-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathutils_pandas.py
744 lines (632 loc) · 29.3 KB
/
utils_pandas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
import datetime
import difflib
import functools
import math
import os
from typing import List
from typing import Union
import matplotlib.cm
import matplotlib.dates as mdates
import mpld3
import numpy as np
import pandas as pd
from cycler import Cycler
from dateutil.parser import parse as d
from dateutil.relativedelta import relativedelta
from matplotlib import colors as mcolors
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.colors import ListedColormap
from matplotlib.pyplot import cycler
from pandas.tseries.offsets import DateOffset
from utils_scraping import logger
def daterange(start_date, end_date, offset=0):
"return a range of dates from start_date until before end_date. Offset extends range by offset days"
for n in range(int((end_date - start_date).days) + offset):
yield start_date + datetime.timedelta(n)
def spread_date_range(start, end, row, columns):
"take some values and spread it over a period of dates in proportion to data already there"
r = list(daterange(start, end, offset=1))
stats = [float(p) / len(r) for p in row]
results = pd.DataFrame([[date] + stats for date in r], columns=columns).set_index("Date")
return results
def add_data(data, df):
"Appends while dropping any duplicate rows"
try:
data = pd.concat([data, df], verify_integrity=True)
except ValueError:
logger.info('detected duplicates; dropping only the duplicate rows')
idx_names = data.index.names
if [None] != idx_names:
data = data.reset_index()
data = pd.concat([data, df.reset_index()]).drop_duplicates()
if [None] != idx_names:
data = data.set_index(idx_names)
return data
def check_cum(df, results, cols):
if results.empty:
return True
next_day = results.loc[results.index[0]][[c for c in results.columns if " Cum" in c]]
last = df.loc[df.index[-1]][[c for c in df.columns if " Cum" in c]]
if (next_day.fillna(0)[cols] >= last.fillna(0)[cols]).all():
return True
else:
raise Exception(str(next_day - last))
def cum2daily(results, exclude=[], drop=True, replace=True):
def todaily(df_cum):
if df_cum.empty:
return df_cum
otherindex = list(set(df_cum.index.names) - set(["Date"]))
cols = df_cum.columns
cum = df_cum.reset_index(otherindex)
othervals = cum[otherindex]
cum = cum[[c for c in cols if c not in otherindex]]
# remove any bad time values
cum = cum.loc[cum.index.notnull()]
all_days = pd.date_range(cum.index.min(), cum.index.max(), name="Date")
cum = cum.reindex(all_days) # put in missing days with NaN
smoothed = cum.iloc[::-1].cummin().iloc[::-1]
# cum = cum.interpolate(limit_area="inside") # missing dates need to be filled so we don't get jumps
daily = smoothed.interpolate(limit_area="inside").diff() # we got cumilitive data
renames = dict((c, c.rstrip(' Cum')) for c in list(daily.columns) if 'Cum' in c)
daily = daily.rename(columns=renames)
assert not (daily < 0).any().any()
# set to all the first province as they should all be the same.
for i in otherindex:
daily.insert(0, i, othervals.iloc[0][i])
daily = daily.reset_index().set_index(["Date"] + otherindex)
if not drop:
# add back in the cum valuse
daily = daily.combine_first(df_cum)
return daily
cumcols = list(c for c in results.columns if " Cum" in c and c not in exclude)
cum = results[cumcols]
inames = cum.index.names
otherindex = list(set(inames) - set(["Date"]))
if otherindex:
cum = cum.groupby(otherindex, group_keys=False).apply(todaily)
else:
cum = todaily(cum)
# if inames != ["Date"]:
# #cum = cum.reset_index().set_index("Date")
# cum = cum.droplevel(list(set(inames) - set(["Date"])))
# cum = cum.reset_index().set_index(inames)
restcols = list(c for c in results.columns if c not in cumcols and c not in cum.columns)
cum[restcols] = results[restcols]
