From 734056593b485a38420ffa62dc02649dffb71070 Mon Sep 17 00:00:00 2001 From: Tieqiong Zhang Date: Thu, 17 Jul 2025 17:53:24 -0400 Subject: [PATCH 1/8] Update build script for skpkg standard Migrate deprecated calls on matplotlib, pkg_resources, pyobjcryst, distutils --- .coveragerc | 22 -- .gitarchive.cfg | 5 - .gitattributes | 7 - .gitignore | 129 +++++++-- .readthedocs.yaml | 23 -- .travis.yml | 124 --------- SConstruct | 278 +++++++++----------- devutils/install-conda-env.sh | 75 ------ devutils/makesdist | 55 ---- pyproject.toml | 86 +++++- requirements/build.txt | 0 requirements/conda.txt | 11 + requirements/docs.txt | 4 + requirements/pip.txt | 1 + requirements/test.txt | 6 + setup.py | 249 +++++------------- src/extensions/SConscript | 69 ++--- src/extensions/SConscript.configure | 15 +- src/pyobjcryst/powderpattern.py | 4 +- src/pyobjcryst/tests/__init__.py | 4 +- src/pyobjcryst/tests/pyobjcrysttestutils.py | 9 +- src/pyobjcryst/tests/testmolecule.py | 4 +- src/pyobjcryst/version.py | 80 ++---- 23 files changed, 455 insertions(+), 805 deletions(-) delete mode 100644 .coveragerc delete mode 100644 .gitarchive.cfg delete mode 100644 .gitattributes delete mode 100644 .readthedocs.yaml delete mode 100644 .travis.yml delete mode 100755 devutils/install-conda-env.sh delete mode 100755 devutils/makesdist create mode 100644 requirements/build.txt create mode 100644 requirements/conda.txt create mode 100644 requirements/docs.txt create mode 100644 requirements/pip.txt create mode 100644 requirements/test.txt diff --git a/.coveragerc b/.coveragerc deleted file mode 100644 index d0a0d16..0000000 --- a/.coveragerc +++ /dev/null @@ -1,22 +0,0 @@ -# Configuration of the coverage.py tool for reporting test coverage. - -[report] -# RE patterns for lines to be excluded from consideration. -exclude_lines = - ## Have to re-enable the standard pragma - pragma: no cover - ## Don't complain if tests don't hit defensive assertion code: - raise AssertionError - raise NotImplementedError - ^[ ]*assert False - - ## Don't complain if non-runnable code isn't run: - ^[ ]*@unittest.skip\b - ^[ ]{4}unittest.main() - if __name__ == .__main__.: - - -[run] -omit = - ## exclude debug.py from codecov report - */tests/debug.py diff --git a/.gitarchive.cfg b/.gitarchive.cfg deleted file mode 100644 index 95e1448..0000000 --- a/.gitarchive.cfg +++ /dev/null @@ -1,5 +0,0 @@ -[DEFAULT] -commit = $Format:%H$ -date = $Format:%ci$ -timestamp = $Format:%ct$ -refnames = $Format:%D$ diff --git a/.gitattributes b/.gitattributes deleted file mode 100644 index 2c3906b..0000000 --- a/.gitattributes +++ /dev/null @@ -1,7 +0,0 @@ -/.gitattributes export-ignore -/.gitignore export-ignore -/.travis.yml export-ignore -/conda-recipe/ export-ignore -/devutils export-ignore -/doc export-ignore -.gitarchive.cfg export-subst diff --git a/.gitignore b/.gitignore index 6618d04..b0d1802 100644 --- a/.gitignore +++ b/.gitignore @@ -1,37 +1,85 @@ +# Byte-compiled / optimized / DLL files +__pycache__/ *.py[cod] +*$py.class +.exp +.lib +.dll -# C extensions +# Compiled Dynamic libraries *.so +*.dylib -# Packages -*.egg -*.egg-info -dist +# Compiled Object files +*.slo +*.lo +*.o + +# Compiled Static libraries +*.lai +*.la +*.a.sconf_temp + +# SCons build files +.gdb_history +.sconf_temp/ +.sconsign.dblite build -eggs -parts -bin -var -sdist -temp -develop-eggs -.installed.cfg -lib -lib64 +config.log +errors.err +/sconscript.local +/sconsvars.py tags + +# Distribution / packaging +.Python +env/ +build/ +_build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +venv/ +*.egg-info/ +.installed.cfg +*.egg +bin/ +temp/ +tags/ errors.err +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + # Installer logs pip-log.txt +pip-delete-this-directory.txt MANIFEST # Unit test / coverage reports +htmlcov/ +.tox/ .coverage -.tox +.coverage.* +.cache nosetests.xml +coverage.xml +*,cover +.hypothesis/ # Translations *.mo +*.pot # Mr Developer .mr.developer.cfg @@ -39,14 +87,43 @@ nosetests.xml .pydevproject .settings -# SCons build files -.gdb_history -.sconf_temp/ -.sconsign.dblite -config.log -/sconscript.local -/sconsvars.py +# Django stuff: +*.log + +# Sphinx documentation +docs/build/ +docs/source/generated/ + +# pytest +.pytest_cache/ + +# PyBuilder +target/ + +# Editor files +# mac +.DS_Store +*~ + +# vim +*.swp +*.swo + +# pycharm +.idea/ + +# VSCode +.vscode/ + +# Visual Studio +.vs/* + +# eclipse +.project +.pydevproject + +# Ipython Notebook +.ipynb_checkpoints -# version information -setup.cfg -/src/pyobjcryst/version.cfg +# source distribution tarball +libdiffpy-*.tar.gz diff --git a/.readthedocs.yaml b/.readthedocs.yaml deleted file mode 100644 index 9219f83..0000000 --- a/.readthedocs.yaml +++ /dev/null @@ -1,23 +0,0 @@ -# .readthedocs.yaml -# Read the Docs configuration file -# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details - -# Required -version: 2 - -# Set the OS, Python version and other tools you might need -build: - os: "ubuntu-22.04" - tools: - python: "mambaforge-latest" - -# Build documentation in the docs/ directory with Sphinx -sphinx: - configuration: doc/manual/source/conf.py - -# If using Sphinx, optionally build your docs in additional formats such as PDF -# formats: -# - pdf - -conda: - environment: doc/environment.yml diff --git a/.travis.yml b/.travis.yml deleted file mode 100644 index cb96e99..0000000 --- a/.travis.yml +++ /dev/null @@ -1,124 +0,0 @@ -language: generic - -os: - - linux - - osx - -env: - - MYUSEMC=true MYPYTHON_VERSION=2.7 - - MYUSEMC=true MYPYTHON_VERSION=3.5 - - MYUSEMC=true MYPYTHON_VERSION=3.6 - - MYUSEMC=true MYPYTHON_VERSION=3.7 - - MYUSEMC=false - -git: - depth: 999999 - -branches: - except: - - /^v[0-9]/ - - -before_install: - - MYNAME=pyobjcryst - - MYCOMMIT="$(git rev-parse HEAD)" - - umask 022 - - git fetch origin --tags - - MYPYTHON=python; MYPIP=pip - - NOSYS=true; NOAPT=true; NOBREW=true; NOMC=true - - if ${MYUSEMC}; then - NOMC=false; - elif [[ ${TRAVIS_OS_NAME} == linux ]]; then - NOAPT=false; NOSYS=false; - MYPIPFLAGS="--user"; - elif [[ ${TRAVIS_OS_NAME} == osx ]]; then - NOBREW=false; NOSYS=false; - MYPYTHON=python3; - MYPIP=pip3; - MYPIPFLAGS="--user"; - fi - - MYMCREPO=https://repo.anaconda.com/miniconda - - case ${TRAVIS_OS_NAME} in - linux) - MYMCBUNDLE=Miniconda3-latest-Linux-x86_64.sh ;; - osx) - MYMCBUNDLE=Miniconda3-latest-MacOSX-x86_64.sh ;; - *) - echo "Unsupported operating system." >&2; - exit 2 ;; - esac - - MYRUNDIR=${PWD}/build/rundir - - - mkdir -p ~/pkgs - - mkdir -p ${MYRUNDIR} - - cp .coveragerc ${MYRUNDIR}/ - - - $NOMC || pushd ~/pkgs - - $NOMC || wget --timestamping ${MYMCREPO}/${MYMCBUNDLE} - - $NOMC || test -x ~/mc/bin/conda || bash ${MYMCBUNDLE} -b -f -p ~/mc - - $NOMC || popd - - $NOMC || source ~/mc/bin/activate base - - $NOMC || conda update --yes conda - - $NOMC || conda install --yes conda-build conda-verify jinja2 numpy - - $NOMC || conda create --name=testenv --yes python=${MYPYTHON_VERSION} coverage - - $NOMC || conda config --add channels diffpy - - - $NOAPT || test "${TRAVIS_OS_NAME}" = "linux" || exit $? - - $NOAPT || PATH="$(echo "$PATH" | sed 's,:/opt/pyenv/[^:]*,,g')" - - $NOAPT || test "$(which python)" = "/usr/bin/python" || ( - which python; exit 1) - - $NOAPT || sudo apt-get update -qq - - $NOAPT || sudo apt-get install -y - python-setuptools python-numpy scons - build-essential python-dev libboost-all-dev - python-pip - - - $NOBREW || test "${TRAVIS_OS_NAME}" = "osx" || exit $? - - $NOBREW || brew update - - $NOBREW || brew unlink python@2 - - $NOBREW || brew upgrade python - - $NOBREW || brew install gcc || brew link --overwrite gcc - - $NOBREW || brew install boost-python3 - - $NOBREW || brew install scons - - $NOBREW || $MYPIP install numpy - - - $NOSYS || devutils/makesdist - - $NOSYS || MYTARBUNDLE="$(ls -t "${PWD}"/dist/*.tar.gz | head -1)" - - $NOSYS || pushd ~/pkgs - - $NOSYS || git clone https://github.com/diffpy/libobjcryst.git - - $NOSYS || popd - - -install: - - $NOMC || conda build --python=${MYPYTHON_VERSION} conda-recipe - - $NOMC || conda render --python=${MYPYTHON_VERSION} --output conda-recipe | - sed 's,.*/,,; s/[.]tar[.]bz2$//; s/-/=/g' > /tmp/mypackage.txt - - $NOMC || source activate testenv - - $NOMC || conda install --yes --use-local --file=/tmp/mypackage.txt - - - MYSUDO= - - $NOAPT || MYSUDO=sudo - - $NOSYS || $MYPIP install $MYPIPFLAGS coverage - - $NOSYS || $MYSUDO scons -C ~/pkgs/libobjcryst install - - $NOSYS || $MYPIP install $MYPIPFLAGS "${MYTARBUNDLE}" - - - cd ${MYRUNDIR} - - MYGIT_REV=$($MYPYTHON -c "import ${MYNAME}.version as v; print(v.__git_commit__)") - - if [[ "${MYCOMMIT}" != "${MYGIT_REV}" ]]; then - echo "Version mismatch ${MYCOMMIT} vs ${MYGIT_REV}."; - exit 1; - fi - - -before_script: - - $NOBREW || USER_BASE="$(python3 -c 'import site; print(site.USER_BASE)')" - - $NOBREW || PATH="${USER_BASE}/bin:${PATH}" - - -script: - - coverage run --source ${MYNAME} -m ${MYNAME}.tests.run - - -after_success: - - $MYPIP install $MYPIPFLAGS codecov - - codecov diff --git a/SConstruct b/SConstruct index efdec18..6d5ac24 100644 --- a/SConstruct +++ b/SConstruct @@ -22,8 +22,8 @@ SCons construction environment can be customized in sconscript.local script. import os from os.path import join as pjoin import re -import subprocess import platform +import sys def subdictionary(d, keyset): @@ -35,20 +35,10 @@ def getsyspaths(*names): rv = [p for p in pall if os.path.exists(p)] return rv - -def pyoutput(cmd): - proc = subprocess.Popen([env['python'], '-c', cmd], - stdout=subprocess.PIPE, - universal_newlines=True) - out = proc.communicate()[0] - return out.rstrip() - - -def pyconfigvar(name): - cmd = ('from distutils.sysconfig import get_config_var\n' - 'print(get_config_var(%r))\n') % name - return pyoutput(cmd) - +def ftpyflag(flags): + # Figure out compilation switches, filter away fancy flags. + pattern = re.compile(r'^(-g|-Wstrict-prototypes|-O\d|-fPIC)$') + return [f for f in flags if not (isinstance(f, str) and pattern.match(f))] # copy system environment variables related to compilation DefaultEnvironment(ENV=subdictionary(os.environ, ''' @@ -58,6 +48,7 @@ DefaultEnvironment(ENV=subdictionary(os.environ, ''' MACOSX_DEPLOYMENT_TARGET LANG _PYTHON_SYSCONFIGDATA_NAME _CONDA_PYTHON_SYSCONFIGDATA_NAME + CONDA_PREFIX '''.split()) ) @@ -70,169 +61,154 @@ env.EnsureSConsVersion(0, 98) # Customizable compile variables vars = Variables('sconsvars.py') -# Set PREFIX for installation and linking -# TODO: also amend paths when VIRTUAL_ENV variable exists ? -if 'PREFIX' in os.environ: - # building with a set prefix - vars.Add(PathVariable( - 'prefix', - 'installation prefix directory', - os.environ['PREFIX'])) -elif 'CONDA_PREFIX' in os.environ: - # building for a conda environment - vars.Add(PathVariable( - 'prefix', - 'installation prefix directory', - os.environ['CONDA_PREFIX'])) -else: - vars.Add(PathVariable('prefix', - 'installation prefix directory', None)) +# Customizable build variables +vars.Add(EnumVariable( + 'build', + 'compiler settings', + 'fast', allowed_values=('debug', 'fast'))) +vars.Add(EnumVariable( + 'tool', + 'C++ compiler toolkit to be used', + 'default', allowed_values=('default', 'intelc'))) +vars.Add(BoolVariable( + 'profile', + 'build with profiling information', False)) vars.Update(env) -vars.Add(EnumVariable('build', - 'compiler settings', 'fast', - allowed_values=('debug', 'fast'))) -vars.Add(EnumVariable('tool', - 'C++ compiler toolkit to be used', 'default', - allowed_values=('default', 'intelc', 'clang', 'clangxx'))) -vars.Add(BoolVariable('profile', - 'build with profiling information', False)) -vars.Add('python', - 'Python executable to use for installation.', 'python') -vars.Update(env) -env.Help(MY_SCONS_HELP % vars.GenerateHelpText(env)) - -# Use Intel C++ compiler if requested by the user. -icpc = None +# Use C++ compiler specified by the 'tool' option. if env['tool'] == 'intelc': icpc = env.WhereIs('icpc') if not icpc: print("Cannot find the Intel C/C++ compiler 'icpc'.") Exit(1) env.Tool('intelc', topdir=icpc[:icpc.rfind('/bin')]) + env=env.Clone() +# Default use scons auto found compiler -# Figure out compilation switches, filter away C-related items. -good_python_flag = lambda n: ( - not isinstance(n, str) or - not re.match(r'(-g|-Wstrict-prototypes|-O\d|-fPIC)$', n)) +# Get prefixes, make sure current interpreter is in conda env so thus is the target. +if 'PREFIX' in os.environ: + default_prefix = os.environ['PREFIX'] +elif 'CONDA_PREFIX' in os.environ: + default_prefix = os.environ['CONDA_PREFIX'] +else: + print("Environment variable PREFIX or CONDA_PREFIX must be set." + " Activate conda environment.") + Exit(1) + +vars.Add(PathVariable( + 'prefix', + 'installation prefix directory', + default_prefix)) +vars.Update(env) -# Determine python-config script name. -if 'PY_VER' in os.environ: - pyversion = os.environ['PY_VER'] +# Set paths +if env['PLATFORM'] == "win32": + include_path = pjoin(env['prefix'], 'Library', 'include') + lib_path = pjoin(env['prefix'], 'Library', 'lib') + shared_path = pjoin(env['prefix'], 'Library', 'share') + + env['ENV']['TMP'] = os.environ.get('TMP', env['ENV'].get('TMP', '')) else: - pyversion = pyoutput('import sys; print("%i.%i" % sys.version_info[:2])') - -if 'CONDA_BUILD' in os.environ and 'PY_VER' in os.environ: - # Messy: if CONDA_BUILD and PY_VER are in the path, we are building a conda package - # using several environment. Make sure python3.X-config points to the destination - # (host) environment - pythonconfig = pjoin(os.environ['PREFIX'], 'bin', 'python%s-config' % os.environ['PY_VER']) - print("Using $PREFIX and $PY_VER to determine python-config pth: %s" % pythonconfig) - xpython = pjoin(os.environ['PREFIX'], 'bin', 'python') - pyversion = os.environ['PY_VER'] + include_path = pjoin(env['prefix'], 'include') + lib_path = pjoin(env['prefix'], 'lib') + shared_path = pjoin(env['prefix'], 'share') + +vars.Add(PathVariable( + 'includedir', + 'installation directory for C++ header files', + include_path, + PathVariable.PathAccept)) +vars.Add(PathVariable( + 'libdir', + 'installation directory for compiled programs', + lib_path, + PathVariable.PathAccept)) +vars.Add(PathVariable( + 'datadir', + 'installation directory for architecture independent data', + shared_path, + PathVariable.PathAccept)) +vars.Update(env) + +env.AppendUnique(CPPPATH=[include_path]) +env.AppendUnique(LIBPATH=[lib_path]) + +env.Help(MY_SCONS_HELP % vars.GenerateHelpText(env)) + +# Determine python-config script name. +pyversion = os.environ.get('PY_VER') or f"{sys.version_info.major}.{sys.version_info.minor}" +if platform.system().lower() != 'windows': + pythonconfig = pjoin(env['prefix'], 'bin', f'python{pyversion}-config') + xpython = pjoin(env['prefix'], 'bin', 'python') else: - pycfgname = 'python%s-config' % (pyversion if pyversion[0] == '3' else '') - # realpath gets the real path if exec is a link (e.g. in a python environment) - xpython = os.path.realpath(env.WhereIs(env['python'])) - pybindir = os.path.dirname(xpython) - pythonconfig = pjoin(pybindir, pycfgname) - -# for k in sorted(os.environ.keys()): -# print(" ", k, os.environ[k]) - -if platform.system().lower() == "windows": - # See https://scons.org/faq.html#Linking_on_Windows_gives_me_an_error - env['ENV']['TMP'] = os.environ['TMP'] - # the CPPPATH directories are checked by scons dependency scanner - cpppath = getsyspaths('CPLUS_INCLUDE_PATH', 'CPATH') - env.AppendUnique(CPPPATH=cpppath) - # Insert LIBRARY_PATH explicitly because some compilers - # ignore it in the system environment. - env.PrependUnique(LIBPATH=getsyspaths('LIBRARY_PATH')) - if env['prefix'] is not None: - env.Append(CPPPATH=[pjoin(env['prefix'], 'include')]) - env.Append(CPPPATH=[pjoin(env['prefix'], 'Library', 'include')]) - # Windows conda library paths are a MESS ('lib', 'libs', 'Library\lib'...) - env.Append(LIBPATH=[pjoin(env['prefix'], 'Library', 'lib')]) - env.Append(LIBPATH=[pjoin(env['prefix'], 'libs')]) - # This disable automated versioned named e.g. libboost_date_time-vc142-mt-s-x64-1_73.lib - # so we can use conda-installed libraries - env.AppendUnique(CPPDEFINES='BOOST_ALL_NO_LIB') - # Prevent the generation of an import lib (.lib) in addition to the dll - # env.AppendUnique(no_import_lib=1) - env.PrependUnique(CCFLAGS=['/Ox', '/EHsc', '/MD', '/DREAL=double']) - env.AppendUnique(CPPDEFINES={'NDEBUG': None}) + # use sysconfig on Windows + pythonconfig = None + xpython = pjoin(env['prefix'], 'python.exe') +print(f"Using python-config: {pythonconfig} from {xpython}") + + +common_cppdefs = ['REAL=double', 'BOOST_ERROR_CODE_HEADER_ONLY'] +env.AppendUnique(CPPDEFINES=common_cppdefs) + +if env['PLATFORM'] == 'win32': + env.AppendUnique(CPPDEFINES=['BOOST_ALL_NO_LIB']) + env.AppendUnique(CCFLAGS=['/EHsc', '/MD']) + + if env['build'] == 'debug': + env.Append(CCFLAGS=['/Zi', '/Od']) + env.Append(LINKFLAGS=['/DEBUG']) + + elif env['build'] == 'fast': + env.Append(CCFLAGS=['/Ox', '/GL']) + env.Append(LINKFLAGS=['/LTCG', '/OPT:REF', '/OPT:ICF']) + + if env['profile']: + env.Append(CCFLAGS='/Gh') + else: - if 'CONDA_BUILD' not in os.environ: - # Verify python-config comes from the same path as the target python. - xpythonconfig = env.WhereIs(pythonconfig) - if os.path.dirname(xpython) != os.path.dirname(xpythonconfig): - print("Inconsistent paths of %r and %r" % (xpython, xpythonconfig)) - Exit(1) - # Process the python-config flags here. - env.ParseConfig(pythonconfig + " --cflags") - env.Replace(CCFLAGS=[f for f in env['CCFLAGS'] if good_python_flag(f)]) - env.Replace(CPPDEFINES='BOOST_ERROR_CODE_HEADER_ONLY') - # the CPPPATH directories are checked by scons dependency scanner - cpppath = getsyspaths('CPLUS_INCLUDE_PATH', 'CPATH') - env.AppendUnique(CPPPATH=cpppath) - # Insert LIBRARY_PATH explicitly because some compilers - # ignore it in the system environment. - env.PrependUnique(LIBPATH=getsyspaths('LIBRARY_PATH')) - # Add shared libraries. - # Note: ObjCryst and boost_python are added from SConscript.configure. - - fast_linkflags = ['-s'] - fast_shlinkflags = pyconfigvar('LDSHARED').split()[1:] - - # Specify minimum C++ standard. Allow later standard from sconscript.local. - # In case of multiple `-std` options the last option holds. - env.PrependUnique(CXXFLAGS='-std=c++11', delete_existing=1) - - # Need this to avoid missing symbol with boost<1.66 - env.PrependUnique(CXXFLAGS=['-DBOOST_ERROR_CODE_HEADER_ONLY']) - - # Use double precision for objcryst's REAL - env.PrependUnique(CCFLAGS=['-DREAL=double']) - - # Platform specific intricacies. - if env['PLATFORM'] == 'darwin': - darwin_shlinkflags = [n for n in env['SHLINKFLAGS'] if n != '-dynamiclib'] - env.Replace(SHLINKFLAGS=darwin_shlinkflags) - env.AppendUnique(SHLINKFLAGS=['-bundle']) - env.AppendUnique(SHLINKFLAGS=['-undefined', 'dynamic_lookup']) - fast_linkflags[:] = [] - - # Compiler specific options - if icpc: + # get python flags from python-config script + # not using sysconfig here because of parsing issues + env.ParseConfig(f"{pythonconfig} --cflags") + env.Replace(CCFLAGS=ftpyflag(env['CCFLAGS'])) + + env.PrependUnique(CCFLAGS=['-Wextra']) + env.PrependUnique(CXXFLAGS=['-std=c++11']) + + if env['tool'] == 'intelc': # options for Intel C++ compiler on hpc dev-intel07 env.AppendUnique(CCFLAGS=['-w1', '-fp-model', 'precise']) env.PrependUnique(LIBS=['imf']) - fast_optimflags = ['-fast', '-no-ipo'] + fast_opts = ['-fast', '-no-ipo'] + else: + env.AppendUnique(CCFLAGS=['-fno-strict-aliasing']) + fast_opts = ['-ffast-math'] + + if env['PLATFORM'] == 'darwin': + # macOS bundle + sh = [f for f in env['SHLINKFLAGS'] if f != '-dynamiclib'] + env.Replace(SHLINKFLAGS=sh + ['-bundle', '-undefined', 'dynamic_lookup']) + fast_link = [] # no strip on macOS bundles else: - # g++ options - env.AppendUnique(CCFLAGS=['-Wall', '-fno-strict-aliasing']) - fast_optimflags = ['-ffast-math'] + fast_link = ['-s'] - # Configure build variants if env['build'] == 'debug': - env.AppendUnique(CCFLAGS='-g') + # Python has NDEBUG defined in release builds. + cppdefs = env.get('CPPDEFINES', []) + env.Replace(CPPDEFINES=[d for d in cppdefs if d != 'NDEBUG']) + + env.Append(CCFLAGS=['-g', '-O0']) + elif env['build'] == 'fast': - env.AppendUnique(CCFLAGS=['-O3'] + fast_optimflags) - env.AppendUnique(CPPDEFINES='NDEBUG') - env.AppendUnique(LINKFLAGS=fast_linkflags) - env.AppendUnique(SHLINKFLAGS=fast_shlinkflags) + env.Append(CCFLAGS=['-O3'] + fast_opts) + env.Append(LINKFLAGS=fast_link) if env['profile']: env.AppendUnique(CCFLAGS='-pg') env.AppendUnique(LINKFLAGS='-pg') - env.Append(CPPPATH=[pjoin(env['prefix'], 'include')]) - env.Append(LIBPATH=[pjoin(env['prefix'], 'lib')]) - builddir = env.Dir('build/%s-%s' % (env['build'], platform.machine())) -Export('env', 'pyconfigvar', 'pyoutput', 'pyversion') +Export('env', 'pyversion') if os.path.isfile('sconscript.local'): env.SConscript('sconscript.local') diff --git a/devutils/install-conda-env.sh b/devutils/install-conda-env.sh deleted file mode 100755 index 3f20453..0000000 --- a/devutils/install-conda-env.sh +++ /dev/null @@ -1,75 +0,0 @@ -#!/bin/bash - -# This is an installation script for a conda environment with pyobjcryst, -# also including ipython, jupyter notebook and ipywidgets. -# This has been tested on debian and macOS computers. -# It assumes you already have installed conda and compilers on your computer -# This will also download the libobjcryst and pyobjcryst repositories in the current directory - -echo $1 - -if [ -z $2 ]; -then - echo "No directory or python executable given for installation !"; - echo "Usage: install-conda-env.sh ENVNAME PYTHON_VERSION" - echo " with: ENVNAME the name of the python virtual environement, e.g. pyobjcryst" - echo " PYTHON_VERSION the python version, e.g. 3.7" - echo "example: install-conda-env.sh pyobjcryst 3.7" - exit -fi - -echo -echo "#############################################################################################" -echo " Creating conda environment" -echo "#############################################################################################" -echo - -# create the conda virtual environment with necessary packages -conda create --yes -n $1 python=$2 pip -if [ $? -ne 0 ]; -then - echo "Conda environment creation failed." - echo $? - exit 1 -fi - -# Activate conda environment (see https://github.com/conda/conda/issues/7980) -eval "$(conda shell.bash hook)" -conda activate $1 -if [ $? -ne 0 ]; -then - echo "Conda environment activation failed. Maybe 'conda init' is needed (see messages) ?" - exit 1 -fi - -echo -echo "#############################################################################################" -echo " Adding required packages" -echo "#############################################################################################" -echo - -conda install --yes -n $1 numpy matplotlib ipython notebook ipywidgets boost boost-cpp git scons - -echo -echo "#############################################################################################" -echo " Installing libobjcryst from source" -echo "#############################################################################################" -echo - -conda activate $1 -git clone https://github.com/vincefn/libobjcryst.git -cd libobjcryst -# Why are the $CONDA_PREFIX include and lib directories not automatically recognised ? -CPLUS_INCLUDE_PATH=$CONDA_PREFIX/include scons prefix=$CONDA_PREFIX -j4 install -cd .. - -echo -echo "#############################################################################################" -echo " Installing pyobjcryst" -echo "#############################################################################################" -echo - -git clone https://github.com/vincefn/pyobjcryst.git -cd pyobjcryst -CPLUS_INCLUDE_PATH=$CONDA_PREFIX/include LIBRARY_PATH=$CONDA_PREFIX/lib scons prefix=$CONDA_PREFIX -j4 install -cd .. diff --git a/devutils/makesdist b/devutils/makesdist deleted file mode 100755 index 06e07d7..0000000 --- a/devutils/makesdist +++ /dev/null @@ -1,55 +0,0 @@ -#!/usr/bin/env python - -'''Create source distribution tar.gz archive, where each file belongs -to a root user and modification time is set to the git commit time. -''' - -import sys -import os -import subprocess -import glob -import tarfile -import gzip - -BASEDIR = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) -sys.path.insert(0, BASEDIR) - -from setup import versiondata, FALLBACK_VERSION -timestamp = versiondata.getint('DEFAULT', 'timestamp') - -vfb = versiondata.get('DEFAULT', 'version').split('.post')[0] + '.post0' -emsg = "Invalid FALLBACK_VERSION. Expected %r got %r." -assert vfb == FALLBACK_VERSION, emsg % (vfb, FALLBACK_VERSION) - -def inform(s): - sys.stdout.write(s) - sys.stdout.flush() - return - -inform('Run "setup.py sdist --formats=tar" ') -cmd_sdist = ([sys.executable, '-Wignore:Cannot detect name suffix'] + - 'setup.py sdist --formats=tar'.split()) -ec = subprocess.call(cmd_sdist, cwd=BASEDIR, stdout=open(os.devnull, 'w')) -if ec: sys.exit(ec) -inform("[done]\n") - -tarname = max(glob.glob(BASEDIR + '/dist/*.tar'), key=os.path.getmtime) - -tfin = tarfile.open(tarname) -fpout = gzip.GzipFile(tarname + '.gz', 'w', mtime=0) -tfout = tarfile.open(fileobj=fpout, mode='w') - -def fixtarinfo(tinfo): - tinfo.uid = tinfo.gid = 0 - tinfo.uname = tinfo.gname = 'root' - tinfo.mtime = timestamp - tinfo.mode &= ~0o022 - return tinfo - -inform('Filter %s --> %s.gz ' % (2 * (os.path.basename(tarname),))) -for ti in tfin: - tfout.addfile(fixtarinfo(ti), tfin.extractfile(ti)) - -tfin.close() -os.remove(tarname) -inform("[done]\n") diff --git a/pyproject.toml b/pyproject.toml index 7b708ac..ecb23a9 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,4 +1,86 @@ -# pyproject.toml [build-system] -requires = ["setuptools", "numpy"] +requires = ["setuptools>=62.0", "setuptools-git-versioning>=2.0", "numpy"] build-backend = "setuptools.build_meta" + +[project] +name="pyobjcryst" +dynamic=['version', 'dependencies'] +authors = [ + { name="Simon J.L. Billinge group", email="simon.billinge@gmail.com" }, +] +maintainers = [ + { name="Simon J.L. Billinge group", email="simon.billinge@gmail.com" }, + { name="Vincent-Favre-Nicolin", email="favre@esrf.fr" }, +] +description="Python bindings to the ObjCryst++ library." +keywords=["objcryst", "atom structure", "crystallography", "powder diffraction"] +readme = "README.rst" +requires-python = ">=3.11, <3.14" +classifiers=[ + 'Development Status :: 5 - Production/Stable', + 'Environment :: Console', + 'Intended Audience :: Developers', + 'Intended Audience :: Education', + 'Intended Audience :: Science/Research', + 'License :: OSI Approved :: BSD License', + 'Operating System :: MacOS :: MacOS X', + 'Operating System :: POSIX', + 'Operating System :: Unix', + 'Programming Language :: C++', + 'Programming Language :: Python :: 3.11', + 'Programming Language :: Python :: 3.12', + 'Programming Language :: Python :: 3.13', + 'Topic :: Scientific/Engineering :: Chemistry', + 'Topic :: Scientific/Engineering :: Physics', + 'Topic :: Software Development :: Libraries', +] + +[project.urls] +Homepage = "https://github.com/diffpy/pyobjcryst" +Issues = "https://github.com/diffpy/pyobjcryst/issues/" + +[tool.setuptools-git-versioning] +enabled = true +template = "{tag}" +dev_template = "{tag}" +dirty_template = "{tag}" +# Use this version when git data are not available as in a git zip archive. +# Update when tagging a new release. +starting_version = "2024.2.1" + +[tool.setuptools.packages.find] +where = ["src"] # list of folders that contain the packages (["."] by default) +include = ["*"] # package names should match these glob patterns (["*"] by default) +exclude = [] # exclude packages matching these glob patterns (empty by default) +namespaces = false # to disable scanning PEP 420 namespaces (true by default) + +[tool.setuptools.dynamic] +dependencies = {file = ["requirements/pip.txt"]} + +# [tool.codespell] +# exclude-file = ".codespell/ignore_lines.txt" +# ignore-words = ".codespell/ignore_words.txt" +# skip = "*.cif,*.dat,*.cc,*.h" + +[tool.black] +line-length = 115 +include = '\.pyi?$' +exclude = ''' +/( + \.git + | \.hg + | \.mypy_cache + | \.tox + | \.venv + | \.rst + | \.txt + | _build + | buck-out + | build + | dist + + # The following are specific to Black, you probably don't want those. + | blib2to3 + | tests/data +)/ +''' diff --git a/requirements/build.txt b/requirements/build.txt new file mode 100644 index 0000000..e69de29 diff --git a/requirements/conda.txt b/requirements/conda.txt new file mode 100644 index 0000000..fe5e123 --- /dev/null +++ b/requirements/conda.txt @@ -0,0 +1,11 @@ +numpy +libobjcryst +libboost-devel +libboost-python +packaging # for matplotlib version parsing in powderpattern.py + +# plotting +ipywidgets +matplotlib +ipympl +py3dmol>=2.0.1 diff --git a/requirements/docs.txt b/requirements/docs.txt new file mode 100644 index 0000000..ab17b1c --- /dev/null +++ b/requirements/docs.txt @@ -0,0 +1,4 @@ +sphinx +sphinx_rtd_theme +doctr +m2r diff --git a/requirements/pip.txt b/requirements/pip.txt new file mode 100644 index 0000000..24ce15a --- /dev/null +++ b/requirements/pip.txt @@ -0,0 +1 @@ +numpy diff --git a/requirements/test.txt b/requirements/test.txt new file mode 100644 index 0000000..a727786 --- /dev/null +++ b/requirements/test.txt @@ -0,0 +1,6 @@ +flake8 +pytest +codecov +coverage +pytest-cov +pytest-env diff --git a/setup.py b/setup.py index f5fd19e..e4258dd 100644 --- a/setup.py +++ b/setup.py @@ -1,212 +1,89 @@ #!/usr/bin/env python # Installation script for pyobjcryst - """pyobjcryst - Python bindings to ObjCryst++ Object-Oriented Crystallographic Library Packages: pyobjcryst """ -import os -from os.path import join as pjoin -import re -import sys import glob -import platform -from setuptools import setup -from setuptools import Extension +import os +from pathlib import Path import numpy as np -# Use this version when git data are not available as in a git zip archive. -# Update when tagging a new release. -FALLBACK_VERSION = '2024.2.1' - -# define extension arguments here -ext_kws = { - 'libraries': ['ObjCryst'], - 'extra_compile_args': ['-std=c++11', '-DBOOST_ERROR_CODE_HEADER_ONLY', '-DREAL=double'], - 'extra_link_args': [], - 'include_dirs': [np.get_include()], - 'library_dirs': [] -} -if platform.system() == 'Windows': - ext_kws['extra_compile_args'] = ['-DBOOST_ERROR_CODE_HEADER_ONLY', '-DREAL=double'] - if 'CONDA_PREFIX' in os.environ: - ext_kws['include_dirs'] += [pjoin(os.environ['CONDA_PREFIX'], 'include'), - pjoin(os.environ['CONDA_PREFIX'], 'Library', 'include')] - ext_kws['library_dirs'] += [pjoin(os.environ['CONDA_PREFIX'], 'Library', 'lib'), - pjoin(os.environ['CONDA_PREFIX'], 'Library', 'bin'), - pjoin(os.environ['CONDA_PREFIX'], 'libs')] - ext_kws['libraries'] = ['libObjCryst'] -elif platform.system() == 'Darwin': - ext_kws['extra_compile_args'] += ['-fno-strict-aliasing'] - -# determine if we run with Python 3. -PY3 = (sys.version_info[0] == 3) - - -# Figure out the tagged name of boost_python library. -def get_boost_libraries(): - """Check for installed boost_python shared library. - - Returns list of required boost_python shared libraries that are installed - on the system. If required libraries are not found, an Exception will be - thrown. - """ - baselib = "boost_python" - major, minor = (str(x) for x in sys.version_info[:2]) - pytags = [major + minor, major, ''] - mttags = ['', '-mt'] - boostlibtags = [(pt + mt) for mt in mttags for pt in pytags] + [''] - from ctypes.util import find_library - for tag in boostlibtags: - lib = baselib + tag - found = find_library(lib) - if found: break - - # Show warning when library was not detected. +from setuptools import Extension, setup + +# Helper functions ----------------------------------------------------------- + +def check_boost_libraries(lib_dir): + pattern = "libboost_python*.*" if os.name != "nt" else "boost_python*.lib" + found = list(lib_dir.glob(pattern)) if not found: - import platform - import warnings - ldevname = 'LIBRARY_PATH' - if platform.system() == 'Darwin': - ldevname = 'DYLD_FALLBACK_LIBRARY_PATH' - wmsg = ("Cannot detect name suffix for the %r library. " - "Consider setting %s.") % (baselib, ldevname) - warnings.warn(wmsg) + raise EnvironmentError( + f"No boost_python libraries found in conda environment at {lib_dir}. " + "Please install libboost_python in your conda environment." + ) + + # convert into linker names + lib = [] + for libpath in found: + name = libpath.stem + if name.startswith("lib"): + name = name[3:] + lib.append(name) + return lib + +def get_env_config(): + conda_prefix = os.environ.get("CONDA_PREFIX") + if not conda_prefix: + raise EnvironmentError( + "CONDA_PREFIX environment variable is not set. " + "Please activate your conda environment before running setup.py." + ) + if os.name == "nt": + inc = Path(conda_prefix) / "Library" / "include" + lib = Path(conda_prefix) / "Library" / "lib" + else: + inc = Path(conda_prefix) / "include" + lib = Path(conda_prefix) / "lib" - libs = [lib] - return libs + return {"include_dirs": [str(inc)], "library_dirs": [str(lib)]} def create_extensions(): - "Initialize Extension objects for the setup function." - blibs = [n for n in get_boost_libraries() - if not n in ext_kws['libraries']] - ext_kws['libraries'] += blibs - ext = Extension('pyobjcryst._pyobjcryst', - glob.glob("src/extensions/*.cpp"), - **ext_kws) - return [ext] - + include_dirs = get_env_config().get("include_dirs") + [np.get_include()] + library_dirs = get_env_config().get("library_dirs") -# versioncfgfile holds version data for git commit hash and date. -# It must reside in the same directory as version.py. -MYDIR = os.path.dirname(os.path.abspath(__file__)) -versioncfgfile = os.path.join(MYDIR, 'src/pyobjcryst/version.cfg') -gitarchivecfgfile = os.path.join(MYDIR, '.gitarchive.cfg') + libraries = ["ObjCryst"] + check_boost_libraries(Path(library_dirs[0])) + extra_objects = [] + extra_compile_args = [] + extra_link_args = [] + define_macros = [] -def gitinfo(): - from subprocess import Popen, PIPE - kw = dict(stdout=PIPE, cwd=MYDIR, universal_newlines=True) - proc = Popen(['git', 'describe', '--match=v[[:digit:]]*', '--tags'], **kw) - desc = proc.stdout.read() - proc = Popen(['git', 'log', '-1', '--format=%H %ct %ci'], **kw) - glog = proc.stdout.read() - rv = {} - rv['version'] = '.post'.join(desc.strip().split('-')[:2]).lstrip('v') - rv['commit'], rv['timestamp'], rv['date'] = glog.strip().split(None, 2) - return rv + if os.name == "nt": + extra_compile_args = ['-DBOOST_ERROR_CODE_HEADER_ONLY', '-DREAL=double'] + else: + extra_compile_args = ['-std=c++11', '-DBOOST_ERROR_CODE_HEADER_ONLY', '-DREAL=double', '-fno-strict-aliasing'] + + ext_kws = { + "include_dirs": include_dirs, + "libraries": libraries, + "library_dirs": library_dirs, + "define_macros": define_macros, + "extra_compile_args": extra_compile_args, + "extra_link_args": extra_link_args, + "extra_objects": extra_objects, + } + ext = Extension('pyobjcryst._pyobjcryst', glob.glob("src/extensions/*.cpp"), **ext_kws) + return [ext] -def getversioncfg(): - if PY3: - from configparser import RawConfigParser - else: - from ConfigParser import RawConfigParser - vd0 = dict(version=FALLBACK_VERSION, commit='', date='', timestamp=0) - # first fetch data from gitarchivecfgfile, ignore if it is unexpanded - g = vd0.copy() - cp0 = RawConfigParser(vd0) - cp0.read(gitarchivecfgfile) - if len(cp0.get('DEFAULT', 'commit')) > 20: - g = cp0.defaults() - mx = re.search(r'\btag: v(\d[^,]*)', g.pop('refnames')) - if mx: - g['version'] = mx.group(1) - # then try to obtain version data from git. - gitdir = os.path.join(MYDIR, '.git') - if os.path.exists(gitdir) or 'GIT_DIR' in os.environ: - try: - g = gitinfo() - except OSError: - pass - # finally, check and update the active version file - cp = RawConfigParser() - cp.read(versioncfgfile) - d = cp.defaults() - rewrite = not d or (g['commit'] and ( - g['version'] != d.get('version') or g['commit'] != d.get('commit'))) - if rewrite: - cp.set('DEFAULT', 'version', g['version']) - cp.set('DEFAULT', 'commit', g['commit']) - cp.set('DEFAULT', 'date', g['date']) - cp.set('DEFAULT', 'timestamp', g['timestamp']) - with open(versioncfgfile, 'w') as fp: - cp.write(fp) - return cp - - -versiondata = getversioncfg() - -with open(os.path.join(MYDIR, 'README.rst')) as fp: - long_description = fp.read() - -# define distribution setup_args = dict( - name="pyobjcryst", - version=versiondata.get('DEFAULT', 'version'), - author="Simon J.L. Billinge", - author_email="sb2896@columbia.edu", - maintainer='Vincent-Favre-Nicolin', - maintainer_email='favre@esrf.fr', - description="Python bindings to the ObjCryst++ library.", - long_description=long_description, - long_description_content_type='text/x-rst', - license="BSD-style license", - url="https://github.com/diffpy/pyobjcryst", - - # Required python packages - install_requires=['numpy', 'packaging'], - extras_require={'gui': ['ipywidgets', 'jupyter', 'matplotlib', 'ipympl', 'py3dmol>=2.0.1'], - 'doc': ['sphinx', 'm2r2', 'sphinx_py3doc_enhanced_theme', - 'nbsphinx', 'nbsphinx-link']}, - - # What we're installing - packages=['pyobjcryst', 'pyobjcryst.tests'], - package_dir={'': 'src'}, - test_suite='pyobjcryst.tests', - include_package_data=True, - zip_safe=False, - - keywords="objcryst atom structure crystallography powder diffraction", - classifiers=[ - # List of possible values at - # http://pypi.python.org/pypi?:action=list_classifiers - 'Development Status :: 5 - Production/Stable', - 'Environment :: Console', - 'Intended Audience :: Developers', - 'Intended Audience :: Education', - 'Intended Audience :: Science/Research', - 'License :: OSI Approved :: BSD License', - 'Operating System :: MacOS :: MacOS X', - 'Operating System :: POSIX', - 'Operating System :: Unix', - 'Programming Language :: C++', - 'Programming Language :: Python :: 3.8', - 'Programming Language :: Python :: 3.9', - 'Programming Language :: Python :: 3.10', - 'Programming Language :: Python :: 3.11', - 'Programming Language :: Python :: 3.12', - 'Programming Language :: Python :: 3.13', - 'Topic :: Scientific/Engineering :: Chemistry', - 'Topic :: Scientific/Engineering :: Physics', - 'Topic :: Software Development :: Libraries', - ], + ext_modules=[], ) -if __name__ == '__main__': - setup_args['ext_modules'] = create_extensions() +if __name__ == "__main__": + setup_args["ext_modules"] = create_extensions() setup(**setup_args) diff --git a/src/extensions/SConscript b/src/extensions/SConscript index 226fb8c..cdf68b5 100644 --- a/src/extensions/SConscript +++ b/src/extensions/SConscript @@ -1,5 +1,8 @@ import numpy as np -Import('env', 'pyoutput') +import os +from setuptools import Distribution, Extension + +Import('env') # make sure numpy headers are available env.AppendUnique(CPPPATH=[np.get_include()]) @@ -9,53 +12,25 @@ if not (GetOption('clean') or env.GetOption('help')): SConscript('SConscript.configure') # python extension module -module = env.SharedLibrary('_pyobjcryst', Glob('*.cpp'), - SHLIBPREFIX='', SHLIBSUFFIX='.so') -Alias('module', module) - -# update egg info when package version changes. -basedir = Dir('#').abspath -version = pyoutput( - 'import sys\n' - 'sys.path.insert(0, %r)\n' - 'from setup import versiondata\n' - 'print(versiondata.get("DEFAULT", "version"))\n' % basedir) -egginfo = env.Command(NoCache('#/src/pyobjcryst.egg-info/PKG-INFO'), - env.Value(version), - '$python -Wignore setup.py egg_info') - -# install extension module in a development mode. -develop = Alias('develop', [egginfo, Install('#/src/pyobjcryst', module)]) - -test = env.Alias('test', develop, - '$python -m pyobjcryst.tests.run') -AlwaysBuild(test) +module = env.SharedLibrary( + '_pyobjcryst', + Glob('*.cpp'), + SHLIBPREFIX='', + SHLIBSUFFIX='.so') + +installed = env.Install(Dir('#/src/pyobjcryst'), module) -def resolve_distutils_target(target, source, env): - tgt = pyoutput('\n'.join([ - "from setuptools import Distribution, Extension", - "ext = Extension('pyobjcryst._pyobjcryst', [])", - "attrs = dict(ext_modules=[ext])", - "dist = Distribution(attrs)", - "bcmd = dist.get_command_obj('build_ext')", - "bcmd.finalize_options()", - "print(bcmd.get_ext_fullpath(ext.name))", - ])) - env['distsofile'] = env.File(tgt) - return 0 - -cmd_install = '$python setup.py install' -if 'prefix' in env: - cmd_install += ' --prefix=$prefix' - -install = env.Alias('install', module, [ - resolve_distutils_target, - Mkdir('$distsofile.dir'), - Copy('$distsofile', '$SOURCE'), - Touch('$distsofile'), - cmd_install, - ]) -AlwaysBuild(install) +# run `scons develop` to install the extension in development mode +dev = Alias('dev', installed) +AlwaysBuild(dev) + + +# run `scons test` to run the tests +test = env.Alias( + 'test', + ['dev'], + f'PYTHONPATH={Dir("#").abspath + "/src"} python -m pyobjcryst.tests.run') +AlwaysBuild(test) # default targets: Default(module) diff --git a/src/extensions/SConscript.configure b/src/extensions/SConscript.configure index 65b2877..46acb75 100644 --- a/src/extensions/SConscript.configure +++ b/src/extensions/SConscript.configure @@ -1,13 +1,10 @@ import platform from os.path import join as pjoin -Import('env', 'pyconfigvar', 'pyversion') +import sysconfig -# Helper functions ----------------------------------------------------------- +Import('env', 'pyversion') -env.Append(LIBPATH=pjoin(env['prefix'], 'Library', 'bin')) -env.Append(LIBPATH=pjoin(env['prefix'], 'Library', 'lib')) -env.Append(CPPPATH=[pjoin(env['prefix'], 'include')]) -env.Append(CPPPATH=[pjoin(env['prefix'], 'Library', 'include')]) +# Helper functions ----------------------------------------------------------- def CheckOptimizerFlag(context, flag): ccflags_save = context.env['CCFLAGS'] @@ -48,8 +45,8 @@ def configure_boost_library(libname): # Anaconda Python is compiled with super fancy gcc optimizer flags. # Remove any flags that are not supported by the current compiler. - custom_tests = {'CheckOptimizerFlag' : CheckOptimizerFlag} + conf = Configure(env, custom_tests=custom_tests) optflags = [o for o in env['CCFLAGS'] if o[:2] in ('-f', '-m')] @@ -57,16 +54,16 @@ for o in optflags: conf.CheckOptimizerFlag(o) conf.Finish() + if platform.system().lower() == "windows": ecfg = env.Clone() - # ecfg.MergeFlags(pyconfigvar('BLDLIBRARY')) ecfg.Append(LIBS=['libObjCryst']) else: # Create configuration environment that links with Python shared_library, so # that the boost_python check does not fail due to unresolved Python symbols. ecfg = env.Clone() ecfg.Append(LIBS=[]) - ecfg.MergeFlags(pyconfigvar('BLDLIBRARY')) + ecfg.MergeFlags(sysconfig.get_config_var('BLDLIBRARY')) # make sure there are no implicit dependency nodes in added LIBS ecfg.Replace(LIBS=[str(n) for n in ecfg['LIBS']]) newlibsindex = len(ecfg['LIBS']) diff --git a/src/pyobjcryst/powderpattern.py b/src/pyobjcryst/powderpattern.py index 74b3268..51e045f 100644 --- a/src/pyobjcryst/powderpattern.py +++ b/src/pyobjcryst/powderpattern.py @@ -229,7 +229,7 @@ def _do_plot_hkl(self, nb_max=100, fontsize_hkl=None): # 'inline' backend triggers a delayed exception (?) try: # need the renderer to avoid text overlap - renderer = plt.gcf().canvas.renderer + renderer = plt.gcf().canvas.get_renderer() except: # Force immediate display. Not supported on all backends (e.g. nbagg) ax.draw() @@ -237,7 +237,7 @@ def _do_plot_hkl(self, nb_max=100, fontsize_hkl=None): if 'ipympl' not in plt.get_backend(): plt.pause(.001) try: - renderer = self._plot_fig.canvas.renderer + renderer = self._plot_fig.canvas.get_renderer() except: renderer = None else: diff --git a/src/pyobjcryst/tests/__init__.py b/src/pyobjcryst/tests/__init__.py index 209f3a8..c6b167b 100644 --- a/src/pyobjcryst/tests/__init__.py +++ b/src/pyobjcryst/tests/__init__.py @@ -37,9 +37,9 @@ def testsuite(pattern=''): import re from os.path import dirname from itertools import chain - from pkg_resources import resource_filename + from importlib.resources import files loader = unittest.defaultTestLoader - thisdir = resource_filename(__name__, '') + thisdir = files(__name__) depth = __name__.count('.') + 1 topdir = thisdir for i in range(depth): diff --git a/src/pyobjcryst/tests/pyobjcrysttestutils.py b/src/pyobjcryst/tests/pyobjcrysttestutils.py index 9ee7aee..3e2759a 100644 --- a/src/pyobjcryst/tests/pyobjcrysttestutils.py +++ b/src/pyobjcryst/tests/pyobjcrysttestutils.py @@ -18,7 +18,7 @@ from pyobjcryst.atom import Atom from pyobjcryst.molecule import Molecule from pyobjcryst.polyhedron import MakeOctahedron -from pyobjcryst.crystal import Crystal +from pyobjcryst.crystal import Crystal, create_crystal_from_cif from pyobjcryst.scatteringpower import ScatteringPowerAtom from numpy import pi @@ -149,13 +149,12 @@ def makeMnO6(): def datafile(filename): - from pkg_resources import resource_filename - rv = resource_filename(__name__, "testdata/" + filename) + from importlib.resources import files + rv = str(files(__name__).joinpath("testdata", filename)) return rv def loadcifdata(filename): - from pyobjcryst import loadCrystal fullpath = datafile(filename) - crst = loadCrystal(fullpath) + crst = create_crystal_from_cif(fullpath) return crst diff --git a/src/pyobjcryst/tests/testmolecule.py b/src/pyobjcryst/tests/testmolecule.py index 24fbce5..42fe539 100644 --- a/src/pyobjcryst/tests/testmolecule.py +++ b/src/pyobjcryst/tests/testmolecule.py @@ -17,7 +17,7 @@ import io import unittest -from pkg_resources import resource_filename +from importlib.resources import files from pyobjcryst import ObjCrystException from pyobjcryst.crystal import Crystal from pyobjcryst.molecule import ( @@ -446,7 +446,7 @@ def testManipulation(self): def testZMatrix(self): """Test creating a Molecule from a z-matrix""" - fname = resource_filename(__name__, "testdata/cime.fhz") + fname = str(files(__name__).joinpath("testdata", "cime.fhz")) c= Crystal() m = ImportFenskeHallZMatrix(c, fname) assert m.GetNbAtoms() == 17 diff --git a/src/pyobjcryst/version.py b/src/pyobjcryst/version.py index 305e5ef..89f99ae 100644 --- a/src/pyobjcryst/version.py +++ b/src/pyobjcryst/version.py @@ -1,74 +1,30 @@ #!/usr/bin/env python ############################################################################## # -# pyobjcryst by DANSE Diffraction group -# Simon J. L. Billinge -# (c) 2009 The Trustees of Columbia University -# in the City of New York. All rights reserved. +# (c) 2024-2025 The Trustees of Columbia University in the City of New York. +# All rights reserved. # -# File coded by: Chris Farrow +# File coded by: Chris Farrow, Billinge Group members. # -# See AUTHORS.txt for a list of people who contributed. -# See LICENSE_DANSE.txt for license information. +# See GitHub contributions for a more detailed list of contributors. +# https://github.com/diffpy/pyobjcryst/graphs/contributors # noqa: E501 +# +# See LICENSE.rst for license information. # ############################################################################## +"""Definition of __version__.""" -""" -Definition of __version__, __date__, __timestamp__, __git_commit__, -libobjcryst_version_info. - -Notes ------ -Variable `__gitsha__` is deprecated as of version 2.1. -Use `__git_commit__` instead. -""" - -__all__ = ['__date__', '__git_commit__', '__timestamp__', '__version__', - 'libobjcryst_version_info'] - -import os.path - -from pkg_resources import resource_filename - - -# obtain version information from the version.cfg file -cp = dict(version='', date='', commit='', timestamp='0') -fcfg = resource_filename(__name__, 'version.cfg') -if not os.path.isfile(fcfg): # pragma: no cover - from warnings import warn - warn('Package metadata not found, execute "./setup.py egg_info".') - fcfg = os.devnull -with open(fcfg) as fp: - kwords = [[w.strip() for w in line.split(' = ', 1)] - for line in fp if line[:1].isalpha() and ' = ' in line] -assert all(w[0] in cp for w in kwords), "received unrecognized keyword" -cp.update(kwords) - -__version__ = cp['version'] -__date__ = cp['date'] -__git_commit__ = cp['commit'] -__timestamp__ = int(cp['timestamp']) - -# TODO remove deprecated __gitsha__ in version 2.2. -__gitsha__ = __git_commit__ +# We do not use the other three variables, but can be added back if needed. +# __all__ = ["__date__", "__git_commit__", "__timestamp__", "__version__"] -del cp, fcfg, fp, kwords +# obtain version information +from importlib.metadata import version, PackageNotFoundError -# version information on the active libObjCryst library ---------------------- +FALLBACK_VERSION = "2024.2.1" -from collections import namedtuple -from pyobjcryst._pyobjcryst import _get_libobjcryst_version_info_dict +try: + __version__ = version("pyobjcryst") +except PackageNotFoundError: + __version__ = FALLBACK_VERSION -libobjcryst_version_info = namedtuple('libobjcryst_version_info', - "major minor micro patch version_number version date git_commit") -vd = _get_libobjcryst_version_info_dict() -libobjcryst_version_info = libobjcryst_version_info( - version = vd['version_str'], - version_number = vd['version'], - major = vd['major'], - minor = vd['minor'], - micro = vd['micro'], - patch = vd['patch'], - date = vd['date'], - git_commit = vd['git_commit']) -del vd +# End of file From 12d13d8c6e8137e3504fbfca4a472b003fc92557 Mon Sep 17 00:00:00 2001 From: Tieqiong Date: Sat, 19 Jul 2025 01:42:58 +0000 Subject: [PATCH 2/8] modifpy windows build --- .gitignore | 7 ++++--- SConstruct | 17 ++++++----------- requirements/build.txt | 1 + setup.py | 7 ++++++- src/extensions/SConscript | 29 +++++++++++++++++++++++------ 5 files changed, 40 insertions(+), 21 deletions(-) diff --git a/.gitignore b/.gitignore index b0d1802..e384938 100644 --- a/.gitignore +++ b/.gitignore @@ -2,9 +2,10 @@ __pycache__/ *.py[cod] *$py.class -.exp -.lib -.dll +*.exp +*.lib +*.dll +*.pdb # Compiled Dynamic libraries *.so diff --git a/SConstruct b/SConstruct index 6d5ac24..c195032 100644 --- a/SConstruct +++ b/SConstruct @@ -22,7 +22,6 @@ SCons construction environment can be customized in sconscript.local script. import os from os.path import join as pjoin import re -import platform import sys @@ -107,6 +106,9 @@ if env['PLATFORM'] == "win32": lib_path = pjoin(env['prefix'], 'Library', 'lib') shared_path = pjoin(env['prefix'], 'Library', 'share') + env.AppendUnique(CPPPATH=[ pjoin(env['prefix'], 'include') ]) # for python headers + env.AppendUnique(LIBPATH=[ pjoin(env['prefix'], 'libs') ]) # for python libs + env['ENV']['TMP'] = os.environ.get('TMP', env['ENV'].get('TMP', '')) else: include_path = pjoin(env['prefix'], 'include') @@ -137,7 +139,7 @@ env.Help(MY_SCONS_HELP % vars.GenerateHelpText(env)) # Determine python-config script name. pyversion = os.environ.get('PY_VER') or f"{sys.version_info.major}.{sys.version_info.minor}" -if platform.system().lower() != 'windows': +if env['PLATFORM'] != 'win32': pythonconfig = pjoin(env['prefix'], 'bin', f'python{pyversion}-config') xpython = pjoin(env['prefix'], 'bin', 'python') else: @@ -155,16 +157,13 @@ if env['PLATFORM'] == 'win32': env.AppendUnique(CCFLAGS=['/EHsc', '/MD']) if env['build'] == 'debug': - env.Append(CCFLAGS=['/Zi', '/Od']) + env.Append(CCFLAGS=['/Zi', '/Od', '/FS']) env.Append(LINKFLAGS=['/DEBUG']) elif env['build'] == 'fast': env.Append(CCFLAGS=['/Ox', '/GL']) env.Append(LINKFLAGS=['/LTCG', '/OPT:REF', '/OPT:ICF']) - if env['profile']: - env.Append(CCFLAGS='/Gh') - else: # get python flags from python-config script # not using sysconfig here because of parsing issues @@ -202,11 +201,7 @@ else: env.Append(CCFLAGS=['-O3'] + fast_opts) env.Append(LINKFLAGS=fast_link) - if env['profile']: - env.AppendUnique(CCFLAGS='-pg') - env.AppendUnique(LINKFLAGS='-pg') - -builddir = env.Dir('build/%s-%s' % (env['build'], platform.machine())) +builddir = env.Dir('build/%s-%s' % (env['build'], env['PLATFORM'])) Export('env', 'pyversion') diff --git a/requirements/build.txt b/requirements/build.txt index e69de29..49fe098 100644 --- a/requirements/build.txt +++ b/requirements/build.txt @@ -0,0 +1 @@ +setuptools diff --git a/setup.py b/setup.py index e4258dd..6cf36ee 100644 --- a/setup.py +++ b/setup.py @@ -55,7 +55,12 @@ def create_extensions(): include_dirs = get_env_config().get("include_dirs") + [np.get_include()] library_dirs = get_env_config().get("library_dirs") - libraries = ["ObjCryst"] + check_boost_libraries(Path(library_dirs[0])) + if os.name == "nt": + objcryst_lib = "libObjCryst" + else: + objcryst_lib = "ObjCryst" + + libraries = [objcryst_lib] + check_boost_libraries(Path(library_dirs[0])) extra_objects = [] extra_compile_args = [] extra_link_args = [] diff --git a/src/extensions/SConscript b/src/extensions/SConscript index cdf68b5..bc328be 100644 --- a/src/extensions/SConscript +++ b/src/extensions/SConscript @@ -1,6 +1,6 @@ import numpy as np import os -from setuptools import Distribution, Extension +from SCons.Script import Clean Import('env') @@ -11,14 +11,23 @@ env.AppendUnique(CPPPATH=[np.get_include()]) if not (GetOption('clean') or env.GetOption('help')): SConscript('SConscript.configure') +if env['PLATFORM'] == 'win32': + if env['profile']: + print("Warning: Windows profiling is not enabled; skipping /Gh") +else: + if env['profile']: + env.AppendUnique(CCFLAGS='-pg') + env.AppendUnique(LINKFLAGS='-pg') + # python extension module -module = env.SharedLibrary( +module_nodes = env.SharedLibrary( '_pyobjcryst', Glob('*.cpp'), SHLIBPREFIX='', - SHLIBSUFFIX='.so') + SHLIBSUFFIX = '.pyd' if env['PLATFORM']=='win32' else '.so') -installed = env.Install(Dir('#/src/pyobjcryst'), module) +ext_module = module_nodes[0] +installed = env.Install(Dir('#/src/pyobjcryst'), ext_module) # run `scons develop` to install the extension in development mode dev = Alias('dev', installed) @@ -26,13 +35,21 @@ AlwaysBuild(dev) # run `scons test` to run the tests +env['ENV']['PYTHONPATH'] = Dir('#').abspath + os.sep + 'src' test = env.Alias( 'test', ['dev'], - f'PYTHONPATH={Dir("#").abspath + "/src"} python -m pyobjcryst.tests.run') + Action('python -m pyobjcryst.tests.run') +) AlwaysBuild(test) # default targets: -Default(module) +Default(module_nodes) + +# clean up the build artifacts +Clean(None, ['.sconsign.dblite', 'config.log']) +Clean(None, Dir('.sconf_temp')) +Clean(None, Dir('build')) +Clean(None, installed) # vim: ft=python From 0aa8b8b1355b33f004b3dc8de3b031c992573eab Mon Sep 17 00:00:00 2001 From: Tieqiong Zhang Date: Sat, 19 Jul 2025 17:59:37 -0400 Subject: [PATCH 3/8] skpkg: update to skpkg standard. pcmt: simple pre-commit hook fixes --- .codecov.yml | 14 + .codespell/ignore_lines.txt | 2 + .codespell/ignore_words.txt | 17 + .flake8 | 14 + .github/ISSUE_TEMPLATE/bug_feature.md | 16 + .github/ISSUE_TEMPLATE/release_checklist.md | 46 + .../pull_request_template.md | 15 + .../workflows/build-wheel-release-upload.yml | 18 + .github/workflows/check-news-item.yml | 12 + .../matrix-and-codecov-on-merge-to-main.yml | 21 + .github/workflows/publish-docs-on-release.yml | 12 + .github/workflows/tests-on-pr.yml | 15 + .isort.cfg | 5 + .pre-commit-config.yaml | 66 + .readthedocs.yaml | 13 + AUTHORS.rst | 13 + AUTHORS.txt | 10 - CHANGELOG.md | 169 -- CHANGELOG.rst | 178 ++ CODE-OF-CONDUCT.rst | 133 + LICENSE-DANSE.rst | 45 + LICENSE.rst | 141 + LICENSE.txt | 137 - LICENSE_DANSE.txt | 33 - MANIFEST.in | 25 +- README.rst | 234 +- conda-recipe/conda_build_config.yaml | 39 - conda-recipe/meta.yaml | 62 - conda-recipe/run_test.py | 4 - conda-recipe/sconscript.local | 18 - cookiecutter.json | 18 + doc/environment.yml | 15 - doc/manual/source/api/modules.rst | 198 -- doc/manual/source/license.rst | 140 - doc/manual/source/release.rst | 3 - {doc/manual => docs}/Makefile | 27 +- docs/make.bat | 36 + docs/source/_static/.placeholder | 0 .../source/_static/css/custom.css | 4 +- .../source/api/pyobjcryst.example_package.rst | 31 + docs/source/api/pyobjcryst.rst | 30 + {doc/manual => docs}/source/conf.py | 199 +- .../Quantitative-phase-analysis.nblink | 0 .../source/examples/crystal_3d_widget.nblink | 0 .../manual => docs}/source/examples/index.rst | 4 +- .../structure-solution-multiprocessing.nblink | 0 ...tructure-solution-powder-cimetidine.nblink | 0 .../structure-solution-powder-pbso4.nblink | 0 docs/source/getting-started.rst | 79 + docs/source/img/scikit-package-logo-text.png | Bin 0 -> 187608 bytes {doc/manual => docs}/source/index.rst | 95 +- docs/source/license.rst | 38 + docs/source/release.rst | 5 + docs/source/snippets/example-table.rst | 28 + .../QPA-Quantitative phase analysis.ipynb | 244 +- examples/crystal_3d_widget.ipynb | 1223 +------- examples/single-crystal-data.ipynb | 30 +- .../structure-solution-multiprocessing.ipynb | 953 +------ ...structure-solution-powder-cimetidine.ipynb | 1794 +----------- .../structure-solution-powder-pbso4.ipynb | 2522 +---------------- news/TEMPLATE.rst | 23 + pyproject.toml | 67 +- requirements/build.txt | 1 - requirements/docs.txt | 1 + requirements/{test.txt => tests.txt} | 0 setup.py | 25 +- src/extensions/SConscript | 6 +- src/extensions/crystal_ext.cpp | 10 +- src/extensions/refinableobjclock_ext.cpp | 2 +- src/extensions/refinablepar_ext.cpp | 2 +- src/pyobjcryst/__init__.py | 40 +- src/pyobjcryst/atom.py | 3 +- src/pyobjcryst/crystal.py | 868 ++++-- .../diffractiondatasinglecrystal.py | 22 +- src/pyobjcryst/fourier.py | 79 +- src/pyobjcryst/general.py | 11 +- src/pyobjcryst/globaloptim.py | 132 +- src/pyobjcryst/globals.py | 35 +- src/pyobjcryst/indexing.py | 136 +- src/pyobjcryst/io.py | 41 +- src/pyobjcryst/lsq.py | 4 +- src/pyobjcryst/molecule.py | 73 +- src/pyobjcryst/polyhedron.py | 37 +- src/pyobjcryst/powderpattern.py | 322 ++- src/pyobjcryst/pyobjcryst_app.py | 33 + src/pyobjcryst/radiation.py | 4 +- src/pyobjcryst/refinableobj.py | 185 +- src/pyobjcryst/reflectionprofile.py | 6 +- src/pyobjcryst/scatterer.py | 3 +- src/pyobjcryst/scatteringdata.py | 4 +- src/pyobjcryst/scatteringpower.py | 25 +- src/pyobjcryst/scatteringpowersphere.py | 6 +- src/pyobjcryst/spacegroup.py | 7 +- src/pyobjcryst/tests/__init__.py | 76 - src/pyobjcryst/tests/debug.py | 30 - src/pyobjcryst/tests/run.py | 31 - src/pyobjcryst/unitcell.py | 6 +- src/pyobjcryst/utils.py | 18 +- src/pyobjcryst/version.py | 6 +- src/pyobjcryst/zscatterer.py | 30 +- tests/conftest.py | 19 + .../pyobjcryst_test_mem.py | 35 +- .../tests/testcif.py => tests/test_cif.py | 177 +- .../testclocks.py => tests/test_clocks.py | 25 +- .../test_converters.py | 13 +- .../testcrystal.py => tests/test_crystal.py | 20 +- .../test_globaloptim.py | 28 +- .../testindexing.py => tests/test_indexing.py | 97 +- .../tests/testlsq.py => tests/test_lsq.py | 23 +- .../testmolecule.py => tests/test_molecule.py | 105 +- .../test_powderpattern.py | 56 +- .../test_radiation.py | 21 +- .../test_refinableobj.py | 53 +- .../test_single_crystal_data.py | 6 +- .../test_spacegroup.py | 9 +- .../tests/testutils.py => tests/test_utils.py | 14 +- tests/test_version.py | 15 + .../tests => tests}/testdata/Ag_silver.cif | 0 .../tests => tests}/testdata/BaTiO3.cif | 6 +- .../testdata/C_graphite_hex.cif | 0 .../testdata/CaF2_fluorite.cif | 0 .../tests => tests}/testdata/CaTiO3.cif | 0 .../testdata/CdSe_cadmoselite.cif | 0 .../tests => tests}/testdata/CeO2.cif | 0 .../tests => tests}/testdata/NaCl.cif | 0 .../tests => tests}/testdata/Ni.cif | 0 .../tests => tests}/testdata/PbS_galena.cif | 0 .../tests => tests}/testdata/PbTe.cif | 0 .../tests => tests}/testdata/Si.cif | 0 .../tests => tests}/testdata/Si_setting2.cif | 0 .../testdata/SrTiO3_tausonite.cif | 0 .../tests => tests}/testdata/TiO2_anatase.cif | 0 .../tests => tests}/testdata/TiO2_rutile.cif | 0 .../testdata/ZnS_sphalerite.cif | 0 .../tests => tests}/testdata/ZnS_wurtzite.cif | 0 .../tests => tests}/testdata/Zn_zinc.cif | 0 .../tests => tests}/testdata/caffeine.cif | 0 .../tests => tests}/testdata/cime.fhz | 0 .../testdata/lidocainementhol.cif | 4 +- .../tests => tests}/testdata/ni.stru | 0 .../tests => tests}/testdata/paracetamol.cif | 2 +- .../testdata/paracetamol_monomethanolate.cif | 2 +- ...ol_monomethanolate_data_single_crystal.cif | 0 .../pyobjcrysttestutils.py => tests/utils.py | 43 +- 144 files changed, 3558 insertions(+), 8868 deletions(-) create mode 100644 .codecov.yml create mode 100644 .codespell/ignore_lines.txt create mode 100644 .codespell/ignore_words.txt create mode 100644 .flake8 create mode 100644 .github/ISSUE_TEMPLATE/bug_feature.md create mode 100644 .github/ISSUE_TEMPLATE/release_checklist.md create mode 100644 .github/PULL_REQUEST_TEMPLATE/pull_request_template.md create mode 100644 .github/workflows/build-wheel-release-upload.yml create mode 100644 .github/workflows/check-news-item.yml create mode 100644 .github/workflows/matrix-and-codecov-on-merge-to-main.yml create mode 100644 .github/workflows/publish-docs-on-release.yml create mode 100644 .github/workflows/tests-on-pr.yml create mode 100644 .isort.cfg create mode 100644 .pre-commit-config.yaml create mode 100644 .readthedocs.yaml create mode 100644 AUTHORS.rst delete mode 100644 AUTHORS.txt delete mode 100644 CHANGELOG.md create mode 100644 CHANGELOG.rst create mode 100644 CODE-OF-CONDUCT.rst create mode 100644 LICENSE-DANSE.rst create mode 100644 LICENSE.rst delete mode 100644 LICENSE.txt delete mode 100644 LICENSE_DANSE.txt delete mode 100644 conda-recipe/conda_build_config.yaml delete mode 100644 conda-recipe/meta.yaml delete mode 100644 conda-recipe/run_test.py delete mode 100644 conda-recipe/sconscript.local create mode 100644 cookiecutter.json delete mode 100644 doc/environment.yml delete mode 100644 doc/manual/source/api/modules.rst delete mode 100644 doc/manual/source/license.rst delete mode 100644 doc/manual/source/release.rst rename {doc/manual => docs}/Makefile (83%) create mode 100644 docs/make.bat create mode 100644 docs/source/_static/.placeholder rename {doc/manual => docs}/source/_static/css/custom.css (85%) create mode 100644 docs/source/api/pyobjcryst.example_package.rst create mode 100644 docs/source/api/pyobjcryst.rst rename {doc/manual => docs}/source/conf.py (56%) rename {doc/manual => docs}/source/examples/Quantitative-phase-analysis.nblink (100%) rename {doc/manual => docs}/source/examples/crystal_3d_widget.nblink (100%) rename {doc/manual => docs}/source/examples/index.rst (95%) rename {doc/manual => docs}/source/examples/structure-solution-multiprocessing.nblink (100%) rename {doc/manual => docs}/source/examples/structure-solution-powder-cimetidine.nblink (100%) rename {doc/manual => docs}/source/examples/structure-solution-powder-pbso4.nblink (100%) create mode 100644 docs/source/getting-started.rst create mode 100644 docs/source/img/scikit-package-logo-text.png rename {doc/manual => docs}/source/index.rst (50%) create mode 100644 docs/source/license.rst create mode 100644 docs/source/release.rst create mode 100644 docs/source/snippets/example-table.rst create mode 100644 news/TEMPLATE.rst rename requirements/{test.txt => tests.txt} (100%) create mode 100644 src/pyobjcryst/pyobjcryst_app.py delete mode 100644 src/pyobjcryst/tests/__init__.py delete mode 100644 src/pyobjcryst/tests/debug.py delete mode 100644 src/pyobjcryst/tests/run.py create mode 100644 tests/conftest.py rename src/pyobjcryst/tests/pyobjcrysttest.py => tests/pyobjcryst_test_mem.py (89%) rename src/pyobjcryst/tests/testcif.py => tests/test_cif.py (70%) rename src/pyobjcryst/tests/testclocks.py => tests/test_clocks.py (71%) rename src/pyobjcryst/tests/testconverters.py => tests/test_converters.py (84%) rename src/pyobjcryst/tests/testcrystal.py => tests/test_crystal.py (95%) rename src/pyobjcryst/tests/testglobaloptim.py => tests/test_globaloptim.py (86%) rename src/pyobjcryst/tests/testindexing.py => tests/test_indexing.py (52%) rename src/pyobjcryst/tests/testlsq.py => tests/test_lsq.py (89%) rename src/pyobjcryst/tests/testmolecule.py => tests/test_molecule.py (93%) rename src/pyobjcryst/tests/testpowderpattern.py => tests/test_powderpattern.py (92%) rename src/pyobjcryst/tests/testradiation.py => tests/test_radiation.py (72%) rename src/pyobjcryst/tests/testrefinableobj.py => tests/test_refinableobj.py (91%) rename {src/pyobjcryst/tests => tests}/test_single_crystal_data.py (89%) rename src/pyobjcryst/tests/testspacegroup.py => tests/test_spacegroup.py (95%) rename src/pyobjcryst/tests/testutils.py => tests/test_utils.py (83%) create mode 100644 tests/test_version.py rename {src/pyobjcryst/tests => tests}/testdata/Ag_silver.cif (100%) rename {src/pyobjcryst/tests => tests}/testdata/BaTiO3.cif (99%) rename {src/pyobjcryst/tests => tests}/testdata/C_graphite_hex.cif (100%) rename {src/pyobjcryst/tests => tests}/testdata/CaF2_fluorite.cif (100%) rename {src/pyobjcryst/tests => tests}/testdata/CaTiO3.cif (100%) rename {src/pyobjcryst/tests => tests}/testdata/CdSe_cadmoselite.cif (100%) rename {src/pyobjcryst/tests => tests}/testdata/CeO2.cif (100%) rename {src/pyobjcryst/tests => tests}/testdata/NaCl.cif (100%) rename {src/pyobjcryst/tests => tests}/testdata/Ni.cif (100%) rename {src/pyobjcryst/tests => tests}/testdata/PbS_galena.cif (100%) rename {src/pyobjcryst/tests => tests}/testdata/PbTe.cif (100%) rename {src/pyobjcryst/tests => tests}/testdata/Si.cif (100%) rename {src/pyobjcryst/tests => tests}/testdata/Si_setting2.cif (100%) rename {src/pyobjcryst/tests => tests}/testdata/SrTiO3_tausonite.cif (100%) rename {src/pyobjcryst/tests => tests}/testdata/TiO2_anatase.cif (100%) rename {src/pyobjcryst/tests => tests}/testdata/TiO2_rutile.cif (100%) rename {src/pyobjcryst/tests => tests}/testdata/ZnS_sphalerite.cif (100%) rename {src/pyobjcryst/tests => tests}/testdata/ZnS_wurtzite.cif (100%) rename {src/pyobjcryst/tests => tests}/testdata/Zn_zinc.cif (100%) rename {src/pyobjcryst/tests => tests}/testdata/caffeine.cif (100%) rename {src/pyobjcryst/tests => tests}/testdata/cime.fhz (100%) rename {src/pyobjcryst/tests => tests}/testdata/lidocainementhol.cif (99%) rename {src/pyobjcryst/tests => tests}/testdata/ni.stru (100%) rename {src/pyobjcryst/tests => tests}/testdata/paracetamol.cif (99%) rename {src/pyobjcryst/tests => tests}/testdata/paracetamol_monomethanolate.cif (99%) rename {src/pyobjcryst/tests => tests}/testdata/paracetamol_monomethanolate_data_single_crystal.cif (100%) rename src/pyobjcryst/tests/pyobjcrysttestutils.py => tests/utils.py (86%) diff --git a/.codecov.yml b/.codecov.yml new file mode 100644 index 0000000..4af5eb2 --- /dev/null +++ b/.codecov.yml @@ -0,0 +1,14 @@ +coverage: + status: + project: # more options at https://docs.codecov.com/docs/commit-status + default: + target: auto # use the coverage from the base commit, fail if coverage is lower + threshold: 0% # allow the coverage to drop by + +comment: + layout: " diff, flags, files" + behavior: default + require_changes: false + require_base: false # [true :: must have a base report to post] + require_head: false # [true :: must have a head report to post] + hide_project_coverage: false # [true :: only show coverage on the git diff aka patch coverage] diff --git a/.codespell/ignore_lines.txt b/.codespell/ignore_lines.txt new file mode 100644 index 0000000..07fa7c8 --- /dev/null +++ b/.codespell/ignore_lines.txt @@ -0,0 +1,2 @@ +;; Please include filenames and explanations for each ignored line. +;; See https://docs.openverse.org/meta/codespell.html for docs. diff --git a/.codespell/ignore_words.txt b/.codespell/ignore_words.txt new file mode 100644 index 0000000..00659c1 --- /dev/null +++ b/.codespell/ignore_words.txt @@ -0,0 +1,17 @@ +;; Please include explanations for each ignored word (lowercase). +;; See https://docs.openverse.org/meta/codespell.html for docs. + +;; ORTHORHOMBIC +ORTHOROMBIC + +;; src/pyobjcryst/tests/testmolecule.py +;; variable name, abbreviation for "a bottom" +abot + +;; src/extensions/diffractiondatasinglecrystal_ext.cpp:148 +;; abbreviation for "register" +regist + +;; src/pyobjcryst/crystal.py:548 +;; alabelstyle parameter +inFront diff --git a/.flake8 b/.flake8 new file mode 100644 index 0000000..6af9915 --- /dev/null +++ b/.flake8 @@ -0,0 +1,14 @@ +# As of now, flake8 does not natively support configuration via pyproject.toml +# https://github.com/microsoft/vscode-flake8/issues/135 +[flake8] +exclude = + .git, + __pycache__, + build, + dist, + doc/source/conf.py +# huge loops in crystal.py +max-line-length = 99 +# Ignore some style 'errors' produced while formatting by 'black' +# https://black.readthedocs.io/en/stable/guides/using_black_with_other_tools.html#labels-why-pycodestyle-warnings +extend-ignore = E203 diff --git a/.github/ISSUE_TEMPLATE/bug_feature.md b/.github/ISSUE_TEMPLATE/bug_feature.md new file mode 100644 index 0000000..b3454de --- /dev/null +++ b/.github/ISSUE_TEMPLATE/bug_feature.md @@ -0,0 +1,16 @@ +--- +name: Bug Report or Feature Request +about: Report a bug or suggest a new feature! +title: "" +labels: "" +assignees: "" +--- + +### Problem + + + +### Proposed solution diff --git a/.github/ISSUE_TEMPLATE/release_checklist.md b/.github/ISSUE_TEMPLATE/release_checklist.md new file mode 100644 index 0000000..6107962 --- /dev/null +++ b/.github/ISSUE_TEMPLATE/release_checklist.md @@ -0,0 +1,46 @@ +--- +name: Release +about: Checklist and communication channel for PyPI and GitHub release +title: "Ready for PyPI/GitHub release" +labels: "release" +assignees: "" +--- + +### PyPI/GitHub rc-release preparation checklist: + +- [ ] All PRs/issues attached to the release are merged. +- [ ] All the badges on the README are passing. +- [ ] License information is verified as correct. If you are unsure, please comment below. +- [ ] Locally rendered documentation contains all appropriate pages, including API references (check no modules are + missing), tutorials, and other human-written text is up-to-date with any changes in the code. +- [ ] Installation instructions in the README, documentation, and the website are updated. +- [ ] Successfully run any tutorial examples or do functional testing with the latest Python version. +- [ ] Grammar and writing quality are checked (no typos). +- [ ] Install `pip install build twine`, run `python -m build` and `twine check dist/*` to ensure that the package can be built and is correctly formatted for PyPI release. + +Please tag the maintainer (e.g., @username) in the comment here when you are ready for the PyPI/GitHub release. Include any additional comments necessary, such as version information and details about the pre-release here: + +### PyPI/GitHub full-release preparation checklist: + +- [ ] Create a new conda environment and install the rc from PyPI (`pip install ==??`) +- [ ] License information on PyPI is correct. +- [ ] Docs are deployed successfully to `https:///`. +- [ ] Successfully run all tests, tutorial examples or do functional testing. + +Please let the maintainer know that all checks are done and the package is ready for full release. + +### conda-forge release preparation checklist: + + + +- [ ] Ensure that the full release has appeared on PyPI successfully. +- [ ] New package dependencies listed in `conda.txt` and `test.txt` are added to `meta.yaml` in the feedstock. +- [ ] Close any open issues on the feedstock. Reach out to the maintainer if you have questions. +- [ ] Tag the maintainer for conda-forge release. + +### Post-release checklist + + + +- [ ] Run tutorial examples and conduct functional testing using the installation guide in the README. Attach screenshots/results as comments. +- [ ] Documentation (README, tutorials, API references, and websites) is deployed without broken links or missing figures. diff --git a/.github/PULL_REQUEST_TEMPLATE/pull_request_template.md b/.github/PULL_REQUEST_TEMPLATE/pull_request_template.md new file mode 100644 index 0000000..1099d86 --- /dev/null +++ b/.github/PULL_REQUEST_TEMPLATE/pull_request_template.md @@ -0,0 +1,15 @@ +### What problem does this PR address? + + + +### What should the reviewer(s) do? + + + + diff --git a/.github/workflows/build-wheel-release-upload.yml b/.github/workflows/build-wheel-release-upload.yml new file mode 100644 index 0000000..a290ab1 --- /dev/null +++ b/.github/workflows/build-wheel-release-upload.yml @@ -0,0 +1,18 @@ +name: Release (GitHub/PyPI) and Deploy Docs + +on: + workflow_dispatch: + push: + tags: + - "*" # Trigger on all tags initially, but tag and release privilege are verified in _build-wheel-release-upload.yml + +jobs: + release: + uses: scikit-package/release-scripts/.github/workflows/_build-wheel-release-upload.yml@v0 + with: + project: pyobjcryst + c_extension: true + maintainer_GITHUB_username: sbillinge + secrets: + PYPI_TOKEN: ${{ secrets.PYPI_TOKEN }} + PAT_TOKEN: ${{ secrets.PAT_TOKEN }} diff --git a/.github/workflows/check-news-item.yml b/.github/workflows/check-news-item.yml new file mode 100644 index 0000000..b9b6309 --- /dev/null +++ b/.github/workflows/check-news-item.yml @@ -0,0 +1,12 @@ +name: Check for News + +on: + pull_request_target: + branches: + - main + +jobs: + check-news-item: + uses: scikit-package/release-scripts/.github/workflows/_check-news-item.yml@v0 + with: + project: pyobjcryst diff --git a/.github/workflows/matrix-and-codecov-on-merge-to-main.yml b/.github/workflows/matrix-and-codecov-on-merge-to-main.yml new file mode 100644 index 0000000..5babfcc --- /dev/null +++ b/.github/workflows/matrix-and-codecov-on-merge-to-main.yml @@ -0,0 +1,21 @@ +name: CI + +on: + push: + branches: + - main + release: + types: + - prereleased + - published + workflow_dispatch: + +jobs: + matrix-coverage: + uses: scikit-package/release-scripts/.github/workflows/_matrix-and-codecov-on-merge-to-main.yml@v0 + with: + project: pyobjcryst + c_extension: true + headless: false + secrets: + CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }} diff --git a/.github/workflows/publish-docs-on-release.yml b/.github/workflows/publish-docs-on-release.yml new file mode 100644 index 0000000..23e42c1 --- /dev/null +++ b/.github/workflows/publish-docs-on-release.yml @@ -0,0 +1,12 @@ +name: Deploy Documentation on Release + +on: + workflow_dispatch: + +jobs: + docs: + uses: scikit-package/release-scripts/.github/workflows/_publish-docs-on-release.yml@v0 + with: + project: pyobjcryst + c_extension: true + headless: false diff --git a/.github/workflows/tests-on-pr.yml b/.github/workflows/tests-on-pr.yml new file mode 100644 index 0000000..6293743 --- /dev/null +++ b/.github/workflows/tests-on-pr.yml @@ -0,0 +1,15 @@ +name: Tests on PR + +on: + pull_request: + workflow_dispatch: + +jobs: + tests-on-pr: + uses: scikit-package/release-scripts/.github/workflows/_tests-on-pr.yml@v0 + with: + project: pyobjcryst + c_extension: true + headless: false + secrets: + CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }} diff --git a/.isort.cfg b/.isort.cfg new file mode 100644 index 0000000..86f162b --- /dev/null +++ b/.isort.cfg @@ -0,0 +1,5 @@ +[settings] +# Keep import statement below line_length character limit +line_length = 79 +multi_line_output = 3 +include_trailing_comma = True diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml new file mode 100644 index 0000000..0e4a84d --- /dev/null +++ b/.pre-commit-config.yaml @@ -0,0 +1,66 @@ +default_language_version: + python: python3 +ci: + autofix_commit_msg: | + [pre-commit.ci] auto fixes from pre-commit hooks + autofix_prs: true + autoupdate_branch: "pre-commit-autoupdate" + autoupdate_commit_msg: "[pre-commit.ci] pre-commit autoupdate" + autoupdate_schedule: monthly + skip: [no-commit-to-branch] + submodules: false +repos: + - repo: https://github.com/pre-commit/pre-commit-hooks + rev: v4.6.0 + hooks: + - id: check-yaml + - id: end-of-file-fixer + - id: trailing-whitespace + - id: check-case-conflict + - id: check-merge-conflict + - id: check-toml + - id: check-added-large-files + - repo: https://github.com/psf/black + rev: 24.4.2 + hooks: + - id: black + - repo: https://github.com/pycqa/flake8 + rev: 7.0.0 + hooks: + - id: flake8 + - repo: https://github.com/pycqa/isort + rev: 5.13.2 + hooks: + - id: isort + args: ["--profile", "black"] + - repo: https://github.com/kynan/nbstripout + rev: 0.7.1 + hooks: + - id: nbstripout + - repo: https://github.com/pre-commit/pre-commit-hooks + rev: v4.4.0 + hooks: + - id: no-commit-to-branch + name: Prevent Commit to Main Branch + args: ["--branch", "main"] + stages: [pre-commit] + - repo: https://github.com/codespell-project/codespell + rev: v2.3.0 + hooks: + - id: codespell + additional_dependencies: + - tomli + # prettier - multi formatter for .json, .yml, and .md files + - repo: https://github.com/pre-commit/mirrors-prettier + rev: f12edd9c7be1c20cfa42420fd0e6df71e42b51ea # frozen: v4.0.0-alpha.8 + hooks: + - id: prettier + additional_dependencies: + - "prettier@^3.2.4" + # docformatter - PEP 257 compliant docstring formatter + - repo: https://github.com/s-weigand/docformatter + rev: 5757c5190d95e5449f102ace83df92e7d3b06c6c + hooks: + - id: docformatter + additional_dependencies: [tomli] + args: [--in-place, --config, ./pyproject.toml] diff --git a/.readthedocs.yaml b/.readthedocs.yaml new file mode 100644 index 0000000..aaa8889 --- /dev/null +++ b/.readthedocs.yaml @@ -0,0 +1,13 @@ +version: 2 + +build: + os: "ubuntu-22.04" + tools: + python: "latest" + +python: + install: + - requirements: requirements/docs.txt + +sphinx: + configuration: docs/source/conf.py diff --git a/AUTHORS.rst b/AUTHORS.rst new file mode 100644 index 0000000..8f1a195 --- /dev/null +++ b/AUTHORS.rst @@ -0,0 +1,13 @@ +Authors +======= + +Christopher L. Farrow, +Pavol Juhas, +Simon J.L. Billinge, +Vincent Favre-Nicolin + +Contributors +------------ + +For a list of contributors, visit +https://github.com/diffpy/pyobjcryst/graphs/contributors diff --git a/AUTHORS.txt b/AUTHORS.txt deleted file mode 100644 index 448d0a0..0000000 --- a/AUTHORS.txt +++ /dev/null @@ -1,10 +0,0 @@ -Authors: - -Christopher L. Farrow -Pavol Juhas -Simon J.L. Billinge -Vincent Favre-Nicolin - -Contributors: - -https://github.com/diffpy/pyobjcryst/graphs/contributors diff --git a/CHANGELOG.md b/CHANGELOG.md deleted file mode 100644 index d2e1082..0000000 --- a/CHANGELOG.md +++ /dev/null @@ -1,169 +0,0 @@ -# Release notes - -## Version 2024.X.X - -### Changes - -### Fixes: - -- correct powder pattern plotting with a non-empty name - -## Version 2024.2.1 - -### Changes - -- PowderPattern: - - fix re-using a matplotlib figure when plotting - - add 'figure' property - -## Version 2024.2 - -### Changes - -- DiffractionDataSingleCrystal: add SetHklIobs, SetIobs, SetSigma, GetSigma, - GetChi2, FitScaleFactorForRw and FitScaleFactorForR - (https://github.com/diffpy/pyobjcryst/issues/42) -- Add a single crystal data notebook example -- Online documentation notebooks now include the plots - (https://pyobjcryst.readthedocs.io/en/latest/examples) - -### Fixes - -- From libobjcryst: update the ScatteringComponentList when a Scatterer is removed - from a Crystal (https://github.com/diffpy/pyobjcryst/issues/41) - -## Version 2024.1 - -### Changes - -- Add python access to MolZAtom, for Molecule.AsZMatrix() - -## Version 2.2.6 - -### Changes - -- Support for windows and python>=3.8 -- Added a zoom limit for 3D crystal views - -### Fixes - -- Correct error preventing pyobjcryst import for windows and python>=3.8 - (https://github.com/diffpy/pyobjcryst/issues/33) -- Fix for matplotlib >=3.7.0 when removing hkl labels - -## Version 2.2.5 - -### Changes - -- Raise an exception if alpha, beta or gamma are not within ]0;pi[ when - changing lattice angles -- Add UnitCell.ChangeSpaceGroup() - -### Fixes - -- Avoid duplication of plots when using ipympl (aka %matplotlib widget) -- Correct powder pattern tests to avoid warnings - -### Deprecated - -- loadCrystal - use create_crystal_from_cif() instead - -## Version 2.2.4 - -### Changes - -- the list of HKL reflections will now be automatically be re-generated - for a PowderPatternDiffraction when the Crystal's spacegroup changes, - or the lattice parameters are modified by more than 0.5% - -### Fixes - -- Fixed the powder pattern indexing test - -## Version 2.2.3 - -### Added - -- Support for windows install (works with python 3.7, and - also -only with pypy- 3.8 and 3.9) -- Native support for Apple arm64 (M1, M2) processors -- Fourier maps calculation -- Add gDiffractionDataSingleCrystalRegistry to globals - -## Version 2.2.2 - -### Changes - -- Add correct wrapping for C++-instantiated objects available through global - registries, e.g. when loading an XML file. The objects are decorated with - the python functions when accessed through the global registries GetObj() -- Moved global object registries to pyobjcryst.globals -- Update documentation - -### Fixed - -- Fix access to PRISM_TETRAGONAL_DICAP, PRISM_TRIGONAL, - ICOSAHEDRON and TRIANGLE_PLANE. -- Fix powder pattern plot issues (NaN and update of hkl text with recent - matplotlib versions) - -## Version 2.2.1 -- 2021-11-28 - -- Add quantitative phase analysis with PowderPattern.qpa(), including - an example notebook using the QPA Round-Robin data. -- Correct import of urllib.request.urllopen() when loading CIF or z-matrix - files from http urls. -- Fix blank line javascript output when updating the Crystal 3D view -- Add RefinableObj.xml() to directly get the XMLOutput() as a string -- Add example notebooks to the sphinx-generated html documentation -- Fix issue when using Crystal.XMLInput() for a non-empty structure. - Existing scattering power will be re-used when possible, and otherwise - not deleted anymore (which could lead to crashes). - -## Version 2.2.0 -- 2021-06-08 - -Notable differences from version 2.1.0. - -- Add access to Radiation class & functions to change RadiationType, - wavelength in PowderPattern and ScatteringData (and hence - DiffractionDataSingleCrystal) classes. - -- Fix the custodian_ward when creating a PowderPatternDiffraction: - PowderPatternDiffraction must persist while PowderPattern exists, and - Crystal must persist while PowderPatternDiffraction exists. - -- Add 3D Crystal viewer `pyobjcryst.crystal.Crystal.widget_3d`. - -## Version 2.1.0 -- 2019-03-11 - -Notable differences from version 2.0.1. - -### Added - -- Support for Python 3.7. -- Validation of compiler options from `python-config`. -- Make scons scripts compatible with Python 3 and Python 2. -- Support np.array arguments for `SetPowderPatternX`, `SetPowderPatternObs`. -- Declare compatible version requirements for client Anaconda packages. -- Facility for silencing spurious console output from libobjcryst. - -### Changed - -- Build Anaconda package with Anaconda C++ compiler. -- Update to libobjcryst 2017.2.x. - -### Deprecated - -- Variable `__gitsha__` in the `version` module which was renamed - to `__git_commit__`. - -### Removed - -- Support for Python 3.4. - -### Fixed - -- Ambiguous use of boost::python classes and functions. -- Name suffix resolution of `boost_python` shared library. -- `SetPowderPatternX` crash for zero-length argument. -- Incorrectly doubled return value from `GetInversionCenter`. diff --git a/CHANGELOG.rst b/CHANGELOG.rst new file mode 100644 index 0000000..cadd06b --- /dev/null +++ b/CHANGELOG.rst @@ -0,0 +1,178 @@ +============= +Release notes +============= + +.. current developments + +Version 2024.X.X +---------------- + +Changes +~~~~~~~ + +Fixes +~~~~~ + +- Correct powder pattern plotting with a non-empty name + +Version 2024.2.1 +---------------- + +Changes +~~~~~~~ + +- **PowderPattern**: + - Fix re-using a matplotlib figure when plotting + - Add ``figure`` property + +Version 2024.2 +-------------- + +Changes +~~~~~~~ + +- **DiffractionDataSingleCrystal**: add ``SetHklIobs``, ``SetIobs``, ``SetSigma``, ``GetSigma``, ``GetChi2``, ``FitScaleFactorForRw`` and ``FitScaleFactorForR`` (`issue #42 `_) +- Add a single crystal data notebook example +- Online documentation notebooks now include the plots ``_ + +Fixes +~~~~~ + +- From libobjcryst: update the ScatteringComponentList when a Scatterer is removed from a Crystal (`issue #41 `_) + +Version 2024.1 +-------------- + +Changes +~~~~~~~ + +- Add python access to MolZAtom, for ``Molecule.AsZMatrix()`` + +Version 2.2.6 +-------------- + +Changes +~~~~~~~ + +- Support for Windows and Python>=3.8 +- Added a zoom limit for 3D crystal views + +Fixes +~~~~~ + +- Correct error preventing pyobjcryst import for Windows and Python>=3.8 (`issue #33 `_) +- Fix for matplotlib >=3.7.0 when removing hkl labels + +Version 2.2.5 +-------------- + +Changes +~~~~~~~ + +- Raise an exception if ``alpha``, ``beta`` or ``gamma`` are not within ``]0;pi[`` when changing lattice angles +- Add ``UnitCell.ChangeSpaceGroup()`` + +Fixes +~~~~~ + +- Avoid duplication of plots when using ipympl (aka ``%matplotlib widget``) +- Correct powder pattern tests to avoid warnings + +Deprecated +~~~~~~~~~~ + +- ``loadCrystal`` – use ``create_crystal_from_cif()`` instead + +Version 2.2.4 +-------------- + +Changes +~~~~~~~ + +- The list of HKL reflections will now be automatically re-generated for a ``PowderPatternDiffraction`` when the Crystal's spacegroup changes, or the lattice parameters are modified by more than 0.5% + +Fixes +~~~~~ + +- Fixed the powder pattern indexing test + +Version 2.2.3 +-------------- + +Added +~~~~~ + +- Support for Windows install (works with Python 3.7, and with PyPy 3.8 and 3.9) +- Native support for Apple arm64 (M1, M2) processors +- Fourier maps calculation +- Add ``gDiffractionDataSingleCrystalRegistry`` to globals + +Version 2.2.2 +-------------- + +Changes +~~~~~~~ + +- Add correct wrapping for C++-instantiated objects available through global registries, e.g. when loading an XML file. The objects are decorated with the python functions when accessed through the global registries ``GetObj()`` +- Moved global object registries to ``pyobjcryst.globals`` +- Update documentation + +Fixed +~~~~~ + +- Fix access to ``PRISM_TETRAGONAL_DICAP``, ``PRISM_TRIGONAL``, ``ICOSAHEDRON`` and ``TRIANGLE_PLANE`` +- Fix powder pattern plot issues (NaN and update of hkl text with recent matplotlib versions) + +Version 2.2.1 -- 2021-11-28 +---------------------------- + +- Add quantitative phase analysis with ``PowderPattern.qpa()``, including an example notebook using the QPA Round-Robin data +- Correct import of ``urllib.request.urllopen()`` when loading CIF or z-matrix files from HTTP URLs +- Fix blank line javascript output when updating the Crystal 3D view +- Add ``RefinableObj.xml()`` to directly get the XMLOutput as a string +- Add example notebooks to the sphinx-generated html documentation +- Fix issue when using ``Crystal.XMLInput()`` for a non-empty structure. Existing scattering power will be re-used when possible, and otherwise not deleted anymore (which could lead to crashes) + +Version 2.2.0 -- 2021-06-08 +---------------------------- + +- Add access to ``Radiation`` class & functions to change RadiationType, wavelength in ``PowderPattern`` and ``ScatteringData`` (and hence ``DiffractionDataSingleCrystal``) classes +- Fix the custodian_ward when creating a ``PowderPatternDiffraction``: ``PowderPatternDiffraction`` must persist while ``PowderPattern`` exists, and Crystal must persist while ``PowderPatternDiffraction`` exists +- Add 3D Crystal viewer ``pyobjcryst.crystal.Crystal.widget_3d`` + +Version 2.1.0 -- 2019-03-11 +---------------------------- + +Added +~~~~~ + +- Support for Python 3.7 +- Validation of compiler options from ``python-config`` +- Make scons scripts compatible with Python 3 and Python 2 +- Support ``np.array`` arguments for ``SetPowderPatternX``, ``SetPowderPatternObs`` +- Declare compatible version requirements for client Anaconda packages +- Facility for silencing spurious console output from libobjcryst + +Changed +~~~~~~~ + +- Build Anaconda package with Anaconda C++ compiler +- Update to libobjcryst 2017.2.x + +Deprecated +~~~~~~~~~~ + +- Variable ``__gitsha__`` in the ``version`` module, renamed to ``__git_commit__`` + +Removed +~~~~~~~ + +- Support for Python 3.4 + +Fixed +~~~~~ + +- Ambiguous use of boost::python classes and functions +- Name suffix resolution of ``boost_python`` shared library +- ``SetPowderPatternX`` crash for zero-length argument +- Incorrectly doubled return value from ``GetInversionCenter`` diff --git a/CODE-OF-CONDUCT.rst b/CODE-OF-CONDUCT.rst new file mode 100644 index 0000000..e8199ca --- /dev/null +++ b/CODE-OF-CONDUCT.rst @@ -0,0 +1,133 @@ +===================================== + Contributor Covenant Code of Conduct +===================================== + +Our Pledge +---------- + +We as members, contributors, and leaders pledge to make participation in our +community a harassment-free experience for everyone, regardless of age, body +size, visible or invisible disability, ethnicity, sex characteristics, gender +identity and expression, level of experience, education, socioeconomic status, +nationality, personal appearance, race, caste, color, religion, or sexual +identity and orientation. + +We pledge to act and interact in ways that contribute to an open, welcoming, +diverse, inclusive, and healthy community. + +Our Standards +------------- + +Examples of behavior that contributes to a positive environment for our +community include: + +* Demonstrating empathy and kindness toward other people +* Being respectful of differing opinions, viewpoints, and experiences +* Giving and gracefully accepting constructive feedback +* Accepting responsibility and apologizing to those affected by our mistakes, + and learning from the experience +* Focusing on what is best not just for us as individuals, but for the overall + community + +Examples of unacceptable behavior include: + +* The use of sexualized language or imagery, and sexual attention or advances of + any kind +* Trolling, insulting or derogatory comments, and personal or political attacks +* Public or private harassment +* Publishing others' private information, such as a physical or email address, + without their explicit permission +* Other conduct which could reasonably be considered inappropriate in a + professional setting + +Enforcement Responsibilities +---------------------------- + +Community leaders are responsible for clarifying and enforcing our standards of +acceptable behavior and will take appropriate and fair corrective action in +response to any behavior that they deem inappropriate, threatening, offensive, +or harmful. + +Community leaders have the right and responsibility to remove, edit, or reject +comments, commits, code, wiki edits, issues, and other contributions that are +not aligned to this Code of Conduct, and will communicate reasons for moderation +decisions when appropriate. + +Scope +----- + +This Code of Conduct applies within all community spaces, and also applies when +an individual is officially representing the community in public spaces. +Examples of representing our community include using an official email address, +posting via an official social media account, or acting as an appointed +representative at an online or offline event. + +Enforcement +----------- + +Instances of abusive, harassing, or otherwise unacceptable behavior may be +reported to the community leaders responsible for enforcement at +sb2896@columbia.edu. All complaints will be reviewed and investigated promptly and fairly. + +All community leaders are obligated to respect the privacy and security of the +reporter of any incident. + +Enforcement Guidelines +---------------------- + +Community leaders will follow these Community Impact Guidelines in determining +the consequences for any action they deem in violation of this Code of Conduct: + +1. Correction +**************** + +**Community Impact**: Use of inappropriate language or other behavior deemed +unprofessional or unwelcome in the community. + +**Consequence**: A private, written warning from community leaders, providing +clarity around the nature of the violation and an explanation of why the +behavior was inappropriate. A public apology may be requested. + +2. Warning +************* + +**Community Impact**: A violation through a single incident or series of +actions. + +**Consequence**: A warning with consequences for continued behavior. No +interaction with the people involved, including unsolicited interaction with +those enforcing the Code of Conduct, for a specified period of time. This +includes avoiding interactions in community spaces as well as external channels +like social media. Violating these terms may lead to a temporary or permanent +ban. + +3. Temporary Ban +****************** + +**Community Impact**: A serious violation of community standards, including +sustained inappropriate behavior. + +**Consequence**: A temporary ban from any sort of interaction or public +communication with the community for a specified period of time. No public or +private interaction with the people involved, including unsolicited interaction +with those enforcing the Code of Conduct, is allowed during this period. +Violating these terms may lead to a permanent ban. + +4. Permanent Ban +****************** + +**Community Impact**: Demonstrating a pattern of violation of community +standards, including sustained inappropriate behavior, harassment of an +individual, or aggression toward or disparagement of classes of individuals. + +**Consequence**: A permanent ban from any sort of public interaction within the +community. + +Attribution +----------- + +This Code of Conduct is adapted from the `Contributor Covenant `_. + +Community Impact Guidelines were inspired by `Mozilla's code of conduct enforcement ladder `_. + +For answers to common questions about this code of conduct, see the `FAQ `_. `Translations are available `_ diff --git a/LICENSE-DANSE.rst b/LICENSE-DANSE.rst new file mode 100644 index 0000000..b0e796c --- /dev/null +++ b/LICENSE-DANSE.rst @@ -0,0 +1,45 @@ +LICENSE +======= + +This program is part of the DiffPy and DANSE open-source projects +and is available subject to the conditions and terms laid out below. + +Copyright (c) 2009-2012, The Trustees of Columbia University in +the City of New York. All rights reserved. + +For more information please visit the project web-page: + + http://www.diffpy.org/ + +or email Prof. Simon Billinge at sb2896@columbia.edu + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions +are met: + +- Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + +- Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + +- Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY COPYRIGHT HOLDER "AS IS". COPYRIGHT HOLDER +EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES AND CONDITIONS, EITHER +EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY, TITLE, FITNESS, ADEQUACY OR SUITABILITY +FOR A PARTICULAR PURPOSE, AND ANY WARRANTIES OF FREEDOM FROM +INFRINGEMENT OF ANY DOMESTIC OR FOREIGN PATENT, COPYRIGHTS, TRADE +SECRETS OR OTHER PROPRIETARY RIGHTS OF ANY PARTY. IN NO EVENT SHALL +COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, +INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT +NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF +USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON +ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF +THIS SOFTWARE OR RELATING TO THIS AGREEMENT, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. diff --git a/LICENSE.rst b/LICENSE.rst new file mode 100644 index 0000000..42870e9 --- /dev/null +++ b/LICENSE.rst @@ -0,0 +1,141 @@ +OPEN SOURCE LICENSE AGREEMENT +============================= + +Copyright (c) 2009-2011, University of Tennessee + +Copyright (c) 1989, 1991 Free Software Foundation, Inc. + +Copyright (c) 2006, The Regents of the University of California through Lawrence Berkeley National Laboratory + +Copyright (c) 2014, Australian Synchrotron Research Program Inc., ("ASRP") + +Copyright (c) 2006-2007, Board of Trustees of Michigan State University + +Copyright (c) 2008-2012, The Trustees of Columbia University in the City of New York + +Copyright (c) 2014-2019, Brookhaven Science Associates, Brookhaven National Laboratory + +Copyright (c) 2024-2025, The Trustees of Columbia University in the City of New York. +All rights reserved. + +The "DiffPy-CMI" is distributed subject to the following license conditions: + +.. code-block:: text + + SOFTWARE LICENSE AGREEMENT + + Software: DiffPy-CMI + + + (1) The "Software", below, refers to the aforementioned DiffPy-CMI (in either + source code, or binary form and accompanying documentation). + + Part of the software was derived from the DANSE, ObjCryst++ (with permission), + PyCifRW, Python periodictable, CCTBX, and SasView open source projects, of + which the original Copyrights are contained in each individual file. + + Each licensee is addressed as "you" or "Licensee." + + + (2) The copyright holders shown above and their third-party Licensors hereby + grant licensee a royalty-free nonexclusive license, subject to the limitations + stated herein and U.S. Government license rights. + + + (3) You may modify and make a copy or copies of the software for use within + your organization, if you meet the following conditions: + + (a) Copies in source code must include the copyright notice and this + software license agreement. + + (b) Copies in binary form must include the copyright notice and this + Software License Agreement in the documentation and/or other materials + provided with the copy. + + + (4) You may modify a copy or copies of the Software or any portion of it, thus + forming a work based on the Software, and distribute copies of such work + outside your organization, if you meet all of the following conditions: + + (a) Copies in source code must include the copyright notice and this + Software License Agreement; + + (b) Copies in binary form must include the copyright notice and this + Software License Agreement in the documentation and/or other materials + provided with the copy; + + (c) Modified copies and works based on the Software must carry prominent + notices stating that you changed specified portions of the Software. + + (d) Neither the name of Brookhaven Science Associates or Brookhaven + National Laboratory nor the names of its contributors may be used to + endorse or promote products derived from this software without specific + written permission. + + + (5) Portions of the Software resulted from work developed under a U.S. + Government contract and are subject to the following license: + The Government is granted for itself and others acting on its behalf a + paid-up, nonexclusive, irrevocable worldwide license in this computer software + to reproduce, prepare derivative works, and perform publicly and display + publicly. + + + (6) WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" WITHOUT + WARRANTY OF ANY KIND. THE COPYRIGHT HOLDERS, THEIR THIRD PARTY + LICENSORS, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND + THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR IMPLIED, INCLUDING + BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A + PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL + LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF + THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF THE SOFTWARE WOULD NOT INFRINGE + PRIVATELY OWNED RIGHTS, (4) DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION + UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL BE CORRECTED. + + + (7) LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT HOLDERS, THEIR + THIRD PARTY LICENSORS, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF + ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, INCIDENTAL, + CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF ANY KIND OR NATURE, INCLUDING + BUT NOT LIMITED TO LOSS OF PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, + WHETHER SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT (INCLUDING + NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, EVEN IF ANY OF SAID PARTIES HAS + BEEN WARNED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGES. + + +Brookhaven National Laboratory Notice +===================================== + +Acknowledgment of sponsorship +----------------------------- + +This software was produced by the Brookhaven National Laboratory, under +Contract DE-AC02-98CH10886 with the Department of Energy. + + +Government disclaimer of liability +---------------------------------- + +Neither the United States nor the United States Department of Energy, nor +any of their employees, makes any warranty, express or implied, or assumes +any legal liability or responsibility for the accuracy, completeness, or +usefulness of any data, apparatus, product, or process disclosed, or +represents that its use would not infringe privately owned rights. + + +Brookhaven disclaimer of liability +---------------------------------- + +Brookhaven National Laboratory makes no representations or warranties, +express or implied, nor assumes any liability for the use of this software. + + +Maintenance of notice +--------------------- + +In the interest of clarity regarding the origin and status of this +software, Brookhaven National Laboratory requests that any recipient of it +maintain this notice affixed to any distribution by the recipient that +contains a copy or derivative of this software. + +END OF LICENSE diff --git a/LICENSE.txt b/LICENSE.txt deleted file mode 100644 index f6d92af..0000000 --- a/LICENSE.txt +++ /dev/null @@ -1,137 +0,0 @@ -OPEN SOURCE LICENSE AGREEMENT -============================= - -Copyright (c) 2009-2011, University of Tennessee -Copyright (c) 1989, 1991 Free Software Foundation, Inc. -Copyright (c) 2006, The Regents of the University of California through - Lawrence Berkeley National Laboratory -Copyright (c) 2014, Australian Synchrotron Research Program Inc., ("ASRP") -Copyright (c) 2006-2007, Board of Trustees of Michigan State University -Copyright (c) 2008-2012, The Trustees of Columbia University in the City - of New York - -Copyright (c) 2014-2019, Brookhaven Science Associates, Brookhaven National - Laboratory - - -The "DiffPy-CMI" is distributed subject to the following license conditions: - - -SOFTWARE LICENSE AGREEMENT - - Software: DiffPy-CMI - - -(1) The "Software", below, refers to the aforementioned DiffPy-CMI (in either -source code, or binary form and accompanying documentation). - -Part of the software was derived from the DANSE, ObjCryst++ (with permission), -PyCifRW, Python periodictable, CCTBX, and SasView open source projects, of -which the original Copyrights are contained in each individual file. - -Each licensee is addressed as "you" or "Licensee." - - -(2) The copyright holders shown above and their third-party Licensors hereby -grant licensee a royalty-free nonexclusive license, subject to the limitations -stated herein and U.S. Government license rights. - - -(3) You may modify and make a copy or copies of the software for use within -your organization, if you meet the following conditions: - - (a) Copies in source code must include the copyright notice and this - software license agreement. - - (b) Copies in binary form must include the copyright notice and this - Software License Agreement in the documentation and/or other materials - provided with the copy. - - -(4) You may modify a copy or copies of the Software or any portion of it, thus -forming a work based on the Software, and distribute copies of such work -outside your organization, if you meet all of the following conditions: - - (a) Copies in source code must include the copyright notice and this - Software License Agreement; - - (b) Copies in binary form must include the copyright notice and this - Software License Agreement in the documentation and/or other materials - provided with the copy; - - (c) Modified copies and works based on the Software must carry prominent - notices stating that you changed specified portions of the Software. - - (d) Neither the name of Brookhaven Science Associates or Brookhaven - National Laboratory nor the names of its contributors may be used to - endorse or promote products derived from this software without specific - written permission. - - -(5) Portions of the Software resulted from work developed under a U.S. -Government contract and are subject to the following license: -The Government is granted for itself and others acting on its behalf a -paid-up, nonexclusive, irrevocable worldwide license in this computer software -to reproduce, prepare derivative works, and perform publicly and display -publicly. - - -(6) WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" WITHOUT -WARRANTY OF ANY KIND. THE COPYRIGHT HOLDERS, THEIR THIRD PARTY -LICENSORS, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND -THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR IMPLIED, INCLUDING -BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A -PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL -LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF -THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF THE SOFTWARE WOULD NOT INFRINGE -PRIVATELY OWNED RIGHTS, (4) DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION -UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL BE CORRECTED. - - -(7) LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT HOLDERS, THEIR -THIRD PARTY LICENSORS, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF -ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, INCIDENTAL, -CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF ANY KIND OR NATURE, INCLUDING -BUT NOT LIMITED TO LOSS OF PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, -WHETHER SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT (INCLUDING -NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, EVEN IF ANY OF SAID PARTIES HAS -BEEN WARNED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGES. - - -Brookhaven National Laboratory Notice -===================================== - -Acknowledgment of sponsorship ------------------------------ - -This software was produced by the Brookhaven National Laboratory, under -Contract DE-AC02-98CH10886 with the Department of Energy. - - -Government disclaimer of liability ----------------------------------- - -Neither the United States nor the United States Department of Energy, nor -any of their employees, makes any warranty, express or implied, or assumes -any legal liability or responsibility for the accuracy, completeness, or -usefulness of any data, apparatus, product, or process disclosed, or -represents that its use would not infringe privately owned rights. - - -Brookhaven disclaimer of liability ----------------------------------- - -Brookhaven National Laboratory makes no representations or warranties, -express or implied, nor assumes any liability for the use of this software. - - -Maintenance of notice ---------------------- - -In the interest of clarity regarding the origin and status of this -software, Brookhaven National Laboratory requests that any recipient of it -maintain this notice affixed to any distribution by the recipient that -contains a copy or derivative of this software. - - -END OF LICENSE diff --git a/LICENSE_DANSE.txt b/LICENSE_DANSE.txt deleted file mode 100644 index 8824c41..0000000 --- a/LICENSE_DANSE.txt +++ /dev/null @@ -1,33 +0,0 @@ -This program is part of the DiffPy and DANSE open-source projects at Columbia -University and is available subject to the conditions and terms laid out below. - -Copyright (c) 2009-2012, The Trustees of Columbia University in -the City of New York. All rights reserved. - -For more information please visit the diffpy web-page at http://diffpy.org or -email Prof. Simon Billinge at sb2896@columbia.edu. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - * Redistributions of source code must retain the above copyright notice, this - list of conditions and the following disclaimer. - - * Redistributions in binary form must reproduce the above copyright notice, - this list of conditions and the following disclaimer in the documentation - and/or other materials provided with the distribution. - - * Neither the names of COLUMBIA UNIVERSITY, MICHIGAN STATE UNIVERSITY nor the - names of their contributors may be used to endorse or promote products - derived from this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND -ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED -WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE -FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL -DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR -SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER -CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, -OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/MANIFEST.in b/MANIFEST.in index 22066d1..d26fd26 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -1,16 +1,13 @@ -recursive-include src * -include SConstruct -include AUTHORS.txt LICENSE*.txt README.rst -recursive-exclude src *.pyc *.so -global-exclude .gitattributes .gitignore .gitarchive.cfg -global-exclude .DS_Store +graft src +graft tests +graft requirements -# Avoid user content in setup.cfg to make distribution reproducible. -exclude setup.cfg +include AUTHORS.rst LICENSE*.rst README.rst -# Exclude git-tracked files spuriously added by setuptools_scm -exclude .coveragerc -exclude .travis* -prune conda-recipe -prune devutils -prune doc +# Exclude all bytecode files and __pycache__ directories +global-exclude *.py[cod] # Exclude all .pyc, .pyo, and .pyd files. +global-exclude *.so # Exclude shared object files. +global-exclude .DS_Store # Exclude Mac filesystem artifacts. +global-exclude __pycache__ # Exclude Python cache directories. +global-exclude .git* # Exclude git files and directories. +global-exclude .idea # Exclude PyCharm project settings. diff --git a/README.rst b/README.rst index 8f49674..221ada4 100644 --- a/README.rst +++ b/README.rst @@ -1,113 +1,93 @@ -.. image:: https://travis-ci.org/diffpy/pyobjcryst.svg?branch=master - :target: https://travis-ci.org/diffpy/pyobjcryst +|Icon| |title|_ +=============== -.. image:: https://codecov.io/gh/diffpy/pyobjcryst/branch/master/graph/badge.svg - :target: https://codecov.io/gh/diffpy/pyobjcryst +.. |title| replace:: pyobjcryst +.. _title: https://diffpy.github.io/pyobjcryst -pyobjcryst -========== +.. |Icon| image:: https://avatars.githubusercontent.com/diffpy + :target: https://diffpy.github.io/pyobjcryst + :height: 100px -Python bindings to ObjCryst++, the Object-Oriented Crystallographic Library. - -The documentation for this release of pyobjcryst can be found on-line at -https://pyobjcryst.readthedocs.io/ +|PyPI| |Forge| |PythonVersion| |PR| +|CI| |Codecov| |Black| |Tracking| -INSTALLATION ------------- -pyobjcryst is available for Python 3.7 (deprecated), and 3.8 to 3.11. - -Using conda (recommended) -^^^^^^^^^^^^^^^^^^^^^^^^^ +.. |Black| image:: https://img.shields.io/badge/code_style-black-black + :target: https://github.com/psf/black -We recommend to use **conda** as it allows to install all software dependencies -together with pyobjcryst, without too much compiling hastle. +.. |CI| image:: https://github.com/diffpy/pyobjcryst/actions/workflows/matrix-and-codecov-on-merge-to-main.yml/badge.svg + :target: https://github.com/diffpy/pyobjcryst/actions/workflows/matrix-and-codecov-on-merge-to-main.yml -Two distributions can be used: +.. |Codecov| image:: https://codecov.io/gh/diffpy/pyobjcryst/branch/main/graph/badge.svg + :target: https://codecov.io/gh/diffpy/pyobjcryst -* `Anaconda Python `_, the historical - main conda-based distribution -* `Mamba-forge `_ , which - has the advantage off providing **mamba** in addition to conda, and is - *much faster* when resolving dependencies during installation. It also - uses by default the conda-forge repository, which is what almost all - users would want. +.. |Forge| image:: https://img.shields.io/conda/vn/conda-forge/pyobjcryst + :target: https://anaconda.org/conda-forge/pyobjcryst -Using conda, we you can install pyobjcryst using the "conda-forge" channel :: +.. |PR| image:: https://img.shields.io/badge/PR-Welcome-29ab47ff + :target: https://github.com/diffpy/pyobjcryst/pulls - conda install -c conda-forge pyobjcryst +.. |PyPI| image:: https://img.shields.io/pypi/v/pyobjcryst + :target: https://pypi.org/project/pyobjcryst/ -Alternatively using mamba :: +.. |PythonVersion| image:: https://img.shields.io/pypi/pyversions/pyobjcryst + :target: https://pypi.org/project/pyobjcryst/ - mamba install pyobjcryst +.. |Tracking| image:: https://img.shields.io/badge/issue_tracking-github-blue + :target: https://github.com/diffpy/pyobjcryst/issues -You can also install from the "diffpy" channel - especially if you use -pyobjcryst allong with the other diffpy tools for PDF calculations, -but it is not updated as often as conda-forge. +Python bindings to ObjCryst++, the Object-Oriented Crystallographic Library. -pyobjcryst is also included in the "diffpy-cmi" collection -of packages for structure analysis :: - conda install -c diffpy diffpy-cmi +For more information about the pyobjcryst library, please consult our `online documentation `_. -Complete new conda environment with optional GUI and jupyter dependencies -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Citation +-------- -Assuming you have installed `Mamba-forge `_, -you can directly create a new conda environment named `pyobjcryst` with all useful dependencies (including -jupyter-lab, python 3.11..) using :: +If you use pyobjcryst in a scientific publication, we would like you to cite this package as - mamba create -n pyobjcryst python=3.11 pyobjcryst matplotlib py3dmol jupyterlab ipympl multiprocess + pyobjcryst Package, https://github.com/diffpy/pyobjcryst -Then you can activate the environment and launch jupyter-lab using :: +Installation +------------ - conda activate pyobjcryst - jupyter-lab +The preferred method is to use `Miniconda Python +`_ +and install from the "conda-forge" channel of Conda packages. -From source -^^^^^^^^^^^ -The requirements are: +To add "conda-forge" to the conda channels, run the following in a terminal. :: -* ``libobjcryst`` - Object-Oriented Crystallographic Library for C++, - https://github.com/diffpy/libobjcryst -* ``setuptools`` - tools for installing Python packages -* ``NumPy`` - library for scientific computing with Python -* ``python-dev`` - header files for interfacing Python with C -* ``libboost-all-dev`` - Boost C++ libraries and development files -* ``scons`` - software construction tool (optional) + conda config --add channels conda-forge -The above requirements are easily installed through conda using e.g.:: +We want to install our packages in a suitable conda environment. +The following creates and activates a new environment named ``pyobjcryst_env`` :: - conda install numpy compilers boost scons libobjcryst + conda create -n pyobjcryst_env pyobjcryst + conda activate pyobjcryst_env -Alternatively, on Ubuntu Linux the required software can be installed using:: +To confirm that the installation was successful, type :: - sudo apt-get install \ - python-setuptools python-numpy scons \ - build-essential python-dev libboost-all-dev + python -c "import pyobjcryst; print(pyobjcryst.__version__)" +The output should print the latest version displayed on the badges above. -The libobjcryst library can also be installed as per the instructions at -https://github.com/diffpy/libobjcryst. Make sure other required -software are also in place and then run from the pyobjcryst directory:: +If the above does not work, you can use ``pip`` to download and install the latest release from +`Python Package Index `_. +To install using ``pip`` into your ``pyobjcryst_env`` environment, type :: - pip install . + pip install pyobjcryst -You may need to use ``sudo`` with system Python so the process is -allowed to copy files to system directories, unless you are installing -into a conda environment. If administrator (root) -access is not available, see the usage information from -``python setup.py install --help`` for options to install to -a user-writable location. The installation integrity can be -verified by executing the included tests with :: +If you prefer to install from sources, after installing the dependencies, obtain the source archive from +`GitHub `_. Once installed, ``cd`` into your ``pyobjcryst`` directory +and run the following :: - python -m pyobjcryst.tests.run + pip install . An alternative way of installing pyobjcryst is to use the SCons tool, which can speed up the process by compiling C++ files in several parallel jobs (-j4):: - scons -j4 install + scons -j4 dev See ``scons -h`` for description of build targets and options. @@ -123,87 +103,51 @@ displayed in a jupyter notebook: ``matplotlib`` and ``ipympl`` are installed. See the notebook ``examples/cimetidine-structure-solution-powder.ipynb`` -In short, ``conda install jupyter matplotlib ipympl py3dmol`` -will give you all the required dependencies. You can also -use this in jupyterlab. +Getting Started +--------------- -These packages can also be installed using ``pip`` if you do not use conda. +You may consult our `online documentation `_ for tutorials and API references. -DEVELOPMENT ------------ +Support and Contribute +---------------------- -pyobjcryst is an open-source software originally developed as a part of the -DiffPy-CMI complex modeling initiative at the Brookhaven National -Laboratory, and is also further developed at ESRF. -The pyobjcryst sources are hosted at -https://github.com/diffpy/pyobjcryst. +If you see a bug or want to request a feature, please `report it as an issue `_ and/or `submit a fix as a PR `_. -Feel free to fork the project and contribute. To install pyobjcryst -in a development mode, where its sources are directly used by Python -rather than copied to a system directory, use :: +Feel free to fork the project and contribute. To install pyobjcryst +in a development mode, with its sources being directly used by Python +rather than copied to a package directory, use the following in the root +directory :: - python setup.py develop --user + pip install -e . + +To ensure code quality and to prevent accidental commits into the default branch, please set up the use of our pre-commit +hooks. + +1. Install pre-commit in your working environment by running ``conda install pre-commit``. + +2. Initialize pre-commit (one time only) ``pre-commit install``. + +Thereafter your code will be linted by black and isort and checked against flake8 before you can commit. +If it fails by black or isort, just rerun and it should pass (black and isort will modify the files so should +pass after they are modified). If the flake8 test fails please see the error messages and fix them manually before +trying to commit again. When developing it is preferable to compile the C++ files with -SCons using the ``build=develop`` option, which compiles the extension +SCons using the ``build=debug`` option, which compiles the extension module with debug information and C-assertions checks :: - scons -j4 build=debug develop - -The build script checks for a presence of ``sconsvars.py`` file, which -can be used to permanently set the ``build`` variable. The SCons -construction environment can be further customized in a ``sconscript.local`` -script. The package integrity can be verified by executing unit tests with -``scons -j4 test``. - -When developing with Anaconda Python it is essential to specify -header path, library path and runtime library path for the active -Anaconda environment. This can be achieved by setting the ``CPATH``, -``LIBRARY_PATH`` and ``LDFLAGS`` environment variables as follows:: - - # resolve the prefix directory P of the active Anaconda environment - P=$CONDA_PREFIX - export CPATH=$P/include - export LIBRARY_PATH=$P/lib - export LDFLAGS=-Wl,-rpath,$P/lib - # compile and re-install pyobjcryst - scons -j4 build=debug develop - -Note the Anaconda package for the required libobjcryst library is built -with a C++ compiler provided by Anaconda. This may cause incompatibility -with system C++. In such case please use Anaconda C++ to build pyobjcryst. - -Quick conda environment from libobjcryst and pyobjcryst sources -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - -If ``conda`` is available, you can create a pyobjcryst environment -from the git repositories (downloaded in the current directory) using:: - - conda create --yes --name pyobjcryst numpy matplotlib ipywidgets jupyter - conda install --yes -n pyobjcryst -c conda-forge boost scons py3dmol - conda activate pyobjcryst - git clone https://github.com/diffpy/libobjcryst.git - cd libobjcryst - scons -j4 install prefix=$CONDA_PREFIX - cd .. - git clone https://github.com/diffpy/pyobjcryst.git - cd pyobjcryst - export CPATH=$CONDA_PREFIX/include - export LIBRARY_PATH=$CONDA_PREFIX/lib - export LDFLAGS=-Wl,-rpath,$CONDA_PREFIX/lib - scons -j4 install prefix=$CONDA_PREFIX - - -CONTACTS --------- + scons -j4 build=debug dev + +Improvements and fixes are always appreciated. + +Before contributing, please read our `Code of Conduct `_. -For more information on pyobjcryst please visit the project web-page +Contact +------- -http://www.diffpy.org +For more information on pyobjcryst please visit the project `web-page `_ or email Simon Billinge at sb2896@columbia.edu. -or email Prof. Simon Billinge at sb2896@columbia.edu. +Acknowledgements +---------------- -You can also contact Vincent Favre-Nicolin (favre@esrf.fr) if you -are using pyobjcryst outside diffpy, e.g. to display structures -in a notebook, refine powder patterns or solve structures using the -global optimisation algorithms, etc.. +``pyobjcryst`` is built and maintained with `scikit-package `_. diff --git a/conda-recipe/conda_build_config.yaml b/conda-recipe/conda_build_config.yaml deleted file mode 100644 index bef96a0..0000000 --- a/conda-recipe/conda_build_config.yaml +++ /dev/null @@ -1,39 +0,0 @@ -python: - - 3.10 - - 3.11 - - 3.9 - - 3.8 - - 3.7 - -numpy: - - 1.21 - - 1.19 - - 1.19 - - 1.16 - -boost: - - 1.78 - - 1.78 - - 1.78 - - 1.73 - -zip_keys: - - python - - numpy - - boost - -libobjcryst: - - 2022.1.4 - -c_compiler: # [win] -- vs2019 # [win] -cxx_compiler: # [win] -- vs2019 # [win] - -pin_run_as_build: - boost: x.x - -# For a local macOS build -CONDA_BUILD_SYSROOT: - - $HOME/dev/SDKs/MacOSX10.9.sdk [osx and not arm64] - - $HOME/dev/SDKs/MacOSX11.0.sdk [arm64] diff --git a/conda-recipe/meta.yaml b/conda-recipe/meta.yaml deleted file mode 100644 index 002ce28..0000000 --- a/conda-recipe/meta.yaml +++ /dev/null @@ -1,62 +0,0 @@ -{% set setupdata = load_setup_py_data() %} - -package: - name: pyobjcryst - version: {{ setupdata['version'] }} - -source: - # git_url: https://github.com/diffpy/pyobjcryst.git - git_url: .. - # path: .. - -build: - # If this is a new build for the same version, increment the build - # number. If you do not include this key, it defaults to 0. - number: 0 - script: {{ PYTHON }} -m pip install . --no-deps -vv - -requirements: - build: - - {{ compiler('cxx') }} - - numpy {{ numpy }} - - python {{ python }} - - setuptools - - git - host: - - python - - pip - - numpy {{ numpy }} - - libobjcryst 2022.1.3 - - boost {{ boost }} - - run: - # NOTE libobjcryst is implicitly added by libobjcryst run_exports - - {{ pin_compatible('numpy', min_pin='x.x', max_pin='x') }} - - boost - -test: - # Python imports - imports: - - pyobjcryst - - pyobjcryst.tests - - # commands: - # You can put test commands to be run here. Use this to test that the - # entry points work. - - - # You can also put a file called run_test.py in the recipe that will be run - # at test time. - - # requires: - # Put any additional test requirements here. For example - # - nose - -about: - home: https://github.com/diffpy/pyobjcryst - summary: Python bindings to the ObjCryst++ crystallographic library. - license: Modified BSD License - license_file: LICENSE.txt - -# See http://docs.continuum.io/conda/build.html -# for more information about meta.yaml. diff --git a/conda-recipe/run_test.py b/conda-recipe/run_test.py deleted file mode 100644 index e439c83..0000000 --- a/conda-recipe/run_test.py +++ /dev/null @@ -1,4 +0,0 @@ -#!/usr/bin/env python - -import pyobjcryst.tests -assert pyobjcryst.tests.test(verbosity=2).wasSuccessful() diff --git a/conda-recipe/sconscript.local b/conda-recipe/sconscript.local deleted file mode 100644 index f874039..0000000 --- a/conda-recipe/sconscript.local +++ /dev/null @@ -1,18 +0,0 @@ -# Customize scons build environment. - -Import('env') - -import os - -# Apply environment settings for Anaconda compilers -env.Replace(CXX=os.environ['CXX']) -env.MergeFlags(os.environ['CFLAGS']) -env.MergeFlags(os.environ['CPPFLAGS']) -env.MergeFlags(os.environ['CXXFLAGS']) -env.MergeFlags(os.environ['LDFLAGS']) - -# Silence copious warnings from the boost headers. -P = os.environ['PREFIX'] -env.Prepend(CCFLAGS=['-isystem{}/include'.format(P)]) - -# vim: ft=python diff --git a/cookiecutter.json b/cookiecutter.json new file mode 100644 index 0000000..85ad049 --- /dev/null +++ b/cookiecutter.json @@ -0,0 +1,18 @@ +{ + "maintainer_name": "Simon J.L. Billinge group", + "maintainer_email": "sb2896@columbia.edu", + "maintainer_github_username": "sbillinge", + "contributors": "Billinge Group members", + "license_holders": "The Trustees of Columbia University in the City of New York", + "project_name": "pyobjcryst", + "github_username_or_orgname": "diffpy", + "github_repo_name": "pyobjcryst", + "conda_pypi_package_dist_name": "pyobjcryst", + "package_dir_name": "pyobjcryst", + "project_short_description": "Python bindings to the ObjCryst++ library.", + "project_keywords": "objcryst, atom structure crystallography, powder diffraction", + "minimum_supported_python_version": "3.11", + "maximum_supported_python_version": "3.13", + "project_needs_c_code_compiled": "Yes", + "project_has_gui_tests": "No" +} diff --git a/doc/environment.yml b/doc/environment.yml deleted file mode 100644 index 10edc61..0000000 --- a/doc/environment.yml +++ /dev/null @@ -1,15 +0,0 @@ -name: readthedocs -channels: - - conda-forge -dependencies: - - pip - - pydata-sphinx-theme - - docutils=0.20.1 # https://github.com/vidartf/nbsphinx-link/issues/22 - - m2r2 - - nbconvert=6.4.5 # https://github.com/jupyter/nbconvert/issues/1742 and https://github.com/jupyter/nbconvert/issues/1736 - - nbsphinx - - nbsphinx-link - - numpy - - lxml-html-clean - - ipython_genutils - - ipywidgets diff --git a/doc/manual/source/api/modules.rst b/doc/manual/source/api/modules.rst deleted file mode 100644 index 5fd5c07..0000000 --- a/doc/manual/source/api/modules.rst +++ /dev/null @@ -1,198 +0,0 @@ -:tocdepth: 2 - -############## -pyobjcryst API -############## - - -pyobjcryst module ------------------ - -.. automodule:: pyobjcryst - :members: - :undoc-members: - :show-inheritance: - -pyobjcryst.atom module ----------------------- - -.. automodule:: pyobjcryst.atom - :members: - :undoc-members: - :show-inheritance: - -pyobjcryst.crystal module -------------------------- - -.. automodule:: pyobjcryst.crystal - :members: - :undoc-members: - :show-inheritance: - -pyobjcryst.diffractiondatasinglecrystal module ----------------------------------------------- - -.. automodule:: pyobjcryst.diffractiondatasinglecrystal - :members: - :undoc-members: - :show-inheritance: - -pyobjcryst.general module -------------------------- - -.. automodule:: pyobjcryst.general - :members: - :undoc-members: - :show-inheritance: - -pyobjcryst.globaloptim module ------------------------------ - -.. automodule:: pyobjcryst.globaloptim - :members: - :undoc-members: - :show-inheritance: - -pyobjcryst.indexing module --------------------------- - -.. automodule:: pyobjcryst.indexing - :members: - :undoc-members: - :show-inheritance: - -pyobjcryst.io module --------------------- - -.. automodule:: pyobjcryst.io - :members: - :undoc-members: - :show-inheritance: - -pyobjcryst.lsq module ---------------------- - -.. automodule:: pyobjcryst.lsq - :members: - :undoc-members: - :show-inheritance: - -pyobjcryst.molecule module --------------------------- - -.. automodule:: pyobjcryst.molecule - :members: - :undoc-members: - :show-inheritance: - -pyobjcryst.polyhedron module ----------------------------- - -.. automodule:: pyobjcryst.polyhedron - :members: - :undoc-members: - :show-inheritance: - -pyobjcryst.powderpattern module -------------------------------- - -.. automodule:: pyobjcryst.powderpattern - :members: - :undoc-members: - :show-inheritance: - -pyobjcryst.radiation module ---------------------------- - -.. automodule:: pyobjcryst.radiation - :members: - :undoc-members: - :show-inheritance: - -pyobjcryst.refinableobj module ------------------------------- - -.. automodule:: pyobjcryst.refinableobj - :members: - :undoc-members: - :show-inheritance: - -pyobjcryst.reflectionprofile module ------------------------------------ - -.. automodule:: pyobjcryst.reflectionprofile - :members: - :undoc-members: - :show-inheritance: - -pyobjcryst.scatterer module ---------------------------- - -.. automodule:: pyobjcryst.scatterer - :members: - :undoc-members: - :show-inheritance: - -pyobjcryst.scatteringdata module --------------------------------- - -.. automodule:: pyobjcryst.scatteringdata - :members: - :undoc-members: - :show-inheritance: - -pyobjcryst.scatteringpower module ---------------------------------- - -.. automodule:: pyobjcryst.scatteringpower - :members: - :undoc-members: - :show-inheritance: - -pyobjcryst.scatteringpowersphere module ---------------------------------------- - -.. automodule:: pyobjcryst.scatteringpowersphere - :members: - :undoc-members: - :show-inheritance: - -pyobjcryst.spacegroup module ----------------------------- - -.. automodule:: pyobjcryst.spacegroup - :members: - :undoc-members: - :show-inheritance: - -pyobjcryst.unitcell module --------------------------- - -.. automodule:: pyobjcryst.unitcell - :members: - :undoc-members: - :show-inheritance: - -pyobjcryst.utils module ------------------------ - -.. automodule:: pyobjcryst.utils - :members: - :undoc-members: - :show-inheritance: - -pyobjcryst.version module -------------------------- - -.. automodule:: pyobjcryst.version - :members: - :undoc-members: - :show-inheritance: - -pyobjcryst.zscatterer module ----------------------------- - -.. automodule:: pyobjcryst.zscatterer - :members: - :undoc-members: - :show-inheritance: diff --git a/doc/manual/source/license.rst b/doc/manual/source/license.rst deleted file mode 100644 index f553c1a..0000000 --- a/doc/manual/source/license.rst +++ /dev/null @@ -1,140 +0,0 @@ -License -####### - -OPEN SOURCE LICENSE AGREEMENT -============================= - -| Copyright (c) 2009-2011, University of Tennessee -| Copyright (c) 1989, 1991 Free Software Foundation, Inc. -| Copyright (c) 2006, The Regents of the University of California through - Lawrence Berkeley National Laboratory -| Copyright (c) 2014, Australian Synchrotron Research Program Inc., ("ASRP") -| Copyright (c) 2006-2007, Board of Trustees of Michigan State University -| Copyright (c) 2008-2012, The Trustees of Columbia University in - the City of New York -| Copyright (c) 2014-2019, Brookhaven Science Associates, - Brookhaven National Laboratory -| Copyright (c) 2015-, ESRF-European Synchrotron Radiation Facility - -The "DiffPy-CMI" is distributed subject to the following license conditions: - - -SOFTWARE LICENSE AGREEMENT -========================== - -Software: **DiffPy-CMI** - - -(1) The "Software", below, refers to the aforementioned DiffPy-CMI (in either -source code, or binary form and accompanying documentation). - -Part of the software was derived from the DANSE, ObjCryst++ (with permission), -PyCifRW, Python periodictable, CCTBX, and SasView open source projects, of -which the original Copyrights are contained in each individual file. - -Each licensee is addressed as "you" or "Licensee." - - -(2) The copyright holders shown above and their third-party Licensors hereby -grant licensee a royalty-free nonexclusive license, subject to the limitations -stated herein and U.S. Government license rights. - - -(3) You may modify and make a copy or copies of the software for use within -your organization, if you meet the following conditions: - - (a) Copies in source code must include the copyright notice and this - software license agreement. - - (b) Copies in binary form must include the copyright notice and this - Software License Agreement in the documentation and/or other materials - provided with the copy. - - -(4) You may modify a copy or copies of the Software or any portion of it, thus -forming a work based on the Software, and distribute copies of such work -outside your organization, if you meet all of the following conditions: - - (a) Copies in source code must include the copyright notice and this - Software License Agreement; - - (b) Copies in binary form must include the copyright notice and this - Software License Agreement in the documentation and/or other materials - provided with the copy; - - (c) Modified copies and works based on the Software must carry prominent - notices stating that you changed specified portions of the Software. - - (d) Neither the name of Brookhaven Science Associates or Brookhaven - National Laboratory nor the names of its contributors may be used to - endorse or promote products derived from this software without specific - written permission. - - -(5) Portions of the Software resulted from work developed under a U.S. -Government contract and are subject to the following license: -The Government is granted for itself and others acting on its behalf a -paid-up, nonexclusive, irrevocable worldwide license in this computer software -to reproduce, prepare derivative works, and perform publicly and display -publicly. - - -(6) WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" WITHOUT -WARRANTY OF ANY KIND. THE COPYRIGHT HOLDERS, THEIR THIRD PARTY -LICENSORS, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND -THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR IMPLIED, INCLUDING -BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A -PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL -LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF -THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF THE SOFTWARE WOULD NOT INFRINGE -PRIVATELY OWNED RIGHTS, (4) DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION -UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL BE CORRECTED. - - -(7) LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT HOLDERS, THEIR -THIRD PARTY LICENSORS, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF -ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, INCIDENTAL, -CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF ANY KIND OR NATURE, INCLUDING -BUT NOT LIMITED TO LOSS OF PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, -WHETHER SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT (INCLUDING -NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, EVEN IF ANY OF SAID PARTIES HAS -BEEN WARNED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGES. - - -Brookhaven National Laboratory Notice -===================================== - -Acknowledgment of sponsorship ------------------------------ - -This software was produced by the Brookhaven National Laboratory, under -Contract DE-AC02-98CH10886 with the Department of Energy. - - -Government disclaimer of liability ----------------------------------- - -Neither the United States nor the United States Department of Energy, nor -any of their employees, makes any warranty, express or implied, or assumes -any legal liability or responsibility for the accuracy, completeness, or -usefulness of any data, apparatus, product, or process disclosed, or -represents that its use would not infringe privately owned rights. - - -Brookhaven disclaimer of liability ----------------------------------- - -Brookhaven National Laboratory makes no representations or warranties, -express or implied, nor assumes any liability for the use of this software. - - -Maintenance of notice ---------------------- - -In the interest of clarity regarding the origin and status of this -software, Brookhaven National Laboratory requests that any recipient of it -maintain this notice affixed to any distribution by the recipient that -contains a copy or derivative of this software. - - -.. rubric:: END OF LICENSE diff --git a/doc/manual/source/release.rst b/doc/manual/source/release.rst deleted file mode 100644 index 7ec4f81..0000000 --- a/doc/manual/source/release.rst +++ /dev/null @@ -1,3 +0,0 @@ -.. index:: release notes - -.. mdinclude:: ../../../CHANGELOG.md diff --git a/doc/manual/Makefile b/docs/Makefile similarity index 83% rename from doc/manual/Makefile rename to docs/Makefile index a533e2c..86f79d4 100644 --- a/doc/manual/Makefile +++ b/docs/Makefile @@ -6,6 +6,12 @@ SPHINXOPTS = SPHINXBUILD = sphinx-build PAPER = BUILDDIR = build +BASENAME = $(subst .,,$(subst $() $(),,pyobjcryst)) + +# User-friendly check for sphinx-build +ifeq ($(shell which $(SPHINXBUILD) >/dev/null 2>&1; echo $$?), 1) +$(error The '$(SPHINXBUILD)' command was not found. Make sure you have Sphinx installed, then set the SPHINXBUILD environment variable to point to the full path of the '$(SPHINXBUILD)' executable. Alternatively you can add the directory with the executable to your PATH. If you don't have Sphinx installed, grab it from http://sphinx-doc.org/) +endif # Internal variables. PAPEROPT_a4 = -D latex_paper_size=a4 @@ -14,7 +20,7 @@ ALLSPHINXOPTS = -d $(BUILDDIR)/doctrees $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) sou # the i18n builder cannot share the environment and doctrees with the others I18NSPHINXOPTS = $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) source -.PHONY: help clean html dirhtml singlehtml pickle json htmlhelp qthelp devhelp epub latex latexpdf text man changes linkcheck doctest gettext publish +.PHONY: help clean html dirhtml singlehtml pickle json htmlhelp qthelp devhelp epub latex latexpdf text man changes linkcheck doctest gettext help: @echo "Please use \`make ' where is one of" @@ -29,17 +35,20 @@ help: @echo " epub to make an epub" @echo " latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter" @echo " latexpdf to make LaTeX files and run them through pdflatex" + @echo " latexpdfja to make LaTeX files and run them through platex/dvipdfmx" @echo " text to make text files" @echo " man to make manual pages" @echo " texinfo to make Texinfo files" @echo " info to make Texinfo files and run them through makeinfo" @echo " gettext to make PO message catalogs" @echo " changes to make an overview of all changed/added/deprecated items" + @echo " xml to make Docutils-native XML files" + @echo " pseudoxml to make pseudoxml-XML files for display purposes" @echo " linkcheck to check all external links for integrity" @echo " doctest to run all doctests embedded in the documentation (if enabled)" clean: - -rm -rf $(BUILDDIR)/* + rm -rf $(BUILDDIR)/* html: $(SPHINXBUILD) -b html $(ALLSPHINXOPTS) $(BUILDDIR)/html @@ -77,17 +86,17 @@ qthelp: @echo @echo "Build finished; now you can run "qcollectiongenerator" with the" \ ".qhcp project file in $(BUILDDIR)/qthelp, like this:" - @echo "# qcollectiongenerator $(BUILDDIR)/qthelp/pyobjcryst.qhcp" + @echo "# qcollectiongenerator $(BUILDDIR)/qthelp/$(BASENAME).qhcp" @echo "To view the help file:" - @echo "# assistant -collectionFile $(BUILDDIR)/qthelp/pyobjcryst.qhc" + @echo "# assistant -collectionFile $(BUILDDIR)/qthelp/$(BASENAME).qhc" devhelp: $(SPHINXBUILD) -b devhelp $(ALLSPHINXOPTS) $(BUILDDIR)/devhelp @echo @echo "Build finished." @echo "To view the help file:" - @echo "# mkdir -p $$HOME/.local/share/devhelp/pyobjcryst" - @echo "# ln -s $(BUILDDIR)/devhelp $$HOME/.local/share/devhelp/pyobjcryst" + @echo "# mkdir -p $$HOME/.local/share/devhelp/$(BASENAME)" + @echo "# ln -s $(BUILDDIR)/devhelp $$HOME/.local/share/devhelp/$(BASENAME)" @echo "# devhelp" epub: @@ -108,6 +117,12 @@ latexpdf: $(MAKE) -C $(BUILDDIR)/latex all-pdf @echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex." +latexpdfja: + $(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex + @echo "Running LaTeX files through platex and dvipdfmx..." + $(MAKE) -C $(BUILDDIR)/latex all-pdf-ja + @echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex." + text: $(SPHINXBUILD) -b text $(ALLSPHINXOPTS) $(BUILDDIR)/text @echo diff --git a/docs/make.bat b/docs/make.bat new file mode 100644 index 0000000..ac53d5b --- /dev/null +++ b/docs/make.bat @@ -0,0 +1,36 @@ +@ECHO OFF + +pushd %~dp0 + +REM Command file for Sphinx documentation + +if "%SPHINXBUILD%" == "" ( + set SPHINXBUILD=sphinx-build +) +set SOURCEDIR=source +set BUILDDIR=build +set SPHINXPROJ=PackagingScientificPython + +if "%1" == "" goto help + +%SPHINXBUILD% >NUL 2>NUL +if errorlevel 9009 ( + echo. + echo.The 'sphinx-build' command was not found. Make sure you have Sphinx + echo.installed, then set the SPHINXBUILD environment variable to point + echo.to the full path of the 'sphinx-build' executable. Alternatively you + echo.may add the Sphinx directory to PATH. + echo. + echo.If you don't have Sphinx installed, grab it from + echo.http://sphinx-doc.org/ + exit /b 1 +) + +%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% +goto end + +:help +%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% + +:end +popd diff --git a/docs/source/_static/.placeholder b/docs/source/_static/.placeholder new file mode 100644 index 0000000..e69de29 diff --git a/doc/manual/source/_static/css/custom.css b/docs/source/_static/css/custom.css similarity index 85% rename from doc/manual/source/_static/css/custom.css rename to docs/source/_static/css/custom.css index 05439f5..3a36ad9 100644 --- a/doc/manual/source/_static/css/custom.css +++ b/docs/source/_static/css/custom.css @@ -9,10 +9,10 @@ } /* Larger header/navbar for Fox logo*/ -.navbar-brand img{ +.navbar-brand img { height: auto; } .navbar { - height: 6em; + height: 6em; } diff --git a/docs/source/api/pyobjcryst.example_package.rst b/docs/source/api/pyobjcryst.example_package.rst new file mode 100644 index 0000000..42aec1e --- /dev/null +++ b/docs/source/api/pyobjcryst.example_package.rst @@ -0,0 +1,31 @@ +.. _example_package documentation: + +|title| +======= + +.. |title| replace:: pyobjcryst.example_package package + +.. automodule:: pyobjcryst.example_package + :members: + :undoc-members: + :show-inheritance: + +|foo| +----- + +.. |foo| replace:: pyobjcryst.example_package.foo module + +.. automodule:: pyobjcryst.example_package.foo + :members: + :undoc-members: + :show-inheritance: + +|bar| +----- + +.. |bar| replace:: pyobjcryst.example_package.bar module + +.. automodule:: pyobjcryst.example_package.foo + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/source/api/pyobjcryst.rst b/docs/source/api/pyobjcryst.rst new file mode 100644 index 0000000..5df574c --- /dev/null +++ b/docs/source/api/pyobjcryst.rst @@ -0,0 +1,30 @@ +:tocdepth: -1 + +|title| +======= + +.. |title| replace:: pyobjcryst package + +.. automodule:: pyobjcryst + :members: + :undoc-members: + :show-inheritance: + +Subpackages +----------- + +.. toctree:: + pyobjcryst.example_package + +Submodules +---------- + +|module| +-------- + +.. |module| replace:: pyobjcryst.example_submodule module + +.. automodule:: pyobjcryst.example_submodule + :members: + :undoc-members: + :show-inheritance: diff --git a/doc/manual/source/conf.py b/docs/source/conf.py similarity index 56% rename from doc/manual/source/conf.py rename to docs/source/conf.py index 77421c8..33cf0ab 100644 --- a/doc/manual/source/conf.py +++ b/docs/source/conf.py @@ -1,19 +1,40 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- # +# pyobjcryst documentation build configuration file, created by # noqa: E501 +# sphinx-quickstart on Thu Jan 30 15:49:41 2014. +# +# This file is execfile()d with the current directory set to its +# containing dir. +# +# Note that not all possible configuration values are present in this +# autogenerated file. +# +# All configuration values have a default; values that are commented out +# serve to show the default. -import sys, os +import sys import time +from importlib.metadata import version +from pathlib import Path -# Requires sphinx >= 0.6 +# Attempt to import the version dynamically from GitHub tag. +try: + fullversion = version("pyobjcryst") +except Exception: + fullversion = "No version found. The correct version will appear in the released version." # noqa: E501 # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the -# documentation root, use os.path.abspath to make it absolute, like shown here. -# sys.path.append(os.path.abspath('.')) -# sys.path.insert(0, os.path.abspath('../../..')) +# documentation root, use Path().resolve() to make it absolute, like shown here. # noqa: E501 +# sys.path.insert(0, str(Path(".").resolve())) +sys.path.insert(0, str(Path("../..").resolve())) +sys.path.insert(0, str(Path("../../src").resolve())) + +# abbreviations +ab_authors = "Billinge Group members" -# -- General configuration ----------------------------------------------------- +# -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' @@ -22,38 +43,40 @@ # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ - 'sphinx.ext.ifconfig', - 'sphinx.ext.autodoc', - 'm2r2', - 'nbsphinx', - 'nbsphinx_link' + "sphinx.ext.autodoc", + "sphinx.ext.napoleon", + "sphinx.ext.todo", + "sphinx.ext.viewcode", + "sphinx.ext.intersphinx", + "sphinx_rtd_theme", + "sphinx_copybutton", + "m2r", ] # Add any paths that contain templates here, relative to this directory. -templates_path = ['_templates'] +templates_path = ["_templates"] -# The suffix of source filenames. -source_suffix = ['.rst', '.md'] +# The suffix(es) of source filenames. +# You can specify multiple suffix as a list of string: +# +source_suffix = [".rst", ".md"] # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. -master_doc = 'index' +master_doc = "index" # General information about the project. -project = 'pyobjcryst' -copyright = '%Y, Brookhaven National Laboratory' +project = "pyobjcryst" +copyright = "%Y, The Trustees of Columbia University in the City of New York" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. -sys.path.insert(0, os.path.abspath('../../..')) -from setup import versiondata -fullversion = versiondata.get('DEFAULT', 'version') # The short X.Y version. -version = ''.join(fullversion.split('.post')[:1]) +version = "".join(fullversion.split(".post")[:1]) # The full version, including alpha/beta/rc tags. release = fullversion @@ -64,19 +87,24 @@ # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' -today_seconds = versiondata.getint('DEFAULT', 'timestamp') -today = time.strftime('%B %d, %Y', time.localtime(today_seconds)) +today = time.strftime("%B %d, %Y", time.localtime()) year = today.split()[-1] # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # substitute YEAR in the copyright string -copyright = copyright.replace('%Y', year) +copyright = copyright.replace("%Y", year) + +# For sphinx_copybutton extension. +# Do not copy "$" for shell commands in code-blocks. +copybutton_prompt_text = r"^\$ " +copybutton_prompt_is_regexp = True # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. -exclude_patterns = [] +exclude_patterns = ["build"] -# The reST default role (used for this markup: `text`) to use for all documents. +# The reST default role (used for this markup: `text`) to use for all +# documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. @@ -91,35 +119,35 @@ # show_authors = False # The name of the Pygments (syntax highlighting) style to use. -pygments_style = 'sphinx' +pygments_style = "sphinx" # A list of ignored prefixes for module index sorting. -# modindex_common_prefix = [] +modindex_common_prefix = ["pyobjcryst"] # Display all warnings for missing links. -# nitpicky = True +nitpicky = True -# -- Options for HTML output --------------------------------------------------- +# -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # -html_theme = "pydata_sphinx_theme" - -# Not sure what all these actually do -html_theme_options = { - "show_nav_level": 2, - "navigation_depth": 2, - "navbar_align": "left", - # "primary_sidebar_end": ["indices.html", "sidebar-ethical-ads.html"] +html_theme = "sphinx_rtd_theme" + +html_context = { + "display_github": True, + "github_user": "diffpy", + "github_repo": "pyobjcryst", + "github_version": "main", + "conf_py_path": "/docs/source/", } -# https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-html_sidebars -html_sidebars = { - "**": ["globaltoc.html", "sidebar-nav-bs"], - # "**": ["localtoc.html"], - # "**": ["sidebar-nav-bs"], - # "": ["index", "manual-intro", "tutorials", "manual"] +# Theme options are theme-specific and customize the look and feel of a theme +# further. For a list of options available for each theme, see the +# documentation. +# +html_theme_options = { + "navigation_with_keys": "true", } # Add any paths that contain custom themes here, relative to this directory. @@ -144,8 +172,12 @@ # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". -html_static_path = ['_static'] -html_css_files = ['css/custom.css'] +# html_static_path = ['_static'] + +# Add any extra paths that contain custom files (such as robots.txt or +# .htaccess) here, relative to this directory. These files are copied +# directly to the root of the documentation. +# html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. @@ -169,7 +201,7 @@ # html_use_index = True # If true, the index is split into individual pages for each letter. -html_split_index = True +# html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True @@ -189,24 +221,33 @@ # html_file_suffix = None # Output file base name for HTML help builder. -htmlhelp_basename = 'pyobjcrystdoc' +basename = "pyobjcryst".replace(" ", "").replace(".", "") +htmlhelp_basename = basename + "doc" + -# -- Options for LaTeX output -------------------------------------------------- +# -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', - # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', - # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples -# (source start file, target name, title, author, documentclass [howto/manual]). -# latex_documents = [] +# (source start file, target name, title, +# author, documentclass [howto, manual, or own class]). +latex_documents = [ + ( + "index", + "pyobjcryst.tex", + "pyobjcryst Documentation", + ab_authors, + "manual", + ), +] # The name of an image file (relative to this directory) to place at the top of # the title page. @@ -227,3 +268,55 @@ # If false, no module index is generated. # latex_domain_indices = True + + +# -- Options for manual page output --------------------------------------- + +# One entry per manual page. List of tuples +# (source start file, name, description, authors, manual section). +man_pages = [ + ( + "index", + "pyobjcryst", + "pyobjcryst Documentation", + ab_authors, + 1, + ) +] + +# If true, show URL addresses after external links. +# man_show_urls = False + + +# -- Options for Texinfo output ------------------------------------------- + +# Grouping the document tree into Texinfo files. List of tuples +# (source start file, target name, title, author, +# dir menu entry, description, category) +texinfo_documents = [ + ( + "index", + "pyobjcryst", + "pyobjcryst Documentation", + ab_authors, + "pyobjcryst", + "One line description of project.", + "Miscellaneous", + ), +] + +# Documents to append as an appendix to all manuals. +# texinfo_appendices = [] + +# If false, no module index is generated. +# texinfo_domain_indices = True + +# How to display URL addresses: 'footnote', 'no', or 'inline'. +# texinfo_show_urls = 'footnote' + +# If true, do not generate a @detailmenu in the "Top" node's menu. +# texinfo_no_detailmenu = False + + +# Example configuration for intersphinx: refer to the Python standard library. +# intersphinx_mapping = {'http://docs.python.org/': None} diff --git a/doc/manual/source/examples/Quantitative-phase-analysis.nblink b/docs/source/examples/Quantitative-phase-analysis.nblink similarity index 100% rename from doc/manual/source/examples/Quantitative-phase-analysis.nblink rename to docs/source/examples/Quantitative-phase-analysis.nblink diff --git a/doc/manual/source/examples/crystal_3d_widget.nblink b/docs/source/examples/crystal_3d_widget.nblink similarity index 100% rename from doc/manual/source/examples/crystal_3d_widget.nblink rename to docs/source/examples/crystal_3d_widget.nblink diff --git a/doc/manual/source/examples/index.rst b/docs/source/examples/index.rst similarity index 95% rename from doc/manual/source/examples/index.rst rename to docs/source/examples/index.rst index 8ce7731..46a3d89 100644 --- a/doc/manual/source/examples/index.rst +++ b/docs/source/examples/index.rst @@ -1,6 +1,6 @@ -#################################################### +################# Example notebooks -#################################################### +################# Several examples available in the pyobjcryst repository: diff --git a/doc/manual/source/examples/structure-solution-multiprocessing.nblink b/docs/source/examples/structure-solution-multiprocessing.nblink similarity index 100% rename from doc/manual/source/examples/structure-solution-multiprocessing.nblink rename to docs/source/examples/structure-solution-multiprocessing.nblink diff --git a/doc/manual/source/examples/structure-solution-powder-cimetidine.nblink b/docs/source/examples/structure-solution-powder-cimetidine.nblink similarity index 100% rename from doc/manual/source/examples/structure-solution-powder-cimetidine.nblink rename to docs/source/examples/structure-solution-powder-cimetidine.nblink diff --git a/doc/manual/source/examples/structure-solution-powder-pbso4.nblink b/docs/source/examples/structure-solution-powder-pbso4.nblink similarity index 100% rename from doc/manual/source/examples/structure-solution-powder-pbso4.nblink rename to docs/source/examples/structure-solution-powder-pbso4.nblink diff --git a/docs/source/getting-started.rst b/docs/source/getting-started.rst new file mode 100644 index 0000000..c1e786f --- /dev/null +++ b/docs/source/getting-started.rst @@ -0,0 +1,79 @@ +:tocdepth: -1 + +.. index:: getting-started + +.. _getting-started: + +================ +Getting started +================ + +Here are some example templates provided to help you get started with writing your documentation. You can use these templates to create your own documentation. + +Reuse ``.rst`` files across multiple pages +------------------------------------------ + +Here is how you can reuse a reusable block of ``.rst`` files across multiple pages: + +.. include:: snippets/example-table.rst + +.. warning:: + + Ensure that the ``.rst`` file you are including is not too long. If it is too long, it may be better to split it into multiple files and include them separately. + +Refer to a specific section in the documentation +------------------------------------------------ + +You can use the ``ref`` tag to refer to a specific section in the documentation. For example, you can refer to the section below using the ``:ref:`` tag as shown :ref:`here `. + +.. note:: + + Please check the raw ``.rst`` file of this page to see the exact use of the ``:ref:`` tag. + +Embed your code snippets in the documentation +--------------------------------------------- + +Here is how you can write a block of code in the documentation. You can use the ``code-block`` directive to write a block of code in the documentation. For example, you can write a block of code as shown below: + +.. code-block:: bash + + # Create a new environment, without build dependencies (pure Python package) + conda create -n -env python=3.13 \ + --file requirements/test.txt \ + --file requirements/conda.txt + + # Create a new environment, with build dependencies (non-pure Python package) + conda create -n -env python=3.13 \ + --file requirements/test.txt \ + --file requirements/conda.txt \ + --file requirements/build.txt + + # Activate the environment + conda activate _env + + # Install your package locally + # `--no-deps` to NOT install packages again from `requirements.pip.txt` + pip install -e . --no-deps + + # Run pytest locally + pytest + + # ... run example tutorials + +.. _attach-image: + +Attach an image to the documentation +------------------------------------ + +Here is how you attach an image to the documentation. The ``/docs/source/img/scikit-package-logo-text.png`` example image is provided in the template. + +.. image:: ./img/scikit-package-logo-text.png + :alt: codecov-in-pr-comment + :width: 400px + :align: center + + +Other useful directives +----------------------- + +Here is how you can do menu selection :menuselection:`Admin --> Settings` and display labels for buttons like :guilabel:`Privacy level`. diff --git a/docs/source/img/scikit-package-logo-text.png b/docs/source/img/scikit-package-logo-text.png new file mode 100644 index 0000000000000000000000000000000000000000..823178dcb1316d5cfd09bc43d8210e5c4ce38f28 GIT binary patch literal 187608 zcmeFYXH-*Z)HaNw;EW<;ML=Mb03t;p6zLX~7}soR-3xju6= zrE+z3<+nswBaNTgoATQ^nkOtvGEq_eO{FONK*KF@am+OmXBsEHx)2w)4mtDwlE?jQ zp$iY5U3n=dH+Dt;Y}Kt7-daxjV;^K%Z!c#HMSZxb^6@Ol@1LuuFG61QcAo6M2zmIo zw_w~3nS7=y|IJiV4PF^TKz3ZeIpvd|z#cDZ&YzsA0lNZh>*zA-D_vhddHlc5m|MUj z{k-l|Uq&3iPCfCb=<(}Ls+Y{iuPyw((jC7Ry8nY>h@*=s)t>tJHQkfS6Te>j(fq&V zsi^*+aR7Jt|B>gU=4CPf4^$3q@lZUkOxy)&aiL4IvpbT1iccs~Qw%!M9As{j1C&_f^=XGyXPgSY`)@_xvj&W8z6H0bH6t}&5ET|(`D$j;tOHu$-apRfYusV_me4b_M%A#J6R zsQg`-1<8o1ND!A6OgMA-?$6ack^$7}T!?}i#F#)({jek**Y#CBx5cOE>0|{`Pb;D& zAWTXf|AL24&CwDynVnsQ{{7KV%13jepz<6$wy1XISPaI{#}`*PQtrEr>@k;)F3FFL z#`KtFl;q^>yd@j8?gqr|zH)IDNZf_1uzh(1iHQcvW zlLX5U)as-NDs@t4ukzV8z42}D(b*a8RfNIX^L{Vzh_XN#gquy-(Tp8DVk5%O;6s=_ z$JDv0<%^q0Uy5^@91}xM^h)keA#+M*vMtmceNZc!FlY0zXFmW$w2L_9C*aNS$-P(K8bQ7 zwW^d8i3IHl32vn*)CsRhSQH=#(jw*t9d*QLJ-7B?URy)l5>m4(jq)6pFqo8~>$RVo zXio!j#JYHTWC7<6gdMzB>yePSYsdDO+q8_tz-NhV9Ke2Oyp%bUWp1dwL^AkN3}OI@ zm1k#rE}Z}AT1Fd3TYzwzVspJ*EI(&=^2z%J{n8Ozja(-=jyGV`N6Ch@54opTBJ?`HxAiB4w!XxR-43A5CoZU~lzb=w z4~#ncb|eZ3gO`14mMil?0~}&EFyC5e@BQ>8)^v&qE1@l%ip!AVj_i(e*E^%nhDzPO z)Kp-If1Wdo(sa*-j{wqDiMbg=YP)`92qhg&Ftk2jv=x17At*2Ol6$aS} z0~uPInBny+IxG*#Um~Ga!&V!-E85`;2+zMW4PDfiy=F00lT|3a@Tu+W?EI`>9!=pB zskBkh&Bu;N)QKE%u-R0h-sXXt+2ZVv4ZeQat&aF4FqcaEH|7;pb91dR2Un1o7)A#M z<2#NCBikcGyn?nAg1{)7kI!lbVm?T!{PZn)yN~ zJb9`cgfGapvO10@>$AWk7=`ep*YIHELfUL0QsQbPj0dL3^NRNyLMMUhY04KToBY^m$Vo4nf zt^Ixs48{|^Z5~8))#PwQV#<^+0B$+IT)~el3m}WOF@T>CqG3qeVo9s!4#xL-G8Cc$ z-;maaMOnJapn#KTjhv%5qw_MT=Ekfk@@HjR$sIq2chb>gL_%HEfV1?^5ijZZ{vN$v zozhk*z&;PpjoBMpbQdFJ!ySJJgNsYO-NzilOs0|QfJbh4{az#rSma4H=m_A1<_ zlOR`49aot7ur3_A?CUKgVO#6q{dNOPGSEwWTaXZr%&*~4!@{4qj=liNC^_oEU}62g z;I)&Pf^B8D(n~>TaSSta+}_t8b{z`m$10N3chR9&lF*y|d&s75S?Eds=7rD&h@-xw z=;@;;$bCtPN8Ly$nFCV)aS0%z|Hg!& z5;b9csH%pe1*kmYDUjfl9;w9@7i}`0-4T3U8WaOqVaR^*)9zLH*>>+|Pkq*MMjSg} z6(-~t!_{~1fW*KU*PQI^gEuTki})pf0K8EM#%*eWno}&dHd)?lz8)R0HME8$?*qQ* z?(+pzdS~T(@idE0q1zA}dARTkbx;3re0h0)ZbipxFr%1_^T0|)v}^A7E23i&Df&Lh z<-@Ta=VoV4v>;{;2Gdvn<@lfDGk)G`dJ3c#!*}YJ@cLA>FxIDq_l9Q8hPvKI_=<^OOh{ zlH)c#pmJ><0b5TCWE}^|?nmuSap<=m09dK|@ zk0jQO?H(-Qg>?p@CdaPzMPuuHXhOtPFF-x5434*y127N2GMrLHi4Dr66$GzcZ>B>9 zs|w!6h~GKbRx6O!i8RqcomRZcl~v{VdlWx)3-6@=G`H#1oIetqCzr&k$RpeQpCP1 z4CXp;9Af$a1I~4Za5IC3_QL91)C6m01{)QVm5JIYeC_&1vrMx3MzLX}5_baE&{BGV zcf?|p$z%Hb(xwnr0U?E2>-w6*@d1-@zw%^*Oa*5cEMx58F%VgN>KQVz!mD8mDvF_M zjt($b(s8DwuyVh$huo%npcSt<>#hAATVbg@sYCeZogQdMT2|3JQg_c2_>6C>aQz{Z zx`KgW=~`vi4q>a7J7}?5UDM!Isf(x6=IH)@Hk^_R0B=rPu2d)nD5iQ&cKk83`kW1% zdn*2Rdaw$y3&aK~)~7EhsTwXJ1}2(Ev>l`s$dIvjICY5KSi|*hHeX*P_EoMItM!4* z?(V@Q-2^V3YP^cBoCKoGq0Z~umm%Bgb`Osz10Zpl9#Mf^Q&IDdQ3mTUB}c^n#NB!T zcl~@aBZ>1M1+Ja@sP|Ge=MR**IqZB7I(E8cSQES0_a~z${?M{ci|qesiQdWADQo6H z^JD%{GXq`OMamc`*LVBi+MQWOlyEQ1=y`DmS^SHJ!-}GiByK z-nRDiq0MCQ6oy*2_S$vIPl_|QYqT!aSk64Zc7wccGts`YM6K4#G7vTOhEmJ*|ElHg z>jQ8;8v)_AgE&G^e4ZW*nrcecm|bSN_9l4n_sWn!vsyYWpAbfgdwh8zhT5ec(s*XY233Ju>ctufM#FeBZ z=jHy~8{pU)s7aL9t>m!zh<<(F$09?|WktpuWsm-4l98mQEvqAr zTe)p!ak!7?6OaS8*y-0g8`5^AeVhx^-+Xt1Y|v|iy2#yP!pxmEcP)G}GQWz0#L$a- z>CTT)i`Y-i&K@op{K+W$&jXRU&X^uKhDuB^$w|h&g!K&T7O%~)7w`P@bm;llPr-OI zjllEP3tdUc?p6+n!;K#FFT>=zQLNrjw`U`n&}}u-jjodnOD3<1t({$I|Nf)u zdCtUZ^BKZErsC+UQBDa+@!|k!SN)W2uI1eiYC#hVcuT9(%(CsaGme9Lm*#t`O1t+6eK1v>~B ztm3%zT=%B92P8d`1*NQ9?9M`<2aLDmq9ZD?C?Yah!5H_{n5ORn$=8W@rDdNGZAuxcv?fhVPn zE`n99nK&b5TMDpPu{lHXjcPlYI!p6>y6o(h-fA{XTttQ`0A(dK($%VJjt@~O0Q!9R zg+8fvP~eOQxYMt{n?ixo;yn???V-lSTg;*@k?4to6g>C*R|?pce@AG6?L8 zoh6-`LUtbUcrB`(+Gp%ECSwkd1kFargGVeZL|A2RGKa7wUr3`Bk;=Ifx3$>4PYezs zc1n>FTxI}{vD2T4ivws+7O+1RR^Q#7MCZm*J*TB$UL8%(2evM#9#o<>tgq%5*YK;8 z13=9nJ<`!0^%ix`vOg}*maotH{9xfCa=eML+NURU=|XFav)S5*P|8_zoRuhcd#Z5t z&f<5J9Lt>EQ`4dDCay1IISV`~@+b-k-o7IvJFJIiy zDNSW(I9T^@t4VWbNV>k$ap2fSd){W)-8wBlyQNfkZ?yOSO3bw}0LW1a@mj?WNOylQ zi2`i{)uFMS#Xm9{;vKGk%tpcUQ<4-39T31FB$qb6JlgDtIb0i$gvLAKh8MerkR(zL zqW$!MGPZbgW>kJ%tF5JlkfE9f=uR) zLM>j5ca4&TL%rP$r@Rc8ijFfP%6Xr59oHZ9ch-z$~J@7TQo@Yi+Bp zZPbq52oyuF=LU77pKr*h9UL&bwhl=9Sm*+)FV`u|OfhKTqm}HoZHFZQ-Dt}Q#m2b< z@S%1z%^yG4cc!d=AwAMIVl>fYtWPYntc=%prMZHwuqS!JlDm_g6@B=UViKL=PsU|f zj}`c4n^ve-P6EP8a0O5%wgF{g^Gd~39DxB?|2Ybb@+!#AZl3=o5cTr{wOl_SkHmu1 zBW$Y034n{1Po)`-y3caLb2m?m73$7NRSU`N;iTLF+xJN?7_W@pN!k1CuQK>1rl;rw zcmU_&t6IN5GrBW=38*|c&^P}_{!A+@b@;Vq7>?EDK zo*r(_|9BKsCTz)L5enp@4hd7U<*E&IpLk{@>d>`!#BtEyQ^*o*fI*TNW&kRV9RipQ z!_|DUid@0?5Ga#N3}Dk-$0}638sL?}8IeQ`hzqzy0z%AjEgUe>;O8%SD#L%qQ?kt+ ztlO;$++Fjs4oh20jH2Ow(DlORe>iQMvb8Dd$S9zWcnqnyuNIkG0j%(UN~Wpqz#(h1 zL%2P;;!q|=uGqonUuQWKynHg>Q`3|S*$I4l0OQay+_uP1+1|EF0-JPxPCVFPFK*Ce z7PbU43H-0x$>(`WGIdFhbkNyppHivvY|4O#YHt?ZSrXSC3ap!|YGrNhV>m#Rb!giq zT@X7QVQURERuDGlX4?D)CQ-_Ih4K;YAq78R~Ijw*^q_z6ZSehN@EMb+jug_y!= zg~PpkYFc_rYuxj~K%q3Jl6JF6BFWB2h&}K;q66yGdaSkl5@DU2%ecg3DCKe0?{F0W za#(M6Byk#qUtHdg-Jo&xnvij2zUwvR$B8&?tqF#RQkbgD{=imxdgKhRT*d!YVYu%e ziT;3)b>+CiC;+4fzu`#eW?PHhW!D@&u!%ODkXcs+U#OZ46mk`qJu#q1tkxs7Hft^f zhaDa;6Nh|fH%*`Rju(lM95px~Vln~n<%4iHpp?}F z-%F7A^3r#|Gq~`>ZDp#^Zy(UdufGLOAWF@}vn~>~;=Md3=9a>ePDRwzet^x%o_f)< zj15jmp4()kl*2oCvUWMnN$-+qnod>rZA!US!l}{a8ZF2?GAdiI6X8_gbGz z+{=L@hax3PY}^&b9O$`r98l`n|4JO%BNW!CaYu^7SqsHi4Xz*RXGiwNxTsjeE2_jh zxhVX@5?==n!|HY}fpHt61s%TL#3Yr`H&v4LMh^T{F7iG;eR*-;!A@Kn3@rJ1_ITNHt>qw2YCvbWE(F^4;xV(gf$>}-$R zU#6MG0#Rx42HHXZDtcElQJj~X^cq`rdRd;3JI^e0hO);^t>nYU6$F_BTs?*hU+YV{ z`aA>|3i%4m zvS;5G+fvw?&W9&2^n1art$o(=!pxfUL=Z%?^?y9g+dBY8Xf_eznpsi;`bz zU`oHR){jgP0Qxi`z)^cvgZIkmZIT99K7ptxgtMVwEIjjG#tG}=S%4J1(Y&2JQJp&s zhuCI{92_Bzz}1vzALNJdV>UTT@&yxY!_8-}2?kX+?e&;z4$H#<48vO_65D zG$GuIJ`q#SAsyvqWm90o5vfTL*5UoeRQhVDIju{3UOG5Y|WHK(Zh*b(6MEWe!Qz9FDA-LHs(;u5Atm)q*5$KX?b6^Q<+ zkW}BwRWACeO+%Tnydf>ML0*CviQSSL5ju~h5M4d{_H~L!@@kisE?0^vs#1_^=J%HU zDO-j@7$c|1pafCzYFywWk{W)HJJWzGt8tuQWc5gcfR21zK+M`wyj+{x z)E*TSVKX|r$nP1}D&ys~H*@FoL1zKKm(YMA*{#A%#&Nc82T+F*MEUj8^$AjU2zt&+ z{559s(dBmvB$mS|tzV!Wom}us%-4`tUt6VFW(XHjU7R^m(ATyrPkZE@>KsWP4u;V*Z(23BVKd!V#SC67WSW~78| zuUPs}7QqfK|ilyH{TVw!bCJou3K-b0)I>r+aSlVBBW!)|&<-i^h zzpv4NOpn~3fGe2A*otI5?er!(lLxI0N&H zmh1=eu+s#Y$^v+ax%a`V#hvW-gzCQz9yY(}(DPh45Cb|jqidfhk8p}VIpJtXCzZ`& zZtgVIth)3-(tFWbW27mwwu;0`nL+s|!l}Yct$IpS1s6zu4jkP1Ve_EGJwvv3IlP#7 zP~Eeb(z5=|bweeTC?11r*}5Gp1(pb$i2lIGAj*eD*Ezt>IYoPc?@(OJeyY$efc> zuK(_mwoe2CfYc{2#^}-WK7nWCeuPcw&}xlGiUS=M28&ABCpIyOe2`(1@NkpfNTwE? z?!^*DQhc<^N4x^WC*`?zlu-&0?wA-TPQ(0X>saV5GlI%Zj#4+YDF?{4J2##0V5lpJ zA$&}IJ%iPcUh!Eg&(-eg>(sNhR^mJyPbu#581syNQ#SG&g!sTcLqmfyo?~~}G2DtB zx!G1a#}3Sbs61f=+ecQdSvS?$4apAC#M=O5o)lj{RQLl8^a3c}FKqK|*l261nNVqr zi!e-DAEFeRf>zt_#3x-^TfVlh0HYWD={9=5cI*@c?07o|!u=>hGRZ`i9r-A*Y+4CF zB0)`C(GOG!jaO?cC7XT7(N4T}iy7fJ0%&G-)um&)*aQ1Z8Li)Pv_=zRME6C^RpO%+ z%&~bA`BE4(MbMcK{YB1t$r23_>Lk*nosStY` z%^Gf^$vtfd;WnN>_tVc}fJW=**4ybes3|{rg3Fkvo_s#|Q(%Z69`1T@W9V5}5gk@) zWASX9$3QNV$aC8YfOU}A*rY(}s(W5_+dl$|=XMu*87p*9#u1WFA!6vr;zvn8x4D`L zY;)WCyju5a^^?6i(+DQb6XafIvP%!5JxRvhBSO^wQ26=m`2OU`CZ@n=Rc&WZOFHsk zEA}0fsXoN=3Z06h2Feq{EgB8Q=|k3%ZyZsjGC)HfFW50kqfW39xCsbZHKF=`GDVoH z?8SYXY0Syh%jJ9EmBvP4n^T85>5+>iBu%j$r4?*C{y-LYkTC{!8}}1uH;kFu2W`bb zrQr}ponJm-EehZ;`2(~?8fcF>A-23lKRsg}pROT~H`$@*w7cRcl{4MQXT$QP?G4gK z7+XAkf9mWG@dB-RLs8m%@Q66ZK{1&(JrN3VhyAiaZW86F#OUydp8kH6{-!|zu-llT zr4D03kFf`ISju5(z+esXt3>&8EQt;D?zZ_-JII}`7+i|C3og6A62zwD=*n&C$USYF z-c*ryWCQJLpv+x0H`ooFdLPnZTd`2ZC|=V~c<3kd6jI#0AZp{bOc6jvXj48tV|O#< zOQ)#YQ<;W4Px$vcp1SWXxMKXu`-dk`z}%Cm;xZtK!61yfT0eu?nwDY)R4qzqpJjh+ z3tk@x^V2FOEQme^+>60gdB1&3*oHb}$RQ_$l!PVgBkpaG#Ac{z%>tYi`Wd&fL0nvM zKnt!eve^BX5!MX>)ZOQ>vvxAt{(fS}B~!q8@np>lKovAiU>UGs$^> z%SC(|XgaTZF5$OJpx8UwiCL~P&<2rCZ))1oX_mc}__uXPC;r`zF0pmG>W_J4<%A5~ zh<$w&cY34*FuMb2zgav-eMCPpFwo<7IGIimc0o8Hg2tLfycvx8j?4^n7#fffi1pmd zwFBqjwvom%Bv&*!5<9IP#PZHr{(K%7F#yU0x#va_m!K^f&Vfe)dS?ZYELSsexY^I0 zfPU+<5Dpk1_rsA#=ob7yV|tcbfxau?vh5`}adrv;e8-*XBTXqH1fT8imNjwgJV)uI zN0OAd3v$3ecUh+h>{4cVlIye-B4!}e+Rd!1dvo8c=@D>B?OS_<49Wlw zvO`oF6|gyUBQLM)AlmFc%9RUU6zRC9gjJ!-|Ml2M0;G)F9P{fvVeyKCoPoS&%&AWk zY=s3E@?}2$K=atuWd_=&8UUKBbTbPnSlqn_lJ5r(>@!~(5;j^_AR57L%5-*(IOaoikTeDPCjjhgm_uILd z>3Aw+C~xIn_8#f{LX8Aumnq_;bX1DZ^rIo)us^ud%L(UcO@Z--9s>`={C^O2U7F&d zMSv?^a&f4pTj!hYuh`g3vmT_;W|64RSmSa=#FCAoc}cmK4_dc@ zPIo=aTE)(WrQvsAOzB=iFg&xPG6dztfr&_u1S@e%^fMj}ciqPV()IY(rjlT4xc?7! zT9eVH5d6mzz1D=&QNUC*P+VxsPR*c6xGNW~vOm8*~_XG(Kfc$eRZmeD)}M zPIPsoqcQjNSo&qVJ4fVY9Sn5Bfr%&i2CSkjdTh3L>j0vS1o{eXRVyzgy;k-mB|H^} zW1InHRH-Rf^d1}`BYw$+HR3_QUdL8zGvY1?z+Xuut6^{F=yW}rhtd>Pfj__kN;2)D zzzxb*SVwX~ilMVLf2Em6beU`Km7S`XIFl70Q?ijUm0|O`P=c(3DrblKe zZX!%(lGtz}1!6`G@ggsFotRDGoBai^by z5TBzSgtU2+2Wtgg0&Z;Zo)%7!anJ0Xnd@?Z zAl$MBbU$F6>bqJ!@x9(Yo(=nqb~*e3wUwuT1qUVpr58O#J|dJ2^FIk?>JAV#k5S%C zEQ4MN0Q{UN^8{4wowXuY)3vXmh;~;OO|iq?J>*s%R@l8{W@MvmK~xgiOszHrG_M8< z>DE~&0~uaRvlWD@2$>jTX?vr7HuZ%9_YqDpevEp0#(LWo zUnnhE1E_5i*A6_3ZRXwps%SQfq*^Oe!e-d}v3zGdm4Js zhMx{p55;7jm-stP;anbgxepK~h`@kV1u)yt`!nW0XH%NxKL{Uz)`y8MoY^yj#$)&! z(kwkY-j})E8E7?brYEV$ROq-28`qw@Hn^=&2TXzikUcBY4>y;kFn8iYk93Ni@2);& ziWJD9O2kG`2{7jx17#wY9sSCH-wXgOpOMgYPc_NnyMQkCq;=>mgUeKtp_ESRQ2Skr z$JQ>R-Zl-$qwc=<_-iJS7i3dl!lK6bP#-z8B^`&XTMMT&b}enQmMV0pBWfftD(R6U zO58y)P@3K=NAUHz_2^N2m3&Ho5_%S%VQ`?4N5DHaBsw_@A8sa^4ef<6yIL<#z0DAE zzch_;9E}MA+JtzrCRM84t@Lwh zWEsybMpo0L4Tt@`6jbuNe@x4#nQs@;ElNzWgc8a~}XA0^3OuxM0@O0ardFi#&#VO>e zTbrj}huvTzpP^^=8D8;7vQHdL=kF>qH89&SJnN&~oN0K+^*wude1q{hePprQL=$q` z;wvoC)5`n&s ze3pB2Gc&X3(CB>w%j;fcx*ls%#aUX?bk6{?=Vj)*r(9j_jv@Zlej81(TpvvhTt%BohgBfju*Q#`$9NR?pV^z^ex(ILM1+U}GYX_3!&JZX=g5KKnP%59JF?zEz_ z*nFi$r{~|W{PvXadB~C1YN=J92r0fK&=jKi5R9CsDMv`oYS(QU?!K0ia26p91PjP| zcmsd0j6oi6E^#}8)IQ=BG(M)Fx~VwQ{nMoR6IGO^)3NW`-j$D1jc)d85YJz}HyZwG z|AXnI5Tbfr$V_s_JfCGGW&N@i_MXUe1wivF|LZ7KS@9{!uV1~ov^z{^(fzfLo@_IO zF7v}?+Sm)3D?0eiMGQF1aP%F5n;#d1MaH^WHGjLna6v9u=EXJNQ(ff8`%Q20o>NNf zSD$D@m7iG(?7clZq^13N`O%II7T^578$~=&iTvVUvr1zmDWev9B`Pv{ZY`bTOW}M} z(6`}mCzf|#7}#t|S*npMC&=Q@1jEMMI(+LzZ%))q{iEF!GW+Fprt@@9fsaXdsk_%+ zT1kO>J?irhq&fq$u^AOTwK`v`BSI?n)$#RM_@h7bg>a@>0_nmS;BuBv-Sbtw_WO0U z0-5U)Dgu_N7b3cDb*znE;qE4|v%eSFn2dNF@|x?0p!i2gnpc|&e=UXm%`JZ3M>wEt z>xuLN(WOMhj%)AD?dGeO!?@Pp|7CpcK|+dXOteM_HdBqY|D7GdhJNn)NZU&u_w@}d zn#el>_PqH#0=r=PWT5}t{BS&*rrk4O@5%|ak=>uWL~UPwpH;QA+v@?xr9pD9VyJ70p2+Iog^kxp z?*uq|+MgeX_05~Ga2f<d$3p)k)`KVAU)aO4F|*DjqnSIiufq`o!+q2fJTmsBz~&2;rGVa2{IFyh=hog5MB;$gw6 zK1HX;cCt_n8@Y4&@Nf@G3Cp1Sv#Y*V=ij?~Y-<+DC=YEjCR^yFLKeym~(xAZlu!cnS$ZxJG_GMG- zT2n017s~Maw6kP|?AdQZN$03+@~#We=$5NFWU+X<*hqi(uX#SOkh_aWSrGm@O>(o) z=L&e5C+^@l*>CbKs66kZWUty|Gi?`I$9b~}?q--Gx21rabsZD z0o6ZnM9h=8@~6Yh*KY_&H?=!1`E&U@H^o*53*_ey{@(h9tlXBZ<~ljqkAm0CMN@qu zPF=jnK04c2o)SHcHekQ~6&oG0_eZ3zn|IVyXnz5)rBdbgRA(!ia9lR>>-UAV&KtEC zLN2Mtl{lQP{*yRXFb4)@$QGL`?ASb0R1LWuBTm&tKGQvUG3!#q{iI5_i#Lr|J!{Gx zFGpSlm%0nUeQ%j`>~GxI5ZJ3usodKML(hFxfB1&s0s(MaLYVpHv(Y)JZTk*rvb&u~ zj!0#BQQmobYWom@8L9CTt;I8F*nd)GaTg^k&^-^fq)N0B&4*PF^E+LN?`s`nu6(`9 z=A*;Q%YVYCx&LH0vqor-G8OCOdpU?WSB9x()`Nt@sOv1PS?wc5PJ5hJZQ%-?#d>)I zsfrKL=SF+;FR464RWl;f1z4f1Dt26sC5=i-u0!DVHX*#P=i4i9U(ZZ$ve#Wm?_g;ktr&fN9oIrIS`gk{U z60BclJ3POgS@AtxU0ySawS4C#?IYDOn#AE;me)`7lcnE31H&15A4d1x?kXFlv53}- zdCG^J8>zfPcl}!VPFZQM8z&Aaj=S4ocd#%=AG>wHL|c9F0+*A;&^y`!sR(*5y~fH5 zQjcFbJ73bG9Y1YUD=?GN6x%|gdH6dWe|yGMdEr9VjbH(v@tf5S+|FrP5kHpi|HHDk zc~uP6d~MZTYP*K@jS@smLu0?Xd2!I~d${foz=fwHGsM;ry{PT)L0mL`2_&Lw){_Gb$**T9%-5tC*Dzx_V^O)3Rg;wNwZ-GF$4 zzzQ+w{?YzEApJ4}&2^0F-AI}jku;$`25IB>=bj!WjO?@CL2tz0&6V@)o){fTgfebR z8dUY#K>+l7wJBC#%OxiKh9+ce%<&TAG=~J&P*>sw1GX`6$sGP;$O7EYXRY~cm7vZ2 zoOhF3(`*yn5{72JK8^G_ufK;k$}2d^AL?aDZYw0$PSdYo$T$J`rt)L01p+5XZ0T8UWGYRcvpEr84K*-A5b9RL^_W8 z&5qG81y(=jJ;HSS=}l@J=BwWBIk5ZdUen!#R~nLG0suFgc+HIc(GXNHF{&;BaJ(O8 z7z9A*flNr(bd8X*DEHenT7Kr2z#P9_mw@4^jEh>Wee`&nHMa(4>7v|Xy5ao~rHQnN zo8HnMB5fIl5hCB@WTUN@T5h&5JOFGvt5?r$FgZFBxj8nEdNBI3k9+Do<#x|Bs~u;E>1j>F%))Pvs(6AenfEzQQ>T@gnIpZv3HW|LKFBU zUwUNaBQ&i~j-JjHZIZMM{=+*j`j~ONdVKnbYYUqPE1n`>gxF+C&z*O@#F|pzWmw*V ze58=}?XrC7>|;&n4nim^S2v?~vh?cGZJ*kzXan$hy`?Qf zElpE)Z$Ez^2Xc|!m~l8)$`-mX`OUmAX|JDM3f$q}K{nLOJEO{SiA>w=oG?u*dprwZ zeCZxvwUnhp6k$cLfM2DOuoBSF;;`^7i&D0|50(8`;}-m04IzTX5otN`u8ijESdQCY z%LZ;yuT$d)tLUtp5P=S9owvVjT6v$sj{AU`4s5S;t7weYv%%V$X=fmpGP3p)wj8ZNgjiK*jMIut=gEIo^->a<sxqz2K5607okjF!$6G_QV>YQVH8{~^}Akit72Ag08!2$8-022Y?+;2IA?<1rtSE*Qvj zWHmZ-mqnXQLT3>ZYOef7Rxui59Zk8dzi-|=4{jYQd5R`lS7{^iw`(>e9P_i zs>hn={phppG&7y`G?{47Ce%^pJ6+6t2ry3f-K3(gMz=S*aZ)$ zhY<7w{<z-=(!U#x{)nhtB;oXj~@R)YiWGUq<@9>*yHb1)5|}p7kq#|4psZ{1&x`a5G_T zd~5gB>h8UMy$5$Kit0c5)du}JsQwPS8L&6#zDo6A)ZJUB`Z=2#ZYPNc?VD$tv0n zSijUbn~JbG>CIHZIZWt43s$rnR)#;FH2nCnbny|SUZfJvynIMvJnzbJGfK`uk(;ee zrvf>@=U0SCjx#kdmZG6MSLPO@Y10nI-VEEFSMCD7a%lv8I3d`)zri@lZ$msYhOhCAK{eu6E#>vRAf>k?<4#(6eF9 z@3bXQoO~C>-XmG!%T@neI0qvQ&pBnKylmE3qEm=4F#NXRs!AtDex1c+sS$N-&|+&GkX{XzozP-CDVa|Q0zCqwg!tf z_2fFdiO9Q9_#$_xIwE~UG+fK6GdwXO1&$d2SBRq)9!s(|Y-}aVLLnO8#coPUi}zta zSUQfqo51gxFlvzxq~5# z_!K-s(4-aEFgbc94W9BaGrPpb$O7Hpv<<^wDU|&yuw6RXY z6Dw#lhTiNDu4LK|ZR^E|zYz8;Cyi}}Eb`pGM-I@xxk11_i4jBYh?dB;R zy4(zjA7Oj9YV=*Pb?To|Wyyc)7^fQ*ThYtFuY|mL9ZCd~@{}xk|K^^masl?({cQY{ z%W`|g6$WM&41=8^x1P0`oK%gEzaKh|g9j{@hdHNSk#&xjv zpFVwav02hB^4k2C^7_rEWIXc)vGT*@g!uZz`<)v|^|Ss#{#v}PjzA>*&cVI6_^&(t zb>TuqY(wD5w|=7bMuSb)DpzLITTKUP{{FgrX@8;sQp834X0@qitXz5)aPuWtVMs-Z`)WUUCV;J< z!3EyDC%NA%Bo@*Gclii6LtadKu9vrEeZk-kaEmm6;q|!yH?3B@?YeLJB-Lbo26+Ipf(K6`N*Z z71hboMVH>!biT$)4}9LS_1kchCPM_=q*wuYxEZWf>^?#+^t_eBrWtLk6yAJIvT3zd zQ>wLid#d#cqI~nPOh8CY)mZke9*wAkKR`y-m|St>YsMBRji3vB65StMs(6HNCm`jM zzH`^=243FVk3>%w4Ly{-UDQ@;LJ{#8)%03zW0K_~f-j4k>1Pj>yS9I-5 zq2TLnF=J&{<2GI+@lG6Ov_0V?G0b{bEUr7+W9@a~@S^O*&4+uK%^T*T=`Ldy&AW_u zt1c)4GnpJM3|}xI@E-OOu?xwaG(lu7%c90*Z&N&zvCdV0qrX~<&(QGI8I*nrmu~s+ zQOJI@`I_+=-K$>?#h#%NB-V;y@$9OivRU94({*gcd&+#kg4TUaD|Egk5zW__xH1HD z-6cGPZ5{;Q`Rb3z39Ytcm3^3aP~X5@zVzd*off(?{FR2VgFtvT!ul{{Nv;28IE}Lk}47ho7;-0ax`MArti70XJz<_mc z%l^Ynp3U^X1#So4XdhXdi%(y?eb0zT1W>=&@(~S_uDlbSU%Cr-?*WirwcdJ*G|9}7 z(V6Z8{*WlmXu^V{x%5q(Y#e6P(@z|+kBD>F?}0}xN3>#3G~7m4d~IYwWoeV27*b@@zV%vpi_g2wXM9_WY4sp&dCC;C z?BQ}(W+M`o9%|i$UU3h8Z>@S2(D${gO&JQj)`jhSs@{G5aIpg70w{${#%;1jA53*T z$8P^y?f1PE8>W4B^CnaPIDWqb|EGS|GPr}S9JQI2v(;5mxbkizzaeJLViCK{r9nEG zB?5Y{p5A>nV@WY9(OFTcrf$-=n%&E%%EY7#l%@K(EYutyN>z*X3Fea^J$!Sx6_RQH zLkE4{)!9VCWx5CP`B5azV#?_j%kYl%fjchmb5>91{r%D(`bJ5K`_IUIuNN)j!Zh^* z3Z>Yvfiw>PdQGM?-JaiMHS;RAwnV#ECR@$P4xyF|*J3G^1B*m*#D zp!Gz-NqXJrveBjI|FYJyxt^OB!XaO;^>kkY|Dk;@xT*130zZo&dSag+kxu^_JDKj9 z7VTu$dA+_FXByO&@rT~#mP>E@tFkNR0FOgqVq058Y;#dcWU(_vSb__)F)Cb)D-x&$X^=tQTIs?!?-dgDqL6uCS7Qb;kj? z@JH^dmvpR$SsfiwFGyvyf%1h#cnkd0dVpHc90J(aY-UT+KuIWSi$aJd_*j0o%}C)o z31TG>P|T}Q9FNk4A``|s8pbLT7E)dGhxKHcj`{<>!4tz!lgF@!+7G8vIMCmJ(57Oa zCsFWm4YEvlGTrp+L6dg#_cSgA*|-;INvEyiP1n|xVt(Erp(@W6XaDpVv35g2BxUHBgD^_ z4*f3p%l1FMrz^UgmuUT2?iFbK6cFeek=%p6E8F{AwiDSU)(0OCZOFHQY;V%0ak4j( zMZyIc`CTHz>0E z7d2P*y!WB#jJgtEEb=YV|Ik)*e@Z+Q9CRMe2#x-Nq50l(rotzipR26o_Yc_CL|9R$ z6rlzX9&uU&dRK;rG~!`iQ6hfX2Cmnq38%|-GH!LS@!=xP`VfY@GqMoRDcdo~m_k7( zr4v@JOu&$Wq10NH%eIiMLejgT^{c)l+!D&7v%`QzQPJ=$z@fulXI$&VUO#T%%528s zr9u)g)|hax#DD%@p%m5o4})6kAi%}e9$Y&9w07HLt7$4wG2fIWopCrF-yEUhR#hfs zg-_iI$_Ra;0#piWPl@?4S6!1+sE%DEw^QP}(W|{4t^GhtEzRLS`>AV?Lv9XY; zAr|MP{E9$d#*>WreAjT)yOD&E`6<8A?go!$_5>vZFXqa-2>BU6fN|$CFV&M*m777| z|DyEZfJ(2elF4nlD1s;``}SdR-G?yOyIg^@HUTZx>QM5wL~q)Eh9;`zw7W7M(X<|> zfFJGD5{KzR$=K&Q8P@R^YdG&IK?ikL;^Rg4Mb%eK*Y3}@l+F^r&>k&Xh_qY$9N|+} z?5MgHs9M`Ma%x3Bd-?KN<#$L}$iZcIp-Re2@OBgtu^v`hu(H>_=Lt#z?CrE_KSHGb zX!02CpCRZsr>3~>-S8HwH_!EqL4hpd9fSTy0A!gCM|6Y)^7Ip|pfMv^qOzrSPXmlb zTKWMa!X##Q%GCrNc9wuFU-`+T^OCYhI$uUrQ3vUJyqNCNdq;9UNl%;C0n#CK%uJmi z0ntnM4n(G8h{7vgzNQh23Y@$x02XG$rz;fHG(ll=4s2V5w5z|pM^%7 zHRWGfU$??m2uwo{HR4saL^J-b%;`TX^ZGxm)_6;Fuu6kaTc80Ay!@+nu?qg7_i(=% zi{dr&NRVUx(+E~72}l$PsoHQ+;22LH7-Ru?5w~${iesY}5RbVzRQ~!t&#z%Oe?1Bn zBYE=}!DwLdgZOPo+v3}&@BG^Ww3EiZPE;GiSM8K=bRlNl6(4FnfZHsdks7i97u;HzFrV)M3|@1%u-O!P78S&Q z^jDyyrEh(AX)6&O_3viTf1B0w+Y3%7Z+fksB%aKwMCL-kF3n1_#(+- zH-oXcWMG(Ke@l4i&aAiO-C@S}X3e?@N6Zq4^|Xu52NMNRDszU(8S>|{1!@26fq~r> z`zVj|?{4{SvPIW~nLi_sqW^HOFC{+zC(n|2Jdz{q6cu~hpvK>oJ`yyw(ai>7Qm-0x zEPC%zZZh_&$1xSCeK%<|^f=0{gucM%14h=gsmBDbDDkQ!c1$zS;D>EU{5N<+^Re!u z=Q@}*M<~GSE8_W&ofuXL9K22V$^0&_+mKWTM07fsi4L=LmG+8UJAy14#1B9Vdh3tQ z>IJJR(n%`HaX(q{)CUB-~I76#W)+`DB)}!6AM=G2yA9a*H4-X^BW1={7uW-h#7UuAA!I->T-zK$XyO>q+ z*i;p{wUocLHc>xZxUKQ-yS-s6BFeR!k7Rzjo8&XOV)L6HC#wBH>nq^V4I%H(L-JG7 ziTHcih$L|xWG_*Mi`Q^4J(YfcWc3{9e7c{vlb(w;J z-G_}wgA~PglW4K1o_DRgZPY1*oVV1s2>7kGt!3_$jpA$bnYswPf?ez_-CO~}TbAm$A2+(2Z91avlvxQHY$>x1|Cba!^_Q^A3y7>DqWoeOfBtq}$|BT~^_&!Wbdk8?^UbpPN3&-Wv;*^KO zT6H#(W7b6LR_K}0r(E54vj`ISaH1%ac&#u)5-b2^u2wYHc`j_Z;%n-BxqDn&FkSA^ zyzOv=jd!?QiDmRXwj zc}bbSE77xM?wuR$5od8i8$zURq`-qKhXh|KHhu=E7KaWg)k(Uz?jT&MK%Uno5@3=V z^ffn}@a1UW(jYjIPLJ`YQNX&ki#WNa(Ky2-nP`@256hcnU}GwYxiFlE{T%;(Akk26 z1%;vo0jLhe2}v-mJ0U5)e@cmO^e#&k&-MY$v!^qz?hXPi8IajdDsHGdj&G=eyv^Noueq@;56lSc}1(XVQemDFJr_8cKa-TP$3Y z4JWU%>CS|`#G|3ba%wl;V7f{8Z?%du;68u!vUOD=TcV2dN3qZe`Lkcb*)CVLuZ2o* z>Dr&;LtpTJCU;4)dzi|3NCt>roc4)$ExJ)sg zjJPSq!d>O`VY;V!qo42%+#%UuV(HhHIl_@lCLya%;oK0(&c_eG!;U(x9J$eok@g(& zsQ)eq%|8ng&YDAQO=*qw?CeRh@04-Z)1B__CepwYwe;N1n#4C+5iE@K29xPNKt8M+ zi&Exxxx$#PT0zosTCK2~T+#yy{iSa|zX#M8V3Qw~eWL1+P-I|^?$8__%fprMaRo~j z;6_xVrn9+iB=N@jTN7dfJXm@PTY`aE^$dF1w?4+ck*&X5%$w7D+*2Od zZ9@Pedccj0kNm~UloX&f2fDiiZql@0Gb!8mpeA`iHdUYrtKNcP6mCDUY!W`@4@JIj z1URjqt*WaQO?PsKa95aj%Ey<$27|%;(`E2?>bxGhESq`g`V%t0R7UG6%~b=qinfNz zUFdOe#?4As@l&eyR!-0HXTw7PPBNSr&TOx2)0Eg84}}+1k>ZmQwkCQ9G~<(Ma%GA1 z`7>(O$KmJn8}uf~JVq5sT;%l!%!!)gX>6D4B8^n`-?$(&CkmiRWtfOUk=J562?DYj ztRy}Q1^7n&Q21ZI!F~@P(og~=@*1+5hmYOZXy`|vn~k$}XFp;Bt82w_1hR9-%1JBS z#~t}r^=pRY)>Htia(WW~pqGE4?CYsK($`-%CwtMIarlne9<#}(Hy54378-R!B?q zaL8O;xw5m*s%KMKIdU~I+v8Bb!`%02Uw4LYP2M`8u-qrGa}~r=1V25c{)$)Z$#2Cr=ISI794i691jE_0R~slI*o}9>Pi;-lxkC9HY2~(a>l8&q=?Bs5 z;*a203#G)4Km%?`&A%Ci@IQMEA&BW%3gc2k{-V$Y^pK!Bnf1B&)JG;OJ5-r7>Vks` z_T0u*WkYft5>L;lnH`jCU*Mw=I1jQjYPqZe*{gorU#WI+=WK0A1yRm;aakYMAm~7+ zl*0moHhmAa%##)98me*;L_HleTu?5HhNXHGRPnvi#S9)5|h2X)}oQWjn;8NRBgxk0ldf2crZKne6?c- zwRr4V)KQ$?