"Allow for setting a parameter even if it's not present in getParameters"
# TODO: remove if they fix https://github.com/bertrandmartel/tableau-scraping/issues/49
scraper = wb._scraper
tableauscraper.api.delayExecution(scraper)
payload = (
("fieldCaption", (None, parameterName)),
("valueString", (None, value)),
)
r = scraper.session.post(
f'{scraper.host}{scraper.tableauData["vizql_root"]}/sessions/{scraper.tableauData["sessionid"]}/commands/tabdoc/set-parameter-value',
data=dict(fieldCaption=parameterName, valueString=value),
# files=payload,
verify=scraper.verify
)
scraper.lastActionTime = time.time()
if r.status_code >= 400:
raise requests.exceptions.RequestException(r.content)
resp = r.json()
errors = [
res['commandReturn']['commandValidationPresModel']['errorMessage']
for res in resp['vqlCmdResponse']['cmdResultList']
if not res['commandReturn'].get('commandValidationPresModel', {}).get('valid', True)
]
if errors:
wb._scraper.logger.error(str(", ".join(errors)))
raise tableauscraper.api.APIResponseException(", ".join(errors))
wb.updateFullData(resp)
return tableauscraper.dashboard.getWorksheetsCmdResponse(scraper, resp)
# :path: /vizql/w/SATCOVIDDashboard/v/2-dash-tiles-province-w/sessions/B42533EE979D4E389C1F8119C87E70C8-0:0/commands/tabdoc/dashboard-categorical-filter
# referer: https://public.tableau.com/views/SATCOVIDDashboard/2-dash-tiles-province-w?:size=1200,1050&:embed=y&:showVizHome=n&:bootstrapWhenNotified=y&:tabs=n&:toolbar=n&:apiID=host0
# dashboard: 2-dash-tiles-province-w
# qualifiedFieldCaption: province
# exclude: false
# filterUpdateType: filter-replace
# filterValues: ["กรุงเทพมหานคร"]
# visualIdPresModel: {"worksheet":"D4_CHART","dashboard":"4-dash-trend-w"}
# globalFieldName: [sqlproxy.0ti7s471dkws67105310p0g3vagu].[none:age_range:nk]
# membershipTarget: filter
# filterUpdateType: filter-delta
# filterAddIndices: []
# filterRemoveIndices: [2]
def force_setFilter(wb, ws_name, columnName, values):
"setFilter but ignore the listed filter options. also gets around wrong ordinal value which makes index value incorrect"
# TODO: remove if they fix https://github.com/bertrandmartel/tableau-scraping/issues/50
scraper = wb._scraper
tableauscraper.api.delayExecution(scraper)
ws = next((ws for ws in wb.worksheets if ws.name == ws_name), None)
filter = next((
{
"globalFieldName": t["globalFieldName"],
}
for t in (ws.getFilters() if ws is not None else [])
if t["column"] == columnName
), None
)
try:
if filter is None:
resp = tableauscraper.api.dashboardFilter(scraper, columnName, [values] if not isinstance(values, list) else values)
else:
payload = (
("dashboard", scraper.dashboard),
("globalFieldName", (None, filter["globalFieldName"])),
("qualifiedFieldCaption", (None, columnName)),
("membershipTarget", (None, "filter")),
("exclude", (None, "false")),
("filterValues", (None, json.dumps(values))),
("filterUpdateType", (None, "filter-replace"))
)
r = scraper.session.post(
f'{scraper.host}{scraper.tableauData["vizql_root"]}/sessions/{scraper.tableauData["sessionid"]}/commands/tabdoc/dashboard-categorical-filter',
files=payload,
verify=scraper.verify
)
scraper.lastActionTime = time.time()
if r.status_code >= 400:
raise requests.exceptions.RequestException(r.content)
resp = r.json()
errors = [
res['commandReturn']['commandValidationPresModel']['errorMessage']
for res in resp['vqlCmdResponse']['cmdResultList']
if not res['commandReturn'].get('commandValidationPresModel', {}).get('valid', True)
]
if errors:
wb._scraper.logger.error(str(", ".join(errors)))
raise tableauscraper.api.APIResponseException(", ".join(errors))
wb.updateFullData(resp)
return tableauscraper.dashboard.getWorksheetsCmdResponse(scraper, resp)
except ValueError as e:
scraper.logger.error(str(e))
return tableauscraper.TableauWorkbook(
scraper=scraper, originalData={}, originalInfo={}, data=[]
)
except tableauscraper.api.APIResponseException as e:
wb._scraper.logger.error(str(e))
return tableauscraper.TableauWorkbook(
scraper=scraper, originalData={}, originalInfo={}, data=[]
)
def get_woorkbook_updated_time(tableau_scapper: 'tableauscraper.TableauScraper') -> datetime.datetime:
time_str = tableau_scapper.tableauData.get('workbookLastPublishedAt')
if time_str is None:
tableau_scapper.logger.warn("please call `.loads()` first")
return None
return dateutil.parser.isoparse(time_str)
def force_select(self, column, value, storyboard=None, storyPointId=None):
values = self.getSelectableValues(column)
if not values:
values = list(self.data[column])
tupleItems = self.getTupleIds()
try:
indexedByTuple = False
for tupleItem in tupleItems:
if len(tupleItem) >= len(values):
index = values.index(value)
index = tupleItem[index]
indexedByTuple = True
break
if not indexedByTuple:
index = values.index(value)
index = index + 1
if storyboard is not None and storyPointId is not None:
r = select(self._scraper, self.name, storyboard, storyPointId, [index])
else:
r = tableauscraper.api.select(self._scraper, self.name, [index])
self.updateFullData(r)
return tableauscraper.dashboard.getWorksheetsCmdResponse(self._scraper, r)
except ValueError as e:
self._scraper.logger.error(str(e))
return tableauscraper.TableauWorkbook(
scraper=self._scraper, originalData={}, originalInfo={}, data=[]
)
# visualIdPresModel: {"worksheet":"map_total","dashboard":"Dashboard_Province_index_new_v3","storyboard":"Story 1","storyPointId":12}
# zoneId: 3
# zoneSelectionType: replace
def select(scraper, worksheetName, dashboard, storyPointId, selection):
tableauscraper.api.delayExecution(scraper)
payload = (
(
"visualIdPresModel", (None, json.dumps({
"worksheet": worksheetName,
"dashboard": dashboard, # TODO: where to get this value from?
"storyboard": scraper.dashboard,
"storyPointId": storyPointId,
}))
),
("selection", (None, json.dumps(
{"objectIds": selection, "selectionType": "tuples"}))),
("selectOptions", (None, "select-options-simple")),
# ("zoneId", (None, 3)),
("zoneSelectionType", (None, "replace")),
)
r = scraper.session.post(
f'{scraper.host}{scraper.tableauData["vizql_root"]}/sessions/{scraper.tableauData["sessionid"]}/commands/tabdoc/select',
files=payload,
verify=scraper.verify
)
scraper.lastActionTime = time.time()
try:
return r.json()
except (ValueError, JSONDecodeError):
raise tableauscraper.api.APIResponseException(message=r.text)