return cum
# def weekly2daily(weekly):
# # This one doesn't have the right area under the curve
# # weekly.reindex(pd.date_range(df.index.min(), df.index.max(), name="Date")).interpolate() / 7
# # This one is flat. TODO: how to get more of a curve?
# return weekly.reindex(pd.date_range(weekly.index.min(), weekly.index.max(), name="Date")).cumsum().interpolate().diff()
def weekly2daily(df):
"""
Take date values from end of week, spread non cum values over the week/7
"""
if "Province" in df.index.names:
df = df.reset_index("Province")
df = df[~df.index.duplicated(keep='first')] # Just in case api returned crap data
df = df.reindex(pd.date_range(df.index.min(), df.index.max(), name="Date"))
cums = [c for c in df.columns if " Cum" in c]
others = [c for c in df.columns if " Cum" not in c and "Province" != c]
df = (df[others] / 7).combine_first(df)
return df[others][::-1].rolling("7d").min()[::-1]
def daily2cum(results):
cols = [c for c in results.columns if " Cum" not in c]
daily = results[cols]
names = daily.index.names
# bit of a hack.pick first value to fill in the gaps later
extra_index = [(n, daily.first_valid_index()[names.index('Province')]) for n in names if n != 'Date']
daily = daily.reset_index().set_index("Date")
all_days = pd.date_range(daily.index.min(), daily.index.max(), name="Date")
daily = daily.reindex(all_days)
# cum = cum.interpolate(limit_area="inside") # missing dates need to be filled so we don't get jumps
cum = daily[cols].fillna(0).cumsum() # we got cumilitive data
renames = dict((c, c + ' Cum') for c in list(cum.columns))
cum = cum.rename(columns=renames)
# Add back in the extra index.
cum = cum.assign(**dict([(n, daily[n].fillna(value)) for n, value in extra_index]))
# what about gaps in province names?
cum = cum.reset_index().set_index(names)
return cum[cum.columns]
def fix_gaps(df):
# Some gaps in the data so fill them in. df.groupby("Province").apply(fix_gaps)
df = df.reset_index("Province")
df = df[~df.index.duplicated(keep='first')] # Just in case api returned crap data
all_days = pd.date_range(df.index.min(), df.index.max(), name="Date", normalize=True, inclusive="neither")
df = df.reindex(all_days, fill_value=np.nan)
cum = df[[c for c in df.columns if " Cum" in c]]
smoothed = cum.iloc[::-1].cummin().iloc[::-1]
df = smoothed.combine_first(df)
df = df.infer_objects(copy=False).interpolate(limit_area="inside")
df['Province'] = df['Province'].iloc[0] # Ensure they all have same province
df = df.reset_index().set_index(["Date", "Province"])
df = df.dropna(how="all", axis=0) # get rid of extra data at the end we don't need. helps with trend table
return df
def normalise_to_total(df, cols, total_col):
"adjust cols so they add up to total"
col_total = df[cols].sum(axis=1)
for c in cols:
df[c] = df[c] / col_total * df[total_col]
return df
def sensible_precision(num: float) -> str:
"""Convert a number to a string with sensible precission (3 digits maximum)."""
sensible_number = ''
if not np.isnan(num):
if abs(num) < 10.0:
num = round(num, 2)
sensible_number = f'{num:.2f}'.rstrip('0').rstrip('.')
elif abs(num) < 100.0:
num = round(num, 1)
sensible_number = f'{num:.1f}'.rstrip('0').rstrip('.')
elif abs(num) == np.inf:
sensible_number = "INF"
else:
num = round(num)
sensible_number = f'{num:.0f}'
return sensible_number
def human_format(num: float, pos: int) -> str:
"""Convert a number to a more human readable string."""
magnitude = 0
while abs(num) >= 1000:
magnitude += 1
num /= 1000.0
sensible_number = sensible_precision(num)
suffix = ['', 'k', 'M', 'G', 'T', 'P'][magnitude]
return f'{sensible_number}{suffix}'
def perc_format(num: float, pos: int) -> str:
"""Convert a number to a more human readablepercent string."""