$BxAU@+vpJL%T(NnY(u{{|iV_Z1*K2WumS`^~H!5%y)`42w*@J9(G-r z`|oe~zT`4E1q25ZUgrj&qwWeSuw1U1ZjH-X=N0s>l;N-2Y~L8nmf`?s4S!!-+EDzI zhrGf@h78(J^-XO-Lw5dF1aD4$iYSYk^@oI={N`lpU~STcM|!a3rc;h*U1~_NN1tOV z>%sK)3NZ0WzvA8ugI2WH#tQ%K1(;4~ZVRm~uz*~8=mM6!iX;@$NuBNf)`%{mkv9f& z_G~JgrQkmtv5}txLa?Gqieob=Oe?hB0XA|J>J%}Rt9J{UZ?6SS&hRRBW&T}>~Q*sy>@b=@tJZjD^~~e zUSfp^n=(qLxL8z#{)BXTB1guf5N<^sy(ZkRnH!_obRuX~S$a^$Uzyi4IInc<;s%%MH{+t*TxB($6iad;0n1z6A)BT5yg(k#X!?3Xd)r5ZHwTE0k(U#-_CdUM9yg{fkF2>ZLrDOYy|FZzD0}x7V%J0`AMS zx$}r<4GgvAiTart@K-|i1FAuOFgv=Ft*#pR?HXc#`EbPW?K2io!*<$IUMZl|B_%%*nu zzERt1IPYO&uK&V@oZ@wdbnVH)zEJ0z6J}aJq=Bfv`3VKq2NwA?WkO+X?urEhKjnjs zTNPhj@-dsi}M2-PpqrCwE6P!fkD;)8DppRWH14Uv+T6U-FGs5S!aT^1cvCoicKgR zTjeoqcB2ad)1Pqw0*v)^bWMQAhD*3`M)zlJa)Z1zq+3#u9} z=<*0=yI?<`SWdMnq!|RU*4krF z|CuHMh|liAeym4+wIC(6rPha^y+%u`fh+=-t{_zK3Y+c7A7WvZu(41<$Rfwn2b{wI zhPzwcZXX;JH!iqe0JJa?Q;ItK{e1eFAhw`j04K3yf)@&>C~zYooELLrKJPVcRi4E5 zx`R~F%@rn(_m9qK11*>HOmgS7G_f5hwiVBcw^o4d*#T~Q?iof-K>=J3au>O7TEX-OnzaHH{`6@(O~hX-mFY zwv!nt=)RXckM%;(B7!nDrHZ0yL)xc9!m_k8efW=pAs zxS~(^(6c7O+X<#>`7EJIb5|RNPS1UK!ggWh|^_Le+dzSE7i! zhW4}Ku^jQzf!iOWhF(yB@9MW#2^No=04;0B{`Oytp{YdNujmzVEIpS6=M$TT9g*BP~rI-&;(Sp{z{a#NKw_N`=43{>y!9Zj5<5J`7wtg6lzL!GG8c2B`{J zNn>?lft9ClmO9Y$HM0UAs;~nE)L#}|`*aH2b#V)@nh5cqEBAksR?dnzvtZwV3B}0o zvh)5l;FAhkvLc&~QEMrW<5#b;<(G-K0<|uO70%X7dWRRJ`_{ZMY~oB0J<$ZNxlCEs zZBwSZIK1yZ6meU(-XD)UuBA2B=+~@?MlXSWo=z?*9`BKrG2B^{Pv!lQsS6R+zBjYG zZdWwSZ&S`t`^xuh{v8aw_rdUmwTt7S=J2M_$Zd=f^C``Qk`>VR&5*FwSE86jkEzT3gm^>m}#MWinBnHHj% zmO@2L%H$i)q)?Yaig{y~JGOl(V_y>3@Go3v-oy2Wuc3L^+Su9;d<6+{|C*F4%OW$u zZx7R0oDo1v4a8xUG@@w&mq7Rz zTAtJ)K!Wq6$h^#6VmDqUrA59PYA-LWWd>9InImT?U=(z`{I9Gz6D0b#tm*Kd({reD zTX;WsIV%c?Cku#>!@i_E@ldZ{F?|I7!e#vSEhp3J1>o%5w*c3zb3LUKBB)GcHR6Oe z9C5P4i)?m9t|)^757=s~Fa`;S!!2n!+qPNPRO=bV^^TtF_3LR3Thtf=HDrOCj8AcU zSC*5NP*45qQ!6E+$Ns4+b#`dhhX;FDjw(%DyHkDa`vdC(n+u9Wk82bu+xAyti;HUA z?X8G%CLOc=B^|22%#!)vZsG**G}5|`l@|)vjmP{+QDXx41elGrs{oTNe?o}(9Mrw5BiTPzD8tz}AZp*v12w9H&>z*N!tzOw?19BwBfjJa~` zT64L)cfGm1XCTyEX#q#3@hXjl>t6W-@bjUVG}!+%hUYF6E0uHSVKgqN7hFY}+11>U zpr-=$PMJ@u0BUyZhgW@Y?F6kHud?9d5*MG5k)Z&KOGoooO775BQ2yB>4hfmH`=$>< zK-hpeAQ)CFu<}oqI)<>jj?yr+#}QGCkNZ_OwZN#WboZ-~nV9x+0J7e`%bNO3b+lR{Uu^@y(yjmK?|is#&}gAlZl3Le>nCFFl1eMz}&k{2g*l zZupjR3WoPwmnel&uNrrGA|MC%oJ6S}6_6(`?m|wSMtX;)k|I(PinP?>CwzxU_bK*f zT|inI#>;8Ps9O^7`bN`s+9l0oGDo*|5*xCK-`t)0XxsDrR4X7{-&p?Y?sh-S&8fn; zo$r3~R@}v)(RsnOscb=b#NgUs3aSc%T@jEFC~B}1X6i5IRY4I!%cu2Sqg0fgt%LLl zKxR@hVp(bhtb?n)8z3_Qx5{kV-QJeUFvxOFy`WmI^gsjFws~T9&QS~u;cqA+-RDvM{F}pweDGQ>!f!#X_CnUwy4kS+8q>b!PeqFp6fbw z2U~J7R9VoSTYR`g;^t&w5h)IzxVJ@aJoPe;;yO?3uQySD3${ z`azXJDEJV>Z*!O!4jAyo8;)(yw^|17X7ro`_qmGU#SuBB7GCKwOz~39mIJkLavx78 z!$Nx3&&vt0np?wOMwqWMrQV{B%(b==WN9gTpO~T2&_GBhu{%fkEOn@iF4Lf|z(r95O(t#63 zJnUlzIdl3^kZ&*)A(YLd?ZeHw}Q1RDAbmbd_b$WIpgka z*3`w6WKOdqYZ!YB>0Z9=bYu0mQ5M%Ia<%>68>-<96}l8^+Cy=y?eeeKM%0FPdA2H# zGvEbc#9rs8{QeoObVUlKX(bCjPUY~$)&-B7;aTx$HS0*0^%8@MsHFVGew=&626|8?A5TLgeD2>X8u)eVXBEf!T05+^KTP6`Ehpzdj^AfH^4P zx;o_hH)k+Z^x23`-nsYoa^icX3N2&`ljge$sTbU0+)+-a*$%ISG}om)SyM{sj#h%1 z&$@&PbCDaaOi-Fn+l2ZAK&>w}2*XK)uOjUHjslb#BwtVmi+{=$w;`HjkONDL9oVg< zPF7gdhqIrg=b6vB^lz)nnZ?6z0*YzhzB1zUNA#8@R=9I`ypDliODi6AlIJ!p?!zVE zIpYMw1-xrAFYKuTBvs3<7H#V0uE@}(deTYUW;NZal{o*jFa~}jvJ|z&1Idags!4#) z#2VTV6tzEunI=ZM`Nee!mmb+hUeEvRWZYO56@;vda884_wS5&*`&CXOj;eKL<c~JE#&j4Bo)`Pera4reG%pbAw5NYl;e$S&&*6}b_ zC2xa^AJa5eqHnm*O$R%S{71plVAHA|QTU{D_GDqL*U{0{v4`5nmnv_)2!v&c#Ov4b z*y~?xO)~cQR$m>Dt}fY|DDgtLXWwmc0RYBM=hcM59o%pVA7OVDlO`L=|B3-zF#R zYfwq~#NN0{wa~A(Vp4(GvTORc9U?092R{u3FK`)&?cl`_+K7$Ol^#X=2ZE_4vPP}( zVa!QJ{m)mIjJg$Ja`jj_+t=IVOus&QTU+kvO+w-fm~g(lcfV8>*1h?RY~|758~eh^ ze+}#DL8jYP{!`+Q2{Yp%M(Xp0%Zivtn@NTCm#|t6@`%TnZ3`@LZWf&)AnxpreMYBC z5s?bZ<3-xZ*yMz=k{^F4EU(dcBi}yVn)>EVy2Wm^N#4NWi4_ozXu@Bt7CyJ$#=s3? z)=4C;=lp3_L3FV;#OV;t-;o-$5_c%<>S`VjJ~N};`a`>L5ZrUD_&wgCtl8cY-%^l- ztycU{(MB@Gn1J*7PF*r`@-)Z_QL8N=P)SLdk@3#`t76?(fwK`3>6d*XDTZqv+By@< zaJK97vv_-Ryn(q0=;xJ*_V9HEU8>-pH`{N28!;WhF&#M6R2?_Hi8m9i?SlMM-k{|K z=u1qr)v$Q3O;>xq-qXI+#l9`-0k662H>03qJvoqSfb|+YB~4Mz6j{md*Jz4TqrL8K zYNz!`H#**H7dRQTpHE|pc&$S;QevU=9p%)Bb{ZOzF}U8bsjd*-@t~St`EMDhTWrjl zGTMg#B#nd(l+|^ex*noE8Y(cbDBk~=5%{slw5L}Ze*mh3qIrCDF}=x`k-BWyfuhH@ z*8YC1L}LUpZXn1>kG}@bqrA8bz-&0W{ouIEzf>`Gd&{iJ!Pplm1U8xdMd4Zd*Z7n>AkWmLbYs9KGUeJ+}d5QBo&rk>y`cot`-`-d` z4v*OJXqi^H)Fi=*21mzuAu2{dcn?k73moaa3tT3%69MkS(M)%gct}rw6KBG?y&j?HsenDaNOmLs_#bm>ISoY#ZP8@XCe|1y#Iw_;goL_uFN@GpRfm4m1b zr}E)Kdl$}+w)fpM8uyR_!c&(H4l7cF!q8qZas&=7B1z-*$<&S@0*gO>6L*ldvl#z% zaaGHPP>YU3Shfx1*_kNR^u)-}!U}b(Gte^9I{gQl(jsl$7UE&UcXjrhVnJ~FIOaBA zBmc7fZmIMu=a(3&R;{}l6|H!k=`x?&`q$i9;c5WncQJWre#}uv&RBnT=!e~`*&TiZ z5#Wt}0Mjp$bNo&9=g>xRqk#+Qp+BC3z z!CGKam$40=&E<`bR=RL()ih+(mblLqMG6=|GG7`cq1Xg(x7c)fR!oh8thCJ3_&@z^ z3hQ3m*u9{b4rHYnB4B?$h1w99Fu>LIZiQ%#;CSj;I?=S;02i-l9tFaACx^MFAyL+b zZJoqJLjLnwa-&e8tSy5c)>h3JaNN3K!`8SNk^NfaEI+>_oL^iQEV$2@1Hl=~8Zr07 zFop4zmHr#(!hB5J3i*=%ASU{g6OV|7SwwNefxUjbggwpz@Rcs)Qwu0mZKMZN2va#9$} z=fKQ7067+2?MLUftTwnT#N^mVAUg@(lA>Xyow#ayGp@W@W!;~_0?O3*|bT(XM^91<2R_dSfqS~M5jbkme||MxBbh=lGlCUqk=pPaMVAMKFr$jQ)E!#MvMi@3V12SLJWgBJm*Y zZs^)_Pn1sW6`0O^-s8=jO`)Hfka|n}u7u0+rlqg{!;4bsp3NORdFtcj<`n`99ts42B=PrgL8PB>(A<*;FT{QGC z(x*ct@TBG8edyc?+H`p7jl`B%}&QnhbGGax)+S(>h{wm+} zO^Gu*J33s|OF|seL`TnsuhT~hM;lr0%2#M!x~1T%FsX&ov4rdIFX0LZuDiV~ncg$O zZO5Yq#=83*+^=2}zV1M8E72UU%%BF#<)w0Rv6^vLNb!#GPALM@{lDiR1u$rDh<8&{ zU;;Nqtf$5HNVS8`gX^37IV8GAeQEFnaKP1p4J{(=h<>6c(GF$}#}6feeS_><%Dww0 zw7xpx&IyFhsKqO{qS#Cj!7;c*lNIFfT9+ANxAw57ZP}Rw~#@4pv+2<8*n{cZ`B4 z>#TvV|9yodCHh|3O4H2C?q4SuN8uheeF#DHC<@3Pk_+N-UV%@rzr3q=J+V{?_xpZ2w+kg65hY9=UuE{*&GHn zTx^;*rJwUl^)!(`IhxIIt2y-xQU>-6M=*J~=@VYWou$kkFj-o0=)nod7CTQ*{=K1%**4m4%Y$b=*HwQRg-*f&~0gXQHV9Ea3zY{)ZF4pYOuJ zdh$c9Zw3H9A)KF@m=v2%TRXgD&Td30PUL4A{itB+qlwYEH%jyw(67>GRmMx6moQ%D z0kaIO#w4On86Ag0mlSTct-c_9LEZc0bv$G75bl5*y>N~zAOJSm#xcA-qSd=A^#*i} zk@Ic51N~8VseCN`ujT+-Rx>70vrb#$CI&Al@xFTc*GI>1E6pe`!Fe*)AHRWIsIGVc z1Pga+Zr`jhQDCa~HJO<4lpp_l+@r|=f59e@H3!LB*c$)YvPA=umoOhkepjibTsJ=9 zx`PJ=(jmH(0Pi|~e9^*EMPlpwTbK<9v_~}I`{R||ME8Js@Rx(4(F>Q(oRH#2Xb<1+ zH%Xu$HD3}R3R}&z_>9u(ojBkAe)}@q~xlW`QWPylckr2(Al<$ zGzeSOx8_)uPmyT1qvjuD;p8x%50yO`a5Tv3(PkpFsUf{mJdmJ^S(Pps5`{8 zRD{-r$*}5Ic^8hn*4*ILh}AvsqRsho8s^M6%jH@PnTg{|xNyaOcPBu)s5y8d=ZnnP z3$<{AUk2JTM(A6FOqzo(*jEGv9qYko9{-k~hvJ6ZFaZpKC+ds%iI!BzXf~~nD4R!jE5OK!s$%HPK>qFI-w{Ag!wv~P*NFzo|mTaLODgm!d&tb1B?r< zQhk%X7wvO*X+2{Zs(SVV2HNg++l{f^+lbywUGk=$;uQ%N*9Nb8R{;k*wFi_iUp&Y4 zzCaH&1y-jXM_>p0f5q`j$@aro)Sj%O8|jxAo>-|x{6Lb6dA`r2)$D^WjA+d*K)oAS zfJO|;6|nwNv+GTGv!PDb@R76W4N?z+7F`}kn_FIlr1)~?tGT*!Cn zOwE`C7@<`YUHZ;nD1bLb9zGE9&h>7ahxmw(_t_|&=K#^uJ!?%trcvdI26ev{EQ3FH zCz@PiJK0lCgY21zMSaH+3S-h3ZL&DzAiSVC43fgvG1IE$V>u;?EUwvSxkxGtf$N+& z&v$=(8R7Bl4hjF$B-Iz~%_n!*0I4sxAGf^6%HV~wasxRo>1KJlSwa%1uS4K>@M=w}Gq*g&LFq7YQc0rCGV$6sVDFYht-K{e5FZ_k1@n zYjzL?;(X#`HMQSj8Wp*SWJ#nRp=D_-*?Rp&D1t@9haWxN)drc|v-a)4_DaC~2k`P{ zeQVQc_v_0D7uo@{mD_W2B0a6}p$|O|#awSs<@z_BQ;vi2 z`rE^Fh(~kfEIxdHz+O+%^T?5uXOJD#Y_wTN%7YLT*_F;F7_J~>+E(r`X3`9=1bCC{ z{2g)+9T{f6OONJN-EMdXHr5f`e;!+d`spifa~xzB zsH{fI%yp{O_Jl%20qJ z(d@&dA?Hb1x=&4!!B8go@zuIuI>{`iGI*kkPxs;EtJ*yj0Tj_I3d1-yF~a#qLI?VUGcg{VjPjRF$@R(Dxh${frZb(g^uXVc zgfAV72M@Nll{htH(rmxSiaPK6j0(@dZp25NzQ+kdXSGrTO0b*V9xm7smdfW;5-#6 z_r=X!cD97c8nRsZ#J;Eoxk$h0?Tci_+?=dpZuQnoiJy~8Zj8=_xbJV46;EhJVE=Vu z^|ShoYidy>-S9ic`7zy*8!U_Fc05!l5{yDkP#PYN0p=`Q=aaXUG9b;daPjkx)CIHU z@V5#PX|40^O?s>jKg|kW7+jp5ZjR>>-6oqyTI>Q>d?RKd){DmdVw1%^dXX$vO~eTa zEbg=6WH}2GR=F+~J1Zi_niT>@yL4QnQ;?Z3G@w<0rMY+-0xlKYL-(b>fQFBCs`k~>w5ZKT#$ROrGMd4WmO zXSAfUGems2*$ng2sXpFJI)CZaedqT>x%y_W9Y%U?1XdH$7I$iB1_ds`zRo=rF4SJ&gGBNyASDK9`+$?g514}Epq)>yW9ECc;$a7{R*>VPL?GH$ybn~^xWmZXi zAf4pNqX0kl<8ZXcC+Fu<#lsk0U+js@vdd$BJ^Hobpu^-^m7i_G6^7zQ8g4gw^5agoWHPj$4X1P83od{1Fh@}x0 zq1Qph=S|z2e7$(@KxRd=Kg<6WO7xkuuvnxfq-6bfb^43Mi=<||ZBM&tr~hl1A6)Jk zDLX$#nHkS?D&Wi8mJ_x8fjN7A+_jo9U3I<;7LtGR_#jiPovqS}Z~&N&V!3+y(*YKf z`t8I0#G|N|kx5W9AB?JIxmpAmvG3Y*N)lJM)3P=5QPxapu z&RC-Wx3190C>??&#djw(P~4H+EsMhXexycY0=_Xy1QIv0?gBC$=vAr)x;Uw&Q6ys9q^;bq}18^U2-F??i>t1t!p8+}byD$3`>v9xrtNeNoW_y^AP_)gvw}snsD-d?@ z_Y%j-bV{*+;V=w#!7SSE*9VNvoJkb&=+x-to-%k5ID${*Z`Vj5E`ZwW`yE~O$U-Pb z2A^jLJ_{TqPspuVddX?IBGnK+KH}1~{)p75IkA3;bsF?|JfFD7Lq0WpZDs%EaeFjo zRt>uqu5WWjh-qB#$7WS2q6ucPMl+d@zu!6MjK^pRoE?#L$!aI9b9yC^FU)z8i&1z8 z2N_Quf=(_EFf$->C4iA+qEhm_Xj|=<>GW5EqLAl^*)6$xm&4KN!iB1ZVF5s(fvj^; z0fMEVgv#zct62mHBOZ2g?j|Zml=8W>j}%38+kqDKTp-a+FMBwn9Q323(Phy;H^NYY06hNz5quO9s3Cd z&#TCWpI>T8{u^eQ69DDZmra`y_cvF%ql zTgOr%Bc*iP@KZTYJ+VCd=u?%wP_Ir*hHdt-Qn@A7Dt-3m+Hrt`nq@zH9lq8xu;;#p;i=g)979R_t#@LE@_!`8 z-;AU8P)7Gi7MaNKD`8MebyjhTW^|B4Abu#Tcgx2`lOLt$hd(}@+CJT%54EL!;z}$} zH91{#{0i5Q2{e7VtN&AhUl$!4L)M}x=*eq(w!{`B;kNegkI}JSy&a199r*ddgX_l_ z=+}_i(xH}+WCy?j15D!El`^|SDIllgl4r=ef8FxJeI65}AW5^QO_2+w%HkSJ6@qM5 zpx4Z4>~o*}<9k%KQI~jC?{TMRoH7N`^(2IimTiFrMjNr2V;n~ZTFUmz5eM%}Oa)6m zHa!LwCxx#w$CWS`@1#ymNwm1_P^k<+b5>kKW?EKW4_t7ue;+~eWL`JvjizFewhiQH zl?%gbwznHjP-IPy%EM^>R z{aXK&<4{&XNu9%3ym?K}#4!i8eRZ>QBU`3u)c;MAFm8reQ`mY>U5KvV)&=DWmwbi( z#7)u(=UJTI^Vn1_S{I9e&`=$8b1SJ=T2w$-S;p-v&R1>fn(r?0paH08ip`pY`Eg9* zyS>@JNp*r3e;`F{Kf{6FSF^UD1 z`he!NSdx5^ zu!Yu2p;)nspuL_mTYhb%=`k%u!ctZIc#0#t+cfISo2EG5tiF<$(K|n_^F-geFapN%lh{Q1f@Yh8U&FLB&4JfX=zZpL%O?>Zjc56r5gdabPGsJ zcXxN!H`{ZL_uTc}KMOrBU3&JsGxI#Znt3D1B%HR5@SYt=?)luiytrFBc(pY9eyF+o z?1zkp4Hf&dSaByy>`v!kiB5OEJ*U}E*QhkI9bC!(C93T$nyA^92{@5vocWS}{J40! zJkB~gdB^py?kg_ZIrzI>>C8VZZx6{wEk>F}qE0uPBgTVwe%U{dnkuZhuenYab)TcAfp3=~g zmQcR?Sk}$x2eJvzmv^e|7+rFVeP~xbozruagA5cUI_Y{e>e4Ey?^>Gmb4hyN7U_@$ zI9dodayYOfZoL2ji2VhYqM4fh7=3jgBDFF4KdL|1t9Yv_u6}|c;&Xzau5Gp36)a{V z=YBOewu;bB^#7gT5iJsrx85J8dvyKXAF3AV&5rydNUsZ|p{fdwr&_U8>p^ zTG9A~?rGb5m*m*OpJpCN*z4)s8%AC|5;gT_MDgDQR08ZRe>`dBzGP?&GQg;WGJqqy z%I*ES9k==st6ju|U7s<~38wSmTquP|d*etwPH$dloiE>)jf6r+Z@2<@XH>Vw;8# z=s$xW@+L~sd_(k5T+{0$8R}?Zgdc-L2+qFt!xwvCms;P7Tdt2s0r0-GW_v-I74&lc zXD2Jexdkc!@GSv5_r-18zI_*ZF&-YSZoTHP1F=@;-0Qmv29N#trA)LC_9t%A{_68L zn9*h$C6uMwzwGT=X~_3Ge7?~<5A(Vd-BfHjT} z{WPt=OIrFF%xd3oMcVhng)Psh4tgr^U;5@i`P)`>gAF`IeC|d|(~nRNE-)Xvf2;vz zW~+M$lcSk#p~?5ouQV^bgA53P-g#ZN1Oe^NsI$gmo8OtY;>|}?u<}`#PUUgKf~YuH ze8d`(x-yErv`(e0ts&v22^nhHEwPMg2_Y*e3Q#>=K##a=w;Afi-23856UZKq<(VUD z?ePRXzJu_qHw0CBCV33lh52ZA2nabFTN7amQ`M>iuC*tf(mx2DBJExJ?=%z$fjC{g zi8(i1S<#-mTe&AUq2~7E%g6s$m8h@%q8-Y!1}ECH(+@U0)(A{9>-*3C+b$KVQ*YL;A_osm=a)eh(v^@|LFs zY1;Z=Xgy7&UH>rhHm~D_bf~ZE$YQn_5B9v*2A#fGWCysf>>h_zqwSEilm5Evfz}O^sBk$fH_>{f&8X9vYyq^Qh`)Nx^ZH~()|xDRm-2%2cjk+I2{dl5 z=84c#oPV>uPKJr^3rI}_iowHpiX$&-r!BCEuTC=JY5_R}WyrZF|n6WR8}hfN4gy@FAd z2OoUl*GI}Z#+>qG{YHa=mL-8{40@UQjGLc@Tjc)8^avHzM)nwvkB=wrPkhm`mS|xS zqzdZ^84xI7bk(Xj9Qc-}l7#=h|M7&!!O78~u>bx+p@*^B9Z}@wOGnCh(V5w`Bp5yAq=tW1KWO~qwEw@Mg zN_tJ_*PJ%;H7925z>V*^tG2QcRPgM@&=itq{{fv;Lk3sBn{2CuMIG`1M|^sEXe{pg zJ9)BkxVrmc6{GDhQyJ)4+i@Yg_jg0*Bs;1SdM|n_<7MC@&{}MfcAaLLU%l z)o4F_xM&3k^n(y$E1kyU4=vz7N{>HLdfjkpr~PW|uj8|%>#ujPVMP`67ZMqFUH)Zg zCz?S26NKUvYlO8Tx1?ok6th>%K5=_&1Q2^abU7;9TMlL`t!F79CnbJ=^2M2Q(d>Ri z`+jFwwp7v)eXt1|+NAY_> zMEAt%6TzBtoP;LJ+mV!)Am5O609^qXh&(OgjclZ|f|=)pT5a=&fod=dHF>@?#~FO| zZ2Qrf-9VX*Lx7`+ln?I$Y&mmvk6Yoh=*Elfb#)Lp?~gvBqORp4#Odf%Joo|7VQ`Gi zCtin$#G$p9#3}1?ZOV_Z9|;>6Fh?)E5*E3KLx?S3yVKD>FnyygNls;=-U|EFwbhv=!Fepo$o;GcAZ_;Y*hmI!)5FCR;vvwdVA|U zUxm6~tFvk^9t(eO+sp~rI>7hukLp7YMmwuX=N$qT%JI#fF~{!9_0F>AP0-QFZYRl* zKRCrek*ffjV4^G6u$D+F#(Nug4mUO9Q1H#5lQk zeIBwN=_M6UN=o|`F~7C;hq|V_-n^f^GgqzYN4ST0UU3|A_wdo;$*2%^XS-hCkAsUM zJon2Rg}(NuFO%sRsDiYLOzVF8S%S< zv)(($VtR)Qf`hR5W#x%kXAbFoLIFEMR(z|+Tx|zhi91aM^H0onBywX6arLDhGvhiF z(QbS28Y|V4wAONFY6O3n4Zw*eG2dH=LA#w(iR|Zd1g}OT86EctDaSYaqI!loQFE0i zwg&i!^GcZv+P3`A77>w?Tl!8dpIM@0x7pcgw%yRCRtI+UHWMR%G?SNV?>aCT$#Axe zOJMHcf8thRb{CTXC#}1m@ubNhUj9(y>G`)}TK<7#3dR@m5v35j+;DPrPs-~YWyufM zkk?c|G!dA|fIF>${@p-#JlF?`@u@6=5~s?nf?+|dpX}e0>%nK)Qey1w>+vAgRtph~P|3n`rF$j>D~{o9y7{ z?pm!5IOD0WD0{rjO*Cb~RPV*5Bv(@|%$%(@-7(Uw9aD?`YD*R%LY66n493)D!6c)% zTk7R%yZjQg+AY=9`?XNHv#?PGl@N#|lEQJa5eZXwUQ!UG4Y6%u+WI4Pz04bL7Ox8HY zwgB*6<-f83UHE#<%A7n(@~4A40S84Yl~)Dn+SNi7)O9oIAKU6?i5@hqBh#PH6$)HZ zy_546c+-B9urF5}_b}Q^QbuCoN@VL|z8i7-)EZIOb+|++1e-6#Mibm!YnMIt$%0gYcvRFt+O4M}%AR#LYUOLlg-5m~0+ zMn}T8MvU{zxXRE?Fx8Prq2;gu{8o^^IMm>FAWHa^_DIdlCzs7|%+>k;+y z{X&02mVu87B8M!%;l8Xa6qECA1VdU*Dq~GLZ$$x}6~bOIc=n&`Y$;{B-u|U;MM|VL zeY6xo6+XE1@W{v0+{`e8Ekw0)AK3==#RHTWdus%{&SeM1_QaefJ3%`jlfR`R_vPWp zvhaO&mq<-TxtM={_V#0(*Y@$cRQ{sNxx;8G#@kpAkeqnk%DDG&vEe#5zDZC(%cG9< zrdD(7h^XOK7on2(7%HoegmhkEFzqYshjhhO611#Q$hl+G!x@^?Xj-vU4R-o_omyA4 zjlrOwUwd3q)fz1X5Xi`0hfHM}b#xR%`~NMz0vfwTWI4YVC*}mlw6qeE?}qf<$T>16 z@eP|lcqv8-az*^nP>3{PnWZV}K0ouQ8u6C>3lQCXGOzkMj%g9EkGvBd#P9MYP8iq~ zw1vxa?T~}*iBHJDvmi^Ybr64@Mlv$`rJx+#v3Krcqg_<9ZHI#QU~P!=5_WPy%(QA} z!Rp*})HSjXFoEdUPqq_lb?#19HSA{|zEMHT=8aaft?L`1DqmeuWxUAo{;j-;zD(W{ zqNB6CymewDc5?kDW5#M-4CMgVvHl05mw(cj_$|JXF(cA0Nq>5G^6X%dlrQ*t3@}|% zE}MXSf#Ss@@^@Hv)UQXSJtQ}4@-=0snA^c|`1_Zalv>So*l5P;k-N`LAA++Ip;45S zFt&9^d{f-9)^M{dz*gjOaIa!|b(Y46c_W2Ap-!t_0lU3%CSA|}32A5g;&&yBgPIOA zA~z5g22xqkxb;S-s0FdoYU=&_uId><%L*W`Vl-VD`a9K@+vLo^+>{;>UTCX67az-* zJU5^L(Qj1kDa7$SUJgQ3Q#V`V`d7MBJU+JYcUipf>G$rN{XwVpID}K|WN9+wDbrP* zUzUNVO1V#Dqh`-2pIDuQ3-Eq{5{|C-US8gteNcPcC= zC{epSfk1Ga_Ij-jsJQ*x{yVps;X~<&M%MUYmOb*QOUy;G$Z?Qm_@At0V|EkVJ1Ajk zwsA6l{}b=dL_oc#rrCa9#SCe|GdH!P4meAqlc!f0X)Od*Rt9!tRZzr)@tk#5*@i<_ za`%RwOx9)}IEK4p3P2ZvWTh6rItG)ZHj?a0N@_q16qqJt&1rchAIxsrW{%=K4vQWDn1$$CW{)w=lf_tZPZ#pWx3*llIR7r;c=EnnsX$zC zkj5YoIHl6+KlV3hwB&T3}wyul7^Cv0*kcRo4h0S66g<0Y-NF@gh9jIA^pjANg+N*g_0jm8#&C1R-gb{uO_-#e0S7=}#< z82|d5%UX-knM^I6JlwwHc-Fhk?cPj)!wLSt4g3LYqN{oDdKe!UmW`6Jw%fOK<0%6A z!+d^VLsp!K0^B?8sTvSs4>a6zVm`@zD^rqU3#aML*q%7&gDGLbhC*>N=E;P$Ve!yQ z0H2gt`8^2g;{L?hwRnjgUHIK#h9k0{t=K6%*`hos9pC)yJd7nEo?ok!lJX-NIA{d3 z8()zU@2@Zw5?=M{$)>3CmV+1xnd^IQD=(IWFPg*yrP7)od`oVp5|st+28J&C;GPVd zgDV3zbi+1KmxK69M<)p$tFuq5m|YR-mmhJ;Y{9Wl|IAk6Y!B<%rgUGX%D)q3g3YyR zB9Z0b{+IwsqhXjTf)sp6HjRv)!i)aMD<5sn-PMaJH;ogNr}}8&X0e$z;kF=`^ua`+ z)Tk@6(UyC(tn3&H-X>?3#X;awZ`BF{K4!`W29ZX%OtE9IVnxPf%@!~ND2aQCW@re8 z(vuAqs{@S4ekDdlKgx^xT|7MOgQQ>cf-tqt+wmk3YJjjOo6?{5nues?Y2FwO_9-wM zG@AaS)-kym?TmUz-PpwC=BJg7y3P{P{aLXeee)JpUlc)6!&umT`h6TX!jFay!_8;x z5-WGf1?^4xslUeqpG4kw%J$9PDooadZHiM5u_5)YIA^{O?F9d#3=Me_!awvw$6Wbm zkUm=+9rBk54?dxr=skqi^74-rSU#P@2e(lpfEssftQy1ETX1xfaRNKR$8$<<$1n#w z&j7rar3Q7Oy-_IPXfZN?Bbvu`vACSF?&qYI{YWF%aCMu7YX1>H%IVpsHGH6_c`P{y z`;YfY<`dFh)?$$4&UuNkcKHIm4h0oC1Gef+6a!bls`Fg6eN;3n^e%Z(3+66tjC=^m zF5e+C#_ptuFFCrFK6{&q3iIUd7hua4Yt$!H*dUXoo4tF3u1NV2dU16zkZCAg1Fecj zEUet$9d@}cyYbe)02@0AM5JTh-%0*+_>jpsJ z0Z;weHB@i&seX^7g0d8zgzP83#&=RT02<5APRB)k7L3%dVpQRTg5!()ce;q$x7WmL z4<8OGew0;WQvS5Smn>hQ*C|!_N_e>rd`Mt2_AlA(KxLkFC)WNva!`<8pirXMp7t>n z7Ip`r3*cm|*3=9zXjZ0HQuiC~#MeixyaDJQ9B4`^vnKsJV@8+A`2j4Qb(6fvBIuh> zdGh5ECPO*?R8OBG66;?VLD!tvMGwbPWHlHQrgj|DFSphtEGw@V1oiY5tG~PsbEYa3w{i-MP+gQqEI>t1YmZA zk)WWLTkfnkz~TmOvmQ86vaP~c3GLB_CV|j24j$Q}$DsRhY$LI;v20#sSXfOzf^py&tgo*z z&30_`dyw^eY$~TbrdMo95h4inBWP%7_PCsOryHW5h?$!HIjds8V_J0(1wH+#O`k({ zw)73PWQ@gtMdA;T(#TWbWDjOa&HUpSB*bpuLLBxPh40HpFhOUlF6WNHvsNBa(0F(=&T{85QuaSmm$j5h(h1xGqAj4y>&8K&0P z$BuIQ(vFUQ@_~9rV~V{eoy?a14f>s14n0q&`1$)VI!s*7_W9dF!U=*HY_ni=x%pCZ zaL4N~QX1-!x|vP2hM&KGw$!JWHUeL}2`ajG9QW=y)@qb!($Ue?4o884`PY|f9H@fL zYANvG#eAy5o8MCG!}Egya5%thFdS*u1SwBW043@Qwptt%VW(&Zx8ov8QYJxatKaKI zC^%mw7$`cjK2yK}!m~Ud-v}?8s-QMn9@j18cyxzcJ1~jAnCM6Sz9iET-qgL_W1Pm!M^m88JP#Z~RYlG8A?Q=%W1 zFSBW%+?cd|;vY^fheB&uY~iWv+oz4rB>`)D)cQS0`aRq__1!CK0y<5QwbQSE5@{NU z?BG^&wX0B;9L9abUsUxr4Vqu$(Wfx?M{jQEw9BJpP3aYjAdwhbKfsxwgOj?s3;XsL z7$gp>==n4<9WPA!P;zd{L#W5%bG=e(l<3rZqBSTf6DmCBup`<&ot$fc<6k6sqJ#Rk zgQR5XblMq@Vb$&;n38frJliZ}zdg@$o6r5@0c!%wUtzQNqI5P*J4w+h5M~@|sl3g# zwXrU>sgU749@M5g*|1JTcu>Q=iAE>4C>-KOz?zkX-|{)}VqYvme(*qLsM1RN{jAMD zlSg^T1eWJVsAD>~U3H&8t0-}@VUPBP>@o;;mI9P9k9XR_#`|+yIiOy)_$76#)>zi| zFKW}$ars{qa-5 z{zC75Z}*L09Q^d3d7L?A`<2i6RaqP;z`-JA&Sa2DsxVojpzc@gbV40_m_FYlFlsfM zT4QN?e2i#s;rP71q)=MPIp|5XuyCLHLEzd}7SRZuh>G!NP-${GEV+83ao&S|29i%; zOJaAbftdB;fNp9PR2G%`=IcMGF?Xos{;V~3a1*|^yZj5VCQDgz?*AGmSW1{+Hxz46 zeEfMqTR>b!#%S?Ja7Pi8zW1)oX-!^!#^m;VE?r#-FQqCpBqJyzugV9N79}IN`6MVRG5nPZ>WCP=$m9p-f6@Sfl4v zEw#UUtK`w(m6w!-gTrXM^{)BK0fT03*?G&QP<*8Rth)cn4}M4+V}hBik&#hx$*X@h zK;B!OR%z6a3aiKzqVuyM`Bke8eF3R~HU)>zZqK)Ju_xv;rdUlj3p);d4(OuZl& z#V2VABo4LSxZHVEiU8rX9Mcog!e&U{eXZB?n3vUot;Nk@BHwGLG|vk&gmAi2 zgr)@>+XXdd!27eHcA|80>frM@g-0eQixwlqR&`&{2$*%sV{M}|Xl3E&6Zy_q;ezmm zejqr{SXPdyGQ?9-{8$qT;&a-YovAb)pyWvYheHiS>a~U=?Up9GzI`BnPX}>#CtkVu z`)q*rtuA^`O+=M#j47YDsls_9k$nX90z?) zgNbz`+4;_*>bZ#8L)%JnKf`W*jRqUB7_~905go9yiqy}ZP`ExGBqI*@q|o3L5$?5{ zA6G7jOd=Bayy7cYvCSn1SDPt+VuKS6e_ft;>nm@m+cV! z{V_c~y~2Y7FEpgr)DV8dc|<=fO*jTzA%;4Eo7JJKUQU<%{QMEuHCX36M0ymuf=uy) zx!#U9gqYLv`e04qu3CDJ1gx>;iE-;p7COUhEK0a0FL>wd>QXx}1-vI)jq`K2mK-^4 z=pdznIaKWd(MrULTr+B42)&{C`ofC|BQ0+@D}H9+JQdunAtov)p9~ET4VwJSieIv@ z*;`u>nZnDj;mbBm(yK~?H%<58#;rm=CP=L^#c5M#q8yX{=xkBO!k0(#HZ|6^mb!bDQUZ?p3v1{P(K`AM8;X?Yi zQkUfI_hvolARN=+{c{7DV6hR4(^)_~Dg4F}=J_D6dRoAt8QgadA0;oIhuq>&S>Lr^O|!MIYEa zXd;38)W#BjSUx5T<1H^Zv;77l#X;keJRypThYn-XY zsPtRST7Rce^N#z(C@h9jR0`CQLMr`?$-|VCdzE|Lb_J1yJmsA52vS5@6i`NunsC;* zP4b87%pd5RgYr(Q?Qb~Zt)_iH^-B)uIIUy9+LRxj0-IY)q00+fh?mKac|A4o+fzU0 zIWJS5mBqHuk%@^3GY@z7c>bdv*1+SwKQE`)Z4Dsij8RB?DD(r~88z~&Uf0v7D3V?B zataahzCs5rpPZ@M(aftq3w*Wt1=eEYF&7%6p3eCqs|Xv7`AJwd(!xTtrkVitlj* zmbAVA>$;`fu=^ST0YMvK|4ay6jd~Qt$c;?#h%2>E1bptowf^+<94GJ=*}uMQF*&B! z1tllE-RN^1;m#p~S7I*pzBE9rOnHR1JBEOo)1fz-wIDbBRc|R}D<>i?zoqNC{wLG5 zLX3l=0(^D{y_{pjSx>rRf$1S*hUfdQ11a-qxOZWnU(Kxq1ET zOR86QAO)pu#gVe*V!f=R{>-VbHOJD86apyu8E*^U^`bp^;H)k=p}fbiOz4N@aoi{P zPg{UJUs4IWF=UDe_@8jh$MV{H;}dV39V8g}$K`_XSAXbVp3@Sbb!FbS_&~A1cQ8s% zcYYO?|JAdGoGU$Hel?X_+Ela76=!dCSLk$AkC%lXMfPc!uy|zzY^n4syB`;A>boM{ z*VS=WMjwn)Q-Bw_|4fOTQ}-TmPSDTVRDLhKJ&$r?7k|UFLF3ob24yO)aObGrgs$%? z{&}91H(wV--z#+C2n7v5N+1tRgU5K^y5Kclq&u8vo}lt_vOYS>`O!3HZXTR)D?h_? ze<6WTasROHp84$2(|6|2T7pX%%@hj3#6z`XDV?rfg^}QfRL5ju6XRiUqMcDtV%pBH z!%8QwPcKp0;_`%9m20NxiOo`ApjlKvkht3lp7K}s*A$123C$aaKShZn(N^e+-kCk~ z&W3Prr27A{NRHbAh%p~$n_~%SK$xqZYFBPfKEJlSc*LMti@Gt?{@CvF~(W;Zmk|?I)Ak^?HJTvSaAtn|JA2mp@v^F z`{N_~RPKp{D8Fz(;Y1!9`m(ume1f4 zp2~F&qMhf>dv`T^r39mt`My`@7j>P|H!I+X7V*16c6s^O*XG~<%y5R)q91X;jmQ?f z1G=NZ3cmiyD1tbd0B-1-46Nv=CETc0%IxeP4h5?mEAevdT|DgO+->eevGAM%Xv%!j zgW$qntjaPZ506JhEB`Wa;EC%K+FwPWmv^sx99J)BFfrYh1FbxIjh;`-N1&Kaa3Gqs z#_++$D7Hytcsq`bJQlo4xsjV9hJI_W2O=UOKR%PzHMr&&=lmwpDOm|Ipd55tTl>YOLZD-*C2Pfr=(lKd1E|Zrbjl6+H*Lt|Iv8~z7Lk)8poFhzG z^a>BfbT_M-nTaooWtVp}6c*(!Tt+&c{;)}n&3);5h+;WgqU=FJY#H=329K1>_f8c` z8Yo-f6=_O`{iQiE1vfljAL+IHuEQrz4iBhV_n!BO(4)|&54;hZ(CRBd$NK9l`n}%R zE8L_iMfa{hQVMMqgU=u%KG5S2UiAsS*Jc3y!e`9^yC0%q;bkB^RzIlh}gi||Z zal6gzymY(x{HO+ADwOm?Zf=;U_1a@;Q|#zdne@gG9_Xf*mJ~_15xT7Wc$kC2E4YRr zw5@?d-Jl>cpV)_p*)#`hpWtIt8}ig6z*&zhS>n(t-8l=!w`E-gy|PthYQ+c;^LxzV zdkp^+9^vKcaqA^6`}(gQ`@&DP+=o6i-?-{DAFK2vvyp@lpD~?a>;`G~rib8zMKHVj ztJa#G`v;v7uL^oKw50|>NiC@Gt#ErN?{-2Sy02CZQ$ zlhsI^01c(m6)XC^wM1}gHci>`(#}iA(~pdVxD?Ec1>}#UB1H`59=SxC4WV!ga2(N#V7ckU!I%H6Wxog{)Yp1hZ{Uq-t;+YOkA5!KloZ{BAoRIdY+pbj*L zx8yjSHB4wIwOhQeGKc&ZeK+qgs%1igczxbTnoqf*S(VLP-u2)tEnP-AbpM8V-XC-61 zu!HRuL9IEyOFE5R`dq4gF_&6zWEA0?){1F&l->AI!T&6;Lq)S^$UC#hjmZLdp`W;T zhyKX|C{j~4enq1{I$b>WH%lHa$iLdH$zT7;5BgNbDv#&x!%Yjvkq&8+?hRT{W```e zD=`J{W;Fpu5I$}t371*Mk6-BLLd>hvD1H-g>f@Oh!~BpAbP?Roo)A=;Y2Ht5da4g} z=pefce-4LdQ0upbCu~krU@-}#1_8`V;neYpp?fBLtJ0LMP}w8*(O%Jn&kFI`mA$i})ewkN#M2HlM~y48Nv% zy^Jg=tCYu|W3~nnKGv@Y$TgN}?Mg{9Ghh z60rrg2i~P~+&r;MF|8_7Vd#f<#{5?~ri>fsn-^&)Ev5Q37lt^bAI<%g2sHb})^L$3 z`hs^8Z%O}4@_4_pc?P6iU2)|NY`nc?pURf>hZS?Mux z%KKN_7Uw#zDbj*MTR#1WUeD2U7l5t%mCY1(>M&#kH+Ej%*rwapYj4Rpjg04DedL%A z{9jbAMCfL(varT1XGfmC2B1RR&72MVBOf9c2Haj53|$#dO0`NmIy#16>2Zylzy7oK zdz%7?`wztNzu)vwGbECQ9-HV#Ro0@xpvHSPwc2~r#D$HZgqu$~-1`q6Hh#CK3qbqj zgd$Fvi!31wI!uI)vFAG+S&{<2MX?t8FpPYb+%6^q8*le^j#XZLOvh>dy!s8`C@;TT zbq9Vi;&M49DzF;K=VzoY2fsl>N<0%bLS6{WqA1Pvzha~4S^lK-MV z*MWE#VV-JzAo8)(Tn(LACJtiu3N7vPjwb%*L_z_Q$Vg&%*p{tsi&n&+H?}X}w{({x zM<0~4V|$;fbR{U@ceX0YOgY%z%j59Xd?FB33-*-cbA8|^NAX)QEC%?S9bP`;$FIB$ zATAu?7L=?e^lqG0{R4e|x|O|d3e6)xz!Z4^0J*SUk02<4O>SGL0I8Sga?j5POV*v| zAo^aNG=118OJp~BiOacXb+KBLUs_<9sMzT%djoP39w%gSi)Ww{y?CiPsVOGlc=}LF^J6F`2kznp z4ULYdJ1&^1-c3HKxwO=S$rgj_#U!fb-Iqa;ho_5+BkIY+H7>cQ>RUOh(!tG9o_y^2 zBEzGkyk9)IyT+sW9%l=Cye8cw-qbl}p#-DyZ19xBJ-c%^eFFwo4CnA2iEVsy-nLrK zb~$5nEI4@CkCM`qi_;QF0kc{FFl9FHTDy5%omNm3Ir1z_vwq^| zjNgP+Z-<2qH4MqPR+1$A>=f}R<2D$Jaxe^V;rGl0UB`U`5B;!q1>}E2vXOD?p#U_D zEuTs)iRL#)52K;g1msrqJ~IPgg@GP?u=!D=uHKa=Erl@DMNx0wjKdV{9Qd1F6=uFi zM=>3`V4=cLoYjPCWl@S`5=nU0K=eKf?Q^ZryyrEFQ{F>srCl5num0i)@)7QrK+%sB@9-qlq zsltT2mW@H6vZnr)&%&)m8gPI_pb!*0Vf>*{rhG8KHSMWe`+f|=*+Tclt)(SAgZe3j znH`Je*s$5V(o31=v#J#c09?P49HhOrKfQO)31zTo787}E0uk1N>HDSHX?QSn+j8pj zYI1sO@&S`jiB`VXoqH8U!1_Q|HvH9{)(jh1+moaW%6Cx;&T|p#(;FQr*IC{ElQl%c zqa#2t@hhFcy!G_lXQ}dfkx*$}tzrCiBy)BYl2ZIdVoMSuKHsW}5PN`Fl)U7YlJW!w zKhO9l!s}XIyiA=eR`N&$bRsbU*O&01b>3|7>?Z5EY?aGWIA`qs{yrvLl~d6lG>i>3 z1)vg0R-w^Xz(&O9i_sWK^va? z*DqKuwcYdXKYu)b?r*;p^sPg5DY%L@QuTSkqDICD`!tYD=K%qha9#T&GGvVUJ7Mqz z?t%{IAr0GiCXtb^Jaq|YH7ilq3QEl0^$)E70Frf?$r!d&SVYsCeB_`_@(k5_^21&S z#g0DB7SO%F+N|lajYBm#q1!QGSG-$tt`lLi|JeDm)}<0Kqx7cfSneXsV7(rbR#gIiOsrv`%`Td`=Q^cmMsMyY~^0rY+PCZ{i5;hQL%#} zpn{@}Q6&Hm9y$ifYRh?qHGkGoQnC&;1pCao^3;oF?mW47pY@{I_(f}lWg$O2@;C|l z*9r5lT;{#WdPmG+vKoQi*}H9^5rhS;kGy~j${XQ!&Un}jR_}+8wwjw_{(+A@CRKi* zqmE^J#(Wz<<^%GkWk(ojJ1>y>~zG7Q_`GBGYA`D?RIllVCsBP&1c*b@T$hzvyX99}S zel9y=a!?z~sPOiC+JN1N7<`-7t5A z^A!7VqmE+}n*j{Bv_{6*{7HfqHLK2qCf3F+tJ;^RAxw} z-;z<}9T$@~^(imyebbZ9R)W^A;{E~$4kq8^{hF%sJe?g~Nsvx4>V^vWe+ z%mipm>#41;HQ?m#=|o~JdSflBsHv%iMzBgtOBZ+4Bfor$dBqMR>v3^$H@G5%41PiP zu)8?;%idQz|F%6GH-d13rW08I%Q9lrEK za|Nok59Beh_pzHgue7(wukV2J zhX}mu0mveRYEcVEM*XJtkAcn9jH;3)34o2T*lBYo=vx4tAEI>6+t;uaIsuythHWa9 ztvc*j^;xVW(cF7QVLJ$>08Z_zp0}~aL<6xHG>?VDaB5jq<(0vcDWF5)^G_@J`K|ki zd%2^vxH=AGJ&MjPwD`Kz0|=qKD27F~gM#Tx5)AM?U0jO_*JRArZ1AGloUPTEt=7Ud zu6yM}<^YCR=F;swVxCWox$34~>6t5l2?yGx;$qLxWDCFAkhnJ7ks;yA_UxU{Jp3;@ zSzX^iY;v|R8(v;sPKhVtBDzPyeU8#3N%2E$V`Jm}3C56;iHV6aWO?SU<#45YDyer> zLZPcuD2Nb(v`!TD50+hb`?}B`Dvs$o&Xys|JnQ-tQNYXS1%KC6=wE8K@w?Lhi+DzE zz^GnNFnDT9`)#*4Fsh0Xr);Xwy=#2kSCb$7zdHn#v(Sm}ybML~+9Ssm}?*_vO*{4-R}NlLvyH_=vt=s%#`8wPxdcpn?{?~?pLGU-d#)h{WgY(xCNFaZdmG_?JuEK91yk~(N7 z!%gPXtaF|nJLu-f%U?qZxwXDL-smlDyscSthZyJhqvFrD-Equc+l~~x^#z$Y2D%j~ z3Skn+?(Cn}rOuQswA(qa`0oI{auL8Kl}|5_3;Aav0co(weRqRCl2g#280s{--E61!>{X2Qy=Be-^ePQT z@cmK~{47(I)lEP9sw<)}-E!zls(?_fTYt?XN>f!vx-yGB7KRIFo<0q^JJw}+L??`v zx-5d8AaW$_7*Cu>>LDSOC```E7rIHgsyAWF$xf-_XY;ITcpBoz~Z5Se1hz! zgX)AP5BygOVI*&PZn1y%R0c;FI_EGY&<&cpWoZ^^Di*(5UcIV2lb|S>sVh{i|Nn5t zMuVk^xU+2Ci6qLcZu8Q)K?j9_1!Mb&sl_c?LCH)@ZFOxFfZh_BPgpqVh&gxDva!Egmjr$>gz$mM5=5y()vI+BkRElHbzzs47$Sv51;3CT8g1H89QU;Z;^OW8K zkn`4?PEJBd8sabYIfH*_>F_An9x2Yv*?SNHRv@0Wu>u8kl}~%|Z*4@C50Fn{N3!-D zO)+K`Zg{3_>c<6MK}ILZ8QnJyiv4{-ZKnt;=hlkY80oyF62;)DaP07h)wQ$|u;*c} z%0!5oE4_5~N>;-G{|->zfmiVCnF=t`1MAbIup}~CJfdRU>fgL`gXesx-wifn99+@Ow1pNKFK3y zC@}+TJX<+`6;ID=ow%%fl99@vkDU>PY8-xqAE0byb6&8g?L{vS$g-xF<^CgQNFf9|Y~%#gm@3M2x+ zW}Q!{XM1P-w|mUMrZHntQfIoD=_20 z6?$AC06?Ky1(~9~xMBCi*pns6^x-H-DEY;rKcW6Uuh{rd; zF-aGR?uiJ-}jWkL`i=E47GgiwBf_er!obgzJz0vHKa zFbje_Fw^#mnSKC>n9PAq`hSSG$r)xHj=u?l>oc;HGxuOj&Rvtyf=@Yl^^KO#8uuTF zVxX+l&>gCE^lK`3^oWO@RU3vdJ(y)_C)h@NM=<25NlaQ{7T z%>l%=wLq&30w`u_jZwcXhY#qgNV$b8V+?%O|3|xKZ}W{)ufP$7EyZ#U{G|$y4t7<} zm5+y84vO`@JbI^D(E#%&?s_4Ca=ZQM5}8wjW<^!z)4N8QXJE%7Nd$?@R_=~cxE=8q zO>2blSXzEN`0s`b{oY}WfMW^zZ40hQ@GqV~qym2|x}>Be^Y11($H&JCkbD@D10C$* zKHUmDgu31?dhKUtCkvQ6Nan!$lJ(2UY7Isa`PfsLTtx!30E{!QBvQfW5b#TN@H;gc zC9Wd!L}8*!saMike^;R409b!^-ig}_1QtZZzcdQ7?{Q75#=}Kg{})})asB0O54~g@ zb$|C^`}vjiRtd*ePM>yl@Kdwz`WNj&0Q7|bLE~4wog0j_`vIBO8cJv;8i2Wx^NPr{ zWL2t)kZ4xXmr6J*5HR1bmJ^XMdB;-ISKZ9Xcr6m>`i~85?Nic|S4=O5@k{x308X>1 zXEk1a{}%!oAcECaDsO!7$UJjtyS5;!2)~@ro|!xYLCRl775)h8PyHSs{X%Wxyd$=~ zYZQfio!WuyN^is|2+7CprS?pXkDnK7zptFiZqutqnkVu$Q|Rgz3Iacyg=Bof7mDQ} ziHJdc#2|OqocK4O;e7;yz++nDo=X478!&+r(A~e4F{6`$z2U`FcAl^9OJrG8;VrW7 zWd*HsANOvuzpa!x84t*?z7tzkVEpu%d=+IC3c>!lL{hSvA%dQxo9va2vw~}DMQvB?@%!%`Hg=@E41h^H|dp4L#!VP zUfkTp(}gH}ijQ}kK_~n>?v>|Xwh+K8ntTr^|*$J`O}YA=UR zi?WyC9KwoMsZ&{)Qd0WB=aomT8Mu7p+dGGyM*uKqT^zUU;fz+G4w8}k{-u;z7Vm5T zb^EIR;+1!q>wRMrg|4xM87~^L=b)S2^L8nGR~+I{t>JZ#S#(e8cxl#o2_2v_y}a&~ z|F1nmU{1-0q27t>~w#Rdrlw{Msr-T+&->2V=`CJ-!Z))}9wcRMTh^SgJ}5d8OB zfuny*C3BqZRqUGt%aIA`GCx{qI`nt&vsD^&F&XEoGXKxcJ`B9$&Fi=nScC~|tqfHh zg_XEXx2+tGo#t=j6wa<)#`l~?y$&&<7GnMR>DD-Soem0VS-{G^Jl#g~(vCqg2@-z; z^P9z7+zt-DKOCQ#Hpamw3ageFNaS{8#_eyMD2U8Smvml{5QCZ9BJ!7;shR$7&o)Q4 z?CM{CLj-NX4KA!gg@F)qi*PoI79FVa-8_lq@#Dv8l7vitiQ|o4cL$6Kg_*O}YUAEl z+DS6GIKbj9f~qjoX2q(*xpRBnUfZS~L96iS-<>B*QQw@o3&3X%IMcARznvLE6rR(+ zI9%Cr_wZ2Pad6EXPytZM)JeIXbJqDaA+wIRawLCAety|=wQqTSsq7Wy+tz7e zTVy8(e6Ih6HWV|Rti`TPZLZkbOU_MP$fV6^1p4Ii8TaDH~CvI3Vl;oU@s%Nm7mR3b%!`Tx9;O3k1mX zr9jcziw6R{K1Yhv8#<4ZzKrOlD$bE^3v^D<(=|02#|)iDhJ*wKo6;e5+kMGMzPiD& zhcvrI8yi`%+8e2_ioLzPS0HI)JomA&<<(mPh!34b$q``atw^G^tm2sJw%m~>;#19M zlivS7f2ga`!97c7+rbCC9F`AyL~q9*pS`qOAR;oy z80kPK%)2vvd8yrz!m?mwt%8aE5lj9JkE#tKD2~Fw9FXP@mD zacWIiBQ&vcuc$}G9!AX)PG-PZ7UDi?Xxm409YSwxZZT8VqIX*m$c91}S4alh7*Av% zGQw9C$?9>-N=}vHQQ7QRE{+t7p_@Hb%0nTr`!_RayVM}X(23Q6Slf4|rkfV^zQ1Kp z6Mv_^dU4_j+7r1DEZ_+R0gy@yLJw!7_!*ytr}Dcx`m|aK-`E~B2MF=rE#K=2iu@4y z>MoGPA1jFXQACyQ0x&qkKlQ%>`w;kdQ=cX371v4^K>%bQ_BXKc{kejl3>540fCkBD zeO(B=FXW9`j8q=i6Q#p53t0TPh}jv9`O{ z7e}&Nq<*kQDE_8SXPK++u;shf-!6AVYQ10NVaQh?kXEtPE!h1ZC@LR>eQ`Y5y`DYF zl@bO5D@+Ig(L@u4t<@QBmCD`LgvY9 zEp(6{C2W#}_}WJdn--}-O+SL>mlS(QN8zWs$E&rywMq;*c@%0`9BX?4#_H7K=9Pv6 zMaBqRs#NI8cU}AS>&?+xKhyuC>$}6@+`9G$i5e{gQG*~NT7pURPSofjI#FZv-b3^n zf)Kq$@4XWxN_3)(F2qD9I=?+m&hI<#_np_}kDN2Pa?O68z1O4`QXvL;3cqwbaDafN@I%`^tyJjs2NH7S7IZ~oE*i=q(6z=uTCXHN!y8pWj~a= zfp%iuAw8`Uln<*xn7Cbq!5zEDwX__zaN?@8m=7Biunf8e^Cy`0-=B zm6esS@~Jo8z?3?|7g>XR$pAmfF|V?t+(O@yx6US6#<-_~8EsznQbCqk2oydvtN>+Y z%(Vrr&wyhU15Ae_e1VewOyB&%++?ZHOfQh>5F9kFA zwp0eor2H_w9T%@{vCM@STnyc=J)G&8hO6u$=O>uh$}>VNI#d!g+#QRL{yhhdjN()1pSqODV zix00RK`uuRLG>2-FnV;p+lUp(NY`8|M7p2&uqIf~%Ixepx5khPQE^)Yur?LWxk0`z z2O93qKF37-dW2a5t6z2M#K{LGW3|jZ!6hO4}pSN+I(OqR@_;0a29<;zEbDCbv-N^$>lV*wQefzS?$*oBpZ+8!_CbOqMUzegfQ4PWJ!y;8 z=f?|EGKYh4`S6WKi|G@{sC?s4wpS!`wfH*Jxk#c~-G)v2V z;`zHn7`~8RbCK)&iaX%^oE~oEgKT}u35Y9@$B@FD)Szlzm6Ny`#}Duvfr02nt(N$c zhk}Q$a80T0xh6CS84z+uvSK@c!E>G+ylOHZhbDWM{I_pWQ*lVyfbaI06p~_ZDA$2f z2nq{p6I0WcQBYB=t);jtTwplSS@1|G#i0ZtPfIZltw~N!&fEka=5_Gk+x?ccwo{KY zGk33bTQ~FT-?R_ArE|v82=2f}-M<4C1hBY%Q_~4N9KA>^PI_2U`*z;5_O9&Y=9kLv z>Czwhv2}QFSSW{T#e+1HFK9C4^Nsv|`VRo9OV~cQeB()ThT@J840qIKeW`Bh2E(~G zK`KssW%)l+inArWT1FzXO16(u%WSeZxdc9U8o-T7dmB^-Cfb!|(M}C^!CEhYNrd0W z*`MGI*}k@bKfx7@i+m7r{BoN^+)Bd9={LJSK~a_FD6M}&d`imJoKEF+wMp#*7(K>> zFu^}Mlk?2z42GiWQYVy^Y_o@i&UnWq0GaZ_5In6(- zegQ?~q@>*T1MW8DG6Rt{$G-YKeyPga$`!As2zm7>9oARZ6 z7XDOKH_v>)$dr9?oT2X8w&QJwYVt*@t=kWV2?*K?uyp~O0xUq1z(<)lwp7n-fgLZq z^yW#xvxDTW@T^Ef$dl&dSD{ICr=p534@^crvv8I^-WLt~rF^7Lk?kV=gMIOt8E5Jhg zvdU42XNxxsJ&A|t7foT38?e-xbm4ca1ZNHj4k^ZHt>`>tn-})efgdFkw6@yl&L7<$ zFt5d00~+qYcdGE0dOI5D&vGI0*0Z*+bc8CfKy;+L*e%m$$*Y*)U(6{h8)oD;dv7fJ zURj~~p4wktU$A78_pPQ0N+Ilo{0YL z(&hyM!P%GovXj=9%80H_t->Cbx2vO`03!OE=0r#W77GZU+cu}?YUADh2WEjzzKlqF zP%>Z1rKzL~=G7)qRpno_T?ptQS+Y3PsTtoK`bJa16fXS7dQikB@aat_5sX;E+-!AJ z`05SlTgcAMogd@F97Y31`O$X-ED#5q4XI!_rDnDP~Y<1G*>Tq_7-)kD5=-Q@R1W0 zfA&dz9+2zHijE%u7ZV3y(0A!ETGMRcs;~CPvnhaBN7;%vPsw>k1Uo$fo)RV5yrP=x zP!4s5!e;YrU%~%rG}!y}+-t0!X_hR!3%vne?0k#$@Po1zh%vucG9*GP?+QI16F!AZU8cW&O_ z(&Pv&!4t+?V!bO$fR!v{7S2j8$u9;X6C#U$PyLDb_#4URo?jrc53(q#qt zrkRa^!(VTaC8)W>eUDpj;tr+dw`+In_ur3=jiHBj(hb*JUkVWt5R|%oeb4Yy=;~z9 z$}KRx+8i*=ZJ_!~g#?WwUn^5zZ!dZNgWfanUW2HFWlT(dJo{6axT1o_8UgXOzepBf z+Q+No!!y*}f@x3gVA=jR&A{^C+Mv=0&{+Sa4NCjj=mxiG`+!er1Tux>H;?<&yE)>z zqDzRplr{~&O<3hM?rdQIFW1|bTx_}X4}M`d(VeO>HH3}4#Im-nss9jieu$S*mdoq7 zp{if@QW>yNZ0l43({@b4bJ9~-lRkbkI%FF&@Bf~51G zDq>^V;6sVg{5NYRN*pttETHCZVIlXQIUG#%6x)KPLi~e0~AS4xzC>L72&)BYbUV0%yi5Aa%+g zX&e=_x&^u>7C}$Saz8NLPVfUa1bef28>l}@_1zws$dhl`Dn?QO9|!248eIxlSpWDC zX*=d2KEJ~wmHDTKDjUs2fimF#i|s33AL0uZ?eflS*Vin?UzU7(LG0V=b8l<{E@7p^ zsy&jeBy-BC7C)|th8Pc52?-hlrq#c@k+@&&9@qS3{7y-x4g^eGLpEbo+5{NbMQD|| zhz^-XbD3GRX#}C`s>pOOr2zEgR-Ww0TcwO!3`8jxLrQ1}2`?T1Q&}X$1d%L8?`jHe zD3WRtyDq+6$#pq)=_qZM@BW)>)0}Vk;vc;=YpI`n?(Ql9C5EeLic+lIeW_*79WNXgwFmGCp0Hlwa?K1A1#fhmfJ%U7}#%h9sD%2xYA5@l32xc$lFVUy@68m-wcL z@8&SuJxt&^7#o{=mpSZ7M6;e^!aaKfH2-~OX47s8MiSM_Ab?tq&7Ri$r>{U(-oo|a zH-^S?BQ+UUC6|{*^%Gk{0xf%>FU$J1scFfLoy+S=IyqDeAFLb|^t})xdk$Rd3kwUs z0t-vh+%qn_e&fdj-WP|HO?&oq*Eu;3X*c_>u>6|%e@QWb*s9CnR#emNL=q9dH#S{h zCXawG(zj%4U%k{}i{Kczaai_3b|&}s0ohzLRc3x$8X_2aDI!NqN_@5U@Ch zi*Hv%qOJ3jG?&enrBf6yR5Wmsic*Bk;8`0XrvXVRI(%kP{+|z#j0VVAhRC)kUbubo z%pa@ZpW0hiek3B~NVvqKfml>~jL$E^4U_hgu+{nziL5Wdl3!wCq9O^amTImu$DXcw z!QmZ<_l;H}7P<_YXh2+nVAl=d-~L%EA*U!W-&EvGaP7HM1g^pi5(26zjNxcc zn_sgG9+i2RNTZj7x$~34e=W5~3w7-;HtX|%k{+#h%s`&}jiiKu0oe`)JUj#=Mf4_e zLG6XdgqR1=8W+|Pg$l-5|EnEi`iiflCNb=v*qAI37D})5(BcEG1hGEX+i4tfYBNh5 zTquBNeTHzhyqsD};;r28{`H(b>hZHgONv*7Q@t88&zT2ns<5E*Vi4(AWkvu$#!O93 zw+Td7Ky&NBApd^92I!UCHmK4{jaM$83JCg)757NfaBD1Y6mU?mU*)kQjQ%bmsr1*? zG<5_nR9D<>t!kU+H6X~Y6L?~LP~kvlVu}0b|7Hw$5a56G04D zg=?fZVA3{&Z4kIiBzhlB+KD$AaG6plE3(WrTs%A^LPxXq0B+wO1g&a6P+frijh4>h zeFPO>Gp>H++_TDi{>PeIY!mfjY&dIK0Y~2mMyk?jE;*@43A@trqZ5dX}j+nGbpm z6iUxT#2~i_MbEp;xTaZ2Wb%4`~*?*>LZ|AqW{n>{8T^#<{HbCbw@r8ZzvSyZ@I;CgS%kO%)zkZTgUfG1SX@T z)I#>y4e>+#;ljC0j=P>n$r@0*$8K;{U4y%yzQwgDE&U~D0;TkXWvr>%j%E`=zE3LR0@35Mey=i=%T2N3jA)GNG+$5pj zge=y2KC;fP37sdY{;Mu<0RSiQ`IXGojyFEOuY24G{0Ln~# zr(quIkjnNW-PRlT)G-NJvd^pFu)t13W>QgNl<)M}v(}G4Mr7yYlvC8E}LABQAbG4>}6De1wosi$XC~@Iuio@Y?LThmHgiFt?tMTtl2aG{{DhcZw0ne)Qe8 zQvqNTkg9NFV@CGF0*m24+PzE;smJ{sRaz3S$o@m_MCO9O6tOram2B_e?ZQb_~dZ;cHwQoub-R{m%s`rxuFj{_7C zUw}(EEk|r3o66utqcxNAtn;-POf1D_$^~(V9R6?FCWSHBxaKF^;-X3f>oh*XSCFU4 z3S%=H;3#1H=AQM*uv~V7VG7lmw!bQOa8y#H+$u zT8Y(6PqONe64TH5maA?EIF*-o^Y5`~KBy=tnjPe*#>rp%&(7%6%+wwm%zgU!^`fp=yQ*l7 zKQh7i+b8?Med9$0eeQ>eS#K`2KAc;CgzgmJF-yASixVW&SWryvzu@YeU+!&I-9Rsi=< z3nL{do_WXeE=6dlB#dZnk7WXE$`AujKBJ|m2Et(<5uXj^53TZ{KgOYVC2~jU??1gk z+eT~Cz|c#X{lGCcyHija}zi<0WM z3PB#-;b{Z?VYuJDAC+iXOkh7YaA{%Vz~2lHFi0O)j`2t;MDb1H+p0A>`#G9hg1T^1 z`_LR)Ka0RHEB1Dk<)o8l(S-JFWk|0+het|60@-mU>ctCS$+b>a=#C;MRAK<1M?)@i z9BCe6(t5?m##TN@2>$hqaM7U69oE)wVw`6&<7P4E-t<0O`RYd)nOyh6CtgLvXo4xp zfO-Olnf^3Q*NpY`A#5_4@NiddPr&7k2c`O(snAL_KAYn&t_)QnGQFi{9k54p#|)3;q_I1 z1=)-@DYqku3mN^;aUa%b6=^~w&Ec}RIZ~Y#84997U_2LYV24s{N=maVW|@5Ms1-(O za>3_H;M3@ExdU4bUF3S5W`nniC|ZNCZQv=y*X+*ZKk*-fd$c8x!0ve{QbZ$b$mK(oj+R1Tfl z4CweN{BhKG&yJ~AN1?X2uW8R+8#08z9YP#(th2Opq5GjoHW9k{iF_R+S6tEi?SZOx zQGaXpg}!ZEL+N98nz<^|#V=Fm7I}Av)7TjAf6-s@fq5inq^^oY%*@X_72X7|Jg1s~ z4o~>g*(vuKIATff2q^psC}Q5f|7JdIfV*Pz^b#lS-GnCr;fWu<;PE{$&PqAwar5_XK}t~ zG(bu=SAvrh9w~+}!Tm74A3(8~MP#~fpqJ_wIl0-cCV|Ll7I3A$lF+5_gS}UNP zuFlRy<|yVz?3m>P2}36eL%HmA|7mvz75d3W%&R!7ALZA?fDxCzf=Oss`80>gsX$FDHUq-0#j49irXaa-2R95OI4M5FtqgJZD; z+6d4I0wJG5L{wF>a&v`f{Y%Z@fvBc%*wOlzFJDB9D6YFK_DoSOzq6N0NLpH2a&T}kTM@;9X@t zAKc{NVPIJGp9qiI20Ib0_E+crJ51X1^%y&$0*Ke|%k@((K~Nj#OL{#1#dp5Z9$u-^ zpiaOTxgPqwrH-PY+AG|7Q}d}UkDmDe97A!TOrvmpEQcBSxsokBeSa}>6yY!YrbhaU zQ|P$?d~BLMRvw+#VTtncLo*2onagwEi^(XwNy#TmGPBgv9@hRiac`46v}8d(x9q-@ z5_FuBZtwUNJ?zlFQvHFogr@tirXF@A{qz@3Ew;$@8f z#76PAfaAcM5iI=mShSZLHc#2KiYCSmDL|cK*@03zH~bX_wERq5fT_{{ICRZW%%v4!< z1pByWy9P|4+=u*tB*a8V+vfJI%AoIX`0z|SNs2?k{Ik2DGof2F$VBTXqqWbZVk+N} z2w4b-`@Z$15NZ!sKCr*#CeU?j!*|#g9{s@{bK4ZwrBTQ9VS?Xdi9aPd)&B|3-(G-^ z!8MP0^m{!$ISr(5z4h}rYqm0zJ}gSIi))Db5EEMXNn5-stkn~(-pDNV8}K)bvFFPy z^$=r%Ua_0n@IPfLXH*7oGhAL&iQ z9ARj@J$w({JL%DkBa48QqXs}p^yW2OV@61(KS3s7R=JY~s>yr?%(#lzrt_{|S4;(9 z(*{_=rMP(?`MZFK2Ap2edQZ$pvSJ{*A32S>ETf~N=|SW}kshjN&q&HYh3om{N`C?G^CCtLvUL{8nC6TVqWc zMll?u{x?`kq_{&JCJSpQzNLk=_) z)K*z7sFHjyN+ZIl;VKSXf_74@5-yi22uIqeUIX9j`VXguR16O4J6BslpUD9pErVQw zt%dEe>eRrbcjft43!!d%uC_SJgL)%bapyO|e)Gwlv#(#38TJX*&Th;puIaJ1&)`7m zz}F6wT@McIK9CZ3(RqE?n5|ZU?gHDe;paBzAhABbO;hweVss5BcC6l`YF!GE!+0xL zWR1u7>Bm|N>|)z?`Fj9*9vvs>$5<`yRR((hwnRUU?r&QvN^pG+#lqqw zdzMDw%_x0Wv(Cd?Siol(aahs-hdnuNt=03iV}qSg4|$AoWBTRN?V1^Z3Bxj*4T@`)8r7qBl@E2}2hT|yAN|I1 zU0%oT%ozq9z>&vhole>;Y-;L*np^E7^6sS``?|NnV3FNK80nTXKYBM@L$`9Ow7b7) z`)`g80)VNK&Hd~{wEH=wZb}1o1&LMrXJ5Fjw})b?-q-Bjak{}4nhvts-Dh~YYl9_n zlDZ*LzwuI^M&if6Q4%EF3it=gLEWsVSgCk;cMiYy=suV-Jjk28B?xJ>`8-vRP5TBf z&?sQs!gJjCaW*oBPB9~lz*E7541@jf{nbDsx4X$un#e}?h?4H~H@WCzZuKxJiRCkyzs$3rP?Nrg=)!*CjX{1I-4=qMO~Au!~&Y=68> zbW}Of2<5QuM~5}}=sbr6iIvT|~dZtVO5x`hhR=-ici+q90viKW4VN`=gp zIMU1k#`>#a*`uL)d?Z<)A>7p(zKyxgr@!(F)P4)W!Mh2(^)!Mfk1+CNYnFax7syy{ z3A&(0HW^Cf^2l?#itB}iAn=lD_>-^dz>Lh_)Jn>IV4F-+&FgPQSU2lI)l??Jp5~Ws z6sogkzExOv3VK*rhrfd%ypq}6D-aAyk22=9sJ(5GWPNnXZFQQOxv#4@HB>+pozQ|?tw}SDw z?yZPH0zkPikLGe$cz`lmW<>%Rqy0by+J}VtOePg|k{1!z(`iOT7lb+)GW3XVziD3~ z^eo$g3oVT^ZA&Hn!2K}!H+Qq1JKy%cu;j(oUL=0(+)L;O-U}4tO9ZD}EfabhqoZ#m z1&Dd)ho1d9&380HWn#zoZmMZY5F3vm@m8S1n(IOiZ%zmSJj#CIX-<=2XI9IA41!FhtYeFO30k#ja%p-hc$lF zf@ZdE`#ij#aRK^(#efP`IpJw0uJtJH3bM}X|1`_-iTLFs;CNC%HsuL7v_+|?svba4 z52hoK1Vm3fht0C$F-b5nC;0){lg}9H=SR;Qk2G-Vs~W^y2RfL(El+*?cs#It)p`D5 zMoH_3s_y73-YQrKX>NGCX+=ucldnf<<{fUm7CMg}d}+KhV{?@{-yyVC+&(-?8aqCs ztj0K-AV)d!!!rMNt!>@$ub8pEXEv1h%^dh~Yisu`HHt^Hs@}?xL2H>FU!FWjakqJ@ zCGO8sB&Dj!?b?nDNf`KX2$>tJ$KTWJn1vn11DT2DiRrgnBlUN!k>+VM{qhOV2jz8| z6(*6iKHjEk0brCRQ+6Xot6`Bl?Vc3!?}EN@Ct7j(BKO_$Ct#xO0g}jq1@a?<9HD2V zB8#U~c(amt^I{iq{BgpA70Ra(Q?lhBgcA7e(;@7+#a)GpJRSUnq{@;9B26!@5<=i< zx>o#;ogmbdcR~;O@C_I1b;iqK`Ig4^VTwUrJ`K}1`|I=e9{RI|1qh!(60ZvG{5l!S z&3OO#W-@`=_v$0e%LaY4-;}(0jp{Fx3BrOAzPnh%pNVc4Hd05gS#0?yQS9ySr{dt_ zD?*0Ekcav%3O@}swIB~5($fL>OV)xq@X0ZbzJxd;;mp2Ulb|_>Ybi{>(V{@}3%35J z0h6~evaZFNT{hV^&m}ETOEBepi;YtVNw(?JxW8k2u4WnGy3U98k8k-KB|7w{LBuW zrex+_wx(WsA-2k^heq?!qu-rZxDvTTquqvc?Gv-SAAX@uDeQli_29CpIc>;m*)n1+0+4H`sI@WlAzxJ4D@ zyKn0)x+rIdiJuOyiqsJ;@{FVVphCkdqR7t()`F(_fQjTxV36h$E$EU_*3=uX0h0=< z56a(ezIcTQ2=YiCFiApPsL?uFe0{r>*c(6Wy1CcGtc(r z>2^0KZ!zD2TU85Bh%6N{hl^3W6M4H@5=JD~eXdNYag2BqfZYE92t-aI*9%f|Ui&f# z5=hs!s1_#e)d&^P?DN}pG=^_u;o|N+<##L!@}=0rtBL(y%R;(*$%O-gr5bg$IlPee z^7n$xBbT3qVCR^85AaAS)Lvp-n74WPDDFbJ7YlN3n#yc0g1?{$Qkx18&%mo+&O6y( zgA$0&W+G#Cw#O3&hSz?ef`3>s^=1-rhz9vIR8LB$7YB-i_}D$2qO%{>U;Hz%v5&5$vl%;3~@x1gM8+Q-NWTlZVISA|cK{1=NspOP4CKEAUsHbd_JZYjD9 ztrQssg$Cum=qRzqj@v!$D|70GCOkG`OL2h*fI^@aetFnf_>c%T3zLL-go~8yyA-L` z^}SQZNOe^nugm_DJJa0OGe7vnsN`kY)ytF-x6N1L`dyis97o&uhM;^vshEyL)nh<| zaxZmqKYMnf!n|s&goY~VFmoCkAHN3ZhBGynPJNCrvCfb}VY_MIMELAT)C?QRdak$O zP_GNA2DNB3d-=@fA~@oNkgM;nb-|?Nm>APPM52=X7p5EHE72z5?MVLSI|ss?pOco_ zQEYrJ(?&M9P^V7%yzh)d=!lkQ3y{-;GhqQCjw(31USy%VsR5u^G8jU97@q-qJIA~9 zR$PlW=1gL8t-5x8VI1^lepIdPhshw*w_drrRD+XAIxKsU+bVmk-|R@^j6L7Er+VOc zyDS?~3KTi@YE1V0a9Q0w<20yO!IO%3f9) zKn1nmhwqM5)Viyvufs zd{2XmggNW~&h=U38ZsB`6;u2j7FFmd#|0BjQG=th%z9N*Z{+c51kVo+evW$boCw(e z=uZQ~ZA6ggngYCSQVY1hkn7%8rap*Vl~z&TJA!bpt!+>^H00N@(#cm@%{cM;xFchs z0>Ytw7z7XoEvP8+38|`Z+K7qQWIGkzlcOFcMdI$)zXkiXDzWC1>#{0;TxPl=#fl$~ z2D-#D&x`=UAd}nW@~Wfs1wSVzb>y57grd2pb9Qy6bZzK4Ame4JUN*nRS2x}k8N_4d z^s?bPbqYVI`+AF3gfTMGV4({-UPQFA%L!<`51@GT@$^)vy1^fgF0f?8d+)UiO=S?K zhF0k3dez5`dYPzD2yk0nf@=Po4D%IQYj<%}&!jZ7_k6Y0j3kZ6PFt)LjprB>yCh<= zM2JAx3Y>XH+Ala-M++r@GXaV4-rh|hK;QRSyUqgs1V@UATtCAm!mow+abv)oL~8)L zBJA!MTIN!{kqQXQO*Zt+&oX`sTrCoMH&I?f6H}-G03~Dwgu2w$;5$43q2|c6gLhpo%t|s}+>|y&a;2=5~+k%f5|2Hf>u9 z1`M!FKvt+JfPG$@SJAjzo35v%z0t~)y1L-k&szKP#pg=(qI*OEM+nsYp*b@$lKe^% zrNd?aBt1i(r1^5KA_mAD+JX=>Y$W6vpvL=QHIediat>zjenl+W01LQZycM7elB!^D zgU;gzOf1p#1tH1cR74Yt@&lb;XtJL08rmkZMa`KVH^>ym=0_j3d>vf(7xs`NCTSAH z%^Rg@MTWY`zcIjq`Bm2pjrErgqE|^-?x3+@;%sms7;E>l9#mYjXmpKz`J#UyVP{hF zSmRXd)6=AqLiN{b3^ppNzw8I0n8I-0HfkFC-y>=_lcQQ#9U>3TH3LOb3)u!q zrM$EWj~|o#*6 z@wv=N$bz|BA0hB(+=;@F)|q2hoU{DW(d;Cf`?<>fdX z@)aw`TXoj@r?|Mtd5il`s;Mi!lRQLtfZMFcCrUV-r_@)dg>tjhhYx}4sN!g;7>|`p z2dY+p&5|7=0}3_?dGhhy zeA@JbY#ZRd4yjDI=S||`YQ|Ms-Wc~J5Q2@r_5l%{x3DdV+^%$~gwjyMpq_3Cz`7xW zaZC*Qa^{^G1HE`ZpVaC;_5)*QP*!mz6DOELO+IsRs z9iQgFg$QsaJbWY7-*i_QI$DbTONA}YT#zfXyaSR@(zGpvtp*Sapww=wZju_Jqod4RMpED~OdeNfxGJc?v{_V1M>6t(G*bT|224r# zy~GM0P0h&RTVC3sTuTam4muJlEp8?Cz#hF?mLpwJIDU5Oy8l>6Vo!~#GTLB@vb znf9I=hz2PFV~QRt6TUQa1D24x^}eh>!CkE*Vev~Q7M4Ds_6eddcrS;0e~eXD06%ko zml_8x0Cmz0ybHKtuou)UO?ev^C|UhF)wr&ttHNA!CUlD(GHg0|F1KZrH;6+2)TBSs$Q z?j=5)y{kkscz@n6d|Sv5lp3Nld=xANYO2Zs5)@8GBla{4CELbyYpuI8f~GD_(;&C( zmQR~Yt8xR0f3z#b`&ejuN$n;)ioFLg(#Xn1Qs{y$4mO?n=nWAdHfq}hqIUa2g3X4Ga zB8icEnQQEJo>Xy6>4|Y29m})gGX;tQ`w)kzjk;tP$lGRd{xHp5mk5BvU*#i zp5#fP0%q5j!`5SevoS0zb?}1c)%J3uwx2$1Gc5B!(N7zd-Q7sBN`xuv-NvaWJWE92KBG7QrQpcl{V+j? zedCkOvf~I?-xq@#Q%Ds5wnu=wEl`x;6b8tzS zMKZ`X5)gixs*MH(5V1H_a^#fki2|=*Y-4~g1>GLbpZxkuC@wHE&blLn^(?lC0mWxY z8Dm6!OBj>}9F2OUauhUyARRs|$W;zyTy$YPp_Ze75T2-219%GgbYDmFcq0ILCo zN7`36Pmjz3mC)+x>y7$eQIqOU?zavAB=Nwx&R__mcjdfwcq8HzZ16B&ik5i5m(6J= zyt8tTd{8v{$1OnH#4B2|JSe2}+O|EM9LWhl@}8LVCrmbbo)N-o+iq7b)o-<#; zYG&3L7#ZVKHRNfVI5J>k}aH zQ`Iy-A-M+~41!7JPRQ?0t1Ryv`@3WnP5VYpZoTc$1VVqs?7Qrw-})y%n#joD)R9bh zqLbAFAI4SkkQD{s1((5|?rzRZXtBfKS*27i-^iX_l~h+?E4Q;F9Dj^@gu5P*?#bJ6 zfP=^Z$XZnF?TeS%>OaY0%(g%6IO)jUnj=ESEN1e3ySr`L!>^|QK_gWvsPCutk$A%NVaxwm1BK z^y}<*<%pIJeG=f}poR?+4~xWz*8u{V?g8oaH6#vX;hLK}r36c~kjrNeqhZ~8n@(qe zZ~3N%YPj5WnPJob{cY)8;=1&)}4SiOCyh zL9+oa*zwarAy!!sJFR5GQ>n^aOI@AkZtL0j3t7m{Am=9`+U(g}M||;>Gr;##K^_yl zJgQ~~vooQ8$8UZjX=|CF&*%ku&>MMdaM}rLkR7;XbE{$DVj=nRX#U2?Jx7&qc9W44^5MWF2E06UjWDao!4J-tiIZoU zGo;FWK{VqUbe-U$F}05? zjrX~27SO!kD>I_3XIYtMB`V~)lZ_M9euP@<3V`_|vX03c0EOULAdfXa5rogD3owGO zac`k_2tm%D|2fp3_mCWz&+WfR{%EdBQgxH;LVWky8Tj&Soh|N2CO*g;}$sMxXN;SCtu!q&H|S-ADi%z=B}kT&E>qnO31-jjM2p;o~a;RTFxu3`jgw+ zqeCeis5TmqX4IWEVEb@zs?!b@4T^@iWf)2j+=MW%`ax3EHN{FM12K9pP=TGY6_;?_ z*bTD3>EwQNZ8}Q2HXUWW0!3L6YT~~-O`m|TI;UGpnAcZrs4c3<&!6M{A*bdz1cjzFT)B(HMt}#{IZi;E zPgWbkQj-M#LaIlc-&AOY?cyHyYey}pWl&an6GxVY)Vd?@Ysa8?XHW)WgnACw#y5*6`T!2+T0j@3)Iz(9)qoFoDRZ zUQm?;x)?5#SpT9O%#pQf_;~Z{8%P#CB{3FRKejcqVPxawmbkrroqp!@F{aw&n>HmdnaVB&20|Z1sqPtg2=kYfJVydB5}%7x z(jNm!q;I&$-66FU!X=2SDQa!8>?*PbI5n_YCzLF$DEA6uY39{E1#PD)K(n{vnK7)G zYLr3fUW3;4HO{}nV8~HRaID3@c@gzg{(DYC0E?aOCm!q;MH%5A0dOR_RS`cXFDz(x zUS4jmGX6}~as7KvUbk1mf4iQE|ZZL+x(Ya207y|B1PgXFcfyhuNVAIN> zJYJOC%%u(rItNpd!~l~dp=K6yy*?N|2o~Z(O8;gRRNwRr|0CZb(Ssb-IR5f&H@fdD z^E9ef;7L&5<%6hfg?0jEMr1ml>bv`K>?DHnnG*`Eh5~?p#9B^1GdsJKfh`tYrW`d* zL#i)D2`^AY?c=RG+N&B~{CK3HOn?8oKd4Vy`75EwBbX;5UK7cZZBd-3lBbxMX#Y)41f|EpeQIhle^=oSs>50F{ zS-MlbYdoe{ySQncVe$GgIme$$vTEjNdGj5`?&jBh8Os#F+jx7_-rj!H|JL;-J5tDU zOTWCB?Jyf!ZuW)S%(udj?6gNCj5N-~bG0h)${jyNa<20U$6Yzh$2Z%Iu|=aeG20_G z98TzK95S;iZ!lzcKCoAPgJw3**1x>}si#j01Wv$O2Rg1}wn1CQ z!hamAEuoegDSUujf_%kCs&-n8^R{CIk%Fh6iCUqPEkDqJJ2WaPO5ro++ySBJ!ObBo zAMZ%L11k8P6ux_x;EK8N?Mw!`Juy+t&;gS^uB3sFT1VHCgt$-_$acf5>;A2PWG9=h zAu6}STLe7w@x!C6kwjo5+4fsLVO<#%<%DBsO1l85z& z>(P0RD}3r}X>wFK!`Evk)%&ryMJ>N*!|Rh_NdO7!3V|p@F_Vc%6174ij-IEDDZPC^ zq8uB0XF0dvme#x`ewzq-Y@C{)_G;Yiy6(ZH;?E>=Th)@szgJxQbsKM9Q~q`=dBgux zf_e!Bhkj;^-jaE3K6buzuf;~dzhdolQX4t3F@1G)RUj+&0{o&JpbWj};JKL6!5%DP z)Oj`FPavla##x|(SPT4W-xEP6iNfFK7z4RQ)ZYIugC0ea9o~gvPixX2nf9(_bL)R)k#P`gHsRzpYi^ zS%|h8bE)}T%ZYH@b!BhKhn-Kw#ge3FW!-?C^bMLg^7{6u8yqtpWk_-3QG)EI5*U%% z0h)M_K2vQN_h8?vf8^7;_VAu<)jf-MM6h)!Bt^R0!J9t`2?C4~o@fvSkqu0)Z4sxV zsOmXjyOZC)SI%0P#k;vShAQ;~bWxWFDEB%;!v4qNHtQo15d*AZk`Jwpo`ubj7d1{C z7L(YbKt9@-#1*NKG%%yo#TcM?m+rV9U^d!FJ83dBxG|KEb)B>mo{}LA{MX^E@cfig zv2GSt*gqGj_NoQx<3K9kHqN=~;7R6E(B@op@9hkQ(kud}Z)5~Ji~SRj_GqhIOmNV#(CQyJOg$t$VUO) zDXqXgPJ<-KH_svrw-;6ZA6s7?7KOKUJ#>e3cOxa;4T69Yf=V;eE#2KIAt()slpxZL zq=0mH3Me^r^PTbD-y8S+p2z<{ALqAZKr;4I@+p; z+*o59@36NollEg19S5Uvv6fxtFBJ*uersTq4i+?Cfpa)t>UCa9vNH=ENW}sa1E!T1 z!d;I_-EI-w5UJU@VmIxN_v`d(UZynM2CbW;mADaDU=BZag%oYV#Y}$%6Ng7?LGwqd zZf0V_J2yGBg3(AiZ6`(iUXzl?TPPxR^Kn|r?5e6Unt#|%`=Qe%$PV$@je#9&kM81c z$%Ut8i!tYbRtKEvyymYT=D)hSC*nGy1@X`c?CQ=G(SML41vq1k>|te7P4;Mq#zHJ1 za?Q`~ydQ)yFJNIvqSr?w2CieC9`9O9N4&Q+D&4iN(>yU}D zTERUP_6$xj$M@04y29+{arZRz3?-pXz?qE@`1T*r1o9NY(n2{RxS+r~1E&f;aXwzq z^1p{z-EN^lbR<%C!G*gzwThY9e;c_!g2=)c@X@C6-&8-aiYi@|WIZ-+0VK6V#>86j zt@809P+Z~UUxdg#3vq4D)ekD}?D0|0 z9bbOBa`=5WipfEb45s7<$AalhEM#%ABRj6o#p-z8LZ~#*`ukNiH`#(Zf1h~A;o4KS zTaA2wX>^Gp>c9>=eLD{9c5&0!Fg>`CpifSD_0>US zGNC2pbO%AbW&(Dx&u9la8=mNKy4e+XMrlP5l5!h&>P7fpcv(&HV*54Ke0TKrP>RsS zj=9ZL#cf;hAvj`r54^f4bikV~$^6L|wVf6+F;&Z@etSjM!$BZNgxnEINw4q>4vhec z@IFHgj4awD2R_};z|yAkZ`GvacRDUzTaCrF@Wny!F!bisfpB~}?53Q_I z;sXy4n=t=HM!uDD_sHggw=8~d9nnh(gW;}+Jic2K(DpR(N#D6P36HS!&;PI7KU$uA zZ2v*H>xNt#)_&3;l6EkgW9ZdD8Q^ctXmoQ7!KU@S-f{Yv;v~|);&gMkYT9Cimz-yY z@>~(U7d`6`h98d%`p4icnwxBjpwDjX%h_sd-$&*7sZ-~bL*|6|d6#XSIJ||&?0eB7j`m;K>R+Z;^&at&4G%#3bU&dj?`q6Kt9JOMtU8c6 zbM(v9?(&G&DC?XZE|bdgX_8IV@#l-{+V`VgwgF%N|8P(MBL1b<w(dDRwaHf?TJ+c2MCMNSaYVQ3EQK<>r|rN8FvNi7iB z$q1*B)(P`9S(#p_;FQb)61rz=nW__1DPSqZ0U%uc<~3RennH!kZ22r-3bEiF#Ed#i znv7g~(tQKeJI-Y=yLMqF%3&99&n}PcoVp-%*(_?iC255hi8$t})i;#0!-as7*hbJa zOWZEGB1rYuN^S9%LiU9c$q0{>ba64mo51e5X9ANRMNI82jP<#sfs)}bgFY`#VG6{( zSegkW;I^xAh!ZgRAKXnetL{SL|MBH5^R(T=E4CX_+AgH=t+fr&VR_;4`x+F$9WP7T z6T4l6yh$Vc#jKIC5+P_NmKXBf1T+eV$~xZMRh)`R(lzS=aklfN5w2we;V%s|s$aM% zY2tos<@#y3abKM-WfS6OT^N&8O&qJPXSy6nZ?LJ}98;C4G@?!XE!$PkIlI!ugqp%_51l3@h>)G#{Uq zFbwGZd_F2d-`tCDA(sDQR{pa;a_XcOSjBknyQ5FF0M_tvEt}_pb+pyyR##I+ox44o zSgn{ya}deI70Hyw#l)n~ou)Jy*@3q@PLl)v5&mcTH|WU57n9M=L@G+xSaDD5{N)b+ zv&W%)dCF6VnrzEa`b2qHZ`Tm?#(;K-k!I)g;CSCBz&A&%e`Y$BuYR!~YndF#QR-F| z{+MD8OWxZp)Tmd5c0&?a>$^4=BfkC~knayRtJ~>n@V(hv?2gFL{uyo)w9{wVF3il#)y4581ChKr_mcp443i9eUS!|8p7gvab|a*+wu z4hlijKronQVr9MFQrG?qz@!1~cG(P;hObuelQQ1hyq)^8AXJy~V=grY80WSZKM5Ab z??(iA)P&#*{zA%ftpd~)Xg+3!_g#U8C{rMcsD4I(GlGrQc<&sSVuD8ZV4iDquJ-c= zpy|(c?kkPd2N+#pGcR86u>=mR+aIq|+1Z3`1WCu8B z1PF6x2#!u>8<@4=w{DgdiP*OT_6$=)%5+P~+n>cwbY0LBrN4Y4m-#vA^8u=87J0lpX$(dfTDrp-AB4)#cAnsw z_G29%f|{6ynv?nPs!4q19f1l|jQvlde>}d-=QEs2ziDfbb9^p{fDI9-&(nYUSMSt+oO&aq(QT8v)PxN3Ly^R>5(fx@7zi7gSBJo$lHNkO5m3k&r~<&(LF#HBatCilFz zz9}Vw3@bz~F@S=dl{0`n+agv9((Sp-}p^Es)(?6m7}ZGXOg+2b3qJd~puFSw_U0wUavOebU}{p*H(7KT z>zC_iYQL;HwK0bcvl_uxu$C!xa9ko*kKQLaW?wx5jY|g~Q-*D4Q#inw-oj6xP?lJA zBL#Fyb-ARZ!DgL&{WX-3gZk6Z42n1RO<(J=wJm;jhV$U+{`Pd1G=Pri`7ToBUrIeb z#xfR;aKWA)Hl4V~?`d#u#w5kUgcaILqDo$&8hxn3WF0ot)sFNv0<{vnhs!SgR3JMY zKcO*Cm1X$;$G?4#z(0TstgN40JK}`}(6PFkNof>->X?v_N^mh=XnZxJ%Ay+wKf4eLHXGf)4joMssH0r4h<6d{M=Qize<$?aNE-^y8_%X;5?>q$> zB7*m~KQ}4}hT>;`QGV#r@OA5u{bV0#pioR=15S9+0K{bRauP4;GJFENtNYzWuNOMz z*Jy_aE*7%R%jyrG@YcLhnJ`e59bBx&4kM?VkQ=COG4MVm;VVAXGs6~V@X7RgWfXM4KwI}VCk_HCo% zVV9zO_XiKR?W}$n_ZosG$%pO*pD#q^_fzV=NIgAdd8z_V>-VciA|!qMgF?c-cKG zFkM$_F$@=72l@EHbLBGpbMh0h6HM#aPs!nCb58u(IAwVkeEbfUru|_59d2eIpYs!E z(e>K3URS+YE#|{x(ow6ElXXRJ|C`JfqDENaR*p-+gk~ciibMJG&o1Nvj!@hiaMpzk z$K}nk8GlmyO&{mDr}GPu+3-1D}NfDlT2E^nh{EjPAP>X%`+FcQ}>NXbm+Fn z4|CTs4#}MUYx6O$M~}J+f%4HG*Y}(-jaPe4$M~@>QlN3}3%EwE0jSKH#L(R~o9SHq zZUXWgmwEwXD?rK`8!mhp2HzYN}w@WG^21BPKokP+IZKAWBjC)M(M|I*{&a-njQi|cfx2B8m_J*m}{7u0u>E_@os z&D`VtUDMSzWRYE!j&e6|AaWn3P_#vYEIdRit@a#TDaFV`dZK20cAN8iT_OT77%gH2 z*2A`;(g>| z?xdV#!hbrT_U>pT70X{d)onP#sU7xD$)I*MY|-niPqTMFyYqc?GBq`=gJeEy!foK| zDQByfK>KR^{ZvvFKUBkJS_U1)&I;^iJC&7{4vV+o*}~8Q*)bsH^OmY8*@X^JakwW8^xUtIegMFE{23q!Ak@>sO}_M_JX zOVl}$)Dc5Js(4|d-%o8#ublWvG(6EH=Y@hbRuw*UiH_CMD$Q8(n^0U5YSq!|o_Lm* zJP1Sm#|yym+p;V6!CR}@T=%!xJcYZxGb$Nut_6vKz5Tg1<^gp%b$fvxaj9bN`y5gk z0<_dC7tI9jx50HN=KTxO7xOP6> za~hp9{1C9`0XrT)(vyW8T6aei*8!uy1URxTX4Xk=8HZrHOszM5Ju@WC)8|Y>UZHb> z_;S8I)GA3vpnIE5i_@rJRD>YV<93W4PjX8_N=ho*;sK$S>%?j}$P4sg`RzEG&n?`! z3y0L*E@5I>9`T89dUMtbUoWI2iS!=m<8=rev7S&%VR7Eg9O(AahxtDDHBE1$XsbBmZ^9^>o&_b+k9AeDL&E*qZ=+CaWk^q`l zlNT?~n-+FOwyCG35;9w3hgk-DIce3p^J|*u`!2*ddBb&akoa5_CURscH6n5-xG46^%J> z%?ja`XOT6iMe%U4KjPBxRT?ZI=KU6+SC)N-u(U@Q{q0jqTi);Xs2DOKQ4~q(%;+%d zrWL3D`O{8n_&G@}#JUegyT?hH|9;?mdCP*i$d;>ubdDta8*R8~?$_Q(@e@zS4yu!z zZRObzA=DOJYJG{A*#b0^g_Y@Nb-He|Q!L#HU7|vJqVaeE=`nS^F)yla6Uz_`J`EYB zY}$O;@t}ELi=WzXk*#Y$FwYF}wXK@1Wo2R#c-};IB*P3Yk;Uxj=qPE51O#eVm9*pY zfk_37pFyJU+VOLE^qxfW4+9t>F@W&mbx|*+Ut)Utj4r?-Fh%c{?Een;hcw*|dU|VA zYmcVIj0Qx*`{oyX(&{ra^enl}SML2^1&;(RucGbP7__}-Uta67)Zs9uI5@-U{_vaD zRN!jA)ikl?TQAuB3O*@o)oeeP4Z6*!osE$FsrCJrP&bN+_4->ALlcO6#_=JlcB#r4xr~WEH3x z-#24D38OE;cDBiDTN>`T1bTLg%d7mnzBZU+=KGkR6g;G!zNy*7X{x5KcZLa;)!%B2 zy}%Du&u5E&qMmjL}KEbI}z zwgkg|&BApvSxC9+JDDPr}8LqmA9l2*8$%m83Y@2U;2Q#xWY9t^a0u`dx)>!?FT`f zAf=K{R8NaF8(n`}fp{J2N!v5y4nh;;QFaq3b`91u+jyqEmqPhS*w8zsZKh=-D@5{h|UsA-Fvn&D8 zyI^=gz4A}*Iczd<8vjLAG(Z#Jny|ZQKM-?5?CIj_{uMh94$KI=Cu!daG|4%EhhxWj z<&sek)~7mFb4TK+kb6cB-EvVx|;hxGIp)$dajgh13%f+Un0Mr4X?Wuq?y^3{$J_QHsUE+7ASBaeO=K?#<6 z>%Dl9zUy(Sprpitc%i=U*3vbf&sM9~gf8ccvDI7#5B=!$UDv-SxdVxw)>XavYCQ~- zqwP&USk}B{3%%Kw%0$w->n&KzWVF9F{b(;8d-e2rFXf_sUhfl}ym8IDa*@#;*KOi4 zvWjZ^(3;=Mync6LyHam-N1+y5Gl^ec^C#)r$xlxWgAP!8m`+@OG)+~Y2L2&9VLIM$ zMO%-i+neV*8uYBwQI4(XVWTp_brK~j;ggmAF+R(V`sZ1pU82bEmx)BS9zT%|j*2RE z-kxB7IgJ`PhwvPKsghhwpaL&TrlRWOww*hgu7fC8VmI!5)FC)K%_Fik^2aN!G-o=y zU~A;Fyta9aW>n1V?HW}*`-o!FN8Efijhgwr0;rjpLy6%t=hs!U9}o`pnsDFSA9u-u zjwudcn9IxhxuJb&=-{v0giqTASS(7&zW8`5Uo9I0!&+j5ErSB?R(?UjFlS9Yuu}H^ zcCAIot%-9-rPCnlMg=X0RUUE=)(SE;SO@P}{tKdkI!ShhdPt5|kE&^Y0T1eBjD--$ z)JNEi5E#PBV>+`zq^9~RBvNB=qz=lT!lh_P8ci6)7b^562B6)y{)YkK<=k58*Yo9hhY~1$ip%hIE>azbRt`cLI z1C8Ri(&VE55P19|u15sf#kc7X1s`WZ?XMpA+P;ihx2)*@w%I~~jM_eNiBfHcUo;Cr zg2jTe0Q_^T{)TOoAm9wNwzflL<+JQ)luW{M1Y+#uHYEsV_L0A_$sMu+ouz#Om> zQf`CvKGB2o++L@lrwF<2IP~}UG&KIYMBNV{g++!jh}n=s$v^}fQn^STli24vO{j1T z=P8Z3;E6}7r0SKAJ^TXJdnZTRnL9Wbulzkxcu6**8He$+8gRUUDYY2yfa}ym^2*&V zyr`V(S&bRF7YVBrW4%8Y@^nQQ_yXwtVM;f({ydpUZ=fk3eHyt0i_ejlyib|IH&8kQ z3v81U4sK8UX7PD`c=_uol@wJA#d4g@)4UAjXFNp&{qKa<+zSW4Y}wCxti44NCfIs$ z*^A)I?}IXAoZ4nBD?3v7yi;a&nx%W7vP$o((;j!(Of#)ell)W-`H`GZdHl;U%${f4 z3O(Jfv54~bvy@=fE*`uQ&Js81<*=*5J&{Sf93$F$C@}rT4yc`Sjj8Vy<#Q+V5 zEju&hpo~0QL6zZ>#cxGE44MnO2o4Pm)rzfbh^;KQnU;&J5Od$1scr}BMtWvqY^L)A z?*OI1{OHk}D3EdNp|O3!*Doa9Cb$FPfnh1Zf)YPrphoU(MY(5Ov+>MIV^YYWHQ z5Qa4mDbL}d7V*-YmDA}k^l|*uK6v{ajknmWJ6c&mlM3jm23mW;)jz@96O&lU3Q&tB zFm#aDt)#gzm zwBJ9&f@0_3ZATY5a7CZoNRJIe4&vqmBqrHx6A?9`0+r zYuUo=zP#z5e0qD*y%Rl^M?yNhu^oD_nhoLYwy4S?P;~w{Y4au5UG`OSW~SXnWkk;4i0;WZwCFD74?L#r`3yEE6yZ~Oi za9ecfM#S&(k<@LVf*;$&Z`##GsXR8lSC_U6%EJcV;m0Q8$zZ{Ai6q)^gr-jhB^#~4 zTG}?MrZo51Z3(4k)T57)6IL8+uDlM)C~In%@z@Q1l29{C{grz;niS19ZdIFPZ!@wtmId9UXPzI~$7T+wTF7#J8&iwzTXL7N~9LQ(uTk7s~% zBDo}%!dKYMEj$cw(0P$zgq#|npz1(*vS$`+ zP47g=6m6yshf3h`d4Qe}myr-z?<6sg4AFmg096L1{^5^_lG+q3MrZiW;VH1o=& zm-Z;5C&>SWsEvxt)_R+rPFZ?-xa6B;mreUKbr$-YId`sN`QYQ`LcHs^#*RJqn_}r1 zbs0D_?+wo(DOWDNTZiSmZ0oy{{123jx)#QLxOo|^v<$GdRZ{b_{t&viR{) z`4<^%(S}M1H0o_o(zo4ak;ilp5k%JRe@K_hejY^R4O*~V?^T;eO zp`d-RK-;EsZ|rpb!s1Ldv`eEsz5dg;cuV@$?`@$EMi*b1O(xK;!1>K$id150i=MrQ zYVR`ubL6$`k;d;Z(0F%Uc;?Ca@Z;m*#hQCeRR2b*x_zrR)lFt(oO3UV7Uc)xi?iF`u zW?wXTNoOYc&W1~iFZNN@Pg3X&@m0KDP%2-{^W~%2G+PN5TOf*qTs&so^ZHR1>Q{p}s84&FqUJ7Oo@@s0XUT^} zjRTt@bo2@cz@APSNIOw3j}cqR5lp8Ba8kZH2$T#?NGpOhSpVEOfVq7?rl4{M(2Dwz z3y})(S`|DtQjJad(U=hv%A5f^5|>_Cr`=o)#FFL6=K?soMUDd6_mLi6_`}f)E&Tp~ zUmRWCJAlo8ycF@0ZLOr0@0?#P_>mTKvVf#qzPdN8yE0{uxmaId&3NwEu?V=kZ!UHL zch`gBvt*QY*j(3fy$U-v3oTpsk|h8p^5z@sy=e0#tf<3N!YGi1Up{BR72h>&;GK|5 zAwdIPMi*FC{Al$5?$eyzqtwuq%JX2WU68zY#0!fwAa$hOk*WmCEY@$3OdQ-TEwD?S zhL-lJ${<=~LPCW<*kJ+&Drh#5gguOnifZ_{2CHd|>W91lBoip%in`4zCEUU9OhTkk z1gjYpoPls+4Ds}AdcJ&GGHD}N3eXUZEdGYQ_7{R7uj#HXgKK#k4uD}JCkYn1UCX?dsoDih){IBUsPlaeAvYbw&ZK4TUvIS`pp|phkrKAh_@Xe-8p7d|0~Rzn=%4=G(6N zm45b|HHAm{+NRuUsy=*vxKccGrtyG@LduXZIa!O((M@a@*Q?1#7#%yX_!!G-mM#$y z`{R!xqt+l4Yw@qIJB>DGHfY6JHxd$=9Nxezul@|GA?tj}wd2ZGqIQr_N6W?9YL5AC zQV(`&Zu0kRQpWX60@QN!N!~9VjGh}b;r$88oyEacNz%b-1{<-=!88ViTQxgMYDxJKdfbJ?oCMU|n64w}ngoN~ox?ey_bH6`H%RKH=QBf&gU0o#w zKedWrQb`kd<2S>mGDZnu0jw)LvosT;H~`9z+QIk!>ijK#*z)9;xMQb-9ZePKFZo&N`0aQFhetStG%5!I( zkLUd_hTHY5#v2o=H}xx8k!4Nbk)tlh=fV>e)vp$DyvIWh1#^+8M0fC8kx>m1w_)F# z9WUcyqabb43i+g+ZcgKW!NZr+%-v{P?eX%T`5e{7?q+-p&h|rNZ;7*+71#fy?Q^)* z(;smRlTkuU0tYRcn4{OsAnZy7&R(F_W7)rPQiC-ibqjED)6&Jb-j2-X}2goTD$Inu01CM6}=h-3}1LyVq-)EvzSS^-`WbsIxY zK&D2~aT1}bg1Dk(;Ss!d8sf2H0^_Aw{Sb4$P#u%37kZgNO*{vWU zY?PpiX{q<&fbOD`?9ez5%;s6EN*_}EGvT_SfQsr{Pc;2#+rvq(8r!{%e>CcN`Zd-( zdTbtm)IX^ngt6y*V6&5tW@4R=53?43Aoz#X_oCClZjRA$M#;pBvET$T%zk5~Kke{} z>pVEHwY?ki(Ecl11y$f<2s^lIjcm~apvHSvI{8X@uOmeWEMbz-B>IdM{1t5uZywSv z;`x182W)(#f_QC_d*_&L4P`x1S5@^k*pnmbP|)-R9Y6bMVfN^7Jp>A|iO1BzhL)9r zG?nX4tsqVY4XbNBr=EP0$|0x&SLMJ)>nuRoOZ=G#>p&9jIwm^`7DhE(%6YT*%do{6 zZ8@rq@%0L_FW;@+)iqCecKLIh^@y{ce)a=KfT~k?DS)O1$WA`HH<;f3BE(qZ?%!7* z&eiAnOTIFl&|i!pY7})lBQcXUiZ7jJchycOQD30tWJU`yiiqdR?%o|m;&nK*Ez&P- z8MbaB!TxtZp$dR4W_&(pyUIDKzfnMj<^of=(iAi^cbr6Uk;o#~My<~k zWMpKL<`f}b&}SlBgp=j+KqVs0(%1sma!h~k)dm>dAs(4ukJ7FN`88P{k+?SW`q83E zthM`i7M~E9OE{$kk`7L90&N?%4FBSm$kshrdZ<289`ZMPe-<&=J|c!IZwkbiAdA;~ z?&*Roe#_*BfsOAP5ceTz9rqSM+|Ba2c(1n41@M~rY6=Gg7AKceYkErI>Np7?B}EBN5% zw8nbbj#XOB%Zg+smD%z`5Z%6ME>edr7fi@fJ2X>6AL7f3$=*-t8ugzvFXT(PA_~rPaC4+`hIw3v=Pz@9;SCtX zy{UFWDu2D8d6G_AzSK2SZ=NpYNUfHY@%N&08jk(iI`{0Ee93HTJR7^JoRJ0T_x2iq$G>R2k>lfo_*1 zyOP`imUcaN-UrP6W^BIafnp2zj?eJh5%4?7LfYB_%GsiQARqaA&Oj{e1e;=>d3s); z)YyPfR~P`c6y}Wnc8wF+!a)!~8j0mA^l*-Szv(n|4ziVJ%}zaF+h({*C&j{D?y}}; zJRkc%C&yUDKm0l?C2qSFJ$u(aCwJwMT{1HK*#qUjuZIo}{U^bpXo#CD{lXoI=c z3?>(mQ<0O40xM1=OJ;-;qVVOPZP&&L(6E^XtSj85hS+~o7!ry@WN)U6=}*KxJ}=rH zh@byqVeU>G6lrh4&9^c7sS{ao56m^$m-e^vn47#vV%T zP@=|$9Fp&XL|6+t6*{=4dm*C*>WtoT^ono9InmneXW~*Ovg*C%?*dI^e}p6UE;09R zo~kP>^b~i-4G*-H){+NWWV)aSLq3mVXc9Rhh+wY>KzGZSR4mD$mP{&*zykP)3Rk(O zFPYU5)Y|>OlG8UfUav1Ud6a^qF46d0CAQU!2`$46>^+jsMm*Fh*7{U}1VKT%V?ggv z2Dwf#!@49FjP$yHQEAql2g%lHBEcI)AnOth7y!e6Q<$vHUccV(u8Fz&JX)ZP6%-U? zPX^_Kcq8SK#D-o3g0W~=z%Z#jbcqc>G9q-B6TFU&*N><{YFwKqgQAIUaRD%Ffg`fD z1N?2B!02~Y^jrbVt-<*`E{fmY1mRdZZd(K0xscR;1^_ssndiKYXu^#1PGB+V(+(CS zcXV@hN3UWL#8A;8Oe(D_gCLh3cApsY@i_|uPDDoG^JdYrDdX(!sA+zRlYa=-)BvjX zl!jsv_p|8yf23|EFmhHR7S%)P@2u#EfNcHkijIjH%oZ(- zupqN^knIjZY0Kq<{6Zj0teZ6^kip2(K>N(kBizA8yiL$EBL{XtHqE&$3@6gdzfshr z!jOS~L*vdvKKwo2VE&6_FddV4)=-$Hrsnkoht=lK_u*QfRKpNGx!Bl>SOfpqOahCF zSaP4h6QXW(2tAz0(#kwG2E(o9y`hmQ7q~;08jxG?9XVtke`Z#h;44iBJbcwe z88f{no3ZklPvjvoPB0?PRi*=vP#_(z?@_0(Nap@6x8HA7lBSp7kRZ*JjsLC}-yWD$g&AZ}d90y0`v;^`|}w04}*`cv=@>o%lf zCvEHzbH%rsGrpTxVb00@jb6C$=ru#_Djzz9{_p%;fT0as0a2W_W<&k<@Hz!}h-84~ zozTh)!-)M)0vwLKskP~x;{g*6&odt;d=MR5t_b8Zruw}n$UDhXJ1uPBMSNm87zJs3tL9N(Db}b+#cGW!RMidN2 zBgz6R7OII(6PX}i4PSk_|P(%t>)~UoaJ?tgwHVBP^*}} z*J3tcA+pO*n^qGEGjGowWAqw9)vT`!$R3Vnv3p8O2V}4A>@V0iP#obu^B%gik;R{S zZDFw=6&L4LYUltqpoxOMSVS4Dp-U{tD@akU!YGJX=x>3Ks98Br&(Qa_F}7m*DNWgm zgWu3S=CVYIk39Y`>XeMmG|4thOMcr`fTFM-z1$cJ9NH?7o-ck)$6eUp8i_EQi{tJB zdDSt25T>@*i@*4V*~oexy~EG_hj@)IiN6xk(lrZ4gL{O2Z@vFIH>&?P?D1X?r4jAc zdvSgwlOK3fWY|g<EixN#F$D2dTRo%X145Jo*PpJZ3m)t4 zBqZgFVW1Fo<~%On-5H-@TmIDdRtxT0VE!WTUabnSLd3u^7onheL(#rvGrgux27L~3 z?YqC=C(}OsoRdSVpotvV1fi;b8bP6w)J}Gtvqd0R{RLnk!l4}LWi%N=@Ni@>fPZOx zZ0uEdXlT6$ECe3{rd`znkoK0=by6$!iE@ z-~+3LBA|oOckpAA{JXEhf0}(-N}lBNw{mQrucL;un=X0|9^xBoas2_YdGOE|q%X^tjvecS6;A8tb$Ag}wSpXu4sTl&2H z$DLuN#Z`o7-BY&yi!?y0{~vZZ-~f5PP=#8J+CmPa;QL;U<3j&;eOjK*yUyti4n19v zH7x@JqO{nI3ne)8%AzTrBR>0NCYZvbjqpkJT`&y6lrm#5sv+ilrQ2v6U(hw)&Xn?h z8woJy@xinz=y>+}#bHE4BsG{yR!5a6XxI5-$tTBX^IR$)Hw*Qiz!1A_oL!uL|EE?-Vvo0&~?= z+3s&(AcK~mgzguXlIP{&n7=r3Qv$5PGY(sFPJVCR`Oum3gIiWCeGX3tY<$|hxYCzA zpv%=UtYID1%xd`z?(2BCle9*^RNl{u}K0m=b5DXwHpIVVLY1EY^NMr%qTW zN)>Mo5txxnftQU;37c~U1UyP<2Qh*{2*KQrKU2C8M33} zQ4ZG-h_Cx17j;dll7iA~51 zZ+iDO%y`qT_vzG^dN2J}%1@=hKJfMI`}SzzgBxtuez^s>Q}L&Ma=dxQ8NGNf%k`C< zzcQtqFACs>6x?;e^k3k(q3Ny!W3%uuF>Ua2W9DjrDo}xih1FzR`NE7GYD>2)X=xO~ zH#GuAz#{T$!4n1;0M-CB1hGI1AQi$HihSg`7Jyql>S3^fWe`dsm)|Mho!=VZw|ePF z1gQNel1 z5Jc)a^7|AVQ^1}0>ue0avkvv2k7t5IFU1p+cM|Ov|Cb*?y0=TxCn2k|Sy23||CXi* zvzKE&6oUNcwYCJ&^6`|}brj)RAs1L-0r9=Dw3sN;OafHwlcef6K9VALNx;kOFfcNX zgL#z?dtQ{y)vyJ*+*!-XbyNT_st*rPBtw^4J!B{je@{q-sGgo?eO!+rYL^Vj^`T>V z*1xoTBvu}HBv#9=LS3cK$aCzqVAC%Nm53p%uo&4H;rz%4PldMQ2_|#RH8U>mUr^o&hoD zjE)x}m`=vTt7^_wOcMEhrvRSI;Wn{a+&vP&j3J%u#<_X_jT+xrhD7$vQft^P_+h)~ z+II#elbRdnRJI`&eDq8dAgj;A6%PHe8Ayk|2y77>wmY90fN4pds9O)=1|c_P?i7B5 zj*pM8CoHPm(4NTyt{|5bnO;g%v_S=Mk3OW5k1JWwJIsbI*=lzF6^9VvIPX~mgGyVdbjEX=Ow4#skIzTnH7rj23s+y?Oj_!dW%-gmdipU~}eypa8~w z)(j~%&J3oJ61Kl`kdFnv6 z+_2Tz0tNXUDJpY!nvnQH{TXlA0IN;j8|I20M8!E2Ss1uO9&Pwcd9@WFsvCy%lv zk+kFO0MPXh&qN+n_)FmYqKBSvI%BdwvSWd{?i?@>%j=G@>mT-QvE1ptCUS3J zw8GBF3{ITENPomiT*rU#_wxysr1btzEcK4N*j?q^yiOc8#d`ep^(lRKLhAp{@lpIo z3z2&NyI}*a0>5*MIx}ob4KpTjRLEK7Km20OtYO&9y>q4Ns?FH?J+;k|OQ=5YtrnGC2vbxxs_c-g0 zUg_i@7-a7f!?F9X;!Mq_Fo~bW-}K&|R+ztD&9Jr|{Wz}Rdv}Uy(CDrF&JCWM;nu$W z`k?LU0zrT;6U`0t{UV+k_kd0m2D=&8uKQXHV6J(W(dSU-0nkf*p*t7H3QO{DKL{bbB}dMe$}$!QIq{P_J*H`FWe(__7$`PG zhv5K+ZLi3dGcZ2>eSNGgb0~>x@*&qG3W|tG$kcSOW<1f>wr~5J44@%`iF-L5muEu$ zUhh?bY1RjLP3`?j^@{#~Bpe_m#!ThIP0 z*>WxqD%K#C&^1H(U9F60#e&|nbO|PP!J8o>2kK0goi8)cdEec)%3@^55hL5|-yWM{ zw$@_L{UQ3;mn#C$N!N3#_IpJor8~;*8_Nzmp@4_cYs3)apf@F;eTE5qZqWO18O&EW ziNC(?-gN5&xt-(=y+Bn-x+@s}tp+JVc?ADj1wfn9Qo$jXmz4kNa(9yrhVzr}s2p2? z+J!4|Kp#C)zlPgu1pcvZAxq;Fe#%mKWBf18c|El@?yJx(I_M_q1|`-6HqPz~uWkKPM69**~`UWDxBw(vfenxrIWDQQyF^n#~sarC(pW z8w}NRU0Kix}>c1M6C>hAxHw4aXSJFc zMps%J`WaY7JLMBHsDF@(M+B-(S)gGN&1{MZf{#1 zSd*$X>&8(C`ilhI`636h{QH9+75Uz1)fWKJPDW!Z7>DfioKMh*fQEle;z6pT<@4Q(p&LD(;DD8>EL2J|oX$c?EE| z+4P96I9;6;=a7i=H;S-4@qwqBbqI_3>(|w}Uk5|p4{pXO6;#p(E>HeVq?!r}T{IA5 zVAu_&Aw)Kf2ELtTd;)^CmCSRL#A0_Yc;QB$5IrY=pO9C2-Zk!um@9v0c#|Zt95U@_ zVFtRux^5fcC4J;wMRiZIAV=TVM=*Cly3hmnB9)XMxpR!rN*#{RYKk*cvbYGEQoJ#4 zluNU@&7JhUagqr5eu!Epd>0+f{We?$jG6QW{c)wG-NjqyoH z+y%L~z6^i`JH3z#OgsY>ifU4Qd^d?WdSLZhmH08H`kkrC> zOcf5?)e{9+NEol(K7GY;?u(m$d0`GyI=Qo>=(+o*bM{sJyKPeis#r=7?A$@f#`y=4 z=cxc!d`gnQ+-f-Ay8?HdE>@M;N_Gf^)=ZBiJv}{c)$9#d>*k1Tl3;q>z18<@d| zBmz`#HZ$+RpuHFBdt#A}yzkXuv6Tn^Rx39&0VF>AWLxGLoG*2M8XciISbDh+ zC%CK_FPC-2>5CSb%W+L66>o3?Z7g#}4$NyvNt;4GBmiOUJ zgLFu38j+HcZUh7bk&qHeK|s2@yEce|NJ)u+G$M`kCIkfO?(S}Q*Y+IGdCvF!eXi%? zA0IClYt5Ru=bn4bsDnZW(DWYN2i5ZUJ4_+t98Z2X<>lpZghE8Q|M*b=bb)8; zw0QPsAfsJS&|%}vxiR^{&XD;7$?#T|w~T^+3S4pv2R4ef(|$xRPt#?MdfCF)2kszV zUJXcbebd#>*JG`p6eQsh*QIB2!7$?(^Dhuw!fvQus7u;3)i3ePam2Kuji#}oY>xdA z7J-d;!MBTr$f1vda{r`3((jjU>Uk`l`>)1U{61G*gO3L7oaPMR2|^IhJ~5j5&(6+N zU~(pQedj5ViNI&sU9uO5#%4&ik81Dja zaHXgnsG-2aqI#`2et)Wd!-En{e&`K>9c+ou>+V$z{vJpeyo`M-8ii z)v1{8%SJLu4xLz&)#9)EBQpGj&xu$1xaLC4t%AN}5^C#JyAp$@bn8$IvK8z26F zWmrs>T?fYdI;BZT%_3Fw<8)6P6-hN*{sJwj;mFr&Kb}5;NP*XI2o+S(rOK=0%Aiuw zRL&w+2dPy?zx?*)`eO;c!w7jfIU1C`UC_gh>sPwu?L(6XVz)8l<(8vzVsP}i#^^Gh z`|qFJoLDW{fyZS#$Y-Zpx@JB3*hArFt$W~g-ZnQ_uqJ|OG^DUT<4c8sB+Yd(;xYfUMBluv5I^^@e z9j%81Yn&loU&aGVMCVHQO4SSnswX{{OmEm~)du{4K*!j&dm8DkEUgzd;o*oUYyh}?bEg8v$ zPQ)tA{>b%{r_IT|orx#WCldP@nAq4qQR$FDUa|NSXb<~R4{0E^5ceZmoP{TK6eg0C zIHAE;WpZs%fJ^4YD4nwWUOAr{D`n6Go4FBRCH0quyaxhAB=AZt_zKKdvnG5z5M1v> zz`?fYEV2kRPt(SLN;GgpOE?R>xxSo5B4CPqCFXC3#HaP`k4Jxtk=X=0wa;vYF?Xxt zjm{l=?L0P4@w#i>r?w|2f#d(IbMl^ZH+j9V&%Oxanf86AqDQj1X520wND18u@5~(* zzEh&286D&j3i&X^*4@uj{qUnoVLm3UE)b~bN*xb< zmnNvoOMsYb^!b53(JySzZjTd}Fv3`LSW@baj^%yx_7$LFGfiP44iU?C^jNyF1)P|(h(74J+J+9cC4@KW z=_aHQbf9#(_k^;EJPIvjGCsbKJZ0Tkq#Zzo2Z*f`OTG6b2x!?cGNJ*sdavSHn#eBl z$IpOvIR(7}hO^~k@rs}4J_9kf3i3&{?mpsnzV$-rjH2&pOE)XoL-4q8CZ`JM+@JU7 zgais6uwc$~)=(rnh+;o~Kgex0j}A=Y!Hj1SZlLAwYT6>~!WU?ZGd_2LikN<96sB+^ zP7R#ji;-egI4!^q@XhU@D8BolBwR$RV;*ZbD@9K_XuV>8(j4TJsTDtGusHOdW=6o| zogO4xn)7!;BBCCa6mMfai;*gZ@dN-4muEML{Szwz&oFr^dw#I*EXJ^Oe>0|GUpHIiVBPJsH0OmL9Jb4F*NaW$- zC`A5%ig+^h_`W>v9Z-D&CvVR-bwA9h=}|Kjz-a>KgP6lCe2HR!b%ZOLV_1B&+?>!jD0nuTq@4*C(dX8g`F>qqw#baQ4z|2Zl>vZq; z`O_kdxOx%lTrPt|A0N+Ihcu!`DXYjR{f+Wgs9tM6OGy*_s=&;IJWsl1XjidKa`dPg zm!9iwO=LHyToD2WfCk;3yr~MjVq^jh>8<)aydc{U)Yi+!G@oe>2s_e)9{ll6$;G#M z41Q1Ba3H)uQcd0Gac_0%X^Oe6D3XzciS?&0(+PA>YUVa`YH?3zMO9T*p$e$<5$Mz1 z2wY=T7rqejLgiJl&1@`% zg=%TZ7PIv zU7qjBQK0EVg>Kos5Ay)5G@GO^9CyXU-5inyxP5V%^!WDb6a9onnKf%Y*#Hefrm#}< zOukRS4D+uRU@8k%?R;JN(kj}cj%-8n_@ne)qM~Y7UVuh+FI zi!~=!VCF;Fj6?+~P35V)$II&^1GI!<+qdDP-MgN=cbZt#NTBw8UOaG5B#SJ^H!~Y_ z{v>J71SQ49ymKeo38a^JEQeU0kldy>T;jzph@4{Fh<_^xl%hk*3PKuqXip zkv9Bkd^+jc_mliDWm`GpikN}0Q*<3k$gH0?1%%kYC|k676rQhj4)TI_NND)V0S zt^aNz4!BI)H81|YtxVmew3@&WD_7&=lUDn6%jY!6J8yB*1L4&qKb{Sd_g^E49rnM~ z-4*T;s8C_P+Ll2HfTFt5{WKCJS27NR9)rxl3A?Fd*ifg`=n-%3U=m9X)x8`l93yW3 zF{u#?Bu>`lNAztXtjo0^-8u$+C`Xa?Nzk5odS3WKE|Ka}laj{eF!wWxH}UV#%b{2h z&K)2#(KcB^3W5m=z@#6C`~7IFj(3KUxs2&FtXU0@QgvizyyzSZg(LOSXi(jjn znXTX>J;ie7xKH^hA>sHWnu7PB_X0`1`;N}l1+rV%7k9t*W?l$c&)&PLAS8$+;?TAuH9m*?=)C)e;bC6P@`BiC5B}85 zI#0k-6@Rb;x1})Ri3R1L)b;{Nyk2cg?8p|JYvychvCQt;nY8vh{%`|kZ6aG@49qKr z-s_l?O32~S`Gxe<`qAU>?^U6ls8gBK^VhXTD{c3jZ6}{jw@A1jtlBLue1G{J7|W@T zAszWT8wt%y+p6DXvEQA8_vVH-%rWUDK2v1=iJ#*ekL1Par9s)irQfAN&>xjv7TJFW zvOt(j>pPGWpBqe2BOSgCsSFDVS$2F%LUDX^xqCX~B910?$NwHgpK$8Dx0Vf3s;pR} zhPm$n6sLGGhM@cKL0`ScVHPEy1-GiAFzSw1m?=aVS?@ztBobAKsK1M>qK7P|gOHfm z6~QhpIQ&3)mLFYYg<^IMI%3e*Vb+P9uv>~xzAR{lDoUCchbjCq@WJPybL*@!_JG_s zEgXwnhMr{Cmv`s7jPJw6@Nn%jJcl%><>IE59yw6V=vL6|a!yBwg&u>yrryu0An>A# z3QxIp?ki3aSeIJcsVQv8?irmSYXmvQ0VPa zxZ2IOn9SWDv%}s#%R~*Dez<+wgrWqR{Vm?}e-HUEbS3%i+qYIQO+pltUId$7WV3eW z1?B*u)Jq6HB#$=3QhR`D;~fjWym=W+@DdRSsy#K(fwE#)?bv7a zVuNe$8TpSWf~=JIa_|$|pVNLe3?mS4?%|YvM<0?9{#-QygUVnhS2z8f7-RODldlrMV@CxJX5tT_ew3$&dU%v1ivFxcpL0Pito|8E59B zJhA^u9^Q-sKT<^`=ufTtJ}MRn4EB7}_K)I8?lCzZ`550(luPFovs=F!_V%t2Ap0q} z-LZY3xV(u`&Kog26rHI-QGw+o!tH1zD8|o9VUvuu`Z@VbptsbsBThFK>ts?|-^Htz z&S=lgwh@CS7(AwCo4bkM5SK>-cG<4TI;p@qiDbbLY=Lu{>i|_^h0Y$&ra&xkGBVQ@ zxlrt%D|*OaIuJKKrf+-Ax-1NS>W^}*)%rRD+_5p4PdF{3t2?1wEgyR2Wv%e+SP}CwN?!(cWa{0Ez0Z^wN6mC+1+GuWu#>4h{~o0l85_oskSIRJv>0 z_$$O5L-H5?VZNe}_=k8>&*^1Ti#O-_c63moC zhh)6bWz-+F%8Dz4WNg;<^KpE+xLuVx{t^(cu4RXuanY!aMIY&`&jq%JO3GJLQ`4it z^Vk-&GCV(t#bJH-``}~Y7JE?R$ay45{{g%B@@n)@W@4USp=Yt3J-8;`f zbB*Q#5dy!=3oASSpNKB#QO0wjopjmLHaD}p!~>t>ZtI#xOUMFNzu>hVIRw2edj-8Y z?;@RIJJ=Q%XGKaxb+)Zw(;j@R5H!KV7^b2RS24K8^z-rKH&b~AU&P0gy7nZrBxTOZ zc>ZF!B{@xg@5X%6VPnB%dGp(1lAEQ0pr#o=rR?LmfuWm^0-g{`{=8gUW8(HI9-$TP zaAHB%wH_UL`pc%GLJ=eT?-xvTEwHJS%PS!n(Ndq_c zUtcF;5NTr^sn4we<&=UFbw8RZ<@z`#_1Uhm`ULE&nWv0gC`m1?B2Gg z4;Mc@bY&-ckSSx+a<^-u$~y1}>j}Ad9+WEC=QlMBDu-5!n*PFrYNLT1r*U%g5$KZn z?=LA_v~WpKYr2A)$WdW!i1NC&lDCl@ttAytOu~%rOUzbS?8wrqnFZWx`{NHPRuA1x zIO!o_5WZ?bPfawtgFd}xzlIu;5}%JjFW$dH7-x7)q{cTP!r^gH$u6~Sm3S~+iqW34 z+&wxPe5u>3^xeS>)dozz4ejW_Y5UkLo-w``!rPLySi1A&<E*np|(K6y2*ZFM9~sap{6;ax`}0IKdNI$=DDp$1>kjwY9JBT!vBI^^39f zYYj&=6vORc6pO@hsRVYLJJPP?QLn4K?1Ez92Kb1e@o&?U9r0sMeIRqZk|{|(ZXOX6 z**5l>W`)dzD7Q7>P4?yDfZBDb-%bVB^=FTJ( ztLkIQg>uUM_jBCpCqjZWst4!yKN>aiR?HPy72%+VTc6~CwrT(VdRjqqG>&NNil>wx z{1u?l%KgDjXYrrN-w#o<3(z#BM2*b1om)wi{G5Z;SPJ~kLDh>46s(Q!98U^MO#`jo zhmllNC;&4rDl=Ad7bPxznJi&pu=ldeLYcF8mQCx2M2FlkY$F3kAmu16W~Tg9E*6ht zn8O;))%{?+uoc$K0_&yW`)g-}aUSH=STyKzis#ulhYBe_{3IO|N~97q;$;T+`uAo& z@;yLe7o=^2VmsMyZE2>DzTSiDNkjTJ=9HC3p?5(Gi4Yr%XPM7agnE)5qJoQ9+5V9r zOG?<`hO%6Hw~cHPKfAm;$Jr(Z_7#eC8ZMFW2&#+;piJ8!KJKGL*IuwN`nw6A(r24* zG+f3D+hNUK4*zRt4x{l`@Qr}X%Qu4$1p1jiN)sa!haI(m9Xoq9XCf>$08` zVPVMjm{LI#xJ!$xCG)E#T+N2%KbipM|0rQgfCvy~4p{{D7r${$i>E@lDyajD&(Pvb zvNzz-8L+`ju2yMM;ramt7<3I^5~lAx_4Y2S(mMpXU%G@yvEwi>7IeLJ~}Dt2oe zsrd6sO;HuN(%7Zo7@b5f96QrhqmsZm7$?$n`y4C@1g02KXb;=T6+2tO-hOSvnQ5zU z^plMk^Dj7$cKd9+4L|NEP4HD%Xg|)Wiu>*;N?JS~5~=vT83o`xc^>mcYTiHrkmB+< zC~) zR~iML27kq`94mxr!+;ibiXIvRJNVRXWdI93-kcwZyWShiL$c73RG)4Ucoo(Jn--ZO z-zv{Z(Z~4jCD7+aV8T&6@yB-rHHyrnPBFM|bA-prZ|@o0a$|_%rJZ;vgG8Shb&h1C zPJD?*IBNA)lo%^b*JLNVb$@Qo7H39Pp-a>W&96^41lS|{%je;u#=-}Pa6h)jA_j)H z(D>QYZHz{#R+ZvXU`_2YwKU?mDt=qV75(ojun<@A)9h5`+2pL&R=1t$XAR>gYtiww z>EP@Xo~?ybgZ^sATU6G@9Z)3#VC+puO*sYFGh2W{pS@_kT$}vPadS1zR}mSd_KjQZ zEgK7G>r2|AR?rk8p<%?qT4Oq&DqTC<<9(>R_mPwsUp+oUi~FT@u(-%nu<184?3uFv z1|T$aH=Is89N(`ajv6sIWwnpQCl{wbIlc8-dSLLYuNf}h;bU;PGlwgf-n-a8)eO}~ zt}QmJvQe24etO*uJ!`F^Z4JNCCn;1Q@vhvGjF9BiiGZRpDUO(QmhNa6G+I_zQU-O% z9e1=cUNH2mt5%m^CwzD*X>U@sh9!!C>Hq%n+nbd4_Rdx+hf&x^if?YntIr!R+^oXf ze0iWizS{vE7w#N)8CnI{Y#(14k}RVi79P0p(0jWo>8!bs2f&C-%gB3okU^+(Kg@Q~ zsWdM6W#wQUZ`Xr4;cQJEwr+x9+%rehe-^f%%*oWv&W55N`pY?L*2^!cIqd&`?fo89 zzoEzJiD!GTqL6>NK3Ic0b2a`HLEZ?GuFQSo2=m5^;c;K2h- z|6QLm=C>f7HcDV`m@AZ-XR9X>db9HyT)@4p_{_EOvV@5c8ND~97`8a&lMU?u$21Ue zbSr}N16Vyr~vN?p4&oq8x zJtoYrTwN2cKRS81bjdB<-JGGEmX9}KAx+1c$q0r`2HI}F%zOFqrq_P%e&;W&e3ALP zM(7=$6aS0R0-y)bAiIN?&y0c54rzL)2wm+@4(`D!;@q7EL>^3*;&alj2Cx0T2A=kO zgRR^Ev4`*DPGGdoC3QMr#&7ad=I z(Qukb;VtHE{ErodQ-dJ+8BLPg>Yk*1T|H5PCTFm)4}L^&ZDp^?{$`0};A(CT0>GXD z+`?9%CsFiba9<9ysX0dQi=%~q-pm8RSGxmF?i`{RTu*6V+ZxLnIIfHMUY{=Od^=P~ z`;o41Q_sAdw)vecj?nlc-#sK=I8)Y}rzkGi@8w;wrpAg}VP*dpN`S=w#$>T-7dz@_ ze{hONcZDr!kfHA}z4vz6yt{dq+=HuEWZmoq-n!2fGa{RzgKv=i&BUA!N3xE|-;be8 zi&k)d=VZus)?cXFEzWyBCYK@N4&RJ2R!8Q{uOxnpl{{@puKE!RGG-Z5 z*^j@hx;NCGYf|yQrnIZ|s&=Ms^t>dVgl*GVfo!Pcwv5WqT5{|7bR=5KWDHKuTigz# z9BNJNV(q-yEtwBtmgBW1mXZ^h(wWy7(5%$EgARWtkn&Fie+Vv3y8HI zVl#eipNtYTI>y^=6~HU1tt0l(;1y7O4d>((pd9SLX<0IEAf(vw;(qU~t**6mPKTY! z>xvyj>CJcI+5gv>$;#e;HFw{A?55YI&PI2tsI>Y)KT~kkq@65ySHR^843FGEB8v~zM$eg_ngCK#uS#*r$ zU9zAfhY0e-DPrSiVcO2=-#;<&XB&#^&i}sB-Dc5H>vAJVy_Sor|JZ2sCLeFZXf;8;+lpE{HLIB!$v`4k^~3OGYA_R5PXo4haBL49*DBIF&_K&4afEd&Dq ziVK8yDQrFUUE!R{Gx>#%^P{&qF_U)_LL0-3p(c8fK?3@;7BMe~-|>95W47?l!YCR{ zEM{yhZCiBEIwRHPGx{=jr`R($n$K4m~nqd zrmIt@4EOfR6dOdi3q+Q;VbOB!b>xiI$@SpzO70|>*=~Hp8jabskU9;De3A2u)RZL{ zpYre~?zL6HqxT~eo`qM*DliT$ucYxir{2AZS6?O;#w4#NtNLI6h9XD`ns3A919zMI zc4x>)c#y_pv+@p{I=ixeHOKpoILHWN)$REmZ7*9}+ zB*F2s26w(87qU|>UTa}QMCZ*bvY8j1IxmZY4U1k^tH3>`7L(uU5`r>R5D4kK$2S)<4tQE#D8!Q|r zK~ESPOA)>dJw*WH)CTWC1WmUeGr%dBUN{?Or%e0W_Yq0C#H?#)zXKlb+#8?V6xi3R z0D`8xfa$&Ae8&FzCod((U4hG1pU%omhMSajU9#utJ)LO%S{^xh+;fEG|;&lHhu+=J_6xYKAb6?=!A}kFRC1Wjm^W8Q}Hmqz;;kIMZ?PdotOV7kg1@EbJwF?x|*=og;*9o3t8~IsXH97(g0{MN{eLH2HPf zBib6L#+jPw^<4{syT+d4rZmc!;J!tab%~eSj;hsPl<DNu09$5M6w9OCn3Z+!TRL6HAC$={D;A}jrA>86mls0ci@@PZ58r)6K%;w`gQ^cHT7+RA@7J6 zcuc?w7G7TdpnD-_{Di{y^p^^*%QM2#86j4PeZKWIiIG9H>-S&(#K{yWf=hx1^#iot zIQMKp7qXp1br$>o5)g}@7Tv`~F>2)dM&5AfBYV1lDf70{UyV!)HT3-&Wlx<>x|L-* z#*ZuFe^Xx^Cj6T;;<4oxsj%F*3^Zk}id5Whz10to8nvYmnTedXfw<+0*6lHTE1A3V z=szb!LW!_n(r4M^KrAQ*Kw2sQK%a58C$VHMU0YTfnD-7ue{No#x~=;gOmD*_COzTg z9`yjbw7~+2_}*yD9(l6xrPgf;+nZ#IpWJ3Bo$_~(%^N>^N;3fks7w0rKJGAy+y}=U zMG4=N33+&{RZDHNdM-?Nz~M8=e-Fj;k2{$~8s$i>CPXI^lz*mwqQpU>hfqN*0+0%_ zs92E8fwIKUP5#fQU!_YYVR4{PM06QzD7E3wxk4sOKVKNv1f$*96Eu`p2oa|K2qu-A zJyVb#{D{7Bhf%4ktGAW*riO^AiXF!=o$y= zPVvHS{IiQZuABDHb4D9}>h-SWUTA=#6Icl%EFWTLWenxp@S5JNyzt%|$GZ|tx1(c8(4|bx zXicb2_QM8cWkeJV?i7pDTK)OcMij%(YI}a#!w=R{eZ}=6K7QO`HqoC*)#3=hjLfV2 z59pvl+!!st)0xh-6d7i&`7*Ve{II~6hj85eDq6{iUscrbpS#|H1%gra7dNU{)8tqJ zsXyEYk3_bDYf>+Na`BB!!|{{@^;|F~gMod3yYid)9z8>JRe0vtBUdz1pfK1P76nKC zb&wK|qw^PI(5hUJ=Ly!7y8~mNHsRm%VPFWVP9gf^)rRYM$=BN))|QwWhonb%?w5(a zBNCbWMPWE+Sl}vkx*+!Ucf%W+9(`o**QPR+h4skbQW6qV0~}y#C5RmbcG?hRrbBLhEiG69r;c}QB)as1LnQaiPorgC38h~*O1_Vd1TFX(B3E5e1fSY>$NpPLxC#?x{{zmw_PZwLOiPJ726(j*ZuM}J{^$B^5jAP! zflJTJdL%p35}AabV|jRqc$iVvuSP-wR@AD!8z4Z7a3nAM!Tj8+DB=KHNsQKX|F9>e z6m}o=Q~HO<4q7S;gGVG4pHT(2MPvLPOotO2pg!7t9KOM$9%+e<4oF`@3L4V2heJG{ zyjP~N_VL*6bQ1Cklrz!%-2 zY#=lyanJW@v?e*05V-Xz1{mYBMOo!iiAHSM#!z~H+CIvkrOM&?j_aM{31KBSr^r`J zc2VAVlbF@=3NJXUO*9VS0@zdJ_}edU|7k!fWApdj_j+xx3D89xw#2;A)fF-8`fll8 zgGds2&ei+q;@54=%f~r1v7<~GPcCCVd{utJiXs@gKfLrK@~16EE$VZM-tQ9ptZ2mQ zL_Hj#fpRZA&_39Vg>7-UE?D};z2h$$8(y)MdzL_|3{5f!lk|x5S}pi9cNp<|6UIII za~LUYV?b&gm)Z(@*)9ZXHh@Gk0~pF@-)3QNlvXUj-0zs?s~%@;$D~6=e4G-B=+xUg zfZ7+MFS$!~(>CpSDV8_HT|;7ud94 zd>jM65ZwAt2$c100V7XgxCa8Ef*(hAdQ9d*ag;!5OVYpTJ8&wXr0}{p4&h zJTxVJ)f4sX{YkYkm>2i&?*Ike_5r-xBQtQI>j}to(T{OL>T) z&$jVamuMK^$!TK0DvmW-p{s`~PAIewe1*DagC&!W`GnZcL?_;kr z%Srlp7Mg}!EVnVZZS+*ETxeLPeiVF#Y*F5ze(E40=|7oUCmo`2RY*lzn-V7n1tpb> z=??DK?zD&443ieW^CW!t6S@%M#RK=kwA!h+uTH9mKvNroHx}8`Uxfu2V~gBY1y;zU zzZ4WY8td<W`pV3aT%+!0qM-$NFd28;)*A5A^1c~ORF&cph#-eSYEx`8v@3i zu`Y8!`uTd%GDSR}iuD|)od+o#&s=rM!A!PwUabpJV0 z5+ek2w$i(O87JTwp1gPU#5l2daWPf=Y{R7W`Z>wCoOJF8ATOy4DrvqR3$ad<#i)+m z;{a(2cbzlw^P=wMJI+{Ncn-*7F`cr6Q8GTLdDbBpxKY8g_-haqa#l$hV*ggN=kLXM zCYIY{K-*EHMP~*yBxOuO3_3h1LHf3}W?4(bt$mny6oYExR(P!K9lXDSGfND z>?I4h>{hkxZ{I%%J_{}0?Cj~OM>Fy|9<2oJkW#_Rss(>i#lKDn72P&`G8sw_9k4kY;uT6L8Gdg z+I)9U&lFp*4*Faa1+Ups;4l5ZPT~#(QNP`urL&&mz5{ICQd}<4zm*|{N>0!OQFa5F z(p1I*-1Mrj-f)cl$M+7C!lOOZXd5GH(84`RYc<&bfBaYfk2G9r^X1Jz zHNYMPa0Wc+8%guS(L;Hao!wIsgo7xKHhQ?B(cG@5AmGh17&{E=LdJNfx8Dz+&q6^D zQ?#uzgef~Jk#@P}Y2Bh4vX_?Z-Uo~FemCUo& z$a8b7q3wm|qcHmIe_ZnfM|lc-T>t{lBDhMA`D9kfplR!!Uu&{8gx7Tp4;gxu@dhiT#8L*PJT|v>M0Z#tAVlnJ zY`%#}N$16_^Jmvb>w{eAwO|&}zrJ$(nD}x^Y&TAzgNCF{z&*tJEb-NN-ASp%90+GG z)2-1lI@w)mQ5cOL7-_3@9fo={T2sn%U%Y#BYW0MBAg8Uk)qHPoRHCKl))V7Jy3KQ% zO2P#tlkE6nTP`^fLS(6q5r?(ud{|98DuL*fYIqd-p0uXsa92-H&uMvid33K0)8C~W z_=ECUL8gz0hZuY<_ia#!;39NnODNFpdLIQS(UM-0jE9;fxT;8S6X}|$_6kMmOJBn) zvnz2V3gvKx)VrJy?|wbognIrsPtp$v5K(JUClUC=uUjXC+4q8U#-JPt zFtBX;hW^vm8!gL^$G+$v!WFh>ho=IOp9=co;%rATh1_BGf06u!x~sF({S9dS9~Z#+ zAD3Pj5de)UyAYj2sgv|aKNhpQcv18dMlj>^+Z#boT;%vI==#QaJdWcCmR4x$%xBCY zYvq>KV-YjoXo>1Idl`x8gkFpK5^(?Y=Grtr_QM|ZTyJ}U`au3HIl%XAlf-AE8> zr@1~ett27IF?>S3Twjg4asR_366*~tdIKD6Y*BF0ctrc#|JLE-juFi3-4$oL9F_Wx z#lmWijsED^56J%09_BpT@^;3%Wrr(wADbe{{c`Ia`6kh6?TX7l;iK^^w{=KF8qqvu z51vIOc9A{0zfhkeWWNx2knV6g#$s?%&p1C#&I$qhbCn&hvB1~*@;j1#K3F5GH0>on1kiW})K>1we;A}=`@P7c-f~j+EzpLhQ{L76`ra)Y zD|-hJw!Q^wK|tFYcmL}DDzAP(v2ZLMW-mIi;$`LQB3o=tiR9T<{~0WuaXt>8;z**4-;sle;w61JJYQa5mti z1Grqi%`X@AeRd8@ZNQzxM7nZ6aR-a(AUOeAsxe~m|q2(dpn=%bCq3XJe ztUz+03>bbQsyyfjyv!GjT7tj3a_1S&l&TaC?VPYZijJs}#%Mn*o+xT`2i|6P%k^Pt zYyQ4NxYba`rw$Y8d5RW1L3r8wu7>gNt+>B%X7w61qd{`nQjuOCLAJ`#4t!tyEsk=v zjKDM4Bj{br+KK9V^4S+Mm~&RKF+lf-p3l`IvE@;A?`z$KdUqk{JCum5|DT)-jn+H^ zJHrn&Z@A^btTFwgt9mtbQFyOK_3o}i%8F7sbOT^Se3mAqAiJ^DsBS!gJ(5ycOk{kn^w5)AU@2dVq?d3%Pji? zXMm#i^e#3O2)R{epJ9)e;?528`)gxoU0!PCK1;i~`Du9bZa4d{Q4vC1t1}^#i9;yh z1W(*k<9AddU#7{R1Q$+XqOvl5D4vZ{5u}xx2twgr%_OPdC1|7Dw3-wnO(vk}nAfRs z3yDi>Sj$rw+@$kbbpO%s0!kwfUI30)fLiK>N65i3+SDm4o^2yrE-23UDET}4WC$C0 z+TPJ^Z)Yj^896o|s*og{CgSoN$s0|~@UO>~28ly6<=nPm55E1f2m_*H@86X-R?NVwvh z$J*0Uf2QfEffr}~3q0ny+Y27gi2ix%_OFE^MhK_3k}| zN6?0+EU&`|Lzc#STZjs$93hBHHGIYJ+&2^elyApOf<_w76-ZO`y}P-w?VSPo2}7?j zKvwwqL;S%cu)5sA!NFUiHQm44$YMWs^$FQh&rt<1><-yOnfVlw4ogR`ueQFolb;W3 z?`>dM*;F5gi$UM^!LWMP3Ux)lg(u3H}r^3Kv?2DPH z#>Z?=+0Va+Wm1AggZ0+GdSNux;qHth?cR)1h1&dRi&CQF`XCE$cn99B*=I!kA*z7u z$Z9ecjh-WXXJ?DQJ&JX_`8eZqVg1PB)5ah>)Xhb#<)` zWacDGvt|H!+Uh+502`Z#}q?>Q}?Kuo^j zehcSjmc!eM1a;klW1%`&!o|ZdbPFQ;C$qP0fHOh7gHv)mF;e|?0^TxEfJaCnGA1(Y z1sjt&xP0^(Uha--zZ-b0`Q<(x6s5F(Gzha9+j5b1^=T!^=j-AsM6(`p|Ft~1ZyV2R+c z0j~0Ky8KtZ0@)13iUvB}JEx1z>y{%^4tspARAMlo2||=|2j%dkP-0ffQbTb!=zrKy z#iTXpZaRDrm&eh&p5U{yMtD8ft-S@@0!dGOMKD8@6hZrZxMqIZm4M}tn~j?fZmu@> z!wp;g3I2|%+*rAivynU6-%8ik^@~L<=7pD@uuWWA=K^5`4yR(L5Px8lLR}ONc(syMM;voAnb?JZ+8@EwUGHS)6*{sSrcYb@b6uA%}u(x1>bl2?soK*-Sr!fHn7Iy^A%?cz;6(%NX7@Q zz@T6C#bn+0nX&c@nBr7)H8nJ@(3=EN{u_hOG2BKuxzY8nW#Qssy7GTfKQP$>q||7u1Wv(ke%KD z%JhRH8U<8Isn#hT?~u2M;c;~+APf;YIXkZL@CX@C5xVmM5RFx5Gg6?R$5ZJ{%4=>`|iE}`0qc);hf<)a%4ZT)?9PW^(@O@o0&h}f80d8 zzMg(qCg9QnxclrKxEFr>tKUY%R@jS9?2ig%2OqfosbMp?O+CHU}?sdvgWjO@C{sT6s;C}#~^nWz9;cOXRiL4ol+oX?Ftkxfcn@lF>vrT2Q ziFXeSsm5J=bhLFXo($0e|3oP87+ZpK97{ERhfqc92(5HzOD=5n+@5*A{Im4Ig+FM8 z@Rn3?5L-mATMZ4Xy>1VhpGh~xo6gNPvkKo2-~nU0aTSJ5k$nZ%TH}FaWT_V2#n<|E zE<`+w?0mm%0oZTU#tPa?0Y+C4YC86VOy2Qx6eUxn3yGWYL|<83fmJ_C7qG3u_hkG} z1he8n^0vkFKd>OUg50yMZ$ZHG^zrAaLz9;qeUA#{X1A+hRHh)dBjQ6PPM9MPI=>Zj zUq|)IpDK827v@jA=b@t)fR0j~d%y^sKtqMpvr|$zbi1qML>%c1VoE?7>g`;KE#ukC zi!mtLtw^IGPMKKuFHdz>DszWkjxFCp)(h$Pk@Xu=p89;B^KG@6fRG1ypv8Z@0IyCl z*EA$Y>*PUZXABfu2Azge2E%aEtLYv8T9(7=MbtBViIV@EBBwa+`|PD4l3@>a#J4BL zU8oo0fCfe^H*HL|A(Ot|y|rri)|}pcW^l#6=*}a=x~Ir~X0|o2k!mAx!DxGP7k)C50ZIchu2|E(1mFO^^}Y3I53l3oEU$Uqj}ma)PGP?5 zy4VG9;M+)NK@^dPr;hYpLTf)*)pf3C-W@h-wVR^TQBTnC-Cl@ZJ>MmZa8_RH)|b2l zb>NjE_6Vh3M?2(LsyOqoJV|!vxFJ%$bSUF?Gq4yuu0^ z&|53F_R3k2cIu9rimLpxYC_OW*oArQlmH}~n8iWi5~V#o!!|3smi*72+Y`Ksewr>RKL`4(U~qc|pi0>so1*6kB>aHQDTc?5pj+I7y4M0`eB zd#x^Bb?5>z=*q}=P?|)AFjH68_$_q!HV{CIpnFB&={KDhRiXdc0MP#v*FELiRnxQc z~9HDt6OH*B8@CZ}@%nQ9HYQo*bl# z5*2k6ZJ&+39Bw@yZ<;J@A$3FBqU(6y&;I7(m}y_p!OZnLYZI^i(U6@ynlM!3cFdF2 zm}?=TE!~hP=L<6KM)bgO=1}? zQMd-gDox^D9SYp4L0H}|g->T>-by*m6{{)23owtjP6pv-&p>xeM>gN9kt65HM1i#H z6<{%bMsknfPuxY~vgz%>RVN9UCqacIWj}?Ms2dyZ9#hGWhdEJ>@+EBfha&4B0GT4# zdI@C#SLHy#R_$}}`QvH#=nP?DNy&W`Ch+!_^gRg)<9A|d1^+bQKIE{DC6Hz@pZ4DpT*a{RPQyj=kE~#cdlcwAr8|l|>0<9w{M$&iv zii+!X!*)~Qe(xuz8SG)@CmNs4v2nsDqnm1Pd3*9un)=TU!db0-xc#|r+B})xkc#EI zu78RG`Ss`EGuRzi{I@7R?M6=!36~v$7^{9$ERPMyBVLhLhPY7bxW zwc*mV4R&SaCmogr7Xo3_EG-*v>~CXOuV=wjD;J&H-T>EjVE_W$eSLjh8NZq{eht<9 zo(H8R-;gkV{kyZXvsY47bO)=6{NL-q1Pm3_xKD`)cO&R%jaGj2DbXb$Hbau)Mq70S zT%Lyde^AlcFV3&SMdDKs{_(d)=m7Ar7+-R6vvZQON-6#3rVJj>7z1GxRK&;@67EY? z^P@IWWW(b+#!F>jw>G_fBKC|du89#9nvcCJ`siDpue8*@moF<26uS)3R%r%xk7m9y zRQj@vx9u)gIv?pvJjkcNN3Z zcLqykc$@_H@82&$Nu&SoEUYLAD0-~LIq)6;s&tklp<27(;%Y64%v(Z{^z~9wlvB(~ zv@Pk)w$&f@$aCnN(fw@gD_laTNgDW7?^LRulFahqB1?v^jI9s^gog^k#VlldtA@HU z`4X-p#a+4x>0n_3U^mD1eLths<7w{Dx2gNvdxgx#?&p zh(6rAhm;w?xi$RgI70cyP_PFyem+Vi!HPHQxR|p9t!88ZT>afX<4~LVXcv2Xz3l1f zI1HXhrM%V(AKeZUmfifEk0XQYA(mFk@->@3(u!`Pdh;Q&#eimtK%j>}K2ld@f=Bhc z@4<|DZ37)f!T9(%CzOkNCMYg0Ue(fa1vIifR6EM0QB>Kd=jJvxHeG-J{_T{R{4b`? z0ay(m{pnSU>n)aKQ`h#JU9D|G@Awf%@{szS=E8KT*8ewABnUG8X!fA~yE})u81Rh6 zg)G^;Yu8f$^ESKCAIbPmlHv7qgL?!j9ZF__QM9kW3FbY}EQ@%IWCcD^2Z4+F$Y+A#zLJtsGv-nexHglV_wNVu76pj?czB*k z%p{A=59`2sQ5F85WHFAk#)HV}Z#P{J3p$u%x!S0X!KbZOl2HsYG`$0QejC7bnusDX zd0H{;j_&A1^XUJo+prp|lw8qG*UEn1Rgjva9y*A{EiCbt@u2n`|=46+9VyUo-n zo+7p5N3;GLGi@x_96<3K-zy4G!iG_7WL!C+{*RbQ+h(Nt$o2ca6mkJmT<2Ujd{PNz zEH~sIf_RA3kfi;c`Az%ukuZ3a7siZ6mvgSmnz*pZhX`H9<6K^GtqcxV8}vLFn) z@b-tskmvWuxA#tgJZxQ%R4nGB7=O49@mrlSxZK6-Sn$SeUFJiR?HUWO94E zGw&Nfc6^StKP-@>g1U@Z=8WsO%zz;^|oZLekrz8nek`HH68cnYOm)R9|}n zaj%wv!88wupSkI?Fb%x^x(vsR6s^-+(h-=Al#_vOWwCv(QHlFGwK8q^RsNsIpHC9hq-aK zT-vXaBM!;ZS2V@hl9WYbJ?7?nJSR@Zg8D(_63XKKe8_(d?eFfY?H?M6*Pd5q`jLWg@Mk_&bBIJe#9DV{dLH{L-Qz}O!)yeE(GsB4zKrrI`4~{OSa`#%nY6pG_)Cwz& zl#3z%I50R!3%wH;@K)l+^aKO%WQ1*YlfeYBFLiHRF+ELgdvb59Z$B5?o89E3C#I%i zb@36Rp79+YzyyNfaR0P(TF6yD7 zFogVJMn0Z^w<34i&%oEktVV~LTS31ktMRr3i$k9?CCY%mL};oQ^P9G#o6Js$NBki# z7Lw>wPm^G2@|adLU0ttV4b*p5D1jG(0tyvWp++}n5Xi-SML2Scnwd zlT+aIqle7lRm&-)q0&fvg_JIyxMWRuM` zM9$4g#gh+uxb4NEkj?K?1f0lS<8~Bn^cWykiv?LIE_XOvq9^awR9vufl?UP25=vkc zjmcY%e!KbcF#U1?cNvs<%a|f99&pRBP`#)f0yFs<&|y+2cSRg+<3w_ z<7L(MI`nPhW#-}Gb2As0-S=P+IYx?gwmiH9h24A&m4%}7`4)L|d|RWL!a2%v382Zx`7+2W@j&0W}x z546fIWnNTmV?el2R?k2Q%0_l->Ld)BxU(LVjn>W62l};f4y$T>!p0>ItW?{ zgurP>{w!!yE2o#AA1}1yKqGeA3B9Y~;6tgvEumP(e3y_vljve0JnxBUS_Av*%qe?% zAybrn2?6QAjURavqj%IAyfaC**T&EPr1%l! z26}23Z$12!lRjym@hLw2mKGbGFw5LOKU(oiTyMitca`$+(D_-HnvLaxGvims?MVY> z3l!y$iUaY;*H<@NHMdVLkE>f_kYBsBvrHlgG8@5p=b0wE*f}S9(8?ZdaqU+Y z&jfF^Iy^txZrjn0uo@Xmr9Zy%6DzBc$92kxpU?gsulu8bnMZUTKTG<;^X?JbFLREJ z0q{Z?;oS&+ybdas+T_P|nkR-yQ1=E~cKzew<5kxc7NaJ8^#`rG5LDK<=*XdZW5gF(@t+8YM2mw7< z2~sn$7)pn0YoDGz#9#G*j36h*{8ZBDuf^aUE~hL$3)#xfiu`DJ!3g1jPXMMsE|K|z zkN^r}ih3+Qln!*JCVpOCUUI_7N!SRd%2-PK`C2CLoZoh($`5}dZ1XQKF%0(>S|c4Z zym(+L7Hb;tj6wD(bjg%Q=^MV{U3>F@z=#X7bW?W1U!IwJ}agTC$ zX?NxuhAAbLTnFy{_YP?YOaD1kXfhc4gtsI_otf{V!ye z@Fy6v%rk6UZGuqxG8OD&z^TK>?0r9EQPSi>-Bd;NY^?y#>DROR8!nrmyD}fEw$*Gw zq5+SF{!QOf&)?+MuaOb|Q$H2~Q4SBRLa}H+p14;O@AHS;8E7${JZ2knrupaOSD7@g zlz9khvJhjR=|t9Ov6G4EOdi(<#$0w&n6*f|E=UYt&rQU2Fy@a%Z~PsPN_YVoa>TE( z<_a8nWE4wgE3%Y%czBp`adMU|CiQn7=a1M$W@Kbc!v#tEw$ZESyXVlBU`&2f>qn9% z+S+8|(*z&~<}_9LA4b>0nGP(TJn4HhAv&rdNad`dr6q8uqX_QF6XI1S@US)zqQlxx z04TZ_fQBt$9{H)xB&Ccc)9Sy=l4qOsjps zuAu}FU!F}c#BiDX9|ZcDMn-3Dg;d=pjt;7D6#j5wxS3NNy2m}CUE zzwSmuQ}ZxqD;$-GnBad z%jP~g&we<}8THMPV6cAB_)|H9KZxDIk$Wy+ug=dbL;&rhZrxa11*;H2Nso%bfc^(x z>Yq*v5n9ck6b>+KR}MWC7=&m0Co^TS+4|14eB?TNWG4!KfBxPTd+?awLzB_)xAmd_ z@W5BqD|H-;0&_lnTEfU+CAe_u(8@dAJoSxaFi7%GStyN~i911vtPLH?yBhEw+T%1) z1;i)(JTwu~zFOEMSnmKz!pPe^d&3DM*Vg0MIrif=JHZ)7@)#4srROG-!?IKqR5|FV zd^82uKIM65A9>LRSC8ItI>KvR6$7{ zAInv{*gwtEJ%3_yIs%n)x(E8YU=40$VxN;#3z)zpmtSe4`*H6TnFq|W>Hqu$_+uc$ zII7QJt>rH1-IyAZ!y?0C@2UPvQYLxL~g8p0W#KcOY)QT#D`@&8~i+L zX=zCunA_PHPK?igieSq39gwJg_s%@hKI1LKiM&c>q0tvc4Q>{yK|wdlHiX0@zOOH9 zk0)Rq4>O8Qn7f7ZYi0A)6;#IZp*kH~_iw5;ZTiP&QR59&AG8V%hA{bLtmzKu*>(O3 zzD#!&Q28)ZSJA%y>la+-b}p(q48#@qUoDf#en?RKOG!z%HrtQp^mDxkiz^V(7KhRW z)~{VJ0#wHC^#v{rBvakhDYl;pu-PpaONji7xo?y^{JDcK_I1^^H}bcdOyrHmwR|~B z^IPB=reqzHUsdFaU%Y#tx<1Wta#KF(GD1bQ;8)~)Ow1)A&DU!p>Bv_Kljbwip&DY& z_?RcV&xU)#iF4SPi^8aA7Heaf&y!?ZwNdljT_k;n>^Qd%QLQsonNATfyRoiDU z;w|UA<3D0y${>sB4x#{80=&|gTeKY~R&0M#$F+S=W$gRww(u8hqck0-AWuJxum}VH z$Sx`>at*ppO7pFI=>&F(eOznucsuRf2tIB&B*4Z^)bTJHzG4J|rRG@u>~F&vDNQ$K ziM=wV-aM85wX<_GI=RlW+t5ZFJoBgI3sJ=i=o{#Eit!nB<@@(cGdt?GQjtJ9OLU(s zS(Q5O3G?OS$zSw_QOfryRytL7Xg>JV|2s_cNPDCEd42!vyWQEpWl+zH^)%0zk22sJ zU+g3pDUscc1NVHjh2P7t>eQl8PE7<#1ts`jy!ORgzF#7{RK@nHR%_Hy7FN2$ZrCp5 zVzHK~G8OnrTeTqJ)bl`JNUw-!UL9 zgx|%GZ+3Bg^I1FcI~hP)&(<=dHpH0ToG(6^hSs*4Ol>ITi>kJThk@E848fTaPaw?l zIJS(Z>||T-?PuaLiU+ONl)2#^FB78Lx(AAi?H9I>&TpzqOYL&E)J@qigm)Q*<*D-Q zo-)pSwtqptaLf?@b>;X*EC%J%8|LCLsxYgOB*IGyhROC5o}b{W$=fMrdOfb=_jF=Xbmeq4lYrl^H12qic|XLe)V3JM|^>E>d1?oGWh!@Rs?g?jkzThjCGW0++rY1 z{AAhbV#{}=*~Rw>YG5SBmdF!RFE*?(f8jM_Ut;oxv;OXTF|`N=n;dlWH^b|*u1Kz6 zH-(U3#SVnAd$4Obg0O^mWEk~DhvtMR-0&N!8-@TDK^Hb!11mB1jy5f490+S3D08ZC zTAfID4gwhiro=RB%ARWQW@~Wo0I60mnfoSbd$us3+A)g!Ty7R>ZZNUx6Re#W}& zcJ>og7SjDwKa<$7?jCP@+-XF|8Ykl^=2%dfr4(4y+Sr9vnOy3P!IeH+yfX`Z%}Jq94aW=7rM0L1Ex z9%2<4(f?4z$dR(Ay=!@2aN2ir~(@TJIL(gx+=8s^xHx4APNGAUE(v zb}i$Sbrs^^Ms`V$BCf3=Qt;8ln+-zuOZyBjVLP-a*z&AH7cmHylaHJCbSKS;m=BJue*Qv^(o;o5=-q zD}!mvf40X5wTk8a&F62hn?$QdhKunOls_7@?DJt=%RKPEju1+r>w2uG z8#(NnKBQM03#JnPtageC+MGGqzV?v_dIC5z*u*2aJUc_aPK3o=W_I?qG}z|Nndngs z@WQJJKvN9)9y+$LP8H3`32(HtBC!|Fn8$vcFEsLDT3D%-~8^=3?U~%pE0cF?l;Q!pA-FMD9nD{e12VCJpynQ0W7nceKUf z<-MHSl`Qt79sBLirb@C}UaNtV8ROhk?;2OmOP#PmJGpfEflaA4PUOkxvb+x-tWr1o z3*$N1{eegD$AT(GAZJwTX0w{W3p6BY2ydgJOtFZ=T0)6C-{NAmT%Lf^ zFY}3EZicORJl2hW)2s@U-B3%KsweL4&?`+>>#@yw{??{!KNGrIPmqmS6Fu3Lu_8l8 zzn=A@R!oLsu}HM%I#|SaOYXwvZ7CxRG&C5cgX4&!;i?JU&m5yRcpyy_?l7ey`NgZJ zARh3AxDEn@AP4rbhYH`^M1-adjv%h)Q}M_tw(m!&*UOf}{v0J=P)X3mhjK+AV>IFW zRoH=O$$d=FRh{-LUg1)YpcDO zTvtBgAbBNTF}>9PcmYzchjaOlE-sO&lBMwQDfVy@p?jw)ViN0PN^7{#zpk-=)oH<1 zu_lrt*vK%his>o09m%6%4|gQHbEg|BwA_C7K8LJ~>@uK@4d6)Y3IjA9Jw4m-uH{UU z=&$k+v(7q9HsAwbkX+!}7!2IDfCu1yA!A;iE8#bajCK#MA7L|$orn?ab!ZtT} zQ0|t5Y(qGJt(LV@8FRzBTY_|cowfSMo>$K?` zjE5HVvUU4w{q9;qE|(L|%?D%QM9Wuu*DxZ9Cd^#=HzVImc)@PW^^KsR$_N?aK>fSE`@ z&i5`QWQ4!!8EEInUsauWG{;Vc`}@z#N5{J%jb$IOm+uwZ4_U6gh5Sl~n5cHdYxM_S zU*28h;x2EMe5#8|izI6Dy-nk8uaBhn&$jfau8wi;H{#|^OMF+HQec)DOTx=1pZ!eP z0TX{ zS$N{PLc00luKw+emv*Iof=cz?+2MuU7&d9dY1gT(n(VBuZ`^ETW$r!r7(;&Gras?n zg~10W$Q`8S9;(-hEV>}rsAPctT^F!9Tr`Ag%=x(Au(25>7@G&f)dL@n zUw$SH!^g$;YiHLt^reI=eihCgQ|r*ReKwSBQ_ws=e&i=dnB1w8CQ2(l zx3s_9b!bRhcC5rg(ht;x8St?*ttfj?nfyR9XAWbdjDVrH0%FU|5mkjb+AgeQ7Gv-%c`{eY@@{gG(B` z*LdTVkTfv*P?>!vQhJfNBe&|*Qr1G+Zu9{!Gwu6m%RVh?je!2^2Imn=AOH1*)u5Z* z1nKU19kquJxyKUd-(P4p;KC+KhnB+H0xx^CZHZAk%yWlNzjcP=6>XiegFQ^QpoBrv zp{=Cl;lzYEkzJ2buH-;$3-~f1faH!r*p6Cd%r^o#e4@;wv>wR}fPx zvxSk`HM6yL_3>Q5@B`(h3!XWXkGS-~7vX`_6kr~URTgLApkqoXxaZ7={l4H8L`+al zIV|>sm+ahL5tBG%32W{tr!l;} z=;ZGC=sbJkGQl{xB}?veH=Gk2?`$;FfLLa2KH2Tvi@lQ;xN5e4+MCn+B9vec z)0Ka<@>EJ<6CatJwZ+KizKLKjbHW9O1qWT<59Jwxn@waBM1H8Tp?EPL_mu)vO~&e%`+frAoFoT%@dcRrz`Tdqsm!$#uO z$m6$(8h3Y(y`^P-nQiay#JJ9A{+&!4@j1SFDyokA`AP4~%;uHWmBN@{E)Z(K zr_Fz9pV69r&H&PWE){q&hrfgbASAfxsOFSO7r zops_)Zl=UQh9g^ORrzeTO+d^{EeZH0ga_#cDT-E#Je=^IN6^k}v^M8h7TrCz!>;j7h^X*bT(rlian$j4N3s8fsr$-BaxaqbEu;T_-95zxJ9e=mb zu$dEiu=Q#Flhfq0j;Acm^LEKQRZMfpJk`GCXRh}+7Km1>Rr|PepZ^*d3)xdXEsmE5 zng>u+u{C%fXmWlq$l9^7IaPajEze zFtcYGa{2Fau(oi}x=w*>=R9Yo}N4p+6BgQuFR2;h^USJM^`Ea#_yqNfmj*a-mkGC6^m}dNibl0@w!wC_PF=fd zyywQhbUnnD{6yZf%4`02X@Namh>8^V@?{~a(v%{uK!S?=Q){~Bgk^>8g<5W&Y(9L7 zIO>;kPPy0O#5wK__acIC{PFVd3omsAV$n=1fHgVjTIq=ktzH-51c!N&{onejW_Fj$ zK#LLrlQDkv7Mw`n3s_0e!E!eQG(oBT3@#)IDgoJXGmvsp6j@SG6?;pj+I|Q+%ZpL4 zN5zhQud6UaY0yLvvuSH<*8@#hqi`MDn2`#Qy1RgzM|l^w#U-2WF7CbCg3&Py&bAz` z%iLoZw`P2p#m;LfO7TLXPcFC6orJ0$%iAD~k3fX^Jc!RiSp$sBWD5;C^9>xdCteCQ zX|*;-LKV|31SMY12`hL*Uw>=KGYBh?JBPbHm88g&qbe2e6+2LqYETnC41m5EyY_L*zj7HX>&i%J4 zm}tN>I6%>8W7TF3uiwXVE8C)xZFp1${lO`;jWisA;GRkL8U3INS1S8Z%77tE$Gjcx zfG_e<08|&sSB1YMxNasfwWZp~vD!rDHvT*a3BzD{y;YXa8Y2;QDe}<8;c_>@{W71; zZSjpQzsI2)IuA|w(4WHX91-8=86rZW!Nt zidD_|t90&cY(|5JiRSjJW~BNvjA>n%yieI*cTsFfp{O#ppqKq9inQT7U#uAx>I+Y9 z!UCYUM*lUgp6xV$`?ox9l@YT&2Dm&z9lBNk$25vLtc&+5_z7!*yt5P8*WK%}pH z_pSq-PZ2@Bj4Rb&M-Bjb!ob%NO-;8|y62&@Xkzuw(R+hAQTJ_QyGM00)ekm~rmjay zJ~_>TJ0I|Hh@D`MwE;_)JtAK=CAnlis&uz0UyEfV}aH%tfPV z*|gu{e}1y|0M#;|jVe|AiL>EU3u5`9Yim0NQPo_?+ila(-(RyHKvXb!qTRUr#c^`C zT4J+JfBfjse#>wehepW*e1dKhqyUb;Dg#A_8cKi~ILc|ojZjBXnFlr_Rgd6cB6L$K z7Ww#w4jVnF5`1)3hWr?ijsIR=Q|s8)J_fzV90LKV$PJeR!TlDcK^;N3Oa~WqS|7@m zM&GBNFv!RtoAZg~qHKC>`hf;ei=j*7BR)2(nGLR+AAHVL{ONQn?yoRhlr=nVAcDOk zeaG1N!*O!Ps72_-Z%5Pa!-v%?f2B+`9v}pZ6R1&5)OzDDWCdyOa=bOAJfZVX_*tN3 zWc+-HPnlktOjN2-d&tvhVFBl;4*^7uOv_8Vl%%-#wgjC!9>egG0NbXyiK8MWtf$NO z>eg>X#(BUZ zbw2t!APuR50*rt?QE`q)Cg&RoYKR48Dr&*#c|0nuFQR=cfZ= zU{mR*Qo@rqZu`95xefTW_B?hjG8&{d;_GGB?2lhmMoBah&Uy#$Oa%ejE?#L!6itAQ zK%rd1c6bj7XMQMxdX0E{=Hs^41S7Dov;g(*KFXCTg1DK>w55S4r2SE`58g5dQt0n~ z24kV97#(a*u{IF`-cG8CM`3Ox0u(@Bq)$yw-qFb};#VHa!ZUw`JRUCqP=L5({mhKo z3Cvkx&WbD~yz6UgZHBwHspH~Jen;n9t+tw3^_zrk4kcgDQ( z?Gr#UO~&pclz%rDzU0Kk2qq6rImt3r1x+2Ud= z2TWvk)ppJxZ&-HzNa@hPTWAKzYat&8ocN9`Sy@>>NpK}KVeLC?bwMFWY5bijpsg}iWc7~btU*+=e2bMG6xev0Z}jNc2RGmB}xl=^Hv zOOB??q%)P*SJz|&Lou+r{g(7^l9J1y5mtb8D&JQ>0$>vbOC@EP2;<$p4HcZo9{G>X zZzE%RiMp*xBbCwWch+rD9Q+u|bX!`2^`3YbCd9L6JV4cwCk&~2=#GK7HdT23 zj;zYu;3sRDfXIue9KCEtl|YmweYK`~**e&J5z%YeydP0OJtQa#71ZS-Z>H@?|5xPU zi&cu=@B=u~9AzJbWbU%isM}5`{-LTyB$>0&D{F%wpN1v*$>Uk5UMu@Cws2JUvq>~c z0J`GZ%-1ft`;DcGPgwxh6c6+p`VI;yb+Fo&Ynp|VmwJPB6}c#&7E#nfViKA+ zi=0GyCSrto#)6m$)j=4+foGyEtw+p8pG@?89s{A|Zs4+}YFuXB|DK823gjQXa%Ji- z>ebGDNiCY(gm$Dy>%61;qm`K_-3@byK2WSK@cG@WO|Rg;94QquQNdE5?>=;2&rltY zyH71%m|%G+0z(3_uyo!hV=td`G`w$r41JmmDy097siXJLc5c|AKDvAc7@X9RnJ^{_@_NB*yy$ zKy+ys)BePZm#Qp+Mv*H(Htgz)^){hW?l?l&Xy=2YpLh*!3=*cXUT>ilWUXydTEE>6EzJPD^1Xhi=1V(lL}8wZeH+7=B+c@N738patR zUf77A%|ge(cIcO-%$nsifclc58tG$q&!PY~AN3my z#}X2a_*Y9zt#Sn;vo-N=D|OhH7}xmqUoC%88v^Y3Lgi4!!C#r zO=Ow$V+=XBLwaVWct>4@1>6%e!~%+74vq0oKPQ25j67AqJ}|U4sbafpl5^?5yF*5n z%Ge7(h2uW@dhgm?%Ck zMfzCUQLJj`#n5)?Cd`EE%RA%uNa7Z}=9!AZf0c4@w76F{b+R{$i|mNI5uXAZC?}ms zXdmi11c{(4s;z^_Tj$+OXB2AIwD4-uLx9DzbjBwrepBDRymr0~eK*b-BywGB;4 z*ZFJ4;4ICo+J`JBWl2Y3n_T~UV!xYh<79xxvzj5F{vQx?!%mFdQYjXxM1#Ih7Q&Y9 zi#Xk#H&Yq>sK@zs`Omn5;BhZmG#rzSBsv<{TLjelYEVP9KuGz%YyUU(rl zfL{7K3$Kqzza=ntmY@qRuc)Zd@DS9Ja|nd+QTg=8>fHw<$YrW%Ux4PP?q|UmZcU&D z^ch+|GAR&)Q_Tzw^hevtF(vA!QjO&qm*FiojblL!fVbRi3K9}fgWOZ7n#W3A3+49t zE;MNozhpm{gbN?cpr=&(-szugc{O(FDc3hX0*3uydzw@k$=M{mq&|Hz<+CGh2rRt= zl+tAXAc+>6lRX)qr_P<7THBwQ4u6R`Ene4JUfR#riSkIT;}2wMN9p?R8rhbu^Z$4b zfOD@Fz>uL)JbFmNGjUqZ*(mM&36o(C5N3=uG&GbE@BENe*&rl@c2;0PS^3(S;XWqc zox3$6@3t>6APGIUBnR){Rxsaz|4napRMoc9`at@J*S0hx?X0KiG76T5Akwt$BDj-EsPpOiNF*#U!zhP%fYBgNuM-G`B+t0XjM%+ zYl^g4T%P<<19$HFp$hfT0CSozIt)=`dD%$^2tc$DaqV?Ge4C)2x{44ZP}7!x^nDEY zFTxI7pLXnNtR->CMU(ccJ+gdA4>;nsMA*%eEM`i=^oA&7ipqtSUnu-EAMVYau5*q- zxqqOeaOZB`vMK>lm|I^k@yGjhMATg~#sm)Y&Sk@-hcIG0q+01J?}&Aq*= z3$lL#HzU{;q*P&b`HMt&j8=@KYqk8d`N6B>speac-jlJ9fz$(8f;52nmWz)G-re%W zPDU$I=LFa{TG07J?u*sJ6}UFRl7&r>ph=Dm9y%%(lm-oeM4$!KjE~S7id}(FdO;7` zS?d-tfwjR;6UDLBz5~7^g^c2PG=^WNmy7mW*CkDB6;A`_h;hR)0n2bVgao?I5KGu6 z9~0~qII2c&6pG4NF~yxb*>3oWXY&3iSD{fU=K*acS_Rn>ygFQ-;vwS7V-gAJ>&yl} zGON4~j`g{O$UCHUu-+4O@!jjXoR^?lNm$^XkJK-`6MD`&#LM=HL`nsp< z|Clcv(P1j+d;}dFsyk-mY7%s}cU!J=*xn>1X{{A?PMY&IfC!>o!?o?p()`GGx&;`W zc@$e0#!~$EaAPdr9C!XjGVOrVVGuzG=1ia6+ci4GHx25~@qdHB%Y>WVS;Y1p#s2ZP zT0U(0*l)4XTY49_x+6DLBJ{ugjhZYx4`Nu^)Qh%;(iGj2De0yKv;K;KbTldtOww=a^) z1O#6^hEmXc(xT{&F0U_ju%3^C-m?V^x5t81tpemR^XN;>id`CF0}}Fxh=>O&9-JY{ z)VDR6Q9+Idx{Zr_(xqa`+2bO0W~gV@EF^b9e*YfD4l$^?3obuEDyQkb{G+awOpoAT zu6lPhka!-=ru*Ivi3BYJKY{SYs*UxW_!3ZjC=&LRJ$8^clfiyQyo44g!-TCiy8Qhi zu7RPUn;0N^0XG&_2(6;m$fcgot$+{p&b+3oJW&0C8+VUqLNw!t1(V@E zz-d=s{;0*0Q&30~E%^dv5O>LF;L7CN*cPf;n+rYq4+8{wGyl;sFth^gNx}**Bobj_ zmeMn++It5Z{U@qOFJEjUL=L!kkvH@5<%H_=#rEV6jv9d_we~c6!&WMH*wd2YwK?C} zgAjV)6d-_Gl?^35@ib{iTlhoMIJI{gOi$Og2>xHD0xCzd16S|1xZ<=ik=}-{A9#J1 zV>?k=)kWS>EL@t?%O+IId3MXwM0X?Wwa!drz2-NgmVL_ezuOWym|thEPHf*}R8`(` z&d}}bdG@8?qhogD=4!;VwL;nY?@G;)-@2dpSoTIDS6#QtpCE-)+7qhtBuE;ff&N|1 z#qV_4gVMHvvU~LaxA34eaeQog(~1qoZMkMW--PhD=?ude(h>Dj1eHQ2cxlNJRAM)9 z_@ZWZuT3b5PySLdu<#cR%$b4e{!mb07(_VNa>7yK_q%%Sz~O&uxwW`$1C^8wv5r5v z)0bT&7CE1G?)nAH00wzI3j^4+d5_Kmhz4^c{WG^@TwvJf9;fSE^i6c4=ntH(sJi#Wf&DYc*^>T13v zhunfd7+VKFEs-{s`#&|GL|(41pVv_DphwBdjKRA3rdB4%@`eHRw;o2HocYaJHECVz z|I!j?5^nXVOiQL%|F6Va%UrhVH-nWapyD5;wTsD5SGoiY{}RArP~wympcB}?N^wRm zH=rq&r-CwmTUl-ygz~MoByLQ7Dgucf_h0&#V56Hz05fb*JG;w*sGQI|R1Jbhvmb)n zdOaKSry)}o>BNBa0J}yBGXWMr6Rv(S+CB_vJtainKTHZS+J2V|!@jN0*_Li#3Ex_zYf@dhe{`qp-qprrxMtq z93w20t=1fv4)tRuT*rBU62-~GbEA%U?Fw8h;t+6nD3JQ%$S?o|Su7Ui#%9xovtTTA zHCI>BKlUE&zCbXTx(DrV5qz)M*-3p(vHl+~z>X41p|iIoM}s@jaN84d73Ovwx~e8m znyLmnd^)phTqJqtG<%-NJzI6Zg%Q>B=?y2STWHee@n-+0W%2OaO~dmGeegVeS56$> zGOA|H7ELoA%J%;g_%#6~rbBHS*?5J~(!5RzQZthM3mCd{ZRH{idDzQ!`0gQ_cN18z{1>l6Bi_x5d&v>oYsisfLjW-FStZq zZ&JM>IFwe`U=|EK3byQI8R+I{Fob$`FX4a$afl;jxH;OVMXEqRG< zQLV@_N*}^TAJ3Ri4J_9WQL}vitF)ufZHAJ)mg+7iswHYlvyXN7f%5_ z31ATYa+*{S`}2Ui=R!~7lk@w4$%q~{;<`Lo@_Q>TijISm^J(djJF42U^d12%wD0ES zby5eAAupNrp%|tcLCA<=sD|i2Zb&w8)DTQhPj`ikz(&{%{9|x^l%;NHc!3k*SYB54 z-OI z4{we;9Ti!q7UwhXD!LtRDUB8G_Y7i(RI$?E*7+a!cm1TDszG2OqYr4)_%iUMD=~BR zgZ;LwAor%5B~e7HT#&-{T-8G!DO+|xmknQvhoK4XHR16Nqz(%yT*0g3h& z8vXMy6H?FWn>PZ56fSgMdtFfhgm2iG;QjPQZA3~B6Vs%r9%TeS`Q|+L@Ut~ntk5r5 zKm*$)kCQ)I9&yQr|7}+syEFp+++4~C4V1n3)xRhr^fG|9RDBIWWOo=Qzcnq3|9 z&mEaRtjgjiFQSO+8)v%>k2KJ98)NrMs1-LfsqF$7&nOYoltB*d8qZoa+TYj3IIT;0I1nVAfsEYeF4ju=)D+p`R6U$jbLKctC*NvAT_gw zaDe}yIcXpXz%OTgh_VsRaa5wyry8-xp* zfPjEx5P)elOwkb!I$J(?DA`|UY~ym%eCCvNo{lqVx2T%V#SJM$XsMmI1F)gEb5}XRT$=0d$2yVVMpFHfjYIAdb z2{pQuY}ps;i-JG)U2>Jf#zOr%gW5Uq_Q!{o;&DfO|36j3qzUA|^wIxfz@Tb~uM1or z>8^c3wnhcy)(pfZg|Fv$Ax+-n`(KF0mYthVb$v{%#epUH*`oFd^6T8(Tn)rnf`yGF z`UG3R0EFNsTZ5_8|K?{6b1*TW5zQDFAcEu-YZdk_{XV|V+!Q)S2N0)g5EBuwH4w2h zgY@q8d|bGB>32kwWYMrI4^U3E08u|6)U)Lk#Q;P82B3IXC~pxrCubc108$<+dX)^X z2!q~VQ=Bd^DJr6P_|2oJ-kpQ^)}$s4Vix@G{R3UK{1UX*<2@@!lNBo=D!P_CaKHVL z3GyW(G)cA~@_p@d7i}@;{)pF>kYE!(*{<^-t?=pyij_2%7eht&o~@dI^CkdKEGiwB z5~HO|pbwkX8dfZXmjSEoAxkW^Lv0g=`#;tKzHKEcYc<567K8jh=YTk!d7Q zzLoV43ze91GwWd_lJ`0!(5U!G-h1g4G~j@C-CiyuNr& zBs48>JP7cab8TCVIDojh0A++Piy+*=@`Tc_Hb}83^-hA_t;0WEwEv> zjo%Z4%#{$h@&IY;I@*^VwSBh0*1PEv1*pr`eC>hw0J2H^%hu}X~E&8`Zs^)(~mm+Tu-gn-G;s%_5M8VcF~4L_No?>T0V$%%(mnCnIEw8>z~~M zwcVIh&n-Q41Z7T}qvf|$b0big*$TDAifanTaFDGTCK7tlIB-VJsqhivGh3hLGxE&R}-lG0b2TN#TD=fzmQ0 zo(1jC1U3NO&Hy_e%BPgHmr^SQ>U?phqqVL8P;)4<{KXKDjC%CX1WoAJ1ib(AN*)IZ zVxNW;_9WGBFLPG);d^r;_y5cuJs^Q%?(5KZIDxt+;U%X>TEXl05I(IOm5JPu%|>jw z&)amOSA)o})F8qSOG`8Tn0}rv@Oergt`OqwbE5Ha8`9G;IIeB$DhFm1NPxKlp8FfI zs@wn@80;Gv$<3GS>0@G1@Qf%(&dO>8b|;^ji{vO}v?5R%JHI(Mh{78$eFj^Q@_JaF z;X}YOFx{?yi+;u^ZZ%M|)2;Rz)6S6Q%tM_O<$0bNAF~*kZ*={Wco)Zbuke%Aw%t3P zuk(Crxk$T5e{WzlVHosIp#1?-iPgVctfLirwtixKQVu|^d(i{3Y+p(I#oEhw%PW-X z-bVf5k9t;Y`IIxiS12w^8Gup>YHDghERs1HBkTxwh{uPWR(@$}Jgir`^zwC))&@o% ziC!3N2**k4gz%`1FRPxn*q}3+E+JUe1r!xF+TbI+^-ahv<(r+pQ?LpLr_Fd$!cq5` zVl~QhUjj}UA+eK<4L{{V-F{|=@X!+E66o54WyvThUBGwnR%wLq6$rZ1f|jS_BdGmj zwu#j8i;6e_DJuz~EE;~33_8>mOi*zrerr@+{N76@B9w- zl~mzuKa(!Ks?~4JJRVT=pd45Q)61O|End`b-2Fw_$xqohQY=%FH1Eo$khRAzOr1sf zs9@0Q5oyw#zecmQ=Buw!P6mY+E**IzPRcx{JH0Yd!GKk5`=4x*6yR+l{c7jUr$JZn z1c9l~q4>2SuFbxkfvydBZK4hnl#-k}Vs(~- z2u*IG3aMl5xJmd2>`n20XHV1x=G<7z4Ur?IrqtsA5{R;Wf$TH`xNi7 zTvja~1ZjE_BxQiR*fmhWWdk>9kGD41^#12}i4WIL`~5pfNFL1wsG}oNzL8MFU&Ka< z3RdgkI%Dx0*9q8y$=JivNyWi{F2u8)5>yZlaePIABCKq(g~(7keQXAU(0C&+5ZG-# zrKRASd*;Q3`GEs@sb|@t4rdNTiOjC@MqEemyS7Ga@|&5%#SPwEUX!>ZtK&_UlY!M5 z70ZmpZQha1Me{rP_;Cz!Ot1dqou{MyvoY{f&`mK2laDG~tKplw4aaN5#{=eHs(+jV z@H+L~l3!)r`}AAv+Dm=={FUxg!?b%Vr52gOP5*YksDNuK2{H$FGd3aR0`P0`{ROIE zvEjTID-18bFCU2ML>}U_E;HgscFsrHQ3o@C$ae?O|2YhOc|{4(*X;6xi~v-LipqX3 zJcGNLSf)+1>@r3979}?TQc_&*DnIcI$iC2wizIuV_&)UvF0e6}VkcZKJpyvZ8rk4) z+ju+xK}|BX^;nglAufoc3+7_QUin=MUqdC=uDLSRFV1yh$|h)$|HFldfl`G=&$}9o zx!`PA<*z&MhG2c1>$-g>FZ|A(}OB7BuRlxxquoi>wWJa6(Liio61TFW{yv%rl z&?+3~e}h(g(`LP+D)goQk}B8kSB^ifDHMi~bf8BOFE<=OI%|L{I)yfgM$?JpnKs!q zNb_uoba})W3m{kj-hXwEL2+9EI5~Eq#Jh+Wv&&yXz)T`UjA(AmC}Ow8pq#>HmF5IZv%yAuDPm+jNSCzcqx zrA-Uim6;0Zp`XxG`(VMMD|)cbFHETMlaX7nyTpRzuQ~Y zBHg4x8{4zS+Xa{_d`SuFpqztv&Vkmz9W_4M&xvBRxXJ+Jv&N_q*vT zN+jdLxy9t~R)lshE-Rg`UQdaWi^XqYFBgT_r6cCzk!~S`sc}l1znhw*rU&C~iPyUX zV~LZrjEe5wiT$I}lm(r|6&j}Xrr9zyTs|nmH@w5B$+UuBR<`vioM^*YK8iGkJo~AR zrshu?xrkjlT^2+S$BU1SV|(yHrScT|PcmUd?`?;(XCJ^+z5=*NVLZFB?O|A*DjciS ztsUQT7u(Zr5|8lif@UGthukKxjz(+Q;B5t=fzZfXl@?*crLyyE}nW?JfK>)ko7K(J&-%T%gjq*~lB0~kdaIr$8!LNAWl(bgS zh#*?Cn5E{aX$HPOHl%`pO2bolFwjTDJM%;g4Gh5c&aVhbG@i{GY(J^*l5eq~m%Tt2 zi#5X6N)}jcFz=;-Q5^&r#vr^tn62ww@yymR+ustQG4M4-JJ6v0D&B*WwiB0vSNcl& zM$+`cL{#}?Q(f#if!OrCqL$-$u^Nqk9+t)6sHv)YT%+Lp^JG>I_4U2PskQjx9$XPXW4I~S^}Jt9`b%egc03X z*;XbKfw`GUto1ChN)M>;L@`HS!4octMe?vNmNX)SVtzw{(f#_<3~D=V6}qk62mr?%7km!(Y!zDXlhfSnw_9iY2lr+Qri)k(XkHVOWjeA^d9(U~7x<2eJ zn5WqesD8B%^lv3z05UQkLg(`VLcEuh^O%A~a%1J-Gi5JSTS z6(McwTx2tL;_7p2a&^5h*KLn`c+8`9<`@syy+@h)V!w44+r6KHIvEN-&f16{Yq1sr z0wQ!UHyO;d6{Q-j7Q#B&jpKz8nr%163htz6hLs@rKT@DWV>6Auio^r+(R*dc>+g%s z&u^bA72(KU89^%Uco}o%zRYGORvo-K?6Yl-_9dHtz~Or&H*6P2KR5sJ z_<7ohu|9z~zRUto68UeG^4~ZRqL4XTE30ql?}!M3v=kqPT`Zwf@_To&y~lAra|FvTacwuBs>M6icR1h>n40^T$>v8_^y&eBG@8dYq` zG2pgLiZLXZHzIX4QA&@1&s3XQq zphKhah?zia{>bOA6~j(1-O$1L z-P@=~)|-_x*97#E3;Zz5*!a19;YGlD5y^omR+8ZVrIy>AJB|hFjhpF_x+BSyw@|r; zT_Rm(1j#IQy3l=Qtp4GbujHXue1_evq(}_KJOEFyLcq~}limcIbW=~$TcN)5Z;}aO z>p0B_aAPpB;I;fmTB>_f{*IW*gdM5Qe4RzXPZBPiv>#K5f?gV zlNW!SSOwfyX`W|&Cxe|ExPKMKGz)8`7U`N+UGJGC)-uoAIOszi`jsTgrH<-W1{Vj> z?v^3f+3J*@x{djW}N zFJ}vxt5s3@TOWQ2PBx)j2Clh$R6SBiz?MYbcx}Rxfmpg^=d!|j^WEpO0@7K*?K1c; z#G|^Eh$rX2rp|vP*6K|ILIJ>5#fex? zqI>IYpvZ3g?zbbNATB(s^j%kfR^t?vDXX|lwp@9!0<_dGJ&tda`2`R`VheA6v(;=^ z?DB|B&Sy*OW_lX5;$3syDSMMjorPPt9e5}~5BT|%`WAkRd+eqsT%WGc0RcB9!Hft#2k&P2%JM8Xkq?|$m%I*N@S)q35N4# z&1DWaEokeL+!yhJXs26<%0zHV579*eHu?5B!M=YJ81#TnRxX>MX_+2U35aH2v0oi2iA zI4-K3NZwdk@$U7Xg93LkiYikihCb+``-a=}1IQ^Te6=(+O|eIH;S{(!q+=KNN!cCK z=);sY{%z*IupdKoeFD;uw^4ipy}fm0a+VBSeZxHhc-Gxd?lV*L4!31L8UOZ-?4gw9 za0k6}y3|7xcS-+Uvi%@?Wn;4W?18i#>`Lp+kh^QY;{trQp~G0$8|#44gAM|J1Vcz5 zCH%+T?FjwM_dCvlA;XvqT)jM?e>;WWv!_VwEaGZ7a+OZ?NFrOz=Ba4QyYnUFmrk|x zlHncCIFxKb*GdlZ> zqW}dPLCD$M)7E3l{BCzz>7@-4406AAB6PA2&!5yz@6-$XV0!d~Bv)-^|Mivm}RK5FZB zch@oSl_bXd)YKDTuCt7`dk*#yT1S{aIR1wji%I-lE5A1@iUK_Q>?hFAKkG%@iCFBJ zVWIEqR@eiJj`|ov`uJO8J4F+CD(6-$3s-WR@or}a-i=j}2YTEHEJ*#eFfED$%eaOP zuX2rJuMX-+#y88tg3cb%iNE=o>_m$$(D6O5;M?5C_2)Q=SkO-6kQK!Htjcd5v=OI& z?1Kb0oY_qi9~yrUoHs8~D7Eq4wG}&7Wu$z_J0IVc{afF#VX{Wv+2t*^9>H!%lS2eT zD@)i9j)*GR7T5@=VF2H&Eun%i_q?jGpZn;Fa#`N3{l%yN8yDinHIlX)!4Xz8A-tCc zwmXR+tHqzVxw*XnFf|(@E1c*iI?5%*Ohdy?i1`&y;fDE7o&x?!|#HhSa{! zoFaX>X^54=4JvB1PyK5%_COlkuTkP^Qup~f8E}Whq3b22|l^$SM1*A zco5b*JTw&W4F1lW0*aY=pBahvi+GG^)+ap^G=7rynKWw2VML`?wq`teFW`vv9JXJ1Mo~{ zJN`{_5bIz5(;ZJ_E1@RzILlqmB7b1tn5pWIwaIIgcshS(Vc4FtHCmF<#6+N^NVUXI z-+7g9d7N;Qez{LFcxgpnQqrm6VgzO4vDbYk49aMWKaN!?8Rr|RUTLoF_|@+}%O!38 zgPNCzDn)|Ec3uZ#m+;3INfY9ZtJr56kGy;o7qwU>zXv?CN}vwY2=!%Y&+A_MU;^Kl zeM{}GXEu!F&y#7D&@m-G8cD~Y>mvAHEr1kONx&zouYvv1Tc|lH63EaWrE*NJg27i| zL=un-0x}zJP@we>n~}3z%EPg`Sroyup_ynPy@e7l3b?KPutbJdf^{_@#MKgyjYQkk z?Me-jYiESqWh;45SnOWlndhVIC|~R2F^Y?o3(y~P?l|zU` zg9YqiOLof@ixyMIcEJLIhW0}RIT!xNd?$@BGj zCw1(C8_?g6^!HzC!{3Q3Hk7}@Ua5ufeV~u1e~LYe_LU`!^Lcb)2P-ZwPgmba6<>&0;4K{}nna)yw z{c%r>XJhH#h5NHw%7jphtZMi^?CsS@sM+PZS7)ATmZgEAs6!a`oAU1F+QhcOa0daW zDb3vl+aYm01&H!RmWEc7z8$}s(78;Gj29b#80U*jT`f0ipQ)+;Ait@9RuogSFBA3W zSl6umFFtf$JNzrLxm|8~Z=(&TujlWB^-WgH%H3Ee&WvMfnPues-@R93t$xz-1{a*& z3+9pLRMTK&mMeCQ3l}HnXoKgDs44V_DL4>$EO5?@NGQpkcF64Rq1>PXGB{yk>4&h$ zuBWvCcT|N##kl$SobzAL@i&_u1ibum7$T8CQUPT2XZ@%=HvSD>l5Hfk$;<-k`5M5@(?u#G-ASz@3n;DFia zY^+sgRCUc|FF1e^xQdfhupoR|KWtXDKw&v7r=7WiZS{U&ak15 zYP*z`BOX??R)E4kq04JRFauScletW?5gY2&&_*Wa);Ri|8pwg5!*;T_7UME)kiGbY zdHc>omR3Kws?#^`bzbVFQ*c0{%D8}y9e*749Ik`dUPr1Ig=PES__T#Se$1D=_NLgG zx>`&fU#$xUhW-e>Pd}fJ687D?||tu_rvYRPts9e?-YfOk+;x_Zkb5 zGqa=II{D?#W|-~9wBI|tJQLTV?r6;Ys^EJ2luq0iz)yJl0cf`#=lG-B8qAJ=#Xs+d zBnzfQZ4GG^s;l*mjPQTRVKW6B$~j2-1`x~WgO_H1MN;V7Sp2L&ql5mTpTLZg`Nuj6 zX~HIDe?G$li+%QP`C#Oknp(hf=$I*-YQvcx27lfa#E&aM4KSKh#7jY#I}>x5rpUvm zH;;I3c}*Kd5IwmEaU4G_XcN!Ws^T*ONYEx%d(Ygas#3sMi4_&^i=OET7mVE|zWpWQ zy9+gT)TMh}oo2DoAp$;7465N)Vm6;>G6e@ql4eq>!ZYLMH5a&DMn%Tpb{)SQhu$=J zR?6am)dl}aS&B!y`7_^_TWAqRVlHu66?If%@pV+i_{om*i8u)#d3v&N^;XN29Ndsi z9sh;scHI;Nnp}LFYuo9asY@qoQ+dgq5dGVq|{Eu{~Z{q>D5u<}BxS3L)anbZ-BEOp0H}QIw8wLlidkD9&`jR6n1Jb`{oL}ZPd2JF zPxE`dlm@7AWCd*kt8ro9H`eY)N(OG@Eg3ZtxbWy(zy8p6@bqAm#4C>BKgsH|42L@3 z-_y_QP(JV2a7`V0`P&5m>hUQdkH#c3|3udN?+R> zUxDS{EwJG9pHW58yLfTMZ*iUJy8Cv*KbP41*AHE*NqKrw3LYCz)XsF{aH#8na2a2> zkCb_XUZ8E{?&jY;fiyojVL3}i-)wvE@$sl4Xn5@t}vG+QY7amU3 z-FSQCSuY2r>8}47aFDjnE9vsgRHx5*U5K0Jwvrt1@+m3hODoa0i7jeHoIcqcsgq3I zlMJRl*0TUHIxX&-6y^U^)4NrnZjT!&(wwG$<@h~hfAE4hl^!`8t^yooK ziisF2INlVAshoAh@~Db>EsAJu3?)SXa7jyQjuIOXEtG*H5+BvwKio0nb)Px4{#gSO znT+eK-%O-Isv{{a$WBYSP?w9|C!Y{y`Rdy&DpZ&p zc>e(f##;6@lzE@-b?G-aXR+m3;b|O4Ze^{}Qe;%KE^c4W>wmK+rCd-99Z4GL+oN}W zB>C-|G^?@i;K&k!;J=;L()Z5MowqeLy9#WeQ6)~VrhE3Rc24(tiHVDN+SHf$ zQ4gMSsZBi3a!cRLHUlU16&SI@1~l64?z#6`&(I*CetW`6_Lp?*6j?0*XTZ0{uIy!= zMWeD@WKy48Q?arb&+%h?I2&jy zpuZA4&FMn52HH9*vIz#Dj)P!`+%qxuCZ$F+G-{Py{4GtlGT%pxe%QLRIGf&{YkA-N zSbxGoW5TV*@9ENag|TAKOlg=#7&B(td*{w?=V>TL0MHoK%3O7SVq)Du#WyN0GFx+# z?yokhwc4eBZLoLby+7FBZ^!{tZGvK=n}ib`ps$p8Q5=fDf5hr+YqJc2xVMb}b}(>~O?10u&T$KZ=DkT=XDN zS~;rkK&xBl-Pa{8WSI}&la0AiQUBy=xIPnRQT_>pndlxOw4C`jZc0*;MiWPKe$T2_ zODmk_U)YB}h@+jNl~|8J_@rphpXI#;O(RA5Le$#qvnq!>jrp_jawV+=xK7Z50D>{O z=`4tCJxMbT4Wf>bz5s^R+|f(C`SNe7GzORiI-|FoAX7tCmV+`+$rkJ~yHQVrnfV7R zz|IyI78WK!cS-iA;g%{G8(EfRr^`d+xGlcbesHoW67r%$L zdSs~o6y{B5)Xa6~rpd2t^4=83VNM_%R@RlFPwx5c^%5ok1W|BCQudFEkYkDei;v*| z$(gUob*49J_d1n}V_3j7#GC(xqR-NQA9=G|+t>uM!BnM=u5MVP?IRZ}Kx4-z8^XJ`gMb9QFy;qJRvQJ}Y`Pn3h>!%5nrs~?$?`E-{``F%>S#BBt zC;?)Fa7?UAZ1-v~?)}!C2lNJwE1Tbj3_f zZ)kqK6;kKx`oddysOF{!Kx6CP0bqk-Z5JaVK^CTHz5J4&e{;W00U0U|y!;_kWk$6h z&=%NWxRy4kGx3O5E#7&wB%4u?3sg^nv7nuby{`ZTfCqB8C!<-TZ+AWH-Llh~F|>>EVgR)>Ow#wF~#E-NhFh1ExA z!4?j^MgO(Pc+j=q<33s{%rAn@zM2sH`l8|FIM=(@^ZfDi+*)+7cT8?Z!0~^$C5yGw z&aq~9TB9>_8c?_FS4T!MoccCbT>8t1_;wkAH}=`su`{~>;F170d%1=OATtJs9)16- z`0^bWP=@oQ(Eqsq=+UE(6!NZB`0lCTRRgyeWl_EMo*f8fh&B=QID@d|=SK>Ea2Gh# za|FMq6Zg%=XDD5Hi(AeCyi8ta640Xayr!oIWA{;n7=X)B?ZlvQ9TuQn|MxPBD2XvR zKZ1PPs4pr#GvC<{6^A3~)M$@ro$eP?DX*XD~qqe9krmqNd zM{Hkl3u0#pS}IEh*S2?w4w|zAYI&={8RB{^=D@6&403hV@n0zOHArJOfB*jVem>x{ z)o|+oX-&-ut@0(3k0K(LxD}cez}wgC*p78kHy>m%Mq3f+_{?3bqMmBhq9$bd8V_Ss zD(yg$WwkOS=PH3I&yu_Tv3`!^_a~i<`wavs`zT1PJUHmg7KJ{u&5Hsmp#Bg`VA}I3 zG{h4GLB%`gGi-};Go|yAI;*v5``I{LXA52mC3=8;l+(>%ke1U&B$Q>%R+B3IPsI$V zmYv$Y?@qF6wD~I=+f2?im}s6$HA&=M3~Z93=8hPZj?Fww>Z0o3bD{Bi(fCfj}sV znykeF0>Mxmwb0M#A}Edrz2&~n{HiiMuIN5<<^X6WqoYc)=YEA$d3W9u17|-kvzS1P z_~X2tRr#`k@I5hI081=*%^-NI^q-!vuhf)Yu1|6Ew--7L2%P4yfsK%*Z1V)P!Dw>s zuUF$Ul3cUAb`zDzHb|ZZ^-eK=M@xKDlf{hr@!`kNbBYghHHmQEObb+4v$;@mGnydg z2Yl+`?V4ulpoz0VVS{_$)+o-p3gM5*P`{46t}9O)P{O7nY2~T_1_vhHIi=EfbAdG` zkTzbVdtKXoh+jC-RkR&{@C~E|>yQIt%thP0Wh>i*#*B&LpQ(jeGD+~Tu0V{qYS9;e z4os%V>74+2Inr4JGD<90NLwKD4^tLNh#6t<8HBwbuKhS4?hf5+ zXaIwW)2euz^~Y6<(Wb!)%G^3IL_m8`Vsi%SnZPGvs4vHBd&Yv6YN~3=ppcU7EoTII z5pNT7o5F@NZ*j--$PzW!S=R$xcWi5wrx`?d;gI3;?zcKMe=1%jAcr$?GLkMESD8CWd7_WNjpP9sp~apD+WFm&J6a73B)D!{rjO@DIX*= z>|F|Q27s~J>AQ3U951!Rt1;U6n186V%-uJuC9-G*4*6fdeg%MKHQBgg4dt?Ue05dw z;kyuBCYC^6fekuJFwMIVat)vw@6}UZ4vZ~+SY)RT(b(|ZakL2pP8Ct5HU8};!h9Fa z)of>~>}tewc<21eg%uGk_~I)&saG@%9bA~pHMcGi zN(=E}S&q!;x*uUfEGjxDfaXmDDjI#5V=s$&WSJ+O(XWI{;Q0`P`@4x9GgAtn05Jb-x$?=}hwZI#J5+7V#F$K30TDGmNOKjl=)>%d}uv3|#ry zQ?KKXb{59!&d<0HH{MPjw%$?0{plB%t3mN(tmTpCONt@1bEh+D?l>O+rGz^>1u#b;qejHF{6U~vJ5Rix%)u=HyL zg7-d$RUJCP<6Xvq;74;LlXn~!c50m7S=>ARw_7}CrK@SJAs3Ed?p_FkG=Ui~6SiwV zqD$x^S#*IY#B*nAkNhz6rvbTq6u#m&v^GjbZLoo)7MHo^MY=!;B}TS+>wk`_OoiF0 zr!gGTt=-O{LcnU=WOkt-Tvm`?z$ZT;HSCB@T>avEhV@`Tr1~dh3C$DW#4TnA)tJvT zzS8h_g~Pr~Ud})lYKov1k&<)!8Aupz!(uvD+B|Xxf~ttv%4@5pqyKJk&_3Ysaa+s} z5V+kAu^VrSzE?b94Gpo*pZ^qeNZm5i&;w9)QPqw*^X4QWXUE;a}-E0+SpkPnZxwe6}g*C4}1a9 z@DwgU@jeeg6hD0S{!&@egFki$!H9t68F;*4s$K}vUG)u3+jjLPct$!;o;;ba*PlMp z{v$l028V3uKO{?XMz4GZhwAbhfgTR573?9*=Xag2pDH9adsmN6tpIs2=t(Fj6cEYP)Tp}2xxA!r$Q$Jij-6n9^eyy z*kAs*{6~1krd6Hym(+sY#}8z_sXG`SBq5>R^e)>~sa0+>h>xnP1 z$GlQuxl@4pzAg%>yG6FBs{fs<$<-J7H@32b!4?}KH>A|C4pE=Fm3XX(9Y%x-4B*ihfM+Cw3kPTZ~+fvQ!_Lk56%UsLR!`ih9(6NZ9 zWGn2dnM9D)2SKOeWrZF69r!reh%`cW=>*BJD#0p1u*YNYiK?ppaF@taO++VtFyNxo zg^0%l?`2A10+ABKd-}J6Ah*->FkbDhGJl%;w&cOg(UVCK#j7?N4**tCdTNA=2TT22OtGSXrlE~Qh7RUD`R^< z(7#uYJptf5sr&*<*hTfOfG#WI1CV5=Sy@}tC+D!G!4H;lR1}@J5LFCq!eE2b$l%}t zHw>@(1IQFCo8MbWDoBZl5V<{P}+j{Wd%mV=z#>?p*E=0XhA9%e2q7!;)m2J zz~512J%9!0gb`IoZ;gOxH(+IJUIk|Kp3z2-oD>7p7I+N$C37l&BFtHjr9@wEBu{t^42T? zf)T8ZJY>mb>n$y@K+*KQUK$}P(2pdij!K*{NJWTIl>Y})-hz$f>j<;p?TwTBOyen4 zlFmo*q?6DTfBo~z(^(&VN3e5i;7=^Ntxxk(3k39j z#T!XrE{Yc#6H3iGecA}&xwn!;JMd=xCh#r`2pcN~2uN^&nxr#oi)2>9@oyE;+GlVF z*#N~gBZQ}rF=Ea_g9$haVnFcwm6Yz)pHXlt{z}00kMB%(#Afv3RAxhGc%i28 z*1%TfEPL-A#stNh;^-olfS!2eUGIIznHIw4h8hvZcU;zTBg35kc1%#xLn$38N|hI> zDksP2A{7T=?qtyt$JlyM=u@wrh#+of1oyccbVe5X#L8mNJHPe0B;4Hn3_#9`|467EX%Kf zfV$e?xgznBkt8RSI&X055`7)7C3tkX>V0#RyLJmxt_MnLbpJ}L=lGZ_HnYq;WF+!& zn-;WK5D+E&AlYd-ojCGQXh1S%lhn+RxM>3t{D$$JAhbQJTARRVQr^HKZW=aOyznB*2FG zgMSP_s8u)Iv&UEcx1|ZlgU95I6Ttd2eKDWjTypI;~*7NIDl@ z!%%>{Z6s-vyLd(+!QCsEUHj~>hpv3Z7z+A=~EGoJg^SuCKdQX4= z$25=$A&3;x{}tS`UM~oiNmqhLxSxvl^0#LoZg4Po)do>^Dd=LQrtC0?C4p&yPQrSk z-RAh$s%Qc+(b3*Zi?CzQVL^8j_xX$@t62AY31s18akE$ftfKpXfK57VjPCL|0CxE~Vx=jrbn1y@>0MrKMBvti)+i7lm zwfI!zed2d3RT~6%n0wcxuEUf6HjGXET)1ooMLaQ}?iuP%KVSZxF#*z##gh@Lj{5bD z!6tq}dYE+((R=aJE;H7Y9QxEQ@L{KFb|r&b)pOz(WSe5dD9e?tb-w?;I%M|-46e)b z9Dfdm)&pJR)bjolvf_mRaCgz#%|hh!3pDR#kkOaQ^|K5Ll=A-{o{Zm5&+#R}!7LY_P8{gBgY$`y#V|%iR?1 z)92}(<|lCI29Ifl*LM&aN5Q6|S?2UcH&7V7yhQhUlMFDNB}qox=}gYg1^V4uD(!)>xejIR0l%ly1kNH&VK`o-oJ(&#`2xq2hKmUq$piE%Njr0 z@CK3-N;Es*Gx-)}XRfQ8_B57pP#!cCs89292enQIrFlBB221ENq0~(@#TjsNu@S$Ukj%kJY>ea)jdH25K(Mp z|0Ky*QxYi#sjFbZyvP&bQ}2*Wb+Ly4FsIq+Y9Nsy95op*}5d@6VRWAZCEFsS(sh)%jH=9EI5fZW;+ z0h({66#?SKi*?4kx~1w?At9l2lB8sl!Kkg6xH!D`6pcFK6&IHi#af`sXwv z;VvBo4VaLN1^$T67ASVcfDe*}fxF8J^+O7oz`hk73sz-be%4Uy$*S%WqnU&k7T*-A zTosIV@1_^IxWJOX4+S-!av_869s=H+WHurFFX|Kj8<-zE=twAFa8Y1I1LKrR0gB@6 zNASMR-}k4)kt)~h{q&fJ4@(dCIdWMK5-Zj|Q`%Ud_^#O(jcICvudj8|kH9BCj(9f4 z8QzmL9VwvqY<)kJ%@T(R!2oU}leVd;47jco%V9(hJwfI6-}Dlf@lr{#1%$04+$AtS z;T2jX=cTIKAHmk;WfM3wR{XZ;k2~F^K9t+MH5M{dMI1 z7g(S6!8JTm_=med`K`2Zg?$RT%vCvd+XyLaks@xX1{?@(?e$1(`sJ_%u#4=pS{7vg zQsf8z9EzVbg;W3Zbs84{_e#N=lBb;tURnD4gj~tc;sd^jgU=t1QiJ&5jNnIN0V6C3bMfX4!rSQ}`A} z)FjZo{UGdR8SYOPZ@1tsA?6>kKm@^WSU&__D6gWn*>BPH-cc}qlXjLFk(8c3L%uW_g~^tQ@wjHSgrIwLtdy9p~;+H0aq_bLLPHUXGq>H!a3nf}MV zU`6@!z_ntMR|8sb#Ti3)bK(xwof$Jl*_>m5z=o=2pRvo=?=&ayWrBUDiy;$LAma?u;vN5`V<1oJ(*T zU=O=UDc=dO+AQK{vF8QvOjvE63x*LJ1pIc!Xma1jESt}FXN3$vgvOJ}<;PP}md0Ve z1(4K_<1K?hw{S24;1<1hHc1m5Cv{}{Co~usbb#sJlcqy0p+)Mx4Iw zE-fgBFJB~GxV3)+;hgG}`z%H;Vjz}H|75|mTB+Z^1gZc3R`|Z%0+Ro_v!Ai9JzJ0M za;9cJ<_JIva0yKUzgZ0)LFKqXCHbi%=RFTr7?FGQ76%AWTdQUQ;;4lZR@iPdCex8P z%+4~?L97UAP-u?yNTyhbZf`Afx3b<&vJ2kRL767`0Q#%Ed-Y(&Hc)~gVjg>0SYtmyW8mbZ_qv?n-_M-j%jpm zplfek481y_>go~|H2W*ApGe}?t=|O23LSzx=pQELWszh7*#t{%d;_S$s`!9Z#TKa` zt_G$y;zKBi#tw#0vD*~;hz;n0`(_%-{1MdD>^DGS&yYlqkiqMG`PpGfL)=#+ylX~k z7R^x(QUJhOG-RlL6zs#ykM*M_T&08z#gmnjKjZTt%q@hYFznN&Pfj_B8g3@Sa|l`p zN-ock^;bsuZdc-Zr|gA>X}g$o{n%dK<@7%)G^OD<`}$`6w@M>>70he@uEcXMfbwJyNE`75q_C-FDy!Q5xN)Q;&V7U6{?j|y6VYpnnr@{p*9KvFxr0_Fr_ zyDEcD=q4YG0YaZ;&h7vMe88Zm=Mc~3#hx`oO-)U-U_gD$ghVmG*DS<{ML-{k?yuhd zoK$}BeNH=jd>9cfKzqvHfxrd?9;iLviYGzH>Y|6BET;@62j}Wbk~x(U5Xu>2Fax>x z5s}ICG#FX>3l?uH)pCot6mSXZh#EiK!N2Z>}7o2AtBVBZ$1e+KH;qzZ{(hoGsa}W$0a= zY`YpOpE5$P*!d{I?61HUDmxK?c}6L~)~H$nT0ClhnPo1>0q8QSze9by003_ zm-%3-(m?yx%1ee5aDOFng+L6hWpkZQWZ|K#+6!(cXGJ@guY}dE$mAFyL&HZZ zPf)(ej@4xt*4ZNsSJF^ABvCMCS-}OnA;22esRLw`7q56seUDkQA8vNgih)aU55srj zM&=RSU*$)~x> zvRT;%TI1SXqN9gYc)kGf9FUKa?Hlg+`X0=iP=y}F0AS)zPFmVo(JoOE6H8C79+dea z`)x*AZtg23#S(ZuS}+#mZ9{o086FmGFM(x5`OY*50&k<1AZ_#z%iyS`R8Y<(ZZ`yi z-qRT@HU23^hQo_}2>pMEdJ}jk_xFALL6+=;Q1(eN_GBkYBW2&RWD7|oOR|(KB@Dt* zLw1rOdno&sy<{nbEZK?dWnX^xob&nq|MPmyd7a~wndf=#_q|=$eccwOEZvZ4XYG0| z-drfWoy|hi_e#AqYnTp!JSA$5ltx1G2&1%=7RsDmX`Z!E$k|uh)%MmnEn~2#$@V$G z5HVzV!?Q$?H0sJTU@WYC3wr3YemG2|hH92AQk-}#RCDn4hF1K(5Vy~==a=|$(g@>w zsyDkFws(G#Z68Fq!t~{V0wZKXtrmRxKnP|J`50mMMXE{SHi?|5VrW0?!wUtvgP5Xv z4Qv^r1I6DYEM8oZrc@oS!j=_F%0J9S;c2&LJunVGBRNvvItr&`uJbV?%Z1d zgI%vGjE>=&wqO;#fd|Fxw#BMCmIh}eisRGVEeNgVhzR%=)#J$6H_zHvzj=j{B<(d$ zTMqERwn}m$t+%}q(x9djY!xq=Ybyk6EmNXBntsd=5tH6TtB=`TMw7%TiM)VK5i2UO z#!vUfYV`ZBlP!u>kn{;zK)=lE*zC>EURNb|?z#tYu+jiLPK=O~>H$yNR;o{2sCpm6 z_30cvmtwHV*zU19O6$h+PacAAnwRI<`t(DTc$Wt9a6QxRdSBseEi=-G#%?zcNEPHj zRwEDKzYYyw7Mw0=v<5mO0HoHdhKH+~!R;xAsJ><(8R3VU6%ARg*s}^!6Mo+ixxedIv$&cDlR|JU)GQH6^<&=-iX4e*He z%&Ko9L0`L^BM%e&l1dFAH*Ex12j+l;_gDZZH} zVg=ZqI(Y407p6C3E{Z5*RbRl|cm*c;<#~kU4`_CJvU#NTm#H!Dqdi!x0`|GJYW(FA zr5-d>x&5N$Tm3a>zunT?>%L`e-89nu{Y|a{=T{kJi(@aYst)Wo zqU4e=N&btJCVFh22^Dd-{I$D7X14@^=MG*e4XKGvtbUoG3DQlY4C6TPN;{w{%Y#wG zS{lh0QH3@=w)%*MF@U&~OHWZ)sngQZfA7}+Tp92@h|0)7cT`{Q_b=Q6gDMAM)MIWq zT-I^ED`cytwJOFcfMeqs(Y%VGbdt{)J3#dD=Fp|&d=O%eFI+5z@Ha8Jra$+BR}qPL zPVN1RVR@7s2sB1U#wlCwA&8Qg#pyn(9wq7edcF+tL^<~=(xb-*mx)uXfE2bgFNVH8 zCmt?8hC3WxT^LSF-8$E$a^vykw^BSEF8fA)(bQ=vUwfc0o{)~3cpWw{&ISok!e^f4 z^kkS9gZ?P7nKJRU!s}=L`B=W1`e~Y)VmIkcPPwgi!O~66=lgTo|E0HICX~3lf4Rw( zkk-ld-z82HomP*^hao`u&qpLa*S)Bc{+y?sdU=soLIF0FhyIo*2H~PA`&+QzlO3Z- z6H!ZK&I4`l=rT4p@&kfI;<9uSBnd0g0sB)gOPZ2HnaE|~!4RJmJQ-IIgR?_M9wETLUNJor9!k;j5QHbYiI58JE0Nfkucu=|DGxp?Ku zl>h{2auM(5eUwriU<#RIVKnu}6{=#OT^)yf)U};{iXTM!ocNlXkU~6g)PZ^zQAx~s z^Q|dn#eceuwViAnwJ$i;zmFoNGS~C*D5)VmVzYQQ(8W47(%}6@(X8HuYg~J^@1aQz zpOclkP8*ktsg%XhuKqZCgY6sNIhpM_*OJw(N%_I|c0U6S1JLOK(OpF3Bj}N53|r3= zdhQEhvOu9DP8fc=f4B8*ndgb+dV(xZ3l~oyU5MQA^r}stuZ$O| z1Nr+{gi)wVR3B5yxderU@4hKqTp_8j@?zzXLRKH~GWzhry7Kr}ud=aEa94mIjzXr7px^@U7_6mr=>g%;AUyrfJ{|0+I&wdS0U^;wIIUj5rDgTWwR;^Ke{QcOe(!&aHKt|%)jE2gr7yBZr~#dTg%(uH)@b?8zC z%rL9pO=Lx)2TN1hrXIq2_v+g5*~c&L9!Zh;;A?ZAG3o+~AGG8ys^Ze_CVCb8Tsa~F zJLsV&lVOF6ktEY3+b2|<=}+grs`Kajj+~X<5d~`eYv8fYM06&x z{$EexvFoeto`h5}DpfGr|BXl%#h-cL!x}xLNvJuWb}6OaL%6bbJfwcRWOx2Y-I-SU zrAU}Qb1RO#7Q(l>me{$y^YTo^+?uV3Y4OK(+oTZ8wThka_JMStOcuLBUc~t&S0j1= zLdoK-P#hfNHz1*O=GnMy68kj`4I$W~4Uzi{;-ds~mIH{&-Z5OQLcQ6#D;bNscU5sS znT<<|9DdZa0(UXuY2&D^~U^)Ba5JNwJv&}C&)$t5Uzo<9w+xDW|Wrf}Sf~RpHSYnDE4NW!3Hb2Y6c! zSi>IdBs~u{QS0p6KVL%Eo|9N14QAF3EFOgZW}KV+`{=qt_IzSuq5?VnZxSmD3nhLQ z>H>;YUxa(;;m9-GA$ZuNGzAIkorjHJH=3YLq?Eda~ zVAv#~Ou1@^L>>6^F$cti@f21!_zhn_(7qt{yUL-JGmpj>$jqci>@%Ow8@DzZgbL-Qox z@rNand&{BtS}N37W?s0J^_|D+$XiKcYGfI>_1%qpY27e~bYlb5-IB8$BS`+lrL;u? zxn&r^%a`BIR|fc9`Go41xRleZIKkr${6z!iS&O@xKwBIkEh8f;?Le~h4BUadsOUX$ zgsXv2;vsMO6#7AuLXp=`{wNnFGElqx=2X1dGH$=epHMp^geFxwcIQL4;rqyoa67jL z%+pi@0^~twp;6bRincQe>n|W(YF*ljxig$`90+IhztGM6rrTv8*)va|?OKQ$j!V^O2);a^hgt3od?E`r|Y z^46mh?k#kVFG;UA(-~PHL$c&7_SUz4stLaT^kwDXbO9U5y&qbSUL?%z?Mw&pXz6m> zDO{UX^3a)QLUc*oeqS4U5CfGR6MZOUczaS+X9`FlfO|LZhNvWixf{&qMSc%=%^IxGcL zLziI|(aYoL@IcdZPCowW)2CG$IV6B-lAtEWx=sNh?mUDZKJ?0bmult^NQ(sf8V}{t zjNc~obxyeXl;LP2vFH}Ry-n?|>t52gKsn;%-S7GG<`~cGKqD+d#k`SsxGB!+a+TvU zX2h-EjD35zEp}|61Zfft-EbuPGI9@m4$%a}>3LF9lJY1TuUbXG1MgBHi}d&!=|G z28gHLO@6|pQWUFLDzoZchu4uXV7AP3be@qEg2ns;un z?B4KH7;JX8bek>R7j+)^fKuNm+pDc{*E_NC8Vy7P<*}k=7uV9=BHm|rt zL!+(McgreE(Ol`ub9Q&UVs@!Au7qZn3zI?cAYOow_}~@Y~Q`y=dcW=2yPWXM|_5Y8h3KFPm`lZZW$$HeVBd zJ=8Me$Kire!w0^owP#nfCkd}l45BlCS)E~#^d@mUcSEOz;E?)EtEkqxchaARFXMfg zLw9N=(ELWp=awq17#eVTf_=kNYqayd+1=t*Pa%X1z-si4yS-VR2+HOOFL|tWjDHeN zD^O8fy&ZAOF<3A_iohBZG;)eWI}&4KV$PN7rYSGJSW5>T2t_Ffbhik7W=NL{=oFbC zbR<^DrOo-D^#P7x*V=LR+Q-J5&o|e>t%iaB=pL@jrv^?LxRFdnb*2YQG2~#WH$fOR z6c`M56)SI;nhvryAOs_B+dLsX>Q7x=QQ#;qA=D2X_`YFa@mka3-%ZjUBX3si8uWdV zK$?uN^BeFhig8+G5{B3;o`=&h8=iHqkm3{0GR}i;_oYrPW#Si(ja$4EF@0lNaqYa$ zUR2_*PO#;)$n3F`CcpedNm$C`!jnc@l1i?!ylL%jRcD@iy>%vgsx_~>b%M^U=Bp@^ zw5R%86st+a>toH;1iax-D^4GRqW-sggS*1Y$#M)l0g4RuvA?x{OtEWBe0dq&#UXv2QR9OXFo_faL9?2M(3 zPS-S`6GDN*o(|V2P!Dt7y>rVbjLq2;Kr?$fT+O(QomK&lQF(!d`T{IAqu$+IN~#g} z-xCxOQBuY9a};-Tn zf#o}hH$b8<${2Gd#6|=ab4DYFkmXqTrL%MN)|?#!k8%z180n+$i`eEJro6=~T*B&* z>LqO;yYJjyDp>fIo$V=LzVcX^M)>>nI_&~SlF#G)%DH8){*Mc=dwtD!jiR`ql4(iw zw`j!psBRYD{*cxmr6bphS`(Q>nOs**g&i+G4}tX zmM1e=TQoPGm!R_TeSYQzouzy&i@qGLN0tv1qFmx6g{!KFev1(;sgIfIYotT^NZqO( z6U#%ICXOSGVCM7`K@m1n?)mBI>5%4rVvTV|*xYxP{xC;gS=sVYG9i`I@{VKa&Dh^m zyqngoly$QDZFYV>Ei%65L%*$j-5qU>nb}>rVYC5s9G@{+Xt4jGbcLIj>UAT$3!L^(`zc6q&-3G3X)m z{U-*wG)T1Nl;O898+LEAIBD`Ixegtp3;y->uq?}xW?X30%s}rRl7cr#5mM%eprUPp zXDLbIO#aS3ZI~VvMk+z_`xqR^Fax2clKe00=N5$t3w&j^x8AI)m_JfVB@;UwpIhr| zXww9CRn`b6p5YguQ3 zoQ6k-2Mr5oZl6n;ANN`jZK}Y~NG#+H4OVzM81O7^ze$>`qEVb|JpY5Q$&UYTG5y)D z*h!#m@ZZO^M6h+=8Lj&3gs4LpY&s=G=%R4jtP3!6Z!DSINVj2UjQLq4H?l>Iy`Ku` znGh$vH(QJn#LsqRkooV03p>WE?j3iFF@_DoIS+hk3I?VbkCh7 z@4bLHB=C;Z?q2=y*7>$N=B#8TPl{ftl}#U|SIC`QMVc5f0ML`*S$85=7Q0mOPELo; z;s+-O(nfdYIxkF$IZ*|^{UjiYI?<9u%W$)8l9CW3NQ|zN!>MgS;&sv1GA_E0^>#I5 z-kux?vk`b)zbj~$q1H|R=vxaEINJ#Z7iPb2gq2*u z&`NHC2%AZ8CgUAr=qxm43TppFLC<-Igz8tMx`u zv^Tgi8!)v5%~$@%c`G{tnFvonY`y?l?nw!{S`I1t69cDr%beJpkl-Y#scHG9-M>y# zY2_9tycer&2^<0{0@5Ghsq#BbHid2U_%$%np4vVB-E~KL?b5IG&*){-QHpVD+3O$k zJQ$`o=bo8spjt$3d_d{eoM-*mHm170adPmwK_b2_$55ErB(;}hg?=G4+ohg@YxslK z=P4t##2bG#a7L`L*9fL zR$A?2$QqV0zmZU}UBI`1-VB5L zuRsjc$RE;o5OFh%J~nDEj2~aVU%pr3ZZ_~T_s{vP6V>{Yzs1I|orB@BuYSruYvD+W zt;}_MqewzH-!UW3yUeEJ^4{0=(@m%4YG~DapzS{DpCI%T9m{W=`Z3nz|C`@C5^o4(Iu}87Fdz$2Xj|nJVLK`rC$nq z-!%b`;>(-{1@_#*?%%!6skJ{8@BVca#B7+*7wfj{E1@3?5%czlTWp;HweHv$GuIDJ zGeTPFGXjU=nNpvP=mF*CAKHpcJbg20{ViuqY<@pgI~T}C?UE(-K*SU7dH5Pp7$L%otSg)8Ku-jhdPecJmd?U zsq$bXyZ{R6AyW4>B?$L>YHQB~L*VXDIUUw@kCe?OHY3GWwBQR~=+~T-_NN!CwUgj} zyylmGqaN(v^7D1!k$L)yj-5GvNj^uVw5%@e( z-yHN6nbQ=hyofMX=eC+jn_)HF)chVUJ4#veOx>D0=s!pF3KLP`5X@l{A?BhZ`ij4C zNq8jCkK_K^t9{MSOreq_JJ1YhK7g$Gz_Ee?rS*T#5 zUy3mOG@*k|Yglr2X6CddlJ|gk2BBGRg8D^qlR%7R(ND-IZy+u#F$NIGGRy4En$Bv) z|MObD?a0ypaRz=8R@5H984rh`3a&|(gcj)*j)^EHnv#seAXFrR+x7l(YlEkA_e(97 z&dS5XczCo}S&@HqQ)&MjrD?5=`D9QP)-iKEZ!1Nz+of`8T)pi6-eRcm$UnWm#|*=_ z>JrJ0j%uF3b7^cmvG{V+^q#p)%jp5@sGg%ysv|;*evuBG2;qcDCE9;a#KoPR9TcI@ zj%Zbhuo2J-D+c-Qzn225c6uae1&V%ue+Y{dwiao@3AKi`V^hF)J->DP_88So{4y_G z3F#9)^nF<$moSU);3O8l!utKgZs}ZWwk8V8Xz=N|-@B7o8Kp-}j5TDcBV@B2CxTq- zE|)7>H($Pd#Un3AuEH@m=~jX1#pUtYDV1uOX{i?L&X3Xzb>Vz(>RPjw>d(xalT@M* zQ<^$fbLb`(qWmIMvs>vn_vzYtnSV2s^}Pdfjhwary96UlEL|a~+BCaW(G~_#S?G$v z9+|^l?(i-o&VGh$Fz-B>z7R0^W|v2+gAnC!DZy9EA(EP6JlT+C71hF*V-8W4f?Y3X zq73U@L~GVe#da+{jX(HXA=rY!&Q9i{Pyalh?2JGDb84OB@@mgNUrj5cT9Q=2=NkJ9 zgld(QzGPP^uhZQ>Aq%M%hwL=3Yk(5Dc;xOWUrk}_i2{X%{!gl1gcQ9$Smi_asaUy* z_}kYWa*9?o(!~sqlBQ$5sWObWE(4){SxBrYZV{N>lGCu zfKNrJJu}xtEuB_TQ7M6T|00$@6GFEO2pXuNj*|-ZrUbt|TkLk(vB{3zhj+z5$-A84 zL#bq*bO=?1?57v`liFKw1r6g{#kQky&6J+;FKWBCzc6)ov@m6-3cpSqpB05t?1uOB zBjNA&E`7}IeIe-;ahC2}dUvqT$}e-b4(Ykq*P1TBSeH|1dB{1PBpP!WcD~FYhp!bW z^@SFQRTpTq#~C=4fkELb0P3;CNMpUD_!T}_)jqmW9wCCk?7YH#8Ax~{*gp+XAx_jh zE*t;onl~$D68Si4l#j{YEN-g179bmRM@bdQV2&bQr#Ct&7#Y@ zKmnIy=eyQgviddiVTEmjW<|iNuW4OeOA@t<5Z~ICl>g&G`svvdF0_jD%~;IMkv<-0 z@$QsI`}#in-}CghyE)uCce1Zn_oUEID$!SMK@~!pkdPoQNT~as(nR?F#Kb4-J;+J8 zNNAro$0~nM3C1x&iFZWVpaJn(4a+SiC@5z+Fa>lab!3`kus}Gdqo9u~kltmy;Yr-j zm6am=DTFtQ@C&1pfj^a;knpe!m*25QW=|ln zP{KmLEQ4HGxod{KtsoD5V13ADgJ9wbR2UQF4c3O+Q_{^`?D27ci<95+@roFHMD0d!4a zfY`VGeb!0P9H0pL=nFZ@s|Ep$yKtO52z_qE%nS?Vpl%8YeEqA)(YJ(;YH`T?DOw83 zMS9gWP>``Ujq?-=#6VGA>x1;oht}m$`WyrwU>pEVVAuh$n9PKygHR5tR+w8tn!^x@rO<870Yw@ z7E#lR*Vu}kzi&7Vt526N`fp<1#-2P1*2+$ClS-{RI7Q3zfUHnq#i;MI#$H4^6Vsf2 zPc0bzE9f?=Aryi2Tc0F=IJN;Rr&J8R88x)5ti~pnhReNGo&Qo;MQY+hfK*Z@M4*_5 zFv5+j&~hofk19l9?HF_eYILw?7e9~RtX9jkmSCsdTpU=D9kqG;2x!J{X4HbZkh*~s z0lMc>v{TJce#p?TTdHBd)w!KUM-86JQ-E~x87vOGguMdYQ3Ro=QE@X1~b9BNgl?y)j2T?Im;#*Ubgbx%eNr zJ>j??-b7yz>KpW`VLO8DgKSd}F;u!9bpKr2AFciR7jHabTtEu8l5qgM7CvP8E3B2< zMB2gnYyFge7F9LXd^udG@ARmEajpsUCj6YV*7HA4p4oPIYPkhJb{ zSSSAbK4R!O>&ApiaAj}(1@$M_s98HV7={ZhZtr4@p=`J(%rHxdyaFbUGJxm-kJLUe z8&{mu?(HY90)M&;-a{V!jk)2}=tJD^#zs2%Z#&uLE!jbPQ!)OdJy3)Ux6XJOezI{` zyMmRl*+g4xjW5n06`{5t&V)2mYM--@5j-1E|Nh&aykq#+&fw!3$uqO|pG{?WDJwHK z!nOxe1||k)Lk}iaIQoksMmoBi+XY-(iRsXHb?L8o2~T4Fpb!rahcs~S!JJzl4_%Yo zX;_{4T9N9Ex&-_F_mX@=M2V)sa~NSHC=&YaxosZX;sVH4objMLm>0 z73tOW=~K?Wlct6+?PF)tD2)VQ%CkzCO*lnVS>!(9c+25us16rl~eaV ziw@W2Wi$mw5f4+0$peRLOu+9P1}}oY$eUhZ%0hL_iwI}3hGDNn;J%aUCH^>z-T~wB z8@=@JuahOIu-{&tI9l^jibkj!>^(l9OHMX050|?J6a*X{#_B%68)|SF@6;M3wN1I- zCwZ^&xg(Jbv=V<_*Ery4*r_^?y3W?E^>V8J^E$f7m+g7LjM%>GVXR!qwade;g@Z0a zPG_wcU&E%ymZY`w{*BUG_2I*5$L%K8|AsN-4&k~TT0B(*I!nzhCeFH8&_NLO*GYcB z$@^mtPLH=$h-a?sDAFD?>kGdb6UifXjeA9e33gF53R`ZWyYMd?6h5U$4J?D zH&Y(GURJ`hd|ek+-kYa?A)=(HT^RGL^CA&gVk;U6HsPU9U&ItRbC@#RkfY;6HXC83+OPUI_i(Ujea#*CT$e zSi?ZdGUCQ>TQ93}C+e20zD6Xp?Z9m_XaxHQGhsTO3;A7VcSduu8pT{>6-45~nlyG-#S)g}y zsE-FFy)<;z?dMXKQg|NC;K#0lEac|GzI}YzP5G`xAEo8_*vQR-8~n<5=#EDwp$449 z9j{k}1v$FY|HCvfwxt6VFBailml&l{po{Mqse?MyyN)w zkuji{2>?lAsj7+S%7MnHB1{M&yOX7;OTEj>6gKj`-1R42Rgj*O;7=wOszBnO;KCb_ zAhjf%1+r!zMA>3&quUJsdHHhVjkcZ42S-lJ?LDh7n5z&B^roacWz>_Uon(bx7Yy92 z^3ad{jYu?>$)8Fd?zytd`+E_#4Bf20 zMp!m&ujMHG6Tw#DKK3yXmm3UyHvJm7_%dXkn?BT)DP|7o>rKIsV^PDWrefB^7&BB> zcOF+G`@WEnio;a5Ke9~jmON|f!bC1%jJ2Yp2uce|bDS6dJyyFn1PZmg$b+7gGuLk5 z+9Qzro|GhkQ2f=seLH`vqr{42yf;NaEuY-Y^!yJxY=s z#gaO3A_hPLTNDON)MJU$w>BG`)$^Y(oRFN|$-(Hf5+t-HWj)k&aVhML z+sx({R4Ly741F-GyZyP>WeI&;h!}|g#fupM)I)(&k*sdPRN*EtVUd}hK7Iux6i<6u zrZJO)w)(u$P}%F6FT;87-bn!B&IBO)dB+m?H`iXNv}-pNx$g5pqIn^3g+vKRCKlp= zo{*1QpnlPgOCfZg_J$gwtTB#gNocoemARiuB75)HJ1dCFd6~a`_c?{KRu)^H zlgAXxd*5K2D`Ue?W9q&#q9$FwRX|~gr3A9oD~3~2g4NndGP2?AM~#-|GhdKZ1{WT+ zetmznl+}k@<83*%qug>lgjyUl>_gZ!Z9qHZ*efAUtLa zz|^I{-s8H?svslCh}7VuG6UB;8)v~V$C|onLNTrlH}OkHhk2eNEunn<`d?-7dJ=@1 znmX#bhNqqe7el&qpbT;&{Hh1RD2|TdE~%+7S{QF2j2aeN*n?i7qx8e)sF*V8zowti zXozYgL?oSJd<+25(9Z+C@^Yl`!HHkQ0KSK;l}8rC+Rl{z<`T>s&_f@AGe zIg^sa_CbY)fR3N2nV8k<%v@6)g@2MvuG&t7;1HsR>^HIEWWS-O#|WK#D`cywa#-tl z;F?CxN6?GTUzV7rg=7*Fs1E+~(3_|cCry^xGe3T;b26Q4FPU-mE)96q^f`1xMnMenG zSCfvCP1y6Qj`f$OebXn^`2iFn^42#tgsr_)c69o<8Yu2Qpmck>-u;w^blVNGnMk^( z`QzyVfi(Ao629^rAUBik&C=kA-IY{{;32j$3G1Q+AMTn~uKxFY+zY-Zcej*zcph(X zQMYzA;e?@3q_C8)M@?xSi3F%R0IL%2Sot5gGj3 z8b?(WPQXJrEk!k40LIi2P+2?3+$aOR678r*@t3ZjVTt`+ZCzV?V2L!i}<{M9f&j@|mfP zFxO9Or$z-t9w5a25QVDU#? z2$Q~j++oS_CY6+^=(C+oV+Ot^{dt2<;nh$0y9y^e>!Mt~Q@u)lh!&IIz$TAW1w;JI zw6w{p~t*eyqjp937PyySCklM>z%?#fJslUx?6{b}hZrrN!6 zWK0(Jt!?k;mzIdrb-NvVg2+k7O+}XO;w4Wgz3^%xYmX%>-F;85$VIZy<9ds|(tHvPF~>klp@1O(zY3Ar`4-8UuNdW|1Co;LP11w9w-IBF~9KKe`cF`c=W_4w<-3pgQ-aTrPsgb`eImUVZq&nw!gw4w-v@n}9v{zS&;_u@3 z+|7!l@}m%M<<#(1hx2(xllOOXuZ|dmGoiZU40H&|)ypSP*DocjU)tgp2@^yCicx=T z)gH1{QOH(BI!X#sYdZ%EJa zrYaYbEQE%CkfzfKRo)Q~hCEKyh9dA6S`t`&iy&Y6q$n5&W9V;|7|#zl z3#xIw$giJ~FDGIgLu|A*9@R3#u-xs)hd7HCsm_iE4p;F8PUIajyZC_RWD|ei69~lA zMNk9yz!pQVkz+`bOf~LAu?=mZUyiH9+8e+I3464?haVBc8`Dh2>o}uQ+;`n zNsm&4{4aDhvYltO-4^Iw8_no1doD_f?TC;)kvFFIm;a3q83K3tU+`bfOF=2*$#-?G zD5wR-o2Q~0+|{|Gh#fdoBu9hCKgM6WMtzI#kFr8-#rhKx-~^RItl5l7`q2{(E4H`@ z8s_U~lEp6sCefI~4aXtP)#SOIizG}j!}zp{BqRT72V(31rniE5T>mvp|H+1&t6iTu z3J_z`ZIT93RKm)d&+IGL05$w3aEGc%8Yqx7lYL8f_u{sad^@0Stsy^1<%}_&Qh}${ zGRbZ0?@I63HynFshK(aN&BWgjfh~)-^b2l$i0f}CyN8{YfMBQ?*tniV+=6*G@pg*? zz$Q9~-oR{VB&lh{`ZW!NMx-OrHF1`K$U?fiVTaP+f3!${Gl;y3tcM4H3QHvG)lYvm z>fi-o!Vl!mX>=Ru9X_kB@FTSde?Vj@kets+N-mr1)uLXb3`De3q*+Br6n7Z|e^4n#tf z2FB=`Ax&O890=I={=3+JrS^x}Dm!(|+ptmJ&#UIwY=8E%B-dBbF>Yb`NXlGYul$NE zqCk^Q`t!^riK2#tU@M1kVDSvl<6*hb668kQZ}3jX(+LI(R}nMxw+4ylH_!$g4SdKZ zugouUL=nMb2xVdIGN_>}{0}g8&{BAQeMUed%z{ueUY5Tv<8l;WZDEn@m^f>LzHcgZ z>cW?)H7SxF#*2QaoNRoqotg0k5qXh*KeA@_qjExs`Zxf69N=7-)NNcKaH z{C|#$qV17%ybvnp+j{rNFyhP>vveZhQSI10SOZ!O6o;4jNB+6otS$zcoaP#9)px7z z{LCd!<#H2U?yf#I(S6&tnXUAlpTo7rDQep@DCU_KR1kA+f9#jZ&X2!GK2R!p5A7+> zuNnFC2#miL_kWxwN6a53O&ieY<^$ygVolQ@zs?+_68jS;cnCyQQf2p?H3Q$C6pnC8iG&IQZ|CbF2LyJ~OoBMQ?gVc!Vnt9C$OPZ6?lk?r%iu_PF*`o4$KcuqAHA!G z10Kb`x{gGX7}iR_#hy2<$>Am-(WFY-u4`B3RE1p*13rlo^n%YsZd)vg7ru(V98eC- z3N-I>xAloUL`|;r=y12eGoDtXTVB7)n0Ez%L~H-qiHpzQ=0>+dSd& zxO>DBCd_>!SB2=ia~p`j!hbJ~562iGi;FK+iRg!l%VST<9|oc zM|fWvpf7L(O0@fr9GU`79#4{MzE<@<6M8-(n95bf0 zQ_5)#=R_~R0-oop!E2bmF+}TmEHaYGjxwVemn0aO zAPi&`=&$FpMNOlKcj-NIRIB!d?vKz#)Rq(IuOX&pQ{|SC)nsgM=1UW({A9?6p>d~F zNOe=gIiy9xwB{PCXM>8~bvMl%V#|w)O$8Gk$$=i2iZl4%Q7)qqB1CP!4A?RfWJ%1z zpQ`g-8O!*WE&1ltw=X!<>BOY09ZaC1r$h13_u0;*fILNr5oxa#5w2vM)`=Klk_Y6g zVO(}y2M?uP{Dh7jy>XpP8jASM{zB@`NV?eayr1$}`dS9vt$GS*`;WxAlLtDIpw4d! z=nDbH&NMN5;zb341?8@Z`Om5|PT3=Jnpi7Xd-a2nI`|436m}=r*kr$PiS)CuvTjOf zd&nf4lsz$6AQm;v<$1gr__h-+2JmIb+#s52!3my^IyOM`YWoFCU)$?LgvT=Tv|K3) zyOd8{0COw4efYdwCHd(JYeAX4vnJ9Z^3&<_c!o%3S`uVRZF5cmh5kG5+%99+JT|`m z&!_}XE+F$c_ysd#V^+G*rkB`TTEKE19IN#e@8!~Yg*tsjs$67IjnMZ2IK2@D3zk5> zdwUze$Fta53brjt^tcnQg_oaRz^$;hgv(}^U7(h=_7IDZb^NSH&F1YA8lhO;l$>Tf z(RuFWIh!t9bK_$+Yas@~ZR1a!jr`(f#^i4m!Wa7ge4pT%Tex;|L=1Q3jW`soGe~Ph zyHAru-R9oGuqUNfnN3rOG^DR&$OuJx-LlfP_ewCV@&XR0(Rm_y9xcgmQJm0+K@KTp zSX}F@|Iombdq&^J6Kr01fepy0p_9ifZ!8QJo>3^f8`jTJ_WI`U2hVqHWi(EQ6`7jo z*XUEP3W~*F+zfZ{D$*(Vk~!x_ZBjJ5F3{ZK(XM2{9OD}u_&@W)EXg6V!UPvq)Oi-_ zP6`QFnCuFfW)`3l_o~Q#5TGl-51i01?d{u&fg+<1of@jgF(=Uja9*{;+8+-R(RVrH z8hIeFRLuO?aC3acY*us4P+j)!Gxa^oD2_q}jun4NIwIkJ`2yj1v@j_)xP>G4A+Q$F zzfISKEiplqPU!L}h++S|Fx_P7=L5Uq>_@GQjc>z5Z!mhjz`&`*z^MulfI`Jv*J*i_ z_qQS2vO<5OY4{|T==vP-G54lI=gPy$tn>?)6(FnNxd>y9zD4^r_sNzYx$sBG()Z-M z`zdX2X~NuxbIs9TiyG+^LE{SPhYYP|L*prFb z!~Yg-8YHreJBF@{-l$#?VgJv+>F?g59hXE^=1(SDgG@I+S_MP!H`Wj>5n0TJ8<}>2 zyIUO4Y^^IeFwA}kmew7q#&rFIxq+n>r78V02;IpzQzwPr)>Gznq zaSGoE5k>j;rJ<{hH_%3s1<-mLAEmV8vmD`=MQY@D#@QE`XcQP~6i~inYtTUeX;FkO z>VZWdjxz)Q`J%Hia|eG!bo~8k;B2Ww+TIkdSNSy8vnDjoCdP=N}N=YV9Rfnqc?bk@s*J}1?>#DCKaL!n=N*m zazmFe7Eg8_q01($5_>-zlO-h!B2o9~2--uYpz#QdyH$`!xQOW&Bs2uv+e z!eBYy{kXS|6A>qA+?$SSBYdp|Tl0g<@b{4MlPJsw`~MjO8tsijqJPm}!ajQEHYK^o z;u;ld*^(rkM0{rR`ua83oH4%N@^>aeCxKD0x|Fo_FS7usmSxY)^=razjI4(o3a1XJ zR@+5i^=G^<<-QST;0&Cp#$_1(lJ{r5&&?GsFm}kIIpAF4v2B7V-JAPA|A`edV5g;+ zTln9H8=y-vYJ7SrWKOuo#j?4IEvm4C>$|;nwzEI)WpK^1f5g;q0db-DC$>Gl-gzV{pk@;l z5_QPBGmso~S6q&co1xnBSFUju+Y^_R7!NZ6t>jYn%UAp(gF6NUAU|P@9lZ5U-~Y6C zn8R0;YY3$PXRpYPP5W1iS^|rY+ZhdYpqsT)GS@ZD^#)+g_$RFP>oiE7ldi(Kxi#1D zKjX!^oJL0ji>g_m6DN2Nm`(_SG9$kkXt1CH@phf0Pvh1X=_ClhFb2@rIgs2jsh#*A z4y)z`Qs#g2)!27GmdBTGzk1eof<%i%gw@qTAeA1Q^d^b7x1(H0<9Sj!UI-)F%k>18 zd-LNrX{rEaW+*F4ea|$ALLRxAfy*!Ty!D^U04qt1iH-f63t={s&EecHhE2?v66Ltn zpk9qxwPV{#OH#e{S8_iw`5@+bM=eY+jbch5@hz`X(8vL&W-__upJNWe{^DbZ1TCxU z2yf~uEkH-ks8GpUDXC{aP?{DD);OAyao+iGr3A=RX6X33oAMz63UqLQ4xYZ9L9C9g zhT!mn7v%nTjAArnc|FX66=mvPUhV{b{r{RkkdU;qndiT}RP~RzwR&HgmJd)Bo4rmxn{$e*arSWlLqrTDFq4 z#AI(FhLAnG60(lnWS3$}l3m79*0d0^HkcwpXql`NW8WG3&hLIJ@q9kd_xtznkMDCm zuBYd^rrZ5K_c^cgI24~a-=f;fPcrW8rAr`l3S7%Eehor;w62(ZgO6c_0^mwC$rL5%$#*_@ zROaON8adajtmEPrkvrm7f9&(k8U8oPxR+99m@0aGM0?2H{2yn=!a7cc^GcTJXkpHf zBClgyl8~$PhTSwt-MLn?)#t-~-tz@CxQ@hW&#*HIs}aX@Ua1Cp2{7T>d*S9sDxS9I)btUAx;{-(K7mt{9X zfmze^<6ywSXYd$s>1@4Ru(!m4yWqoY5qf6&qv+T1$mcAJ^|~^Rl9?n2N!~F>3K|yg zRG6xXsbKgak4n^!FU{3N|K3YQMM+YmiogOF$r8y3{WA@2OZ}q=Gp-HcRkLptWxrY! z-(1xw$S(Xnq{W|wds}R7cHXseso2u{z(j%|MQSOwc1WMyLFY+CsP@aymfyY0Rn!!ghd)0mqVUQOoZ%ClM!pBmW8eroby&Y~1by}pVz_GlmYu>f`$q4> z1yA}aGOPs&0;TfcSMZTPoBBq&cser|jA^U6Q=Le|fjKWeU?(1Z%nB?}h6GRh%%9uR zX~ScQD-0H&TJLD}-Q-uNA(U(*+bXD`DagDkg#%y&8IHt1WJJ(Vuux)^5Z^D${tDHY zj8OV<gy4IUb1JvKJnUq$ z=^RN}s4d>2d~J6@QddAnaTQzzSn_}jQ}dCw!!EV2=}=AaQ`J&rp`#6mxkY82L#409 zSIs&Y7shUNFvOpmVWG@DKYY|(VeQt{ghH0QN*Kdj{A)PUgbAUYYNhAT1vU!`m-uxt zy1~VtCUjT&kiVo1aqcTeF2pF>OFGtp9rg7ihSR@vyBZ4wYLTQcMc((MySjtiE&@j) z@nG&j74jfc;6d7`&-&~6NO2PEbASYXHV4dD7ice~HeDbTG%v5knmVf_8+q370a|u` zYrYuzNjT?qz|1FrduS6Q-RrV-4Wku!bB>?y`rXpjV`T$hj(mG&HkmPeV(G1k*`--; znqLekcAH%c4{i!gFek-OgG_H|GyZvJUq|x}le7V2xs(SV(y{|X!%>j20!Z)&2`Ach zF#_x`@()fz-RD1*Wfy&bejah@6N;AjLAVSah_HoE)b^>{p}b^r#(mt?oesHjlpq8K zn+SDs+%ng<@%mt`Mm4xK0U(kh@B>Nr(a2w(^cp+A-Nl&tnGLw=lqs{HAyd8?doBD> zWHL#LmTCnVL6U@?>~_NE1Q~zOE$5$pDDuJ_IEH&$*+%{de)GDJNj~Rg;4#BLnD{YD z8cH))1hCb8;Y@MIa~Vmblih{D_mW4hU$8|PE9s@ybS=8Rctitg${3Vfrq#0hEZL(~ zJ4s2WU$#p`HwMAZdrCE}ayftUKk7w8mLhlLI3)gGgwBf|oLBha$R1){UlTbAE8kgb zr5S4=mOyzPkDFs>La-BREF-YgON+JOS;4y&k3j7Fa5vMHeW(JYPXE3@+fQCS{wBXd zqOg<3sy`d%#~xpZiTf{a7ABFW5WB8e`OeK^C&|8KA{FBWvtXMSj$g}?p<&3R2VZ>< z2C6bq@={W4HAy1>*`ZvyOk{sBf??BvA2h8$s)I}7;2vHVaBFFB?}ga6;rG_P$r^LU z`>^~|42d;nGF%}aF_Q)6UsO|&TV5Pp>tab=Gs^=ZE)-tzYILV~3!14O^k10a+K$7&-^ z=wt5ezfh=Hi?1-B83NbSuaE31ruW zx_Q+x#&A+>Q(Fpka3h`8;q&hhN4$z2g4%2uw0(9E+mj3CPeBw3v{AbC<_*sdHfnjm zSJnr}LEGj1l$c^n3K(aOd8;`yqz>+T0DrxWr`cETVLelOVmp!bcuF`;d&qZh-ah!S zuH{2_fyyPz0%SBh_e`GCk4io2`SW>~UCATu%kHSpYxQVcG8MQnv&G^O;DuGSk5UB$MF04d8>29R?mrM2CHN`*IE0E+^NaMOk zf~qwvJ`?j1yDnH-9%VxT{|DDMAMnqNRlnS$utTePXmsQ~o}`XV!AskrGjASG;}1JX^TL6ynmb+S;Hl4*=f%Xx z#jEkDJzPuIEJT8rB-X}Pkj`T_`h9W>dM)Pq%5kg5@Gq1)`7tZx&Jsk9XKE+VdT9I7 zfSRKrkDoU4*(?rphBaH5SEKb2J#t?C?+sF#B$!j0d#+p^3W{tgd~WA<5q)vfnyDJS z#2;ABft(zF=%&$^P)+CXZce4lr0ew)*28#rIp>~Q1r+XKjDhZKySVr*!vsa zz3OBv)Obz?%?$Q9UU(EQT>HaI?!F~(Kdy?natba0?JW#-dbYRe7d944FCd2L(5>)8 zx;5R;o(rn*)O0bCNUvCIzt5IC(h@IvK3w@>w%hdE;p>G?mKV_>uxWKu(@llj&%e@Y`O*EZ>0O4{H_E(?2e;eJ$ET>6=cUte)NH?V00!8-RhYDJR(R)*`sV~gUlb`rDG{Gfios}Q`M`#g=U*k-wgCm+bdg|Wv zls`(A_He+7!@p6AXM~t_{;2Ls$2G?`nSXqit(ss`e0(9=hY{s4oa z+o+Me+?TCsg*~ZhJ(6I%K9hey$h@%fnR+$atC+9t?MbKN@|DE75&zHr;a+wWvv)_of~}k`S?=`Aqei4twzuPQSI?%W zMJOGIH|TZ>#y2KEvFdQauA$dV98F9WuZo;L?ahw##Rih*om&dxEiwmQq5~AN{U#ST zb8@P+9Xx%_spLJzzWMfxZ!CZH_sLAqrG64d$f*~dSqrV3Yv|Lf_Y5mok9f`K+h2K& zVFm5zS@Z1|-9Vl~0OqB{XdXt2n zo69$PZxGlg)L3h6C^_{|F!%ZoJXI7g5iU@4hCz#ZUAVCz^m8aofka;Wv-M=0G-tpN z#T5J5#Ji_dbvezmXXXgi-yP2=f=hRBt6*dfs-uSA+ zcU8pr?d6tZk{2kPxrpPa>xu4$+Xqv`Movj{eZSDY5XTKmdWChOQ&CY-D7i9;GFhl{ zP2_;N;|NZO%CW2=C_sIRzJv{Se-nQL-OVN$)PY9m6+2h9&tV_Np6e z#aJc%8b8%6J*ZMEs}R~l&(V@(U~m+}wmy#T?~p9%es_O5plxs#7=2_mNN(jvlR?1} z=X=TK=NTpWH+0BT<842fC&_rDbt59!Yi#S7aEYqI8hgU|>Sk3Qh7wPU=U^DuiTI6p zrrx8OY(cgQ3Y(+7pumg%%c9I}sJ?0rJM2!{|{sByVQK-qPuo+}eM zCOhSgWG`eE(JbH~^;if}tz9J5urF8$3FoM|O1Qi>`N=$BU5T!}&Bh*mX@Y3}yx7rF z&m&kqH`8Bg>b66n+pvc3bc1Gbd8&CvNnu%e+&8|$W7`NIq$#IBzRV$ZiaV+jzU^gE zxI+*+ajf*v%(IFuHf^nLEcH|gI*U19h_j-yGW4{FvohuGyNumr$VbFkagi+E{%ARk zI&Gm8XGQH=hWEAb2Y_)`sBy@^z(BNg?By%gWf^|H9ILaXTJOO-c?rEjjhrXAy4UZm z7x_(hpsUe&X5T~Uz0P24Ckuqqx8TZOr)#Q@DNI^Tv7Sv~X3p@@)h1H8%dH-_P6u_8#Bxu0jY7T_I^2oo!{Ci32gC;nT=GPvj}f3AFayg59?}M zEZR$t>FPSEN^uNq)xFw-5bzwo&AHUPeM7h{r14U>526lCkxu?7a~t*x^y9giy2|zb zC?n%!Oyl5ULxF>hh0Scq&;*$~B?|S}FmAHA$wYtaj2^bN=UeH5*CoBSEtf!A?2u4n zE17*@5jHU`Elm%b2wsg<)MnzQ&KQLY0g2nx_6u?7fsKueejZO5cts(5r&Z6H1wwR_>0Z z&4P5)xahQI8#yha^RE0!_w1Gfzm6G5N62iNeVH)$AuF+_A_FQnIy5sBp5PQAB)L7~o{~Isw(OE!OMn3>o@$++`+I!hHj==jGCUgzS0;`8 zkaLQ0Ry+{UQ9c&E^@Er-+3DS{UayunThgm@Dn&Zpyy}<<5^H%T^|rk&9W4% zFjRDGY)+PuoFGT%mmWC2#Ce(Rv%)V)A{+CMoFJD-ob~{Bf_Cu}sw?WfnfDvDTdMv8 z0^m^tUe>(D)QAxBVNwM$Z>EAWN2FWrfnR04vzxy2UpI~<={HSgq|*(8AFKM8u9OO< z4TNu*x(;|8zRu2*L;9#oKjTK(>c=1GwNsNu??O($Ixq_Gz5DCC>a|`THGNnMteW^Ur0#%ayXKZk z5M)mM5FKsaH!~x8O?s_}zic5Zv%{<9SLuRryz6(ZP{}2&j7fKp8y9<)HiS$UntN~& z{6bFL&qNLeY}!MF*sEugW^J-UIWZU>{@V94V?=oBhqo@`FJ4^be5tVyq_iVBzf&66 zrMDm@?7J~Cj5uUXu)Oc!M2kpyx_FjL0c06~S+MX;+qqt`eBB4=9|Rn7d8949y>pwekUb zk+Hv>UMpMd6E6in*URlVELDfZif@Vh7!vYsJLzbI_Uo<^gwdUkR%;O&IeaR!byMWJ zw*l8w0lkiy$?{|HwpnD0Y9@^%NjVpWi#+dr`)74wvyOE>8sU`YLUA*GgU?;ITe)PV z^vmjsLhwJq3TlDN$M7n&M;R;w&n)ydwFE^U#CM5cR%)&M&X;!u!JA*k^SKo& z`WoiE^PMg;>NJ>HxprLQZ!y9Gws>x7rn}H@5g#ttEFCH8Uk-aeg)b|M;Hh|(63X=v zynAjnmn**UVrZIsDvWuhDdy?LJj-&|x%d{F_+)85li2U|N@AG~C+Hs~epI85&rAuR zEoCb`$=#aC8NbaRqj+tVS@0?{BY@Lt2I(BcTl$X5*2Xuddqp_;&K26Yez^hIVN=Tc z>5ozs5q(MB%A{`{7Nq&(g);^|89ZHR&^9x!j8pO0P~vHK9BxkXT)*L4u=H(SW@f*1 zW!_~sF1X!WO9j_M$ugDGrl|$>6h|p;QJA^u#5W=`-vKf{x1yQ+5fl{9UVJ524S(jT z#_=iB?T*F3QKr1BoUzUOHknzDGQfK>cH(2S;%sSTcRI+$KLS%p{HT8=owFy6wibQ{ z_KQFNOhHcG_1cGF-A3FXxsR($RSF>3CrQ{|O6o`k2w3F_WjbtXo0+_gVYC-a9CR>@ zbHP?lXRm$W8d$ET&l*;yA1a;VI$L1NXXIM?)5LQOANeC#cKYE^$xzRZ_{J9LNO4W+sHIHbVO7;z z9b+EAt7}09su-Wtl6gVNLbEQ-ZFY6nsa3&qa4+<#Z>7Y=@FIGNd_ZB^JQUWv!MachZ(5cHU>A& z4<_VNr0O^-ho*5awmaGc25hEh1bBgx*RB6eFx&dfMR`nzT^9+z)$M32=Z0^l$D9}I z<@sJP2{3<%DY!4YJTQkTwXhvqQNnJKE-BWOMd2*!xctRZr59MPXbAae2KbM4IXo*X&o9nEibvLE}7;VetnkDM&%k@q>*B?VX}K%R)le_$UU zVHASR%nN+f2=~i)6xg3lZY#DEgr*UG<0GUx?Yi@s5v;P~dMf!Du znF($fDeqUC?>;t?dDqU+mEo#@@#kPo`Ia#1xU3X&Iz08d$X=+;;R6n7gsR<-cs#jz zqSAHd*u2zp8N;|++S=l0N^RN8OvI31bUE1<>zblzt^ z?)zRQD`s~v%m5SVy-7jPCp<^J0N>sGTS|dztKD?wDH1b`TOjej@R2x_9y--h#O#+; z=)+-)t;^9wa#*`2)#3XO!A^!H~86VanHk-@CJ_q1=cI=<-p zHY1L7U#DqB;AgfTSA{*mUa&we!6}#sJLNb)g2twfnt%prK@)!m4vUcJX zyYQjP;=9z98*5%0=Y!E7fg4*kgi!2BDuP| zYECZ%a$oywA0=F?9ZJlIZ^n@X2lXf_8aCYc^L$Z8fLR4sweZ!+HQ6s?p}8u*l<>J9oaRI+a_p1bF+BZLM%+yKEkl z8@U!Uuy7h4g;TUE!D*RD#{+VEW9A_YkXz7Gk^M(<%#jcW{`C}7Qsf0~c<8AMf|7Ghm?{RKjJj z5W`A#R;6N)`HwmCJbDDD-(yj8WI2e+gDa*kIg`f4-W-?1vd`SSbPR1D1vE!$SxOLK zSy_L?P!M2mpvB5i*Y}&eZ_?4Z9|}{`cl*Iny2(Uw!6~mL?bJ7)(Rift2gpCUyKezl}?JhSbGoUTQzz_z2 zt%_nZOtH5~bW`@>T1vtfyuoaMJo5meq^VNliqg<}^Kt)T@-FT)*PVG=e+d;2pvGZWiTFEsw5TvYL} z*T+mx5pMl_U~rDNK<-D-Awe_R3>WhyL~tDIy8t3@D|jr%s9)AL=PGcnQ(?9 z4ecg6XxDNkBn@EqSJnR#p(xf`!j<8M6!wPm<~Syn+~$KKCF_=CnaTHqPUJ*pLLBOP(%wV%-LRu`fhwEB#+hf7 zL#c)p$O0S#sZURz$J|NpGw*E*1bvN{b3TP#BFQ@J26lz4tGc=bw6?a+zgoQn)t=;S zvcqU9ynxAAdAVB)fYr(0+5oHT>bed;ae-(MNc7QVv+HIPm5mw#j|Jh{=|=y00%_07 zlK-9oppj9YpCx;n-e3)a(5J*O0(md`nosm2EpT(bQ_&!3GUDw2;}E2&9_{mIW#HQd zYHe?@Om{Tu1qr3K;i3=09_tlUaj?Ur0#i2q0B+*a3^(!X9ffwq zA0K9++Hna&s?H>(oM8hnNK&GtcxTMzFCdiCIPvo3t0Uc*i5`dV!PsDWbD_$qmS3a! zXwDDw=2jBU0m3;9oVD{c@gZA|MUnB?DUswxh&`kY+UvB$lX{T_grS;p>UKa``v+hT zF}jKl1K=P7$a=^Z1#cD3g1QZA8ZANbclZ@vx9J63boT2HzCB*gE!6+lQ*e69aAB%!2Y}(2npuhQJ4gos9{#xevU15mcRH2>>*u&t zwg2>vfR%=Q3ZVZ$Os#2;M+Pe{|({yjT6aCSxe5eE?>C%16A zZI>kN?MlRMxeEZfrk=v@asPPy!i}nmB^75QKm-?N`(kBfJy|W)hOWgoW+rv-Uq4nV z!OfKUH!s8AM0^O(V9Eq=V;pA{aFVMVPvb5K3H5U$rN>O#myng7wp@!nfLcX$KHQ%m z@5KPw-M01azuMgc6y`W?$0Oac`+hfM4tBi$rEP=cfjg>zM#e+6VTcUfaa`%d&E=7J zLFLk3b9(^lf=g3U6o!;9sQWQg+}o6`A(xnE-Wngg)FboBCDWSu8^AwS^T8q3E9yf1 z&$HE_Ch6G9HaERzuC;?yqi+DEw`1()#;nMHt$5M|P8*`Tj}nO7!ztFt^x_jd_ES76 z;npjO3$n7sF$_l<+f7W-uG`qc#L$wxYa_>KU?Y7iG;xTOaFdXY?FEuoP8Tp)XQtoz zfj~cPb^}#@Vj69cc^(FQ7pA4^G2^qL@$- ztOA&oF+RU#XXa|QB9Ra&J3(%XRlE{ZdS@6?Yq#X>o1%1zK*6;C^e;fv6}J$sXun!y z0$NQV&%q8nYq#vogi!OC2QSRb1yoAB5|O_>d+>R-D$=7P@n2270YwNuMgSuf4~T}z z33S>1l%)B?nwlw1h82$oLIhXcZpZsU`QcnQBE9vcs~c@Pf85M}fXe#W$Q{q5fX*%p z)Vi9t3?=V^q-RN3z9iYh-fa?aC!n13Ht+#~*Vo^tKwZ$f)MWTz*4S?cpF<@??WVta z@NnpN>PT_+^YqIMUkjf=>WH|;NHcBx(l97xQVH*(aGRLf)zcx51gsqD*~eVVVt%j% zU4$rN>@G!w8$-wcV=R@fLlU!c!ub;Pgh12k@30l!7JD~m{n_t~kb*qL*xcrdyQ_o+ zx&VujY&g7-DI>+4Vx7y`M-dcQe^Z~WF-S3;_dzeqiBeu4%E&`cZAIs1j+8^CwaYDo zYBsoc;lG;xN=?=-sK61Qz%#xtkieYa>Pb4VPIf*Y+XP6+xX5^;*01u6^SQi5cCl!C z7K!{vp(!Fan##j-hEI}_2lXx}l>F{ufdnIQ4A6v0eZ@zlwZP^IR2rw95$}mZZ1D@d zBTiKOQm=5=^r`F)=)X2?>2JYc`&*hbTy;Dyvb+ZG2w*dXD_+!X7-bhbynILT>aI{3 z^^OPfP9Fd-{*+1J&8z)t!)GepIV*hJ`_ZX#(Ux@Lm`L1WQ-B|1a9zyV;#+hcWhM=y z;n?GV#2}@1z5KfmV6pH80KgjL{s-p;+}*yvrns6|6xc0S?$RH)Iluh*;(ZO(>Cf>V zINX1DJlQ6FDGzt+uD${H&I7v|RfjaQ5)gI&)Xdo6Z%lqe%Pi<$V#*!V$5vLb$=C{p ze1Tocsr?*U!V#EiW4s#8MY=)#3k1%*Y@dY_``6Uy$I|bf6QJLkVt8zp0y*&U5A?cWOT1os|MKS_WPI^O~ zTh0Ja{#f)&9gX3@NNfwwP1W5>Hlr4l>Tp_Ju5RBn@L(d&X3x<-hDC-NxQ42MKTInF z9hb>h1FmYjIsS@8HY;X_vKWxjla(meH0~zPC|2}`aNfyht3>NdaaP%6u*g%GmA;6n zbf9w0g}2OS0#OmDT$4KImPm2dF@L5p&e>la8`T54m6u{o=N=bT|3J7B)t!z?*q@YY zWr!g7@B(T(-(U584iyYFK1SE_tEuI)JL6xM(Ld9F^GC5A$vJFhTFk$&?n}@hbfem1 zc7rDeOu(o>vghFy;?PmT8n*0cyWG{(_X&BMvlpw`Hq@LcE({+#CRVR#<*e{^Ki2AMS%5ThA3Y^8*#*_8L z*iC~9cYv#<84_85;*_1#Ov)2vu2?g$2c{tbgjXUOg#=?MbAkkZU^-Dzqk45Ontsg) zO@hK!|G8#`bSjRA2fZs)wFS=v)Ssq|5CQFV_F^31?gr$S15=f2Fnd=7BL}<^g?|MQ zuwtH&*(YelhzNB;BQs0)yOX^Xut^Q5bL0K;UcD8y_SV8S;wvk@RxkfsisKp}r=@0K zaD$qZ+*>$Y{3+t_=t^E&C@ez0E?!jj7tk4a{wM=g3Uaac)eN#z%t`R1|9J=$&>?(O zthq$!bWBM+EsHTM03cyU{!+3{%=P9m&=0iI`yY%h447jE(`jxqKCW&DKfBY0NVm2p zE>IN$^))!8!Ql!20(#ndf5%gZH`KoTlUN&33A@cP-W*}*@R&rn&H6#<01L7YYQFDK zSy_;Tp5CNdqVsudFLD+WY4mbMP5%tiUEq_>FlZCRyOy)Ekgdyd5AC6hcJu&Cb7Ei6 zBb+`LOz0DgdG{mYUN?lomS}w9KQhKSad`bwLn@j4 z3R%@76nqal#0-0B^5ulLgV97OqAHv?sK7uhd)9-U`ikarq0WH{r0{}fuB(hIgMv-3<=84yB}~fH;(l7 zCv~PGhN51m?&>cYB|u+*JDMoI9s>T<7K9-4Ia*NW>Bmdz0XXgK9!^#<9rTQtd?s5l>?_H;_%-jJ|>(}1{4L&1awfsL02lJ=~S>5Eh0 z4^=q>tob93YT8`>IrN(~zCtDJwhVaTGR?r7I)OJ;FZMQtW7j~D_Agq8OapUf;-|ZO zukHX*J0)qIyT}+)D`{y+{XvlL*8jYt6;QBv+5yT>N025^TC@O*zj!eK=@P{H;gt!g zlWg5Dngr2R_bzJ2ij_H#MoM}b(Sqtqm^<#I=}xZ?Oo2k7k{pIA0{X6TP#zgf%L1um zrd4DLe0-&%-7h{F6c5wfn7*uUj{j-%6V5XKY4dYnIXH=;B88Y(V?htOIe8`Zgx)q4 z4bp0vE7ME?vzgG`Z1k`2H0s}bRMowS(d$hRQR@Pk};`RLwPt9HZBSF zxTdVpJC`c`iFoBr0~=#3sF<#D3ZyiLylfK4cEhR=3>eOw*`;|=tnmPAM}N`f<)!I7DA4IsFn`Y0Fn^f zw``^OWe*F@$b#6Tw=zS1WWasc)&XDo_Pi%e4eCGFd%q2{%-?#@8*Y?Tu%gB?uX`Z6 zktu^Np_L?n%qa{txF?6=G9X*gYJ-Y4&Z;97AUKS4ZCl8>;|!Fg#psiBgVY-R8zC?| zO5-uts|hOy0|LBHyP2tVe-zs1M74Q{L2nP~z|BL;$=m`S5rK^lnkJ(N@7$7^pc5)hL5(j5)*Ek@SxL;qi9zz~eKPc)3s8 z-XjieGUy<0O#tn>CmNz3ezXYO{%+uLGd9+<%Z13sR`~4>k8!R|G3!|t$85i^8C-x8_ zp5e^NJ;!Op33!M0VFoQ)Jld+m97x76aw;$%lLK;!`3~LJh(leQx%@@C8;eAFZYm^94ioiK%+vvIN^fS(RqLWM7r7?hxMz_^e>ozq=yDodP5yAbI&XYzxkFm z#(L%IDa+3Z+WM7R0IXP7zFJ>XmH1rgqd6+9ZR%U`vm~CO=PnA1l2@zU#YNJ zAKJ|5k@`;ws6qE6Kl8N-lpdu2+v1RD!keRnLa`H_e*?oZrhb8K+f9ThAbSKvIcw6g7ljM&Wb0{#?|PPDaoH8aiUhRd7#>q24Pgd z_o@LJ!Pk_9g(Y@^W}z;igXTMK(J0Xiz-@92+cH{j59j0I1_2=#E$nfZZ^q@Uv| zPNiuIVEzI2$;J3l>t=@To*cU6WB4zY{ss6LZ_#Zq$#cXoF8nx{iex!o`J@RJ3Imf_ zskv0eZ-`kEzb9_~S7Wb1x!8^o)X0Aa(N>0tL**^=>0KAOfPg1av*Xz9+WNVG@+c(x z-WK08^$AHYfT2bi#iI5@4zxe%+O}eL?4&PCR;d=9(w4 zi~HtY7}?e~GW17yYrl6J79lxvD z*ad#T=5gQj+yh6WZ$Jwy%BX114Awu#!%SP_)5|^JF8C|)TM_A2d;L11gmYPN@60h2 zx876`zDcHU9((@pvs0a|ztLn(S^dW1N2{D+a|$Q&O%{gOJ=mQA4Tiz(+`0iBq&Z)P zl><5uG~(pFG*Syw@Zqmxw?@wCOX{_WW!<8Kl7O0iY<5a2={ns%=Z@e}p7$W9ZUVPV zq-d7~zGi=I0&0<%Z7UhHR5G>~+E- z3dy|(Zs*OQ)9b{b5=iFXfb%1p7j}2+A`XR+Zb%j1zYkM~rVjyz{9_K32$)auu3iQ| z9RqFY7hvP7KLL57TxBc=&5BV-ivXigCpkQBe;9V4-9yJSD)h6VF&PguRrh->Q{y+5W5;;ekyporDT!!?BgN zz#h_oN2rE93W7G&*U9jF1^h=5OnRCUFqdH2Ev8>$6~1f-N(7j5F(OJm*OE!}D%yL$ z0h(?O{%=2rMrq*M?+v)RuY#gO7Zi&3|2a|f;3L{AR_u#F&$UmM{Wf9_c=yw%VcBfW zsjfmm$dirSV=}vgU~jxX!%z>fD_~55vQjyXI1~n+`X_UWMo$EX8BvO@>$~2d>{%!2 z>QuCn$BwsSQAmM3=ZA}dpv5~Hl>lm(Q7{ifFgXsi^HuyO--USk;t^t&!{%Yo9~$l$ z6^&L~3(?yds^7a8I%qEy;i!bG@))Vdpe8>6o}`~%A;Dfmm8-jku2LX&yU#SmC2_xl zI-XCCn#k%5bM{hvt+`9ac_o;Ed7`?N6u;~f0h1Be32UGzv;G1mlj}G(PXGaeW;N++ zvXJ0y*HDMtTr2l_2TGuEjSDvFw6u`;Q_=jRkqzK72sjlSj4X-*-1a6>I1Va(x9)N1 zv1Y$rUK;KUlW*>*cRki|0v0gxbH}r`aljQ3-;X&7T{%K<--Q2TEr@00 zTws{tCf*ln{BK1g&-8n!2p2M-y7|(R?L**Xk+>hvBqBJ#f*6z_I1#2$*Hd@(5x5;~ z0V<=a%M>_%9?+DyNaD$q1SFSwZ0Pl0zd^P|$RMjKa^AeMTuB@d{&J2`g8jOCi3jRi z;5s4r#HoOZn!}|J_QAT(r9Z#|r%NlN=Z4U5``@CYkjF?A2sM^R1=x+Ly?Z>&ZVy56 zcxvO$XW&uqXd#D4Q~_VnQ?DT5K_M)T5ulnP1-*p9CO?+Hi{)fO=FE8jO3PDV#KWi| z9F|AwMGlRzS<8p*X!}vPJ_xCBSHV3aF`_!b=$V^1`wf0#6}W}e{+%Y({O|9zi-khM z&Kjs{WWHfp)Chh^xb79*_jjobj>WC6_m;SqX<`S{*H{i28((G*>5qJN`B1(yCFMRg zVWBtd!8%`0lfPw{*eAo_9~OT)++p_Iv`d@abnja#qDwA;l7z12XBbR0N>;vi$vi0e_J<%BS)5b1S zir>GY>qP1Ag-A#OKPGo^{@EG{Nu8oI`Og1PfSvyN=jcAz&L6KG!tea?!o~ml@c&uk h|9pew|C30$uOMa3u}J+)EaB{~z=&QIY@v literal 0 HcmV?d00001 diff --git a/doc/manual/source/index.rst b/docs/source/index.rst similarity index 50% rename from doc/manual/source/index.rst rename to docs/source/index.rst index 19cffbc..4f93434 100644 --- a/doc/manual/source/index.rst +++ b/docs/source/index.rst @@ -1,20 +1,25 @@ -.. - Note: in order for the notebooks to render correctly using widgets, - go to jupyter-lab settings and select 'Save Widget State Automatically' +####### +|title| +####### -#################################################### -pyobjcryst documentation -#################################################### +.. |title| replace:: pyobjcryst documentation -pyobjcryst - Python bindings to the ObjCryst++ Object-Oriented -Crystallographic Library +``pyobjcryst`` - Python bindings to the ObjCryst++ Object-Oriented Crystallographic Library -| Software version |release|. +| Software version |release| | Last updated |today|. -================ +=============== +Getting started +=============== + +Welcome to the ``pyobjcryst`` documentation! + +To get started, please visit the :ref:`Getting started ` page. + +======= Authors -================ +======= `pyobjcryst` was written as part of the DANSE_ open-source project by Christopher Farrow, Pavol Juhás, and Simon J.L. Billinge. @@ -33,49 +38,18 @@ For a complete list of contributors, see https://github.com/diffpy/pyobjcryst/graphs/contributors and https://github.com/diffpy/libobjcryst/graphs/contributors. -.. _DANSE: http://danse.us/ +.. _DANSE: https://www.its.caltech.edu/~matsci/btf/DANSE_web_page.html -====================================== +============ Installation -====================================== - -`pyobjcryst` and `libobjcryst` conda packages can be easily installed under -Linux and macOS using channel `conda-forge` or `diffpy` channels, -e.g. :: - - conda install -c conda-forge libobjcryst pyobjcryst - -or :: - - conda install -c diffpy libobjcryst pyobjcryst - -It is recommended to use the `conda-forge` channel which is updated more -frequently than the `diffpy` one, unless you only use `pyobjcryst` through -the DiffPy-CMI tools. - -See the `README `_ -file included with the distribution for more details. - -Complete conda environment with optional GUI and jupyter dependencies -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +============ -The **fastest way to use pyobjcryst** is to first install the -`Mamba-forge `_ distribution (which is -faster than traditional conda), and then you can directly create a new conda environment -named `pyobjcryst` with all useful dependencies (including jupyter-lab, python 3.11..) using :: +See the `README `_ +file included with the distribution. - mamba create -n pyobjcryst python=3.11 pyobjcryst matplotlib py3dmol jupyterlab ipympl multiprocess - -(note: if you do not know `mamba`, it is a command equivalent to `conda` except *much* faster) - -Then activate the environment and launch jupyter-lab using :: - - conda activate pyobjcryst - jupyter-lab - -====================================== +================= Usage & notebooks -====================================== +================= `pyobjcryst` can be used @@ -102,21 +76,26 @@ The **API documentation** can be found in :doc:`api/modules`. You can also read the `documentation of the underlying ObjCryst++ library `_. -====================================== -Table of contents -====================================== +================ +Acknowledgements +================ + +``pyobjcryst`` is built and maintained with `scikit-package `_. +================= +Table of contents +================= .. toctree:: - :titlesonly: + :maxdepth: 2 - license + getting-started + Package API release - api/modules - examples/index + license -======================================================================== +======= Indices -======================================================================== +======= * :ref:`genindex` * :ref:`search` diff --git a/docs/source/license.rst b/docs/source/license.rst new file mode 100644 index 0000000..5e751f7 --- /dev/null +++ b/docs/source/license.rst @@ -0,0 +1,38 @@ +:tocdepth: -1 + +.. index:: license + +License +####### + +OPEN SOURCE LICENSE AGREEMENT +============================= +BSD 3-Clause License + +Copyright (c) 2025, The Trustees of Columbia University in the City of New York. +All Rights Reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +3. Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/docs/source/release.rst b/docs/source/release.rst new file mode 100644 index 0000000..27cd0cc --- /dev/null +++ b/docs/source/release.rst @@ -0,0 +1,5 @@ +:tocdepth: -1 + +.. index:: release notes + +.. include:: ../../CHANGELOG.rst diff --git a/docs/source/snippets/example-table.rst b/docs/source/snippets/example-table.rst new file mode 100644 index 0000000..7c4c11d --- /dev/null +++ b/docs/source/snippets/example-table.rst @@ -0,0 +1,28 @@ +.. list-table:: 5 levels of reusing/sharing code + :widths: 5 15 40 40 + :header-rows: 1 + + * - Level + - Name + - Scope + - How to setup + * - 1 + - ``function`` + - Reuse code in the single file. + - See Level 1 tutorial + * - 2 + - ``module`` + - Reuse code across files. + - See Level 2 tutorial + * - 3 + - ``workspace`` + - Reuse code across project folders. + - ``package create workspace`` + * - 4 + - ``system`` + - Reuse code across any files in the computer. + - ``package create system`` + * - 5 + - ``public`` + - Share code as publicly installable package. + - ``package create public`` diff --git a/examples/QPA-Quantitative phase analysis.ipynb b/examples/QPA-Quantitative phase analysis.ipynb index 1dd4819..40eeff8 100644 --- a/examples/QPA-Quantitative phase analysis.ipynb +++ b/examples/QPA-Quantitative phase analysis.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "5536331c", + "id": "0", "metadata": {}, "source": [ "## Quantitative phase analysis (QPA)\n", @@ -16,8 +16,8 @@ }, { "cell_type": "code", - "execution_count": 1, - "id": "6738497f", + "execution_count": null, + "id": "1", "metadata": {}, "outputs": [], "source": [ @@ -36,12 +36,12 @@ "from pyobjcryst.globaloptim import MonteCarlo\n", "from pyobjcryst.io import xml_cryst_file_save_global\n", "from pyobjcryst.lsq import LSQ\n", - "from pyobjcryst.refinableobj import refpartype_scattdata_scale" + "from pyobjcryst.refinableobj import refpartype_scattdata_scale\n" ] }, { "cell_type": "markdown", - "id": "c3a87c32", + "id": "2", "metadata": {}, "source": [ "### Data and CIF sources" @@ -49,8 +49,8 @@ }, { "cell_type": "code", - "execution_count": 2, - "id": "bc37d7f1", + "execution_count": null, + "id": "3", "metadata": {}, "outputs": [], "source": [ @@ -58,13 +58,13 @@ "# https://www.iucr.org/__data/iucr/powder/QARR/samples.htm\n", "# & Crystal structures from the Crystallography Open Database\n", "# Try samples 1a to 1h\n", - "data_file = \"cpd-1h.prn\"\n", - "cod_phases = [1000032, 9008877, 5000222] # Al2O3, ZnO, CaF2 - needs checking" + "data_file = \"cpd-1a.prn\"\n", + "cod_phases = [1000032, 9008877, 5000222] # Al2O3, ZnO, CaF2 - needs checking\n" ] }, { "cell_type": "markdown", - "id": "284ffc63", + "id": "4", "metadata": {}, "source": [ "### Create Powder pattern" @@ -72,44 +72,10 @@ }, { "cell_type": "code", - "execution_count": 3, - "id": "ab29d515", + "execution_count": null, + "id": "5", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1.5418366591135662\n", - "Imported powder pattern: 7251 points, 2theta= 5.000 -> 150.000, step= 0.020\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "eb5a16017cbd44b8861a27bff409366b", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABfPElEQVR4nO3deXxU5d3//3fIngAjIYYQCYtCAUUUQSFolQoiVOT2py1VbNS7VMUFjIBYSlW0FRS/ClZaF2rFCjTVKt7WJQLaYhFZBKOAFFGRPQQ1ZCEh6/X7g57DTDJZZjKT2V7Px2Meysw1Z65zZTI57/lc5zpRxhgjAAAAAEDEaRfoDgAAAAAAAoNACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAESom0B1A69TV1engwYPq0KGDoqKiAt0dAAAAoNWMMSotLVVGRobataOG5U8EwhB38OBBZWZmBrobAAAAgM/t27dP3bp1C3Q3whqBMMR16NBB0olflo4dOwa4NwAAAEDrlZSUKDMz0z7Whf8QCEOcNU20Y8eOBEIAAACEFU6J8j8m5AIAAABAhCIQAgAAAECEIhACAAAAQITiHEIAAADAR2pra1VdXR3obgS92NhYRUdHB7obEIEQAAAAaDVjjAoKCnT06NFAdyVknHLKKUpPT2fhmAAjEAIAAACtZIXBtLQ0JSUlEXKaYIxReXm5CgsLJUldu3YNcI8iG4EQAAAAaIXa2lo7DHbu3DnQ3QkJiYmJkqTCwkKlpaUxfTSAWFQGAAAAaAXrnMGkpKQA9yS0WOPFOZeBRSAEAAAAfIBpop5hvIIDgRAAAAAAIhSBEIDfvPbaa1qxYkWguwEAALzwr3/9S1FRUaycGuZYVAaA31xzzTWSTqwmBgAAgOBDhRAAAAAAIhSBEAAAAIhQlZWVmjp1qtLS0pSQkKCLLrpImzZtcmnz4Ycf6pxzzlFCQoKGDh2qrVu32o/t2bNHV155pTp16qTk5GSdddZZevvtt9t6N9AKBEIAAAAgQs2cOVOvvvqqXnzxRW3ZskW9e/fW5Zdfru+//95uc8899+j//b//p02bNiktLU3jx4+3LxVxxx13qLKyUh988IG2bt2qRx99VO3btw/U7sALnEMIAAAA+EF5ebn+85//tPnr9uvXr0XXRDx27JiefvppLVmyRGPHjpUkLV68WKtWrdLzzz+v888/X5L0wAMP6LLLLpMkvfjii+rWrZtWrFihCRMmaO/evbrmmmt09tlnS5JOP/10P+0V/IVACAAAAPjBf/7zHw0ePLjNX3fz5s0677zzmm331Vdfqbq6WhdeeKF9X2xsrC644ALt2LHDDoRZWVn24ykpKerbt6927NghSZo6dapuu+02rVy5UqNGjdI111yjgQMH+niP4E8EQgAAAMAP+vXrp82bNwfkdVvCWgW8/gXijTHNXjTeevyXv/ylLr/8cr311ltauXKl5s2bp8cff1xTpkzxoucIBAIhAAAA4AdJSUktqtQFSu/evRUXF6e1a9dq4sSJkqTq6mp9/PHHysnJsdutX79e3bt3lyQVFRXpiy++cAmdmZmZmjx5siZPnqxZs2Zp8eLFBMIQQiAEAAAAIlBycrJuu+023XPPPUpJSVH37t01f/58lZeXa9KkSfr0008lSQ899JA6d+6sLl26aPbs2UpNTdVVV10lScrJydHYsWP1gx/8QEVFRXr//ffVv3//AO4VPEUgBAAAACLUI488orq6OmVnZ6u0tFRDhgzRu+++q06dOrm0ueuuu7Rr1y6dc845euONNxQXFydJqq2t1R133KH9+/erY8eOGjNmjBYsWBCo3YEXoow1eRghqaSkRA6HQ8XFxerYsWOguwO4sM4v4GMGABDOjh8/rt27d6tXr15KSEgIdHdCRlPjxjFu2+E6hAAAAAAQoQiEAAAAABChCIQAAAAAEKEIhAAAAAAQoQiEAAAAABChCIQAAAAAEKEIhAAAAAAQoQiEAAAAABChCIQAAAAAPDZnzhyde+65ge4GWolA6MaBAwf085//XJ07d1ZSUpLOPfdcbd682X7cGKM5c+YoIyNDiYmJGjFihLZv3+6yjcrKSk2ZMkWpqalKTk7W+PHjtX//fpc2RUVFys7OlsPhkMPhUHZ2to4ePdoWuwgAAAAABML6ioqKdOGFFyo2NlbvvPOOPv/8cz3++OM65ZRT7Dbz58/XE088oUWLFmnTpk1KT0/XZZddptLSUrtNTk6OVqxYodzcXK1du1ZlZWUaN26camtr7TYTJ05Ufn6+8vLylJeXp/z8fGVnZ7fl7gIAAACIYATCeh599FFlZmbqhRde0AUXXKCePXtq5MiROuOMMySdqA4uXLhQs2fP1tVXX60BAwboxRdfVHl5uZYvXy5JKi4u1vPPP6/HH39co0aN0qBBg7R06VJt3bpVq1evliTt2LFDeXl5+tOf/qSsrCxlZWVp8eLFevPNN7Vz586A7T8AAAAiR11dnR599FH17t1b8fHx6t69ux5++GFJ0r333qsf/OAHSkpK0umnn6777rtP1dXVTW7vz3/+s8466yzFx8era9euuvPOO9tiN9AKBMJ63njjDQ0ZMkQ//elPlZaWpkGDBmnx4sX247t371ZBQYFGjx5t3xcfH69LLrlE69atkyRt3rxZ1dXVLm0yMjI0YMAAu81HH30kh8OhoUOH2m2GDRsmh8NhtwEAAAD8adasWXr00Ud133336fPPP9fy5cvVpUsXSVKHDh20ZMkSff7553ryySe1ePFiLViwoNFtPf3007rjjjt0yy23aOvWrXrjjTfUu3fvttoVeCkm0B0INl9//bWefvppTZs2Tb/+9a+1ceNGTZ06VfHx8brhhhtUUFAgSfYviqVLly7as2ePJKmgoEBxcXHq1KlTgzbW8wsKCpSWltbg9dPS0uw27lRWVqqystL+d0lJiXc7CgAAgIhWWlqqJ598UosWLdKNN94oSTrjjDN00UUXSZJ+85vf2G179uyp6dOn629/+5tmzpzpdnu/+93vNH36dN111132feeff74f9wC+QCCsp66uTkOGDNHcuXMlSYMGDdL27dv19NNP64YbbrDbRUVFuTzPGNPgvvrqt3HXvrntzJs3Tw8++GCL9gUAAAABVF4u/ec/bf+6/fpJSUnNNtuxY4cqKys1cuRIt4///e9/18KFC/Xll1+qrKxMNTU16tixo9u2hYWFOnjwYKPbQvAiENbTtWtXnXnmmS739e/fX6+++qokKT09XdKJCl/Xrl3tNoWFhXbVMD09XVVVVSoqKnKpEhYWFmr48OF2m8OHDzd4/SNHjjSoPjqbNWuWpk2bZv+7pKREmZmZnu4mAAAA/O0//5EGD2771928WTrvvGabJSYmNvrY+vXrde211+rBBx/U5ZdfLofDodzcXD3++OMebwvBjUBYz4UXXthgUZcvvvhCPXr0kCT16tVL6enpWrVqlQYNGiRJqqqq0po1a/Too49KkgYPHqzY2FitWrVKEyZMkCQdOnRI27Zt0/z58yVJWVlZKi4u1saNG3XBBRdIkjZs2KDi4mI7NLoTHx+v+Ph43+40AAAAfK9fvxPhLBCv2wJ9+vRRYmKi3nvvPf3yl790eezDDz9Ujx49NHv2bPs+6/Qodzp06KCePXvqvffe049+9CPv+o2AIBDWc/fdd2v48OGaO3euJkyYoI0bN+q5557Tc889J+nENM+cnBzNnTtXffr0UZ8+fTR37lwlJSVp4sSJkiSHw6FJkyZp+vTp6ty5s1JSUjRjxgydffbZGjVqlKQTVccxY8bo5ptv1rPPPitJuuWWWzRu3Dj17ds3MDsPAAAA30lKalGlLlASEhJ07733aubMmYqLi9OFF16oI0eOaPv27erdu7f27t2r3NxcnX/++Xrrrbe0YsWKJrc3Z84cTZ48WWlpaRo7dqxKS0v14YcfasqUKW20R/AGgbCe888/XytWrNCsWbP00EMPqVevXlq4cKGuv/56u83MmTNVUVGh22+/XUVFRRo6dKhWrlypDh062G0WLFigmJgYTZgwQRUVFRo5cqSWLFmi6Ohou82yZcs0depUezXS8ePHa9GiRW23swAAAIho9913n2JiYnT//ffr4MGD6tq1qyZPnqxJkybp7rvv1p133qnKykpdccUVuu+++zRnzpxGt3XjjTfq+PHjWrBggWbMmKHU1FT95Cc/abudgVeijDEm0J2A90pKSuRwOFRcXNzoSb5AoFgLJPExAwAIZ8ePH9fu3bvVq1cvJSQkBLo7IaOpceMYt+1wHUIAAAAAiFAEQiDMHDt2TN9//32guwEAAIAQQCAEwsygQYPUuXPnQHcDAAAAIYBACISZXbt2BboLAAAACBEEQgAAAACIUARCAAAAwAdYVdszjFdwIBACAAAArRAbGytJKi8vD3BPQos1Xtb4ITC4MD0AAADQCtHR0TrllFNUWFgoSUpKSrKvxYuGjDEqLy9XYWGhTjnlFEVHRwe6SxGNQAgAAAC0Unp6uiTZoRDNO+WUU+xxQ+AQCAEAAIBWioqKUteuXZWWlqbq6upAdyfoxcbGUhkMEgRCAAAAwEeio6MJOggpLCoDAAAAABGKQAgAAAAAEYpACABuvP3228rNzQ10NwAAAPwqynBFyJBWUlIih8Oh4uJidezYMdDdQRCwlrkOhl/tYOqLp0K57wAAhDqOcdsOFUIAAAAAiFAEQgAAAACIUARCAAAAAIhQBEIAAAAAiFAEQgAAAACIUARCAAAAAIhQBEIAAAAAiFAEQgAAAACIUARCAAAAAIhQBEIAAAAAiFAEQgAAAACIUARCAAAAAIhQBEIAAAAAiFAEQgAAAACIUARCAAAAAIhQBEIAAAAAiFAEQgAAAACIUATCeubMmaOoqCiXW3p6uv24MUZz5sxRRkaGEhMTNWLECG3fvt1lG5WVlZoyZYpSU1OVnJys8ePHa//+/S5tioqKlJ2dLYfDIYfDoezsbB09erQtdhEAAAAAJBEI3TrrrLN06NAh+7Z161b7sfnz5+uJJ57QokWLtGnTJqWnp+uyyy5TaWmp3SYnJ0crVqxQbm6u1q5dq7KyMo0bN061tbV2m4kTJyo/P195eXnKy8tTfn6+srOz23Q/AQAAAES2mEB3IBjFxMS4VAUtxhgtXLhQs2fP1tVXXy1JevHFF9WlSxctX75ct956q4qLi/X888/rpZde0qhRoyRJS5cuVWZmplavXq3LL79cO3bsUF5entavX6+hQ4dKkhYvXqysrCzt3LlTffv2bbudBQAAABCxqBC6sWvXLmVkZKhXr1669tpr9fXXX0uSdu/erYKCAo0ePdpuGx8fr0suuUTr1q2TJG3evFnV1dUubTIyMjRgwAC7zUcffSSHw2GHQUkaNmyYHA6H3aYxlZWVKikpcbkBAAAAgDcIhPUMHTpUf/nLX/Tuu+9q8eLFKigo0PDhw/Xdd9+poKBAktSlSxeX53Tp0sV+rKCgQHFxcerUqVOTbdLS0hq8dlpamt2mMfPmzbPPO3Q4HMrMzPR6XwEAAABENgJhPWPHjtU111yjs88+W6NGjdJbb70l6cTUUEtUVJTLc4wxDe6rr34bd+1bsp1Zs2apuLjYvu3bt6/ZfQIAAAAAdwiEzUhOTtbZZ5+tXbt22ecV1q/iFRYW2lXD9PR0VVVVqaioqMk2hw8fbvBaR44caVB9rC8+Pl4dO3Z0uQEAAACANwiEzaisrNSOHTvUtWtX9erVS+np6Vq1apX9eFVVldasWaPhw4dLkgYPHqzY2FiXNocOHdK2bdvsNllZWSouLtbGjRvtNhs2bFBxcbHdBgAAAAD8jVVG65kxY4auvPJKde/eXYWFhfrd736nkpIS3XjjjYqKilJOTo7mzp2rPn36qE+fPpo7d66SkpI0ceJESZLD4dCkSZM0ffp0de7cWSkpKZoxY4Y9BVWS+vfvrzFjxujmm2/Ws88+K0m65ZZbNG7cOFYYBQAAANBmCIT17N+/X9ddd52+/fZbnXrqqRo2bJjWr1+vHj16SJJmzpypiooK3X777SoqKtLQoUO1cuVKdejQwd7GggULFBMTowkTJqiiokIjR47UkiVLFB0dbbdZtmyZpk6daq9GOn78eC1atKhtdxYAAABARIsyxphAdwLeKykpkcPhUHFxMecTQtLJBYuC4Vc7mPriqVDuOwAAoY5j3LbDOYQAAAAAEKEIhAAAAAAQoQiEAAAAABChCIQAAAAAEKEIhAAAAAAQoQiEAAAAABChCIRAmOJyCQAAAGgOgRAIU8EUCIOpLwAAADiJQAgAAAAAEYpACISpYKrKBVNfAAAAcBKBEAhTwRTCgqkvAAAAOIlACISpYAphwdQXAAAAnEQgBAAAAIAIRSAEwlQwVeWCqS8AAAA4iUAIhKlgCmHB1BcAAACcRCAEwlQwhbBg6gsAAABOIhACAAAAQIQiEAJhKpiqcsHUFwAAAJxEIATCVDCFsGDqCwAAAE4iEAJhihAGAACA5hAIAfgd4RQAACA4EQiBMBVMISyY+gIAAICTCIRAmAqmEBZMfQEAAMBJBEIgTBHCAAAA0BwCIQC/I5wCAAAEJwIhEKaCKYQFU18AAABwEoEQgN8RCAEAAIITgRAIU4QwAAAANIdACISpYAqEwdQXAAAAnEQgBOB3BEIAAIDgRCAEwlQwhbBg6gsAAABOIhA2Y968eYqKilJOTo59nzFGc+bMUUZGhhITEzVixAht377d5XmVlZWaMmWKUlNTlZycrPHjx2v//v0ubYqKipSdnS2HwyGHw6Hs7GwdPXq0DfYKAAAAAAiETdq0aZOee+45DRw40OX++fPn64knntCiRYu0adMmpaen67LLLlNpaandJicnRytWrFBubq7Wrl2rsrIyjRs3TrW1tXabiRMnKj8/X3l5ecrLy1N+fr6ys7PbbP8Q3oKpKhdMfQEAAMBJBMJGlJWV6frrr9fixYvVqVMn+35jjBYuXKjZs2fr6quv1oABA/Tiiy+qvLxcy5cvlyQVFxfr+eef1+OPP65Ro0Zp0KBBWrp0qbZu3arVq1dLknbs2KG8vDz96U9/UlZWlrKysrR48WK9+eab2rlzZ0D2GeElmEJYMPUFAAAAJxEIG3HHHXfoiiuu0KhRo1zu3717twoKCjR69Gj7vvj4eF1yySVat26dJGnz5s2qrq52aZORkaEBAwbYbT766CM5HA4NHTrUbjNs2DA5HA67DRAuCIQAAADBiUDoRm5urrZs2aJ58+Y1eKygoECS1KVLF5f7u3TpYj9WUFCguLg4l8qiuzZpaWkNtp+Wlma3caeyslIlJSUuN8Adb0LYoUOHNGnSJNXU1PihRwAAAAg2BMJ69u3bp7vuuktLly5VQkJCo+2ioqJc/m2MaXBfffXbuGvf3HbmzZtnL0LjcDiUmZnZ5GsicnkTCB966CH9+c9/1meffRbwvgAAAMD/CIT1bN68WYWFhRo8eLBiYmIUExOjNWvW6Pe//71iYmLsymD9Kl5hYaH9WHp6uqqqqlRUVNRkm8OHDzd4/SNHjjSoPjqbNWuWiouL7du+fftatb+As3btTnwk+DrAEQgBAACCE4GwnpEjR2rr1q3Kz8+3b0OGDNH111+v/Px8nX766UpPT9eqVavs51RVVWnNmjUaPny4JGnw4MGKjY11aXPo0CFt27bNbpOVlaXi4mJt3LjRbrNhwwYVFxfbbdyJj49Xx44dXW6AO96EMCsQ1tXVBbwvAAAA8L+YQHcg2HTo0EEDBgxwuS85OVmdO3e278/JydHcuXPVp08f9enTR3PnzlVSUpImTpwoSXI4HJo0aZKmT5+uzp07KyUlRTNmzNDZZ59tL1LTv39/jRkzRjfffLOeffZZSdItt9yicePGqW/fvm24x8BJ1nRlAhwAAEBkIBB6YebMmaqoqNDtt9+uoqIiDR06VCtXrlSHDh3sNgsWLFBMTIwmTJigiooKjRw5UkuWLFF0dLTdZtmyZZo6daq9Gun48eO1aNGiNt8fhCdvQp0VCKkQAgAARIYow5FaSCspKZHD4VBxcTHTRyHpZKg7ePCgunbt6tFz7777bi1cuFDr1q1TVlaWz/py4MABZWRktHp7bYlqKQAAgcMxbtvhHEIANn+FIEIVAABAcCIQAmEqmKaMAgAAIDgRCAHYuOxEQ6HcdwAAgOYQCIEw1ZoKIYHwpFDuOwAAQHMIhECYIhACAACgOQRCADZ/XZg+lBFmAQBAOCMQAmGKCqFvhHLfAQAAmkMgBGAjEDYUyn0HAABoDoEQCFNUCH0jlPsOAADQHAIhEKa8CTKcQ9gQgRAAAIQzAiEAGxXChkK57wAAAM0hEAJhiimjvhHKfQcAAGgOgRAIU8E0ZTSUQ1Uo9x0AAKA5BEIANn9VCEMZYwEAAMIZgRAIU60JMlYw9BVCFQAAQHAiEAJogHMITwrlvgMAADSHQAiEqdYsKuNroRyqQrnvAAAAzSEQAmGKIOMbjCMAAAhnBEIAfhfKoSqU+w4AANAcAiEQploTZDiH8KRQ7jsAAEBzCIQAGiAQnhTKfQcAAGgOgRAIU8FUIQxljAUAAAhnBEIgTLVmldG6urqA9yVYhHLfAQAAmkMgBNAAU0ZPCuW+AwAANIdACIQppoz6BmMBAADCGYEQCFPBFAgJVQAAAMGJQAigAQLhSaHcdwAAgOYQCIEwRYXQN2prawPdBQAAAL8hEAKw+WuV0VBWXV0d6C4AAAD4DYEQCFNUCH2DQAgAAMIZgRAIU625DiGB8KSqqqpAdwEAAMBvCIQAGiAQnkSFEAAAhDMCYT1PP/20Bg4cqI4dO6pjx47KysrSO++8Yz9ujNGcOXOUkZGhxMREjRgxQtu3b3fZRmVlpaZMmaLU1FQlJydr/Pjx2r9/v0uboqIiZWdny+FwyOFwKDs7W0ePHm2LXUSECKYpo6GMsQAAAOGMQFhPt27d9Mgjj+jjjz/Wxx9/rEsvvVT/8z//Y4e++fPn64knntCiRYu0adMmpaen67LLLlNpaam9jZycHK1YsUK5ublau3atysrKNG7cOJfVCidOnKj8/Hzl5eUpLy9P+fn5ys7ObvP9BdyhQngSC+wAAIBwFhPoDgSbK6+80uXfDz/8sJ5++mmtX79eZ555phYuXKjZs2fr6quvliS9+OKL6tKli5YvX65bb71VxcXFev755/XSSy9p1KhRkqSlS5cqMzNTq1ev1uWXX64dO3YoLy9P69ev19ChQyVJixcvVlZWlnbu3Km+ffu27U4jLLXmHEJfh6BQDoSh3HcAAIDmUCFsQm1trXJzc3Xs2DFlZWVp9+7dKigo0OjRo+028fHxuuSSS7Ru3TpJ0ubNm1VdXe3SJiMjQwMGDLDbfPTRR3I4HHYYlKRhw4bJ4XDYbRpTWVmpkpISlxvgTjBNGQ3lUEWFEAAAhDMCoRtbt25V+/btFR8fr8mTJ2vFihU688wzVVBQIEnq0qWLS/suXbrYjxUUFCguLk6dOnVqsk1aWlqD101LS7PbNGbevHn2eYcOh0OZmZle7yfQmFAOcL7GWAAAgHBGIHSjb9++ys/P1/r163Xbbbfpxhtv1Oeff24/bk2rsxhjGtxXX/027tq3ZDuzZs1ScXGxfdu3b19LdgkRiAqhb4Ry3wEAAJpDIHQjLi5OvXv31pAhQzRv3jydc845evLJJ5Weni5JDap4hYWFdtUwPT1dVVVVKioqarLN4cOHG7zukSNHGlQf64uPj7dXQLVugK8RCE9iyigAAAhnBMIWMMaosrJSvXr1Unp6ulatWmU/VlVVpTVr1mj48OGSpMGDBys2NtalzaFDh7Rt2za7TVZWloqLi7Vx40a7zYYNG1RcXGy3AVor0BVC522EciAM5b4DAAA0h1VG6/n1r3+tsWPHKjMzU6WlpcrNzdW//vUv5eXlKSoqSjk5OZo7d6769OmjPn36aO7cuUpKStLEiRMlSQ6HQ5MmTdL06dPVuXNnpaSkaMaMGTr77LPtVUf79++vMWPG6Oabb9azzz4rSbrllls0btw4VhiFz3gTZKznUBU7ibEAAADhjEBYz+HDh5Wdna1Dhw7J4XBo4MCBysvL02WXXSZJmjlzpioqKnT77berqKhIQ4cO1cqVK9WhQwd7GwsWLFBMTIwmTJigiooKjRw5UkuWLFF0dLTdZtmyZZo6daq9Gun48eO1aNGitt1ZoB4rEFIhPCmU+w4AANAcAmE9zz//fJOPR0VFac6cOZozZ06jbRISEvTUU0/pqaeearRNSkqKli5d6m03gWa1pkLY0uceP35cxhglJib6vC/BggohAAAIZ5xDCISptjiHsHfv3kpKSmp2G6EcCEO57wAAAM0hEAKweVohPHDggD+7ExSoEAIAgHBGIATCVFtMGW3p64dylS2U+w4AANAcAiEAm79WGQ3lUBXKfQcAAGgOgRAIU1yH0DeYMgoAAMIZgRAIU4GeMhouGAsAABDOCIQAbJxD2BAVQgAAEM4IhECYCqYKYSgHwlDuOwAAQHMIhABsVAgbokIIAADCGYEQCFOtCWGRHoLCJcwCAAA0h0AIhKlATxkNl1AV6eEYAACENwIhABvnEJ4QLmEWAACgOQRCIExRIfSNUO47AABAcwiEABqI9BDkvP9MGQUAAOGMQAiEKSqE3gvlvgMAAHiCQAiEqUAHwtb2JVhQIQQAAOGMQAjAZgU3X4SgUK6yhXLfAQAAPEEgBMJUa4IMIegkKoQAACCcEQiBMBXoKaOhXGUL5b4DAAB4gkAIwMY5hA1RIQQAAOGMQAiEKSqE3gvlvgMAAHiCQAjA5q8KYShjLAAAQDgjEAJhqjVBhlVGQ7fvAAAAniAQAmGKKaPeC+W+AwAAeIJACMBGIGwolPsOAADQHAIhEKaCqUIYapz7ziqjAAAgnBEIATRAhfCkUO47AABAcwiEQJgKpgphqIWqUO47AACAJwiEQJhqTSD09TTJUA5Vodx3AACA5hAIAdioEJ4Qyn0HAADwBIEQCFNMGfVeKPX9wIED2rNnT6C7AQAAQhSBsJ558+bp/PPPV4cOHZSWlqarrrpKO3fudGljjNGcOXOUkZGhxMREjRgxQtu3b3dpU1lZqSlTpig1NVXJyckaP3689u/f79KmqKhI2dnZcjgccjgcys7O1tGjR/29i4gQrQkykR4InQV737t166aePXsGuhsAACBEEQjrWbNmje644w6tX79eq1atUk1NjUaPHq1jx47ZbebPn68nnnhCixYt0qZNm5Senq7LLrtMpaWldpucnBytWLFCubm5Wrt2rcrKyjRu3DjV1tbabSZOnKj8/Hzl5eUpLy9P+fn5ys7ObtP9BZxRITyBy04AAIBIERPoDgSbvLw8l3+/8MILSktL0+bNm3XxxRfLGKOFCxdq9uzZuvrqqyVJL774orp06aLly5fr1ltvVXFxsZ5//nm99NJLGjVqlCRp6dKlyszM1OrVq3X55Zdrx44dysvL0/r16zV06FBJ0uLFi5WVlaWdO3eqb9++bbvjCDtMGfWNUO47AABAc6gQNqO4uFiSlJKSIknavXu3CgoKNHr0aLtNfHy8LrnkEq1bt06StHnzZlVXV7u0ycjI0IABA+w2H330kRwOhx0GJWnYsGFyOBx2G6CtebvKqLvQFMqBMJT7DgAA4AkqhE0wxmjatGm66KKLNGDAAElSQUGBJKlLly4ubbt06WIv7FBQUKC4uDh16tSpQRvr+QUFBUpLS2vwmmlpaXYbdyorK1VZWWn/u6SkxIs9QyRoy3MI6+rqFB0d3eg2QjlUhXLfAQAAmkOFsAl33nmnPvvsM/31r39t8FhUVJTLv40xDe6rr34bd+2b2868efPsRWgcDocyMzOb2w1EqLacMkqFEAAAIDQRCBsxZcoUvfHGG/rnP/+pbt262fenp6dLUoMqXmFhoV01TE9PV1VVlYqKippsc/jw4Qave+TIkQbVR2ezZs1ScXGxfdu3b593O4iw1Nrw4m0gdDfFNFxCVSj3HQAAoDkEwnqMMbrzzjv12muv6f3331evXr1cHu/Vq5fS09O1atUq+76qqiqtWbNGw4cPlyQNHjxYsbGxLm0OHTqkbdu22W2ysrJUXFysjRs32m02bNig4uJiu4078fHx6tixo8sNsLQ2hBEITwjlvgMAAHiCcwjrueOOO7R8+XL93//9nzp06GBXAh0OhxITExUVFaWcnBzNnTtXffr0UZ8+fTR37lwlJSVp4sSJdttJkyZp+vTp6ty5s1JSUjRjxgydffbZ9qqj/fv315gxY3TzzTfr2WeflSTdcsstGjduHCuMwmu+Ci9MGQ3dvgMAAHiCQFjP008/LUkaMWKEy/0vvPCCbrrpJknSzJkzVVFRodtvv11FRUUaOnSoVq5cqQ4dOtjtFyxYoJiYGE2YMEEVFRUaOXKklixZ4rLwxrJlyzR16lR7NdLx48dr0aJF/t1BhDVfVQg9XWU03CqEzrgOIQAACGcEwnpacuAaFRWlOXPmaM6cOY22SUhI0FNPPaWnnnqq0TYpKSlaunSpN90E3ArUlNHm2odaIAyXMAsAANAcziEEwkiwLioTysJlPwAAANwhEAJhJJgqhKFcZQvlvgMAAHiCQAiggUhfZdRZKPfdH44fPx7oLgAAAB8iEAJhhAqhb4Ry3/3p73//uxITE3Xo0KFAdwUAAPgIgRAII6wy6huh3Hd/+uc//ylJBEIAAMIIgRAII4FaVCbcKoTOuOwEAAAIZwRCIIz4KoRF+jmEodx3f4qKigp0FwAAgI8RCIEwEqhzCAmEbeeNN97QwIEDA90NAAAQJrgwPRBGmDLqG8Hc9xkzZmjXrl2B7gYAAAgTVAiBMEKF0DeCue/t2vGxDQAAfIcjCyCM+KpC6OlCKsYYvfbaa7rpppvc9iUQoaq2tlbV1dVePTfQfW+KFQgDudhNsI0JAADwHoEQCCOBXFTmmmuu0YsvvujzvnjriiuuUFxcnFfPdQ5bwRZ+rEBYW1vb5q/tz0Vl3nzzTVVWVvpt+wAAwD0CIRBGuDD9Se+++67Xzw1035tiBcKampoA98R39u3bpyuvvFL33XdfoLsCAEDEIRACYaS14cWqjPniHEJnwRaqmuPc32C7DqEVCL2dDhuMrDHeu3dvgHsCAEDkIRACYSSQFcLo6Gif9iWQgrnvwVAh9PWYxMbGShJTRgEACAACIRBGAnXZibq6ugarXwZzqGpOKJxDGIhAaJ1D6OuqqbeLGQEAgNYjEAJhpLUhrDVTRpuqEIYa575/9dVXuvDCC1VRURHAHp0UDBVCXy9oQxAEACBwuDA9EEZ8NWXUm8tOWIHQGKOoqKiQrhA69/fll1+WJG3btk3nn39+oLpkC4ZA6OsARyAEACBwqBACYSSQU0atQGgFlXAJhJZgCS3NLSqTl5enzz//3K99oEIIAED4oEIIhJFATRl1rhBWV1crNjaWQOgn1nl8jYWysWPHSvLPmPvrHEJrX0LtfQIAQDigQgiEkUCtMuq8qEw4VAjdBZ5gCYSWQFyY3l+vHWxjCwBAJCEQAmEkUFNGrfMGJffVnlALhKFcIWwL/jqH8B//+AfXIgQAoI0RCIEwEshVRgmEbSMYAqE/K4S33HKLT7cNAACaRiAEwoivKoTerDJqTRklEPpXIAOhv84hdN5e/etZAgAA/+IvLxBG2vIcQuc2wVwh9Ca8BHMgtITTlFHnfSEQAgDQtvjLC4SRtpwyGiqB0JvgFMyLyoT7lFECIQAAbYu/vEAYactFZeoHvqaCSqgFwmCuEAZDIPTnlFFr/wAAQNsgEAJhigrhCdZlMDzhrr+BDGDOGguEbTnGVAgBAAgf/OUFwkhrKzeeVAidXyuYLzvhq0BYXV3ti+74TP1Q1haBtS0WlaFCCABA2yIQAmGkfkjzlCerjIZKhdBX5xAGWyCs38e2nNLq6/DpvD0CIQAAbYtACIQR5wNrf08Zba5C2Npw6iutqRA6T1/0Zjv+0NiU0bYMhFQIAQAIHwRCIIy05ZTR5iqEwRIIW7OoTHR0tH1fsFQIGwuEbXmOoz/PISQQAgDQtgiEbnzwwQe68sorlZGRoaioKL3++usujxtjNGfOHGVkZCgxMVEjRozQ9u3bXdpUVlZqypQpSk1NVXJyssaPH6/9+/e7tCkqKlJ2drYcDoccDoeys7N19OhRP+8dwpmvpoz6ukIYSOFWIbTUD2UffPCB31+TcwgBAAg/BEI3jh07pnPOOUeLFi1y+/j8+fP1xBNPaNGiRdq0aZPS09N12WWXqbS01G6Tk5OjFStWKDc3V2vXrlVZWZnGjRvnchA3ceJE5efnKy8vT3l5ecrPz1d2drbf9w/hq7WVm9asMmqFp2CrEPoqEAZ7hfCtt97y+2tb40KFEACA8BET6A4Eo7Fjx2rs2LFuHzPGaOHChZo9e7auvvpqSdKLL76oLl26aPny5br11ltVXFys559/Xi+99JJGjRolSVq6dKkyMzO1evVqXX755dqxY4fy8vK0fv16DR06VJK0ePFiZWVlaefOnerbt2/b7CyC3s6dO3X77bcrLy9PsbGxTbZtywphOE8ZtfoeSoGwrKzM76/tyaJDnmBRGQAAAocKoYd2796tgoICjR492r4vPj5el1xyidatWydJ2rx5s6qrq13aZGRkaMCAAXabjz76SA6Hww6DkjRs2DA5HA67jTuVlZUqKSlxuSG8/e53v9P777+vPXv2NNu2tYvKeHLA39iUUasiFyyBsDUVQudzCIN9ymhbTDe3fqZUCAEACB8EQg8VFBRIkrp06eJyf5cuXezHCgoKFBcXp06dOjXZJi0trcH209LS7DbuzJs3zz7n0OFwKDMzs1X7g+BnHSB7el6fN3x5YfpgCYStWVQm2CuEzuPaFhVC62fKOYQAAIQPAqGX6h+0OFdIGlO/jbv2zW1n1qxZKi4utm/79u3zsOcIVd4s9OLta/hyUZmoqCgqhD7kPM7OP4OzzjrL769tvd5rr73ml+1KriEcAAD4H395PZSeni5JDap4hYWFdtUwPT1dVVVVKioqarLN4cOHG2z/yJEjDaqPzuLj49WxY0eXG8KbJxUTX00Z9WWFMDo6OmQDYTBWCC31A2G3bt3a5DUl6b333vPpdqkQAgAQOARCD/Xq1Uvp6elatWqVfV9VVZXWrFmj4cOHS5IGDx6s2NhYlzaHDh3Stm3b7DZZWVkqLi7Wxo0b7TYbNmxQcXGx3QaQPFvqvy2njLa0QhjoQNiaRWWCuUJYXFzsMq5t0T9/XUokWC5RAgBAJGKVUTfKysr05Zdf2v/evXu38vPzlZKSou7duysnJ0dz585Vnz591KdPH82dO1dJSUmaOHGiJMnhcGjSpEmaPn26OnfurJSUFM2YMUNnn322vepo//79NWbMGN1888169tlnJUm33HKLxo0bxwqjcGEFgJZUqKgQNhSuFcKpU6fq5ptvtv8dyoGQVUYBAAgcAqEbH3/8sX70ox/Z/542bZok6cYbb9SSJUs0c+ZMVVRU6Pbbb1dRUZGGDh2qlStXqkOHDvZzFixYoJiYGE2YMEEVFRUaOXKklixZ4lJxWLZsmaZOnWqvRjp+/PhGr30ItCSQ+KpC2JLtOIe8cKsQBnMgdP7ZOP9/KAdCpowCABA4BEI3RowY0eQBbFRUlObMmaM5c+Y02iYhIUFPPfWUnnrqqUbbpKSkaOnSpa3pKiKIp4HQm4N3bxeVCeYKoTdBzl0gDJYpo439jH19KQh3/PUaBEIAAAKHcwiBIOftlFF/B8L6r2WFp3AIhNY+xMSc/M4sWCqEVt+6d+/eoELo73FuiwphWwTbSLBv3z5FRUUpPz8/0F0BAAQ5AiEQIlpSoWrtgbUni8rUP18xWCuElZWVHj/H2ofY2Fj7vmCrEPbp06fBojL+XpylLc4hJBD6xpYtWyRJ77zzToB7AgAIdgRCIES05EC5LaeM1q8QhmMgDMYKoTWuVVVVDSqEzqH1m2++8dtr+3O7zu+rJUuWqLCw0C+vGe48+V0GAEQ2AiEQ5KwDupZUqFpbabFew5sKYf37Ax0IrQWcwm3KqDWu9a9DWFtb6/Ieee6553z+2v6q3rl731ZXV+t///d/9Ytf/MIvrwkAAE4gEAJBzgpTbVEhtEKPp9c8dFfhCXQgrF+x9IQVrIIxEFr7U3+KaE1Njd+nXrZFhdAae6uyW1ZW5pfXDHfW+59FegAAzSEQAiGiJQf4VAhPsg6EvTn3z905hMESCK1xdRcInfd10KBBfnttf27XGvvjx49LksuletByTBUFALQUgRAIcp5MGbUOrGNiYlpVIfTmHELnqYzOfQn0Ab03wbgtpoyWlZXplVde8fh5zuNcf1EZfy/I4vye8mXgcPdFRkFBgSTJ4XD47HUAAEBDBEIgRHgyZTQ2NrbNK4TWc+sHwqioqIBUK5wraZ5qi0A4efJkTZgwQcXFxV71rbkKoT8qmq2tQJeVlWnhwoUN3g/uKoTWlNHExERvuoogsnbtWmVnZwe6GwCARhAIgSDnSbBxnuroTYXQ20BYV1dn/9v5v+3atWs0EH7xxRf2tEB/qN8fb57rzymjBw8elCSPx8D5/VA/oPk7EDq/p7zZ/ty5c3X33Xfbl0SwOO9HTU2NHnjgAW3cuNH7jiJoLpMiSRMnTtTSpUsD3Q0AQCMIhECQqz8VsyVtY2JivApC3k4ZdVchrK6uVmxsrNtAWFtbq759+2ratGke97El6k+l9JT1HH8GQuscR08vi+H8frDGul27dg0CYjAGQmtfKyoqGmw3MTFR119/vWpra/XQQw/p9ttvb11nI1xVVVWgu2Cz3ivBFFIBACcRCIEg50mlyxcVwpaef9hchbC6ulpxcXFuA2FJSYkk6ZNPPvG4jy3R2HXtWso5aFl8HbCsbXsaCJ2njFoH2PHx8W02ZdSaRuvLg/va2lpFR0crOjpax44dc3mMxVG8E0yB0OLPGQEAAO8RCIEg5xwAmuOLcwhjY2O9mjJav0JYVVWl2NhYtWvXrkHAtA5W/XWw7+4yBp6wAorzkv3BEgjdTRm1AqG/K4S1tbVKSEjwevuN/bzr6urUrl07RUdHq7y8vFV9xAmeXEKmrdSvDMM/ysvLG3yxAgBNIRACQa5+0GqKcyD0dpXRuLg4r6aMuqsQxsbGKjY2tkF4sAJhW17o3NPnx8TEtEkg9PYcQucpo/Hx8W1yDqFzIPQmaFt9r9+3uro6RUdHKyYmhkDoI9bvWDBUCq3PEwJh2zjttNOUmpoa6G4ACCEEQiDIeXL+jfPqmJ4Gobq6OhljWlwhrH9h+samjDYVCNvyQueeqKmpsQNKa7bTFF9MGa1fIfR3IKypqWlVhdD6udQPKdYCRNHR0frmm29a3c/WmDlzpk499dSA9sEXrDEOlutnSkwZbStHjx5lrAF4JKb5JgACyZNqWnV1tR1kPA1b1oGjN1NGm1pUpqlA2BZTRlszdTYuLs7lPl9qzZTR6OjoBhXCtp4y2poKYf1AaE0Z/fDDD1vfyVZ67LHHAt0Fn7B+/sFQIbRQIQSA4ESFEAhyngZC67w9T4OQdYDvzZRRdxVC6xxCd4HQ+re/poy2tkJo9d05EAbTKqNxcXEuAdD6t/O++iMI1NTU2NcFbM05hPX32Tpn8/vvv299JyHp5M+/uffXJ598ooyMDHuhJ3+iagUAwYlACAQ568CuJcGmqqpKcXFxio6O9rhC2JpA2FiFMFBTRlt7DqE1jsFYIaytrW0QCK1zCIO9Quj8ZYEzq0LofM4mWsca40WLFunjjz9utN2f/vQnHTp0SDt37vR7n6gQAkBwIhACQa6tKoRWgIiLi/PZZSeamzIarOcQOodZ5/t8qTVTRuPi4txOGbX2NSYmJijPIdy1a5ck94EwOjra7XO47IR3nMd4+vTpjbazzpNti3MNCYQAEJwIhECQ86RCaIWw1lQIfXUOYVNTRoP9HMK2qBBaAeh3v/udR89zN2W0/jmEiYmJQXnZiffff19S04vK1Ld27Vovegrnn09Tv2eNTeP1B6aM+p+/puH7y6ZNm/Tb3/420N0AIh6BEAhybX0OoTeB0DmMeDJltC0uOxGs5xBatm3b5lF7a8poUxXChIQEv1cIWxOQ6wfCqqoqxcfHa9++fQ3a7t+/Xy+//LLXr+ULDzzwQJtMqfQl5zFuye+zrwJhdXW11q9f7/YxKoT+V1ZWZv9/KITDyy+/XPfffz8zAYAAIxACQc6bQOhNhdAKENb5aM2x2kRHR7scTLZkyqi/L5rtfDDszUGRFWb9WSG0xuCUU07x6HlWhVA6uZ/1F5XxZ4UwPj5ekucB2fmAz10gjIuL0/333+/2uYFYKdN63xhj9NBDD+m8885r8z60hvPvZFsGwt/+9rfKyspSQUFBg8eC8RqTN954o+bMmRPobviM8+JAbVH1ba3S0lJJwfneACIJgRAIcp4uKtPaCmGHDh1adCDhPD3R+Y95MJxD6C6geqJ+hTAuLs7nAcva3qWXXurR89wFwvqLyiQkJPhtlVFvK4TO/an//rIC4QMPPOD2udbKpm2p/oXdQ+2A1bka15ZTRr/88ktJrpUq671+8803a9myZT55HV/5y1/+ogcffDDQ3XDrzDPP1PLlyz16jnMgDIWKrPU50har3AJoHIEQCHKeVgitVUa9XVSmffv2LTqQcA6Ex44da7Ad6yA/EOcQOh/celPZO378uBISEuzg1aFDB59XCK0x8PS8KmvKqPNzExIS2qxC6O05hM4/k8YqhI0JxLlnhw4dkhQaVRZ3nANsWwZC6zxQ588E58+TlStXerS9devW6dtvv/VJ30LJ999/rx07duj666/36HlWxU3yz+9Nbm6urrnmGp9v17nfANoegRAIct6eQ+jtojLt27dv0YFEeXm52rVrpw4dOqioqKhBf50rhPXDlL/PIbQObhMTE716jYqKCiUmJtohpX379qqpqfFpgLUClaff4jtXCK1v1Tt27OhyHqe/ziGsrq72ukLo/J6qP0WvuUAYiErHGWec0eC1Q+GcLItzIGxsBVfpZJXeV+HBWj23uLhY0onA6bztpKQkj7Z34YUXauzYsT7pWygpLCyUdOLLKE84V9q6devm80u5XHfddXrttdd8uk0p8BXCgwcPasOGDU22qampUU5Ojv2zAcIJgRAIct6uMtqaKaO1tbXNvl5ZWZnat2+v+Ph4lwuKuwuE7ipCzv/1NSsQJicne1XZq6ioUEJCgn3wak1Z9GUg8CYQWgfX7du3lyQdPXpU0slA6O8KYXl5uX3OY2sqhNa2LMFYIbQ4H6ha50+GAufxtUKaO9bv4C233NLk9Qpbynota9yqqqpcvkhxvpRLc6znbd++vdX98sYrr7yiv/3tbwF5bevnl5qa6tHzdu/e7Y/u+F2gA+GkSZM0bNiwJtu8+uqrevLJJ/X444+3Ua+AtkMgBIKct4vKeDtl1PpGurmDcHeBsH379i5TIePj4+VwOOxqQf3Xcp5W5kvOgbA1FUJrLP7zn/9I8u1Ko9a+exIIKysrVVtbq44dO0o6UYWJi4tTUlKSamtr7f1OSkryeSA0xujYsWN2IPQ0aFt9+8UvfiHJdYqYdc6mOw6HI2gCYShVCCsqKpSVlSWp6SmjzmPr6SVQ3LGqkda41f/ZNVWtrM/6HfHX1PLmfkcmTJiga6+91mevV1dX1+LPPKudp+eu/uY3v/G4X97w9Zd5JSUl2r59e8BWG83Ly5PU9N+krVu3SpL+7//+r036BLQlAiEQxJwXCmnJAbgVwjp06ODxORnOU0al5oOKFQjj4uLsQJiSkmIfKHz33XdKSUlRampqg3OArDalpaV+WVjGOghtbYXQqlqlp6dL8u1Ko9aiG56EHetgpVOnTpJOnGfUvn17xcTEqKamRqWlpYqOjlbHjh19HggrKipkjPG6Qmi9n3r06CHJtWJYXFwsh8MhSTrnnHNcnpeQkNBmU0bdHYzWr1yEyvL45eXluuCCC3TLLbc0OX7O7z9PwlpjrN/nzz//XJWVlQ1e25NzFZ2nnbaWMUY333yzy+VD2vq8tdmzZ6t9+/Yt2h9vA+FPfvKTBvf54z3ri7Fz/jx9//33NWDAAE2YMKHV2/WG9YXUwYMHG21jfe42V0n0B67hCX8jEKJVrINE+IfzQXdLDsC/++47de7cWZ06dXI5r68lnKeMSt5VCFNSUux+Wn1JTU1VeXl5gymCFn+s3uhcKfOmqmMFlB//+Me6/vrr9fDDD7ts1xesQOhJ2LEOEtPS0iSdOM+offv2io6OVk1Njb7//nt17tzZ7TRdX/XX20BoHUCeeuqpklzH8ttvv7Wnxv3jH//Q9u3btXz5cj355JNKTExss0DovDKmxQqEkydPdvl3sCsvL1dSUlKDVYDrcx5bTwJhdXW1XTFxZr1HH374YU2ePLnB54gnswI8CYSHDx9W586d7VVO6/v222/1pz/9SXfeead9n3OoGTRoUKOL1/hqJsMLL7wgSQ1mTLhjfaaWlpYqKiqqxdN5jx49aleGLf6YibFy5UqdccYZrfrddB7/Xbt2STpZqZOkBQsW6KWXXvK+kx6wAuHhw4cbbWP9TNr6nObNmzcrMTFRb7/9dpu+LiILgRBee+mll5SUlKThw4drzZo1mj9/fsDO9QhXngan7777TqmpqUpJSXE5r68lrIMUqxrW3DfAViA8evSo/a2qVSGsq6vTkSNH1LlzZzsAHDlyxO1++eObT+cpo95Uyr799ludeuqpSk5O1tKlS9W9e3dJvq0olJWV6dRTT/Xo4MIKLFYgLCgoUHJysh0ACwsLdeqpp7bqMhlHjhxRVFSUNm7c6HK/dVBpVfI8rZZaQcoKfo0FwszMTJ155pm67rrrNHXqVCUnJ3t1QPvCCy/o008/9eg53333ncu/6+rq7N+LcePGSZLHX7QESnl5uRITE5WUlNTke8w54DZ1rmF9Dz/8sAYOHNggRDn/jqxZs6bBa3vyBZA19nV1dfaqr4354IMP9P333+vVV191+7j1/KioKPuzyLmv+fn56tevn9vn+moRkZiYGJe+NMX581KSLr744ha9Rm5urj766COX+/yxCMpdd92lr7/+utEA3hLO7739+/dLksaMGWPfN23aNN1www3ed9ID1uI7zuP+3XffKSoqSrm5uTLGaO7cuZJO/Pzq6ur0hz/8oU3CofXzvOKKK/z+WohcBEJ47c9//rMkaf369RoxYoTuvfdeDRgwQHfccYfmzp2rPXv2BLiHoc/5oNld9aI+68A6KSlJu3bt8qh6u2fPHkVHR+v888+XJH399ddNtrcCoXOVoGvXrioqKtK0adMknTi4t8KL8x9a5z+i/giExcXFateunU499VSPw0RFRUWDgzGrauqrQGidS3Tqqad6tP/W6n7WSp9r1qzR4cOHlZycrPLych0+fFhpaWlKTk5u0fvFnc8++0ySGhxYW2Gpffv2io2N9bhaah381a8QGmN05MiRRhfP8DYQ/uIXv/D4YvLWPt50002STrzHS0pKFB8fry5dukg6uZCPtyoqKvTb3/7WbwsqOb9OUlKSkpOTm3zfOu+PJ4HQCttWZcfifJAfHR1tv79feuklnXPOOR69L61t1dTUKCMjo8nnWq/TWJXT+tJq1apVSktLkzGmwbg4ny/o/IXHGWec4ZPqjNW3N998Uy+//HKTbet/Bo0ePbrFr3PNNddo3rx5uu+++yQ1XfXyhPP0fqt/rVnExgqB0okpxpL04YcfSmr7y71Y+3bkyBHNnz9f0dHRdhi97rrr9M0339htDxw4oHXr1unOO+9sMMXdUltb2+ALJm9Z78VBgwY12a68vFz//ve/ffKaiDwEQnjt73//u9v7//jHP2r27Nnq2bOnoqKi7NvPfvYzHT58WNu2bdOTTz7Zom9JI917771n/39zB1LGGDsQvvXWW5JOHty3xI4dO3TmmWeqW7duSkxMbPabXysQOhswYIC2b9+uL774QpJ0wQUXKDMzU5K0ZcsWu53zwY4/AuGBAweUnp6uzp07t2h6lrP169dLkvr06WPfZ1XFfFUdsgJOamqqR98wp6SkSHI9OPz++++VmJgoY4xefvllJScnKy0trcEBZUtZAcGqZliys7MlnajuujsvtDnWwXfnzp0lnfy5l5SUqLq6utFA2L59e48DofVFiKfnp1oHcNY5QqWlpSopKVHHjh3tqbLeBMKdO3fqkksukTFGzzzzjO6//36XqXH+YE0ZTU1N1ffff+8yFuXl5Ro9erT+85//uOxP/c+YZ555ptGQaP1e/eMf/3AJt86BsLKy0g4jw4YN0+DBgz36HTpw4IDLv5uqdFltN27cqH379jV4vP7fm3379jUIhNbPWHINUcYYnyy4Y43lzJkz9bOf/azJtvV/v1ryvrNC1MUXX6xf/epXuuOOOyS5jtvWrVs9+rvgzN3foNYEwq+++krSib8T1vvTeg3n7b799tvq2bOnR19wVlVVtXgWw/Hjx+3P4SNHjujee+9VXV2dy5cAVrjOysrS119/rR/+8IeSGn4hYnnssceUmprqkzBuhVFrvAoLC3XllVc2+FJp9OjRuvjii1tVtZWkTZs2uRx7cFpQZCAQwmvWwfaRI0f0yCOPNNv+5ZdfVnp6us4++2zl5OQoIyNDUVFRuvXWWxUVFaXJkyfb3xLiBOugfOTIkc0GwgceeECVlZX2uTKStHfv3ha9zmeffaann35aW7duVbt27XTGGWc0+ofOsnHjRiUnJ+svf/mLfV9ycrKOHz+ud955R4mJiUpLS7MP9G+99Va73Zdffqlu3bpJ8k8gfOihh3Tw4EEVFBRoy5YtHp1H+Ne//lWSdNVVV9n39erVS5JrqG0N62eZnp6umpqaFofCTz75RB07drQDqnRiWtUHH3xg//vNN99UWlqavv32W6/On7QWpZg7d67L862VVvv06aP09HQVFBR4tN19+/YpNTXV/rlb781bbrlF0smgWF/Hjh09DuLuzk1qCSsQWj/vwsJCOxBaY26dS+iJfv366YMPPtC2bds0Y8YMSScW0Wjpgdb+/fubrShJJ8a4srJS+/btU01NjYqLi5WWlqa6ujqXKeQbNmzQqlWr1L9/f+3fv9+ejlh/Vsdtt90mY4zuuuuuBq9ljdW8efM0a9Ys+37nGQPt2rXTjh07lJSUpDPOOMPjqeyTJk1y+5ruWO+nV155xZ7i7az+YiFff/11g+05v2/qf3bW/3LBWnXXE/UDqPVZ486zzz7r8m/nCpU7X3zxhV555RVJslchtn6nNm3aZLcbOHBgo1Wt5rgLpZ5+sTt16lTNnz9fknTjjTdKcv3yrbS0VMeOHbN/T6QTUyX37Nljf9Hp7LPPPlNUVJR27Njhcn98fLw9zbs5zj/rNWvWuG2zbNkySdL999/fom0uX75c0skvzlszs+DJJ5+UdOLLls2bN6tLly568803NX78eJd2VnXV+vLCk1VtLcYYXXDBBRo1apTKyso0d+5c9e7d2+u+I4QYBNwf/vAH07NnTxMfH2/OO+8888EHH7T4ucXFxUaSKS4u9mMPW662ttY8//zz5sEHHzSS/HIbOHCgGT9+vLnnnntMdHS0y2MffPCBKSsrM5s3bzYrV640n376qTlw4ID56quvzFdffWXWrVtn93XDhg2mrq4ugKPVvOuuu85IMrfddpvp27dvk22tMfjiiy9MXV2dkWSGDRvW7D5abSWZc8891xhjzA9/+EMjybz++uvmmmuuMc8995zLdn77298aSWbChAn28y+++GKzYMECe1tjx45t0LcxY8aY48ePG0lm9OjRRpJ58803WzFCDVm/E863nTt3Nrn/xhhz8803uzynPuv+ysrKVvfxhRdeMJLMww8/bCS5vC8bY42bJFNdXe2yb/v27bP/PX78eLNy5Uojydx+++2msLDQLFu2zFRVVdnbqqqqMsOGDTNr1651+bk6vxckmU8//dR+rH379va4NDZGTZFkhg4daowxJjMz05xxxhkmNzfX3tbx48fdPm/atGkmIyPDo9fatWuXvd3Bgwe3+HljxowxksyRI0eMJPPyyy+b6667zgwePNhUVlba2ywqKjKzZs0ykkxtbW2z283IyDCSTO/evU3fvn3t7axevbpF/Tr//PONJJOXl9dom0svvdTeblJSkv37++GHHxpJZu7cuXbbZ5991uXnPH36dPPAAw+Yrl27GmOMqampMevXr3dp8/rrr9vPr62tdXns6quvNsYYs3nzZvu+SZMmNfh9+p//+R8jyaxfv77Zfa6pqWnwe9zUZ8XFF1/s0vbYsWMuj/fo0cPl8auuusrMnj3bxMbG2vddccUVdvsbbrihwes7++lPf2okmU2bNjW7L8YYU1RU5Pbvmbv3z8GDBxu0i46ONqtWrXK7b6tXr3Zp++9//9t+zLrv7bffNv/4xz/sfw8ZMsT079+/RX2vv8/Ot0GDBplPP/202b8ztbW1Lp8v5513nv3/zzzzjMs2rfdv/Zv198Zy7Ngxc8oppxhJJiEhwbzzzjvm1VdfdXnvVlRUmDvuuMO8++67jfbt17/+tf1Z4e51nW/1PyOd/7ZZvvrqK5fHXnnlFY8/M8vLy016enqL+lNcXGw++OADl/vnzJlj//+9997botdsbN8k3/zd80awHeOGMwJhgOXm5prY2FizePFi8/nnn5u77rrLJCcnmz179rTo+aHyy/LKK6+YBx54wLz22mvNfsCFwu1HP/qR6devn/1vK0D97ne/M7/4xS9MVlaWuf32240kc/rpp5vbbrvNPhi69NJLzZIlS8zVV19tNmzYYP7yl7+YRx55xEyfPt189dVXZtWqVWb27Nnm1ltvtbdvBUNJ5vrrrzfz5s0zP/vZzxr0y10Is24jR4403bp1M7fddptZvHix2/06ePCgMcaYs846q0XjYLX//PPPTUlJiTl06JD92NGjR+2+rFixosFz7777bvv/f/nLX5rt27ebJUuWmD/96U9m2bJl5rHHHjNvvfWW+eijj8z9999vNm7caLZs2WIee+wx8+Mf/9js3LnTXHvttebcc881ycnJDbY/bdo0c/3119v/7tatm+nRo4eZMmWKkdTgANL59uMf/7jBe7ixtv379zeSzN///nfzxhtvmEmTJpmVK1ea3Nxc85Of/MSsXLnSPPPMM+ayyy4ziYmJLj/XTz75xP7/U0891fzv//6vSUtLMz//+c/NPffcY7p3725OO+00l9fr2bOn29+xGTNmmISEBGPMiYMJd33NyckxHTp0aHB/79697dAhyVxzzTVun//YY48ZY4zLQbR1e+GFF8yf//xn+8D7nnvuMdOmTWvQzhhjevbs6fZ+dx5//PFGx/6ee+4xZWVl5tNPPzWHDx82N954o/n222/N5Zdf7tJu1apVZsuWLWbPnj3m6NGjZtiwYUaSufzyy81dd91lnnvuOTNhwgS7ff0DowkTJri8B37+8583GL+ysjJTV1dnqqurjTEnDq4OHDhg3n333Ub7P27cOPPFF1+YkpISU1NTY44ePWoOHz5sHn30UfP888+bRYsWuRzESzL33XefKSkpMQ8++KB5+eWXzWuvvWZ+8pOfuN1+ZWWl+e677+x/jxo1yu1B75tvvmmWL19uJNfPmvq3JUuWmPvvv9/cdNNNDR5zDlwzZswwo0aNavDzfeihh+x/T5061ezatctUVFSYoqIi89e//tVs2rTJfPPNN2bmzJmN9iE/P98cP37cPPLII+bAgQPm1Vdfdfkiyvkz5dixY+bJJ59s8PNyvp155pnm+uuvN6effnqjbZxvN910k1myZEmD+5988knz6KOPmq1bt5rKykpz/PhxU1NT4/I5583t73//e5PvIXc355Dp7u9E/Vtubq656aabzPr1682iRYvMQw89ZH7/+9+7fHnhfHMXDM844wyzbt06c+2115qHH37YLFu2zPTs2dNcffXVTb72yJEjTV1dnfnggw/M7t27W7R/Y8aMsf+eenLr1KlTk4//9a9/tf//nnvuMZJMaWmpfd8jjzxijDFm2bJl5qmnnjLvvPOOVz/TzMxMM3nyZDNw4ECX+xsbb+u1W/M+sm69evUyQ4YMMXfeeafp3r17i54zYsSIRj+f/S1UjnHDAYEwwC644AIzefJkl/v69etnfvWrX7Xo+eHwy7J//35TWFhoDh48aJ555hmzfPly895775m9e/eaefPmmenTp5uFCxeaU0891ScfiKF2GzFihPnss89a1LawsNAeV+vb5JbefvjDH9rPLSkpadFzGuPu2+L6BwY1NTXmoosu8tu4ffvtt01+49nYbdiwYW6/DS0oKPB5H41pPGg2dqupqWnR79XQoUO97teXX37p9v6ysjJjzIlv5r3ZrlVNqf9+/sMf/tDofhQWFvrtPeLuZlUxne977rnn7P60ZV88vf3mN7+xD3pfeumlJvs8fPhwU1paarepqKhw2+7jjz9u9PWsymf9W21trcv2rMqmc5W1pbfvv/++xeO+fv16t18+Wbfp06cbY4xJSUmx73v77beNMcaliuN8KysrM/v37/fZz+jAgQOmoqLCbN26tdm21ue5J59jy5Yta/A75Mv32FVXXWVvt34V2NPbNddc02Rf33nnHVNQUGAuvvhiM2/ePJ/uR/1bx44djTEnZiQsX77cHnfr866xWSZNbdPdFxXe3Lp27Wrq6upc3gd79+512/brr792+Xf96mtLbg8//LDJysoy0okvtAMpHI5xQ0WUMZwtGihVVVVKSkrSK6+8ov/v//v/7Pvvuusu5efnu53LXllZ6bL6VklJiTIzM1VcXGyfN9Bm/vY36b/z6oNNVXW1yo8dk+OUU3S0qEidOnVSaVmZykpLlZCQoOPHjys2Lk6lJSVq36GDYmJiTqx4ZowOHTqklM6dXc45iYmOVrvoaJ0zcKB27typkja6oPG5556r7v9dlKWkpERr1qxR/V/YhPh4tWvXTpeOHKl2/10622Ik7du7V9u3b1d1vRPso3RiEYU+P/iB0tLSGjzXeRvfHjmirdu2KS0tTac4HEpPT2+w6EhLGEnHysqUkJiomP+uuHfg4EFt3rzZ421JUruoKNXV+wj7QZ8+LsvHH6+s1MqVK+1/JyUlKSkpSZ1OOUXfFxWppKRE5w0apLS0NHvp8ab6v2PHDn355ZdK6dRJ33u5yExMdLQuvvhitW/fXrV1ddq0aVOTC2Z06tRJR48e1dixY+1xa47RifOmampqFB8f3+AyEhdeeKEOFxToy/8uVOB8f+eUFNXV1Wn16tU6XlmpXj176syzzlK00wIjtXV12r9vn/bs3dvk+THtoqLUoWNHnT9kiJKSkhr0UcY0O+51xmjb1q365r/nuLVr167ZBWMGnXuuMk47ze15R9KJ97+7P35XXnmloiRVHD+uwwUFioqKUvcePWT18Kuvv7YvrzNgwABt27atyX5IUof27XXB0KEnzo8qK9Ppp5+uwsJCbaj3M2nKyEsv1d59+5o8J9Lqe33l5eVa7bRIRLt27XTFFVc0aHv48GG7T7169lS3zEx1OuUUHT9+XCtXrXJpm5qaqqysLBlj9Oabb0qSuqan67zBg13eJ/VVV1frnRYsqBMdHa0Lzj/fXpXWep3GDlh69uihgQMHSjqxIMnWej+X3r17q3+/fvZ77Vh5uWJjYxX33+vPGZ04L9p5EZCxY8a4XJ/u8x07XM4DvOiii/TN7t3aX2/xm8ZcdOGF9sJQ0onfoWPHjulf//pXg7bDhg61V2iWpOqaGn333XdqFxWl9Rs26Kwzz9T2/55z369fP51x+ulNXkdyz969qq6q0hm9e6uoqEgOh0P79+3Tpy1cYCZK0nmDB+u0jAz7PqMT56lVVlbq0/x8HXGz0FR8fLzi4uLUt29f7d+/X2eddZaMMUpISHD7WVZVXa3SkhIlJiUpKTHR5bFPP/1Ue+qd22mNkzFGdcaoprpa3xcVnbivrk5FRUXqnJqqPd98o//s3ClTV6cap3OjU1NTlZ6erl7/XQTPW+UVFVq9erXaJycrvWtX9endWzGxsSoqKtLx48d1amqqotq1065du3TgwIEGl185/fTTVVpaqvbJyaozRj/o00cJCQlN9qm2tlYfffSRvi8q0g/69FHffv3s3+k6Y3T06FGldOrk8plVX0J8vKJjYtT3Bz9QdHS0oqKi7EtP2dq1k15/3euxaY2SkhI5HI7AHONGGAJhAB08eFCnnXaaPvzwQw0fPty+f+7cuXrxxRe1c+fOBs+ZM2eOHnzwwQb3EwiB4GQktwfpaHvV1dWqratTQny8z7dtjFFpWZni4+MVHxfX8uep8fdHnTGqqamxQws8w+8e4AMEwojg+Vf88Ln63wCZJr4xnzVrln2NN+lkhTAgfvazEzcAjeKANHjE/vfmD1GSvDlcaer90U5Sy6Ml6uN3DwBahkAYQKmpqYqOjm6wfHthYaF9EeT64uPjFe+Hb7cBAAAARB6uQxhAcXFxGjx4sFbVOzdj1apVLlNIAQAAAMAfqBAG2LRp05Sdna0hQ4YoKytLzz33nPbu3evVxY8BAAAAwBMEwgD72c9+pu+++04PPfSQDh06pAEDBujtt99Wjx49At01AAAAAGGOVUZDHCswAQAAINxwjNt2OIcQAAAAACIUgRAAAAAAIhSBEAAAAAAiFIEQAAAAACIUgRAAAAAAIhSBEAAAAAAiFNchDHHWVUNKSkoC3BMAAADAN6xjW66Q538EwhBXWloqScrMzAxwTwAAAADfKi0tlcPhCHQ3whoXpg9xdXV1OnjwoDp06KCoqCi3bUpKSpSZmal9+/ZxYU8/YHz9h7H1L8bXfxhb/2J8/Yex9S/Gt+WMMSotLVVGRobateMsN3+iQhji2rVrp27durWobceOHfnw8SPG138YW/9ifP2HsfUvxtd/GFv/Ynxbhspg2yBuAwAAAECEIhACAAAAQIQiEEaA+Ph4PfDAA4qPjw90V8IS4+s/jK1/Mb7+w9j6F+PrP4ytfzG+CEYsKgMAAAAAEYoKIQAAAABEKAIhAAAAAEQoAiEAAAAARCgCIQAAAABEKAJhBPjjH/+oXr16KSEhQYMHD9a///3vQHcp5MybN0/nn3++OnTooLS0NF111VXauXOnSxtjjObMmaOMjAwlJiZqxIgR2r59e4B6HLrmzZunqKgo5eTk2Pcxtq1z4MAB/fznP1fnzp2VlJSkc889V5s3b7YfZ3y9U1NTo9/85jfq1auXEhMTdfrpp+uhhx5SXV2d3YaxbbkPPvhAV155pTIyMhQVFaXXX3/d5fGWjGVlZaWmTJmi1NRUJScna/z48dq/f38b7kVwampsq6urde+99+rss89WcnKyMjIydMMNN+jgwYMu22BsG9fce9fZrbfeqqioKC1cuNDlfsYXgUQgDHN/+9vflJOTo9mzZ+uTTz7RD3/4Q40dO1Z79+4NdNdCypo1a3THHXdo/fr1WrVqlWpqajR69GgdO3bMbjN//nw98cQTWrRokTZt2qT09HRddtllKi0tDWDPQ8umTZv03HPPaeDAgS73M7beKyoq0oUXXqjY2Fi98847+vzzz/X444/rlFNOsdswvt559NFH9cwzz2jRokXasWOH5s+fr8cee0xPPfWU3Yaxbbljx47pnHPO0aJFi9w+3pKxzMnJ0YoVK5Sbm6u1a9eqrKxM48aNU21tbVvtRlBqamzLy8u1ZcsW3XfffdqyZYtee+01ffHFFxo/frxLO8a2cc29dy2vv/66NmzYoIyMjAaPMb4IKIOwdsEFF5jJkye73NevXz/zq1/9KkA9Cg+FhYVGklmzZo0xxpi6ujqTnp5uHnnkEbvN8ePHjcPhMM8880yguhlSSktLTZ8+fcyqVavMJZdcYu666y5jDGPbWvfee6+56KKLGn2c8fXeFVdcYX7xi1+43Hf11Vebn//858YYxrY1JJkVK1bY/27JWB49etTExsaa3Nxcu82BAwdMu3btTF5eXpv1PdjVH1t3Nm7caCSZPXv2GGMYW080Nr779+83p512mtm2bZvp0aOHWbBggf0Y44tAo0IYxqqqqrR582aNHj3a5f7Ro0dr3bp1AepVeCguLpYkpaSkSJJ2796tgoICl7GOj4/XJZdcwli30B133KErrrhCo0aNcrmfsW2dN954Q0OGDNFPf/pTpaWladCgQVq8eLH9OOPrvYsuukjvvfeevvjiC0nSp59+qrVr1+rHP/6xJMbWl1oylps3b1Z1dbVLm4yMDA0YMIDx9lBxcbGioqLsmQSMbevU1dUpOztb99xzj84666wGjzO+CLSYQHcA/vPtt9+qtrZWXbp0cbm/S5cuKigoCFCvQp8xRtOmTdNFF12kAQMGSJI9nu7Ges+ePW3ex1CTm5urLVu2aNOmTQ0eY2xb5+uvv9bTTz+tadOm6de//rU2btyoqVOnKj4+XjfccAPj2wr33nuviouL1a9fP0VHR6u2tlYPP/ywrrvuOkm8d32pJWNZUFCguLg4derUqUEb/ua13PHjx/WrX/1KEydOVMeOHSUxtq316KOPKiYmRlOnTnX7OOOLQCMQRoCoqCiXfxtjGtyHlrvzzjv12Wefae3atQ0eY6w9t2/fPt11111auXKlEhISGm3H2Hqnrq5OQ4YM0dy5cyVJgwYN0vbt2/X000/rhhtusNsxvp7729/+pqVLl2r58uU666yzlJ+fr5ycHGVkZOjGG2+02zG2vuPNWDLeLVddXa1rr71WdXV1+uMf/9hse8a2eZs3b9aTTz6pLVu2eDxWjC/aClNGw1hqaqqio6MbfLtUWFjY4FtWtMyUKVP0xhtv6J///Ke6detm35+eni5JjLUXNm/erMLCQg0ePFgxMTGKiYnRmjVr9Pvf/14xMTH2+DG23unatavOPPNMl/v69+9vLyzFe9d799xzj371q1/p2muv1dlnn63s7GzdfffdmjdvniTG1pdaMpbp6emqqqpSUVFRo23QuOrqak2YMEG7d+/WqlWr7OqgxNi2xr///W8VFhaqe/fu9t+4PXv2aPr06erZs6ckxheBRyAMY3FxcRo8eLBWrVrlcv+qVas0fPjwAPUqNBljdOedd+q1117T+++/r169erk83qtXL6Wnp7uMdVVVldasWcNYN2PkyJHaunWr8vPz7duQIUN0/fXXKz8/X6effjpj2woXXnhhg0ukfPHFF+rRo4ck3rutUV5ernbtXP+MRkdH25edYGx9pyVjOXjwYMXGxrq0OXTokLZt28Z4N8MKg7t27dLq1avVuXNnl8cZW+9lZ2frs88+c/kbl5GRoXvuuUfvvvuuJMYXQSBAi9mgjeTm5prY2Fjz/PPPm88//9zk5OSY5ORk88033wS6ayHltttuMw6Hw/zrX/8yhw4dsm/l5eV2m0ceecQ4HA7z2muvma1bt5rrrrvOdO3a1ZSUlASw56HJeZVRYxjb1ti4caOJiYkxDz/8sNm1a5dZtmyZSUpKMkuXLrXbML7eufHGG81pp51m3nzzTbN7927z2muvmdTUVDNz5ky7DWPbcqWlpeaTTz4xn3zyiZFknnjiCfPJJ5/YK122ZCwnT55sunXrZlavXm22bNliLr30UnPOOeeYmpqaQO1WUGhqbKurq8348eNNt27dTH5+vsvfuMrKSnsbjG3jmnvv1ld/lVFjGF8EFoEwAvzhD38wPXr0MHFxcea8886zL5WAlpPk9vbCCy/Yberq6swDDzxg0tPTTXx8vLn44ovN1q1bA9fpEFY/EDK2rfOPf/zDDBgwwMTHx5t+/fqZ5557zuVxxtc7JSUl5q677jLdu3c3CQkJ5vTTTzezZ892OYhmbFvun//8p9vP2RtvvNEY07KxrKioMHfeeadJSUkxiYmJZty4cWbv3r0B2Jvg0tTY7t69u9G/cf/85z/tbTC2jWvuvVufu0DI+CKQoowxpi0qkQAAAACA4MI5hAAAAAAQoQiEAAAAABChCIQAAAAAEKEIhAAAAAAQoQiEAAAAABChCIQAAAAAEKEIhAAAAAAQoQiEAAAAABChCIQAAAAAEKEIhAAAAAAQoQiEAAAAABChCIQAAAAAEKEIhAAAAAAQoQiEAAAAABChCIQAAAAAEKEIhAAAAAAQoQiEAAAAABChCIQAAAAAEKEIhAAAAAAQoQiEAAAAABChCIQAAAAAEKEIhAAAAAAQof5/Zv7XiPGxUUQAAAAASUVORK5CYII=", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "p = PowderPattern()\n", "if not os.path.exists(data_file):\n", @@ -120,12 +86,12 @@ "p.SetWavelength(\"Cu\")\n", "print(p.GetWavelength())\n", "\n", - "p.plot(hkl=True)" + "p.plot(hkl=True)\n" ] }, { "cell_type": "markdown", - "id": "324669c6", + "id": "6", "metadata": {}, "source": [ "### Add crystalline phases\n", @@ -136,36 +102,23 @@ }, { "cell_type": "code", - "execution_count": 4, - "id": "13e6ea08", + "execution_count": null, + "id": "7", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "========================== WARNING =========================\n", - " In ScatteringPowerAtom::GetTemperatureFactor():\n", - " Anisotropic Displacement Parameters are not currently properly handled\n", - " for Debye-Waller calculations (no symmetry handling for ADPs).\n", - " =>The Debye-Waller calculations will instead use only isotropic DPs\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "for cod_id in cod_phases:\n", " c = CreateCrystalFromCIF(\"http://crystallography.net/cod/%d.cif\" % cod_id)\n", - " #print(c,\"\\n\")\n", + " print(c,\"\\n\")\n", " p.AddPowderPatternDiffraction(c)\n", "\n", "p.FitScaleFactorForRw()\n", - "p.UpdateDisplay()" + "p.UpdateDisplay()\n" ] }, { "cell_type": "markdown", - "id": "69693f9b", + "id": "8", "metadata": {}, "source": [ "### Add an automatic background\n", @@ -175,18 +128,10 @@ }, { "cell_type": "code", - "execution_count": 5, - "id": "e5f73733", + "execution_count": null, + "id": "9", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "No background, adding one automatically\n" - ] - } - ], + "outputs": [], "source": [ "# Add background if necessary\n", "need_background = True\n", @@ -204,12 +149,12 @@ " # b.Print()\n", " b.UnFixAllPar()\n", " b.OptimizeBayesianBackground()\n", - "p.UpdateDisplay()" + "p.UpdateDisplay()\n" ] }, { "cell_type": "markdown", - "id": "e7533c3b", + "id": "10", "metadata": {}, "source": [ "### Fit profile, step 1\n", @@ -220,8 +165,8 @@ }, { "cell_type": "code", - "execution_count": 6, - "id": "4e9ef3ab", + "execution_count": null, + "id": "11", "metadata": {}, "outputs": [], "source": [ @@ -249,8 +194,8 @@ }, { "cell_type": "code", - "execution_count": 7, - "id": "d8d8d7ef", + "execution_count": null, + "id": "12", "metadata": {}, "outputs": [], "source": [ @@ -265,7 +210,7 @@ }, { "cell_type": "markdown", - "id": "651ee954", + "id": "13", "metadata": {}, "source": [ "### Fit profile, step 2\n", @@ -274,8 +219,8 @@ }, { "cell_type": "code", - "execution_count": 8, - "id": "d6155988", + "execution_count": null, + "id": "14", "metadata": {}, "outputs": [], "source": [ @@ -301,7 +246,7 @@ }, { "cell_type": "markdown", - "id": "2312897c", + "id": "15", "metadata": {}, "source": [ "### Fit profile, final\n", @@ -310,8 +255,8 @@ }, { "cell_type": "code", - "execution_count": 9, - "id": "001df7f2", + "execution_count": null, + "id": "16", "metadata": {}, "outputs": [], "source": [ @@ -332,7 +277,7 @@ }, { "cell_type": "markdown", - "id": "ab8f9a18", + "id": "17", "metadata": {}, "source": [ "### Compute weight percentages\n", @@ -355,34 +300,23 @@ }, { "cell_type": "code", - "execution_count": 10, - "id": "288ab0c8", + "execution_count": null, + "id": "18", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Weight percentages:\n", - "Aluminium oxide - $-alpha: 37.42%\n", - " Zincite: 28.35%\n", - " Calcium fluoride: 34.23%\n" - ] - } - ], + "outputs": [], "source": [ "# TODO: check if the method is correctly applied, notably\n", "# is there a shortcut in ObjCryst++ so that the calculated\n", "# structure factor sometimes skips a factor 2 (centrosymmetry\n", "# or other centering factors which allow to avoid a direct sum)\n", "\n", - "w = p.qpa(verbose=True)" + "w = p.qpa(verbose=True)\n" ] }, { "cell_type": "code", "execution_count": null, - "id": "9a5cb5f8", + "id": "19", "metadata": {}, "outputs": [], "source": [] @@ -390,7 +324,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "objcryst", "language": "python", "name": "python3" }, @@ -404,97 +338,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "state": { - "6f5d27a997294cae96dbaaf9c8551bba": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "a569e911321f439aa32b738cb4738001": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "e5c2ee7c228b408582fbacd5d1eeda80": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "ToolbarModel", - "state": { - "_model_module_version": "^0.11", - "_view_module_version": "^0.11", - "collapsed": true, - "layout": "IPY_MODEL_a569e911321f439aa32b738cb4738001", - "orientation": "vertical", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "eb5a16017cbd44b8861a27bff409366b": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "MPLCanvasModel", - "state": { - "_cursor": "default", - "_data_url": "", - "_figure_label": "Figure 1", - "_image_mode": "diff", - "_model_module_version": "^0.11", - "_size": [ - 900, - 400 - ], - "_view_module_version": "^0.11", - "layout": "IPY_MODEL_6f5d27a997294cae96dbaaf9c8551bba", - "toolbar": "IPY_MODEL_e5c2ee7c228b408582fbacd5d1eeda80", - "toolbar_position": "left" - } - } - }, - "version_major": 2, - "version_minor": 0 - } + "version": "3.13.5" } }, "nbformat": 4, diff --git a/examples/crystal_3d_widget.ipynb b/examples/crystal_3d_widget.ipynb index c1a285c..e8bd416 100644 --- a/examples/crystal_3d_widget.ipynb +++ b/examples/crystal_3d_widget.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "0eba2823", + "id": "0", "metadata": {}, "source": [ "## Creating a crystal from a CIF & display it in 3D\n", @@ -15,8 +15,8 @@ }, { "cell_type": "code", - "execution_count": 1, - "id": "f42880b5", + "execution_count": null, + "id": "1", "metadata": { "tags": [] }, @@ -30,7 +30,7 @@ }, { "cell_type": "markdown", - "id": "9c9f9528", + "id": "2", "metadata": {}, "source": [ "### From IUCr journals" @@ -38,101 +38,12 @@ }, { "cell_type": "code", - "execution_count": 2, - "id": "1bb9a6fd", + "execution_count": null, + "id": "3", "metadata": { "tags": [] }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "C15 Cl H14 N O S\n" - ] - }, - { - "data": { - "application/3dmoljs_load.v0": "
\n

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n
\n", - "text/html": [ - "
\n", - "

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n", - "
\n", - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "495d94566f4341749dda289bdb120e05", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Box(children=(VBox(children=(HBox(children=(VBox(children=(FloatRangeSlider(value=(0.0, 1.0), description='Xra…" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "c = create_crystal_from_cif(\"http://scripts.iucr.org/cgi-bin/sendcif?dt3034sup1\",\n", " oneScatteringPowerPerElement=True,\n", @@ -143,7 +54,7 @@ }, { "cell_type": "markdown", - "id": "a3ce9a83", + "id": "4", "metadata": {}, "source": [ "### From the Crystallography Open Database" @@ -151,99 +62,10 @@ }, { "cell_type": "code", - "execution_count": 3, - "id": "88943599", + "execution_count": null, + "id": "5", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "C29 H32 N4 O5\n" - ] - }, - { - "data": { - "application/3dmoljs_load.v0": "
\n

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n
\n", - "text/html": [ - "
\n", - "

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n", - "
\n", - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "5067998b22c8498d98bb6b5129e7f3d0", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Box(children=(VBox(children=(HBox(children=(VBox(children=(FloatRangeSlider(value=(0.0, 1.0), description='Xra…" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "c1 = create_crystal_from_cif(\"http://crystallography.net/cod/4506702.cif\",\n", " oneScatteringPowerPerElement=True,\n", @@ -254,7 +76,7 @@ }, { "cell_type": "markdown", - "id": "e13439ec", + "id": "6", "metadata": {}, "source": [ "### Create a Crystal structure and change the spacegroup" @@ -262,92 +84,10 @@ }, { "cell_type": "code", - "execution_count": 4, - "id": "c3826ab4", + "execution_count": null, + "id": "7", "metadata": {}, - "outputs": [ - { - "data": { - "application/3dmoljs_load.v0": "
\n

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n
\n", - "text/html": [ - "
\n", - "

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n", - "