sensible_number = sensible_precision(num)
return f'{sensible_number}%'
def rearrange(lst, *to_move, first=True):
"reorder a list by moving first items to the front. Can be index or value"
lst = list(lst)
result = []
for f in to_move:
if type(f) != int:
if f not in lst:
continue
f = lst.index(f) + 1
result.append(lst[f - 1])
lst[f - 1] = None
if first:
return result + [i for i in lst if i is not None]
else:
return [i for i in lst if i is not None] + result
def cut_ages_labels(ages=[10, 20, 30, 40, 50, 60, 70], prefix=None):
bins = [0] + ages + [140]
prefix = prefix + " " if prefix else ""
labels = [f"{prefix}{p}-{n-1}" if n else f"{prefix}{p}+" for p, n in zip(bins[:-1], bins[1:-1] + [None])]
return labels
def cut_ages(df, ages=[10, 20, 30, 40, 50, 60, 70], age_col="Age", group_col="Age Group"):
bins = [0] + ages + [140]
labels = cut_ages_labels(ages)
df[group_col] = pd.cut(df[age_col], bins=bins, labels=labels, right=False)
return df
def fuzzy_join(a,
b,
on,
assert_perfect_match=False,
trim=None,
replace_on_with=None,
return_unmatched=False,
cutoff=0.74):
"does a pandas join but matching very similar entries"
trim = trim if trim is not None else lambda x: x
old_index = None
if on not in a.columns:
old_index = a.index.names
a = a.reset_index()
a = a[a.columns.difference(b.columns)]
first = a.join(b, on=on)
test = list(b.columns)[0]
unmatched = first[first[test].isnull() & first[on].notna()]
if unmatched.empty:
second = first
else:
a["fuzzy_match"] = unmatched[on].map(
lambda x: next(iter(difflib.get_close_matches(trim(x), b.index, 1, cutoff=cutoff)), None),
na_action="ignore")
second = first.combine_first(a.join(b, on="fuzzy_match"))
del second["fuzzy_match"]
unmatched2 = second[second[test].isnull() & second[on].notna()]
if assert_perfect_match:
assert unmatched2.empty, f"Still some values left unmatched {list(unmatched2[on])}"
unmatched_counts = pd.DataFrame()
if return_unmatched and not unmatched.empty:
to_keep = [test, replace_on_with] if replace_on_with is not None else [test]
counts = unmatched.reset_index(drop=True)[on].value_counts().to_frame('count')
guessed = second[[on] + to_keep].set_index(on)
unmatched_counts = counts.join(guessed).reset_index().rename(columns=dict(index=on))
if replace_on_with is not None:
second[on] = second[replace_on_with]
del second[replace_on_with]
if old_index is not None:
second = second.set_index(old_index)
if return_unmatched:
return second, unmatched_counts
else:
return second
def export(df, name, csv_only=False, dir="api"):
try:
df = df.reset_index()
except:
# df = df.loc[:]
pass
# for c in set(list(df.select_dtypes(include=['datetime64']).columns)):
# df[c] = df[c].dt.strftime('%Y-%m-%d')
os.makedirs(dir, exist_ok=True)
# TODO: save space by dropping nan
# json.dumps([row.dropna().to_dict() for index,row in df.iterrows()])
if not csv_only:
path = os.path.join(dir, name)
df.to_json(
path,
date_format="iso",
indent=3,
orient="records",
)
logger.info("Exporting: {}", path)
path = os.path.join(dir, f"{name}.csv")
df.to_csv(
path,
index=False,
date_format='%Y-%m-%d'
)
logger.info("Exporting: {}", path)
def import_csv(name, index=None, return_empty=False, date_cols=['Date'], str_cols=[], int_cols=[], dir="api"):
path = os.path.join(dir, f"{name}.csv")
if not os.path.exists(path) or return_empty:
if index:
return pd.DataFrame(columns=index).set_index(index)
else:
return pd.DataFrame()
logger.info("Importing CSV: {}", path)