\n", - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "4516edbf801540df842bd8149d4ab321", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Box(children=(VBox(children=(HBox(children=(VBox(children=(FloatRangeSlider(value=(0.0, 1.0), description='Xra…" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "c = Crystal(5, 5, 5, pi/2, pi/2, pi/2, \"P1\")\n", "cu = ScatteringPowerAtom(\"Cu\", \"Cu\")\n", @@ -358,8 +98,8 @@ }, { "cell_type": "code", - "execution_count": 5, - "id": "f77c7597", + "execution_count": null, + "id": "8", "metadata": {}, "outputs": [], "source": [ @@ -386,935 +126,6 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "state": { - "0921e449007545b2b81dda95ac2ecf54": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_6f57ecaab35f4723bcc96373be76feee", - "outputs": [ - { - "data": { - "application/3dmoljs_load.v0": "", - "text/html": "" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "0996b2b4073143ebb5b16d7489742b46": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "0c32ae6902f74739996c3852feae170b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "0fcae9423c724342b19093dfd44c82cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "fullMol opac", - "layout": "IPY_MODEL_7db99a4120ba4ae0a317143da0aea915", - "max": 1, - "readout_format": ".01f", - "step": 0.1, - "style": "IPY_MODEL_761773dafaaf4cf8b5475d261a532407", - "tooltip": "Opacity to display fully molecules\nwhich have at least one atom inside the limits", - "value": 0.5 - } - }, - "10100ea5595c4b0da85ad3afee38b370": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Xrange", - "layout": "IPY_MODEL_35422ae44de44937b9e5c53335c1dfff", - "max": 1.5, - "min": -0.5, - "step": 0.05263157894736842, - "style": "IPY_MODEL_dea9ad9825f24ae0b1671409af0cb939", - "value": [ - 0.02631578947368418, - 1.026315789473684 - ] - } - }, - "14070e12d15748b7b31ab796fa8253b9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "extra dist", - "layout": "IPY_MODEL_9044d195564e43d8bd246fe976fafd5b", - "max": 10, - "readout_format": ".1f", - "step": 0.5, - "style": "IPY_MODEL_9f73d955e78d408f9c85e8b17242331a", - "tooltip": "Extra distance (A) with semi-transparent display", - "value": 2 - } - }, - "14714c2ef5d64defa7d7bb33b67fce70": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "14ad80730dcb4abaa818d491d62b5011": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "16853aa07399419988e9a6a2ab28f24e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "178bc599d6484c4cbfc8cfc7f6f78a31": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "17fd2f77126040fe8b16ce322910427c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Zrange", - "layout": "IPY_MODEL_14ad80730dcb4abaa818d491d62b5011", - "max": 1.5, - "min": -0.5, - "step": 0.045454545454545456, - "style": "IPY_MODEL_3061fd45f58a458fa9a352c9b4de6c05", - "value": [ - 1.1102230246251565e-16, - 1 - ] - } - }, - "1d1afc02139344ed9e5148dfaa7fbcf0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "1d4fc1381fb44dd3832481d92b693535": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "210be537b08c442d94eb15a2e1024c82": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "21ec5323df2f403caebc6eb8409293b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Zrange", - "layout": "IPY_MODEL_939bd79955a34756ac39b880169158c3", - "max": 1.5, - "min": -0.5, - "step": 0.1, - "style": "IPY_MODEL_963737802eef4d2ab0869d7fa59ecd68", - "value": [ - 0, - 1 - ] - } - }, - "2403588c42004841ba40868ae459ee64": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_10100ea5595c4b0da85ad3afee38b370", - "IPY_MODEL_a0ea3331d1534110a1387b896e1f078f", - "IPY_MODEL_510998bf9bfc417a8ac402ef5ee87bf1" - ], - "layout": "IPY_MODEL_1d1afc02139344ed9e5148dfaa7fbcf0" - } - }, - "24d32f5ecd234d07b9f1bd5f6f8d96ae": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "29b6ec09b2824961a1e5dfc0232e3f63": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "3061fd45f58a458fa9a352c9b4de6c05": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "35422ae44de44937b9e5c53335c1dfff": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "3727818b1b904f3b904b61c9ed6e7cd9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "extra opac.", - "layout": "IPY_MODEL_4a76ab79eebc4f148f1910b6d479b91a", - "max": 1, - "readout_format": ".01f", - "step": 0.1, - "style": "IPY_MODEL_61e0531754254ffeb4cad570d6419944", - "tooltip": "Opacity for extra distance display", - "value": 0.1 - } - }, - "3ab29658d38f4c24b3b0ac5237dbb835": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "3b45c857b7e74909b47f3fedc5da4ddc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "3bd40a1d13eb47cbaacb913212bf5388": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "40f8eee4198543c992f233329c799556": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "extra dist", - "layout": "IPY_MODEL_4abf9de7d4cd4ebaa4837db4338af3bf", - "max": 10, - "readout_format": ".1f", - "step": 0.5, - "style": "IPY_MODEL_f8a67573c53442eca21df95904ff7a5f", - "tooltip": "Extra distance (A) with semi-transparent display", - "value": 2 - } - }, - "4516edbf801540df842bd8149d4ab321": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "BoxModel", - "state": { - "children": [ - "IPY_MODEL_6d5aa6a7ac724254a162954fb8f23743" - ], - "layout": "IPY_MODEL_e6ef85cd7ae44c07bb9872dd1c5c6307" - } - }, - "49494b595c504b408268f8566a618da0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "495d94566f4341749dda289bdb120e05": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "BoxModel", - "state": { - "children": [ - "IPY_MODEL_a27698a7cf014b6380ed28ddb0379265" - ], - "layout": "IPY_MODEL_14714c2ef5d64defa7d7bb33b67fce70" - } - }, - "4a76ab79eebc4f148f1910b6d479b91a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4abf9de7d4cd4ebaa4837db4338af3bf": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4e7ea6f148eb43258a753657cd405cf7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4f245a0ee86a47fcaf06a49dd41a0d77": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "5067998b22c8498d98bb6b5129e7f3d0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "BoxModel", - "state": { - "children": [ - "IPY_MODEL_987bc0d34a424be29a3829ddb7c8d45f" - ], - "layout": "IPY_MODEL_0c32ae6902f74739996c3852feae170b" - } - }, - "510998bf9bfc417a8ac402ef5ee87bf1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Zrange", - "layout": "IPY_MODEL_fd74b6035f094e3f9e931635a9740ccc", - "max": 1.5, - "min": -0.5, - "step": 0.034482758620689655, - "style": "IPY_MODEL_dae07a806e54464dac1cf105d691f759", - "value": [ - 0.01724137931034475, - 1.0172413793103448 - ] - } - }, - "52859705a56a4508a3fe2f6bcb47dc88": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_fd65c6a4ca3b43248e929e7f47c7857c", - "IPY_MODEL_b66372fa3d84415bb6145a6a8ed8708e", - "IPY_MODEL_21ec5323df2f403caebc6eb8409293b4" - ], - "layout": "IPY_MODEL_f3ac3e8c4e7b43a1ad1e481e6f9de83e" - } - }, - "61e0531754254ffeb4cad570d6419944": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "6253ddcc8aba4de5a8e8964bd75aeaf1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "extra dist", - "layout": "IPY_MODEL_fc79d024adb1496ea29fcb76579feb58", - "max": 10, - "readout_format": ".1f", - "step": 0.5, - "style": "IPY_MODEL_3ab29658d38f4c24b3b0ac5237dbb835", - "tooltip": "Extra distance (A) with semi-transparent display", - "value": 2 - } - }, - "62b95578393d4072bb039068c05fb231": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "6411c614d81d4cfd970cd917afdac37b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_6253ddcc8aba4de5a8e8964bd75aeaf1", - "IPY_MODEL_3727818b1b904f3b904b61c9ed6e7cd9", - "IPY_MODEL_7e6bcc83da5c427f93d9f465875812e6" - ], - "layout": "IPY_MODEL_8e3e21a86f924c97b660d1857de586e7" - } - }, - "69cfa453144143d5837ba9ab8182d9c6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "6d5aa6a7ac724254a162954fb8f23743": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_ef835f70ed374772bf7927218c6d914b", - "IPY_MODEL_0921e449007545b2b81dda95ac2ecf54" - ], - "layout": "IPY_MODEL_a2a19745dad64ec5b97073e69f111a67" - } - }, - "6e2b9fc849214d66a98cd6722e599897": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "6f57ecaab35f4723bcc96373be76feee": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "6fa1b9f83e0e44008283d59bf430d7aa": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "761773dafaaf4cf8b5475d261a532407": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "7db99a4120ba4ae0a317143da0aea915": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "7df078a47e15423396cecb2887e12340": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_bd377757e2334a75a2e273ecc2025fb4", - "IPY_MODEL_edaf85216c2d488c8dd44543bee9f6be", - "IPY_MODEL_17fd2f77126040fe8b16ce322910427c" - ], - "layout": "IPY_MODEL_df3dd82b133147a38622ed0955220a5f" - } - }, - "7e6bcc83da5c427f93d9f465875812e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "fullMol opac", - "layout": "IPY_MODEL_890a7e1c724d474a9b5b900cbb183dcc", - "max": 1, - "readout_format": ".01f", - "step": 0.1, - "style": "IPY_MODEL_210be537b08c442d94eb15a2e1024c82", - "tooltip": "Opacity to display fully molecules\nwhich have at least one atom inside the limits", - "value": 0.5 - } - }, - "81ef18f49e5140fba36f9761bcab52ea": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_178bc599d6484c4cbfc8cfc7f6f78a31", - "outputs": [ - { - "data": { - "application/3dmoljs_load.v0": "", - "text/html": "" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "826995a7222c47309862149d9f9ea575": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_40f8eee4198543c992f233329c799556", - "IPY_MODEL_abe719db6cf84175a482329974e5688b", - "IPY_MODEL_d422de768be5451eb58c3cb2c883979f" - ], - "layout": "IPY_MODEL_985208e5749349fd8227ec644aeb1d9c" - } - }, - "890a7e1c724d474a9b5b900cbb183dcc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "8c2288c939be4b0ba86569b8e69d9cb9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "extra opac.", - "layout": "IPY_MODEL_8f8bfff060b74d178b744446a2fa6a74", - "max": 1, - "readout_format": ".01f", - "step": 0.1, - "style": "IPY_MODEL_f5efd6cdf7724c75a8cfab2fe71c4437", - "tooltip": "Opacity for extra distance display", - "value": 0.5 - } - }, - "8e3e21a86f924c97b660d1857de586e7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "8f3aa573c4e449799d140b7f5cc367bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "8f8bfff060b74d178b744446a2fa6a74": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "9044d195564e43d8bd246fe976fafd5b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "91548cc738aa4a758a1a92fa25d72991": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "939bd79955a34756ac39b880169158c3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "963737802eef4d2ab0869d7fa59ecd68": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "985208e5749349fd8227ec644aeb1d9c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "987bc0d34a424be29a3829ddb7c8d45f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_cda5ee20257342d9af7a0f04a01b9361", - "IPY_MODEL_aa1e934c102b442da86ae5fa8e37df68" - ], - "layout": "IPY_MODEL_49494b595c504b408268f8566a618da0" - } - }, - "9c2be96f42a34fdca56d08fed2ed1cfb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_7df078a47e15423396cecb2887e12340", - "IPY_MODEL_826995a7222c47309862149d9f9ea575" - ], - "layout": "IPY_MODEL_24d32f5ecd234d07b9f1bd5f6f8d96ae" - } - }, - "9f73d955e78d408f9c85e8b17242331a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "a0ea3331d1534110a1387b896e1f078f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Yrange", - "layout": "IPY_MODEL_f465a109647e458a8b770a2ce7eda5f0", - "max": 1.5, - "min": -0.5, - "step": 0.045454545454545456, - "style": "IPY_MODEL_0996b2b4073143ebb5b16d7489742b46", - "value": [ - 1.1102230246251565e-16, - 1 - ] - } - }, - "a27698a7cf014b6380ed28ddb0379265": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_9c2be96f42a34fdca56d08fed2ed1cfb", - "IPY_MODEL_81ef18f49e5140fba36f9761bcab52ea" - ], - "layout": "IPY_MODEL_6fa1b9f83e0e44008283d59bf430d7aa" - } - }, - "a2a19745dad64ec5b97073e69f111a67": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "aa1e934c102b442da86ae5fa8e37df68": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_3b45c857b7e74909b47f3fedc5da4ddc", - "outputs": [ - { - "data": { - "application/3dmoljs_load.v0": "", - "text/html": "" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "abe719db6cf84175a482329974e5688b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "extra opac.", - "layout": "IPY_MODEL_4e7ea6f148eb43258a753657cd405cf7", - "max": 1, - "readout_format": ".01f", - "step": 0.1, - "style": "IPY_MODEL_c623c65608784c7a8b660d334458525a", - "tooltip": "Opacity for extra distance display", - "value": 0.5 - } - }, - "b66372fa3d84415bb6145a6a8ed8708e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Yrange", - "layout": "IPY_MODEL_69cfa453144143d5837ba9ab8182d9c6", - "max": 1.5, - "min": -0.5, - "step": 0.1, - "style": "IPY_MODEL_62b95578393d4072bb039068c05fb231", - "value": [ - 0, - 1 - ] - } - }, - "bd377757e2334a75a2e273ecc2025fb4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Xrange", - "layout": "IPY_MODEL_91548cc738aa4a758a1a92fa25d72991", - "max": 1.5, - "min": -0.5, - "step": 0.06666666666666667, - "style": "IPY_MODEL_f523abc4f4754d9582ac6b87b5345be8", - "value": [ - 0.033333333333333326, - 1.0333333333333334 - ] - } - }, - "c623c65608784c7a8b660d334458525a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "cda5ee20257342d9af7a0f04a01b9361": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_2403588c42004841ba40868ae459ee64", - "IPY_MODEL_dfdfc9ba850f410d8c23c6f473919846" - ], - "layout": "IPY_MODEL_4f245a0ee86a47fcaf06a49dd41a0d77" - } - }, - "d422de768be5451eb58c3cb2c883979f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "fullMol opac", - "layout": "IPY_MODEL_1d4fc1381fb44dd3832481d92b693535", - "max": 1, - "readout_format": ".01f", - "step": 0.1, - "style": "IPY_MODEL_3bd40a1d13eb47cbaacb913212bf5388", - "tooltip": "Opacity to display fully molecules\nwhich have at least one atom inside the limits", - "value": 0.5 - } - }, - "dae07a806e54464dac1cf105d691f759": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "dea9ad9825f24ae0b1671409af0cb939": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "df3dd82b133147a38622ed0955220a5f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "dfdfc9ba850f410d8c23c6f473919846": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_14070e12d15748b7b31ab796fa8253b9", - "IPY_MODEL_8c2288c939be4b0ba86569b8e69d9cb9", - "IPY_MODEL_0fcae9423c724342b19093dfd44c82cd" - ], - "layout": "IPY_MODEL_6e2b9fc849214d66a98cd6722e599897" - } - }, - "e6ef85cd7ae44c07bb9872dd1c5c6307": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "edaf85216c2d488c8dd44543bee9f6be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Yrange", - "layout": "IPY_MODEL_16853aa07399419988e9a6a2ab28f24e", - "max": 1.5, - "min": -0.5, - "step": 0.02857142857142857, - "style": "IPY_MODEL_f7eecb350c914446bf867b35d6bc4ee0", - "value": [ - 0.014285714285714346, - 1.0142857142857145 - ] - } - }, - "ef835f70ed374772bf7927218c6d914b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_52859705a56a4508a3fe2f6bcb47dc88", - "IPY_MODEL_6411c614d81d4cfd970cd917afdac37b" - ], - "layout": "IPY_MODEL_29b6ec09b2824961a1e5dfc0232e3f63" - } - }, - "f3ac3e8c4e7b43a1ad1e481e6f9de83e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "f465a109647e458a8b770a2ce7eda5f0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "f523abc4f4754d9582ac6b87b5345be8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "f5efd6cdf7724c75a8cfab2fe71c4437": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "f7eecb350c914446bf867b35d6bc4ee0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "f8a67573c53442eca21df95904ff7a5f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "f9874ad38f914564835d989492660370": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "fc79d024adb1496ea29fcb76579feb58": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "fd65c6a4ca3b43248e929e7f47c7857c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Xrange", - "layout": "IPY_MODEL_f9874ad38f914564835d989492660370", - "max": 1.5, - "min": -0.5, - "step": 0.1, - "style": "IPY_MODEL_8f3aa573c4e449799d140b7f5cc367bd", - "value": [ - 0, - 1 - ] - } - }, - "fd74b6035f094e3f9e931635a9740ccc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - } - }, - "version_major": 2, - "version_minor": 0 - } } }, "nbformat": 4, diff --git a/examples/single-crystal-data.ipynb b/examples/single-crystal-data.ipynb index af6821a..7158139 100644 --- a/examples/single-crystal-data.ipynb +++ b/examples/single-crystal-data.ipynb @@ -2,8 +2,8 @@ "cells": [ { "cell_type": "code", - "execution_count": 5, - "id": "99020362-2694-4b9b-9b87-8c19649b8cd8", + "execution_count": null, + "id": "0", "metadata": {}, "outputs": [], "source": [ @@ -19,21 +19,10 @@ }, { "cell_type": "code", - "execution_count": 9, - "id": "0b30a339-5511-4de5-86d6-83a5342b7681", + "execution_count": null, + "id": "1", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKYAAAJOCAYAAACN2Q8zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde5wkdX3v/3f1Za67O+wu7i6roBgRiaB40CDIT/EoF+OKxiSYYFBPCGhQCJGLQY6ReCIIUdFAYpQQQRHJOVHUeEEwKkoEQRQFQRBE7ssusDuzc+1b/f6Y77fm2zVVfe/q6p7X8/HgsTM91d3V1Rem3vP5fL6e7/u+AAAAAAAAgIRler0DAAAAAAAAWJkIpgAAAAAAANATBFMAAAAAAADoCYIpAAAAAAAA9ATBFAAAAAAAAHqCYAoAAAAAAAA9QTAFAAAAAACAniCYAgAAAAAAQE/ker0DaVGpVPTYY49p9erV8jyv17sDAAAAAADQl3zf165du7R582ZlMrVrogimjMcee0x77rlnr3cDAAAAAABgIDz88MN61rOeVXMbgilj9erVkhYP2po1a3q8NwAAAAAAAP1pampKe+65Z5C11EIwZdj2vTVr1hBMAQAAAAAAtKmRUUkMPwcAAAAAAEBPEEwBAAAAAACgJwimAAAAAAAA0BPMmAIAAAAAACtSuVxWsVjs9W70nXw+r2w225HbIpgCAAAAAAAriu/72rp1q3bu3NnrXelbu+22mzZt2tTQgPNaCKYAAAAAAMCKYkOpDRs2aGxsrO1wZSXxfV+zs7Patm2bJGmPPfZo6/YIpgAAAAAAwIpRLpeDUGr9+vW93p2+NDo6Kknatm2bNmzY0FZbH8PPAQAAAADAimFnSo2NjfV4T/qbPX7tzugimAIAAAAAACsO7Xvt6dTxI5gCAAAAAABATxBMAQAAAAAADJjvf//78jwv9SsPEkwBAAAAAAD0gXe84x1605ve1Ovd6CiCKQAAAAAAAPQEwRQAAAAAAECfWVhY0KmnnqoNGzZoZGREhx12mG699dZl2/33f/+3XvziF2tkZEQHH3yw7rjjjuBnDz74oN7whjdo7dq1Gh8f1wtf+EJ985vfTPJhKJfovQEAAAAAAKSM7/uanZ3tyX2PjY21tMLdWWedpS996Uu64oor9OxnP1sXXnihjjrqKN13331at25dsN2ZZ56pT37yk9q0aZPe//7365hjjtG9996rfD6vd7/73SoUCvrBD36g8fFx3XXXXVq1alUnH15dBFMAAAAAAGBFm52dTTyQsaanpzU+Pt7UdWZmZvSpT31Kl19+uV73utdJki699FJdf/31uuyyy3TmmWcG237wgx/UEUccIUm64oor9KxnPUvXXHONjj32WD300EP6wz/8Qx1wwAGSpOc+97kdelSNo5UPAAAAAACgj9x///0qFot6xSteEVyWz+f1e7/3e7r77rurtj3kkEOCr9etW6d999032ObUU0/V3//93+sVr3iFPvjBD+oXv/hFMg/AQcUUAAAAAABY0cbGxjQ9Pd2z+26W7/uStKwF0Pf9htoC7TZ/8Rd/oaOOOkrf+MY3dN111+n888/Xxz72MZ1yyilN71OrqJgCAAAAAAArmud5Gh8f78l/rcyXet7znqehoSHdeOONwWXFYlE/+clPtN9++1Vte/PNNwdf79ixQ/fee69e8IIXBJftueeeete73qUvf/nLOv3003XppZe2cARbR8UUAAAAAABAHxkfH9df/uVf6swzz9S6deu011576cILL9Ts7KxOOOGEqm0/9KEPaf369dq4caPOOecc7b777nrTm94kSTrttNP0ute9Ts9//vO1Y8cOffe7310WbHUbwRQA9LNyWXriCWnz5l7vCQAAAIAEfeQjH1GlUtHxxx+vXbt26aUvfam+/e1va+3atcu2+6u/+iv9+te/1otf/GJ97Wtf09DQkCSpXC7r3e9+tx555BGtWbNGRx99tC666KJEH4fn28bEFW5qakoTExOanJzUmjVrer07ANCYo4+Wvv1t6bvflV796l7vDQAAAJB68/PzeuCBB7T33ntrZGSk17vTt2odx2YyFmZMAUA/+/a3F//9p3/q7X4AAAAAQAsIpgBgEGSzvd4DAAAAAGgawRQADIIcIwMBAAAA9B+CKQAYBFRMAQAAAOhDBFMAMABm5ud7vQsAAAAA0LSWg6kf/OAHesMb3qDNmzfL8zx95Stfqfq57/s699xztXnzZo2Ojurwww/XL3/5y6ptFhYWdMopp2j33XfX+Pi4jjnmGD3yyCNV2+zYsUPHH3+8JiYmNDExoeOPP147d+6s2uahhx7SG97wBo2Pj2v33XfXqaeeqkKh0OpDA4C+c+tPf9rrXQAAAACAprUcTM3MzOjFL36xLrnkksifX3jhhfr4xz+uSy65RLfeeqs2bdqkI444Qrt27Qq2Oe2003TNNdfo6quv1o033qjp6Wlt2bJF5XI52Oa4447T7bffrmuvvVbXXnutbr/9dh1//PHBz8vlsl7/+tdrZmZGN954o66++mp96Utf0umnn97qQwOAvlPy/V7vAgAAAAA0zfP99s9mPM/TNddcoze96U2SFqulNm/erNNOO03ve9/7JC1WR23cuFEXXHCB3vnOd2pyclLPeMYz9PnPf15vectbJEmPPfaY9txzT33zm9/UUUcdpbvvvlu/+7u/q5tvvlkHH3ywJOnmm2/WIYccol/96lfad9999a1vfUtbtmzRww8/rM2bN0uSrr76ar3jHe/Qtm3btGbNmoYew9TUlCYmJjQ5OdnwdQCg5zxPknT9856nI3796x7vDAAAAJB+8/PzeuCBB7T33ntrZGSk17vTt2odx2Yylq7MmHrggQe0detWHXnkkcFlw8PDetWrXqUf/ehHkqTbbrtNxWKxapvNmzdr//33D7a56aabNDExEYRSkvTyl79cExMTVdvsv//+QSglSUcddZQWFhZ02223dePhAUDq+Aw/BwAAANCEc889VwceeGCvd0NdWV9869atkqSNGzdWXb5x40Y9+OCDwTZDQ0Nau3btsm3s9bdu3aoNGzYsu/0NGzZUbRO+n7Vr12poaCjYJsrCwoIWFhaC76emphp9eACQOn6GtSwAAACAQfeOd7xDO3fuXDbnu5919UzGMy0mlu/7yy4LC28TtX0r24Sdf/75wUD1iYkJ7bnnnjX3CwDSzKNiCgAAAEAf6kowtWnTJklaVrG0bdu2oLpp06ZNKhQK2rFjR81tnnjiiWW3v3379qptwvezY8cOFYvFZZVUrrPPPluTk5PBfw8//HCTjxIA0oOKKQAAAGBlqVQquuCCC/S85z1Pw8PD2muvvfThD384+Pn73vc+Pf/5z9fY2Jie+9zn6gMf+ICKxWLN2/y3f/s3vfCFL9Tw8LD22GMPvec97+n2w+hOMLX33ntr06ZNuv7664PLCoWCbrjhBh166KGSpIMOOkj5fL5qm8cff1x33nlnsM0hhxyiyclJ3XLLLcE2P/7xjzU5OVm1zZ133qnHH3882Oa6667T8PCwDjrooNh9HB4e1po1a6r+A4C+RcUUAAAAsKKcffbZuuCCC/SBD3xAd911l6666qqqAp3Vq1fr8ssv11133aVPfvKTuvTSS3XRRRfF3t6nPvUpvfvd79ZJJ52kO+64Q1/72tf0vOc9r+uPo+UZU9PT07rvvvuC7x944AHdfvvtWrdunfbaay+ddtppOu+887TPPvton3320XnnnaexsTEdd9xxkqSJiQmdcMIJOv3007V+/XqtW7dOZ5xxhg444AC99rWvlSTtt99+Ovroo3XiiSfq05/+tCTppJNO0pYtW7TvvvtKko488kj97u/+ro4//nj9wz/8g55++mmdccYZOvHEEwmbAKwcVEwBAAAArfN9aXa2N/c9Nhastt2oXbt26ZOf/KQuueQSvf3tb5ck/c7v/I4OO+ywYJv//b//d/D1c57zHJ1++un693//d5111lmRt/n3f//3Ov300/VXf/VXwWUve9nLmtqvVrQcTP3kJz/Rq1/96uD79773vZKkt7/97br88st11llnaW5uTieffLJ27Nihgw8+WNddd51Wr14dXOeiiy5SLpfTscceq7m5Ob3mNa/R5Zdfrqzzl/8vfOELOvXUU4PV+4455hhdcsklwc+z2ay+8Y1v6OSTT9YrXvEKjY6O6rjjjtNHP/rRVh8aAPQfKqYAAACA1s3OSqtW9ea+p6el8fGmrnL33XdrYWFBr3nNa2K3+Y//+A994hOf0H333afp6WmVSqXYAp5t27bpscceq3l73dJyMHX44YfL9/3Yn3uep3PPPVfnnntu7DYjIyO6+OKLdfHFF8dus27dOl155ZU192WvvfbS17/+9br7DACDiuHnAAAAwMoxOjpa8+c333yz/uRP/kR/93d/p6OOOkoTExO6+uqr9bGPfayl2+umloMpAECKEEwBAAAArRsbW6xc6tV9N2mfffbR6Oio/uu//kt/8Rd/sezn//3f/61nP/vZOuecc4LLHnzwwdjbW716tZ7znOfov/7rv6q645JAMAUAg4AZUwAAAEDrPK/pdrpeGhkZ0fve9z6dddZZGhoa0ite8Qpt375dv/zlL3XCCSfoec97nh566CFdffXVetnLXqZvfOMbuuaaa2re5rnnnqt3vetd2rBhg173utdp165d+u///m+dcsopXX0sBFMAMAiomAIAAABWlA984APK5XL627/9Wz322GPaY4899K53vUuS9MY3vlF//dd/rfe85z1aWFjQ61//en3gAx+oOW7p7W9/u+bn53XRRRfpjDPO0O67764/+qM/6vrj8Pxag6JWkKmpKU1MTGhycpLV/AD0D7N6x/VHHKEjrruuxzsDAAAApN/8/LweeOAB7b333hoZGen17vStWsexmYyF3g8A6Ffu3xWomAIAAADQhwimAKBflcvBl6zKBwAAAKAfEUwBQL9ygikqpgAAAAD0I4IpAOhXVEwBAAAA6HMEUwDQr0ql4EsvxyKrAAAAAPoPwRQA9CnfCaZo5QMAAADQjwimAKBPlQuF4Gta+QAAAAD0I4IpAOhTbjCVIZgCAAAA0IcIpgCgT1UFUxk+zgEAAAD0H85kAKBPlRcWgq8zntfDPQEAAADQS4cffrhOO+00SdJznvMcfeITnwh+tnXrVh1xxBEaHx/XbrvtFntZr7CMEwD0qUqxGHydpWIKAAAAgKRbb71V4+PjwfcXXXSRHn/8cd1+++2amJiIvaxXCKYAoE9VDT8nmAIAAAAg6RnPeEbV9/fff78OOugg7bPPPjUv6xXOZACgT7kVU3yYAwAAACvDzMyM3va2t2nVqlXaY4899LGPfazq524r33Oe8xx96Utf0uc+9zl5nqd3vOMdkZf1EhVTANCn3Iop+X7vdgQAAABAYs4880x973vf0zXXXKNNmzbp/e9/v2677TYdeOCBy7a99dZb9ba3vU1r1qzRJz/5SY2OjqpQKCy7rJcIpgCgT1XcYAoAAABAy3zf12xxtif3PZYfk9fgYkbT09O67LLL9LnPfU5HHHGEJOmKK67Qs571rMjtn/GMZ2h4eFijo6PatGlTcHnUZb1CMAUAfcpt5WNNPgAAAKB1s8VZrTp/VU/ue/rsaY0PjdffUIuzoQqFgg455JDgsnXr1mnfffft1u51HWNJAKBPucEUAAAAgMHnD+AIDyqmAKBPMWMKAAAA6Iyx/Jimz57u2X036nnPe57y+bxuvvlm7bXXXpKkHTt26N5779WrXvWqbu1iVxFMAU2oVCr69a9/rec///kN9wAD3ULFFAAAANAZnuc13E7XS6tWrdIJJ5ygM888U+vXr9fGjRt1zjnnKJPp34a4/t1zoAdOPvlkveAFL1i2HCfQC5VSaekbKqYAAACAFeEf/uEf9MpXvlLHHHOMXvva1+qwww7TQQcd1OvdapnnD2KDYgumpqY0MTGhyclJrVmzpte7g5SyVVLDw8Oan5/v8d5gpfv1Zz6jfd75TknSbX/+5zrosst6vEcAAABA+s3Pz+uBBx7Q3nvvrZGRkV7vTt+qdRybyViomAJaUC6Xe70LAK18AAAAAPoewRTQAoIppEFVMEXxKwAAAIA+RDAFtIAOWKSB786YAgAAAIA+RDAFAH2KiikAAAAA/Y5gCgD6lM+MKQAAAAB9jmAKAPqUWzHl9XA/AAAAgH7EiJb2dOr4EUwBQJ9ixhQAAADQvHw+L0manZ3t8Z70N3v87PFsVa4TOwMASF5VMMVfewAAAICGZLNZ7bbbbtq2bZskaWxsTJ5HD0KjfN/X7Oystm3bpt12203ZbLat2yOYAoA+RTAFAAAAtGbTpk2SFIRTaN5uu+0WHMd2EEwBQJ9i+DkAAADQGs/ztMcee2jDhg0q8nt10/L5fNuVUhbBFAD0KbdiisJjAAAAoHnZbLZjAQtaw/BzAOhTDD8HAAAA0O8IpgCgTzFjCgAAAEC/I5gCgH5VLvd6DwAAAACgLQRTQBOGJR0miQ5kpEGFVj4AAAAAfY5gCmjCFyT9UNKHer0jgCS5w89p5QMAAADQhwimgCb8ofn3vT3dC8CgYgoAAABAnyOYAlqQ6/UOAFL1jCkqpgAAAAD0IYIpoAUEU0gDn4opAAAAAH2OYAoA+hWr8gEAAADocwRTANCvqJgCAAAA0OcIpgCgXzkVU6zKBwAAAKAfEUwBLSj2egcAST7DzwEAAAD0OYIpoAU0UCENPGZMAQAAAOhzBFNAC6iYQioQTAEAAADocwRTQAuomEIaUDEFAAAAoN8RTAEtIJhCKjD8HAAAAECfI5gCWkAwhVSgYgoAAABAnyOYAlpAMIVUqFSWvqZiCgAAAEAfIpgCWkAwhTRgxhQAAACAfkcwBbSAYApp4LkVUwAAAADQhwimgBYQTCEVGH4OAAAAoM8RTAEtIJhCGlAxBQAAAKDfEUwBLSCYQhp4DD8HAAAA0OcIpoBGOSf+BFNIA4afAwAAAOh3BFNAowqF4EuCKaQBrXwAAAAA+h3BFNCohYXgS4IppIEbTDH8HAAAAEA/IpgCGuUEUzRQIQ0yVEwBAAAA6HMEU0CjnGCKNw7SgOHnAAAAAPod59dAo5xgKtvD3QAs2vcAAAAA9DuCKaBRBFNIGYafAwAAAOh3BFNAowimkDLMmAIAAADQ7wimgEYRTCFlMk4rH219AAAAAPoRwRTQIH9+PviaYAppkGH4OQAAAIA+RzAFNKg4PR18nZXkEwSgx6iSAgAAANDvCKaABhV37Qq+zkqqMN8HPcaMKQAAAAD9jmAKaFBpZib4OiupXC73bmcAVc+YAgAAAIB+RDAFNIhgCmnD8HMAAAAA/Y5gCmjQSg2mJicnNTU11evdQAQqpgAAAAD0u64GU6VSSf/7f/9v7b333hodHdVzn/tcfehDH6qazeP7vs4991xt3rxZo6OjOvzww/XLX/6y6nYWFhZ0yimnaPfdd9f4+LiOOeYYPfLII1Xb7NixQ8cff7wmJiY0MTGh448/Xjt37uzmw8MKU56dDb5eKTOmCoWCdtttN01MTKhUKvV6dxBSFUwRUgEAAADoQ10Npi644AL9y7/8iy655BLdfffduvDCC/UP//APuvjii4NtLrzwQn384x/XJZdcoltvvVWbNm3SEUccoV3OoOnTTjtN11xzja6++mrdeOONmp6e1pYtW6oqVo477jjdfvvtuvbaa3Xttdfq9ttv1/HHH9/Nh4cVJhxMrYSKqe3btwdfu+9JpAMVUwAAAAD6Xa6bN37TTTfpjW98o17/+tdLkp7znOfoi1/8on7yk59IWqyW+sQnPqFzzjlHb37zmyVJV1xxhTZu3KirrrpK73znOzU5OanLLrtMn//85/Xa175WknTllVdqzz331He+8x0dddRRuvvuu3Xttdfq5ptv1sEHHyxJuvTSS3XIIYfonnvu0b777tvNh4kVYiUGU26VVC7X1Y8LtCBLMAUAAACgz3W1Yuqwww7Tf/3Xf+nee++VJP385z/XjTfeqN///d+XJD3wwAPaunWrjjzyyOA6w8PDetWrXqUf/ehHkqTbbrtNxWKxapvNmzdr//33D7a56aabNDExEYRSkvTyl79cExMTwTZhCwsLmpqaqvoPqKUyPx98vRKDKc/zergniJJl+DkAAACAPtfVEoj3ve99mpyc1Ate8AJls1mVy2V9+MMf1p/+6Z9KkrZu3SpJ2rhxY9X1Nm7cqAcffDDYZmhoSGvXrl22jb3+1q1btWHDhmX3v2HDhmCbsPPPP19/93d/194DxIriz80FX2clFVdAMJXJLGXXzJhKH1avAAAAANDvunpe8+///u+68sorddVVV+mnP/2prrjiCn30ox/VFVdcUbVduBLD9/261RnhbaK2r3U7Z599tiYnJ4P/Hn744UYfFlYov48qpv7jP/5D55xzjvw2q2jc90+xWGx3t9BhDD8HAAAA0O+6WjF15pln6m/+5m/0J3/yJ5KkAw44QA8++KDOP/98vf3tb9emTZskLVY87bHHHsH1tm3bFlRRbdq0SYVCQTt27Kiqmtq2bZsOPfTQYJsnnnhi2f1v3759WTWWNTw8rOHh4c48UKwIbitfTukOps4880z99re/1XHHHacXvvCFLd+Ou/IgwVT6ZHu9AwAAAADQpq5WTM3Ozla1AklSNpsNTnb33ntvbdq0Sddff33w80KhoBtuuCEInQ466CDl8/mqbR5//HHdeeedwTaHHHKIJicndcsttwTb/PjHP9bk5GSwDdC2PqqYmpmZkSTNOe2HrXDb9wim0odV+QAAAAD0u65WTL3hDW/Qhz/8Ye2111564QtfqJ/97Gf6+Mc/rj//8z+XtNgmdNppp+m8887TPvvso3322UfnnXeexsbGdNxxx0mSJiYmdMIJJ+j000/X+vXrtW7dOp1xxhk64IADglX69ttvPx199NE68cQT9elPf1qSdNJJJ2nLli2syIeO8RYWgq/THkzZQKndfXSDqUKh0NZtofNYJxEAAABAv+vqec3FF1+sD3zgAzr55JO1bds2bd68We985zv1t3/7t8E2Z511lubm5nTyySdrx44dOvjgg3Xddddp9erVwTYXXXSRcrmcjj32WM3Nzek1r3mNLr/8cmWzS40sX/jCF3TqqacGq/cdc8wxuuSSS7r58LDS9GEw5bbitcJ9jFRMpY/byseqfAAAAAD6kee3Ox15QExNTWliYkKTk5Nas2ZNr3cHKfTrF75Q+9x1V/D9nb/4hfY/4IAe7lG80dFRzc/P64c//KEOO+ywlm/nZz/9qXYddJAqktb+7Gd68YEHdmwf0Sbfl5xW6V+9/vV6wde/3sMdAgAAAIBFzWQsdIIADcqEWtkqKa4g6lQrn/f443ql+fpnTz3V5l6ho0LVcIP4F4aFhQXl8/llswoBAAAADA5+2wca5IWCqLQGU77vdyyYKjthXLHNtkB0WPi5HbDnZ35+Xr/zO78TzBIEAAAAMJiomAIalOmTYMoNozo5Y4rh5ynjDKYfRI899pgeffRR7dixo9e7AgAAAKCLqJgCGpQNBVHllAY17kp6bVdMOcFWeX6+rdtCZ/nhYGrAxgXa8YeMQQQAAAAGG8EU0KBMKAhIa8VUJ4OpqtsimEqVtL7+OsUGUu1W/QEAAABIN4IpoEHZPgmmis5+tXtSX1lYCL4uz821dVvorGUVewNWWUTFFAAAALAyEEwBDcqFqo/SGkx1smKq4oQfVEylS8kJDSUNbDBFxRQAAAAw2AimgAYRTBFMpUn49TdYsRQVUwAAAMBKQTAFNCjfJ8GU28rXyWCqQjCVKmUqpgAAAAAMAIIpoEH50AlyWoMpt2Kq3ZN6351XFQ5C0FNpff11ChVTAAAAwMpAMAU0wvc1FAp5/DarkbqlW618BFPpsiyYGrAAxw2kCKcAAACAwUUwBTQiojrFT2nFSkdb+dyKKVr5UmWlDD8Pfw0AAABgsBBMAY1wQoBZ829aW6lo5VsZVlLFFHOmAAAAgMFFMAU0wgll5sy/vhMApUlHW/mc8MN32vrQe5UV9HxQMQUAAAAMLoIpoBEmmCpKKnmepJXRyueGUT4VU6lCxRQAAACAQUAwBTTChDILkiommOqHVr62gykqplKrHH4+BjiYomIKAAAAGFwEU0AjnGDKtxVTfdDK18kZUyKYSpVwMDpo0Q0VUwAAAMDKQDAFNMIJpsqZxbdNWoOpTrbyyXmMVEylS/j15w1YVREVUwAAAMDKQDAFNMCfn5dkKqZMMLXSWvmU0se7UoWHnw9adEPFFAAAALAyEEwBDShNT0taDKaU8oopWvlWhpU0/JyKKQAAAGBwEUwBDSg6wZSfzUpKbzDV0VX53MdIxVSqhIOpQW7lo2IKAAAAGFwEU0ADihEVU2p3flOXdLSVz7ktL6VB3Eq1koafUzEFAAAADC6CKaABpZkZSdKC56nSJ618GbUfTFWFUbTypcqy19+AhTdUTAEAAAArA8EU0AAbTBUzmWD4eVqDqWKxqM9LelBSbna2vRujYiq1Bj2YclExBQAAAAyuXK93AOgHZRPwlDIZ+Z4nSfJT3Mp3lKRNknbbvr2t23LDjwzBVKqEV+UbNLTyAQAAACsDFVNAA2zFVCmbDSqmlNKgplQqKW++bruqi4qp1Br0iila+QAAAICVgWAKaEB5bk7SYjCV9hlTxWJxqRSygzOmCKbSpbKCgikqpgAAAIDBRTAFNKBigqlyLrdUMZXiVr6gYqrdfXSun0np412p/NCqfIMcTFExBQAAAAwugimgARUzY8oNptJaMdXJVj6PGVOpldbXX6dQMQUAAACsDARTQAP8+XlJUjmfT33FVLFQCIKptvfRDaZS+nhXKiqmAAAAAAwCgimgATaYquRyUsorpqpWa2t3xpRz/SzBVKqk9fXXKVRMAQAAACtDrv4mAIJgamhIFXuSnNKgxneCqbbDC6dSJUPVSqosmx82YOENFVMAAADAykDFFNAIE0z5+XxQMaWUniyXzb4uftO5VflyKQ3iVqplrXwDhoopAAAAYGWgYgpoxMKCJMkfHg5Okr2UtlL5XWrlo2IqZaiYAgAAADAAqJgCGuCZsMcfGkr98POqSpp2gyknEMgSDtR06aWX6mMf+1hi9xdu0xysWKoaFVMAAADA4KJiCmiErUIaHpZmZxe/TmkwVTHVXZLa3kd3Jb4cwVQs3/d10kknSZL++I//WHvttVf37zQUTHkDFt5QMQUAAACsDFRMAQ3ImGDKGxmRn80uXpjSYEqdrJgimGqIG6JMT08nc58rqJWPiikAAABgcFExBTTAs2HP8LCU8mCqkzOm3LlSWcKBWJVKRQdJGpXkeV4yd5rSGWedQsUUAAAAsDIQTAENyJhgqh8qpjo6/NwJBPKEA7H8SkU/MV/fNzmZzH1SMQUAAABgANDKBzQga6pTvJERyQw/99Ia1LitfG3uY9WMKREQxKm4x+nppxO5z7SuCtkpVEwBAAAAKwPBFNCArAl7smNjqW/lc4Mpr4OtfEOSyml9zD3mVi95mYQ+VqmYAgAAADAACKaABmRNCJAZHV0KplJaxeF3cvi5EwjkJRXd20bArZjy7Oujy/xQxdSgRTdUTAEAAAArA8EU0ICcCQEyo6PBjKl2q5G6xXMrptpt5XNnTIlgKk4vK6aCZ2jAqoqomAIAAABWBoIpoAE5EwK4rXypnTHlVtJ0uJWv4A5WR6DSw2DK3rM3YOENFVMAAADAykAwBTTArkiXGx9PfSufOlgxlaViqiG+c5wyCbXy2dffYI9AX0TFFAAAADC4cr3eAaAfuMGUl/ZWPrdiqt1WvtCMqSmCqUgV95h7XiL3aZ/n4J4HLLzxKxV9UdKvRcUUAAAAMMgIpoB6fH8pmFq1KvWtfG4w1W54lg218lExFa0nFVPmubXP9mDFUtLIE0/odZJ2Sbp7wEI3AAAAAEto5QPqKZWCN0q+D4Ipt5Wv0xVTRWZMRerF8HMv1Mo3aDOmbPCWFRVTAAAAwCAjmALqWVgIvsyvWiUvt1homNZgyq2SyrQ7YyoUdhRnZ9u6vUHVy4qpdDaUts8e04yYMQUAAAAMMoIpoJ5QMJX2iqlMB2dMhYOp0txcW7c3qHoyYyo8/HzQwhvzeDxRMQUAAAAMMoIpoB4TTJUkDY+Npb9iqpMzpgimGuJWTCUVTIVnTA0aKqYAAACAlYFgCqjHBFMLkkZGRtJfMeW28rV5Qh++fplgKhIVU13gBFNUTAEAAACDi2AKqMcJpoaHh4Ngqt35Td1SVSXV5j7mqJhqjHOckoqHvPCMqQELpmzFVFZUTAEAAACDjGAKqMOfn5e0FEylvZXPrZhqdx/DY7zL5ligWioqpgaNE0ZV2mxJBQAAAJBeBFNAHeWZGUnLg6l22+S6JdOhVfkqlYpyocto5Yvmzpjykwoszf0MamTTk2MKAAAAIHEEU0AdhV27JC3NmAoqptIaTDkn8e1UTJXL5eXBFBVTkfweVPRkBnzGlFt31ovjCwAAACAZBFNAHaW4iqmUVnFUtfK1EVaUSqVlwVSFYCpSL6p7Bn34ORVTAAAAwMpAMAXUUZyelrQYTGWzWSnlFVNZ5yS+nfAsMpgyg+BRrWrGVEK8AW/lq5ox1YPjCwAAACAZBFNAHbZiqpBZfLt4+byk9FZMZbtYMUUrXwz3OCcUWNrXXzmhYetJq6qSSul7DQAAAED7CKaAOmwwVTLBVGaFVEy5M6YWzGP3qZiK1MuKqYp5bgatlc99PMyYAgAAAAYXwRRQR3l2VpJUzGYlKdWr8vm+r6yzX52qmLKPnVa+aD2ZMWWe24qtmErh67EdzJgCAAAAVgaCKaAOG0yVwsFUCk+WwyvptTtjKmu+LpjH7BcKre/cAOvlqnyD2spHxRQAAACwMhBMAXXYYKpsgyk7YyqFFSqlUkl55/t29rFULC5VTNlgioqpSL2o7gmCqcxgfoxXHVOCKQAAAGBgDeYZDdBBlbk5SVLZzpYyAVU/BFPttPKVneooG0zRyhetF8HJoLfyUTEFAAAArAwEU0Ad4WAqk+KKqWKx2LGKqbITQhXNYxatfJF6UjFlnlvfrhaZwtdjO6qO44A9NgAAAABLCKaAOnwbTJlwJpgx1bM9itfRiiknmCqZx+4Xiy3f3iDrxXDuQW/lcydn9WLVQwAAAADJGMwzGqCD/Pn5xX9tpVSKK6Y6OmPKPG5JKg0NLX5BxVSkqlazhF4X9rmt2GAqha/HdlSFfSlcaAAAAABAZxBMAXXYgd+VPgimOtrK54RQZRtMUTEVqScVU6FWvoHjzpgimAIAAAAG1oCe0QAdZIIp34QztpUvm8JgqpMVU74JpipaCuWomIrmVkz1asbUwFVMMfwcAAAAWBEIpoB6bMWUCaaCiqme7VC8TgZTdsZUSUttjFRMRetlxVRlUCum3IHyBFMAAADAwBrQMxqgczw7BHx4WNJSMJXGiqlisaic8307+2iDqbLnSaZKzCOYitTTVfmy2UTuL3Hua5dWPgAAAGBgEUwBdQRhTDiY6tUO1bCsYkrVLVHNqNhWPs8LKqY8VkeL1IuKnuygt/L1IOwDAAAAkDyCKaCOjJ2rFBFMtRr6dEs4mGpnH+3w87LnSXa+FsFUtB6EKNlBr5hiVT4AAABgReh6MPXoo4/qz/7sz7R+/XqNjY3pwAMP1G233Rb83Pd9nXvuudq8ebNGR0d1+OGH65e//GXVbSwsLOiUU07R7rvvrvHxcR1zzDF65JFHqrbZsWOHjj/+eE1MTGhiYkLHH3+8du7c2e2HhxXAVkx5IyOSqoOpSspOmMOr8mUllVus5vHN4y57njxbMUUrX6RKDyqm7Id3xQRTXspC0rYx/BwAAABYEboaTO3YsUOveMUrlM/n9a1vfUt33XWXPvaxj2m33XYLtrnwwgv18Y9/XJdccoluvfVWbdq0SUcccYR27doVbHPaaafpmmuu0dVXX60bb7xR09PT2rJlS9UJ93HHHafbb79d1157ra699lrdfvvtOv7447v58LBCZEwYkxkdXfzXCaZaDX26JapiqtV9rERVTKXs8aaGG1AmFBCFZ0wNWCxFMAUAAACsELn6m7Tuggsu0J577qnPfvazwWXPec5zgq9939cnPvEJnXPOOXrzm98sSbriiiu0ceNGXXXVVXrnO9+pyclJXXbZZfr85z+v1772tZKkK6+8Unvuuae+853v6KijjtLdd9+ta6+9VjfffLMOPvhgSdKll16qQw45RPfcc4/23Xffbj5MDLisaV/rh4qprgVTdiVCWvki9WIGUtDAtxIqplL2PgMAAADQOV2tmPra176ml770pfrjP/5jbdiwQS95yUt06aWXBj9/4IEHtHXrVh155JHBZcPDw3rVq16lH/3oR5Kk2267TcVisWqbzZs3a//99w+2uemmmzQxMRGEUpL08pe/XBMTE8E2YQsLC5qamqr6D4hig6l+qJiKauVrNTxzh597dr4WwVQkt6In8VX5zPDzAYulWJUPAAAAWCG6Gkz95je/0ac+9Snts88++va3v613vetdOvXUU/W5z31OkrR161ZJ0saNG6uut3HjxuBnW7du1dDQkNauXVtzmw0bNiy7/w0bNgTbhJ1//vnBPKqJiQntueee7T1YDKycCWOyY2OL/5qQJo3BVCcrpoIZU5mMPNPKl0nZ402LXlT02HJXP7f41aBVTFWtysfrDgAAABhYXQ2mKpWK/sf/+B8677zz9JKXvETvfOc7deKJJ+pTn/pU1Xae51V97/v+ssvCwttEbV/rds4++2xNTk4G/z388MONPiysMDlzUtwPFVPdaOWrOMFUNmWPNzV6sSqf/SLX1Y7s3nGDtgEL3QAAAAAs6Wowtccee+h3f/d3qy7bb7/99NBDD0mSNm3aJEnLqpq2bdsWVFFt2rRJhUJBO3bsqLnNE088sez+t2/fvqwayxoeHtaaNWuq/gOi2GAqqJiyIY3SF0wVi8WqwXHttPLZiqmK5y3N10rZ402LquqehEKUoGLKzJgauPCG4ecAAADAitDVYOoVr3iF7rnnnqrL7r33Xj372c+WJO29997atGmTrr/++uDnhUJBN9xwgw499FBJ0kEHHaR8Pl+1zeOPP64777wz2OaQQw7R5OSkbrnllmCbH//4x5qcnAy2AVqVN6FDbnxc0sqsmMrYVj5m/URyg5PatZ4d4jwPXjZbY8P+VVV5xusOAAAAGFhd7QH567/+ax166KE677zzdOyxx+qWW27RZz7zGX3mM5+RtNh+d9ppp+m8887TPvvso3322UfnnXeexsbGdNxxx0mSJiYmdMIJJ+j000/X+vXrtW7dOp1xxhk64IADglX69ttvPx199NE68cQT9elPf1qSdNJJJ2nLli2syIe2BcHUqlWLF5ggYNCDqaBiKpNRxszVyqXs8aZF4hVT7rD1FdDKR8UUAAAAMLi6ekbzspe9TNdcc43OPvtsfehDH9Lee++tT3ziE3rrW98abHPWWWdpbm5OJ598snbs2KGDDz5Y1113nVavXh1sc9FFFymXy+nYY4/V3NycXvOa1+jyyy9X1qkU+MIXvqBTTz01WL3vmGOO0SWXXNLNh4cVIlwxlepgamGhqgyyrWDKDH2vZDLKmFa+LJUr0dzjkkQw5ayO6NlgaoBb+QbusQEAAAAIdP1P7Vu2bNGWLVtif+55ns4991yde+65sduMjIzo4osv1sUXXxy7zbp163TllVe2s6vAcqVSMGQ6H6qYykgqOwFBGlQWFqq+78iMqUxGeRNM5QimIiVdMVUpFoMAclArpliVDwAAAFgZujpjCuh7TtATDqYkqWzmMKVFVDDVbiufn8koS8VUTX7CFVPu687OmPIGrarIfTy87gAAAICBRTAF1OIEPUO2vdQJpiomvEmL8vx81fcdaeXLZoMZU9kehB+7du3S9u3bE7/fZrgVPUlUTJXcADKfj9+wn/VgxlSpVNKll16qe++9N5H7AwAAAEAwBdRmAoCypOHQjCkpfcGUH6rgaqeVz84xcium8j0Ipg499FDts88+mp6eTvy+G+YclyRW5XMrpjLMmOqY733vezrppJP013/914ncHwAAAACCKaA2E0wtSBo2VUNpDqY62conO2Mqm1VubEySlOtB+PHrX/9ak5OTeuyxxxK/70YlXTFVMcFURUutfAOnBxVTO3bskCRNTk4mcn8AAAAACKaA2kxrXFwwlboZUxEVU+228vnZbFAx1YtgygY9/VIxleSMqZJUtTrpQOlBxVTaVtkEAAAAVgKCKaCG8uyspMVgasSEM2mumIpq5Wu3YsrPZpUbHZUkDbVzey2ywdTMzEyi99uMpCumbDBVluRlFj/GB234ud+Diqnc00/rR5Jev3VrIvcHAAAAQBrMdcaBDilOTyurxWBqla2YyizlueEKpV7ryoypbFZZE0zlJRWLxUSrdPohmEq6uscGom4wNVixlKpW4ksqdNv97rt1iKTRbdsSuT8AAAAAVEwBNRV27ZIUauXzPNn6jbRVTHV0xpS5Xrhiqtijx5zmVr7EZ0y5wZS3OG590CqmejFjyoaxSQywBwAAALCIYAqooWjCkAVJudxSgWFagynbflc2VTRtBVPmJF3ZrPJmRUJbMZWkfqiY8nu0Kt9AT0Ryg7ZWq/6avUsbTA1ayAcAAACkGMEUUEPJhCEFzwsqUySpYr5OWzBlW/lKJkTLSirbgKlZTjBlh5/3MphKc8WUerQqX1mSvAGt73ErppIKphh+DgAAACSOYAqowQZTxUz1W8WeJqc9mJKkSqvBlG3ly+XkDQ1JWmzlKyQ8Vyvn+xpV/1RMJbIqn62M87ylYGrQqnx6MGNKrb5XAAAAALSMYAqoIQimQsO+y7ZiKm0nsiawqAqmWgzPPKdiSiaYykoqhuZYddsNvq/fSJrfsSPR+21KwhVTvnlOk6kj6pEezJiilQ8AAABIHqvyATWUZ2clSaVwxZQJpvyUVUwFM6by+eCiloMpp2JKzu2V5uba2MHmHShpRFL+iScSvd9mJF0xVYmomBq4MKUHM6ZEKx8AAACQOCqmgBqCYCqmYspPWcWUHxFMtbyP9iQ9HEyZY5IUO0GpPDmZ6P02JeFAwwZTFWf22YDFUtUVUwmFbml7PwMAAAArAcEUUEPFVAe5rXFSeoef2/a7cidb+XK5oJVPSr5iygZT/q5did5vU5KeMRUx/HyQK6a8pCqmaOUDAAAAEkcwBdRQNiFMORxMmX9TV2FhK2mcIKndVj4vl1ucM2UkWTFVVSmT4lX5/F7NmBrUFflUfRyTWpXPVr4N7lEFAAAA0odgCqjBNyFMpU8qpoJgqgMzpjI2DMjlJM+TXYsvyYop3/eXQoIUB1NJV0y5rXwa1HDKDaMSDqaolwIAAACSQzAF1ODPz0uqDnokqWKGoaetYsq237n72+qKZp47Y0pSyQQgZXNMkmJjl0zCs62akXjFlH2enRlTA9d+1sPh5wMa9QEAAACpRDAF1BAbTKV0+Lk7F8ruWctVXSYM8GwwZcK4co8qptIcTCVRJeWKqpgasFgq8So0SUvB1KCFfAAAAECKEUwBNfgLC4v/OjObpPS28tlgys/n297HjD1JN6Fc0d6eOSZJcKuPcglXajXFrehJspUvk1kaft71e02YexyTWvUw4dUVAQAAABBMATV5JoSphIIpvw8qpoLB2O228plgqmwqpno1YyqXYCDWLD/h6h47/LzszpgatCqfHlZMAQAAAEgOwRRQS1zFVFpnTDlhUtsVU6FWvrK9vYQrl+yH1FChUHO7nnIqppKcMeU7M6YGTi9nTA1ayAcAAACkGMEUUIsNQ4aHqy5O/YwpJ5hqdR+DYMpUTJWyWUm9a+UbLpVUSSqgaFbCrXzB8PPM4H6EJ12FJonh5wAAAEAPDO5ZDdABmZhgKq2tfJluVEyFWvn8HgVTqyTNJdhG2Aw/4cDMPqe+08o3aFU+HjOmAAAAgBWBYAqowTMBgDcyUnV5UKmS0mDKc4KpVk+2lwVTPaiYUiiYmpmZSe6+m9HDiqkV0cqXUOjmpbUiDwAAABhgBFNADRlbbRRXMZWyCougYmpoKNjHSputfBkzX8uGcYm28jlBwSpJ09PTid13U5zgJMkZUxV3+Pmg6eWMqWTuDQAAAIAIpoCabDDljY5WXe73UcWU32ornw0GQhVTvWzlo2LKsMPPM5kVsSpfYm2Ktkpw0I4lAAAAkGIEU0ANORPqZEPBVFpX5Qva75yKqXZb+TImmKrYYCrB1fH6pWLKT3hVPjtjapCHn1dVoSVUMeWlrAISAAAAWAkG+KwGaF/WnKhmYiqm0tbKZ/fXGxpqOzyzFVNBMJXLLd5egsFU38yYcqt7krg/8zz7mYw88zwPXPtZDyqmmDEFAAAAJI9gCqghZ0KduGAqda18ERVTrQZT2dCMKd9UTCnJiiknkBhXeiumlHDFlO+28i3dcdfvN0l+L2ZM2fdPMvcGAAAAQARTQE22Aik7NlZ1eVorpoL2u+HhjlVMeT2smAq38s30QTCV5IypijtjatD0IJiyrXzMmAIAAACSQzAF1JA3J8S58fGqy9NaMZV1KqYqbc6YytpWPlsxZYKpJCum3HAiL2l2587k7rsJftKr8rmtfOZ5HrgwxX08CbfyDdiRBAAAAFKNYAqoIW8rpkLBVDB0OmUVU277nd9mxZQNprLDw5KkiqmcUour/LUiPPS6uGNHYvfdDC/hiqngOU15xdTPfvYzvehFL9I3v/nNpq+b9DF177PtI/qLX0jnny/Nz7e9TwAAAMCgI5gCasibE+JwxZRS2sqXc1r52p4xFaqYkq2YSjKYCgUSpT6omEqEO2MqxcHUt771Ld1xxx360pe+1NbtJDWUvGPB1ItfLL3//dJHPtL2PgEAAACDjmAKqMG28uVXraq6PLWtfDZMGh5e2sdOtfKZiimvhxVTaQ2m3OAkvM9dYVv57ED6lCq00/bZgxlTweIBnQoab7utM7cDAAAADDCCKSBOuSxTI7Q8mDKBQJqWl/d9XzknmGq33dA+9qBiqgetfOEWrvLkZHL33YREwiiX28pnnuc0zpjqWDDVpzOmyil8TgAAAIC0IZgC4iwsBF+GgymlcMZUpVKRiY6UHRnp+IypoGIqwSqxcOBT2bUrsftuhpd0iGJed5VsNmg7S2MEUmwnxOxhMNWp5sj77ruvQ7cEAAAADC6CKSBOjWAqaKFKUTBVLBaDYKrdVj7f94OKKRtMqRfBVDiQmJ5O7L6bkXjFlH1Os9lgxlQaJ011KphKbMaUuc9OHcsdKW09BQAAANKEYAqIY4KpiqSRPqiYKpVKkRVTrexjpVKRnV5kgynPtPRlkpyr1SfBlFsxleSMKWUy8lI8/LxvK6Y6dH9+ip8bAAAAIC0IpoA4Zqn3BUnDIyNVP0pjxVSpVFqqcmozmKq6LTtjqgfBVDjkyczOJnbfzehVxZTvVEwlFd40ozI3pzdIGmll1pRbMZXQY8ukaGYcAAAAsFIQTAExKnNzkkwwZdvZrBRWTFW18g0NLc2YamEfy87gdzv83FZM9bKVL2Oek7RJfMaUO/w8xa18L/vVr/Q1Sa//+c+bv3IPVuXreABGxRQAAABQF8EUEKNgBm1HBlO2YipFFRZuK587Y8prs2IqZ6rFgla+JMO4UFCQN1VsaZN4xZS9v1xu6bIUVkytMa2Xq1t53npYMUWcBAAAACSHYAqIUTQn1QuSRkKtfDaYaiX06RY3mFI+31ZVV1UrX3jGVC+DKWcgfaokPGPKc4afe5kUf4x3aMbUsiH4XdLp4efMmAIAAADqS/EZDdBbbjCVz+erftZONVK3uK18yufbmoMVGUyZf7MJPuZwyJNvZVZREpKuVnJX5UuxtuaR9WBVvkwKq84AAACAQUcwBcQIginPW77yWUqHn1cFU21UTJWLxeDDwTOhXMYEU0lWTIUrZUaKxcSqZ5qS8IypIKhxKqbSWJvTzjwyrxetfLZiilX5AAAAgMQQTAExSjMzkqRi1MmlbeVL6Yyptlv53JlAZo6RDaayST7mUEAw5vsqpLBqKvHXwQqrmEqqIo1V+QAAAIDkEUwBMYJgKurkP4XBVLiVr50B7WV3lpMJprweBFPhVr5VkmbM85IqvZoxlcstrfyWwkqytlpde7AqH618AAAAQPIIpoAYpdlZSVIxari0DWtSFEwta+VrY0B7VDDVi4qpcNveuKRp02KZKgm/Dqpa+UwwlcamsWynZkwl3crXqRuklQ8AAACoi2AKiFE2lTmliIopr41qpG5xB5ZXtfK1sI+liGAqOzq6+C0VU8v1asZULpfqOUadmkfWr8FUmp8bAAAAIC0IpoAYZVMxVe7HVr5crq2KqYo7x8ncTnZkZPGmezhjKrXBVNKvA3N/nlsxlcI2tLaCqQEYfg4AAACgPoIpIEZlbk6SVMrllv/QtvKlaVW+YrG6YqqNlQNtK19ZCtqRgmAqyZP2iGAqla18jkRmTNlgKpcLgqk0RilttX26c7uSCqYSuRcAAAAALn4PB2L4JpgqRwRTXgorpsruSnpOK18r+2iDKXdCUKYHFVPhQCKtFVNJvw4y7qp8aZ4x1UZw6/WwYqpjaOUDAAAA6iKYAmLYiqlKrYqpFLX8LAum2gjPbCtf2TmxztkZU23sY7PC1UfjkmamphLcgwb1asZUPl97wx7rVMVUUsFfttPDzwEAAADURTAFxPBN0FOJOPn3UrgqX1ww1cr8o1rBVL6HrXySNP/008ndf6OSXpXPBihuxVSKQlKrreq6HjweO02OVfkAAACA5BBMATFqBVNpHH5ecVfS61Qw5VxmV+XLK7mZP+79VMxJfiGNwZQj0RlT+XwwYyqN2gmmvB5UTHW6lY9V+QAAAID6CKaAOCbo8YeGlv/MVExlUhRM2YqpYGB5G+FZMPw8qmJKiysAJsENeebNMS/t3JnIfTcj6YDSc1fly6T3YzzbTtDTgxlTHa+YAgAAAFBXes9ogF4z4UwlIpgKhp+nqH3KVkyVbFDRiRlTTuiRGxuTJA1JKpifd505vhVJRfM8lCYnk7nvZiQ8YyrrrMpn7y1Nr0Ur36HALunh52k8lgAAAMCgIpgC4tjwZXh42Y+8FFZMLZsLZedgtbAyWs0ZU0quYsoNeWwwVU57MJWAYMZU2lv5OlQxldTxzdbfpCm08gEAAAD1EUwBMbwGgqk0VVbYiqlyByqmfBM8ucFU3lRMDUsqJlQxZWdM+ZJKIyOLX+/alch9N8N9HSQxf8tzKqaU0lY+3/fVzpqBXg9b+TqGYAoAAACoK51nNEAKNBJMpaliyg+137XTblgxwVTFObH2nONQdFcA7CI7Y8qXVDYVW/70dCL33RT3dZBAiGJbzjL5fGrnIZVKpbaCKWZMAQAAACsDwRQQI9NvFVPhuVB2H9uYMVVxq3Gc1QlLc3Mt7mWTnIqpiqnY8mZmkrnvFMu4FVMmPExbmFIsFhWxbEDjEg6mfN/veDCVtucEAAAASCOCKSBGplRa/NdU6riCiqkUBVN+qJXPVky1UtUVVEzFBFPFhMIhty3OHx+XJGVSGEx5PaqY8nK5pRlTKXotSovBVKcqppJQLpc7HkwxYwoAAACoj2AKiJE14YxnZhu5PBPSZFPYylcJz5hq4QQ/uC33xLoHFVNuK59WrZIkZZOq1mpGwjOmMs7w87TOMSoUCu1VTDlaqfprVrlcVq7r9wIAAAAgjGAKiJGtUTGVSWErXzBjygZSnRh+7lZMZbOy6/v1opXPW7NGkpRLaL5VUxJeQc6dMZXmVr6OzZhqe2/qKzsrTXbs/lIaGgIAAABpQjAFxAiCKTPbqEoaW/lslZMNpNoY0G6DKT+04lvRnGiXEw6mJClrgqm8aVlMk6QDyqrh5ykNP9qdMeUlHPaVnZUm03lEAQAAgMFEMAXEyJUX64OyNSqmUhlMdaKVL2rGlKSS+bec1Kp8TsVUEEw5AUJq9Khiqmr4eYpei5JUmJ/vWGtcEu+zcjdeVykNDQEAAIA0IZgCYgTBVETFVBqHn8tUePkdrJiy1VfBXZgT7dLsbMu72dR+ODOm8mvXSpKGnZartPB6NGPKrZhK0StRUvvtnklXTFXcVr4O3R/DzwEAAID6CKaAGLWCqYwdfp6iYCqula+lk2wbcoVb+cz3SVVMuTOmbDA1WqmoXC7XuFIPJDwPyb7uMkNDqZ0x1fYcMueYJhEAV1IYeAIAAAArAcEUECNvqnVyZjU4lw2mUlUxZaucbCDVRlVXXCtf2YQglYTmPLnVR8Pr10uSVkmamZlJ5P4b1cuKqWAfun6vzWm7qo4ZUwAAAMCKQDAFxBgyJ8O58fFlPwtCn0T3qA47sLwTrXymYmpZK18KKqbSGEwp4WDKPiuZfF5eJlWvwkAnV25MIijqRsUUrXwAAABAfek8owFSwFZM5VdgxZRt5VO4Ysp8X+lBMOWtXi1pMZianp5O5v4blIpV+dL0WlQHVm502yP7tGKKWAoAAACoj2AKiFKpyDZJ1Qqm0jRjyrNzoTrYyueHKqZsMFVOqpXPrfYyz0PaK6bUQoVas9yKqfS8Aqu1W1XnJT1jqhutfFRMAQAAAHURTAFRnOBlyFTquDJDQ4v/JrZDDbBVTqFgqqVqEzNcPBxMlcz3fkIVU1VtcU4wlbqKqYTvzwai2aGhoJUvbRFIv82YqlqVr+v3BgAAAMBK7Lz6/PPPl+d5Ou2004LLfN/Xueeeq82bN2t0dFSHH364fvnLX1Zdb2FhQaeccop23313jY+P65hjjtEjjzxStc2OHTt0/PHHa2JiQhMTEzr++OO1c+fOBB4VBpYTvPRNxZStcgoFUy3tY0zFlJ055VaXdJVt5fO8/qmYSnLG1NDQUitfynRyDhkzpgAAAIDBlUgwdeutt+ozn/mMXvSiF1VdfuGFF+rjH/+4LrnkEt16663atGmTjjjiCO3atSvY5rTTTtM111yjq6++WjfeeKOmp6e1ZcuWquXijzvuON1+++269tprde211+r222/X8ccfn8RDw6ByKqaGa82YSmyH6gu38rU1B8veVjiYMtU5fkKtfO6MKZkh9HlJMzt2JHP/DUp6xlRUK1/aIpC2V25MuJWvK6vyEUwBAAAAdXX9vHp6elpvfetbdemll2qtWVVLWqyW+sQnPqFzzjlHb37zm7X//vvriiuu0OzsrK666ipJ0uTkpC677DJ97GMf02tf+1q95CUv0ZVXXqk77rhD3/nOdyRJd999t6699lr967/+qw455BAdcsghuvTSS/X1r39d99xzT7cfHgaUbVWblzQyOrrs50E1UpI7VY8Na00g1dbwc9vKZ24juNh8n1QwVTVjylkdsfD004ncf8PcVfkSnjFlK6aSDsfqaXf4edILC9DKBwAAAPRG14Opd7/73Xr961+v1772tVWXP/DAA9q6dauOPPLI4LLh4WG96lWv0o9+9CNJ0m233aZisVi1zebNm7X//vsH29x0002amJjQwQcfHGzz8pe/XBMTE8E2QLOKZobRghZfl2FBK59Cc5B6yLbyhWdMtXKCb6uvFNPK5yfUyue7FVP5vAqmYquYsoqpREOUSiX44M4NDwczptLxKlzSdsWUI4nQrSvBFBVTAAAAQF25+pu07uqrr9ZPf/pT3Xrrrct+tnXrVknSxo0bqy7fuHGjHnzwwWCboaGhqkoru429/tatW7Vhw4Zlt79hw4ZgmygLCwtacE6cpqamGnxUWAkKu3ZpSIvB1JqIYCprhp9nJVUqFWWzva+dyoQqptpqN4wZfp50MFXVyidpIZ/X0MJC6oKpRGdMOW3MVRVT3b3XprVdVZf0qnw2jAUAAACQqK5VTD388MP6q7/6K1155ZUaGRmJ3S48uNf3/brDfMPbRG1f73bOP//8YFj6xMSE9txzz5r3iZWlYOacLUgaMiGUy62YqiTQutUIL9zK18aMKS+0wp8VtPYlHExZBfNclCcnk7n/BiXZRuc7AUp2eDh1lVJWuxVT7jFNInTzqZgCAAAAeqJrwdRtt92mbdu26aCDDlIul1Mul9MNN9ygf/zHf1QulwsqpcJVTdu2bQt+tmnTJhUKBe0IVUeEt3niiSeW3f/27duXVWO5zj77bE1OTgb/Pfzww209XgwWt5Uvk1n+NnGDKXcQfy9lbGBhA6l2VuWzjykmmPK7sIJZFD9UMVVMaTBVpcshlTukO5PPB618aYtAOjn8nFY+AAAAYHB1LZh6zWteozvuuEO333578N9LX/pSvfWtb9Xtt9+u5z73udq0aZOuv/764DqFQkE33HCDDj30UEnSQQcdpHw+X7XN448/rjvvvDPY5pBDDtHk5KRuueWWYJsf//jHmpycDLaJMjw8rDVr1lT9B1ilmRlJCmYahbmtfKkJpuKGn7dwW15MMFWx86uSmjFlqtFsLFEy1Ze+s3JnGiRZMVVyAp/s0FDdCtNe6eSA/KSDqSjlcllnnHGGvvrVr3Z9XwAAAICVpGszplavXq3999+/6rLx8XGtX78+uPy0007Teeedp3322Uf77LOPzjvvPI2Njem4446TJE1MTOiEE07Q6aefrvXr12vdunU644wzdMABBwTD1Pfbbz8dffTROvHEE/XpT39aknTSSSdpy5Yt2nfffbv18DDgbMVUMeak31ZM5SQVUhZMeSY0c6u6mhUXTCVdMRWuPiqbFRLTHEx1e1U+t2IqNzwcVOWkbVW+dts9E2/lc1oko+7vtttu08c+9jF985vf1Bvf+MYE9ggAAABYGbo6/Lyes846S3Nzczr55JO1Y8cOHXzwwbruuuu0evXqYJuLLrpIuVxOxx57rObm5vSa17xGl19+edWw6S984Qs69dRTg9X7jjnmGF1yySWJPx4MjtLsrCSpGDPU3FZM5ZS+iqmoYKpSqUS2JMYJgqnQ4/dtNVbSM6ZM+FIZG1v83lS0rURuZU/WmX+Wsliqo618iQw/r9PKNz8/L0na1UQo6qe0mg0AAABIk0SDqe9///tV33uep3PPPVfnnntu7HVGRkZ08cUX6+KLL47dZt26dbryyis7tJeAVDbBR6lOK58klZOqHqojYyp1vNCqfLbdsKVgytxGwAZTCa1gFp4xpfFxSVLGBIdp4SW4Kl/ZbeVL8YypTg7IT0PFlA2gbUDVEIIpAAAAoK6uzZgC+lnFBB+lmIqpjBPYlJOqHqojCKZiKqaaYYMpL9TKFwRVCQVTCgdTq1ZJkrJzc8ncf4OSbKOzr7eipGw2G8yYSl0E0mZg6/Vw+Hnkz817aKGZSjCCKQAAAKAugikgQtkGU+FgxnICq7QEU9karXzNtht6oeory7e3nfCqfMF+mTbfXDNVKwmomjGV0Kp8ZZkVI9MafnTwfZHE/6gaqZjy1FzFVEqfGQAAACBVejpjCkiriqnIKcdUTLnBVL1Ki6RkbZg0PLz4rwnVWgmmMjHDz70eV0xlJyYkSfkOrvjWb+zrLXhGV0DFVBIqdYKp7OSkHpH01WJR5XK5as5hnLTN/QIAAADSiIopIEIQTIVnLFlprJgywVTGBFN2DlYrrXzheVUBO78qqRlTZj/CwdRQSo65VRWidHlVvnAw5aW0YsrrYGCbxPBzd6XJqP8xjj3wgDZLOkpNtPOl9LkBAAAA0oRgCojgm3adSgOtfGmrmMp0sZXPVmMlFUyFB4nndttNkjSckmNuJRk/VJxWvsU7N/eecIVRXZ2cMdXuvjTAD72mwy2ZvnkPjYpgCgAAAOgkgikgQsUGUw1UTKUmmDIn0lEVUx0Lpmzo1eTttcyGA+YEf2jdOknSSLnc9VlOzUh0VT4bTKU89Gi7Yso5jknPmFq8ez/y5yNqYs5Uyp8jAAAAIA0IpoAoNpgyQcwymaW3TlqCqVwomGprxlRKgik/NGNqeP16SdIqSXMpWpkvyXlIy1r5zGsxbRGI18mquiRa+cL7G1Mx1VQwBQAAAKAugikgimnViQ2mPC8IBlITTIVa+WxVV0ZtzJgKtzLaVr6EK6ZsRDC0dq0kaVzSzMxMMvvQADcU6nYll329VezQ85QOP2+33dNLuGIqPNDfD71nbHA1Kmk+RaEoAAAA0O8IpoAodrh2XDAlyZ7GpiWYsq182ZERc8FiMNXJiqlMjyqmLDv8fJWk6enpRPahEb2smEptu1gHK6ZS0crnvOYLu3Y1dqNpfW76TKFQ0De+8Q3tavS4AwAAoK8QTAFRTMWUXyOYshUraQmmch0MpsKD1K2Mue1cjyqmtGrV4j9KWcVUgqvy2RlTlVDokbYIJNvJiqketPKFK6bkBlOTk43dKMFUR5xzzjnasmWL3vjGN/Z6VwAAANAFBFNAhIytmLIhT4Q0tfL5vi/bdGdnTLnBVNOtfCYI8MLBlG3l63L4Yi0LB1IaTCXJtxVTtoUvk86Pca/d8DLh4fb1ZkxVnJ8XqdxJ1KWXXipJ+t73vtfjPQEAAEA3pPOMBugxzwRTng15ItjIJA3BVKVSkW26C1dM5dRGxVS4lc+u+JdQMBVUTNnKEyeYmp6airzKTTfdpK1btyaxd4FMgqvyLZsxZYefp2iVQqn9iilXIv+jCr1Hls0Kc37eaDDlUzEFAAAA1EUwBUTI2LCpRjBVTlErX6lUig2mJKnc5D7aoCW2lS/hYCpggilJmn/66WWb33333Tr00EP1p3/6p93es56xlT3h4efpiqXan0PmRjo9mTEVHn7uPJ4SM6YS9bJSSY9JekuvdwQAAABdQTAFRLDBlDc6GrtNmmZMFYvF2sGUbU2MMT8/X1Uhko0LphKumPLDM6ZGR4NKtYWnnlq2/eOPPy5Juv/++7u/c44kK6aCGVP27sy/aYtA2n2NuBVgnrq/2mG4Yir8PLrBVLnRNlKCqY64anZWe0i6utc7AgAAgK4gmAIi2DakTK1gyv6bgmCqqmLK7rMTTC2bn+P4zW9+o/Xr1+vUU08NLosLpnLmtvNJtY2FgynP03xucZpWcceOZZvbWVo7d+5MYOd6w86YqtgWPls51bM9ipZtt2LKHX6u7gdTzQw/LzW4ImTanpN+NZSyNlUAAAB0FsEUECEIpmoNP7ctVB2cpdMqN5jKRVRM1QrPbrvtNs3Ozurmm28OLkttK5+kBTP3KiqYsuHFrl27mp6r1Q73g3RZoNFhy1r5Ujr8vJMD8pMIpurNmHIrpioNVkwxYwoAAACoL51nNECPBcHU2FjsNjYY8FNQMeW28gVhkhNY1GrlmzJDxEtOwFavYiqXUAVDEA44J/gFE0yVJieXbe+uPjgVMxy9G5IcPF4JBVPBPiS2B41pN7wMV0w1u7Jk08LBVI2KKVr5ksVRBAAAGGwEU0CEnDkJzTYwYyotFVM5+41dSa/BVr6awVRoVb5swq18Nhxw761o5lxVIoKnSqUi+6gnI4Krbqk6ce52y1loVT6ltGKqk3PIkpgx5TcxY8qfnW3oNglUAAAAgPpy9TcBVp68OQnNjY/HbpOm4eelYlFBbVNEMFVrH22A4wZT9oMhG1qV0A5WT+qDw57YuxFByexDVDCVe/ppbZX0H0p2zlSSAURQMZXyGVN9VzHVxIwpf26usdukYqojOIoAAACDLZ1/agd6zJ5UZxsIptJQMVWcn1/6xgZTTiVNrWCqVsVUOJjKm9bGvBKY+aPoeU1lW8UWMYB61W9/q90lHaWEB6A3sirfW98qHXmk1GbAYl9vdn6Rl9Lwo5PtnqmYMeU8bw0HUwAAAADqomIKiJA3J6G1KqZsMFBJQTBVjgqmPE9lSVnVDqZmd+zQJyTdumtXcFlcxVTOBFNDMgPXQ61+nRYVRlTMPngRc35seLBW0i8SbOWrm/AXCtJVVy1+/cQT0h57tH5noVX5bFVOknOuGpHvt4qpJmZMiYqpRHEUAQAABhvBFBDBnlTnV62K3SZNw88jgylJFS0GU7Wqup593336K0m3mlXufN8PPhjihp/nZQaudzmYstVHVaubmbAwEzHnx84B2k3S5NNPd3ffHG6IElnZ44Zkbb5e/JhWvrTpZMVUEjOmwsHUsso35+fewkJDN5muqLB/pfMVDgAAgE6hlQ+IMGROSmvOmDLBQBpa+UpuBYcTFpUbmIOVNy1vwyaMK5fL8RVTbjBVY6W/jokKI0xYmImqWnGqXOa2bu3WXi1Td/i5Ow+rzeNWCbXypbUqp93IMvGKqdDthyum3O89NwiuJaXPTb/hKAIAAAw2gikgrFIJBok3VDGVgmCqYio4KlL10PMGgqmMmdVk50q5K/wtmzHlBHWFiFa6TrNVMm7Uk1mzZnFfIsIBd+W0whNPdHXfXE0FU+1W2NlgKsXDz8vlcvvBlPN1EjOmvDozptzh6I1WTKW1mg0AAABIE4IpIMw56RxavTp2Mz9FwZRt5QvviT3VrrWPOdMSl4sIpnJmBTwr4wRVpSQGQNcIpnIR4YBb1VLavr2ru+aq90FaMm2SkrSjzcDMDwVTaazKKbqrRHaAp+RnTC0LGJ37zzRY9UYrX2ek7xUOAACATiKYAsIaDKbS1MoXBFOhkKKRqq4hEzDZiqlyjYopOTOnShEznjrOhgPO48pNTCzuSlQ44IQHlaee6uquVamzKp/bVliIWE2wKeGKKftve7faUYVCoeOtfIlXTNUYfp6tFUy5+5nC0LAfcRQBAAAGG8EUEOI7LWLDDVRMLau06IGKOVGOC6ZqtfKNmMdrGwBLzkn3smAqt7ReQpIVU1W7sNtukqThiLDNbeWTmZ2VBPeDNCpAmXOqpNoN9Pph+HmnK6Z6MmOqxs8zNd5PVYFWCp8bAAAAIG0IpoCQoqloWZA0HGplc6WpYsrOmCpnqt/S9YIp3/c1Yn4WzJhygrlMeNU9z5O9pSSCqagZU0Pr1kmSRqKOuxseJBhMeTFfWwtOW2Gxzdlcca18aYpAisViqiqm3ve+9+njH/947fsLB8w1KqZyDQZTaQwN+xFHEQAAYLARTAEhhV27JJlgKlwx5EhTMFWvlS+uqmtmZkYT5mtbC1V2Whm9cDAlLQVTCbTy2ZN8N5IYXr9ekjTu+yqEWqrciqlcuy1zTahXMVV88sng63KjK7rFMY/Rd4bcS+k6eS/MzSlbf7OGtTNj6u6779aFF16o008/vfaG4duvMWOqVjAVOfwebUnTaxsAAACdRzAFhFRVTNUIpmzFip+GVj5bMdVkK9/U1FRVMFWpVKoqptzWPatobjOJiikv9K+0FEyt0mKwVsUJBYYSWDXQ8uqEEe7w83K7x82+3kIzptKkE6+NTlVMTTcYUDYzYypX4z1PK1/ncRQBAAAGW/rOaIAec4OpbDa+7iNopUpBxZRvKofiWvniqrqmpqa0xnyd0+KKfBW3CikimLJVWW1X/jQgaOVzTvDza9dKig6m3JBwNIH9s6pOnCMCFL+TwVR4+HkKW/k6XU2XxIwpLzxjqkbF1FCN9zzBFAAAANAcgikgxK6atlDnpNJvYMW7pNiKqVJMMBXXyjc5OVlVMVUqlapa+RRRjWPvo+2ApQFRrXxatWrxH0VUwzihwNjCQtdXcrPqBVOamgq+bPe4xc2YSpNiB4Ip91G1UzHV8JynJlr58lRMJYqjCAAAMNgIpoCQkgk7inVapIJgIAWtfLZiqhLaZ7+JVr68qoOpohR5Ym0rpipugNUlkSekTjC1rJXPCQUmfF/zCVVN1fsg9czcMqmDM6ZMNVsqK6Y63MrXzoyphu8vXDEVvj+3YqrGviy7Xgfcd999+uAHP6inn36647cNAAAA9NryPh1ghSuZsKNuMGXa/NIwYyoumKo3oH1qx46qVr45J5gqSZErq/WiYqrK+LgkaUjSjNMiF95+raSdO3dqdHS0i3u4qF7FVNYJ0CodCqaU4oqpTr82Mmo98Gm0YqpeMOX+fLhWMOU8/52q1zvwwAM1MzOje+65R1dffXWHbrV/pO8VDgAAgE6iYgoIaTiYsie8KWrlK4dmYtWbMTW3fXvwdV5SqVgMZkyFB6lbdo5VIjOm7L/uvphgSpLmn3qqensnJFyrxVbFJFStyhfx85wT1LRdaRZalc8OP0/Th3kngqnwq6/SRgD8Z5J+v9791Zsx5dz/UI22wm608tnKwJtuuqkjtwcAAACkCRVTQEjZnASG5zWF2WAgDcGUb1r14lr54toNC04wJUmlQkFlG0zF3JcNppJo5VPUjKmhIRU8T0O+r0K4tckJDNZKunfnzm7voaTqECVqhb5hJ8TzO10xlUKdaOXLhI5jqxVTQ489ps83sF04mKo1Y2pUUrlcjlwcoWo/O/wc1VoldJBRMQUAADDY0ntmA/RIxZxUlyJWpHOlccbUsoqpOq18xSefrPq+ND8fVEyV6lRM+UkEUyYcCO/JvHlulgVTznOxm6TJUKtft1RVTEUEUyPOSoftBnqefYyhiqk0abtdMeo2WwyA8w2Gk/WCKffnI5IWYp5HN5jqdKAyMjLS4VvsD+l7hQMAAKCT+H0PCLFtSOGQZxkTCCw7oe2BYMZUaJ/rrRxYCgU7FbdiKi6YMveRSMWUCQf80L4s5BenX5XCoYPzXGQkzTz+eDf3LuDFfG2NusPnFxa0yxmG3rSY4eeLFyazCmE9nWjzDFeedXuWW6aJ4ecjUuxgffd64ddtOzZp5VZMAQAAYLARTAEhFbPUfblexVSKhp/LtvLFVEzFVXVVQhVF5YWFIHCqxJxUVxJs5bPVR+G4pTA0JGl5MBUOE+YTCKZ8369dMbWwoGHnsvt/9SsdMDGhj330o63doX2MNhhNYcVUNwbjt/o+a3n4eY2KqbykhfCKkPZ6XaiY+kdJj0vaktDMNAAAACBJ6TujAXrMtiHVC6aCYCAFwZSdMeWHK6bqtPIpdKJbXlgIbiu2Ysocl0Ra+WIUTeVIZWqq+gehcKG4bVvX98X3/doBRGgfD/zNb/Rb39den/tcS/cXbuUL7UxLt9lpnQgtw8e01RlTDd9f+NjV+X4hJiTqxvDzU8y/f/nggx25PQAAACBNCKaAEN9Ue1RMu1jsdjYYSEEw5dmKqVCYVm/4uRcKTcoLC8GMqdiKKVsp5sxN6pqYMKJkZu3UC6ZKoeHu3VCpVKpDlHCgEdrH/UxIuEer86/CwVQH28U6pSPBVOg4tjpjqtHj00wrnyQV4qqXnP1utFqrUeUUVscBAAAA7eK3XCDMtrLVCaaUouHniqmYqjf8PBtqRyo7w8/jToKTDKb8mBlT5dHRxS9C+x8OE/zwcPQuCLfyhYOpSszw7UyrrWnmep6dMeU+T2mpmOrC8PO4kLJTls20qtHKJ0mFcChqr9eFiikrvOomAAAAMAj4LRcI8c1JdcXMMYrdLkUVU0EwFa6YqhOe5cw8Lauhiil7H0lUTMXMmPJNMOVNT1f/IBxeJLAq37KKqZC5J56IvLzlYMo8xvBzvXhhOoKpToSWy1r5Wn2fOa/jqBUTrXDF1LJjGa7GC7/2Iu6j088GFVMAAAAYRPyWC4TZiqk6wVTQSpWCVflkKqLiZkzFBVPDoSHVlUJhacZUzEmwn2QrnznJXxZSrFq1eHl4yHboucjEVLV0Ur2KqdmtWyOv124w5ZnnIY3Dzzsxf2xZK1+L77OGh5/XmSkVDq6Kca8t93qdrphKYdsmAAAA0K70ndEAvWYDl3rBVIqGn3s2mIqpmIqrNhkJBQju8PO4tiHftjgmWTEVOiH3TDCVqxNM5WKqWjqpEjq24SqZhZgB7NlWXzehGVNVwcsAV0y1XJnYYMVUtt6MqdB1Yyum3Ot1ODSklQ8AAACDiN9ygRDPhjVm5bdYKWzlU2guVq1gyvd9jYQChEqhULeVLwi/7H12kR/TyuetXi1JyoZnGYXChOFQq2I3hI9tuPKm8OSTkddru2IqasZUSnRjxcZWh583WjGVaXLGVGnXrsjb6ebqgQRTAAAAGET8lguEeDasqRNM2Za28AlrL9SrmIqq6pqbm9Oa0GXlQiEYlB5bMZVgMBUXKWQmJiRJQ+EAJPRcjIYrqrpgWcVUKNAoPvVU5PVyLb5ugpayUNumufOWbrPTulIx1eJjc69Vq2KqXitf+H1eiQk9Ox1MuftcjnrOAQAAgD5HMAWEZEzg4o2M1N4wRRVTNnjywysJ1pgxNTU1pYnQZZWFBVUabOXzkqiYsif5oaqXnA2mQgGIPYm30cB4EisHhiumQj8vmwHsk6HLw61jjeqHiqlOtHkumzGVdMVU6PkJ7085tCJk5PU6MBOq6LzP/DQ+1wAAAECb+C0XCLHBlBoMppZVWvSArZhqppVvampqWcVUpVBYWuEv7iTY3keLQUEz/NC/wS6sXStJGg6HY+Zxzph9XF0uq9zl4LBexZS/c6ckKVw31WrFVFAVZivXBnTG1DKtHq9GV+VrtmKqgWCq0VCslgWnKrBCxRQAAAAGEMEUEGKDqUy9YMpWrKSgYipjQ6JwK58NzxqsmPKLxbrDz+1Q+EwCFVNxYYQNpkZi5jvNjo5KktZq8XF2U72KKZlZROFJU61WTGXCFVMpXKmtE9V04UfVkYqpZoKpsHAFV0KtfG4wRcUUAAAABhG/5QIhWXMCXK+Vz0vTjCkTjnjNtPJNTgbB1LR5LBV3Vb646gzbypdAxVSc4fXrJUljlUp1RZR5LtxgaqepWOqWehVTGRNMTYZCw3yHWvnSWDHVifljnZox1Wg7XbZOK18m9L0fN7+sw8+BG0yVCKZqVr0BAACgP/FbLhBig6ns2FidDdMTTGXiWvlqzMGaefJJ2a2nzPX8YjFo0fPrBFOFmRlVuv3Yze37oXBhxART45JmncoVGybMmlBxN0mTXQ6motokXVmzf9MmLAsub/EE21aFRVZMpeWkPUUzply1qpnqzZhadmyTCqac++l9bWbvdf0zBwAAAIkjmAJCcuYEOBMKEpZvaCpWUnCilLHhiGmzs/waFVNzTzwhaXFQuJ3JVCkUgoqp2LYhcx/bHn1Ub3jDG9rc89riTvFtxdQqSTPOrJ+glc8EUzlJux57rIt7WD/AGDLBwsKqVVWX51sMMJa18qWwiqYr1XQdmDFVS/goxlVMBe+k+fnI26maMdXQPddWmJ4Ovi6lsG0zaQRTAAAAgyd9ZzRAj+VMiFOvYipNrXxBWBHTyhe1j4Xt2yVJc/l8ME/KL5XqVkx5JpjKS/rmN7/Z9r7XYoOmcMWUt3q1pOXBlA0vivm8CuY6c90OpsKhXyhwGjYBRnGieqJXu8FU0FKZwoqpTgRT4QimXmVaI5qpmFq2P+bnc+Z4e3HBVIefg4IzI613zbPpUU5ith0AAAASRTAFhNjV0rLj43U2XKxYCc+e6QVbMeWFKqZUo5Wv+OTiOO75oaGlYKpQCIKpuBlT3vCwJCkf+dPOij3JN9VH45Km3eHmtvUvk9G0CW7mH3+8m7u4bMZU2IitQDNVXlarx88GJJmoGVMpYYOpdoKUZcFUqzO5GqwoW/ZqD6/KZ76ft4G0M/up6mrOfnYipCo6FVO9/6TpvU60dAIAACBdCKaAEDuUOlcvmEpjxVQ4mLIn5RH7WN6xQ5K0MDoahFCNzJiy9/FHkl7Y7o7XUyeYykiae/rp5dtnMpozAVrJVIZ1S72KqTHbGrpxY9XlrQZTNVflS0nFlF2xsZ3Ws65UTDWxKl84CFsWTMXM0er0qnxFMzxfSsdnTa8RTAEAAAwegikgpNFgyrbypaFiKhtTMeXXCM8qJpgqjo0tVUwVi4vtfNJStVWIrZiSpDvb2+26/JhWPo2OBtUj86byS1LVsPR504rZ9WCq1vO/sKBh8xiGNm+u+tGwpHILJ9k2QMnYVr40zpgyr8diO8FUOERqtWKqweAu/GqPmzG1YALBbEzFVKfDwZI7Qy0FnzWJCx3PcgcG6wMAACBd0ndGA/RYw8GUrVhJwclibMWUDaaiqk1MC1x5fLypiqmME0xJUqGLJ4rLwolgJzKaN4FMwa2Yss9FJqOCef589+eOn/70p7r00kvbbreqWTHltBmOhIIpSSrGzCmqxQZT9vVXtfdpqZiyrXwdrJiq1zIZf0MNDj+vN2PK/Fs0gWAmoYqpktPKF/k+HnSh40nFFAAAwODJ9XoHgLSxFS750CpqYUEwlYIwIGtO3sKhUVD1FHGynDGhib96tXwboBSLSye/DQZT09PTWrduXYt7Xlut0Ggul9NYoRAdTHmeymvWLH69c2fk9Q866CBJ0saNG3XMMce0vI/hwMTdY39yUp6kaUkTmzYtu25xZkYjdV5nYUHFlAkhU9nKZ8KDtiqmwhd0IPCpFRo1OmOqYI57NmYId9V9dOD5KM/OBl+noTozaX6pVPVaqDD8HAAAYOBQMQW4KhXZmqMhs/JbrBQNP7fBVOyqfBGVFhnbIjQxsVQx1cCqfOFgapczA6fj4lr5JBXMYy05wVOwil8mo4pZBS/rDkePcM8997S3jzGziCRpwbQRTklaG5oxJUmlubmm7y5cMZXGVj7bWrpg/t22bVvTt9GxGVMNhmONtvKVTTCVaySY6oCy28qXkuAxSeVQyyQVUwAAAIMnfWc0QC857Tl1K6Zsm1wKThZzdSqmotoNh0wlhrd27VIIVSwureCXiy6ozIyMVH0/7bQadVyNY2srV4pOMBVUWGUy8kwVV77O/o2Ojra1i7UqpmbMioCTknbbsGHZdQstHLtlM6bSWDFlXm/zZn92Tk42fRvh91VHhp83UzEV3h/zb8m8/nNxAUmHn4OKE16mIQRPWnimFBVTSEInVtQEAACNI5gCXM5f5+tVTHlpqpiyYUU4mKoxB2vIzDfKucFUqSTPnnA3GEwlUTEVpWgea8WpiLKP0/M8ZdevlyQNO61QUUZCj6fpXQwfW+f7uSeekCTNZLMajgg6O1Ex5VYEpeVkylZMdTJCaLUSqdGKskYrpiomyMzHBFOdrpiqOK/fNMyza8S2bdv0i1/8oiO3FQ6iqJhCt/2///f/tG7dOl1//fW93hUAAFYMZkwBjtLMTPCmGLEzimLYtrk0VEzFBVNejRlToyaEy+++exBM+aVS0PbnxwRT2XArX51WuXbErsqnpcoV3w3GnO3zpkJpNGb1tGdKep6kfLj9sdl9rFHJs2Ba2OZyOeUjhumX6oRmUbI1Kqb8SmX5bKYesMFUbnRUmpvT2t12a/o2kpwxVSmXl//PMDxjyl5sgqlczPPe8WCqDyumDtm4UXtJuuTOO/XCF76wrduiYgpJO/bYYyVJRx55ZGrCfgAABh0VU4CjYEKOgqThOi1eGVsxlYJfXONa+WzgFHVCO2pO8Iae8Yzqiqk6w8+zoeMy+9RTLe93XTWObdnuh7tqmbMq35CZ6TQesXpapVLRI5K+L2njr3/d3i6Gj62zz0VzbOaHhzUUVTHVQjC1rJUvjTOm7OvRhIdrzbyvZnRqxlQjx6fshB322VxWMWVDz7ExSdJwI/vTgc+GqoqpFHzWNOJ+Sd+TdNfnPtf2bVExBQAAMPjSd0YD9NCCqf5ZkDQcbosL8VIUTNkqmmyoLc2LmTG1sLCg1eY6Ixs2LFVHlUp1Z0yFg6mFJ59sa99rssc2omLKBgSeMxzanTE1uscekqQ1pdKyv3rPmzZGSdpw//1t7WKtE+WiWTGwMDKiIbO/rnZa+YJV+ZzgpdPVOq2yQenzduyQJL36wQebvo1uVEzFBUVuVU7csxmEQqbyLR+zP51+DnzntZqGz5pm7P6b37R9G1RMAQAADD6CKcBRNNU3C5JyMcGMlaYZU/kmZ0xNTU3J1rCMbNy4NCTdqZhatsKfvclQMFVIoGIq6nTcNwFBJmIGj5fJaPxZz5Ik7SZpLhQAucFUpU4A2eg+Rn1fMcFMcWxM+aEhhZsKyy0EU7aOLRPx/KQlmMp2YD/CwVR4yHyj3Gcnri0nKpiKq5jyzOtuOC4kci/vRJDkBlMpeX4b1oHqJiqmAAAABh/BFOAIgqkGlphPU8WUjdDCFVMy1TRRwZSdoJVdt66qYsqrVzEVuo9iF4OpWkfWM8Pps26448yYGnvmMyVJayVNOiv3SdXBVLHNGVO1TpR9sxpdZXxcnuctGwZedvajUbVa+dIyDyXXgf3oVMVUI6sWusFUOWZbe5Qz5nU3nFDFlLsgQxo+a5rSgZUUK6GKKZ9gCl22VtLbJNVe/gQAAHQSwRTgsMFUoZFgygQDaThZtEFALtzKZyumQvvoVkxpYqK6YsqeWDdYMVUOhT4dZfYlavi5DaZyTrjjzpjy1q2TJOUlTT72WNV1550wa6HdGU01KqY8M7PMN/sannbVSsVUEELaVr4Ggpek5TpRMRV6LK3OmGpk1UJ3xlTZbh8efm7bZc2iCHFrOXY6mPL6OJjqRIhExRSSdo2kKyR9utc7AgDACkIwBThKZl5Rsc+CKRshLVuVL6aVb9fTTytYI27NmqXqqHJZGdvK1+CMqUoXgykv9G/VfpiAIO+uuufMmNL4eFChNPvoo1XXnXdW8mu+ZqlarRPlrB3MbvY1/LqqxKwYWEu4YqqR4CVpnaiYWqbF22wkuKtEVEyFj2Uwx82EjKOSylHPfYcfez8HU7TyoR+9yvz7pz3dCwAAVhaCKcBRMkFCsYEqmrSsyuf7fhBMLWvli1mVb3br1qVvnGDKK5eX5jTFBFP50BBv3wyM7wbfac0Ly5qV3vLOiavnBlOep13mMcyGKqYWTIudJBXabDdaFgY53+fM/KvM2rWSpFLocbQ1YyqiYiotM6bszLOfH3qoJOkm8/ib0alV+RqqmHKDKbN9+FjaW8nvtltw2ULEa7/jFVPOvmX7LZhq4TkrFAo6+uijdcEFF0haHkzRygcAADB4CKYAR9kECcVsts6WSxUrvX4TVSqVIJgKt9kpppVvfts2SdJcJrPYsucEU5k6w8/DwVTGVgV1Q40T8bwJO4bdE1enlU+Sps1jKLhBnKSiE0yV2jzRrXWiPGTaDHOmrbAUCjxbqZgKDz/3GghRd+3apYceeqjp+2pV8Moxr5VWwpokZ0zZ8KNi/ova1gbQQ07I5gacwdXc/exAkJRxgqleh+BNa+G99cUvflGj3/62Pv83fyOJiikAAICVoNfn1ECq2Fa+UgPBVFqGn5cKheCNHA6m4lYOLGzfLkmaN1U3VcGUrZiKmzEVCqY8c8y6osaxHTJhz6h7ompXTjNhzZypICuaIM5yg6lKC1VLNffR+X7YBE9Du+8uaXnFVKWF4ee1gqm4AOgZz3iGnv3sZ+vBBx9s+v6a5QaldgW7VlaTs0fKXrObFVM2/Ki6h5jh59nx8WCfFqLaWDvdyucEM73+rGlaC8/ZxJ136hpJd5rvqZgCAAAYfARTgMOGFI0EUzYY6HV7TdFUeUnLW/k8O9Q8tI/FJ5+UJM3bmVQ25GggmApXTGUTCKaiWvmCYKpSCQKHqlY+SQtmX8uhlQOLbgtWC1VLrloVHKPmpDoIptqtmPL9IJjKheaJSfHB1IK5nx/84AfN3V8LisWiTNwZBFPZNoKpuFXyWlKnla9ctWl0xVQmn5eNMovOrLLgeh1u5cs6wUyvP2ua1kIwtfGJJ6q+X1Yx1YGV/gAAAJAuXQ2mzj//fL3sZS/T6tWrtWHDBr3pTW/SPffcU7WN7/s699xztXnzZo2Ojurwww/XL3/5y6ptFhYWdMopp2j33XfX+Pi4jjnmGD3yyCNV2+zYsUPHH3+8JiYmNDExoeOPP147u7laGAaSnflTbiaY6uoe1VdyKn7CoVFcxVR5xw5JUsEEWV5EMKUGh5/nW6j6aVStYd4jJuxZpaXgJQiyTABUNMGI//TTVdctO4GC3+7+16iYGjcn0aObNklaHnj6TQZTbrVIZMVUneDCa2Cof7uKxeLSMP4OBFMVO/OpAxVTcdyKKXsElwVT9uayWS2Y2yxEtfK1GB7FXS/bxxVTXgvPWT4UuC6rmAp9DwAAgP7X1WDqhhtu0Lvf/W7dfPPNuv7661UqlXTkkUdqxqmwuPDCC/Xxj39cl1xyiW699VZt2rRJRxxxhHY5J46nnXaarrnmGl199dW68cYbNT09rS1btqjs/NJ73HHH6fbbb9e1116ra6+9VrfffruOP/74bj48DCDfBlMx1UKuTEpW5Ss7wUpsK19oH30T2trgxoZQGSeYssO1lwmFK0NtVhzVZPc7IlwYfcYzJC0GU9NmzlUwuN1sXzar4XmhAKHszsXqVsXUwoKGzf6P77HH4v22WTHlnqRnzQl8IzOUrESCqUJBNlqwK9i18h4Jt/K1OmPKFVfNVBVM2WMU2ta+6r1cLgim6lZMNfi477//fm3YsEHnnXfesp9lnddXr0PwprXQdmdfM9JiWBcOoloOKAEAAJBa0SURHXLttddWff/Zz35WGzZs0G233aZXvvKV8n1fn/jEJ3TOOefozW9+syTpiiuu0MaNG3XVVVfpne98pyYnJ3XZZZfp85//vF772tdKkq688krtueee+s53vqOjjjpKd999t6699lrdfPPNOvjggyVJl156qQ455BDdc8892nfffbv5MDFAbCtfJaZayJXGiqlwmOTFDD+XaWWrmGDKVkxlGmjlCxvpZjBVg12Vb5WkrTMz2n333ZcepwnPKmYFtWxo9TQ3mPLa3f+4iinnPlfZYKrNiqnSwkLtGVMpCKYKzuvRhgxtV0z5fsuBRCPD4YPh5zWOj31tZfN5FTIZqVJRMWLwfytH+IwzztCTTz6pc845R+9///urfpZzq+RWQMVUzgmm5ufnl7fyUTEFAAAwcBKdMTVpqhbWmdkwDzzwgLZu3aojjzwy2GZ4eFivetWr9KMf/UiSdNttt6lYLFZts3nzZu2///7BNjfddJMmJiaCUEqSXv7yl2tiYiLYBmiEbetqpGIqLcPPbcVUSVpWWRS3j1lT6VExFUXB8PNKZWmWTlzFVMhIN4cR29a8qJ+tWiVJGpY0Y1oTvVCFVcZ81gyFAoSK+72z6llLuxhz8l00c62mJU2Y/aiEg6km77vsbB81YyoNFVMlZ+ZZMGOqExVTHXifNVQxFbNt0MqXy6lgnsdyh2ZM1QoUc87rq6t/SeqGFoIpt2JqdteuZcPO01oxdfvtt+v8889faisGAABAwxL7Pdf3fb33ve/VYYcdpv3331+StNUs4b5x48aqbTdu3BisHrV161YNDQ1prbNEt93GXn/r1q3asGHDsvvcsGFDsE3YwsJC1S+QU6GKCqxMNpjym2jl63XFlA2milr+ho4Npmw7rak6qqqYajKYWlWpqFQqKddAlVnTarTyybYhSpozw9wVqpjKrl8vSRoOrbznO+FJpt1gKhxEmH2YfuwxrZU0JekZ5mR72eyyNoKprHl+vAZWnUtSscPBVLnNGVPNVkwFexp+z9jby2aXgqmIwf+tDj9/lqTHIy53g6leh+BNa+VYOHPy5p5+elmrbOoqpu67TzrvPL3ls5/Vveais88+u/3bLRSkBj+DAQAA+l1iFVPvec979Itf/EJf/OIXl/0s/Fd83/fr/mU/vE3U9rVu5/zzzw8GpU9MTGjPPfds5GFg0JmwstLACYENBnodTNlWvqjTtbjh53kTHmRM4BsEU5VK0618q7U046njap2IDw0Fj3nBDje3q/OZMCJvAuux0IBzN5jyulQxNWdWF5vyPOXNsQy3iDY7yLkSE0w1WlWUaSCkaVdVxZQJGXItBCp2T+NmPrUiLrhzK6acjSP3Jzs0pGJEMHXppZfqf/7P/6lpt4qqwcf9oief1MOSvh3xsyHn9dXrz5pmtdLK5372zj/9dPpnTF12mfTZz+pHkn4i6Tc33dT+bX7mM9LwsPS1r7V/WwAAAH0gkWDqlFNO0de+9jV973vf07Oe9azg8k1mpapwVdO2bduCKqpNmzapUChoh2nVidvmidAS05K0ffv2ZdVY1tlnn63Jycngv4cffrj1B4jBYYIpv4FgKjUVU2afSxEhbFzF1LAJanImmLLVUZlKJahuyTQRTO2KaGnqCNvKFxMwz5qAYMG0zYVb+YbNbKfxcADkhidtVmDEVUzZYGrWCaOWzS5rYcaUlY14fupV6yTSyucEpRmz6mNbrXy2YqrFYKqZiqlyjeozt2KqZJ5Hd1bZSSedpO9973v67L/9W9P7+PsPPCBJek3Ez/LO4+63Vr5WginXQkTFVCvtgd1UMqH4ekkHSTruF79o/0bf+c7Ff//oj9q/LQAAgD7Q1WDK93295z3v0Ze//GV997vf1d57713187333lubNm3S9ddfH1xWKBR0ww036NBDD5UkHXTQQcrn81XbPP7447rzzjuDbQ455BBNTk7qlltuCbb58Y9/rMnJyWCbsOHhYa1Zs6bqP8C2VjUbTPWyharSQDAV/smoeZz53Xdf/HlUMNVgG8kada9iqt5xnTePr2BODu2qfLaVb9QEU2vCJ7PugO6YYMr3fX31q1/VQw89VHsfYwKTwvbti/voBEh+OJhqtmLKbF+SlDGP0XPaz9LQylc2x7bkecHKgc0GU77vd2VVvmWLANibdlv57PvI2db3/eB/lplcTiXznPqhFlFJmjQrXjbDrxGeDTn70esQvFlem89ZYefOZRVTsatg9siP/uu/qr4f7mRwRisfAABYIbr6B9h3v/vduuqqq/TVr35Vq1evDiqjJiYmNDo6Ks/zdNppp+m8887TPvvso3322UfnnXeexsbGdNxxxwXbnnDCCTr99NO1fv16rVu3TmeccYYOOOCAYJW+/fbbT0cffbROPPFEffrTn5a0+NfrLVu2sCIfmpKxFSmm0qMWt5WvkfbTbgmGn0fcvw3PwhVTo+bkbti0urmtfA0FUz/7mXTdddL73qfVku7r1oy2WjOmJC3k89LCgkomDPBCrXyrTIvubr6vUrGonH2cTmtfJiYcuvXWW/WmN71JGzZs0C233KJnP/vZ0fsYUzFVMHOvFpwh5ZVwlVOTwZSdMVWWlDPHpGrGVEQQUHEuS+I1amdMFaUgmGq2la8qmGqzlc+957jgzg7Yrnhe8Bpyj2WlUqlaDbFsAsaKU3m3TtLzJZWd4KThR13jeRly9qPXnzXNaqViyn2OipOTVasSSlo2DL3XHrv//u7deNQCBwAAAAOoqxVTn/rUpzQ5OanDDz9ce+yxR/Dfv//7vwfbnHXWWTrttNN08skn66UvfakeffRRXXfddVrtrMxz0UUX6U1vepOOPfZYveIVr9DY2Jj+8z//U1lnkPAXvvAFHXDAATryyCN15JFH6kUvepE+//nPd/PhYQDZeUNeAycENvTJSSr3sL2kkYopN5gqFotabU52R0wwFbTy+X5jwdSBB0rvepckKS9pxrTSJa1g9rFsVvwMmGBq9V57SVpcuW/Kaff1nGAqG/PcbTcVT9u2bdMb3vCG2HbFSkxgUjbtxwujo8Fl4YqpZtsIo2YhuRVT9fYviUCjYoPSTEZZE/A2+xeQTgZTVY85rmLKvO8rUuTw80qlUlUxVTavO7di6nJJN0l6vlM9GFehFRZXMeX7vtxPoozSVzFUS3i2XUNCwVR42HnaZkyNhb7vaM0iFVMAAGCF6GrFVCNtJZ7n6dxzz9W5554bu83IyIguvvhiXXzxxbHbrFu3TldeeWUruwkEguqZBoKprHPSUC4WgwHXSasVTEVVTO3atUsT5usx0+pmQ6hsM618q1YFX85t29bSvtdlTmzjZkwVzfNkg6mgdcgOP1+3TiUtftBNP/yw1pkZdxl3VlPMib77+XXHHXfouOOO01e+8pWqQHzxzsvhKy7uuqniKjurjIVbRL0mQwY7Tyzu1DyqYsoNTZMIpoJVIp1Wvpyaq/SJCqZanTGlGnOjgsudiin7+ne3LJdKsu/u7NDQ0oBup2LK1tNtbGVmWcxxKZVKCn8SlRYWIueLpVILz5l73EtTU/JD77e0B1ONhpEN6ZfnGQAAoE2JrcoH9AMbTHkNtPK5w8HLba7s1g4bBFRqVEy5p3ZTU1OyE9Vy69cvbmfnZTkVU9l64VwmEwwfL/SoYqpsniffVDOFW/nkeZoyx2XmkUeC62Wd5yvcKmTZSqMNGzZoZGREX//61/U3f/M3y7aLDUxMe2PFCfDU5YqpqOClXC5rtRaDk0SCKVNFVPa8oGIqr/jKsihVwZR9LrtZMRU1Y8pt5XNeI142G7xf3Goe+4kx1MIxjquYmp+fV/iTqJefNc3KtBkilaemlrfupSyYGq2/Scv8nTul73+/4dUdAQAA+hXBFODImJOgzGj9042qiqkeniwGFVMRJ7dRFVNTk5NBMKWJxdqpoGLK94MyyrrBlKQ5c/vFbgVTdWZMle3zZNqn7FaeU2Wxy4RB848/HlyWc4OpmBNdG/I897nP1eWXXy5J+uhHP6rLLrusesOYGVOebf1zF1Zos2IqavW4esFLpVLRk5J+K2nctCd2U9lt5XMqpkpNPlb7qIJHlFDFVBDyxQRTmXxeWfOaKkYEU3n3/hrcxbiKwIX5+WUVU/0UTLVSPeRep7xr17JgKm2tjN2smPJ27ZJe/WrpS1/qzA3u2KHy//2/Ta8GCgAA0G0EU4DDrtDWT8GUbwdi1wim3FXRprduXaqgMqFJxq6eVqkEIVYjq/ItmG3skukdF9FWVfVj0ybnzcws/htq5ZOkGbOPC2bxBal6Jb56wZTneXrLW96iD37wg5Kkv/zLv9QNN9ywtF1MYJK1+zQxsXRhp4Ip9zbcGVMxFVP2XtffdVdT99cKO2OqnMkob95HOVWHOPUkXTEVBFOZTHAs3ajIfX9n83nlawRTLU0FiqmYWohYVKCvgqlWWvnc1RBnZpZXSKWsYiocTHXF17/ekZvZ9pKXKPuWt+jhP/uzjtxeq6anp3X++efr3nvv7el+AACA9CCYAhx2EHYjwZQb3IQH9CbJVkyVa7TyuW/0ORPQlDxPMo8zG1Ex1UgwVTCtWmUzT6nTglPUmIoSf3x88cfOEGpJVSf6c2Yfi2aVPEnKO89XPubk2bae2WDjgx/8oN7ylreoWCzqzW9+s+43q3Etm3ljTqzzZp8ya9cu/SxUhRY33yqO23JWdZfBXUcHU4GYAKSTgtdjaPh5qdVgqoMzpuJUnIopdx/CP5cWw95cgxVT7Q4/LziD1K1yH1W7tDv83J+ZWV4xlfJgqhtNdy2+8pfZ8OCDkqThL3+5Q7fYmrPPPlvvf//7WTUZAAAECKYAR66ZYColM6aCKprwUG5FV0zNm0HlM7lccNIeVEw5wVSugTlbJXOcKuFV8TrFhkNxPzerd2bNEOplM6YkLZiqqoobTDknu7mYk2cbTGTMbXmep89+9rN62ctepqefflpbtmzRzp07YwOTYVM5lFu3LrjMCw0zzjQ7/NxZPS64TTdMidiXqtlOSa7Kl81WvYZKzkqI9bjBVNTMp1bFPVe+eQ/5McfSDZ4zuVzwfvGdkCgIplrZr5hgqrgCK6aqrj87u3zG1Apq5bPu6XBlUa8nVt37gx/oC5L+vx7vR5x0RZ8YaL4vnXOO5KxWDgArFcEU4LDBVNZU4tTiOYOse1kx1Ugrn/sTWzk054Qkrc6YClacs/OUOmxZOBGSMcFUzgQEQTDlhHRFs4127AguG3ZObofqBFNu8DM6OqqvfvWretaznqVf/epXestb3qJy+Lk31xsxz8vQM56x9HhCx7TZ4dB+zIypWieaVRVTSQRT5rmoZLNVVXelcFVbDb7vB6/ZtoOpBh5zVSuf2d69VlXFVC4nmc+HrAnb/FIpaOEbaiWYiFt10lRMzWspjOzlZ02zso0+Z+9+t3T22ZJCVX+zs8Fr3krbqnzdHH5ube/wbLhOVWC16n0PP6zjJP2gx/sRp9fHByvIdddJ550n/cmf9HpPAKDnCKYAhw2mcg0EU25bVE9nTNkgoNaMKecyO6h8wQlJshEVU9kGWvnsinNel4KpeqtRZcz8pnwomHKfm4oJpjyn3dANo/JxK7WFWvmsPfbYQ1/72tc0Njam6667Tp/653+OvP6oOaEecYKpTKgKLdvkSXbU8POyX9aDZoxVVEWQG0wlUSkRBKXZbNVy9820oFW10dnnsgOVKLEVU/Va+dxwJJuVZ173WfOY3FlQbsVUw3scUzFVMsFUwfNko7FKP1VMNfKc/eY30j//s/SRj0iVSlUgmJmfT/eMqUolkRlTccF8v9oj5eEqwRSS8vjPf97rXQCA1CCYAhx23lB2rLHTDXuyGP6rfpJsEFCJaOWzlUPuTypmUHnBaVe0wVTe2baRiimZE/ScaaXrNBsOxJ2Y5UwwNWyOQXAi7BwL38x4yjnh2bBzcjusULtb6L4zEaHBS17yEl155ZWSpCfD1QzmeuPmPsb22CP4UbsVU1Ezpo78/JF6wV9L1/1O9Iwp97HFrUrXrvvvv19XXHaZSqVSVcWUnKrCplr53H22M6ZaDSSaqJjyG1iVT5mMMuZ1bwPRBaeVdekRNzFjKuK9Ky1VTBUymaC9qJkQ/POf/7y+3MN5Qg3NmHI/O0LHKyqYSlXFVMRruhutfJ2udOx10BX1R5Q0SdErDAPu/vvu6/UuAEBq5OpvAqwctpImb0486ylr8U20rJ0rSTVmTAVDzWXm9niefHMSXXKqwmwI5dbzNBRMmWAo26Vgyoo7jcqb0GnYHAO7nTtjyjMznobMKnmSNOKcPA5rcYj1cOjx+pWK3iRpbcxj+4M/+AOdf/75+r5pQaqysBAcy7FNm4KLl1VMNdmeFhVMfe+335Mk/fPLpEvrDD+vdCmY+tLznqe/lPTlxx7ThBuUOq/JcovBlD2J7cQJf72KqapZT3EVU5mMsmY1SztEv+BUTOU62MpXNq/ZQiajEfM8NhpM7dq1S796+9s1k8no9TMzy17fScg0cizCwZNznezCwvIZUykKpvyZmfj5d53UYJC0sLDQ0PPc6xlTaQ+mqJhCYjowOxEABkW6fzsAEmbnwzQTTEm9ba+xFVNRA5TdVj4bUHjmJLrsPMaoYKqR4edZE0wNNRE6NMVWTMX8eMiETvakPWr4eW733Re3cWYchYOphYg2s3X33qtrJF16yy3SySdLpgXS9b73vU/777ffsn2uOG2DqzdvDr7OhFfla3bGVETLmVWJOXctOyf23aqUOEvSaknPuvJKya2Y8jzZSKepVr6Ige0tr8rXyP2Z58GdMVW1OpwNhcz3tlJvKCKYarYKTlJVgOcqmWCq5FRMNTpjauGJJ/Rh39fHymU90uHh2Y1qKHh1gyffrzruuUJBL/7a16o2T1PF1IIzty7Qo4qpyy+/XCMjI7rqqqvqbtvrYCrqjyhpQlSAxHTpj0UA0I8IptB3fN/XTTfdpB1RJwVtssFUQzOmpKZPFrvCVtHklhdARgVTGdPS5puqD2lp+Lk7H6eRiqmsqVga6lYwZ39pizkxGzbB1FgomHJn9uQ3bJAkjZpgpFwuVw0sHlF0MJU3xykrSZ/6lLTPPouzcJwTac/zdP555y277szjj0uSpiVNOKvyZUOrPTZdMWWrkSKOR9mLWZXPeW12q2IquP21a5dej+a1Z49Wq8FUUF3RiWAq7vE7rXxLmy5taysiw8HUiLlewWnlc9vX2p0xZSumitlsMFes0RDcro6YlbTt1lsb3ZOOaqRiapt5r0iLbafucc8XChoOVyymKJiaM23RHRV1zBoIpv7X//pfkqS3vvWtdbeN+vxIEhVTwKJutdcDQD9K928HQITvfe97OvTQQ3XQQQd19oZ9XzaKGbIrudVhf8FPRTAV8VdoN5iys4bsPCjPnFxL0SFUpoHh53lbsdTtYCrGiKmGGpdUKpWCE2F3Vb4RM+NplTlOC7Ozch/tiKTCwoLuuece/dwdRGqO1/bhYemAAxZX9Xv3u6WDDpJuuCHYLB8+7r6v6ccekyRNSRpxKs/CrXy5JsOWehVTdYOppu6tMW6roLf77sEwfjs3qWT2tdVWvrZX5Wvk/pxWvuAV51ZM2eNuvs/vtpukpUq9ojO/zK2Ca3jGVFwwZd6rpWy26VX53GM4dccdDV2n0xoJpnY51YXy/arWuHy4jU99UDHVrojH3PEZUx29tRbuP+UVU70+PlhBCKYAIEAwhb7zgx8sLjL9wAMPaFcnV4NzwpVGg6k0VEwFrXx1ZkzZACFvWtoyptpJknKjEYueN3DyMGSCodGok6lOqFMxZVe8G5c048yQcitQRk0r3Rrz+KOqHBamp/WCF7xABx54oJ62Pzf3/eTIiPTTn0r/9E/S2rXSL34hHX649Ja3SA89FPmL5dwTT0iSpkPHMFwx1ew8olrBVDkT/ddXdyZRN/46+/QjjwRfZ9atC4JS34SizVb6LF7ZCYU6uCpf3G3YsCN2xpQ57vb9PmTeO6Mm/HGDqYYGfofFBFMVG0zlckvHsdFgyglwCj1q5WskmKrUeH0OlUr6/rIrpKeepeCGakbbEVLE+6TjLbi9rphKeTDV64oyAABWIoIp9J3nPve5wdff+c53Ona7ZadlpK8qpmy1R41WvpyWgqkRU7mSc1vMQhVTZSn2ZNk1bCuWKpWqypmOqbMqnw0IVkma3rUrqFDJOCc+q/bcU5I0Ksmfm4s8mVxwZgQ9+uiji/dpwwrPW1xd7uSTpV//WvrLv1w8Nv/3/0oveIH0L/+ybJ8Xtm2TJM2GnpNsp4afRzw3FU+RwYs7PLobrXw7f/3r4OtyPi/PBlPmsQerybXYyhc89x14fcUGc27FVMSMKXvc7SUj69dLksa0+L4qmdXzpOafU0mx7zXfvFfLbjDVaCuf87xnHnqo+X3qgIaCKeez0w+18g2Xy7oxfIUUVUxFfZa0HaBGvU863PrW6xqNXgZTP/rRj/Ttb3+75jbpiT4x6LwUBe0A0GsEU+g727dvD77+z//8z47drhtODDvzl2pJQ8WUZ6toagRT0tKJ6qg5sR0y1UbS8kHnjdY/jZr5TWsUqljqkHonUJ4JEDOSZp96KnLG1JpnPSs40Zh77LFgHpB7ej/rtOQEjyPqBHP9+sU5U7fdJv1//580Nyd961vL9nnBvEbnQ+2Q4YqpfIsVU1FBXdmrDl4u/djH9M/nn19dMdXUvTVm6je/Wbr9QkF+qGKqZJ6Lllv5EqyYcgM/91gGPzfH3Q2mZmdnq4Iptz2z4Qq1uIopU91YyufbauUbMUFp0rJNVkyFh5+PVirLfknp5hD8ZhWd2WId00SAGyXbQOjT62Aq6o8oXfflL0tXX61XvOIVOvroo4M/QETp9fHBysGMKQBYQjCFvjP7wAO6VtKfSvrGN74RzE5qV8G04xQlDUe1tkUIKqa61crWCBsE1Gjlk5Zaumzb3bAJlaTlFVONPpphE26tljrbVmkEQVNca8XYWPDl3PbtwQeaO2Nq1Zo12mm+nn744SCYmvG84HG6wdSUDSjN6yqyrePAAxfnTH3xi9Izn7lsn4umHbAQCvzyoaH6TbfyNVgxtTA3pxPPOEMnv//9eurhh5e2Cd1fpVLRiSeeqE9/+tNN7Ydr9sEHl25vYSGomFIbrXyRwVQH3ucNVUxF7UOolS8Yui9pdmYmGFIuNf+cSqpbMVXJ55v+rHG3W9uNAKUBDQVTbsVUaPuRiGAqcgZTjxSdP2Z0TNT7pImKqXw+X3ebbq3O2ajEK6bm56U//EPpT/9Uu5mLHnFakMN62sr3i19IF10U/H8dgy1NQTsA9BrBFPrO82+5RUdJukrStm3b9JOf/KQjt1s0VQ8LauyXe2npF1g/Ba18ithnt2KqXCioXC5rtflFaHTjxuBnXui6jf5i7pnKsjWSdnXjJK2eTEYzZl8XnnoqCGbcYMrzPE2aE7vZRx8NqhzmMxkVzHXnnJacSfPz4BfGuGPhedKf/Il0zz3SZZfpzr33XryepLIJuorhVficIE3qcMWU82ledIIS/4EHlr4O3d/Xv/51/eu//qve9a53NbUfroJbeVAsLrXy2YopG6g008rntmuZ567RQeK1bzjmNmzbpvu6cX9sH5N5LN6qVYu7psWZZRWnDdht5Wv49DYueDAVU1XBVKMBn7MfeywsdKfVto5G4ge/RivfmCJ+SUnRiVy5C2F8ObwKodTQTKgjJP1G0msa2LbXNRqJV0w5FY32TzVF87r7/ve/r4MPPlg//elPg216+gp78Yul9753sTIXA49pZgCwhGAKfedx58TsIC2eXHeCrZia12KY0Yhm22u6wbbyRa505FxWKRa1a9cu2bX4xsxqdZIWZyg5Gq5JMMFUXtJMN5ZON2qdSM2Zx7jw1FORq/JJ0rR5fHOPPx5UOSxkMiqaQGDeqSjZYaunzAlw3eqC8XHpz/9cT5mV2jzfl2+CrnKoQiofDqZq3/IywfDzmIopG6a5J/dZJxAK/3X26aee0pmSXt/kfrhKW7cu3X6hsFQxZar1WpnD5u6nfayd+MtyMzOmalVMuZV68089VRVMtVQx5b5P3QDJPHeVoaGg8qzRENytmNpD0uNOQJmUZoefS9UnaqNanI9XJUUzpqKCqXYD1IIToizdaP3/H10naW9JXzdhZi2jvr84I68LwVpDkq6Yco6JfbXZYOrVr361brnlFm3ZsiXYJhXDz3/2s17vARJAKx8ALCGYQt950vnF/c3qXDBlK6YKTfxSGlRM9bC9JNw6VSUUTE1NTclOz3JnTIUrNsqNHgNTOSJJc12YY9PISd68CZ2KO3YEJ7Ve6PHMmFbFwrZtKtvnOZtV0VZbOdVeTz311OIXjQZTIb4kz9xexTk+0vLVD6snUDVw2zWCqbITTGWcffad0MQPndRvvOsuXSipnXeQ9+STS98Ui/LsfZhgqmz2tZmKqapV+exrOIGKqdhZTza4shdks5q3r51wxVSbwVTZCZ48J5hqNuALB3lP3Hpr8/vVpkbqYqpW5YsIH1eFL0hRxVQlKkRqUzHiNjvdere5WFxcVfRtb+vo7TYq8YopJ5iy785i6H2006maTcUrLEUBLLqIYAoAAgRT6DtTTojwh5J+9rOf1Rxk2qiSaX8qNjHPo5yGYMr+AttAMLXryScVTD2amFjazvPk/precDCVyWjGVh3VC6aeeKLqBKEhdVblk6SCedzFHTuWKjRCz+G8mfVU2rZNJVsxlc2qaKutdu3SH0h6u6QnTdDS7F8ygzYv31fGnlyGhuiHZ0xl1dxrx3cqe8IqzvDzqjY0tyoidFI/5oZKLco687lULCpj9tG2h9pgyk/BjKlYtpUvbsaU+bn7vpgz+7Xw9NPynde1WzHVyvBzN5gKBmEPDS1VjjX4egmHkJM//3lj+9JBDc2YCj2ecDj1gtAMtzSdsPsRCz60WzEVFUw1UjHVkq98pTu3W0+DrfId43z22P8jhoOpYWfOYq9ncElK1escXUQwBQABgin0HTeY2lfSflocgt4uu7JWsYlfSv0W2pQ6zQYBkX+FdisxCgXNPv740s9C1TwtBVOS5sz9FmylUZTf/lbatEn6vd9r+HYlqWhOKHI1/sJeMJU5Jed1EW7lK5jWq8rTTweDqku5XBBCFnft0pWS/k1SwQzF9dqomMqaChpv7dqqnw2tWlb/oWLUTJm427YBStyMKRvkua1w7slzONzpQNgz7M4Wc4Mpc6JnA5WWh5/bwK8TwVS9iin3deMGTBGzvebNtsWdO4Mh5VJ1MNXoK8cLvU+Dy83X/vBw00Pkw8HUwj33NLg3ndPQjKk6FVPD4cebooopPyJob/c0sxi1umkagpIOSrpiyj2mNhILB1NDzkIhqYgKUjTkH91DKx8ALCGYQl+Zm5tb1hLUqXa+YgsVU6lo5asx/NytxPBLJc2ZeUDTmcyyOR9uGNVMMLVgh1zXmjH1H/+x+O+ddza12tCcOfHLD8U3vRVtADI1FTtjqrh69eIXTz8t3waQ+bxKZrvy5GQwaNl77DFJzrymRo+FUzGVN/udCwVT4YopSSpEnYjGsUO441blM6qCHacCIxxWhL9vxZgbrDnBVDBjylb6tDhjyr6Gu/oLvFsxFfF8V8IzprRYcSdJpcnJqkrAlmpB3IopJ4jJ2K+Hh5dmXzW6Kl/4uXVWT0xKQ8GU83jCw88lKR8OplJUSeJFhMrtRkiRFVNN/D+pmVb0nnGCqSROzOec/zfZ92cp9D5yFzxJxYypFL3O0UUpCtoBoNcIptBXtm/frg2hy94s6Tvf+U4QYrTKVtIUmxjMmopgyv5iExXeeF5wMl0uFLSwfbskaTYixHJ/DW4qmDLBUMlt6Qpzh37/5382fNvz5jkdctoswkqmTc+fmgpOCjOh57BiWuoyU1PBPKBSPq+y2c53qn6y5hi1M2NqxISn+fXrq34WHn4uSaVmKqbsjKmI16g7Y6oq2HFvP/RLcCeCqTVuUFwqKWNuMxOaMdVMK59brWSDrU5UTMUOUI+omIoafu6+FmwLaWlqaqnlTo0HU7+9915V7H04wYNbfWmDKW90tOlWvvBzPeIMqU9KI5+k4Va+8LstqmIqLVUGXpv/z4nS6qp8Vl/U2Tj//yklUG1cdD7f4yqm3KpcWvmQmJR8lgFAGhBMDZinn35aH/zgB5cGOA+Y7du3K1hL7h3vkJ/J6H9I2jg3p+9973tt3XbZnGSUmgimgsHOPQymwjN9wuyvt5ViUQUTusxHbFtqsWKqaIKhijM8dhm3hfDSSxu+7SCYqlExVbEDxaenY2dMyVQu5XbtCubClIeGVDInI55TpTAcWpWv2TYaz/c1Yk6mh3bfvepnmZGRZduXmjm5rTGk250xVRXAuIN/O9zK5/u+1ronUKWSsuZ728rnt9nKp1ZmTPm+dNddVbNlarIVU857333WbYDnVlLYFtLK1JQyTjDlvlLjApRv/83f6Dn77qt/P+SQxQtCs+Cs4L09MtJ0CB7+TJqo9f7skkZCOreSLio4HAk9jqm779ZHVq3Sdz73uXZ3r20Zp4Uz0OaJZmRQ3Uww1UR1Vc84//8pRhzDr3zlK/rMZz7TsbtrJJhyK6ZSERXQyrcipCACBYDU6IPfYNCMP/iDP9CHPvQhffzjH+/1rnTFtm3btMl+s//+8l75SknSm9R+O5/9S3W5lYqpXs6YqjX8XNXBVNm0NMxHBCRuGBW16lucoqkCcquOlnnooaWvv/3thtuK5sxJS62KqYq5f29mZmlVvtBzmDGVS8MzM0EFUWl4WGUTTGWcYGrMPo4GBq/HGTMnFaMbN1b/IOI5ipwpE8N3Ws7C4mZMuRVTXviv8G0GUzuffFJus6LnVkyZ5yyoSmuxlc8dKt+w735XeuELpdNOi73dKk7gF7TM1amYKtlgateuYPU8qTqMiXvl7P/Rj0qS/vSWW4L7DXbFHdRsjplbMdXwqnzhFRjn51NTaeQKvy7C+zgWehxv2rlTZ8/Oat3b3971fasn28xKk3V86Utf0s9//vP2K6bSUO1Th/tHlFJEMPXVP/gDPfjOd+ree+/tyP0VJieDr+Na+dyKqX5v5fubv/kbvfKVr1ShmSpV9EQaP5MBoFcIpgbMe9/7XknSP/7jPwariw2SqoqpPfaQ3vxmSUtzptr5n3zFVJaUmxjM2uzcl26wQYAXU1XkVlpUTDVQ0VYZOaqCqSZ+Ma/YuUnu6m9hbjDl+9K//VtDt91IK58d4p6ZnY0NprKmcmlkbk6eORGqDA2pbE6Qss7J4G7z8yqXy8238tntfF+rzHVHN22q3iYiUGqqYqreqnw2THEHcLsnz+FWPne+Twvvnafvu6/qfyJeqaSsuY9wxVQzs8WqBo+3MmPq/vsX//31rxvaPGgTdFv53N2xFVPOZUEL6fT00iyoBg2HAzL3veccp6xTMRUcx0ZX5TP3YZ/9PXxfT7uViymxrGIqHEzFhIn/o6t71Zio572VVfluvvlm/dEf/ZEOPPDAlVcxFfF4Pyvpw5Kmf/zjjtydO7frTkmvV52KqT4Ppi644AL98Ic/1DXXXNPBHUJXMGMKAAJ98BsMmnHMEUfoo898pvzpaX3U/FV+kFRVTG3aJL3pTZKkV0gqPPyw7rjjjpZv228hmGp67ksXZGwQ0EDFlG/+clyKGMLdajDl22AoamivZSuk3vMeSdLW887TSX/+53Vve8E8J8M1WvlsMJWdmwtOCsPB1JCpXBorFCQTTPkjI6qY5zrnhEMbJe3YsWMpCGnyJCVbLsvWo63avLnu9s3MmAqCqZgZU5Zb7ZN1KhJqtfJVWvgFedIGQEbGaeWzFVOVdiumWpgx9bgJQh8L7d/4V74iffnLy6/gzJgKYoWIiin3fVG2VYczM00HU0M1wouyc5xy5n4zY2NNh+A2TNuRyWjW85SRtPXWW5vaz1ilklTr/d4M5wQ8Kny061g2/Al7223SRRclMqNn2WB2tdaac9dddwVfV6KC6gGrmHJX5SuHKqbcz6Gc+8eO229f/INGC8FfKVTN+3U1Pvy8V236880sihGj3bmbSBjVUwBWOIKpAeO9/vU6/dFH9V5Jl1xyibZt29brXeqo7du3VwdTe+4p/d7vKSPpjWqvnc8u+V6OCXgir2N/ge1hMJVtsGKqUizKM7+gV1atit1Oaq6VT2bFu2xcwFIuS488svj1X/2VZkZHtalU0mOf/Wzdm97N/GKdrRHwZMxg89zCQvCB5oX2f2SPxTq7VcWiMuY2/dFRVcwxyztVRZskPfnkk0EQ0mzFVN45oVjzzGfWvVpHZ0xFDD+vajcKn6w735dbeA3P/Pa3Vd+7FVNZU5UXDGpvc1W+Zv6y/FvTAjQbqhrd7cILpT/8w+XHIaJiqqpqy7ZQOq8F3zw+b3Y2aLlrVLhe0Q1k3OApZ+43OzbW9OqG7lysJ0xIuONnP2tqP2O98pWL73u7UEAbqh6P7y87ObPPSMOvzpe+VHrve1VusCqzHfkOtXBn3RljEZ8H4c+zWsp9UDHlBuvhVr6qmVPuZ+9LXiKdcIL8f/3Xpu+vHBGirjbh9bCkV0kadlewda/bo3a4h0KhejP+TtJ1kvwOtpqiSyL+PwMAK1X6f4NBc971LknS+zIZjc3M6B/+4R96vEOdtePxx7XOfmPChnA7X6vsCUGliWAqVRVTMcGUWzGVNb+g+xMTy7ZzW0CaCaY8c1v5uIDliScWQ4lsVnrOc3SNCcVOrHO78/Pzeo75RW3oBS+I3c4GU0NuMBWqKBozAdGY72vIBlMjI/LNcz0SCqaeeuqplttCbUA3LWnc7Fst5RaCqciKKecpc4OdnHtiFX5MznatnIAt2MDR8Mpl5cxt2oopdahiqhn2vvIx78twdZjnVkw5LZnB7UUMP7ezzTJzc7HBVNxrKPwJ40afbitf3lafjY0tHYcGT17sMaxI2rnbbpKkuV/9qqHr1nXTTYv/fvWrbd9UVTtpjfCx2U/YX/6//9fiHjVuKOL11cqnRtV8o6iB6k1UQfVDMOU+nnAw77b2Rb1/vJNOCv6I1KhKRPWRrcb6vKTvS3rPY48t3a9bGdmjYKqVllDrbyUdIWnP227r2P6gO9zXeIVgCsAK1we/waApf/zH0ktfqvFKRX8r6Z/+6Z/0xBNP9HqvOqZoToRLuZxkTrb0B38gSfqfkn51002tV4mZcKKZYCpor+nhLxTZOsGUO2Mqa35B9yKCqVYrprLmecjHnSzY+VLPfKYqmYwuNlUWB9e53Z07d+p3zNcj++8fu13OBmOFQhAmhIOpVU7l0mr71/OxMfnmmI06YYANpoIQqNFjYY6fDb6mPE9eAyeU4VaW2hvHB1NxFVM5NzSpMfy80aHaVbsT+mzJlErKmefArkDYTitfRQqOazOtfL5dFTEmmFp2wutUTHkR29hj456weqYdNjM/H7TchTUaJ7j35Z4IBxVT4+NLqxs22conSXNm1pn/wAMN7lGDOjDHMBzqx4V5zbaoPeUMvO6WfMTnfiuBQjaT0fsl/b6kUkSIUq9qs+xWPjaxeEcahD//ooahhz1x991N3UdUMGX/f//H5tu3OMFUJQXBVKaF1mqp+v2TpZUv/dw/gDBvCsAKRzA1aDIZ6cILJUnv8jxtnpvTBRdc0OOd6pyMOREurF279FfX5z9f2n9/5bU41PRb3/pWazduflH1a80zCml2IHE3hIdNh9lfdSrFYhCaZNetW7ZducWKqdzaxXXZRuJ+gbfB1LOfrZ/97Geypwieqk+ownY++aSeY77O7LNP7HZ5c//DpVJsxdRu69drp/l6wgRT3thY0MrnLkk/IWnHo48GJ5jNDsIdNidWsw2eIDZTMeXXaOUre0snJbHBVI0ZU62cgOXNsbS3kqlUgoqpnGl1s/NkvGbeI/ZxSFVD5RvlmccyEvP6Cq9W5Q4/t/dS9axHtXXa2WY1gqmG99e9K+f5GrLH0gmmGh5+7lZ5PfvZi7fX4eHnux59tP0bCVdMxTzPzcamcUF9J8W9vpq1+Ze/1IclfUPVg7oDdT6D3NdzX1RMOcJBVCOtzZkm/ngkSZWoNvPQKpVF97ilIJhqJoh3VQ117+HvJWgQwRQABPrrNxg05tWvll73OuV8Xx+W9KlPfUqPp3A1plbkzF/oy894RvUPOtHOZ4OpWivAhaSplS8bF0w5FVO2ZS2/fv3y7VoMpuxtjcRVxNhgaq+9loWGj9Y4sZ275x7lZVYVqzGryQZTo04wlQkNsJ+YmNAO8/Vac+KTGR+XzDFbFToZXnjooeZb+cxxttVXcw2ePDUTTNlwJ65iShHB1LD72uxwMGX3x572ZcplZc0+2BlTwb428R4JKr+kIIRrpWJqJOY5nArNRopq5atqJ4wYfp4xwVR+YSGycqYZUdVZkpR3gqlKsyG4E6YN77uvJGnNjh21rtEY5/63NfD/lbrvowZXhmy2YiqRYKpDw4rHdu4Mvo5apa7ejKmqYKrPKqYqoTlI5VqLNRjZJoMpP+ozdmGhagB6VSt7zCqZSWq1Yopgqrump6f13//93y0tFhKJGVMAECCYGlQf+Yh8z9NbJO0/Pz8wVVOj5hd4LzwM27TzHS3ph9deu6wiohGe/QW5hYqpXv5CYVunYmdMOcGUDU3y4WBPoWCqiZOb4d13lySNxh0DuyJfRDB1f40Br0UzD+eRkZHICiFrxN5/paKMPRah7fP5vKbMcRi2FWZOMLU6dJulRx5pvpXPGDcnA/MNBpzhE7Oa7KD7uBlT9pdc55fdYfd5qbUqXysnYOa2F8yxzZbLyttgyrTyBStwtRlMNbVikXksoxHDtCVpxmnbkZzQyw006ww/z5qh//liMQiQwlqZU+a26g2b6+dXrw4CvkY/a+y8koqkiRe9SJK0oZkVIGPMb90afN1IPFC39bDBVr5y2oIp39dY1AykFp7zotvKGdV21kTFVDOf3WlQq5UvLixvtmLKixooXyho3rkvN5hKasZUoVDQqaeeGlnl3WrFVMF9rARTHffqV79ahx12mD7zmc905PbczwtmTAFY6QimBtWLXiTvbW+TJF0o6V8+9ama1Sn9YG5uTmvNL4n5vfaq/uGLXyx/7701KunQ6Wn98Ic/bPr2bfuPmqiYaqWVb9vDD+v/vuc9eqpDs79sK1+mTsVUpVTSmNnPkQ0blm/n/mLeRBhjb2tVpRL9V0RTMTWzfr1uvvnmoFUqp9rBlGd+9oSZ5RNn2FRsjft+0BIVFdzsCp3MZFetCp7r8Ihy//HHm1+62RznVeYYFEwwU0/ksOO4u7CBTdyMqYiKKbfdKHyy44YcLZ2AmesXzOslU6kEwVTODAdXC8FUVStfC6vyeU7I5kUEf7NOuCJVt/LZ59GvF0zZofvFooZiTigajlIiqrMkacgGU6tWLR2HFmZMbfy935Mk7VGpaMapzmnFlK2AlFR5+um625fqBa+h4DTumDXdotbtYCrmfdtcfLbIfed5UeFhExVTpWaP0/btUpOVdJVKRXfccUdHqkaWBVNOsBIX2jcyu69q+4jnKlMjmHI1Fdh/+cvSX/xFUH1dzz/90z/p4osv1u///u8v379WK6bc4fE9qvYaZD/5yU8kSVdccUVHbq+qMpdWPgArHMHUIPvQh+QPD+vVkv5noaCPfOQjvd6jtmzfvl2bzNdDe+5Z/UPPk9dmO19wMttgoCC1VjF1y/7769h/+ifd8IY3NLV/cWzFVL1WvkqxqNXmF5/RjRuXb+cGU0381X3UBFOrJc1GnVSZE9k/PuMMVSoVrTYr7K2X9GiNIbZ5c70n7ZD7GGM2GJNqBlOzoeOTW706mMsVrpjKPvnkUjjS5ImeffUUbTBTRzMVU77TchZWjhl+Pur+shsOptw2qhb+uu6HgqlspRJU0dgZU8G+tjD83J0x1VQlinNffkQFylwoFLbBlJfLRa+qFhFM5c3rcrhUCgKkTggGrft+8FrKr169VAnTwoyp1c97nuYkZSU9dsstbe3f9MMPL+1rAwtN1B1m7Xx2tt3K516/yaqaZpWjZkGptVX53HfGUCszppwwJ66y7K677oq+8oYN0rp1TQXx55xzjl70ohfp9NNPb/g6cco1WvkqCwuqVCraZVbQs5o9gY8Kp72FBS04l8cFU00F9n/4h9Jll0n//M8Nbf7b3/429mctB1PO512lR/OxVoJMF2a5EUwBWOkIpgbZXnvJO+UUSdIFkv7105/Ww85JRb/Ztm2b9jBfL2vlk4I5U2+QdO3XvtZ0G03GnBDGDRGPEpyoNnFSv2VqSpL0mg4t5ZxrsGJqdtcu2bX4xiOOn99iK58NptZIy04gJAXBlK2zOOz1r9eMaYOa+8Uv4m/XtFtNRbQdumwr34gkewTCM6YkaT4UOGZXr5ZnLhsNbTu8Y8dSiNPoX+dD21XqVHpZfhPBlFcjmKo4d+/+guvuxbJffJ0Ap6UZU2Z/imZ/3GAqGx5+3kybQlTFVDPDz53HtRBRDTL10EP66Ec/qvvuu29xe7diynL/km1DHuc9YoOpkXI5aA9tVkXS5OSkfuG8D2wwVSoWg2BqaPXqpfdno8fRHd7vedpqPh+e/ulPW9pXa85pg8w0UjFVL5hyPzt9P76VL+JEcM58llpu9WGz7V7Nmm/gsTeq5LxeR6PmIdX5DHIHpscFLLfffnvtnWji/Wn/yPWJT3yi4evEqTVjqlIo6KijjtKaNeGa1uZkIj5jl1VMuStuuvvXQtXRAzffHPuzUqkU/AEnVyzqSknHRmzXSkuoVF0xFQ790L5nSnq7ln7XaJvbykfrJYAVjmBq0J19trTbbjpA0luKRZ1//vm93qOWuRVT2rRp+QYvf7kqGzdqQtKzf/Mb3XvvvU3dfhBMtVAx1egv9Tuck7rHzfDkdtmKqbrB1ORkUBk0HNHK5w7NbaZKyJtYjLuGJE0/9VT1D6enJXMCZ4Op173udZo3FW+ZGq18a8yA6tmoENKRcU5agmcu4kSuEAqKcqtXKzMajqQWjU9NRa/E1gR/dbgOK1ozJw+1gil3xlRVK5+7UThAcX4RbmfGlA2mMuWybANVUDHVwqp8bsVUcPybCaac+1qYnFz28ysuvlhnnnmm9t9//8Xt3Yop28rn7o+9Pee1MGSH7pfLLZ+kLEh685vfXNXSap+HBSfkHVqzZimga/CzJmg/NN/vMO+T2bjKmQa5M6aGooLokLpVG+GKqZjnuRLxPpy08+uMghNUdXvGVFww1Uqg4DvHaDzq86BeMOVUycRVltVtu+tRtcayYMr53i8U9J3vfGfZdZqtLMlEvAbDwVTVqnwxixE06sEHHoj92b777qvx8XFNT0/rVT/7md4q6d8jtsu2+HyUnGAqqoUR7fmFpMslva1TozFYlQ8AAgRTg27dOun975ck/R9JV156qR4M/TLfL7Zv3x5UTGmPPZZvkMko00Y7X9YGUzFhRZRmBxL/6sorg6/nI6p6WmFvJRsTqNkTuqKzEpkNk1xVYVQzA3SdgC3cImWrpaayWdlT2MMOO0wZs0rYqrhVvXxf602lSzE8TyxsaGjZUvJRFVOlUFCUn5iIDaYmZmeXTjBbrJiKOsaRmgmmoip7DHfGVGyIE/rF160sKrfw11oblJXM8c45FVN5GwSaypVmKqbaXZXPDdyKEcHUM2dndYWkl5pjH7TNuK+bOhVTNpha5fvxQ8DrhBQFSd/97nerKjRsCFZwQp/hNWuC57zRlsvwXKxZE0aXf/Obhq4fp+i0762KWVHSfaabaeWrdbyiKoF2hf5ftuAGU12umIqqxGuZc4xWRwQh9VblKzkVU3GtfFM12qYl9S6YCoVG4Va+KM2ewOcijmmmWKyumHJ+5h7BdmbvRfmNef/94Ac/0OoaixG0WjFFMNVd68y/L+vU+59gCgACBFMrwSmnSHvuqT0lvatU0nnnndfrPWrJtq1bFUxGiqqYkoJ2vjdJ+uZ//mdTt581J3zZJoKpZqsYpr75zeDrsZiTumYFM6Zigil7Ylp58klJi1UaUQPe3blSzcyYUjarGXMfc+GZMyaY2m6O6VFHHaXh4WGNH3igJGnP+XntiPoF7/HHNVQuqyTJe85z6u7CbOjELWrGVCUUFA1NTCyrjps311tXKCz9kthixZRngot6mlqVLypAMeJmTFXtU+jyjDtjqpWKKXN7NphyVwDM2xlbNphqJviKCqaaOFHL1Amm3mb+O9N8H1RMxb3uI2ZMjZih++3UPRbt/CznsiCYckKW7NhY8J5sNOCrCvckVUzAmw+tSNgs+zkiSWvK5cjZYe4zVbcisNGKqYhwZvaRR6q+d8O8TIvv20bFBVM535fClaN1uBVTu0W9d+s8lqowIub4bfj+92vvRBPB8UZJH5BU9eehb3xDOu44KeL9Vkv488/9vlIo6N2Svt3ULS4XFUxli8WqGVNFt5WvzYqpWiHfJyV9XdL2rVuDVWSjZFsMpsrO7xXZFARTlUpFVx11lL79d3/X613pqFYrqZfdjvs1wRSAFY5gaiUYGZH+z/+RJJ0t6ZrLLqs5dDOtZh5+OGgTUsTwbknSq16l8sSENkiq/PCH2tnEClRZ84t5XBVNlGZX5Vt9xx3B1xOdGEzq+0HFVGwrnz2xN8diOqZSq9JqMCVpztzmvHPSKikIph4wx+cDH/iAJGnItFA9XzEr8910k6TFarA1JgCoef+h/Y2qmFIoKBqamFA2NKB8pwmvNkpaML/gN/wLaGi7/Lp1MRuGNPE6qDdjyu5B7C+44YqpNlv5goopEz6NOidTtmLKa2HGlN3/itTSjCk3mCqH5hBJClqCbUOrPRF1W/mqjlVEW+dIA6/Legqep9+VdJFzWSVUMbUgSZ639J5s9DjaY2j2eWiffSRJq5sMTcL8UAvbfJ2gq17Fifu6qHViFhVMhe/bnbXUTNDSikJMAHPA1JS0++6av+eexm/MCUgil0yoUzFVditvYt4nw6EQL6zUxOfQlyV9SNK33Au3bJG++EXp3HMbvh2pdivfwvS0LpF0ZOg6TVdMRfz/OVMsat4JcQpxLZCtfC5G7V+lIj3yiE6Q9HpJ5V/+suZnWq3QqhY3pHzmU09JH/mI1EDLbbfceN55Ou6663RUk6+LtOtUMBVVmQsAKxXB1ErxZ38mHXCA1ko6q1zW3//93/d6j5pWMr9Yz46NxS8Fns8r+8Y3SpLeWKno299u/G+tOfNLQTisqCWoYmjgF+WFuTnt55zUrS2XmzrZjuT8wp2LCdTsiWnOnEjNxgRTLVdMObdZCp/0mmDqHvOX2xeYFflkTpKfL+l+M4C6ivO8rW2g8mg+tL9RlS+ZUJAwvNtuy0LIaXNfmyTN2pPcFn8BzTcYXPjNBFPOLKSwSmaplS+pYCoIP0ww5b5zghk/bbTyLV6x+RlTGee+yhEnZfYVZcfqZyKOa9SMKbfdddQM3W9HyfN0a+gye19FN5iSWp4xZY/fmgMOkCQ9I2KVwmZkQoHMtoiZVVWtUHUqprxQK599DYfrSaMWZCiGKjTdKjP3JO/aa6/Vm9/8Zj300ENNL4oRJ6oSz3X73/5t9QWlknTssVLUwPB6nwH1Kqac5zSuYmpNnUCymff/oebfF0f9sMnZO7Va+WZjjnGzwdRQxHsmWyqp4ASZXa+Y+l//S9pzz2AxitLDD9esAu1ExdS+Tz0lnX22Sqed1tJtdYJfY4GTKJVKRVu2bNG73vWuLu1RZ0QF5S2hlQ8AAgRTK0U2K11wgSTpFEnf/exnoytVUqxi5hHNm9WwYpl2vj+Q9PUm2vlsMJVpIphq5mTxri99SWu1NH9lSNJs3IylRjm/NNdr5cuZX8LnY0K9qmCqyflXC+Y2i+GBwM6KfM94xjO03oY1z3uepMWA4DGniixgqm0+I2m3es+3c/9W1EyWvDPwvSBpdPVq5UID0XeZYGpIUtZUmDU8CD508jgSMWD+/2fvrOOsqP43/r537/Yuy8LS0iUtoRKCooIgCjaKjYEt+LVbf3YHFiaKpIGEktLd3bWwwLLdceP8/rgzw5m5Mzd2FzHu83rxYu/kmZkzZ855zvN5PqaoADFlFsoHUsfWalBjWC4TOJVRBriV+6+j+dQyKv/bQ5kNljLK2SrgMaUjpvwQMSl4s2TJiikVukGjqpiS6oI9JsbH28wIMxLEJYcP2e0+Chn1Oajqn3L1nGrZgr0PhlC+WmefDUA9t5tyP942geAwEH3bFy3yu70VMTV16lS6d+9OoUQ+yKF8xYb3yW1m+C/55oHeBFxukwcOHMivv/5K48aNueOOO/yWN1i4TJR4MnwGmT/9BFOmwKhRvhsHePcCeUzJZITVu187wDOvqoxgnhBVH0ZiXv5dUkVKHzNiyl5ezrxp07TfVk+gyoip77/XbxJAaVhRxZTbxCIg95dfKnSsqkAoWWfBmz1y5syZfPHFF6eoRFWDKlNMhYmpMMIIIwwNYWLqv4QBA6BvX6KBFz2ef5xqKlIZhLhq1fK/Yf/+uGNiaAykTZ+OO8iOcqTSKYgMIVteKOE1J379FYDtKSmaEXjOnj1Bn8sUQRBT6sxejDJoK7MisOSBX4iKKacSRug2+q4oxNQhJLUUQGwseUrYXKnZjKpi1LuG4BRT5QZiyiyUL0oK/ywBYmJiiDA8a3dcHHnKtcerA88KdkBjrcJNjQhh4BPICymQYspI7ujCqCphfu4x3P9y0O6bakIdCrGky8pXEY8p+brk8C4DqgM56ek6xZRpFkCD+kiFkTwxQgutFIIJEyawY8cOSqXwYjNDb/U5qIbWZeo5VHVmkM9JzcKmKiZT2renDG947PF164I6hhmiDARH2uef+2wTjGLqyiuvZNWqVWTJCROke15iuDdmCgVhUAHJJuCyYup+4Ahehea3335rWp5QYabEk+Ew1A2PP7PkSiqmPEEQjU0CvD8VMvk2wb4Qv2lGYkqXlc/qnoVI2kSbtD2ZaWlMkOqC/AWX73aVhfIZ4MjIOCWhfB4TXymXnzbwlCNEYsoltW+uKiJLTwWqipjSqfPCoXxhhBHGfxxhYuq/BJsN3noLgJuATd9/z57KEiN/IaLVTqqV8bmK2FhsgwYBcFF+PitXrgzq+FGVCOULhpiKXL0agKLOnclW9suvrGpN6jRHWoTyqR2oOKWD6LS6PpnsCFEx5VTO7TGGXihZs1KBNm3a6FYVn3EGADaTUD6xcycAOwlOMeU0+GuZETcxUiZHJxAdHY3DcC9EZCS5CnFXXR3sVdBjKjZQPVVREY+pAM8naPPzyiqmVFNww/2Xj6SG9FVIMYWkFglhoBYhnyvAoD133z5TxZR8D40Z7lTI5Im/ALkJEyYwbNgwunXrRpn0jrj9EVMKkaylsVfrdLAEn4FMs0VEcEwhCbMqQUzFGhQZFwVQBhpDtVQMBOYAzaVlssKszPAOm4UX2wztjRzSJhNTo4EGwC5A3wpVHIGIKeNz2uInpMkeoA0IpNqUVTJmBG5hYSGBnBOrSjGVbVTNqigthXfeAYP3lj/FVGRVhPIJQYzJPYlGH3psl44p38OKEPbBvKOxubn4lEo6r6MKFVNRp1OJE+J3xQ78CnwMlFcRWXoqcEoUU2FiKowwwviPI0xM/dfQrRsMHYodeM3j4f8UU/R/AhKUgYCjYcOA29qvvhqAq4AZM2YEdfxIpYPgCEExFWwon8fjoaki3a8+aBAFykC+WFEUVRhKp88DOAKYnycqnTyXIXxNhS58L0RiyqUSPHJ4i9sNii9YKgbFFGBr1QqAeKMnSVERNoXQ2kFwxJTLoAIzU0zF1a+v/R0FOBwOH3WcLTqaQuX+pCj3NuhQPgMSGzQIbsNQFFMmBIoOIXpMVVUonzDcf51fi0KG2P9CxVQoxFTB/v16jymzAYdJKB9AqUxM+RmoqCqd4uJiyiTFlNkVqQNhNQTRqRIyIWblMzNsz05MBKBw27bgjmGCWKUdUd/01HPO8dlGvktWxNT9QD9At7cUyucMgphyGMLp3BahfDI+MV0aOjyBvLoM9T3PT+ifLVAoXyDFVABi6rCJD5gRVaWYMhLI+/fv57XXXqP4scfgsccQiteZtrnh2mUz9JiqCOVzuTDTl7YHlki/I2QiWi5PRdrFINqqagUFvmS7VGcr2jk3U0yZKcb8oVI+bIWF0LYtPPqo93eI9Sp+zx6uAB4AXdbEvxsq2i/wgfxsqsj/Lowwwgjjn4owMfVfxKuv4nE4GAAcGzeOXaFkDzpNKCkpoaYyYItt0iTwDoMG4XY4aANs++mnoM4RpXQKIi2IG1MEOVjcu3QpTT0ePECzYcMoUhRG5QEyJQWCahTrxEu0mEI1P1YHqsrg1IjKmJ971AxscsjA8ePgcuECjuFLTMWfdRYAdQoK9B3Q3bsByAQKoqKIDSJLojBsY+bJUl0yq1ZpFJ+wzagoSpQQw7qhdhINg8dEiQjzu1tFQvkq6jFlGKBEVBExhYEUdcnEVGUVUxUwP5cHmQRImV5y+LAWNmNzOE4OSk1C+XyIKek5GDNDeg/hPcamTZu0ZbJBtxndoBFTCqHmMnhMBUtMyeSeikIlDNpllnAgSCQq5UtXCMdA6hWrUL5Ab4fHZtMZoJuZn0cZQpTk7HRW6oMgA2wDQgQgpnzO7+c+BWwDAhBTQq7jJu/JiVWr/B+f0BRTfmug4fx9O3dm5TPPsG30aMD3Wv0ppuJN1D8QomLK4hitgXrSb5lM0oXyVYSwC6J81UtLfQksab/QpoakQ5i0d+bB++YoLy+nY8eOXH/99d4FhYXw9ddgSDRgie++84biv/suALZQ75/03pRVMlHDqUSVmZ/LhGjYYyqMMML4jyNMTP0X0bw59nvvBeANIXjl5ZdPc4ECIyMjQ+tExjRtGniHatVw9+0LQIe9ezlw4EDAXVRiKsqCuDGDCDK8JnXCBAD2x8cTVasWpdWqAeA6fjzoc5nBpXS6nUCkMlA0Qu1A1VDLrBAvRlRGMYVyz+xyR1JRgx3Bq+gyhvIldOkCeH1fDh48eHKF4i+lqqUCqQUAPIaQPLNQviTpulVHJKP5OdHRlNfw3imVsqrIzGghEGGVOdKIEAaEZtnjdAikmDKan1cyVbVGTBmIQVcVKqaoiGJKOpfdYmCqojwtTTu2XX6HzEIsDHWhXNremBkSvANct9tNhmTSXS6FJ5ldk+ozoimm1GcdYiifWfihRwmfjQwxc9rJA3ioppRZVX0GVItaDEzrmSwTHo/uvsseXh6TOh9jeLYuWR1nUa4Q9LB+IQL5OhnPb+ZZpsAeqA0I0AbJZIRpKJ9ZggnjMUIgpv09cWNrPTk/n2nA2VY7GBVTUn1Jsqg7oQzgXUGqruQ2Q76HHe+/HySVYzAIxmPKdOIjmOy+ZWWk+lFamxFToUwzLViwgK5bt5I1aZJ3wX33wZ13wiWXBLW/UQEXysQLgEu6B+UBEgycVlRVKJ90vWGPqTDCCOO/jjAx9V/Fc8/hjo+nK+AaP54dChnwd8WJEydQHXts9cyGNL6IGjoU8IbzzZw50//GQliraPxBHTQH6FC4lcxVWYpqyK2GpxmySoWKYBRTKrGiUjB2q9A4aWBtSXxYQSHaHPJgTcrIFxsbS6NGjXS7qKF8LYF9soJD8ZfaQXDG5wDCQDCZhfKZhQQaSUhbdDTCaFpeAY+pwhDILHsIHfeAxJSCYD2mZMWUcUARDNTj2Y3ElHT9mmKqAsSUd8fQiSmHtH9EgHAQd3q6XjGlPEddOItFKJ+OmLJ4JjIpZbfbcUoDZTODY1UxpYZnuYyhfKFm5ZPqpUPJhhmXmRncMQwoO3FC6zSUqGRwgPKYElMuF6bOVDIZaLPpQiXNEjLEG56tbAJu9Q5UFTFlC0RMGa9bftaGdYEM7QOR8yKAKtClqFD9oaoUU8b39FyzjeTn7EdBVaMKFCSl/kznJfgzGxdffRXSOYN5R+sBLmMdCWK/Tp060bhxY9avX2+6PtQseEbE7d/Pd8Bc9XiTJ3v/2LgxqP13Kt9vFaESU06pHpZXUVbGU4Eq85iq5OTQvw1CCK688koGDRpUuZDSMMII4x+JMDH1X0WtWkQ8+SQArwCvvvDC6S1PAGRkZGjEVEDzcxWDB+Ox2egKrJkyxe+msq9FKIqpYFUMdffvByDmoosAEEpYWUSQnWYryIqpQMSUiogaNUy3oxKKKbuiRnLIAyTJ+Lx169bYjWRN06a4bTbigeNyJ1shSYM1PgewGZ6ZGTEVbxKiaeYxZTeG4FWgA1oUwv0LNssaSAOeAKF8wSqmZJVARcyPNaLMj2LKrhBTEaEMMlXll81WMcWUtG1EoFCSjAwdMWX6tC3Mz12SKq4sMhKzKxQeD98Ce4D7PB79QNnsmlRiSiE+3OqzDjWUz6TMCe3bA5BSwQFfvvJOFwEovmKBBlNmSpyi/ftNOx/GgUiZ1GYIkzpfzVBnhaygsihXvMl5KgJbADJI9jb77LPPmKQO8PE1qA6omApETEnfL7P3xBFEyHgoHlNuP+UJ5s5GyffOWD+k3ymYIxTFVEWIKePV7Q3Co0uHIOpXAoDxPQwi/HPQrl2sAn774QfzU1eSmIoxTJaF6j12wrB/yIopqfynNZtgAISspD5yBGbO9K0b/1CPqT/++IO33367ysmjvLw8pk6dyu+//85RxZf1VOPuu+9m5MiRf8m5wggjDP8IE1P/ZYwahbNWLZoDNadMYVslDHFPNbKOHEHTzgSpmKJWLUq6dfP+uWwZhX46OfLMXLSi/gkKQXhMpe/fT1uls9X05psBsCvkWrRF1qFgofq3+AvlMw6mHTVrmh9MGvjZLI5lhQhF2RQtDzgUxdQhfP2lAIiMJFshtEokDx45lK+FovAIhGCIKTPVgY9iKiaGSKO5frAdUOn4pSHcv4CDUvkUZiFnErROokVn0UcxJc/WVoCY0gbBBmJKzjZXEWJKDuWrSFa+SGlbR4CBlT07WxuU2iMjTw6s5fJahPK5JG8tl8OB2R20nTjBbUAL4D6gKCvr5EqTeyJcLnC5NBWMkZgKVnkmTBRTKUp7WM/lqpCnWOHhwwDkSYShkSQw/jZTTGVt3WpZZnn/MjlLosk7nWQI/fMEQUxFA2VVMOC1K8/HKlDUJpXlvvvu05Ed5YbzRwR49wKqMwKE8iUGocwNhZj2u2UQ72msHKLlJ5TPUt0WQltQFuQ3ViazjfcwU6n3wSJYVWOiwUPJ5xmYvKPv4k0Y0GftWtNjWhFTPbp35/vvvz+54PBhWLLEZzvj++tPSRYMQvm+gT4U0fl3JqZCnbBq2BAuuwymTtUv/4d6TF166aU8/vjjLFy4sEqP+1erpNLS0vjyyy/58MMPKQkQ9h9GGGGceoSJqf8y4uOJfOUVAJ4F3nr22dNbHj8oVjyiyu12sPBIMkPcjTcCMNjtZt68eZbblUkd5ZCIKVXF4KdDseuHH4gEjkdGUk1RLEQrGdtiA4WDBIBHIqZ8FEkKjDN70YoBsg9ksiNExZRDJabkjrQUymdKTAHFaua6PXu8/7tc2t87gYEDBwZ1/ghDnTAzPzeDzZjNLzqauGbNdMsqItkviwnebjYUxZSs7DFFAI8pYz11VJaYUhVTUVE6tZBLCruyK+RNSAMcyfy8sqF8kQEImKj8fNNQPt3g1yKUzy09Z3dkpO+AXQgKJdI7AT0xZdZu1Ni3D5KS6Pz779px1bLJZQkIdTup/tbt3NlLYgMZMhkcJIoVb6oChyPoMGazENF8Q7iP6X5AeQAVZyRQnp19ch+ZGPdzn4orGUINYFfaXqsWXFVUeZRyyI5zTgMhEYiYCkjEBFBM1QpigB/K++/x0yYG85465FDSIMiYyqAsSH+oCD/lDhQqaYTxHuxSPD2NqGE4rtt47X5IdYdF/Taayav4edUqNt9668kFjRpBnz6wZo3hAAYfQssSWMBQN0L5vjFuHN3VbH7AqsWLQz37X4YKZ+WbM0f/+x/uMXXs2LHTXYRKwSXVT/c/8P6fDjidTq666iree++9012UMP6FCBNT/3UMH05p06bUAlpOncqWIExSTwecCslRkJAQUmiV7aqrADgPWOwnnE9VTLmAqCCywGkIwvelcPZsANIaN9aWxSqqnGohdniNUEP5/HX9fIip2qbuLnqyI0TFVJQSmhhnQUwZjc81KD5TcWqoyZYtWmc8FRgwYEBQ53cYQv7MFFPmOzp0hIo9NpYEo0qrAoopZwjEVCjZ6irrMeUTyid7vVQmlM/hQB5SVaViqiLElFx7owLc39jCwpOKqago7TnqZm4tFFMeqa3wREaaeu/kS6FECehDi8zSuLedOxeKi0lUlB4elZiqCo+p6GiOKnUnc9264I4joVRJ1lAUHX3yuBVQTBUroc1GCI9HFwrmlNohYdEm5UmJLXRqEbfbS3Kb3K+SKiCmHMq5Siy+R6qias2aNdwPyF14H8VUgDraZ8IEsAjd8h7QmsDIy82lURB1psqy8gWBSIlMrAgxFYqypDxIxZS/UD5CDI8zvqOtP//cdLu6xnfFeC/8qT2t+kEW+9QH3jFZnqaanKuorGLFUK6QFFOKolzFJ++9R1EFM/O5XC6dv19Vo4ecsCUEGL+zurryD1JMqbDMBl1ByN/dYBLfVBbyhG6YmAoOv/zyC7/++iv/+9//TndRwvgXIkxM/dfhcBCjsN6PAB8+8cTpLY8FPEqseUkIaikAGjYkr3Vr7EDEjBna7LUR6kChjNA+hrYgPKaqqyGS552nLUtQMgtWrwAZIENVTLn8eX4YTIPjrDy6pIFfqObnMYoKK0420w5CMRXXqRMAKbm53mczY4a27twePahpFXZoLLrBJN2KmPpBMWD/XclOhs2GPOSwx8SQ3KKFnuirQOfIZeJnZYWQiKkAiiltwFYBxVRFQrtsUnkCElMhDHgqbX4ubRsd4B1LKC3VyiaHSOqeuloeAzElpGyQ7qgo0/ewSPLJSECv4AjGiNujhgtWNJTPsDxTqZsFFZiEcKanA1AaE2MZymeEGTHl8pNVTKtTgFPObGlR5wvlMCspFKPn4sXQqhUHLr/cZ5+SCpq/y3Ao70uZBXGtmu5P//lnRhvWuQxK2UDEFAC33GK9TrrHxvckbcMGgmmNQsrKZ6jnW6XQzGDe0zg5M6XR/LwixJTLhdOC7Aw6K59ZFk61jKESU0G2Vcbn4uPn5O9eWE2YhFjWQ0Zj/CoOpQqoBvSDGCBfUrNnZ2fTvXt3Pv7444D79urVi9q1a7Nr82Z47jlYsaLC5ahKHDZmiP6HhvI9CPwIOP4C8uhUQiamXJXsj/9XEA55DONUIkxMhQFDhlB81lnEAef88Qcbg8y+8lci4sQJAFwpVnao1oi/6SYALsrPt8xko2bKKgv1IxtAxVCYl0c7pWPV4LrrtOXJilIoAXBWIiVyUMSUoQMbbzT3VlEJj6lYRYWVIIR3xqugAJuiDDkCtGzZ0nS/5HO9OZtaeDwcP34czjoLgAy8HgbBwkhM2UwyeAFM7dyZbsDXnTtry8qlexcRG0tCUhIndAcLPSufO4TMjqF03FVSIpDHlGUon2HQ4agqxVRkpK4OekxC+UIhpmTzc1tlFVOGe2EMvUpyOrUPoUz46e6hWh4/xJSIijI1hS6ViKlIwC2pRYIhDIRCztiksOGysjKmTJlCph+CRTM/N5S5UCF7nWr4rNm+FvfarZyvPD7eUjHlcyyTwbVNUV6ZnPjkn3jJPg0WxFSxbOwtDezV+tZUCYmUUSb7fAHTpk1jqtH7JQDUENEyi7ZGNd3PGT/eZ53TSExVckBq80NMZRpDtSzgE0bmB8ZQvpUrV2p/d8vI4Ou2bXH6UfskSgMbm8vFvn37Tg4KK0CQ72rThsjmzTk4ZozPOmeIxFRZWRlOQxlsIRqAB61qlJCfn++jmPJrZG5FTIVY1ihDfalqciSUiRcjVqAvz+uvv86qVat46KGHAu67evVqAA488gi88gr07FnhcqioCv+jY0o4tHRQ7c+/UyhfcXExy5cvN53MFULwETAMOGPDhio/99fA2Co/qn/EAJ5du/7is/4zUdUquTDCkBEmpsIAm424Tz4B4A7gq7+hPDNaITlEnToh7+tQCKGLgHk//WS6jdp5LQ+VmArgMbVt8mSSgEKbjbr9+mnLkxs3Ru0+5u7dG9o5JcQqfgX5fsLNjAPTOAvzeJmMCpmYUp5LIspsiqKIyAFSmjUj1iI80qGE+DUH9u3aRYEyaN8FDBo0KOjzRxsyDVp5TCVWr846IFIiFJxyBrmYGGw2G1nyh7ciXhIhZHYMVgEDkmIqwPOxHFwYFVOVJaYkxZRMTLmlwXpEqMTUnj0kL1jgLROcvP/B7u/xIHebYgzXnGXoVNXweLT7YI+MNPeYsgjls0kEpCcqyifESQihqYxUOKRQvmACPjViSnnmdo+HF198keuuu44+ffpY72hRB5yKr5vdwtB5Yb9+pEVGkrZ8uW9ZlLK7EhO1e1FaVMT8+fO1MAifUD4ToiHKQAxpxzeYn7slc3lkkkpCmUT8BatskX2piouL+XDIED658kqdOiMQIpX3pdyCmIp0Otm5cyd9jQNRfBVTjkoOSO1+yIhiRc2UY1FOFSGF8hm+k4cMA7o7duxgh8W3FiBJOteeHTto0aIFV199tXdBBRRTrZVvaIaJT2bQiinl/9SDB2lvWOfv/poXMHQC4+1Ro3zIwXJ/YWwWfZVQs+BVz8iAiRNPLqjiUL7KKKYAUNtPIei8Zg3nmm0jBBiyL14APAeUh0qcfP013Habb4gpWCruQ4HxO2gzToBs3Iho3lz/TIJAVZuGDx48mF69evH+++/7rJOJ26gqVhnZCgoYDtyCNIHx1VcwblyVnkeF+kzXALV69YJFi07Jef5NCBNTYZxKhImpMLzo2ZOCiy4iArj4zz9ZVwH/kVOJOGXAEKGaZYeCVq3IqV+fSKDI6KegwKV0AEMlpgL5vmT+9hsAB+rU0c34RzgcZCvnyqsoMTVlCjUmTADgE38KHTmGHv1gWkZliKk4hZiKBgoyMwNn5FPRsCHldjtRQPqaNUz/+WcAyoGzFPVUMIgxKuksnmN1xYsqRvKAKpfuT4RCoOXKHlEVUEzZDJ5X/hDKoFTOHmcKNXwrWMWU9LcxfCWo8kgeU5aKKYVQcATTcV69Glq1ov4333jLBCGH8nkM5EScYX2+wf8rCiW7G/r7Kp9Ne78Ng3v5XRLR0T4DdhvgMvicRAc5UD65g5eckduaSRMn0hXYp2SwNIWJxxSAQwlnjZJ9fiRcMG8eZ7jdrLznHp91diUESyQlac9lxbJlXHzxxXz55ZemxzMzY44PggASNhse6VlZha/apfsbrLLFKYVTlubmMh+YCxQbSER/iFbel3KLdzHS6eSPCRPwDST0tpHjxo0jT7mfRiPrUN9EmYwwvidulbQJoOK0Iqbz8/OZNH68zuvHqJiqtmyZz37FxhAxC8Q5nTwF7Jw2zbsgmIGuRVtgRoK4g8zsphIGYt8+n3X2EMmeUNSdKi6aOdOHHDSa5OsLZdF9D7GsLVatghtugHff9S6o6lC+SpI5moro998ZtmgRK802euwxqFEDpk/XFi0AXgb6W7RzlrjzThg71jd7HuCuAhLGmCxC/lYLt5viq6/Gtn+/95n4gcfjIVu5tgULFlCrVi1+8kMGh4KSkhLmz58PwBdffOGzvkz+xobYVwwEXa12u+HQIbjrLq//2CkIdXS7XMyCk2T0t99W+Tn+bQgTU2GcSoSJqTA0JI4ejdtm4wpgUhBS6b8SSYr0P0bxZgoVkUOHAtD54EGOSjPsKlRiyhmqOiYAMRWjEHylXbv6rMtVBuxFFTHR3LsX7rgDgDeARX48jWTFVKHNZj3TWgliyi5lMiw6fjyojHzeHe1kKL5hxRs30lwxiHcSmtdXrJRp0F/XpY5CoCVLoX/yM49QlFSFMuFQAQ+FCENooT9USDFl5TGlDiqsBhdVHcpnpZiSSViFXPCrmHK78bz6Kh5DuIXgpPpNZGdzaffuAWetjWFSxppcZKJmU7U4Oo+pILLyRcgZPGNiTEP5MAyM4kI08xUqMSUppm7Nz2ctMNXfflZlVpVHZvdRyrCUYWLgH6GQarYaNbTjXgL8CsxXzLmNpKhZKF+y0p4fMdwvH7WVpGy0GgDFSCRTsMoWl7SPR3oethCejUpMOS3KFeVyUfb990SbrPvju+9YfvPNfPTCC4AvMRVqrla7H2IqSlFsFQbw67NSTH3QsyeDb7yRCcOGndxWftfdbuKMvjlAqR8fMRk3Aq/hVclCkFncrIgpE3Ldo7QHgehgtS00qtkgdGIqlDZdRaLL5aMuNJrk609i3lcJVTGlQc2GV0liyvjdDso/zR+Ue5mvqGjBxMRdJdUee8xn9+DTkOhRakKeu0L07zKFoW7IfUfh8XA8yPfmqw4dOFqzJhtnzaJfv35kZWVx7bXXVrp4He12voqLow4mSQAUlMtZQE3aP/exY6Q9/zwiyMQDOsj1RwhylJBMMPcrBKCgAGbNqlAYsC0tjUvkBVXxjP/lCBNTYZxKhImpME7izDMpUMLerli+nDXSB+F0ori4mFpK5ya+efMKHSNByfYyAJj9668+691KZ9QVKjHlJ5TP5XLRQpmBrzl4sM/6QmXgV2IRUmOJ0lK49looKCC/Uyeexf+HQjY/L/SzndzBsFTkWMHhoFjpUJRmZASXkU9BkeJ5JXbv1jqxiYbQvECIkzIN+nuCd955Jy+99BKjRo3SlsnP3KEMhGWTfauwQB9IHarIIE3bwTrttxkCKqYswqlUGAetuqNUgJiySeWRSRkh1TNNMWV1kMOHyenaFfuzz5r7kSj3/1xg+qpVLPrjD79l8juYA8r8qNkChvIZFFPBEFN2Q7r6xFA7vko7oXlMCcHtCkE00N9+VunklWswq9VCavOjTMjVKIW4iUhJ0YipXsAVQF+TAT34KvGEy0WKsizVkMxCCKG/71IIsM0QyqceNUJWTJkMTApNnolbGnTKg01XCAObWKWcbosQwzPKyjjPYtLh4m3b+BRooyhqjW1AqNay/oiTagox6lQTPljAiph+fts2YoE7VUUT+lA+p9NJionXmdskjXygHLRDhw5l49q1AbayDlsyU58Kpc4WBJhgUN8Hl4mxb4TTidvt5uGHHmKSheraUMDA2xh3sdtDV0wJAS+8AJMna4uDIqb8la+KFVOhfN/MoLYfOyQfMyuzifKKhN3LkJ79csnQX4WrAlmUMzMzKZc94Ix1VJ4c8ngI9utw9/bttAdyRo6sWDY5t9vnWRcXF7NZCB4EjgPZwJkm5FKZ9I01y5aa1qEDDf7v/9jRq1fo5ZIgPB6OSp63lp5rAwd6/730UsjnME50uS2+Y2GcRLTTyQHgq9NdkDD+lQgTU2HoUP399ylzOOgJzL733tNdHAAyMjJQXZHiKkhMcdZZ5FSvThxwfKyvraKmmArgw2GEGl5jNkO6Y948GguBC2gsGZ+rKFVUOS6TDrxfPPIIbNwIKSnsevFF3ECkPyJJ6qwV+9lOp5iyGGz5Q5HqOXPiRPCKKUC0aAFA3JEjWhiWO8TnEBlktsZatWrx/PPP00gJZwL9M1dD+colYqkiiqlQiKnqLlfQgwHz7HEny+dSBoiWxJQ8OysE8lMOxWNGhex5JRN8HomYcij31CyU78Dbb1PQrBnJmzZRCIyIjtaZngqbTVd/I4B96uy4BcwGljI8UtinsTtvj4zUCEZd2mr1vhnD4mQCMzbWlNiOMMy8Vw9xVjdCVUqp/wthOZOtg0UonzqQMFMy5Myerf3drEkTn/Uxyr2NrF3bR7FRTTmuT90zXG/hgQNE4L33BQ0b6rc1+q/ISlBD26XZp0vhd2YETbEJGS8TU/LgP2hFhBABiSmA8/Be5w5DJtQUZYBbV/FQiTRcd6hJOOzSuyuTz0II6irX52jWzO8xzN5/K3WiXKfSDh+mucm+thMnfJbtCHBdxZMnc5ffLZTzW5TLjJhSFVNFAb4pai0pMxDJAA6Xi6nff89DH39M5vXXByxfRUL5PGbElL+2zGbz+uG8/DIoinDQ1wUzpG/b5jfzYaXNz41tZGVD+dT9gwj/PWiihg8FQlK32hVlrXj6acTw4SBEUMTUvn37mDBhAh6Ph9TUVGrVqqWbnDMSU7pvsttNqJofh8dDLeAFoFGgjVWUlUGrVl4yR0KWwfuvOvCeCenslIgps8mYRspx2qoZqUOAPBEohKBIUmPab78dVpoEc6qhxEryAyEEH730EtM++ogDjRqx/403LM9nrJ1+w+PDAKDB8uU0wetJXBW+a2GEISNMTIWhR716FN19NwDXrF/PyqVLT3OBICM9HdXy3GZh3B0QNhvOyy4DoMn69ZQaOhiaYipUYsqPYuqIMrN6oFo1IkxUGk5lmTDpwFti0iT47DPv3+PGUayoGvxKa6VrKos2CyzxQkdMVUCqqw4AyzIzcSudiWCIqdhOnQBIyc7WiCkR4nMwKllCgfzMVcWUkBRYQZufSx20GHl/CxzHq4xIcbkQJrOzZlBLIhNTEfaT5S9XSU6LgZE8YHI5nXoVUwVmXWWizC13KOVQPqXOyec6sGULC1q0oOnjj5PocrHGZuO9m2/m/1JTqdeunbadB98Mi02WLPGb1tmvygCwSc8mwyrMzQgLj6lI6b22xcb6eO8ghKYyUlGL0GBXPILUd9Lu8ZiHDBpgFcqnZkk0G8SXSMavkSbvVLwy8x9dt67PADTB4t4ZB8GZmzcDkGGzgYGwMUImpoxkuUpMRUqDyQiTAXdtk2VCGljpiKkgQ/lEWZn2LrpNQh5lpLZsSa4h1DpOuffNSkspLi72JaaCbHPU75jsrSQ/ldzMTBoox44NoFz1OJ2sW7eOfv36adlrD0iDwlKpzZHr+a5NmzBr4R0m3j7pAUKcpxNcpkqr9s2UBFHInZIAKmC1fXKZKEQcLhdJc+bQHLg/iOLZq0gx5bc+2u0gZ7dU/g4UClmtfXufcGd9QapWMRVZWcWUcj12gxLWbEBcWEkPqIJDh7S/E1Sl6uuvY/v2W5zr11uHkklo0aIFw4YN48cff2TmzJkA7N+/Xy64fgf5fgsRcHI0LS2N3xSlJXjrzXjgReDPgKVTsHo17N8P0kQE+BJTAOUm9cElE1PBnjNIyKGgwuPBJYU22n79FXr0sN5ZaQ+X//orD734IoMffpimhw/T7KmnLHcxZkIssyJAMzK8ysR/QKjfzJkz+fHHH0/Z8eX+pzGDaRhhVBZhYioMH9R4/XUKoqM5E1g9YsTpLg65+/efDDmqQFY+FbWUaxnodrNQyWanwqN0XkNV6sjhNT5QSL1caaAtw62Eq9ktMlT5YPdurzEnwNNPwyWXaB8Fv6F80iCnzM8gSh742SugmFIHLs7sbNxKRyw/KYkUozG5ATWVjkZjp5MSZVDg+Qtj2F3SuSIVFZtdCS8EKmR+HhdgwA3esIPFyrNJ+/rroE6hhfLJz8p28vm6FPVIMIopo7Kosh5TOmJKJs4UIiQSOHHiBG/fcAOujh3pu28fHmBqu3bU3LGD57//ntq1a+MxDl4N97+vy8VSE2NaFarKwKr7GCGFiWYb3gddiKR0r7T7ZiAMZGLKHhenuwcqYgz32f/b4IVc9hqdO3vLICmmzM7jAwuVl131/DISUx4P1aVEDGZ1KFFpb+IaNPAh6eKsfM8MHdd8JYNbVnS0jiT0bqwP5bNLXm/G8NU85TriJTP5YDOA2eSBlfR83EGG6jgl8kIEIKZi7rzThxxMUO5tfWD/unU+xJTfkCSPh4zOncFmY3tsLGsmT8ZhoZhKW7kSB94QOluANkm43dx59tk8NG8ejw8YAMA2ydR8tzQpJBOjx1eswMxWPcZkgGerV48gv3b+y1oBYqoswDctAi/Z4TRTTLndOGRyMQB5E4xiykjbCZvNx2PKzO9Kg93ONnmQrKhC1HfA6j7H4j/bnzAo7kKFT7KFKgrlizDci9LSUq+3kKSgcVey35Avhd4ae4K7N24MKZRv8eLFpiF2fhVTHk/AydFGjRpx3RVXSAewcbHyZ8B4grQ0GD1an0VTajuyTchkY9sEUC61uWbfiUBPPDMzk06dOvHtE0+AkewzKKYiQogo8BQXk5WVxb7Ro31XvvAConVrH89H4ztnqTg87zyvMvGVV4Iuz+mAEIKvL7uMhTfdxOFQbULWr6ds2DBvPfEDmzTB7W+SUMWWLVt48MEHSQ8huchfjdLSUs477zxeUHwfwzh9CBNTYfiiWjXKHn8cgGu3b2elkp3jdKFIGSzlRkZWKgOIrWdP8uLiqA7sNWSQ0oipEI8vqxhkCCFooMy+xffrZ7qvXSHZIoMxiCwp8fpKFRbC+edrsfS7lcxHwSqmXLKZsLE8lSSm1I6/OysLh/IBim7VKuB+8Ur2vcZAniLFFxXoYFa0+yt3ZlXFVJQU6he0YkpCvExsWSDCZuNwe28uGKcfokW3j0koX4RN6siqJGcQiimfWfOKZOULRjGlDNyjgI8aNuThiRNpCWRER7NvzBiu2LqVZq1bnzymIYzSqJiKAI68955lmVSioRhMwyKipOPnG4zQLT2mLBRTMdKx7HFxvoopIF4ZPIaS8TML2D55MvuHD6eN0snWKaZCIKaMA0U1XNUn/HjvXk0RBfjWB4+Haso9SWjY0IdsUQegPgMVQ8e1RCGtC+LjiTCQJcLjYb3iISZsNi2cBk4qvVQUK2GU1UtLtWflCJZclVVS0nvgDhAGql2D8p450XfSzVDvvvt87lWs9Hf6ggVEGRVTVoPT224j54MPqKX4rnQBIocP13mzye94jqJ8Oh4TE5BkEC4XK4XgcuArxberUPKVkjOV6jymLDyhEkxIlai6dTlRgdBo38KaX0uUySDZprx/zgAEogPvIMttkjXT4fHgkEhoV4DMmsGYn2cYvrEiIgJ3KMRURASZOTnaz7IjR7znVt6BbD/18qiiWjSFwfPIZ10AosD4dM2IjVCgElPRhndz8qRJiIsv1iloQp1YNKJYuYegEOpS2T1OJ26jWsbPAN7j8Zi+c0Z1vfzb43b7ElNr1sCHH2rt+WtGH6pA34Ly8pPkz3nnwYMPUvOdk/bxcvKHbBP1vlmP8eWnnz65v0mb6xv8Bzk5OSxZsgQhBB+/+SYrNm/m9rfeotiPD5UNSJDqeCDY3W4aNmzIWsko/2ShX8a2ezfFr72mW2yckLP8hqhZRoPsq50ulJaU8AvwJfDwFVeERi537Ur0hAmkX3KJ383kSWy/xNT778OMGXTq1InRo0dzh5Kw6e+I8ePHs2zZMl5++eXTXZT/PMLEVBimSHn2WU4kJlIP2KmE9p0ulCtS3gI/pEpQsNvJOf98AJIXLtQ12BoxFSohYqGYOrR1K+2UTmbTm24y3TVSmYGODSad9cMPw+bNUKsWjB8PDgezZs3icYVAbGehygL0xJSflOGVJabUjn9saip2jwcnULtjx8A71qlDkd1OBBCnPOuKEFOlFTQ+ldVZkcqseJzkxxIZ7GBXGnAlBEFM2YAaN94IwBmHDgXloWEWyicrpmxKJy4Y8/OqVEzZIyPxWCimHNKA8JXycqKA9N69qXX0KC3v8nWUcUiqSAGmHe9Wq1frDGVlqIM5l81marYcKSn4Sg0m+7pQPjNiylCWaEndFREbq7sHKqop7UCWn8yZRmQCTQYNotnXX2vkjEZMCRFSKJ+VYsqoZMgymMobTcvLs7I0FUG1xo19n4vF8zDWKzU0ozQ5megGDXzKfO+mTd5iFxcTIRFTPubnCikYyUlvmGAzgNmlui8P/v0SARJKlfOVABEmz/xjYGutWqTdcw8kJPgQUzKK167F2Npabj92LO7vvtMtctaqZRqWCVCieLzkVq/u8zyN8LhcWgZB1SY9ec0abb0uREx6N2IllZ2M6uXlPgSSPSWFnAAEUTCwat9UEmT79u2sWLHCe06FTHDFxpruo8KBN8Ogx4R0ivR4cEjfzoIAmdOCUUzlGfozwm73eUZ+FTo2G3WltnLqzz8DaCRlgZ/2prry3fGB06lXTBnuc+add0L9+hR8/rnfcskw8xY0ory8nBsuvNB0nUp8RBval6uGD8dmSNBTWcVUiUQ0eZxOXdvlKS/3UVS6f/kF8KotCgz1RghhSgr4JPgwfGd8ruGcc2DkSM3g/gnjAf19C5xOb7h0s2beb5iiCEuQFFMlkoKo2CRZg7HXnZaWxmaJjDbzK8sxIQg7d+5Mnz59mDRpEr1WrtSOG2cgto31L9lE3ffwww9TZhFSd3VJCR+ZrvFirdIuqDAqpgKpbj0BJiJkjBo1iu7du/v2VTIyvKSNiX9XZVEgqZJ2r1/P0gB2LHl5eT7KPsf27X73sUttuGUo35IlXj/cyy/XnunaIBJbnC5Y1acw/nqEiakwzBEVhe3VVwG4ev9+Vkozp381PEpnoThIg2t/qHvPPQBcXFjIVmUABCCUDkeoIWTyYFHG3h9/JAI4FhVFbMuWpvvGKMa/CYHk4T/+CF9+6e2A/Pgj1K/PmDFjuOyyyygqKqJv3758/PHHlrvLgxzhh5jSZeWrCDGldLSTFPnwEaB127aBd7TZOKE823oqsVIBZVx5BWdL3SbEVJI0YA6amJIQHSB8EbyDlz7Dh7MHJcxtwoSA+zgkIkiF7DEVqZBblga2VayYUs9si4zUz1ZL9zRRIm9c0dF4xoyhzqJFYJF5McqgopEVUwfi4nAD57jdLPv+e9P9VcLNabNRYjLAj6p10uXJbQgN1imm5DKo982PYira4fAhpjweD0nKvoUB/HVk5EZEEGcYuKrvpF0IUwLMqsw+oTWqGb3Hg8fjYcqUKaSmppL5++/6AxjqUJ4yaCkBkurU8SGmbErnO5D5uU3xwnHVrk2sIVOcXVKP1nK7dUkNjMRUXI0aqHPp+Xv2ABAZZB12yOF70t+eIEN1VIPsEpvNdGDY4YILaH/iBA1UP0A/zyti5058hjp+BpvHt2zR/Xbl5+uIKflbJBR1Wkn9+gGJKXkQnhcRAULQThqo2yxUWfUsPBJTPB7KDGHqkfXqUeTnG1RZRClkQLt27ejZsycnTpzQiCl3gPNGAG6Xy5SYivJ4dMqWwgAhMsEQU0XGjJQ2m4/6xF+GMJvdrnvX1C+COrA2ku4yaluoUEpffln33hvf5ZRvvvEuf+ghy2MbIasBN44ezeJmzThh8FT888knmWCmcuEkcRBraEeqmW1bCUU9gFMa1P86ZQrlUlhnmdvt4zG1S4kmqFu3LtWqVaOoqIhHge1AYlERuN18Dtwq7WOsG8ZQPl0fVOp3lxnee20ff9+C1FTIyfEquyzatlKpLjhN6rWRmCorK9OH7pq0K3lyW/3OO4g+fbAdOsT7wLF339VCmU0ht18uFylmEx4ffcToDz803f0H6yMDvt5kxncuIoDa8WAI4WhRH3zAo6tWMc2YCXzIEC9pY5IUqbIokdpjJ95Mi1Y4fvAgC6tX5yPDGCVQT1qeOLZMGCLVpXigL1Qo8/Nph7/v5tGj3verghBCMGLECL/jt/8iwsRUGJaodf/9HEpJIRE4et99p60cNuVDUO6noxUsYgYMoNDhoA6w8dNPteUaMRUiIWMVylcybx4Ax/xkEYxXsl4l+TPU3LkTVJ+vZ5/Fc9FFPPXUU4wYMQK3280tt9zCrFmzSPY36JUH037IvcoqptzKQLqmMvAMxvhcRYGiHmupfAQqRExVcLZU7syqM0E1JfIimLAMQBtMFtlsQZuxp6SksFkhwdJNskUaoTbYERYeUzGq+i4Y83Nj2FIlzc898jVL5bMlJcHgwdC3L45Nm7DfdZffgXecRFYIw8D/aEoKu5Uwy2yLj7k6q+222UxDoiKld8VuyAoXERV1MhTFLCufYRAQJxFTUSbEVHlJCerZykLwxysyUZXYQ/SYslJMqeGqDo+H77//nlHXXUfr5s2JlNJy6/ZXoA7Gc2027Ha7LzFlMXNq9FSJUsgKe4MGJBoI3BKFYAJIQJ9t09gmRUZGkqE83wxloBus0XKE1JmWyahAGR1VqANWK5Wm0XfK3+AxxSwcyM/7YUz/UTM/X3fd7YqLWXy/16I7Rg27atIkcCif9JwKIiPJWr+eRtIyWUkgk19tLQYbUcDhJUt0y2Lq1aMsBILWsqwWzzkKdMqVzMxMIlTCNAhCzF1ergvzVBEtBG0VUgagOED2t2CCFcsNdV9ERPioNzylpeweM4aVPXv6hg/a7ToSSSOmlGfmCSIBhxEZ773HRx+d1JtY3md/hseGuiu/tWc9+CB9Dhwgp18/Hely4SefWB5OJUzjg/g+VURpLcMtKViidu1i2sSJ2u+SsjKfUL62v/1GUXY2eQqhvmPHDt4G2gBDNm6k+aZNjAC+k/Yx9idsBoWQjpgaMkT7c7USlusDP22FRz62ha+YTEx5TOq1kTR3l5ezSvptprQuktSJhc8/j23JEg4AI4FRa9f6hC5bQaSn+6hJAT4EainG8iFDPfeiRTBsGBEGYkEj+YXwKpsMOG7iQcfmzaB8gxYuXMiwYcM4ceIEbwLXAHXWrdNvr6q2FiwIOjRwweTJfHD11ZQG+EYVS8RZDfRm8kZsevtthgCjDhzQtSURgb4VMjFlQXzJhNiveI35HwpSkXw6sH7VKn4CZMpdZGVRXK0aR/v399leZGVBgwaWE6zB4M8//+TomDF8GwLR/19AmJgKwxp2OzFKJ+WytDRWnsIsD/4QpUiNPZUwPj95sCjSunYFIHLGDG2xRkyF6jElDRZl1Ny5E4CIPn0s901SSKvqQpinby4u9vpKFRVB376UPvEEw4YN4w3F5PTFF1/ku+++IyoQiSQNzu1+BgWVJaaEojaqqXzoU0GXJtkfPC1aAKAN5ypCTFVwtlQlIz2gKX1kw3ZbEJl4ZBQGGVKodhfsl14KQJ316wOa6qpPUn4+ssdUnFKPgwnlM4YlaB3MzEzNMDgQ1HofERWlJ6bkZ2GzwW+/wZ9/guQlZYWExo1Plgm9YspZowaOW73zz522bKHEpKOjdpScdrspMRUrdSQiDKFksmJKHcgXFxdzYN8+ZQODV5CkaoqKiPAhpuwFBdpHtjwIQ3wVZSaDaLWtiRAiOC8VleQ1Zh5UBg2RHg8Hx43jCPCHy8UZSid8s2F/FcUKgVKgdkotiKlAHlPxiqovumlT4g3XWaS0m+AlpqJkc3mTEIp85VrylP2CJaaipAFmRRRTgYgpm5FY9NMmtAqxs17T8PsMl8sn/KSPMumSpLTFsW3bBg7lk75BxTExnDD4ENksVFn6N0iPTEMYSULjxvqMpxWEVfsWgzfBwkfAb0B0ZCRnK/W6WhCDYdvy5bQ1yZCaKASJEoFYFsBnKZjJDI8hw7DNJCufMy+P+BEj6L5iBasUtffJk+hD/xoo3yxV8eEwkO7BoKC4mInSb/k+y1fkNxjT6Glnsknr48dhyBCEkgV0m5KZ1wxqvTRTSPlsW0nFlGyM/QKQKz3z6vHxpln5Vjz4oPa3TAIklJaa2jT4ZHCW66XLZXkNloFGftqWY1KWwSILlV+ZRLTYgsgQ7ZEydYJvyDfow2YTTPoShX7sK2QCvXDHDsvtzgglm7X+BBw/dgwuuAAmTKC2YVyjfUOefRZq19aSCqjw8aHNz4dOnaBDB3C5uLlvX2ImTOB/Ur2wm5FZKq680qSIvm1V16FDGfnLL8yUjmuGMolcXQFEKd+XV155hcsvv1znCZUktRHFkiIvUO9C7utZEVMf3Huv9rfqsntbCMkDKoudO3cyZswYXC4XJ06c4Pvvv6fET7+2fOxYrsZLeqr3f9uTTxJXXEz9uXN9tt+thPFWCtu2MR2woJz/swgTU2H4RZ0bbmBbo0ZEAUWjRlUoS0tlEafMRtkb+OsCB4+aSma77seOkal0WlWDVBEiIWM3UUxlnzhBB2V2quH111vuW0ORz9rRZ4PR8OCD3lmYOnXIHj2afgMGMGnSJBwOB9999x0vvPCC39kQDbIRtR92X0d2hBBHr6Gat+uozrYcjYigkWwi7gcxHTroF1Sgg+mqYKdUVWeVg9aprlbtZDfYE2zsubJvcZDlUJ/cWSNHUgLULisjb/lyv/toxJSFx1Si2nGuqGLq2DGvj1ndukGRU3J5zpZTl1eA2FRRXfL3ivZ49B3vOnVo/uijFNtstBCClSaqKfV5ue124kzuQ/1u3QCvB1V1xXhfhaxEU+/Vyy+/THV1mWFGPkImzdq21ZNzQKTSDhTbbIgQlCJOiZBRobY1EUL4nMcU6rVbKKYihKCfYuh6Ad6QmywgVyVlDQOoSIWoOKoOOozElMvFb7/95mMeahy4VFfqVWKrVj6kulNOqw5EyySisU2y2ShVFFWqN0rQxJREwuiIqSDfdTUrn5VK02biH2SF6ibLzMJJjXDhJQvigHomqgVneTn1lWtL7tIlIDFVKCkHSuPiKDNkr7JbEFP+UGpQ4SU2bkxsiKF8vpoF/zhx+DAPAoMBu+SlExvEN63a4ME0MFFJGFEeIJxHfdr+UqkbiSNPRIRP6nrP5Mka8RdpHBzZ7brt1eejKj6iFUV2KDAG3svEVOh62sDYNn48GYcOUebn/di0fj1ulyuowYraHuv8Q+UNZs3yv7+BQGgokznl5b7m53gzwT0FjAaKJVVSjME8XUVJQYFOTSITVWfecguJFu+pGTHvPYB1W2GT2raY7t1Nt3FK3pZRJln5QO+/U2YkF0zanqgA75rTn9+idM9K5OyBRkj3KZS66SwrY8Xll5seB6RviGqS/tRTMH36yc2NfRvZb+7rrzkMfANcKPXlXMFm3gaOHTtGw4YNefbZZ3XL1R5pLUObakSZwbcqWSH3ljz3HM1mzOC3337T1sVIz+GE5CsVSHcoK6asJnOeNqkXoSYoWv711/xy220VGnd+06YN/UaMYPybb9K7d29uvfVWnn32WYQQpu2y7N1WqlzTCT/9gQKZpA5x8lpFtb9xlsLTiTAxFUZApHz1FR7goowM1qqeGX8hEpWPeLSkpKgMUoYNo8RupwmwSjXxrCAxpaqR5I761gkTSAQK7HZq9O5tuWtsYqKW0jlXCmEB4Pvv4ZtvwG7n6Dvv0P2KK1i6dClJSUnMnj2bW2+91ed4lpA6fZE1jfPt0maVVEzZqunnNMvq1tUN3P2hxrnn6hdUhJiqCJnGyWfulDp4unKH+NEpDfLeqWdr2rYt65TBmmmaYwlqqWQCRfaYqu52gxAVUkzhdntDR8E7C3jHHQEVXLL5ue48lSCmkiUyM9Ht1immIhs0wF6tGjuVENHSr77y2V8lGtw2G/VNOhb26Gg8eXnYsrOpZvBWkK9D7Qzt++MPBmsb+H4yO1evzrmArVUrH8VUrNJ25Tsc2EPxyDMhkNWBiS1IjyktK58xe55CLJmFU+xISCBSOY+RyIhRwg+2qmGuRiWW08ndV1zB3Pff1x9U6qAKt5taynGT27YlWSIhAWyGUBLZXN5sYOZWyuJSsmkFGyISLZsaS++BJ0iloEsZzFkRU3aj0XYQ7WConfZyIF2pr4km63f9+SeqNqlOjx4+RKPP8SR1SElUFC7DIF02ljcOhYst6qPDQDRWb96cNMnbMRgcM0t64uc550sqC5fDgUoVlMiD0UrCFcC02CYE319xBTNiY9m3YYPpwDnGUPeFiWKqu6Qs6ZiRQak0wLUZFFPq5JiW1KAKrA8qQkzp6kYANeCRefNIatKE7qtWWW7z7ttv867idxoIqgejW7qPOm3OwIGQl0dOTg4f/e9/7Nu7V6cgiTIoeVpIRtnukhK2m/hgiaQkXgPuByKUZAMA0U6n6TvXBXjvlVe8P3JzfXzxzrXI9KfaDBgD8s7fsMF0e9CH6TksSNJyydcvxiJDdL5EXjmNJu8mBIQ9wPcpIsiQS7ek+PJd6SZ39myONmkSUOEjo9+mTTSXQuuKDGF2Zt8QIY17jHYfBfKEnKRq7C29qx6J8Msx8yRyubx9rgce4Je77yYtLY1Xreq8ROyPGzeO6RJpBuAyHl95FrPxqoESZGJLDt8bM0b7O+DTkfrKwYa/G/cDID3dtC0v27GDwxdcQM877+SqsWNZ9uabwZ9DwVtAU6DR999r2cunT5/O8OHDSUpK4phB9SqT8nmZmYi0NKLkemqo5+Wyd28QiYvMYKuswvNfijAxFUZA1OnXjzXKQND+9NPWxsqnCDWVwWW8H7+mkBAXx75WrQAoUwyntXCtEMkNu0koX64S+36wfv2AA5JcpeErlBVT27eDIoM9PHw4nUaNYs+ePTRq1Ihly5ZxoUX2GktIZZCNn42QB34RFSAW7AaVR2QIzytFSvkMFSM2QsmWooOyn9XcdrChfKp6rTzIcsgkUV7PngBEKmaqphBC6zBYeUxFA+78fMuBm6zsc5sopjLkjuCECT4ydiNkxdRK5RqgcsRUpLRvNSF0nZkSpXOeqHQAu+7dq1N6wEnCzSfttgR7tWpEVK9OctOmuuURUVEnz6fcww5SeJnZ+3zVI49Qd/Bg2rZtizCsj1farsKoKCJCIKYcJmHLRcrzsnk8uvPozFyFgG+/hU2bLIkI1eA/Et+wkvwzzzxJZMnrnE5qKfchWk0lbbwX5eXMBtbol+qyueXu3UskXhKmdocOOBITKZEyv8UZBvwx8uDapE7ZleyXdmXmMTpIYipGLZPLhU0aaJmF6pjBpQxgXVbElEERYKWYypWW684cTNZFINtPnUpT/HFybTZi6tYNqJhC6qgLIXAaiCl/iqk0E4UfQLIh3CY2JYXIAQP8l8OAHJPJFH99kHIpS2BZRgbqk6h19tkhndcfhIWyRIVNCG757TeudLvZcfPNpqRjNaP/ot1uHtIPZNpsxABbZMNnu13XzqvEoUpM+ZCjFUCFFFNy3VUGhFY4Y/9+Uw8hGRHAZ0ay2+rUyj1wS/fR2GK7v/2WSRdfzEPvvcfcli3p2LGjRk7FGoi05dJzdpeWcpXZxKxE5jildyjaQjEFcOaMGZCVBcnJdA1CoQcnn+fxANvJKPcXQqbAJQ2qEyxC7FyS15bLMAgXbrf3WyF9hwOZ/8vthzFPm87Q30/IrHC7qTZgAPX9kVcWkL7oNDI8czNi6rBMMinfIVVFli73DyTESt89W14ezJ0LTz3FIMVKREbpoUOktWsHn3zC/TNmsBSwcvU9qJTlyOHDOG++mW2DB5/sAxQX09ZouWJUccvfWOleN1y4UPs7EDGQKt1zn36kH2jRBBs2eFVXdesibr/dZ7uj559PQyXMF2D600/rCGTwZvLcPXUq4sEHvd+uwkKYPdsn2YpMkiYkJPDdd99RUlLC534yi+Zv3IjtjDM479tvtWUiN5fMzEyaN2/Oc889p4tW6da6NStXrgzuJkiQiSm3hVfjfxFhYiqMoNDk++8pBbrm5bHh9df/svMWFxdTW/lQVAvCnyZYRCshdm137cLpdFaYmFJDe+QPcZwyg+UMoiNcoAy0i9WGvqjI6ytVXEx6x46c+cMPZGZm0rVrV1atWkW7du1CKp9cRoAYPz5dcqhMRRRTDkOoUrX27YPe156SQraFeXaw8FSwI64qpsqt/GL8Gb1KSFQUY/58vKzQSCFaOmRkkGfR0ZJn03VZ+Wz6jkfe/v0V85hyu8k0dLLEM8/oTGqN0HleSQNIW0VJQhPIiqmayrNoce+95Nts1AbmXHONbns5lG9NAD+batWr6wZcEVFRJ8OohODEiRNcKJEV5Sadh+eee47ffvsNh8PhE2KXqGbIionBYTF4N0OUQrjIKFHuaU3QhfCUSx3Dom++geHD4ayztEGRkRRRiSmzNyzhwgtPDiylOlS2fDmxbjdZQLfhw70LDcetlpnJWWYXI5U1S/HvybTZiFZmfmO7dSNXWZ9kGBjF1qihDeqdRrLGZiNGCVeKys0FIXyz21kgVr22Vq3oIXVQRZChfEIlpizaKYdR5WPRtqRKXna6MwdJTJX48S2zKf5O6UpZAhFTDmmAbHe7vQS3BJnUNhJT+RYh2/KgL6dBA7DZaNOxo99yGOEM0SvJLU3y5CnhpwVAskV2XCv4qwm2AAN++f7UKiw0NUOvYSiPiIiwfEZbley2pVOmnCyDQTGleUsp5/apgxWAkZiSv4TZAcg5gDw/SiiAYKauVgK3BzkZqpLgcsid8c07uGsX/RU/nXuAe3bsIDU1lfnz5xNlMAiPkL79ViFLNom0KJH+jvJDTNUrKPAaX4cAtX8WyvSs00IBJcP9zjva39UsrrHeQw9p7biRmMLlovjSS6FGDYRF5kDfk56st6XA9599xnXNm3PAoLDsIofJGVBeUlLhAay/XHjR4KP026cocgE8MTFMnz6dmJgYPv30Ux0ZKSNWJvILCqB/f3jjDZYbPLoAMlaupIF0jl6AnA5ADmVbqXxD3Xv2cDvwJJCjqrY++ohko5eY4dtT6ifrZjDI3L2bQ5Kaa52kKgy4rxC88847eLp21Uhkm5T056Obb+alc84h2UDWvikE8yIjOfTaa3DZZbBpE4MGDaLulVdiGz0abrgB52WXwYABuJ5+Wrev7AmWJE0YlZaUaO/nkbV6evSASSKi8vR03nv9dZ7ev58dr7zCHin00ZmdTY8ePcg5eJAjyclsueoq74r9++Hmm2HzZg4ePMgVV1zBsmXLtP1kYsr5F/pv/d0RJqbCCAp1zj6b5V26AFDttddM5bunApmHD2seHAmKQXZVoNmDD1IOnOnxsP7HH7ErHRAf09oAsEuGxOCNTW6tzEjUNjE1NKJYaSi1MIr774ft2ylMTKTT5s0Ul5Vx+eWXs2jRIuqGYJ6sgzRYjvNzDJmYqojHlDFMsI7i5RMs0qVQwIoobkRFO+LKM/cZ+KplCbKunzVoEABnBhkyIp+t/RVXaH9vlyTVMuS0vDoS0aZvxvMPHAjKY8oslK9E6Rz9CHyqbO+6/nqQQhRkyAquCIn0rEpiSu5YJSsffFtkJOnKu3PVn39yaPVqbRt1AOGx2wN6MdlsNuThlRxicP7PP7PrySeRnTnKTVLJyzCSQNWVjl9ZfLwPcesPcSaD8T433UQOXkKphjQAKpMGCnukGX2t3hrqtUpM2dGHZwG0uvFGHTGn4pDSUVsVE8NZynfA2OHtYPGeyO9PvuIZkm3iFwVQ26BYik1I4CXgYwATUl0NxUwsKsJTXh50hyZOCK803zBICDaUr5pihl9iQYZHGD1ULOphoTTZIrc/wXhMCQBDOJiM/koZ8xTVWaBBSKw0iLV5PAilrqu1SyU+ynNyqG8k6y0mIdQQw6Vt25KsEO4RIX5jHYq6WYa/a7HLJuVKfTsRFUWUP18bE/hLYmEPELohZ7WKEMK0XtY0qpdNQvkAdsXEEKeklW8tK5AMnlTq81E9cuwh3mczyMd3AyXSPXFavStS3c0wZGU0ItippOcDtLvaqVXFlPytNGzj2bOHnMSTwa8PAZHHj/PE449jNIs4Q2qzrYgph0RSuqQBdZRFKB943+9QfXNsQgQMxzXCGUSIUbeCAhZ368a+6dO1iR9TKISv2ySUL272bAC2KBmkIwNN5knXkRgXR4v77mPy/v38MnQo2UH6Mbn9GKhXFi5DuLFDIhBsMTE8fM01jAZG338/P1pkB46TrrF2gNDfzD/+MC+Hy8UrZ5/NJzfdpC27ERAFBboJ52yFJMkxIYLdQui+5eXSN9bfZIV7zhzfZdddR0rr1jo11xv/93+WxzAiq7ycxx57zNej8I034NAhHho3jhfWrDH1XRwANH7mGZg5E9fFFzNv3ryTCRGWLSNSUViVGuww1GQCtYHJS5fyNd6+z33ffw+XXgouF9lGyxWTulV6/Dhnr17NHcBPwKfSc1flAq83bcoZubl0+PVXAMouuwzGjcPdvTs33HADv/32G3edd57XqkUInQDAaZE187+IMDEVRtBoN24cOUCL4mK2PPFEwO2rArmKgqMUJe18FSGiRg12KmbqWV99pRFTFVVMqQ3tlpkzaYh3ZrFBEMRUuULGeNLTvSE4Y8fisdkYVFBAOvDAAw/w66+/Eh9ip1oHaVCU4MdAvrLm51ESMZUNtFQHsEGiQCLNKhQKVkFiSiVRXFaKqSCJKfuwYbBiBZGqf0Sg88p/22wsVtQTLgsSyC11KKw8pgCKDx+2VkzJxzN0tBMKCnApHj/VmzVj9sCBLAAcJSWU9OvnDT0wQA7li5ZUPpZGrUFCnq+0S/VXDu1KksIeMy68kGJlYC2U++R2OEyNWY2QM6sZkwn0/vZbnd+CMbW0EcZQvurK/87ERKIt/N0yTepdNTPCwWbjsHKMVtJ1lUuDD5s0cE1SFQ1GYkp6T+zScQ47HNTt2FEj13RqCeVe5511lnaPbEH6x8nZ3EoUsiTfYICtdlONjgt2u51aH39Mzksv0dDEY7CmoiBNcTopCkLBoSIWcJoMFrJ+/jnwzseO0VIxtt3cuTPxJnXCYbw+C6IpRgphDnXuWgBxbY121b4oU9r8QMRUgtQxtrvdeJQBaIHynFXiY+dnn/ko0xIModhGOGvW1L5DoRJTxroC+PWYGiKR1ChkWG5Cgq7eB4MiP/U7MsCgOEl6r6yIKR+fHQtiymOz0eHBBykEasvP0GbTe8ScYsWUDSiV6rHboG5BCNwLF+qy55X48T86FYjJyeG3888nTfINMt77qJUrKZCIKYDVy5Zx63rf3Fhy9k4rYkr3/kvElL9QPoA9/oy9TSCcTorU7LB+kC359AWjmALos24d9QcPxl/e69/few8Aj7HuS+17gaKeiQ1w3nqSqsdut6OaAPTcsYMuJqFuZq5bdULMZhoKdiuZklXI/QJbTAxjnU7ux5v1LtqCNJVbuTMDKCzLLZRmf37xBc+uXcsD48dry3oBOf366cjXfOW7v9DoVQu4PR42ScmF1G9+fn4+zz3zjGWZIpSQ/bkvvcTEdu0ozMggQlJsqrjY8NtVWgoWdiOxeBOt+OCppygyee5WcBi/3VK7WWxQPR9OT+duIB2oBQwHjgCN09Nh1ixctWvT0fBuL1WIVhllx49rWW5B31eZALyJPlFHSXo60YrfYURJCXuVEPPtALfeyqFWrXTEoFV2w/8iwsRUGEGjTps2LFWY5dqjRyNCMb2rIAqVhjZT9n6pIjgvuwyARmvXkqwMuiMNnjOBoHlMgVfSrJj0HUxOxhZE9iGXMtCus3s34v77AXhOCJbYbLz//vt89NFHQRuIW0LqAMcbUlTLqKxiKkaaAU4FWoYYOuGWBuMVITbsFSWmlIGSFTFlD1YdaLdD9+6aprwyEwAAb5NJREFUAivgeQ2/yxXVQaRJunKwJqaMiqnStLSgFFPGDGTd1q7lHCW8ILJWLSb/+itf9uvHfiD22DFISQGpQyk8Hp0Ze6yk8qmMxxRAnvQs5Fn7GIncqX3OORxfsIACm41uRUUsPecchBDadXnsdmKDkEc7jSbefgYTEQE63EZiSruGpCRLYuq4CemcbKEOLTRZrhJTRXPn0knqJFdTlSOG64uWBmURUt1OVcuntrPKfRdlZTRWnnsdKcuoO9jwGrnzpRynLAT12AMPPMDzzz/vY7CPzUYNxaenLrC1c+egjwmQaUIAX2mYtSz95BPyH3hA5/1z4OGHiRSCZTYbl7/5JueYeIwYiSmfFPEK6ivfIIB4qd4Jm43lkpGuGQRQI4jOvF1tVwM8r5pSe2DzeLRwliLl+9GmpIStb71FweTJPvvW6dvXfxmkuh/qt6WdiWJKxcpXX2WVnwmrWMV7rLhGDSJCNJot8bN9nMGk34jq8rYWM+E2w3spHA5LJXpscjJbDWpnm92uI45EeTlHjx7VPHIiYmLAhGxJD9J4GvTEVHX03w+jJmbXHXcQ0bcvTSQ/ovohki+VRceiIoYsXsyZ0ntlvNrGRUVcYAiXn/3ppzxocjxZ+SOkUCsZ50rLbdKAORGsiSmbDXcQ/k8yxIkTxPt5F1SUNmjACy+8QFlZWUiqoljAn13+ok8/5fjx4z7ElOzB2Qs4MmYMSQHUH62l8De5TtmLivBNZyJlgpVQdfETvpjl59lEOBx0V8qcBKRYbhk8qpll5QbsFv5jNVatIuXuu7XfuxR/KKeJh6woL6eT9K1buXgxAF98/DEzA/RtRXEx/V58keu3b2fjHXdoy3+U+hAfSNsfWrfOm1zFIkz1YsAqgDU+hMyF/mB84/LT0vjCsEweBTlMJpbMZADOzMyTAgbAqAV9HK/huoqDBguMFpmZyL3Rxnv30vnRR7XfLsPEWkUyEf5b8K8ipj799FOaNm1KTEwMXbt2ZUkAGXEYoeOcH37gsM1G3fJydipEyqlEmdKByK8CI08jWj32GB6gfVkZLZROeD3DTEkgqDHCdVwunPHxnK8Y+ZYEmRLbpqhkWqWmYispYTbwfnQ0P/30EyNHjvRRcFQEqrKhEP+DgsoSU3KYYEZsLHEhEkVR0qxORULB7CGmIdfOFYCYijhFYavGs0Ur6ZzrWGTl0YUnyIopg8dU+bFjIXlMHQW+BOQ5KEeNGkRHR/Pt9Om8I8ucGzXCOW+ed3/ZYDYqigRJ0VLZMJICaVDokjrCMYZMU3UvuIBDikKt/+7dzLvpppPElMNBXBCeQf9zudgOqJqPxn5S+MYHOJ4VMUWNGkSnmHdhcw3LXUAtC2Iq8pxzfJapxFSaoT2upXR0fDympPdSrg9CIZKN5ueHf/mFOCHIAM6RjEpFAPWYdg45m5viheE2eH8F0wWzmwyo7VKb0yPI1Mvq25xrMmiW9QhZ//d/xDzwANU++QRbVBTHdu3ClZlJLUVVtePyyy3Jd4dBkWGl3KshKZ50nWG7nZ5BZMCtZVIfjIhXCO9AHlO15QGix4NNGVwWS21x+yeeoJdJVr3qRiNvAyKkAVOoiilMwlrV9q37s89yrp9wpWRlgOmuQBh8mR9yvbXHA9nZFE6YQGb//gg/KtVkC3LASExh8IxS0UaZACzv31+3/I/Zs9khDTibA3+0bavN5EfGx0Pnzmy+9lrdfjkhEHTyNeUAUdJvl0SCH/r5Z5oqRsGyWqxmIMP9vxCb/YRm3mVBDERL3ziHlO3RComGSSUrQlrYbLpMbcGgu5JUJxDqA9Vffpmxn3xCT0lpU1m8CYxt3Njrgyoh5qefdL/PGDGCxiH0meSwrnOBa0y2KTDJMBm6k2fwMI425DLa0atl7q2C8zW2aMOS/PShE6U6O2zKFC4bNIgFiq+gDOME5GuKb5dLIaj8YbQUGZOgqLLSgAYWIeT777or4DGrCnstlttBRwg/VIFjP2myLGb2bC4IkMxBpgXbSMQhKOo6f/t268b0Rx/F5XTy07BhtLTbGXqdPze0fy/+NcTUpEmTGDlyJM888wwbNmygd+/eDBw4kFQ/5nlhhI46jRuzXMmq0+D77xFVxHJbwa0M0gurVQuwZehIbN6crYohsQPIAxqff35IxxDKzL8DiJRmjmoFSXBFSB3mNGBkzZosWLSIq1TzvKqASkwFSOHrkAYMFSGmYiUPmJIAptNmqCENsiqkmKpgHbEiptQ5vWVVGEKqO69hRqTuwIEANCot9ZXLE7xiquamTSdNHQ3EpnzOImV2tyAiguQpU/j2tdcYPWQIP597Lm3efReA6Oho3pszh2c6dTp5jH79OPq//+kNZqOiSJKyMDormblTHgy7pI5wtMmzaP/006xQZOe9x48HxVzSExFBvKGDfMwkU+QZDzxAO2CEMrCqa/DHkMNXWt54o99yeyyuOyIlhViLjJhGc+csIMFIbChQ64gMV2Ehx95+m1Z79uAGpij1OFEti6EORERGamqHaKlO9Zg0Sb+9sn/qDz8AsKN2bRKkdyxQWKMKmZiKUr4XtjPO0G0TDDFlmik0MpK0EIiOJc2aaenjC03CYtzKObK++47qzz+vW5f16KOsvfNOEjwedkREcPU33wBgFvxXx5j4wmKgFlmtGlkVnHyIASIM99EMqqoqEDElD7ZsHg92hRApNZkU8qFnA1xDtPRtCJWYsjkcGIfw0z79lOWSiawV6iptVIRJGKh1vi8vygOUM/+ll3DceCMpc+eS3q0bwkJlkWKR6dFITNU8dIhIP/3V1qNG6X6/cuQIbb7+Wrfsjrw81KGsGsoXbQipLwnh27ri2We1v5PxKkRUuAoKcLvdzB44kMbXXBMwu97pRo4fEtcqTU209M7UUg2m/aCP4XdtC5WVsNko9pNxzgzB69xgFHD3//5nui64VC7meKK8nGOGdjMwNe4fbYMIYQom+sCI9EpEGhjJpp6ywu4UTFRa0U+uEMZXT/z+O3eblM1pMmFzeNkyOvpJhKTiQcmvSfU4zY6OBiO5rSi7Iv/C0F2rJAC1hMDz0UdVfr6aFj5gVYnL332XH4cM4ZoJE9gL3DllCoWn0EvtbwvxL8E555wj7rnnHt2yM888Uzz55JNB7Z+XlycAkZeXdyqK96/CiWPHxBabTQgQaZ07i/IPPxSemTOF2L5diOLiKj3X3B49hACxpGPHKj2uioVXXqlaA4p1iYkh779+/XoxGMTtIDpFRopJN9wgCm67TYiysqD2X/bSS0KAcIIY1rCh2LdvX8hlCIQld94pBIi9UVF+t8vatUu7F4Xp6SGfx1Vaqu0/rXfvkPcvycjQ9l/+yCMh758+f74QILKjo0Pab/3bbwsBYmW9errlIwYPFjeAmDp5cshl8QvlGnMNza/T6RTHlHVpX33ls9uJrVu1fT1ut7a8/aftBS8ieBHhUdYfrVNHCBC7o6O1fQSIrXFxYteUKWJOhw665cFg8nffiUnS8Xa0aKH9XXDsmPCUlWm/Fxra4lCxQim/ALFkxIiA5fS4XGLNGWformlpkyaiQPpd8PDDQhw75ruvxyOOHj2q/f6lUyfdcbY0aCDEvn1CfPGFEKWlfsu9KT5ef1+Vfxueflp4XC7TdQvvuEP/jPxcp1u6x9r2TZtqf/+UkiJmDh2qP36nTj7HKVLWHXI4vO/bQw9p6xa1bi0EiAX9+gkhhFibnCwEiPlXX607xrL69U2vx/hvacOGYu+uXeJL6TmufOIJ3bEyle+Jzz8JeampunVq+dYZnru/f6uWLBHbIiOFALG5eXOf9SUgTkyfLoqU8kxKTBRzGjTwXkfLliJdWT7nppu0cs2dOtVvuYUQYvmZZ1pe34bERN9ypqQIIYRwBromIQJec5nSp1n13HNB36eN1aqJ9XXrCgFikcl9WlO9ekjl2Pzpp9q9SF240Gf9Lj/77p85U+xX6qn8LzXIaxEg1rz4ok8Zt951l/a32X1eIb1Xwfw7EOL2zpKS4LdX753dHvQ+J7ZtE0IIcWzDBt3ypY0bh1ROq3/HIiPFF8GUQ/rb+D0SIIqroCzB/Fv9v//5XZ8WHy9WGZYdMql3Zv9+CfGepv9F1xzoefxT/s1v3z7kffZFRZ32cv9d/30CYkOI+6jbL0lOFgu6d9etK2nQQBTs33/ar+vf+O+rN97w6U/8ExEKx/KvUEyVl5ezbt06+hukzv3792e5YlIaRtWhVt26rFFStNffsIHIhx/GNmgQtG0LcXFkREayJTGRVTVqsKJWLZbVq8eShg1Z3KQJi1q0YEGbNizo0IE/u3Thz3PP5c/zzuPPCy/kzwEDWHD55Sy85hoW3Xgji2+/nWRFPm0M/agqNJFmIXNNZlUDoXXr1uxr147Uiy5i0pYtXDd+PAnffgtBeuw0ve02voqO5vWOHfl440aa+cmyVFGoBu3+PDMAohQ1hBtCNooFr8pKnfuKCxDaYYaYlBSOKbNcFQkFq33hheSsXk1CAP8PIzqNHMnqJ56gsSEm/NNff+XN1FSGGEIhqgpGjYHD4WCP8gzq33knu+vXZ2m/fiy9/npWPPQQu5W09m70s+2yYsqt/FnPIqypTXExra69ln6S2eaexx4LqrzX3norFxw6xJiOHXECZ+49KaaOiIrS+UqJIE1XreCUZkg9wcyoRkTQZvVq9ktqAE9kJPI8a8IHH4BJSI/NZqOe5L120aJFTJBC1kr69PFmP7v77oDJERIsfPfaXXEFtogI7f1YK3nyxEtqNPAqpqxgN2lX2imZ5cY1bkyP9eupaTTENlFKqiqwM5QZVoekhGqshAhcMHcuG2JiaK8oo5pLHhMAMSbPZbvJzHavw4ep2bo1d35x0ukh3hACV1MIn/2M8PGYUlAWRGKIScCZQJfu3dnVrx8AHZSZ/7WAR7nGGKDW5ZcTJwQLY2I4d/16HIMHe69jzx5qC8FRh4MLpGu5eMgQphn6HkYkWYTnAuSa+f4pz2fDmDH8LiUVOFEBdZXargdSTMnolJ9PZ0UhkmcSQlnQq5f29y7lWR41PHtZmREvKbvqdelCpuGYRZIyxwd2O3aT6/YN8LNGUrt2PsvaffIJ4qOPYPt2ck2usYaFAspodZwKFAFNTNLA+4NPKF8QSPWTvARgm/QM1OybtTt21G3jqlGDHJP7uSvEBCt1nU7kYJU1TZqYblcmtZluk2tODfCt31wFJu45NhtnPvyw321qzJxJvCEUr1GQ6phq15gFoFnj1PRmg4Pbbtd53ZxOLJe+s/5gC9GPC6Cokj6X/2bcB5wV4j7q9q6cHB/FVExaGgmnYOwSBjR88km+eNDMAe9fjL+AKDvlSEtLE4BYtmyZbvmrr74qWrVqZbpPaWmpyMvL0/4dPnw4aDYvDCEyMzPFqAYNxPsgpoLYCCLvFLLGi2+77ZRdy6aYGCFAzL311lN2Dn9wuVyn9Phr3nnHew8bNw647bLLLhPLrryywuc6pszobvjsswrtv6RFC1EK4sCcORUuw98eSp1Oi4nxWTXm4YfFdBAuP+9CmaHZ7vx5Z00x9dIrL4lnr7pK/BYTI9wgFtetK9ZPmiSmSjO6ZSBWNmggtr7+ulflFCI8Ho/447nnvIov5V95YaHu2vInTqzIndGw5auvhACxKTFRLA1CMaXi0Jw5Wju0qE0bMS0lRQgQ80JUQx5dt047Z+qsWUHvt+ipp0Q6iElNm4pNINY2by7Kly/X1q975x2x+O67RWlRkXCr9WD3bnE0NlY736QA17n9iSfEoaQkUaJsXwDilxtv1NqRDIOy6M+uXX2OsWboUG89Uv6te+stbd3sRo186lxaVJQQHo/uGPMuu0y3TTmIBb17B2zLC0Hk7t+vL5Dc1vfpIxbcdJPYN3u2bhNXcbEolLZbcPfdQgghlp11lm7/bSA2n3OOOCKpM0aMGCEOHDjgvT9Hjui2X1i3rk8ZNjscYu+GDUIIITb98otu3e7HHvO5nwu+/VZ/nQb83K6dECC2SNvsffVVIYQQM4cP97lHC5s3N70/Sw3XKkSQqiohxJZZs7RlcyMidM8/PyLCZ798EK8mJootS5aIbLtdHFO+kwLE7qlTxbTXXhNfJCSIDfPmCSGEyNu4UVufDmJX7dra75zt23WX4ykqEkVpadp6j9stlnbsKHbFxooNILKkchxcskTsrFVLV7bV7doJ95w5QfUd3CDyDh4UQggxa9AgIUCs7dZNV560X34RxxMSxL7XXz/5TtSrZ3q82QYF2eJOncQXl15quu3G5s1F+o03ar+nKWo9AcLtdAZV/rfr19fKuXPsWG35zNtv1233yYUXiv3Ll4t9eFWXhfn52n4rpO0WPf+8WCI9m3dr1hSvNmsmDr7/fsCyjO3WTawYN068cfPNYp5BvbXttddM99kttScba9TwWf+npLw1+ze/VSufZb8ZFBuB/i0fPlwIIcSq++4TJyIiRLGZslWBO4TjavXx889D3kf+5+97X9l/ThA3Ku2PALE/MVEs7d/fcvuKXL/Zv/SLLhICRJqiODX+m2jS7pr9W5yYKFacf37I5987caLf9b+8+WaV3eOsKjrOP+HfksREMX/AgJD3ywtSfRj+5/tv6113+fQp/mkIRTHFX1CeUw6VmFouDQCEEOKVV14RrVu3Nt3nhRdeEIDPvzAxFRqcTqfIzc0Vhw8fFtu3bRPr5swRqz/7TKx6/HGx8r77xIo77hDLb7pJLL32WrFkyBCxeOBAsfiii8Ti3r3F4u7dxeKuXcXijh3FkrZtxdKWLcWypk3FioYNxap69cTq2rXF2po1xfJGjUT23r2n7BqWff21GH/22SI/O/uUneN0wu1yiRUffywyjIPBU4A/hw0Tf7ZqJZwBQp6s4HG5vCE7/2Ic/Pprsa9OHZGuDOiMSE1NFTM//1zMvOACMb9VK7G0fn2xPilJ7IqJEcciIsRSQ2hW1y+6asRUcbk3lNbtdostf/4p8jIzhRBCFOXkiGlduoiZAweKo1u2VMl1pK1fL1Y0aiQWy+VZuFC433zTh8SoCFKXLBGl+fmivLBQrK5fXyy59tqg9tvw5ptid2ysWP/mm+Lonj1i4tVXiyM7doR0bo/bLRY3ayYWWUxs+EOxEs5cGuAd+O7tt8WXr7wihBAiZ80asb1VK7EqJUWs//bboM7z59ChYk316mLz+PE+644cOCBmd+0q1kdFiRUffWS6/+E//xTL6tYVW6OjRbYycBdCiMK8PDF75Eix6o03xI433xQHX31VlCphQTKcpaVi+SuviKObNol1CQliTufOYudvv4mtUVHiYGSkmH/hhWJV795i68UXi5LFi4VwOkXu3r0iY/Vqn2MtevddkVqtmtibnCyO+SGl08eNE5tuv10sf+894XQ6hRBCZG/fLnYkJYnV99wj3n/pJTH799+992D1arElOlrMv+EG3/P98IOY0LmzWPX008KVm+td9tBDosRmEyuSksTO+fO1bT0ej/jxrrvEbwMHigKFrDKirKxMfJWU5O24v/SSz/qs48fFd0OHit1r14pVX34p/pBCXUtLSsTXHTqIKffcIxaPHClWJieLdMM7emDiRLG2Xz/hLCgQ0+66S7hBrDj3XG+5hw4Vu+LixIL33xeH2rYVBx54QBxbu1asOeMMsfXjj3XHmfDaa2LBzz8LIYTIPHhQTK9fX8x68EEhyspE+R9/iJxvvxUbExPFwkaNxOzvvhPl5eXee1BYKDxOp1jSuLFY1Ly5LpRYhtvtFj/ddptYOW6ccB05Inb36SN2XXihZXtwdMsWkWn4Lu3cvFksnj9fTD3nHPFb27bC4/GItI0bxXaFPNtQvbooVvpp22fOFD8PGCDW1q0r8u12sbR2bbFm/Hjhyc8XnnXrxOYHHhBbHn3U9NxW8GzaJNxr1oh9s2aJxcnJYsVbb4nFbdoIAWJFzZqiICNDjFEIpm3R0SJ92zbh8XjExGeeEdNffllsj48XC+LjxXt9+4q0tDQhhBCpGzaIA6tWiaKcHCFArKxTx1v+Tz8VG+rUEUcSEoQAcah+fbGuRg2x+K67hDhxQixdskRkG/olqb//LnJ27hS5OTniBRC/g1goPeeZv/wiZkydqtsn68AB8cN554kpt9zivZ+bNok5deuKpa+9dnKjsjIxp29fMS4qSszp00esvegise7994UTb4jrmAsvFOUlJbrjOsvLxcZnnxVHRo8WQgix9OabdQOq49Wri9KsLDG/fn0xq3VrseHjj8WO6GgtfO84iMLMTLG4SROxqGtXsVkhsWZVqyYW3HOPWFqjhsjYs0esfPxxsSIlRaRv3y6WzZghiouKxBqF5JrdsKFYHRMjfnjiCZGzebP4XSFvs0CsiI8Xi+68U19fPR4hnE4h1q4V28aPF1ujo8WK//s/bfX6zz8Xa6KixGEQ80DMAjGzZUuxLTJSrGrcWPz59ddCgFgHYlFKilj0zDPC7XKJ6e3bi+mXXCLmgngjJkYcWbpUeI4fF6nVqok19eqJBSNHil+ef14sALHk/vtF+q+/ir2tW4tfQEwYNkzkbN0qdjzxhBAgpnToIGZcfrkQeAniA8r9mmu3ixnt24t9CxaIVLtdbI+LE9sXLxZrqlcX6VFRYvV554nfk5PFDmX7P9u2FUuXLhUej0fsffNNcaR6dZGxYIFwl5eLtY88Ipb07CnWV68uDikhylnx8aJkzx6xVCHu0kDs7dRJFB4/riNfjjkcYtI114h8Zb+d3buLcdLk14L69YWrvFyIwkKRtmqV+AzEiMaNxdzERJED4s127URmRoa3Du3bJwSIP+rWFb/36SMOKMc8arOJ76++WqQdOCDcubniaNeu2vF/uflmsTkuzmcAfzgpSaxOTha/vfyyEEKIT5Rw83FdumgTaStB/KSEFh9Yvlwseu898QeIt0DsWb5c7JS2yzQhU4pB7AWxzWYTm0GMuf12cWTXLjHlvvvEl23batsZw0LXg/jhuefEmmHDxE4pFHpT48bieHS02PTqq2KyRPbujYgQf9SsKVIvuURk/fmnyI6IEJl2u5j3wgtigvKtMft31PB7rfT3QhDTO3YUy+++W1uWA2Jtjx7i0OTJYvbVV2vLFyn/yxOQOTabSJ0/X+RIk1/f2O1iVUSEmJSUJKZef71W99R/60AsuOACUV5QoL33nw4dKl7q21fbRiVDXXgnbNOXLBHr775bzLn/fvFuvXripxo1xOQbbxRHmjQRBXFxYpNhokKAyDb8ni79LYd9b0hKEoVffilW9OghlkgTMgebNhU5O3aIH2+/XVwrkan7Le7zzJEjxb65c8WaqCgfYnLBeecFJJvmWiz/GsRCiXhf26SJENOmhfQN+zsiFGLKJoQQf71Oq2pRXl5OXFwcU6ZM4corr9SWP/zww2zcuJFFixb57FNWVkaZZN6bn59Pw4YNycvLo9opMNoOI4wwwjgVOPerc1mdthqAwqcKiY8KLSQjjDDCCCOMMP4tcLlcOEzCM/8JEEL4ZGN2uVzYbDYiKmHoHeicgO68xnJ4PB6EEH7LYFb2QOfxtzxYFBYWEhcXh90kVDQ/Pz+kMZ3L5cLj8RBlEgrodDqJiIgwPU+o8Hg8psdxuVzY7fagz2FVX9T6H+jemu1fUFBAYmJipd8j47FdLhcbNmygc+fOAKSnp9MgQHhyqOdzu9243W6ilRDiQHXSCvLzEUKQnZ3Nrl27qFGjBq1atarw8wmlPB6PB5vNViXZ2U838vPzSUpKCopj+We23AZERUXRtWtX5s6dqyOm5s6dy5AhQ0z3iY6O1ipuGGGEEcY/FTqPKfH3Sc8dRhhhhBFGGH81/qmkFJgTCKf6eszOaVwWzEA80ADaan1lB94JfrL2hSo08HevIwP4tIYCq/sZ6rMOVF8q8kwSlazAla13xmM7HA7OljLWViUppZ7P4XCEdP1WkJ+PzWajZs2a9OzZs0Jl8vc72DL8l/DPbb0NeOSRR7j55pvp1q0bPXr0YMyYMaSmpnLPPfec7qKFEUYYYZwyRNhOzmB6hOc0liSMMMIII4wwwggjjDDCCCN0/GuIqaFDh5KVlcXLL7/MsWPHaN++Pb///juNK5BpLYwwwqhaON1OhkwcQs+GPXm2j58MTGGEDJ1iyhNWTIURRhhhhBFGGGGEEUYY/yz8q3Ri9913HwcPHqSsrIx169bRp0+f012kMMIIA1h0aBF/7P2D5xY8F1b1VDEi7GHF1N8N2SXZLDiwIPw8wggjjDDCCCOMMMIIIwj8q4ipMMII4++JSPvJ2PxDuYdOY0n+fbBxMmY97DH190DnLzpz4fcXMmHLhNNdlDDCCCOMMMIII4wwwvjbI0xMhRFGGKccYzeN1f7elrHtNJbk342wQufvgdS8VACm7Z52mksSRhhhhBFGGGGEEUYYf3+EiakwwgjjlOJw3mHGbR6n/d6esf00lubfjbDH1N8LCZHW2YLCCMMKe7L2MHLWSNLy0053UcL4i1HuLudAzoHTXYwwwggjjDDC+MsRJqbCCCOMU4r3V76P0+PUfoeJqVOHsGLq74XE6MTTXYQw/oG4+IeL+XDVh1w56crTXZQw/mJcMfEKmn3UjEUHF53uooQRRhhhhBHGX4owMRVGGCGi3F1+uovwj0F2STZj1o0B4M7OdwLhUL5TibDH1N8LCVH/TcVUmauME0UnTncx/rFQQ0HXHF1zmksSxl+NP/b+AcB7K987zSUJI4wwwggjjL8WYWIqjDCChMvj4t4Z91Lt9WrM2TfndBfnH4FPVn9CkbOITnU6MarHKAB2ZOwIqOxJzUul0+ed+Hzt539FMf81CCum/l5IjPpvKqZajW5FnXfqaARLGGFUFosPLeb1Ja//Z9q4nJKc012EMMIII4wwwvhLESamwggjCJQ4S7h2yrV8vu5zytxlrEn7e8xkO91O5uybw/HC46e7KD4odhbz0eqPAHjyvCdpWaMlkfZIipxFHM477HffayZfw+b0zdw7896/oqj/GoQ9pk4/ZEXlf1UxpRJSs/fOPs0lCePfgvO/O5+n/3yaiVsnnu6i/CXIKQ0TU2GEEUYYYfy3ECamwggjAHJLc7lk3CVM3Tn1dBdFQ25pLm8ve5vkN5O5ZNwl3Pzrzae7SD74ZsM3ZBZn0rR6U65pew2REZG0qtkK8B/OJ4T4R4awbEnfctoJy/+KmuDvjKLyIu3v/yoxpSIyIrJKjnMo9xBCiCo51j8BSdFJp/T4e7L2cPtvt7Mrc9cpPc+pwM7Mnae7CH8JwoqpMMIII4ww/msIE1NhhOEHRwuO0ufbPixJXUK16Gp0rdf1tJbnYO5BRs0aRcP3G/L4vMcpcnoHwaebEDHC6XbyzvJ3AHis52M47A4A2tZqC/g3QN+cvln32+VxnaJSVi06ft6Rc746h4yijNNWhrDH1OlHQXmB9ndVETP/VKjvfSBM3jaZabumma77dsO3NPmwCSNnjazCkv29YbPZTunxLxh7Ad9t/I6BPw48pec5Ffg3q0Jl8jW7JPs0liSMMP45cHvc7M7a/Z+avAgjjH8rwsRUGGFYYHfWbnp904stJ7ZQN6Eui29bTJd6XU5LWVanrWboT0Np/lFzPlj1AYXlhbSr1Y6PBnhD5fLK8v5WHdnJ2yZzKO8QteNrc9tZt2nL29VqB/gnpqZsn6L7fbTgaJWVy+VxMW//PIqdxVV2TCN2ZZmrEDzCU+WDqlJXKccKj+nOEcbpRWF5YaX2F0Kw6OAicktzq6ZApwD5Zfmk5acF3C7SHpiYO5h7kKE/DWXIxCGm9feZP58B0MKCAyG7JJuVR1YGte3fES6P65Q/e7VNPZB7gNS8VI4VHAuwx98HFZmo8AgPA38cSN+xff/Wg9cSV4nu77+iPf9o1Uf0/6H/Kf0mhoK/8/OpDBYdXMQz85/B6XYG3vgUwe1xcyDnwGk7f0Uxf/98lqUus1x/69RbaT26daU8SafunMpNv9xU6e93GGGEUTmEiakwwjDB2qNr6fVNLw7mHqRFjRYsH76cTnU7/aVlcHvcTN05ld7f9ubcr85l8rbJeISHfs36MevGWWy5dwsPnvsg9RPrA14i7e8AIQRvLnsTgIfPfZjYyFhtnaqYsgrlE0Iwedtk3bJDuYeqrGyjV4+m3w/9uHbKtQG3dXlcFSKSzAjCpalLaT26NW0+aUOJs8Rkr9BR4ixh8ITButCWf7OaoDJ4dM6j9Pi6B2WuslN+roKygsAb+cELC1/ggrEX8OS8J6umQKcAF3x3AWe8fwb7c/b73S4YxdTqtNV+1zeo1iCksnUd05UeX/dg1t5ZIe1XUTjdTpamLq2ybK2LDi7S/q4ZW7NKjukPjT9oTP336lcJIfBXDLorogpdfGgxs/bOYuHBheSV5Z2CUnkxe+9sHp3zqOl9yCzOZPK2yX7riXFQHKz6ttRVGlpBgRNFJ9h0fBMPz3qYufvn8t3G70I+RlXjmw3fUO/deqw9ujak/fZk7eHlRS+TX5Z/ikpWeVww9gJeW/oa7654N+C2p4qQvP/3+2n2UTN+2v7TKTl+KPAID9sztge81oKyAi7+4WLO+/Y8bvj5BpamLvXZ5sctPwLw2tLXKlyeKyddyY9bfuTjVR+brs8vy2f23tn/GAX/6Ybb4+bOaXda3s8wwrBCmJgKIwwD5u6bS9+xfckszqRrva4sG76MpslN/7LzF5UX8cnqTzjzkzO5ctKVLE1dSqQ9kls73cqmezYx5+Y5XNLiEi3co3XN1sDfh5j6Y+8fbDmxhYSoBO7tpjcvl0P5zAZC2zK2sSd7D9ER0VrYZFVl9nJ73Iya7c0M+Pue3/1uK4Sg+1fdaftp25AHWzIxVe4u56l5T9Hn2z7szd7Lnuw9zN0/N/TCG1DsLOayCZcxd/9c4iPjteVyJ8/tcVdosFlYXlhlg+zTiWMFxzSi7t0V77LyyErLcLGqRGVmXN0eN/+3+P8A+GLdF1VVpCrHhuMbAPhy3Zd+twsmlFFut8zeNZV4N2L9sfW8vextH7LxYO5BgL9soP3wrIfp/W1v7p3hbetKXaV0/qIzt029rULHkweNWSVZ3DfzvipVs1i925U12356/tMkv5l8yj2gKjIwnLR1UlDbCSEqNfAc8OMA3l3xLmM3jfVZN2j8IIb+NJQXF75oub+x7Tic7z9JCMC0XdNIfD2RD1d+qFvudDv9KuGumXwNZ31xlvZbfW+qAhO2TGDj8Y0h73fHtDtIL0rnvpn3hbTf+d+dzwsLX2DEjBE+6/LL8rluynX8vP3noI93Kid4FhxcoP29P2c/J4pO6NYvP7yc5DeTeXTOo7yx9I0qVfCo35TXlrzGhWMv5K5pdwXc53jh8VNC+D2/4HnafdqOZ/981u92cns1cetEen/b23LbYBS6Kj5Z/QkN32/o0xdV+29ZxVlcPuFyhkwcQmZxJgN/HMiAHwfw+pLXgz6HFTzCw56sPbrzuj1u3l3+LhuObaj08UPB8cLjp+ScCw4u4OsNX/PQrId83ichhM/1VwTLUpcxaPwg9mTtqdRxAp3jzaVvmhKo32z4hpm7Z/rd/9+qAD2VCBNTYYQhYeLWiQwaP4jC8kIuanoRC25dQO342n732XZiW5U0jMcKjvHM/Gdo9EEjHvjjAfZm7yU5JpmnznuKgyMP8t0V39GxTkef/VRD8b8LMfXG0jcAuKfrPSTHJuvWtazZEofdQWF5IUfyj/jsq86U9mzYk3a1vWF/VUVMGQcE/tQeRwuOsu7YOnZn7fZr1G6GrOIswEu+df+qO28sewOBoGG1hgD8vCP4DrIZCssLGTR+EH8e+JOEqARm3TSLRkmNgJNqAiEEPb7uQcP3G/LT9p+C/jgeKzhGylspxL4ay7YT2/6xoYETtkyg/nv1eXjWw7rluaW5ptdUEcWBih0ZO1h4cKH2W/aYChW/7fpN+zsxKlFnpB4sVhxeQWZxpuV6IQRLDi0hr9RXOZJXmsf/Zv+Pi76/KCi1xtLDvrPXcl0LRjElD4hVAkY+Rv2Ek8SU/Oxu/vVmHp/3OLf9dpvpceUQV3+oTMexxFnCZ2s/A+Cbjd8AcO5X57Lx+EbGbhqrU3tmFWfR+YvODP1pqCXR5Pa4+WXnL7pln639jPrv1mdN2hp+3v5zpcL8Pl/7OTGvxJiuSy9Mr/BxAV5f+jpFziJLpd+OjB00eK8B1025LmBWVhkrj6zUDaCtSAN/y3/acZLsE0IwcetEnwGmEIJhvwyj9tu1tXsxY/cMXljwAgVlBZz95dmMmjUqqPpiJBvgpDLw9aWva+FURiLMSEIE+vaVukoZMnEILo+LR+Y8olt3+YTLqf9efebsm2O675LUJbrfdRPqmm43a+8sbC/ZWH54ud+yqJi/fz7DfhlG5y86A/D1+q95edHLQe2rwqr92npiKxlFGeSW5jJr7ywmbZ3Exd9frL3rZkqgN5a+wZTtU7hmyjVcOenKgJYHH636CMf/OXhszmMIIWj2YTMuG3+ZbpuZu2fy/or3g74eub6rzz4tP43mHzXn7C/PJqckh5+2/8Q1k6/hwT8eJL8sn3dXvMtT85+i0+edeGXxK7r6PXbjWGwv2Wj2YTM2p2+2VJi5PW4u/fFSrph4he5bUuwsZsHBBXy14SuffX7d8SudPu/E5vTNpOWnUe/devT6plfQ16riszWf0eKjFpZ941eXvAp43wd/CMVvL5Rv7wN/PMCR/CO0+7Qdtd852cc/kHuAUlcpKW+nMGP3DKbtmsbby97W6v+ErRN0x3F73Fw9+Wpu/OVG5uybY0nwLj+8nDeXvonb4+bZP5+l1ehWtPu0ndYP/XDVhzw691G6jDG3Cyl3lwdsD4QQ/Hngz5BU220+aUOXMV0Ys24MeaV5TN81nS3pW0xJbZfHpX2D3R63aR9aCMHd0+/miXlPaMv25ezTbfPqkldpNboVLy16KehygrctqvduPW1i+bxvz+P3Pb/TanQrftnxCxd8dwE7MnYAsDd7r9/wzy/WfsGELRMs16s479vzeHL+kz5ty+G8w9wx7Q4um3CZ5eT13H1zqfFWDRq+35APV37Inqw9PD73cdIL09mcvpl1R9cFe+n/KQTnTBpGGBIKywvZn7Of/Tn7sWEjJS5F+5ccm4zd9s/jO90eN5+s+UQbyA5tN5SxV4wl2hHtd7992fvoMqYL5e5y+jfvz8PnPsyAFgMC3oOs4izyyvIoc5WRXZLN1xu+5sctP2qzQ82SmzGq+yhuP+t24qPi/R5LJaasvI3+Siw/vJwlqUuIiohiVI9RPuujIqJoWaMlOzJ3sC1jGw2TGurWqx+VtrXaUiO2BgCH8iofyjd913ReWfKKbtncfXMZ0c13hhXQzXgfLzwe0rkyizP5aNVHPDHvCUpdpdSMrcmYy8dQK64Wfb7rw7Rd03C6nezP2c8d0+4gNjKW/s360795f+on1mfD8Q00TmpMixotiLBH6I5dUFbApeMvZWnqUhKjEpl902x6NOyh1bdXl7zKgOYDuKjZRVpmw2unXMtzfZ7j5b7mg4ODuQd5b8V7NE5qzLwD8yhzexUo7T9rT2JUImc3OJsmSU1omtyUrvW60qBaAxokNqBGbI1KmzQLIUgvSmdL+hY2p29mywnv/xH2CD4c8CE9G/YkqziLW6bewqCWg7i27bXUiq8V8JjDfhkGwCdrPuGRHicHbHfPuJtvN37LsuHLsNlslLpKGf7bcCZsnUC7Wu3Ycu8WbDYbB3IOsOboGi5rdRlxkXF+z3fJuEs4nH+Y6TdM57JWl+kGl1aD5e0Z2/l41cfc0OEG+jTuoy1XEwaAt5N90fcXseKOFdp9Ti9Mp1p0NV14rBCC/LJ80ovSGbd5HP+3+P+w2+zsf2g/jas39jn39N3TGTJxCG1rtWXbfdu0kNUp26fw6JxHSS/yDsqXpC7hqjZXAbDu6DrGbhrLj1t+1Cn0zMIq5IG22Qy2EII92XtYcXgF+WX5rDiyQltX7CzG5XHR4uMW3H/2/YzoOoLP1530DTlRdIKdmTu5d+a9mjJn4taJfD7oc8rd5aQVnPS9WnxoMS0/bsnxwuMUlhfisDvIejyLWEcs6UXppMSlkPh6Ii6Pixk3zKB3495Ui66Gy+PiRNEJjhUc43jhcRolNaJJ9SYkRCVgs9nIKs5i4taJTNo2iVVpq3TXti97ny55w6JDi7il+i0AvL38bTYe38jG4xuZvG0yR0YdoUG1BniEh3tm3EPjpMY8t+A5BIKk6CRdyFleWR7nfHUOAHabnUW3LaJp9aZamOPqtNXUjK1J8xrNOZBzwHtt0Yk+9/7emff6LFORXpROm1ptAC/htil9E0/Me4L7ut3H0PZDfZ6hQJBRlEGdhDq6dUZPwHGbx/H8guc5r9F5HC04ypTtU/h9z++81e8t+jXrxyNzHuHWTrdyTdtrtGO7PC5Nbdfj6x6645l9k19Y8ALvrXyPWTfOIjIikrPrn629M3/s/UNHdNw7814mbZukrRt/9XjOqHYGM/fMZOLWiQD0+6EfLo+LHZne79HLi71t59qja/l07adc3OxiYhwxDGwxkPqJ9UmKTtLdh2MFxxizbgxfb/iai5pexCsX6r89z/z5DKMvHc2lP17K0YKjTLpmEp3rdfZRpkzbNY3LWl1GVESUzzWDl0RR0f2M7oC3PRdCMHvfbMDbPp1d/2ze7vc25zc5n/XH1gNeIkr+tv1vzv+4pPkl1IyrSXphOs1rNCchKkEzyO/1TS/2P7Sf3/f8ToNqDbi05aUUlReREJXAtoxtdKjdgZzSHO344CVC1Tr3wcoP2P/wfpKikxizbgwbjm9g9KWjcdgdCCF0SiKnx4kQghEzRvDl+i/5deiv3vutlKV1zdam/Z0IWwRCCDzCg81mw26z6/zmpu6cyvHC46y4w9vmON1O0ovSOaPaGbg8Ll5c+KJGmLyz4h0GthzIgdwDHMg9QFp+GjabjRcXvsiX671K0eVHlpOWn0aH2h14q99bxDhi2JG5gx83/0iT6k3IK8vj6d5P68iKPdleombMujGAl3ys8VYN0+cL3gm05xY8h8Pu4JEej/DByg+0Qf+B3AN0+txrMXF2/bNZfddqyt3lWn1ZfGgxf+z9A4CE109miJVVSPL2AFdN9rb5D/7xIEPbed/7rSe2kl2SrfXJwPttc3qcPD3/aeIj4ykoL2BYh2E0rd6U15e+zvsrvcTdgB8H0Cy5GZ9c+gnbM7azO2s3647pB+RF5UXERcaxPWM703ZN48KmF/LJmk+IiojSndMIIQTjNo/TfmcWZ/LT9p+4dsq1PNHrCV6/yEuWJ0Ql8NX6r7hr+l3c0ukWH7JWbh9+3vEzueNzdevfWv6W9ndWSRZr0tbw2tLXuLfbvUzbNY1fdngnE8ZvGQ/AnZ3vpNhVzA9X/kCpqxSXx6WRe0/OP0nc78jcQfOPmuN53qMppcFL5p5R7QxvH7maV9X14qIXAe+Eb0JUArGRsXSu25kG1RpwKPcQ17a7lleXvMpzC54jPjKe/KfysWEjvSidSHskv+z4hSWpS+h+RnfuO/s+SpwlfLHuC22iY8SMETw1/ykdcTv+qvFc1eYq1h1bR6OkRlw35ToO5h5k3i3zuGLiFVpdfqT7I7x+8es47A7GbR6nvR8qtp7YSquarcgqzmJv9l6eW/AcAC8tegmP8HC04Cg3tL+Bi5pdxKbjm2iY1JCckhzqJ9bn/xb/H1tPbOX585/X3v9B4wdR9qxeKX315KsBaPtpWz645ANGzh558j7fv4NWNVtxvPA4v+74lQf+eEBb99naz3jxghe5bsp1dK7XmT1Ze7in2z3c3PFm3eTW0J+Gkl2STc+GPflmwzd8uOqkQvWHzT9wY4cb+XrD1yRFJzGswzBeWvSSRrzlluYycvZIrUxvL39b27dtrbbkleax5q411IqvxdYTW6mfWJ/a8bXJLc0lMSrRZxzwb4dNhHVmAOTn55OUlEReXh7VqlU73cU5rRBCcLzwOPty9rEvex/7c/Z7/87ZZyo9lmG32akRW4OasTW1DqRaxQRC99tsmfpbXpYcm8wPV/5Aixotquz6dmftZknqEu+/Q0s4kHvSEPKBsx/gw4EfmpJLd0+/my/Xf8krfV/hmT7P6DpeMt68+E1iHbGUuEoodZVS6iqlxOn9e+ymsTqTUxk9G/bkfz3+x5DWQ4JujGbunsllEy6jY52ObLpnk8/61LxUBk8YTP/m/Xn1wlctw2uEEDw651HsNjtv9XsrZNJBNZids28Od3S+g68G+87GgZco+Wn7T7zb/10daZBRlMGl4y9l7dG1jB44mmhHNHdNv4uBLQby+43+Q+/AK9m/Y9od9G/Wn7u6npxh35u9l25jupFXlscDZz9AnYQ6PLfgOa4880p+GfoLJ4pOcMe0O7ipw00MbT8Ut8dN0w+bamEUYy4bozueFWwv+d6vAS0G8M3gb6iXWA+3x0399+r7fX9kxDhiSIlLwWF3aP/ySvM4VniMpOgkZt80m3PPOBeAlh+3ZG/2Xr/Hqx1fGyEECVEJxEfFkxCVQFJ0EltPbNUN6FXER8ZrWR+tytcgsQEXN7uYgvICNqdv5sMBH9KwWkNa1mzps32xs5jtGds1Emrzic1sSd9CRrG1MueNi95gy4ktmocEwLTrp7E3ey97s/eyM2sn205so2XNljjdTlweF6Wu0oAqt7u63EWsI5a1x9bqlADjrhxHTmkOD/7xIAB9Gvdh0jWTSIxKZMPxDfRq2MvnvVCfe4saLRhz2Rgu/P5C3fp5N8/jomYXAfD43Md1nRKAjwd+zODWg+k2ppt2L+SO1Q3tb2D81eP5fc/vDBo/CIDr2l1HWn4aB3IPkFGUgdNjPmMXFRHFZ4M+o058HTYc38D6Y+v5deev2vqm1Zvq2j4jepzRgz3Ze/wqsF664CWWpi6lxFVCckwy03dP161vWK0hPRr2QAjhk9jAiOox1XWKoIbVGgYVzhQsutbrypH8Ixr5ZgYbNt13SMZFTS9i8aHFlvfbiJs73sz3V37P/P3zufiHi3XrLmhyAQ+e8yAjZozwub+3nXVbUKGI3c/oTpPqTZi4dSJNqzflijOv0AaEANe2vZZzG5xLt/rdaFGjBWe8f4blseom1OWWjrfoBmEq2qS00UiaxKhESlwlGgH54DkP8t4l7xH5f/rvyp2d76TEVaJ7dwPh0paXauSj0+2kVnwtU2Xtde2uo2WNlqw8spL5B+b7rI9xxJAQleC33qp46JyHeKbPM9R5p07AbasSZ9c/W5s8CITkmGRiHDHERcb5qA9kdKvfLWR/pv8izkw5kxJniTbp9USvJ4hxxISs4Pg3IdIeSbf63XQTBX9XXNzsYubtnxf09v7a9DD+GpxR7QzTtjwM/7i81eVMvX7qP1LwISMUjiVMTCn4rxFTZa4yDuYePEk6Ze9jf+5+jYiyIk5U1IytSbPkZthtdjKLM8kszjylpqI9G/Zk8W2LK8QcuzwuNh3fpBFRS1OXmpIDEbYIXrzgRZ7p/YwlKWMkpm785UbGbxnP3V3uJiEqgfdWvhdS2VQCr1fDXjzS4xFt1jMU7MnaQ6vRrYh1xFL4dKFPAyaTZ32b9GXytZNJiUvxOc7qtNWc+5WX6Jh14ywuaXGJ5Tkf+uMhVh5ZyeybZpMcm4wQgpGzRvLR6o+ItEey9b6tmpLLiBcWvMDLi1/WyKtSVykfr/qYV5a8Qn5ZPg67gw0jNnCs4Bj9x/XXlB3+kJafRptP2mhSbvGCt1krdhbT/avubDmxhR5n9GDhbQvZeHwj5351LtWiq5H1eBbPzH+Gt5a/pRF703ZNY8jEIdqxPxzwIQ+d+5Df84OemIp1xPJO/3e4t9u9uro0YvoIxqwfo/0+p8E53ND+Bubtn8fMPf5j1VUkxyQz5+Y5dKvfTVv2zvJ3eH/l+9iwUT+xftADHhnnNjiXg7kHySnNYcYNM+jbtC/bM7az6sgqVqWt4sctP9IoqRHZJdkBB3yr7lzFOQ28Cg+P8DBk4hB+3/O7aRidDRsta7akQ+0OdKzTkTrxdRg1e5TWBhnVI8GiV8NeLDtsLeVWkRSdRJPqTdiUvom6CXWpn1hfN+tfI7aGNov4+7DfGdhyoLZuxu4ZXD7hcu23VedrVPdRPN37aWq97V/tBd5O9+ybZhPx8sm2bvWdqzXFjBUCEYnB4PWLXmfN0TXaDLCM5snNKSgvoEu9LtSKq8UPm3+o8HmiI6Jx2B2VLu/5jc9n0aFFgTcMERG2COok1LHMCHpW3bO4tdOtXNbqMlp+7EvCyuhxRo+QB3t/3PiHNjtc2WP9Fbi05aUBffsARp47kvvOvo9Wo82/DacSk66ZxNCfhpquC/W+ym3CPxmDWw8+5b57f6cBaa24Wn4nQsL4e6JBYgPTybMwwvgvINgxyN8ZoXAs4VC+fzGyS7K9xFP2SbWTSkIdyT/idwbBbrPTKKkRzZOb0zy5Oc2Sm9G8xsm/k2KSfPZxup1klWRpRJU6o2rj5MBcHaSry+RBu3GZDRtFziKum3Idyw8v5+PVHzOy+8iA113qKmV12mqWHPISUcsPL/eJPY+OiObcM86lT6M+9G7cmw61OxDjiPHxRPIHIQSLDy0GYGj7oVzY9EJ6NuzJVxu+IioiihhHDLGOWGIcMbq/YyNjSYlLYWi7oQHD9IJBk+pNcNgdlLhKSMtP8wmPk31OFhxcQLcx3Zh6/VTOqnuWbjtVhgxeiW3/5v1NCbrpu6bz8Wpvpo0p26dwd9e7eX3p61o69++u+M6SlIKTBuhbT2xl0tZJPDn/SU3q3rluZ9675D3a126vhQGl5qUihLAkC1cdWcUVk67QPWOXx0WELYIRM0aw5cQWasfXZsq1U4iKiKJrva7awGJp6lK+3fgtALsyd+H2uPl0zae641fEf2jDiA20Tmnts/yqNlfpiKk/b/mT+Kh4RnYfSWF5IemF6TRLboZHeDiQe4D8snxcHpfuX+e6nX3q6aM9H+XRno9qvwvLC0l8PZFacbVoU6uNVk+71e/G6IGjKSwvJLc0lzum3aGRPr8M/YV6CfV0YTQd63SkY52O3NX1Lp0CrsxVxtGCo/yw+QdeXvQy0Y5onW/OG0vf4JehXnJj3v55zNg9A4CUuBTvMWt3pEMdLxHVtlZbn3C5VjVbceH3F9I8uTmXtbpMk03HOmJpndKaFjVa0Dy5OZH2SDrU6aBTlTnsDuIj4zn3jHM575vzfMKt4iLjdGVdcccKmiU3o8NnHdiTvUcLbxl7xVjeX/m+zsT383WfM7DlQFYcXsENP9/gE2ZqNQB7f+X7fLLmE+13l3pddOSXjJ+v+xm7zc6x/x2j3rv1AHSk1MsXvMzzC5/Xfh8aeYhacbWIjYzlaMFRvl7/NbeddRvHC49zzlfnYLfZOTPlTLrU60KXul3oUq8LybHJmgeDSqavu3sdXep1oaCsgHu63kNcZBzpRemcKDpBh9od6NVI7zPSrX43nYdXixotfFR79RPr82iPR3HYHeSU5rDh+Abu6XoPfZv2pckHTTRiKiEqgaW3L2XLiS18tvYzTcV2Vt2zGHnuSJ2P1Fl1zyK/LJ/3+r/H5a0v554Z91BQXsADZz/Ax6s/ZmnqUt0g5pHuj+gmDOol1GP/w/vZnrGd1LxUSl2l3PDzDQDMvXkuHet0pGZsTW0SZNuJbWzP2E6N2BpsPbGVvk376rz+NozYQJcvuui+pxtHbOTbjd/y2drPdITH9e2v55vB3xD32sn6/njPx31USv2b92fZ8GX0+qYXTao3Yd3d69iesZ1eDXshEMzcPZN1x9ZZKjziIuOIsEXwwDkPsCtrF2uPrtX5k1zS/BJ6nNGDfTn7uKzVZczbP4/4yHg+WPUB4A2VGnvFWLp/rZ8ouavLXXSu25lvNn6jKXMibBE6UuriZhfTqU4nkmOSsdlsPPPnM1pdeH+AV811d5e7de1gKLigyQVaO1hYXkhWSRZDWg9hddpqOtbpyMhZIzVF2+DWgxnVfRR14uvQplYbbpt6m+mk29YTWwGvOnbEjBG6Z7ls+DIuHHshbWu11Uz/Mx7LoKCsgCP5R2id0hqH3UFuaS5z983FZrNxYdMLWX9sPY/NfYyWNVqy+NBiWtRowcPnPsx1P12nHbtTnU5sSveqnFvWaMmQ1kOIjYxlRNcRXDr+UvZk7eGxno9xxZlXYLPZyC/L5/zvztf2H9F1BNe1u45q0dV4fenrxEXGcTD3oGmIrYr3+r9Hal4qB3IP8PN1P7PyyErO+/Y8023HXjGWW6feqv2eOnQqV0y6AvASfb/t+o3FhxbTrX43nun9DA0SGzBu8zgen/c4deLr8MbFb3Brp1sZNXsUH676kP7N+3N9u+spdZVy3+/3ccWZVzCo5SDmH5ivhVFa4anznuL9le/rvsdfXv4lSdFJLDy4kNYprRk1e5RfX8TN926m79i+pMSlsOn4JlNPokEtB+kmiZ7s9STXtruWvdl7mblnJt9v+h7wtlnfDfmOrvW70vTDwMlxvh78NR+t+ohN6Zu4t9u9lLhKyCnJ4VDeITYd36Src/UT69MmpQ2lrlKWHV7GJc0v4e1+bzNj9wye/vNp3XG7n9FdF66oYliHYVze6nJWHVmlvddGDG03lCP5R1h2eFlQ72RiVKLpPVOVeh9c8gHnNTqPV5a8wvz98ylxlfBoj0f5cv2XZJVkmR6zZ8Oefv3LXM+5KHeXM3zacJ86cl+3+2ia3JQSZ4numxgsutTrwmM9H9Pa/wfOfoB5B+ZpYeJjrxhLckwyzZKbsS1jGz0b9iQ6IlrnSSXjzJQztX2N9+rd/u9yffvruXzC5dq3PyUuhXu63sMrS17hkuaXkFeWp3uW464cxx97/whJdfp8n+e10GP1mno16qVdoz+YKagvanoRkRGRrD+2nhNFJ9hx/w7afNJGt83T5z3NBU0uYMSMEX4V2DIW3rqQj1d/zB2d72DhwYV8uOpDzUbCDPUT63O04CiJUYn0bdo3IKE+sMVALYw1EGrH1/YbyXBJ80sochaRU5ITlOfsz9f9zIGcAzw691HT9Q+d8xBTtk8x9cHs26SvLqwZoE78X6vmPd0IK6YU/FsUU28sfYOftv/Evpx9AU1S4yPjdWRT8+TmNK/h/btxUuOgMir9FRizzttZjHXEsvnezT4hfXmleSw7vEwjotYcXeOTeSgpOolejXrRu1FvejfqTbf63QL6R5lBVkzd2PFGmn7Y1Bti9WReQC+aU4kzR5/JrqxdzL15Lhc304eM3PDzDUzcOpE7O9/JwkML2Zu9l1hHLN8M+Ybr218PeP0CGrzXQBfiYnasovIi2n7aVhvkXN7qcga3Hsxd072hbh9c8gEPd9cbThux/th6uo7pqltWP7E+r134Gjd3ullTfBU7i4l/zUvcZT+ebUoa/rDpB+6afhdl7jLa1mrL9oztABwZdYRfd/7Kg388SIQtgvm3zOf8Jic79EN/GsrkbZN1HQnwKsUG/DgAGzYubnYxc/fP5aULXuL58wN3elTF1MGHD5p6+4DXzyH6FW+9mzlsJpe2vDTgcSuKEqc33Gb4tOGaceOgloOYMWyGts3urN20Hu0l0FSVWahwup1ERkSyOm01j819jMWHFmPDxo77d9A6pTXXTbmOKduncF+3+xh96eigQkSXH15Or2960Ty5OXd0voOn/3ya4WcN56vBX4UUYup0O1lxZIU2mEsdmUrt+No88PsDfLXhK4afNZyvh3wNeI01VZVKhC2CwqcLibBF8MriV7SOXkpcChtGbKDh+yfJ3wEtBvBoj0e1UK2WNVpq3gtd63Xl2T7PcvXkq7UB021n3caerD2Wai75OYzfMp4bf7lR+/12v7d5tOejvLL4FZ5b8ByXNL+EWTfN8nv9To/Tsm0SQjB151S61u+qGeiHArfHzY2/3MjPO35mye1LKHGWsC1jG3d3vZsyV5mpz5GKR+c8yrsr3uXZ3s/y4gUvakRQXmkebT9ty5kpZ/LTtT+RHJtMtzHdNF8S53POoEzVjxUc47ddv3FN22v4cfOPOs8JY11XlVFWGQCDgfr+92/en9k3ef19jhce57M1n2n1p0PtDmy+d7O2bWJUIvlP5WvhzaAPHc4oyiDGEeP3Ph4vPM6wn4dpndmeDXuybLhv3ZKVs57nPabvUUZRBr/u/JVr216rKWETXk+g2Fms1T2ADp910Mic5cOXc9XkqzheeJxWNVux6wG9909eaR5LUpfQv3l/zctmw7ENXPj9hYzoOoK7u97NDT/fwKM9HsXpcTJv/zw+HvgxTo+Ti76/SBvE/XnLn/Rt2tf/Q8DrydP8o+bevx/ar8uoW+PNGn6zDxY8VUB2STaNP/C2361rtmbnA97vQ7m7nNum3kafxn24p9s9ActhBfXZj7tyHBuPb+SdFV5fOatnYsS6o+tYcWQF9599v+n28vd1aLuhHMo7ROe6nXm81+M0TmpseY49WXv4cv2XNEtuxqbjm+jRsAe3dLqF3Vm7eeiPh3im9zP0btybt5a9RUFZAf934f+ZHqeimLBlAi1rtmR/zn4fZVvvRr1ZfPti/jf7fxrJnPFYho/y2+1xs+boGjrX7UzMq16T/7u63MWX6780rZtLDi2hxFVCxzodeXvZ2/y26zc+HfQpl4zzqsUnXTOJ69qdJBKFENhf9vZPrm17LZOvnUxBWQHV3vCOGWRl65O9niQxOlEjZsULghJnCRnFGbq2VghBiauEMlcZM3bP4Mo2V5IQlaCtW5K6hHa12lEzribg9Tk7+8uzAXil7ys8ed6TOP7Ptz2cc9Mc+jXvB3i9+WzY2Jy+WftOqSHiMtp/2t5y4P1e//cY1WMU205so/1n7bXls2+aTf/m/U33KXGWaH6Ig8YP4vc9v7Ns+DJqxNZg4I8DuavLXTzd+2k8wkN2STaxjlj6ju2rKb5PPHrCx1Pyt52/cef0O/lwwIcM6zBMW17sLKawvFALyVXLdSj3EPfMvIcVh1folNf3dL2Hdy95l7VH12r9A/V7c9H33tB7qz7Rnqw9PDLnEW3CDaDkmRIcdgfrj61n3OZxvHTBSxSUFzB4wmAePOdB7uhyB+D9Jh8vPO4zgQze5937294sO7yMhtUakjrq5GRCUXmR5hMmRwTYbXZiHDEsOriI2vG1aVOrDfuy99HiY+84adFti+jTuI/W7qi+UdszttNlTBc61+1Mq5qtOLfBuYzqMUrbbuf9O00nVwHm7JujvSPG+5RZnMmcfXP4YfMPXNjkQh6f97jP/nK/S8aHKz8kLjKOu7reRWpeKvP3z6df837sydrj0/ar5ex+Rnc61+2sJSExPrPRq0dr1gzDzxquJSkZ1mEYP151kvC7fMLluuf50DkP8f3m79lx/w4tMYSaOOOhWQ+ZRg0YbUdcHhc5JTm8tuQ1HTksl/GHTT/QuHpj2tduT05JDs1reL9dBWUFREVEkVOaY5mY4p+EsGLqP4wj+Ud0xoL1EuppZJNR/VQrrlalzYv/CtzV5S6mbJ/CvP3zGP7bcBbetpA/9vzBrL2zWJK6hM3pm33UX3UT6tKncR+NiGpfu32VG8jJKpTTSUqBV2GyK2sXu7N2+5BJqhppQIsBvNXvLYb9MoxZe2dxw883sOHYBl676DUWHFxAelE6NWNrcl276/hs7We8tOglLmp6ka6OvLzoZd3M+6JDi7TZxafOeyogKQVe/w8VcZFxPNHrCf7X438+6rG4yDhNen8o75COmHJ73Dw1/ynNr2dI6yH8cOUPtP20LUfyjzBl+xQem/sYAG/1e0tHSgH0b9afydsm+6Q2VxUgA1sOpGWNlszdPzcoxZScncSf6i4qIoq5N89lc/pmBrbwDdWpSqgdwuSYk+Ux3uNWNVux4o4VlfrwqQT2OQ3OYdFtixg8YTDTd0/n3RXv8uqFrzJ151QARnQbEXR7ow5gy93lmropLjIu5PYqMiKSJtWbaL/jo+KJdkTzxeVfMKjVIHo27KmtG9BiAFeceQVTd06lVc1WWj19qe9LjOw+kkYfNCKzOJO+Y/UdpCnXTtEZgp/X6DyNmIqNjOWKM6+gY52OmvKqd6PeNEhswLLDy6iXUI+c0hzLOja03VBeXfKqRriqeOq8p+h+RveAob+REZF+JxhsNhtXtrnS7zH8IcIewcRrJlJUXqTVLbUDaWXYrOLVC19leOfhmoJSRVJMEqkjU3Xt9bkNzmXdsXUkxyQHRUoB1EuspxEID3d/mGOFx3hz2Zs0re6rbqgMIWVE25ST11M3oS4v9X2JbzZ+w5H8I9pEwFsXv8Xj8x7nzYvfBLwEiAp5kBfI6F89x80db9aIKXVQa0SnOp20v63eo1rxtbi769267Y6M8ranqhEy6JWBPRr2YNWdq3hq/lMMbjXY55hJMUlc1kqf1axzvc5kPZ6lTUKsuvOkqlEebE6+ZrI2wKoeU920zEaoRstZxVk6UgrQkVIJUQm6RAUxjhjiI+N1909WV0VFRPkM5CuCCVdP4HDeYW7seKPm2wXBZx/rWr8rXet3tVzfuW5nOtftzO6s3bzb/13NID8QWtZsyVv9fP3FWtVspSO/H+/lO9CsCtzQwavoaJbcjJqxNckqyaJRUiMi7ZG8f4lXaSebw5vZEUTYI7Q28ZvB3zBzz0w+HPAhL13wkqmJdu/GvbW/373kXd695F3Aqx5dlrqMq9tcrdtefkZq3ZHri/y+lrhKfCILYiNjfSYAbDYbcZFxxEXGcXOnm33WyckxwNvfnHj1RH7e8TMPd3+YCHuEqYeSfB41s3S9RK8CN8IWwUsX+Kotr29/vWZMXS+hHscKj1E9pjrZj2dr196mVhvtOwn4VajJSTqmXT+N9KJ0ra098PBJZY3dZtee54xhMzRyySyqY8iZQxhy5hCf5eo93PfQPrae2Eq/Zl5SrnH1xvxx4x8IIcgozqB2fG2d4bvcd0+OTeb8xudzactLaVa9meV1tazZkuk3TKfuO3VJL0rnlb6vaP2Fcxqco9kYJMcms/Gejbp9IyMiTUkp8D7vpcOXsuTQEs5MOVO3Lj4qnqzHs4iOODmhLpdd7uM2Sz5ZdvV7+eqFr7LyyEqubXctDruDzvU6c2TUEWrH19b1EXbcv4OCsgJLUgq8Eyoqlt6uV2emxKUwrMMwrR1ff3y9j9Kt3KMXDqiQxw+Nkhpxe+fbAW84sBXcHjfv9H+HwvJC7b7LeOCcBzRiSp54N6qQLm1xqUZMuZ5zeRPwDPxQt43NZuOGDjcwsOVA7v/9fm7ueDNH8o/wwO8PcE+3e3wSDDnsDmrF1+L9Ae9zSYtLGPjjQN7t/65uG/mdl9sodTLq30BKhYowMfUvw/DOw+nfvD/Nk5vTNLnpaSdMqgI2m40vL/+SDp91YEnqEq6ZfI3OwBe8YSQqCdW7cW+aJzc/5aTbkkPedMu9G/UOsOWphxo6tztrt886NZSvSfUmJMcmM+OGGTzz5zO8uexN3lr+FpvSN2mdq2vbXsszvZ/h6w1fszR1KQsPLtQGmlvSt2izlfd2u5fP1n6mdRSHnzWcVy98Naiytq7Zmhva30D1mOo82+dZv4PCRkmNyCjOIDUvVQs9zCvN44afb9Bkus/0foaX+76M3WanQWIDjuQfYdTsUdr1jOrumx3QOMOnysnVTD/3dbtPS6cdDDH1yWpvmNaAFgOoFu1/NuDiZhf7kIenEvKALiHSd9BaEV8zf3i81+NM3z2dsZvG0iCxAU6Pk271u+nCnwJB7XyVuct0xFRFIGfGUztpdtv/t3fn0VHV9//HXzcZshjMBgECYQkBwg42KA1LEdlB3FCgCBoFagqIVLEG4cjyVdCC8rW48m3ArwWUI0ilX+EnHKsILlVotGwSG0UCCaAoIVgJQu7vj3TGmewzmZk7mTwf5+QcMtwk7wufzNx53c/78wnRTZ1vqnDsqlGrdOHSBd3e43aXx+Mi4zSyw0htOrTJ0a428+qZWnztYsfvzqbbNukvR/6iP476o6M91H6xmpaY5gimBrQZoIndJ6ptTFuN6TRGn5z4xNEeU15oSKiWXLtEt75WtmOZ/S5daEioX8dQTTxpSQ63hVcIpezK30RYOmSp4iPjXUITdy0dslTJsclKb51e88Ee2DZpmzYc2KDFgyu+4fto6kd69+i7jt3t5vabq0k9JjlCA+c3t1W9aamO8wV5Vb8n6a3Ttfr61ZVuTFCduMi4Cv/uV4Zd6TIju01MG5e7z7VRm8VcU+JT9M/Mf+ofhf+o0HpenRlXz6jxmKtaXFW2w+F/1iir7EadJ23cNbGHk1LZHfbHdj9WacjiKcMw9Lc7/6bzF8/XOpQKJPGR8To085BsIbYKYdJv0n6jP+X8Sf1b96/iq39211V3Od7YOgcktfGLxLKW58o8dt1j+q/3/ssR7BiGoc3jN+v0D6ddboI0j2pe6a6k3jCh+wSXnTJ3ZezS7a/frmdGP6PmUc11ovhEpcFCl6Zd9Nh1jyk5NrnS54EJ3SY4gqnVY1frfz/7Xy0fttzl9yLECNGWCVs0+fXJ2n1stwa0qbwNtLzQkNBa3QBwXvrDk4ae9nHtXYIZx/c1DEdA53zTxPn5MjYiVqEhoXpzUu3W+zwy64gOf3tYfVv1dbvO6jgHps6q26HQmWEYWjRokQ58c8BxfffwwIcrHFfZ80P5QKwyzs+LvVr0qubIsiB+2ZBl2nxos6LDo7X6H6srDUU9ZZ8Y8PLNL9d4rPMupOWvn5yDvZomMcRGxLq83k29amqN7zdHdhipC/MveNSp09AQTAWZ6l5Q67N2se30h6F/0IxtMxyhVHJssh4f+rgGthnouBPkT+8dK5sxVf6OlhXswVT5LZQvXLrg6GO2t5eFhoTq8aGPq3eL3rr7jbsd20pLcrxZmv6L6Xr2k2e1eNdiDU4eXLal+ZuZulR6Sbd0uUVjOo5xTJ29IfUGvTj2xVoHgaEhobW+89w2tq32Fe5zhGtfnPlCY18ZqyNnjijSFqm1N651uUBzvrvQpWkXZd+QXWldzm/+osOjNbz9cMc6B+1i22lkh5GO6eTVvTkpNUu18sOVjsDu3mvurdV5+VN1M6Z8oX/r/o7FhO3/Lj2b1T6Ukn7eEr7kUoljHSJPa7evdSepxtk2SdFJ2n575esSjO4w2tFute7mdbq9p2t4Na7rOI3rWnaHvXuz7jpw+oAyemVIcr3Y6xjfUYZhONq1bux8o/Jm52nAmgGVrqHnPKOptrNGgk1MREydW4dCjBDd0+ceL1VU0aiOo1wWxnfWKrqVy3gxDMPlTcHojqM17+15atG4hUe77ziPr/yiqncxrM3uorWxYdwGzXhzhv575H975ftVp0fzHurRvIdXvpfzGklxkXFq2bjlz8FUJbPTfvyp+k1g6qp/m/7KuSfHJdDwhtiI2Hr9XGEPEMq7utXVOnH/CSVcUfNMQl95eODDmttvrku4cUuXWxx/3jpxqzYf3qzZfWdrR94Ov9Q0sO1Al7avqhiGUWlAYdexSUc9MfQJFZcU6/pO11eY6ehs3S3rVGqWen23MOfvV91sLG9xmTHldK1UGzERMV6/sectC69d6LPv7dwS6TxbvCrtYtvpgX4PSPLea9CB3x7QxoMbXdZWrUnXhK7aMG6DDpw+UGEZja4JXbX/t/s9mqFU2/c+hFK1QzCFeuOePvfotUOvOVoW2sW2c+n/96dTP5xS7plcGTJqdffO1+ytIOVnTNnfpEQ1ilKTyCYufzex+0R1btpZN716k74u+lqto1s7FjjOGpCl//nH/2jX17u06+guffHdF/og/wM1Dmusp0c+XbZWUmi4+rfpr1fHvVrr9hp3tYkum45+rOiYdubt1PhN43X2wlklRSfpLxP+UqGlwfmOyOsTXq92bZaUuBTlfZ+nJ4c/6TLLKTMtU6EhoYq0ld1lrSqYyinMUeabmfr4xMeOx0Z2GOn+SfqYc2thbS4i6sowDP2+/+9188abXVov3FFVK58n3AmmqjOu6zhtOLBB/ZL6VQilyvvg7g904PTPdyt/2+e32luwVyNSRlR6EdM+rr1O3H+i0r8LMUL0xb1fKPsf2XWaMYTA1bN5T48viiXXO7zO7WG+MqDNAP3zt//0+c/xNuc3I7ERseqS8PMivpWFHTXtTuwN7swEg3fbbj1VXZvy2NSxGptatlPrTZ1v0sMDHnbZQTfQudOq6Yst7J1fA/0RTDnP0KrPYa4//XDx5910rVoOpluzblrSbEnNB0o6OOOg1uas1e/7/14JUQlVbs7UvVn3Sh+HfxFMod4IMUL0pxv+pB7P93DZVcsK9javHs17uLWTn6/Yn2iPnj2qkksljmTevr5Uu9h2lb6A9G7RW3t/s1fLdi/T6I6jHRcaSdFJurv33Xph3wu6d/u9jjVFlly7xNHv/c2D36hxWGOfvjDZ72Kv+HCFnvroKZWapUpPStfrE16v9E2c8/9FTVOS35z0pnLP5Gps6ljtP7Xf8bg97LS3YZV/c3Ku5JweeecRrfp4lUrNUkU1ilJSdJK2TNjikwu1unJp5ati/RlvuyH1BqU2Sa0wg6+2vNnK5xxMhRqerzMXHR6tnVN21urYK8OvdGkZiwqL0qu3Vr/rVHW/Rx3iO2jZ0GW1KxT1Ul0viu/odYde/uxlzek7xzsFBSHn5+e4iDh1aeoUTDnNmLKvoTOjT80tgUBVDMPQY0Nqt8QByjjfJPRmi2tVkqKT1DG+o8JCwyrdbRwV3dj5RiXHJuu65OusLqVWuiZ01fLhy60uA7VEMIV6pX1cey0ftlwzt82sdkE8X/vsZNkWz4GwvpRU1sJmX8w17/s8x9ot9mCqql3ipLIXf/uin87mDZyn7Jxs7T9dFtr0btFb9/b9uVWtutlI3uJ8N6vULFVG7wy9MOaFKqfEtmxc+7upqU1THeswON9BsZ+XPZiyz5gyTVObDm3SnLfmOHbxGt9tvFaOWBkQd3Gr4u9WPqnsDeCD/R7UtL9O8+jr7f+/pWapY9aVx2tMmT+vMRWIwSHgDS+MeUG397hdg9oOqvngBso5/I2LiHOZMRUbHuv48/pb1mv317trtQsgAO+xhdh05vdnZJqmX1qfQkNCdXDGQYUYIVwf1FLjsMbKm51XLzbPQv3DbyHqnRlXz9Dfp/1dq0atsqwG+24hgbC+lFR2wV1ZO9/XRf9Z+Dymndvfs01MG8dOOZL0zKhnfNayVxXntTeeGv6U1tywptqLlaq2La5JuC1c//fr/9O6m9c57tI5B1N53+Vp1PpRGr9pvAqKC5QSl6K3Jr+ljbduDOhQSnKdReavGVOSNLnnZI9bk5xbJeyLLHsaTDnvIMOFFIJVZKNIDU8ZzjoW1XC+0REXGadWV/68zpfzjk1XNLpCIzqMqHFnSQDeFx8ZryZXNKn5QC9pFNrI67t2BzuupeArzJhCvVTZtqBWCJQZU1LZrJ99hftcginnVj5PLBi4QC9/9rIibBGW/JtP7D5RHeI7KD4yXinxKTUeP77beBVfLFZaYtXbaVdlTKcxLp/bg6mPT3ysbs91U8nlEoWFhmnegHnKGpDl+PtA59zK5481puzCbeGaN2Ce7vt/91W6S061X+u0JbJ9i3dPg6mU+BQ9OfxJv7QFAAhc5WdMOX/uj7W5AABA1QimAA91iO9gyW6AVbG3o1UWTFXXyledjk066tN7PpVhGGoU6putj6tjGIaubnW1W8dP+4Vn7WPl2YOn7378TlLZ9rLPjn62yoUTA5VzK5+/w7TZfWdrcLvBlW5dXR1biE2GDJky9f2PdQumJOn+9Ps9/loAwaf81uvlNwcBAAD+RTAFeCiQZktJP+/M57zgtKOVrw7bUfdq0atOddVXHeI7yJCh5o2ba+WIlZrQbUK9nL7sPGPKeSFwf/Fkq3fDMBQWGqaSyyV1buUDgPLsrUL7frNPS3cv1dIhSy2uCACAho1gCvBQoKwvZVd+xtTFyxd14twJSVLbGM9mTDVk3Zp101f3faWEqIR6HYo4z3T7qfQnCytxT7gtXCWXSxyLl/uzDRFAcLq7990qPF/oaE3/ReIvtGn8JourAgAABFOAhwJtxlTHJh0lSad/OK2zF87qux+/kylTEbYINYtqZnF19ZOnLZCBpnV0a+Wfy9e17a61upRac15nSmLGFIC6y74x2+oSAABAJQimAA+0vLKl2ws6+1p0eLQSGyeq8Hyhcs/k6vzF85LK2vjqYwsavOfzWZ/rXMk5j3fJs0L53cUIpgAAAIDgRDAFeGBgm4EBGfZ0atLJEUxdvHxREm18KAt16luwU36r9vpWPwAAAIDaCbG6AKA+6dm8pyTptq63WVxJ5ZzXmfr6bN0XPgesQisfAAAA0DAwYwpww6xrZmlKzymKiYixupRKOe/MF2GLkMSMKdRPzq18thCbyyLuAAAAAIIHwRTgpkANpSTXGVPR4dGSmDGF+sm5lY/ZUgAAAEDwIpgCgohzMNX0iqaSCKZQPzm38kU1irKwEgAAAAC+xBpTQBBJjktWqBGqf//0bx0rOiZJahtLKx/qH+dWPmZMAQAAAMGLYAoIImGhYWof197l8xaNW1hYEeAZWvkAAACAhoFgCggy9nY+SWoT00YhBr/mqH+cW/kIpgAAAIDgxTtWIMg4B1OsL4X6ilY+AAAAoGEgmAKCTGqTVMef28W0s64QoA5o5QMAAAAaBoIpIMg4z5hi4XPUV7TyAQAAAA0DwRQQZGjlQzAgmAIAAAAaBoIpIMi0vLKlohpFSZLaxjBjCvWTcyuffTwDAAAACD42qwsA4F2GYWjBrxbow+Mfqm9SX6vLATzC4ucAAABAw0AwBQShrAFZVpcA1AmtfAAAAEDDQCsfACDgsCsfAAAA0DAQTAEAAg6tfAAAAEDDQDAFAAg4tPIBAAAADQPBFAAg4DBjCgAAAGgYCKYAAAGHNaYAAACAhoFgCgAQcJxb+aLCoiysBAAAAIAvEUwBAAIOrXwAAABAw0AwBQAIOLTyAQAAAA0DwRQAIOCwKx8AAADQMBBMAQACDq18AAAAQMNAMAUACDi08gEAAAANA8EUACDg0MoHAAAANAwEUwCAgGNv5TNkuIRUAAAAAIILwRQAIODER8bLkKEWjVvIMAyrywEAAADgIzarCwAAoLxmUc30xsQ31CyqmdWlAAAAAPAhgikAQEAamzrW6hIAAAAA+BitfAAAAAAAALAEwRQAAAAAAAAsQTAFAAAAAAAASxBMAQAAAAAAwBIEUwAAAAAAALAEwRQAAAAAAAAsQTAFAAAAAAAASxBMAQAAAAAAwBIEUwAAAAAAALAEwRQAAAAAAAAsQTAFAAAAAAAASxBMAQAAAAAAwBI+C6aOHj2qqVOnKjk5WZGRkUpJSdHChQt18eJFl+OOHTumsWPHKioqSk2bNtXs2bMrHLN//34NGjRIkZGRatWqlZYsWSLTNF2O2bVrl9LS0hQREaH27dvrhRde8NWpAQAAAAAAwAtsvvrGn3/+uUpLS/Xiiy+qQ4cOOnDggKZPn64ffvhBK1askCRdvnxZY8aMUUJCgvbs2aMzZ87ozjvvlGmaWrVqlSTp3LlzGjZsmAYPHqxPPvlEubm5ysjIUFRUlB544AFJ0ldffaXRo0dr+vTpWrdund5//33NmDFDCQkJGjdunK9OEQAAAAAAAHVgmOWnHvnQ8uXL9fzzz+vLL7+UJG3fvl3XX3+98vPz1bJlS0nSq6++qoyMDJ0+fVrR0dF6/vnnNW/ePJ06dUrh4eGSpMcff1yrVq3S8ePHZRiGHnroIW3dulWHDx92/KzMzEx99tln+vDDD2tV27lz5xQTE6OioiJFR0d7+cwBAAAAAAAaBncyFr+uMVVUVKT4+HjH5x9++KG6d+/uCKUkacSIESopKdG+ffscxwwaNMgRStmPKSgo0NGjRx3HDB8+3OVnjRgxQnv37tVPP/1UaS0lJSU6d+6cywcAAAAAAAD8x2/BVF5enlatWqXMzEzHYydPnlTz5s1djouLi1NYWJhOnjxZ5TH2z2s65tKlS/r2228rrWfZsmWKiYlxfLRu3bpuJwgAAAAAAAC3uB1MLVq0SIZhVPuxd+9el68pKCjQyJEjddttt2natGkuf2cYRoWfYZqmy+Plj7F3H7p7jLN58+apqKjI8ZGfn1/TqQMAAAAAAMCL3F78fNasWZo4cWK1x7Rr187x54KCAg0ePFjp6elavXq1y3EtWrTQ3//+d5fHvv/+e/3000+OGVAtWrRwzIyyO336tCTVeIzNZlOTJk0qrTE8PNylPRAAAAAAAAD+5XYw1bRpUzVt2rRWx544cUKDBw9WWlqa1q5dq5AQ1wla6enpeuyxx1RYWKjExERJ0o4dOxQeHq60tDTHMQ8//LAuXryosLAwxzEtW7Z0BGDp6en661//6vK9d+zYoT59+qhRo0buniIAAAAAAAD8wGdrTBUUFOjaa69V69attWLFCn3zzTc6efKky8ym4cOHq2vXrpoyZYpycnL09ttva+7cuZo+fbpj1fZJkyYpPDxcGRkZOnDggLZs2aKlS5fq/vvvd7TpZWZm6uuvv9b999+vw4cPa82aNcrOztbcuXN9dXoAAAAAAACoI8O0L8bkZS+99JLuuuuuSv/O+UceO3ZMM2bM0N/+9jdFRkZq0qRJWrFihUub3f79+zVz5kx9/PHHiouLU2Zmph555BGX9aN27dql3/3udzp48KBatmyphx56yGWh9ZoUFRUpNjZW+fn5NW5lCAAAAAAAgMqdO3dOrVu31tmzZxUTE1PtsT4Lpuqb48ePszMfAAAAAACAl+Tn5yspKanaYwim/qO0tFQFBQW68sorq9zJD4HBnrwyuw12jAmUx5iAM8YDymNMoDzGBMpjTKA8xoR7TNNUcXGxWrZsWWG98fLcXvw8WIWEhNSY4iGwREdH84QAF4wJlMeYgDPGA8pjTKA8xgTKY0ygPMZE7dXUwmfns8XPAQAAAAAAgOoQTAEAAAAAAMASBFOod8LDw7Vw4UKXnRvRsDEmUB5jAs4YDyiPMYHyGBMojzGB8hgTvsPi5wAAAAAAALAEM6YAAAAAAABgCYIpAAAAAAAAWIJgCgAAAAAAAJYgmAIAAAAAAIAlCKYQcJ577jklJycrIiJCaWlp2r17d5XHFhYWatKkSUpNTVVISIjmzJnjv0LhN+6Middff13Dhg1TQkKCoqOjlZ6errfeesuP1cIf3BkTe/bsUf/+/dWkSRNFRkaqc+fOWrlypR+rhT+4Myacvf/++7LZbOrdu7dvC4TfuTMm3n33XRmGUeHj888/92PF8DV3nydKSko0f/58tW3bVuHh4UpJSdGaNWv8VC38wZ0xkZGRUenzRLdu3fxYMXzN3eeJ9evXq1evXrriiiuUmJiou+66S2fOnPFTtcGDYAoBZePGjZozZ47mz5+vnJwcDRw4UKNGjdKxY8cqPb6kpEQJCQmaP3++evXq5edq4Q/ujon33ntPw4YN07Zt27Rv3z4NHjxYY8eOVU5Ojp8rh6+4OyaioqI0a9Ysvffeezp8+LAWLFigBQsWaPXq1X6uHL7i7piwKyoq0h133KEhQ4b4qVL4i6dj4siRIyosLHR8dOzY0U8Vw9c8GRPjx4/X22+/rezsbB05ckSvvPKKOnfu7Meq4Uvujomnn37a5fkhPz9f8fHxuu222/xcOXzF3TGxZ88e3XHHHZo6daoOHjyo1157TZ988ommTZvm58qDgAkEkGuuucbMzMx0eaxz585mVlZWjV87aNAg87777vNRZbBKXcaEXdeuXc3Fixd7uzRYxBtj4uabbzYnT57s7dJgEU/HxIQJE8wFCxaYCxcuNHv16uXDCuFv7o6Jd955x5Rkfv/9936oDlZwd0xs377djImJMc+cOeOP8mCBul5PbNmyxTQMwzx69KgvyoMF3B0Ty5cvN9u3b+/y2B//+EczKSnJZzUGK2ZMIWBcvHhR+/bt0/Dhw10eHz58uD744AOLqoKVvDEmSktLVVxcrPj4eF+UCD/zxpjIycnRBx98oEGDBvmiRPiZp2Ni7dq1ysvL08KFC31dIvysLs8TV111lRITEzVkyBC98847viwTfuTJmNi6dav69OmjP/zhD2rVqpU6deqkuXPn6scff/RHyfAxb1xPZGdna+jQoWrbtq0vSoSfeTIm+vXrp+PHj2vbtm0yTVOnTp3Spk2bNGbMGH+UHFRsVhcA2H377be6fPmymjdv7vJ48+bNdfLkSYuqgpW8MSaefPJJ/fDDDxo/frwvSoSf1WVMJCUl6ZtvvtGlS5e0aNEiplkHCU/GxBdffKGsrCzt3r1bNhuXQsHGkzGRmJio1atXKy0tTSUlJfrzn/+sIUOG6N1339WvfvUrf5QNH/JkTHz55Zfas2ePIiIitGXLFn377beaMWOGvvvuO9aZCgJ1vcYsLCzU9u3btWHDBl+VCD/zZEz069dP69ev14QJE3ThwgVdunRJN9xwg1atWuWPkoMKV2MIOIZhuHxummaFx9CweDomXnnlFS1atEhvvPGGmjVr5qvyYAFPxsTu3bt1/vx5ffTRR8rKylKHDh3061//2pdlwo9qOyYuX76sSZMmafHixerUqZO/yoMF3HmeSE1NVWpqquPz9PR05efna8WKFQRTQcSdMVFaWirDMLR+/XrFxMRIkp566indeuutevbZZxUZGenzeuF7nl5jvvTSS4qNjdVNN93ko8pgFXfGxKFDhzR79mw98sgjGjFihAoLC/Xggw8qMzNT2dnZ/ig3aBBMIWA0bdpUoaGhFRLp06dPV0iu0TDUZUxs3LhRU6dO1WuvvaahQ4f6skz4UV3GRHJysiSpR48eOnXqlBYtWkQwFQTcHRPFxcXau3evcnJyNGvWLEllb0BN05TNZtOOHTt03XXX+aV2+Ia3rid++ctfat26dd4uDxbwZEwkJiaqVatWjlBKkrp06SLTNHX8+HEWxq/n6vI8YZqm1qxZoylTpigsLMyXZcKPPBkTy5YtU//+/fXggw9Kknr27KmoqCgNHDhQjz76qBITE31ed7BgjSkEjLCwMKWlpWnnzp0uj+/cuVP9+vWzqCpYydMx8corrygjI0MbNmygxzvIeOt5wjRNlZSUeLs8WMDdMREdHa39+/fr008/dXxkZmYqNTVVn376qfr27euv0uEj3nqeyMnJ4U1FkPBkTPTv318FBQU6f/6847Hc3FyFhIQoKSnJp/XC9+ryPLFr1y7961//0tSpU31ZIvzMkzHx73//WyEhrpFKaGiopLJrTbjBihXXgaq8+uqrZqNGjczs7Gzz0KFD5pw5c8yoqCjHbhdZWVnmlClTXL4mJyfHzMnJMdPS0sxJkyaZOTk55sGDB60oHz7g7pjYsGGDabPZzGeffdYsLCx0fJw9e9aqU4CXuTsmnnnmGXPr1q1mbm6umZuba65Zs8aMjo4258+fb9UpwMs8ee1wxq58wcfdMbFy5Upzy5YtZm5urnngwAEzKyvLlGRu3rzZqlOAl7k7JoqLi82kpCTz1ltvNQ8ePGju2rXL7Nixozlt2jSrTgFe5ulrx+TJk82+ffv6u1z4gbtjYu3atabNZjOfe+45My8vz9yzZ4/Zp08f85prrrHqFOotWvkQUCZMmKAzZ85oyZIlKiwsVPfu3bVt2zbHbheFhYU6duyYy9dcddVVjj/v27dPGzZsUNu2bXX06FF/lg4fcXdMvPjii7p06ZJmzpypmTNnOh6/88479dJLL/m7fPiAu2OitLRU8+bN01dffSWbzaaUlBQ9/vjjuueee6w6BXiZJ68dCG7ujomLFy9q7ty5OnHihCIjI9WtWze9+eabGj16tFWnAC9zd0w0btxYO3fu1L333qs+ffqoSZMmGj9+vB599FGrTgFe5slrR1FRkTZv3qynn37aipLhY+6OiYyMDBUXF+uZZ57RAw88oNjYWF133XV64oknrDqFesswTeaYAQAAAAAAwP9YYwoAAAAAAACWIJgCAAAAAACAJQimAAAAAAAAYAmCKQAAAAAAAFiCYAoAAAAAAACWIJgCAAAAAACAJQimAAAAAAAAYAmCKQAAAAAAAFiCYAoAAAAAAACWIJgCAAAAAACAJQimAAAAAAAAYAmCKQAAAAAAAFji/wP8CsM0IzxXmAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "s = d.GetSinThetaOverLambda()\n", "obs = d.GetIobs()\n", @@ -50,7 +39,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3c985455-b457-4543-bfb7-b4fce860f056", + "id": "2", "metadata": {}, "outputs": [], "source": [] @@ -73,13 +62,6 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "state": {}, - "version_major": 2, - "version_minor": 0 - } } }, "nbformat": 4, diff --git a/examples/structure-solution-multiprocessing.ipynb b/examples/structure-solution-multiprocessing.ipynb index 03eed81..3eef09d 100644 --- a/examples/structure-solution-multiprocessing.ipynb +++ b/examples/structure-solution-multiprocessing.ipynb @@ -20,19 +20,11 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": { "tags": [] }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of processors or cores available: 8\n" - ] - } - ], + "outputs": [], "source": [ "%matplotlib widget\n", "\n", @@ -89,52 +81,11 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": { "tags": [] }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Imported powder pattern: 7699 points, 2theta= 8.010 -> 84.990, step= 0.010\n", - "Indexed unit cell:\n", - "( 6.83 18.82 10.39 90.0 106.4 90.0 V=1281 MONOCLINIC P, 130.0296630859375)\n", - "No background, adding one automatically\n", - "Selected PowderPatternDiffraction: with Crystal: \n", - "Profile fitting finished.\n", - "Remember to use SetExtractionMode(False) on the PowderPatternDiffraction object\n", - "to disable profile fitting and optimise the structure.\n", - "Fit result: Rw= 5.51% Chi2= 34095.69 GoF= 4.43 LLK= 6397.991\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a662bb9be73e421f941df676d5562d10", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADYFklEQVR4nOzdeVyVZfrH8Q/7ooIoIZKm/jIVRdPctUJcUBMtrdRU1MlsIWPKdSwtrUmtXGosnaZptBSzdKxMyz01F3JvcKGsXEtcks2N9fn9geeJww4Ch+X7fr14xXnOfZ7nPocjnYvrvq/LzjAMAxEREREREal07G09AREREREREbENBYQiIiIiIiKVlAJCERERERGRSkoBoYiIiIiISCWlgFBEpJgNHTrU1lMQERERKRBHW09ARKS8mjhxYrZjhmGwa9cuG8xGREREpPAUEIqIFFFERATLli3Ldvzbb7+1wWxERERECk8BoYhIET3++OP4+/vj4+NjdXz48OE2mpGIiIhI4dipMb2IiIiIiEjlpKIyIiIiIiIilZQCQhERERERkUpKAaGISDE6ePCgracgIiIiUmAqKiMiUkQLFiywum0YBgsXLiQsLIywsDAbzUpERESk4JQhFBEpovfee481a9bg7u5OlSpVqFq1Kvb29lStWtXWUxMREREpEAWEIiJFdPjwYYYNG8aXX36Js7MzoaGh1KlTR20nREREpNxQ2wkRkVuUnp5OREQEn376KRcuXGDPnj22npKIiIhIgSggFBEpJunp6cTExODn52frqYiIiIgUiAJCERERERGRSkp7CEVERERERCopBYQiIsUsJibG1lMQERERKRAFhCIixUxVRkVERKS8UGN6EZEiateuXbZjhmFw/PhxG8xGREREpPAUEIqIFFFiYiJRUVE4Olr/Ku3Ro4eNZiQiIiJSOFoyKiJSRDNmzCAxMTHb8SlTpthgNiIiIiKFp7YTIiLFJDo6miZNmth6GiIiIiIFpgyhiEgxCQsLs/UURERERApFAaGISDFxcnKy9RRERERECkVLRkVERERERCopZQhFREREREQqKQWEIiIiIiIilZQCQhERERERkUpKAaGIiIiIiEglpYBQRERERESkklJAKCJSzIYOHWrrKYiIiIgUiKOtJyAiUl5NnDgx2zHDMNi1a5cNZiMiIiJSeAoIRUSKKCIigmXLlmU7/u2339pgNiIiIiKFp4BQRKSIHn/8cfz9/fHx8bE6Pnz4cBvNSERERKRw7AzDMGw9CRERERERESl9KiojIiIiIiJSSSkgFBERERERqaQUEIqIFKODBw/aegoiIiIiBaaiMiIiRbRgwQKr24ZhsHDhQsLCwggLC7PRrEREREQKThlCEZEieu+991izZg3u7u5UqVKFqlWrYm9vT9WqVW09NREREZECUUAoIlJEhw8fZtiwYXz55Zc4OzsTGhpKnTp11HZCREREyg21nRARuUXp6elERETw6aefcuHCBfbs2WPrKYmIiIgUiAJCEZFicvnyZW7cuIGfn5+tpyIiIiJSIAoIy7n09HR+//13qlWrhp2dna2nI1KphYSEsGbNGltPQ0REpNwzDIPExET8/Pywt9cut5KkgLCcO3v2LHXr1rX1NEREREREit2ZM2eoU6eOradRoantRDlXrVo1IOMfi4eHh41nI1K5xcbG4uXlZetpiIiIlHsJCQnUrVvX/KwrJUcBYTlnWSbq4eGBh4cHW7duJTQ0lGnTpjFq1Ci6dOlCWloa169f58knn+TJJ580H5uYmEj37t05cuQIkZGRBAQEABAcHMzly5fZt2+f+fitW7fy3XffsWbNGmbPnl3g+d11113cfvvtJCUl0alTJ+bMmZPjuJiYGBYuXMj06dPp0qULa9asKdbS/f/85z9xdXVl5MiROd4/fPhwtmzZwtmzZ4vtmlL56I8yIiIixUtbokqeFuRWQIMGDWLUqFHm7W+++YbvvvuOGTNmkJKSYh53c3NjzZo1PPLII1aP37Bhg9Xtb775BgcHhyLNxdPTk61bt7J7924OHTrEb7/9luM4X19fpk+fXqRrFIePP/4YX19fm11fRERERMQWFBBWEm5ubtSuXZvLly+bxxwdHbnttttu6bzr1q3jvvvuo1OnTnzyySe5jktLSyMlJQVXV1fOnz9Pt27duP/++3nkkUdIS0vj5MmT2QLTzLp06cJf//pX2rdvz+uvv054eDgdOnTgrbfeAuB///sfnTt3plOnTvz9738H4PTp09x777088MADbN++3TzXjBkzCAwM5P777ycqKuqWnr9ITmJiYmw9BREREZECUUBYSVy6dInz58/fcgCYWXp6Oq+++iqbN29mx44d/POf/yQtLc1qTHx8PF26dKFp06bUq1ePmjVr4uXlxfr169m+fTt33HEHW7ZsKdD1Bg4cSGRkJB988AGPP/44O3fuZOnSpQC8+OKL/Pvf/2bnzp1s376dkydP8uabb/Lyyy/z9ddfm8sNoqKi+PHHH9m2bRufffYZL7/8crG9HiIWakwvIiIi5YX2EFYCvXv3xt7ennfeeadYy/ZeunSJ48ePExwcbN6+ePGi1dJLy5JRwzAYOHAg3333HXfddRdPP/00sbGxnDt3jrvvvpu77ror3+u1aNECOzs7fH19ufvuu7Gzs8PJyQmA8+fP4+/vD8A999zDL7/8ws8//0zr1q0BaNeuHQDHjh1j165ddOnSBaDIS2FF4M/3VWaGYXD8+HEbzEZERDJLT08nOTnZ1tOQXDg5OelzWBmhgLAS+Oabb4q1QIuFt7c3/v7+bNy4EScnJ1JSUswALSs7Ozs8PT25fPkyERERBAcHExYWxtixYylo55PMm4qzbjCuVasWx44do0mTJhw4cICnn36ahg0bcvDgQbp3786+ffvo1q0bTZo0ITAwkH//+98AVnsqRQorMTGRqKgoHB2tf5X26NHDRjMSERGA5ORkTpw4QXp6uq2nInmoXr06vr6+KhxjYxUqINy+fTtvvfUW+/fv59y5c3z++ec89NBD5v25vdnefPNNJkyYAGTsVdu2bZvV/YMGDWL58uXm7djYWMLDw1m9ejUA/fr1Y/78+VSvXt0cc/r0aZ599lm2bNmCm5sbQ4YMYfbs2Tg7O5tjoqKiGDNmDHv27KFGjRo89dRTTJ06tVT/UTzwwAMcOnSIH3/8kaeeeirXKpwWK1as4NChQ0DGsriXXnqJ7t27Y29vz2233cZnn31mNd6yZDQtLY1atWrRu3dvjh49SmhoKOvXr8fd3Z0WLVrc8vN4/fXXeeKJJzAMgz59+lC/fn0mTpxovu6Wn02LFi246667CAwMxN7enh49evDiiy/e8vWlcpoxYwaJiYnZWk1MmTLFRjMSERHDMDh37hwODg7UrVtXTc3LIMMwuHbtGhcuXACgdu3aNp5R5VahGtN/88037Ny5k3vuuYeHH344W0CYtdDDN998w6hRo/j555/5v//7PyAjIGzUqBGvvvqqOc7NzQ1PT0/zdu/evTl79iz/+te/AHjyySepX78+X331FZBRQKVly5bcdtttzJkzhz/++IMRI0YwYMAA5s+fD2T0VmnUqBFBQUG89NJL/PTTT4wcOZJXXnmFcePGFfg5JyQk4OnpSXx8PB4eHkRGRvLUU08RHh5uVWm0MIKDg3F1dWX16tUMHjyYc+fOsWXLlgqd1h8+fDjR0dHs2bPH1lORciw6OpomTZrYehoiIpVaSkoKP//8M35+flaf36Ts+eOPP7hw4QKNGjXK9jkz62dcKTkVKiDMzM7OLltAmNVDDz1EYmIimzdvNo916dKFli1b8vbbb+f4mGPHjtG0aVMiIyNp3749AJGRkXTs2JHo6GgaN27MN998Q0hICGfOnMHPzw+A5cuXM3LkSC5cuICHhwcLFy5k8uTJnD9/HhcXFwBmzZrF/PnzOXv2bIGzhPrHIlJ2dO3atcBFkkREpGTcuHGDEydOUL9+fdzc3Gw9HcnD9evXOXnyJA0aNMDV1dXqPn3GLT2VNod+/vx51q5dm2MWLSIiAm9vb5o1a8b48eNJTEw079u9ezeenp5mMAjQoUMHPD092bVrlzkmICDADAYBevbsSVJSEvv37zfHBAYGmsGgZczvv//OyZMni/vpikgpyG0PrYiIlD7tSyv79DMqGyrUHsLC+Oijj6hWrRoDBgywOj506FAaNGiAr68vhw8fZvLkyfzwww9s3LgRyFh26uPjk+18Pj4+5pLUmJgYatWqZXW/l5cXzs7OVmPq169vNcbymJiYGBo0aJDjvJOSkkhKSjJvJyQkFOJZi0hJWr9+va2nICIiIlIolTZD+J///IehQ4dmS0+PHj2a7t27ExAQwODBg1m5ciWbNm3iwIED5pic/pphGEaeVTALMsayejevv5bMnDkTT09P86tu3br5PFMRKVXz58PevbaehYiIVDBbt27Fzs6OuLg4W09FKphKGRB+9913/PjjjzzxxBP5jr3nnntwcnIy+4r5+vpy/vz5bOMuXrxoZvh8fX2zFbCJjY0lJSUlzzGWSktZs4uZTZ48mfj4ePPrzJkz+T4HESlF4eGQQ39CERERkbKoUgaEH374Ia1bt+buu+/Od+yRI0dISUkxy+F27NiR+Ph4q2qU33//PfHx8XTq1Mkcc/jwYc6dO2eO2bBhAy4uLmaj9I4dO7J9+3arhqkbNmzAz88v21LSzFxcXPDw8LD6EhERERERKYoKFRBeuXKFQ4cOmX3yTpw4waFDhzh9+rQ5JiEhgRUrVuSYHfzll1949dVX2bdvHydPnuTrr7/m0UcfpVWrVnTu3BkAf39/evXqxejRo4mMjCQyMpLRo0cTEhJC48aNgYy2DU2bNiU0NJSDBw+yefNmxo8fz+jRo80AbsiQIbi4uDBy5EgOHz7M559/zowZMxg7dqw22IqIiIhUQklJSYSHh+Pj44Orqyv33nsve7NsQ9i5cyd33303rq6utG/fnqioKPO+U6dO0bdvX7y8vKhSpQrNmjXj66+/Lu2nIeVMhQoI9+3bR6tWrWjVqhUAY8eOpVWrVrz88svmmOXLl2MYBo899li2xzs7O7N582Z69uxJ48aNCQ8PJzg4mE2bNln1RomIiKB58+YEBwcTHBxMixYtWLJkiXm/g4MDa9euxdXVlc6dOzNw4EAeeughZs+ebY7x9PRk48aNnD17ljZt2hAWFsbYsWMZO3ZsSbw0IiIiIlLGTZw4kf/+97989NFHHDhwgIYNG9KzZ08uX75sjpkwYQKzZ89m7969+Pj40K9fP1JSUgB49tlnSUpKYvv27URFRfHGG29QtWpVWz0dKScqbB/CykI9WkTKGEuGX79aRURswtKHMHNvu2vXrhEdHV3qc2nSpAnu7u4FGnv16lW8vLxYvHgxQ4YMASAlJYX69evz/PPP07ZtW4KCgli+fDmDBg0C4PLly9SpU4fFixczcOBAWrRowcMPP8wrr7xSYs+pOOX0s7LQZ9zSU2nbToiIiIhI5RAdHW3WcShN+/fv55577inQ2F9++YWUlBRzmxJk9Ldt164dx44do23btkBGHQqLGjVq0LhxY44dOwZAeHg4zzzzDBs2bKB79+48/PDDtGjRohifkVRECghFREREpEJr0qQJ+/fvt8l1Cyq39mNZ25blxHL/E088Qc+ePVm7di0bNmxg5syZzJkzh+eee66QM5fKRAGhiIiIiFRo7u7uBc7U2UrDhg1xdnZmx44dVktG9+3bx/PPP2+Oi4yM5I477gAy2pr99NNPVoFn3bp1efrpp3n66aeZPHkyH3zwgQJCyZMCQhERERERG6tSpQrPPPMMEyZMoEaNGtxxxx28+eabXLt2jVGjRvHDDz8A8Oqrr1KzZk1q1arFSy+9hLe3Nw899BAAzz//PL1796ZRo0bExsayZcsW/P39bfispDxQQCgiIiIiUgbMmjWL9PR0QkNDSUxMpE2bNqxfvx4vLy+rMX/96185fvw4d999N6tXr8bZ2RmAtLQ0nn32Wc6ePYuHhwe9evVi3rx5tno6Uk6oymg5pwpMImWMqoyKiNhUXpUrpWxRldGyoUL1IRQREREREZGCU0AoIiIiIiJSSSkgFBERERERqaQUEIqIiIiIiFRSCghFREREREQqKQWEIiIiIiIilZQCQhERERERkUpKAaGIiIiIiEglpYBQRERERKScmzZtGi1btrT1NKQcUkAoIiIiIiJSSSkgFBERERERqaQUEIqIiIiIlAHp6em88cYbNGzYEBcXF+644w5ef/11ACZNmkSjRo1wd3fn//7v/5g6dSopKSl5nu8///kPzZo1w8XFhdq1azNmzJjSeBpSzjjaegIiIiIiIgKTJ0/mgw8+YN68edx7772cO3eO6OhoAKpVq8bixYvx8/MjKiqK0aNHU61aNSZOnJjjuRYuXMjYsWOZNWsWvXv3Jj4+np07d5bm05Fyws4wDMPWk5CiS0hIwNPTk/j4eDw8PGw9HRGxs8v4r361iojYxI0bNzhx4gQNGjTA1dXV1tMpsMTERG677TbeffddnnjiiXzHv/XWW3z66afs27cPyCgq88UXX3Do0CEAbr/9dv7yl7/w97//vSSnfUvy+lnpM27pUYZQRERERCq2a9fgZqatVDVpAu7uBRp67NgxkpKS6NatW473r1y5krfffpuff/6ZK1eukJqammugdOHCBX7//fdczyWSmQJCEREREanYoqOhdevSv+7+/XDPPQUa6ubmlut9kZGRDB48mOnTp9OzZ088PT1Zvnw5c+bMKfS5RLJSQCgiIiIiFVuTJhnBmS2uW0B33XUXbm5ubN68OduS0Z07d1KvXj1eeukl89ipU6dyPVe1atWoX78+mzdvJigoqPDzlkpFAaGIiIiIVGzu7gXO1NmKq6srkyZNYuLEiTg7O9O5c2cuXrzIkSNHaNiwIadPn2b58uW0bduWtWvX8vnnn+d5vmnTpvH000/j4+ND7969SUxMZOfOnTz33HOl9IykvFBAKCIiIiJSBkydOhVHR0defvllfv/9d2rXrs3TTz/NqFGjeOGFFxgzZgxJSUn06dOHqVOnMm3atFzPNWLECG7cuMG8efMYP3483t7ePPLII6X3ZKTcUJXRck4VmETKGFUZFRGxqfJaZbQyUpXRsqFCNabfvn07ffv2xc/PDzs7O7744gur+0eOHImdnZ3VV4cOHazGJCUl8dxzz+Ht7U2VKlXo168fZ8+etRoTGxtLaGgonp6eeHp6EhoaSlxcnNWY06dP07dvX6pUqYK3tzfh4eEkJydbjYmKiiIwMBA3Nzduv/12Xn31VRSfi4iIiIhIaalQAeHVq1e5++67effdd3Md06tXL86dO2d+ff3111b3P//883z++ecsX76cHTt2cOXKFUJCQkhLSzPHDBkyhEOHDrFu3TrWrVvHoUOHCA0NNe9PS0ujT58+XL16lR07drB8+XL++9//Mm7cOHNMQkICPXr0wM/Pj7179zJ//nxmz57N3Llzi/EVERERERERyV2F2kPYu3dvevfunecYFxcXfH19c7wvPj6eDz/8kCVLltC9e3cAli5dSt26ddm0aRM9e/bk2LFjrFu3jsjISNq3bw/ABx98QMeOHfnxxx9p3LgxGzZs4OjRo5w5cwY/Pz8A5syZw8iRI3n99dfx8PAgIiKCGzdusHjxYlxcXAgICOCnn35i7ty5jB07FjvLsjMREREREZESUqEyhAWxdetWfHx8aNSoEaNHj+bChQvmffv37yclJYXg4GDzmJ+fHwEBAezatQuA3bt34+npaQaDAB06dMDT09NqTEBAgBkMAvTs2ZOkpCT23yx5vHv3bgIDA3FxcbEa8/vvv3Py5MkSee4iIiIiIiKZVaqAsHfv3kRERLBlyxbmzJnD3r176dq1K0lJSQDExMTg7OyMl5eX1eNq1apFTEyMOcbHxyfbuX18fKzG1KpVy+p+Ly8vnJ2d8xxjuW0Zk5OkpCQSEhKsvkRERERERIqiQi0Zzc+gQYPM7wMCAmjTpg316tVj7dq1DBgwINfHGYZhtYQzp+WcxTHGUlAmr+WiM2fOZPr06bneLyIiIiIiUlCVKkOYVe3atalXrx7Hjx8HwNfXl+TkZGJjY63GXbhwwcze+fr6cv78+WznunjxotWYrFm+2NhYUlJS8hxjWb6aNXOY2eTJk4mPjze/zpw5U5inLCIiIiIiYqrUAeEff/zBmTNnqF27NgCtW7fGycmJjRs3mmPOnTvH4cOH6dSpEwAdO3YkPj6ePXv2mGO+//574uPjrcYcPnyYc+fOmWM2bNiAi4sLrVu3Nsds377dqhXFhg0b8PPzo379+rnO2cXFBQ8PD6svESlb0m09AREREZECqlAB4ZUrVzh06BCHDh0C4MSJExw6dIjTp09z5coVxo8fz+7duzl58iRbt26lb9++eHt7079/fwA8PT0ZNWoU48aNY/PmzRw8eJBhw4bRvHlzs+qov78/vXr1YvTo0URGRhIZGcno0aMJCQmhcePGAAQHB9O0aVNCQ0M5ePAgmzdvZvz48YwePdoM4IYMGYKLiwsjR47k8OHDfP7558yYMUMVRkVEREREpNRUqIBw3759tGrVilatWgEwduxYWrVqxcsvv4yDgwNRUVE8+OCDNGrUiBEjRtCoUSN2795NtWrVzHPMmzePhx56iIEDB9K5c2fc3d356quvcHBwMMdERETQvHlzgoODCQ4OpkWLFixZssS838HBgbVr1+Lq6krnzp0ZOHAgDz30ELNnzzbHeHp6snHjRs6ePUubNm0ICwtj7NixjB07thReKRERERGpSKZNm0bLli1L9BqLFy+mevXqJXoNKX0VqqhMly5dzMIsOVm/fn2+53B1dWX+/PnMnz8/1zE1atRg6dKleZ7njjvuYM2aNXmOad68Odu3b893TiIiIiIiIiWhQmUIRUTKgtz/LCUiIiJStiggFBEpLnmsUBAREclPeno6b7zxBg0bNsTFxYU77riD119/HYBJkybRqFEj3N3d+b//+z+mTp1KSkpKnuf7z3/+Q7NmzXBxcaF27dqMGTMmz/GxsbEMHz4cLy8v3N3d6d27t1mNP7MvvviCRo0a4erqSo8ePayq3v/www8EBQVRrVo1PDw8aN26Nfv27SvCqyGlRQGhiEhxUUAoIiK3YPLkybzxxhtMnTqVo0ePsmzZMrMdWbVq1Vi8eDFHjx7lnXfe4YMPPmDevHm5nmvhwoU8++yzPPnkk0RFRbF69WoaNmyY5/VHjhzJvn37WL16Nbt378YwDB544AGrwPPatWu8/vrrfPTRR+zcuZOEhAQGDx5s3j906FDq1KnD3r172b9/P3/7299wcnK6xVdGSpKdkdemOynzEhIS8PT0JD4+Xi0oRGzMSEvDztGRNMBBv1pFRGzixo0bnDhxggYNGuDq6mrr6RRYYmIit912G++++y5PPPFEvuPfeustPv30UzP7Nm3aNL744guz2v7tt9/OX/7yF/7+978X6PrHjx+nUaNG7Ny502yl9scff1C3bl0++ugjHn30URYvXsxf/vIXIiMjad++PQDR0dH4+/vz/fff065dOzw8PJg/fz4jRozI95p5/az0Gbf0KEMoIlJMjHR1IBQRkaI5duwYSUlJdOvWLcf7V65cyb333ouvry9Vq1Zl6tSpnD59OsexFy5c4Pfff8/1XE8//TRVq1Y1vyzXd3R0NAM9gJo1a9K4cWOOHTtmHnN0dKRNmzbm7SZNmlC9enVzzNixY3niiSfo3r07s2bN4pdffincCyGlrkJVGRURsSUFhCIiZdcza57ht8TfSu16t1e7nYUhCws83s3NLdf7IiMjGTx4MNOnT6dnz554enqyfPly5syZU+hzAbz66quMHz/e6lhuiwYNw8jWIzunntmWY9OmTWPIkCGsXbuWb775hldeeYXly5ebfb+l7FFAKCIiIiIVXmGCM1u46667cHNzY/PmzdmWjO7cuZN69erx0ksvmcdOnTqV67mqVatG/fr12bx5M0FBQdnu9/HxwcfHx+pY06ZNSU1N5fvvv7daMvrTTz/h7+9vjktNTWXfvn20a9cOgB9//JG4uDiaNGlijmnUqBGNGjXihRde4LHHHmPRokUKCMswBYQiIsXEkiHU7kERESksV1dXJk2axMSJE3F2dqZz585cvHiRI0eO0LBhQ06fPs3y5ctp27Yta9eu5fPPP8/zfNOmTePpp5/Gx8eH3r17k5iYyM6dO3nuuedyHH/XXXfx4IMPMnr0aN5//32qVavG3/72N26//XYefPBBc5yTkxPPPfcc//jHP3BycmLMmDF06NCBdu3acf36dSZMmMAjjzxCgwYNOHv2LHv37uXhhx8u1tdKipf2EIqIFBMtGRURkVsxdepUxo0bx8svv4y/vz+DBg3iwoULPPjgg7zwwguMGTOGli1bsmvXLqZOnZrnuUaMGMHbb7/NggULaNasGSEhITm2kMhs0aJFtG7dmpCQEDp27IhhGHz99ddWVULd3d2ZNGkSQ4YMoWPHjri5ubF8+XIAHBwc+OOPPxg+fDiNGjVi4MCB9O7dm+nTp9/6iyMlRlVGyzlVYBIpO5ITE3H28CAVcNSvVhERmyivVUYrI1UZLRuUIRQRKSb6+5qIiIiUNwoIRUSKifYQioiISHmjgFBEpJhoD6GIiIiUNwoIRUSKiZaMioiISHmjgFBEpLgoIBQREZFyRgGhiEgx0ZJREZGyQ6s2yj79jMoGBYQiIsVEAaGIiO05ODgAkJycbOOZSH6uXbsGYNXnUEqfo60nICJSUegvnSIitufo6Ii7uzsXL17EyckJe3vlP8oawzC4du0aFy5coHr16mYQL7ahgFBEpJio7YSIiO3Z2dlRu3ZtTpw4walTp2w9HclD9erV8fX1tfU0Kj0FhCIixURLRkVEygZnZ2fuuusuLRstw5ycnJQZLCMUEIqIFBMtGRURKTvs7e1xdXW19TREyjwtqhYRKS4KCEVERKScUUAoIlJcFBCKiIhIOaOAUESkmGgPoYiIiJQ3CghFRIqJZQ+h8oQiIiJSXiggFBEpJsoQioiISHlToQLC7du307dvX/z8/LCzs+OLL74w70tJSWHSpEk0b96cKlWq4Ofnx/Dhw/n999+tztGlSxfs7OysvgYPHmw1JjY2ltDQUDw9PfH09CQ0NJS4uDirMadPn6Zv375UqVIFb29vwsPDs5U+joqKIjAwEDc3N26//XZeffVVVSkUKccUEIqIiEh5U6ECwqtXr3L33Xfz7rvvZrvv2rVrHDhwgKlTp3LgwAFWrVrFTz/9RL9+/bKNHT16NOfOnTO/3n//fav7hwwZwqFDh1i3bh3r1q3j0KFDhIaGmvenpaXRp08frl69yo4dO1i+fDn//e9/GTdunDkmISGBHj164Ofnx969e5k/fz6zZ89m7ty5xfiKiEhp0h90REREpLypUH0Ie/fuTe/evXO8z9PTk40bN1odmz9/Pu3ateP06dPccccd5nF3d3d8fX1zPM+xY8dYt24dkZGRtG/fHoAPPviAjh078uOPP9K4cWM2bNjA0aNHOXPmDH5+fgDMmTOHkSNH8vrrr+Ph4UFERAQ3btxg8eLFuLi4EBAQwE8//cTcuXMZO3YsdnZ2xfGSiEgpUoZQREREypsKlSEsrPj4eOzs7KhevbrV8YiICLy9vWnWrBnjx48nMTHRvG/37t14enqawSBAhw4d8PT0ZNeuXeaYgIAAMxgE6NmzJ0lJSezfv98cExgYiIuLi9WY33//nZMnT5bAsxWREqeiMiIiIlLOVKgMYWHcuHGDv/3tbwwZMgQPDw/z+NChQ2nQoAG+vr4cPnyYyZMn88MPP5jZxZiYGHx8fLKdz8fHh5iYGHNMrVq1rO738vLC2dnZakz9+vWtxlgeExMTQ4MGDXKcd1JSEklJSebthISEQj5zESkxWjIqIiIi5UylDAhTUlIYPHgw6enpLFiwwOq+0aNHm98HBARw11130aZNGw4cOMA999wDkONyTsMwrI4XZYxl/1Fey0VnzpzJ9OnT83p6ImIj2kMoIiIi5U2lWzKakpLCwIEDOXHiBBs3brTKDubknnvuwcnJiePHjwPg6+vL+fPns427ePGimeHz9fU1M4EWsbGxpKSk5DnmwoULANmyi5lNnjyZ+Ph48+vMmTP5PGMRKS3aQygiIiLlTaUKCC3B4PHjx9m0aRM1a9bM9zFHjhwhJSWF2rVrA9CxY0fi4+PZs2ePOeb7778nPj6eTp06mWMOHz7MuXPnzDEbNmzAxcWF1q1bm2O2b99u1Ypiw4YN+Pn5ZVtKmpmLiwseHh5WXyJSNiggFBERkfKmQgWEV65c4dChQxw6dAiAEydOcOjQIU6fPk1qaiqPPPII+/btIyIigrS0NGJiYoiJiTGDsl9++YVXX32Vffv2cfLkSb7++mseffRRWrVqRefOnQHw9/enV69ejB49msjISCIjIxk9ejQhISE0btwYgODgYJo2bUpoaCgHDx5k8+bNjB8/ntGjR5sB3JAhQ3BxcWHkyJEcPnyYzz//nBkzZqjCqEg5piWjIiIiUt7YGRXoE8zWrVsJCgrKdnzEiBFMmzYt10It3377LV26dOHMmTMMGzaMw4cPc+XKFerWrUufPn145ZVXqFGjhjn+8uXLhIeHs3r1agD69evHu+++a1Wt9PTp04SFhbFlyxbc3NwYMmQIs2fPtqoqGhUVxbPPPsuePXvw8vLi6aef5uWXXy5UQJiQkICnpyfx8fHKForY2G/79nF727ZcB9wqzq9WERGRUqfPuKWnQgWElZH+sYiUHb/t3cvt7dopIBQREblF+oxbeirUklEREZtSECgiIiLljAJCEZFiogUXIiIiUt4oIBQRKSaqMioiIiLljQJCEZFiooBQREREyhsFhCIixURLRkVERKS8UUAoIlJcbgaECgtFRESkvFBAKCJSTLRkVERERMobBYQiIsVEAaGIiIiUNwoIRUREREREKikFhCIixcSSIdQeQhERESkvFBCKiBQXVRkVERGRckYBoYhIMVHbCRERESlvFBCKiBQTFZURERGR8kYBoYhIMVFAKCIiIuWNAkIRkeKiJaMiIiJSziggFBEpJtpDKCIiIuWNAkIRkeJyMyBUWCgiIiLlhQJCEZFioj2EIiIiUt4oIBQREREREamkFBCKiBQTZQhFRESkvFFAKCJSXLSHUERERMoZBYQiIsVEGUIREREpbxQQioiIiIiIVFIKCEVEiov6EIqIiEg5o4BQRKSYaMmoiIiIlDcKCEVERERERCopBYQiIsXE0JJRERERKWcqVEC4fft2+vbti5+fH3Z2dnzxxRdW9xuGwbRp0/Dz88PNzY0uXbpw5MgRqzFJSUk899xzeHt7U6VKFfr168fZs2etxsTGxhIaGoqnpyeenp6EhoYSFxdnNeb06dP07duXKlWq4O3tTXh4OMnJyVZjoqKiCAwMxM3Njdtvv51XX31VHyhFyjMtGRUREZFypkIFhFevXuXuu+/m3XffzfH+N998k7lz5/Luu++yd+9efH196dGjB4mJieaY559/ns8//5zly5ezY8cOrly5QkhICGlpaeaYIUOGcOjQIdatW8e6des4dOgQoaGh5v1paWn06dOHq1evsmPHDpYvX85///tfxo0bZ45JSEigR48e+Pn5sXfvXubPn8/s2bOZO3duCbwyIlIq1IdQREREyhujggKMzz//3Lydnp5u+Pr6GrNmzTKP3bhxw/D09DT++c9/GoZhGHFxcYaTk5OxfPlyc8xvv/1m2NvbG+vWrTMMwzCOHj1qAEZkZKQ5Zvfu3QZgREdHG4ZhGF9//bVhb29v/Pbbb+aYTz75xHBxcTHi4+MNwzCMBQsWGJ6ensaNGzfMMTNnzjT8/PyM9PT0Aj/P+Ph4AzDPK5XXkCFDbD2FSi9q6VLDACO+4v5qFRERKRX6jFt6HG0ajZaiEydOEBMTQ3BwsHnMxcWFwMBAdu3axVNPPcX+/ftJSUmxGuPn50dAQAC7du2iZ8+e7N69G09PT9q3b2+O6dChA56enuzatYvGjRuze/duAgIC8PPzM8f07NmTpKQk9u/fT1BQELt37yYwMBAXFxerMZMnT+bkyZM0aNAgx+eRlJREUlKSeTshIaFYXh8pPyZOnJjtmGEY7Nq1ywazESta8i0iIiLlTKUJCGNiYgCoVauW1fFatWpx6tQpc4yzszNeXl7ZxlgeHxMTg4+PT7bz+/j4WI3Jeh0vLy+cnZ2txtSvXz/bdSz35RYQzpw5k+nTp+f7fKXiioiIYNmyZdmOf/vttzaYjVjRklEREREpZypNQGhhZ2dnddswjGzHsso6JqfxxTHGuPlhMq/5TJ48mbFjx5q3ExISqFu3bp7zl4rl8ccfx9/fP9sfJoYPH26jGYmFoQyhiIiIlDMVqqhMXnx9fYE/M4UWFy5cMDNzvr6+JCcnExsbm+eY8+fPZzv/xYsXrcZkvU5sbCwpKSl5jrlw4QKQPYuZmYuLCx4eHlZfUrm89tprOWapw8PDbTAbsaKAUERERMqZShMQNmjQAF9fXzZu3GgeS05OZtu2bXTq1AmA1q1b4+TkZDXm3LlzHD582BzTsWNH4uPj2bNnjznm+++/Jz4+3mrM4cOHOXfunDlmw4YNuLi40Lp1a3PM9u3brVpRbNiwAT8/v2xLSUWknFBAKCIiIuVMhQoIr1y5wqFDhzh06BCQUUjm0KFDnD59Gjs7O55//nlmzJjB559/zuHDhxk5ciTu7u4MGTIEAE9PT0aNGsW4cePYvHkzBw8eZNiwYTRv3pzu3bsD4O/vT69evRg9ejSRkZFERkYyevRoQkJCaNy4MQDBwcE0bdqU0NBQDh48yObNmxk/fjyjR482M3pDhgzBxcWFkSNHcvjwYT7//HNmzJjB2LFj813CKlJRDB061NZTKFZaMioiIiLlTYXaQ7hv3z6CgoLM25a9diNGjGDx4sVMnDiR69evExYWRmxsLO3bt2fDhg1Uq1bNfMy8efNwdHRk4MCBXL9+nW7durF48WIcHBzMMREREYSHh5vVSPv162fV+9DBwYG1a9cSFhZG586dcXNzY8iQIcyePdsc4+npycaNG3n22Wdp06YNXl5ejB071mp/oEhFUWkqoyogFBERkXLGztCftMu1hIQEPD09iY+P137CCi41NRVHR0c2btzIlClTcHBwIDw8nMGDBwPQp08f1q5da+NZ5uz222/PsTLquHHj2Ldvnw1mVDL+9+GHtHjiCeIBT/1qFRERKTJ9xi09FSpDKFLRREVFMWnSJOLi4nB0dCQlJYUff/yRr776ilatWjFlyhR27tzJO++8w7Vr12w93VxVlsqoRnq6racgIiIiUijKEJZz+utJxXbfffexbNkyq9Yi7dq1w8XFhe+++w6AxYsX89///peYmBj27t1rq6kK8MMHH3D3k08qQygiInKL9Bm39FSoojIiFU1aWhqenp5Wx1q2bMnVq1fN2yNHjmTs2LEkJiaW9vQkC0uGUKGgiIiIlBdaMipShs2aNYuQkBCcnZ3x8PAgPj6e1NRU3nnnHatxQUFBREdH22iWYlJWUERERMoZBYQiZdj999/P9u3buX79OnFxcXh5eeHq6mrraUkZd/DgQaZOnYqTkxMTJkwwe6SOGjWKDz/80MazExERkbJES0ZFygE3Nzdq165dboPBzz77jFatWjFs2DA++ugjGjduTNu2bVm9erWtp1asykpRmfDwcN5++23mzZvHvHnzmDt3LgC//vqrjWcmIiIiZY0yhCIVRExMDL6+vraeRo7mzJnDzp07SUxMpGXLlkRHR+Pq6kr37t3p16+fradXbOxu/tfWC0ft7Oxo2LAhACtWrGDatGmMHj2a1NRUG89MREREyhplCEUqiLLcwsHNzQ13d3dq1apFt27d8PT0xMXFBUfHivU3KUvRZrt8xpU0Hx8fTp48ad6eNm0agYGBqkIrIiIi2SggFCnDNm7cSPv27enUqRPLly8HMtpOVK9enXbt2plfbdu2Zc+ePTaebe5atmxJWloaAEuXLgUgOTmZmjVr2nJaxa6sLBlduXIl9evXtzo2bNgwbty4YZsJiYiISJlVsf48L1LBvPLKK6xfvx5nZ2ezCX1iYiJ3330327Ztsxrbo0cPG80yf2+//bbV7bi4OKpXr87KlSttM6ESUlaWjIqIiIgUlDKEImWYg4MD1atXx93dnblz59K6dWuqVKlCQkJCtrFTpkyxwQyLZsCAAbaeQokoKxnCsubgwYOEhITQv39/du3aZR4fNWqUDWclIiIioIBQpExr2bKl1V6wkSNH8tZbb3H9+nXzmKX/YGBgYGlPr8iMCtqvryw/r4MHD9rs2qp6KiIiUnZpyahIGTZ//nyr23Fxcdma0IeFhbFly5bSntotWbVqla2nUCJsXUzGYsGCBVa3DcNg4cKFhIWFERYWVurzUdVTERGRsksZQpFyJKellk5OTjaYya3x8vKy9RRKRFlZMvree++xZs0a3N3dqVKlClWrVsXe3p6qVavaZD6qeioiIlJ2KSAUKUdyWpK4fv16G8xEclJWlowePnyYYcOG8eWXX+Ls7ExoaCh16tSxWWsSVT0VEREpuxQQihSToUOHlvg1KtpSy5iYGFtPoViVlSqjdnZ2DBkyhP/+97+kpqbSr18/Ll26ZONZiYiISFmkPYQihTRx4sRsxwzDsKqeWFIq2lLL4cOHs2HDBltPo9iUlSWjFvb29oSGhtKnTx9l40RERCRHCghFCikiIoJly5ZlO/7tt9/aYDblQ7t27bIdMwyD48eP22A2lc8jjzxS7goPiYiISOlQQChSSI8//jj+/v74+PhYHS/N/VkxMTH4+vqW2vVuVWJiIlFRUTg6Wv/K6dGjh41mVELKyB7CrMrK3sasgoODK1SGWEREpDxSQChSSK+99lqOx8PDw0ttDuVtqeWMGTNITEzMtuR1ypQpNppRyShrS0YtbL33dODAgdmOGYZBVFSUDWYjIiIimSkgFCnDCrPUcujQoURERJTGtAqtf//+Vrejo6Np0qQJgYGBNppRCSmjmThb7z3du3cvW7Zswd7+zzpmhmEQGhpqw1mJiIgIKCAUKdNyWmo5ceJELl68aFXcprSK2hSXsLCwCrGnLTU1NdsyWMluwoQJVKtWDW9vb6vjY8aMsdGMRERExEKfZETKsJyWWkZERDBx4kRatmxpNbY8FbVxcnKy9RSKLCoqikmTJhEXF4ejoyMpKSl4e3szY8aMMrVkNCkpiSNHjnD58mVq1KhBQEAAzs7ONplLWFiY1e24uDiqV6/OoEGDbDIfERER+ZMCQpFiUhIFMrIutYSMojaPPfaYTYva3Kr169fbegpFFhYWxrJly6hbt6557PTp0wwdOpS5vXrZcGZ/WrJkCQsXLqRt27Z4eHgQFxfHgQMHeOaZZxg2bJitp8eAAQMqRIZYRESkIlBAKFJIti6QUZJFbQ4ePMjUqVNxcnJiwoQJdOrUCYBRo0bx4Ycf3vL5K4K0tDQ8PT2tjnl4eJCWllZmqnm+//777Nixw2rPXmpqKl26dCkTAWFZeZ1EREREAaFIoVXkAhnh4eEsWrQIR0dHJkyYQGRkJGPHjuXXX3+19dTKjFmzZhESEoKzszMeHh7Ex8eTmprKG2+8gXFz2a6twx03Nze2bdtGUFBQxnwMg23btuHq6mrjmWWwddVTERER+ZN9/kMqlvr162NnZ5ft69lnnwVg5MiR2e7r0KGD1TmSkpJ47rnn8Pb2pkqVKvTr14+zZ89ajYmNjSU0NBRPT088PT0JDQ0lLi7Oaszp06fp27cvVapUwdvbm/DwcJKTk0v0+cutsxTIqFevnvlVv379ClEgw87OjoYNG1K/fn1WrFhBQkICo0ePJjU11dZTKzPuv/9+tm/fzldffcV7773H2rVr2bZtG/fddx92N8fY5XmGkrdkyRK+/PJLOnfuTIcOHbj//vtZs2YNS5cutfHMMti66qmIiIj8qdJlCPfu3UtaWpp5+/Dhw/To0YNHH33UPNarVy8WLVpk3s5aiOH555/nq6++Yvny5dSsWZNx48YREhLC/v37cXBwAGDIkCGcPXuWdevWAfDkk08SGhrKV199BWQsO+vTpw+33XYbO3bs4I8//mDEiBEYhsH8+fNL7PnLrctaIMOiIhTI8PHx4eTJk9SvXx+AadOmsXTpUpYsWWLbiZVBbm5uuLm5WR0rK0shfX19efvtt209jRypMquIiEjZUukyhLfddhu+vr7m15o1a7jzzjut+qG5uLhYjalRo4Z5X3x8PB9++CFz5syhe/futGrViqVLlxIVFcWmTZsAOHbsGOvWrePf//43HTt2pGPHjnzwwQesWbOGH3/8EYANGzZw9OhRli5dSqtWrejevTtz5szhgw8+ICEhoXRfFClXNm7cSPv27enUqRPLly83j/fp0+eWz71y5UozGLQYNmwYN27cuOVzVwqGwUHgMTIKAmVuBTJq1CibTcvWoqKieOCBB+jUqRNdu3alY8eO9O3bl8jISFtPTUREpNKrdAFhZsnJySxdupTHH38cO7s/F3lt3boVHx8fGjVqxOjRo7lw4YJ53/79+0lJSSE4ONg85ufnR0BAgPnhb/fu3Xh6etK+fXtzTIcOHfD09LQaExAQgJ+fnzmmZ8+eJCUlsX///lznnJSUREJCgtWXVC6vvPIK69evZ9OmTezZs4fnnnuO9PR0rl27ZuupVVoHDx7M+MYwCAdmAPPmzWPevHnMnTsXoFLvw3z44Yf59ddfuXHjBg888AC7d+/mvffeo1cZqcoqIiJSmVXqdTtffPEFcXFxjBw50jzWu3dvHn30UerVq8eJEyeYOnUqXbt2Zf/+/bi4uBATE4Ozs3O2PTC1atUiJiYGgJiYmGwtASBjOV7mMbVq1bK638vLC2dnZ3NMTmbOnMn06dOL+pSlBMXExODr61vi13FwcKB69eoAzJ07l8WLF/Pggw9y5cqVEr+2wIIFC6xuG4bBwoULCQsL4x7DwA74P8Dr5j7MadOmVfp9mOfOnePkyZPUrFmTf/zjHzzyyCP84x//KDNLbEVERCqzSp0h/PDDD+ndu7dVlm7QoEH06dOHgIAA+vbtyzfffMNPP/3E2rVr8zyXYRhWWcbM39/KmKwmT55MfHy8+XXmzJk85yWlp7T6ALZs2ZKTJ0+at0eOHMnYsWNJTEwsletXdu+99x5r1qzB3d2dKlWqULVqVezt7alatSoAPsCpTOOnTZtGYGAge/futcl8y4L69evTv39/unfvztatW/nll19o2rQpNWvWtPXUREREKr1KGxCeOnWKTZs28cQTT+Q5rnbt2tSrV4/jx48DGcUakpOTiY2NtRp34cIFM+Pn6+vL+fPns53r4sWLVmOyZgJjY2NJSUnJljnMzMXFBQ8PD6svKV3t2rXL9tW2bVv27NlTKtefP3++1T6/uLg4goKCiI6OLrFrZl4iXVAHDx4kJCSkwu2lO3z4MMOGDePLL7/E2dmZ0NBQ6tSpk/EHgfR0VgJ3ZHlMZd+H+dhjj/Hxxx+blVl3797Nzp07adSoka2nJiIiUulV2iWjixYtwsfHJ99CHH/88Qdnzpyhdu3aALRu3RonJyc2btxoNig/d+4chw8f5s033wSgY8eOxMfHs2fPHtq1awfA999/T3x8vNnou2PHjrz++uucO3fOPPeGDRtwcXGhdevWJfKcpXgkJiYSFRWVrVJijx49bDKfAQMGsGXLlmI5l+U9nZlhGERFRRX6XBW1p6GdnR1Dhgxh8ODBRERE0K9fPy5dupRx580lkLZuO1HWvPjii+b3bm5uREdH06xZM7MKs4iIiNhOpQwI09PTWbRoESNGjLD6UH/lyhWmTZvGww8/TO3atTl58iQvvvgi3t7e9O/fHwBPT09GjRrFuHHjqFmzJjVq1GD8+PE0b96c7t27A+Dv70+vXr0YPXo077//PpDRdiIkJITGjRsDGRmXpk2bEhoayltvvcXly5cZP348o0ePVtavmA0dOpSIiIhiO9+MGTNITEzMto90ypQpxXaNnORWrr8492Ht3buXLVu2YG//5+IBwzAIDQ0t9LksPQ2BCrmXzt7entDQUIYOHZrnvl/JLiwsrNj+iCEiIiK3plIGhJs2beL06dM8/vjjVscdHByIiori448/Ji4ujtq1axMUFMSnn35KtWrVzHHz5s3D0dGRgQMHcv36dbp168bixYvNHoQAERERhIeHm0vt+vXrx7vvvmt1rbVr1xIWFkbnzp1xc3NjyJAhzJ49u4SffcU1ceLEbMcMw7BarlgcLH8csIiOjqZJkyZWrUuKS1RUFJMmTSIuLg5HR0dSUlLw9vZmxowZNG/eHIBVq1YV2/UmTJhAtWrV8Pb2tjo+ZsyYQp+rID0NiztYtwV7e3tzH7KRnm7j2ZR9v//+O4mJiVbvDREREbEdO0Nl3sq1hIQEPD09iY+Pr/SZxdtvv51ly5ZlOz5u3Dj27dtXYtft2rVriWU77rvvPpYtW0bdunXNY6dPn2bo0KF89913JXLNzOLi4syKprcit2B95cqVnDhx4pbPX1ZETp7M6Vmz+DvQYuhQevTowYwZM/Dw8GDq1Kn069fP1lO0iQEDBrBq1Sr+9a9/sWzZMjp16sQPP/xAp06deOmll2w9PRERKYP0Gbf0VMoMoVRMjz/+OP7+/tlafpR09U8nJ6cSO3daWhqenp5Wxzw8PEhLSyuxa2ZWXPsTIyIicgzWv/3221s+d1kRExODYRjMAb4BHOfMoWXLlkRHR+Pq6kr37t0rbUBo6Zf6ySefWC1Jvu+++xQQioiI2JgCQqkwXnvttRyPh4eHl+h1169fX2LnnjVrFiEhITg7O+Ph4UF8fDypqam88cYb2caWRB/E4lpAYKtgvTQNHz6c6a1a4Qa4A161atGtWzczoM9p/2dl0bBhQ9asWUPbtm356quv6Nq1KwcPHrRaii8iIiK2oSWj5ZzS6ZXD9evXiYuLw8vLC1dX1xzHBAcHs2HDhmK9bmxsbLbiOZWdpXJwZoZhcPz4cb558kk+festpgI1M/1qTU5OZsiQIaxcubJU5njw4EGmTp2Kk5MTEyZMMKsbjxo1ig8//LBU5pBZcnIy8+fPZ926dZw5cwYvLy86d+7MxIkTs/2RQEREBPQZtzQpICzn9I+l8skrIImLiyv9CRVSSQSupcnf3z/XtiPTW7ak0+zZxAHVb/5qLa59mIVx3333WbX86NixI2PHjiUoKKhCLdMVEZGKS59xS0/lXcMkUk6VtT6IuSnOnoZlSZ5tR776Ktv44uwTWVAVveWHiIiIFB8FhFJhbNy4kSlTpuDg4EB4eDiDBw8GoE+fPqxdu9bGsys+Jd0HMSkpiSNHjnD58mVq1KhBQEAAzs7OhT5PcfY0LEuyth2xCAwMZNfq1dmO22IRRkFafoiIiIgA2Oc/RKR8eOWVV1i/fj2bNm1iz549PPfcc6Snp3Pt2jVbT63INm7cSPv27enUqRPLly8HMgKSYcOGmWOio6MBiqUP4pIlSwgKCuKjjz5i27ZtLFq0iKCgIJYuXVroc1l6GtarV4/vv/+ehx56iClTptC8eXMaN25M27ZtWZ1DAFWu5RD8FWefyIJauXJlth5/w4YN48aNG6U+F4ukpCQOHDjApk2bOHDgAMnJyTabi4iIiPxJGUKpMBwcHMy9WnPnzmXx4sU8+OCDXLlypVSuXxJN1i1BrrOzM1OmTGHnzp288847VkFuWFhYsS1JfP/999mxY4dVVi81NZUuXbpYBaEFERYWZn4/Z84cdu7cSWJiYoVuxZBTNlBFeTL+0LBw4ULatm2Lh4cHcXFxHDhwgGeeeabQ7ysREREpXgoIpcJo2bKl1TK5kSNHUq9ePZ555plivU5uTdZ37dpVrNeBggW5xdkH0c3NjW3bthEUFARkPK9t27blWtm0MOd1d3fH3d1drRgqoeL8Q4OIiIgUL30akwpj/vz5Vrfj4uIICgoyl1QWl9Jssl6QILc4+yAuWbKEWbNmMWXKFNLS0nBycqJNmzZFWjKaWcuWLUlLS8PBwcE8V3JyMjVr1iyOaZcd6ekA2OVwV0n0iSyMgwcP0qpVK5tcu6T+0CAiIiK3Tm0nyjmV5M1d165dS6S649SpU3nuueey9U/7xz/+QXh4eLFfL18//QS9esGhQ1AO3gO2DoyKU2pqqlWWc+df/0rnf/yDeMAzy6/W0my3sWDBAqvbhmGwcOFCwsLCrJbylpaYmBhmzZrF3r17rf7QMGnSpArzXhARkeKlz7ilRxlCqbBK6m8dr732Wo7HbRIMAr+9+iq3nzhB7Lff4vXggzaZQ2EMHz68XPchjIqKYtKkScTFxeHo6EhKSgre3t7MmDEDDIN2QBrgkKlfpKVPZGl57733qFevHgMHDsTOLiNfaW9vT9WqVUttDpn9+OOPHD58mPbt29OrVy8mTZrEwYMHOXHihAJCERERG1NAKBWWLao72sKPP//M7cDpEycoS+VL2mUKiCxKOzAqCWFhYSxbtoy6deuax06fPs3QoUOZ1bIlicAOoOaePVaPK80+kYcPH+aTTz5hxYoVDBw4kEGDBvHpp58yfPjwEr3uwYMHmTp1Kk5OTkyYMIFOnToBGZVxW7VqxaFDh/j44485dOgQ7u7uNGvWjHPnzpXonERERCRvCgilwqrI1R2tll3eLNRhlLGm44mJiURFRWUrHJM5MCqPy0fT0tLMojgWHh4epKWlgWEwA7gCZN0dWVx9IgvCzs6OIUOGMHjwYCIiIujXrx+XLl0q8euGh4ezaNEiHB0dmTBhApGRkYwdO5aEhATef/99HB0dadeuHZ999hljx461aRsMERERyaA+hCLlkFWmxxIQpqXl+ZiDBw8SEhJC//79rSqijho1qkTmOGPGDBITE7MdzxwYlXTGqiTMmjWLkJAQunfvzoABA+jWrRsPPvggb7zxBoZh0B+onml8cfaJLCx7e3tCQ0NZvXo1X3zxRYlfz87OjoYNG1K/fn1WrFhBQkICo0ePxs7OjgYNGlC/fn0uXLhAQkICo0aNKrFl3SIiIlJwyhBKhZKUlMSRI0e4fPkyNWrUICAgAGdn51K5dkkUDSnIskvDUso/n4Awt+zNr7/+Wqxztujfv7/5fbt27bhx44ZVVcnyunz0/vvvZ/v27Vy/fp24uDi8vLzM57Xjk0+yjS/OPpFFZW9vj5+fX4lfx8fHx6oq7rRp01i6dCn/+c9/OHPmTLbjt1q9VkRERG6dAkKpMEqr+fXAgQOzHTMMg6ioqGK7hkVBll3i4JAxh3yWjFqyNwArVqxg2rRpjB49mtRSWGqamJhIrVq12Lp1q9Xx0txXV9zc3Nxwc3OzPphDxqs4+0SWtm3btvHaa6/RokULsxiMp6cnM2fOpGPHjtnGr1y5MtuxYcOG5fjvL7fjIiIiUroUEEqFUVrNr/fu3cuWLVusrmMYBqGhocV2DQvLssus+yGt9qNZloze7IGXm9yyN0uWLCnWOedkxowZ2fpEQunuq7OV4uwTWRjFkS2fNGkSK1asIC4ujuDgYPbu3Yu7uzsDBgzIFtyLiIhI+aQ9hFJhWJpfW5RU8+sJEyZQrVo16tWrZ37Vr1+fMWPGFOt1IGPZZU7FcTLvRyvoktGVK1eawaDFsGHDSrywR2pqKv3797daNmnLfXUl4eDBg8CfQXlOjelL05IlSwgKCuKjjz5i27ZtLFq0iKCgoEIv0XR1daVu3bo0b94cf39/6tSpQ40aNXC4mZUWERGR8k8ZQqkwlixZwqxZs5gyZYpV8+vi3qeUtbF3XFwc1atXZ9CgQcV6nRz99hu0aAEHD8Idd2QcK+CS0dKUV6++5s2bl4l9dUWVV9P3FjaaU1bFlS339fUlLS0NBwcH8+eVmppKej7Z6MuXL5uZyRo1arBx40amTJmCg4MD4eHhDB48GIA+ffqwdu3aIjxDERERKS4KCKXC8PX15e233y716w4YMKD0gpvdu+HyZfjkE5g0CcBsPF6W5NWr77vvvivX++ryavpeVqpmWrLlQUFBQNGz5cuXL892zNHRkY0bN+Y4fvPmzbz88st4e3ub+3hjY2OJjY1l586dODs7M2XKFHbu3Mk777zD7t27C//kREREpFgpIBS5RaUaBFSrlvHf69fNQzN/+IFukG/WxiJr9qYk5NmrD9vtqysOeTV9/27HDltPDyj5bHnWIkcWL7/8MuvWraOa5X0KJCQkULNmTZ588knz2MmTJ6lTp06ObUlERESkdCkgFLlFq1atKpXrTJw4kdTjx3EE0tevx/7aNQzD4EhcHADp+QSmuWVvpk+fTrdu3YCMvXBTp07FycmJCRMm0KlTJyCjV+GHH35Y4LlaevU5Ozvj4eFBfHw8qampvPHGG+aYL774gnvuuYc7LEtfy4k8m74XMCgvaSWRLU9NTc01ELSwt7fn4sWLVgHhxYsXSU9P57nnnrP6We/atavEemCKiIhIwSkgFLlFORV9KQkRERE816EDHYHjDg7c1acPAKv/9S+4fj3fpaO5ZW969+5tBoTF1aswr159Fv3796dBgwYl1gexpFmavvfp0+fPwjxlZMloNv/5D0ybBqdPF+phWfeCJicnc9ttt5l7QbP617/+xbhx44iJicEwDOzs7KhduzYvvfQS/v7+eHt7Axn7bh977DGrPY4iIiJiG/q/sUg58fjjj/N/t91GINDKy4vAwEACAwMJvv32jAH5BISW7E1mFy9etPpQbulVWL9+fVasWEFCQkKRexUePHiQRx99lLCwMA4cOGAet2SFQgCn8+cLfd6y5pFHHimVpu+3wpg0Cc6cKfTjwsLCeOGFF6hevTqpqak4Ozvz22+/cc899+TYd9Pf35/PP/+c3bt3ExkZye7du1m1ahWvvvqqGQxCxr5boHQKMYmIiEieFBCKFJOYmJgSPf9rr72Gt4cHAKmZWkw8XK9egR5vyd507NiRDh060LFjRyZMmMC//vUvc4ylV6HFtGnTCAwMZO/evYWeb3h4OG+//Tbz5s1j3rx5zJ07F8DMCH4FrMu0F7K8stpDevP7slbmJyEhoUiPO3bsmJnJq1OnDr6+vuayz6zVdgujrBTfERERkUoWEE6bNg07OzurL19fX/N+wzCYNm0afn5+uLm50aVLF44cOWJ1jqSkJJ577jm8vb2pUqUK/fr14+zZs1ZjYmNjCQ0NxdPTE09PT0JDQ4m7uc/L4vTp0/Tt25cqVarg7e1NeHg4ycnJJfbcpeQNHz68xK/heLM6Z1pOGbt8MoS5ZW/8/f3NMcXZq7Ag2UbvChAYZN5DWlYDnZSUlCI9zsnJiRs3bnDx4kUSEhI4e/Ys586do3HjxmaBoKIorX23IiIikr9KFRACNGvWjHPnzplfmZc9vfnmm8ydO5d3332XvXv34uvrS48ePawq4T3//PN8/vnnLF++nB07dnDlyhVCQkKsPhwNGTKEQ4cOsW7dOtatW8ehQ4cIDQ01709LS6NPnz5cvXqVHTt2sHz5cv773/8ybty40nkR5Ja0a9cu21fbtm3Zs2dPiV/b6WZRj1v5MF4aPvvsM/73v//x0EMP8dFHH9G4cWPWrl1LtWrVrLKNZTN8KpzS2kN6K4r6Ok+dOpVly5bh5OTE1atXue2226hatSrp6elWBYLyk7WaqOU1U5VRERGRMsCoRF555RXj7rvvzvG+9PR0w9fX15g1a5Z57MaNG4anp6fxz3/+0zAMw4iLizOcnJyM5cuXm2N+++03w97e3li3bp1hGIZx9OhRAzAiIyPNMbt37zYAIzo62jAMw/j6668Ne3t747fffjPHfPLJJ4aLi4sRHx9fqOcUHx9vAIV+nBRdkyZNjJSUlGzHu3fvXuLX3vXKK4YBxvZu3cxj3/bsaRhgRP7tbyV+/YJq166dcfXqVSMmJsbw9fU14uLijBs3bhj33nvvn4PAiK9gv4K2DR9uGGAklLHndcHOzjBucU7Xrl0zjh07Zly/fj3XMR999JEREBBgtGrVypg5c6Z53N/fP8fjQUFBtzQnERGpuPQZt/RUugzh8ePH8fPzo0GDBgwePNjcz3TixAliYmIIDg42x7q4uBAYGMiuXbsA2L9/PykpKVZj/Pz8CAgIMMfs3r0bT09P2rdvb47p0KEDnp6eVmMCAgKsClH07NmTpKQk9u/fn+f8k5KSSEhIsPqS0jVjxowcMxtTpkwp0et+9tlnjHj/fYYB39xctte2bVt2XriQMaAAyxWTkpI4cOAAmzZt4sCBAyW2TNnNzQ13d3dq1apFt27d8PT0xMXFJVvbgoqQIbSIiYkpu1VGi4GbmxthYWF5NrdfuHAhBw4cwN/fH3d3dx555BGuXbvGb7/9xu7du/n3v//NmTNn6NatG3FxcWV2ia2IiEhlUqnaTrRv356PP/6YRo0acf78ef7+97/TqVMnjhw5YhYEqVWrltVjatWqxalTp4CMD3zOzs7ZlojVqlXLfHxMTAw+Pj7Zru3j42M1Jut1vLy8cHZ2zrcwycyZM5k+fXohnrUUt/79+1vdjo6OpkmTJgQGBpbodefMmcP7I0bQ9I03aPrzz/x64QKurq609fXlJcDIpwfekiVLWLhwIW3btjX7EB44cIBnnnmGYcOG5fnY4OBgNmzYUOC5tmzZkrS0NBwcHMxm6MnJydSsWbPA5yhvhg8fzhRfXw4CkwG3/v1vqZdjiTCMHPeabtu2jddee40WLVrQq1cvJk2ahKenJzNnzqRjx45cvnyZy5cvZ9uLOHHiRKvbp0+f5sUXX2TXrl1ERETg7+9P7969uXHjBsHBwbRt25YaNWpQrVo16tWrh8fNIkkiIiJiO5UqIOzdu7f5ffPmzenYsSN33nknH330ER06dADI1svNuNlLKy9Zx+Q0vihjcjJ58mTGjh1r3k5ISKBu3bp5PkZKVlhYGFu2bCnx67i5ueHm5EQtoHWNGnh6egLgcPM9k1+25f3332fHjh1WbSZSU1Pp0qWLGRAOHDgw2+MMw8ixxUBecmqK7uzszMqVK60P5vN+L4vatWuX7ZhhGBw/fhz69iUceA/wmDfvlno5FsbBgweZOnUqTk5OOQah5jsjl4Bw0qRJrFixgri4OIKDg9m7dy/u7u4EBQVRtWpVvL298fDwwN3dnc6dO/Pqq6/SrVs3IiIiWLZsmXme2NhYWrduzbfffgtAjx498PPzo02bNixdupT/+7//M8f+8MMPdOnSpaReEhERESmgShUQZlWlShWaN2/O8ePHeeihh4CM7F3t2rXNMRcuXDCzeb6+viQnJxMbG2uVJbxw4YL5AczX15fzOfRWu3jxotV5vv/+e6v7Y2NjSUlJyZY5zMrFxQUXF5fCP9lKbOjQoURERJTY+Z1uVv4saZasG8DUZs2AjKybh+X6+RSacXNzY9u2bQQFBQEZQcy2bduslgDu3buXLVu2WAWNhmFYFUW6VcHBwaxfvx47yueS0cTERKKiorItf+3RowcYBnbAnUCVm9VVp02bVuRejgUVHh7OokWLcHR0zDMITU9JwT6H3x+urq7UrVuXunXr4u/vT506dQA4deoUEydO5MUXX+R///sfTz31FGlpaTz44IOsWbOGxx9/HH9/f3NVhCVLfuHmMubo6GiaNWvGvffey6lTp8yA8NixY1y6dInWrVuX2GsiIiIiBVOpA8KkpCSOHTvGfffdR4MGDfD19WXjxo20atUKyPiwvW3bNrOaXuvWrXFycmLjxo1mJuXcuXMcPnyYN998E4COHTsSHx/Pnj17zEzC999/T3x8vBk0duzYkddff51z586ZweeGDRtwcXHRB6RbkHX5GmQEM5a9myVl/fr1JXp+i7fffpvvX3oJyAik4uLiqF69Oq/efTds3JhvhnDJkiXMmjWLKVOmkJaWhpOTk5m5sZgwYQLVqlWzaiIOMGbMmELPN69sY3p6Og6Uz4DQsoc069LxKVOmwL/+hQ9wGrA085g2bRpLly5lyZIlJTYnS4sPIM8gND01NceA0NfX11zia8l2Wx771Vdf8eKLLzJhwgQWL16Mo6MjQ4YM4aWXXmLnzp05zic8PBz4M3ue9b0XHR3NX/7yF6v3noiIiNiITUrZ2Mi4ceOMrVu3Gr/++qsRGRlphISEGNWqVTNOnjxpGIZhzJo1y/D09DRWrVplREVFGY899phRu3ZtIyEhwTzH008/bdSpU8fYtGmTceDAAaNr167G3XffbaSmpppjevXqZbRo0cLYvXu3sXv3bqN58+ZGSEiIeX9qaqoREBBgdOvWzThw4ICxadMmo06dOsaYMWMK/ZxUgelPfn5+xtatW7N9tW7duuQv/vXXhrF+fYlfJvJvfzMMMLZ162ZWaNwaHGwYYOwIDy/x6xdG/fr1jV9//dU4efKk+bVnzx7j3nvvNZKTkgwDjMt2draeZrHaOmSIYYBxrZR/tT788MPGiRMnrI4tWbLEcHFxMQzDMM7frDJ64/LlQp33f//7n1G9enXjrrvuMtzc3IzmzZsbDz74oHH06FHrirG5CA4OLtRxERERC33GLT2VKkN49uxZHnvsMS5dusRtt91Ghw4diIyMpF69ekBGhun69euEhYURGxtL+/bt2bBhA9WqVTPPMW/ePBwdHRk4cCDXr1+nW7duLF68GAcHB3NMREQE4eHhZjXSfv368e6775r3Ozg4sHbtWsLCwujcuTNubm4MGTKE2bNnl9IrUTFlXb5mURoN43nggYz/lnDVRDvL+e3s/swIWorJ5FNUJkfOzvDyy1ACFVJzyjaOHj2aMWPGkJaSghPlM0OYzYIFGa/hpUvmz6e0d0Zm25sJDBs2zNwbanmd0wvZoP7QoUM4OTnh6OhIo0aNaNu2LUePHmXHjh3UqFEj2/isxWkuXLhAly5dzOI0FqWVVRcREZH82RmG6n6XZwkJCXh6ehIfH6+KfbZkKdRRwv+c9kycSLu33uK77t0J+OwzvLy82NajB4GbNrEzLIzO771XuBPa2YGjIxQyUMiviElOhVdSUlI4ceIEcXFxXIuPx716dS7b2VGjKIFsGTF06FAiNm6EixfBMNj+2GPcv3w5SYBLGfrVet7enlqGwZWzZ6l6++0Ffty9997L9u3brfaUXrp0iYceeogdO3ZkG9+hQ4cci9MMGDCArVu3/jlw8WJYuxZWrDAP5feeEhGRykWfcUtPpcoQipR3mf9+k3UPW35tJ3I9Z3q6VUYrKSmJI0eOcPnyZWrUqEFAQADOzs5Wj8mviElOhVe6du1qZgstmaqyEzLlLa/9qelubtgDpKebP5+yVjvVMp/CZghzKkTUo0cPs33Ixo0bmTJlCg4ODoSHh5vFaZ5++mmr4jSZV1AA8Je/ZLtWQQvjiIiISPGqdI3pJWclWQFRitHNSqKZAynLh/2iBoR2mR63ZMkSgoKC+Oijj9i2bRuLFi0iKCgoW/EPSxGT+jcraSYkJFgVMbEUXsnMMIyMwitAWjkLCCMiIujTp4/VV0hICDVr1uTMpUsZg65eBeAzoB0ZSzY/+ugjGjduTNu2bVm9erXN5l/UJaPJycl8+eWXdO7cmQ4dOnD//fdz6dIl/vnPfwLwyiuvsH79ejZt2sSePXv4/fffSUlJ4dq1a1bFadIL8N7M7z0lIiIiJUMZwkosKiqKSZMmERcXh6OjIykpKXh7ezNjxgyaN29u6+lJDpKSkjgA7PvjD6oeOEBAQIC5TLU4Vn8XpFchgI+PDydPnqR+/fpA9kqa/fv3z3buVatWmVnN9HL2IT+v/alXLX1BU1IgPZ05wDbgxpw5tGzZkujoaFxdXenevTv9+vUr1XkHBwezYcMG83ZaLq97bhVhf/jhBy5fvoyTkxMDBw7kb3/7G7GxsTz88MNs2bIFBwcHqlevDsDcuXNp0aIFAwYM4MqVK+Z5HB0d2bhxY75zze89pSWlIiIiJUMBYSUWFhbGsmXLrBrbnz59mqFDh/Ldd9/ZcGZFk3X52uDBgwHo06cPa9eutfHsbt2SJUt4c9UqupLRcuLEokUcOHCAoLg47od8+xAWREF6FUL+RUxyknmJq3EzMCno0sqS7iWZn9deey3H4+Hh4RwbNy7jxs0smBtQBfDw8aFbt254enoCZOtbWJzyavEBmbLIubxHcus/2aJFCw4cOICTkxP/+Mc/eOSRR/j444/NPz60bNnSKogbOXIk9erV45lnnrE6f0Gee37vKS0pFRERKRkKCCuxtLQ088OqhYeHh9n8vLyxLF9zdnZmypQp7Ny5k3feeYdr167ZemrF4v333+efDz1E53/+k+133sn98+eTmprKPd7e/B2KpaBNQXoVFofclozaqpfkrbC7WVAoJSkJDIOWQDrgAObrlpycbO67Kwm5BXShoaFW43JbVpxb/8natWvj5OQEZARkTZs2pXfv3ly+fBmA+fPnW42Pi4sjKCiI6OjoW35OWRW016KIiIgUjgLCSmzWrFmEhITg7OyMh4cH8fHxpKam8sYbb+T7WFtnbHKSdfna4sWLefDBB62Wr5Vnbm5uHPztNzrfvG3J3jnfDAKKuocwM19fX95+++0Cjy/K+yAmJga7mx/iDTvrHGFERATLli3L9phvv/22UNcoTZaA8Ma1a2AYvE1GQGgYhnmfs7Nzjhmw4pJbQDdmzJiMOd68ndNS3W3btrFq1Sp+/vlnevXqxaRJk/D09GTmzJmMGDHCKgPYvXt3ateuzbhx44iJicHX19fqXAMGDDD3Dha3/JaUioiISNEoIKzE7r//frZv387169eJi4vDy8sr29LA8pSxKejytfJqyZIlhPfowSdA3N691Lj/ftq0acOLTZrA7t0l1vLi09tuI8LOjiYjR1odNwyD7777jp9//pkaNWrk2JcuJ8OHD2fCqFG8A6SnpzNl1y5zP9htt91mu16SRWQJ+lKTk81j9kBaKbadCAsLy/H4oEGDgNyXjA4dOpRffvmFFStWsHv3bvr168c999zD9evX6du3L6tXr+a1117jww8/NPfqNWvWjHXr1mXbnwjwxx9/0L59+xJZtl2UZcoiIiKSPwWEgpubG25ubjneV54yNlmXrwEltnzNFnx9fXm+fXs6HT7M9nbtuP/mh/FtXboAue8Pu1WDLl1iLDCuTx/z2P79+1m0aBEJCQlMnz6duLg4YmNjmT59Ot26dQMwexFmzpQZhsHx48eZcvEiEUCcnR1vzJtn7gfz8vLKFgxCxnLF0pJT8ZLPPvuMZ555ht69e9OjRw9mzJiBh4cHU6dOpcnNxxmpqSXeh7KophsGbsCVd96hqp8f8OcfdurVq0fdunUZMmQILVu2NItLnT9/nnnz5vHVV18RFRVFdHS0uSfR8nOEjKJDlj2CLi4uRV62/cknn/Dmm2/SrFmzbK9xaRfjERERqUwUEEqe8qquWBmUtaWxOQZ9liCksMFIIcY/DlbvgxdffJFdu3axaNEiM1hLSEigd+/edOvWjaioKI4ePUrz5s1xcnKyqmA7duxYEi5doiFwwc7ulvaDlUTlyZyKl3z66ac0a9aMOTlUDrVcJT1LQJi16mtOSyyLQ0HeoyuB5cDFDh24LVMF4W+//RZfX1/S0tKws7Pjzjvv5MyZM3z11Vc0bNgQZ2dn0tLSaN68OS4uLmaxqaioKIKCgujUqROOjo4cPXqUjh07kpqaWqhl25krHR8+fJgmTZpw4cIFxo8fz88//2yz6qwiIiKViQJCyVNe1RUrknKzNPbmPkG7zIHHzWOF3UNopKUVuMrnawCZ/ihgb2/PxYsXrd4HFy9eNIuahIWFMW/ePB555BGzuqilgu3f//533pg2jZNkVOSEou8HK4nKkzkVLzl9+jQNGzakVq1auVYOzRYQZvl5DB8+PNsSy8IoynvUEoQOBWKBdxYvpu3993P27Fm2bdtGcnIyTZo0YfLkycTExPDrr7/SoUMHzp49y88//0yrVq2AjGxvRESEOYdly5bRqVMnmjRpgmEYnDlzhvfee48OHTrkuGx7xIgRdO/enRYtWmTsUwQ8gbjQUL766ivq1q1Lly5d2Lp1K6dPn6ZNmzalUp1VREREFBBWahWxTUNSUhJHjhzh8uXL1KhRg4CAAJydnfN9XHlZGmvkEBBagsTC9iFMT03FoYjz+Ne//mUWFrEsCa1duzb/+te/gIwKtoMGDcLDw8N8TExMDGlpaQQGBlJv2jTqd+lCTKZzFmU/WElUnsypeElkZKT5XshaOTRrwZZ2N28bnTtnWyp7K4ryHrUEoZOBPsA7Eyfi7u9Py5YtWb58Oa6urkydOpX9+/fj4OBAbGwsp0+fZuDAgWagl3KzIuxTTz3F7bffzrJly/j66695+umnqVKlijkHDw8P6tevT/369UlMTKRatWpm1VE/Pz8WLVpEXFwcwcHB7AXcgQYnTpiBX8uWLUlLS8PDw8P8mWauzloRf1+JiIiUBQoIK7GK1qZhyZIlLFy4kLZt2+Lh4UFcXBwHDhzgmWeeyTfQKC9LY82sU+bg7+b3doXMEKYlJxc5IPT39+fzzz/P9f6cKtju37+fr776CvgzeMqaoSzsh/6SqDyZU/GSdevWWd2Oi4ujevXqrFy5kuMuLkBGxtUwDBKBKCB9+3acM+3N7dGjR5HnBHm/Ry37NTPLHITaAa5A7Zo1uaN5c+rWrUtgYCA+Pj68/fbb/P7770RFRbFgwQKrrG/WOVvmsGDBAqZMmcIff/zB2bNnSUpKolWrVnz88ccAPPjgg2zZssWsOurq6krdunWpW7cu/v7+1InJ+FPAnXfeafU+CQ4Otqp0nLk6a0X7fSUiIlJmGFKuxcfHG4ARHx9f6Mfee++9VrcXLVpkhISEGG3atCmu6ZWqzp07G2lpaVbHUlJSjM6dO5f8xTPCshK/zPZBgwwDjO+6dDGPfduhg2GAsfnhhwt1rmuXLhVs3rfw3K5du2b8/vvvxvXr143g4GDz+M/r1hkGGDH29lbjO3bsaMTGxhpXr141XnjhBWPMmDFGWlqa0SXT8y0LgoKCzO9/cnY2DDDObt5sbO3Xz1gFxmUwkq5ds3rM1q1bS2w+TZo0MVJSUrId7969u2EYhnEZjEFg/Lx2rdX9KSkpRpcuXYxVq1YZv/zyi3H8+HHjjz/+KPCc27VrZ5w6dcq4fv268c477xgPP/ywcfXqVfPnZfnvoEGDjNTU1D8fCEYKGF0CAw3DsH6f5Kai/b4SEZG83cpnXCkc+/wCRqm4LG0aLEaOHMnYsWNJTEzM97HBwcElOLOicXNzY9u2beZt42afvqytNIqqTDTAtmQBM2cDc8oaFkBapjYJRZXf+8DNzY3atWvj6urK+vXrzePpufQhtPSSdHd3Z+7cubRu3bpM9pI0cnit01NTMYD+gBd/ZnMtVW4DAwNLbD4zZszI8d/tlClTzO+XA/aZXu+DBw/i6OjI5MmTmT17Ni+88ALTp09nxIgR3HPPPWzevNlqyW9OHB0dueOOO3B1dSU8PJynnnqK3r17c+nSJQBWrVqVce3ly3FwsM5HOwIbv/4asH6f5OZWfl+JiIhI7rRktBIrSJuGgQMHZhtjGIZZfr4sWbJkCbNmzWLKlCmkpaXh5OREmzZtzD1fRZG5CqKjo6NVtczmmao1lpocCsjYFbGoTGECwoEAWd4LOb0P8qykmZwM8+bB88+zY/9+hpGx13D88uXm0tAzZ86Ui16SlkAHrHv85VTsJywsrMSatVv0798/x+OWIPRDMvbsXVq9Gu8TJzAMg4ULFxIWFkZERATr1q0zl9keO3aMjRs30qdPHzw8PKhRowYPPPAAO3bsICUlxWxa37FjR/r06WP18+rRowd+fn6MGzcOwCwolBtHu/zLGlneU1l/X1n2J1aUtjIiIiK2ooBQ8rR37162bNliVo+EjEAgNDTUhrPKma+vL2+//fYtnePy5ctmQZoaNWoQFhbGsmXLqFu3rjnGUi3TUoK/NOVVVKawGcL0QmQ89wJb3ngj3/dBnpU0N2+Gv/0NnJ35R0QE3wJ/2Nvz3p495n6wBg0amMGFRW4f+kuqJchnn33GzJkz8+yHl1Ogk56SkuPeTicnp2KfY8bp/+zvmJ8PgQZAFycnsxCMvb09VatWNSvGvvfee9SrV4+ffvqJ22+/HTs7O06dOkXjxo0ZMWIE7733Hr/88gvu7u4MGDCArVu3MnnyZKs5REdHm43rC6QAvTOzvqcsrUa+//57vvzyy2JpNSIiIlKZKSCUPE2YMIFq1arh7e1tdXzMmDE2mlEhjRgBjz4KISF5Dtu8eTMvv/wy3t7eZkGa2NhYYmNjzSqIFh4eHqSVUBP4fOWUDbQEISWYIZwAVu8DSxGTy5cvWzWgtxQxySmoqmYYvAz0+eMP7O3sqA5cs7PLt19dXu0WSqLy5Jw5c9i5cyeJiYnZeg7m1A/PEgLm1nYi81LZWzFnzhzGjRvH//73P5566ikgowrnnDlz6NKlS56P3Q18DSz+/nsebd7cLCgzfPhw2rZty7hx46hWrRpbt24lJSWFli1bsnjxYu6//35GjRrFlClTcHFx4dNPP2XcuHFcv36djh07ZptDp06duHz5crbr55Y53rBxI1NnzcLBwYELFy5Qo0YNAH766ScaNWqUY3VWS6uRYcOGMW/evGJpNSIiIlKZKSCs5PJr0xAWFmY13lJdcdCgQaU91aL5+GOMTz7BLp/g5+WXX2bdunVUq1bNPJaQkECnTp2yVcvMXAWx1OVRZbSwS0YLkyEMA8j0R4H4+HiOHDmSrUecpSplTkHVobfeYsrrr1P7wAGa3HEHJ3/8Ecs7La+loXm1WyiJypNubm64u7vj7u6ea89Bi5iYPxtnGFn+SGD+PL7+GrZtg1t8z6xdu5Zx48YxYcIEFi9eTOPGjblw4QL9+/dn586deT7WDqgFXIqLY+HChfz1r38lNTUVb29vmjVrRq1atahbty6nTp3i4Ycf5v/+7/+YNGkSAKGhodSrV4/jx4+zdu1a/vrXv3Lw4EG6detGtWrVSEpK4pFHHiEoKIirV6/meP0+ffrg6Oj4Z+B+8/igv/yFEydP4uzsTN26denZsyfz58+nW7duZjuNrJVOLa1GvvnmG7y8vIql1YiIiEhlpoCwEitKmwZLGfnyIDExkWpAWnp6vm90y7K5zAHhxYsX8fLyYvv27Vy/fp24uDi8vLyKrUhNkZSRojLOzs4kJiZmWzppKWKSU1BV1d0dR+Dq1atMHjWK+hs38tvNx+W1H+zxxx+nZs2aBAQEWB0fPnw4K1asoHr16gD5ZhoLytIPz8HBIVvPwayGDx/Oeze/N9LScv4Z9OmT8d9bDAivXr3K0aNHSUxMpHHjxkBG243My3hzYwe8DPx78mTuGTmSBg0a8Mknn1C1alVGjBjBxx9/bC4BfvfddwF4/vnniYmJwcHBwfzZtG/fnp9++gl7e3sWLFhgXvuRRx7hrbfeYt26ddlaYBiGwQ8//MClS5f+DNyBd4D09HTz5/fvf/+b33//PdvPL3NhHMtzLu5WIyIiIpWZAsJK7P3332fHjh1WHyhTU1Pp0qVLrgFhTtUVyypLxiC9AHPOr9G6m5sbbpl6ytlKTnsI/37qFIFQ6CWj6TcbjheFt7e3VTAYHR1NkyZNzCImOQVVKamp1CRjiaUlm2Z5Fnn9oeG1114jODg4297E8PBwjh8/XuxFaLLuQ7U0Uwesgp2syxnTU1Ot/n0UNmObn6ZNm/LWW2/RpEkTYmNj8fLyIjEx0VxmmRc7wB64HBcHZCwFb9iwIfHx8bi7u1OvXj3Aeim4vb09fn5+Oc6hVatWpKWl0aBBAxITE/Hz86N+/fp4eHiwa9eubNlULy8v68B93jweBFycnc2fn6UwTtOmTa1+flmrs+bUJ3LYsGH59hoVERGRnCkgrMQsbRqCgoKAgrVpyFxdsaxLv/mBvCABYX6N1suCiRMncubYMdYCZ0+fZvXEiRiGwWHL8sgSLCqTVdb3QdZKmjkFVU4ODqwEvgWMLI3pLYFUfg3WsypIpdxbNWDAABITE4mKispxiazd9u0ApGfdV3rzOV0jo8InhgEFLAKTk0WLFlndtizf/vLLL81CK05OTkyYMCHHQiv/Ap5bupSpn36KYRgsWbLE/KOHZel4zZo1OXDgQLal47nNATL2ln700UcAvPvuuzlmjoOCgqwDd6Ae8LSHh1URoaJUDk1MTLTK7IuIiEjhqA9hJbZkyRK+/PJLOnfuTIcOHbj//vtZs2ZNnm0a8isjX5ak5tLrrryKiIigQ82a9AE6enjQp08fQkJC8LzZ362obSeKksfK+j7Ir5LmgAEDrLKaWfsQWgLMxMREdu3axZ49e8yvvXv30rZt2yLMsngYhlGgPn9GLkVlTMWcMRwwYID5fXh4OG+//Tbz5s1j3rx5zJ07F8AstGIH+APzn3uO3bt3ExkZye7du1mwYAH79u0jKCiIjz76iG3btrFo0SKCgoLM3wOWfZIxMTG57tOzzKV///7ZMseQ8fPNVj0W2P/VV7k+p6w+/vhjmjdvzj333MOsWbPM4w8++GCujxEREZH8KSCsxCxtGnbu3ElkZCTfffcd8+bNy72PXDmTlmVZYnHKryF7SXj88cep5+5OINCqShUCAwMJDAykl6V5eBEzhMXx+uRXSdMwDLPFQOYloxaWIKIggRdktB4oLatWrcoW6FhkXs6YdQ9h1oDwVpbo5iTz8lRLoZX69euzYsUKEhISrAqtmJnYLHMaPnw477//Pq+//jpHjhzh6tWr9O3bl6tXr/Lss8+ye/du+vfvzwMPPECTJk3o2rUrHTt25LbbbrPqQZnbUvKsRamyyvqa5LUkfeHChRw4cIADBw7g7u7OI488wrVr18yVACIiIlI0WjIq+cqvEmlZlXbzw+atBDz9+vXLtoQ2p4bspeG1115jW9eulkmYxx+pXh0uXCjVPYQWeTaiz2TVqlX8ejNrZfDnktGsP5ucGqwvWLAAgCNHjmQ8JlNT9dwCjoLOqyAKmhU3smbPsgQ3acnJ2BdjQaLMy3bzK7QSSMZf/66/+ipuCxfenF7GUty2bdvy7LPP4uzszLp163j77bdxdnYmJSXFXHrq6enJtWvX8PX1xTAMfvnlF8LCwsxenAtvnjOr/DLHWQsb5bUk3d7eHicnJ7P9houLC76+vqSmptK6desCtd8QERGR7JQhlDwtWbIkz+VkZZnlw+atBIQbN27kjTfe4K233rL6atiw4Z+DSrPQTg5VRs2lmEXMEN5KfmX48OEFGufl5WUVMBlpaSQB/zMMNm3axIEDB0jOperpe++9x5o1a3B3d6dKlSpmM/WqVave8ryKU7YMYQ4BYXHKHKiuXLky25LMYcOGcePGDQCuALuAT/72N/bs2cOYMWO4ceMG6enpNG3alISEBH766SfOnj2LnZ0dTz31FL/99huurq5Uq1aNHTt20K5dO/P9f+edd1r14gwPD89xjpkzx0lJSRw4cCDj5w0kY/1HiYMHDxIaGkr//v3ZtWuXeXzUqFFARuuKkydPmv0lV61axbJly7j//vv55ptveOmll4rwKoqIiIgyhJKnolQiLSvSk5KAgu0hzK2YCVg3ZLfIXI2xuPeG5SmH4M+uiG0n0guRQW0HkEM7gdyKveR4vUwB4dq9e3kOaJKezu3btuXZ8uTw4cN88sknrFixgoEDBzJo0CA+/fRThg8fXugiNAVVlKy4kZZmtU/SrAh783ZxB4SFMQ1I5M85WZZf7tq1i6eeego7Ozv+/e9/s2DBAsaNG0eXLl2oVq0adevWZeTIkYSFhXH9+nVatWpFamoqKSkp1K9fn3bt2hXo9c7W4gY4AAz7+mue6dwZ+LPhvKOjIxMmTMjWcP7FF18E/my/ceHCBUJCQggJCQEoUPsNERERya5SBYQzZ85k1apVREdH4+bmRqdOnXjjjTfMnl6QUbbeUjHPon379kRGRpq3k5KSGD9+PJ988gnXr1+nW7duLFiwgDp16phjYmNjCQ8PZ/Xq1UDG0sP58+ebpdcBTp8+zbPPPsuWLVtwc3NjyJAhzJ49u0wtxyxKJdKyIs0SEBZgbF5VJLMGgwCDBg0yvzdSUym1sjU59SEsamP6QiwZTQSicmgnkLVpeF6M1FRiyPh5rIqM5ABw1sGBO157Dcj9Dw12dnYMGTKEwYMHExERQb9+/bh06VLGvPL4uRVVUfpzQg59CEsgQ1jU5dsPkrFs9NqsWbgvWsSxY8fo3LkzhmEQExPDihUr+Pvf/058fLy5bDc6OpqjR4/i6OjIiy++yPXr12nRogUHDx7Mlp21vN65VfzM9oelv/+dVKDzl1/yzOuvA3/ugwT4z3/+w5w5c3JsOG9pfRETE1Po9hsiIiKSA6MS6dmzp7Fo0SLj8OHDxqFDh4w+ffoYd9xxh3HlyhVzzIgRI4xevXoZ586dM7/++OMPq/M8/fTTxu23325s3LjROHDggBEUFGTcfffdRmpqqjmmV69eRkBAgLFr1y5j165dRkBAgBESEmLen5qaagQEBBhBQUHGgQMHjI0bNxp+fn7GmDFjCvWc4uPjDcCIj48v4quSt3Pnzhl//etfjU6dOhnt27c37r33XuP55583zp07VyLXK07Hdu40DDBiHRzyHbtq1Srj8uXL2Y5v3bo138emJCQYRsbH/yLNs6A+/fRTo2GVKsZQMF6qXdto1KiR0aZNG+MNHx/DAGP9ffcV6nyHlywxDDBu5DdvMFZBkV8fi91jxhg9wNh4//1GuzvvNLaAccrR0TAMw0hPTzc2bdpkdOvWLd/zpKWlGb/99pthGLf2c8tN586djbS0NKtjKSkpRufOnXMc/7Ozs2GAcXDWLGNr167meyHu5EnDMAzj2s3bsT/9VOQ5GYZhfPzxx0bHjh2N8PBwY8qUKcaYMWOMTp06GUuWLMn3sdfBaALGvjlzDMMwjNdff904ceKEYRiG0b17d8MwDOPw4cNGz549zccEBQVlO4/l9f7oo4+MgIAAo1WrVsbMmTPN1zunx1iusWXLFvN2OhibwLirbl3zPAEBAeacLOdZsmSJ4eLikuM5g4OD833eIiJSfpX0Z1z5U6UKCLO6cOGCARjbtm0zj40YMcJ48MEHc31MXFyc4eTkZCxfvtw89ttvvxn29vbGunXrDMMwjKNHjxqAERkZaY7ZvXu3ARjR0dGGYRjG119/bdjb25sfbA3DMD755BPDxcWlUG98/WPJ3ZFvvzUMMC7fDDoK49ixYwUee+PSpVIJCNu1a2esa9vWiAGjpoODERcXZ9y4ccO428UlIyDMJWDJzf/+8x/DAON6AQLCwj63tm3bZvvyv+02w/NmQPj1uHHGX8FobWdXoD80DBkypEDXLczPLTfZgpd8glVLQHjg9deNbUFB5usV++uvhmH8GRBeOnz4luZV2EDVMAyjR48ehmEYxo2bQf3211/PNmbr1q05vm55BVwdOnQwkpOTjWPHjhnvvPOO8fDDDxtXr141unTpkuP4bH9YAuN5MJrfeaeRnJxsGIZRoPOIiEjloc+4padSLRnNKj4+HiDbUqOtW7fi4+ND9erVCQwM5PXXX8fHxweA/fv3k5KSYtV2wM/Pj4CAAHbt2kXPnj3ZvXs3np6etG/f3hzToUMHPD092bVrF40bN2b37t0EBATg5+dnjunZsydJSUns37/fXKKZVVJSEkk3l0ICJCQk3PoLUUGl30JRmayN1rPKXMUyrZjbCeTGzc0N1+vXqQW0dnfH09MTAAfLgELuIcyt0mdxyGkp5+7Ro3n53//GAGq4u/M2cMrRkXqZlmNPnDgx+zwNw6rISF7y+7kVxJIlS5g1axZTpkwhLS0NJycn2rRpk28hJSMtLcf9pJblxLda1TWv5dsDBw7MPp8s1XD7A4dcXMzb0dHRNGnShMDAQLp27ZrtdbMUhMm6TLVZs2ZmxU/L6920aVN69+7N5cuXc5y7pcWN6ea+3raOjmYl0vDw8HzPIyIiIsWv0gaEhmEwduxY7r33XgICAszjvXv35tFHH6VevXqcOHGCqVOn0rVrV/bv34+LiwsxMTE4OztnK0Vfq1YtqwbOlgAyMx8fH6sxtWrVsrrfy8sLZ2dnc0xOZs6cyfTp04v8vCuTwhRNySq/cvnDhw9nw4YNQOkVC2nZsiVpO3cC8MrNYDQ5ORlPy76sEuhDmJ6aWqRSxJZ+gpn/naSnpjIFSM7UkzCriIgIli1blu345s2bOXDgQL575/L7uRVEtuClgLIGhMXdhzCvQLVjx45s2bLFqrCKYRiEhoYCmfoQZnrdMwfPub1uAQEBXLlyhQcffJDr16+zevVqrl69iqOjI8uXLzcf1717d2rXrs24ceMAGDp0KBEREfk+p6C777Zql5H1PLkpr61wREREyqJKGxCOGTOG//3vf+zYscPqeOZiIQEBAbRp04Z69eqxdu1aBgwYkOv5DMPALlM1S7scKlsWZUxWkydPZuzYsebthIQE6tatm+v4yqwwVUazsmRHClLFsrgbjufm7bffZlubNpZJAODs7MysGjXgt98KXVSmIBnCogaEOfUTdImLozOwyTDMwCTrtR9//HH8/f2t/qCyZMkSYmNj+eijj/It8pK5zUFpsVQWzZYhLOaiMnkFqhMmTMi/Gi7WQaqTk5MZuHl6eppZxtjYWI4cOYKdnR0XLlzgvvvu45133qFOnTps27aNO++8k06dOjF//nw6d+5sldVt0aIFEyZM+DOjO2MG/PvfcLNSaFZhISHZ2mU0a9aMdevW5fo6FLXoj4iIiOSsUgaEzz33HKtXr2b79u1WlUFzUrt2berVq2cGAL6+viQnJ5vV7SwuXLhgNnH29fXl/Pnz2c518eJFMyvo6+vL999/b3V/bGwsKSkp2TKHmbm4uOCSadmX5O5WloxaFKSKZam2E8ip7cTN7+1KYMloWnJy8fyS+O032nzxBZDRJsPIJUP42s2Ko5m9//77/PLLL2W+9YmRmlqiGcK8hIWFWd2Oi4ujevXq5h+4JpOxtDhm7Vp8by7HbNGiBStXrgRg7969Zobx0Ucf5ZNPPsHBwYGuXbty5MgRjh49SmJiIo0aNWLLli14eHiQlJSUa0b322+/zfgmn96ARqbX5LPPPmPmzJk0a9aMHj16MGPGDDw8PJg6dSr9+vUzx5XnVjgiIiJlUaVq3GQYBmPGjGHVqlVs2bKFBg0a5PuYP/74gzNnzlC7dm0AWrdujZOTExs3bjTHnDt3jsOHD5sBYceOHYmPj2fPnj3mmO+//574+HirMYcPH+bcuXPmmA0bNuDi4kLr1q2L5flWdsYtLBm1sCx9zGrKlCnm95k/6Bsl3KTe0nPQLlOwYX/z+8JeuyABSnEFMbGnT/95Iy3NDEYLEsRa9s5ZZN47V5YY6enWjelLMSDMKutqhuVAH6DzXXfRp08f+vTpQ0hICDVr1gT+zDDWq1cPV1dXAgMDuffee5k/fz7p6em0bt2aa9eu0alTJ9asWcM///lPatSoYWZ0AwMDrb6GDx9eoHlmfk3mzJnDzp07mTNnDn/729/Ys2cPO3bs4K233rJ6THl5P4iIiJQXlSpD+Oyzz7Js2TK+/PJLqlWrZu7V8/T0xM3NjStXrjBt2jQefvhhateuzcmTJ3nxxRfx9vY2l8B5enoyatQoxo0bR82aNalRowbjx4+nefPmdO/eHQB/f3969erF6NGjef/99wF48sknCQkJMXseBgcH07RpU0JDQ3nrrbe4fPky48ePZ/To0Xh4eNjg1al4iiNDmNPSR4DAwEDz+8wZwrS0tGzZxOKUnJrKAWDvtWu4HDiQsf81h6xhQViydOl5LKm1KphjGGYxkMI6d+ECZj49LS1b0/a8FLXIS2kYOnQoZk4zlyWjxVVUpjCy/nFgJOAPVKlXjzaZ3ruWwC1zhtHHx4f//e9/tGjRgqeeeoqnnnqKpUuX8sQTT7B7925zWfuXX36Z6/XDw8MLNM/Mr4mbmxvu7u64u7vTrVs3s2hS1n9PZfn9ICIiUh5VqoBw4cKFAHTp0sXq+KJFixg5ciQODg5ERUXx8ccfExcXR+3atQkKCuLTTz+1arY8b948HB0dGThwoNmYfvHixTg4mPUeiYiIIDw83KxG2q9fP959913zfgcHB9auXUtYWBidO3e2akwvxcPMEBYxiCnwdTItf0wv5D6+wliyZAlv/Por3YCEGzc4vmgRBw4coPf167TOuHihzlegPYSZg5j0dMj0Hi8M50w/AyM93SwqU5AQtqhFXopTQaqfpmctKpMlKCvNgHDVqlVWt18lY8noqSxLdTMHbgcPHmTq1Kk4OTnxl7/8hf379wMwatQoPvzwQ4YNG8ZzYWFsWruWY6dOFW5CufwxIfOS0ZYtW5KWloaDg4MZ3CUnJ5tZTIuy8H4QERGpSCpVQJjfkjo3N7cCFaVwdXVl/vz5zJ8/P9cxNWrUyPcv1nfccQdr1qzJ93pSNMWRISyIzFm0tFz2xhWH999/n3fr16fL0aNEenrSYf58UlNTaevmxhQodIYwt0qfmVkqkVq+t78ZEKamphYqE2qX6TykpeV67Y0bNzJlyhQcHBwIDw9n8ODBAPTp04e1a9cW+HrFLc+9cr/9lnEjLa3MLBnNWgU5pyqjWYWHh+Pl5cW8efNo164dc+fOZezYsfyaqSBM+4ULyf23Hmzbto3XXnuNFi1a0KtXLyYBnsDMHTvoeN992cYbmd4XWYM8yz5Iyz5HERERKRmVKiCUysUMCEs4Q5ieacloSWYI3dzcOHT2LF0ADMPcO2Vm34q4h7CgGcIfDh3ipenTiYuLw9HRkZSUFLy9vZkxYwbNmzfP81ppN26Y39ulpZmBSdafzCuvvML69etxdnZmypQp7Ny5k3feeYdr167leN7MWa0JEyaYe3QtWa3iklP1U7i55HL8eCB7ldGsz600A8Jc3XyP5JTxPHnyJGfPnqV+/fr8+OOPvPPOO4wePZrUTEFb5pItmXtxWqqVTpo0iRUrVhAXF0dwcDB7AXdgwEsvsXX79uzTyfyHgiwGDBhwyz0lRUREJH8KCKXCKo6iMpnllhVLL6UM4ZIlS3iuaVNWAPExMXjdfz9t2rRhRtWqEBtb6CWjlvF5PSpz9nPM88+z/LPPrNqcnD59mqFDh/Ldd9/leam0my1A4GbmLJe5Ojg4UL16dQDmzp3L4sWLefDBB7ly5UqO48PDw1m0aBGOjo5MmDCByMjIbFmt4pBT9VPL9X+9GRCSnm5V7CfrPklbBISZgzb4M0MYERHB9OnTueuuu8z7vv/+e7MhvJeXF9OmTWPp0qUsWbLEHGOGkRMn8tlnn9GuXTu+++47YmNj6du3L66urtStW5enn34af39/6tzcp+1gn3P9srwCwpIu0CQiIiIZKlWVUalciiMgjIqK4oEHHqBTp0507dqVjh070rdvX6KioswxmT/op5dgQOjr60v4bbexE/jQx4fvvvuOefPm4ZPvI3OWnseHcYvMH9jTUlPNQh8WHh4eBQqCc8sQZtWyZUtOnjxp3h45ciRjx47NsdIrZPTybNiwIfXr12fFihUkJCRky2qVlqx7CG1ZVMbCUjTmn8ACYOX+/SxYsIAWLVowe/Zsjhw5YlYG3bZtG6NHj2bjxo20b9+eTp064ejoSIsWLWjXrh3Vq1fnbWA1sHr1ai5dusTRo0f54IMPaNq0KXv27OH3338nJSWFa9eumdm9VDLeOznJ6zXJug9SRERESoYyhFIkliViZVlxBIRhYWEsW7Ysz6yYVYawlD7026Wnc2jXLtZ37swDzs7msUIpQNCU+flMnzyZkJAQnJ2d8fDwID4+nsOHDxdoj1d6pgxh5j2E9lmyQFn35cbFxREUFER0dHS2cw4dOhQfHx9OnjxpNjfPKatValJTwTBIJeMXa9Y9hHllw25Vu3btsh0zDMPsn/oeUA9o7ejIkiVLePrpp5kzZw5Vq1a1ekx4eDidOnUyl+2+8MIL/Pzzz8TExNCzZ0/u3bqV5wCf6Gh69OjBjRs3CAkJ4ddffyU8PJwWLVowYMAAq4yuI7D644//vEjmLGoer0nWfZCltTxYRESkslFAWAkVJpgrSHXFssqsopnLHsKCFEZJS0vLNytmlSEs4cyU2YfQMIj56CMmAVj2MBaxMX1ebScsYyYCSRs20KFDB1JSUkhKSqJevXr8+uuv3JdDsZCsrALC9HR+unSJN8h4fafu2pXrh/sBAwbQpk2b7PO6+R48ceJEtvuGDRtWqg3K7YEoYPyGDVy5fBkvIAWo9te/Mue992hyc9ytvjfyCogSExOJioqyej9PnDiRixcvMnHiRB4AjgGLv/+eG46OhIaG8umnn+bYLzDzst0TJ04wdOhQ+vbty5UrV8wWG4ZhMGXKFFauXMnJkyfNaqUjR46kXr16PPPMM9YnzfTcjdTUP4vcFOI1sSwP/vHHH3n44Yfx9vbm/fffN5cHKzAUEREpGgWEFVhxBHN5Vlcs44ybQUjmMCkqKopJkyYVuDDK66+/ni0rlpqayhtvvGGOyfxBv8QzhJl6Djq6uWW5q5C5UEtD+7yG3HxuEcC/AgOp6udndX9+ewctMu8htEtP5529e1kFxNrZ8ea8ebnu/TMMo9TfgzkFXp999hnPPPMMvXv3pkePHsyYMQMPDw+mTp1KS8MgDBjfrh21oqO599gxAPZPmEBYWBiWsii3umQ0r/2SM2bMIDEx0SqrFhERwcSJE2nZsiW89RYhQFRQEHMOHqRfv35cunTJHJs5w3jq1CnuvvtunJ2diY6OZsOGDXz77bdWQV7KjRvmUtOsy3NzyuimZvr5pyUnm//jyRwQ5vYHGss+SMvy4L/85S989913vPvuu1aBf3HvGy3rjHPnwM4Ou0x7REVERIpCAWEFVhwfpPOsrljW5dBnryBLQHMKGqtWrcqYMWPo1KkTrq6uVpexVYbQKeuH5yJmCHN71NChQ5n5xBMAPA7cVb8+jTp2tBpT0PdB1gyhHdAQuGBnx4oVK5g2bVqOe/9WrVrF3LlzS/U9mFPg9emnn9KsWTPmzJlDy5YtiY6OxtXVle7du7MMSAOqODpaLdut5uxMWlpakbJhObEERIDVa3bkyBH69+9vPdgweHzECB577DGr18359tt5oUsXhg0bxo1M+zoTExMJCwuz6qVqGAaTJk1i9uzZjB8/PiPIu5lNfqldOw7XqUN8fHyB/rCScv26+X3mgPCnc+f42wMP5PkHmuHDh7NhwwZzebDldXj77bdp06YNI0eOtNm+UVuys/xxRsV3RETkFikgrMCKI5jLq7piWWfZQ5h5SWRBloAWJGi0uk6WXn0lKlOGMGulzsLuIbTMe3p6OlWyZJMtmeT0ESMAeA24VK1atnMUZLkoWLfmsEtLw8vFhZNA1ZvPJ7e9f15eXqX+Hswp8Dp9+jQNGzakVq1adOvWzXwPOTo6Ym8YzAKe27oVp6tXuQOIB65NmsSb8+fD/fcDt54hPH/+PE899ZTV+/f333/n4sWL2cZemz+f12bOhClTrI4baWmEh4fTtWtXq5YOM2bMYPLkyVy6dInZs2djd/PfTK1atfjPf/7DeEsl1ZsiDx9m7tSptHn0UXPs6dOneeCBB6hSpcqffSRvjh/y17+yefduICNb6GK57tatfLlnD3Xr1jWzlGfOnKFTp074+/tb7YO07FXNvG/UsjzYZvtGbcHOjpSZM3Gy9TxERKTCUEBYgZXnYK5Y5JABmzVrVr5LQAsSNGZWmhlCs3KlYeBwiwGhpbDLKmB5nz7Z7v7222+tqoF+uGwZ1erUyTQVg4ULFxIWFkZYWFje086cITQMprdrR/3ffiM205ii7P0riUb2ORWqiYyMNDPrS5cuBSA5OZmaNWtiD9wPvNulC6n793Pnr7/iA8TPnk2t++7D8o641QzhlStXGDJkiNWxPn36cP78+Wxjj82eTWvg8okT1GjWzDxuKXRz+PBhBg4caPWYgIAANm3axJdffsm9997LCy+8wKeffsr1TNm9OcA4IBEYPWUKbvPmkZycbGZOT506xZkzZ0hKSuKNN95gJ/AOcC1LhtD8Pj3d/Ldm2Qd55coVHnjgAXNpe48ePazmmVMRo9LeN2pr1195RQGhiIgUGwWEUmGZRVMyHbv//vvZvn07169fJy4uDi8vr2xLQAsSNGZmVWW0FJeMWgVZkC1AzI8l2BsMuWaSMz+3/yxfzp1NmjBw4EAzK2Rvb5+tUmVOrDKEmfoQZq0ympus/fQsCtvIviByCjjWrVuX7ZizszMrV64k5uYySyMtDVfAE3AF4jI9Z7j1gLAwGf8bN3+2KXFx1nfcfN3d3Nx44403sM/UH9AwDEJDQ/nvf/9LQEAA3377LZcuXWL9+vXmmLVkBIROwI30dBISEjh9+jTdunXjjjvu4P/+7/+oXr26mYFcPG8eDwJXr179cwqZ3lPPtW5t/lvz9PSka9eu2NnZWf1bm5Ily1mZWQryOGZ5b4mIiNwKBYRSceXRdsLNzQ23LEVZLAoSNAYHB7Nhw4aM82epoFiS7DOX7M+0ByzrfQVyM2iYbG+fLciAjEzy8Uy94L6NiGDriROsWLGCgQMHMmjQoFwrVWZl3PwA+wc3A0JL24kCTtWyj8zi4MGDtGrVqtCN7EuC+RzS03FIS+M6GUGhpfdice0hLEzGP/1mkJp06RJ/XLpELFADzNd90qRJVKtWDW9vb6vHjRkzBnt7e+rWrcvHH3/MjRs3rArVXAWOkhEQfvzqq4x85x2OHDnCY489xqBBg/jHP/7BsWPHzAJHI8lodzEqU4CeOUN4j7c3T3z9dZ7/1gIDAwvw6lQOKVeu4Myf7ykREZHioICwErh8+TKXL1+mRo0a1KhRo1jOmTkgKqssH8Dtilh0wc3NjRE399BZndcwrBvTl2KVUbubH+hzyhAWNiC0vD55ZekyZ3OMtDSGDBnC4MGDiYiIoF+/fuzcubNg10pOJg04UqVKRpbq5lwdsozLqZ/e+fPnuXDhAgsWLMg4V6alqpZG9pblnbm2PShBltfPSE/HPj2da2T8ESI10zJJKL4/FhTk37M9sBmYMGECdRo3xhOIA06tWcO8zZuzLfGNi4ujevXqDBo0CID169dn22cI0BR4C2gC/HH+PI6Ojnh5eeHt7U14eDj+/v48/fTTXL582XxMEPDVm2+at7O+pyD3P9DMCwuj/t130/+pp3JdHvzAAw/w9ddfF+CVK/9uxMfjjPWqBxERkVulgLAC27x5My+//DLe3t54eHgQFxdHbGws06dPp1u3bgU6R9Z9RpA9ICqz8gh4Chok7927ly1btuS4tM68nTlDmMs+w+Ji7hM0jGwZwsIuGc1alCYnluczELg2ZQrumTKJrq6uuLi45PLILOdJSiIZ8KhencTr19lz4QITyQhc/rp8ufnh/ujRo2bFSYtmzZpx9epV3N3dsy1VLUwj+5IQExODCxl769qmpfHz9evMAtyAxBdf5N3bb8dSdudWi8oU5t+znWHwMvD+mDG0HDUKp5vLejcEBvLyyy+b4y1LcQcMGGAV/KW88AJGlmrEMTExLMp0+yDQtWtX/vjjD7788ksgY7+fn58f48aNs3psWqb3auYMIfn8e3lh4UL+AHjqKXN58MKFC9mzZw9ffvklJ0+e5Oj/t3ff4XEU5wPHv7tXpZN0kiVZsiVZ7rgbGxtjm2ZaIA41tEBCTQETSij5JUCAADE9IYEAoRlw6MbGYIhx773hhnuTbKuXO52u7/z+uMLJkoxche338zx67Nvb25vdm92dd2Z2Zv16TjnlFF544QXOPvvs/W6vtSml2Lp1a3zQogPlr60FwHE4EyWEEOKEJwHhceyRRx5h8uTJpCaMDulyubjoootaHBC2JCD60WqihfBAg+QHHnig2a51MT+WZwgPtsto7JdtKkiO7dtSYOytt1IQHTETDjAfBAIEAHQdzTAYs2UL84h0ffvrkiXxZ/86duzYaD69tWvX8sgjjzBx4sQf7Kq6b2BzMD755BOeeuopevfu3WjOwUsuuaTBujfccAOfKcVXwKBwmH+6XDxmNnNZKMTC227j/oceYk503UNtIdz3fFZK4Xa7mzyfNaXQgfKysgYt2DVud4NzOdYVt9Eclv/8J+MbLomsm/A6VFfH/PnzG3Rl3bBhA7179270zGXiPJQNAuMWHJPM6L+x7sFTp05lxowZ9OnTh+zsbLp3785XX33F5Zdf/sMt1m43NDFa7pFU98UXaIaB47LLmPrYY1zw+ONsmj6d7uecc8DbCrhcjRcaBugt7XwtjieGYTQ4n4UQ4mBJQHgc03Wd8vLyBgFheXn5Ad1AWhIQ/Vhp0cKmKaGw25Iged+AYPjw4fGA4Mwzz2zQtQ6ObguhKSEgZJ+BJQ64hTCa1nlK8czw4U0GybnRdR4Akq1WCgsLG2yixfkgECCgaShdh2iwkk6k61vis39JSUkNgkGITAPxxBNPYBhGvKtq4qTqiRoFNgfhhRdeYP78+bjd7vicg+eddx7XX389PXv2bPBdmzdvxkLk2bodLhf1hkF7iwVCIdItFnRdP2zPEO7du5fy8nK2b9/O7373OyAyMmdT57NuGLwO3DFhAn/95hvWxZZPn07HHj049dRTG0zpMD7hWdHYe1rkRYN9TWTU1zc63sOGDWvQXTSmJOH3SgwIF+3Zw6ghQ1o0Smyse7DH42H9+vWkpaXxyCOPcPvtt9O2bdsfvK5Vfv01mSNHUvG//5F14YX7XfdwSrn00sh/lMI8J1I94J47Fw4iIPQ3FRCaTCz9zW8Y/Prrh5JMcYxZsXgx8047jfPmzqXX6ae3dnKEEMc4CQiPY6+//jr33XcfJSUlkQKeptGuXTteb6bgUPHvf5Py7LPYd+6ML2tuOoHEgOhHq4kuoy0JkpsKCGKTkL/44ouNWqBUK7UQcphaCEcDU5sJkv8TbYUbBWxzOPD7/axbty7ekthoQvTmBAIEAXQd3TDompbGjtpaOgIo1eyzf+u+/ZYlM2dy8z33oOs6v/rVrxg5cmSDSdUTJQY2ByspKYnk5GSSk5Pjcw7W1dUxcOBAZs+e3WDd888/H/O0afQCPtq+nc66TmV0QBdXbW2D7siHGhBmZ2dz3333MXPmTDp27EhSUhKFhYXs2bOn0bqaUvQEnrvySnqMGsWg3FzWAAvPOYczElrvYlM6JAbhbrebNURuDmrOHLToIC/nn38+TJsGRLoQV44bh7N373i3cqVUg9FEEz323/9y0SOPAA27j76+YQOzt21r0Sixse7BvXr14rnnnqNHjx7x89Ptdv/g89Hr3n+fM4H1n3zCmUcxIEykos9JGgc56FHQ7W5yueP990ECwhNK8Ycfchfw7dNPw6RJrZ0cIcQxTgLC41jPnj2ZMGFCi9cP3n039nA4MteddhyMYxfrMpqwqCVBclMBAUQmIW+qBSqx6+bRGmW0qRZC80EGhGZoNkgOJwyMMn7aNMaPHs3gwYPjLYkrVqzg9ttv/8E54LRgkKCuo0wmNKW4p0sXOu7eDUSH0rdYmnz279shQ7jZ74d77okvu/LKK5vtFrpv6+LBOPnkkwmHw5hMpvicg48//niTE58//NBDmKdNYwwwq0cPspYvp9Jigbo67EoxceJEjOi5dDjyxt/+9jd+/etfx+foAzjjjDMarRfrJh32egkHAowmMnfgvnmmqSkdRo8ejfuKK8gAAjU1VAO5ubmRdaMB4VLgmYEDGZIwWIxSismTJzcaGEgBG4qK4q9DCcGeDs2OEhvw+7E2cQzGjBnT4HVsQJzYc4zNiuZ39SPoYnewLdlNdhllP6OOhsMwfz4MHw6mfYdwEsey2K956H0ihBBCAkKRwBwrMPl8aM1MyXAs0ZpoIWxJkNxUQBCbhPyNN95otL6R+HzUEQ4IG3QL3WeQkgMeZTT6e78B3HfvvZSUljYKkr0JhewPJ09m6fr1DVpTQ6EQZ599dosCwoCmxZ8h1BKOkxEKYbI0Pc32RdFjawQC6NZIeHA4uoXuz4svvtho2VVXXcVVV13VaPnpQ4Z8/8IwsIbDBKIDuIR9Poxg8PtpKQ6xO3Fiy1h1dTUZGRnNtozFAkLD5yPs9RJrx1X7BIT7TungdrsbtPp6Kyq44d57mTJlCmcmPD/6AGAPhRp1IU5LS2PBCy9gzs9HdeyIFs0rg9u1i6+T2ELYPSWl2VFi6yoqaMmYyC19bjQ2Qu+GzZtZ/dJL3HnnnS3Y+mEWPUdDzbSk/pBQMy2LzZ0RpW++Sc5tt1H+1ltk33LLQX2n+HGK5ecj+5CCEOJE0fpVpeJHI1Yb76usbLDc7/ezYsUKpk2bxooVKwgcI5Mixwq/pgMMIF588UVM+9SmxyYhb6oFKjEgPNLPEMaCPrNhoB+mZwh7Ah+/+y4LFy5k0aJFLFy4kPHjx9OzZ88G+2a3Wht0mVRKMWHChPi8cb7PPiPQzFQkWiBASNcjXUaVQk+cqmM/+SkUbV2ri7YmQsu6hZaUlPzgOodEKXj5ZUI7dny/zDCwhUIEHZExIA2/n0BCAf5QWwjHjBnDmDFjePvtt+P5MDU1tcmWsVgliOH3E0wMIoJB3G43777zDt0LCxk4cCBPP/00EHl2MC8vj1NPPZVTgVOBs6+6iiVLlrDollvwFRfHNzMKcCbkt9jxfvnll3GfeSaqe3eCCYHfLxMC58TpOB7o1i0eDMbEWorry8padFxCLTyusQL0qXPmcHITczcecUrF03DQXUYTWggTO9U2d4XbFD1fNyS0KIvjg4qOOOs/wlMd7TcNSjFl3LgjXkknhDjyJCA8zh1IMBcLCBMLYmPHjmXEiBG8++67zJ49mzFjxjBixIh4y9mPmRbd1yPd+TWxy6hxhIPlWEHfGg43aiE80MBXTwheY8PZ78tIKNQ//bvfMXHiRIYPH85pp53GmWeeyf333x/PC/Yrr8T6k580uR0tFIoEd9Euo1oggB9YAfvNm7F98iYMVNKSbqFNjUB6WG3bBnfeiZ4wwmbI72dTMMhKTWMF4K+vJ5DwzNeRqixoKvg1GQbvAb/65BPOvfZano4u14JBLr30Up6+/37W7drFpGefJTk5mSuvvBKXy8WAAQNYsmQJS4AlwBdPP81JHTty2pgxbP/pTxt+SULeiB3vyy+/nAwiv3fQ4yHWAbhfTk583cRuyPtrNfXvMzjNe++9R9++fRsEsdDyFmM92lV1AHAGkXkjj6bFTzwB0ZZB4yBbCMMJ+ak6YXlze6ISpqkRx5noNTuwz7PkR9OCV17hgquuYsZf/9pqaRAtp5Q6alMyiWOPdBk9jo0dO5ZXX321xc98xQJCb8KIgP/5z3+YN2/eQXUTbG2xgHB/E6/HxOZja6nE9Rt0w9tnMvLDzRotQNvCYfRD7DKa+DxZoJnBKmIB7qmA74UXsCeMNuvz+aitrW3RcdMCAUImE8pkQleKyWVl3A8MBuxz51I/a1aTeTPWkdRfU9PkdpuayL6pETEP1L6D5/Tp0wer9fsn2vasWkV7oGTtWgqAscAza9ZwpmFQEwyyB5j75Zfc3r078WFyjlB34tjUEYksoRCvAm+cfz6db7mFLy66iCuB2/z+SLfg+nosQO2mTfEJ5e+55x7Ky8sbbCdQXc0vzz8fvv0WvaaGxKPtnj+f1H1GK00M8AIeD6OAGYBKOC9iXUa97L/VNFBd3eD1q6++yooVK7BYLPzrX//iyiuv5L333mswZyXAu9ddx8lXX03/yy5rsFztk8e9VVUk7zN68pE05NFHqY09T9rEoDktEU5oWXSbzfE8ZTTxzLfy+xk8blzkc82c38erB/Pz6fvrX/OLxx5r7aQcMXqstfggW5sPVcnKlViig9mYf2i6F/GjMOvNN2n329+y9MMPGRwd0VmIGAkIj2MHGszFOkkmBoRJSUnMnj2bESNGAJHC9uzZs+PdBH/MYgFhS4ZS2LdQ/UMBQeL6iQGhdpAFvZayhsMYgD0cbtDtsh4wHWALlJbQwtNUQFhSUhJv/XQDH//xj/S77bb4+0opBrZty941a2jXt+/+vywYJGw2g9mM1TCYWFXFSiJdFFx/+ANphYVN5s3YBcpdVsaKFSsa/R5ut5s1a9Y0Cgpio2cejJZUpFRu20Z7oHbPHgqA/wBvOJ0M9XqZfs459HrrLXadeip3fvjh9wHhIbYQxqaD8Hq9hEIhzGYzdrudLVu2NFrXEgqhA+ZgkKDHw11Ad+CB7dsJ6TqnOp3s8HrxlJYCkeP1ySefNJhQfgMQrq6mT+K8hxAfgXR2nz6cFe2KGDvetTt24Ix+PhQNOqHheRFrIfQSaVVtitvtJrBPJYCu61iiz5rGgtiLLrqowTQXSilu/PBDdn34YeNWsX1a5ep27z7iAaEKhRr0UHDG0nSwLYQJhf96m+37gLCJdVe//Tb9Y8+ZNdMDgI0boXv3ZgcR2/HBB9i3byf3oYcOKr2tQSnF6N27Kf3rX+E4DAhLr72WnI8/xjRoEAD6QealQ2UMHsypsXEHjodB6E4AasoUegALZs4ECQjFPiQgPI4dbDDnT3iGcOzYsTz99NM8/PDDhMNhLBYLgwYNOia6jMZa0MwJBcOWtCglBgTjxo0jFApRX19P27ZtyczMbNwClVDY1Y7wzdluGFRoGsmGgSmhMO3i+2ekWkpL+HywiVrmG264gb926ABEpqZw7/NMV9maNbxYUcHmn/2MnK1b99v/XAsEMMxmQnY7GYaBzWRiNjACUB5Ps3nTQqT17e9/+QtnjhzZKEAbPXp0o4nsoenRM1uqJRUpvr17ATBHKwMswIaSEoYC+YMGUf7226zctg1bwuBM2iF2Jy4uLqawsJBzzz23wXHIz89vtK41FGIksKe6mrbRPHkacF9WFv/Ny+MXuk7HkhLKot1Nm5pQfhTwQnU1oVirYTgcH630S+CxlStJHziQq6++On68L77mGubEjpnXyzfR/+sJ50gwGpx4dJ2vSkr4bd++WCwWrr76av70pz8BcOmll/LcyJEN9mnkyJHxAWj8fj+ZmZn86le/4u233yYQCGC1WvGUl5MCdGji+O1bWePZuxf692/+gB8G3qoqkptKy0H2JFAJ1xdvcnI8sGyqMiiUOPdjE6OTqpIStB498D32GPZHH23y+zpef33kP8dQQFhdVEQbIOcH1zw25Xz8MQDm6G9vbkFemvnww+h1dZzVxIBZB6t9Qp7b33PgzalcvJjMgQOhmQHFRMuVl5by6R//yG/efDNeadYUI5pXAs1VEIkTmgSEx7EDCeYCgUC8y2hiV63c3NzGoy4eI9NSxAImB0RaZ0ymFrUoJQYEU6ZMYc2aNQCcffbZzJs3r9H6uN3UAk6OQkCoFCVWK1mBANaEFr5qszkyZcgB0AMBfMCZgP/227ElBFWxoDeclgbA5cDyffatcuVKzgLmB4O4d++Otww1RQsGUWYzweRk0gyDv6Wl8YHPx8OA/6qrSGrTpsm8aSbS+vbWbbcx8P7748tjAVrs94jZsGEDPXr0aDR65oFoSUWKP9qyZo8WhJ62WPgwGGQ4EH7tNbyaRt/du3nu+efht7+NHINDvAk7nU4mTZpEZmZmfFkoFGLAgAGN1rWEwzwIzNZ1AtHAYJmu00XXmTx5MrO7d4+kKRrsjRo1Kj5SpwqH0YgEucGaGlSsIiA6WuntwGLgrc6daffBB0yZMoWXXnqJwYMHNxhIJnESdT2h0BqKXl+8VisTKipYtW1bo26gSql44BhL04MPPgh8X2HTtWtXCgsLOeWUUxgxYgS33HILP+nVi5Rmjp9pn4KzL/obHkneysomA0K9mXk0f0hiV9OwwwHR38/WRNdbf8JATFoTFT7FixdTAGx86y36NxMQNisQgClT4Gc/O7DPHQVV69a1aHTaAxVcvRpL//4E167F0rs3n1xzDXVr13LLunXseeoprOXlZP397z+4nepPPwVNI+PKKw8pPanR82jYzp1MGzGC82bObHbdEX/7W+Q/BxgQ1u/axeZbb6XvpEnoNluz66lmuvQ3p2T5cnJPO41Fl13GafsZ9btu4kQwm0nZp3Ko0feHw6z529/o+9BDaMf49Cqu4mK+/ctfOP2tt+KjNO/LMIwGFZYL772XUR98wKLevTntj39sfuPRa7k6Ctc+ceyRQWWOY7Fgbv78+SxatIi5c+fyj3/8o8lnvioT5gkL7vPsTgN+P7XZ2VSNHn0kknxYWevrCRLJ5N7o5N2xFqV9JbYoxQKC2Poul6tRQJC4vlZXR1n04qwfwWcIg243KUB1Sgo6kJLwXVVOJ8kHGBBavV4qNA038MHDD0cGE4n+LV26lMGDB2O4XJQT6ZIWTGhxAOhy000ABMxm6nftii/3NXEMLD4foaQkAg4HaUqR7/fzG7OZ+cC4P/1pv3kzCVgSDcph/y3do0aNOqBj0JSxY8c2Gjxn0qRJDYLVcLQg3i5a6dCxZ09eBOalprJoxQoeLyjg2VAIR7TgXw1o+zuvWiA/P5/Vq1fHX8eOQ05O47YQa2y+yurqePD6IJEupAC2aICgR3sDJNYqxwYY+oZIa54WXSctGoxc889/Yug61mCQUaNGcdddd3Hbbbdx0UUXUZnQu8ATbUWFhgFJuLaWAOCz29ENo0E30Nh2KioqCCcElE0911xcXMwTTzzBSy+9xCMjR/KfX/+aPd98Q3PM+wRhvhaOYgqwY/Nmxl96KeFgkLkvvsjEfZ5PbM6+IzbHaAcZECb2RtCj8zcC2Jp4fjiUePybqKiqWr8+ksYWjFJp7NO6uuOWW+Dii/GuWvWDnz3a6hK6UDc34NDkO+6gOCHtUzt0YPJJJ+13u2v+8Q8AlrzwAgBXf/IJt0SPYfsHHyQr+v4Pybj6ajKamMLmQGUndJU+b9as+P939upF0VNPNfmZAx1IafXNN9N/2jRWv/rqftczHWBlV0m0q7ll0aL9rpdy2WWktKDSYcFDD9Hv0UfZNmIEqpWeqTxcllx+OWe88w67vv66yfe/uOoqptvthBMqgRzRa1lo48amN6oUyjAwR69H+j7Pih8QpQgfjoGMKioO+TEKcXhJQHicWPjcc6z+z39Y/MorfPP883z42GOs/+orSlesoG7HDnxlZfj37CEwcWJ8LqxERQkPhYf3U3DdNX48zspK6p588ojsx+Hk8HrZFW0JrN2+HYiOgtjEKJWJLUqJAcEzzzzDpZde2iggSFzfVlNDZXIyYcC3T9B0OJUuXw6AO9pFsHsgwFpgLlB08snkGMYBPZuUVFdHhd3OaKC2iRvEww8/DFVVuCwWXEA4oQBSu307sfpiLRSiPqFCoToafCdK9noJO52kFRRgA7LdbsqzswGo27kTgBVjxrAzcT65aD4dC8xcs2a/AVrM/rrLtFRLKlJU9FjYiATLmdddB4B28cWg6wQGDqR9fT0To6PvFdntmA9xYI+mAtWH7rqLe5oIgpOix85UU0Nw5058gGG1kh4NsuzRAr4leq5/kxBIJY4yPPy99+geLbTlRQOH/F69GG61UlpfHz/e5513Hq+88gqZia2o0d/VD4QSWhD8RUVUmEzUOhyMMJnYkTB1R2w7eXl5GAnHKzFNsQqb2Hcrpfh2zBjSAN9+Jqe37NOtbd8Kjv1ZcdttXPHFF6x8/nmG/eEPXDpxIqFAgA/PPpuVTcxNGuNtJug0/UCBKlhby6aCAkrnzGn4RkJli56QH+1NXNO10lK2m82syc7G5PXiff75eAuBe9MmPIsXR9ZrJg2JBc7qfZ5T3RlN185p05rdB+Moj+Ia403IT7uamG6jdudOLnzlFXacd1582flFRVy4aVP8dWVZGV8//HCDgDIQrVgx9vlNvQnBUGLXybn//S+BfQP/hGOy8f33W7hH30ucYqVjE900S7dto/C77yh48EFKV62iaPp0gokVh008b7w/4eh5W/fddw2W+/a5z5gPsGeMK7o9UxMt2zuWLGHiFVc0HHCqmcD+/TvvZNITTxCI/nZd5s5lZeLcsEeJMgzm33wzlStWHPK2LNF7S0nCFE+Jzhg3jvODQUqWLo0v06LXstDWrU1+ZlJhIVudTuzRvGo9wBbdRNMGDsRktx/SKM3hujrIzmbN6acf9DbEEaBEq/v3v/+tOnbsqGw2mxo4cKCaM2dOiz9bW1urAFUbuWS26M8NqlTT1C5QO00mtdVkUjWg6kEVmUyqWtfVFJtNzcrLU7M6dlQzunVTU3v1UlNPPlmtcjiUAlUF6tOzzlLTr7tOzbr1VjXv7rvVN3fcoSbcdpua98QTasbjj6uZzzyj/jd6tJrzyitq3YQJat7Ysap0+XIVKC5WdUVFylNaqlwVFcrv8ynDMA7b8ayqqlJvPPGEqgc1vVMnpUBtfOmlJtcNh0Jq09dfK9XC7/cWF6sdzz6rlGEowzDUtC+/VMWapqb06qWKdV3NHzTosO1HouXLl6vn27ZVAVBFM2bEf8tVd92lZsyYoSY//rhSoCrHjWvR9jZ++62q1TT1eb9+KgBq1a9/3Wgdv9+vlqWnq8WZmWqnrqsFw4Z9n57nn4+nYaXDoVaNHh1/vXHGjAbbWbF0qaoFNf/SS1XJuHHx9SZef73yglpx/fUqHAwqBWqdyRT/nLe0NL7unKuuOsgjd3iEJk1SxooV8dezCgvjaSvKzlbK51PqzTeVqqhQSim1a+VKVQsqCKoY1Nz8fLXG6Tysadr13XdKgfogLa3Bcn9FRTxtM61WNSUrS32XlKQmn3uuqtM0Zfh8arPNphSoDYWFSimlgj6f8uzerZRSasv48fu9frjKytSirCy1LDe3YYIMQ825/vr4etMuuUQpUFscDjU3L08ppdSMGTPUeE1Tm/Py1Nd9+qgiq7XZ/ZsV/bwCtWvatPjyvXv3qrvvvlsNGzZMDRkyRJ1++unqyjZt1F5Qq1NTv0/rPud0bJ9jf/NuvbXFx/rLHj0aHYf1b72lFKg1ZnOzn/v2H/9o8hgubdt2v9+3+tlnlQI1v3fvBstnd+yo1miaeg/UzPHj1ZKRI9Xqdu1UAJTf42mw7sIuXdSylBS1okMHtVPXlQK17bTTlFJKlUZfK1CrmsmXZZs2xdfZvM91ZU5urlKgFl93XbP7MC49XU0YPny/+3kwyjdsUCscDrXytdfiyyo3bVLzCgtV6erVas611yoFKgxqQRO/8bcvvBD5/ex2tf3rr1XF5s3x/TTC4Ujahw9XCtTqsWPjn1sQzQMLe/dWRvR6pUCtT7imbZs5Uyml1Mavv1YK1AxQm2fPjm+jav36+LoL8vMPeN93rF7d7Hnpr62NHBNQIVDLkpOVAlU8f358nXXvvNP4eDz5pFqWl6cC9fWN3luUnx/Zj7POarB8W8I2FaglKSmR/SsuVp937Kh2JVwrmzL1vPOUAvVdcvL3+/b116p85Ur1eV6eUqDWPvdcfPvly5Y1vaHo+7P79fs+r9psjY/b4sXqu6++UgvGjGk2TVO6dVMzzz57v+lONO/DD9Xid99VSim1c/r0+PfPf/DBFm8jkREMqvW//33kfAQ17dxzG63jqar6/rx96ik1e/BgNctuVwtycpQCNbdbtwbrV23ZojZ89FH8M/Wxe3YT5/z4005TExPu8YlWvfmm2jp1auRFdBs75849qP1USqnv3nknkmf54RAkXsatrT3o7xMtIwFhK/voo4+UxWJRb7zxhlq/fr26++67lcPhUDt37mzR52Mny6b//U9tmThRrR07Vs165hn11k03qfdvvll9fOON6pmhQ9WT/fqpv/XurR7v0UN9NGCAmnTaaerTnj3V5z17qukDB6qP+vRR377xhlr69ttqYrt2aorNppanp6vlSUlqtdWq1ppMarPJpDZZrWpOr15qCyjffgqNB/oXBOUBVQOqHNRuUEW6rrZomtpksag1uq7WJSerRbquVqWlqW+dTrUyLU0tT0lRc3RdrUhNVYuTktRCq1Wti26rXNPUplmz1Hcmk6oFtTAlRS0oLFTzTzpJLerTRy3o10/Nb9NGKVDTs7PV3DPOUF+dcooa17u3mj5smHqvQwc1a/hw9XHnzmraoEHq67591Xd2e2R9p1N9ZrOprdGL7ObPP1cTe/dWQVDz27dXc4cPVwtHjlSLrr5aLfnlL9Wym25S31x2mZp08cVq0a23qqW/+52aeNllau6vf60W3XGHWvaHP6hVDzyglv7+92rODTeoD886S00eOVJ9OGCAegHUlGgBZ/vPfqaUUmrrI4+oLeedpwy3WymlVFVFhVqpaarCZFJTevVS0y+9VM2//Xb17V/+otY/+qhadt99au5tt6nPLrtM/btLFzUDVCBa0J5lt6sSXVefDx2qJl5xhZr0i1+orzp2VJ/GbnC33qom5eaqKl1Xn5x1lpp6111qSl6eqgM1+4wzlAvUtC5d4r/ljAsuUIv/8Q/1xZ13qhdOPlmNi6a9euZMpcJhVXrJJWr1wIHK7/Go/6WkqHJdV1/37h3//Navv1ZbvvlGzR41Kr5sUdeuKlhaqpTXq2p27FATbrlFlXz7bcOTwTDU737yE3XHiBGHVMEQDoeVt75e1VRXq9KSErVz2rR4Oj56+GH1r2HD1A5Qe7OzVTA5WfkSCo2JfJ98okq7dVO7X35Z/e/nP1dhUNNGjFCLnnlGbZo4Ue1duVIFXC7ldbuVCgaVCoWUCocjfz+U/lBIfXnVVZEATdeVUVurajZuVAvee099MWKEUqCWp6fH0/3d7beref/5T6TQkJ8fuRGD2m23K//OnWpVdnakkDFhgvr41FObPU83RgtbX/btqypATb38cvWd3a6WDBigdttsakHbtt8XGEAVmc1q+sknqxJQ/7rsMnW72awCmqZCTz+tpt5+u1KgVjzwgApE8/GWDz9Uy/v3V1U7d6pvCgpUIJb+559v8jBsmjhR7Vm9Wi2PnseJf3U7dsTXC3g8yr3P+3MvuqjFeWJ+E9tfkVAIbc7sG25QYVBfgSqKrusDtaOJQmuiudEC84KuXZVSShmGoRYvWqRWmc1qcdeuanc0eFdKqfmPPRY53tOmKSMcVrunT1fKMNSKtDQ1Lz9fzRo48Pvfz+lUFWvXNtiPrRZLk2lY9/LL8XWWFRSoRSefHM+Xa6PBxtwBA+Lrb12wQM245hoVCgRU+ZYtjYKspjR3nq6YMkXNeuqppo/pbbfFg4k5v/mNCvp8anY0CJz1k5+o2aefrnbrulpls6nl3burbz/8UPlcru8/f9llSoHyRtNXkRAcl0WvKXNjgdDAgWrODTeokM8XP5/WtWmjdicERJPPPz/+/zl//atSSqk5N9zwfYDicMS/e2W0Im1O166qHlRVwn1+xccfq637KWR79u5VU888s8FvN+fqq9X6pCSlQO2YPFlNvvzyeEAYW+eb6HVCgZr5m98ot8ulZgwbFg/y9lqtSoGad/HFjb5zffR+N6djR6WUUv6aGrXqz39Wix96KJKfQO3WNLUrWpE346abIt8zZEiz+6GUUrMT7hdrx4xRfrc7HiCsiu7Pwnbtvr+n/PSnauoFF6hlzz2n1jocqnjxYlWSkI/XRT8TPy6XX648NTVKKaVCwaDamvDezliwahhq7UMPqdJVq9TGRYvi71cXFzeZ5rJdu1RZ9JoSCgZVMJa/QyE1O7rfCtSKaLC159tv1er332+0nZ0rVqig368Mw1DfvfeeWv/aa+rbP/1JLf7jHxvsw4yCgkafnfeHP8TfX3Dppd9f66L/rkpPj6+7fdq0eBoT/3ygduxzzq9MqOCNVQyU7dihZvTvr+YMGhQ5N0B5Xa74egv/9Kcmj9Pe9euVq7Ky0fL6mhr18TnnqG1z5qiZ0XNQgVrw73+ruvLy+HqGYajxV1yhlkcr8Wd8+qmSgPDo0JRSqhUbKE94Q4YMYeDAgbya0Ee/Z8+eXHbZZTzVzHMAiVwuF06nk9raWtKiA4AcDUoplFLoQNDjoWL3bmpLS2mTnExddTVaKMSOzZupr6nBZBjYTSZKi4pItlgI+3zYdR3dMPC5XKRYrXhdLmwmE+6KCuwmE5UlJeRlZ+OuqiLZYsFbW4tN19FDIUyahtlkQtd1jHCYmtpaUpKTSUlJwWazQVYWzn796PDAA2h5eWxftIjVt99Odnk59rq6SDeVcBjdMDCZzXj9ftI1DbNS8ZE6VfQPXSdsGN+/Tk5G6ToohUpNJWXwYHIfeQTToEGU7d7NnEsvpeOGDWR4PCQTGdDGRKRvduwv9np/QkAQCOg6FWYzRqdOdPz977HcdhuYmx4Lasnnn+N54AE67thBTijU5GAWAPWaRllODrn//jf2K65gxRdfUPPLXzLY7SY1uo5L06i02bDffDPt/v1v1s2ZQ9XPfsawurr4NB7fdOtG+z//mU633EIKMKtrV7L37KH3Ps8bVbVpQ+pzz2G55ZZGaVk2aRK+a65haH09Bt/POxizyWRiV5cunJfQnaspBpHfJ5a2MN8PxZ/YJU5rYtnB9JuvzMwk+auvSGph96R6l4uZffpwflFRfPCmAxHbl1g+/KHRwJZ26kT/efPw3H8/qSefjPn++zGAL3/2M4ZMnoxH01jerx9XN/MM2KL8fDIeeQTXxx9jW7kSHngAvvmGtv/3f+ReeCErPviA/Ouvp21Tnx08mNyiIjJKSyl+7DGShgwh9eKLyY52OfX99KfYP/uM+kCAZR07cmZ1NWGgRtPI3Od29NXJJ9Nj9WraGwZFdjtBq5WwpkV+53CYnnV1hKDBMV1rMtEjHMYHbEtOhnCYHL+fLGDybbfhXreO/PXrGVRZyeasLIzkZEJmc+TYhsPYLBbCgQDhYBBTdFmfsrL4d4SaOP7L8/MJJiWhDAMjHCbk9WKtraW3z8eOtDQKduygaskSym6+mbrTTuP8CRNY43Ti03VCSUm0q6iguKAAn8mE7vPRbdcuCgAfsCk5mbTo+dEZ2PnyyxTecUf8u2u2bMHUrRt1mkaF2UzfYJANQA9g4bXXQn4+Q59/Pr7+OpOJ3vs8u7Oge3c80RFx/T4f5nCYAVu2ENY0UpQidmeZlZdHKCmJs7ZswQJUaRore/QgpbycIdFua/PatsViGPHXC/v3x8jIIFRdTVDTCCUlYTKZwOslZ+VKqk86CWunTgSDQWy6Tl1VFb2XLiUX+DAjg3adO6Nv3YrRvTuhYJCC1as5KSH9izMyyHO5yA+HKdM0lFJsy82lPDOTS9atA2BDUhIhsxm/1UqWy0VhM89NrnY4CJpM9Ha5SHxCuVbXcRoG9UAy8J3dzkk+HzXQYACbTVYrLoeD9rW1tE/oUjezc2d0wyCnqIgcw8C/YAFthw5lVVoa9fn51BcXc4HLRS2wrEcPksxmTKEQejAYGRnS5yOvupp8pZibm4vlgguoqK1l5PjxVGzaRHLPnoSgyYG9goAHUJpGhlK4NI206Hm2JDubU8vLcQOpQLnJxNbMTHx2O9bycoZ5vbiJXFcXtGlDB4+H7tHuzuutVk6qq2PWAw9w7j//yUqHgzyPh7ZEuokv6dQJLSkJc/ScDVVW4qiqwme3M6Cigt1WK90DAeqBTSkpnNzEs38VJhNhpSKPQyTYaLMRMJnom3CvWXD11Qx49VWWDBnCWVu2UKrr7MzLQwsEGJwwiMqylBQ8+fkk19UxuLiYaiDxIZIlSUlUJieT1qkTIcPApOuEg0E6r1mDGdjcsSMWj4eh0W2uyMqiXVUVHrud2s6d6bN2LSu7d6fHpk2kAxscDsrz8gjpOuk7dzLA62Wd2Ux2KNTg+lkH8QGxNjkcFHo8LMnLwzCb0YJBTGYzvXbtYmtmJlooxCn7PLf5ncVC92CQpbm5WA2DrIoKOkSP2+wuXbB4PHQrLWXlhRdywf/+x0KLBYvTiT0YpE/Cthalp+N3OulQVESnfY77arOZftGuvFtsNra2a4c5NRWTrmNWimBdHads20a12czOPn0igxl6vaQWF5Pq89EZKNe0SFnKbKZt9DzcYTKx3ekkKTWVoNvNGdFus0uysuhRUYETjnoZ90QkAWErCgQCJCcn8+mnn3L55ZfHl999992sWrUqPrBJIr/fjz9xugGXi4KCAjlZDrPY8y+JI3kppdBaOLqqUopwOIymaQSDQYLBIIZhUFpaSl5eHqFgkMqKCjAMjFAIi8mESdfxhkLoFgttc3JISUlp8ffty+PxULN3L2GPh1qPB1tSEhmZmWS1bYtmtUITo5cZhhGZ1ywQQHc4mhxJ1udyUbV5M7a0NDK7dQOgZMcOrIZBRqdOhPx+ts+YQZLJRHaHDtg7doSEqReaE6qvR7fZ2LN0KRXz56ObTGR26kT2eeeB2cySl18muH07Rl0dfk2jfZ8+VKxahb+uDiMcxmw2Y9Y00rt2xedy4dq9GwyD+OVN0wiHw5hMJhSwd+9ekh0OMjIySEpKwohWcJgtlsi2zOb4/3E6Sf/Zz3D6fKT4/VhPPRXaHNw4hn63mx3Tp1O3cyeh8nIqNm+moqyMgoICQoEAgUAAT10doXAYTSl0XSccCmG32dA0DZvViqZp1AeDpHfowOl/+QsrX38d165d2Nq0Ib9HDwrOPhtb9LdpSixfAsx+9VUC69eT0qkTzq5dqZgxg5yBA+l+/fWYfuB5zG1r11K5cCFdBg9m9/TpFJxzDq7Nmyn4+c8jI/0p9X0e8vthx47IcYs+OwqgDIM177zD3v/9D1ttbaSSZcAA6hcvprZdOy566SW2LljAhocfxlZWhtnrxQiFMNtsaLpOvcNBOCkJZ9eudPvzn1n57LMM+NOf+O6LLwhPmEBqXR26xUIwI4M2N95I72ilxNoZM/j217+mfX09ut+PNRxGhcMoXSesFLrZDLqOoWloJhPh9u3p/+67uL1e0rp2ZfmLL6J//DFpt93Gnpdeom1lJVaIz8cW0jTMubmEu3Sh6z/+QUbCgCXhUIgZ112HfcECrIC1ro6QzYajrg6TUoRsNgKpqVjuugvv228TcrkIOp3kd+lCwV13YUl49i1m47hxlD/zDEluN7rJhNlkQg0eTN/XXgOTiSVPPkn7YcMouesuzG43SXfdhSk3l/ZnnMHKSy4hY8sWHOFw/PcKaRrlOTmkvvEGJVOm4P/qK1Lq6mhfXk4YqGzfnqzHHqPij3+kXW0tHl2nxukk2eEgfccOQrrO9gEDsG3aRMfqanSlCFqtJAGW6HlpAHt1nexwGLNhRCoXgaCmUZ+URDAQID0UwtB1qsxm2obDGCYT9XY7JRdfjG/dOuxt2pA5bx5+qxX/1Vdj/fpr6mw2Or71FgGTieJf/pKUQIAUvx+/xYIpHCag64TuuYfa8eNpf911kcrNtDQqJ03COX8+Xk2DpCSMq66Czz/H36cPybt3Y7bbKXzuObb99reYamtxnX8+vX/7W8offJDca65h6+bNmMeOJaAUJqVIfe458s84g3Xnnkvy3r1YHA5UejrW++6j1513MveWW7B9/DFJhoFP06jIzyetuJg2wSAhs5mgrhPUdfyaBnY7prQ0Mv7yF3recEOj+8Ky117D/d57BJKTGfjMM2x8+21MDge6xYLns89I++1v0cNhat9/H620FFPXrtRXVZG9Zw/uLl3o//nnrB45Ep/LRdvaWkyhEKWaBn37MmjMGFZdcQW2bdvQnU7cvXqRpml0eOYZcgcOJBQMMuPaazHNno2haTjuvpvgp5/SZts2tHCYsN+PxWzGoxTutDTsXi+ek05i4IcfYmgaa3/6U1Lr6qgfORJj2zYC9fVk3XorJX//O30efZRat5uq118nkJ2Ndd06vH36kLF0KRoQuuIKtIICVGUlpz37LHr0mrX+nXfY8swz5O7ahabrhIYOpf3DD7P9lVdwfvllZEoqkwlvhw7objeulBScv/gF7l27SB8/HsJhHD4fuq6jAE3XqbLZsGga5lCIkKZR1a8fWiBA+saN1Kel0e6f/yS9Xz9Wn3ceGZWV+JOT0ZKTCYVCtKmsRNd1ahwOygoLabNuHaqwkHCXLljr68HvJ1RcTPt//xs0jfxhw5g3YgRpmzZh0jSwWtENg/r8fLqPGweGwYbHH0fPzcXUvj2VK1Yw9IUXWH7ZZTh37CBoMoHDQfa991K8eTMD7ruP1Lw8jHAYwzCYeNFFpC1bhq7rWNPS0Hr1os+bb7L0hhtot3IlKIUvLw/L9dfjr6nhtCefZM5552HauJHA8OEkDRoEzz5LUl0dybqO0nWUphECSpOTsRkGberq0HWdgMWCKy+PsMuF9cwzCSxciNVmo+t777Epev+xFhfjrajAbrOhA7W5uWQQGQyrZ1mZBIRHiQSErWjPnj3k5eUxf/58hg0bFl8+evRo3n33XTY2MWLUY489xl+jA1UkkpNFCCHEsSpWFEkMdg6kEk4Icfxx/fznOMePlzLuUSCjjP4I7HvD299N8M9//jO1tbXxv6KE0R2FEEKIY5GmaY3uexIMCnGCe+ml1k7BCUMCwlaUlZWFyWSipKSkwfKysrIm5xYDsNlspKWlNfgTQvx4jJ47mu3V21s7GUIIIcSxLSXlh9cRh4UEhK3IarVyyimnMHXq1AbLp06d2qALqRDi2PHQjIdYvnd5aydDCCGEEKJFfmiwOnGE3XvvvfzqV79i0KBBDB06lNdff51du3Zx2223tXbShBAHSR7NFkIIIcSxQgLCVnbNNddQWVnJ448/zt69e+nTpw9ff/01hYWFrZ008SM1a8cszu54dmsnQ+yHQgJCIYQQQhwbJCD8ERg1ahSjRo1q7WSIY8SId0dgPGLIgAs/YtJCKIQQQohjhTxDKMQxKGSEDst2yjxluPyuw7It8T1pIRRCCCHEsUICQnFce2P5G5R5ylo7GYdd0Agelu1c+N8LeXTmo4dlWycqpRRXfHxFg2W/+OwXrZQaIYQQQogDIwGhOK79dtJvWbF3xRH/nmpvNTW+miP+PTGBcKDB64NtMXQH3Jj1/fccV0odli6Qx2s3yhpfDRM2TACO3308WBX1FVz96dWNlr/37XvcM/meo58gIYQQQjQiAaE47mkc+Wftrh53Nfd9c98R/56YWEBY7CoGwPKE5aC24w/5sZlt+13nxUUvcvnHlx/U9hNlPJNB5rOZAISNMBX1FYet62tr2F69HaUUe+v2xpe9vfLt+P9jwaGhDPa49xz19CVSSlHtrT7q37ulagufrv+00fLFxYuZuWPmUU+PEEIIIRqTgFDEufwunpv/3A+uVxeoO6ZaQhIL7EfKtG3TSLYkH/HviVm2ZxkABf8o4OTXTgbgtWWvHdA2QkaIPe49rC5dvd/1VpasZOLGiT/4m++vJVEpRa2/lipvFcFwkA/Xfkj2c9kHHcgebYYyGu1b5391ZlPlJubtmgdEgtwZO2bE35+9czYAi4oXkff3vKN6zoSNMEPfGhp/vb58PW2ebcPOmp0t+nwwHGRb9bZGy7/e/DWzd8ymqLaoUSt1zOOzH48fk+ZazbdUb6HQKSMpH4wXF73I2G/H8sXGL/jdl7/b77reoLfZ3wlgbdna/ebLYDhIaV1pk++1RgVDa9vf9e1oVW4ppfAGvUflu4QQJw4ZZfQ48ddZf8WwGvhCPrwhL6WeUpw2JynWFPa49+Dyu/CH/VR7qxmcNxi72U4gHEBDIys5i/L6cjKTMnlpyUuM3zAei25hYLuBuP1uki3J1PhrSDYno2ka/1n+HwqdhQwtGEqOIwcNLb79VGsqCkWqNZVSTynekBelFAVpBSzfu5wOzg6k2dLQ0NA0Lf5vja+GNFsavpCPoBGk1ldLobOQ3e7dZCVnUe2rxmFxUBeow2lzoms6Zt2MxWShxleDw+IgNyWXzORMUq2pAPGuojdPvJl3Vr0T3x+Fwh1wk2ZNw1AGFpOFYDiIzWxDQ8MdcMeDpZ5ZPdlZu5NUW2SbbZPbEjSC5KflU+gsJCclh683fw3Ay0tfZmPlRrpkdKHUU4pCNQgSPQEP7oCbTumdCBkhNlVuItWWitVkJcmchK7p+EI+PEEPVpOVzumdyUrOIqzCnFl4Jn3a9uGGCTcAMPKDkbxz6TvA962F/zft/5i0aRLZjmzCRhhDGeiajsvvIsWaQro9nY7pHcmwZ9CnbR9eWvISYRXmy01fcs6759A9szs2kw2n3cn07dO5utfVVHmrGLt6LADD3x5On7Z9CBkhdE2n1l/LpspN9G3bl8ykTP615F+clHkSZ3c8mwx7BnaznaEFQ+mS0SW+jUJnITO2z+CtlW8BkOPI4fS3T+eUdqdQ7C4mZIRon9Iem9lGfbCeLVVbmLljJj/v+XPSbGmEjBDekJdcRy6V3kq8IS8W3UKKNYW6QB39cvpRH6xnR80OwipyDEyaCYUiEA5g0S0oFHvcezBpJgqcBThtToLhICEVQkNrlDc1NFaXrSbNlsYtJ99C0AiioWHRLczbNY/fTYoUypfuWcrWqq3fn5Oz/0qGPYPhbw+P7PuLhYzsNjI+4ExWchYldSVU+6ppY29DWIXxhry4/C6sJiu+kC+efovJgoZGkiUpnpfapbTjvM7n8cWmL7DqVqwmK3lpeVh0C3+a/icAPlv/Ge1S28XTcNWnV9GnbR/KPGUs3bOUzhmd6eDsEDlvlSLFmoKu6by4+EUArux1JWEjzIQNE/hZ958xadOk+P7lOHI4u+PZJFmSMGtmHFYHWclZPDrrUZbuWcqKvSvYWLERgNsn3c6FXS/k1LxTSbOlYdJMfLnpS0a8O4JubbqhazoWPVI54Aq4yHXksqduD22T2/LN1m/olNGpyetG2AgTNIJkJWWxtXordrMdgG3V2zg171ScNic2sw2TZqLUU8obK97grMKz2OPeg8VkYUDuAHRNx1AGnqAHh8WBJ+jBbrZjKAOnzQmArumsLVtL54zO1Ppr8QQ8pNvTyU/LZ0PFBjKSMuLnsFKR875rm664A27+MvMv8WN2fufzsZgi+5lhz8BmsmE323EFXKRYUuK/s6EMit3FZCZFWtT9YT9X9rySkBHiD9/8gRxHDnWBOjxBD6+veB2nzckN/W/AYXGwsHghV/S8gqLaIp5f+DwA1/e9nrm75nLpSZfitDlZV76O7TXbWVWyimv7XEuKJQWb2UaGPYOgEYy04HsrWLl3Jd+WfsslJ12Cw+Igx5GDQqGh8eLiF7l1wK3xfTbrZvxhP8mWZAxl4A/5cQVcmDQTZt2Mw+LApJsIhAPx3zvJkoQv5Gv0u5o0E7vduylyFdEjsweptlTcfjcm3YTVZCVkhCivL6c+WE+OIydyHdctWE1WqnxVhI0wOY4c9tTtIS81D0MZBMPB+HdU+6rxBD10b9OdukAdZt3Mnro95DhysJqs1Ppr8Yf8eENeMuwZpFpTSbYk8/zC5/n94N8TMkL4wj7MmplsRza73bsZt34c1/S+Bg2NCm8FHdI6UOwujp+/6bZ0Um2p7HbvpsxTRu/s3vHKVYWiTVIbNlZuxGFx0CapTfwY1Qfraetoiy/kY0/dHjwBDxM3TiTFmkJ2cjbdMyP70LdtXwAmbZ7ET7v+FE3T8IV8mDRTJM8GI9eMJHMS3lAkoDRpJqp91fH7QyAciN876kP1pFpTmbtrLt0zu5NsSSYzKZO6QB0W3cLqstUsKl5Emi2NLhldKEwvxKybyU/NJ2gECRkhQkaIKm8V6fZ0QkYoPjK23WRn9s7ZDGo/iCRzEr6wj02VmxheMJz6YD11gTocFgdbq7eiaRptHW1JMicRNILx4xLr+bOzdiddMrowfft0Um2pnNvpXNaUraEgrQBvyItZM5NmS6MuUIcvHMlrCoWu6fEyAHz/2EXs+lwfrCfFmhJ/f988ajPZ8AQ9AFhNVrxBb/x9X9iHw+Ig2ZKMJ+CJlzFi2/KFfSSbkwmrMJlJmbj8LpIsSeyq3UWXjC5M3TaVU9qdgjsQKX8lW5JxWByRikkUU7dNZUjeEMy6mfpgPWEVJt2WTnl9OanWVMy6OV4+Mutm9tbtRUPDaXOSlZzF+2vepzC9kC4ZXeLXXYBSTylptjQsugWTboqXy2LljGRLMnaznXXl60i3p2PRLYSMUPy+ETbCKBT+sD9eXkuzpaFrOt6gF5NuQilFmi2Ncd+N47KTLqPKV4VSiqARJM2ahqZp+MN+LLol8m/w2Kg0Ph5o6lhq6hGNuFwunE4nczfNJTczF2/QS0V9BZ6gh65tuhIMB7GarPELWGZyZiToCHjwh/0kmZPwBD3srNlJpbeSMwvPpK2jLaV1pfjD/vgFJ1bQMpRBjiOHGl9N5EauaSilsJvt8Yt/rHBuNVnjFzCLbsEX8pFmS8NutqNQ8RuhUip+w48FaEC8AA+RAplJN1Hrq8Vpd6KhxW86br8bm9lGra+Wal811d5qdrt30yOrB56Ah8t7Xk6xq5hAOEC6PR0NLV7grg/WY9bNhIwQNrONkBHCE/DgsDoaBA+FzkJCRoigEcSsm9levZ1t1dvYWr2VIXlDcFgdjHh3BK4/uSj1lNImqQ1J5qQGtcaJ3xUr+FlNVky6CV/IFz9euqZT5inDG/RSH6xn8pbJBMIBluxZwgWdL+DeKfcy56Y5rCtfx7vfvsujZz3KRe9fxIwbZtAzuyfeoDdSmLU7MWkmHFYHlfWV1Ppr2ePew67aXSwoWsAlJ13CxR9ezIs/eZEbT76RbdXbCBthAFKsKSzevZi81Dyu+OSKSOHzQQ/bqreRYk3BbraTbk9ndelqOqV3osZXQ12gjkpvJZ3SO1EfrKfUU8qa0jVsqNhA54zO3DXkLgr+UUBOSg4vX/Qy57x3DmMuHcOFXS9kZ81O2qW2i9xMQz4UCofFQZGriAnfTeCRsx6hPlgfKXwS6f6YlZxFijWFoBHEE/CgaRrj1o/DrJu5uvfV8bzjDXmxmWxYTdb4YDyxPO0P+fEEPdhMtvjNat+8qYgESlurtrJszzLSbGlUeavol9OP08eczt1D7qatoy1ZyVmMXT2WebvmYdbNvDryVf5v2v+Rn5bP6tLV1P25jiJXUTxArQ/Wk5WcFb/RGsogzRYpoNQHI4Uxk27CpJnQNC2S/8JBvCEvTpuTOTvn8PmGz7n7tLtJt6fjD/nZVbsLf9hPXmoevpCPrzZ/xaqSVWyq3ES6PZ2ZN85kS9UWLCYLP//k5yy4ZQGBcCBSiVRXijvgxm62xwP3U9qfQro9nU2Vm6jx1eAJeLjy0ysB8D/sp8ZXg6EMNLR4C7DNZGNX7S5WlqykxlfDTSffhKEMluxewvjvxlPmKePBMx7kmnHXYDxiUOwqxlAGYRWOBxexoPjC9y9kwjUT6JfTD2/Q2+A3iQUdhjJw+V14gh56ZvXkv6v/y897/ZxgOIg74CYQDlDrq8UdcPP47Me5ts+1LChawAc//4BaX228EGfWzfhCPpx2J76QL3490rRIhdeu2l20SWpDsiWZotoizig8g5V7V3JS1klYTVY8AQ/ekBdd06n2VlPprYwHm33b9qXIVUS1t5r15eu5ffDteAIe6oP18QJVta+asBGOXxvSbGnsrdtLm6Q27HXvZX7RfJLMSfTP7c/g9oPRH9f5+rqv8YV8DGg3AF/Ihy/kI8OewerS1eSm5JKbksuOmh3kpOSQbElmW/U2LLqF7pnd2Vm7E4fFQbWvmo7pHfGFfFR7qwmEA9jMNlKsKQCYdTNJ5iQ0TaO0rjR+nXLanSilGgR5seuyrukUu4px2pwUphfiCXgIGSEMZcQ/HzSCuP3u+Pck/ra+kI+SuhJ6ZPWInw+xoCJ23XbanFT7quNBf7W3miRLEsmWZBYVL6JNUhtOzj2Z0rpSLKZIsKhUJN/sqt1FYXoh3qAXu9nO+vL19MzuiUkzxYPa7dXbyXZk4w164/enHTU76ODsQEZSBhAZpbkuUEe5p5xzO58bv3/YzDaKaosw6SYK0goIGpFgoNpbjTvgxqSZSLYk09bRFoDy+nK8QS9ZyVnxgBeI33OqvFVYTVby0/KZsnUKA3IH4Al6+PP0P/PYWY/RN6cv9cF6an217HbvJseRg91sj1cgzdk5hwG5A0i1pRIMB1GoeBqCRpDK+kqsJivJlmQsJku8IlGpyHXKYXWglMJisuCwONhRs4Py+nLaJLXh7wv/zss/fTlewRwrzMeCEavJSiAcwBPwYNJNhI0wgXCAkroSOqZ3xG62YzPbqPJWUReoI8OeEbn+2VKpD9ZTWV9JTkoOJs1EkiWJck95PMjYWLmRDs4OBMIBqr3VpNpS48FFZlImZt2MSTdR7Comw55BlbeKAmdB5H5vsuEOuPGFfJh1M96gl0pvJSdlnkSNr4ZsRzb+kB+LydLkfcEdcKOUwmF1xO9Nu1276Z7ZHbNujl9XE49FyAhR66sl3Z4eL0vEKmyrvFU4LA521u7EZrLROaNz/NwKhoPx8wrA7XdT4CygxleD2+8m3Z7O2rK1nNPpHPxhf6SCM5p3QkaIGl8NWclZQKRXwND8SO+R2BgChjKo8laRmZQZbyyI3Tu9QS9Oe6TS1GKy4PK7WF++npHdRrK3bi9OmzNeVvSH/FTUV5CXlkfICGHSIulXRILAMk8Z6fZ0SupKyE7OpqSuBKfdGQ+uYxXonoCHNkltIr9deTGDOw+mtraWtLS0w1JuFk2TgPAYFwsI5WRpXQuKFjD87eGoR4/s6VRaV8r7a97n3qH3xpct27OMwW8MZvGvF3Nq3qkHtL2rPr2KT69q/IxXohpfDZ+u+5TfnPKbg0pzoh4v9+DvP/k7P+32U7S/aiz7zTJOaX/KIW+3tVXUV1D4YiE39b+JV5a9gs1kw/ewL/5+yAj94OA9R9IFYy8g3Z7OJ1d9ckjbUUqxfO9yanw1nNf5vIP6/Lxd8zi9w+m8vORl7hxy5w+uL/NtNi1WOSaEEMcrKeMePdJlVIjDIMeRc3S+JyWnQTAIxGvVYjXtB+KHgkGAdHv6YQkGAdaNWodJN8VfF6YfH8+RZSVnMeGaCfTI6sEry15pFPy1ZjAIxLs3HypN0xjUftAhff6MwjMAfjAYjK0vmibBoBBCiMNFAkIhDoMubboQ+kvrjJh5UuZJvH3J25yUeVKrfP+BSAwGHxj2QPwZqePBBV0uiP8/cT9/DP5z8X/i3Y2EEEIIIRJJQCjEYdJaQYBJN3HzgJtb5bsPxbPnP9vaSThiTNqPKyCUYFAIIYQQzZFSghBCHGZTfzW1tZMghBBCCNEiEhAKIcRhdjwMlCOEEEKIE4MEhEIIIYQQQghxgpKAUAghhBBCCCFOUBIQCiHEYbR+1PrWToIQQgghRItJQCiEEIdRz+yerZ0EIYQQQogWk4BQCCGEEEIIIU5QEhAKIYQQQgghxAlKAkIhhBBCCCGEOEFJQCiEEEIIIYQQJygJCIUQQgghhBDiBCUBoRBCCCGEEEKcoCQgFEIIIYQQQogTlASEQgghhBBCCHGCkoBQCCGEEEIIIU5QEhAKIYQQQgghxAlKAkIhhBBCCCGEOEGZWzsB4tAopQBwuVytnBIhhBBCCCEOj1jZNlbWFUeOBITHOLfbDUBBQUErp0QIIYQQQojDy+1243Q6WzsZxzVNSdh9TDMMgz179pCamoqmaUflO10uFwUFBRQVFZGWlnZUvlMc/yRfiSNB8pU43CRPiSNB8lVjSincbjft27dH1+UptyNJWgiPcbquk5+f3yrfnZaWJhctcdhJvhJHguQrcbhJnhJHguSrhqRl8OiQcFsIIYQQQgghTlASEAohhBBCCCHECUoCQnHAbDYbjz76KDabrbWTIo4jkq/EkSD5ShxukqfEkSD5SrQmGVRGCCGEEEIIIU5Q0kIohBBCCCGEECcoCQiFEEIIIYQQ4gQlAaEQQgghhBBCnKAkIBRCCCGEEEKIE5QEhKJZc+bM4eKLL6Z9+/Zomsbnn3/e4H2lFI899hjt27cnKSmJs88+m3Xr1rVOYsUx4amnnmLw4MGkpqbStm1bLrvsMjZu3NhgHclX4kC9+uqr9OvXLz6h89ChQ/nf//4Xf1/ylDhUTz31FJqmcc8998SXSb4SB+qxxx5D07QGf7m5ufH3JU+J1iIBoWiWx+Ohf//+vPzyy02+/+yzz/L3v/+dl19+maVLl5Kbm8v555+P2+0+yikVx4rZs2dzxx13sGjRIqZOnUooFOKCCy7A4/HE15F8JQ5Ufn4+Tz/9NMuWLWPZsmWcc845XHrppfGClOQpcSiWLl3K66+/Tr9+/Rosl3wlDkbv3r3Zu3dv/G/NmjXx9yRPiVajhGgBQE2YMCH+2jAMlZubq55++un4Mp/Pp5xOp3rttddaIYXiWFRWVqYANXv2bKWU5Ctx+GRkZKg333xT8pQ4JG63W3Xr1k1NnTpVnXXWWeruu+9WSsm1ShycRx99VPXv37/J9yRPidYkLYTioGzfvp2SkhIuuOCC+DKbzcZZZ53FggULWjFl4lhSW1sLQJs2bQDJV+LQhcNhPvroIzweD0OHDpU8JQ7JHXfcwciRIznvvPMaLJd8JQ7W5s2bad++PZ06deLaa69l27ZtgOQp0brMrZ0AcWwqKSkBICcnp8HynJwcdu7c2RpJEscYpRT33nsvp59+On369AEkX4mDt2bNGoYOHYrP5yMlJYUJEybQq1eveEFK8pQ4UB999BErVqxg6dKljd6Ta5U4GEOGDOG9996je/fulJaW8uSTTzJs2DDWrVsneUq0KgkIxSHRNK3Ba6VUo2VCNOX3v/89q1evZt68eY3ek3wlDtRJJ53EqlWrqKmp4bPPPuPGG29k9uzZ8fclT4kDUVRUxN13382UKVOw2+3Nrif5ShyIiy66KP7/vn37MnToULp06cK7777LaaedBkieEq1DuoyKgxIbFStWoxVTVlbWqHZLiH3deeedfPHFF8ycOZP8/Pz4cslX4mBZrVa6du3KoEGDeOqpp+jfvz///Oc/JU+Jg7J8+XLKyso45ZRTMJvNmM1mZs+ezb/+9S/MZnM870i+EofC4XDQt29fNm/eLNcq0aokIBQHpVOnTuTm5jJ16tT4skAgwOzZsxk2bFgrpkz8mCml+P3vf8/48eOZMWMGnTp1avC+5CtxuCil8Pv9kqfEQTn33HNZs2YNq1ativ8NGjSI66+/nlWrVtG5c2fJV+KQ+f1+vvvuO9q1ayfXKtGqpMuoaFZdXR1btmyJv96+fTurVq2iTZs2dOjQgXvuuYfRo0fTrVs3unXrxujRo0lOTua6665rxVSLH7M77riDDz74gIkTJ5KamhqvCXU6nSQlJcXn+ZJ8JQ7Egw8+yEUXXURBQQFut5uPPvqIWbNmMXnyZMlT4qCkpqbGn22OcTgcZGZmxpdLvhIH6v777+fiiy+mQ4cOlJWV8eSTT+JyubjxxhvlWiValQSEolnLli1jxIgR8df33nsvADfeeCPvvPMOf/zjH/F6vYwaNYrq6mqGDBnClClTSE1Nba0kix+5V199FYCzzz67wfIxY8Zw0003AUi+EgestLSUX/3qV+zduxen00m/fv2YPHky559/PiB5ShwZkq/EgSouLuYXv/gFFRUVZGdnc9ppp7Fo0SIKCwsByVOi9WhKKdXaiRBCCCGEEEIIcfTJM4RCCCGEEEIIcYKSgFAIIYQQQgghTlASEAohhBBCCCHECUoCQiGEEEIIIYQ4QUlAKIQQQgghhBAnKAkIhRBCCCGEEOIEJQGhEEIIIYQQQpygJCAUQgghhBBCiBOUBIRCCCGEEEIIcYKSgFAIIYQQQgghTlASEAohhBBCCCHECUoCQiGEEEIIIYQ4QUlAKIQQQgghhBAnKAkIhRBCCCGEEOIEJQGhEEIIIYQQQpygJCAUQgghhBBCiBOUBIRCCCGEEEIIcYKSgFAIIYQQQgghTlASEAohhBBCCCHECUoCQiGEEEIIIYQ4QUlAKIQQQgghhBAnKAkIhRBCCCGEEOIE9f/s3WBVx6Y0lQAAAABJRU5ErkJggg==", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "p = PowderPattern()\n", "if not os.path.exists(\"cime.dat\"):\n", @@ -166,7 +117,7 @@ "# Plot\n", "p.plot(diff=True, fig=None, hkl=True)\n", "print(\"Fit result: Rw=%6.2f%% Chi2=%10.2f GoF=%8.2f LLK=%10.3f\" %\n", - " (p.rw * 100, p.chi2, p.chi2/p.GetNbPointUsed(), p.llk))" + " (p.rw * 100, p.chi2, p.chi2/p.GetNbPointUsed(), p.llk))\n" ] }, { @@ -179,71 +130,11 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": { "tags": [] }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Beginning spacegroup exploration... 37 to go...\n", - " (# 1) P 1 : Rwp= 6.80% GoF= 14.98 nGoF= 3.24 (186 reflections, 0 extinct)\n", - " (# 2) P -1 : Rwp= 6.80% GoF= 14.98 nGoF= 3.24 (186 reflections, 0 extinct) [same extinctions as:P 1]\n", - " (# 3) P 1 2 1 : Rwp= 6.69% GoF= 14.46 nGoF= 1.84 (105 reflections, 0 extinct)\n", - " (# 4) P 1 21 1 : Rwp= 6.61% GoF= 14.11 nGoF= 1.65 (101 reflections, 2 extinct)\n", - " (# 5) C 1 2 1 : Rwp= 62.70% GoF= 1246.13 nGoF= 311.68 ( 52 reflections, 84 extinct)\n", - " (# 5) A 1 2 1 : Rwp= 62.83% GoF= 1253.74 nGoF= 313.87 ( 53 reflections, 85 extinct)\n", - " (# 5) I 1 2 1 : Rwp= 60.91% GoF= 1196.43 nGoF= 246.94 ( 52 reflections, 87 extinct)\n", - " (# 6) P 1 m 1 : Rwp= 6.69% GoF= 14.46 nGoF= 1.84 (105 reflections, 0 extinct) [same extinctions as:P 1 2 1]\n", - " (# 7) P 1 c 1 : Rwp= 6.58% GoF= 13.92 nGoF= 1.66 ( 96 reflections, 15 extinP 1 21/c 1 nGoF= 1.4866 GoF= 13.575 Rw= 6.50 [ 92 reflections, extinct446= 17]\n", - "P 1 21 1 nGoF= 1.6488 GoF= 14.108 Rw= 6.61 [101 reflections, extinct446= 2]\n", - "P 1 21/m 1 nGoF= 1.6488 GoF= 14.108 Rw= 6.61 [101 reflections, extinct446= 2]\n", - "P 1 c 1 nGoF= 1.6649 GoF= 13.922 Rw= 6.58 [ 96 reflections, extinct446= 15]\n", - "P 1 2/c 1 nGoF= 1.6649 GoF= 13.922 Rw= 6.58 [ 96 reflections, extinct446= 15]\n", - "P 1 2 1 nGoF= 1.8392 GoF= 14.458 Rw= 6.69 [105 reflections, extinct446= 0]\n", - "P 1 m 1 nGoF= 1.8392 GoF= 14.458 Rw= 6.69 [105 reflections, extinct446= 0]\n", - "P 1 2/m 1 nGoF= 1.8392 GoF= 14.458 Rw= 6.69 [105 reflections, extinct446= 0]\n", - "P 1 nGoF= 3.2428 GoF= 14.982 Rw= 6.80 [186 reflections, extinct446= 0]\n", - "P -1 nGoF= 3.2428 GoF= 14.982 Rw= 6.80 [186 reflections, extinct446= 0]\n", - "P 1 21/n 1 nGoF= 5.4155 GoF= 26.697 Rw= 9.11 [ 92 reflections, extinct446= 19]\n", - "P 1 2/n 1 nGoF= 5.7672 GoF= 27.063 Rw= 9.17 [ 96 reflections, extinct446= 17]\n", - "P 1 n 1 nGoF= 5.7672 GoF= 27.063 Rw= 9.17 [ 96 reflections, extinct446= 17]\n", - "Chosen spacegroup (smallest nGoF): P 1 21/c 1\n", - "ct)\n", - " (# 7) P 1 n 1 : Rwp= 9.17% GoF= 27.06 nGoF= 5.77 ( 96 reflections, 17 extinct)\n", - " (# 7) P 1 a 1 : Rwp= 9.26% GoF= 27.58 nGoF= 5.97 ( 97 reflections, 14 extinct)\n", - " (# 8) C 1 m 1 : Rwp= 62.70% GoF= 1246.13 nGoF= 311.68 ( 52 reflections, 84 extinct) [same extinctions as:C 1 2 1]\n", - " (# 8) A 1 m 1 : Rwp= 62.83% GoF= 1253.74 nGoF= 313.87 ( 53 reflections, 85 extinct) [same extinctions as:A 1 2 1]\n", - " (# 8) I 1 m 1 : Rwp= 60.91% GoF= 1196.43 nGoF= 246.94 ( 52 reflections, 87 extinct) [same extinctions as:I 1 2 1]\n", - " (# 9) C 1 c 1 : Rwp= 62.51% GoF= 1236.15 nGoF= 280.76 ( 47 reflections, 93 extinct)\n", - " (# 9) A 1 n 1 : Rwp= 62.99% GoF= 1258.62 nGoF= 291.60 ( 49 reflections, 93 extinct)\n", - " (# 9) I 1 a 1 : Rwp= 59.00% GoF= 1120.91 nGoF= 221.05 ( 48 reflections, 93 extinct)\n", - " (# 9) A 1 a 1 : Rwp= 62.99% GoF= 1258.62 nGoF= 291.60 ( 49 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", - " (# 9) C 1 n 1 : Rwp= 62.51% GoF= 1236.15 nGoF= 280.76 ( 47 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", - " (# 9) I 1 c 1 : Rwp= 59.00% GoF= 1120.91 nGoF= 221.05 ( 48 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", - " (# 10) P 1 2/m 1 : Rwp= 6.69% GoF= 14.46 nGoF= 1.84 (105 reflections, 0 extinct) [same extinctions as:P 1 2 1]\n", - " (# 11) P 1 21/m 1 : Rwp= 6.61% GoF= 14.11 nGoF= 1.65 (101 reflections, 2 extinct) [same extinctions as:P 1 21 1]\n", - " (# 12) C 1 2/m 1 : Rwp= 62.70% GoF= 1246.13 nGoF= 311.68 ( 52 reflections, 84 extinct) [same extinctions as:C 1 2 1]\n", - " (# 12) A 1 2/m 1 : Rwp= 62.83% GoF= 1253.74 nGoF= 313.87 ( 53 reflections, 85 extinct) [same extinctions as:A 1 2 1]\n", - " (# 12) I 1 2/m 1 : Rwp= 60.91% GoF= 1196.43 nGoF= 246.94 ( 52 reflections, 87 extinct) [same extinctions as:I 1 2 1]\n", - " (# 13) P 1 2/c 1 : Rwp= 6.58% GoF= 13.92 nGoF= 1.66 ( 96 reflections, 15 extinct) [same extinctions as:P 1 c 1]\n", - " (# 13) P 1 2/n 1 : Rwp= 9.17% GoF= 27.06 nGoF= 5.77 ( 96 reflections, 17 extinct) [same extinctions as:P 1 n 1]\n", - " (# 13) P 1 2/a 1 : Rwp= 9.26% GoF= 27.58 nGoF= 5.97 ( 97 reflections, 14 extinct) [same extinctions as:P 1 a 1]\n", - " (# 14) P 1 21/c 1 : Rwp= 6.50% GoF= 13.58 nGoF= 1.49 ( 92 reflections, 17 extinct)\n", - " (# 14) P 1 21/n 1 : Rwp= 9.11% GoF= 26.70 nGoF= 5.42 ( 92 reflections, 19 extinct)\n", - " (# 14) P 1 21/a 1 : Rwp= 9.20% GoF= 27.22 nGoF= 5.61 ( 93 reflections, 16 extinct)\n", - " (# 15) C 1 2/c 1 : Rwp= 62.51% GoF= 1236.15 nGoF= 280.76 ( 47 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", - " (# 15) A 1 2/n 1 : Rwp= 62.99% GoF= 1258.62 nGoF= 291.60 ( 49 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", - " (# 15) I 1 2/a 1 : Rwp= 59.00% GoF= 1120.91 nGoF= 221.05 ( 48 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", - " (# 15) A 1 2/a 1 : Rwp= 62.99% GoF= 1258.62 nGoF= 291.60 ( 49 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", - " (# 15) C 1 2/n 1 : Rwp= 62.51% GoF= 1236.15 nGoF= 280.76 ( 47 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", - " (# 15) I 1 2/c 1 : Rwp= 59.00% GoF= 1120.91 nGoF= 221.05 ( 48 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", - "Restoring best spacegroup: P 1 21/c 1\n" - ] - } - ], + "outputs": [], "source": [ "p.SetMaxSinThetaOvLambda(0.2) # Important for stability of profile fit. And faster !\n", "spgex = SpaceGroupExplorer(pdiff)\n", @@ -281,7 +172,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": { "tags": [] }, @@ -355,67 +246,19 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Run the tests: **this will take a little while (5 to 20 minutes for each spacegroup, in parallel processes), and is longer for spacegroups with lower multiplicity and not centrosymmetric (more independant atoms)**." + "Run the tests: **this will take a little while (5 to 20 minutes for each spacegroup, in parallel processes), and is longer for spacegroups with lower multiplicity and not centrosymmetric (more independent atoms)**." ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": { "tags": [] }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Solving structures in // - this will take a little while, be patient !\n", - "Spacegroup: P 1 21/c 1 LLK: 18500.13 dt= 26s\n", - "Spacegroup: P 1 21/c 1 LLK: 49206.74 dt= 27s\n", - "Spacegroup: P 1 21/m 1 LLK: 260046.12 dt= 28s\n", - "Spacegroup: P 1 21/m 1 LLK: 267669.81 dt= 28s\n", - "Spacegroup: P 1 2/c 1 LLK: 461123.68 dt= 27s\n", - "Spacegroup: P 1 2/c 1 LLK: 306248.10 dt= 27s\n", - "Spacegroup: P 1 c 1 LLK: 87454.66 dt= 75s\n", - "Spacegroup: P 1 c 1 LLK: 91092.14 dt= 76s\n", - "Spacegroup: P 1 21/c 1 LLK: 56249.86 dt= 27s\n", - "Spacegroup: P 1 2 1 LLK: 232080.59 dt= 81s\n", - "Spacegroup: P 1 2 1 LLK: 239530.07 dt= 82s\n", - "Spacegroup: P -1 LLK: 101645.03 dt= 61s\n", - "Spacegroup: P -1 LLK: 115241.95 dt= 64s\n", - "Spacegroup: P 1 2/c 1 LLK: 670519.05 dt= 27s\n", - "Spacegroup: P 1 21/m 1 LLK: 259924.47 dt= 28s\n", - "Spacegroup: P 1 c 1 LLK: 86015.56 dt= 74s\n", - "Spacegroup: P 1 21/c 1 LLK: 18596.19 dt= 27s\n", - "Spacegroup: P 1 21 1 LLK: 82685.43 dt= 72s\n", - "Spacegroup: P 1 21 1 LLK: 62145.94 dt= 74s\n", - "Spacegroup: P 1 m 1 LLK: 260089.71 dt= 78s\n", - "Spacegroup: P 1 2/c 1 LLK: 262462.19 dt= 27s\n", - "Spacegroup: P 1 m 1 LLK: 261603.69 dt= 80s\n", - "Spacegroup: P 1 2 1 LLK: 188882.56 dt= 82s\n", - "Spacegroup: P -1 LLK: 123163.25 dt= 62s\n", - "Spacegroup: P 1 21/m 1 LLK: 275339.56 dt= 28s\n", - "Spacegroup: P 1 21/c 1 LLK: 49213.79 dt= 27s\n", - "Spacegroup: P 1 21 1 LLK: 69958.12 dt= 73s\n", - "Spacegroup: P 1 2/c 1 LLK: 372234.25 dt= 30s\n", - "Spacegroup: P 1 c 1 LLK: 100616.81 dt= 72s\n", - "Spacegroup: P 1 21/m 1 LLK: 242776.10 dt= 31s\n", - "Spacegroup: P 1 2 1 LLK: 217691.94 dt= 84s\n", - "Spacegroup: P 1 c 1 LLK: 109668.98 dt= 75s\n", - "Spacegroup: P -1 LLK: 127211.68 dt= 63s\n", - "Spacegroup: P 1 m 1 LLK: 343660.20 dt= 79s\n", - "Spacegroup: P 1 2 1 LLK: 211306.76 dt= 80s\n", - "Spacegroup: P -1 LLK: 155139.61 dt= 55s\n", - "Spacegroup: P 1 21 1 LLK: 87547.20 dt= 68s\n", - "Spacegroup: P 1 21 1 LLK: 101361.24 dt= 66s\n", - "Spacegroup: P 1 m 1 LLK: 215645.85 dt= 71s\n", - "Spacegroup: P 1 m 1 LLK: 274219.33 dt= 64s\n" - ] - } - ], + "outputs": [], "source": [ "# List of spacegroups to test (this can be larger than the number \n", - "# of availabe processor cores, process will loop over possible spacegroups)\n", + "# of available processor cores, process will loop over possible spacegroups)\n", "v_spacegroup = [\"P 1 21/c 1\", \"P 1 2/c 1\", \"P 1 c 1\", \"P 1 21 1\",\n", " \"P 1 2 1\", \"P 1 m 1\", \"P 1 21/m 1\", \"P -1\"] * 5\n", "\n", @@ -440,142 +283,11 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": { "tags": [] }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "XML: Loading Crystal:\n", - "XML: Loading Crystal:(spg:P 1 21/c 1)\n", - "Input ScatteringPowerAtom:C(C)\n", - "Input ScatteringPowerAtom:N(N)\n", - "Input ScatteringPowerAtom:S(S)\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "80b4c4a7d1b4400b8c56129aa2a6d244", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "interactive(children=(Dropdown(description='solution', options=('# 0 P 1 21/c 1 : 1 mol LLK= 18500.13', …" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/3dmoljs_load.v0": "
\n

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n
\n", - "text/html": [ - "
\n", - "

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n", - "
\n", - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "63b312a80e604e2ea00d166acd3bc97a", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Box(children=(VBox(children=(HBox(children=(VBox(children=(FloatRangeSlider(value=(0.0, 1.0), description='Xra…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "ed737ff1ac4e477baadcef40072a155e", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADQbElEQVR4nOzdeVxU5f4H8M+wg8KIIiIuaJmKYmGuYIkrSqLmEhqIcituSco1Ec2baxZqbpmm1/p1NRW19GppmuKSmAuKigkpaqWpKa4s48b6/P6AOc2BmWEGB4bl8369eOWceeacZw7DdL7neZ7vVyGEECAiIiIiIqIax8LcHSAiIiIiIiLzYEBIRERERERUQzEgJCIiIiIiqqEYEBIREREREdVQDAiJiIiIiIhqKAaERERERERENRQDQiIiIiIiohqKASEREREREVENxYCQiIiIiIiohmJASEREREREVEMxICQiIiIiIqqhGBASERERERHVUAwIiYiIiIiIaigGhERERERERDUUA0IiIiIiIqIaigEhERERERFRDcWAkIiIiIiIqIZiQEhERERERFRDMSAkIiIiIiKqoRgQEhERERER1VAMCImIiIiIiGooBoREREREREQ1FANCIiIiIiKiGooBIRERERERUQ3FgJCIiIiIiKiGYkBIRERERERUQzEgJCIiIiIiqqEYEBIREREREdVQDAiJiIiIiIhqKAaERERERERENRQDQiIiIiIiohqKASEREREREVENxYCQiIiIiIiohmJASEREREREVEMxICQiIiIiIqqhGBASERERERHVUAwIiYhMLCQkxNxdICIiIjKIlbk7QERUVU2ePLnENiEEjh49aobeEBERERmPASERURnFxsZiw4YNJbb/9NNPZugNERERkfEYEBIRldEbb7wBT09PuLq6yraPHj3aTD0iIiIiMo5CCCHM3QkiIiIiIiKqeEwqQ0REREREVEMxICQiIiIiIqqhGBASEZlQUlKSubtAREREZDAmlSEiKqMVK1bIHgshsHLlSkRERCAiIsJMvSIiIiIyHEcIiYjK6PPPP8cPP/wABwcH1KpVC7Vr14aFhQVq165t7q4RERERGYRZRqu4goIC3LhxA46OjlAoFObuDlGNIoTAli1b8N1332HIkCEYOnQogoKCsGXLFnN3jYiIqEoTQkClUsHd3R0WFhzDKk8MCKu469evo0mTJubuBhERERGRyV27dg2NGzc2dzeqNa4hrOIcHR0BFP6xODk5mbk3RDVbQUEBbt26hYYNG5q7K0RERFVaVlYWmjRpIl3rUjkSVKVlZmYKACIzM1PatmzZMlGnTh3h5OQk6tSpI7Zu3Sr2798v7O3tBQBx8+ZNqe3gwYOFo6OjcHV1FX/++ads3z///LMAIP7v//5PCCHEnDlzhJ+fnxBCiCtXroimTZuKOnXqCE9PzxL96tChg3B0dBS1a9cW3bt3F0IIoVQqhZOTk8jOzhZLliwRlpaWQqlUCmdnZ5Gamip7/WuvvSYsLS1Fo0aNtL5vd3d34eTkJBwdHcW6deuEEEJER0cLGxsb4eDgIGu7Y8cO0bFjR73nUdv5+e2330StWrV09oGIiIiIyoe2a1wqH5yQW81cunQJU6dOxcmTJ5GZmYmjR4+ioKAAzz//PFJTU6FUKqW258+fR3x8PDIyMjBs2DC89dZbJfZna2uLGTNmlNg+ePBgzJs3D+np6Th37pzsue+//x5paWnIysqCSqXCmjVrpOcuXLgAGxsbAIC3tzcyMjLQrVs3jBs3TraPmTNnIi4uTuf7jI2NRWZmJjZv3oyJEycCAMLDw3Hv3r0Sbf/v//4PI0eO1LkvAFrPz7PPPovdu3frfR0RERERUVXGgLCaWbBgAfr164dnn30WAODp6Ylhw4bBxcUFTZs2lbX99ttv0b59e1hYWOC9997DL7/8UmJ/Li4uKCgowK5du2TbL1++jNmzZ6NOnTqYOnWq7DlHR0fcv38fP/74IwCgefPmevvctWtX3LhxQ7atbdu2UuCoTY8ePQAA9vb2sLS0BAA899xzWrM7JiYm4u2338b+/ftRt25d1KlTB506dSrxPoufH6KySktLM3cXiIiIiAzCgLCauXbtWqkBmNrt27elEbEmTZrg0aNHWttNnz4dEyZMkG3LysrC9OnTkZqaiqVLlyIrK0t6rlevXnj77bcRHBwMGxsbTJ8+XW8/fvzxR7Rs2dKgPhcXHBysd//379+HpaUlateujdDQUHz++efIyMjAsWPHynQ8IkOMHj3a3F0gIiIiMgiTylQzHh4e+OOPPwxq26BBA5w/fx4A8Oeff8LBwUFru4iICHzwwQf47bffpG02NjYICQkBANSvXx+nT5+WRu0AYMmSJViyZAlSUlLQqVMnzJkzp8R+z5w5gzp16qBevXrYunWroW9R4ufnhxdeeEFvAfDly5ejW7duAIDMzEy8/vrrAAArK3706el17ty5xDYhBC5dumSG3hARkaaCggLk5OSYuxukg7W1tTTLi8yLV8XVTHR0NLy9vfH777/j2WefxYULF5CSkoJhw4aVaPvaa69hyZIlAIClS5fC29tb534jIiKwaNEidO3aFUBhEHjo0CF07doV9+7dg5eXl9T2999/R0FBAZ577jk0bdpUZ31Eb29vnDx5skzvc+zYsbh58yYuXryot922bduwdOlSAIBSqcS3336LoKAg5OXlMSikp6ZSqZCcnFzis9S3b18z9YiIiAAgJycHly9fRkFBgbm7QnrUqVMHbm5urKVtbubOamNK8fHxIjAwUDRs2FAAENu2bZM9D0DrzyeffCK18fPzK/H8iBEjZPu5f/++GDVqlHBychJOTk5i1KhRIj09Xdbmzz//FIGBgcLBwUHUq1dPjB8/XmRnZ8vanD17VnTv3l3Y2dkJd3d3MXv2bFFQUGDUe9aXZVSdwfP7778Xf/zxh3B2dhYKhULUqVNHzJ49WwhRepZRdYbN/Px8YWNjI2UZ3bVrl6hTp46oVauWCAsLk70uPj5eOje1a9cW7733nhCiMMuoOoPnkiVLRIcOHXS+r/HjxwtHR0ehUCiEs7OzyM3NlT0PQDg6OgqlUilatGgh7dPZ2VkAEM7OzuLUqVPCzc1Nes2+ffuk89K5c2fZ/nSdH81zQFTc1q1bxf3790tsP3jwoBl6Q0REQghRUFAgrly5Ii5duiQePnwoHj9+zJ9K9vPo0SNx9+5dce7cOXHjxg2tv0dmGa041aow/Y8//ogjR47gxRdfxLBhw7Bt2za8+uqr0vPFEz38+OOPePPNN/Hbb7/hmWeeAVCYrKRly5b48MMPpXb29vay7JMBAQG4fv06vvjiCwDAP//5TzRr1gw7duwAAOTn58Pb2xv169fHokWLcO/ePYwZMwZDhw7FsmXLABSuwWvZsiV69uyJDz74ABcvXkRYWBhmzpyJqKgog99zVlYWlEolMjMzK30dwqZNmyIrKwu3b9/WmzDGVLKysjB37lzMnTu3TK///fff0b59ezRt2hQpKSkm7h1VR6mpqWjdurW5u0FEVKPl5ubit99+g7u7u+z6jSqfe/fu4fbt22jZsmWJ6aNV6Rq3qqtWc+YCAgIQEBCg83k3NzfZ4++//x49e/aUgkE1BweHEm3Vzp8/j927dyMhIQFdunQBAHz55Zfw8fHBhQsX0KpVK8TFxeHcuXO4du0a3N3dAQCLFi1CWFgYPv74Yzg5OSE2NhZPnjzBmjVrYGtrCy8vL1y8eBGLFy/GxIkTq+XQ+dWrVyv0eE5OTmUOBoHCshOayXKIShMREYEDBw6YuxtERDVafn4+AFTIzWd6Our8Fbm5uVxPaEY1NsvorVu3sHPnTrz55pslnouNjYWLiwvatm2LSZMmQaVSSc8dO3YMSqVSCgaBwrIJSqUSR48eldp4eXlJwSAA9OvXD9nZ2Th16pTUxs/PD7a2trI2N27cwJUrV0z9domoAlhbW5u7C0REVKQ63lyvbvg7qhyq1QihMb7++ms4Ojpi6NChsu0hISFo3rw53NzckJKSgqlTp+KXX37B3r17ARROO3V1dS2xP1dXV2lKalpaGho0aCB73tnZGTY2NrI2zZo1k7VRvyYtLU1n6Yjs7GxkZ2dLjzmCRVR57Nmzx9xdICIiIjJKjR0h/O9//4uQkBDY2dnJtoeHh6NPnz7w8vLCyJEjsWXLFuzbtw+nT5+W2mi7myGEkG0vSxv1ck59d0vmzp0LpVIp/TRp0qSUd0pEFWrZMiAx0dy9ICKiaubgwYNQKBTIyMgwd1eomqmRAeHPP/+MCxcu4K233iq17Ysvvghra2uprpibmxtu3bpVot2dO3ekET43N7cSCWzS09ORm5urt83t27cBoMTooqapU6ciMzNT+rl27Vqp74GIKlBkJKClPiERERFRZVQjA8KvvvoKHTp0wAsvvFBq219//RW5ublo2LAhAMDHxweZmZk4ceKE1Ob48ePIzMyEr6+v1CYlJQU3b96U2sTFxcHW1hYdOnSQ2hw6dEhWMDUuLg7u7u4lppJqsrW1hZOTk+yHiIiIiIioLKpVQPjgwQOcOXMGZ86cAQBcvnwZZ86ckWW3zMrKwubNm7WODv7+++/48MMPcfLkSVy5cgW7du3Ca6+9hvbt26Nbt24AAE9PT/Tv3x/h4eFISEhAQkICwsPDERgYiFatWgEA/P390aZNG4SGhiIpKQn79+/HpEmTEB4eLgVwwcHBsLW1RVhYGFJSUrBt2zbExMRU2wyjRERERKRfdnY2IiMj4erqCjs7O7z00ktILLYM4ciRI3jhhRdgZ2eHLl26IDk5WXruzz//xMCBA+Hs7IxatWqhbdu22LVrV0W/DapiqlVAePLkSbRv3x7t27cHAEycOBHt27fHjBkzpDabNm2CEAKvv/56idfb2Nhg//796NevH1q1aoXIyEj4+/tj3759slS4sbGxaNeuHfz9/eHv74/nn38e69atk563tLTEzp07YWdnh27duiEoKAivvvoqFi5cKLVRKpXYu3cvrl+/jo4dOyIiIgITJ07ExIkTy+PUEBEREVElN3nyZPzvf//D119/jdOnT6NFixbo168f7t+/L7WJjo7GwoULkZiYCFdXVwwaNAi5ubkAgHfffRfZ2dk4dOgQkpOTMX/+fNSuXdtcb4eqiGpVmL4mYtFOokpGPcLPr1YiIrN48uQJLl++jObNm0vJAx89eoTU1NQK70vr1q2lWnulefjwIZydnbFmzRoEBwcDKKzP16xZM0yYMAGdOnVCz549sWnTJowYMQIAcP/+fTRu3Bhr1qxBUFAQnn/+eQwbNgwzZ84st/dkStp+V2q8xq04NbbsBBERERHVDKmpqVIeh4p06tQpvPjiiwa1/f3335GbmystUwIK69t27twZ58+fR6dOnQAU5qFQq1u3Llq1aoXz588DACIjIzF27FjExcWhT58+GDZsGJ5//nkTviOqjhgQEhEREVG11rp1a5w6dcosxzWUrvJjxcuWaaN+/q233kK/fv2wc+dOxMXFYe7cuVi0aBHGjx9vZM+pJmFASERERETVmoODg8EjdebSokUL2NjY4PDhw7IpoydPnsSECROkdgkJCWjatCmAwrJmFy9elAWeTZo0wTvvvIN33nkHU6dOxZdffsmAkPRiQEhEREREZGa1atXC2LFjER0djbp166Jp06b45JNP8OjRI7z55pv45ZdfAAAffvgh6tWrhwYNGuCDDz6Ai4sLXn31VQDAhAkTEBAQgJYtWyI9PR0HDhyAp6enGd8VVQUMCImIiIiIKoF58+ahoKAAoaGhUKlU6NixI/bs2QNnZ2dZm3/961+4dOkSXnjhBWzfvh02NjYAgPz8fLz77ru4fv06nJyc0L9/fyxZssRcb4eqCGYZreKYgYmokmGWUSIis9KXuZIqF2YZrRyqVR1CIiIiIiIiMhwDQiIiIiIiohqKASEREREREVENxYCQiIiIiIiohmJASEREREREVEMxICQiIiIiIqqhGBASERERERHVUAwIiYiIiIiIaigGhEREREREVdysWbPg7e1t7m5QFcSAkIiIiIiIqIZiQEhERERERFRDMSAkIiIiIqoECgoKMH/+fLRo0QK2trZo2rQpPv74YwDAlClT0LJlSzg4OOCZZ57B9OnTkZubq3d///3vf9G2bVvY2tqiYcOGGDduXEW8DapirMzdASIiIiIiAqZOnYovv/wSS5YswUsvvYSbN28iNTUVAODo6Ig1a9bA3d0dycnJCA8Ph6OjIyZPnqx1XytXrsTEiRMxb948BAQEIDMzE0eOHKnIt0NVhEIIIczdCSq7rKwsKJVKZGZmwsnJydzdISKFovC//GolIjKLJ0+e4PLly2jevDns7OzM3R2DqVQq1K9fH8uXL8dbb71VavsFCxbgm2++wcmTJwEUJpX57rvvcObMGQBAo0aN8I9//AMfffRReXb7qej7XfEat+JwhJCIiIiIqrdHj4CikbYK1bo14OBgUNPz588jOzsbvXv31vr8li1b8Omnn+K3337DgwcPkJeXpzNQun37Nm7cuKFzX0SaGBASERERUfWWmgp06FDxxz11CnjxRYOa2tvb63wuISEBI0eOxOzZs9GvXz8olUps2rQJixYtMnpfRMUxICQiIiKi6q1168LgzBzHNdBzzz0He3t77N+/v8SU0SNHjsDDwwMffPCBtO3PP//UuS9HR0c0a9YM+/fvR8+ePY3vN9UoDAiJiIiIqHpzcDB4pM5c7OzsMGXKFEyePBk2Njbo1q0b7ty5g19//RUtWrTA1atXsWnTJnTq1Ak7d+7Etm3b9O5v1qxZeOedd+Dq6oqAgACoVCocOXIE48ePr6B3RFUFA0IiIiIiokpg+vTpsLKywowZM3Djxg00bNgQ77zzDt5880289957GDduHLKzszFgwABMnz4ds2bN0rmvMWPG4MmTJ1iyZAkmTZoEFxcXDB8+vOLeDFUZzDJaxTEDE1ElwyyjRERmVVWzjNZEzDJaObAwPRERERERUQ1VrQLCQ4cOYeDAgXB3d4dCocB3330nez4sLAwKhUL207VrV1mb7OxsjB8/Hi4uLqhVqxYGDRqE69evy9qkp6cjNDQUSqUSSqUSoaGhyMjIkLW5evUqBg4ciFq1asHFxQWRkZHIycmRtUlOToafnx/s7e3RqFEjfPjhh+CALRERERERVZRqFRA+fPgQL7zwApYvX66zTf/+/XHz5k3pZ9euXbLnJ0yYgG3btmHTpk04fPgwHjx4gMDAQOTn50ttgoODcebMGezevRu7d+/GmTNnEBoaKj2fn5+PAQMG4OHDhzh8+DA2bdqE//3vf4iKipLaZGVloW/fvnB3d0diYiKWLVuGhQsXYvHixSY8I0RERERERLpVq6QyAQEBCAgI0NvG1tYWbm5uWp/LzMzEV199hXXr1qFPnz4AgPXr16NJkybYt28f+vXrh/Pnz2P37t1ISEhAly5dAABffvklfHx8cOHCBbRq1QpxcXE4d+4crl27Bnd3dwDAokWLEBYWho8//hhOTk6IjY3FkydPsGbNGtja2sLLywsXL17E4sWLMXHiRCjU65CIiIiIiIjKSbUaITTEwYMH4erqipYtWyI8PBy3b9+Wnjt16hRyc3Ph7+8vbXN3d4eXlxeOHj0KADh27BiUSqUUDAJA165doVQqZW28vLykYBAA+vXrh+zsbJwqqoFz7Ngx+Pn5wdbWVtbmxo0buHLlis7+Z2dnIysrS/ZDRJVLgbk7QERERGSgGhUQBgQEIDY2FgcOHMCiRYuQmJiIXr16ITs7GwCQlpYGGxsbODs7y17XoEEDpKWlSW1cXV1L7NvV1VXWpkGDBrLnnZ2dYWNjo7eN+rG6jTZz586V1i4qlUo0adLEmFNARBWgRn2xEhERUZVWraaMlmbEiBHSv728vNCxY0d4eHhg586dGDp0qM7XCSFkUzi1Tec0RRt1Qhl900WnTp2KiRMnSo+zsrIYFBIRERERUZnU6BvZDRs2hIeHBy5dugQAcHNzQ05ODtLT02Xtbt++LY3eubm54datWyX2defOHVmb4qN86enpyM3N1dtGPX21+MihJltbWzg5Ocl+iKhy4ZRRIiIiqipqdEB47949XLt2DQ0bNgQAdOjQAdbW1ti7d6/U5ubNm0hJSYGvry8AwMfHB5mZmThx4oTU5vjx48jMzJS1SUlJwc2bN6U2cXFxsLW1RYcOHaQ2hw4dkpWiiIuLg7u7O5o1a1Zu75mIiIiIiEitWgWEDx48wJkzZ3DmzBkAwOXLl3HmzBlcvXoVDx48wKRJk3Ds2DFcuXIFBw8exMCBA+Hi4oIhQ4YAAJRKJd58801ERUVh//79SEpKwqhRo9CuXTsp66inpyf69++P8PBwJCQkICEhAeHh4QgMDESrVq0AAP7+/mjTpg1CQ0ORlJSE/fv3Y9KkSQgPD5dG9IKDg2Fra4uwsDCkpKRg27ZtiImJYYZRIiIiIjLarFmz4O3tXa7HWLNmDerUqVOux6CKV63WEJ48eRI9e/aUHqvX2o0ZMwYrV65EcnIy1q5di4yMDDRs2BA9e/bEN998A0dHR+k1S5YsgZWVFYKCgvD48WP07t0ba9asgaWlpdQmNjYWkZGRUjbSQYMGyWofWlpaYufOnYiIiEC3bt1gb2+P4OBgLFy4UGqjVCqxd+9evPvuu+jYsSOcnZ0xceJE2fpAIiIiIiKi8lStAsIePXpIiVm02bNnT6n7sLOzw7Jly7Bs2TKdberWrYv169fr3U/Tpk3xww8/6G3Trl07HDp0qNQ+EVHVovtbiIiIiKhyqVZTRomIzErPDSkiIqLSFBQUYP78+WjRogVsbW3RtGlTfPzxxwCAKVOmoGXLlnBwcMAzzzyD6dOnIzc3V+/+/vvf/6Jt27awtbVFw4YNMW7cOL3t09PTMXr0aDg7O8PBwQEBAQFS8kVN3333HVq2bAk7Ozv07dsX165dk5775Zdf0LNnTzg6OsLJyQkdOnTAyZMny3A2qKIwICQiMhUGhERE9BSmTp2K+fPnY/r06Th37hw2bNggZZ93dHTEmjVrcO7cOSxduhRffvkllixZonNfK1euxLvvvot//vOfSE5Oxvbt29GiRQu9xw8LC8PJkyexfft2HDt2DEIIvPLKK7LA89GjR/j444/x9ddf48iRI8jKysLIkSOl50NCQtC4cWMkJibi1KlTeP/992Ftbf2UZ4bKk0Lom2NJlV5WVhaUSiUyMzNZgoLIzER+PhRWVsgHYMmvViIis3jy5AkuX76M5s2bw87OztzdMZhKpUL9+vWxfPlyvPXWW6W2X7BgAb755htp9G3WrFn47rvvpOSKjRo1wj/+8Q989NFHBh3/0qVLaNmyJY4cOSJlzr937x6aNGmCr7/+Gq+99hrWrFmDf/zjH0hISECXLl0AAKmpqfD09MTx48fRuXNnODk5YdmyZRgzZkypx9T3u+I1bsXhCCERkYmIgsIKhAwFiYjIWOfPn0d2djZ69+6t9fktW7bgpZdegpubG2rXro3p06fj6tWrWtvevn0bN27c0Lmvd955B7Vr15Z+1Me3srKSAj0AqFevHlq1aoXz589L26ysrNCxY0fpcevWrVGnTh2pzcSJE/HWW2+hT58+mDdvHn7//XfjTgRVuGqVVIaIyKyKRgVZOIaIqPIZ+8NY/KX6q8KO18ixEVYGrjS4vb29vc7nEhISMHLkSMyePRv9+vWDUqnEpk2bsGjRIqP3BQAffvghJk2aJNuma9KgEKJESTRtJdLU22bNmoXg4GDs3LkTP/74I2bOnIlNmzZJZd6o8mFASERkIuoRQiIiqnyMCc7M4bnnnoO9vT32799fYsrokSNH4OHhgQ8++EDa9ueff+rcl6OjI5o1a4b9+/fLSrKpubq6wtXVVbatTZs2yMvLw/Hjx2VTRi9evAhPT0+pXV5eHk6ePInOnTsDAC5cuICMjAy0bt1aatOyZUu0bNkS7733Hl5//XWsXr2aAWElxoCQiMhE1HdXOWWUiIiMZWdnhylTpmDy5MmwsbFBt27dcOfOHfz6669o0aIFrl69ik2bNqFTp07YuXMntm3bpnd/s2bNwjvvvANXV1cEBARApVLhyJEjGD9+vNb2zz33HAYPHozw8HCsWrUKjo6OeP/999GoUSMMHjxYamdtbY3x48fjs88+g7W1NcaNG4euXbuic+fOePz4MaKjozF8+HA0b94c169fR2JiIoYNG2bSc0WmxTWEREQmwhFCIiJ6GtOnT0dUVBRmzJgBT09PjBgxArdv38bgwYPx3nvvYdy4cfD29sbRo0cxffp0vfsaM2YMPv30U6xYsQJt27ZFYGCg1hISmlavXo0OHTogMDAQPj4+EEJg165dsiyhDg4OmDJlCoKDg+Hj4wN7e3ts2rQJAGBpaYl79+5h9OjRaNmyJYKCghAQEIDZs2c//cmhcsMso1UcMzARVR45KhVsnJyQB8CKX61ERGZRVbOM1kTMMlo5cISQiMhEeH+NiIiIqhoGhEREJsKyE0RERFTVMCAkIjIVjhASERFRFcOAkIjIRJhUhoiIiKoaBoRERCbCNYRERERU1TAgJCIyEa4hJCKqPHiTrvLj76hyYEBIRGQinDJKRGR+lpaWAICcnBwz94RK8+jRIwCQ1Tmkimdl7g4QEVUXvNNJRGR+VlZWcHBwwJ07d2BtbQ0LC45/VDZCCDx69Ai3b99GnTp1pCCezIMBIRGRiXCEkIjI/BQKBRo2bIjLly/jzz//NHd3SI86derAzc3N3N2o8RgQEhGZCANCIqLKwcbGBs899xynjVZi1tbWHBmsJBgQEhGZCqeMEhFVGhYWFrCzszN3N4gqPU6qJiIyEa4hJCIioqqGASERkakUBYQMC4mIiKiqYEBIRGQiXENIREREVQ0DQiIiE+GUUSIiIqpqGBASEZkIRwiJiIioqmFASERkIgwIiYiIqKqpVgHhoUOHMHDgQLi7u0OhUOC7776TnsvNzcWUKVPQrl071KpVC+7u7hg9ejRu3Lgh20ePHj2gUChkPyNHjpS1SU9PR2hoKJRKJZRKJUJDQ5GRkSFrc/XqVQwcOBC1atWCi4sLIiMjS9TCSU5Ohp+fH+zt7dGoUSN8+OGHnHJGVIUxICQiIqKqploFhA8fPsQLL7yA5cuXl3ju0aNHOH36NKZPn47Tp09j69atuHjxIgYNGlSibXh4OG7evCn9rFq1SvZ8cHAwzpw5g927d2P37t04c+YMQkNDpefz8/MxYMAAPHz4EIcPH8amTZvwv//9D1FRUVKbrKws9O3bF+7u7khMTMSyZcuwcOFCLF682IRnhIjMgbd1iIiIqKqoVoXpAwICEBAQoPU5pVKJvXv3yrYtW7YMnTt3xtWrV9G0aVNpu4ODA9zc3LTu5/z589i9ezcSEhLQpUsXAMCXX34JHx8fXLhwAa1atUJcXBzOnTuHa9euwd3dHQCwaNEihIWF4eOPP4aTkxNiY2Px5MkTrFmzBra2tvDy8sLFixexePFiTJw4EQqFwhSnhIgqEEcIiYiIqKqpViOExsrMzIRCoUCdOnVk22NjY+Hi4oK2bdti0qRJUKlU0nPHjh2DUqmUgkEA6Nq1K5RKJY4ePSq18fLykoJBAOjXrx+ys7Nx6tQpqY2fnx9sbW1lbW7cuIErV67o7HN2djaysrJkP0RUSXDKNxEREVUx1WqE0BhPnjzB+++/j+DgYDg5OUnbQ0JC0Lx5c7i5uSElJQVTp07FL7/8Io0upqWlwdXVtcT+XF1dkZaWJrVp0KCB7HlnZ2fY2NjI2jRr1kzWRv2atLQ0NG/eXGu/586di9mzZ5ftTRNRueIaYCIiIqpqamRAmJubi5EjR6KgoAArVqyQPRceHi7928vLC8899xw6duyI06dP48UXXwQArdM5hRCy7WVpo76Y1DdddOrUqZg4caL0OCsrC02aNNHZnogqDqeMEhERUVVT46aM5ubmIigoCJcvX8bevXtlo4PavPjii7C2tsalS5cAAG5ubrh161aJdnfu3JFG+Nzc3KSRQLX09HTk5ubqbXP79m0AKDG6qMnW1hZOTk6yHyKqHNQBIccJiYiIqKqoUQGhOhi8dOkS9u3bh3r16pX6ml9//RW5ublo2LAhAMDHxweZmZk4ceKE1Ob48ePIzMyEr6+v1CYlJQU3b96U2sTFxcHW1hYdOnSQ2hw6dEhWiiIuLg7u7u4lppISUdXAEUIiIiKqaqpVQPjgwQOcOXMGZ86cAQBcvnwZZ86cwdWrV5GXl4fhw4fj5MmTiI2NRX5+PtLS0pCWliYFZb///js+/PBDnDx5EleuXMGuXbvw2muvoX379ujWrRsAwNPTE/3790d4eDgSEhKQkJCA8PBwBAYGolWrVgAAf39/tGnTBqGhoUhKSsL+/fsxadIkhIeHSyN6wcHBsLW1RVhYGFJSUrBt2zbExMQwwyhRFcY1hERERFTVKEQ1uoI5ePAgevbsWWL7mDFjMGvWLJ2JWn766Sf06NED165dw6hRo5CSkoIHDx6gSZMmGDBgAGbOnIm6detK7e/fv4/IyEhs374dADBo0CAsX75clq306tWriIiIwIEDB2Bvb4/g4GAsXLhQllU0OTkZ7777Lk6cOAFnZ2e88847mDFjhlEBYVZWFpRKJTIzMzl9lMjM/kpMRKPOnfEYgH31+WolIiKqcLzGrTjVKiCsifjHQlR5/HXiBBp16cKAkIiI6CnxGrfiVKspo0RE5sT7a0RERFTVMCAkIjIRZhklIiKiqoYBIRGRiTDLKBEREVU1DAiJiEyEU0aJiIioqmFASERkKgwIiYiIqIphQEhEZCoMCImIiKiKYUBIRGQiTCpDREREVQ0DQiIiE+EaQiIiIqpqGBASEZkIs4wSERFRVcOAkIjIVDhCSERERFUMA0IiIhPhCCERERFVNQwIiYhMhGsIiYiIqKphQEhEZCLMMkpERERVDQNCIiITUZi7A0RERERGYkBIRGQinDJKREREVQ0DQiIiE2FSGSIiIqpqGBASEZkIA0IiIiKqahgQEhGZCqeMEhERURXDgJCIiIiIiKiGYkBIRGQiLDtBREREVQ0DQiIiE+EaQiIiIqpqGBASERERERHVUAwIiYhMhUlliIiIqIphQEhEZCJcQ0hERERVDQNCIiJT4QghERERVTEMCImITIThIBEREVU11SogPHToEAYOHAh3d3coFAp89913sueFEJg1axbc3d1hb2+PHj164Ndff5W1yc7Oxvjx4+Hi4oJatWph0KBBuH79uqxNeno6QkNDoVQqoVQqERoaioyMDFmbq1evYuDAgahVqxZcXFwQGRmJnJwcWZvk5GT4+fnB3t4ejRo1wocffgjBEQaiqotZRomIiKiKqVYB4cOHD/HCCy9g+fLlWp//5JNPsHjxYixfvhyJiYlwc3ND3759oVKppDYTJkzAtm3bsGnTJhw+fBgPHjxAYGAg8vPzpTbBwcE4c+YMdu/ejd27d+PMmTMIDQ2Vns/Pz8eAAQPw8OFDHD58GJs2bcL//vc/REVFSW2ysrLQt29fuLu7IzExEcuWLcPChQuxePHicjgzRFQhim7o8LYOERERVRmimgIgtm3bJj0uKCgQbm5uYt68edK2J0+eCKVSKf7zn/8IIYTIyMgQ1tbWYtOmTVKbv/76S1hYWIjdu3cLIYQ4d+6cACASEhKkNseOHRMARGpqqhBCiF27dgkLCwvx119/SW02btwobG1tRWZmphBCiBUrVgilUimePHkitZk7d65wd3cXBQUFBr/PzMxMAUDaLxGZT/L69UIAIrP6frUSERFVCF7jVpxqNUKoz+XLl5GWlgZ/f39pm62tLfz8/HD06FEAwKlTp5Cbmytr4+7uDi8vL6nNsWPHoFQq0aVLF6lN165doVQqZW28vLzg7u4utenXrx+ys7Nx6tQpqY2fnx9sbW1lbW7cuIErV67ofB/Z2dnIysqS/RAREREREZVFjQkI09LSAAANGjSQbW/QoIH0XFpaGmxsbODs7Ky3jaura4n9u7q6ytoUP46zszNsbGz0tlE/VrfRZu7cudLaRaVSiSZNmuh/40RUcVh2goiIiKqYGhMQqikUCtljIUSJbcUVb6OtvSnaiKL1R/r6M3XqVGRmZko/165d09t3Iqo4gkmhiIiIqIqpMQGhm5sbgJKjb7dv35ZG5tzc3JCTk4P09HS9bW7dulVi/3fu3JG1KX6c9PR05Obm6m1z+/ZtACVHMTXZ2trCyclJ9kNElQQDQiIiIqpiakxA2Lx5c7i5uWHv3r3StpycHMTHx8PX1xcA0KFDB1hbW8va3Lx5EykpKVIbHx8fZGZm4sSJE1Kb48ePIzMzU9YmJSUFN2/elNrExcXB1tYWHTp0kNocOnRIVooiLi4O7u7uaNasmelPABGVPwaEREREVMVUq4DwwYMHOHPmDM6cOQOgMJHMmTNncPXqVSgUCkyYMAExMTHYtm0bUlJSEBYWBgcHBwQHBwMAlEol3nzzTURFRWH//v1ISkrCqFGj0K5dO/Tp0wcA4Onpif79+yM8PBwJCQlISEhAeHg4AgMD0apVKwCAv78/2rRpg9DQUCQlJWH//v2YNGkSwsPDpRG94OBg2NraIiwsDCkpKdi2bRtiYmIwceLEUqewElHlJFiHkIiIiKoYK3N3wJROnjyJnj17So8nTpwIABgzZgzWrFmDyZMn4/Hjx4iIiEB6ejq6dOmCuLg4ODo6Sq9ZsmQJrKysEBQUhMePH6N3795Ys2YNLC0tpTaxsbGIjIyUspEOGjRIVvvQ0tISO3fuREREBLp16wZ7e3sEBwdj4cKFUhulUom9e/fi3XffRceOHeHs7IyJEydKfSYiIiIiIipvCsEsCFVaVlYWlEolMjMzuZ6QyMzOfvUVnn/rLWQAqMOvViIiojLjNW7FqVZTRomIzIpBIBEREVUxDAiJiEyEEy6IiIioqmFASERkIkwqQ0RERFUNA0IiIhNhfmAiIiKqahgQEpHZhISEmLsLJsUpo0RERFTVVKuyE0RUOU2ePLnENiEEjh49aobelB9OGSUiIqKqhgEhEZW72NhYbNiwocT2n376yQy9KT/qKaMcJyQiIqKqggEhEZW7N954A56ennB1dZVtHz16tJl6VD44QkhERERVDQNCIip3c+bM0bo9MjKygntSvriGkIiIiKoaJpUhIjIRZhklIiKiqoYBIRGRiXDKKBEREVU1DAiJiIiIiIhqKAaERFTuvv32W7Rv3x6jRo3C119/jVatWqFTp07Yvn27ubtmWkVrCLmSkIiIiKoKJpUhonK3aNEiHDlyBCqVCt7e3khNTYWdnR369OmDQYMGmbt7JsMpo0RERFTVMCAkonJnb28PBwcHODg4oHfv3lAqlQAAKyt+BRERERGZE6eMElG58/b2Rn5+PgBg/fr1AICcnBzUq1fPnN0yPZadICIioiqGt+eJqNx9+umnJbbZ2Nhgy5YtFd+ZcsQpo0RERFTVcISQiMhUOEKoVVJSEgIDAzFkyBAcPXpU2v7mm2+asVdEREQEcISQiIjKWWRkJFavXg0rKytER0cjISEBEydOxB9//GHurhEREdV4HCEkIrNJS0szdxdMSj1llOOEcgqFAi1atECzZs2wefNmZGVlITw8HHl5eebuGhERUY3HgJCIzGb06NHm7oJpccqoVq6urrhy5Yr0eNasWfDz80NiYqL5OkVEREQAOGWUqNoICQlBbGysubuhVefOnUtsE0Lg0qVLZugNVTRtyYNGjRqFUaNGmaE3REREpIkBIVEVM3ny5BLbhBCyZB2VjUqlQnJycom6g3379jVTj8oJRwiJiIioimFASFTFxMbGYsOGDSW2//TTT2bojWFiYmKgUqng7Ows2z5t2jQz9aicMCAkIiKiKoYBIVEV88Ybb8DT0xOurq6y7ZV5Pd6QIUNkj1NTU9G6dWv4+fmZqUflQzAgJCIioiqGSWWIqpg5c+aUCAaBwtT+VUVERIS5u1A+GBAaxd/f39xdICIiqvFqXEDYrFkzKBSKEj/vvvsuACAsLKzEc127dpXtIzs7G+PHj4eLiwtq1aqFQYMG4fr167I26enpCA0NhVKphFKpRGhoKDIyMmRtrl69ioEDB6JWrVpwcXFBZGQkcnJyyvX9E1UG1tbW5u5C+SgKCBVm7kZlExQUVOLntddeQ3Jysrm7RkREVOPVuCmjiYmJyM/Plx6npKSgb9++eO2116Rt/fv3x+rVq6XHNjY2sn1MmDABO3bswKZNm1CvXj1ERUUhMDAQp06dgqWlJQAgODgY169fx+7duwEA//znPxEaGoodO3YAAPLz8zFgwADUr18fhw8fxr179zBmzBgIIbBs2bJye/9ElcGePXvM3YVywSmj2iUmJuLAgQOwsPj7HqQQAqGhoWbsFREREQE1MCCsX7++7PG8efPw7LPPytYy2draws3NTevrMzMz8dVXX2HdunXo06cPAGD9+vVo0qQJ9u3bh379+uH8+fPYvXs3EhIS0KVLFwDAl19+CR8fH1y4cAGtWrVCXFwczp07h2vXrsHd3R0AsGjRIoSFheHjjz+Gk5NTebx9IipPRQEhw0K56OhoODo6wsXFRbZ93LhxZuoRERERqdW4KaOacnJysH79erzxxhtQKP6e5HXw4EG4urqiZcuWCA8Px+3bt6XnTp06hdzcXNnaF3d3d3h5eUlp/48dOwalUikFgwDQtWtXKJVKWRsvLy8pGASAfv36ITs7G6dOndLZ5+zsbGRlZcl+qGbZu3cvunTpAl9fX2zatEnaPmDAADP2igBwDaEOERERJYJBABgxYoQZekNERESaanRA+N133yEjIwNhYWHStoCAAMTGxuLAgQNYtGgREhMT0atXL2RnZwMA0tLSYGNjUyJ9foMGDZCWlia10Zb0w9XVVdamQYMGsuednZ1hY2MjtdFm7ty50rpEpVKJJk2alOm9U9U1c+ZM7NmzB/v27cOJEycwfvx4FBQU4NGjR+buGnENIREREVUxNTog/OqrrxAQECAbpRsxYgQGDBgALy8vDBw4ED/++CMuXryInTt36t2XEEI2yqj576dpU9zUqVORmZkp/Vy7dk1vv6j6sbS0RJ06deDg4IDFixejQ4cOGDx4MB48eGDurtV4HB8kIiKiqqbGBoR//vkn9u3bh7feektvu4YNG8LDwwOXLl0CALi5uSEnJwfp6emydrdv35ZG/Nzc3HDr1q0S+7pz546sTfGRwPT0dOTm5pYYOdRka2sLJycn2Q/VLN7e3rhy5Yr0OCwsDBMnToRKpTJfp6hQQYG5e1Cl8DNLRERkfjU2IFy9ejVcXV1LXXd17949XLt2DQ0bNgQAdOjQAdbW1ti7d6/U5ubNm0hJSYGvry8AwMfHB5mZmThx4oTU5vjx48jMzJS1SUlJwc2bN6U2cXFxsLW1RYcOHUz2Pqn6WbZsGZo1aybb1rNnT6SmppqnQzokJSUhMDAQQ4YMkdbOAsCbb75pxl6VM64h1Grt2rVo164dXnzxRcybN0/aPnjwYDP2ioiIiIAaGhAWFBRg9erVGDNmDKys/k60+uDBA0yaNAnHjh3DlStXcPDgQQwcOBAuLi4YMmQIAECpVOLNN99EVFQU9u/fj6SkJIwaNQrt2rWTso56enqif//+CA8PR0JCAhISEhAeHo7AwEC0atUKQGFB5jZt2iA0NBRJSUnYv38/Jk2ahPDwcI76UbUQGRmJTz/9FEuWLMGSJUuwePFiAMAff/xh5p5RRVu5ciVOnz6N06dPw8HBAcOHD8ejR49YpoOIiKgSqJEB4b59+3D16lW88cYbsu2WlpZITk7G4MGD0bJlS4wZMwYtW7bEsWPH4OjoKLVbsmQJXn31VQQFBaFbt25wcHDAjh07pBqEABAbG4t27drB398f/v7+eP7557Fu3TrZsXbu3Ak7Ozt069YNQUFBePXVV7Fw4cLyPwFEFUChUKBFixZo1qwZNm/ejKysLISHhyMvL8/cXSs3glNGtbKwsIC1tTWAwhsFb7/9NgICAnD37l0z94yIiIgUgrdoq7SsrCwolUpkZmZyZLGay8vLk41oF5eWlqazfqY5DB8+HAsXLpRNb12/fj3eeustPHnyxHwdK0cJU6ei67x5SAfgzK9WSUxMDIKDg2WfhV9//RVRUVHYvXu3+TpGRESVFq9xKw4DwiqOfyzVW3JyMqZMmYKMjAxYWVkhNzcXLi4uiImJQbt27WRt/f39ERcXZ6aeEgAce/99+Myfz4CwFKmpqWjdurW5u0FERJUYr3Erju7hBiIyu4iICGzYsEFWb9Lb2xu+vr7w9PSUtgkhpEy4ZEYMAg0SERGBAwcOmLsbREREBAaERJVafn4+lEqlbNvjx4/h5eWFY8eOybb37du3IrtG2jAgNIh6PSERERGZX41MKkNUVcybNw+BgYHo06cPhg4dit69e8PKygrTp08v0XbatGlm6CFpqiwz8Ct7yY89e/aYuwtERERUhCOERJVY9+7dcejQITx+/BgZGRlwdnaGnZ2drI16PZafn5+ZemkcrnUsf5GRkVi9ejWsrKwQHR2NhIQETJw4kSU/iIiIqAQGhERVgL29Pezt7bU+V1nXYwUFBZXYJoRAcnKyGXpTQYrKTijM3A11yQ8A2Lx5M2bNmlXtS34QERFR2TAgJKriKut6rMTERBw4cAAWFn/PTBdCIDQ01Iy9KmeVZMqoq6srrly5IpV5mDVrFtavXy+rhUpEREQEMCAkqvL27NkD5OUBemoUmkN0dDQcHR3h4uIi2z5u3Dgz9ajm2LJlS4lto0aNwqhRo8zQGyIiIqrMmFSGqBLbu3cvunTpAl9fX2zatEnaPmDAgL8b7doFWFsDV6+aoYe6RURElAgGAWDEiBFm6E3FUCeVqRzjhERERESlY0BIVInNnDkTe/bswb59+3DixAmMHz8eBQUFePTo0d+N4uML/3v5snk6SX+rJGsIiYiIiAzFgJDIREJCQky+T0tLS9SpUwcODg5YvHgxOnTogMGDB+PBgwd/N1Kv0cvPN/nxqfpISkoydxeIiIioEqpci46IqoDJkyeX2CaEkNV7MxVvb29ZcpCwsDB4eHhg7NixUpsnubmwA5CfkwNLk/fA9NLS0uDm5mbubpSPSpJUZsWKFbLHQgisXLkSERERiIiIMFOviIiIqDLiCCGRkWJjYzFgwADZT2BgIOrVq2fyYy1btkwKBtV69uyJ1NRU6fHhY8cAAOdSUkx+/PIwevRoc3eh/BQFhOaeMvr555/jhx9+gIODA2rVqoXatWvDwsICtWvXLtfjJiUlITAwEEOGDJHdIHnzzTfL9bhERERUdhwhJDLSG2+8AU9PT7i6usq2myvQEYrC8EOUMmU0KSkJ06dPh7W1NaKjo+Hr6wug8GL9q6++Mnm/OnfuXLKvQuDSpUsmP5a55OXlwUozu2slGSFMSUnBxo0bsXnzZgQFBWHEiBH45ptvyv0zGhkZidWrV8PKygrR0dFISEjAxIkT8ccff5TrcYmIiKjsGBASGWnOnDlat0dGRlZwTwqJojWEopSi4xV9sa5SqZCcnCwPmAD07du3XI5XUZKTkzFlyhRkZGTAysoKubm5cHFxQUxMTKXJMqpQKBAcHIyRI0ciNjYWgwYNwt27dyvkuC1atAAAbN68GbNmzUJ4eDjySvlsEhERkfkwICSqgjTX4QnLwpWDpY0QVvTFekxMDFQqFZydnWXbp02bVi7HqygRERHYsGEDmjRpIm27evUqQkJCMO/55wGYf8qomoWFBUJDQxESEoK0tLRyP56rq6tszeusWbOwfv16rFu3rtyPTURERGXDNYREVZDm1D+FeoSwqOSBLuqLdbVZs2bBz88PiYmJ5dLHIUOGyIJB9bpHPz+/cjleRcnPz4dSqZRtc3JyQn5+fqm/A3OxsLCAu7t7uR9ny5YtJda8jho1Ck+ePCn3YxMREVHZcISQqBIzaB1eUUCoKGWEcMuWLSW2jRo1CqNGjXq6ThooIiICBw4cqJBjlad58+YhMDAQNjY2cHJyQmZmJvLy8jB//nxgwwZzd4+IiIjIKAwIiUzE398fcXFxJt2nQevwipLKFFTS0Sk1a2trc3fBJLp3745Dhw7h8ePHyMjIgLOzM+zs7AAAh2Njzdy7v2VnZ+PXX3/F/fv3UbduXXh5ecHGxsbc3SIiIqJKhgEhkZGCgoJKbBNCIDk52eTHMmQdnoU6y2glyXBZnDoT5549e8zdFZOyt7eHvb29fGMl+R2sW7cOK1euRKdOneDk5ISMjAycPn0aY8eOrZAR4fv370uBaN26dWXPlcjMSkRERGbF/ysTGSkxMREHDhyAhcXfS3CFEAgNDTX5sYYMGVJyoxCydXjqNYQFBgYj+i7WTUVfJs527dqVyzErg8oSlK9atQqHDx+WfUbz8vLQo0ePcg0I9+/fjxkzZsDFxUUKRNPT0zFmzBhs27atxn0eiIiIqgIGhERGio6OhqOjI1xcXGTbx40bV/4HP3MGaN++8L8vvADg74yWpQUjui7WZ8+ejd69e5u0m/oycf78888mPVZlkJSUhPbt20uPzZ1l1N7eHvHx8ejZsyeAws9GfHy8NLW1vMyYMQO7d++Go6OjtC0rKwuNGzfGr7/+WmM+D0RERFUJA0IiI0VERGjdPmLEiHI/tkhJKQw24uP/DggNnDKq62I9ICBACghNVbxeXyZOtXv37sHJyanKrS1csWKF7LEQAitXrkRERATaVZJ1nOvWrcO8efMwbdo05Ofnw9raGh07dsT69evLvE9DpnpaWFjgzp07ss/YnTt3AKDUzwPpFx8fjzlz5uD5559H//79MWXKFCiVSsydOxc+Pj7m7h4REVVhDAiJqpDjFy6gK4DfTp5Ei2LPlTZZUdfFuua0QlMVr9ebibOIi4sLXn/9dWyoYpk5P//8c3h4eCAoKEgKxi0sLFC7dm0z9+xvbm5u+PTTT596P8ZO/f3iiy8QFRWFtLQ0CCGgUCjQsGFDfP7556V+Hki/KVOmYPPmzcjIyIC/vz8SExPh4OCAoUOH4uDBg+buHhERVWEMCImqkIysLABAZtF/AUChHhlU6J+oqOti/Ysvvvh7XyYqXq8vE6emH374waj9VgYpKSnYuHEjNm/ejKCgIIwYMQLffPMNRo8ejZ/j483dPe1+/rmwJMbKlUa9zNipv56enti2bZvWfYWGhpb6eSDd7Ozs0KRJEzRp0gSenp5o3LgxAMDS0tLMPSMioqqOASGRiaSlpcHNza1cj6Gesqdtqp2ilIBQ38W6mrp4vbq4+KxZs7B+/XqsW7euTP3VmomzyDcANhsZaFYGCoUCwcHBGDlyJGJjYzFo0CDcvXu38MlKklSmuMevvAL7Bw+MDggNmfprDH2fB9LPzc0N+fn5sLS0lOp55uXlVfpyM0REVPlZlN6k+pg1axYUCoXsR/MCXgiBWbNmwd3dHfb29ujRowd+/fVX2T6ys7Mxfvx4uLi4oFatWhg0aBCuX78ua5Oeno7Q0FAolUoolUqEhoYiIyND1ubq1asYOHAgatWqBRcXF0RGRiInJ6fc3juVv9GjR5f7MdTr7fI1AykTBiFbtmyRgkG1UaNG4cmTJyY7hloQgP8+fmzy/VYUCwsLhIaGYvv27fjuu+8KN1bSgPDhw4dlep166m+fPn0wdOhQ9O7dG4MHD+ZUTzPYtGlTidFAKysr7N2710w9IiKi6qLGjRC2bdsW+/btkx5r/g/2k08+weLFi7FmzRq0bNkSH330Efr27YsLFy5I664mTJiAHTt2YNOmTahXrx6ioqIQGBiIU6dOSfsKDg7G9evXsXv3bgDAP//5T4SGhmLHjh0ACu+6DxgwAPXr18fhw4dx7949jBkzBkIILFu2rKJOBZVR586dS2wTQuDSpUvlfmx1QKh1CmclDUaqOwsLC7i7uwMoXMeZBGAqAPshQ54qMU9lYOjU39KoVCrpO/TGjRu4ePEimjVrVuLmAxmPNR2JiOhp1bj/k1hZWWmd1ieEwKeffooPPvgAQ4cOBQB8/fXXaNCgATZs2IC3334bmZmZ+Oqrr7Bu3Tr06dMHALB+/Xo0adIE+/btQ79+/XD+/Hns3r0bCQkJ6NKlCwDgyy+/hI+PDy5cuIBWrVohLi4O586dw7Vr16QLyUWLFiEsLAwff/wxnJycKuhsUFmoVCokJyeXuBDr27dvuR9bnQBGM6OoNFHUgIAwOzsbv/76q1SH0MvLCzY2Nibv57fffou5c+eibdu26Nu3L2JiYuDk5ITp06dj0KBBUrtqF8IWFCASwDIAdZYsearEPJWJoVM9165diwULFsDa2hpBQUF4//33AQDPPPMM7ty5gy+++AIbNmyAr68vfvnlF/j6+uKDDz4o7+4TERGRHjVqyigAXLp0Ce7u7mjevDlGjhwpXaRdvnwZaWlp8Pf3l9ra2trCz88PR48eBQCcOnUKubm5sjbu7u7w8vKS2hw7dgxKpVIKBgGga9euUCqVsjZeXl5SMAgA/fr1Q3Z2Nk6dOlV+b55MIiYmBiqVqsT2adOmlf/BtQV9RdtKq323bt069OzZE19//TXi4+OxevVq9OzZ86lKEeiyaNEiHDlyBIsWLcL777+PEydO4PDhw1iwYIG86yY/svmkpaVBgcLfw7MAmjVrhs2bNyMrK6tMiXmqopUrV+L06dM4ffo0HBwcMHz4cDx69Eh67xs3bsSBAwcQExODnTt3SrMoiIiIyHxqVEDYpUsXrF27Fnv27MGXX36JtLQ0+Pr64t69e0hLSwMANGjQQPaaBg0aSM+lpaXBxsYGzs7Oetu4urqWOLarq6usTfHjODs7w8bGRmqjS3Z2NrKysmQ/VLGGDBki+wykpqYCAPz8/CquE1oSyIhSkkusWrUKhw8fxtKlSzFnzhwsW7YM8fHx+M9//lPq4TRvghjC3t4eDg4OaNCgAXr37g2lUglbW9sSo6rmLuBuSqNHj4YQAq4A/tTYPmvWLPj5+SExMbHcjp2UlITAwEAMGTJEuvEEFE5TBUoPvOPj49GnTx9MnDgRcXFxaN++PXr06IFjx44BAO7fv4/ffvsNt2/f1rsfCwsLaVpzZGQk3n77bQQEBEChUOCHH35Ap06dsGPHDqhUKhw6dEhWAoX027t3L7p06QJfX19s2rRJ2j5gwAAz9oqIiKqDGjVlNCAgQPp3u3bt4OPjg2effRZff/01unbtCqBkpkZ1en59irfR1r4sbbSZO3cuZs+erbcNVayIiAgp6585lRYQ2tvbIz4+Hj179ixsLwTi4+Nla8KCgoJK7lcIJCcnG9UXb29vKSOiegQyJycH9erVk++7lM97ZaR3DenAgdgC4EGx50eNGoVRo0aVW58Mrh8phNabCbpq3PXs2RMKhQI3b95EQUEBCgoKkJubi7Zt2+KLL74oUYtwwIABsiy1ffv2hbu7O9577z1cuHABSUlJ2L59O5ydndGtWzesWbOmnM5I5WDKYvIzZ87Enj17YGNjg2nTpuHIkSNYunQpHj16VE69JyKimqJGBYTF1apVC+3atcOlS5fw6quvAigcvWvYsKHU5vbt29JonpubG3JycpCeni4bIbp9+7aUOMLNzQ23bt0qcaw7d+7I9nP8+HHZ8+np6cjNzS0xcljc1KlTMXHiROlxVlaWrEYYVTz1iEhFEPrWCZYSEK5btw7z5s3DtGnTkJ+fD2tra3Ts2FE2ZTQxMREHDhyQFasXQiA0NNSofmorim5jY4MtW7ZI+1Sgak4Z1buG1MDpu6ZmaP1IUVAAhZa6dbpq3P35559o06YNTp48KX3PZGVloVevXoiIiChRi/Df//637HFqairatm2LuLg4AEBUVJRp3nAV8bTF5JOSkjB9+nRYW1vj4cOHuHz5MqZPn47k5GSMGjUKgwcPxoMHD6pkwiIiIqo8atSU0eKys7Nx/vx5NGzYEM2bN4ebm5sshXdOTg7i4+OlYK9Dhw6wtraWtbl58yZSUlKkNj4+PsjMzMSJEyekNsePH0dmZqasTUpKCm7evCm1iYuLg62tLTp06KC3z7a2tnBycpL9kHnt2bOnwo6lNdAoCkJKGyF0c3PDp59+iiNHjiAhIQE///wzlixZIkuyFB0dDUdHR3h4eEg/zZo1w7hx40z4LkoJbCs5Q9aQVnRAqK4fqaZrmmpBbq7W16tr3AGQ1bgDgCdPnshqEd65cwfW1tYG1SKMiIgw6n1UN+pAu127dlKgXbduXYOLyUdGRuLTTz/FkiVL8PDhQwwePBiffvopGjZsiIsXL6JJkyZQqVRVOmERERGZX40KCCdNmoT4+HhcvnwZx48fx/Dhw5GVlYUxY8ZAoVBgwoQJiImJwbZt25CSkoKwsDA4ODggODgYAKBUKvHmm28iKioK+/fvR1JSEkaNGoV27dpJWUc9PT3Rv39/hIeHIyEhAQkJCQgPD0dgYCBatWoFoHA9Vps2bRAaGoqkpCTs378fkyZNQnh4OAO8chASElL+BwkMBIYMKf/jaAv6DAwItYqIAIpGbwofRsDFxaVEsxEjRhi/bz3UxbSrYlhYfA2pmp+fn9lGCA2tH5mvIyDUVePu559/Rq1atdC4cWMolUrUrVsXPj4+yMvLM6gWYUWOnldGugJtQ4vJq0d+mzVrht9++w0KhQLz58+HtbU1Nm/eDFdXV7z88ss1ImERERGVnxo1ZfT69et4/fXXcffuXdSvXx9du3ZFQkICPDw8AACTJ0/G48ePERERgfT0dHTp0gVxcXGyxAdLliyBlZUVgoKC8PjxY/Tu3Rtr1qyRXUzFxsYiMjJSSsQxaNAgLF++XHre0tISO3fuREREBLp16wZ7e3sEBwdj4cKFFXQmqqfJkyeX2CaEkCXZKDc7d5b/MQAotIysGVN2ooSVK4H/+z8gJ8eol2lOZTOm1l5aWlrhRXJeXvX58jl4ENi4EVi1ChAC3wKIAeA1apTekhvmkG/k77ldu3bStFBjahGGhIQgNjZWNnpeUSVPKhPN5C9qxhSTV4/8qoP9Tp06oU2bNli3bh2AwpHg9evXS4+JiIjKQiGq8twtQlZWFpRKJTIzM2v86GKjRo2wYcOGEtujoqJw8uTJ8j24OlFHOf85nZg6FZ3nzUN8nz7wK7qoPNS3L7rv24cjY8ei24oVxu1QoQAsLQEjRxhefvllWRITHx8fTJw4ET179sRPP/2k83X+/v6Ii4vDY5UK9k5OuK9QoG5ZRjYrk7p1gfR0QAgcev11RG/ahB8B5KalwdvbG6mpqbCzs0OfPn1KrLmrKHcsLFBfCDy8eRO1tNRhLStdN2G2bNmCy5cvS9vWrVuHlStXolOnTnByckJGSgpOJyVh7EcfScl2ynqTgYiIqide41acanOTnuiNN96Ap6dnibIfo0ePNlOPykFR8KQ1G21ZA6tirzNkJKe0JCZ6M3ECKChqVy3uRhUbLbMHUAuArUbJDQAlktCYg64po2UVGxur9SZM8ZsC6pInUrIihQJ5AHr85z9SQGhwplSSUalULN9BRERPpUatIaTqbc6cOVprQEZGRpqhN+VDaEvk8TRrCDVeDxhevL60JCYqlQpHjx7FiRMnpJ/ExER06tQJgOkDE3PKUK/Ty8+HEALeANS/CX0lNypC8fqRwsiRYG31J4UQUlId9U0YPz8/2U/xmzDqkifSPgDEA7Kpp5rr5TZv3oysrCytmVKruqSkpDK9bu3atWjXrh1efPFFzJs3T9o+ePBgU3WNiIhqKPPfsiYig2kNCKUnn368rcRIDgqTYPTo0UNWR09dPkKTZq09dSbO4slX1Jk4dWW7rIruZmaiDgA8egQUFOBTAMXfnWbJjfJgaP1IXYG4rtefOHECDRs2RMOGDfHyyy9L2ZNTUlKwY8cOzJkzR+v+it+EKVHyBEBHQHajofh6uaddH2fKGoBltaLYFG4hBFauXImIiAijM7AuXboUS5YsQYsWLbB9+3YMHz4ca9euRVZWFoCyTbm9ceMG3N3dpceV4ZwREVHFY0BIVIVoGwVU6HnOWIYUrzfEEB0ZV/38/AAYP2VUnaSkMsq3sCicdqsRbClQVGtR29TecmBo/UhdSWV0vf75559H69at8dNPP8HT0xNNmzbFtm3b0LdvX3zwwQc4cuSIQf1TlzyRqM+LxnrG0m4yGOtpawCawueffw4PDw8EBQVJnwULCwvUrl3boNcPHToUW7duxRdffIHffvsNCxYswF9//YVnnnkGHh4eeOGFF3Dt2jWsWLECGzdu1DvldteuXbJ9CyEwa9YszJ49G6+88gqAynHOiIio4jEgJKpK1EGfZqDxtFNGNRhSvN4UdI0QmjVTbBmpL/Tzc3PLPamQLur6kcVLhqjrR0q90vEZ0fX6hg0b4tGjRzh37hycnZ0RHR2NgIAAZGVloU6dOiZ+F09P88aBugZgkyZNpBqAAAyuAWgKKSkp2LhxIzZv3oygoCCMGDEC33zzjcHrmtWjfxs3bsTkyZPx9ddfo0WLFkhNTcWwYcPQsGFDzJ07F7Vr1y51XW9YWBg6duyIrl27SnVAMzIycPLkSSkgNOacFR9dJCKiqosBIVUbe/fuxbRp02BpaYnIyEiMHDkSADBgwADsrKCyEOVN25RRKVGwCQLCEiM5pbh//76UfKZu3boGv04aISw2gmZokpLKIiQkBLOK3kP248eyOoTFRwjVJTfKg67ph8XrR+oKxHW9fsyYMUhKSsKCBQvQunVrdOjQAStWrMC//vUv1KpV6+k6/RQMuXGgrgFoaWlZphqApqBQKBAcHIyRI0ciNjYWgwYNwt27dw1+fYsWLfDDDz+gU6dO8PLywsmTJ7FgwQKcPn0ad+/exfvvv4/Dhw9j9OjR2L59u94pt0ePHsXmzZuRnJyM8ePHw8fHB8ePH8eMGTOk4+k6Z3fu3JGNMGobXSQioqqLASFVGzNnzsSePXtgY2ODadOm4ciRI1i6dCkePXpk7q6ZjNBT0L28Kshs3boV9evXx8svvyxt279/P2bMmAEXF5fCMgIZGUhPT8fs2bPRu3fvUvdZoCNRSGXNFKsvAFGHfDkaReC1TRQdPXo04uLiyqeDhtK3BrVI8bVo//73vwEUrkVzdnaGs7Mz9u3bB8B8N2EMuXHwtDUADWXIdGYLCwuEhoYiJCQEaWlpBu/7s88+w7Jly5CUlITt27fD2dkZ3bp1w5kzZ9CrVy/89NNPUoCpOeVWHbzVrVsXW7duxc6dO6UAbty4cdJ6xIyMDNnxdJ2ztLQ0LF++XO/oIhERVV0MCKnasLS0lKaxLV68GGvWrMHgwYPx4MED83bMlLSNbqi3ldPIx/Zhw3ALwI8aAeeMGTOwe/duWbr7rKwsBAQEGBYQ6hipMjRJSUXTG4DcuAGgKMgVAuqCG6JLF2mEULPkhjnpCsQ1GVP+wZQ3Yb799lvMnTsXbdu2Rd++fRETEwMnJydMnz4dgwYNkrV9mhsHhpb/KB4Yf/fddwCA3bt3o3///gCMn84cGhpq1FpYGxsbREVFISoqqsRzTZo0wfbt27UGmKVND502bRqysrKQmppqUD8uX76Mzz77TO/oIhERVV0MCKna8Pb2lk2ZCgsLg4eHB8aOHWvejplS0QiPbARKPWpo7AihgQHkGi3bFAoF7ty5IwsI79y5I0tKovfQJqpDWFHFzPUGINHRAP4OCFUAkgHg2DFZ8NG3b1+T9cdQxaepllZ2IiQkRLYWbdmyZfjPf/6js/yDKW/CLFq0CEeOHIFKpYK3tzdSU1NhZ2eHPn36lAgIS7txYIokRMUD47i4OGzfvh179+7FgAEDpHbapjNXxFrYPXv2AIDWdXyGBHBOTk5a64VqU6tWLUydOhUqlUrn6CIREVVdDAip2li2bFmJbT179jT4LnhVoC1xjHqbwtgRQiPbJycnY8qUKcjIyEBOTg46duwIIQSaNGmCWrVqoWHDhvjiiy8M2pd6LeTTBoQVVcxcXwDye7GAMAaACoBjsQBdXXKjIhWfpqo+7/oClg4dOkg3VtSv11b+IS0tzaQ3Yezt7eHg4AAHBwf07t0bSqUSgP4RvfIMvIonaenevTu+/PJL1K5dW8qWC2gflSxtSmt5ricFgMzMTPj4+GDgwIH47rvvTBbAOTo66h1dNEUgztIXREQVjwEhUVWiDuI0gg1FGbOMirw8rWvddImIiMCGDRvQpEkTadvVq1cREhKCn3/+2ahjm6oOYWmZFSuC+jehHn1TF9zILfq9pKamonXr1rIgwtS0jfRom6aq7mPxgOWdd94BANy+fRtXr15FUFCQ7PXayj/oWhOp7SZMiYt8AEoAc48dky7yvb29pYQm6qy2OTk5qFevns73rS/wMmYKqjbF6yIeOnQI69evx1tvvSVrp206c2lTWo1ZT5qdnY1ff/1VSt7k5eUFGxsbWRuVSoUxY8ZIJSo2bNgAX19f/PLLL/D19cX//d//GXRjzNBz9tFHHwGQr1vUFoiXZQSfpS+IiCoeA0KiKkTKMqoZ/KmnjBoZEObn5hr1BZCfny+N2qg5OTkh34BEJcXpmjJqbJISUxczfxrqEUI19e8jIiJCythYXlQqFZKTk0uMpqmnqap7pT7v2gKW5ORkrFixQhbg9O3b1+BgU58SF/kAHAAMnTpVusjXlt3WxsZGa31CNX2BlzFTULV5mrqI6hFlbedu3bp1Bp+7devWYeXKlejUqROcnJyQkJCAo0ePon79+njnnXfw/vvvAwAGDx4sTdfeuHGjrKbkyy+/jA8++EDn9FB/f38pODX0nBmaDbgsI/iVoVwIEVFNw4CQqhVD7qZXaerpoZqBh/rfRq4hzM/JMeoLYN68eQgMDISNjQ2cnJyQmZmJvLw8zJ8/36jjAn8HtsVHKI1NUmLqYuZPo3hAqP63tbV1uR87JiYGKpUKzs7Osu3SNFV1v4rOe/EpsOrXFx/tmjZtGt555x29waYhSlzkFyVCKetFvuZI1o8//lhiJCsyMhJbt241egqqqZUWqJdm1apVOHz4sBTc+fj44O7du+jbty8cHBwwfPhwrF27FkIIWYmKHTt2oFevXkhKSpLW+QYFBZXYvxACycnJ0mNDp+0amtSnLCP4laFcCBFRjSOoSsvMzBQARGZmprm7YnZr164VPj4+IjIyUkybNk2MGzdO+Pr6inXr1pX/wQsvucv9MPEjRggBiPgePf7e1qmTEIDYP2SIUft6cOOGYf0u1ubRo0fixo0b4vHjxyWa3rx506BjX9q1SwhA3LSwkG1/6aWXZI9Xr14tAgMDRceOHQ3ab3n55ptvhLe3twgJCRFr1qwRLVu2FB07dhTff/+9uGRjIwQgru3bJ34aNEg6X08ePDBpH06fPi0GDBggXn31VXHkyBFp+xtvvFHqa9OK+nRl2zaDjnX+/Hnp31u3bhX3798v0ebgwYNCCCFyc3NLPJeVlSV7PGLECJGXl/f3BkDkAqKHxufYGJ07dxYPHz4UaWlpws3NTWRkZIgnT57IPj//+te/5McUQmRnZ4thw4aV6Zia/vrrL/HTTz+Jy5cv621X2rkrTZ8+fcSBAwekx76+vmLfvn2id+/eQggh4uLiRPfu3YWXl5fIzs4WCxcuFH369BGtWrUSXbt2FREREeLrr78W/v7+wsHBQWzevFlcuXJFXLlyRQQFBYnLly8bdM5eeukl0blzZ+Hj4yM2btwoPffKK6/o7f+wYcNKnKN169YJW1tbg96/Jm2fMyKq3niNW3EYEFZx/GP5W7du3UR+fr5sW25urujWrVv5H7yiAsLhwwsDwu7d/97WoYMQgDjw6qtG7SvzypUyBYT69O3b16B2F7ZvFwIQNywtZdvHjRtX4gLywIEDolWrVgbtt7zoC0B+KwoI/9y9WxwcOPDvgFClKnzxnDlCmKD/L730krh06ZK4fPmyGD58uFi0aJEQQhgUVN0s6tPlLVtKbRsXFyccHR2Fj4+PmD59uujdu7d47733RKdOnYS3t7fw8/MT69atEwEBAaJFixbCwcFBODg4iNatW4uzZ88KIYTo2bOn/oMU9ceQi3xtNxn8/Pykf4eEhEj/LmuAaYghRTdcVq1aJfz8/MTUqVPFK6+8Ij766COD96EZaBvi5s2b4l//+pfw9fUVXbp0ER4eHuIf//iH7JykpKSIfv36yV63b98+4evrKwYNGiTq168vevbsKZo0aSJ8fHxKfG42bdpUaj/atGkj/Pz8xLhx48TQoUOFi4uL8PPzE+3btxdC6A7WgoODjXq/RESaeI1bcThllKoNe3t7xMfHo2fPngAKp0PFx8fDzs7OzD0zHaGe+qc5faqMSWUMqUmnS5nWlT15AsTEAFOn6ix/UFkzxRoylU7k52tdQ4jp003SB1Mk0Cmt7ARQOG23Y8eO+OGHH/Dss8+iX79+GDNmDD7//HP8/vvvcHBwQPPmzZGSkoKgoCCcO3cO1tbWmD17Nnr27ImrV68aXALFkOmb2hKw6EpAU7duXYOOCxROQ9R3/OIJVnbt2oU6deqgoKAAu3btwksvvQSgcIrjBx98IHutrrWwL730klRI3hBubm5a11aqpaamom3btti9e7dsu2ad0O7du+PAgQNSndCsrCzZ52bEiBGl9uPatWvYvXu3tAZ06tSp2LJlC86ePQtfX19cu3YN+fn5sLe3R/fu3VG/fn2jsr3euHFDa/kMIiKqGIYVDSOqAtatW4fvv/8e3bp1Q9euXdG9e3f88MMP0gVjdaDQkmVUW+ZRQ+Tn5JS5HyqVCkePHsWqVatw4sQJnDhxAomJiejUqZPuF+3bB8yZA6xYYbI6hHv37kWXLl3g6+uLTZs2Sds168SZgjoAAaAzA2ZBXp4sEDI0KDKUOoGO2qxZs+Dn54fExESD9yFKSQDk7+8vrd1ycHBAq1at0KNHD0ybNg22trZo3LixFHQplUpYWFhIayT/9a9/wdXVFQEBAYYHPRrnqHPnziV+OnXqhBMnTshekpSUhN9++w3Dhw/H+PHjAQBnz55F48aNcePGDXTo0EFnNsrk5GS88sor8PX1Ra9evaTSDJrr6NTUCVYWLVqE999/H3Xq1EFMTAwcHBwwZcoUxMTE4NChQ8jVkjFXvRZ23759OHHiBMaPH4+CggIUFBQgPj4effr0wcSJExEXF4f27dujR48eOHbsmGHnTENERITW7RYWFrhz5w6Avz836jqhZfncODo6Ij8/H+3atYOnpyfeeOMNPHjwANbW1jh69CgKCgqwceNGzJ07F6dOncKAAQMQGBioNUPsrl27ZD87d+7E4MGDsWvXLp3HT0pKMrivRERkPI4QUrVR2t306kBoC/7KOkJoZOmHFStWSP9++eWXsWTJEnz99deIiIiQLkz11dpL/eMPtAZw5exZiEaNjDq2LsYmoSkrfRkw/7C1BVB4PmVJctS/Ixsb4CmCbzWTJNApCgj1JRgZPny4lLnVzc0NoaGh8PDwkEZ/8/Ly8MwzzyAwMBC3bt1Cv379kJeXh7y8PKxatQp169ZFVFSUQd0RBQVQFCWWMTQBi2bmys6dO6N58+bYs2cPmjdvjmPHjuH27dsYMmQIjhw5UiLJVGRkJDZu3GhQ6ZTio8JXrlzB48ePkZOTg3v37mHlypXYtGmTNGqrydLSEnXq1AEALF68GGvWrMHgwYPx7LPPmrSsgq6ERV988QWioqKQlpaGnJwcvP7667I6ocZ+brp27SqdM/XNAmtra7i7u+P27dtSkpkXXngBn376qVRipXiSGSEEwsLC0LFjR3Tt2lW6aZKRkYGTJ0/ilVdekX3PqF+zcuVK2fcMERGZFgNCqrZyc3PR9bnnsGz9evgWTe+q8rSUnZhz5Qr2wvgRqXwjA8LPP/8cHh4eCAoKQrdu3QAUjkTUrl3boFp7WZmZAIArV66gvpEjhLoKeeu68H7w4IHhb8xEdE4ZVWfSLCgALMw7KaOg6POTmJgoK00AFH5+QkNDZdN21aOumtN2rayskJiYCCsrKzx+/BgZGRlwdnaGnZ2d9DkoPoWxxBTKou0DAgOx68cfARiQKbWI5tTZ5s2b4/fff8eZM2fQsmVLAIUjYhYWFiVKNmRkZODs2bPYvXs3wsPDpf3pKp1SfFrq8OHDMXDgQBw7dkwKzrXVJVS/VrMcSlhYGDw8PDB27Fi4ubmZrKzCnj17tG739PTEtm3bAMjLSmij+be1du1aLFiwANbW1ggKCpLKWqSnp8v616VLF7z77ruYPHkyWrVqBWtra2zevBl169aVZR1Wj56ePXsWb7/9NgDA3d0djRo1QmpqKsaPHw8fHx8cP34cM2bMACD/nlEoCm+xqL9niIionJhl5SKZDBfc6navKIvm5mbNyv9gFZBUJjo6Wox85hkRDYiRbm4iOjpaTJo0SbhZWwsBiH39+xu1v7+OHTMqqUxBQYGIjY0Vr776qtiwYYPIz88XAQEBQggDkogIIU5+9JEQgPipe3dxdvVqIQBxvVhSGV10JaupDElo1EllLsTGioMBAdL5enDnjhBCiNyi50VOToX1qbgbRX269OWXQgghPv/8c3GnqH+aDEkwoo+uz4GPj49IT08XDx8+FO+9954YB4h8QHR/+WWjj6GZuTIsLEyEhYWJ7t27CxsbG5GVlSWysrLEoEGDtCaZOnDggHBychK9e/cWQ4YMEb169RLdu3cXhw4dMrofZVUi46ooTMrytAlxOnXqVOKnY8eOQqlU6n2d5t9W165dRU7R53Tp0qVi2LBh4uHDhyX6pvl7fvTokTh16pRYsGCB6K6R7Eqznb+/v0hNTRVCCHHr1i3h6+srsrKyxJw5c8Rrr70mfHx8pNfo+54hopqF17gVhyOEVG0pnjwBAHS4dcvMPTGN2NhYTG7cGN5//IGzSiWeL1ont2P5ciA31+gRQvU6vgIYtphYoVAgODgYI0eORGxsLAYNGiStFTOm1p6A7rVsxiarMXcSmrSienpA4XuS/QaKfh856nqP+fmACWoS3r9/X5oCaUwSFeDvpDK6pt4ZkmBEH12fgxIjuUuWYDCAByqV0cfYsmUL1q5di4EDB0ojWatXrwYA9OrVCwcOHMD333+Pvn37lkgyVVBQINXp0xzZrEiaa13VrKyssHfv3qfab2lTbg3529JcExoZGQlPT08EBATg/v37std5enoC+Ht08cUXX8SLL76ISZMmydo9fPgQ586dg0qlQqtWrQD8PYLr6OiIadOmISsrS/b3qu97hoiIygcDQqq21ElTCkyc3MNc3njjDXj8/DP8AChq10b3oumZ/ZXKwgyeRq4hLGtSGQsLC4SGhiIkJEQKiHRNXdNGQHe2y6ct5F3RRo8ejf8U/bvElNGif0vrCp+ysPb+/fsxY8YMuLi4SFMg09PTMXv2bPTu3dugfZSWVEYfXdN2Nen6HJSYQgnAA8DbZZzau3LlSpw+fRrW1tb47LPPZAXa1datW4d58+Zh2rRpyM/Ph7W1NTp27Ij169fD3t4e9vb2ZTp2cYacF0MYknFVH11Tbp977jkAwN27d+Hs7AwbGxvk5ORg0aJF6NGjh+xva8CAAbLfU9++feHu7l5iTejy5csBaM8Aq5aUlIQ2bdpgwYIFaN26NdLT0+Hs7AyVSiW7keHk5KQ1WNX2PUNEROWDASFVW/nZ2QCePpNlZTFnzhwcVF+8aVz4vlanDnDrltFZRp8206eFhYVRqeIVmsFSUWBSoJClYTF4HVlFM2R0ReTny95j8d+HyMuTJ50xkmYpATV1KYGKCAg1L/51rUvTtV3rSC6AxJ9+KlNfDBnJKq8kUyqVSvodJCUlYcqUKXrX6Ol6rakNGTJE9li9nlM9+ubk5AQrK6sSiXc0/7b+/e9/l9hH27Ztce7cOXTu3BmPHj2SMt0KIaQ1fitWrJA9FnoSwTg6OuL77783+H0Z+z1DRETGY0BI1dbTlFWotIpGmRQao01aS1EYsquihA8VFTBrjgrqCkyKX9Sq6UtWo42pRm3U9I5cHjoEoKjshMZzxbO+FuTmwvi0IX9TlxLQDCjUpQRKI/WrlIBQpVLJgsvffvtN+veDBw8QFBQEIQR+/vnnEplKRVGWUmOUtRam5kiWEKLESJYpfv/FE6z85z//KbHvW7duSUGQvteqk7MMHjwYBw4cKNE+KSkJ7du3f6r+aurcubMUEJ47dw7t2rXD5cuXpc+vq6srnhRNqdf3txUREYEDBw7g3r17+OOPPzBgwAD873//Q6tWrTB79mwsWbIEZ8+exaRJk2BrawulUomRI0fC09OTiWCIiKoQBoRUbRlbVqHMKnJKqp6yE8ZOSSzLCGHxNP5eXl6wsbEx7HgaAaghBdKfhr6pbGWhb+RSUTRqqzPLaJH8nJynCgg1SwmoR2M0Swnoo+6V+rzrC1g0g9/mzZtL2UhDQkKwYMECCCGwY8cOzJ8/X2uWUmMYm+kWKKwP+O9//xtnz56Fj48PgMKR0s8//1zKbqrr91+82HxMTAycnJwwffp0DBo0SNa2+LTUa9euoVevXrCzs8PUqVOlvhRo+bvTN6W1IsoqqFQqdOnSBXv37sU//vEPAECnTp3wxx9/SM9fvXq11P2oR2EbNWqExMRE2VrA+Ph4NG3aFNHR0Th9+jROnz6Nr776Clu3bkVqaiq++eabEmUnAC0ZZ0cW5pwdMGAAdu7cqfc9ldfoKhFRTceAkKqtCgsIn3JtmDEUWoI/9bay1iE0NCDUlsb/9OnTGDt2rEE1zbSNED5tKG1sEpqy0jdyeVl93Lw8rVNG1eNHZQl+NGmWEigr9WdEX8CiGfxGR0fD0dERLi4u+Pjjj+Hh4QEACAkJkbZrGjdunM5jy24mAPBC2f5Gd+7ciaioKERHR+Phw4ews7PD1atXMXDgQHh6eur9/auLzatUKnh7eyM1NRV2dnbo06dPiYCw+LTUe/fuYePGjUhLS4ONjQ1GjBiBb775BlOmTClxnOKvbdOmDZo3bw5XV9cKKasQExODHj16AICUcAcoDOKAwmmbL774Yqn7Ua8J7datG7744gtpLeCtW7eQlZUFFxcXqFQqtG7dGq1bt8bq1auhUCj0JoKZOXMmtmzZgnr16mmtHWrs6CoRET29GhUQzp07V7p7aW9vD19fX8yfP1+64wkU1ov6+uuvZa/r0qULEhISpMfZ2dmYNGkSNm7ciMePH6N3795YsWKFVE8KKKzbFBkZie3btwMABg0ahGXLlkmZ9oDCgsjvvvsuDhw4AHt7ewQHB2PhwoUGj7iQflLAo2VKlyk97dowQ3377bf44ORJdAHQ9P59vNWqFZycnBCkUsEHKPc1hKtWrcLhw4dlo0J5eXno0aNHmQPCp1UZktBIo2+ljBBW2A0KfYrOu741eJrBr+aIlebUwq+++krr7nVlKS1xMwHAaQCvf/cdxrVpY9Rb0MxcmZubi9OnT2PAgAF49OiRVFxe1++/eLF5pVIJQHtCl+IJVmbPno2goCBMnDgReXl56NWrFx49elRiyuXkyZNhaWmJt99+W9q/EAJWVlZo1KgRfvzxR2zcuBGbN29GUFCQFFhqG00rK13rCTX7akwiKM2gEgA8PDxga2srPX7xxRdhaWmJixcvokePHti2bRvS0tK0BneWlpYYM2YMDhw4oLV2qCEJg4iIyLRqVEAYHx+Pd999F506dUJeXh4++OAD+Pv749y5c6hVq5bUrn///rL/ARYP0CZMmIAdO3Zg06ZNqFevHqKiohAYGIhTp05JxXuDg4Nx/fp1aQrTP//5T4SGhmLHjh0AgPz8fAwYMAD169fH4cOHce/ePYwZMwZCCK0JGMpbXl7eU2e5q2wqKqnM064NM9SiRYuwvF07eCckoM2tW/jj7l3Y2dmhi1KJaMDogNDYaZv29vYl0vjHx8cbnLZfFhCaaMpoZUhCo74ZUFBshLD4BWxe0efRrIrOu6HZJE2lxM2Ejz5CHgDfb7/FuGKJTEqjmbmyZ8+eUKlU2LJli+ymhK7ff/Fi80BhWZB69eqVaKsrwYo6kFq9ejW+++67Eq+LjY3Fhg0bSmz/6aefpP8fVHRZBfVaQFMpKCjAzZs3td6IUSeMcXd31xrceXl5ISkpSXpNWFgYPDw8MHbsWACGl74gIiITqqiCh5XR7du3BQARHx8vbRszZowYPHiwztdkZGQIa2trWQHnv/76S1hYWIjdu3cLIYQ4d+6cACASEhKkNseOHRMApOK8u3btEhYWFuKvv/6S2mzcuFHY2toaVYDzaYp2nj17VgQEBAgfHx/x8ssvi65du4rAwEBx9uxZo/dVGV387rvCguH29uV6nOz79yukML2fn5/4yddXCED0dXKStr9oaysEIOJeesmo/SX/979CAOKxgYXpb968Kf71r38JX19f0aVLF/HSSy+JCRMmiJs3bxp0vKMREUIAYm/37uL47NlCAOKKtbVRfS7N+fPnTbo/Q/xhbS0EIE7PnSvie/aUzlfGlStCCFF4fgFx/8yZcjm+Ief/WlEffp0xQ+vz5X3e+vTpIw4cOCA9LgDEPkC81KlTuR7XlDSLsQtRWGxdm2nTpolbt26V2L506VKt7fPz82X/H9Dm4MGDonfv3uK9994Te/bsEd7e3sLPz08cPXrUoL5r66uhf7fabN26Vdy/f19rPzX5+vrKHsfFxYnu3bsLLy8vnfv++OOPxeXLl2XbUlJSRL9+/crcXyKqmliYvuJUryEhI2VmZgJAieLOBw8ehKurK+rUqQM/Pz98/PHHcHV1BQCcOnUKubm58Pf3l9q7u7vDy8sLR48eRb9+/XDs2DEolUp06dJFatO1a1colUocPXoUrVq1wrFjx+Dl5SVLp92vXz9kZ2fj1KlT0ihMeYqIiMCGDRvQpEkTadvVq1cREhIiTb2qyipqil5FZTP19vZGftHU5RlFn5ucnBwo1aMuRq4hlEo/GNj+adP4y0YFy2ndpalHQowh8vNl70s9ZVRaQ1hOnxOjEujomKqr77wZk0hIV+KPEjUBAXQEsPiDDwzrdyWgHrVS0zXlcs6cOVq3R0ZGat1uSFmFKVOmYPPmzcjIyIC/vz8SExPh4OCAoUOH4uDBg6X2XVtfjU28pPk58PDwkM2q0TYlFQD69Olj9Ei0rpFZ9egqERGZXo0NCIUQmDhxIl566SV4eXlJ2wMCAvDaa6/Bw8MDly9fxvTp09GrVy+cOnUKtra2UkKB4lPUGjRoIBXPTUtLkwJITa6urrI2DRo0kD2vLhqsrwhvdnY2sjWmnmVlZRn/5ovk5+dLa1zUnJyckG+i9V3mVt0Cwk8//RQH1TcZioINGxsbzKtXD7h+vcxJZfQRBQWmWx+pTiQjRLn9bopftFckXQGhWllLLKiZIoGOrrWbus6brkRC7dq1w5EjRwxO/FHiZkLRut7Lxb5/ykNSUhKmT58Oa2trREdHw9fXFwDw5ptv6lwLqY2uANDUJU60sbOzQ5MmTdCkSRN4enpK69XVSxT0McXnprSEUkOHDoWlpSWsra0xePBgzJw5EwDw888/Y/bs2dJ+yhLcmfMmDxFRTVFjA8Jx48bh7NmzOHz4sGy7ZlIELy8vdOzYER4eHti5cyeGDh2qc39CoygvAK21qcrSpri5c+fK/gf7NObNm4fAwEDY2NjAyckJmZmZyMvLw/z5802yf3MrqKBArSKThahrDmquVZP+XcY1hPpeVZCXZ7L1kdpGCE29vtOYRBmmVjypTPHfx9N+Tp4mgU5pdQh1nTddiYTq1q2Le/fulZ74Y+FCYM0aICVF6/7LGiQbM2oZGRmJ1atXw8rKCtHR0UhISMDEiROlEgzA05U0KEuJE2PLt7i5uUlrH9XBUV5entaSF8WZIvGSts/B6tWr8fbbb2Px4sW4fPkysrKyYG1tjZYtWyI5OVnr50Ed3Bnz/s15k4eIqKaokQHh+PHjsX37dhw6dEiWGVSbhg0bwsPDQ7qb6ubmhpycHKSnp8tGCW/fvi3deXZzc8OtW7dK7OvOnTvSqKCbmxuOHz8uez49PR25ubklRg41TZ06FRMnTpQeZ2VlyaZ8GqN79+44dOgQHj9+jIyMDDg7OxucIKQqMCTgMYUKzR6ppQ6hRRkL0xtS+iHfhAlzPE6cAFAY1Joqy2hlIvLy9E8ZfcrPiUkS6Bg5iqwrkZC2sgpaE39ER+vdf1nOibHlTxQKBVq0aAEAGDhwIKKjoxETEyMr82BISYOnGWnTLDxflvItmzZtKrHNysoKe/fuLfXYpvjcaPscLFiwAF26dMGBAwfwzDPP4PXXX8fatWvRqFEjvPPOO1o/D9bW1ka/f3Pe5CEiqilqVEAohMD48eOxbds2HDx4EM2bNy/1Nffu3cO1a9fQsGFDAECHDh1gbW2NvXv3IigoCABw8+ZNpKSk4JNPPgEA+Pj4IDMzEydOnJAuIo4fP47MzEwpaPTx8cHHH3+MmzdvSvuOi4uDra0tOnTooLM/tra2snTfpmBvbw97e3uT7rMykKZylnPZCc2AsLQR3qeVk5eH0wASHz6E/enT8PLyKvMIoSFlOUwV7BacO4fG588XPaieASEKCrQGXFIW0qccsdZXC9FQxmZ3LbH2z9oaHTt2xNixY2Vrw/r06YOGDRsanaW0LCOExpY/cXV1lfq6cuVKXL9+Hd988w3CwsKMKmlg6EhbaYXnn7Z8iyZDMkMPGTIEISEhiI2NlW035nOj7XOQkZEhBdFvvfUWmjZtKgWBuj4Pe/bswUsvvWSy909ERKZRowLCd999Fxs2bMD3338PR0dHaa2eUqmEvb09Hjx4gFmzZmHYsGFo2LAhrly5gn//+99wcXGRLsaUSiXefPNNREVFoV69eqhbty4mTZqEdu3aoU+fPgAKC0j3798f4eHhWLVqFYDCshOBgYFSzUN/f3+0adMGoaGhWLBgAe7fv49JkyYhPDwcTk5OZjg71Y+pShuURnOUo6CgwKB1PWWxbt06zP/tN/QGkPn4MX5fvRqnT59GwKNHeLHw4Ebtz5Dz87SjWmqpFy5AqjaXny9NXVQYGcRWZgU6Rghlz5uJdOltZCBuTCKhsiT+KMsNB2PLn2zZskX6t3pkc9SoURg1ahT27dtncEkDQ0faSis8/7TlW/SZPHlyiW1CCBw9evSp9qvtcxATE4MnT54A+DsRTPv27aUgUNfnoTzfPxERlU2NCghXrlwJAOjRo4ds++rVqxEWFgZLS0tp7UNGRgYaNmyInj174ptvvpGtL1myZAmsrKwQFBQkFaZfs2aNLBCIjY1FZGSklI100KBBWL58ufS8paUldu7ciYiICHTr1k1WmJ5Mo6KmchZUUEC4atUqLHv2WfRMTsbROnXgu2wZ8vLy0MnBAdOAMq8h1BdGys6hEGUebZWNZOTnV8sRQlFQIK9DWIkK00sBYbE+aRs50ufkyZNISEjAuHHjjOuAjs9OWW7a6Bq1VNcV1Kd4/UVjRjYNHaFNSUnRW3j+afpfGn01EE2teDZQwLCbAuX5/omIqGxqVEBY2rQge3t7g9Yr2NnZYdmyZXoLyNetW7fU/8E1bdoUP/zwQ6nHKy979+7FtGnTYGlpicjISIwcORJA4UXTzp07zdYvUxHqKZHlfBzNLKPqC5zyYG9vj1/++gs9UTiypr6zLqViKIc1hLLpsPn5UBgwRU0bK82+FcvGWW0Uf18mTirzND4CUAvA3SNH4FI0ilSWkaNOnToBgMEBYT5QuAY1Lw/Q8ndRlnPyNOVPyhrEGEOhUOgtPP+05Vs0+fv7yxLavPHGG/D09CyR5VodjFYGpnz/RERkGjUqICS5mTNnYs+ePbCxscG0adNw5MgRLF26FI8ePTJ310yioqaMFh8hLC/r1q3D+LZtsRlA5s2bcO7eHR07dkSMoyNw/75B66A0GXJ+NKc5FuTlwbKMAWF+0dSywgfVa4RQPe5VvOyEOiCU1hCaMSDcCmATgD8aN8YzAwZI240dObIFUEfP8/Hx8ZgzZw6ef/559O/fH1MAKAHMPXIEPsVmZgDmOSflvc5XzcLCAqGhoQgJCdFbSsgQ6vXqmoQQSE5Olm0ztgYiERERwICwRrO0tESdOnUAAIsXL8aaNWswePBgPHjwwLwdMxFzTBktzxqObm5uGN+gAbrfv49jDRrA5+efAQBn164F8HdJCoMZUJheNvqZkwPLYut8DJ1yKAsICwqMXstWFRQvO1E8QDfnGsIQAJ4A6jZogHYaUxw1R44Mqde3FcAreo5TooA6AAcAQ6dPx8Giz6umirhps2jRIkRFReHs2bN4++23AQA5OTlYtGhRieUD5cGQwvOlSUxMxIEDB2SJWIQQCA0NfdruERERMSCsyby9vWXracLCwuDh4YGxY8eat2MmUlpAmJeXZ1CWvlKPozmKVs6BjlSHUB38Xb9e9iyjBlyMq0fyJgPImzYNVhoBoTFTDnWNEJb/OE0FKmXKaEWNWGszDYUje7eKfT41R44MqdenLxgEtBRQLxoZs9QckdM4LxVRK3Tnzp2IiopCdHQ01qxZg1atWuH27dsYMmQIjhw5YtS+Xn/9dWzcuLGceqpbdHQ0HB0d4eLiIttu9FpOE7px48ZTB7pERFQ5MCCswbStgezZsydSU1PN0JtyoK5DqHExmpycjClTpiAjIwNWVlbIzc2Fi4sLYmJi0K5duzIdRjZCWN6jkuppiEIge+9e2Pr7o12x5wxmSB3Cogv2WAD/7dULdsUyLBo65bAgO1v6t0JjhLA6BYQlRggrY1IZPTcsNOv1bd68GbNmzUJ4eDjyDAhk1SPFJQqoKxTIA+T70OiDMUGyISOY2jx8+BDnzp2DSqWSsjy7urrKRtuK08zWeefOHcTHxyM7Oxv37t2Dj49Pmb4zVCqVLDmZLtpuVEVERGhtO2LECNnjjIwMadbH0yg+9Xfs2LFwcHBAWFgYPD09IYTArFmzMHv2bLzySmm3CcqGAScRUcVhQEhlYmx2QnPQNgIWERGBDRs2oEmTJtK2q1evIiQkBD9rmdKmSdeIomwNYXmPAmmMBh7cvBn9tD1n6K60BMy62rwB4LlmzfCMt7fseUOTVWgGhKKgABfv3sV8FJ7TGUePGnxxXxlJZ6+gQD5tt/gawspQdkLPtGLNen0AMGvWLKxfvx7r1q2T2qjDJBEdLa3D0xwp1lpAHcD3q1dLj0V+fpnWVeobwSyxdnHKFCiVSsydOxdt2rTBggUL0Lp1a6Snp8PZ2RkqlQp169bVeSzNbJ3jx4/H/Pnz4erqiqioKBw7dkzvd8batWuxYMECWFtbIygoCO+//z4AoHv37qhXr57WPtauXdv4G1XDhgEZGcD+/dL3sbu7O3x9fTF8+HAMHTq0RHIZQ6mn/r7zzjvYuHEjcnNz8cwzz2DZsmX4xz/+AaAw+Dx58qRJAsJdu3bJHldEwElERH9jQEh6lVddq4qgbfQhPz8fSqVSts3JyUnn2j9DRhRlI4TlfNEvTRkVAhbFszaWQ5ZR9YjnHACZxUYHAcOTVeRrjhDm52NpYiK2ArivUGDBkiVapydWFeopu6WNEJpzyqhUCEXjc56UlIT27dtLjzXr9amp6/WpxQLYACA/IEBWXqW0kWKhedMkN1fqj+Y5KW0Kt74RzBJrFxMT4eDggKFDh+LgwYMl9uXo6Ijvv/9e57E0s3XWrl0b/fr1g5OTk3QDRN93xsqVK3H69GlYW1vjs88+w/Dhw7F27Vr8/vvv2L59u9Y+5ufnG3SjSvZ9vHVr4TmMjpa+j7t06YI1a9Zgy5YtGD58OKytrTF8+HAMGzZMb3BY/Hv+xo0b+Oyzz3Du3Dl4enpix44d+Oyzz5CcnAx/f3/4+Pjg+PHjmDFjhs59GiMsLAwdO3ZE165dpbW3pgw4iYhIPwaENVx2djZ+/fVX3L9/H3Xr1oWXlxdsbKRCBhVa18rUtJWdmDdvHgIDA2FjYwMnJydkZmYiLy8P8+fP17oPQ0YUK3KEUHO9oE0FBISaF+xPM+VRc4QQRfX6WgC4pVAYPT2xvBk7NVEzy6iFZhBY7L2U15RRraP1hw8DISHAb78B1tb4EoVf9n9dvIifV6yAEAIrV65ERESEzumI2ryBwuQ0v+TloVevXtL20kaK8zR+//kaAeHF69cx65VXDBoZ0zeC2bVrVzRp0gTvv/9+4drFxo0BoMw1QTWzdRb/zvj+++/1fmdYWFhIpWciIyPh6emJgIAA5Ofny9dXavQxJyfHoBtVsu/jBQtwD0C9wEDp+1ihUKBx48aYMGECJkyYgL/++gtbtmzBa6+9hvj4eJ3vt/j3/MmTJxEQEICffvqpcOovCtcx7tq1C/v378eiRYuQkZFRYj9lneZ5+fJlKeAcP368yQNOIiLSjwFhDbZu3TqsXLkSnTp1gpOTEzIyMnD69GmMHTtWGhWoCnWtdNE2ItO9e3ccOnQIjx8/RkZGBpydnWFXLHOmJkNGFCt0yqjmCKGO5wymnjKq73DlEBAqCgrgbGuLKwBqFQWx2qYnlqa8pi0bklxFk6U6EC8okP8Oip2vpx0hNGa0XnzyCRRXrxZOKaxfH/8B0AyAr4UFatWqBaAwcKldu7ZRfVCHSZ/064fn09LQoEEDAKWPFOc+fiz9WzNz7cLt27Hj8GGDpnBrjmBqnovIyEjs2LEDUVFROHr0KC5fvgygcMTRFGVgjP3OGDBggCxw7du3L9zd3dGnTx/5+kqNPhp6o6r497E/gDg/P+n72NPTE8DffxuNGjWCt7c3duzYgYkTJ5aYqurj46N1v+r+aX7Pnz9/HrVr18auXbugUChw48YNdO7cGWFhYWjWrFmp0zxLu9EydepUqFQqLF26FEuWLNEacBIRUflgQFiDrVq1CocPH5YlV8jLy0OPHj2kgLBK17XScwFub28Pe3v7UndhyIVa8Vp95UmhkVRGUWz0wKICCtOXlSybZEEBZnfujGbbtuGeRpvi0xPVKnrasrHJVaQRwqKRT6kYu4kDQmNG6//88080A/A4Kwv29evjLIBvAXz11194y8YGI0aMwDfffFPqjZ3i00rV9gK49scfQFFAKG3fuxfTpk2DpaUlIiMjMbJoe2hUFPYfPw6gWCkTI6dwqxU/FwOKaitqjoJZWVlh7969OveRlpYGNzc3vcfRZOh3xr///W/Z49TUVLRt2xY3b94s0VbdRysrK71BZ+fOnaV/f7pgARo0agRnAGfx99/H5MmTUatWLURrTCEFtJQC0TKd1pDv+eKzJVxdXVGrVi3Mnj0btWrVQoMGDXDjxg28+eabcHd3h52dHVxdXaXgLzIyEm5ubliwYIHOGy2Ojo6YNm0asrKykJqaWuZEQkREZBwGhDWYvb094uPj0bNnTwCFF9nx8fF6735XJaZYs2XI6IDmcSoqyyiEgEWx92dhZMBmSIBXUMp78/f3R1xcXOnHKp5ltGjkxpAJfRU9bdmQ5CqapEA8Px+KggI8AVALkAJCUyWVMWa0Pu32bTQD8PDOHdg/8wysAAQDaNuxI87m5WHQoEG4e/eu7DUrVqyQPS5tWmnuo0clts2cORN79uyBjY0Npk2bhiMAlgJ4pDlCqPE5esfPz6gp3MaeC31rEkePHm3QZ/dpRURESCNu2mj2UVfQqVKpkJycXNhWocCGmzcRDMAOfwfDmjT/NkqUAinjdNriwfvly5cxf/58HD58GKtWrcKzzz6LTp064bfffsNrr72GvLw8LFmyRAr+FAoF7t69i2bNmpV6o8XJyQmdO3fGyy+/bNRoPRERlQ0Dwhps3bp1mDdvHqZNm4b8/HxYW1ujY8eOWL9+vbm7ZhJSrTstI2f379+X1k3qyzaopm90wFSjaIbQTCqjGWQBgGUZC9PrTr7/d7AbBOBJdDTsNM6VEALJyckGHUpojApplp0wZFSzoqctG5JcRZNmSQeL/Hw8QmFAKKu9iKe/QWHUaH1RBtDs9PTCkcuizZZFxcxDQkKQVlQjUO3zzz+Hh4cHgoKCpAyi+qaV5mRlQQghtQUKgwx12YPFixdjzZIlGAzggUbwqDlC+IK7O96NjTV4OqaaMedCc3RNTQiBS5culXqc4rp3744PP/wQzZo1k24YlMa6+FrfMoiJiYFKpYKToyMsAfQp+mwFAaX+bZQoBQLjp9MKITBv3jz0798fCoUCzs7OePz4MfLy8uDp6YmUlBRs2LABtra2aNy4MaytrWFtbS0L/q5duyaro2jINPGnKYVCRESGY0BYg7m5ueHTTz81dzfKT9FFg2ZAuH//fsyYMQMuLi7Susn09HTMnj0bvXv3LtNhKnKEUDMgLCgWcFiUcQ2hvlqA6mA3EcDGsWPRsGNH6TlRFFwYQj1l9ALkI4T6glG1yj5tWR3UioICWBQUQD0WlqcxKgZUbJZRi6Ig7UlmpqzMgxSIW1iUSP6RkpKCjRs3YvPmzQgKCtI6rXQRgCgUTlUMjY6GwyefICcnB4sWLUKPHj3g7e0tG10NA+AB4E2NgFA2Ulr0+dJ1w+XP1avh8OyzqN+9e8npqCMLJ6QOGDAAO3fu1HkuZKNrGvr27avzNUFBQdK/jxaVRfn999+RnJyMuLg4/PLLL/D19cUHH3ygcx9qe/bsKbWNNprTdYcMGQIAeJiejloAbIXADRQm+XlUbKQ2OzsbL730Evbt24e6deti7dq1JUYDS5tOu3DhQkyaNAlnz57F22+/jczMTFy9ehUvvPACmjZtirt37+Lx48eYM2cOvvzyS0ydOhUPHz6UatjWr18ff/31l7S/WbNmoUWLFnjrrbdkx9F3owUwfrSeiIjKSFCVlpmZKQCIzMzMp99Zbq4Qt28b1LRv375Pf7xy9tOQIUIA4oKdnbTN19dXZGVlydplZmYKX1/fMh/nVEyMEIWTOcXFo0fLvB9DHG/QQAhAnHZ2FvFDh0rHFYA40qSJUfuKHz5cCEDcUSh0tknduFEIQHwOiF+2by/x/KZNmww61qERI8RjQJxxdxfx9eqJhR07is6A6AKIjRs3Su1eeeUVo95DZZCuUAgBiIOBgeJko0Yitejx76tXCyGEKCpGIY6/916F9emEu7sQgDj/f/8nch8+lD4jZw34u83Pzxdr335bDKhbV3Tq1En2XM+i/fgDYuuMGUIIIW7duqX776eofXLRuRBCiLRTp6Tth959V39n1J9vIYSPj49IT08XDx8+FO+9954YN26cyM/PFz169BDffPON8Pb2FiEhIWLNmjWiZcuWomPHjuL7778XW7duFffv3y+x64MHD+o8bLNmzcQff/whrly5Irp16yauXLkiunbtKrp16ya1eemll/T3Xe3UKSGSknQ+3bdvX/H555/LfpYvXy7atm0rPv/8c1nbAf36CQGITwHhB4ipgHglIEB89NFHQggh1q5dK3x8fERkZKSYNm2aGDdunPD19RXr1q3T28WFCxcKIYT45ZdfRNeuXYWTk5N48cUXRceOHUVqaqrw9fUVv//+u+z3XNr3Zm5ubmlnRqLv90dENZdJr3FJL44Q0t/GjQNWrZKVL9C8U64mjJgqaFZapiVaWFjgzp07cHR0lLbduXNHlljHEJpr5zSniVbUCCG0TBk1doRQPWKl752rRwgjAFwtyk6pacSIEYYdLDsbOQCEhQUUBQVYfekSDhc99eGJEzhy5AiWLl1aYrSjKtDMMqrIy0O2pSWQlydNGVWf3wITTycWxaZralKPiuc9fiwfkSvWB22JVSwsLBD81VcIyctDWrG/84cAzgFQAWhc9HlwdXUt9e9Hsw6lZn+MGTUtMR11zRoMHjwY9+/fx8yZM7F161bUrVsX3t7eSE1NhZ2dHfr06VMiW2lqaipat24NPz8/nceKjo6Go6MjXFxc4OXlheTkZLz88ssQQkClUiEpKUn2HaJXhw4AgKDXXsODBw/w888/o0+fPrC2tpa+S//66y+DputmpqcDALYAiEfRZ2vbNrzcpw8++OADgxKFabNz505ERUUhOjoaa9aswejRo7Fw4UIMGDAArVq1kvanud/Svjf1rd8sbtGiRThy5AhUKlWJ39+gQYMM3g8REZUNA0L62/bthf8VQlqDlJiYiAMHDsj+xy+MmCpoVloCwi+++AJRUVFIS0uTLqgbNmyIL774QusuDAmINS9qy3sNoYWeNYRGTxk1YNqm5vt5qveWk4NcACgKCC0A1AGQD/nF/YMHDwzana7sl6bw7bffYu7cuWjbti369u2LmJgYODk5Yfr06VovTtUrxERBASzy85GjDgiLTRnVl/XWEIsWLUJUVJQ0jQ+AbLqmJnVAmP/4sWzNXvHENroSqxTk5cEaKDGttA2ABQBaA8i4V5gjVqVSlboOV1aHUKM/iX/+ieguXQyaBqo5HXXo0KHYunUrkpOTsX//ftSvXx+TJk2Cr68vevfuLSU/0QxKhBDYvn07li5dqjfJCwBZEp3PPvsMy5YtQ1JSEq5du4bDhw+jW7duWLNmjd59FJeYmIgBAwbg3I8/YtiwYVKAGRoaikOHDpU6XRcAmjZogB8AeAPYAaAXgJmRkVLt2LImCnv48CHOnTsHlUqFVq1aoU2bNvjvf/8Le3t7pKen44svvkBERAR+/fVXdO3atdTvTWPZ29vDwcEBDg4OOn9/JHfv3j0sWLAAM2bMgIODg7m7Q0RVHL9t6W/q0a2cHMDWFoD8TrmmcePGVXTvjKYtqYynpye2bdtm8D4MCYiFxqhgeY8QWmi8J4VmKQeUPamMpcb5Kc5UNRYVOTnIUSgKRwiFQAtHR1zJzESzoufDwsLg4eGBsWPHyl6XffUqln38MRxeeEHaJspYVN1Qxo5WSF+iRQFhrpUVkJ2NPBMnlSk+itOqVSvcvn0bQ4YMwZEjR2RtNQPCgrw8qNOqPDp9Gg5FSVaEnsQq0qc9NxfQSIqyWqPNkaLPm6OjI77//nu9fb+tkdFU83O0+tQpHL548e+spHpGipctWyb9OysrCwBw+vRpPHjwABMnTpQCY/WIYE5ODurVqye9ZveKFeg+bhw+bNNGb1+Ls7GxQVRUFKKioox6XXHR0dGotWcPlgP4KSMDHh4eAAq/SxUKBYKDgzFy5EjExsZqzQILAFPHjMGeHTuQjMLSHwUAMr74Au6Ojvj666/xxx9/YOTIkahbty6USiWsra1Rv3593L9/Xyr9oC3obtOmDRYsWIDWrVsjPT0dq1evhkqlwv379+Hs7AxnZ2ccOnQIvr6+GD58OIYOHVoikY2a5uwJQ5J3+fv7w9vbW0p8o05qlpOTY/gobA20a9cuzJ8/H15eXnpHf4mIDMGAkCSPVSrYA8Djx1JAqOuC2+CpgmakKLrw1BfwlMaQgFgzg2a5ZxnVfC8mCght9DTRTFyjrTC9obXcFLm5yFEoAEtLKAoKMKFFCzQrSjoh8vOhsLREz549paQUajeffx6rMzPhERBgcPbLp2XUaIUQf3+J5ufDoqAAeUUBVMGTJ7Lp108bEBYfxQF0T9eUBYS5uVABSAZwtk0bvFhUDxDQnVhFnYIkX6XCnZwcrb9jYcT03pkbNiDgww8ByJPtWABap4E+ePAA+Tk5OsuStGjRAj/88AM6deqEHTt2YM6cOThy5IgsgLCxsZFljHXZvRvOAOb36mVwv00pIiIC8UU3oxw0ahJqfpdaWFjozAILAIrHjxEFYDwK/267ADgD4HRuLl57/32tU2V9fX1x4MABvUH36tWrSxyreKDfpUsXrFmzBlu2bMHw4cNx4cIFNG7cGAqFAr///jucnJzg6uqKpKQkaZppy5YtpeRdx44dQ9u2bdFAo3aleraFtlFqGxsb7Nu3D3369Ck1CK2J1L+/nGL/HyAiKgsGhCSR1vk8fgwUXaRVZdIauacICA0JiAt0rI8qD5pTRosXPjf6fRYFhLZA4fRRLYGFZukEbe9NNuWwY0egcWPgu+9KHisnB3lFI4QWQsjWsom8PCh01ERzzsxECoANI0diy7ZteqfTmYqu0QrN0SYAQHY2BCDL4GmZn4/corV1+U+eQOTk/F24/ilvFhQfxXF2dtY5XVP9OSl48gQFT54gBoXr/or3Ydq0aXqP+eT+fYyOiNB6wZ6vJSDs3Lkz8OQJYGkpjSwKAKnXr0tt8jRe92ydOvKspBojxY/u3oWu8SHNaZzbt2+Hs7Nz6dM4i87Jw5wcXL16FU2bNtX73rVRqVRPNWqVX/Q3Vnz0uDhtWWABILdoZFR9E8cegAOAegqF1psXuadOwfLYMdS+dg1W7dqVaXq2mkKhQOPGjTFhwgRMmDABTZs2xYABA7B48WKcPHkSDx48wCuvvIJOnTpJr9EMKD08PPDgwQOsXbtW2lba8oPiQai1tTWGDx+OYcOG1fjgUH1zzJjyIUREujAgJIl6YlieSgWrhg3N2heTMCBpipqhI13aFJQSNJmSehTQQsuUUaPXEGomw3n8GJZaksaog93OAJ5Mngy7efOk50pMOTx1qvBHC0VuLnItLArXEAoBC81SHTk5sCgakS5xfBQGXEN69cLro0bpnU5nKtpKsRQfbUJuLmBnh4KYmL9HsQoKYJeXh+yi9VoF2dnIe/To7zWGT/nZMGQUR1J0c6DgyRPkPnyIIertxfqgmVhFW72+3EGDcPnGDemiU/NvSXOEUP33o1KpkJyaCis3N+T9+Sesin6vHTX+tjSDoUhv7xL1/NQjxWlJSToDQs1pnIYGaQVFF9Drv/gCr37xBYSeGyhr167FggULYG1tjaCgILz//vsAgMGDB0vrD43+zigokJJC5ZQSEOqiDgjVvFG4DlcoFFpvXpxdvhzeAHYuWoTBRcGyrunZpWnZsiXi4uJgYWGBunXrYtKkSQgODsahQ4fQunVrAIXTPwcOHIjly5cjt9gNqzfeeAM//vijNFVWTd/yg+JB6F9//YUtW7bgtddeQ3x8vFH9r27UI4NVMREXEVU+xqVWpGpNfeH6qChZhFp2djZOnz6Nffv24fTp01VnikpRMGPIyNnTjDZpThnVNq3SlNTvxbKgAIpix7J6ioAwu9iFppo62FUB2DhrFk6cOCH9JCYmykYD9FHk5iLPwgLC0rJw/WNuLrIBnAawV8/nSh1sPb5/X5pOt337dnynbRSyIt2/X/hfjfWoioIC2Obno8DJCUBhQJijMQpToXUI1QFhdjZyHz6UtqsznSYlJaFr166yUSKVSoWjR48W/n4BnADww6JF8PLygqWlJfYXr1unMfVT/fcTExMDFQCkpSFX40J1lEawKRtZ1HNOstXnuMjatWvx/+3dd3wVVf74/9fcnh4SQg9VUEJTQYoiYENZRbGjrmL7rgqKrm752VZEBVwe6gcVcUVXEZWyC4oF6UV6XUIVgVBCSUJIu7m5fc7vj3vveNOA0KLk/Xw8eJDMnTtzZubM5LzPOXNOp06duPTSSxkTVTFxyy23VLuN6G6XevicDCY0MM7xTJgwgY0bN7Jx40ZiY2O54447KCsrKxdE1vSZocLddwH0qGvidDqr/U7FzwIVfv8/QvdIXlS6oisvylwu3gPq2cp3DK+qe/bx9j958mQ2b97Mo48+ytKlS/n000+ZNm0ac+bMMVrUAb744gvuvvtu3n//fbKzs+nVqxc9e/akV69eZGZmVlmpcbzXDyoGj02bNuXpp5+u88EghLqQAzVu6T2T9uzZg6Zp7Nixo9bSIIQ4M6SFUBgitQPuggISwz9PnjyZCRMmcNlllxnvgmzcuJEnnnjiN/8ieyRgiq71qKoV5HiDa1QnunUgustoxff6zjRr5L2/YLBSQFjTLqOmqO/7nE5iq2gVjhzbKMBZRcHjRF0OI7RAgIDJhGYyYdJ15ubm8lfgMiBm2TJcixZVma8iDyhPeLh9qL473bnkPniQGMDn9RKZTl253TiCQbRwd+uKwVjFKR/OJkt4X9Fp0MEIwP71+us8tGYNe3bsoEs4qB81ahROp5N69eoZ2/EVFXHH9dczcsUKNnzyCdHTsJcsXUpi9+7l7p9bo4Izf1kZ+wmNSNo5Lc1YHj366vGCZF9RUbnfI0Ga1Wrl3Xff5Y477uDzzz+v1NK3a9UqmnXqREx8fLkuzZFA9PZI+nw+rLaq36A1mUxYw11ev/jiC0pKSmjUqBGBQIDuFY75ZCXEx1PPZiMNuGTDBq4JL7/lllt48MEHT9giCaF3OqvyvNfLqqo+CJ9fdYIWyYotojNnzgR+naJjx44dXHjhhZSUlPDaa6+FNx2azmL58uWVttelS5dyE9OfqlPdxrfffkuXLl0qBZTnk0hAeLwKhbNtQ7hHyHfffUf79u1rLR3i5Ozdu5eHHnqI6dOn1/ku16IyCQhFJe6omvlTndfqtyDSpTI6UHI6nWzZsqXSACHVDa5RneiCZnQLIdEBwFlgCxf0HYGAMWgOgBcw1zTgiApkq20hDB/brcD2Koaub926NbquY6pmPjyDz0fQbAazGZNSzDp2jP8RCtZLn32W+GbNqsxXkVZrb4Xg4Gzzer1s27bNGCGxY8eOxtD+AFnr1tEByMnOplV4mam4mGRdx9SgAcWAVlp6xlsIT5SuCGskEAh3WwXw8Os7hIN27eIGYP2KFRAOCG+99dZy2/gZoKCAbppGb8C6dSv/JjQ4jQVY0qUL/X76CYi6f6Kuk9/lYiiwCCCqVTC6i3WgwtQpEU6ns1JAGB2kDR8+nDZt2tC7d28KCwvp2LEjMTExofeq1q2jxGIh4eKLywdtFSo0nEePktK0aZX7v/HGG413G51OJ1u3bmXnzp0899xzzJkzp/wxH09UpUss8KzPx5+BJ4LBcgHtyQa7/2/KFKMbbeT9VQX8XEXvgMObN3NluAU7eIL7p+L+f/75Zw4ePMgtAwaw+MMPue7ZZ3nhhRcYNWpUaN8nOZ3FyTpTFXURt9xyCy1btmTv3r2nm7TfHF3XCQQCtR4Qjho1yuheHzyHlV3i1P3www8sXbqUefPm/ebLb+Lck4BQVOKNao051XmtfgtM4WAmeriSqlpBoPqWrpMqqEQVak1n+X0Ou67jAmJ0HUtUIFoKaDX8o6xFpdtfTbej6JYFvcKxla1dS/sePXhp9Gj+Pnw4xwsJNZ8P3WJB2e3E6zp2s5mlwFWEWrGqy1eRgLD06FE2btx4wkDoTDiZVnFPpOUiXOD3Abb9+zEB9TIyyJsxA+uxYwSiKggqtuiejXRFRFqSlcdjBIRufg0IIxUL7uMUJocC7xQW4j96FABTIGAMTlMPQoPHhEXuH8/hw0SuYMDtNq6fKeo8RJ+T+Xv38lynTlW2jL19003l0hMdpEXORUZGBqtWreLw4cNcdNFF/OmRR3hw3bpQy9i6deWCNq1CZY3r0KFqA8IXXnjB+DnyzOjQoYMRDEYf8/H4S0qMc9AW+HP451saNsT82GMMGDCAgoICEhMTywW7GRkZxmfRyrxeIyDPtdtpGL6He1YYEMrpdHLwhx+ItKPrVVT45GRl0fCyy9BmzaoUbB87dowbbriBotWroXNnJh85wpgxY8jJyaFnz55YrVa6devGJ598Uu69wlO5L51O5xmrqAPwhPPlvn37avzd34MHH3yQVatWcc01oTbmk+kyWlhYiN/vP6OtQi+++Gt/gcA57A4vKlNKkZ2dfcKBsiKvZXirqYgTdZsEhAIITaodKdD7iouN5ZMnT2bMmDG89NJLBINBoyAQGcDgtyzSJdIaVctesRUkInpwjWgnVVBxOvETDl7OckDoUIpCs5n6wSCWqIf6MZPJCAJOlsnrJUgoYK4uIIxu8fRHD+SiFLE9elAK/GnuXDx33WV0naxKJCD0xcTQRNd5NTmZGW43LwG+QYNwJCdXm68mA2+98QZ9b775nHRbPplWcV942oDI4Dj5Fgttwvkt45pr2PHPf2LNzcUfVaA3n2brcU1a64284PUSCFfwOE2mX+eeDLcoBXNzq92fFfAXFREMB4RaWRm3ApEj0nw+o0th5P4p2r+fyDArfpeLueGfzVHdRP3h9ORaLPxw6BCZRUVVtowFooMYv79ckPavf/2Ljz/+mIzwnIJfv/02vSdO5KZx43gw6hiigzZTVBoAyqKmfjieW2+9NVTp8+67MGxYaARVqn9mlNtHfj5J4Z9vBPZBaO7NsjKuu+46mjRpwnPPPUefPn3KjbZ67bXX0rhx40pzHz7Srh3ODRuoBxTFxjLX62UsUKLrjBkzplxA/UbXrsb3VBUB4b2DB7OooIDs4cO58Y47yu3/1Vdf5a677uK5jh0BKCoqqjTY0uTJk7nnnns4ePAgQ4YMqXRfVhx05/PPP+fNN9/EbrdXCv6PV1F3sq3iEbnHydOny+12ExMTetJt3bqV/Px8+vXrd9b2V5XJkycD0LNnTyDUXXPLli106tSp2u80aNCA1q1bs3Pnzhrvz+fznTDIL4yqRD4ZHo+Hhx9+mNdee402bdrUOE3nO7/fb1TQnIwZM2Zw5513snnz5uPmg0gF09HwM12IaBIQCgCKDh0i8qc4OiBs1KhRpYJAUVGRMbz5b5klHJzFEx5FM6aKkKW0FF5/HV55Bar4/GRaFLXSUnI0jXSlyrWEnGkqGCROKbLtdpqVlRET1ULjjImhQQ1HLrR4vRQAaZRvtYkWLCqijFB3N1/0H5GogYce2rkT16FDRkCoBwKYKgTQZp8Pn92OPy6ORKVI9/l4HOgIHHn9dRofZ2CQfwEfP/ww3V5+2Vh2Nrstn0yreCBc6EwOB+VlyclckJ+PMplI6NqV4sREWuTl4c7LA0ItuJxmt9eatNbbItOTOJ14wtet1Gr99T3GSF6pomAQmf9vLrCquBgVvtZx4efCO9dey80LF2Lyehk6dGi5d9yc2dlGQFgWte3olvNA+DwUOhyYAoFqW8aiA0JfURG2qPcQY2JiuO+++/jf//4HwFW7d7Ph55+xhWvIfyb07mJ00GapEBB6qpjnrzr6hAmY/vxnaNeOop49ycnJMUbWPB5PYaEREL4QtVzzePj5558rtTpGq+qzKxMTjee0s149JhQWshHYZzbzY3jwm0hA7T98GAiNEFyyfTuJUb0dlFLs3LYNgEOHD5cLtoFf0xb+fegTT1Aa3cobCLB9+3Y6duxY5XuFuq4zbNgw2rZtawR/EyZMIC0tjSVLllQK/it1Vw5XNBw4cIDnn3++Ru+wVzV/Y0UlJSXEx8cblStff/019evX58orr6z2Oxs3bqRr166sWbOG7t27GwVvpRRPPPEEgUCAiRMnnnDfb731Fi6Xi3/84x8nXPd4Dhw4AIQK+Z07dza6FxcVFREXF1cuoAgEAvzyyy813sf8+fPp378/WVlZtGrVqtr1jlUYiO5Etm3bxpQpUwgGg0ybNq3a9SZMmABwwhFxd+3aRfv27dmzZ8/v/r3R6dOnc/fdd1NQUFCp3AGwdu1aFi5cyPPPP28s2xa+l3/++efjBoSRyhIJCEVVZJRRAUBh1ChhFYc2j+Z0Orm4Xj1GjRhxDlJ1ehweD8fC77YV79lT9UqffAJvvgk//FDlx7feemuVD+XogqbZ6eRoOADSz+KIb8VZWViA4vCQ8ilRBdw9LVrQMBis0cAljtJSjoYLDdV2GS0uptBkwgMEoloIA7t3Gz97LBbKwoVPgOIqWl4cbjeBxERMKSkkKkWsy8XR8GicJZGuXZMmQfTUDuECTgywNvwHL7T47HZbnjx5MrNmzeKKK66gZ8+e9OnTh++//75c66UKn4ukcBrTb7gBAO3iiyE+nmOtWtEiPx9vuNB20GzGHFXRcqbS9emnn/Lhhx9WWtcRmSaisBB/+HoUx8VhCwewjvD1NlVRkHNFXedOX37JBZs2AVA/nN/++MQTWBMSMPl8lWqxS6MGAXFHzT0YjDr2QH4+TsAVE8MVVmu5rn3XXnstH3zwAU2bNiUYlSfLKkwzMnnyZAoKCn49F5Mn8z3wSnhAn6pmD7VU6CblrUFL0ubwCKv52dn8X0YGO9q3RylFZmam8S5XVTzVTI9i9niqneMUgJISAvXqoa9ZU355dFDbqBEmQi25Dl1n+PDhPP744wwYMID8/HxUTg4lhHoPvJ+aytqrr2bt9OnGCMEXRQLsKuYfHTp0aLn3F03BYLlRaPv27YvX62X48OEopejevTvdu3enY8eObNmyhaFDh2IymcqN0gq/zp1XMa1V7R9+bRUfN24cr732Gu+99x5Lly6tMs9HRG+vqmsTCARISkpi5MiRxrLbbruNPn36lFuv4ntxGzduBGDlypWV1vvwww/5+OOPq01TtL/85S+88sorp9RtL/qaVDVKrNvtpl69esa7nhW/46lhpeHixYuBX489ouLchzUNCCPBbMWpSSB0Pg+Gnx1Dhw497n2ya9cuDh06xOzZswkGg7Rs2ZJVq6ocXumsq+pYTsXX4fd+t2zZUuXnDz/8MC+88ALFUc/UyHXNzs6u8jtz5sxhypQpZyQgXL58+XHvv5P12WefkZmZedrbEWeOBIS/AR988AGtWrXC4XDQtWtXli1bVuNt7ExNZXtsLOttNpZoGvM0jZ8SE1mWlsbXDgczEhL4IjaWz+LiWNmzJyt692Zu9+4sv+EGFv/hDyy//nogNKdV0uzZLPzrX9nw7rtkfvop22bMYPfChWQtWcJ3f/sb+4Cmb75J4CxPsXA6AoEAKaWl7A8HHcVRAUw5kQJs+A/UCa1dC7fdZnQNVUqRlJNDSYMGlAKlWVmnmfKqKaWY/cYbAJjD71Y1UorvevZkWP/+2Pv0wQYEajAIQ73SUg6EJzXXqzl+y5EjHIuJoUTT0KO6BR1escL42efxlAsIS6ICAQj9gU/yeKB+fRqHu/i19ngoaNcOgLL9+0PB34MPwp13Gt+LBNeTgSVbtx43QDuTIq3iK1asYPXq1Sxbtox33nmnXPc3U1RX0GNWK/bnn4dOnSBcyGx0zz3YlcISnobhaEoKttOsLKiYrnnz5pH35ZeMefbZcuspt5v4cCHQVlxMWWYmh0wmXC1a0CDcOhcXDiwsVbRalkQVKuLdblqFWzmbhgvIiS1bErBYMPn9zJ0799cvKoUnKsgqCwfxRy0WY1CTkpISctasIT8mBp/DweNmc6V5CCMtYyoqbRUDwkaNGrF//37jXExs1ox3gObhtFfV2cpeYQRgfw0KsUfDrSvTX36ZEUeOcCuQm53NHy6+mEcHD672e+5qRsmMKy09bpeww7NmYSkqYsdf/1r+g+hKhaQkulitZALxShEMBssF1Ja8PA46HDyZlET9Y8fgzTcpCbe07LrkEsaG73lrFc9xq9VKadT5+fTll43eEoDR9fC///0vXq8XTdOw2+0MGDCAnTt30qVLFxo3bsyaNWuM4C8nJ4fDUc+J6LRWtX/4tVU8QinF4sWLKSgooCgqfyilWLVqFUqpcoXdqv6WRlrKIi1TVb3/9sUXX5CQkFCutTFScVHxvc4jURVgkcCooKCAiy66iBkzZpQLnqKDhtGjR1fa74lEd83MC9+XEUopdof/zo0ZM4axY8fywAMPlAsc9u/fX2mbJSUllYLciMg5rvi9igFF5LiVUsyZM+eEg8xEtlfVgDgjRowgPT293D6qC57btWtHy5Yty52X4cOHH3ff1Vm4cKHR4+BkBINB4zhLS0ux2Ww0bdq0XB4/FZH8UlVAqJQyWgP37NnDmjVr+Pe//20E2Aeq+DteUFDAgAEDuPfee41Au6qAcPny5ayI+rtecb8Rffv25Yknnjit6U5ycnJ46KGHeOSRR055G+IsUKJWTZ06VVmtVjVx4kS1fft29fTTT6u4uDi1f//+k/p+cXGxAtSciy9WSzMy1Lz0dPXf2Fg1DdSPdrtaYLer+aCWgloNaiOoraB+AbUP1GFQx0AdBLXgssvUf/r0Ud5Q8fyE/wKgnOHv52qa2g9qF6hfLBa1xWJRG61WtQzUEotFLY2LU9+AWpiSola2bq0WNm+uFrRpo2Y2a6bmdOigll5+uVp0xRVqQe/e6sfevdXMyy5TC2+4QX1/9dVq0aBB6rsbblArhwxRMwYMUKsff1yte/pptWr4cLVk2DA1adAgtfS559Tsxx5TswYPVh/37KkmhtO44IEHlA/U/Pr11dwnn1TbJk5Ue6ZNU4e//14d+v57ld+2rVKgci+7TBVt3aqObtmi9q9bp4p271bFe/cq58GDas+mTar08GFVkJmpjqanKwVq1X33qU8feUT9X/36SoFa+NBDakVSktofE6M2vPOOKty6VanCQqV8PqV0vcb5Qtd15S4rU/9bsUI9fv316s9t26pMUNkJCUoPBNSehg2V22RSRatWKaWU2rhkiSoFtbVDB7X7xx9V0Outcrv5+fnq66++UiPatFEK1E9/+Yvaq2lqY/Pm6uCOHSoYDCqfz6dWrlypXh48WOVpmlrQubNa73CorQ0aqKDbrXRdV+vvuksVgVrYooXabLOpdUOHGvni548+Ukop5fV61by5c9WzF18cWj5ypArm5akyq1W5NE3tXLBA7dA0ldmsmcpZvPjXvBU+X0fXrDGWLe3Tp9xxlJWVVXl83333nfrmm29qfL5P5KOPPlJz585VgUBArVq5Um1wOIy05d56a5Xf2dShg1Kg1nfvrn649FJVCKpg69YzlqZV48YpBWp+XFy55ftmz1YK1AFNU0dAHQK1un17Nf/RR5UC9csXX6iDZrNSoNa0aaOUUmrGjBlq5MiRSimlNowfX+09Xwoq6PerxU2bqh2Jiapo+XK1v3NnVfKPf6iAxaJW9e1rrPsJKDeolenpKjMmRu3Zs0fd0Lev2m0yqcKbb1YLr7pKlYDy5ucbaQ+uWaPct92mlMulll1xhbGtrP/+t+qTMH68UuvXq8wGDZQC5Yt+Pnk85VY9YjKVO5af7r33pM/1xrS0SufixxdfVArUN8f5M7rhb3+r8jxuTUo67v7W33tvKI0ZGeWWL0tNVVuTk9W6Ll1U6b59yufzqRVPPqkUqOIKfzPWNWqkVqWmqjXt2hn7XdeiRei8RKVlR0xMlWnYO3++sc7KF19Uu5csMT7r27evAtTo0aPVzJkzVUFBgdJ1XZWWliqllBo5cqQCVHQRY+vWrer6668/7nFH+P1+5ff71ZEjR9TTTz+tLr/8ctWjRw/Vu3dvdccddyhAPffcc0oPPyvmzp2rAPXVV1+psWPHqoSEBJWYmKhGjRpVadtfffWVAlTz5s3VgAED1Pjx4420ulwupZRSd955pwLUpEmTlM/nU0opdfvttytA3X///crlchnfmTZtmvHz0qVLlVKh51Bk2csvv1zuHACqZcuWqmXLlioYDJ7U+YhYv369sd3IMUR+zsvLU1OmTCn3OWCcG0D9+OOPSimlNm3apHbs2KGUUuqBBx5QgNq8eXOl/UWu87Bhw8otX7t2bbl9tG3bViml1IIFCxSgPvjgg+Mex1NPPaUAlZ6ergKBgFJKqUceeUSNHDlSdenSRQHqjTfeMLa/du1alZOTowoLC9Xnn3+uAoGAcrvdxueRPAGopk2bqsLCwnL7Gzp0qGrcuLHKyMhQbre7Unr8fr8ClN1uN/LUiVx11VWqf//+Siml5syZY+x/8ODBJ/X9aLquq/3796uLLrrI2M6f/vSnSutlZmYan0+fPl2ZzWYFqM6dOytADRo0yFjX7Xarhx9+2DjX0f+6du1aaf8V71ellNq5c6fKyclRjRs3Vo899li59SJ5vSZ2796tdF0vd894qyirZGdnK0/4+Z2Tk6MAVVxcXOP9iZrRlKrh5GXijOrRoweXXnqp0VceoH379gwaNOikahBLSkpISkqiuLiYxMTEE64fTSmFUgpN04yuPAA7t27l4Nq1NE9NpeDQIXSXC09hIRazmbi4ODLuvJNl//wnZdnZpMbFoXs8lBUV4XO50Hw+7IQGrXAXFaF7PGh+P/E2Gx6nkzirFUswiN1kCr0/pBQxmoYpGMSiaWjBIGZCL7dW9//JOBoby+FbbqHLl18ye9Agen77LSnVrJsHnOrYa35N4+d+/eg0fz6LJ0yg9VNP0aKadYOE5oKL/B/5pzQNFT7/FqUwK4WFyq0cJc2akfDDD2idO4dGt/R6IT4eCF3Lf/Xpw/3LlxMXXr9Y0/CZTJg1DXQdTSlMSpFAqGvA/q5dab56NV/ccgv3zJ6NidAIkl4ggVBXzcLYWLSVK1kybhwDP/0UH5CvaTRQio0xMahBg7h8yhTKgP0mE+m6jkfTyLXZsPh8pClFClCUkUHyxo1gt4daZXUd0tOZfMst3Pftt+W6KmQmJ+M1m6lXUkJLv5/dNhv1AwH2tmlD0G7H63aTm5VFQvPmpDZqhGY24/F40IENGzeigG5du4amIVCKgM+H1WLBbDKFJmZXipwjR7BaLCQnJxMMBDCbTGiEJm7Xg0H0QMD42e/3k3/oEFagnqbRRSnqA1kvvEDriy+Gm26q8v1TdB327IE2bdg6dy71//AHUoG9NhulsbF44uJwWa0ok4nY+HiUUthjYigrK8MfDBIfH4+u69jsdjSzGV3X0Qm1yDoCAZpv3UqjcA312owMKC3Fd+wYF7pcaJrGoZEjaT9iBN769YlZsYIih4MjLVvSKdwikhe+xlvatmXTrl1YgJT4eDqWltJE09jRsyc9wt2vdjRoQPu8PDb37UvnJUuYc++93DBlCqWE3tGNts/hoKnHgxVY26ED3j59uHLCBLYCDQlNkm5Zs4Zf8vJocv315FutZLdvTzA5mQvWraOZ2836+vVpkp/PnthYupeVsTM9naJ+/YitXx9d07AohSknh4unTAndG5pGYoU/ZdubNyevf3/8Hg9FW7ZwZ2YmK+PiaO1yYQX2xcdj/dvfSGjYEC0mBmUyEfD7iY+NpczlwlVaitlkwu90kv7CC6RW2H6e2UyD8Pnf9emnmOPjCXq9+MvKKMnPJ2/3bupNncoFHg8bHn2UtDVr6JGZyY6EBJo4nfz8/PO4k5OJTUtj34EDdOjQAV3X8bhcBJ59ll5FRey32djx3HNsWbcO/eefGXbwILtuvJFLvv/eSMfP06Zx0eDBzO3cmZKLLyZ77VrqXXABA374gV1duhBo0oSrZs8G4KCmsbZfP24LdwUkfM/nTpuGCndFLy4uxuT1Yn36aTpVaElY99FHaM2b0+/223G5XPTt25dx48aRnZ3N+PHjWbJkCdOnT6esrIzB4ZbTo0ePkpiYyIEDBwgGg9hsNux2Ox6Ph4kTJ/LHP/6RDh064PP5MJvNuFwuHn74YRYtWsSGDRtwOBwsXryYfv364XK5eOmll5g+fToACQkJTJw40egxEBmJ1mq1kpKSwoEDB0hJSeHxxx8nISGBuLg4vvrqq2p7F7z33nukpaXxyiuvGK2g8fHxjBgxgtdff52ioiJatWrFY489ZgyK07BhQ6Mr3vDhw7n66qv54osv+G+4+7vNZmPZsmX4/X4++eQTJk2axKxZsxg4cCATJkzg6quvZsmSJXzwwQe0bNmSsWPHYg7f7z6fD6fTyZEjR1i8eDETJ07EYrHQqFEj8vPzOXDgAFu2bOHyyy/n7rvvZuXKlZW6DbZp04Y94Vcmmjdvzr333ss///lPdF1n9uzZ3HPPPRQXF9OuXTueeeYZWrVqRWxsLJmZmUZrW8uWLRkzZgz5+fm8++67NGnShBUrVjBz5kxWrFjB22+/zUcffcS7777Lxo0b6d69O++99x7JycmkpqbidrvJyspi//79JCYm8tJLL7F161YABg4cyKBBg4zWIpvNZoyGaTaby7U2tm7dmqysLF566SVSU1P585//bHx29913c9NNN/HUU08Z12LgwIEUFhbSv39/Y72xY8dy4403UlRUxKOPPkqXLl3YuXOn0S329ddfp2XLllx11VXG4C5ut5tx48YZoyEXFhYyYMAAAObOncsHH3zArFmzAEhPT2fu3Ll8+OGHbNy4kSeffJL27duj6zpr1qzhP//5D/369cPpdDJv3jxjrs3U1NRy3YBbt27NJ598Yuw/NjaW1157jXXr1qHrOlartVIrcfPmzfn3v/+NpmlMmzaNjz76CIBLL72UrKwsioqKuOKKK1ixYgXjx4+nVatW+P1+XnnlFTaFXw2YMmUKzZo1Y+rUqYwfP77c9l988UXeCPdUeu6557j11ltp2rQpfr8fs9lMXl4e48aNo3PnzgwZMgSn04nb7WbFihVkZmYyceJEHnjgAQ4fPsyCBQuM++vZZ5+lW7duNG/enF9++YW77rqL9u3bM3bsWN566y0WL158SmVcUTMSENYin89HbGws//nPf8q9VP/000+zadOmcl1lqnM6AeFvWSRblpSUEBcXR1m4i2YwECDg82HSdayahtVk4lhuLg6rlcTERGzJyaHCeYX3YnxuNyW7d5O/cycepxOP203A5yOmSRNSL72U7K+/hsJCDh04gNVsRuk6fo+HZk2asGHtWlq3bo2WnEyrK6+k1VVXcXjuXNI7dMBx0UUQF2fspyA3l70//sih1asxeTzY/H6CPh8qEKC4sBCfx0OD+vXRlCL38GFQioTYWCwmExazGU8wiCcQ4FhJCZ0uuYSUJk1I796d5K5d0Vq1ghPM91eQlcWOzz/n0KpVxHm9mH0+XD4fFqsVe0wMDRo3Jq5ZM9refjumyy4DTUMpxeqvvqLo22+xlpSQaLNhT0uj5ZVXknT77UbQuebTTymYNg2toAAVF0fj556jfd++LLzrLmxeL82ff57CrVsp+fRTYgFHvXqkdexIsz/8AVP//lBFFzmlFKs++YTSWbOwd++Oe/586u3eDZqGlpSE86abSL3kEvKfe456Tif2QICAUng0jWRdB11HKYVJ00LvU1ksBINBdF1HAbpSoWpITUNXyjjeQPhzs8WCyWyOVI2CyYRmMoUqSCI/m0xY4+Iw22yYHA5Ujx60uPdezNdeW6M8vXvNGva++SZs346jtJRYtxuz00nQ7yfGbg9V0Og6elQXNi38z6RpaIA5nK+dSuGMi8P0979jf+cdrC4XfpsNS7160LYtzUaMoOEVV4QqDSwWY2TM0txcNvzjH+h2Oy3vvptf7rqL+kVFJJnNKIuFMp8PV1oaqS+/zIUPPwxKceCbb2g6YADm0lJITQVNw+f1MvOmm0j75RdMaWk4cnJwNmxIYlkZTd9/n8RAAM/WrTQYNgzNbmfnq69iXrWKJh06EPvooxDuOpz52Wc4R4wg9fBhkoJBPGYzeZpGI10ny2Yj7auv2P3hh3SdM4eqBlQvBlyAy2Zj88030+j77ykeMoSDc+Zwc9SIpy5gS8uWdN6wAY9SrHrySfpMnWrM6Xcix4D1gwZhP3CAQMOGJKxezWWFhcxp2pSrogZUqvQ9s5mfn3qKK955BxUIkPfdd/gaNCDYrx8tTzBU//qUFC4pKDCmzQloGrmdO9N44UJM4eANQOk6Ky69lB6ZmeUqkfLsdtTcuZhSUvjl2mtRjRsb6+xIS+NovXrE9OlD+48/rhTUQ6hiaNptt9FszRqujur6GgQ62u1c96c/8d5771WbfpPJVOldszMlISEBp9NJTEwM7nD358gygPHjx6OU4sknn6zy+1deeSXLly+na9euNG3aFIfDwYYNG4wulxAqREeCBJPJRFJSEi+++CLPP/88fr+fjIwMHnroISZMmMAjjzzCihUrmB0OvAGGDBlCy5YtGTlyZLkud8888wxvv/02V1xxRY3fd7vtttt46aWX6NSpEx6Ph/hwRdI999zD999/j9Vq5a233uLDDz8kJiYGk8nEkiVLjAF4qgqEk5OTef/993n88ccrdQNs2LAho0ePZujQoeXeP2zVqhV//etfeeKJJ8jKyuKqq64yuit27NiRXbt2HfcdSYfDwWeffcacOXOYNGkSSinS09Nxu9243W769evHDz/8YEx1Mm7cuEpzcgJ07dqVlJQU3G43n3/+Oa1atWLv3r384x//KHesDRs2ZODAgSxYsKDa6Uj+8Ic/cOzYMdZUfG+3Gna7HZvNZuS5sWPH0rVrV6655poq01pRQkICDoeDQCBgdHl9+OGHcTgcDB48mJtvvrlct2gIdaGeMmUKpaWlvPHGGySH35nOzs5m1KhRPPHEE+Xemx04cCCHDh0y1t29ezc9e/akS5cuRpkKQkHZY489xpdffml0k3Y4HCQmJnLRRRfx2muvMWTIEPbt28cFF1xAp06djHcdT4XdbmfSpEm8+eabJ+ymGynfnm9l3N8iCQhr0eHDh2natCkrVqzg8ssvN5aPGjWKSZMmVTlEtNfrLfegLSkpIT09XW4WIWog0jL+e/F7S++Z5vf7KS4sxHX0KGVlZSQkJ2Ox26nfJDTTXsVpYQB8Xi9mrxezwwFVDJufe+QIxbt2UZqfj/J48LpcWGw2fH4/CYmJWGw2FOBISKBRt27ER42sHPD7Kc7LI7VpU7LWr6dw+3asuo5mtYLVim6x0L5r19Cop1VcNz0YJGfjRmwlJRQePEhaWlqoZUfTSE5OJqVLF+IuvBDP4cO49+8ntn597M2aVd0SHaa8XoK5uVhSU0OjJ6elVaoY8+bkEMjLI65jR+Ozgqws9s+di1ZSgsVqxWQ2E9A0WgwYQFLbtvh8PgJuNyV793Js1iw6jBiBnpiIyW4PVb6EixAmkwmTyYTP50PTNCzhyplAIABKYTKbjTwcKXaYzWYCgYDRWwUwvqt0HZ/fj8ViMYLLyD7MZnPongB8fj+apmG1WtF1HU3TMGlaqEIoGMRkMhEIBo1lkf1S4Z5SShEIBkM9ZgBTuJXOXOEc6uG0msK9CozvE3qvTAuvY7FY0ICgruP3+7GYzZijzwHl3ym0Wq34fT70cAVXdL6JHLfpOM8ABZXmgo1UdEV/Lxg+j0rX0ZUK9Y6IVJgRfoctck3NZkzhzwKBAGazudL5MI49EEDx670Yua7B8DVQ4XOi6zpWi8U4D5HKu+jpdLQKxxO5bpE8EGk1NJvN1c5/q+s6gfB6VqvVuC6BQCA0zVYkz0Rdy+jjCIbzAoTypNlkCp3PcCWH2WIBpYzzGTkvQV0nGAxiNpmMPBTZVvQ9YrVajetS1XXSlQqN0xD+nlIKS1T+qXj+tfA2gpEBxY6TX5RS+AOBcmmKnB89XMkayb/R6dF1PXTvhK9vIBAw8qoWrmy1Wq3G+5WR3mdWqzV0L4bPR+QejaQ98pyIrG8xm0OVt7pOqaaRfOyYlHHPAQkIa1EkIFy5ciW9evUylr/xxhtMnjy5ylHERowYwauvvlppudwsQgghzrp//xtqMGWHEEKcqhKPh6TXXpMy7jkg8xDWovr162M2myvNm5SXl0fDhg2r/M7zzz/Ps1GjCkZaCIUQvw17CvbQLLEZdou9tpMixJn38MO1nQIhRF1RUgLheU7F2SXTTtQim81G165dmR+e4ypi/vz55bqQRrPb7SQmJpb7J4T47bjgvQv47pfvajsZQgghhBAnRVoIa9mzzz7L/fffT7du3ejVqxcfffQRBw4c4PHHH6/tpAkhhBBCCCHOcxIQ1rK7776bY8eOMXLkSI4cOULHjh2ZPXs2LVpUN3mBEOK3Tl7NFkIIIcTvhQSEvwFDhw5l6NChtZ0MIcQZopCAUAghhBC/D/IOoRB12JjlY5ixfUZtJ+O8E91CGNSD5Jfl12JqhBBCCCGqJwGhEL8zf5v/t0rLksckn9K2JmVOYkX2itNMkahoV8Eu4+eFexeSNjatFlMjhBBCCFE9CQiF4UDxAXp90uvEK4pK1h1ax6acTedkX2NXjq30jlqxt/iUtuUJeHBYHGciWXWWUop5e+aVW/by4peNnz0Bz7lO0m9GkaeI4T8Or7T8QPEBpmyZUgspOn9kFWbxeebntZ0MIYQQ5wEJCIVhT8EeVh9cXdvJOKeUUtw7497T3s4zc5/h/1b/3+kn6CT5dT8AX+/4+rS2czoBYcVAJ7s4u051jRyxZARuv5t9Rfu4/ovrAfjfkf9VWq/QXXiuk/absTN/J++tfa/S8u9/+Z4HvnmgFlJ0/liQtYAh3wyp7WQIIYQ4D0hAKAzR3dzOF7dPv50dR3dU+/nOYzuZsnVKjQKZgB6otCy3NJf6sfVPKY2nwh8MBYS3Tb/NKBRuP7q9xts5mYCwxFvCEeeRSsvv+s9dbDyy0fj9w/Uf8tGGj6rdTq9PetHhgw4AbMndwpOzn+Tf//t3jdP8W6CUYsL6Cewu2M3UrVON5dHHc9R1FIBlB5YRY4k5p+nLL8un4wcdjd9zSnNqvA1f0HdK+560aRLb8rYB1bdcl3hLSLSf2TlUv/n5mzO6vWjegJe/z//7KY0eO3PHTMatHnfG02Q1WWu0flAPnvE0CCGEOD/IKKPniWNlxyihBLNmJqiClPnLcPlcxNviKXAX4Av6iLfFo1AopbBb7AT0ALrSqeeohzfoZdmBZVzS6BKmb5tOakwqF6RcQJm/DIfFgdPnJMYSQ4I9gUbxjThWdgyX34WGBoQKeLrSSXYk4w16jf3qSkcpRbIjmfyyfGxmG3aLHQ0NTdOM/4s8RSTaE/EFfehKp8RbQuP4xhR7i3FYHJT5y7CYLCilsJqtaGhYTBasZisBPYCGRlpcGvG2eOOclHhLmLljJkE9yN+v+DvNk5rj9DkJ6kGcPicOi4NJmyZxXevrGLd6HLdcdAsBPUCMJYagCuLyuWgY3xBPwINZM+ML+tiRv4NHv32UvU/vpWF8QwA2525mT+Ee3lr1Fr2b9yYjLcMIBqKDLb/uxxPw0CCuAQE9QJ4rDwCb2YbNbMOkmfAFfXgDXhwWB80Sm5ESk0KsNRazyQyEuqYCzNszj2taXwNgdBvr8EEH5v5xLo3jG6NQRgEwcm7rxdQjPTEdqzlUkJz18yyKPEX8fcHfaVOvDV2bdMVispBoTzQK67mluTR6qxEA0++YzsWNLsYX9JHnymNr3lYWZi0kzhqHX/ezPHs5Js3EHRl3kOxIJsGWQIw1FAgtP7DcaH32B/18sfkLxq8bD0CiPZFuTbrx4qIXaZ3cmocueQib2UaJt4S3V73N5M2TWfTAIpIcSQT0AEopOjTowN7CvQT0AH7dj1kzo2kaTRKa4A/6OeQ8hD/oR1c6FpMFXen4gj6sZitKKUp9pQCkxKSQ5Egy1rVb7NjN9nL/R65NtN0FuwnqQXYe28kLi14AQgHUtqPbjHVGLx/NqGtGsWTfEtwBNy8teol7O91rbCstNo08Vx5l/jJirbEEVRC3302Zv4wYawylvlJMmomgHsSkmbCYLDgsDkyaiVJfKb6gj7apbXH5XDh9TpLsSTRLbIbZZCb9nXQ8AQ8HSw6SGpNK47caA/DuDe9ywwU3UOwtJiMtg8ycTGKtsbRIbkG8LR6n10lAD5CZm0n/yf15/erXuTz9cq5sfiWaprEqexXPzH2G53s/T7GnmA4NOrAldwsN4hqwaO8iXr3qVR6c9SCjrxlN+7T2HCs7BsCuY7tom9q23PPKYXHw3c7vyEjLwBPwYDPb2Fu0l0mZk3jxyhcp8hSxdN9SkhxJtE1pS6I9kaAKhq550E9AD/Dy4pe5v/P9xNviGT5nOB8P/JgL61/IrmO7cFgcdG7YGbPJjFkz4w64aRDXgJzSHCwmC5k5mbRIboGGhq503AE3DouDUl8pDosDpRSJ9kR0pbNk3xI+WP8B/dv0p01KG6wmK7sKdpFoTyTeFk+prxS72Y6mhZ6H8bZ40hPTKfIU8fpPr1PoKWR4j+EEVZCgHmR3wW4UigRbAkmOJBLtiWQVZqErHQ0NX9DH3xf8nZf7vEzHBh2xmW3GfQuhSqlCT6jleeORjWhoNIhrQLwtniRHEgDFnmLWHV7HzB0zGXrZUDpP6MwP9/5A7+a92ZK3BaUUt067lR/v+5FYayx2i516jnoE9AABPcCB4gMs3reYL7d8yeeDPqdxQmN0pRNviz/jwbwQQojapSmZMOt3raSkhKSkJO7+4m5SklPIKc0h15VLTmkOfVr0IaAHCOpBfEEfJd4SfEEfXRt3JaAHKPOXkWBPwO13k1WURbuUdvyp65+Ys3sOO4/txGa2GQUpi8mCSTNR5Cli3eF1NEloQruUdlhMoToFu8WOJ+DhaNlRUhwplPpDhVm3341CkeJI4ZeCX2iX0o5Ee6IRmEb+T7AnGIVRs8lsfOYNhIJLv+4n1hrLkdIjNI5vjIaGXw8VCnNKc0iJSaHYW4zb78av+znsPExQDxoF9Ls63EWiLZGUmBRMmgmr2UpQD1I/tj63Z9zOjO0zcPqcFLoLKfYWE2eNw+V3kexIZlPOJi5IuQCHxUHj+MZcWP9Cvtj8BU6fk1JfKY3iG3FH+zv449d/ZMw1Y9hfvJ/UmFRsZhu60o1rVewtDgUdZjtWs5ViTzGpsamYNTN+3Y/NbDOC9JzSHKOQOm3rNHo3702ThCYs2ruIXFcuAD2a9uClPi/h8rkYPGMwX972JVvzthrnMdmRjNVsJcGWQJ4rj2JvMXmuPArcBbgDbponNWfmjpm80PsFYq2xZOZmGmnddnQbAT1ARlqG0fLy5rVvsu3oNpLsScTb4rm/8/0M+HIAnRp2ok29NtzV4S7yy/JZkLUAl89Fdkk2FpOFOFscOaU5OL1OMnMzuaTRJbRLbcfcPXMZdtkwAnqAvUV7ebDLg+wp3MOuY7vwBDwk2hNpltiMqdumcmPbG3H5XGiaRqmvlIV7F9KneR+SHclYTBY8AQ+aprFo7yJKfaXcmXGnUfEQqdSwW+xGq9cR5xHibHFYTVZcfpdRmPcGvHiD3l//D/9c5i/DG/RiN9uJscbg8rkY2G4gI5aO4I+d/si8rHm8P+B9Xl36KqsOrsKkmejfpj/LDyxn0qBJdEjrwPe/fE9WYRYAutJx+V2kxqTi9DlJiUlBV7pRKeL0Okl2JKNpGg6LA4vJgi/oI6AHcPlcJNoTMWkmXlj0Are1v4329dvjCXg4UHwAb9DL4A6D6dywM8NmD8MdcJOZk4k36OXjgR+zInsFBe4C9hXto01KG9qltGPRvkVGhU6SPYldBbs46jrKXy//K5m5mazMXsnugt3EWmNx+V1YTBYeuvghkuxJtE1ty6GSQzRLbMaCvQvo0rALP+3/iXWH15FgS+DOjDs5XHqYAncBabFp/LHzH3lj2Rv8tP8nBl00iOaJzbGZbfiCPhonNObC1AuZs3sOFpOFY+5jJDuSuTD1QmO/FpMFq8mKxWShc8POZOZm4vQ6ubvj3fy460embptKu5R2dG7YORS4h4Owo2VH+frnr0myJxFni+OBzg8Yzy+TZkLTNPxBP0mOJLwBL06fE13pmDUz8bZ4HrrkIXp90guLyUJOaQ7/3xX/Hx+s/4CmCU25qd1NlPnLcPvdmDQTx9zHjPQO7TaUldkr0TSNd1a/w+Xpl4eC8KQWlHhLjPuyQ1oHbGYbSik0TaNH0x78uPtHnD4newv3Ui+mHlaTlR93/wjAU92fokFcA15e/DL1Y+szsN1APAEP6w+v54KUC7CarfzvyP/ILsnmvk73cVO7m5i1cxbegJeODTqSW5qLpmnklObQLrUdnoCHQk8hvqAPu9lOSkwKQT1IoaeQBFsCft2PX/ezt3AvPz3001n8qyaEECGRMm5xcTGJiVIRdVYp8btWXFysAFVcXHzO9jl391xV7Dl3+ztVuq4rRqBeWfzKWd/XigMrFCPO3u3kC/jU9rztatORTYoRqHdXv2t8dqDogGIEasPhDSe9PY/fo5RS6svNX55w3T/P+XO1x3bTVzepg8UHj/v9grIC5Qv4lFJK2V+zq7dXvm1cm/9s+89Jp/lk/LTvJ7Vs/7Izuk2llNqcs1kdKjlUbllQD6oZ22coj9+j1hxco+6cfqe6bdptihEo60ir8vg9asfRHWc8LdGW7V+mXD5XtZ/7Aj6V48xRT81+qtw1PFRySDEC47qsPLBSfbzh4yq3EdSDqt9n/VSRu0iNXjZaMQKV/nb6KaV3w+EN6tJ/XWrk2d3Hdp/Sdk5Fma9M3T/zfvXJxk9U30/7ntI2fAGfCupB4/6ZuGGi2lOw54TfKygrUA3GNlDL9i9TjED5g/5T2r9SSv13239VxvgMdcmHl6i80jyVVZClgnrwlLdXU0/Nfkrpun7O9ieEqLtqo4xbV0kL4e+c1J78Nuw4uoOMDzJQr5zd20lXOoOmDmLMtWPISMswlr+96m0e6/oYcba4M77PtYfW0uPjHlUemwq3ZpysLh924f0B73NliyvRXtXY/PhmOjXsdCaTWyuUUlz56ZU81f0pBs8YjMPiwP2iu7aTZfAGvMSOiiX4j1/fI6vptQMYv3Y849eNZ/MTm43WtVOlvarhe8lXrivkuXIqx366Il2DS32l5bq2n4p/rf8Xw2YPw/uS1+hOLoQQ5xsp4547EhD+zsnN8tuglOKQM9Rt7nwT6cLaJKHJaW8ruiCuvarhfN552oXj3xrtVS30Pt7zztpOyhnnD/oJquAZmapk3p559G/T/wykqu75bud33Dz15rNeASWEELVJyrjnjgwqI8QZoGnaeRkMQuj9qjMRDALlWmV+efKX8y4YjDBr52erjdVsxcqZadGTYPDUna/PGiGEELVDpp0QQtSK6FEnzzepsam1nQRxHmub2pZuTbrVdjKEEEKcJyQgFEKIM2zDnzbUdhLEeSzeFs+6/7eutpMhhBDiPCEBoRBCnGHJjuTaToIQQgghxEmRgFAIIYQQQggh6igJCIUQ4gzaPnR7bSdBCCGEEOKkSUAohBBnUPu09rWdBCGEEEKIkyYBoRBCCCGEEELUURIQCiGEEEIIIUQdJQGhEEIIIYQQQtRREhAKIYQQQgghRB0lAaEQQgghhBBC1FESEAohhBBCCCFEHSUBoRBCCCGEEELUURIQCiGEEEIIIUQdJQGhEEIIIYQQQtRREhAKIYQQQgghRB0lAaEQQgghhBBC1FGW2k6AOD1KKQBKSkpqOSVCCCGEEEKcGZGybaSsK84eCQh/55xOJwDp6em1nBIhhBBCCCHOLKfTSVJSUm0n47ymKQm7f9d0Xefw4cMkJCSgado52WdJSQnp6elkZ2eTmJh4TvYpzn+Sr8TZIPlKnGmSp8TZIPmqMqUUTqeTJk2aYDLJW25nk7QQ/s6ZTCaaNWtWK/tOTEyUh5Y44yRfibNB8pU40yRPibNB8lV50jJ4bki4LYQQQgghhBB1lASEQgghhBBCCFFHSUAoasxut/PKK69gt9trOyniPCL5SpwNkq/EmSZ5SpwNkq9EbZJBZYQQQgghhBCijpIWQiGEEEIIIYSooyQgFEIIIYQQQog6SgJCIYQQQgghhKijJCAUQgghhBBCiDpKAkJRrZ9++omBAwfSpEkTNE3jm2++Kfe5UooRI0bQpEkTYmJi6NevH9u2baudxIrfhdGjR3PZZZeRkJBAgwYNGDRoEDt37iy3juQrUVMTJkygc+fOxoTOvXr14scffzQ+lzwlTtfo0aPRNI1nnnnGWCb5StTUiBEj0DSt3L9GjRoZn0ueErVFAkJRLZfLRZcuXXj//fer/Pyf//wnb7/9Nu+//z7r1q2jUaNGXHfddTidznOcUvF7sXTpUoYNG8bq1auZP38+gUCA/v3743K5jHUkX4maatasGWPGjGH9+vWsX7+eq6++mltuucUoSEmeEqdj3bp1fPTRR3Tu3LnccslX4lR06NCBI0eOGP+2bNlifCZ5StQaJcRJANTXX39t/K7rumrUqJEaM2aMsczj8aikpCT14Ycf1kIKxe9RXl6eAtTSpUuVUpKvxJlTr1499fHHH0ueEqfF6XSqtm3bqvnz56u+ffuqp59+Wiklzypxal555RXVpUuXKj+TPCVqk7QQilOyd+9ecnJy6N+/v7HMbrfTt29fVq5cWYspE78nxcXFAKSkpACSr8TpCwaDTJ06FZfLRa9evSRPidMybNgwbrzxRq699tpyyyVfiVO1a9cumjRpQqtWrRg8eDBZWVmA5ClRuyy1nQDx+5STkwNAw4YNyy1v2LAh+/fvr40kid8ZpRTPPvssvXv3pmPHjoDkK3HqtmzZQq9evfB4PMTHx/P111+TkZFhFKQkT4mamjp1Khs3bmTdunWVPpNnlTgVPXr04PPPP6ddu3bk5uby+uuvc/nll7Nt2zbJU6JWSUAoToumaeV+V0pVWiZEVZ588kk2b97M8uXLK30m+UrU1IUXXsimTZsoKipixowZDBkyhKVLlxqfS54SNZGdnc3TTz/NvHnzcDgc1a4n+UrUxIABA4yfO3XqRK9evWjTpg2TJk2iZ8+egOQpUTuky6g4JZFRsSI1WhF5eXmVareEqOipp57i22+/ZfHixTRr1sxYLvlKnCqbzcYFF1xAt27dGD16NF26dGHcuHGSp8Qp2bBhA3l5eXTt2hWLxYLFYmHp0qW8++67WCwWI+9IvhKnIy4ujk6dOrFr1y55VolaJQGhOCWtWrWiUaNGzJ8/31jm8/lYunQpl19+eS2mTPyWKaV48sknmTlzJosWLaJVq1blPpd8Jc4UpRRer1fylDgl11xzDVu2bGHTpk3Gv27dunHfffexadMmWrduLflKnDav18uOHTto3LixPKtErZIuo6JapaWl7N692/h97969bNq0iZSUFJo3b84zzzzDqFGjaNu2LW3btmXUqFHExsZy77331mKqxW/ZsGHD+Oqrr5g1axYJCQlGTWhSUhIxMTHGPF+Sr0RNvPDCCwwYMID09HScTidTp05lyZIlzJkzR/KUOCUJCQnGu80RcXFxpKamGsslX4ma+stf/sLAgQNp3rw5eXl5vP7665SUlDBkyBB5VolaJQGhqNb69eu56qqrjN+fffZZAIYMGcJnn33G3/72N9xuN0OHDqWwsJAePXowb948EhISaivJ4jduwoQJAPTr16/c8k8//ZQHH3wQQPKVqLHc3Fzuv/9+jhw5QlJSEp07d2bOnDlcd911gOQpcXZIvhI1dfDgQe655x7y8/NJS0ujZ8+erF69mhYtWgCSp0Tt0ZRSqrYTIYQQQgghhBDi3JN3CIUQQgghhBCijpKAUAghhBBCCCHqKAkIhRBCCCGEEKKOkoBQCCGEEEIIIeooCQiFEEIIIYQQoo6SgFAIIYQQQggh6igJCIUQQgghhBCijpKAUAghhBBCCCHqKAkIhRBCCCGEEKKOkoBQCCGEEEIIIeooCQiFEEIIIYQQoo6SgFAIIYQQQggh6igJCIUQQgghhBCijpKAUAghhBBCCCHqKAkIhRBCCCGEEKKOkoBQCCGEEEIIIeooCQiFEEIIIYQQoo6SgFAIIYQQQggh6igJCIUQQgghhBCijpKAUAghhBBCCCHqKAkIhRBCCCGEEKKOkoBQCCGEEEIIIeqo/x8UdQGBoy8sRQAAAABJRU5ErkJggg==", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# restore the best solution (first in list)\n", "c.XMLInput(vsol[0]['xml'])\n", @@ -618,28 +330,16 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": { "tags": [] }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "XML: Loading Crystal:\n", - "XML: Loading Crystal:(spg:P 1 21/c 1)\n", - "Input ScatteringPowerAtom:C(C)\n", - "Input ScatteringPowerAtom:N(N)\n", - "Input ScatteringPowerAtom:S(S)\n" - ] - } - ], + "outputs": [], "source": [ "# Crystal display is automatically updated when loaded\n", "c.XMLInput(vsol[2]['xml'])\n", "# Update powder pattern display manually\n", - "p.UpdateDisplay()" + "p.UpdateDisplay()\n" ] }, { @@ -652,7 +352,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": { "tags": [] }, @@ -661,7 +361,7 @@ "# Save result so it can be opened by Fox\n", "xml_cryst_file_save_global('result.xmlgz')\n", "# Also export to the CIF format\n", - "c.CIFOutput(\"result.cif\")" + "c.CIFOutput(\"result.cif\")\n" ] }, { @@ -689,621 +389,6 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "state": { - "00b5443bf8f44a05b031982d370c43fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "fullMol opac", - "layout": "IPY_MODEL_4c15e7db02eb4a66bd13831ecaa4567d", - "max": 1, - "readout_format": ".01f", - "step": 0.1, - "style": "IPY_MODEL_63c400754e654442bc150a3bf95c0518", - "tooltip": "Opacity to display fully molecules\nwhich have at least one atom inside the limits", - "value": 0.5 - } - }, - "0447ac470bb345b599d6f258ae1b48de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "04e61f021c074f559434b63b34d75522": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Yrange", - "layout": "IPY_MODEL_443a6abb5c054a36b5862439e3d0def3", - "max": 1.5, - "min": -0.5, - "step": 0.02631578947368421, - "style": "IPY_MODEL_ff8827d44d654c298db2de63a4940c5f", - "value": [ - -5.551115123125783e-17, - 0.9999999999999998 - ] - } - }, - "057ee3da241449c68e0976a26ae40c2a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "135874284cbf450e9ab0830d972a356a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DropdownModel", - "state": { - "_options_labels": [ - "# 0 P 1 21/c 1 : 1 mol LLK= 18500.13", - "# 1 P 1 21/c 1 : 1 mol LLK= 18596.19", - "# 2 P 1 21/c 1 : 1 mol LLK= 49206.74", - "# 3 P 1 21/c 1 : 1 mol LLK= 49213.79", - "# 4 P 1 21/c 1 : 1 mol LLK= 56249.86", - "# 5 P 1 21 1 : 2 mol LLK= 62145.94", - "# 6 P 1 21 1 : 2 mol LLK= 69958.12", - "# 7 P 1 21 1 : 2 mol LLK= 82685.43", - "# 8 P 1 c 1 : 2 mol LLK= 86015.56", - "# 9 P 1 c 1 : 2 mol LLK= 87454.66", - "#10 P 1 21 1 : 2 mol LLK= 87547.20", - "#11 P 1 c 1 : 2 mol LLK= 91092.14", - "#12 P 1 c 1 : 2 mol LLK= 100616.81", - "#13 P 1 21 1 : 2 mol LLK= 101361.24", - "#14 P -1 : 2 mol LLK= 101645.03", - "#15 P 1 c 1 : 2 mol LLK= 109668.98", - "#16 P -1 : 2 mol LLK= 115241.95", - "#17 P -1 : 2 mol LLK= 123163.25", - "#18 P -1 : 2 mol LLK= 127211.68", - "#19 P -1 : 2 mol LLK= 155139.61", - "#20 P 1 2 1 : 2 mol LLK= 188882.56", - "#21 P 1 2 1 : 2 mol LLK= 211306.76", - "#22 P 1 m 1 : 2 mol LLK= 215645.85", - "#23 P 1 2 1 : 2 mol LLK= 217691.94", - "#24 P 1 2 1 : 2 mol LLK= 232080.59", - "#25 P 1 2 1 : 2 mol LLK= 239530.07", - "#26 P 1 21/m 1 : 1 mol LLK= 242776.10", - "#27 P 1 21/m 1 : 1 mol LLK= 259924.47", - "#28 P 1 21/m 1 : 1 mol LLK= 260046.12", - "#29 P 1 m 1 : 2 mol LLK= 260089.71", - "#30 P 1 m 1 : 2 mol LLK= 261603.69", - "#31 P 1 2/c 1 : 1 mol LLK= 262462.19", - "#32 P 1 21/m 1 : 1 mol LLK= 267669.81", - "#33 P 1 m 1 : 2 mol LLK= 274219.33", - "#34 P 1 21/m 1 : 1 mol LLK= 275339.56", - "#35 P 1 2/c 1 : 1 mol LLK= 306248.10", - "#36 P 1 m 1 : 2 mol LLK= 343660.20", - "#37 P 1 2/c 1 : 1 mol LLK= 372234.25", - "#38 P 1 2/c 1 : 1 mol LLK= 461123.68", - "#39 P 1 2/c 1 : 1 mol LLK= 670519.05" - ], - "description": "Solutions:", - "index": 0, - "layout": "IPY_MODEL_8dd929d319574430988c9a3c5b38dbaa", - "style": "IPY_MODEL_6686e236ced74289ba9f38771df23bde" - } - }, - "15ebdb6b1ce94d499186cee7343cf828": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_2ccba0fa274643bea4615033c6bdddf7", - "outputs": [ - { - "data": { - "application/3dmoljs_load.v0": "", - "text/html": "" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "1b240d7dab9e4b5385cb091ec20f2ab9": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_cb6eada368fd458faec9a1849e8654a2", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": "XML: Loading Crystal:\nXML: Loading Crystal:(spg:P 1 21/c 1)\nInput ScatteringPowerAtom:C(C)\nInput ScatteringPowerAtom:N(N)\nInput ScatteringPowerAtom:S(S)\n" - } - ] - } - }, - "1e59b464625a48d595ec1f60f5b69222": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "extra dist", - "layout": "IPY_MODEL_3aa42e4d60ec4e2ea45541dccf675ff4", - "max": 10, - "readout_format": ".1f", - "step": 0.5, - "style": "IPY_MODEL_3b721c73a0b44186aafb0f3f4e1709d3", - "tooltip": "Extra distance (A) with semi-transparent display", - "value": 2 - } - }, - "28089224bf4a426c9e36d0497c89e66c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "2ccba0fa274643bea4615033c6bdddf7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "2ef668dcdd7e4885968d2100cd2105ad": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_7fd1607d62214374ba19a30315055b9a", - "IPY_MODEL_04e61f021c074f559434b63b34d75522", - "IPY_MODEL_8e6094d6f13f444f808fb64d99f75738" - ], - "layout": "IPY_MODEL_ffe42167326340e8bbd49511adf9ac1f" - } - }, - "31b4b5e9d32e4653ba578d4caae14831": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "35652a678f864aedb06c8d16a1374191": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "3aa42e4d60ec4e2ea45541dccf675ff4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "3b721c73a0b44186aafb0f3f4e1709d3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "3c1116b547234f2b97e22db310a953c2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "430ff3580cf946aea74a7c7d82a31cb2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "443a6abb5c054a36b5862439e3d0def3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4c15e7db02eb4a66bd13831ecaa4567d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4da865c6de3348f1b9e574778800d005": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_1e59b464625a48d595ec1f60f5b69222", - "IPY_MODEL_8ab052e209784f5e9e9655d92f39b2b9", - "IPY_MODEL_00b5443bf8f44a05b031982d370c43fd" - ], - "layout": "IPY_MODEL_feabaa8d66914513a3ef4538b18a03cd" - } - }, - "558e8d323a3e4263bb3f1754319dee94": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "63b312a80e604e2ea00d166acd3bc97a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "BoxModel", - "state": { - "children": [ - "IPY_MODEL_fedaff6bdc6c4459b41e654d04c13d91" - ], - "layout": "IPY_MODEL_9a73b1a1f18443a3ab2be158d16b01db" - } - }, - "63c400754e654442bc150a3bf95c0518": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "6686e236ced74289ba9f38771df23bde": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "6875cd83f2a64d9bb4c859f97afb563b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "745d2005f8264321843115d31627eb66": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "7d0e4c75c10245b5b743cf7238af0177": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_2ef668dcdd7e4885968d2100cd2105ad", - "IPY_MODEL_4da865c6de3348f1b9e574778800d005" - ], - "layout": "IPY_MODEL_35652a678f864aedb06c8d16a1374191" - } - }, - "7fd1607d62214374ba19a30315055b9a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Xrange", - "layout": "IPY_MODEL_c09b14582f4048efb50a75392d700ba1", - "max": 1.5, - "min": -0.5, - "step": 0.07142857142857142, - "style": "IPY_MODEL_0447ac470bb345b599d6f258ae1b48de", - "value": [ - 0, - 1 - ] - } - }, - "80b4c4a7d1b4400b8c56129aa2a6d244": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "_dom_classes": [ - "widget-interact" - ], - "children": [ - "IPY_MODEL_bd033c36be3d4db3803d2c759d8d4e6f", - "IPY_MODEL_1b240d7dab9e4b5385cb091ec20f2ab9" - ], - "layout": "IPY_MODEL_430ff3580cf946aea74a7c7d82a31cb2" - } - }, - "810ebc4df77a43a9b5b2c1e4e71c2d7f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "8ab052e209784f5e9e9655d92f39b2b9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "extra opac.", - "layout": "IPY_MODEL_ffdec305128247aba21dc5789a9aff1d", - "max": 1, - "readout_format": ".01f", - "step": 0.1, - "style": "IPY_MODEL_810ebc4df77a43a9b5b2c1e4e71c2d7f", - "tooltip": "Opacity for extra distance display", - "value": 0.5 - } - }, - "8dd929d319574430988c9a3c5b38dbaa": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "8e6094d6f13f444f808fb64d99f75738": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Zrange", - "layout": "IPY_MODEL_6875cd83f2a64d9bb4c859f97afb563b", - "max": 1.5, - "min": -0.5, - "step": 0.047619047619047616, - "style": "IPY_MODEL_28089224bf4a426c9e36d0497c89e66c", - "value": [ - 0.023809523809523836, - 1.0238095238095237 - ] - } - }, - "9a73b1a1f18443a3ab2be158d16b01db": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "b77e4f516b1644cf98b2bb54b4d2ffb1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "bd033c36be3d4db3803d2c759d8d4e6f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DropdownModel", - "state": { - "_options_labels": [ - "# 0 P 1 21/c 1 : 1 mol LLK= 18500.13", - "# 1 P 1 21/c 1 : 1 mol LLK= 18596.19", - "# 2 P 1 21/c 1 : 1 mol LLK= 49206.74", - "# 3 P 1 21/c 1 : 1 mol LLK= 49213.79", - "# 4 P 1 21/c 1 : 1 mol LLK= 56249.86", - "# 5 P 1 21 1 : 2 mol LLK= 62145.94", - "# 6 P 1 21 1 : 2 mol LLK= 69958.12", - "# 7 P 1 21 1 : 2 mol LLK= 82685.43", - "# 8 P 1 c 1 : 2 mol LLK= 86015.56", - "# 9 P 1 c 1 : 2 mol LLK= 87454.66", - "#10 P 1 21 1 : 2 mol LLK= 87547.20", - "#11 P 1 c 1 : 2 mol LLK= 91092.14", - "#12 P 1 c 1 : 2 mol LLK= 100616.81", - "#13 P 1 21 1 : 2 mol LLK= 101361.24", - "#14 P -1 : 2 mol LLK= 101645.03", - "#15 P 1 c 1 : 2 mol LLK= 109668.98", - "#16 P -1 : 2 mol LLK= 115241.95", - "#17 P -1 : 2 mol LLK= 123163.25", - "#18 P -1 : 2 mol LLK= 127211.68", - "#19 P -1 : 2 mol LLK= 155139.61", - "#20 P 1 2 1 : 2 mol LLK= 188882.56", - "#21 P 1 2 1 : 2 mol LLK= 211306.76", - "#22 P 1 m 1 : 2 mol LLK= 215645.85", - "#23 P 1 2 1 : 2 mol LLK= 217691.94", - "#24 P 1 2 1 : 2 mol LLK= 232080.59", - "#25 P 1 2 1 : 2 mol LLK= 239530.07", - "#26 P 1 21/m 1 : 1 mol LLK= 242776.10", - "#27 P 1 21/m 1 : 1 mol LLK= 259924.47", - "#28 P 1 21/m 1 : 1 mol LLK= 260046.12", - "#29 P 1 m 1 : 2 mol LLK= 260089.71", - "#30 P 1 m 1 : 2 mol LLK= 261603.69", - "#31 P 1 2/c 1 : 1 mol LLK= 262462.19", - "#32 P 1 21/m 1 : 1 mol LLK= 267669.81", - "#33 P 1 m 1 : 2 mol LLK= 274219.33", - "#34 P 1 21/m 1 : 1 mol LLK= 275339.56", - "#35 P 1 2/c 1 : 1 mol LLK= 306248.10", - "#36 P 1 m 1 : 2 mol LLK= 343660.20", - "#37 P 1 2/c 1 : 1 mol LLK= 372234.25", - "#38 P 1 2/c 1 : 1 mol LLK= 461123.68", - "#39 P 1 2/c 1 : 1 mol LLK= 670519.05" - ], - "description": "solution", - "index": 0, - "layout": "IPY_MODEL_31b4b5e9d32e4653ba578d4caae14831", - "style": "IPY_MODEL_3c1116b547234f2b97e22db310a953c2" - } - }, - "bf0bbda1a483459a8ae709f67037d7e4": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "ToolbarModel", - "state": { - "_model_module_version": "^0.11", - "_view_module_version": "^0.11", - "collapsed": true, - "layout": "IPY_MODEL_057ee3da241449c68e0976a26ae40c2a", - "orientation": "vertical", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "c09b14582f4048efb50a75392d700ba1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "cb6eada368fd458faec9a1849e8654a2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "e394c6a5c23c4d56868f65d07be70d28": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "f172c22d8dde4f0989fab8518c4a1fb2": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "ToolbarModel", - "state": { - "_model_module_version": "^0.11", - "_view_module_version": "^0.11", - "collapsed": true, - "layout": "IPY_MODEL_b77e4f516b1644cf98b2bb54b4d2ffb1", - "orientation": "vertical", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "feabaa8d66914513a3ef4538b18a03cd": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "fedaff6bdc6c4459b41e654d04c13d91": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_7d0e4c75c10245b5b743cf7238af0177", - "IPY_MODEL_15ebdb6b1ce94d499186cee7343cf828" - ], - "layout": "IPY_MODEL_e394c6a5c23c4d56868f65d07be70d28" - } - }, - "ff8827d44d654c298db2de63a4940c5f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "ffdec305128247aba21dc5789a9aff1d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "ffe42167326340e8bbd49511adf9ac1f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - } - }, - "version_major": 2, - "version_minor": 0 - } } }, "nbformat": 4, diff --git a/examples/structure-solution-powder-cimetidine.ipynb b/examples/structure-solution-powder-cimetidine.ipynb index fefa6e1..c6d83aa 100644 --- a/examples/structure-solution-powder-cimetidine.ipynb +++ b/examples/structure-solution-powder-cimetidine.ipynb @@ -28,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -45,7 +45,7 @@ "from pyobjcryst.indexing import *\n", "from pyobjcryst.molecule import *\n", "from pyobjcryst.globaloptim import MonteCarlo\n", - "from pyobjcryst.io import xml_cryst_file_save_global" + "from pyobjcryst.io import xml_cryst_file_save_global\n" ] }, { @@ -57,42 +57,9 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Imported powder pattern: 7699 points, 2theta= 8.010 -> 84.990, step= 0.010\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "bd48c8151b264b11a214f6b3f326fbfc", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABfv0lEQVR4nO3deVyU5f7/8feIMCzCiBEiZWqLpmFWWm511FMu/Fwq+2ZmcvRUtFnmQVtsOZm/0haXSk+bp7LSjp1O2aYZapm54JaUW+o3F1BBzHAQkGG7fn945v45LAoIDDCv5+NxPx7MfV9z39d9zQDzns+92IwxRgAAAAAAn9PI2x0AAAAAAHgHgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfFSDCoQrV67U4MGDFR0dLZvNps8//9xjuc1mK3N6+eWXrTa9e/cutXz48OEe68nMzFRcXJwcDoccDofi4uJ07NgxjzYpKSkaPHiwQkJCFBERobFjxyo/P9+jzZYtW9SrVy8FBQXpvPPO0+TJk2WMqdYxAQAAAIDyNPZ2B6pTTk6OOnXqpL/+9a+65ZZbSi1PS0vzePzNN9/orrvuKtU2Pj5ekydPth4HBQV5LB8xYoQOHDigJUuWSJLuuecexcXF6auvvpIkFRUVaeDAgTr33HO1atUqHT16VKNGjZIxRrNmzZIkZWVlqW/fvurTp482bNigXbt2afTo0QoJCdH48ePPfjAAAAAA4AwaVCCMjY1VbGxsucujoqI8Hn/xxRfq06ePLrzwQo/5wcHBpdq67dixQ0uWLFFSUpK6du0qSZozZ466d++unTt3ql27dkpMTNT27duVmpqq6OhoSdL06dM1evRoPf/88woLC9P8+fOVl5enuXPnym63KyYmRrt27dKMGTOUkJAgm81WoX0uLi7WoUOHFBoaWuHnAAAAAHWZMUbHjx9XdHS0GjVqUAc11jkNKhBWxuHDh7Vo0SK9//77pZbNnz9f8+bNU/PmzRUbG6tnnnlGoaGhkqS1a9fK4XBYYVCSunXrJofDoTVr1qhdu3Zau3atYmJirDAoSf3795fL5dKmTZvUp08frV27Vr169ZLdbvdoM3HiRO3bt09t2rQps98ul0sul8t6fPDgQXXo0OGsxwMAAACoa1JTU3X++ed7uxsNms8Gwvfff1+hoaEaOnSox/w77rhDbdq0UVRUlLZu3aqJEyfq559/1tKlSyVJ6enpioyMLLW+yMhIpaenW22aN2/usTw8PFwBAQEebVq3bu3Rxv2c9PT0cgPh1KlT9eyzz5aan5qaqrCwsArsOQAAAFC3ZWVlqWXLllZRBjXHZwPhu+++qzvuuEOBgYEe8+Pj462fY2JidMkll6hLly766aefdNVVV0lSmYdmGmM85leljfuCMqc79HPixIlKSEiwHrt/WcLCwgiEAAAAaFA4Jarm+eQBuT/++KN27typu++++4xtr7rqKvn7+2v37t2STp6HePjw4VLtjhw5YlX4oqKirEqgW2ZmpgoKCk7bJiMjQ5JKVRdPZbfbrfBHCAQAAABwNnwyEL7zzjvq3LmzOnXqdMa227ZtU0FBgVq0aCFJ6t69u5xOp9avX2+1WbdunZxOp3r06GG12bp1q8dVTRMTE2W329W5c2erzcqVKz1uRZGYmKjo6OhSh5ICAAAAQE1oUIEwOztbycnJSk5OliTt3btXycnJSklJsdpkZWXpk08+KbM6+Ntvv2ny5MnauHGj9u3bp8WLF+vWW2/VlVdeqZ49e0qS2rdvrwEDBig+Pl5JSUlKSkpSfHy8Bg0apHbt2kmS+vXrpw4dOiguLk6bN2/W8uXLNWHCBMXHx1sVvREjRshut2v06NHaunWrFi5cqClTplTqCqMAAAAAcDZspgHdCX3FihXq06dPqfmjRo3S3LlzJUlvv/22xo0bp7S0NDkcDo92qampGjlypLZu3ars7Gy1bNlSAwcO1DPPPKNmzZpZ7f744w+NHTtWX375pSRpyJAhmj17tpo2bWq1SUlJ0QMPPKDvvvtOQUFBGjFihKZNm+ZxVdEtW7ZozJgxWr9+vcLDw3Xffffp73//e6UCYVZWlhwOh5xOJ4ePAgAAeFlRUZEKCgq83Y06z9/fX35+fuUu5zNu7WlQgdAX8csCAADgfcYYpaen69ixY97uSr3RtGlTRUVFlVkM4TNu7fHZq4wCAAAA1cUdBiMjIxUcHMwpQKdhjFFubq51QUX3tTrgHQRCAAAA4CwUFRVZYfCcc87xdnfqhaCgIEknr7IfGRl52sNHUbMa1EVlAAAAgNrmPmcwODjYyz2pX9zjxTmX3kUgBAAAAKoBh4lWDuNVNxAIAQAAAMBHEQgBVMrvv/+uRx55RMXFxd7uCgAAqEErVqyQzWbjyqkNHIEQQKU8+eSTmjZtmrZu3ertrgAAAOAsEQgBVAnH/QMAANR/BEIAAADAR7lcLo0dO1aRkZEKDAzUtddeqw0bNni0Wb16tTp16qTAwEB17dpVW7ZssZbt379fgwcPVnh4uEJCQnTZZZdp8eLFtb0bOAsEQgAAAMBHPfroo/r000/1/vvv66efftLFF1+s/v37648//rDaPPLII5o2bZo2bNigyMhIDRkyxLpVxJgxY+RyubRy5Upt2bJFL774opo0aeKt3UEVcGN6AFVijPF2FwAAqNNyc3P166+/1vp2L7300grdEzEnJ0dvvPGG5s6dq9jYWEnSnDlztHTpUr3zzju6+uqrJUnPPPOM+vbtK0l6//33df7552vhwoUaNmyYUlJSdMstt6hjx46SpAsvvLCG9go1hUAIAAAA1IBff/1VnTt3rvXtbtq0SVddddUZ2/32228qKChQz549rXn+/v665pprtGPHDisQdu/e3VrerFkztWvXTjt27JAkjR07Vvfff78SExN1ww036JZbbtHll19ezXuEmkQgBAAAAGrApZdeqk2bNnlluxXhPtqn5IXijDFnvHice/ndd9+t/v37a9GiRUpMTNTUqVM1ffp0PfTQQ1XoObyBQAigUri6KAAAFRMcHFyhSp23XHzxxQoICNCqVas0YsQISVJBQYE2btyocePGWe2SkpJ0wQUXSJIyMzO1a9cuj9DZsmVL3Xfffbrvvvs0ceJEzZkzh0BYjxAIAQAAAB8UEhKi+++/X4888oiaNWumCy64QC+99JJyc3N111136eeff5YkTZ48Weecc46aN2+uJ598UhEREbrpppskSePGjVNsbKzatm2rzMxMfffdd2rfvr0X9wqVRSAEAAAAfNQLL7yg4uJixcXF6fjx4+rSpYu+/fZbhYeHe7R5+OGHtXv3bnXq1ElffvmlAgICJElFRUUaM2aMDhw4oLCwMA0YMEAzZ8701u6gCgiEAKqEq4wCAFD/BQYG6rXXXtNrr71Walnv3r2t//eDBg0q8/mzZs2q0f6h5nEfQgAAAADwUQRCAAAAAPBRBEIAlcJVRgEAABoOAiGASuHcQQAAgIaDQAgAAAAAPopACKBSOGQUAACg4SAQAgAAAICPIhACAAAAgI8iEAKoEi4uAwCAb5s0aZKuuOIKb3cDZ4lACAAAAAA+ikAIAAAAAD6KQAigUrjKKAAADUdxcbFefPFFXXzxxbLb7brgggv0/PPPS5Iee+wxtW3bVsHBwbrwwgv19NNPq6Cg4LTre/fdd3XZZZfJbrerRYsWevDBB2tjN3AWGnu7AwAAAAC8Y+LEiZozZ45mzpypa6+9Vmlpafr1118lSaGhoZo7d66io6O1ZcsWxcfHKzQ0VI8++miZ63rjjTeUkJCgF154QbGxsXI6nVq9enVt7g6qgEAIAAAA+KDjx4/r1Vdf1ezZszVq1ChJ0kUXXaRrr71WkvTUU09ZbVu3bq3x48fr448/LjcQPvfccxo/frwefvhha97VV19dg3uA6tCgDhlduXKlBg8erOjoaNlsNn3++ecey0ePHi2bzeYxdevWzaONy+XSQw89pIiICIWEhGjIkCE6cOCAR5vMzEzFxcXJ4XDI4XAoLi5Ox44d82iTkpKiwYMHKyQkRBERERo7dqzy8/M92mzZskW9evVSUFCQzjvvPE2ePJkrN6Le4L0KAMAZ5OZKP/1U+1NuboW6t2PHDrlcLl1//fVlLv/Pf/6ja6+9VlFRUWrSpImefvpppaSklNk2IyNDhw4dKnddqLsaVIUwJydHnTp10l//+lfdcsstZbYZMGCA3nvvPetxQECAx/Jx48bpq6++0oIFC3TOOedo/PjxGjRokDZt2iQ/Pz9J0ogRI3TgwAEtWbJEknTPPfcoLi5OX331lSSpqKhIAwcO1LnnnqtVq1bp6NGjGjVqlIwxmjVrliQpKytLffv2VZ8+fbRhwwbt2rVLo0ePVkhIiMaPH1/tYwMAAIBa9uuvUufOtb/dTZukq646Y7OgoKBylyUlJWn48OF69tln1b9/fzkcDi1YsEDTp0+v9LpQtzWoQBgbG6vY2NjTtrHb7YqKiipzmdPp1DvvvKMPP/xQN9xwgyRp3rx5atmypZYtW6b+/ftrx44dWrJkiZKSktS1a1dJ0pw5c9S9e3ft3LlT7dq1U2JiorZv367U1FRFR0dLkqZPn67Ro0fr+eefV1hYmObPn6+8vDzNnTtXdrtdMTEx2rVrl2bMmKGEhAQu3AEAAFDfXXrpyXDmje1WwCWXXKKgoCAtX75cd999t8ey1atXq1WrVnryySetefv37y93XaGhoWrdurWWL1+uPn36VK3f8IoGFQgrYsWKFYqMjFTTpk3Vq1cvPf/884qMjJQkbdq0SQUFBerXr5/VPjo6WjExMVqzZo369++vtWvXyuFwWGFQkrp16yaHw6E1a9aoXbt2Wrt2rWJiYqwwKEn9+/eXy+XSpk2b1KdPH61du1a9evWS3W73aDNx4kTt27dPbdq0KbP/LpdLLpfLepyVlVVtYwMAAIBqFBxcoUqdtwQGBuqxxx7To48+qoCAAPXs2VNHjhzRtm3bdPHFFyslJUULFizQ1VdfrUWLFmnhwoWnXd+kSZN03333KTIyUrGxsTp+/LhWr16thx56qJb2CFXRoM4hPJPY2FjNnz9f3333naZPn64NGzboz3/+sxWw0tPTFRAQoPDwcI/nNW/eXOnp6VYbd4A8VWRkpEeb5s2beywPDw9XQEDAadu4H7vblGXq1KnWuYsOh0MtW7aszBAAAAAAlqefflrjx4/X3//+d7Vv31633XabMjIydOONN+pvf/ubHnzwQV1xxRVas2aNnn766dOua9SoUXrllVf0+uuv67LLLtOgQYO0e/fuWtoTVJVPVQhvu+026+eYmBh16dJFrVq10qJFizR06NByn2eM8TiEs6zDOaujjfsiHac7XHTixIlKSEiwHmdlZREKAQAAUCWNGjXSk08+6XFoqNtLL72kl156yWPeuHHjrJ8nTZqkSZMmeSy/9957de+999ZEV1FDfKpCWFKLFi3UqlUr65uLqKgo5efnKzMz06NdRkaGVb2LiorS4cOHS63ryJEjHm1KVvkyMzNVUFBw2jYZGRmSVKpyeCq73a6wsDCPCQAAAACqwqcD4dGjR5WamqoWLVpIkjp37ix/f38tXbrUapOWlqatW7eqR48ekqTu3bvL6XRq/fr1Vpt169bJ6XR6tNm6davS0tKsNomJibLb7er83ytNde/eXStXrvS4FUViYqKio6PVunXrGttnAAAAAHBrUIEwOztbycnJSk5OliTt3btXycnJSklJUXZ2tiZMmKC1a9dq3759WrFihQYPHqyIiAjdfPPNkiSHw6G77rpL48eP1/Lly7V582aNHDlSHTt2tK462r59ew0YMEDx8fFKSkpSUlKS4uPjNWjQILVr106S1K9fP3Xo0EFxcXHavHmzli9frgkTJig+Pt6q6I0YMUJ2u12jR4/W1q1btXDhQk2ZMoUrjKLO4/0JAADQcDSocwg3btzocZlb97l2o0aN0htvvKEtW7bogw8+0LFjx9SiRQv16dNHH3/8sUJDQ63nzJw5U40bN9awYcN04sQJXX/99Zo7d651D0JJmj9/vsaOHWtdjXTIkCGaPXu2tdzPz0+LFi3SAw88oJ49eyooKEgjRozQtGnTrDYOh0NLly7VmDFj1KVLF4WHhyshIcHj/EAAAAAAqEk2476SCeqlrKwsORwOOZ1OzidErRgzZoxef/11/fTTT7ryyiu93R0AALwuLy9Pe/fuVZs2bRQYGOjt7tQbpxs3PuPWngZ1yCiA2sN3SQAAeOJ/Y+UwXnUDgRAAAAA4C/7+/pKk3NxcL/ekfnGPl3v84B0N6hxCAAAAoLb5+fmpadOm1i3EgoODuQjbaRhjlJubq4yMDDVt2tTjWh2ofQRCAJXCPzgAAEqLioqS9P/vK40za9q0qTVu8B4CIQAAAHCWbDabWrRoocjISBUUFHi7O3Wev78/lcE6gkAIAAAAVBM/Pz+CDuoVLioDoEq4MhgAAED9RyAEAAAAAB9FIAQAAAAAH0UgBAAAAAAfRSAEAAAAAB9FIAQAAAAAH0UgBFAp3JgeAACg4SAQAgAAAICPIhACAAAAgI8iEAKoEm5MDwAAUP8RCAEAAADARxEIAQAAAMBHEQgBVApXGQUAAGg4CIQAAAAA4KMIhAAAAADgowiEAAAAAOCjCIQAAAAA4KMIhACqhPsQAgAA1H8EQgAAAADwUQRCAAAAAPBRBEIAAAAA8FEEQgAAAADwUQRCAAAAAPBRBEIAlWKz2bzdBQAAAFSTBhUIV65cqcGDBys6Olo2m02ff/65taygoECPPfaYOnbsqJCQEEVHR+svf/mLDh065LGO3r17y2azeUzDhw/3aJOZmam4uDg5HA45HA7FxcXp2LFjHm1SUlI0ePBghYSEKCIiQmPHjlV+fr5Hmy1btqhXr14KCgrSeeedp8mTJ3Mpf9QbvFcBAADqvwYVCHNyctSpUyfNnj271LLc3Fz99NNPevrpp/XTTz/ps88+065duzRkyJBSbePj45WWlmZNb731lsfyESNGKDk5WUuWLNGSJUuUnJysuLg4a3lRUZEGDhyonJwcrVq1SgsWLNCnn36q8ePHW22ysrLUt29fRUdHa8OGDZo1a5amTZumGTNmVOOIAAAAAED5Gnu7A9UpNjZWsbGxZS5zOBxaunSpx7xZs2bpmmuuUUpKii644AJrfnBwsKKiospcz44dO7RkyRIlJSWpa9eukqQ5c+aoe/fu2rlzp9q1a6fExERt375dqampio6OliRNnz5do0eP1vPPP6+wsDDNnz9feXl5mjt3rux2u2JiYrRr1y7NmDFDCQkJHJaHOo8KIQAAQP3XoCqEleV0OmWz2dS0aVOP+fPnz1dERIQuu+wyTZgwQcePH7eWrV27Vg6HwwqDktStWzc5HA6tWbPGahMTE2OFQUnq37+/XC6XNm3aZLXp1auX7Ha7R5tDhw5p3759NbC3AAAAAOCpQVUIKyMvL0+PP/64RowYobCwMGv+HXfcoTZt2igqKkpbt27VxIkT9fPPP1vVxfT0dEVGRpZaX2RkpNLT0602zZs391geHh6ugIAAjzatW7f2aON+Tnp6utq0aVNmv10ul1wul/U4KyurknsOVA8qhAAAAPWfTwbCgoICDR8+XMXFxXr99dc9lsXHx1s/x8TE6JJLLlGXLl30008/6aqrrpJU9lUWjTEe86vSxv0B+3SHi06dOlXPPvvs6XYPqFEczgwAANBw+NwhowUFBRo2bJj27t2rpUuXelQHy3LVVVfJ399fu3fvliRFRUXp8OHDpdodOXLEqvBFRUVZlUC3zMxMFRQUnLZNRkaGJJWqLp5q4sSJcjqd1pSamnqGPQaql/uLCyqEAAAA9Z9PBUJ3GNy9e7eWLVumc84554zP2bZtmwoKCtSiRQtJUvfu3eV0OrV+/Xqrzbp16+R0OtWjRw+rzdatW5WWlma1SUxMlN1uV+fOna02K1eu9LgVRWJioqKjo0sdSnoqu92usLAwjwkAAAAAqqJBBcLs7GwlJycrOTlZkrR3714lJycrJSVFhYWF+p//+R9t3LhR8+fPV1FRkdLT05Wenm6Fst9++02TJ0/Wxo0btW/fPi1evFi33nqrrrzySvXs2VOS1L59ew0YMEDx8fFKSkpSUlKS4uPjNWjQILVr106S1K9fP3Xo0EFxcXHavHmzli9frgkTJig+Pt4KcCNGjJDdbtfo0aO1detWLVy4UFOmTOEKo6jz3O9PKoQAAAD1X4MKhBs3btSVV16pK6+8UpKUkJCgK6+8Un//+9914MABffnllzpw4ICuuOIKtWjRwprcVwcNCAjQ8uXL1b9/f7Vr105jx45Vv379tGzZMvn5+VnbmT9/vjp27Kh+/fqpX79+uvzyy/Xhhx9ay/38/LRo0SIFBgaqZ8+eGjZsmG666SZNmzbNauO+DcaBAwfUpUsXPfDAA0pISFBCQkItjRYAAAAAX2czfM1fr2VlZcnhcMjpdHL4KGrFuHHj9Oqrr2rVqlVW5RwAAKA68Rm39jSoCiEAAAAAoOIIhACqhIMLAAAA6j8CIQAAAAD4KAIhgErhKqMAAAANB4EQAAAAAHwUgRAAAAAAfBSBEECVcMgoAABA/UcgBAAAAAAfRSAEUCVUCAEAAOo/AiEAAAAA+CgCIYAqoUIIAABQ/xEIAQAAAMBHEQgBVAkVQgAAgPqPQAgAAAAAPopACKBSbDabJCqEAAAADQGBEAAAAAB8FIEQQJVQIQQAAKj/CIQAAAAA4KMIhACqhAohAABA/UcgBAAAAAAfRSAEUCnuq4wCAACg/iMQAqgSDhkFAACo/wiEAAAAAOCjCIQAqoQKIQAAQP1HIAQAAAAAH0UgBFAlVAgBAADqPwIhAAAAAPgoAiGAKqFCCAAAUP8RCAEAAADARxEIAVSK+8b0VAgBAADqPwIhAAAAAPioBhUIV65cqcGDBys6Olo2m02ff/65x3JjjCZNmqTo6GgFBQWpd+/e2rZtm0cbl8ulhx56SBEREQoJCdGQIUN04MABjzaZmZmKi4uTw+GQw+FQXFycjh075tEmJSVFgwcPVkhIiCIiIjR27Fjl5+d7tNmyZYt69eqloKAgnXfeeZo8eTJVF9QbvFcBAADqvwYVCHNyctSpUyfNnj27zOUvvfSSZsyYodmzZ2vDhg2KiopS3759dfz4cavNuHHjtHDhQi1YsECrVq1Sdna2Bg0apKKiIqvNiBEjlJycrCVLlmjJkiVKTk5WXFyctbyoqEgDBw5UTk6OVq1apQULFujTTz/V+PHjrTZZWVnq27evoqOjtWHDBs2aNUvTpk3TjBkzamBkAAAAAKAMpoGSZBYuXGg9Li4uNlFRUeaFF16w5uXl5RmHw2HefPNNY4wxx44dM/7+/mbBggVWm4MHD5pGjRqZJUuWGGOM2b59u5FkkpKSrDZr1641ksyvv/5qjDFm8eLFplGjRubgwYNWm3/961/Gbrcbp9NpjDHm9ddfNw6Hw+Tl5Vltpk6daqKjo01xcXGF99PpdBpJ1nqBmjZ+/HgjyXz99dfe7goAAGig+IxbexpUhfB09u7dq/T0dPXr18+aZ7fb1atXL61Zs0aStGnTJhUUFHi0iY6OVkxMjNVm7dq1cjgc6tq1q9WmW7ducjgcHm1iYmIUHR1ttenfv79cLpc2bdpktenVq5fsdrtHm0OHDmnfvn3VPwAAAAAAUILPBML09HRJUvPmzT3mN2/e3FqWnp6ugIAAhYeHn7ZNZGRkqfVHRkZ6tCm5nfDwcAUEBJy2jfuxu01ZXC6XsrKyPCagNnGVUQAAgIbDZwKhm/vDrJsxptS8kkq2Kat9dbRxf8A+XX+mTp1qXczG4XCoZcuWp+07AAAAAJTHZwJhVFSUpNLVt4yMDKsyFxUVpfz8fGVmZp62zeHDh0ut/8iRIx5tSm4nMzNTBQUFp22TkZEhqXQV81QTJ06U0+m0ptTU1NPvOAAAAACUw2cCYZs2bRQVFaWlS5da8/Lz8/XDDz+oR48ekqTOnTvL39/fo01aWpq2bt1qtenevbucTqfWr19vtVm3bp2cTqdHm61btyotLc1qk5iYKLvdrs6dO1ttVq5c6XErisTEREVHR6t169bl7ofdbldYWJjHBHgDh4wCAADUfw0qEGZnZys5OVnJycmSTl5IJjk5WSkpKbLZbBo3bpymTJmihQsXauvWrRo9erSCg4M1YsQISZLD4dBdd92l8ePHa/ny5dq8ebNGjhypjh076oYbbpAktW/fXgMGDFB8fLySkpKUlJSk+Ph4DRo0SO3atZMk9evXTx06dFBcXJw2b96s5cuXa8KECYqPj7cC3IgRI2S32zV69Ght3bpVCxcu1JQpU5SQkHDGQ1gBAAAAoDo09nYHqtPGjRvVp08f63FCQoIkadSoUZo7d64effRRnThxQg888IAyMzPVtWtXJSYmKjQ01HrOzJkz1bhxYw0bNkwnTpzQ9ddfr7lz58rPz89qM3/+fI0dO9a6GumQIUM87n3o5+enRYsW6YEHHlDPnj0VFBSkESNGaNq0aVYbh8OhpUuXasyYMerSpYvCw8OVkJBg9Rmo66gQAgAA1H82w6e6ei0rK0sOh0NOp5PDR1ErHnnkEU2bNk1ffPGFhgwZ4u3uAACABojPuLWnQR0yCqD28F0SAABA/UcgBAAAAAAfRSAEUCVUCAEAAOo/AiEAAAAA+CgCIYBKcd8WhQohAABA/UcgBAAAAAAfRSAEUCVUCAEAAOo/AiEAAAAA+CgCIYAqoUIIAABQ/xEIAQAAAMBHEQgBVApXGQUAAGg4CIQAKoUgCAAA0HAQCAEAAADARxEIAVQKh4wCAAA0HARCAAAAAPBRBEIAVUKFEAAAoP4jEAIAAACAjyIQAqgSKoQAAAD1H4EQAAAAAHwUgRBApXCVUQAAgIaDQAgAAAAAPopACKBKqBACAADUfwRCAAAAAPBRBEIAVUKFEAAAoP4jEAIAAACAjyIQAqgSKoQAAAD1H4EQAAAAAHwUgRAAAAAAfBSBEECVcMgoAABA/UcgBAAAAAAfRSAEUCk2m00SFUIAAICGwOcCYevWrWWz2UpNY8aMkSSNHj261LJu3bp5rMPlcumhhx5SRESEQkJCNGTIEB04cMCjTWZmpuLi4uRwOORwOBQXF6djx455tElJSdHgwYMVEhKiiIgIjR07Vvn5+TW6/wAAAADg5nOBcMOGDUpLS7OmpUuXSpJuvfVWq82AAQM82ixevNhjHePGjdPChQu1YMECrVq1StnZ2Ro0aJCKioqsNiNGjFBycrKWLFmiJUuWKDk5WXFxcdbyoqIiDRw4UDk5OVq1apUWLFigTz/9VOPHj6/hEQCqBxVCAACA+q+xtztQ284991yPxy+88IIuuugi9erVy5pnt9sVFRVV5vOdTqfeeecdffjhh7rhhhskSfPmzVPLli21bNky9e/fXzt27NCSJUuUlJSkrl27SpLmzJmj7t27a+fOnWrXrp0SExO1fft2paamKjo6WpI0ffp0jR49Ws8//7zCwsJqYvcBAAAAwOJzFcJT5efna968ebrzzjut86IkacWKFYqMjFTbtm0VHx+vjIwMa9mmTZtUUFCgfv36WfOio6MVExOjNWvWSJLWrl0rh8NhhUFJ6tatmxwOh0ebmJgYKwxKUv/+/eVyubRp06Ya22egulAhBAAAqP98rkJ4qs8//1zHjh3T6NGjrXmxsbG69dZb1apVK+3du1dPP/20/vznP2vTpk2y2+1KT09XQECAwsPDPdbVvHlzpaenS5LS09MVGRlZanuRkZEebZo3b+6xPDw8XAEBAVabsrhcLrlcLutxVlZWpfcbAAAAACQfD4TvvPOOYmNjPap0t912m/VzTEyMunTpolatWmnRokUaOnRouesyxnhUGU/9+WzalDR16lQ9++yz5e8UUMO4yigAAEDD4bOHjO7fv1/Lli3T3Xfffdp2LVq0UKtWrbR7925JUlRUlPLz85WZmenRLiMjw6r4RUVF6fDhw6XWdeTIEY82JSuBmZmZKigoKFU5PNXEiRPldDqtKTU19cw7CwAAAABl8NlA+N577ykyMlIDBw48bbujR48qNTVVLVq0kCR17txZ/v7+1tVJJSktLU1bt25Vjx49JEndu3eX0+nU+vXrrTbr1q2T0+n0aLN161alpaVZbRITE2W329W5c+dy+2O32xUWFuYxAd5AhRAAAKD+88lAWFxcrPfee0+jRo1S48b//6jZ7OxsTZgwQWvXrtW+ffu0YsUKDR48WBEREbr55pslSQ6HQ3fddZfGjx+v5cuXa/PmzRo5cqQ6duxoXXW0ffv2GjBggOLj45WUlKSkpCTFx8dr0KBBateunSSpX79+6tChg+Li4rR582YtX75cEyZMUHx8PCEPAAAAQK3wyUC4bNkypaSk6M477/SY7+fnpy1btujGG29U27ZtNWrUKLVt21Zr165VaGio1W7mzJm66aabNGzYMPXs2VPBwcH66quv5OfnZ7WZP3++OnbsqH79+qlfv366/PLL9eGHH3psa9GiRQoMDFTPnj01bNgw3XTTTZo2bVrNDwBQDagQAgAA1H82w6e6ei0rK0sOh0NOp5PKImrFE088oalTp+qdd94p9aUKAABAdeAzbu3xyQohgLPHd0kAAAD1H4EQAAAAAHwUgRAAAAAAfBSBEEClcGN6AACAhoNACKBSCIIAAAANB4EQQJUQDAEAAOo/AiEAAAAA+CgCIYBKcVcGqRACAADUfwRCAAAAAPBRBEIAVUKFEAAAoP4jEAKoFIIgAABAw0EgBFAlBEMAAID6j0AIoFIIggAAAA0HgRCoIZmZmSouLvZ2N2oMwRAAAKD+IxACNaRZs2Z6+umnvd0NAAAAoFwEQqAGffvtt97uQrXjPoQAAAANB4EQqAGEJgAAANQHBEKgBvhCIGzI+wYAAOArCIRADWjIYakh7xsAAICvIRACNcAXKoQAAACo/wiEQA1qyIGwIe8bAACAryAQAjWgIVcIG+I+AQAA+CoCIVADGnIgdGvI+wYAAOArCIRADWjIgbAh7hMAAICvIhACNaAhB0K3hrxvAAAAvoJACNSAhhwIG+I+AQAA+CoCIVCNtm3bpl9//bXWAuGePXtUVFRUo9soqSGHXQAAAF9DIASqUUxMjNq3b2+FJZvNVmPbysnJ0UUXXaRnn322xrYBAACAho1ACNSA2qie5eXlSZI2bdpU49s6FRVCAACAhoNACNSA2qgQltxWffavf/1Ln3zyibe7AQAA4HMae7sDQEPUEEJaeWqiQjhixIhqXycAAADOzKcqhJMmTZLNZvOYoqKirOXGGE2aNEnR0dEKCgpS7969tW3bNo91uFwuPfTQQ4qIiFBISIiGDBmiAwcOeLTJzMxUXFycHA6HHA6H4uLidOzYMY82KSkpGjx4sEJCQhQREaGxY8cqPz+/xvYdDVdtVCEBAADQMPlUIJSkyy67TGlpada0ZcsWa9lLL72kGTNmaPbs2dqwYYOioqLUt29fHT9+3Gozbtw4LVy4UAsWLNCqVauUnZ2tQYMGeVzpccSIEUpOTtaSJUu0ZMkSJScnKy4uzlpeVFSkgQMHKicnR6tWrdKCBQv06aefavz48bUzCKhxDbnSxTmEAAAADYfPHTLauHFjj6qgmzFGr7zyip588kkNHTpUkvT++++refPm+uijj3TvvffK6XTqnXfe0YcffqgbbrhBkjRv3jy1bNlSy5YtU//+/bVjxw4tWbJESUlJ6tq1qyRpzpw56t69u3bu3Kl27dopMTFR27dvV2pqqqKjoyVJ06dP1+jRo/X8888rLCyslkYDNaUhh6WGvG8AAAC+xucqhLt371Z0dLTatGmj4cOHa8+ePZKkvXv3Kj09Xf369bPa2u129erVS2vWrJF08mqOBQUFHm2io6MVExNjtVm7dq0cDocVBiWpW7ducjgcHm1iYmKsMChJ/fv3l8vlOuMVI10ul7Kysjwm1D21cVEZ97oJaAAAAKgqnwqEXbt21QcffKBvv/1Wc+bMUXp6unr06KGjR48qPT1dktS8eXOP5zRv3txalp6eroCAAIWHh5+2TWRkZKltR0ZGerQpuZ3w8HAFBARYbcozdepU69xEh8Ohli1bVmIEUFtqI6R5KwhyyCgAAEDD4VOBMDY2Vrfccos6duyoG264QYsWLZJ08tBQt5IVHWPMGas8JduU1b4qbcoyceJEOZ1Oa0pNTT1te3hHQw6EAAAAaDh8KhCWFBISoo4dO2r37t3WeYUlK3QZGRlWNS8qKkr5+fnKzMw8bZvDhw+X2taRI0c82pTcTmZmpgoKCkpVDkuy2+0KCwvzmFD3NORASIUQAACg4fDpQOhyubRjxw61aNFCbdq0UVRUlJYuXWotz8/P1w8//KAePXpIkjp37ix/f3+PNmlpadq6davVpnv37nI6nVq/fr3VZt26dXI6nR5ttm7dqrS0NKtNYmKi7Ha7OnfuXKP7jNrRkAMhAAAAGg6fusrohAkTNHjwYF1wwQXKyMjQc889p6ysLI0aNUo2m03jxo3TlClTdMkll+iSSy7RlClTFBwcbN002+Fw6K677tL48eN1zjnnqFmzZpowYYJ1CKoktW/fXgMGDFB8fLzeeustSdI999yjQYMGqV27dpKkfv36qUOHDoqLi9PLL7+sP/74QxMmTFB8fDwVvwaiNsJacXFxjW+jLFQIAQAAGg6fCoQHDhzQ7bffrt9//13nnnuuunXrpqSkJLVq1UqS9Oijj+rEiRN64IEHlJmZqa5duyoxMVGhoaHWOmbOnKnGjRtr2LBhOnHihK6//nrNnTtXfn5+Vpv58+dr7Nix1tVIhwwZotmzZ1vL/fz8tGjRIj3wwAPq2bOngoKCNGLECE2bNq2WRgI1rSFXCAmCAAAADYdPBcIFCxacdrnNZtOkSZM0adKkctsEBgZq1qxZmjVrVrltmjVrpnnz5p12WxdccIG+/vrr07ZB/dWQA2Fd2T4AAADOnk+fQwjUlNq4DyEVQgAAAJwtAiFQwp49e3T99dfL5XJ5uyun5Y1z+XJyckptHwAAAPUXgRAoYfr06fruu++0ffv2Kq/jTGHp999/l81m02effVZj26hun3/+uZo0aaKUlJRa3S4AAABqDoEQKKE6gtaZ1uG+5cg333xTY9uobqtXr5Yk7d+/3yvbr4zff/9dBQUF3u4GAABAnUcgBMpxNuf/nSks1UborG7uK+kWFRXV6nar4txzz9U999zj7W4AAADUeQRCoBxnE7hq46Iy7vsQ1uQ2TlUyENblCqF0dtVXAAAAX0EgBGpAbd52oraCWaNGJ/9c1IcKoVT3AysAAEBdQCAEylGTh4yWt2531a86tlHd3BVC97l5BC4AAID6j0AIlFAb5/eVtfz48ePy8/PTvHnzqmUb1c1dIawvQbC+9BMAAMCbCIRAOaqjQnimdZy63Ol0SpK+/PLLSm2jthG0AAAAGg4CIVADqnJ+X+PGjSVJhYWFldpGbXGH19o+d7Gq6nr/AAAA6gICIVADqhJGKntbh9oOPPUtYNW3/gIAAHgDgRAowdtBoqKBsDIXoKlOVAgBAAAaDgIhUAOqch9C93PqaoWw5CGjAAAAqP8IhEAJtXGV0ep4jrcvKlPXg2Fd7x8AAEBdQCAEasDZBMKKPtdbwayuB6263j8AAIC6hEAIlOA+NLImb0xf1vK6XiGsL1cZdZ9bWVf7BwAAUJcQCIESqvOQ0crch7CuB8L6gnEBAACoOAIhUAOqUkWr7FVDOYewbFQIAQAAKo5ACJRQHYHnTBXCsuZXZnu7d+/WH3/8UbXOnaW6HrTqemAFAACoSxp7uwNAXVUdgbAyyysTZNq2bVu1jlWDuh64qBACAABUHBVCNFj33HOPZs6cWeXn12QgrO7t1Yb6ch/Cut4/AACAuoRAiAZrzpw5SkhIqPLza/KQ0bOtEJ5pXTXp1H6+9tpr2rJlS61u/0yoEAIAAFQch4wCJVTnOYSVWV7V7Z3N7THO1sMPP6zg4GDl5OR4rQ8lVfbiPAAAAL6MCiFQjrMJFlUJhPUlyJQMzCdOnPBmd0qhMggAAFBxBEKgHDVZIXSHv7O5D+HZPq+qSm6vrgUwDhkFAACoOAIhUI76cg5hbfHmoamVUVfHDwAAoC4iEALlqC/nENa2ul6Bq+v9AwAAqEsIhEAJ7iBRHef0lRdKGkIgrKvqeqUVAACgLiEQAuWojXMIzzSvLqrrFbi63j8AAIC6hEAIlMNb5xBWdVu1pa4HV4IgAABAxflUIJw6daquvvpqhYaGKjIyUjfddJN27tzp0Wb06NGy2WweU7du3TzauFwuPfTQQ4qIiFBISIiGDBmiAwcOeLTJzMxUXFycHA6HHA6H4uLidOzYMY82KSkpGjx4sEJCQhQREaGxY8cqPz+/RvYdleetcwjraqBxh9u6XoGr6/0DAACoS3wqEP7www8aM2aMkpKStHTpUhUWFqpfv36lbqo9YMAApaWlWdPixYs9lo8bN04LFy7UggULtGrVKmVnZ2vQoEEqKiqy2owYMULJyclasmSJlixZouTkZMXFxVnLi4qKNHDgQOXk5GjVqlVasGCBPv30U40fP75mBwFnVN9uTF/bqBACAAA0HI293YHatGTJEo/H7733niIjI7Vp0yb96U9/subb7XZFRUWVuQ6n06l33nlHH374oW644QZJ0rx589SyZUstW7ZM/fv3144dO7RkyRIlJSWpa9eukqQ5c+aoe/fu2rlzp9q1a6fExERt375dqampio6OliRNnz5do0eP1vPPP6+wsLCaGAJUQk3emP509yGs64GmrveTCiEAAEDF+VSFsCSn0ylJatasmcf8FStWKDIyUm3btlV8fLwyMjKsZZs2bVJBQYH69etnzYuOjlZMTIzWrFkjSVq7dq0cDocVBiWpW7ducjgcHm1iYmKsMChJ/fv3l8vl0qZNm8rts8vlUlZWlseEmlFfKoS1FXzq230ICYQAAABn5rOB0BijhIQEXXvttYqJibHmx8bGav78+fruu+80ffp0bdiwQX/+85/lcrkkSenp6QoICFB4eLjH+po3b6709HSrTWRkZKltRkZGerRp3ry5x/Lw8HAFBARYbcoydepU67xEh8Ohli1bVm0AcEa1cVGZU7dR1w/FLKmuBi4qhAAAABXnU4eMnurBBx/UL7/8olWrVnnMv+2226yfY2Ji1KVLF7Vq1UqLFi3S0KFDy12fMcbjw39ZQaAqbUqaOHGiEhISrMdZWVmEwmrGOYQVU1f7W1f7BQAAUBf5ZIXwoYce0pdffqnvv/9e559//mnbtmjRQq1atdLu3bslSVFRUcrPz1dmZqZHu4yMDKviFxUVpcOHD5da15EjRzzalKwEZmZmqqCgoFTl8FR2u11hYWEeE2qGt84hrC/qakWTCiEAAEDF+VQgNMbowQcf1GeffabvvvtObdq0OeNzjh49qtTUVLVo0UKS1LlzZ/n7+2vp0qVWm7S0NG3dulU9evSQJHXv3l1Op1Pr16+32qxbt05Op9OjzdatW5WWlma1SUxMlN1uV+fOnatlf3F26uptJ059z3hTXQ2EBEEAAICK86lAOGbMGM2bN08fffSRQkNDlZ6ervT0dJ04cUKSlJ2drQkTJmjt2rXat2+fVqxYocGDBysiIkI333yzJMnhcOiuu+7S+PHjtXz5cm3evFkjR45Ux44drauOtm/fXgMGDFB8fLySkpKUlJSk+Ph4DRo0SO3atZMk9evXTx06dFBcXJw2b96s5cuXa8KECYqPj6fqV0fU9jmEFd3eww8/XOa6altdCoQul0vTp09XcXExFUIAAIBK8KlA+MYbb8jpdKp3795q0aKFNX388ceSJD8/P23ZskU33nij2rZtq1GjRqlt27Zau3atQkNDrfXMnDlTN910k4YNG6aePXsqODhYX331lfz8/Kw28+fPV8eOHdWvXz/169dPl19+uT788ENruZ+fnxYtWqTAwED17NlTw4YN00033aRp06bV3oDgtGqjQsgho5WzceNGpaamlpr/5ptvasKECVqyZEm9G0cAAABv8qmLypzpg2JQUJC+/fbbM64nMDBQs2bN0qxZs8pt06xZM82bN++067ngggv09ddfn3F7qF3u90ltnEN4pnllady4bvzaeiMQXn311bLb7crLy/OY767yFxQUUCEEAACoBJ+qEAKVURsVwrIOGT3Tc0+tRHuTtw4Zdd8CpjzchxAAAKDiCIRAOWrjHMKqbM9bQafkdmsiEFbHvtWlcxsBAADqOgIhUI6arBCe7rYTlb1CaW0FxNoIhNWxTiqDAAAAFUcgBEqozRvTn9qurJBYlXXXlJJhjQohAABA/UcgBMpxNsHCfQuS8pQVfCq6vbpyyGhRUVG1b+Nsw5zNZqNCCAAAUAkEQqAc1REsqnIOIRXCs3s+FUIAAICKIxAC5aiO4FXeOs7mthN1pULIOYQAAAD1H4EQKEdNBovqPGS0tgJQfagQSvXzHMLDhw8rMTHR290AAAA+iEAIlFAdN6av6DbKuqhMRZ9b2+rSOYSrVq3yeHzq4bb1sUI4aNAg9e/f39vdAAAAPohACJSjtiuEVT2H8Eztq0tNVAhnzJihH374wXpc0TFft25ducvqW4Vw27Zt2rhxoyQOdwUAALWvsbc7ANQ11XHbCbfywlpDOIewOiqE48eP93jsi+cQxsTEWD8XFhbK39/fi70BAAC+hgohUI6aDBZl3XOwovchLBmaOIfQU32rEJ6qsLDQ210AAAA+hkAIlMNbgfBMausQ0ZLq0jmE5THG1LsK4akIhAAAoLYRCNEg1fVK09kEwo4dO9ZIn87E2xXCiiwrLi4ut1+7d+8udTGauqagoMDbXQAAAD6GcwjRIJ1NWKnqOYRltS+vmueurp26vKIXlfHWIZElt1vbFcLTLXOPWWFhYbmvW9u2bSXV7XMMqRACAIDaRoUQDZI3Lk5SmfZnUyGsiSBWEbVxyGjJbeTm5qpbt27as2fPabfnHseioqI6dQ7hW2+9pRkzZlS4PYEQAADUNgIhGqSzCQXucFFfAmFDuqhMyXUmJydr3bp1+sc//lGhQHi6CmFl5OTkyOVyVfn5P/30kz7++GPdd999pa6kejo7duyo8jYbql9++UX79+/3djcAAGiwOGQUDVJ1HDJa2XVUJoi4w01VbkzvSxXCRo0aWfMrGgirI6g2adJEV155pX766acqPf/aa6/ViRMnKv28G264oU4f0uoNnTp1klS3D/UFAKA+o0KIWvHjjz/W6gU9zias1MY5hO7QcupzKrq9M+3b3Xffrfnz51doXZXhjQqhe/yKi4sr9JpWVyCUpM2bN1f5uVUJgwAAAN5AIESt+NOf/qTrrruu1rZ3NqGgrOpddW/TvY1Tn1NdFcJ33nlHI0eOrHBfKsobFcKKBkL384qKijgPDwAAoBIIhGiQziYQllW9q4iy2pe3jrK2UdEb03vrkNHqrhCW9fzyrmRqjDlt0HO3KywsrNZAuGXLlmpbV0W53xP79u3Ttddeq4yMjFrvAwAA8B0EQjRI1VEhrI5zCN3nwJVUnYGwts6tqu4KYVnBreQ23Bd2KSws1K5du8pt515XRQJhZcarS5cuFW5bXfLz8yVJn3/+uVavXq3Vq1fXeh8aovz8fGVnZ3u7GwAA1DkEQjRIZxNWqnrIaFnt/fz8TruNihwyOnPmTPXp08d6XDLwlBc6q1t1VwjLCm7/+Mc/ZLPZrLF0h6MPPvjA45Bj93Pz8vJks9n0ySefWPPPFAjd66yIyrStLu4Q7I1tN2R9+/ZVaGiot7sBAECdQyBEg3Q2YcUdKCobCMsKoeUFwspcVCYhIUErVqwodzu1EQjfeustffzxxx7zzrZCWNbz//nPf0oqHYpyc3M92hUUFEiSnE6nJGnr1q2SKhYIy7qdRE5OjlJSUirT/RpTsn/evrpmSkqKFi1a5NU+VIeVK1d6uwu15siRI2rTpo1+++03b3cFAFAPEAjRIHkjEJYVRM50yGh1XFSmKlcqraz77rvPCl9uNVEhdI+X+9C+8qpkp1YIT3XqRWXKO/S2rHWOHDlSrVq1qmDPa5Y7ED722GOSauZqrpVx3XXXadCgQV7tw9natGmTt7tQq1atWqV9+/bp3//+t7e7AgCoBwiEaJDOpnpV1UDorlpVpB+nuw+hO8h88MEHZYaa0wXC2rzC5tluq6znu/e3ooGwZOXw1ApheWG8rAqhuwJrjPF6ACvZv9PdwuKNN97QK6+8UqP9OXjwYI2uvzy5ubnVdg7no48+Wi3rqS/cRyZ4u7oMAKgfCIRokKqjQljZdZQVcMoLNGUdMloyJC5YsKDM554uEJYVdmpKyYphZZUVoN2B8Pjx45LKHz/3c08XCMtT1hi5t3vixAmvn7tXXiDcu3evbr31Vo/lDzzwgP72t7/VaH/8/f0lVf6cxqKiorMay0OHDnlU9sq6R+Wrr75aoXU1btzY+rm8kLRx40YdOnSoCj31rvvuu09//etfPea599EbX26sW7dO//u//1vr2wUAVB2BELWqtj6glDyUsDKqs0JYXkBzh7pTw537g/+ZblVRMhCeOqa1FQj79u2rw4cPn9U6ThfM3BXC8l5H92uUk5NTav6ZAn3JkHL06FFrOzk5OWf13qkO5QXCadOm6T//+U+t3wojICBAknTs2LFSy4qLi0uN86pVq/Tmm2/qxhtvlN1u1/vvv6+0tLRSz92wYYMyMzPL3a77SwG3SZMmWT+7f0emTJlS5nONMXrmmWes80JPPZe3vNf36quv1iWXXOIx7/Dhw0pNTS3VNjExUfv37y+379Xt9ddf18aNG63HhYWF1n689dZbmjt3rkd793vGG4GwW7dupcYRAFC3EQhR48qrYO3bt09vv/12jWyzZOWoMqoaCMvaZnkBraxDHkt+iPvmm288nuMOPyW3c2o/a7q6FRwcrLlz5yo6OtraN3cFqbLKOhTSfZinOwyU1cZms1WoQmiMKfM1LPmaREREWNupaCD89ttv9e6772rYsGHau3fvGduXp6wP7OUFQndYLu813r17t2w2m3799dcq96cs7tfXHQiLioo0depU5eTkqFmzZvqf//kfj/bXXXed7r//futCNKNHj9Zf/vKXUuu95pprFBsbW+52SwbCTz75RG+//bZWrVplfWFQ3u/osWPHNHnyZN19992SPCuEpzsEt+T7qUWLFrrgggtKtevfv78uuuiictdT3caMGaOrr77aejxhwgRdfPHF5bZ3/63w9uHPAID6gUCIKjtw4IBeffVV/e///q9+/fVXpaenl/kB7dQqzqkftkeMGKF77723VJWnOpy6zsoGu1OrRZVR1j3OyguE7g+ep27DPa+8/ro/IGdlZXnMN8Zo165dOnLkSI1XCOPi4jRq1Cide+651jx3BakiNm/erBdffFFS2ZWailQIAwMDrdBXMjQUFhZ6zKtIIDxVbm5uhQLhgAEDdNddd+mTTz7RtddeW+7hvW6nVnWNMXrxxRd19OjRMg9vdfcvJCREUunKcXmH6n7//feSqv9qmna7XdLJSqok/fjjj3riiSc0c+ZMOZ1OLVy4UHl5efrhhx/KXcfevXuVn59vnY/o3sd169aV+5yS73O73a57771X/fv31+7du0/bZ3df3WN3aoXwdIHQrbi4WLNmzSr1/jly5IjGjBkj6eRrejb3iDTG6Ntvvz1jaCtr+auvvlruuZ2vvfaaFYRP9zfMGCObzabXXnvttNvfvn27goODK3REQMnxeumllyp8QZ/jx49br1tZ7r//ft1///0VWhcAoHIIhKiyWbNmady4cbrkkkvUvn17tWjRQo0aNZLNZvOYTr33V7NmzdS9e3clJCRo7dq1kk4eCnf48GEdPHhQhw4dqpYq16k3Ma9otdBdUXIfklfZQyLfffddj8cDBgwo9wPZgQMHJHmGSHeQOX78eJlBwb38jz/+UMeOHT3mX3rppbriiitqpEJ46jo7deokSbr++uuteeVV4srSp08fPf744zLGlBm83Pt9ukB47rnnWhXCkiHc5XJp2bJl1uOyLupzukBYlUNGDx06pNtvv/20bU59Pffs2aPHH39cjz76qMdhmO5KlMvlkjHGet9OnjxZzz33nF5//XVJZQdCY4wVzE99zy1YsEDDhw+v8L4UFxfrrrvu0pYtW5SVlaU333xTkZGRkmSFMPf4nDqOTzzxhHr37q0//vij3P2fNm2azj//fP322286cuSIx7KylAyE7i8LcnNz1blzZ2u/3WbMmKE9e/ZIkn7//XeP557abu/evXr55ZfLPXLBGKPVq1dr7Nixpfo0Y8YM63WQ/v/tTowxys7O9ljnyy+/rMWLF5dahzFG27dv15o1azRgwAC1adOmzP13O91Fff70pz9ZP7uD48MPP2zNc/9+fPPNN3rhhRes+X/88Yf1N2jmzJmn3f7HH3+sEydOnDa8l9yedPJ1feyxxzwqm6+++qrWrFmjzZs3W/OMMVq0aJHat2+viIiIctf95ptv6s033zxjH05VWxeJSktLK/OUgerw/fffewTlnJwcTZs2rVbPFwfgAwy87h//+Idp3bq1sdvt5qqrrjIrV66s8HOdTqeRZJxOZw32sGwul8s8+eSTZv78+ebWW281kmp06tixo2nUqJGRZKKjo83ll19umjRpYnr27Gn++c9/mpiYGNOrVy9z9913ezzvwgsvND/88INZt26diYiIMI8//rhZu3atWbVqlUlKSjJfffWV+fvf/24kmbZt21rPO+ecc8zOnTtNcXFxuWNQVFRk0tLSTEBAgJFk+vbta1566SXz2Wefmfnz5xtJ5vPPPzeFhYXGGGOKi4vNG2+84dG/rVu3mjfffNNju/v27Su1/+vWrTNPPfWUkWTeffddc88995irrrrKo81PP/1k/WyMMVlZWaaoqMgYY8yePXvMgw8+aAoKCir0+u7evdvcfvvt5tNPPzWSzLBhw8zx48et5YMGDTLdunUzksxvv/1WoXW6+5aRkWG+/vpr6/Ell1zisR/33nuvGTx4sHnggQdKjUPXrl1NTEyMSUhIMJdeemmZ75UhQ4YYSebIkSPG5XKZPXv2WMuWLVtm9Sc/P9/jed9//73HGJb3J7KsbbrHuazlmZmZ1rKVK1caSWbw4MFm+/btRpKZMmWKSU9PN5LMl19+aTIzM8v9PXjzzTet99Kp+/TKK68YSeaJJ54wRUVF1t8GSSYvL6/c1+T333+3fj5w4ICRZK666irz9NNPG0nGZrNZfTTGWO/rU6dBgwYZSWbp0qVl9jk6Otp06NDBerxp0ybr519++aXMfpX8PSnrtY6MjDQbN240K1asMJLM5Zdfbowx5ssvvzSSzHXXXWeMMVb/Tv0dP3jwoLWttLQ0a/n//b//t9R21qxZY1555RUzceJEj/kPPfSQMcaY5s2bG0nmjTfeKPXalPTdd98ZSeavf/2r1aa8vzFFRUWl3ouFhYVljvEff/xh7rnnHo95I0eO9Hg/FhcXm1WrVnm0ad26dbnvje3bt5vx48cbSebtt982xhiTl5dnduzYYXJycsyhQ4c82p/6e7Z582br5/Xr15ucnByP7f7yyy/mxIkTZt26daf9fXP/zXEvDwkJMdOnTy/VLjk52RrHDRs2mJkzZ5rw8HDTp0+fcvfv1L+Pxhjzyy+/eDx2K/n6rF+/3rRu3dokJCSYY8eOGUnm0UcfNTk5OWW+lvn5+eW+xj/++KPJysrymLd582aTnZ1tcnNzrf3ev3+/McaYDz/80Egy8+bNK7WN3NzccvfVbd26dda6Kmv16tVm27ZtZsmSJUaSx98Ot+LiYrNs2bLT/s0x5uTYn+5/a11RWFhoFi9ebIqLi01BQYE5ceKEefTRR01GRkaptrm5uR5/640p/d7xphMnTnj0p6zXYM+ePWbx4sW13bVyefMzrq8hEHrZggULjL+/v5kzZ47Zvn27efjhh01ISEiF/2DXp1+WwsJCk5eXZ/bv32+2b99u9uzZY3755Rczb948s2DBAnPHHXeY/v37l/tBuFmzZuUuO3Vq1aqV6d69u/n++++tAFnRqVmzZmbatGnWP133BxD3B74zTaf+E/zjjz/MFVdcUW7bTz75pNS8uXPnnnEbo0ePtj60lAwvMTEx1s+33XabkWS6dOlinnnmGWt+7969zQMPPGBefPFF88ILL5hGjRqZjh07mqeeeso89dRT5uabbzaxsbGmcePG1nOuvPJKk52dXeo1dQcISSY2NtZqe/vttxtJ5qKLLjJjx441s2fPNtdff73VtmfPniYoKMg0bdrUzJw50xw8eNAKl6ebpkyZYoYNG1bmsvbt2xtJ5oILLjC7d+82fn5+5rrrrjMXXXSRR7tBgwaZb775xuM1dk99+/Yttf6NGzea1NRUk5aWZlJTU60P9CWn1atXmx9++MG89tprRpIJDQ21lr355pvm3XffNZ9++ql57rnnjHQymFx44YVGkjl8+LDJysoykkz//v09xr7kdP/995v9+/ebr776ymP+LbfcYu1Dx44dPZZt3brVHDlyxOTn55uvv/7afPPNN6a4uNjs3LnTSDL//Oc/zeLFi82iRYtOO/733nuv6dOnT6n5wcHBlfo9+9vf/mb9PHHiRHP99debQYMGmdzcXLNr1y7zwQcfWMsDAgLMvffeW+F1L1iwwFxzzTXWa/CnP/3JSDItW7b0aPfyyy+bnJwcs3r1avPYY49Vqv/SyfApef4eX3bZZSYhIcGj3bvvvmvy8vLM0qVLzU033VTmvlx//fUmKirKJCcnm+uuu67c34Xly5eX+b6V5PE7fup0avsZM2aUWt68eXPjdDpNenq6SUhIMNOnTze///679eXTqdNHH31k/Z63adPGSCdD8WOPPWauv/76cr+gKWu66aabTOPGjc2VV17pMf/nn38269evN1OnTrX+ZrRr167U8//+97+boqIik52dbebNm+fRx5JtFy9ebP72t7+ZESNGmOHDh5vHH3/c+qJLkvUljXvq0KGDWb16tRk6dKg174477jCxsbGlvhCZMGFCqe399ttvJjs727z99tsmLi7ONG3a1LRu3dqkpKSY3r17m+eee85kZ2ebmTNnWs+5+uqrzTfffGM+/vhjI538IjMsLMxa3qVLF7NmzRozYMAAI8kMHz7cHDlyxKSnp5sDBw6Yiy66yFx22WVm/fr1JiIiwtxyyy3m3//+t9m9e7cZM2aMufHGG611hYWFmZSUFOv3bPHixaawsNDs27fPfPXVVyYpKcns3LnT9O7d2/To0cPs2rXL/Pjjj9bz3V+qPPHEE+bGG280X3zxhVm2bJm57bbbrN+zDh06mB49epinnnrKfPnll+bVV181n376qWnfvn2pLy6efvpp895775n33nvPTJ482Tz11FOmd+/eJikpyaxevdrs27fP7Nq1y8yePdu88sor5rbbbjO5ubnWlyoDBw40b775pvnf//1f8+6775p7773X3HrrrebDDz80K1euNDNmzDCjRo0yX375pbnrrrvMzTffbJo2bWqeeuopc+TIETN79mzTtWtXM3HiRJOcnGwSExPNiBEjzDXXXFPqC+ZTpyFDhpiRI0eajz/+2Dz00ENGOvl54dVXXzXvvPOO+fbbb43D4TDPPPOMSU1NNT///LP5z3/+Y4YPH24eeOABM2/ePDN58mQzceJE8/zzz5sXXnjBdOvWzbRr1858++23JjY21tx7773mo48+MqtXrza///67WbdunfnLX/5ipk+fbg4fPmzWrVtnHn30UfOPf/zDfPHFF2bJkiXmz3/+s/Ue+eWXX8wXX3xhPvvsM6vfn3/+uRkxYoSRTv4/Wbx4sVm7dq158sknrTYjR440M2bMMJ06dTKJiYllflFSG+rTZ9z6jkDoZddcc4257777POZdeuml5vHHH6/Q8331l6W4uNgUFhaaoqIik5+fb3Jyckx+fr5ViTvV8ePHzY4dO8yPP/5odu3aZT799FMzdOhQ06FDBzN8+HBz1VVXmaeeespkZGR4BLp9+/aZBQsWmOnTp5vnnnvO9O/f3/rwMmTIEBMXF2ekk9WUVatWlflNYF5ennnkkUfM0KFDzfDhw62Km7ufS5cuNY0bNzbz58+3vln87rvvzO23327mzZtn/vWvf5mpU6eat956yzzwwAPmhRdeKLWdr7/+2jz22GMmNjbWjBw50rzyyitm4MCBxm63G0mmUaNGxt/f3+PDhXs6NXhERkaac845x3rcu3dvM3ToUDN//vzTftu7adMmM3LkSNO3b1/ruX5+fh7bcQfz8PBwc8UVV5grrrjC3HnnnSYlJcVaT2Zmphk/fry55557PELctm3bTGZmpjlx4oQx5uS3/5deeqlp06aNueGGG8zKlSuNy+Uy+fn55j//+Y/1u/Dxxx+biy++2FpPaGio9SG+5FQy0AwdOtSsWbPmtB9o/f39y1128cUXm0OHDpljx45ZH5zLW8e///1vawxGjRplLYuNjbXCZVmvV21ODoejys8t70uZHj16eHyBUda0evVq43K5zBdffHHW+7BmzRqP90NF+1nWNGTIEJORkXHWfbryyisrtN2ePXt6PG7VqpVH1fPUqW3btuajjz4yDz74YLnrK/mFwZmmoKCgSrV3HzHRo0cPc9999531OLmn2267rcJHozRr1swEBgZW27a9NcXExJiuXbt6vR+nTiX/vjM1vKnkl+Alq9i1xVc/43qDzRjuXOst+fn5Cg4O1ieffKKbb77Zmv/www8rOTm5zIs0uFwuj3MHsrKy1LJlSzmdToWFhdVKvy0ffyzNn1+720SNMJJs1b1OY6T/nvel//5c3duoLGOMjmdnq7ioSI0aNVJIkyYnz3vVyTEoKiqS33/Pg5VO/n7luVzKy8uz+u7MytIFLVsqLCxMRcXFcv13ucvlkoxRYFCQwps2tbZZWFioE3l5stlsOnDggCIjI+UIC1Oey6VAu93jgifmv+0bN25sbc8YoxN5eQoKClJhYaEOpKYqJCRE/v7+ahIaqoKCAjmPHVNxcbHOjYxUltMp23/3wX3+Z05OjuwBASo2RkVFRSouLj65bydOKDAoSAcOHNAlF1+soKAgOZo2VYC/vw4ePKioFi1UkJ+vsLAw5eTkqLi4WDabTcEhIWrs56dGjRrJ6XSqqKhIgYGB1gVojDEqKCxUUGCgjKTjWVlyuVwKb9ZMhw4eVFFxsVpdcIHyXC6lp6erWbNmOnz4sMx/+xVx7rk6//zzFVDOFWwL/3tuqE0nz2l05ecrtEkTGUnZx48rv6BAEREROvr77woOCVGTJk1kk1RUXKyMjAydc845ch47ppzcXBUWFMhms6lly5aSzaaC/HwF2O3W+8Jms8mVn6+ioiK58vLUtGlT62q4xcXFOnr0qOyBgQoMDNTvv/8uv0aNFBwSopDgYGUeO6bs7GwVFRUp+/hxNY+Kkn/jxgoMCtKJ3Fw1DQ9XTk6OCgsK5Ofnp5zcXIWFhirjyBHrnFJTXCx/f38dPXpUx5xOhYWGKjw83LpyqpHkystT7okTCg4OVuApr8Hhw4fl7++v8PBwufLzVVhYqJDgYDVq1EiZx44ptEkTZR47JuexY/L391dAQMDJc+5sNjVp0kQB/v4qKipSSEiITuTlaceOHWoWHq6Ic89VYz8/FRcXy+l0KjAoSIGBgbLp5AV8Tr3QlJFUVFgop9Mph8MhV36+7AEBOpGXpwB/f+WeOHHyAkrGqKCgQMezs9XIZtPhw4fVunVrBQYGKjc3V8EhIfL/7z4XFhUpIyND+S6XTuTlyRQX66KLL9bx48dP/v42aqSmDoekkxcYcmZl6ZxmzWR08krGhw8fVuYff+jiiy9Wdk6OXC6Xzo2IkL+/v4qKiyVjlJObq6YOhwIDA3XM6ZSfn5+ynE5lZ2cr+rzzFBIScvLvgs2mQLtdNptNRUVFysvL0969exUUFHRyXOx2+fv7q6CgQAcPHtR555+vE7m52r17t6JatNCl7dqpUaNGOvrHHzqRm6v9KSm6tF07GWPUJDRUgXa7iouLdfDQIfk3bqwTeXmKiopSamqqfv31V7W95BJlZmbq0vbt5efnp+zjx9XIz09hYWHav2+fsrOzlZ+fr27du8t57JgaNWqkPJdLxUVFsjVqpJDgYO3bt08ul0vNzjlHjWw2/ZGZqXMjItSkSRM1+u86s7Ky1KpVK+m/r3Fjf39lZmbKHhCg348ePfk7X1Cg5s2bKzQ0VOnp6Qr979+nxn5+stvtyvvv+dGuvDyFh4eruLhY9sBAHTp4UGFhYcr/798yW6NGOjciQr///ruKiotliot14sQJXXjRRcrJyZF/48bW6xMUFKTc3FylHz6skOBg5eTkKLJ5cxUWFCgnN1f2gAA19veXzWZT3okTatasmYKDg2UkpaSkKO/ECZ0TEXHymgeSXPn5amSzKaRJExUUFFjXQMjPz1dwUJD1ni4uLlZRYaFcLpdycnIU9N/fvZzcXOt39sSJE3I4HNZtdwICAhQUFGT9fTx+/LjOO++8k7/LxignJ0cHDx1Ss/Bw2Ww2NW/eXNk5OTp48KByc3IUGRmpoOBghYaG6lhmpk6cOKFiY1SQn6/zzjtPzqwsBQUFKTg4WAH+/jqRl6ec7GwVFBYqLCxMIcHBcrlc+iMzU6FNmigsLEwul0vZ2dkqKCiQMUZRUVGy2WzWedHBISHKzctT6Cnn5temrKwsORwO73zG9TEEQi86dOiQzjvvPK1evVo9evSw5k+ZMkXvv/++du7cWeo5kyZN0rPPPltqPoEQAAAA1apRI+nzz72yaQJh7Wl85iaoae5qhJv57+XAyzJx4kQlJCRYj90VQq+47baTEwAAAIB6iUDoRREREfLz81N6errH/IyMDDVv3rzM59jtduuwLAAAAAA4G9yH0IsCAgLUuXNnLV261GP+0qVLPQ4hBQAAAICaQIXQyxISEhQXF6cuXbqoe/fuevvtt5WSkqL77rvP210DAAAA0MARCL3stttu09GjRzV58mSlpaUpJiZGixcvtq7mBQAAAAA1hauM1nNcgQkAAAANDZ9xaw/nEAIAAACAjyIQAgAAAICPIhACAAAAgI8iEAIAAACAjyIQAgAAAICPIhACAAAAgI/iPoT1nPuuIVlZWV7uCQAAAFA93J9tuUNezSMQ1nPHjx+XJLVs2dLLPQEAAACq1/Hjx+VwOLzdjQaNG9PXc8XFxTp06JBCQ0Nls9m83Z1Ky8rKUsuWLZWamspNR88C41g9GMfqw1hWD8axejCO1YexrB6M45kZY3T8+HFFR0erUSPOcqtJVAjruUaNGun888/3djfOWlhYGH8QqwHjWD0Yx+rDWFYPxrF6MI7Vh7GsHozj6VEZrB3EbQAAAADwUQRCAAAAAPBRBEJ4ld1u1zPPPCO73e7trtRrjGP1YByrD2NZPRjH6sE4Vh/GsnowjqhLuKgMAAAAAPgoKoQAAAAA4KMIhAAAAADgowiEAAAAAOCjCIQAAAAA4KMIhKhxK1eu1ODBgxUdHS2bzabPP//cY7kxRpMmTVJ0dLSCgoLUu3dvbdu2zTudrcOmTp2qq6++WqGhoYqMjNRNN92knTt3erRhLCvmjTfe0OWXX27dELh79+765ptvrOWMY9VMnTpVNptN48aNs+Yxlmc2adIk2Ww2jykqKspazhhWzsGDBzVy5Eidc845Cg4O1hVXXKFNmzZZyxnPM2vdunWp96TNZtOYMWMkMYYVVVhYqKeeekpt2rRRUFCQLrzwQk2ePFnFxcVWG8YSdQGBEDUuJydHnTp10uzZs8tc/tJLL2nGjBmaPXu2NmzYoKioKPXt21fHjx+v5Z7WbT/88IPGjBmjpKQkLV26VIWFherXr59ycnKsNoxlxZx//vl64YUXtHHjRm3cuFF//vOfdeONN1r/hBnHytuwYYPefvttXX755R7zGcuKueyyy5SWlmZNW7ZssZYxhhWXmZmpnj17yt/fX9988422b9+u6dOnq2nTplYbxvPMNmzY4PF+XLp0qSTp1ltvlcQYVtSLL76oN998U7Nnz9aOHTv00ksv6eWXX9asWbOsNowl6gQD1CJJZuHChdbj4uJiExUVZV544QVrXl5ennE4HObNN9/0Qg/rj4yMDCPJ/PDDD8YYxvJshYeHm3/+85+MYxUcP37cXHLJJWbp0qWmV69e5uGHHzbG8J6sqGeeecZ06tSpzGWMYeU89thj5tprry13OeNZNQ8//LC56KKLTHFxMWNYCQMHDjR33nmnx7yhQ4eakSNHGmN4P6LuoEIIr9q7d6/S09PVr18/a57dblevXr20Zs0aL/as7nM6nZKkZs2aSWIsq6qoqEgLFixQTk6OunfvzjhWwZgxYzRw4EDdcMMNHvMZy4rbvXu3oqOj1aZNGw0fPlx79uyRxBhW1pdffqkuXbro1ltvVWRkpK688krNmTPHWs54Vl5+fr7mzZunO++8UzabjTGshGuvvVbLly/Xrl27JEk///yzVq1apf/zf/6PJN6PqDsae7sD8G3p6emSpObNm3vMb968ufbv3++NLtULxhglJCTo2muvVUxMjCTGsrK2bNmi7t27Ky8vT02aNNHChQvVoUMH658w41gxCxYs0E8//aQNGzaUWsZ7smK6du2qDz74QG3bttXhw4f13HPPqUePHtq2bRtjWEl79uzRG2+8oYSEBD3xxBNav369xo4dK7vdrr/85S+MZxV8/vnnOnbsmEaPHi2J3+vKeOyxx+R0OnXppZfKz89PRUVFev7553X77bdLYixRdxAIUSfYbDaPx8aYUvPw/z344IP65ZdftGrVqlLLGMuKadeunZKTk3Xs2DF9+umnGjVqlH744QdrOeN4ZqmpqXr44YeVmJiowMDActsxlqcXGxtr/dyxY0d1795dF110kd5//31169ZNEmNYUcXFxerSpYumTJkiSbryyiu1bds2vfHGG/rLX/5itWM8K+6dd95RbGysoqOjPeYzhmf28ccfa968efroo4902WWXKTk5WePGjVN0dLRGjRpltWMs4W0cMgqvcl9Jz/0tmVtGRkapb8xw0kMPPaQvv/xS33//vc4//3xrPmNZOQEBAbr44ovVpUsXTZ06VZ06ddKrr77KOFbCpk2blJGRoc6dO6tx48Zq3LixfvjhB7322mtq3LixNV6MZeWEhISoY8eO2r17N+/HSmrRooU6dOjgMa99+/ZKSUmRxN/Jytq/f7+WLVumu+++25rHGFbcI488oscff1zDhw9Xx44dFRcXp7/97W+aOnWqJMYSdQeBEF7Vpk0bRUVFWVcwk06er/DDDz+oR48eXuxZ3WOM0YMPPqjPPvtM3333ndq0aeOxnLE8O8YYuVwuxrESrr/+em3ZskXJycnW1KVLF91xxx1KTk7WhRdeyFhWgcvl0o4dO9SiRQvej5XUs2fPUrfj2bVrl1q1aiWJv5OV9d577ykyMlIDBw605jGGFZebm6tGjTw/avv5+Vm3nWAsUWd46WI28CHHjx83mzdvNps3bzaSzIwZM8zmzZvN/v37jTHGvPDCC8bhcJjPPvvMbNmyxdx+++2mRYsWJisry8s9r1vuv/9+43A4zIoVK0xaWpo15ebmWm0Yy4qZOHGiWblypdm7d6/55ZdfzBNPPGEaNWpkEhMTjTGM49k49SqjxjCWFTF+/HizYsUKs2fPHpOUlGQGDRpkQkNDzb59+4wxjGFlrF+/3jRu3Ng8//zzZvfu3Wb+/PkmODjYzJs3z2rDeFZMUVGRueCCC8xjjz1WahljWDGjRo0y5513nvn666/N3r17zWeffWYiIiLMo48+arVhLFEXEAhR477//nsjqdQ0atQoY8zJyy4/88wzJioqytjtdvOnP/3JbNmyxbudroPKGkNJ5r333rPaMJYVc+edd5pWrVqZgIAAc+6555rrr7/eCoPGMI5no2QgZCzP7LbbbjMtWrQw/v7+Jjo62gwdOtRs27bNWs4YVs5XX31lYmJijN1uN5deeql5++23PZYznhXz7bffGklm586dpZYxhhWTlZVlHn74YXPBBReYwMBAc+GFF5onn3zSuFwuqw1jibrAZowxXilNAgAAAAC8inMIAQAAAMBHEQgBAAAAwEcRCAEAAADARxEIAQAAAMBHEQgBAAAAwEcRCAEAAADARxEIAQAAAMBHEQgBAAAAwEcRCAEAAADARxEIAQAAAMBHEQgBAAAAwEcRCAEAAADARxEIAQAAAMBHEQgBAAAAwEcRCAEAAADARxEIAQAAAMBHEQgBAAAAwEcRCAEAAADARxEIAQAAAMBHEQgBAAAAwEcRCAEAAADARxEIAQAAAMBH/T9DgK6922KnzAAAAABJRU5ErkJggg==", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "p = PowderPattern()\n", "if not os.path.exists(\"cime.dat\"):\n", @@ -100,7 +67,7 @@ "p.ImportPowderPatternFullprof(\"cime.dat\")\n", "p.SetWavelength(1.52904)\n", "\n", - "p.plot()" + "p.plot()\n" ] }, { @@ -117,59 +84,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Peak dobs=0.10632+/-0.00011 iobs=2.146855e+04 (? ? ?))\n", - "Peak dobs=0.11354+/-0.00011 iobs=4.111350e+03 (? ? ?))\n", - "Peak dobs=0.14620+/-0.00011 iobs=9.429778e+04 (? ? ?))\n", - "Peak dobs=0.15277+/-0.00011 iobs=1.388049e+03 (? ? ?))\n", - "Peak dobs=0.16177+/-0.00011 iobs=1.420839e+03 (? ? ?))\n", - "Peak dobs=0.16602+/-0.00014 iobs=1.141690e+05 (? ? ?))\n", - "Peak dobs=0.18616+/-0.00011 iobs=1.609675e+05 (? ? ?))\n", - "Peak dobs=0.18839+/-0.00011 iobs=4.474511e+04 (? ? ?))\n", - "Peak dobs=0.18984+/-0.00011 iobs=1.839251e+05 (? ? ?))\n", - "Peak dobs=0.20064+/-0.00011 iobs=1.290410e+05 (? ? ?))\n", - "Peak dobs=0.20760+/-0.00011 iobs=1.182234e+05 (? ? ?))\n", - "Peak dobs=0.21186+/-0.00006 iobs=2.198665e+03 (? ? ?))\n", - "Peak dobs=0.21262+/-0.00011 iobs=8.717511e+03 (? ? ?))\n", - "Peak dobs=0.21507+/-0.00011 iobs=1.818877e+04 (? ? ?))\n", - "Peak dobs=0.22072+/-0.00008 iobs=2.098754e+04 (? ? ?))\n", - "Peak dobs=0.22153+/-0.00011 iobs=6.288388e+04 (? ? ?))\n", - "Peak dobs=0.22394+/-0.00011 iobs=1.562582e+05 (? ? ?))\n", - "Peak dobs=0.22705+/-0.00014 iobs=3.681909e+03 (? ? ?))\n", - "Peak dobs=0.23104+/-0.00011 iobs=2.493547e+04 (? ? ?))\n", - "Peak dobs=0.23505+/-0.00011 iobs=1.279133e+03 (? ? ?))