# TODO: set dtypes when we know its all floats so works faster?
dtypes = {col: "str" for col in str_cols} | {col: "int" for col in int_cols}
df = pd.read_csv(path, parse_dates=date_cols, dtype=dtypes)
if index:
return df.set_index(index)
else:
return df
def increasing(col, ma=7):
def increasing_func(adf: pd.DataFrame) -> pd.DataFrame:
if callable(col):
series = col(adf)
else:
series = adf[col]
return series.rolling(ma, min_periods=int(ma / 2), center=True).apply(trendline)
return increasing_func
def decreasing(col, ma=7):
inc_func = increasing(col, ma)
def decreasing_func(adf: pd.DataFrame) -> pd.DataFrame:
return 1 / inc_func(adf)
return decreasing_func
def value_ma(col, ma=3):
if ma:
def cases_ma(adf: pd.DataFrame) -> pd.DataFrame:
return adf[col].rolling(ma, min_periods=1).mean()
else:
def cases_ma(adf: pd.DataFrame) -> pd.DataFrame:
return adf[col]
return cases_ma
def trendline(data: pd.DataFrame) -> float:
slope = (list(data)[int(math.ceil(len(data) / 2))] - list(data)[0]) / len(data.index.values)
return float(slope)
def trendline_slow(data: pd.DataFrame, order: int = 1) -> float:
# simulate dates with monotonic inc numbers
dates = range(0, len(data.index.values))
coeffs = np.polyfit(dates, list(data), order)
return float(coeffs[-2])
def topprov(df, metricfunc, valuefunc=None, name="Top 5 Provinces", num=5, other_name="Rest of Thailand", return_all=False):
"return df with columns of valuefunc for the top x provinces by metricfunc"
# Top 5 dfcine rollouts
# old_index = df.index.names
valuefunc = metricfunc if valuefunc is None else valuefunc
# Apply metric on each province by itself
with_metric = df.groupby(level="Province", group_keys=False).apply(metricfunc)
with_metric = with_metric.reset_index().set_index("Date")
metric_col = [c for c in with_metric.columns if c != 'Province']
# = metricfunc(df)
last_day = with_metric.loc[with_metric.dropna().last_valid_index()]
top5 = last_day.nlargest(num, metric_col).reset_index()
# top5 = df.groupby(level="Province", group_keys=False).agg({metric_col:metricfunc}).nlargest(num, metric_col)
# sort data into top 5 + rest
top5[name] = top5['Province']
df = df.join(top5.set_index("Province")[name], on="Province").reset_index()
if other_name:
df[name] = df[name].fillna(other_name)
# TODO: sum() might have to be configurable?
# TODO: we only really need to do this for one value not all the individual values
df = df.groupby(["Date", name]).sum(min_count=1, numeric_only=False).reset_index() # condense all the "other" fields
# apply the value function to get all the values
values = df.set_index(["Date", name]).groupby(level=name, group_keys=False).apply(valuefunc).rename(0).reset_index()
# put the provinces into cols. use max to ensure NA aren't included. Should only be one value anyway?
# TODO: is aggfunc=lambda df: df.sum(skipna=False) better?
series = pd.crosstab(index=values['Date'], columns=values[name], values=values[0], aggfunc="max")
cols = list(top5[name]) # in right order
if other_name:
return series[cols + [other_name]]
else:
return series[cols]
def pred_vac(dose1, dose2=None, ahead=90, lag=40, suffix=" Pred"):
"Pred dose 2 using linear progression using 14 day rate and dose {lag} using 2month from dose1"
cur = dose1.last_valid_index()
rate = (dose1.loc[cur] - dose1.loc[cur - relativedelta(days=14)]) / 14
future_dates = pd.date_range(cur, cur + relativedelta(days=ahead), name="Date")
# increasing sequence
future1 = pd.DataFrame(dict([(col, pd.RangeIndex(1, ahead + 2)) for col in dose1.columns]), index=future_dates) * rate
future1 = future1 + dose1.loc[dose1.last_valid_index()]
future1.columns = [col + suffix for col in future1.columns]
if dose2 is None:
return future1
# 2nd dose is 1st dose from 2 months previous
# TODO: factor in 2 months vs 3 months AZ?
from_past = dose1[cur - relativedelta(days=lag): cur]
from_past.columns = [col + suffix for col in dose2.columns]
from_future = future1.iloc[1:ahead - lag + 1]
from_future.columns = from_past.columns
v2 = pd.concat([from_past, from_future], axis=0)[:ahead + 1]
# adjust to start where dose2 finished
end_dose2 = min(cur, dose2.last_valid_index())
future2 = (v2 - v2.loc[v2.index.min()]).add(list(dose2.loc[end_dose2]))
future2.index = future_dates
return (future1, future2)
#################
# Plot helpers
#################
def custom_cm(cm_name: str, size: int, last_colour: str = None, flip: bool = False) -> ListedColormap:
"""Returns a ListedColorMap object built with the supplied color scheme and with the last color forced to be equal
to the parameter passed. The flip parameter allows to reverse the colour scheme if needed.
"""
summer = getattr(matplotlib.cm, cm_name)
if flip:
newcolors = summer(np.linspace(1, 0, size))
else:
newcolors = summer(np.linspace(0, 1, size))
if last_colour:
newcolors[size - 1, :] = matplotlib.colors.to_rgba(last_colour) # used for unknowns (ex: 'lightgrey')
return ListedColormap(newcolors)
def clip_dataframe(df_all: pd.DataFrame, cols: Union[str, List[str]], n_rows: int) -> pd.DataFrame:
"""Removes the last n rows in the event that they contain any NaN
:param df_all: the pandas DataFrame containing all data
:param cols: specify columns from which to assess presence of NaN in the last n rows
:param n_rows: the number of rows (counting from the last row, going backwards) to evaluate whether they contain
any NaN and if so then delete them. This deals with (possible) data missing for the most recent data
updates.
"""
# detect the number of NaN in the last n rows of the DataFrame subset (i.e. only using the columns specified)
sum_nans = df_all[cols][-n_rows:].isna().sum(axis=1)
index_nans = sum_nans[sum_nans > 0].index
# remove these indices from the pandas DataFrame
cleaned_df = df_all.drop(index=index_nans)
return cleaned_df
def get_cycle(cmap, n=None, use_index="auto", extras=[], unpair=False, start=0):
if isinstance(cmap, Cycler):
return cmap
if isinstance(cmap, str):
if use_index == "auto":
if cmap in ['Pastel1', 'Pastel2', 'Paired', 'Accent',
'Dark2', 'Set1', 'Set2', 'Set3',
'tab10', 'tab20', 'tab20b', 'tab20c']:
use_index = True
else:
use_index = False
cmap = getattr(matplotlib.cm, cmap)
if not n:
n = cmap.N
if use_index == "auto":
if cmap.N > 100:
use_index = False
elif isinstance(cmap, LinearSegmentedColormap):
use_index = False
elif isinstance(cmap, ListedColormap):
use_index = True
if use_index:
ind = np.arange(int(n)) % cmap.N
colors = cmap(ind)
else:
colors = cmap(np.linspace(0, 1, n))
if unpair:
colors1 = colors[::2]
colors2 = colors[1::2]
colors = np.concatenate([colors1, colors2])
extras = [mcolors.to_rgba(mcolors.CSS4_COLORS[c]) for c in extras]
if extras:
colors = np.concatenate([colors, extras])
colors = colors[start:]
return cycler("color", colors)
def line_format(label):
"""
Convert time label to the format of pandas line plot
"""
month = label.month_name()[:3]
if month == 'Jan':
month += f'\n{label.year}'
return month
def set_time_series_labels(df, ax):
# https://stackoverflow.com/questions/30133280/pandas-bar-plot-changes-date-format
# Create list of monthly timestamps by selecting the first weekly timestamp of each
# month (in this example, the first Sunday of each month)
monthly_timestamps = [
timestamp for idx, timestamp in enumerate(df.index) if (timestamp.month != df.index[idx - 1].month) | (idx == 0)
]
# Automatically select appropriate number of timestamps so that x-axis does
# not get overcrowded with tick labels
step = 1
while len(monthly_timestamps[::step]) > 10: # increase number if time range >3 years
step += 1
timestamps = monthly_timestamps[::step]
# Create tick labels from timestamps
labels = [
ts.strftime('%b\n%Y') if ts.year != timestamps[idx - 1].year else ts.strftime('%b')
for idx, ts in enumerate(timestamps)
]
# Set major ticks and labels
ax.set_xticks([df.index.get_loc(ts) for ts in timestamps])
ax.set_xticklabels(labels)
# Set minor ticks without labels
ax.set_xticks([df.index.get_loc(ts) for ts in monthly_timestamps], minor=True)
# Rotate and center labels
ax.figure.autofmt_xdate(rotation=0, ha='center')
def set_time_series_labels_2(df, ax):
# Compute width of bars in matplotlib date units, 'md' (in days) and adjust it if
# the bar width in df.plot.bar has been set to something else than the default 0.5
bar_width_md_default, = np.diff(mdates.date2num(df.index[:2])) / 2
bar_width = ax.patches[0].get_width()