\n", - "Predicting volumes from 20 peaks between d=94.058 and d= 4.254\n", - "\n", - "Starting indexing using 20 peaks\n", - " CUBIC P : V= 4699 -> 52534 A^3, max length=112.36A\n", - " -> 0 sols in 0.00s, best score= 0.0\n", - "\n", - " TETRAGONAL P : V= 1744 -> 12585 A^3, max length= 69.78A\n", - " -> 0 sols in 0.01s, best score= 0.0\n", - "\n", - "RHOMBOEDRAL P : V= 1932 -> 13204 A^3, max length= 70.91A\n", - " -> 0 sols in 0.00s, best score= 0.0\n", - "\n", - " HEXAGONAL P : V= 2382 -> 17415 A^3, max length= 77.76A\n", - " -> 0 sols in 0.02s, best score= 0.0\n", - "\n", - "ORTHOROMBIC P : V= 1014 -> 6526 A^3, max length= 56.06A\n", - " -> 1 sols in 0.03s, best score= 7.3\n", - "\n", - " MONOCLINIC P : V= 756 -> 4210 A^3, max length= 48.44A\n", - " -> 1 sols in 0.01s, best score= 130.0\n", - "\n", - "Solutions:\n", - "( 6.83 18.82 10.39 90.0 106.4 90.0 V=1281 MONOCLINIC P, 130.0296630859375)\n" - ] - } - ], + "outputs": [], "source": [ "# Index\n", "pl = p.FindPeaks(1.5, -1, 1000)\n", @@ -182,7 +99,7 @@ "\n", "print(\"Solutions:\")\n", "for s in ex.GetSolutions():\n", - " print(s)" + " print(s)\n" ] }, { @@ -194,42 +111,16 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "bb14d41c8eb247b58211bd24e5aa93e1", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACoNklEQVR4nOzde1yP9/8/8EdnRb1FUo3FZiMyGYWY5BAmjG2xFGHNhOZTZLZsjc9ic57TzNfHIVnGmONSThlKUbZCtA05hemcju+u3x/93te6er9Lh3eletxvt26frut6Xdf1uq6yz/vZ6/V6PjUEQRBARERERERETY5mfXeAiIiIiIiI6gcDQiIiIiIioiaKASEREREREVETxYCQiIiIiIioiWJASERERERE1EQxICQiIiIiImqiGBASERERERE1UQwIiYiIiIiImigGhERERERERE0UA0IiIiIiIqImigEhERERERFRE8WAkIiIiIiIqIliQEhERERERNREMSAkIiIiIiJqohgQEhERERERNVEMCImIiIiIiJooBoRERERERERNFANCIiIiIiKiJooBIRERERERURPFgJCIiIiIiKiJYkBIRNUyadKk+u4CEREREdWQdn13gIhebH5+fkr7BEHAhQsX6qE3RERERKRODAiJqELBwcHYvXu30v7Tp0/XQ2+IiIiISJ0YEBJRhaZNmwYrKyuYmppK9k+ePLmeekRERERE6qIhCIJQ350gIiIiIiKiusekMkRERERERE0UA0IiIiIiIqImigEhEVVZXFxcfXeBiIiIiNSASWWIqEIbN26UbAuCgE2bNsHLywteXl711CsiIiIiUgeOEBJRhTZs2IAjR47AwMAAzZs3R4sWLaCpqYkWLVrUd9eIiIiIqIYYEBJRhRISEuDm5oaDBw9CV1cX7u7uaNeuHctOEBERETUCLDtBRJVSXFyM4OBg7NmzB48fP0Z0dHR9d4mIiIiIaogBIRFVSWpqKvLy8mBhYVHfXSEiIiKiGuKUUSKqkvfee4/BIBEREVEjwYCQiKqEkwqIiIiIGg9OGSWiKklLS4OxsXF9d4OIiIiI1IABIRERERERURPFKaNERERERERNFANCIqqWlJSU+u4CEREREdUQA0IiqhYWpiciIiJq+LTruwNE9GKzs7NT2icIApKSkuqhN0RERESkTgwIiahCWVlZiI+Ph7a29D8Xw4YNq6ceEREREZG6cMooEVUoMDAQWVlZSvv9/f3roTdEREREpE4sO0FEVZKYmIguXbrUdzeIiIiISA0a1Qjh2bNnMXr0aFhYWEBDQwO//PKL5LiGhobKr+XLl4ttBg0apHR84sSJkuukpaXB3d0dMpkMMpkM7u7uSE9Pl7RJTk7G6NGj0bx5c5iYmMDb2xsFBQWSNvHx8XBwcIC+vj5eeuklLF68GIzP6UXn5eVV310gIiIiIjVpVGsIc3Jy0KNHD0ydOhXvvvuu0vGHDx9Ktn/99VdMnz5dqa2npycWL14sbuvr60uOu7q64t69ewgNDQUAfPTRR3B3d8fhw4cBAHK5HKNGjUKbNm1w7tw5PH36FFOmTIEgCFi3bh0AIDMzE8OGDYOjoyNiYmJw8+ZNeHh4oHnz5vD19a35yyCqJTo6OvXdBSIiIiJSk0Y7ZVRDQwMHDhzAO++8U26bd955B1lZWTh58qS4b9CgQbCxscGaNWtUnnP9+nV07doVUVFR6NOnDwAgKioK/fr1Q2JiIjp37oxff/0Vzs7OuHv3LiwsLAAAISEh8PDwwOPHj2FkZIRNmzZh4cKFePToEfT09AAAy5Ytw7p163Dv3j1oaGhU6jmLi4vx4MEDGBoaVvocIiIiIqIXmSAIyMrKgoWFBTQ1G9WkxhdOoxohrIpHjx7h6NGj2LFjh9Kx4OBg7Nq1C23btsXIkSPx5ZdfwtDQEAAQGRkJmUwmBoMA0LdvX8hkMly4cAGdO3dGZGQkrK2txWAQAIYPH478/HxcvnwZjo6OiIyMhIODgxgMKtosXLgQt2/fRseOHVX2Oz8/H/n5+eL2/fv30bVr1xq/DyIiIiKiF83du3fRrl27+u5Go9ZkA8IdO3bA0NAQ48ePl+yfNGkSOnbsCDMzMyQkJGDhwoX4/fffER4eDgBISUmBqamp0vVMTU2RkpIitmnbtq3kuLGxMXR1dSVtOnToIGmjOCclJaXcgHDp0qX46quvlPbfvXsXRkZGlXhyIiIiIqIXW2ZmJtq3by8OylDtabIB4f/+9z9MmjQJzZo1k+z39PQUv7e2tsZrr72G3r17IzY2Fm+++SYAqJyaKQiCZH912ihm71Y09XPhwoXw8fERtxX/WIyMjGBkZIQzZ87A3d0dAQEBmD59OgYNGgS5XI7c3Fx89NFH+Oijj8Rzs7KyMHToUFy9ehVRUVGwtrYGADg5OSE1NRWXLl0qtx9ERERERLWNS6JqX5OckPvbb7/hxo0b+PDDD5/b9s0334SOjg6SkpIAAGZmZnj06JFSuydPnogjfGZmZuJIoEJaWhoKCwsrbPP48WMAUBpdLE1PT08M/hRfZU2YMAHTp08Xt3/99Vf89ttvCAwMRGFhobhfX18fR44cwXvvvSc5PywsrNz7ExERERFR49EkA8KtW7eiV69e6NGjx3PbXr16FYWFhTA3NwcA9OvXDxkZGYiOjhbbXLx4ERkZGbC3txfbJCQkSLKahoWFQU9PD7169RLbnD17VlKKIiwsDBYWFkpTSdVBX18f5ubmSE1NFfdpa2ujTZs2ar8XERERERE1DI0qIMzOzsaVK1dw5coVAMCtW7dw5coVJCcni20yMzOxd+9elaODf/31FxYvXoxLly7h9u3bOHbsGN5//3307NkT/fv3BwBYWVlhxIgR8PT0RFRUFKKiouDp6QlnZ2d07twZQMmUy65du8Ld3R1xcXE4efIk5s2bB09PT3FEz9XVFXp6evDw8EBCQgIOHDiAwMBA+Pj41MrQ+D///INHjx4xACQiIiIiIlGjWkN46dIlODo6ituKtXZTpkzB9u3bAZSUfxAEAR988IHS+bq6ujh58iTWrl2L7OxstG/fHqNGjcKXX34JLS0tsV1wcDC8vb3h5OQEABgzZgzWr18vHtfS0sLRo0fh5eWF/v37Q19fH66urlixYoXYRiaTITw8HLNmzULv3r1hbGwMHx8fyfpAdRk5ciQ0NTWxdu1apu0lIiIiqkVyuVyyRIdU09HRkXy+pvrTqALCQYMG4XllFcsmVimtffv2iIiIeO59WrVqhV27dlXY5uWXX8aRI0cqbNO9e3ecPXv2uferqV9//RUtWrSo9fsQERERNVWCICAlJQXp6en13ZUGo2XLljAzM2PimHrWqAJCqrq3334bV65cwY0bNzBjxgx4eHjUd5eIiIiIGhxFMGhqagoDAwMGORUQBAHPnj0TEyoqcnVQ/WBA2Mg0a9YM4eHh2Lp1K6ZPn44zZ85U2P7YsWNK+5ycnGBhYVFLPSQiIiJqXORyuRgMtm7dur670yDo6+sDKMmyb2pqyumj9YgBYSPTt29f/P777zW6BstOEBEREVWeYs2ggYFBPfekYVG8r8LCQgaE9YgZRoiIiIiI1IDTRKuG7+vFwICQiKpl0qRJ9d0FIiIiIqohThklogr5+flJtnNzcxEVFYV//vmnnnpEREREdeHMmTNwdHREWloaWrZsWd/doVrCgJCIKhQcHIzdu3eL2ytWrMClS5fQtWvXeuwVEREREakDA0IiqtC0adNgZWUFU1NTABCDw9GjR9dnt4iIiIhIDbiGkIgqtGTJEjEYLI1rCImIiBq+/Px8eHt7w9TUFM2aNcOAAQMQExMjaXP+/Hn06NEDzZo1Q58+fRAfHy8eu3PnDkaPHg1jY2M0b94c3bp1U1nWjF5cDAiJiIiIiJooPz8//Pzzz9ixYwdiY2PRqVMnDB8+HKmpqWKb+fPnY8WKFYiJiYGpqSnGjBkjltqYNWsW8vPzcfbsWcTHx+Obb75BixYt6utxqBo4ZZSIqkUQhPruAhER0Qvt2bNnSExMrPP7dunSpVI1EXNycrBp0yZs374dI0eOBABs2bIF4eHh2Lp1K2xtbQEAX375JYYNGwYA2LFjB9q1a4cDBw7AxcUFycnJePfdd9G9e3cAwCuvvFJLT0W1hQEhEREREVEtSExMRK9ever8vpcvX8abb7753HZ//fUXCgsL0b9/f3Gfjo4O7OzscP36dTEg7Nevn3i8VatW6Ny5M65fvw4A8Pb2xsyZMxEWFoahQ4fi3XffxRtvvKHmJ6LaxICQiCq0ceNGyfbVq1cBAHv27OF/8ImIiCrQpUsXXL58uV7uWxmK2T5lC8QLgvDcovGK4x9++CGGDx+Oo0ePIiwsDEuXLsXKlSsxZ86cavSc6gMDQiKq0IYNG2BpaQkXFxdoaGhAR0cHACo1FYWIiKgpMzAwqNRIXX3p1KkTdHV1ce7cObi6ugIACgsLcenSJcydO1dsFxUVhZdffhkAkJaWhps3b0qCzvbt2+Pjjz/Gxx9/jIULF2LLli0MCBsQJpUhogolJCTAzc0NBw8ehK6uLl5//XUALDtBRETU0DVv3hwzZ87E/PnzERoaimvXrsHT0xPPnj3D9OnTxXaLFy/GyZMnkZCQAA8PD5iYmOCdd94BAMydOxfHjx/HrVu3EBsbi1OnTsHKyqqenoiqgyOERFQhDQ0NuLq6YuLEiQgODkZoaGh9d4mIiIjUZNmyZSguLoa7uzuysrLQu3dvHD9+HMbGxpI2n3zyCZKSktCjRw8cOnQIurq6AAC5XI5Zs2bh3r17MDIywogRI7B69er6ehyqBg2BqQIbtMzMTMhkMmRkZMDIyKi+u0NNwIwZM/DDDz/gypUr6NGjR313h4iIqN7l5eXh1q1b6NixI5o1a1bf3WkwKnpv/IxbdzhllIiq5HmLzImIiIio4WBASERERERE1EQxICSiKlGMEP7zzz/13BMiIiIiqikGhERUJYplx/7+/vXcEyIiIiKqKWYZJaIK2dnZSbZv374NoKQcBRERERE1bBwhJKIKZWVl4cKFC4iOjkZ0dDTeffddAEC3bt3quWdEREREVFMMCImoQoGBgcjKylLa7+npWQ+9ISIiIiJ14pRRIqrQuHHjJNtpaWkAgN69e9dHd4iIiIhIjThCSERV8ttvvwH4N7kMERERNU0BAQGwsbGp725QDTEgJKIq0dTkfzaIiIiIGgt+siOiKnF2dq7vLhARERGRmjAgJKIqURSmJyIiooavuLgY33zzDTp16gQ9PT28/PLL+PrrrwEACxYswOuvvw4DAwO88sorWLRoEQoLCyu83v/+9z9069YNenp6MDc3x+zZs+viMagGmFSGiIiIiKiJWrhwIbZs2YLVq1djwIABePjwIRITEwEAhoaG2L59OywsLBAfHw9PT08YGhrCz89P5bU2bdoEHx8fLFu2DCNHjkRGRgbOnz9fl49D1cCAkIiIiIioCcrKysLatWuxfv16TJkyBQDw6quvYsCAAQAAf39/sW2HDh3g6+uLPXv2lBsQ/ve//4Wvry8++eQTcZ+trW0tPgGpQ6OaMnr27FmMHj0aFhYW0NDQwC+//CI57uHhAQ0NDclX3759JW3y8/MxZ84cmJiYoHnz5hgzZgzu3bsnaZOWlgZ3d3fIZDLIZDK4u7sjPT1d0iY5ORmjR49G8+bNYWJiAm9vbxQUFEjaxMfHw8HBAfr6+njppZewePFiZm6kBoO/q0RERM/x7BkQG1v3X8+eVap7169fR35+PoYMGaLy+L59+zBgwACYmZmhRYsWWLRoEZKTk1W2ffz4MR48eFDutejF1ahGCHNyctCjRw9MnToV7777rso2I0aMwLZt28RtXV1dyfG5c+fi8OHDCAkJQevWreHr6wtnZ2dcvnwZWlpaAABXV1fcu3cPoaGhAICPPvoI7u7uOHz4MABALpdj1KhRaNOmDc6dO4enT59iypQpEAQB69atAwBkZmZi2LBhcHR0RExMDG7evAkPDw80b94cvr6+an83RERERFTHEhOBXr3q/r6XLwNvvvncZvr6+uUei4qKwsSJE/HVV19h+PDhkMlkCAkJwcqVK6t8LXqxNaqAcOTIkRg5cmSFbfT09GBmZqbyWEZGBrZu3YqgoCAMHToUALBr1y60b98eJ06cwPDhw3H9+nWEhoYiKioKffr0AQBs2bIF/fr1w40bN9C5c2eEhYXh2rVruHv3LiwsLAAAK1euhIeHB77++msYGRkhODgYeXl52L59O/T09GBtbY2bN29i1apV8PHxYeIOIiIiooauS5eS4Kw+7lsJr732GvT19XHy5El8+OGHkmPnz5+HpaUlPv/8c3HfnTt3yr2WoaEhOnTogJMnT8LR0bF6/aZ60agCwso4c+YMTE1N0bJlSzg4OODrr7+GqakpAODy5csoLCyEk5OT2N7CwgLW1ta4cOEChg8fjsjISMhkMjEYBIC+fftCJpPhwoUL6Ny5MyIjI2FtbS0GgwAwfPhw5Ofn4/Lly3B0dERkZCQcHBygp6cnabNw4ULcvn0bHTt2VNn//Px85Ofni9uZmZlqezdEREREpEYGBpUaqasvzZo1w4IFC+Dn5wddXV30798fT548wdWrV9GpUyckJycjJCQEtra2OHr0KA4cOFDh9QICAvDxxx/D1NQUI0eORFZWFs6fP485c+bU0RNRdTSqNYTPM3LkSAQHB+PUqVNYuXIlYmJiMHjwYDHASklJga6uLoyNjSXntW3bFikpKWIbRQBZmqmpqaRN27ZtJceNjY2hq6tbYRvFtqKNKkuXLhXXLspkMrRv374qr4CIiIiISLRo0SL4+vriiy++gJWVFSZMmIDHjx9j7Nix+M9//oPZs2fDxsYGFy5cwKJFiyq81pQpU7BmzRps3LgR3bp1g7OzM5KSkuroSai6mtQI4YQJE8Tvra2t0bt3b1haWuLo0aMYP358uecJgiCZwqlqOqc62iiSdFQ0XXThwoXw8fERtzMzMxkUEhEREVG1aGpq4vPPP5dMDVX49ttv8e2330r2zZ07V/w+ICAAAQEBkuMzZszAjBkzaqOrVEua1AhhWebm5rC0tBT/cmFmZoaCggKkpaVJ2j1+/FgcvTMzM8OjR4+UrvXkyRNJm7KjfGlpaSgsLKywzePHjwFAaeSwND09PRgZGUm+iIiIiIiIqqNJB4RPnz7F3bt3YW5uDgDo1asXdHR0EB4eLrZ5+PAhEhISYG9vDwDo168fMjIyEB0dLba5ePEiMjIyJG0SEhLw8OFDsU1YWBj09PTQ6/9nmurXrx/Onj0rKUURFhYGCwsLdOjQodaemYiIiIiISKFRBYTZ2dm4cuUKrly5AgC4desWrly5guTkZGRnZ2PevHmIjIzE7du3cebMGYwePRomJiYYN24cAEAmk2H69Onw9fXFyZMnERcXBzc3N3Tv3l3MOmplZYURI0bA09MTUVFRiIqKgqenJ5ydndG5c2cAgJOTE7p27Qp3d3fExcXh5MmTmDdvHjw9PcURPVdXV+jp6cHDwwMJCQk4cOAAAgMDmWGUXnj8/SQiIiJqPBrVGsJLly5J0twq1tpNmTIFmzZtQnx8PHbu3In09HSYm5vD0dERe/bsgaGhoXjO6tWroa2tDRcXF+Tm5mLIkCHYvn27WIMQAIKDg+Ht7S1mIx0zZgzWr18vHtfS0sLRo0fh5eWF/v37Q19fH66urlixYoXYRiaTITw8HLNmzULv3r1hbGwMHx8fyfpAIiIiIiKi2qQhKDKZUIOUmZkJmUyGjIwMriekOjFr1ixs3LgRsbGx6NmzZ313h4iIqN7l5eXh1q1b6NixI5o1a1bf3WkwKnpv/IxbdxrVlFEiqjv8WxIREZEU/7+xavi+XgwMCImIiIiIakBHRwcA8OzZs3ruScOieF+K90f1o1GtISQiIiIiqmtaWlpo2bKlWELMwMCASdgqIAgCnj17hsePH6Nly5aSXB1U9xgQElGV8P/giIiIlJmZmQH4t640PV/Lli3F90b1hwEhEREREVENaWhowNzcHKampigsLKzv7rzwdHR0ODL4gmBASERERESkJlpaWgx0qEFhUhkiqhZmBiMiIiJq+BgQEhERERERNVEMCImIiIiIiJooBoRERERERERNFANCIiIiIiKiJooBIRERERERURPFgJCIqoSF6YmIiIgaDwaERERERERETRQDQiIiIiIioiaKASERVQsL0xMRERE1fAwIiYiIiIiImigGhERERERERE0UA0IiqhJmGSUiIiJqPBgQEhERERERNVEMCImIiIiIiJooBoRERERERERNFANCIiIiIiKiJooBIRFVC+sQEhERETV8DAiJiIiIiIiaKAaERERERERETRQDQiIiIiIioiaKASEREREREVETxYCQiIiIiIioiWJASERVoqGhUd9dICIiIiI1aVQB4dmzZzF69GhYWFhAQ0MDv/zyi3issLAQCxYsQPfu3dG8eXNYWFhg8uTJePDggeQagwYNgoaGhuRr4sSJkjZpaWlwd3eHTCaDTCaDu7s70tPTJW2Sk5MxevRoNG/eHCYmJvD29kZBQYGkTXx8PBwcHKCvr4+XXnoJixcvZip/ajD4u0pERETU8DWqgDAnJwc9evTA+vXrlY49e/YMsbGxWLRoEWJjY7F//37cvHkTY8aMUWrr6emJhw8fil+bN2+WHHd1dcWVK1cQGhqK0NBQXLlyBe7u7uJxuVyOUaNGIScnB+fOnUNISAh+/vln+Pr6im0yMzMxbNgwWFhYICYmBuvWrcOKFSuwatUqNb4RIiIiIiKi8mnXdwfUaeTIkRg5cqTKYzKZDOHh4ZJ969atg52dHZKTk/Hyyy+L+w0MDGBmZqbyOtevX0doaCiioqLQp08fAMCWLVvQr18/3LhxA507d0ZYWBiuXbuGu3fvwsLCAgCwcuVKeHh44Ouvv4aRkRGCg4ORl5eH7du3Q09PD9bW1rh58yZWrVoFHx8fTsujFx5HCImIiIgavkY1QlhVGRkZ0NDQQMuWLSX7g4ODYWJigm7dumHevHnIysoSj0VGRkImk4nBIAD07dsXMpkMFy5cENtYW1uLwSAADB8+HPn5+bh8+bLYxsHBAXp6epI2Dx48wO3bt2vhaYmIiIiIiKQa1QhhVeTl5eHTTz+Fq6srjIyMxP2TJk1Cx44dYWZmhoSEBCxcuBC///67OLqYkpICU1NTpeuZmpoiJSVFbNO2bVvJcWNjY+jq6kradOjQQdJGcU5KSgo6duyost/5+fnIz88XtzMzM6v45ETqwRFCIiIiooavSQaEhYWFmDhxIoqLi7Fx40bJMU9PT/F7a2trvPbaa+jduzdiY2Px5ptvAlCdZVEQBMn+6rRRfMCuaLro0qVL8dVXX1X0eES1itOZiYiIiBqPJjdltLCwEC4uLrh16xbCw8Mlo4OqvPnmm9DR0UFSUhIAwMzMDI8ePVJq9+TJE3GEz8zMTBwJVEhLS0NhYWGFbR4/fgwASqOLpS1cuBAZGRni1927d5/zxETqpfjDBUcIiYiIiBq+JhUQKoLBpKQknDhxAq1bt37uOVevXkVhYSHMzc0BAP369UNGRgaio6PFNhcvXkRGRgbs7e3FNgkJCXj48KHYJiwsDHp6eujVq5fY5uzZs5JSFGFhYbCwsFCaSlqanp4ejIyMJF9ERERERETV0agCwuzsbFy5cgVXrlwBANy6dQtXrlxBcnIyioqK8N577+HSpUsIDg6GXC5HSkoKUlJSxKDsr7/+wuLFi3Hp0iXcvn0bx44dw/vvv4+ePXuif//+AAArKyuMGDECnp6eiIqKQlRUFDw9PeHs7IzOnTsDAJycnNC1a1e4u7sjLi4OJ0+exLx58+Dp6SkGcK6urtDT04OHhwcSEhJw4MABBAYGMsMovfAUv58cISQiIiJq+BpVQHjp0iX07NkTPXv2BAD4+PigZ8+e+OKLL3Dv3j0cOnQI9+7dg42NDczNzcUvRXZQXV1dnDx5EsOHD0fnzp3h7e0NJycnnDhxAlpaWuJ9goOD0b17dzg5OcHJyQlvvPEGgoKCxONaWlo4evQomjVrhv79+8PFxQXvvPMOVqxYIbZRlMG4d+8eevfuDS8vL/j4+MDHx6eO3hYRERERETV1GgL/zN+gZWZmQiaTISMjg9NHqU7MnTsXa9euxblz58SRcyIiIiJ14mfcutOoRgiJiIiIiIio8hgQElG1cHIBERERUcPHgJCIiIiIiKiJYkBIRFXCLKNEREREjQcDQiIiIiIioiaKASEREREREVETxYCQiKqFU0aJiIiIGj4GhERERERERE0UA0IiqhaOEBIRERE1fAwIiYiIiIiImigGhERULRwhJCIiImr4GBASERERERE1UQwIiahaOEJIRERE1PAxICQiIiIiImqiGBASUZVoaGgA4AghERERUWPAgJCIiIiIiKiJYkBIRNXCEUIiIiKiho8BIRERERERURPFgJCIqoUjhEREREQNHwNCIiIiIiKiJooBIRFViSLLKBERERE1fAwIiahaOGWUiIiIqOFjQEhERERERNREMSAkomrhCCERERFRw8eAkIiIiIiIqIliQEhE1cIRQiIiIqKGjwEhERERERFRE8WAkIiqhSOERERERA0fA0IiIiIiIqImigEhEVWJojA9RwiJiIiIGj4GhERERERERE1UowoIz549i9GjR8PCwgIaGhr45ZdfJMcFQUBAQAAsLCygr6+PQYMG4erVq5I2+fn5mDNnDkxMTNC8eXOMGTMG9+7dk7RJS0uDu7s7ZDIZZDIZ3N3dkZ6eLmmTnJyM0aNHo3nz5jAxMYG3tzcKCgokbeLj4+Hg4AB9fX289NJLWLx4MUddqMHg7yoRERFRw9eoAsKcnBz06NED69evV3n822+/xapVq7B+/XrExMTAzMwMw4YNQ1ZWlthm7ty5OHDgAEJCQnDu3DlkZ2fD2dkZcrlcbOPq6oorV64gNDQUoaGhuHLlCtzd3cXjcrkco0aNQk5ODs6dO4eQkBD8/PPP8PX1FdtkZmZi2LBhsLCwQExMDNatW4cVK1Zg1apVtfBmiIiIiIiIVBAaKQDCgQMHxO3i4mLBzMxMWLZsmbgvLy9PkMlkwvfffy8IgiCkp6cLOjo6QkhIiNjm/v37gqamphAaGioIgiBcu3ZNACBERUWJbSIjIwUAQmJioiAIgnDs2DFBU1NTuH//vtjmxx9/FPT09ISMjAxBEARh48aNgkwmE/Ly8sQ2S5cuFSwsLITi4uJKP2dGRoYAQLwuUW3z9fUVAAhHjhyp764QERFRI8XPuHWnUY0QVuTWrVtISUmBk5OTuE9PTw8ODg64cOECAODy5csoLCyUtLGwsIC1tbXYJjIyEjKZDH369BHb9O3bFzKZTNLG2toaFhYWYpvhw4cjPz8fly9fFts4ODhAT09P0ubBgwe4ffu2+l8AERERERFRGU0mIExJSQEAtG3bVrK/bdu24rGUlBTo6urC2Ni4wjampqZK1zc1NZW0KXsfY2Nj6OrqVthGsa1oo0p+fj4yMzMlX0R1iVlGiYiIiBqPJhMQKig+zCoIgqC0r6yybVS1V0cbxQfsivqzdOlSMZmNTCZD+/btK+w7ERERERFReZpMQGhmZgZAefTt8ePH4sicmZkZCgoKkJaWVmGbR48eKV3/yZMnkjZl75OWlobCwsIK2zx+/BiA8ihmaQsXLkRGRob4dffu3YofnIiIiIiIqBxNJiDs2LEjzMzMEB4eLu4rKChAREQE7O3tAQC9evWCjo6OpM3Dhw+RkJAgtunXrx8yMjIQHR0ttrl48SIyMjIkbRISEvDw4UOxTVhYGPT09NCrVy+xzdmzZyWlKMLCwmBhYYEOHTqU+xx6enowMjKSfBHVB04ZJSIiImr4GlVAmJ2djStXruDKlSsAShLJXLlyBcnJydDQ0MDcuXMRGBiIAwcOICEhAR4eHjAwMICrqysAQCaTYfr06fD19cXJkycRFxcHNzc3dO/eHUOHDgUAWFlZYcSIEfD09ERUVBSioqLg6ekJZ2dndO7cGQDg5OSErl27wt3dHXFxcTh58iTmzZsHT09PMYBzdXWFnp4ePDw8kJCQgAMHDiAwMBA+Pj7PncJKRERERESkDtr13QF1unTpEhwdHcVtHx8fAMCUKVOwfft2+Pn5ITc3F15eXkhLS0OfPn0QFhYGQ0ND8ZzVq1dDW1sbLi4uyM3NxZAhQ7B9+3ZoaWmJbYKDg+Ht7S1mIx0zZoyk9qGWlhaOHj0KLy8v9O/fH/r6+nB1dcWKFSvENjKZDOHh4Zg1axZ69+4NY2Nj+Pj4iH0metFxhJCIiIio4dMQ+KmuQcvMzIRMJkNGRganj1KdmD9/PlasWIGDBw9izJgx9d0dIiIiaoT4GbfuNKopo0RUd/i3JCIiIqKGjwEhERERERFRE8WAkIiqhSOERERERA0fA0IiIiIiIqImigEhEVWJoiwKRwiJiIiIGj4GhERERERERE0UA0IiqhaOEBIRERE1fAwIiWrRpEmT6rsLRERERETl0q7vDhA1Bn5+fkr7BEHAhQsX6qE3dYMjhEREREQNHwNCIjUIDg7G7t27lfafPn26HnpDRERERFQ5DAiJ1GDatGmwsrKCqampZP/kyZPrqUe1h1lGiYiIiBoPBoREarBkyRKV+729veu4J7WPgSARERFR48GkMkRERERERE0UA0IiqhJOGSUiIiJqPBgQEhERERERNVEMCInUIDw8HH369IG9vT1CQkLE/aNGjarHXtUujhASERERNXwMCInU4Msvv8Tx48dx4sQJREdHY86cOSguLsazZ8/qu2tEREREROViQEikBlpaWmjZsiUMDAywatUq9OrVC2PHjkV2dnZ9d63WcISQiIiIqOFjQEikBjY2Nrh9+7a47eHhAR8fH2RlZdVfp4iIiIiInoN1CInUYN26dZLt9PR0ODo6IjExsZ56VHuYZZSIiIio8eAIIVEtGD9+fH13gYiIiIjouRgQEtWCpjB61hSekYiIiKixY0BIVAv2799fZ/eaNGlSnd2LiIiIiBoXriEkKsekSZMQHBxcrXONjY3V3BvAz89PaZ8gCLhw4YLa71UZHCEkIiIiavgYEFKT96IFWuUJDg7G7t27lfafPn26HnpDRERERI0BA0Jq8moz0EpJSYGZmVmNrwMA06ZNg5WVFUxNTSX7J0+erJbrVxVHCImIiIgaPgaE1OTVZqA1efJkhIWF1fg6ALBkyRKV+729vdVyfSIiIiJqehgQUpOnjkDLzs5OaZ8gCEhKSqp2v4iIiIiIahsDQiI1yMrKQnx8PLS1pf+khg0bVk89qn2cMkpERETU8LHsBJEaBAYGIisrS2m/v79/PfTmxRYXFwdnZ2eMGzdOkrhn+vTp9dgrIiIioqaJASGRGowbN05SaiIxMREA4ODgoLZ7/PTTT+jZsyfc3NywY8cOdO7cGba2tjh06JDa7lEZGhoaAKo/Qujt7Y01a9Zg9erVWL16NVatWgUA+Pvvv9XWRyIiIiKqnCYXEHbo0AEaGhpKX7NmzQIAeHh4KB3r27ev5Br5+fmYM2cOTExM0Lx5c4wZMwb37t2TtElLS4O7uztkMhlkMhnc3d2Rnp4uaZOcnIzRo0ejefPmMDExgbe3NwoKCmr1+anynJycqn2ul5eXGntSYuXKlTh//jxWrlyJTz/9FNHR0Th37hyWL1+u9nvVJg0NDXTq1AkdOnTA3r17kZmZCU9PTxQVFdV314iIiIianCa3hjAmJgZyuVzcTkhIwLBhw/D++++L+0aMGIFt27aJ27q6upJrzJ07F4cPH0ZISAhat24NX19fODs74/Lly9DS0gIAuLq64t69ewgNDQUAfPTRR3B3d8fhw4cBAHK5HKNGjUKbNm1w7tw5PH36FFOmTIEgCFi3bl2tPT8pc3FxUdonCALi4+OrfU0dHZ2adEklfX19GBgYwMDAAEOGDIFMJgMApXWLdaW6I4Smpqa4ffs2OnToAAAICAjArl27EBQUpMbeEREREVFlNLmAsE2bNpLtZcuW4dVXX5VM7dPT0yu3dlxGRga2bt2KoKAgDB06FACwa9cutG/fHidOnMDw4cNx/fp1hIaGIioqCn369AEAbNmyBf369cONGzfQuXNnhIWF4dq1a7h79y4sLCwAlIwAeXh44Ouvv4aRkVFtPD6pEBMTg1OnTkFT898Bc0EQ4O7uXu1rHj9+XB1dk7CxsYFcLoeWlhZ27doFACgoKEDr1q3Vfq/atG/fPqV9bm5ucHNzq4feEBERETVtTW7KaGkFBQXYtWsXpk2bJq6LAoAzZ87A1NQUr7/+Ojw9PfH48WPx2OXLl1FYWCiZTmhhYQFra2sxQUZkZCRkMpkYDAJA3759IZPJJG2sra3FYBAAhg8fjvz8fFy+fLnWnpmUzZ8/H4aGhrC0tBS/OnTogNmzZ9d31yTWrFkjjkAr6Orqqgyw6gKzjBIRERE1fE1uhLC0X375Benp6fDw8BD3jRw5Eu+//z4sLS1x69YtLFq0CIMHD8bly5ehp6eHlJQU6OrqShKIAEDbtm2RkpICAEhJSVEqcg6UTJUr3aZt27aS48bGxtDV1RXbqJKfn4/8/HxxOzMzs8rPTVJl1/ulp6ejZcuWmDBhQj31iIiIiIiobjTpEcKtW7di5MiRklG6CRMmYNSoUbC2tsbo0aPx66+/4ubNmzh69GiF1xIEQTLKWPr7mrQpa+nSpWKiGplMhvbt21fYL6q68ePHV/mcppQQpaZZRlWJi4ur0bksY0FERERUPU12hPDOnTs4ceIE9u/fX2E7c3NzWFpaIikpCQBgZmaGgoICpKWlSUYJHz9+DHt7e7HNo0ePlK715MkTcVTQzMwMFy9elBxPS0tDYWGh0shhaQsXLoSPj4+4nZmZyaBQzSob6MTHx2PBggVIT0+HtrY2CgsLYWJigsDAQHTv3r2We/mvlJSUcte8vog2btwo2RYEAZs2bYKXl1e1srN6e3tj27Zt0NbWxvz58xEVFQUfHx+WsSAiIiKqhCY7Qrht2zaYmppi1KhRFbZ7+vQp7t69C3NzcwBAr169oKOjg/DwcLHNw4cPkZCQIAaE/fr1Q0ZGBqKjo8U2Fy9eREZGhqRNQkICHj58KLYJCwuDnp4eevXqVW5/9PT0YGRkJPki9XreHwkUvLy8sHnzZly4cAFnz55FZGQkNmzYUCslJyoyefLkOr2fQnVHCDds2IAjR47AwMAAzZs3R4sWLaCpqYkWLVpU63osY0FERERUfU1yhLC4uBjbtm3DlClTJCn7s7OzERAQgHfffRfm5ua4ffs2PvvsM5iYmGDcuHEAAJlMhunTp8PX1xetW7dGq1atMG/ePHTv3l3MOmplZYURI0bA09MTmzdvBlBSdsLZ2RmdO3cGUFLjrmvXrnB3d8fy5cuRmpqKefPmwdPTk0FePSu7PrQ8crlcLP2gYGRkJClrok52dnZK+wRBEEevG4qEhAT8+OOP2Lt3L1xcXDBhwgTs2bOn2oEty1gQERERVV+TDAhPnDiB5ORkTJs2TbJfS0sL8fHx2LlzJ9LT02Fubg5HR0fs2bMHhoaGYrvVq1dDW1sbLi4uyM3NxZAhQ7B9+3ZJBsjg4GB4e3uL2UjHjBmD9evXS+519OhReHl5oX///tDX14erqytWrFhRy09P6rJs2TI4OztDV1cXRkZGyMjIQFFREb755ptauV9WVhbi4+OV6g4OGzasVu73PNUdIdTQ0ICrqysmTpyI4OBgjBkzBv/880+1+8EyFkRERETVpyEwd3yDlpmZCZlMhoyMDI4sqlll1+bl5uYiPT0dxsbGaNasWa3158CBAxg0aJDSCGZERISkjmZt++yzz7B06VJs3bpV6Y8q1VFcXIyUlBRJciciIiJq2vgZt+402TWERM9T2SmM+vr6MDc3r3IwWNXsmOPGjZMEg4mJiQBQp8Fgaer6W5KmpiaDQSIiIqJ60iSnjBKVVl9r82qaHdPLywunTp2q1T42BBEREViyZAneeOMNjBgxAgsWLIBMJsPSpUvRr1+/+u4eERER0QuNASE1efW1Nk+RHRMA9u7di4CAgCplx9TR0anN7tWq/Px8XL16FampqWjVqhWsra2hq6tbrWstWLAAe/fuRXp6OpycnBATEwMDAwN06tQJqampau45ERERUePCKaPU5AUGBiIrK0tpv7+/f4XnhYeHo0+fPrC3t0dISIi4/3mlTBQU2TEVAgIC4ODggJiYmEqdf/z48Uq1U7eaFqYPCgqCo6MjduzYgYiICGzbtg2Ojo7YtWtXta73999/w9fXF0uWLIFcLoePjw9mzJiBnJycal2PiIiIqCnhCCE1eYqSIgqJiYno0qXLc9fmffnllzh+/Dh0dXXh7++P8+fPY+3atXj27JnYZtKkSQgODlZ5fkPNjlnTtYObN2/GuXPnoKn579+jioqKMGjQoGo9e05ODgIDAyUjpoWFhZJaoURERESkGkcIicqobGF5LS0ttGzZEgYGBtDW1sZff/2F1157DdevX4efnx/mz58vSRZTXVVNPlNXqhsY6uvrIyIiQnKdiIiIamdoXb58OVq2bAlLS0vxq1OnTti4cWO1rkdERETUlHCEkKiMyq7Ns7GxEQuiBwcHY/fu3YiLi8OqVavEaaOnT5+ucX9qmnzmRRMUFIRly5bB398fcrkcOjo66N27d7WnjJYXwLu6utakm0RERERNAgNCojIquzZv3bp14vfTpk2DlZUVHBwcMHfuXHF/ZUtXVKSmyWfUTTEyWN0RQjMzM6xZs0aNPSIiIiKi6uKUUSI1WLJkCUxNTZX2e3t7V/laTk5Oku2aJp9Rh6KiInHq6s8//yw5Vt9TV4mIiIio+hgQEtUTFxcXpa/3338f8fHxknb79u1Dhw4dJPvc3NyQl5cHoCRxTW2Ij4/H22+/DXt7ewwePBgODg549uwZbGxsAEBM2lLfU1fLy/Y6fPjweuwVERERUcPAKaNEapaSkgIzM7PntouJicGpU6ck2TYFQYC7u7vK9n5+fkr7BEFQS+IaVby8vLB79260b98eADBw4EBs374d/fv3BwDk5ubW69RVBS8vL+jo6EBXVxfr168Xs71GR0fXa7+IiIiIGgIGhERqNnnyZISFhT233fz582FoaAgTExPJ/tmzZ6tsr0hcU5Y6EteoIpfLIZPJxG1TU1Okp6ejuLgYAODs7IwWLVogKCioVu5fWY8ePcLTp0+ho6OD7777Djt37oSzszPkcnm99ouIiIioIWBASFRNdnZ24vcZGRm4f/8+AIgBE1BSpP7o0aMqzy8vO+aECRNU7lckrim7VlEdiWtUWbZsGZydnaGrqwsjIyNkZGRgzpw5cHBwwI8//gigenUT4+LisGjRIujo6GD+/Pmwt7cHULIWcevWrVXuZ/PmzXH//n106NAB3t7esLKywrx585Cfn1/laxERERE1NVxDSI1aba2vA4CsrCxcuHAB0dHRaN26Ne7du4fHjx+jTZs2mDNnDp4+fSopUl9TZRPXKJLPVCdxTWUMHDgQZ8+exeHDh7FhwwYcPXoUERER4hTS6mYZ9fb2xpo1a7B69WqsXr0aq1atAlD9tYhz5syRbNva2mL37t1wdHSs1vWIiIiImhKOEFKjUNfr6wAgMDAQWVlZMDY2FovUA8DOnTtx69YtmJiYwNzcvMb3cXFxUdonCIJS8pnaoq+vD319fbVdT91lND777DPJ9ogRIxAVFYXQ0NAa95WIiIiosWNASI1CXa+vA4Bx48aJ35cuUu/g4AAHBwdMnToVqampFV4jPz8fV69eRWpqKlq1agVra2vo6upK2lQ1+Uxtq2kdQkUZDUXm1ICAAOzatUttaxFv3LihlusQERERNQUMCKlRqOv1dWWVLlIP/BssdevWrdxzgoKCsGnTJtja2sLIyAjp6emIjY3FzJkzJevyqpp8prb89NNP+OKLL8TA9KuvvsK2bduwaNEijBkzptLX2bdvn9K+6qxFLE/Pnj3Vch0iIiKipkBDqO6f+emFkJmZCZlMhoyMDBgZGdV3d+j/Ky4uhpaWFnr27InY2FiVbQYMGICzZ89KRv6KioowaNAgnDt3Tqn9Tz/9hKVLl6Jbt24YNmwYAgMDYWRkVOWArLI2btwo2f72229hYGAAExMT/Pbbb1i+fDnmzJmDoUOH4rffflP7/aujqKgI2tr8OxcREVFDx8+4dYefnIhqQWX+zqKvr4+IiAgx+YkgCIiIiECzZs1Utl+5ciXOnz+PrKws2NjYIDExEc2aNcPQoUNrJSDcsGEDLC0t4eLiAg0NDTRr1gza2tpo0aKF2H89Pb16D8Di4+OxYMECpKenQ1tbG4WFhTAxMUFgYCC6d+9er30jIiIietExICRSg7IjU4qAsKCgoNxzgoKCsGzZMvj7+0Mul0NHRwe9e/fGrl27VLbX19eHgYEBDAwMMGTIELFGYG0FZAkJCfjxxx+xd+9euLi4YPjw4bh58ya6deuGX3/9FUDJ87Vu3brG94qLi6v2VE8vLy9s27YNmZmZ4lpMIyMjTJ069YUZuSQiIiJ6UTEgJCrHpEmTEBwcXO7xikamrKysAAB37twp93wzMzOsWbOm0v2xsbGBXC6HlpYWdu3ahZSUFLRq1UotAZkqGhoacHV1xcSJExEcHIy//voLT58+FY8LggBdXV2VawIrUnYqqiAI2LRpE7y8vMqtzViRlJQUTJo0CX379hXXYkZHRz83oQ8RERERMSCkRiI8PBz+/v7Q0tKCt7c3Jk6cCKDiwvAK1S1Z4eXlhd27d6N9+/Zikfq7d+/C3t4eXbp0AQC11iEsGzx+8MEHOH36dJUDsqrS1NSEu7s7Jk2ahJSUFLFuYHWVnYqquIdiKmpV6evrQ1dXF1evXoWRkREyMjKgp6en1lIZRERERI0VA0JqFL788kscP34curq68Pf3x/nz57F27dpKBWTVLVkhl8vFaZtZWVmIj49HdnY23n77bZw5cwZ6enowMDCo3gOVogg2SxMEAXFxcTW+dlVoamrCwsJC0ofqKDsVdcKECdizZ0+1M8K2bdsWn332Gfr27Yv09HS0bNkSFy5cwNKlS6t1PSIiIqKmhAEhNQqlC8OvWrUK27dvx9ixY5Gdnf3cc6tbsmLZsmVwdnaGrq4uZDIZBg8eDA0NDXzzzTdisNSmTZvqPVApimCz7FrBVq1a1fja1VE2EExJSYGZmVmlzy87FXXMmDH4559/qt0fPz8/TJs2DZmZmTAzM0OrVq3Qu3dvtbx7IiIiosaOASE1CqULwwOAh4cHLC0tMXPmzOeeu2TJEpX7vb29Kzxv4MCBOHv2LHJzc5Geng5jY2MxQ+jvv/8OAGoZIQwMDERWVhaMjY0l+3fu3Fnja1dHTk4OgH8Dw8mTJyMsLKzK11FMRR01ahTy8vKq3Z/FixcjPDwc2tramD9/Pvr16wcfHx8xeysRERERlY91CBs41mh5MQ0aNAgRERHo2rUrrl69qtZrJyYmimsU65Ji6urvv/+OgoICvPzyyzA1NUVSUhLS09Orfd3Bgwfj1KlT1T5fEZgDwIMHD/DZZ58hLy8P9+/fZ5ZRIiKiBoqfceuO5vObEFFlXb16FYmJieL0zor+3hIXFwdnZ2eMGzdOksBm+vTpFd6jdCbOv//+G3K5vIa9Vs3Ozk7yFR8fj+LiYvG4j48PYmJiYGtrW6P71PRvUn/99Rdu376NH374Aa6urrCwsEBiYiKioqJqdF0iIiKipoBTRonUyNraGgCQnZ2NFi1aiFk0VfH29sa2bdvEqY5RUVHw8fHB33//XeE9dHR0AJRM3Xz11Vfxn//8p8aZP1Upu3bxwIEDGDRoEGxsbJCcnCy28/f3r9F99u/fr3J/REQElixZgjfeeAMjRozAggULIJPJsHTpUvTr109sZ2VlhQ4dOuDHH3/EqVOnoKmpicDAQLz11ls16hcRERFRU8ARQmo08vPzERsbixMnTiA2NrbCovCV4eTkVOHx8PBw9OnTB/b29ggJCZEcq8yol4aGBjp16oQOHTpg7969yMzMhKenJ4qKiio87/jx4wAgrrsLCgp67r2qQ7F2UWHcuHEwNjYWRwRTUlIAAA4ODjW6T9m1kQoLFizAtm3bMHXqVEyZMgWHDx/G/v37sXDhQsnoaosWLXDkyBHY2trCyckJWVlZOHv2LAwNDWvULyIiIqKmgCOE1CgEBQVh06ZNsLW1FYuTx8bGYubMmXBzc6vwXBcXF6V9giAgPj6+wvNUlboofT6ACkcITU1NJYlwAgICsGvXrnIDPDs7OwiCIF5TETjWZP1eRcaNG6dyf7t27QAA+/btU1tphx9//BHa2tp4//33xX3NmjVD+/bt0b59e1hZWYn3VdSaVIyu+vr64ocffkBubi4uXLgAJycn9O/fH9u3b1dL34iIiIgaMwaE1Chs3rwZ586dg6bmv4PeRUVFGDRo0HMDwpiYGHGqoYIgCHB3d6/wPFWlLkqfX1pcXBwWLVoEHR0dzJ8/H/b29ti3bx+mT5+OrVu3iu3c3NyU+hsfH48FCxYgISEBvXr1QlFREUxMTODn54eBAweKtRDriuLZtLS0qn2N/Px8XL16FampqWjVqhVcXV0l1wYAMzMzyOVyaGlpiUlnioqKUFxcLI6uAsDPP/+MgIAA3L9/H3l5eUwkQ0RERFQFTWrKaEBAADQ0NCRfpeunCYKAgIAAWFhYQF9fH4MGDVLKEJmfn485c+bAxMQEzZs3x5gxY3Dv3j1Jm7S0NLi7u0Mmk0Emk8Hd3V1pFCc5ORmjR49G8+bNYWJiAm9v7xpPcWzK9PX1ERERIW4LgoCIiAixDERF5s+fD0NDQ1haWopfHTp0wOzZsys8T1HqQsHDw6Pctt7e3lizZg1Wr16N1atXi2v+nrdeEChJIrN582YEBwfj0KFDiIyMxIYNG+Dn5wcAYmBU12bMmFGt84KCguDo6IgdO3YgIiIC27ZtU9kuJCREKejU1tZGeHi4OLqqEBAQAAcHB8TExIj7njfll4iIiIia4Ahht27dcOLECXG79AfOb7/9Vhzpef311/Hf//4Xw4YNw40bN8T1SHPnzsXhw4cREhKC1q1bw9fXF87Ozrh8+bJ4LVdXV9y7dw+hoaEAgI8++gju7u44fPgwAEAul2PUqFFo06YNzp07h6dPn2LKlCkQBAHr1q2rq1fRqAQFBWHZsmXw9/eHXC6Hjo4OevfujV27dj333NJZO0ubMGFCheeV/VmVDvrLjhCWHtHau3cvAgICKrVeECj5fZHJZJIpnEZGRsjOzgYAtG7d+rnXUCfFs1U3O6iq0dz169dX+nxtbW3s27dP3C495XfMmDFwcXGp1JRfIiIiImqCAaG2trZkVFBBEASsWbMGn3/+OcaPHw8A2LFjB9q2bYvdu3djxowZyMjIwNatWxEUFIShQ4cCAHbt2oX27dvjxIkTGD58OK5fv47Q0FBERUWhT58+AIAtW7agX79+uHHjBjp37oywsDBcu3YNd+/ehYWFBQBg5cqV8PDwwNdff81aK9VgZmaGNWvW1GsfFL83gHKwVNX1gqUtW7YMzs7O0NXVhZGRETIyMlBUVCQJqOpSTctEKEZzFYXja3q9mJgY/Prrr/jrr7+Qnp6Oli1b4rXXXntu+Q4iIiIiamJTRgEgKSkJFhYW6NixIyZOnChO2bt16xZSUlIk08z09PTg4OAg1oi7fPkyCgsLJW0sLCxgbW0ttomMjIRMJhODQQDo27cvZDKZpI21tbUYDALA8OHDkZ+fj8uXL1fY//z8fGRmZkq+6MVQOrApm1Rm3759YjCo4ObmJmYKLa3sVEdDQ0MYGRnBwMAAHh4eOHr0KCIiIvDkyROl+9aWyoxkVlZQUBAOHjyI/v37o2/fvhg4cGCNrjdw4EC4u7sjLCwMiYmJCA0NxdSpU9GjRw819ZiIiIio8WpSI4R9+vTBzp078frrr+PRo0f473//C3t7e1y9elVMod+2bVvJOW3btsWdO3cAlKTZ19XVVUqT37ZtW/H8lJQUmJqaKt3b1NRU0qbsfYyNjaGrqyu2Kc/SpUvx1VdfVeGpqbpSUlJUjiaXZ//+/WjVqhWAygVplc1uWrZe4Z9//gkfHx+88sorePjwYaX7V1WKZDbp6enQ1tZGYWEhTExM0KJFC7Gv1aFqNLeibKwKRUVF0NbWhpOTE8LCwgAAqampuHr1KkJDQ2FiYgKgZOpuixYtMGjQoGr1j4iIiKgpaVIB4ciRI8Xvu3fvjn79+uHVV1/Fjh070LdvXwDKH0xLp/kvT9k2qtpXp40qCxcuhI+Pj7idmZmJ9u3bV3gOVc/kyZPFwKMySv+hoDLBUmWzm9Zk/WFNeHl5Yffu3ZLfr+TkZPHfSm1zcXFBRkYG/vjjDxQWFkJDQwPFxcXIycnBli1bsH37dpiYmODWrVt49dVX0aJFC3h7e+O///0vXnnlFejq6tZJP4mIiIgasiYVEJbVvHlzdO/eHUlJSXjnnXcAlIwKmZubi20eP34sjuaZmZmhoKAAaWlpkg//jx8/hr29vdjm0aNHSvd68uSJ5DoXL16UHE9LS0NhYaHSyGFZenp60NPTq/rDUrns7OyU9gmCgKSkpGpfs7yAMDU1VSy1oMhuqhjZUiib3bQm6w9rQpHMRiEuLg6ffvopUlNTAfz7jGVLZ9REREQElixZgjfeeANnz55FZmYmOnfujEWLFqFXr14QBAHvv/8+fH19cf/+fRgaGqJXr16wsbFBTEwMFi5ciBYtWsDe3h6///67WvpERERE1Jg1uTWEpeXn5+P69eswNzdHx44dYWZmhvDwcPF4QUEBIiIixGCvV69e0NHRkbR5+PAhEhISxDb9+vVDRkYGoqOjxTYXL15ERkaGpE1CQoJkul9YWBj09PTQq1evWn1mUpaVlYULFy4gOjpa/IqJiYGtrW21r1k2IDx58iT69++PqVOn4quvvsKUKVOwe/duSdCiyFJaNrupi4sLxo0bBzc3N+zYsQOdO3fG2rVr8cMPP1S7f5WhSGYzdOhQjB8/Ho6OjkhLSxPX/CnKfFSmdEZlLViwANu2bcPUqVORm5uL119/HQcOHMB3330nlgOZOXMmAIhrKA0NDbF161YcOHAARkZGuHPnDjZt2gR9fX219YuIiIio0RKaEF9fX+HMmTPC33//LURFRQnOzs6CoaGhcPv2bUEQBGHZsmWCTCYT9u/fL8THxwsffPCBYG5uLmRmZorX+Pjjj4V27doJJ06cEGJjY4XBgwcLPXr0EIqKisQ2I0aMEN544w0hMjJSiIyMFLp37y44OzuLx4uKigRra2thyJAhQmxsrHDixAmhXbt2wuzZs6v8TBkZGQIAISMjowZvpvFydXV9bpv9+/cLqampSvvPnDlT5fsBEAAIjx49EgAI1tbWgiAIgr29veT3SBBKfnb29vbitqOjo8pr2tnZCTk5OUJKSopgZmYmpKenC3l5eYKdnZ0AQBg5cmSV+1kVz549Ex48eCD0799fEARBmDlzpgBAGDp0qPDhhx8KAwYMqPE9FO/NwcFB3Ofo6ChEREQIb731lmBsbCw4OzsLgwcPFgYOHCjs3LlTeOedd4S+ffsKrVq1Evr06SOMGzdOuHbtmiAIglBYWCgMGjSoxv0iIiKi+sHPuHWnSU0ZvXfvHj744AP8888/aNOmDfr27YuoqChYWloCAPz8/JCbmwsvLy+kpaWhT58+CAsLE2sQAsDq1auhra0NFxcX5ObmYsiQIdi+fbuknmFwcDC8vb3FbJFjxoyR1FnT0tLC0aNH4eXlhf79+0NfXx+urq5YsWJFHb2JxkdRpL00QRDEzK4VKV3fDwASExPRpUsXODg4VHieYqrp3bt3lY4FBARItjU1NfHkyRPJ79KTJ0+U1g+qoq+vDwMDAxgYGGDIkCHiNE5t7br556uvrw99fX2YmZnh9u3bYj+dnJxgbm5e6amrcXFxWLRoEXR0dDB//nxxxLx0eQgzMzPI5XJoaWnh1KlTAIBTp05h8ODBSE1NxcmTJ9GsWTMAUFprWZqigD0RERERVUxDKO9TKDUImZmZkMlkyMjIaNL1C1966SXs3r1bab+vry8uXbpUpWsNHjxYDEYqYmVlhfj4eFhaWor3VmS2/Pnnn/Huu+/C2toa8fHxuH79Oj777DOkpKSIyYPMzc3x9ddfw8rKCgCU1qYqzJ07FytXrpT80aGgoADjxo3DsWPHMHLkSBw7dqxKz1gTM2fOxPfff49vvvlGZSBenrfeekuSLbVfv37w8fGBo6Mjzpw5A6D8oDgvLw8jR47E6dOnK32/rKwsSQBOREREDQc/49adJjVCSI3XtGnTYGVlpVTyY/LkyVW+lo6OTqXaBQYGIisrS+W9+/XrB+DfbLJWVlY4cOBAhddTFQwCUCrRoCi+np2dXal+qlNcXFy1y01UNVtq2bIXubm5GD16NAIDA9G9e3ex3c6dO7F8+XLo6OjAxcUFn376KQBg7NixlQrsiYiIiJoyBoTUKCxZskTlfm9v7ypfa9OmTRgyZAiOHTtWYUZXxVTT8u6tLmXrFZ45cwYODg5ITEwEUHuF6Tdu3CjZFgQBGzZsQOvWrat136pmS1VV9uLOnTtwc3PDb7/9Ju7btGkTYmNjoaOjg2+//Rbvvfcedu7ciczMTDg7O6ucoqqurKhEREREDR0DQqIyVq5ciVOnTuHatWvo2bNnta7xvGBJsY41JCQEr732mliKwtraWql+Xtl6hRMnTsTy5cvh4uKCx48fV6t/lbFhwwZYWlrCxcUFGhoauHz5Mq5fv4433nijWtfbt2+f0j43Nze4ubmprL8pl8uxc+dOfP755/jjjz8wY8YMyOVyXLt2DQsXLsSRI0ego6OD+/fvY8CAAdDS0kJGRgbWrFmDkSNHIi4uDjdu3BCnqEZFRcHHx0etWVGJiIiIGromXXaCSBV1jLipukZ+fj5iY2Nx4sQJnDx5EkDJCOaOHTsQERGBbdu2wdHREbt27ZKcp6hXaGlpCUtLSxw7dgwdOnTAlClTatzPiiQkJMDNzQ0HDx6Erq4ubt26BaBklA4AVqxYAVtbWxw6dKhW7r9s2TIsX74cdnZ26NWrF7Kzs6Gnp4fdu3dj/fr1iI2NRWxsLAoKCmBoaIhDhw4hMzMThw4dwpIlS6CpqYlOnTqhQ4cO2Lt3LzIzMyucokpERETUFHGEkKgcqkatKqtsQBgUFIRNmzbB1tYWRkZG+PPPPwEAXbp0wdq1a8V2RUVFGDRoENzc3MR9Xl5eKvvl7OysVMRenTQ0NODq6oqJEyciODhYzNppYmKCjIwMzJo1CwsXLsTQoUMxZswYtdyz9PTYO3fuICcnBykpKSguLsaAAQPwxx9/IDMzExoaGuJaT2trayxYsADvvvsuWrZsCQsLCzg4OEBXV7dKU1SJiIiImiKOEFKjEB4ejj59+sDe3h4hISHi/lGjRlX7mpUdKfzpp5/Qs2dPSRCnuK8ieNu8eTPOnTuHtWvXYsmSJVi4cCGAksQppe8XEREhllUoz/jx4wEAxcXFknvUFk1NTbi7u6NNmzaS++np6UFPT0+t5S9iYmLwzTffYPny5SguLsbYsWPRp08fmJiYIDAwEBEREVi/fj1eeukl3L59GwBgY2OD1157DRs3bsRLL70kBq5yuVwMBhXc3NyQl5entv4SERERNXQMCKlR+PLLL3H8+HGcOHEC0dHRmDNnDoqLi/Hs2bNav/fKlStx/vx5rFy5UtxXdr2cvr4+IiIixG1FsFlQUID+/fujb9++GDhwII4cOaI0ZbQsxbmK9YOqAtdJkyZV72EqkJGRAaAk0FIoKCgQk8xUl6JeJyCdHtuyZUvMmjULe/fuxXfffYeWLVvi6NGjaNGiBa5fvy4Ge+vWrUNeXh66deuG0NBQceSwpv0iIiIiago4ZZQaBS0tLbRs2RIAsGrVKmzfvh1jx46tUWmGyo68lS4cr1A2MUxQUBCWLVsGf39/yOVyFBQUACgpjRAcHCy2Ky4ulhSrV2X//v0ASmosAsCNGzck9QAFQcCFCxcq1feqaN26NbKyslBYWAgAePbsGXR1dVUmi1GlbLZUoKSvpUdJFdNjFeUtpk2bBgMDA+jo6GDNmjWIj48Xp9uW5uXlJZaYOH78eK2PmhIRERE1FgwIqVGwsbGRrBfz8PCApaUlZs6cWeVrVTWpjI2NDeRyuaRwfH5+vqSNmZmZpJ7gH3/8gR49ekiCyKysLBgZGSEoKEgy/dTOzk5lH2/cuAEAaNOmjdLU2KoUcK+siRMnYtmyZeL72b17d5VKbpTNlgqUPIe7uztSUlIkbYcPH44VK1Zg1qxZMDQ0hIWFBUxMTJCXl4erV6/ixo0bWLJkCd544w2MGDECly5dwqBBg7B06VKxBmRtleMgIiIiakwYEFKjsG7dOsl2eno6HB0dxVp91VHZUaayheOBf4vbP+8apY8rpmTu2LEDISEhYv28rKwsxMfHY8aMGZL6ef3798eFCxfQvHlzODg4SK47efLkSvW9Ko4ePQrg30CrqgGXYjqoiYmJuM/Pzw/GxsaS7ZSUFDx9+hT/+c9/8Morr+D3339HQEAAfvzxR/Ts2RNffPEF5HI59u7di/T0dDg5OSEuLg7Jycn4+OOPsW3bNgBAXl4eevbsiW7dumHYsGEIDAyEkZERFi1apLYkOEREREQNHQNCqlVFRUVqTTpSWePHjxenENaH6gRNivcUFxeHqKgosX5e3759kZWVpVQ/74MPPsCFCxegp6endC1vb+9q97309FMFQRBw9+5d8XsAcHV1rdJ1y2ZLTU9PR3BwMHbv3o3Dhw8DKEnGM2fOHLRo0QLt2rVDmzZtsGrVKgQEBGDPnj34448/YGdnBx0dHbRv3x7t27eHsbEx+vbtC1dXV2RmZooBYU5ODs6fP4+srCzY2NggMTERzZo1U2tWVCIiIqKGjkllSO3i4+Px9ttvw97eHoMHD0a/fv0wevRoyVqx2lbf0wWrc3/FlFNBECT18ywtLeHn56dUP+/HH3+s8HpxcXFwdnbGuHHjJGsKp0+fXuF5wcHBGDVqlOTL2dlZnN6qSCqjr69f5Wcsbfz48Zg2bRqsrKzEfQ4ODmjZsiWWLFmCkJAQ3LhxA6tXr4apqSnu378PS0tLvP7663j06BHmzZsHPz8/ZGZmonnz5li5ciU6dOggjhYXFxfDwMAAbdu2xZAhQyCTydSeFZWIiIiooeMnI1I7Ly8v7N69G+3btxf3JScnY9KkSfjtt9/qpA+KxCvVUZ1gLj8/H1evXhW3FUljqqNs/bxjx47h6dOnuHXrlriesPQawvJ4e3tj27Zt4khjVFQUfHx8lEYay1IEaaamppL9PXr0wIMHD5Ceni72oSYEQVBag+jn54dHjx7h6tWruHv3LrS1tXHr1i3s2rULH374IXJycjB58mSMGjVKzCJ66tQpZGVlQVtbG+Hh4WK/NDQ0xLWdisyt6siKSkRERNSYMCAktZPL5ZDJZJJ9RkZGknIFta30urTaVrrovIIiKUxVsl0qAhkbGxtJ/bysrCzcuHFDaWTL3t4ekZGR5V5PQ0MDnTp1AgDs3bsXAQEB8PT0VBppLEsRpJVNZvPgwQMAELOMKqSkpMDMzKzCa6qiKmhXjEgqKJLjDB06FHl5eVi0aBGsrKzg5uaGsLAwAMCRI0cwceJE9O/fH3K5XFy/KZPJJIl+0tPT0bJly0pnRSUiIiJqChgQktotW7YMzs7O0NXVhZGRETIyMlBUVIRvvvmmvrtWKVUd+VIUndfU1MR3330HANi1axe6du2qlvsGBgYiKytLKcj96KOPEBkZicjISNjb28Pb2xsTJ04EUBJYmZqaSkYaAwICsGvXLgQFBVWqP4pkNopAdMmSJfjiiy+gra2NwsJCsb+TJ08Wg7OqUBW0l02O8+TJE9jZ2eHGjRvo3LkzACA0NBRJSUliGzMzM5w5c0ZynoaGhlIwXt/rSomIiIheRAwISe0GDhyIs2fPIjc3F+np6TA2NkazZs1q/b6KaZupqalo1aoVrK2tleoB1gZF0XlHR0dxX3R0dJWvU14imnHjxkm2ExMT0aVLF/Tu3RsA0KtXLxw+fBj+/v44f/481q5di2fPnolZQUtzc3OTlLSoSNlAdPPmzQBK1uYptg8dOiQJzmrKzs4Oz549Q2FhIe7fv49nz55BS0sLGhoaiI6OxqhRoxASEoLx48eXe43yAuv6XldKRERE9CJiUhmqNfr6+jA3N6+TYDAoKAiOjo7YsWMHIiIisG3bNjg6OoprxypSdgqlYmSpstM9g4KCcPDgQfTv31/c97w6gKqCk7L7UlNT8eeffyI1NVWyX5GtU9FeR0cHBgYGWLVqFXr16oWxY8ciOzu7Un2vyLhx4ySjeIraiop9H330EWJiYiRTZatq48aNWLZsmbidnJwMQRBQWFiIFStW4KWXXkJWVhaKiopQXFyMZ8+eYezYsRg2bBj69OkDe3t7hISEiOePGjVKDFjLvs+arCslIiIiaqw4QkiNQulpmwpFRUUYNGiQyhGx+Ph4LFiwAOnp6eIUSBMTEwQGBlZ5JKl00XlFEPnpp59ix44dVapDqLjv06dP0b9/f5iYmMDIyAjp6elIS0vDV199hSFDhohr5BTtc3NzxWt4eHjA0tISM2fOrNIzlPbTTz9h6dKlSvX7rKysVCYF8vf3r/a9NmzYgEePHonbLi4u2Lt3L4qLi/Htt9/Cz88Pmpqa8PPzg5GRkbgm8NKlS+jcuTOSk5Nx7NgxychoeT+/ulxXSkRERNRQMCCkRqHstE1BEBAREVHu6KQiE+qnn36K4OBgAP9mQq3q2j9VqlOHUDGy9eeffyI5ORmGhobisczMTIwcORJDhgzB8ePHJdcuXf4hPT0djo6OSExMFPdNmjRJfMbKWLlypcr6fYo1fIr7Pn78GIDyur/ylE1So+h7VlaWuP32229jw4YN0NHRgaamJnJycmBubg4DAwPk5OQgNzcXmpqa0NTUhJmZGVJSUnDr1i1kZmaKI6PljRDGxcXB29sbSUlJ6Ny5M5YuXQp7e3uxDMfWrVsr/Y6IiIiIGgsGhKR24eHh8Pf3h5aWllKiE1Xr2tQhKCgIy5Ytg7+/v5hpsnfv3uKU0bLF1v/++28sX75cUp9PkQm1OsFcWaVLH6iian/p+z158kQSED558kQy+pmUlKQ0ldTPzw8hISHi+759+zZ+++03pKWlYfTo0ZX+Oejr68PAwAAGBgZi/T4A4v0V/Tx69CjWr19f7nXKKpukRkEmk4llOt555x1YW1tj1qxZmDt3LhYvXozs7GzMmDEDnTp1wrNnz9CyZUu0b98eRUVFyM3NRVFREVq1agUfHx/MnDmz3J+ft7c38vLysHHjRvzf//0fZs6ciSlTpjy3DAcRERFRY8aAkNTuyy+/xPHjx6Grq6uU6KS2lJ62qUpwcDB2794tbrdr1w5bt27F06dPMX78eEkmVEUWTnUEhFU5rtjXtWtX+Pr6IiUlBYIgQENDA+bm5vjhhx/Etq+//rrS+cHBwTA1NRXLNsyaNQtbtmzBF198gejo6Er/HGxsbFTW71OMRCr6WbqkQ2WUly21Y8eO+P333wEAhoaGePnll3HixAno6uoiIyMDnTp1glwuR05ODu7evYvWrVtDS0sL2dnZ4mhhdna2ODKqmEJb9h1raGhAX18f33//PcLCwsSsqw8ePMBrr71WpWchIiIiaiwYEJLaaWlpoWXLlgCAVatWYfv27RUmOqnqlMbK+uijj2BlZYX//Oc/SsXWHRwc4O3tjRUrVmDSpEmSTKh1ERBWdE6LFi1w4MABAFV7N9OmTYO7u7sYLBobG8PZ2Rl///03vL29n/tzUCgbWCvq97m6usLf31/sZ2WzlSqUzZaq0KVLFzEgfO2117B+/XoUFRXh2LFjsLW1xapVqzB48GD89ttv+Oqrr3DlyhVs2LBB/JmdPn1asmZS0b+cnBzJNNU///xTMgIcEBCATp06YerUqUhPT6/SsxARERE1FgwISe1sbGwk9e8UiU7effddpambgiBIpm2q05YtWwAA//nPf8Ri62XNmzev3PNrc8po2Wv7+fkhIyMDAHDjxg34+fmpfDdFRUWIj49Xea0HDx5IRg4VPwdvb28A1U84U7Z+X+kpmd999x0cHR3RvXv3Kl2ztJCQEOzZswcAoKenB0tLSwAl5TS8vLzwxRdfoG/fvmjXrh22bNmCIUOGwNzcXDy/7JrJ0msIL1y4oDRFddiwYeL3VSnDQURERNQYMSAktVu3bp3SPkdHR+jr64vTGUt7XomGulbVNYRlg1ygJDFLZe6hEBwcjJUrV+KHH36AiYmJ+J5Onz6tlBH1ypUrknPv3LkDAEpr4cr+HFQlnKmMit7DJ598IiZ8UQdFaYj09HSYm5vjvffew/fff4+zZ88CgFh+ojwpKSkwMDAAUBJcpqWloU2bNpI2NcmKSkRERNTYsA4h1RnFtE0HBwfJ1+TJk+u7aypVFHiUFhwcjFGjRkmC3bfeeqvCc8oGWdOmTcMrr7wCAGjVqpXk3Xh5eWHz5s3Yv38/zp49CxsbG8m5RUVF8PT0lNRTTElJUbpnRcXcgZIsnM7Ozhg3bpxkZPKll15S2XdVZS8qY9KkSeUeU6wvHD9+PEJCQqClpSWpH6itrY3w8PByg9TJkycjISEBQMm6x3fffRf9+vXD6NGjxZHVymZFJSIiImoKOEJIdaa8aZuKKY11ITU1FampqWjVqhVatWqldNzJyUmcsljZEcKy6xOBkumOFVEEm4oppUuWLMGff/6p1M7b2xshISGQyWR47733EBYWJrkPALz66qtwcHAQ1z4CJYFRWFgY4uLi0LNnz0o9j7e3N7Zt2wZtbW3Mnz8fUVFR8PHxwf379yXtyl6nvOuqGjl93hThP//8E61atZJc09jYGCtXroSvry9OnTqFzz//HPHx8RAEAS+//DIePHiATp06QVNTE0lJSfD19QVQki1VMbKoKClSto6iImkPERERUVPFgJBqRX5+Pq5evSoGX9bW1tDV1a23/pw8eRJffPGFWOz95MmTKCgoQLdu3dC2bVsAJcFBfHx8lQNCVYFuVdcQlt538eJFSTKUrKwsvPTSS8jNzRUzopYWFRWFtLQ0mJmZoUOHDhAEAY8fP8aGDRuwadMmeHl5wcvLSzLSpoqGhgY6deoEANi7dy8CAgIkI49VDZzKZnZVKDtF+OTJk+L3X331FdLT05GRkYGTJ09iyJAhAEpKXFy8eBH79++Hvr4+cnNz8frrr+PJkycwMDCATCbDqVOnMGzYMKX3A5SUFHn69ClefvlltGvXDmPHjsUvv/wCALh27RoOHjyIQYMGVen5iIiIiBoDBoSkdkFBQdi0aRNsbW1hZGSE9PR0xMbGYubMmfWWwOOLL75AaGioWNuvY8eOCA0NxdSpU7Fz504AJQGZu7u7eE59lZ0oKipSmQxl8ODBYnbN0sXo7ezsEB4ejm7dusHS0hIuLi5Yvnw5WrRoAU1NTbRo0QIAlMo9lGVqaipJBqQoy6AYeVQUkC+v8HtZqkZOAShNEf7iiy/E7xX3MjIywjvvvAMrKysAJUFbQUEB5HI54uLicPLkSfz999/YsmULOnbsKPbF398fGRkZGDt2rCSALioqgqamJjp06IDQ0FB07doVAwYMwM6dO/HWW2/h888/x/nz5yt8HiIiIqLGiAEhqd3mzZtx7tw5SSH1oqIiDBo0qN4CQk1NTUmx9/nz5yM/Px8GBgbiiCAAzJ49G+Hh4QAqv4awIuUFTRUFhJ06dVJZr+/LL7+UZNdUkMvlAICEhAT8+OOP2Lt3L9599124u7tjz549lV6juW/fPqV9pbNwKo5X9r1UZoqwnZ0drl+/LtkWBAHZ2dmwt7fHuXPnAABTp04VRzg9PT1x+vRpZGVl4ezZs0hPTxdHMR0cHPDkyRMAgK6urqQ8xVtvvYX8/Hzcvn0bFhYWGDp0KMaOHYuCggKx5AgRERFRU8OAkNROX18fERERcHR0BFAS6ERERJT7odvJyQlhYWG12qcffvhBqdj7iRMnxGLvilp7EyZMEAPC2hwhVBVUKfaZmpqKwaCTkxO+++47dOnSpdxkKDo6OgBKpnS6urpi4sSJCA4OxpgxY/DPP/8otU9JSYGZmVm5fSs9XbX089y7d0/Sz5q8H4WsrCxcuHABb7zxBoCSwD0hIQEaGhqIj4+HkZERcnNzIQgCiouLoaOjgwsXLiA+Ph7t27dHZGQkrl69ioEDB4rXLP1uSwfQNjY2SElJwfLly9GlSxeMHTsWlpaWmDFjBiwsLGr8LEREREQNEQNCUrugoCAsW7YM/v7+kMvl0NHRQe/evWFgYAAXFxdJW8W6vdpmZWUlFntXpWytPaDyAc9PP/2EpUuXolu3buI+xdTTyq4hdHFxQWZmJgDgjz/+gIuLi/huvLy8JH1TBKxlrzVq1CgcPXoUmpqacHd3x6hRo5CXl6d0b0XCmfJkZWUhPj5eacpqp06d8Ndff6ll5FQhMDAQ7dq1E7cLCgpgYGCAgwcP4sMPP8TTp09x9uxZWFhYYNKkSdi1axfef/99eHl5QUdHBxs3bkS3bt3Qu3dv8Rrl/dxUlUPp2bMnbt68qbbnISIiImpomlTZiaVLl8LW1haGhoYwNTXFO++8gxs3bkjaeHh4QENDQ/LVt29fSZv8/HzMmTMHJiYmaN68OcaMGSOOniikpaXB3d0dMpkMMpkM7u7uSE9Pl7RJTk7G6NGj0bx5c5iYmMDb2xsFBQW18ux1yczMDGvWrMH58+cRFRWF3377DatXr0Z8fDy++eYbLF++XPKlSGRSnyqawvk8K1euxPnz5yW1B7ds2VKl+8XExOA///kPgJLAq/S7efr0KXr27Ak3Nzfs2LEDY8aMkZybmJiI4uJiPHv2TLK/Q4cOeOedd2BnZyd+2draIjo6usK+BQYGiusFS1OM+FZ3hFBV+3HjxkmmxsbGxmL06NFYu3YtPvnkEwAQ10Z+/fXX6NChA2bOnAm5XA5BEODl5QUAOH78uHiNqvTveaU4iIiIiBq7JhUQRkREYNasWYiKikJ4eDiKiorg5OSkVFR7xIgRePjwofh17NgxyfG5c+fiwIEDCAkJwblz55CdnQ1nZ2dxLRcAuLq64sqVKwgNDUVoaCiuXLkiSVgil8sxatQo5OTk4Ny5cwgJCcHPP/8spsxvjObPnw9DQ0NYWlqKXx06dMDs2bPru2uSDJxVLUyvr68PAwMDMVsp8O80zvKUvfb8+fPFgur6+vqSd9OsWTMx4Pz000/FMhIKRkZGGDt2LLKzsyX75XI5Lly4gOjoaPErJiYGtra2Kvv0008/oWfPnvj5559x6NAhdO7cGba2tjh06BAAiHUSKztCqAiQ//jjD/Tr1w/29vbo1asXzpw5U+F5W7duxZw5c3DgwAGYmJhg8ODBGDp0KNauXYshQ4Zgx44d+Oabb7B//36VfYmIiABQMtoYEhIi7i9dJ1JBHdNeiYiIiBo0oQl7/PixAECIiIgQ902ZMkUYO3Zsueekp6cLOjo6QkhIiLjv/v37gqamphAaGioIgiBcu3ZNACBERUWJbSIjIwUAQmJioiAIgnDs2DFBU1NTuH//vtjmxx9/FPT09ISMjIxKP0NGRoYAoErnNBUAhOf9ij98+FBp37Rp0wQAwunTpyt1n08++UQoKiqS3PO3334TAAhvvvmmynMiIiIEAMLHH38s7vvjjz8EAMLgwYMlbR0cHMTvJ02aJMyePVu8DwBh2LBhwqlTp4TOnTtLztu5c6eQmpqqdO8zZ86o7JOdnZ2Qk5MjpKSkCGZmZkJ6erqQl5cnDBgwQBAEQQgMDJTcd+HChRW+Y0dHR0EQBMHJyUlITEwUYmNjhaFDhwqtWrUSzp8/L7ZTvO+y1zlz5owwfPhwwdHRUXj27Jnw4MEDITc3V9Jm2LBhSvft1auXAEDQ0dER/vOf/wizZ88W5HK5MGjQIKW2qampQmZmpsr+ExERUf3hZ9y606RGCMtS1CsrW6D8zJkzMDU1xeuvvw5PT088fvxYPHb58mUUFhbCyclJ3GdhYQFra2ux4HZkZCRkMhn69Okjtunbty9kMpmkjbW1tSSZxfDhw5Gfn4/Lly+X2+f8/HxkZmZKvqj6KsrAKVRy9GjNmjXQ0tKS7Cu7/q4y1y7vfjY2NuLo865du5TWwgmCAEdHRyQmJkr2u7u7S6ZjKo6Xl5ym9EjnkCFDIJPJoKenJz5LVesQ5uTk4Nq1a8jKykLnzp3h7e2NTZs24ZVXXsHq1auxatUqAMDff/8tnhMREYGhQ4fCw8MDPj4+ePToEa5cuYJevXph7NixGDhw4HOnv5bObrtq1Srx3Nu3b6N79+548803sWzZMgAlpTjGjh1bpeciIiIiakyabFIZQRDg4+ODAQMGwNraWtw/cuRIvP/++7C0tMStW7ewaNEiDB48GJcvX4aenh5SUlKgq6urVBKgbdu2SElJAVCSxbFs7TWgJHtk6TalpxgCJR9OdXV1xTaqLF26FF999VW1n7upKi9zZlJSkmRf6Xdf2YBQFcW5z0sqU/oe5U3FXLNmTbX7UVrZ5DRlKQJPLS0t7Nq1C0DJtMvWrVurbP+899O1a1cxo2daWho0NDTQtm1bWFhYSArfX7p0STxn1KhRePXVVxEZGYnc3FwkJSUhOTkZI0eOxNmzZ2FjYwNdXV2x/bBhw5CVlSWWEwFKEgjFxMSI/fPw8IClpSXefvttZGZmQkdHB9999x3ee+897Ny5k9NGiYiIqElrsgHh7Nmz8ccff4h1zhQmTJggfm9tbY3evXvD0tISR48erTABhfD/SxkoqAoEqtOmrIULF8LHx0fczszMRPv27ctt/6LJz8/H1atXkZqailatWsHa2lryAb+2lJc5c9iwYZLtyZMni1kv1REQVuW4qn3PKxFRVkXv93nrGlUFnrq6uirrE5bX39K2bdsm2TY1NcXTp09x8OBBAP8Wvt+6davYpnfv3jhz5gyGDx+Oc+fOwd3dHba2tjAyMoKfnx+io6NhamqKjz/+GJ9++in8/f0xduxYSaAbEBAgBnrOzs7Q0dHB/Pnz8eabb0JHRwceHh7w9vZGbm4uBgwYgPz8/Aqfg4iIiKgxa5IB4Zw5c3Do0CGcPXtWkvJeFXNzc1haWoojSWZmZigoKEBaWppklPDx48ewt7cX2zx69EjpWk+ePBFHBc3MzHDx4kXJ8bS0NBQWFiqNHJamp6cHPT29yj3oCyYoKAibNm0SP+Cnp6cjNjYWM2fOrPWC9YrMmYqfmWLEMCsrS/xeMWKo+J2oSXmF5wVLimuXDv5VnfO8EhFAyR8FCgoKsGfPngrfb+lMnOpQ1fdTXuH75s2bi39sMTMzg1wux/Hjx9G9e3eMHz8ec+fOxYULF3D58mVYW1vj2rVrOHnyJFatWoUJEyaIWVhlMhmWLl0qjs7L5XKsWbMG2tramD9/PmQyGVatWoUDBw5AJpPByMgIVlZWOHbsGHbt2lXrv4NEREREL6Q6W634AiguLhZmzZolWFhYCDdv3qzUOf/884+gp6cn7NixQxCEf5PK7NmzR2zz4MEDlUllLl68KLaJiopSmVTmwYMHYpuQkJBGnVSmf//+glwul+wrLCwU+vfvXyv3QwUJT1555RWhsLBQaf/QoUOFqVOnCgCE48ePV/ueiqQyvXr1UtkuPDxcklTG1tZW6Nq1qwBAMDQ0FGxtbYXevXsLMplM6dzvvvtOktylXbt2gr29vfD666/X6vtdunSp5L6+vr6VStxTGaWvc/36dUEQSn4WNjY2giCUJI/p2bOncOLECeGtt94StLS0hODgYKFXr16Ctra2cPfuXeHp06eCg4ODkJSUpLJfX375pdC2bVvxfSjuU5u/g0RERFQ9DekzbkPXpJLKzJo1C7t27cLu3bthaGiIlJQUpKSkIDc3FwCQnZ2NefPmITIyErdv38aZM2cwevRomJiYYNy4cQAAmUyG6dOnw9fXFydPnkRcXBzc3NzQvXt3DB06FEDJGqYRI0bA09MTUVFRiIqKgqenJ5ydndG5c2cAgJOTE7p27Qp3d3fExcXh5MmTmDdvHjw9PWFkZFQ/L6iW6evriyUBgJIRsYiICDRr1qzO+2JgYKCy1p6/v7/4vVCHawizsrLEqZO9e/eusERE2TWknTt3RkREBB49elTj95ufn4/Y2FicOHECsbGxFdbFrMwIYVWup6CoLRgUFISHDx+iZ8+eiIyMRGpqKoKDg/HTTz8BKCntsmPHDhgZGWHevHnYtm0btLS0JP26ffu2+L2vry9MTEzERDReXl71+jtIRERE9CJoUlNGN23aBAAYNGiQZP+2bdvg4eEBLS0txMfHY+fOnUhPT4e5uTkcHR2xZ88eSdKK1atXQ1tbGy4uLsjNzcWQIUOwfft2SabJ4OBgeHt7i9lIx4wZg/Xr14vHtbS0cPToUXh5eaF///7Q19eHq6srVqxYUYtvoH4FBQVh2bJl8Pf3h1wuh46ODnr37i0mMKlLFhYWSomBgJIMnDt27ABQtYBQsXZP4XmBT9mAMTAwUKkeJlASoJZNiKPIjlv6WhEREejevTsOHjxY7fdb1Sm9zwsIqztFWLHW0czMDCNHjgQA9OzZEytXrsQnn3yCzz//HPr6+pg3bx40NTUxbdo0/O9//8OePXvQvXt3HDhwQLxWSEgIPv30UwDA2LFjceLECSxbtgz9+/fH1atXMXDgwHr7HSQiIiJ6IdTX0CSpB4fTy4dqTmf08PAQAAhHjx6tVPudO3cK/fr1E7y9vcV7WltbCwCE3r17qzzn119/VapDqJhWrKjfp9ClSxfJ9NZ33nlHMnVTJpMJc+fOldRUdHV1rcojC4Lw/Cm9ZaeMzpkzp8J3XNkpwsOGDav0zwr/v77gmTNnJF8vvfSSAED4+eefhR49eggABA0NDWHt2rXCu+++K+Tk5KisQ0hEREQvJn7GrTtNaoSQqCqESo4Qbt68GefOnYOmpia+++47ACUZOxVTiCu6dul7qNoHKCfEadGiheS4TCaDjo6OWNdPEASx3mVVKKb0Ojo6itepaDrl80YIy17PxcUFjx49QlJSElxcXMR7xMfHK50bFxeHRYsWiRlCAwICxOQ6hYWFSrUUe/bsifv370NLS0scdRUEAd7e3ujatStGjhyJ1NTUKrwNIiIioqaBASFROSobEJYNfADgypUrAJ6/hrAy91OsXy2vnYmJCUaNGiXZd/r06ef2u6znTekte9/KTBktfb0rV66I06IVmUAFQYC7u7tY/1ERKB46dAiDBw9GQUEBXFxckJmZWeG9+vfvjyNHjgAABg4cKL5/ABg6dCjMzc3h6+tb+ZdBRERE1EQwICQqR2UDwtKBj0JkZGSF51RUduJ59y173MDAQGnEbPLkyc/veBlmZmYqaxEq7NmzR7L9vICw7PU2btwIFxcXmJiYiPv8/PwkazmPHz8OFxcXCIIgrvkVBAEDBw6Ep6en2K6i+owffvihOFLbs2dPdOvWDcOGDcOtW7dga2uLRYsWYcyYMRX2nYiIiKipYEBIVEZlAzOF0oGPIsCbOXMmfv755yrdo3SQWFRUBG1t1f88y/ZLUXi+NG9v70r1XRU/Pz+V97xz545kX1XrECqyh5YWHByM3bt34/DhwwAADw8PDB48GPv27YMgCOjQoQMAYPny5SgsLMT//d//AQBGjRoFbW1taGlpSZ51yZIlkkL358+fR1ZWFmxsbJCYmIhmzZph6NChDAiJiIiI/j8GhFTvJk2ahODg4PruhpKaFKavaP0goDrYTEpKAgDExsZi8ODBKCwsRHJyMkJDQ9G9e/cKz1UnRZBW1u7du5Geni5uy+XyGt9r2rRpsLKyErdHjx6NZcuWwcbGBjdv3kS3bt2gpaWFdu3aSdZO/v777/jnn38wY8YMREdHIyoqCkBJttfS78fAwAAGBgYYMmQIZDIZAJQbaBMRERE1RfxkRHWmvJGn6iRAqQvqCLwqu4bQz88P27ZtA1CSJKZv374QBAEhISHw8vLCb7/9JrYtLznK9OnTJaNj1aUI0hTr/BTeeOMNPHjwQNyuScCssGTJEsn2559/joCAACxbtgxjxoyBiYkJYmNj0atXL0kgV1xcDHd3dyQkJODWrVswNzcHAOTl5Un6JZfLoaWlhV27diEuLg6ff/45bt68iQsXLsDe3h6A+t4bERERUUPEgJDqTHkjT9VJgFIX1BEQlneNssFUcHAwWrRogX/++QetW7cWk8SEh4crjcTFxsZKtpOTkwEAf//9d437CygHaQp9+vRBaGiouK2OgBCAmFAGAPT09BAYGIht27bB3d0dGhoa+OGHH/D48WPJ2sN+/fqhuLgYOTk5KC4uhoGBAQAgNzdX8s5L1wb19vbGtm3boK2tjfnz5yMqKgo+Pj5qe29EREREDZFmfXeAmg7FyJODg4PkqzoJUOpCbU7NLHvtadOmYerUqQCAO3fuYO3atVi8eDGys7PxzTffVHit5ORktG3bFg8fPhT3jRo1CnFxcXB2dsa4ceMko7DTp09XeZ3ntS8bAFY3IJw0aZJku/TP//bt2wCATp06ITIyEh07dkRBQQG0tbUlayXPnz+Po0ePYtiwYRg7dixyc3MBABs2bJD0q6ioSPxeQ0MDnTp1QocOHbB3715kZmbC09NT0qa+PHr0SCyrQURERFSXOEJIdaa8kaeaJECpDYpgTV0jYBXdQ/G/S5YsQXh4OACge/fu2LBhA4yNjVXWANTT05Ns29nZwcPDAzNmzMCcOXOwdu1aPHv2rMojYhW1j4+PVxrdPXXqVIXP6Ofnh0ePHok1GlNTU6Grq4vU1FQcOHAAMpkMgiAgLS1NPCcjIwPJyckYNWoUYmNjkZaWhu3bt6Njx474/fffxXbnzp3DgAEDEBwcjNOnT2P48OEASoI+xVpMAOJaTBMTE+jp6eH27dtiopqAgADs2rULQUFBFT5HXXB2dsalS5dqfX0oERERUVkcIaRaU3YkqD5VNApU3rG6HCEsvU9bWxvm5ublFoTv27evZFtXVxfTp09HUVERevXqhbFjxyI7O7vKI2IVtffy8sLIkSMl7d98880KnzE4OBhxcXFYvHgxlixZgry8PLzzzjvo3r075HI5QkJC0LlzZ7Rs2VI859mzZ0hJSUF4eDgMDQ2hqamJuXPnIikpCc+ePRPbKUYw09PT4ejoiHbt2onHvv32W/H7s2fPIjIyEhs2bEBeXh46dOggmaLq5uaGvLy8Cp+jtl29ehWXLl0CUPsJg4iIiIjK4ggh1diLnizG3t4e2tra4khRYGAggJJ+Z2RkKB2ratmJipSXVEbV6OPSpUsrdc2y/VJMlwRKyjZYWlpi5syZsLS0rNKImKmpKW7fvo3o6GgsXboU3bp1Q/PmzXH+/HkYGBigdevWkvaamhX/PWnatGk4ceKE+IcBPT09REVFQVdXF23btoWVlRXOnj0rOUdfXx+WlpYoKCjAjRs38N1338Hb2xvdunWDo6Oj2O7777/HgQMHkJSUhNOnT8PNzU0cgVaV/dTIyEjcP3ny5Bdqeqa1tbX4fVFREXR0dOqxN0RERNTUMCCkGnvRk8WUDkzDwsLg4OCAoqIiWFlZQVNTEzKZDIGBgZDJZJg0aRI6duwIoPZGa/z8/HD9+nUAwMWLF+Hn5wdBEMR9pYPIuLg49OzZU3J+2WCy7Eiio6MjEhMTxe3SZT3c3Nzg5uamsl/79u0DAEyYMEFSvy8tLQ0xMTFiohuF5wX8S5YswfXr18WgdNy4cRg3bhx27dqFDz/8UCmLKQCsX78eQUFB6NChA86cOSP2dePGjZgzZ47YzsvLC/PmzUO/fv3g5eWFt99+Wzz28ccfY/bs2QCAVq1aiSOiL730Erp164abN29i3LhxmD9//guXaZQBIREREdU1BoRUY+WVKahsshgnJ6c6G7H58ssv0bFjR+jp6SE0NBRGRkZITk7GpEmTcPjwYcnoUm0FhMHBwZg2bRqOHDkCS0tLMdDasWMHAODevXvYuHEjBEHAggUL8O2330qKupc36qiukVp9fX2l+n1Dhw5F27ZtcffuXbFd//79cfDgwQqvpQgyS6soKP3uu+9w48YNGBgYYOvWrbh37x4KCwthZmYmqUO4fv16/Pjjj5g/fz6+++47yfP26NFD3P7999/Rpk0bMWh+6623YGdnh9WrV7+QmUZfhAQ3RERE1LQwIKQaq2yyGBcXF6U2giAgPj5e7X0qHcwNHToURkZGyMjIwLVr17Bnzx4YGBjA2dkZurq60NfXxx9//IGxY8fim2++wZYtWwDUXlKZadOmwczMDEDJqJWDgwNcXFzEou8PHjzA9u3bIQgC8vPzJYEQALHEQlnfffcdjh8/rrS/qiO1NjY2kvp9AFBQUKA0Elkb70dTUxM+Pj5o27YtAGDt2rX46KOP4OfnB29vb0RGRgIADA0NYWBggBkzZuDIkSNincanT5/C2NhYvF6LFi3Efm/fvh2XL1/GK6+8gqioKOzduxcBAQF4+eWXYWlpqfZnqY7CwsL67gIRERE1MQwIqc7ExMTg1KlTkrVngiDA3d1d7fcqHawcPnwY6enpMDY2RnR0NPz9/aGrqwsTExOkpqbiyZMn+PnnnzF06FAAwA8//CD2rSpUtVc1mrdkyRJxNFBxPCYmBuvWrcPHH38MHR0duLm5wdnZGb1791YaaY2IiJBs37x5E8XFxTAzMxNHalNSUsSgs6plPdasWaO0T1dXF6NHj8aqVavEfarW6lVEEIRyRzcVNDU18eOPP6JTp05wcXGBjo6O+LMsXYdw/PjxWLhwIYYNG4a33noL586dA1ASQJYeMSwdHCrKeuzduxdbtmzB+fPnsXbtWuzZswcxMTFVepbawhFCIiIiqmsMCKnOzJ8/H4aGhpIP9gDE9V7qVDog1NfXh76+PgBg4MCBOHv2LHJzc8UgsbxsnuoICJ/XP0WANH/+fLEfPXv2hLGxMby9vdGqVavnXsvQ0BBjx45FmzZtxGm7kydPxvz58+Hv7w8tLS2Ymppi4sSJAEpqFB49elTpOj/99JOYTGbYsGEIDAyEkZERFi1ahDFjxig93/MCwpUrV8LX1xd//PGHmAW1uLgYa9euhVwuxxdffKF0zsSJE3HmzBlcvXoVPj4+yMvLQ2BgIFq1aoWbN2+K7bZt24YjR47g77//hp2dHe7fvw8A+PPPP587cmllZYVVq1Zh+/btGDt2LFq0aFFrmUY3b96MnJwc+Pj4VKo9A0IiIiKqawwISW1SU1ORmpqKVq1aqQxkSq+DA0pKBrRs2RITJkxQe1+eFxSUDhLLUgRpdRkQenl54eeffxb3jR49GpMmTZKUSFAwNTXFvXv3xO379+9DEATcuXMHdnZ2EAQBSUlJ+PLLL3H8+HHo6urC399fHBErXb6htJUrV0qSySQmJqJZs2YYOnQokpKSlN7p89YmHj16FDY2Nnjvvffw5ptvwsLCAo8ePcKYMWPw8ssvIzIyEkZGRpJzFi9ejKFDh8LKygq6uro4fvw40tPT0bZtW3z//ffYuXMngJJptTNmzMDnn38OAHj11VcBAB07dpSM9oWEhIiBcFmlM7KWlZOTA21tbaWaj5UVGxuLpKQkfPzxxwBQ6YDw+vXrsLCwqNY9G6s//vgDMpnshZnWS0RE1NiwDiHV2MmTJ9G/f39MnToVX331FaZMmYIBAwbg5MmTFZ43fvz4WutT6eAlNTUVf/75J1JTUyt1bnUL01clIFSMrqWlpYn9Kn2/8ePHQ1NTU2VwULr8AlBSyD4xMRG5ubmIjo5GTEwMbG1toaWlhZYtW8LAwACrVq2S1ChURZFMpm3btmIyGT09PWhra+Po0aNK55VO3qJKTk4O5s2bh9dffx0nT55EUFAQwsLC0K1bNyQnJ+PJkydK57z88stYvnw5Tp8+jaSkJPE9FRcXY8CAAWI7ExMTaGlp4b333pMEuM7OzuJ0XACIjo7GnDlzVP4sFTUMS2dkVWjRogX69etX4fNVZMCAAeUGohVRTFumf/Xo0UMsnUJERETqx4CQauyLL75AaGgoDh48iKCgIBw+fBjHjh2TTAn87bffxHVeCrVZhLv0dMaqBKpOTk7VrkNY2TWEJ0+exDfffAOgZO2gol9//PFHhddSKDtVMyEhQbL94Ycfok+fPrCxsZFMDfXw8ICPjw+ysrJUXleRTAaAJJlM69atkZOTozTNVFu74gkGXbt2xYMHD/Dyyy8jLS0NAJCVlYXmzZvjtddeg6+vr9I5+fn5YpB3+fJlfPbZZwAAV1dXnDp1SmzXokULfPrpp5gxYwZeeuklZGZmAgA6deokeeelA+Gyxo8fX+F7jouLq/D5KlK6NiQRERHRi4xTRqnGNDU18eTJExgaGor7njx5IkkeM3DgQADSQGf//v211qfSI0KlSyMo1o21bt0abdu2xfXr16Gjo4OuXbvC3Nwc8fHxGDRokFJfq3rPinzxxRdiHb3Bgwdj06ZNyMzMhK2tLQAgMzMTn376KWJjY2FtbQ1dXV3J+WUDQsV73rhxIwCI9fTWr1+PBQsW4M6dO+J03fJGxIB/k8nY2dmJ99HS0gIA/P3332JQp5Cfn1/hc27btg3Xr1/HZ599hrfffhtFRUXQ1taGubk51q1bBysrK6WAOTw8HG3atIG1tTUOHz6Ml19+GUDJu50yZYrYrlmzZnBxcYEgCNDS0kJOTo7Y544dO+Lq1atiW8XU0CNHjoj7/vjjD1y+fBn29vYoKCjAypUrxZ87ERERUVPCgJBq7IcffoCvry9SUlLETJLm5uZits7ylM4AqW7lBWdr1qzBG2+8gXv37uHWrVu4cOEC9PT0MGnSJCxfvhzu7u7iueoYIVS1T1NTUxzRUhx/8uSJuO/hw4eIjY3FqVOnEBsbi5kzZ0rq9pUNCLt16wYA2LBhg2SdVYsWLaCpqalUtuJ5srKyEB8fDycnJ8moXPv27SVrF0sH/OWxsrLCgQMHAACDBw+WXE/Vz2jfvn346aef0KNHD8TGxorBa2JiIq5duya2Gzt2LD766CP8+eefSElJQUpKCv78808UFRXB09NTEvwppoaWNn/+fISHh8POzg6PHz/GuHHjcP78eaX+xMfHo3v37s99TnVS/Bu6ffs23NzcsH//fqUan0RERETqwoCQaqz0h/4XRelgo1+/fuKH7Pv37+Ps2bM4ffo0Tp06JX7Yb9GiBTp06IDZs2dj7969SteojPKCv7J++OEHMZHOgQMH8Pvvv8Pc3FxMYGJlZSXWdiwqKsKgQYMqDAgVUzcTEhLw448/4tdffwUAuLu7Y8+ePVUuOxEYGIisrCyl53nzzTclAWF1yk6UpiqjZnBwMC5evCi+tzNnzmDfvn2Ij4+XJHgxNjaGpaUlpk6ditmzZ+PGjRv48ssvUVRUpHTd8ePHSwLRq1evIisrSxwJNTU1LTe47d2793NHQtWtoKAAenp6+OWXX3D+/HmcP38e48aNq9M+NEYFBQUoKCio8h9IiIiIGjuuIaQ6lZ+fj9jYWJw4cQKxsbEoKCiolfuUDlYiIyMRFRWFyMhITJo0Ca+//jq8vLywb98+AP+ukwOACRMmiOeqY4RQMeWyNCsrK3h4eAAAxowZg8jISOzfv1/pg6ogCDhw4AAeP34sGeEqG/AoghkNDQ24urqK+8eMGYN//vlH6f6qMpeWNm7cOBgbGytN6VXUNVSoasBc9nqqAsJHjx5BS0sLdnZ2sLOzg6enp9jnO3fuKJ1bVFSEiRMnikG8qoCw7M/lm2++QZcuXSTrGssr71Fbv58VUQSg9XHvxmzYsGGSae1ERERUgiOEVKccHR1ha2sLIyMjpKenq5wSqQ4VTRktS1dXVwwOgX+DjaoGhKpGzFQFhKX7V/oenp6emDt3LqKjo9G3b1/o6OggOTkZycnJSEpKKvc+2dnZKCgoUFpreOjQIZXB3+TJkxEWFvbc5yk9pXfz5s0ICQmRHC8sLHzuNcq73nfffYfNmzcrtbl79y6Af4PcBw8eqLyW4t6KdorEOqoCwrKB6Pr165XKXezevRvJycnimsX6VHZEsjaTL1VGcnIy4uPjMWrUqHrtR02dPXu2vrtQZ548eQI7OzucOHFCLMlCRERUHgaEpBb5+fm4evWqWIdQVTIUADh37pxkep6qKZHqUNXRq9KqGxCqGvEqbyqion+K/7WzsxNH84qLi1FcXIy8vDxkZGQonVs6OARK1hw6Ojpi5syZmDRpkri/b9++SucqahRWlaKeXmmlC8VX1RdffIGbN2+ibdu2kv3a2tooKiqCTCbDgQMHYGdnJ0kQo/D999/j0KFDuHHjhmS/XC4Xfw6KhDVl16oOGDAArq6u+PTTTwGUrEeUyWT45Zdf6j34Av4NCBcsWACgZr/L6vDWW28hOTn5hXg31XX58uX67kKdOnfuHG7fvo2ffvoJCxcurO/uEBHRC45TRqnGgoKC4OjoiB07diAiIgLbtm2Do6OjWLqgtIiICPF7QRAQERGBZs2aqb1PFa1vq2jKZEpKSrUDQlUjZuX1o+y01KysLLFAer9+/cT6eaoCwrKB2GuvvYaIiAh8//33kqA0KysLFy5cQHR0tPilqFFYnqpM6e3YsWO5xxRsbW1hbW2NLl26wNraGra2trC1tUV2drbKkhyK9+Hm5oaRI0eKiXbK8vDwQExMDKytrSX7S48QlheM//rrrzAwMBDLWwiCgDNnzoj3r+8ArOwIYUUlLDZt2qRy1Fud7t+/X6vXL8+zZ8/Qu3dvtVzLz89PLddpKBQzExpyEE9ERHWHI4RUY5s3b670yN/Bgwfh7+8PuVwOHR0d9O7dW2XgWFMVfah3c3PDt99+q3I0c/LkyWJAUdXAQNUIYXkBVdkpo4GBgeKIlWJf2SmaCmUDneLiYjGwLh1ATZ8+HU+fPlUahfP391d53aCgIGzatEnllF5VHj9+rHJ/6etdvXoV06dPR8uWLSXXCwgIwN9//63y2eRyOWxsbLBx40Z88MEH4jTS0hQ1LT08PBAZGSnuVzVltKzMzEwMGDAAubm5GDBgAPLz88XgNDc3t1LZU2tTeQHhrVu34Ofnh127dokJdhTlRObOnVtr/dHR0YFcLlc5Lbkicrkccrm8SueU9uDBA8nIXnFxseRno6GhgTVr1uCTTz557rVK18xUJJgq69KlS7CwsICFhUW1+ltfPv74Y+Tn52Pbtm3iPsV/Q+rjjxsXL15E69at0alTpzq/NxERVQ8DQqoxfX19REREiIlPKhr5W7VqVZ184M7LyxO/V2STBIB//vkHycnJePvtt6GlpYWioiI8e/YMpqamaNWqFZKSksTMo+oYIVSVodLOzk5cG3fkyBHY2dlBEAQkJydXeF/FB2JbW1tJWYW4uDgcOXIEY8eOxciRI8X9d+7cwfjx48U1momJiejSpQscHBxUXr+iwL6sli1b4unTpyqvU/p6QUFBGDx4sDhtU3G9rVu3qiylYGxsjMePHyMhIQEffPABZs+ejRkzZii1y8vLw3vvvYePPvpIsr+oqEgsHyGXy7Fs2TIx0FZwdXXFwIEDYWRkBCsrKxw9ehTPnj0DAOTk5EBHR6fC56pt5QWEK1aswL59+7BgwQK1jZxVhq6uLvLy8pCenq70M1MEHKV/Z86dO4eEhAQcOXIER48exfbt2+Hk5ARzc3PJuTExMejUqVO55WeysrIk2wEBAVi8eDEA6R9SVAWEgiAgICAA06dPx8svvyxZy5uXlwd9fX2lc2xtbWFgYCDWtARKkhwVFBSgffv2krZhYWHo3LmzpMxLbdq4cSPs7OzEn7viDx/NmjUT1+KWDggVvzP1ERAqpqpzdJKIqOHglFGqsaCgIBw8eBD9+/dH3759MXDgQBw5ckQc+Sv9waD0h93bt28/t1ZhdSk+4AOQTJm0sLDAoEGDYGxsjDt37uDRo0dIS0uDubm5OJ2yulNGS99TQVVAmJWVJWYZdXBwEKdytmvXDsC/H+IU5SMUFB9Uy37I69GjB1avXo09e/ZIyn+sW7dOnEoK/DuaVB5FYK+gKrA3MDDA9u3bMXbsWHHaa3kBlL6+Plq1aiV+4C99PQcHB5VTIRWBxTfffANA9XRJRfmQjz/+GL6+vpJjRUVFkuQh+vr64tRQhf/9739Yu3YtJk2ahODgYGRkZIjBfE5OjuSPCeU5fvw4/ve//8HFxQW3bt16bvvyqPrAXl5AqBjVKm/UOSkpCRoaGmLtRnVR/HzT09MBlATaS5cuRU5ODlq1aoX33ntP0v6tt97CzJkzcfToUQAlo7iqSp/Y2dlJ/oBRVtmAcO/evfjhhx9w7tw5ZGdnAyj/32h6ejoWL16MDz/8EIB0hLCiKbhl/w2bm5urTDQ0fPjwOk3WMmvWLMlU73nz5lU4AlfefyuIiIhUYUBI1Xbv3j2sXbsW2dnZ+Pjjj/Hzzz8jMjISv/32G1avXi2WKSj9F/fSH7ZdXV0xY8YMyXF1KX3N0h8a9fX14ezsLKm1Vzro8ff3F/tY1X4pPqSWpiogDAwMFD9cl76Hvb29Un9LU3xALruuThAE3Lx5E1paWpJgqOyzPW/k63mB/f9r776joyjXP4B/d1M2vRGSEHpRkA6iQEBFETEXRMWLAaUoegQpgvFKMwqXC4J4qeKFiwpXDQgqSDMIQZASpEoMAgJKSQgplGRrdje78/39EXZ+WZJAIpGAeT7nvOdk552deeeZknlmZt8Bit5tOGTIENSsWVMdVtYjgaVNb+nSpeodhNISr2sf5SttHB8fH2g0Gjz66KN48cUX3eocDofbSfDo0aMxfPhwt8TD9YjpiBEjSsTaYrGUKyF8/PHH8dJLL+Grr75C165dy3y816X4b0lJ4r333sPly5dLfbzVtc34+/sD+P8ExtXW0n5XCgDbt28HUPm9aboeT3XdEd61axcmTZqEuXPnQq/X45tvvoHVanW7mHCtM2fOwG63q79HdC3jvn37yvzOtdu5TqfDsGHD0LNnzxt2jORqqyt2xe8QXi8hdFEUBR988EGJ7ePixYsYOXIkgKJ16rob/UeQxObNm2+YtJVWP3/+/DJ/27lgwQI1Eb7eMcz16OyCBQuuO/9jx47Bz88POTk51x3PNc3iZs2aVe4OfYxG43WfOnj11VfLfHxdCCHETaK4o+n1egKgXq+/5fMeN24cAVS4dOrUia+//rr6ecqUKczOzub58+eZmZlJm812021bunSpOn2TyaQOz8rK4pgxYxgTE8OOHTuya9euHDt2LLOysqgoChVFoYeHBwFw7NixFZrn8OHD3Zbz8ccfZ1RUVKnjxsXFEQC7dOmiDhs7diwB8L777mNhYWGJuP36668kyebNm7NVq1bq8DZt2lCj0TAyMpKDBw9Whxdftpths9nUaf7nP/8hSW7atEkd5ufnR0VRyjWt4OBgAqCiKExJSSmxjDVr1iQAfvrppyTJKVOmlBinXr16fOmll0i6r2cAHDFiBBs2bKh+ttvtJMlffvlFHfb3v/+dMTExDA4OZteuXd2+v3//fh4/ftxtWGlK266vV2+1WtW63377jQA4dOhQ5uTkuC0XAG7evJmKolCj0ah1//rXv9S/v/jiixLzURSFy5YtIwDOmTNHrf/iiy8YFxdXrnVDkk6nk0OHDmVaWhr1ej0XLVrEtm3buq0T17pPSEhQ5+/any9fvlxqbOrXr8/p06cTAH/77TdmZGSodYWFhaW2Zfny5W7TcLWjeAkPD1fHnz17Nn///XeS5I8//qjuAyT55JNPqt/ZtWsXZ82a5bbNWq1Wt1ju3Lmz1HU7YcIEt+GLFy8mSSqKQqPR6DbNWbNm8dtvvy2xXIqi8OjRo9y9e7e63q8nPT29RDtcnx944AH1b6fT6VYHgMOHDydJJiUlccaMGer3L1++rE63QYMG153/O++8QwBct27ddccjSYPB4LZeAVCj0aj18+bNY0pKCn/66Se3eGzcuJG1a9cuc38rvlwVoSiKGpc/04ULF9RjTWXbtm0bL126pH42mUx8//333Y4pQvxVVeU5bnUjCeFt4MMPP2SDBg2o0+nYvn177ty5s9zfrcqdxWaz8a233uLy5cvZr1+/CieGFS2tWrWiVqslAEZHR7N169YMCAhgly5d+PHHH7Nly5Z86KGH+PLLL7t9r1GjRtyxYwf37dvH8PBwTpgwgT/++CN3797NvXv3csOGDepJz913361+r0aNGjxx4sR1kx2n08msrCx6e3sTAHv06MFZs2ZxzZo16gnt2rVr6XA4SBadoCxatMitfb/88gsXL17sNt+zZ8+WWP59+/apJ+FLly7lK6+8wvbt27uN89NPP7mdOBkMBvWE6PTp0xw1alSZJ+DXOnXqFAcMGMDVq1cTAJ999lkajUa1vnfv3uzUqRMBqCfiN+JqW25uLjdu3Kh+vuuuu9yWY9iwYXziiSc4YsSIEnHo2LEjW7Zsyfj4eDZr1qzUbaVPnz4EwIsXL9Jms/H06dNq3datW9X22O12t+9t377dLYZlnYCWNs/iJ57X1uXl5al1rmTjiSee4LFjxwiA7777LrOzswmA69evZ15eXpn7QfEkpPgyzZs3jwA4adIkOp1O9dgA4Lonj8VPNs+fP08AbN++Pd9++231hN7VRrJkogaAvXv3JgAmJyeX2ubo6Gg2b95c/Xzo0CH177S0tFLbde1+Utq6joiI4MGDB/nDDz8QAFu3bk2SXL9+PYGihImk2r7i+3hmZqY6r6ysLLW+ePLtKnv27OG8efM4ceJEt+GjR48mSUZGRhIAFy1aVGLdXGvbtm0EwBdffFEdp6xjjNPpLLEtOhyOUmN85coVvvLKK27DBg4c6LY9KoqiJqKucr2E8NixY3zjjTcIgEuWLCFZlDwfP36cZrOZFy5ccBu/+H52+PBh9e/9+/fTbDa7zTctLY0FBQXct2/fdfc31zHHVe/v78/Zs2eXGC81NVWN44EDBzh37lyGhoby4YcfLnP5ih8fSTItLa3UBPLa9bN//342aNCA8fHxzM/PJwCOGzeOZrO51HVpt9vLXMe7du2iwWBwG3b48GGaTCZaLBZ1uc+dO0eS/PzzzwmAiYmJJeZhsVjKXFaXffv2qdOqqJSUFB49epTfffcdAbgdO1wUReHWrVtvmLAaDIZyX0isSg6Hg0lJSVQUhYWFhSwoKOC4ceOYm5tbYlyLxeJ2rCdLbjtVqaCgwK09pa2D06dPMykp6VY3rUySEN46khBWsZUrV9LLy4sfffQRjx07xjFjxtDf37/cB+w7aWdxOBy0Wq08d+4cjx07xtOnTzMtLY2JiYlcuXIln3/+efbs2bPME+GwsLAy64qX+vXrs3Pnzty+fbuaQJa3hIWF8d///rf6T9d1AuI64btRKf5P8MqVK6Xe1XCVr776qsSw//3vfzecxwsvvKCetFybvLRs2VL923UXskOHDpw8ebI6vFu3bhwxYgTfe+89zpw5k1qtlq1atWJCQgITEhL49NNPMzY2lp6enup32rVr53an1cWVQABgbGysOu6AAQMIgI0bN+Zrr73GhQsXsnv37uq4Xbp0oa+vL0NCQjh37lxmZmaqyeX1yrvvvstnn3221Lp77rmHQNEdl1OnTtHDw4MPPPAAGzdu7DZe7969uWnTJrd17Co9evQoMf2DBw8yIyODWVlZzMjIUE/ory0pKSncsWMHFyxYQAAMDAxU6xYvXsylS5dy9erVnDZtGoGixKRRo0YEwJycHPXuSs+ePd1if2159dVXee7cOW7YsMFt+DPPPKMuQ/E7yEDRRYeLFy/Sbrdz48aN3LRpExVF4YkTJwiAH3/8MZOSkvjtt99eN/7Dhg3jww8/XGK4n59fhfaz4k8ITJw4kd27d2fv3r1psVh48uRJfvbZZ2q9t7c3hw0bVu5pr1y5kvfff7+6Dh588EECYN26dd3Ge//992k2m5mSksLx48dXqP1AUfIJuO/HLVq0YHx8vNt4S5cupdVqZXJyMp966qlSl6V79+6MiopiamoqH3jggTL3he+//77U7RaA2z5evBQff86cOSXqIyMjqdfrmZ2dzfj4eM6ePZuXLl1yuwPsKitWrFD3c9ed+NGjR3P8+PHs3r17mRdoSitPPfUUPT092a5dO7fhP//8M/fv388ZM2aox4ymTZuW+P4777xDp9NJk8nExMREtzZeO25SUhJff/11Pvfcc+zfvz8nTJigXugCUOKOcPPmzZmSksK+ffuqw55//nnGxsaWuCDyj3/8o8T8fv/9d5pMJi5ZsoSDBg1iSEgIGzRowPT0dHbr1o3Tpk2jyWTi3Llz1e/cd9993LRpE1etWkWg6EJmUFCQWt+hQwfu2bOHjz/+OAGwf//+vHjxovp0TePGjdmiRQvu37+f4eHhfOaZZ/jll1/y1KlTHDlypNtd8qCgIKanp6v7WVJSEh0OB8+ePcsNGzZw7969PHHiBLt168aYmBiePHmSu3btUr/vuqgyadIkPvnkk1y3bh23bt3KuLg4dT9r3rw5Y2JimJCQwPXr13P+/PlcvXo177nnnhIXLt5++20uW7aMy5Yt49SpU5mQkMBu3bpx7969TElJ4dmzZ3ny5EkuXLiQ8+bNY1xcHC0Wi3pRpVevXly8eDF/++03Ll26lMOGDWO/fv34+eefc+fOnZwzZw6HDBnC9evX86WXXuLTTz/NkJAQJiQk8OLFi1y4cCE7duzIiRMnMjU1lVu2bOFzzz3H+++/v8QF5uKlT58+HDhwIFetWsXRo0cTKDpfmD9/Pj/55BNu3ryZwcHBnDx5MjMyMvjzzz/z66+/Zv/+/TlixAgmJiZy6tSpnDhxIqdPn86ZM2eyU6dObNq0KTdv3szY2FgOGzaMK1asYEpKCi9dusR9+/Zx8ODBnD17NnNycrhv3z6OGzeOH374IdetW8fvvvuOjzzyiLqNpKWlcd26dVyzZo3a7rVr1/K5554jUPT/JCkpiT/++CPfeustdZyBAwdyzpw5bNOmDbds2XJL7rSX5k46x73TSUJYxe6//371sR6XZs2accKECeX6fnXdWRRFocPhoNPppN1up9lspt1uV+/EFWc0Gnn8+HHu2rWLJ0+e5OrVq9m3b182b96c/fv3Z/v27ZmQkMDc3Fy3hO7s2bNcuXIlZ8+ezWnTprFnz57qyUufPn04aNAgAkV3U3bv3l3qlUCr1co333yTffv2Zf/+/dU7bq52Jicn09PTk8uXL1evLG7bto0DBgxgYmIiv/jiC86YMYP//e9/OWLECM6cObPEfDZu3Mjx48czNjaWAwcO5Lx589irVy/qdDoCoFarpZeXl9vJhasUTzwiIiJYo0YN9XO3bt3Yt29fLl++/LpXew8dOsSBAweyR48e6nddj926iisxDw0NZdu2bdm2bVsOHTqU6enp6nTy8vL4xhtv8JVXXnFL4o4ePcq8vDwWFBSQLLr636xZMzZs2JCPPvood+7cSZvNRrvdzq+//lrdF1atWsUmTZqo0wkMDFRP4q8t1yY0ffv25Z49e657Quvl5VVmXZMmTXjhwgXm5+e7PcJa2jS+/PJLNQZDhgxR62JjY9XksrT1dSuL61HfP1LKuigTExPjdgGjtJKSkkKbzcZ169bd9DLs2bPHbXsobztLK3369GFubu5Nt6ldu3blmm+XLl3cPtevX9/trmfxcvfdd3PFihUcNWpUmdO79oLBjYqvr2+Fxnc9MRETE1PiUfqbKXFxceV+GiUsLIw+Pj6VNu+qKi1btmTHjh2rvB3Fy7XHdyl/vXLtRfBr72LfKtX1HLcqaEjpG7qq2O12+Pn54auvvsLTTz+tDh8zZgxSU1NL7aTBZrO5dVRiMBhQt25d6PV6BAUF3ZJ2q1atApYvv7XzFH8KAij5ZrabnCYJuDqJufp3Zc+jokjCaDJBcTqh1WrhHxAArVYLDYpi4HQ64aHVqp3bGAwGWG02WK1Wte16gwH16tZFUFAQnIoC29V6m80GkPDx9UVoSIg6T4fDgQKrFRqNBufPn0dERASCg4Jgtdngo9O5dXjCq+N7enqq8yOJgquvSnA4HDifkQF/f394eXkhIDAQhYWF0OfnQ1EU1IyIgEGvh+bqMrh6JDWbzdB5e0Mh4XQ6oShK0bIVFMDH1xfnz5/HXU2awNfXF8EhIfD28kJmZiaiatVCod2OoKAgmM1mKIoCjUYDP39/eHp4QKvVQq/Xw+l0wsfHR+2AhiQKHQ74+viAAIwGA2w2G0LDwnAhMxNORUH9evVgtdmQnZ2NsLAw5OTkgFfbFV6zJurUqQPvMjpCclztpEeDoo6HbHY7AgMCQAAmoxH2wkKEh4fj8qVL8PP3R0BAADQAnIqC3Nxc1KhRA/r8fJgtFjgKC6HRaIpeLaHRoNBuh7dOp24XGo0GNrsdTqcTNqsVISEham+4iqLg8uXL0Pn4wMfHB5cuXYKHVgs/f3/4+/khLz8fJpMJTqcTJqMRkVFR8PL0hI+vLwosFoSEhsJsNsNRWAgPDw+YLRYEBQYi9+JFtXdTKgq8vLxw+fJl5Ov1CAoMRGhoqNpzKgHYrFZYCgrg5+cHn2LrICcnB15eXggNDYXNbofD4YC/nx+0Wi3y8vMRGBCAvPx86PPz4eXlBW9v76JObDQaBAQEwPvqOyj9/f1RYLXi+PHjCAsNRXjNmvD08ICiKNDr9fDx9S3q7AlFHfgU72iKAJwOB/R6PYKDg2Gz26Hz9kaB1QpvLy9YCgqKOlAiUVhYCKPJBK1Gg5ycHDRo0AA+Pj6wWCzw8/eH19VldjidyM3Nhd1mQ4HVCioKGjdpAqPRWLT/arUICQ4GUNTBkN5gQI2wMBBFPRnn5OQg78oVNGnSBCazGTabDTXDw4veuakoAAmzxYKQ4GD4+PggX6+Hh4cHDHo9TCYTomvXhr+/f9FxQaOBj04HjUYDp9MJq9WKM2fOwNfXtyguOh28vLxQWFiIzMxM1K5TBwUWC06dOoWoWrXQrGlTaLVaXL5yBQUWC86lp6NZ06YgiYDAQPjodFAUBZkXLsDL0xMFViuioqKQkZGBX3/9FXffdRfy8vLQ7J574OHhAZPRCK2HB4KCgnDu7FmYTCbY7XZ06twZ+vx8aLVaWG02KE4nNFot/P38cPbsWdhsNoTVqAGtRoMreXmoGR6OgIAAaK9O02AwqK9Z8fDwgKeXF/Ly8qDz9saly5eL9vnCQkRGRiIwMBDZ2dkIvHp88vTwgE6ng9VmA0nYrFaEhoZCURTofHxwITMTQUFBsF89lmm0WtQMD8elS5fgVBRQUVBQUIBGjRsXvRrI01NdP76+vrBYLMjOyYH/1dfGRERGwlFYCLPFAp23Nzy9vKDRaGAtKEBYWBj8/PxAAOnp6bAWFKBGeDg0V/8/2ex2aDUa+AcEoLCwEIGBgQCunq9dfV0Nr+77TocDNpsNZrMZvlf3PbPFou6zBQUFCA4ORlZWFoCiDth8fX3V46PRaETt2rWL9mUSZrMZmRcuICw0FBqNBpGRkTCZzcjMzITFbEZERAR8/fwQGBiI/Lw8FBQUQCFRaLejdu3a0BsM8PX1hZ+fH7y9vFBgtcJsMqHQ4UBQUBD8/fxgs9lwJS8PgQEBCAoKgs1mg8lkQmFhIUgiKioKGo0GJGEymeDn7w+L1YrArVtL/6f6JzMYDAgODq6ac9xqRhLCKnThwgXUrl0bKSkpag+TQFEvlJ9++ilOnDhR4jtTpkzBP//5zxLDJSEUQgghhBCVSqsF1q6tkllLQnjryIvpbwPXdrXPq92Bl2bixImIj49XP7vuEFaJuLiiIoQQQgghhLgjSUJYhcLDw+Hh4YHs7Gy34bm5uYiMjCz1OzqdTn0sSwghhBBCCCFuhryYvgp5e3vj3nvvRXJystvw5ORkt0dIhRBCCCGEEOLPIHcIq1h8fDwGDRqEDh06oHPnzliyZAnS09MxfPjwqm6aEEIIIYQQ4i9OEsIqFhcXh8uXL2Pq1KnIyspCy5YtkZSUpPbmJYQQQgghhBB/Full9A4nPTAJIYQQQoi/GjnHvXXkN4RCCCGEEEIIUU1JQiiEEEIIIYQQ1ZQkhEIIIYQQQghRTUlCKIQQQgghhBDVlCSEQgghhBBCCFFNSUIohBBCCCGEENWUvIfwDud6a4jBYKjilgghhBBCCFE5XOe28oa8P58khHc4o9EIAKhbt24Vt0QIIYQQQojKZTQaERwcXNXN+EuTF9Pf4RRFwYULFxAYGAiNRlPVzakwg8GAunXrIiMjQ146ehMkjpVD4lh5JJaVQ+JYOSSOlUdiWTkkjjdGEkajEdHR0dBq5Vdufya5Q3iH02q1qFOnTlU346YFBQXJAbESSBwrh8Sx8kgsK4fEsXJIHCuPxLJySByvT+4M3hqSbgshhBBCCCFENSUJoRBCCCGEEEJUU5IQiiql0+kwefJk6HS6qm7KHU3iWDkkjpVHYlk5JI6VQ+JYeSSWlUPiKG4n0qmMEEIIIYQQQlRTcodQCCGEEEIIIaopSQiFEEIIIYQQopqShFAIIYQQQgghqilJCIUQQgghhBCimpKEUPzpdu7ciSeeeALR0dHQaDRYu3atWz1JTJkyBdHR0fD19UW3bt1w9OjRqmnsbWzGjBm47777EBgYiIiICDz11FM4ceKE2zgSy/JZtGgRWrdurb4QuHPnzti0aZNaL3H8Y2bMmAGNRoOxY8eqwySWNzZlyhRoNBq3EhUVpdZLDCsmMzMTAwcORI0aNeDn54e2bdvi0KFDar3E88YaNGhQYpvUaDQYOXIkAIlheTkcDiQkJKBhw4bw9fVFo0aNMHXqVCiKoo4jsRS3A0kIxZ/ObDajTZs2WLhwYan1s2bNwpw5c7Bw4UIcOHAAUVFR6NGjB4xG4y1u6e1tx44dGDlyJPbu3Yvk5GQ4HA489thjMJvN6jgSy/KpU6cOZs6ciYMHD+LgwYN45JFH8OSTT6r/hCWOFXfgwAEsWbIErVu3dhsusSyfFi1aICsrSy1HjhxR6ySG5ZeXl4cuXbrAy8sLmzZtwrFjxzB79myEhISo40g8b+zAgQNu22NycjIAoF+/fgAkhuX13nvvYfHixVi4cCGOHz+OWbNm4f3338cHH3ygjiOxFLcFCnELAeA333yjflYUhVFRUZw5c6Y6zGq1Mjg4mIsXL66CFt45cnNzCYA7duwgKbG8WaGhofz4448ljn+A0WjkXXfdxeTkZD700EMcM2YMSdkmy2vy5Mls06ZNqXUSw4oZP348u3btWma9xPOPGTNmDBs3bkxFUSSGFdCrVy8OHTrUbVjfvn05cOBAkrI9ituH3CEUVerMmTPIzs7GY489pg7T6XR46KGHsGfPnips2e1Pr9cDAMLCwgBILP8op9OJlStXwmw2o3PnzhLHP2DkyJHo1asXHn30UbfhEsvyO3XqFKKjo9GwYUP0798fp0+fBiAxrKj169ejQ4cO6NevHyIiItCuXTt89NFHar3Es+LsdjsSExMxdOhQaDQaiWEFdO3aFd9//z1OnjwJAPj555+xe/du/O1vfwMg26O4fXhWdQNE9ZadnQ0AiIyMdBseGRmJc+fOVUWT7ggkER8fj65du6Jly5YAJJYVdeTIEXTu3BlWqxUBAQH45ptv0Lx5c/WfsMSxfFauXImffvoJBw4cKFEn22T5dOzYEZ999hnuvvtu5OTkYNq0aYiJicHRo0clhhV0+vRpLFq0CPHx8Zg0aRL279+P1157DTqdDoMHD5Z4/gFr165Ffn4+XnjhBQCyX1fE+PHjodfr0axZM3h4eMDpdGL69OkYMGAAAImluH1IQihuCxqNxu0zyRLDxP8bNWoU0tLSsHv37hJ1Esvyadq0KVJTU5Gfn4/Vq1djyJAh2LFjh1ovcbyxjIwMjBkzBlu2bIGPj0+Z40ksry82Nlb9u1WrVujcuTMaN26MTz/9FJ06dQIgMSwvRVHQoUMHvPvuuwCAdu3a4ejRo1i0aBEGDx6sjifxLL9PPvkEsbGxiI6OdhsuMbyxVatWITExEStWrECLFi2QmpqKsWPHIjo6GkOGDFHHk1iKqiaPjIoq5epJz3WVzCU3N7fEFTNRZPTo0Vi/fj22b9+OOnXqqMMllhXj7e2NJk2aoEOHDpgxYwbatGmD+fPnSxwr4NChQ8jNzcW9994LT09PeHp6YseOHViwYAE8PT3VeEksK8bf3x+tWrXCqVOnZHusoFq1aqF58+Zuw+655x6kp6cDkONkRZ07dw5bt27Fyy+/rA6TGJbfm2++iQkTJqB///5o1aoVBg0ahNdffx0zZswAILEUtw9JCEWVatiwIaKiotQezICi3yvs2LEDMTExVdiy2w9JjBo1CmvWrMG2bdvQsGFDt3qJ5c0hCZvNJnGsgO7du+PIkSNITU1VS4cOHfD8888jNTUVjRo1klj+ATabDcePH0etWrVke6ygLl26lHgdz8mTJ1G/fn0AcpysqGXLliEiIgK9evVSh0kMy89isUCrdT/V9vDwUF87IbEUt40q6sxGVCNGo5GHDx/m4cOHCYBz5szh4cOHee7cOZLkzJkzGRwczDVr1vDIkSMcMGAAa9WqRYPBUMUtv728+uqrDA4O5g8//MCsrCy1WCwWdRyJZflMnDiRO3fu5JkzZ5iWlsZJkyZRq9Vyy5YtJCWON6N4L6OkxLI83njjDf7www88ffo09+7dy969ezMwMJBnz54lKTGsiP3799PT05PTp0/nqVOnuHz5cvr5+TExMVEdR+JZPk6nk/Xq1eP48eNL1EkMy2fIkCGsXbs2N27cyDNnznDNmjUMDw/nuHHj1HEkluJ2IAmh+NNt376dAEqUIUOGkCzqdnny5MmMioqiTqfjgw8+yCNHjlRto29DpcUQAJctW6aOI7Esn6FDh7J+/fr09vZmzZo12b17dzUZJCWON+PahFBieWNxcXGsVasWvby8GB0dzb59+/Lo0aNqvcSwYjZs2MCWLVtSp9OxWbNmXLJkiVu9xLN8Nm/eTAA8ceJEiTqJYfkYDAaOGTOG9erVo4+PDxs1asS33nqLNptNHUdiKW4HGpKskluTQgghhBBCCCGqlPyGUAghhBBCCCGqKUkIhRBCCCGEEKKakoRQCCGEEEIIIaopSQiFEEIIIYQQopqShFAIIYQQQgghqilJCIUQQgghhBCimpKEUAghhBBCCCGqKUkIhRBCCCGEEKKakoRQCCGEEEIIIaopSQiFEEIIIYQQopqShFAIIYQQQgghqilJCIUQQgghhBCimpKEUAghhBBCCCGqKUkIhRBCCCGEEKKakoRQCCGEEEIIIaopSQiFEEIIIYQQopqShFAIIYQQQgghqilJCIUQQgghhBCimpKEUAghhBBCCCGqKUkIhRBCCCGEEKKakoRQCCGEEEIIIaopSQiFEEIIIYQQopr6P8g1Vy6KrQ4QAAAAAElFTkSuQmCC", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "uc = ex.GetSolutions()[0][0].DirectUnitCell()\n", "c = pyobjcryst.crystal.Crystal(uc[0], uc[1], uc[2], uc[3], uc[4], uc[5], \"P1\")\n", "pdiff = p.AddPowderPatternDiffraction(c)\n", "\n", "# Plot with indexing in new figure\n", - "p.plot(diff=False,fig=None,hkl=True)" + "p.plot(diff=False,fig=None,hkl=True)\n" ] }, { @@ -244,47 +135,9 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "No background, adding one automatically\n", - "Selected PowderPatternDiffraction: with Crystal: \n", - "Profile fitting finished.\n", - "Remember to use SetExtractionMode(False) on the PowderPatternDiffraction object\n", - "to disable profile fitting and optimise the structure.\n", - "Fit result: Rw= 5.45% Chi2= 33309.27 GoF= 4.33 LLK= 6248.657\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "ea1a1633984a452693bb538cd640b799", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADFI0lEQVR4nOzde3zPdf/H8cfOB7avsWYWmXI+Rc5UzGHIENUShotUFru6CB2QcoVyLJWruvpRTCtKJ8UcQg5ry6FGJsXClaHs5LDZ4fP7Y9unfXeyzRjb8367fW+X7+f7/rw/789ndH1fe7/fr5eNYRgGIiIiIiIiUunYlvcAREREREREpHwoIBQREREREamkFBCKiIiIiIhUUgoIRUREREREKikFhCJSKsOGDSvvIYiIiIjIVbIv7wGIyI1typQp+Y4ZhsGuXbvKYTQiIiIiUpYUEIpIkUJDQ1m1alW+499++205jEZEREREypICQhEp0ujRo2nSpAleXl5Wx0eMGFFOIxIRERGRsmKjwvQiIiIiIiKVk5LKiIiIiIiIVFIKCEVERERERCopBYQiUmL79u0r7yGIiIiISBlQUhkRKdJbb71l9d4wDJYuXUpwcDDBwcHlNCoRERERKQuaIRSRIr355pt89dVXuLq6UqVKFapWrYqtrS1Vq1Yt76GJiIiIyFVSQCgiRTpw4ADDhw/n888/x9HRkaCgIGrXrq2yEyIiIiIVgMpOiEixZGZmEhoaykcffcSZM2eIjIws7yGJiIiIyFVSQCgiJZKZmUlcXBw+Pj7lPRQRERERuUoKCEVERERERCop7SEUERERERGppBQQikipxMXFlfcQREREROQqKSAUkVJRllERERGRm58K04tIkdq3b5/vmGEYHDlypBxGIyIiIiJlSQGhiBQpOTmZ6Oho7O2t/3PRq1evchqRiIiIiJQVLRkVkSLNnj2b5OTkfMenTZtWDqMRERERkbKkshMiUiIxMTE0bty4vIchIiIiImVAM4QiUiLBwcHlPQQRERERKSMKCEWkRBwcHMp7CCIiIiJSRrRkVEREREREpJLSDKGIiIiIiEglpYBQRERERESkklJAKCIiIiIiUkkpIBQREREREamkFBCKiIiIiIhUUgoIRaRUhg0bVt5DEBEREZGrZF/eAxCRG9uUKVPyHTMMg127dpXDaERERESkLCkgFJEihYaGsmrVqnzHv/3223IYjYiIiIiUJQWEIlKk0aNH06RJE7y8vKyOjxgxopxGJCIiIiJlxcYwDKO8ByEiIiIiIiLXn5LKiIiIiIiIVFIKCEVERERERCopBYQiUmL79u0r7yGIiIiISBlQUhkRKdJbb71l9d4wDJYuXUpwcDDBwcHlNCoRERERKQuaIRSRIr355pt89dVXuLq6UqVKFapWrYqtrS1Vq1Yt76GJiIiIyFVSQCgiRTpw4ADDhw/n888/x9HRkaCgIGrXrq2yEyIiIiIVgMpOiEixZGZmEhoaykcffcSZM2eIjIws7yGJiIiIyFVSQCgiJXLu3DlSUlLw8fEp76GIiIiIyFVSQHiTy8zM5I8//sDNzQ0bG5vyHo5UAgEBAXz11VflPQwRERGpwAzDIDk5GR8fH2xttcvtWlJAeJM7efIkderUKe9hiIiIiIiUuRMnTlC7du3yHkaFprITNzk3Nzcg6x+Lu7t7OY9GKoP4+Hg8PDzKexgiIiJSgSUlJVGnTh3zu65cOwoIb3I5y0Td3d1xd3dn8eLFPP300wwfPpzly5dTrVo1DMMgPT2dQYMGsXLlSvPcP/74g4YNG3LhwgU+/fRTBg0aBECNGjVISUnhwoULdOvWjYyMDLZu3cp3333HV199xfz584s9vgYNGnDrrbeSmppK586dWbBgQYHt4uLiWLp0KS+++CLdunXjq6++KtOyBv/5z39wdnZm1KhRBX4+YsQItmzZwsmTJ8vsmhWVfvEgIiIi14u2RF17WpBbAbVq1Yrly5eb7w8fPsyJEycICwvj4sWL5vHq1asTFRXFHXfcYXX+X3/9ZfX+m2++wc7OrlRjsVgsbN26ld27d7N//37+97//FdjO29ubF198sVTXKAsffPAB3t7e5XZ9EREREZHyoICwkqhevTouLi4cPXrUPObs7EyTJk2uqt/169dzzz330LlzZz788MNC22VkZJCWloazszOnT5+mR48e3HvvvTz44INkZGQQGxvLgw8+WOj53bp145///CcdOnTg5ZdfJiQkhI4dOzJv3jwAfvrpJ7p06ULnzp3597//DcDx48e5++67ue+++9i+fbvZ1+zZs+natSv33nsv0dHRV3X/lVlcXFx5D0FERERErpICwkri8OHDpKSk0Lhx4zLrMzMzk5deeonNmzezY8cO/vOf/5CRkWHVJjExkW7dutG0aVPq1q1LjRo18PDwYMOGDWzfvp3bbruNLVu2FOt6gYGBRERE8O677zJ69Gh27txpLoF97rnn+O9//8vOnTvZvn07sbGxvPrqq8yYMYOvv/7aXG4QHR3N4cOH2bZtGx9//DEzZswos+dR2agwvYiIiMjNT3sIK4FGjRphY2PDM888g7192f3I//zzT44cOYK/v7/5/uzZs1ZLL3OWjBqGQWBgIN999x0NGjTgiSeeID4+nlOnTnHnnXfSoEGDK16vZcuW2NjY4O3tzZ133omNjQ0ODg4AnD592pztvOuuu/jtt9/49ddfadOmDQDt27cH4NChQ+zatYtu3boBlHopbGWS8+xyMwyDI0eOlMNoREREiiczM5PLly+X9zCkEA4ODvoedoNQQFgJHD58+Jrsj/P09KRJkyZs3LgRBwcH0tLSzAAtLxsbGywWC+fOnSM0NBR/f3+Cg4OZOHEixa18kntTcd4NxjVr1uTQoUM0btyYvXv38sQTT1C/fn327dtHz549+eGHH+jRoweNGzema9eu/Pe//wUgLS2tlHdfeSQnJxMdHZ3vlwm9evUqpxGJiIgU7fLlyxw7dozMzMzyHooUoVq1anh7eytxTDmrUAHh9u3bmTdvHnv27OHUqVOsXbuW+++/3/y8sL9sr776KpMnTway9qpt27bN6vOHH36YsLAw8318fDwhISF88cUXAAwYMIAlS5ZQrVo1s83x48d58skn2bJlCy4uLgwdOpT58+fj6OhotomOjmb8+PFERkZSvXp1Hn/8caZPn35d/1F4eXnx119/MWLECB5++GEzUCrM6tWr2b9/P5C1ZPD555+nZ8+e2Nracsstt/Dxxx9btc9ZMpqRkUHNmjXp27cvP//8M0FBQWzYsAFXV1datmx51ffx8ssv8+ijj2IYBv369cPX15cpU6aYzz3nZ9OyZUsaNGhA165dsbW1pVevXjz33HNXff2KbPbs2SQnJ+crNTFt2rRyGpGIiEjhDMPg1KlT2NnZUadOHRU1vwEZhsHFixc5c+YMALVq1SrnEVVuFaow/TfffMPOnTu56667eOCBB/IFhHmTYHzzzTeMGTOGX3/9ldtvvx3ICggbNmzISy+9ZLZzcXHBYrGY7/v27cvJkyd55513AHjsscfw9fXlyy+/BLISqLRq1YpbbrmFBQsW8NdffzFy5EgGDx7MkiVLgKzaKg0bNsTPz4/nn3+eX375hVGjRvHCCy8wadKkYt9zUlISFouFxMRE3N3d+e9//8uECRN4+OGHrTKNlkSNGjVwcHAgLi6OIUOGcOrUKbZs2VKhp/VHjBhBTEwMkZGR5T2UG15MTEyZ7kUVEREpS2lpafz666/4+PhYfX+TG89ff/3FmTNnaNiwYb7vmXm/48q1U6ECwtxsbGzyBYR53X///SQnJ7N582bzWLdu3WjVqhWLFy8u8JxDhw7RtGlTIiIi6NChAwARERF06tSJmJgYGjVqxDfffENAQAAnTpzAx8cHgLCwMEaNGsWZM2dwd3dn6dKlPPvss5w+fRonJycA5s6dy5IlSzh58mSxZwn1j0Wut+7duxc7EZCIiMj1lpKSwrFjx/D19cXFxaW8hyNFuHTpErGxsdSrVw9nZ2erz/Qd9/qptHPop0+fZt26dYwZMybfZ6GhoXh6etKsWTOefvppkpOTzc92796NxWIxg0GAjh07YrFY2LVrl9mmefPmZjAI0Lt3b1JTU9mzZ4/ZpmvXrmYwmNPmjz/+IDY2ttBxp6amkpSUZPUSuZ4K2ycqIiJyI9G+tBuffkY3hgq1h7Ak3n//fdzc3Bg8eLDV8WHDhlGvXj28vb05cOAAzz77LD/++CMbN24Espadenl55evPy8vLXJIaFxdHzZo1rT738PDA0dHRqo2vr69Vm5xz4uLiqFevXoHjnjNnTrkWcBfZsGFDeQ9BRERERMpIpZ0h/L//+z+GDRuWb3p67Nix9OzZk+bNmzNkyBDWrFnDpk2b2Lt3r9mmoN9mGIZRZBbM4rTJWb1b1G9Lnn32WRITE83XiRMnrnCnImXszz9h8mRQ5jYREZHrZuvWrdjY2JCQkFDeQ5EKplIGhN999x2HDx/m0UcfvWLbu+66CwcHB7Pmmre3N6dPn87X7uzZs+YMn7e3d74ENvHx8aSlpRXZJifTUt7ZxdycnJxwd3e3eolcV88/D/Pnw4ED5T0SEREREblKlTIgfO+992jTpg133nnnFdsePHiQtLQ0Mx1up06dSExMtMpG+f3335OYmEjnzp3NNgcOHODUqVNmm/DwcJycnMxC6Z06dWL79u1WBVPDw8Px8fHJt5RURERERETkWqhQAeH58+fZv3+/WSfv2LFj7N+/n+PHj5ttkpKSWL16dYGzg7/99hsvvfQSP/zwA7GxsXz99dc89NBDtG7dmi5dugDQpEkT+vTpw9ixY4mIiCAiIoKxY8cSEBBAo0aNAPD396dp06YEBQWxb98+Nm/ezNNPP83YsWPNGb2hQ4fi5OTEqFGjOHDgAGvXrmX27NlMnDhRG2xFREREKqHU1FRCQkLw8vLC2dmZu+++m6ioKKs2O3fu5M4778TZ2ZkOHToQHR1tfvb777/Tv39/PDw8qFKlCs2aNePrr7++3rchN5kKFRD+8MMPtG7dmtatWwMwceJEWrduzYwZM8w2YWFhGIbBI488ku98R0dHNm/eTO/evWnUqBEhISH4+/uzadMmq9oooaGhtGjRAn9/f/z9/WnZsiUrVqwwP7ezs2PdunU4OzvTpUsXAgMDuf/++5k/f77ZxmKxsHHjRk6ePEnbtm0JDg5m4sSJTJw48Vo8GhERERG5wU2ZMoVPPvmE999/n71791K/fn169+7NuXPnzDaTJ09m/vz5REVF4eXlxYABA0hLSwPgySefJDU1le3btxMdHc0rr7xC1apVy+t25CZRYesQVhaq0SLX3RNPwNtvw48/QsuW5T0aERERKzl1CHPXtrt48SIxMTHXfSyNGzfG1dW1WG0vXLiAh4cHy5cvZ+jQoQCkpaXh6+vLU089Rbt27fDz8yMsLIyHH34YgHPnzlG7dm2WL19OYGAgLVu25IEHHuCFF164ZvdUlgr6WeXQd9zrp9KWnRARERGRyiEmJsbM43A97dmzh7vuuqtYbX/77TfS0tLMbUqQVfu3ffv2HDp0iHbt2gFZeShyVK9enUaNGnHo0CEAQkJCGDduHOHh4fTs2ZMHHniAlvrlrVyBAkIRERERqdAaN27Mnj17yuW6xVVY+bG8ZcsKkvP5o48+Su/evVm3bh3h4eHMmTOHBQsWMGHChBKOXCoTBYQiUjpabS4iIjcJV1fXYs/UlZf69evj6OjIjh07rJaM/vDDDzz11FNmu4iICG677TYgq6zZL7/8YhV41qlThyeeeIInnniCZ599lnfffVcBoRRJAaGIlIhhGCgProiISNmqUqUK48aNY/LkyVSvXp3bbruNV199lYsXLzJmzBh+/PFHAF566SVq1KhBzZo1ef755/H09OT+++8H4KmnnqJv3740bNiQ+Ph4tmzZQpMmTcrxruRmoIBQRErk50OHaAacPn2amuU9GBERkQpk7ty5ZGZmEhQURHJyMm3btmXDhg14eHhYtfnnP//JkSNHuPPOO/niiy9wdHQEICMjgyeffJKTJ0/i7u5Onz59WLRoUXndjtwklGX0JqcMTHK9bWvalK6HDnFk9WoaPPhgeQ9HRETESlGZK+XGoiyjN4YKVYdQRK4f/S5JRERE5OangFBERERERKSSUkAoIiIiIiJSSSkgFBERERERqaQUEIpI6WgPoYiIiMhNTwGhiJSMjaoQioiIiFQUCghFREREREQqKQWEIlIqKjshIiIicvNTQCgiIiIicpObOXMmrVq1Ku9hyE1IAaGIiIiIiEglpYBQREpFqWVEREREbn4KCEVEREREbgCZmZm88sor1K9fHycnJ2677TZefvllAKZOnUrDhg1xdXXl9ttvZ/r06aSlpRXZ3//93//RrFkznJycqFWrFuPHj78etyE3GfvyHoCIiIiIiMCzzz7Lu+++y6JFi7j77rs5deoUMTExALi5ubF8+XJ8fHyIjo5m7NixuLm5MWXKlAL7Wrp0KRMnTmTu3Ln07duXxMREdu7ceT1vR24SCghFRERERMpZcnIyr732Gm+88QYjR44E4I477uDuu+8GYNq0aWZbX19fJk2axEcffVRoQPjvf/+bSZMm8c9//tM81q5du2t4B3KzUkAoIiIiIhXbxYuQPdN2XTVuDK6uxWp66NAhUlNT6dGjR4Gfr1mzhsWLF/Prr79y/vx50tPTcXd3L7DtmTNn+OOPPwrtSyQ3BYQiUjI2WelkVIdQRERuGjEx0KbN9b/unj1w113Fauri4lLoZxEREQwZMoQXX3yR3r17Y7FYCAsLY8GCBSXuSyQvBYQiIiIiUrE1bpwVnJXHdYupQYMGuLi4sHnzZh599FGrz3bu3EndunV5/vnnzWO///57oX25ubnh6+vL5s2b8fPzK/m4pVJRQCgiIiIiFZura7Fn6sqLs7MzU6dOZcqUKTg6OtKlSxfOnj3LwYMHqV+/PsePHycsLIx27dqxbt061q5dW2R/M2fO5IknnsDLy4u+ffuSnJzMzp07mTBhwnW6I7lZKCAUkdLRklEREZEyNX36dOzt7ZkxYwZ//PEHtWrV4oknnmDMmDH861//Yvz48aSmptKvXz+mT5/OzJkzC+1r5MiRpKSksGjRIp5++mk8PT158MEHr9/NyE3DxtBGoJtaUlISFouFxMTEQjcWi5Slbc2b0/XgQQ6vWkWjRx4p7+GIiIhYSUlJ4dixY9SrVw9nZ+fyHo4Uoaiflb7jXj8VqjD99u3b6d+/Pz4+PtjY2PDZZ59ZfT5q1ChsbGysXh07drRqk5qayoQJE/D09KRKlSoMGDCAkydPWrWJj48nKCgIi8WCxWIhKCiIhIQEqzbHjx+nf//+VKlSBU9PT0JCQrh8+bJVm+joaLp27YqLiwu33norL730khJ1iIiIiIjIdVOhAsILFy5w55138sYbbxTapk+fPpw6dcp8ff3111afP/XUU6xdu5awsDB27NjB+fPnCQgIICMjw2wzdOhQ9u/fz/r161m/fj379+8nKCjI/DwjI4N+/fpx4cIFduzYQVhYGJ988gmTJk0y2yQlJdGrVy98fHyIiopiyZIlzJ8/n4ULF5bhExEpe0Z2llERERERuflVqD2Effv2pW/fvkW2cXJywtvbu8DPEhMTee+991ixYgU9e/YEYOXKldSpU4dNmzbRu3dvDh06xPr164mIiKBDhw4AvPvuu3Tq1InDhw/TqFEjwsPD+fnnnzlx4gQ+Pj4ALFiwgFGjRvHyyy/j7u5OaGgoKSkpLF++HCcnJ5o3b84vv/zCwoULmThxIjb60i0iIiIiItdYhZohLI6tW7fi5eVFw4YNGTt2LGfOnDE/27NnD2lpafj7+5vHfHx8aN68Obt27QJg9+7dWCwWMxgE6NixIxaLxapN8+bNzWAQoHfv3qSmprInO+Xx7t276dq1K05OTlZt/vjjD2JjYwsdf2pqKklJSVYvkfKg5c0iIiIiN79KFRD27duX0NBQtmzZwoIFC4iKiqJ79+6kpqYCEBcXh6OjIx4eHlbn1axZk7i4OLONl5dXvr69vLys2tSsWdPqcw8PDxwdHYtsk/M+p01B5syZY+5dtFgs1KlTpySPQERERERExFShloxeycMPP2z+uXnz5rRt25a6deuybt06Bg8eXOh5hmFYLeEsaDlnWbTJmXEparnos88+y8SJE833SUlJCgpFRERERKRUKtUMYV61atWibt26HDlyBABvb28uX75MfHy8VbszZ86Ys3fe3t6cPn06X19nz561apN3li8+Pp60tLQi2+QsX807c5ibk5MT7u7uVi+RcqEloyIiIiI3vUodEP7111+cOHGCWrVqAdCmTRscHBzYuHGj2ebUqVMcOHCAzp07A9CpUycSExOJjIw023z//fckJiZatTlw4ACnTp0y24SHh+Pk5ESbNm3MNtu3b7cqRREeHo6Pjw++vr7X7J5FRERERERyVKiA8Pz58+zfv5/9+/cDcOzYMfbv38/x48c5f/48Tz/9NLt37yY2NpatW7fSv39/PD09GTRoEAAWi4UxY8YwadIkNm/ezL59+xg+fDgtWrQws442adKEPn36MHbsWCIiIoiIiGDs2LEEBATQqFEjAPz9/WnatClBQUHs27ePzZs38/TTTzN27FhzRm/o0KE4OTkxatQoDhw4wNq1a5k9e7YyjMoNL+dvp+YHRURERG5+FSog/OGHH2jdujWtW7cGYOLEibRu3ZoZM2ZgZ2dHdHQ0AwcOpGHDhowcOZKGDRuye/du3NzczD4WLVrE/fffT2BgIF26dMHV1ZUvv/wSOzs7s01oaCgtWrTA398ff39/WrZsyYoVK8zP7ezsWLduHc7OznTp0oXAwEDuv/9+5s+fb7axWCxs3LiRkydP0rZtW4KDg5k4caLV/kCRG5HqEIqIiNx4Zs6cSatWra7pNZYvX061atWu6TXk+qtQSWW6detWZCr8DRs2XLEPZ2dnlixZwpIlSwptU716dVauXFlkP7fddhtfffVVkW1atGjB9u3brzgmERERERGRa6FCzRCKiIiIiIhI8SkgFJESyVkwaqMsoyIiImUqMzOTV155hfr16+Pk5MRtt93Gyy+/DMDUqVNp2LAhrq6u3H777UyfPp20tLQi+/u///s/mjVrhpOTE7Vq1WL8+PFFto+Pj2fEiBF4eHjg6upK3759zWz8uX322Wc0bNgQZ2dnevXqxYkTJ8zPfvzxR/z8/HBzc8Pd3Z02bdrwww8/lOJpyPWigFBERERE5Abw7LPP8sorrzB9+nR+/vlnVq1aZZYjc3NzY/ny5fz888+89tprvPvuuyxatKjQvpYuXcqTTz7JY489RnR0NF988QX169cv8vqjRo3ihx9+4IsvvmD37t0YhsF9991nFXhevHiRl19+mffff5+dO3eSlJTEkCFDzM+HDRtG7dq1iYqKYs+ePTzzzDM4ODhc5ZORa6lC7SEUEREREbkZJScn89prr/HGG28wcuRIAO644w7uvvtuAKZNm2a29fX1ZdKkSXz00UdMmTKlwP7+/e9/M2nSJP75z3+ax9q1a1fo9Y8cOcIXX3zBzp07zVJqoaGh1KlTh88++4yHHnoIgLS0NN544w06dOgAwPvvv0+TJk2IjIykffv2HD9+nMmTJ9O4cWMAGjRoUNpHIteJZghFRERERMrZoUOHSE1NpUePHgV+vmbNGu6++268vb2pWrUq06dP5/jx4wW2PXPmDH/88UehfT3xxBNUrVrVfOVc397e3gz0AGrUqEGjRo04dOiQecze3p62bdua7xs3bky1atXMNhMnTuTRRx+lZ8+ezJ07l99++61kD0KuO80QikipFJXRV0RE5EYz7qtx/C/5f9ftere63crSgKXFbu/i4lLoZxEREQwZMoQXX3yR3r17Y7FYCAsLY8GCBSXuC+Cll17i6aeftjpW2P+vG4aRr0Z2QTWzc47NnDmToUOHsm7dOr755hteeOEFwsLCzLrfcuNRQCgiJaIwUEREbkYlCc7KQ4MGDXBxcWHz5s08+uijVp/t3LmTunXr8vzzz5vHfv/990L7cnNzw9fXl82bN+Pn55fvcy8vL7y8vKyONW3alPT0dL7//ntzyehff/3FL7/8QpMmTcx26enp/PDDD7Rv3x6Aw4cPk5CQYC4RBWjYsCENGzbkX//6F4888gjLli1TQHgDU0AoIiIiIlLOnJ2dmTp1KlOmTMHR0ZEuXbpw9uxZDh48SP369Tl+/DhhYWG0a9eOdevWsXbt2iL7mzlzJk888QReXl707duX5ORkdu7cyYQJEwps36BBAwYOHMjYsWN5++23cXNz45lnnuHWW29l4MCBZjsHBwcmTJjA66+/joODA+PHj6djx460b9+eS5cuMXnyZB588EHq1avHyZMniYqK4oEHHijTZyVlS3sIRURERERuANOnT2fSpEnMmDGDJk2a8PDDD3PmzBkGDhzIv/71L8aPH0+rVq3YtWsX06dPL7KvkSNHsnjxYt566y2aNWtGQEBAgSUkclu2bBlt2rQhICCATp06YRgGX3/9tVWWUFdXV6ZOncrQoUPp1KkTLi4uhIWFAWBnZ8dff/3FiBEjaNiwIYGBgfTt25cXX3zx6h+OXDM2hjYC3dSSkpKwWCwkJibi7u5e3sORSmBry5Z0i47m0Pvv02TEiPIejoiIiJWUlBSOHTtGvXr1cHZ2Lu/hSBGK+lnpO+71oxlCESmZAjaSi4iIiMjNSQGhiIiIiIhIJaWAUEREREREpJJSQCgipaLtxyIiIiI3PwWEIiIiIiIilZQCQhERERGpcLSS5cann9GNQQGhiJSKco2KiMiNyM7ODoDLly+X80jkSi5evAhgVedQrj/78h6AiIiIiEhZsbe3x9XVlbNnz+Lg4ICtreY/bjSGYXDx4kXOnDlDtWrVzCBeyocCQhEpmew6hFrmISIiNyIbGxtq1arFsWPH+P3338t7OFKEatWq4e3tXd7DqPQUEIqIiIhIheLo6EiDBg20bPQG5uDgoJnBG4QCQhEpHc0QiojIDczW1hZnZ+fyHobIDU+LqkVERERERCopBYQiUjqaIRQRERG56SkgFBERERERqaQUEIpIyWRnGdUMoYiIiMjNTwGhiIiIiIhIJVWhAsLt27fTv39/fHx8sLGx4bPPPjM/S0tLY+rUqbRo0YIqVarg4+PDiBEj+OOPP6z66NatGzY2NlavIUOGWLWJj48nKCgIi8WCxWIhKCiIhIQEqzbHjx+nf//+VKlSBU9PT0JCQvKlPo6OjqZr1664uLhw66238tJLL6m2m9w89HdVRERE5KZXoQLCCxcucOedd/LGG2/k++zixYvs3buX6dOns3fvXj799FN++eUXBgwYkK/t2LFjOXXqlPl6++23rT4fOnQo+/fvZ/369axfv579+/cTFBRkfp6RkUG/fv24cOECO3bsICwsjE8++YRJkyaZbZKSkujVqxc+Pj5ERUWxZMkS5s+fz8KFC8vwiYiIiIiIiBSuQtUh7Nu3L3379i3wM4vFwsaNG62OLVmyhPbt23P8+HFuu+0287irqyve3t4F9nPo0CHWr19PREQEHTp0AODdd9+lU6dOHD58mEaNGhEeHs7PP//MiRMn8PHxAWDBggWMGjWKl19+GXd3d0JDQ0lJSWH58uU4OTnRvHlzfvnlFxYuXMjEiROxydmnJXKDMjIzy3sIIiIiInKVKtQMYUklJiZiY2NDtWrVrI6Hhobi6elJs2bNePrpp0lOTjY/2717NxaLxQwGATp27IjFYmHXrl1mm+bNm5vBIEDv3r1JTU1lz549ZpuuXbvi5ORk1eaPP/4gNjb2GtytiIiIiIiItQo1Q1gSKSkpPPPMMwwdOhR3d3fz+LBhw6hXrx7e3t4cOHCAZ599lh9//NGcXYyLi8PLyytff15eXsTFxZltatasafW5h4cHjo6OVm18fX2t2uScExcXR7169Qocd2pqKqmpqeb7pKSkEt65SBnRHkIRERGRm16lDAjT0tIYMmQImZmZvPXWW1afjR071vxz8+bNadCgAW3btmXv3r3cddddAAUu5zQMw+p4adrkJJQparnonDlzePHFF4u6PRERERERkWKpdEtG09LSCAwM5NixY2zcuNFqdrAgd911Fw4ODhw5cgQAb29vTp8+na/d2bNnzRk+b29vcyYwR3x8PGlpaUW2OXPmDEC+2cXcnn32WRITE83XiRMnrnDHIteG9hCKiIiI3PwqVUCYEwweOXKETZs2UaNGjSuec/DgQdLS0qhVqxYAnTp1IjExkcjISLPN999/T2JiIp07dzbbHDhwgFOnTpltwsPDcXJyok2bNmab7du3W5WiCA8Px8fHJ99S0tycnJxwd3e3eomIiIiIiJRGhQoIz58/z/79+9m/fz8Ax44dY//+/Rw/fpz09HQefPBBfvjhB0JDQ8nIyCAuLo64uDgzKPvtt9946aWX+OGHH4iNjeXrr7/moYceonXr1nTp0gWAJk2a0KdPH8aOHUtERAQRERGMHTuWgIAAGjVqBIC/vz9NmzYlKCiIffv2sXnzZp5++mnGjh1rBnBDhw7FycmJUaNGceDAAdauXcvs2bOVYVRufDl/P7WHUEREROSmV6ECwh9++IHWrVvTunVrACZOnEjr1q2ZMWMGJ0+e5IsvvuDkyZO0atWKWrVqma+c7KCOjo5s3ryZ3r1706hRI0JCQvD392fTpk3Y2dmZ1wkNDaVFixb4+/vj7+9Py5YtWbFihfm5nZ0d69atw9nZmS5duhAYGMj999/P/PnzzTY5ZTBOnjxJ27ZtCQ4OZuLEiUycOPE6PS2Rq2MoIBQRERG56dkY+lZ3U0tKSsJisZCYmKjlo3JdbL3rLrrt20f0kiW0GD++vIcjIiIiFZC+414/FWqGUESuH/0uSUREROTmp4BQREpFO11FREREbn4KCEWkVDRDKCIiInLzU0AoIqWjgFBERETkpqeAUERKRTOEIiIiIjc/BYQiUiJGdh1C7SEUERERufkpIBSRUtEMoYiIiMjNTwGhiJSOAkIRERGRm54CQhEpFc0QioiIiNz8FBCKSKloD6GIiIjIzU8BoYiUSE4gqBlCERERkZufAkIRKR0FhCIiIiI3PQWEIlIqmiEUERERufkpIBSRElEdQhEREZGKQwGhiJSKZghFREREbn4KCEWkdBQQioiIiNz0FBCKSKlohlBERETk5qeAUERKxNw7qIBQRERE5KangFBERERERKSSUkAoIiVizgtqhlBERETkpqeAUEREREREpJJSQCgipWJkZpb3EERERETkKikgFBERERERqaQUEIpI6WgPoYiIiMhNTwGhiIiIiIhIJaWAUERKxMYmqxKh9hCKiIiI3PwUEIqIiIiIiFRSFSog3L59O/3798fHxwcbGxs+++wzq88Nw2DmzJn4+Pjg4uJCt27dOHjwoFWb1NRUJkyYgKenJ1WqVGHAgAGcPHnSqk18fDxBQUFYLBYsFgtBQUEkJCRYtTl+/Dj9+/enSpUqeHp6EhISwuXLl63aREdH07VrV1xcXLj11lt56aWXMLQvS25wqkMoIiIiUnFUqIDwwoUL3HnnnbzxxhsFfv7qq6+ycOFC3njjDaKiovD29qZXr14kJyebbZ566inWrl1LWFgYO3bs4Pz58wQEBJCRkWG2GTp0KPv372f9+vWsX7+e/fv3ExQUZH6ekZFBv379uHDhAjt27CAsLIxPPvmESZMmmW2SkpLo1asXPj4+REVFsWTJEubPn8/ChQuvwZMREREREREpgFFBAcbatWvN95mZmYa3t7cxd+5c81hKSophsViM//znP4ZhGEZCQoLh4OBghIWFmW3+97//Gba2tsb69esNwzCMn3/+2QCMiIgIs83u3bsNwIiJiTEMwzC+/vprw9bW1vjf//5ntvnwww8NJycnIzEx0TAMw3jrrbcMi8VipKSkmG3mzJlj+Pj4GJmZmcW+z8TERAMw+5Uby9ChQ8t7CGVuS9u2hgFG5PTp5T0UERERqaD0Hff6sS/XaPQ6OnbsGHFxcfj7+5vHnJyc6Nq1K7t27eLxxx9nz549pKWlWbXx8fGhefPm7Nq1i969e7N7924sFgsdOnQw23Ts2BGLxcKuXbto1KgRu3fvpnnz5vj4+JhtevfuTWpqKnv27MHPz4/du3fTtWtXnJycrNo8++yzxMbGUq9evQLvIzU1ldTUVPN9UlJSmTwfuTpTpkzJd8wwDHbt2lUOo7nGspPKiIiIiMjNr9IEhHFxcQDUrFnT6njNmjX5/fffzTaOjo54eHjka5NzflxcHF5eXvn69/LysmqT9zoeHh44OjpatfH19c13nZzPCgsI58yZw4svvnjF+5XrKzQ0lFWrVuU7/u2335bDaK4TZRkVERERuelVmoAwh02e2Q3DMPIdyytvm4Lal0UbIztJR1HjefbZZ5k4caL5PikpiTp16hQ5frn2Ro8eTZMmTfL9smDEiBHlNCIRERERkSurUElliuLt7Q38PVOY48yZM+bMnLe3N5cvXyY+Pr7INqdPn87X/9mzZ63a5L1OfHw8aWlpRbY5c+YMkH8WMzcnJyfc3d2tXlL+Zs2aVeDMcUhISDmM5jpRllERERGRm16lCQjr1auHt7c3GzduNI9dvnyZbdu20blzZwDatGmDg4ODVZtTp05x4MABs02nTp1ITEwkMjLSbPP999+TmJho1ebAgQOcOnXKbBMeHo6TkxNt2rQx22zfvt2qFEV4eDg+Pj75lpKKiIiIiIhcCxUqIDx//jz79+9n//79QFYimf3793P8+HFsbGx46qmnmD17NmvXruXAgQOMGjUKV1dXhg4dCoDFYmHMmDFMmjSJzZs3s2/fPoYPH06LFi3o2bMnAE2aNKFPnz6MHTuWiIgIIiIiGDt2LAEBATRq1AgAf39/mjZtSlBQEPv27WPz5s08/fTTjB071pzRGzp0KE5OTowaNYoDBw6wdu1aZs+ezcSJE6+4hFXkRmBoD6GIiIjITa9C7SH84Ycf8PPzM9/n7LUbOXIky5cvZ8qUKVy6dIng4GDi4+Pp0KED4eHhuLm5mecsWrQIe3t7AgMDuXTpEj169GD58uXY2dmZbUJDQwkJCTGzkQ4YMMCq9qGdnR3r1q0jODiYLl264OLiwtChQ5k/f77ZxmKxsHHjRp588knatm2Lh4cHEydOtNofKHJD05JRERERkZuejWHoW93NLCkpCYvFQmJiovYTlqONGzcybdo07OzsCAkJYciQIQD069ePdevWlfPoyta37dvjFxVF5NSptJ87t7yHIyIiIhWQvuNePxVqyahIeXnhhRfYsGEDmzZtIjIykgkTJpCZmcnFixfLe2hlL2dJs36XJCIiInLTU0AoUgbs7OyoVq0arq6uLFy4kDZt2jBw4EDOnz9f3kMTERERESmUAkKRMtCqVStiY2PN96NGjWLixIkkJyeX36CuMSWVEREREbn5VaikMiLlZcmSJfmO+fn5ERMTUw6jEREREREpHs0Qitzkhg0bVj4X1h5CERERkZueZghFbhJTpkzJd8wwDHbt2lUOoxERERGRikABoUgZSU9Px97e+p9UXFwc3t7eZdJ/aGgoq1atynf822+/LZP+S0oVa0RERERufgoIRa5CdHQ0U6dOJSEhAXt7e9LS0vD09GT27Nm0aNGCESNGEB4eXibXGj16NE2aNMHLy8vq+IgRI8qkfxERERGpfLSHUOQqBAcH8/bbb5Oenk5KSgoZGRmcOHGCzp07065dOyIjI8vsWrNmzcoXDAKEhISU2TWKw8ipQ6gsoyIiIiI3Pc0QilyFjIwMLBYLycnJREdHY29vT0JCAvfddx+7du2iV69e5T1EEREREZFCKSAUuQpz584lICAABwcH7r//fi5dukR6ejqvvPIKANOmTSvnEZY9m5w/aA+hiIiIyE1PS0ZFrsK9997L9u3b+f7773n33XdZt24d27Zt45ZbbgGga9eu5TzCG8++ffsICAhg0KBBVhlSx4wZc0P0JyIiIlKZKCAUKQMuLi7UqlULZ2dnIGtvYVn7+OOPad26NcOHD+f999+nUaNGtGvXji+++KLMr1Ucpc0yGhISwuLFi1m0aBGLFi1i4cKFABw9evSG6E9ERESkMtGSUZFrwMHBocz7XLBgATt37iQ5OZlWrVoRExODs7MzPXv2ZMCAAWV+vWvFxsaG+vXrA7B69WpmzpzJ2LFjSU9PvyH6ExEREalMNEMocg1s2LChzPt0cXHB1dWVmjVr0qNHDywWC05OTvlqH15rV5tl1MvLi9jYWPP9zJkz6dq1K1FRUTdEfyIiIiKViQJCkauwceNGOnToQOfOnQkLCzOP9+vXr8yv1apVKzIyMgBYuXIlAJcvX6ZGjRplfq1rac2aNfj6+lodGz58OCkpKTdEfyIiIiKViQJCkUIMGzbsim1eeOEFNmzYwKZNm4iMjGTChAlkZmZy8eLFMh/P4sWLsbOzszrm6OjImjVryvxaxaIsoyIiIiI3Pe0hlEpvypQp+Y4ZhmGVsbIwdnZ2VKtWDYCFCxeyfPlyBg4cyPnz58t6mDec0iaVEREREZEbhwJCqfRCQ0NZtWpVvuPffvvtFc9t1aoVsbGx5pLFUaNGUbduXcaNG1fWw7xh2OT537Kwb98+WrduXYY9ioiIiEhxKCCUSm/06NE0adIELy8vq+MjRoy44rlLlizJd8zPz4+YmJgyG9+VxMXF4e3tfd2ul6O0M4RvvfVWvn6WLl1KcHBwmZbr8Pf3Jzw8vMz6ExEREamIFBBKpTdr1qwCj4eEhFx138OGDSM0NPSq+ynKiBEjyifwKWVA+Oabb1K3bl0CAwOxyc5YamtrS9WqVUvVX2BgYAFDM4iOji5VfyIiIiKViQJCkTJwNfsQi6t9+/YFXuPIkSNldo3r4cCBA3z44YesXr2awMBAHn74YT766KNizcgWJCoqii1btmBr+3eOLMMwCAoKKqshi4iIiFRYCghFykDefYh//fUXNWrUKNY+xOJKTk4mOjo6X93BXr16ldk1CpOenm5e16xDWMoZQhsbG4YOHcqQIUMIDQ1lwIAB/Pnnn6Ue2+TJk3Fzc8PT09Pq+Pjx40vdp4iIiEhloYBQpAzk3YeYs3+ttLNeBZk9ezbJycl4eHhYHZ82bVqZXSO36Ohopk6dSkJCAvb29qSlpeHp6cn9Fy4AcLU5Rm1tbQkKCmLYsGHExcWVup+8+w4TEhKoVq0aDz/88FWOUERERKTiszGUO/6mlpSUhMViITExEXd39/IeToVSnKQkRS3jTEhIuEYjyxITE0Pjxo2vWf/33HMPq1atok6dOuax48ePE9C8OT8lJ7Prscfo/Pbb1+z6pdW9e3e2bNlS3sMQERGRq6DvuNePZgil0ruapCTluYwzODj4mgY+GRkZWCwWq2Pu7u5kZP8O6Ub9XdKNOi4RERGRG5HtlZtULL6+vtjY2OR7Pfnkk0BWHbm8n3Xs2NGqj9TUVCZMmICnpydVqlRhwIABnDx50qpNfHw8QUFBWCwWLBYLQUFB+WaMjh8/Tv/+/alSpQqenp6EhIRw+fLla3r/kl9UVBSvvPIK8+bNs3rVr1//iufmLOPMqyyXce7bt4+AgAAGDRpklaTml19+KbNrFGTu3LkEBATQs2dPBg8eTI8ePRg4cCCP1a171X2npqayd+9eNm3axN69e8v07/2nn35aZn2JiIiIVHSVboYwKiqKjIwM8/2BAwfo1asXDz30kHmsT58+LFu2zHzv6Oho1cdTTz3Fl19+SVhYGDVq1GDSpEkEBASwZ88e7OzsABg6dCgnT55k/fr1ADz22GMEBQXx5ZdfAlmzL/369eOWW25hx44d/PXXX4wcORLDMAqsbSfXztUkJRk0aFCBx7t27VomY4Os8hfLli3D3t6eyZMnExERwcSJE2nQoEGZXaMg9957L9u3b+fSpUskJCTg4eGBs7Mz33bunNWglDNxK1asYOnSpbRr1w53d3cSEhLYu3cv48aNY/jw4Vc15vT09Hx7LEVERESkCEYl989//tO44447jMzMTMMwDGPkyJHGwIEDC22fkJBgODg4GGFhYeax//3vf4atra2xfv16wzAM4+effzYAIyIiwmyze/duAzBiYmIMwzCMr7/+2rC1tTX+97//mW0+/PBDw8nJyUhMTCz2+BMTEw2gROdI2QsPDzfat29vdOrUyfjwww/N4/fdd99V933PPfdYvX/hhReMRx991Lj77ruvuu/S2Ny5s2GAsWPMmFKd36VLFyMjI8PqWFpamtGlS5dS9ffTTz8Zffv2NTp16mTcc889RseOHY2AgADjp59+KlV/IiIiUv70Hff6qXRLRnO7fPkyK1euZPTo0WaBbICtW7fi5eVFw4YNGTt2LGfOnDE/27NnD2lpafj7+5vHfHx8aN68ubmcb/fu3VgsFjp06GC26dixIxaLxapN8+bN8fHxMdv07t2b1NRU9uzZU+iYU1NTSUpKsnpJ+XvhhRfYsGEDmzZtIjIykgkTJpCZmcnFixevum8vLy9iY2PN9zNnzqRr165ERUVddd/lwcXFhW3btpnvDcNg27ZtODs7l6q/4OBg3n77bXbt2sX27dvZvXs3b775Jo899lhZDVlERESkwqrUAeFnn31GQkICo0aNMo/17duX0NBQtmzZwoIFC4iKiqJ79+6kpqYCEBcXh6OjY75laTVr1jRT58fFxZnlB3Lz8vKyalOzZk2rzz08PHB0dCwyBf+cOXPMfYkWi8UqA6SUHzs7O6pVq4arqysLFy6kTZs2DBw4kPPnz19132vWrMHX19fq2PDhw0lJSbnqvktq3759f7+5iiWjn3/+OV26dKFjx47ce++9fPXVV6xcubJU/cXFxdGnTx/uuusu5s6dC2Qlv/n5559L1Z+IiIhIZVLp9hDm9t5779G3b1+rWbrctcuaN29O27ZtqVu3LuvWrWPw4MGF9mUYhtUsY+4/X02bvJ599lkmTpxovk9KSlJQeI3ExcXh7e1drLatWrXi119/NRPRjBo1irp16zJu3LhCz9m3bx/Tp0/HwcGByZMn0zl7b96YMWN47733rv4GrtJbb71l9d4wDJYuXUrPixfpTumzeXp7e7N48eKrH2C2nF/QODs78+GHH7Jw4UIaNmzIHXfcUWbXEBEREamoKm1A+Pvvv7Np06YrZiSsVasWdevW5ciRI0DWl9nLly8THx9vNUt45swZ8wu9t7c3p0+fztfX2bNnzVlBb29vvv/+e6vP4+PjSUtLyzdzmJuTkxNOTk7Fu0m5KiNGjLhiHcLcxdtHjx5tFm9/5pln8PPzIyYmptBzC0sWc/To0bK+lVJ58803qVu3LoGBgeYvKWxtbXHJTpxU+K8trq9q1aqxY8cOM/nN3r17efXVV0lLSyvvoYmIiIjc8CrtktFly5bh5eVFv379imz3119/ceLECWrVqgVAmzZtcHBwYOPGjWabU6dOceDAATMg7NSpE4mJiURGRpptvv/+exITE63aHDhwgFOnTpltwsPDcXJyok2bNmV2n3Jl7du3z/dq166d1c+vMIXtX7vS3yvImiGuX78+vr6+rF69mqSkJMaOHUt6enqJxj9s2LAStS+uAwcOMHz4cD7//HMcHR0JCgqidu3a+Gcvhy7tDGFZ69evH7Gxsbi4uFCrVi369evHW2+9xa233lreQxMRERG54VXKGcLMzEyWLVvGyJEjrQqKnz9/npkzZ/LAAw9Qq1YtYmNjee655/D09DTLC1gsFsaMGcOkSZOoUaMG1atX5+mnn6ZFixb07NkTgCZNmtCnTx/Gjh3L22+/DWSVnQgICKBRo0YA+Pv707RpU4KCgpg3bx7nzp3j6aefZuzYsbi7u1/nJ1K5XU1x+cKKtxcnWMpJFpOzP3DmzJmsXLmSFStWFNh+ypQpVu8//vhjHnroIavahGXJxsaGoUOHMmTIEEJDQxkwYAB//vknODhck+uV1nPPPWf1PiYmhmbNmpklX0RERESkcJUyINy0aRPHjx9n9OjRVsft7OyIjo7mgw8+ICEhgVq1auHn58dHH32Em5ub2W7RokXY29sTGBjIpUuX6NGjB8uXLzdrEAKEhoYSEhJiZiMdMGAAb7zxhtW11q1bR3BwMF26dMHFxYWhQ4cyf/78a3z3kldOcfm8iYKKU1w+p3i7o6Mj7u7uJCYmkp6ezocffnjFc9esWZPv2PDhw/PV4gsMDATgyy+/pGPHjkDW7FxycjIBAQF8++23V7zW1bC1tSUoKIhhw4YRFxfH4ZyanTfIDGFuf/zxB0OHDuXTTz/Nl4hHRERERPKzMW6UdV9SKklJSVgsFhITEzWzWEZiYmJo3Lhxic7JW7y9LNWrV48tW7awaNEiRo4ciaenJ4ZhEBQUxHfffcfrr79OSEhImV6zIDlJcBJ27+bVc+fIHDGCu99/v9yT4AwePJhPP/2Ud955h1WrVnH8+HGaNGlC586def7558ttXCIiIlJ6+o57/VTaPYQihQkODi7xOTn718o6GASYPHkybm5uvP7667Rp04a6devi6+vL+PHjAa5LMJhzncWLF/Okry+LgLDssg4lTYKzb98+AgICGDRokNVy1zFjxpRqXDm1OD/88EO2bNnC0aNHWbdunZaMioiIiBSDAkKRPBzKcI9cUTUliys4OBhPT0/zfUJCAmBdIuV6yEmC42hry2rgwuXLpUqCkxNYLlq0iEWLFrFw4UKg5IFljvr16/PVV1/Rrl07vvzyS5KTk9m+fbvVMm8RERERKZgCQpE8NmzYUGZ9jRgxosTn5Ow7LUxR9TCvpZwkOHOyS7CMvvNOunbtSlRUVIn6Kavsqjlef/11Dh8+zL59+5g6dSr+/v588cUXLF++vFT9iYiIiFQmlTKpjEhZ2bhxI9OmTePgwYN4e3tTvXp1AH755RcaNGhg1q8sSE6ymNwMwyA6OrrIa16vbb/t27fPd+yhhx4i5vz5rDeZmQUmwbmSkmZXvRJHR0cmTZrEpEmTSnW+iIiISGWmgFDkKrzwwgts2LCBjh070qdPHzIyMnjttdfo0aMH3377bZGlK6KiotiyZQu2tn9P1OckiynIxx9/zJw5c2jQoAHvv/8+s2fPxt3dnenTpzNgwIAyv7fCynG0rVYNEhNL3W9xs6uKiIiIyLWngFAqtGHDhhEaGnrN+rezs6NatWrMmTOHbt268fnnnzNw4EDOZ8+iFVW6IidZTO79gYCZLCavBQsWsHPnTpKTk2nVqhUxMTE4OzvTs2fPaxIQFlaOY/itt2YFhEpQLCIiInLTU0AoFULeou2QNdt2rYq252jVqhWxsbEMGjQIgFGjRlG3bl2zxmXXrl0LPbewbKaFJYtxcXHB1dUVV1dXevTogcViAcg3g1dWcu4pr1Y3YOrn1NRUDh48yLlz56hevTrNmzfH0dGxvIclIiIicsNTQCgVQmhoKKtWrcp3/FoXbV+yZInV+4SEBPz8/KhXr16ZX6tVq1ZkZGRgZ2fHypUriYuLo3r16tSoUaPMr1WQnCWrnidP8jsw/csvqdmuXZksWd23bx+tW7cu1bkrVqxg6dKltGvXDnd3dxISEti7dy/jxo3TMlQRERGRK1BAKBXC6NGjadKkCV5eXlbHS5PlM0dplpsOHjyYLVu2lGnpihyLFy+2ev/II4/w7bffFrgn71rIWbK6/p57ePLPP/k/f3+6h4aWeMnqW2+9ZfXeMAyWLl1KcHBwqWpAvv322+zYscNqL2Z6ejrdunVTQCgiIiJyBQoIpUKYNWtWgceLU7S9LJeb5mQALW7piuIsdSwo26dhGOzbt6/E47saOUtWqzs40AOo6uCAk5NTiZesvvnmm9StW5fAwEBsbGwAsLW1pWrVqqUe17Zt2/Dz8wOyns22bdtwdnYuVX8iIiIilYkCQqn0ynK56aeffvr3m927oWVLqFKlwLbFXepYWLbPnBIX10N6erq5ZNUAVgLfAZcvXy7xktUDBw7w4Ycfsnr1agIDA3n44Yf56KOPSj2bu2LFCubOncu0adPIyMjAwcGBtm3bsnLlylL1JyIiIlKZKCCUSq8sl5taZeTs3JmU++/Hee3aAtsWd6ljYdk+P/jggxKPrySio6OZOnUqCQkJ2Nvbk5aWxv3338+gCxfwI2smztHRscRLVm1sbBg6dChDhgwhNDSUAQMG8Oeff5Z6nN7e3vmW04qIiIhI8dgY16vKtVwTSUlJWCwWEhMTcb8Bsz9WajY2/FK1Kg2Tkwv8uFevXjz33HNWSx23bNnCnDlz2LRpU4HnpKen8+uvv9K4ceNrNuwc99xzD6tWraJOnTrmsePHjxPQrBk/nT/P9ocf5t6wsKu+zrlz50hJScHHx+eq+xIREZGKQd9xrx/bKzcRufFt3LiRDh060LlzZ8JyBSn9+vUrl/HEnToFQGZGRqFtVqxYweeff06XLl3o2LEj9957L1999VW+pY7R0dHcd999dO7cme7du9OhQwf69+9PdHT0Nb2HjIwMs7RFDnd3d8w7yswsk+s8+OCDJQ4G9+3bR0BAAIMGDWL58uXmnwMCAsw2Y8aMKZPxiYiIiFRkWjIqFcILL7zAhg0bcHR0ZNq0aezcuZPXXnuNixcvlst4RowYQThgk/1+3759TJ8+HQcHByZPnkznzp3x9vYmOTmZnTt3FtlXcHCw1Uxd7969efPNNxk2bBjfffcdcXFxeHt7l/k9zJ07l4CAABwdHXF3dycxMZH09HQer10bYmLMdld7/dIsUggJCWHZsmXY29vTtm1bHnvsMR577DHat2/PwoULmThxIkePHi31mEREREQqCwWEUiHY2dlRrVo1ABYuXMjy5csZOHAg58+fv6bXLSwD6JEjRwCwyQ52cgcwkydPJiIiothBS96Zug0bNpCQkEBG9uzjiBEjCA8PL4vbsXLvvfeyfft2Ll26REJCAh4eHjg7O7M1556z7+1qr2+ViKeYbGxsqF+/PgBNmzbF0dGRl19+mUaNGpGUlMTYsWNJT08v9ZhEREREKgsFhFIhtGrVitjYWHx9fQEYNWoUdevWZdy4caXu09/f/4qBTmEZQHv26AFbtpjvcwcwq1evZubMmcUOWnJm6n788Ufs7OzMc2699VbatWtnBp/XiouLCy4uLmbwm3zwIG5A8ubNVC2D6+dNllMcXl5e5s/by8uLUaNGsWPHDlasWMF3333HypUrWbFixVWNS0RERKQyUFKZm5w23F69wMDAfMcMw2DHjh2cyt4LWJi1a9fSrVu3fEHNlvBwuvfuza/OztS/dIkHH3yQ+fPnmwErwMqVK3n00UdJSUkp1jgbN27Mxo0bueWWW6xq7PXq1YuNGzcWq4+r0aRJE6Kjo9nRqRPdfviB7Q88wL1r1ly364uIiEjloe+4149mCKXSi4qKYsuWLVblHwzDICgo6IrnDho0qMDjd3fuDPy9ZLSg0gzDhw+3Ki9xJXPmzKFq1ar5Cq5Pmzat2H1cjdmzZxe437E0109NTeXgwYOcO3eO6tWr07x5cxwdHctimCIiIiJSAgoIpdKbPHkybm5ueHp6Wh0fP358yTv7/nuwt8do0OCKTQtKNANZ2THfe++9fO3zBp8xMTE0btyYrl27lnycxfDWW29ZvTcMg+nTp9MzKYluwO9JSQAlvv6KFStYunQp7dq1w93dnYSEBPbu3cu4ceNKFCDn2LZtG7NmzaJly5b06dOHqVOnYrFYmDNnDp06dSpxfyIiIiKViZaM3uQ0nf63spp1SkhIMBPUlJhNVl7RlPh4nD08OOboSL3U1AKb3nPPPVaJZjp16sTEiRPx8/Pj22+/veKlunfvzpZc+xTLWrNmzahbty6BgYHYZN/XggUL6JeczJzYWO7y9GTv2bMl7vfuu+9m+/btVjOy6enpdOvWjR07dpSor3PnztG9e3dzv6C/vz9RUVG4uroyePBgtm7dWuLxiYiISPnTd9zrR3UIpUJYsWIFfn5+vP/++2zbto1ly5bh5+eXr6ZfcQwePPiqx2Nk1+jL+9uWc+fO8euvv3Lu3Dkz0Yyvry+rV68uNDvmxx9/TOvWrRk+fDjvv/8+jRo1ol27dsTHx1/1OIty4MABhg8fzueff46joyNBQUHUrl2b3tWrA2BvW7r/fLi4uLBt2zbzvWEYbNu2Ld9S2KJs3ryZLl268I9//INTp07x3HPPMW7cOLy9valduzbVq1e/5nUaRURERCoCLRmVCuHtt99mx44dBc46lXQZYllMmucNCDdv3syMGTPw9PQ0l0n+/PPPhIaGMmzYMABmzpxZYHbMBQsWsHPnTpKTk2nVqhUxMTE4OzvTs2fPqx5nUWxsbBg6dChDhgwhNDSUAQMG8Oeff5qfz89e4lpSK1asYO7cuUybNo2MjAwcHBxo27ZtkcF7enq6VSbXGTNmsH79etzc3LjttttwdnbmlltuISYmhsDAQDIyMq55yRERERGRikABoVQIObNOfn5+QOlmnXKUpi5eXnmDytwBTI6kpCT69u1rBoRQcKIZFxcXXF1dcXV1pUePHmZNQltbW2xsbFi1ahWPPPLIVY+5MLa2tgQFBdGvXz9SUlL4JSDgqvrz9vZm8eLF1gdTUszltjmWLVvG5MmTcXR0pEaNGhw9ehRnZ2dee+01bG1tOXv2LG5ubtjZ2fHqq69y4sQJTp48ybx58zAMg9OnT1/VOEVEREQqAwWEUiGUZtapMKWpi5dXzgxhjtwBTI6zZ89azWgWplWrVmRkZGBnZ2fez+XLl83AcOXKldc0IMzx4IMPsmXLFn7JDnbLdPtxjRrg7My2Tz81E8T85z//oXbt2ri7uxMbG8vhw4c5d+4c99xzDxEREUyaNIm4uDgAHnroIW677TY++OAD6tatC8CECRPKbnwiIiIiFZQCQqkQCpx1KkdmQJg96/XOO++YAYxhGNjY2FCrVi3eeeedK/aV975ykt4se/ddznp78+65c2U9/ALlBIA2V2hXKhcvwsWLTJ06ldWrV5OQkMDixYv5/PPPqVmzJnfccQe1a9ematWqQFZNxLVr1xbZ5cMPP3wtRioiIiJSoVSqpDIzZ87ExsbG6uXt7W1+bhgGM2fOxMfHBxcXF7p168bBgwet+khNTWXChAl4enpSpUoVBgwYwMmTJ63axMfHExQUhMViwWKxEBQUREJCglWb48eP079/f6pUqYKnpychISFcvnz5mt27lFzO7FNp5J0hzAlgdu/eTUREBLt37+bTTz+lSZMmJe47J+mNTVISjYGHf/ut1OMsCXMpbc7MYAlnCPft20dAQACDBg1i165d5vExY8aYf3Z2dqZOnTq0aNECi8XCY489RmBgIA4ODvTo0YMBAwZwxx13XPW9iIiIiEiWShUQQlYq/VOnTpmv3JkIX331VRYuXMgbb7xBVFQU3t7e9OrVi+TkZLPNU089xdq1awkLC2PHjh2cP3+egIAAMjIyzDZDhw5l//79rF+/nvXr17N//36rIucZGRn069ePCxcusGPHDsLCwvjkk0+YNGnS9XkIUiwjRowo9bl5A8KS8Pf3L7rvPIHYNZmxK0DOUtrSLhQNCQlh8eLFLFq0iEWLFrFw4UIAjh49arbx9vY2/y3Fx8fz3XffsXbtWurXr8+6devYvn07kZGRVv1u3LiRDh060LlzZ8LCwszj/fr1K+VIRURERCqPSrdk1N7e3mpWMIdhGCxevJjnn3/enIF5//33qVmzJqtWreLxxx8nMTGR9957jxUrVpgZHleuXEmdOnXYtGkTvXv35tChQ6xfv56IiAg6dOgAwLvvvkunTp04fPgwjRo1Ijw8nJ9//pkTJ07g4+MDZGWSHDVqFC+//LJqrVxn7du3z3fMMAyOHDlS6j6NzEyGAbOKmEULDAws8Lp5yyXkLWCfM1MX8txzrARsrlMp0ZxxJB47xisA2UHvmDFjeO+99654fk6ZDYDVq1czc+bMfGU2cgd0Odzc3Ni+fbuZZTR3tlGAF154gQ0bNuDo6MiUKVPYuXMnr732mtUvckRERESkYJUuIDxy5Ag+Pj44OTnRoUMHZs+eze23386xY8eIi4uzmp1xcnKia9eu7Nq1i8cff5w9e/aQlpZm1cbHx4fmzZuza9cuevfuze7du7FYLGYwCNCxY0csFgu7du2iUaNG7N69m+bNm5vBIEDv3r1JTU1lz549ZqZMuT6Sk5OJjo7OF2j06tWrWOdPmTIl37FLL7/MrjzHUlNTOXjwIOfOnaN69epERkby7bffWiWWMQzDajYZsmbWCipg//uJE8W7wTKSM45NvXuzKCkJr6NH6Yr1DF9RvLy8iI2NxdfXFyi8zEZB8v5sPvjgA+bNm4eDgwMnTpzgnnvuwcHBgcTERKZPn87AgQPZv39/Ce9QREREpPKpVEtGO3TowAcffMCGDRt49913iYuLo3Pnzvz111/mfrGaNWtanVOzZk3zs7i4OBwdHfNloczbxsvLK9+1vby8rNrkvY6HhweOjo5X3LeWmppKUlKS1UsKl7ukQ2Fmz55d4GzStGnTinWN0NBQ+vXrl/UC+gG9/fyokavNihUr8PPz4/3332fbtm0sW7YMW1tb1q9fT926dc2Xr68v48ePt+q/0AL2OcuUba7PotGccbx35gyrgQtpaflm+IqyZs0aMxjMMXz4cFJSUoo879y5c/z666+cOXPGPLZ06VL27t3L3r17SU1NxcfHx6xD+dVXXxEcHMzly5evuGdRREREpLKrVDOEffv2Nf/cokULOnXqxB133MH7779Px44dgawvvbnlZIQsSt42BbUvTZuCzJkzhxdffLHINpVRQbN0hmFYBQKFGTRokNX7mJgYGjduTNeuXYt17dGjR9OkSROrXwSca9eO3DsQ3377bTNgybFo0SK6devGuHHjgL+zh+bNjlnYzNoHH3yQc6PFGmdJ5V1K++uvv9KyZUuOXrwIwD8aNuRE167FmuErjc2bNzNp0iROnTpFZmYmmZmZpKWlYWtrS7169XBwcACy/i0//fTT9O3bF2dnZx5//HH+/e9/Y2dnx+LFi82Z1YiICCZOnFjsGU0RERGRyqBSzRDmVaVKFVq0aMGRI0fMfYV5Z+jOnDljzuZ5e3tz+fJl4uPji2xTUEHss2fPWrXJe534+HjS0tLyzRzm9eyzz5KYmGi+TlznZYM3KqtZuuxXQEAANWrUuPLJeQQHB5eo/axZs/LNChuZmYQARnaA7+LiwrZt2/7+3DDYtm0bzs7O5rGcvat5FTaz1rlduxKNs6SSk5PZtWsXkZGRREZGcu7cOX766Scau7hkNTCMYs3wldbDDz/MyZMnadeuHXZ2dvTo0YPu3btz4cIF4uPjiY2NBbKSxzRo0IC33nqLW2+9lV69evHWW2/h5ORU8MxqMWc0RURERCqDSjVDmFdqaiqHDh3innvuoV69enh7e7Nx40Zat24NZBX/3rZtG6+88goAbdq0wcHBgY0bN5oJQU6dOsWBAwd49dVXAejUqROJiYlERkaaMyzff/89iYmJdO7c2Wzz8ssvc+rUKWrVqgVAeHg4Tk5OtGnTpsgxOzk54eTkVPYP4yZX0CwdlC5TaM7M09XIm2V0xYoVzJ07l2nTppGRkYGDgwNt27Y1C81D4YXeC0t688vhw8C1yzKas5Q27xLpIC8vOHbsmlwzd6Kd+Ph4qlatSmpqKpmZmcybN4/Y2Fi2bNmCj4+PGSQ/99xzxMTE0KxZM9avX2/+uXv37qXesygiIiJSaRiVyKRJk4ytW7caR48eNSIiIoyAgADDzc3NiI2NNQzDMObOnWtYLBbj008/NaKjo41HHnnEqFWrlpGUlGT28cQTTxi1a9c2Nm3aZOzdu9fo3r27ceeddxrp6elmmz59+hgtW7Y0du/ebezevdto0aKFERAQYH6enp5uNG/e3OjRo4exd+9eY9OmTUbt2rWN8ePHl/ieEhMTDcBITEy8iicj+SQnl+68rAWcxpmDBw0DjF+dnIp96rlz5wo83rhxYyMtLS3f8Xs7djQMMPbUqJHvs6FDhxZ/zCW0rVkzwwBja9++ZdJfr169zOfm6+trHD161IiNjTUmTJhgtGrVyqhSpYphZ2dneHh4GLfccotx++23G9u3b7fqo2vXrsaePXuMjRs3Gm3btjVSU1PLZGwiIiJSPvQd9/qpVDOEJ0+e5JFHHuHPP//klltuoWPHjkRERFC3bl0gax/apUuXCA4OJj4+ng4dOhAeHo6bm5vZx6JFi7C3tycwMJBLly7Ro0cPli9fjp2dndkmNDSUkJAQMxvpgAEDeOONN8zP7ezsWLduHcHBwXTp0gUXFxeGDh3K/Pnzr9OTkCKFhcEjj8Aff0D2DG5JFasO4fffQ9u2kP13J+9MXI7CZuqeeuwxpkREcPrCBWrm2kNpFHPvZIllZmaNuZR7FotTZmPy5Mm4ubnh6enJ66+/bh7PKfXi4eFhtcw257P9+/fz/vvv4+7uzunTp/Hz82PcuHEMHz68VGMVERERqSxsDOM6FTGTayIpKQmLxUJiYqLqF5aV4GBYuhT27oXs5cNF+fjjj5kzZw7NmjWjV2goswHXZs148eBBmjk5cUdBe+x+/x18fWH2bHj22VINs2unTvwaEcFMd3cafvGF1WeTJk3ihx9+KFW/hfl4zBjm/N//cZuzM4NTUpju6krNpk2ZPn06AwYMuOL59erVY8uWLQWW2fhux46cA1bn5CTaKcrdd9/NbbfdxqpVq8xj6Rcv0s3fnx05/YqIiMhNRd9xr59KNUMoUhyGYZRoX96CBQvYuXMnycnJtAoNJQZIXLaMYe3bs7ywk7LLXKQePszBvXvN2oTNmzfn4MGDVoXoFy9eDEBUVBTtshPJGIZBzK+/8hhQz84uX0bU0uydvJLgVas4Dvzq6EjvlBT+26kTPdeto2fPnsUKCHPP/uU2fvx4yBW47du3j969e2Nra0tKSgpff/01nTt3ZsyYMURFRdGnTx+r80+ePMmvv/5qvjcMg21VquBcp87V3bCIiIhIJaCAUCqEjRs3Mm3aNOzs7AgJCWHIkCFAVgbKdevWlaiv6OhoWpIVaNQuxgyhi4sLrq6uuLq60gOwAJfs7bEHCpt+zzQMQoE3162jg8WCu7s7CQkJ7N27lz///JN169aZ5RK2bNnCDz/8wNChQ5k3bx6QFfQ8PGgQs/78k322+ZMFh4SElOiecyushMf5tDRcgZqGQQ+gqr09Tk5O+YrGFyZv9taEhARmz54NwJ6/L86qVatITExkw4YNDB48mJEjR9KjRw9+/PFHDh8+zCuvvIKrq6vZT8eOHRk3bhxdunT5O2EPEJiQQOvWrbNmbnv1Yvbs2bi7uxd7RlNERESkMlBAKNdcenp6sYOG0nrhhRfYsGEDjo6OTJs2jZ07d/Laa69xMbtmXkkkJCQAcP7ChWK1b9WqFRkZGdjZ2ZGTMzQ1NZUaFJ4B9NfffuNtYF61atzz2mvm8fT0dGrUqEH9+vUBWL16Nf369WPGjBnY29ub+10BRj30EOzfX+i49u3bZzXTmJPldsyYMbz33nuFnhcaGmq1/DLHfxcvJgPITElhJbCVrEy8pSntAVllNg4fPpx1rexAl3792LBhA4mJiXz44YckJCSQmprKBx98QEpKCoZhMGjQINavX0+3bt3Mvk6ePGkdBNvY0OHSpb9nblu1IiYmBmdn52LPaIqIiIhUBpW6DqFcO9HR0dx333107tyZ7t2706lTJ/r372+VQKQs2dnZUa1aNVxdXVm4cCFt2rRh4MCBnD9//ppcL7fFixdbJRUCcLCzY01RJ9nY4ALsv3TJPGRk1yZ0cnIya+wBrFu3jt69exMVFWXVRf8ePbK6KmQbcEhICIsXL2bRokUsWrSIhQsXAlyxMHtOCY+uXbtavR657Tbscl3v/OXLODo6smZNkXdaKMMwzGutg6zXunWkpKTg6OjIsmXLcHR05MKFC1SrVg3DMHBwcMDBwYHnn38+373m5ZiZiaurKzVr1qRHjx4cPXqUBx54gJiYGKukO2PGjCnV+EVEREQqAs0QyjURHBzMqlWrqJNrH9fx48cZNmwY3333XZlfr1WrVlY150aNGkXdunUZN25cyTvLDnhsbK5Vhb+spaQrgJALFwjLvdSxbVt++uknvL29rdoPHz48X8bMK2UytbGxsZppnDlzZrEKs8+aNavA44Nr14ajR83nM2P/fgKK7Klon376qZk5NRRYBdCvH/369SPrj/3IyMjg559/xtfXl/fff59JkyZx9OhRq8Q0hWmSmfn3zO3Kldxzzz28/fbbTJo0iUWLFhEREcHEiROvGCCLiIiIVGQKCOWayMjIwGKxWB1zd3cnIyPjmlxvyZIlVu8TEhLw8/MjJiam1H1eTfrdKwVrho0N3sC/PD3ptHNnqa6RmZHBRmBiYiJunTvn2zvp5eVVpoXZcwLknOdytemJc5fRGA00AbxyJceZMGEC//3vf+nWrRuZmZnMmDGDVq1aYbFYyMzMpGfPnrRs2ZI+ffowdepULBYLc+bMoVOnTgC8bGNjNXObkZFB06ZN+eabbwCKHSCLiIiIVGQKCOWamDt3LgEBATg6OuLu7k5iYiLp6em88sor1+X6gwcPZsuWLdflWpC1Z/DgwYOcA6oD1VJTiz6hkNnHfTt20KJjx2LtuTxz9iwvAG+5udFm06Z8eycLSqZT0ExjceXMyuUsGX2pZctS9VOQguYk58yZw5w5cwDw9/cnPDzc/Kxjx44sW7aMhIQE/P39iYqKwtXVlcGDB7N169YCr/Hrr7+WaYAsIiIiUhEoIJRr4t5772X79u1cunSJhISEAguKX0slKa95tUlvVqxYwdKlS2nXrh3uQAKwe/x4ngI6FnZSdkBom2ucf8XG0vqee/j8vvsYuG4d586dM8tRVK9ePV8XE2fPxg5ws7U1904uX778uu2ddHdwKJN+4uLiyFkg2759ey5evGiVRdQwDHOmNyebbExMDDt37mTIkCF4e3vTqlUrRowYQUJ2ZlELMMUwuC/XdZo1a2YGgzmuJkAWERERqQgUEMo15eLigouLy3W/7qefflrk59HR0UydOpWEhATs7e1JS0vD09PTLINQEm+//TY7duzImkF7/XUAjr3+OkF+flcMCHO7nF2b8I/du+nSpQuenp64u7vz5ZdfkpGRwa233moWZjUMg8OHDjES+CMjg1bZfVzV3slsH3/8MXPmzMlXrmFgaip+/J05tSRBd2HeeustlixZwoTs98ePH8fGxgZPT09iY2OxtbWla9euHDp0iLfeeovnn3+eY8eOMXbsWCIiIti5cydOTk40aNCAoKAg3nzzTX777Tdc69ShP1gFhFf6OyEiIiJSGSkglAop9/60guROejNs2DBCQ0PNpDcvlzCpjIuLC9u2bcPPzw/I2lu3e98+nLM6KfikAoIpu+xZyreTk/lu/Xrc3NwAaNKkCTt37qR///7szLXf8O42bViydy8/5tonV9DeyZz7K64FCxYUWK6hXc2aTMvVLufO4uLi8iXBKUj79u3zHYuOjiY9PR3X7P4CAwN55513iIqKYt68edjb2/Ppp59iZ2eHq6srhmFQrVo1lixZgre3N506deLIkSPcfvvttG7dms6dO1O7dm0A7PJc60p/J0REREQqIwWEUmnkLrh+9OhR5s+fj6Ojo1mCoLRJb1asWMHcuXOZNm0aGYAD0HDXLlYChS7czE46Y+QKGO1y9ugBZ8+eNQPC2bNnm7NluZe3Bg8ZAnv3msHllClTCAsLMxPLxMbG8t133xEfH0///v2tEs4UtL8wh4uLC66urri6utKjRw8zOZBd9ljzzhCOGDHCan9fYZKTk4mOjrZanmsYBnfccQdTjh2jLRBy330sW7aMjIwMPvroI06dOkVMTAw1a9Zk1qxZXL58mccff5wNGzbw0EMPERcXx5133sn//vc/AL799lswDNKBgtL6lLY2o4iIiEhFpYBQromcvV52dnb5sl8WFYxcDTOxS/a+u+bNm+Po6Gh+nrvgeu3atXnvvfewt7cnISGBHj16mElvjMcfzzqhmDOE3t7eLF682Oqc2HHj8F6zhl8LOaegnnMyk06rUoVJkyYRFxeHYRhcunSJ06dPU6tWLbp3705SUhJ16tThib59rfoKDQ3Fy8vLLNvw5JNP8u677zJjxgwiIyOtEs4UpVWrVlblGiCrAP1v58/THkjLzMQBSI6Komq7dhw5cqRYz2n27NkkJydbzdTZ2Njg7OxMU+B3sv5+uLm5ccstt/DTTz+RkJBA9erVSUpKwsXFhYyMDLZt28aff/5JQEAA3377bf7kQZmZ2EO+OpAbN25k8ODB+Pr68thjj5mlJzZv3nzFZyIiIiJSUakwvVwTL7zwAhs2bGDTpk1ERkYyYcIEMjMzC/ziPWzYsKu+3ooVK/Dz8+P9999n27ZtLFu2DD8/PzOgAeuC6yEhIfz444/s2LGDiRMnsm7dOrZt28Y999xz1WMBClwSeqXPjezZyXr29qxdu5bdu3dzxx134O7uTlRUFPv27WP79u1Ur16dN998kxfefBP4OyAcPXo0H330kVlI3sPDg4CAAEaNGsXChQtp06ZNsRLOLF682KpcQ0JCAo6Ojng4OrILCLexIRJY2rYtUVFRtGvXrliPZNCgQQUu2/Ty8uIg8AVw1113ER4ezrfffouPjw8AQ4YM4b777sPd3Z1OnTqxbNkyOnXqRNeuXRkxYkT+C2U/W/s8Af0LL7xAixYt8PLy4tixY3h7e5OYmMi+fftUekJEREQqLc0QyjVhZ2dHtWrVAMzslw0aNODChQtWSzcNwzCXbF4Nq8Qu2dLT0+nWrZuZRbKggusuLi5Mnz79qq+f15XqEJLn8ylTpnDx7FlcgbgLF/CeMsV8NrVq1bKq6ejg4IC7uzuZOctOs4/nvb9WrVoRGxtLSEgIUPqEMzklPB69/XaSDxwwj+eEW9OmTSv4xGLy9vbmQcANcHNzo3379qSnp3PixAnGjh1LZGQkBw8ezEoWk11aon///nTo0AE7Ozu8vLysZqC/+vRTbAB/w8A+177FQ4cO4eDgQHp6Ops3b2b58uV88sknODs7ExUVdVX3ICIiInKz0gyhXBM5wUiOUaNGkZiYiKOjI/369TNfAQEB1KhR46qvl5PYJYdhGGzbtq10pS5KmFSmwC7yBGuFXSNHaGgoPbp0oR9wd/Yzynk2OTUde/bsyeDBg4mPj+eOO+7AztaW3KH0mDFjrPpcsmSJVZmFghLOFOtessd6zy23kHt+7/fsmcauuYrJl0ZYWBjjAc9c1zp//jytW7fmnXfewWKx4OrqSu3atalevTp2dnasWbPGagb68ccfN2egM7NnWs8Du3btIjIyksjISEaNGsXevXvp0KEDkPV3cuLEiTg6OpKSknJV9yAiIiJys9IMoVwTS5YsyXds3LhxTJgwAS8vL6vjBS77KyGrxC4ZGTg4ONC2bVurJaPFZYaBV1FWIScgLDSkzAk6s9+OHj2a+rfdRgugqoMDbbKDrBEjRpg1HY8dO4azszMPPvgg3w8bRnxiIq/+/DO+KSnMIytRTo6CMn/mzPQVprCEK7feeqtVu5wxLz5yhKv/yVnLKQ0xePBgatWqRUZGhnksOjqaYcOGcfDgQQBatmzJnXfeSf/+/fnnP//J6tWr8fDwIDM9HTvABYiPj+eWW24B/v47mTOjWdoAWURERKQiUUAo101BSzYBc0nj1bBK7JKjkIyhRRV89/f3x1xAeqVln0W5UjBZwHLPU9nLFnOfmfvZPP7444SHh2NnZ0f97OBmNTDOMBg7dqzVPriczJ/79u2jdevW2UMqekwhISEsW7YMe3t7Jk+eTEREBBMnTjQzeOadMbUr5QxqUWUwcvYYGoZBWFiY1bEBAwbg4ODA+fPnmTx5MjVq1CAqKopJkybRpk0bnn/+eYYNG8bw0aNJAo4BDzzwgFWNyRYtWpgzmlcKkEVEREQqAwWEUnHVrg3OznDsGACbN29mxowZeHp6sn//ftLS0rh8+TLNmjWjZs2aGIZBdHQ0Rvbex6udIRwGvFhog8KTyoxMSKBKnpp9hmGY2Ty9vLyIBXyB9sCltDQubtnC0aNH8fX1xTAMzpw5w5tvvsnSpUsJDg4mODj4ioXZbWxsqF+/PgCrV69m5syZ+QLN3Oa3bFlkf7n3iua+j8L2jJ4Dzv36K9WrV8831gULFpCRkUFaWhrdu3cHsjKf3n///YSHh5OYmEjfvn05d+4cDe64g7rAHcD27dsBzBqT3333ndVYDMO4qqXBIiIiIjc7BYRyzVypDMQ1Fxdn9XbGjBmszy74Xq9ePXbu3MmFCxcYOXIkH3zwAYZhEBQUhM3Zs0AxEsNkKyjwOffeexSZKqeAgDBn79tF4Mddu6zq9QH06tULgDVr1pjlLZKBsKpVufO332jWrBl169YlMDCQefPmUbVqVWxtbalatSpw5cLsXl5exMbGmvsOZ86cycqVK1mxYgUAf2Xvs7OqQ+jpCc8/D//6V77+cpf5yO3bb7+1er9582ZmkLWH0P3FF0lISOD06dPMmTOHHj16ALBu3TomT57MI488QtOmTfH19eXs2bPMnz8fPz8/Ll++bPZXo3p1njp6lNwjyqkxuWDBAiZNmsRPP/3E+fPn6dy5M5cvX2bBggV069atyOcjIiIiUhEpqYxcE8UpA3G92dracjY72Js8eTJubm5mEfa6devi6+vL+PHjzfZGMYvUh4aG/p0oB+gHdGvThqJS5dgUNPuYHYAGu7iQnJxsHv7444/NZZ/vv/8+jRo1oh1ZZRpmA+ez+zpw4ADDhw/n888/54EHHiAoKIjatWsXe4/mmjVrrJLQAAwfPtxMuDLn0CHg7/9o2AD89RfG1KkF9pe7zEfuV97xzJgxg/XA52T9vfnyyy+pWrUqM2bMMNtcuHCBV155BWdnZ3bu3Mmbb77Jxo0bqV+/Phs3brRKKDR5wgReBW4la1lojx49GDhwIK+88opZA3Py5MmsXLmS3bt388033/D8888X6xmJiIiIVDSaIZRrojhlIHL4+/sTHh5+zcf0zjvvWBV8X7FiBbVq1eKdd94hISGBatWq8fDDD/PdCy8AxZ8hzAl8cifLOdy0KSMoPMtoZgHBZs71/JyczNk8f39/Tp8+ze7du0lOTqZVq1bExMTgXK0aPYHvgIPZz9jGxoahQ4cyZMgQQkNDGTBgAH/++We+6xSUcCa39nmWq0LWbGBMTpCaHYDm7Em0SUsrsJ/i7Blt3749hw4dogvgnHWAgwcPcvHiRWxtbXFxcSEtLY2M7OdlY2ND7dq12bp1K1WrVuX48eP57u31//yH7cD/ANs338TDw8PMNnvhwgV+/vlnkpOTadSoEZA1M5r776mIiIhIZaKAUK6JnDIQfn5+QFbw0KNHD44cOUJgYKDZLmff3vXQpEkT1q5dW+Bn3bt3z5dgpLgBYYGBj2EQAhwp7KQ8M4SBgYFcPHMGVyA+ORmPwEDz2aSkpODq6oqrqys9evQwaxIW9o/X1taWoKAg+vXrV2A5hZyEM4VJTk4mOjo635LVttWrQ3x8ofdQGsnJyezatYtRLVtyALA5eJDLly9jZ2dHjx492LJlC3369MHV1dWcBTQMg+DgYL777jvuuuuufPeWE6i6Ah61all93rRpU+bNm0fjxo2Jj4/Hw8ODP/74I19yIREREZHKQgGhXBMFlYH46aef2LhxIzVr1jTb5ezbK2+5M3Caf7qKLKNXyuhpLkfN3gsYFRXFipdeos62bfzo6sqd8+aZz+b48eNkZGRgZ2fHypUr2bhxI88DvwFhQIvsPvv162cuiQTw9fWlcePG+caVk5ymMLNnzyY5OTnfnsMRvr7WAWEZmD17NrVr18YRSAQcLlxgzJgx7Nixg0OHDuHs7MzcuXNxc3MjIiICwzB47bXX2LdvnzmTmfO/Ofe2f/NmaNs237U++OADfvjhBxwcHAgMDMTDw4OEhASGDx+ubKMiIiJSaSkglGuioDIQb731Frfffjuenp5Wx3Pv2ysvBWXgLO4MYUGuVIfQ7Ds7cJw8eTKuzs7UBc7a2lK3bl0g69k8/PDDVue+8MILhAOOwDTgy4sXWZFdlD23jIwMdhWRnCavjz/+mDlz5tCsWTOSkpKYPXs27u7uTJ8+nQEDBtAqO0A0F1eWcIawoIyegwYNMvt0yD723nvvsXHjRoKDg6levTqjRo2iWrVquLu7k5iYSGJiIjVq1DDvLfeS4169emHJTqKT19KlS9m7dy8ODg68/vrrPPjgg5w9e1bLRUVERKRS0zchuW6Cg4PzBYNAvoDneouLi7OaDctJ+HI1AeGVgqW8fQcHB+NRQCBT0LOxs7OjGllLIhcCTe3sGDhwIOfPn7dq95///McqOU2OnMLseS1YsICdO3eyYMECnnnmGSIjI9mxYwfz5s2zalfc/2gsWLAAgJ9++olOnTpx5513YrFYuOeee6xKT4wZM4Z+QGyuc3v16sVnn31GkyZNcHd358svv+TSpUtUq1aN5s2bU7t2bR588EH69+9vteR42rRpbNm+nQ5AbzBrGQIcPnwYB4essDMkJITHH3+cH3/8scB9liIiIiKVhQJCqfQKy8JZ3CyjOVlAhw8fzvtAI+Ch557jiyLOybtkFP4OEo0r1MVr1aqVVfA0yNGRiRMn5gv+goKCrALdmJgYALMwe145GVdr1qxp7lV0cnIyZxhzRlXcGcLcGT2XL1+OxWIhPDycixcvsmjRIhYuXAjA0aNHeY6suoq5x1qjRg3Wr1+Pg4MDLi4ubN26lfnz5zNv3jxWrVrFa6+9RkJCAvXr1+enn35i7969pKWlMWPePL4EPgMiIyOZMGECmZmZVKtWjdjYv59cr169+Prrr7n11luLvA8RERGRikxLRqXSKCx7Zu49dXG5axcWc0lkzsxacnIyrUJDiQGOTp9OyD/+wf8VdlIRhemvdN0lS5bAG28QB+TkCvXz8zMDvsIEBwcXuVeuVatWVnsVIav4e40a1gU0ivtbpLwZPW1sbOjQoQOurq6FFr7ftm0bs2bN4vDhw3h5eZGZmYnFYqFp06YYhsHgwYPNWb6cn92wYcO45557GDVqFO7u7vwVH88gYASwcOFCli9fzsCBA6lRo4ZVWY2YmBg6d+7M+vXri3lHIiIiIhVPpZohnDNnDu3atcPNzQ0vLy/uv/9+Dh8+bNVm1KhR2NjYWL06duxo1SY1NZUJEybg6elJlSpVGDBgACdPnrRqEx8fT1BQEBaLBYvFQlBQEAkJCVZtjh8/Tv/+/alSpQqenp6EhIRYFdiuiFJTU9m7dy+bNm1i79691/V+czJaRkZGmq+oqCjatWtntsk9W1jcJaNWM2uABXC0ty/yty0FlZ0oKBC0ClDzyBlp7vnEop5vTiBVmMWLF2NnZ2d1zNHRkTVr1lgdK+5/NPJm9PTy8uLAgQNmRs+ZM2fStWtXdu7cSXugPVmJcc6ePUt8fDz79u3jyy+/5NNPP+X333/nxIkT7N27N9/P7scff6RDhw689tprzJo1i37du/M+sDx7HKNGjSpwBjU4OLiYdyIiIiJScVWqGcJt27bx5JNP0q5dO9LT03n++efx9/fn559/pkqVKma7Pn36sGzZMvO9o6OjVT9PPfUUX375JWFhYdSoUYNJkyYREBDAnj17zC/UQ4cO5eTJk+bsw2OPPUZQUBBffvklkJXwo1+/ftxyyy3s2LGDv/76i5EjR2IYRtYMUAW0YsUKli5dSrt27XB3dychIYG9e/cybty4fLUJr4Xc2TNzzxYmJyfTvn37v2cLs7OgFnfJqNXMWvaxy5cvF1mYvqAMpgUFiSNGjMj3iwTIyoSaN1folZ7vhg0binU/hcpeylr0gta/5f43BJiB5eeff24eGz58OC+//DK7YmKwB7q1bcvWrVsBqF69Oh999BGTJk3Cx8eH++67D3t7ey5fvsyCBQvo1q0b06ZN49///jeZuZ7nvydO5OePP+YyEBAQgIODA5MnTzZnUEeNGkVISAhJSUns3buX5s2b5/s3LiIiIlJZVKqAMO/SsGXLluHl5cWePXu49957zeNOTk6FFu5OTEzkvffeY8WKFfTs2ROAlStXUqdOHTZt2kTv3r05dOgQ69evJyIigg4dOgDw7rvv0qlTJw4fPkyjRo0IDw/n559/5sSJE/j4+ABZSw9HjRrFyy+/jLu7+7V4BOWqJMXqr4WcjJaQFQSuXr2a5s2bW7Xp1asX/P47UPwZwrzZVBMAezs71lB4HcK8fbdv356Uc+dwBi4kJlIlV4Baq1atfHUBU21suBfYBCSmp3PH5cvX/vlmz2CWNstoYWbPnk3y4MF4kJWdNie4Xrt2LS+++CL//Oc/+euvv/jqq6947733uHjxIg8//DAjR44EoEGDBqxcuZIuXbqQkZGBkZJCZ7IC18WLF2Nvb8/kyZOJiIjglltuYe3atVgsFvr27cuyZcuu6y8lRERERG40lWrJaF6JiYkA+YpSb926FS8vLxo2bMjYsWM5c+aM+dmePXtIS0vD39/fPObj40Pz5s3NzIm7d+/GYrGYwSBAx44dsVgsVm2aN29uBoMAvXv3JjU1lT179hQ65tTUVJKSkqxeN4ucYvU5DMNg27ZtODs7X/exzJ49m3HjxuU7bpWBs5QBz2D4ewawkAQxeQPC5ORkwmbNIhJYZrFYLYnMmdnMsWLFCvyAOsA2YO3ly/j5+ZGQkHDVz7c4S3rL+j8agwYNIif1TVhYmLmns2vXrpw/f57PPvsMb29vLly4QGhoKA899BAXLlygX79+9OvXj/79+9OwYUN27txJREQEn77xBosAJ6B+/fr4+vqyevVqkpKSmDx5Mi1atDCXly5ZsoRt27bxn//8p4zvSkREROTmUKlmCHMzDIOJEydy9913W80S9e3bl4ceeoi6dety7Ngxpk+fTvfu3dmzZw9OTk7ExcXh6OiYr2h3zZo1zf1ecXFxeHl55buml5eXVZvcBdoBPDw8cHR0LHLf2Jw5c3jxxRdLfd/lqaBi9W3btjUTmFxPgwYNKjAI6Nq1Kzuy/1zcJaN5GRRjdjFPRtHZs2dzvoDyB9OmTcuXFfTtt99mB38HZjEuLtTfto3OnTvz+eefl/r5FndJb0lmCFNTUzl48CDnzp2jevXqxVqemZP8ZsWKFcTGxjJjxgwcszOpnjlzhqFDhwJ/Z0vt3r279d7P7J+bJxAbG2smkpk0aRJr1qwhMjLy77bl+EsJERERkRtBpQ0Ix48fz08//cSOHTusjueu+9a8eXPatm1L3bp1WbduHYMHDy60v7xFt/MW4C5tm7yeffZZJk6caL5PSkqiTp06hba/kRRUrL48FbanLifMKW0dwk+BE8WsQ5jzkx40aBAxoaH52hVUIsLF2ZltgF9OX9lBjbu7u/l8hw0bRmgB/RXlSktO8/69tLnC8ylugOnv7094rvNykt+8/fbbxMXFmePp1KkTx48f56GHHiIwMJAHH3yQDz74AMMwCGnXLms29sgRVn/zDf8H2JE14/jMM88AMHDgQDZt2sTcuXPN5aXl+UsJERERkRtBpQwIJ0yYwBdffMH27dupXbt2kW1r1apF3bp1zWVs3t7eXL58mfj4eKtZwjNnztC5c2ezzenTp/P1dfbsWXNW0Nvbm++//97q8/j4eNLS0vLNHObm5OSEk5NT8W5Urk4pl4x6AMdzZgAL67qgYKqY1/ugZUte2byZacAxIPP8eWpPnUqHDh2YMmUKhmFYFX4vrpwlvX5+ftnDKXr27EoBYd4AMzAwEB8fH5566im++OIL8xq5C8vD34F63vHY2tpy3333UaNGDUJCQmjatCl9+/bl3Llz8N13WSdHR7Piiy/YC6QAy1xdrQLHG+2XEiIiIiLlrVIFhIZhMGHCBNauXcvWrVupV6/eFc/566+/OHHiBLVq1QKgTZs2ODg4sHHjRgIDAwE4deoUBw4c4NVXXwWyZjISExOJjIw0s1l+//33JCYmmkFjp06dePnllzl16pTZd3h4OE5OTrRp06bM712KzyYnMCvlDCFwxeCuoOWoOceuFBYmbd/O4uw/3wrMc3HhtgULrNp8++23xRtnLiVe0nuF55M3oIuKimLWrFn88ccfzJs3D8j6NxkUFATZy6Rz6hC2bNmSMWPGEBgYyOXLl8nIyMDT05PU1FS++eYbtm3bxty5c/H19eXChQu0fu01LMCcQ4ewtbHBgayAMF/gKCIiIiJWKlVA+OSTT7Jq1So+//xz3NzczL16FosFFxcXzp8/z8yZM3nggQeoVasWsbGxPPfcc3h6epoZKi0WC2PGjGHSpEnUqFGD6tWr8/TTT9OiRQsz62iTJk3o06cPY8eO5e233wayyk4EBATQqFEjIGuZXNOmTQkKCmLevHmcO3eOp59+mrFjx1bIDKM3owJrBRbC3CsHVAfSU1OLPqGgwvTFDED/+PNPGmX/eTRQ38aGTnmWlubeU1dcV5o9e+nAAaulnVcKCPMGmHZ2duzYsYNPPvnEKovv+PHjIXvp9uDBg+nUqRMffPABr732GrfccgstW7YkMjKS2NhYHn74YTw8PJg6dSqrV68mISEBf39/Vvn5ceeHH3Lfe+/R7e67if35Zzyz++/Zsye1atVi0qRJJX4mIiIiIhVdpQoIly5dCkC3bt2sji9btoxRo0ZhZ2dHdHQ0H3zwAQkJCdSqVQs/Pz8++ugj3NzczPaLFi3C3t6ewMBALl26RI8ePVi+fLlVUe/Q0FBCQkLMbKQDBgzgjTfeMD+3s7Nj3bp1BAcH06VLF1xcXBg6dCjz58+/hk9ASqSYSzit9sqRVXbiu9de42myiq0Xu+9iBoQ2ufb4zQIO2+bP+xkSElKsvgoyZcqUfMcMw+BAdlZe0xXGW5zlmTnXysmrm5iYSK1atUhOTqZly5YsWbKE2bNnm8tO13z8Md+sW4eNnR07d+5kyJAhNGnShGc2b+Z7ICM9neAHH8T3gw/4AFjUujXNmjWjV69eHDt2jHbt2jF9+nQGDBhQjCchIiIiUvFVqoDQuMIXfBcXl2IV73Z2dmbJkiVFFpCvXr36FRNV3HbbbXz11VdXvJ5cXyVNKmO1V+711wGInDCBif/6Fx0KOaegJaO5ZyTT09Ot6g7mZldE0qGyEBoayqpVq/Id//LttyEl5e8DV7OkNu+1speQfn7HHdx3332EhYWxb98+AL744gtq1arF2LFjqQJ8ceECbz74IBEREezcuZNNmzZxl5cX6WT9zHKe7RJg586dJCcn06pVK2JiYnB2dqZnz54KCEVERESyVaqAUG5MpcmIeS2VdA9hvmQswN4jRyiqkIFRQNKZX06eZApwMimJat27k5aWxvHjx1m/fj0tWrTIdbL1LzbKOjwcPXo0TZo0yVc6pY+3N+Sqh3ilpDIlulb2+5iDB7Gxt+eOO+4wS0bY29tz6tQpwsLCeO+//6Ub0HjJEry9venUqRMDBw7kUno69sAbDz5oBoTOgKurK66urvTo0QOLxQJQaKAtIiIiUhnpm5FcN4UtRSxNRszrobgzhFZ75QAHoM7Bg6wEkgs5J2/fU6ZM4f1332UQUN3ODp+OHTEMg7CwMIKDg/kuJ4sm8EtKCq9kX2cycEv28TFjxvDee++V5BYLNGvWrAKPP1C7NmRn2wXKZIZw1qxZVnU3MzMy+Ck6mtq1a/Ovf/2LyZMn07lzZ5577jnWr19PK+BxYEPHjjz00EPExcUxe/ZsRmYn0bG3tTWfbUsw9y7mzNZfvnyZGjVqXPW4RURERCoKBYRy3RS2FLE0GTGvh+IGhFZ75bKXc27r2RPvbdsKDQjzzvKFhobi5uzMACDW0ZFm/foBsHHjRjLyLC99/dw5PiHrH+8I4Nfz5/Ht3JmEhASzTb9+/Vi3bl2xxp9j3759TJ8+HQcHBzMQg78DzbxLrstihhCyEuDkJKvJTE8nJCSEZcuWYW9vz1133UXVqlWJi4vD3t6e24BtZJVwCQgIYOPGjfj5+fF/fn7w1VfY2NiYM4Svkn+ZuKOjI2vWrCmTcYuIiIhUBAoI5bopbCliaTJiXktlUXai6/TpRTfI0/fo0aOpceoUc997j0uXLlHntddITEzk/Pnz+faq2gD1s/+cDgTY2ZHWqBHh4eFMmDCB1157jYsXL14xwMsrdyA2efJkIiIimDhxIkePHgX+Dq7Syf4PRwnrNOaUYPntt9+44447zD6P5Jp1HPGPf2BjY0P16tU5d+4c6enpjBo1ik8//RQbGxvqHDhAAnDa0ZFnnnmGX3/9NauOYfZYDCAmNpangHOAY/bSW09PT4KCgvjggw+K/TxEREREKgMFhHLN5N0bWNhSxKvJiFlcRSVpKfSzUhamzy2zkAQweWcfZ82axf5Fi3gK2ObmRsM338TDw6PAovAetrbEAr6AHTDZ2Znve/Tgww8/pE2bNgwcOJDz589fMcDLy8bGhvr1s0LN1atXM3PmTMaOHUt6ejrR0dFMjY7Glqz/aKQBtv/7H/8BWhTYW9Yy2NOnT5sJd86cOcOjjz7K2bNnSUlJoU+fPkDWbF/77AymB7/6ivSMDO666y6qVKlCamoq4eHhXLhwgd9//52vgTrAgmnT+Pjjj7GxseGhhx7ijexxP/Xpp6Q4OLCWrPIfVbZvB+D48eO0aNGCPXv2FPt5iIiIiFQGCgjlqt2oewOjgalAQufO2NvbmzNFs2fPBrLGnZiYWOBnUPwlo0UpLKQsqO+cY842NtSqVavQPv/t6YnviRMAtAJOZmYyfPhwhg8fDkDdunUZN24cLi4uhQZ4BfHy8iI2NpbIyEjmzJlDs2bNqFKlCjt37qRz58484ePDvFzF3T+pUYPgixf5rsDespbB1qhRg5deegk7Ozv+/e9/k5CQQI0aNYiOjmbJkiV89tlntGvXjm9+/52+QNSlSzg6OpKYmMjp06dJT0/n9OnTnDhxgo4dOzJm927CgU8++YQNGzZw6tQpevTowRsHDtAdSElPJ8PWFkueZ+/u7o5hGNSvX5+4uLhiPY/rKf3PP7n400+4d+9e3kMRERGRSiZ/ATOREgoNDaVfv35Wr4CAgHJP3hEMvA3s2rWL7du3s3v3biZMmEDXrl3p0qUL586dwzAMLBYL77zzDm+++SbBwcFlsmQ0R0kCwudyypRcoayETa6ZyyXArXnqEPr5+RETE2MGeMOGDQNg5syZdO3alaioqAL7XbNmDb6+vixYsICdO3eyYMECvvjiC+Lj42nevDlfnzpl1b4KkL94xt9Gjx5NlSpVGDZsGEOGDOHAgQPUqVMHR0dHatasSZMmTQhfv54L58/THbiXrPqcvr6+eHp6curUKV555RX8/Pyws7Nj9uzZRAI9gUOHDvHAAw/wxBNP8NFHH9HAYmEgcPHyZf41aBABQH+yCt336NGDgQMHctdddxEbG2suUb7S87huMjI4dNdduPfoUSaz0iIiIiIloRlCuWo36t7ADMCS59gLL7xAvXr1cHJyYv369bi7u3P8+HGGDRvGl19+aZXApUxmCAsI7qZMmcIfW7eyFvjf2bOsnTIFwzD46fff87Xdt28frVu3tjpmU0jQkHem9vbbb+fNN9+0mqnNPZNYGBcXl3zlGl555RXu696dnoA7kAicO3OG14voZ9asWRw6dMgsHwFZQVj9+vV59NFH8fLy4kBMDP+XkcFXgCcwe8YM5r/xhrmk1CZ7tnTEiBEsWLCABsCXwP0WC6+/9RaNGjUCILVOHe776Sf+kZZGmzvuYARwF5Bw7Bh2dnZmYft+/frxyy+/MGjQICZPnmw+j/LcR5jm60uLkyez36SBo2O5jENEREQqJwWEctWudm+gv78/4eHhV25YQnOBAMCxZ0/c3d1JTEzk559/5qOPPsLV1ZWAgAAcHR1xcXHhp59+YuDAgbzyyiswciSQP0NlaRQUUoaGhvJ8ly40++EHDlSpQvPsjKIr3n2Xt4BjKSnseestDMNg6tSpvPrqqwQHB//dQZ5x5QSdZZXFtVWrVvnKNXTs2JG7LBa+PHeOBMAD2HvLLXTOCWQKUVBGz9xBqQ0w5sgR/gGEAlu2bcPX15cOHTowadIkUlJSaNy4MRMnTmTo0KH846uv6A4kJSYydOhQFixYQLdu3Thz6RJDgTWjR5szuxeAg1FRVvtD77nnHtq3b8+iRYtumH2EDrmeYdqlSzgoIBQREZHrSAGhXDeBgYH5jhmGkZUl8hq4F9gOXPrySxISEvDw8CAyMpJp06bh6OiIp6cn586d4+zZs3zyySf07NkTgN3ZAVdZlVXIa/To0dQ9dYqugH2VKnTp2pXAwEDiL1xgFuCRkkLV5csxDIPU1FSqVq1qdf7u1FSeIiuhTAhZ+wghqwh7zkxtXFwc3t7eQMlnas0SGrk4Ojoys1EjXHbvxiX7WFk+H1sgCAh4912WhoVRrVo1vv76a1577TVCQkJ45513qF+/Pm7AX2TN3g7q25fnn3+enTt38vj27QwFMAyz7MQLQHJyMh4eHuZ1bGxsmD17Nr6+vjfcPkKAtIsXcbDkndcWERERuXYUEMp1ExUVxZYtW8zle5AVEAYFBV3T67q4uODikhXG3HvvvWzfvp1Lly6ZQWJBmTzh2iWVmTVrFruefDLrTfbsXlRUFGHjxnFiyRJW2doydPhwAgICaNu2bb6A7p1Ll4gAHIFpwFcpKXyQmUnt2rXNZbsjRowwZ12LO1P78ccfm8lkevXqxezZs3F3d2f69OkMGDAg357KkgaEhmFgk2cJ7bnsV/XsF5mZhIaGUrduXQIDA3FwcKBq1apkZmaSmJhIbHb7HV27Eu3lxeHDh7l48eLfzzkz0wwIBwBVcwWDkJU4p27duub7mTNnsnLlSlasWFGie7lW0lNSynsIIiIiUskoqYyUmXPnzvHrr79yLlcmytwmT56Mm5sbdevWNV++vr6MHz++zMdypeWeLi4u1KpVq9BgEK7dHkKAzOygJefzyZMn4+LoSAiwyM0NDw8PQkJCqF69er5zHe3tqQa4AjuAbenpVK9encjISNq3b0+7du2IjIxk48aNdOjQgc6dOxMWFmae3y97iWpeuZPJPPPMM0RGRrJjxw7mzZuXfTN/P1Mjz/vC+gP46aefaNeuHXfddRd33nknW7duZfPmzXTp0oV/AC8CI4G7ga3ffceePXvo0qUL//3vf0lJSeHhwYOpXr06vxw+jCtwPvu5/eMf/6BBgwbceuutVHdyMp/rrkOH6AD0AKv7rlenDru2bGHo0KFWxz/88ENSbpBALP3SpfIegoiIiFQyCgjlqplf7v/xD1588UVGjhzJ3XffzebNm63aBQcH4+npab5PSEj4//buOzyqKn3g+HcmM5n0SW+U0AkdlN5RcAVcFewVxbqKgm3VVbGsIj/su3bWtljWBoKiSJPQDUiVjgECCelt0qe8vz9mMiYkgUQDQXk/zzNPZs49995z37kzue+ce88F4IorrmjyNlUfHOZEieqxvIO2NPIawrqS0HqXUHWKoichvOOOO7B6khqjwcBf//pXFixYwErPffSq6xAQwEHPcxvwbWAg8+bNo1WrViQnJ7Nhwwb69evH448/zvfff8/SpUtJTk7mrrvuwuVyUVpaWmeTqgaTiYmJ8Q4mY7FYMJlMvPDCC+RXVLANGAQMBm7IzWXFceKxcOFCli1bxogRIwgJCaF79+7ExMRw4YUXMnXqVBYtWsR8YA7gD0QB106ZQsuWLXnnnXfIycnhcGoq8SEh+DocFNtshAPXAo8lJ3PTTTfRsmVLfHx8iPH0AIvDweuLFvE97sFnqm937pEj7MzPb3A8mkJmZibp6ekNrq89hEoppZQ61TQhVL/b9OnT3Qf38+czZ84cvv76a7799lumT59+3PkmTpx40trkcjpZBgyBEyaq1Z133nne543tIRRn7Zsw1NdDKE4necCRyspfE9Vq65s4cSJGo5H4+Pha896dkEAbz/MZQIaI91YTVR599FF8fHw4cOAAAQEBvPjiizVuWl+XqsFkAO9gMpWVlURERLBw4UJmpqTwAPA+sA54OSSER+oPByUlJdx///106tSJZcuWMWfOHBYvXky3bt1ITU0lOzvbW3cDMBX3IDMbNmygRYsWLFq0iJ5t25IBBJSWsmHjRiKB14GCigqee+45br/9drp06cLMAQPccXU48DEYCMWdZFbfbgF3z2pD4lFZ+WvS/huUrFhB/r//TWpsLBUtWjR4Pu0hrM3pdOI6SdfzKqWUUkqvIVRNwGg0kp2dTXBwsLcsOzu7xrWCdWmKUTzr47TbmQ4sAoLnz/eWv//++1x00UVEREQQExPDrl27MJvNdO3albi4OPcAN56eusbeh9Blt9f6haWuLVy2bBnTFi6kHVCenc1HkyaRn5/PZS1bMqhqvuPFplq7JgADyssZA7z++us1qhmNRq644gqmTZvGHXfcwQ033OC9aX1dqgaT6d+/P4B3pFGAnTt34iotpTfQ2VM/guP/otS1a1e+/fZbhg8fTn5+PmFhYdhsNgIDA+nYsSP33XcfSzx17cDFnu0+//zz+eWXX7j88svJzMujJ3C4pIQIq5WtQAJg9vEhISGBG2+8kSlTpmDwXAOYXVhIp7g4Dh46RNXJtlXbvfqbbzgI3mT6hhtuoHXr1jVHcK1isXA4IYFWBw8eZwvrZzz3XMJcLvo1cr74oUP1XoTHeKldO8wWC1P37m3upiillFJ/StpDqH63t99+m/vuu49BgwYxcOBABg0axAMPPMDbb7/trVN4/vlUtGtXY765c+eetDa5HA6MQPYx5S+//DI9e/ZERDhw4ABr165l/fr1VHh6nDp06PCbb0wvdfQo1XVoP336dJ4bMYL5wGMtWnh7VN9ZtYoKYJfTyd13382mTZuorKysvYBjeiKr1vHaa6/xzTffsGXlSjJTU5k8eTJ+fn41Rik9tiexLjabjbVr12K1WklOTiY5OZnLLruMAB8fEoF8T71Sl4vaVzj+6r333mPFihU4HA7GjRtHv379OO+88wgJCeHDDz90n+YKFAAVnr/r5s1j7Nix3gFookJDGQv8t2tXfl67lgGeZT/Rrx8FBQWYzWauuOIK73v2z5UreXDsWG/SB+5Tk0eNGkU+8KWnbNu2bQwaNIhHHnmEwMBAVqxYUav9req4L2RD+WuPVpO5PzWVqfv2NXczlFJKqT8t7SFUv1uXLl2YN2/ecetYv/++VlnYMSNANiWn3c7bwH1AxqBB3gQjLS2NlStX8sMPP7B8+XJ69OgBQFBQ0K8D3DzwAND4Hsw6E8I6Thk1Go0UVF235llHdnY2BaWljAJaVlTQedMmli9fzqZNm/jb3/5W42byx57K+orn+rmff/6ZTz75hM+vuYZWwHVOJ59++mmjbzsxY8YMbDZbje1/7733+PeKFdxVrccsCJhfe/Yaqu8b55xzDsuXL/91oggzcF8HWbUnRIWF8fLLLxMZGcmdd97J0S+/pOstt/CDyUT6kSM86qn30Lp1pLduTWJiIv3796do716Cgd05OTjt9hptmDhxone9C3HvEw888ADvv/8+nTt3JisriwkTJrBmzZpGxemkczhg1SoYOdJ7ralSSimlVFPThFD9KbnsdroA8wDWrfOWT5s2jU6dOtGlSxfvqYJV18mBe4Cb9fff71lI408ZPVZdKeXbb7/NraNH8wpQdOAAIYMGERcXh7/JxGpgbXAwQ//5TwAcDgcjR46skRAajukhDPUkCwaDgauvvporr7mGj4ALL7yQnJycRm0DwIQJE4DaPbh9/P1rvPbxxMeJ+56IJ3Jsgu2qrGTCMXVcnqT60Ufdqd8RTw+piHD7ffd5B7Epczjoc9ZZJCUlwYIFrH7pJYauWEHfsDDvMupabwnu019tNhudO7tPfo2Ojq739Oa1a9cyePDgBmxd0xGXC4PRSPpbbxE/ZQrZn31G1GWXndI2KKWUUurMoQmhOqUqKirYsWMHeXl5hIeH0717d3x9fZt8Pa6KijrL67vp+hdffFFtZlfNvw3U0B7CLl268HS/foyYP5/VrVsz1JOw9mvZkiR+Ta5EhHnz5mGprKT8nXfwu+km94RjEkLDMYlW1U3er1mwgIyMjFrrr37T+uOp0YO7bh2d0tJqTG9sQnhsgukoL+fYdz4vK4txiYlYQkIAKE5PJwgo3LOH9GrxvblzZ659/30ydu0i9qKLGOopv7ZzZ5zHvA/V19sVmDVrFomJid7rGtPT0+u8vQfAZ0OGMPgUX9NXUVKCX3Aw+xctIh74ZeNGTQibQNqePeSlpdHjnHOauylKKaXUaUUTQtUkGpLozQHeGDWKfv36ERISQkFBQZ2nRDYF1+8Zvr8qETxJp4wCtZI6gOnDhzP/k09Ymp9P0MCBmM1mUlNT+TE1Fb8NG6AqIXS5qAB24L5Ju83ppF1lZa141zdKafWb1jfY4MFYgU38eiN5H8821N6SulVPMP/1r3/x1htvYAEuB+KB54BfJkwgCDhSXo6vxUK/du1IBkrKy7m42rKGRkTQtm1bzhk6lOXAbiAR6FlHD2HVev8LbAR8Nm/myquu8pZfe+21NU9lreblBm5bUyovLMQvONh7r0odZKZpZHftSm+X64yJ557Nm+ncp09zN0MppdQfgCaE6nebM2cOb7zxxgkTvbeA1atX1zg9r65TIptCfT2EcPwesoyMDAyehLCx1xA66lhnvR+wY5LO/v37U5ySQhDuBMvlclFeXk5hYSHHtnRJXh7/APoBIcBBh4PnR42qFe+q0UKrExH2HWeAjvoS+znAG9XWWQCsLS/nHuCiepdWv+nTp7N/40YiO3bkX8A9QApwAdAJuPjCC/li3jxvUjQK97WGVVtkW7eOoH792OsZIOcOYDmAw1Hnqbt42r8JKFmwgP/On8+ll17Kf//7X0SEzXPn8svcuVzqud1Gc6qw2QBotWGDu6CZrx+c89hjbJo9m5fq6G3+oyi32dzJ4Bli+xdf0OOyy1j15JMMO8Htf5RSSilNCNXv9tZbbzUo0fMHkpKSGDVqFOBOTpKSkvDz82vyNh0vIbz22muZNWtWnb2Z119/Pf+sOnCsoxfveOx1rNNcz0GoHNP7Y7PZeHbYMC7+6itWhoczPDmZjF27OH/kyFrzfl1YyBZ+HSL4F19fEpKSGDlyJJdMnMgu3L142dnZ7Nixg4CAgBrzjxkzps42HS+xfwtYTc1hidN8fLjC4eCCeuIB0K9fP8rKynA4HJhMJvw91yEWFxdj9PTk3Y37x4ILPe1+B/h04kTGjh1LQUkJu3Eng9v59QtrRc+ejFy9mmF9+mDbsgWzp9zldCL1JIQCmIFKm427776bLl26MHbsWPLy8qi84goudTjgww/d1/AdZ5tOtkrPfRHbe67/dFSNNOtywcGDUG203iNz5mDKyyN26tST1p5zn36a607a0usndjuGJjqdfM3553Nukyzpj6F00yYAnKfbQElKKaVOS5oQqt/N39+/QYneHGDm/Pk8+uijOJ1OzGYzffv29d4EvSlJZaW3N4lqPWU5OTmkpqYybtw4fHx8cDgclJaWEh0dTXh4OPv27cPgufdeY08tq7OHsJ6EsGpgmKreyBkzZvDUbbdxMb8mkbvOP59XsrKqbZSAwYAfkIS718xd7I53fn4+o0aNYgDuXrwuXbowatQo7rrrrhqJedWALcc6XmLvf+w6gW0OB37UPXAOuBPMHTt2cNNNNxEaGlojwXziiSdI2b/fe9uKa4C+wCzP677t2vH6668z+fzzuQOYAczGfVN6M9D30CFGAreOH89FW7ZQdcKn2O0s2rGDO3Hf5P7qmTN56KGHAMgCDgLOnByObNqEwWBgypQpzJ49m/Y7dgC/JmNNf1Vrw1V6egirOD1tqnjtNSx3340cPIghIQGAllUjyJ7EhLDq7qKuigqMVffoPAXSdu6k5XGmf3fJJbSbPJnO48efcFmGlBTv86pBe45lO3QIv+BgzPVcT3q6WvHmmxiMRkbceuuvhVXb18gftZpCQUEBvr6+tX6IUkopdfrShFD9bnPmzGHmzJknTPRigZdeegnDKTgFzl5a+muvUnKyt3zo0KG0a9eOtLQ0tm/fjslk8iY9q1evZsyYMZg8p+ode3uHE6krITTXcV1h//79se3eTTBQfOQIQf37u0/lzHff4a8qIfQvL2dgtfmkrAxDQABPhoYyPzOTR3GfXuosL2foN98QGBjIws8+I6JNG/cM335bo6d29+7dJCYmMmLEiDrbf7zEfg4wE7zrNOE+ffRD6v8Seeutt5gzZw7nnHOO93q9qva88847xFZLuCfivgZwgMEAIuzYsoULx4zh+VGjeHrOHCYAg3Cf8mkGrrXbufTSS/n7kCE1ElJxOlmwezebgULg44AA76mhCcAq4KU77mDYmDFUVlZiMpkoLi7mMxHuAEoyM/Hx82vehNCTAFZxlpQAsHXOHPoDv6xdSwdPQljLDz80+W0qyg0GgkUoTEkhrEuXE9bPu/lm/Bcs4Jvx4ylau5ZxnTtjvf12AsaNq1Ev9623CBo5EotntNdjFR8ziNH6++5j4AsvAO59c+zcuaTMn+++PcexRNgxcSKtnnqKkB498KkWD3tJCb7BwbVmCW7ThmxfX6KqfY7LV6/GVVRUq+0pH39M+NlnE1pP25va5iefJGrECFrWccbAyL/9zf2kWkJYtc80x/WSYWFhdO/ene3bt5/ydSullPqNRP2hFRYWCiCFhYXN3ZR6uVwuEfehiZSVlXnLc19/3V1utzf5Ond/9pnMBckDEafTWz569Gh56aWXZO7cuZKXlycul0uWLl0q5557roiIrFixQrYFBYmAJE2c2Kh1psyf793OqscBX99a9RITE2XZ4MEiIBtjY73lZ0dEiIBsDQ11FxyzrOLDh0VEZGNUVM11+Pt7t+2Ld9/1lh+7baNGjTpu+48ePSpTp06VwYMHy4ABA2To0KEybdo0OXr0aK22/OJpq4CU1fM1Mnr0aFm+fLn39bHt+eWrr7zLGOX5W2gwiICc3bGjiIismDDBW2ew528pSJ/AQFmyZImc1aaNdK/WrsVDhkj3sDARkFxPDJYsWSLDhw+X7iBDQHZ9+mmNeHxkMMgQz/xH1q6VzB07am5vHdZ/9pksffppmTtsmKTv2FG7wjHxEperzuW4Kitr1d360Uc1lrH4ootERCSpe3cRkO1vvll7PSJy9NNPRUCyX3qpznX9VqlGowjIoa+/FhERp8Mh39xyi5QWFUmy1SqL+/atOcOx2w5iq+NzICBHAwLqXe9Ps2fXWEa6ySQHBg6UQ/fdJyXZ2SIgWQZDnfMWHjjgjmVMjIiIrIyP9y4nPyWl7hXW9X7Xtw+c4H1tciAF1bb1m/HjZUVERL1tXHXjjSIgy0eMOP5yKytPvA1Op8jBg41oKqKHFkqppvBHOMb9s6j75ltKNUDKsmXMGj+eNa+8wjfPP89HM2eStn07zrIynJs3g+fUt+LsbO88ZdV6Pwo8N4AvOc4gJ79VeUEBE3Df8FzKyrzlc+bM4eDBgzz//POMHTuW4cOH880333h7M0eMGEGg5xo0Q1FR49Z59GitMksdp2zNmDGDck9sTNV6I671jAhqruc0L1vV6aNV15RVs2fRImbdcw/ffvcdQ4CBUGvbzGZzrfmqi42N5eWXX2bNmjWsX7+eVatW8dJLLxEbE1OrbkrHjt7n9fVFzZkzh/nz5zNkyBAGDhzI8OHD+c9bbzGgfXv3ZhQWeutWtaxqWUZPDKq/d+Nxn/JZhLtXcvTo0dw7fDgtqq3TUlrKwLAwDuK+3tHlcjF69Ghef/11WuC+jnXdxo3eeIgIMSJUndxclp1NRQPe98TLL+fcRx9lwqpVpPfqxZIpU45b31ntPXOVl7OnfXuyV66kso512T29O6We1z3WrEHy8gjLzfW2sS47V64EICUp6YTtb4wKz+mHtl9+AWDrf/7D+NmzWX311fQrLGTMxo0UFxSwtI5bulRxOBwUFxby89q17mV6esNjS0vrnaciM7PGa7vRSJv162n9wgvs+eST47Y5f/9+AEyeWFa/LUpZA+7N6bDbWTDh2LtkwtGUFN4eNsz7+udXXjnhsurjqqxkw3XXYS8oOH49z/eRtVpv3/iFCxmRm1tnD+DSsWMZ+t577hfVPj/HEpcLfH1Zd4JTblNnzYI2bciudqZFvcs8pj3Tp09nrec9P5HMzEwOHjxY7/RbbrmFyZMnN2hZSimlGqmZE1IlIq+99pq0adNGLBaLnHXWWbJy5coGz9ucv54sHTaszt6A6o/dIAervZ4P8klkpHzapo237HmQJXfdJa9fcol88Le/ycJnn5VFr70mP86fL8VHj4qjokIcDkej2vbO+PHe5Rfu3u0tP/Lzz1JRXl6rvqOgQI5+/LHk5+R4e6mSevRo1DrfHDSoxra/2rOn2EFcpaW16q5t2dIdn8BAb9nKrl1FQPb7+Ym9uLhWLPd9/704HA7ZaTbLUV9fb/lRk+nX3sLqvZS/V2GhyH/+I6U5Od5lHurTR2ThQtn60kvesnIQZwN7ef/raavDbpdtr75a736z/M47xZGVJT/UsY8dMJlklacHceUNN9SYtq5jR/nI04NqB6ksLv515SBHQa4eMaJmL6inXEB+fvdd2ffNNyfsIayz3ceZXpab6510YOFCEZAfW7eWjO3bvXUOWizubXjxRXEe03OY7+fnfb5y2rRa63E5HLLi1lvd08eO9U7+YvJkWeDpQW4Ie1mZJFutkvzcc5KenCxJ3brJHs+6V954o4iI/PjkkyIgP3n2YQFZeNZZIiCZu3fXGZsCg0Hmjxrl3u5335Ujq1f/uv8UFdXZlqS7766xjP2e+FR/ZHt6zVxOpyS3bSu7Zs8WEZGtb70lAvKLpwdyXWysd561Tz8t83r1EkdlpXddpTabd3rJ0aOy6ppraq7Ls39/cf75NcqXXnutiIikbd4s6154QcqrfdbXdOggqy6/vHaMKyvl+4cfluTnn2/QZ/Xnhx6qXc/z2l6tLfbKSqnIyxNHtbIVXbuKiMiyW2+VrxMTvbPv/OQT2faf/4iAZBmNx13/ur59RUBWP/74ceuJiOTn53t7CCsqKrzPq9x5553y8ccfy+zZs8XpOXOjsrJSnn766Vp1j1U13W63N/j/QV5enmRnZzeobmOlpaV5/+8uXrxYcnJyTsp6Xn31Vdld7X9Ybm6u3HHHHZKfn39S1tcQLpdL9u3b12zrV2cO7SE8dTQhbGb/+9//xGw2y+zZs2Xnzp0ydepUCQwMlEOHDjVo/ub8sLjy82XtBx/Ijg8/lHn33SdXhofLpQaDXAfyBMhLAQEyC+S98HCZ2bKlPA+SBLIZZA9Iej3JQF2PMpAckEO4k8xtIBtBtgYEyFofH9kSESHf4U44vwPJACkGcYKsBFnVu7ck9e/vPiC0WOTfrVvLDKtVXo6KkukgP3vWk+T5u89kkiyDQZLOP1823nqrJN14o7zcr5+snTZNPrnsMtn2xBOy8/HH5X8XXCAv9uwpfwdJAUmJi5M911wjhx9+WJa/8ooIyOcRETJ7/HhZ8/jjsuSuu+S1/v0lz9O+SpDb/Pzkq2oH13aQ5RdfXCsGX155pTzSrZuUg+yZNElS27eXpNata9T5odpBtMvplPVPPy2H160TEZEfFi6Uy6KjpaieA/DqHA6H7Ln0UhGQz7p18y7TuX59VQU50L+/HGzXTgTk0wkTJPfwYe9BXn0KPcvZ++23Mn/sWO9y0wMCpLTaduwJCBAB+c5srhWHTSEh9e4nG0C2gBR5kphfPvlEDn7wgfxY7dTTjc8+623PwWOSv03PPy87PMmEgPvgui51rLui2unQtRKXLVu8k36aMcOdGEVFSfIHH7gTi8cek5wff/QeeB9atKjebVx63XUi4j51s6rsx759ZZnnR5ClAwZI5qZNsuH++92n84IUZWTUuRlOp1O+/sc/pNhzcHlg6VLvMle3b19jvUmdOklFcbGsmjy5VpuqTmP+tnfvOtucZzBISrUfMbZ7khEB2fLuu3Jo+3Y5kJxco23Le/assYzddewLBSBrL7pIlo8e7U7mPO/X2vvvFwE57OcnR77/XvZ59icB+dnHRwQk1XMKrIhI2qZN3unrqyWPVY81iYmyKTxckjw/2nhjFB4uLqfT+3rByJGSt3Gj7P7ww1/rebhcLsnPyJBVDz/snjcmxlsnbcMGObp1q4iIlObliS0/Xw4vWiRbp02r2RYRKSsoqDPGWQcPSla1H4cEZHVCgvuU0Kp9NC9PlvXrV6OOrdqpqCX5+VJWUuLdNz655RZZ4fmOmTd4sIiI/LJqlSy/+GLZuW6dfPH+++JyucTlcklmZqZs3LhRqhK3e++91/v8rbfekszMTO9rQH744QeZP3++fPfddzXKXdVOYXW5XLJo0SLJy8urUWf48OE1ksKysjLp1auXLFu2TERE3nnnHenZs6cAEhsb621jZWWllJeXe7+n3njjDVm8eLG4XC75+eef5ZlnnpH09HRvAlZRUSHffvut7Nq1Syo9PyC4XC558sknBZAhQ4bI4cOHBZBLL71U5syZUyNRcrlcUl5eLhs3bpQ9e/aIiEhKSoqUeGJcXFwst9xyi8yaNcu7PS6XS2bMmCHbt2+X5ORk7zavWbNGRETefvttAeT111+v8XlZs2aNrFq1yr0/p6XV+i6uqKgQu90uM2fOlG+++cZbnpGRUSPm1WVmZtY4FnnhhRfk3Xffleeff14A2b9/f436TqdTioqKZOrUqZKamlrnMqt8++23kpqaKpmZmbXa6nK53Jcq1KOqvS6Xq872FxUVSW61H+Hqmre4+o+Fx5GZmSl33HGH7Ny5U2bNmiWvv/66nHXWWTJ79mzv+1hl+fLlsnjx4hrrWrx4ca11He8HDYfD4Y1HRkZGnXVP9H82IyND0tLSJOOY7/3Vq1dLWlqaiIiUlJTIzJkza8TZ6XTKa6+9JtOmTTvhOk4VTQhPHU0Im1n//v3l9ttvr1GWmJgoDz30UIPm/6N+WKq+lCsrK6U0L08ytm6V1f/9r/z0wQcy56675J5eveSRnj3l4Xbt5LWzz5ZHQ0Pl87PPlucDAuR5kE+iouTzyEhZEB0t30ZGSlKLFvKVySTzQVZFRcmGIUOkeMsWeb5fP1nh6yu7fH1lv+daqEqQfNwJZgbIEZBsz8HR/vBwyX3ySdm+cKGst1olt56D8mMfhSCbYmPF5fmnL+L+Yv9u+HDJr6N+alycHF66VNZWKysyGuXAhx/KHs9BXS7IL57eyuqPnLZtRQoKREQk4+BBWV9Pm5zVnhdXW04RSK7BIPlGo+QbjZLniUehwSBFBoMUeupUX1Z2aKg46/hFuqK4WH4KDvbWK/cclBfivn4zG3fvUKnRKBV1tHG/1Sq5l1wizmXLZOHQod4Epvpjl8UiTpC9Vqvsuv9++Xzo0Fp1SkF+6tVLBMRuMEjpvHlywMdHyutY3l6Q5Oho+blau6se6SD7PLE65Clbl5Ag63r0kB979JDkxERJPiZRqnosT0iQZZ07y1KrVQTk67/8RQ553sutwcHyc3CwfBMeXiOhzfbErPTwYSkvKZG8Y963uh6bgoLkqwEDZPGx15J61nWgjn1mSefOkjRkiKy57DL5oWVLWRkbK0suvFAWeZKu9SALW7eWNcf8wFDXo7iBn4njPVZUe/5jcLDYQSpAvu/VSxa3by/rql2jumDoUPnh7LMbvOyNVqtsq6N8cceONWK7NTBQVgwYIJ9FR9doT0Mfy4YPd8cuNNRbloYnKa32+NxqlaRzz5XVkZFSCrLDk5DW9VjauXONMyqOfXwUFSXLw8PrnPZjYGCtsiyQDdX2t5Q6elkFZOnAgZJ01llyxGCQbRaLJA0cKJuq9UpXPVb7+9f4HC8B8fPzk/DwcKmesDXkUd881113nUyaNKlBy3j66afl4YcflpEjR3rLBg8eXKvemDFjpGXLljXK2rVr533evn37WvNccsklDWpD586da5Vddtllcu+990r37t1rlFe1oUOHDjJ27Nha85177rnHXdex00NDQ2XcuHESGBjoLRsxYoT3uclkkn79+tW5rHvuucc7LSAgQO6880558MEH5YorrpC+ffvKDTfc4K1722231Yifv7+/ANK7d2+Jjo6WESNGyJAhQ+pcT4sWLeSSSy6Rtm3b1vneANKqVSsZPHiwDB06tEZ5nz595LbbbpO///3v0rdvXxk2bJjEx8dLt27d5LHHHqu1nDvuuEOuvvpqsVqtAkjXrl3lhhtukP79+wsg3bp1k6ioKG99q9Uqo0eP9sYsKChIJk2aVOO9j4uLO+574uvr611+1aNTp04yePBgGT9+vHf7Jk2aJDfffLP85S9/8dYLCAiQfv36SXx8vLRt21Y6duxYIyYmk8m7LUFBQTJlyhS56KKLvPvvLbfcIjfffLP39aBBg+T888/3vj/h4eFy0003yYQJEyQmJsa77B49etT4HEyePFmuvPLKGusHJCEhQQCZOHFig35IPhn+qMe4f0QGERFUs6isrCQgIIDPP/+cCdWuV5k6dSpbtmwhqY5rgSoqKqiodt1ZUVERrVq1orCwkJCQkFPS7j8DEaGiogKz2YzRaEREatxuoYrD4aDYZqO4sJDtmzYR6OtLZWkpkRER+AUHczQnh7MGDMAaHl7vyI4VpaX8smEDhRkZmIOC6DNkCD6hod52pO/cSWyLFr+WORzkbtqEMTISh9FIRV4e/gEB5K5ZQ5shQ9yjMlZfl8tF0dGj/PK//2HPy6Pt1Vez47PP2L1gAWaDgbiICOwOB0fz8mjt74/LbMbpdFI1huq6deuIjY+nS9UIkgYDlZWVxLRpQ8zIkcRGROA/bhyY6h5P1OVwsOvjjyles4avPv6YmIgIWsXHs3XTJnzNZuJatCA4PJzM/Hxad+pEZJs2+FRWEt2jB20nT8ZQ7fYkxTYbv6xcSc7cuRzIzycqJITxb7yByXP/QoDKigqW/d//EVZRQVRICNGXX05wQoJ7qP3du8Fqhbg4cnfvZtP99+OTnY0UF5PTuzfWiAgcH33kvh7LZMKal0fWiBGUBgZSHBBAZHIygSYTwbfeSqsrr2TZgAG0LCjAz+HA4XKB2YzTYMAZGopMmoStrAzLxx/jX1hIGGAHHL6+OEeNos+XX2Lw8WHpuHHErFtHe5uNApeLMn9/Sn19MRkMSFAQ8bNmEXbVVQBseuYZTK+9RtvcXA5OnEjAddeR/thjhKWkkN+vH75OJ7ErVxLkclFpMLCudWsshYWMycsjw2wmKzSU4IIC4u12goEMo5FYl4tCwGUw4CtCoCeO5bivUwwHCnDfaqPUaKTY5aLMaASXC3/cI7v6XXUVoz/5hGKjkQKzmfSAAAyRkRQEBxO+ezeUluJvMhFqMHAkIcF9v8rSUpyJiVjLyijfuRNjZSWHJ04k/qOP8DcYKP3rX6koKSF+xQp8RQh2ucgFSoxGysxmClq0YOTWrfgHBZG2bRs7J0+mPCwMP4cD4+HDVFittN+2DZPLhdNsJrttW4JycggvKuJQZSW2vn0J+flnWtvtZLZrR+fly1k7ZQp+332HPSCAhNJSDHY7DhFsQO7QoRhCQohZt45Ko5FMESQ0lNCYGFpu3IjL4aDE35/UuDgir7qKgU89xSfjxtE1KQnx9ycnIoKElBTCnE4igA1BQZRXVpJQWYnFYMAIxIiwx9eXQIeDfIuFnIsvxrh8OR2yszG5XFSYTJQ7HBQCfn5+hNrtbA8NpcX06RQ88QQx+fkYLRbS+/cnpG9f7OvWkRsYiCk1lcj0dEoCAzH+5S/0eeUVDi5fzqGrriIASB80iNa//EJMYSGpsbGE/fWvlL73HvaAACLz8ggqL8dpNCIuFy2BHKORzOBgokpKyA0OxtW9O4mrVrHZs9/0AqKACpOJSw0G/P39MZvNhISE0H/AACrKy/H39yc2Lo7IiAj+8cgjAIwfP57MjAzKy8sxmUzk5+fj6+tLaGgoJpOJbdu2ERwcjMvlIis7my6JiZjNZo4cOUJiYiIPPPAAZWVl3HjjjVRUVmLx9aWishI/i4W4uDgyMjKIjY0lNDSUocOGERcby4cffsiBAwdo0aIFdoeDrMxMysrLAYiOiiKr2jW5IcHBdOjQgU2bNxMVGUlsbCylpaXk5OTgYzKRl5cHQGREBL1796a0tBSDwUD79u1JT0+nvLycI0eOcPDQoRrfkZ0811zv9VwvHx8XR7rnmvO77roLH6ORDz74AKfTSZHn+vJWLVsiIlx11VWEhYUxc+ZMrFYreXl5tGjRgvT0dIqrRpMF2rdrR1BQEAcPHqSwqIjOnTqxZ+9e7/S2bdqQm5tLkc1GVGQkRqMRh8NBrmebAAL8/fHx8cFWXExgQABGo5GQkBBcLheZmZm0bNmSsLAwgoODiY6O5qdNm0g7cgSH00lIcLC37ePGjmXLli3ebezerZv32CX18GEA4mJjadGiBcXFxWRkZODv7095eTn51a6p9fH8b3Z5DlO7dunCvn37sFgsmEwmwsPDyczMxGAwUFxSQkhwMEFBQeTk5FBpt2Py8cFisRAVFeV9Tzp36kRcXBybNm1CRLAVFxMXG8vRjAwAYqKjsdlslJWVIcCY0aPJz8/HZDLRrVs3bDYbdrudDRs20MYT0wMHDuBwOBg2bBgpKSmkHz1KmGefttvt5OfnYzAa8bNYCA4O9sYFoHevXoSEhJCdnc2RI0ewecZZiI6Kon2HDqSnpXEoNRWA4KAgbMXF+BiNOF0u/CwWAgICyMvPJyI8nNy8PNq2aYO/vz9RUVFkZ2eTn59PVlYWVquVLl26sH//fioqKoiJiSEyMhIRIScnh+LiYnx8fOjQoQNt27YlOTmZzMxM/Pz8iIyM5FnPrZpOtaKiIqxWqx7jngKaEDaj9PR0WrRowZo1axg8eLC3fMaMGXzwwQfs2bOn1jxPPPEETz75ZK1y/bAopeojIhgMBqp/3ds9g5WYPT8QmOpJ+JWq0xNPQB3/i5RSfzJGY7Pc0xQ0ITyV9AjgNHDsry5VB291efjhh7n33nu9r6t6CJVSqj5V3yfVv1d8fX+926Img6rRpk+Hm25q7lYopZRqAnoU0IwiIyPx8fEhw3OqQpWsrCxi6hjqH8BisWCxWE5F85RSSqm6GY2gP0YqpdSfgt6HsBn5+vpy9tlns2TJkhrlS5YsqXEKqVKnm5YvtmzuJiillFJKqSagPYTN7N577+W6666jb9++DBo0iLfffpvU1FRuv/325m6aUvVKs6U1dxOUUkoppVQT0ISwmV1xxRXk5uby1FNPcfToUbp37863335LQkJCczdN/QYOlwOny4nFpKf1KqWUUkqp05+OMvoHpyMwnV6eSnqK1amrWXzd4uZuyklleNKAPK5fHUoppZQ6OfQY99TRawiVakK5pbmk29IbVPfj7R/jcDlOcouUUkoppZSqnyaE6k9rW+Y2dmTtaO5m1Ouauddgq7A1dzMaJa0ozXsvO7vT3sytUUoppZRSv5cmhOpP6+9L/s4TSU/8pnmPFB1p2sb8SbR8qSUF5QUA7Mnd07yNOcaFn1zofX7FF1dQXFncjK1RSimllPpj0IRQqTq0eun33V/L4XIw4v0R7M7Zfdx6TnHWeN351c7kleWdcPmGJw2sP7KejOKME9ZtCk6X03t667TvpwGcdgnX13u/9j7/bMdnZJdkN2NrlFJKKaX+GDQhVKfE3ty9LE1ZWqv8ZI5pJAgGDI2er7C88Het1+FyYP6nmZWHVrLy0MpGrWtv7l5vD1x1TteviWNVYrY6dTVxL8Tx1sa3fld7G+KBJQ8w8v2RABwsOAhAVkkWF3x8AYv2L/rNy/1i5xdsSNvADV/dwNMrn66zTvXEc9PRTezK3lVj+j+T/olLXEDN/anMUfab23UqFZYX8uORH7l+3vUnrFtUUVTjtYjUuA5VxwhTSimlVGPpbSfUb1ZYXsj0H6bTJaoL2SXZLNy3kG5R3ViZupL9efu5uc/NlDvL6R7VnRfWvUB2aTaTe0+mlbUVWSVZhFhC+L81/8fDQx8mKiCKnNIcjAYjBoOBzRmbMRqMxAfFE2AOwO6yEx0YTWZxJgUVBXQI60BuWS7xwfGU2csI8w/D4XKQV5ZHYmQiHcM7svgX90if931/H9GB0VQ6KymuLMZismDAwO7c3bSxtmFf3j7ahbUjyDeI89qfx7OrnwXg0s8uJTEykfyyfALMAeSV5WExWUizpdElsgv+Jn82ZWyiXWg72oe3Z2yHsfwr+V81YnTbN7eRWpiK3WnHx+iD1WLlrLiz8DH6ANDh3x247ezbcLqctA9vD0D7f7XniRFPUO4oZ2fOTtJt6WxM38ib49+kY0RHtmduB+D7X74H4PaFt7MlYwv+Zn9aW1tzz/f30DOmJyMSRhDuH44BA05xUmYvo7W1NTmlOVQ6KzH7mPEx+JCcnkzrkNa0srp7RU1GE0aDEbPRzKy1s/jy8i/ZnrWdNYfXALD56GYAPt3xKQv3LWThvoW8Mf4N/Ex+/JT+ExaThQj/CNJsaRRWFBJkDsLf7E9xZTE9Y3riEhcOl4P44Hiu+vIqLk68mK92fwXA4cLDfLHrC+7ufzdZJVmE+oUyY/UMpvSbwqsbXvXGtWtUV67ufjWRAZFMXzGdhFD3bVo+3v4xFyVeBMB5c87j70P+jktcuMRFXlke83bP4/Kul2P2MQPuayIDzAGUO8rZkL6Bq3tcjcXHwrtb3iU5LRk/kx8PDXkIQbA77fj6+GL2MVPuKGfFwRUIwkWdL2JPzh4SIxMpc5QRFxRH0qEk5mybA8A1Pa6hQ3gH/E3+OFwOQv1C2Z2zG6uflU4RnZi9aTarU1cDMGfbHF7+y8sUlBfw5S533LtEduHms25m3u55rE5dzQvnvYDVYsXhcvDwsofJL8/nmXOeITYolpsW3MSs0bMwGozehHhP7h46R3TGz+SHS1zYnXZMRhOl9lJ8jD4ctR0lsyST/i36Yzaasbvs7vZZrBgMBnx9fLFV2IgPjsfqZ8XpcrIzeye2ShtWi9X72at0VlJqL8VsNPP5zs+ZNnAaKfkprDi4ggmJE3C4HJTaS2llbUWoXyhf7f6K+OB4esf2RkTYlLGJ/vH9MRgM+Jn8KK4s5oElDwDQKaITl3e9nM92fsaIhBHEBcWxP38/nSM6U1JZQqhfKAcLDtImtA0Wk4UD+Qf4Oftnwv3DGdZ6GHtz9/LGxjeIDYrl8q6XExEQgUtciAjljnLig+OZv2c+Qb5BtA1ti8lowuxjJrMkEwMGukZ1paSyBKufla2ZW/E1+rLuyDp6xvSkX3w/XOIizZZGuH84PgYfwvzDKLOXkVWSRbAlGJPRhI/BB4vJgq+PLwXlBbjExdbMrSRGJGI0GL3fS34mP44UHSHQNxADBvLL83G6nPiZ/LCYLIT6hZJVksWe3D0kWBOwVdiICowizC8Ms4+Z3NJcAn0D2ZC+gbyyPMa0G0OQb5C3l7+gvACzjxkDBlIKUogLisOAgciASPLK8tyffR8zfiY/KhwV+Pr4svrwavrH98dWaSMmMIbs0mzC/cO5tOultAtr93v+jSillDoNaEKofjOzj5lw/3CiAqJwupzEB8fTIbwDAP8c9U8iAyL5OetnogOjGdV2FINbDibMPwyz0UxiZCKVzko+mvgRTpeTMP8w/M3+7oQQA3annSDfINqEtsFoMOISF1Y/K/ll+WQUZxAfHE9Xn64EW4IpLC8kKjCKw4WHiQqI4kD+AQ4WHOT6XtcT7BtM9+jutAtrR4WzgoziDKwWK0aDkZigGIJ8g4gJiiEmMAaXuHjrp7eID4oH4K7+d2EymggwB+Bv9sdWYcNoMHK0+CixQbEA9InrQ3ZJNp/v/JzpP0yvFaPrel7HWXFnUWYvo21YW7JKslh7eC0L9i4AYP6V89meuZ1gSzA7s3cC8MiwR2gR0oIEawJmHzOj245mYIuBhFhC+GzHZ+zN3cutZ93K25veBmD2X2dT7ijH4mOhXVg7BrYcyIiEEZzT9hwqHBVEBUZhNBhJyU9h1ppZzP7rbHx9fHGK+wAxMTKRiIAIAswBOF1OKpwV5Jfl43A5eG7Mc8zZOoee0T1ZmrKUy7pexuc7Pwdg3eF17hjE9qFVSCtK7CV0i+5GdGA0sUGxHLUdJdgSTExgDH4mP3JKc5izbQ65Zbn8re/f2J+3nxnnzKhxqmeb0DbkleVxfofzWX9kPbllubxw3guE+oVyY+8beW/LewA8OORBEqwJHC0+yjPnPMOnOz5lRMIIfjr6E9fOuxaAs+LOonNEZ1ziIrs0m+1Z20mwJnBBpwsosZdgNBjZn7cfAwYMBgMmo4mO4R3JLMlkQ9oGAG7sfSPjOo7z9jbbXXbKHeXsztlNu7B25Jfn0z6sPaF+obQPa0+aLY1Seym9YnoRMyiG9WnrGdp6qLcdBeUF+Jv96RjRkbyyPHZk7eDCThcSHxzPZzs+467+d9Ha2hofow+3nHULSYeSmJA4Aac4ObftuYzrMI5uUd3ILcvFgIHXx79OcWUxbULbYKuw8dmln7l/BDAYcLqclDvKyS/LZ0y7MZQ7yr0H+w6XA4fLgcloYtWhVXSM6EjniM5YTBYyijOw+FiICIggtzQXq5+VDWkbGNFmBBWOClziwmAwUFheSExQDIHmQPzN/uSW5uJwOYgOjMZoMNIvvh9Gg5EO4R3o36I/hwsPk1qYSp/YPviZ/LC1tVHmKKNXTC8ySzLpLb3pGdOTMkcZaUVptAtrxx197+Cdze/QOaIzwxKGkVOaw7CEYThdTuwuO92iulFQXkCwJRirn5XIgEgiAyLx9fElzD+MAHMAHcPdse4e3Z39efvpE9eHYN9gBPEmNyajifM7nE9kQCQWHwsVzgqcLicR/hHEBMUQGxRLflk+EQER7vfQ5E+oXygRARF0iuiEU5z4m/1JsCZ4f/zIK8sjIiCCuKA4jAb3yTiVzkoqnBVYfCxY/axYfCy0DWtLmF+YO0Hl1wTVYDBQai8lzhHHz1k/0zu2tzehjAmMIcI/ghYhLcgoziAyIJJg32DsLjthfmE4xUl8UDyDWw4mITQBH4MPRoMRf7M/6bZ0ogOjERF25ewiwt+9DX4mPw4WHKS1tTURARGU2kvJK8ujzF7GxMSJFFcW0ymiE1GBUd6RlK0Wa5P8L1FKKdW89D6Ef3B6j5aTw/CkAdd094FvY/yU/hOtrK2IDozG8KSBf476J48Of7TedRx7L7+rvryKx4Y/Rteorsddz0NLH2Jn9k6+3vs1mfdnEh0Y3ah2/hYVjgoW7FnA5V9cDoBruosDBQfwN/kTFxz3u5Yd8EwADwx+gCdHPXncevty97Fo/yLuGnBXvXUW/7KYJb8sYUSbEVzQ6QJvedVXXUPfUxFp9Pv/W+WX5eMSFxEBEadkfUoppdTpTo9xTx1NCP/g9MNycjTFjdcNTxp4fszz3Df4vjqnl1SWEOgb+JuWXXXLB9+nfXE85vCegnqyldpL6fNWH/bm7m3SG9MfKTpCVEAUFpOlyZaplFJKqT8uPcY9dXRQGaXqsP6m9b97GdGB0Zwdf3a9039rMgju03XNPmYu6HTBKUsGAQLMAbw+7vUmX27LkJaaDCqllFJKNQO9hlCpOgxoOeB3LyPz/swmaMnxfX3V1yeu1MSqrodSSimllFJ/fHpkp5RqlFN1XZ1SSimllDr5NCFUSjWK9hAqpZRSSv156JGdUqpRDGgPoVJKKaXUn4UmhEqpRhncajB7puxp7mYopZRSSqkmoAmhUqpRfIw+dIro1NzNUEoppZRSTUATQqWUUkoppZQ6Q2lCqJRSSimllFJnKE0IlVJKKaWUUuoMpQmhUkoppZRSSp2hNCFUSimllFJKqTOUJoRKKaWUUkopdYbShFAppZRSSimlzlCaECqllFJKKaXUGUoTQqWUUkoppZQ6Q2lCqJRSSimllFJnKE0IlVJKKaWUUuoMZWruBqjfR0QAKCoqauaWKKWUUkop1TSqjm2rjnXVyaMJ4R+czWYDoFWrVs3cEqWUUkoppZqWzWbDarU2dzP+1AyiafcfmsvlIj09neDgYAwGQ3M3p9GKiopo1aoVhw8fJiQkpLmb84elcWwaGsemo7FsGhrHpqFxbDoay6ahcTwxEcFmsxEfH4/RqFe5nUzaQ/gHZzQaadmyZXM343cLCQnRL8QmoHFsGhrHpqOxbBoax6ahcWw6GsumoXE8Pu0ZPDU03VZKKaWUUkqpM5QmhEoppZRSSil1htKEUDUri8XC448/jsViae6m/KFpHJuGxrHpaCybhsaxaWgcm47GsmloHNXpRAeVUUoppZRSSqkzlPYQKqWUUkoppdQZShNCpZRSSimllDpDaUKolFJKKaWUUmcoTQiVUkoppZRS6gylCaE66VauXMlf//pX4uPjMRgMfPXVVzWmiwhPPPEE8fHx+Pv7M3LkSHbs2NE8jT2NPfvss/Tr14/g4GCio6O5+OKL2bNnT406GsuGeeONN+jZs6f3hsCDBg3iu+++807XOP42zz77LAaDgWnTpnnLNJYn9sQTT2AwGGo8YmNjvdM1ho2TlpbGtddeS0REBAEBAfTu3ZuffvrJO13jeWJt2rSptU8aDAbuvPNOQGPYUA6Hg0cffZS2bdvi7+9Pu3bteOqpp3C5XN46Gkt1OtCEUJ10JSUl9OrVi1dffbXO6bNmzeLFF1/k1VdfZcOGDcTGxjJmzBhsNtspbunpLSkpiTvvvJP169ezZMkSHA4H5513HiUlJd46GsuGadmyJTNnzmTjxo1s3LiRc845h4suusj7T1jj2HgbNmzg7bffpmfPnjXKNZYN061bN44ePep9bN++3TtNY9hw+fn5DBkyBLPZzHfffcfOnTt54YUXCA0N9dbReJ7Yhg0bauyPS5YsAeCyyy4DNIYN9X//93+8+eabvPrqq+zatYtZs2bx3HPP8e9//9tbR2OpTgui1CkEyLx587yvXS6XxMbGysyZM71l5eXlYrVa5c0332yGFv5xZGVlCSBJSUkiorH8vcLCwuQ///mPxvE3sNls0rFjR1myZImMGDFCpk6dKiK6TzbU448/Lr169apzmsawcR588EEZOnRovdM1nr/N1KlTpX379uJyuTSGjTB+/HiZPHlyjbKJEyfKtddeKyK6P6rTh/YQqmZ14MABMjIyOO+887xlFouFESNGsHbt2mZs2emvsLAQgPDwcEBj+Vs5nU7+97//UVJSwqBBgzSOv8Gdd97J+PHjGT16dI1yjWXD7du3j/j4eNq2bcuVV15JSkoKoDFsrAULFtC3b18uu+wyoqOj6dOnD7Nnz/ZO13g2XmVlJR9++CGTJ0/GYDBoDBth6NChLFu2jL179wKwdetWVq9ezbhx4wDdH9Xpw9TcDVBntoyMDABiYmJqlMfExHDo0KHmaNIfgohw7733MnToULp37w5oLBtr+/btDBo0iPLycoKCgpg3bx5du3b1/hPWODbM//73PzZt2sSGDRtqTdN9smEGDBjAf//7Xzp16kRmZiZPP/00gwcPZseOHRrDRkpJSeGNN97g3nvv5R//+AfJycncfffdWCwWrr/+eo3nb/DVV19RUFDADTfcAOjnujEefPBBCgsLSUxMxMfHB6fTyTPPPMNVV10FaCzV6UMTQnVaMBgMNV6LSK0y9aspU6awbds2Vq9eXWuaxrJhOnfuzJYtWygoKODLL79k0qRJJCUleadrHE/s8OHDTJ06lcWLF+Pn51dvPY3l8Y0dO9b7vEePHgwaNIj27dvzwQcfMHDgQEBj2FAul4u+ffsyY8YMAPr06cOOHTt44403uP766731NJ4N98477zB27Fji4+NrlGsMT+zTTz/lww8/5OOPP6Zbt25s2bKFadOmER8fz6RJk7z1NJaquekpo6pZVY2kV/UrWZWsrKxav5gpt7vuuosFCxbwww8/0LJlS2+5xrJxfH196dChA3379uXZZ5+lV69evPLKKxrHRvjpp5/Iysri7LPPxmQyYTKZSEpK4l//+hcmk8kbL41l4wQGBtKjRw/27dun+2MjxcXF0bVr1xplXbp0ITU1FdDvycY6dOgQS5cu5eabb/aWaQwb7oEHHuChhx7iyiuvpEePHlx33XXcc889PPvss4DGUp0+NCFUzapt27bExsZ6RzAD9/UKSUlJDB48uBlbdvoREaZMmcLcuXNZvnw5bdu2rTFdY/n7iAgVFRUax0Y499xz2b59O1u2bPE++vbtyzXXXMOWLVto166dxvI3qKioYNeuXcTFxen+2EhDhgypdTuevXv3kpCQAOj3ZGO99957REdHM378eG+ZxrDhSktLMRprHmr7+Ph4bzuhsVSnjWYazEadQWw2m2zevFk2b94sgLz44ouyefNmOXTokIiIzJw5U6xWq8ydO1e2b98uV111lcTFxUlRUVEzt/z08re//U2sVqusWLFCjh496n2UlpZ662gsG+bhhx+WlStXyoEDB2Tbtm3yj3/8Q4xGoyxevFhENI6/R/VRRkU0lg1x3333yYoVKyQlJUXWr18vF1xwgQQHB8vBgwdFRGPYGMnJyWIymeSZZ56Rffv2yUcffSQBAQHy4YcfeutoPBvG6XRK69at5cEHH6w1TWPYMJMmTZIWLVrIN998IwcOHJC5c+dKZGSk/P3vf/fW0Viq04EmhOqk++GHHwSo9Zg0aZKIuIddfvzxxyU2NlYsFosMHz5ctm/f3ryNPg3VFUNA3nvvPW8djWXDTJ48WRISEsTX11eioqLk3HPP9SaDIhrH3+PYhFBjeWJXXHGFxMXFidlslvj4eJk4caLs2LHDO11j2Dhff/21dO/eXSwWiyQmJsrbb79dY7rGs2G+//57AWTPnj21pmkMG6aoqEimTp0qrVu3Fj8/P2nXrp088sgjUlFR4a2jsVSnA4OISLN0TSqllFJKKaWUalZ6DaFSSimllFJKnaE0IVRKKaWUUkqpM5QmhEoppZRSSil1htKEUCmllFJKKaXOUJoQKqWUUkoppdQZShNCpZRSSimllDpDaUKolFJKKaWUUmcoTQiVUkoppZRS6gylCaFSSimllFJKnaE0IVRKKaWUUkqpM5QmhEoppZRSSil1htKEUCmllFJKKaXOUJoQKqWUUkoppdQZShNCpZRSSimllDpDaUKolFJKKaWUUmcoTQiVUkoppZRS6gylCaFSSimllFJKnaE0IVRKKaWUUkqpM5QmhEoppZRSSil1htKEUCmllFJKKaXOUJoQKqWUUkoppdQZShNCpZRSSimllDpD/T+IbZI38OadegAAAABJRU5ErkJggg==", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "p.SetMaxSinThetaOvLambda(0.3)\n", "p.quick_fit_profile(auto_background=True,plot=False, init_profile=True,verbose=True)\n", @@ -293,7 +146,7 @@ "# Plot in new figure\n", "p.plot(diff=True, fig=None, hkl=True)\n", "print(\"Fit result: Rw=%6.2f%% Chi2=%10.2f GoF=%8.2f LLK=%10.3f\" %\n", - " (p.rw * 100, p.chi2, p.chi2/p.GetNbPointUsed(), p.llk))" + " (p.rw * 100, p.chi2, p.chi2/p.GetNbPointUsed(), p.llk))\n" ] }, { @@ -308,7 +161,7 @@ "From this several values are extracted for each spacegroup setting:\n", "* **Rw** - the standard full-profile weighted R factor $R_{wp}$\n", "* **GoF**: the chi2 (full profile $\\chi^2=\\Sigma\\frac{(obs-calc)^2}{\\sigma^2}$) divided by the number of points used\n", - "* **nGoF**: this is the Goodness-of-Fit, but computed on integration intervals defined by P1 reflections, and then multipled by the number of reflections used divided by the number of reflections for the P1 spacegroup. This is more discriminating and allows to put forward spacegroups which yield a good fit with more extinctions.\n", + "* **nGoF**: this is the Goodness-of-Fit, but computed on integration intervals defined by P1 reflections, and then multiplied by the number of reflections used divided by the number of reflections for the P1 spacegroup. This is more discriminating and allows to put forward spacegroups which yield a good fit with more extinctions.\n", "* **reflections** is the number of reflections actually taken into account for this spacegroup up to the maximum sin(theta)/lambda\n", "* **extinct446** gives the number of extinct reflections for 0<=H<=4 0<=K<=4 0<=L<=6 (which is used internally as a unique fingerprint for the extinctions)\n", "\n", @@ -319,94 +172,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Beginning spacegroup exploration... 37 to go...\n", - " (# 1) P 1 : Rwp= 6.72% GoF= 14.60 nGoF= 3.32 (186 reflections, 0 extinct)\n", - " (# 2) P -1 : Rwp= 6.72% GoF= 14.60 nGoF= 3.32 (186 reflections, 0 extinct) [same extinctions as:P 1]\n", - " (# 3) P 1 2 1 : Rwp= 6.69% GoF= 14.47 nGoF= 1.90 (105 reflections, 0 extinct)\n", - " (# 4) P 1 21 1 : Rwp= 6.62% GoF= 14.12 nGoF= 1.70 (101 reflections, 2 extinct)\n", - " (# 5) C 1 2 1 : Rwp= 62.70% GoF= 1245.88 nGoF= 311.62 ( 52 reflections, 84 extinct)\n", - " (# 5) A 1 2 1 : Rwp= 62.84% GoF= 1254.25 nGoF= 314.24 ( 53 reflections, 85 extinct)\n", - " (# 5) I 1 2 1 : Rwp= 60.90% GoF= 1196.31 nGoF= 246.95 ( 52 reflections, 87 extinct)\n", - " (# 6) P 1 m 1 : Rwp= 6.69% GoF= 14.47 nGoF= 1.90 (105 reflections, 0 extinct) [same extinctions as:P 1 2 1]\n", - " (# 7) P 1 c 1 : Rwp= 6.58% GoF= 13.94 nGoF= 1.66 ( 96 reflections, 15 extinP 1 21/c 1 nGoF= 1.4785 GoF= 13.598 Rw= 6.50 [ 92 reflections, extinct446= 17]\n", - "P 1 c 1 nGoF= 1.6645 GoF= 13.940 Rw= 6.58 [ 96 reflections, extinct446= 15]\n", - "P 1 2/c 1 nGoF= 1.6645 GoF= 13.940 Rw= 6.58 [ 96 reflections, extinct446= 15]\n", - "P 1 21 1 nGoF= 1.6973 GoF= 14.123 Rw= 6.62 [101 reflections, extinct446= 2]\n", - "P 1 21/m 1 nGoF= 1.6973 GoF= 14.123 Rw= 6.62 [101 reflections, extinct446= 2]\n", - "P 1 2 1 nGoF= 1.8984 GoF= 14.468 Rw= 6.69 [105 reflections, extinct446= 0]\n", - "P 1 m 1 nGoF= 1.8984 GoF= 14.468 Rw= 6.69 [105 reflections, extinct446= 0]\n", - "P 1 2/m 1 nGoF= 1.8984 GoF= 14.468 Rw= 6.69 [105 reflections, extinct446= 0]\n", - "P 1 nGoF= 3.3186 GoF= 14.598 Rw= 6.72 [186 reflections, extinct446= 0]\n", - "P -1 nGoF= 3.3186 GoF= 14.598 Rw= 6.72 [186 reflections, extinct446= 0]\n", - "P 1 21/n 1 nGoF= 5.4006 GoF= 26.711 Rw= 9.12 [ 92 reflections, extinct446= 19]\n", - "P 1 2/n 1 nGoF= 5.7594 GoF= 27.072 Rw= 9.17 [ 96 reflections, extinct446= 17]\n", - "P 1 n 1 nGoF= 5.7594 GoF= 27.072 Rw= 9.17 [ 96 reflections, extinct446= 17]\n", - "Chosen spacegroup (smallest nGoF): P 1 21/c 1\n", - "ct)\n", - " (# 7) P 1 n 1 : Rwp= 9.17% GoF= 27.07 nGoF= 5.76 ( 96 reflections, 17 extinct)\n", - " (# 7) P 1 a 1 : Rwp= 9.26% GoF= 27.59 nGoF= 6.02 ( 97 reflections, 14 extinct)\n", - " (# 8) C 1 m 1 : Rwp= 62.70% GoF= 1245.88 nGoF= 311.62 ( 52 reflections, 84 extinct) [same extinctions as:C 1 2 1]\n", - " (# 8) A 1 m 1 : Rwp= 62.84% GoF= 1254.25 nGoF= 314.24 ( 53 reflections, 85 extinct) [same extinctions as:A 1 2 1]\n", - " (# 8) I 1 m 1 : Rwp= 60.90% GoF= 1196.31 nGoF= 246.95 ( 52 reflections, 87 extinct) [same extinctions as:I 1 2 1]\n", - " (# 9) C 1 c 1 : Rwp= 62.50% GoF= 1235.90 nGoF= 280.65 ( 47 reflections, 93 extinct)\n", - " (# 9) A 1 n 1 : Rwp= 63.01% GoF= 1259.14 nGoF= 291.94 ( 49 reflections, 93 extinct)\n", - " (# 9) I 1 a 1 : Rwp= 59.00% GoF= 1121.25 nGoF= 221.14 ( 48 reflections, 93 extinct)\n", - " (# 9) A 1 a 1 : Rwp= 63.01% GoF= 1259.14 nGoF= 291.94 ( 49 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", - " (# 9) C 1 n 1 : Rwp= 62.50% GoF= 1235.90 nGoF= 280.65 ( 47 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", - " (# 9) I 1 c 1 : Rwp= 59.00% GoF= 1121.25 nGoF= 221.14 ( 48 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", - " (# 10) P 1 2/m 1 : Rwp= 6.69% GoF= 14.47 nGoF= 1.90 (105 reflections, 0 extinct) [same extinctions as:P 1 2 1]\n", - " (# 11) P 1 21/m 1 : Rwp= 6.62% GoF= 14.12 nGoF= 1.70 (101 reflections, 2 extinct) [same extinctions as:P 1 21 1]\n", - " (# 12) C 1 2/m 1 : Rwp= 62.70% GoF= 1245.88 nGoF= 311.62 ( 52 reflections, 84 extinct) [same extinctions as:C 1 2 1]\n", - " (# 12) A 1 2/m 1 : Rwp= 62.84% GoF= 1254.25 nGoF= 314.24 ( 53 reflections, 85 extinct) [same extinctions as:A 1 2 1]\n", - " (# 12) I 1 2/m 1 : Rwp= 60.90% GoF= 1196.31 nGoF= 246.95 ( 52 reflections, 87 extinct) [same extinctions as:I 1 2 1]\n", - " (# 13) P 1 2/c 1 : Rwp= 6.58% GoF= 13.94 nGoF= 1.66 ( 96 reflections, 15 extinct) [same extinctions as:P 1 c 1]\n", - " (# 13) P 1 2/n 1 : Rwp= 9.17% GoF= 27.07 nGoF= 5.76 ( 96 reflections, 17 extinct) [same extinctions as:P 1 n 1]\n", - " (# 13) P 1 2/a 1 : Rwp= 9.26% GoF= 27.59 nGoF= 6.02 ( 97 reflections, 14 extinct) [same extinctions as:P 1 a 1]\n", - " (# 14) P 1 21/c 1 : Rwp= 6.50% GoF= 13.60 nGoF= 1.48 ( 92 reflections, 17 extinct)\n", - " (# 14) P 1 21/n 1 : Rwp= 9.12% GoF= 26.71 nGoF= 5.40 ( 92 reflections, 19 extinct)\n", - " (# 14) P 1 21/a 1 : Rwp= 9.20% GoF= 27.23 nGoF= 5.65 ( 93 reflections, 16 extinct)\n", - " (# 15) C 1 2/c 1 : Rwp= 62.50% GoF= 1235.90 nGoF= 280.65 ( 47 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", - " (# 15) A 1 2/n 1 : Rwp= 63.01% GoF= 1259.14 nGoF= 291.94 ( 49 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", - " (# 15) I 1 2/a 1 : Rwp= 59.00% GoF= 1121.25 nGoF= 221.14 ( 48 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", - " (# 15) A 1 2/a 1 : Rwp= 63.01% GoF= 1259.14 nGoF= 291.94 ( 49 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", - " (# 15) C 1 2/n 1 : Rwp= 62.50% GoF= 1235.90 nGoF= 280.65 ( 47 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", - " (# 15) I 1 2/c 1 : Rwp= 59.00% GoF= 1121.25 nGoF= 221.14 ( 48 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", - "Restoring best spacegroup: P 1 21/c 1\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "4b7730f297f840d39edcc3fbd3208be7", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADR60lEQVR4nOzdeVxU5f4H8M8MOwojaoikaTcLcSlNUdFyFzVJ0wq9IMrNuJUpecElU0vrqpVbaWnZz6tpmKU3t/SaW2JuiYoGqWmlqSlpyiowzHJ+fzDnNDPMwKwMw3zerxcvnTMPZ54Z5syc7/k+z/eRCYIggIiIiIiIiDyO3NUdICIiIiIiItdgQEhEREREROShGBASERERERF5KAaEREREREREHooBIRERERERkYdiQEhEREREROShGBASERERERF5KAaEREREREREHooBIRERERERkYdiQEhEREREROShGBASERERERF5KAaEREREREREHooBIRERERERkYdiQEhEREREROShGBASERERERF5KAaEREREREREHooBIRERERERkYdiQEhEREREROShGBASERERERF5KAaEREREREREHooBIRERERERkYdiQEhEREREROShGBASERERERF5KAaEREREREREHooBIRERERERkYdiQEhEREREROShGBASERERERF5KAaEREREREREHooBIRERERERkYdiQEhEREREROShGBASERERERF5KAaEREREREREHooBIRERERERkYdiQEhEREREROShGBASERERERF5KAaEREREREREHooBIRERUR2QkJDg6i4QEZEb8nZ1B4iIiMhyU6dOrbRNEAQcOXLEBb0hIiJ3x4CQiIjIjaSnp2P9+vWVtn/77bcu6A0REbk7BoRERERu5LnnnkNkZCRCQ0MNto8ZM8ZFPSIiIncmEwRBcHUniIiIiIiIqOaxqAwREREREZGHYkBIRERERETkoRgQEhERubmsrCxXd4GIiNwUi8oQERG5keXLlxvcFgQBK1aswPjx4zF+/HgX9YqIiNwVM4RERERu5MMPP8TXX3+NwMBA1KtXD/Xr14dcLkf9+vVd3TUiInJDrDLqxgRBQGFhIYqKihAUFASZTObqLhERkZMJgoBNmzZhy5YtGD58OEaMGIG4uDhs2rTJ1V0jInIYQRBQVFSE8PBwyOXMYTkTA0I3VlhYCIVC4epuEBERERE5xdWrV9GsWTNXd6NO4xxCNxYUFISrV6+iefPmuHr1KoKDg13dJSIiqmFarRZ//PEHmjZt6uquEBE5TGFhIZo3b46goCBXd6XuE8itFRQUCACEgoICQRAEYcmSJYKXl5cwduxYQRAEQaFQCMHBwUJgYKCQkJBg8Lu///67UK9ePQGA8NVXX0nbBwwYIHTq1EnYsWOHEBwcLAQHBwvjx48Xvv32WyEtLU3o37+/oFAohO3btxvsLyEhQcjPzzfY1qpVK6FXr15Ct27dhNTUVGHGjBlC06ZNhbS0NKnNokWLhHvuuUd48cUXhdWrVwsBAQHCxo0bBUEQhE6dOln1erzxxhtCu3bthF69egk9e/YUfv/9d0EQBGHFihXC6tWrDdq+8sorQklJibB69WohKipKuPfee616rKqUlpYKvXr1Mnt/enq60KJFi0qvIRERERFVPscl5+GA3DqoQ4cOWLNmjXT7p59+wtWrV7FhwwaUlJRI2xs2bIjMzEw88MADBr+/e/duAEC7du3QoUMH/P7778jLy8P58+cBAGvXrsWkSZMMfker1aK4uLjSEFaFQoEDBw7g6NGjOH36NJ5++mmkp6cbtElNTcUTTzyBl19+GQBw7733YtCgQTY///nz5+PAgQN4/vnnsXr1arPt3nvvPQQEBAAAxowZg7CwMJsf01rx8fFISkqqsccjIiIiIjKFQ0Y9RMOGDREQEIBff/0V7dq1AwD4+/sjMjLS7O/cd999UqEaHx8feHl5AYDBsKRdu3Zh7ty5yM/PR5s2bQAAc+fOxY4dO+Dj44PS0lIAgEajgUqlwn333YdLly7hyy+/xPHjxxEaGoovvvgCxcXF+Ne//oWEhASTfenduzceeeQRfPfddygrK0NRURFKS0sxZcoUTJs2DT/88ANeeuklXLlyBb/88gtiY2Px22+/4T//+Q8OHz6MX3/9FUBFufYuXbogOzsbZ86cwTfffGPy8dasWYMtW7ZApVIhPz8fL774IjZs2IDi4mLs3r0bXl5eGDNmDH7//XfUq1cPn332GRo2bIiXX34ZOTk56Natm7SvEydOYMqUKVCr1Rg2bBgmT55s0d+MiMgaubm5NXphi4iI6gZmCD3ETz/9hLKyMrRu3drq383KysKff/6JBx980GC7VqvFm2++iX379mH48OH4+eefcerUKZw4cQKHDx9GRkYGlEolevfujTZt2qBFixZo1KgRgoKC8Mwzz+DgwYO47777sH//fov6ERcXhz59+uD27dvYvn07pk2bJq3H9dprr+H//u//8Nxzz2HLli3o1KkT3n77bcydOxc7d+7EI488gldffRXTpk3Dzp07kZGRgTZt2uDf//632ce75557sGPHDvTt2xenTp3Cjh078OijjyIjIwObN2/Gfffdh4yMDPz973/HsmXLcOLECeTl5SEjIwP9+/eX9jNt2jR89dVX+O6773D48GH88ccfVv8NiIiqM2bMGFd3gYiI3BAzhB4gIiICMpkMr776Kry9rfuTK5VKTJ06Fdu2bcOPP/5ocF9hYSEuXryImJgY5OTkIDQ0FJmZmejRo4eUWWzQoAEOHDgAQRAQFxeH7777DkVFRdi2bRtOnjyJGzdu4JFHHrGoLw8//DDmzp2L0tJSTJo0CaWlpRB0RXL/+OMPREZGQiaTYeDAgXjppZcwZcoU7NixA3//+99RVFSEefPmwcvLC7m5uejduzfOnj1b5WM//PDDACqGsPr5+Un/z8vLw6VLlxAVFQUAiIqKwu7du/Hzzz+jU6dOAIAuXbpI+8nOzsbw4cMBAHl5ebh69SqaNGli0XMmIjKm//kiEgQBFy9edEFviGovrVaL8vJyV3eDzNAffUauVacCwoMHD2LBggVSoLF582Y89dRT0v3m1ul79913MWXKFAAVQxMzMjIM7h85ciQ2bNgg3c7Ly0NKSgq2bdsGABg6dCiWLVuGBg0aSG2uXLmCl19+Gfv370dAQADi4+OxcOFC+Pr6Sm2ys7MxYcIEHD9+HA0bNsQLL7yAWbNmOXw9wZ9++smmYUTFxcU4d+4cdu/ejXvuuafS/cHBwYiMjMSGDRswY8YMfPTRRzh79izmzJkjtREDNplMBoVCgTt37mDPnj1o2bIl9u7di9TUVKlNdWQyGVq3bo3Lly/jwIEDACAFYE2aNMG5c+cgCAJ++eUXPPDAA2jZsiUuX76M27dv4/jx41iwYAGCgoIwceJEHDhwAL1798bmzZuxdetWs49n6v+CIKBVq1bIzMzE008/jczMTDz44INo1aoVvv76awAVw0RFjzzyCDZt2gSFQgGNRsO1dIjILkVFRcjOzq50gW/AgAEu6hFR7VNeXo5Lly5Bq9W6uitUhQYNGiAsLIxrabtYnQoI7969i0ceeQT/+Mc/8PTTT1e6/8aNGwa3//e//2HcuHGV2iYnJ+PNN9+UbouFR0Tx8fG4du0adu3aBQD45z//icTERGzfvh1AxXy5IUOG4J577sGhQ4dw+/ZtjB07FoIgYNmyZQAqsmsDBgxAnz59kJmZiQsXLiApKQn16tVDWlqa/S+GhUJDQ3H79m2MGTMGI0eOxP/93/9J9y1btgylpaVIS0uDl5cXnnrqKWzcuBHr169HXl4eQkND0a9fP/Tp0wcymQwJCQn48ssv0bFjR0RHRyMgIAB//vknevfuDY1GgyZNmuDnn39GRkYGfv75ZzRr1gyPP/64lIkzpbCwEP3798eZM2fw/PPP48MPP8SaNWvQt29fAJCK5MydOxfPP/88rly5ApVKhaSkJBQWFkKj0SA+Ph5+fn5455138NRTTyEgIAC9evXCmTNn8N577+H++++3+nV76qmn8NVXX6Fnz56oV68e0tPT0bBhQwQHB6Nnz57o2rWr1Pbtt9/GiBEjoNVq4evriy1btlR6TxERWWrevHkoKipCSEiIwfaZM2e6qEdEtYsgCLhx4wa8vLzQvHlzXoithQRBQElJCW7evAkAXDbH1VxV3tTZAAibN2+uss2wYcOEvn37Gmzr1auX8Morr5j9nbNnzwoAhGPHjknbjh49KgAQzp8/LwiCIOzcuVOQy+XSkgeCIAiff/654OfnJ5XOXb58uaBQKISysjKpzfz584Xw8HBBq9Va+jQrleT95JNPBH9/f2nZCVsMGDBAePLJJwVBEISRI0cKPXv2FNRqtdn2u3btEu7cuWPz4y1atEho27at8NNPPwkbN24UHn30UeHrr7+2eX+2SExMFKKiomrs8dLT04VHHnlE2LdvX409JhHVTefOnXN1F4hqlfLycuHs2bOVlsKi2ufPP/8Uzp49a/I8k8tO1ByZIFg4Xs/NyGSySkNG9f3xxx9o1qwZPv30U8THx0vbe/fujR9//BGCIKBJkyYYPHgw3njjDWlRzP/85z9ITU1Ffn6+wf4aNGiAJUuW4B//+Adef/11bN26FWfOnJHuz8vLQ8OGDbF//3706dMHY8aMQUFBgcFwxaysLDz66KP49ddfzWatlEollEqldFtctLOgoIAL0xMReaC+fftaXJyLyBOUlZXh0qVLaNmyJUfk1HKlpaW4fPky7r//fvj7+xvcV1hYCIVCwXPcGlCnhoxa49NPP0VQUBBGjBhhsD0hIQH3338/wsLCkJOTg+nTp+PMmTPYs2cPgIqy3qGhoZX2FxoaitzcXKmNcdGQkJAQ+Pr6GrRp2bKlQRvxd3Jzc80GhPPnzzeYo0dERJ7Nx8fH1V0gqpU4L63249+odvDYgPA///kPEhISKl2NSE5Olv7frl07PPjgg+jcuTNOnTqFRx99FIDpN68gCGaLkFjaRtArwGLO9OnTkZqaKt0WM4REROSZzK2nSkREZAmPnGX73Xff4aeffsLzzz9fbdtHH30UPj4+UjnvsLAwk+vI3bp1S8rwhYWFSZlAUV5eHlQqVZVtxIm1VS1J4Ofnh+DgYIMfIiLyYFotMHUqoPsOIaK66cCBA5DJZJWmLRHZyyMDwlWrVqFTp04WrX/3448/QqVSSdWPoqOjUVBQgOPHj0ttvv/+exQUFKB79+5Sm5ycHIOqprt374afn5+0TEJ0dDQOHjxosD7O7t27ER4eXmkoKRERkVlnzwILFgDTp7u6J0RE5IbqVEBYXFyM06dP4/Tp0wCAS5cu4fTp07hy5YrUprCwEBs3bjSZHfzll1/w5ptv4sSJE7h8+TJ27tyJZ599Fh07dkSPHj0AAJGRkRg0aBCSk5Nx7NgxHDt2DMnJyYiNjUVERAQAICYmBm3atEFiYiKysrKwb98+TJ48GcnJyVJGT1wKISkpCTk5Odi8eTPmzZuH1NRUjqcmIiLLibXh+N1BREQ2qFMB4YkTJ9CxY0d07NgRAJCamoqOHTvi9ddfl9ps2LABgiDg73//e6Xf9/X1xb59+zBw4EBEREQgJSUFMTEx2Lt3L7y8vKR26enpaN++PWJiYhATE4OHH34Y69atk+738vLCjh074O/vjx49eiAuLg5PPfUUFi5cKLVRKBTYs2cPrl27hs6dO2P8+PFITU01mB9IRERULQaERHWGUqlESkoKQkND4e/vj8ceewyZmZkGbQ4fPoxHHnkE/v7+6Nq1K7Kzs6X7fvvtNzz55JMICQlBvXr10LZtW+zcubOmnwa5mTq77ISnYEleIiIPd+YM0KEDkJwMrFzp6t4QuZy47ISppQxqu1deeQWbNm3C//3f/6FFixZ49913sW3bNvz888/44Ycf0KdPH0RGRuL9999HWFgYXnvtNeTk5ODChQvw8fFBbGwsysvLsWjRItSrVw9nz55FcHAwevbs6eqnZlJVfyue49Ycj60ySkREVKcwQ0hkVklJCc6fP1/jj9u6dWsEBgZa1Pbu3btYsWIF1qxZg8GDBwMAPvnkE+zZswerVq1CVFQUAOCNN97AgAEDAFQso9asWTNs3rwZcXFxuHLlCp5++mm0b98eAPC3v/3NCc+K6hoGhERERO6MA32IqnX+/HmpsF9NOnnypLRsWXV++eUXqFQqqW4FULHOaJcuXXDu3DkpIIyOjpbub9iwISIiInDu3DkAQEpKCl566SXs3r0b/fv3x9NPP42HH37Ygc+I6iIGhERERO6McwiJqtW6dWucPHnSJY9rKXPrURuvY22KeP/zzz+PgQMHYseOHdi9ezfmz5+PRYsWYeLEiVb2nDwJA0IiIiJ3xoCQqFqBgYEWZ+pcpVWrVvD19cWhQ4cQHx8PAFCpVDhx4gQmTZoktTt27Bjuu+8+ABXrXF+4cMEg8GzevDlefPFFvPjii5g+fTo++eQTBoRUJQaEREREbqyoqAhBAK7+/juau7ozRGSzevXq4aWXXsKUKVPQsGFD3HfffXj33XdRUlKCcePG4cyZMwCAN998E40aNUKTJk0wY8YMNG7cGE899RQAYNKkSRg8eDAeeugh5OXlYf/+/YiMjHThsyJ3wICQiIjIjeXm5iIIwMWff2ZASOTm3n77bWi1WiQmJqKoqAidO3fGN998g5CQEIM2r7zyCi5evIhHHnkE27Ztg6+vLwBAo9Hg5ZdfxrVr1xAcHIxBgwZhyZIlrno65CYYEBIREbkxQaMBUHneERG5H39/fyxduhRLly6tdF/v3r2leYaxsbEmf3/ZsmVO7R/VTXVqYXoiIiJPY64QBRERkSUYEBIREbkxQaut+JcBIRER2YABIRERkRsTA0JmCImIyBYMCImIiNyYlnMIiYjIDgwIiYiI3BnXISQiIjswICQiInJjYoaQASEREdmCASEREZEbE+cQMiAkIiJbMCAkIiJyY1JAKOdXOhERWY/fHkRERG5MXJhezgwhkUebPXs2OnTo4OpukBtiQEhEROTGBM4hJCIiOzAgJCIicmMMCImIyB4MCImIiNyZLiAUOIeQyO1ptVq88847aNWqFfz8/HDfffdh7ty5AIBp06bhoYceQmBgIP72t79h1qxZUKlUVe7vP//5D9q2bQs/Pz80bdoUEyZMqImnQW7G29UdICIiItsJXJieqM6YPn06PvnkEyxZsgSPPfYYbty4gfPnzwMAgoKCsGbNGoSHhyM7OxvJyckICgrC1KlTTe5rxYoVSE1Nxdtvv43BgwejoKAAhw8frsmnQ26CASEREZEb06rVABgQErm7oqIivP/++/jggw8wduxYAMADDzyAxx57DAAwc+ZMqW3Lli2RlpaGL774wmxA+O9//xtpaWl45ZVXpG1RUVFOfAbkrhgQEhERuTHOISSyQEkJoMu01ajWrYHAQIuanjt3DkqlEv369TN5/6ZNm/Dee+/h559/RnFxMdRqNYKDg022vXnzJq5fv252X0T6GBASERG5MSlDyDmEROadPw906lTzj3vyJPDooxY1DQgIMHvfsWPHMGrUKMyZMwcDBw6EQqHAhg0bsGjRIqv3RWSMASEREZEbY4aQyAKtW1cEZ654XAs9+OCDCAgIwL59+/D8888b3Hf48GG0aNECM2bMkLb99ttvZvcVFBSEli1bYt++fejTp4/1/SaPwoCQiIjIjWl0GUIGhERVCAy0OFPnKv7+/pg2bRqmTp0KX19f9OjRA7du3cKPP/6IVq1a4cqVK9iwYQOioqKwY8cObN68ucr9zZ49Gy+++CJCQ0MxePBgFBUV4fDhw5g4cWINPSNyFwwIiYiI3JlWW/EvA0Iitzdr1ix4e3vj9ddfx/Xr19G0aVO8+OKLGDduHP71r39hwoQJUCqVGDJkCGbNmoXZs2eb3dfYsWNRVlaGJUuWYPLkyWjcuDGeeeaZmnsy5Dbq1ISDgwcP4sknn0R4eDhkMhm2bNlicH9SUhJkMpnBT7du3QzaKJVKTJw4EY0bN0a9evUwdOhQXLt2zaBNXl4eEhMToVAooFAokJiYiPz8fIM2V65cwZNPPol69eqhcePGSElJQXl5uUGb7Oxs9OrVCwEBAbj33nvx5ptvQhAEh70eRETkAcSAkIjcnlwux4wZM3D58mWUl5fjt99+w/Tp0wEA7777Lv78808UFRVhw4YNmDRpksH55+zZs3H69GmD/b3wwgs4f/48ysvLcf36dSxdurQGnw25izoVEN69exePPPIIPvjgA7NtBg0ahBs3bkg/O3fuNLh/0qRJ2Lx5MzZs2IBDhw6huLgYsbGx0IhzNADEx8fj9OnT2LVrF3bt2oXTp08jMTFRul+j0WDIkCG4e/cuDh06hA0bNuC///0v0tLSpDaFhYUYMGAAwsPDkZmZiWXLlmHhwoVYvHixA18RIiKq83QBIS8nEhGRLerUkNHBgwdj8ODBVbbx8/NDWFiYyfsKCgqwatUqrFu3Dv379wcAfPbZZ2jevDn27t2LgQMH4ty5c9i1axeOHTuGrl27AgA++eQTREdH46effkJERAR2796Ns2fP4urVqwgPDwcALFq0CElJSZg7dy6Cg4ORnp6OsrIyrFmzBn5+fmjXrh0uXLiAxYsXIzU1letJERGRRWTMEBIRkR3qVIbQEgcOHEBoaCgeeughJCcn4+bNm9J9J0+ehEqlQkxMjLQtPDwc7dq1w5EjRwAAR48ehUKhkIJBAOjWrRsUCoVBm3bt2knBIAAMHDgQSqUSJ3UVro4ePYpevXrBz8/PoM3169dx+fJlpzx3IiKqewQGhEREZAePCggHDx6M9PR07N+/H4sWLUJmZib69u0LpVIJAMjNzYWvry9CQkIMfq9JkybIzc2V2oSGhlbad2hoqEGbJk2aGNwfEhICX1/fKtuIt8U2piiVShQWFhr8EBERgXPQiYjIBnVqyGh1Ro4cKf2/Xbt26Ny5M1q0aIEdO3ZgxIgRZn9PEASDIZymhnM6oo1YUKaq4aLz58/HnDlzzN5PRESehRlCIiKyh0dlCI01bdoULVq0wMWLFwEAYWFhKC8vR15enkG7mzdvStm7sLAw/PHHH5X2devWLYM2xlm+vLw8qFSqKtuIw1eNM4f6pk+fjoKCAunn6tWr1jxlIiKqa3QXE1mlmoiIbOHRAeHt27dx9epVNG3aFADQqVMn+Pj4YM+ePVKbGzduICcnB927dwcAREdHo6CgAMePH5fafP/99ygoKDBok5OTgxs3bkhtdu/eDT8/P3Tq1Elqc/DgQYOlKHbv3o3w8HC0bNnSbJ/9/PwQHBxs8ENERB5MHF3i4m4QEZF7qlMBYXFxMU6fPi2twXLp0iWcPn0aV65cQXFxMSZPnoyjR4/i8uXLOHDgAJ588kk0btwYw4cPBwAoFAqMGzcOaWlp2LdvH7KysjB69Gi0b99eqjoaGRmJQYMGITk5GceOHcOxY8eQnJyM2NhYREREAABiYmLQpk0bJCYmIisrC/v27cPkyZORnJwsBXDx8fHw8/NDUlIScnJysHnzZsybN48VRomIyCrMDBIRkT3q1BzCEydOoE+fPtLt1NRUAMDYsWOxYsUKZGdnY+3atcjPz0fTpk3Rp08ffPHFFwgKCpJ+Z8mSJfD29kZcXBxKS0vRr18/rFmzBl5eXlKb9PR0pKSkSNVIhw4darD2oZeXF3bs2IHx48ejR48eCAgIQHx8PBYuXCi1USgU2LNnD15++WV07twZISEhSE1NlfpMRERkEXEdQgaGRERkA5nAbxC3VlhYCIVCgYKCAg4fJSLyQN89/zweX7UK3z3+OB4/eNDV3SFyubKyMly6dAn3338//P39Xd2dGjN79mxs2bJFGinnDGvWrMGkSZOQn5/vkP1V9bfiOW7NqVNDRomIiDyNVGWU13eJiMgGDAiJiIjcGQNBIiKyAwNCIiIid8aAkKjO0Gq1eOedd9CqVSv4+fnhvvvuw9y5cwEA06ZNw0MPPYTAwED87W9/w6xZs6BSqarc33/+8x+0bdsWfn5+aNq0KSZMmFBl+7y8PIwZMwYhISEIDAzE4MGDpeXZ9G3ZsgUPPfQQ/P39MWDAAINl0M6cOYM+ffogKCgIwcHB6NSpE06cOGHDq0E1hQEhERGRO+M6hER1xvTp0/HOO+9g1qxZOHv2LNavXy+tTx0UFIQ1a9bg7NmzeP/99/HJJ59gyZIlZve1YsUKvPzyy/jnP/+J7OxsbNu2Da1atary8ZOSknDixAls27YNR48ehSAIeOKJJwwCz5KSEsydOxeffvopDh8+jMLCQowaNUq6PyEhAc2aNUNmZiZOnjyJV199FT4+Pna+MuRMdarKKBERkaeRAkEGhERuraioCO+//z4++OADjB07FgDwwAMP4LHHHgMAzJw5U2rbsmVLpKWl4YsvvsDUqVNN7u/f//430tLS8Morr0jboqKizD7+xYsXsW3bNhw+fFhaWzs9PR3NmzfHli1b8OyzzwIAVCoVPvjgA3Tt2hUA8OmnnyIyMhLHjx9Hly5dcOXKFUyZMgWtW7cGADz44IO2viRUQ5ghJCIicmcMCInqhHPnzkGpVKJfv34m79+0aRMee+wxhIWFoX79+pg1axauXLlisu3Nmzdx/fp1s/t68cUXUb9+felHfHxvb28p0AOARo0aISIiAufOnZO2eXt7o3PnztLt1q1bo0GDBlKb1NRUPP/88+jfvz/efvtt/PLLL9a9EFTjmCEkIiJyZxwySmSRl75+Cb8X/V5jj3dv0L1YEbvC4vYBAQFm7zt27BhGjRqFOXPmYODAgVAoFNiwYQMWLVpk9b4A4M0338TkyZMNtpn7DBEEATKZzGCb8W39bbNnz0Z8fDx27NiB//3vf3jjjTewYcMGDB8+vMo+keswICQiInJjHDJKZBlrgjNXePDBBxEQEIB9+/bh+eefN7jv8OHDaNGiBWbMmCFt++2338zuKygoCC1btsS+ffvQp0+fSveHhoYiNDTUYFubNm2gVqvx/fffS0NGb9++jQsXLiAyMlJqp1arceLECXTp0gUA8NNPPyE/P18aIgoADz30EB566CH861//wt///nesXr2aAWEtxoCQiIjInXEdQqI6wd/fH9OmTcPUqVPh6+uLHj164NatW/jxxx/RqlUrXLlyBRs2bEBUVBR27NiBzZs3V7m/2bNn48UXX0RoaCgGDx6MoqIiHD58GBMnTjTZ/sEHH8SwYcOQnJyMjz/+GEFBQXj11Vdx7733YtiwYVI7Hx8fTJw4EUuXLoWPjw8mTJiAbt26oUuXLigtLcWUKVPwzDPP4P7778e1a9eQmZmJp59+2qGvFTkW5xASERG5MWnglhgYEpHbmjVrFtLS0vD6668jMjISI0eOxM2bNzFs2DD861//woQJE9ChQwccOXIEs2bNqnJfY8eOxXvvvYfly5ejbdu2iI2NNbmEhL7Vq1ejU6dOiI2NRXR0NARBwM6dOw2qhAYGBmLatGmIj49HdHQ0AgICsGHDBgCAl5cXbt++jTFjxuChhx5CXFwcBg8ejDlz5tj/4pDTyAROOnBrhYWFUCgUKCgoQHBwsKu7Q0RENezAqFHo/cUXyOjUCb241hcRysrKcOnSJdx///3w9/d3dXeoClX9rXiOW3OYISQiInJnHDJKRER2YEBIRETkzsRAkENGiYjIBgwIiYiI3JkuIKxcBJ6IiKh6DAiJiIjcmbgOoYu7QURE7okBIRERkRvjOoRERGQPBoRERETujAEhkUkspF/78W9UOzAgJCIicmfiHEKeWBEBqFgLDwDKy8td3BOqTklJCQAYrHNINc/b1R0gIiIiOzBDSGTA29sbgYGBuHXrFnx8fCCXM/9R2wiCgJKSEty8eRMNGjSQgnhyDQaERERE7owBIZEBmUyGpk2b4tKlS/jtt99c3R2qQoMGDRAWFubqbng8BoRERETujAEhUSW+vr548MEHOWy0FvPx8WFmsJZgQEhEROTOGAgSmSSXy+Hv7+/qbhDVehxUTURE5M4YEBIRkR0YEBIREbkzDhklIiI7MCAkIiJyZ1x2goiI7MCAkIiIyJ0xQ0hERHaoUwHhwYMH8eSTTyI8PBwymQxbtmyR7lOpVJg2bRrat2+PevXqITw8HGPGjMH169cN9tG7d2/IZDKDn1GjRhm0ycvLQ2JiIhQKBRQKBRITE5Gfn2/Q5sqVK3jyySdRr149NG7cGCkpKZUqXWVnZ6NXr14ICAjAvffeizfffBMCv9CJiMgaDAiJiMgOdSogvHv3Lh555BF88MEHle4rKSnBqVOnMGvWLJw6dQpfffUVLly4gKFDh1Zqm5ycjBs3bkg/H3/8scH98fHxOH36NHbt2oVdu3bh9OnTSExMlO7XaDQYMmQI7t69i0OHDmHDhg3473//i7S0NKlNYWEhBgwYgPDwcGRmZmLZsmVYuHAhFi9e7MBXhIiI6jpeSCQiInvUqWUnBg8ejMGDB5u8T6FQYM+ePQbbli1bhi5duuDKlSu47777pO2BgYFmF8k8d+4cdu3ahWPHjqFr164AgE8++QTR0dH46aefEBERgd27d+Ps2bO4evUqwsPDAQCLFi1CUlIS5s6di+DgYKSnp6OsrAxr1qyBn58f2rVrhwsXLmDx4sVITU2FTCZzxEtCRER1HTOERERkhzqVIbRWQUEBZDIZGjRoYLA9PT0djRs3Rtu2bTF58mQUFRVJ9x09ehQKhUIKBgGgW7duUCgUOHLkiNSmXbt2UjAIAAMHDoRSqcTJkyelNr169YKfn59Bm+vXr+Py5ctOeLZERFQniUVlXNwNIiJyT3UqQ2iNsrIyvPrqq4iPj0dwcLC0PSEhAffffz/CwsKQk5OD6dOn48yZM1J2MTc3F6GhoZX2FxoaitzcXKlNkyZNDO4PCQmBr6+vQZuWLVsatBF/Jzc3F/fff7/JfiuVSiiVSul2YWGhlc+ciIjqEikQZIaQiIhs4JEBoUqlwqhRo6DVarF8+XKD+5KTk6X/t2vXDg8++CA6d+6MU6dO4dFHHwUAk8M5BUEw2G5LG3EeSFXDRefPn485c+ZU9fSIiMiTcMgoERHZweOGjKpUKsTFxeHSpUvYs2ePQXbQlEcffRQ+Pj64ePEiACAsLAx//PFHpXa3bt2SMnxhYWFSJlCUl5cHlUpVZZubN28CQKXsor7p06ejoKBA+rl69Wo1z5iIiOo0BoJERGQHjwoIxWDw4sWL2Lt3Lxo1alTt7/z4449QqVRo2rQpACA6OhoFBQU4fvy41Ob7779HQUEBunfvLrXJycnBjRs3pDa7d++Gn58fOnXqJLU5ePCgwVIUu3fvRnh4eKWhpPr8/PwQHBxs8ENERB6MC9MTEZEd6lRAWFxcjNOnT+P06dMAgEuXLuH06dO4cuUK1Go1nnnmGZw4cQLp6enQaDTIzc1Fbm6uFJT98ssvePPNN3HixAlcvnwZO3fuxLPPPouOHTuiR48eAIDIyEgMGjQIycnJOHbsGI4dO4bk5GTExsYiIiICABATE4M2bdogMTERWVlZ2LdvHyZPnozk5GQpgIuPj4efnx+SkpKQk5ODzZs3Y968eawwSkRE1uGQUSIiskOdCghPnDiBjh07omPHjgCA1NRUdOzYEa+//jquXbuGbdu24dq1a+jQoQOaNm0q/YjVQX19fbFv3z4MHDgQERERSElJQUxMDPbu3QsvLy/pcdLT09G+fXvExMQgJiYGDz/8MNatWyfd7+XlhR07dsDf3x89evRAXFwcnnrqKSxcuFBqIy6Dce3aNXTu3Bnjx49HamoqUlNTa+jVIiKiOoEBIRER2UEmcEVbt1ZYWAiFQoGCggIOHyUi8kDf9uyJPt99h8MtW6LHpUuu7g4RkUPwHLfm1KkMIRERkcfhdV0iIrIDA0IiIiI3JrCoDBER2YEBIRERkTvjHEIiIrIDA0IiIiIiIiIPxYCQiIjIjck4ZJSIiOzAgJCIiMidccgoERHZgQEhERGRO2MgSEREdmBASERE5M6YISQiIjswICQiInJn4hxCF3eDiIjcEwNCIiIid8YMIRER2YEBIRERkTtjIEhERHZgQEhERFQHcNkJIiKyBQNCIiIid8Yho0REZAcGhERERO6MgSAREdmBASEREZEbY3VRIiKyBwNCIiIid8Yho0REZAcGhERERO6M6xASEZEdGBASERG5MzEgZIaQiIhswICQiIjInXHIKBER2YEBIRERERERkYdiQEhEROTOOGSUiIjswICQiIjIjYmBIMNBIiKyBQNCIiIid8YMIRER2YEBIRERkRtjGEhERPZgQEhEROTOuA4hERHZgQEhERGRG5NxyCgREdmBASEREREREZGHqlMB4cGDB/Hkk08iPDwcMpkMW7ZsMbhfEATMnj0b4eHhCAgIQO/evfHjjz8atFEqlZg4cSIaN26MevXqYejQobh27ZpBm7y8PCQmJkKhUEChUCAxMRH5+fkGba5cuYInn3wS9erVQ+PGjZGSkoLy8nKDNtnZ2ejVqxcCAgJw77334s0334TAK7xERGQNLkxPRER2qFMB4d27d/HII4/ggw8+MHn/u+++i8WLF+ODDz5AZmYmwsLCMGDAABQVFUltJk2ahM2bN2PDhg04dOgQiouLERsbC41GI7WJj4/H6dOnsWvXLuzatQunT59GYmKidL9Go8GQIUNw9+5dHDp0CBs2bMB///tfpKWlSW0KCwsxYMAAhIeHIzMzE8uWLcPChQuxePFiJ7wyRERUV3HIKBER2UWoowAImzdvlm5rtVohLCxMePvtt6VtZWVlgkKhED766CNBEAQhPz9f8PHxETZs2CC1+f333wW5XC7s2rVLEARBOHv2rABAOHbsmNTm6NGjAgDh/PnzgiAIws6dOwW5XC78/vvvUpvPP/9c8PPzEwoKCgRBEITly5cLCoVCKCsrk9rMnz9fCA8PF7RarcXPs6CgQAAg7ZeIiDxLxoMPCgIgnGrQwNVdISJyGJ7j1pw6lSGsyqVLl5Cbm4uYmBhpm5+fH3r16oUjR44AAE6ePAmVSmXQJjw8HO3atZPaHD16FAqFAl27dpXadOvWDQqFwqBNu3btEB4eLrUZOHAglEolTp48KbXp1asX/Pz8DNpcv34dly9fNvs8lEolCgsLDX6IiIiIiIhs4TEBYW5uLgCgSZMmBtubNGki3ZebmwtfX1+EhIRU2SY0NLTS/kNDQw3aGD9OSEgIfH19q2wj3hbbmDJ//nxp7qJCoUDz5s2rfuJERFS3ccgoERHZwWMCQpFMZrhSkyAIlbYZM25jqr0j2gjil3oV/Zk+fToKCgqkn6tXr1bZdyIiqtsYCBIRkT08JiAMCwsDUDn7dvPmTSkzFxYWhvLycuTl5VXZ5o8//qi0/1u3bhm0MX6cvLw8qFSqKtvcvHkTQOUspj4/Pz8EBwcb/BARkQdjhpCIiOzgMQHh/fffj7CwMOzZs0faVl5ejoyMDHTv3h0A0KlTJ/j4+Bi0uXHjBnJycqQ20dHRKCgowPHjx6U233//PQoKCgza5OTk4MaNG1Kb3bt3w8/PD506dZLaHDx40GApit27dyM8PBwtW7Z0/AtARERERERkpE4FhMXFxTh9+jROnz4NoKKQzOnTp3HlyhXIZDJMmjQJ8+bNw+bNm5GTk4OkpCQEBgYiPj4eAKBQKDBu3DikpaVh3759yMrKwujRo9G+fXv0798fABAZGYlBgwYhOTkZx44dw7Fjx5CcnIzY2FhEREQAAGJiYtCmTRskJiYiKysL+/btw+TJk5GcnCxl9OLj4+Hn54ekpCTk5ORg8+bNmDdvHlJTU6sdwkpERGSM3xxERGQLb1d3wJFOnDiBPn36SLdTU1MBAGPHjsWaNWswdepUlJaWYvz48cjLy0PXrl2xe/duBAUFSb+zZMkSeHt7Iy4uDqWlpejXrx/WrFkDLy8vqU16ejpSUlKkaqRDhw41WPvQy8sLO3bswPjx49GjRw8EBAQgPj4eCxculNooFArs2bMHL7/8Mjp37oyQkBCkpqZKfSYiIrIIF6YnIiI7yASB3yDurLCwEAqFAgUFBZxPSETkgQ7dfz8eu3wZPwQF4WEuRUREdQTPcWtOnRoySkRE5HFYVIaIiOzAgJCIiIiIiMhDMSAkIiJyYzJmCImIyA4MCImIiNyZGBC6uBtEROSeGBASEZHTJCQkuLoLREREVIU6tewEERG5xtSpUyttEwQBR44ccUFvPAuHihIRkT0YEBIRkd3S09Oxfv36Stu//fZbF/TGw3AOIRER2YEBIRER2e25555DZGQkQkNDDbaPGTPGRT0iIiIiS3BhejfHRTuJiDzbkWbN0P3333EuIACRJSWu7g4RkUPwHLfmsKgMERGRG+NQUSIisgcDQiIiInfGZSeIiMgODAiJiIjqAGYKiYjIFgwIiYjIbl9++SU6duyI0aNH49NPP0VERASioqKwbds2V3etzmMgSERE9mCVUSIistuiRYtw+PBhFBUVoUOHDjh//jz8/f3Rv39/DB061NXdq9sYEBIRkR0YEBIRkd0CAgIQGBiIwMBA9OvXDwqFAgDg7c2vmZrCOYRERGQLDhklIiK7dejQARqNBgDw2WefAQDKy8vRqFEjV3bLI8i4MD0REdmBl26JiMhu7733XqVtvr6+2LRpU813hoiIiCzGDCEREZEbk3HZCSIisgMDQiIiojqAQ0aJiMgWDAiJiMhpcnNzXd0FIiIiqgIDQiIicpoxY8a4ugt1HzODRERkBxaVISIiu3Xp0qXSNkEQcPHiRRf0xrNwDmHdlpWVhVmzZsHHxwdTpkxB9+7dAQDjxo3DqlWrXNw7IqoLGBASEZHdioqKkJ2dXWndwQEDBrioR56HcwjrppSUFKxevRre3t6YMmUKjh07htTUVPz666+u7hoR1REcMkpERHabN28eioqKKm2fOXOmC3rjWRgI1m0ymQytWrVCy5YtsXHjRhQWFiI5ORlqtdrVXSOiOoIBIRGRhRISElzdhVpr+PDhCAkJkW6fP38eANCrVy9XdcnjcMho3RQaGorLly9Lt2fPno1evXohMzPTdZ0iojpFJgi8tOjOCgsLoVAoUFBQgODgYFd3h6hOmDp1aqVtgiBg06ZNuHTpkgt65H769u2L/fv3u7obHuFkw4bolJeH37y90UKlcnV3iIgcgue4NcfjMoQtW7aETCar9PPyyy8DAJKSkird161bN4N9KJVKTJw4EY0bN0a9evUwdOhQXLt2zaBNXl4eEhMToVAooFAokJiYiPz8fIM2V65cwZNPPol69eqhcePGSElJQXl5uVOfPxFVLz09HUOGDDH4iY2NRaNGjVzdNbfh4+Pj6i4QERGRBTyuqExmZiY0Go10OycnBwMGDMCzzz4rbRs0aBBWr14t3fb19TXYx6RJk7B9+3Zs2LABjRo1QlpaGmJjY3Hy5El4eXkBAOLj43Ht2jXs2rULAPDPf/4TiYmJ2L59OwBAo9FgyJAhuOeee3Do0CHcvn0bY8eOhSAIWLZsmdOePxFV77nnnkNkZCRCQ0MNtnMJBct98803ru6Cx2CVUSIisofHDxmdNGkSvv76a1y8eBEymQxJSUnIz8/Hli1bTLYvKCjAPffcg3Xr1mHkyJEAgOvXr6N58+bYuXMnBg4ciHPnzqFNmzY4duwYunbtCgA4duwYoqOjcf78eUREROB///sfYmNjcfXqVYSHhwMANmzYgKSkJNy8edPi1DjT6UREnu1USAgezc/HFW9v3Mcho0RUR/Act+Z43JBRfeXl5fjss8/w3HPPQSb769rqgQMHEBoaioceegjJycm4efOmdN/JkyehUqkQExMjbQsPD0e7du1w5MgRAMDRo0ehUCikYBAAunXrBoVCYdCmXbt2UjAIAAMHDoRSqcTJkyfN9lmpVKKwsNDgh4iIPBczhJ5J/zyEiMgeHjdkVN+WLVuQn5+PpKQkadvgwYPx7LPPokWLFrh06RJmzZqFvn374uTJk/Dz80Nubi58fX0NqukBQJMmTZCbmwsAyM3NrTTUDKioFKbfpkmTJgb3h4SEwNfXV2pjyvz58zFnzhxbnzIREdVRXH6iboqLi6u0TRAEZGdnu6A3RFQXeXRAuGrVKgwePNggSycOAwWAdu3aoXPnzmjRogV27NiBESNGmN2XIAgGWUb9/9vTxtj06dORmpoq3S4sLETz5s3NticiIiL3lZmZif3790Mu/2tQlyAISExMdGGviKgu8dgho7/99hv27t2L559/vsp2TZs2RYsWLXDx4kUAQFhYGMrLy5GXl2fQ7ubNm1LGLywsDH/88Uelfd26dcugjXEmMC8vDyqVqlLmUJ+fnx+Cg4MNfojIsfbs2YOuXbuie/fu2LBhg7R9yJAhLuwVkWkcMlq3TZkyBUFBQWjRooX007JlS0yYMMHVXSOiOsJjA8LVq1cjNDS02hO827dv4+rVq2jatCkAoFOnTvDx8cGePXukNjdu3EBOTg66d+8OAIiOjkZBQQGOHz8utfn+++9RUFBg0CYnJwc3btyQ2uzevRt+fn7o1KmTw54nEVnvjTfewDfffIO9e/fi+PHjmDhxIrRaLUpKSlzdNZfLyspCbGwshg8fLs2JBoBx48a5sFcEMCCsq8aPH4/GjRtX2q4/oomIyB4eOWRUq9Vi9erVGDt2LLy9/3oJiouLMXv2bDz99NNo2rQpLl++jNdeew2NGzfG8OHDAQAKhQLjxo1DWloaGjVqhIYNG2Ly5Mlo3749+vfvDwCIjIzEoEGDkJycjI8//hhAxbITsbGxiIiIAFAxGbxNmzZITEzEggULcOfOHUyePBnJycnM+hG5mJeXFxo0aAAAWLx4MdasWYNhw4ahuLjYtR2rBVJSUrB69Wp4e3tjypQpOHbsGFJTU/Hrr7+6umseS8oQcg4hERHZwCMzhHv37sWVK1fw3HPPGWz38vJCdnY2hg0bhoceeghjx47FQw89hKNHjyIoKEhqt2TJEjz11FOIi4tDjx49EBgYiO3bt0trEAIVC1u3b98eMTExiImJwcMPP4x169YZPNaOHTvg7++PHj16IC4uDk899RQWLlzo/BeAiCRqtbrStg4dOuDy5cvS7aSkJKSmpqKoqKgGe1Y7yWQytGrVCi1btsTGjRtRWFiI5ORkk68jERER1X4evw6hu+MaLUTWy87OxrRp05Cfnw9vb2+oVCo0btwY8+bNQ/v27V3dvVrtmWeewcKFC9GyZUtp22effYbnn38eZWVlruuYB/shKAgPFxfjhlyOphqNq7tDNaSoqMjgYjVRXcNz3JrDgNDN8WAhst7jjz+O9evXG1TovXLlChISEvDdd9+5sGdE1hMDwly5HGEMCOuctWvXYsGCBfDx8UFcXBxeffVVAEDfvn2xf/9+F/eOyHl4jltzPHLIKBF5No1GA4VCYbAtODgYGp5MkxtildG6bcWKFTh16hROnTqFwMBAPPPMMygpKQGv5xORo3hkURki8mxvv/02YmNj4evri+DgYBQUFECtVuOdd96p8vdyc3MRFhZWQ70ksozM6F+qW+RyOXx8fABUFHWKjIzE4MGDcefOHRf3jIjqCgaERORxevbsiYMHD6K0tBT5+fkICQmBv79/tb83ZswY7N69uwZ6SGQ9T6gympWVhVmzZsHHxwdTpkyRlnIaN24cVq1a5eLeOceQIUNw+fJlad7ugAEDEB4ejrS0NNd2jIjqDAaEROSxAgICEBAQUGl7ly5dKm0TBAEXL16siW65pZiYGAbLLuIJgaDIE5c9ee211wxunz9/Hm3btsWuXbtc1CMiqmsYEBIRGSkqKkJ2drbBOqVAxZV5TxcXF1dpmyAIyM7OdkFvSJ8nDBkVlz0BgI0bN2L27Nket+zJ+PHjWUyGiByKASERkZF58+ahqKgIISEhBttnzpzpoh7VHpmZmdi/fz/k8r9qkgmCgMTERBf2ijxFaGiowfDJ2bNn47PPPjNY57euE+cTEhE5CpedcHMsyUtkvT179mDmzJnw8vJCSkoKRo0aBaBirs6OHTsqtT9//jxat25d092slZYvX464uDg0btzYYPsXX3yBkSNHuqhXnu1sYCDalJbitkyGRlqtq7tDROQQPMetOVx2gog8zhtvvIFvvvkGe/fuxfHjxzFx4kRotVqUlJSYbD9+/Pga7mHtNX78+ErBIAAGg7WAJwwZJSIix2NASEQex8vLCw0aNEBgYCAWL16MTp06YdiwYSguLjbZnkO0qDbjshNERGQPBoRE5HE6dOiAy5cvS7eTkpKQmpqKoqIik+2/+eabGuoZkfU8fWH6rKwsV3eBiMitcQ6hm+P4aqqtEhISkJ6e7upuOI5MhoIxY6D49FNX96RWys3NRVhYmKu74ZHOBwSgdVkZCgAo6vhX+vLlyw1uC4KAFStWYPz48RzaTVTH8By35rDKKBHZZerUqZW2CYKAI0eOuKA3zqVYuxZgQGjSmDFjuA6hi3hSZvDDDz9EixYtEBcXB5ms4pnL5XLUr1/fxT0jInJfDAiJyC7p6elYv359pe3ffvutC3pDztalS5dK2wRBwMWLF13QGwI8a2H6nJwcfP7559i4cSPi4uIwcuRIfPHFFxgzZoyru0ZE5LYYEBKRXZ577jlERkYiNDTUYLs7nqBx2GP1ioqKkJ2dDW9vw6+PAQMGuKhHnkGtVld6zY15QqZQJpMhPj4eo0aNQnp6OoYOHYo///zT1d0iInJrLCpDRHZ56623KgWDAJCSkuKC3tinJoPYrKwsxMbGYvjw4QbDa8eNG1djfbDFvHnzTBbfmTlzpgt6U7dlZ2fjiSeeQPfu3dG3b19ER0fjySefRHZ2tkE7T6wyKpfLkZiYiG3btmHLli2u7o5N3PUzgIjqHmYIicjj1IZhjykpKVi9ejW8vb0xZcoUHDt2DKmpqfj1119rrA+2GD58uMHt8+fPo3Xr1ujVq5eLelR3jR8/HuvXr0fz5s2lbVeuXEFCQgK+++67Su09KSAUyeVyhIeHu7obNnHXzwAiqnuYISQij1NUVIQjR47g+PHj0k9mZiaioqJqrA8ymQytWrVCy5YtsXHjRhQWFiI5ORlqtbrG+uAIrOzoPBqNBgqFwmBbcHAwNBqNwTZPX3bCXdWVzwAicn/MEBKRxxGHPYaEhBhsr8lhj6Ghobh8+TJatmwJAJg9ezY+++wzrFu3rsb64Ag+Pj6u7kKd9fbbbyM2Nha+vr4IDg5GQUEB1Go13nnnnUptNfCcgFCpVOLHH3/EnTt30LBhQ7Rr1w6+vr6u7pbV6spnABG5P65D6Oa4RgvVVjExMe61DMGtW8A995i/X1fiHvzIpBpWWlqK/Px8hISEwN/fv9L9v/j54b7ycqgBBNTx9+e6deuwYsUKREVFITg4GPn5+Th16hReeukljB492tXdIyIH4jluzWGGkIjsEhcXV2mbIAiVCl/UasePA127AgcOAJwLR7VMQEAAAgICzDcQBAjwjAzhxx9/jEOHDkEu/2vGi1qtRu/evRkQEhHZiAEhEdklMzMT+/fvNzhBEwQBiYmJLuyVle7cqfh3zx4GhOR2ZPCcIaMBAQHIyMhAnz59AFR81mRkZJjMnBIRkWVYVIaI7DJlyhQEBQWhRYsW0k/Lli0xYcIEV3fNckFBFf/evFnjD33nzh38/PPPuCMGpRZguXrPlZWVVWmbXBA8JiBct24dtm7dih49eqBbt27o2bMnvv76a3z22Wc11gdHF32x5jOABWeIyBmYISQiu5irMjly5Mga7ontfvzhB7QFcPPWLVReURFOmTe4b98+vP7662jcuLE0FyovLw9z5sxBv379qvxddyhXv3fvXgwYMAB5eXlo0KCBq7vjlpYvX25wWxAErFixAuPHjzc47mQAtPCMgDAsLAzvvfdejT9udnY2pk2bhvz8fHh7e0OlUqFx48aYN28e2rdvb9M+Lf0McMZjExHpY0BIRB7v2m+/oS2AW2YCQq1a7fDhFK+//jp27dqFIDE7iYoJ9IMHD642IBTL1QPAxo0bMXv27FpXrn79+vUAgOvXrzMgtNGHH36IFi1aIC4uDjJdUSO5XI769esbtJMBEGQyafkJj7NiBdCzJ9C2rdMewto1IS1h6WeAMx6biEgfh4wSkccL0JWsV5kJqDTl5Q5/TLlcjlu3bhlsu3XrlsFcTHPEcvWi2bNno1evXsjMzHR0N23mVVqK8QC8LHg+ZFpOTg5Gjx6NrVu3wtfXF4mJiWjWrBnGjBlj0E7mQUNGTRo/HqoePZz6EJauCWkNSz8DnPHYVHdkZGSgf//+SE1Nxe7du9GxY0f07t0bR48edXXXyI14VIZw9uzZmDNnjsG2Jk2aIDc3F0DFcJw5c+Zg5cqVyMvLQ9euXfHhhx+ird5VR6VSicmTJ+Pzzz9HaWkp+vXrh+XLl6NZs2ZSm7y8PKSkpGDbtm0AgKFDh2LZsmUGV8mvXLmCl19+Gfv370dAQADi4+OxcOFCt1xLiciU3NxchIWFubobFrEkIHT0ansrV65EWloacnNzIQgCZDIZmjZtipUrV1b7u5s2baq0bfTo0bWqyuLwrCw8AeC3S5eA1q1d3R23JJPJEB8fj1GjRiE9PR1Dhw7Fn3/+WbkdPGfIqDl3CwrQwIn7t2ZNSEtZ+hngjMemumPatGnYuHEj8vPzERMTg8zMTAQGBmLEiBE4cOCAq7tHbsKjAkIAaNu2Lfbu3Svd9vLykv7/7rvvYvHixVizZg0eeugh/Pvf/8aAAQPw008/SUM6Jk2ahO3bt2PDhg1o1KgR0tLSEBsbi5MnT0r7io+Px7Vr17Br1y4AwD//+U8kJiZi+/btACqu9g0ZMgT33HMPDh06hNu3b2Ps2LEQBAHLli2rqZeCyKnGjBnjNusQ+uiuyKvMXHF3RoYwMjISmzdvdvh+aws/8TWrRcNY3ZVcLkdiYiISEhKkC5gG9wPQevKQUVQ8f2fq2bMnDh48WO2akNaw9DPAGY9NdYe/vz+aN2+O5s2bIzIyUkpQ6J/fElXH4wJCb29vk1kLQRDw3nvvYcaMGRgxYgQA4NNPP0WTJk2wfv16vPDCCygoKMCqVauwbt069O/fHwDw2WefoXnz5ti7dy8GDhyIc+fOYdeuXTh27Bi6du0KAPjkk08QHR2Nn376CREREdi9ezfOnj2Lq1evIjw8HACwaNEiJCUlYe7cuVx8k9xKly5dKm0TBAEXL150QW9sI+iCFm0NBoR1nVYXnHBYm+PI5XLpO8OAIEBb892pFdRKJbzh/IBQVO2akHX0san2CgsLg0ajgZeXF/bv3w+gohqtVuupnwpkC4+b3HHx4kWEh4fj/vvvx6hRo6SqfJcuXUJubi5iYmKktn5+fujVq5dU1v3kyZNQqVQGbcLDw9GuXTupzdGjR6FQKKRgEAC6desGhUJh0KZdu3YGX+wDBw6EUqnEyZMnnffkiZygqKgIR44cwfHjx6WfzMxMREVFubprFhMDQsHMSaVWparJ7tQJAgPCGiNHxXvX477QAZTm5wOAxwbERBs2bKiUDfT29saePXtc1CNyRx71/dG1a1esXbsW33zzDT755BPk5uaie/fuuH37tjQMp0mTJga/oz/HMDc3F76+vggJCamyTWho5TqFoaGhBm2MHyckJAS+vr4mhwPpUyqVKCwsNPghcqV58+ahqKio0vaZM2e6oDe2EaoZ1uisDKFSqcSpU6ewd+9enDp1CuV2Po7+xSpXkzKEHDLqcMbfE+IcQuCvQNxTSAGhjRlCawtyGK8Z6IzKvqY+T0XXr1/HgQMHDIpKEZni7e1xgwDJDh71bhk8eLD0//bt2yM6OhoPPPAAPv30U3Tr1g0ApNLeInGid1WM25hqb0sbU+bPn1+pMA6RKw0fPtzg9vnz59G6dWv06tXLRT2ynqDLAJrLEFYXMNpi3bp1WLFiBaKioqQ1yE6dOoWXXnqp2uIwcXFxlfsoCMjOznZ4P20lDldihtDxjOfnygUBWrEypSAg6/RpzJo1Cz4+PpgyZQq6d+8OABg3bhxWrVrlii47TVlBAQDbA0JLC3Lorxmo0Whw/PhxlJWVoWXLlqhXr55N6wKuXbsWCxYsgI+PD+Li4vDqq68CAIYNGyYN/QOAESNG4KuvvsLKlSuxfv16dO/eHWfOnEH37t0xY8YMm543OVZGRgbeeustPPzwwxg0aBCmTZsGhUKB+fPnIzo62tXdI6qWRwWExurVq4f27dvj4sWLeOqppwBUXHlt2rSp1ObmzZtSNi8sLAzl5eXIy8szyBLevHlT+sINCwvDH3/8Uemxbt26ZbCf77//3uD+vLw8qFSqSplDY9OnT0dqaqp0u7Cw0GBtIiJXGz9+vMHJjDtwRYbw448/xqFDhwxKzKvVavTu3bvagDAzMxP79+83+F1BEJCYmOjwftpKyhByuK3NrJmfK+YFBa0WKSkpWL16Nby9vTFlyhQcO3YMqamp0hSJukSpGyVja0BoaUEO/TUDH3/8cZw8eRIKhQKDBw/G4cOHbVoXcMWKFTh16hR8fHywdOlSPPPMM1i7dm2lLK84Eujzzz83OO4ff/xxBoS1BCt9krvzqCGjxpRKJc6dO4emTZvi/vvvR1hYmMGY6/LycmRkZEjBXqdOneDj42PQ5saNG8jJyZHaREdHo6CgAMePH5fafP/99ygoKDBok5OTgxs3bkhtdu/eDT8/P3Tq1KnKPvv5+SE4ONjghzxDQkKCq7tgER8fRy/Q4HxaF8whDAgIQEZGhnRbEARkZGRYVD1wypQpCAoKQosWLaSfli1bYsKECQ7vp704/9J2ls7PlQPQ6N67glYLmUyGVq1aoWXLlti4cSMKCwuRnJzslOGNrqYpKan418aAUCzIAaDKghz6awaK6wLqrxloy7qAcrlc+rxMSUnBCy+8gMGDB1daWqRVq1b4+uuvERUVhe3bt6OoqAgHDx40WNCeXEu8sNC+fXvpwkLDhg1rpNLnnj170LVrV3Tv3h3z589HbGwshg8fLp1zAhWjA4iq4lEZwsmTJ+PJJ5/Efffdh5s3b+Lf//43CgsLMXbsWMhkMkyaNAnz5s3Dgw8+iAcffBDz5s1DYGAg4uPjAQAKhQLjxo1DWloaGjVqhIYNG2Ly5Mlo3769VHU0MjISgwYNQnJyMj7++GMAFctOxMbGIiIiAkDFPJ82bdogMTERCxYswJ07dzB58mQkJyczwCNMnTq10jZBEKSiRLXdN9984+ouWK+aE2VnBDXr1q3D22+/jZkzZ0Kj0cDHxwedO3fGZ599Vu3vjh8/3uT2kSNHOrqbttOdKGtZodVm4vxc43nrxvNzZfjrYoag1SI0NBSXL19Gy5YtAVSswfvZZ59h3bp1NdHtGiUolQBsLyqzYcOGSttMFeTQXzOwoKAAzZo1g7+/Px555BH069fPpnUBhwwZYvB3GjBgAMLDw5GWlmbQbunSpVi2bBmysrKwbds2hISEoEePHlizZo1Vj0fO48pKn2+88Qa++eYb+Pr64sEHH0Tfvn0xZ84cdOvWDYsXL66zowPIwQQPMnLkSKFp06aCj4+PEB4eLowYMUL48ccfpfu1Wq3wxhtvCGFhYYKfn5/Qs2dPITs722AfpaWlwoQJE4SGDRsKAQEBQmxsrHDlyhWDNrdv3xYSEhKEoKAgISgoSEhISBDy8vIM2vz222/CkCFDhICAAKFhw4bChAkThLKyMqufU0FBgQBAKCgosPp3qXYKDw8XDhw4UOmnU6dOru6a5RYuFIScHFf3wmJHn39eEADhQIcOJu//bd8+QQAqfsgiXzdvLgiAkLlkiau7UrfcvVtpU55MJlz08xMEQCgvKXFBp1znx/XrBQEQfvX1rfHHLikpEa5fvy6UlpY6ZH/nzp1zyH6o9lCpVE5/jMcee0z6/+OPPy6sXr1aiI2NFTp37iy88cYbwvPPP2/Qxp3wHLfm8OzGzfFgqXtmzpwp/PHHH5W2v//++y7ojQ00morAKSLC1T2x2JGkpCoDwkvffOP8gDA1VRB693be/muYGBAef+cdV3el7rh4seI9uGuXweY8QLigCwiVxcUu6pxrZH/6qSAAwiUfH1d3xWrx8fEGt/v06eOUxzl16pQwZMgQ4amnnhIOHz4sbX/uueec8nju1h93N2HCBOHSpUuCIAjC008/LVy6dEnYv3+/EKH7Dl63bp3g5+fnwh7ajue4NcejhowSuYO33nrL5PaUlJQa7omNdPNfNPXrw/mzJxxD0M39MTcLqUbmwS1ebFVzpVKJH3/8EXfu3EHDhg3Rrl07+Pr6Wvz7WVlZzq1EqRvCyCGjDnTtWsW/334LDBwobZbjr6IqgoctRu0Oc1QtnQbgrPnXta3IUG3rjzvLyMjAuXPnsHTpUgwaNAi//PILkpKSMH/+fJw/fx4AMHr06GoLlRExICQihyq5dAmBAM7duoV2ru6MpXRzCOVmTqZr20mnPUtWiJx9UiZjQOhwSh8f+AEovXULAXrbjecQehKxQrBtJWXMi4mJMVjaw5yioiLUr1+/yiWj0tPTsX79+krbv/32W4PbVc2/tucCkFhkCAA2btyI2bNnu7TIUG3rj7NkZWWhY8eOTn0MVjclR2FASEQOdfWXXxABoERX7MEdSMtOmFnUu7YFhPYsWSGqqZMyoZa9du7s5OnT6A7gpxMn0EFvu36GEIKAL7/8EvPnz0fbtm0xYMAAzJs3D8HBwZg1axaGDh1a8x13IvHYlJk5dqtj6Zqe+msGNm3aFDt27MAPP/yAxx9/HG3atEF5eTkWLVqE3r17V9rfc889h8jISISGhhpsHzNmjEV9NHkB6Pvv8VJKikXHe20rMlTb+uMIy5cvN7gtCAJWrFiB8ePHmy0C5giWLptijtNHipDbYEBIRA4lBU82loF3BSkgNFM2vrYFhOKSFX369AFg3ZIVImeflAnMEDpcgG5Ioby01GC78ZDRRYsW4fDhwygqKkKHDh1w/vx5+Pv7o3///nUuIKxuDdHqWLqmp/6agQ899BCeeeYZ5Ofno3Xr1jh69Chu3ryJ4cOH4/Dhw5Uew95pAMYXgM69+SYezMzEYwsWWBQQbtq0qdI2Vw4jrG39cYQPP/wQLVq0QFxcnJQtlsvlqF+/vlMft6rqpkVFRQgKCqoyU+mokSLXr19HeHh4te0yMjLw1ltv4eGHH8agQYMwbdo0KBQKzJ8/H9HR0VY9JjmWR69DSFQb6a8ppF8SfciQIS7sleU0bpQZlIiBoBsNGd26dSt69OiBbt26oWfPnvj6668tWrJCtGnTJikYFI0ePRplZWWO7aydJ+zusv5mTfD3rriGqzF6nxoPGQ0ICEBgYCCaNGmCfv36QaFQwM/PD97ede8asL1DRi1d01N/zcCQkBAMHjwYmZmZKNGtgxgaGmoQVDqS8Zql17ZuRQYAmTt+1tZROTk5GD16NLZu3QpfX18kJiaiWbNmFmeBbbVhwwakp6ejffv2ePTRRzFs2DCsXLkSI0aMQOfOnfHhhx8iMTGxUgZTZMuapTt37jT42bFjB4YNG4adO3dW299p06Zh9erV+Mc//oGxY8di+/bt+OqrrzB9+nSbXwNyjLr37UDk5vTXFJo5cyYOHz6M999/XzrxqO1qW/BkEbGojJmA0N4shKOFhYXhvffec3U3qiSeoFv62rn7+ps1QaZ7n6qNMtnGGcIOHTpIWQPxIkF5eTkaNWpUo/2tCeLnjW0DRi1f01N/zcA2bdrg0KFD6Nu3LwoLCwFUzCVs2LChjb2o2ksvvYSxY8dCrVYjODgYv124gEYAXtcrLESuJZPJEB8fj1GjRiE9PR1Dhw7Fn7oCa86mn71u2rQpvv/+e8yZM0fKUFaVqbRlpEhSUhI6d+6Mbt26QdAN1c7Pz8eJEyfwxBNPVNlXe4e4kvMwICSqZby8vNCgQQMAwOLFi7FmzRoMGzYMxcXFru2YhdxxzphQTYawtgWEpmRt3YqOw4a5uhuVWPraWVp4w5OJw2+NA0KDDKEgmLxY4Ovra3KonrurqWPztddek/6/evXqSvcHBQVh69atTnnsd999F4cPH5YKhyx/8EEMu3ABg3ftwj+d8ojWSUhIQHp6us2/LwhClUV53IlcLkdiYiISEhKQm5tbY48pZq+vX7+O1157DTNmzEBAQAASExPxxRdfmM1UWjp8V39I6KVLl7B06VJkZ2dj4sSJiI6Oxvfff4/XX3+92r5WNcSVXItDRolqmQ4dOuDy5cvS7aSkJKSmpqKoqMh1nbKCeNJq6xV7lxBPKmvDkFEz8xir8v2yZej41FM4NmeO1b97584d/Pzzz7hz547Vv1sVqciHhc9HLLzRq1cvgx9nD7lyB+KwWXPHlhyQ5ux6apVRR8vKykJsbCyGDx9ukKUeN26c1fuydxqAmFVp3749IiMj0QBAQ1g+TPbLL79Ex44dMXr0aHz66aeIiIhAVFQUtm3bZtXzmDp1aqWfKVOmWJ3FX7RoEQDghx9+QHR0NLp3745OnTq5vCqmI4eny+Vyi+bUOYKYvQYqMpXz58/Ht99+i5CQEJsyldUNCa1Xrx6mT5+Ojz/+GPv27UNcXBzy8/Mt2veGDRsqZQO9vb2xZ88eq/pIjscMIVEts2zZskrb+vTpI60pVNvZO4TLJWrTkFGlEggMtOpXSm7dAgB4f/st8MYbFv3Ovn378Prrr6Nx48ZS5cK8vDzMmTMH/fr1s7rbxsS/v2BhQOj26286QHXDZsWA0DgQ4LITjvfiiy8iPT3dIcuy2DsNwDir8t+HHoIagNbC5+6oIkOOyuLv2LEDaWlpmDJlCtasWYOIiIgqi/LYoqrqmaaGTjtyeLq9GVNr6WevAeD8+fNIS0vDDz/8AK1Wa3Wm0tIhoUFBQZg5cyYKCwvtPj+pi/Ob3Q3/AkTkUG5ZVbI2FZWx4YTeLzgYAOClm89kjlqtlr54X3/9dezatQtBQUHS/YWFhRg8eLBDAkIpuHaD4ba1RXUn3NLFFqPhdXIAWl1Bk6oCwtzcXISFhTmot7WDvQGhuZP3CxcuWL0si7nX195pAPpZRQCQyeXwBvDx3/9u0e+LRYYCAwOlIkOA9Sfhli6fUV1AdPfuXZw9exZFRUWIiIgA4PiiPFVVz9y1a5dDAltL5j07+5gztWzKgQMHpCycNZnK69ev48KFCzhw4AC2bt1q8ZDQ4OBgdOnSxfYnQbUCA0Iicii3DgjNrUNYk0GNDUNGA3QndioT/czOzsa0adOQn58Pb29vqFQqNG7cGKWlpbh165ZBQHjr1i2HnZRJAaENz8dTVXfCbfLY0r1nBb11CM0ZM2aMRYutuxMxIKxuRIK5k/dNmzbh4sWLlbYXFxdbXWzD3OsrTgMQ95WUlIQWLVrgpZdeqqbXpknLGlhYEdhRRYaMs/j6r6n4f0sybW3atMGCBQvQunVr5OXlISQkxOFFeapaZ9XedSFFlmRMnX3MmVo2JTExUcrsVWfEiBH46quvsHLlSqxfvx7du3fHmTNn0L17d3z88cd4//33sWTJEouHhJL7YkBIVAsplUr8+OOPuHPnDho2bIh27drB19fX1d2ySI0GT45izZBRQXDqGouCWm11CX2xkI9xsRGgoori+vXr0bx5c2nblStXMHz4cKSlpSE3N1cq6tC0aVOsXLnSosfUzzaaIte9lpYOGaXqh80KJjKEgkYDGQwXpjd1tV4QhEqBT11gb9GiDz74AEeOHKn0Xh4wYIDJZVlGjx5t9evr6GkA4l9fa2FA6KwiQ7YOIa2JojxVVc/87rvvTP6OtcPT9QNL/ffErVu30KVLlxo55sRlUxo3bixtO3jwIL744guDduKahMbEKrmff/65QWD5+OOPY8aMGQ4bEir68ssvMX/+fLRt2xYDBgzAvHnzEBwcjFmzZtW5NVLdDQNColpm3bp1WLFiBaKioqS5XadOncJLL73kFgv3Cm6cIbQkIBQ0GsicON9BVVYGa0P/qgr5aDQaaYiYKDg4GH5+fti8ebNVj2Mu2zhv3jy0b9/eoK3MyoBwz549mDlzJry8vJCSkoJRo0YBqCiYsGPHDqv6WVeZyhBqNRp4AdJFCq1Gg6KiImRnZ5sMcuoaSwNCc1mh+Ph4FBUVISQkxGD7zJkzze7L1a+vWJJD6+J1CB2VaXMGS6tn2kP/Ao6r3hPGy6asXbsWCxYsgI+PDy5duoRXX30VADBs2DCpqqe+Vq1a4euvv0ZUVBS2b9+Ovn37IisryyB4tHRIaExMTLXZUEfNZyXHY0BIVMt8/PHHOHTokMEQELVajd69e7tFQAgLh3DVKmIgaEFAqFWr4eXEgFCtVFofEOpODI3nlgHA22+/jdjYWPj6+iI4OBgFBQVQq9V45513rO6buWxjQkJCpavuYoZQZmFA6O7rb9YEaUkXowwhAAi6OUOCVot58+ZZHeS4K0sDQnPZ11WrVhncPn/+PFq3bo1evXqZ3VdNv77GF0vEyzsp//sfHFOCxTYsBPWX2nLM6a9JuHTpUjzzzDNYu3at2SGkS5cuxbJly5CVlYVt27YhJCQEPXr0wJo1a8w+hql5i4IgIDs7u9r+OWo+Kzkel50gqmUCAgKQkZEh3RYEARkZGfD393dhryzn1lVGzXxp6p90apxcYEZjQ4bVVKAg6tmzJw4ePIjt27fjww8/xI4dO5CRkYHHH3/c+r6ZyTZqTAR9cnFum4Un7GLhjcDAQCxevBidOnVyq/U3a4Jg4tjS6l57saiMVq3G8OHDDU5MxeFeVQU5NcGRSzlIHDwk2dxC9QCQkZGB/v3747vvvkNmZiY6duyI3r174+jRowBMv75VFaGxdCkh8WLJ3r17cfz4cXyUmwstgDI7P4usrT7pqOUrHNUfR7h+/ToOHDhgsNSTLWrLMae/JmFKSgpeeOEFDB482OzSE76+vkhLS8OePXtw/vx5HD16FAsXLkRoaGilJYnE43fHjh2Ii4vDggULsGDBAshkMixYsECas1kVcT4rALvms5LjMSQnqmXWrVuHt99+GzNnzoRGo4GPjw86d+4sfXjWdu64ML3MiqIyzp4jaUvAaUkhn4CAAAQEBFTbrqqqeGazjV27AocOAY89JrWVW1lUxtGFN9xRdfNrTB1bUoZQLyA0Nn78eJPDxWpaVZUfbeXoZSfEk2lTQ5inTZuGwMBA/OMf/0BMTAwyMzMRGBiIESNGGKyhZzy0+vr167h58ybuvfdejB07ttphfMaMq5ROSU/HMACldn7WWlvwxNnD/Wqq6FFVhVRmzJjhkMdw1TEnrkno7++PsLAwDBgwAOHh4UhLS7N4H+aWJCooKMDmzZvx+eefY+3atbhy5QpSU1Nx8+ZNtGzZEhMmTKh2386az0r2Y0BIVMuEhYWZ/NB0F+JJq7lsW20ks2IOobMDQluqtJoqNmKrqk7KxGxjaWkp8vPzERISUpG5lsmA994zCKjl1QzDNebu6286QnUn3OLfWX9oj7jMhBgQmnq9xSDH1aqq/Ggz8dh1RAcBfPPNNwBMD2H29/eHIAjSAvHNmjUDgEoLbRsPrY6OjsY333yDpKQkBAYGVjuMz5jxxZJB9erhCQBJFgaE9hYZEtf0++WXX3D69Gl0794d/fr1Q2pqKlatWiUN9xOLUzm7P5Ywd3ElISEBBw8exPDhw/Hbb7/hxIkTkMvlGDduHHbt2mVVQFjVvGfjYy4jIwNvvfUWHn74YQwaNAjTpk2DQqHA/PnzER0d7bDnLa5JKM7nO3/+PNq2bYtdu3ZZvA9zSxI1b94crVq1wqxZswCg0vE7cuRIhz0PqnkMCIlqu+Ji4KOPgIkTAT8/V/emWmLwZOncsVpBnO9mLnipyYDQjgyhpSF4VlYWXnjhhUrbLT0psyTbaG2GkKqfXyMGhF56gYT4fqwqQygGOa5WVeVHW0mfNzZegDJXCMPU2oFfffUVmjZtCgBS9ketVkNr9LlhPLRaLpejUaNG0Gg0SElJQWRkJAYPHiwNxauO8cUSmUaDPgC+sHDYt70FT8TM7rx587B48WIcO3YMn332GVq1aoXy8nJ4e3tLQU15eTkWLVqE3r17O60/ljB3cSU0NBRPPPEE+vfvj3fffRfPP/883n//fZw6dUr621qqqnnPxpVWp02bho0bNyI/P7/K7LK1qguubclUyuVynD17Fl27dpW23bp1Cz4+Pg4/fqn2YEBIVMvdnT0b9RYtAqKiABfPAbKEdIJmwwLrriKzYg6h04eM2pIhFANCE1fnly9fbthWELBixQr8+eefuHbtmtNOysQ5hAwILVfdenFS9l3v2BIzhFqxqIyp13vzZiAkBKjiJL0mOKXyo+75elUTEFpbCMPSIcze3t7Ys2ePwTbjodW5ubkYOHAgFi5cCAA2DePTJ11ss/DYsrfgiZjZ/c9//gPgr8zQn3/+CV9fX8jlcqxZswYRERG4efMmhg8fjsOHzZe7qYkCLOYurshkMnz66adYtmwZ7rvvPmzbtg07duyAj4+P1RdOTF00MDfv2d/fH82bN0fz5s2rzC5bq7rg2pbRAStXrkSvXr3wwAMPGCxJ9N1335ldisVe5pbFoJrDgJColtu3ZQuGAigvKbG6+qRLiMPa3CkgFDOEJk4qExISMF4vG+aMgFAQBGnImy1zCKvKknz44Ydo0aIF4uLi/lrQWi5HXFycU0/KHBUQVjWnsa6pdn6N+N7TDwiNqoyazDCPGKFr7D7DuC0lvverq5BnagFvQRCQmJhosr01Q5iNT8bNDq3WsWUYnz7pApaFnxXDhw83ud3SgifmMrurVq3C2bNnUVRUhIiICKmt/mtsSX8sqexqLXMXV+rXr4/r168jLS1NCsg/++wzPP/885WWz7DkMSyd9xwWFib1p6rssrWqC66rC3LNZRjLy8ulYkmWsuSzWn9ZjLi4OKvn05LzMCAkqu10X/53bt6EW5wWVzMfr1bSaDAVwB+lpWgydaq0WRAEHDlyBC/pnag4IyDUaDTSh7EtQ0YhZhVNBF85OTn4/PPPsXHjRsTFxWHkyJH44osvsHTpUoN2lpyUmS16AsC4pISXg4aM1lShCXdgKvtuPGTU0nUf6wzd85VXE+yaWsAbgEWFMGxlbmi1LcP4lEolfvzxR9y5cweXlUp0BwyGsjuTuczuvn37sGDBArRu3Rp5eXkICQlBUVERGjZsaNX+nVGAxdzFlWvXrlXabmuWy5qLBhs2bKi0zVR22Vr2BvuOHL5ryWe1tctiUM1hQEhUy4knFHdu3XKLgNDeOT2uINNqkQ5gjpcXHhwyxOC+b7/91ulDRtVqtV0BodQ/E8GATCZDfHw8Ro0ahfT0dAwdOtRkCXJLTsrMFj3x968UEEon6BZeGKiJQhPuzuRwbHF5D90JnbOHNDvCnTt3cOfOHTRs2NDq4KEScchoNc3MLSfhikIY1g7jW7duHVasWIGoqCgEBwfjbGkpVgMYcOMGulb7286zevVqAIbD/YKCgrB161ar9lNbih65gqvX37Nl+K49n9XGy2JYO5+WnIcBIVEt56Ub5qcuK3NxTyzkpkNGnwPwN5ms0pXVMWPGQNAbOuOMDIz+On42BYTi3LIq+iaXy5GYmIiEhAST631ZclJmtuiJqcezMiCsiUIT7koaimXi2JICwCqqjNYW5srZz5kzB/369bNtpxbOIXQUU8PizBWmMcfauWoff/wxDh06JA3FPPzhh+haVoZOubmYbdWe7OOs4X61peiRJw1PF1kzfHf27NmYPXs2/vzzT4SGhkImkxkUEbLks1pcFkMcZmvvfFpyHC5MT1TLiZk2jVLp4p5YRgxK3C0gfAtAYxP3paSkGGTenJUhlPZvy5BR8XcseM3lcjnCw8MrbbfkpMzkosKlpTC1pLB4gm5ptVnxSrUxRxaacFdjxoyp+I+JDKFxUZnanCEUy9lv3boV69atw/bt27Fz5068/vrrtu9U/LxxUB+rEhcXhw4dOiAuLk76efbZZ80WpjEWExNj0+MGBAQgIyNDui3TaJABoKZrTovD/U6ePCktn1FSUuJWw/1MfcZkZWUB0DvOnPAYpoiPW5uYy6QDkKYZBAcHY+nSpTh69Cj+97//SUt1WPJZ/dprrxkUprF3Pi05DjOERLWcGBDasj6dS7jpkFHAwiqjdi4GbYp+IRl7AkJnL/Vhal6ODwBTSwpbmyG0dy5MXVDdUCxT1XDFjLWsqiqjtYRcLsetW7cMqgneunXLZBESce07Hx8fTJkyBd27dwcAjBs3DqtWrfqroZ0Bobnqhqb+FmfOnIGfnx8WLFggbTNVmMbaiqbVWbduHd5++23MnDkTGo0GZXfvog+AObp1Dp1t0aJFSEtLQ1lZGXr27AmgokDL3//+d5PD/WpDps1cNrNz585QGl1cvXnzJu655x4UFBQ45DFMZUzNVXseP358lUGYORYfH1by8fEx+zlUWFiIs2fPIjAwUGoTGhqKMt3oJVs+q50xf5Rsw4CQqJaTAkInBCJOIVb9c6eAUMxmmeuzkzOE+tlfm/7O1az9qF+QomHDhmjXrh18fR1Ts1ZdWgpTg02tzRCSBcNmTRWVMa4yWoszhCtXrkRaWhpyc3MNytmvXLmyUltx7Ttvb29MmTIFx44dQ2pqKn799VfDhhbOIbR2uKOpv8Xy5cvxxRdfoEWLFgZtjQvTWFvRtDphYWEGF2My69dH1N27OGHBIvCOsGPHDqSlpaG4uBgLFy5Ev379pOUlxL+pvtpQCMpc8ZJr165BJpPh/fffl/62ixYtwuTJk61eT8+aAinmqj3Xr1/fpudn8fFhpW+++QaRkZEmP4fCw8NNFhG6cuWKzY/nyfNHaxsGhES1nLtmCL3cbMgoYFlA6IwMjP78ULsCQhOvuXFBivz8fJw6dQovvfSSQ9aPUpWUmAwIrc0QkgUFHsSLLfqvqRgQiovX1+IAPDIyEps3b7aorbj2HQBs3LhRWvtObRzwWhgQWlvd0NTfYvz48Wjbtm2ltsaFaZxd0VT8+9fUxZa7d+/i7NmzuOeee6S5nqGhoTh9+jT+8Y9/APgro1pbCkGZK15y//33Y8CAAfjqq68wevRoqerymDFjKgX61j5GmzZtzBZIMVft2dZhqhYfHzYw9zn0+eefV8oCBgUF4dFHH7X5sWrL/FHysDmE8+fPR1RUFIKCghAaGoqnnnoKP/30k0GbpKQkyGQyg59u3boZtFEqlZg4cSIaN26MevXqYejQoZVKGefl5SExMREKhQIKhQKJiYnIz883aHPlyhU8+eSTqFevHho3boyUlBSUu8tJP9UcNwsIxaDErTKEWi2+BPBMeTlGjx6NTz/9FBEREYiKisK2bdsMTrKdkYHR/9sKtuzfxPp0IrEgxfvvv4+33noLy5YtQ0ZGBj766CNbu2v40KWlqFyiRi9DyIDQYsOHD690EgboDcUyMWRUvIAgBoR1JQAX174TzZ49G7169UJmZqZBO3EOZXUBofHJ+wsvvIDBgwebrLgLWPC3qML48eMrBYOA4yqayms4+96mTRuDzBBQkUFVKpU4cuQIjh8/Lv1kZmYiKiqqRvpVFbF4iWjAgAFYvnw5mjVrhiVLlmD79u1Qq9UYOnQorl69CsD6IY/6j5GQkID+/ftj+fLluPfeeyu1Fas9//e//5Ue19x7zxKWHh+2MH7vi8tomHt9GNTVDR6VIczIyMDLL7+MqKgoqNVqzJgxAzExMTh79izq1asntRs0aJBUThlApaFVkyZNwvbt27FhwwY0atQIaWlpiI2NxcmTJ+GlG7YTHx+Pa9euSRNl//nPfyIxMRHbt28HUFFVcMiQIbjnnntw6NAh3L59G2PHjoUgCCbXtiHPJXfTIaPuNIdQrtViEYD1Xl4IX7TIcEmF/v3xlt6i0k6pMqo3ZNSWhellVWQIxYIUffr0AVBxBT8jI8NgoWx7qEtKMAaA8QAx6culFmes3I3M1HBs4wxhFRcUBK0WsmoWDa8tzK19Z5zVlullCKt6fnWpuqF4sUVeQ8eW/vmQKCgoCO3atbN6yYKa8tprrxncNi5eol91+fHHH7d4v1P11qkFKoYRi+vVAqi2QEp11Z4tZenx4Qic5+cZPCogND5IV69ejdDQUJw8eVKaKA0Afn5+ZidEFxQUYNWqVVi3bh369+8PoKLaXvPmzbF3714MHDgQ586dw65du3Ds2DF07VqxStAnn3yC6Oho/PTTT4iIiMDu3btx9uxZXL16Var4t2jRIiQlJWHu3LkIDg52xktAbkgceim4SUAonqB5u1FAKBMEBAAIlMnQpEkTwyUVvL0NghpbArbqOCpDaOoE0bgghY+PDzp37ixVCbWGqWIDquJiXDLRVs4MocOZquCrEd87uguXVWWwVWVl8A0MdF4HbWRXERKjY9Pbz3TtzeoCBEs5cz6upbxqeMioOadPnza5vTYWgjIX1Fg7jy89PR3r16+vtP3bb7+1qj/mqj3XRtXN86sNRYTIfh4VEBoTK0oZL4x74MABhIaGokGDBujVqxfmzp2L0NBQAMDJkyehUqkMykeHh4ejXbt2OHLkCAYOHIijR49CoVBIwSAAdOvWDQqFAkeOHEFERASOHj2Kdu3aGXwgDBw4EEqlEidPnpSu5htTKpUGFbIKCwvtfyGoVhOzAu4yZFSq+udGAaFcq0UH/DX8TFpSobwcjRo1Am7dktrWxjmEUvVJE8GXcUEKe5gqtPH7/v1I0s0rEguFABwy6hRVDBkVA8JK70+9tqrS0loZENpVhES/wI5KBZgJCI3ZkvWwdz6uuYqm1pLXcIawLqgqqLFmyONzzz2HyMhI6ZxQ5KglK2qj6l6f2lBEiOznsQGhIAhITU3FY489hnbt2knbBw8ejGeffRYtWrTApUuXMGvWLPTt2xcnT56En58fcnNz4evrW2mIRJMmTaT0f25ubqUPC6BizLd+myZNmhjcHxISAl9f3yqHEcyfPx9z5syx+Xk7klqtrlSFihxP+tKvxdUD9Yn9dY+BaRVkgoD3APxstN3X1xebNm3Cgccek7Y5IyB0VIbQ2cN0TRUb0JSVQRwgplIq4asbiip+MjAgdByZiYst4nBjme6E1/j9qVUqpWNRVVrq/E5WobplNWyhnyXTWHHRzJbqhsYLxAMV34O9e/c2CAidtYC7qKaHjAL2Z0YzMjLw1ltv4eGHH8agQYMwbdo0KBQKzJ8/H9HR0U7seYXqghpLs1xvvfWWye0pKSnV/q6zssvXr1/HhQsX0LJlS4M1/hzNGccv1R4eezY/YcIE/PDDDzh06JDBdv1J3+3atUPnzp3RokUL7NixAyNGjDC7P/0r4wAM/m9PG2PTp09HamqqdLuwsBDNa2gtIgDIzs7GtGnTkJ+fD29vb6hUKjRu3Bjz5s1D+/bta6wfnkSuO9l3tyGjXm6WIQTMB7EGZf6dEJgLeieytuy/qgyhI5laK1BTWgpxgJiqtFQKCKW/PwNChzEVEEoZQl1mzDggVN29Ky1grnZxQFjtshoWiImJMcxG6A+fteIz0pZCGJbOx7W2oqm1ajogdESl4mnTpmHjxo3Iz89HTEwMMjMzERgYiBEjRuDAgQPOfQIWcHaWy9HVnkeMGIGvvvoKK1euxPr169G9e3ecOXMG3bt3lxaKdzRHHL9Ue3lkQDhx4kRs27YNBw8eRLNmzaps27RpU7Ro0UK6AhIWFoby8nJpDRbRzZs3pYVBw8LC8Mcff1Ta161bt6SsYFhYGL7//nuD+/Py8qBSqSplDvX5+fnBz8IhMc4wfvx4rF+/3iAIvXLlChISEvDdd9+5rF91mfilX5vXFzNgYdW/2sSadQidXVTGlsDf1NyymqBduRL3v/CCdFut9zzEvz8zhI5TVUAoNzNktFw/INQbmuwK1S6rocfSxd1tzRDawtL5uNYsR2ALKSCsoWPL0sxoVfz9/dG8eXM0b94ckZGR0rmXWIivprgqy+WI11CfOF3o888/N1jz8vHHH3dYQJiQkID09HTptjXHL7kfjwoIBUHAxIkTsXnzZhw4cAD3339/tb9z+/ZtXL16FU2bNgUAdOrUCT4+PtizZ4/0hXXjxg3k5OTg3XffBQBER0ejoKAAx48flz58vv/+exQUFEhBY3R0NObOnYsbN25I+969ezf8/PzQqVMnhz93R9FoNFKxDVFwcDA0nMvgNNJVYDfJEIr99QKg1WoNvgBrK/EEW63V4tSpU5WH9OideDl7yKg9GcKanrd54b330Frvtn7AwSGjjmdqSRfx/SIzExCqS0r++r+LA0JTGWbAdBESSxd3lxnPIXQiS+fjGlc07d+/P5o2bVptRVNNZibKp0xBwP79QBWfm941HBA6olJxWFgYNBoNvLy8pGGzarUa2hr+fHBGlisrKwsdO3asso2jqz23atUKX3/9NaKiorB9+3b07dsXWVlZNs1RNa6cKvZPrJwqsub4JffjUQHhyy+/jPXr12Pr1q0ICgqS5uopFAoEBASguLgYs2fPxtNPP42mTZvi8uXLeO2119C4cWPpQFAoFBg3bhzS0tLQqFEjNGzYEJMnT0b79u2lqqORkZEYNGgQkpOT8fHHHwOoWHYiNjYWERERACqGvbRp0waJiYlYsGAB7ty5g8mTJyM5OblWVxh9++23ERsbC19fXwQHB6OgoABqtRrvvPOOq7tWZ8ndrcqorr/eqLiA4C4B4ToA7wPo8emnlYb0NK/l6xDKa2jIqLFf7t41CAj156gxQ+h4chOBv/i5INedWFYaMlqLAkJrWLy4uwUBoXGmw1Hu3r2L4uLiSqN6jCuaAuaXI9CfW9d+/Xos/eMPBD/+ON5euNDs3Drx2KqpgNARlYo3bNhQaZu3tzf27NnjyK5Wy94s1/Llyw1uC4KAFStWYPz48Rg/frzZ33NktWcAWLp0KZYtW4asrCxs27YNISEh6NGjB9asWWP1vhxVOZXcm0cFhCtWrAAA9O7d22D76tWrkZSUBC8vL2RnZ2Pt2rXIz89H06ZN0adPH3zxxRcGV12WLFkCb29vxMXFobS0FP369cOaNWsMhj6kp6cjJSVFqkY6dOhQfPDBB9L9Xl5e2LFjB8aPH48ePXogICAA8fHxWLhwoRNfAfv17NkTBw8eRGlpKfLz8xESEuKw9czINC83LSrjhYorwLYUb6hpckHAxwA2A2j+/vvSdnFIz9wazBDaEhC6KkPoZVQQwWSG0I3mktZ2JjOEuiDIXIbQXQNCcyfXxou76w8ZfeOddxBoFECaynQ4SlhoKBQhIbh27ZrN+9CfW9f7vfdwBoBq7lz8Y/p0k3PrBEGQji2vGhqZ48hKxcZqujCdvVmuDz/8EC1atEBcXJxU78GSpSsc/Rr6+voiLS3NIetoemLlVKrMowLC6iZ0BwQEWDTR3N/fH8uWLatyAfmGDRtWe+Xnvvvuw9dff13t49VGAQEBCAgIcHU3PIK0DqGbBIQyvTmEajfps5duHcJjAMTZsfpDemQFBVCj4gPTKUVl9DMbdmQIazog9DUK9sWAQxAEiPcwQ+g4+hdbRNIcQjNFZTR6WVtXF5VxBv3313+//hobNm6s1MZZmY4dJSUo1Au4baE/t66ZXI5mGg1uFBebnVun0WikEzd3WtqnrsjJycHnn3+OjRs3Ii4uDiNHjsQXX3zh1sGTPZVTqe7wqICQyB2JAaHbZAj1AkKlmwxzFYeMvg7gvR49Kg3pudCvH1So+MCsjXMI5SYyRzVBblQRWQwItWo1h4w6gakMoXihSAwIUcUcQv3iRXWF/vtrZGxsjWY6ejpgH/pz62YHBADFxSi+ds3s3Dq1Wg1vAErUfBEpqqgOHx8fj1GjRiE9PR1Dhw7Fn3/+6epuEdmt9k/uIfJw7hYQ6s8hdJcMoVwQEApgLoDDhw/j2LFj+O6777BkyRKEhYVBptFADNmckanVzxDaM4fQq4ZPEI2Hg4oBh37gwSGjjmMq8Bcra5qbQ6jRGyZaFwJC43V69QPCtOeeM7kGsKWZjqysLMTGxmL48OEGw0zHjRtnY2+rt2HDBikbKM63VhcXm51bp1Kp4A2gDIC3GwWEX375JTp27IjRo0fj008/RUREBKKiorBt2zZXd80mcrkciYmJ2LZtG7Zs2eKSPiiVSpw6dQp79+7FqVOnUO7kKrtUtzEgJKvs2bMHXbt2Rffu3Q0miQ8ZMsSFvarbxIpyxlf+ayu5mwaEKlR8IOoPLb9+/TqAipNOtS4bVivnELoqQ2hBQMgshuPoZ99FlYrKGL3etanKqCMYZ/tkWq3DLtakpKTgvffew5IlS7BkyRIsXrwYAPDrr7/atV9LiQGhsqDA7Nw6MUNYJpO51ZDRRYsW4fDhw1i0aBFeffVVHD9+HIcOHcKCBQtqrA/O+D6Sy+UIDw93+H6rs27dOvTp0weffvopMjIysHr1avTp08fkVKWEhIQq95Wfn++kXpI7YUBIVnnjjTfwzTffYO/evTh+/DgmTpwIrVaLEjvnUVT3geXJpKvAbhYQAoDaTa5YegkCVDIZvABpCZVzmZk4fe+92LNyJWQajVMDQv2F6W35O0uZIwvbO+p48zY6wRLXIRSzVlq4LkPoimyPs0kBoYkho15icS/jIaN68wbdKUPYpUuXSj9RUVE4fvy4QTu5RgMxzLV32QmZTIZWrVqhZcuW2LhxIwoLC5GcnGxXIGHNsSYev9oqvk/VajV8AChlMqdnCB15DAUEBCAwMBBNmjRBv379oFAo4Ofn5/SiMtnZ2XjiiSdwzz33oG/fvoiOjsaTTz5ZaT3L2qa695y4ruH777+Pt956C8uWLUN0dDReffVVTJ06VfqZMmVKtUWVwsPD0b9/f3z00Ue4efOmI59GlTIyMhAWFobU1FTs3r0bHTt2RO/evXH06NEa6wP9hXMIySpeXl5o0KABAGDx4sVYs2YNhg0bhuLiYot+39L1bugv4smfzMqTErVa7dAvW0v356XVQgnAD+6TkZADUMtk8BKEiqIN3t64e/IkngBw+r33UKLRQOXMgNDOIaNeZjKEzj7e5EYBvxhwaHX/KlEREGZlZWHWrFnw8fHBlClTpPVYx40bh1WrVjmkL8ZSUlKwevVqeHt7Y8qUKTh27BhSU1NrLNvjDOLfVz/wF4MgLzNDRrX6Q0bd5HgELF8vTq7RQCmTAYJgMiC0ZI04UWhoqMH6gbNnz8Znn32GdevWVWqrVamkv4MgCJg2bVqlNtYea+LFE20VxX9U4rEllyPYyRdbLD2G9JfOGDRoEKZNmwaFQoH58+dLS2d06NBBmispZrHKy8vRqFEjh/bZ+DNv/fr1GDJkCM6dO4eDBw8CAK5cuYKEhAR89913DnvcoqKiSmsAWvK66MvOzsa0adOQn58Pb29vqFQqNG7cGPPmzUP79u0N2ppa13DNmjVo0aJFpRFb1RVV6tq1K9asWYNNmzbhmWeegY+PD5555hk8/fTTJodg28LUd9Fnn30GHx8f/OMf/0BMTAwyMzMRGBiIESNGmKywS87FgJCs0qFDB4MvzKSkJLRo0QIvvfSSRb/P9W6sZ82QUWu+UCxhy/7kggCVXA4/rVbKGNV2ckFAuZcXgrRaKUMovu6y0lLINRqo5HJAo3GrgNDZx5uX0Qm4NGRUF3iUoSKr9bILgjMx2wMAGzduxOzZs+3O9tjL3sDY5JBRMUMoVn02en76QaDWTTL2gOXrxcm1WpTrAsJ1W7finsuXpfssXSNOtGnTpkrbRo8ejdGjR1farszPh1hnW61W23ys7dmzBzNnzoSXlxd6l5fjCQCakhIMGTIEO3bsqNRezPiq5PJKGXqDdg64IGjpMaS/dIa5E3tTSy74+vqafM3tYfx32LlzJ4YNG4aTJ09K24KDg6XPeWutXbsWCxYsgI+PD+Li4vDqq68CAIYNG4b9+/cbtLXkddE3fvx4rF+/Hs2bN5e2mQteTa1r+MADD2DVqlVo164dbt26hcDAQNSrV6/aokoymQzNmjXDpEmTMGnSJPz+++/YtGkTnn32WWRkZNj0OhkzdXzs3r0b3t7eaN++PSIjI9GsWTMAMFthl5yLASFZxdRSG3369MH58+ct+n2ud2M9HysyhNZ8oVjClv15abVSNk3jJiegXgDK5PKKuTm6EwVVQUHFv4JQERB6eQEqlfOXnbBlyKjuPeJtFBA6+3gzFxCKJ61KmQwyQXB6cGZq4XFrsj01xd6spZcgQAnTAaG8Xr2KDcZ/k1pcVKaqBeMtXS/OS6NBuVwOaLX4bOdOPHj1qtVrxNlCPyB8Z+JEPFCvnk3HmjgNw9fXF0kNGmAigL+XlpqdhiFdbPH2rnT8OfqCoKXHkL+/P1599VWkp6c79MTelqDW+DNv+fLlmDlzJoqKijBixAgUFBRArVbjnXfesalPK1aswKlTp+Dj44OlS5fimWeewdq1a00ua6a/pIglr4tGo4FCoTDYZi54rbSuYXl5xcWgwEAAwOrQUJSHh2Pm779XW1TJeB3Ne++9F6+88gpeeeUVaZu12U5jpr6LWrdujW7dugGAFEyr1WqzFXbJuRgQUo3iejfWkw5SCz4krflCsYQt+5Ppsm3QaNxnyKguq+kD4K7uBFutCwgFubxiDqHuS9zeeUqmiAFhOezMEBptd/bx5m30WogZKDEgLJfLKyq4Oig4s2YIrDXZnppib2As1w3HDtTbJmUIdUGPzOhvIugFga7KEDpi6PLVWbMQ9NFHaHDrlsF2uVZbcbFGrcb2d9/FKUGokTXiynWfDwAw8+OPMRMAbKhwqj8NI9XHB+dVKkzNyIBS7yKcPnFdyXJv70oXgBx9QdDUMfTDDz8gJSXF4G+am5uLy7rMrL0n9vYGtcafeT179sTBgwdRWlqK/Px8hISEwF+cb2sDuVwOH936qykpKYiMjMTgwYNx586dSm31lxSx5HV5++23ERsbC19fXwQHB1sVvJZ16wb/rCxA956YCgC6omgic8ehyoLvNGuzncZMfRfpFyYUeXt7m62wS87FgJColvPV/SuzIKiz5wvFUfvzEgQpeHKnDKHKqM+awsKKO2WyiiyE7kq1M06q9QNCWzKE4jzTmh5o4228xIFRhrBcJoNcq3VYcObuQ87tDYy9BAFKmQzBggBBq4VMLpcKEokBYVUZQq2LMoSO+LsF//vfUAAVJ7x66196abUVw7lRMX8yfvRoh64RZ24Ookr8fLCT/jQMX40GSQCKmjfHh0VFJtuLAaHKxwc+gMHr4egLgqaY+lsOGTIEaWlpBttMndgrlUr8+OOPuHPnDho2bIh27drB19fXoI2jg1pRQEAAAsRh1XYYMmSIwTE8YMAAhIeHV3r+gPUBjz3Bq39WlvR/QRAgM9HGnuPQ2mynPZxdaIhM46tOVrPkQ50cQ9BqpYNUbsGXuqOvhtqyP3cMCL2hFxDqTqDFgFCALguhuyrslIBQLBQhk9kWEGq1UKMiINRqtVL5emfzMZ6vJhaV0b2GSi+vSlkMe7j7kHN7A2MxIIQgQKNUwjsgADLd+9EnKKjigoLR+1NbCzKEjvi7lQJQAFDdugUfvf14abUoM8rei2vEJSQkVFq3sCrLly83uF3VHERHBYT60zB8dcd+p3r1cD4z02R7KSAUT5o1GkD3f0dfEDTFmr+l/on9unXrsGLFCkRFRSE4OBj5+fk4deoUXnrpJYP3f00EtfZ47bXXDG6fP38ebdu2xa5duyzeR3UBj13Bq0aDkpISFAC4AKClXvBqz3FobbaT3A8DQrKKpR/q5BiasjLpIJVZ8cHrqKuhtuzPSxCg1J2guUVRGUGAH4Byo4BPK1bOVangpdGgVPf8BScFhCpUVDq1pWiNGCh4CwLUanWNXaDx0WpxCsAWAG/ir9dODKrVXl7wceAJg6cPOfcSBBR7eQFaLcqLi+EdEACUlaEcQGD9+iiHYVVRoHYMGXXE3018VgUXL6KxUUCo0r3fjYdzW7tG3IcffogWLVpYNAdRbaKytnjCDOiyNDJTeRrz/MRjpYqh9uLfV+3np+uIWgoIHX1B0BRb/5biMgn6F6vUajV69+5tcO7gzKD2+vXruHDhAlq2bCkFSfYaP358pWIyrjICwIY7d7Dsgw+wC0B3AGdefhndu3fHjBkzqvzbVXeh39HDO00dH7YcM+Q4XIeQrGJq7ZuMjAx89NFHdu03JibGQT2sW1R6hQWsCQhdyUsQoHHi8EpHE4MXle4ES7wt6E74vMrLIddqodF9OQpOmBcpKJUoB6ABbB4yWi6TwRuWLb7sqOPNV6PBlUceQYLupEA8IReHjKq9vFy2ePaePXvQtWtXdO/e3eBkxrgkuzvxFufnAlDdvQug4v1YhoosSjkqDwutDQGhI4iniUVGGT8vrRZq3eeNvQvT5+TkYPTo0diang7f27eRmJiIZs2amcygqI2GdC4CcLewED/88AOio6PRvXt3dOrUyary+X5iAbEq/k5ihlAjBnomnnNAQACaNm1aZTA4vF8/fLR0aZX9ceQxJC6TIBIEARkZGZX6KAa127dvx4cffogdO3YgIyMDjz/+uNWPCQAjRowAALRp0wbx8fHYvXs3Xn75ZcydO9em/RkT5xM6S5beUNDqFAIovnkTa9etw34A8wB8vXVrtdlLaxa5N2bp8M5FixYBgMHx0axZMxw4cMCuY4YchxlCsoqptW9MfaibExcXV2mbIAi1fpFYVym/e1eqZGfJkFHRnTt3pCt9DRs2dE7nzPASBGh1XxLuMGS0vLgYAfjrirt00qwLxr3U6oqTTvGKvBOKykCphEomg9bGIaPegoBSb28EabUo0TtBdPbx5icIqN+4MVpFRlbs22gdQpW3N+RKpUFp/ZSUFIwaNQoAzJbWdwT96o0zZ87E4cOH8f7775ut3ugOfAUBpT4+FVlB3QULbWkpygAE+fujEJUvWAjl5dCi4uqvOweE4kwlZV6e4XZBgFrMEJq5WJObm4uwsLBqH0MmkyE+Ph6jEhKQvncvhu7fb3YOonFAuAPA32/exJQpU7BmzRpERETg5s2bGD58OA4fPlztYwOAv15AaK7P4nMUxO9cGz6PNBoNNu/fj6379wNVZPYsPYa+/PJLzJ8/H23btsWAAQMwb948BAcHY9asWRg6dCgA08skdO7c2WzQYesoF+PPvMOHD+PZZ5/FL7/8gpycHClD+fjjj2PGjBlW79/YN998Y/a+AwcOoFevXpWyXjExMdi9e3el9tYMWTalFYCv//tfxF66hO0A+gL4fufOSusjGrM0e2uPHTt2IC0tzeD4eOyxxzBjxgzUr1/f5mOGHIcBIVnF2g91Y5mZmdi/f7/BB48gCEhMTHRWl92amGkR13Orzr59+/D666+jcePG0pDevLw8zJkzB/369XNYv8x9oQEVFTu1uhM0dwgIVbqAUCMGhLpgRq476fFWqeCl1ULw8YEWzhsyWm5HQOgFoNzLC94qlcEwXWcfb75aLWQBAfDSlToXgxFpyKiPD7wEwanBmbmiH/rVGxcvXow1a9Zg2LBhKDYx1K+mWHLiXBU/QYDSzw8oKoJa99oJJSUol8kgk8mgkskMMoJAxXurBEB9OOe9awtbhoaJJyvl+fmG2/Uu1phb0H3MmDFmP69MkQNIBJCwbZvZOYhaXYZWdBfAmePHUVRUhIiICAAVRYQsnc+rVquli3+y8nKzfZYCQjPrTloi98oV3AtgWDXtqjuGxCGY8+bNw5EjR1BUVIQOHTrg/Pnz8Pf3R//+/aX3daVlEpzE+DPvtddeQ9++fXH06FFs374dffv2RVZWVrVBkjV+T01FSEICAjt1krad3rYNy4cNw8yICIQ//LC0vaoLctYMWTZlKYC3Tp1CFoBtAEIAdPrqK3zyySdV/p69F/otcffuXZw9e9bg+FCpVFCr1RAEwaZjhhyLASFZxd4P9SlTpiAoKAiNGzc22D5hwgQ7e1Y3SQGhXG5RQPj6669j165dBl92hYWFGDx4sE0BoS0ZJm8AWicWYHE0ceidVneCJfZZpnvtvTUaeAsCBG9vk0U7HKK8vCJDCNicIVTqsrJqvZNiZx9v/gBkAQGAmD01Wpi+3NcXPoLgsODMmivo+tUbASApKQktWrTASy+9ZN2TdKBFixbh8OHDVZ44m6Wb66rSvU+lIaOlpRULswMVAaHx+7O8HGUyGeoLgnOy2xZYtGgR0tLS8MMPP+CFF17QdascixYtQu/evS3ah5ghVOkt9wBUvPfFYzfxww9Rb+tWg/sFQcDFixct76zeEOeq5iAaB4RtAHy8ejVat26NvLw8hISEoKioqNoRGl26dKnYn1YLGSqGxhb/9huu37xpsr20lqTuIoz+39TSTHyJbt3LMlQcw+aYOoZWrVqFoqIirFy5EuvXr0f37t1x9epVLFmyBDNmzEC/fv2kojBVDScUBAE/NWiA0ogIdDx+vIpeWMf4M2/16tVYtmwZGjZsiGnTpiEkJAQ9evTAmjVrHPJ4gkaDe5csgXrJEoP3jvbiRWQCmO/jg+gFC/5qX8UFuZycHHz++ec2L5viC+Af998P/ZmCv44ahbHNm2PgpElo0a2byQtSEyZMwNatW6u80G/vKI82bdpgwYIFBsfHgw8+iIMHD6J///5WHTPkHAwIyS6CVotzAwag5T//icCRI6ttb27Yw0gLftcTiXMISy0sziGXy3Hr1i2DgPDWrVs2X3GzJcPkJwhQ664sukOGUBp6Z1Q0xksX1PjohowK3t5QwTlZFpkuICyXyyutI2cJfwClYlZWL+vmzONNUKngDUBWr54UEApGVUbV/v7w1WptCs7Onz+Pjz76CEuWLJGulltzBV2/eqOoT58+OH/+vM3P2V4BAQEIDAxEYGCgxSfOIqGsDDIAal0gIGUIlcq/5hWaCghVKqhkMpQJghSw1zRTw8WsHRomvkJqo+qe3oIAQfea3FUqcebIkUqv54ABAyzuq7KgAH4WtDMOCFcDOB4fjy7PPy9tCwoKwlajANVYUVERsrOzUXjnDho2aQIAOHnPPXhVNwy70uPqLvjIdZ/xar3CY5Zm4sv++ANA9cvUmDqG/Pz8cP78efTp00f6bigpKcH//vc/zJgxQwoiysvL0ahRI7P7LispQevCQsComqq9WXTjzzxfX1+kpaWZXBbCEUpu3EA9VD6ZLi8sxBQAQWVlaNGihcF95i7ISUOWrVw2RVtWJhUEKTO6+HHrzBnsFQQcWboU/zp82OwFqeqW9LB3lMfq1asrbTM1ssySY4acgwEh2eXa8eNos38/rmdmWhQQknXEAgKl3t7wsSBztHLlSqSlpSE3N1caltW0aVOsXLnSpse3OsMkCAgApBM0jYsyEtZQi5kWXZ/FDKG37uTZR6uFr27IqFomc06WRaWCWi6HysuryoISpggqFXwAlItBuJlhc46mKiyEL1AxXNTLC2oAMt1rJgYl2sBA+AqCTcHZqqFD8d7Fi7gzYwYa3nMPAPuvoLtahw4dpEqUlp44i1TFxfAFINSrB+CvgFBWVga17oKNSi6X/gYS3fxUpVxu9XvLUUwNF7NmaJggCBBLd2iM5u75CQI0uuDohagoFBUVISQkxKDNzJkzLe5r0e+//xUQ6tb4MzWfzzggBADl7dsWP45o3rx5KCoqglJvKKyXSmW2zyrdBSwf3XNUFRdLJ3KWZuKVt24BsK2qYKtWrfD1118jKipKGoI5YsQIXLhwwaCdr6+vyWVWRAXXrsHUDEG7suguUHD5MuqZ2F6em4vxAA75Vb68UN0FOWuXTbmbmwvxErBw9SoAYNsbb2DonDko0Y3maavVWndB6vhxICwMuO8+ALVzCD45Fgfqkl3yzp4FACjd4MTfHYknfUofH/hakCGMjIzE5s2bcfToURw7dgxHjx7FV199hUgzV5urM378+ErBIGD+C02lO1mT6U7QasucpaqIQ++gO9EW5xD66Prup9UiQKuFOiAAKsApAaGsvBwqubyiKqeVWZxy3RC6cjEIr6GiKUrd48p1j6vEX9URBV0f1EFB8LWxyuiI69cBALf0MgjiFfT//ve/UKvVDll4vCa99957lRZyru7EWSS+3oKYGdK9xj4lJbirG6Jd4uUFH6O/v6ysDEovLyhlMqvfW45iPFwMgFVDw8rLyiDmgDX6J6CCUHEyrjtRfbxp00rBIAD06tXL4r6W6J2Al+uykaYuOGhNHGflRgVvqnToEHDnDoYPH46QkBDpOM5ERSErc30WA2JvXYCqvx6imIkXJSUlITU1FUVGQXS57pix5chcunQpfvrpJ2RlZWHatGmIiYnBtm3brB6CWawLXEQvvPACjh49KgUtTZo0kYIWPz+/WrtY+d1r10xu1+iG/Ap2fF9YumxK8Y0b0v99//gDSgCh7doBALS//IJcAGr8dUEKQPUXpLp2RfkDD0g3LX1vkfuqnUcYuY27v/wCoOLKtKW4sL3llHfuAABKAgPR2A2uxJXduQMfADLdlUd3GDIqZghlumGHYhDrrfsi99VqESAIkNWrB7VMZtOQzurIVSpo5PKKqpxWvmZleXnwA6DW9d9cpUV9pjIewt27uP3OO2g8ezZgwfGsLChAEABv3eOWy2R/DUkU52UqFBVzlHSZFmuU6k4Ai86cAZ54wuA+WxceByyvOFkr/PknkJ0N9OkDZWEhgqB3bOkywX7FxfhTlx0u9vFBY6MMsbykBEpvb5QLgtXvLUcxNVzMmqFhJbduSVk7QS8zJ5SWQgbAu0GDivm9Jt77Pxw8iNAWLRBmNGzPlC5duqDs9m1pXp36scfg5e+PixcvQqNWY29CArrOnIkG7dtDe/cu/gSgf7lMbVTwBjDzfrtzB3j8caiffRbeX34JoOI4BoBXAKyp4jNGDAjluuGlar05lZZm4jW67xVb+Pr64p///KfdQzBLdBd8gIpzghErV2LFF1+gQ1KSzVn0qhQVFRlMpXDU50CJmYBQ0GWLvWvgAl2pbggwAAQVFOAOgGa6i8D+v/+OMQDWyWQm6z+YuiClLS2FHICvXsEiZw3BN/67AG72GV2HMENIdin77TcAgMbCkz171rvxRGJAqAwKktaoqs3Ekxqv4GAA9l0drSniAtNy3bBE8QTLT9f3+oIAX1TM2XHWkFGv8nKovLyg8faGl5X7F4eaaXWBmSVDRk1lPE4kJ6PxW2/h2qefWva44t9a97gqvWBZU1iIEgB+uswNVCoolUqcOnUKe/fuxalTp1BeTXDipXu/l+ud7BizduFxwPRzr620jz4K9O0LCALKxUBA95qKyx743b0Lte54Kw8IgI/RUEa5UgmVtzeUcjm83OACjSn6J7z6AaH0eRMUBCUqL7lRVFiIh3v1woXu3S16nKKiIvzfP/+J4wCOA9jy3nvIzMxEVFQUft62DQO//BI/PvlkRT9KSlBkdOFEbVTwBjD9frumqx567ejRv56LLmun9fJCUBV/J6GoCBoAMl2AZFxkxxIa3esmB6Cu4vNm7dq1aN++PR599FG8/fbb0vZhw6qrT1qhqos1ZXpZravnz2MggDUFBXZl0a3ps6M+B5R6z/HmqVM488ILgCBApvtc9jFxkcLarFp17Ut12cguAJ4sK8NAAMPHjkUXAC/8/jusLdlzxwnzrK15L7nTZ3Rdwgwh2UWju8rna+GJRk2sd1OXqHRfKurgYJuH3gGOv+Jmbn/iCZpMF1zBxDyb2kap+zKtp5vbVK4Lwv00GuQDaKBr5xUcjDK5HF5OGHbnXVaGMj8/aH18EGBjQCjoggL90vtiBUN95qouXv75Z0QBuHXqFJr94x/VPm6Z7nXz0Q0pLtebo6YpLMRdAH66Pq1ZtQor161DVFSUtBzKqVOn8NJLL5k97v10Q5vUNg4Jtea51yRrRkjIxWF1f/4Jle596X///QD+OglUlJZCrRt6qapfH/5G1Sm9lUqU+/pCpVZD7gYXaExR6r8H9DIupbdvIwCAd3BwxbItRsfm9ePHEQEgWi8bVZV58+bh9r590u27upP9mTNnovDgQQBAfd0QTaG0tKKYj24ofxcA+f/7H+bove/Mvd9u5uSgGYBiveGe4nOc07QpGlTRX+HuXZTIZPDRXRhQmchKVkfQ/Y4cQOHNm2hw770m261YsQKnTp2Cj48Pli5dimeeeQZr166FYOa7qLSkBCt690bsRx/hoUcfrXK5j3K99+nV/fvRCo7JUBj3uWHDhvjb3/6GCxcuSJ8JjvwcUOldrDg1ciQG/fwzrvbpA+/CQqwF8NadOwh69FHExcXh1VdfBVARBO3fv7/SvtauXYsFCxbAx8fHovYi8b1TBCAbQJafHzpnZqJMLkeRICABQJBWa9FyL3dOnMDNpCQp811eVgZfByw/Yeq9dPnyZYO/C1A7PqM9FQNCsotMPJm2cC2kmljvpi4RhyAJISEWVb4zx9p1uGzdnxicyHXBopcbLAJeriuw0Ei3VpR04q3R4JavLxqIQ0gbNMBdb294OyHI9S0rQ2m9epDJZFJ1U0tJc4h0c6f05zaJFQyN5988Eh6Oox9/jGjdEgAAUF8XSJbosv7VEbM29XUZunIvL+lkXSguRqlMBrmucuvK//wHh77/3qoLQQ3EJSyMCnVYGlCZe+7WVJx0tHXr1mHFihVWBcYAUHj+PEp0GZWQDh0AAMo//sDd27fRRK2Gr+5ixt3/b+++4+Mo7sf/v3b3unQ6SZYsyZYty7jb2GBwbJqBBByIf2AgPcSQRgkkQEiF8KGEb2ihJhBCQgkECIEk4FAMGHDDxrjj3mXLRbL63enq3u78/riCbFzBWLb0fj4e95Bur83d7MzOe2Z2trSU8s2b00FK5rd2JJPEXC7MePygR58Ppc9yqkAysw9YpM+JzIpltrsKC4lp2ifqm/BBjnRceOGFvPfKK7n7q5ctY+jFF3P66acz+8kn0xszwZAei5EwjNyMgSBw98iRXJgJHLP2tL9lZ9Z0nJKXrXdiZWV4t21Ll6XspSU6ikSIaxp5mU63+AFM//zEtLwOgWi0vn6vAaGu6zgz56dec801DB06lHPPPZempiYWL16cy8srrrgCTdOItbbi3bCBx8aOpeC44/bZsE9l6l2AUGal2f1dBuNA7J7me++9F5/PR1VVFfM7XN7iUNUDHeunQKaM7lywAHd7O48CUxwOhi1efEAB9cEG4FnZ8vF/pIPCmNeLpmlENI2eSnET4AMizc3k7WFNgI77x0ff/S5nrl2be6xh7VoqR43a62fnOocbG8Hjgb1c33FP+9KkSZPoU1zMK7170+s//8nVWZ1ZR3dnEhCKz8SVGREKKEUymdzvAf6zXti+u7Gy04GKiw/oXKxDPSpysO8Xz/SoOzKXFzgaAkKzqYkUUJYJCFNtbSilCNg2tYWFkOn0cJSUEHe7PzEl71BwJxJYJSVoto3zIC80nV0gIrsaXMcRtewKhh0X2gi2tfHHujpOuvJK6BAQ5mUaFfZern+2u+wIYTYgjLrdGNmpTZEIMcPINQ7chnHQHUE9sr9DhxGQgwmo9vTd4eBWnDzUDmqGRIdZF/WLFhHLNKADAwYQBbatXMmfTjiB/wJDL7gAALN/fzwffghbt0LmnDl3MkmooIBENIqzkxaV+bSBcJaZ+e47NQ29wwh4ItMp4SguJuxw5KbpZcVqagByK5QeCLNDA/+OF17gorvvBsDOjNbmZS9HE4kQcbmoi8fJA240DKK7XRID9ry/pTIjgD065EcqcyxN9e0Lixalzx/NlOmOVChE3OnE37Mn8PGMBjjwESatw/nosX2U94kTJ+5yuZizzz6bhQsXcs899/D000/n8nLlypU8+uijDNywgZP/3/9jSV4exy9YsM+Gvd3hd9ZWrkx/970+e8/nmh1Imh966CHKysr43e9+t8vzDlU9oHX4/cuyq4Jv2EBh5lIQgcxMh44Bdctegvjdg6Zhw4bt8/lZqaYmbOAkp5Mi0ySZmcYf1XWwLMZlnvf4I4/w+L//vc/9Y/fjW9OaNfsMCLOdw2ZVFTidOPcyhXlP+9Kdd97Jf6+7jl7bt5OsrcWVeawz6+juTAJC8ZnkZRqAXmDHtm306t9/n8//rBe2726sxkaCAMXFGKQP/q59nFx/qEdFDvb9Ypme78CIEZgcHQGh3dJCGCjKzycCWG1thOrqCACxvn1zAaF30CBCXi/5n8N38pgmdl4eVipF3kGe5xWrrQWgx7j0Yb/jOXcXXnjhJ56/9YMP2NP6hYFMY1Y/wKXzsyOrgcpKAOJeL65MQ9PT2kqry5WbOvzHq67iif1c+HiX945Gye7leocGxsEEVLt/9zVr1jBkyJCDWnHyUDuYGRKRdetyy9m3rliBnRklKK6upt3tZsvixQx1uUg5HPTKLLrjGz0a/vlPoosW4csEhIFYjO2FhUTjcQKdNIX7s54qkNi+HYAGr3eXEfRoJuDzDxxIm8eDsVtAluow2m22teWmWe5TczOtuk6RbaN3uNSPnhn9yQZxrvZ2Qj4fF/Xrx8Zly1jicrGoQ4C3r/0tO7Omh2WlF2Jyuz++ZEVmSrBqbETbQ0DoaG0l5PVSUVREM2B3KO8HOsLkDIUIA34+7tjZkxtvvHGX+2vWrOH111+nubk5l5cNDQ2cfvrp3HvvvdyRqQuszDTafTbsOwQ5RZmFWTzA3596ivvuv/+gp03uLc3ZeuDNN9/cZfuhqgf0YJAU6cZ0/+xK4LW1+BMJJgLNlkV2/PXss8+mV69ee12QZ/eg6ayzzqKiomK/C/hYDQ20aRpBrxdMEyuznyccDrAsFnk8nByP8/fnn2fxihX73D/8uy1eF9ywAdh357CybZyxGMRie+203tO+dO2113LtddcBUDdnDrF4vNPr6O5MFpURn5pSisJIhE2Z84SCmUtQHBTbZtOxx1L7y18e4tR1ETt20ORy4e7TB9j/yd7ZUZHdfdoet4N9v+S2bZhA8THHENK0z2U07VAzamupy1wrqt7hQNuyhcbMvqydcELueZVjxhD3+/Ef6oBQKUpNE7OkBKukhKKDDQi3biUFHHP66aT4OFDbk3X//jcjOq7Y2aEhUJrp3XYd4CIVZm0tLZqGJ7ugid+PJ/PbeFpaCBcUEBgwIH2/tZUHH3yQOXPmMG/ePGbPns0DDzyw1/Nagxs25A5Ozg4NlGxA9XHyD3zK+e4XrO4M//jHP5gyZQqnnHIK48aNY/z48bz22mt7DIwblyzJ/R/bsIHkunXU6zqevDy8xx3HueXl3NynD45Jk3JTC0eefz47gO3ZVT2Votg00SoqSAUC+Dqpg+az5BtAsq6OBBAuKcHboT6KbNyIDZQNH07c58Oze13VYeGS1qVLD+iznC0tNHq9JIG7Tzopt92TCWCKlMIMh/FEo6T8fmbMn8/GUIi4y7XLJT/2tb85OwRD0UyD29q+PV1nZs8R3bRpj6/1BYNECwooKChgJ6A6BHS7jzBdeeWVuSmeHXlDIbZlpnMn9lFf7O6qq67aJS/XLVvG38vKWD5tGvn5+WiZAL05U+/vq2HvaG5me6be7Zcp4w7gkT/+kcWLF7N48WJ8Ph9f+9rXiEaj+502uTevPvQQb/zqV7n7iXicZ8aOZf4zz3yq99udo72dzbvtx86GBgpTKS52OBgOqEzHwpo1axg+fPgngtOsG2+8MRcMZu3r+TlNTbQ5HMQyl05KVlQAYGVmbC3LdNQr09zv/tEzHGaZy8X7kycDEMl0qoTDYebOncv8+fNzt+yCS/WLFuVeHzrAUw6uuuoq7A6zYZoXLjwi6ujuTALCLuK9X/2Kt6+7jg9/9zsW3HUXix94gBl33MGse+7hrd//nukPPMCiv/+dzVOnsn3GDDa9+y6hFSsIrVlDcts2Ytu3E62rI7hjR/o6ZqnULo3FjizLIh6Ps+i11+hv2zRlDprRjz466HSvvO8++q9YQd9770UdwHX2uhtvXR1tBQXkZyr0UIe5/XuSvabV7j5tj9vBvp++Zg1bHA4cTifbXC48mdGrI5Vt2/SoqaExM5LVWFJC0erVrM0shz/qssv4D3CPy0VJWRntffrQOxqFQ3jtpejGjeQphXvIEByVlRQohdrD1LO9focNG6jTdfyBAE2Ato8FKep363hpy3QwWLEY5Znyl3eAQbyqqaHB48ktUqBXV9OrvZ26LVuobG0lUllJydChJID4bp1FW9eu5d3rr99rmQ9mppBtMQxcHRrZBxNQ7S7bEOpM2RkSBxIYN2YaWRudTho/+ghz/nwaMuf/5F10ESfU1+PevBl+/evcawYMGsSM0lJ6vPEGN15xBf++7z58gGvIEKwePShOJPZar3+e9pZvEydOPKDOKlVXR5OmkSopoaDDlFG1dCmbDAN/URHh8nIq2tp2+X7u+nqyNVB4xYoDSqsnGCTs89FqGNhr1zKnXz82PP44/nCYzZnVLxuXLaM0FsMsLcXtduP3+wnl5RHo0Hmxr/2toK2NxZlgqDWTLr2ujmaPhx4jRxICwh1WIM2aN28epcEgqk8fHA4HzW73xwsP8fEIU9ZZZ53Fn//8Z3rvdo5gfjRKc3YxqA5B8/44nc5d8vL8CRN4FVjz3HM8++yzeDPvdYdtk9jP9GRvMEhdpjOpD5DNVTuROKCg9kCdet11fOUPfyDe1kbDzp0sfeIJLpk/n0hmZArgXw89xIPnnov9KdogeeEw9R3Oy2vWdXo2NlIIbC8vxwBa160DDr5TKtbQwIbycjb88Y/7fJ6juZmwxwOZANAzfDgAM086iWeAVGYlz5P79t3n/pEMhaiwLFq+9S1OfeopbCCxbRskEtx4/PGEdrvERjIe56eXX872d97Jbds8Y8YBfTen00ldh3M6YytXHhF1dLemRKd75JFHVL9+/ZTb7VajR49Ws2bNOuDXBoNBBahg+jB4yG8mqBiodlBBTVMtuq52gqoHZYEK6bqKbNigtjgcql3T1LqiIvWh368+LClRc8vL1azKSjXnmGPU+wMGqJn9+6vZgwap2UOGqDnDhqmZQ4aozQ5H7rPeHDBATf/yl9XUCRPUtAsvVO984xvqvYsvVrN++EM176c/VbOuukrNvOYa9cbll6tFt96q3rruOjXjppvUzFtuUXPvuksteOgh9f5996l5jzyilvz972rViy+qD59+Wq145RW1efp0VTtnjmpctky1rl2rwlu2qHhDg0oFg0rF40qZplKWpWzLUkopZdt27nY4JZNJtX79evXqlCnq8YsvVu2g3v3Sl1TT9u2qHdSSU05RKpU64PdrqK9XyxcuPGTpq1+2TK164oldtsViMfXBBx+ov1x9tWrWNPXWwIFKKaVeGzBAtRqGMrduPWSff6isX79e3Xzjjeq2Hj2UArXolluUUkotuO02pUDVgWp0u5WybbVu3Tq1du1apZRS/3vkEZUEteP731fqM+4bpmmqJUuWqFe+8AVlgVo3c6aa88QTSoHaeNtt+319KpVSi+bOVevcbjW7Vy+llFKz8/PV+tLSPabNtiy12TCUAvXW8ccrBWrFY48ppZTa/NprSoFaUlCgduj6Pj+3ra1N/fPpp9V6XVfzhg/Pbd/xwgvp98zUDTMeeUSlUik11+lUG3v1UipTtpRSama/fkqB+jDzu+9uwc9/rhSoGX37qg0u135/iwNldUjDkcCORlVs48Y9Pjb1C19QTbquNp5wgoqCSoGqu/XW9IPJpFJ/+5tS8+Z94nXL3npLtei6WgdqXqbubly3Ts35zW+UArVlypTP8ysdsGg0qn4H6s+ggsHgPp+7sKpKzfP71XsXXKCioF5+4QV17/XXq0ZNU+9l9sGp116rFKjaZ57JvW5Vfr6a2rOnMkGt+MlPdnnPWHOzijQ2fuKz1jqd6v2RI9WyQCB3bFoWCKigpqmZffooBWrWFVcoBerdq6/OvW7GsGFqvcez3+9tW5Zq0TT12vDhSoH66IYblG3b6n2vV31UVaXq6urULFBbTj7549fYtnryySfVsZqmFKiGP/9ZKaXUv/r2Vc1ud/oYdoDsVEqFQb199tkqCGrW+ecf8Gt399awYUqBWu90KqWUWuvxqGZdVxNA1eznuLPJ7VbvjRih6jNtgA9KS5UCdfWECaqmpmaX565YsUJ9+ctfPuj0NaxZk8vDt845RzWBWpifrxSo1YaRe97qzO/64QsvHPRn7DQM9fYpp+Q+Z35VVe7/dyZNUgrUuuefV0opNWHChIN67w+uuUYpUBv8/n0+b5nPp2YPHKhe/v3v1Qug1q9YoZRSatOmTeqGG25QrY2NKgFq1je/uc/32fS//ykFauH99yullGpxONR/jj9eLfzBD9LHyfPO2+X571RVqRZQUzt8/2lXXnnA32/h3XcrBapR09ScTLthd7k27n7qCPHZaUodBRc368L+9a9/MXnyZP785z9zyimn8Nhjj/H444+zatUq+u7h/IHdhUIhAoEANQsWUFFSQltTE6lEAiuRQJkmyjRp2rkTMx7HpWm0NjXhdTox43HMaJSmnTvxOBy4DYNUIoFT12mqqyOQl4eZSGBGo/hcLlLxOAbg1HUKvF7yfT7MwkKO+clPKD7uONa8+Sbrb7oJbds2XKZJgcuFw7YhkUC3bZRlYSYSeNxutEzVoZG+cLXrgQdouOkmBm7ejMu28QBuwMjcDjcLsDvcLEBpGrZS2Jr28f3s38z/6Do2kFIKG9Cdzk+8j515TOk6KdvGtm1028awLAzbxiB9PmZv0r/BusJCei5ZQmG/fvzjuOOY/NFHtAG1bjem1wv5+USVwnA6cbjdqEyaTMtCKUX5pk30tW3mV1ZCaSm604mm65iWRSyZxOt2YxgGiXgcXdNwu1zoShGLxXA7nTgMg0QigUPXMeNxhq9ZQ4lSzCoupt3pJBkO44/F6KsUA4Ha/HyYMYO+J5zAwilT6HPBBfg1jXWBAC0FBfh69sQoLMQ2DHA40LJ/HQ7Q9fSUR8tCNwwchgFKoes6uq6jKUUkGiXg96NrGpqmYZomzkyvvaHrpEwTpRQp06Q9HEYphbJtwsEgydZWWjZvpsC2qTBNRgA9gJrzz6f6lVfS5z0oRc1vf4uaNo3y22/Hd845u+wbqVSKv1ZWctXOndS63WypqMAqK0OVlOAIBMgLBLAz38Pp8eAyDOKRCGYigUqlCLW2EmxpIdHaSnTtWkaaJqcAH44fz9iZM7Esi7cLCvhiNMqiykrCVVW4ysrSK3a6XMRCIRLt7TRv2YJRW8s5tk05sOHJJxnx/e/z3OTJXPzss6woL6f5+ONp9nio6N8fzTAIz5/P2TNmsOjOOxl62WVoJSUsHTAAc+JE9Ndf5wsbNjDvkksY/8wzzJ48GWPIEKLRKG6Hg+Zt22jetIm2LVtwbt3KBNOkv6YRffNNCidMyP0+kVtuofUf/2DbpEmMe+ABAP76jW/wo5deYk1hIRuHDMFZVsaZU6bgBpYGArgffRR3jx5YySThpiaiDQ24//AHSlpa2PyNb3DaCy9Q+7e/UXrKKTjy8nDm52MYBslolPffeIPa997ji9dcQ9Xxx6cTkTmk2baNBmiaRiqV4orLLuP9d97h5WnTGLaPRRJy9nBoVLst225ZVnrf3O15tm2jZfbRZDKJ0+kkFAoRj0ZxWRbB+nrCW7ei/ehHDAoGmfWzn9FcUkKkpobEmjXE1q3jGw0NtAwZwsiHHsL6+teJf/nL5D33HBxIL/rq1UR++UuiNTVYv/415ZdcQrS1lW0lJRQAq8aMQQ0diqdfP0oGDEAVFmIUFxMoLSXf7ycSiVBUXIxuGNhKoRsGmq6j6Xq6nGgaCtL3IbcN207flPr4/z1sS8bj/Pnyy7nujTcAmHXllZx4003YySTxUIhYMMim1asJbdyIuXAh506fznsnnsixt91G34kTWUl6VMnyetEWLaJw6FBikQhri4upTqVYOGwYlJZyxvTpTLvwQoa88gpN/frR95ln8JeV0bplC/GJEykwTZbffTclo0YRra+nYepUvvLCCyy5+mrMRYs4ad68XX7WubfdxvBbbyWgFG2AuX49pZlp0a995zv8f//8J++efz5l55/PzgcfpHjzZryPPUbzn/7E8PnzWXrFFWDbnPHYYyy4/XaG3HwzH/p8LInFuN622fiznzHo/vt5uqyMCxobeXviRBrcblYtWEB+bS2/8vkoqqxE/+gj8Hh4/uab+cbtt7Nm0CCMa6+l4qyzKOzfHzLnfIe2bWPphRdiVVdz2nPP0drYyPqHH+bkO+/k/VtuwX/33eglJRy7adMB7Vfbtmxh8/vvc/K3voVSihqfj5JUikKlqHvwQUqvu47Zxx7LmcuXs+immzjh9ts/8R7JZJL6uXPpfeaZzLr4YtxTp3JySwszLr+cMX/9Kx9NmMDJb721/338AMz86U85/eGH9/iYDTSuWEH78uUc8+1vA/DKuHFcsIeR2d0ppQiHw6x66SXG/ehHTP/JT2h/5x0qNmxAXX89Y+65B4AtH35I77FjWXTxxYz9FAvnvd+vH6du2UIMcIbDODKLxQAEg0FWr17Nsmef5XuPPMKSSy7hC3//Oy0tLfTYwzoDa7xe2goL+cLWrejZ/WPNGhKNjZSedhpKKaZOmsQ5r75KaMsWCvv2ZVVpKW2miS+Z5LhYjLUeD4OiUTRNY+uTT9Lnhz/Mvf86v5+SaJQFo0fz5Q4jf3tjx+N8OHo0o1avZmllJYG2NsqnTsU++2zqLrmEkY89lk5jpo0bDAYpyIwoi8+HBISdbOzYsYwePZpHH300t23o0KFccMEF3Hnnnft9fVcrLLs3uJRtE49EiASDmLEYPpcLp67TmAla45EIbsOgva2N9mCQSDCIlUhQ4PNhmyZN9fW4dB2VSmEohUqlsBMJbNPETiZRmb92KoWVSqFSKZRl4XO7MRMJsCyS8ThOwyDa3o6haeR5vdimSbCtjTyPB10pkvE4ZiKB1+1GWRZ2KoWuFDrpoFaHdBBj29imidPhwKnrGIaB5nKhuVzoLhe6242vqAh3dTWlZ52F68wzIRPwKKWY+6c/Efz3vwk0NmKHwxixGE7LQlcqPR9fKRyahpFpnIXKy2kpKmLAqlU4M40yLfPXqevYto3StPQiAJoGuo4CUpaVDmoNIx20Ohzouk5jZSVGeTklq1djWhbuvDzo2ZP8wYPpcd55OC+6KL30dMb8V19l+x13ULp5M0WxGLS347Ws9IXeM7+Ng4+D/+z9XP5nbh3/39/93R/LNsxjDgcxpxM7Px9X//5UnHEGrq99DUaPPqh9dOfOncy94w4Cb71F0datFCWT9Eil8LH/DoxsZ0PCMAgHAuhDhlD04x/juvji3In4NatXs2jyZPqvXEnfZJL8TCdJVpL0Nf9CRUWoMWPw//a3FJx6KgCmafLyd79L/1dfZWAsRmC3z59bXs64TINgxplncvKMGbhIT9f64MwzGffii6yvrmbUbgsLZKU0jXAggPuMM/DddBN0OMdybxKJBM9deinHvvUWA4NBCpVijcvFpokT+fLLL+/xN0sA73372xz/298SGzWK6g6Le3QlEdIdQLufuxF3OmkeMoSy//wHx8CBh+zzPnrtNZp+/GOG79iRmyLcmRr79aOmrY0v7ONaeilgcZ8+9J85k5LqasJPP40+dSqeIUMwrrwSOky3XTFzJvVXXsmgDRsoTKVYmp/PkI8+4sPJk5k4d+4uv3MMsDSN/N2aQCtLSxm8YQOxlhYWXHUV1b/4BQ2XXko8EODUpUvZ8fTTRF58keKf/5yeHTpDWhsbmTN8OOc2NmJk3t8AXKTLfDCzUA3AioICBtfVsemaa6h66imShkHtGWcw4o03wOFg+XvvYV14Icd1mDqecjpxXHgh3HsvZM4pV0rxzwsv5Iz//Y9eHb5HCEDT8ChFdt3vKB93tH7kdjNg507e/N73+OorrxDXNJqdTmK6jp25WZljgUMpHEqhWxZFsRhFwPbMd/EBH9x8M3m3387ITJDcNHMm9oQJDEok2GkYtDqdpDKdwB7LwmdZ9CKzYuzq1dQsWsTGRx/l/NdeY+6oUZy9ZQvbPB7aPR6SbjfK6Ux3QGRu6DrJVAqXy5XubM0ct0mlcOg6euY4r1kWfVtbafT72Vlezvj165lTXc2omhqmT5rEWVOm0OZwkGdZbHU4SFZVUb1hA7V9+pBwONLHjw7zpZRtE4/F0GMxHPE4BbbNEKDOMOixYwfOoiIMwyAeDDJ/3DjMUaM4+8UXmd2zJyc3NrLJ5yPi9abbBw4HCY+HwsZGPMCOykrito1hGOimiUok0ONxTmprY051NeNraljj8dDi82EoRTIcxplK0ReoBHYEAvTcsAHHHi4pkTVr8mTGP/ssTZrGdocD0zAYHo/jBRYYBl7LYhCwvLKSEzLTkD+49FJOypxrueS44zh+6VLmut2YLhcnhsMs9HjICwQ4cedO5n/969hLlzJ8/XpW9OmDlZdHUtdJZa7VaSWTGLaNQ9NQ8TgD6+vpm0rx3ujROI4/nvFPPEEQCAAmMLNfP0y/n1aluHjFii7Txj2SSUDYiZLJJD6fj5deemmXFfGuvfZali5dustJ+FmJRGKXufmhUIg+ffpIYRFHDcuyMIyPwwClFHZmtFTTNCzLIhQK4fP58Hg8WJaFZVmkUinC4TC6rpNKpdA0LXfOQfZ12RGZ/Px8CjusKLi/i/EeCq2trSTi8XSgrxSx9nbCkQj+wkLyAwEcLhfePV1XbD9s20azbTTLSp8jcqDfRSmsaJTmbdtw6jqu0lLydltlsW7zZvy6jiMQwBMI5D6vad06Ylu3UlhUhK1p5JeU4CwtBa/3wD9/L2lKJZM4Mt+jbvFi2lasINnSgu52k1dUhL9nT/zHH48nc+5qsLGR1f/+N4naWkgkULEYqVQKS9cpq65m0PjxfPjcc1ihEJZtE4/HQdPIz88nnkjgdrvRdJ3qY46hrE8f5r/3HmYigWVZqMzFmiG9j3i93tzqibZS6UZhphGvlCIYDGLbNh6PB4/Hg57p1DFNEzPTSFWkO3/sTCPS5XKhlMLlcuFwubBdLnw9epDXowc9zzkHf0UFzW++ScDrTf/GAwfu9Vpeh1KiuZnG1atpralBD4WwmpqIh8NEIxES8TiGruMwDDTATCZJmSa2UhiaRigYJFBQQCIex7Ys9Ez5swHd4UDpevoyRB4PmmHgdLvRDINILJa+73Ix6gtfoN+ll9La0sKyBx9EN01wOjE8Hlx+P5XV1RQecwyewYMhL29/X+cTOnYuKqVY+sYbRJYsId7Whtvtpt83vkFpRQUrH38cAygoLydv1CjKRo/+TPv4thUraPjwQ6pOPhkjL4/Nzz1H8Qkn0OfMM9k5ZQqWz0evCRPSsyL2p6UlffP5oGfP3Mjf7hKRCOtffZW2BQtoq6nBk0hgJhLk9+hB7yuvxFyxgu3TplFQVoY1YADH/vjH+AoKUErx7n33kXj7bRzNzdjt7Tg1DWWakErhzASGlq5jGwb5/fqhKiqIL1+O3rMnZeeey4if/pSls2dT88QTDL74YoadfTabFi1i41/+AitW4I5EcGoamq5j+3w4AgGs6mqG/OxnFGVGV7NioRBv//CHWAsX4rdtXPF4bj0DLXOzUim8Lhcp00x3shpGeqaJrpPMXH9TGQa600mipITjH3+cgmHDqJszhz5f+hKtzc0U9ejB3D/8gbbHHsNXXk6fe+/FZRh89M1vkt/aSl5mdkFu5DszIm4YBo7CQozCQpzFxWjHHkvpVVelR2X3IrhzJwuuuw5t0SLc0Siaw4GeSOBOJIiXlGBqGkU7duDMXCLCcjhQLhfK7aatupoxr77KuvvuI/6Pf+A2TazM9V0LKyrQq6qonDgR4/zz03Xzfiz7y18I//e/uJub0eJxYtXVkJ+Pf80atEAA58iRDLnjDrRs/aMUHz38MF6fj0E/+AFLfvADrOnTcdg2yUGDGPDkkzgdDprffJN+3/se4dpaVnzrW7jWrMFtmriVwpHpdFaGQYp0pygOB61lZajrruOkyy8H22bqeedhbN1K9R13sOPXv6Zy61Y8to0/HqcYpI17GEhA2Il27NhB7969mTNnDieffHJu+x133MHTTz/N2j0sIHLrrbdy2223fWK7FBYhhBBCCNFVhM49l8Cbb0ob9zCQVUaPALuPXuw+bbKjG264gWAwmLtt7bDCmBBCCCGEEF3CCy90dgq6DbkwfScqKSnBMAzq6+t32d7Q0EBZWdkeX+N2u3FnlqsWQgghhBCiSzoMp3uINBkh7EQul4sTTjiBadOm7bJ92rRpu0whFUIIIfZlZ/vOzk6CEEKIo5SMEHay66+/nsmTJ3PiiSdy0kkn8de//pXa2lquvPLKzk6aEEKIo0T5feWoW2RJACGEEAdPAsJO9s1vfpPm5mZ+97vfUVdXx4gRI3jjjTeoqqrq7KQJIYQ4ili2haF3xtVbhRBCHM1kldGjXFe7DqEQnWX2ltmMrRyLy3Dt/8lCHGG02zTab2gnz3Xwl2gQQogjkbRxDx85h1AIIYBHFjzS6edhdfbni6NbLBXr7CSIw2TKmimc/8/zOzsZQoguQgJCIY4CMpD/+WuONXdqgzqSjPDD//2w0z5fHP1+N/N3Uld0Ex9s+4Cl9Us7OxlCiC5CAkIhjgL676Soft6ao83EzM4LCBsiDYST4U77fHF0+MOcP9AQadhlW1u8DYA/zf8TzbHmTkiVONxq2mo4pviYzk6GEKKLkFamEEeJo6nn/5QnT6E2WNvZyTgozbFm4qn4Lts6/ub/Xf1fbp1x6+f2+Q2RBsKJTx8Qnvn0mWwLbTuEKTowKxtWMr1mOq+te22X7dtD2w97WrqijvugrWx+9c6vqGmtyW2rC9dRdHdR7v6apjWHNX3i0Hq/9n0mvzx5v8+LmTEqCyppjkoHgNi7o6ndIDqXBITiM1vfvJ5QItTZyeiyklYS4BPBypGqMdLI3K1zj6p9ImbG0iOEu00ZPfbRY5m5eSanPXUav5/9e26beRsfbP3gkH++rWx2hHewNbSV9c3rD/r1W9q2MGPzDJbtXPaZGgCWbR3U81c2rGTEoyP44jNf5N1N7+a2L61fSuUDlaxrXkfVg1XYyv7UaerO5m+fT58H+uTuV95fCUBLrCW37Z1N7+zymoc+fGiXfEzZKd5Y/wbPLnv2c07t58u0zD2WvV9N+xXPL3+ecCJ8yBq/y3cuZ0ndkn0+Z2n9Ui7732VsD21nSd2Sg/7svy36W25kt6PTnjqN55Y9x7rmdft8vUIxonQEi+oWHdTniq5pRcMK1jevp6a1huU7l2NaJnXhOgJ3BVjduPpz//x4Kv6pZ9jUt9cf4tSIT0NWGT3KZVdgun7K9fQu7U0wHsw95jScQPrcJE3TcOpO2uJtuAwXDt1BxIxg2RYKhVN34jJcuB1utoe3k+/Mx1IWiVSCHr4eJFIJbGXjNJz08vfCbbjZEd7BpCGTuP+D+5m1ZRanVZ2GaZmU+kopyy9D13QiyQgKhVKKYCJIz7yeaGjYykahKHAXMLt2Nm3xNk7tcyqxVIxSXymapgHphnI8FSeRSmApiwJ3AV6Hl5ZYC+X55cRSMXxOH4lUgqgZJZgIkufMw+f0YSubYCKI3+UnYkbwOX25hpKmaWhouc/J/h9KhLCVTYG7gJSdwmW4aIu34XP6iJpRdE2n2FuMrWy2BLdQkV+R+56mbZLnzMNpOEnZKUzLRNM0DM1A13QM3cDQDDRNI5FKoGkaHoeHgDtAoacQp5HOgwJ3AU7dScSMsGD7ApbUL+H19a8D8JWBX2Fwj8H4XX4SVoL2ZDsuw4WhGUTMCEopXIYr/ZtYCQLuAJqmEUlGgHRwadomtrIp8hQRTobRNZ2oGcWpO3MrFKbsFCk7RYG7gMZIIwXuAjwOT24/ynPloaFRVVhFWV4ZHoeHpJXk+eXP8/CChwE4tuexFHoKGVA8gCJPEXmuPHaEd9CebMfv8u9xeXwNDUtZtCfbc3ltKQtb2aTsFBEzgqEZmLaJQ3fg0l0oVO51uqYTSoTwOX14HB4K3AW4DTcBTwBd0+nl74VTd3JM8TEMLx1OMBHk4fkPc9vM23JpuPfsexlXOQ7TNjnz6TMZ02sMQ0uH8sxHzwDwnWO/w9bgVk6oOAGFwm240TWd5lgzuqbjMlzomk48Fac92U6hpxCf04fX4aU0r5QiTxFuh5shJUPId+WzqnEVD8x7gGU7l9EQaeC48uMozy+nf2F/Snwlu5SbIm8RfpefPFcexd5inLqTqRumcvus23PpP7PfmVQWVNKnoA8O3UE4GcbQDCxloZQiaSWxlY3P6SOcDNPD24OIGaGmrYZ52+ZxychLsJVNviufsvwyNDRK80op9ZVSmldKRX4FfrefObVz+OIzX8RluPj1Kb+mMdLINWOvoT3Zzs/f/jkO3cEloy7hXyv/ha1syvPLqS6sxrItHLqDlJ0imAhS5CkiYSXIc+Zh2iahRIitoa0AnDfoPGZumYlDc5DvysdWNpaycuW4xFdC74LeNEYa2R7eTjwVx7RNvA4vBe4CIsl0uQc4q/9ZnNjrRP4w9w/EzBimbaKUygWruqZT6ClE07TcdkXmr1IoFJFkhGgqitfhJc+Zh0N34NAdxFIx4qk4ec48bGXj0B1YyiJlp/C7/LnfvsBdgKZp6JqO23DTFG0imAgyrnIcFfkVJK0kXqeXHt4eWMriN+/8hmAiyPvff5+athpGPjqSsZVjaY42s+rqVQBc8vIlNEWbmLphKmN7j+WasdfwyppXePqCp2mJtfC1l77GvG3zADi5z8n0L+pPeV45boc7l36H7kDXdNqT7bQn23Pf2aE7cBpOklaSeCpOyk7h1J20xlsp8ZUQNaMkrSSappG0kjh0B0qp3P6f58rD0Azchhu3w01jtDFdRnQXZ/U/i3MGnMOyncv454p/5uqhYm8xbsNNZUElXqeXmBljztY5PLf8OQBuO+M2rhpzFQXuAv666K/cPuv23BTaM/udSWleKVWBKhKpBDvadzCkxxAAVjetptBTiKEZ6TrWcOJz+oin4vhdfpyGk2A8SO+C3tw+63aUUtxw6g1sbN1Ie7IdDY3GaCM+p48vVX+Jp5Y+RdSMcmzZsbxf+z5fGfAV5m2fx/DS4eQ583AZrtwtYSXQNZ1SXykAjdFG7nz/Tm449Qa+VP2l3DF4XOU4AncFePmbL3P/vPu5fPTl9MzryZjeY/A6vLm63Of0cf4L5/PE+U/wrX9/i7L8MsrzynN5lbSSmJZJhb+ClJ0iz5lHyk7hc/rYEd5BTVsN14y9hnc2vcPyhuUUuAvwOXy5/UDX9Nx+mruPlquz25PtuePA6IrRPDz/YfJd+RR6Cpk0eBKza2cTNaO5Ojjb5nDoDrwOL82xZhoiDQwtGcrr618nz5XHVSdexZS1U6gN1qJQ9Pb3RiN9fM62IRSKtngb5fnltMZb0+0c3YlTd+bq3uxx1lY2boebUl8p9e31uWN+U7SJY4qPYWtwKw3RBuKpOIOKBzG6YjRvbnwz935Ow5mrc/KceXgcHgDyXHn4XX58Th8bWjbwbs27zN8+n1P6nsKYXmN4ZMEjXHzsxbgNN/0K+/H2prcpcBcQcAdw6A4Mzdil3Bl6+n62XCmlMHQDDQ2FYm3zWtyGm+GlwwHS5cORLh9O3YnX6WVJ3RIeXfgoS+qXcM6Ac2iONnPFCVfwo1d/xGWjL6OXvxcO3ZFrS3mdXjwOD7XBWnRNZ1zlOHRNpzXWyqrGVby67lVKfCWM6TWGsvwyAu4Ab296m1P6nILf5UfXdNY2r6WuvY6RPUdS7C3mpVUv4dAdnDfoPHaEd+S+l8/pw224MW2TRCqRazu0xltZUr+EIT2G8Mf5f+TbI75NwB2gPlJPRX4Fvf29cRpO3Ck3151xnawyehhIQHiUywaE7656F+VWFHmLcpVoNrhRKBKpBPmufAKeAIZmEEqEKHAXEEqEKPYWEzWjtCfbASjyFuUqwmzBzVY8Sim2BLcQT8Vx6A7er30/dxAoyy8jZafYEd5Byk4BpBvtmWX8s8FdNvjKBlLHFB9DXbgOAJfhojXeistwoZRC07RcYyJpJUnZKerb66kurKY2WIvP6csFB9mGeTwVR9d0nEY6APY6vOS58nLBUseDC7DL//mu/Nzvo2s6sVSMPGde7jVOw0l7sh1d0/G7/MRTcWxlo2s6HocH0zZzQXChpzDXsMw2YrP/x8wYAU+ASDJCe7KdYCKIaZkkrAShRIhgPIjTcDK291gApm6YypCSIVw09CJWNa7C0AychpNCTyHhRDqo87v9KKVI2Snak+0YukFTtAmPw4PLcOFxeHAb7lwDtjXWSpG3CF3TSdmpXEMOIJgI4nF4coEDpHsAswFFe7KdeCrO9vB2mqJNNEWbMDSDi0dezLDSYVz9+tX8Y9k/iN8UZ3toO8FEkPZkO739vclz5REzY7nfvCPLtoilYuS78nOflw2ms/nkcXhyQXbUjOby1NAMklYy18hrjjXnvle2LHy4/UPchpudkZ0s27kMl+HiyhOvZNGORdw0/SYAXv/O6yypW5JL858n/pmP6j/iuMeOA8D8PxNd01nVuCp30E7ZKfJd+bgNNyk7haUsPA4PHoeHtngbkWSElJ2iOdZMU7SJmBljwY4FGJpB30BfJo+aTO/7ezOybCRLr1iKrWxWNKwgYSVyDShDMwgmgoQSITa2bCSWimFoBl8Z+BWKvcUMeWQIVYEqNl+3me2hdL40RhupLEiPKmV/s5ZYC9tC26guqqaHtwet8Vb8Lj8tsRbq2+vxu/2U5ZURSoRyDfjGSCON0UYaI43UhmqJJCMcV34cl42+jHgqjqEbVD9UzY9P/DEaGr8d/1vu/+B+dkZ2ctnoyxhfNZ6NLRupa6/LNYiiZpSy/LJcAB81ozh0BwF3gMqCSl5a9RKTX57MvB/Oo6qwKlfush0CAOFEmG2hbfTM65kLIHRNJ5FKlyOPw0PCSqCU4u45d7OobhEPfvlBqouqcRkuNNL1kCK9X4cSody2jo3i7Lbs/pXtUEtaSTS0XF5ny51pmbkGX1u8DbfDnUuvrWwSVrqDze/yk+/KZ/72+bTEWtA0jZSdoinahK7pfHXoV6lrr+OX035Jz7yePHn+kxR6Crns1cu4+fSb6VPQh4v/ezEDigfw0IcPcVb/s5g2eRqvr3ud37z7G3r5e3HbGbcx8fmJtMRaaPplE4ZuUN9en6tPs51Xpm2mAwOnj3AiTJG3KFefaJqGz+nDqTsxbROPw0NTtCkXSDl1Z66OdzvSZcBtuHOdVNmA0u/249SdRM0ozy1/jv+t/R9+t5+/TPwLmqbhMlyEEiESqQTbQtuImlHcDjfHlR/HmqY1VAWqWNe8jhdXvUhduI6vD/s64yrH5cqmuiUdMOwI78C0TAb2GMiYv43hgsEX8IuTf5HrEGtPtmNaJs2xZjwOD5FkJFfXNUbTHWCmZWIpi17+XrlOwFWNqyj1lbKkfgkTB07k2WXPctvM23AaTi4ddSn3nH0PW9q25Do8skF0to5qjDRiKYsSXwkeh4fFdYtpjDTm6qoPtn3AiRUnct+X76Mp2sR/V/+X1lgr0zdPJ2JGuGjIRfxl0V/47rHfZf6O+bz67VfT9XU8SGO0MfdZ2U7CuvY6XIaLcCKMQ3fkOtqqi6o565mzGF81nnvOvod4Kk7UjObqS1vZu3SIZG+mZRJMBOnt742lLJqjzTy++HHuPvtu8px5NEQaeHbZs5za91R6F6QDulAihGmb6XrRtmiLt9Ezryc9fD34zTu/4YIhF3Bq31MZ+/hYbh5/M18b9jW8Tm9uFDzbnskGdD6nj6ZoEz18PdDQcnkaM2NYysptcxpO4qk4y3Yuo9RXSpG3iGA8yNDSobyx/g2GlgxlTO8xuA030zdPZ2XDSi4YcgFuhztXHqJmFMu2Pu4kyXQKhZNhwokw1UXVDC8dzuK6xVT4K6hprWFwyWBqg7UUegp5Z9M7XDv2WkzbJJwI58pb9pbtNErZKZJWMhc0ZttP2cA4nAxT316PUorWeCuNkUZCiRBRM4ppmwzuMZjzB5/Psp3LOLHXifx+9u95ceWLPHH+E3yh9xcY98Q4evt789vTfkuBu4BYKkbMjNHD14P2ZDsbWjaQslMUe4vp4e3BMcXHEIwHeWXNK5xWdRrhRJhjy45l2c5luY7u/kX9KfQUsqpxFTvbdzK4ZDCmZdISa6GqMH0d7ZSdIpKM5DpEfE5f7rcscBfkynN5fnmuU6kqUMXmts3UtdehofHAzAd4+dKXJSA8DCQgPMrJNVrEkejvS//O96d8H3XL0VG9JFIJNrZuZGPLRs4bfN4nHq8L19Hr/l4UeYpo+XXLHt7hs9Nu02j+VTPF3uJP9foHPniAhkgDd5515yFO2f7FU3G8v/di32znRt0f+OAB7ppzF9uv345Ddxz2NO0uG5hkg7OjSbZzLGtz22a++uJXGd93PKf3O53FdYu5fdbtXDDkAl7+5st7fI9fvP0L7p1w7+FK8gHJjvTuabbAgYokI1Q9WEVzrPmw1zcbWjZw5tNn8s7kd+hf1D83K+fTGvnoSH558i+ZPOqT5xDGzBgvrXqJU/qcwndf/i4Digfwjwv/8Zk+70iSslNHRD3RFYQSIWZvmc3EQRM7Oymf2ex1sxk/eLy0cQ8DKX1CiEOuh7dHZyfhoLgdboaVDmNY6bA9Pl6al57qNbhk8OeWhvqf13/qYBDgZyf97BCm5uB4HB5af926S9DSu6A3I3qOOGIaeZqmHZXBILDL7wrQr7Afz174LG9tfItJgyflFpLxu/x7fY8jLRiEzxYIZuW58mj6VVOnnGM9oHgAW3+29ZC936LLF+01qPQ6vVwy6hIg3eAPuAOH7HOPBEdKPdEVFLgLukQwCDCqfFRnJ6HbkBIohDjkzh14LquuWtXZyThkHLqDi4ZexDnHnPO5fUZZftnn9t6HQ6GncJf7A4oHcHrV6Z2TmG5gaOlQhpYOBdLTgWHfAWFXlz3H62h2oCOMlm3lplIKIcShIAGhEOKQc+iOXGO1q/jPN/7T2Uk4qoyuGM3x5cd3djK6hez5uH539w0Iu5N/f+PfR90sDCHEkU0CQiGEEJ+L3ac6is9HdimA7jxC2J2M6Dmis5MghOhi5DqEQgghxFFMoQi4A/x07E87OylCCCGOQhIQCiGEEEex7CV1CtyyCp8QQoiDJwGhEEIIcRRTqEOyYqcQQojuSQJCIYQQ4ih2zdhrmP+j+Z2dDCGEEEcpWVRGCCGEOIrlu/LJd+V3djKEEEIcpWSEUAghhBBCCCG6KQkIhRBCCCGEEKKbkoBQCCGEEEIIIbopCQiFEEIIIYQQopuSgFAIIYQQQgghuikJCIUQQgghhBCim5KAUAghhBBCCCG6KQkIhRBCCCGEEKKbkoBQCCGEEEIIIbopCQiFEEIIIYQQopuSgFAIIYQQQgghuilHZydAfHpKKUKhEEDurxBCCCGEEEe7bNtWKdXJKen6NCW/8lErFAoRCAQ6OxlCCCGEEEJ8LrZu3UplZWVnJ6NLk4DwKJYdIQyHw/j9fjRN6+wkfWqhUIg+ffqwdetWCgoKOjs54jCRfO+eJN+7L8n77knyvXv6rPmulCIcDtOrVy90Xc5y+zzJlNGjmKZpBAKBLjVKWFBQIAeLbkjyvXuSfO++JO+7J8n37umz5HtXauMeySTcFkIIIYQQQohuSgJCIYQQQgghhOimJCAURwS3280tt9yC2+3u7KSIw0jyvXuSfO++JO+7J8n37kny/eghi8oIIYQQQgghRDclI4RCCCGEEEII0U1JQCiEEEIIIYQQ3ZQEhEIIIYQQQgjRTUlAKIQQQgghhBDdlASE4rCZNWsW5513Hr169ULTNF555ZVdHldKceutt9KrVy+8Xi9nnHEGK1eu7JzEikNqf3n/ve99D03TdrmNGzeucxIrDpk777yTMWPG4Pf76dmzJxdccAFr167d5TlS7rueA8l3KfNdz6OPPsrIkSNzFyE/6aSTmDp1au5xKetd1/7yXsr7kU8CQnHYRCIRRo0axcMPP7zHx++55x7uv/9+Hn74YRYsWEB5eTlnn3024XD4MKdUHGr7y3uAc845h7q6utztjTfeOIwpFJ+HmTNncvXVVzNv3jymTZtGKpViwoQJRCKR3HOk3Hc9B5LvIGW+q6msrOSuu+5i4cKFLFy4kC9+8YtMmjQpF/RJWe+69pf3IOX9iKeE6ASAevnll3P3bdtW5eXl6q677spti8fjKhAIqL/85S+dkELxedk975VS6tJLL1WTJk3qlPSIw6ehoUEBaubMmUopKffdxe75rpSU+e6iqKhIPf7441LWu6Fs3isl5f1oICOE4ohQU1NDfX09EyZMyG1zu92cfvrpzJ07txNTJg6XGTNm0LNnTwYNGsRll11GQ0NDZydJHGLBYBCA4uJiQMp9d7F7vmdJme+6LMvihRdeIBKJcNJJJ0lZ70Z2z/ssKe9HNkdnJ0AIgPr6egDKysp22V5WVsaWLVs6I0niMDr33HP5+te/TlVVFTU1Nfzf//0fX/ziF1m0aBFut7uzkycOAaUU119/PaeeeiojRowApNx3B3vKd5Ay31UtX76ck046iXg8Tn5+Pi+//DLDhg3LBX1S1ruuveU9SHk/GkhAKI4omqbtcl8p9Yltouv55je/mft/xIgRnHjiiVRVVfH6669z0UUXdWLKxKHyk5/8hGXLlvH+++9/4jEp913X3vJdynzXNHjwYJYuXUpbWxv/+c9/uPTSS5k5c2bucSnrXdfe8n7YsGFS3o8CMmVUHBHKy8uBj0cMshoaGj7Royi6voqKCqqqqli/fn1nJ0UcAj/96U/53//+x/Tp06msrMxtl3Lfte0t3/dEynzX4HK5GDBgACeeeCJ33nkno0aN4qGHHpKy3g3sLe/3RMr7kUcCQnFEqK6upry8nGnTpuW2JZNJZs6cycknn9yJKROdobm5ma1bt1JRUdHZSRGfgVKKn/zkJ/z3v//lvffeo7q6epfHpdx3TfvL9z2RMt81KaVIJBJS1ruhbN7viZT3I49MGRWHTXt7Oxs2bMjdr6mpYenSpRQXF9O3b1+uu+467rjjDgYOHMjAgQO544478Pl8fOc73+nEVItDYV95X1xczK233spXv/pVKioq2Lx5MzfeeCMlJSVceOGFnZhq8VldffXVPP/880yZMgW/358bHQgEAni9XjRNk3LfBe0v39vb26XMd0E33ngj5557Ln369CEcDvPCCy8wY8YM3nzzTSnrXdy+8l7K+1Gi09Y3Fd3O9OnTFfCJ26WXXqqUSi9Bf8stt6jy8nLldrvV+PHj1fLlyzs30eKQ2FfeR6NRNWHCBFVaWqqcTqfq27evuvTSS1VtbW1nJ1t8RnvKc0A99dRTuedIue969pfvUua7ph/84AeqqqpKuVwuVVpaqr70pS+pt99+O/e4lPWua195L+X96KAppdThDECFEEIIIYQQQhwZ5BxCIYQQQgghhOimJCAUQgghhBBCiG5KAkIhhBBCCCGE6KYkIBRCCCGEEEKIbkoCQiGEEEIIIYTopiQgFEIIIYQQQohuSgJCIYQQQgghhOimJCAUQgghhBBCiG5KAkIhhBBCCCGE6KYkIBRCCCGEEEKIbkoCQiGEEEIIIYTopiQgFEIIIYQQQohuSgJCIYQQQgghhOimJCAUQgghhBBCiG5KAkIhhBBCCCGE6KYkIBRCCCGEEEKIbkoCQiGEEEIIIYTopiQgFEIIIYQQQohuSgJCIYQQQgghhOimJCAUQgghhBBCiG5KAkIhhBBCCCGE6KYkIBRCCCGEEEKIbur/B7gAbJGbwxYBAAAAAElFTkSuQmCC", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "p.SetMaxSinThetaOvLambda(0.2) # Important for stability of profile fit. And faster !