bar_width_md = bar_width * bar_width_md_default / 0.5
# Compute new x values in matplotlib date units for the patches (rectangles) that
# make up the stacked bars, adjusting the positions according to the bar width:
# if the frequency is in months (or years), the bars may not always be perfectly
# centered over the tick marks depending on the number of days difference between
# the months (or years) given by df.index[0] and [1] used to compute the bar
# width, this should not be noticeable if the bars are wide enough.
x_bars_md = mdates.date2num(df.index) - bar_width_md / 2
nvar = len(ax.get_legend_handles_labels()[1])
x_patches_md = np.ravel(nvar * [x_bars_md])
# Set bars to new x positions and adjust width: this loop works fine with NaN
# values as well because in bar plot NaNs are drawn with a rectangle of 0 height
# located at the foot of the bar, you can verify this with patch.get_bbox()
for patch, x_md in zip(ax.patches, x_patches_md):
patch.set_x(x_md)
patch.set_width(bar_width_md)
# Set major ticks
maj_loc = mdates.AutoDateLocator()
ax.xaxis.set_major_locator(maj_loc)
# Show minor tick under each bar (instead of each month) to highlight
# discrepancy between major tick locator and bar positions seeing as no tick
# locator is available for first-week-of-the-month frequency
ax.set_xticks(x_bars_md + bar_width_md / 2, minor=True)
# Set major tick formatter
zfmts = ['', '%b\n%Y', '%b', '%d\n%b', '%H:%M', '%H:%M']
fmt = mdates.ConciseDateFormatter(maj_loc, zero_formats=zfmts, show_offset=False)
ax.xaxis.set_major_formatter(fmt)
# Shift the plot frame to where the bars are now located
xmin = min(x_bars_md) - bar_width_md
xmax = max(x_bars_md) + 2 * bar_width_md
ax.set_xlim(xmin, xmax)
# Adjust tick label format last, else it may sometimes not be applied correctly
ax.figure.autofmt_xdate(rotation=0, ha='center')
class HighlightLines(mpld3.plugins.PluginBase):
"""A plugin to highlight lines on hover"""
JAVASCRIPT = """
mpld3.register_plugin("linehighlight", LineHighlightPlugin);
LineHighlightPlugin.prototype = Object.create(mpld3.Plugin.prototype);
LineHighlightPlugin.prototype.constructor = LineHighlightPlugin;
LineHighlightPlugin.prototype.requiredProps = ["line_ids"];
LineHighlightPlugin.prototype.defaultProps = {alpha_bg:0.3, alpha_fg:1.0}
function LineHighlightPlugin(fig, props){
mpld3.Plugin.call(this, fig, props);
};
LineHighlightPlugin.prototype.draw = function(){
for(var i=0; i<this.props.line_ids.length; i++){
var obj = mpld3.get_element(this.props.line_ids[i], this.fig),
alpha_fg = this.props.alpha_fg;
alpha_bg = this.props.alpha_bg;
obj.elements()
.on("mouseover", function(d, i){
d3.select(this).transition().duration(50)
.style("stroke-opacity", alpha_fg); })
.on("mouseout", function(d, i){
d3.select(this).transition().duration(200)
.style("stroke-opacity", alpha_bg); });
}
};
"""
def __init__(self, lines):
self.lines = lines
self.dict_ = {"type": "linehighlight",
"line_ids": [mpld3.utils.get_id(line) for line in lines],
"alpha_bg": lines[0].get_alpha(),
"alpha_fg": 1.0}
# write value at nearest x
# - https://stackoverflow.com/questions/34886070/multiseries-line-chart-with-mouseover-tooltip/34887578#34887578
# - https://stackoverflow.com/questions/21417298/d3js-chart-with-crosshair-as-tooltip-how-to-add-2-lines-which-intersect-at-curs
# - https://stackoverflow.com/questions/32783433/d3-multiples-with-linked-focus-mouseover-tooltip-crosshair-focus-line-not-fitti
# - http://jsfiddle.net/Nivaldo/79fxL/
# - https://jsfiddle.net/gerardofurtado/ayta89cz/5/
class MousePositionDatePlugin(mpld3.plugins.PluginBase):
"""Plugin for displaying mouse position with a datetime x axis."""