\n", "spgex = SpaceGroupExplorer(pdiff)\n", @@ -422,7 +190,7 @@ "print(\"Chosen spacegroup (smallest nGoF): \", c.GetSpaceGroup())\n", "\n", "# Updated plot with optimal spacegroup\n", - "p.plot(diff=True, fig=None, hkl=True, reset=True)" + "p.plot(diff=True, fig=None, hkl=True, reset=True)\n" ] }, { @@ -437,27 +205,9 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Crystal Formula: C8.9 N6 S\n", - "\n", - "Option #0: Constrain Lattice to SpaceGroup Symmetry = Yes (Default)\n", - " Choice 0: Yes (Default)\n", - " Choice 1: No (Allow Crystallographic Pseudo-Symmetry)\n", - "Option #1: Use Dynamical Occupancy Correction = Yes\n", - " Choice 0: No\n", - " Choice 1: Yes\n", - "Option #2: Display Enantiomer = No\n", - " Choice 0: No\n", - " Choice 1: Yes\n" - ] - } - ], + "outputs": [], "source": [ "if not os.path.exists(\"cime.fhz\"):\n", " os.system(\"curl -O https://raw.githubusercontent.com/vincefn/objcryst/master/Fox/example/tutorial-cimetidine/cime.fhz\")\n", @@ -475,7 +225,7 @@ " print(\" Choice %d: %s\" %(j, o.GetChoiceName(j)))\n", "\n", "\n", - "c.GetOption(1).SetChoice(0)" + "c.GetOption(1).SetChoice(0)\n" ] }, { @@ -487,13 +237,13 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "mc = MonteCarlo()\n", "mc.AddRefinableObj(c)\n", - "mc.AddRefinableObj(p)" + "mc.AddRefinableObj(p)\n" ] }, { @@ -503,44 +253,18 @@ "### Disable profile fitting before Monte-Carlo\n", "..or else the crystal structure will not be optimised\n", "\n", - "Note that the following display will be live-updated during the optimisation done below (the last plot is alwasy updated)." + "Note that the following display will be live-updated during the optimisation done below (the last plot is always updated)." ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "77f6fca9951e478dbd016ed5226eb856", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACwuElEQVR4nOzdeVxU5f4H8A/7JowgIlKKlkkoluYKZO6oV9S0wi6KUkYLFdcLqZlamqXe3LX0ltdcENOrZW5dxeWKC2Io0AWVstIAFTd2ZWd+f/A7p5lhZpiVYZjP+/XipZx5ZuaZw5yZ8z3f5/k+VlKpVAoiIiIiIiKyONam7gARERERERGZBgNCIiIiIiIiC8WAkIiIiIiIyEIxICQiIiIiIrJQDAiJiIiIiIgsFANCIiIiIiIiC8WAkIiIiIiIyEIxICQiIiIiIrJQDAiJiIiIiIgsFANCIiIiIiIiC8WAkIiIiIiIyEIxICQiIiIiIrJQDAiJiIiIiIgsFANCIiIiIiIiC8WAkIiIiIiIyEIxICQiIiIiIrJQDAiJiIiIiIgsFANCIiIiIiIiC8WAkIiIiIiIyEIxICQiIiIiIrJQDAiJiIiIiIgsFANCIiIiIiIiC8WAkIiIiIiIyEIxICQiIiIiIrJQDAiJiIiIiIgsFANCIiIiIiIiC8WAkIiIiIiIyEIxICQiIiIiIrJQDAiJiIiIiIgsFANCIiIiIiIiC8WAkIiIiIiIyEIxICQiIiIiIrJQDAiJiIiIiIgsFANCIiIiIiIiC8WAkIiIiIiIyEIxICQiIiIiIrJQDAiJiIhagMmTJ5u6C0REZIZsTd0BIiIi0tysWbMabJNKpUhOTjZBb4iIyNwxICQiIjIjCQkJ2LFjR4Pt//3vf03QGyIiMncMCImIiMzIq6++Cn9/f3h5ecltnzp1qol6RERE5sxKKpVKTd0JIiIiIiIianosKkNERERERGShGBASERERERFZKAaEREREZi49Pd3UXSAiIjPVogLCU6dOYezYsfDx8YGVlRW+//57udutrKyU/ixbtkxsM3jw4Aa3v/zyy3KPU1hYiIiICEgkEkgkEkRERKCoqEiuTU5ODsaOHQsXFxd4enoiJiYGVVVVcm0yMzMxaNAgODk54ZFHHsHHH38MTukkIiJ11q9fL/fzxRdfICIiAuvXrzd114iIyAy1qCqjDx48wNNPP41XXnkFL7zwQoPbb926Jff7f/7zH0yfPr1B26ioKHz88cfi705OTnK3h4eHIy8vD4cPHwYAvP7664iIiMCBAwcAALW1tRgzZgzatm2LM2fO4P79+5g2bRqkUinWrVsHACgpKcGIESMwZMgQpKam4pdffkFkZCRcXFwQFxen/84gIqIW6YsvvoCvry/CwsJgZWUFALC2tkarVq1M3DMiIjJHLbbKqJWVFfbu3Yvnn39eZZvnn38epaWlOH78uLht8ODB6NmzJ1avXq30PleuXEG3bt2QkpKC/v37AwBSUlIQGBiI7Oxs+Pn54T//+Q9CQ0ORm5sLHx8fAMDOnTsRGRmJO3fuwM3NDRs2bMCcOXNw+/ZtODg4AACWLl2KdevWIS8vT/ySV0cqlaKkpASlpaVwdXXV6D5ERGTepFIp9uzZg++//x4TJkzAxIkTERYWhj179pi6a0REBiOVSlFaWgofHx9YW7eoQY3Nj7SFAiDdu3evytvz8/Oltra20oSEBLntgwYNknp6ekrbtGkj7datmzQuLk5aUlIi3r5p0yapRCJp8HgSiUT69ddfS6VSqXT+/PnSp556Su72goICKQDpiRMnpFKpVBoRESEdN26cXJu0tDQpAOnvv/+ust8VFRXS4uJiaXFxsTQ3N1cKgD/84Q9/+MMf/vCHP/xpkT+5ubkqz4vJMFrUkFFtbN26Fa6urpg4caLc9smTJ6Nz587w9vZGVlYW5syZg59++glHjx4FAOTn5zdYDBgAvLy8kJ+fL7Zp166d3O3u7u6wt7eXa9OpUye5NsJ98vPz0blzZ6X9XrJkCRYuXNhge25uLtzc3DR45URE1JLU1dXh9u3baN++vam7QkRkMCUlJejQoQNcXV1N3ZUWz2IDwq+//hqTJ0+Go6Oj3PaoqCjx/wEBAXjiiSfQp08fpKWl4ZlnngEApUMzpVKp3HZd2kj/f/SuuqGfc+bMQWxsrPi7cLC4ubnBzc0NJ0+eRFhYGNq0aYO2bdsiMzNTDC5ramrEwHTXrl2ws7PD8OHDcenSJXz//fdYsmQJampqMG7cOMTFxeGHH37AJ598Amtra1RVVeHBgwfIyspCSEgIkpKSsGHDBkyfPh0nT57EokWLkJWVhVWrViE8PFzsX25uLl555RVUV1ejvLwcAQEBOHjwIMrKyjB37lzMnTsXffv2RUZGBvz9/dG5c2dcvnwZq1evxpgxY9CnTx+4u7sjNTUV27dvR2hoqNz+uHjxImbMmAFra2u0a9cOfn5++P7773H37l0UFBTgo48+wty5c8X2s2fPxtSpU9G9e3fMmDEDS5Yswa5du1BWVoZ33nkHQP38nGXLlqFPnz7iEKwdO3bggw8+wOeff96gD8pUVFRg1KhROHnypNLbtX08IiJ1WrdubeouEBEZBadEGZ9FDsg9ffo0fv75Z7z22muNtn3mmWdgZ2eHq1evAgC8vb1x+/btBu3u3r0rZvi8vb3FTKCgsLAQ1dXVatvcuXMHABpkF2U5ODiIwZ/wI6u4uBi2trY4e/YsTp06BX9/f2zYsAEzZ87EH3/8gWPHjiEsLAzx8fFwcnLCwYMH8eKLL+Jf//oXPvjgAyQlJSEpKQk3btxAQEAATp06hTNnzqC8vBwVFRU4cOAAtm3bhq5duwKoD3xWrFiBQ4cOITAwUC4YBIC1a9fi73//O5KSkpCcnIwPPvgAa9aswaOPPioGat27d8df/vIXbN++HRkZGZg6dSrGjBkjPsa2bdswY8YMpfvjkUcewZEjR5CUlIQuXbogOzsbS5YsQXp6OiIjI5GSkiLX/vLly+jevTsAYPXq1Q0KBgHASy+9JDevFKgvJBQZGany76ItQz8eEREREZEuLDIg3LRpE3r37o2nn3660baXLl1CdXW1OBQnMDAQxcXF+PHHH8U258+fR3FxMYKCgsQ2WVlZclVNExMT4eDggN69e4ttTp06JbcURWJiInx8fBoMJdVGSkoKnnzySXh4eAAA7O3t0b17dwQEBMDZ2RkFBQUoKipC27ZtYWtri7Zt2wIA8vLy0LNnTwDAU089hXPnzqFjx46wta1PIltbWyM8PByrVq2SG5aUnJwMJycnDBo0CL/88gvy8/Px6aefIigoCIMGDcKDBw9w5swZFBUVwdbWFl26dFF5pcfa2hrt27dHcXGx3HbZ57t37x6ef/55DB06FFOmTEHbtm3h7OwMALCzsxMnHbdv3x7l5eViwZ64uDgEBgbi/PnzyMjIwObNm+Hm5obg4GBcvnxZ7vm8vLywd+9eJCcnY8yYMQgODkZ8fDwSEhLw/vvvo7KyEjU1NQgPD8egQYPwl7/8BQUFBQCAt99+G4MGDcJHH30kPt6FCxcwZMgQDBw4EMuXL9fir0lEpDnFi4xERESaaFEBYVlZGTIyMpCRkQEAuHbtGjIyMpCTkyO2KSkpwe7du5VmB3/77Td8/PHHuHDhAq5fv44ffvgBL730Enr16oXg4GAAgL+/P0aNGoWoqCikpKQgJSUFUVFRCA0NhZ+fHwAgJCQE3bp1Q0REBNLT03H8+HG89957iIqKEjN64eHhcHBwQGRkJLKysrB3714sXrwYsbGxeqXGCwoKlJYel0gkKCoqwrBhw7Bt27YG1Vcfe+wxnDhxAjU1NTh58qTcuooXL17Ew4cP0b9/fzz++OM4ffq0eNvt27dx7do1jBgxAtHR0Xj33Xdx4cIFnD17FklJSVi6dClqa2sRGBiIUaNGiVlQZSoqKpCbm4s2bdqobLN06VLExMTgxIkT6NWrF/bu3Qugft3HY8eOoWvXrpgzZw6CgoJw8OBB9OrVCwCwaNEivP7665gzZw4WLVqEf/3rX+jZsyeOHDmCJ598UulzOTg44NChQxg6dCjS0tIwefJkPP7440hKSsLevXvRsWNHJCUl4a9//SvWrVuHCxcuoLCwEElJSRg+fLj4OLNnz8Z3332H06dP4+zZs0ozzERE+po6daqpu0BERGaoRc0hFDIxAmGu3bRp07BlyxYA9cs/SKVS/PWvf21wf3t7exw/fhxr1qxBWVkZOnTogDFjxuCjjz6CjY2N2C4hIQExMTEICQkBAIwbNw6ff/65eLuNjQ0OHTqE6OhoBAcHw8nJCeHh4XLZIYlEgqNHj+Ltt98W58nFxsbKzQ/URZs2bcThrYLRo0cjPz8fEydOREJCAr777jt8/PHHWLp0qdjmtddew5o1a7Bx40Z06NAB3t7eAOozh3/729/EAHLmzJmYOXOmeL/WrVvj2WefRWZmJubNm4cvvvgC06dPF4NaNzc3fPbZZ/jss8+wefNmrFq1Smlm9uzZs3jjjTcQEhKidvLw5cuXcf78eXz88ccoLy9HREQESkpKEBERgc2bN2PHjh1YsmQJQkNDMWPGDBw8eBBz587FihUrsG7dOnTp0gWVlZViFheAylLGEokEQP2wVAcHB/zxxx9o06YNCgsLce3aNfTt2xcA0LdvXyQmJuLXX38VM8D9+vUTHyczMxMTJkwAUD90ODc3V+2wYCIidWQ/XwRSqbTBZz8RmUZtbS2qq6tN3Y1mz87OTu78mkynRQWEgwcPFguzqPL666/j9ddfV3pbhw4dkJSU1OjzeHh4YPv27WrbdOzYEQcPHlTbpkePHjh16lSjz6eNAQMGYMuWLSgoKICHhweqq6uxcuVKpKWloba2FkB9ECebAQTqX9O3336L2tpaTJo0CYMHD0ZZWRnCw8Pxz3/+Uyyu4ufnBzs7OzHT169fPyxbtgydO3dGRkYGnnjiCSQnJ4uPe/XqVTz++OOwtraGl5cXsrOzlfY7ODgYn376KS5cuICysjKVr+/JJ5/EhAkTMHDgQAD1WcWXXnoJH374oTivUeDs7IyHDx/i/v37OHDgAJ599lksWLAAb775JjIyMsQPobq6OqXPpaoAkFQqRZcuXZCamooXXngBqampeOKJJ9ClSxfxb37hwgWx/dNPP409e/ZAIpGgtraWa+kQkV5KS0uRmZkpDukXjBgxwkQ9IiKg/vwgPz+/wTkWqda6dWt4e3uzcIyJtaiAkOozcs899xxefPFF1NbW4vLly7CxscHkyZPx17/+FXv27EFNTQ2+/vprAPWBa01NDc6fPw8A8PHxwaxZs9CqVSssWbIEv/32G9555x1cv34dDg4OCA0NRVVVFe7evYsVK1bg7t278PX1RXJyMn777Td8/fXXSEhIQGBgIJycnDB48GAcPHgQzs7OsLe3x7PPPotPPvkEeXl5+Otf/4pvvvlG7espKSmBj48PCgsL4eTkhHfeeQerVq0S5+gNGzYMycnJKC0txaJFi+Dp6Ylvv/0W0dHRuHfvHry8vLBo0SLY29sjIyMDO3bsgL29PSIiIvD3v/8dY8aMQf/+/dGxY0fxOXfu3ImvvvoK+fn5GD58eIOlSQDg+eefx3fffYfnnnsOLi4uSEhIgIeHh7j/+/fvL7ZdunQpJk6ciLq6Otjb2+P7779XWsyGiEgTixcvRmlpKdzd3eW2z5s3z0Q9IiIAYjDo5eUFZ2dnBjlqSKVSPHz4UEwwcNkc07KSNpZSo2atpKQEEokExcXFcHNzQ0pKCt544w3ExMRg+vTpTdKHI0eOoF+/fg1OTlTJy8vDyJEjER4ejrlz52LlypX4+uuv8d133+F///sflixZgo8//liu0qi+zp8/Dy8vL5XrOzZmx44d+Oyzz7By5UoMHTpU7/4Y+vGIyHJlZ2ernAtNRE2jtrYWv/zyC7y8vNTWQiB59+/fx507d9C1a9cGw0cVz3HJeBgQmjkeLERElm3o0KE4ceKEqbtBZNEqKipw7do1dOrUiaOAtFBeXo7r16+jc+fODdYG5zlu0+FkJiIiIjNmZ2dn6i4Q0f/jMFHtcH81DwwIiYiIzNiRI0dM3QUiIjJjDAiJiIjMWF1dHWbOnKl2nVciIl2cPHkSVlZWrJzawrHKKBERkRm7fPkyli9fjoKCAmzatMnU3SEiIjPDDCEREZEZE2rDcY1TIiLSBb89iIiIzFhdXR0ABoREpJvKykrExMTAy8sLjo6OePbZZ5GamirX5uzZs3j66afh6OiI/v37IzMzU7ztjz/+wNixY+Hu7g4XFxd0794dP/zwQ1O/DNIDvz2IiIjMmBAQslofEeli1qxZ+Pbbb7F161akpaWhS5cuGDlyJAoKCsQ2M2fOxPLly5GamgovLy+MGzcO1dXVAIC3334blZWVOHXqFDIzM/GPf/wDrVq1MtXLIR1wDiEREZEZ45BRoubr4cOHyM7ObvLnffLJJ+Hs7NxouwcPHmDDhg3YsmULRo8eDQDYuHEjjh49ik2bNqFv374AgI8++ggjRowAAGzduhWPPvoo9u7di7CwMOTk5OCFF15Ajx49AACPPfaYkV4VGQsDQiIiIjPGIaNEzVd2djZ69+7d5M978eJFPPPMM422++2331BdXY3g4GBxm52dHfr164crV66IAWFgYKB4u4eHB/z8/HDlyhUAQExMDN566y0kJiZi+PDheOGFF/DUU08Z+BWRMTEgJCIiMmMMCImaryeffBIXL140yfNqQhhhoDjkXCqVNjoMXbj9tddew8iRI3Ho0CEkJiZiyZIlWLFiBd59910dek6mwICQiIjIjKk6oSMi03N2dtYoU2cqXbp0gb29Pc6cOYPw8HAAQHV1NS5cuIAZM2aI7VJSUtCxY0cAQGFhIX755Re5oLNDhw5488038eabb2LOnDnYuHEjA0IzwoCQiIjIjDEgJCJdubi44K233sLMmTPh4eGBjh074rPPPsPDhw8xffp0/PTTTwCAjz/+GG3atEG7du0wd+5ceHp64vnnnwcAzJgxA6NHj0bXrl1RWFiIEydOwN/f34SvirTFgJCIiMiMccgoEelj6dKlqKurQ0REBEpLS9GnTx8cOXIE7u7ucm3+9re/4erVq3j66aexf/9+2NvbAwBqa2vx9ttvIy8vD25ubhg1ahRWrVplqpdDOmBASEREZMYYEBKRPhwdHbF27VqsXbu2wW2DBw8WRyGEhoYqvf+6deuM2j8yPn57EBERmTEOGSUiIn0wICQiIjJjzBASEZE++O1BRERkxhgQEhGRPvjtQUREZMaEgJBDRomISBcMCImIiMwY5xASEZE+GBASERGZMSEg5JBRIiLSBb89iIiIzFhtbS0ABoRERKQbfnsQERGZMQaERESkD357EBERmTEhIOQcQiJqagsWLEDPnj1N3Q3SEwNCIiIiM8YMIRER6YPfHkRERGaMASEREemD3x5ERERmjOsQEpE+6urq8I9//ANdunSBg4MDOnbsiE8//RQAMHv2bHTt2hXOzs547LHHMH/+fFRXV6t9vK+//hrdu3eHg4MD2rdvj3feeacpXgbpwdbUHSAiIiLdCQEhEZEu5syZg40bN2LVqlV49tlncevWLWRnZwMAXF1dsWXLFvj4+CAzMxNRUVFwdXXFrFmzlD7Whg0bEBsbi6VLl2L06NEoLi7G2bNnm/LlkA4YEBIREbUAwnqERESaKi0txZo1a/D5559j2rRpAIDHH38czz77LABg3rx5YttOnTohLi4Ou3btUhkQfvLJJ4iLi8Pf/vY3cVvfvn2N+ArIEFrUkNFTp05h7Nix8PHxgZWVFb7//nu52yMjI2FlZSX3M2DAALk2lZWVePfdd+Hp6QkXFxeMGzcOeXl5cm0KCwsREREBiUQCiUSCiIgIFBUVybXJycnB2LFj4eLiAk9PT8TExKCqqkquTWZmJgYNGgQnJyc88sgj+Pjjj/mFTkREWuH3BlEz9vAhkJbW9D8PH2rUvStXrqCyshLDhg1TevuePXvw7LPPwtvbG61atcL8+fORk5OjtO2dO3dw8+ZNlY9FzVeLyhA+ePAATz/9NF555RW88MILStuMGjUKmzdvFn+3t7eXu33GjBk4cOAAdu7ciTZt2iAuLg6hoaG4ePEibGxsAADh4eHIy8vD4cOHAQCvv/46IiIicODAAQD1E/zHjBmDtm3b4syZM7h//z6mTZsGqVSKdevWAQBKSkowYsQIDBkyBKmpqfjll18QGRkJFxcXxMXFGXzfEBFRyyQEhAwMiZqh7Gygd++mf96LF4Fnnmm0mZOTk8rbUlJS8PLLL2PhwoUYOXIkJBIJdu7ciRUrVmj9WNS8taiAcPTo0Rg9erTaNg4ODvD29lZ6W3FxMTZt2oT4+HgMHz4cALB9+3Z06NABx44dw8iRI3HlyhUcPnwYKSkp6N+/PwBg48aNCAwMxM8//ww/Pz8kJibi8uXLyM3NhY+PDwBgxYoViIyMxKeffgo3NzckJCSgoqICW7ZsgYODAwICAvDLL79g5cqViI2NZXEAIiLSCANBombsySfrgzNTPK8GnnjiCTg5OeH48eN47bXX5G47e/YsfH19MXfuXHHbH3/8ofKxXF1d0alTJxw/fhxDhgzRrd9kEi0qINTEyZMn4eXlhdatW2PQoEH49NNP4eXlBQC4ePEiqqurERISIrb38fFBQEAAkpOTMXLkSJw7dw4SiUQMBgFgwIABkEgkSE5Ohp+fH86dO4eAgAAxGASAkSNHorKyEhcvXsSQIUNw7tw5DBo0CA4ODnJt5syZg+vXr6Nz585K+19ZWYnKykrx95KSEoPtGyIiMj8MCImaMWdnjTJ1puLo6IjZs2dj1qxZsLe3R3BwMO7evYtLly6hS5cuyMnJwc6dO9G3b18cOnQIe/fuVft4CxYswJtvvgkvLy+MHj0apaWlOHv2LN59990mekWkixY1h7Axo0ePRkJCAk6cOIEVK1YgNTUVQ4cOFQOs/Px82Nvbw93dXe5+7dq1Q35+vthGCCBleXl5ybVp166d3O3u7u6wt7dX20b4XWijzJIlS8S5ixKJBB06dNBmFxARUQvFwJCIdDF//nzExcXhww8/hL+/PyZNmoQ7d+5g/Pjx+Pvf/4533nkHPXv2RHJyMubPn6/2saZNm4bVq1dj/fr16N69O0JDQ3H16tUmeiWkK4vKEE6aNEn8f0BAAPr06QNfX18cOnQIEydOVHk/qVQqN4RT2XBOQ7QRvszVDRedM2cOYmNjxd9LSkoYFBIRWTDOISQifVhbW2Pu3LlyQ0MFn332GT777DO5bTNmzBD/v2DBAixYsEDu9jfeeANvvPGGMbpKRmJRGUJF7du3h6+vr3jlwtvbG1VVVSgsLJRrd+fOHTF75+3tjdu3bzd4rLt378q1UczyFRYWorq6Wm2bO3fuAECDzKEsBwcHuLm5yf0QEZHlYiBIRET6sOiA8P79+8jNzUX79u0BAL1794adnR2OHj0qtrl16xaysrIQFBQEAAgMDERxcTF+/PFHsc358+dRXFws1yYrKwu3bt0S2yQmJsLBwQG9/7/SVGBgIE6dOiW3FEViYiJ8fHzQqVMno71mIiJqWRgQEhGRPlpUQFhWVoaMjAxkZGQAAK5du4aMjAzk5OSgrKwM7733Hs6dO4fr16/j5MmTGDt2LDw9PTFhwgQAgEQiwfTp0xEXF4fjx48jPT0dU6ZMQY8ePcSqo/7+/hg1ahSioqKQkpKClJQUREVFITQ0FH5+fgCAkJAQdOvWDREREUhPT8fx48fx3nvvISoqSszohYeHw8HBAZGRkcjKysLevXuxePFiVhglIiKtMCAkIiJ9tKg5hBcuXJArcyvMtZs2bRo2bNiAzMxMbNu2DUVFRWjfvj2GDBmCXbt2wdXVVbzPqlWrYGtri7CwMJSXl2PYsGHYsmWLuAYhACQkJCAmJkasRjpu3Dh8/vnn4u02NjY4dOgQoqOjERwcDCcnJ4SHh2P58uViG4lEgqNHj+Ltt99Gnz594O7ujtjYWLn5gURERJpiYEhERLpoUQHh4MGD1X4hHjlypNHHcHR0xLp168QF5JXx8PDA9u3b1T5Ox44dcfDgQbVtevTogVOnTjXaJyIiIlVYVIaIiPTRooaMEhERWRoGgkTNB49H7XB/NQ8MCImIiMwYT6iITM/Ozg4A8PDhQxP3xLwI+0vYf2QaLWrIKBERkaXhkFEi07OxsUHr1q3FJcScnZ1ZJFANqVSKhw8f4s6dO2jdurVcrQ5qegwIiYiIWgAGhESm5e3tDeDPdaWpca1btxb3G5kOA0IiIiIzxgwhUfNgZWWF9u3bw8vLC9XV1abuTrNnZ2fHzGAzwYCQiIjIjDEgJGpebGxsGOiQWWFRGSIiIjPGgJCIiPTBgJCIiMiMCYFgXV2diXtCRETmiAEhERGRGWOGkIiI9MGAkIiIqAVgQEhERLpgQEhERGTGmCEkIiJ9MCAkIiIyY5xDSERE+mBASEREZMaYISQiIn0wICQiIjJjDAiJiEgfDAiJiIhaAA4ZJSIiXTAgJCIiMmPMDBIRkT4YEBIREZkxDhklIiJ9MCAkIiIyYwwIiYhIHwwIiYiIzBgDQiIi0gcDQiIiohaAASEREemCASEREZEZYyBIRET6YEBIRERkxjhklIiI9MGAkIiIyIwxICQiIn0wICQiIjJjDAiJiEgfDAiJiIhaAAaERESkCwaEREREZoyBIBER6YMBIRERkRnjkFEiItIHA0IiIiIzxoCQiIj0wYCQiIjIjDEgJCIifTAgJCIiIiIislAtKiA8deoUxo4dCx8fH1hZWeH7778Xb6uursbs2bPRo0cPuLi4wMfHB1OnTsXNmzflHmPw4MGwsrKS+3n55Zfl2hQWFiIiIgISiQQSiQQREREoKiqSa5OTk4OxY8fCxcUFnp6eiImJQVVVlVybzMxMDBo0CE5OTnjkkUfw8ccf8wovERFphRlCIiLSR4sKCB88eICnn34an3/+eYPbHj58iLS0NMyfPx9paWn47rvv8Msvv2DcuHEN2kZFReHWrVviz5dffil3e3h4ODIyMnD48GEcPnwYGRkZiIiIEG+vra3FmDFj8ODBA5w5cwY7d+7Et99+i7i4OLFNSUkJRowYAR8fH6SmpmLdunVYvnw5Vq5cacA9QkRELR0DQiIi0oetqTtgSKNHj8bo0aOV3iaRSHD06FG5bevWrUO/fv2Qk5ODjh07itudnZ3h7e2t9HGuXLmCw4cPIyUlBf379wcAbNy4EYGBgfj555/h5+eHxMREXL58Gbm5ufDx8QEArFixApGRkfj000/h5uaGhIQEVFRUYMuWLXBwcEBAQAB++eUXrFy5ErGxsbCysjLELiEiohaOASEREemjRWUItVVcXAwrKyu0bt1abntCQgI8PT3RvXt3vPfeeygtLRVvO3fuHCQSiRgMAsCAAQMgkUiQnJwstgkICBCDQQAYOXIkKisrcfHiRbHNoEGD4ODgINfm5s2buH79uhFeLRERtUQMCImISB8tKkOojYqKCrz//vsIDw+Hm5ubuH3y5Mno3LkzvL29kZWVhTlz5uCnn34Ss4v5+fnw8vJq8HheXl7Iz88X27Rr107udnd3d9jb28u16dSpk1wb4T75+fno3Lmz0n5XVlaisrJS/L2kpETLV05ERERERFTPIgPC6upqvPzyy6irq8P69evlbouKihL/HxAQgCeeeAJ9+vRBWloannnmGQBQOpxTKpXKbdeljXB1V91w0SVLlmDhwoXqXh4REVkQZgiJiEgfFjdktLq6GmFhYbh27RqOHj0qlx1U5plnnoGdnR2uXr0KAPD29sbt27cbtLt7966Y4fP29hYzgYLCwkJUV1erbXPnzh0AaJBdlDVnzhwUFxeLP7m5uY28YiIiaskYEBIRkT4sKiAUgsGrV6/i2LFjaNOmTaP3uXTpEqqrq9G+fXsAQGBgIIqLi/Hjjz+Kbc6fP4/i4mIEBQWJbbKysnDr1i2xTWJiIhwcHNC7d2+xzalTp+SWokhMTISPj0+DoaSyHBwc4ObmJvdDRESWiwEhERHpo0UFhGVlZcjIyEBGRgYA4Nq1a8jIyEBOTg5qamrw4osv4sKFC0hISEBtbS3y8/ORn58vBmW//fYbPv74Y1y4cAHXr1/HDz/8gJdeegm9evVCcHAwAMDf3x+jRo1CVFQUUlJSkJKSgqioKISGhsLPzw8AEBISgm7duiEiIgLp6ek4fvw43nvvPURFRYkBXHh4OBwcHBAZGYmsrCzs3bsXixcvZoVRIiLSCgNBIiLSR4sKCC9cuIBevXqhV69eAIDY2Fj06tULH374IfLy8rB//37k5eWhZ8+eaN++vfgjVAe1t7fH8ePHMXLkSPj5+SEmJgYhISE4duwYbGxsxOdJSEhAjx49EBISgpCQEDz11FOIj48Xb7exscGhQ4fg6OiI4OBghIWF4fnnn8fy5cvFNsIyGHl5eejTpw+io6MRGxuL2NjYJtpbRETUEjBDSERE+mhRRWUGDx6s9guxsS/LDh06ICkpqdHn8fDwwPbt29W26dixIw4ePKi2TY8ePXDq1KlGn4+IiKgxDAiJiEgXLSpDSEREZGmYISQiIn0wICQiIjJjDAiJiEgfDAiJiIjMGANBIiLSBwNCIiIiM8YMIRER6YMBIRERUQvAgJCIiHTBgJCIiMiMMUNIRET6YEBIRERkxhgIEhGRPhgQEhERmTFmCImISB8MCImIiMwYA0IiItIHA0IiIqIWgAEhERHpggEhERGRGWOGkIiI9MGAkIiIyIwxECQiIn0wICQiIjJjzBASEZE+GBASERGZMQaERESkDwaERERELQADQiIi0gUDQiIiIjPGDCEREemDASEREZEZYyBIRET6YEBIRERkxpghJCIifTAgJCIiMmMMCImISB8MCImIiFoABoRERKQLBoRERERmjIEgERHpgwEhERGRGeOQUSIi0gcDQiIiIjPGgJCIiPTBgJCIiMiMMSAkIiJ9MCAkIiJqARgQEhGRLhgQEhERmTEGgkREpA8GhERERGaMQ0aJiEgfDAiJiIjMGANCIiLSBwNCIiIiM8aAkIiI9MGAkIiIyIwxECQiIn0wICQiImoBGBgSEZEuWlRAeOrUKYwdOxY+Pj6wsrLC999/L3e7VCrFggUL4OPjAycnJwwePBiXLl2Sa1NZWYl3330Xnp6ecHFxwbhx45CXlyfXprCwEBEREZBIJJBIJIiIiEBRUZFcm5ycHIwdOxYuLi7w9PRETEwMqqqq5NpkZmZi0KBBcHJywiOPPIKPP/6YX+hERKQVDhklIiJ9tKiA8MGDB3j66afx+eefK739s88+w8qVK/H5558jNTUV3t7eGDFiBEpLS8U2M2bMwN69e7Fz506cOXMGZWVlCA0NRW1trdgmPDwcGRkZOHz4MA4fPoyMjAxERESIt9fW1mLMmDF48OABzpw5g507d+Lbb79FXFyc2KakpAQjRoyAj48PUlNTsW7dOixfvhwrV640wp4hIqKWigEhERHpRdpCAZDu3btX/L2urk7q7e0tXbp0qbitoqJCKpFIpP/85z+lUqlUWlRUJLWzs5Pu3LlTbHPjxg2ptbW19PDhw1KpVCq9fPmyFIA0JSVFbHPu3DkpAGl2drZUKpVKf/jhB6m1tbX0xo0bYptvvvlG6uDgIC0uLpZKpVLp+vXrpRKJRFpRUSG2WbJkidTHx0daV1en8essLi6WAhAfl4iILMsrr7wiBSAdMmSIqbtCRGQwPMdtOi0qQ6jOtWvXkJ+fj5CQEHGbg4MDBg0ahOTkZADAxYsXUV1dLdfGx8cHAQEBYptz585BIpGgf//+YpsBAwZAIpHItQkICICPj4/YZuTIkaisrMTFixfFNoMGDYKDg4Ncm5s3b+L69euG3wFERNQiSZkZJCIiPVhMQJifnw8AaNeundz2du3aibfl5+fD3t4e7u7uatt4eXk1eHwvLy+5NorP4+7uDnt7e7VthN+FNspUVlaipKRE7oeIiIiBIRER6cJiAkKBlZWV3O9SqbTBNkWKbZS1N0Qb4ctcXX+WLFkiFrORSCTo0KGD2r4TEVHLJuUcQiIi0oPFBITe3t4AGmbf7ty5I2bmvL29UVVVhcLCQrVtbt++3eDx7969K9dG8XkKCwtRXV2tts2dO3cANMxiypozZw6Ki4vFn9zcXPUvnIiIWjQGhEREpA+LCQg7d+4Mb29vHD16VNxWVVWFpKQkBAUFAQB69+4NOzs7uTa3bt1CVlaW2CYwMBDFxcX48ccfxTbnz59HcXGxXJusrCzcunVLbJOYmAgHBwf07t1bbHPq1Cm5pSgSExPh4+ODTp06qXwdDg4OcHNzk/shIiLLxUCQiIj00aICwrKyMmRkZCAjIwNAfSGZjIwM5OTkwMrKCjNmzMDixYuxd+9eZGVlITIyEs7OzggPDwcASCQSTJ8+HXFxcTh+/DjS09MxZcoU9OjRA8OHDwcA+Pv7Y9SoUYiKikJKSgpSUlIQFRWF0NBQ+Pn5AQBCQkLQrVs3REREID09HcePH8d7772HqKgoMYALDw+Hg4MDIiMjkZWVhb1792Lx4sWIjY1tdAgrERGRgBlCIiLSh62pO2BIFy5cwJAhQ8TfY2NjAQDTpk3Dli1bMGvWLJSXlyM6OhqFhYXo378/EhMT4erqKt5n1apVsLW1RVhYGMrLyzFs2DBs2bIFNjY2YpuEhATExMSI1UjHjRsnt/ahjY0NDh06hOjoaAQHB8PJyQnh4eFYvny52EYikeDo0aN4++230adPH7i7uyM2NlbsMxERkTYYEBIRkS6spPwGMWslJSWQSCQoLi7m8FEiIgs0ZcoUJCQkIDg4GGfOnDF1d4iIDILnuE2nRQ0ZJSIisjQcMkpERPpgQEhERGTGGAgSEZE+GBASERGZMWYIiYhIHwwIiYiIWgAGhEREpAsGhERERGaMGUIiItIHA0IiIiIzxoCQiIj0wYCQiIjIjDEQJCIifTAgJCIiMmPMEBIRkT4YEBIREbUADAiJiEgXDAiJiIjMGDOERESkDwaEREREZoyBIBER6YMBIRERkRljhpCIiPTBgJCIiIxm8uTJpu5Ci8eAkIiI9GFr6g4QEZH5mzVrVoNtUqkUycnJJuiNZWJASEREumBASEREektISMCOHTsabP/vf/9rgt5YFmYIiYhIHwwIiYhIb6+++ir8/f3h5eUlt33q1Kkm6pHlYCBIRET6YEBIRER6W7RokdLtMTExTdwTy8MMIRER6YNFZYiIiMwYA0IiItIHA0IiIiIzxoCQiIj0wYCQiIiIiIjIQjEgJCIivf373/9Gr169MGXKFGzduhV+fn7o27cv9u/fb+qutXjMEBIRkT5YVIaIiPS2YsUKnD17FqWlpejZsyeys7Ph6OiI4cOHY9y4cabuXovGgJCIiPTBgJCIiPTm5OQEZ2dnODs7Y9iwYZBIJAAAW1t+zRgbA0IiItIHh4wSEZHeevbsidraWgDA9u3bAQBVVVVo06aNKbtlERgQEhGRPnjploiI9LZ69eoG2+zt7bFnz56m7wwRERFpjBlCIiIiM8YMIRER6YMBIRERkRljQEhERPpgQEhEREaTn59v6i60eAwIiYhIHwwIiYjIaKZOnWrqLrR4DAiJiEgfLCpDRER669evX4NtUqkUV69eNUFviIiISFMMCImISG+lpaXIzMxssO7giBEjTNQjy8EMIRER6cPihox26tQJVlZWDX7efvttAEBkZGSD2wYMGCD3GJWVlXj33Xfh6ekJFxcXjBs3Dnl5eXJtCgsLERERAYlEAolEgoiICBQVFcm1ycnJwdixY+Hi4gJPT0/ExMSgqqrKqK+fiMgYFi9ejNLS0gbb582bZ4LeWBYGhEREpA+LCwhTU1Nx69Yt8efo0aMAgJdeeklsM2rUKLk2P/zwg9xjzJgxA3v37sXOnTtx5swZlJWVITQ0VFyUGQDCw8ORkZGBw4cP4/Dhw8jIyEBERIR4e21tLcaMGYMHDx7gzJkz2LlzJ7799lvExcUZeQ8Qka4mT55s6i40WxMmTIC7u7v4e3Z2NgBg0KBBpuqSxWBA2LKlp6cjNDQUEyZMQHJysrh9+vTpJuwVEbUkFjdktG3btnK/L126FI8//rjcSYuDgwO8vb2V3r+4uBibNm1CfHw8hg8fDgDYvn07OnTogGPHjmHkyJG4cuUKDh8+jJSUFPTv3x8AsHHjRgQGBuLnn3+Gn58fEhMTcfnyZeTm5sLHxwcAsGLFCkRGRuLTTz+Fm5ubMV4+EWlg1qxZDbZJpVK5kzFSLzo6GidOnDB1NywCA8GWLSYmBps3b4atrS1mzpyJlJQUxMbG4vfffzd114iohbC4DKGsqqoqbN++Ha+++iqsrKzE7SdPnoSXlxe6du2KqKgo3LlzR7zt4sWLqK6uRkhIiLjNx8cHAQEB4sniuXPnIJFIxGAQAAYMGACJRCLXJiAgQAwGAWDkyJGorKzExYsXjfaaiahxCQkJGDNmjNxPaGgo2rRpY+qumQ07OztTd8HiMDBsmaysrNClSxd06tQJu3fvRklJCaKiolBTU2PqrhFRC2FxGUJZ33//PYqKihAZGSluGz16NF566SX4+vri2rVrmD9/PoYOHYqLFy/CwcEB+fn5sLe3lxsaBQDt2rUT19vKz8+Hl5dXg+fz8vKSa9OuXTu5293d3WFvb6923a7KykpUVlaKv5eUlGj9uolIvVdffRX+/v4NjmMuoaC5I0eOmLoLFoNDRls2Ly8vXL9+HZ06dQIALFiwANu3b0d8fLxpO0ZELYZFB4SbNm3C6NGj5bJ0kyZNEv8fEBCAPn36wNfXF4cOHcLEiRNVPpZUKpXLMsr+X582ipYsWYKFCxeqflFEpLdFixYp3R4TE9PEPSFqHAPClm3Pnj0Ntk2ZMgVTpkwxQW+IqCWy2CGjf/zxB44dO4bXXntNbbv27dvD19dXXEvL29sbVVVVKCwslGt3584dMePn7e2N27dvN3isu3fvyrVRzAQWFhaiurq6QeZQ1pw5c1BcXCz+5ObmNv5iiYioxWJASERE+rDYgHDz5s3w8vLCmDFj1La7f/8+cnNz0b59ewBA7969YWdnJ1YnBYBbt24hKysLQUFBAIDAwEAUFxfjxx9/FNucP38excXFcm2ysrJw69YtsU1iYiIcHBzQu3dvlf1xcHCAm5ub3A8REVkuBoJERKQPiwwI6+rqsHnzZkybNk1uEeWysjK89957OHfuHK5fv46TJ09i7Nix8PT0xIQJEwAAEokE06dPR1xcHI4fP4709HRMmTIFPXr0EKuO+vv7Y9SoUYiKikJKSgpSUlIQFRWF0NBQ+Pn5AQBCQkLQrVs3REREID09HcePH8d7772HqKgoBnlERKQ1BoZERKQLiwwIjx07hpycHLz66qty221sbJCZmYnx48eja9eumDZtGrp27Ypz587B1dVVbLdq1So8//zzCAsLQ3BwMJydnXHgwAHY2NiIbRISEtCjRw+EhIQgJCQETz31lNwEcBsbGxw6dAiOjo4IDg5GWFgYnn/+eSxfvtz4O4CI1Dp69Cj69++PoKAg7Ny5U9ze2IgCIlPgkFHLJFvtnIhIH1ZSfoOYtZKSEkgkEhQXFzOzSGQgQUFB+OGHH2Bvb4958+ahuroaa9aswbBhw/Df//7X1N0jkhMUFIRz587Bx8cHN27cMHV3yMDCwsIabJNKpThz5ozctBOilobnuE3HoquMEhEpY2Njg9atWwMAVq5ciS1btmD8+PEoKyszbceIlOB13ZYtNTUVJ06cgLX1n4O6pFIpIiIiTNgrImpJGBASESno2bOn3LpfkZGR8PX1xVtvvWXajhEpwSGjLdvMmTPh6uoKT09Pue3vvPOOiXpERC0Nh4yaOabTiYgs24ABA3D+/Hl4e3tzCCERtRg8x206FllUhoiIqKVghpCIiPTBgJCILFpNTY2pu0CkFwaERESkDwaERGRxMjMz8Ze//AVBQUEYOnQoAgMDMXbsWGRmZqq9X35+fhP1sPlKT09HaGgoJkyYgOTkZHH79OnTTdgry8ZA0DKVlpaaugtE1EKwqAwRWZzo6Gjs2LEDHTp0ELfl5ORg8uTJOH36tMr7TZ06FYmJiU3RxWYrJiYGmzdvhq2tLWbOnImUlBTExsbi999/N3XXLBYzhC3btm3bsGzZMtjZ2SEsLAzvv/8+AGD8+PE4ceKEiXtHRC0BA0Iisji1tbWQSCRy29zc3FBbWwsA6NevX4P7SKVSXL16tUn615xZWVmhS5cuAIDdu3djwYIFiIqK4tBbE2JA2LJt2LABaWlpsLOzw9q1a/Hiiy9i27Zt/HsTkcEwICQii7N06VKEhobC3t4ebm5uKC4uRk1NDf7xj38AqB+KlZmZCVtb+Y/IESNGmKK7zYqXl5fckhwLFizA9u3bER8fb9qOkUUECOnp6Zg/fz7s7Owwc+ZMBAUFAagfsrxp0yYT9844rK2tYWdnB6A+Q+/v74/Ro0ejoKDAxD0jopaCASERWZznnnsOp06dQnl5OYqKiuDu7g5HR0fx9sWLF6O0tBTu7u5y95s3b15Td7XZ2bNnT4NtU6ZMwZQpU0zQGwIsIxAUWOKQ5TFjxshdhBkxYgR8fHwQFxdn2o4RUYvBdQjNHNdoITK+7OxsPPnkk6buBpFSvXr1QkZGBjw8PHD//n1Td8eohIs5ggULFuDGjRvIzs5WO/+3JeHnEVkKnuM2HVYZJSJqRHR0tKm7QKSSJc0hFIYsCxYsWIBBgwYhNTXVdJ1qYvw8IiJDY0BIRNQIYf4OUXNkSQHhnj17xKGTgilTpqCiosI0HTIBfh4RkaExICQii3P06FH0798fQUFB2Llzp7h9zJgxStsfOXIEJSUlqK6ubqoump2QkBBTd8HiWUJASPWfR0REhsSiMkRkcT766CMcOXIE9vb2mDdvHs6ePYs1a9bg4cOHKu8jkUjwl7/8BYcOHWrCnjY/YWFhDbZJpVJkZmaaoDcEMBAkIiL9MCAkIotjY2OD1q1bAwBWrlyJLVu2YPz48SgrK1N7vx9++KEJete8paam4sSJE7C2/nOAiVQqRUREhAl7ZdksacioMunp6ejVq5epu0FEZLYYEBKRxenZs6dcGffIyEj4+vrirbfeMm3HzMDMmTPh6uoKT09Pue3vvPOOiXpElhQQrl+/Xu53qVSKDRs2IDo6msVWiIh0xICQiCzOunXrGmwbMmQIsrOzTdAb86LqpHvSpElN3BMSWFJA+MUXX8DX1xdhYWGwsrICUL9we6tWrUzcMyIi88WiMkRERC2AJQSEWVlZmDJlCvbt2wd7e3tERETg0UcfxdSpU03dNSIis8WAkIiMYvLkyabuApFFkEqlYraspbOyskJ4eDi+/fZb1NTUYNy4cbh3756pu0VEZNY4ZJSI9DJr1qwG26RSKZKTk03QG/3k5+fD29vb1N0wS9x3piMEhJaQIRRYW1sjIiICkydPRn5+vqm7Q0Rk1hgQEpFeEhISsGPHjgbb//vf/5qgN/qZOnUqEhMTTd0Ns8R9ZzqWGBAKrK2t4ePjY+puEBGZNQaERKSXV199Ff7+/vDy8pLb3pzn9PTr16/BNqlUiqtXr5qgN+aF+840ampqYGur/CtbKpXCxsbGIgNCIiLSHwNCItLLokWLlG6PiYlp4p5orrS0FJmZmQ1OsEeMGNFkfUhPT8f8+fNhZ2eHmTNnIigoCAAwffp0bNq0qcn6oa3msO8sRWZmJmbPno2ioiLY2tqiuroanp6eWLx4MXr06CG2k0qlcutCtnSVlZW4dOkSCgoK4OHhgYCAANjb25u6W0REZosBIRFZnMWLF6O0tBTu7u5y2+fNm9dkfYiJicHmzZtha2uLmTNnIiUlBbGxsfj999+brA+6aA77zlJER0djx44d6NChg7gtJycHkydPxunTp8VtQkBYW1trim42qfj4eGzYsAF9+/aFm5sbioqKkJaWhrfeegtTpkwxdfeIiMwSA0IisjgTJkxQun3QoEFN1gcrKyt06dIFALB7924sWLAAUVFRqKmpabI+6EJx32VnZ+PJJ59s0n1nKWprayGRSOS2ubm5NQj86urqYG1t3ezfO4bw5Zdf4syZM3IZ0ZqaGgwePNjsAkJzHSVARC2P5YwxISJSQSqVYu/evU06B8vLywvXr18Xf1+wYAEGDRqE1NTUJuuDIahaqF4qleLXX39t4t60LEuXLkVoaCiGDx+OiRMnYtiwYRg/fjz+8Y9/yLUTMoSWMIfQyckJSUlJ4u9SqRRJSUlwdHQ0Ya90ExMTg9WrV2PVqlVYtWoVVq5cCQDNfpQAEbU8VlJL+AZpwUpKSiCRSFBcXAw3NzdTd4dIFBISYjZVJ/fs2YOXXnoJ3377LSZOnNjgdtk5WvzIlDdy5EgcOXKkwfZ169YhJiYGubm5ePTRR03Qs5ajvLwcRUVFcHd3Vxr4dO7cGUVFRSgrK0N1dbUJeth08vPzsXTpUqSmpqK2thZ2dnbo06cPZs+ebXbLnjz33HM4deqU+PuCBQtw48YNZGdnyw0JJrJUPMdtOhwySkR6CQsLa7BNKpUiMzPTBL3RTXl5OQDg1q1bSm9nEKiasmAQANLS0gDUf6GTfpycnODk5KTydksqKuPt7Y3Vq1ebuhsGIYwS6NSpE4D6gHD79u2Ij49XeR911WaJiHTFTxUi0ktqaipOnDghd0IqlUoRERFhwl5px9nZGQDw8OFDpbc3t2Id5jD3SNhnNjY2Ju5JyyfMIbTUCxdLlixBSEgIevfubequaGXPnj0Ntk2ZMqXBXEhNq80SEemKASER6WXmzJlwdXWFp6en3PZ33nnHRD3SnpB9ETKFiurq6oz23AUFBWL5fA8PD43uYw4VShkQGkd6ejp69eolt82S5hAq88EHH4jVb1siTavNEhHpyjLGmPy/BQsWwMrKSu5Hds6BVCrFggUL4OPjAycnJwwePBiXLl2Se4zKykq8++678PT0hIuLC8aNG4e8vDy5NoWFhYiIiIBEIoFEIkFERASKiork2uTk5GDs2LFwcXGBp6cnYmJiUFVVZbTXTmQs0dHRDYJBAJg0aZIJeqMbYV5WU2YIjx8/juDgYLzyyitYuHAhpk2bhmeffRbHjx9v9L5ChdJOnTph9+7dKCkpaXYVSoV9ZqlBiiGsX79e7ueLL75AREQE1q9fL9fO0gNCALCzszN1F4xG02qzRES6srgMYffu3XHs2DHxd9mr15999hlWrlyJLVu2oGvXrvjkk08wYsQI/Pzzz3B1dQUAzJgxAwcOHMDOnTvRpk0bxMXFITQ0FBcvXhQfKzw8HHl5eTh8+DAA4PXXX0dERAQOHDgAoP7DfcyYMWjbti3OnDmD+/fvY9q0aZBKpVi3bl1T7Qoi+n9CBrCiokLp7cY48frwww9x+PBh8bMFqJ9vN3r0aAwbNkztfXWZe9TUhH3Gk1bdffHFF/D19UVYWBisrKwAANbW1mjVqpVcO0uaQ6hICIKbcmF6Q8/ja2yUgFBt1t7eHm5ubiguLkZNTU2DarNERLqyuIDQ1tZWaSUyqVSK1atXY+7cuWKVwa1bt6Jdu3bYsWMH3njjDRQXF2PTpk2Ij4/H8OHDAQDbt29Hhw4dcOzYMYwcORJXrlzB4cOHkZKSgv79+wMANm7ciMDAQPz888/w8/NDYmIiLl++jNzcXPj4+AAAVqxYgcjISHz66aespETUxBoLWowxZNTa2hp3796VCwjv3r2r0Ym9pnOPTIkBof6ysrLwzTffYPfu3QgLC8OkSZOwa9cuTJ06Va5dXV0dbG1tLTJDKFzEMXaG0Bjz+I4fP44PP/wQnp6ecHNzQ1FREQoLC7Fw4UK5i0JCNdLGqs0SEenK4gLCq1evwsfHBw4ODujfvz8WL16Mxx57DNeuXUN+fj5CQkLEtg4ODhg0aBCSk5Pxxhtv4OLFi6iurpZr4+Pjg4CAACQnJ2PkyJE4d+4cJBKJGAwCwIABAyCRSJCcnAw/Pz+cO3cOAQEBYjAI1Jdur6ysxMWLFzFkyBCV/a+srERlZaX4Oyv4UXOVn59vNmXgGwv4jBHUfPXVV4iLi0N+fj6kUimsrKzQvn17fPXVVwZ/LlMQhq82p2Gs5sbKygrh4eF4+eWXkZCQgHHjxuHevXsN2llyhlCY92vsypvGmMen7SiBxqrNEhHpyqICwv79+2Pbtm3o2rUrbt++jU8++QRBQUG4dOkS8vPzAQDt2rWTu0+7du3wxx9/AKg/wbW3t4e7u3uDNsL98/Pz4eXl1eC5vby85NooPo+7uzvs7e3FNqosWbIECxcu1OJVE5nG1KlTzWYdQlNkCP39/bF3716DP25zwQyh4VhbWyMiIgKTJ09W+h2huE6mMLzUEggBobEzhMaYx6fPKAEiQVJSEhYtWoSnnnoKo0aNwuzZsyGRSLBkyRIEBgaauntkJiwqIBw9erT4/x49eiAwMBCPP/44tm7digEDBgBAgy9STb5cFdsoa69LG2XmzJmD2NhY8feSkhK5K5ZETa1fv34NtkmlUly9etUEvdFNYyd1DGq0J+wzZggNx9raWm5kiYABofEDQmPM49NllMDNmzfxyy+/oFOnTuIcYrJss2fPxu7du1FUVISQkBCkpqbC2dkZEydOxMmTJ03dPTITFhUQKnJxcUGPHj1w9epVPP/88wDqs3ft27cX29y5c0fM5nl7e6OqqgqFhYVyWcI7d+6I64B5e3vj9u3bDZ7r7t27co9z/vx5udsLCwtRXV3dIHOoyMHBAQ4ODtq/WCIjKS0tRWZmZoMhWyNGjDBRj7TXUgLCkJCQZpOVFbKq5rLvzJmwDqElEqZQGHt5E2PM49N0lMDEiRPx3Xff4auvvsKOHTsQFBSEn376CUFBQZg7d65efSDz5+joiA4dOqBDhw7w9/fHo48+CoBL/pB2LDogrKysxJUrVzBw4EB07twZ3t7eOHr0qLjGU1VVFZKSksQrgL1794adnR2OHj2KsLAwAMCtW7eQlZWFzz77DAAQGBiI4uJi/Pjjj2Lm5Pz58yguLhaDxsDAQHz66ae4deuWGHwmJibCwcHB7BbWJRLW/1IcSj1v3jwT9Uh7QtCiKrNirHUIKysrcenSJbHCYEBAgEbVEoXPH1lSqRSZmZnG6KZOhH3JgNDwFOfnKmYILUlTL29iinl8Qq2Ab775BidOnBD/1gMHDmRASPD29kZtbS1sbGxw4sQJAPUjM4y5fi61PBYVEL733nsYO3YsOnbsiDt37uCTTz5BSUkJpk2bBisrK8yYMQOLFy/GE088gSeeeAKLFy+Gs7MzwsPDAQASiQTTp09HXFwc2rRpAw8PD7z33nvo0aOHWHXU398fo0aNQlRUFL788ksA9ctOhIaGws/PD0D9Vfxu3bohIiICy5YtQ0FBAd577z1ERUWxwiiZnQkTJsj9np2djSeffBKDBg0yUY+0Z4oMYXx8PDZs2IC+ffuKFQbT0tLw1ltvNVotNDU1Ve7EEKg/IY6IiDB4P3UlBIQcMmp4ivNzLTkgFE56W/Lr7tKlCw4ePIi+ffviwIEDGDp0KNLT0+XmHpLl2rlzZ4Nttra2OHr0qAl6Q+bKogLCvLw8/PWvf8W9e/fQtm1bDBgwACkpKfD19QUAzJo1C+Xl5YiOjkZhYSH69++PxMREuQ/dVatWwdbWFmFhYSgvL8ewYcOwZcsWudR8QkICYmJixGqk48aNw+effy7ebmNjg0OHDiE6OhrBwcFwcnJCeHg4li9f3kR7gsh4oqOjxauU5sIUVUa//PJLnDlzRi6oq6mpweDBgxsNCGfOnAlXV1d4enrKbX/nnXcM3k9dMUOoP03n5yoGhOnp6Zg/fz7s7Owwc+ZMcXTK9OnTsWnTJuN3vAkJ76+myoY0tmagIZSWlsqdd6xduxbr1q1Deno69u/fD3d3dwQHB2PLli1GeX5qGYxdeZdaFot6tyi7iiLLysoKCxYswIIFC1S2cXR0xLp169QuIO/h4YHt27erfa6OHTvi4MGDatsQmSNjF3cwBlNUGXVyckJSUpK4zIxUKkVSUpJG85Kio6OVbp80aZJB+6gPBoT603R+rmJAGBMTg82bN8PW1hYzZ85ESkoKYmNj8fvvvzdZ35tKU2UIVa0Z+OGHH8otRaWNbdu2YdmyZbCzs0NYWBjef/99AMD48ePlLqrZ29sjLi4OcXFxBnktRESKLHMWOhEZzZEjR0zdBa2Zasjovn37EBwcjAEDBuC5557DwYMHG72YZC44ZFR/wvxcRYrzcxWLylhZWaFLly7o1KkTdu/ejZKSEkRFRbXIv0VTZQiFNQP37duHWbNmoba2FtXV1XjppZcQGBiIsWPHaj2Hd8OGDUhLS0NaWhqcnZ3x4osv4uHDhy16+CsRNU8MCInI4F5//XUkJyebuhsaM0VRGW9vb6xevRpnz55FSkoKTp8+jVWrVskVCzFnzBDqb8KECQ2KNT148KDB/FzFDKGXlxeuX78u3r5gwQIMGjQIqampRu9zU9M3Q5iUlIThw4cjNjYWiYmJ6NWrFwYPHoxz587JtRPWDATqM/RffvklduzYgaeeegrnzp3DF198oTJzr4q1tbU4oiImJgZvvPEGRo8ejXv37un0Wsh0NH0fGcPRo0fRv39/BAUFyY2EGzNmjNGfm1oOixoySkTGl5OTg40bNyI7OxunTp0ydXc00liWoSmCmuHDh+Ps2bPiumqN0bVCaVNhhtDwrl69iq5du+Lw4cMYOXKkuF0xINyzZ0+D+06ZMqXRuanmSN8MoaZruMmuGZiVlYWJEyeiQ4cO4pqBuixSP2bMGFy/fl1cT3DEiBHw8fFROjS0uR/vls6UawF+9NFHOHLkCOzt7TFv3jycPXsWa9aswcOHD436vNSyMENIZCYmT55s6i5o5P79+wDQoOBJcyacTJoyIDx+/DgqKio0ahsfH48hQ4Zg69atSEpKwubNmzFkyJBmNdyUGULDy8nJAQCcPn1abjurjOr+uoU13Hr06CGu4ebh4dFgDTdhzcBz587h0KFDcHJyQklJCebOnYthw4Zh/PjxWi9S/8EHH8gtLp+dnY3u3bvj8OHDcu2UHe/BwcHN6ni3dJq+j4zBxsYGrVu3hrOzMyIiInD69Gn4+PggPz9fbDN9+nSj94PMGzOERM3MrFmzGmyTSqVmMwTTHDNCQtCiKnhpbus56VOhtKmZ4/uhuRIKDilmkS15YXp91yHUZQ03YyxSD6iu0Kx4vH/zzTf4/PPPsXr16mZ3vFsqU64F2LNnTzHTHBMTgz179iA1NRWvv/46Vq5c2WILSpFhMSAkamYSEhKwY8eOBtv/+9//mqA32mvqhaINoTkMGdWGPhVKm4qQITSn90FzpyogZIZQd/qs4WboRepVVWhWPN6Fi4OWehGgOTLlWoCyVe+FglJdunTBX//6VyxYsKDFFpQiw+KnCVEz8+qrr8Lf3x+DBg2S+5k6daqpu6YRc/ziMbcMoTlVKG1uwbQ5E4K9xgLCf//73+jVqxemTJmCrVu3ws/PD3379sX+/fubvM/G1lhBKF1puoabsiqwulJVoVnxeN+9ezcAYMmSJRo9bnp6OkJDQzFhwgS5kSamGkbY3PpjTE29FqAlFZQiw2KGkKiZWbRokdLtMTExTdwT3ZhjANBYQNjcXpNQoVRWcx022NyCaXMmvA8bCwhXrFiBs2fPorS0FD179kR2djYcHR0xfPhwjBs3rsn7bUxNdWyqWzPw+PHjBg9IZSke71OnTkV8fDzatGmj0f2b27qUza0/5iwpKQmLFi3CU089hVGjRuG3335DZGQklixZgsDAQAAtt6AUGVbzO3sgIrMmZAjNaeiauQ0ZVfS///0PNjY2uHjxosb3MfZVeuHv39z3nTlRdWzV1dWJxSukUimcnJzg7OyMdu3aYdiwYZBIJHBwcGjybEVTaKoLDrJrBqakpODFF1/E+fPncfHiRQQFBaF3795aV5PUtVBYZWUlAKC6ulqj9s1tXcrm1h9jSU9PN/pzzJ49G5s3b8Yrr7yCadOm4cCBA/juu+8wZ84cg2avqeVred8ORGRS5hgACCeV5jJkVFFWVhaA+rlFvXv31ug+TXWVvrnvO3Oi6v0plUrlMlQ9e/YUC1wIw4irqqo0ziiZE2N93oSEhCAxMVH8XXbNwJKSEnzwwQcYPXo02rVrh3PnzuHOnTuYMGECzp492+CxDF0orKqqSu7fxgjDCIWKpgsWLMD27dsRHx+v0/Prq7n1xxDWr18v97tUKsWGDRsQHR2t9fqU2nB0dMR///tfLFu2DGVlZdi+fTvef/992NjYYPz48UqLFBEpw4CQiAyKRWWanrOzM4D6Rcs1JVylB4Ddu3cbvPhAY0t5kPaEv43i8ETFIaOKw4kBwN7eXun6hOZO3/dXWFhYg21SqRSZmZly22TXDHzw4AF8fHzQsWNHeHt7A6gPclQN2TZ0oTDheTTNEDa3dSmbW38M4YsvvoCvry/CwsLE49Pa2hqtWrUy6vN6e3tj/fr1SEtLg52dHdauXYsXXngB1dXV4qiB9PR09OrVS+n909PTMX/+fNjZ2WHmzJkICgoCUD9SZNOmTUbtOzUvHDJK1MwcPXoU/fv3R1BQkFzlsjFjxpiwV5ozx2E/5lZURpEuAaGxiw80lnXVlLmsv9kUNA0ILYm+76/U1FT84x//wLJly+R+hIslAtk1A7t164Zly5bhmWeewTfffAOgvriMh4eH0ucwdKEw4e+vaYaQjC8rKwtTpkzBvn37YG9vj4iICDz66KNGLwa3c+dO2NjYiNlrW1tb+Pj44ObNm/j555/xxRdfICIiokEGUxATE4PVq1dj1apVWLVqFVauXAkAWo8UuXnzpkbtkpKSMHz4cMTGxiIxMRG9evXC4MGDce7cOa2ejwyPGUKiZuajjz7CkSNHYG9vj3nz5uHs2bNYs2YNHj58aOquaaS5Z9OUMbeiMoqEkwFt3iPGvkqvbYbQ3NffbArK3odCACg7h9CS6HuxZubMmXB1dYWnp6fc9nfeeUflfTZv3txgm6urK/bt26e0vaELhQnBPwPC5sPKygrh4eF4+eWXkZCQgHHjxuHevXtN8tyy2WshU/nKK69g586daNWqldpMpS4jRX744Qe536VSKRYsWICFCxfiL3/5i9q+zp49G7t370ZRURFCQkKQmpoKZ2dnTJw4Ues5uGRYDAiJmhkbGxu0bt0aALBy5Ups2bIF48ePR1lZmWk7piEWldGPLtVChf4JxSaag8b2qSJzX3+zKSjLEArHmSZVLvPz88Uhji2FvsemqvldkyZN0utxjUnbIaPNneIcWHNmbW2NiIgITJ48Gfn5+U3ynB988IH4/6ysLLHK8AcffIBJkyZh165dKjOVusznjIyMRJ8+fTBgwADx86eoqAgXLlxoNCB0dHREhw4d0KFDB/j7++PRRx8F8OcFLTIdDhklamZ69uwpN5QvMjISsbGxZlMxrLln05TRZsiosQNdXU7yVA0lNCVth4ya+/qbTUHZmnvC+1EIEtQF4C1xXxprOHdzWitPcZidsF6hUEyqMcZel1LbYd0rVqwAUF8dOTAwUOcqrc2ZtbU1fHx8mvx5rays8MMPP+Dbb79FTU1No5nKPXv2iMGgYMqUKaioqFB5n2vXrmHgwIHIzs5GSEgIPvroIzzxxBP48MMPG+2ft7e3+DkmFLypqalp9tMyLAEzhETNzLp16xpsGzJkCLKzs03QG+2Z4xzCxoIX2e2yJf6NoaamBg4ODlrfR1cFBQUoKCiAh4eHyjlQutA2Q2ju6282BXUZQtkho/369WtwX6lUiqtXrzZBL5uWsS5A6VKF11gZWMVhdkOGDMHevXuxY8cOzJ8/v9H7G2pdSkMN6z506BDi4uIwc+ZMbNmyBX5+fmqrtDaVyZMnIyEhodk8jq7s7OwwatQoJCYmGixTefPmTTHAdXFxEZe1WLNmDVatWoWioiKNHke2LoLA1tYWR48e1buPpB8GhERkUOacIVQVvMhuN3ZAqMuVUk33eU1NjbgW3fHjx/Hhhx/C09MTbm5uKCoqQmFhIRYuXIhhw4Zp9VjKGKqoDP15gqnJHMK6ujqUlpYiMzOzwd9nxIgRxu9sEzNWZqG6ulrruVVTp06VW6pCcPToUcybNw82NjaIiYnByy+/DKB+7tehQ4ca7YviMDuhiJSmIwKEdSmdnZ3FdSkBaL0upabDuhsLiB48eIDLly+jtLQUfn5+ANRXadWFuuqZypZf0SWw1SRANvYwbWVVct3c3HDmzBkAumUqNZ0j6Orqinnz5qGkpETvC9YtcY1Uc8O/ABEZlDkvO6FphrAp+qINdUNGMzMzMXv2bBQVFcHW1hbV1dXw9PREXl4eTp06BVdXV7FtSUkJRo8erTIgVPVYixcvRo8ePeTactkJ7TV2gqns7yzsX9kM4eLFi1FaWgp3d3e5x5o3b55R+m1Khqhiqyx4uXbtmsq5VdpmYPUtFCYMs7OxscGJEyfEIZqaHluGWpdSGNbt5eUF4M/3q0QiEf+vSWAlVGl98sknUVhYCHd3d7VVWnWhLsN7+PBhg8xX1iRAVnWRwFBSU1Nx4sQJuWBaKpUiIiJC68e6efMmfvnlF0ydOhX9+vXTeI6gm5ub0mOCzAsDQqJmqLKyEpcuXRKH8gUEBMDe3t7U3dKIcNJqToGANkVlmnNAqEx0dDR27NiBDh06iNtycnLQo0cP3L17Vy4gvHv3rtqr9Koea/LkyTh9+rTS12FO7wNTa+wEU9nfWVmGcMKECXJtsrOz8eSTT2LQoEGG7rLJCe+vxi5AqQq29+zZ0yCQk0qlqKysVDq3asqUKfD399cqA6tvoTDFYXbCsfXuu+9qdH9DrUupOKxbeL8qLonUWGClbZVWXairnqkY2Aq0nWMr+ziyAdHdu3fRr1+/JhmmrWmV3NLSUrnPesHEiRPx3Xff4auvvsKOHTvE+Zw1NTXIzs7Gu+++i8DAQJw/f16jOYJkvhgQEjUz8fHx2LBhA/r27SsO5UtLS8Nbb71lFgv3NpZta460KSpjbgFhbW2tOERM4Obmhs6dOyMuLg75+flilb/27dvjq6++0vqxysrKUFRUJJ70AtoPGdV3WF1L0NiJqrqiMrIBoaLo6GixgENLo+nnjapg+/PPP0dycrJGwV1SUhIWLVqEJ554Avv27cMnn3wCiUSCJUuWIDAwUGUGVigUJgSYkZGR8PX1xVtvvaXJS2yguczTNlRgZQzqqmcqXrwSaDtfWTZANtUwbcUqudu2bcOyZctgZ2eHa9eu4f333wcAjB8/XulnQElJCQDgm2++kcs0Dhw4EF9++aXWcwQb8+9//xtLlixB9+7dMWLECCxevBhubm6YP3++VvNZyfAYEBI1M19++SXOnDkjl6mpqanB4MGDzSIgFE5WWlJA2NwzhOrus3TpUoSGhsLe3h5ubm4oLi5GTU0N1q1bh4EDB2r1PKoeKyMjA926dZNbnFjbDKG5r79pCI0V1lG2pIsm6xAK61S2RJoOTVYVvISHh2s8vLaxNdRUZWANXShMeB+YOjBszoWgjL3OqqLmMkx7w4YNSEtLg52dHdauXYsXX3wR27ZtU5lB79KlCw4ePIi+ffviwIEDGDp0KNLT0+Hq6qr1HMGQkJBGh8caqsARGR4DQqJmxsnJCUlJSRgyZAiA+qvS0dHRaN++vYl7phkhEDD1yYo2GjupNOcM4XPPPYdTp06hvLwcRUVFcHd3h6Ojo059U/VYVlZWuHXrllxbbecQmvv6m01B2YULxTmEyva3sExBS6RphlBV8LJp0ya539UNr20ua6gZ6qJbc1uXsrn1RxvNZZi2tbW1eAEoJiYG/v7+GD16NAoKCpS2X7t2LdatW4f09HTs378f7u7uCA4OxpYtW8Q2inMElRWykUqlyMzMbLR/hipwRIbHdQiJmpn4+Hjs27cPwcHBGDBgAMaNG4fLly/jn//8p6m7ppHmcvVaG6bOEOobcGoyb9PJyQnt27fXORjU9rG0HTps7utvNgVlgYAmGcJdu3YZtbCFpoyxtp+hixcJQ/COHj2K/v37IygoSJzD5+3tLRbVaMo11BT7IrwPNm7cqNfjaju009jrGZpiqOnNmzdx8uRJuc8eQ1AcytlUxowZg+vXr4tLTYwYMQLr16/HI488orS9vb094uLicPToUWRnZ+PcuXNYvnx5g0w68Ofxe+jQIYSFhWHZsmVYtmwZrKyssGzZMnHOpjpCgSMAehU4IsNjSE7UzHh7e8sVAXj++ecNOtne2MwxQ2jqgFD28fXJEBpinxvqKr22J+rmvv5mU1D2PtVkYXphPqapK//qsrZfYww9Z1nIrigbwrxjx44GFXgbW0NN3fIsqgp9KFLsy6VLlwDUFx/ThKHWpWxsuJ8wF7mp+qMrZYVUfvrpJwQFBWHu3LkaP466ec+mGqb9wQcfAPhz+GZ2dja6d++Ow4cPa/1YimvUCsfvN998g23btiEnJwexsbG4c+cOOnXq1KCQjTKGKnBEhseAkKiZE+Yk3L59W6MrcKZmzkVlTDVk1FABoab3TU9PR69evZTeZqgy6Vx2QnuNFVxQlyEUgo7mvL/VVX7UlaHfZ8LwWm2GMCsGfIrLs9y8eRN37tzBI488gmnTpjVa6EORYl+EdeKqqqo0ek2GKniiONzvX//6F+Li4lBRUYHAwECxTytWrMDgwYON3h91VB1LkydPxqlTpzBhwgT88ccfuHDhAqytrTF9+nQcPnxYq4BQ3bxnbZew0FVjwbUuBaVUrVFbUlKCLl26YP78+QDQ4PidNGmSnq+GTIkBIVEzJ3xpano12NRa2pDRyZMnyxVfaY4Bobqs7Pr16+V+l0ql2LBhA8rKyhoMC2rsKr2qkyx1fTKnCwOm1lgGRpM5hKbOAqqjrvKjrvR9n6kqhKFPZVDF5VkCAwNx5MgRREZGwtnZudFCH431pW3btvj5559RUVGh0f31LXgiLPKem5uL06dPY+DAgdi+fTt8fHzw7rvvIicnB6dOnYKfnx/u3LmDCRMm4OzZs0brjyZUHUteXl74y1/+guHDh+Ozzz7Da6+9hjVr1iAtLU3refraXDQQKtQ+9dRTGDVqFGbPni1XoVZXjQXXumQqP/zwQ2zdulXuAnRJSQk6d+5s8OOXmg8GhERmwlwCLHMcMiqcVOfm5sqtVyYsshwcHNygrSEZM0P4xRdfwNfXF2FhYeJwLmtra1RVVWlcbl+g6iRL2VxCQ2VuzLnQhLYaK7igLkOobshoc2GMyo+avs+0LYShzxBmxeVZrK2t0aZNG9TW1mpU6KOxvgjvA02XrVAseCLQtOCJ4lDf1NRUxMbGoqysDL/++isef/xx+Pn5AagP+tWtZaqsP8YowKLqWLKyssLWrVuxbt06dOzYEfv378ehQ4dgZ2endfElbS4aNFahVleNBde6FJSytrZGZGQkzpw5I267e/cuunXrpnJtTn1pOnyajIcBIVEzJ5zwmUuAZY6ZIaGvrVq1UrrIsjnPIczKysI333yD3bt3IywsDJMmTcKuXbuwcOFCra/SqzrJUsZQ7wNDDWE1B0LBBRsbG6UFFzQpKtOcA0Jj0PR9lpqaKrfOGlC/7yIiIvTug2KWUXF5lvz8fIwcORLLly8HUH/RxcfHB3FxcTo9X1N/xqoa6uvk5IRly5bhySefRGFhIdzd3VFaWgoPDw+tHt8Y62SqOpZatWqFmzdvIi4uTtz/27dvx2uvvaa0kIo62lw0MFaFWn2DfWVDTh8+fIiff/4ZgYGBGq9RC2h28U52ncSwsDCth0+T8TAgJDIT1dXVpu6CRsx5yKidnV2DL9KpU6eaTUCo7L5WVlYIDw/Hyy+/jISEBIwbNw737t3T6Sq9spMsVcPWtM0QmrrQRHPQWMEFZXNdNaky2pJput7lzJkz4erqCk9PT7ntmhTCEGiaZWxsqRd9Cn0ATf8Zq26o7+bNm+Xaurq6al0EzRgFWFQdS3l5eQ22G3N9QoG3t7f42dmUFWobo27IqbpiScpocvFO23USqekwICQyE+YSYJnjkFGhz8qGOsXExGDlypXi78YOCHV5fE32ubW1NSIiIjB58mSxJLksTa7SKzvJUlVVUNuAsCkKTZg7ZYG/JusQNjeK1Qv1Ibzexi6kqFoGQJtCGKmpqdi1axfatWsnblOXZXRycoKTk5PSvmibDamsrMSlS5dQUFAgLsXSVBnCxob66jvcryWvkykQli6R1ViF2qagy3xOfS7eabtOIjUdrkNI1MwJV87MJUNozgGhuS87ocl9ra2t4ePj02C7rlfpVb0vtR3WJpyYKDJkoQlzp27ZCXPIEB4/fhzBwcF45ZVXsHDhQkybNg3PPvssjh8/3qCtpmsWapohNISZM2di1qxZ8PX1FX80LbcvS9tjLT4+HkOGDMHWrVuRlJSE+/fvA4C4/ERT2bZtG3r06IFnnnkGS5cuFbePHz++SfthLMoulOlCm7VTdV2Q3VBrek6YMEEuGBSGuyobKbJixQoAwL1792BtbQ0bGxvU1tbis88+Q2pqKvr27dvo8wnrJAoaWyeRmo5FBYRLlixB37594erqCi8vLzz//PP4+eef5dpERkbCyspK7mfAgAFybSorK/Huu+/C09MTLi4uGDduXINhCIWFhYiIiIBEIoFEIkFERASKiork2uTk5GDs2LFwcXGBp6cnYmJiNC4jTZbHXAIsbZdAaA4aC17MZdkJfd4jul6lV/Wc2mYIFU9MBIYsNGGuhBNVcy8q8+GHH+Lw4cPYt28f4uPjceDAAfzwww/48MMPG7SNiYnB6tWrsWrVKqxatUrM0iuuWahphlBb/fr1a/CzefNmZGRkNGirbbl9bY+1L7/8EmfOnMGaNWuwaNEicdjr//73P60eR1/CcL+0tDSxWurDhw8bXIQwVGBlDMqCtfT0dAD1Qx61YcoAWdPjQ1uqMukAsHfvXgCAm5sb1q5di3PnzuE///mPuFSHJhfvPvjgA7nCNPoOnybDsaiAMCkpCW+//TZSUlJw9OhR1NTUICQkBA8ePJBrN2rUKNy6dUv8Edb8EcyYMQN79+7Fzp07cebMGZSVlSE0NFTuCyk8PBwZGRk4fPgwDh8+jIyMDLlhJbW1tRgzZgwePHiAM2fOYOfOnfj22291nmROLZe5FpUxl/4CjQcv5pIhVLXPKysrkZaWhmPHjiEtLc2gF54ayxA25wDFXAgnquqWndBkHUJTZw+tra1x9+5duW13795VOlRbKGTSqVMn7N69GyUlJUrXLFQWHGtDVTantLQUycnJ+PHHH8UfTbMgqoSEhOh0PycnJyQlJYm/C8dcY9U8DU0Y7ieVShETE4M33ngDo0ePxr179+TaaRtYGYOqYK1Pnz7o1KmT3E9wcDB8fX3x448/avUcmgbIqgiBqC40PT60pS57nZmZicuXL8PZ2VkcNurl5SXOI9fl4p26AJSalkXNIVS8ArF582Z4eXnh4sWLeO6558TtDg4OKislFRcXY9OmTYiPj8fw4cMB1Feo6tChA44dO4aRI0fiypUrOHz4MFJSUtC/f38AwMaNGxEYGIiff/4Zfn5+SExMxOXLl5GbmysO31qxYgUiIyPx6aefqlzbiywPh4wan9DnvLw8TJkypcGi4M09IFSX4YyPj8eGDRvQt29fcZHhtLQ0vPXWWwYppKDqfWmszE1L1tjcHHVzCIUTOXUno9XV1bC3tzdYf7X11VdfIS4uDvn5+Y1WL9R0zULZ47G2tlblEDxtqxvqs1aetktcNCY+Ph5Lly7FvHnzUFtbi5s3bwJouuz5ihUrEBcXh969e6NXr15wdHREVVUVHj58CFtbW+Tk5Ijv3eZSCEpV8ZK8vDxYWVlhzZo14ntlxYoVeO+997ReT09xPly3bt1UzodTtR5sdHS0TkGRMdb0BOqz16o+h8rLy5VWlc3JydH5+YxRUIh0Y1EBoaLi4mIAaDCp/eTJk/Dy8kLr1q0xaNAgfPrpp2I54osXL6K6ulruSp+Pjw8CAgKQnJyMkSNH4ty5c5BIJGIwCAADBgyARCJBcnIy/Pz8cO7cOQQEBMjN5Rk5ciQqKytx8eJFDBkyRGmfKysr5RYoLykp0X9HULNmblU7za2/wJ8n2G3btsWKFSsaLAouXPwBmmdAqG6fC8PNZLMJNTU1GDx4sNYBobITBdnPI+EkH2CGUBeNFdZRFvgL/9ckQ1hTU2PSgNDf318cdtYYTdcs1PRijbbVDVWV8x8wYADS0tLEojgBAQEN9qmhl7jw9vaWK+j0yCOP4ObNm3BwcNDp8bR16NAhxMXF4eeff8bOnTvFBeg7duyIsrKyZlkISlXxks6dO2PEiBH47rvvMGXKFHEZnqlTp8LX11er5xDmw3Xq1AmTJ09GQkIC2rdvr3Skl6r1YFu1aqXT6zPGmp4CdZ9DyqrKPvPMMzo/lyUUFDIXFhsQSqVSxMbG4tlnn0VAQIC4ffTo0XjppZfg6+uLa9euYf78+Rg6dCguXrwIBwcH5Ofnw97evsFVw3bt2onj5vPz85WuZ+Pl5SXXRrZSGQC4u7vD3t5e7fj7JUuWYOHChTq/bjI/QgbGXAIsc16HUCqVol27dg0WBdd3WFpjZP+2hi4qIww3Ey4ySaVSJCUlKV1MvjHKThR+++03cY2ympoa8STMUAvTW5LGslLC31kxKwaoDghl36/mMspAG8r2hTKGqG6oabbdEEtcqNPU87QfPHiAy5cvo7S0VG4BehsbG52zqMYmG6wB8ms/rlq1CnV1deIyPLm5uQA0y7jOmjVL7vf169dDKpWKhV1UzYdTtR5scxheq0jb7DiDupbBYgPCd955B//73/9w5swZue2yk8MDAgLQp08f+Pr64tChQ5g4caLKx5O9Mg4oL8WuSxtFc+bMQWxsrPh7SUkJOnTooLI9mT/hJM5cTubMecio0GfFRcGbsqiMLo+vLkOoONzMzs4Offr0EV+jNpSdKMg+p7KA0JwuDJhaY4tMKwsEZNfQBBpesJD93DCnY1JTmh476gIETWmabTfEEhfqNPUojG7duikdKuji4tJsC0F98MEHcr8rFi+RXYZn4MCBGj9uQkICduzY0WD7f//7X7X3U7UebHOkyxq1ZP4sMiB89913sX//fpw6dQqPPvqo2rbt27eHr6+vOCbe29sbVVVV4oei4M6dOwgKChLb3L59u8Fj3b17V8wKent74/z583K3FxYWorq6ukHmUJaDg0OTDROh5sHcMoTmPGRU8WRaWBR8zpw54rbmOGRUXVZWcbiZPpQFLKoCDg4ZNTxdhozK/n2a60Wl/Px8lfP2G6NphrCxAEEThsy266OpM4SKwwSB+qGCd+7caZLnNwRVaz9qO2zz1Vdfhb+/f4NRYJpm+hpbD1YXN2/exC+//CIWyTG0xtbN1Of4pebDoqqMSqVSvPPOO/juu+9w4sQJdO7cudH73L9/H7m5uWjfvj0AoHfv3rCzs5NbTPTWrVvIysoSA8LAwEAUFxfLVaw6f/48iouL5dpkZWXh1q1bYpvExEQ4ODigd+/eBnm91DKYW4BljhnCxrJZzb2ojKneIzk5OXJLBsgGHMwQGp4uRWXMIUOozbA5xUqduh6buhTyiI+Px759+xAcHIwBAwbgueeew8GDB3XKtuvD3L4TgPoq78OHD0dsbCwSExPRq1cvDB48GOfOnWuS51dXvESbIY+LFi1SOiUoJiZGq/6oWg9WU8KIta+++grh4eFITEzE22+/jU8//VTnx1SlscIvzXHYK2nPojKEb7/9Nnbs2IF9+/bB1dVVvDojkUjg5OSEsrIyLFiwAC+88ALat2+P69ev44MPPoCnp6d4ZVwikWD69OmIi4tDmzZt4OHhgffeew89evQQC0/4+/tj1KhRiIqKwpdffgkAeP311xEaGiqOvw8JCUG3bt0QERGBZcuWoaCgAO+99x6ioqLMpsJoTU2NzouqkubMdcgoUH+C1tSl0XXRUtYhbOrg680338R//vOfBv2Q7QszhIZj7hnCxqqoytK0UqemGUJFulQ31DfbXlpaCldXV5W337lzB9999x3efPNNtY9jjmu9zp49G7t370ZRURFCQkKQmpoKZ2dnTJw4ESdPnjT68zcW9JlblksoKPjNN9/IFTAaOHCguC6goQj7Tpvjl8yPRZ3Nb9iwAQAwePBgue2bN29GZGQkbGxskJmZiW3btqGoqAjt27fHkCFDsGvXLrkP8VWrVsHW1hZhYWEoLy/HsGHDsGXLFtjY2IhtEhISEBMTI17NHDduHD7//HPxdhsbGxw6dAjR0dEIDg6Gk5MTwsPDsXz5ciPuAf1lZmZi9uzZKCoqgq2tLaqrq+Hp6YnFixejR48epu5ei2SuQ0aF/5uyqqGmZE+0lVUQZIZQOcWTatnnZ1EZw1M3h1CTgNDUnyGNVVGVpWmlTl2PTUMUwrh69Sru3buHwMBAue3aLnEhiIyMxH/+8x9MmzYNTk5OKtuZIiCsrKzEpUuX1FZXVcfR0REdOnRAhw4d4O/vL07XkT1vMqWpU6ciMTHRqM+h7z6U1aVLFxw8eBB9+/bFgQMHMHToUKSnp6u94KAvbY5fMj8WFRA2Vh3QyclJoy8JR0dHrFu3DuvWrVPZxsPDo9FhJB07dsTBgwcbfb7mJDo6Gjt27JArZJOTk4PJkyfj9OnTJuxZy2VuAaHsSYq5BYTl5eXYunVrgwqCzT0gNFVlV8W5NxwyalzqMoSaDBk1dYZQm+qFmlbq1DVDaAhdu3YF0HCfa7vEhUCYQvLgwQOVAaFUKhVfc1N9JxhiLVNvb2/U1tbCxsZGDIpramqa/IKRMbJc6enp6NWrl9o2hl4Pdu3atVi3bh3S09Oxf/9+uLu7Izg4GFu2bNHxVTQkLKUh0GdtTmr+LCogJP3V1taK5fgFbm5uPOkzIuFL39Qnc5pSDAjNQW1tLaysrGBra4s1a9aI24UKgj179oStra3RTmDMNUPo7OystB9SqVQ8+WWG0HCULTuhOIewOWcIG6uiKkvTSp3GvlijC20WLJf18OFDAEBZWVmDQFig72eFLgyxlunOnTsbbLO1tZWrx9AU9M1y6brAvCHXgwXqC57FxcVpVSVXFcWlNADILaUh0Ob4JfPDgJC0snTpUoSGhsLe3h5ubm4oLi5GTU0N/vGPf5i6ay2WuWUI9V1TzxTq6upgZWUl13fZCoLCcg1NERAaetkJY1KcH6ouYCH9mfscQmPQ5L2mmOkwNsUlLoYPH65ywXJZwvFTVlbWaBvF/xuTMaurNnUdAn2zXLouMN9cKtQqo+tSGtSyMCAkrTz33HM4deoUysvLUVRUBHd392bxgdaSmWNRGUdHR1RUVJhNEFtbWwtXV1cUFxcjODi4wXp9H330Eezs7FBeXt6sM4SmDsDVzXEj/em7DqG5fIZoQ3ZffPLJJw2KsinLdBib4hIXgOoFy2UJf8MHDx6obCO8B6ytrZvs2DLkWqampm+WS9cF5pvzPtR3KQ1qGRgQkk6cnJzUTnonwzG3DGFtbS0cHBzMLiAU1vc8c+aMeOVX9nZVGRhDPb+y/2uquZShF96rzBAah7kXlTEExWqQQiXjuro6fP/999i1a1eD+zTnTEdSUhIWLVqEp556ChUVFQDqq5L/85//bFCsBvjzbyiMXGgKhlzL1NzpusC8MfahoYrULFq0SOl2bZfSIPPW/OvBE1k4cwsIZQvJmEufa2trxT4LJ9QlJSUIDg5GXl6eeEVX9nZDP7+y/2t7f1Nn45QNGTV1n1oSTYaMtvQMoWLWQvbYfOGFF+Dv749BgwbJ/TTnTMfs2bOxefNmvPLKK7hx4waA+gzjnDlzlLYXjjEHBwez+XwFgH//+9/o1asXpkyZgq1bt8LPzw99+/bF/v37Td01nQgLzO/fvx/ff/99kz9/fHw8hgwZgq1btyIpKQmbN2/GkCFDmkXGkcwTM4TULDT1HA9zYo5FZYRhxOYSDMhmCIVKeOfOnUNycjK++uqrZh8QmipDWFVVpbQfzbHQR0ugycL0LSVDqGk1yJqaGjg4OKCyshJ/+9vf9Fo0PD09HfPnz4ednR1mzpyJoKAgAMD06dOxadOmBn0xBNnlGIQgz97eXuVyDMLfvikzhIawYsUKnD17FqWlpejZsyeys7Ph6OiI4cOHY9y4cabuns70XWBeV4YuUkPEgJC0cvToUcybNw82NjaIiYnByy+/DKB+Ev2hQ4cavb+m1azoT+aWIZQNrsypz4oZQhcXFwD1BR6Ek07Z2w39/Mr+rylTzSEUhrgJhPeqbNaKAaHhaLLsREspKqNpNUjZY1Pf939MTAw2b94MW1tbzJw5EykpKYiNjcXvv//eoK3impuKBZY0Jbscw2OPPYbMzEy1c5VlM4TmFBA6OTnB2dkZzs7OGDZsmFitvCmLytTU1DR5ERtjMWSRmqKiIrRu3drAPSRzwyGjpJWPPvoIR44cwbFjx/Djjz/i3XffRV1dnVguuzEJCQkYM2aM3E9oaCjatGlj5J6bL3MLCGVP0Mylz3V1deIJtXCSJVvxT3YYbHMOCDXd35MnT9b6OZSprKxU2g/hNZjypDU9PR2hoaGYMGGC3AWn6dOnm6Q/hqDJHEJ1Q0bN5XgE/qwGqUixGmR1dbXBjk0rKyt06dIFnTp1wu7du1FSUoKoqCil+032vV9eXq4y2G7sWNu5c2eDbGBNTY3K5RiEvtjb25vV37Nnz57ie1UY1lhVVWX07/7MzEz85S9/Qdu2bTF06FAEBgZi7NixyMzMNOjzKHuv6qOxv218fDz27duH4OBgDBgwAM899xwOHjwo7tszZ87gt99+0+i5fHx8MHz4cPzzn//EnTt39O67ppKSkjB8+HDExsYiMTERvXr1wuDBg3Hu3Lkm6wP9qWVcKqEmY2NjI15JWrlyJbZs2YLx48erLZMti9WstGeOVUbNLSBUNiS0vLxcvE02IDRGgKPvEEtVcwiNnZFXFRAK71UHBwfU1dVpNRTPULTJ9pgLYb1MZXM0W1qGUNNqkI0dm5osGi7w8vKSWy5iwYIF2L59O+Lj4xu0lX3vDxo0CFlZWQ2Gpmp7rAnBfGVlpcpMVlMWldH0uJUtjDNq1CjMnj0bEokES5YsEQvjKCuoYm9vjz179hi0z4qfeTt27MCYMWNw5coVnDp1CgCQk5ODyZMn4/Tp01o//rZt27Bs2TLY2dkhLCwM77//PgBg/PjxOHHihFxbTfaLrMzMTMyePRtFRUWwtbVFdXU1PD09sXjxYvTo0UOubWNFagYOHAig/j3V2JSc/v37Y8uWLdizZw9efPFF2NnZ4cUXX8QLL7ygdAi2ocyePRve3t545ZVXEBISgtTUVDg7O2PixIk4efKk0Z6XlGNASFrp2bOn3BdmZGQkfH198dZbb2l0f1az0p6u88MMPTxG08erra0VFyw3lyFNskNGhT4LWW9ra2vU1NQYdV6k8Jg2NjY6ZwiVZQyMvb6U4pBRxfeqEBCaIjgTsj0AsHv3bixYsEBltsdcCNl32cDOUqqMXrhwAYmJiQ2WdJAdkbBz506cOXNGvE3TRcMFyoKTKVOmKJ2TJTt/9uLFiwDqp04o0uZYE/5WinNzZckeWyUlJWrb6fv5r+lxO3v2bOzevRtFRUUmP7FX/Mz74YcfMH78ePFvBABubm46f45v2LABaWlpsLOzw9q1a/Hiiy9i27ZtSueUartfoqOjsWPHDnTo0EHcpmnw+uuvv2LhwoVo37693PaZM2c2elHCysoKjz76KGbMmIEZM2bgxo0b2LNnD1566SUkJSWpva+mlF2cvHHjBm7fvo0ePXrA398fjz76KAConD9LxsWAkLSybt26BtuGDBmC7OxsE/TGMmgzZFSbK4ya0OXxZIMnczkBVRYQChlCYcF6Y74m2SyPrgGho6Njg2FLxs7IK2YIFd+r9vb24pIdTR2caZPtaSr6ZkqF92lFRQWkUqlcttAcq4xqU0wsODgYVVVVagPCXbt2wc/PT+tFw3Wh+N4HoPexJjymsscWqJtDaOjPf00vqsgWxjH1ib3iZ9769esxb948lJaWYuLEiSguLkZNTQ3+8Y9/6PT41tbWYjY+JiYG/v7+GD16NAoKChq01Xa/1NbWinMrBZoGr0888QQA4OTJk5BKpVi2bBkAIDQ0tNGLEv7+/nK/P/LII/jb3/6Gv/3tb40+r6aUXZy8cOECiouLAUDMrtbU1HDeuYkwICRq5rQZMqrPFUZDPV5LGzIqlUqNHhAKf1tdh4EJJ8UlJSVyBS6MnZHXdMiosYMzZYGFNtmepqJvprSmpgZOTk4oKSkRA23h/aJq2GRzyBAaYuiykDUTCrAIZAPCb775Br/++qvWi4brQlkWT5cKp7KF2oqKisTHVlWoTV1AaOjPf02PW29vb/z1r3/FN998o/bEXtt183TJcip+5j333HM4deoUysvLUVRUBHd3d50KrwjGjBkjt09GjBgBHx8fxMXFNWgrWzBIk4Bn6dKlCA0Nhb29Pdzc3HQKXv39/eUugGiy7IrwvlNH2+GvipRdnDxx4gTWrl0r187W1lbl/FkyLgaERM1YbW2teMVfk5M5fa4wGurxZLNt5hIQKqtUKAwZraysRHV1tbgfjBUQCleedV2HUDYI12VxYl00NmTU3t4edXV1BgvOzL1Ksb7DWGUvTFRXV8sFhLLbZTWHDKEhhy4XFRXJFSKprq4WKwLX1dXptGi4OqrmICrL4glZW20Ihdrs7e3F11VeXq6yUJtswSbF942hP/+VHbf/+9//EBMTI3csdujQoUFbxRP7+Ph4bNiwAX379oWbmxuKioqQlpaGt956S+5zwNBZToGTkxOcnJx0vr9AMUOdnZ2N7t274/Dhww3a7ty5s8E2dQGPIYLXNm3aID8/X26bcFFCn89PfYcFa3NxsqVUgjU33OukNW2v8mkiJCQEiYmJBuphyyF84Qvz2BpjiCuM+j6esefbGZpUKkV1dbV4sqA4ZLSysrJJMoTC2mP6ZAiBpt3nlZWVGDBgAN5++21EREQ0GDJq6MWzjT0n0tj0zZTW1taKV/+F96ywf4V5u6qG8Qon16ZgyKHLhYWFcgGhsiVhhEXDJ0+e3ODkWJ3169fL/a5uDqKyDGF5ebn4d9CUbKE24UR4x44dKpcBkP17K/49tfm8PnHiBDp16oTHHntMq/5qcwzKnthrum6eobOcxhYdHd2gmExjGgt49Aley8rKVGb89Pn8bE7Dgsk4GBCSVjS9yqdKWFhYg21SqdTgJaBbCuEL38nJSaOTOUMPj9Hl8cxtyKjscE3gz5NK4Qp9RUWF0QPCqqoq2NnZ6RUQurm5if9vKpWVlRg+fDgmTZqEiIgIpUNG1RXI0Ja5VynWN1MqDBkF/gxIhCytECgq7m8hk2hnZ2ey49GQQ5cfPHgg97u6ZW60XTT8iy++gK+vr0ZzEJVlCB88eCAGhJpmC2ULtQl/u169euF///uf0vayAaHi31qbz+thw4bBy8sLt2/fbrSPsnQ9BjVdN8/QWU5ZN2/exC+//IJOnTqJF2X0JUw1aC7Ky8sREBAg/i47xFrd366xC/3aDn/VhS4ZdjIcBoSkFU2v8qmSmpqKEydOyN1fKpUiIiLCKP01d8KJtbOzs1Ync4YaHqPL45lbQCicVClmNYUMoRAQGnMYbHV1Nezs7GBtba3TF6y2GUJDZeQrKirg6OgoXvFWVmVUk/kpmtImsJCdmxUTE4OXX34ZAFTOzTIHspls4bOhoqICDg4OsLGxgb29vdKA0M7ODnZ2ds2uqIwuFIdSygbJ+r6+rKwsfPPNN1i8eDH69euHf/3rXyrnICoLCMvKynDr1i288cYbAOo/W1asWIHBgwerfE6hUJtUKhX/du3atVNZqE1dQCho7PNaCKp1WXNO1+A+Pj4eS5cuxbx588Q523369BHXzRMYepTLxIkT8d1336Fbt27w8vJCUFAQfvrpJwQFBWHu3Lk6PaasI0eOKN3+4MEDTJ06FevXr0e7du10fnxtlk0BGh4fV65cEQNEVX87d3d3DBkyRO2Ffm2HvzZGKpVi5cqViIuLw//+9z+tjhkyDgaEpBVNr/KpMnPmTLi6usLT01Nu+zvvvGPwvrYE2mYImwNzW5hedh8DqjOEdnZ2sLW1NWpAqGuGUFUQbuyMfGVlJRwcHGBlZQUbGxuVy06YIjiTnZs1b948nD17FmvWrFE5N8scVFZWwtXVFYB8QCh8/qoLCI313m1qwoUaQU1NjZiVU/UZmZ+fD29v70Yf28rKCuHh4Zg8eTIuXbqEO3fuqJyDqCwYe/DgAWbOnIktW7bAz88Pd+7cwYQJE3D27NlGn1v28TRZdsLJyUnn7Pvdu3cBoNHvbU2P23//+99YsmQJunfvjhEjRmDx4sVwc3PD/PnzMW7cOADK180rKytrMHxS31Euip95Z8+exUsvvYTffvsNWVlZ4sXogQMHGiQgBOqD+hEjRuDJJ58Ut50+fVoMRBUDMVUX5LQZsqyKYgZ9xowZeOKJJ7Bq1SqV+1GfC/2azvdbsWJFg+AvKysLvXv3xpIlS3Q6ZsiwGBCSVjS9yqeKqg+1SZMmGbKbLYZssKLNyVxBQYE49MPDw8NY3VNKNjgxhzmEmmYIbW1tjXZSXVVVZZQ5hMbOyAsBISA/R012yGhNTY1JgjPZuVkrV67Eli1bMH78eJSVlRntOY1NNiAU3rfl5eUaB4TN5aKSPkPDlGUIhYBQVYA0depUjTPisst27N+/X+UcRGUZwqysLJSWlsLPzw9A/ZxR2WNPHdm+a7LshJAh1GVfCkFDY59lmh63K1aswNmzZ1FaWoqePXsiOzsbjo6OGD58uBgQKpJKpXB1dUVkZCQ2b97c4HZdR7kofuZ98MEHGDp0KM6dO4cDBw5g6NChSE9PF48jfUmlUsTExDQ4voQRJbt27cLPP/8s117VBTlthiyrIlzA8Pf3x5UrV7By5Uo8/fTTyMvLw4EDB5TeR98L/Zo4dOgQ4uLi5C6YPPPMM/j73/8OJycnnY4ZMizuddKKcJXv7NmzSElJwalTp+Dr6yueFJJhyV4N1iQQOX78OIKDg/HKK69g4cKFmDZtGp599lkcP37coP0KCQlReZu5rUMonIgpFpWRrTJq7IBQ32F9VVVVSve5kJH39fUVfzp16mSQjLxUKpXLTsnuG+FfFxcXVFVVicGZs7MzVq5cid69ezcanKWmpmL8+PFKF3yWlZ6ernS7MDdLEBkZidjY2AZrNTalf//73+jVqxemTJmCrVu3ws/PD3379sX+/fsbva8wpFC2qAzQMEOorKiMqTOEK1asAFBfoTIwMBBBQUHo3bu3TouWK2YIq6urxYAwNjYW/fr1k/vp27cvfvzxR50eX90cRGXB55YtW/Dkk0+isLAQAFBaWqrxBTnZv1tVVZXKQFR4XqGyquwFoKNHj6J///4ICgqSG+I3ZswYuccQjrvGLj41dtzevHkTJ0+ehJWVFZydndGuXTsMGzYMEokEDg4OarNHwufrli1b1PZBW4qfeZs3b0ZRURE8PDwwe/ZshISEYP/+/QZ7XmFfKB5bJSUlAIC+ffti2bJlcj9CpWFFWVlZmDJlCvbt2wd7e3tERETg0UcfbXR+puzfUQj6evbsCQBiJlddxi0+Ph779u1DcHAwBgwYgOeeew4HDx7U+EK/Jh48eIDLly/LXTB5+umncfPmTZ2PGTIsZghJL9euXcPf//53nD59Gt9++62pu9PiyGYINZmL9eGHH+Lw4cNyVz9LSkowevRoDBs2TOvn12XIYUVFhXjSao4BoeI6hBUVFeKab8YOCJVleBojlUrlMkeyJwfGzMjLZgEByBUtUQwIZQtnAPXBma+vL9566y2Vjx8dHY0LFy6gsLBQPEHQZkiVMDdL1pAhQ1TOzWoKumRSBML7QrF4jKZDRm1sbEyWIVSWHdB1aJi6IaPl5eVITk5uEIiMGDFC48fXNIOsLIsXHR0t93d0dXXFvn37tH68yspKlVlN4fULhVeqqqrE16tpRk/T16jsuN20aRNKS0vx1VdfYceOHQgKCsLt27exaNEizJ8/Xwwiqqqq5KrBKhICJkNT/Bywt7dHXFyc0nUCDUHV97Kw3cnJCb6+vnK3qbogJwxZ1nbZFNlholeuXAHwZ+VQ4WKwjY2N2qG9isN5Fek77L9bt25YtmyZGPy5u7tj7dq1KCgowNdffy220+aYIcNiQEh6EeYi3LhxQ+P7GGPZipZK26Iy1tbWuHv3rlxAePfuXZ2HYGg75LC2thbV1dVmGRCqGzIKoEkCQgcHB7XDxVTdVyqVihmDptrnwn5RN2RUGNamS3Am7Idbt26JAaEhhlSZkpOTE5ydneHs7CxmUgDN5uEI+0PbOYTl5eVwcnJCXV2dyY5HZdkBbYaGyQayisFNZWWlWGF34sSJKC0thbu7u1ybefPmadxX2WBJGBmgbA6isuHOivO3NNGvXz8Af/59ra2t1Y7oUBYQCgGxpsOkNQ0IlR23Dg4OyM7OxpAhQ8TvhsWLF2PgwIGYP3++2M7e3l5pVV2BYkC4evVqjBkzBunp6Y3OR2xOiouLlW4XAkJl7/HGLshpu2yK7N9TCD537NiBoUOHom/fvjh+/DhsbGy0uiD1+uuv46mnnhKDV32H/SsbFszgr3lhQEh6EQJCTdei0XfZCksjfNi6ublpdDL31VdfIS4uDvn5+eLckvbt2+Orr77S6fm1LQIknKwoy1Y1V6oCQtmiMlKpFE5OTkafQ6hLQCgEZsqGkBmT0E91Q0adnZ21fj0C4TPl9u3b6N69O4A/q0Du3r0bYWFhmDRpksoqkM1Rz549xdLtmmZSBMJ+VBwyWlpaKv7tlb1/hICwqqrKZBlCZdkBbYaGyZ50ymYIpVIpHj58CFdXV1hZWaFHjx4NgkGpVIpBgwZp3FfZIcVCcClk665evYouXbrAyspKnLspHH+A5oGW4vNlZmbi559/RkBAANq3b49u3bqpHCpdUVEBKysrpcuMaJqJFwJXXeZxdunSBQcPHkTfvn31mpMnGxDW1tbi73//O7788ku4ubnpnEU3hcYyhPoMUdd02RTZ911ubi6APwND4XcbGxuNL0hJpVJs3LgRwJ/f9S1xTjbJY0BIehHKVmv6xaLvshWWRjYg1ORkzt/fH3v37jXY82s75FBxTTRzyhAqVipUHDLq4uLSLDOEigGhJv1TlvG4dOkSxo0bh4sXL6pcFFuW0E9lQ0aF923r1q11roQofKbInnDpOqRKlqYVJ41B2bCsxjIpAsWAUNiv9+/fR9u2bcXbFE/QhIBQKpWa7HjUNzsgGwTKBofV1dWora2Fs7Oz0uxoTU0N3N3dMXfuXLz//vuNPk+/fv3kTuCHDBkCOzs7XL16FX/88Qe6du2KTz75BHPnzhX3q2xAqCxDqOz9VlhYiG7duuHzzz/H4sWLUVpaKr4ud3d3VFVVYeHChSr3haOjo3jcyb5mTTPxwnukrq5O66I0a9euxbp165Ceno79+/fD3d0dwcHBWs/Jkw0IhfOIGzduoF27djpn0dUpLS2VC1oN9TmgmCEU9qfwudUUAZPsezY3Nxd2dnbiUhdCQAhofkFKWRCry7B/XZnyM9qSsagM6UX4INd0PoBQzUpgjGpWLYlwkiCRSMwiuBJO3MwpIBT6LGRBhX3+8OFD2NnZoaKiQlxw2lgBobCWnC4BoWKgoEn/lGXU1q5di99//x1paWkaPa+w35RlCIUT49atW4tDWisrK5GWloZjx44hLS2t0UBRyJAo+2wRhlTt378f33//vUb9FZhLNhGoD6TWrl0L4M+/s3DyJpxo3rt3T9zm7u6OgoICuccQApfmVGVUW6oyhML/VQWEubm5KCsrU7n+mqLS0lIsXrxY/H379u1ITU1F3759kZOTAwDi95ewXwUuLi5KA0Jl77fMzEzk5+fjyy+/xIQJE+Du7i7e19HREeXl5SqzmsLzCtMsdMnAywYpinMyG2Nvb4/XX38dR48eRXZ2Ns6dO4fly5eLi51fvnxZPHbVDXeUPa6vXr0KoP6YF4IWAFpn0QFg27Zt6NGjB5555hksXbpU3D5+/Hi5dob6HJC9YLVx40ZYW1vj4cOHagNCbbOGjbVXzBC2adNGfG8KAWFJSQlWr17dYDSXsgtSt2/fFv8v/C3XrVsnBoMCQ8zJVvbazOkzuiVhhpD0IgwZvX//vkbt9V22wtIIJwnmFhA6OzvD2traLPosnJi0b98ewJ/7vLy8HG3atBFPaoQMoa4ZL3XKysrg6uoKe3t7uYyDJtQNGRXmJ8mSSqXiCZgywolvY4T9JszfsrOzE09OHzx4IFc2fvPmzfjXv/6l1VBx4e+gao4OoH5IlS6vvbl59dVXAdQP2xKOLeH1CoHfjRs3MHToUAD1AeGtW7fkHkMIIB4+fGgWx6MysgGhsv8LAZLisSlkjzUNhBcvXiwXxAgnq/PmzRO3C9k0xYCwuroaX3zxhVzWU9X7TbiQKhtACq8lJyenwRB9WRUVFXBychIvAOkyb1H2PsLFLmW2bduGZcuWwc7ODmFhYWKWdfz48Thx4kSD9nl5eejevTs++ugjLFiwQO1yH7KBgLAsg42NjV5ZdADYsGED0tLSYGdnh7Vr18LDwwOPPfYYfvnlF/EzwZCfA7IBoVD0KjU1Vdx+/vx5PPPMMxrtP233t0A2ICwqKkL37t1hbW0NZ2dnMSAsKysTs4PqHDt2TK4Ik7AWpL6UvbZ+/fohOztbbv1Gc/uMbkkYEJJehC82xavSqihbnBaFhcD/DwshedoOGVXF0EMwVD2ebNbI1tbWLOYQCoGNcKItnCw9ePAAHTp0kAsIXV1ddToBa0xZWRk8PT1hZWWlNgBSRjEglH2fCPOTFIdbWVtbIyYmRsw+CW2BP4/pxgj7TRjS5ebmJm57+PAhXFxcxCzGxo0bcfbsWa2GigsnVNruD4Gq165NxUlj0KWo1s2bN8Wy7N7e3nB2dkZBQQGuX7+OvLw89O7dGwDg4eGBrKwsufuWl5fD1dXV5BlCfYqJCZ8rNjY2KjOEDg4ODS6mCAGhUDm4MRMmTMCaNWvE3y9duoTAwEAMGjQIn3/+OYA/jzfFgNDKygoTJ04U2wmUvd+EY0w2gBU+6x0dHdVmhIQAThj+qEm2SXG4pGwAUVZWJg45VqQYXL344ovYtm1bg/mNQqAlPO7KlStx6NAhtSf2shlCIcuk77BQoP6zzc7ODgAQExOD5cuXw9nZGb6+vnLLjxjqc0D280l4P964cUP8/OrYsSPS0tLU7j+BpvtbkfAeENaxzcnJQb9+/VBVVSV3EaikpKTR4E42qwrUZwsNERAqe20lJSV45JFHMHr0aLkh0qb+jLZUHDJKehG+2CoqKnRbZFoqBTw8ACXLG1D9SYJQQECfq/uGHoKh6vGEL0eJRAIbGxuzyEiUlJTA2tpaPCkqKytDXV0dCgoK5NaLcnZ2lgt6DEk2Q6jtEDDhuBOyCrIBqzA/SZZQcEhxvpGQ7Rf+bYxihrB169bi3//BgwdyAaGDg4PWQ8WFx1Lc35oOPVX22gHtKk4aWnx8PIYMGYKtW7ciKSkJmzdvxpAhQ5SOkJA9Cfz999/Fi24eHh5o27Yttm/fjs6dOwP4c13QRx99VG7OECA/xFDXAj/60uZ1KyO8pz09PeW+Z4Ttzs7OaN26dYMCH8J7ubETallFRUVioCd78VK4MCQ8pvAeF/j6+iotMKLs/SZ8b8oea8Jref3119UGeffv30ebNm3EDKFsW02HS8oGhOoucCkGV2+88QZGjx6NO3fuyB2DJSUlSE5OxocffggA6N27tzjUVhXZ41rIEBri+2LMmDFy64+uWbMGS5cuxSOPPCLXzlCfA7J/8z/++ANAfaZU2C7sX9n9p2res+L+fvPNN9W2FxQXF8Pa2lrM/o0YMQI//vgjHn30UQB/ZrVVXVyTfQ8pFnqSHT6qjHBcLF68WG3xOmXvJRsbG2RnZ+Pjjz+W64MpP6MtGTOEpJe7d+/C19cXf/zxB+7fv69y6IlKv/1W/y/XMFTq3r178PDwgLOzM+rq6hpclVZk6GFy2j6eMHS4TZs2Jl0IWxslJSViBsXBwQFlZWUoKipCXV2dXEDYtm1buLm56ZyxUqesrAytWrXCw4cPtZ7TI5wsCH2V7d+ECRMatFcMGATKTlLVEZ5HCAglEolcZb1WrVqJnwfLly/H9u3bNR4qXlFRIQZ6sq9HmyrFiq9dGJqkTcVJQ9OmqJbs67527ZoY1Li7u2PAgAHYtWsXunTpgn/+859i9qdTp04oKioSgwag/v3Ru3dvPHjwQKO1TI1B32JiQnb00UcflQtghPdq27Zt4e7uLrYTyGYIG/vslH2uDh064JdffpHbLpwYC/8Kmc5XX30VP/30kzhfVqDu/SYca3fu3BGLkBQUFMDFxQVt2rRBaWmpymIvwt9WWYZQ0wyTsFB7QUGB2qInQnAlzB0bMWIELly4gM8++wxbt26Fm5ub+HkirE8I/BnsqTuxLygogI+PD27evClmCIuLi1UOa1TMcqrywQcfyP0ufA4cPnxYbruhPgeKi4vRpk0b3L9/X8weCxlCa2trueN4xIgR8PHxUbkmouL+Hj58ONq3b9/oGopC5V5vb29cunRJPPaFCxaPPPII8vLysH37duzatUvtkFTFESKNBYRTp07F4cOHMXfuXAD1FzQ0eW0jRozAv//9bwQEBACo/4yzt7c3+We0JWNASDqTSqW4du0annvuOfzxxx8oKChAhw4dtHsQmSEckEoBHcpgt2T5+flo3769mP25f/++eNVPGUMPk9P28e7fvw8rKyu4u7ubzZDRnJwccZ+2a9cON27cEL8E/f39xXa+vr5wc3NDXl6ewftQWFgINzc3ODs7a101U/gCVxYQKrp06RIGDhyo9nE0DQhv3LgBd3d3sdqhu7u7eIX8xo0b8PHxkRuK1tjCx7JkX4Ps//UJLKKjo9XOw2kKQlGtIUOGAFCfKZVd2/XatWuoq6uDl5cX7OzssHLlSnh7e2PmzJlymY/AwEAA9YtSv/jiiwDqP0PatWuHsrIy/PTTT8Z8eSpp87qVEbKjjz/+uNwJq5CdaNeundqAEGj8s1NQVFSEtm3bIjc3F1FRUQ2eq6CgANXV1bh37x46deqETZs2Aag/qZYNVtW934TPl/Lycjx48ACtWrXC7du34eXlhdatW6O2thalpaXixRZZd+/exRNPPCEutSF7fChmYbp164bRo0c3mNJx//59+Pr6oqCgQG2GUDG4ys7OxqFDh3D//n1YW1vjypUr6NatG/75z38iPj4effr0AfDnPGR1J/b3799Hx44dce/ePfwmXBhG/TG+YcMGrefRqfLtt9+ioqICkydPBlA/TDc6OhqRkZF49tlntX48RUVFRfD19ZWro5CXl4f79+/jscceEy/mWFlZITs7G927d28QnAoU9zcAte0FBQUFcHd3R9euXXHp0iWxwmi7du1w6dIlPPPMM8jLy8M333yDjIwMtRcM/vjjD/Tp0wfz58/HSy+9JL5X1V0clv1OLC4uFqcRqHtt2dnZct+vv//+O9auXWvyz2hLxiGjLcSVo0fx05EjuJGRgRuXLqEwLw/Xf/4ZOdev4/79+7h7965Ww2Y08fvvv6OoqAiD//9DVdPCMrLuHjr05y8azl2yJDk5OfDx8REDwsaCBUMPk9P28f744w+0a9dOXLNI0+DClC5duoTHHnsMANCjRw+kpqYiPT0dADB69GixnYeHB7y8vHDz5k2DPn9FRQVu3ryJTp06oV27drh9+7ZWx2pubi48PT3h4uICBwcHtVmgpUuXyg0bFK7k19XVie8tTecQXrt2TVzrCgC6du2Ky5cvo6qqCr///jt8fX3FExPFq8wlJSW4cOGCyscWPkvatWsnd8KrT5Vi4UTZlOLj47Fv3z4EBwdjwIABeO6553Dw4EGlmdJff/0VQH3W76effsKePXswYMAAAPXzXVevXt1gGJyvry+6d++OJUuWYM+ePfj9999RWFgIHx8feHh46PQZbQiqXve0adPw9ddfN3r/+/fvo3Xr1vD29pb7TPn111/RunVrtGrVCt7e3g0u1si+7zR97YWFhWjdujW8vLyQk5ODjz76CDk5Obh9+7ZYeOrOnTty1V2B+iq/ssGVuvfbjRs3xIunwvEmBO7C31T2goDg7t27SE1NhZ+fH2xsbODt7S2X8VccLjl8+HCsX7++wfvk/v37YqZGmyHw0dHRcsfg+fPnAdQvgu7o6Cju/3v37jU6X1XIdApDFIULSxs3bkRaWhrS0tLg7OyMF198EQ8fPtT5/OXFF1/ElClTxP4kJydj06ZNmDVrltjmP//5D5YsWaLTcxQWFqJjx47i715eXsjOzkZZWRkCAgJQW1srfiarWsZJldraWixbtgzXrl1T2+7u3bvw8PAQhxELf1thSLkwdLeurk7tkNSamhrk5uZi+vTpGDdunPh9BNRfHE5OTsaPP/4o/gjDgoXPKgANMuuqREdHyxXAunbtWrP4jLZkzBC2EP4vvgjFa4nCNOBaADUAHgCoBlBrZYVqqRS11taorKsD7OxQDaBGKkUVANjawsHFBbXW1qgBxG1W9vaos7ZG8cOHKK+uRn5BAb5xcMCkjz5CXxsbXJk+HfD3R3FpKVxcXWHv6AjY2MDF1RWwtkZVbS3sHR1hZWMDG3t7lJeX4/Fvv8V5AP0BJL/5Jlq/8AKqbG3Ryt0dtk5OsHVygr2LC+xcXODk5ob7JSWos7JCO29vFBUVQSKRyF0VbSnq6uqQmpqKM2fOYPr06eIX+rVr19CzZ0+V91M2RBDQfXiMsserq6tr8HhCfw8cOCAWuPD399d4CYOmJpVKcfbsWWzZsgUnT57Etm3bAAAvvfQSIiMjkZqaimeeeQaenp748ccfxSu8AQEBWL16NW7evKnRgsGa9ENYN7J79+64desWKisrce3aNTFIbez+p0+fxlNPPQUA6NChg9qTh9TUVAD1Gd6jR4/i2rVrePrpp3Hjxg3U1NTg6aefbnSIEFB/Rfro0aMYNmyYuG3UqFF4//338fjjjyMvLw+xsbHw8vKCi4sL0tPTMWbMGLHtvHnzsG7dOvz4449K5xkJGYZevXrJ9UefKsVHjhxptI2xKS2qpcJPP/0EiUSCyMhILFiwAAA0Cp5Wr16NESNG4KWXXhK3DR48GHV1dbh27Rru3r2rsoiIsSh73XV1deLQwIiICLWf4cKFMS8vL9y4cQO1tbVITU3F1q1bMXz4cABAQEAA4uPjUVRUJK6jef36dfTu3RsXL17UOPP++++/Y+DAgSgpKcGqVasglUpx6dIl3Lx5E08//TRu3bqFnJwc/Prrr4iJiRHv5+LiIjf8Ut37LTc3FwMGDEBubi5u3LiBxx57DJmZmXjqqafEQPHatWtyGZRLly4hKCgIrVq1EucEdu7cWW74vqYZplu3biEkJAQHDhxoUJVWHTs7O2zdulU8BoXM3uXLl5GZmYnnn39eDCJu376tNiObn5+PgIAAeHh4ID8/H71790ZycjJqamo0ynJqQjZA37NnD6ZOnYqXX34ZgHzA/dprr+HmzZsYN24cunfvrtVz5ObmYtSoUeLvwcHB4md6z5498f3334uFWbQ9Tzl+/DhmzZqFCxcuYNeuXSrbXb16FY8//rj4fnnmmWcAAO+++y7Ky8vx6quvYv78+ej+f+3deZBU1d3/8fe9t5fpWWGYHYaRBwcQUBJFE3Q0xgSiPzcSk1hZ/JHwe6zkcUHLir8EEx+JRjAxlcTlcUF/apWRiBZBMXHDipAHQQoNOPNIGAwwMMLgwKzN9N73/P7oJTOsEpGB6c+rqut29+3lTJ/+9tzvOeeeM2nSYYek7tq1i2Qymd2fqcu1a9fS1tbGn/70J2bOnJl93wULFrB169YBjXvNzc2HPXc0w+v1snXrViB1juPWrVtPiN/oXKaE8ATw0EMPce+999LW1sakSZP43e9+d8hhXYeybu5cakaMIBwMYsXj9HZ24gXioRDtu3bhtSwKfT729fSQ7/HgRqMko1F6OjrI93jw2TbxUIgCn4+uPXso9fsxsRhuLEbAcSASwQv4LItajwcnmWRyURE1I0diffGLTHr1VU7bvh27pQWbVNezk95mrh9ssuOdtk3rHXcQXrCAC194AY6wplimnTMBFJNOcNO33fTtBGBsG9e2iSQSWB4POA6u46S2tk3cGEhv48bgzcsjDjheL3g8JC0LPB7CsRh4PHj8fpKWhScQwAWMx0MS8Obl4eTlkTQGx+8nnkyCbeP4fHh8Pmyvl1g8jjcvj1g8TjyZJGkMefn5JI0hGo8TikToC4dJGkNPMMiODz9ka0sLSeCiggJuqK+n5n/+h2tqanhq1iw23Hcfp44bx4iKCqpragj29VFQVESgoCD1nh4PfeEwkViMRX/4A5s3b+Ync+dSW1tLXmY9skSCjo4OhpeW4vf7icXj+Hw+DKlhR7vb2ynIz6e4pCTVsmpZtLe38+B//RcbN27khhtvxLZtWltb2fj3v6em2e7tJZCXlzqX4MMP+f6MGdx08838/Ac/YMqUKQwvLaW+vp6y8nI8Hg925jyRzDDhT2EbCoVwPB62bNnCtpYW3njjDRLJJGvXruW9piZqqqv5yS238N1vfhPicf73t75FOBjkb3/7Gz+69VZIJjk7neBiDF/76le59dZbueyyy/jOd77DlClTGDt2LOXl5RQUFBx2gWdjDN3d3bS0tLBz505+//vfs2bNGnbs2MGll17K2YWFhP1+AoEAP/nJT/j+979PfX09Y8eOJRQK4fP52Lt3L+3t7axYsYK1a9eyatUqWltbefrppwFoaGhg8eLFXHHFFZxzzjnk5+dny7Rr1y6am5t55plnmDFjBuXl5TQ1NTFlyhTeffddAK644gruuusuent7BwxXC4VCvP/++7z33nu8/vrrLFmyBL/fz80335x9zOmnn85bb73Fvffey9e//nW+9a1v4fF4uOyyy1i4cCHjxo1j6tSpVFZWsmzZMgCeffbZgx48/P3vf8fr9dLQ0MAvf/nLbEK+f2IRj8f56KOPPtYMusuWLeONN97g17/+9cee3fLT9uSTT7J69WoeeOCB7PmrjY2NvPXWW9x///1cfPHF3H777UyYMIHKyspsD+HhfPnLX6arq4tFixbR3NzMV77yFUaPHp3t7b7uuuuYP38+p5566lEtSH6s/eEPf8heX7NmDRdccMEBjzHGsHnzZlasWMHEiRO54IIL+NnPfpYdwj5y5Eh+8YtfAPDNb36TuXPnMmfOHObMmcOECRNoamriu9/9LuvXr2fLli0DGjB++tOfsnPnTh555JFsD3N7ezvNzc1cd9112cYWSA07BJg7dy6vvfYa5557LpBKtDNGjBhBa2sr0Wg0O4nS+vXruemmm2hqauK5557jRz/6EdFoNJt8vPTSSyxcuDB77t9NN91EXV0dVVVVPPbYY0yaNInOzk6WLFnCAw88QHV1Na+88kq256ehoYGFCxfS3NzM+PHjD/o5b968OdvjCamenp07dzJ+/Hiqq6uPagh85oA9E4PnnXceH330EV1dXRQVFbFlyxbOP/98li5dyq5duw6ZELquS3NzM1dddRVNTU1Aqndz9erVTJgw4V86j+5gVq9enb3+gx/8gEQikW082rFjB319fcTj8eyoj2XLlh1VQhgKhWhpaaGuro7q6mra2tq4/PLLswnh9OnTmTdvHtu3b2fChAlHnfC88cYbAANmR91fZoKfmTNncuONN9LQ0MBnP/tZAKZMmcIzzzwDpHoN6+rqDlhLsH+DQWZkTCaxzCSE9913Hz09PTz55JPZhDASiWQbIBYsWMA555xDa2vrx+4hfO2113jsscewLIuLLrqILVu2ZBtIzz///OPeaCVgmWM9jlCOyuLFi7nmmmt46KGHOO+883j00Ud5/PHH2bhx44BhCIfS29tLSUkJPT09Bz3f4HgLhUI4joPf78cYQywWIxaLEY1G6e7uprCgAJNIEItE8FgWVXV1OF4viXicxpdeonfrVkbk50M8nkpaIxGSkQjxcJiu3bsZXlSEiUaJ9PWR5/XixuP4bJtoX1/qEgoRD4cpGzaMZCxGsKsrlYwagweIpRNbByCRwGNZ+GybZDSKx7JwYzGsZBKv42AlEph4HAfwezyYeBzbGLyAbQwkk/hsG8t18VoWjjHZBPhgl8Ov/iMnq8yE9uYQ28Ptsx0Hx3GwHQcrPZlMd00NH+zeTcJ1cdOvb9Jbt//rWhbV1dWUl5dTXlEBlkUkEmHdO++wLzMTo2Xh8XjwpNcINMCXp0/H6/Xy32+9RVd3N16Ph0gsxvDhwzn77LN5fflynPRz4vE4tsdDOBzGpN+7sLCQcePHM2rUKPIzsyxa1sCEvN/1nmCQ1197jWBfX/Y1HKC2uJitvb2U1dTg8XpxjSEciRCJROju7WXs2LGcedZZPPfcc4yurWXYsGGpmfTSyYCbTKbOXe7q4tR0Um5ZFh6vF+O6RKPR7Hms8Xicv6UPdqoqK/m3sWNx0uchWpZF0nWJpR+fl5eXbRhJJBJYto1FajhVMBjE4/FQkJ71NxaNZpMqv99PIpEg6boY1z3iNhaLsT3dE+rYNrZtE08kMIAF1NfXc+GFFx7T3/U1a9awevXq7HsUFhYybNgwLMvCcRzyAgG8Xi99oRDFJSWpRpv0ud0+n4+k66aGnfl8hEIh8gIBbMfBm25kcjwePB5PqvfP48EYk/ruui6uMRhjcI0hGAyy7t13qamupqOzk2HDhqV6xmybSDhMOBpl9+7d9PT0kEhPMjJ79mxOGTOGxsZG+kIhqqqrOaWubkDD0qpVq/jzyy9nP0eAG+fMYekf/0j7nj1MmjQJJ/19bmxqwgDDhw2jdMQIwuEwO9vaCOTl8bP//E96enp46qmnaGhoYOkLL+D3+7lj3jzWrVtH0/r1nHvmmZw1dizE43DKKezYtYu7588naQynnHIKW1taMED9uHG0trbSFw5TUlJC0nWJxGL89je/4YUXX+TV9Dp9p512Grfddhser5dXX32VJ556Kvs3eL1ezjjjDK6/4YbUxCrpGAsGg/x47lx2t7VRP24ctbW1VNfU4BpDIBBge2srr7zyCoFAgIsvvpiunh42b97Mhx9+yP974gkee+wx/rFlC1dffXW2vn0+H6S/D/5AgEg4jD8QoKuri6amJv62fj3Tp08nGovx1FNP8b8uvZQXX3qJ8xsa+OuqVdx1553cedddjBgxglnf+x75hYUk03ERiURo3bmT7S0t/Pdbb/HEE0/w9ttv8/Tvf88zzzzDjXPmMGzYMH74H/9BUXExgUAAr8+H1+tNxbUx+Px+etLLJ9iOQzweJ55IEIlEiKfjNRqNknRd7r//ft7fuJGKigqa3n8/+3l+5jOfYf2GDdx+++1s/uADnn/+eU4/4wza29t5dvFiLMvCsm0ikQjRWIxINMqIESPYs3cv4XCYbS0tbNq0iU3Nzaxes4Y1a9YQjcWIx+MUl5TQ0NDApMmT+fPLLzNx4kQmTZ7MtddeS3FJCcFgkPKKCoYNH866devw5+UxdepU9qWXE3GNIRQO09nZyfdnzyYWi7Gno4OFjz5KzciRGKCxsZFtLS289957vL12LWVlZbzz7rtUpYc0H6xx9P/8+7+zZMkS/u+Pf8zo0aPxer00NjbS2NhIQ0MD3d3d2QlnNm3ahGVZ3Hrrrfz2t7/FdV1GjhyZTQ7Ly8t56aWXePrpp7NrnM6ZM4dNmzbR1tbG4sWLKS0tTf2mxePE43ESiUT2ejweZ926ddx9993U1tbyxS9+kbvvvpvZs2fzxBNPcNppp7Fo0SIqKiro6elh4sSJJ8wx7lCmhHCQfe5zn+PMM8/k4Ycfzt532mmnMXPmTBYsWHDE559oCWEucV0X27YHzAa3//XMjGnhcBjbtvE4Do5lYRmDSSax0oklrnvUl+6ODro7O3ETCdxEgnBfH9FwGJ/Hg8/jwY3HGTNmDI5t09jYiGPbqQQ9GiUSiVCUntUyc2Drui4lxcV4vV66OjtxjWF4SUlqTbn8fEpLS6kdNYrCwkLC4TDRSIRhmZPHMz8jh9juaW9n37597PzwQ3p6evB6vcSiUWLxOCaZTB0s9tvG4nEKAgFs26ars5P8/HzCoRC2bWOnEx+/z5c6eOn3Xp70wV4gLw/juqnJbRyHsrIyCgsKUtvCQrL9Ikco9+G2iWSS7du2EQqF6O7qorOrCzeRwOPx4KQPJsKhUHbK/zy/n9LSUkqKiykoKKCiogLbsv75mqWlqetr1hALBuns6CAaidDb3Y3XtnFsG3+6Z3V4SUmq9y9Tpn7lcl2Xjo4OwqEQicw/41gMx3GorqxMnfBvDNFIhK3btuHYNl7HoWbkSPxeL11dXexpbyfZb+iWx3EoKS6mpKgoNaHLfu95pOuu6xKNRNi3bx+JWIz8wkIClZW0b9xIMhpNxYJl4XGc7KWkpASP49DV3U1vby/JZDKVYKTjClJrtuUHAvT09qbWmjOGpOumEhzbJpmOUcuyyA8EKCgsZM+ePbium4pVwO0Xsxb/XKLAGINtWamDSGOwbDu7np1FKpm3LCuVUCaTmHQSZFlWql7S+yzS075nbvfbX5CfT35+PsFgEDv9d2e+K59W713m4DmzRlk8HseyLEwymUr4kkncZDL7uWU/E9cFy8IGEskkHtvOJnmZkma2NmSTzsxtMn83YFsWeXl5FBcXZ78XVjpZ9Ng2Vvq30rZtvOkkMzvhQf9DloPEpQGS8Xj299njOKnvXzSK6bceYeb1E+lzy+x03Tjp35j9X5N+fye2DYEAFBeD1wvbt6d+x0VOMvuv0Nn/9ynTmJP53XJdd0BDZ2ZyL9cYHMcZ8NsMAxtF+8s2iKaXyrAgdSyQvq//uqF7gVrQMe5xoIRwEMViMfLz83n++ecHnKt10003sWHDhgGTJ2REo9EDJoWora1VsIiIHEOZxp1MEpo5UMkcHB3q8bkgk2zBgWv8ZT6zeHoYes7JNITs3zByqPsz1/ffHu2+/e5LxOPZg+0jvVYymaS3p4fOzk58Xm+2wS3ToBUKhSgvK6N0+HCM66bWYMzP/2fj0CHK0NfXl2pY8nhSjaGOk0q2D1P2WCxG86ZNeDweIpEIiXTPWyKRAGMI9vZSXlZGd08PVroR0OvxEI/HCeTl4ff5MMbgcRzGjx+Pf79Gw8zWGMO2rVsZWVOTmtDGpGbM7OjowE0mwRgK8vNJJpPZz8SxbcrKy6mqqMCbmXn7Y9SZcV32tLcTi8UI5OXR1dVFqK+PUaNGkUwkaGlpIS8vj2gkgs/rxef14vV6qaqspCA/H2MMHXv3kkw3BhcWFKSWlPgXvjfGmFRjYSJBYUHBAY3aA57TX/q5mQlyMks17f/YcDjMP7ZsIZluaHL6jYJxHAePbWM7DkWFhQMWvN8XDBJPJBg+bBhdXV3samvDuC5VixZRHgzqGPc40DmEg2jv3r0kk8nsTHwZlZWV2Smu97dgwQJ+/vOfH4/iiYjkrGyvYb8EsP9yF4d6fC7o/zkc7O+20kNMc1L/IdOD6GgO7hxSk9ANP9IDSfX6Hnk1wJSCoyhDhg84/XOf+xeeeXQs4N/Sy6Bk1H/pS9R/Su9V0e/2iP32H+lsOQsoO4Zl2X+16I/7bbU48nckAJx+tIUCCvtd7/9d7D31VLj11n/hFeVoadmJE8D+/1AP19I8d+5cenp6spdDLTItIiIiInLSOsRC93LsqYdwEJWVleE4zgG9ge3t7Qf0Gmb4/f7sej0iIiIiIiKfhHoIB5HP5+Oss85i+fLlA+5fvnx5dlprERERERGRT4t6CAfZLbfcwjXXXMPUqVOZNm0aCxcuZMeOHfzwhz8c7KKJiIiIiMgQp4RwkF199dV0dHRw55130tbWxuTJk3n55Zepq6sb7KKJiIiIiMgQp2UnTnJah1BEREREhhod4x4/OodQREREREQkRykhFBERERERyVFKCEVERERERHKUEkIREREREZEcpYRQREREREQkRykhFBERERERyVFah/AkZoyht7cXILsVERERETnZZY5ttULep0/rEJ7EMuuziIiIiIgMRa2trYwaNWqwizGkKSE8iWV6CIPBIEVFRViWNdhF+pf19vZSW1tLa2urFh/NIar33KR6z12q+9ykes9Nn7TejTEEg0FqamqwbZ3l9mnSkNGTmGVZlJSUDKlewuLiYv2zyEGq99ykes9dqvvcpHrPTZ+k3ofSMe6JTOm2iIiIiIhIjlJCKCIiIiIikqOUEMoJwe/3c8cdd+D3+we7KHIcqd5zk+o9d6nuc5PqPTep3k8emlRGREREREQkR6mHUEREREREJEcpIRQREREREclRSghFRERERERylBJCERERERGRHKWEUI6bv/71r1x++eXU1NRgWRYvvPDCgP3GGObNm0dNTQ2BQIALL7yQ999/f3AKK8fUker+e9/7HpZlDbh8/vOfH5zCyjGzYMECzj77bIqKiqioqGDmzJk0NzcPeIzifuj5OPWumB96Hn74Yc4444zsIuTTpk3jlVdeye5XrA9dR6p7xfuJTwmhHDd9fX1MmTKFBx988KD7f/WrX/Gb3/yGBx98kHXr1lFVVcX06dMJBoPHuaRyrB2p7gEuvvhi2traspeXX375OJZQPg0rV67k+uuv5+2332b58uUkEglmzJhBX19f9jGK+6Hn49Q7KOaHmlGjRnHPPffwzjvv8M4773DRRRdx5ZVXZpM+xfrQdaS6B8X7Cc+IDALALF26NHvbdV1TVVVl7rnnnux9kUjElJSUmEceeWQQSiiflv3r3hhjZs2aZa688spBKY8cP+3t7QYwK1euNMYo7nPF/vVujGI+VwwfPtw8/vjjivUclKl7YxTvJwP1EMoJYdu2bezevZsZM2Zk7/P7/XzhC19g9erVg1gyOV5WrFhBRUUF48aN49prr6W9vX2wiyTHWE9PDwClpaWA4j5X7F/vGYr5oSuZTPLss8/S19fHtGnTFOs5ZP+6z1C8n9g8g10AEYDdu3cDUFlZOeD+yspKtm/fPhhFkuPokksu4Rvf+AZ1dXVs27aN22+/nYsuuoh3330Xv98/2MWTY8AYwy233EJDQwOTJ08GFPe54GD1Dor5oaqpqYlp06YRiUQoLCxk6dKlTJw4MZv0KdaHrkPVPSjeTwZKCOWEYlnWgNvGmAPuk6Hn6quvzl6fPHkyU6dOpa6ujj//+c987WtfG8SSybFyww030NjYyKpVqw7Yp7gfug5V74r5oWn8+PFs2LCB7u5ulixZwqxZs1i5cmV2v2J96DpU3U+cOFHxfhLQkFE5IVRVVQH/7DHIaG9vP6BFUYa+6upq6urq+OCDDwa7KHIM3HjjjSxbtow333yTUaNGZe9X3A9th6r3g1HMDw0+n49TTz2VqVOnsmDBAqZMmcJ9992nWM8Bh6r7g1G8n3iUEMoJYcyYMVRVVbF8+fLsfbFYjJUrV3LuuecOYslkMHR0dNDa2kp1dfVgF0U+AWMMN9xwA3/84x/5y1/+wpgxYwbsV9wPTUeq94NRzA9Nxhii0ahiPQdl6v5gFO8nHg0ZleNm3759/OMf/8je3rZtGxs2bKC0tJTRo0dz8803M3/+fOrr66mvr2f+/Pnk5+fz7W9/exBLLcfC4eq+tLSUefPmcdVVV1FdXU1LSwu33XYbZWVlfPWrXx3EUssndf3117No0SJefPFFioqKsr0DJSUlBAIBLMtS3A9BR6r3ffv2KeaHoNtuu41LLrmE2tpagsEgzz77LCtWrODVV19VrA9xh6t7xftJYtDmN5Wc8+abbxrggMusWbOMMakp6O+44w5TVVVl/H6/ueCCC0xTU9PgFlqOicPVfSgUMjNmzDDl5eXG6/Wa0aNHm1mzZpkdO3YMdrHlEzpYnQPmySefzD5GcT/0HKneFfND0+zZs01dXZ3x+XymvLzcfOlLXzKvv/56dr9ifeg6XN0r3k8OljHGHM8EVERERERERE4MOodQREREREQkRykhFBERERERyVFKCEVERERERHKUEkIREREREZEcpYRQREREREQkRykhFBERERERyVFKCEVERERERHKUEkIREREREZEcpYRQREREREQkRykhFBERERERyVFKCEVERERERHKUEkIREREREZEcpYRQREREREQkRykhFBERERERyVFKCEVERERERHKUEkIREREREZEcpYRQREREREQkRykhFBERERERyVFKCEVERERERHKUEkIREREREZEcpYRQREREREQkRykhFBERERERyVH/Hx6L/IDetxOxAAAAAElFTkSuQmCC", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pdiff.SetExtractionMode(False)\n", "p.FitScaleFactorForRw() # for a better initial display\n", - "p.plot(fig=None,diff=False,hkl=True)" + "p.plot(fig=None,diff=False,hkl=True)\n" ] }, { @@ -550,7 +274,7 @@ "### Display the 3D crystal structure\n", "*Note: this requires installing `ipywidgets` and `py3Dmol` (as of 2021/05 the conda-forge version is obsolete, so just install using pip). Otherwise You will just get a warning message*\n", "\n", - "This will be updated live during the optimisation, and also when using `RestoreParamSet()` to restore some specific solutions (and generally everytime the underlying Crystal's `UpdateDisplay()` function is called). Just scroll back to see what is being done in the widget.\n", + "This will be updated live during the optimisation, and also when using `RestoreParamSet()` to restore some specific solutions (and generally every time the underlying Crystal's `UpdateDisplay()` function is called). Just scroll back to see what is being done in the widget.\n", "\n", "The `display()` is only really necessary to make sure the widget appears in the notebook. In fact if `c.widget_3d()` is the *last* command in the notebook cell, the display is done automatically. See the ipywidgets documentation if you want to understand this in more details.\n", "\n", @@ -559,92 +283,11 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/3dmoljs_load.v0": "
\n

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n
\n", - "text/html": [ - "
\n", - "

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n", - "
\n", - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "fce5512877b245a09d4f92a1c77f9716", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Box(children=(VBox(children=(HBox(children=(VBox(children=(FloatRangeSlider(value=(0.0, 1.0), description='Xra…" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "display(c.widget_3d())" + "display(c.widget_3d())\n" ] }, { @@ -661,118 +304,9 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LSQ option: Every 150000 trials, and at the end of each run\n" - ] - }, - { - "data": { - "application/3dmoljs_load.v0": "
\n

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n
\n", - "text/html": [ - "
\n", - "

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n", - "
\n", - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "42440b516d0e4b71a747cd0a376846fc", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Box(children=(VBox(children=(HBox(children=(VBox(children=(FloatRangeSlider(value=(0.0, 1.0), description='Xra…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "d056fc2fab4948999db31f797217e2d0", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Box(children=(HBox(children=(Label(value='MonteCarlo:', layout=Layout(max_width='25%', width='11em')), Text(va…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Final LLK: 18608.95\n" - ] - } - ], + "outputs": [], "source": [ "mc.GetOption(\"Automatic Least Squares Refinement\").SetChoice(2)\n", "print(\"LSQ option: \", mc.GetOption(\"Automatic Least Squares Refinement\").GetChoiceName(2))\n", @@ -787,7 +321,7 @@ "\n", "# The powder pattern plot a few cells above should also be updated for each run best solution\n", "mc.MultiRunOptimize(nb_run=3, nb_step=1e6)\n", - "print(\"Final LLK: %.2f\" % mc.GetLogLikelihood())" + "print(\"Final LLK: %.2f\" % mc.GetLogLikelihood())\n" ] }, { @@ -804,26 +338,15 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 0: LLK= 21130.00, name=Best Configuration\n", - " 1: LLK= 21135.00, name=Run #3\n", - " 2: LLK= 21130.00, name=Run #2\n", - " 3: LLK= 21155.00, name=Run #1\n" - ] - } - ], + "outputs": [], "source": [ "for i in range(mc.GetNbParamSet()):\n", " idx = mc.GetParamSetIndex(i)\n", " cost = mc.GetParamSetCost(i)\n", " name = mc.GetFullRefinableObj().GetParamSetName(idx)\n", - " print(\"%3d: LLK=%10.2f, name=%s\"%(idx, cost, name))" + " print(\"%3d: LLK=%10.2f, name=%s\"%(idx, cost, name))\n" ] }, { @@ -836,38 +359,12 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a5767929d16a4a418579b71574cf1d2c", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADQM0lEQVR4nOzde1zTZf8/8Nc2GAeFiRECaeqdqSiW5lkrNRXlK2mWobeKeWd2oLRu8JClpnmndnuqrLyrX7emYpaWpVmeE/N8wm5IKStNTQlTTgqMsV2/P9jn0zY22AnG2Ov5ePBQPrv47NrYxud9va/rfSmEEAJERERERETkc5Se7gARERERERF5BgNCIiIiIiIiH8WAkIiIiIiIyEcxICQiIiIiIvJRDAiJiIiIiIh8FANCIiIiIiIiH8WAkIiIiIiIyEcxICQiIiIiIvJRDAiJiIiIiIh8FANCIiIiIiIiH8WAkIiIiIiIyEcxICQiIiIiIvJRDAiJiIiIiIh8FANCIiIiIiIiH8WAkIiIiIiIyEcxICQiIiIiIvJRDAiJiIiIiIh8FANCIiIiIiIiH8WAkIiIiIiIyEcxICQiIiIiIvJRDAiJiIiIiIh8FANCIiIiIiIiH8WAkIiIiIiIyEcxICQiIiIiIvJRDAiJiIiIiIh8FANCIiIiIiIiH8WAkIiIiIiIyEcxICQiIiIiIvJRDAiJiIiIiIh8FANCIiIiIiIiH8WAkIiIiIiIyEcxICQiIiIiIvJRDAiJiIiIiIh8FANCIiIiIiIiH8WAkIiIiIiIyEcxICQiIiIiIvJRDAiJiIjqgTFjxni6C0RE5IX8PN0BIiIist+0adMqHRNC4ODBgx7oDREReTsGhERERF4kLS0N69atq3T822+/9UBviIjI2zEgJCIi8iKPP/44YmJiEBERYXZ83LhxHuoRERF5M4UQQni6E0RERERERFT7WFSGiIiIiIjIRzEgJCIiIiIi8lEMCImIiLxcRkaGp7tAREReikVliIiIvMi7775r9r0QAitWrEBycjKSk5M91CsiIvJWzBASERF5kXfeeQdfffUVgoOD0aBBAzRs2BBKpRINGzb0dNeIiMgLscqoFxNCoLCwEEVFRQgJCYFCofB0l4iIqIYJIbBx40Z88cUXGD58OB5++GEkJiZi48aNnu4aEZHbCCFQVFSE6OhoKJXMYdUkBoRerLCwEBqNxtPdICIiIiKqERcvXkTTpk093Y16jWsIvVhISAguXryIZs2a4eLFiwgNDfV0l4iIqJYZDAb88ccfiIqK8nRXiIjcprCwEM2aNUNISIinu1L/CfJqBQUFAoAoKCiQjy1fvlw0atRIhIaGikaNGonPP/9c7N69WwQFBQkA4sqVK3LbYcOGiZCQEBERESF+++03s3N/9913AoD4f//v/wkhhJg3b57o06ePEEKI8+fPi9tvv100atRIxMTEVOpX586dRUhIiGjYsKG4//77hRBCaDQaERoaKrRarVi2bJlQqVRCo9GIsLAwkZ2dbfbzjz76qFCpVOK2226z+rijo6NFaGioCAkJEWvWrBFCCDF16lShVqtFcHCwWdstW7aILl26VPk8Wnt+fv75Z9GgQQObfSAiIiKimmHtGpdqBifk1jNnz57FjBkzcPz4cRQUFODgwYMwGAy46667kJ2dbTbF9MyZM0hPT0d+fj4eeeQRPPHEE5XOFxAQgNmzZ1c6PmzYMCxcuBB5eXk4ffq02W1ffvklcnJy5PWNq1atkm/78ccfoVarAQAdO3ZEfn4+evfujeeee87sHK+88gp27Nhh83GmpaWhoKAAGzZsQEpKCgBg4sSJuHbtWqW2/+///T+MGjXK5rkAWH1+7rjjDmzbtq3KnyMiIiIi8mYMCOuZRYsWYdCgQbjjjjsAADExMXjkkUcQHh6O22+/3aztp59+ik6dOkGpVOKf//wnvv/++0rnCw8Ph8FgwNdff212/Ny5c5g7dy4aNWqEGTNmmN0WEhKC69ev45tvvgEAtGzZsso+9+jRA5cvXzY71r59ezlwtKZv374AgKCgIKhUKgDAnXfeabXK3rFjx/DUU09h9+7daNy4MRo1aoSuXbtWepyWzw8RkTfJycnxdBeIiMgLMSCsZy5evFhtACbJzc2VM2LNmjVDcXGx1XazZs3CCy+8YHassLAQs2bNQnZ2Nt58800UFhbKtz3wwAN46qmnMHr0aKjVasyaNavKfnzzzTdo3bq1XX22NHr06CrPf/36dahUKjRs2BBJSUl45513kJ+fj0OHDjl1f0REddW4ceM83QUiIvJCLCpTzzRv3hy//vqrXW2bNGmCM2fOAAB+++03BAcHW22XnJyMl19+GT///LN8TK1WY8yYMQCAW2+9FSdPnpSzdgCwbNkyLFu2DFlZWejatSvmzZtX6bynTp1Co0aNcMstt+Dzzz+39yHK+vTpg7vvvrvKjZjffvtt9O7dGwBQUFCAv//97wAAPz++9InIO3Xr1q3SMSEEzp4964HeENVdBoMBZWVlnu4G2eDv7y/P8iLP4lVxPTN16lR07NgRv/zyC+644w78+OOPyMrKwiOPPFKp7aOPPoply5YBAN5880107NjR5nmTk5OxZMkS9OjRA0BFELhv3z706NED165dQ2xsrNz2l19+gcFgwJ133onbb7/d5v6IHTt2xPHjx516nM888wyuXLmCn376qcp2mzZtwptvvgkA0Gg0+PTTT5GYmIjy8nIGhUTklYqKipCZmVnpM2zgwIEe6hFR3VNWVoZz587BYDB4uitUhUaNGiEyMpJ7aXuap6vauFN6erpISEgQUVFRAoDYtGmT2e0ArH79+9//ltv06dOn0u0jR440O8/169fF2LFjRWhoqAgNDRVjx44VeXl5Zm1+++03kZCQIIKDg8Utt9wiJk2aJLRarVmb//3vf+L+++8XgYGBIjo6WsydO1cYDAaHHnNVVUalCp5ffvml+PXXX0VYWJhQKBSiUaNGYu7cuUKI6quMShU29Xq9UKvVcpXRr7/+WjRq1Eg0aNBAjB8/3uzn0tPT5eemYcOG4p///KcQoqLKqFTBc9myZaJz5842H9ekSZNESEiIUCgUIiwsTOh0OrPbAYiQkBCh0WhEq1at5HOGhYUJACIsLEycOHFCREZGyj+za9cu+Xnp1q2b2flsPT+mzwERUV3w+eefi+vXr1c6vnfvXg/0hqjuMRgM4vz58+Ls2bPi5s2boqSkhF917Ku4uFj8+eef4vTp0+Ly5ctWf4+sMlp76tXG9N988w0OHDiAe+65B4888gg2bdqEhx56SL7dcsH9N998gwkTJuDnn3/G3/72NwAVxUpat26NV199VW4XFBRkVn0yPj4ely5dwvvvvw8AePLJJ9GiRQts2bIFAKDX69GxY0fceuutWLJkCa5du4bHHnsMDz/8MJYvXw6gYg1e69at0a9fP7z88sv46aefMH78eLzyyitITU21+zFLm9MXFBTU+X0Ib7/9dhQWFiI3N7fKgjHuUlhYiAULFmDBggVO/fwvv/yCTp064fbbb0dWVpabe0dE5B7Z2dlo27atp7tBVGfodDr8/PPPiI6ONrt+o7rn2rVryM3NRevWrStNH/Wma1xvV6/mzMXHxyM+Pt7m7ZGRkWbff/nll+jXr58cDEqCg4MrtZWcOXMG27Ztw+HDh9G9e3cAwAcffICePXvixx9/RJs2bbBjxw6cPn0aFy9eRHR0NABgyZIlGD9+PF577TWEhoYiLS0NpaWlWLVqFQICAhAbG4uffvoJS5cuRUpKSr1MnV+4cKFW7y80NNTpYBCo2HbCtFgOEVFdlJycjD179ni6G0R1hl6vB4BaGXwm10j1K3Q6HdcTepDPVhn9448/sHXrVkyYMKHSbWlpaQgPD0f79u0xZcoUFBUVybcdOnQIGo1GDgaBim0TNBoNDh48KLeJjY2Vg0EAGDRoELRaLU6cOCG36dOnDwICAszaXL58GefPn7fZb61Wi8LCQrMvIiLyXf7+/p7uAlGdVB8H1+sb/o7qhnqVIXTERx99hJCQEDz88MNmx8eMGYOWLVsiMjISWVlZmDFjBr7//nvs3LkTQMW004iIiErni4iIkKek5uTkoEmTJma3h4WFQa1Wm7Vp0aKFWRvpZ3JycmxuHbFgwQLMnTvX8QdMRET10vbt2z3dBSIi8mI+myH873//izFjxiAwMNDs+MSJEzFgwADExsZi1KhR2LhxI3bt2oWTJ0/KbayNZgghzI4700ZazlnVaMmMGTNQUFAgf128eLGaR0pERPWawQBMmwbk5nq6J0RUg/bu3QuFQoH8/HxPd4XqGZ8MCL/77jv8+OOPeOKJJ6pte88998Df31/e3ykyMhJ//PFHpXZXr16VM3yRkZGVCtjk5eVBp9NV2SbX+MfcMrtoKiAgAKGhoWZfRETkw06fBhYtAmbM8HRPiIjIC/lkQPjhhx+ic+fOuPvuu6tt+8MPP0Cn0yEqKgoA0LNnTxQUFODo0aNymyNHjqCgoAC9evWS22RlZeHKlStymx07diAgIACdO3eW2+zbt89sw9QdO3YgOjq60lRSIiIim6Ri4VyLQ0RETqhXAeGNGzdw6tQpnDp1CgBw7tw5nDp1yqy6ZWFhITZs2GA1O/jLL7/g1VdfxfHjx3H+/Hl8/fXXePTRR9GpUyf07t0bABATE4PBgwdj4sSJOHz4MA4fPoyJEyciISEBbdq0AQDExcWhXbt2SEpKQkZGBnbv3o0pU6Zg4sSJckZv9OjRCAgIwPjx45GVlYVNmzZh/vz59bbCKBER1RAGhET1hlarxeTJkxEREYHAwEDce++9OHbsmFmbAwcO4O6770ZgYCC6d++OzMxM+bbffvsNDz74IMLCwtCgQQO0b98eX3/9dW0/DPIy9SogPH78ODp16oROnToBAFJSUtCpUyfMnj1bbrN+/XoIIfD3v/+90s+r1Wrs3r0bgwYNQps2bTB58mTExcVh165dZqVw09LS0KFDB8TFxSEuLg533XUX1qxZI9+uUqmwdetWBAYGonfv3khMTMRDDz2ExYsXy200Gg127tyJS5cuoUuXLkhOTkZKSgpSUlJq4qkhIqL6igEhUb0xbdo0fPbZZ/joo49w8uRJtGrVCoMGDcL169flNlOnTsXixYtx7NgxREREYOjQodDpdACAZ599FlqtFvv27UNmZiZef/11NGzY0FMPh7xEvdqY3hdx004iIh/3/fdAx47Ak08C773n6d4QeVxpaSnOnTuHli1bysUDi4uLkZ2dXet9adu2rbzXXnVu3ryJsLAwrFq1CqNHjwZQsT9fixYt8MILL6Br167o168f1q9fj5EjRwIArl+/jqZNm2LVqlVITEzEXXfdhUceeQSvvPJKjT0md7L2u5LwGrf2+Oy2E0RERPUCx3WJqpWdnS3XcahNJ06cwD333GNX219++QU6nU5epgRU7DParVs3nDlzBl27dgVQUYdC0rhxY7Rp0wZnzpwBAEyePBnPPPMMduzYgQEDBuCRRx7BXXfd5cZHRPURA0IiIiJvximjRNVq27YtTpw44ZH7tZet7ccsty2zRrr9iSeewKBBg7B161bs2LEDCxYswJIlSzBp0iQHe06+hAEhERGRN2NASFSt4OBguzN1ntKqVSuo1Wrs37/fbMro8ePH8cILL8jtDh8+jNtvvx1AxbZmP/30k1ng2axZMzz99NN4+umnMWPGDHzwwQcMCKlKDAiJiIjqAwaERF6tQYMGeOaZZzB16lQ0btwYt99+O/7973+juLgYEyZMwPfffw8AePXVV3HLLbegSZMmePnllxEeHo6HHnoIAPDCCy8gPj4erVu3Rl5eHvbs2YOYmBgPPiryBgwIiYiIvFhRYSFCAPx28SKae7ozROSShQsXwmAwICkpCUVFRejSpQu2b9+OsLAwszbPP/88zp49i7vvvhubN2+GWq0GAOj1ejz77LO4dOkSQkNDMXjwYCxbtsxTD4e8BKuMejlWYCIi8m0/r1+PVn//O76NiUG/06c93R0ij6uqciXVLawyWjfUq30IiYiIfI1Br6/4D6eMEhGRExgQEhEReTMWlSEiIhcwICQiIvJiBoOh4j8MCImIyAkMCImIiLyYYEBIREQuYEBIRETkxaQ1hAol/6QTEZHj+NeDiIjIm3ENIRERuYABIRERkReT1hAqGBASEZETGBASERF5McFtJ4iIyAUMCImIiLyYFBAyQ0jk2+bMmYOOHTt6uhvkhRgQEhEReTFmCImIyBUMCImIiLwZt50gIiIXMCAkIiLyYnKGkNtOEHk9g8GA119/Ha1atUJAQABuv/12vPbaawCA6dOno3Xr1ggODsbf/vY3zJo1Czqdrsrz/fe//0X79u0REBCAqKgoPPfcc7XxMMjL+Hm6A0REROQ8riEkqj9mzJiBDz74AMuWLcO9996LK1euIDs7GwAQEhKCVatWITo6GpmZmZg4cSJCQkIwbdo0q+dasWIFUlJSsHDhQsTHx6OgoAAHDhyozYdDXoIBIRERkRcT5eUAGBASebuioiK8+eabePvtt/HYY48BAO644w7ce++9AICZM2fKbVu0aIHU1FR88sknNgPCf/3rX0hNTcXzzz8vH+vatWsNPgLyVgwIiYiIvJiUIRQMCIlsKy4GjJm2WtW2LRAcbFfTM2fOQKvVon///lZv37hxI9544w38/PPPuHHjBsrLyxEaGmq1bW5uLi5fvmzzXESmGBASERF5MYOUIeQaQiLbsrOBzp1r/35PnADuuceupkFBQTZvO3z4MEaNGoW5c+di0KBB0Gg0WL9+PZYsWeLwuYgsMSAkIiLyYtx2gsgObdtWBGeeuF873XnnnQgKCsLu3bvxxBNPmN124MABNG/eHC+//LJ87LfffrN5rpCQELRo0QK7d+9Gv379HO83+RQGhERERF6MGUIiOwQH252p85TAwEBMnz4d06ZNg1qtRu/evXH16lX88MMPaNWqFS5cuID169eja9eu2Lp1KzZt2lTl+ebMmYOnn34aERERiI+PR1FREQ4cOIBJkybV0iMib8GAkIiIyItJASEReb9Zs2bBz88Ps2fPxuXLlxEVFYWnn34aEyZMwD//+U8899xz0Gq1GDJkCGbNmoU5c+bYPNdjjz2G0tJSLFu2DFOmTEF4eDhGjBhRew+GvIZCCCE83QlyXmFhITQaDQoKCmwuLCYiovpr/z//iXvfeAMH+vZF72+/9XR3iDyutLQU586dQ8uWLREYGOjp7lAVqvpd8Rq39tSr+SX79u3Dgw8+iOjoaCgUCnzxxRdmt48fPx4KhcLsq0ePHmZttFotJk2ahPDwcDRo0ABDhw7FpUuXzNrk5eUhKSkJGo0GGo0GSUlJyM/PN2tz4cIFPPjgg2jQoAHCw8MxefJklJWVmbXJzMxEnz59EBQUhNtuuw2vvvoqGJ8TEZEjFAYDAIB/PYiIyBn1KiC8efMm7r77brz99ts22wwePBhXrlyRv77++muz21944QVs2rQJ69evx/79+3Hjxg0kJCRALy3aBzB69GicOnUK27Ztw7Zt23Dq1CkkJSXJt+v1egwZMgQ3b97E/v37sX79enz22WdITU2V2xQWFmLgwIGIjo7GsWPHsHz5cixevBhLly514zNCRET1HgNCIiJyQb1aQxgfH4/4+Pgq2wQEBCAyMtLqbQUFBfjwww+xZs0aDBgwAACwdu1aNGvWDLt27cKgQYNw5swZbNu2DYcPH0b37t0BAB988AF69uyJH3/8EW3atMGOHTtw+vRpXLx4EdHR0QCAJUuWYPz48XjttdcQGhqKtLQ0lJaWYtWqVQgICEBsbCx++uknLF26FCkpKdxgmIiIHMK/GkRE5Ix6lSG0x969exEREYHWrVtj4sSJyM3NlW87ceIEdDod4uLi5GPR0dGIjY3FwYMHAQCHDh2CRqORg0EA6NGjBzQajVmb2NhYORgEgEGDBkGr1eKEseTxoUOH0KdPHwQEBJi1uXz5Ms6fP18jj52IiOofYcwQgksOiIjICT4VEMbHxyMtLQ179uzBkiVLcOzYMTzwwAPQarUAgJycHKjVaoSFhZn9XJMmTZCTkyO3iYiIqHTuiIgIszZNmjQxuz0sLAxqtbrKNtL3UhtrtFotCgsLzb6IiMiHMRAkIiIX1Kspo9UZOXKk/P/Y2Fh06dIFzZs3x9atW/Hwww/b/DkhhNkUTmvTOd3RRiooU9V00QULFmDu3Lk2byciIh/DgJCIiFzgUxlCS1FRUWjevDnOnj0LAIiMjERZWRny8vLM2uXm5srZu8jISPzxxx+VznX16lWzNpZZvry8POh0uirbSNNXLTOHpmbMmIGCggL56+LFi448ZCIiqmc4ZZSIiFzh0wHhtWvXcPHiRURFRQEAOnfuDH9/f+zcuVNuc+XKFWRlZaFXr14AgJ49e6KgoABHjx6V2xw5cgQFBQVmbbKysnDlyhW5zY4dOxAQEIDOnTvLbfbt22e2FcWOHTsQHR2NFi1a2OxzQEAAQkNDzb6IiMiHMRAkIiIX1KuA8MaNGzh16hROnToFADh37hxOnTqFCxcu4MaNG5gyZQoOHTqE8+fPY+/evXjwwQcRHh6O4cOHAwA0Gg0mTJiA1NRU7N69GxkZGRg7diw6dOggVx2NiYnB4MGDMXHiRBw+fBiHDx/GxIkTkZCQgDZt2gAA4uLi0K5dOyQlJSEjIwO7d+/GlClTMHHiRDmAGz16NAICAjB+/HhkZWVh06ZNmD9/PiuMEhGRYxgQEhGRC+pVQHj8+HF06tQJnTp1AgCkpKSgU6dOmD17NlQqFTIzMzFs2DC0bt0ajz32GFq3bo1Dhw4hJCREPseyZcvw0EMPITExEb1790ZwcDC2bNkClUolt0lLS0OHDh0QFxeHuLg43HXXXVizZo18u0qlwtatWxEYGIjevXsjMTERDz30EBYvXiy30Wg02LlzJy5duoQuXbogOTkZKSkpSElJqYVnioiI6g1jQCgYGBL5tDlz5qBjx441eh+rVq1Co0aNavQ+qPbVq6Iyffv2rfIP4vbt26s9R2BgIJYvX47ly5fbbNO4cWOsXbu2yvPcfvvt+Oqrr6ps06FDB+zbt6/aPhEREdkiryEkIiJyQr3KEBIREfkaeZEBM4REROQEBoRERERejFNFieoPg8GA119/Ha1atUJAQABuv/12vPbaawCA6dOno3Xr1ggODsbf/vY3zJo1Czqdrsrz/fe//0X79u0REBCAqKgoPPfcc1W2z8vLw7hx4xAWFobg4GDEx8fL1fhNffHFF2jdujUCAwMxcOBAs6r333//Pfr164eQkBCEhoaic+fOOH78uBPPBtUWBoRERETeTAoIGRgSeb0ZM2bg9ddfx6xZs3D69GmsW7dO3o4sJCQEq1atwunTp/Hmm2/igw8+wLJly2yea8WKFXj22Wfx5JNPIjMzE5s3b0arVq2qvP/x48fj+PHj2Lx5Mw4dOgQhBP7v//7PLPAsLi7Ga6+9ho8++ggHDhxAYWEhRo0aJd8+ZswYNG3aFMeOHcOJEyfw4osvwt/f38VnhmpSvVpDSERE5HNYVIaoXigqKsKbb76Jt99+G4899hgA4I477sC9994LAJg5c6bctkWLFkhNTcUnn3yCadOmWT3fv/71L6SmpuL555+Xj3Xt2tXm/Z89exabN2/GgQMH5K3U0tLS0KxZM3zxxRd49NFHAQA6nQ5vv/02unfvDgD46KOPEBMTg6NHj6Jbt264cOECpk6dirZt2wIA7rzzTmefEqolzBASERF5MQaCRPXDmTNnoNVq0b9/f6u3b9y4Effeey8iIyPRsGFDzJo1CxcuXLDaNjc3F5cvX7Z5rqeffhoNGzaUv6T79/PzkwM9ALjlllvQpk0bnDlzRj7m5+eHLl26yN+3bdsWjRo1ktukpKTgiSeewIABA7Bw4UL88ssvjj0RVOuYISQiIvJmUpVRBoZEVXrmq2fwe9HvtXZ/t4XchhUJK+xuHxQUZPO2w4cPY9SoUZg7dy4GDRoEjUaD9evXY8mSJQ6fCwBeffVVTJkyxeyYrcElIUSlPbKt7ZktHZszZw5Gjx6NrVu34ptvvsErr7yC9evXy/t+U93DgJCIiMibSRdx3H6CqEqOBGeecOeddyIoKAi7d+/GE088YXbbgQMH0Lx5c7z88svysd9++83muUJCQtCiRQvs3r0b/fr1q3R7REQEIiIizI61a9cO5eXlOHLkiDxl9Nq1a/jpp58QExMjtysvL8fx48fRrVs3AMCPP/6I/Px8eYooALRu3RqtW7fGP//5T/z973/HypUrGRDWYQwIiYiIvBmLyhDVC4GBgZg+fTqmTZsGtVqN3r174+rVq/jhhx/QqlUrXLhwAevXr0fXrl2xdetWbNq0qcrzzZkzB08//TQiIiIQHx+PoqIiHDhwAJMmTbLa/s4778SwYcMwceJEvPfeewgJCcGLL76I2267DcOGDZPb+fv7Y9KkSXjrrbfg7++P5557Dj169EC3bt1QUlKCqVOnYsSIEWjZsiUuXbqEY8eO4ZFHHnHrc0XuxTWERERE3owBIVG9MWvWLKSmpmL27NmIiYnByJEjkZubi2HDhuGf//wnnnvuOXTs2BEHDx7ErFmzqjzXY489hjfeeAPvvvsu2rdvj4SEBKtbSJhauXIlOnfujISEBPTs2RNCCHz99ddmVUKDg4Mxffp0jB49Gj179kRQUBDWr18PAFCpVLh27RrGjRuH1q1bIzExEfHx8Zg7d67rTw7VGIXganSvVlhYCI1Gg4KCAoSGhnq6O0REVMv2jhqFvp98gn1duuD+Y8c83R0ijystLcW5c+fQsmVLBAYGero7VIWqfle8xq09zBASERF5MQUzhERE5AIGhERERN6MRWWIiMgFDAiJiIi8GTemJyIiFzAgJCIi8mJSIFh5VzAiIqLqMSAkIiLyZlxDSERELmBASERE5M0YEBJZxWnUdR9/R3UDA0IiIiJvxoCQyIxKpQIAlJWVebgnVJ3i4mIAMNvnkGqfn6c7QERERM7jCDuROT8/PwQHB+Pq1avw9/eHUsn8R10jhEBxcTFyc3PRqFEjOYgnz2BASERE5M2YISQyo1AoEBUVhXPnzuG3337zdHeoCo0aNUJkZKSnu+HzGBASERF5M2n/QQaERDK1Wo0777yT00brMH9/f2YG6wgGhERERN6MGUIiq5RKJQIDAz3dDaI6j5OqiYiIvBj3HyQiIlcwICQiIvJm0sb0zBASEZETGBASERF5McEpo0RE5AIGhERERN6MgSAREbmAASEREZE3Y4aQiIhcUK8Cwn379uHBBx9EdHQ0FAoFvvjiC/k2nU6H6dOno0OHDmjQoAGio6Mxbtw4XL582ewcffv2hUKhMPsaNWqUWZu8vDwkJSVBo9FAo9EgKSkJ+fn5Zm0uXLiABx98EA0aNEB4eDgmT55cqfRxZmYm+vTpg6CgINx222149dVXucEwERE5hgEhERG5oF4FhDdv3sTdd9+Nt99+u9JtxcXFOHnyJGbNmoWTJ0/i888/x08//YShQ4dWajtx4kRcuXJF/nrvvffMbh89ejROnTqFbdu2Ydu2bTh16hSSkpLk2/V6PYYMGYKbN29i//79WL9+PT777DOkpqbKbQoLCzFw4EBER0fj2LFjWL58ORYvXoylS5e68RkhIqJ6j4EgERG5oF7tQxgfH4/4+Hirt2k0GuzcudPs2PLly9GtWzdcuHABt99+u3w8ODgYkZGRVs9z5swZbNu2DYcPH0b37t0BAB988AF69uyJH3/8EW3atMGOHTtw+vRpXLx4EdHR0QCAJUuWYPz48XjttdcQGhqKtLQ0lJaWYtWqVQgICEBsbCx++uknLF26FCkpKVAoWEiciIjswCqjRETkgnqVIXRUQUEBFAoFGjVqZHY8LS0N4eHhaN++PaZMmYKioiL5tkOHDkGj0cjBIAD06NEDGo0GBw8elNvExsbKwSAADBo0CFqtFidOnJDb9OnTBwEBAWZtLl++jPPnz9fAoyUionqJU0aJiMgF9SpD6IjS0lK8+OKLGD16NEJDQ+XjY8aMQcuWLREZGYmsrCzMmDED33//vZxdzMnJQURERKXzRUREICcnR27TpEkTs9vDwsKgVqvN2rRo0cKsjfQzOTk5aNmypdV+a7VaaLVa+fvCwkIHHzkREdUrDASJiMgFPhkQ6nQ6jBo1CgaDAe+++67ZbRMnTpT/HxsbizvvvBNdunTByZMncc899wCA1emcQgiz4860kQrKVDVddMGCBZg7d25VD4+IiHwJp4wSEZELfG7KqE6nQ2JiIs6dO4edO3eaZQetueeee+Dv74+zZ88CACIjI/HHH39Uanf16lU5wxcZGSlnAiV5eXnQ6XRVtsnNzQWAStlFUzNmzEBBQYH8dfHixWoeMRER1WucMkpERC7wqYBQCgbPnj2LXbt24ZZbbqn2Z3744QfodDpERUUBAHr27ImCggIcPXpUbnPkyBEUFBSgV69ecpusrCxcuXJFbrNjxw4EBASgc+fOcpt9+/aZbUWxY8cOREdHV5pKaiogIAChoaFmX0RE5MMYCBIRkQvqVUB448YNnDp1CqdOnQIAnDt3DqdOncKFCxdQXl6OESNG4Pjx40hLS4Ner0dOTg5ycnLkoOyXX37Bq6++iuPHj+P8+fP4+uuv8eijj6JTp07o3bs3ACAmJgaDBw/GxIkTcfjwYRw+fBgTJ05EQkIC2rRpAwCIi4tDu3btkJSUhIyMDOzevRtTpkzBxIkT5QBu9OjRCAgIwPjx45GVlYVNmzZh/vz5rDBKRESOYYaQiIhcUK8CwuPHj6NTp07o1KkTACAlJQWdOnXC7NmzcenSJWzevBmXLl1Cx44dERUVJX9J1UHVajV2796NQYMGoU2bNpg8eTLi4uKwa9cuqFQq+X7S0tLQoUMHxMXFIS4uDnfddRfWrFkj365SqbB161YEBgaid+/eSExMxEMPPYTFixfLbaRtMC5duoQuXbogOTkZKSkpSElJqaVni4iI6hUGhERE5ASFEPwL4s0KCwuh0WhQUFDA6aNERD7o2/vvR7/vvsOBFi3Q+9w5T3eHiMgteI1be+pVhpCIiMjnsMooERG5gAEhERGRN2MgSERELmBASERE5M2YISQiIhcwICQiIvJmrDJKREQuYEBIRETkzRgIEhGRCxgQEhER1QcMDImIyAkMCImIiLwZA0EiInIBA0IiIiJvxqIyRETkAgaEREREXkzBojJEROQCBoREREReTEgZQg/3g4iIvBMDQiIiIm/GDCEREbmAASEREREREZGPYkBIRETkzZghJCIiFzAgJCIi8mKsLkpERK5gQEhEROTNuO0EERG5gAEhERGRN2MgSERELmBASEREVA8wQ0hERM5gQEhEROTNGAgSEZELGBASERF5MQXXEBIRkQsYEBIREXkzYyDIcJCIiJzBgJCIiMiLSYEgM4REROQMBoRERERejIEgERG5ggEhERGRN+MaQiIicgEDQiIiIm/GQJCIiFzAgJCIiMibMUNIREQuYEBIRERERETkoxgQEhEReTFmBomIyBX1KiDct28fHnzwQURHR0OhUOCLL74wu10IgTlz5iA6OhpBQUHo27cvfvjhB7M2Wq0WkyZNQnh4OBo0aIChQ4fi0qVLZm3y8vKQlJQEjUYDjUaDpKQk5Ofnm7W5cOECHnzwQTRo0ADh4eGYPHkyysrKzNpkZmaiT58+CAoKwm233YZXX30Vgn/YiYjIEdLfDf79ICIiJ9SrgPDmzZu4++678fbbb1u9/d///jeWLl2Kt99+G8eOHUNkZCQGDhyIoqIiuc0LL7yATZs2Yf369di/fz9u3LiBhIQE6PV6uc3o0aNx6tQpbNu2Ddu2bcOpU6eQlJQk367X6zFkyBDcvHkT+/fvx/r16/HZZ58hNTVVblNYWIiBAwciOjoax44dw/Lly7F48WIsXbq0Bp4ZIiKq75gpJCIip4h6CoDYtGmT/L3BYBCRkZFi4cKF8rHS0lKh0WjEf/7zHyGEEPn5+cLf31+sX79ebvP7778LpVIptm3bJoQQ4vTp0wKAOHz4sNzm0KFDAoDIzs4WQgjx9ddfC6VSKX7//Xe5zccffywCAgJEQUGBEEKId999V2g0GlFaWiq3WbBggYiOjhYGg8Hux1lQUCAAyOclIiLfsu/OO4UAxMlGjTzdFSIit+E1bu2pVxnCqpw7dw45OTmIi4uTjwUEBKBPnz44ePAgAODEiRPQ6XRmbaKjoxEbGyu3OXToEDQaDbp37y636dGjBzQajVmb2NhYREdHy20GDRoErVaLEydOyG369OmDgIAAszaXL1/G+fPnbT4OrVaLwsJCsy8iIvJhrDJKREQu8JmAMCcnBwDQpEkTs+NNmjSRb8vJyYFarUZYWFiVbSIiIiqdPyIiwqyN5f2EhYVBrVZX2Ub6XmpjzYIFC+S1ixqNBs2aNav6gRMRUb3GMJCIiFzhMwGhRKFQmH0vhKh0zJJlG2vt3dFGSKO8VfRnxowZKCgokL8uXrxYZd+JiKh+UzBDSERELvCZgDAyMhJA5exbbm6unJmLjIxEWVkZ8vLyqmzzxx9/VDr/1atXzdpY3k9eXh50Ol2VbXJzcwFUzmKaCggIQGhoqNkXERH5MAaCRETkAp8JCFu2bInIyEjs3LlTPlZWVob09HT06tULANC5c2f4+/ubtbly5QqysrLkNj179kRBQQGOHj0qtzly5AgKCgrM2mRlZeHKlStymx07diAgIACdO3eW2+zbt89sK4odO3YgOjoaLVq0cP8TQEREREREZKFeBYQ3btzAqVOncOrUKQAVhWROnTqFCxcuQKFQ4IUXXsD8+fOxadMmZGVlYfz48QgODsbo0aMBABqNBhMmTEBqaip2796NjIwMjB07Fh06dMCAAQMAADExMRg8eDAmTpyIw4cP4/Dhw5g4cSISEhLQpk0bAEBcXBzatWuHpKQkZGRkYPfu3ZgyZQomTpwoZ/RGjx6NgIAAjB8/HllZWdi0aRPmz5+PlJSUaqewEhERyaQpox7uBhEReSc/T3fAnY4fP45+/frJ36ekpAAAHnvsMaxatQrTpk1DSUkJkpOTkZeXh+7du2PHjh0ICQmRf2bZsmXw8/NDYmIiSkpK0L9/f6xatQoqlUpuk5aWhsmTJ8vVSIcOHWq296FKpcLWrVuRnJyM3r17IygoCKNHj8bixYvlNhqNBjt37sSzzz6LLl26ICwsDCkpKXKfiYiI7KHgxvREROQChRD8C+LNCgsLodFoUFBQwPWEREQ+aH/Llrj3/HlkhoSgA7ciIqJ6gte4tadeTRklIiLyNawySkRErmBASERE5M0YCBIRkQsYEBIREdUDzBASEZEzGBASEVGNGTNmjKe7UO9JgSDDQSIicka9qjJKRESeMW3atErHhBA4ePCgB3rjW6RAkNtOEBGRMxgQEhGRy9LS0rBu3bpKx7/99lsP9Ma3sKgMERG5ggEhERG57PHHH0dMTAwiIiLMjo8bN85DPfIhDASJiMgF3IfQy3GPFiIi33awaVP0+v13nAkORszNm57uDhGRW/Aat/awqAwREZEX45RRIiJyBQNCIiIib8ZAkIiIXMCAkIiIyIuxuigREbmCASEREbns008/RadOnTB27Fh89NFHaNOmDbp27YrNmzd7umv1H6eMEhGRC1hllIiIXLZkyRIcOHAARUVF6NixI7KzsxEYGIgBAwZg6NChnu4eERER2cCAkIiIXBYUFITg4GAEBwejf//+0Gg0AAA/P/6ZqWlyURkP94OIiLwTp4wSEZHLOnbsCL1eDwBYu3YtAKCsrAy33HKLJ7vlUzhllIiInMGhWyIictkbb7xR6ZharcbGjRtrvzO+hoEgERG5gBlCIiKieoBTRomIyBkMCImIiLwYp4rWbxkZGUhISMDw4cNx8OBB+fiECRM82Csiqk84ZZSIiGpMTk4OIiMjPd0Nn8DAsH6aPHkyVq5cCT8/P0ydOhWHDx9GSkoKfv31V093jYjqCWYIiYioxowbN87TXaj/GAjWawqFAq1atUKLFi2wYcMGFBYWYuLEiSgvL/d014ionmCGkIiIXNatW7dKx4QQOHv2rAd641sUFv9S/RIREYHz58+jRYsWAIA5c+Zg7dq1WLNmjWc7RkT1BgNCIiI7jRkzBmlpaZ7uRp1UVFSEzMzMSvsODhw40EM98h3yPoTMFNZL1ir1jh07FmPHjvVAb4ioPmJASERkYdq0aZWOCSHMCjqQufnz56OoqAhhYWFmx2fOnOmhHhEREZE9GBASEVlIS0vDunXrKh3/9ttvPdAb7zB8+HCz77Ozs9G2bVv06dPHQz3yHXKG0MP9ICIi78SAkIjIwuOPP46YmBhERESYHWeBFPslJydjz549nu6GT2FASEREzmCVUSIiC/PmzasUDAIV5d/JPv7+/p7ugu+Q1g5yDaFPiYuL83QXiKie8LmAsEWLFlAoFJW+nn32WQDA+PHjK93Wo0cPs3NotVpMmjQJ4eHhaNCgAYYOHYpLly6ZtcnLy0NSUhI0Gg00Gg2SkpKQn59v1ubChQt48MEH0aBBA4SHh2Py5MkoKyur0cdPRFQbtm/f7ukuENULiYmJlb4effRRZGZmerprRFRP+NyU0WPHjkGv18vfZ2VlYeDAgXj00UflY4MHD8bKlSvl79Vqtdk5XnjhBWzZsgXr16/HLbfcgtTUVCQkJODEiRNQqVQAgNGjR+PSpUvYtm0bAODJJ59EUlIStmzZAgDQ6/UYMmQIbr31Vuzfvx/Xrl3DY489BiEEli9fXmOPn4iI6heuIazfjh07hj179kCp/GsMXwiBpKQkD/aKiOoTnwsIb731VrPvFy5ciDvuuMOs8EFAQAAiIyOt/nxBQQE+/PBDrFmzBgMGDAAArF27Fs2aNcOuXbswaNAgnDlzBtu2bcPhw4fRvXt3AMAHH3yAnj174scff0SbNm2wY8cOnD59GhcvXkR0dDQAYMmSJRg/fjxee+01hIaG1sTDJyKieooBYf00depUhISEIDw83Oz4c88956EeEVF943NTRk2VlZVh7dq1ePzxx6FQ/PWndO/evYiIiEDr1q0xceJE5ObmyredOHECOp3ObO5+dHQ0YmNj5ZL0hw4dgkajkYNBAOjRowc0Go1Zm9jYWDkYBIBBgwZBq9XixIkTNvus1WpRWFho9kVE7rVz5050794dvXr1wvr16+XjQ4YM8WCviKzjPoT1W3JycqVgEABGjhzpgd4QUX3k0wHhF198gfz8fIwfP14+Fh8fj7S0NOzZswdLlizBsWPH8MADD0Cr1QIAcnJyoFarK+211aRJE+Tk5MhtrBWkiIiIMGvTpEkTs9vDwsKgVqvlNtYsWLBAXpeo0WjQrFkzpx47Edn2yiuvYPv27di1axeOHj2KSZMmwWAwoLi42NNdIyIiInIrnw4IP/zwQ8THx5tl6UaOHIkhQ4YgNjYWDz74IL755hv89NNP2Lp1a5XnEkKYZRlN/+9KG0szZsxAQUGB/HXx4sUq+0VEjlOpVGjUqBGCg4OxdOlSdO7cGcOGDcONGzc83TWiSriGkIiIXOGzAeFvv/2GXbt24YknnqiyXVRUFJo3b46zZ88CACIjI1FWVoa8vDyzdrm5uXLGLzIyEn/88Uelc129etWsjWUmMC8vDzqdrlLm0FRAQABCQ0PNvojIvTp27Ijz58/L348fPx4pKSkoKiryXKeIiEzw84iI3MVnA8KVK1ciIiKi2jVB165dw8WLFxEVFQUA6Ny5M/z9/bFz5065zZUrV5CVlYVevXoBAHr27ImCggIcPXpUbnPkyBEUFBSYtcnKysKVK1fkNjt27EBAQAA6d+7stsdJRI5bvnw5WrRoYXasX79+yM7O9kyH6pCMjAwkJCRg+PDh8ppoAJgwYYIHe+XbFBb/Uv2yevVqdOjQAffccw8WLlwoHx82bJgHe0VE9YlPBoQGgwErV67EY489Bj+/vwqt3rhxA1OmTMGhQ4dw/vx57N27Fw8++CDCw8MxfPhwAIBGo8GECROQmpqK3bt3IyMjA2PHjkWHDh3kqqMxMTEYPHgwJk6ciMOHD+Pw4cOYOHEiEhIS0KZNGwAVG8q2a9cOSUlJyMjIwO7duzFlyhRMnDiRWT8iqrMmT56MN954A8uWLcOyZcuwdOlSAMCvv/7q4Z75MBaVqddWrFiBkydP4uTJkwgODsaIESNQXFwMwd83EbmJTwaEu3btwoULF/D444+bHVepVMjMzMSwYcPQunVrPPbYY2jdujUOHTqEkJAQud2yZcvw0EMPITExEb1790ZwcDC2bNki70EIAGlpaejQoQPi4uIQFxeHu+66C2vWrDG7r61btyIwMBC9e/dGYmIiHnroISxevLjmnwAiIicpFAq0atUKLVq0wIYNG1BYWIiJEyeivLzc013zWcwM1m9KpRL+/v4AKgZknnrqKcTHx+PPP//0cM+IqL5QCA4xebXCwkJoNBoUFBQws0jkhPLycrOZAlXJycmxuUeprxgxYgQWL15sNqV27dq1eOKJJ1BaWuq5jvmwzJAQdLhxAzlKJSL1ek93h9xs/vz5GD16tNl77ocffkBqaiq2bdvmuY4R1TBe49YeBoRejm8WIsdlZmZi+vTpyM/Ph5+fH3Q6HcLDwzF//nx06NDB5s/FxcVhx44dtdhTour9LyQEd924gT+USjRhQFjvZWdno23btp7uBlGN4zVu7bFvWJyIqB5JTk7GunXrzPbxvHDhAsaMGYPvvvsO3bp1q/QzQgi52jBRXcJtJ3xLcnIy9uzZ4+luEFE9woCQiHyOXq+HRqMxOxYaGgq9MbtSVFSEzMzMSlNJBw4cWGt9JCKyRlpPSETkLgwIicjnLFy4EAkJCVCr1QgNDUVBQQHKy8vx+uuvA6hYs1NUVISwsDCzn5s5c6YnuktUJXnbCR9YAZKRkYFZs2bB398fU6dOlbdymjBhAj788EMP9652bN++3dNdIKJ6hmsIvRznVxM5r6SkBPn5+QgLC0NgYKDNdlyzUz2ur/ScHxo0QPviYlxVKHCrweDp7tSo++67DytXroSfnx+mTp2Knj17IiUlBf369cO3337r6e4RkRvxGrf2MENIRD4rKCgIQUFB1bbjmp2/JCYmVjomhEBmZqYHekOmfGENobTtCQBs2LABc+bM4bYnREQuYkBIRFQNrtn5y7Fjx7Bnzx4olX9tYyuEQFJSkgd75dsUFv/WZxERETh//ry8BcOcOXOwdu1as31+iYjIMZwy6uWYTieqJYWFQFAQ4OPB4bvvvovExESEh4ebHf/kk08wcuRID/XKt50JDkZMSQmuKxRoXM+njBKR7+A1bu1RVt+EiKh+2blzJ7p3745evXph/fr18vEhQ4bY/iGNBnjooZrvXB2XnJxcKRgEwGCwDvCFDCEREbkfA0IiqhFjxozxdBdseuWVV7B9+3bs2rULR48exaRJk2AwGFBcXFz1D379de10kMgB3IeQiIhcwTWEROSSadOmVTomhMDBgwc90Bv7qFQqNGrUCACwdOlSrFq1CsOGDcONGzc82zEiclhGRgY6derk6W4QEXktBoRE5JK0tDSsW7eu0vG6XAK+Y8eOZoUpxo8fj+bNm+OZZ57xbMe8WE5ODiIjIz3dDZ/mC/sQvvvuu2bfCyGwYsUKJCcnIzk52UO9IiLybpwySkQuefzxxxETE4M+ffqYfY0bN87TXbNp+fLlcjAo6devH7Kzsz3ToXqgLv++6ztfmir6zjvv4KuvvkJwcDAaNGiAhg0bQqlUomHDhp7umsMyMjKQkJCA4cOHm82omDBhggd7RUS+iFVGvRwrMBHVEoXxsttNH5kZGRmYNWsW/P39MXXqVPTq1QtAxcXghx9+6Jb7qAndunWrdEwIgbNnzyI/P7/2O+QjysvL4ednfVLPT4GBaK3VohBAaD3/ky6EwMcff4wNGzYgMTERI0eOREJCAr72wvW99913H1auXAk/Pz9MnToVPXv2REpKCvr161enZ1gQ1RZe49YeThklIvKAyZMnm10MHj58GCkpKfj111893bUqFRUVITMzs1JwMnDgQA/1qP7KzMzE9OnTkZ+fDz8/P+h0OoSHh2P+/Pno0KFDpfa+kClUKBQYPXo0Ro0ahbS0NAwdOhR//vmnp7vlFIVCgVatWgEANmzYgDlz5mDixIkoLy/3cM+IyNcwICQiMqrNdXDeejE4f/58FBUVISwszOz4zJkzPdSj+is5ORnr1q1Ds2bN5GMXLlzAmDFj8N1338nHfGljeolSqURSUhLGjBmDnJwcT3fHKREREWZrmefMmYO1a9dizZo1nu0YEfkcriEkIjKqzXVw0sWgZM6cOejTpw+OHTtWa31wxvDhw82CQWndZZ8+fTzVpXpLr9dDo9GYHQsNDYVerzc75svbTiiVSkRHR3u6G07ZuHFjpbXMY8eORWlpqWc6REQ+i2sIvRznV1NdFRcXhx07dni6G1Y5tQ7OzWsI64sHHngAe/bs8XQ36qV9+/Zh5syZUKvVCA0NRUFBAcrLy/Gvf/0L9913n9zu54AAtCwrQymABnx9ElE9wWvc2sMpo0TkksTExErHhBDIzMz0QG/sw3Vw7uPv7+/pLtRb999/P/bt24eSkhLk5+cjLCwMgYGBldopAAj4ToZQq9Xihx9+wPXr19G4cWPExsZCrVZ7ultERF6LASERueTYsWPYs2cPlMq/ZqALIZCUlOTBXlWN6+DcZ/v27Z7uQr0XFBSEoKAgm7crhPCZgHDNmjVYsWIFunbtitDQUOTn5+PkyZN45plnMHbsWE93zynXr1+Xg9vGjRtX2baqarNERM7ipwoRuWTq1KkICQlBeHi42fHnnnvOQz2q3vDhw60et7kOrgan4TlyMUhkix6+ERC+99572L9/v9kAVHl5Ofr27et1AeHu3bsxe/ZshIeHy8FtXl4e5s6di/79+8vtHK02S0TkKAaEROSS5ORkq8dHjhxZyz1xwZkzQLt2wKlTwN13V77dYHD7Xdp7MUhkKiMjA506dTI7pgBgAKDySI9qV1BQENLT09GvXz8AFbMR0tPTrU6lretmz56Nbdu2ISQkRD5WWFiI+Ph4s88Ae6vNEhE5iwEhEfk8cfZsxTqsTZugsBYQWlR1dAd7Lwat8YZN7YUQ+OWXX+StNchx7777rtn3QgisWLECycnJZgMxCiGgh2/8QV+zZg0WLlyImTNnQq/Xw9/fH126dMHatWtrrQ/umrapVCpx9epVs8+Aq1evmmU/AfurzZJvSk9Px7x583DXXXdh8ODBmD59OjQaDRYsWICePXt6unvkJXzh7wcRUZXSs7LQF8D5gwfR0srtQq93+3Q8ey8GrfGGTe2XL1+O559/HhcvXkTTpk093R2v9M4776B58+ZITEyEwljlVqlUomHDhmbtfKmoTGRkJN54441av9+amLb5/vvvIzU1FTk5ORBCQKFQICoqCu+//75Zu4ULFyIhIaFStdnXX3/dHQ+NvNz06dOxYcMG5OfnIy4uDseOHUNwcDAefvhh7N2719PdIy/BgJCIakRtbvLuKu3NmwCAm8XFVm836HRun45n78WgNd6wqX1GRgaAiqwnOScrKwsff/wxNmzYgMTERIwcORKffPJJpf0ylUJAr1D47pYoK1YA998PtG9fY3dRE9M2Y2JisGnTpmrb2VttlnxTYGAgmjVrhmbNmiEmJkYegFOpfGESObkLA0IiqhHjxo2rs/sQWgoOCAAA6GwEVPqyMrcHhPZeDFojbWovbWo9Z84crF27FmvWrHFjD13TOC8P2wD418D6S1+hUCgwevRojBo1CmlpaRg6dCj+/PNPq20N8I0MoVXJySgODkawcWCnJtSFaZvVVZsl3xQZGQm9Xg+VSiXvCVteXg4DP3vJAdXPTapH5syZA4VCYfZlmsEQQmDOnDmIjo5GUFAQ+vbtix9++MHsHFqtFpMmTUJ4eDgaNGiAoUOH4tKlS2Zt8vLykJSUBI1GA41Gg6SkpEqbXV+4cAEPPvggGjRogPDwcEyePBllZWU19tiJakq3bt0qfXXt2hVHjx71dNfsFmTcw6xcp7N6u76OvTc3btwoB4OSsWPHorS01DMdsmJIZiYGAQj87TdPd8XrKZVKJCUlYfPmzfjiiy8q3w7fmTJqi85Gdt9dpGmbAwYMwMMPP4z+/ftj2LBhnLZJHrd+/fpK2UA/Pz/s3LnTQz0ib+RzGcL27dtj165d8vemb6J///vfWLp0KVatWoXWrVvjX//6FwYOHIgff/xRXufzwgsvYMuWLVi/fj1uueUWpKamIiEhASdOnJDPNXr0aFy6dAnbtm0DADz55JNISkrCli1bAFSMNA4ZMgS33nor9u/fj2vXruGxxx6DEALLly+vraeCyC3qwybvfsb1WVVlCMkxwjh9kYUv3EepVCI6OrryceOUUYXxOfeGokPuIoSAAqiYMluDanPaZlFRkdnaYlOXL1/GTz/9hBYtWlQaFCIyxf0qySHCh7zyyivi7rvvtnqbwWAQkZGRYuHChfKx0tJSodFoxH/+8x8hhBD5+fnC399frF+/Xm7z+++/C6VSKbZt2yaEEOL06dMCgDh8+LDc5tChQwKAyM7OFkII8fXXXwulUil+//13uc3HH38sAgICREFBgUOPqaCgQABw+OeI3OXzzz8X169fr3R87969HuiNc07MmycEIL7r0MHq7YVnzwpRsULLrfdbWloqTpw4IXbu3ClOnDghtFqtW8/vSdtbtBACED9//rmnu1LvXVYqxRWlUn593nvvveLs2bPi3LlzYsSIEWLJkiVCCCH69u3ryW7WCG1xsRCAuKpUerorDvvoo49EbGys6NSpk1iwYIF8vF+/fmbthg8fLoQQ4r333hN9+vQRM2bMEP/3f/8n/vWvf9Vqf4lqG69xa49PTRkFgLNnzyI6OhotW7bEqFGj5Kp8586dQ05ODuLi4uS2AQEB6NOnDw4ePAgAOHHiBHQ6nVmb6OhoxMbGym0OHToEjUaD7t27y2169OgBjUZj1iY2NtZspHfQoEHQarU4ceJElf3XarUoLCw0+yLypOHDhyMsLEz+Pjs7G0AVm7zXQaKaYix6G1NJXbFmzRr069cPH330EdLT07Fy5Ur069evVsvn1yQhZQjrUKGb+iInJ8fseyXMM2RS0aEWLVpgw4YNKCwsrHNFh9ylOC8PAGCo4QxhTVixYgVOnjyJkydPIjg4GCNGjEBxcbH83pFIf+c//vhj7NmzB/Pnz8fWrVvlWUhERK7yqYCwe/fuWL16NbZv344PPvgAOTk56NWrF65duyb/gW3SpInZzzRp0kS+LScnB2q12uzi11qbiIiISvcdERFh1sbyfsLCwqBWqyv9obe0YMECeW2iRqMxq3hGVBfY2qi+LjMYAz5h46LSUAMB4XvvvYf9+/fjzTffxLx587B8+XKkp6fjP//5j9PnNB2s8jRhLGjAKaPuZ1llVNp2Aqh43qWiQ5I5c+agT58+OHbsWK31sbaUFhQAqCiq44z09HQMGDAAKSkp2LFjBzp16oS+ffvi0KFDVttfv34dP//8M65fvw4ALgXZSqUS/v7+ACq2knnqqacQHx9fqXBQq1at8NVXX6Fr167YsmULioqKsG/fPpvTSsm37Ny5E927d0evXr2wfv16+fiQIUM82CvyNj41wTg+Pl7+f4cOHdCzZ0/ccccd+Oijj9CjRw8AkPd6kghjOfiqWLax1t6ZNtbMmDEDKSkp8veFhYUMCqlOkS5wvImUIbQVENbEGsKgoCCkp6ejX79+FfctBNLT0+1al5SYmFjpmBACmZmZbu+nswxcQ+iybt26VTomhMDZs2fNjimEgN64f6UwGLBx48ZKPzd27FiMHTu2ZjrqQXJAaMf+ndbYu4fb7t27MXv2bISHh0Ov1+Po0aMoLS1FixYt5OJwju5JOGTIELNqwQMHDkR0dDRSU1PN2r311ltYvnw5MjIysHnzZoSFhaF3795YtWqVU4+Z3M+Tm8O/8sor2L59O9RqNWbOnIkDBw7gzTffRHENF1qi+sWnAkJLDRo0QIcOHXD27Fk89NBDACqyd1FRUXKb3NxcOZsXGRmJsrIy5OXlmWUJc3Nz5UX7kZGR+OOPPyrd19WrV83Oc+TIEbPb8/LyoNPpKmUOLQUEBCDAWCKfqC7avn27p7vgsOqmjNZEhnDNmjVYuHAhZs6cCb1eD39/f3Tp0sWuKaPHjh3Dnj17zDaxF0IgKSnJ7f10lhwQ1sBz5yvsLdikwF+DGZbTDeu7sqIiAM4XlbF3D7fZs2dj27ZtCAkJwX333YcTJ05Ao9EgPj4eBw4ccGpPwpdeesns++zsbLRv377SVFC1Wo3U1NRKgSLVHZ7cHF6lUqFRo0YAIBdGHDZsGG7cuFGj90v1i09NGbWk1Wpx5swZREVFoWXLloiMjDQr01tWVob09HQ52OvcuTP8/f3N2ly5cgVZWVlym549e6KgoMCs5P6RI0dQUFBg1iYrKwtXrlyR2+zYsQMBAQHo3LlzjT5molpx7RrgRYGAJwLCyMhIvPHGGzhw4AAOHz6M7777DsuWLTPbCseWqVOnIiQkBM2bN5e/WrRogeeee87t/XSWNNvBwAqtTps/fz6KjAGPqZkzZ5p9L207AcDnNqc3GLMgzuahpT3cAFS5h5tSqcTVq1cr7su4J+HVq1flQRl37EnojdPtqYI0sNChQwd5YKFx48a1sjl8x44d5SniGRkZ2LhxI/Ly8pCbmyu3mTBhQo33g7ych4rZeERqaqrYu3ev+PXXX8Xhw4dFQkKCCAkJEefPnxdCCLFw4UKh0WjE559/LjIzM8Xf//53ERUVJQoLC+VzPP3006Jp06Zi165d4uTJk+KBBx4Qd999tygvL5fbDB48WNx1113i0KFD4tChQ6JDhw4iISFBvr28vFzExsaK/v37i5MnT4pdu3aJpk2biueee87hx8QKTL5j9OjRnu6C/QAhnn7a072w28FnnhECEOkdO1q9/eKuXTVSZdTMF18I8cYbNXf+WralWTMhAHF8+XJPd6Xeu65QiJ/VaiEAoSsp8XR3atXpTz8VAhC/qtVuPa9OpzO/n9OnxUMPPSR69OghYmJiREhIiLj11lvFgAEDxAMPPCDuv/9+sW/fPpfuMy4uzqWfJ88ZOXKk2XWgEBWvodqu7FvfKgzzGrf2+NSU0UuXLuHvf/87/vzzT9x6663o0aMHDh8+jObNmwMApk2bhpKSEiQnJyMvLw/du3fHjh07zBZuL1u2DH5+fkhMTERJSQn69++PVatWmY0CpaWlYfLkyXKBh6FDh+Ltt9+Wb1epVNi6dSuSk5PRu3dvBAUFYfTo0Vi8eHEtPRNUl02bNq3SMSGEXKW2zpPWLezb59l+OMATGcJKjNPW8fzzNX9fqPm96qQJfMwQupFeD/zrX8CUKUCDBvJhpRBylU1hMODTTz/FggUL0L59ewwcOBDz589HaGgoZs2ahaFDh3qq9zVCem8q3JwZtZymGxMTg02bNpkdc/eehFVNt9dqtfjhhx9w/fp1NG7cGLGxsVCr1S7fJ7mHaTEXiSc2h5cqDAPAhg0bMGfOnHpbYZjczNMRKbmGoyf1T3R0tNi7d2+lr86dO3u6a/b5+eeKTJrFXlp12f5//KMiQ9ipk9Xbz23eXPMZwpo+v4WaHkn+ypghPGKytyu5aPfuitfIq6+aHc4HxI+BgUIAQltUJLp16yZu3rwpcnJyRGRkpMjPzxelpaXi3nvv9VDHa87/Vq0SAhDn/P093RWH2TvrY/Xq1aJnz55i8uTJYubMmeK5J58UvZo2FWs++siunz958qQYMmSIeOihh8SBAwfk448//rhT/XZVXetPffLII4+Ic+fOmR1bs2aNCAgI8EyHXMRr3NrjUxlCIm/w+OOPIyYmptL2JZal5uss455ZNwE0qLpl3SGt/bGRZaiVDKGDXM0Y1PhIsrSGUKt1z/kIkLJQxr33JErALEMYFBSE4OBgBAcHo3///tBoNAAqZ73qg+qy+3WBq7M+pC1q5CJSL76I8kuX0HfJEoy14+/C5MmTsXLlSvj5+WHq1Kk4fPgwUlJS5H2Ya1td6483s6xu+ssvv2D8+PFYsGABYmNjERISUm8rDJN7+XRRGaK6aN68eVb3spw8ebIHeuO4P41VdrNOn/ZwT+wnXVTamnZW1wJCd2xqX9N71UlFZUQde+68WY5xi4U/LC6cLfch7Nixo1zgRHpNlJWV4ZZbbqmtrtYaecqom89r756eRUVF1VZ2TUtLw5AhQ8y+EhIS7P59SFvUSERhIdIBu6epSoM/LVq0wIYNG1BYWOjRaYR1rT81JSMjo8bvY/r06RgyZAi2bNmCIUOGYPDgwfj8888xY8YMDBs2rMbvn+qP+jdcSEQede2PPxAO63tt1lVCyhAarG9vXdcCwkoZA1RURuzbt6/dI8G1tVcd1xC6z2/nziESwB9nz8J0gyIlzLedeOONNyr9rFqttvo793auriG0d0/P1atXY9GiRfD390dUVBS2bt2K//3vf7jvvvvQrl07lJWVYcmSJejbt2+l87k666PSFjXnz6MLgLULF9r189Lgj7Tf4Zw5c7B27VqsWbPGrp93t7rWH3d49913zb4XQmDFihVITk6u0eqxgYGB+PTTT3H69GkMGjQIUVFRePLJJ+U+VMdda8kvX76M6Oho5x4E1QkMCInIrbwyAJACPlsBYR3bXN2VTe1rjZsyhGPGjEFaWpo7euT1gvz9K/5j8R4z24fQxmu43nLxvWnvnp4rVqzAyZMn4e/vj9atW2PEiBHIz89H27ZtcejQIeTm5mL48OE4cOBApfuYN2+e1fu2d9aHtEWN5Gz37rjzjz9w3pgxrk5tDf7Yq671xx3eeecdNG/eHImJifJgqFKpRMOGDWv0fiMjI3HhwgX4+/vL26a0bt0ao0aNQrNmzQBUBH2dOnWy+vPOTN/9+uuvzb4XQmDOnDmYO3cu/u///q/K/lpOcZ0+fTo0Gg0WLFiAnj17OvLQyc0YEBKRW9W1bJo95AyhjYvLujbt0ZVN7WudndPAvL66bi1QG4MWneUeefhrDaHP7UPo4pRRaU/P8PBws+OWe3oqlUr4GwPysLAwxMfHIyUlBbfffjuAiqyXaVBZk25cuwYAKLYzIKxpHLQBsrKy8PHHH2PDhg1ITEzEyJEj8cknn9T42v/169dj/vz5csZVylQmJyfjiy++wDvvvFNlptKZteTjx49Hly5d0KNHDzkLmZ+fj+PHj1cbEE6fPh0bNmxAfn4+4uLicOzYMQQHB+Phhx/G3r17nXwWyB0YEBLVMTt37sTMmTOhUqkwefJkjBo1CgAwZMgQbN261cO9q55XZgilP342siu1WrhCCDm7ZotlxsAV169flwvTNG7c2C3nNGXvc5eWloZ169ZVOv7tt9+6u0teR77gNj6XlhugK2BeVMaWnJwcREZG1lg/PUF6fTkbBtuazjdy5Eiz74cMGSJfdLdr1w779+/HAw88gEJjEa2ioqIaef9YZQyC1bU8LZ+DNrYpFAqMHj0ao0aNQlpaGoYOHYo///yzVu77pZdekv//zjvv4JZbbsHjjz+O6dOnA6g6U2nv9F3TKaHnzp3DW2+9hczMTEyaNAk9e/bEkSNHMHv27Gr7GhgYiGbNmqFZs2aIiYlB06ZNAcBs6zbyDAaERHXMK6+8gu3bt0OtVmPmzJk4cOAA3nzzTRRL+/vVcXpjQOhVeYq6VGW0rAwICHDoR7RaLebNm4eZM2faPW109+7dmD17NsLDwxEaGor8/Hzk5eVh7ty56N+/vzM9Nyc9l3ZO6fP66rpuUN0Ft/TesgwIzdYQVhEQjhs3Djt27HBTb+uGmnpvWq6tki66J0yYgJUrV1ZqHxISgi+//LJG+mKp3Pg7ru0KvjU1aCOE8Ko151VRKpVISkrCmDFjkJOTU+v3n5WVhdjYWHz55Zd2ZSqtTd9t3LgxPv/8c3lqqOWU0AYNGmDGjBkoKirCm2++iWXLliE/P9+u/kVGRkKv10OlUslTXMvLy2HwtanudRADQqI6RqVSoVGjRgCApUuXYtWqVRg2bBhu3Ljh2Y7Zqa5Nr7SL8QJbYWvKaG1mCMvLHQ4IP9+wATmvvYbVt92GJ595xq6fmT17NrZt24aQkBD5WGFhIeLj490SEEqXd/Y+d66us6oPqrvglrLvwuLi2XINYbdu3SqdQwiBs2fPurnHnldT7013bo3g7lkf0oBAeUmJXe0//fRTLFiwAO3bt8fAgQMxf/58hIaGYtasWRg6dKjd9+uuQZslS5YgNTUV//vf//DUU08BQJVFeZzhTLEUd019lc7jiSIrCoUCTZs2xWeffeZ0ptLeKaEhISGYOXMmCgsLkZ2dbde5169fX+mYn58fdu7c6VAfyf0YEBLVMR07djSbwjF+/Hg0b94cz9h5oe9p0oi9V2YI60KVUSeKZDQ7cwb/DxUXnqjidVJeXi7vRadUKnH16lWzgPDq1avuWwdlvJDwhn3i6orqLrhtTcdWATAYf2/CYEBRUREyMzMr7Ts4cOBA93faw1x9fdkKAnQ6ndv26XT3rA8p+NeXltrVfsmSJThw4ACKiorQsWNHZGdnIzAwEAMGDHAoILR30Ka6wGrr1q1ITU3F1KlTsWrVKrRp06bKojzOqCqgd9fU17o6hXb79u2Ii4vDjh07nMpUOjolNDQ01OoglCPq4x6p3oa/AaI6Zvny5ZWO9evXz+4ROE/zxgyhfFFpY8qoMA3S7Fjj5xInAkJ/435mjS5erHRbZmYmpk+fjvz8fPj5+UGn0yE8PBxTpkxBamoqcnJy5ClbUVFReP/9911+CAD+ei45Fchu1V1wy+8t09ef9DybbDsxf/58FBUVISwszOw8M2fOdG+H6wI73y+OXryfO3fO4a0RbK3RdPesD4WDAWFQUBCCg4MRHByM/v37Q6PRAHD9ItzZgOjmzZs4ffo0ioqK0KZNGwDuL8pTVbEUd019tec8Nb1ut7ptU5RKpd2ZysuXL+Onn35CixYtnJ4SSt6LASERuZVXFpWRpozakyE0GICaXADvTEBovLAzWLlATE5Oxrp16+QS5ABw4cIFjBkzBt99953T3TTNNlqjND6XzBC6j7Upo8JgqDRldPjw4WY/l52djbZt26JPnz611tfaYnCxaNG7775bKbshhIBWq5WDQUl1WyPYWqPp6qwPy1L9z+XmIhrAYz//jI52/HzHjh3ldVtSJeKysjLcYhxIcpazgVW7du2waNEitG3bFnl5eQgLC3N7UZ6qiqVMnTrVLVNf7ZlCW9Prdu3dNsWWhx9+GJ9//jnef/99rFu3Dr169cL333+PXr164eWXX3Z4Sih5LwaERORW9l6g1SnG4MVWQGga1Ai9HooaDAgNOh0cHSeXMkeWxUakY1JGQBIaGmq1bXVsZRvnz5+PDh06mLWVn0s778fbq+vWBmtTl4VeX1FlVLogtJLlTk5Olgs41Df2DjjYungPCQnBwYMHHZpe6+gaTVdnfViW6v9PeDjuu3IFA7/9Fv+w4+etVSRWq9VWC4o4wtk1hbVRlMeZvQ4dXa9smtG3fE2sXbu2Vtbt2rttSlFRkdnyAIlUJffjjz82Cyzvu+8+vPzyywDsnxIqTVOtirvWs5L7MSAkqoO0Wi1++OEHeTuA2NhYqNVqT3fLLsKbq4zaGxDWYFfKSkvh6Pby8tQxK1NZFy5ciISEBKjVaoSGhqKgoADl5eV4/fXXHe6bI9lGRwNCb6+uWxuEjQwhAAhpDaGV51vaP69ecrFo0YoVKxyeXlvbazQtS/VH/PILGgNQ1PKek5YX859++im2bdtW6WLelwpBSTy1btdy25TVq1dj0aJF8Pf3x7lz5/Diiy8CAIYNG2Z1UKhVq1b46quv0LVrV2zZsgUPPPAAMjIyrAaPkuqmqVbFXetZyf1qZxdVIrLbmjVr0K9fP3z00UdIT0/HypUr0a9fv7q56bgV3jhFUFHNlFHTx1TTGVBnCthIGULL6pMAcP/992Pfvn3YsmUL3nnnHWzduhXp6em47777rJ6rqgIEjmQb5SmjdgaE0jqr4OBgLF26FJ07d/aq6rru8Omnn6JTp04YO3YsPvroI7Rp0wZdu3bF5s2bAVhfnyu9HqvadmL79u012Gv7ZWRkICEhAcOHDzdbZzZhwgSnz+nqPoTDhw83CwalrF1V02ulNZqWrAWRzhShsSSV6gdQcVGvUKAcgMGJLL8rpIv5JUuW4MUXX8TRo0exf/9+LFq0qFb7URc58pqoSStWrMDJkydx8uRJBAcHY8SIESguLparhVp666238OOPPyIjIwPTp09HXFwcNm/ejFWrVuH69ev4+eefcf36dQB/vX+3bt2KxMRELFq0CIsWLYJCocCiRYvkNZtVkdazNmnSRF7PGhAQwKIydQB/A0R1zHvvvYf9+/ebrQkoLy9H3759q5zuUlcIb64yaquoTC0GhOVO7C1mazsCU0FBQQgKCqr2XFWteXEk26iSAhM7ny9vr67rDtWNnlsrKiMFgNKUUauvzwkTgMhI4LXXavwxVMWdWzlI3D0AJU2vtTaFOT09HY888gjGjRuHBg0aYPr06dBoNFiwYAF69uwpB5H2Tq22NY3PkmWpfoUQ8AOwdMAAlx6rowVPaqo4jbP9cQfTQiqWa0YdUVfW7SqVSnlGwOTJkxETE4P4+Hg5qLOkVquRmpqK1NRU+dju3bsxfPjwSnvUFhQUYNOmTfj444+xevVqXLhwASkpKcjNzUWLFi0qTVO1pqbWs5LrGBAS1TFBQUFIT09Hv379AFRMxUhPT7d7w3FPky7Qans6kyuqyxCajsTXyQyhE4V8nNmrTso2lpSUID8/H2FhYRWvy927gfPnAZMLKvm5tLPKqLdX13WH6i64pYDQ9L0lZWCFcV2r1Yzsf/9b8a+HA8KqKj86zc1ZMuli2toU5mPHjuHOO+/EP/7xD8TFxeHYsWMIDg7Gww8/jL1798rnsJxavXr1asyfPx89e/bEzJkzq53GVx3pvaVysYKvowVPqruYd3WDeXcWYLG1Vm3MmDFYuHAhevbsidatW+PIkSPo1asX1qxZg6efflpeN2ePqtY9l5SUeGTd7pAhQ3D+/HkEBgYiMjISAwcORHR0tFnAVx1be9Q2a9YMrVq1wqxZswCg0vt35MiR1Z67ptazkusYEBLVMWvWrMHChQsxc+ZM6PV6+Pv7o0uXLt4zZdR40erqxUqtkgJCW0GsyQWrvoa31XAmILQnQ2gqIyPDpTUvlbKNUqbC5PlTSv+v5Wlt3qzaC27ja8N0rYc0WCGqyhDWEVVVfnSWPADl5M9bFsKQptda2ypi3bp1+Nvf/oYOHTogJiYGTZs2lduaspxavWLFCnz33XcYNmyYPI1v9erVNqfxVUcKCO3d4seZwR9Tppu8SwGUdN6jR49i9uzZ6NmzJwD7Nph3tT/2sJVtj4iIQGxsLJYtW4Zu3bph2rRpmDJlCg4dOoRt27Y5FBBWte7Zcs2/ZaVYy+yyu7z00ksA/npdZ2dno3379ti2bZvd57C1R62/v7/b379UdzAgJKpjIiMjrY6ieQ3pgtSLAkLpAstWQFibU0b1TmT7qrowfPfdd83bCoEVK1bgvvvuq9G96lQOFpWh6kfPpdeh0uS9ZZkhrMsBoTOVH6tlfPzKaoIrRwthWJvCvHr1avz+++8AIGd/ysvLYbD4rLOcWn3mzBmMGDECr7/+Ou67775qp/FVRyn9zu38Xbta8MTWVF8pgHN0g/naKMBiK9uuUCjQoUMHZGVlYfz48Th+/Dgee+wxXLt2TQ7w7VXV/pLHjh0za2tZKdZWdtlR1QXXzlQYfv/99/Hss88iPz/fbI/a7777zuGtWMh7MCAkquO+27sX6yZNwrvffw+FGzfurSnyiL0XBYTVbTthGtTYWyTF6a44cUFfVWXXd955B82bN0diYqI8nUupVOLee++tVEzDnWteFG7KEHpiXVFdJU8ZNXmdShlCQ1VTRusxOUiuJiB0dL82a1OYrV1Y+/n5YefOnWbHLKdWf/DBBxg3bpx8Me3oND7LqYl3Gn//Lx44gEN2/LxU8MTZwZ+qpvo6s8G8q/2xh61se8OGDZGSkoItW7YgIyMDFy9ehF6vx7lz57Br1y6H78Pedc+WlWJtZZcdVV1w7UyF4ZiYGOj1ehw6ZM+r6y+ufFbbu56Wak7dv7ok8nEnnngCK7KycNOFUcTaJE9r86KAUFHFlNExY8bUeIbQNMPgSobQ2iVxVlYWxo4diy+//BJqtRpJSUlo2rRppb3CLMuXW2OzCqaVtu7KEDq6WXR9Zm2wRVhMGfXGKr8uMT7+6i6rpf3amjdvLn/ZWwijOraKqgQFBSEqKgqzZ882y6w4Oo1Pmpq4a9cuHD16FIuKimAAUGrn79qykqrE3sEfaaqvZM6cOejTpw+Ki4uxaNEi3HHHHcjLywMAuzaYd6ayq6PeeOONSsGWWq3GpUuX0Lp1a6SmpmLnzp3Izs7G2bNnUV5eXmk/xeosX768UsbM1rrnSpViYT277KjqqptWV2G4W7dulb66du2Ko0ePOtwXez6rV69ejQ4dOuCee+7BwoUL5ePDhg1z+P7IvZghJKrjWhmzOn+eP4+GHu6LXaQpXF4UEMJgwDQAOSUliJw2TT4shMDBgweR3Lv3X01r4IJbr9fLo3OubDthLfhSKBQYPXo0Ro0ahbS0NAwdOhR//vlnpXb2jCTbrIIZGAjLHaTkjI2dr4PaWFfkreSRdysZQnkfQi/KEF6/fl3eY7W64KE6orr1v0a2BjzsKYThbo5O47Ocmvjqf/6DYQBKain4l6b6mu5xl5iYKAc4DzzwgBzgObPBvDPTGr2NZaVYwHp22VGW1U0l9gbXzkzfdeWzWtoWw9/fH2+99ZbL62nJfRgQEtVxAQEBAIBCJ9eb1DorlRDrOoXBgDQAc1QqtB4yxOy2b7/91uwiuyYCwvLyckjhmLsDQolSqURSUhLGjBljda9Be/aqs1kF09r9ORgQempjZ28gV1+sIkMILygqs3v3bsyePbtSOfu5c+eif//+Tp1TYWeG0F3cMYXZ0Wl8llMTH/L3x30lJXisln/XNXUx78y0xvrC0/vvOTJ9d86cOZgzZw7+/PNPREREQKFQmBURsuez2tFtMaj2MCAkquOkC2u9E/vTeUQ1WzjURUq9Ho8D+JtCUWlkddy4ccD+/fL3NZIhNJ2S6kwVUykItyM7pFQqER0d7fh9oIoqmFbaqhxcQ1gb64rqumpH3q1s6eJNGUJb5ezj4+MrBYSmlS2nTp0qV7acMGECPvzwQ7md9HhVtTQAZW1rBMtKpbZI7ewZfDFluZ5RaTCgH4DVXbo4dB5X1dTFvKPPhyusrVXLyMhAp06d3LZe2ZvWwzmyf+Jbb72FOXPmIDQ0FG+99Ra6detmVkTIns9qaVsMZ9fTUs1hQEhUx0nl1A1OrC3zCDuLPNQlCoMB8wB8b+W2yZMn4zuT9Zs1kiE0+d06s4ZQCghrurKr1SqYKhWs7SAlrSG0J0gFXJ/6VB9UmyWtKkPoBVVGbZWzt1aExO5N7KXPGyf7ZOvi3Vpw/vPPP+PGjRtmFUutVSp1tKKpo6TP1tpeLypdzDdv3hwKhcLmxXxdKARlOb1V2vuxS5cueP755+V2UtXl5ORkfPHFFw7tg2jrPuzdX1IKROuS5ORk3Lhxo9JxIQQKCwtx+vRpBAcHy++PiIgIlJaWArDvs1raFkPizLYYVDMYEBLVdcY//l4TEHrhGkL5AttWEFvDVUZNs79OXdBLgYKNvmm1Wvzwww/yuq3Y2NhK+2Q5S5SVWd0DTrpA96ZMsadVmyW1su2EvA+hF2QI33//faSmpiInJ8esnP37779fqa3dm9jbOWXU0Yt3a8F5y5Yt0a5dOyxatEg+Zq1SqaMVTR2ldHCwxVVLlixBamoqEhIS8Pe//x1AxcyA559/HuPGjat0Me/ODeadZWt666VLl/DSSy+ZrV3NycnB4sWLHc50OjKF1tb2P8nJyXYV9LJkbwbdUf7+/jYHpqKjo7Fo0SK0bdsWeXl5CAsLQ1FRES5cuOD0/fnC+lFvwYCQqI6Tpoc5lTnyAIU3ZgiNfbW57rGm1xAaR1gB50b9RRUZwjVr1mDFihXo2rWrvG7r5MmTeOaZZ9yyf5SuuBjWQktHp4ySHVlSa1u6SP+XLt6qCsANBnmtoSfExMRg06ZNdrW1exN7OwNCR9e/WQvOp06dittuuw3Nmzc3a2tZqVSqaBoeHl5lO0eYDurcLC/H34Bae29t3boVqamplfYbjIqKwttvv23Wtq4UgrI1vbVly5bIy8tDhw4dMGrUKIwcORIJCQn4+uuvHV6vbHofR44cwdNPP21zCq2t7X8aNnSuVJzdGXQHbd++HZs2bbI6MPXxxx9XygKGhITgnnvucfr+fHn9aF3jU9tOLFiwAF27dkVISAgiIiLw0EMP4ccffzRrM378eCgUCrOvHj16mLXRarWYNGkSwsPD0aBBAwwdOhSXLl0ya5OXl4ekpCRoNBpoNBokJSUhPz/frM2FCxfw4IMPokGDBggPD8fkyZNR5iUX/VR7FN6WIfTGgNB4EW2rzzVdVMb0d+vMGkI5CLdygfjee+9h//79ePPNNzFv3jwsX74c6enp+M9//uN8h02U3byJyiVqTAJCZgjdx0pFTen1YjAGhFW+Pr0oON+4caPVTbBLTQZPANgdEFoGCE899RTi4+OtVtwFrG/VkJycbLU8vmWl0uTk5ErBoLV29lqzZg369euHjz76COnp6fhMr0c/ADuvXnXqfI66efOm1f0GAeDgwYM4evSo/HXs2DF07dq1VvpVFWl6q2TgwIF499130bRpU7z99tv473//i/LycrOqy/asgZs2bZr8pVKp8NRTT2Hq1Kk4ePAgBgwYgHfffRe33XZbpZ+zd/sfe0kZ9BYtWmDDhg0oLCy0nkF3gqPbgriyBrQ2149S1XwqIExPT8ezzz6Lw4cPY+fOnSgvL0dcXBxu3rxp1m7w4MG4cuWK/PX111+b3f7CCy9g06ZNWL9+Pfbv348bN24gISFBLsEMAKNHj8apU6ewbds2bNu2DadOnTKbLqLX6zFkyBDcvHkT+/fvx/r16/HZZ59xYS1VIgeEzhQb8QRpyqiXBYSfAni0rKzyHnubN9f4lFFXA0IpCLcWfAUFBSE9PV3+XgiB9PR0BAYGOn4/1u66pATWLmmk3z+njLqP1ey78ZgwBoSVXp+m39fh9YXOkl5f1QWEtgIEaxfvdY3loM48lQrpADbXUkAoTZOVpgoCFVNqO3fuXOUeeJ700ksv2dz7cfjw4bjllluQlJSEzZs3Y/HixQDsWwOXlpaGIUOGYMiQIZg3bx5Gjx6NhIQE3HJLRWktW+vhpO1/Pvvss0qBqDNs7Q157Ngxp89pizNTWskLCR+Wm5srAIj09HT52GOPPSaGDRtm82fy8/OFv7+/WL9+vXzs999/F0qlUmzbtk0IIcTp06cFAHH48GG5zaFDhwQAkZ2dLYQQ4uuvvxZKpVL8/vvvcpuPP/5YBAQEiIKCArsfQ0FBgQDg0M+4i06nq/X79EX77rxTCEDs+8c/PN0Vu+xr314IQPyiUnm6K3Y7GRYmugHihJ+fyMnJEZGRkSI/P1+UlpaKe++9V6Q/8IAQFSsMxTnj+9ydzh85Ip8/c/Fih39+T5cuQgDiQEREpduuXLkinn/+edGrVy/RvXt3ce+994oXXnhBXLlyxeH76dq1a6Wvju3aCY2x76Z+UyqFAER627YO3w9Ztz82VghAnG7QQD6Wc+CAEIDYNnCgEID4cd068x8qKZFfW/r8/FrusX2ceS1Kvu3W7a/HV15u98+dOXPG6fusbQMGDBB79uyRv7+gVIpdgLjH5HVAVevXr59Tt1maOXOm+OOPPyodf/PNNx3qj16vN7v+q8vi4uKqvN2V9291PHmN62t8eg1hQUEBAFTaGHfv3r2IiIhAo0aN0KdPH7z22mvy9IgTJ05Ap9MhLi5Obh8dHY3Y2FgcPHgQgwYNwqFDh6DRaNC9e3e5TY8ePaDRaHDw4EG0adMGhw4dQmxsrFn590GDBkGr1eLEiRPo169fTT50p2VmZmL69OnIz8+Hn58fdDodwsPDMX/+fHTo0MHT3auXpBFw4SUZQoU3ZgiFQBCABgCaNGlivseen1+tZgidWUNY1ZTRyMhIq9VBnWGt2EDOoUNIMhY0MCVlbGqr8IVPqGLKqMJYJKjS69Pkc0NXUoIA4+u6LnGpCInJ49XrdFCq7NuR0NliFq4UaHJ2O4I1a9Zg4cKFmDlzJvR6PYTBgF4AXvZwJU9vUtVaNUfWsc2bN8/q8cmTJzvUH1e2/6lt1U3rrAtFhMh1PhsQCiGQkpKCe++9F7GxsfLx+Ph4PProo2jevDnOnTuHWbNm4YEHHsCJEycQEBCAnJwcqNXqSmsLmjRpIm/2nJOTIweQpiIiIszaNGnSxOz2sLAwqNVqq5tGS7RaLbQmFQkLCwsdf/AuSE5Oxrp169CsWTP52IULFzBmzBh89913tdoXXyFd7HvLlFFvDAiVBgM6AjAY+2y2x94ttwB//CG3rZF9CE2rjDrze66lvR+tFdooLy6GNEFM2qMQ4JTRmmDtvSUVm5ICQkN1AWEN97Eq1e6zaAfLPf9MX18GnQ6wcyq0M8Us7C3Q5Op2BJYsB3WuqlS41WDAPg8WCHJUeno65s2bh7vuuguDBw/G9OnTodFosGDBAvTs2bPG77+qoGb79u11YquMus4d71+qu3w2IHzuuefwv//9D/tNNpwGzBd9x8bGokuXLmjevDm2bt2Khx9+2Ob5hLGEtsT0/660sbRgwQLMnTvX5u01Ta/Xy5kTSWhoqNn6SXIv6SJQeEtRmVreKNodFELgDQCWf9bUajU2btyIfSYZsJouKuNMBlIaNLBZJdVNrFXB1JeWQlp5U15WBlVQEACTPy5e9Dqo66wFhPIAgpSlsnj96EtL5WxtuWVBllpW7T6LJuzey880Q+jAZ6QzxSyktXym20mUl5ejb9++ZgGhoxVNZVlZwGuvAevWAVVcB0ifrbWZfXd165rp06djw4YNyM/PR1xcHI4dO4bg4GA8/PDD2Guyz6un1EaWq6a2/7l8+TJ++ukntGjRolIhJndy5P1L3scnA8JJkyZh8+bN2LdvH5o2bVpl26ioKDRv3lweAYmMjERZWZm8B4skNzdX3gcmMjISf5hkFCRXr16Vs4KRkZE4cuSI2e15eXnQ6XSVMoemZsyYgZSUFPn7wsJCs2xdTVu4cCESEhKgVqsRGhqKgoIClJeX4/XXX6+1PvgalVQ0wlsyhHYWeahLpH29bAax1jYCdyPT361TU0ZrKUNYSVkZlKdPy9/qSksRYAwIPXHRWt9VFRDamjJadvMmgoz/15WU1Hwnq1DtPosm7N7Lz+Q1X9Nb80gFmqQlHcJGgSbLiqbt2rWzuR2BmeefB/bsAd5/H6hiaqlfLW/p4o6tawIDA9GsWTM0a9YMMTEx8rWXys4pvu5SE1kuezaYd/f2Pw8//DA+//xzvP/++1i3bh169eqF77//Hr169cLLL7/s7EOpkiPvX/I+PhUQCiEwadIkbNq0CXv37kXLli2r/Zlr167h4sWLiIqKAgB07twZ/v7+2LlzpzyCeeXKFWRlZeHf//43AKBnz54oKCjA0aNH5Q+fI0eOoKCgQA4ae/bsiddeew1XrlyRz71jxw4EBASgc+fONvsTEBCAgADPTfq5//77sW/fPpSUlCA/Px9hYWFuq1ZI1knrwpwJFDxB6q9XBYRS8GKrQW1uTO/MthNSoFDLAWHxtGlo9uab8ve6khLAeLEgryFkhtBtlFUFhMa/C5avT11xsRwQejpDWO0+iybs3ctPUYsBoeVaPn9/f3Tp0kWeYi6RKppK2ZoBAwYgKiqq+iriUraosLDqgND4b20NANmbGa1KZGSkPKVcmjZbXl4OQy1/Zrma5XJ2g3l3PIempOVCH3/8sdnAyX333ee2gHDMmDFIS0uTv3fk/Uvex6cCwmeffRbr1q3Dl19+iZCQEHmtnkajQVBQEG7cuIE5c+bgkUceQVRUFM6fP4+XXnoJ4eHh8htBo9FgwoQJSE1NxS233ILGjRtjypQp6NChAwYMGACgYvPdwYMHY+LEiXjvvfcAAE8++SQSEhLkPXzi4uLQrl07JCUlYdGiRbh+/TqmTJmCiRMnIjQ01APPjmOCgoIQFBRUfUNymRwQekuG0CQgNBgMZn8A6yrpAltnMODkyZOVp/SYrlOqg0VllFJRmVq+uDr12WcwLSdjGnDU9kWrL6hyyqgxI2UZEJr+TjwdEDrC1sW15V5+phnoml5nbW+BppdeeqnSMVvbEZgqFQKBQEVAWMV2GPJ7q5YyhPZmRquyfv36Ssf8/Pywc+dOt/XTHq5muZzdYN4dz6GpVq1a4auvvkLXrl2xZcsWPPDAA8jIyHCqaNG0adMqHRNC4ODBg071jbyTTwWEK1asAAD07dvX7PjKlSsxfvx4qFQqZGZmYvXq1cjPz0dUVBT69euHTz75xOxNtmzZMvj5+SExMRElJSXo378/Vq1aZTb1IS0tDZMnT5arkQ4dOhRvv/22fLtKpcLWrVuRnJyM3r17IygoCKNHj5b3wyGSqKQ/+l6SITSdMlpeXu6WNRI1TSkE1gB4E0Dvjz6qNKWnuWmGsKbXELoyZbSWs3F5FoU5TKckMiB0P+m5NAsIja8dlfHCslJAWFz81/9NMtH1RaWiMlZYZjrc5cCBA8jNzbWZOXHUsVOncB+A0txcBMbE2GwnvbdqawDI3syoMywzdTXN1SxXVlYWPv74Y2zYsAGJiYkYOXIkPvnkk2o3mHf3c/jWW29h+fLlyMjIwObNmxEWFobevXtj1apVDp8rLS0N69atq3T822+/dapv5J18KiCsbkF3UFCQXQvNAwMDsXz5cixfvtxmm8aNG1f7Rr/99tvx1VdfVXt/5NuU3rbthLG/fgB0Op3XBITvAdgEmE2BlKb0LDAYUAZAjVooKuNMQGglUKgNlr9b0wyUNDxW21nL+szqlFGpoJCNNYTlJkG6vh4GhKbZ+zn//jeCb73V7OaazHTce++98n24Q5Hx91Pyxx+wlTcy6HSQ51zU0nvLnVvXeDtpg/lRo0YhLS3N7g3m3f0cqtVqpKamVj8N2Q6PP/44YmJiKlXHry7IpfrFpwJCct3OnTsxc+ZMqFQqTJ48GaNGjQJQsWZi69atHu5d/SRnCL2kOIfSJEOo9ZKsptJgQBCAwwCkEk2mU3oUeXnQoSIgrPF9CJ04v7xus5aDLz+LghBSwGHQ61lltAZYK34kDRQppbXlFq+B+hYQWm4PYDpt8rOtW7F+w4ZKP1NTmY5gAK4unDDdjkFTWoqXAQTNmoUlzZpZ3Y5Br9XKASEHWzxHqVQiKSkJY8aMqXKrMG/grr0VybvV/cU9VKe88sor2L59O3bt2oWjR49i0qRJMBgMKDaZlkTu5Sf90feSDKHSYsqoN1ACWANgJ4DevXujR48euP/++/HVV19VZPoNBkjPfk1XGXVmHZS1zFFtsCzCI2UITR8Dp4y6j5wJNjkmPddKacqoxXvONCD0pjWEtlhmLUxfXyOHDEFMTAz69Olj9mVvpiMjIwMJCQkYPny4WVZxwoQJVtv/DKD63FDVpk+fjpUrV+If//gH3tRqsQXA22PHYsaMGVbbm07L9qb31qeffopOnTph7Nix+Oijj9CmTRt07doVmzdv9nTXXOJNG8wTVYUZQnKISqVCo0aNAABLly7FqlWrMGzYMNy4ccOzHavH5KyPg4FIeXl5ra/PAMyrjHpNQCgEIgG8BuDWAwf+ukGrBQIC8LPBAL1CAQhR89tOOJMhNL5G7F1D6K41VZb3JwUc+rKyWl/n5AuU1tYQWgaEFq8fg0kQ6E0ZQnu3B1AIAQMqguQpEyZUmvYG2J/pmDx5MlauXAk/Pz9MnToVhw8fRkpKCn799Ver7aPsOmvVTLdjuF2pRFO9HkXGapzWyO8xeNd7a8mSJThw4ACKiorQsWNHZGdnIzAwEAMGDMDQoUNr/P5rah2pJ9XUvobkmxgQkkM6duxoVk57/PjxaN68OZ555hnPdqwek6eH2RFcZWZmYvr06cjPz4efnx90Oh3Cw8Mxf/58dOjQoYZ7WkEKEpSo2KjcGyiFQBkq+ixVRjX89huULVpA9/nnUOr10NVgQGg6ZdSZ4kHWAgWg5qvHWU5RlQIO08DDU9tOZGRkYNasWfD398fUqVPlLX8mTJiADz/80CN9cpVp9l0iZQRtFpXx0imj9m4PoNTrUQYgEK5vO6FQKNCqVSsAwIYNGzBnzhxMnDjRpYGt6gIR0+0YFjdoABQWoriw0OZ2DHpjQFiKmg8I3fkeCgoKQnBwMIKDg9G/f39oNBoA7i8qU9VnXk0OkhYVFTlV4dOW6vrqzn0N8/Pz5YF+8l0MCMkh1grp9OvXD9nZ2S6dtz6O3rmLNGVUYcdFSXJyMtatW4dmzZrJxy5cuIAxY8bgu+++c6kf9v4xVZkUYNF5yRQ1lRDQKRRQCgG9Xg+lUokT27ahK4BfZ82quOg0lhiviaIyrm5ML10Y+lkEXzVdPU5lMb213CIgLDf2zRPBmaPZHm9QVYbQVkCoN3kPGrxkgAawf3sApV6PUlQEhK5uOxEREWE24DlnzhysXbsWa9asqdRWCGE2ZdrZwRfT7RjktYFarc3tGKQMYZlCUeODLfa+h0zXQQ4ePBjTp0+HRqPBggUL5HWQHTt2lANfqeBeWVkZbrnlFrf22fIz79dff8V7772Hq1ev4oEHHnB5kHT16tVYtGgR/P39kZiYiBdffBEAMGzYMHl/RWc5MqBb7b6Gzz0HNGsGTJ9e7fVVdHQ0evXqhREjRuDhhx+2mmWvCenp6Rg5ciRGjx5t83VDtYcBIdUq7nfjOPki347MlF6vl0deJaGhodA7mdVyJuOoNBhQplBALUSNbxTtLioAOoUCfsaA0N/fH2rjc1ZWWgqFXg+dUgno9TU+ZdSZ4kG2MoQ1XT1OaXEBbjAGgsL4ey9FRYZwkgeCs5rI9nia9PutKkNo+foxmGQFvWkNob3bA0ifNxDCakCYkZGBTp062XWfGzdurHRs7NixVjMu5eXlkDZdEUK4ZfDF3/j7NZSW2hx8k36HOqWyygyhO7Jh9r6Hpk+fjg0bNiA/Px9xcXE4duwYgoOD8fDDD2Pv3r0AYLXCplqttvqcu8LyM2/mzJnYsGEDNm3aJE8ddmWQdMWKFTh58iT8/f3x1ltvYcSIEVi9erXVSrP2BMqmHBnQtbav4ZgxY3Dx4sWK66x33qk4/uef1V5fde/eHatWrcLGjRsxYsQI+Pv7Y8SIEXjkkUfcFhxau/Zbu3Yt/P398Y9//MPm64ZqDwNCqlXc78ZxjgSECxcuREJCAtRqNUJDQ1FQUIDy8nK8/vrrTt23MxlHpRAoNwZP3rLvmVIIlKlUCDEY/gqejYWSdHo9lHp9xWNCLRSVcSJgUVkpNgLUfPU4lUXAL2UGdcbnTouKgNATwZkj2Z7a4mqmVGUwoBwWAaG0hjA4uOKAxXNalzOEDs0MOXgQ2LwZWLjQ7LBSr4fW+HmzZvNmRFy4IN8mhMCKFSuQnJxsc6N7Z2lLS+WA8M8//8Sjjz7q8uBLgPF9bKgicJfeY2VWAkJ3Lxmw9z1kug4yJiYGTZs2BQCb6yBrkuVnnjRIavqZ58ogqVKphL9x/9XJkycjJiYG8fHxuH79eqW29gTK1vpqylZfre1rmJGRgdWrV1dkXRctqmiYkFDt9ZVCoUDTpk3xwgsv4IUXXsDvv/+OjRs34tFHH0V6erqdz0zVrF377dixA35+fujQoYPHXzfEgJCc4MpCZu534zhp1NieKaP3338/9u3bh5KSEuTn5yMsLAyBUubACc5kHJVCoMx4geYta5ZUAEqVSvgBKDE+Nl1+PoCK4g0Kk4DQ1Wlp1kjnLAecyhBKAaGqltfr+VkGH9JUUeO6Na3xorWmgzNrgYUj2Z7a4uo0VqUQ0KJiOrZEzhA2bAgAUFi8Pk0DQk9l7N0yM2TQIODGDasBofR5k/bNN7jz0iUkJiZCYZzirVQq0dD43LiTtqAA0lnb3HYb9Dqd1SyYI4MvansCQmnKqFJZaUaAu5cM2PseioyMxN///nd8/PHH8rTJ8vJym+sg7eWOLKe7B0mHDBli9lk2cOBAREdHW90P0NFA2ZG+WtvXcNasWbj33nvNr6/sqLJ76dIls+9vu+02PP/883j++eflY45mOy1Zu/Zr27YtevToAQBufd2QcxgQkkNcXcjM/W4cJ41CKxwIFIKCghAU5OoOWc79MVUZDHLw5C1TRpVCQKdSwR/ADeMFdnlREQBAKJVQ6fUoM16YOLPGr1rGi3gt4FxAaGUqYW3wsww+jL9v6aJVa1yX6a7gzNunnLuaKVUZA0LTd7ZlQGi5PY0weQ96KkPojpkhN4VAAwC4eRNo0EA+bvp5s/n115GBiuc2MTERI0eOxCeffOLSgKOtKada44ARABzS6dDGyfOb7u37sE6HjqiY5mtrb185C69SyRWd5dvcvGTAGmvvwWbNmlV6j/v5+VVaB2nPYLK7s5zuHiR96aWXzL7Pzs5G+/btsW3btkptTQsG2RPwuNLXdevWQaVUVgRcFueXrq9sfX7q7BjkdDTbacnatZ/p+lmJtdcN1Q4GhOSQahcyk9vJAaEHRs2c+QOlFAI6Y/DkLVNGVai4wAJMgprCwoobFQqo9HpojdOERA08JtM1d85MSVWZVJ8UximatcHP8oJUKipjss7JnYUvvH3KuauZUpVxvZzSWO1WoVLJrx1Vw4bQA4BF0Ge6htBTAaE7ZoZcu3kTDQCI3FwoWraUjysNBvm9K8rLMXrcOIwaNQppaWkYOnQo/vzT/p0C3333XbPvq5pyqpM+HwCng0Hgr7191Wo1nmvYEJMAjCotRbGNzwH5PaZSVRqQcXc2zBpH3oOm2T17B5NrqjCauwZJLSUnJ9ssJuNswONMXxuOGYMpADB3Lgw3b/61fEAIwPj3wJXPz9qcFuyJ7bKIASE5yNpC5vT0dJdG3Mg2YTDI08MsR4Orcv36dXkUtnHjxi73w5E/UCqTgNBbMoR+MAkIpc3VjRlCZXk5lAYDyo2v8Rq5qNZqoQdQrlA4t+2EENChIiDU6/XV/kGNi4vDjh07nOqqKX/LAibG50aaMqpTqSpVPnWFt085dzVTqhJCXi+nKy6GOiQECq0WBgCBISEog3lGEKgbAaE7ZoZIr7SS3FwEmwSEKoNBzt7LezIqlUhKSsKYMWOQk5Nj93288847aN68uV1TTk0DQmvsHZgx3dt3jkKBPUJgWkYGyv72N6vt5WnZfn5QW7y33J0Ns8bZ96C9g8k1leV012eeJWk9oSNqIuCRdnIUQqDg0iXItXnLyoCAAACufX46mu0k78OAkBxibSFzly5d5DLS5F66khI5ILRnyuju3bsxe/ZshIeHy6OweXl5mDt3Lvr371+znTVSCYFSKbjyggyhMBgQAKDMOHVJrpR58yaAisIpKoMB5cY/qjWSIdRqUQZAr1A4NWXUTwiUGaukmq67SUxMrHxfQiAzM9PVLgMA1Ho9NgJIj4zE8pwcOeDQmwSElkGjKxwJLEyn4k2ePBmjRo0CAJtT8byBSgho/fwAvR5lN25AHRICaLXQAghu0AA6AMJi/ZlpgChqYP1rbZHyEIU5OQg2Oe5nMKDcxnRupVKJ6Ohou+8jKysLH3/8sV1TTnUFBWbfLwEwqawM2dnZeOqppwBUbKuwZMkS9O3b1+Z9mu7tqxYC4wEURUTgHeOAlCXp80nv719pDaHEngG83G+/RXCLFmhoElxbsvYemjdvntX3UHXBvb2Dya5mOav6zLt8+TJ++ukntGjRQs7Su2r79u1uOY8tjlTJBYCbBQUo+P13lAD4CUCL7Gy0uPtuAFV/flY3ndfd0zutDZjU5uwWqowBITnE2kJm5OcDwcHWmtutpkbvvJ2uuPivDKEdI3GzZ8/Gtm3bzDbILSwsRHx8fK0GhHovyhDqS0srMoRSQGjssxwQ6nRQGQzQG2+3zMC4gzBe1AuFwrkpo8bMUaBeb7Ye7dixY9izZ4/ZqLwQAklJSe7oNtQGA8Luvx9LVq4E7rjjr4tVacqonx+U5eUeCc5Mp+LNnDkTBw4cwJtvvoliYwVUb+QvBEr9/ICyMuiMr09RXIxSABqNBvmoXJDEUFb21z59XvB+tEW6WLl59arZcZUQckDo6uNTKBQYPXo0RhkMSNu/H0PT0mxOOdXfuGH2/VYA4wsKMHXqVKxatQpt2rRBbm4uhg8fjgMHDti8T9O9fQONAV7nwEBkZ2RYv19p0EWtthkQ2iPigQdwPjgYDY2vI2vsfQ99+umnWLBgAdq3b4+BAwdi/vz5CA0NxaxZszB0aEXuyt7BZFeznJafeU899RT+85//YODAgRg9ejR69eqF77//Hr169cLLL79s93mrlJUFtGoFuJiNdWTKsjUPA/hPbi7GTJgAfwC9AJxKSUHvBx6o8rG6UhvC3mznkiVLkJqaiv/973/ygMnFixexdu1aNG7c2KFBFKoZDAjJNeXlQFgYMGEC8P/+X7XNazpjUd/oTP7w2rOGUKlU4urVq2YB4dWrV80CAneoKoBXATAYp9HUREVOd9MWFcEPgN6YAZSCGYXxuVcZp4yKmgwIy8qgUygqpsU5mSEs9fNDqF4vF8UBgKlTpyIkJATh4eFm7Z977jkXe1xBbTAAgYHwNw4ICYuAsFylglIIjwRnplPxli5dilWrVmHYsGG4YXEh703UQqBErQaKi+WAUF9SglIAYX5+KIOVoKisDCWoCAhr4rXrDGcyAVKG0HKqpspggM743rVVnTMnJweRkZF235cyKQlJAMbo9TannOotMng3AWQcOoSioiK0aVOxqjAiIsLuz14hBORwoorfkzyDISDA6enYxdevIxhAi2ref/a+h5YsWYIDBw6gqKgIHTt2RHZ2NgIDAzFgwAA5ILQ6mFwFZ9f8WX7mlZeXV2Rf1WqzQPG+++5zT0AoBNChA9CrF2AS+JeUlGDSpEn497//XWnZhq2/n45MWbamEEDJn38i68IF5KFiG6Kbixdj8OTJVT7W2qgNsXXrVqSmppoNmNx77714+eWX0bBhQ4cGUahmMCAk10jlinftsqt5TWcs6hvpok8L+zKE77//PlJTU5GTkyNfdEVFReH999936v6dCeBVQsjZNG8oKqMzXtzoLdYIKozTHlXl5VAZDBD+/hVVQGtoDaFOoYBBoahUIc4efgAKVSr4wfw5tzWqPHLkSCc7ai5ACCAoCAppZNx439JFq87fH/5C1GhwZmtKlelUPAAYP348mjdvjmeeecbl+3SWPZmUqgQAcvAjZwhLSio2ZgegUygqTWkWxtdWuRAemzJqLTvgaCZAulixDAj9hIDeGDjobQQ448aNc2oGSlVTTi0zhO0AvLtiBdq2bYu8vDyEhYWhqKjI7jXcurIyOSC03DrElDyDITBQ3pJIYm8m/trp0wgG5MyxLdW9h6QpmAqFAsHBwQgODkb//v3lNYDVZY9++eUXhISEuG3zc6DyZ16rVq3w1VdfYciQIdiyZQseeOABZGRkmA2aukQahLCodLxv3z58+OGHOHjwIGJjY+XjVf39dGTKsjWtAHyzbRsaA9gC4AFUFIwpLi7GtWvXKvYntKI2akPcvHkTp0+fNhsw0el0KC8vhxDCqUEUci8GhOSaa9cq/rXzg6OmMxb1jVSco8TKJsTWxMTEYNOmTW67f2cCeH8hYLCYflmXlUkBofGiUgpmlMY/9P56fcVIvJ9fxRqtGnhMirIylCsU0CsUVV4M2uInhFxYo7y2pkQKgWAYN0Q3vv+FRUBYFhAAf4PBqeBMlJVBf/Ys/Nq3l485MqXKdCqepF+/fsjOznb4obqLPZkUm8rLKwJ+4+tU/j2XlEBnfH+WKxRyUC7T6VCuUEALQFHF/nY1yVp2wNFMgJQhLK8iIHzsvffQwGIKshACZ8+etbuvQq+HPblLy4BwJYCTjz+Oex59VD4WEhKCL7/80q77LS0o+Gu9uE5nM6spT8sODq7I+ppkW+3NxJf88QeA6repsfYeWr58ObKzs/H+++9j3bp16NWrF/744w/MmzcPs2bNkqeAlpWV2QxAAMBgMODjVq3QsH17vJCVVU1PnPfWW29h+fLlyMjIwObNmxEWFobevXtj1apVbjm//to1q89jg9xctADwaNOmeFzaJB5V//2Upyw7WSX3LQBTfvgBJQCmAwgDELN9O+acPIkPu3ZFi4ULrQ5IPffcc/jyyy+rnM7r6rT/du3aYdGiRWYDJnfeeSf27duHAQMGODWIQu7FgJBcor1yBQEAivV6s4X+ttR0xqK+kQLCUjcX57CXwwG8EAiCSXDlBVNGpQyhME57lC64/Iz/+uv1FRlCY0Bouc+bW5SVQadUokylgtKJ8wcCKA0IAIqKbGZJ3M1QWgoljAGhVHzAIiDUBwdDLYRTwdnJ//s/dN69G+WFhfAzjua7OqXK04KCgpzKpACAoaQESgDlxj345ICwtBRlxiJO5UplpQy2oqwMWikg9NAAjbXsgKOZAKmWY7nFVE1/IWAwvndvlpbi+4MHKz2fAwcOtL+vubmwfDVZC84MVtbelTpw8W6pzCTQVZSX28xq6qX71WgqMsY6nVz8w95MfGluLgDAmTxMobGf0ib0SqUS8+fPx3333YdZs2bJ7dRqtdWqupKiwkLMBIAffjA77moW3ZJarUZqaqrVjePdoejiRTSycrz8558xFcBtFy+iefPmZrdVNwDuaJXcMq0WagBqAAOM1WnfMt52pHVrdN+xA73Pn0d8FQNS1W3p4eq0/5UrV1Y6Zq0YoSODKORezMuSS67++CMA4MLlyx7uSf0kBYTF/v4V67VqWXJycqVgELAdwIuysorRUuMFujcUlZGn3knr4IwBmcrYd7Vej0CDAfqAgIoMTA0EhAqdDuVKZcW+fQ5Os5WK4miNWTqpwmdVrF5k5OYC48f/NQWqGlpjlUVlcDCgVKIMkIMRg7EPBmNA6IzSo0cBAH8a/wUqplSNHTsWX375JdRqNZKSktC0aVOv2XaiY8eOcvl8ezMpEq3xQlwY31tSQKg0CQhLlUo5sy1RlpZCq1SiTKFw+LXlLpbZAQAOZQIMOh2kregtM3OBQsBgDKyf7NwZRVaqc86cOdPuvhZJyyDw156g1l5fBivTncuMj80uV64AZWXo1q0bunXrhoHDhqEbgK4A/pGTg6Mmr3tTUoZU0bgxAgFoTX7fUiZeMn78eKSkpFR6TsqMgasz70xpCmbXrl2xZcsWFBUVYd++fQ5PwSwweZ6BikDTYDDIWfQlS5bgxRdfxNGjR7F//34sMsmyOcPa68Idblg8Dknpn38iGcCtVm6zdwDc3iq5RSaf59cuXMBjJrdpf/4ZQMWAijQg1aRJE3lAKiAgwOqA1PXhw1FgUpVUGmwIDg7G0qVL0blzZ69fk03mGBCSS25euFDxH5YKrhFlxj9iWrXa6QtrwEYAUAPKjEGCwnhx4A0BYbk04m680JamhPpLAaEQCBYChqCgmg8I/fygdPA50+bnAwB0UobTjoDQagD1n/8AH31k93pgOSA0ZqzMAg5jsFKu0VSsM3RCifEzJe9//5OPSVOqPvvsM5SXlzs8pQqovfeCNW+88UaljZyrzKQsXQr07g3gr+cbxveWFBAG3LyJG8YiTjf8/KC2HLEvLYXWzw9lSqVT05HdYeXKlVi5ciX++9//IiysYoc0RzIBJSa/Y7PMnF6PQACqsDAYANwfFSWf31SfPn3sup9u3bph8Jgx6AZUBGdduqBr165WgzPDzZuwzBHqrASEVl9vJSVAdDQwYwaKiopw8OBBfL58OY4C2K5QYK1Gg65du1rtoxQQ+91aEWqUmVyQL1++vNJ2CtYy8brr162e2x5vvfUW/ve//yEjIwPTp09HXFwcNm/e7PAUzJumgbcQ0Gg0mD59ukNBizWrV69Ghw4dcM8992DhwoXy8WHDhjnUP3sV2xgMLzdOy9XWwsyem1euyP8vO38enQEU3XMPAEBhvEYzwIEBKSHQ+IsvoJk9Wz5k72ADeS8GhOSSUuOHYbADH3parRYnT57Erl27cPLkSZR5QdDgKWXGP9wlwcEIcCFDWFsZlBJjf5WhoQC8Y98zqZKrFMRKlQrVxr4HGAwIEgKKhg1rNiBUqVDu5weVg+cvNV6ElktBuElAKGUfTL9sXeCWGKfv6Y0XMtWRgn9/YyBdplDIUxLFjRvQA1BoNBVT/QwGh9/30nqqYisX1NKUqs2bN+OLL76wq78Sb8kmAgBSUyuKVWi18uCQwpgNk6YGq2/cgNYYlJeo1fC3GBBQlpZC5+cHnVIpZ729TanJVhPCJCCUgiNVaCjKUHkPRgB46aWX8M0339h1P0VFRfgoJQVHARwF8NUHH+DYsWPo2rUr8vPz0b59e3z77bcAKjKEpRYDodYCQmuvt3LjlhI39+zB/PnzUVRUBK3xs7PQzw9Kvd5mVtNw40ZFkTHj+73MYk2lPfTGfipQsQ+rLdaCK7VajV27dmHnzp3Izs7GoUOHsHjxYquFYaoafCn+/Xf5/4WFhXgawK7333cpiw4AK1aswMmTJ3Hy5EkEBwdjxIgRKC4uhrAYmHLXwFCprfMYX7MKOwboqlNd0FVi0oeQixcBAGL+fABAYG4uclCRDbZ3QEprsbULYP9gg6OsPTZPDtr5Mq4hJJdIo2CBdgaErux344uki4SykBCoTUYBbenWrVulY44WVbCHrYIHUnCiMk4Fs3aBVteUGzNs/sapOdJFnbq8HMWAPFVNFRqKMoXCqTV+1fE3ZnH0fn5yIGovrbG/QgpoTS5AioqKkJmZadeaqoNbt6I/gIunTqGFPfdrLCilNAYopgGhvrAQNwEEGtczrf7vf/Gf//7Xofe9NACis3JxIqlqSlVtvRdqRW6ufOEvZ4aMv/eg4mKUG4/pgoPhb7G2TaXVQufvj7Ly8hp57daGEtOA0OT1XXLtGhoCUIWEVOzjafF58/vvv+PCggV4b80axBsvlKsyf/58/HnsmPy9lHmZOXMmfszMxFOnT2PDiy+i35EjFfs/KhQV2w6gIqOY//nnmGOS0bb1evv54EG0BXDp0iUMHz4cAHDB+H7K9PdHy/Jym1lNUVyMEoUCSuM67TInMjQG42eeCkBpYaH8PrUkBVf+/v546623MGLECKxevbpScGXq+rVraGwM3qqq7lpq8vfs59OnsQLAxaIiNLOyNUV16xFNKZVK+Bsz5pMnT0a7du0QHx+P6xZZUWcrz1oqM67HBIDd33yD5e+9h40bN0Il/R2x8jewqKjI6hTb1atXY9GiRfD390diYiJefPFFABXZzT179tjsQ4nJIF648XXUoG1blADQFBVhHIBPHZip8WdWFm4z/t9dm8U78tjc9bshxzAgJJcI44dPkMneZ1Wpjf1u6hMpOClv1MiuqXeOBACusPWBXWq80FA2aVLxrxdsAq41/kEPbdcOAFBmfE0H6PW4qlSiuTEw8QsNxU2VqlIGxh38S0txMzAQQqWCn4NBtJSpk9ZRme7FJmUfLKfRzZgxo9If+gDjBVORNA28GtJFSJDxd61TKP5aQ1hUhJsA/IzZw/c++AD7Dx1y6H2vkYJLqZKxg2rrveAorVaLH374AdevX0fjxo0RGxsrFwWxxXD5MsqMQVED4+u0JCcHEALhpaU4bfwdaDUaaCyeL1VZGUrUaujKyjwaEDrzuOWfNZ0WbPKZIgWE/hoNtFYqrOaeO4e1AH63sc7L0vDhw7Fv9275+x9OncIdDz6IPn36YM+iRZgM4NC5c8Y7L4FWpZK3iSkCsLBLFzxs8blo7fV203gO0/eq9Lkzt7wcH1d1AW4MRAOM7/cSO9YtWgYgwiSreDMnx2ZAaBlcxcTEWA2upMEXXWkpVJmZKLrlFoS2bFnl4Eu5SSB1cdcudAbQzIVlEZIhQ4aYVTR+6aWXUFJSggsXLsj9dOfAULnJa3PJyy8jOyMDR44cgX9hIVYDePX6dYTec49dAZ4zATjw15rQbgBKy8oQAEAxYgTKAUCrxa8AQgHodTqo/P1tngcAvv/vfxH65JPy90V//onQW62thHSMtcd2/vx5/PTTT+jWsaNcmMxrB+3qAU4ZJZeojBejDYSocuqJRNrvRlIT+93UJ3rpYt9YQKA6UgBgyZGiCqYcmXII/JW1UBizhyovCAilEd7wjh0rvjc+hmCDAddMNkb2DwtDqb8/VFaqC7pKrdVCFxQEg78/VHYOrkjkdZtSVtZkTdHw4cPNg0EhIHJz0b9//0qV7hoaXzc6kwu1qkgBYYOoKABAqb8/FMZziBs3KgqcGJ+/AD8/h9/3YcbnwWBxwWvv1FN3vxfcYc2aNejXrx8++ugjpKenY+XKlejXr5/VanumxX2unT4tT7ELi42FHkDZ1av43+7dCBECjY3rzW5ERaGJVmsWNKnLyqBXq6FTqeDnoSmjDj1uK3TGYCkXMCuMU2I8rtZocFOphNKiwMUNY7auclks28pMLvDnmayLKzVOjQs02ae0zGT63UyFAsVWpm9ae71pjb9LjcnvQxr8U6rVCK7iM0DcuAGtSoUg40V6sUl2yN71cwqT94W1KdkSKbiSDBw4EO+++y6ioqLM3oOFhYU4ePAgVj39NI4D+FSnk6fa2lJukvUtNu7h545X50svvWQ2tbGoqAgZGRkoKCjA0aNHcfTo0Wr75gjTz6fRv/6KXwHk79uHwBs3sALA535+1U5flVgG4E8//TTi4+OrXSctvWYLAZwE8LVajaPHjmGzUomTqChUpARQZDJN15Tp5+Qfs2ahpcmMr1yLKrCW5Omdb70FrFtns53lY3vqqadw+vRpROp0OPr99zi6d6/bfzfkGGYIySUBN26gBEAQKipdhVRTEWvNmjVYuHBhlfvd0F/KCwpgAICwMATDuEeWxRoAU9L0I0v2FlWw5GiWpdQ4Eh/Yti0AQFkDwZO76a9fhxbArW3aQI+K9TXlpf+/vfuOr6q+Hz/+OufO3OyQBYRAUJApIPIFxFErUkfrqFWrVWltv9ovtmodbbVf6/i1zvqt1opaB1qts4qgogwFKiCojLBnWCEJIfPucc75/P64wwQCBBkB8n4+HnkkOXeczz2f8zn3vD8zTJ5SlBcVQUUFAFr37oTdbrIOw2dyRaOYHg/KMHAfaECY+EJ2JI55ZF9jAJ9/Hu3GG/kVsGDiRHj66dRD6cmbgnbOlJicuj6rpASAoNuNPfEeus9HwG6HRMvD07/7Hc/tZ52rlpRpkpeoYNKSk6lwYF3Ody8La9eupV+/ft+6LBwKB9JDwtqxI1VjW7dyJaHETWRO7974dZ1P332Xpe+8w8fA0MQ4Nb1/f/jsM9T69WiJCo7McJht3bqhh0Jkd1AX7oPtGRJLnNO1DkerWVSTgZWja1d8Tid6oodCUjjR0uCi/V3fjBYtrHqLG2OVCIxsif3bAwHCDgd/DocpAc53OFjQIm37Ot+sRJnNj0bjLYy6nuq6/thpp5Gxj+5ytsZG/C4X+d3jnfoiLQK69rYw2fx+LOJBQmgfFUB33313q//Xrl3LkiVL8Pv9vPLKK2S53TR98AFEo7z44osMSiy4nlwXc1+VL6pFK6NzzZr4Z+GbscO721s3y/158I478H3+ObmJRdeTDlXFUMvr04jE37Fly0hPLBOTkziH9tXCmrR76+bYsWPp2rXrfpfMSAbXt9vt+AyD5vR0CiDVgp3MxUnPPcdLH364z26bGbuVkYb16+E739nrvlO9hW65Jb7h6qvb9dnOPfdcHnroIabeeisAzeXlZI8eDXRspV1nJgGhOCgZwSAVbjcDw2Ea163bb0BYXFzME22MERBts6qqaNB1tMSAff/27WTuNrB7n9atg6VLIbGI7IHaW5fDvV2wQ1u3ApDXvz8BwHYYulceaqq2liZdp8hup5H4jUrDhg0UAsYJJ6QCwi5DhrDD48H1LSZx2J+MWAwrI4OoaZJ9gEsDBBLHvGvixjO6rwH5c+YA8BSwe51zTiKv7C1ucPYlVluLCWQlynzE48GVaJlKa2ig3u3GmXgsKxA4oHIf2LEjtRacrUWrz8EEFhMmTNjnOJwjIdlD4uzEzem+WkqbVq8muSiDb8MGYh4PESC3e3fqsrMpbmzk5tJSYoZB2qBBAOSNGQNPP82uGTMoTASE2dEoVn4+0XAY9z7GYx5OB/K52xKpqsIEGjIzyWxRIeNPTKmf178/O9xu7LuVTTNRNgAC9fVktLGEzu70hgaqHA66xWI82iKYsycmUCtMtOq5vF6CGRn0euYZNm3aROSRR1p1kd/X+aYnWzYBa9cu9KIiYjU1hAC9sJBMwDIM9DZm1nR5vQQyMuhVWgp8M44f2j9+zun1stVmo8w0W3fH3Y8JEyYQjUZTZdD4+GPsjz5K6KKLOPfVV/mTywVAVeI47LPypUXgXZgYT+gBXnzhBZ548skDHke3N5f88Y9oVVVgmpC4bvh8Ps4444wDfq+22Hw+ttlslJomJyU3btpEVjTKhUCDaVKa2HzuuefSrVu3vQZ4uwfgAAMHDuSTTz7ZZxqsnTtp0DRGp6eT29zM1kRFXMhuh1iMbm43hMO88s47LFmzZp8VBlm7Var4Et9/+xqTHWlqwpXcFo2itdEVvK3KhVtuuYVbEgFhzRdfUJ2b2+GVdp2ZdBkV31rU76dbLEb1iScC4F+//oDfIxQK8V9Dh/LwQw8d6uQdF/SaGurdbjyJILAxse5ju516Klx1FXzLIGaPLocJe7tgm9u30wRkFRbSoOu4D2Rdrg7i3LKFqsQsjdVpaWgbNlC9eDEAuRdckHpe6cCB+HJzKTrE6y6pcJhCw8AsKUErLo53lTyAsTSR7dsJAr2GDydE665Yu6tKzG4I8W50ydn8MAzyEn8729kCalRUUGOzYU98+Zs5OaQnjk1GQwPhvDzy+vYFwJu4cU+prIQHHthjzFeSL9Gy00C8JSbpYLqcO/YzduZIePXVV5kyZQpjxoxh1KhRnHnmmXz44YdttpTWr1wJwHYgum0b0RUr2O50YrPbKRg7lhu6dOG8+nocP/1patmfMd//Pl9oGt7EItDK5yPbsrCXlGDl5JDRQS2Ee/vczz//PE273YC2xdi5kybAKCwkvcX5ENm4kSBQ1Lcv4czMVLfnJFuLLnINiTK9P87GRhrT0vADZl0dkcceg40byUgEToVK4auvxxMMEsvO5ic/+Ql//OMfCbtcqQoR2Pf5ltbYSHKkbnOidUxVV1PncOAsKUEH6hLbd5fh8xHLycGTbCFsMT5y9y6eY8eOZeLEiXTv3r3Ve3h8PmqTs5QeQCWBw+FoVQY3T5mCAl778kvcbjf2RFoeaUfXZFd9PVsSS+X0SzzfBjzz1FPtmiW0XZSKB4MAiXGbVdu384+sLF65+ebU08LhcGp9zAPl8vupTsyqnZRWVUUXw+A6p5PBQCxxnVu7dm27AryUWAzzJz9BzZ+/z6dpdXU0OxwEkuv/JoZs+BPjTLeXlcWfaBj77ZLaLRhk9uDBVCbG0ga3bQPDwLd9OwtmzEh1u23ZvXN7i3G3VXsZTrK7CRMmtFpOprm8nAkTJrTrteLwkBbCo8DEiRN57LHHqK6uZuDAgTzxxBMHXHu1oFcv3LqOIzExBTYbIcPA0nWihoGp63gyM3FnZKA7HIRNE6fbTcQ0cWdkYAAmYADu9HTyCgvBbsfUNGKWhd3lwunxgMNBbV0d0WAQFi7kPCD7+uuJ3HYbsZdfJjh4MH5dR3k8OLKySMvIwJWeTsQw0Ox2nC4XmqahaRpKKd544AGmlpfzeXk50dtvb/ckA51F7vbtNOXnk3tSvO7RW14O3/te+14cDkMyeFmwAM477+ATNGcOfPYZ3HsvtNF1NW3xYjamp3OqplGZkUHW7oHAUSQWi7Fw9mxO2rqVFSefDMCuE09kwMqVzHroIYYAQ669lnunTCGYmcljHg/RwYPJKy/HXLwY2/DhhyQdVTNm0B3IOOUUQjt34gDCq1fjHjiwXa+3rVrFFpeLAXY7W3Qde4sbwlaUImu3wfo7Vq2i9OSTCaxZQzpQbrOR286gQa+ooCEzMzUbnXPYME5YtYqXJkxgvN/PsrPOoqh/f3YBsRYzNwLsuOIKun/xBb4TTiDzJz/Z472bysvpCqxPTyejxU32wXQ5nz59ers+1+F0ID0k6srL6QHsysujobycfoB/yBAA9F/9CvcHH8DAgZBoQYH42n6rRo/mFwsWcL3HQ15ODn8Bss4+m4ZgkOIlSzCamrDvZRKRw2Vvn/ucoUOpWLOGzftpFbdXVlLlcGDl55ObqHhUSqHPn89aj4dTnE6CvXvTc+5cVDCIlgg03FVVbNN1Si2LwIoV7bp2epqaCGRmUhcO0+ezz3BNm8b6N94g1+dju9NJj2iUXcuWURQKUZUYPwvQlJVFXovgdl/nW57Xy7q8PEobGmhatYrc73wHW3U13owMchItu7WLFlE4eHDqNdFolDt+/WseCYdZecopaE4n2xwObC0qCdvbwpQTDlPZvz9mUxOxFq2o+zN9+nRqampSZdC3bBnZQN+6Ol577TVqEhMepQPN9fVk72OpiPTmZnbm5FASDFIINOo6uZaFFYm0q5WzPdTmzSQ7QNbMnMkbb75J3/p6bgc+f/FF+PvfAfjFz3/OtHfeYfOuXWQngqj2yvX5WH3CCamu9ibQfedOcoB1PXtSsmEDNStW0P3UUw+4l0LNv/5F8euvU7VoEd328V1q37ULb3p6PADcsQM9cd4Ehw2Djz/GPn48/P73jOrWbZ9dUpu3biVPKZxnn03J2WcT1jRiVVUEn3+eB2tqqP7Tn+jxl7+k9lvx5z/z06oqamfP5sTEtsr58+l++un7/WwOh4PKuXPpk/g/tm4djgM89uLQkoCwg7311lvceuutTJw4kTFjxvDcc89x/vnns3r1akpLS/f/BglOXSfX6cQMh9FNE92yyLYsNMvCikbRlcKp6yjDwKlp6EqhK4WdeK2cPfFj2+33vkSAhUOHMurWW5n8/PNcunAhjBmDp43nJqfmaBl4GsD4xL4uBypdLqIOB2HAstlQmoal6/EA124nphSWrhMxDNwZGQTCYXSHA0vXwW5Hs9sJRqM43G50pxPN4aBm1y66FBWhO53YXS5sLhea3Y7mcMR/7HY0pxPd4Yi/l82GYVlYgM3hIGaa2J1OnG43plK40tKIGga2xGsdLheazYapFBlZWVhAKBJBaRp5+fnxzwCYSmFpGrFEtxWbw0E4Go3/hEJEAwFifj9Rv5+6ykoCa9fSdfVqrgyFWPDzn9Pr7LPZpGm4/vQnZm3ZQpfRo+lSVkbXE08kArjcbhxOZ7ylQNOwlEJNnUoyZItOn47ze99LtSR8G6qpiegFF+AKhagqKCA0bhyVGzawY/Vqdnz+OQX/+Q8/9XqZmhi7VTlmDJd//DFrb7iBrOuuw9OvH9lduhySKay/jWAwyBdffEGgqYn1n37Khn//m2t27SJT0xj01FMAnPSPf+A4/XSuWr+eTQMHckKXLtyfWHcMoM/NN1Px2ms4zzuP6EMPUXTJJaS3oxtaS5Zl4ff7mfbRR2z88EPOffdd7JrGyTfcQN22bfj+9jd2XHMNJ8yYgT0/f4/jpZSioqKCBfPm0Th5MuPXruXr4cMZAKwvLmbk4sWE1q4lLTGmMCm8dCkZpsmT3/kOZ154IcPuvJOqGTMoPflktn/8Mf2Arf36MXDVKgyfD/tu43UMw6CiooJ5n3/OiokTeaCmho0XXZR6fPD99xN76y2uf+YZttlsnPLgg+Tk5vJ+fj7f+eQT6ubOpcuZZ6LFYmQkapG3PP00g9sICANffUUYaBw4kL5ffx1vMdW0g+pyvnnzZlauXMkPfvCDb/X6w2HVqlWsXr2ayy+/PLUtGAyyYsUKgrNmUeHx0POyyzjl+ecxNA0zcQPLmWdCQwO43XuU6WtnzWLl8OG8tGYNhEIsKShgxPjxrMnPh/ffZ+W11zL0/ffbrNA5kjbPmcN75eWEgI1Ll3LisGFtPk9ZFrkbN7IlLw/nsGEUzJvHH0eORFu/nvubmliQGD/Z5YYbcM+Zw7If/YghU6agOxx0q61lfa9eFFZUEN5tcoyZM2dSV1fHVVddldoWi0YpbWpiw+DBNBgGpyS6Y3ZftgyHUiweNIgeK1cyf/x4rlWK7Bbj0pq6dGFIZWW8a6LNRuM77xCZNo3if/yDwOzZxG6/nazJk4nm5tItFmPVqFFY06axZcECvs7MZGRVFTUjRzJo7FhCQMPbb8MvfoFlWSxevJjf/fa3jJozhzTglEQlwIaePTl5xQpC1dWktQhOvzl4CvW3v8GgQWjnnAOA0dhI91iMNSefTNXKlVibNrU/07ZupXjBAp74619B09iclUUZEDEM7NnZaF4vqzIymOH3s27+fLJbXB921625mTX9+rGjvp6ekQhr+vThtHXr+K/Cwm81jq7N5L7/fmoJnZq77uLmpiaS7ak9IxFMw0BZFle//jpPA5+89hpX3nRTu99fhUIUhcOs7tUL/6pVZADr+/dnULLV9+yzYcMGGhYvpvuppx5wL4Xtr75KMWDbujV1DdxdLBajYOdOGgcOpNcf/sCaCRPo99vfAvCdDz5g05IlnDV8OA133cXVHs8eawm2rDDY+tFHnAzkjRoFmkajy4W9poZ1Tz7JpcCat9+GRECoYjF6/+//0htYtmMHPk0jXSkad6v825vp06ez4Pbb6QOsdrtxVFYyfeFCdm7cSEFZGXoHX586I019q3Z4caiMHDmSU045hWeeeSa1rX///lxyySU81I5ulF6vl+zsbJqbm8nardtCexiGgWEY2O12bDYbkUgEr9eLYRiEQyF8TU1kZ2QQaG5Gtywcuk5+Tg45eXmQl5fqk2+aJuWffUbl3LlogQAFHg96JELA60UZBnaguaEBj9OJZpqY0Sh2oLBnT0665x5WTZxI46xZhJqayHQ40EwTzTRRpokZicQXAzdNHJqGphQqFsNls6GZJnZNQ8ViKMNAMwywLNx2O7plpfadCnSVwtbi9+5B8NGkNj2dmiuvZPDzz6PpOp/95S90u+su+h3ApCPzgLXAL4gH4mFNwyC+SK2lFCoZQFpW6m8FmImJDnRNw2WaeIhPzOBL/LQ1UtTvcLDlyisZ8PLL6DYb9bW1fNavHz9sbEwd25CmEbTZMDQNK/Fjahoq8dsEjMQXn5748tM0DY34IspmostL8n+l1DfPg9QU8EopzORxUgrLMPAoRRakxqYB+MrKsD/zDGktWw5qa4ktXozj7LPjN9y7efL66xk3aRL9E//v0jSaHA4sux3ldGImAnLdZkPXNEzTjB9fpeIzYkYi5CpFIfGpwJvT0mj8xz/olRgD98wZZ/DzefOwAzt0Hb/TSRDiFR+JteQ8SlEGuIFNBQUUfPUVWT17suCtt+j54x9TDGxzOKjRdRyZmaBpdG1sJM0waFyxgrITT6QpPZ2ArlOTlUWvpiYadB3/pEkMv/Za1qenU52bS9QwcOg6ps+HHgiQYVn0AXKAnb16Ubh4cWp2UwDWr8c3bRraRReR0bs3AJ+8/DJlP/sZJwFbNA3TbueEWIxZwEhg6aBBqLQ0TKUwAwFsfj8nV1ayJisL9etfc+af/sSyE08k3Ls3yu1GuVw4dB0rEqFi7VpqKivpe9ppFJSUgKaR5najAH8ggN1uxzRNoobB+5Mn4/P7OeOMM+jfvz92uz1+HiXWkotFo0QiETRAT/RiSJ5nyV4N4WAQXddJ93iIxmJgWRixGLquY9N1NOIBv2kYWJaFlcj75G/V4v9YLMZXCxbgtiyKevbEMk0ympooCgQoVYoTgDU33ED/hx6Cp56CsWNhzJg2Sl4blILPP4empnjPAKcTpRT/LCtj/NatNGgaWzIyCGVkoOfmEnU6UXY7jowM7G433lCIjLw8SJzPmq7jdLmw6zqmZaFrGn6fD4/Hg81mix9nw8Cm69jtdpRlodtsxBLHyDTN+HGy2XDY7UQbG+k5dSo5loUdWFxcTGjkSDAMVDiMCoXw1tbiaGqiV0MDJ1kWH910E2ffcw/NJ55I10TPhx0XXkj3qVNT30PvDBrE5atWUQc02u30MQzm//735D3+OE5No/q009Czs/GFQnw4YwYmcMqAARRlZaH8fvK2bOF0v59NkybRuGQJpz71FO+XlHBJoivklo8+wnHFFXQPBNiSnU1JdTX2xEy6cx57jDN++1vWuN14e/Rg5IYN2IDlZWX03LqVbMuiIj2depeLEQ0NbJw2Ddtll5EdCmEmrkv+mTMpGDuW2QMHcsbq1XzudFKrFLZYjGE2GyeYJtx1FyQWHV/+/vv0uPRSYrrOur59sU44gYyePYk6nXhcLqxFixiWGDf8+XXXEfB6yV60iNHV1Sx7913qb7yRk5ub2XXzzdh790bLysLudmNzudBdrng+JiqWI7t2kX/rrWR6vaz/8Y9pLChgROL4/LCykuX9+3PymjV8cs01nPPaa6zNzyft8suJjhxJTCkMwyDk9dK0YQPulSsZO28eC++5h8a33+b8desof/ZZCidMYEdBAd2ffhpHYSFp+fmk5eRA4hzUdB0FRKJR3B5PqvIzFA4TDofx2O0QiRBoaMAIBNjxi19QXFHBJoeDM1t0Y23QNPKUYvFdd2HNm8eIzz8H4K3u3bly+XJwuVBKYSkVL69KYcViNFRXU1VRQe22bfgrKkibMYOL1qxh8aRJNK5cSeayZXS56CJOvOUWmjQN165dGPn5lPfuTde//IWMkhIipokrO5u0bt1YtXo1TqeTIUOGEAwGcbvdRCMRvNXV+LZvx37BBeRHo2QDq558krTRo8Gy2LByJTs2bqR5+XLSvviCXzY2svnRRym78869XhK+LCqisKGByttvh969ceTksHnZMgLV1XQfOZLorl2kP/UUI+rq8ASD2N1uvuzdm5LEuauIjzFb/uKLuEtLqX70Uc6fOTP1/l+XlJBbX091ejrDVqwgvagIlbh2KqUIhUJomobdbqe5vp7KF16g+P77iQAVAwZw0ooVrL/6ak7717+Ye+KJnFFejtPtxuv1kpub+63vcUX7SUDYgaLRKB6Ph3feeafVjHi33HILy5YtazVWZm8ONiA83u1vZjmlFGbi5iwWjWJFo2hK4XY6CQUC2HWdhro6nHY7jfX12DSN3OxsoqEQVZWV5GZnoymF3+sl4PORlZGBEY3GxwwkbpxsxINNm6ahTJNwMIjH7cZpt+NyOHC5XLgyM3FmZuLMyEB3u6FbN8jI2CO9lmmy7csvCa1eTfOOHQRra+OLgScuuKZhYE/coIUcDnJ/9CMKunZl4xNP4GxuhmAQKxbDiMVIc7uJRqPxxYlDIZwOB06HI/5egQAohTstjRDgyMlBz8wk5/vfp/SUU9j58stEvF6Kysoo7N0bd//+0KcP7FYDapomK2bNwj9vHs7aWnZu3EissRG3zYZmWZAI/DFNNMtCB6xIBNM0sTsc2O32eOCqFJFYLD7mLRHAaomAi0RAqSwLNA0j0ZVQAZ70dBxOJ570dLSMDPScHHJKSykdMwbnoEFwIBP0tOBtbGTTu+9S++mnOHbuhLo6wj4fNsPASfxL0EicV47E59BtNjweD670dFReHt0GDyb/rLPgu9+FFstbKKX48v33qf/Xv/BUVxOtrcUDOCB+bjgcOHNyyB8xgu4XXginn566IQbYXF7O2j//mbQNG3A0NqIiEWyaRsDtRrvxRs753e8AWDNpEjvuuYcMoDkjg5JHHmHgxRcz/YYbcH/4IVnBIA67HQUYLheeggIyu3XDM3gwOeeeG0+33r5h6GuXLWPnP/6BtnQpZkMDvmHD6HvDDdRddRX5Xi8u00QHYnY7htNJVUEBRU89Rb+xY/norLPo+dVX5BsGbqVwE6/ciBLvSWBzOvGEQqnZCZOl/dsMkLeIV5aw2++9/d3ex+MJ0/b4W3c6IT0dw+9H13VCmZkEuncna8AAci65BNdllx1Uq/7uDMPg8yeewJw6lbStW3H4/biDQdKUQjdN7JaFzbJwEj/fkr+TVBt/7/E52/GYCSzp0oWTZs5k+f33c8qUKd/kq6YR1XVwuQh7PIRKS7Guvppht90Wv5aHw1BeDiUlsNvYOMMwWP7ii/jfeQdj506MAQMY+/rrLPn73zH+8AdKg0FcSuEA3LqOTdMIWVa8osxupzY9HTV+PEP++lcAatesobB/f5Y88ADu3FwG/PrXqNpaVHk5+plngsv1zedSio9vu430118nr7mZHd26UZ2VxTkrV7ItN5eq732PYVOnEtU0mi6/nDEvvEBg8WKq7rsP5XbT5eab6ZIYKhJqbmbFL39JztKluCMR0nNzyTzlFJw//nG8YqCF1R9+SO1dd9F140aKwmFyWjwWAyYXFTHQ62VgKIQBbLHZWHneeVz8wQcseustbNdey4h2VjJuA8o1jR8kbhtXut0UrFrF/NGjOau2li/z8zlz0yY+Ov98yhYsYCitz5+kCLCoXz/GlJcT8PnYtGABw37wAz67/npGT5pEWhuv+bZmfP/72P/rv0h/4gnSb7+dumefJf/xx7Fdcw39E0Hia0OHMrCwkGEHuBh6FPjP8OGc89VX39xnKMW6e+/FPWwYPS+9lM8uuYQzpkxp8zgkJa87yaAree2KAvP+938pe+QRyvayhmjEbqf6ssvo9frr+7web5g8GfuPf0zZPsZ3GsCKG29k2LPPArBx8mS48kqiDge2F16g4Cc/Ia9FyLCof38io0ZR+sYbWC+9RO306Yx65ZXUZ4okfjS+6YXWsvL9S6cT66GHyCwupuwnP8FDfOmMrERaQkA9UAZyj3sESEDYgaqqqujevTvz58/ntNNOS21/8MEHeeWVV1jXxgQikUiESIvxFl6vlx49ekhhEUJ0GqZpYppmasxxLBbDMAxM08Tr9aJpGnl5efj9ftLT01OtWBrxirhwKISRbK1LfAXquk52dja6rsdbBxKtusnfSimCwSDBYBCn05maAj89PT3eAmYYKKVwOBzYbLYO6xp9qLSsTEt+75imid1up6GhgaKiIrxeL5FIBF3XicViaJqGruvx1tRwGI/Hg91ux+Vy4XQ6aWhowGaz4XK52pys6kh8JqVUq1lqjydKKWp37EALhQhEIhSXlpKWlYVlmjTW1NClqAh2m7k0EolQvWkT/k2b8FZX47LZiPj9mOEwjsTQCxLDLHqNG4cnN5etX35JQWEhBQMGxFvtlKKhoYG8vLzUOROLxdj09ddoW7fiSJQ/V3o6eSedhK24GL1FMN3StvXrWffBB6TFYsSamjACAazEhFfKsggFg+RkZRHw+7FpGi6nE5fTic1mI2ia6G43eloazsxMMoYMYdC4cW3uJ9jczJJ//pPSYcMoPf10TMNgwV//SnDDBuyJylwt0VNF13UswJmVRbfevcnr3p307t3R+vVrVZm3N81bt7Jp6lRijY04bTZizc2opiby8/OxDIPqqircbjexSASH240jLw93fj6ZY8ZQctpphOrq2Pjaa2jNzSibjaz8fEr79kUrLYXS0tSi7vs9PyyL5uXLCW/aRLSpibwePXB16ULTmjVkl5ZiHzQIvWWPj934tm5l27vvoofDFI8YQe7YsXtUWFV+8gmbJk9Geb3YlUKLROI9A9LSiFgWlqbhSk/HM2IEA372s1TX0PULFuBbv55h117L8ueeIzB/PnosxgnTplEUCMg97hEgAWEHSgaECxYsYHRi/RWAP//5z7z66qusTSyE29J9993H/fffv8d2KSxCCCGEEOJ44Z04keybbpJ73CPg+KwmO0bk5+djs9mo2W3dsNraWoqKitp8zV133UVzc3PqZ/v27UciqUIIIYQQQhw5+1lfVhw6EhB2IKfTyfDhw5nZYmAuxGc/a9mFtCWXy0VWVlarHyGEEJ3b3Z/uueSAEEII0R4SEHaw2267jRdeeIGXXnqJNWvW8Jvf/IZt27bxy1/+sqOTJoQQ4hjx0Lz9z0othBBCtEXWIexgV155JfX19TzwwANUV1czaNAgpk2bRs+ePTs6aUIIIY4hMTOGw3Zga50JIYQQMqnMMU6WnRBCCKHdr+H9vZdMV2ZHJ0UIIQ4Jucc9cqTLqBBCHAWiZpQJH03o6GSIY1jICLW5Xep9hRBC7IsEhEIIAczePJuoufdFe99e9Tb3fHbPYdt/XbCO9fXrD9v7i+NfIBpoc/sDcx+QygYhhBB7JQGhOGgvL3uZjQ0bOzoZ4ijyzqp38Ef9HZ2MA/Lc4ufY6d+518ffXvU2C3csPGz7rw3UHnPHTBx59cH6vbb49f5b7zYrNSqaKli+c/nhTpo4BN5c+Wa7nreva5UQ3oiXNbvWdHQyxDFEAkJx0F5f8ToLKw/fjbL49hZVLuL3s35/xPd7xb+vYGvT1iO+34NRF6wjGAu22ralaQsxMwZAQ6iBfE/+Ydt/baCWQKztFp4jZV8tpOLIawo3MWXtlFbb8h/LZ0n1ktT/hmVwx4w7Uv9va962x/sEY0E8Ds/hS+gRYlhGRyfhsGoON3PVu1ftt4tvQ6iB4seLj1CqxLFo9ubZPLHwiY5OhjiGSEAoDkrMjFHRWMHqXas7OinHtZP+ftK3et2LS1/k36v/jaWsQ5yi/TvWgou6YN0eY7DKnizj440f8/SXT7O+fj3+qD8VIB5qtYHavXb5a48af81+byS3NG3hR2//qM3HmsPNuP7kojHUeED7vWPGHSypXsKXO75MbYuZMX4383cYltFquzgwr5a/yv/7z/9L/Z88lt6IN7Xt66qvefyLx1P/z982v9V7GJbB9ubtuO3uw5zaw6s+WM+oF0btsf1wlcfDbVHlIiJGpNW2Sm8lAM2R5n2+9mhq7V1bt/aovtY3hZtYVLnosO5j8prJR10F6IaGDSytWdrRyRDHEAkIO5mWN4zJv5VSrba3DB7CRrjN5yTNqpjFz4b+jIWVC6nx11Djr9lrLW7MjB1UYNKe15qW2SqdpmW2+7XQ9uQLLV/b8vFQLNRq++GcuGF9/XoWVy1us5tQcr+GZaRuMJRSbGnaQqW3kisGXrHHTWKSpSyUUkSMSOpY7S653bAMnlj4BBf864K93oQ1hBoY+8+xAEzfNJ3/bP1Pq26QYSNMc7h5r/tSSmEpi0A0sMc+kumMmlGCsSChWCiVbktZxMwYMTNGc7iZiBFpd34YlsGmhk3sCu5iWc2y1OuS+3952cvcPuN2dvh28OH6Dxnz0hg+2fgJESOSOn7J49TyXDEtk0A00K50vLLsFZ768ik2N23m2snXsqxm2R43i3ujlGLS0kl0fbwrd868k6XVS9u8QYuZMW6fcTveiJdVtatSaUwegztm3MGgwkF8vu1z/FF/u9J93eTrePyLxxn+j+G8tvy11PbnFj/Howse5fOtnzPyhZF8sO4DfBEfED/nPq34lOsmX5e6Ad5dMBbk9RWvc8vHt1Dlq2rz8+ytTFvKSuV/zIzt8TlaXvdMy0ydN209t633DsaCqecezjKvlGLq+qn0yulFQ6gBpRQjXxgJwHbv9tTzZlXMomd2fJmivl368s/l/2wVMNwx4w6Gdx3OB+s/4K5Zd7HTv/NbpdtSVup890a8KKUwLINQLETYCOOL+AhEAwSiAYKxII2hRiJGBMMyUvsLRAP4o34aQ434Ir7Ud0XyWEbNaJtpW1m7kvzH8qkP1bOhfkNqe9gIk/lQJj+b8jOmrpvKgu0LWlVoJMuwaZmEjXDq+rI/z3z1DA/PexjDMpi2YRo1/po9nhMxIgRjQd5c+SZ//eKvVPmqKK8pT50bdcE6FlYuxFIW5TXlPLHwiVSZjppRRr04ilkVs1q959bmrThtzjb311KyK6ClLHb6d7a6niaPn6UswkaYSUsntaqwtZTFqtpV7ArsYn39etbWraUx1IhhGanyEDbCBKIBvBEvjaFG6oP11AZqeWvlW/zmk9+kui3P3DSTMyadwWPzH2Onfye7ArtQStEYamRZzTIqvZX7PddiZixVvpVSBGPBfXaLTlaGhGIhgrFg6vxq6/mGZXD1u1dzzeRrqAvWAexxrHb6d6YeMywjdY63t4zM3jybK/59BffMvqfN69TBXCMC0QAvL3uZZTXLDvi1yXKytHppqmy1V32wnoWVC9ncuBmAxlAj414dt0c6grFgaj+Tlk7i9RWvt3sflrJYV7eOpnAT102+jmAsKJNfdTBZduIYl5yS96xnzyIjMwNd+ybGDxkhLGWlWjVy03JRSpHmSCMYC6JrOo2hRnLTclPBhNvuJmyEKUgvwLAMNLT4lzQKt92NTbMRs+KBXV2wjhx3Dq9d+hpzt85l2oZphI0wVb4qctw56JpO1IzitDmxlIUv6sPj8KBrevyCi8Km2bj25Gt5c9Wb8WAOtcdaWskv8GT6fFEfmc5MomYUXdNx2pzxLzNl4o/60dDIdGWiazqV3koKPAUAuOwu7Hp86c29nfaWstA0LfV38ibfZXfhj/px29049Hjakt2wFIqwEUbXdFw2FxEzQsyMke5MR0Nrcx/NkWayXdmYysSu21PPs5SFw+bAaXMSjAXxRrwUZxTz9qq3GVgwkH75/aj2V5PjzsFSFnbdTtSMYtftOHQHmqal0tzF04WbRtxEUXoRv5v1OwKxQGo/CkUgGsBpc2LTbYRiITRNI92RDkB9qB6bZiPTlUkoFiLDmYFCMbZsLGW5ZUz8aiKWstA1nXxPPk6bk6gZpTHcyLUnX8sO7w7umHkHd51+FxsaNsQDo8Q55LQ5UzdnbR2bkBEizZ4G0Op8jlkxDMsgzZ6GTbdh02ytKh90TcewjFRaGkINpDvTceiO+DmHwhfxoWka/br0Y1jXYQRjQaasm8KaXWvYGYgH2+eUnUNBegHVvmquGnQVJxedTLoznSHPDgFg5f+s5L0177FoxyJiVgyH7sBU8WPutDlbpceu2wnFQpjKTOVP8oajJKuEbFc2Gxs3UpZTxl8X/pUJp07gkn6XMLNiJourF6fOJ7tux6bZsOm2VFnIS8vD4/BQ5atiRe0KqnxVdM/sztWDr07dADaGG8l156b2e/3Q6+md25t/lv8TwzLY2LgRm2bDrtu56KSLGHfCOB6Z9wj1ofp4UMg3eeRxeCjwFNA9sztdPF34dPOnNIebsek2LuxzIW+sfINR3UelWjcMy6B/fn/SHGlYyuLjjR+nbt5Gl4zm7LKzeXHpi6lAUaHQ0FAoXDYX2a5s3lv7Hmf3OhtNi1+HkudvsqJK0zSyXFk0hZtanTM23Za6PiSvH9mubC466SIe/+JxCtML0TUdDS11biTLTfIYt3V+eiNeXHYXafY0TBW/sWyrjO9P8hrTI6sHZ/U8i38u/yduuxvTMtE1nWxXNnWhOk7vcTpZriwaw43s9O8k05XJaT1O4+I3L8b7+3haznvtPEqzS3l+yfOc1fMs3r3iXa749xWc3etsNjdupiC9gIfHPszS6qXM3TqXTzd/mrrxtWm2+HFInB/J498cbibbnZ06RqYysWm21PMcugNf1IfLFr+m2nU7ivhNtMvuwrRMXHZXqtwnr+02zZa6DgdjQXwRH71ze7Pdux27bm+VX8nvCEtZ5KXlcedpd5LjzuGGD25gaPFQynLKmLx2MiO6jeDBeQ8CcPfpd1PRVEEgGsAXjZ9XPx3yU6asm0LEjGDT4nlrKYthxcM4tdupPLbgMTwOD3bdTsyK4bQ5Ka8px2Fz0C+/H0OKhrCxYSO7grt4fNzj/Ok/f8JU8QCzLKeMpnAT1f5qSrNLcdqcbG7cTLoznby0PEoyS1hRu4KSrBJGlYzizZVv4rA5sOt2Tu9xOlPWTaGLpwtRM0rMjFEbqOXG4Tfy7zXxXh1ZriyK0osYVTKKfvn9GF0ymvvn3s+Ghg34o3765vVlXf26VudWMnBPXiMv6HMB87fPpzHUSMyKETEiDC0eyrQN0+iR3YN+XfrRFGlKVQLZ9Pg5kbzeJM8Rm2bjpPyTGFY8jOcWP0fUjNIjqwcPj32YZ75+hrV1a/FGvFQ0VpDpymREtxH4Ij6q/FWpcmJYBlEzisvuwhvxMrL7SGZvmU26I53fjvktE7+aiGEZ5KblEowF9yhbye+QUCyEx+FB0zRiZvx7IZm/Nt2GacW/Vy1lMX7IePrl9+PmT25GQ0PTNOy6neZwM0UZRWS5stjWvI1rBl/Dy+Uv0yWtS+o46ppOzIoH+C2v7cnv2agZpXdub+458x5mbJrBoh2LeHjsw1zxzhW47C6evfBZfvj2DylML0yVo2QalFI4bI7Uda3ld12Srul8v+/3mbNlTqtWY1/ER7fMbrjsLrKcWWzzbiPblU2Bp4ClNUv55JpPuPStS7nztDv5zfTfkO/JZ962eYzpMQaX3dXqfsMbiS9Vk9xW46+hKdxE96zurK9fz9Dioeiazm9G/YYnFz1J1IymypHL7sJpc7K9eTvdMrthKpNgLJj6zk3mGcQDcZtua1VhkZeWR7W/mjR7GjErXnmTPM6GZeDQHexs2MmXv/pSlp04EpQ4pjU3NytANTc3d3RSvpWIEVF/+PQPavrG6R2dlKNG1IiqWn+tagw1Ksuy1PXvX6+4D/W3hX/r6KS1qSHYoDY1bFJbGrektr1a/qrivqPv8tIUalIRI6IqGirUWyvfUv9e9W8VM2PqgTkPKO5DOR5wKKWUag43q/pgfep1ESOiuI9D8pksy1KWZalVtavUqtpVqi5Qp5RSivtQhmm06z3qAnWqsrlSbW3aqpRS6usdXyvuQ/3Ph//Trtf3eqKXunvW3QeU7kA0oLY0blFzt8xV7695X+3071RKKWVapqr2VSvuQy2qXKSWVi9VSil1z2f3qJHPj1Tr69Yf0H4OhGVZqtZf267nTl07VV03+ToVM2OHLT0Has7mOeqx+Y+pQDSggtFg6ne1r1r5I36llFK+iE/98bM/qvdWv6csy1JKKTXxy4nqsfmPqa93fK1u+fgWddesuxT3ob7/+vdTr3ll2Stq7pa5qdccjWZvnq1eLX/1gF5jWZZaUrVEvbHiDVUXqFPr69bvtWwapqG4D/XT93+6x2MPzHlAXfXvq1TUiO7xmGmZexy3nf6dyvGAQ723+j3VEGxQSil1/mvnq/NfO1+V/rW03WVvdxEjonYFdinLslTEiOzx2ObGzeqtlW+pm6fdrIY9O0zdOeNOpZRSN0+7WfV9qu9Rnb/7YlqmKvm/ErVg2wK1079TFT1WpF5e+vJh3Wdlc6VSSqklVUvUrsCu1PbpG6erS9+89KCvDRM+nKD6PtVXLdy+UL27+l2V/ud0NXfL3L0+PxQLfat9GqahvGGv2uHdoTbWb1RRI6oWbl+oej/ZW9096241a9MsdeG/LlRKxY/zS0teUqtrV7f5XjEzlvpO2l04Fj7gtB1qf5j2h2P6HvdYIi2ExzhZtPP4FzNjxKzYMTUpxMxNMxn32jjUvcfG5WVt3Vqun3I9gwsH89wPnmvzOaZlMvbVscweP/uwpEEplWo5+jZeWPICMTPG/4z4n/0+d2vTVoozinHZXd96fy1FjAjuP7tb5fdzXz/HI/MfoeKWikOyD/ENwzK4dvK1VDRW8OZlb/LGyjf4w2d/4OrBV/OvH/6ro5N3RMXMGDd+eCObmza3WTarfdUUZRS12QJzoJKtRknXTr6WPHce/z38vynLKSPdmX7Q+9iXlteI26ffzuS1k4+b8rWhfgO9c3unWuiPRYFogA0NGxhaPBRLWczZMofvln33iKZh/rb5fLLxE9bWr+Wdy985ovs+HOob68nPy5d73CPA3tEJEELsm8PmaNWF9lgwusdoXrropY5ORrv1y+/Hgp8v2OdzbLrtsAWDwEEFgwDjh4xv93N75vQ8qH3tzmV3Efnf1mMeu2d1Z0T3EYd0PyLOrtt5/Yev0xBqoIunS6q7V6Yzs4NTduQ5bA5eunjv15qumV0P2b52DypvGXkLpdmlFKYXHrJ97EvLa8Q5vc/hrF5nHZH9Hgl9uvTp6CQctHRnOkOLhwLxc+VIB4MAAwsHMmHaBM4/8fwjvu/D4Vi79zmWSUAohDjkMpwZ/GzYzzo6GZ1KR39xthxjAzC86/A9tolDR9M0uni6tNrWGQPCjnRqt1M7bN8X9Lmgw/Ytjl457hyW71zOzf91c0cnRRxjJCAUQghxyHXN7HpIW2fE/mW6JCAUorPrk9eHAQUDOjoZ4hgjAaEQQghxDFMoPA4P1w+7vqOTIoToYOt/vb6jkyCOQbIOoRBCCHEMU0qR4cygJKuko5MihBDiGCQBoRBCCHGMOxSzaAohhOic5BtECCGEOIbdMuoWvvzFlx2dDCGEEMcoGUMohBBCHMMynBlkODM6OhlCCCGOUdJCKIQQQgghhBCdlASEQgghhBBCCNFJSUAohBBCCCGEEJ2UBIRCCCGEEEII0UlJQCiEEEIIIYQQnZQEhEIIIYQQQgjRSUlAKIQQQgghhBCdlASEQgghhBBCCNFJSUAohBBCCCGEEJ2UBIRCCCGEEEII0UlJQCiEEEIIIYQQnZS9oxMgvj2lFF6vFyD1WwghhBBCiGNd8t5WKdXBKTn+aUqO8jHL6/WSnZ3d0ckQQgghhBDisNi+fTslJSUdnYzjmgSEx7BkC6HP5yMzMxNN0zo6Sd+a1+ulR48ebN++naysrI5OjjhCJN87J8n3zkvyvnOSfO+cDjbflVL4fD66deuGrssot8NJuowewzRNIzs7+7hqJczKypIvi05I8r1zknzvvCTvOyfJ987pYPL9eLrHPZpJuC2EEEIIIYQQnZQEhEIIIYQQQgjRSUlAKI4KLpeLe++9F5fL1dFJEUeQ5HvnJPneeUned06S752T5PuxQyaVEUIIIYQQQohOSloIhRBCCCGEEKKTkoBQCCGEEEIIITopCQiFEEIIIYQQopOSgFAIIYQQQgghOikJCMUR85///Icf/OAHdOvWDU3TeP/991s9rpTivvvuo1u3bqSlpfGd73yHVatWdUxixSG1v7z/6U9/iqZprX5GjRrVMYkVh8xDDz3EiBEjyMzMpLCwkEsuuYR169a1eo6U++NPe/Jdyvzx55lnnuHkk09OLUI+evRoPv7449TjUtaPX/vLeynvRz8JCMUREwgEGDJkCH//+9/bfPzRRx/l//7v//j73//OV199RXFxMeeeey4+n+8Ip1QcavvLe4DzzjuP6urq1M+0adOOYArF4TB37lxuuukmFi5cyMyZMzEMg3HjxhEIBFLPkXJ//GlPvoOU+eNNSUkJDz/8MF9//TVff/013/3ud7n44otTQZ+U9ePX/vIepLwf9ZQQHQBQkydPTv1vWZYqLi5WDz/8cGpbOBxW2dnZ6tlnn+2AFIrDZfe8V0qp8ePHq4svvrhD0iOOnNraWgWouXPnKqWk3HcWu+e7UlLmO4vc3Fz1wgsvSFnvhJJ5r5SU92OBtBCKo8LmzZupqalh3LhxqW0ul4uzzjqLBQsWdGDKxJEyZ84cCgsL6du3L//93/9NbW1tRydJHGLNzc0A5OXlAVLuO4vd8z1JyvzxyzRN3nzzTQKBAKNHj5ay3onsnvdJUt6PbvaOToAQADU1NQAUFRW12l5UVMTWrVs7IkniCDr//PO5/PLL6dmzJ5s3b+aee+7hu9/9LosXL8blcnV08sQhoJTitttu4/TTT2fQoEGAlPvOoK18Bynzx6sVK1YwevRowuEwGRkZTJ48mQEDBqSCPinrx6+95T1IeT8WSEAojiqaprX6Xym1xzZx/LnyyitTfw8aNIhTTz2Vnj178tFHH/HDH/6wA1MmDpVf/epXLF++nHnz5u3xmJT749fe8l3K/PHppJNOYtmyZTQ1NfHuu+8yfvx45s6dm3pcyvrxa295P2DAACnvxwDpMiqOCsXFxcA3LQZJtbW1e9QoiuNf165d6dmzJxs2bOjopIhD4Ne//jVTp05l9uzZlJSUpLZLuT++7S3f2yJl/vjgdDo58cQTOfXUU3nooYcYMmQITz75pJT1TmBved8WKe9HHwkIxVGhrKyM4uJiZs6cmdoWjUaZO3cup512WgemTHSE+vp6tm/fTteuXTs6KeIgKKX41a9+xXvvvcdnn31GWVlZq8el3B+f9pfvbZEyf3xSShGJRKSsd0LJvG+LlPejj3QZFUeM3+9n48aNqf83b97MsmXLyMvLo7S0lFtvvZUHH3yQPn360KdPHx588EE8Hg9XX311B6ZaHAr7yvu8vDzuu+8+LrvsMrp27cqWLVu4++67yc/P59JLL+3AVIuDddNNN/H6668zZcoUMjMzU60D2dnZpKWloWmalPvj0P7y3e/3S5k/Dt19992cf/759OjRA5/Px5tvvsmcOXP45JNPpKwf5/aV91LejxEdNr+p6HRmz56tgD1+xo8fr5SKT0F/7733quLiYuVyudSZZ56pVqxY0bGJFofEvvI+GAyqcePGqYKCAuVwOFRpaakaP3682rZtW0cnWxyktvIcUJMmTUo9R8r98Wd/+S5l/vh0/fXXq549eyqn06kKCgrUOeeco2bMmJF6XMr68WtfeS/l/digKaXUkQxAhRBCCCGEEEIcHWQMoRBCCCGEEEJ0UhIQCiGEEEIIIUQnJQGhEEIIIYQQQnRSEhAKIYQQQgghRCclAaEQQgghhBBCdFISEAohhBBCCCFEJyUBoRBCCCGEEEJ0UhIQCiGEEEIIIUQnJQGhEEIIIYQQQnRSEhAKIYQQQgghRCclAaEQQgghhBBCdFISEAohhBBCCCFEJyUBoRBCCCGEEEJ0UhIQCiGEEEIIIUQnJQGhEEIIIYQQQnRSEhAKIYQQQgghRCclAaEQQgghhBBCdFISEAohhBBCCCFEJyUBoRBCCCGEEEJ0UhIQCiGEEEIIIUQnJQGhEEIIIYQQQnRSEhAKIYQQQgghRCf1/wEmgove6SNz8gAAAABJRU5ErkJggg==", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "p.plot(fig=None, diff=True)\n", - "mc.RestoreParamSet(3, update_display=True)" + "mc.RestoreParamSet(3, update_display=True)\n" ] }, { @@ -879,20 +376,20 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Save result so it can be opened by Fox\n", "xml_cryst_file_save_global('result.xmlgz')\n", "# Also export to the CIF format\n", - "c.CIFOutput(\"result.cif\")" + "c.CIFOutput(\"result.cif\")\n" ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "objcryst", "language": "python", "name": "python3" }, @@ -906,1210 +403,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "state": { - "033033acc6c74c3daef886add86efd13": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "04f420e67f7a42979e353000c07eb348": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Yrange", - "layout": "IPY_MODEL_8bf9ae6abf444ae08df94efb582c5ffd", - "max": 1.5, - "min": -0.5, - "step": 0.02631578947368421, - "style": "IPY_MODEL_692f4a896dde4a909e75b3ed9b1ac0a3", - "value": [ - -5.551115123125783e-17, - 0.9999999999999998 - ] - } - }, - "063c720771e5455fb5d1ffd0c27ad6f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_a9e855977db64785bcc8b4f2e0803fb8", - "IPY_MODEL_04f420e67f7a42979e353000c07eb348", - "IPY_MODEL_14341ebe2bae445389d5046be8750dab" - ], - "layout": "IPY_MODEL_f386dc3ff5b04e3189ba60b62d49ab07" - } - }, - "07e57849dcd842cd8665047a4abb8a04": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "extra dist", - "layout": "IPY_MODEL_4a4568a59aa84c15afbdcbf800787fca", - "max": 10, - "readout_format": ".1f", - "step": 0.5, - "style": "IPY_MODEL_a474a39f1b7040f5b8e31bcae6884fe2", - "tooltip": "Extra distance (A) with semi-transparent display", - "value": 2 - } - }, - "0d96107a068d4ce08fc8601de79e6ca9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "0e1f70ffb8d140abb0c6598cc779bf96": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "14341ebe2bae445389d5046be8750dab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Zrange", - "layout": "IPY_MODEL_43962757a342404cab79c3302fadef3f", - "max": 1.5, - "min": -0.5, - "step": 0.047619047619047616, - "style": "IPY_MODEL_885742531923446e9bc635bd3250a95d", - "value": [ - 0.023809523809523836, - 1.0238095238095237 - ] - } - }, - "1460d182a1ff4472bcc2ce497114909a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "LabelModel", - "state": { - "layout": "IPY_MODEL_f443b3682ae945d3a83acf637668d8bc", - "style": "IPY_MODEL_c04c3145800248a7bdd17a11e7c03cf9", - "value": "MonteCarlo:" - } - }, - "158d3575ad3344d9a5eef47bed7cd54c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "16d499f663fc47b49799b1bbd59260eb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "251d7558b7a74c7bbe7b6ec9ac170760": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_dfeb9f48eaf54bfca3cb61951d344ff5", - "IPY_MODEL_5f125f9947c24b8890be63be330e6398" - ], - "layout": "IPY_MODEL_8f4b38dea47045c2bd33aa3884f2767b" - } - }, - "25ae317dc2e34d888314185867a0da2c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "28749649ff664779b102bb5134f03a8d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "29c30c7055f6440c9756d62047dd7913": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "2b2629219dc940fbb60b7d4f865da6b0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "2e07987270a3424885b9240ba747c3d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "3070a2fefae345c5abab322ef7c9a10e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "33cd6a561aae4867bd27837bc6ed082d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "37a448aac66f4ed782973ae253db53c8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "37efa633a61c4835be911037898323ce": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "3b65a4ece7b54989b9018526ffdc1d40": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_47bceb18d5df428cac704bb60babc52c", - "IPY_MODEL_b463e11ceb97432485b4d1d458ab460d", - "IPY_MODEL_5e181deaf97748278d56bd28622d3aac" - ], - "layout": "IPY_MODEL_b82e01cf3881477b86207dd7b856d281" - } - }, - "3fa4d9033bb94736a381a1c6d9f1ac21": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "42440b516d0e4b71a747cd0a376846fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "BoxModel", - "state": { - "children": [ - "IPY_MODEL_251d7558b7a74c7bbe7b6ec9ac170760" - ], - "layout": "IPY_MODEL_33cd6a561aae4867bd27837bc6ed082d" - } - }, - "43402ab0214f43c09714b65a30d43d14": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "43962757a342404cab79c3302fadef3f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "47bceb18d5df428cac704bb60babc52c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Xrange", - "layout": "IPY_MODEL_803acabdb80c46f9a6de317791d95549", - "max": 1.5, - "min": -0.5, - "step": 0.07142857142857142, - "style": "IPY_MODEL_ef0730344db64535880c58c7ab569d4a", - "value": [ - 0, - 1 - ] - } - }, - "4a052a1c296e478686e683d539f4866f": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "ToolbarModel", - "state": { - "_model_module_version": "^0.11", - "_view_module_version": "^0.11", - "collapsed": true, - "layout": "IPY_MODEL_2b2629219dc940fbb60b7d4f865da6b0", - "orientation": "vertical", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "4a4568a59aa84c15afbdcbf800787fca": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4b7730f297f840d39edcc3fbd3208be7": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "MPLCanvasModel", - "state": { - "_cursor": "default", - "_data_url": "", - "_figure_label": "Figure 4", - "_image_mode": "diff", - "_model_module_version": "^0.11", - "_size": [ - 900, - 400 - ], - "_view_module_version": "^0.11", - "layout": "IPY_MODEL_e586890e3f434a0dacb8bb200fc4b534", - "toolbar": "IPY_MODEL_fdc61c966cb145379d5f2eb7c7b0ab2c", - "toolbar_position": "left" - } - }, - "4e6d91d411954df8b8afa2326de84023": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_f88b4168a4674454bf3a719070e3d4b5" - } - }, - "518e216c806341f7b881de45166a654a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_e3eb11ea7e674c91a68e328cb138076c", - "IPY_MODEL_fbc49008a6ac4d1f9a187d31997c7eba", - "IPY_MODEL_73f686f827b74f6ba7f203d2b1186c5c" - ], - "layout": "IPY_MODEL_b4208c41ae8d41389eeaee5b296c4103" - } - }, - "51e645aa573242a19f50ca09ff06fb52": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "520bd0b61ed14bb989f9a7aa5f29a644": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "5402ac42a28945c2958ab09ac7378075": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "56bb4150895440fd865b0485322e0a63": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "5d3f36397d8d4525bea4003f2ee990a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_1460d182a1ff4472bcc2ce497114909a", - "IPY_MODEL_7f17c993d05a442d845970254290ec15" - ], - "layout": "IPY_MODEL_f63426b10f1c41098c3972c570056a3f" - } - }, - "5e181deaf97748278d56bd28622d3aac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Zrange", - "layout": "IPY_MODEL_ee202cb6d45c47b991d635f7af13f43e", - "max": 1.5, - "min": -0.5, - "step": 0.047619047619047616, - "style": "IPY_MODEL_29c30c7055f6440c9756d62047dd7913", - "value": [ - 0.023809523809523836, - 1.0238095238095237 - ] - } - }, - "5f125f9947c24b8890be63be330e6398": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_c72974fe24104a288f13f77712bbd047", - "outputs": [ - { - "data": { - "application/3dmoljs_load.v0": "", - "text/html": "" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "692f4a896dde4a909e75b3ed9b1ac0a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "6bf5f947234b4e66b143a70d0a3f544b": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "ToolbarModel", - "state": { - "_model_module_version": "^0.11", - "_view_module_version": "^0.11", - "collapsed": true, - "layout": "IPY_MODEL_520bd0b61ed14bb989f9a7aa5f29a644", - "orientation": "vertical", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "73f686f827b74f6ba7f203d2b1186c5c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "fullMol opac", - "layout": "IPY_MODEL_7c61a7a2348b4ba58cdad2537a85225b", - "max": 1, - "readout_format": ".01f", - "step": 0.1, - "style": "IPY_MODEL_c46357387bb643b7a7740174241f32fa", - "tooltip": "Opacity to display fully molecules\nwhich have at least one atom inside the limits", - "value": 0.5 - } - }, - "7426e5f971394d249d5f4e099477dae2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "77f6fca9951e478dbd016ed5226eb856": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "MPLCanvasModel", - "state": { - "_cursor": "default", - "_data_url": "", - "_figure_label": "Figure 5", - "_image_mode": "diff", - "_model_module_version": "^0.11", - "_size": [ - 900, - 400 - ], - "_view_module_version": "^0.11", - "layout": "IPY_MODEL_16d499f663fc47b49799b1bbd59260eb", - "toolbar": "IPY_MODEL_6bf5f947234b4e66b143a70d0a3f544b", - "toolbar_position": "left" - } - }, - "7c0bfe2f4f2348c98baeb1db2d521c00": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "ToolbarModel", - "state": { - "_model_module_version": "^0.11", - "_view_module_version": "^0.11", - "collapsed": true, - "layout": "IPY_MODEL_fb20ebc822d148e690ab89453aec3bed", - "orientation": "vertical", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "7c61a7a2348b4ba58cdad2537a85225b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "7f17c993d05a442d845970254290ec15": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextModel", - "state": { - "disabled": true, - "layout": "IPY_MODEL_8d9d2ffde3994085b21a854dd34593c0", - "style": "IPY_MODEL_c9d71f937d1e4d569f05c0d1d874a595", - "value": "LLK= 18612.26 " - } - }, - "803acabdb80c46f9a6de317791d95549": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "885742531923446e9bc635bd3250a95d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "8b12d904b277450c8ee9b4a6a7749c60": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_07e57849dcd842cd8665047a4abb8a04", - "IPY_MODEL_eb563daee4fd48b88cb155fc153a43e4", - "IPY_MODEL_e8b7df83ee4346bc9dd2b32d20222683" - ], - "layout": "IPY_MODEL_bb978d1baf324b599a8747447e56dbb0" - } - }, - "8bf9ae6abf444ae08df94efb582c5ffd": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "8d9d2ffde3994085b21a854dd34593c0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "max_width": "50%", - "width": "40em" - } - }, - "8eacf287c05749d887254f7f4b1b0d07": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "ToolbarModel", - "state": { - "_model_module_version": "^0.11", - "_view_module_version": "^0.11", - "collapsed": true, - "layout": "IPY_MODEL_dd94b2509958449e8752fcf027643eca", - "orientation": "vertical", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "8f1150436e1544ec8236bff78a7e27fb": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "ToolbarModel", - "state": { - "_model_module_version": "^0.11", - "_view_module_version": "^0.11", - "collapsed": true, - "layout": "IPY_MODEL_d35a9babe4d14f45ae7cf67845afa6a3", - "orientation": "vertical", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "8f4b38dea47045c2bd33aa3884f2767b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "953995b09f404c7db76aa00c42eec519": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "a2729d7502c4449695df8f9440c273f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_3b65a4ece7b54989b9018526ffdc1d40", - "IPY_MODEL_8b12d904b277450c8ee9b4a6a7749c60" - ], - "layout": "IPY_MODEL_cb372953b8e5456681e333899f6a4bf2" - } - }, - "a474a39f1b7040f5b8e31bcae6884fe2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "a5767929d16a4a418579b71574cf1d2c": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "MPLCanvasModel", - "state": { - "_cursor": "default", - "_data_url": "", - "_figure_label": "Figure 6", - "_image_mode": "diff", - "_model_module_version": "^0.11", - "_size": [ - 900, - 400 - ], - "_view_module_version": "^0.11", - "layout": "IPY_MODEL_953995b09f404c7db76aa00c42eec519", - "toolbar": "IPY_MODEL_8f1150436e1544ec8236bff78a7e27fb", - "toolbar_position": "left" - } - }, - "a9e855977db64785bcc8b4f2e0803fb8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Xrange", - "layout": "IPY_MODEL_158d3575ad3344d9a5eef47bed7cd54c", - "max": 1.5, - "min": -0.5, - "step": 0.07142857142857142, - "style": "IPY_MODEL_033033acc6c74c3daef886add86efd13", - "value": [ - 0, - 1 - ] - } - }, - "a9f875e8ac5d49359c2914757810071c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "b4208c41ae8d41389eeaee5b296c4103": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "b463e11ceb97432485b4d1d458ab460d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Yrange", - "layout": "IPY_MODEL_d6ab9bd45fb64b7b9785bed9d60872bb", - "max": 1.5, - "min": -0.5, - "step": 0.02631578947368421, - "style": "IPY_MODEL_a9f875e8ac5d49359c2914757810071c", - "value": [ - -5.551115123125783e-17, - 0.9999999999999998 - ] - } - }, - "b6db3472924a4760b2e21af077e8ddcf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_a2729d7502c4449695df8f9440c273f9", - "IPY_MODEL_4e6d91d411954df8b8afa2326de84023" - ], - "layout": "IPY_MODEL_cf7312d87d364721b24398b437361f91" - } - }, - "b82e01cf3881477b86207dd7b856d281": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "bb14d41c8eb247b58211bd24e5aa93e1": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "MPLCanvasModel", - "state": { - "_cursor": "default", - "_data_url": "", - "_figure_label": "Figure 2", - "_image_mode": "diff", - "_model_module_version": "^0.11", - "_size": [ - 900, - 400 - ], - "_view_module_version": "^0.11", - "layout": "IPY_MODEL_5402ac42a28945c2958ab09ac7378075", - "toolbar": "IPY_MODEL_8eacf287c05749d887254f7f4b1b0d07", - "toolbar_position": "left" - } - }, - "bb978d1baf324b599a8747447e56dbb0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "bd48c8151b264b11a214f6b3f326fbfc": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "MPLCanvasModel", - "state": { - "_cursor": "default", - "_data_url": "", - "_figure_label": "Figure 1", - "_image_mode": "diff", - "_model_module_version": "^0.11", - "_size": [ - 900, - 400 - ], - "_view_module_version": "^0.11", - "layout": "IPY_MODEL_3070a2fefae345c5abab322ef7c9a10e", - "toolbar": "IPY_MODEL_7c0bfe2f4f2348c98baeb1db2d521c00", - "toolbar_position": "left" - } - }, - "c04c3145800248a7bdd17a11e7c03cf9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "LabelStyleModel", - "state": { - "description_width": "", - "font_family": null, - "font_size": null, - "font_style": null, - "font_variant": null, - "font_weight": null, - "text_color": null, - "text_decoration": null - } - }, - "c46357387bb643b7a7740174241f32fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "c72974fe24104a288f13f77712bbd047": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "c9d71f937d1e4d569f05c0d1d874a595": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cb372953b8e5456681e333899f6a4bf2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "cf7312d87d364721b24398b437361f91": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "d056fc2fab4948999db31f797217e2d0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "BoxModel", - "state": { - "children": [ - "IPY_MODEL_5d3f36397d8d4525bea4003f2ee990a6" - ], - "layout": "IPY_MODEL_dc17af8032034860a500a1eb9240ee72" - } - }, - "d35a9babe4d14f45ae7cf67845afa6a3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "d6ab9bd45fb64b7b9785bed9d60872bb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "dc17af8032034860a500a1eb9240ee72": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "dd94b2509958449e8752fcf027643eca": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "dfeb9f48eaf54bfca3cb61951d344ff5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_063c720771e5455fb5d1ffd0c27ad6f7", - "IPY_MODEL_518e216c806341f7b881de45166a654a" - ], - "layout": "IPY_MODEL_7426e5f971394d249d5f4e099477dae2" - } - }, - "e3eb11ea7e674c91a68e328cb138076c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "extra dist", - "layout": "IPY_MODEL_25ae317dc2e34d888314185867a0da2c", - "max": 10, - "readout_format": ".1f", - "step": 0.5, - "style": "IPY_MODEL_3fa4d9033bb94736a381a1c6d9f1ac21", - "tooltip": "Extra distance (A) with semi-transparent display", - "value": 2 - } - }, - "e586890e3f434a0dacb8bb200fc4b534": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "e8b7df83ee4346bc9dd2b32d20222683": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "fullMol opac", - "layout": "IPY_MODEL_37efa633a61c4835be911037898323ce", - "max": 1, - "readout_format": ".01f", - "step": 0.1, - "style": "IPY_MODEL_2e07987270a3424885b9240ba747c3d8", - "tooltip": "Opacity to display fully molecules\nwhich have at least one atom inside the limits", - "value": 0.5 - } - }, - "ea1a1633984a452693bb538cd640b799": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "MPLCanvasModel", - "state": { - "_cursor": "default", - "_data_url": "", - "_figure_label": "Figure 3", - "_image_mode": "diff", - "_model_module_version": "^0.11", - "_size": [ - 900, - 400 - ], - "_view_module_version": "^0.11", - "layout": "IPY_MODEL_28749649ff664779b102bb5134f03a8d", - "toolbar": "IPY_MODEL_4a052a1c296e478686e683d539f4866f", - "toolbar_position": "left" - } - }, - "eb563daee4fd48b88cb155fc153a43e4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "extra opac.", - "layout": "IPY_MODEL_0e1f70ffb8d140abb0c6598cc779bf96", - "max": 1, - "readout_format": ".01f", - "step": 0.1, - "style": "IPY_MODEL_0d96107a068d4ce08fc8601de79e6ca9", - "tooltip": "Opacity for extra distance display", - "value": 0.5 - } - }, - "ee202cb6d45c47b991d635f7af13f43e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "ef0730344db64535880c58c7ab569d4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "f386dc3ff5b04e3189ba60b62d49ab07": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "f443b3682ae945d3a83acf637668d8bc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "max_width": "25%", - "width": "11em" - } - }, - "f63426b10f1c41098c3972c570056a3f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "f88b4168a4674454bf3a719070e3d4b5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "fb20ebc822d148e690ab89453aec3bed": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "fbc49008a6ac4d1f9a187d31997c7eba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "extra opac.", - "layout": "IPY_MODEL_37a448aac66f4ed782973ae253db53c8", - "max": 1, - "readout_format": ".01f", - "step": 0.1, - "style": "IPY_MODEL_56bb4150895440fd865b0485322e0a63", - "tooltip": "Opacity for extra distance display", - "value": 0.5 - } - }, - "fce5512877b245a09d4f92a1c77f9716": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "BoxModel", - "state": { - "children": [ - "IPY_MODEL_b6db3472924a4760b2e21af077e8ddcf" - ], - "layout": "IPY_MODEL_43402ab0214f43c09714b65a30d43d14" - } - }, - "fdc61c966cb145379d5f2eb7c7b0ab2c": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "ToolbarModel", - "state": { - "_model_module_version": "^0.11", - "_view_module_version": "^0.11", - "collapsed": true, - "layout": "IPY_MODEL_51e645aa573242a19f50ca09ff06fb52", - "orientation": "vertical", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - } - }, - "version_major": 2, - "version_minor": 0 - } + "version": "3.13.5" } }, "nbformat": 4, diff --git a/examples/structure-solution-powder-pbso4.ipynb b/examples/structure-solution-powder-pbso4.ipynb index 9fb04ca..47aa22f 100644 --- a/examples/structure-solution-powder-pbso4.ipynb +++ b/examples/structure-solution-powder-pbso4.ipynb @@ -28,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -49,7 +49,7 @@ "from pyobjcryst.indexing import *\n", "from pyobjcryst.molecule import *\n", "from pyobjcryst.globaloptim import MonteCarlo\n", - "from pyobjcryst.io import xml_cryst_file_save_global" + "from pyobjcryst.io import xml_cryst_file_save_global\n" ] }, { @@ -62,59 +62,9 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - " % Total % Received % Xferd Average Speed Time Time Time Current\n", - " Dload Upload Total Spent Left Speed\n", - " 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Radiation: X-Ray,Wavelength= tube: Cu, Alpha1/Alpha2= 0.5Imported powder pattern: 6001 points, 2theta= 10.000 -> 160.000, step= 0.025\n", - "\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "100 48688 100 48688 0 0 100k 0 --:--:-- --:--:-- --:--:-- 100k\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "f7376c77ccf8409ca67e032eccf72af9", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAByH0lEQVR4nO3deXgUVd4+/LuzLySdzSREwzYiRILCoLI+ggOySIiKv0GMRn1FFhUwEkAZXFAHEGQdeFTABWQZnBkBFcYIiKDIHogsBhANECQhLElnpdPpPu8fPFV29ZJ0J53uTur+XFdfJF2nqqtOJ6Tu/p46pRFCCBAREREREZHq+Hh6B4iIiIiIiMgzGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKUYCImIiIiIiFSKgZCIiIiIiEilGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKUYCImIiIiIiFSKgZCIiIiIiEilGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKUYCImIiIiIiFSKgZCIiIiIiEilGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKUYCImIiIiIiFSKgZCIiIiIiEilGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKUYCImIiIiIiFSKgZCIiIiIiEilGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKUYCImIiIiIiFSKgZCIiIiIiEilGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKUYCImIiIiIiFSKgZCIiIiIiEilGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVMrP0ztADWMymXDx4kWEhYVBo9F4eneIiIiIiBpMCIGysjIkJCTAx4c1rMbEQNjEXbx4EYmJiZ7eDSIiIiIil8vPz8ctt9zi6d1o1hgIm7iwsDAAN35ZwsPDPbw3REREREQNV1paisTERPlclxoPA2ETJw0TDQ8PZyAkIiIiomaFl0Q1Pg7IJSIiIiIiUinVBcLvv/8ew4YNQ0JCAjQaDTZt2mTVJjc3F6mpqdBqtQgLC0OPHj1w/vx5ebler8eECRMQExOD0NBQpKam4sKFC4ptFBcXIz09HVqtFlqtFunp6SgpKVG0OX/+PIYNG4bQ0FDExMRg4sSJqK6ubozDJiIiIiIisqK6QFhRUYE777wTS5cutbn8119/RZ8+fdCxY0fs3LkTP/30E1577TUEBQXJbTIyMrBx40asX78eu3fvRnl5OVJSUmA0GuU2aWlpyMnJQVZWFrKyspCTk4P09HR5udFoxNChQ1FRUYHdu3dj/fr1+Pzzz5GZmdl4B09ERERERGRGI4QQnt4JT9FoNNi4cSMeeugh+bmRI0fC398fq1evtrmOTqfDTTfdhNWrV+PRRx8F8MdMn//9738xaNAg5Obm4vbbb8e+ffvQvXt3AMC+ffvQs2dPnDx5Eh06dMDXX3+NlJQU5OfnIyEhAQCwfv16PP300ygqKnL4esDS0lJotVrodDpeQ0hERETkYUajEQaDwdO74fX8/f3h6+trdznPcd2Hk8qYMZlM2LJlC6ZOnYpBgwbhyJEjaNu2LaZNmyaHxuzsbBgMBgwcOFBeLyEhAcnJydizZw8GDRqEvXv3QqvVymEQAHr06AGtVos9e/agQ4cO2Lt3L5KTk+UwCACDBg2CXq9HdnY27rvvPrcdNxERERE1jBAChYWFVpcIkX0RERGIj4/nxDEexkBopqioCOXl5XjnnXfw97//HXPmzEFWVhaGDx+O7777Dn379kVhYSECAgIQGRmpWDcuLg6FhYUAgMLCQsTGxlptPzY2VtEmLi5OsTwyMhIBAQFyG1v0ej30er38fWlpab2Pl4iIiIhcQwqDsbGxCAkJYciphRAClZWVKCoqAgC0bNnSw3ukbgyEZkwmEwDgwQcfxEsvvQQA6NKlC/bs2YMPPvgAffv2tbuuEELxi2/rP4H6tLE0e/ZsvPnmm3UfDBERERG5hdFolMNgdHS0p3enSQgODgZwoyATGxtb6/BRalyqm1SmNjExMfDz88Ptt9+ueD4pKUmeZTQ+Ph7V1dUoLi5WtCkqKpIrfvHx8bh06ZLV9i9fvqxoY1kJLC4uhsFgsKocmps2bRp0Op38yM/Pd/5AiYiIiMhlpGsGQ0JCPLwnTYvUX7zm0rMYCM0EBATg7rvvxqlTpxTPnz59Gq1btwYAdOvWDf7+/ti2bZu8vKCgAMePH0evXr0AAD179oROp8OBAwfkNvv374dOp1O0OX78OAoKCuQ2W7duRWBgILp162Z3HwMDA+Wb0PNm9ERERETeg8NEncP+8g6qGzJaXl6OM2fOyN/n5eUhJycHUVFRaNWqFaZMmYJHH30U9957L+677z5kZWXhq6++ws6dOwEAWq0Wo0aNQmZmJqKjoxEVFYXJkyejc+fOGDBgAIAbFcXBgwdj9OjRWLZsGQBgzJgxSElJQYcOHQAAAwcOxO2334709HS8++67uHbtGiZPnozRo0cz5BERERERkVuorkJ46NAhdO3aFV27dgUATJo0CV27dsXrr78OAHj44YfxwQcfYO7cuejcuTM+/PBDfP755+jTp4+8jYULF+Khhx7CiBEj0Lt3b4SEhOCrr75SjH1eu3YtOnfujIEDB2LgwIG44447FLey8PX1xZYtWxAUFITevXtjxIgReOihhzBv3jw39QR5k1OnTmHWrFme3g0iIiIi2c6dO6HRaDhzajOn6vsQNge8R0vz0L59e5w5cwb8dSQiImp6rl+/jry8PLRt2xZBQUGe3h2X2blzJ+677z4UFxcjIiLC5duvrd94jus+qqsQEhERERER0Q0MhERegBdVExERkSfo9XpMnDgRsbGxCAoKQp8+fXDw4EFFmx9//BF33nkngoKC0L17dxw7dkxedu7cOQwbNgyRkZEIDQ1Fp06d8N///tfdh0ENwEBIRERERKRSU6dOxeeff45Vq1bh8OHDuPXWWzFo0CBcu3ZNbjNlyhTMmzcPBw8eRGxsLFJTU+VbRbzwwgvQ6/X4/vvvcezYMcyZMwctWrTw1OFQPahullEib8QKIRERUfNTWVmJkydPuv11O3bs6NA9ESsqKvD+++9j5cqVGDJkCABgxYoV2LZtGz766CPcfffdAIA33ngD999/PwBg1apVuOWWW7Bx40aMGDEC58+fxyOPPILOnTsDANq1a9dIR0WNhYGQiIiIiKgRnDx5stb7SzeW7Oxs/PnPf66z3a+//gqDwYDevXvLz/n7++Oee+5Bbm6uHAh79uwpL4+KikKHDh2Qm5sLAJg4cSKee+45bN26FQMGDMAjjzyCO+64w8VHRI2JgZDIC7BCSERE1Px07NgR2dnZHnldR0izm1uehwgh6jw3kZY/++yzGDRoELZs2YKtW7di9uzZmD9/PiZMmFCPPSdPYCAkIiIiImoEISEhDlXqPOXWW29FQEAAdu/ejbS0NACAwWDAoUOHkJGRIbfbt28fWrVqBQAoLi7G6dOnFaEzMTER48aNw7hx4zBt2jSsWLGCgbAJYSAkIiIiIlKh0NBQPPfcc5gyZQqioqLQqlUrzJ07F5WVlRg1ahR++uknAMBbb72F6OhoxMXFYfr06YiJicFDDz0EAMjIyMCQIUNw2223obi4GDt27EBSUpIHj4qcxUBI5AU4ZJSIiIg84Z133oHJZEJ6ejrKyspw11134ZtvvkFkZKSizYsvvohffvkFd955J7788ksEBAQAAIxGI1544QVcuHAB4eHhGDx4MBYuXOipw6F60Ahp8DA1SaWlpdBqtdDpdAgPD/f07lA9JSUl4eTJk+CvIxERUdNz/fp15OXloW3btggKCvL07jQZtfUbz3Hdh/chJPICUoWQgZCIiIiI3ImBkMgLcMgoEREREXkCAyGRF2GFkIiIiIjciYGQyIswEBIRERGROzEQEnkRBkIiIiIicicGQiIvwElliIiIiMgTGAiJvAADIRERERF5AgMhERERERGRSjEQEnkRVgiJiIioqZgxYwa6dOni6d2gBmIgJPIiDIRERERE5E4MhERegNcQEhEREZEnMBASeQEGQiIiIvIEk8mEOXPm4NZbb0VgYCBatWqFmTNnAgBefvll3HbbbQgJCUG7du3w2muvwWAw1Lq9jz/+GJ06dUJgYCBatmyJ8ePHu+MwqAH8PL0DRPQHBkIiIiJyp2nTpmHFihVYuHAh+vTpg4KCApw8eRIAEBYWhpUrVyIhIQHHjh3D6NGjERYWhqlTp9rc1vvvv49JkybhnXfewZAhQ6DT6fDjjz+683CoHhgIibyAVCEkIiIicpeysjIsXrwYS5cuxVNPPQUA+NOf/oQ+ffoAAF599VW5bZs2bZCZmYnPPvvMbiD8+9//jszMTLz44ovyc3fffXcjHgG5AgMhkRdhhZCIiKgZqawE/q/a5lYdOwIhIXU2y83NhV6vR//+/W0u/89//oNFixbhzJkzKC8vR01NDcLDw222LSoqwsWLF+1ui7yX6q4h/P777zFs2DAkJCRAo9Fg06ZNdtuOHTsWGo0GixYtUjyv1+sxYcIExMTEIDQ0FKmpqbhw4YKiTXFxMdLT06HVaqHVapGeno6SkhJFm/Pnz2PYsGEIDQ1FTEwMJk6ciOrqahcdKTUlvIaQiIioGTp5EujWzf0PB0NocHCw3WX79u3DyJEjMWTIEGzevBlHjhzB9OnT7Z6r1rYt8m6qqxBWVFTgzjvvxP/3//1/eOSRR+y227RpE/bv34+EhASrZRkZGfjqq6+wfv16REdHIzMzEykpKcjOzoavry8AIC0tDRcuXEBWVhYAYMyYMUhPT8dXX30FADAajRg6dChuuukm7N69G1evXsVTTz0FIQSWLFnSCEdOTQEDIRERUTPSsSOQne2Z13VA+/btERwcjG+//RbPPvusYtmPP/6I1q1bY/r06fJz586ds7utsLAwtGnTBt9++y3uu++++u03eYTqAuGQIUMwZMiQWtv8/vvvGD9+PL755hsMHTpUsUyn0+Gjjz7C6tWrMWDAAADAmjVrkJiYiO3bt2PQoEHIzc1FVlYW9u3bh+7duwMAVqxYgZ49e+LUqVPo0KEDtm7dip9//hn5+fly6Jw/fz6efvppzJw50245npo3BkIiIqJmJCQE+POfPb0XdgUFBeHll1/G1KlTERAQgN69e+Py5cs4ceIEbr31Vpw/fx7r16/H3XffjS1btmDjxo21bm/GjBkYN24cYmNjMWTIEJSVleHHH3/EhAkT3HREVB+qGzJaF5PJhPT0dEyZMgWdOnWyWp6dnQ2DwYCBAwfKzyUkJCA5ORl79uwBAOzduxdarVYOgwDQo0cPaLVaRZvk5GRFBXLQoEHQ6/XIruWTJL1ej9LSUsWDmj4OGSUiIiJPeO2115CZmYnXX38dSUlJePTRR1FUVIQHH3wQL730EsaPH48uXbpgz549eO2112rd1lNPPYVFixbhvffeQ6dOnZCSkoJffvnFTUdC9aW6CmFd5syZAz8/P0ycONHm8sLCQgQEBCAyMlLxfFxcHAoLC+U2sbGxVuvGxsYq2sTFxSmWR0ZGIiAgQG5jy+zZs/Hmm286dUxERERERLb4+Phg+vTpiqGhkrlz52Lu3LmK5zIyMuSvZ8yYgRkzZiiWjx07FmPHjm2MXaVGwgqhmezsbCxevBgrV650+jYAQgjFOrbWr08bS9OmTYNOp5Mf+fn5Tu0neSdWCImIiIjIExgIzfzwww8oKipCq1at4OfnBz8/P5w7dw6ZmZlo06YNACA+Ph7V1dUoLi5WrFtUVCRX/OLj43Hp0iWr7V++fFnRxrISWFxcDIPBYFU5NBcYGIjw8HDFg5o+BkIiIiIi8gQGQjPp6ek4evQocnJy5EdCQgKmTJmCb775BgDQrVs3+Pv7Y9u2bfJ6BQUFOH78OHr16gUA6NmzJ3Q6HQ4cOCC32b9/P3Q6naLN8ePHUVBQILfZunUrAgMD0a1bN3ccLnkhBkIiIiIicifVXUNYXl6OM2fOyN/n5eUhJycHUVFRaNWqFaKjoxXt/f39ER8fjw4dOgAAtFotRo0ahczMTERHRyMqKgqTJ09G586d5VlHk5KSMHjwYIwePRrLli0DcOO2EykpKfJ2Bg4ciNtvvx3p6el49913ce3aNUyePBmjR49m1U/FGAiJiIiIyJ1UVyE8dOgQunbtiq5duwIAJk2ahK5du+L11193eBsLFy7EQw89hBEjRqB3794ICQnBV199Jd+DEADWrl2Lzp07Y+DAgRg4cCDuuOMOrF69Wl7u6+uLLVu2ICgoCL1798aIESPw0EMPYd68ea47WGpyGAiJiIiIyJ00gmegTVppaSm0Wi10Oh0ri03Y3XffjUOHDqGoqAg33XSTp3eHiIiInHD9+nXk5eWhTZs2CA4O9vTuNBlVVVU4e/Ys2rZti6CgIMUynuO6j+oqhETeiJPKEBERNV3+/v4AgMrKSg/vSdMi9ZfUf+QZqruGkMgdTpw4gVtvvRWBgYFOrcdASERE1PT4+voiIiICRUVFAICQkBCnb2GmJkIIVFZWoqioCBEREYrLrsj9GAiJXEwIgeTkZIwZM0aeVMiZdYmIiKjpiY+PBwA5FFLdIiIi5H4jz2EgJGokhw8fdnodBkIiIqKmSaPRoGXLloiNjYXBYPD07ng9f39/Vga9BAMhkYtJoa6mpsbhdXgNIRERUfPg6+vLoENNCieVIWokRqPR4ba8zoCIiIiIPIGBkMjF6lMhtFyXiIiIiMgdGAiJGkl9KoQMhERERETkTgyERC4mhTpnAqHlukRERERE7sBASNRIWCEkIiIiIm/HQEjkYg0JdQyERERERORODISkOqWlpfUazklERERE1NwwEJLqaLVajB8/vtG2X58qH4eMEhEREZEnMBCSKm3cuLHRX6M+4Y6BkIiIiIjciYGQVKkxh4yyQkhERERETQUDIamSt11DyEBIRERERJ7AQEiq5G0VQlesS0RERETkLAZCUiVvqxASEREREXkCAyGpEiuEREREREQMhKRSNTU1jf4azoQ7XkNIRERERJ7AQEiq1JjBi7OM1m3t2rXQ6XSe3g0iIiIi1WMgJPIiagiE5eXleOKJJzBmzBhP7woRERGR6jEQEnkRNQRCH58b/+0UFRV5eE+IiIiIiIGQyMXUEOpcobq62tO7QERERKR6DISkSt4W2tR0DaF0jAaDwcN7QkRERESqC4Tff/89hg0bhoSEBGg0GmzatEleZjAY8PLLL6Nz584IDQ1FQkICnnzySVy8eFGxDb1ejwkTJiAmJgahoaFITU3FhQsXFG2Ki4uRnp4OrVYLrVaL9PR0lJSUKNqcP38ew4YNQ2hoKGJiYjBx4kRWTZoBTirjGAZCIiIiIs9TXSCsqKjAnXfeiaVLl1otq6ysxOHDh/Haa6/h8OHD2LBhA06fPo3U1FRFu4yMDGzcuBHr16/H7t27UV5ejpSUFMW97dLS0pCTk4OsrCxkZWUhJycH6enp8nKj0YihQ4eioqICu3fvxvr16/H5558jMzOz8Q6eZN4avLx1v1xJOkY1HCsRERGRt/Pz9A6425AhQzBkyBCby7RaLbZt26Z4bsmSJbjnnntw/vx5tGrVCjqdDh999BFWr16NAQMGAADWrFmDxMREbN++HYMGDUJubi6ysrKwb98+dO/eHQCwYsUK9OzZE6dOnUKHDh2wdetW/Pzzz8jPz0dCQgIAYP78+Xj66acxc+ZMhIeHN2IvUGOqT+BRY4WQiIiIiDxPdRVCZ+l0Omg0GkRERAAAsrOzYTAYMHDgQLlNQkICkpOTsWfPHgDA3r17odVq5TAIAD169IBWq1W0SU5OlsMgAAwaNAh6vR7Z2dl290ev16O0tFTxIGpKGHqJiIiIvAcDYS2uX7+OV155BWlpaXLFrrCwEAEBAYiMjFS0jYuLQ2FhodwmNjbWanuxsbGKNnFxcYrlkZGRCAgIkNvYMnv2bPm6RK1Wi8TExAYdo1p5243pXbFuU6OmYyUiIiLyVgyEdhgMBowcORImkwnvvfdene2FEPKwPwCKrxvSxtK0adOg0+nkR35+fp37Rt5PTUNG1XCMRERERE0FA6ENBoMBI0aMQF5eHrZt26a4ni8+Ph7V1dUoLi5WrFNUVCRX/OLj43Hp0iWr7V6+fFnRxrISWFxcDIPBYFU5NBcYGIjw8HDFg7wLAw8RERERNRUMhBakMPjLL79g+/btiI6OVizv1q0b/P39FZPPFBQU4Pjx4+jVqxcAoGfPntDpdDhw4IDcZv/+/dDpdIo2x48fR0FBgdxm69atCAwMRLdu3RrzEMmLqSFMquEYiYiIiJoK1c0yWl5ejjNnzsjf5+XlIScnB1FRUUhISMD/+3//D4cPH8bmzZthNBrlKl5UVBQCAgKg1WoxatQoZGZmIjo6GlFRUZg8eTI6d+4szzqalJSEwYMHY/To0Vi2bBkAYMyYMUhJSUGHDh0AAAMHDsTtt9+O9PR0vPvuu7h27RomT56M0aNHs+rXxDXktgpqCktqOlYiIiIib6W6QHjo0CHcd9998veTJk0CADz11FOYMWMGvvzySwBAly5dFOt999136NevHwBg4cKF8PPzw4gRI1BVVYX+/ftj5cqV8PX1lduvXbsWEydOlGcjTU1NVdz70NfXF1u2bMHzzz+P3r17Izg4GGlpaZg3b15jHDZ5OV5DSERERESeoLpA2K9fv1pPSB05WQ0KCsKSJUuwZMkSu22ioqKwZs2aWrfTqlUrbN68uc7Xo6aFgad2Uv/UNnkSEREREbkHryEk8iJqCpNqOlYiIiIib8VASKrijhBSn9fgkFEiIiIi8gQGQlIVhhEiIiIioj8wEBK5GGcZrZ0ajpGIiIioqWAgJFXx1jCipiGjEjUdKxEREZG3YiAkcrGGBB01hCQ1HCMRERFRU8FASKrizjDC4ENERERE3o6BkFTFW2cZdcW6TYUajpGIiIioqWAgJPICvIaQiIiIiDyBgZBUxdsrhGrA/iEiIiLyHgyERF6EYYmIiIiI3ImBkFTFWyuEahoyqoZjJCIiImoqGAhJVTjLqOexX4iIiIi8BwMhkYtxllEiIiIiaioYCElVvDVwccgoEREREXkCAyGpireHEW/fP1dS07ESEREReSsGQiIXY9CpHfuHiIiIyHswEJKqeHsY8fb9IyIiIqLmhYGQyMWkUOdMuOM1hERERETkCQyEpCoMI96D7wURERGR5zEQkqp4643pXbFuU6GGYyQiIiJqKhgIidygoKAAVVVVdperacgoEREREXkPBkJSFU9VCBMSEvDAAw/Ua93mRg3HSERERNRUMBASucnOnTvtLpMqhGrAQEhERETkPVQXCL///nsMGzYMCQkJ0Gg02LRpk2K5EAIzZsxAQkICgoOD0a9fP5w4cULRRq/XY8KECYiJiUFoaChSU1Nx4cIFRZvi4mKkp6dDq9VCq9UiPT0dJSUlijbnz5/HsGHDEBoaipiYGEycOBHV1dWNcdj0f3gNIRERERHRH1QXCCsqKnDnnXdi6dKlNpfPnTsXCxYswNKlS3Hw4EHEx8fj/vvvR1lZmdwmIyMDGzduxPr167F7926Ul5cjJSUFRqNRbpOWloacnBxkZWUhKysLOTk5SE9Pl5cbjUYMHToUFRUV2L17N9avX4/PP/8cmZmZjXfw5PWBy9v3zxXUcIxERERETYWfp3fA3YYMGYIhQ4bYXCaEwKJFizB9+nQMHz4cALBq1SrExcVh3bp1GDt2LHQ6HT766COsXr0aAwYMAACsWbMGiYmJ2L59OwYNGoTc3FxkZWVh37596N69OwBgxYoV6NmzJ06dOoUOHTpg69at+Pnnn5Gfn4+EhAQAwPz58/H0009j5syZCA8Pd0NvUGOoz30I1Yj9Q0REROR5qqsQ1iYvLw+FhYUYOHCg/FxgYCD69u2LPXv2AACys7NhMBgUbRISEpCcnCy32bt3L7RarRwGAaBHjx7QarWKNsnJyXIYBIBBgwZBr9cjOzu7UY9Tzbw9hHj7/rmCGo6RiIiIqKlQXYWwNoWFhQCAuLg4xfNxcXE4d+6c3CYgIACRkZFWbaT1CwsLERsba7X92NhYRRvL14mMjERAQIDcxha9Xg+9Xi9/X1pa6ujhkZvUJ/DwthNERERE5AmsENpgOeOjEKLOWSAt29hqX582lmbPni1PVKPVapGYmFjrfpESA5fn8T0gIiIi8h4MhGbi4+MBwKpCV1RUJFfz4uPjUV1djeLi4lrbXLp0yWr7ly9fVrSxfJ3i4mIYDAaryqG5adOmQafTyY/8/Hwnj1LdOMsoEREREdEfGAjNtG3bFvHx8di2bZv8XHV1NXbt2oVevXoBALp16wZ/f39Fm4KCAhw/flxu07NnT+h0Ohw4cEBus3//fuh0OkWb48ePo6CgQG6zdetWBAYGolu3bnb3MTAwEOHh4YoHNX1qGjKqhmMkIiIiaipUdw1heXk5zpw5I3+fl5eHnJwcREVFoVWrVsjIyMCsWbPQvn17tG/fHrNmzUJISAjS0tIAAFqtFqNGjUJmZiaio6MRFRWFyZMno3PnzvKso0lJSRg8eDBGjx6NZcuWAQDGjBmDlJQUdOjQAQAwcOBA3H777UhPT8e7776La9euYfLkyRg9ejRDXiNyZ4WwPq+lprCkpmMlIiIi8laqC4SHDh3CfffdJ38/adIkAMBTTz2FlStXYurUqaiqqsLzzz+P4uJidO/eHVu3bkVYWJi8zsKFC+Hn54cRI0agqqoK/fv3x8qVK+Hr6yu3Wbt2LSZOnCjPRpqamqq496Gvry+2bNmC559/Hr1790ZwcDDS0tIwb968xu4CVfPWEFLXNarNibe+B0RERERqpBE8O2vSSktLodVqodPpWFl0wOXLl+UZYBvrR/+3337Dn/70J8TGxsrXktY1JPTBBx/El19+ic2bN2Po0KGNsl/e4tdff8Wtt96KDh064OTJk57eHSIiIvJCPMd1H15DSKri7Z9/ePv+uYIajpGIiIioqWAgJHIxBp7asX+IiIiIvAcDIamKt4cRb98/V1LTsRIRERF5KwZCUhVvnWWUt50gIiIiIk9gICTyAmoKhERERETkPRgISVXcWSEk29g/RERERN6DgZDIizAsEREREZE7MRCSqnh7hVANgVANx0hERETUVDAQkqp4axiRriFUE299L4iIiIjUhIGQyMXqM8uo5brNmRqOkYiIiKipYCAkVfH2MOLt+0dEREREzQsDIRG5FUMvERERkfdgICRV4aQynqeGYyQiIiJqKhgISVW8NYzwxvRERERE5AkMhEQuVp9Qp6ZAqIZjJCIiImoqGAhJVdwZRhh8asf+ISIiIvI8BkIiF+M1hLVTwzESERERNRUMhKQq3h5GvH3/iIiIiKh5YSAkVfHWWUalawjVgKGXiIiIyHswEBJ5ETWFJTUdKxEREZG3YiAkVfHWCqEr1m0q1HCMRERERE0FAyGpireGETXddoKIiIiIvAcDIZGLMdTVjv1DRERE5D0YCElVvP0+hGoKS2o6ViIiIiJvxUBI5GINmWVUDSFJDcdIRERE1FQwEFqoqanBq6++irZt2yI4OBjt2rXDW2+9BZPJJLcRQmDGjBlISEhAcHAw+vXrhxMnTii2o9frMWHCBMTExCA0NBSpqam4cOGCok1xcTHS09Oh1Wqh1WqRnp6OkpISdxymajkTRkpKSrBx48ZG3Bt1kt4DNd1qg4iIiMhbMRBamDNnDj744AMsXboUubm5mDt3Lt59910sWbJEbjN37lwsWLAAS5cuxcGDBxEfH4/7778fZWVlcpuMjAxs3LgR69evx+7du1FeXo6UlBQYjUa5TVpaGnJycpCVlYWsrCzk5OQgPT3drcerNs4EwilTpmD48OFOh3TOMuoYNR0rERERkbfy8/QOeJu9e/fiwQcfxNChQwEAbdq0wT//+U8cOnQIwI2T2EWLFmH69OkYPnw4AGDVqlWIi4vDunXrMHbsWOh0Onz00UdYvXo1BgwYAABYs2YNEhMTsX37dgwaNAi5ubnIysrCvn370L17dwDAihUr0LNnT5w6dQodOnTwwNGTuYqKCgDAtWvXEBER4ZbXVENIUsMxEhERETUVrBBa6NOnD7799lucPn0aAPDTTz9h9+7deOCBBwAAeXl5KCwsxMCBA+V1AgMD0bdvX+zZswcAkJ2dDYPBoGiTkJCA5ORkuc3evXuh1WrlMAgAPXr0gFarldvYotfrUVpaqniQ45wJI/Ud0sjAQ0RERERNBSuEFl5++WXodDp07NgRvr6+MBqNmDlzJh577DEAQGFhIQAgLi5OsV5cXBzOnTsntwkICEBkZKRVG2n9wsJCxMbGWr1+bGys3MaW2bNn480336z/AZLDGnqNG2cZtU06RvPrcomIiIjIM1ghtPDZZ59hzZo1WLduHQ4fPoxVq1Zh3rx5WLVqlaKdZVgQQtQZICzb2Gpf13amTZsGnU4nP/Lz8x05LPo/7ghpvIbQMQaDwdO7QERERKR6rBBamDJlCl555RWMHDkSANC5c2ecO3cOs2fPxlNPPYX4+HgANyp8LVu2lNcrKiqSq4bx8fGorq5GcXGxokpYVFSEXr16yW0uXbpk9fqXL1+2qj6aCwwMRGBgYMMPVKW8tWrXkNtO5Ofnw9/fX/7Z9HbSMdbU1Hh4T4iIiIiIFUILlZWV8PFRdouvr688vK1t27aIj4/Htm3b5OXV1dXYtWuXHPa6desGf39/RZuCggIcP35cbtOzZ0/odDocOHBAbrN//37odDq5DXkHd1YI66NVq1aKDyeaClYIiYiIiDyPFUILw4YNw8yZM9GqVSt06tQJR44cwYIFC/DMM88AuFHJycjIwKxZs9C+fXu0b98es2bNQkhICNLS0gAAWq0Wo0aNQmZmJqKjoxEVFYXJkyejc+fO8qyjSUlJGDx4MEaPHo1ly5YBAMaMGYOUlBTOMNqI6jOpjDuvdVPDkFHpGKVAWFlZiWHDhmHlypVITEz05K4RERERqQ4DoYUlS5bgtddew/PPP4+ioiIkJCRg7NixeP311+U2U6dORVVVFZ5//nkUFxeje/fu2Lp1K8LCwuQ2CxcuhJ+fH0aMGIGqqir0798fK1euhK+vr9xm7dq1mDhxojwbaWpqKpYuXeq+gyWHuKNCKK2jhkAokQLhwYMHsWPHDixduhRz5szx8F4RERERqQsDoYWwsDAsWrQIixYtsttGo9FgxowZmDFjht02QUFBWLJkieKG9paioqKwZs2aBuwtOcud1xCqKdw5w/IaQvYTERERkefwGkJSFU/MMurI+mqsEFpOKtPQ23wQERERkfMYCInscNU1hAyESvUJzERERETUOBgISVXqM6lMfSuEDDq22esXVgiJiIiI3I+BkKgODQ12rBDWTo3HTEREROQtGAhJVTxxY3oGQiV7Q0ZZISQiIiJyPwZCUhVPTCrjrnWbOgZCIiIiIvdjICSywxOTyqgBJ5UhIiIi8h4MhKQq7qwQOrOemoaM2sMKIREREZH7MRCSqrgzENZnllI1BEI1HCMRERFRU8FASFQHd96YnoiIiIjInRgISVXqcx/Chl5D6Aw1BENeQ0hERETkPRgIiergzgqhmsMRryEkIiIicj8GQlIVT9x2goFQiRVCIiIiIu/BQEiq4olJZUiJN6YnIiIi8h4MhER1qO81hM5U/dRUIbSHgZCIiIjI/RgISVXqM6kMh4y6FoeMEhEREXkPBkKiOnDIqHuwv4iIiIjcj4GQVMUdFcL6vCYrhERERETkCQyEpCqemGXUmXXUHI5YISQiIiJyPwZCIjvqe2N6VsBqx/4hIiIi8h4MhKQqvA8hEREREdEfGAiJ6uCOkKamQKiGYyQiIiJqKhgISVW8tUJY39dqDjgrKxEREZHnMBCSqtQncLnjGkI1BUF7x8pASEREROR+DIREdjT0xvTOBBw1DRm1pMZjJiIiIvIWDIQ2/P7773jiiScQHR2NkJAQdOnSBdnZ2fJyIQRmzJiBhIQEBAcHo1+/fjhx4oRiG3q9HhMmTEBMTAxCQ0ORmpqKCxcuKNoUFxcjPT0dWq0WWq0W6enpKCkpccchqpY7hoxarscho0qsEBIRERF5DwZCC8XFxejduzf8/f3x9ddf4+eff8b8+fMREREht5k7dy4WLFiApUuX4uDBg4iPj8f999+PsrIyuU1GRgY2btyI9evXY/fu3SgvL0dKSgqMRqPcJi0tDTk5OcjKykJWVhZycnKQnp7uzsMlB7jzPoRqwNtOEBEREXkPP0/vgLeZM2cOEhMT8cknn8jPtWnTRv5aCIFFixZh+vTpGD58OABg1apViIuLw7p16zB27FjodDp89NFHWL16NQYMGAAAWLNmDRITE7F9+3YMGjQIubm5yMrKwr59+9C9e3cAwIoVK9CzZ0+cOnUKHTp0cN9Bq4g7J5Wpz5BTNYYjTipDRERE5DmsEFr48ssvcdddd+Gvf/0rYmNj0bVrV6xYsUJenpeXh8LCQgwcOFB+LjAwEH379sWePXsAANnZ2TAYDIo2CQkJSE5Oltvs3bsXWq1WDoMA0KNHD2i1WrmNLXq9HqWlpYoHOc6ZwOXOG9Or6RpC82MUQqjimImIiIi8FQOhhd9++w3vv/8+2rdvj2+++Qbjxo3DxIkT8emnnwIACgsLAQBxcXGK9eLi4uRlhYWFCAgIQGRkZK1tYmNjrV4/NjZWbmPL7Nmz5WsOtVotEhMT63+w5BDeh7DxCCHkwM0KIREREZH7MRBaMJlM+POf/4xZs2aha9euGDt2LEaPHo33339f0c7y5FUIUecJrWUbW+3r2s60adOg0+nkR35+viOHRf/H2+9DqAaWFUIGQiIiIiLPYSC00LJlS9x+++2K55KSknD+/HkAQHx8PABYVfGKiorkqmF8fDyqq6tRXFxca5tLly5Zvf7ly5etqo/mAgMDER4erniQ4+ozZNQdgVDNFUK1HTMRERGRN2EgtNC7d2+cOnVK8dzp06fRunVrAEDbtm0RHx+Pbdu2ycurq6uxa9cu9OrVCwDQrVs3+Pv7K9oUFBTg+PHjcpuePXtCp9PhwIEDcpv9+/dDp9PJbciz6nsNYX2oKRDaqxASERERkftxllELL730Enr16oVZs2ZhxIgROHDgAJYvX47ly5cDuBESMjIyMGvWLLRv3x7t27fHrFmzEBISgrS0NACAVqvFqFGjkJmZiejoaERFRWHy5Mno3LmzPOtoUlISBg8ejNGjR2PZsmUAgDFjxiAlJYUzjDYiDhn1LiaTSb4Vi48PP58iIiIicjcGQgt33303Nm7ciGnTpuGtt95C27ZtsWjRIjz++ONym6lTp6KqqgrPP/88iouL0b17d2zduhVhYWFym4ULF8LPzw8jRoxAVVUV+vfvj5UrV8LX11dus3btWkycOFGejTQ1NRVLly5138GqnCPXfUrtnN2us+uruUI4btw4AFD8bhARERGRezAQ2pCSkoKUlBS7yzUaDWbMmIEZM2bYbRMUFIQlS5ZgyZIldttERUVhzZo1DdlVcpJlGHFHIHRmHTUEQnNCCPnWKawQEhEREbkfz8BIVcwDl6PXrjU0pDVGyPvss89QXV3t8u26g2UolzAQEhEREbkfz8BIteoKaq66Mb0z6ziybnZ2NkaOHIl58+Y5/TrewF4gJCIiIiL3YyAkVXFHhbCxryGsrKwEAKvbmjRF5u8BwyERERGR+zEQkqq4MxDW5z6GjdXWm9irEDbV4yEiIiJqyhgISVXceQ1hY4U7RybCaSoYCImIiIg8i4GQVMWZAOKqawjVUPVzhuV78PDDD1s9T0RERETuwUBIquKtQ0bVfNsJtR47ERERkTdgICRV8cSkMo21TlNl+R4wEBIRERF5DgMhqYq334dQbaGIFUIiIiIiz2IgJFXx1msI6xOKmmqAsnwPpO+d7WciIiIiajgGQlIVZyqE9bltRH3am6/jyLr13S9vxAohERERkWcxEJKqmIfAugKhq4KKq4NOU7/thL0KIQMhERERkfsxEJKqODNktL5BpbErhM0JJ5UhIiIi8iwGQlIVZ4aMuioQ8rYTSqwQEhEREXkPBkJSlfoEwvpOKtOcrvVzJQZCIiIiIu/BQEiq4o4Koa3XcrStGmYZNcdASERERORZDISkKo1xDWFWVhb27dtnd7uuHjLa1G/PwAohERERkffw8/QOELlTY1QIhwwZYrN9Yw0ZbeqB0BwnlSEiIiLyLFYISVXceQ1hfdZpSIWwqQQqywqhdDxNZf+JiIiImhMGQlIVd9x2orbXdEVbe4GwKVYOOWSUiIiIyLMYCElVmsNtJ5pbhZCBkIiIiMhzGAhJVTwRCF29jr0hlk29QtgU95+IiIioqWMgJFXx1gqhM21ZISQiIiIiV2EgJFVx5hpCiTsqV64YMtoUK2ycZZSIiIjIsxgI6zB79mxoNBpkZGTIzwkhMGPGDCQkJCA4OBj9+vXDiRMnFOvp9XpMmDABMTExCA0NRWpqKi5cuKBoU1xcjPT0dGi1Wmi1WqSnp6OkpMQNR6Ve3lohrM+Q0YZsw5NYISQiIiLyHgyEtTh48CCWL1+OO+64Q/H83LlzsWDBAixduhQHDx5EfHw87r//fpSVlcltMjIysHHjRqxfvx67d+9GeXk5UlJSYDQa5TZpaWnIyclBVlYWsrKykJOTg/T0dLcdnxp5ayB0pq23X0N48eJF/Pzzz3aXMxASEREReQ8GQjvKy8vx+OOPY8WKFYiMjJSfF0Jg0aJFmD59OoYPH47k5GSsWrUKlZWVWLduHQBAp9Pho48+wvz58zFgwAB07doVa9aswbFjx7B9+3YAQG5uLrKysvDhhx+iZ8+e6NmzJ1asWIHNmzfj1KlTHjlmNTAPTe667YQjmtMso23atEGnTp0castASERERORZDIR2vPDCCxg6dCgGDBigeD4vLw+FhYUYOHCg/FxgYCD69u2LPXv2AACys7NhMBgUbRISEpCcnCy32bt3L7RaLbp37y636dGjB7RardyGXM8TN6Z39W0n7LX1lgqhwWCodTkrhERERETew8/TO+CN1q9fj8OHD+PgwYNWywoLCwEAcXFxiufj4uJw7tw5uU1AQICisii1kdYvLCxEbGys1fZjY2PlNrbo9Xro9Xr5+9LSUgePigDvHzLqCG+vENbF8j1gICQiIiLyHFYILeTn5+PFF1/EmjVrEBQUZLedRqNRfC+EsHrOkmUbW+3r2s7s2bPlSWi0Wi0SExNrfU1ScmcgrOvnob6v5e3XENaFFUIiIiIi78FAaCE7OxtFRUXo1q0b/Pz84Ofnh127duEf//gH/Pz85MqgZRWvqKhIXhYfH4/q6moUFxfX2ubSpUtWr3/58mWr6qO5adOmQafTyY/8/PwGHa/aOHPbiYYGFVcMA7WlOVUIGQiJiIiIPIuB0EL//v1x7Ngx5OTkyI+77roLjz/+OHJyctCuXTvEx8dj27Zt8jrV1dXYtWsXevXqBQDo1q0b/P39FW0KCgpw/PhxuU3Pnj2h0+lw4MABuc3+/fuh0+nkNrYEBgYiPDxc8SDHNYcho95+DWFdLCf2YSAkIiIi8hxeQ2ghLCwMycnJiudCQ0MRHR0tP5+RkYFZs2ahffv2aN++PWbNmoWQkBCkpaUBALRaLUaNGoXMzExER0cjKioKkydPRufOneVJapKSkjB48GCMHj0ay5YtAwCMGTMGKSkp6NChgxuPWF08MamMM+s05J6FTSUQWlYI7Q2BJSIiIqLGx0BYD1OnTkVVVRWef/55FBcXo3v37ti6dSvCwsLkNgsXLoSfnx9GjBiBqqoq9O/fHytXroSvr6/cZu3atZg4caI8G2lqaiqWLl3q9uNRE3cMGbVcz133IWwqgcrepDJNJdASERERNScMhA7YuXOn4nuNRoMZM2ZgxowZdtcJCgrCkiVLsGTJErttoqKisGbNGhftJTnCHUNG66M+odE8TEnfNwUcMkpERETkPXgNIamKO68hbKxJZexVOZtKoOKkMkRERETeg4GQVMWd1xC6e8hoU6kQ2guETWX/iYiIiJoTBkJSlfpU1Bo6y6gz6zhbTWyKFUJ7Q0YrKys9tUtEREREqsVASKrizmsIba1vb1v1qSJaBsKmUmGzN6lMaWmpp3aJiIiISLUYCElVPH0NYV2B0Nkho02xQmhvyKjBYPDULhERERGpFgMhqYqn70NY1z0EGzJktKlUCO0NGTUajZ7aJSIiIiLVYiAkVXHHfQhrW78xh4x6W4XQkWNlICQiIiLyLAZCUhXz6lR9hoxWV1fj/vvvx6lTpxxez5HQVp8Kobffh9De/jgaCE+dOoW8vLzG20EiIiIiYiAkdXEmQNkKaRcvXsT27dsxffp0h17D1ve1rePMNYSWgdDbKoQ1NTU2n7cM5fYCYceOHdGuXbvG20EiIiIiYiAkdWnokFF/f38AgF6vd3g9ZyqEjmgqFUJ7Q0A5ZJSIiIjIezAQkqrUp0LozDBTy9ewXMeVQ0aNRmOTrBAyEBIRERF5DwZCUpWGDhl1JLhZtnEkELpiyKg7KoQ6nQ4lJSUOtbUX8Cz7Q/reXoAkIiIiosbj5+kdIHIndwRCd04qY2sbjSkiIkKxD7XhkFEiIiIi78cKIamKEAI+Pj7y13W1tWznSCWvtqCmpmsI1ThktKysDBqNBt99952nd4WIiIjIIQyEpCpCCPj6+gJo2DWE3jhk1NuuIXRkyGhts4w2RRcuXAAAfPrppx7eEyIiIiLHMBCSqphXCBsyZNSZ9RprUhmTyeT0hDfupMYKIREREVFTw0BIqmJeIawrfDV0Uhnz17T1tb02dTEPUI6ETU9x9BpC6RjcEQjz8/NRVVXV6K/jbe8FERERkT0MhKQqzgwZtTWM05nbTtib/MUWZyqE5kNGXVUhFELg66+/dmmQceTG9O4OhK1atcJf//rXRtu+RqNptG0TERERNQYGQlIVVw0ZdfU1hJ4eMvrVV1/hgQcewIYNG+q9DUveWCEEgG3btrnldYiIiIiaAgZCUhWj0Qh/f38AjXdj+oYMGXU2ELpqUpni4mIAwKVLl+q9DUuOBELzUOuuQFhdXe2W1yEiIiJqChgISVXMA6ErriG0tY2GVAgd0RhDRqWqqStDWW1DRs1v/WEymeDv789JZeqwZs0adOrUydO7QURERM0Mb0xPqmIymVx6DaGrA6Gnhoz6+d34r8CVoay2CqGvr69c4ZQCob0A2ZQ05kyvL774Iq5du9Zo2yciIiJ1YoWQVMVoNMLX1xcajcYl1xDaCnCWzzXmkFFXBUIpJLujQmh+HWdzqxA6E+ydxQlriIiIqDEwEJKqSBVCHx8fh4eM1nZjelshrLGHjDbGbScaIxDWdmP65hoIG/MYGAiJiIioMTAQkqoYjUb4+PjAx8fHJTemd9WQUWcqhI1xDaEnhowCfxwDA6HjeI9DIiIiciUGQguzZ8/G3XffjbCwMMTGxuKhhx7CqVOnFG2EEJgxYwYSEhIQHByMfv364cSJE4o2er0eEyZMQExMDEJDQ5GamooLFy4o2hQXFyM9PR1arRZarRbp6ekoKSlp7ENUNalC6Koho7VVCG19763XELp7yKj0es2tQtiY1xBKFcLm0E9ERETkPRgILezatQsvvPAC9u3bh23btqGmpgYDBw5ERUWF3Gbu3LlYsGABli5dioMHDyI+Ph73338/ysrK5DYZGRnYuHEj1q9fj927d6O8vBwpKSmKk7m0tDTk5OQgKysLWVlZyMnJQXp6uluPV22cqRA6MqmMrW1YrudM1c8R9m474YpZRl0xsUtdwcVyyKgQotkEQncMGTUYDI32GkRERKQ+nGXUQlZWluL7Tz75BLGxscjOzsa9994LIQQWLVqE6dOnY/jw4QCAVatWIS4uDuvWrcPYsWOh0+nw0UcfYfXq1RgwYACAG1PGJyYmYvv27Rg0aBByc3ORlZWFffv2oXv37gCAFStWoGfPnjh16hQ6dOjg3gNXifpcQ1jf207Y+r6uSWgaMmTUFUMJXVHh0mg0EEK4rEIohGgy18+5IxA2h9lYiYiIyHuwQlgHnU4HAIiKigIA5OXlobCwEAMHDpTbBAYGom/fvtizZw8AIDs7GwaDQdEmISEBycnJcpu9e/dCq9XKYRAAevToAa1WK7exRa/Xo7S0VPEgx0kVQmeGjNY2LNMVQ0adDYSNMWRUCjKOBhq9Xm93WV33NHR2ltGvv/7aoX1qDEePHsWMGTMcbt+Ys4xKWCEkIiIiV2IgrIUQApMmTUKfPn2QnJwMACgsLAQAxMXFKdrGxcXJywoLCxEQEIDIyMha28TGxlq9ZmxsrNzGltmzZ8vXHGq1WiQmJtb/AFXIvELo6msI7T1XV+CrbyC0nGXUFYHQ0epTbe3qqmRZ3gtSCoRSOLR09epVh/apMdx555148803cf36dYfac8goERERNTUMhLUYP348jh49in/+859WyyyHsDkyrM2yja32dW1n2rRp0Ol08iM/P7+uwyAz5tcQ1hW+aruGsLZlloGwrgqhs0GuMWYZldZ1NNDUFggdqRDaGjJqbx1pew3VkKpdeXm5Q+04ZJSIiIiaGgZCOyZMmIAvv/wS3333HW655Rb5+fj4eACwquIVFRXJVcP4+HhUV1ejuLi41jaXLl2yet3Lly9bVR/NBQYGIjw8XPEgxzVmhdDecEFnAmFDhow2JPA4O2S0tipVXZPK2Bsyam8dV10/2JDAXNsQWXOsEBIREVFTw0BoQQiB8ePHY8OGDdixYwfatm2rWN62bVvEx8dj27Zt8nPV1dXYtWsXevXqBQDo1q0b/P39FW0KCgpw/PhxuU3Pnj2h0+lw4MABuc3+/fuh0+nkNuR6Db2G0DIIOjJktCldQ+iKIaN1zVhqPmTUkUDYokULh/apLg0JzI4OGTX/UMDVlTwGQiIiImoMnGXUwgsvvIB169bhiy++QFhYmFwJ1Gq1CA4OhkajQUZGBmbNmoX27dujffv2mDVrFkJCQpCWlia3HTVqFDIzMxEdHY2oqChMnjwZnTt3lmcdTUpKwuDBgzF69GgsW7YMADBmzBikpKRwhtFG5OoKoXmAsRcS6wp8DRky6qrbTrhyyKgzFULpdWsLhFJ4bKiGVO+crRCuWbMGa9ascenkMhwySkRERI2BgdDC+++/DwDo16+f4vlPPvkETz/9NABg6tSpqKqqwvPPP4/i4mJ0794dW7duRVhYmNx+4cKF8PPzw4gRI1BVVYX+/ftj5cqVipPbtWvXYuLEifJspKmpqVi6dGnjHqDKufoawroCoeX3jTlk1J2zjDoSSuy1qampQUBAgKKN9L2t13dVRawhgdAbJpWRsEJIRERErsRAaMGRE3KNRoMZM2bUOh19UFAQlixZgiVLlthtExUVhTVr1tRnN6meGlohlE74nakQ1vU69b0PoeUso+68hrAhFcKamhqriqCtCqGvry+MRqPLApA7riF0xX0c7eGQUSIiImoMvIaQVKWh1xBKgcVW6LEVIJ0dMupIqJNe01tnGa2rjcFgsKoI2guEUntXcOeQ0cbAIaNERETUGBgISVVcVSG09b29mUddfduJugJhbm4uunTpgqqqKqe36YpJZeoKl85UCAHXBULzvvrll1+cWrepDRm1/NkgIiIisoeBkFTFmWsIbQVCKQjVViG0rCjWFQjNT/AdqRBK+2AvEC5atAg//fQTTp06Vee2zPcTuDFjriPcEQiliWcc3ae6mG/b0fsKSuo7ZNSVAdGZIaP+/v7yBFa2HDp0CH/6058cPi4iIiJqvhgISVVMJpPDQ0alE+/aAqF5MLIVCGtqauoMhNI2/Pz8nB4yams4qrRvzlxTKO2jKwOhI5PKWAZC83Wk/W+MCqH0+o6qb4XQldf7Se+rI9cdm0wmfPfdd3aXL168GL/99hvOnTtnc/m5c+ewefPm+u0oERERNSkMhKQqBoMB/v7+Dg0ZtRUIaxsyaqsyZjQabQ4rNSeFICkU1aUxriF0pEJoKxjb4kyF0PLYLfsOaJxrCJ292X19ryFsjAlgPv744wZvIzQ0FABQUVFhc/mkSZMwbNgwtwyBJSIiIs9iICRVMQ+EdVXQzIdmWj5na8iorYpWTU1NnUNCzW+94MgJuNTecjhqYwdC832rLeg4UiH08/NTbNNWIJS20xgVQlv9vGzZMly9elX+3vy9qu+QUVcNdwX+GEJr+Xoffvih08FN6n9779HRo0cBANeuXXNyL91Hr9djw4YNnt4NIiKiJo+BkFTFVRVCW1UwW0HIaDTaHAZpTloeGhrqUPBwtEJYnyGjtVX+LI+rrm3Za2MwGODn5weNRiO3sXUfQlcHQvNtWx5nWVkZxo0bh/T0dJvt6ztk1JWB0Nb7+cUXX2D06NFYvXq1U9uSAqG9/dNqtQCAoqIiJ/fSff7+97/jkUcecepaWSIiIrLGQEiqUl1djYCAgDqvIRRCWN1zEFBW58z/BZQBxvzG63XN3NmQQGirQlmf+9U5MjzT/DjsHZMjw0qlCqFGo5GPNzg4WLEfgHsDoRT4CgsL5efMw1J9h4y6MhDa6k9pcpzKykqntiXN4GpvJtqIiAgAwOXLl53arjtJYdWZ2XSJiIjIGgMhqYqjFUJ7VT3LIGgvwJgHnLqClPRcSEiIQwHCfCir5fBU4I9A6EwYcSR8ORII6xqWKa0rvQf2AqH5/RvrOg6TyeTQ0Mba9k3aD3vDYm1VCO+77z507dpV8Zxl/7nyGkKpj+644w75OcsPARwlBUJ7lc/o6GgAQH5+vtWy//znP9i2bZtTr0dERETei4GQVMXRawhtzR5q/ryt+/ZJ26upqUFQUJDczryNrYAgPdeiRQunK4Tm27Nc15lA6Mh9CGsLhKWlpbj99tsVw/dqC4RShVAKJJaB0LzP6wpV77zzDqKjo+tsV1uFUOore4HQ1vuyc+dO5OTk2NyO5Pfff691n5whbVvqK8C5YcHmpCGjVVVVmDx5Mj744APFcqnCbX5NpeSvf/0rBg4cWK/XdaX6zKZLRERE1hgISVUcrRDamwjG0QqhFAgth4zaCi0NGTJqK7R4YsjowYMHkZubqwgW9sKldA1hYGAgysrKADQsEO7cuRMA5G3ZYyvYS6S+M3/e/L1wdMioZbu//OUvDq3nCKkfzF/DkQqhrWBuXiGcP38+nnvuOcVyKXyWlpY2bKfdgDOhEhERNQwDIamKFAjruobQ3r0BHb2G0JkKobOB0HwfbFUXpZN9Z26+3tAho7bWt3eiXlVVheDgYAQHB0On0wGwDoSOzmgK/DFDaV2BsLYKodR35hVO8/fC0UllLCuEtn7GPvjgA/ztb39zaHu2tm3+GnUFwt9++w1+fn5yaJZIM5bau/4uNzcXgDIQXrx40e59Cz1BOmZHwzoRERHZxkBIquLokFEphAQEBDgdCM2HjEq3naitateQCqEUDsLCwuR1pRkiL168WOe2LLfpzCyjmzdvlq8lszVLaU1NDd59912cOHFCsZ3r16/XGQidqRDWFW4ktVUIbQ2vrU+F0LKi9sQTT1i1ee655zB79myHtmeuuroaPj4+NgPhuHHj5OfMj/Ott94CAKub1Et9aivoHj9+HMeOHQOgPJ6bb74Zbdq0cXq/GxsDIVBQUODVM8ISEZF3YyAkVZFmGXV0UhnLQOjskFGpQigFntoCYUhISL2HjJqHSek5ezcdt0Vax5kK4bBhw+RryexVCKdOnYp7771XsZ2qqioEBQXZDIS27v1YVyCUwnZdVTxHKoTAHyFLei4oKMjhCuGVK1dw8803232dhqiurlYEf8B2yDVfvmrVKpv7IfWprYqf+XWDxcXFLtjzxnXy5EmXbOfKlSvYvHmzS7bVWJ566ilMmTLF6vk77rgDcXFxHtgjIiJqDhgISVUcve2EdFIdGBhY66Qytqo1lhXCmpoahISEWLW3fK3w8HCHJoKxDITS9XiWgdCZIaP1CYTmpP22dU2jFPoktoaMSv1jq1/r6hNXVAjNQ5S0HfOKq6NVKJ1Oh5tuuslqW65gMBjQokULu7fDkPrSkdeU1luwYIHVMvPhp958Y3rpfX/hhRdQUlLS4O098MADGDZsWL0nqTl16pRLbzNiy6effop58+ZZPX/lypVGfV0iImreGAhJVSorKxEcHFxnhVA6qQ4NDVWcIFrensC8cmQ+MYszFULpHnKRkZFOXUMoBUJ/f38EBQXJ60onpc5UCKV16jvLqNRfhw4dkp+Trumz7Ofr16/LFUKpGtWiRQsAf/SheT/Y6jOdTodPPvkEQgiXVAjNT+SlIG0e1Gt7Xz7++GP569LSUkUgdPb+gPZIP0eW+2L+tVTNs9UPUniS2Gpz5MgRAMpAaR40zI+rvq5cuYItW7Y43P6ZZ57BqFGjbC4zPyZXBKJff/0VQP2GoNbU1KBjx46YPHlyg/eDiIjI3RgISVWqqqoQEhJS5zWE0klxWFiYIpBIz9sKhFI7nU6HqKgoADeChsFgkCtgdQVCg8FQa1CV9kHa/+rqavj7+ze4QmirwmeptkAo9cPp06cB3BhmKV1/Zt7PQghFhVA6kZfChmUg9PPzs7lPM2fOxDPPPIMzZ87IgfDJJ5+s9RgdHTJqKxDWFjY3bNggf91YFULp9bVard0KoRTAzV9T+rkzr/rp9XqsWLHC6jWGDx8O4I8PEp588kkUFhbKy6VbUUj+/e9/O30caWlpSElJqfNnXPLJJ58oArc582NyJBAKIfDZZ5/Z/dBDuhVHp06drCYoEkLgo48+slsBlCqU5h+IEBERNRUMhKQaBoNBrtb5+PjUOl29dFIdGxurCFaWgdDWTJTFxcVo27YtgBsBoaSkRA4J9gKhr6+vPBlMXSGiqqoKYWFh8tfuCoS1zSBqWVUJCQmxecuCyspK1NTUQKvVylVTrVarqKiab69FixY290lafvXqVTkYXLhwoZYjdHzIqGUgrGvIqHmlqrS0FLGxsfL3tb2Xly9frnV/zZkHQnuzn0r7bf6cFMbffvtt+XnLCWYkUiCSAmH37t1RVFQk/2xYVhlHjBiBmpoa3HvvvTh8+LBDxyG9R5bDiOvDvB8c6cudO3di5MiR+PDDD20ul2ar/e2337B3717Fsh9//BHPPvss/vGPf9hcV6rOSjP81uXXX3/FHXfc4ZJ+MOfKIcrU/FRUVGDHjh2e3g0i8kIMhKQa0slScHAwWrRoUWtgktrGxcUpgk1tFcKqqipUVVVBr9fjT3/6E4AbgeXq1ato2bKlVXtJZWUlQkJCEB4eDqDu2ydUVVUhOjoaAFBYWIiwsDBFIJReoz6TytQ2ZNT8ZNO83YULF2wGQlsnu9KJc2RkJEJDQwHcqA5KJ9KOBkKp8lVcXCxvZ+jQobUdoqK6Y6/CCfzRb3VVCKUA/9VXX8n7rdPpEB0djQsXLmDixIm1nqA/8sgjte6vOWk74eHhMBqNNj+QkH6epbZarVbx+lK1z15oMQ+EPj4+SEpKAnAjIAG2h79evnwZP/zwA1555RWHjkN6bSnAZWVlQaPR1GvyGvP3xJFAKL2v9tpKxw9Y3+ze/AMIW6RrLR0NhKtWrcKxY8fw448/2ly+ceNGvPDCC/L3NTU1Nm8tsmfPHsXPdcuWLZ26/yipy5QpU9C/f3/F7XWIiAAGQlIR80AYHR1d6zAze4FQOgm1FQivX78un9jGxcWhRYsWuHbtGq5du4aWLVsiODjY5uQXUiCUqn6OBEKp4vj7779Dq9UiMDBQ3hdp311dITQPmObtSktLrQJhVFQUCgoKrNqbB0IpNJ8/f14+GbecKdNeIJSqi1evXrW6/6I95vtoGQjN+6q8vBzfffcd5s6dCwCIiIiwGezMt2d+377w8HDcfPPNCAkJqTUQOjpsElBWCAHbN6m3rBBGRkYqtiH9XNn7uZB+pisrKxEaGirfYiI/P19ez/I6Qul349y5cw5dLyntd05ODgDgn//8p+I1zNU1uYuzgVBqb6/fpQohYN1H0rr2PjCRfq537drl0KyngYGBAOxX9IYPH4733nsPr7zyCkwmk+J3SVrv5MmT6N27N95++235eZ1Opxjm21iEEHj44Yfln3tqHAsXLsSuXbvsLq+oqMD48eNhMplw7tw55OXl1bq948ePAwC+//57h15/x44d0Gg0jXb/0UGDBuH1119v0DauX7/e6JM52VNeXo4ePXrU2e9ETQEDITUJxcXFePXVVxv0H790n66YmBjExMQ4FQilk1NbQ0aloXTmgTAyMhJRUVFyhTA6OhpRUVE2Z210NhBWVlZaBcKIiAj5taUT8/pMKmM0Gu2eiEvbCwwMVGxbp9NZBULL/pX6Xrq/XWRkJG655Rb5tbVaLQICAuQT37oCoWTZsmXyyXpd/Wa+j5ZDXi0D4V/+8hccOHAAABAdHW3zmjLz7VVWVsJgMKCqqkqu9AYHB1ud8JsfS7t27WrdX3PmVT/zY9Hr9bjjjjsUxyC1la5jlUjHIIU48woUcCOYAzeuh9NqtfLPY3l5OYxGI/R6vXxsEukDjtOnT2PQoEHy89XV1Vi+fLlV+JJ+bh599FEAwJdffgnAduXNPFhJ7c05Gwil47f3821eIbQc7iwd59q1a22GOPPf66SkpFpnPc3JycGrr74KAHXeO3DOnDn49NNPrY7v8uXLWLx4MQDg73//u2JZbdssKipyya1Qzp49i02bNuH222+v1/o6na7OD0R++eUX/Pzzz3aXe/P9J4uKiuQPPeqroqICkyZNQr9+/XD9+nWbH7g89thj+N///V8kJSWhTZs2aNeuXa2XQkjbWLduHQ4fPmyzDysrK7Fu3TrU1NSgf//+ANAo9x/dtWsXtm7dirfffhvfffcdNBoNVq9e7dQ25s+fj+DgYPkDFncbM2YM9u/fj3bt2kEIgZ07d0Kj0cjXaH/zzTcYPXq0y15vwoQJVrdxqq9//vOf+Oqrr2pto9PpcO7cOa/+XSPXYSCkJmHu3LmYOXNmg/7ISp9ytm7dGjExMbWeRJoHwpqaGvnkUzrxq6iogBBCcd85y0DYtm1bnDlzBteuXUNUVJQcEC1JgVCq6NgblgbcOJmtqKiQ7zl24cIFaLVa3HTTTfLx1FUJssU8qNTU1KC0tBSXLl1StJFO5uPj4xXDQW0FQvPr6IA/TtililBcXBzGjBmDhx9+GLt27YKPjw9at25tNTwxLCzM5ocA0vtz8eJF+T2xdc2iudoqhGVlZYiPjwdg3W8RERFWz5WUlCiCxdmzZ+XXl0KbrUBoPjTSmevHpG1LIU/6eSwvL0d4eDiCgoLk90daZi8QXr58GWFhYZgzZ468rE2bNtDr9Vi2bBmuXLmCmJgYRSCUtv23v/0NrVu3ltczP6HYvXu3/PWaNWswduxYqxMO834vKSmRg5NlO71erwgb//rXv2A0GhEaGoo33ngDgHIIa12B8PLly3jmmWcAAF988YXNMGK+b5Y/S9L7VlBQgLfeestqXcshr0ePHrW7L9IHDQAwfvx4myf65uG0oqLC6v+E1q1b44MPPrC5fcvfW4lOp0NcXBzS09NhNBqxePHiel9z6MiHTRkZGdi/f7/V80ajEREREXjuuefQuXNn5Obm4vfff7cKsrfddhs6depkc9slJSUICgrCmjVr6rX/tlRXVyM8PNypWXDtiYuLQ9euXZ1ax2QyYcWKFXj00Udx6tQpnDlzRl4WHBwsD403Z/7/oORf//oXvv76a6xYsQIajUYx6ZX0e7Jz505069YNQUFBmDNnjqKq/Morr+Dxxx9XVMwBYN++fRg1apRTIxtq8/nnn8tf/+UvfwFwYyIrR0YGfP311xBCKGb1dfX1uJYuXrxoNZGW+fdPPPEE7rvvPgA3guLVq1cxePBgfPjhh8jMzKx121euXMGkSZNq/fDz6tWrWLp0KX744Qd5RmTgxqUAZWVlTr0vq1atQlpaGlJTU63+FpaUlMhDiiMiItCmTRsEBQXV+kEDNQ8MhNQkSNUmZ6pels6dOwd/f3+0bNkSrVu3xsWLF+1+ki9N1iJV4qQTssLCQrRt2xbV1dWorKxEQUGBXOkpLy+XtycFwi+++ALV1dXQaDR2A2FhYSGio6Pl6wwth4eZu3btGgwGA5KTk+V1IyIiFIFQ+sPoTCA0Pymtrq7G3XffLQckSXl5Ofz8/BAVFYXff/9dfr6kpEQRtqKiohQ3Zwf+eP9uvvlmJCUlISIiAn5+ftiwYYP8iWe7du3wyy+/ALhRcfL390e7du3s3nYCuPEHy/K47SkuLoaPjw8iIiKsTvjLy8sRHR0Nf39/lJaWolWrVvKysLAwqwqhdNItBd9HH31Ufn2pihYZGYnS0lLF/ksVj9tuu02xD998843iBMmS9GFG9+7dAQDvvfceTCYTiouL5YlmpGqbdGItfaqfmJgI4I9AeOnSJcTFxcnXYQLAZ599BgAYN24cLl26hOjoaAQEBMDPzw9lZWVy4Ln55psV+zlz5kz5a/OTdynEm/+8CyEUwUn6cAC4MTSuVatWmDVrFtauXYuePXta9cGtt96KyspKOZBdu3YNvXv3RsuWLRUnvdLrv/fee3Lfnz17Vl6Wk5NjsxJhfpJl+fNh/jtZV4UQuFFtvX79OsaPH2/1O2/+c2oymRAaGoo777xTfs6ySn/mzBl5G/fcc4/Va1u6dOkS9uzZg1OnTin6W7pecf369Rg3bhwyMjIQEhJS5+y8EvN9Mp/ASaPRYMGCBfjHP/6B77//HkajEdeuXcPixYuRnp5utR3pQ5/ly5fj+PHjGDlyJG655RYkJCSgffv2ePHFFxV9NnHiREV1d9myZfKQR1vbt+fixYtYtmwZ3nvvPfz3v/+1Wn7s2DGUlZVh6tSpeOaZZ2oNy1euXJH3qaKiwmoSIsnJkycxa9Ysh07Wd+/ejTFjxuBf//oXOnbsiC5duli1sdwn6YNB8//r09LS8MADD2DMmDEAblyr/MYbb+Dnn3+WRwGYe+WVV9CyZUv8/vvvuHTpEpYsWWK1XwDQs2dPfPzxx/D19cW+fftsHsO1a9fQtWtXqyGUb775JnJyclBRUYGLFy/CYDBYvY5k0aJFWLp0KTQaDTQaDX766SdkZ2fL21y4cCEeeOABeWSO9Hdz+PDh8jq2hqBb7qf083z27FlUV1fjwoULOHLkCL755hsAN4Kn9MEvcOP/vhEjRsj/N8ydO1eeVAu4UXU1FxMTI3+9YMECed80Gg369u2LmpoaeebipKQkLFy4EAEBASgqKpI/1Dt16hSWLFkCIQSefvppeXu33norSktLYTQa0bJlS4SHh8PX17fO+8b+9NNP6Nq1q2Jb/v7+2LNnj3ypQGRkJDp27Gh1zXJ9789KTYigJk2n0wkAQqfTeXpXGtXIkSMFALFhw4Z6b2PKlCmiXbt2Qggh9uzZIwCI/v3722z7yiuviMTERHH06FEBQPz444/CZDKJwMBAMXToUAFAnDt3TvTp00c88cQTIioqSrz11lti0qRJAoC4fv26mDlzpgAgAIipU6eKcePGifbt21u9VocOHcRzzz0nhBBye3uOHTsmAIjdu3fLbV966SWxcuVKAUCUlpaKxMREERAQIKKiohzum+TkZHHbbbcJACIvL8/mfrz66qsiISFB3HvvvaJHjx5ym/fee0+MGzdO/h6A+M9//qP4Xjq+gIAA8cADD9jchxkzZggAYvXq1QKAiIqKEqNGjRIAhMlkUrR95JFHBABxyy23iKioKNGiRQtx00031XqMM2fOFDfddJPo1KmTmDBhgmLZM888I3r06CESEhLEa6+9JgCIfv36iR07dohVq1YJAKK8vFxuv3PnTgFAnDx5Uj7Gw4cPCwDi4MGDQgghtmzZIgCI8+fPy+tJbR9++GHRpUsXq+dLS0uFyWQS1dXViv37+9//LqKiosSVK1fktu+//77o1q2bePbZZ0VkZKQAIAwGg5g4caJo3769GDNmjAAg4uLiBADx8ccfi927d4vAwEDRt29fq9c1f79GjhwpL+/fv7/Yvn27ACByc3OFEEK8/fbbivbS49y5c0IIId577z35uYqKCiGEkF8jPj7e5rr2HrfffrvVc+Xl5fLPVVJSktXPyJo1awQAMXv2bCGEEBs2bFCsP2fOHEX/7tu3z+o1pGMVQojHH39c8ftmMpnEjBkzRHZ2tqipqREvvfSS1frz5s0TAERMTIz45ZdfhBBCTJ8+XQAQnTp1EgkJCYr2kvPnzwsAiuWLFy8WAQEBwmQyie7du8vP79y5U4wYMUKxna5du8pf33vvvfJ2ly5darePs7OzrX7HioqK5K+NRqOIi4sT8+fPF6WlpeL999+3u61PP/1U7NixQ/4+JiZG3k5t65k/JkyYoPi+X79+QgghCgoKrNpu2bJFlJaWirrccccdNvtbMmDAAMXypUuX2t2W+Tb+9re/CQBi2bJl8ntiuY8tW7YUNTU1te7foEGDbPaFn5+faNWqlfz9jh07hBBClJWVOfV7VJ+H1Ae2lv3www/i448/FpcuXZKPwdbvtvT/j62Hj4+P/PX48ePr3J833njDoeekx/z58+WvR40aJf75z3/K3ycmJorAwMAG99GJEyfE559/Ln9fXV2tWL5ixYpGf5/qeth6X5555hmH1n3rrbfEM888U+fvV2NRyzmuN2AgbOLU8suSkpIiAIhPPvmk3tu49957xX333SeEEMJkMin+A7c0bNgwMXjwYFFRUSECAwPFwoULRVFRkeIP0Nq1awUAkZmZKZKSkhQhSQghvv32W/l7nU4nn5QuX75cfp0ff/xRABBz584VQvzxh3fz5s02j2Hz5s0CuHHiLbXdtGmTOHLkiAAgnnzySQFAdOjQQQQEBDjULzU1NSIwMFA8++yzAlCGOSncCCHE//zP/4j77rtPpKenK/5gPP744+LBBx9UPHfp0iW7f2CeffZZm/tRWFho1VY6yZJOgiR9+vRRtLvnnnuEr6+vuH79ut3jHD16tOjcubMYMGCASExMVCzz8/MTXbp0UZxMT506VQghxIEDBwQAceDAAbn9+vXrBQBRXFws/Pz8BACxaNEiAUBcuHBBCCHE2bNn5WMwfx3gRlABIJ/Imh/L8uXL5fdBIi0z/7mVHq+//rr417/+JQCIdevWCQDir3/9qxwIY2JirNaRQvmf//xnERERIYQQ4oMPPpCX9+rVy2q/AAij0SiEEGLJkiU239sWLVoIo9GoCEhZWVlCCCFOnTqlOD7pYSuMmT8+++wzq+duvfVWAUBMmjRJvPjii4p9FuKP4AVAfPXVV/L3/fv3l5/ftm2bfDzSPkm/RwDEXXfdJUpKSsTOnTtF9+7dRefOnQUA0bdvX/Hbb7/J7UaPHi1/nZOTI38tvdcARGRkpDAYDPL3AQEBitAkPaqqqsTcuXMFcCOQWgZvIZT/d1VVVcnHvHfvXpv9d+jQISGEEE888YRISkqSP2SxfGzbtk3eVnZ2tgAgnnjiCbFu3Tr5gzFHHqNGjbIKAQUFBTZ/nhx93HbbbYr9svV4/fXXxbFjx8Tly5eFEEIYDAaxa9cuIYSQP0Awf/Tu3VsMHz7cblBOTk4WN910k+jevbsoKioSubm58odF0sM8qDn62LFjhzAYDMJoNAqdTid27dql2IdOnTrJX+v1evk9efrpp21ub8GCBQK48feoX79+imVXrlxRfKASHR0t/x3Lzs62Ct7SQ/o/TFJeXi7mzp0rDh06VO/30NajpKRE1NTUyB9GOPthkfQ7MHHiRJful6OPP//5z3IflZaWyh8aSn+fDx06JEwmk/z/VWZmpvzhmq2H+QdPth5Hjx61+v8TuPG768x+d+3aVQghxNdff21z+bVr18T58+dFfn6+8DS1nON6AwZCL/C///u/ok2bNiIwMFD8+c9/Ft9//73D63ryl8X8pMvX11csXrxYvPbaa2L79u0iLy9P/qNiNBpFZWVlg15Lep2FCxfWa32p6vXkk0/Kz7Vp00be7uXLl+WTQ+lT6GnTpgkhhAgPD1f8Z7l161bF99OnTxcPPfSQ4jnJkSNHhMFgEEIIqyqM+WP37t1CCKE40ZT+o5fWNxqN8vMmk0n85z//kY+noqJCsZ70h16qztTm4MGDAoD497//bbVfY8eOFefOnZNPUkeOHGn3j29mZqa4//775ZO/jIwMsWvXLqvwJvWzLYsXL1b0iWWwbNGihfx1ly5d5K+nTZsmf33mzBlx+PBhUVRUJHbu3CleeOEFuaKYmZkpn1glJSWJ8ePHyych//M//6MIu9LPr2Xfmj9MJpMcwoAbIcBcbGys1TqrV69W9PVjjz1md/tScDT/uTp9+rSIioqSn5szZ45VmO7fv78wGo1i/vz58gmg+SMvL89m/wcEBMi/D0IIMXjwYJs/1+a/A0aj0WZVRHrExcWJe+65R9Gv0tcdOnQQQghx/Phxq/VatWol+vfvL0pLS+X3vWPHjoo2R48eFZWVlXZf2/whhQrL59PS0hTHZ2/9t99+W3z00Ue1voYQQq4M1vaQPhQ6c+aMfLJo+ZBOlG31/8aNG8Vnn31m9f7VVfEYM2aMEEKIW265xaE+q+thORLAmUd8fLw4c+aMOH36tKipqRGAstoze/ZscfbsWZGammp3G+b/h7vi0bJlS5dtSxq1cfXqVYfX2bJli93/G4UQNn/+6mIymYTRaBSFhYV227z33nti0aJF4urVq1Zh0FJNTY38/4Stx++//y5/Lf1tSUhIEBEREeLpp58Whw8fFrt27XLonCU3N1f+WZE+4AJuBOUjR47IVWyTySQ2b94sampqhMFgEAUFBfKoCctH//79Ff9fXb16VWzfvl1kZmaKn376SRiNRrFs2TIxb948UVxcLCZMmCCeeOIJkZOTI6qrq8Xzzz8vBg4cKH/QUh9Go1Hxd9C8Ol9SUiIuXrwozp49K4QQoqqqyupDa4PBIObMmSP+/e9/K56X/i6MHj1arjgPHTpUxMTEiLZt24qTJ0/arFSfPHlSTJ8+XXz77bf1PqbGwkDoPgyEHrZ+/Xrh7+8vVqxYIX7++Wfx4osvitDQUHnoVV08+ctS18mRKx7SMEZ7D+nTz/bt2zu0vSNHjlj1nb2H9B5YVkOuX7+uGCJZXV2t+AS9tiqVZXCUHuZ/EMz/8Nl6DB482Oa2zU/8zSsVjj5KSkoU34eGhlq1OXv2rMjPzxcAxMSJE8Vdd90lL/vpp59s7pfJZBJPPPGEWLx4sUNDuwwGgxyQhRB2Twh/+OEH+WvzoZS1PU6ePCkuX75sc9lvv/0mfv31VxEUFCQ+/fRTxT49+uijVu3Hjh0rhBCKIUKWw8yk6qL549KlS4pqkaOPU6dOyds1Go3i7rvvFs8//7z8qbR5W8tPdn/55Rd5mfnQV1vvlfQBhPRetG7d2uZ6CxcuFNnZ2fL30gmw9OjYsaPV7298fLwQQoiXXnpJTJo0SfG7UllZKb755ptaPzAQQih+tqXfm/3791v1V0REhOL7u+66SwihHM5q+ZBIP+PmD71eL4qLi62OR/r6+PHj8vrfffedAG6ESPMKIgC5amVOqnJKj9GjR8vL9Hq9yM/PtxrSaUtNTY3o0KGD2Llzp80hhdJJZk1NjSgrKxOrV68WmzZtsls1tHxIH449+OCD8muWlpaKmpoacfjwYbFw4UK5bW5urs0PI86ePVvr/5FGo1Fx0mo5TFSq8koBR6/XO/w7dOnSJXHt2jXh5+cnOnbsKP/dePXVV8XGjRuF0WgUJpNJlJWVyaMeEhMTFdt49tlnxYcffijmzp0rIiMjxerVq4VerxcrVqwQR48eFSkpKXI/S7Kzs8X9998vj3Sx9TAfgVCbPXv2CH9/f9GpU6c6h6E2ttLSUrFjxw5x7tw5kZeXp/i/g8gVGAjdh4HQw+655x4xbtw4xXMdO3YUr7zyikPre/qXpaCgQOzdu1d88cUX4rbbbhNJSUk2r/nxhsf48eOt9t/ep7dTpkyxOk69Xq84kblw4UK9/iAXFRWJtWvXinnz5omSkhKbbX799Ve7x2FriKs56cRRuu7SkceaNWuEEDdOhDUajVixYoV8naX0+OKLL2y+3pUrVxyqRDZEVVWVmD17tnxMH3/8sRDiRoiQqs91fRJvXlG5ePGiSEtLEz4+PuLJJ5+s9dNzSV5enujTp4/o27ev2LNnj8P7XlpaKn766Scxa9Ys8fnnn8vPFxYWCl9fXwFA/Pe//xWVlZUiKipKdO/eXRQWFoq//OUvYsqUKeKzzz5TDB2zx2g0imvXrtk9KdPr9Y3+Pl26dEnMnDlT6HQ6YTKZxPXr18Xf/vY38fTTT4ucnJxGfe3vv/9eADeG+q5cuVJUV1eLiooK8cUXX4iff/7ZKoSYTCb5urF169aJa9euKZaXl5eLixcviqqqKkUY27Fjh3jttdfk5y5cuKAYummLwWAQ+fn5tX7QZzQaxdmzZ0VZWZmzh14rnU4njh07Vuf/G0LcGNa7YMECceXKFVFTUyMuX74szp07J55++mlRXFxc733497//Ld5+++1aP4yoTVVVlcjPz69zH65fvy7OnTsnzp49K3777bd6v15j0uv1DoV7IvL8Oa6aaITg1EGeUl1djZCQEPz73//Gww8/LD//4osvIicnx+YNafV6vWJGx9LSUiQmJkKn01ndI6zRffYZsHatw81NQtyYuUoIFBQUoEVYGAzV1QgKDkZ1dTVMRiPKyssRFhaGS4WFiI+PR+GlS7gpJgY33XQTTCYTdDodKioqcFNsLK5euQJdaSn8fH1x+fJltPvTnxAcFAQfHx+EhIaixmC4cbNyjQa+vr7Q1L2LXqnGaESNwYDAoKB6H0NJSQkEAP//m85eo9FA4+ODwMBA+PpwsmEiIiKywccH2LTJIy9dWloKrVbrmXNclfGruwk1litXrsBoNMpTR0vi4uIU9wUyN3v2bLz55pvu2D2X85GmMdZokJCQoFgW+n9T4EdHR9/49//uoWZ+LzUfHx9ERkbK9+tLSEiQt9O+fXur1/P10M1qXc3P1xd+vr4N2kZERIRrdoaIiIiImhUGQi9g634vls9Jpk2bhkmTJsnfSxVCj3j00RsPIiIiIiJqkhgIPSgmJga+vr5W1cCioiKrqqEkMDAQgc2k8kVERERERJ7Fi4c8KCAgAN26dcO2bdsUz2/btg29evXy0F4REREREZFasELoYZMmTUJ6ejruuusu9OzZE8uXL8f58+cxbtw4T+8aERERERE1cwyEHvboo4/i6tWreOutt1BQUIDk5GT897//RevWrT29a0RERERE1MzxthNNHKfkJSIiIqLmhue47sNrCImIiIiIiFSKgZCIiIiIiEilGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKV4H8ImTrprSGlpqYf3hIiIiIjINaRzW94hr/ExEDZxZWVlAIDExEQP7wkRERERkWuVlZVBq9V6ejeaNd6YvokzmUy4ePEiwsLCoNFoPL07Xqm0tBSJiYnIz8/njU1dhH3qeuxT12J/uh771LXYn67HPnUtT/enEAJlZWVISEiAjw+vcmtMrBA2cT4+Prjllls8vRtNQnh4OP9AuBj71PXYp67F/nQ99qlrsT9dj33qWp7sT1YG3YNxm4iIiIiISKUYCImIiIiIiFSKgZCavcDAQLzxxhsIDAz09K40G+xT12Ofuhb70/XYp67F/nQ99qlrsT/Vg5PKEBERERERqRQrhERERERERCrFQEhERERERKRSDIREREREREQqxUBIRERERESkUgyE1GzMnj0bd999N8LCwhAbG4uHHnoIp06dUrQRQmDGjBlISEhAcHAw+vXrhxMnTnhoj5uW2bNnQ6PRICMjQ36O/em833//HU888QSio6MREhKCLl26IDs7W17OPnVcTU0NXn31VbRt2xbBwcFo164d3nrrLZhMJrkN+7N233//PYYNG4aEhARoNBps2rRJsdyR/tPr9ZgwYQJiYmIQGhqK1NRUXLhwwY1H4T1q60+DwYCXX34ZnTt3RmhoKBISEvDkk0/i4sWLim2wP5Xq+hk1N3bsWGg0GixatEjxPPtUyZE+zc3NRWpqKrRaLcLCwtCjRw+cP39eXs4+bV4YCKnZ2LVrF1544QXs27cP27ZtQ01NDQYOHIiKigq5zdy5c7FgwQIsXboUBw8eRHx8PO6//36UlZV5cM+938GDB7F8+XLccccdiufZn84pLi5G79694e/vj6+//ho///wz5s+fj4iICLkN+9Rxc+bMwQcffIClS5ciNzcXc+fOxbvvvoslS5bIbdiftauoqMCdd96JpUuX2lzuSP9lZGRg48aNWL9+PXbv3o3y8nKkpKTAaDS66zC8Rm39WVlZicOHD+O1117D4cOHsWHDBpw+fRqpqamKduxPpbp+RiWbNm3C/v37kZCQYLWMfapUV5/++uuv6NOnDzp27IidO3fip59+wmuvvYagoCC5Dfu0mRFEzVRRUZEAIHbt2iWEEMJkMon4+HjxzjvvyG2uX78utFqt+OCDDzy1m16vrKxMtG/fXmzbtk307dtXvPjii0II9md9vPzyy6JPnz52l7NPnTN06FDxzDPPKJ4bPny4eOKJJ4QQ7E9nARAbN26Uv3ek/0pKSoS/v79Yv3693Ob3338XPj4+Iisry2377o0s+9OWAwcOCADi3LlzQgj2Z13s9emFCxfEzTffLI4fPy5at24tFi5cKC9jn9bOVp8++uij8v+jtrBPmx9WCKnZ0ul0AICoqCgAQF5eHgoLCzFw4EC5TWBgIPr27Ys9e/Z4ZB+bghdeeAFDhw7FgAEDFM+zP5335Zdf4q677sJf//pXxMbGomvXrlixYoW8nH3qnD59+uDbb7/F6dOnAQA//fQTdu/ejQceeAAA+7OhHOm/7OxsGAwGRZuEhAQkJyezjx2g0+mg0WjkUQLsT+eZTCakp6djypQp6NSpk9Vy9qlzTCYTtmzZgttuuw2DBg1CbGwsunfvrhhWyj5tfhgIqVkSQmDSpEno06cPkpOTAQCFhYUAgLi4OEXbuLg4eRkprV+/HocPH8bs2bOtlrE/nffbb7/h/fffR/v27fHNN99g3LhxmDhxIj799FMA7FNnvfzyy3jsscfQsWNH+Pv7o2vXrsjIyMBjjz0GgP3ZUI70X2FhIQICAhAZGWm3Ddl2/fp1vPLKK0hLS0N4eDgA9md9zJkzB35+fpg4caLN5exT5xQVFaG8vBzvvPMOBg8ejK1bt+Lhhx/G8OHDsWvXLgDs0+bIz9M7QNQYxo8fj6NHj2L37t1WyzQajeJ7IYTVcwTk5+fjxRdfxNatWxXXDVhifzrOZDLhrrvuwqxZswAAXbt2xYkTJ/D+++/jySeflNuxTx3z2WefYc2aNVi3bh06deqEnJwcZGRkICEhAU899ZTcjv3ZMPXpP/Zx7QwGA0aOHAmTyYT33nuvzvbsT9uys7OxePFiHD582On+YZ/aJk3K9eCDD+Kll14CAHTp0gV79uzBBx98gL59+9pdl33adLFCSM3OhAkT8OWXX+K7777DLbfcIj8fHx8PAFafXhUVFVl9Ak43/tAWFRWhW7du8PPzg5+fH3bt2oV//OMf8PPzk/uM/em4li1b4vbbb1c8l5SUJM/cxp9R50yZMgWvvPIKRo4cic6dOyM9PR0vvfSSXNFmfzaMI/0XHx+P6upqFBcX221DSgaDASNGjEBeXh62bdsmVwcB9qezfvjhBxQVFaFVq1by36lz584hMzMTbdq0AcA+dVZMTAz8/Pzq/FvFPm1eGAip2RBCYPz48diwYQN27NiBtm3bKpa3bdsW8fHx2LZtm/xcdXU1du3ahV69erl7d71e//79cezYMeTk5MiPu+66C48//jhycnLQrl079qeTevfubXUrlNOnT6N169YA+DPqrMrKSvj4KP+M+fr6yp9wsz8bxpH+69atG/z9/RVtCgoKcPz4cfaxDVIY/OWXX7B9+3ZER0crlrM/nZOeno6jR48q/k4lJCRgypQp+OabbwCwT50VEBCAu+++u9a/VezTZshDk9kQudxzzz0ntFqt2LlzpygoKJAflZWVcpt33nlHaLVasWHDBnHs2DHx2GOPiZYtW4rS0lIP7nnTYT7LqBDsT2cdOHBA+Pn5iZkzZ4pffvlFrF27VoSEhIg1a9bIbdinjnvqqafEzTffLDZv3izy8vLEhg0bRExMjJg6darchv1Zu7KyMnHkyBFx5MgRAUAsWLBAHDlyRJ710pH+GzdunLjlllvE9u3bxeHDh8Vf/vIXceedd4qamhpPHZbH1NafBoNBpKamiltuuUXk5OQo/k7p9Xp5G+xPpbp+Ri1ZzjIqBPvUUl19umHDBuHv7y+WL18ufvnlF7FkyRLh6+srfvjhB3kb7NPmhYGQmg0ANh+ffPKJ3MZkMok33nhDxMfHi8DAQHHvvfeKY8eOeW6nmxjLQMj+dN5XX30lkpOTRWBgoOjYsaNYvny5Yjn71HGlpaXixRdfFK1atRJBQUGiXbt2Yvr06YqTa/Zn7b777jub/28+9dRTQgjH+q+qqkqMHz9eREVFieDgYJGSkiLOnz/vgaPxvNr6My8vz+7fqe+++07eBvtTqa6fUUu2AiH7VMmRPv3oo4/ErbfeKoKCgsSdd94pNm3apNgG+7R50QghROPWIImIiIiIiMgb8RpCIiIiIiIilWIgJCIiIiIiUikGQiIiIiIiIpViICQiIiIiIlIpBkIiIiIiIiKVYiAkIiIiIiJSKQZCIiIiIiIilWIgJCIiIiIiUikGQiIiIiIiIpViICQiIiIiIlIpBkIiIiIiIiKVYiAkIiIiIiJSKQZCIiIiIiIilWIgJCIiIiIiUikGQiIiIiIiIpViICQiIiIiIlIpBkIiIiIiIiKVYiAkIiIiIiJSKQZCIiIiIiIilWIgJCIiIiIiUikGQiIiIiIiIpViICQiIiIiIlKp/x9y0yctqL3FdQAAAABJRU5ErkJggg==", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "px = PowderPattern()\n", "if not os.path.exists(\"pbso4-x.dat\"):\n", @@ -122,7 +72,7 @@ "px.ImportPowderPatternFullprof(\"pbso4-x.dat\")\n", "px.SetWavelength(\"Cu\") # Valid strings for X-ray tubes are \"Cu\", \"CuA1\",...\n", "print(px.GetRadiation()) # Better check the string was understood\n", - "px.plot()" + "px.plot()\n" ] }, { @@ -139,61 +89,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Peak dobs=0.23410+/-0.00049 iobs=5.631088e+04 (? ? ?))\n", - "Peak dobs=0.26180+/-0.00049 iobs=3.661422e+04 (? ? ?))\n", - "Peak dobs=0.27573+/-0.00048 iobs=1.369719e+04 (? ? ?))\n", - "Peak dobs=0.28690+/-0.00041 iobs=2.120413e+04 (? ? ?))\n", - "Peak dobs=0.29939+/-0.00048 iobs=5.965503e+04 (? ? ?))\n", - "Peak dobs=0.31016+/-0.00048 iobs=4.475041e+04 (? ? ?))\n", - "Peak dobs=0.33210+/-0.00048 iobs=6.886522e+04 (? ? ?))\n", - "Peak dobs=0.36110+/-0.00048 iobs=2.483898e+04 (? ? ?))\n", - "Peak dobs=0.36997+/-0.00047 iobs=3.424055e+04 (? ? ?))\n", - "Peak dobs=0.38119+/-0.00047 iobs=6.008678e+03 (? ? ?))\n", - "Peak dobs=0.41488+/-0.00047 iobs=1.116247e+04 (? ? ?))\n", - "Peak dobs=0.43867+/-0.00047 iobs=1.291596e+04 (? ? ?))\n", - "Peak dobs=0.44637+/-0.00047 iobs=3.054905e+03 (? ? ?))\n", - "Peak dobs=0.45514+/-0.00046 iobs=3.965780e+03 (? ? ?))\n", - "Peak dobs=0.46161+/-0.00046 iobs=1.755345e+04 (? ? ?))\n", - "Peak dobs=0.46832+/-0.00046 iobs=3.017849e+03 (? ? ?))\n", - "Peak dobs=0.48313+/-0.00053 iobs=5.114404e+04 (? ? ?))\n", - "Peak dobs=0.49213+/-0.00052 iobs=3.115425e+04 (? ? ?))\n", - "Peak dobs=0.50613+/-0.00046 iobs=1.278484e+04 (? ? ?))\n", - "Peak dobs=0.53141+/-0.00045 iobs=3.895334e+03 (? ? ?))\n", - "Predicting volumes from 20 peaks between d=42.716 and d= 1.882\n", - "\n", - "Starting indexing using 20 peaks\n", - " CUBIC P : V= 407 -> 4545 A^3, max length= 49.70A\n", - " -> 0 sols in 0.00s, best score= 0.0\n", - "\n", - " TETRAGONAL P : V= 151 -> 1089 A^3, max length= 30.86A\n", - " -> 0 sols in 0.01s, best score= 0.0\n", - "\n", - "RHOMBOEDRAL P : V= 167 -> 1143 A^3, max length= 31.36A\n", - " -> 0 sols in 0.00s, best score= 0.0\n", - "\n", - " HEXAGONAL P : V= 206 -> 1507 A^3, max length= 34.39A\n", - " -> 0 sols in 0.01s, best score= 0.0\n", - "\n", - "ORTHOROMBIC P : V= 88 -> 565 A^3, max length= 25.00A\n", - " -> 1 sols in 0.01s, best score= 57.5\n", - "\n", - " MONOCLINIC P : V= 65 -> 364 A^3, max length= 25.00A\n", - " -> 3 sols in 0.06s, best score= 56.5\n", - "\n", - "Solutions:\n", - "( 5.40 6.97 8.49 90.0 90.0 90.0 V= 320 ORTHOROMBIC P, 63.80767059326172)\n", - "( 5.40 8.49 6.97 90.0 90.0 90.0 V= 320 MONOCLINIC P, 61.222660064697266)\n", - "( 6.97 5.40 8.49 90.0 90.0 90.0 V= 320 MONOCLINIC P, 57.77278137207031)\n" - ] - } - ], + "outputs": [], "source": [ "# Index\n", "pl = px.FindPeaks(1.5, -1, 1000)\n", @@ -206,7 +104,7 @@ "\n", "print(\"Solutions:\")\n", "for s in ex.GetSolutions():\n", - " print(s)" + " print(s)\n" ] }, { @@ -218,42 +116,16 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "b6316e4843fb46de8b20b4e4b8f30e3c", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7fUlEQVR4nOzdeVhUZf8G8Jt9E0YQAVEUTVNSTDN3E01FCZSwwl4VtXzVpCRzzVLDLNwSNC1Tf6amkuVWmYa4ooYKihaamua+IBTMAIKs8/uD95zmzAIzbKPM/bmuueKcec45zxm0a26/z3keM6VSqQQRERERERGZHHNjd4CIiIiIiIiMg4GQiIiIiIjIRDEQEhERERERmSgGQiIiIiIiIhPFQEhERERERGSiGAiJiIiIiIhMFAMhERERERGRiWIgJCIiIiIiMlEMhERERERERCaKgZCIiIiIiMhEMRASERERERGZKAZCIiIiIiIiE8VASEREREREZKIYCImIiIiIiEwUAyEREREREZGJYiAkIiIiIiIyUQyEREREREREJoqBkIiIiIiIyEQxEBIREREREZkoBkIiIiIiIiITxUBIRERERERkohgIiYiIiIiITBQDIRERERERkYliICQiIiIiIjJRDIREREREREQmioGQiIiIiIjIRDEQEhERERERmSgGQiIjOHv2LIKCghASEoLExERx/9ixY43YKyIiIiIyNZbG7gCRKYqIiMD69ethaWmJ6dOn4+TJk5gyZQquXbtm7K4RERERkQlhhZDICMzMzNCyZUt4e3tj27ZtyM7Oxrhx41BcXGzsrhERERGRCWEgJDICNzc33LhxQ9yOjIyEn58fkpOTjdcpIiIiIjI5ZkqlUmnsThAREREREVHtY4WQiIiIiIjIRDEQEhkBZxklIiIioscBZxklMgLOMkpEREREjwNWCImMQNcso+fOnTN214iIiIjIhLBCSGQE165dQ2BgIBwcHMR9N27cgFwuN16niIiIiMjkMBASGYGVlRVWrlwJc/N/i/RKpRJhYWFG7BURERERmRoGQiIjmD59OhwdHeHq6irZ/8477xipR0RERERkirgOIRERERERkYnipDJEREREREQmioGQ6DHi7+9v7C4QERERkQnhM4RERhAaGqqxT6lU4rfffjNCb4iIiIjIVPEZQiIjaN68OQ4dOqQxy2jHjh2RlZVlxJ4RERERkSlhhZDICJRKJYYOHQorKyvJvoKCAiP2ioiIiIhMDQMhkRHY2dkhOTkZlpbSv4IDBgwwUo+IiIiIyBRxyOgTrrS0FPfu3YOjoyPMzMyM3R3S0+7du9GrVy84OztL9h8/fhy9evUyUq+IiIiIHg9KpRI5OTnw9PSUPGJD1Y8VwifcvXv34OXlZexuEBERERFVu9u3b6NJkybG7kadxkD4hHN0dARQ9pfFycnJyL2hygoKCsLPP/+MBw8ewN3d3djdISIiIjKq7OxseHl5id91qeYwED7hhGGiTk5OcHJywpEjRxAWFobIyEiMHTsWffr0QUlJCfLz8zF+/HiMHz9ePDYnJwf9+/fHhQsXcPLkSbRr1w5A2Vp4mZmZOH36tFHuyRTZ2dnByckJr776KuLj443dHSIiIqLHAh+JqnkMhHXQsGHDMHbsWHH7l19+gYWFBXx8fPDGG2+IM1va2dnh559/xvTp0yXHx8fH4/nnn6/VPpuaLl26aOzr3Lkzrly5YoTeEBEREZGpMrknNI8ePYrBgwfD09MTZmZm+OGHHzTaXLx4EUOGDIFMJoOjoyO6deuGW7duie8XFBRg0qRJcHV1hYODA4YMGYI7d+5IzpGVlYWwsDDIZDLIZDKEhYVBLpdL2ty6dQuDBw+Gg4MDXF1dERERgcLCwpq4bdjZ2aFRo0bIzMwU91laWqJhw4Y1cj0qX05ODhITE5GUlCS+kpOT0blzZ2N3jYiIiIhMiMkFwocPH+LZZ5/FypUrtb7/119/oVevXmjTpg2OHDmC3377DXPmzIGtra3YZvLkydi1axe2bt2K48ePIzc3F0FBQSgpKRHbDB8+HOfOnUNcXBzi4uJw7tw5hIWFie+XlJQgMDAQDx8+xPHjx7F161bs2LEDU6dOrZH7/vvvv/HgwQMGwMdEVFQUcnJyNPbPnj3bCL0hIiIiIlNlckNGAwICEBAQoPP9Dz/8EC+99BIWL14s7mvRooX4s0KhwLp167Bp0yb0798fALB582Z4eXnhwIEDGDhwIC5evIi4uDicPHkSXbt2BQCsXbsW3bt3x+XLl9G6dWvEx8fjjz/+wO3bt+Hp6QkAWLp0KcaMGYNPP/20WieICQgIgLm5OZYvX85pex8TISEhWvf7+fnVck+IiIioOpWUlKCoqMjY3XjsWVlZwcLCwtjdIJhgICxPaWkp9uzZgxkzZmDgwIE4e/YsmjdvjlmzZuHll18GAJw5cwZFRUXw9/cXj/P09ES7du2QmJiIgQMH4sSJE5DJZGIYBIBu3bpBJpMhMTERrVu3xokTJ9CuXTsxDALAwIEDUVBQgDNnzqBv377Vdl+//PIL6tWrV23nIyIiIiIppVKJtLQ0jUeESLf69evDw8ODE8cYGQOhivT0dOTm5mLhwoX45JNPsGjRIsTFxWHo0KE4fPgw/Pz8kJaWBmtra40Fxd3d3ZGWlgYASEtLg5ubm8b53dzcJG3UlxdwdnaGtbW12EabgoICFBQUiNvZ2dmVvl8AeOmll3Du3DlcvnwZEyZMwJgxY6p0PiIiIiJTJIRBNzc32NvbM+SUQ6lUIi8vD+np6QCARo0aGblHpo2BUEVpaSkAIDg4GO+99x4AoEOHDkhMTMRXX31V7nA+pVIp+Yuv7X8ClWmjbsGCBZg3b57O921tbbF//36sW7cOY8eOxZEjR3S2BYC9e/dq7PP395dULqn6nT17FnPmzIGVlRWmT5+OHj16AADGjh2LdevWGbl3REREZIiSkhIxDDZo0MDY3Xki2NnZASgryLi5uXH4qBHxgTIVrq6usLS0xDPPPCPZ7+PjI84y6uHhgcLCQmRlZUnapKenixU/Dw8PPHjwQOP8GRkZkjbqlcCsrCwUFRWVuzD5rFmzoFAoxNft27cl73fr1g2//fabZNkJQ8XHx+Onn36q9PGm5uzZswgKCkJISAgSExPF/eX9DiIiIrBs2TLExMQgJiYG0dHRAIBr167VeH+JiIioegnPDNrb2xu5J08W4fPiM5fGxUCowtraGp07d8bly5cl+//88080a9YMANCpUydYWVlh//794vv379/H+fPnxSpP9+7doVAokJSUJLY5deoUFAqFpM358+dx//59sU18fDxsbGzQqVMnnX20sbERF6EXXmRclQl3ZmZmaNmyJby9vbFt2zZkZ2dj3LhxKC4urq1uExERUTXjMFHD8PN6PJjckNHc3FxcvXpV3L5+/TrOnTsHFxcXNG3aFNOnT8ewYcPQu3dv9O3bF3Fxcdi9e7c49FImk2Hs2LGYOnUqGjRoABcXF0ybNg2+vr7irKM+Pj4YNGgQxo0bh9WrVwMAxo8fj6CgILRu3RpA2bDMZ555BmFhYViyZAkyMzMxbdo0jBs3jiHvCSOEOwDYtm0bIiMjKwx31tbW6NevH5ycnDB9+nRERkZi8+bN+Prrr2ur20REREREplchPH36NDp27IiOHTsCAKZMmYKOHTti7ty5AMqWA/jqq6+wePFi+Pr64v/+7/+wY8cO9OrVSzxHTEwMXn75ZYSGhqJnz56wt7fH7t27JWOft2zZAl9fX/j7+8Pf3x/t27fHpk2bxPctLCywZ88e2NraomfPnggNDcXLL7+Mzz77rJY+Caoubm5uuHHjhrgdGRkJPz8/JCcn6zymoKAAq1evFquK77//Pm7duoXevXvXQo+JiIiIKnbkyBGYmZlx5tQ6zkypVCqN3QmqvOzsbMhkMigUClYWnyC9e/fG0aNHxW0XFxdkZWWhV69eOHbsmBF7RkRERIZ69OgRrl+/jubNm8PW1tbY3ak2R44cQd++fZGVlYX69etX+/nL+9z4Hbf2mFyFkOhxoF5VFGYkK6+qSERERERU3RgIiYxg+/bt8Pb2FreFh6ofPXpkpB4RERGRKSooKEBERATc3Nxga2uLXr16afwD9a+//opnn30Wtra26Nq1K1JTU8X3bt68icGDB8PZ2RkODg5o27at1mXN6PHFQEhUTTIzM3H16lVkZmZW+hz+/v7V2CMiIiKi8s2YMQM7duzAxo0bkZKSgpYtW2LgwIGS7zPTp0/HZ599huTkZLi5uWHIkCHiUhFvv/02CgoKcPToUaSmpmLRokWoV6+esW6HKsHkZhklqm4HDx7E3Llz4erqCicnJ8jlcmRlZWHevHno16+f1mNCQ0Ml28LyI6r/4kZERERPtry8PFy6dKnWr9umTRu91kR8+PAhVq1ahQ0bNiAgIAAAsHbtWuzfvx/r1q1D586dAQAfffQRBgwYAADYuHEjmjRpgl27diE0NBS3bt3CK6+8Al9fXwBAixYtauiuqKYwEBJV0dy5cxEXFwdHR0dxX3Z2NgICAnQGwuTkZBw6dAjm5mVF+tOnTyM3N1dcvoKIiIiefJcuXSp3femacubMGTz33HMVtvvrr79QVFSEnj17ivusrKzQpUsXXLx4UQyE3bt3F993cXFB69atcfHiRQBl6zFPnDgR8fHx6N+/P1555RW0b9++mu+IahIDIZmM4uJiWFpW/x95c3NzZGRkSAJhRkaGGPa0mT59OhwdHeHq6gqgbF1CAFAoFNXev8fViBEjsGXLFmN3g4iIqMa0adMGZ86cMcp19SEsNqC+QLxSqaxw0Xjh/f/+978YOHAg9uzZg/j4eCxYsABLly7FpEmTKtFzMgYGQqrTUlNTMXPmTMjlclhaWqKoqAiurq6IiooShzZU1Zo1azB16lSkpaWJ/wNt1KgR1qxZo/OYI0eO4MiRI+L23bt3AZQFybpmxowZGvuUSiUSExON0BsiIqLaY29vr1elzlhatmwJa2trHD9+HMOHDwcAFBUV4fTp05g8ebLY7uTJk2jatCkAICsrC3/++ackdHp5eeGtt97CW2+9hVmzZmHt2rUMhE8QBkKq08LDwxEbGwsvLy9x361btzBixIhqW+/Px8cHu3btMugY9SGju3fvBoA6OWR0y5YtiI2N1dh/+PBhI/SGiIiIBA4ODpg4cSKmT58OFxcXNG3aFIsXL0ZeXh7Gjh2L3377DQDw8ccfo0GDBnB3d8eHH34IV1dXvPzyywCAyZMnIyAgAE8//TSysrJw6NAh+Pj4GPGuyFAMhFSnlZSUQCaTSfY5OTmhpKTESD0qoz5kVAiG77zzjjG7VSPefPNN+Pj4wM3NTbJ/1KhRRuoRERERCRYuXIjS0lKEhYUhJycHzz//PPbt2wdnZ2dJm3fffRdXrlzBs88+i59++kl83KWkpARvv/027ty5AycnJwwaNAgxMTHGuh2qBDOlMHiYnkjZ2dmQyWRQKBRwcnIydnceO0ePHsXs2bNhbW0NJycnKBQKFBcX45NPPsELL7xg7O6JnnrqKVy7dg3860hERPTkefToEa5fv47mzZvD1tbW2N15YpT3ufE7bu1hhZDqtN69e+Po0aPIz8+HXC6Hs7Nzrf2POi0tDR4eHnq3BfR7iJuIiIiIqLpwYXoyCXZ2dmjUqFGt/qsdh0SWb8SIEcbuAhEREZHJY4WQqIq6dOmisU+pVOLKlSt6n8PLywuXL1/G/fv34enpWZ3dMzrOMkpERET0+GIgJKqinJwcpKamaqxxOGDAAL3PYWFhAQAYPXo09u/fX639M7avv/4aDRs2hLm5OV555RX069cPAMpdloOIiIiIageHjJJJ8vf3r7ZzRUVFIScnR2P/7NmzdR7TpUsXyevatWsAypajqGtsbW3x008/ITk5Gbm5udi+fTteeOEFjVlHiYiIiKj2sUJIdVpoaKjGPqVSidTU1Gq7RkhIiNb9fn5+Oo9Rryq2a9cOFy5cgK+vb7X163HRvHlztGrVCgAQHR2NDRs2IDg4GPXr1zdux4iIiIiIgZDqNvUF4IGyQBgWFmbEXv1bVRTW+BFmFs3LyzNmt2pEhw4dcOPGDXh7ewMAxowZg2bNmmHixInG7RgRERERMRBS3aa+ALzA2AvAL1iwAAsWLBC3hQlo/vrrL2N1qcasWLFCsi2Xy9G3b19cunTJSD0iIiIiIgGfIaQ6LTw8XCMMAsCwYcOM0Jt/5eTkIDExEUlJSUhKShKHjnbq1Mmo/aoNQ4cONXYXiIiIqBpERkaiQ4cOxu4GVREDIZERqE9EIwwZff/9943VpRqzf/9+dO3aFT169MDWrVuhVCoBAIGBgUbuGRERERExEBJV0dmzZxEUFISQkBDJ2npjx47VeUxISIj4/CBQNvEKAPTq1avmOmokH330Efbt24cDBw4gKSkJrVq1QmlpaZ18XpKIiIjoScNASCYpLS2t2s4VERGBZcuWISYmBjExMYiOjgYAcSkJfQgVQqF6VpdYWFigfv36sLe3R3R0NHr06IHg4GDk5uYau2tEREQmr7S0FIsWLULLli1hY2ODpk2b4tNPPwUAzJw5E08//TTs7e3RokULzJkzB0VFReWe7+uvv0bbtm1hY2ODRo0aGX3eBqoYAyGZpFGjRlXbuczMzNCyZUt4e3tj27ZtyM7Oxrhx41BcXGzwuepiIBRmGRWMGTMGU6ZM0bp2IxEREdWuWbNmYdGiRZgzZw7++OMPxMbGwt3dHQDg6OiIDRs24I8//sDy5cuxdu1axMTE6DzXqlWr8Pbbb2P8+PFITU3FTz/9hJYtW9bWrVAlmSnr4jdQE5KdnQ2ZTAaFQgEnJydjd+ex06VLF419SqUSV65cgVwur5ZrvPrqq/jss8/EZRUAYPPmzfjvf/+LR48e6XWODh064LfffkNubi4cHByqpV+Pu5ycHDg6Ohq7G0RERFX26NEjXL9+Hc2bN4etra2xu6O3nJwcNGzYECtXrsR///vfCtsvWbIE3333HU6fPg2gbFKZH374AefOnQMANG7cGG+88QY++eQTva5f3ufG77i1h8tOUJ2mvgC8YMCAAdV2je3bt2vsGzlyJEaOHGnwueriv8988803WLJkCaysrBAaGipOnBMcHIxDhw4ZuXdEREQ1KC8PMMYyS23aAPb2FTa7ePEiCgoK0K9fP63vb9++HcuWLcPVq1eRm5uL4uJineEsPT0d9+7d03kuenyZ3JDRo0ePYvDgwfD09ISZmRl++OEHnW0nTJgAMzMzLFu2TLK/oKAAkyZNgqurKxwcHDBkyBDcuXNH0iYrKwthYWGQyWSQyWQICwvTqEjdunULgwcPhoODA1xdXREREYHCwsJqulMCNGfzFMyePdsIvdGtLj9DuGrVKqSkpCAlJQX29vZ49dVXkZeXVyfvlYiISOLSJaBTp9p/6RlC7ezsdL538uRJvP766wgICMDPP/+Ms2fP4sMPP9T5XbW8c9HjzeQqhA8fPsSzzz6LN954A6+88orOdj/88ANOnToFT09PjfcmT56M3bt3Y+vWrWjQoAGmTp2KoKAgnDlzBhYWFgCA4cOH486dO4iLiwMAjB8/HmFhYdi9ezcAoKSkBIGBgWjYsCGOHz+Of/75B6NHj4ZSqdRYyJsqLyQkROt+Pz+/Wu6JfupiSDI3N4eVlRWAsgl4nnnmGQQEBCAjI8PIPSMiIqphbdoAZ84Y57p6aNWqFezs7HDw4EGNIaO//vormjVrhg8//FDcd/PmTZ3ncnR0hLe3Nw4ePIi+fftWrt9kFCYXCAMCAhAQEFBum7t37+Kdd97Bvn37NNZKUygUWLduHTZt2oT+/fsDKHtezMvLCwcOHMDAgQNx8eJFxMXF4eTJk+jatSsAYO3atejevTsuX76M1q1bIz4+Hn/88Qdu374ths6lS5dizJgx+PTTTzlW+gmUmZmJzMxMuLi4wMXFpVLnqIuB0NPTE23atIG9vb04ZLRRo0bo3bu3sbtGRERUs+ztgeeeM3YvdLK1tcXMmTMxY8YMWFtbo2fPnsjIyMCFCxfQsmVL3Lp1C1u3bkXnzp2xZ88e7Nq1q9zzRUZG4q233oKbmxsCAgKQk5ODX3/9FZMmTaqlO6LKMLkhoxUpLS1FWFgYpk+fjrZt22q8f+bMGRQVFcHf31/c5+npiXbt2olr0J04cQIymUwMgwDQrVs3yGQySZt27dpJKpADBw5EQUEBzpTzL0kFBQXIzs6WvMi4Dh48iJ49e+KNN97AvHnzMHr0aPTq1QsHDx7U+xx1ecjonTt3kJqaKhky2rx5c7Rv397YXSMiIjJ5c+bMwdSpUzF37lz4+Phg2LBhSE9PR3BwMN577z2888476NChAxITEzFnzpxyzzV69GgsW7YMX375Jdq2bYugoCBcuXKllu6EKsvkKoQVWbRoESwtLREREaH1/bS0NFhbW0sWFQcAd3d3cW27tLQ0uLm5aRzr5uYmaSNM6StwdnaGtbV1uWvkLViwAPPmzTPonqhmzZ07F3FxcZIZM7OzsxEQEMAHq6F7yGhmZqaRe0ZERETm5ub48MMPJUNDBYsXL8bixYsl+yZPniz+HBkZicjISMn7EyZMwIQJE2qiq1RDWCFUcebMGSxfvhwbNmwQKzb6UiqVkmO0HV+ZNupmzZoFhUIhvm7fvm1QP01ZZdYF1Ie5ubnG83AZGRkwN9f/r1ddrhAGBgZK1iHs378/vvzySzRu3Nh4nSIiIiIiAKwQShw7dgzp6elo2rSpuK+kpARTp07FsmXLcOPGDXh4eKCwsBBZWVmSKmF6ejp69OgBAPDw8MCDBw80zp+RkSFWBT08PHDq1CnJ+1lZWSgqKtKoHKqysbGBjY1Nle7TlKSmpmLmzJmQy+WwtLREUVERXF1dERUVBV9f32q5xpo1azB16lSkpaWJgb5Ro0ZYs2aN3ueoy4Hwgw8+0NjXtm1bccIlIiIiIjIeBkIVYWFh4kQxgoEDByIsLAxvvPEGAKBTp06wsrLC/v37ERoaCgC4f/8+zp8/L5bUu3fvDoVCgaSkJHFh9FOnTkGhUIihsXv37vj0009x//59NGrUCAAQHx8PGxsbdOrUqVbu1xSEh4cjNjYWXl5e4r5bt25hxIgROHbsWLVcw8fHp8KHrPVVFwMhERERET2+TC4Q5ubm4urVq+L29evXce7cObi4uKBp06Zo0KCBpL2VlRU8PDzQunVrAIBMJsPYsWMxdepUNGjQAC4uLpg2bRp8fX3FMOnj44NBgwZh3LhxWL16NYCyZSeCgoLE8/j7++OZZ55BWFgYlixZgszMTEybNg3jxo3jDKPVqKSkBDKZTLLPyckJJSUlRupR+RgIiYiIiKg2mVwgPH36tGRtlClTpgAomxVpw4YNep0jJiYGlpaWCA0NRX5+Pvr164cNGzaIaxACwJYtWxARESHORjpkyBCsXLlSfN/CwgJ79uxBeHg4evbsCTs7OwwfPhyfffZZNdwlCRYuXIigoCBYW1vDyckJCoUCxcXFWLRokbG7ppUpBcIRI0Zgy5Ytxu4GERERkUkzU5rSN9A6KDs7GzKZDAqFgpXFcuTn50Mul8PZ2Rm2tra1cs20tDR4eHjo1bZz5844ffo00tPT0bBhwxruWe2aMWOGxj6lUont27fj+vXrRugRERFR9Xr06BGuX78Ob29v2NnZGbs7T4z8/HzcuHEDzZs31/h+xu+4tcfkKoRkmuzs7Gr9f9CjRo1CfHy8Xm3r8qQyW7ZsQWxsrMb+w4cPG6E3RERE1U9YXikvL4+B0AB5eXkA/v38yDgYCImqSJg4SFVeXh7u3Llj8LnqYiB888034ePjo3VtTiIiorrAwsIC9evXR3p6OgDA3t7e4CXMTIlSqUReXh7S09NRv359yWNXVPsYCImqKCcnB6mpqbC0LPvrpFQqYW5uXql19upiICwoKNB4NlapVOKff/4xUo+IiIiqn/CYiBAKqWL169fX+/EaqjkMhGSS/P399R7OWZGoqCjk5ORI1qUEgHr16hl8rroYCDlklIiITIGwDrGbmxuKioqM3Z3HnpWVFSuDjwkGQqrThLUiVSmVSqSmplbbNUJCQiTbFy9eBACDniGoy88Q6hoyOmrUKCP1iIiIqOZYWFgw6NAThYGQ6rTk5GQcOnQI5ubm4j6lUomwsLAau+Y777wDAAatdViXnzOYP3++1v0RERG13BMiIiIiUmdecROiJ9f06dPh6OiIZs2aiS9vb28xtNUE4VnC4uJig4+tixXC/fv3o2vXrujRowe2bt0q7g8MDDRir4iIiIgIYCCkOi48PByurq7itlwuBwAMGzasxq75yy+/AKhchbAuBsKPPvoI+/btw4EDB5CUlIRJkyahtLRUnGqaiIiIiIyHgZBMytChQ2v8GkKoMyQQqh9blwhTcdvb2yM6OhqdOnVCcHAwcnNzjd01IiIiIpPHZwjJpNRm4GKFsEyDBg3QoUMH2NvbIyIiAmPGjEGzZs0wePBgY3eNiIiIyOSxQkgmZefOnTV+jaqEuroYCNPT03HkyBFxyOj48ePh5+eHzp07G7trRERERCaPFUIyKc7OzsjOzoaDgwOnhK4lwpBRAIiOjoaPjw+Cg4Px+++/G7djRERERMRASKZHJpPhrbfewqpVq2rk/JWp8tXlIaMPHz7EhAkTIJPJxG17e3vk5OQYuWdERERExEBIJmn79u01FggFlQl3dTEQPnjwAMOHDxe3e/fuDUdHR/z1119G7BURERERAQyEZKIUCkWNnZsVQqk333wTPj4+cHNzk+wfNWqUkXpERERERAIGQqrTunTponV/ZRaNr0l1ORDOnz9f6/6IiIha7gkRERERqWMgpDotJycHqampsLT894+6mZkZzM1rboJdzjKqn3v37sHT09PY3SAiIiIyaVx2guq0qKgorZOXWFlZGaE3pmn8+PGwtbWFvb09Bg0aJO5v27atEXtFRERERAADIdVxISEhcHZ2rtVrskIo9e233yIzMxN5eXlwcHBAkyZN8Pfff+Phw4fG7hoRERGRyWMgJJNUG88Qqoe7ESNG6Gxbl58hzM/PR/PmzfHMM88gPz8fmZmZcHNzQ1FRkbG7RkRERGTy+AwhmaSaDF4ffPABACArKwszZswQr5eYmKjzmLocCEtLSzFjxgy0aNEC//3vf7Ft2zZ8/fXX2Llzp7G7RkRERGTyGAiJqtl3330HALCzs0NgYKC4//DhwxUeWxcDoZeXF8LCwuDm5oYdO3bg0aNH2LlzJxwcHIzdNSIiIiKTx0BIVM1GjRqFRYsWwdbWFn5+fpL9FamLgTAkJAQNGjQAAGzevBn169cHUBaYiYiIiMi4+AwhUTWbM2eO1v2muu7esmXLYGFhIW4LPz/99NPG6hIRERER/Q8DIZmkx60SV5efIVR369YtAOCkMkRERESPAZMLhEePHsXgwYPh6ekJMzMz/PDDD+J7RUVFmDlzJnx9feHg4ABPT0+MGjUK9+7dk5yjoKAAkyZNgqurKxwcHDBkyBDcuXNH0iYrKwthYWGQyWSQyWQICwuDXC6XtLl16xYGDx4MBwcHuLq6IiIiAoWFhTV161RLKhPqTCkQChgIiYiIiIzP5ALhw4cP8eyzz2LlypUa7+Xl5SElJQVz5sxBSkoKdu7ciT///BNDhgyRtJs8eTJ27dqFrVu34vjx48jNzUVQUBBKSkrENsOHD8e5c+cQFxeHuLg4nDt3DmFhYeL7JSUlCAwMxMOHD3H8+HFs3boVO3bswNSpU2vu5kn0uAavx7VfVfH999+jY8eOGDlyJDZu3IgOHToAAP755x/jdoyIiIiIAKUJA6DctWtXuW2SkpKUAJQ3b95UKpVKpVwuV1pZWSm3bt0qtrl7967S3NxcGRcXp1Qqlco//vhDCUB58uRJsc2JEyeUAJSXLl1SKpVK5d69e5Xm5ubKu3fvim2+/fZbpY2NjVKhUOh9DwqFQgnAoGNMHQClmZlZjZ3/hx9+UAJQWltbK7/99ltx/0svvaTzmL59+yoBKH///fca65exdOnSRfnw4UNlWlqa0sPDQ3nnzh0lAKW5ubmxu0ZERESPKX7HrT0mVyE0lEKhgJmZmTgz4pkzZ1BUVAR/f3+xjaenJ9q1ayeuM3fixAnIZDJ07dpVbNOtWzfIZDJJm3bt2sHT01NsM3DgQBQUFODMmTM6+1NQUIDs7GzJix4vUVFRAICGDRsiKSkJkyZNQmlpKfLy8ozcM+O4ePEi+vTpg8GDB6OwsFCsuJeWlhq5Z0RERETEZSfK8ejRI7z//vsYPnw4nJycAABpaWmwtraGs7OzpK27uzvS0tLENm5ubhrnc3Nzk7Rxd3eXvO/s7Axra2uxjTYLFizAvHnzqnRfVLNDM4VZNM3NzREdHY0NGzYgODgYubm5Ru2XsVhaWuLYsWOwsbEBAOTk5MDJyUky8ygRERERGQcrhDoUFRXh9ddfR2lpKb788ssK2yuVSnFiEACSn6vSRt2sWbOgUCjE1+3btyvsG9UuX19fyfaYMWMwZcoU5OTk6DymLk8qs27dOkl1VLjHZs2aGatLRERERPQ/DIRaFBUVITQ0FNevX8f+/fvF6iAAeHh4oLCwEFlZWZJj0tPTxYqfh4cHHjx4oHHejIwMSRv1SmBWVhaKioo0KoeqbGxs4OTkJHnR42Xx4sUa+/r27YtLly4ZoTfGFxISIqmo//nnnwCAevXqGatLRERERPQ/DIRqhDB45coVHDhwAA0aNJC836lTJ1hZWWH//v3ivvv37+P8+fPo0aMHAKB79+5QKBRISkoS25w6dQoKhULS5vz587h//77YJj4+HjY2NujUqVNN3iI9xupihVDdlClTjN0FIiIiIvofk3uGMDc3F1evXhW3r1+/jnPnzsHFxQWenp549dVXkZKSgp9//hklJSViFc/FxQXW1taQyWQYO3Yspk6digYNGsDFxQXTpk2Dr68v+vfvDwDw8fHBoEGDMG7cOKxevRoAMH78eAQFBaF169YAAH9/fzzzzDMICwvDkiVLkJmZiWnTpmHcuHGs+j3hhFBXmXBnCoHQysoKALjmJhEREdFjwOQqhKdPn0bHjh3RsWNHAGXVio4dO2Lu3Lm4c+cOfvrpJ9y5cwcdOnRAo0aNxJcwOygAxMTE4OWXX0ZoaCh69uwJe3t77N69WzJJxpYtW+Dr6wt/f3/4+/ujffv22LRpk/i+hYUF9uzZA1tbW/Ts2ROhoaF4+eWX8dlnn9Xeh0E1qrCwEAcOHEBKSkqF4acuP0OobseOHQCAO3fuGLknRERERGRyFcI+ffqU+6Vbny/ktra2WLFiBVasWKGzjYuLCzZv3lzueZo2bYqff/65wuvRk2Xr1q0AgLy8PCQkJEAulyMlJQUTJ07EyJEjjdy72telSxfJdklJCQCY7DIcRERERI8TkwuERDVtw4YNAID69etj/vz5AIDi4mL06dOnwkBYFyuEOTk5SE1NhaVl2f9usrKy4OLiAnt7eyP3jIiIiIhMbsgombbaCFy2trYa10xISNDYr6ouDxmNioqSLLkh3GPDhg2N1SUiIiIi+h9WCMmk1EbgWrVqFZ555hmkp6ejW7dusLKywvPPP1/hEOK6KiQkROt+LjtBREREZHwMhETVzM3NDUBZBezkyZMGHVsXK4TqTOEeiYiIiJ4UHDJKJuVxDSN1ecioLrdu3TJ2F4iIiIhMHiuERNWsKqGuLgbCGTNmSLbz8/MBcJZRIiIioscBAyGZlNoMXHUx3FXGli1bEBsbK27L5XKsXLlSsm4nERERERkHAyGZlNoIaawQSr355pvw8fERn63MyMgwco+IiIiISMBASPQYqMvPEBYUFOCzzz4Tt4WhosIC9URERERkPJxUhkyKMSuEI0aMqPFrP462bNmCwMBA8dW/f38A4JBRIiIioscAK4RE1ezjjz8GACgUCnFCFaVSicTExAqPrYsVQvUho+np6QCA+vXrG7FXRERERAQwEJKJqY3AtWPHDgCAra0tAgMDxf2HDx/WeUxdHjI6f/58ybZwjw0aNDBGd4iIiIhIBYeMkkmpjcD1n//8BwBgbW0NPz8/8TVq1Kgav/bj6Pvvv0fHjh0xcuRIbNy4ET179gQAZGdnG7lnRERERMQKIVE1mzFjBmJiYjT2R0REVHhsXawQLl26FL/++itycnLQoUMHJCQkoHXr1vjnn3+M3TUiIiIik8dASCblcQ1cdXnIqJ2dHezt7WFvb49+/frB0dHR2F0iIiIiov9hICST8rgHrse9f5Vhb2+PDh06oF27dhgwYAB69eoFoG7eKxEREdGThoGQqJox6Ej9888/SExMFIeM/vjjj+jatauxu0VERERE4KQyZGJqI6wlJCQAAP7++29s3bpV3K8646gudTFMCkNG3d3d0a9fP7z33nsA/h0mS0RERETGw0BIVM0+++wzAICLiwuSkpIwadIklJaWIi8vT+cxdfkZwg4dOqCkpAQAsHnzZvEeVRemv3fvnlH6RkRERGTqGAjJpNRG4BKCjpmZGaKjo9GpUycEBwcjNze3xq/9OFq2bJkk/L3yyisAyham37t3L/bs2YPg4GDs3bvXWF0kIiIiMlkMhGRSaiMQPvPMM5LtMWPGYMqUKcjJyanw2LpYIVT3/vvvAwDy8/ORnJyM06dPQy6X4/Tp00buGREREZHpYSAkqmaffPKJZFsul6NNmzY4e/aszmPq8pBRdc899xwAoLCwEP7+/vjoo4/QqlUrzJ0718g9IyIiIjI9DIRkUmojcKlfY+jQofD09MRLL71k8LF10f/93/8BABo2bIiDBw8iNDQUcrncuJ0iIiIiMlFcdoKohgkh78iRIzrbmNKMmzKZDACQlpaG2bNnIzs7G5cuXTJyr4iIiIhMk8lVCI8ePYrBgwfD09MTZmZm+OGHHyTvK5VKREZGwtPTE3Z2dujTpw8uXLggaVNQUIBJkybB1dUVDg4OGDJkCO7cuSNpk5WVhbCwMMhkMshkMoSFhWlUQW7duoXBgwfDwcEBrq6uiIiIQGFhYU3cNv2PMSqEO3furPSxdUGXLl0kryFDhgAoe4YQAJycnNClSxdjdpGIiIjIZJlcIHz48CGeffZZrFy5Uuv7ixcvRnR0NFauXInk5GR4eHhgwIABkglBJk+ejF27dmHr1q04fvw4cnNzERQUJE6tDwDDhw/HuXPnEBcXh7i4OJw7dw5hYWHi+yUlJQgMDMTDhw9x/PhxbN26FTt27MDUqVNr7ubJKIHL2dlZ77Z1MRDm5OQgMTERSUlJSEpKwo8//ggAsLGxMXLPiIiIiMjkhowGBAQgICBA63tKpRLLli3Dhx9+iKFDhwIANm7cCHd3d8TGxmLChAlQKBRYt24dNm3ahP79+wMoW1vNy8sLBw4cwMCBA3Hx4kXExcXh5MmT6Nq1KwBg7dq16N69Oy5fvozWrVsjPj4ef/zxB27fvg1PT08AwNKlSzFmzBh8+umncHJyqoVPg2qCEOrqYrirjKioKOTk5GgE49LSUiP1iIiIiIgEJlchLM/169eRlpYGf39/cZ+NjQ38/PyQmJgIADhz5gyKiookbTw9PdGuXTuxzYkTJyCTycQwCADdunWDTCaTtGnXrp0YBgFg4MCBKCgowJkzZ2r0Pk1ZbYa0oqIiHDhwACkpKXofUxdD5IIFCzBw4EBxyKjwd6eoqEjSTvXvFBERERHVDpOrEJYnLS0NAODu7i7Z7+7ujps3b4ptrK2tNaod7u7u4vFpaWlwc3PTOL+bm5ukjfp1nJ2dYW1tLbbRpqCgAAUFBeJ2dna2vrdHtWTHjh0Ayp6RS0hI0GsGzbq87EROTg5SU1NhaVn2vxtXV1cAZfccGhoKoOy+U1NTjdZHIiIiIlPFQKiF+oyPSqWywlkg1dtoa1+ZNuoWLFiAefPmldsX0q02AldsbCyAsslS5s+fDwA6n1k1BepDRnNzcwGU/SPKkiVLAJT9XlSfsSUiIiKi2sEhoyo8PDwAQKNCl56eLlbzPDw8UFhYiKysrHLbPHjwQOP8GRkZkjbq18nKykJRUZFG5VDVrFmzoFAoxNft27cNvEvTVhuBUH2yFEOuWRcrhCEhIZKK+gcffACgLDA3a9YMzZo1g7e3N9555x1jdZGIiIjIZDEQqmjevDk8PDywf/9+cV9hYSESEhLQo0cPAECnTp1gZWUlaXP//n2cP39ebNO9e3coFAokJSWJbU6dOgWFQiFpc/78edy/f19sEx8fDxsbG3Tq1ElnH21sbODk5CR5Uc0aMWKEQe1jYmIAAJmZmejWrRt69+5d4TF1ecioupEjR2rdP2zYsFruCRERERGZ3JDR3NxcXL16Vdy+fv06zp07BxcXFzRt2hSTJ09GVFQUWrVqhVatWiEqKgr29vYYPnw4gLJFtceOHYupU6eiQYMGcHFxwbRp0+Dr6yvOOurj44NBgwZh3LhxWL16NQBg/PjxCAoKQuvWrQGUTaDxzDPPICwsDEuWLEFmZiamTZuGcePGMeTVoPIC14wZM7S2FyYC0pfwjJyzszNOnjwJQP+F500hEApM6V6JiIiIHlcmFwhPnz6Nvn37ittTpkwBAIwePRobNmzAjBkzkJ+fj/DwcGRlZaFr166Ij4+Ho6OjeExMTAwsLS0RGhqK/Px89OvXDxs2bICFhYXYZsuWLYiIiBBnThwyZIjkOTILCwvs2bMH4eHh6NmzJ+zs7DB8+HB89tlnNf0RmLTyQsiWLVvE5/9UHT58uCa7BED/wFgXMAgSERERPT5MLhD26dOn3C+kZmZmiIyMRGRkpM42tra2WLFiBVasWKGzjYuLCzZv3lxuX5o2bYqff/65wj5T7XjzzTfh4+OjMUPsqFGjDDpPVQKPKYWlR48e4cCBA3BxcUG7du1gbW1t7C4RERERmRyTC4Rk2soLXMKMoOoiIiJqqjsaTCEQ7tq1CwCgUCjEZTlSUlIwceJEnc8XEhEREVHNYCAkqmamEOqq4ttvvwVQtuyEEMKLi4vRp08fBkIiIiKiWsZZRsmkVCasGTrLaFWYQpi0tbUF8O+9KpVKJCQkiPuJiIiIqPawQkgmpTZmGVUNOvoypWUnFi9ejF69euHWrVvo1q0brKys8Pzzz1f4zC0RERERVT8GQqL/0TXLqLB0SE0ypUDYsGFDAGWTKgnLchARERGRcTAQkkkpL3DJZDIsXbpUMnSxMgHNFEJdVfDzISIiInp8MBAS/U9+fj6WL18Oc/N/H61VKpVIS0urtT4wLBERERFRbeKkMmRSygtc06dPh6OjI5o1aya+vL298c4771TbNWry2CfFqVOnAADp6emIj49Hx44d0adPH5w4ccLIPSMiIiIyPawQkkkpL3CFh4dLtuVyOerXr49hw4bVdLfEZwhNwdKlSwEATk5OGD16NJKTk6FQKPD222/jyJEjxu0cERERkYlhhZBIh6FDh1bquMrMMqp+bF2Wn58PoGztQTc3N/z2228YM2YMsrKyjNwzIiIiItPDQEgmxZDAJbT19/evqe7ovGZddvPmTQDAo0ePMHToUJw+fRpyuRzZ2dlG7hkRERGR6eGQUaL/CQ0NlWzLZDK89tprSE1NNVKP6qZff/0VnTt3RmFhIfz9/dG9e3ecOnUKP/30k7G7RkRERGRyGAjJpJRXgUtOTsahQ4c0ZhkNCwurtmvU5LFPCjs7OwCAu7s7Dh48iJiYGMjlclha8n9HRERERLWN38DIpOgzy6irq6tkv6GzjFaGKS1MLzA3N8fs2bORnZ2NS5cuGbs7RERERCaJzxAS/U94eLhGGAQAPz8/g85TmVBnSoEwKSkJAJCRkYH4+Hj4+flhxowZXHaCiIiIyAhYISSTUpnANWrUKMTHx9fKtQxVXFz8xA21nD9/PgAgLy8Pw4YNQ2pqKuzt7dGqVSv8888/Ru4dERERkWl5sr5JEtWgLl26aOxTKpW4cuWKQeep6WcIU1NTMXPmTPG5u6KiIri6uiIqKgq+vr6VvnZtSU9PBwA0adIERUVFWLRoEZYvX47S0lIj94yIiIjI9DAQkkkpL3Dl5OQgNTVVo+LWu3fvmu6WSJ9AGB4ejtjYWHh5eYn7bt26hREjRuDYsWM12b1qYWVlBaDsGcJbt25hw4YNGDx4MHJycozcMyIiIiLTw0BIJqW8wBUVFYWcnBw4OztL9gsLqVfHNXQRniHUR0lJCWQymWSfk5MTSkpKDL6uMTg6OkIulyMtLU1c6iM3N9fIvSIiIiIyTQyERP+zYMECLFiwQLKvMkNGq0KfMLlw4UIEBQXB2toaTk5OUCgUKC4uxqJFi2qhh1UnBFcXFxcsWbIECoUCTk5OBi/vQURERERVx0BIJqUyQ0YHDBhQbdeojmN79+6No0ePIj8/H3K5HM7OzrC1ta30NWvb6NGjsWDBAlhZWaFZs2Z48cUXcejQoVpZ3oOIiIiIpLjsBJkUfYaMqps9e3ZNdglA5ZadsLOzQ6NGjZ6oMAgAw4YNk2wXFhZq3U9ERERENY+BkOh/QkJCNJ4fBGpnHUJTIqw3eOfOHWzduhXm5mX/GwoMDDRmt4iIiIhMEgMhmZTaDGuVuZYhx2RmZuLq1avIzMw0+DrGtGrVKgBAo0aNkJSUhGvXrqG0tBR5eXlG7hkRERGR6eEzhETVrCqzjOpz7MGDBzF37ly4urrCyckJcrkcWVlZmDdvHvr162fwtWubUBE0NzdHdHQ0nnrqKQQHB3OmUSIiIiIjYIVQTXFxMWbPno3mzZvDzs4OLVq0wMcffyxZNFupVCIyMhKenp6ws7NDnz59cOHCBcl5CgoKMGnSJLi6usLBwQFDhgzBnTt3JG2ysrIQFhYGmUwGmUyGsLAwyOXy2rhNk2VIWJPL5di1axdGjBhRgz0y3Ny5cxEXF4cff/wRmzZtwu7du7F3717MnTvX2F3TS+vWrQH8G4LffvttTJkyBVlZWcbsFhEREZFJYoVQzaJFi/DVV19h48aNaNu2LU6fPo033ngDMpkM7777LgBg8eLFiI6OxoYNG/D000/jk08+wYABA3D58mU4OjoCACZPnozdu3dj69ataNCgAaZOnYqgoCCcOXMGFhYWAIDhw4fjzp07iIuLAwCMHz8eYWFh2L17t3Fu3gSUFwhnzJgh2Y6Li0NqaiqaNm1abdeojmPNzc2RkZEh/lkDgIyMDLHy9ribMWMGvvvuO8m99u3bFy1atDBir4iIiIhMEwOhmhMnTiA4OFic4MLb2xvffvstTp8+DaDsC/uyZcvw4YcfYujQoQCAjRs3wt3dHbGxsZgwYQIUCgXWrVuHTZs2oX///gCAzZs3w8vLCwcOHMDAgQNx8eJFxMXF4eTJk+jatSsAYO3atejevTsuX74sVlGo9mzZsgWxsbHidkpKCoCyRd9riz6BcM2aNZg6dSrS0tKgVCphZmaGRo0aYc2aNbXQw6oT1hu8ffs2WrduDUtLS9ja2uKvv/4ycs+IiIiITA8DoZpevXrhq6++wp9//omnn34av/32G44fP45ly5YBAK5fv460tDT4+/uLx9jY2MDPzw+JiYmYMGECzpw5g6KiIkkbT09PtGvXDomJiRg4cCBOnDgBmUwmhkEA6NatG2QyGRITE3UGwoKCAhQUFIjb2dnZ1fwJ1G3lBa4333wTPj4+cHNzA4BKB6yanrjGx8cHu3btqtFr1KT09HQAZctmhIaGQi6XIyUlBU2aNDFyz4iIiIhMDwOhmpkzZ0KhUKBNmzawsLBASUkJPv30U/znP/8BAKSlpQEA3N3dJce5u7vj5s2bYhtra2uNJQzc3d3F49PS0sTgocrNzU1so82CBQswb968yt8g6VRQUIDPPvtM3D579iwAVPq5zpqeZXTEiBHYsmWLwdcwtnr16uHvv/+Gi4sL5s+fD6Ds2V1fX18j94yIiIjI9DAQqvnuu++wefNmxMbGom3btjh37hwmT54MT09PjB49WmwnTIghEIbulUe9jbb2FZ1n1qxZmDJliridnZ0NLy+vCu+LypQXuNSHjJ49exYXL15E/fr1q+0alTlW/dlGoV1iYmKlr2NMbm5uuHHjBoqKigAAFy9exL1798TKIRERERHVHgZCNdOnT8f777+P119/HQDg6+uLmzdvYsGCBRg9ejQ8PDwAlFX4GjVqJB6Xnp4uVg09PDxQWFiIrKwsSZUwPT0dPXr0ENs8ePBA4/oZGRka1UdVNjY2sLGxqfqNmihDhoyuXbsWAPDyyy/XeL/KW3ZCPagKDh8+DKDsWTwrKys4ODhIJpp5XAkV17t376JevXp49OgRGjRoIAZEIiIiIqo9T8a0hLUoLy9PY7ZGCwsLcdmJ5s2bw8PDA/v37xffLywsREJCghj2OnXqBCsrK0mb+/fv4/z582Kb7t27Q6FQICkpSWxz6tQpKBQKsQ3Vrvnz52sdxjtq1CiDzlPdzxAKQdXPzw9+fn64efMm3nnnHTx48AALFy5E06ZN0ahRIwQHB1frdWtKYWEhAMDFxQW5ubno168fHjx4IHmeloiIiIhqBwOhmsGDB+PTTz/Fnj17cOPGDezatQvR0dEICQkBUFbJmTx5MqKiorBr1y6cP38eY8aMgb29PYYPHw4AkMlkGDt2LKZOnYqDBw/i7NmzGDlyJHx9fcVZR318fDBo0CCMGzcOJ0+exMmTJzFu3DgEBQVxhtEaZEhYE6p2Y8aMqaHeaNLWP/WgumrVKqSkpOD27duwt7cv99jH0cSJEwFArAju2rUL/fr1w/jx443ZLSIiIiKTxCGjalasWIE5c+YgPDwc6enp8PT0xIQJEySLfs+YMQP5+fkIDw9HVlYWunbtivj4eMlwvZiYGFhaWiI0NBT5+fno168fNmzYIK5BCJQNBYyIiBBnIx0yZAhWrlxZezdLEqGhoZLtU6dOAQD+/PNPg85Tlclk9F2H0MrKCgAQEREhro/5999/G3xdY+jTpw+AfwPh9u3bcejQITz//PN47bXXjNgzIiIiItPDQKjG0dERy5YtE5eZ0MbMzAyRkZGIjIzU2cbW1hYrVqzAihUrdLZxcXHB5s2bq9BbMlR5gSs5ORmHDh0ShwxPnjwZt27dMnhhen2uVRWBgYG4ceMGvL29JfsbN25cI9erbsLnUlxcDADl/l0jIiIioprFIaNkUsoLadOnT4ejoyOaNWuGZs2aoV69egCA3NzcKl1Dn2BoSIXwgw8+gLe3N0aMGCHZHxcXZ0AvjU8IhELVvKJZeomIiIio+rFCSPQ/R44cwZEjR8TtkydPAgAyMzOrdN6qBsLQ0FAcO3YM5ubmeO655+Dj4wOlUvnELk6vfo+LFy/Giy++aKTeEBEREZk2BkIyKYYMGe3cuTMAGLzOoyHVPn388MMP2LVrFywtLbFu3TpcvXoVkyZNwldffVUt569tuj4XVgiJiIiIah8DIdH/CENGXV1dAUAMhsKalJVV1Qqhh4cHOnfuDDc3NwwcOBAbNmxAdHS0ZI3LJ9mTMjsqERERUV3EZwjJpJQXPsLDw8UwCPw7G+bAgQNr7JrqbbS1DQ4ORl5enrg9ZswYTJkyRbLkxJNE1zOWrBASERER1T5WCMmkGFKNsrGxMfiYyrSv6FhtM9X27dsXly5dqvR1HkcMhERERES1jxVCIh2EgFJaWlql8xhSITQFlZmFlYiIiIhqBgMhmZTKhI/Lly9X6hqGXKu6J6J5ErFCSERERFT7GAjJpFQmcL311luVuoYQcCoTDFXt378fXbt2RY8ePbB161Zxf//+/Q3q1+PClEMvERER0eOGzxAS/Y+wEL3g0aNHAIDs7GyDzlOVhem1+eijj7Bv3z5YW1tj9uzZ+PXXX7F8+XKkpKQY1K/HwdmzZzFjxgxjd4OIiIiI/oeBkExKecGrqKgICoUCtra2AIA33ngDGzZsgJOTk85jiouLYWlZfX+NtPUvNTUV/v7+4vbff/+NTZs2ITc3t9quW1siIiLQv39/nDhxAgAwYcIEHDx4EABw584dY3aNiIiIyCQxEBL9z+TJk3H//n00b95csv/NN9+UbKempmLmzJmQy+WwtLREUVERXF1dERUVBV9f3ypVCLW1tbS0RGxsLFq2bCnuO3z4MIKCgvS+t8eFmZkZduzYIW7Hxsbi+eefx19//YXDhw8bsWdEREREpomBkExKeeFs0aJFku3bt28DAEJDQyX7w8PDERsbCy8vL3HfrVu3MGLECBw7dqzaA+HXX3+NBg0aSPb17dsXe/furfC8jxs3Nzf8/fff4nbnzp3RuXNnHDlyBObmfKSZiIiIqLbxGxiZFEMmNDl27JjWY0pKSiCTyST7nJycUFJSImlfXbNmhoSEwNnZWdwW1h/08/OrlvPXpu3bt4vrOwLA+++/L1YMhWc2iYiIiKj2MBAS6aBrHcKFCxciKCgI/fv3x9ChQ9GvXz8EBwdrVBgNWUrCkLbh4eF69b+2fPvtt3B3d4enpydWr14t7n/66ae1ti8oKBB/Hj16NCIjIwEA1tbWNdpPIiIiItLEIaNkUgypEA4fPhzr16/XOKZ37944evQo8vPzIZfL4ezsLE5Eo+0a1R0IraysAABpaWnw8PCosH1Ne+utt7Bz507Y2Njg9ddfx969e/Hjjz8iIyNDa3vV4Ofj4wNXV1cA4JBRIiIiIiPgNzCiCugKaXZ2dmjUqJEkDKq2r6mF1vft2wcAGDVqVI2cvzL69euHXr164c6dO1AoFGjTpo1GZVXg4uIi/nzo0KHa6iIRERERacEKIZkUQyqElVlYvrLXLK9C2KVLF63tr1y5UqV+VRdHR0ccP34cvXr1AgAcOXIEEydOxFdffaXR9vvvvxcn6wGA1q1bi/ccFhZWOx0mIiIiIhErhGRSKhPuDD2mKtfQdmxOTg4SExORlJQkvpKTk9G5c2eDr1MT7ty5I4ZBwapVq7Tey9KlSzFmzBhxe+bMmfjss88AAFu3bq3RfhIRERGRJgZCIh10TSqzf/9+dO3aFT169JCEmMDAQACVe4awPFFRUcjJydHYP3v27Cqd1xjs7OwQGxsrbp8/fx5r164FABQVFRmrW0REREQmi4GQTEp1VAg/+ugj7Nu3DwcOHEBSUhImTZqE0tJS5OXlaW1f1SGj6stOCJ7EZSc6dOggmTwmOjoazZs3BwAUFhYaq1tEREREJouBkKgC6iHNwsIC9evXh729PaKjo9GpUycEBwcjNze3yteoajXxcbds2TI4OjqK21u3bsWgQYMAQOespERERERUcxgIyaRUR4WwQ4cOuHHjhrg9ZswYTJkyRRzWWZUho4a0HTFihN5tjaFBgwZa9ysUCvHnpKQkfP755wCAxo0b10q/iIiIiOhfnGWUTEplAqH6M4QrVqzQaNO3b19cunRJ6zUMGTKqzYwZM7S2T0xMrPC8tcHLy0tjn1KphFwu19pefciocDyHjBIRERHVPgZCIh0qu+xEZdYhLG/I6JYtWyQTsQgOHz5sUL9qSlpaGg4ePAgLCwtxn1KpFCfZUeft7Y3z588DAFJSUlC/fn3cuXOHgZCIiIjICDhkVIu7d+9i5MiRaNCgAezt7dGhQwecOXNGfF+pVCIyMhKenp6ws7NDnz59cOHCBck5CgoKMGnSJLi6usLBwQFDhgzBnTt3JG2ysrIQFhYGmUwGmUyGsLAwnVUVqh61seyE+nFVHTL65ptvwsfHB35+fpLX4+KVV16Bu7s7evbsKb569eolWV5CsGnTJly7dk3cXr9+vRgE33333drqMhERERH9DyuEarKystCzZ0/07dsXv/zyC9zc3PDXX3+hfv36YpvFixcjOjoaGzZswNNPP41PPvkEAwYMwOXLl8UJMyZPnozdu3dj69ataNCgAaZOnYqgoCCcOXNGrKQMHz4cd+7cQVxcHABg/PjxCAsLw+7du2v9vkk3bSGtoKAAFy5cQGZmJlxcXNCuXTtYW1vrbF+Za6heS1irT7X9P//8Y/B1aoL6+oFyuRz169fH8uXLNdquXr0aS5cuRUBAAICy4bc//PADQkJCaqWvRERERCTFQKhm0aJF8PLywvr168V93t7e4s9KpRLLli3Dhx9+iKFDhwIANm7cCHd3d8TGxmLChAlQKBRYt24dNm3ahP79+wMANm/eDC8vLxw4cAADBw7ExYsXERcXh5MnT6Jr164AgLVr16J79+64fPkyWrduXXs3XcedPXsWc+bMgZWVFfz9/cX9Y8eOxbp16yo8Xj2sbdq0CatWrULnzp3h5OQEuVyOlJQUTJw4ESNHjtQYMlrVCuHjPmRU3dChQ3Ho0CGt79nZ2eH3338Xt5VKJVJTUwEYNsSWiIiIiKoHA6Gan376CQMHDsRrr72GhIQENG7cGOHh4Rg3bhwA4Pr160hLS5MECxsbG/j5+SExMRETJkzAmTNnUFRUJGnj6emJdu3aITExEQMHDsSJEycgk8nEMAgA3bp1g0wmQ2Jios5AWFBQgIKCAnE7Ozu7uj+COiciIgLr16+HpaUl3njjDXG/6tBFbXQtTL969WocP35cMjlKcXEx+vTpIwmEgqquQygMGXVzc5PsHzVqVIXnNYby7nfTpk2YOHGiuN27d29xjcX79+9rtL937x48PT2rv5NEREREBIDPEGq4du0aVq1ahVatWmHfvn146623EBERgW+++QZA2QQaAODu7i45zt3dXXwvLS0N1tbWGouJq7dR/4IPAG5ubmIbbRYsWCA+cyiTybTO8EhSZmZmaNmyJby9vfHxxx+L+4uLi/U6/uOPP0ZISIg4q6ednR2CgoLE95VKJRISEmBra1vpPpYXCOfPn6/1z0pERESlr1eTdu7cCQDiMhyqPDw88NZbb4nbCQkJYkhfu3Yt9u7dK7727NmD4OBg7N27t3Y6TkRERGSCGAjVlJaW4rnnnkNUVBQ6duyICRMmYNy4cVi1apWknfrwNqVSWeGQN/U22tpXdJ5Zs2ZBoVCIr9u3b+tzWybNzc1NXDdQNXAlJyfrdfzYsWMRExODmJgYREdHY9OmTfj999/Rs2dPdOvWDb1798bPP/+MzZs3a1xD27ah9u/fj65du6JHjx6S5/V0zeJZ27755hv4+vriueeew8KFC8V/CAkODtbaXnW/o6Mj/vOf/wAoW3Zi5cqVOH36NJKTk3H69GnI5XKcPn265m+CiIiIyEQxEKpp1KgRnnnmGck+Hx8f3Lp1C0BZhQOARhUvPT1drBp6eHigsLAQWVlZ5bZ58OCBxvUzMjI0qo+qbGxs4OTkJHlR+bZv3y4+B6oazh49elTucUIw9/DwgLe3N7Zt24bs7GzMmTMHzZs3x6+//oqTJ0/i2LFjiImJEf9sVPeQ0Y8++gj79u3DgQMHkJSUhEmTJqG0tBR5eXkVnrc2rFq1CikpKUhJSYG9vT1effVV5OXl6bzvkpIS8WeFQiEGaVtbW7zwwgu4dOkS/P398dFHH6FVq1aYO3durdwHERERkSliIFTTs2dPXL58WbLvzz//RLNmzQAAzZs3h4eHB/bv3y++X1hYiISEBPTo0QMA0KlTJ1hZWUna3L9/H+fPnxfbdO/eHQqFAklJSWKbU6dOQaFQiG3IuIRAqBr+IyMj4efnp3d1UV/lBUILCwvUr18f9vb2iI6ORqdOnRAcHIzc3Nxq7UNlmZubw8rKCkDZMNYJEyYgICBA6z94AMDLL78s/qxUKsVnNPv164dZs2Zh9erVOHjwIEJDQ7kMCxEREVEN46Qyat577z306NEDUVFRCA0NRVJSEtasWYM1a9YAKAsJkydPRlRUFFq1aoVWrVohKioK9vb2GD58OABAJpNh7NixmDp1Kho0aAAXFxdMmzYNvr6+4qyjPj4+GDRoEMaNG4fVq1cDKFt2IigoiDOM1qDKDN9s2LChZHvkyJEYOXKk3teo6pDRBg0aoEOHDrC3t0dERATGjBmDZs2aYfDgwVU6b3Xx9PREmzZtYG9vj9DQULz//vvw9PRE7969tbZ/8803sX37dgBlQ7SFiuELL7wAoGwY6ezZs5GdnY1Lly7Vzk0QERERmShWCNV07twZu3btwrfffot27dph/vz5WLZsGUaMGCG2mTFjBiZPnozw8HA8//zzuHv3LuLj48U1CAEgJiYGL7/8MkJDQ9GzZ0/Y29tj9+7d4hqEQNlyAr6+vvD394e/vz/at2+PTZs21er9mpLMzEzcvXtX3NY3qBka6Kp7yGh6ejqOHDkiDhkdP348/Pz80LlzZ4P6pQ/VP+f6unPnDlJTU8UhowMHDkTz5s3Rvn17re1V71GpVIqTzKj+3QAAJycndOnSxeD+EBEREZH+WCHUIigoSDKLpDozMzNERkYiMjJSZxtbW1usWLECK1as0NnGxcVFfH6Kas7Bgwcxd+5cuLq6Sp67O3DgAAYMGFDh8VUNhIYcU96QUQCIjo6Gj49PlYeMzpgxQ2sfhJlUDaE+ZPTrr79GQEAAMjMzNdqePXtW8vdGqVSKS6eoLuNBRERERLWD38Cozps7dy7i4uLw448/YtasWeL+jz76SK/jqzrks6rHd+jQQZwlFSib5KZjx45VWoNy7dq1WLt2LdatW4eSkhIEBgYiKChI61qAFQkMDJT0z93dHV9++SUaN26s0TYiIkJc0xMAli9fLv4sBMLMzExcvXpVa6AkIiIiourFCiHVeebm5sjIyJAM6RX2l0fXwvQA4O/vj/j4eK3HVXeFUL3KPGXKFAwZMgSffvqpwdcR5OXlYcuWLfDw8MDrr7+Oq1ev4scff6xUle6DDz6QbO/btw8AEBcXp9HWzMwMjRo1ErdVQ+2ff/6Jnj17wtXVFU5OTpDL5cjKysK8efPQr18/g/tFRERERBVjIKQ6b82aNZg6dSrS0tIks1Z+8cUXeh2/bNkycbF1oCy0paam6mxf3c8QqhMqm+rLmhjC1tYWr776KoCyZwD79OmDNm3aiEM/a4qbm5tk9tFZs2ZhwYIFAIBffvkFv//+uyS4Z2dnIyAggIGQiIiIqIYwEFKd5+Pjg127dgGQPjf49NNP63X866+/jpCQEHFbqVQiLCxMZ3sh1AkVRkMqhjXVVp2joyOOHz+OXr16AQCOHDmCiRMn4quvvqr0OfWxfft27N69W9xWvQczMzONSm5GRgafLSQiIiKqQQyEZFJUA4i2oaDa2NraiutQCt555x2DrlWdbT/99FO89NJLePjwod7HqLtz547GvlWrVlXpucTKUL3vV199VazkKpVKcXipsOQLEREREVU/BkIyKepLHpRHqPA5ODhovDds2DC9rqHPdQxtK1TQfvnlF73Pq646Zxk1lPrvICQkBLt27YKbmxsWL15c49cnIiIion8xEJJJKCgowIULF3DmzBlxn74VwsouO2HIkNHyniFUX4tPWG4iLS3NoH6p2rJlC2JjYzX2r169WrJ99uxZzJkzB1ZWVpg+fTp69OgBABg7dizWrVtX6esLlEqlQc9PEhEREVH1YiCkOm/Tpk1YtWoVOnfujIyMDHH/t99+iwkTJlR4fG2uQ6hNTk4OUlNTYWlZ9tf1+PHjeOGFF+Dq6mrwdQQymQzR0dGwsbGR9EEIsYKIiAisX78elpaWmD59Ok6ePIkpU6bg2rVrYhtDQuP333+P999/X9zu3Lkz/vnnH/H6RERERFS7OFsD1XmrV6/G8ePHsXz5cslkMOvXr9fr+MLCQqSkpODAgQNISUlBYWGhQdev6pDRqKgo5OTkaOwvLi42qB+q7t+/jwMHDmDv3r2wt7fHkiVLsGTJEuTl5UnamZmZoWXLlvD29sa2bduQnZ2NcePGSa4dERGBZcuWISYmBjExMYiOjgYASWgULF26FAsXLhS34+Pj0bNnTwC6P6eqVEKJiIiIqHwMhFTn2dnZISEhAYA0dKhWx7QRqmWLFi3Cxo0bkZCQgPXr16Nv377YvHmzzuOqe9mJBQsWYODAgejSpQu6dOmC0aNHA4BkCQ1D5efn4/jx47hx4wZSU1MxePBgNGnSBNbW1pJ2bm5ukkXnIyMj4efnh+TkZHGfPqFRYGdnJ7mGo6OjOIuoriG8o0aNqvR9EhEREVH5OGSU6rxNmzZh4cKFmD17tjg8Eah4HUIhEM6cORPjxo0T9xcXF6NPnz4YOXKk1uOqe2F69SGjnTp1AgC4u7sbfB2BjY0NOnbsCAA4c+YMwsLC0LhxY41227dv19g3cuRIyb0LodHb2xtAWWjcvHkzNm3apHFshw4dUFJSIm4rlUpx+4svvhCXB1F9/8qVK4bfIBERERHphRVCqvM8PDywbNky/Prrr1iyZIm4v2HDhuUeJ4Szy5cvS/YlJCTA1tZW7+tX9dk49SGjQjDs2rVrpc/ZrFkzHD9+XNy+e/cuZs6cWalhqNu3bxfDoGDkyJF49OiRRttly5ZJ1hWUy+Vi8C4sLERiYiKSkpLEV3JyMjp37mxwn4iIiIhIP6wQkkkxZNkJ4f1z586hZ8+eKCkpgZWVFZ5//nmDhowa0i9tx4aEhEi2Y2Ji0LNnTzRp0sTg6wh+//13yXZhYSGmTJmCuLi4Sp+zMt58803IZDIAQP/+/ZGTkwNnZ2dJm9mzZ9dqn4iIiIhMCQMhmRRDFqYX2oaGhmL8+PGVuoa27fKOqa2ZNkNDQyXbly9fxmuvvYbU1FSt7TMzM5GZmQkXFxe4uLhI3jN0aQr134Gw7ePjoxEGAcDPz8+wmyMiIiIivTEQkkmpTCDUd71C9eMMWYewtiUnJ+PQoUPi8M3XX38dS5YskczCCgAHDx7E3Llz4erqCicnJ8jlcmRlZWHevHno168fAP2WplCl+nmsXbsW06ZN09hPRERERLWDgZBMSmUCYWWDSmWWm6jqEhX6mj59OhwdHcW1DPfu3QtnZ2eNiXLmzp2LuLg4ODo6ivuys7MREBAgBkJhllEA2LZtGyIjIzFu3DicO3euwn7IZDIuTE9ERERkRAyEZFIq8wxhRe3i4uJQv359dOvWTWv76h4yamjFUpvw8HDJtjBU87vvvsOECRPE/ebm5sjIyJAEwoyMDMnEMNeuXUNgYCAcHBzEfTdu3NC5LIb674CBkIiIiMh4GAjJpNREhTAgIEBr+5oaMlodgbBFixZIS0uDmZkZXFxc0KhRIyiVSo2q3po1azB16lSkpaVBqVTCzMwMjRo1wpo1a8Q2VlZWWLlypSQkKpVKjeGngqKiIvHn33//XVx2goGQiIiIqPYxEJJJqc1nCCtzTFUqhEJg08f9+/eRmZkJOzs7fP755zh69Ci++eYbeHp6Str5+PhorA2oTn34qeCdd97RaLtp0yZ88skn4vb333+P06dPi/1Xd+/ePY0+EREREVH14TqEZFIqM2T0q6++QkhICBITE8X3xo4dW6lrVkdbYV3E3bt3V7pPzZo1E9cJjIiIwIQJExAQEICCggK9zyEIDw+XhEFhqOiwYcM02q5evRoff/yxuB0ZGYmOHTsCAK5cuYK9e/eKrz179iA4OBh79+41uE9EREREpB9WCMmkVKZCGBISgv/+9796zaCpfg1t2+Udo0/blStXAgB69+6NmJgYcX95fVKXnp6ORo0awcLCAi4uLqhfvz6USmWlAqG6oUOH4tChQ1rfs7Ozw4ULF8Tt0tJSZGVlAQB++uknKBQKdOvWTfwc5HI5Tp8+jZdeeqnK/SIiIiIiTawQkkmpTCB0dXWFt7c3tm3bhuzsbIwbNw7FxcV6XaMy/dKXk5MTtm3bJm6X1yd1+fn5yMrKwsOHDzF9+nTcvXsXSUlJqF+/vl7H5+Tk6HxPuBd/f3+N9zZt2iQOEQXKlrv4559/AAATJ07ECy+8gEuXLsHf3x8fffQRWrVqhblz5+p9X0RERERkGAZCMimVCYRCYAHKhjj6+fkhOTlZr2to29a3f7rIZDKt+1WDVkXUh4wWFRUhICBAIxB+88038PX1xXPPPYeFCxeK+4ODg8WfQ0NDJS+ZTKZzkXsPDw+MHj1a3P7222/x1FNPASibnGbWrFlYvXo1Dh48iNDQUJ0zlRIRERFR9eCQUTIphjxDKFAPSSNHjtRYr6+qDBky+sEHHyAwMFBjvzD0Uh+jRo2CQqEQl5vo0aMHoqOjMXXqVEm7VatWISUlBVZWVvj888/x6quv4ptvvpH0U32Re+E+dM0yqqq0tFTj3h0dHTF79mxkZ2fj0qVLet8TERERERmOFcIKLFiwAGZmZpg8ebK4T6lUIjIyEp6enrCzs0OfPn0kz0UBQEFBASZNmgRXV1c4ODhgyJAhuHPnjqRNVlYWwsLCIJPJIJPJEBYWxopIDauNhemr8gyhPsqbZVRfH3zwAby9vcXt5cuXo23btoiLi5O0Mzc3h5WVFYCySuJbb72FgIAA/P3332IbYZbRZs2aiS9vb2+ts4yq97O8dQidnJzQpUsXAMDZs2cRFBRUpcl9iIiIiEgTA2E5kpOTsWbNGrRv316yf/HixYiOjsbKlSuRnJwMDw8PDBgwQPJc1eTJk7Fr1y5s3boVx48fR25uLoKCgsQ11wBg+PDhOHfuHOLi4hAXF4dz587pVVWhyntcA6EhbYV+q7etyvqE6gvVCwIDA3Hjxg1xu3///vjyyy/RuHFjybGqs4zeu3cPf/zxh86JYCqzMH1ERASWLVuGmJgYxMTEIDo6GoBhE+kQERERkSYGQh1yc3MxYsQIrF27VhxWB5R9aV22bBk+/PBDDB06FO3atcPGjRuRl5eH2NhYAIBCocC6deuwdOlS9O/fHx07dsTmzZuRmpqKAwcOAAAuXryIuLg4/N///R+6d++O7t27Y+3atfj555/FZQWo+qmGJn2XnaiNBdOrax3CyhKqgOrUK4kANCqJ6s8Zent7o23btpLnDHXRFggzMzNx9epVZGZmiu3MzMzQsmVLgyb3ISIiIqKKMRDq8PbbbyMwMBD9+/eX7L9+/TrS0tIkMyja2NjAz89PHMp25swZFBUVSdp4enqiXbt2YpsTJ05AJpOha9euYptu3bpBJpNJhsRR9aquhem1zaCp7Rratss7Rp+2Z8+eBVC2qPvWrVvF/a+++mqFx+qyb9++Sh8rPGeYkpICe3t7FBUVAdB9L7oqhDdu3EDPnj3xxhtvYN68eRg9ejR69eqFgwcPws3NTVKp1GdyHyIiIiKqGCeV0WLr1q1ISUnR+mUzLS0NAODu7i7Z7+7ujps3b4ptrK2tJZVFoY1wfFpaGtzc3DTO7+bmJrbRpqCgQLJWXHZ2tp53RUDlAuGWLVuQkpIi2a9tBk1t19C2XVVCCHz55ZeRlJQk7j9//jzi4+Mxc+ZMyGQyLFiwAN27d6/Wa2uj/pzhu+++CwB48OCB1vbqvwNhOzExEZcuXYKjo6P4fnZ2NgICAvDrr79qnKcmJvchIiIiMjUMhGpu376Nd999F/Hx8bC1tdXZzszMTLKtVCo19qlTb6OtfUXnWbBgAebNm1fudUi3ygTCgQMHYtKkSZL95T3rKRxX0Z8HbcfoEx6F2TwtLS0RHR0tLk7v6OiI0aNHIzk5Gfb29hg6dCiOHDmi9Rxnz57FnDlzYGVlhenTp6NHjx4AyiZpWbdund79Bsqq323atIG9vT1CQ0PF/foEQtUKIQBkZGRIAmFGRoZk9lIiIiIiql4MhGrOnDmD9PR0dOrUSdxXUlKCo0ePYuXKleLzfWlpaWjUqJHYJj09Xawaenh4oLCwEFlZWZIqYXp6uvjF28PDQ+sX5oyMDI3qo6pZs2ZhypQp4nZ2dja8vLwqebemx5BlJ4T3ra2t0axZM8l7umbQ1HZ8dQ8ZbdasmdblGEpKSuDj44MmTZoAACwsLHSeIyIiAuvXr4elpSWmT5+OkydPYsqUKZWapOXOnTtITU0Vl6YQqE/GJNAVCPv374+pU6ciLS1N/IeRRo0aYc2aNQb3iYiIiIj0w396V9OvXz+kpqbi3Llz4uv555/HiBEjcO7cObRo0QIeHh7Yv3+/eExhYSESEhLEsNepUydYWVlJ2ty/fx/nz58X23Tv3h0KhUIy5O/UqVNQKBRiG21sbGzg5OQkeZH+KlMhtLe3F/cJy4IMGzZMr2to266qMWPGaD1vYmIiDh06BAAoLi4u9/70naRFn+Ue1IeMClSXplClPrGPcB/Ozs7YtWsXTpw4gZMnT+LEiRPYuXMnfHx8uOwEERERUQ1hhVCNo6Mj2rVrJ9nn4OCABg0aiPsnT56MqKgotGrVCq1atUJUVBTs7e0xfPhwAIBMJsPYsWMxdepUNGjQAC4uLpg2bRp8fX3FSWp8fHwwaNAgjBs3DqtXrwYAjB8/HkFBQWjdunUt3rFpqeqkMkOHDhVDlz7XMLRfVVmzULWflpaWkn+QUCdM0iLMIBoZGYnNmzdj06ZNknb6VBKFpSnUZyNVXZpCV/+VSqXOZTRUDR48GGlpaTAzM8O5c+cwadIkTJkyBRs2bDB4iCsRERER/YuBsBJmzJiB/Px8hIeHIysrC127dkV8fLzk2aeYmBhYWloiNDQU+fn56NevHzZs2CAZxrdlyxZERESIM1YOGTIEK1eurPX7MSWVGTJqyDHajqutdQjVty0tdf/13r59u8Y+bZO0CJVEANi2bRsiIyMxbtw4/PPPP+jfvz/at2+PQYMGISQkRJzIRqC+yL22fqpOKlNeQL979y5++OEHODg4ICQkBPPnz8cff/xRpbUXiYiIiIiBUC/qE3OYmZkhMjISkZGROo+xtbXFihUrsGLFCp1tXFxcsHnz5mrqJemjqgvT79y5s8b7pW/bBw8eSKqANRGOdFUS161bh5s3b0Iul8Pf318ykU1FdA0Z1fUZCLPuPvvss/D29kZOTg7atGnDvztERERE1YDPENITZcSIEVU6vqqBUH0pEX2Oq+5JZY4fPw4AuHz5MhISEsT92qp+uuj7TN727ds1hoKOHDkSvXv3hpeXF3x9faFUKtGkSRO4uLiUO5GNQNekMrrufdSoUXBwcJAsA3Pp0qVy14IkIiIiIv2wQkiPpRkzZmjsUyqVkvBSGdW1ML0+x9XUkFHhGcaePXvi448/xqeffgoA2LRpk2RSF39/f8THx2s9h65nA3/++Wed11X9nTx48ADTpk2DmZkZ7OzsAFQ8kY22e1QNhNu2bdNY+1OpVOLKlSvIzc2V7JfL5fjpp58qvBYRERERlY+BkB5LW7ZsQWxsrMb+w4cPV+m8hj4PCABFRUVISUlBZmYmXFxc0K5dO1hbW+t1DUP7pc+xwoye6mv4Xb9+XVwHUKlUIjU1Vec5Ll26hN69e8PMzAzPPfccvv76a8ydOxcPHz7Uubi96u8kMDBQPJfwO7l48aJk7c5u3bqhYcOGiIqKgq+vr7hf15DRwsJCJCYmajz7OGDAAI3+6zO5DxERERFVjIGQHktvvvkmfHx84ObmJtk/atSoKp23MhXCzZs3Iz8/H05OTpDL5UhJScHEiRM1JmDRdbx6CNW2YL0hIXLcuHF477338OOPP+LcuXPi/q+//hrPPvuseL6wsDCd5/jnn3+wdu1aNGnSBOvWrcO9e/cwZswYfPHFF1oXt8/MzMTLL78MDw8PjVlwhd9JeHg45s6dK04mY21tjbt378LPzw8JCQliKNQ1qUzr1q2Rk5OjMSx39uzZGv2v7qU8iIiIiEwVAyE9lubPn691v+qQyMqoTCAMCwuTzJ5ZXFyMPn366AyE5Q0ZrSgQ6hN0hNlsBw8ejC+//FKsVvr6+qJZs2Ziu3feeUfnOZo0aYLBgwfDzc0NAwcORJs2bXDz5k3Y29tLFrdXKBTo2bMnXF1d4eTkhGnTpiErKwvz5s1Dv379APz7OykpKcFHH30kXuPo0aOQy+Xo168fwsPDcezYMa2fh7DdsGFDSRi8dOkS2rRpAz8/P+zfvx+zZ8+GhYUFIiIixMl9AgMDsWfPngo/MyIiIiLSjoGQTEplAuGNGzck+xISEiRDI8u7hr7v6bMWn/o51IeMqt/PsGHDdJ7D1dUVc+bMgUwmA1A2c66trS0KCwsli9tfu3YNd+7ckSypkp2djYCAADEQChYuXIigoCBxu1+/figuLsb8+fPxySefaO2n6j2UlJRIzhceHi72ZdSoUZDL5XB3d8cnn3yCESNGwNbWFq6urjrvkYiIiIgqxkBIJqUy6xBeuXIFPXv2RElJCaysrPD888/rteSBIesYVmbiGfVAaMg5Hjx4gOHDh4vbvXv3hqOjI65fvy7us7S0hK+vLzIyMiSBMCMjAwqFAl27dhUrdq+//jp69+6Ntm3b4uTJkwCAevXqITc3F4sWLcKiRYu09rO8QCg8KwkA6enpePDgAdLS0vDss89i8eLFiI+Px4EDB/S+ZyIiIiLSxEBIJkW1OqVvhfDFF1/E4sWLAZRNfBIYGAiFQgEPD49yjzMkEFamQqj6/J0+96NK/RnNF198EYcOHdJ4RnPt2rWYOnUq0tLSxOGujRo1gpWVFfbt2wdra2vMnj0bv/76K5YvXy6pnH7xxRdwdXXVqKbqGwg///xzXL9+Hc2bN4elpSVyc3PRrl07NG3aFFOnTsVzzz3HQEhERERURVyHkJ4oVV17zpAApS2k3bt3DwcOHMCHH36o1zW0bZd3jD5thX6pB8Lz58/jwIEDSElJQWFhYbnn6N27NwYPHowePXpg69at4nn27dsnaefj44Ndu3bhxIkTmDJlCh49egR7e3vk5eWha9eu8PPzQ58+fdCpUycEBwdLlodo2LCh1qG16qFcVyBs06YNWrRoAQDw8PBAYGAgnnvuOUyYMAEA0LlzZ40ZSYmIiIjIMPw2RY8lYfkEVRUtpaCPygwZVW0nDGMsKCjQ+zhDKoT6uHXrFoCy5R5OnDgh7p8xYwb+85//6DUT6kcffSSp8NWrVw/9+/fH8ePHdS47sXTpUvz666/IyclBixYtcOLECbRu3Rr9+/fHsWPH0KxZM0ycOFG8hnrA0/YZlFchVOXp6YmjR4/CysoKn3/+OYYMGYKtW7eiR48een5qRERERKQNAyE9lpKTk3Ho0CGYm/9bxK5oKQV9VKZCaMgwU/VrqB9THUNGv//+ewBAhw4dsGLFCnG/i4uLODtrRTOhXrlyBePHjxe3Dx8+DAcHBxQXF0uWnWjZsiUyMzMBAHZ2drC3t4e9vT1CQkLQvn17ABCrdMXFxeIkNcI2oDkTaGUCobm5uRjGIyIi8PXXXyMgIEDsGxERERFVDgMhPZamT58OR0dHjVkky1tKQR9VHTKqT3BTb6NPIFStJhYXF+s1FNLe3h7/93//J074IgQqfWZCLSgowKRJk9C0aVMAwMGDB9G8eXP8888/KCkpwZQpU6BUKvHw4UPxmA4dOiAzMxPm5uZYtWoVgLJnKhs0aACgrOr41ltvISkpCQAwZMgQ3L9/H/fv38dPP/2EIUOGaP08hG0hQGoTGBiIGzduwNvbGwDg7OyMlStX4t13363wcyIiIiIi3RgI6bEUHh4u2ZbL5ahfv365SynoozYCYWWGjApDUPfs2YMXX3wRRUVFcHV1RVRUlLigu6BevXpa+3/27Fl069ZN60yo6iFz4cKF8PHxEQP3o0ePsHnzZgwaNAgHDx4EABQVFWHPnj3w9fWFlZUVQkNDxfDXt29fHDp0CNbW1ti+fTsAwMLCAl999ZWkP927d0e9evWwZMkSMRBWVCFMSEiQrEPZsWNH5OfnY926dZDJZAgNDcXChQvRtm1b5Ofna/08iYiIiEg/nFSGnghDhw6t9LEjRowQf1YqleIw1Mo8Q6jP5C/qQU2fCmF2djYA4KWXXsLRo0dx4sQJfPHFFxrBGCibIVQ4r+r5UlJScPLkSRw7dgwxMTHIyMhA165dUb9+fTg5OcHHxwcymQydO3fGjh07EB4ejtDQUISGhqJly5aYMmUKbt++jWbNmqFZs2Zo2bIlGjdujJSUFKSkpMDe3l5yHwUFBUhJSREnsvH19YWZmZnYpn///pg5cyYePnwoCaMVBcKZM2di/fr1Ypvdu3fD0dFR7Iu9vT0GDx6MvLw8XLx4UdevwShycnJgZmaGw4cPG7srRERERHphhZCeCPo8WzdjxgytxyUmJkq2LSwsUFpaWqVnCKt7yKi2952cnLQ+V6drllGlUin5DGJjY1FUVIRhw4bh559/hlwuR3x8PN59910cPnxYEuD++usvAJrP8bm5uUme3ROGaF65cgV9+/ZF586d4eTkBLlcjt9++w3169cXj/3888/RuHFj/P7775I1DyuaZdTW1hZeXl5imyZNmuDSpUswMzNDly5dAAAPHz6Eu7s78vLyyv08a9udO3cAAN988w369u1r5N4QERERVYyBkJ4IO3furLDNli1bEBsbq7FftVqjWiGsypBRQ47TJxDa2dkhJycH8fHxGDp0KBQKBYqLiyULuqufQz3UlpaWSj6DvXv3wtzcHMOHD8eZM2fg5OSE1q1bixO07Nu3T1xLsW/fvjh8+DB8fHwk11J/dk+gUCjw+eefo3379rC2tgbw70Q2AuGZQNVhpeqfgbYKoYeHh0YwtbW1RYsWLXDq1Clx34ULF/DCCy9o/TyJiIiISD8MhPREcHZ2rrCN+mLrAtXF1oUKofBzeao6qYzqNbX9rEoYUtm3b18sXboUzs7OOieFUQ1Q6mFT9TP48ssv8corr+Djjz9GUVERzMzMEBwcjE8//RSTJk2CjY2NeKwQuIXnEwUffPCB+POmTZvEnxs2bIhPP/0U6enpmDhxIkaMGKExkY2+y04I9yC037p1q8Yxa9asQa9evcTtS5cuoW3btuI6hfq6ffs2XF1dYWdnZ9BxhtKnok1ERET0OGAgpDpDdSISVREREeLPqoGwomqftucFDVl2QluFUBehjYWFBRo1alRu20uXLgEAjh8/jh07doj73333Xfz666/idu/evZGRkYH8/HzI5XJJyLSzs8PAgQPFto8ePcKjR4+Qnp4uuZafnx8SEhIAAKtXrxb3JyYmYuHChXjw4AEmTpyI1atXixPZCP0XKoQ5OTniTKjqn4e2QKjNggULJNsXLlzAM888g6tXr+o8RpumTZsiMDAQP//8s0HH6Uv1GUoiIiKiJwEDIT22CgoKcOHCBWRmZsLFxQXt2rUThydWVnUNGa3uZwgNWYcwPj4eANC5c2ecOXNG3P/o0SOt7e3s7DQqYrm5uUhNTRUrk/Xr14dCoRBn8RT6cvLkScl5BB4eHoiJicGhQ4ewYMECHDhwAN988w0GDBggthECXnBwMGJjY8XhqRVVCLXJycmR9NfFxQXJycmS6+lr//79Bh9DREREVFdxllF6LG3atAl9+/bFxo0bkZCQgPXr16Nv376SpRQqo6SkRJwkpaYWpq/MkFF9Zi8VCFUoMzMzzJs3T9x//fp1xMfHo2PHjujTpw9OnDih8xxRUVHIyckRt4VZTi0sLHD58mXxpRrSVIeMduvWDb1798bPP/8s/k5WrVqFlJQUsc27776LvLw8KJVKjWG7AtXnIHUFwszMTI3+du7cGQAwe/ZsnfeoS2FhocHHEBEREdVVrBDSY2n16tU4fvy4WM0D/p20ZOTIkeUem5mZKVYVXVxcJO+pBsLqeIZQ2zkqUyEsKioCUFb927p1K15//XUAZZO67NmzR9K2UaNGuHHjhsakMjY2Nhg9ejSSk5NRUFCA4cOH45dffoGLi4vGZ/LLL7/gP//5D8zNzdG7d284OjoiOzsb+fn5+O2338Rzqq6BKFT4AEgqhwJzc3P07NlT3P7zzz/h4eGB4uJiSWW3tLQU5ubm4gyjpaWlsLKyEgPhwYMHMXfuXLH96NGjkZWVBScnJ/Tr1w8AsG/fPgBlQ1pNxebNm7FgwQJcuHDB2F0hIiKiOoSBkB5LdnZ2SEhIEKfuVyqVGpOWqBOChKurq7gUQlZWFubNmycGidLS0mp9hrC6AqFQterbty+SkpLw66+/Yvny5VqXVRg8eDBOnDihEQi///57TJo0CcOGDYOrqytu3ryJwMBAXLhwAe3atcNTTz0FuVyO48ePo6CgAJmZmbC3t8crr7yiszq3cuVKrfu1CQwMxNdffy1u79ixA7a2tpg6dark/KpLf6gGQuGZw7lz5yIuLg5OTk4AytYhzM7ORkBAgPh7fFzpU0GurHfffReZmZk1dn4iIiIyTQyE9FjatGkTFi5ciNmzZ4tVPWHSEl2EIKE6gYl6kCgpKYGFhQXMzMyq5RlCbQFPfZ8+Q0YFFhYWiI6OxoYNGxAcHIzc3Fyd59e27ISDgwPi4uJgZ2cHT09PXLlyBb1798bJkyfRpEkT2NrawtraGtnZ2eJC8zt27MCIESPEdQuBsolr2rRpY1AF7oMPPoCPjw+GDh0KoKyi27ZtW8TFxYkT0wj9Fyq/2iqE5ubmyMjIkJw7IyNDUi1+XBnyLKihOGENERER1QQGQnoseXh4YNmyZQYdIwQJ1UCoHiSECqG5ubneQ0bLW5heW6isTIXQzMxM8t6YMWPQrFkzTJw4UaNtectOCJ9BixYt4ODgAFdXV4wcORIPHjzAkiVLoFQq8eqrr6KwsBDHjx8Xl3IYOnQoYmNjxaGd4eHhOHToULmfjzYhISHiz6pVQdVgKQwZFfqsXiFcs2YNpk6dKrbv3r07GjVqhDVr1hjcn9pW3sQ4VcVASERERDWBgZDqDCFIpKWlQalUwszMTCNIlJSUwNzcXHyGrTz6LExfXUNGVZ+pE/Tt21dcYkLb+bVVCFU/AwDIy8vDlClT4ObmhmHDhsHMzAzm5uZITEyULEIvzN4pTNIiPGeZlpYmeXZQkJCQgPnz56N9+/YYNGgQZs6cCZlMJlkeorx1CFWH7ZaWlsLW1hYFBQUAAB8fH+zatUsMQOVNjvO4qclAKBD+bBMRERFVBwZCNQsWLMDOnTtx6dIl2NnZoUePHli0aBFat24ttlEqlZg3bx7WrFmDrKwsdO3aFV988QXatm0rtikoKMC0adPw7bffIj8/H/369cOXX36JJk2aiG2ysrIQERGBn376CQAwZMgQrFixAvXr16+1+61LhCBRHqFCWF1DRsurEGrbro5lJ8obMqrPZ6CNENCEQCNM2jJq1ChxmQtVM2fOxLZt2yCXy9GlSxdcuXIF9vb24nBR4N91CLX1X7ietiGjT7KafIZQCIElJSVigCciIiKqqsf/oZxalpCQgLfffhsnT57E/v37UVxcDH9/fzx8+FBss3jxYkRHR2PlypVITk6Gh4cHBgwYIJkWf/Lkydi1axe2bt2K48ePIzc3F0FBQZIvvcOHD8e5c+cQFxeHuLg4nDt3DmFhYbV6v6bGkAqhPpPKaDuH+nH6hDxDgoRqICyvb4YQhmiuWrUKXbp0QZcuXdC5c2ckJSWJbWbMmCH+fO/ePaxYsQLffPMNAKBJkyZwcXERwzagu1qmPmRUqVRWGAjPnj2LoKAghISEIDExUdw/duzYSt5xzaiNIaPCc55ERERE1YH/zKwmLi5Osr1+/Xq4ubnhzJkz6N27N5RKJZYtW4YPP/xQrIZs3LgR7u7uiI2NxYQJE6BQKLBu3Tps2rQJ/fv3B1A2ZbyXlxcOHDiAgQMH4uLFi4iLi8PJkyfRtWtXAMDatWvRvXt3XL58WVKRpOpTmWcIK7vshLbtiiahUX9f25BN4Xw5OTk4fvy4zmP9/f21Vve0EWYzHTt2LD7++GNxv+rC71u2bBF/btmyJQYNGgQLCwscPnwYQFloO3funNiPSZMmoWXLloiKipIsX2FohVCpVCIiIkKsnk+fPh0nT57ElClTcO3aNb3ur7bURiDUVXklIiIiqgxWCCugUCgAQFzP7vr160hLS4O/v7/YxsbGBn5+fmLl4syZMygqKpK08fT0RLt27cQ2J06cgEwmE8MgULbYt0wmk1RA1BUUFCA7O1vyovIJz9MB/1YIDRkyWt7C9NUxZLS8QKi6oLtAWCfw77//xqlTp8T9ERERCA0NRWhoKF577TWkpqaK76lWr3NyciSfCQCxMq0eaFQXfn/zzTfFn3/55Re8+OKL8PPzE/sYERGB06dPi8MZFy1ahC+++ALh4eEa91veLKPffPONJED+8ssvePjwIfr374/33nsP7733HrKzszFu3DhcvHhR4/OpTr///jsiIyP1bl+Ts4wKWCEkIiKi6sRAWA6lUokpU6agV69eaNeuHYB/w4W7u7ukrbu7u/heWloarK2t4ezsXG4bNzc3jWu6ublpfFlXtWDBAshkMvHl5eVV+Rs0EaqhSrVCWN3PEOraV9GyE6r7Dh48qHPIpuDMmTMAyv6RYdKkSZK+devWDb///jsuXryIoqIi+Pr64rnnnkOHDh3EdsHBwRpBs0uXLgA0q0+qs4POnz9f/Fm1XUREBICyMJmWliYGu1mzZuHVV1/FhQsXJOFUfS1IIRAK4XDVqlVISUkR20dGRuLmzZto0qQJYmJiEBMTAycnJ/j5+SE9PV3j86lOzz77LObNm4dHjx7p1Z5DRomIiOhJwyGj5XjnnXfw+++/S4blCdRn+dNn5j/1NtraV3SeWbNmYcqUKeJ2dnY2Q+H/CKFGlVKpxJUrV8Rt1WcIK6rilPcMoa73hAXXVc9RUYVQ9f0XX3wR27dvF7dVh2wKhAqc+qQyDg4O2LZtG1JTU2FlZQU3NzfcvXsXLVq0wN27d+Hi4oIWLVrgzz//1FjTTziPvoFG27DFhQsXYtCgQeI9WlhYwM7ODmvWrEF4eDiOHTsmfgbahowK1zc3Nxe3AaBfv364fPkySkpK4O3tjW3btiEyMhIXL15Ez5499eqvcK3Kys3Nha2tbYXtOGSUiIiInjSsEOowadIk/PTTTzh8+LBkZlDheS71Kl56erpYNfTw8EBhYSGysrLKbfPgwQON62ZkZGhUH1XZ2NjAyclJ8qIyOTk5SExMRFJSkvhKTk5G586dxTY1WSHUNVzQkECo/r7qkE3B4MGDAQBXr17F8OHDxf3vvfcezM3NxQmQWrVqhXr16sHe3h6tWrXC999/DwcHBzRr1kzymQAQK3iHDh1CfHw8OnbsiD59+uhc8kFblap3795o27atuJbhzJkzkZCQgP79+0uCkq4ho0BZoAoMDMSNGzfE9r6+vvDx8cG9e/fESWUiIyMlw7T1UZVJd4QlMSrCCiERERE9aRgI1SiVSrzzzjvYuXMnDh06hObNm0veb968OTw8PLB//35xX2FhIRISEtCjRw8AQKdOnWBlZSVpc//+fZw/f15s0717dygUCsmQwFOnTkGhUIhtyDBRUVGSZ+UEqqGqqs8QqgdBfYaMVuUZQtUhmwIHBwcAgLe3tzjLJwDIZDIEBgYiICAAABAYGIgPP/wQCxcuROPGjdG/f398+eWXaNy4sUbQ3Lx5MwCgdevWGD16NHbv3o2dO3di1qxZGtcHyoa2du3aFT169MDWrVsl/RcqWMuXL0e/fv0QHByMRYsWiW1Uh4xqC4QffPABvL29xfb16tVDQUEB2rdvj7y8PHz44YeIjo7GyJEjtQ671qUqFUJ9h4yq/qNAdVfyGAiJiIioJnDIqJq3334bsbGx+PHHH+Ho6ChWAmUyGezs7GBmZobJkycjKioKrVq1QqtWrRAVFQV7e3uxWiOTyTB27FhMnToVDRo0gIuLC6ZNmwZfX19x1lEfHx8MGjQI48aNw+rVqwEA48ePR1BQEGcYraSQkBCt+1VDVXVXCFUrQrpCYkXPEBpauVK9jnrfPvjgA/EfIj744APxPWH23LZt22rMpAv8uxC9s7MzfHx8xKq4ENwA4Pvvvxd/fv/992FhYQEnJyd8++23+PXXX7F8+XLY2trCzs4ODx8+xKhRo/Df//5XY6ilaoVQuBfVQKjOwsIC165dw5kzZ2BpaYnp06dj3759uHjxIvLz8/X6zHSdW1+GVgg3b96MzZs3V+vkMhwySkRERDWBgVDNqlWrAAB9+vSR7F+/fj3GjBkDoGw9tvz8fISHh4sL08fHx8PR0VFsHxMTA0tLS4SGhooL02/YsEHyBXvLli2IiIgQZyMdMmQIVq5cWbM3aOKq+xnCigKh+rahQ0bL65e2hekBYOfOnRWeQ5fjx4/js88+Q8eOHeHk5CSpuC5dulT8+c6dO/j7779ha2uL/v37IyQkBMHBwcjNzRXb1KtXT+tzd8XFxeKwUiHcCNvaQltRURGUSiWCg4PRsWNHBAUFYcqUKUhMTJRcryJVCYSPw6QyAlYIiYiIqDoxEKrR5wu5mZkZIiMjy52O3tbWFitWrMCKFSt0tnFxcRGH6pFuxcXF4kQqI0aMkKyHZ6iqVgiFL/yGVAgruk5FFURd/SopKdEaJtVnt9WHUAFr2bIlRo8ejeTkZNjb20uqrnZ2duLPXl5eyMrKgre3NywtLTFmzBhkZGRg7ty5KCwsFPsHlA1d3bNnj3hscXGxRkVQW4XQwsICJSUlKCoqgqWlJbZv3w4XFxd06NAB165dw86dOw1amL42niGsyjUqwiGjREREVBP4DCE9lt544w20aNECjRs3RvPmzeHp6YmnnnoKR44cqdJ5q/oMoRBYhC/n2gKhesAzZMioPoFQuKauCmFlCIFMJpOJQ0ZdXFzEIA5AsnTF3r174e3tjcLCQjRo0AByuRy7du3C/fv3xeC4efNmlJaWioveC4qKijQqgroCodDey8sLY8aMQUhICJ566inIZDK88cYbBoXf2hwyWhM4ZJSIiIhqAgMhPZZiY2OxaNEixMbGYvPmzfj222+xYMECZGdnV+m81VUh1Lata+ZRQ4aMAhV/4dcVCP/66y8cOHAAO3bsQPv27Q16vk4Y7lxcXIxDhw6JP6uef9myZZI+yuVyWFtbY/v27Rg6dCgsLCwQHx8vBsCCggI4OTnh5MmT+OmnnyTHllchVJ+ZdNasWbh06RIiIyNx4MABdOnSBZMmTcKjR480ls8oj+q9qC5Foo8nbcio+p8NIiIiIl0YCOmx1LBhQzz33HPw8/MTX/7+/nB1dTX4XCNGjBB/NuQZQm2BUAhr5VUI1SuKFQVC1S/4x44dw4svvoju3btj8ODBkgXd1fug/qU/ISEBCQkJ+Oijj5Camoro6GgxXLVp06bc5SSEoZfCcE+gbL1D1Zly1fswdOhQyX116NBBnGwGAM6dO4cpU6ZAqVRKZiutKBDOnDkT69evF6uIb7/9Np577jksWrQI9vb2iI6Oho+PD1577TXJbKQVUf1dGfLsIVD5IaPVGRANGTJqZWUlTmClzenTp/HUU0/pfV9ERERUd/EZQnosxcbG4o033oC1tTWcnJygUChQXFwsWWZB3YwZMzT2KZVKyVp1paWleg8ZFb54lxcIVat52gKhepVNWyAUzmFhYYGePXti9+7dAIBbt25hxIgR4oLuAtUKoer5wsLC8Pvvv4vDPKOjozF//nzUr18fmZmZCAoKQu/evREZGYlZs2ZJht8KfVQNhADw0ksvIT4+XmufVa+9c+dOODs7Y/Xq1WL/nJycYGFhAS8vL8mwUdVJZdQDYXFxMWxtbeHl5SV+xvXq1YObmxsOHTqEHj16ICIiAtu3b8ecOXPENRn1ofp7EK6vr8pWCIuKiiQTSVWF8Hls3rwZffv2LbdtaWkpDh8+rPP95cuX49q1a7h58yaefvppjfdv3ryJ1NRUBAUFVa3TRERE9NhjIKRqUd5kL6qTwuird+/eOHr0KPLz8yGXy+Hs7Kx1xkpVW7ZsQWxsrMZ+1S/GRUVFsLKy0mvIqLZAWN6QUdXJXlTf1zasVJUQCIVQJHByctJaYSrvGcItW7bgueeew2+//Yb8/Hw89dRT+PLLLzF16lQ4OTnh66+/xogRIzQC0dq1awEAJ0+eRGhoqHgd1QqlejBWnc1UeJZv3Lhx4ky9lpaW+Oijj3DixAnUq1dPcqxqAFS995KSEnh4eEg+t6KiIly8eBFKpRJNmzbF+vXrcfToUcyYMUNjndDyqH6WQrjSV2WfISwqKqrwz62hvv76a6xbt65K5xDWsnz48KHW96dMmYKdO3eiuLi42gItERERPZ4YCMkg+lThACA1NRUzZ86EXC6HpaUlioqK4OrqiqioKPj6+up9PTs7O8nsluV588034ePjo7FY+ahRo8Sfi4qKUK9ePb2GjKoOzVTfp23IqHA+1SF9xcXFku3yAmFRURFOnDiBoUOH4saNG7h+/Tr8/f0RHx+PmTNnQiaTYcGCBWJ79eGo8+fPBwCcOnUKANC8eXO0adMGvXr1wqhRoxAREQG5XK41oN+6dQsA4OHhgYyMDGRnZ8PCwgIPHz7E4MGDERUVBR8fH8nnqG1Cly+++AJfffUVlEol8vLyEBISguzsbMnah6rX1zZkVFjoXri3oqIi3L9/H/fu3UN+fj46dOiAZs2aoWHDhhrV0/JomxxI1erVq/Hqq6+iQYMGAKS/q8oOGVWvuFaFtuclS0tL8fXXX+ONN94wKLgJn7+u51V///13AEBmZiYaNmxYid7WvIKCAuzZs0cydJmIiIgMx0BIBtGnCgcA4eHhiI2NhZeXl7hP1xDI6iIEInURERHiz9VVIdRWDRT2qX7JLikpkWyXFwjd3d3RqlUrfPHFFwgODsbvv/8OuVwOf39/cRmIoUOHip+peoVw1qxZePPNN/HWW29h9erVeO+99/DNN99g4MCBcHJywo8//oji4mIsXrwY3bt3l/ShT58+2LlzJ65fv47U1FTxGu3bt8cXX3yBESNGSJ4nLCkpQUFBAS5cuIDMzEy4uLigXbt2sLa2FvsUHh6Oo0ePSiajET5XW1tbmJmZiZ+ftnUIVQOhk5MTMjMz4e3tjX79+uHu3buYPn26QbPOqp5bPQjl5OTgrbfewo8//oi9e/dqtK/skNHqDITa/uz8+OOPGDdunLj0h76EQKirfzKZDACQnp7+2AbCTz75BJ988gkuXbqE1q1bG7s7RERETywGQjKIPlU4oOyLsfClUqBrCGR5MjMzxcDh4uIiVswqq7CwENbW1hU+Q6hUKjXWHAQgqc6p/heQBhhra2sUFhaiuLi4wllDhfcdHBxQXFyMRo0awd7eHl5eXvDy8hKXgQD+XZtPuJ62CqVQvfT19dV72O3Vq1cBlA0hFAK0paUlMjIyxN+b6n189dVXePfdd/HCCy/A2dkZcrkcKSkpeOutt8Q2VlZWsLCwQJcuXTTu19LSEmZmZmLlTagC6/o8X3vtNTGkbt68GVlZWXBwcMBLL71U7merqrxAKAS+tLQ0cZ9qWKrskNHqDITa/hwJk+OoL+1REaGaqGsm2vr16wMAMjIyDDpvbUpPTweg+x6IiIhIPwyEZBB9qnAAsHDhQgQFBWlMCrNo0SK9ruPn54cLFy7AxsZGHHJaWFio1zp95dG3QqirqqceBHUFGDs7OxQWFmoEKW1f6oV99vb2YoAQnqOzsLDQWAZCdSir+vBU4N9AKJxLn2G3t2/fBgA0a9YM9+7dw+XLl9GtWzfk5+cjODgYixYtwubNm8X2Bw8exLBhw3D27FlMnDgRI0eORHFxMfz8/CSflepzhqr9FH4HugKh6vqNCoVCo8ooDFdduXIlSktLIZfL4eLiUu49ljdkVOiH6n7Vz1ZbhbBv376Qy+U4e/as1mO0bVeF8Bm1b99e3Kf+jwD6EgKhrsqnMGxW+HOhavv27ZDJZBgwYIBB1yQiIqLHEwMh1YjKTAqj6tSpU0hOToaTk5O4Lzs7Gz179qzwWPWqoirVQFheuNQ2e6jqfiE4aAuOwkyZCoVCIxBqCwjCvnr16iEnJwcAxOfoVAnLQAwbNkzsl+r51KtY169fR9u2beHi4lLuZwIAvXr1wu7duyGTyXDq1Cn07t0b69evx4EDBxAWFgYAmDZtmti+SZMmeOWVV7Bs2TL06dMHgwcPRvv27eHp6Sm2ycjIgFKpRE5OjrjOofD5CBVCIZCoBsKDBw9izpw5Yvsff/wRp06dwrx589CvXz9Jv0eNGoU+ffrgww8/RGFhocbEPKrKqxAK4VlXINRWIdQ2XFW9Inj37l20bNlSZ58MoRrwBZX9BxJhyGh+fj6mTZuGli1bSqq7whDef/75R+PY1157rUrXri5CCDZ2P4iIiJ50DIRUowyZFEZVkyZNUFBQgGbNmon7/vrrL0ngUHfw4EHMnTsXrq6ucHJyglwuR1ZWliRI6Fsh1DURjL4VQiH8qg8Z1RYIhfdTU1NRWFiIrVu34vXXXwcABAYGYs+ePWJbS0tLyZBR9dBy8OBB7Nq1CwCwceNGrFq1ChcuXEC7du3w1FNPaf1MAKBz587YvXu3eL5vvvkGjRo1EsMgAEmgj4iIwA8//IBJkybh9u3b6NWrF27duoXMzEyxzdGjRzF69GgcO3YMO3bskPwOLC0tYWNjIwZg1UA4d+5c/Pzzz2KVasiQIUhISMDLL78smdhGqVTizz//FLdzcnLKrRJqC/aqn536ftUQqO+QUfV2L774YrWtRSj8blSvoU+FUKg0q1KtEC5duhQAJIFQCJ/Z2dnV0POaVZ1rPRIREZkiLkxPlZKZmYmrV69KAkB12r17Nz799FN0794d3bp1Q/fu3TF9+nQx7Ggzd+5cxMXF4ccff8SmTZuwe/du7N27F3PnzhXbCIGwomcIhWBgaWlZqWcIhfCkT4VQeP+FF16Am5sbkpKSMGnSJJSWlmp9Nky1D6rVxYKCAsydOxfBwcEAgIkTJ8Lc3BwXL16EmZmZ+JlYW1tLPhP1vgNlz4qqi4mJEX9esGABUlJSMGDAAFy+fBnR0dEA/l3OQDjXd999B19fX8nC9Pn5+eI/FCgUCgDSQGhubo4HDx5IznPlyhXk5ubi/PnzcHFxQVJSEpKTk/Hw4UOxKiiES13KqxAKIevy5csa+wD9J5VRrxBq+zP21Vdf4YMPPtDrfNrOrXqNigLhtWvXYGlpqVHNFGYs1fX83cWLFwFIA+G9e/dw8+ZNg/tdU4R71jesExERkXasEJJB9KnCVQcfH59yw5825ubmyMjIkAxPzMjIkEzXr++QUSEYWVtbGxwIhSGjws9FRUUwMzODUqksNxA6OzujqKgI0dHR2LBhA4KDgyGXy3H16lXJUE/VCqEQDhwdHVFQUABzc3NxOOCnn36KO3fuYMSIEfjzzz8RGhoKpVKJ1NRUtGnTRtIH9SGw2j4b1erb/Pnz4eDgABsbG3h4eOC3337TaN+uXTu0a9cOpaWlYvADysJVeYFwzZo1mDlzptj++++/x8OHD3Ho0CH07dsXr7zyCpo0aYJz584BqDjcCMqrEGqb/KUyFUL1itrIkSM12kycOBEAEBUVpdc5BYWFhTA3N9caCN966y1MmDABgPQ+P/74YwBlswD36dNH3C/8OdQWdM+fPy+uP6l6P40bNzaov7WFgRC4f/8+LCwsNCb7IiIi0gcDIRlEqMKphq7s7GwEBAToFQirOktoedasWYOpU6ciLS0NSqUSZmZmaNSoEdasWSO2EWYZ1XdSGfVAaOiQUaFCaGdnh7y8vHIDobCUAwB4eXnh+vXruHnzJubNmycJ3tqGjDo4OKCgoABr1qwRK4Spqalo1aoVLl68iIYNG+LKlStiMFX9TIQ+A4BcLkfHjh3RqlUrbNy4EfPnz4ezszPmzJmDZ555RtLnwYMHAygLJcK9q4ay3bt3i/emujB9fn4+bG1ttQbC4uJi+Pj4IDY2VvwzFhQUhA0bNkhCouoC9kKlqKIqnj4VQuF+VGdAtbW11btC+Pfff6Nx48a4e/eu1utURWFhoRj8Beoh19LSUvL+xo0btfZD+H1rq/ipPjeYlZVVPZ2vQZcuXcKLL75Y5fP8/fffOHnyJIKCgqqhVzVj9OjRcHNzw5IlSyT727dvj7///pvPUxIRUaUwEJJB9KnCAUBoaKjGsUJ1Sl+61rnTRZ+qor7LTghfqm1sbMqdVEZbtaa4uFhcckN4htDe3h55eXnlVqIaN24svv/BBx/gxIkTWoO3EDaFQCg8j1dQUAAfHx8MHjwY0dHR6N+/PzZv3gxXV1fJ9b777jvJs3jAvwFBoVDg5s2byMnJQYcOHdCmTRvExcWhf//+WLt2rcbnoPq5qnvjjTewdu1aWFhYoFu3buJ+bUNG7e3tdX6uhYWFsLOzw+LFi8Uq14svvoivvvoKr732WrVUCFVDVH5+Puzt7cV9MplM7yqUQqFAw4YNxUBYnUsiFBUVwcXFRedyGAqFAg0aNNDrmsJxwlBfVarDT2tqSHh1EH7vb7/9NoYPHy4ulVFZL730EpKTk1FaWmrwrK1A2XDj5s2bl/v/qKr65ptvAEAjEP799981dk0iIqr7GAjJIPpU4QAgOTkZhw4dkgRFpVIpmaSkPJs2bcKqVavQuXNncWhqSkoK/vOf/2/vvsOjqNY/gH83PZR0SKEEuIKJAQRpClyKIPADL1zwuVKkPUhTQ/+hiHBRuIDwE2IEqYpXmhQNoBcVgpDQWwpFOiShpZC66dve3x+55zizu0k2EAyQ9/M88yQ7Mztz5t3ZnfPOOTMzFKGhoQ9d/oKCAri6upbbQigq1TVr1lSddTd/PIGy5UiMK62FUEyzViagpMuo8lq20hJv88dOODo6wsXFRb5XJAxBQUGqZDA7OxseHh7yLqVKmzZtkuUTSZdOp0NcXJx89EdZj89Qxkt0MxTX9JlMJsyZM0fOW1RUJFsI7969C+CPFkQRQ2Wio9frsWnTJrz44otynEajQWZmJvbv34/w8HC53LLYcpdRoOTZfsqE0M3NrcyEcMOGDfKaS61Wq3qQe0WfD1hW2Q0GA9zc3JCcnCzHK8uVlZUFb29vq3EwP2FjbZ64uDi0bt1alVAqE406deo88nMJ09PTcerUKfTr18+m+ceMGQONRoOvv/7aYppym9LT0x85Ibx58yaAkphW5I7IQMn+FBQUhEmTJuGLL754pHIwxhhjfzZOCFmF2Hpt38yZM1G7dm2L1ilbk7m1a9fi6NGjqkqfwWBAnTp1HikhFK0/5V1DKCrFtWvXViVxYry1hFDZyiaut9PpdNDr9bIFrLyEUK/Xw2QyoVmzZqUm3qNGjZIJrXjUgmghVK5DPLRcGDRokHymoTmREDk7O+PEiRPyLpRdunSBTqeDt7d3mQmhiINIVlxcXGRiSETy+YREpGohFAmHSKLME0LxDMqBAweqbhrTpk0bjBkzBteuXZOtOSNHjrT63DzB1i6jeXl5qFu3riohLCvZjIiIkAlhTk4OmjVrJqdVVguhWL+7u7uqm6ey3CI+ynWKlmlli1dxcbGqtVcYNGgQEhISkJ+fD6Aknr/++qucbt7ytXPnTvkIClsNGzYMkZGR8uZB5fnmm28AwGpCqNym9PT0ch/vQUTYsWMH3njjDXmdrZIYFxISgvj4eNXJGCLChg0bMGLECKstgNnZ2QCAs2fPlrtNjDHG2JOG7zLKHot3333XIhkEYLV1ypoLFy7ghRdeQPv27dG+fXu0a9cOISEh5d5J0pqUlBQAJYmSaK2zs7Mr83b1olJdt25dVWJlnhBauxNlVlYWGjduDKAkQcjOzpYJT2kJob29vexmWlhYiH379mHXrl04ceIETp48iRMnTiAiIgLBwcEoLCyUldXCwkKbEsLc3FxVAixiIrz00ksAAEdHR9UjCgoLC+Hk5ITvv/9eVfbSHuwuODk54fbt21a3VXSpFa2m7u7uqhbVjRs3olevXgD+SAgByGsjlevLyMiQiYFobSyNrV1GRdxs7TKqTGy0Wq3qxh5lJYQVaW1TJoSl3f1UlFs5TnzmCxYskOMPHTpkdR0iIRIJYYcOHZCWliZPFljrFm4wGNClSxfExsbatB3iM1LeZOhhKeNgSyyjoqIwZMgQfPXVV1ani7vV3rp1CydOnFBNO3bsGMaOHVtq65+41tL88R6luXnzJlq2bFkpcVCqzC7K7Nkjbs7FGGPmOCFkT6S6deuiV69e8o6gLi4u6Nu3Lzp27FjhZY0cORLAH5UlV1dX1KpVy6IFTUnM6+vrq7rTYlkthIWFhSgsLERxcTH+8pe/AChJWDIyMuDv728xv1BQUIAaNWrAzc0NQEny5unpWWbZxDP6UlJSULt2bZkQbty4ET/88AMAqO78OWDAAERERFjERBDz5ufno3379mjZsiXatWuH69evW2w7oE6o7t69a5EwmUwm1aMjNm/eDOCPirOnp6d8REWdOnVkRdpoNGL16tX47rvvAJS0WJ4+fRoFBQWqhFa0uGZlZcnllNcNUdkttLQWThEDAOW2EIoE/qeffpL7g7iO7+7du5g8eXKZFfQ33nijzPIqieW4ubnBaDRaPSEh9mcxr7u7u2r94iRAaUmLMiG0s7OT15neunULgPXurw8ePMCRI0cwa9Ysm7ZDrFskcL/++is0Gs1D3bxG+ZnYkhCKz7W0eZWthua9B5QnIKwR11ramhB+++23uHDhAo4dO2Z1+q5du/Dee+/J1waDwep1jcePH1ft1/7+/lZPOjEGlPTc6dGjh+rxOowxBnBCyB5CcXExYmNjceDAAcTGxlq9ocijWrp0KT755BMcO3YMJ0+exJEjRxAWFoYFCxaU+h7Rmqgc2rVrh9OnTwNQJ4Te3t5l3oihtIRQVEKtJYRFRUWyYuvr64tatWohMzMTmZmZ8Pf3h6urq+xapiQSQtHqV14raGFhoWxxvHfvHtzd3eHs7IyioiKsXr1aXgNoMBjg5eWFtm3b4uzZs+jdu7dFTARlK9Dp06fh4+ODM2fOoF27dnIeUaEG1C2dWq3WIiFs0qSJqlK9evVqAOqEUCTNt2/flpVxg8Ggur7T398f/v7++J//+R/V5yVaFzMyMuS6y6uMK8tonhAqTw7k5eXh0KFDWLp0KQDAw8PDamKnXJ7yuX1ubm6oV68eatSoUWZCWNY1rOaULYSA9YfUm7cQmp9UEPtVaSdCxD5dUFCAmjVrolGjRgAgu+Hm5eWpro8E/ngsRVJSkk3XS4pyi0eGiMTfWlff8u6YWdGEUMxfWtxFCyFgGSPx3tLuGiv26+joaFy5cqXcsjg7OwMovUVv0KBBWLVqFWbNmgWTyaS6blS878qVK+jUqZPqNzEnJ8ei9f9xICIMHDhQ7vfs8QgLC0N0dHSp0/Pz8xEaGgqTyYSkpCQkJCSUubyLFy8CAA4fPmzT+g8ePAiNRvPYnj/au3dvi2fiVlRRUdFjqYPYIi8vDy+//HK5cWfsacAJIauQTZs2oXv37vj2228RHR2Nb775Bt27d5ctQEqPkjgOHDhQVaHNysrCnDlz8Morr5T6ntzcXBw/fhynT5+WgzKpSUtLAwD4+PjAx8enQgmhqJxa6zIqutIpE0JPT094eXnJFkJvb294eXlZvWtjaQlhcXEx9u/fbxG/goICi4TQw8MDWVlZsLOzUyUEtWrVQo0aNRAYGGg1JoJoDTIajSgqKkJhYSEOHDiAN998U65XJITOzs6q5DAnJ8ciITSPr4iRuMusp6cn6tevD6AkGXV3d4eTkxOSk5PRr18/JCYmAii52YybmxtWrVpl9Tl4a9euldtbXiKtLKN5l1fzhPDVV1+VSbO3t7fFsolItTzxSJHCwkLZ0uvq6mpR4Vcm0k2aNCmzvErKVj/lthQXF6Nly5aqbRDzKp8bCfwRH5HEKVugAMguvtnZ2XB3d5f7Y15ennwkitg2QZzguHbtGnr37i3H63Q6rFu3ziL5EvuN6Dr+448/ArDe8qZMrKx1Na9oQii2v7REU9lCaP48SbGdW7ZssZrEKb/XwcHBVk/8CPHx8fImS+I3qTRLlizBxo0bLbbvwYMH8mZK//rXv1TTylpmWlpapTwKJTExEbt371Y9iqYicnJyyj0hcv36dVy6dKnU6U/y8yfT0tLkSY+HlZ+fj+nTp6Nbt24oKiqyesJl6NCh+PLLLxEcHIxGjRqhSZMmZV4KIZaxdetWxMbGWo1hQUEBtm7dCoPBIB8lJU4OVabo6Gjs378fCxYswKFDh6DRaOTNzWy1bNkyuLq6yhMsf7bx48fj1KlT8gRoVFQUNBqNvEZ73759GDduXKWtb9KkSejSpUulLOu7777DTz/9VOY84q7jT/J3jVUeTghZhYibvYSHh2PBggVYsWIFoqOjsWbNGtV8FUkcbbF06VIsXLiwzIPsokWLrCYFovIlznIGBgbCx8enzEqkMiE0GAyy8ikqfvn5+SAi+dw5wDIhbNy4MW7cuCEfmyESRHMiIRQJcEZGhozf2LFjVfHbtGkT8vPz4evrC6Cku6a7u7u8A2S/fv3kduXl5SE8PByffvqpKpnKzc1V3fUTgKrlp3v37mjVqhV+/vlnnD9/Xn5uojLv5+enuvbJWkJ4/vx51et58+YB+KNFyNfXF+PHj8fAgQMRHR0NOzs7BAYG4tatW5g9e7ZMfGrXro2cnByEhISobnAiPp/79+/Lz8S8Em+urBbC3Nxc+Pn5ybgpeXh4WIzLzs5WJRaJiYly/aLs1hJCZdfIilw/JpYtkjyxP+bl5cHNzQ0uLi7y8xHTSksIxd1rlyxZIqc1atQIxcXFWLt2LdLT0+Hj46NKCMWyZ8+ejcDAQPk+ZYXi6NGj8v/NmzdjwoQJFhUOZdyzs7Nl4mQ+X3FxsSrZ2LFjB4xGI2rWrCn3JWUFubyE8MGDB/LGP3v27LGajCjLZr4vic8tOTkZ8+fPt3iveZdX8/1fSdk6HxoaarWir0xO8/PzLX43AgMDLX5zBWVXbaWcnBz4+vpixIgRMBqNCA8Pf+hrDpUnhEozdepUnDp1ymK80WiEh4cH3nnnHbRo0QKXL1/GvXv3LBLZZs2aISQkxOqys7Oz4eLi8tDHE2t0Oh3c3Nywd+/eR16Wr68vWrduXaH3mEwmrF+/HoMHD8bVq1dx48YNOc3V1VV2jVdS/g4KO3bswC+//IL169dDo9GoLhUQ35OoqCi0adMGLi4uWLJkiapVedasWXjrrbdULeYAcPLkSbz99tsV6tlQFnFpAwD5HNGRI0fa1DPgl19+ARHhf//3f+X4yr4e19z9+/exc+dO1Tjl6+HDh6N79+4AShLFjIwM9OnTB1999RVmzJhR5rLT09Mxffr0Mrt7Z2RkYOXKlThy5Ii8IzJQcilAbm5uhT6Xb7/9FsOGDUP//v0tjoXZ2dmyS7GHhwcaNWoEFxeXMk80sGcDJ4SsQlxdXVVdWIgI0dHRFrdptzVxtJVobSqrImLeqihaGMQdLpOSkuDo6Ah/f38EBgbi/v37pZ7JFzdrEYmSqJClpKSgcePG0Ol0KCgoQHJysmzpycvLk8sTCeGePXug0+mg0WhKTQhTUlJw+/ZtecfGCRMm4N1334VOp4NWq1XF78svv4Rer0fz5s3lez08PGRCOHv2bJn4pKam4oMPPkBoaKjsRnrlyhUMGDBAxkRQVkr379+PgwcPIiwsTPW55eXlwcHBAV5eXvI5e0DJAUSZbHl5eWHUqFFW41qvXj0EBwfDw8MDDg4OiIiIkGc8mzRpIq9ZvHbtGhwdHdGkSRN5DZuSOPh7eHjISk55FQLRgurh4WFR4c/Ly4O3tzccHR2h1WrRsGFDOa127doWJxpEpVvcQGbw4MFy/aIVzdPTE1qtVnWQFy0ezZo1U5Vh3759qgqSOXEyo0OHDgCAVatWwWQyISsrS95oRrS2iYq1OKvfoEEDAH8khKmpqfD19ZXXYQIlz6YEgIkTJyI1NRXe3t5wcnKCg4MDcnNzZcJTr149VTkXLlwo/1dW3kWrsnJ/JyJV4iRODgAlXeMaNmyIRYsWYcuWLVZ7Ajz33HMoKCiQCVlmZiY6deoEf39/VaVXrH/VqlUy9qLFGShpobPWEqGsZJnvH8oum+W1EAIlra1FRUUIDQ21+M4r91OTyYSaNWuqHqliNBpVleIbN27IZbRv395i3eZSU1Nx/PhxXL16VRVvcb3itm3bMHHiREydOhU1atSwuJ64NMoyKW/gpNFosHz5cnzxxRc4fPgwjEYjMjMzER4ebvUxQ+L7vG7dOly8eBFDhgxB/fr1ERAQgKZNm2LKlCmqmE2ePFnVurt27VrZ5dHWxxgBJRX6tWvXYtWqVfj5558tpl+4cAG5ubl4//33MWbMmDKT5fT0dFmm/Px8i5sQCVeuXMGiRYtsqqwfPXoU48ePx44dOxAUFIRWrVpZzGNeJnFiUHnCatiwYejbty/Gjx8PoORa5Xnz5uHSpUtWb/Q1a9Ys+Pv74969e0hNTcWKFSssygUAr7zyCjZs2AB7e3ucPHnS6jZkZmaidevWFl0oP/nkE8THxyM/Px/379+HXq+3WI/w+eefY+XKldBoNNBoNDh37hxiYmLkMsPCwtC3b1/Z60Rcnz9o0CD5nrLuNi3KKfbnxMRE6HQ63L17F3Fxcdi3bx+AksRTnPgFSn773nzzTfnbsHTpUnlTLaCk1VVJeVO95cuXy7JpNBp07doVBoMBX3/9NXQ6HYKDgxEWFgYnJyekpaXJk3pXr17FihUrQEQYPXq0XN5zzz0HrVYLo9EIf39/uLm5wd7evtznxp47dw6tW7dWLcvR0RHHjx+Xlwp4enoiKCjI4prl8hJ19gwg9lTLyckhAJSTk/OnrC85OZmmTJlCHTt2pA4dOlDnzp1p6tSplJycrJqvZ8+edPDgQfnaZDLRgQMHqEePHg+13iFDhhAAioiIsPk93bt3V72eOXMmNWnShIiIjh8/TgBKLc+sWbOoQYMGdP78eQJAx44dI5PJRM7OztSvXz8CQElJSdS5c2caPnw4eXl50fz582n69OkEgIqKimjhwoUEgADQ+++/TxMnTqSmTZtarOv5558nDw8P0uv1cn4Rv549exLRH/Hr0KEDAaCjR4/KeadNm0b//ve/CQBptVpq0KABOTk5kb29PXXt2pWIiMLDw+mNN96gLl26ULdu3SzK0Lx5c2rWrBkBoK1bt8plKz+3OXPmUEBAAHXp0oVefvllOc+qVato4sSJ8jUA+v7771Wv33nnHSIicnJyor59+1qN+ccff0wAaNOmTQSAvLy86O2335blUHrjjTcIANWvX5+8vLyoVq1aVKdOnTL2BqKFCxdSnTp1KCQkhCZNmqSaNmbMGHr55ZcpICCA5s6dSwCoW7dudPDgQfr2228JAOXl5cn5o6KiCABduXJFbmNsbCwBoDNnzhAR0d69ewkA3b59W75PzDtw4EBq1aqVxXitVksmk4l0Op2qfP/617/Iy8uL0tPT5byrV6+mNm3a0NixY8nT05MAkF6vp8mTJ1PTpk1p/PjxBIB8fX0JAG3YsIGOHj1Kzs7Ocr9Qrlf5eQ0ZMkRO79GjBx04cIAA0OXLl4mIaMGCBar5xZCUlERERKtWrZLj8vPziYjkOvz8/Ky+t7ThhRdesBiXl5cn96vg4GCLfWTz5s0EgBYvXkxERBEREar3L1myRBXfkydPWqxDbCsR0VtvvaX6vplMJvr4448pJiaGDAYDTZs2zeL9n332GQEgHx8fun79OhERffTRRwSAQkJCKCAgQDW/cPv2bQKgmh4eHk5OTk5kMpnkbwAAioqKojfffFO1nNatW8v/u3TpIpe7cuXKUmMcExNj8R1LS0uT/xuNRvL19aVly5aRVqul1atXl7qsjRs30sGDB+VrHx8fuZyy3qccJk2apHotfrOSk5Mt5t27dy9ptVoqT8uWLa3GW+jZs6dq+sqVK0tdlnIZs2fPJgC0du1a+ZmYl9Hf358MBkOZ5evdu7fVWDg4OFDDhg3la3Fczc3NrdD36GEGEQNr044cOUIbNmyg1NRUuQ3Wvtvi98faYGdnJ/8PDQ0ttzzz5s2zaZwYli1bJv9/++236bvvvpOvGzRoQM7Ozo8co99//51++OEH+Vqn06mmr1+//rF/TuUN1j6XMWPG2PTe+fPn05gxY8r9fj0uf3YdtzrjhPAp96R+WWxNHG31+uuvEwD65ptvbH5Pr169VK+7dOkik0STyaT6ATf3t7/9jfr06UP5+fnk7OxMYWFhlJaWpjoAbdmyhQDQjBkzKDg4WJUkERH99ttv8nVOTo6slK5bt06u59ixYwSARo4cSZmZmXL+TZs20ZQpU6h58+aq+IlkKSkpSc67e/duiouLk8sBQM8//zxpNBpVDCIjI8nT05OaN2+u2laDwUDOzs40duxYAiATXgDUqlUr+bn99a9/pe7du9OIESNUB4y33nqLBgwYoBqXmppa6gFm7NixVj+vlJQUi3lFJUt5coGIqHPnzqr52rdvT/b29lRUVFTq/jBu3Dhq0aIF9ezZkxo0aKCa5uDgQK1atVJVpt9//30iIjp9+jQBoNOnT8v5t23bRgAoKyuLHBwcCAB9/vnnBIDu3r1LRESJiYlyG5TrAUoSFQCyIqvclnXr1hFQklQLYppyvxXDP//5T9qxYwcBfyTz//jHP2RC6OPjY/EekZS/9NJL5OHhQUREa9askdM7duxoUS4AZDQaiYhoxYoVVj/bWrVqkdFoVCVIv/76KxERXb16VbV9YrCWjCmH7du3W4x77rnnCABNnz6dpkyZoioz0R+JFwD66aef5OsePXrI8ZGRkXJ7RJnE9wgAtW3blrKzsykqKoo6dOhALVq0IADUtWtXunXrlpxv3Lhx8v/4+Hj5v/isAZCnp6fqhI+Tk5MqaRJDYWEhLV26lICShNQ88SZS/3YVFhbKbT5x4oTV+J09e5aIiIYPH07BwcHyJIv5EBkZKZcVExNDAGj48OG0detWeWLMluHtt9+2SALE776tyzAfmjVrpiqXteGf//wnXbhwgR48eEBERHq9nqKjo4mI5AkE5dCpUycaNGhQqYly8+bNqU6dOtShQwdKS0ujy5cvy5NFYlAmarYOBw8eJL1eT0ajkXJycig6OlpVhpCQEPl/cXGx/ExGjx5tdXnLly8noOR41K1bN9W09PR01QkVb29veRyLiYmxSLzFIH7DhLy8PFq6dCmdPXv2oT9Da0N2djYZDAZ5MqKiJ4vEd2Dy5MmVWi5bh5deeknGSKvVypOG4vh89uxZMplM8vdqxowZ8uSatUF54snacP78eYvfT6Dku1uRcrdu3ZqIiH755Rer0zMzM+n27dt0584dqmpPah33WcQJ4RPgyy+/pEaNGpGzszO99NJLdPjwYZvfW5VfFmWly97ensLDw2nu3Ll04MABSkhIkAcVo9FIBQUFj7QusZ6wsLCHen9CQgIBJQmT0KhRI7ncBw8eyMqhOAv94YcfEhGRm5ub6sdy//79qtcfffQR/f3vf1eNE+Li4kiv1xMRWbTCKIejR48SEakqmuKHXrzfaDTK8SaTib7//nu5Pfn5+ar3iQP9pUuXVHG4ePEi9e7dWzXuzJkzBIB27txpUa4JEyZQUlKSrKQOGTKk1IPvjBkz6LXXXpOVv6lTp1J0dLRF8ibibE14eLgqJuaJZa1ateT/rVq1kv9/+OGH8v8bN25QbGwspaWlUVRUFL333nuyRXHGjBmyYhUcHEyhoaGyEvLXv/5VleyK/dc8tsrBZDKpWlQdHBxU21O3bl2L92zatEkV66FDh5a6fJE4Kvera9eukZeXlxy3ZMkSi2S6R48eZDQaadmyZbICqBwSEhKsxt/JyUl+H4iI+vTpY3W/Vn4HjEaj1VYRMfj6+lL79u1VcRX/P//883K/NH9fw4YNqUePHqTVauXnHhQUpJrn/PnzVFBQUOq6lYNIKszHDxs2TLV9pb1/wYIF9PXXX5e5DiKSLYNlDeKk0I0bN2Rl0XwQFWVr8d+1axdt377d4vMrr8Vj/PjxRERUv359m2JW3mDeE6Aig5+fH924cYOuXbtGBoOBAHVrz+LFiykxMZH69+9f6jKUv+GVMfj7+1faskSvjYyMDJvfs3fv3lJ/G4nI6v5XHpPJREajkVJSUkqdZ9WqVfT5559TRkaGRTJozmAwyN8Ja8O9e/fk/+LYEhAQQB4eHjR69GiKjY2l6Ohom+osly9flvuKOMEFlCTKcXFxshXbZDLRf/7zHzIYDKTX6yk5OVn2mjAfevToofq9ysjIoAMHDtCMGTPo3LlzZDQaae3atfTZZ59RVlYWTZo0iYYPH07x8fGk0+no3XffpV69eskTLQ/DaDSqjoPK1vns7Gy6f/8+JSYmEhFRYWGhxUlrvV5PS5YsoZ07d6rGi+PCuHHjZItzv379yMfHhxo3bkxXrlyx2lJ95coV+uijj+i333576G16XDgh/PNwQljFtm3bRo6OjrR+/Xq6dOkSTZkyhWrWrCm7XpWnKr8s5VWOKmMQ3RhLG8TZz6ZNm9q0vLi4OIvYlTaIz8C8NaSoqEjVRVKn06nOoJfVSmWeOIpBeUBQHvisDX369LG6bGXFX9lSYeuQnZ2tel2zZk2LeRITE+nOnTsEgCZPnkxt27aV086dO2e1XCaTiYYPH07h4eE2de3S6/UyQSaiUiuER44ckf8ru1KWNVy5coUePHhgddqtW7fo5s2b5OLiQhs3blSVafDgwRbzT5gwgYhI1UXIvJuZaF1UDqmpqarWIluHq1evyuUajUZq164dvfvuu/KstHJe8zO7169fl9OUXV+tfVbiBIT4LAIDA62+LywsjGJiYuRrUQEWQ1BQkMX318/Pj4iIpk2bRtOnT1d9VwoKCmjfvn1lnjAgItW+Lb43p06dsoiXh4eH6nXbtm2JSN2d1XwQxD6uHIqLiykrK8tie8T/Fy9elO8/dOgQASVJpLIFEYBstVISrZxiGDdunJxWXFxMd+7csejSaY3BYKDnn3+eoqKirHYpFJVMg8FAubm5tGnTJtq9e3eprYbmgzg5NmDAALlOrVZLBoOBYmNjKSwsTM57+fJlqycjEhMTy/yNNBqNqkqreTdR0corEpzi4mKbv0OpqamUmZlJDg4OFBQUJI8bc+bMoV27dpHRaCSTyUS5ubmy10ODBg1Uyxg7dix99dVXtHTpUvL09KRNmzZRcXExrV+/ns6fP0+vv/66jLMQExNDr732muzpYm1Q9kAoy/Hjx8nR0ZFCQkLK7Yb6uGm1Wjp48CAlJSVRQkKC6reDscrACeGfhxPCKta+fXuaOHGialxQUBDNmjXLpvdX9ZclOTmZTpw4QXv27KFmzZpRcHCw1Wt+noQhNDTUovylnb2dOXOmxXYWFxerKjJ37959qANyWloabdmyhT777DPKzs62Os/NmzdL3Q5rXVyVRMVRXHdpy7B582YiKqkIazQaWr9+vbzOUgx79uyxur709HR5ndjjUlhYSIsXL5bbtGHDBiIqSSJE63N5Z+KVLSr379+nYcOGkZ2dHY0cObLMs+dCQkICde7cmbp27UrHjx+3uexarZbOnTtHixYtoh9++EGOT0lJIXt7ewJAP//8MxUUFJCXlxd16NCBUlJS6NVXX6WZM2fS9u3bVV3HSmM0GikzM7PUSllxcfFj/5xSU1Np4cKFlJOTQyaTiYqKimj27Nk0evRoio+Pf6zrPnz4MAElXX3//e9/k06no/z8fNqzZw9dunTJIgkxmUzyurGtW7dSZmamanpeXh7dv3+fCgsLVcnYwYMHae7cuXLc3bt3VV03rdHr9XTnzp0yT/QZjUZKTEyk3Nzcim56mXJycujChQvl/m4QlXTrXb58OaWnp5PBYKAHDx5QUlISjR49mrKysh66DDt37qQFCxaUeTKiLIWFhXTnzp1yy1BUVERJSUmUmJhIt27deuj1PU7FxcU2JfeMsaqv41YnGiK+dVBV0el0qFGjBnbu3ImBAwfK8VOmTEF8fLzVB9IWFxer7uio1WrRoEED5OTkWDwj7LHbvh3YssXm2U1EJXeuIkJycjJq1a4NvU4HF1dX6HQ6mIxG5ObloXbt2khNSYGfnx9SUlNRx8cHderUgclkQk5ODvLz81Gnbl1kpKcjR6uFg709Hjx4gCZ/+QtcXVxgZ2eHGjVrwqDXlzysXKOBvb09NOUX8YlkMBph0Ovh7OLy0NuQnZ0NAuD439vZazQaaOzs4OzsDHs7vtkwY4wxxqywswN2766SVWu1Wri7u1dNHbeacSh/Fva4pKenw2g0yltHC76+vqrnAiktXrwYn3zyyZ9RvEpnJ25jrNEgICBANa3mf2+B7+3tXfL3v89QUz5Lzc7ODp6envLREgEBAXI5TZs2tViffRU9rLayOdjbw8He/pGW4eHhUTmFYYwxxhhjzxROCJ8A1p73Yj5O+PDDDzF9+nT5WrQQVonBg0sGxhhjjDHG2FOJE8Iq5OPjA3t7e4vWwLS0NItWQ8HZ2RnOz0jLF2OMMcYYY6xq8cVDVcjJyQlt2rRBZGSkanxkZCQ6duxYRaVijDHGGGOMVRfcQljFpk+fjhEjRqBt27Z45ZVXsG7dOty+fRsTJ06s6qIxxhhjjDHGnnGcEFaxwYMHIyMjA/Pnz0dycjKaN2+On3/+GYGBgVVdNMYYY4wxxtgzjh878ZTjW/IyxhhjjLFnDddx/zx8DSFjjDHGGGOMVVOcEDLGGGOMMcZYNcUJIWOMMcYYY4xVU5wQMsYYY4wxxlg1xQkhY4wxxhhjjFVTnBAyxhhjjDHGWDXFzyF8yomnhmi12iouCWOMMcYYY5VD1G35CXmPHyeET7nc3FwAQIMGDaq4JIwxxhhjjFWu3NxcuLu7V3Uxnmn8YPqnnMlkwv3791G7dm1oNJqqLs4TSavVokGDBrhz5w4/2LSScEwrH8e0cnE8Kx/HtHJxPCsfx7RyVXU8iQi5ubkICAiAnR1f5fY4cQvhU87Ozg7169ev6mI8Fdzc3PgAUck4ppWPY1q5OJ6Vj2NauTielY9jWrmqMp7cMvjn4HSbMcYYY4wxxqopTggZY4wxxhhjrJrihJA985ydnTFv3jw4OztXdVGeGRzTyscxrVwcz8rHMa1cHM/KxzGtXBzP6oNvKsMYY4wxxhhj1RS3EDLGGGOMMcZYNcUJIWOMMcYYY4xVU5wQMsYYY4wxxlg1xQkhY4wxxhhjjFVTnBCyZ8bixYvRrl071K5dG3Xr1sXf//53XL16VTUPEeHjjz9GQEAAXF1d0a1bN/z+++9VVOKny+LFi6HRaDB16lQ5juNZcffu3cPw4cPh7e2NGjVqoFWrVoiJiZHTOaa2MxgMmDNnDho3bgxXV1c0adIE8+fPh8lkkvNwPMt2+PBh/O1vf0NAQAA0Gg12796tmm5L/IqLizFp0iT4+PigZs2a6N+/P+7evfsnbsWTo6x46vV6fPDBB2jRogVq1qyJgIAAjBw5Evfv31ctg+OpVt4+qjRhwgRoNBp8/vnnqvEcUzVbYnr58mX0798f7u7uqF27Nl5++WXcvn1bTueYPls4IWTPjOjoaLz33ns4efIkIiMjYTAY0KtXL+Tn58t5li5diuXLl2PlypU4c+YM/Pz88NprryE3N7cKS/7kO3PmDNatW4eWLVuqxnM8KyYrKwudOnWCo6MjfvnlF1y6dAnLli2Dh4eHnIdjarslS5ZgzZo1WLlyJS5fvoylS5fi//7v/7BixQo5D8ezbPn5+XjxxRexcuVKq9Ntid/UqVOxa9cubNu2DUePHkVeXh5ef/11GI3GP2sznhhlxbOgoACxsbGYO3cuYmNjERERgWvXrqF///6q+TieauXto8Lu3btx6tQpBAQEWEzjmKqVF9ObN2+ic+fOCAoKQlRUFM6dO4e5c+fCxcVFzsMxfcYQY8+otLQ0AkDR0dFERGQymcjPz48+/fRTOU9RURG5u7vTmjVrqqqYT7zc3Fxq2rQpRUZGUteuXWnKlClExPF8GB988AF17ty51Okc04rp168fjRkzRjVu0KBBNHz4cCLieFYUANq1a5d8bUv8srOzydHRkbZt2ybnuXfvHtnZ2dGvv/76p5X9SWQeT2tOnz5NACgpKYmIOJ7lKS2md+/epXr16tHFixcpMDCQwsLC5DSOadmsxXTw4MHyd9Qajumzh1sI2TMrJycHAODl5QUASEhIQEpKCnr16iXncXZ2RteuXXH8+PEqKePT4L333kO/fv3Qs2dP1XiOZ8X9+OOPaNu2Lf7xj3+gbt26aN26NdavXy+nc0wrpnPnzvjtt99w7do1AMC5c+dw9OhR9O3bFwDH81HZEr+YmBjo9XrVPAEBAWjevDnH2AY5OTnQaDSylwDHs+JMJhNGjBiBmTNnIiQkxGI6x7RiTCYT9u7di2bNmqF3796oW7cuOnTooOpWyjF99nBCyJ5JRITp06ejc+fOaN68OQAgJSUFAODr66ua19fXV05jatu2bUNsbCwWL15sMY3jWXG3bt3C6tWr0bRpU+zbtw8TJ07E5MmTsXHjRgAc04r64IMPMHToUAQFBcHR0RGtW7fG1KlTMXToUAAcz0dlS/xSUlLg5OQET0/PUudh1hUVFWHWrFkYNmwY3NzcAHA8H8aSJUvg4OCAyZMnW53OMa2YtLQ05OXl4dNPP0WfPn2wf/9+DBw4EIMGDUJ0dDQAjumzyKGqC8DY4xAaGorz58/j6NGjFtM0Go3qNRFZjGPAnTt3MGXKFOzfv1913YA5jqftTCYT2rZti0WLFgEAWrdujd9//x2rV6/GyJEj5XwcU9ts374dmzdvxtatWxESEoL4+HhMnToVAQEBGDVqlJyP4/loHiZ+HOOy6fV6DBkyBCaTCatWrSp3fo6ndTExMQgPD0dsbGyF48MxtU7clGvAgAGYNm0aAKBVq1Y4fvw41qxZg65du5b6Xo7p04tbCNkzZ9KkSfjxxx9x6NAh1K9fX4738/MDAIuzV2lpaRZnwFnJgTYtLQ1t2rSBg4MDHBwcEB0djS+++AIODg4yZhxP2/n7++OFF15QjQsODpZ3buN9tGJmzpyJWbNmYciQIWjRogVGjBiBadOmyRZtjuejsSV+fn5+0Ol0yMrKKnUepqbX6/Hmm28iISEBkZGRsnUQ4HhW1JEjR5CWloaGDRvK41RSUhJmzJiBRo0aAeCYVpSPjw8cHBzKPVZxTJ8tnBCyZwYRITQ0FBERETh48CAaN26smt64cWP4+fkhMjJSjtPpdIiOjkbHjh3/7OI+8Xr06IELFy4gPj5eDm3btsVbb72F+Ph4NGnShONZQZ06dbJ4FMq1a9cQGBgIgPfRiiooKICdnfowZm9vL89wczwfjS3xa9OmDRwdHVXzJCcn4+LFixxjK0QyeP36dRw4cADe3t6q6RzPihkxYgTOnz+vOk4FBARg5syZ2LdvHwCOaUU5OTmhXbt2ZR6rOKbPoCq6mQ1jle6dd94hd3d3ioqKouTkZDkUFBTIeT799FNyd3eniIgIunDhAg0dOpT8/f1Jq9VWYcmfHsq7jBJxPCvq9OnT5ODgQAsXLqTr16/Tli1bqEaNGrR582Y5D8fUdqNGjaJ69erRf/7zH0pISKCIiAjy8fGh999/X87D8Sxbbm4uxcXFUVxcHAGg5cuXU1xcnLzrpS3xmzhxItWvX58OHDhAsbGx9Oqrr9KLL75IBoOhqjarypQVT71eT/3796f69etTfHy86jhVXFwsl8HxVCtvHzVnfpdRIo6pufJiGhERQY6OjrRu3Tq6fv06rVixguzt7enIkSNyGRzTZwsnhOyZAcDq8M0338h5TCYTzZs3j/z8/MjZ2Zm6dOlCFy5cqLpCP2XME0KOZ8X99NNP1Lx5c3J2dqagoCBat26dajrH1HZarZamTJlCDRs2JBcXF2rSpAl99NFHqso1x7Nshw4dsvq7OWrUKCKyLX6FhYUUGhpKXl5e5OrqSq+//jrdvn27Cram6pUVz4SEhFKPU4cOHZLL4HiqlbePmrOWEHJM1WyJ6ddff03PPfccubi40Isvvki7d+9WLYNj+mzREBE93jZIxhhjjDHGGGNPIr6GkDHGGGOMMcaqKU4IGWOMMcYYY6ya4oSQMcYYY4wxxqopTggZY4wxxhhjrJrihJAxxhhjjDHGqilOCBljjDHGGGOsmuKEkDHGGGOMMcaqKU4IGWOMMcYYY6ya4oSQMcYYY4wxxqopTggZY4wxxhhjrJrihJAxxhhjjDHGqilOCBljjDHGGGOsmuKEkDHGGGOMMcaqKU4IGWOMMcYYY6ya4oSQMcYYY4wxxqopTggZY4wxxhhjrJrihJAxxhhjjDHGqilOCBljjDHGGGOsmuKEkDHGGGOMMcaqKU4IGWOMMcYYY6ya4oSQMcYYY4wxxqopTggZY4wxxhhjrJr6f85oHaTUDIFpAAAAAElFTkSuQmCC", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "uc = ex.GetSolutions()[0][0].DirectUnitCell()\n", "c = pyobjcryst.crystal.Crystal(uc[0], uc[1], uc[2], uc[3], uc[4], uc[5], \"P1\")\n", "pdiff = px.AddPowderPatternDiffraction(c)\n", "\n", "# Plot with indexing in new figure\n", - "px.plot(diff=False,fig=None,hkl=True)" + "px.plot(diff=False,fig=None,hkl=True)\n" ] }, { @@ -268,47 +140,9 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "No background, adding one automatically\n", - "Selected PowderPatternDiffraction: with Crystal: \n", - "Profile fitting finished.\n", - "Remember to use SetExtractionMode(False) on the PowderPatternDiffraction object\n", - "to disable profile fitting and optimise the structure.\n", - "Fit result: Rw= 8.06% Chi2= 7704.09 GoF= 1.28 LLK= 1194.686\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "286640c0bf39426a80f443c1333499e6", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADTwklEQVR4nOzdeVxU9frA8c+wgwKChOAGLWqkluaKmkhuEahpXvTnnmaLKXlRNE0Ns9Qy9262meaWZWU3s1xJTFHBrchcy/UmarIqyjKc3x8wx5lhgBkURpnn/Xrxupwz33POd8b08vB8v8+jURRFQQghhBBCCCGEzbGz9gSEEEIIIYQQQliHBIRCCCGEEEIIYaMkIBRCCCGEEEIIGyUBoRBCCCGEEELYKAkIhRBCCCGEEMJGSUAohBBCCCGEEDZKAkIhhBBCCCGEsFESEAohhBBCCCGEjZKAUAghhBBCCCFslASEQgghhBBCCGGjJCAUQgghhBBCCBslAaEQQgghhBBC2CgJCIUQQgghhBDCRklAKIQQQgghhBA2SgJCIYQQQgghhLBREhAKIYQQQgghhI2SgFAIIYQQQgghbJQEhEIIIYQQQghhoyQgFEIIIYQQQggbJQGhEEIIIYQQQtgoCQiFEEIIIYQQwkZJQCiEEEIIIYQQNkoCQiGEEEIIIYSwURIQCiGEEEIIIYSNkoBQCCv44osvqFWrFrVr1+ajjz5Szzds2NCKsxJCCCGEELZGoyiKYu1JCGFrPD09+fbbb3F2dqZ///60aNGC//73v3h5eZGWlmbt6QkhhBBCCBshAaEQVuDp6UlGRoZ63KlTJ1JSUrh48aLBeSGEEEIIISqSLBkVwgrc3d3ZtWuXerxjxw5CQ0PJzMy04qyEEEIIIYStkQyhEEIIIYQQQtgoyRAKIYQQQgghhI2SgFAIIYQQQgghbJQEhEIIIYQQQghhoyQgFOIuUrNmTWtPQQghhBBC2BAHa09ACFvk5+entpfw8PDAyckJRVFITU218syEEEIIIYQtkSqjQliBRqNh9erVODk58Z///IcmTZrQr18/OnXqRH5+vrWnJ4QQQgghbIQsGRXCCnx8fGjRogV9+/bl559/pmbNmnz++ef4+vpae2pCCCGEEMKGSEAohBWEhITg7OysHo8dO5aQkBBZMiqEEEIIISqVLBkV4i7w5JNPEhcXZ+1pCCGEEEIIGyMZQiHuAvJ7GSGEEEIIYQ2SIRTiLpCWloaXlxcpKSn4+flZezpCCCGEEMJGSIZQiLuAl5cXAEOGDLHyTIQQQgghhC2RPoRCWEHr1q2LnVMUhcOHD1f+ZIQQQgghhM2SgFAIKzh27BjdunXDzu5Wkl5RFH799VcrzkoIIYQQQtga2UMohBX4+vqyZcsWdakoFAaETZs2JSsry4ozE0IIIYQQtkQCQiGsIDAwEG9vbxwcCpP0N2/exNnZmT/++IPr169beXZCCCGEEMJWyJJRIazA1dWVxMRENSDs2LEjO3fupGvXrlaemRBCCCGEsCWSIbzHFRQU8Pfff+Pu7o5Go7H2dISZNmzYQIcOHdQlowEBAZw9e5Zdu3bRoUMHK89OCCGEEMK6FEUhKyuL2rVrG9RcEHeeBIT3uAsXLlCvXj1rT0MIIYQQQog77vz589StW9fa06jSZMnoPc7d3R0o/Mvi4eFh5dmI8tI1phdCCCGEEJCZmUm9evXUn3VFxZGA8B6nWybq4eGBh4cHCxYsYPz48QwaNIjly5dTo0YNFEUhPz+f3r17s2rVKvXav//+m4YNG3L9+nW+/fZbevfuDUDNmjW5efMm169fp1OnTmi1Wnbs2MEvv/zCDz/8wHvvvWf2/Bo0aECdOnXIycmhXbt2zJ071+S4lJQUlixZwvTp0+nUqRM//PAD1atXv41PxtCHH36Ii4sLw4YNM/n6kCFDiIuL48KFC3fsmZaQYF4IIYQQojjZElXxZEFuFdSsWTOWL1+uHh8/fpzz58+zdu1asrOz1fPe3t4kJSXx4IMPGlx/9epVg+OffvoJe3v7cs3F09OTHTt2sGfPHg4fPsz//vc/k+P8/PyYPn16uZ5xJ6xYsQI/Pz+rPV8IIYQQQghrkIDQRnh7e+Pq6spff/2lnnNxcSEoKOi27rtp0yaeeOIJ2rVrxxdffFHiOK1WS15eHi4uLly6dInOnTvTsWNH+vbti1ar5cyZM/Tt27fE6zt16sSrr75KmzZtePvtt4mKiqJt27bMmTMHgN9++4327dvTrl073nrrLQDOnTtHhw4dePrpp9m5c6d6r5kzZxISEkLHjh1JTk6+rfd/p6WkpFh7CkIIIYQQwoZIQGgjjh8/zs2bN3n44Yfv2D0LCgp488032b59O7t27eLDDz9Eq9UajMnIyKBTp0488sgjBAQEULNmTby8vNi8eTM7d+6kfv36xMXFmfW8yMhI9u7dyyeffMLw4cPZvXu3ugR28uTJfPrpp+zevZudO3dy5swZ3n33XaZNm8aPP/6oLjdITk7m+PHjxMfH89VXXzFt2rTb/hwOHTpEREQEvXv3JiEhQT0/YsQIi+81ZMiQ256PEEIIIYQQ5pI9hDagUaNGaDQaXnvtNbXv3Z3wzz//cPLkSbp166YeX7lyxWDppW7JqKIoREZG8ssvv9CgQQNeeukl0tLSuHjxIo899hgNGjQo83mPPvooGo0GPz8/HnvsMTQaDY6OjgBcunRJzXY+/vjj/Pnnn5w6dYoWLVoA0Lp1awCOHj1KQkICnTp1Aij3Ulh9UVFRLFu2DAcHB2JiYti7dy/R0dEG2VhjuvnoUxSFkydP3vZ8hBBCCFH4i+vc3FxrT0OUwNHR8Y78HCZunwSENuD48eMVsj/Ox8eHoKAgtm7diqOjI3l5eWqAZkyj0eDp6UlqaiqrV6+mW7dujBo1iujoaMztfKK/qdh4g3GtWrU4evQoDz/8MAcPHuSll17ioYce4tChQ3Tp0oX9+/fTqVMnHn74YUJCQvj0008ByMvLK+e7N5zXQw89BMC6deuIjY1l5MiR5Ofnl3hNVlYWycnJxQJ0W2pMP3DgQFavXm3taQghhKiCcnNzOX36NAUFBdaeiihFjRo18PPzk8IxViYBoY3z9fXl6tWrDBkyhH79+qmBUknWrVvH4cOHgcLlja+//jpdunTBzs6O++67j6+++spgvG7JqFarpVatWoSFhfHHH38wePBgNm/ejJubG48++uhtv4+3336b559/HkVRCA8PJzAwkAkTJvDMM89w/vx5FEUhMTERb29v0tPTadmyJe7u7nTt2pXJkyff1rN9fX05c+YMgYGBAMTGxrJq1SpWrlxZ4jUzZ84kKyurWKuJKVOm3NZc7kYTJkwodk5RFIPltUIIIcSdoigKFy9exN7ennr16klT87uQoihkZ2dz+fJlAPz9/a08I9smjenvcZmZmXh6epKRkYGHhweffvopY8aMoV+/fgaVRi1Rs2ZNHB0dSUlJoX///ly8eJG4uLh7Mq3/xBNPsGbNGurVq6eeO3fuHAMHDuSXX35Rzw0ZMoRjx46RmJhojWly7NixO7q/825Sp04d1qxZU+z8uHHj2L9/vxVmJIQQoirLy8vj1KlT1K5dG09PT2tPR5Ti6tWrXL58mYYNGxb7OdP4Z1xRcSRDWMU8//zzPP/887d1D/22E2vXrr3dKVmVVqst9n8GHh4exYrfrFixojKnVcyoUaPMLq5zrxk+fDhBQUH4+voanJcCOkIIISqC7v/jnZycrDwTURY3NzegMIi/FxMPVYUEhKJKmz17NhERETg5OeHh4UFGRgb5+fm888471p6agZL2XlYFM2bMMHk+KiqqkmcihBDClsi+tLuf/BndHSQgFFVax44d2blzJzdu3CA9PR0vLy9cXFwq5Fmpqamkpqbi7e2Nt7d3qWMPHTrE1KlTcXR0JCYmhs2bNwOFrSqWLl1aIfMTQgghhBDCmASEwia4urri6upaIffevn0706ZNw8fHBw8PD9LT00lLS2P69Ol07tzZ5DXGrSq+//57PDw8Sm1VIYQQQgjbtWPHDkJDQ0lLS6NGjRrWno6oQiQgFOI2TZs2jU2bNuHu7q6ey8zMJCwsrMSA0LhVhbe3N2lpaXTo0KFS5iyEEEIIIQSA1OEV4jbZ2dlx5coVg3NXrlwptcy1rlWFTs2aNQFISkqqkDla01dffUXz5s0ZNGgQn3/+OY0aNaJVq1Z8//331p6aEEIIIYTNk4BQ2KRu3brdsXt9/PHHjBs3juDgYNq2bUtwcDAxMTF8/PHHJV7z9ddfq30L4dam6ps3b96xed0t5s6dy+7du5k7dy6vvfYaiYmJ7Nq1izlz5lh7akIIIcRdJScnh6ioKHx9fXFxcaFDhw7Fflm8e/duHnvsMVxcXGjTpg3Jycnqa2fPnqVHjx54eXlRrVo1GjduzI8//ljZb0PcY2TJqKjSIiMji51TFMXgH8/bFRQUxPr16+/Y/aoaV1dX3NzccHNzo3PnzmobEAcH+edHCCGE0DdhwgS++eYbPv/8cwICAnj33Xfp3r07p06dUsfExMSwcOFC/Pz8mDx5Mj179uTEiRM4OjryyiuvkJuby86dO6lWrRp//PEH1atXt+I7EvcC+YlMVGlJSUnExcUZLN9UFIXBgwdbcVbFVeWyy82aNUOr1WJvb8+qVasAyM3NVZfJCiGEEBUtOzubY8eOVfpzH374YbXXXlmuX7/OkiVLWL58OWFhYQB88sknbN26laVLl9KqVSsA3njjDbp27QrA559/Tt26dVm/fj2RkZGcO3eOZ599lqZNmwLwwAMPVMC7ElWNBISiSouJicHd3R0fHx+D86NHj7bSjGzPggULDI7T09OpUaMGX3/9tXUmJIQQwuYcO3aMFi1aVPpzDxw4wOOPP27W2D///JO8vDzat2+vnnN0dKR169YcPXpUDQiDg4PV1729vWnUqBFHjx4FCquYv/zyy2zZsoUuXbrw7LPP8uijj97BdySqIgkIRZU2atQog2NdMNKvX78Kf3ZKSgp+fn5mjdVlCLt168aWLVsqclpW16dPH+Li4hg4cCCrV6+29nSEEELYgIcffpgDBw5Y5bnmUhQFKL5qSFGUMlcS6V5//vnn6d69Oxs3bmTLli3MmjWLuXPnMmbMGAtnLmyJzQWEO3fuZM6cORw4cICLFy+yfv16nnnmGfX1YcOG8fnnnxtc06ZNG/bu3ase5+TkMH78eL744gtu3LhB586d+eCDD6hbt646Ji0tjaioKLWSYs+ePVm8eLFB35hz587xyiuvEBcXh6urKwMGDOC9997DycmpYt68UIORyjBkyJASgzvjvY1///03wB3d23i3mDBhgsHxqVOniImJISEhwUozEkIIYWvc3NzMztRZy0MPPYSTkxO7du1iwIABAOTl5bF//37Gjh2rjtu7dy/169cHCn/ePHHihEHgWa9ePV566SVeeuklJk2axCeffCIBoSiVzQWE169f57HHHuO5557j2WefNTnmqaeeYtmyZeqxcYA2duxYNmzYwNq1a6lZsybjxo0jIiKCAwcOYG9vD8CAAQO4cOECmzZtAuCFF15g8ODBbNiwAQCtVkt4eDj33Xcfu3bt4urVqwwdOhRFUVi8eHFFvHXBrd++3UmtW7c2+ZyTJ0+WeI3x3saDBw+SlZWl9iasSlavXs2aNWvU444dO+Lu7s7PP/9sxVkJIYQQd5dq1arx8ssvExMTg7e3N/Xr1+fdd98lOzubESNG8OuvvwLw5ptvUrNmTWrVqsXrr7+Oj4+PmtwYO3YsYWFhNGzYkLS0NOLi4ggKCrLiuxL3ApsLCMPCwtSNuiVxdnYucalfRkYGS5cuZeXKlXTp0gWAVatWUa9ePbZt20b37t05evQomzZtYu/evbRp0wYo3BQcHBzM8ePHadSoEVu2bOGPP/7g/Pnz1K5dGygszz9s2DDefvttPDw87uC7FjrffvvtHb9nVlYWycnJxapm6jZ8m2K8t1H3S4equLdx+PDhBAUF4evra3B+yJAhVpqREEIIcXeaPXs2BQUFDB48mKysLFq2bMnmzZvx8vIyGPPqq69y8uRJHnvsMb7//nv15witVssrr7zChQsX8PDw4KmnnmL+/PnWejviHmFzAaE5duzYga+vLzVq1CAkJIS3335b/WH2wIED5OXlGfSxq127Nk2aNCEhIYHu3buzZ88ePD091WAQoG3btnh6epKQkECjRo3Ys2cPTZo0UYNBgO7du5OTk8OBAwcIDQ01ObecnBxycnLU48zMzDv99qs0/X9Q75SZM2eSlZVV7N5Tpkwp8RrjvY06ptpk3OtmzJhh8nxUVFQlz0QIIYS4u7m4uLBo0SIWLVpU7LVOnTqpK50iIiJMXi+rzER5SGN6I2FhYaxevZq4uDjmzp1LUlISTz75pBqEpaSk4OTkVOyH/1q1apGSkqKOMc6GAPj6+hqMqVWrlsHrXl5eODk5qWNMmTVrFp6enupXvXr1buv9itsXGBjI4MGD6d27t8G+uBUrVph9D91m8IpY0nq3Ku2/cyGEEEIIUTkkIDTSr18/wsPDadKkCT169OCnn37ixIkTbNy4sdTrjCtAmaoGVZ4xxiZNmkRGRob6df78eXPeljByJ4ORqKgoFixYwPz585k/fz7z5s0D4K+//rL4XrYUEMqSUSGEEEII65Mlo2Xw9/cnICBALRDi5+dHbm4uaWlpBlnCy5cv065dO3XMpUuXit3rypUralbQz8+Pffv2GbyelpZGXl5escyhPmdnZ5ydnW/7fdm60iqAWkqj0ajFYNatW0dsbCwjR44kPz/f7HvU0GrpRmGgWqdOnTsyr7tFeYruCCGEEEKIyiEZwjJcvXqV8+fP4+/vD0CLFi1wdHRk69at6piLFy/y+++/qwFhcHAwGRkZJCYmqmP27dtHRkaGwZjff/+dixcvqmO2bNmCs7OzVRqnVlWtW7dWv1q1aqX+r/6fze3y9fXlzJkz6nFsbCwhISEkJSWZfY+5Fy6wmcK2J1WNLhvr4OBAdHQ0iYmJJCUlFSvCI4QQQgghKp/N/UR27do1Tp06pR6fPn2aw4cP4+3tjbe3N7GxsTz77LP4+/tz5swZJk+ejI+PD7179wbA09OTESNGMG7cOGrWrIm3tzfjx4+nadOmatXRoKAgnnrqKUaOHMlHH30EFLadiIiIoFGjRkBhA/JHHnmEwYMHM2fOHFJTUxk/fjwjR46UCqN30D///EPDhg3JzMzEwcGBvLw8fHx87mgw8vXXXxc7N2jQIAYNGlTiNcZZs5zsbJyAkxYEkfcKV1dXvvrqK3x9fZkyZQq7d+9m4cKFsv9VCCGEEOIuYHMB4f79+w0qeEZHRwMwdOhQlixZQnJyMitWrCA9PR1/f39CQ0P58ssvcXd3V6+ZP38+Dg4OREZGqo3ply9frvYghMLea1FRUWo10p49e/L++++rr9vb27Nx40ZGjRpF+/btDRrTizvH2dmZOXPm0LRpU/XcuXPnSqzOVVmMW1WccnHhoZwcOlfB7LCvry+BgYEAzJs3j1mzZtGrVy/JEAohhBBC3AVs7icy/ZK9pmzevLnMe7i4uLB48eJSS/t6e3uzatWqUu9Tv359fvjhhzKfJ8rPy8uLgIAAg3MeHh5Ur17dSjMqZNyqQvdf5GuvvWa9SVWQZs2acebMGTUo3Lp1K1OnTuXll1+27sSEEEIIIYTtBYTCtsyePZuIiAicnJzw8PAgIyOD/Px83nnnnTv+rNTUVFJTU9Xlx6XRLUHW0RZVln0iOPiOz8vajH9x4ujoSGhoKMeOHbPSjIQQQgghhI4EhKJK69ixIzt37uTGjRukp6fj5eWFi4vLHX3G9u3bmTZtGj4+Pnh4eJCenk5aWhrTp0+nc+fOZt2joOh/FQsqk96rzMnCCyGEEMIysbGxfPfddxw+fNjaUxH3GAkIhU1wdXXF1dW1Qu49bdo0Nm3aZLDPNDMzk7CwMPMDQl1j+ry8CpmjEEIIIYQQpkjbCSFuk52dHVeuXDE4d+XKFezszP/rpQaENpAh1MnKyrL2FIQQQgghbJ4EhELcpo8//phx48YRHBxM27ZtCQ4OJiYmho8//tjse1TlJaMrVqygadOmPP7448yePVs936tXLyvOSgghhLj7FBQU8M477/DQQw/h7OxM/fr1efvttwGYOHEiDRs2xM3NjQceeICpU6eSV8bKos8++4zGjRvj7OyMv78/o0eProy3Ie4xsmRU2KRu3bqxZcuWO3KvoKAg1q9ff1v30FUZVQoKSh13L1qyZAkHDx7E0dGRRYsW0bdvX1asWFFqtV8hhBDCFk2aNIlPPvmE+fPn06FDBy5evKgWYXN3d2f58uXUrl2b5ORkRo4cibu7OxMmTDB5ryVLlhAdHc3s2bMJCwsjIyOD3bt3V+bbEfcICQhFlRYZGVnsnKIoJCcnW2E2pShaMkoVDJLs7OxwdHQEICoqikceeYSwsDBSU1OtPDMhhBDi7pGVlcXChQt5//33GTp0KAAPPvggHTp0AGDKlCnq2MDAQMaNG8eXX35ZYkD41ltvMW7cOF599VX1XKtWrSrwHYh7lQSEokpLSkoiLi7OYD+foigMHjzYirMqripnCMPDww36EHbp0gV/f3+6du1q3YkJIYSwHdnZYI12Rw8/DG5uZg09evQoOTk5JRak+/rrr1mwYAGnTp3i2rVr5Ofn4+HhYXLs5cuX+fvvv80ubidsmwSEokqLiYnB3d0dHx8fg/OVsYY+JSUFPz8/s8ZqKngu1pSens4HH3xgcE5RFJydna00IyGEEDbn2DFo0aLyn3vgADz+uFlDS6uGvnfvXvr378/06dPp3r07np6erF27lrlz51p8LyGMSUAoqrRRo0aZPN+vX78Kf/aQIUMs3qdYFTOEq1evZs2aNcXO//zzz1aYjRBCCJv08MOFwZk1nmumBg0a4Orqyvbt23n++ecNXtu9ezcBAQG8/vrr6rmzZ8+WeC93d3cCAwPZvn07oaGhls9b2BQJCIW4Ta1bty52TlEUTp48afG9qmJAOHz4cIKCgvD19TU4P2TIECvNSAghhM1xczM7U2ctLi4uTJw4kQkTJuDk5ET79u25cuUKR44c4aGHHuLcuXOsXbuWVq1asXHjxjIL2sXGxvLSSy/h6+tLWFgYWVlZ7N69mzFjxlTSOxL3CgkIhbhNWVlZJCcn4+Bg+NfJkj1yiq4PYRUMCGfMmGHyfFRUVCXPRAghhLi7TZ06FQcHB6ZNm8bff/+Nv78/L730EiNGjODf//43o0ePJicnh/DwcKZOnUpsbGyJ9xo6dCg3b95k/vz5jB8/Hh8fH/r27Vt5b0bcMzSK1H6/p2VmZuLp6UlGRkaJG4tFcZbs7yvL+vXr6dSpE15eXgbn4+PjCQkJMeseh9zdaX7tGql//IF3UNAdmZcQQghhi27evMnp06e5//77cXFxsfZ0RClK+7OSn3ErjzSmFzbpTi5X7N27t0EwqOsXZG4wqK8qZgiFEEIIIcTdS5aMiirtTu7vM9eoUaOIi4uz6Bo1TS8JeyGEEEIIUYkkIBRV2p3Y32cpXRP28qiKK7i3bt3KlClTsLe3Jyoqiv79+wOF/Qk3btxo5dkJIYQQQtg2WTIqqrSZM2eSlZVV7PyUKVMq7JmbN2/m2rVr5QruquKS0TfeeIPNmzezbds2EhMTGTNmDAUFBWRnZ1t7akIIIYQQNk8CQlGlGe/v0ynP/j5zKYqCu7s7b731ltnX6BrTV8WA0N7enho1auDm5sa8efNo0aIFvXr14tq1a9aemhBCCCGEzZOAUNie8HD46acKf8yGDRvMH6xrO1EFl4w2a9aMM2fOqMfDhg0jOjraZOZWCCGEEEJULtlDKGzPjz/CoUPw998VcntdUJefn2/5tVUwQ7h48WKD4/T0dEJDQ9VqrEIIIYQQwnokQyhsUyVk4iwJCG2pymifPn2sPQUhhBBCCFFEAkJhmyow8LqdDKEtBIRVcVmsEEIIIcS9SgJCYZvusgyhWlTGBoKlb7/91tpTEEIIIaqc2NhYmjVrVqHPWL58OTVq1KjQZ4jKJwGhsE0VuFdP9hCWTlf1deDAgVaeiRBCCCGEkKIywjZVQiZO+hAWmjBhQrFziqKQkJBghdkIIYQQQgh9kiEUtqkS9hBW9rV3q9WrVxMeHm7wFRERYbI/pBBCCGHLCgoKeOedd3jooYdwdnamfv36vP322wBMnDiRhg0b4ubmxgMPPMDUqVPJy8sr9X6fffYZjRs3xtnZGX9/f0aPHl3q+LS0NIYMGYKXlxdubm6EhYVx8uTJYuO+++47GjZsiIuLC127duX8+fPqa7/++iuhoaG4u7vj4eFBixYt2L9/fzk+DVFZJEMobNLNGzdwqaB7lyuoK+pDWBWLyrRs2ZKXXnoJV1dXIiMjee211wCkMb0QQghhZNKkSXzyySfMnz+fDh06cPHiRbVNk7u7O8uXL6d27dokJyczcuRI3N3dTa7EAViyZAnR0dHMnj2bsLAwMjIy2L17d6nPHzZsGCdPnuT777/Hw8ODiRMn8vTTT/PHH3/g6OgIQHZ2Nm+//Taff/45Tk5OjBo1iv79+6v3HjhwIM2bN2fJkiXY29tz+PBh9Vpxd5KAUNikmzdvVlhAqCNLRgtdvnyZ3377DUdHRxYtWkTfvn1ZsWIFderUsfbUhBBCiLtGVlYWCxcu5P3332fo0KEAPPjgg3To0AGAKVOmqGMDAwMZN24cX375ZYkB4VtvvcW4ceN49dVX1XOtWrUq8fm6QHD37t20a9cOKFzlU69ePb777jv+9a9/AZCXl8f7779PmzZtAPj8888JCgoiMTGR1q1bc+7cOWJiYnj44YcBaNCgQXk/ElFJZMmosEmasoeUm1JQwN9AaHa2wXlziqhUxYDQzs5O/c1gVFQUL774ImFhYfzzzz9WnpkQQghx9zh69Cg5OTl07tzZ5Otff/01HTp0wM/Pj+rVqzN16lTOnTtncuzly5f5+++/S7zXSy+9RPXq1dUv3fMdHBzUQA+gZs2aNGrUiKNHj6rnHBwcaNmypXr88MMPU6NGDXVMdHQ0zz//PF26dGH27Nn8+eefln0QotLZXIZw586dzJkzhwMHDnDx4kXWr1/PM888AxT+xmPKlCn8+OOP/PXXX3h6eqr/MdeuXVu9R6dOnYiPjze4b79+/Vi7dq16nJaWRlRUFN9//z0APXv2ZPHixQales+dO8crr7xCXFwcrq6uDBgwgPfeew8nJ6eK+wAEAJoKXJo5efJk7AHl6lX1t3bmFlGpinsIw8PDOXPmDIGBgQB07dqV2rVrM27cOOtOTAghhE15+YeX+V/W/yrteXXc67AkYonZ411dXUt8be/evfTv35/p06fTvXt3PD09Wbt2LXPnzrX4XgBvvvkm48ePNzhX0s8giqKg0Rj+Kt34WP9cbGwsAwYMYOPGjfz000+88cYbrF27lt69e5c6J2E9NhcQXr9+nccee4znnnuOZ5991uC17OxsDh48yNSpU3nsscdIS0tj7Nix9OzZs9hm2JEjR/Lmm2+qx8Z/8QYMGMCFCxfYtGkTAC+88AKDBw9mw4YNAGi1WsLDw7nvvvvYtWsXV69eZejQoSiKwuLFiyvirQs9FZkh/GLtWr4ATtnZ8VB4uHr+559/LvviKhgQTp482eD42LFjNG7cWP27IYQQQlQGS4Iza2jQoAGurq5s376d559/3uC13bt3ExAQwOuvv66eO3v2bIn3cnd3JzAwkO3btxMaGlrsdV9fX3x9fQ3OPfLII+Tn57Nv3z51yejVq1c5ceIEQUFB6rj8/Hz2799P69atATh+/Djp6enqElGAhg0b0rBhQ/7973/zf//3fyxbtkwCwruYzQWEYWFhhIWFmXzN09OTrVu3GpxbvHixuh66fv366nk3Nzf8/PxM3ufo0aNs2rSJvXv3qmn3Tz75hODgYI4fP06jRo3YsmULf/zxB+fPn1ezj3PnzmXYsGG8/fbbeHh43Im3K0pQkQHh0MGDCXr3Xbzt7GgaEqKeHzJkSInXKEW/VauKS0a/+uorZs2aRePGjenatSsvv/wyjRs3ZurUqfTs2dPa0xNCCCHuCi4uLkycOJEJEybg5ORE+/btuXLlCkeOHOGhhx7i3LlzrF27llatWrFx40bWr19f6v1iY2N56aWX8PX1JSwsjKysLHbv3s2YMWNMjm/QoAG9evVi5MiRfPTRR7i7u/Paa69Rp04devXqpY5zdHRkzJgxLFq0CEdHR0aPHk3btm1p3bo1N27cICYmhr59+3L//fdz4cIFkpKSiiVhxN1F9hCWISMjA41GY7DUEwo32fr4+NC4cWPGjx9PVlaW+tqePXvw9PQ0WIPdtm1bPD091WWDe/bsoUmTJgZLUbt3705OTg4HDhyo2DclKjQgnDZ1Kr6AnVG2Lyoqqsxrq+KS0blz57J7927mzp3La6+9Rtu2bdm1axdz5syx9tSEEEKIu8rUqVMZN24c06ZNIygoiH79+nH58mV69erFv//9b0aPHk2zZs1ISEhg6tSppd5r6NChLFiwgA8++IDGjRsTERFhsoWEvmXLltGiRQsiIiIIDg5GURR+/PFHgyqhbm5uTJw4kQEDBhAcHIyrq6u6bcre3p6rV68yZMgQGjZsSGRkJGFhYUyfPv32PxxRYWwuQ2iJmzdv8tprrzFgwACDjN3AgQO5//778fPz4/fff2fSpEn8+uuvanYxJSWlWBoeCtPzKSkp6phatWoZvO7l5YWTk5M6xpScnBxycnLU48zMzNt6j7aqQn8TUhTUlSforIoZQldXV9zc3HBzc6Nz586sWrWK1NRUHBzknx8hhBBCn52dHa+//rrB0lCdd999l3fffdfg3NixY9XvY2NjiY2NNXj9xRdf5MUXXzT7+V5eXqxYsaLE14cNG8awYcMA6NOnT7HXnZyc+OKLL8x+nrg7yE9kJcjLy6N///4UFBTwwQcfGLw2cuRI9fsmTZrQoEEDWrZsycGDB3n88ccB05ttjTflmjPG2KxZs+S3LHdARebhdFk++/JdfEfncjdo1qwZWq0We3t7Vq1axc2bN6lZsyZNmjSx9tSEEEIIIWyeLBk1IS8vj8jISE6fPs3WrVvL3M/3+OOP4+joqKbh/fz8uHTpUrFxV65cUbOCfn5+xTKBaWlp5OXlFcsc6ps0aRIZGRnq1/nz5y19e4KKXTKqC+qMl4yWRp1PFQwIFyxYgL39rfBYq9UCcN9991lrSkIIIYQQoogEhEZ0weDJkyfZtm0bNWvWLPOaI0eOkJeXh7+/PwDBwcFkZGSQmJiojtm3bx8ZGRlq1abg4GB+//13Ll68qI7ZsmULzs7OtGjRosRnOTs74+HhYfAl7i7bt2+nDdAvP9+gFUm4XsXRklTFPYTGdBnw3NxcK89ECCGEEELY3JLRa9eucerUKfX49OnTHD58GG9vb2rXrk3fvn05ePAgP/zwA1qtVs3ieXt74+TkxJ9//snq1at5+umn8fHx4Y8//mDcuHE0b96c9u3bAxAUFMRTTz2lVmmCwrYTERERNGrUCIBu3brxyCOPMHjwYObMmUNqairjx49n5MiREuTd496ePZvNwP/s7VmamMju3btZuHAh2UaN6k2pinsIjemCXgkIhRBCCCGsz+YyhPv376d58+Y0b94cgOjoaJo3b860adO4cOEC33//PRcuXKBZs2b4+/urX7rqoE5OTmzfvp3u3bvTqFEjoqKi6NatG9u2bTNYFrd69WqaNm1Kt27d6NatG48++igrV65UX7e3t2fjxo24uLjQvn17IiMjeeaZZ3jvvfcq9wOxURW5ZNTO3p4aQHVg3rx5tGjRgl69enHt2rUSr9G1naiKS0ZNmQS4p6VZexpCCCGEEDbP5jKEnTp1KnVZXllL9urVq0d8fHyZz/H29mbVqlWljqlfvz4//PBDmfcS95amjRtzZu9eKAryhg0bRkBAAC+//HKZ19rCklElO5uZQNu//rL2VIQQQlRhtvD/qfc6+TO6O9hcQChsXCX8w/PerFm4L13KWb1nhYaGcuzYsRKv0WUsq+KS0datWxscF+TloQGOV8H3KoQQwvp0K7Zyc3NxdXW18mxEaXTbafT7HIrKJwGhEHfY7QR1VTEgzMrKIjk5We07mHXpEu5+frQvpb2KEEIIUV4ODg64ublx5coVHB0dsbOzuR1Sdz1FUcjOzuby5cvUqFHDYNuVqHwSEArbchtN40X5zJw5k6ysLLy8vIBbQe8o+W2gEEKICqDRaPD39+f06dOcPXvW2tMRpahRowZ+fn7WnobNk4BQ2JZKWDKqFBSQA/yuKJzctg1vb2+aNGmCk5PTXTG/yta7d2/DE0XvsY1kCIUQQlQQJycnGjRoIBWt72KOjo6SGbxLSEAoxB22dt06PgcaKQp14+NJT0/n4MGDvPzyywwaNMjkNboqo1VxyagxRbK0QgghKoGdnR0uLi7WnoYQdz0JCIVtqYRgZNmqVSQA5+3sCJgxA4D8/Hw6depUYkBoPL8qreg92sA7FUIIIYS468kuW2FbKiHgcnVxQb8xiaIoxMfHm/VbSlsov6zLgkbn5Vl5JkIIIYQQQjKEwrZUQsC1ZN48PmzVil1aLQ5t2+Lo6EjLli3L7EtZWfOrbBMmTDA4vpmZiTNwyAaWxwohhBBC3O0kIBQ2RVEUNFTsktFavr4sAM7Z21N/716Lrq2KewhXr17NmjVr1OOslBTcP/qIhVackxBCCCGEKCQBobAtlVRl1FJqY/o7O5W7gqIojB07Vm06q83JwQ7It+60hBBCCCEEEhAKG6MUFNzd1S2rYIbw0qVLTJw4UT3OvnoVt99+43crzkkIIYQQQhSSgFDYlPK0PBg4cCCrV6+25CEWP6Mqt51o164dXbp0oXHjxgCk/vkn3jNm8JP0IRRCCCGEsDoJCIVtKWXJqHHxk8LhCgkJCXfsGWWpiiHSL7/8YnCsC8o/LFpCKoQQQgghrEcCQmFTSsvAGRc/0fn5558te0YJAaE5mUZbaDshfQiFEEIIIe4eEhAKm1JawDV8+HCCgoLw9fU1OD9kyBCLnhE7ezauQFZBAe5FWceyMo1qUZkquGT0q6++YtasWTRu3JiuXbsyIzYWL+CFggJGWntyQgghhBA2TgJCYVtKCQhnzJhh8nxUVJRFj/j6++9ZC1zWaPAND1fPl5ZpVGdVBTOEc+fOZffu3WRlZdGsWTN2b9hAnVat6KDVSkAohBBCCGFlEhAKm1IZGbgBzz5L0JIlPKjRUDckRD1vaaaxqrhy5Qq+vr5oNBrq1KmDe7VqOAOHq2DwK4QQQghxr7Gz9gSEqEyVsUfvtagofE2cNyfTWBWXjF64cIHffvuN06dPU61aNUKeeYZsa09KCCGEEEIAEhAKW1OOlhCWP6IcQWcVbjvh6urKAw88gI+PDwcOHKB5kybcD0iNUSGEEEII65OAUNiU8gRc3bp1s/AhFR903ksCAgLYtWuXejx/+nQmAvnWm5IQQgghhCgiewiFTSktexcZGWlyfHJysmXP0AWd5cgUVsUM4W+//WZwnJGZSTTQV/oQCiGEEEJYnQSEwraUkr1LSkoiLi4OOzs7veEKgwcPtugR8QkJzAW0BQWMX7uW/v37AxAeHs7GjRvNml9V9tzYsewCLisK9a09GSGEEEIIGycBobAppWXgYmJicHd3x8fHx+D86NGjLXrGnA8+YCtwVaPhP4mJ7N69m4ULF5KdbUYpFRsICHVZ2mitlp1WnosQQgghhK2TgFDYlNKWjI4aNcrk+X79+ln0DHs7O2oA2RoN8+bNY/ny5fTq1Ytr167d1vzuVa1btzY4vnntGq2A41XwvQohhBBC3GukqIywLUVBSEX+h9+4USPO6B0PGzaM6OhosrKyyr64CgZJFy5cIDs7m/z8fPr06cPm1atJQv7xEUIIIYS4G8jPZMKmVEbRlrcnTiRQ7zg9PZ3Q0FCOHTtW9sVVMCB0d3cnLi6OgwcP4ubmxsiYGLKBOtaemBBCCCGEkIBQ2JbyBIQpKSmWPcMoqOvTp0+5r60KfHx88PX1BSAqKorQdu0IA/KsOy0hhBBCCIEEhEKUaciQIRaNNw46FUXhv//9L3/++WfJFxU1pq+KGcLatWvz8MMP8/jjjzN79my+/eknPgCuWHtiQgghhBBCisoIG1NKwGVc/KRwuMKvv/56W8/49ttv8fb2pnr16iXuI9RdURX7EF64cIHk5GQcHR1ZtGgRR0+d4n4gSGOq+YcQQgghhKhMNpch3LlzJz169KB27dpoNBq+++47g9cVRSE2NpbatWvj6upKp06dOHLkiMGYnJwcxowZg4+PD9WqVaNnz55cuHDBYExaWhqDBw/G09MTT09PBg8eTHp6usGYc+fO0aNHD6pVq4aPjw9RUVHk5uZWxNsWRUoLuP788086duxIp06dDL7s7e0te4ZRQOjl5QVQapVRNTSqghlCOzs7HIua0EdFReHv60sYkFoF36sQQgghxL3G5gLC69ev89hjj/H++++bfP3dd99l3rx5vP/++yQlJeHn50fXrl0NMjtjx45l/fr1rF27ll27dnHt2jUiIiLQarXqmAEDBnD48GE2bdrEpk2bOHz4sEGDc61WS3h4ONevX2fXrl2sXbuWb775hnHjxlXcmxdl6tSpE+Hh4epXREQE9etb1j5dY/S/FSk/P78SnnJ7wsPDOXPmjHp8n7c3HwB+kiEUQgghhLA+xYYByvr169XjgoICxc/PT5k9e7Z67ubNm4qnp6fy4YcfKoqiKOnp6Yqjo6Oydu1adcz//vc/xc7OTtm0aZOiKIryxx9/KICyd+9edcyePXsUQDl27JiiKIry448/KnZ2dsr//vc/dcwXX3yhODs7KxkZGWa/h4yMDAWw6Bpbln7ihKIU5uGKvTZlyhTl0qVLxc4vXLjQomdc2LtXuQnKJo1G2bp1q3LgwAGFwlWhJV5zwMdHUUBJevfdMu//22+/KWFhYUpwcLDyxBNPKG3btlUiIiKU3377zaJ5Wsv5hARFAeV/Dg7WnooQQggh7lLyM27lkT2Eek6fPk1KSgrdunVTzzk7OxMSEkJCQgIvvvgiBw4cIC8vz2BM7dq1adKkCQkJCXTv3p09e/bg6elJmzZt1DFt27bF09OThIQEGjVqxJ49e2jSpAm1a9dWx3Tv3p2cnBwOHDhAaGho5bxpG1PaktEZM2aYPL9v3z6LnvH1Tz/xJfCIouAfH19sqbDJeVlQVGbUqFGsWbOGevXqqefOnTvHwIED+eWXXyyaqzVUxX2SQgghhBD3KgkI9ejaC9SqVcvgfK1atTh79qw6xsnJSd0Xpj9Gd31KSopaZl+fr6+vwRjj53h5eeHk5FRqm4OcnBxycnLU48zMTHPfnijDhAkTip1TFIWEhASL7rN6/Xr2Apft7PArCjJLWqKso1s8qZgREGq1Wjw9PQ3OeXh4GCxZvqvJ3kEhhBBCiLuGBIQmaIz2NimKUuycMeMxpsaXZ4yxWbNmMX369FLnIkpWWnZq9erVrFmzptj5n3/+2aJnuDg7Ew8E6Z5pSQBkxtjZs2cTERGBk5MTHh4eZGRkkJ+fzzvvvGPRPK1NdhAKIYQQQlifBIR6/Pz8gMLsnb+/v3r+8uXLajbPz8+P3Nxc0tLSDLKEly9fpl27duqYS5cuFbv/lStXDO5jvBQxLS2NvLy8YplDfZMmTSI6Olo9zszMNFg6KEpXWkA4fPhwgoKCimV3Le1DOH/KFFb26sXEggLs2rZVK2yWOi/1m7IDwo4dO7Jz505u3LhBeno6Xl5euLi4WDRHq5IMoRBCCCHEXcPmqoyW5v7778fPz4+tW7eq53Jzc4mPj1eDvRYtWuDo6Ggw5uLFi/z+++/qmODgYDIyMkhMTFTH7Nu3j4yMDIMxv//+OxcvXlTHbNmyBWdnZ1q0aFHiHJ2dnfHw8DD4EnfGjBkzTC71/eGHHyy6j6+3NwuADXZ27N2716x9fZYsGdVxdXXF39//3goGkT2EQgghhBB3E5vLEF67do1Tp06px6dPn+bw4cN4e3tTv359xo4dy8yZM2nQoAENGjRg5syZuLm5MWDAAAA8PT0ZMWIE48aNo2bNmnh7ezN+/HiaNm1Kly5dAAgKCuKpp55i5MiRfPTRRwC88MILRERE0KhRIwC6devGI488wuDBg5kzZw6pqamMHz+ekSNHSpBXkUoJuCIjI00MVyq3UIsNZM90Qa8sGRVCCCGEsD6bCwj3799vUMFTt/xy6NChLF++nAkTJnDjxg1GjRpFWloabdq0YcuWLbi7u6vXzJ8/HwcHByIjI7lx4wadO3dm+fLlBg3MV69eTVRUlFqNtGfPngaFRezt7dm4cSOjRo2iffv2uLq6MmDAAN57772K/ghsWmnZqS1bthAZGWmwh1NRFMv2ABZeVN7pWZQ9S01NJTU1FW9vb7y9vcv9zEpX9PmM0mr51spTEUIIIYSwdTYXEHbq1KnUH/A1Gg2xsbHExsaWOMbFxYXFixezePHiEsd4e3uzatWqUudSv359i5cjiooVHh5OjRo1DM5t27bNonuYCup+BL4s7RoL2k5s376dadOm4ePjg4eHB+np6aSlpTF9+nQ6d+5s0Vwrg3H11oyzZ/EA9ttANlQIIYQQ4m5ncwGhsG2lZeDGjBlDcHCwuo8wPT2dGjVq4OTkdNvPDSv6uhOmTZvGpk2bDLLWmZmZhIWF3ZUBoXH11u1ffcVG4AaFWdmJEyfi6enJrFmzCA4Otto8hRBCCCFskQSEwqaUFhAeP36c0aNHq8c7duwgJCSEjIyMcj2jPHvkzFkyamdnx5UrVwwCwitXrmBnd3fWiDKu3jr2pZf4HniXwqXaSUlJuLm50adPH3bs2GHNqQohhBBC2BwJCIVtKWWZYlJSEnFxcWpg1b9/f+bMmcPgwYMte4QuqCvPkkgzrvn4448ZN24cKSkpat9Kf39/Pv74Y8ufVwlmzJhhcOzs5EQ9YKq9PUeCgqhbty5///23wR5cIYQQQghROSQgFDaltP2jMTExuLu74+PjA8CPP/6Il5eXQdawoljSdiIoKIj169dX7IQqUEFBARuALEVh/PjxbNy4kTfeeIPc3FxrT00IIYQQwuZIQChsSykB16hRowyOddVG+/XrV65nlKutgg0UWvnz/HmWAE0VBbekJAAyMjIYOHCgdScmhBBCCGGD7s5NR0JUEEvaOvTp0wdAbR1SkSypMnqvi1++nCeAUxR+tm+88QYNGjQotbKvEEIIIYSoGJIhFKKIcWP633//nX/9618cPnzYovtYEnQWv7j8AWFWVpZBoZm7xVdffcWsWbNo3LgxXbt2Zfrrr1MTGElhC4358+eTnp5u5VkKIYQQQtgmCQiFTSktWDMuKpORkYGHhwfNmze38CG30ZjejGtXrFjBnDlzcHR0JDIyktdeew2AXr16ERcXV+5nV5S5c+eye/dusrKyaNasGT8tXEhQv36EKAp7p0whMzOTY8eOWXuaQgghhBA2SQJCYVNKCwgVReHZZ5/FwcHB4JylxU7MCepKubjMIUuWLOHgwYM4OjqyaNEi+vbty4oVK27vuRXI1dUVNzc33Nzc6Ny5M7+eOMGLwFFg7dq19O/fn9atWxMeHs7GjRutPV0hhBBCCJsiAaEQRVxdXUlMTDQICAG6du1q2Y0qOCC0s7PD0dERgKioKB555BHCwsJITU0t/3MrULNmzdBqtdjb27Nq1SoeDwpiEzAMSExMZPfu3SxcuJDs7Gwrz1QIIYQQwvZIURlhU0rLEM6cOZOsrKxi519++WULH2J5QGhJ24nw8HDOnDmjHnfp0oUPPviAOnXqWPzcyrBgwQKDHoOKouALrLS3Z968ebRo0YJevXpx7do1601SCCGEEMJGSYZQ2JZSAq7evXubPP/hhx+qFUcrnBkB4eTJk4uda9y4MZs2baqIGd1xF//5hzOArvzNsGHDCAgIICIiwoqzEkIIIYSwTRIQClGkdevWxc4pisLx48ctuo8uC2lJH0Jd24m7dR/gnZSXl8cEILegAKfISPLy8nBwcMDDw8PaUxNCCCGEsDkSEAqbUtqS0aysLJKTk4vtIaxZs2ZFT8um2NvZ8Q+AojC6f3/ee+891qxZQ9u2ba09NSGEEEIImyMBobAppQWE+fn5tGnTpth+t5ycnDv2jDLdzrX3CBdnZ2YDThoNb3/xBZcvXyYwMFACbyGEEEIIK5CiMkIUcXBwYN++fSQmJpKYmMiKFStISkoiODjYshsVLfu0ZMmo8bXmGDhwYHmeYHVuzs5MBj5WFEaOHElGRgb+/v7FMrNCCCGEEKLiyU9gwraUEnDpqox6eXkBMGrUKOLi4pgyZUplzc7kHsIJEyaYHJeQkFAZU7rjUlJT+Qz4Bxg6dCgNGzZk8ODBjBo1ytpTE0IIIYSwORIQCptS2nJO4yqjuob0ISEh5XpGuTKEJqxevZo1a9YUO//ZZ5/doSdUrob169Pujz8IBYKCglAUhZdeeol169ZZe2pCCCGEEDZHAkJhWyxYkunk5FThzyjGRMAaEBDAunXrcHNz03vEvVON1Lh664lz52gJnAQy4uJIS0sjPz+fmzdvWmV+QgghhBC2TAJCYVMsCaQcs7LggQfg1CmwM3+7bbmCtaK2E6aCybNnzzJr1qxi53/++WfLn2MFxtVbj335JQ/3709o0eu6Jbqurq5WmqEQQgghhO2SgFDYFEsqgG6uWRP274fMTKhRw+zrbmepqKlgcvjw4QQFBeHr62twfsiQIbfxpMpjvDcz8vXXcQHSuZU9VBSFkydPWm2OQgghhBC2SqqMCptiUbDm7l74v9euWfSM21rOaeLaGTNmFAsGAaKiosr/nErUu3dvNRgEuJSayk0gEOjUqROXLl2ioKCAwMBAK81QCCGEEMJ2SUAobIolwdpNXTYxP9/Sh1g2/k5de4/QarU4Af7ABx98QPfu3XFycuLq1avWnpoQQgghhM2RgFDYFEuWjB46dAiAVAsDlduqMmoiINy6dStt2rShXbt2rF27Vj0fHh5enidY3fWbN7EDjgHNmjUjOjqaX375hZSUFGtPTQghhBDC5khAKGyLBRm4gqLA7lpWVkXNphhTGcw33niDzZs3s23bNhITExkzZgwFBQVkZ2dX2rzuJG1BAZOB/2o0tG7dms6dO7N161Y0mjvVqEMIIYQQQphLisoIm2LR/j5dgGJBVrHoIZaN13+WiWszMzPp3r079vb2REVFcfPmTXr16qVmMO81D9evz46//mK2okBCAunp6bzyyis88sgj1p6aEEIIIYTNkQyhsC3lCdYsvaZovEX5Lt0zTDzr6tWrfPLJJ2qG8MCBA4wdO5bc3NzCAd98A5s3WzZHK2r6wAOMBbZoNOzdu5fr16+zdOlS6UMohBBCCGEFEhAK21KOgNCSfYeFj7izhWEeeughHn30Udzc3Jg3bx4tWrRgwYIFNG7cuHBA377w1FN39JkVafKgQQRiGDCHhoZy7NgxK81ICCGEEMJ2SUAobIolwZpupKLVWvoQoHxFZUzNr1mzZpw5c0Y9HjZsGNHR0WRV4t7GO0kD5ACHFYVt27Zx8ODBW9lOIYQQQghRqSQgFDbF0mxf4UWmg8j8EtpRlCc/qJSyX3Hx4sXFevTdyxm1/+7eTSiwBoiPj+ezzz6jYcOGLF261NpTE0IIIYSwORIQGgkMDESj0RT7euWVV4DC7Izxa23btjW4R05ODmPGjMHHx4dq1arRs2dPLly4YDAmLS2NwYMH4+npiaenJ4MHDyY9Pb2y3qbNsihrVxSkFehlCJOTk3n66adp164dTz75JMHBwfTo0YPk5ORb1+mCugrer3ivtmlY9/PP7ALeBWbMmMHgrl05dfYsb02caO2pCSGEEELYHKkyaiQpKQmtXgDw+++/07VrV/71r3+p55566imWLVumHjs5ORncY+zYsWzYsIG1a9dSs2ZNxo0bR0REBAcOHMDe3h6AAQMGcOHCBTZt2gTACy+8wODBg9mwYUNFvj2bV679fXpZu1GjRrFmzRrq1aunnjt37hwDBw7kl19+0T3kdqdpliFDhrBly5ZKedad5OzoSDzQsujY6a+/iAeuyi9EhBBCCCEqnQSERu677z6D49mzZ/Pggw8SEhKinnN2dsbPz8/k9RkZGSxdupSVK1fSpUsXAFatWkW9evXYtm0b3bt35+jRo2zatIm9e/fSpk0bAD755BOCg4M5fvw4jRo1qqB3J8qzZFT/Gq1Wi6enp8HrHh4eBr9EMA46FUUpOzNZSpXR1q1bmxiucPz48bLueldKv3aN/wOuAVSvjpKXhztg4U5NIYQQQghxB0hAWIrc3FxWrVpFdHS0QdPsHTt24OvrS40aNQgJCeHtt9/G19cXgAMHDpCXl0e3bt3U8bVr16ZJkyYkJCTQvXt39uzZg6enpxoMArRt2xZPT08SEhJKDQhzcnLIyclRjzMzM+/kW676ytGHUH/J6OzZs4mIiMDJyQkPDw8yMjLIz8/nnXfeuXVZsUeaERDqjTWWlZVFcnIyDg6Gf11r1qxp5l3vLjl5eVygsLBMtWvXODR3Ls3Hj6dl9erWnpoQQgghhM2RgLAU3333Henp6QwbNkw9FxYWxr/+9S8CAgI4ffo0U6dO5cknn+TAgQM4OzuTkpKCk5MTXl5eBveqVauWuucrJSVFDSD1+fr6lrkvbNasWUyfPv3235ytus0lox07dmTnzp3cuHGD9PR0vLy8cHFxMXxE0XhL9iuqszIxv/z8fNq0aaMuNy4cphj8YuBeEvXMM2R9+CGuuhNF73lQnTpWm5MQQgghhK2SgLAUS5cuJSwsjNq1a6vn+vXrp37fpEkTWrZsSUBAABs3bqRPnz4l3ktRFIMso/73JY0xZdKkSURHR6vHmZmZBvvZROnKs4fQ1DJTV1dXXF1dTYzWu648zzQx1sHBgX379hXLEHbt2tX8+95FOjdvjheg1mgt+nwfq1HDSjMSQgghhLBdUmW0BGfPnmXbtm08//zzpY7z9/cnICCAkydPAuDn50dubi5paWkG4y5fvkytWrXUMZcuXSp2rytXrqhjSuLs7IyHh4fBl7BAZTSmNxpvTkBYWoZw5syZJnsOTpkyxaJ53TWK3qMuvNX9CqRySvEIIYQQQgh9EhCWYNmyZfj6+hIeHl7quKtXr3L+/Hn8/f0BaNGiBY6OjmzdulUdc/HiRX7//XfatWsHQHBwMBkZGSQmJqpj9u3bR0ZGhjpGVAxLgjtdb8By9S5EL9Ax5/qiIMlUUNS7d2+DJci6/oP6hY7uJcUC5oIC/gZ1z6YQQgghhKg8EhCaUFBQwLJlyxg6dKjBMr1r164xfvx49uzZw5kzZ9ixYwc9evTAx8eH3r17A+Dp6cmIESMYN24c27dv59ChQwwaNIimTZuqVUeDgoJ46qmnGDlyJHv37mXv3r2MHDmSiIgIqTBaAQ4dOkRERAS9e/fm4IkT6vkRI0aYdb2iV1Rm69attGnThnbt2rF27Vr1vMEvDoyzfJZkJc0IHkeNGgXAwIEDzb/vXeSX33/nRyj8+vFHfjl6lF7APqOsuhBCCCGEqHiyh9CEbdu2ce7cOYYPH25w3t7enuTkZFasWEF6ejr+/v6Ehoby5Zdf4u7uro6bP38+Dg4OREZGcuPGDTp37szy5csNioKsXr2aqKgotRppz549ef/99yvnDdqYqKgoli1bhoODAy9FRvI3EA389ddfpV6n5qv0Aro33niDzZs34+TkxJQpU9i9ezcLFy4kOztbHWNcVMaiDKOJ4HHChAkGx6dPnyYmJoaEhATz71uBDh06xNSpU3F0dCQmJkbNco8YMYKlS5cWGz91xQraAm0BJSmJixcukA4cv3atMqcthBBCCCGQgNCkbt26mdz35erqyubNm8u83sXFhcWLF7N48eISx3h7e7Nq1arbmqcwj0aj4aGHHgJg4Suv8MWwYYyksHpnadSiMHoZQnt7e2oUFT+ZN28ey5cvp1evXlzTC2aM/8uxaA+hCatXr2bNmjXqsS4b+fPPP5d538qgH3DHxMSwd+9eoqOjSwy4f3zzTX6OjiYZGNOtGy4ODpyLi2NwQEDlTlwIIYQQQkhAKKo+X19fzpw5Q2BgIAoQC6wCViYllX6hiT2EzZo1U+8FMGzYMAICAnj55ZdvXXY7S0ZNjB0+fDhBQUHFWpUMGTLE/PtWIP2Ae926dcTGxjJy5MgSA+5vd+3iU6A+MG3aNOK2b0cDNEpJoXOlzVoIIYQQQoDsIRQ24Ouvv1YDOF2wNgi4efOmWdfrB4SLFy9W76UTGhqqFnoxHm/q2BQ1iDQREM6YMcNk38qoqKgy71sZdAG3TmxsLCEhISSVEHC//8MP/ARMBeLi4lgyZAhfAZ+UsYRXCCGEEELceRIQCptSroqhlradMArqLKpsWo62GNamH3DrDBo0qMSA297OjjbAs4CHhwct77+fPpjuzSmEEEIIISqWBITCplgUcJW37UR5AsJSMoRVTXUXF3KLvk9LSwNF4SbSh1AIIYQQwhokIBQ2IzU1lbOXLpFq4XXGAV1OTg4HDx5k27ZtHDx4kNzcXMPxRUGdJfkuUxVNq6qf3ngDJ71jjaLgAnwlPTiFEEIIISqdBISiytu+fTvt27fnueee44Pvv2co0KHovFn0AsKVK1cSGhrK559/Tnx8PMuWLSM0NNSwYmw5MoTqFSYCQrN6H97DdJ/P1ORkK89ECCGEEML2SJVRUeVNmzaNTZs24e7uzh8ff8wj+/aRCYRNm0bnzmXXtdQP6D766CN27dqFnd2t36Xk5+fTqVMnBg0aVHSB5QFhaUVlzOl9eDfq1q0bW7ZsKXZ+wvLl1NAdREaS/vvveAJnrl+vxNkJIYQQQgiQgFDYADs7O65cuYK7u7sacF0pOm8O/YDO1dWV+Ph4QkNDC19TFOLj43Fxcbk13njJqAV9CE2NNKf3oTVFRkYWO6coCsklZPyOnDvHLoqWJ8yZw+9z5tD46FEi3NwqdJ5CCCGEEKI4CQhFlffxxx8zbtw4UlJSyE5JwQ3wLzpfGkVX9dJoyejs2bOZMmUKWq0WR0dHWrZsedtLRnXBY7EehpTc+7BXr15l3rckhw4dYurUqTg6OhITE0O7ov17I0aMYOnSpRbdKykpibi4OIMAW1EUBg8ebHJ8g9q1aZKWhh3w3Ny5DPPwIBD4KyurnO9GCCGEEEKUlwSEosoLCgpi/fr1ABxZsoTGo0bpXij1Ol2Qph/Q+fn5sWDBglKv0403dX3JF5W8ZNTV1ZUPPvhAPb558ybOzs7UrFmz7PuWICoqimXLluHg4EBMTAx79+4lOjqav4x6AZoTOMbExODu7o6Pj4/BtaNHjzb57KRTp/gDqAZ0372bn86f5yhgJ20nhBBCCCEqnRSVEbbFgiqe6jLO2+xDeLvXrl69mvDwcPXrl19+ISIi4rYCQo1Gw0MPPURgYCDr1q0jMzOTkSNHkp+fbzAuKiqKBQsWMH/+fObPn8+8efMADALHUaNGFQsGAfr162f62UAA4AMcOHCAxv7+1AHyy9MjUgghhBBC3BYJCIVtsSQg1PUh1GoteoRxnsuigNLE/IYPH05QUBAhISGEhIRQo0YNQkJCGDJkiEXz0ufr68uZM2fU49jYWEJCQkhKSjIYZ07geOjQISIiIujduzcJCQnq+REjRph8tr+XF7v0jqc99RQTAa0NtNwQQgghhLjbSEAobIKud2DC0aMcBHLLvKL8vQGNA8DbrTI6Y8YMfH191eNvv/0WKMzeldfXX3+t7knUGTRoEDdv3jQ4Z07gaE4WUd+XY8fSCjgIbNu2jQNnzzIa2Ni9e7nfjxBCCCGEKB8JCEWVp987cP+pUywDQsGwEEwJDgFjV640O/sFxZd9mrOE1JKQ08vLy4LRt8ecwLGkLGJOTo7Je/5w4AChwOdAfHw8UzZuJBTYdvFihb0PIYQQQghhmgSEosrT9Q5cuHAhY55+msVAPPDhhx+WfqFGQxQQ3b272dkvoFiWz1Tl0GKPKiVDeLe7ceMGjRo14vHHH2f27NlqFnHfvn0mx3+bmMguYCGF2c96NWoQD2w8d64ypy2EEEIIIZCAUNgAXe9AKFy+qVAYEOr3DiyJBqhbo0aZxVf0GfchNCdDWJ7lqSkpKWaPrUgODg78/vvvHDx4EDc3N/r27UufPn3o2LGjyfHODg7E6x3PiYggnuJ7L4UQQgghRMWTgFBUeStXruS///0v7du3Z+CCBXQEfsC8JaO+wN9paepxScVXDJSjD6F6hYmAcOvWrbRp04Z27dqxdu1a9XzTpk3LvG9JSrpneHi4yfGpqamcOnWK1NTUYq/Z2dnh6OgIFO4nfPHFFwkLC+Off/4xea/pffvyX6A90LZtW6K//54fkLYTQgghhBDWIAGhqPJ0vQN3797N6ldf5RdgftH50igaDV8D/u7uBudNFV8xvNAwQ2hO1q+0ZaW9e/cmLy+PnJwcxo4dS61atWjZsiVpeoGqpd544w02b97Mtm3bSExMZMyYMRQUFJCdnW0wbvv27bRv357nnnuO6dOnM3ToUDp06MD27dvVMeHh4QaFZ7p27coHH3xAnTp1TD573KpVJAB5QEFBAbn5+ewC/srMLPf7EUIIIYQQ5SON6YVNKVcLCEurjJYjQ1jStVAYNCUmJuLgUPjXdfny5XzzzTecPHnSonnps7e3p0aNGgDMmzeP5cuX06tXL65du2Ywbtq0aWzatAl3vaA4MzOTsLAwOnfuDEBYWBijR49Wm9d7e3vTuHHjEgPC7JwcfqXwHx/tnj0kv/wyzT75hKYeHuV+P0IIIYQQonwkQyhEGSxtTF+eJaMlXQvQqVMnjhw5oh4PGzaM6OhoPD09LZuXnmbNmhlk9XT3zMrKMhhnZ2fHlStXDM5duXIFO7tb/3QYt53o0aMHAOvXrzf57FFduqB7iqIoNPvkEwBuWtjvUQghhBBC3D7JEArbYkm2T9eY3sKAUDfeokIxpWQjf/zxR4PjxMREQkNDOXcbVTkXL15scJyenk5oaCjHjh0zOP/xxx8zbtw4UlJSUBQFjUaDv78/H3/8sTrm2LFjTJ48GShsQXHx4kUeeOCBYtlGKGxi/+b69cwE/IFqwcHcBFKAG9evl/v9CCGEEEKI8pGAUNgUi7N9ACau6datG1u2bDHvmZYEoWaM7d69+23tHzSlT58+xMXFFTsfFBRUYqZPJzs7mzFjxlC/fn0A5syZw7fffsu4ceOKjY2KisLTzY0dOTlMAlr17cum/fvxATIqsb+iEEIIIYQoJAGhsFm6jFdpIoGrGzZQ8/x5g+uSk5NLu7Hh4W0uGTVW1pzLQxe0Dhw4kNWrV1t07Zw5cwgKCsLHx0c99+9//5vatWsXG6vRaIjq2pWaX33FOmBKRgYngPuBwY0a3cY7EEIIIYQQ5SEBobAtegFXQUEB9vb2JY/VaEgC3mvXjpbTp+vdQmHw4MGlPEIxPlHmtCxpTP/nn39y8+ZNs/oolmTChAkGx02bNiUmJoaEhASL7zVq1CiD4/T0dGrUqEG/fv2KjfX19aWRnx+6XODkiRN5eNYsngdm3Hefxc8WQgghhBC3R4rKCJuin60rMCNzFwO4OToSEBCgfgUGBjJ69OhSHmJ5QGiJ7JMncXF1ZY9ekGqp5cuX88svv7Bnzx4CAgJ49tlniYiIKFZUpiSljevTp0+Jr3399dfULqpuCoV/HoOAm0hjeiGEEEIIa5CAUNgscwLCUYCns3Ox86ayXzq303bCnODxn8REAHI2bDD/vkZcXFxYsGABK1euZMeOHRw4cICQkBC8jPbxrVixgqZNm/L4448ze/Zs9XyvXr1KvHdZeyb1X1e0Wlbpvi/P/k4hhBBCCHFbJCAUNsWiDKFur145207oMl7mBDqWLBnVzSs1P9+yeekJDAykTZs2BAYGsm7dOjIzMxk5ciTe3t4G45YsWcLBgwc5ePAgbm5u9O3bl+zs7FKDvm+//RYoLLxjkv6fgVaLWov0DmdShRBCCCFE2WQPobAt+tkpcwM9SwOVCl4yqjPrr78oeXFm6Xx9fTlz5gyBgYEAxMbGsmrVKj777DODcXZ2djg6OgKFFUKDgoIICwsjNTVVHRMZGVns/mUW3tGNKyi4tVRUMoRCCCGEEJVOAkJhUwwyhGZm2HLy8jh48CCpqal4e3vTpEkTnJycSnlIOTKERtfqa926tcFx9uXLuAJHs7PLnnwJzp07VyyQUxQFd3d3g3Ph4eEGgWPXrl2pXbu2QUuJpKQk4uLiDJrVl1R456uvvmLqp5/SCugKvNWhA3ZOTvjn5uIhGUIhhBBCiEonS0aNxMbGotFoDL78/PzU1xVFITY2ltq1a+Pq6kqnTp04cuSIwT1ycnIYM2YMPj4+VKtWjZ49e3LhwgWDMWlpaQwePBhPT088PT0ZPHgw6enplfEWRZECrbbU1xWNhpVA1IYNfP7558THx7Ns2TJCQ0NZtWpVydfd4SqjWVlZJCQkkJiYSGJiIqsnTiQJeNjNrcz7lsT4nomJiSQlJdGqVSuDcZMnT1aDQShsQt+4cWM2bdqknouJicHd3b1Y4Z0RI0YUe+7cuXP5ZMgQ5gKvAVu/+475tWoxp4T3LoQQQgghKpYEhCY0btyYixcvql/6S9/effdd5s2bx/vvv09SUhJ+fn507drVoOri2LFjWb9+PWvXrmXXrl1cu3aNiIgItHoByIABAzh8+DCbNm1i06ZNHD58uNRWBuLOsDRD+BHwQUQECxcuZMaMGSxevJj4+Hg+/PDDUh5S/qIypvbmzZw50+C/L10fwsF6v6iwlPE9dcpqeG/cYgKgevXqhIaGqoVndL/YWLFiRbGxrq6uONvbUwvoDHhUr44zhUsVyipGI4QQQggh7jxZMmqCg4ODQVZQR1EUFixYwOuvv66W1v/888+pVasWa9as4cUXXyQjI4OlS5eycuVKunTpAsCqVauoV68e27Zto3v37hw9epRNmzaxd+9e2rRpA8Ann3xCcHAwx48fp5E06K4wlgSEGsAVOPT33zyhu15RiI+PL7UHoGK0ZNSSDKGp1gu9e/c2Glw4qnn16mXetyRffPEFX3zxhXqcmZmJu7s7//vf/0q9TrefUJ+u8IyjoyOLFi2iYcOGnDlzxmSA16xZM/UXI6uAqwUF5CkKNQGN7CEUQgghhKh0kiE04eTJk9SuXZv777+f/v3789dffwFw+vRpUlJSDKonOjs7ExISojb0PnDgAHl5eQZjateuTZMmTdQxe/bswdPTUw0GAdq2bYunp2eZjcFzcnLIzMw0+BLm0w9RzMkQrgR2nT1L+/btadu2LR07duSHH34odcloeTKElgSPdyKPtnPnTk6cOMGff/7JE088QWZmJnPmzCEnJ6fU6zZv3lzsnHHhGX9/f8LCwvjnn3+KjV2wYAH2ensN09LScAK+BlkyKoQQQghhBZIhNNKmTRtWrFhBw4YNuXTpEm+99Rbt2rXjyJEjpKSkAFCrVi2Da2rVqsXZs2cBSElJwcnJqVg/t1q1aqnXp6Sk4OvrW+zZvr6+6piSzJo1i+m30ZDc5ukFZ0oZewgB/ICoVq3o8Pnn5j/jdqqMVlJQ5ObmxjfffIO/vz9TpkzhwoUL1K9fH39/f4vv1bx5c5588kk8PT2JiYlhx44d/P3333Tv3t30BXrvcdjo0czQ/ZmYeO9///03tWvXtnhOQgghhBDCPBIQGgkLC1O/b9q0KcHBwTz44IN8/vnntG3bFri1h0tHUZRi54wZjzE13pz7TJo0iejoaPU4MzOTevXqlXqN0KMXdJRVVEa3jNPShum3U1TGrH10Rf+NaG4jeKxTpw4PPvggAPPmzePRRx+lV69euJWjUM2vv/7KsmXLcHBwICYmhuDgYKKjo2nQoIHpC0po/bH3yhWyf/xRb1hhAafp06fz9NNPWzwvIYQQQghRNlkyWoZq1arRtGlTTp48qe4rNM7iXb58Wc0a+vn5kZubW6w4h/GYS5cuFXvWlStXimUfjTk7O+Ph4WHwJcynH3CVtWRUHVvOxvTqoSXXmxHkHbtwgQjg9dOnDZYYm6rqWZJmzZpx5swZ9XjYsGFER0ebLDRTFo1Gw0MPPVSsyX1+CZ+v/p/BZ/Pnq4HtO0eO8P7777N//36SkpLYv38/6enp7N+/3+I5CSGEEEII80hAWIacnByOHj2Kv78/999/P35+fmzdulV9PTc3l/j4eNq1awdAixYtcHR0NBhz8eJFfv/9d3VMcHAwGRkZJCYmqmP27dtHRkaGOkZUjPL0ISxvhrA8fQhLzw8XeueLL1gAjK5dm/nz5zOv6Lxur6s5Fi9ebNBOIj09ndDQUFq0aGH2PXR0Te51YmNjCQkJISkpyfQFegGhR7VqakC4JjiYJ554gmPHjtGtWzfeeOMNGjRowLRp0yyekxBCCCGEMI8sGTUyfvx4evToQf369bl8+TJvvfUWmZmZDB06FI1Gw9ixY5k5cyYNGjSgQYMGzJw5Ezc3NwYMGACAp6cnI0aMYNy4cdSsWRNvb2/Gjx9P06ZN1aqjQUFBPPXUU4wcOZKPPvoIgBdeeIGIiAipMFrR9JcrlrVktJS9baVep1v+aeKZZV5jzliNhoeAi05OrFu3jliNhpFQYkbOlAkTJhgcf/nll0RGRrJr1y6z76HTs2dPevTogaOjI5GRkbz22msMGjSIzz77zPQFRktGde/d1c6OSZMmkZWVxcKFC5k/f7705hRCCCGEqGCSITRy4cIF/u///o9GjRrRp08fnJyc2Lt3LwEBAUDhD9Jjx45l1KhRtGzZkv/9739s2bIFd3d39R7z58/nmWeeITIykvbt2+Pm5saGDRuwt7dXx6xevZqmTZvSrVs3unXrxqOPPsrKlSsr/f3aGqWE/WslOQS8tnMnvXv3LnF55ptvvsnHH39s8hlFJyyZYJlDvNzdOaN3HAuEQMkZORM++eQTvv76a7777jvS09Px9vYmIiKizD6EpujaThw8eBA3Nzf69u1LdnZ2icFtTn4+B4FtwG9HjpBvFHi7u7szZcoUPv30UxYsWGDxfIQQQgghhPkkQ2hk7dq1pb6u0WiIjY0lNja2xDEuLi4sXryYxYsXlzjG29u79NYFokJYsocQRSEKGP3YY7SbP5+YmBj27t1LdHS0wfLMN954AyjM8hbe2DDQvNNtJ94dMYLAgwe5oDd2EDDoxo0yr9WpVq0av/zyC3Xq1GHRokWkpKTQqlWrMvewmmLcdiIoKIiwsDBSU1OLjV25ciXvrlvHk4AHcOH779mflsZEoK7Re/fw8KB169YAHDp0iKlTp+Lo6EhMTIy6tHrEiBEsXbrU4jkLIYQQQohCkiEUtsWCthMaRUED1KlWzeyCKYU3LkcfwlIa0xe7fQnztmSvY0BAAHXq1AEKg7gxY8YQFhaGi4uL2ffQCQ8PN9hD2LVrVz744AP1/vo++ugjPoyMZCEwA3gzOpr3PT35sIz5R0VFsWDBAubPn1+4b3Je4c5JS/ZNCiGEEEKI4iQgFDbF0gyhL5CiV3mzzIIpRdeVemzm/EocU0JAaG6RHLAsiCvL5MmTDQrUHDt2jMaNG1NgIsBzdXXl0PnzBnM+nJeHC7eC4tTUVE6dOmWQYbS0kqkQQgghhDCPBITCpigWFJUB+Brwc3U1ODdo0CBu3rypHi8BXtd/hvGSUQuKypjVduLcOSKAyWfOkJCQQDzQBXi0eXO2bNlC8+bN6dSpE3v27CnxHiUFccuXLy/z+QDx8fF06dKF6OhoOnbsiJeXF76+vnTu3JmOHTvyr3/9i+Tk5GLXrVy5kl/++ov2QFvgX6+8wp7cXFYBB9LSaN++Pc899xzTp09n6NChdOjQge3bt1teyVQIIYQQQphF9hAK26LfdqKsgNDMIO0lo+Niyz7NCQjLHHHLG2vWUB24mZtLdHQ0F4FdQJP//Y+hQ4eSlJSEm5sbffr0YceOHWbdc9SoUcTFxTFkyBC2bNlS5viJEyeybt060tPTWbRoETt37qRatWq8+OKLPPzww8yZM4fBgwcXu87Pz49XO3ak3eHDAJxZtIiUZ5/F7+ZNlp0/z569ew0KNGVmZhIWFsbu3buL3WvQoEEMGjTIrPcnhBBCCCFMk4BQ2BZL2k6UtzF90XhL2k7cmlTZY1PS0/kfcOCBB9jYrh2f7tvH9KLXgoKCqFu3LoBBVVtjumItOkeOHMHDw4Nr166xZcsWJk6ciKenJ7NmzSI4OLjY9S4uLtSrV4969erx4IMP0rBhQ3x8fKhWrRrbt28HYPTo0SafrTH+Myg6tgOuXLliEBBeuXIFOztZyCCEEEIIUVEkIBQ2xZI9hJYs4zR4xu1UGTWDo7096YCLnR3z5s1j9/z57AeysrKIi4sDCnsSmtrDp6Nr/q4Ltv7880/atm3Lli1bzMoy+vn5odVqsbe35/jx44bP/PNP+Ocf+vXrZ/rhxn0Ii76Pvv9+xo0bR0pKCoqioNFo8Pf3N2jpIYQQQggh7iwJCIVtsWQPYSkBYbdu3UpeWnkbjenNGdulSRNITFSP9wE/Ay8+8IB6zsHBga1bt5Z4DxcXF6ZMmYKXlxcA/fr14z//+Q89e/bEx8enzCyjqfYs6jOLWlDk5+Xh4FD8nxjFqNKr7r0HOjuzfv36EucshBBCCCHuPAkIhU1RLNxDGAlcOXiQ+yIj9U4rJgum6F9X6nEZzyzLv8PCCExM5H9650KBA/HxBuNMBWM6sbGx1K1bFx8fHwACAwOpV68er7/+uprZKyvLaMrRo0eZCKQDDk8+SV5eHj4+PsycOZOmTZsCRtlQRcHOjGB469atTJkyBXt7e6Kioujfvz9QWC1148aNFs1RCCGEEELcIgGhuKcMHDiQ1atXl/t6g4qfZgQ7ScDMBg1oN2eOwT1MFUzRG2B4eIcb01MUyGqMxpYZ4OoZNWqUwfGHH36Ivb29wTLPsrKMJd13DVAPyNq4EXd3d86dO8fAgQP55ZdfgFKCchPv/e+//6Z27dq88cYbbN68GScnJ6ZMmcLu3btZuHAh2dnZFs1PCCGEEEIYkoBQ3JUmTJhQ7JyiKCQkJNzejS0sKhMDuNnbExAQYPBaSQVTjJ8BFdCYXnc/4+dYEBAa69Onj7r/UF9pWUadFStWMGfOHBwdHbl69SqeRed79epFXFwcHh4eaPXnpv95FBSo731vRgbZP/6ovqQoCrGxsbz66qtcvXqVRo0aYW9vzxtvvIGzszO9evUqtbWGEEIIIYQomwSE4q60evVq1qxZU+z8zz//fHs3trAx/Shgh94+uvT0dGrUqFFywRSjZ5g8NnN+JUk8dYp/A2l//km/11/nWaAJEDl8OFv0Pp9S9zkWe6xlhXP0l3D+888/HDlyBEdHRwIDA3kQaAwcSU6mc+fO5Ofn884775h8lqIXEL5z5gzB779P27Zt1THp6enExsZy7tw5li1bRkBAAP3796dFixZER0fzo14AKYQQQgghLCcBobgrDR8+nKCgIHx9fQ3ODxky5Lbua0ljelOFXkrKpBkoR9sJXWbQnLBs3pYt1AYedXNj+/bt/IfCv8g5SUlEFu11LHOfo5Fvv/3W7LGAwRLOhx56iOjoaJ5//nmysrLwAw4Cedeu4ezszIIFC9T9g0CxXpC69+7r6EhycjL79u2jVq1aVK9enStXrgDg6urKwIEDAbhw4QIdOnTg5Zdfpnr16hbNWwghhBBCGJKAUNyVZsyYYfJ8VFTU7d3YKDtl1lj9a8zJpBkt/7zTewjTsrM5B+z186Pdnj3cZ2dHE2CfVsucor2OZe5zNPLbb78xY8YMHn30UZ566im1D+GVK1e4//77cXR0JCYmhnbt2gHw119/UaNGDaBw+ayTkxNPPvkkdevW5dfUVI4A40JC+PDDDw32DwIlLhm9WVDA6dOnuXHjBgsXLuS3337DwcGBatWqcfToUXbt2kWHDh0AcHJyIjQ0lA8//NDs9yiEEEIIIYqTgFDYFOOWB2bRu8asTJrxfkAL2k5oFIX8/PxS9+5Vc3Liy9xcAhQFFIVY4CqF7Sf09zqWus/RSJ8+fQgODubIkSMsWbKEzp07Y29vz86dO/nvf/+Lg4MDMTEx7N27l+joaBwcHDhz5gyBgYEcOXKE1atXs2zZMrXIS2Ng06ZNpKenG+4fpPiSUV2V0ZF+fmRlZeHl5cWUKVPIzMzk2LFj3Lhxg5CQkGL3WLJkCUuWLDH7PQohhBBCiOLsrD0BISrT7Tam1/XtK+MhhdcbHZfmmKLwNDD2xAmefPJJgoOD6dGjh8llnx/268c+4KWzZ2kbHMwqIA3Yt2GDwTj9fY75ZbzX69evs3jxYhwcHGjevDn/+c9/WLhwIXZ2djz00EMEBgZy//3388033/Doo48C8MEHHxATE0NCQgLp6eksWbIEf39/ugB9gM6dO9OrVy+D/YOAQYCt6C0ZfcLDw+Dz9fDwoHXr1oSEhHDo0CEiIiLo3bs3CQkJamA+YsSIUt+XEEIIIYQonQSEwrbcocb05lxnyZLRqVotHwELGjRg586d7Nmzh//85z/F2kMA1HR1ZQHwYf36JOzciSswH/ApWsKpk5yczNNPP027du2KBZnh4eHcd9991KpVi5CQEGrUqMG7775LXFwcCQkJBAQEULduXdzc3Dhz5gxQWOhn5syZ9OjRg8uXLxMeHk5ERAQ1a9akT58+dOzYkdGjR3Ol6L3/3//9HykpKURHR/P999/fmph+QFiU5dT/3EyJiopiwYIFzJ8/n/nz57Ns2TKgcOmqEEIIIYQoP1kyKu4pllTONEk/GDGz6Xpufj4HDx4kNTUVb29vmjRpgpOTU4njlXJkCAugsF2D3thi7RqM560oKAUFaiEa4/czatQo1qxZQ7169dRzup6Ae/fupUWLFjg6OqqFe5555hk+/fRT4FY11dTUVHX5qq7QT0hICG+//bZ6zyFDhrB+/XoA5s6dyx4gC2g2dSrHjh3DxcWFLl260LNnz+Kfh96SUU3Re01NTVU/a29v78LXNBoeeughANatW0dsbCwjR44sM/MphBBCCCFKJwGhuCvpqmXqs7RypkkWVhldCbzz++90/vxzPDw8SE9P5+DBg7z88ssMGjTI9IVGgZlBoKYooCnebfA1OzsitFqu/fknS/r0ISMjo1i7BlP3VwoK+BbIAX774w/+yMxUg1atVounp6fBpbog087OjoULF1KrVi1iYmJ4+OGHmTlzJnZ2hYsGdNVU9fcyllboR1fAxtXVFTfAjcIlo7rn69/HeB+nbplC8pUrTGrfHh8fH/WzTktLY/r06Vy+fBlXV1eqV69O3759iYuLIy8vT81eCiGEEEKI8pGAUNyVkpKSiIuLUwMUsLxypkkWFJXRKAofAYuaNOHJhQvV8/n5+XTq1KnkgLAo6LQzOoaivnt6fQ112mo09AU2BAbS8j//wcvLCxcXl9LfQ1GG8AdgCRC0cSO1H35YDVqffPJJIiIicHJywsPDwyDIHDJkCLVq1SIwMFDNuF29ehU3N7eiW1u2TFa3969Zs2Zo4+OxB1atWgVAbm4uNWvWLD5/3edR9KyPMzLYtWkT7u7u6uuZmZmEhYWpBWzs7e1ZunQpw4YNY+HChQZjhRBCCCGE5SQgFHelmJgY3N3d8fHxMThvSeVMk4xaHpTFFfg1PZ0ni44VRSE+Pr7kYA29YjQ6ZgSEupyhi0aDv79/qXNSl6QWBYQfAbuAC6NHU7+oGqcuaN21axc3btwgPT3dIMh88MEHGT58OJ6ensTExNC/f3/279/Pd999BxSvpmpqGaexr776ivj4eIYCXYGZjRrh5ubG9OnT+frrrw0+A/3PRvfe7RSFK1eu3Arybtzgypkz2NnZkZ+fT3JyMo6OjrRs2ZKDBw/y7LPPlvo5CSGEEEKIsklAKO5KxsVUdHva9CtnlouFRWVWAqPT0vi6fXu0Wq0akOiyX2U9Q5fFUw9LCEKLBZGl0BQUkAMcu3mTtO3byQe2AQ2L9tMZB62urq64uroa3CMnJ4dly5ap7SQOHTrEqVOnWLp0KVCY8cvPz6dNmza4uLiYXMbZoUMHjhw5ogaK7733Hrt37yarWjWaAccSE+nVqxdz5sy5tX/Q6PMpyM9X9xC+Xq0a48aNIyUlBUVR0Bw+jH9ODh//8QctW7bk3LlzPPjgg+zfv5+tW7cSHR1NgZn7QIUQQgghhGkSEIp7gm5PW3kMHDiQ1atXFx7oBRAFZiwZ9QNG169Pp9271fPLly/Hw8Oj5AuNAkLjDGGpzAgMN584wWSgblYWD+7ezSPAMMB56FBq1a1rVtBqXKSlevXqPPDAA6SlpeHv709eXh4ajYarV6/SvXt33nrrLY4ePcqsWbNo2LAhAwYMIDMzEw8PDzp16oSvry/Hjx/n22+/ZRDQGXB3d0ej0RTvqVhChvABOzvWr19PfHw8M2bM4NGcHJ4CBgwYgK+vL7/++isPPvggAA0bNmTt2rWMGzeuzM9LCCGEEEKUTAJCcU8wZ0/bhAkTTF6XkJCgf+LW92ZmlzR6486fP8+k555j3969LPnww7LnamZAuFNRmA9c++svpq5dS//+/QEIDw9n48aNBmN/OHaMX4E9NWvy+MSJuM6bRz7Q1tOTvXv3GozVBVcXLlxg0aJFTJw4EU9PT+zt7dV9eQD33Xcfo0ePZty4cSQkJFC7dm0URaFp06a8/vrrjBo1itzcXHbv3k1ycjLr1q1T9xx26dKFL7/8Eo1Gw5IlSxgErKKwOuvatWt55ZVXjD+gW9/r7SG0K/psJk6cyLp160ivX59uQNKGDezbt49hw4bx3nvvERUVxYsvvkhGRgb2JpbfCiGEEEII80lAKO4JxnvaTFm9ejVr1qwpdv7nn3++dWBBURlT/fEc09K4CHyglzEsxigDpp+JLCkgnFtQwFZgV0AAcYmJ7N69m4ULF5KdnV1srJO9PfGAU0GB2nYiHnB2dCwWFK9atYoePXpw9OhRhg4dSlJSEoMHD+bIkSMGY728vNixYweOjo40btxYzYD6+/sze/ZsDh8+jEajoXPnzvj7+1OzZk0OHz5MaGgoDg4OKIpCr169+OOPP9R7avPzqVWrlsH+QePPQCkoUDOEusDQxcWFevXqUQ8IAurWrUtkZCTNmjVj06ZNTJkyhaysLAoKCkx+PkIIIYQQwnwSEIp7gq6KZWl0ffJ0ffV0hgwZon5v3PKgVEUBin7Gr+DmTQAev3KlzOt035uzh9AOqEFhUZl58+axfPlyevXqxbVr14qNndyuHf/99lviLl7E5emncQZaAu/9+9/0nTxZDYpjY2PJzs7mxIkT3LhxAwcHB/79739z7Ngx0tPTOXHiBPb29gwbNowTJ05w9uxZtFotderUAQpbRWRlZeHv78+PP/7IN998w9y5c7G3tyclJYXZs2fz+uuvc/z4cTp27HhrmWpRUZz8nBwoqlpa0uej6PchLPpfPz8/tFot9kAckJKSgp2dHfb29ri5uTFv3jx++OGHEj8fIYQQQghhPgkIRZVRWp88HY0F+/l0YzUm9h3albaE1ShDaE5A2AQ4A2qT+WHDhhEQEMDLL79cbKyXkxMLgN21avHY999Tvajx/ElPT4Og+MyZMzzxxBMsXLiQFStW8Nxzz6EoCoMGDSI9PZ1vvvkGf39/pkyZwrlz50hJSaF58+YcOXKEkJAQ1q5dy8CBA9W9m0888QQpn36KkpOD/yuvsGDBglI+vaKAsEhKSgp+fn7FPx+973Wf89q1aw3uM2TIEJo3b86rr76qnjtx4gQ///yzyc9HCCGEEEKYTwJCcdfKyckxqGLZpEkTnJycbu+mFvYhNKZeU0pAaNxWwZyAcJadHb4FBZwqum96ejqhoaEcO3bMxANuBar670HRag2C4piYGCIjI/Hx8SE2NlY9P2bMGBYvXqwWaJk3bx7Xrl2jR48eah9COzs7/P39eeONNwwe7TdyZOE3xvsCTdAFhCkpKQwZMoQtW7YYzB+KMoRF3w+4cQPX1q0N3ypwMjHx1rV6Svx8rOz8+fPUrVsXjUZT9mAhhBBCCCuzK3uIEJVv5cqVhIaG8vnnnxMfH8+yZcsIDQ0tvd2DOSxsOwEYVibNy7PoGRa3nSj63z59+pR8f73G9CgK8UAXYOZnn7FlyxaaN29Op06daN68uUEfx/T0dAD69euHj48PzZo1o127dqxdu5ZTp07x2muvcfToUQBmz54NQEhRX0NjWVlZJs+3bt2a1kBroFuPHrRu3ZpGjRqRmJho8jPQb0yfXVQAKDExsfALSAJatWpV4kdx6tSpEl+zhpSUFOrXr89//vMfa09FCCGEEMIskiEUd6WPPvqIXbt2YWd363cWumbrgwYNKvXaUpuol2MPocaSIJLiQZ9F+xbVR5e9JNWuqKjMRGAdcCgkRC0c4+bmRp8+fdixY4d6mX7rjsuXL7Njxw6cnJyYMmUKJ06cICQkRA2+Jk2aRFxcHCtWrGDOnDk4OjoSGRnJv4EjwPAnnuCzzz4zyNq2bt2a5ORkmgCaovegKAoajcYwqDOqMqr7E/63vT1ZWVnqftHUoq+oqKhi83jttdfUZ6amppr1mVaGtLQ0AA4cOGDlmQghhBBCmEcyhEZmzZpFq1atcHd3x9fXl2eeeYbjx48bjBk2bBgajcbgq23btgZjcnJyGDNmDD4+PlSrVo2ePXty4cIFgzFpaWkMHjwYT09PPD09GTx4sJrFsXWurq7Ex8erx8bN1k3Zvn077du357nnnmP69OkMHTqUDh06sH37dvRudOt7c5ua6xeVMSNDaNx2wqwModGzSq2qqrtHQQEFWi0uQD3goTp1CAoKom7dukDhf4O6YCk1NZXr16+rx/b29tSoUUMt0jJp0iR69epFUlISzZs359ixY3z++ee8+OKLODk5ERsby5EjR6gNfEphttE4a5uVlcXKlSvZAiQC33/+OUlJSbRq1YopU6YUnz+GGcLudnZ4eXmpf47/AqYDH3/8Mc899xy5ubk4ODiwZMkSvL29adGiBZmZmSV/TkIIIYQQokySITQSHx/PK6+8QqtWrcjPz+f111+nW7du/PHHH1SrVk0d99RTT7Fs2TL12Hhv29ixY9mwYQNr166lZs2ajBs3joiICA4cOKD2ThswYAAXLlxg06ZNALzwwgsMHjyYDRs2VMI7vbutXLmS2bNnM2XKFLRarVnN1qdNm8amTZtwd3dXz2VmZhIWFkbnzp0LT5gRnN0aULzthC4gNLW/8NYgy9tOGO82K7Wqql7mskCrxQ/QAkrRf6/t27enZs2anD59mvDwcI4cOUKTJk0IDAxk6NChpKWlcenSJV588UU8PT3V2zo7O3P9+nV2795NVlYWzZo1IygoiISEBLp06YKiKHwBvE1h0/nFixcbZG1nzpxJp06d0M1cm5sLwJQpUwyXnhplTHW/ldIV6tH9Ofby8GAlwIYNODk5cf78eapVq8bLL79My5YtmTFjhln9KfW9W6cODV54gd5GeyPvFN2+QUvnJYQQQghhLRIQGtEFZzrLli3D19eXAwcO0LFjR/W8s7PzraqJRjIyMli6dCkrV66kS5cuQGE/uHr16rFt2za6d+/O0aNH2bRpE3v37qVNmzYAfPLJJwQHB3P8+HEaNWpUQe/w3uDn51dmFUtjdnZ2XLlyxSAgvHLlisGyU0syhMb7+qAcS0bLmSEsVdE9dAGhrianotUaBMX5+fmEhIRw9OhRIiMj+fLLL4HCIPm+++5jwIAB6i2PHz/OnDlzcHFxwc3NDTc3Nzp37sy+ffu4ePEiDg4OODg44Ah8AIyrU6dY1rZ3794G09QFhMX2IRplUHWBoPq/RX+OjnqXVK9enXr16nHw4EEWLVrEhx9+yNy5cwkNDS3789Iz4e+/uRYbCxUUEAohhBBC3GskICxDRkYGQLG9aDt27MDX15caNWoQEhLC22+/rfa/O3DgAHl5eXTr1k0dX7t2bZo0aUJCQgLdu3dnz549eHp6qsEgQNu2bfH09CQhIaHEgDAnJ4ccvXL+smTulo8//phx48aRkpKi7l3z9/fn448/VscoWi1awB4LqozqB4T5+cXOFVPaktGSrivhvEG7Bh1dQGiiyqh+UOzg4ICdnR0nTpwwCIqvXLlCrVq1DHo2Pvfcc0Dhf1+tWrVCo9GgKApXrlyhdu3a1KxZk/fff5/Z/v4kAdr0dMPegyZob9wo873qN6bXBYS6P8dMoC2gCQ5Go9Go7SiioqJ45JFHGDduHIGBgaafUQpXi68QQgghhKi6JCAshaIoREdH06FDB5o0aaKeDwsL41//+hcBAQGcPn2aqVOn8uSTT3LgwAGcnZ1JSUnBycmp2LK/WrVqkZKSAhT+oG/cQB3A19dXHWPKrFmzmD59+h16h1VLUFAQ69evL31QQYHZAaGqlAyhfkCj/wz9aw2ygmVkCI2Xohq0azCaj53xclSttlhQfPPmTQYOHIivry9t27ZFo9Fw3333oSgKgYGBaDQavL29uXTpEo8Ax4CkpCT1nl27dsXJyYmvv/4agAW6F/buNfk+DN5TScVejD4PO0WhQO8zUP8cdW0b9uxh5syZuLreCuW6dOmCv78/48aNK3MexuwtvuLu8M0337BgwQJ++eUXa09FCCGEEFWIBISlGD16NL/99hu7du0yON+vXz/1+yZNmtCyZUsCAgLYuHFjqe0CdFkrHVN9yozHGJs0aRLR0dHqcWZmJvWKGpOLsikFBWg1msKgqjxLRosyhLrXFK22WEBYniWjXSgMVDLPn8ejqBefoiicPHnS5HvQ3ds4INQPinWVOf38/Awqcz755JP8888/pKam4urqyqJFi1gydy5bzp3jYTvDOlMGxWAsVJCdbfoFRSGfwn98dH0Ic7mVITRl8uTJxc41bty42BJvayswt1BRObzwwgt3VUVVIYQQQlQNUmW0BGPGjOH777/n559/Vqs2lsTf35+AgAD1h3c/Pz9yc3PVEvQ6ly9fplatWuqYS5cuFbuXbjlfSZydnfHw8DD4EhYoyhCC+UVlTLWd0Bgd6+6tf53ue3MCwmtAAvCfOnXUPny6Cp3GNEZtJ4znphMVFcXBgwc5ePAgbm5u9O3bl+zsbBRFISAggJs3b6rjhjz1FAOAXKP5ldSH0BwlVmQtygjqvrcD8gD7KlCIRWtu1rkcpNG9EEIIISqCZAiNKIrCmDFjWL9+PTt27OD+++8v85qrV69y/vx5/P39AWjRogWOjo5s3bqVyMhIAC5evMjvv//Ou+++C0BwcDAZGRkkJibSuigjtG/fPjIyMmjXrl0FvTvbpL8PTz9DWK4lo0UZQt2Zgvz8W0sQCwrAzq5YQFhgRkA4FciieJbMZIbOqKhMZNHp9M8+o0ZRNltRFLKzs3F0LCzNott3FxYWRmpqKteuXaNTp044OzsDcOXCBaoBWkUhJyeHI0eOqL0c9XsNWqLEgFA/KNdqsVMUtBpNqb+dOnToEJMmTcLV1ZWYmBj178iIESNYunSpxXOrKBIQCiGEEOJeIwGhkVdeeYU1a9bw3//+F3d3d3U/n6enJ66urly7do3Y2FieffZZ/P39OXPmDJMnT8bHx0etsujp6cmIESMYN24cNWvWxNvbm/Hjx9O0aVO16mhQUBBPPfUUI0eO5KOPPgIKl4RFRETYfIXRO01/H56i1d7KTpVjyWiBbsmo0TEAWi04OBRbMmpOq4uegAfF9xCazNAZtZ1IAuKAP8LDafLCC0VDFJKSkjhz5gyBgYFkZWUZ7Lu7efMmBw4cwMGh8J+A5o0acejiRdw0GkJDQ2nVqhUeHh6kp6dz8OBBXn75ZQYNGlTq56V+RkVfOaUUldHqfa8B8jUa7Is+G7UJPRAJvEZhQJuXl8eHH35ITEwMe/fuJTo6mr/++susOVUWXUBYEW0n9FtaSHAohBBCiDtFAkIjS5YsAaBTp04G55ctW8awYcOwt7cnOTmZFStWkJ6ejr+/P6GhoXz55ZcG7Q7mz5+Pg4MDkZGR3Lhxg86dO7N8+XK1ByHA6tWriYqKUquR9uzZk/fff7/i32QVpcu06iu2D68oGwUWLBnVD+iMqowWCwj1XtN9b0nbiVL7G+rolowWZTljAHfAz8OD+Pj4wmDK0ZF27dqpVTh79epFXFycuu+uRo0a9O3bV838nb14kX8BuYrCrl27DKqS6vcaNGXgwIGsXr2a5ORkRo0axe8U9kXUTpuG06xZPProo7z//vs0bdq06CNRDIJyOwoDQl0OcsmSJRw8eBBHJycWAX379kVRFFxdXQkMDGTdunXExsYycuRI8vU//7tARWYIdfLy8sqVsRVCCCGEMEUCQiNl/Wbf1dWVzZs3l3kfFxcXFi9ezOLFi0sc4+3tXWqjdWGZrKwskpOT1ayXTteuXdXv1SWjUHaG0MQ5dQ9hKQGhcdBXLGNYyrNKK6yiMioqM6ro9BmtliVLlhAXF8d9993HokWL8Pb25oEHHuDEiRNqwKwoCpmZmcyfP18N/JKaNqXltGlstrMjPj5e7e+n32twwoQJt+ZQ9L2iKCQkJAAwatQocnJyOAjcDxycMgWfIUN49tlnGTVqlFodU1NQQEHRst0CvYBQV0PUzs7u1lJX4JGXXuL//u//DFq/xMbGsmrVKlauXFn253U7LlyAXbugf3+zhlfGklEJCIUQQghxJ0lRGVFlzJw5k6ysrGLnDfbhabWFwQiUGRBiYsmoYpSRMtiHWFKG0KgSaPHHKOpfRLMyhHptJ4yLytjZ2alVcKOioqhevTpubm4EBAQYFKtp2LAh7u7uBAQEEBAQQC13dwKBKD8//vvf/9K+fXvatm1Lx44d+eGHH1i1ahWrV68mHAinsJDS9u3bOXv2LI6OjjRv3pzffvuN69evoytzVJCXh4eHBxqNxiBQUvSXjBYFhFo7O3UvZnh4OGfOnFHH16pVy+R+3kGDBqmFcSpMvXrwf/9Xet9JPZUREObm5lbYM4QQQghheyRDKKoM3R5OY/r78BRddoqyl4yqyzhLqeSpnyFU8vMLrzFeIqofDJl4ZkFBgfoX0ZIMoZ2ioNV/vlZLeHg433//vXpu4cKF1KpVizfffNPgFh999BE+Pj63ri0qAPNsjRo0X7DA5GOHDx9O0Ftv4QvErFnDd999R3p6Oh06dODIkSMcPnyY/v378yDgBOTNmQOLFhEQEMDcuXNv3UhR1AyhcUCoKEqxFhPHt23jwU6dcHBwoHfv3uUvKnMb+/ryrl7FUe/zKkllZQiFEEIIIe4UyRAK26ILRsAgUCtpbLFTRnsI9TOGalVN/YxiQYFhhrCEgFCXHTMnQ6gbozHR9H7y5Mn89NNP6qnevXvTrl27Yv36jIvVKEVZp9KWTM+YMQPfou+dnJyoV68eTZs2pUWLFtStW5eIiAjatGnDGWAvsHTQIC5evMjhw4d54oknbs3fqPWHLiC0w3RA5X/8OMOHD+f69etkZ2fz+uuvM2/ePAB+/PHHEudrzOyqsiZk/fOPWeMkIBRCCCHEvUYyhMK26GUIza0yWlofwgKjgNAeE3sGywoItVocjZ5Z1nuAwgyhcWN6AC8vr7LvYUSXISyz0E6R+7y90Wq12NvbExcXBxQWnykoKMAFeAC4VK0aLi4uJh6moOj+DBQFe25lCPPz84vtAbWzt+evv/5Sq6LGxMSwefNmjh49yo2SKpmaeo9arcl9oebIMbEU2RQJCIUQQghxr5EMobjr6VeSHDhw4O3drKAAhcIqmGUFP2o9WBN7CNWiMno/nJeUITTIRJaWdeT29hCWuSeyFIdPnaIL8E5KClu2bKF58+Z06tSJPXv2mBz/4bvvGlTMBXBwcGDr1q1qj0bj/Za3pq9XZbTosymws8MB0wGVs6sr+fn5NG/enCeeeIJGjRqxf/9+1q5dS0ZGhtnvUXsbe+9yLQwIs7KyDKvb3kESEAohhBDiTpIMobgrPffcc8THx5OTk4OdnR1arRZXV9fbLiKiFBSgaDSFAUkZAZSdiQyhWkm06FA/IFSDRaM9hGUuGdW7hyUZQg23MpQ5wLG//yZr2zazmsmrvf4cHYmMjGRFXBybgadu3GDo0KEkJSXh5uZGnz592LFjR7Hr869dM3lfBwcHdGFXSY3pNfpZ2qL5a4uCS62Ja/KrVSMnJ4cffviBmjVr8sQTTzB16lRq167N8OHDS3yPxrS5uWom1lK5JbzfYs8o+rNev34969evv6P9CHUVYaWojBBCCCHuJMkQijvitjN3RtasWcM777zDmjVrWLVqFV988QWzZs0iMzPz9uZWFBAqRd+XRi3wYiJDqDujn3XSvWZnlBHUWBAQmlVUxihDuBIIBTYmJxMfH8+yZcsIDQ0ttaWJrtffwYMHcXNz4++0NGoCrnZ2BAUFUbduXby9vQ2ygF999RXNgUHAl99+S6NGjWjVqpVaxGbr1q08/PDD+AINgW3HjwOFVUPDw8NvvV+tFqUouNEtVS0oek5+Tg7x8fF06dKFV4EtwKAPPwTA09OTVq1a0bdvX/Ly8khISMDT07Psz6uIqWDTXJZmCCuCLBkVQgghREWQDKGwiEEvuiL6vehMMbUvrCz33Xcfjz/+OA8++KB6Lj093aAyZrnmVlAARRnCMpeMmtpDqMsCFh1rTSwZNc4QlrmH0NIMYdH97BQFJT+fj4BdwN6QENrNmAHcaiZfr149ZsyYwYULF1i0aBETJ07E09OT69ev3+r1FxXFwjffpM7Nmyi5uXz12ms0b94cDw8PgzYec+fOZTeQBTT96CNOnj6Ni4sLXbp0oWfPnrzxxht4eHhwCFgErPr1V/4ZPZrr168bZLU0Wi15uoCw6PPUBYTa3FwmTpzIunXruFS/Pj2AD3r2ZNz27YwdO5Z9+/apge7y5cv57LPPyv68THzOlsq7ft2scZXVmF4IIYQQ4k6RgFBYZPXq1axZs6bY+Z9//tngODk5mYkTJ5Keno6DgwN5eXn4+Pgwc+ZMmjZtWuZz1qxZw3PPPYeTkxMeHh5kZGSQn5/PihUrbmtuSlFBE0WjKTtDeOsi9VyB0b44bU7OrXubyBAWaLVl7yHUZckorDhaJr3CNkpeHq5APOCs1TJhwgS016/zx/ffc97Ojv/7v/+jR48eHD161GApaIsWLThz5gyBgYEAONnbsw4Y5+BgME6/lYerqytugBvwYN26dOvWDXt7e9LT0wGwt7fn2LFj/AaEASm+vvz4449cunQJKKwI+vTTT6PJzydfFxDqluDqBYQuLi7Uq1ePmkAQUNPJib/++ovOnTurc0lPT2fYsGEMGzas7M+riH5AmJmZiYeHRymjDeXfBQGhZAiFEEIIUREkIBQWGT58OEFBQfj6+hqcHzJkiMHxqFGjWLNmDfXq1VPPnTt3joEDB/LLL7+U+ZyOHTuyc+dObty4QXp6Ol5eXqYrVlo4N40FewjtTS0ZNdq/ZaqojJ3efY0DQlMZwt9++41ZQCqQm56Oc3BwqcGzRj9DmJfHSmA2ELduHceuXqW+gwPNb9xg8oQJLNm8mQEDBrB//348PT2pW7cuAA888IAaDAI42dnRBfjE15fXGjRQx+lndps1a4Y2Ph574GZODj/v3AlAq1atGDNmDI899hgnT57kBaANUMvBgY5t27J+/Xpu3LjB/v371YBQt2cQXTBc9Bxtbi5+fn5otVoUIA7YkZvLpk2bSEpKol27dkRFRfHxxx8TFxdHeHg4GzduLPYZmaKfzf1r716adetm1nUAednZ5j3DKCBUFEUN5G6XJQHhlClTePDBB3nuuedMvp6amsqqVasYM2bMHZufEEIIIe5NsodQWGTGjBnFAi4oXHaoT6vVFtvf5eHhYXEGxdXVFX9//zKDQXPnZqfVorWzsygg1P9x2bhypsEeQl3mTu+++fn5ZQaEMbGxfEThfrllnp7s2bOHwYMH88QTTxAdHV286qcuICyajx+wAPjgmWeYOHEi79avzzrA38uLy5cv89prr5GRkcGNGzfo0aMHhw4dKpaJ9HZxQQto8vOLtZHQWbBggVp5VfcPR40aNTh58iQtWrTg7Nmz1KtXjxPAE8C5jAwGDBhARkYGXbp0Ydq0aYWfT9Gfgf7nqZ8hXLt2Lfb29rcK9+TmEhUVRUBAAPXr12fZsmX88ssvtGrVinPnzhX7PEuiH7xXT001fPHGDdBooIR9lyUV0Sn2DKPP9U5m83SBW2nLs3XefvvtUgvuTJ48mVdffZXTp0+bfD0tLY3ffvutfBMVQgghxD1FMoSiQsyePZuIiIhiSz7feecdq87LTqulwM7OvKIyum9K2UNo3IcQMCgio83PNwwiTQTE+fn5eAJ53ApC58yZo2Z4unXrZlD1c7pehhD9excUMGPGDLZ99x0Ab372Gfv27TOZpTVe4vt6cDD2Z84YzE/XRkJ97wUF6vtuVLcuYWFhaluKYcOGERAQwMsvv4w7MAlo+uijvPTSS7Rs2VJdVgpFQXlRAKguGdVlCPWrtup9rhcvXuTSpUtkZWXRrFkzZs2aRVxcnFnZZh394N3O2dnwRV3At3YtDBpU/NpyZghzcnJKrfZqCV1AOHnyZCZNmnRb99JVPy2pSNOkSZP46KOP0Gq1anVTIYQQQlRNEhCKClGeJZ+mpKamkpqaire3N97e3nTr1o0tW7aUe152+fkU2Nubt4fQjKIyJttOGAWE+kGjYiJjNOGFF4gYMwYAp6wslM6dOXnyJBs2bKBp06Zq1U8o3Keny0DaGd1PF1wVFP0AX1BQUGKWtliRH1MVUoGnn35a/by1ubnqPxgTn32WsevWGYwNDQ3l2LFj5BcFLm4aDQEBAXz66accO3ZMHafRatUiMrolo4reklEdXRhSkJuLo6MjrVq1onnz5tx///188sknaDQai1ow6Afmxh0SdU3rc7Kz0YWKiqLcKh5044ZZzzAOCO9kiwhTSzu1Wi3vv/8+o0aNUosEmUM3Nj/fdK/I7du3A3D16lXuu+++csy24t24cYN169YVW64uhBBCCMtIQCjKxThQK4mrqyuurq4W3z8kJIQjR47g7OysFqXJzc01q69baXPTBSMFUOa9dMsjNSaKyuiCxZICwgIKAxptfr5hFs/ED+Atg4LYCZy0s+OCiwvBGzcybNgw2rVrB1BsCaemlAwh3KrY+f/t3Xd4FNXXB/DvlmTTQyAJSagBFBBQkNAE6YIUEVApUm0/kaIUEQGBF6QpCkqvIkUBC6Ag0iGUAAECGHqvIZUkm7ptzvtHdoaZ3U2ygUCAnM/z7JPdmTvt7mZ3zpw794544w2ns7RfR0RgMYBUvR6+3brlHA8RoqOjpTKm7GzpC0MwGrF+/XqH9Sblk0wmrF+/HiqVCvXr178/35qlBQCVeA+hNYum6PgFwF0A+owMuLq64vDhw8jMzETt2rVx/vx5qNVqhIaGOtwHRxQ9wtoEaunJyfAGcPrUKdQVyxsM94/3CQgIHXU4tGHDBgwdOhReXl744IMPnF6XeEEgt3E9/fz8AACxsbFPbEA4ceJEfPPNNwgLC8MLL7xQ1LvDGGOMPbU4IGQFsmvXLowfPx7+/v7w8fFBSkoKkpOTMXHiREUvkA/ryJEjOHr0qKInSL1ej8aNGz/UvqktFghubvlmCIkIGkfTbTqOkWe05E1GTQB0AMwmk7JnUgcZQrGnUheNBoFEcHNzw9q1a+3KiU04D1epkrMPsAlIxQyhSoV7AAJcXLBx40a4u7vj2rVrICIEBwc7DOAvJifjZwBXXF3x3IwZUh306dNHKmOWBQ+CwSAFDSJpsHsA3QDUN5vh5+eHli1bSkEtcP89sACAuE7rRQOL0Si9j6UA+AK4ePw4sgwGREZGolWrVmjVqpWU+axatardseRGXlcWm0DIkJYGbygDRaNeL31BOsoQ3r17F4IgoEyZMvfX66DJ6KOUaW3KmltglxsxIMzMpSms+N7evXvXqV6Bi0JycjKAwg26GWOMseKIA0JWIOPHj8fWrVvh7e0tTdPr9WjXrl2hBoRly5aFwWBAhQoVpGlXrlxBSEjIQ+2b2mIBabX5dipjMpnu/3PIM4liFlDMEMqbg4rPBUEKCC0mk6KposXByavZGjQIGk2+zVi1Wq3UZFRDpBz2whpMjbh4Ec8DoK1bkbB/P86cOYOaNWuicuXKuQbw3UJD4X3mDCoQKeo8NTX1fp3IA0KjEQaDAWfOnJGysbNmzULkoUNw9/bGbABjT57E4uhouxN2tSDkNNsFoBL3XxYQjp86FVs2b4avNXDd8uKL2Pz88xg3bhxatWoljUNoNBpx+fJlpK5bB/f33oNrWhqgcRTGW/dZHhDaBGpG6z2E8mywSdaRjKMMofhZlGeabQPAwgxWxCCuQYMG0jRx2wXtKVRjraesrCwkJSXBzc0Nnp6e0nxxvM8bN27YLdu4cWOUL18ea9asKdgBFDLuHZUxxhgrHBwQsgJRq9VISEhQBF0JCQlOdzzh7D2AmzZtwpgxYxAbGyt13R8cHIwNGzY81L5pLBZpiIP8AkJHTUbF4E7s/EWeUZKPQ5itVsNLEGDJylIGhA4CCzFbJWg0DjudsSU2GVXBZhzE7GyMHz8eE6pWRY/jx3GmdWv878gRnDt3Dt26dcOqVasAOA7gTyUmYiCATIMBHrImowkJCff302iEAcAZALP//Rf//fEHXn31Vfj5+eHq5cs4d/IkRnz8Md4CsA6A3mhE69atkZWVhUaNGmHy5Mlo1aoV1IIAs9hs13rsKmswIphMUKvViIuJgXj3I5lMOHjwIK5evapoekpEyM7OxrVPP0XtrCxk3LkDz/Llc603RQdANoGbOPC8vyxoNMo6XCEnM322AeFvv/2Gr776yqll8yMGl/IspBgQFrTjFzG4zMrKgr+/P6pUqYJLly7ZrfeebW+syOnlNCIiosgDQpFTY3cyxhhjLFccELICWbx4MUaMGGEXqC1evFhRrps1qJCzvSctL9WrV88z+HvQfdMIQk6GMJ8moyaTCR7W544CQvEeQnKQIVQJArLUakAQINgGhA4Ci4ijR/EBcoKJPkSoYZ3eoUMHrFq1yu5+SHmnMophL7KyoFarkW6dRhkZUKvVuHjxoiJgcBTAX0hNxXIACWo1SufSZHTtH39gDYB6ALafPo13+vbFiRMn8Mknn+DNEiVQfe1azPv9d6wAUAXAK35+GPrvvxgxYgQyMzMxfvx4tGrVCiqLBSqtFgYAamsWTu2RU9uCyYTFixdj5MiRiEdOT6MpUVG4bjKhXLlyMJvN6NatG7788ksAOcNeiCF2en4Bobx5rU3mThxnsIS8yWhamvRc5eQ9hLYB4bhx4+wCwhs3biA9PR01atRAQYgBoXwb+WUITSYTxo4di3HjxikulNg2Gb18+bLD45BniJ804jFzk1HGGGPs4XBAyArE2UDt6NGj2L17tyLwsA0wimLfNBYLoNXmO+yEPEMoR/IOXWATkInZQ4sF2RoNYDbnZMBkncyYHQQW8zZsQDiA6IAA/BwbiyFDhqBTp044cOAA3nvvPbv7Ib3EJqO4n6HMAACDAYsXL8ZHTZpgGYC033+Htnx59OrVC4GBgWjYsCFUKhWuXr2KvXv3Kvahe9my8L58Gd5E8Jc1GR08eLD0fOVvv+GI9Tgi/PzQuHFjjBw5Er169cJ3XbqgEYDpZjPqAFgJYBaAkZ06YdWKFXjj88+lni21ZjOMrq7IVKuhs2bmNLIMYfXq1bF22TK4BwUBADZVr47PU1Oxf/9+BAYGYvbs2Xj77bexcuXKnOyQNTDItt5Tlpu87iEUM4Ql5NNkTUa9ZMNm5MX2nrxmzZrZlalYsSKA/Ds1siUGaY4Cws8//xwff/yx3XqXLVuGGTNmwNvbG+PGjZOmi1nGLAefx8TERKnDIHlA+Pbbb+Ovv/4q0D4/Do/6Ps2nwYM2HWaMMcYADgjZIzJy5Eh4e3tL9yKJ5AFGfmzvUatZs+ZDj+mmEQRYXFxgUakUA8jbMhmNDpuMSsMzWJd1lCHUWSxId3UFDAYIWVnQGAzQIyfYcJQh1Fjnqby98XVcHLbXrYvu3bujcuXKihNwsannLFmGUAwIMzUaIDsb1atXx5TnnkOzI0fQ0sUF/s8/j+eff/7+PhLh+vXrqF69umIfOgcGwv/yZeht6kQe0OhcXBAOoAWAcS1bYty77+I2ALOPDwbExKAFgPIuLlhiNGIEgItJSRAyM1Hp1Veh9vHB4cOH79ePuzuyNRrorAGJxssLwP0AW1FPJhNiYmLQsWNHaVJCQgJKly6dE4BZg0ljPtmsvIb/MMsCOTG7LDYZzQKgcTLoiIuLg7+/PxITEwFAGi6kMBiNRnh5eTkMCNPT0yEIAtRqtSJj9sknnwCw73TGZD1+R53KyAekT5YF2X/++WchHEXhS5cF7g/DYDDg2rVrqFatWqGs71FYs2YNfHx80KFDB8X0Hj164NatW4iIiCiiPWOMMfY044CQPRIDBw50OL179+5OLb9q1SosWLAA9erVkzJkUVFR6NmzZ4GCSls6QUC6TgejWg2tgx4/RUbZibLDJqPW12YHGUKdxYIUaycpQlYWtEYj0tVqlBAEu+EOAOB5f39cv34dRm9vuAsC+vfvj5kzZyoGcwfuN/VUyTKEYgCVrVZLHbSIQzmcT03FwW++cS5La13W1SZr1bdvX+mez+8+/xxre/TAVwBStmxBSQB9AYy6cAFXly7FK+PGYYhOB3ejERsAhFeogGbnzuEkgC8bNZKCUHeLBYKHB7I1GnhZt6u1NmcUgzZ5j6Ywm+Hu7o5ff/0VVaw9rLZs2RKbN29GnTp1pGKmXAZZF+V1D6HZmiEEgOz0dLh7e0sZwlS1GhonmyWmpKQgODhYCggzZOt9WEajEf7+/orgTh78paamws/Pz2HWz5a4ji+++MJunnw8Q/k9pE8aMRvWsWNHpKWlwct6UeFB9ezZExs2bChw5lZ069YtBAcH24/xWYjeffddAPbZ5d9+++2RbZMxxtizjwNCVmCPInNna9GiRThw4IAimDGbzQgICChwQBgbG4sga/NDT4sFaZ6eOQFhHh24ZFs70zACil5GxWaHYqcyJtnJtzjPXRCQqcsZ3pyys6ExmZBhvafQtqkiAAx75RVUPHYMV0uVgjhi47p16zBmzBg0atTI7n7ITOv4hGoAsG4/S6uVgjoxIOxRqpTTWdpPzp6FdIeZteMWIlJ0NFLK3R0/WJ/va98eTX/+OedFUBAuWIOxPiYTKlrLaK1BdW0AW7duldbjTgR4esLg4gI/a9DlWqKEog7lATnMZvj6+uKtt96CzlqvZ8+eRYcOHXI+d2KT0XyadcqzgraBubyzn/TYWLh7e8Ni3Yd0jSbPgPDXX3+VTtRTUlJQunRp6V7ZwgoILRYLTCYTfHx8EBcXJ02XB4dJSUnw8/NzmPWzbUroKGg8ceIE6tSpo5gnDwjd3d2dCjbzEh8fj4iICHTu3Nmp8oMGDQIAzJs3z26eRtajbFxc3EMHhGIzaoPBIH3OnGU2m1G+fHl88cUXDsf5ZIwxxp5kBeuajhV7q1atQosWLbBixQqEh4dj+fLlaNGihTQUQGGJjo7GCy+8gPr166N+/fqoV68eatSogTRZRx/O6tu3r/Tckwjk5ZUTEDoYJF5ksDaVy9RolBlCa9AlDUwvO+EXs4VuZjPM1nHyLJmZcDEakWnNGjhqMmrR63PuMQwIgBvu30e3YcMGHDp0CIcPH8ahQ4ewfv16VK9eHWpZllKdkYE0AEaNBmpxHETr366enlIwKK+37t27IzY2VrEPmRYLIgBEAojctw+RkZE4evQoXnzxxfv7KTtW2yaXYj2UkAUoLg4CEyKCpzUgNLq4INBajz7W++oEkwkrV65E07fewssApgOA2QytVgs/Pz9ERkYiMjIS/m5uOHDjBl6qXj1nTEkA12X3yDkiv4cQtgGhbF8zrXVjtgarma6ueX5Wfv31V+l5cnIySpcuLb1+2ADKdj1+fn6KJqPygFC830++TXEoCTFjCeQEqUuWLLHbRteuXQHcb4LZp08f3LlzR5pvO37l/PnzC3wcPXv2RJcuXZzuGXT+/PlObSc+Pj7fMmazGd9++22uYy+KmVE3NzckJSXZLTthwoRcv3/EprX79+/Pdz8epQfNbjLGGCveOCBkBSJm7n788Ud8/fXXmDNnDsLDw7Fw4UK7sgaDAVFRUdi5cyeioqIK1BtgYGAg2rRpAxcXF6jVari5uaF9+/Z4xZodc0QMHuWPevXqITIyEkBO8zpvACofn3ybjBqsGcJ0Nze4yPZbZT0BlwJC2f1LpuxskCDAkwiu1sHKs5OSgKwsZFt70SRHJ6MpKUgF4Go94c6Qnbw74mo2QwzN1KmpyFSrYdZqoTYasXLlSvS7ehUvA/hFlkl68803FeuQB8kA8LGfH6RTXVnAIQ8u5EET5D12EknHFWSdlgrgSmYmdgKIwv2mjWkJCfAA4BIQAJM1q2wC4GINXMlsxoIFC7BxzhxEAfAAMD0mBhMmTIBZFpTdS0lBWQAfNmoEszXYbp/H+wkoA0LBpqz82LKswYXYjDTLzQ0ueaxbnpkSm4yKcgs+AODUqVN57q+cMwGhGKzItyneK7ho0SJpfnh4uMNtiE0dxYCwadOmSExMlLKctlnGQYMGITs7GyqVyun7C+/evQsAUsAlCAJOnz7t1LK25Mcuz5rmZteuXRg1ahQWLVrkcL68qezx48cV8/bv349Jkybhhx9+cLiseDyaPMbBlDt48CBUKpUi4M7PxYsX8y1je6GHMbkbN27g66+/VnyXMsYYwAEhKyB3d3fFCSURITw8HG5ubopyD5tJ/PbbbzFx4kQcPHgQhw8fxv45czArPBxf55EFSktLQ0REhJRFErNc9erVAwBkJiRAB0Dl5wdBp5OaWzoidlCS6eUFnezHU209CRVP++QBnjE7O6e5IQD3qlWRDsAUEwPXrCxYSpRAOgBy0KxRnZqKVJUKOj+/nOOwntzmdnLnbrEgyXryqo6LQ5ZGA4tWC7XJhAULFmB56dKIspYrWbIkwsLCcOzYMYdBsmh1cjLaAqgPoH7z5njxxRdRr149RZNR+TAM8gzh9chIqR58AKwC8BqAf7OyEA5gOSC996nWk1ptuXLItGZR9RqNNA4hrENliBm8TwG09fTEggULFD1ePm+95/AFT09orM2KT1kHis+NIsNpew+h7H3Mjo8HffMN6k+ZAgAweHrCxcEJlDiMw7p166R9S0lJQalSpSAIAoYPH55nQPj222/nub9yYkBYokQJCIIgndA5CgjFsv7+/oqLMGIWLbegRR4Quri4SNnh8+fPS9NtiU1Knc0WitsQ92X27NmoVasWbt265dTycvJjdyYQEusit05o5M3ebU+YxYxmbk2AxQysswHhjh07AOQ003XkzTffVATgWVlZqFq1qvSaiGAwGDBs2DBcv35dmh4SElJoneywZ8/w4cMxfvx4RcdReREEQdG6oLClpaXZ3Sv/tHmS77NmrCA4IGQFsmrVKvz1119o3LgxGjZsiKZNm2Lz5s12gV5BMomOdOnSBX7WAAkA8N13wIkTaGbNvDkydepUh026xHHgsq5eBQBQcDBU7u6gPAJCs7UJmLFkSbjJ7jVUWwMJ8R5CysyE2PjNlJUlBTy68uWRpFZDiI+HT3Y2LKVKIUWlguDgx8M1JQUpWi101ixZhjWL0rt3b4cZVg9ZpzVuSUnIdnGBxdUVGqMRarVaymb10mrh5eUFDw8PVKhQQQqSd+/eLQXJoixBQDisTUb/+gv+/v6KYBoADLKATN4pi/niRUVgvAjAGp0O3wsCvgYwB8DmX37BwoULkW4d786jUiWYQ0MBAJctFriWK5ezcFwcOnTogBvWesxWqVBXq8X8+fNRRvbez6hbN2fb585J9/fp8ukJVB4QwibjJw92jYmJMI0Zc//4fHwUFwWk+pBt79q1ayAipKSkoESJElCpVPDw8LALCOVN+mrVqpXn/sqJ6xH/J8RtyzO4thnCUqVKKdaht97nmdvYgmKwptfr4eXlJdV3fHw8iAhpaWmoIBuSBLjfVHL37t04cuRIvsch7uPYsWMBAFFRUQAcZ/jkQdnZs2ft5suP3ZkMoRgo5dZcVZ4htK0jse5yy6yIGcLw8HCEhYXl2XTTbDZjxYoVivXa+vvvvwFAyiLaBsypqak4evQofvjhB7sxX8Us7KOk1+uhUqnw0UcfPfJtFVfiveOtWrXKtczevXuhUqmwY8cOzJ07F/369ctznWJG2tkLOB07dkRAQAD+97//Ob/jTsrMzISPjw/8/PwgCAI2bdpU4IsZaWlp+PDDD/HTTz8V+v45IzIyEoGBgYreuK9fvy4FuRaLpVADaiKShgxirLBxQMgKJCgoCD/88MP9zN3+/Zg1a5bUaYvI2Uyis25bT4hiz53LtYxtEClmNsQv6wRrE71StWrB4usLrzyyN7BmMIxly8JT9iWsFoMPWZNR8SfMZDAg/coVAIBHaCj0Oh0oLg7+JhMoMBBpLi6AtSmqXP8zZ9DdYsG7c+agPoCun3yCSpUqYe/evQ4zrB6CgHRrdi1Yr0eqhwfMPj5wz8xEhw4dEGs9Uf43KwsqlQpxcXGK4OXNN9+0Gyx9oKcnxMZrlowM6eRYXk4MmkwAIDuRzYyJgVoWbLkD2OrhgQDrawLwz2+/wc3NDft++QUA4PnccyhjvWftnIcHvIKCkAkg4+pVjBkzBsHW7EiCToe4rCzUqFFD0TGNmKl94e+/obUem0sBAkLbgenlvYya7t2DURY0kJ8f3G0CAYPBoMi+paSkICMjAxaLBSWsHeQ4CgjlGSZ5AJIfcT3iuuUBYb169aBWqx1mCOXEIEcMXmzHojx9+jT0ej0SExMREBAAHx8fADkn/waDARaLxW5cxXuyz3PDhg2l5ydPnpTGvJQTm7D+9ddfMJlMWLVqFQD7DB8RoWfPntLrGjVqAMi5X1P8vy5IQCgIAkaOHKnYB1vyDqxsA0Kxzr7//nvs2bPHbln5PYfHjx+X9tGRNWvWSFk9eXZPTp4dXLdund09kr169cKrr74KIGfMV7mYmBiH6yQi9O7dGwcPHgSQ+4UBZ4j1vXTp0lzLnDp1Ktd7LseNG4f//vsPK1asyHUcycGDB+fagZggCPjqq69yPdYHtXz5crv7Rx/E//73vwcaciY7OxuHDx+GyWSSgrfdu3dDpVJh7ty5duXFYWXatGmDIUOGYOXKldJ7ExcXh7/++kvxPSV+j/z9998IDg7G+PHjYbFYFBcwxCBz0qRJ+PfffwEAS5YsQXZ2tl3Lkofx+++/S89btGiBTp062V3Eyo+Pjw+WLVuGDz74wOn7kh+UIAh294R/+umnAIB9+/YhOjoaKpUKoaGh8PPzAxFBq9UiICAAN27cyHPdRJRvk3BxWCGtVvvQ96YnJSVBpVLlO27pZ599BpVKpfjtZc8uDgjZw/vvP8DmCrazmURnxVl/HO9ZM0zOsB36Qm9tJhNSvz6E4GD4G425Xm3TJCTADIAqV4YvgBTxhNP6g+oJwJSZCUtCAlJdXSEAsKSlwXz2LAQAXjVqIKNkSZS7dg3eAMwVKyJTp4PawUlYttmML/39sXfHDkQCWNq5M0JCQtC8eXO7DOv8OXPgAyDbmqkpazJB7+MDS0AA/LKzMWbMGJSzHtMfJhM2b96MCxcuYPDgwXj77bdx4sQJEJHdiX07lQriabI5PR3vvvQSvmnbVlFOsJ4o3XF1hUp21dMQGwutLNBZDmC3Wo3GABoCaApg67ZtWL16NcokJOAugHJ16qDmRx8h5e+/0TcmBlCpkKzTwWw9QdZbf0CTfH0x38FJpdp6JTnWzQ2u1h9Ht3zuURXi42EGkABAbbNOU0YG0q0/jpZ79yDP72h8feFmc7JhG8CMGDFCuiosBm1eXl7Q6/WKky3xJM/f31/RVOru3bt5njSIy4lj5IlXnZOTk+Hn5wdPT09pn8QT/RBrE1rxIomYjbp79y7Kli2Lxo0bS+ufMGECAMDX1xcJCQkICAiQOqTR6/XSOrt27Yqfxd5lkXMiJ/Kw3icL3O9cxbaTFXkGQB4svvHGG1i4cCEOHTqEq1ev4scff8Qff/yhWHbKlCno1auXFHjK68828ASAmzdvSs9Pnz4t1eGUKVOkzKScPDCxDZbkAdmaNWvslrUNIsSAcNeuXXYnqvI6GDt2LD744ANFnRKRoulpbGysXbO0LVu22O2DKLcMYWRkJH755Rc0adIEp0+fRokSJTBixAi7CwPOkAfgI0eOxNGjR3H06FHp+9RoNKJ27doOM4iJiYmYPHkyXnrpJfTv3x/jx4/HBx98gM8//xwRERHYsWMHDAYD5s2bh3nz5mHv3r2K/6Hr16/jzJkzmDJliuLzlx+LxYKrV68iOjraYRPlGzdu4P3338fAgQOxa9euglSHXUZ4yZIluHPnDrKzs51unnnt2jW4u7ujUaNGcHV1xejRoxXzhwwZYrdMo0aN7KYFBQVBpVIhKCgInTt3hk6ng8FgUAQdCQkJiI2Nxddffw2tVosPP/xQOgaxcynxO0Hk7u6OBg0aoEePHrlmvYgIe/bssauPc+fO2V0c6N+/v/R83759AHI+NxcuXEBGRgaqVKmCZcuWIS0tTRG0igGreIFHtGHDBowcORLDhg174CyabXAs9+GHH8LDw0P6f75+/bqiVYS8AzYAeOGFF6TnFStWxO7duzFs2DB07twZJ0+eBHD/e2XBggWoWrUqGjdurNg+EUnf2/ILP0uWLJHKtW3bFiqVCtOnT8+3U6nU1FRs3rxZcbGwdu3a0nuzevVqKVB87bXXMHv2bABAu3btcr1ww54hxJ5qqampBIBSU1OLbicAosDAR7qJY2XLEgF0YuhQp5dp06aN4nVEgwZ0RaMhIqLoIUPIDNDUiRMdLnukYUO6pFbT2XnziAA6u3EjERGdUKspycWFCKDY6GjaExhI/wUE0A2Vig63bElHwsLoAkBpaWn0T/PmOXUD0MQBA2h3xYp01tNTuaF792g9QN/Xq0eCIFACQN/7+lLr1q1p1qxZUjFBEGjnzp3UuHZtIoCOTJ0qrXtds2a0v3t3ygLIaDDQeev+vQxQixYtpHXs2LGDfH19qWbNmnbHe12noz2urkQAJWzZQpnWdZMgSGX2tGlDSSoVnfT2psOlSknbP9CrFx184QXp9R2Viva//bb0mgDa+P77RIJAZz09aX8un5XjlSrRPoDOnTtHPwQE0D2AwqtXp4YOvqYOli9PBNBdjYYuajQ521WrHa5XdKBNG7qrUtElFxcKr1tXMe+f2rUpxtWV0gDa0a4dxWm10r7v69WLzNa6FR06dIgA0G+//UbISYJSdHQ0AaBDhw4REdGff/5JACg+Pl5a7pVXXiEA1KpVK6pXr540XavVEgASZPUtN3PmTHJ3d6fr169L2zt06BA1adKEevfuLU0TBIHGjRtHAQEBNHToUAJA1apVIwC0atUqun37NjVv3pzq169PRCQtFxsbKz0HQO+88440f8CAAXTkyBECQEePHiWLxUK1a9dWlAdAarWa0tLSiIho4cKFBIAaNWpEFouFiIiysrLslnnQhyAIBIAGDRokHZ/cnj17CADt3buXiIi2bt2qWH7atGmK8jdv3lTMDwkJocTERGn+hx9+KM374osvcj4z//xDer2eiIhGjRqlWN7b25s2btxIAKhv376UkpJCRERr1qzJ9ZhECQkJiuklS5akRYsWEQC6du2aYt6AAQPs1tOrVy/p+dixY6X1Ll++PNdtG2Sf7dwMGjSItm3bRkREP//8c67r2rdvHx09etThPuzatUv6H8jrsW7dOsXrgQMHEhFRSkqKXdn09HTpM5aXfv36Scv4+PjYzZ84caJivf/880+u65J/5sT3+dChQ/Tyyy/bvX8AqHfv3vnu39ixY5367IufS7PZXGj/T7k9AgICyGQyOZyXmppKN27cUHxnvfvuu9J8jUZDAPL83BX0kVvd5lVX4vM9e/bQhQsXqEuXLgSAlixZQvPmzXug/ahUqZL0fPny5dS6dWvp9YkTJxRl69at+8jfJ/mjffv20mfJ19eXPvnkE1q6dCm9+OKLD7XeovJEnOMWExwQPgHmzZtHFStWJJ1ORy+//DLt27fP6WWL/J8lOfn+iX9eEhKI2rUjunv3gTYTbQ1AInv2fKDlyWKhO56etMkajGTv3UsEUCPA4cnEhZIlaXdAAKVERxMBtH3gQEpNSaEkgM6GhhIBFLFgAV0CaN9LL9FBDw866+1NdwH6ETknrJuXLKHbAK0C6MKFC3SoVy/KAmi/7EQjYdYsIoAWfPklERFtBGgXQLt376bPPvuMXnnlFWrQoAE1adKEhg4dSrsHDSIC6MqRI7QOoBSAVk6bRme++y5nPUOHUgxAZoC+BOjVV19VHNcrr7xCbdu2VVaN0ZgTCFWqlFPH1nURQNesgTAR0d5y5eiMpyftqlCBsnE/2Pu7YUM6FhxMSdbXqwC6tXEjEUDJAGUAtB2gkdb5U5s0cfgW3Zw8mQigdwE6AtBWgLa2b09ZAF04eVJRNtLPj8h6nEkApanVlAyQyWTK9SNwpGpVOqnT0QlfX9rq66uY94tWSyc8PSnGxYX2W4PBzU2bEpnNdHr6dCKAzllPhomUwZ74g7l06VICQJcvXyYiotOnTxMA2rx5s7ScWFb8wc7OzlZMr1SpEm3fvp0A0JEjR+yWs1gsdj/UY8aMoRkzZkjLuLi40BtvvEFvv/02AZCCTfmjU6dOivUSEfXs2VN63aBBA8V88SEGDj/88IPDk4bGjRuTIAg0adIkaVp4eDgRkRTM/Pjjj4plPv300zxPRH766Se7aV27diUA9PHHH0sneIMHD5bqS35yf+TIEZo8ebLdOqKioqTy4nv366+/SvM7d+5MJpOJzpw5Q82bNye1Wi2dcN29e1cqN3PmTOn53LlzpechISHS8yZNmkhBLADy8/Oj2bNn2+2TyWSSgr8dO3ZQt27d7E7K5IGAXq8no9FIZ8+edbg+AHTr1i0iIhoyZAj5+vrmWs+nTp2S6iMmJoYA0IwZMygiIoIuX76c53skf4wYMYJatGihmCYGzqVLl3Z6PfJHrVq1iIikiy62Dx8fH/r111/p5s2blJmZSUQ5F9HOnj1rV2fiY9CgQfTtt9/S3r17Ha5TvNgyYMAASktLo4SEBFq5cqWizJAhQ5w+hjJlylBgYKD0/SAIAplMJrp8+bJ0AcP2ceXKFbpx4wbFx8fn+t516NCBANBbb71lN++PP/6wm7Z7924CYBcAyx9btmyhrVu3ktFoJCKSAvwaNWo80PuX2+PKlSt0/PhxGjFihMPvNmcesbGxVLFixULdr4I8xPOHxYsX065du4iIpO+R2bNnU2ZmpqK8v7//A2/rzz//pPr169tNb9u2bYHXlZqaSgMHDnQ479tvv6WuXbvSzJkzyWQyUUZGRq6/q49akZ/jFiMcEBaxtWvXkouLCy1ZsoTOnj1Ln332GXl6etKNGzecWr4o/1kmTZpEryHnJN+InBOjzz//nP755x+6dOkSXblyhYhyMgOZ33xDBJCQS0YuP9et2zlsk/XL0549RDNmEFkslDBkCBFAX7VqlTPPZKKbAG0GyAWgmzdv5pzsCgLd+/FHIoBWt29PJAh0QaWi7QD1Ffdh3DjKAuiQ9fXP3bvTrBo1pACoPO6fuE2ZMoXu3LlDRET3oqPJCNASgF4EqDNAdwDaBNDWrVuJiOj0sGFkAWghQK0A2rBhg5R1MWdm0i6AjgNkNptp1IgR5GX9QdLHxJAeoJ3WfbpcujRlApR5716+1XR27lwigHZ/8QVlADQbOYEWAfRHWBhdOHWKfvnwQ9IDtL5GDfq5Y0cigCwAnQfoHEDpAP0dFkavA7TfGgBNKVuWto0bR4M8PKTg8QeAEhMSHO+IyUSnKlQgAigboANff02x+/aRBaArAHUD6DUfH2oFUAJA53Q6ab1Hq1UjstbZxf376cz27RQfGUkRK1bQyI4d6evGjSkZoK116tCG6tUpGaAPypenab1709CgIIoFaH3p0nQ8OFha58Xt24mISH/xImUDNB+gCgB1B+giQG7Wul+xYoX0Q6pSqaTDEQTB4Y//0qVLae3atdJrMXDL7YdZ/pqIKCIiQjFt2rRpdOvWLcW01q1bU1paGoWFhdldsQZAERERRERkMBgUQbQ4//z580REVKtWLbvtExH99ddf0rSbN28qXts+AgICFOu5dOmS9NzLy4uI7gfYjh7yoNv2cezYMbvsZm6PypUrK45RfIjBpXh8uS0/fvx4RcDn6EFENHLkyHz3ZfLkyUREdPLkyVzLiO+No/ofO3YsjRw50u5fKL/tvv/++yQIQp6BYUEeI0aMeOBlvb29KSoqijZs2CD9jn388cfS/GHDhtHGjRvJy8urUPb1cT+mTp1KABTZ0vweixcvJiKie/fuUVJSks3Xo4m6d+/u8DMnys7OpoyMDNLr9ZSenk5EORnnuLg42rdvnxTgyVksFnrnnXeoR48etHXrVvrjjz/sysglJSXleQwHDx6Unk+bNk0xr2LFijR9+nTq0KEDXb9+3W7dZrOZTp48SXq9nu7du0f//POPw20kJCTQ6tWr6fTp01LdfP/995SRkUFXrlxRXNhx9BAvoAGgnTt30tChQ6lmzZr0559/UkJCArVr147q1KlDp06dourVqxMAmjNnDqWlpVHJkiUJuP8/7Cx5JjUuLo4OHz5MWVlZZDKZpO9bIqL169fT3Llz6fPPPye9Xk///vsvRUZGUlZWllQmMjKSgoODqWvXrtJFOnlAnVuAPGnSJIqOjpYumhARpaen05dffkm1a9emBQsWFOiYHgcOCB8fDgiLWP369WnAgAGKadWqVaMvrRmj/BTlP8vxd95RNAs8D1AUcgKlgwDtBygcoL0AxVnLpCMn2JkN0AyAJgM0HqCxAI1BTlZrFHKySZ8DNBygr2XbiACoB3KCqQ4AtddoqCVArQFqC1A7gHpZ1yEuk2L9+38AnZRlmlJXrSKjdd92ALQFoGhr2TUAXbNeyd38ySeUZZ2+HaDszExa16ABJQI0FyBDdjYdP3aMXgUoBJB+iB2ZUaWKIrt2BKBgyLKUBgOdCgiQ5q9ETsZtB0D3kBOoTbXJ+olivv2WMgE6BtD5X38lC0AnAdpmrcMJAM2z7vNCgFYAtA85wdchgJKTkmiKdbsWgK6pVIr39xhAlyIj6crly9QfoBmtWtGAKlXoBEBrAfpv/36H+2U2m+m1cuVoYo8eimZ4DgkCZUVG0q7Vq6VJX4aF0UHZfhBAMQAd++knWoqcADvh4kU6Y1PG9nESOcFiQnQ0nbWZFwXQtV276Nqff9IetZo2y7JNREQratcmi80yMzt3JiJlU8i5c+cqlnOUfYiLiyODwVDgE8xjx45J6zWZTBQaGkpdu3aV/vflZW1PtuSBR1xcXK7VbzQapeaNRDkBo7u7OwGg5ORk2dsk0IQJE+jAgQPSNNusYaVKlRRNq8QTFSKi999/n3r37q343oqJiaElS5YotuOI2FwXuN/E1jZIBiDtt/ho2rSpw/20Pbk2m8109uxZu3lpaWl5ngyLGTZBEKQAefz48dSuXTtFuU2bNtkdk+2V+vfee0+al5ycTPv373eqWWRWVhbpdDrasmWLw+aVFy9eJKKcE9I7d+7Q0qVLacGCBdSjR48CfRbbtWsnbTM2NpZSUlJo//79ikzsiRMnHL4vp0+fljKGjiQnJ0tZTSKyu9jRpEkTxWdcr9c7vd/nz5+XMvfyz0e3bt1o8uTJZDKZKDMzk1JSUqT3rUyZMop1tG3bliZNmkTDhw+nkiVL0ujRoykxMZE+/fRTOnjwINWvX1+qZ9G5c+eoefPmVK9evVz3befOnfm+v0REW7ZsIQDk4eEhXSwsKomJibRgwQLaunUr7d+/P8/vltyawzvjYZaVy6sFCXsycUD4+KiI8rkLlT0yRqMRHh4e+P3339GlSxdp+meffYaTJ0/mOoC0nF6vh6+vL1JTU6VeAR+bI0eQdvAg7lStCvX27Ti3ZQtcTCZoLBbcuX0bakB6mAGcAtARgC8AV+tDZ/0rllPJnouvjQB2A/gXwCwAfsjfPQDnAFwEkATgNwBdpk61u1E//cgR/NiwIZ5DztiC9wBsAPDazJkYNmzY/fWdPQuftDSgdm1odToAOTfmlypVStE7oTOSr1zB6fXrESsIaDdokGJgcwCAICAmKgq/1asHcdCH29bj2eTujiN6vTREgB2zGaRWQ6VWY/kbb8Bn82YEAiiHnHoWu8YwATAAuA7gGIC269ahXbduSIiPR//atTF41ChUePllzGjaFLBu+5tdu9CsZUu7TaampsLNzQ06a708CkaDAf8sXIg7p09j9YYNGL1gAd585x0YjUYQEXQ6HdKTk9GmZEmUQs7nzSR7pABYsGcPmjVvDgBIiI3Fz19+iajdu/FKz57o9cUXKJlPD3exx47h55EjUdJoxP8iIoB16wCbLv8dyczMxO3bt7F3715UqlQJrVu3BpDTQ+err76KhIQE/Pnnn2jQoAEaN26M0NBQLFq0CIMGDULLli1RtmxZtG7dOvf33IqIkJ6eDg8PD4fj4ZlMJlgslgfu6dcZycnJ2LhxI7p16wYPDw+YzWbMmTMHiYmJeO+99/Dcc889sm1HRUWhbt26+P7771GtWjW0bdsWJpMJERERCA0NRZkyZRRjDRIRRo0ahd9++w3z589HkyZNFN+h2dnZSE9Ph4+PD1xcXKQe+Y4cOYLIyEgMHjwYKpUK8fHx8PX1zfPzLwgCkpKSYDabERwc7LAMESE2NhYlSpSAu3VYmcKQkZGBuLg4lC9fPt/P0K1bt7B792507twZ3t7e0Ov1yMrKwty5czF69Gj77yonbdu2DdeuXUO/fv0e6NiMRiNSUlLg7u4ujf/piMlkQmJiotSRSmHXZWEwm83QaDT59vDIGCvic9xihgPCIhQTE4MyZcrg4MGDeOWVV6TpU6dOxYoVK3DhwgW7ZQwGg6K3J71ej3Llyj11/yy3b9+Gv78/MjMz4eHhgfT0dJhMJhiNRpQqVQpnzpxBjRo1EBUVhTJlyqBy5coAgIz0dGTExcHf2xv34uNx8cwZlCpRAqfPnkXL1q3h5ukJnb8/VN7esFgs0Gq10nhOortpdxHs7fik7EllsVicHvTakaSkJKjVanh7e0Oj0UAQBFgsFsWJLnMSEeDpCZjNQD4n2IwxxthTTa0GCjhGZGHhgPDx4bOZJ4DtCbltACM3bdo0TJw48XHs1iMljtEkZitssxYNGjQAADS1ZqhEnl5e8LRepfYPDIR/zZoAgKpt29ptQ7wabluXITNDQBOerusgDxMMAvaDlGs0modeZ7GlUgHr1wOXLhX1njDGGGOPFl80LhY4ICxC/v7+0Gg0dmOaxcfHo3Tp0g6XGT16NIYPHy69FjOE7OlmMBtgEkzwcn2wJlnsMXv99ZwHY4wxxthTjgemL0Kurq6oW7cuduzYoZi+Y8cORRNSOZ1OBx8fH8WDFZxFeLCBax+VcXvG4Y01bxT1bjDGGGOMsWKGM4RFbPjw4ejTpw/CwsLQqFEjLF68GDdv3sSAAQOKeteeaZmmTHjrcu+c4HHTG/RIM6QV9W4wxhhjjLFihgPCIta9e3ckJSVh0qRJuHv3LmrWrIktW7agQoUKRb1rz7R0Y/oTFRAKJECtKr4J+3RjOjeXZYwxxhgrAhwQPgEGDhyIgQMHFvVuFCtGi7God0HBIliKbUBIRPCe5v3UdfTDGGOMMfYsKJ5noKzYMwmmR7r+o3eOKl6P3jk6l5I5BAgQKOdR3FjoybqfkzHGGGOsOOGAkBVLJkv+AeHdtLuYFD7pgdZff2l9xevpB6fnWd4iWHA05ijmH53/QNt72uy/sV96/qRlaxljjDHGihMOCNlDI3r6mvoN2zYMWaasPMtcSb6CCXsnPPA2bNc/cvvIXMuKmcH4jPgH3t7TpOnPTZFuzBnolgNCxhhjjLGiwwEhe2htVrfBH2f/KOrdKJBtV7YhMTMxzzLuWneH08MWhzm1DY+pHorX3x36zmE5IkKWOSd4dLbJqGqiCqnZqQBygkjVROXAseN2j3NqPUXpix1fAAAu37vscP7V5Ks4cvvIY9uffy/9+9i2xRhjjDH2pOCAkD20nVd35jtkgkWwwH2K+wNnE9efW4+yM8sWaBmzYIbBbMh1flJWUp7LO7rPkIhw/O5xxbSwxWE4GXtSem2b5YtLj1Msb6vKnCpYf249AOcCwuSsZACQAtrfzvxmV2by/snINmfnuy65yDuRhTI+40d/f4SN5zfmOl9srrvg2AIAwKJjixyWG7ljJBoua1jg48iLmJV0pP2v7aUmwvey7mHq/qkYv2c8Sn5TEkuOLym0fWCMMcYYe5JwL6PsoXm6eOJe1j3FNCKCWTBDo9ZAIAF/nf8L2eZsnEs8h0p+lXDw5kFU8qsEk2BCac/SSDemQ6vWIsuchQCPANxIvYFKfpVwI+UGNGoN/ov7D3fS7uDonaN4OfhlaNQaEBGSspJQ0r0kDGYD3LRuUKlUUtD1+urXcSzmGJZ1Woa3f38bABQ9eSZl3g8IBRJARIjLiEP/jf2RmJmIV8u/CiAnsDRajHDXumPH1R0AgOHbhmNU41E4eOsgjt89jjqL6qCcTznc0t9S1EPZmWVxJ+2O9Pqr3V9hSqspMFlM0Bv0WHR8Ea4mX5XmTzswDZ82+BQmiwmuGleU9iqNy/cu417WPaQZ0pCcnYwZETMAAC8tfAkZpgxpWZPFBBeNixTUXUy6iColqyDbnA2BBKigwr2sezALZgBAljkLLwS8gKi7Udh2eRsm7ZuEGa/NQK3AWmhesTlMggl7ru2Bv4c/Lt+7jDI+ZdB1XVd0qd4F1UpVQ8fnO2LW4Vno82If3Ey9mXN8e77CzdSbWHpiKTLGZOBS0iUYLAakGdJQyqMUfvnvF5T3LS/t87+X/sXSE0sB5DSpndEm59hi0mKkIDnyTiTqBNWB3qBHoGcgNpzfgOdKPof159ZDp9WhQZkGmHpgKta9vQ530+4iy5yFQM9AbLm0BYGegahaqiqWRi1Fy9CW6PpbV9QNrouf3vwJQV5BSDemQ2/Qo6xPzsWGCXsnYHD9wfgu4jtMOzDt/vu25yv0q90PKqhAIOy5tgdtq7TN5T+CMcYYY+zpoaKn8QYwJtHr9fD19UVqaip8fHwe67aNFiN0k3VOl5/cYjK+2vPVA2/vgzofYNmJZQ+0rEalQeIXiei7oS82XdwEAHi/9vv46eRPhbatEO8QVPOvhgZlGiiCifwsf3M53vvrvQJtyxkalcbpHjyr+1fHucRzhb4PzzIeJoMxxhh7dIryHLe44Qwhe2Ap2SloUKYBwvuHIyEzARnGDFxPuY4yPmVQ2rM0ACDAMwBZpiy4aFygVWvxReMvoFapoVapoVKp7NZJRHlOX/LGEhAI15KvoUKJChBIgEWwQKfVwWA2INucDW+dN1RQ5WT1XJT3AQZ6BkrPxWBwdZfV6FS1E7RqraL8H2f/QKohFXWD6+LH13/EmYQz+OvCX9hyaQtmtpmJlqEt4eXqhSpzqgAA7gzPyQQujcrJeE1tORWjXx2NTRc2odPaTmhRsQV+f+d33Ei9gYolKsLPzU86VjEgHFxvMDZe2IiyPmUxpeUU3E27i6YVmqKcbzlpv7r93g2/n/0drUJbYd3b6+A/wx+/dP0Flf0q407aHfzf3v9DdHw0zONzMoEWwQKDxQCNSgOd1nEAn2HMgNc0L3Sp1gXr3l6HbHM2VCoV3LXu0Kg1UjnxXkWaQOj4a0eMfGUkGpVrBADQTdYhZngMWqxogQtJF5A4MhFzI+dizKtjoFVrkZKdghJuJeA/w1/KKG/rvQ1tV+dk2hqUaYDnSj0Hf3d/ZJmzUDe4LqYdmIa9/feivG95JGXmZIPFLPCWS1vQpnIbxGfEI8Q7BPey7sHXzRda9f2vNYPZAI1aA61aCyLCiO0jMOvwLJjGmRTlzsSfwWurXkOPmj0wpeUUuGndsPq/1dBpdej+R3eE9w9HoGcgPF084aJxwUebPnJYj4wxxhhjTxvOED7l+OpJwXy+/XN8f+h7AEDGmAx4uHjkWrba3GoY3WQ0+tXuJ02LSYtBmZllsLH7RrxZ7U0QEVqubAmTxYQD7x8AAKz+bzX6bOiDVV1WofeLvWG0GFFldhWkGlKR+mWqw22JgZZlfP4D1N9MvYkKP1RAnxf74Kc3f4LL1y44+fFJvBT0EoCc5q9n4s+gVulaTtcLEUE9SY3VXVaj14u9ci0XHReNFxe+6DA7Jg/m0wxp8NZ5O1yHyWKC62TXnGUmEN79812sOb0G5nFmRfD5KAgkIC49DsHewQVaxvY9CVschp19d6KEW4lC3kPGGGOMAXyO+zhxhpAVK746X+l5XsEgAJT2Kg03rZtiWoh3CID79yKqVCqElgjFhaQLUhkXtQsAwFXjKv21vbcwN/kFgwBQ3rc85rSbgxoBNaBVazG33VxULllZsY6CBINAznG8WfXNPINBAKhVuhYyxmQ4nCfP7OYWDAKAi8ZF8dpV44rG5Ro/8mAQyKmbggSD4jK2ZradWVi7xBhjjDFWpDggZMWKj875K0xBXkF2ASEAxH8ej5LuJaXXKqgUvYeKTRGdCe5E89rPw6Atg5wuP7j+YOn5oPrOL5eXjT02OlUuv0C6oEY0GoFUg+PM6ZOqaYWmRb0LjDHGGGOFggNCVqwUJAsV5Bnk8J67AM8AxWuVKqfnSVHnap1zpuN+xqyEWwnUDqqd67ZaVGzh9H49C65+elXKIhY0m8kYY4wxxgoPB4SsWDFZTPB08XQqCCnjUwaeLp75lutZs6di7EEx6JQ3oVSr1Hi98uu5rsNRRzrPslC/0KLeBcYYY4wxBg4IWTFTPaA6etTsgaWdluZbdnij4U41+2xVqZXD6fIMocFskO4pZIwxxhhj7EnBASErVl6v8jper5J7pk5OPizBg5Bn/QwWQ65DPgAAd/bLGGOMMcaKgvO9XjDGHphZMHOGkDHGGGOMPXE4IGTsEZE3GQXAASFjjDHGGHvicEDI2CNi21GMTpN7k1HGGGOMMcaKAt9DyNgjIs8QHv/fcVQtVbUI94YxxhhjjDF7HBAy9hi8HPxyUe8CY4wxxhhjdrjJKGOPSEHGFvR180VZn7KPcG8YY4wxxhizxxlCxh6BS0MuoYJvBafLh3iH4NawW49wjxhjjDHGGLPHASFjj0CVklWKehcYY4wxxhjLFzcZZYwxxhhjjLFiigNCxhhjjDHGGCumOCBkjDHGGGOMsWKKA0LGGGOMMcYYK6Y4IGSMMcYYY4yxYooDQsYYY4wxxhgrpjgglLl+/To++OADhIaGwt3dHZUrV8aECRNgNBoV5VQqld1j4cKFijLR0dFo1qwZ3N3dUaZMGUyaNAlEpCgTHh6OunXrws3NDZUqVbJbB2OMMcYYY4w9SjwOocz58+chCAIWLVqEKlWq4PTp0/joo4+QkZGB7777TlF2+fLleP3116XXvr6+0nO9Xo/XXnsNLVq0wNGjR3Hx4kX0798fnp6eGDFiBADg2rVraN++PT766COsXr0aBw8exMCBAxEQEIC33nrr8RwwY4wxxhhjrFhTkW3aiinMmDEDCxYswNWrV6VpKpUKGzZsQOfOnR0us2DBAowePRpxcXHQ6XQAgOnTp2POnDm4ffs2VCoVRo0ahb///hvnzp2TlhswYABOnTqFQ4cOOb1/er0evr6+SE1NhY+Pz4MdJGOMMcYYY08QPsd9fLjJaD5SU1NRsmRJu+mDBw+Gv78/6tWrh4ULF0IQBGneoUOH0KxZMykYBIC2bdsiJiYG169fl8q0adNGsc62bdvi2LFjMJlMj+ZgGGOMMcYYY0yGm4zm4cqVK5gzZw6+//57xfSvv/4arVq1gru7O3bt2oURI0YgMTERX331FQAgNjYWFStWVCxTunRpaV5oaChiY2OlafIyZrMZiYmJCA4OdrhPBoMBBoNBeq3X6x/2MBljjDHGGGPFVLEICP/v//4PEydOzLPM0aNHERYWJr2OiYnB66+/jnfeeQcffvihoqwY+AFA7dq1AQCTJk1STFepVIplxJa58unOlLE1bdo0h8fCgSFjjDHGGHtWiOe2fHfbo1csAsLBgwejR48eeZaRZ/RiYmLQokULNGrUCIsXL853/Q0bNoRer0dcXBxKly6NoKAgxMbGKsrEx8cDuJ8pzK2MVqtFqVKlct3W6NGjMXz4cOn1nTt38MILL6BcuXL57idjjDHGGGNPk7S0NEXnjazwFYuA0N/fH/7+/k6VvXPnDlq0aIG6deti+fLlUKvzv83yxIkTcHNzQ4kSJQAAjRo1wpgxY2A0GuHq6goA2L59O0JCQqTAs1GjRti0aZNiPdu3b0dYWBhcXFxy3ZZOp1Pcm+jl5YVbt27B29s7z8xicabX61GuXDncunWLb0ouJFynhY/rtHBxfRY+rtPCxfVZ+LhOC1dR1ycRIS0tDSEhIY9928VNsQgInRUTE4PmzZujfPny+O6775CQkCDNCwoKAgBs2rQJsbGxaNSoEdzd3bFnzx6MHTsW//vf/6RA7d1338XEiRPRv39/jBkzBpcuXcLUqVMxfvx4KWgbMGAA5s6di+HDh+Ojjz7CoUOHsGzZMqxZs6ZA+6xWq1G2bNlCqoFnm4+PD/9AFDKu08LHdVq4uD4LH9dp4eL6LHxcp4WrKOuTM4OPBweEMtu3b8fly5dx+fJluyBLbL/s4uKC+fPnY/jw4RAEAZUqVcKkSZMwaNAgqayvry927NiBQYMGISwsDH5+fhg+fLiiqWdoaCi2bNmCYcOGYd68eQgJCcHs2bN5DELGGGOMMcbYY8PjELJnHo9jU/i4Tgsf12nh4vosfFynhYvrs/BxnRYurs/ig8chZM88nU6HCRMmKO69ZA+H67TwcZ0WLq7Pwsd1Wri4Pgsf12nh4vosPjhDyBhjjDHGGGPFFGcIGWOMMcYYY6yY4oCQMcYYY4wxxoopDggZY4wxxhhjrJjigJAxxhhjjDHGiikOCNkzY9q0aahXrx68vb0RGBiIzp0748KFC4oyRIT/+7//Q0hICNzd3dG8eXOcOXOmiPb46TJt2jSoVCoMHTpUmsb1WXB37txB7969UapUKXh4eKB27do4fvy4NJ/r1HlmsxlfffUVQkND4e7uLo0LKwiCVIbrM2/79u3DG2+8gZCQEKhUKmzcuFEx35n6MxgMGDJkCPz9/eHp6YlOnTrh9u3bj/Eonhx51afJZMKoUaNQq1YteHp6IiQkBH379kVMTIxiHVyfSvl9RuU+/vhjqFQq/PDDD4rpXKdKztTpuXPn0KlTJ/j6+sLb2xsNGzbEzZs3pflcp88WDgjZMyM8PByDBg3C4cOHsWPHDpjNZrRp0wYZGRlSmW+//RYzZ87E3LlzcfToUQQFBeG1115DWlpaEe75k+/o0aNYvHgxXnzxRcV0rs+CSU5ORuPGjeHi4oJ///0XZ8+exffff48SJUpIZbhOnffNN99g4cKFmDt3Ls6dO4dvv/0WM2bMwJw5c6QyXJ95y8jIwEsvvYS5c+c6nO9M/Q0dOhQbNmzA2rVrceDAAaSnp6Njx46wWCyP6zCeGHnVZ2ZmJqKiojBu3DhERUVh/fr1uHjxIjp16qQox/WplN9nVLRx40YcOXIEISEhdvO4TpXyq9MrV66gSZMmqFatGvbu3YtTp05h3LhxcHNzk8pwnT5jiLFnVHx8PAGg8PBwIiISBIGCgoJo+vTpUpns7Gzy9fWlhQsXFtVuPvHS0tLoueeeox07dlCzZs3os88+IyKuzwcxatQoatKkSa7zuU4LpkOHDvT+++8rpnXt2pV69+5NRFyfBQWANmzYIL12pv5SUlLIxcWF1q5dK5W5c+cOqdVq2rp162Pb9yeRbX06EhkZSQDoxo0bRMT1mZ/c6vT27dtUpkwZOn36NFWoUIFmzZolzeM6zZujOu3evbv0PeoI1+mzhzOE7JmVmpoKAChZsiQA4Nq1a4iNjUWbNm2kMjqdDs2aNUNERESR7OPTYNCgQejQoQNat26tmM71WXB///03wsLC8M477yAwMBB16tTBkiVLpPlcpwXTpEkT7Nq1CxcvXgQAnDp1CgcOHED79u0BcH0+LGfq7/jx4zCZTIoyISEhqFmzJtexE1JTU6FSqaRWAlyfBScIAvr06YORI0eiRo0advO5TgtGEAT8888/eP7559G2bVsEBgaiQYMGimalXKfPHg4I2TOJiDB8+HA0adIENWvWBADExsYCAEqXLq0oW7p0aWkeU1q7di2ioqIwbdo0u3lcnwV39epVLFiwAM899xy2bduGAQMG4NNPP8XKlSsBcJ0W1KhRo9CzZ09Uq1YNLi4uqFOnDoYOHYqePXsC4Pp8WM7UX2xsLFxdXeHn55drGeZYdnY2vvzyS7z77rvw8fEBwPX5IL755htotVp8+umnDudznRZMfHw80tPTMX36dLz++uvYvn07unTpgq5duyI8PBwA1+mzSFvUO8DYozB48GD8999/OHDggN08lUqleE1EdtMYcOvWLXz22WfYvn274r4BW1yfzhMEAWFhYZg6dSoAoE6dOjhz5gwWLFiAvn37SuW4Tp2zbt06rF69Gr/++itq1KiBkydPYujQoQgJCUG/fv2kclyfD+dB6o/rOG8mkwk9evSAIAiYP39+vuW5Ph07fvw4fvzxR0RFRRW4frhOHRM75XrzzTcxbNgwAEDt2rURERGBhQsXolmzZrkuy3X69OIMIXvmDBkyBH///Tf27NmDsmXLStODgoIAwO7qVXx8vN0VcJbzQxsfH4+6detCq9VCq9UiPDwcs2fPhlarleqM69N5wcHBeOGFFxTTqlevLvXcxp/Rghk5ciS+/PJL9OjRA7Vq1UKfPn0wbNgwKaPN9flwnKm/oKAgGI1GJCcn51qGKZlMJnTr1g3Xrl3Djh07pOwgwPVZUPv370d8fDzKly8v/U7duHEDI0aMQMWKFQFwnRaUv78/tFptvr9VXKfPFg4I2TODiDB48GCsX78eu3fvRmhoqGJ+aGgogoKCsGPHDmma0WhEeHg4Xnnllce9u0+8Vq1aITo6GidPnpQeYWFh6NWrF06ePIlKlSpxfRZQ48aN7YZCuXjxIipUqACAP6MFlZmZCbVa+TOm0WikK9xcnw/HmfqrW7cuXFxcFGXu3r2L06dPcx07IAaDly5dws6dO1GqVCnFfK7PgunTpw/+++8/xe9USEgIRo4ciW3btgHgOi0oV1dX1KtXL8/fKq7TZ1ARdWbDWKH75JNPyNfXl/bu3Ut3796VHpmZmVKZ6dOnk6+vL61fv56io6OpZ8+eFBwcTHq9vgj3/Okh72WUiOuzoCIjI0mr1dKUKVPo0qVL9Msvv5CHhwetXr1aKsN16rx+/fpRmTJlaPPmzXTt2jVav349+fv70xdffCGV4frMW1paGp04cYJOnDhBAGjmzJl04sQJqddLZ+pvwIABVLZsWdq5cydFRUVRy5Yt6aWXXiKz2VxUh1Vk8qpPk8lEnTp1orJly9LJkycVv1MGg0FaB9enUn6fUVu2vYwScZ3ayq9O169fTy4uLrR48WK6dOkSzZkzhzQaDe3fv19aB9fps4UDQvbMAODwsXz5cqmMIAg0YcIECgoKIp1OR02bNqXo6Oii2+mnjG1AyPVZcJs2baKaNWuSTqejatWq0eLFixXzuU6dp9fr6bPPPqPy5cuTm5sbVapUicaOHas4ueb6zNuePXscfm/269ePiJyrv6ysLBo8eDCVLFmS3N3dqWPHjnTz5s0iOJqil1d9Xrt2LdffqT179kjr4PpUyu8zastRQMh1quRMnS5btoyqVKlCbm5u9NJLL9HGjRsV6+A6fbaoiIgebQ6SMcYYY4wxxtiTiO8hZIwxxhhjjLFiigNCxhhjjDHGGCumOCBkjDHGGGOMsWKKA0LGGGOMMcYYK6Y4IGSMMcYYY4yxYooDQsYYY4wxxhgrpjggZIwxxhhjjLFiigNCxhhjjDHGGCumOCBkjDHGGGOMsWKKA0LGGGOMMcYYK6Y4IGSMMcYYY4yxYooDQsYYY4wxxhgrpjggZIwxxhhjjLFiigNCxhhjjDHGGCumOCBkjDHGGGOMsWKKA0LGGGOMMcYYK6Y4IGSMMcYYY4yxYooDQsYYY4wxxhgrpjggZIwxxhhjjLFiigNCxhhjjDHGGCumOCBkjDHGGGOMsWKKA0LGGGOMMcYYK6b+Hy6NqYoIhWeVAAAAAElFTkSuQmCC", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "px.SetMaxSinThetaOvLambda(0.3)\n", "px.quick_fit_profile(auto_background=True,plot=False, init_profile=True,verbose=True)\n", @@ -317,7 +151,7 @@ "# Plot in new figure\n", "px.plot(diff=True, fig=None, hkl=True)\n", "print(\"Fit result: Rw=%6.2f%% Chi2=%10.2f GoF=%8.2f LLK=%10.3f\" %\n", - " (px.rw * 100, px.chi2, px.chi2/px.GetNbPointUsed(), px.llk))" + " (px.rw * 100, px.chi2, px.chi2/px.GetNbPointUsed(), px.llk))\n" ] }, { @@ -332,7 +166,7 @@ "From this several values are extracted for each spacegroup setting:\n", "* **Rw** - the standard full-profile weighted R factor $R_{wp}$\n", "* **GoF**: the chi2 (full profile $\\chi^2=\\Sigma\\frac{(obs-calc)^2}{\\sigma^2}$) divided by the number of points used\n", - "* **nGoF**: this is the Goodness-of-Fit, but computed on integration intervals defined by P1 reflections, and then multipled by the number of reflections used divided by the number of reflections for the P1 spacegroup. This is more discriminating and allows to put forward spacegroups which yield a good fit with more extinctions.