JAVASCRIPT = """
mpld3.register_plugin("mousepositiondate", MousePositionDatePlugin);
MousePositionDatePlugin.prototype = Object.create(mpld3.Plugin.prototype);
MousePositionDatePlugin.prototype.constructor = MousePositionDatePlugin;
MousePositionDatePlugin.prototype.requiredProps = [];
MousePositionDatePlugin.prototype.defaultProps = {
fontsize: 12,
xfmt: "%Y-%m-%d %H:%M:%S",
yfmt: ".3g"
};
function MousePositionDatePlugin(fig, props) {
mpld3.Plugin.call(this, fig, props);
}
MousePositionDatePlugin.prototype.draw = function() {
var fig = this.fig;
var xfmt = d3.time.format(this.props.xfmt);
var yfmt = d3.format(this.props.yfmt);
var coords = fig.canvas.append("text").attr("class", "mpld3-coordinates").style("text-anchor", "end").style("font-size", this.props.fontsize).attr("x", this.fig.width - 5).attr("y", this.fig.height - 5);
for (var i = 0; i < this.fig.axes.length; i++) {
var update_coords = function() {
var ax = fig.axes[i];
return function() {
var pos = d3.mouse(this);
x = ax.xdom.invert(pos[0]);
y = ax.ydom.invert(pos[1]);
coords.text("(" + xfmt(x) + ", " + yfmt(y) + ")");
};
}();
fig.axes[i].baseaxes.on("mousemove", update_coords).on("mouseout", function() {
coords.text("");
});
}
};
"""
def __init__(self, fontsize=14, xfmt="%Y-%m-%d %H:%M:%S", yfmt=".3g"):
self.dict_ = {"type": "mousepositiondate",
"fontsize": fontsize,
"xfmt": xfmt,
"yfmt": yfmt}
def weeks_to_end_date(df, week_col="Week", year_col="year", offset=0, date=None):
"""
Converts pd with Year=2023, week=2 into an end date "Date"
>>> df = pd.DataFrame({'year': [2022, 2023], 'Week': [52, 1], 'Cases': [1, 2]}).set_index(['year', 'Week'])
>>> weeks_to_end_date(df) # doctest: +NORMALIZE_WHITESPACE
Cases
Date
2022-12-31 1
2023-01-07 2
>>> weeks_to_end_date(df, offset=4) # doctest: +NORMALIZE_WHITESPACE
Cases
Date
2022-12-27 1
2023-01-03 2
And if we have no year col we will work backwards from current date
>>> df = pd.DataFrame({'Week': [52, 1], 'Cases': [1, 2]}).set_index(['Week'])
>>> weeks_to_end_date(df, year_col='Year', date=datetime.datetime(2023, 1, 10)) # doctest: +NORMALIZE_WHITESPACE
Cases
Date
2022-12-31 1
2023-01-07 2
"""
if df.empty:
return df
otherindex = list(set(df.index.names) - set([week_col, year_col, None]))
df = df.reset_index()
# df['Date'] = (pd.to_numeric(df[week_col]) * 7).apply(lambda x: pd.DateOffset(x) + start)
if year_col not in df.columns and date:
# TODO: do we need to offset to the sat? (date - datetime.timedelta(days=6))
last_week = int(date.strftime("%U"))
year = date.year
# any week past the last date we expect is assumed to be last year
# assumes not more than one year and no future data
# df[year_col] = df.apply(lambda row: year - 1 if row[week_col] > last_week else year, axis=1)
df.loc[df[week_col] > last_week, year_col] = year - 1
# df.loc[df[week_col] > 52, week_col] = 52 # Stupid mistake at the end of 2023
df.loc[df[week_col] <= last_week, year_col] = year
df[year_col] = df[year_col].astype(int)
# df["Date"] = df.apply(lambda row: datetime.datetime.strptime(
# f"{row[year_col] if year_col else year}-W{int(row[week_col])}-6", "%Y-W%W-%w") - datetime.timedelta(days=offset), axis=1)
df["Date"] = pd.to_datetime(df[year_col].astype(str) + df[week_col].astype(str) +
"-6", format='%Y%U-%w') - DateOffset(days=offset)
assert np.nan not in df['Date'] and pd.NaT not in df['Date']
df = df.drop(columns=set(df.columns).intersection(set([week_col, year_col, None])))
return df.set_index(["Date"] + otherindex)