\n", + "* **nGoF**: this is the Goodness-of-Fit, but computed on integration intervals defined by P1 reflections, and then multiplied by the number of reflections used divided by the number of reflections for the P1 spacegroup. This is more discriminating and allows to put forward spacegroups which yield a good fit with more extinctions.\n", "* **reflections** is the number of reflections actually taken into account for this spacegroup up to the maximum sin(theta)/lambda\n", "* **extinct446** gives the number of extinct reflections for 0<=H<=4 0<=K<=4 0<=L<=6 (which is used internally as a unique fingerprint for the extinctions)\n", "\n", @@ -345,436 +179,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Beginning spacegroup exploration... 348 to go...\n", - " (# 1) P 1 : Rwp= 9.99% GoF= 6.74 nGoF= 1.81 (158 reflections, 0 extinct)\n", - " (# 2) P -1 : Rwp= 9.99% GoF= 6.74 nGoF= 1.81 (158 reflections, 0 extinct) [same extinctions as:P 1]\n", - " (# 3) P 1 2 1 : Rwp= 10.36% GoF= 7.14 nGoF= 1.18 ( 95 reflections, 0 extinct)\n", - " (# 3) P 1 1 2 : Rwp= 10.21% GoF= 6.93 nGoF= 1.11 ( 93 reflections, 0 extinct)\n", - " (# 3) P 2 1 1 : Rwp= 10.49% GoF= 7.30 nGoF= 1.26 ( 98 reflections, 0 extinct)\n", - " (# 4) P 1 21 1 : Rwp= 10.56% GoF= 7.40 nGoF= 1.16 ( 93 reflections, 2 extinct)\n", - " (# 4) P 1 1 21 : Rwp= 10.26% GoF= 6.99 nGoF= 1.18 ( 90 reflections, 3 extinct)\n", - " (# 4) P 21 1 1 : Rwp= 10.44% GoF= 7.22 nGoF= 1.21 ( 96 reflections, 2 extinct)\n", - " (# 5) C 1 2 1 : Rwp= 67.10% GoF= 302.47 nGoF= 75.71 ( 47 reflections, 84 extinct)\n", - " (# 5) A 1 2 1 : P 21 c n nGoF= 0.6932 GoF= 6.600 Rw=10.06 [ 48 reflections, extinct446= 27]\n", - "P m c n nGoF= 0.6932 GoF= 6.600 Rw=10.06 [ 48 reflections, extinct446= 27]\n", - "P 21 m n nGoF= 0.7580 GoF= 7.658 Rw=10.82 [ 56 reflections, extinct446= 12]\n", - "P m 21 n nGoF= 0.7580 GoF= 7.658 Rw=10.82 [ 56 reflections, extinct446= 12]\n", - "P m m n :1 nGoF= 0.7580 GoF= 7.658 Rw=10.82 [ 56 reflections, extinct446= 12]\n", - "P m m n :2 nGoF= 0.7580 GoF= 7.658 Rw=10.82 [ 56 reflections, extinct446= 12]\n", - "P 21 21 2 nGoF= 0.7761 GoF= 7.636 Rw=10.79 [ 60 reflections, extinct446= 4]\n", - "P 21 21 21 nGoF= 0.7936 GoF= 6.667 Rw=10.09 [ 57 reflections, extinct446= 7]\n", - "P 2 c m nGoF= 0.7952 GoF= 7.402 Rw=10.64 [ 56 reflections, extinct446= 15]\n", - "P m c m nGoF= 0.7952 GoF= 7.402 Rw=10.64 [ 56 reflections, extinct446= 15]\n", - "P m c 21 nGoF= 0.7952 GoF= 7.402 Rw=10.64 [ 56 reflections, extinct446= 15]\n", - "P 21 2 2 nGoF= 0.7972 GoF= 7.379 Rw=10.60 [ 62 reflections, extinct446= 2]\n", - "P 2 21 2 nGoF= 0.8149 GoF= 7.689 Rw=10.82 [ 62 reflections, extinct446= 2]\n", - "P 21 2 21 nGoF= 0.8332 GoF= 7.464 Rw=10.67 [ 59 reflections, extinct446= 5]\n", - "P 2 21 21 nGoF= 0.8337 GoF= 6.719 Rw=10.12 [ 59 reflections, extinct446= 5]\n", - "P 2 2 2 nGoF= 0.8359 GoF= 7.424 Rw=10.63 [ 64 reflections, extinct446= 0]\n", - "P m m 2 nGoF= 0.8359 GoF= 7.424 Rw=10.63 [ 64 reflections, extinct446= 0]\n", - "P 2 m m nGoF= 0.8359 GoF= 7.424 Rw=10.63 [ 64 reflections, extinct446= 0]\n", - "P m 2 m nGoF= 0.8359 GoF= 7.424 Rw=10.63 [ 64 reflections, extinct446= 0]\n", - "P m m m nGoF= 0.8359 GoF= 7.424 Rw=10.63 [ 64 reflections, extinct446= 0]\n", - "P 2 2 21 nGoF= 0.8737 GoF= 7.506 Rw=10.70 [ 61 reflections, extinct446= 3]\n", - "P 1 1 n nGoF= 1.0025 GoF= 7.164 Rw=10.41 [ 81 reflections, extinct446= 12]\n", - "P 1 1 2/n nGoF= 1.0025 GoF= 7.164 Rw=10.41 [ 81 reflections, extinct446= 12]\n", - "P 1 1 21/n nGoF= 1.0394 GoF= 6.164 Rw= 9.66 [ 78 reflections, extinct446= 15]\n", - "P 1 21/c 1 nGoF= 1.0680 GoF= 6.298 Rw= 9.78 [ 80 reflections, extinct446= 17]\n", - "P 1 1 2 nGoF= 1.1058 GoF= 6.932 Rw=10.21 [ 93 reflections, extinct446= 0]\n", - "P 1 1 m nGoF= 1.1058 GoF= 6.932 Rw=10.21 [ 93 reflections, extinct446= 0]\n", - "P 1 1 2/m nGoF= 1.1058 GoF= 6.932 Rw=10.21 [ 93 reflections, extinct446= 0]\n", - "P 1 c 1 nGoF= 1.1097 GoF= 7.088 Rw=10.36 [ 82 reflections, extinct446= 15]\n", - "P 1 2/c 1 nGoF= 1.1097 GoF= 7.088 Rw=10.36 [ 82 reflections, extinct446= 15]\n", - "P 1 21 1 nGoF= 1.1626 GoF= 7.403 Rw=10.56 [ 93 reflections, extinct446= 2]\n", - "P 1 21/m 1 nGoF= 1.1626 GoF= 7.403 Rw=10.56 [ 93 reflections, extinct446= 2]\n", - "P 1 1 21 nGoF= 1.1787 GoF= 6.993 Rw=10.26 [ 90 reflections, extinct446= 3]\n", - "P 1 1 21/m nGoF= 1.1787 GoF= 6.993 Rw=10.26 [ 90 reflections, extinct446= 3]\n", - "P 1 2 1 nGoF= 1.1799 GoF= 7.136 Rw=10.36 [ 95 reflections, extinct446= 0]\n", - "P 1 m 1 nGoF= 1.1799 GoF= 7.136 Rw=10.36 [ 95 reflections, extinct446= 0]\n", - "P 1 2/m 1 nGoF= 1.1799 GoF= 7.136 Rw=10.36 [ 95 reflections, extinct446= 0]\n", - "P 21 1 1 nGoF= 1.2087 GoF= 7.218 Rw=10.44 [ 96 reflections, extinct446= 2]\n", - "P 21/m 1 1 nGoF= 1.2087 GoF= 7.218 Rw=10.44 [ 96 reflections, extinct446= 2]\n", - "P 2 1 1 nGoF= 1.2603 GoF= 7.300 Rw=10.49 [ 98 reflections, extinct446= 0]\n", - "P m 1 1 nGoF= 1.2603 GoF= 7.300 Rw=10.49 [ 98 reflections, extinct446= 0]\n", - "P 2/m 1 1 nGoF= 1.2603 GoF= 7.300 Rw=10.49 [ 98 reflections, extinct446= 0]\n", - "P 1 nGoF= 1.8070 GoF= 6.738 Rw= 9.99 [158 reflections, extinct446= 0]\n", - "P -1 nGoF= 1.8070 GoF= 6.738 Rw= 9.99 [158 reflections, extinct446= 0]\n", - "Chosen spacegroup (smallest nGoF): P m c n\n", - "Rwp= 84.49% GoF= 473.87 nGoF= 135.82 ( 49 reflections, 85 extinct)\n", - " (# 5) I 1 2 1 : Rwp= 72.81% GoF= 344.19 nGoF= 96.53 ( 46 reflections, 87 extinct)\n", - " (# 5) A 1 1 2 : Rwp= 84.33% GoF= 472.07 nGoF= 129.57 ( 47 reflections, 85 extinct)\n", - " (# 5) B 1 1 2 : Rwp= 71.98% GoF= 336.58 nGoF= 90.94 ( 45 reflections, 85 extinct)\n", - " (# 5) I 1 1 2 : Rwp= 72.52% GoF= 341.81 nGoF= 94.15 ( 45 reflections, 87 extinct)\n", - " (# 5) B 2 1 1 : Rwp= 71.94% GoF= 335.24 nGoF= 95.03 ( 47 reflections, 85 extinct)\n", - " (# 5) C 2 1 1 : Rwp= 67.25% GoF= 303.93 nGoF= 77.53 ( 48 reflections, 84 extinct)\n", - " (# 5) I 2 1 1 : Rwp= 72.77% GoF= 343.85 nGoF= 100.61 ( 48 reflections, 87 extinct)\n", - " (# 6) P 1 m 1 : Rwp= 10.36% GoF= 7.14 nGoF= 1.18 ( 95 reflections, 0 extinct) [same extinctions as:P 1 2 1]\n", - " (# 6) P 1 1 m : Rwp= 10.21% GoF= 6.93 nGoF= 1.11 ( 93 reflections, 0 extinct) [same extinctions as:P 1 1 2]\n", - " (# 6) P m 1 1 : Rwp= 10.49% GoF= 7.30 nGoF= 1.26 ( 98 reflections, 0 extinct) [same extinctions as:P 2 1 1]\n", - " (# 7) P 1 c 1 : Rwp= 10.36% GoF= 7.09 nGoF= 1.11 ( 82 reflections, 15 extinct)\n", - " (# 7) P 1 n 1 : Rwp= 38.30% GoF= 96.80 nGoF= 45.75 ( 80 reflections, 17 extinct)\n", - " (# 7) P 1 a 1 : Rwp= 43.27% GoF= 123.51 nGoF= 51.72 ( 81 reflections, 14 extinct)\n", - " (# 7) P 1 1 a : Rwp= 33.41% GoF= 73.81 nGoF= 27.88 ( 81 reflections, 10 extinct)\n", - " (# 7) P 1 1 n : Rwp= 10.41% GoF= 7.16 nGoF= 1.00 ( 81 reflections, 12 extinct)\n", - " (# 7) P 1 1 b : Rwp= 33.47% GoF= 74.07 nGoF= 27.89 ( 81 reflections, 10 extinct)\n", - " (# 7) P b 1 1 : Rwp= 33.79% GoF= 75.16 nGoF= 25.79 ( 80 reflections, 14 extinct)\n", - " (# 7) P n 1 1 : Rwp= 33.65% GoF= 74.54 nGoF= 32.91 ( 81 reflections, 17 extinct)\n", - " (# 7) P c 1 1 : Rwp= 38.57% GoF= 97.83 nGoF= 39.17 ( 79 reflections, 15 extinct)\n", - " (# 8) C 1 m 1 : Rwp= 67.10% GoF= 302.47 nGoF= 75.71 ( 47 reflections, 84 extinct) [same extinctions as:C 1 2 1]\n", - " (# 8) A 1 m 1 : Rwp= 84.49% GoF= 473.87 nGoF= 135.82 ( 49 reflections, 85 extinct) [same extinctions as:A 1 2 1]\n", - " (# 8) I 1 m 1 : Rwp= 72.81% GoF= 344.19 nGoF= 96.53 ( 46 reflections, 87 extinct) [same extinctions as:I 1 2 1]\n", - " (# 8) A 1 1 m : Rwp= 84.33% GoF= 472.07 nGoF= 129.57 ( 47 reflections, 85 extinct) [same extinctions as:A 1 1 2]\n", - " (# 8) B 1 1 m : Rwp= 71.98% GoF= 336.58 nGoF= 90.94 ( 45 reflections, 85 extinct) [same extinctions as:B 1 1 2]\n", - " (# 8) I 1 1 m : Rwp= 72.52% GoF= 341.81 nGoF= 94.15 ( 45 reflections, 87 extinct) [same extinctions as:I 1 1 2]\n", - " (# 8) B m 1 1 : Rwp= 71.94% GoF= 335.24 nGoF= 95.03 ( 47 reflections, 85 extinct) [same extinctions as:B 2 1 1]\n", - " (# 8) C m 1 1 : Rwp= 67.25% GoF= 303.93 nGoF= 77.53 ( 48 reflections, 84 extinct) [same extinctions as:C 2 1 1]\n", - " (# 8) I m 1 1 : Rwp= 72.77% GoF= 343.85 nGoF= 100.61 ( 48 reflections, 87 extinct) [same extinctions as:I 2 1 1]\n", - " (# 9) C 1 c 1 : Rwp= 64.35% GoF= 277.20 nGoF= 62.41 ( 40 reflections, 93 extinct)\n", - " (# 9) A 1 n 1 : Rwp= 85.15% GoF= 479.72 nGoF= 117.17 ( 41 reflections, 93 extinct)\n", - " (# 9) I 1 a 1 : Rwp= 72.80% GoF= 342.99 nGoF= 83.92 ( 40 reflections, 93 extinct)\n", - " (# 9) A 1 a 1 : Rwp= 85.15% GoF= 479.72 nGoF= 117.17 ( 41 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", - " (# 9) C 1 n 1 : Rwp= 64.35% GoF= 277.20 nGoF= 62.41 ( 40 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", - " (# 9) I 1 c 1 : Rwp= 72.80% GoF= 342.99 nGoF= 83.92 ( 40 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", - " (# 9) A 1 1 a : Rwp= 62.57% GoF= 259.13 nGoF= 63.23 ( 41 reflections, 91 extinct)\n", - " (# 9) B 1 1 n : Rwp= 71.99% GoF= 335.75 nGoF= 78.85 ( 39 reflections, 91 extinct)\n", - " (# 9) I 1 1 b : Rwp= 73.52% GoF= 350.18 nGoF= 83.75 ( 39 reflections, 91 extinct)\n", - " (# 9) B 1 1 b : Rwp= 71.99% GoF= 335.75 nGoF= 78.85 ( 39 reflections, 91 extinct) [same extinctions as:B 1 1 n]\n", - " (# 9) A 1 1 n : Rwp= 62.57% GoF= 259.13 nGoF= 63.23 ( 41 reflections, 91 extinct) [same extinctions as:A 1 1 a]\n", - " (# 9) I 1 1 a : Rwp= 73.52% GoF= 350.18 nGoF= 83.75 ( 39 reflections, 91 extinct) [same extinctions as:I 1 1 b]\n", - " (# 9) B b 1 1 : Rwp= 73.59% GoF= 349.69 nGoF= 83.02 ( 39 reflections, 93 extinct)\n", - " (# 9) C n 1 1 : Rwp= 72.53% GoF= 352.00 nGoF= 78.33 ( 39 reflections, 93 extinct)\n", - " (# 9) I c 1 1 : Rwp= 74.34% GoF= 357.22 nGoF= 82.40 ( 38 reflections, 93 extinct)\n", - " (# 9) C c 1 1 : Rwp= 72.53% GoF= 352.00 nGoF= 78.33 ( 39 reflections, 93 extinct) [same extinctions as:C n 1 1]\n", - " (# 9) B n 1 1 : Rwp= 73.59% GoF= 349.69 nGoF= 83.02 ( 39 reflections, 93 extinct) [same extinctions as:B b 1 1]\n", - " (# 9) I b 1 1 : Rwp= 74.34% GoF= 357.22 nGoF= 82.40 ( 38 reflections, 93 extinct) [same extinctions as:I c 1 1]\n", - " (# 10) P 1 2/m 1 : Rwp= 10.36% GoF= 7.14 nGoF= 1.18 ( 95 reflections, 0 extinct) [same extinctions as:P 1 2 1]\n", - " (# 10) P 1 1 2/m : Rwp= 10.21% GoF= 6.93 nGoF= 1.11 ( 93 reflections, 0 extinct) [same extinctions as:P 1 1 2]\n", - " (# 10) P 2/m 1 1 : Rwp= 10.49% GoF= 7.30 nGoF= 1.26 ( 98 reflections, 0 extinct) [same extinctions as:P 2 1 1]\n", - " (# 11) P 1 21/m 1 : Rwp= 10.56% GoF= 7.40 nGoF= 1.16 ( 93 reflections, 2 extinct) [same extinctions as:P 1 21 1]\n", - " (# 11) P 1 1 21/m : Rwp= 10.26% GoF= 6.99 nGoF= 1.18 ( 90 reflections, 3 extinct) [same extinctions as:P 1 1 21]\n", - " (# 11) P 21/m 1 1 : Rwp= 10.44% GoF= 7.22 nGoF= 1.21 ( 96 reflections, 2 extinct) [same extinctions as:P 21 1 1]\n", - " (# 12) C 1 2/m 1 : Rwp= 67.10% GoF= 302.47 nGoF= 75.71 ( 47 reflections, 84 extinct) [same extinctions as:C 1 2 1]\n", - " (# 12) A 1 2/m 1 : Rwp= 84.49% GoF= 473.87 nGoF= 135.82 ( 49 reflections, 85 extinct) [same extinctions as:A 1 2 1]\n", - " (# 12) I 1 2/m 1 : Rwp= 72.81% GoF= 344.19 nGoF= 96.53 ( 46 reflections, 87 extinct) [same extinctions as:I 1 2 1]\n", - " (# 12) A 1 1 2/m : Rwp= 84.33% GoF= 472.07 nGoF= 129.57 ( 47 reflections, 85 extinct) [same extinctions as:A 1 1 2]\n", - " (# 12) B 1 1 2/m : Rwp= 71.98% GoF= 336.58 nGoF= 90.94 ( 45 reflections, 85 extinct) [same extinctions as:B 1 1 2]\n", - " (# 12) I 1 1 2/m : Rwp= 72.52% GoF= 341.81 nGoF= 94.15 ( 45 reflections, 87 extinct) [same extinctions as:I 1 1 2]\n", - " (# 12) B 2/m 1 1 : Rwp= 71.94% GoF= 335.24 nGoF= 95.03 ( 47 reflections, 85 extinct) [same extinctions as:B 2 1 1]\n", - " (# 12) C 2/m 1 1 : Rwp= 67.25% GoF= 303.93 nGoF= 77.53 ( 48 reflections, 84 extinct) [same extinctions as:C 2 1 1]\n", - " (# 12) I 2/m 1 1 : Rwp= 72.77% GoF= 343.85 nGoF= 100.61 ( 48 reflections, 87 extinct) [same extinctions as:I 2 1 1]\n", - " (# 13) P 1 2/c 1 : Rwp= 10.36% GoF= 7.09 nGoF= 1.11 ( 82 reflections, 15 extinct) [same extinctions as:P 1 c 1]\n", - " (# 13) P 1 2/n 1 : Rwp= 38.30% GoF= 96.80 nGoF= 45.75 ( 80 reflections, 17 extinct) [same extinctions as:P 1 n 1]\n", - " (# 13) P 1 2/a 1 : Rwp= 43.27% GoF= 123.51 nGoF= 51.72 ( 81 reflections, 14 extinct) [same extinctions as:P 1 a 1]\n", - " (# 13) P 1 1 2/a : Rwp= 33.41% GoF= 73.81 nGoF= 27.88 ( 81 reflections, 10 extinct) [same extinctions as:P 1 1 a]\n", - " (# 13) P 1 1 2/n : Rwp= 10.41% GoF= 7.16 nGoF= 1.00 ( 81 reflections, 12 extinct) [same extinctions as:P 1 1 n]\n", - " (# 13) P 1 1 2/b : Rwp= 33.47% GoF= 74.07 nGoF= 27.89 ( 81 reflections, 10 extinct) [same extinctions as:P 1 1 b]\n", - " (# 13) P 2/b 1 1 : Rwp= 33.79% GoF= 75.16 nGoF= 25.79 ( 80 reflections, 14 extinct) [same extinctions as:P b 1 1]\n", - " (# 13) P 2/n 1 1 : Rwp= 33.65% GoF= 74.54 nGoF= 32.91 ( 81 reflections, 17 extinct) [same extinctions as:P n 1 1]\n", - " (# 13) P 2/c 1 1 : Rwp= 38.57% GoF= 97.83 nGoF= 39.17 ( 79 reflections, 15 extinct) [same extinctions as:P c 1 1]\n", - " (# 14) P 1 21/c 1 : Rwp= 9.78% GoF= 6.30 nGoF= 1.07 ( 80 reflections, 17 extinct)\n", - " (# 14) P 1 21/n 1 : Rwp= 38.20% GoF= 96.17 nGoF= 44.60 ( 78 reflections, 19 extinct)\n", - " (# 14) P 1 21/a 1 : Rwp= 43.29% GoF= 123.52 nGoF= 50.45 ( 79 reflections, 16 extinct)\n", - " (# 14) P 1 1 21/a : Rwp= 33.43% GoF= 73.76 nGoF= 26.93 ( 78 reflections, 13 extinct)\n", - " (# 14) P 1 1 21/n : Rwp= 9.66% GoF= 6.16 nGoF= 1.04 ( 78 reflections, 15 extinct)\n", - " (# 14) P 1 1 21/b : Rwp= 33.31% GoF= 73.23 nGoF= 26.90 ( 78 reflections, 13 extinct)\n", - " (# 14) P 21/b 1 1 : Rwp= 40.44% GoF= 107.55 nGoF= 32.31 ( 78 reflections, 16 extinct)\n", - " (# 14) P 21/n 1 1 : Rwp= 33.63% GoF= 74.37 nGoF= 32.07 ( 79 reflections, 19 extinct)\n", - " (# 14) P 21/c 1 1 : Rwp= 44.04% GoF= 127.39 nGoF= 44.51 ( 77 reflections, 17 extinct)\n", - " (# 15) C 1 2/c 1 : Rwp= 64.35% GoF= 277.20 nGoF= 62.41 ( 40 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", - " (# 15) A 1 2/n 1 : Rwp= 85.15% GoF= 479.72 nGoF= 117.17 ( 41 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", - " (# 15) I 1 2/a 1 : Rwp= 72.80% GoF= 342.99 nGoF= 83.92 ( 40 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", - " (# 15) A 1 2/a 1 : Rwp= 85.15% GoF= 479.72 nGoF= 117.17 ( 41 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", - " (# 15) C 1 2/n 1 : Rwp= 64.35% GoF= 277.20 nGoF= 62.41 ( 40 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", - " (# 15) I 1 2/c 1 : Rwp= 72.80% GoF= 342.99 nGoF= 83.92 ( 40 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", - " (# 15) A 1 1 2/a : Rwp= 62.57% GoF= 259.13 nGoF= 63.23 ( 41 reflections, 91 extinct) [same extinctions as:A 1 1 a]\n", - " (# 15) B 1 1 2/n : Rwp= 71.99% GoF= 335.75 nGoF= 78.85 ( 39 reflections, 91 extinct) [same extinctions as:B 1 1 n]\n", - " (# 15) I 1 1 2/b : Rwp= 73.52% GoF= 350.18 nGoF= 83.75 ( 39 reflections, 91 extinct) [same extinctions as:I 1 1 b]\n", - " (# 15) B 1 1 2/b : Rwp= 71.99% GoF= 335.75 nGoF= 78.85 ( 39 reflections, 91 extinct) [same extinctions as:B 1 1 n]\n", - " (# 15) A 1 1 2/n : Rwp= 62.57% GoF= 259.13 nGoF= 63.23 ( 41 reflections, 91 extinct) [same extinctions as:A 1 1 a]\n", - " (# 15) I 1 1 2/a : Rwp= 73.52% GoF= 350.18 nGoF= 83.75 ( 39 reflections, 91 extinct) [same extinctions as:I 1 1 b]\n", - " (# 15) B 2/b 1 1 : Rwp= 73.59% GoF= 349.69 nGoF= 83.02 ( 39 reflections, 93 extinct) [same extinctions as:B b 1 1]\n", - " (# 15) C 2/n 1 1 : Rwp= 72.53% GoF= 352.00 nGoF= 78.33 ( 39 reflections, 93 extinct) [same extinctions as:C n 1 1]\n", - " (# 15) I 2/c 1 1 : Rwp= 74.34% GoF= 357.22 nGoF= 82.40 ( 38 reflections, 93 extinct) [same extinctions as:I c 1 1]\n", - " (# 15) C 2/c 1 1 : Rwp= 72.53% GoF= 352.00 nGoF= 78.33 ( 39 reflections, 93 extinct) [same extinctions as:C n 1 1]\n", - " (# 15) B 2/n 1 1 : Rwp= 73.59% GoF= 349.69 nGoF= 83.02 ( 39 reflections, 93 extinct) [same extinctions as:B b 1 1]\n", - " (# 15) I 2/b 1 1 : Rwp= 74.34% GoF= 357.22 nGoF= 82.40 ( 38 reflections, 93 extinct) [same extinctions as:I c 1 1]\n", - " (# 16) P 2 2 2 : Rwp= 10.63% GoF= 7.42 nGoF= 0.84 ( 64 reflections, 0 extinct)\n", - " (# 17) P 2 2 21 : Rwp= 10.70% GoF= 7.51 nGoF= 0.87 ( 61 reflections, 3 extinct)\n", - " (# 17) P 21 2 2 : Rwp= 10.60% GoF= 7.38 nGoF= 0.80 ( 62 reflections, 2 extinct)\n", - " (# 17) P 2 21 2 : Rwp= 10.82% GoF= 7.69 nGoF= 0.81 ( 62 reflections, 2 extinct)\n", - " (# 18) P 21 21 2 : Rwp= 10.79% GoF= 7.64 nGoF= 0.78 ( 60 reflections, 4 extinct)\n", - " (# 18) P 2 21 21 : Rwp= 10.12% GoF= 6.72 nGoF= 0.83 ( 59 reflections, 5 extinct)\n", - " (# 18) P 21 2 21 : Rwp= 10.67% GoF= 7.46 nGoF= 0.83 ( 59 reflections, 5 extinct)\n", - " (# 19) P 21 21 21 : Rwp= 10.09% GoF= 6.67 nGoF= 0.79 ( 57 reflections, 7 extinct)\n", - " (# 20) C 2 2 21 : Rwp= 67.30% GoF= 302.54 nGoF= 46.86 ( 29 reflections, 87 extinct)\n", - " (# 20) A 21 2 2 : Rwp= 84.49% GoF= 469.69 nGoF= 85.94 ( 31 reflections, 87 extinct)\n", - " (# 20) B 2 21 2 : Rwp= 72.02% GoF= 334.54 nGoF= 58.65 ( 29 reflections, 87 extinct)\n", - " (# 21) C 2 2 2 : Rwp= 67.34% GoF= 303.40 nGoF= 51.69 ( 32 reflections, 84 extinct)\n", - " (# 21) A 2 2 2 : Rwp= 84.49% GoF= 470.23 nGoF= 91.49 ( 33 reflections, 85 extinct)\n", - " (# 21) B 2 2 2 : Rwp= 72.02% GoF= 334.95 nGoF= 62.69 ( 31 reflections, 85 extinct)\n", - " (# 22) F 2 2 2 : Rwp= 76.91% GoF= 392.21 nGoF= 37.80 ( 16 reflections, 127 extinct)\n", - " (# 23) I 2 2 2 : Rwp= 72.85% GoF= 342.91 nGoF= 65.06 ( 31 reflections, 87 extinct)\n", - " (# 24) I 21 21 21 : Rwp= 72.85% GoF= 342.91 nGoF= 65.06 ( 31 reflections, 87 extinct) [same extinctions as:I 2 2 2]\n", - " (# 25) P m m 2 : Rwp= 10.63% GoF= 7.42 nGoF= 0.84 ( 64 reflections, 0 extinct) [same extinctions as:P 2 2 2]\n", - " (# 25) P 2 m m : Rwp= 10.63% GoF= 7.42 nGoF= 0.84 ( 64 reflections, 0 extinct) [same extinctions as:P 2 2 2]\n", - " (# 25) P m 2 m : Rwp= 10.63% GoF= 7.42 nGoF= 0.84 ( 64 reflections, 0 extinct) [same extinctions as:P 2 2 2]\n", - " (# 26) P m c 21 : Rwp= 10.64% GoF= 7.40 nGoF= 0.80 ( 56 reflections, 15 extinct)\n", - " (# 26) P c m 21 : Rwp= 38.62% GoF= 97.41 nGoF= 26.29 ( 53 reflections, 15 extinct)\n", - " (# 26) P 21 m a : Rwp= 33.50% GoF= 73.51 nGoF= 19.69 ( 57 reflections, 10 extinct)\n", - " (# 26) P 21 a m : Rwp= 43.46% GoF= 123.66 nGoF= 35.71 ( 56 reflections, 14 extinct)\n", - " (# 26) P b 21 m : Rwp= 34.03% GoF= 75.69 nGoF= 17.62 ( 54 reflections, 14 extinct)\n", - " (# 26) P m 21 b : Rwp= 33.56% GoF= 73.73 nGoF= 19.70 ( 57 reflections, 10 extinct)\n", - " (# 27) P c c 2 : Rwp= 38.60% GoF= 97.05 nGoF= 23.82 ( 48 reflections, 27 extinct)\n", - " (# 27) P 2 a a : Rwp= 50.20% GoF= 164.52 nGoF= 44.37 ( 51 reflections, 22 extinct)\n", - " (# 27) P b 2 b : Rwp= 43.99% GoF= 126.10 nGoF= 29.74 ( 49 reflections, 22 extinct)\n", - " (# 28) P m a 2 : Rwp= 43.46% GoF= 123.66 nGoF= 35.71 ( 56 reflections, 14 extinct) [same extinctions as:P 21 a m]\n", - " (# 28) P b m 2 : Rwp= 34.03% GoF= 75.69 nGoF= 17.62 ( 54 reflections, 14 extinct) [same extinctions as:P b 21 m]\n", - " (# 28) P 2 m b : Rwp= 33.56% GoF= 73.73 nGoF= 19.70 ( 57 reflections, 10 extinct) [same extinctions as:P m 21 b]\n", - " (# 28) P 2 c m : Rwp= 10.64% GoF= 7.40 nGoF= 0.80 ( 56 reflections, 15 extinct) [same extinctions as:P m c 21]\n", - " (# 28) P c 2 m : Rwp= 38.62% GoF= 97.41 nGoF= 26.29 ( 53 reflections, 15 extinct) [same extinctions as:P c m 21]\n", - " (# 28) P m 2 a : Rwp= 33.50% GoF= 73.51 nGoF= 19.69 ( 57 reflections, 10 extinct) [same extinctions as:P 21 m a]\n", - " (# 29) P c a 21 : Rwp= 62.23% GoF= 251.95 nGoF= 63.79 ( 45 reflections, 29 extinct)\n", - " (# 29) P b c 21 : Rwp= 33.86% GoF= 74.62 nGoF= 15.07 ( 46 reflections, 29 extinct)\n", - " (# 29) P 21 a b : Rwp= 50.22% GoF= 164.48 nGoF= 42.63 ( 49 reflections, 24 extinct)\n", - " (# 29) P 21 c a : Rwp= 33.54% GoF= 73.37 nGoF= 17.03 ( 49 reflections, 25 extinct)\n", - " (# 29) P c 21 b : Rwp= 46.81% GoF= 142.56 nGoF= 34.27 ( 46 reflections, 25 extinct)\n", - " (# 29) P b 21 a : Rwp= 48.70% GoF= 154.51 nGoF= 32.54 ( 47 reflections, 24 extinct)\n", - " (# 30) P n c 2 : Rwp= 33.90% GoF= 74.86 nGoF= 19.64 ( 48 reflections, 29 extinct)\n", - " (# 30) P c n 2 : Rwp= 60.42% GoF= 237.67 nGoF= 62.88 ( 46 reflections, 29 extinct)\n", - " (# 30) P 2 n a : Rwp= 46.62% GoF= 141.76 nGoF= 39.52 ( 49 reflections, 25 extinct)\n", - " (# 30) P 2 a n : Rwp= 43.48% GoF= 123.34 nGoF= 31.89 ( 50 reflections, 24 extinct)\n", - " (# 30) P b 2 n : Rwp= 41.11% GoF= 110.18 nGoF= 20.01 ( 48 reflections, 24 extinct)\n", - " (# 30) P n 2 b : Rwp= 43.81% GoF= 125.04 nGoF= 32.12 ( 48 reflections, 25 extinct)\n", - " (# 31) P m n 21 : Rwp= 38.36% GoF= 96.24 nGoF= 30.94 ( 54 reflections, 17 extinct)\n", - " (# 31) P n m 21 : Rwp= 33.93% GoF= 75.18 nGoF= 21.71 ( 53 reflections, 17 extinct)\n", - " (# 31) P 21 m n : Rwp= 10.82% GoF= 7.66 nGoF= 0.76 ( 56 reflections, 12 extinct)\n", - " (# 31) P 21 n m : Rwp= 38.36% GoF= 96.24 nGoF= 30.94 ( 54 reflections, 17 extinct) [same extinctions as:P m n 21]\n", - " (# 31) P n 21 m : Rwp= 33.93% GoF= 75.18 nGoF= 21.71 ( 53 reflections, 17 extinct) [same extinctions as:P n m 21]\n", - " (# 31) P m 21 n : Rwp= 10.82% GoF= 7.66 nGoF= 0.76 ( 56 reflections, 12 extinct) [same extinctions as:P 21 m n]\n", - " (# 32) P b a 2 : Rwp= 54.80% GoF= 195.52 nGoF= 44.29 ( 46 reflections, 28 extinct)\n", - " (# 32) P 2 c b : Rwp= 33.43% GoF= 72.83 nGoF= 17.02 ( 49 reflections, 25 extinct)\n", - " (# 32) P c 2 a : Rwp= 51.01% GoF= 169.41 nGoF= 37.84 ( 46 reflections, 25 extinct)\n", - " (# 33) P n a 21 : Rwp= 61.57% GoF= 246.67 nGoF= 65.58 ( 45 reflections, 31 extinct)\n", - " (# 33) P b n 21 : Rwp= 51.86% GoF= 174.89 nGoF= 39.36 ( 44 reflections, 31 extinct)\n", - " (# 33) P 21 n b : Rwp= 46.56% GoF= 141.24 nGoF= 37.89 ( 47 reflections, 27 extinct)\n", - " (# 33) P 21 c n : Rwp= 10.06% GoF= 6.60 nGoF= 0.69 ( 48 reflections, 27 extinct)\n", - " (# 33) P c 21 n : Rwp= 44.41% GoF= 128.33 nGoF= 25.93 ( 45 reflections, 27 extinct)\n", - " (# 33) P n 21 a : Rwp= 43.80% GoF= 124.89 nGoF= 30.78 ( 46 reflections, 27 extinct)\n", - " (# 34) P n n 2 : Rwp= 59.76% GoF= 232.47 nGoF= 65.08 ( 46 reflections, 31 extinct)\n", - " (# 34) P 2 n n : Rwp= 38.25% GoF= 95.37 nGoF= 27.50 ( 48 reflections, 27 extinct)\n", - " (# 34) P n 2 n : Rwp= 33.91% GoF= 74.93 nGoF= 19.25 ( 47 reflections, 27 extinct)\n", - " (# 35) C m m 2 : Rwp= 67.34% GoF= 303.40 nGoF= 51.69 ( 32 reflections, 84 extinct) [same extinctions as:C 2 2 2]\n", - " (# 35) A 2 m m : Rwp= 84.49% GoF= 470.23 nGoF= 91.49 ( 33 reflections, 85 extinct) [same extinctions as:A 2 2 2]\n", - " (# 35) B m 2 m : Rwp= 72.02% GoF= 334.95 nGoF= 62.69 ( 31 reflections, 85 extinct) [same extinctions as:B 2 2 2]\n", - " (# 36) C m c 21 : Rwp= 64.42% GoF= 276.89 nGoF= 42.22 ( 27 reflections, 93 extinct)\n", - " (# 36) C c m 21 : Rwp= 72.59% GoF= 351.39 nGoF= 52.23 ( 26 reflections, 93 extinct)\n", - " (# 36) A 21 m a : Rwp= 62.74% GoF= 258.86 nGoF= 44.91 ( 29 reflections, 91 extinct)\n", - " (# 36) A 21 a m : Rwp= 85.15% GoF= 476.52 nGoF= 80.02 ( 28 reflections, 93 extinct)\n", - " (# 36) B b 21 m : Rwp= 73.68% GoF= 349.64 nGoF= 55.38 ( 26 reflections, 93 extinct)\n", - " (# 36) B m 21 b : Rwp= 72.03% GoF= 334.31 nGoF= 54.62 ( 27 reflections, 91 extinct)\n", - " (# 37) C c c 2 : Rwp= 70.89% GoF= 334.73 nGoF= 47.38 ( 24 reflections, 99 extinct)\n", - " (# 37) A 2 a a : Rwp= 73.84% GoF= 357.94 nGoF= 57.40 ( 26 reflections, 97 extinct)\n", - " (# 37) B b 2 b : Rwp= 73.70% GoF= 349.37 nGoF= 51.13 ( 24 reflections, 97 extinct)\n", - " (# 38) A m m 2 : Rwp= 84.49% GoF= 470.23 nGoF= 91.49 ( 33 reflections, 85 extinct) [same extinctions as:A 2 2 2]\n", - " (# 38) B m m 2 : Rwp= 72.02% GoF= 334.95 nGoF= 62.69 ( 31 reflections, 85 extinct) [same extinctions as:B 2 2 2]\n", - " (# 38) B 2 m m : Rwp= 72.02% GoF= 334.95 nGoF= 62.69 ( 31 reflections, 85 extinct) [same extinctions as:B 2 2 2]\n", - " (# 38) C 2 m m : Rwp= 67.34% GoF= 303.40 nGoF= 51.69 ( 32 reflections, 84 extinct) [same extinctions as:C 2 2 2]\n", - " (# 38) C m 2 m : Rwp= 67.34% GoF= 303.40 nGoF= 51.69 ( 32 reflections, 84 extinct) [same extinctions as:C 2 2 2]\n", - " (# 38) A m 2 m : Rwp= 84.49% GoF= 470.23 nGoF= 91.49 ( 33 reflections, 85 extinct) [same extinctions as:A 2 2 2]\n", - " (# 39) A b m 2 : Rwp= 84.55% GoF= 472.67 nGoF= 77.79 ( 28 reflections, 91 extinct)\n", - " (# 39) B m a 2 : Rwp= 72.05% GoF= 334.62 nGoF= 56.66 ( 28 reflections, 91 extinct)\n", - " (# 39) B 2 c m : Rwp= 72.05% GoF= 334.62 nGoF= 56.66 ( 28 reflections, 91 extinct) [same extinctions as:B m a 2]\n", - " (# 39) C 2 m b : Rwp= 69.01% GoF= 318.13 nGoF= 49.97 ( 29 reflections, 88 extinct)\n", - " (# 39) C m 2 a : Rwp= 69.01% GoF= 318.13 nGoF= 49.97 ( 29 reflections, 88 extinct) [same extinctions as:C 2 m b]\n", - " (# 39) A c 2 m : Rwp= 84.55% GoF= 472.67 nGoF= 77.79 ( 28 reflections, 91 extinct) [same extinctions as:A b m 2]\n", - " (# 40) A m a 2 : Rwp= 85.15% GoF= 476.52 nGoF= 80.02 ( 28 reflections, 93 extinct) [same extinctions as:A 21 a m]\n", - " (# 40) B b m 2 : Rwp= 73.68% GoF= 349.64 nGoF= 55.38 ( 26 reflections, 93 extinct) [same extinctions as:B b 21 m]\n", - " (# 40) B 2 m b : Rwp= 72.03% GoF= 334.31 nGoF= 54.62 ( 27 reflections, 91 extinct) [same extinctions as:B m 21 b]\n", - " (# 40) C 2 c m : Rwp= 64.42% GoF= 276.89 nGoF= 42.22 ( 27 reflections, 93 extinct) [same extinctions as:C m c 21]\n", - " (# 40) C c 2 m : Rwp= 72.59% GoF= 351.39 nGoF= 52.23 ( 26 reflections, 93 extinct) [same extinctions as:C c m 21]\n", - " (# 40) A m 2 a : Rwp= 62.74% GoF= 258.86 nGoF= 44.91 ( 29 reflections, 91 extinct) [same extinctions as:A 21 m a]\n", - " (# 41) A b a 2 : Rwp= 85.30% GoF= 480.04 nGoF= 66.08 ( 23 reflections, 99 extinct)\n", - " (# 41) B b a 2 : Rwp= 73.70% GoF= 349.24 nGoF= 49.01 ( 23 reflections, 99 extinct)\n", - " (# 41) B 2 c b : Rwp= 72.10% GoF= 334.37 nGoF= 48.62 ( 24 reflections, 97 extinct)\n", - " (# 41) C 2 c b : Rwp= 66.51% GoF= 294.64 nGoF= 40.16 ( 24 reflections, 97 extinct)\n", - " (# 41) C c 2 a : Rwp= 73.55% GoF= 360.14 nGoF= 47.63 ( 23 reflections, 97 extinct)\n", - " (# 41) A c 2 a : Rwp= 67.38% GoF= 299.66 nGoF= 41.31 ( 24 reflections, 97 extinct)\n", - " (# 42) F m m 2 : Rwp= 76.91% GoF= 392.21 nGoF= 37.80 ( 16 reflections, 127 extinct) [same extinctions as:F 2 2 2]\n", - " (# 42) F 2 m m : Rwp= 76.91% GoF= 392.21 nGoF= 37.80 ( 16 reflections, 127 extinct) [same extinctions as:F 2 2 2]\n", - " (# 42) F m 2 m : Rwp= 76.91% GoF= 392.21 nGoF= 37.80 ( 16 reflections, 127 extinct) [same extinctions as:F 2 2 2]\n", - " (# 43) F d d 2 : Rwp= 80.89% GoF= 444.51 nGoF= 29.02 ( 11 reflections, 137 extinct)\n", - " (# 43) F 2 d d : Rwp= 81.61% GoF= 452.81 nGoF= 32.05 ( 12 reflections, 136 extinct)\n", - " (# 43) F d 2 d : Rwp= 80.89% GoF= 432.90 nGoF= 31.66 ( 12 reflections, 136 extinct)\n", - " (# 44) I m m 2 : Rwp= 72.85% GoF= 342.91 nGoF= 65.06 ( 31 reflections, 87 extinct) [same extinctions as:I 2 2 2]\n", - " (# 44) I 2 m m : Rwp= 72.85% GoF= 342.91 nGoF= 65.06 ( 31 reflections, 87 extinct) [same extinctions as:I 2 2 2]\n", - " (# 44) I m 2 m : Rwp= 72.85% GoF= 342.91 nGoF= 65.06 ( 31 reflections, 87 extinct) [same extinctions as:I 2 2 2]\n", - " (# 45) I b a 2 : Rwp= 74.45% GoF= 356.58 nGoF= 49.93 ( 23 reflections, 99 extinct)\n", - " (# 45) I 2 c b : Rwp= 73.79% GoF= 350.67 nGoF= 53.79 ( 25 reflections, 97 extinct)\n", - " (# 45) I c 2 a : Rwp= 75.26% GoF= 364.34 nGoF= 51.07 ( 23 reflections, 97 extinct)\n", - " (# 46) I m a 2 : Rwp= 72.84% GoF= 342.28 nGoF= 58.75 ( 28 reflections, 93 extinct)\n", - " (# 46) I b m 2 : Rwp= 74.44% GoF= 357.02 nGoF= 56.43 ( 26 reflections, 93 extinct)\n", - " (# 46) I 2 m b : Rwp= 73.80% GoF= 351.28 nGoF= 60.25 ( 28 reflections, 91 extinct)\n", - " (# 46) I 2 c m : Rwp= 72.84% GoF= 342.28 nGoF= 58.75 ( 28 reflections, 93 extinct) [same extinctions as:I m a 2]\n", - " (# 46) I c 2 m : Rwp= 74.44% GoF= 357.02 nGoF= 56.43 ( 26 reflections, 93 extinct) [same extinctions as:I b m 2]\n", - " (# 46) I m 2 a : Rwp= 73.80% GoF= 351.28 nGoF= 60.25 ( 28 reflections, 91 extinct) [same extinctions as:I 2 m b]\n", - " (# 47) P m m m : Rwp= 10.63% GoF= 7.42 nGoF= 0.84 ( 64 reflections, 0 extinct) [same extinctions as:P 2 2 2]\n", - " (# 48) P n n n :1 : Rwp= 59.75% GoF= 231.94 nGoF= 59.42 ( 42 reflections, 39 extinct)\n", - " (# 48) P n n n :2 : Rwp= 59.75% GoF= 231.94 nGoF= 59.42 ( 42 reflections, 39 extinct) [same extinctions as:P n n n :1]\n", - " (# 49) P c c m : Rwp= 38.60% GoF= 97.05 nGoF= 23.82 ( 48 reflections, 27 extinct) [same extinctions as:P c c 2]\n", - " (# 49) P m a a : Rwp= 50.20% GoF= 164.52 nGoF= 44.37 ( 51 reflections, 22 extinct) [same extinctions as:P 2 a a]\n", - " (# 49) P b m b : Rwp= 43.99% GoF= 126.10 nGoF= 29.74 ( 49 reflections, 22 extinct) [same extinctions as:P b 2 b]\n", - " (# 50) P b a n :1 : Rwp= 54.90% GoF= 195.82 nGoF= 40.57 ( 42 reflections, 36 extinct)\n", - " (# 50) P b a n :2 : Rwp= 54.90% GoF= 195.82 nGoF= 40.57 ( 42 reflections, 36 extinct) [same extinctions as:P b a n :1]\n", - " (# 50) P n c b :1 : Rwp= 43.82% GoF= 124.72 nGoF= 28.80 ( 43 reflections, 37 extinct)\n", - " (# 50) P n c b :2 : Rwp= 43.82% GoF= 124.72 nGoF= 28.80 ( 43 reflections, 37 extinct) [same extinctions as:P n c b :1]\n", - " (# 50) P c n a :1 : Rwp= 63.12% GoF= 258.66 nGoF= 61.32 ( 41 reflections, 37 extinct)\n", - " (# 50) P c n a :2 : Rwp= 63.12% GoF= 258.66 nGoF= 61.32 ( 41 reflections, 37 extinct) [same extinctions as:P c n a :1]\n", - " (# 51) P m m a : Rwp= 33.50% GoF= 73.51 nGoF= 19.69 ( 57 reflections, 10 extinct) [same extinctions as:P 21 m a]\n", - " (# 51) P m m b : Rwp= 33.56% GoF= 73.73 nGoF= 19.70 ( 57 reflections, 10 extinct) [same extinctions as:P m 21 b]\n", - " (# 51) P b m m : Rwp= 34.03% GoF= 75.69 nGoF= 17.62 ( 54 reflections, 14 extinct) [same extinctions as:P b 21 m]\n", - " (# 51) P c m m : Rwp= 38.62% GoF= 97.41 nGoF= 26.29 ( 53 reflections, 15 extinct) [same extinctions as:P c m 21]\n", - " (# 51) P m c m : Rwp= 10.64% GoF= 7.40 nGoF= 0.80 ( 56 reflections, 15 extinct) [same extinctions as:P m c 21]\n", - " (# 51) P m a m : Rwp= 43.46% GoF= 123.66 nGoF= 35.71 ( 56 reflections, 14 extinct) [same extinctions as:P 21 a m]\n", - " (# 52) P n n a : Rwp= 62.46% GoF= 253.26 nGoF= 62.77 ( 41 reflections, 39 extinct)\n", - " (# 52) P n n b : Rwp= 62.46% GoF= 253.28 nGoF= 62.77 ( 41 reflections, 39 extinct)\n", - " (# 52) P b n n : Rwp= 51.89% GoF= 174.71 nGoF= 35.81 ( 40 reflections, 39 extinct)\n", - " (# 52) P c n n : Rwp= 60.41% GoF= 236.81 nGoF= 54.69 ( 40 reflections, 39 extinct)\n", - " (# 52) P n c n : Rwp= 33.89% GoF= 74.60 nGoF= 17.18 ( 42 reflections, 39 extinct)\n", - " (# 52) P n a n : Rwp= 61.56% GoF= 246.08 nGoF= 59.74 ( 41 reflections, 39 extinct)\n", - " (# 53) P m n a : Rwp= 46.62% GoF= 141.76 nGoF= 39.52 ( 49 reflections, 25 extinct) [same extinctions as:P 2 n a]\n", - " (# 53) P n m b : Rwp= 43.81% GoF= 125.04 nGoF= 32.12 ( 48 reflections, 25 extinct) [same extinctions as:P n 2 b]\n", - " (# 53) P b m n : Rwp= 41.11% GoF= 110.18 nGoF= 20.01 ( 48 reflections, 24 extinct) [same extinctions as:P b 2 n]\n", - " (# 53) P c n m : Rwp= 60.42% GoF= 237.67 nGoF= 62.88 ( 46 reflections, 29 extinct) [same extinctions as:P c n 2]\n", - " (# 53) P n c m : Rwp= 33.90% GoF= 74.86 nGoF= 19.64 ( 48 reflections, 29 extinct) [same extinctions as:P n c 2]\n", - " (# 53) P m a n : Rwp= 43.48% GoF= 123.34 nGoF= 31.89 ( 50 reflections, 24 extinct) [same extinctions as:P 2 a n]\n", - " (# 54) P c c a : Rwp= 51.06% GoF= 169.27 nGoF= 33.83 ( 41 reflections, 37 extinct)\n", - " (# 54) P c c b : Rwp= 46.82% GoF= 142.28 nGoF= 30.61 ( 41 reflections, 37 extinct)\n", - " (# 54) P b a a : Rwp= 58.73% GoF= 223.98 nGoF= 47.33 ( 41 reflections, 36 extinct)\n", - " (# 54) P c a a : Rwp= 64.66% GoF= 271.27 nGoF= 61.76 ( 40 reflections, 37 extinct)\n", - " (# 54) P b c b : Rwp= 43.93% GoF= 125.21 nGoF= 24.98 ( 41 reflections, 37 extinct)\n", - " (# 54) P b a b : Rwp= 58.86% GoF= 224.90 nGoF= 47.49 ( 41 reflections, 36 extinct)\n", - " (# 55) P b a m : Rwp= 54.80% GoF= 195.52 nGoF= 44.29 ( 46 reflections, 28 extinct) [same extinctions as:P b a 2]\n", - " (# 55) P m c b : Rwp= 33.43% GoF= 72.83 nGoF= 17.02 ( 49 reflections, 25 extinct) [same extinctions as:P 2 c b]\n", - " (# 55) P c m a : Rwp= 51.01% GoF= 169.41 nGoF= 37.84 ( 46 reflections, 25 extinct) [same extinctions as:P c 2 a]\n", - " (# 56) P c c n : Rwp= 44.59% GoF= 129.01 nGoF= 23.23 ( 40 reflections, 39 extinct)\n", - " (# 56) P n a a : Rwp= 64.00% GoF= 265.79 nGoF= 62.90 ( 40 reflections, 39 extinct)\n", - " (# 56) P b n b : Rwp= 56.43% GoF= 206.51 nGoF= 42.55 ( 39 reflections, 39 extinct)\n", - " (# 57) P b c m : Rwp= 33.86% GoF= 74.62 nGoF= 15.07 ( 46 reflections, 29 extinct) [same extinctions as:P b c 21]\n", - " (# 57) P c a m : Rwp= 62.23% GoF= 251.95 nGoF= 63.79 ( 45 reflections, 29 extinct) [same extinctions as:P c a 21]\n", - " (# 57) P m c a : Rwp= 33.54% GoF= 73.37 nGoF= 17.03 ( 49 reflections, 25 extinct) [same extinctions as:P 21 c a]\n", - " (# 57) P m a b : Rwp= 50.22% GoF= 164.48 nGoF= 42.63 ( 49 reflections, 24 extinct) [same extinctions as:P 21 a b]\n", - " (# 57) P b m a : Rwp= 48.70% GoF= 154.51 nGoF= 32.54 ( 47 reflections, 24 extinct) [same extinctions as:P b 21 a]\n", - " (# 57) P c m b : Rwp= 46.81% GoF= 142.56 nGoF= 34.27 ( 46 reflections, 25 extinct) [same extinctions as:P c 21 b]\n", - " (# 58) P n n m : Rwp= 59.76% GoF= 232.47 nGoF= 65.08 ( 46 reflections, 31 extinct) [same extinctions as:P n n 2]\n", - " (# 58) P m n n : Rwp= 38.25% GoF= 95.37 nGoF= 27.50 ( 48 reflections, 27 extinct) [same extinctions as:P 2 n n]\n", - " (# 58) P n m n : Rwp= 33.91% GoF= 74.93 nGoF= 19.25 ( 47 reflections, 27 extinct) [same extinctions as:P n 2 n]\n", - " (# 59) P m m n :1 : Rwp= 10.82% GoF= 7.66 nGoF= 0.76 ( 56 reflections, 12 extinct) [same extinctions as:P 21 m n]\n", - " (# 59) P m m n :2 : Rwp= 10.82% GoF= 7.66 nGoF= 0.76 ( 56 reflections, 12 extinct) [same extinctions as:P 21 m n]\n", - " (# 59) P n m m :1 : Rwp= 33.93% GoF= 75.18 nGoF= 21.71 ( 53 reflections, 17 extinct) [same extinctions as:P n m 21]\n", - " (# 59) P n m m :2 : Rwp= 33.93% GoF= 75.18 nGoF= 21.71 ( 53 reflections, 17 extinct) [same extinctions as:P n m 21]\n", - " (# 59) P m n m :1 : Rwp= 38.36% GoF= 96.24 nGoF= 30.94 ( 54 reflections, 17 extinct) [same extinctions as:P m n 21]\n", - " (# 59) P m n m :2 : Rwp= 38.36% GoF= 96.24 nGoF= 30.94 ( 54 reflections, 17 extinct) [same extinctions as:P m n 21]\n", - " (# 60) P b c n : Rwp= 41.23% GoF= 110.30 nGoF= 16.90 ( 40 reflections, 39 extinct)\n", - " (# 60) P c a n : Rwp= 62.26% GoF= 251.41 nGoF= 55.35 ( 39 reflections, 39 extinct)\n", - " (# 60) P n c a : Rwp= 43.80% GoF= 124.58 nGoF= 27.46 ( 41 reflections, 39 extinct)\n", - " (# 60) P n a b : Rwp= 64.00% GoF= 265.79 nGoF= 62.90 ( 40 reflections, 39 extinct)\n", - " (# 60) P b n a : Rwp= 56.39% GoF= 206.20 nGoF= 42.51 ( 39 reflections, 39 extinct)\n", - " (# 60) P c n b : Rwp= 63.12% GoF= 258.37 nGoF= 58.35 ( 39 reflections, 39 extinct)\n", - " (# 61) P b c a : Rwp= 48.69% GoF= 153.78 nGoF= 27.12 ( 39 reflections, 39 extinct)\n", - " (# 61) P c a b : Rwp= 64.71% GoF= 271.41 nGoF= 58.75 ( 38 reflections, 39 extinct)\n", - " (# 62) P n m a : Rwp= 43.80% GoF= 124.89 nGoF= 30.78 ( 46 reflections, 27 extinct) [same extinctions as:P n 21 a]\n", - " (# 62) P m n b : Rwp= 46.56% GoF= 141.24 nGoF= 37.89 ( 47 reflections, 27 extinct) [same extinctions as:P 21 n b]\n", - " (# 62) P b n m : Rwp= 51.86% GoF= 174.89 nGoF= 39.36 ( 44 reflections, 31 extinct) [same extinctions as:P b n 21]\n", - " (# 62) P c m n : Rwp= 44.41% GoF= 128.33 nGoF= 25.93 ( 45 reflections, 27 extinct) [same extinctions as:P c 21 n]\n", - " (# 62) P m c n : Rwp= 10.06% GoF= 6.60 nGoF= 0.69 ( 48 reflections, 27 extinct) [same extinctions as:P 21 c n]\n", - " (# 62) P n a m : Rwp= 61.57% GoF= 246.67 nGoF= 65.58 ( 45 reflections, 31 extinct) [same extinctions as:P n a 21]\n", - " (# 63) C m c m : Rwp= 64.42% GoF= 276.89 nGoF= 42.22 ( 27 reflections, 93 extinct) [same extinctions as:C m c 21]\n", - " (# 63) C c m m : Rwp= 72.59% GoF= 351.39 nGoF= 52.23 ( 26 reflections, 93 extinct) [same extinctions as:C c m 21]\n", - " (# 63) A m m a : Rwp= 62.74% GoF= 258.86 nGoF= 44.91 ( 29 reflections, 91 extinct) [same extinctions as:A 21 m a]\n", - " (# 63) A m a m : Rwp= 85.15% GoF= 476.52 nGoF= 80.02 ( 28 reflections, 93 extinct) [same extinctions as:A 21 a m]\n", - " (# 63) B b m m : Rwp= 73.68% GoF= 349.64 nGoF= 55.38 ( 26 reflections, 93 extinct) [same extinctions as:B b 21 m]\n", - " (# 63) B m m b : Rwp= 72.03% GoF= 334.31 nGoF= 54.62 ( 27 reflections, 91 extinct) [same extinctions as:B m 21 b]\n", - " (# 64) C m c a : Rwp= 66.51% GoF= 294.64 nGoF= 40.16 ( 24 reflections, 97 extinct) [same extinctions as:C 2 c b]\n", - " (# 64) C c m b : Rwp= 73.55% GoF= 360.14 nGoF= 47.63 ( 23 reflections, 97 extinct) [same extinctions as:C c 2 a]\n", - " (# 64) A b m a : Rwp= 67.38% GoF= 299.66 nGoF= 41.31 ( 24 reflections, 97 extinct) [same extinctions as:A c 2 a]\n", - " (# 64) A c a m : Rwp= 85.30% GoF= 480.04 nGoF= 66.08 ( 23 reflections, 99 extinct) [same extinctions as:A b a 2]\n", - " (# 64) B b c m : Rwp= 73.70% GoF= 349.24 nGoF= 49.01 ( 23 reflections, 99 extinct) [same extinctions as:B b a 2]\n", - " (# 64) B m a b : Rwp= 72.10% GoF= 334.37 nGoF= 48.62 ( 24 reflections, 97 extinct) [same extinctions as:B 2 c b]\n", - " (# 65) C m m m : Rwp= 67.34% GoF= 303.40 nGoF= 51.69 ( 32 reflections, 84 extinct) [same extinctions as:C 2 2 2]\n", - " (# 65) A m m m : Rwp= 84.49% GoF= 470.23 nGoF= 91.49 ( 33 reflections, 85 extinct) [same extinctions as:A 2 2 2]\n", - " (# 65) B m m m : Rwp= 72.02% GoF= 334.95 nGoF= 62.69 ( 31 reflections, 85 extinct) [same extinctions as:B 2 2 2]\n", - " (# 66) C c c m : Rwp= 70.89% GoF= 334.73 nGoF= 47.38 ( 24 reflections, 99 extinct) [same extinctions as:C c c 2]\n", - " (# 66) A m a a : Rwp= 73.84% GoF= 357.94 nGoF= 57.40 ( 26 reflections, 97 extinct) [same extinctions as:A 2 a a]\n", - " (# 66) B b m b : Rwp= 73.70% GoF= 349.37 nGoF= 51.13 ( 24 reflections, 97 extinct) [same extinctions as:B b 2 b]\n", - " (# 67) C m m a : Rwp= 69.01% GoF= 318.13 nGoF= 49.97 ( 29 reflections, 88 extinct) [same extinctions as:C 2 m b]\n", - " (# 67) C m m b : Rwp= 69.01% GoF= 318.13 nGoF= 49.97 ( 29 reflections, 88 extinct) [same extinctions as:C 2 m b]\n", - " (# 67) A b m m : Rwp= 84.55% GoF= 472.67 nGoF= 77.79 ( 28 reflections, 91 extinct) [same extinctions as:A b m 2]\n", - " (# 67) A c m m : Rwp= 84.55% GoF= 472.67 nGoF= 77.79 ( 28 reflections, 91 extinct) [same extinctions as:A b m 2]\n", - " (# 67) B m c m : Rwp= 72.05% GoF= 334.62 nGoF= 56.66 ( 28 reflections, 91 extinct) [same extinctions as:B m a 2]\n", - " (# 67) B m a m : Rwp= 72.05% GoF= 334.62 nGoF= 56.66 ( 28 reflections, 91 extinct) [same extinctions as:B m a 2]\n", - " (# 68) C c c a :1 : Rwp= 72.03% GoF= 344.97 nGoF= 42.78 ( 21 reflections, 103 extinct)\n", - " (# 68) C c c a :2 : Rwp= 72.03% GoF= 344.97 nGoF= 42.78 ( 21 reflections, 103 extinct) [same extinctions as:C c c a :1]\n", - " (# 68) C c c b :1 : Rwp= 72.03% GoF= 344.97 nGoF= 42.78 ( 21 reflections, 103 extinct) [same extinctions as:C c c a :1]\n", - " (# 68) C c c b :2 : Rwp= 72.03% GoF= 344.97 nGoF= 42.78 ( 21 reflections, 103 extinct) [same extinctions as:C c c a :1]\n", - " (# 68) A b a a :1 : Rwp= 75.75% GoF= 381.58 nGoF= 48.10 ( 21 reflections, 103 extinct)\n", - " (# 68) A b a a :2 : Rwp= 75.75% GoF= 381.58 nGoF= 48.10 ( 21 reflections, 103 extinct) [same extinctions as:A b a a :1]\n", - " (# 68) A c a a :1 : Rwp= 75.75% GoF= 381.58 nGoF= 48.10 ( 21 reflections, 103 extinct) [same extinctions as:A b a a :1]\n", - " (# 68) A c a a :2 : Rwp= 75.75% GoF= 381.58 nGoF= 48.10 ( 21 reflections, 103 extinct) [same extinctions as:A b a a :1]\n", - " (# 68) B b c b :1 : Rwp= 73.75% GoF= 349.28 nGoF= 44.79 ( 21 reflections, 103 extinct)\n", - " (# 68) B b c b :2 : Rwp= 73.75% GoF= 349.28 nGoF= 44.79 ( 21 reflections, 103 extinct) [same extinctions as:B b c b :1]\n", - " (# 68) B b a b :1 : Rwp= 73.75% GoF= 349.28 nGoF= 44.79 ( 21 reflections, 103 extinct) [same extinctions as:B b c b :1]\n", - " (# 68) B b a b :2 : Rwp= 73.75% GoF= 349.28 nGoF= 44.79 ( 21 reflections, 103 extinct) [same extinctions as:B b c b :1]\n", - " (# 69) F m m m : Rwp= 76.91% GoF= 392.21 nGoF= 37.80 ( 16 reflections, 127 extinct) [same extinctions as:F 2 2 2]\n", - " (# 70) F d d d :1 : Rwp= 80.89% GoF= 444.51 nGoF= 29.02 ( 11 reflections, 139 extinct)\n", - " (# 70) F d d d :2 : Rwp= 80.89% GoF= 444.51 nGoF= 29.02 ( 11 reflections, 139 extinct) [same extinctions as:F d d d :1]\n", - " (# 71) I m m m : Rwp= 72.85% GoF= 342.91 nGoF= 65.06 ( 31 reflections, 87 extinct) [same extinctions as:I 2 2 2]\n", - " (# 72) I b a m : Rwp= 74.45% GoF= 356.58 nGoF= 49.93 ( 23 reflections, 99 extinct) [same extinctions as:I b a 2]\n", - " (# 72) I m c b : Rwp= 73.79% GoF= 350.67 nGoF= 53.79 ( 25 reflections, 97 extinct) [same extinctions as:I 2 c b]\n", - " (# 72) I c m a : Rwp= 75.26% GoF= 364.34 nGoF= 51.07 ( 23 reflections, 97 extinct) [same extinctions as:I c 2 a]\n", - " (# 73) I b c a : Rwp= 75.28% GoF= 363.96 nGoF= 44.43 ( 20 reflections, 103 extinct)\n", - " (# 73) I c a b : Rwp= 75.28% GoF= 363.96 nGoF= 44.43 ( 20 reflections, 103 extinct) [same extinctions as:I b c a]\n", - " (# 74) I m m a : Rwp= 73.80% GoF= 351.28 nGoF= 60.25 ( 28 reflections, 91 extinct) [same extinctions as:I 2 m b]\n", - " (# 74) I m m b : Rwp= 73.80% GoF= 351.28 nGoF= 60.25 ( 28 reflections, 91 extinct) [same extinctions as:I 2 m b]\n", - " (# 74) I b m m : Rwp= 74.44% GoF= 357.02 nGoF= 56.43 ( 26 reflections, 93 extinct) [same extinctions as:I b m 2]\n", - " (# 74) I c m m : Rwp= 74.44% GoF= 357.02 nGoF= 56.43 ( 26 reflections, 93 extinct) [same extinctions as:I b m 2]\n", - " (# 74) I m c m : Rwp= 72.84% GoF= 342.28 nGoF= 58.75 ( 28 reflections, 93 extinct) [same extinctions as:I m a 2]\n", - " (# 74) I m a m : Rwp= 72.84% GoF= 342.28 nGoF= 58.75 ( 28 reflections, 93 extinct) [same extinctions as:I m a 2]\n", - "Restoring best spacegroup: P 21 c n\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "41b2183e23d24bef8a796e9c46a28b2d", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADQBUlEQVR4nOzdd3hTZfsH8G/2aJNOuqCUDWUje8iQoWxBX+QnUxEHCvoyRQHLy8tyMV8RURkFREFxgWwtUPa0yJA9W7rSJm2z8/z+COeYdJG0aZO29+e6erU9OTl5kpycPPdzP0PAGGMghBBCCCGEEFLlCL1dAEIIIYQQQggh3kEBISGEEEIIIYRUURQQEkIIIYQQQkgVRQEhIYQQQgghhFRRFBASQgghhBBCSBVFASEhhBBCCCGEVFEUEBJCCCGEEEJIFUUBISGEEEIIIYRUURQQEkIIIYQQQkgVRQEhIYQQQgghhFRRFBASQgghhBBCSBVFASEhhBBCCCGEVFEUEBJCCCGEEEJIFUUBISGEEEIIIYRUURQQEkIIIYQQQkgVRQEhIYQQQgghhFRRFBASQgghhBBCSBVFASEhhBBCCCGEVFEUEBJCCCGEEEJIFUUBISGEEEIIIYRUURQQEkIIIYQQQkgVRQEhIYQQQgghhFRRFBASQgghhBBCSBVFASEhhBBCCCGEVFEUEBJCCCGEEEJIFUUBISGEEEIIIYRUURQQEkIIIYQQQkgVRQEhIYQQQgghhFRRFBASQgghhBBCSBVFASEhhBBCCCGEVFEUEBJCCCGEEEJIFUUBISGEEEIIIYRUURQQEkIIIYQQQkgVRQEhIYQQQgghhFRRFBASQgghhBBCSBVFASEhhBBCCCGEVFEUEBJCCCGEEEJIFUUBISGEEEIIIYRUURQQEkIIIYQQQkgVRQEhIYQQQgghhFRRFBASQgghhBBCSBVFASEhhBBCCCGEVFEUEBJCCCGEEEJIFUUBISGEEEIIIYRUURQQEkIIIYQQQkgVRQEhIYQQQgghhFRRYm8XgJQcYwxarRY6nQ4qlQoCgcDbRSKEEEIIIaTUGGPQ6XSIioqCUEg5rLJEAWEFptPpEBgY6O1iEEIIIYQQUibu3r2LGjVqeLsYlRoFhBWYSqXC3bt3ER0djbt370KtVnu7SIQQQgghhJSaVqtFdHQ0VCqVt4tS+TFSoWVnZzMALDs7mzHG2JIlS5hIJGJjxoxhjDEWEBDA1Go1UyqVbMSIEU731Wq1rF27dszPz48lJSXx23v37s1at27NGGOsW7durEuXLsxisbDff/+dTZkyxeWyjRo1iolEItatWzcWGhrKwsPD2b1799jNmzfZc88957RvcnIymzNnDv+YOp3O6XauHF26dGH/93//x6xWa5GP++qrrzLGGBszZgz/vFatWsXWrl1bbFmrV6/+2Of022+/sQ8++KDI26dNm8YCAgIKlJ8QQgghhLgufx2XlB3qkFsJtWzZEuvWreP/v3LlCu7evYstW7YgLy+P365QKPDrr7/i+eefd7r/nj17nP7/7bffIBKJ3C7Hhg0bIJPJ8Mcff6B///6IiYkpct+IiAjMnTu32OP99ttvOHToEBQKBY4ePVrkfqtXry5RWSMiIty+X34ffvghWrZsWerjEFLZnD17FgMGDMCQIUNw5MgRfvu4ceO8WCpCCCGEUJfRKiI4OBgKhQI3btxA06ZNAQCHDx/GggULcPnyZRw9ehTz58/Hhg0bkJycDLPZ7HT/tLQ0vPfee7h79y5SUlKwceNGAMCuXbswbdo03L17F3Xr1oXVakV8fDyaNWvmdH/GGCwWC+RyOR48eICDBw+ia9euCAsLw7fffosdO3bglVdeQcOGDfHgwYMC5T937hymTZuGM2fOIC8vD3q9HpMnT4ZGo0FkZCRMJhNsNhtEIhFu376N+/fvIzc3F6NGjUJkZCQCAwPRp08fjB07Fn/99ReuXr0KhUKBoUOH4sKFC2jRogUAez/1MWPGwGw2o2nTpli1ahWysrIwbNgwCIVCVK9eHdHR0QCAdevW4auvvoLVasV///tfPPXUUx5/3wipLCZNmoS1a9dCLBZj2rRpOHbsGCZPnowbN254u2iEEEJIlUYZwiriypUrMBgMaNSokdN2xhieeuopjBgxAps2bcLPP/+MkSNHIisry2m/BQsWoG/fvnjhhRewYcMGAIDNZsN//vMffPrpp2jdujX8/f2xaNEirF27lr+f1WpF9+7d8eOPPyIqKgohISEICAjAk08+iYMHD6JmzZo4cOAAFi9ejA4dOuDQoUPIzs5Gampqgedw5MgRGAwGXL16FVOnTsWRI0cgk8mQkJAArVaL/v37IzExETqdDrdu3cKFCxfwxhtvYOfOnfwMrBqNBnK5HFlZWYiJicHp06eRkJCAI0eOwGazYdGiRZg+fToOHToEk8mEhIQEfPnll3j++eexa9cuPouYnp6Ob775BgcPHsS+ffswf/58T75dhFQ6AoEA9erVQ61atbB161ZotVqMHz8eFovF20UjhBBCqjTKEFYBDRs2hEAgwLvvvgux2Pktb968OTIyMhAWFobmzZsDAKpXrw6r1eq03+XLl/H666/j0KFD/NS/6enpuHr1KqZNm4aMjAyo1Wr4+flBo9Hw9xOJRPjjjz8wduxYPHjwAIcOHYJcLsfRo0fRrVs3JCcno0WLFrhy5QoEAgG6d+8Og8GAe/fuoU6dOk5l2LVrFyIjIxEZGYkLFy7w2cSuXbvi5s2bYIxBIBDAz88P169fh1arRePGjQEA7dq1AwBkZ2fj9u3b6N69O27cuIF69eoBsHdZvXv3Lq5fv462bdsCANq2bYtr167h2rVrGD9+PH+cs2fP4saNG7h48SJ69OgBwJ5BJYQULSwsDLdu3UKtWrUAAHFxcdi4cSPi4+O9WzBCSKVls9lgMpm8XQxSBIlEUqIhScTzKCCsAq5cuVLk+DjHtQuLW8cwNjYWSUlJAOwXWKFQiNDQUMTGxmLOnDnYtWsXFi5ciOvXr4MxVugx/P39kZmZiRMnTiA8PBwJCQmYPHkyGGNo1KgRQkJC8NNPP6Fbt25o1apVkWUVi8XQaDTYtWsXJBIJDh48iCZNmiA1NRWMMeTm5qJu3bpQq9W4dOkSunTpglOnTqFnz54ICAhAmzZt8MMPP2D48OGYN2+e02PUq1cPJ0+exDPPPIOTJ09izJgx0Gg0OHv2LFq3bo1Tp05BJBKhTp06aN68OX799VcIBIICXWwJIc62bdtWYNvIkSMxcuRIL5SGEFLZmUwm3Lx5EzabzdtFIcUIDAxEREQEraXtZRQQVnE//PADDAYDjh8/joYNGxa538yZMzFw4ECcO3cOmzZtQpMmTTB69Gi8//77mDJlCjIzM3Hnzh385z//cbof12X00qVLaN68Ofr27QuJRILFixejWrVqEIlEuH//PmbMmIFx48ahR48eSEpKgsFgKDDN8NChQyGRSKDVajFq1Cjo9XpotVr069cPDRo0wM8//4yzZ89CpVKhVq1aaNq0KT777DN8//33/HqNQUFBCAoKQrdu3XDp0iVER0fjo48+4h9jxowZGDNmDObPn4+mTZuia9euaN68OYYNG4atW7ciKioKMTExCA0NxfDhw9GtWzeIRCI0a9YMy5cv99wbQwghhJASYYwhOTkZIpEI0dHRtKi5D2KMIS8vjx8iFBkZ6eUSVW0CVlQ6h1QIWq0WAQEByM7OhlqtxpdffomJEyfihRdecJpp1B19+vSBXC7Hzz//jOHDhyM5ORkHDhxwO60/evRoXL58GSdOnMDUqVNx9OhRfPfdd6hevXqJylWWHMtaGtOnT8fPP/+MM2fOQKlUeqh0hBBCCHGV2WzGtWvXEBUVhYCAAG8XhxQjIyMDqampaNCgQYF6Zv46Lik7FBBWcPRhIYQQQgj5h8FgwM2bN1GrVi0oFApvF4cUQ6/X49atW6hduzbkcrnTbVTHLT+UQyeEEOI1ffr08XYRCCGVFI1L8330HvkGGkNICCGkzA0bNqzANsYYP1kVIYQQQryDAkJCCCFl7uTJkzhw4AA/uUNqaiq+/PJLfukXQgghxfvjjz/Qo0cPaDQafrI8QjyBAkJCCCFlbtq0aVCpVAgNDQUAzJkzBxs2bMCSJUu8XDJCCCGkaqMxhIQQUoGcPXsWAwYMwJAhQ3DkyBF++7hx47xYqsebMGECHwwC4GeT6927t7eKRAghhBBUwYDw4MGDGDhwIKKioiAQCPDjjz863T527FgIBAKnnw4dOjjtYzQaMXHiRISGhsLPzw+DBg3CvXv3nPbRaDQYNWoUAgICEBAQgFGjRiErK8tpnzt37mDgwIHw8/NDaGgoJk2aBJPJVBZPm5ByY7FYvF2ESm3SpElYunQplixZgiVLluDTTz8FANy4ccPLJXOPRCIBYJ8enhBStkaMGOHtIhAXGY1GTJo0CWFhYZDL5ejSpQtOnjzptE9iYiJatGgBuVyO9u3bO43Fvn37NgYOHIigoCD4+fmhSZMm2LlzZ3k/DVLBVLkuo7m5uWjRogVeeuklPPfcc4Xu88wzz2Dt2rX8/1Kp1On2d955B7/88gu2bNmCkJAQTJkyBQMGDMDp06f5Vu8XX3wR9+7dw65duwAAr776KkaNGoVffvkFgH3B9v79+6NatWo4fPgwMjIyMGbMGDDGsGLFirJ46oSUmaSkJMyYMQNZWVkQi8Uwm80IDQ3FggUL0KxZM28Xr1IRCAT8uLutW7ciLi4O48ePr3CBOBcQUiMYIZ4zffr0AtsYY069CYhvmz59Or7//nusX78eMTEx+PDDD/H000/j2rVr/D7Tpk3DsmXLEBERgffeew+DBg3C33//DYlEgjfffBMmkwkHDx6En58fLl68CH9/fy8+I1IRVLmAsG/fvujbt2+x+8hkMkRERBR6W3Z2Nr766ivEx8ejV69eAICNGzciOjoa+/btw9NPP41Lly5h165dOHbsGNq3bw8AWLNmDTp27IgrV66gYcOG2LNnDy5evIi7d+8iKioKAPDJJ59g7NixmD9/Pq23QiqUCRMmYPPmzYiOjua33blzByNGjMChQ4e8WLLKJywsDLdu3UKtWrUAAHFxcdi4cSPi4+O9WzA3cQ1tKSkpXi4JIZXHpk2bsHnz5gLbf//9dy+Uxrfk5eXh8uXL5f64jRo1glKpdGnf3NxcrFq1CuvWrePrqmvWrMHevXvx1VdfoW3btgCADz74gO9uv379etSoUQPbt2/HsGHDcOfOHTz33HN8Y2ydOnXK4FmRyqbKBYSu+OOPPxAWFobAwEB069YN8+fPR1hYGADg9OnTMJvNTmtnRUVFoWnTpjhy5AiefvppHD16FAEBAXwwCAAdOnRAQEAAjhw5goYNG+Lo0aNo2rQpHwwCwNNPPw2j0YjTp0+jR48ehZbNaDTCaDTy/2u1Wk8/fULcZrVaERAQ4LRNrVbDarV6qUSV17Zt2wpsGzlyJEaOHOmF0pQclyH8z3/+g0GDBnm5NIRUDi+//DJiY2P5Ogtn9OjRXiqR77h8+TJat25d7o97+vRpPPHEEy7te/36dZjNZnTu3JnfJpFI0K5dO1y6dIkPCDt27MjfHhwcjIYNG+LSpUsA7MMK3njjDezZswe9evXCc889h+bNm3vwGZHKiALCfPr27Yt//etfiImJwc2bNzF79mw89dRTOH36NGQyGVJSUiCVShEUFOR0v/DwcL6lOyUlpcDFGLC37DvuEx4e7nR7UFAQpFJpsS3mCxcuxNy5c0v7NAnxqEWLFmHAgAGQSqVQq9XIzs6GxWLB4sWLvV004iPatWvn9D837tobLfaEVFbz5s0rdPukSZPKuSS+p1GjRjh9+rRXHtdVjDEABRdrZ4w9dgF37vZXXnkFTz/9NHbs2IE9e/Zg4cKF+OSTTzBx4kQ3S06qEgoI83nhhRf4v5s2bYo2bdogJiYGO3bswNChQ4u8X/4Pa2Ef3JLsk9/MmTMxefJk/n+tVuvUTY8Qb+jatSsOHjwIvV6PrKwsBAUFQS6Xe7tYxIfodDokJSVBLLZ/7cydOxdxcXGoW7eul0tGCKkKlEqly5k6b6lXrx6kUikOHz6MF198EYB94q1Tp07hnXfe4fc7duwYatasCcA+ieHff//tFHhGR0fj9ddfx+uvv46ZM2dizZo1FBCSYlFA+BiRkZGIiYnB1atXAQAREREwmUzQaDROWcLU1FR06tSJ3+fhw4cFjpWWlsZnBSMiInD8+HGn2zUaDcxmc4HMoSOZTAaZTFbq50VIWVAoFFAoFN4uRpWQmZmJzMxMBAcHIzg42NvFeawFCxZAp9Px102uy+iAAQO8WSxCCPEZfn5+eOONNzBt2jQEBwejZs2a+PDDD5GXl4dx48bh/PnzAOxd7UNCQhAeHo73338foaGhePbZZwHYJz7s27cvGjRoAI1GgwMHDiA2NtaLz4pUBFVu2Ql3ZWRk4O7du4iMjAQAtG7dGhKJBHv37uX3SU5OxoULF/iAsGPHjsjOzsaJEyf4fY4fP47s7GynfS5cuIDk5GR+nz179kAmk3mljzshpGLYv38/OnfujJdeeglz587FmDFj0KVLF+zfv9/bRSvWkCFDnBrRuEwhNzkOIaTs0LITFceiRYvw3HPPYdSoUXjiiSdw7do17N692+n6uWjRIrz99tto3bo1kpOT8fPPP/MTdVmtVrz55puIjY3FM888g4YNG+Kzzz7z1tMhFUSVyxDm5OQ4Td178+ZNnDt3jm9lj4uLw3PPPYfIyEjcunUL7733HkJDQzFkyBAAQEBAAMaNG4cpU6YgJCQEwcHBmDp1Kpo1a8bPOsp9CMePH4/Vq1cDsC87MWDAADRs2BAA0KdPHzRu3BijRo3CRx99hMzMTEydOhXjx4+nGUYJIUWaM2cOdu3aBZVKxW/TarXo27cvevbs6cWSucdmswEA9Hq9l0tCSOUxaNAgHD9+HCEhIahVqxaOHTsGqVTKj00jvk8ul2P58uVYvnx5gdu6d+/Ov5dF9a6gpctISVS5gPDUqVNOM3hy4/HGjBmDVatWISkpCRs2bEBWVhYiIyPRo0cPfPvtt06VryVLlkAsFmPYsGHQ6/Xo2bMn1q1bx69BCNinfp40aRI/G+mgQYOwcuVK/naRSIQdO3ZgwoQJ6Ny5MxQKBV588UV8/PHHZf0SEFJu+vTpgz179ni7GJWKUChEWlqa0zUpLS0NQmHF6vDBrZtoMBi8XBJCKo9du3bhl19+QV5eHl555RXEx8dDKpUWOwcCIYRUuYDQsXWlMLt3737sMeRyOVasWFFsK0xwcDA2btxY7HFq1qyJX3/99bGPR4ivGzZsWIFtjDEkJSV5oTSV2xdffIEpU6YgJSWFn4QqMjISX3zxhbeL5hYuIOR+E0JKLzIyEq1atUJYWBi+//579O/fHwCKXFuZEEKAKhgQEkI87+TJkzhw4IBTlooxhlGjRnmxVJVTbGwstm/f7u1ilBq3RqXZbPZySQipPIYMGYKQkBAA4BulTSYTWrRo4c1iEUJ8HAWEhJBSmzZtGlQqFUJDQ522v/XWW14qEfF1lCEkxPOWLl1aYJtUKsW2bdvKvzCEkAqDAkJCSKlNmDCh0O2O63oS4ogyhIQQQohvqFizEBBCCClUSkqKt4vgFsoQEkIIIb6BAkJCCKkERo8e7e0iuIUyhIR43t69e9G+fXt06tQJW7Zs4bdzy2IRQkhhqMsoIaTMpKSk0Ox2HtauXbsC2xhjuHr1qhdKU3KUISTE8z744APs3r0bUqkUs2bNQmJiIpYtW4YzZ854u2iEEB9GASEhpMyMHj2a1iH0MJ1Oh6SkJIjF9sv3gQMH0LNnT6f1VSsCLhCkDCEhnpOUlMSvfwwA6enpiI+PR05OjhdLRcpLXFwcfvzxR5w7d87bRSEVDAWEhJBSqyxZq4pgwYIF0Ol0CAoKAgB8//33ACreBD7UZZQQz5NIJNi8eTPq1avHb/v9998xYMAAL5aKEOLrKCAkhJRa/qwVp3fv3l4qUeU1ZMgQp/8jIyMBAFFRUd4oTolRl1FCPO+rr77i1yHk9OjRAzt37vRSiQghFQFNKkMIKTUua5XfrFmzvFCaqiU8PBwAkJyc7OWSuIcyhIR43pAhQ/jeA466devmhdKQkrDZbFi8eDHq1asHmUyGmjVrYv78+QCAGTNmoEGDBlAqlahTpw5mz5792Gvo119/jSZNmkAmkyEyMpLWByaFogwhIaTU8metOFQJKXtcVjYrK8u7BXETZQgJIaSgmTNnYs2aNViyZAm6dOmC5ORkXL58GQCgUqmwbt06REVFISkpCePHj4dKpcL06dMLPdaqVaswefJkLFq0CH379kV2djYSExPL8+mQCoICQkKIxy1btgy7d++mbkrlgAuobDabl0viHppUhpDyo9PpoFKpvF0M8hg6nQ7Lli3DypUrMWbMGABA3bp10aVLFwDOvW5q1aqFKVOm4Ntvvy0yIPzvf/+LKVOm4O233+a3tW3btgyfAamoKCAkhHjcO++84+0iVBkVteslV27KEBLiORs2bMBHH30EiUSCYcOG4d133wUADB48GAcOHPBy6bwsLw94lGkrV40aAUqlS7teunQJRqMRPXv2LPT2bdu2YenSpbh27RpycnJgsVigVqsL3Tc1NRUPHjwo8liEOKKAkBBSZiwWS4GJZohnVdSul5QhJMTzVq1ahTNnzkAikWD58uV4/vnnsWHDBjDGvF0077t8GWjduvwf9/Rp4IknXNpVoVAUeduxY8cwfPhwzJ07F08//TQCAgKwZcsWfPLJJ24fi5D8qKZGCPG4sLAwpKamIjU1tcLNflnRVNRMW0XNbBLiy4RCISQSCQBg0qRJaNy4Mfr27YvMzEwvl8wHNGpkD8688bguql+/PhQKBfbv349XXnnF6bbExETExMTg/fff57fdvn27yGOpVCrUqlUL+/fvr3Dr1JLyRwEhIcTjQkNDkZqaipSUFAoIy1hFzbRV1ECWEF/Wv39/3Lp1C7Vq1QIAXL9+HQsXLsR//vMf7xbMFyiVLmfqvEUul2PGjBmYPn06pFIpOnfujLS0NPz111+oV68e7ty5gy1btqBt27bYsWMHtm/fXuzx4uLi8PrrryMsLAx9+/aFTqdDYmIiJk6cWE7PiFQUFBASQjyOa6E2GAxeLknlV1EDK24SnIoWyBLiy9577z3+b61Wi9dffx39+/fHrl27vFgq4o7Zs2dDLBZjzpw5ePDgASIjI/H6669j3Lhx+Pe//4233noLRqMR/fv3x+zZsxEXF1fkscaMGQODwYAlS5Zg6tSpCA0NxfPPP19+T4ZUGBQQEkLKDFX2y15FHUNYUQNZQioK7rN1/PhxL5eEuEMoFOL999936hrK+fDDD/Hhhx86bXOcxC0uLq5AgPjaa6/htddeK4uikkqEFqYnhHicQCAAQAFhefDEWLwRI0Z4qjguowwhIWWLCwjT09O9XBJCiK+jDCEhpMyYTCZvF6HScydDWNhaVYwxHDlyxOPlehzKEBJStrjPGCGEPA4FhIQQj6MMYflxJyDctGkTNm/eXGD777//7vFyPQ5lCAkpW9TYQghxFQWEhJAyQ5X9sudOl9GXX34ZsbGxCAsLc9o+evToMilbcShDSEjZos8WIcRVFBASQjxOKLQPT6aAsOy5kyGcN29eodsnTZrk0TK5gjKEhJQt6jJKCHEVTSpDCPE46jJafipqpo0WpiekbFW0awIhxHsoICSElBmq7Je9irowPZchpEorIWWDPluEEFdRQEgI8biKGqRURJQhJIQUpqJdEwgh3kMBISHE47iKCC07UfbcGUO4d+9etG/fHp06dcKWLVv47f379y+z8hWFMoSElC0aQ0gIcRUFhIQQj+OyPpT9KXvuZNo++OAD7N69G/v27cOJEycwceJE2Gw25OXllXUxC7BarZBKpXSOEFJGqLGl6omLi0PLli3L9DHWrVuHwMDAMn0MUv4oICSEeBx1GS0/7mQIRSIRAgMDoVQq8emnn6J169YYPHgwcnJyyrqYBdhsNshkMqq0ElJG6LNFCHEVBYSEEI+jDGH5cWcMYcuWLXHr1i3+/7Fjx2Ly5MnQ6XRlVbwiWa1WyGQyMMaoaxshZcCVa0JCQgJ69eqFyZMnY8+ePWjVqhW6d++Oo0ePlkMJCSG+ggJCQojHUYaw/LjzWq9YsQK1atVy2tajRw9cvny5LIpWLC5DCFAmg5Cy4EpDy4wZM7B27Vq89NJLGDNmDH755Rf88MMPmDlzZjmUkBTGZrNh8eLFqFevHmQyGWrWrIn58+cDsL9fDRo0gFKpRJ06dTB79uzHXvu//vprNGnSBDKZDJGRkXjrrbeK3V+j0WD06NEICgqCUqlE3759cfXq1QL7/fjjj2jQoAHkcjl69+6Nu3fv8redP38ePXr0gEqlglqtRuvWrXHq1KkSvBqkvFBASAjxOMoQlp+KPMsoFxDSeUKI5zleExhjhe4jl8sRHR2NZs2aITY2FjVq1EBwcDBEIlF5FZPkM3PmTCxevBizZ8/GxYsXsXnzZoSHhwMAVCoV1q1bh4sXL2LZsmVYs2YNlixZUuSxVq1ahTfffBOvvvoqkpKS8PPPP6NevXrFPv7YsWNx6tQp/Pzzzzh69CgYY+jXr5/TdTovLw/z58/H+vXrkZiYCK1Wi+HDh/O3jxgxAjVq1MDJkydx+vRpvPvuu5BIJKV8ZUhZEnu7AISQyocyhOXHnTGEvsRms0GpVAKg84SQsuB4TTCbzZBKpQX2iYiIgNVqhUgkwoEDB/j7cbMAk/Kl0+mwbNkyrFy5EmPGjAEA1K1bF126dAEAzJo1i9+3Vq1amDJlCr799ltMnz690OP997//xZQpU/D222/z29q2bVvk41+9ehU///wzEhMT0alTJwDApk2bEB0djR9//BH/+te/ANjPp5UrV6J9+/YAgPXr1yM2NhYnTpxAu3btcOfOHUybNg2NGjUCANSvX7+kLwkpJ1UuQ3jw4EEMHDgQUVFREAgE+PHHH51uZ4whLi4OUVFRUCgU6N69O/766y+nfYxGIyZOnIjQ0FD4+flh0KBBuHfvntM+Go0Go0aNQkBAAAICAjBq1ChkZWU57XPnzh0MHDgQfn5+CA0NxaRJk2iaflIpcBV8Xz6fR4wY4e0ieIS7wbfRaMSZM2ewb98+nDlzxmvvkWOGsKIFs4RUBPkDwsJs2bKlQDZQLBZj7969ZVo2UrhLly7BaDSiZ8+ehd6+bds2dOnSBREREfD398fs2bNx586dQvdNTU3FgwcPijzW66+/Dn9/f/6He3yxWMwHegAQEhKChg0b4tKlS/w2sViMNm3a8P83atQIgYGB/D6TJ0/GK6+8gl69emHRokW4fv26ey8EKXdVLkOYm5uLFi1a4KWXXsJzzz1X4PYPP/wQn376KdatW4cGDRrgv//9L3r37o0rV65ApVIBAN555x388ssv2LJlC0JCQjBlyhQMGDAAp0+f5i+sL774Iu7du4ddu3YBAF599VWMGjUKv/zyCwB7Zah///6oVq0aDh8+jIyMDIwZMwaMMaxYsaKcXg1CyoYvZQgLazlljOHIkSNeKI3nudNlND4+HqtWrULbtm2hVqtx69YtfPPNN1i+fDkmTJhQ1kV14jiG0BfOE0IqG8cxhCaTCX5+fi7fVyyunNXDN359A/d198vt8aqrqmPVgFUu769QKIq87dixYxg+fDjmzp2Lp59+GgEBAdiyZQs++eQTt48FAP/5z38wdepUp21FdS1mjEEgEDhty/+/47a4uDi8+OKL2LFjB3777Td88MEH2LJlC4YMGVJsmYgXsSoMANu+fTv/v81mYxEREWzRokX8NoPBwAICAtjnn3/OGGMsKyuLSSQStmXLFn6f+/fvM6FQyHbt2sUYY+zixYsMADt27Bi/z9GjRxkAdvnyZcYYYzt37mRCoZDdv3+f3+ebb75hMpmMZWdnu/wcsrOzGQC37kNIWROLxQwAGzdunLeLwqKiotgff/xR4Kd169beLppH9O7dmwFgMTExj923c+fOzGq18v8vXLiQAWCNGjUqwxIWrlq1aqxr164MALt9+3a5Pz4hld13333HADAA7OHDh94uTrnS6/Xs4sWLTK/Xe7sobtHr9UyhULA1a9YUuO3jjz9mderUcdo2btw4FhAQwP//wQcfsBYtWvD/16pVi73//vsuP/7ff//NALDExER+W3p6OlMoFGzr1q2MMcbWrl3LALDjx4/z+1y+fLnANkfDhw9nAwcOLPS24t4rquOWnyrXZbQ4N2/eREpKCvr06cNvk8lk6NatG59NOH36NMxms9M+UVFRaNq0Kb/P0aNHERAQ4JRy79ChAwICApz2adq0KaKiovh9nn76aRiNRpw+fbpMnychZYkx5lMZwpdffhmxsbHo1q2b08/o0aO9XTSPcGdheoVCgYSEBP5/rteDUFj+XwWUISSkbLnSZZT4FrlcjhkzZmD69OnYsGEDrl+/jmPHjuGrr75CvXr1cOfOHWzZsgXXr1/H8uXLsX379mKPFxcXh08++QTLly/H1atXcebMmWJ7odWvXx+DBw/G+PHjcfjwYZw/fx4jR45E9erVMXjwYH4/iUSCiRMn4vjx4zhz5gxeeukldOjQAe3atYNer8dbb72FP/74A7dv30ZiYiJOnjyJ2NhYj71OxPMoIHSQkpICAPxsTpzw8HD+tpSUFEilUgQFBRW7T1hYWIHjh4WFOe2T/3GCgoIglUr5fQpjNBqh1WqdfgjxJY7dlHyhEjJv3rxCP4+TJk3yQmk8z51JZeLj4/HTTz+hc+fO6NChA5YvXw7AO+MpaQwhIWXL8XNV1FjhvXv3on379ujUqRO2bNnCb+/fv3+Zl48Ubvbs2ZgyZQrmzJmD2NhYvPDCC0hNTcXgwYPx73//G2+99RZatmyJI0eOYPbs2cUea8yYMVi6dCk+++wzNGnSBAMGDCh0CQlHa9euRevWrTFgwAB07NgRjDHs3LnTaZZQpVKJGTNm4MUXX0THjh2hUCj480ckEiEjIwOjR49GgwYNMGzYMPTt2xdz584t/YtDykzl7CReSvn7RbNC+k7nl3+fwvYvyT75LVy4kD5UxKc5BoG+EBBWdu6MIYyIiMDSpUv5/7///ns8//zzZVW0YlGGkJCy5Urj3AcffIDdu3dDKpVi1qxZSExMxLJly5CXl1dexST5CIVCvP/++3j//fcL3Pbhhx/iww8/dNr2zjvv8H/HxcUhLi7O6fbXXnsNr732msuPHxQUhA0bNhR5+9ixYzF27FgAwNChQwvcLpVK8c0337j8eMQ3UIbQQUREBAAUyNClpqby2byIiAiYTCZoNJpi93n48GGB46elpTntk/9xNBoNzGZzgcyho5kzZyI7O5v/cVwIlBBfQN2UyldpuudyU8vrdDqPlsnVx6YMISFlx5VrsUgkQmBgIJRKJT799FO0bt0agwcPRk5OTnkVkxDiAyggdFC7dm1EREQ4TbdsMpmQkJDAr8fSunVrSCQSp32Sk5Nx4cIFfp+OHTsiOzsbJ06c4Pc5fvw4srOznfa5cOECkpOT+X327NkDmUyG1q1bF1lGmUwGtVrt9EOIL3GsePjyshOVRWkWpufuk5ub69EyuYIWpiekbLkSELZs2RK3bt3i/x87diwmT57slUYiQoj3VLkuozk5Obh27Rr//82bN3Hu3DkEBwejZs2aeOedd7BgwQLUr18f9evXx4IFC6BUKvHiiy8CAAICAjBu3DhMmTIFISEhCA4OxtSpU9GsWTP06tULABAbG4tnnnkG48ePx+rVqwHYl50YMGAAGjZsCADo06cPGjdujFGjRuGjjz5CZmYmpk6divHjx1OQRyo0rhIik8l8uqLfp08f7Nmzx9vFKDWLxQKBQFCqgNAbi1BTl1FCypYrYwgLm2CkR48euHz5cpmVixDie6pcQHjq1Cn06NGD/3/y5MkA7ANv161bh+nTp0Ov12PChAnQaDRo37499uzZw8/GBwBLliyBWCzGsGHDoNfr0bNnT6xbt85pcddNmzZh0qRJ/GykgwYNwsqVK/nbRSIRduzYgQkTJqBz585QKBR48cUX8fHHH5f1S0BImeIq90ql0icq+sOGDSuwjTGGpKQkL5TG86xWK+RyOfR6vUvjnR1x7483AsLKOKmMxWKptOu3kYrH1yb4IoT4rir3zdW9e/ciF94E7BO9FDYo15FcLseKFSuKnbo3ODgYGzduLLYsNWvWxK+//vrYMhNSkXCVe4VC4ROVkJMnT+LAgQNOSyswxjBq1CgvlspzLBYLZDIZ9Ho9bDabU8OUK/cFnCuO5aWyZAiTkpIwY8YMZGVlQSwWw2w2IzQ0FAsWLECzZs28XTxShdF4bkKIq6pcQEgIKVtcxcNXAsJp06ZBpVIhNDTUaftbb73lpRJ5FpchBOwVwJIEhOU91pMxVmkmlZkwYQI2b96M6OhoftudO3cwYsQIHDp0yIslI1WdK11Gi5KSksJPtFeRFZcAIL6B3iPfQJPKEEI8iquE+EqX0QkTJhQIBgHghRde8EJpPM9isfABobuvtzcDQgCVIkNotVoREBDgtE2tVnsl60qIo9JkCEePHu3p4pQrrmGMJjbzfdwSJ47rHJLyRxlCQohHOQaENHV52bNYLFAqlfzf7uAqieVdaeKCpcqQIVy0aBEGDBgAqVQKtVqN7OxsWCwWLF682NtFI1Wc1WqFRCKB2WwuMiBs165dgW2MsccuXu7rxGIxlEol0tLSIJFInIYMEN/AGENeXh5SU1MRGBjoVu8W4nkUEBJCPMpxUpnMzEwvl6byy99l1B3eyhByk9hUhgxh165dcfDgQej1emRlZSEoKIh/PwjxJovFwnfdL+ozrtPpkJSUVGAypN69e5dHEcuMQCBAZGQkbt68idu3b3u7OKQYgYGBlaJ7ckVHASEhxKN8bVKZolSWMTKOXUYrSkBYmTKEHIVCAYVC4e1iEMLjAkKtVlvktXjBggXQ6XQICgpy2j5r1qzyKGKZkkqlqF+/PnUb9WESiYQygz6CAkJCiEf52rITRRk9enSlWIfQMUPo7uvtrS6jlSlDSIivslqtfCNFUZ+xIUOGFLq9W7duZVau8iQUCiljT4gLKCAkhHiUr2UIK+sYGQ637AT3t7v3BbyfIfSF86S0MjMzkZmZieDgYAQHB3u7OISUasIpQkjVQgEhIcSjfC1DWFnHyHAq8hhCiUQCgUBQobuM7t+/H3PmzEFoaCjUajWysrKg0Wgwd+5c9OzZ09vFI1WYxWKBWCyGRCKhbpOEkGJRQEgI8ZizZ8/ivffeAwBoNBo+IBw3bhy++uorr5SpMo+RASrmshNchlAoFPKzIFZUc+bMwa5du6BSqfhtWq0Wffv2pYCQeJVjQFiSz9iDBw8QFRVVBiUjhPgaCggJIR4zadIkjBs3DidOnMCff/4JvV4PALhx44bXypR/jMyOHTvQpEmTSjNGpjQZQm+PIRSJRJBIJBU6QygUCpGWluYUEKalpdE098TrrFarywHhzp07nf5njCEuLg5z585Fv379yrKYhBAfQAEhIcRjBAIBwsLCAACjRo3C+++/j1deecWnKvwDBgwA8M/i6BVdRZ5lVCgUQiwWV+gM4RdffIEpU6YgJSUFjDF+uvsvvvjC20UjVRyXIZRKpY/9jI8dOxZt2rRBhw4d+GtjVlYWTp06RQEhIVUABYSEEI8JCwvD/fv3AQD+/v4AgC5dumDjxo3eLFalxRiDzWarsF1GueyFLzUYuCs2Nhbbt2/3djEIKcBisUAkEkEqlcJoNBa7782bN7F8+XIkJSVh4sSJ6NixI44fP445c+aUU2kJId5EfVoIIR6zbds2foZFLiAcOnQoDAaDN4tVaZV2PT9vBYTc44rF4gqfIczvwYMHuHDhgreLQQifIaxRowbu3LlT7L5+fn6YOXMmVq9ejf3792PYsGHIysoqn4ISQryOMoSEEI/iKvdcQGgwGKBWq71ZJF5l6SbK4QLCijaGkCsnN4awMgWEDRs2RE5OTqU710jFw40hbNCgAa5cueLSfVQqFWbNmoX169cjNze3jEtICPEVlCEkhHgUV9nnAsLHdVUqT5Up8AD+ea0rWpfR/BnCitxlNL+cnBwA9uVOCPEmLkPYsGFDXLlyxeVGiqysLIwdO5afMZoQUvlRQEgI8Siucq/RaADAp7qLOgY+3EyXFVn+gLCkXUbLO1DOP4awIgfqGzZsQLNmzfDEE09g0aJF/PbBgwd7sVTl5+zZsxgwYACGDBmCI0eO8NvHjRvnxVIR4J8xhA0bNoRGo0FGRoZL90tNTQWAAmu3EpJfQkICevXqhcmTJ2PPnj1o1aoVunfvjqNHj3q7aMRN9GknhHjM/v37sXjxYggEAn4imRdeeAEfffSRT6zJ5pitNBqNUCgUXixN6Xmyyyg3Q2Z5cMwQVvRJZVatWoUzZ85AIpFg+fLl/Paq0mV00qRJWLt2LcRiMaZNm4Zjx45h8uTJXl1qhthxGcIGDRoAAP7++2+EhoY+9n60iD1x1YwZM7B161ZkZWWhT58+OHnyJJRKJYYOHYo//vjD28UjbqAMISHEY+bMmYNXX30VCoWCz5Z88sknPjNTnWNA6EuZy5LyVJdRxhgfXJYHxzGEFX1SGaFQCIlEAsAeHHHS0tK8VaRyJRAIUK9ePdSqVQtbt26FVqvF+PHjK3SQX1lwYwi5pYAyMzNduh8XEDLG0KdPnzIrH6n45HI5oqOj0axZM8TGxqJGjRoIDg6GSCTydtGImyhDSAjxGKFQiKysLIjFYj5Iefjwoc8s0p0/Q1jReWqWUcBeCSyvLmIVLUM4YsQIbNq0qdDb+vfvj1u3bqFWrVpO27lKeGUXFhbm9Pzj4uKwceNGxMfHe7dghM8QcteH4q55w4YN4//mupbqdDokJSWVbSFJhRYREQGr1QqRSIQDBw4AsJ93lWFIRlVDASEhxGO++OILPP/888jLy8Pw4cMBACtXrsSaNWu8XDI7x65Q3g4IucpaaY8BgO/6WpKAkJvUxWQyQalUlqo8rnIcQ+hLGcLp06cX2MYYcxobl19RE2/4yjlf1rZt21Zg28iRIzFy5EgvlIY44sYQco1zxfWKOHnyJA4cOAChUIgTJ07gwIEDUCgUqFevXnkVl1RAW7Zs4f/mGs7EYjH27t3rxVKRkqCAkBDiMbGxsRg+fDj+97//4bfffkNkZCTeffddxMbGertoALyfIUxKSsKMGTP4LKrZbEZoaCgWLFiAZs2auX08LpDiAkJ3Ayuz2QyFQgGdTleu44byzzJant1Vi7Np0yZs3ry5wPbff//d7WNptVpPFImQEnMnQzht2jSoVCqEhobi2rVrAOxdut96661yKSupOFxpOKMJiSoeescIIR5lsVggkUhcapUub94eQzhhwgRs3rwZ0dHR/LY7d+5gxIgROHTokNvH88Qso0ql0msBITeG0Fe6jL788suIjY0t0N1z9OjRbh+L1nAj3saNIeTGuRZ3zZswYQL/t+O14IUXXijTMpKKx5MNZ8R3UEBICPEos9nsNIZQr9d7uUT/8HaXUavVioCAAKdtarW6xBkyLpCSyWQQCAQlDgiB8p1Z0DFDKBKJfCYgnDdvXqHbHSeLcRW3HiEh3uLYLV0mk7ncCEazjJa/hIQEzJs3D82bN8czzzyDGTNmICAgAAsXLkTHjh29XTwnnmw4I76DAkJCiEcZDAZYrVYcOnQIAoHAp7rOebvL6KJFizBgwABIpVKo1WpkZ2fDYrFg8eLFJTpe/slZSjLLqJ+fH4DyrQTmH0PoK11GPamqZAj37t2LWbNmQSQSYdKkSfzY4f79+2PHjh1eLl3Vxo0hBOy9CPJf886ePYvZs2dDIpFg2rRp6NSpEwBg2bJl5V7Wqq4iLd/g2HCW//PPoc9/xUMBISHEY+Lj47FlyxYYDAYcPHgQYrEYH3/8MQICAnxikglvdxnt2rUrDh48CL1ej6ysLAQFBfGZ1JLgAkAusCrJOoTezhD6UpdRT6oqAeEHH3yA3bt3QyqVYtasWUhMTMSyZcuQl5fn7aJVefkDwvzXvPxrSB4+fBi9evXC9evXAVSdtTR9Abd8Q3R0NL98A4AyXb7BExOb0ee/8vCNueAJIZXC6tWrMXToUNSoUQPz5s1DaGgoRo8ejc8//9zbRQPg/QwhR6FQIDIyslTBIPBPYCWRSEoUWHm7y6hIJPKpLqOl5ZjprCpdRkUiEQIDA6FUKvHpp5+idevWGDx4cJV5/r6MG88NFN5l1HENyUGDBmHFihUYPXo0/97pdDps3Lix3MtdFXHLNwAo0+UbkpKS0K9fP3Tq1AlPPfUUOnbsiIEDB5Z4eRH6/FceFBASQjxGoVDgzp07fCXEz88Ply9fLnXg4yneHkPoafkzbdRltHT27t2L9u3bo1OnTk7Tqffv39+l+zu+/lUlQ9iyZUvcunWL/3/s2LGYPHkydDqd9wpVAZVFo4hjQFhYl1FuDUnA3ph3+/ZtvPvuu3w3f6VS6TONeZ6SkJCAXr16YfLkydizZw9atWqF7t274+jRo14t15YtWwpkA8ti+YYJEyZg9erVOHLkCA4ePIijR4/if//7n9OkQu6gz3/lQV1GCSEeEx8fj169euH27dvo0KEDkpOTcfnyZezevdvbRQPgOxlCTyntAu/UZdRZabs/OQaEVaWFfMWKFQW29ejRA5cvX/ZCaSoWTy9Dkx83wRdQeIbQcQ1JhUKBhIQEjBw5EhqNBpMmTYLBYPCZxjxPqUhj9QDPL9/g6YnNHD//ffr0wZ49e+jzX0FRQEgI8ZiIiAi0adMGgYGBOHz4MLp27YratWsjIiLC20UD4P0xhJ6egKO0Ywi93WXU12YZ5bo/AcCnn36KdevWudX9yfE1rCoZQlJynl6GJr/HZQgdxcfHY9GiRZg1axbu3bsHwH59iY+PL3U5fIk3xur5Ek9MbDZw4EB+7VsOY6zE3U6Jb6CAkBDiUY6t0n5+fj6VKTGZTJBIJLBarV7JEHp6AH7+MYQVpcto/nUIfaXLKNf9qVatWgDs3Z9iYmLwxhtvuHR/CghJUTN3jhs3Dl999ZXTvp7O1uSXP0NY3BJAERERWLp0KQB70DBz5kwAQLVq1TxSlrLkzmvOjdUTiURlOlbPV7k7sdnOnTud/meMYc+ePVi1ahV69uzptH3UqFFlVm5S9iggJIR4lGOrtL+/v88tOyGTybwWEJY2A5VfabuMeitDyFV4fW1h+tJ2f3R8DX2pIcQbUlJSfKZnQHnKP3PnsWPHMHnyZNy4caPAvp5ehia//JPKuNpg5Hgem0wmj3db9DR3XnPHscGcshir567vvvsOCxcuRJMmTdC7d28sWLAAarUas2fPxqBBgzz+eAqFokCWrzBjx45FmzZt0KFDB37W2YCAAFy5cgUvv/yy075vvfUW/7dOp4NKpfJsoUmZ8u1POSGkwnFslfb398eDBw+8XKJ/GI1GSKVSMMa8EhCWNgOVX0VedkIoFEIoFPpUl9HS4l5DhUJR5TOEo0ePxp49e7xdjHLHzdwJAFu3bkVcXBzGjx9f6Dnu6WVo8nO8Fkul0gKf8aKCEK7RCrCf09w1wle585oXxdtB7yeffILExETodDq0bNmSn4ytV69eZRIQuurmzZtYvnw5kpKSMHHiRHTs2BHHjx/nGy02bNiAjz76CBKJBMOGDePvN3jwYD4DSyoGCggJIR6VP0PoSxVjk8kEmUwGxphXxhB6egIOT3QZ9VZAyFXAfClDWFrcaxgYGFhlMoTt2rUrsI0xhqtXr3qhNN7HzdzJNfrExcVh48aNxY7FczVb4y7Hz5lUKi3QW6OwIGTatGlYs2YNv095XhdKqiSvua9RKBRQKpVQKpXo2bMn35W4PALVs2fPolWrVoXe5ufnh5kzZ0Kn02HZsmVYsmQJsrKy+NtXrVqFM2fOQCKRYPny5Xj++eexYcMGWsOyAqKAkBDiUWazma/c+NoYQq7LaEkzhO6MVSkPFbXLqOOC2b40hjA/xhhq1KjBZxweh3sNg4ODfaohpCzpdDokJSUVqLj27t3bSyXyLseZOzkjR47EyJEjy70sjo1zEomkwGe8sCAk/0ybFSEg9KXXvKRatmzJj23k1n40mUwICQnx6ON89tlnTv8zxrBq1SpMmDCh2KUnVCoVZs2aBa1W69SAKRQK+XNs0qRJaNy4Mfr27YvMzEyPlpuUPVqHMJ+4uDgIBAKnH8dxEIwxxMXFISoqCgqFAt27d8dff/3ldAyj0YiJEyciNDQUfn5+GDRoED9rF0ej0WDUqFEICAhAQEAARo0a5dTqQkhFZTabnTKEvhYQSqVSyGSyEgWEkyZNwtKlS7FkyRIsWbIEn376KQAUOlalPJR2+QbuvSqssliWrFYrH0D4cpfR+/fv48GDB5g6dapL+3MZ2qCgIJ8678vSggULCl1zbNasWV4oDXH0uC6jXBACgA9CwsPDnfapCAGhJ/Tp08erj7906dICM51KpdJCg93S+N///odff/0VSqUSfn5+8Pf3h1AohL+/v0v3V6vVaNeuHZ8B7N+/P06ePIns7GwAQK9evfDZZ5+hevXqHi03KXsUEBaiSZMmSE5O5n8cp9L98MMP8emnn2LlypU4efIkIiIi0Lt3b6cvxHfeeQfbt2/Hli1bcPjwYeTk5GDAgAFOreAvvvgizp07h127dmHXrl04d+4czdBEKgWj0ciPg/HFgFAmk0Eul5eoyyg3VqVWrVrYunUrtFqt22NVjEYjzpw5g3379uHMmTOlqnDlH0PoTpdRxhgfmBVWWSxLvtpltF27dk4/Tz31FAAUOzujo6qYIRwyZAiCgoIKbO/WrZsXSlOxfPfdd2jVqhVGjhyJ9evXo2HDhmjbti1+/vnnUh/bZrPBZrPxjXNSqbTA9aGwIEQgEACw11GAyhcQDhs2rMDPv/71ryqzZMKFCxcwcuRI/PTTT5BKpRg1ahRq1KiB0aNHu3yMZcuWoVmzZhg8eDAYY5gwYQIGDx7MdzVu0qQJdu3aVVZPgZQR6jJaCLFYXOjsaIwxLF26FO+//z6GDh0KAFi/fj3Cw8OxefNmvPbaa8jOzsZXX33FL9AN2FveoqOjsW/fPjz99NO4dOkSdu3ahWPHjqF9+/YAgDVr1qBjx464cuUKGjZsWH5PlhAPMxgMkMlkAOwBYV5eHmw2G4RC77c/cWMIBQJBiTKEpR2rEh8fj1WrVqFt27ZQq9XIysrCmTNn8MYbb5Soe5Pj5CzudhnlGqi47qbujj8sDV/tMpq/+2N8fDxGjx7t8tT7XOU5KCioygSEpOTKciIRx94DQOEZwsIYDAaMHz8er7zyCjZv3lzpAsKTJ0/iwIEDTt9HVWnJBIFAgBdffBHDhw/Hpk2bMGjQIKSnp7t1jM2bNyMpKQl5eXlo2LAhbty4AYlEgq5du7rUtZ74Ju/X0HzQ1atXERUVhdq1a2P48OF8d7CbN28iJSXFqWuBTCZDt27dcOTIEQDA6dOnYTabnfaJiopC06ZN+X2OHj2KgIAAPhgEgA4dOiAgIIDfh5CKymAw8BlCPz8/MMZczrCUNS5DWNIuo9u2beODQc7IkSNdzjauXr0ahw8fxrJlyzBv3jysWLECCQkJ+Pzzz90uC1C6TBsXAEql0nLPEJrNZkilUgC+lSHM3/2Re19jY2Ndur9jhtCXMuPE+wrrksiN4QsPD+fH8MlkMo9MJOI44RT329WAUC6X85/PihAQupNpnTZtGlQqFWJiYvifWrVqOS2Z4C2e7D3yOEKhEKNGjcLPP/+MH3/8scj99u7di/bt26NTp078kh0KhQIDBgyAn58fhg8fDqlUCoFA4PWZWknp0LuXT/v27bFhwwY0aNAADx8+xH//+1906tQJf/31F1JSUgAU7GMfHh6O27dvA7CvvSSVSgt0oQkPD+fvn5KSgrCwsAKPHRYWxu9TFKPR6FSR9aU13ggBnANCblxCTk4OvwC6N3FjCIVCoVeWnVAoFEhISECPHj0A2FumExISSjzVvOMYIXe7jHKVDYlEUu4BIfc+AL41hnDIkCFO/3MBoaszQObvMuormXFSfhyn3ucwxgrtkliWE4k4dicHis4QGo1G/PXXX8jMzERwcHCFDAjdybQWNXHKCy+8UB5FLZKne4+4SigUIioqqsjbP/jgA+zevRtSqRSzZs1CYmIinnnmGb5L6McffwzAfp40adKkzMpJyh4FhPn07duX/7tZs2bo2LEj6tati/Xr16NDhw4A/uljz2GMFdiWX/59CtvfleMsXLgQc+fOfezzIMRbHMcQckFgTk5OgYYUb+C6jHorIIyPj8eiRYswa9YsWK1WSCQStGnThq8MussxQ+hul1FvZghNJpNThtBXuozmxwWErja8ca9hSEgIGGPIzc2lxZnLkS/MAuxOl8SlS5cW2OapiUTyZwgLG0NYWBBy+/Zt/P333/zn05PXyQcPHhQbfJSUN5ds8BSu94jjeWOxWNC9e3evzpYqEon4dSk//fRTrFu3Dt9//32BLvFSqRQrV670QgmJp1ScT4uX+Pn5oVmzZrh69SqeffZZAPYMX2RkJL9PamoqX9mNiIiAyWSCRqNxyhKmpqbyX04RERF4+PBhgcdKS0t7bKV55syZmDx5Mv+/VqtFdHR0iZ8fIZ7mmCHkMiveWPOvMFyXUaFQ6JVurBEREYVWAkvKcVp5d7teejNDyAXmgG91Gc2vNAEhdz8KCMvPpEmTsHbtWojFYkybNg3Hjh3D5MmTy3UWYK5LYmhoqNP28u6S6EqGsLAg5Ntvv8W5c+dKnSHcuXOn0//cDO1z585Fv379SnTMopTXkg1lydO9R4qTPyvctGlT/v3Or2XLlk7j5seOHYuYmBi88cYbHi8X8S7qy/IYRqMRly5dQmRkJGrXro2IiAjs3buXv91kMiEhIYEP9lq3bg2JROK0T3JyMi5cuMDv07FjR2RnZ+PEiRP8PsePH0d2dja/T1FkMhnUarXTDyG+xHFSGe7LzNcCwpKOISxKSacs79u3L/7v//6vxI9rNpudJmdxp8uoNzOEvtplND/uvOWmVH8c7jXlgoHClmMgZccTswCX1oQJEwoEg0D5d0l0ZVIZLgjhcFlt7poAlDwgHDt2LFauXIlTp07h5MmTOHXqFLKysnDq1KkSHa84nliywduf1fj4ePz000/o3LkzOnTogK5du+LXX38tce+R4h6nR48eWL9+PRISErB27Vr06NGjyMdZsWJFgXHzPXr0cFqLkFQOlCHMZ+rUqRg4cCBq1qyJ1NRU/Pe//4VWq8WYMWMgEAjwzjvvYMGCBahfvz7q16+PBQsWQKlU8lM0BwQEYNy4cZgyZQpCQkIQHByMqVOnolmzZvyso7GxsXjmmWcwfvx4rF69GgDw6quvYsCAATTDKKnwHDOEvhgQcmMIS1LRcWd8kCu4cRjffPNNie7vmGlzt8uotzOElbnLaHBwsFv3I55R2lmAfUVKSkqhM527w5VJZQrrwm4wGPDSSy+VOiC8efMmli9fjqSkJEycOBEdO3bE8ePHMWfOnFI8q9LbsGEDPvroI0gkEgwbNgzvvvsuAGDw4ME4cOCA18rl6d4jRfHVrqnE+yggzOfevXv4v//7P6Snp6NatWro0KEDjh07hpiYGADA9OnTodfrMWHCBGg0GrRv3x579uxx6ha0ZMkSiMViDBs2DHq9Hj179sS6deucWrA2bdqESZMm8ZmFQYMGUf9rUuHZbDaYzWafDQhLO4bQ16Ys5zKeQMm7jHprDGFF6zLqyhhvLtDlem54O+tQ1RSWERo5cmSFq+iOHj0ae/bsKdUxXOkymj8IsdlsEIlECAsLK3VA6Ofnh5kzZ0Kn02HZsmVYsmQJsrKySnQsT1q1ahXOnDkDiUSC5cuX4/nnn8eGDRv4hdYru/LsmkoqFgoI8+Gm1S2KQCBAXFwc4uLiitxHLpdjxYoVWLFiRZH7BAcHe7wrACHexgVZvhoQOo4hLElA6Cvjgzj5A0LqMupZ3HlrNpudJksqChcQcg2ElCEkHJ1OV2A8abt27QrsxxjD1atXS/14RU0qU1zDhuP1m7uulPa6oFKpMGvWLGi12nLvZlhYppVbsxWwjzlt3Lgx+vbti8zMzHItm7d4amIzT2SxiW+hgJAQ4jFcBdqXA0KpVAqRSFSigNCTU5Y7BkGOs4W6w7F7LnUZ9TzH8zY7O9ulgFAikfAVf1qLsOrJ3yXx3//+N86cOYP333+/QJdEnU6HpKSkAp/93r17l7ochWUIGWOwWq1FXmscA0JuH09dF9RqdaEBcFkqLNPav39/p27FvXr1QmRkJKZMmVKuZfMWT3VNLS6LPWLECGzatKnUj0HKFwWEhBCP4SrQvjqpDNdVsaQBoSdpNBr+7+zs7BLNiFeaLqPeXnaCW6NSLBbDZrP55Jp9BoMBCoUCer0eWq222Fmgz549i6+//hp5eXk4ffo0BAIB9Hp9uS55QOwyMzP5GRS58ZzlJX+XxCZNmuD69et48sknC+y7YMEC6HS6AusWz5o1q9TlKCxDCNg/e0UFhI4NegKBADKZzGeu3cVxJ9P63nvvFdjWpEkTfjw3cVbcazt9+vRCbzty5Eh5FI14GAWEhHhYVW4dy58h5IIVX6lUlLbLqCc5ji/LycnxSEBYmoXp8/Ly3H78kjIajXxFnauwms1m/rn4CoPBgPDwcNy6deux458mTZqEXr16Yfv27fysh3q9vlyXPKjq9u/fjzlz5iA0NJRfV0+j0WDu3Lno2bNnuZQhf5fENWvWAEChS00NGTKk0GN069at1OVw/Hw7/jaZTFAqlYXeJ//1OygoyKnhqiTKIzgvy0xrVVfca7tp0yZs3ry5wH1+//338ioe8SAKCAkpIWodKyh/hUIoFEIqlfpkQFjSjJg7azgVxzEAK2nXQk9mCMtzwgfHSWW4185XA8KYmBjcunULycnJxe4rEAigUqmgVCqxdetWKBQKbNq0yeeeU3nwVqPYnDlzsGvXLqexelqtFn379i23gDB/l0Q/Pz8AKJAFLGv5r8WuTBKTv4dHaGgo0tPTS/T45Rmcl2Wmtaor7rXdt28fNBoNVq5ciebNm+OZZ57BjBkzkJOTg6NHj6Jjx45eKjUpCQoICSkhah0rKP+kMtzfvhQQlmYMYXx8PFatWoW2bdvylZwzZ87gjTfecHsmQ08HhBVpDKHjpDKOmQtfYzAYULduXYjFYty/f7/YfcPCwpCWlsY/r+DgYNSoUaPAAt2Via81igmFQqSlpTkFhGlpaeXaFTl/l0Su4YVb3qC85L8WOza8FCV/EFmtWrUSB4TlGZyXZaa1qivute3WrRs6dOiArVu3IisrC3369MHJkyehVCoxdOhQ/PHHH+VbWFIqFBASUkIvv/wyYmNjERYW5rR99OjRXiqR9+WvUHB/+0pAWNoxhJ5cw8kTAaHBYOC7mla0ZSfyB4TudHctLwaDAUqlElFRUY8NCLdt24a33nqLf14KhQL169f3mXO/LPhao9gXX3yBKVOmICUlhZ9NMzIyEl988YVXygOAX24qNTW1XB83f7bPnQwhd/0uTYbQF4JzUvbkcjmio6MRHR2N2NhY1KhRAwCcllkjFQMFhISU0Lx58wrdPmnSpHIuie/IXwkBfCcgZIzxGTVuqQN3JzLx5BpOnsoQco9dkZadKKrLqK/hZnGNiIgodAxYfo6BLjcZzeMkJCRg3rx5Tl2uAgICsHDhQp/vcuVrjWKxsbHYvn27Vx67KNznKjs7u1wft6gMYXGf8/z3iYyMxMmTJ11agzM/XwzOyT9KOrN1fhEREbBarRCJRPwsutx3K6lYKCAkhHiML2cILRYLGGP8GELAXgFSKBQuH8NTazgB1GW0InQZ5QJulUrl0iLz3LITgOsB4YwZMypslytqFHs87nNe3mtS5m+cc+Vzlv/6PXDgQCxfvhwXLlxAs2bN3Hp8XwzOq7qkpCTMmDEDWVlZfANiaGgoFixY4Pb7y8m/dvfZs2fRqlUr7N271xNFJuWIAkJCiMf4ckDo2EWS685iMpncCgjzr+HEGIPNZitR9xjHgNCVYKMwnphURiKRQCKRlGtAptfr+ZkOK0KG0J2A0N0MIXW5qjhKks3lPucl/YyXlMFggEAgKHTZieLuA/xz/a5Xrx4A+yLkJQ0YiO+YMGECNm/ejOjoaH7bnTt3MGLECBw6dMjt43322WdO/zPGsGrVKkyYMKHINXuJ76LO3IQQj/HlSWUcKztcEFXapSfmz58PiURSogyfXq+HSCSCWq322Cyj7i47IRKJ+JlgyzMgzMvL4wNCX84QuhMQ7t27F7t27cLZs2exZcsW/rzv379/sffjulwBoC5XZcRTwdiMGTOwdu1avPTSSxgzZgx++eUX/PDDD5g5c2aR93ElQ+hOQ46ruOw219XTnUlluGsKNz45IyOjVGWx2Wx47rnnEB8fX6rjkNKxWq0ICAhw2qZWq/nrj7v+97//4ddff4VSqYSfnx/8/f0hFAr5NWZJxUIBISEe1qdPH28XwWt8OUPIVQpVKpXHAsItW7aAMYZTp065fd+8vDwoFAqoVKpSTSpT0i6jjkFZeQaEjLECjw34dobQ39//sUHFBx98gA4dOqBTp044ceIErl69iry8vMeu77hly5YC2UCxWExdrkpgw4YNaNasGZ544gksWrSI3z548GCPHJ/L5jZr1ozP5gYHBxebzeWyxPkDwqSkJPTr1w+dOnXCU089hY4dO2LgwIFISkrySFkdrw1AyTKE/v7+kEgkpQ4IdTodfvjhB4wePRopKSmlOhYpuUWLFmHAgAHo1asXhg4dip49e2Lw4MFYvHhxiY534cIFjBw5Ej/99BOkUilGjRqFGjVqVOmJ9Soy6jJKSAkNGzaswDbGmMe+0CsirpuS42B1XwsI/f39+UpaaQPC8PBw/PXXXyWq5HBBkb+/f4kDwtzcXH6dM3e7jObm5nolIDSbzbBarQUyhL4cELoStItEIjDGoFQq8emnnyIxMREnTpxA7dq1S/TYnpjwwVv69OmDPXv2lPvjrlq1CmfOnIFEIsGyZcsQExODl19+GYwxl49R3BqK7k6gYbPZ+Gtf/oDQ09338uPOXY6rYwiFQiF/7gkEAoSEhCAzM7NUZXFsTBk9erTHz42zZ89i9uzZkEgkmDZtGjp16gQAGDduHL766iuPPlZF1rVrVxw8eBB6vR5ZWVkICgoq0YRoHO67/tatW1i5ciUWL16MK1euoG3btpg9ezYGDRrkwdKTslZxv3EI8bKTJ0/iwIEDTrNUMsYwatQoL5bKu7hKiOOMdL4WEKpUKr6LTGkDQq6i+bhFywtTFgGh2Wx2eUbAvLw8/r5SqbTcAjIuY8aN3XQlc+ENFosFVqvV5S6jLVu2xOnTp/kuWU2aNIFOpyv3sWPlqaSNYmU1s6pQKOQDn9deew3vvPMO4uLi0LRp0wL7lmQNxfwTaADFZ3O5hieFQlEgIPR09738HLuTA65nCPNfv0NCQkqUIWzXrp3TcTknTpxw+1iPM2nSJKxduxZisRjTpk3DsWPHMHnyZNy4cQMA8ODBA0RFRXn8cSsqhULh1tj54nzyySdITEyETqdDy5YtcfbsWdSuXRu9evWigLCCoYCQkBKaNm0aVCoVQkNDnba/9dZbXiqR9+VvlQbsAWFpW5g9wTEg5CpqpQ1CuGN6IyC02WzQ6/X8eA25XA7GGMxmM1/5K45jMFmeGUIuIPT1DKFj9zlXAsIVK1agY8eO/PNSKBSQSqU4d+5cWRfVa0raKFZWM6v2798ft27dQq1atZwCsOrVqxfY15NrKBaVzeWuM02aNMGVK1ecGmu47ntSqRRqtRrZ2dmwWCxO3fdKE8jkvxa7EhDq9foCgYJarS7RDKk6nQ5JSUkQi8U4efIkHyC2bdvW7WM9jkAg4CfAeemll7Bp0yY888wzSE1NxY4dOxAXF4e5c+eiX79+Hn/ssnL79m2EhIT4/Hg8hUIBpVIJpVKJnj17olGjRgAqdg+HqoreMUJKqKhZtF544YVyLonvyD9uBfDNDCG3JlhpM4TccUqyeHNpA0IusOKCOq4iZzAYXA4I83cZLcl6Y+7iKsn5xxD6WoYwf0CYl5fHdxcsimOQrVAoSnXee6vbpTsKaxQ7dOgQMjIyij2Xympm1ffee4//2zGI+eWXXwrsWx5rKHKf0SeffBKnTp3CoUOH0LVrVwAFu+8dP34cUqkUOp0OO3fuBGOsVIGM4xqlgGtjdXNycvjzl+PqDLv5LViwADqdDkFBQU7Xt6lTp7p9rMcJCwvjGwLGjh2LNm3awM/PD1euXMGpU6eQlZWFU6dO+VxAWFzAX6tWLbRo0cKnGpQK607dsmVL/rrILb9kMpn4CYlKqySNraRkKCAkhHhMdnY2AgMDnbb5SkDIVUr8/f09NqkMV+nMyspy+76OAWFJAsrc3FwA/wSEXOVPr9dDrVa79PiOGULGGKxWa5m37FaUDCEXuMpkMr6VPicnp0A3P0eOAaFcLndp2YmKPBa5sEaxmTNn4tKlS7hz5w5iYmIKvV95LGbtuBB8ampqgSxheayhyF1zBg4ciK1btyI+Pp4PCDlc971XX30Vbdq0QYcOHfiu6KUJZHJzc52yfa40vDiev5ySTno1ZMgQ/m/HgLKw7rultW3bNv7vmzdvYvny5UhKSsKhQ4fQsWNHHD9+HHPmzPH447pj586dTv+7EvCfP3++PIpWoPHJne7Uixcvxvnz55GZmYng4GA0bdoUUqnU6T1xVWGv0ezZs90+DikZCggJIR7DfSk48pWAUKfTQSaTQSKReDwgdKx8uopbi8/f3x83b950+/5cJS1/htCVIAQo2GUUsFcWyzsg9NUMIRdwO3bZelxAmJOTg+zsbOzbtw8ajeaxM4wClW8sckREBADg3LlzRQaE7o7FKwnHDOHDhw8L7Tbqrr1792LWrFkQiUSYNGkShg8fDsDeVXXHjh0F9ucCoZCQEDzxxBN48OBBkcd2DGQmTpxY6kBGp9M5NQy5MqlMbm5ugS6K/v7+pZ4Z1DGgzMrK8sh7URQ/Pz/MnDkTOp0Oy5Ytw5IlS0rUYOdpXObSlYDfnUmQ3OFq45Or3anj4+OxatUqtG3bFmq1GllZWThz5gzeeOMNjBw50u3yFfYaleS7lZQMBYSElILRaMRff/1VoHWsqsrIyPDpgFClUgH4JwgpTUBoNpuh1+shk8lKnCEszbIT+TOEjl1GXb1/tWrVADi/HlygVla4cvt6htCxizHX9bG4rnPx8fFIT0/HX3/9hdDQUL7VfOPGjcVWjirbWGQusL1165bb9/VkY0T+gNATPvjgA+zevRtSqRSzZs1CYmIili1bVmTg73gORUVF4dixY0Ue29OBjFardQoIRSIRBAJBiTKEpZ0YyfH+Go2mVMdylUqlwqxZs6DVanH58uVyecziuBPwO17DH9dN3R2uNj652p169erVOHz4sNPxLBYLunfvXqKAsLDXKDExkZ8ciJQtWoeQkBKKj49Hjx49sH79eiQkJGDt2rXo0aMH34++KsrMzCwwdsAXA0JPZAi5Cmd0dHSJWjFLO4YwfwbLscuoq4+fv7tpebxP3OvGVVYrQkDInTfFVYxXr14NxhhefPFFzJs3DyNGjAAAfP7558U+zoQJEwoEg0DFHYvMZZPu37/v1XI4BoSeWvtOJBIhMDCQX1qkdevWGDx4cJGfX8dzKDIy0ilDuHfvXrRv3x6dOnVyypgOHz4cs2bNwpdffomlS5eWuKyO1zvAPvHK4yaPKmwMYWlmQXY8Lqe8s3VqtdppxlNv4QL+1atXY//+/Rg2bFiRr4XjuevJDBnX+BQTE8P/1KpVq0Dj07x58woEg0DB7tQKhQIJCQn8/4wxJCQkQC6Xl+gzV9hrRBnC8kMBISElxLWOLVu2DPPmzcOKFSuQkJDw2ApgZVZUl1FXg5SyVFhAWJpuityXds2aNUs9hrAkFa7SdhnVarX868Fl61zp4lha3Bc81/WSCwhL233X0xwr81zQXVxAKJPJwBhzCrJtNluBSZYqk8IWgueWKCiue2R50Gq1fOb75ZdfLnD7d999h1atWmHkyJFYv349GjZsiLZt2+Lnn38u8pgtW7Z0ynyOHTsWkydPLvK8cDyHwsLCkJ6ezneF47KN+/btw4kTJzBx4kTYbDb+M1jaQMbx881RKpV8Q1JhyipDmJOTw38vDBw4ENeuXSvV8fIrKrju37+/Rx/HE7jMZXEBv2NA6MmMqqcbn+Lj4/HTTz+hc+fO6NChA5588kl8+OGHWLNmTakmZ3J8jbjrCil7FBASUkLFtY5VVRkZGQUyhP7+/sVWQspLWWUIY2JikJWV5fa4j9IGhFxgxU3i426X0ezsbD4o4yqB5REQarVayOVyvrIuFArh7+/vc+v1FZYhLO59WrFiBQBg/vz56NChA798wOrVq8u4pN7DLQR/5swZKJVKPP/883wF9vbt224fr0+fPh4rW/4uk/nfO279tE8++QTvvvsuTpw4gcOHD+Ojjz4q8pgrVqxArVq1nLb16NGjyC6JOp2OH7OsVqudAj53s43uyv/8Afu1oriMS1l2GXUMRLjPiqc8Lrj2RcUF/GUVEHpaREQEjhw5ArPZDK1Wi8TEROzZswedOnXyyHqTarUarVu39kBJiStoDCEhJRQfH49FixZh1qxZsFqtkEgkaNOmTZXtMsoYKzRD6O/vD4PBAIvF4tW1iXJycvhMj1gshlAo9FiXUavV6tQF0xWOAaHJZILJZHJr/CmXleSCFXczhI4BYXlnCAtbkNvXugbpdDqIxWKnBp7iKsbcubVs2TI8/fTT+Omnn/Dss8+6NONrRR2L7LgQ/KRJk9C4cWNs374dIpEI586dK3L8U3nMrMoFRJs2bcLTTz+Na9euoWXLlvzt+ddP485JT16jHBuhuONnZ2fDz8+PzzZyAebYsWMRExODV199FdeuXUNwcHCBa2lJH5sTFBRUbIBRWEDoiet3Tk6OU1k8tSg6hwuuAeDTTz/FunXrCgTXFWEZF45jQOgLa/gWh1tvMi4uDvPnzwcANGvWrMwmxiFlhwJCQkooIiKiVGM8KhudTger1VpoQAjYKxvFzdBY1nQ6ndPj+/n5lao1ngtgatasCcAeoLkTEHJduhxfH3cDQrVazVe43RlDaLVanWbMLO+AMH+QFBAQ4JMBITehjFwuh0gkKjYg5AJ0rmLq6mvq6Zn6ypPjQvCAPVtms9lQvXp13L9/H/v37y8061ceM6tyDQ9t2rQBAFy9etUpICzr9dMA56CMO+e1Wi2ioqIKZMn279+POXPmoHHjxpg7dy6ysrKg0Wgwd+5c9OzZ063Htdls0Gq1Ba63gYGBxXZv12g0CAoKctrmmB3Pv6SQq3Q6Hfz9/bFy5Uq89dZbuHv3bomOUxTH4JprbNDpdLhy5QqGDRtWYZZx4ZRlhtBxfdCUlBQoFIoC58l3332HhQsXokmTJujduzcWLFgAtVqN2bNnY9CgQU77cutNXrlyBdWqVUPr1q1x6tQpbN26tcRlzMzM5BvHaIH78kOvNCGecucOEBgIuJARqIy4sUOFdRkFHj9lf1nT6XT8AthA6YOQwgJCV6dTt9ls0Gg0CAkJcXp98lfGipOVleVUQXOnyyhX4fCVDGFAQIBTJcgXOAauAoHgsV3nuIob1yDCvTcajaZAN0NHhc3UZzab0aNHD58PCB0Xggf+Oa+WLl2K9957Dz/99FOhAWF5zKzKZQiDgoKgUCgKTHJTWGOeK+unuZPNdQywHDOEhZkzZw527drllEnTarXo27ev2wFhRkYGbDZbgYlBHhcQFtbl33FCpZIGhFyG8M0330RCQgJSU1NLdJyiOAbXvrqMiztLljheC0+fPo22bduiTp06pS7DsmXLsGbNGtStWxft2rXDjz/+CD8/P4wYMQLjx4/n9+O6U+t0OrRs2RKXL1+GXC5Hr169CgSE3HqTV65cwXPPPYe+ffti8ODBqFevntvl4xpFQkND+caxkqzRS0qGAkJCPCUmBmjYEPCBKa69gevaUlSG0FNjY0qKb63X64HMzMeOp3mcjIwMyOVyREVFAXBvNrjs7GzYbDYEBwe7NGFJUcdwDKxkMtljs1iO9wW8ExBqNJoCFUtf7DKanp7uFLA8bpxj/vOfuy/XUFIUbixyjx49ANgrt5MmTeL/r0gcz6tGjRoVub5mYQvaA56dWZULCAUCAZ+xLC13s7mZmZl8QOiYISyMUChEWlqaU0CYlpbmFNi4iltmIzw83Gl7UFBQka9DXl4e9Hp9gSDdE9dvnU7HlyUkJMTjk8o48tVlXNxZsoSbEEmtVuOjjz7C2rVrkZaWVuoybN68GUlJScjLy0PDhg1x48YNSCQSdO3a1SkgdLc7tc1mw9WrV/Hyyy+jVatWAIAzZ844NcC6orBGkXv37iE6Otrdp0pKgAJCQjyBm63yyhXvlsOLuJa84jKE3vTw4UN7i/mTTwKnTyOgc+dSBSHp6ekICQnhgxt3Zhp1DB5cWdKgMPkDK4FA8NgxQvkf393ujZ7w8OFDPqvKCQgI8LnJE9LS0vh1GgE8dr3I/K8p9zl4XECYfyzy8ePHAQBxcXGlKL13cJ+BgIAA1K5d26tjtrRaLZ+xj4qK8khA6O66axqNhm8geFyG8IsvvsCUKVNw//59CIVCCAQCREZG4osvvnC7nEUFhKGhoUVm54rq4VHS65OjnJwc1K1bF4D9mleW4+LKo7GhJFwZ58jhGjO4Me6eypIpFAoIBAL4+flh+PDhfGY7f6DnbnfqO3fuwGAwoGHDhqhRowZCQkJw9uzZAtnExymsUYQyhOWHAkJCPMGxJTw7G/Bi10hvuX37NoRCIZ8x4/hCQGg0GpGeno6oyEjg9GkAQHU/v1KtiZWRkYHQ0NBSBYQhISGPrSgWJSUlpUCFLzg42KXA6t69ewDAt7xKJBKIxeJyCQhTU1PRtm1bp20hISG44mONKenp6YiJieH/f1yX0czMTAQEBPBjOlUqFcRi8WMrNPnHIstkMphMJp+bddUVXBajWrVqqF27Nm7duuU0Zqk8JScn44knngAAVK9evdBlMNydzCd/NvdxM0tnZmbyjR9qtRpCoZD/7G/YsAEfffQRJBIJhg0bhnfffRfbt2/HU089hQMHDpTquXNrwOW/PtSoUQP37t2DzWYrkHl8XINeac7HjIwMPjAu64DQUWET63hLUZMIvfHGGwX25QJCxwXZHSdFK6m+ffvygd7HH3+M6dOn4/r162jcuLHTfu52p+au3Q0bNoRAIMATTzyBs2fPul0+rlEkJSWFv24UtkwGKRu07AQhnvD33//8XYLp1iuDmzdvokaNGvysgxzuS8ybY8S4ClJthy/UxoyVOkMYGhoKpVIJqVTqViWHqziHhITwXcrcDU4fPHhQYMxiUFCQS+W4ffs2pFKp0xgjPz+/clkehM/UOmjQoAGuXr0Km81W5o/vqsIyhMVVih8+fOhUeeEqM+60cDPG+Nn5rl69WoJSexd3XoeFhaFOnTowGAxuLVDtqQXkGWO4e/cuH4wV1mU0Pj4ePXr0wPr165GQkIC1a9eiR48exc4SnX/dta5du+LXX38t8j6OGUKRSITg4GD+NSpsyY68vDyPzM548eJFREZGFgggoqOjYTabC80SXr9+HQCcGkEAuLTkyuOkp6fzn6Xg4GDodLpSrQGbX2HrYQLA4MGDH3vfO3fueKwcxXFnyRIuIHR8L7isb2nMmDGDb7DS6/X46KOP8MMPP+C1114r1XGvXLkCmUzGl7dVq1Y4c+aM28eJjY3F9u3bcfToURw7dgxHjx7Fpk2bSlU24joKCAnxBMeA0GHh4qrkxo0bqF27tv2f06eBRwsEV6tWDUKhEMnJyV4rG/elH+1QCWlgNpeqpfrhw4eoVq1aiSr+t2/fhlgs5ittQqHQ7YDw/v37BbKxrra+37lzB9HR0U5ZgmrVqnl8sof89Ho9srKyEBER4bS9UaNG0Ov1Hp99sDTyZ2AfN4bw2rVrqF+/vtO2GjVquPWcMjIyYDabAaBELezelpaWBoVCAT8/P/5a4JjleJzSLGbtKCMjA3q9ns+AcwGhY7DFdf9ctmwZ5s2bhxUrViAhIQGff/55kcflsrmJiYlITExEXl4e7t+/X+B85qSlpTll3KpVq8ZfJ/Iv2fH666+jb9++Hukid/78eacZVTlcgFzY2M6kpCSEhYUVaKzhejCU9FppNBqh1Wr5xhLutye7AroSXBfW2HD27FnExMTgm2++8VhZPIGbQfrQoUPYtWsXAM81lnAuXbrE/809RklduHABDRo04IPN1q1b4+7du/jbsV5EfB4FhIR4wtWrQIsWgFxeZQPC8+fPo2nTpvZ/nn4a+L//A65fh1gsRlRUVLm1xBYmKSkJEokEMVxAWLMmGhiNfNfJkrh27Ro/LqYkAWGNGjUgEokgFAoREBDgVkCYlZUFrVZbYNB+cHDwY8esAfaAMH8mwFMTbxTn4sWLAOwtwY4aNWoEAEUu8F3edDodsrKynCYzeNx79Pfff6NBgwZO2+rUqeNWQMS9/h06dMA333yDWxXsWuKYVeUCwsKCj3bt2hX4adu2rUcWswbAB+FcABQVFcU3RnC47p+cY8eOYdOmTUV2/8zv1q1bOHPmDLZu3VroUi85OTlO4xgBe0DIZQi5JTs4ISEhGD58OFQqFfbt24czZ86UOIt2/vx5tGjRosD2xo0bQyqV4tSpUwVuu3Dhwj/XbwdSqRSRkZElPhe56xF3XnDXLE9ea1wJrgtrbNi+fTsA4Pvvv/dYWTzh4cOHCA8PR3R0NN+93tMBIZcR7ty5M2bMmFFgGZTCFNUglpiYiI4dO/L/Dxw4EEFBQdi8ebNnCkvKBQWEhHjC33/bZxiNiamSAWFOTg7+/vtv+wxjeXkAF5SsXw/A3lXJm9mfc+fOoXHjxhDfugVERgJt2yJKq4VGoylRN8nc3Fzcv3+fDwBCQ0NdCsQ4N27ccOo+9Ljp4PPj1tRq1qyZ0/Y6deq41NXwzp07BSZ2iYqKKnSclSedO3cOAoEATZo0AU6cAGJjgbQ01KxZE3K53GcCwvwBBff37SK6g1utVly7dq1AQFi3bl23ZlTkKsmrVq2CQCDgK6wVxf379/GUSgWMHQt/sxmhoaGFBoQ6nQ5HjhzBiRMn+J+TJ08WGFtaUtz755ghBOB0fufv/tmxY0eMHTsW8fHxLj2GY4bl3LlzBW7n3kvHRhvHLPx7773HXwOsVis6deqECRMmoH79+i53YS1Meno67t27V2hAKJPJ0KpVK37iIkdJSUkFriecOnXqFDlj7ONwgQwXEHLvRWka4/JzDK7btWuH9957D5mZmbhz506xjQ3nz58HgHJbo9BoNOLMmTOPDfhTUlIQGRkJwD4MQCKRlElAqFar+fUCJ02axH8HudMF12Aw4NKlS06fXYVCgebNm/vM9Zy4hgJCQjzh77+BBg2AWrWqZECYlJQExpg9IHz0JYsnnrAHhHo9GjVqhD///NNr5eNbzK9dA+rWBWJjEfxoTEZJMpdcBaJlYCDw9dcICw52q7vlyZMn+QkvAPuXvjsB5enTpyGVSvnMGqdp06ZISUkpdopym82Ga9euFQgIo6Ojcf36dY+MYSrK4cOH0bx5c/j5+QGff25fouWzzyASidCiRYtST6bhKVxQXSsqCnj3XeDPP1G7dm08ePCg0HUeb9++DbPZXCAgbNmyJe7evevy+J/79+/zAXPnzp1x6NCh0j+ZcmS+cAEf3bxp/9x/+WWRgQS3mHV+s2bN8kg57ty5A4lEwnd/5IIQx6yUY/fPdevW8du5mR0f59KlS3xWqlOnTnz2m8MFpY4Zwrp16xbaYPPnn3/y51XTpk1d7sJamJ9//hkCgQBPPvkkYDAA/foBDg0LHTp0wNGjR53uk5aWhmvXrhUaRAJAvXr1Cjw/V/35558QCAR8r4DQ0FBIpVKPNhA6Btc6nQ7R4eH499ixyM7OLrax4cKFCwgJCcHff/+NcePGlek4d3fGrKakpPDdkAUCASIiIjweECYlJaFJkyaIjIzkv5u5jLk741u574yGDRvaG4KnTeO/8909Z4oKREn5oICQkNLKzgbu37dnCKtoQHj06FFIJBJ75ufkSUAqBb7+GkhNBUaORNeuXXH+/HmvjCM0Go1ISkqyV3YuXrRnpWJjIUtPR5BQ6NRtzFVHjx6FXC5H0//9Dxg3Dv3NZr4LzuM8fPgQt27dQvv27fltMTExbrXA79mzB126dLFXSLOzgS+/BEwmdOnSBSKRqNiB+N9//z3S09PRu3dv+4ZHFfPOnTvj7t27Lj8PdzHGsHfvXjz11FP2DSdP2n+vWwfYbHjhhRewa9culyvkZemPP/5ATEwMqv/xB7B4MfDaa6hbty4YY4Vm/LgGgvwBYadOnQAA+/btc+lxb968icjISEgkErRu3bpEEzN40/9duAChVGpvHDtwALVr1y60y+yQIUP4yZR4ycno1q2bR8px/fp11KxZkx8jy421LaqbomOGqHbt2i417ly+fBnNmzfHjBkzAKBAxf7XX39FeHi4U0+Axo0b49atWwUmaElMTIRAIMBTTz2FDz74AN9+++1jZzAtysaNG9GjRw97IHrwIPDbb8DQocCjynzPnj1x48YNp+zzmDFjIBKJ0K9fPyAlBciXvWvXrh3Onz9foollTp8+jQYNGvCT0wiFQjRo0KDEAebjvP7665j1668YMnUq0n77DZg6FcjLK9DYkJubixs3bmD69OkAgK+//hpr1qwpkzIBro9Z1ev1yMjIcBqXGhkZ6fHu/GfPnuXXDGzWrBlq166N/fv3A3BvfCuXKW/QoAHwn/8AH38MbNuG9u3b48KFC26NPS0qECXlgwJCQkrrUXehi1Ip/jabq1xAyBjDl19+icGDB0Mmk9kr+i1a2H9WrgR++AFDGzeGv78/li9fXu7lS0hIgF6vR6/u3YFLl4BmzYBHmbVRbdti9erVbmfF9uzZgz7t2kH4xx8AgC737+P27dsufXlx3bU6dOjAb6tfv77LA/CvXr2K3bt3Y9iwYfYNH34IjB8PvPceoqKiMHr0aMybN6/IzOf27dvRuHFjdOnSBdi9G1Crgc8/x1NPPQWlUsl3IfK006dP4/79+xg4cCCQnAxcuABMmGD/vCQkoEuXLjCZTKWe4MAT9u/fj6eeegoCrizHjqFtbi6EQmGh3e22bduGhg0bOmddHz5EjeBgdOrUyeVuf/v27bNndmCfmOH27dtuZY69KfPBA3QzGHCnTx/grbeAffvQIiTEtYaOtWuBqCjghx88UpYDBw6gc+fO/P9SqRTh4eFFjue8ePEiQkNDMWbMGADAhx9++NjH+OuvvxAbG4tFixZhxIgR2Llzp9Ptu3btwrPPPgvx3r32oMRq5cdZ/fbbb077btiwAQM7dkRjADKpFKNGjcKTTz5Z7Aym+THGMGPGDPz+++//LDK+Y8c/O/TtC6Sno2/fvujcuTOee+45/Otf/0JMTAx+++03fPbZZwiXSu09O6Kjgdatge++AwD069cPIpEIc+fOdaksjk6fPu3UGwIAWrRoUWg3W08IfvgQrQAEAajWrx/wySfA//5XoLGBC0if6tEDp06dwpNPPokff/yxTMoEFByzWlTAzzVOOI7nLEm2rTjp6em4dOmS03dQv379sG3bNphMpgLjW3v16oXPPvsMYWFhaNGiBaZPnw6NRoP9+/fjjz/+QM3oaISHhv5zvv36K3r27AnGGH7//XeXy1VYIPr888975DkTFzDidf/73/9YrVq1mEwmY0888QQ7ePCgy/fNzs5mAFh2dnYZlpAUa948ZlEqmRBgL9jbYRnLzPR2qcrNhg0bGAD2+++/M2azMVa9OmPvvGO/0WBgLDycsQkT2MyZM5lIJGLvvfcee/DgQbmV7/XXX2e1atVitiNH7O/NkSOM5eQwBrDL06czAOynn35y+XgpKSlMIpGwvSNH2o/39tvMKpMxFcASEhIee/8hQ4aw+vXrM5vVytiqVYxt3cq+/fZbBoDt37+/2Pvm5uaypk2bsoiICKbX6+2vb1iYvRxSKWPXr7OHDx+yyMhI1qRJE3b37l3GGGM2m41lZmayQYMGMQBs8eLF9gP26GG/r78/Y3fvshdffJGFhoayK1euuPx6uCI1NZX16tWLBQUFMZPJxNj69fbHTUlhrH59xkaNYiaTibVp04aFhISww4cPM6PR6NEyuOrYsWMMAPtm40bGgoIYmz2bsfbtGXvySfbkk0+y2NhYlp6e7rS/SCRiS5Ys+ecgJ0/a34969djapUuZUChkhw8fLvZxHz58yAQCAfv+ww8Zmz6dXT16lAFgu3btKqNn6llH33+fMYDd3rmTMY2GsfBwdqNVKyYUCu3najGy69ZlDGDWoCDGtmwpVTn++usvBoB99913jD14wNij78ahQ4eyjh07FtjfZrOxtm3bsn/168dsqanszTffZFFRUcWefzk5OUwikbDVn3zCWEYG27x5MwPAbt++zWw2G1u9ejUDwH7YuNF+ngOMvfkmY3fvso4dO7LY2FiWkpLCGGPs5MmTDADLaNSIMYBld+/OYgD27bffuvycrVYrGz58OAPA2rdvz2w2m/1aXLs2Y6+9xtjUqYyJxYxNmMAYYywtLY299NJLrG3btqxZs2Zs6tSp9vu88469rJ06MSYS2a8tj967RYsWMQDslVdeYTdv3rTv/xjr169nANiyZcuctn/55ZcMADtz5ozLz9EVNpuNfV63LtMLhSxdpWIMYElSKbO1bMk/D87ChQtZJ7mcWWvWZOz339mqVauYSCRiWVlZHi0TJzk5mb399tusU6dOrH379qxLly7snXfeYcnJyU77LVq0iEkkEqfPzMcff8wUCoXH6nlffvklEwgE7N69e/y2ixcvMgBs/fr1zjtbLIzFxTF26BBbPHUq+xlgywAGh599zZr9c553727/PXQoG1GjBhs1apTL5Zo/fz67efOm0zbuekx13LJHAaGXbdmyhUkkErZmzRp28eJF9vbbbzM/Pz92+/Ztl+5PAaGX6fXMVr8+OxAWxsSviFlos0cXRTe+zCuqW7dusYkTJzKRSMRGjx5tryAcOGB//o6BzezZjPn7M3NGBps0aRL/JdKvXz+2c+dOlpiYyMxms8fLp9Fo2Pz585lAIGBxcXH2ylBICGPcY7Vty9iQIaxbt27M39+fvfTSS+zmzZssLy/P6Tgmk4n/+/jx46xhw4bM39+fmbp0YaxLF8bu3GEMYJOUSqZSqVhiYiLLzc11Cnrz8vLY4cOH2SuvvMIAsLVr1zK2bh3/JWr96iu+HL/88gvT6/VMp9Ox3NxcptFoWHx8PPv3v//NQkJCGIB/Go3i4+3HOHWKsagoxl54gTFmr2SqVCoGgDVo0IBJJBL+dW/UqJH9vTp92n7fL76wB+3/+hc7e/Ysq1GjBlMoFGzo0KFs5cqV7M8//3S5Aujo+vXr7PDhw+yzzz5j9evXZyEhIez777+33/j00/YgizHG5s9nTKFgLDubpaamsgYNGjAALCwsjM2ePZvt37+fnT59ml26dOmxgUVpmEwmtnv3bhYcHMxiYmKYYft2++tz4oQ9SAHYpW3bmFwuZwBYq1at+Pejfv369rLZbPbzXam0n2sKBbO2a8f6tm/PpFIpGzRoENuwYQO7d+8e02g0zGg0sps3b7Jbt26xgQMHMn+JhJmaNmUMYLbq1dmgsDA2ZsyYMnvOnpL84AFL8Pdn1xQKe0MHY3zQ304sZuPGjSuy8p/566+MAewVgO1WKJhZLGaWs2fdLoNGo2G7du1iDRo0YDVr1mTG3bvtQVBUFGPz57MfvvqKAWCvv/46u3v3Lrtz5w67ffs2e++991g4wPKqVWNMLmdpr73GGgPsnXfecfoezsnJYYwxptfr2bRp01gMwIw1azIWEsJyZ89mjfNVkp977jlm/eQTxoRC+/kOMBYTw37/5hsWFBTExGIxa9GiBQPAxoWE2G8fP54xuZzlCYXsXYB9WqMG++ydd9h7kyezrVu3sm+++YatXLmSJSQksC+++IK98cYb7Nlnn2X16tVjAoGAzZs375/zcOtW+zEPHLA/gcWL7a/HX38V/gIeO2a/feFC+/9//82YQGBvNDp8mJnNZvb+++8zpVLJADClUskiIyPZ//3f/7HFixezt956i82YMYNNnDiRxcbGsujoaAaADR8+nBlSUxkbPZqxZ59lbPt2prtwgUVGRjIA7O2332YHDhxg169fL9X3gM1mYxu/+IL9CbAHbdsylpXFzn//PesnEPDXWdOUKezc2bPs0qVLLDQwkF2pVs1+m0zGDI0bs34AGzVqVPnUp9avZ2zWLHuDhU7HkpOT2fr161lgYCAbN24cYzt2MDZ3LmPZ2ezen38yPz8/NnToUJaYmOj2tZiTkZHBjh49yiQSCRvSrx9j777L2Lx59nPl3DnWv29fVq9ePXbmzBl2//59lpOTw65Nn84YwCwCAbvBBX0AO9e0KbvStClb2KXLP8HgwoWMJSczFh3NGMB0ajULBtj06dNZTk4Os1qtLDc317XC3rzJ2KJFLPvBA6rjlhMBY2U4gwB5rPbt2+OJJ57AqlWr+G2xsbF49tlnsXDhwsfeX6vVIiAgAIsVCoSq1bDZbLAyBqFQCJvNBolUCoVSCZ1OB3+VCmaLBTKZDAKhEAajEQKBABAIYDAaERQUBKFIBIPBAIvNBrVaDYVCAQgEyNRooFarYbFaIZXJIFcoIBAIYLVaYTSZoDcYYLPZIFcooHy0wLVILEZgUBAYY8jV6yESiaDRaGAymxFVvTpyc3MhVyggVyggk8nAYJ+t0mK1wsoYalSvDqvNBk1WFqxWK6qFhcFoMkHp54fs7GyIRCJIZTLk6fXw8/ODyWwGg30BYLPFApFYDLlcDl1ODvz8/aHX6yGTy2G12SCRSCAQCqFQKMAA6B6NjbDabJDKZAAAP39/5OTmQi6TgRkMCPHzgy4tDYasLFizsiC6cweRV65AlZODDgDSF0RBck+Cb764j+YSCW537w5Wty4yLBZIgoMhUSiQlpkJpUoFiES4dfcuoqKjIVUoIJZIoFAoYLFYYDSZULt2bWRnZyM5JQU2mw3+/v6w2myQy+WQy+V4+PAhxBIJcnNz+ecgkUhgs9kgk8uRlZXFv94xtWpBo9EAAH9bRkYGJFIp1Go1zGYzJBIJxEIhrl+9ioiwMKj9/XH1yhVIRCJEV6+OixcuIO3hQ1QLCYHZaMT1q1fx4P59KEQiDH/6aQzr2ROi69eBb7+1T9py7BggENhP0vv37du6dAGGDcPl7GzsTkjADzt2wATA+uhcFolECA8PR5MmTSBTKGAxmyF5tHi63mCAwWhEeHg4LBYLRADMej0kQiFys7MhsNmg1+kgZAymvDzkarW4dvEighnD8507o4dcDsH+/fbxDVOm2B9wzRrg1VdhHDwYu7VabD98GBlmM8wAbLB3M7MBMJhMCA4IgEoohFGjgRrAe127IvrgQXsXtyFDgCFDYPrjD8w3mfBXXh5yAZgB+KnVkMjlyEpPh9BmgxTAvwYPxqh27SBcsMA+tkcuB77+GpqpU/H+5s346+5d/jVxJADQ+YknMO6FF1A/MtL+un7yCdCxI/Dzz/axeC+9BMydCzRpgkyTCRu/+QZCsRgiiQQBKhXUIhG6tm4Ntclk784rEABJSfb3beRIYNYs5DZqhG9++w0HDh7Ejbt3YXn0Hvn7+0MqkYDZbFCpVAgOCoLZZAJjDGp/f5jNZlgtFty7excGvR4WqxUCACIAtUJCMHfqVNQJDAQSE4GNG4FNm4AXX7SPV4qJAQYMAJ59Ftdzc/H9zp1IzcrCqaQkaHJywH1JScRiqAMCEBwcjMDAQDDYF/+OiYlBYFAQgoKCkJOTA4VSiQsXLiA0NBTtWreGNisLVrMZMrEYRr0eZoMBZqMREqEQ6ampSEtNxbXLl8GsVrSrXRtT//UvqDdtsnedO3IEMJuB+vWBgABonn8ea376Cck6HeQyGTp16ICePXpAmZcH/PKL/b3497+B994Dbt4EnnkGljp1sE4iwc9Hj8KMf6IGsVgMq8UCNYBIhQIz6tVD1JUrwPffAwsXwnTmDGYaDBDVqYOajRohJCwMEAiQm5cHuVIJuVIJqUQCm9WK5AcP4KdUolpICMAYxCIR/JRKpKakQCqVQiQQwN/PD9lZWfBTKADGYHn0nqlVKhjy8iCVSpGt0SBArYbNYkFaaiokYjGkEgkkYjFMOTkw63Sw5ObCkJUFOWOQaTSo/vAhmjOGWx9/jFrc58tsBtq0geHqVezQ65ECwD84GEEhIVCpVBDo9VDm5KDBvXu4JRTi4c8/Y0t8PKZs2YIIsRgXq1eHtEYNpKSnQyAWIzAkBLrcXPs1HoBMIkFOVhayMjKglMmQ/vAhbGYzwoKD0feJJ+B/5Ij9vIqMBI4dAwsIwMWwMBw9fx5mANJHP0oAT8nlCFKp7N0kjx+HKTsb+2w2aAAwqRQSgQAWoxFKiQQ2sxkBALrIZJBHRdm7xu/bB1teHo4LBGBSKWpGRaG6SATB338Db7wBfPYZcOeO/bOalwdjzZq4/fAhzDk5CBGLEa7VQtCvn/380Wqh/9e/oNi7F0aBADLGkAfgDIAsh3PH9ugzqZTL4ScWIywoCJFBQfaJZG7dAjIzgUGDgB9/tH/O8/Ls3eVv3wZq1gQCAwGbDbBagaws++ewfXsgIQF49B2IzZuBhQvt3bubNAHCw2ERifAwIwO5BgM0Wi3SMjORl5cHf4UCVrMZNosFQgBhISGIiY5GeEgIBH/+aS+XSGR/LKkUprZtcTU1FX9dvQrzo8+38NF3hkqlgkgoRE5uLkKCgyESiWAyGmG1WiGRSGAxm2HQ6xGqVsOUlQWZ1Qp/APVsNohEIsiOHQPatAEAfL5qFQ6++Sa6M4ZXATwAkAmghlCIAACCVavs17+rV2G9fx+HbTZoBAIIVSpYACiVSlhtNvipVBBLpbDZbIBAAPbou0EdEACJWAwh7OP/crRaKKRSKORyyCQSPExOBmw2iEUiCAUCMKsVkTYbGqalwSIQQMwYrAAShEI8sNlQPSwMXerUgeTYMafrv6Z2bWy/dQsmxiCVy2ETCBBcrRqEAgGEsE8WplQokKfTwWwywd/fH3k5OZBKJABjyMvNRU5ODgQAAmQy9IuMhOLWLUAotJ8HACzBwTio1yNNr4cU9m63nQAkAqgDQBkQgMBDhyB5803g6FH7/Ww2+7lx8iSgUNgLyxiQnAzWtCl0NhuOZWcj49F3ohWAUqUCEwjgHxAAk8WC7IwMBPv7Q8gYApVKmHQ6tNXpoGYMc/38EJebi+zsbKjV6kK+GYmnUEDoRSaTiR+zM2TIEH7722+/jXPnzhU62YXRaHSadEGr1SI6Oho3VCoorFaIhEKAMXugZ7PZL14AxCIRbBYLbIwBNhuEQiEEAoH9AmWzQfDoN4B/2oAe/S2A/WLjdGx7dhlCgQACrjCMQQj7l5Xg0Q/y/S18dF8UcbsAvj2w1QpADyAXwG0ASSIR/u7ZE4M/+ADzb82HwWCAZHkGnjt/Hr0A1IS98lLpKRT2ynPv3sCcOUC+xY2xY4d9tsaLF/kvn/LARCIIwsLsFaH/+z9gzJh/AlXGgFWr7BOyXLwIuDiZCRMKIYiNBV5/3T5WCgAePgRefRVs924IXDmOVAqMGGEPymQy+7HWr7dXol3l729f7/Hzz4HQUHvF7vXX7cFWITNhOpFIgA4dgC++sI+nZAyYNMkeJJflpC5Cof3xxo8H3n77n/ciPt4+IYEbSzSUqYAA4KmngGXL7Oc1AJw5A0ycaF8uw2IpeB+BwD6Zyn/+A3DjOwF7xWnCBH6scVGYQABBw4bAokXA4MFATg7YK6/Atm0bRNbCmgi8wyAQwCQUwgDAIhIh198fxpo1ETNrFlTPPee8c2oq2CefQLNvH/R378KcmwubxQIBAINYjFypFJm1a6P5+vWIeLTkwYmtW6F9/30E378PZV4eFBKJ/RpqtUL86DvLyhgsAgEgEkEgFsMmEECuVMI/MBByPz8IQ0Ls5/e77wJ+fvYgaNEi4OJF6DUa5Gq1sIhEECkUkKnV8G/dGsKpU+0BpMEAw+LFePjDDxDp9bDodLAJhdDk5MBPrYZSrYY6IgKBXboAb75pv9aZTMDq1fZzw2y2n+cREfYAc/hweyAE2AO1DRuAu3cBvR5QKu3la9nSvh8XiDFmD+AYQ/aOHdAlJkJx/TrEubnwUyqRm5sLiVgMpVxuP+9kMuef6Gh7oPrMM4BY/M/7kZlpb8S6ft0emIlE9tv9/YHGjf9poHJkswHbttkDxYwM+3O1WOzXm0e/GQCIxRAIhcjV6yFVKiGRSu2vg0gE1K5tvzYFBwNpacBPPwHHj9uDY50O2WlpEIhEfN0mNy8PJpMJYpEIeoPBPrZMKrW/NLCPv9NqtYBMBj0As1QK/2rVENCmDRpMnQp5vvUUL1++jHXr1iHvt9/wnEqFagoFaj7xBPyfew5o186+k9EIfP45cvfvR9r16zBkZsJqNMJmtSJHq4VUIoFYJILoUR1GAHt9hlkssDAGq9UKgUgEJhTaG6QlEpgsFoglEghEIkAggEgqRW5eHnQiEX7z98efUin6CASoWa0a2ufloaZaDZm/vz1YHzLEPgHa0aP292fvXlivXEFOdrb9/DUawSwWCAQCmB81okMggFAkgvVRnU4sldob5kQiCEUie4O9UomAsDAIY2Ls52/r1oBWa58dfO9eWM+eRXZqKgxWKwxSKUzNmyN87lwERUTYzzUugDQY7D+nTgGdOtnLmN+ffwJff43sCxeQc/cubEYjxAAMej1gtcJiNNrfY5MJTCIBE4mgt1rBRCKkVa+OZhoNTEYj6qenU0BYDigg9KIHDx6gevXqSExM5GejA+xTcq9fvx5XrlwpcJ+4uLhCB3Z748PCuOAwH4vFApFIBIFAAMOjzKFIJAJjDHK5HCaTCSKRCKJHX5KMMWRlZcFkMsFqtUKv1/MLOivkcqhUKlgtFqQkJ6NatWrIzspCUFAQBACyHmUu7929i/CwMIjFYpiMRgSo1cjJyUFKcjIsZjOqVatmbw23WqHy94fVYkFqaiosZjOEAgGUSiVU/v6QiMUwGAwwGY0wGgwwm832jKNIBD1jYCIR6tWvj6CgIIhEIogffdne0NzAp0c/xZ3sO/jhhR+QmZ5pn1r7zh0ESaUQ6/XISk9HwKNWMFit8FcokKvVQgT7+2cymeCnVEIikeDGjRtQq1RQq9UQCAQQiUTI0mggk8mg1WqhVqlgs9kQERGBvNxcWCwWMMZgsVggFong7+8Pg8EAxaOMoFwuh1KhgNVqhUwmg1wm419rwP7FZrJaERgcjJy8PFhsNgSFhABCIUwWC4RiMayMQaZQ2L8QuB+RCAgKsldsXGGx2CsEJpP9C9hodG6AsJ8Q/G/26IvXcTuz2eyVD7H4nwqNSASbUAihRML/D7HYXrEXutDEwJj9yy07215Grkw2m/23UGivuCmV9uC3kPOeP45GY6/sWSz//IjF9iBMKrX/Dgz8p5LIMRjslTSdruigWS63f/H6+9uPVVg5bDZ7GXJz/2nBfdSqzVdA/fwKPj5gr+RlZNhfB67Cx/1wHvUq4B/7cf+LRPbyqlT234U9ruNrkJpqPz+4H8cgubDzpJC/rVarfY0vxiCRyyGSSKDNzUVAUJA9oBeJ7OVwPI+538HBxZ/PjAE5OfYf7nkKhfbPgWPlOz+Tyf6+cM+HO8eEQvvEPv7+hZ+rNpv9vNDrAcb4DAwYs1cIhUJAIIDRZAIDYDSbkZaeDovVCnVAAMIjIqA3GmG12WAwGiGRSvneFIHBwZDKZMjUaCASi5GTm4vwyEgYTSaYzGYYTSZUCwuzV8YFAggkkqLP/TJgNBrtE1UR4uO4+hBXpS6sbkTctHYttFOmIECjoYCwHFBA6EVcQHjkyBF+9jEAmD9/PuLj4wtd1LOoDCF9WLxr619bkWPKwfmH5/Fm2zdRP6S+t4tECCGEEFJhccOiqI5b9oppziRlLTQ0FCKRqMCCo6mpqQgPDy/0PjKZjFpMfdDp5NN4sdmLMNvMuJR+iQJCQgghhBBSIfjycK1KTyqVonXr1ti7d6/T9r179zp1ISW+72LaRTSu1hiNqzXGxbSyWXCXEEIIIYQQT6OA0MsmT56ML7/8El9//TUuXbqEf//737hz5w5ef/11bxeNuIgxBiuzQiwUIzY0lgJCQgghxAecST7j7SIQUiFQQOhlL7zwApYuXYr//Oc/aNmyJQ4ePIidO3ciJibG20UjLtp3Yx/aRdlnKgtRhiA5JxkGy2NmeSSEEAIAMFvNmHVgFs4mnwVNa0A85b72Plp/0Rob/9yIS2mXfOrc0pv1yNRnersYLsnIy/B2EUg5oEllKriSDLg1WAyQi+VF3s4YAwODAAJYbBZYmRVCgRAigYi/b645FwaLAX4SPwgFQsjEMuiMOsjFcmiNWvhJ/WC1WZFjygEDg1KihNVmRYgyBFqjFlabFRKRBGKhGEaLERqDBhabBWarGWabGU2qNcGl9Evwk/hBLVPDbDMjLTcN1fyqIcuQhRBFCIQCIbIMWQhVhuKG5gaqq6tDKBDCZDVBLVPzF1wbs8FPai+n1WaFQqKwT1tt1CLHlAORUAR/qT/kYjnkYjnyzHmw2CzQGrUwWU2QiWQw28xIyUkBYwwR/hFgYLinvYebmpv4/tL3+Gn4TwhRhgAAvvvrO6w9txZvt38bEqEEtQJrwV/qjxxTDoIVwfxrLxVJYbFZIBaKoTPpYLKa4Cfxg0QkwZX0KwhWBCNEGQIbs0EmkkFj0EAmkkFr1MJf6g8rsyJIHgQGBhuzwcbsM1OKBCIIBfa2HgYGs9UMiUjCb3PE3cfxNu79L2x/QiqK/LP9FTUrcmXBfW7NVjPS8tKQZ86zX0MUITBYDLAyK/RmPSQiCfRmPQQCAQJkAZCIJEjLTYNYKEamPhM1A2oi25jNX4tDFCGQiqTIM+dBKVFCLpZDIBBAZ9TBX+rv9Ppm6DMQqgwttoxao9b+HcCssDEbrDYrZv0+C91iuuGv1L9wO/s25nafiwj/CCSlJuHJmk+CgUGj1yBAHgCZSAaDxQAbs8Ff6g+JSFJeL7FXVPbztig2ZoNQIERabhoUEgWUEvvMv9xCV9cy7UvUBCuCIRPLYLFZECALcHqt5vw+B52iO2HVqVWQiWSQiCRY1X8V1DLX6kqMMeSYcpCamwq9RQ+lRAmZSMbXifwkfkjJSYHeouc/b0HyIDzMfQilRAmNXoO6wXUhE9nL5yf1w62sW7iacRXLji9DnjkPz9R7Bh1qdED3Wt0hFpZsWg/GGIxWI2zMBrlYDovNAgEEkIgkpT5/bmfdRu/43ni51ct4t8u7JT5OYfRmPRQS+9qF3LUgy5AFtUyNfTf2Yde1XXi//fuIDI2kSWXKAQWEFRwXED71xVMQyu1Bm5VZIRVJYbaa+b+5yr3BYoBMJINQIITFZrHvZzPDYrPYv+gh4C8sUpEUMpEMIqEI6XnpUMvUEEAABgZ/qT8ffBktRugteshEMtiYDQHyAGQZsiARShCiCIENNuiMOoiFYj7YCpAHIMeUA7FQDD+JH1RSFV8mgUCAu9q7iA2NhcFiQHpeOgAg0j8S2cZs/oILAAGyADzMfYiYgBik69Pt5RZKkWvOhVQkRaA8EEaL0V7ZMWRCJVXBZDVBLBRDKpJCLVPDxmzIMmTBxmwwWo1QipUQCAQIVgTDYrNPty8UCBETEIMcUw50Jh1EAhFClCGIUkWhQ40OiFJFOb0v51PO4+Dtg8gz5+Fq5lX+Qp2Sk8IfLzU3FYHyQAgFQsjFcsjE9oqOyWpCw5CGyMjLQEpuCmzMBrFQDIlQYg9eJf7INGRCJBBBb9HzX5BcRU8mlsFsNYOBwWgxIkgRhBxTDiRCe1BotplhYzb+PTdYDJAIJbAxGx/wc8fiLtaZ+kwIBUJUU1aDRCRBdVV1tKveDkNjhxbbuFAcG7MhJScFfz78E9cyryEjLwPJOcl8ZRawZw5kYhkEEEAgEPCNFNzfZpsZZqsZIqEIOaYcBMoDIRVJIRVJ0S2mG7rGdEXz8OYulUej1+CHSz9AKpLiYtpF+Ev9oZKpoJKqcE97DwaLAbnmXLzb5V1E+EcUegydUYc/bv3Bv17ce19NWQ1totqgQUgDVPOrVuxrcvL+SdzT3gMAKCVKMDDUCqyFesH1IBVJ3XyVSyc9Lx23s24jQ5+BB7oHMFlNuJZ5DWqZGrmmXKhkKmTqM2G02Gc+VslUaBTaCFKRFCqpCrWDakMilKB2UO0SV3Ye6B5Aa9Qi25CNtLw0XEi9gBxTDjLyMpBpyESgLBBmmxk6kw45phwAgMVmwd3su/CT+vGfTY1eA5VMxQdO3DXOT+IHuViOp+s+jXD/cPSs3bPMKuAmqwl55jwcvXsURqsRF9Mu8hXdl1q+hAB5gNP+jDGsP78ee67vQY4px95oZjNDLBRDKBCCMca/rlqjFgKBAEqJEiqpCn4SP5hsJmj0GoiEIogEIqhlamQZsvjXwWg1wmKzIEQRgjxzHqopq+Fm1k2E+YXxr6PWqIVIKIKfxA96i57v/cA1QokEIphtZggFQtzT3sPvY35HsCKYfw56sx7v7HoHmYZM/ppXXVWdb7hiYHix2YvoUKMDAHtF/+uzX+Ou9i6ahzXHgVsHIBPJEO4XjtS8VAgggEgogkwkQ7YxGzmmHMhEMqhkKnSt2RXPNnoW0QHRhb7+jDF8eeZL/HH7D0iE9kAyzC8Mb7R5A7WDavP73cm+g1d/eZVv6JSJZUjWJSPcPxwigQjNwpph5pMzESgP5O9jtVlxOf0yqvlVQzVltceeQzqjDudSzqFJWBOn1wsA7mnvIe6PONzX3YferIfeokezsGaQiqRoGtYUf2f8jXC/cPSs0xPhfuEIVYZCKVGWe+CYZcjC7azbuJB6AXWD6yLHlIMT90+gXnA99KrTq8Dzys9is2DN6TU4eu8oH/QLBAJYbVYYrfZrSrAiGEKBkK87SIQSWJkVfhI/VFNWw42sG2CMwU/qh/S8dHSs0RHtqrfDosOL0DC0ITY8u4F/XZYeW4pvLnwDlVSFUc1HYUzLMU7lMVgM+DDxQxy7dwwCgQB6sx4qmQpSkRThfvaJ/owWI19X0Zl0qBVYCwqxAhKRBBn/396dx0dVn/sD/8yWyWTfEwKBEEAKArKpBJfgAlSsFrUKolxpb+lFoYLRXy3UqlUBvRetFXvlWhG0teKCWBG1waWxKluAKPsiW0IIISHJZJnMen5/xHOYSSbJLGfmnMl83q9XXu2cOTPznfEwc57zPN/n21qHCnMF8pLaj79UUyrKq8thc9qkQC3VlIqClALMHTcXcYY47Kzaia2VW7H52GbcPPRm3DXyri5/IzYe2oivK77Gd2e/Q4u9BXGGOBi0Bthd7UvZJMQkwGw1A4B0DggAOq0OLsEFg9aAfkn98Ktxv8LonNFeX+Pb6m+xqmwValprpHOlp697Gqt3r0ZZVRlmjpiJ6wZeh0Fpg3o6PAC0//tf9u9l2FW9Cw6XAya9CRaHBS7BhThDHOxOOxraGqQL9bmJuTjXeg6jskYhzhCHMaljcMuYWxgQhgEDwgjXXYYwWq8sknzEY8jpckKn1cHpcsLusuNg7UFsrdyKN/a8gWmDp+G3V/7W52Pt6Pmj+MfBf+Cd/e9gcNpgJBuTUZRfhJTYFPRL6oe8pDyYDCbYnDbpZFkQhPaTgR6yAS7BBUEQ0GpvRenJUmw4sAHpcel46tqnugymTptP4w+lf8DR80cxc8RMxBnikJeUB4fLAYvDArPVjLykPCQaE7G1citW716N31/9e9w89GaP59l0eBMe/dejmHnxTPRP7o+zLWdxed/LAQBnms9ga+VWbD+9HXeOuBNzx83tNI5mWzNufetW/CjjRxieOVwKXGxOG8qry3Gs/hgGpQ3C7676HQanDe7xc7Y5bXiy9EloNVrE6GKQZkpDv6R+uHbgtYiPie/ycU6XEyu3r8Q/v/8n4gxx6J/UH8mxyfhRxo+kEwqz1Yys+CxYHBYps253tl9oOFh7EHaXHScbTqLSXIkGawOqm6vx11v+in5J/Xocd01LDd7Z9w7Kq8txsvEkshOykRSThFh9LAamDsRF6RchISYBWfFZiDfE47zlPNLj0pFsTIbJYJIuaoiZ8Z602FrQ0NaAL058gcN1h/Ht2W/x6s2vShn/jo7VH8Nj/3oMrfZWGLQG/HjwjzHj4hnSxRNv6i31+N3nv8N3Z79DbmIurux/JYw6IwpSC3Corr0a4K/f/RWzRszC7EtmS497c8+b2F29Gw9f8XCX41GTF7e/iILUAkwbMk3aduf6OzFrxCwMThuMYZnDQvba51rOYWvlVry440UsuXIJivKLPO4XBAF3b7gbo7NH465Rd8HmtMGkN+Fg7UE8+eWT+ODOD6RKlpvX3YyHr3gYwzOHSxlP9wtkm7/fjP/b+X949453pee/es3VaLW3Ij2uPbh+bfprKEgt6DROu9OOF7e/iHX71mHqoKkoqyrD2D5j8dS1T0njvHndzVh85WJMzGtvLtfmaEOluRIuwYXy6nJckn0JjtUfw7bT21DTUoPq5mokGZOw5qdrQvqb7xJceP3b1/H+wfdhd9mhgQaD0wZjXJ9xOFR3CIkxiRicNhhv7HkDVqcVGXEZeOb6Z7xeQHv/4Pt4bstzuOeSe3DVgKuQEpviUyDdHUEQsPnYZry19y0suWpJl0GLS3Dh5//4Of5j1H/guoLrpO3T3piGX479JX469KfQabtZLzUEHC4HPjz8If649Y9487Y3O11kfq38NWw7vQ2zR83GhH4TAvqczrWcQ01LDeZtmoc//fhPGNtnrMf9Wyq2YPlXy/HslGeRFZ/V6QKV1WHFHe/ege/OfodJ+ZOQbExGfko+Fl6+0Ot4Gtsacctbt6C4sBg3DrkRAKRMqy92nN6Be9+7Fzvv38mAMBwEimiNjY0CAKGxsVHpoVAUcrqcwovbXhQWf7q4x30dTofw282/FW5/+3bhtfLXhHpLfegHKAjCn7b+SXi57OUu75/xzgxhV9UuweVy+fR8bfY24Zq11wg2h81j+/WvX9/je2q2Ngu3rLtF2H1md6f7fvH+L4TPj33e7eO3V24XJq6eKBytO9rtfnWtdcJVr14lvLnnTaHsdJlQcrREeHvv28LE1ROF4k+Ku3xcvaVeKHylUFize43QYGno9jX8caTuiFC0pkj47Nhn3e5ndViF6eumC8u+XCZsr9zu838TOX1z6hth6l+nen3t789/L1z72rVC2eky4XzreaGisUL48/Y/C7e/fXuXz9dsbRauf/36Ht+70+UUrnvtOsHutEvbpr0xTbDYLYG/mTD7+tTXwlOlT0m3z7eeF+58986wjqHF1iJMfn1yp+1fnvhS+P3nv/f6mL99+zdh1Y5VgrnNLPxp65+E57c83+Pr3LX+LqG6qVoQhPb3eetbt0r37Tm7R5i0dpLHf0v31/rdZ78THE6HtO3u9+4Wyk6XCScbTgr/+Y//FF7Y+kKPr9/Ry2UvC5f95TJhe+V2n/avMlcJHxz8QPjq5FfCqYZTPe7fZG0Srnz1SuGFrS8ITdYmn15jV9Uu4eo1VwuNbZ7nJ1aHVbj2tWuFVlurT88TCnWtdcJtb90m3a5srBRmvjtTsfGIdpze0ek7urGtUZj8+mSPYyYYx+uPC7Pfm91p+y3rbhGqzFU9Pr7J2iRUNFYIGw9tFBZ9vEh4c8+bXvd7svRJYdPhTUGN9fS50zzHDRMGhBGOASGpwe1v3y6cNp/udp9VO1YJz37zbJhGdEGTtUm4+c2bvd73xfEvug2QuvLsN88KHx76ULrdYmvxOCHszon6E8Kc9+d4bKtsrPT6A+3NsfPHhJ+++dMu77c5bMKUv04Ryk6Xeb1//qb5wkeHP/J636u7XhVeL3/dp3H4q7Gt0eMEzJtfvP8L4YODH4Tk9f0xf9N84VDtoU7b522cJ+yv2d9pe/EnxcK/T/7b63P9dvNvfT4pWv7v5cI/j/5TEIT2Y2r6uul+jFp5x+uPCws2LZBudwwQw+X+j+4X9tXs89j2yGePdBksnW89L8xaP0u4+727hVvW3eJToPLKzleEd/e9KzhdTuHlspeFv3/3d4/7f//574WtFVs7Pe4nf/9Jp4DqUO0h4Vcf/Eq48Y0bu/x364s9Z/cIRWuKBKvD2u1+X5/6Wrj05UuFF7e9KCz6eJEw9v/G9njh4d4P7+3xooY3K75e0elxnx/7XHj630/7/Vxyu/GNGwW70y787du/CeNfHu/1Ql24uVwuYdob0zy2lZ4olf3zuuFvN3gEmBWNFcJ/bPgPv5+nrrVOmPHOjE7bzW1mYcpfpwR9UY/nuOHDrhFEFLT5l87HqrJVXd7vdDnx1r63cP/l94dxVO0SYhJg0BqkuRXu/rzjzwFNlL912K14/+D70u09Z/dgVJZvcxUHpAzA2eazHtsO1h7EmJwxPj1+YOpADEgegN1ndnu9/887/oy7R96NcbnjvN6/aMIibDy80et97+x/B7cNv82ncfhLbA5lsVu83u8SXKhuqcZNQ28Kyev744bBN+CTo5902n6i8YTXssdfX/5rrC1f22m70+XErupdHiWU3Zn+o+n4+MjHAICtlVsxsV9krUebFZ8lze8G2tdnDWWZaFduGXYLPjj0gce2o/VH8aOMH3ndP9WUipqWmvZ5xDPe67b8VzQudxx2V+/GA588gFU7V3UqIZ/+o+lYt3edxzaL3YIYXQwSYhI8tl+UfhEarA24Jv+aLv/d+mJE1gjcPvz2Tu/dncPlwCOfP4KP7voI8y+bjz/++I9Yft1yzHx3ZpePabY1o6qpCtcOvNbvMY3PHY+yqjKPbbvO7ML43PF+P5fcxuSMwbbKbfjLrr9g5Q0ru5xXF04ajaZ9XuAP8/+AH35ffJwL76tR2aOwp2aPdPudfe/gjuF3+P08aaY0r7+tpSdLcdNFN3HaUgRhQEhEQbtqwFXdrve0o2oHrup/VcCNRYJ1Wd/LvI6v1d7abZOXruSn5KPCXCF1sjxWf8yneX2inIQcnGk6I90+VHcIF6Vf5PPjZ46YiX8c+ofX+zYd2YS7Rt3V5WMHpQ7C8YbjUrMmUU1LDdJMaT7P7wjEtfnX4osTX3i9b1vlNozOHh2y1/bHpPxJKD1Z6rFNbAzhTX5KvkcgJDpYe9DnCwUAUJBagJONJwEAnxz9xGN+UySIM8TB4rgQ8B84dwDDM4eHfRwXZ16Mw3WHPbY125qRaEzs8jHTh07HvPG+r/87PHM49p3bh8PnD6Nsblmneblj+4zF0fqjHtsO1B7A8Azvn8dbP3sLD0580OfX78qdI+/sFIi6++7sd5jQb4JHN9gpg6YgzhDX5fICZVVl0nxGf43pM6bTd+/+c/sxMntkQM8np6sHXI0nvnwCNwy+QWpqpAY5CTke3yenm077NP/aH0UDilB6ov07rsnahE1HNmHyoMkBPVd+Sn6nf2/bT2/HZX0vC3qcFD4MCIkoaGIXW3EZi452Vu1U9Af30txLseP0Do9tDW0NHl0C/VWQWoBTjacAANXN1eiT2Mfnx16RdwW+rvhaul3TUtNl51JvLu17qdcAt661DjkJOd0uGaLRaDCx30Spbbtob81en7OUgfrJRT/BpsObvN733oH3MHNE11mKcIqPiYfNafPYdrz+OAamDOziEZA6D7o7VHfIrwyZ2PV5Z9VObD+9PeT/PULtaP1RDEr1rRuhnDLiMlDTUuPXY+ZfNh8/uegnPu8fo4vBodpD6JPQx6+GWkPSh/g1Ln+lmdJgc9o8Mkzuvqn4BlfkXdFp+4R+E7CjaoeXR7QH9hdnXhzQeJKMSVL3X9G51nPIjPP/QpzcJuVPam82NOpupYfioU9CH48Lhmeaz/j1++KL8bnjsat6F+ot9bjmtWswJG1IwF2sZ46Yibf3vS3dFgQBX1d83alpDakbA0IiksVF6Rd1ukoo+r7+e5/bVIfC2D5jsfPMTo9tx+qPoSClcxdAX43OGY3y6nIAwNmWs1Jbcl8MzxyOQ7WHpNv1lnqkmlJ9frxeq4fD5ei00PLemr0YmdXzlff8lHycbDjpsa3SXNllu365FKQW4HjDca/3HTl/pMuSPiXoNO1ddUXH6o91G9zkJ+fjRMMJj21H6o5gSJr/AcCmI5uw/LrlEVluJS6DA8CnzsAhGUOHz83pcoZkXdVVP1mFR65+pMv7TXqTtIQO0H7hx5/viUANyxiGg7UHvd63pXKL14tz3i6aib6v/95rx1RfdfzsBaijA7pBZ0DJ7BL0Teqr9FA89EnsgzPNFwLCutY6pJvk7TKcGZ+J2tZa/O+O/8Wc0XPw0k9eCvi5RmWPwoHaA9LtY/XHMCxjmGIVQRQYBoREJIuxfcZ2WTZ6svEkBiQPCPOILhDXvXRX3VzdqbW3P/KS8nC66bT0XP5k+ApSC3Cs/ph0u76tHqmxvgeEQHsmoNHa6LHN1/c0IGWAVJooqjRXyl6W1JFGo5GWL+nI7vJtmYhw6ZvYV/rvC6DHRdeHZgztdEEkkCA7zZSGz49/HvFX15ttzYg3dL28SajptDopYxuqQOzqAVd3Gyj1TeyLqqYq6XZNSw2yE0IfEI7pMwa7q73PMW5oa/C6hMnonNEoP1vu9TEnGk4gPyU/4PHE6GKktUqpZ30S+qC6uVq64BeqANqgNeCz45/h3vH3BvU8KbEpaGy78Fu07fQ2acklihwMCIlIFkPTh+JI3RGv94kLzCvNPaNW11oX1NpufRIvlPXUt/mX4cuKz0JN64WStkZrY6c1n3rSN7EvTptPe2w7bznf42LQQHuGsGM2q6qpCn0S5C1L8iYrLgt1Fs+5Ss225k6NNpSWm5jrcTLf02c7NH2oR9YXCKw0bmDKQByqO6SKfy+BiNXHos3RhkO1hxTN+LoHYxXmipBf7PAmIy7DY65uTUsNsuKzQv66Y3LGeG06JQhCl5lSk8HUZdBmdVp9arTTlcy4TOlzaLW3hnSecm+QEpuChrYGrNy+sttmP8GaPWo2kmOTZVtzUfx93Va5DZf3Y0AYaRgQEpEsClILcKzhWM87KiQ9Lh3nLeel23WW4Mpw3AOG7k60vNFoNB6ldf4+HgD6JnlmsADfA8KOwQ7QHpQlGUO/8G92Qjaqm6s9th2sPYhhGeHvRtmd7IRsj26wPZX1DkgZIM0pFbXaWzs1G+nJFXlX+PTfUK3Ek9n95/Yr0lBGNCB5gHTRo9Jcibyk0JZDe5Mel+7RqOVc67lus8xyGZw22Ot38bnWc8iK6zogDVUZZ2Z8pjSns7a1Vvbyx94mOTYZZqsZDpcD6w+sh0EbmsqJ24bfhg0zNsjyXO6NcI6cD6xUnpTFAl8ikkWaKc0j4FKbvKQ8VJorpaxgsBnCjLgM1Frar3oLEHrYW35dZQh9OdnSa/VwCp5lmy32Fr+Dl0DkJOS0B1pulXNVTVWKZHC6kx2f7TGPp6dgO82UhvNtwR//kwdNxr779gX9PEpJiU1BXWsd3tjzBl6c9qJi48iMz5SCsYrGCkWC03RTukc23O60B9y4wx86rc5rg69Tjae6LWGO1cfCYrcElQ30xv23oa61+9JrApKNyVIJpsPlUEUDnp4MTR+KldtWwiW4EKOLUcUcUfIPM4REJAu1/wB0DFjrLHVBZWK0Gm2npi7+Cubx6XHpqG+r99jmz3tyz1ACQJujDUZd6MsUOwZaQPu8pmSjfyWzodYxQ3i+7Xy38zyTjcloaGvw2KbEhQKlpcSmYN3edbi+4Hq/lmKRm/t/j3A0TPImIy6jy6UclFDbWtttcJEdn+13d1ZfJMYkosnWBCD4yoxokGRMQqO1Eect53H3qLtxZf8rlR5Sjy5Kvwhrv12Lt/a9hR8P/rHSw6EAMENIRCEVbNAkl2RjskcTFrPVLEsQ4nQ5odP4PwcjJTYFjdbGgJe+SI1NRb3FMyA0W81BlX2GI6jPiMvwWBAZABrbGpGT4XtTnnDoOP+rp8/WW1amY9AdDbLjs/HC9hew+ubVio4jOTYZFeYKAMrNIUyPS+80XzZcNNDAJbg8StHrLfXdft9kxWehpqUGA1I8G4AFexwnGhPRZP0hIAyyMiMaJBmTYLaaYXVaseanayJizuVF6RehqqkKtf+vNqJL3qMZM4REJButRtupg6TVaVVFgwxxXoaozdEmS2mUvw1lROmmdNS21gYcMItztdz50+ZfbP4RbsmxyR4d6QAEFRiHiniVXuQSXLI1X+jN8pLzsP/cfozIGqHoONzL7pRqWuQ+hnBLNaV2+n7o6bvK25qBclzQEzOE7x14D2vK1ygynzOS6LQ6OAUnWu2tMOnlLd8NlSHpQ7Bp1iakx6WrvlqIvGNASESySY3tfBLSZG1CYkyiMgNyk2RM8jg5szltskzWD3SNKDFAtTqtiNXH+v34lNgUNFgb/H6c++OVOFn1VlqpxpLRjhllf9md9qhchysvKQ8XZ14c0DEtJzEDf+DcAcWydO4XFVyCK6wnyslGzwtgwA+Nkbope06ISZBKO0VydAUVM4TvH3wf//z+nxiYOjCo54sGYlY2UoIrvVaPaUOmKT0MCgIDQiKSTccmCoB6lhTwdoIf7I+tyWBqb1QTQECYEJOAZltzwAFzojGx0wmfP7xlGMNBPFF319jm/7IboWbQGaR17AD/y+YsDvmbc0SC/JR8LLx8odLDkDLR9310H+xOuyJjEEv/gPB/D3oNCHvIEIrfSe6abMFf0EsyJqHJ1iQ1suqbqK6F4NUoGucfk7IYEBKRbDrOuwLUs+5Ux1JFOX5wU2NTcfT80YDmxCTGtF81b7I1IdHo/wlXsE1tko3JHk1pwjXfLTm2c2Aux0lnqPlyvIjztgC0d2uMkHIvOZkMJvx8zM+VHkZ7JtragD4JffDFPV8oMgb3eaVnm892u+SD3NyDUVFjW/el2V4DQmtg30/upO86axPsv7ez9JpIhRgQEpFsOq67BbTP1VO6fAwIvgTQGykgDDJDqEQGNcmYJDV6AMJ3RTpGFwOb0+axzea0qWKeabDiDHGw2C0AfsgQRmFAqBZGvRE2py3gCy5yqzBXoH9y/7C9nreAsKfy9MSYxE4BodlqDvpiTaIxEWZb+1iisYw6EHanPWTrDxJ5w4CQiGTjLUOolhPjjpkpOTJiqaZUHDl/JLAMobG90YJS2bH4mHi02Fuk20p2xHS4HAF1ag0XXzOx8YYLn2ko1nOjyFXRWBHWpS86zpkG2i+8dLcOYkJMgsdFIgCyBNRihpB8Z3FYVFFZQ9GDASERyUbsnOlOLSfGJr1Jyt7IJc2Uht3Vu5Gfku/3Yz3mECqQwYg3xEvZAKfL6dGeXglqbp5gc9p8ynLHx8SjxfZDQKiSCyGkDh8d/QiXZF8SttfzliH0JSD0WjIa5AUrMVtLvqtrrVNd52Xq3RgQEpFsvK27pZaSUY1GI3tZZGpsKk41ngqojbp48tVsa1YuQ/hD8NLTiWI0EwTB57I59yBbLRdCopla2vZb7BY4XA4MSR8SttcUKxDc9ZSJ77KpjAwXrDqu0UndO95wHIPTBis9DIoiLOYmItnEG+LRam/12NabMyXiQuWBNElwbyoT6EK+Gs2Fxaf9bTCTEJMglTcyIPROnO943nLep/9G7p9pbz7uI8WZpjMYkanseogajQZ7avZgZNbIsL5uV+uMdpeJNxlMaHN6PqbJ2oTcxNygx9Nka+L6g37Ye+9e9Enso/QwKIowQ0hEsjEZOpdlqjVTIke2cFL+JJz7f+cCemywy04Ank1MrE6rX41Z3LNZNqcNRl3kN3WRm0lvgsVh8Tkg9CgZVelxH01cgivgiy1yMelNONV4CjkJOWF93a4CQn8fI1eGsN5Sr/h/i0gyMHWgKiprKHowQ0hEsonVx3a6wtzmaAuo6UooBbNcgzuDzoCMuIyAHuvRVCbAE64EQ3tGKj4mHlaH1a8sn5Ilo1qNVspsqpk479TXgDDOECdlyJkhVN7Xv/ha8SUO4g3xqGqqQmZcZlhfN5CA0Kgzdrqg5+ux35PzlvNIje16DUQiUpa6f42JKKJ4a9yiphNjDTQQBAF2l13xjJgcy07Ex1zI8jlcDr/alLt3xAx3QGjSm/w+WVWCydCeIaxvq/fpZNaou9A8gxlC5aXHpSvemCPOEIczTWek8vJwCSQgdF83UVTXWhfwRS931c3VSDUxICRSKwaERCQbb2vMqenEOEYXA7vLropGN3qtHg6XI6hlJ+INF7J8dpd/61a5B5NWp3/ZxWDFGeKkcQPhWwPRX/5mCN2Pf7U0NCFlxcfE40zzGSTHJof1dQMJCL2ptdQGtM5qR48VPYZbh90a9PMQUWiwZJSIZOOtYYEagi9RrD4WFrulxwWawymYklGj3gir0wqgPUPoz6LPsfpYKXgJ98Lw3poPqZGYIfQnIJS6jDrUcyGElCOWjCYbIzMgtDvtsnw3/L7o90E/BxGFDgNCIgopNZWMiidJagpSm23NAZeMup/0OVwOGHS+Zwjds1nhLhmNM8RJ5apAeymvGomlrYFkCC129Rz3pJw4Q1x7QBghGcKOF/UcLodcQyIiFWPJKBGFlJpKRsUTfDUFhC7B5Vdmz51RZ4TV0Z4htDvtfj2PQWtQLCDseLKq2pLRH7rm1rfV+zT/ySMgZIaQ0N48qsJcEfaGKu7/vgN14NwBFKQWyDQiIlIzBoREFFLMEHYvmI6nnTKEfswhdM8E+NuhNFhG/YVAVs3EZSca2xp9agrCDCF1lJuYC0EQZFm6wR/drTfoq8N1h3FJ9iUyjIaI1I4BIRGFlJqCL/eAsDecrMfqY6U5hHaXfxlC4EJmLtwZQqPuwtxHQMUloz9kCAUIPi2R0TFDGGeIC/UQSeXykvLQN6mv0sPwmfsFqnOt55AZH97lMohIGQwIiSik1FQ6p7YMoUEXXFmXUW8MeA6hu3AvTO8eOMm1JmQoiBlCX7FklDrKS85D30R1BIT+lmafazkX9vUTiUgZDAg7yM/Ph0aj8fj77W9/67HPqVOncNNNNyE+Ph4ZGRm4//77YbN5ntTt2bMHRUVFMJlM6Nu3L5544olOJz6lpaUYN24cYmNjUVBQgFWrVoX8/RGFm81p86uUMZRi9bGwOCyqCQgTYxI9mqv4K1YfG/AcQuBCZi7sGUK3klGn4FR88fCuiBlCX7FklDpKM6Xh9VteV+S1g52be671HLLis2QaDRGpGbuMevHEE09g7ty50u2EhAsdAJ1OJ2688UZkZmbiq6++Ql1dHe655x4IgoCVK1cCAMxmMyZPnoxrrrkGO3bswOHDhzFnzhzEx8fjwQcfBAAcP34c06ZNw9y5c/G3v/0NX3/9Ne677z5kZmbitttuC+8bJgoxOeazyEFtGcJ4w4W1AANh1BkDnkPoTsmSUbvTv/UTw8mkN/m1PEbHDKEajjFSXm5iriKv616K7XQ5odP0fOFFo9HAJbig1Whx3nKei8kTRQkGhF4kJiYiJyfH630lJSXYv38/KioqkJvb/iX/7LPPYs6cOVi6dCmSkpLwxhtvoK2tDWvXroXRaMSIESNw+PBhPPfccyguLoZGo8GqVavQv39/PP/88wCAYcOGoaysDCtWrGBASBHN/YQCUNf8MJNBXV1Ggw3Egp1DKLI6rUiMCV/TC/cMod1lD7jUNdRMBhNqWmp8aigDeAaELsGl2swnRR9fv2vEqgOTwaSq9VqJKLRYMurFM888g/T0dIwePRpLly71KAfdsmULRowYIQWDADB16lRYrVbs3LlT2qeoqAhGo9Fjn6qqKpw4cULaZ8qUKR6vO3XqVJSVlcFut4fw3RGFlpqXFPBoKqOC+V1NtqagAjE55xAqlSF0upwBB7KhZtKbcLrpNNJie16DEPAMCNV0IYTI5rT5tMC8+/e31WEN69xiIlKOOn+FFbRw4UKMHTsWqamp2L59OxYvXozjx4/jlVdeAQBUV1cjOzvb4zGpqamIiYlBdXW1tE9+fr7HPuJjqqurMXDgQK/Pk52dDYfDgdraWvTp08fr+KxWK6zWC935zGZzUO+XSG7iCYUaOyzG6mNhtprR5mhTRbOEYBalB4KfQyjy9WRRLu6Bk8PlgF6jzp8ik8GEqqYqn9di82iWo6ILIUQ2pw0x2p4v+ohrtQLBVR0QUWSJigzh448/3qlRTMe/srIyAMADDzyAoqIijBo1Cr/85S+xatUqrF69GnV1ddLzeZsPJQiCx/aO+4gNZfzdp6Ply5cjOTlZ+svLy/P1YyAKC5PesxGHmjIlYrBqsaujA+SIrBEo7FcY8OMjdg6hW8mow+VQ7UmnlCE0+ZEhdAW3GDhRKPhTMip21tVAo5r530QUWur8FZbZggULMHPmzG736ZjRE02YMAEAcPToUaSnpyMnJwfbtm3z2Ke+vh52u13K+OXk5EjZQlFNTQ0A9LiPXq9Henp6l+NcvHgxiouLpdtms5lBIamK2ktGLXZL+5IAKugA+fT1Twf1eKPeKMscQiVLRlUdEBpMOG32MyAMYhkRolDxJyB0//4mouigzl9hmWVkZCAjIyOgx+7evRsApBLOwsJCLF26FGfOnJG2lZSUwGg0Yty4cdI+S5Ysgc1mQ0xMjLRPbm6uFHgWFhZi48aNHq9VUlKC8ePHw2Do+iq/0Wj0mJtIpDb+rt0WTmrLEAbLoDXA7myfcxzMHEKrw8oMoRcmvQkt9ha/A0I1r61I0YkBIRF1JypKRn21ZcsW/PGPf0R5eTmOHz+Ot99+G//1X/+Fm2++Gf379wcATJkyBcOHD8fs2bOxe/dufPbZZ3jooYcwd+5cJCW1d6KbNWsWjEYj5syZg71792LDhg1YtmyZ1GEUAObNm4eTJ0+iuLgYBw4cwKuvvorVq1fjoYceUuz9E8nB/YQimHltoSDOj1FLl9Fg6bV6OFwOAMHPIVQyQ6jWbpziRQNfA0K9Vg+7097etEgFGWgiUSABoZqqO4gotNRzpqYCRqMRb731Fv7whz/AarViwIABmDt3Ln7zm99I++h0OmzatAn33XcfrrjiCphMJsyaNQsrVqyQ9klOTsbmzZsxf/58jB8/HqmpqSguLvYo9Rw4cCA++ugjPPDAA/jzn/+M3NxcvPDCC1xygiKe+2LezbbmsC5n0BMpQ6iSktFgGXQGKSB0uBwBBbmCILQ3lQljN0Gj3iiVVjoF9XYZFZdOSY31bS028YJfsM2CiOQi9jdghpCIuqPOX2GFjB07Flu3bu1xv/79++PDDz/sdp+RI0fiyy+/7HafoqIi7Nq1y68xEqmde5c6tZ0Y97aSUb1WD7urvWQ0kDmEOq0OTsEZ9gxhjC4mIkpGAWBywWRkxWf59ZhmWzPiDfEhGhGRb3RaXft6mBqdXwFhbWtteyCpooZgRBRa6v0VJqKI5N6lLth19uQmrUPo7B0lfQatZ4bQ3zmE4hzEcAeEeq0eTsEJQP0BYcnsEr8f02JvQXwMA0JSlnjBSKf1LyCc8e4M9P153zCMkIjUgnMIiUhW7p0W1ZghtDgssNgtvWYOoZQhDGAOoVhyanWGt6mM+9xHtQeEgWixtTBDSIpzbzrla0AoXihrsjWFdGxEpC4MCIlIVgbdhZOQJmsTEo3qyxAG05FTTYINrMSAMtwL0/f6gJAZQlIB9znGvgaEkwdNhl6rR1VTVaiHR0QqwoCQiGRl0BqkrJUaS0bF7pa9gUeXUZfd74XpxZJTJUpG3QNCnUadXUYDxQwhqYFec6GCwNd/42mmNPz75/9mQEgUZRgQEpGs3K9Kq61kVKPR9Ko14tzfT8AZwh/mEPobTAbDPSB0utTbZTRQzBCSGrhXa/hz0SclNgVmq5nLThBFEQaERCQrMcgA1Fcy2psFUgYrBmZOwRnWtQB7e8loq72VGUJSnHvTKX8CwhhdDNocbewyShRFGBASkazcS0bVliEEeu9iywE1lXE7YQyn3h4QttiYISTluTed8qdxVIwuBi22lrDOKyYiZTEgJCJZeTSVUdkcwt7M4XL4XfYpnjCGOxPQ6wNCO+cQkvLcv4vbHG0+r70ao4tBk60prPOKiUhZDAiJSFYdM4QsGQ2PQBamd5/vGU5ajRYuwQWglwaEzBCSCrhXALQ52nxeaidGF4NmWzOMOmYIiaIFA0IikpV7kNFkbVJdyWhvnRcT6BxCMYOgFIfLEdb5i+HADCGpgXvJqL8BITOERNGFASERycqjqYxNfQFhbxXMHEIl51X2tgyhRqNBs62ZGUJSXMeSUb8CQmsTM4REUYQBIRHJyr1k1OKwIM4Qp/CIPNld9l6xKH1HwcwhVJJT6F3LTsToYlDfVs8MISnOvWTUYrf4HBDqNDq02FuYISSKIgwIiUhW7lelXYILWo26vmb8OTGKJMHMIVSyjLa3ZQhjdDGot9QzQ0iKc2/e5E+GUKPR+LVMBRFFPnWdqRFRxHPPEKqR3WUP6yLs4RLJcwh7W0DYam/tVe+JIlOgASHQvm4hl50gih4MCIlIVu4ZQrU2cNFo1DmuYASUIVRoHUJ3vS0gNOlNsDgsSg+DyDMgdPoXEFodvq9bSESRjwEhEcnK/SREjQRBUG2gGoxg5hCyqYx84gxxaLW3Kj0MouAzhGwqQxQ1GBASkazcS0aVDDS6cqjuEAYkD1B6GLILqMuoQusQunO4HNBpes+yEya9iQEhqYJOq5P+fdud/pXKW53MEBJFk95zWZaIVMGgU/ccwqXXLsWNQ25UehiyEYNul+Dyez0/vVYPm9OmaOMfu7N3dX2NM8TBYmfJKCmvY7WGP6XyDpeDASFRFGFASESyMmjVPYdw3vh5Sg9BVsF8xnqtHq32VkVP/AIpdVUzloySWui1ejgFJ4D2C0b+YlMZoujBklEikpXaM4R0gUFrQItN2fXGAmmGo2YGnQE2p03pYRBJGUJBEAIq32eGkCh6MCAkIlmpoXMl+Uav1Su+AHVvKxl1upy9KsClyCUGhLWttciMy/T78c225hCMiojUiL9aRCQrrUYLp8vZ3izEzzltFBhBCKx5j0FnQKu9VdFugr1tXcje1jWVIpcYEB6qO4Sh6UP9emzpnFLkJuaGaGREpDb81SIiWYmNC/xtc06B0Wq0cAmugErC9Fq98iWjvSxDyICQ1EIKCGsPYWiGfwHh1QOuDtGoiEiNWDJKRCFhdVi5jlUYuDeO8JdBa2BTGZklGhMxIKX3LWtCkUcMCL+v/x6D0wYrPRwiUjEGhEQUEnaXnU0JwqBja3l/H6vUHEIxo9nbmsrMHTsXW/9zq9LDIJK+G1rtrYg3xCs9HCJSsd7zK0xEqiFAgM1p61WZH7VyX3zaXwadQbGAUFwuo7eVjOq0Opi0JqWHQSQFhDanjRfniKhbzBASUUj0thN9tdJr9XC6AisZFecQsqkMUe8jBoR2J6s1iKh7DAiJSHYaaFgyGiZ6TeAlo2qYQ2h38cIBUShIGUKXjf/GiKhbDAiJKCRYMhoeYsmoWILpDzWsQ9jbmsoQqQUzhETkKwaERBQSPAkJj6C6jOoMii47IQgC7M7e1VSGSC3c5xDyogsRdYcBIRGFhM3JMqVwiNQuozqtDi7BxZJRohCRMoT8N0ZEPWBASEQhwWYh4aHTBN5lVK/Vo9XeCqM+/E1ltBotnIITgiBAq+FPEZHcxIDQJbj4b4yIusVvCCIKCbY6D49guowq2VRGp2nPEBJRaARTPUBE0YUBIRGFBJedCI9g1iEUM4RKBIRajTbgQJaIeiYGhIE0nCKi6BJVAeHSpUsxceJExMXFISUlxes+p06dwk033YT4+HhkZGTg/vvvh81m89hnz549KCoqgslkQt++ffHEE09AEASPfUpLSzFu3DjExsaioKAAq1at6vRa69evx/Dhw2E0GjF8+HBs2LBBtvdKpDQuOxEewWQBxIBdqTmEgTbDIaKeMUNIRL6KqoDQZrPh9ttvx7333uv1fqfTiRtvvBEtLS346quvsG7dOqxfvx4PPvigtI/ZbMbkyZORm5uLHTt2YOXKlVixYgWee+45aZ/jx49j2rRpuOqqq7B7924sWbIE999/P9avXy/ts2XLFsyYMQOzZ8/Gt99+i9mzZ+OOO+7Atm3bQvcBEIURO9uFh16rR5ujLaBOneJjWDJK1PswICQiX0VVr+8//OEPAIC1a9d6vb+kpAT79+9HRUUFcnNzAQDPPvss5syZg6VLlyIpKQlvvPEG2trasHbtWhiNRowYMQKHDx/Gc889h+LiYmg0GqxatQr9+/fH888/DwAYNmwYysrKsGLFCtx2220AgOeffx6TJ0/G4sWLAQCLFy9GaWkpnn/+ebz55puh/SCIwoDLToSHTqNDm6MtoPJcMWA36hRqKsOSUaKQEQNCAULPOxNRVIuqDGFPtmzZghEjRkjBIABMnToVVqsVO3fulPYpKiqC0Wj02KeqqgonTpyQ9pkyZYrHc0+dOhVlZWWw2+3d7vPNN9+E4q0RhZ3VaeUcwjBghpCIvGGGkIh8xYDQTXV1NbKzsz22paamIiYmBtXV1V3uI97uaR+Hw4Ha2tpu9xGfoytWqxVms9njj0htDDoDLHYLS0bDQAwIA/mslQwIxWUniCg0GBASka8iPiB8/PHHodFouv0rKyvz+fk0ms7duARB8NjecR+xoYwc+3h7fXfLly9HcnKy9JeXl9ft/kRKMGgNii14Hm10Wl3AGULx+yYlNkXmUfVMp9WxZJQohBgQEpGvIn4O4YIFCzBz5sxu98nPz/fpuXJycjo1damvr4fdbpeyeTk5OZ2yeDU1NQDQ4z56vR7p6end7tMxa9jR4sWLUVxcLN02m80MCkl1DLr29e1YMhp6wWQIRelx6TKOyDcsGSUKLS47QUS+iviAMCMjAxkZGbI8V2FhIZYuXYozZ86gT58+ANobzRiNRowbN07aZ8mSJbDZbIiJiZH2yc3NlQLPwsJCbNy40eO5S0pKMH78eBgMBmmfzZs344EHHvDYZ+LEid2O0Wg0esxfJFIjg9aAFhszhOGg1+phcVgCyhCK4g3xMo7INywZJQotnSbwNUqJKLpEfMmoP06dOoXy8nKcOnUKTqcT5eXlKC8vR3NzMwBgypQpGD58OGbPno3du3fjs88+w0MPPYS5c+ciKSkJADBr1iwYjUbMmTMHe/fuxYYNG7Bs2TKpwygAzJs3DydPnkRxcTEOHDiAV199FatXr8ZDDz0kjWXhwoUoKSnBM888g4MHD+KZZ57Bp59+ikWLFoX9cyGSm7jgOecQhl4wXUZFPZWqh4JOywwhUShpNBp2GCUin0RVQPjoo49izJgxeOyxx9Dc3IwxY8ZgzJgx0hxDnU6HTZs2ITY2FldccQXuuOMOTJ8+HStWrJCeIzk5GZs3b0ZlZSXGjx+P++67D8XFxR5lnAMHDsRHH32Ef/3rXxg9ejSefPJJvPDCC9KSEwAwceJErFu3DmvWrMGoUaOwdu1avPXWW7j88svD94EQhYhBy5LRcAmmy6iSuOwEUehpwKCQiHoWWWcQQVq7dm2XaxCK+vfvjw8//LDbfUaOHIkvv/yy232Kioqwa9eubvf52c9+hp/97Gfd7kMUiQw6A863nWfJaBgEGxDuv2+/zCPyjU6jY8koUYgxGCQiX0RVhpCIwkPKELJkNOTELqOBftbDMofJPCLfsGSUKPQcLge/h4moRwwIiUh2Bh2byoQLS0aJqCs2p43fw0TUIwaERCQ7ziEMH71WD4vdEnGftU6jg91lh1bDnyGiULE77QwIiahH/CUmItmJXUZ5IhJ6Oo0Obc7IzBBaHdaIC2SJIonNaWPJKBH1iAEhEclOWpieJyIhp9fq2wOrCPusdVodrE5rxAWyRJHE7mKGkIh6xoCQiGRn0BrQYm9h9icM5FiYXgnS+okRFsgSRRKb08bvYSLqEQNCIpKdmCHklenQk7qMRthJn1QyyoCQKGTYVIaIfMGAkIhkx2UnwidSu4xGaiBLFEnsTju/h4moRwwIiUh2eq0eNqcNOq1O6aH0emJAGGknfVqNFlYnM4REocQMIRH5ggEhEcmOWZ/wEefiRVyGUKOD1cGmMkShxKYyROQLBoREJDtmfcJHyhBGWBDOklGi0GNTGSLyBQNCIpIdT0DCR1yYPtIybSwZJQo9LkxPRL5gQEhEsuNJfvhImbYI+8ylZSd48YAoZLgwPRH5ggEhEcku0rJVkSxSu4yKy05E2riJIgnnEBKRLxgQEpHsmPUJn0ieQ8iSUaLQy4rPUnoIRKRyDAiJSHbM+oSPTqOD3WWPuM9cq9FGZCBLFGku63uZ0kMgIpWLrDMIIooIDW0NSg8haoiBYKRl2sRlJyJt3ESR5MyDZ5CTkKP0MIhI5ZghJCLZJRuTcduw25QeRlQQA8JIyxDqtDpYHBZmCIlCiMEgEfkiss4giCgiTB40GZMHTVZ6GFFBp9UBiLx5m3qtHlYnm8oQEREpjRlCIqIIFrEZQk1kLpdBRETU2zAgJCKKYJE6h1Cv1cNiZ8koERGR0hgQEhFFMJ2mvWQ00jKEeq2+fQ5hhAWyREREvQ0DQiKiCBapJaPMEBIREakDA0IioggmBoJGvVHhkfhHp22fQxhpgSwREVFvw4CQiCiCiV1GM+MyFR6Jf/RaPZvKEBERqQADQiKiCCbOIRQDw0ghzSFkySgREZGiGBASEUUwjUaj9BACwmUniIiI1IEBIRFRhHM+6lR6CH5jUxkiIiJ1YEBIRBThtJrI+yoX5xCyqQwREZGyIu8sgoiIIp5eq4cAgSWjRERECmNASEREYSc2wWHJKBERkbIYEBIRUdiJpaLMEBIRESmLASEREYWdFBAyQ0hERKQoBoRERBR24vqJzBASEREpK6oCwqVLl2LixImIi4tDSkqK1300Gk2nv1WrVnnss2fPHhQVFcFkMqFv37544oknIAiCxz6lpaUYN24cYmNjUVBQ0Ok5AGD9+vUYPnw4jEYjhg8fjg0bNsj2XomI1EzMEJoMJoVHQkREFN2iKiC02Wy4/fbbce+993a735o1a3DmzBnp75577pHuM5vNmDx5MnJzc7Fjxw6sXLkSK1aswHPPPSftc/z4cUybNg1XXXUVdu/ejSVLluD+++/H+vXrpX22bNmCGTNmYPbs2fj2228xe/Zs3HHHHdi2bZv8b5yISGXEgDDOEKfwSIiIiKKbRuiY2ooCa9euxaJFi9DQ0NDpPo1Ggw0bNmD69OleH/vSSy9h8eLFOHv2LIxGIwDg6aefxsqVK1FZWQmNRoOHH34YH3zwAQ4cOCA9bt68efj222+xZcsWAMCMGTNgNpvx8ccfS/v8+Mc/RmpqKt58802f34vZbEZycjIaGxuRlJTk8+OIiJR0ruUcslZkwfWoCxqNRunhEBGRyvAcN3yiKkPoqwULFiAjIwOXXnopVq1aBZfLJd23ZcsWFBUVScEgAEydOhVVVVU4ceKEtM+UKVM8nnPq1KkoKyuD3W7vdp9vvvmm27FZrVaYzWaPPyKiSCMuO8FgkIiISFkMCDt48skn8c477+DTTz/FzJkz8eCDD2LZsmXS/dXV1cjOzvZ4jHi7urq6230cDgdqa2u73Ud8jq4sX74cycnJ0l9eXl5gb5SISEFiySgREREpK+IDwscff9xrIxj3v7KyMp+f75FHHkFhYSFGjx6NBx98EE888QT+53/+x2Ofjle0xapb9+2B7tPT1fLFixejsbFR+quoqPDxnRERqQcDQiIiInWI+F/kBQsWYObMmd3uk5+fH/DzT5gwAWazGWfPnkV2djZycnI6ZfFqamoAXMgUdrWPXq9Henp6t/t0zBp2ZDQaPcpViYgikbjsBBERESkr4gPCjIwMZGRkhOz5d+/ejdjYWGmZisLCQixZsgQ2mw0xMTEAgJKSEuTm5kqBZ2FhITZu3OjxPCUlJRg/fjwMBoO0z+bNm/HAAw947DNx4sSQvRciIrVghpCIiEgdIr5k1B+nTp1CeXk5Tp06BafTifLycpSXl6O5uRkAsHHjRvzlL3/B3r178f333+OVV17B7373O/zqV7+SsnKzZs2C0WjEnDlzsHfvXmzYsAHLli1DcXGxVO45b948nDx5EsXFxThw4ABeffVVrF69Gg899JA0loULF6KkpATPPPMMDh48iGeeeQaffvopFi1aFPbPhYgo3LSaqPr5ISIiUq2oWnZizpw5eO211zpt/+KLLzBp0iR88sknWLx4MY4ePQqXy4WCggL88pe/xPz586HXX7iavWfPHsyfPx/bt29Hamoq5s2bh0cffdRj/l9paSkeeOAB7Nu3D7m5uXj44Ycxb948j9d999138cgjj+DYsWMYNGgQli5diltvvdWv98SWvEQUqTR/0EB4LGp+goiIyA88xw2fqAoIeyP+YyGiSHXg3AEMyxym9DCIiEiFeI4bPqzZISIiRTAYJCIiUh4DQiIiIiIioijFgJCIiIiIiChKMSAkIiIiIiKKUgwIiYiIiIiIohQDQiIiIiIioijFgJCIiIiIiChKMSAkIiIiIiKKUgwIiYiIiIiIohQDQiIiIiIioijFgJCIiIiIiChKMSAkIiIiIiKKUnqlB0CBEwQBZrMZAKT/JSIiIiKKdOK5rSAICo+k99MI/JQj1rlz55CVlaX0MIiIiIiIQqKiogL9+vVTehi9GjOEESwmJgYAsH//fuTm5kKj0Sg8IuqtzGYz8vLyUFFRgaSkJKWHQ70YjzUKBx5nFC481gInCAKampqQm5ur9FB6PQaEEUwMAPv27csvGQqLpKQkHmsUFjzWKBx4nFG48FgLTHJystJDiApsKkNERERERBSlGBASERERERFFKQaEEcxoNOKxxx6D0WhUeijUy/FYo3DhsUbhwOOMwoXHGkUCdhklIiIiIiKKUswQEhERERERRSkGhERERERERFGKASEREREREVGUYkBIREREREQUpRgQRoAvv/wSN910E3Jzc6HRaPD+++973C8IAh5//HHk5ubCZDJh0qRJ2LdvnzKDpYi1fPlyXHrppUhMTERWVhamT5+OQ4cOeezDY43k8NJLL2HUqFHSQs2FhYX4+OOPpft5nFEoLF++HBqNBosWLZK28VgjOTz++OPQaDQefzk5OdL9PM5I7RgQRoCWlhZccsklePHFF73e/9///d947rnn8OKLL2LHjh3IycnB5MmT0dTUFOaRUiQrLS3F/PnzsXXrVmzevBkOhwNTpkxBS0uLtA+PNZJDv3798PTTT6OsrAxlZWW49tpr8dOf/lQ6QeJxRnLbsWMHXn75ZYwaNcpjO481ksvFF1+MM2fOSH979uyR7uNxRqonUEQBIGzYsEG67XK5hJycHOHpp5+WtrW1tQnJycnCqlWrFBgh9RY1NTUCAKG0tFQQBB5rFFqpqanCK6+8wuOMZNfU1CQMGTJE2Lx5s1BUVCQsXLhQEAR+p5F8HnvsMeGSSy7xeh+PM4oEzBBGuOPHj6O6uhpTpkyRthmNRhQVFeGbb75RcGQU6RobGwEAaWlpAHisUWg4nU6sW7cOLS0tKCws5HFGsps/fz5uvPFGXH/99R7beayRnI4cOYLc3FwMHDgQM2fOxLFjxwDwOKPIoFd6ABSc6upqAEB2drbH9uzsbJw8eVKJIVEvIAgCiouLceWVV2LEiBEAeKyRvPbs2YPCwkK0tbUhISEBGzZswPDhw6UTJB5nJId169Zh165d2LFjR6f7+J1Gcrn88svx+uuv46KLLsLZs2fx1FNPYeLEidi3bx+PM4oIDAh7CY1G43FbEIRO24h8tWDBAnz33Xf46quvOt3HY43kMHToUJSXl6OhoQHr16/HPffcg9LSUul+HmcUrIqKCixcuBAlJSWIjY3tcj8eaxSsG264Qfr/I0eORGFhIQYNGoTXXnsNEyZMAMDjjNSNJaMRTuxiJV6BEtXU1HS6GkXki1//+tf44IMP8MUXX6Bfv37Sdh5rJKeYmBgMHjwY48ePx/Lly3HJJZfgT3/6E48zks3OnTtRU1ODcePGQa/XQ6/Xo7S0FC+88AL0er10PPFYI7nFx8dj5MiROHLkCL/TKCIwIIxwAwcORE5ODjZv3ixts9lsKC0txcSJExUcGUUaQRCwYMECvPfee/j8888xcOBAj/t5rFEoCYIAq9XK44xkc91112HPnj0oLy+X/saPH4+77roL5eXlKCgo4LFGIWG1WnHgwAH06dOH32kUEVgyGgGam5tx9OhR6fbx48dRXl6OtLQ09O/fH4sWLcKyZcswZMgQDBkyBMuWLUNcXBxmzZql4Kgp0syfPx9///vf8Y9//AOJiYnS1czk5GSYTCZp/S4eaxSsJUuW4IYbbkBeXh6ampqwbt06/Otf/8Inn3zC44xkk5iYKM2BFsXHxyM9PV3azmON5PDQQw/hpptuQv/+/VFTU4OnnnoKZrMZ99xzD7/TKCIwIIwAZWVluOaaa6TbxcXFAIB77rkHa9euxW9+8xtYLBbcd999qK+vx+WXX46SkhIkJiYqNWSKQC+99BIAYNKkSR7b16xZgzlz5gAAjzWSxdmzZzF79mycOXMGycnJGDVqFD755BNMnjwZAI8zCh8eaySHyspK3HnnnaitrUVmZiYmTJiArVu3YsCAAQB4nJH6aQRBEJQeBBEREREREYUf5xASERERERFFKQaEREREREREUYoBIRERERERUZRiQEhERERERBSlGBASERERERFFKQaEREREREREUYoBIRERERERUZRiQEhERERERBSlGBASERERERFFKQaEREREREREUYoBIRERERERUZRiQEhERERERBSlGBASERERERFFKQaEREREREREUYoBIRERERERUZRiQEhERERERBSlGBASERERERFFKQaEREREREREUYoBIRERERERUZRiQEhERERERBSlGBASERERERFFKQaEREREREREUer/A2Y4X7N+gpHqAAAAAElFTkSuQmCC", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "#px.SetMaxSinThetaOvLambda(0.3) # This can be used to change the number of used reflections\n", "spgex = SpaceGroupExplorer(pdiff)\n", @@ -791,7 +198,7 @@ "print(\"Chosen spacegroup (smallest nGoF): \", c.GetSpaceGroup())\n", "\n", "# Updated plot with optimal spacegroup\n", - "px.plot(diff=True, fig=None, hkl=True, reset=True)" + "px.plot(diff=True, fig=None, hkl=True, reset=True)\n" ] }, { @@ -804,36 +211,9 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "UnitCell : (P m c n)\n", - " Cell dimensions : 5.39801 6.95849 8.47876 90.00000 90.00000 90.00000\n", - "List of scattering components (atoms): 6\n", - "Pb at : 0.2500 0.2500 0.2500, Occup=1.0000 * 0.5000, ScattPow:Pb , Biso= 1.0000\n", - "S at : -0.0000 0.0000-0.0000, Occup=1.0000 * 0.5000, ScattPow:S , Biso= 1.5000\n", - "O1 at : -0.0000 0.0000 0.1769, Occup=1.0000 * 1.0000, ScattPow:O , Biso= 2.0000\n", - "O2 at : -0.0000 0.2033-0.0589, Occup=1.0000 * 1.0000, ScattPow:O , Biso= 2.0000\n", - "O3 at : 0.2270-0.1017-0.0589, Occup=1.0000 * 0.5000, ScattPow:O , Biso= 2.0000\n", - "O4 at : -0.2270-0.1017-0.0589, Occup=1.0000 * 0.5000, ScattPow:O , Biso= 2.0000\n", - "\n", - "Occupancy = occ * dyn, where:\n", - " - occ is the 'real' occupancy\n", - " - dyn is the dynamical occupancy correction, indicating either\n", - " an atom on a special position, or several identical atoms \n", - " overlapping (dyn=0.5 -> atom on a symetry plane / 2fold axis..\n", - " -> OR 2 atoms strictly overlapping)\n", - "\n", - " Total number of components (atoms) in one unit cell : 32\n", - " Chemical formula: O3 Pb0.5 S0.5\n", - " Weight: 167.635 g/mol\n" - ] - } - ], + "outputs": [], "source": [ "pb = ScatteringPowerAtom(\"Pb\", \"Pb\", 1.0)\n", "s = ScatteringPowerAtom(\"S\", \"S\", 1.5)\n", @@ -849,7 +229,7 @@ "c.AddScatterer(MakeTetrahedron(c,\"SO4\",s,o,1.5))\n", "\n", "# Let's see what is the resulting crystal contents\n", - "print(c)" + "print(c)\n" ] }, { @@ -864,57 +244,9 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - " % Total % Received % Xferd Average Speed Time Time Time Current\n", - " Dload Upload Total Spent Left Speed\n", - "100 17902 100 17902 0 0 45463 0 --:--:-- --:--:-- --:--:-- 45552\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Imported powder pattern: 2920 points, 2theta= 10.000 -> 155.950, step= 0.050\n", - "No background, adding one automatically\n", - "Selected PowderPatternDiffraction: with Crystal: \n", - "Profile fitting finished.\n", - "Remember to use SetExtractionMode(False) on the PowderPatternDiffraction object\n", - "to disable profile fitting and optimise the structure.\n", - "Fit result: Rw= 4.51% Chi2= 874.61 GoF= 0.30 LLK= 219.850\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "b294cb148fbd42c991da279f33ad318f", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD/O0lEQVR4nOzdeXyU5bn/8c/sS0gmG1lYBGQTgYqyoxUoi1IRilrsEVCqxZ8LUAsCtUXF2iJqVahWDvV4AEEPVVtbrRZBUVCWsmmLCoiyCyGBZJJJJpn1+f0xzwwzk0lIQmYhXO/XKy8yzzx55k4ywHznuu/70iiKoiCEEEIIIYQQ4qKjTfYAhBBCCCGEEEIkhwRCIYQQQgghhLhISSAUQgghhBBCiIuUBEIhhBBCCCGEuEhJIBRCCCGEEEKIi5QEQiGEEEIIIYS4SEkgFEIIIYQQQoiLlARCIYQQQgghhLhISSAUQgghhBBCiIuUBEIhhBBCCCGEuEhJIBRCCCGEEEKIi5QEQiGEEEKIi8CkSZOSPQQhRArSJ3sAQgghhBCi+cydO7fWMUVR2LJlSxJGI4RIdRIIhRBCCCFakFdffZXXXnut1vGPPvooCaMRQqQ6CYRCCCGEEC3InXfeSY8ePcjLy4s4fvvttydpREKIVKZRFEVJ9iCEEEIIIYQQQiSebCojhBBCCCGEEBcpCYRCCCGEEEIIcZGSQCiEEEIIIYQQFykJhEIIIYQQLcjrr7/OlVdeyeTJk1m5ciXdu3enf//+vP3228kemhAiBcmmMkIIIYQQLcjAgQP56KOPcDgc9OnTh3379mE2mxk5ciSffPJJsocnhEgx0nZCCCGEEKIFsVgsWK1WrFYrI0aMwGazAaDXy8s+IURtMmVUCCGEEKIF6dOnDz6fD4DVq1cD4Ha7ycnJSeawhBApSqaMCiGEEEIIIcRFSiqEQgghhBBCCHGRkkAohBBCCCGEEBcpCYRCCCGEEBeBoqKiZA9BCJGCJBAKIYQQQlwEbr/99mQPQQiRgmT/YSGEEEKIFmTAgAG1jimKwoEDB5IwGiFEqpNAKIQQQgjRgjgcDvbs2VOr7+CoUaOSNCIhRCqTKaNCCCGEEC3IwoULcTgctY7Pnz8/CaMRQqQ66UMohBBCCCGEEBcpqRAKIYQQQgghxEVKAqEQQgghhBBCXKQkEAohhBBCCCHERUoCoRBCCCGEEEJcpCQQCiGEEEIIIcRFSgKhEEIIIYQQQlykJBAKIYQQQgghxEVKAqEQQgghRAs3adKkZA9BCJGi9MkegBBCCCGEaB5z586tdUxRFLZs2ZKE0QghLgQSCIUQQgghWohXX32V1157rdbxjz76KAmjEUJcCCQQCiGEEEK0EHfeeSc9evQgLy8v4vjtt9+epBEJIVKdRlEUJdmDEEIIIYQQQgiReLKpjBBCCCGEEEJcpCQQCiGEEEIIIcRFStYQXuD8fj8nTpwgPT0djUaT7OEIIYQQQghx3hRFweFw0KZNG7RaqWHFlSIivPjii0rv3r2V9PR0JT09XRk0aJDy3nvvhe73+/3Ko48+qhQWFipms1kZOnSo8sUXX0Rco6amRpk+fbqSk5OjWK1W5cYbb1SOHTsWcU5paakyefJkJSMjQ8nIyFAmT56slJWVNXq8x44dUwD5kA/5kA/5kA/5kA/5kI8W9xH9Glo0P9lUJso777yDTqejS5cuAKxcuZKnn36azz77jJ49e/Lkk0/yu9/9jhUrVtCtWzd++9vfsmnTJvbv3096ejoA9957L++88w4rVqwgJyeH2bNnU1payq5du9DpdACMGTOG48eP86c//QmAu+++m44dO/LOO+80arzl5eVkZmZy7NgxMjIymvEnIYQQQogLzahRo3jjjTcwGo389re/xePx8OSTTzJu3Dj+8Y9/JHt4QjRYRUUF7du3x263Y7PZkj2cli3ZifRCkJWVpfzP//yP4vf7lYKCAmXRokWh+2pqahSbzab893//t6IoimK32xWDwaCsWbMmdM53332naLVaZe3atYqiKMpXX32lAMq2bdtC52zdulUBlH379jVqbOXl5QqglJeXh44999xzis1mUzIyMpT27dsrBw8eVBRFUa677jrFZrMpVqtV+dGPflTrWp07d1asVquSlpamXHvttYqiKIrNZlNOnjwZcV51dbXSuXNnJSMjQ7niiitqXeeuu+5SDAaDYrPZlA4dOtS6//e//73SqlUrJSMjQ0lPT1fKy8ubdM3nnntO0el0yh133BEaa0ZGhmK1WpVJkyY14KfXfC699FJFq9UqinL257hjxw7lk08+Udq2bduoawW/j4yMDKVDhw6Kx+Op89zLLrss9Jh//etfm/4NxPD4448rQ4cOrfP+/v37K0Ct54cQQojkueaaayJuL1++XBk7dqzSr1+/JI1IiKaJ9RpXxIdMyK2Hz+djzZo1VFVVMXjwYA4dOkRRURGjR48OnWMymRg6dChbtmwBYNeuXXg8nohz2rRpQ69evULnbN26FZvNxsCBA0PnDBo0CJvNFjqnLi6Xi4qKioiPcN9++y3z58/ns88+o7y8nB/+8If84Ac/AOCvf/0rdrudsrIy/vnPf+J2u2tdf/Xq1djtdnbs2MGOHTtijuHRRx+loKCA8vJyampqWLZsWa1zxo8fj91u5/Dhw7XuW7BgAf/5z38oLy/niy++wGq1Nvmaffr0YcWKFaHb+/fv59ixY6xZswan0xlz/PHw7bffYjabQ7dXr15Nv379mny9/fv3U15ejtFo5KWXXqrzvL179zb5Mc7X9u3b5R07IYRIMX369In4f3Lq1KnMmjULh8ORvEEJIVKaBMIY9uzZQ6tWrTCZTNxzzz289dZbXH755RQVFQGQn58fcX5+fn7ovqKiIoxGI1lZWfWeE90wFiAvLy90Tl2eeOIJbDZb6KN9+/YR9z/55JOMHj2aTp06AfDf//3fHD9+HLfbjdVqBQiV3o1GY8zH0Ov1tG7dmv/85z8A3HjjjWRmZvK9730PgI8++ohbb701dF+saa5vv/02NpuNmTNn1rpPp9Px3//931RUVHDJJZeg1+vP+5rhsrOzsVgsHDx4MHRs8eLF5OTkUFhYiMViYfbs2RQUFJCWlsaXX34Z8fV79+4lPz+fzMzM0M8x/Dq5ubkUFBRgsVj4y1/+Uu9YYnnllVfIysrCZrMxduzYes+tqamhdevWeL1ecnJyyMzMJCcnh+PHjwOQlpZW59d26dKFyy67jMzMTHr27MkPfvADMjMzueKKKwD417/+FRpHz549AThy5Ag5OTnk5ubyyiuvhK71s5/9DJvNRnp6Os8880yjv2chhBCJ8fzzz9OxY8eIY8OHD2ffvn3JGZAQIuVJIIyhe/fufP7552zbto17772XO+64g6+++ip0f/RunoqinHOHz+hzYp3fkOs89NBDlJeXhz6OHTsWcf+xY8fo3LlzxDGz2czXX38NQL9+/SgsLKRXr151PkZpaSmnTp1iyJAhANx0003Y7XYqKipYvXo1DocjFGhbt25NaWlpxNc//PDDVFVVsXfvXv73f/+Xzz//POL+v/71r7zxxhvk5OTQu3dvvF7veV8z3P79+6mpqeGyyy6rdd/Jkye59dZb+b//+z+Kioq47rrreOKJJyLOmTRpElOnTsVut3PgwIFa1/D7/RQVFfHoo4+ycOHCOsdRlwceeIDdu3dTXl7O7t27+eKLL2qd0717dywWCxUVFfzoRz9Cr9dz4MAB7HY7w4YN41e/+lWDHusHP/gBdrud48ePM2jQIOx2O9988w12u52f/exnzJ49m/LycjweD0uWLOH+++9nzJgxnD59mtatWwOBn+ff/vY3ysrKOHToEL/73e8a/T0LIYQQQojUJG0nYjAajaFNZfr168eOHTtYsmQJ8+bNAwIVvsLCwtD5xcXFoaphQUEBbrebsrKyiCphcXFxKGAVFBRw6tSpWo9bUlJSq/oYzWQyYTKZ6ry/Q4cOEZUxCFSZunXrBsDOnTux2+20bduW3bt3c9VVV0WcO3nyZPR6Pbfeeis9evQA4JZbbgHgqquuYseOHWRkZFBcXAzAqVOnyM7OrjUGCEyV7dmzJx9++CF9+vQJ3f+DH/yAgwcP4vV66dGjB08++WSTrhncoCdc9+7d0Wg0/PKXv0Svj3x6B6t9Xbp04dChQ6Fj4WEfAqH6zjvvBKh1DYBLL70UgO9973u8/PLLte4/F7vdzpVXXgkEpgDv3r27VkDfv38/BQUF9OvXj+nTp/Ob3/yGgQMHUlpaitvtZtCgQQ16rBEjRgBgs9m4/vrrAWjVqhXHjx8PhWMIPM8/++wzDh48GAqbwanQW7ZswW63h34nNTU1jf6ehRBCiETz+/0xl8eI1GAwGGK+lhOJJ4GwARRFweVy0alTJwoKCli/fn3oBb3b7Wbjxo08+eSTAPTt2xeDwcD69euZOHEiEKhKffHFFzz11FMADB48mPLycrZv386AAQOAwPS98vLyUGhsqjlz5tCnTx+OHDlChw4duP/++2nfvj1Go5GKigoyMjLIyMhAr9fXmtYKgbVvEyZMiDj21ltvMXfuXD7//HNuuukmzGYzf/7zn5kxYwbvvvsus2bNijj/+PHjtGvXDrfbzf79+yPWSgKsX7+eUaNGodfryczMxOfzMWzYsEZfc+fOnbXGHwxS5xJeiVWiNtq95JJLWLlyJQsXLsTr9cYMhXV9bUNkZWXx2Wefcckll+B2u+u9fmZmJsXFxTz99NO0bt2aQ4cOcfPNN3PmzJkGPVZ4357wz/1+P23atOHPf/4z8+fPZ+fOncyYMYPTp0+zfv16Jk+ezCeffIJOp2PIkCFkZ2dTVFSEVqtN6NpMIYQQzcPhcIR2Q78YuN1uDh06hN/vT/ZQRD0yMzMpKCiQXtpJJoEwyq9+9SvGjBlD+/btcTgcrFmzho8//pi1a9ei0Wh44IEHWLhwIV27dqVr164sXLgQq9XKbbfdBgQqMXfddRezZ88mJyeH7OxsHnzwQXr37s3IkSMB6NGjB9dffz3Tpk0LbZ5y9913M3bsWLp3735e4+/cuTOPP/44V1xxBYqiYLPZ2LhxIwBXX301x44dw+/3c+ONN9ZaH1eX119/nd/97nd06NCByZMnU1NTQ8+ePbHZbHTs2JG777479H3t3buXKVOmhDakGTVqFNdcc03E9X7+859z9OjR0FrFX/7yl/j9/kZfM1YgbA6rV69m6NChvPjii+Tk5PDtt9+e1/VOnDgRqq4NHjyYJUuW0KdPHxRFQafT8fXXX9eqiAYrnTqdju3bt1NWVsYf//hH8vLyyMzMpE2bNuc1JoCXXnqJ66+/nqeffpp27doxY8YMxo0bx1VXXUVubi5ZWVm0bduW7t27c9NNN5GVlYVWq+WSSy7h3//+93k/vhBCiOb3yiuv8PTTT2MwGJg4cSK//OUvgcDGbBs2bEjy6BJDURROnjyJTqejffv20tQ8BSmKgtPpDM0OC595J5IgWdubpqo777xT6dChg2I0GpXWrVsrI0aMUNatWxe6P9iYvqCgQDGZTMq1116r7NmzJ+Ia1dXVyvTp05Xs7GzFYrEoY8eOVY4ePRpxzpkzZ5RJkyYp6enpSnp6ujJp0qQmNaa/mLfkfemllxSz2RxqO5FMl156qZKWlqYoiqL07dtXSU9PV3bs2JHkUcVX//79FaPRqJSUlCR7KEIIIVSDBg1S3G63oiiKsmTJEuXmm29WqqqqlGHDhiV5ZInjdruVr776SrHb7ckeijiH06dPK1999ZXi9Xpr3Xcxv8ZNNGlMf4GrqKjAZrNRXl4ujemFEEKIi9zVV1/N5s2bQ7c/+OADHn/8cUpLS9mzZ08SR5Y4NTU1HDp0iI4dO2KxWJI9HFGP6upqDh8+TKdOnSLad4G8xk0kqaELIYQQQrQQN9xwQ0QfwpEjR/Liiy/Stm3b5A0qSWRdWuqT31FqkDWEQgghhBAtRKy2RD179mTt2rVJGI0Q4kIgFUIhhBBCiJZswwZ46aVkj0Kcp48//hiNRoPdbk/2UEQLIxVCIYQQQoiWTO1Jy7RpyR2HECIlSYVQCCGEEEIIIS5SEgiFEEIIIYRIAS6Xi5kzZ5KXl4fZbOaaa64J9WEO2rx5M1dccQVms5mBAwdG7B575MgRbrzxRrKyskhLS6Nnz5689957if42xAVGAqEQQgghREtVXX32c+k0lvLmzp3LX/7yF1auXMnu3bvp0qUL1113HaWlpaFz5syZw+9//3t27NhBXl4e48aNw+PxAHD//ffjcrnYtGkTe/bs4cknn6RVq1bJ+nbEBULWEAohhBBCtFTHjp393OmEtLTkjSWJnE4n+/btS/jjXnbZZVit1gadW1VVxdKlS1mxYgVjxowB4KWXXmL9+vW8/PLL9O/fH4BHH32UUaNGAbBy5UratWvHW2+9xcSJEzl69Cg333wzvXv3BuDSSy+Nw3clWhoJhEIIIYQQLVVl5dnPHY6LNhDu27ePvn37Jvxxd+3axVVXXdWgc7/99ls8Hg9XX3116JjBYGDAgAHs3bs3FAgHDx4cuj87O5vu3buzd+9eAGbOnMm9997LunXrGDlyJDfffDPf+973mvE7Ei2RBEIhhBBCiJbK5Tr7eUUFFBQkbyxJdNlll7Fr166kPG5DKeqU3uhm7YqinLOBe/D+n/3sZ1x33XW8++67rFu3jieeeIJnnnmGGTNmNHLk4mIigVAIIYQQoqWqqTn7ucORvHEkmdVqbXClLlm6dOmC0Wjk008/5bbbbgPA4/Gwc+dOHnjggdB527Zt45JLLgGgrKyMr7/+OiJ4tm/fnnvuuYd77rmHhx56iJdeekkCoaiXBEIhhBBCiJZKAuEFIy0tjXvvvZc5c+aQnZ3NJZdcwlNPPYXT6eSuu+7i3//+NwC/+c1vyMnJIT8/n1//+tfk5ubyox/9CIAHHniAMWPG0K1bN8rKytiwYQM9evRI4nclLgQSCIUQQgghWqroKaMipS1atAi/38+UKVNwOBz069eP999/n6ysrIhzfv7zn3PgwAGuuOIK3n77bYxGIwA+n4/777+f48ePk5GRwfXXX89zzz2XrG9HXCAkEAohhBBCtFRSIbygmM1m/vCHP/CHP/yh1n3Dhg0LrTMcO3ZszK9//vnn4zo+0TJJH0IhhBBCiJYqPBBWVSVvHEKIlCUVQiGEEEKIlsrlAq0WdDpQm5cLIUQ4CYRCCCGEEC1VTQ2YzYFQGL6eUAghVBIIhRBCCCFaqpoaMJlAowG3O9mjEUKkIAmEQgghhBAtlcsVqBAqigRCIURMEgiFEEIIIVqqYIXQ75dAKISISXYZFUIIIYRoqYIVQqOx0YHwxIkTcRqUECKVSIVQCCGEEKKlCm4q43bXGwjfe++9iNuKorBgwQIee+wxfvjDH8Z7lEKIJJJAKIQQQgjRUgWnjEK9gXDq1Kn069ePQYMGhZqf2+12du7cKYHwArFgwQL+9re/8fnnnyd7KOICI1NGhRBCCCFaqgZOGT106BDf//732bdvH6NHj+bRRx+la9euPPLIIwkcrBAiGaRCKIQQQgjRUgWnjJ5jU5m0tDQeeughHA4HS5Ys4bnnnsNutydunEKIpJEKoRBCCCFESxWcMtrATWXS09OZP38+//M//8PixYvjPz4Rwe/38+STT9KlSxdMJhOXXHIJv/vd7wCYN28e3bp1w2q1cumll/Lwww/j8Xjqvd7//u//0rNnT0wmE4WFhUyfPj0R34a4wEiFUAghhBCipXK5IDsbPJ5G7TKakZHBgAED4jgwEctDDz3ESy+9xHPPPcc111zDyZMn2bdvHxAI6ytWrKBNmzbs2bOHadOmkZ6ezty5c2Nea+nSpcyaNYtFixYxZswYysvL2bx5cyK/HXGBkEAohBBCCNFSuVyB6mAT2k6IxApO133hhRe44447AOjcuTPXXHMNAPPnzw+d27FjR2bPns2f//znOgPhb3/7W2bPns3Pf/7z0LH+/fvH8TsQFyoJhEIIIYQQLZXXCwZDIBA6nckeTfI4naBW2hLqssvAam3QqXv37sXlcjFixIiY97/55pssXryYb775hsrKSrxeLxkZGTHPLS4u5sSJE3VeS4hwEgiFEEIIIVoqjwf0+iZXCEePHs26deviMLAE27cP+vZN/OPu2gVXXdWgUy0WS533bdu2jZ/85Cc89thjXHfdddhsNtasWcMzzzzT6GsJEU0CoRBCCCFESxVeIawnEE6cOLHWMUVR2LNnTzxHlziXXRYIZ8l43Abq2rUrFouFDz/8kJ/97GcR923evJkOHTrw61//OnTsyJEjdV4rPT2djh078uGHHzJ8+PDGj1tcVCQQCiGEEEK0VA2sEO7YsYMNGzag1Z7dgF5RFKZMmZKIUcaf1drgSl2ymM1m5s2bx9y5czEajVx99dWUlJTw5Zdf0qVLF44ePcqaNWvo378/7777Lm+99Va911uwYAH33HMPeXl5jBkzBofDwebNm5kxY0aCviNxoZC2E1GeeOIJ+vfvT3p6Onl5efzoRz9i//79EedMnToVjUYT8TFo0KCIc1wuFzNmzCA3N5e0tDTGjRvH8ePHI84pKytjypQp2Gw2bDYbU6ZMkZ4/QgghhGg+DawQzpkzh/T0dDp06BD66Nixo7QpSLCHH36Y2bNn88gjj9CjRw9uvfVWiouLGT9+PL/4xS+YPn06ffr0YcuWLTz88MP1XuuOO+5g8eLFvPjii/Ts2ZOxY8dy4MCBBH0n4kKiURRFSfYgUsn111/PT37yE/r374/X6+XXv/41e/bs4auvviItLQ0IBMJTp06xfPny0NcZjUays7NDt++9917eeecdVqxYQU5ODrNnz6a0tJRdu3ah0+kAGDNmDMePH+dPf/oTAHfffTcdO3bknXfeafB4KyoqsNlslJeX17mwWAghhBAXqc6d4cc/DgTDf/wjORurJFhNTQ2HDh2iU6dOmM3mZA9H1KO+35W8xk0cmTIaZe3atRG3ly9fTl5eHrt27eLaa68NHTeZTBQUFMS8Rnl5OS+//DKrVq1i5MiRAKxevZr27dvzwQcfcN1117F3717Wrl3Ltm3bGDhwIAAvvfQSgwcPZv/+/XTv3j1O36EQQgghLhrBCqFWK20nhBAxyZTRcygvLweIqP4BfPzxx+Tl5dGtWzemTZtGcXFx6L5du3bh8XgYPXp06FibNm3o1asXW7ZsAWDr1q3YbLZQGAQYNGgQNpstdI4QQgghxHk5z11GhRAtn1QI66EoCrNmzeKaa66hV69eoeNjxozhxz/+MR06dODQoUM8/PDD/OAHP2DXrl2YTCaKioowGo1kZWVFXC8/P5+ioiIAioqKyMvLq/WYeXl5oXNicblcuFyu0O2Kiorz/TaFEEII0VIFK4RwzkDocrn48ssvKS0tJTs7m169emE0GhMwSCFEMkkgrMf06dP5z3/+w6effhpx/NZbbw193qtXL/r160eHDh149913uemmm+q8nqIoaDSa0O3wz+s6J9oTTzzBY4891phvQwghhBAXq2CF8BxTRletWsXSpUvp378/GRkZ2O12du/ezb333svkyZMTOGAhRKJJIKzDjBkzePvtt9m0aRPt2rWr99zCwkI6dOgQ2rmpoKAAt9tNWVlZRJWwuLiYIUOGhM45depUrWuVlJSQn59f52M99NBDzJo1K3S7oqKC9u3bN+p7E0IIIcRFIlgh1OkgbIZRtGXLlvHpp59GtJ3wer0MGzZMAqEQLZysIYyiKArTp0/nr3/9Kxs2bKBTp07n/JozZ85w7NgxCgsLAejbty8Gg4H169eHzjl58iRffPFFKBAOHjyY8vJytm/fHjrnX//6F+Xl5aFzYjGZTGRkZER8CCGEEELE5PFQXlXFiZKSQLWwDhaLhY0bN4ZuK4rCxo0bZZdOIS4CEgij3H///axevZrXXnuN9PR0ioqKKCoqorq6GoDKykoefPBBtm7dyuHDh/n444+58cYbyc3NZcKECQDYbDbuuusuZs+ezYcffshnn33G5MmT6d27d2jX0R49enD99dczbdo0tm3bxrZt25g2bRpjx46VHUaFEEKIC9xnn33G2LFjmTBhQsRmcXfddVdiB+L18swf/sCjv/0t+HxQR7exVatW8fe//52rr76aQYMGce211/KPf/yD1atXJ3a8QoiEkymjUZYuXQrAsGHDIo4vX76cqVOnotPp2LNnD6+88gp2u53CwkKGDx/On//8Z9LT00PnP/fcc+j1eiZOnEh1dTUjRoxgxYoVoR6EAK+++iozZ84M7UY6btw4Xnjhhfh/k0IIIYSIq5kzZ7J8+XL0ej1z5sxh27ZtzJo1i4MHDyZuEIoCPh8nSkrwBo+FbzITpqCggMWLFydubEKIlCGN6S9w0rRTCCGESD3XXnstmzZtCt1esGAB3333Hfv27eOTTz5JzCA8HjAamZ2by6nTp1kN4HSCxZKYx08SaUx/4ZDG9KlBpowKIYQQQjSzvLw8Dh8+HLq9YMEChg4dyo4dOxI3CHXNYJnDgSfqWLiNGzcycuRIZs2axbp167jyyisZNmwYW7duTdxYxXlbsGABffr0ietjrFixgszMzLg+hkg8mTIqhBBCCNHM3nzzzVrHJk+enNgdO72BiaKVLhe+qGPh5s2bxxtvvIHdbmf06NHs2LEDq9XKTTfdxMcff5yw4QohkkMCoRBCCCFES6RWAz1wNhDGqBCazWbat29P+/bt6dGjR6jdVvi+B0KIlkumjAohhBBCtERqNdCrfoQfC1dQUIDPF4iMGzZsUE/z4vf7EzBIEc7v9/Pkk0/SpUsXTCYTl1xyCb/73e+AQCW3W7duWK1WLr30Uh5++GE89bQSAfjf//1fevbsiclkorCwkOnTp9d7fllZGbfffjtZWVlYrVbGjBkT6rMd7m9/+xvdunXDbDYzatQojh07Frrv3//+N8OHDyc9PZ2MjAz69u3Lzp07m/DTEIkigVAIIYQQoiUKqxBqgjuLxggQa9asqVUN1Ov1Ef2URWI89NBDPPnkkzz88MN89dVXvPbaa+Tn5wOQnp7OihUr+Oqrr1iyZAkvvfQSzz33XJ3XWrp0Kffffz933303e/bs4e2336ZLly71Pv7UqVPZuXMnb7/9Nlu3bkVRFH74wx9GBE+n08nvfvc7Vq5cyebNm6moqOAnP/lJ6P5JkybRrl07duzYwa5du/jlL3+JIcbOtiJ1yJRRIYQQQogEGT16NOvWrUvMg4VVCDNsNjh9OmaFsC56vbxMTCSHw8GSJUt44YUXuOOOOwDo3Lkz11xzDQDz588PnduxY0dmz57Nn//8Z+bOnRvzer/97W+ZPXs2P//5z0PH+vfvX+fjHzhwgLfffpvNmzczZMgQINAirX379vztb3/jxz/+MQAej4cXXniBgQMHArBy5Up69OjB9u3bGTBgAEePHmXOnDlcdtllAHTt2rWpPxKRIPI3XQghhBCimU2cOLHWMUVR2LNnT+IGEVYhtAYD4TmmGIrk2bt3Ly6XixEjRsS8/80332Tx4sV88803VFZW4vV662zHUFxczIkTJ+q81j333MPq1atDtysrK9m7dy96vT4U9ABycnLo3r07e/fuDR3T6/X069cvdPuyyy4jMzOTvXv3MmDAAGbNmsXPfvYzVq1axciRI/nxj39M586dG/WzEIklgVAIIYQQopnt2LGDDRs2oNWeXZ2jKApTpkxJ3CDCKoRpNlvEsYvRvf+4l+8c3yXs8dqmt2Xp2KUNPt9ST3/Ibdu28ZOf/ITHHnuM6667DpvNxpo1a3jmmWcafS2A3/zmNzz44IMRx+pqTa4oChqNJuJY9O3wYwsWLOC2227j3Xff5Z///CePPvooa9asYcKECfWOSSSPBEIhhBBCiGY2Z84c0tPTyc3NjTh+rk09mpVaDfQClmAlKUYgXL9+PfPnz0en0zFz5szQerAbbriBd999N1GjjbvGhLNk6Nq1KxaLhQ8//JCf/exnEfdt3ryZDh068Otf/zp07MiRI3VeKz09nY4dO/Lhhx8yfPjwWvfn5eWRl5cXcezyyy/H6/Xyr3/9KzRl9MyZM3z99df06NEjdJ7X62Xnzp0MGDAAgP3792O320NTRAG6detGt27d+MUvfsF//dd/sXz5cgmEKUwCoRBCCCFEM7vvvvtiHr/11lsTNwg1/OnNZgzBilGMKaOPPvoo77//Pkajkfnz57N582aWLFmC0+lM3FgFZrOZefPmMXfuXIxGI1dffTUlJSV8+eWXdOnShaNHj7JmzRr69+/Pu+++y1tvvVXv9RYsWMA999xDXl4eY8aMweFwsHnzZmbMmBHz/K5duzJ+/HimTZvGsmXLSE9P55e//CVt27Zl/PjxofMMBgMzZszgD3/4AwaDgenTpzNo0CAGDBhAdXU1c+bM4ZZbbqFTp04cP36cHTt2cPPNNzfrz0o0L9llVAghhBCiJVLDn95iQR8MhDEqhDqdjszMTKxWK88++yx9+/Zl/PjxVFZWJnK0Anj44YeZPXs2jzzyCD169ODWW2+luLiY8ePH84tf/ILp06fTp08ftmzZwsMPP1zvte644w4WL17Miy++SM+ePRk7dmzMFhLhli9fTt++fRk7diyDBw9GURTee++9iF1CrVYr8+bN47bbbmPw4MFYLBbWrFkDBJ5LZ86c4fbbb6dbt25MnDiRMWPG8Nhjj53/D0fEjUapa8KwuCBUVFRgs9koLy+vc2GxEEIIIS5CmzfDNdcwok0bhg4fziOvvgoffwxDh0acNmPGDGbPnk3Hjh1Dxz766CPuvfde9u3bl9gxN4OamhoOHTpEp06dMJvNyR6OqEd9vyt5jZs4MmVUCCGEECJBHA4H6enpiXmwYIXQbMZgtQaOxagQPv/887WODR8+/IIMg0KIxpMpo0IIIYQQzeyVV16hd+/eXHXVVSxatCh0PHwtVtyp4c9gsWAMBkJpOyGEiCKBUAghhBCimS1dupTdu3eze/durFYrt9xyC06ns86t/eNCDX8GqxVjWlrg2EXcdkIIEZtMGRVCCCGEaGZarTa0EcfMmTO5/PLLGTNmDKWlpYkbhBr+jFYrpmAgbESFsKioiIKCgniMTAiRQqRCKIQQQgjRzG644QYOHz4cuj1y5EhefPFF2rZtm7hBqOHPmJZW7xrCutx+++3xGJUQIsVIhVAIIYQQopn96le/qnWsZ8+erF27NnGDCKsQBvsQ+mpq0EWdFmwwHk5RlHO2KEh1spF+6pPfUWqQQCiEEEIIEW8HDsAHH8C99ybuMdUKoS5sl1FvjEDocDjYs2cPen3ky8JRo0YlYpTNTqcLfIdutxtLsP+iSElOpxMgos+hSDwJhEIIIYQQ8TZ+POzdC3ffDbroSBYnYYFQr/Z481ZXY4o6beHChTgcDrKysiKOz58/PxGjbHZ6vR6r1UpJSQkGgwGtVlZIpRpFUXA6nRQXF5OZmRkK8SI5JBAKIYQQQsSbWgmhqAgStY5QnTKqN5kwWSz4CFQIo02YMKH21/773wy95JI4DzA+NBoNhYWFHDp0iCNHjiR7OKIemZmZsnFRCpBAKIQQQggRb0Zj4M9jxxIXCD0evIDJbMZoNOIlsIbwnBwO6NMHevSAr76K8yDjw2g00rVrV9xud7KHIupgMBikMpgiJBAKIYQQQsSbSZ2oeewYDBqUmMf0evFqNBiNRkwmEx7A53Kd++veey/w5wW+4YdWq8WsTpUVQtRNJlULIYQQQsRbsP/fsWMJfUwvhAJhgyuEJSWBP4OtKoQQLZoEQiGEEEKIeAuGrFOnEveYXi8eAoHQaDQ2vEJotwf+PH06joMTQqQKCYRCCCGEEPHk9UJpaeDz6urEPa7HEwqEwQqhXwKhECKKBEIhhBBCiHiqqjr7eSIDodeLV1Ei1hD6ozZZ+eyzzxg7diwTJkxgy5YtgYN2O3dBYGfU4O6oQogWSzaVEUIIIYSIp/AQmOAKoZuzU0a9AFEVwpkzZ7J8+XL0ej1z5sxh27ZtzLLbORg84fRpuEDbTwghGkYqhEIIIYQQ8RQMgQZDQitufrc7YlOZWBVCjUZDly5d6NixI2+88QYVFRVM27oVb3B3Tpk2KkSLJ4FQCCGEECKegoEwOzuhFUK/y4UHMJlMoTWESlQgzMvL4/Dhw6HbCxYsYKjRyI5gJTF8uqsQokWSQCiEEEIIEU/BEJiTk9AKoS+sQhjcZTQ6EL755pt07Ngx4thknY6a//qvwA1ZQyhEiyeBUAghhBAinoK9/5JUIQzfZTQ6EMZkt0NhYeBzCYRCtHgSCIUQQggh4im8QpjIQBhWIdTpdIEKocdz7i+sqoLWrQOfSyAUosWTQBjliSeeoH///qSnp5OXl8ePfvQj9u/fH3GOoigsWLCANm3aYLFYGDZsGF9++WXEOS6XixkzZpCbm0taWhrjxo3j+PHjEeeUlZUxZcoUbDYbNpuNKVOmYA/2/hFCCCFEyxC+hjCRm8qEVQgB/FrtuQOhogQqmtnZgdsSCIVo8SQQRtm4cSP3338/27ZtY/369Xi9XkaPHk1V2KLqp556imeffZYXXniBHTt2UFBQwKhRo3A4HKFzHnjgAd566y3WrFnDp59+SmVlJWPHjsXn84XOue222/j8889Zu3Yta9eu5fPPP2fKlCkJ/X6FEEIIEWdJ2lRGCasQAvhiBMLXX3+dK6+8ksmTJ7Ny5Uq6d+9Of+CJN9/EazJJIBTiIiB9CKOsXbs24vby5cvJy8tj165dXHvttSiKwuLFi/n1r3/NTTfdBMDKlSvJz8/ntdde4//9v/9HeXk5L7/8MqtWrWLkyJEArF69mvbt2/PBBx9w3XXXsXfvXtauXcu2bdsYOHAgAC+99BKDBw9m//79dO/ePbHfuBBCCCHiI3wNYYLbTniA9GCFUKNBExUIn3nmGTZv3ozD4aBPnz7s27IF86WX0nbdOn4GGE6cIDNhIxZCJINUCM+hvLwcgGx16sShQ4coKipi9OjRoXNMJhNDhw5ly5YtAOzatQuPxxNxTps2bejVq1fonK1bt2Kz2UJhEGDQoEHYbLbQObG4XC4qKioiPoQQQgiRwqqrQauFjIzkVgh1OhSvN+Ici8WC1WolPz+fESNGYDMYMAEK4AQqTp1K2HiFEMkhgbAeiqIwa9YsrrnmGnr16gVAUVERAPn5+RHn5ufnh+4rKirCaDSSlZVV7zl5eXm1HjMvLy90TixPPPFEaM2hzWajffv2Tf8GhRBCCBF/1dVgsYDVCm43hC0fiSdFrRAGA6Gi06GJCoR9+vQJLWdZvXo1VFfjJvAC0Qn4pQ+hEC2eBMJ6TJ8+nf/85z/83//9X637NBpNxG1FUWodixZ9Tqzzz3Wdhx56iPLy8tDHsWPHzvVtCCGEECKZqqvBbA4EwuDtBFC8XrwEZjJBYFMZogLh4sWL0el0Zw84nRiBTgQCoVJZmZCxCiGSRwJhHWbMmMHbb7/NRx99RLt27ULHCwoKAGpV8YqLi0NVw4KCAtxuN2VlZfWecyrGNIySkpJa1cdwJpOJjIyMiA8hhBBCpLCamkCF0GIJ3E7UOsIYFUJtVCCsRQ2r1aiBUDaVEaLFk0AYRVEUpk+fzl//+lc2bNhAp06dIu7v1KkTBQUFrF+/PnTM7XazceNGhgwZAkDfvn0xGAwR55w8eZIvvvgidM7gwYMpLy9n+/btoXP+9a9/UV5eHjpHCCGEEC1AcMqo2Ry47XIl5GGDFcJQ2wmdDs25pquqgdCpfsguo0K0fLLLaJT777+f1157jb///e+kp6eHKoE2mw2LxYJGo+GBBx5g4cKFdO3ala5du7Jw4UKsViu33XZb6Ny77rqL2bNnk5OTQ3Z2Ng8++CC9e/cO7Trao0cPrr/+eqZNm8ayZcsAuPvuuxk7dqzsMCqEEEK0JMFAqAYz3O7EPK7HE9mHsI5A6HK5+PLLLyktLSX7yy/pBehbtcLldKJJ4CY4QojkkEAYZenSpQAMGzYs4vjy5cuZOnUqAHPnzqW6upr77ruPsrIyBg4cyLp160hPTw+d/9xzz6HX65k4cSLV1dWMGDGCFStWRMzTf/XVV5k5c2ZoN9Jx48bxwgsvxPcbFEIIIURiBdcQJjoQRlUIFZ0ObVR1ctWqVSxdupT+/fuTkZGBfedOdgNOgwGXXo9WAqEQLZ4EwiiKopzzHI1Gw4IFC1iwYEGd55jNZp5//nmef/75Os/Jzs4O7OglhBBCiJbL7U5OIIyqECoxAt6yZcv49NNP0WrVVUSrVuFdu5YslwuvXo8uQdNbhRDJI2sIhRBCCCHiye0OhMEEB0KNWiE0GAxAIBBGTxm1WCxs3LgxdFupquIjwGA04jcYajWyF0K0PFIhFEIIIYSIpyQGQp9We7adlU6Hzu+POGfVqlUsWrSI+fPn4/P5MBQX00ejYfCQIfi3b0crgVCIFk8qhEIIIYQQ8eR2c/LMGe66997Q7YTw+VDC9i5QDAa0UYGwoKCAxYsXs3nzZrZt28Yn06bxuE5HYWEhitGI7lxtKoQQFzypEAohhBBCxJPLxSfbt7MuuE9BggKhNioQavT6WhXCWpxOqoGsrCwwmdBF9VQWQrQ8UiEUQgghhIgntxuXouAOu50IGp8Pf1ggJEaFsBaXi2q/n6ysLDQmE7pz9S0UQlzwJBAKIYQQQsSR3+XCDQkPhFqfD/Rhk8H0evTn2k3d5aJaUQKttEwmDBIIhWjxJBAKIYQQQsSRv6YmKYFQEzVlFIMB3TkCoVJTQ42iYLVa0ZjN6M9VURRCXPAkEAohhBBCxJFSU4OLxAdCnd+PElYh1BgM5wx4XqcTF2C1WtGazRgUBRrQo1kIceGSQCiEEEIIEUeK240bCO3XmchNZdQehECgQniOr/GFB0KLJfBCUXYaFaJFk0AohBBCCBFP6hpCi8WCR6tNXCBUFDRhFUKt0XjONYS+6mrcBAKhzmoNHHS54jhKIUSySSAUQgghhIgnjwc3kJ+fj0ejSeiU0fBNZTRGY6DfWD2h0F9djYtAeJVAKMTFQQKhEEIIIUQ8qVNGExoI/f5AhdBoDB3SBj+vZwqoogZCq9WKIS0tcDBBAVYIkRwSCIUQQggh4kijBsKCgoLAxjKJCFjB0Be2hlDTkECoboBjtVrRq4HQX10dr1EKIVKABEIhhBBCiDjSer2hCmGiA6EmLBCGKoQeT51fprhcZyuErVoB4KqoiNswhRDJJ4FQCCGEECJeFCUiELoUJTGBUA19EYHQZALAX9/jhwXCYIWwprw8bsMUQiSfBEIhhBDiPE2aNCnZQxCpyudDoyh4gNzcXGr8/sRWCMPWEOrUQOhxOuv+Orc7FAhN6ekAuByOuA1TCJF8+nOfIoQQQgiAuXPn1jqmKApbtmxJwmjEBSEY/oxGbDYbLkXBV119zn6A502tEGrDAmEwHHqqqzHV8WXB9Y5msxljMBDKlFEhWjQJhEIIIUQDvfrqq7z22mu1jn/00UdJGI24IIQFwoyMDNyAp6oq/oEwxhrCYIXQW88mMVqPB79ej1arxZSRAUggFKKlk0AohBBCNNCdd95Jjx49yMvLizh+++23J2lEIuWpgVBjNpOWloab+gNZs1EDYXDdIIDObAYCFcK6aD0e/GqINKuB0F1VFa9RCiFSgKwhFEIIIRro8ccfrxUGAWbOnJmE0Yhk2bhxIyNHjmTWrFmsW7eOK6+8kmHDhrF169baJwcDocmExWLBTYLaOMSYMhpaQ1jP4+u8XhT1a8w2GwDeysp4jVIIkQKkQiiEEEII0Qjz5s3jjTfewG63M3r0aHbs2IHVauWmm27i448/jjw5rEJoNpupBPwuV/wHqVYIg1XB8M/rq1CGB0JLZiYAHgmEQrRoEgiFEEIIIRrBbDbTvn172rdvT48ePWjXrh0AOl2MlYFqINSZzaEKoVJTE/9BxqgQ6oOBsK7HVxR0Ph/+qAqhBEIhWjaZMiqEEEII0QgFBQX4fD4ANmzYAIDX68Xv99c+Wa0G6iwWzGZzIBAmqUKot1gCd9VVIfR6Ay8M1TWEFnUNoS8RAVYIkTQSCIUQQqSMzz77jLFjxzJhwoSIVg533XVXEkd11vr16xk4cCBDhgxhzZo1oeM33HBDEkclEm3NmjW1qoF6vZ7169fXPjlYIbRYzlYIE9iYXhe+qYz6ua+uQKoeV9TztHp9YLyJWPMohEgaCYRCCCFSxsyZM1m8eDHPPfcczz33HM8++ywABw8eTPLIAh599FHef/99PvjgA7Zv386MGTPw+/0462v0fZFJ9VAfT3p9jJU4avjTW62hCiGJrBCGBcJzVgiD4wqbZuoiQVNchRBJI4FQCCFEytBoNHTp0oWOHTvyxhtvUFFRwbRp0/CqL26TTafTkZmZidVq5dlnn6Vv376MHz+eSlljFZLqoT7hYgVCtXoXVzGmjBrUQHiuCiFhIdKt0SRmiqsQImkkEAohhEgZeXl5HD58OHR7wYIFDB06lB07diRvUGH69OkTMb6pU6cya9YsHA5H8gaVYlI91CdcjECoScCU0eC6P314ILRaI+6rRQ1+mrCv8Wg0UiEUooWTQCiEECJlvPnmm3Ts2DHi2OTJk6lJkRekzz//fK3xDR8+nH379iVnQCko1UN9c2jUWlI1/BnS0tDpdHi1WjQJqBAGdxKN2FRG/bzOCmFYi4wgj1YbOi6EaJkkEAohhBCi2aR6qG8OjVpLGhYIARS9Hk0CqqXBdYLBaaJwtkJYZx9E9bg27Gs8Wi0amTIqRIsmgVAIIYQQohEatZY0GAhbtQLAr9ejTWCFUB8eCINrCOuq+AUDYViF0CsVQiFaPAmEQgghxHkqKipK9hBEAjVqLakapkzp6QAoRiNatYdhPNW3htB/jjWE4RVCr06XkCmuQojkkUAohBAi5Y0ePTrZQ6jX7bffnuwhiARq1FpSlws/YA5OGTUY0CZiyqga+oIhEM5WCP3nqhCGfY1Xp0MrFUIhWjQJhDFs2rSJG2+8kTZt2qDRaPjb3/4Wcf/UqVPRaDQRH4MGDYo4x+VyMWPGDHJzc0lLS2PcuHEcP3484pyysjKmTJmCzWbDZrMxZcoU7HZ7nL87IYRIXRMnTqz18eMf/5g9e/Yke2gADBgwoNZH//792b59e7KHljIateHKRcBXXY0bsARDltGILoEVwvA1hFq1v6ByjkCoDwuEvgRNcRVCJE+MDqqiqqqKK664gp/+9KfcfPPNMc+5/vrrWb58eei2MayJK8ADDzzAO++8w5o1a8jJyWH27NmMHTuWXbt2odPpALjttts4fvw4a9euBeDuu+9mypQpvPPOO3H6zoQQIrXt2LGDDRs2oNWefb9SURSmTJmSxFGd5XA42LNnT60G5KNGjUrSiFJPcMMVo9HI/Pnz2bx5M0uWLIm94cpFwFNVhRuwBkOWwZCYQKiGu/BAiFaLj3oqhOpxXVgg9Ot0CdkERwiRPBIIYxgzZgxjxoyp9xyTyURBQUHM+8rLy3n55ZdZtWoVI0eOBGD16tW0b9+eDz74gOuuu469e/eydu1atm3bxsCBAwF46aWXGDx4MPv376d79+7N+00JIcQFYM6cOaSnp5ObmxtxfPr06UkaUaSFCxficDjIysqKOD5//vwkjSj1BDdcAXj22WdZsWJF3RuuXMBcLhdffvklpaWlZGdn06tXr1pvDgN4nM5AhVANZhqTCb2igN8P2vhN1PK6XHgBY1iTeQAPDagQqtNbIVAh1EkgFKJFkymjTfTxxx+Tl5dHt27dmDZtGsXFxaH7du3ahcfjiVjz0qZNG3r16sWWLVsA2Lp1KzabLRQGAQYNGoTNZgudE4vL5aKioiLiQwghWor77ruvVhgEuPXWW5MwmtomTJhQKwwCDB06NAmjSU2N2nDlArVq1SqGDx/OypUr2bhxI8uXL2f48OGsXr261rletUIYDIQEA1qc1+X5a2oCgTAqpNZbIQxWFdUdUQH8BoMEQiFaOKkQNsGYMWP48Y9/TIcOHTh06BAPP/wwP/jBD9i1axcmk4mioiKMRmOtFw35+fmhneiKiorIy8urde28vLx6d6t74okneOyxx5r3GxJCCNE0djt4vRAjxF6snn/++VrH6txw5QK1bNkyPv3004ipzV6vl2HDhjF58uSIc71qhTA4ZVQTHgjDdgBtbn63Gw+1A6FHo4E61gT6nE50RG5EI4FQiJZPKoRNcOutt3LDDTfQq1cvbrzxRv75z3/y9ddf8+6779b7dYqioNFoQrfDP6/rnGgPPfQQ5eXloY9jx441/RsRQghxfrp0gdatkz0KkWAWi4WNGzeGbiuKwsaNGzHHCHihTWXUCmGox1+8K4TqlFFT1JRRn0aDv45A6K2qwgWYw9YdKgYD+gSseRRCJI9UCJtBYWEhHTp04MCBAwAUFBTgdrspKyuLqBIWFxczZMiQ0DmnTp2qda2SkhLy8/PrfCyTyVTrH3chhGjpioqK6ly3nVRnziR7BCIJVq1axaJFi5g/fz4+nw+DwUC/fv1iThlNViD01VEh9Gk0dT621+nER2SIVIxG9H5/HEcqhEg2CYTN4MyZMxw7dozCwkIA+vbti8FgYP369UycOBGAkydP8sUXX/DUU08BMHjwYMrLy9m+fTsDBgwA4F//+hfl5eWh0CiEECLg9ttvZ926dckeRqTwF8mVlRC27krUlrKhvgkKCgpYvHhxg87119TgBjLUaZi6YPUtzoFQUSuEluhAqNWi1DEFNDi9NToQGqRCKESLJoEwhsrKSr755pvQ7UOHDvH555+TnZ1NdnY2CxYs4Oabb6awsJDDhw/zq1/9itzcXCZMmACAzWbjrrvuYvbs2eTk5JCdnc2DDz5I7969Q7uO9ujRg+uvv55p06axbNkyINB2YuzYsbLDqBDiohV8gyycoiihGRgp5bvvzn7+zTfQp0/ShnIhSMlQ31y++QZ694Z9+6BDh4i7fDU1uDhbIUxUIPR7PLE3ldFo0NQxZdTvdEaMFQCpEArR4kkgjGHnzp0MHz48dHvWrFkA3HHHHSxdupQ9e/bwyiuvYLfbKSwsZPjw4fz5z38mPT099DXPPfccer2eiRMnUl1dzYgRI1ixYkWoByHAq6++ysyZM0O7kY4bN44XXnghQd+lEEKknguqz1/YTpocOiSBUBUr1H/77bf4WnKVacUKqKmBbdtqBUJFrRAmOhAqdU0ZradC6FMDYcRaSJMJg6LEb6BCiKSTQBjDsGHDUOr5x+/9998/5zXMZjPPP/98zN3WgrKzs2OuNxBCiIvVBdXnr7w89ucXsblz5/Ltt9/y05/+NLQDp6IolJSU0KVLlySPLo727g38WVpa6y7F5YoIhPrgDp4JCIReqPXmik+rrbNC6Kuurh0IzWaMEgiFaNEkEAohhEgZwan30VKyz194H1jpCQsEZr784he/oE+fPhGzZj766KPUDPXN5eDBwJ9HjtS6S3G58Go0oRlCiQqEfo8Hr0ZTa+dyv1YLdVRr/eoGOOGBUCuBUIgWTwKhEEKI1HX0KPzXf8FvfwthU/lTQkUF6HSQnS2BUHXnnXdy99131+qze/vtt6dmqG8uZWWBP48erX2f240vbLlIfYHQ6/XWqug1mdsd2FE0il+nq7NCqKjrHTPCAqHGZMLIudtiCSEuXBIIhRBCpK4dO2DLFpg9G3bvTvZoIjkckJ4ONlvgc8Hjjz8e8/jMmTMTPJIEs9sDf8YIhBq3G39YyDOqu9EGm8Dv2bOHefPmYbfb0ev1eDwecnNzWbhwIb17927ykBSvN3YgrK9CqAbCiAqhxYIJcNXURPQnFEK0HBIIhRBCpK7i4sCfdWyCkVQVFZCREfiQCuHFy+cLrCFNSzsbDMN5PPjCAqEhLS1wWA2E9913H6+99hrt27cPnXP06FEmTZrEJ5980vRxeTz41HWc4fw6Hdq6/j7FCoRmM1rA5XRKIBSihar9L4UQQgiRKkpKAn/G2Kwj6SQQCji7oVCHDjGfBxqPByVGIHRXVgLg8/mw2WwRX5ORkXH+u7J6PIFqYBRFp0NTx7UVlytmhRDAJc9xIVosqRAKIYRIXcEK4ZkzoCiQSmuYglNG09MlEF7MglXBSy6BrVtr3a31elEMhtDt4JRRjxoIFy1axNixYzEajWRkZFBeXo7X6+XJJ588v3F5vTErhIpOh9blivklGjUQhjem16lrHoMBVgjR8kggFEIIkbqCgbCmBpzOwLS8VBFeITx+PNmjSWmjR49uuU3pgxvKdOgA69bVeuNC6/GghD1vTeruq56qKgCuvfZaNm3aRHV1NXa7naysrMi2D02k8XpRGlkhxO3GHbYjKpzdBMcjgVCIFksCoRBCiNRVXBzYxbO0FE6fTr1AmJkpU0bDTJw4sdYxRVHYs2dPEkaTIOEVQr+/1hsXOp8PwprDBwOh1+mMuIzFYgn1KmwWXm/E7qZBfr0ebR2BUBO1IypIhVCIi4EEQiGEEKmrpAR69IDNmwPTRjt0SPaIzqqoCIQACYQhO3bsYMOGDaGm9BAIhFOmTEniqOIsWCG85JLAnxUVkYHQ60UJm4JptlrxUDsQNre6KoTodGj9/phfo/V48Ea1vZAKoRAtnwRCIYQQqauyEvr2DQTC06eTPZpIlZXQqlVgDaG0nQBgzpw5pKenk5ubG3F8+vTpSRpRAgSDUtu2gT8rKqCwMHS3zu9HE1YhtFgsuAm0nYgrnw9/jAqhotfXGwj90YFQDbdedYqrEKLlkV1GhRBCpK6qqrMvrlOtCud0gtUKFgtUVyd7NCnhvvvuqxUGAW699dYkjCZBnM7AlNDs7MDtqOep3u9HE14hNJtxA171OfP6669z5ZVXMnnyZFauXEn37t3p378/b7/99nkNS+vzocQIhDQyEIbaZEggFKLFkgqhEEKI1OV0QuvWgc9T7QVpdXUgDFqtgXGm2i6oIjGCbwyoawOjq8V6vx9t2CYxFosFF+BXA+EzzzzD5s2bcTgc9OnTh3379mE2mxk5ciTjxo1r8rA0Ph9KWGUyxGBAX0cg1Hm9+KM2tDGou6LGvaIphEgaqRAKIYRITX5/IHRlZgYqMKm2hsnpPBsIfT7weJI9IpEMwUCYkRG4HVUhNCgKmrCQFawQ+mpqgEBAtFqt5OfnM2LECGw2GyaTCb3+/N6z1/p8Ef0Pzw7IUGeFUOf14g9rkQFhbTKa4Q2ZEydOnPc1hBDNTwKhEEKI1BSsSKSlBdbqpVogrK4OBAF10w3qqKB89tlnjB07lgkTJrBly5bQ8bvuuisRo0wJjpa8xjK6QhgeCBUFg6KgixEIFbVC2KdPn1AT+tWrVwPgdrvJyck5r2FpfT6oY8qoTlFifo0uRlWxqRXC9957L+Lj3XffZfz48bz33nuNuo4QIv4kEAohhEhN4YEwLS21AqHXG6gIWiyBD6hzHeHMmTNZvHgxzz33HM899xzPPvssAAcPHkzUaBPmlVdeoXfv3lx11VUsWrQodHz8+PFJHFWcOZ1U+v206dgRv1YbObXZ50ML6MLaSRgMBtyAX20Ov3jx4oi+fwBGo5E333zzvIal8ftRoqp9ABqDoc5AqI8RCIMVwmBFs6GmTp3KCy+8wM6dO9mxYwc7d+7Ebrezc+fORl1HCBF/EgiFEEKkJvWFdbVWG6gQptIawmD4C04ZhTorhBqNhi5dutCxY0feeOMNKioqmDZtGl6vN0GDTZylS5eye/dudu/ejdVq5ZZbbsHpdKLUEUBaBKeTw8XFnCwqogoin6duNxAZCAE8Wi2KGgjjRef3Q6wpo0Yj+jp+Hwa/P6JFBoBRrXz6G1khPHToEN///vfZt28fo0eP5tFHH6Vr16488sgjjbqOECL+JBAKIUQLd8FOWVRfgN45fXrqTRlVA+HOr75i1969gWN1vGDOy8vj8OHDodsLFixg6NCh7NixI96jTDitVotBrUrNnDmTe+65hzFjxnA61VqGNCenE7vbjdFopFJRIp4HfrWqFmzuHuTVaiHOgVBbRyDUGgzoITRNNcTnC1QOowJhcIdUfyMrhGlpaTz00EMsW7aMDz/8kIkTJ2K32xt1DSFEYsguo0II0cLNnDmT5cuXo9frmTNnDtu2bWPWrFkpP2Wx+vRpLMBXR45QXViIJQUD4UOPP06FxcK/oM5AGGvq3+TJk5k8eXIcB5gcN9xwA4cPH6Zjx44AjBw5ksKvvmL2G28kd2BxpFRVYXe76TdkCJVbtuAtLw+9uKq220kDDFGB0KfVojtHICwqKqKgoKDJ49L5/RBjyigGAwYC6xQt4ZVLdTyaqEAYDIj+JrZWSU9PZ/78+VRUVLBv374mXUMIEV9SIRRCiBbuQp2yeOSrrwCoAvYdO5ZaU0bV8FcNnAm+UJZehPzqV78KhUEAiovp+fOfszbVekg2I5fdThXQr18/nICzpOTsfepmOvroQKjTnXNX2ttvv/28xlVXINQajegJBMIIwUAY1XYCnQ4/oDSyQhgtIyODAQMGnNc1hBDxIYFQCCFauAt1yuLxr78GYOS4cZTU1KTklFGn+hG4IX3aavnLXwJ/xqpUxVEip0l7ysupBvr3708VUF1aGrqvRg3CwZ06g7w6HRo1kA0YMKDWR//+/dm+fft5jUunKGhiTBnVGI0YAE90IK0rEGo0gV1R4zzFVQiRPDJlVAghWrgLdcpiVXExAPmXXkrZRx+lViBUw5++VSucwXFJIKzt+PHAnwleO5bIadI+hwMnMLxvX44D7rKy0H3BCqExKhD69Xo0aiBzOBzs2bOnVt/BUaNGnde4dIqCNkZj+mCFsKaOCqE2agMcCGyC09Q1j6WlpZSWlpKdnU12dnaTriGEiC+pEAohhEhJXrW6kllYmLIVwi69e5+zQrh+/XoGDhzIkCFDWLNmTej4DTfcEOdBpgA11HPkSKBVR4IkdJq004kT6Nq1K07AH9ZzsSGBcOHChTH7NM6fP/+8hqVTFIgVCE2m0BrCCPUEQrdG0+gK4YcffsjVV1/NT3/6Ux577DHuuOMOrrnmGj788MNGXUcIEX9SIRRCCJGS/A4HHo2GnIICjno8KA4HmmQPKkgNhHkdO2L98kv8lZVo61hD+Oijj/L+++9jNBqZP38+mzdvZsmSJTgvhopiSQlotYEw+N130KFDQh42OE06uJ5xwYIFrF69mlWrVjX7Y2lravAaDOj1etwGA5qw36tbfROjViA0GNCqgXDChAkxrzt06NDzGpdeUdDWs4awrimj0TuiQtMqhI888ghr164lXW1bAVBRUcGYMWMYMWJEo64lhIgvqRAKIcRForS0lG+++YbSsDVOqUyprKRaq6V169ZU0fg+aHGljiWrTRtycnPx6HR1Vgh1Oh2ZmZlYrVaeffZZ+vbty/jx46lMpYpnvBQXw+WXBz4Pm0oZb2+++Wbk5jYEpknXnOfGKLHo3W586k6cXqMx4o2BYCA0hYUiAMVgQBvniqmewHrBaOeqEEZvgAOBXVE159gEp9bjaLWUhG2wA1BSUoJWKy89hUg1UiEUQogW7sMPP+SRRx4hNzeXjIwM7HY7ZWVlPPbYYyn9Tr1SVYVbr6d169aBaZmptMuo+qLfVlBATk4OrhMnMNURCPv06RNRrZo6dSodOnTg3nvvTdRok6e4GL73Pfjii4QGwkTSu90oWVkA+MxmdGGh06M+Z2MFQn2cA6EBYq8hNJkCu4xGV/zqW0MYtglOQ/3pT39i9uzZFBUVoSgKGo2GwsJC/vSnPzXqOkKI+JNAKIQQLdyFOnVLU12N22AIBUJdTQ0oCmiSP3HUrW6SkpOfT05ODtVaLRl1BMLnn3++1rHhw4dfHD3ZSkqgW7fA5y2xKbnfj9HrRVGran6zGX15eejuuiqEGI3oohvDNyOfzxeoEEb3FAR06jFP1BRnpaYGDaBPS6t9PZ2u0RXCHj168NZbbzXqa4QQySF1eyGEaOEu1Klb2upqvEYjmZmZZzduicOUv6ZwnjlDNZCbm0tOTk5gfNKHMJLbDRUV0KVL4HYSKoRxnyatPh81aohSrFYMYcHJp75JYLHZIr5MMRoDfQLjxOV0ogV0MSqEOrWthDfq71KwmhndIgMCgVDbyEAoWpZJkyYlewgijqRCKIQQLdyFOnVL53Lhs1pp1apV5E6eMaa0JZqztBQN0Lp160Ag9PvrbTvh9XprtRVo8YJrJLOzoVWrhFYIEzZNWv2da4NVtbQ0TGFTQevaVEZjMqGPY4XQ7XRiJTA9NJpeDYSeqOeru7ISI3VUCPV6CYQXiblz59Y6pihKRD9P0fJcZP87CSHExedCnbplcLvx5eSg0+lQzOZANcbphJycZA8NV2kpCoEKYXZ2No4YgXDPnj3MmzcPu92OVquloqICq9XKL37xCyZMmIAxRvWmRQm2UmjVCrKyEhoIEzZNWv2d69TH0aWnY/L5QlObg1W36PYPGpMJg6I03ziiuNXHrWsNIdSuEHqD4TV6eiuBNhnNtQlOUVERBQUFzXIt0fxeffVVXnvttVrHP/rooySMRiRKas8XEkIIcdEyeDyhtVkEqxYpstOou7w8NGU0IyMDh89Xa2z33Xcfy5Yt495778Xv9zN8+HAGDBjAL37xC4YPH87q1auTM/hECVYI09MhMzOhU0YTNk1a/Z0b1Cmh2vT0wAsrNWx5g8+JGIFQHzVltDl7JLqC0z9jVNPrqhB61N9XrCmjfr0eXTON7/bbb2+W64j4uPPOO+nRowdDhw6N+JDfW8smFUIhhBApR1EUTF4vGjUQalu1gjNnUmanUY/DQY1GQ1paWigQKk5nRJ9En8+HzWZj2bJlfPrpp2i1Wux2Ozt37mTjxo0MGzaMyZMnJ+17iDu1Qnjb3XfzjNtNYQIrhAmbJq2GKn1GRuDP4FrBqiqwWPBVVeEF9FH9ALUWCwZFiagi6/V6PB4Pubm5LFy4kN69ezd5WMEKoT5GIDSqf6fcUYHQW8eOqKD2TWzkFNcBAwbUOqYoCgcOHGjUdURiPf744zGPz5w5M8EjEYkkgVAIIS5SqTx1q6qqCiugUasV2mDVIkUqhEplJR69Ho1GQ3p6OtWAz+GI+E910aJFjB07lr179zJ06FCMRiNer5dFixaxceNGzGqlpsVSK05bvviCfxuNFHbtmrCHTtg0afX5aFLbThgzMwPHq6ogNxe/04lbq631YktrNmMkUEV+7bXXaN++fei+o0ePMmnSJD755JMmDysUCGP0FDSq1XZ31JsrPqcTF2COESIVg6HRax4dDgd79uyptXZ21KhRjbqOECL+ZMpoDJs2beLGG2+kTZs2aDQa/va3v0XcrygKCxYsoE2bNlgsFoYNG8aXX34ZcY7L5WLGjBnk5uaSlpbGuHHjOH78eMQ5ZWVlTJkyBZvNhs1mY8qUKdhb4rbcQoiUlMpTgCoqKkgjMAUPzk7JS5lAWF2NV32hm5GRgRPwRzWav/baa9m0aRM7d+7ksssuw+l04nK5+PWvf80//vGPlj9lVK0QVgJkZJydQtqSqM/HYBA0qsHQo7aeUKqrcceYpqqzWDARmCZqi9qBNCMjA995bjgT3MwmViAMThmtVSEMBsIYb1QoTWiTsXDhQhzBdaRh5s+f36jrCCHiTyqEMVRVVXHFFVfw05/+lJtvvrnW/U899RTPPvssK1asoFu3bvz2t79l1KhR7N+/P7SA/YEHHuCdd95hzZo15OTkMHv2bMaOHcuuXbvQ6XQA3HbbbRw/fpy1a9cCcPfddzNlyhTeeeedxH2zQogW70KculVRUYEV0KlT8VItEGqqq/Gqm3Okp6cHAmEd01k7derESy+9lMDRpQg1lDiA4qqqs5vMtCCe8nIMgEXd6Mis/llVXEwm6hsH6v/54bRq6Fowfz5jx47FaDSSkZFBeXk5Xq+XJ5988vzGFVxDGGPHUNTpq9F9CP3V1fUGQkMj22RMmDAh5vGhQ4c26jpCiPiTQBjDmDFjGDNmTMz7FEVh8eLF/PrXv+amm24CYOXKleTn5/Paa6/x//7f/6O8vJyXX36ZVatWMXLkSABWr15N+/bt+eCDD7juuuvYu3cva9euZdu2bQwcOBCAl156icGDB7N//366d++emG9WCNHiXYhTtxwOB9mATw2Coal4KRIItTU1KGogDFYIU2VsKcPhwKvR4FYUTlVX46+oSPq0JIfDEbHz6PmqKS2NGQidJSVkArhcoUpyuGBrh369erFp0yaqq6ux2+1kZWU1y1RiTz1TRlHHE72pjK+qqs5AiNFYaxOcRjt6FJYuhYcfhljjEinh9ddf54knnqBnz56MGjWKhQsXkpGRwcMPP8y4ceOSPTwRJ8n+t/mCc+jQIYqKihg9enTomMlkYujQoaEeLbt27cLj8USc06ZNG3r16hU6Z+vWrdhstlAYBBg0aBA2m016vQghmtWFOHUrOGU0GAQt6lS8VAldWrc70AoDQmsINXU0po97c/RU5XBQqdHQt29fHIBfnUaZCK+88gq9e/fmqquuYtGiRaHj48ePb9bHqVF3Tk1Tg2Ba69YAVJ8+HTjB5cIXtaEMnA1qNRUVAFgsFgoLC5ttXWkwEEb3PwTqrBD61AphWqyqYhMqhLW88gosWgS/+c35XUfE1TPPPMPmzZt55pln+OUvf8n27dv59NNPefrpp5M9NBFHUiFspKKiIgDy8/Mjjufn53PkyJHQOUajkazgC5iwc4JfX1RURF5eXq3r5+Xlhc6JxeVy4XK5Qrcr1P9MhBCiLhfi1K2K8nLSAH92NgCtMjJwajRYU2SXUYPbHapyBCuEmqi+bglrjp6iFIeDcr+fgQMHUrlrV0LXEC5dupTdu3djMBj4wx/+wC233MIrr7yC0sy9/9xlZTiBdLWSnab+v16jhn/tOQKhO07TaH1q2Is5ZVStEHqjp4w6nbipIxCazRjP92d39CgArs8/x3R+VxJxZLFYsFqtWK1WRowYEVrjGj3DRLQs8tttIo1GE3E7uK11faLPiXX+ua7zxBNP8NhjjzVytEIIEebpp+HYMViyBM7x71ayOM+cAcCsvrEWDF3WFKkQGsJaYgTXEOrC3qyDBDZHT1FVRUVUEljD+umLL6KrqQG/H5q7F2AMWq0WgxrEZs6cyeWXX86YMWOavUrrKS/HSeD5CZCuvlnsViuHWo8Hf4xdO4NBzRWnQBjsfxirhUSwQhjdmN5fXY0XQj+3cBp1V1Sv19vkYFCxezcZwInt2+nUpCuIROjTpw8+nw+dThfa+MrtdpOjVsFFyyRTRhspuEV7dBWvuLg4VDUsKCjA7XZTFtWEN/qcU6dO1bp+SUlJrepjuIceeojy8vLQx7Fjx87r+xFCXGS8Xpg7F55/HuqZjZBs1WogNKhTRjMyMqhSlJSZMmr0+dCp0/EMBgMevT6wC2NY8+6ENUdPUVXFxTgIvMCs0enQJPD3d8MNN3D48OHQ7ZEjR/Liiy/Stm3bZn0cb0UF1ZwNhBm5uXgAj7pjuM7tRolqSg9nm79//OmnDBw4kCFDhrBmzZqI8Z+PYIUw5pTROiqESk0NXq025pvSWpMJE0TMUGq0b78FIKsl7jZ7njZu3MjIkSOZNWsW69at48orr2TYsGFs3bo14WNZvHhxaPPDIKPRyJtvvpnwsYjEkQphI3Xq1ImCggLWr1/PlVdeCQTeOdm4cWNoV7C+fftiMBhYv349EydOBODkyZN88cUXPPXUUwAMHjyY8vJytm/fHtoB8F//+hfl5eUMGTKkzsc3mUyYTDLZQgjRROHtbw4dgsLC5I2lHq5gJUetpASrcN6oXn/JYvL70YVVXzRWK1RUQHU1qMcT1hw9RblKSqgEenTsiC4zE86cCew0GiukNLNf/epXtY717NkztKt3c/FWVOAF2qi/c7PZTLl6HEDv9YbWmoYLVghfXLOGTTt2YDQamT9/Pps3b2bJkiU4zzM4ByuE2lhrEuuoECouV8wdUeFshdDlcsWeUnouikKr8nK2AoM9nsDfkxiV04vVvHnzeOONN7Db7YwePZodO3ZgtVq56aab+Pjjj5M9PHERSIX/V1NOZWUl33zzTej2oUOH+Pzzz8nOzuaSSy7hgQceYOHChXTt2pWuXbuycOFCrFYrt912GwA2m4277rqL2bNnk5OTQ3Z2Ng8++CC9e/cO7Trao0cPrr/+eqZNm8ayZcuAQNuJsWPHyg6jQoj4CauacOgQ1PMGVDIFp9xFr9PzlJcn/T8uj8eDBTCoVSEgMM6KikAFTA0HCWuOnqI8ZWXU6PXYbDaMOTmBQJis6pDHA4MHBz7fubNBXzJp0iReffXVes/xV1VRA7RSQ65Go6Fao8FXUYHb7Ubv86GN1RxefY5o/H4y1Sp4sJ3V+PHjqTzPn5M/GPZiVCeDFUJfrEBYx3RQrdmMCbA3tUJYWYlWUfgPMBjgu++gS5emXasFMpvNtG/fnvbt29OjRw/atWsHUKtSJ0S8JPv/1ZS0c+dOhg8fHro9a9YsAO644w5WrFjB3Llzqa6u5r777qOsrIyBAweybt26iHUizz33HHq9nokTJ1JdXc2IESNYsWJFxF/uV199lZkzZ4Z2Ix03bhwvvPBCgr5LIcRFKRgI09ICgTBFudUpd7UqhAncqbIu5WVl5ALGsIbi2mDVK0WmtKYCpaICRf25WFq3hq+/Tl4vwoMHYdeuwOdVVaHnFcDcuXNrna4oSoN2/PZXVeHSaiOmAbt0OvwOB2VlZZg422IinEn9uXTOz+fw4cN07NgRgKlTp9KhQwfuvffeRnxztQWnjMYMhGqF0B8V7jQuF746AqE+LQ0jUF3HTrrnpP69Db7V7j5xAqMEwpCCgoLQur0NGzYAgfWa/vPd2bUZNXfLFpFaJBDGMGzYsHp3ItNoNCxYsIAFCxbUeY7ZbOb555/n+eefr/Oc7Ozs0IJdIYRIiCNHID8f2rULfJ6iYlUISwFfCjQ3Ly8qCgRCdQdUkEAYi66mBr8ahozBDSmSVSE8ePDs5998A1dcEbr56quv8tprr9X6ko8++ujc13U6cUdtwuI2GPBVVlJWVoaZs+sFwwUrhPePGhUKg0HDhw9n3759537setRbIVSP+aMqhBq3G3+MDWUgsCuqDqhu6t8/NRC6Cwvh5EnKDh4k/9prm3atGD777DMefvhhDAYDc+bMCS29ueuuu3j55Zeb7XHiJXz9aJBer2f9+vVxe8y6Ngh65ZVXePrppzEYDEycOJFf/vKXQKBlSzCsipZHAqEQQlxMSkoCgTAvD4K90lKQJ1gJVANFRkYGxwB/CgTCyuJi4OwOqAD64DvnDaigXCzvtBtdLvy5uYHPg+E5Wb+/8Gr4gQMRgfDOO++kR48etVpB3X777ee8rKa6Gk9UiPKazSgOB6WlpYFAGON3bVanG3vi1EZFCVb/YgW84D4EURVCrcdTdyBUQ21NU1tdqX+frZdfDidPUnnsGHVvn9d4M2fOZPny5ej1eubMmcO2bduYNWsWB8PfCLgANXerhz179jBv3jzsdjt6vR6Px0Nubi4LFy6kd+/eQOJatojUcnFsdSaEECKgrAyysiC4pitF+YIvPKOmjCop0IewSt051BK2Dbs+uJ4wrEKYqOboqcrk8YQ2kDGpwTBpFcJDh+DSS8FmC1QIwzz++OMx+wLPnDnznJfV1tTgi6rC+c1mNE5nKBCGTy0OCvYh9MWpouyvqcEDsVt81BMIY+2ICmBU/x7WNHHKtl+t+Gf37IkbcJ082aTr1EWj0dClSxc6duzIG2+8QUVFBdOmTcMbtuuvgPvuu49ly5axZcsWNm3axNatW/njH//IfffdFzonumXLPffcw5gxYzgd4w3EVNodVZwfCYRCCHExCQbC7OyUDoShSmDUpjINqcDFWzAQprVuHTpmVDcGCQ+EwXfad+/ejdVq5ZZbbsHpdF4077RbvV40alC2Bn9WyaoQHj0Kl1wS2FVXrfA2B53LhS96J0+rFW1NTWjKqDlGIAxO2/TWEQgd5/tzcrvx1dVjVKfDp9GgcbsjDmu93roDoVrldDWxQlittrhpe/nllAHeqHYs5ysvLy+izciCBQsYOnQoO3bsaNbHudD5fL5Qo/mgjIwMfD5f6HZjWrbMmzeP5cuX89Of/pQ77riDd955h7/+9a889NBDcfseRHzIlFEhhLiYlJVBjx4pXyH0V1Xh02rRqS9Q09LSqCYwRS/Zgj0SrecIhIlqjp6S/H6sioJOffGZmZ1NJWCtqEjOO9FlZXhtNnReL5pmnCqtd7tRwnebBTStWqFzuSgtLcXC2emWEdQq3QdffcX83r2bfb2W4nLh0WqJ0XQCILB5TFQg1Hu9sdccAkb1e2xqIHSePIkZyO/cmTKNBl8zT1eP1SNv8uTJTJ48uVkfJ15ef/11nnjiCXr27MmoUaNYuHAhGRkZPPzww4wbN67ZHmfRokWMHTsWo9FIRkYG5eXleL3eUNs0aFzLFtkdteWQQCiEEBeTsjIqdDosGRkYzpwBRYG6KglJpHU68RqNBF9WaDSawO0UCIQ1aqALbzthCa6RCxtf8J324KYhI0eOpLCwkNmzZydsrEmjTu3Vq+ssbTYbDkB35gzJ6D7nPX2alZ9/Tof0dEY2Yx9Eg8cTqmIH6TMyMHm9lJSUYNZoIFYvQDV4vX/gAF8WFzf/ei23G2+s6aIqn06HxuOJHLfPhybWWAGTGuzdTaxcuk6dohzIyc2lUq9HF9xFWADwzDPPsHnzZhwOB3369GHfvn2YzWZGjhzZrIHw2muvZdOmTVRXV2O328nKysJcx++8IcJ3Ry1Ue9qm2u6oomEkEAohxEXEf+YMz61cSb9bb+UGrzewpivFNjipqanB4PXii3rh7jeb0UVVNZLBFbUDKoAluMFMWIUwUc3RU5Hr9GlMnN1MJjMzM1AhPH06KYHQfeoUZxQFX0UFvuJiwusX51OdMXm9tQOhzUYa8MUXXwS+13qaw+P3x6WKrLhc+Oqp0vj1erRRf5eMPl+dzeKDU0Y9TawQuktK8ABZWVkcMZnITIH2ManEYrFgtVqxWq2MGDEiNK2zuTeVCX88Sx2/63MJb9NyySWX8NBDD0W0aYn37qgiPiQQCiHExUJR8JeWUuz385/vvuMGCEwbTbFAaLfbSQP8US9Y/GYz+mAYS6LQDqhhQSDDZqMKsFRW1j8l8vPP4dVX4amnUrIy21wqi4owASZ1Wm1mZiYOICtJvz+N3R5YuwZ4i4oiAuH5VGdMfv/ZliOqtLw8tMC2Tz/FrCix/35ptXg1Gq7IyIhPFdntrjcQ+gyGWtV2k9+PJircBmnUv4veJm4K5CsrowronJ3NfqsVQwpsDpVK+vTpE6q0BduRud1ucsI2rkoVDWnTEq8gK+JHNpURQoiLRPWZM+j9fiq0Wj4/ejRwMAXXEQYDYXTlRbFaMXq9gWmuSeQNVknCxhfcBdV1rsAzeTL8/vfw73/Hb4ApoFLdRMQaFggrAV8ypgoqCqbqaoz5+ZQA2qjqW7A6k5+fH6rOmEymBr2oNccIhLY2bUjj7FpT6pii6tFquSE7u1YfwuaoIivnCISK0YjO54uY2mdSlDoDIecZCJWyMiqAVq1a4UtLw9jMU79ff/11rrzySiZPnszKlSvp3r07/fv35+23327Wx4mXxYsX11p3ZzQaY66NbG6fffZZo84PtmkZOnRoxEdD2rSI1CURXgghLhKHdu/mcuB7Q4fy0qZNgYMpOHWrrKwMK9R6oa1JS0OrKIHNMIJb5ydBKBCGTQUM7oJqrKioe0qk3w/B3fv+8hfo0yd+g0yyanUnT4vazsFms/E14E/G883hQKso5HbuzJnqagwVFVBTE/r9Nbk64/ViIqzliMqSk4MfCD176wiEbp0uMI5oGzZQun49aQsWYGrq89zjwV9PoFUMBkyAy+UKTB1UFCyATm0vUYv6s/I1sbKnqajAaTSi0WhQ0tMxnTjRpOvUJVFr8C50L774YsRtRVFYunQp9913X0Trifo8/vjjMY83pE2LSF1SIRRCiAvE+fbUKtq7F4AeQ4ZwOrjNeApMwYwWrBBqo6bahQJinHq3NZRSVYVLp4vo8Zaenk414KmvAnbqVGizFb7+Oq5jTLZqta1AurrRRHBTmaT0IVSf49a2bdEF+w2GPe+bWp1xqb9rQ3RbibQ00oBQTKyrQqjXo4kRCJVbbiF70SJeuOOOeh+/Phq3G6W+QGg0YgKq1Uqdx+lES+03YULUQOhvYiDUVVbiUq+hsdmwRm1oc77Op8p7MfnjH//IP/7xD6xWK2lpabRq1QqtVkurJm60tH79egYOHMiQIUNYs2ZN6PgNN9zQXEMWCSKBUAghUtiePXv44Q9/yJAhQ/jBD37A4MGDufHGG9mzZ0+jr3Xm228B6NyvH6GtIVJwt79ghVAf9UJbFwyISV5/pFRV4Yl6oRmsEHrr24UxOE23b9+zlcIWqkadLhkMhCaTiRqdDk0Sfnf+4FguuQRTfn7gYDO8EeI4dQoIazkSpFbZhvXsGbhdx4ttr8GANqo5vFJRgaL+ncxSN+loCo3HgxLcuCYWoxEjgQ2cAKrUNhD6utYTBwNhE9+MMTiduNXpqLrsbFr5/c069TtY5QVSfg1eXVwuF7t37+aDDz5g9+7duOOwgdYXX3zB5MmT+fvf/47RaGTKlCm0a9euydM9H330Ud5//30++OADtm/fzowZM/D7/TiT/KadaDwJhEKIlPLZZ58xduxYJkyYENq1DOCuu+5K4qiS57777mPZsmVs2bKFTZs2sXXrVv74xz82eHpPuAo1hLTu1g0f4LFYUjIQ2u12Wmk06KKm4oWm5iX7xUZ1NZ6oqXzBNYS++gLhkSOBP6+9Fg4dit/4UoBHXaeXHgxggNtsRpuE351d/Vlnd+6MtU0b9aD9vK/rVEOUKbjDbJAafJYuWBC4XUcg9BmN6KIC4cH33kOrKDiATlH3NYbW660/EJrNERXCGjUgG+oKhOoawqYGQlNNTWjXYENODkbA14zPhYZWeTdu3MjIkSOZNWsW69at48orr2TYsGFs3bq12cbSFKtWrWL48OGsXLmSjRs3snz5coYPHx4Kt81Fo9Fw22238Ze//AWv18u4ceM4fR49IXU6HZmZmVitVp599ln69u3L+PHjqUzGTABxXqSWLoRIKTNnzmT58uXo9XrmzJnDtm3bmDVrFgcPHkz20JLC5/OFtiAPysjICL0b3hjO774DIKdLF4xGIzVmM4YUDIRlZWVk6HS1NrgITc1LciDUVlfji3rhHKwQ1jelTjlyBKdOx5N//Su/KSkJVDrrWrN1gfPY7VQBaWGhxGc2Y4i1Zi7OSg8eJJvAGyHp33wTOBj1vHe5XHz55ZeUlpaSnZ1Nr169MNbRpD2ozkAYfG6cPBn4s75AGPVcPr1rF52BDSYT3c6jiqnz+epsMg+gMZkwcbZCWB2jt2YEvR6fRhN7zWMDWNxuFPXnYlan7ZYfO0b2ZZc16XpNNW/ePN544w3sdjujR49mx44dWK1WbrrpJj7++OOEjiXcsmXL+PTTT9GGTUP3er0MGzaMyZMnN/vjabVapkyZwqRJkyhSN4Bqij59+oR2yR09ejTr1q2jQ4cO3Hvvvc04WpEIEgiFEClFo9HQpUsXAN544w0WLFjAtGnTznv93IVq0aJFjB07FqPRSEZGBuXl5Xi9Xp588slGX8t/5gw1ej1mo5E2bdpQWVVFegoGQrvdTiuttlZYCk3NS2IgVBQFnduNP6q3XHANoVJPIKzau5cjPh8bg5XC48ehe/c4jjZ5/HY7Tq2W8N+gLy0NYxMbm5+PanUDk9zOncnq1CkwljNnQq0nVq1axdKlS+nfvz8ZGRnY7XZ2797NvffeW++L8WCIsubmRt6h9l4MTRGuIxAqJhP6qLV01V99RQWQN348nV5/HVd1NWfKymgTrGw2gKIoGLxelHoajmuiKoTB9ZDGugIh4NZqoSm7g/r9pPl8aNTgbFGrxhXHjyc8EJrNZtq3b0/79u3p0aMH7dq1A6hVXUw0i8XCxo0bGT58OBD4HW7cuPG8msY3hFarbdRzC2DixIkRt+fOnYuiKKFlDMOHD2ffvn3NNkaRGBIIhRApJS8vL6Iv14IFC1i9ejWrVq1K7sCS5Nprr2XTpk1UV1djt9vJyspq8osETXk5NRYLZqBNmzaUf/MNhSkYCMvKymil0dRqO2FSX2grVVUkq4NfdXU1Zr+/VgNvvV6PS6dDU09YrTp8mCKgJHigpKTFBkKlspLq6A09WrXC5PEE1o4lsAeju7gYB5Cdn0/rSy7BBdQcO0aw7t7U6kyNGggt0evUogNhHa0cFLMZfdQbXdv27OGAwYDHaKQMOP7CC7z0+us89thj/PCHP2zQ9+vxeDBBxC640TQWS0SFMBgITdHrIcN4dTpoyjRWtTenXv25pKnrSh3qjIV4KioqoqCgIHS7oKAgtKPshg0bgMDvOrz9RjKsWrWKRYsWMX/+fHw+HwaDgX79+jX7lNHmsGPHDjZs2BDx90VRFKZMmZLEUYnzJYFQCJFSYu3sN3ny5LhMm7mQWCyWwPbwTaQoCgaHA486Xatt27aUfv11yq4htChKrQqhWX1B6bbbSVbTifLycqwQc6qn12CIuWtkkOfkSc5oNFRbrYHpouexdiflVVbijlrDpklPR68ogVAR58pHOP/p09iB9hYLefn52AHl5MlQIGxqdSbYc7JVcOfSoPBAaLVCXdUniwWT34/X6w3thvnU8eP0MBi4xu+nBDi8YQN2u52dO3c2OBA6nU7M6vXroo2qELrVVir1BUKPwYCmKYFQbTViUCup6WpVrqqZW0/Ecvvtt7Nu3brQ7fCdMIP0ej3r16+P+1jqU1BQwOLFixPyWE2ZHh1u2rRppKenkxtVGZ8+fXpzD1UkkARCIYS4CFRWVpLu86Go6/DatGlDsdudkoGwrKwMi99fK3QFp+bVnDmTtEBot9tj9kgE8JpMtXaNjHDmDJ70dHpdfTX+f/4TbUlJ3ede4LROJ+6ojXe0wTWglZUJDYRKWRkVauBq3bo1dsCk7hAKTa/OuNW/O7WmjLZqBXp9YBOherbz11qtWACHw0GWOp1yrcHA8qwsjlVWMgM40a4dpzQaHnnkkQZ/v06nEwugrScQ6iwWjECF+gaGRw2E5uj1kGG8en39z+861BQVYQZMwZ6U7dsHjqu9KpvDgAEDah1TFIUDBw406OtTrj2FxwO33AIdO8KSJc122cZOj37vvfcibiuKwltvvUWfPn1qvUFx6623hj53OByk17VBkUhJKfY3QAghRDwUFRWRBWjU6W1t27blZE1NSgZCe1kZJq+31lQ7qzr2mrIybLG+MAFCLTFivNhRTKZau0aGM1dWQmEho66/ntJ//pOM776j4e/LX1h01dX4okKfIRg2HA6IDlFxpFWbokNgSvqXQG5YGG9qdcarhqjozY/QaCAnJ7CpTOfOdY+rVSssQEVFBVlZWSiKQqHHwx3f+x49//d/WZKby9t//zt6dU11Q1VXV2OONa4wOqs1sg9hAwKhz2CoteaxIRzHj2MGLOpU0eCmMu5mrJA7HA727NlTK9iNGjWq2R4joT74AN5+O/D54sXNNsW6sdOjp06dSr9+/Rg0aBCK2iYkvGL9yiuv8PTTT2MwGJg4cSK//OUvARg/fnxoSq64MEjbCSFESiotLeWbb76hVF2nc7Fqrsa/RUVFZAKG1q2BQCAsdrvxp2Bj+qrS0sB/TlEVwoysLGoAdxLHHAyEtZqRA4rFgqGu3mGKQquaGnT5+QwaNIgSwB7c8bIFMtbU4IteAxoMgQnekt7gcFCtVsvS0tIo12pR6nsOeb3UjBiBP8b0wojTKirwA5hi1KuD00bbtq3z6/VhgRCgrLSU1oqCqV070nNymGEyMTUtrdFhNThlVNeAQBhcQxjsn2kJjjsGv9GItgmBsErdbbWV+rPQmM24AF8z/j1euHAhjhgbFs2fP7/ZHiOh9u49+3kz9iwNTo8OOtf06EOHDvH973+fffv2MXr0aB599FG6du0aqlgvXbqU3bt3s3v3bqxWK7fccgtOpzMUHsWFQwKhECKlfPjhh1x99dX89Kc/5bHHHuOOO+7gmmuu4cMPP0z20JKiuRr/njp1iizArG6w0KZNG+zQLA26m5snWLWMekEb7PXnUdckJUMwENZqRg5gtWKoazdcpxOzomBq25a2bdtSArgTsKlGshg9HpSo6ZJWtTLki1GVjmd/OJPTiUd9Lmk0GmpMJjT1PIcqN2zAvGED2v/6L6hnd2Ofw0GNRhO7ehMMVpdcUufX6zMyIgLhif37MQOtLr0UAGdGBq1On445HbI+oUBY33RVdVOZYIXQp4Z0bT1tUPwxdkVtiGo1EAbXDgJU6XT4m3F2woQJE0LTbsMNHTq0QV8/evToZhtLs9i79+ybCZ991myXXbVqFX//+9+5+uqrGTRoENdeey3/+Mc/6pwenZaWxkMPPcSyZcv48MMPmThxIna7PRT4tFotZ86coby8nJkzZ3LPPfcwZsyY8+ptKJJDpowKIVLKI488wtq1ayPWH1RUVDBmzBhGjBiRxJElR7DxL8Czzz7LihUrmtT4t6ioiCGASQ2Ebdu2xU5grRceD9TXxDqB/H7/2cAXXSHMyKCKs9PbkqGsrIw0Ai/ma7FaA1NdY3AePYoVSO/Uifz8fLYDnZpxDVWqMXu9oUbkQWnqc68ybEOXoHj2hzO7XHjDKnWetDT09fz9OfLyy/RUP/fu3Yu+d++Y5ylVVdTodMSsw6mtFeoLhMaoQFjyxRcAZHbrFnjs/HzSv/iCmpqaRu0sHAyEsda5BmnMZiwaTahC6C4vxwfo6llLp5hMdb/hUQ9XSQleICvsd+DU60ObzSRSdMsEIKJlQsrYtw/P4MHo33kHzfHjzXbZpk6PTk9PZ/78+VRUVLBgwQJ69+5N586dsVqtjB49muzsbCZNmsS0adMoLCxk9uzZzTZmkRgSCIUQKUWr1VJSUhIRCEtKSiLWPFxMwhv/QmBNR1Ma/546dYpsCPUCa9OmDaHaYHl5Qtd01cfhcJx9gR0jEB4FfMkOhFotmhiVFF2rVhgVBfx+iHq+nvrqKzoB2d26odfrqbJa0aZgdbY5eL1erH4/VVGhOUMNBJVFRbUCYTz7w6W53aHNlAB86emY6gnjzt27+QLoBZz5+GPy6wqETifuugLU1VfDX/8aWEtYB1NmJl4CO9cCnFF7t+X06EFpaSnHc3JIA7799lt69uxZ53WiORwOLIBST09B1A1tqtS+mZ6KCmq0WtLqW6tmMmFSlFDbhobynj5NOZAVNh21xmRCm+Cpw3ABtUw4epQVX3/NcJeLLs0YCM9XRkYGmzdvZs+ePTidTrp3787BgwcxGAxce+21TJs2jZ49e7J27dpkD1U0kgRCIURK+dOf/sTs2bMpKipCURQ0Gg2FhYX86U9/SvbQkuL555+vdawpjX9Pqxs7oFYb09LS8KalBdof2O0pEwjLysoI1TWi206YzTgBYxJeSAYFp4zG6i2nC76JUV1da+yn9+2jE5B3+eUAuDMzMSdx6ms8lZeX0wpwRU2rtamB0Bm2w2dQ3PrDKQoZPh+asDCiZGVhOXaszi8xlZRwLDubnNJSnFu3kj9jRuwTnU48dVXWg7MZ1B01YzHYbBEVwspvv+VD4JG77iK3sBBLURGngZMTJ/KHP/yhwTMkHA4HZsAfY51riNWKlcAGIQCKw0G1TkfdE0ZBUb+murqaVvVUH6P5ysqo0GjICQvPbrMZfSOnvTeHOXPmpH7LBEWB4mL21NTQFcj+z3+oe2Vn4lksFjQaDWlpafzkJz8JtaxIuZ1aRaPIb08IkVJ69OjBW2+9lexhtDhVwfVqYetsTPn5cPBgSu00arfbCdWGo3by1Gg0uHU6DEkOhBZFiRkIQ9NInc5agbDi4EEA8oOVnpwc0oqK4jrWZLHb7RQCFVFrurLz86kBamKsL4pXfzjF6cQE6NXNlAB02dm08noDL7xjVMRslZWU9u3LoR07yP722zqvrXE68cXaUAbgiisCf7fUyn4swbYTFeobAzVHj/Iw8P769aTbbPhfeAHfjBksueMOHnnkkQYHwkq7HT3nrhCaFYVytUqtxOgbWUtaGmkEpqQ2JhBSVhaYIhrGZ7ViPHOm4ddoJvfdd1/M4+EtE5KushJqaigGjgPd1X87UsWYMWNCb978/ve/B8Dtdjeqii1Sz8U5B0sIIS4ywY0dCKvaWNu0CXySQoGwrKyszkAIUG0woElCZSGo4syZQHP1GIEwtPNojPFVHztGtUYTOkdXUIDZ74957oXOfuZMYOOdqOmSOTk5VALuRuwcfL5Vh0q1EmgMax5vaN0aHQTaX0RxVlWR7/Nh6dyZ8lat0AT/3sSgranBX9/avk6d6m8XoL5pUK0GI/+pU6DVUqLe1rZrhwE4+u9/N2rKfLUa8jT19CEMPn+r1HCuqarCU1e4VWlatQoFwsbQOhw4o67ta9UKU1078l7s1Ar6KeA7qHd6c7zF2uV63rx5jBs3LuI8o9HICy+8kIwhimYiFUIhhEhxLpeLL7/8ktLSUrKzs+nVq1domk5DeYJ918KqNunB6WwpFAjrqxACuI1G9Oq6p2RwBqtbMQKhUQ17Xoej1n+unpMnqTAYCL5ENwd/9iUl0KFDfAabJA618mkJq8pB4EVjpUaDN4FrJyuOHiUdMKs98Aj73FNSgiGqinZ4924uBzJ69KBo2zYsYf0Ko+lcLmjEZi+1qM9vtxoA9aWlPJWdfXbKvMOBBji9fj1vh7UKOJea4M+3vrGpz98aNZzrqqvx1hcgCWxSY6XxgVBXVUV19FgyMrA0YcfSi4IaAEsAS8eOWJO4hjC4y7XRaGT+/Pls3ryZJUuWNPo5IFKfVAiFECnH5XKxe/duPvjgA3bv3o37In4nedWqVQwfPpyVK1eyceNGli9fzvDhw+vcJjwWRVHwB6dnhVUIW7VpE+ijlkKBsLi4GJtGg6LVQowXqG6zGb26VX4yBF9AxwqEJjVsV8eaCnf6NNVh00hbdeoUOPfo0eYfZJJVqRWO6EAI4NTpYlbm4iVYIUwLa3mQpq5ltMfo73Zi504A8q+6Cm3btmTW8cJXUZSYrTUaRQ2jVUVFlJeXk+ly0aWggLfeeoutW7ey7Z//ZCvww8xMevTo0eDLuoObLjUiEOpdLvznCIS6jAzSONuqoqGM1dV4oqZQazIzSff78TZh19J4iNXDMGnUQGho2xZLhw6Yvd7AWu8kCO5ybbVaefbZZ+nbt2+TdrkWqU8CoRAipTRHAGpJli1bxqeffsqSJUt4/PHHef7559m4cSP//d//3eBrlJeXkxZ84RVWIczNy8MBKRUIi4qKKGjVCk16eszpdh6zGaPLlYSRBbiDP6sYL57N6sYlzhhVJUNFBZ6wTT6yunYFzu4s2ZIEA6E1bJpmkMtgQNOIF5Pn2x+u+sQJAFqFbe4SrIyXHzlS6/xStf1AVq9eWLp0IcPvxxtj8x+n00m6oqCpb53euagVworjxzl06BB5gD44jRtAbdNhqKdKGYsrON4GBMLg89ngdtda9xotGAgbWx0y19TgjwrO+qwsMji7qU2ivPLKK/Tu3ZurrrqKRYsWhY6PHz8+oeOo16lT+DUasrp0IU1944gkTRsN7nIdNHXqVGbNmpVaAVo0C5kyKoRIKcEAFL5mxuv1MmzYMCZPnpzEkSWHxWJh48aNDB8+HAhUJjZu3NiovmRFRUVkAX6dDm1YZSs3N5cyoNWZMzRmc/9Jkybx6quvNuIrGq6oqIgrrdY6+yL609KSuqbGF3yxHWM6q1kNQDVRL+C9Xi9pTieasJ0NW6sVn4pDh+I00uSpVKeM6mLscukyGGJWeOPVH86ljsUWtrlLpvp5VYypeM4DB/AD2jZtyFR3hD2xcyeXRG3oEpzarI3aSbVR1OdQVVERhw8fphtgDd+ExmCgOj0da3l5o1o9hCqEDVhD6K2owO12Y/H5Am/C1ENvs2EFqhpZHbJ6PBD1XDDk5pIBHCktrbXjZ2N99tlnPPzwwxgMBubMmcOQIUMAuOuuu3j55Zcjzl26dCm7d+/GYDDwhz/8gVtuuYVXXnkl1Gg9JRQXU6bT0alz59AbR5UHD4ZmFTQHr9fboPW5zbXLtUh9EgiFuADE8wV4qmmOANSSrFq1ikWLFjF//nx8Ph8Gg4F+/fo1qmJ66tQpMglsQ68Nq7oFA2HeqVMxm2vPnTu31jFFUdiyZUujv4+GOnnyJKMtljpfzPrT0jAnae2Ry+U6W52M8eI5TV2bFh0Iv/vuO3IAQ9g6tjadO1NJoGF9S1MdDOwxfkYekwlzjEAYr/5wnpISnEB6WOjIufRSAJxq9TCccvw4FWYzmQYD2b16AVD6xRe1AmFw8yN91E6qjaJWF2tKSjhw4ADXAJYOHSLWDBvS08l1OCguLqYw7PlTH0+welPfv5lqNdDncPDdd9/RCjBm19/cwJyTg5azG9E0VJrPhyYqOJvy8jAC9lOnoFu3Rl0v2syZM1m+fDl6vZ45c+awbds2Zs2axUF1d84TJ07QRq28arVaDOqbTTNnzuTyyy9nzJgxlDZio6O4Ky7mFNC+fftQD8ziL76gVQN3ma3Lnj17mDdvHna7Hb1ej8fjITc3l4ULF9K7jl6b57Jx40Yef/xxvve973H99dczb948bDYbTzzxBIMHDz6v8YrEkkAoRApJxgvwVNMcAaglKSgoYPHixed1jWCFUBP14rV169bYAXcdgfDVV1/ltddeq3X8o48+Oq/x1KeoqIhsoxHqWpuVnk6az1dny4B4itgBNcZUwZxLLsEPVEe1kzhy5AhdAd0ll4SOpaWlcVSjwRMjlFzoXME1lDF+hx6LBWOwghUmXv3h3KdO4dBqsYYFzbTsbJyAO0al2VJWRmVGBplA6yuuAKDqwIFa59ntdtoA3noaz5+TGpitPh9/e/NN5gCrDh5k6fDh9O/fn4yMDE4pCp8A9pde4pFHHmnQZX3BCl4DpoyaFYUvv/yS7sRe8xnOrH6vsaZE1zkWtxsboI/6OVnUanpVMzz/NRoNXbp0AeCnP/0pr776Ktdffz3FxcW8++67LFiwgMcee4wf/vCH3HDDDRw+fJiOaiV25MiRFBYWMnv27PMeR3PxFxVxwuulsLCQdn36AGD/+uvzvu59993Ha6+9Rvuw6dNHjx5l0qRJfPLJJ/V/cWkpzJ4Nd9wBw4aFDs+bN4833ngDu93O6NGj2bFjBw888AAPPfQQH3/88XmPWSSOBEIhUkgyXoCnmuYIQC2a1wuffBL4T7mBgaioqIgcnQ5t1Iuy3NxcvgB8dfQDu/POO+nRowd5UWvBbr/99qaMvEGKiorIslpjVpcgsBmFDgLN32Ns7BJPZWVlhGJgrECYm0sFUBMVNI4fO8ZgwNe5c8TxCpMJpZHrwy4EobYSMdak+S0WjDEqTPHqD+c7fZqqqJYHGo2GCp0Ob4xxZFZW4lKrSelt2lABeGJsPnO6pIR0oCY/v+mDs1hQtFrS/X4Obt8OwLItW/j0iy9ClVLnt9/y2f/9H9PWrGlwICQYCOvb8Eb9u2MFtm3bxlVAK3XNYl206t/JmJsm1aH8+HGyiWz7AWer6VX1tPVoqLy8vFDImzp1Kv369SMtLY39+/ezc+dO7HY7O3fu5Ic//CG/+tWvan19z549Wbt27XmPo7l4T5zgFIH/C1u3acMZoKoZppb7fD5sUVN3MzIy8Pl85/7aBx5At2oVyptvojl5kqLKSp599llOnDgRmlZqNBpZsmQJu3bt4lK1Ci8uHBIIhUghyXgBLuKvMWtczunJJ2H+fFixIvBubQN89913DDOba03bys3NxQ4odWzs8Pjjj8c8PnPmzAYPtzEUReHkyZNkdOlSZyAMrUtzOJIWCBWNBk2MsKPT6ajUanFHBQ374cMYAEPYO/MAzrQ0tAlswZAoSnk5fo0GbYxA4k9LC+yamCAaux1XjOnHVQYDStTPvkrtQegPm5p52mhE+e67Wl9fcuwYBgL9JJs+OA2a9HQKPB7y1I1aLK1aRUyZN3fqxDFo0Iv2ICU4ZbS+NYFhgXDLli3M5WwF8FxfU9OYQHj0KNmAOSo4W9WfcbW6AdH5ePPNN0OfHzp0iD/84Q/s2bOHTz75hMGDB/Ovf/2r4WE6BfiLiigGuhQUoNFosBsMzbKpzKJFixg7dixGo5GMjAzKy8vxer08+eST9X+hx4P/zTf5X+DOqip0a9Zw++uvByrL3btz/fXXo9PpuOGGGwDYsGEDfr//vMcrEksCYRMEpx+Ey8/Pp0idJqQoCo899hh/+tOfKCsrY+DAgfzxj3+kZ8+eofNdLhcPPvgg//d//0d1dTUjRozgxRdfpF3Y1tji4pPoF+AiMc61xqVR/ud/An8uXdqoQJhnMETsMAqQmZlJhUaDNsYUvmSw2+243W7SFKXOF7N6dZ2TUlGB5nyqM00QnDKqtGqFpo7qbI3BgC8qYIfWCUZNh/TYbFgbuR7rQqAtL6fGZIqYphmSnp7QQKh3OGJO63SZzWijdg89efIkbYHKsKm9FWlpMSuadrWdhTbGxjmNkpHBz8eNY9Lll8P997Pqj39k0auvnp0yf/o0VwHXXnNNw68ZDIT1vWFiMqFoNKRrtfxl82ZaEWg8Xy/1TRB3I97EcKgb91ij1j9q1J+bq5kr5GlpaTz00EM4HA6WLFnCc889l/CdTM+XtqQkVCEEqLBY0DfDGsdrr72WTZs2UV1djd1uJysr65xr8wcMGBB4PlVX8yWwBDA/+CDfADNmzGDGjBm13sC+44476qz4i9QlbSeaqGfPnpw8eTL0Eb4T2lNPPcWzzz7LCy+8wI4dOygoKGDUqFER2/Q+8MADvPXWW6xZs4ZPP/2UyspKxo4d26h3AYUQF4bgGpeOHTvyxhtvUFFRwbRp0xrfg6ukBA4fhiFD4LPPoIH9Gb/77juytdqIHoTBcbmtVvQp0lMq+Kaa1eWqFV6DjOqL++hpmYlQXFxMBtTbasBlNkNU0HAHK0xRa7SUnBxaJbGnYrzoKytx17EpkCY9nbRGVA+KotZjNpapujrmc8mdloY+qrdb0ZEj5AHmsKm9zuxs0mK0nSgP7lB6Pm0nANLTydLr6aoGpILLL2fx4sVs3ryZbdu28cnvf88SGr75kMfjQVdTg8dohPp2JdVo0FittM3MxOB2B14MnivcqoHQ04iA5VSnhKaFt9OA0M/NG6fNXNLT05k/fz7/8z//c2EtQfB4MDoclBAoNABUt2qFuRnftLNYLBQWFjZoozaHw8GWn/6UjzUarhgwgP/S6fjE7aZ/v348/vjjtcIgBN4AbcgOpiK1SCBsIr1eT0FBQeijtfofvaIoLF68mF//+tfcdNNN9OrVi5UrV+J0OkNrw8rLy3n55Zd55plnGDlyJFdeeSWrV69mz549fPDBB8n8toQQcRBc4xK0YMEChg4dyo4dOxp3IbVptvtnPwuEwX//u0Ffdvz4cWw+X8wXxt70dMxOZ2CTliQ7qb54NFVV1R0I1X9rY+0QGW+nTp0iz2SqNxD6rNZaffZ8wVATFQh1+fnYPJ7U2vL+PDmdTixuN/46fka6zEwsgNLAnWLPZ7q8y+Wilddba0MTAH9GRuB5H6bsq68AyAhrAu/Ly4vZnN4Z/J2eo1XDOWVlBTbsOHUqUNGLnoqsBqnqb79t0OVKS0tJJ/A8PKe0NNrZbIT+pp1jl9HgmkRfjIBcl0r1zZDs6JYJ6vPDF+fdPTMyMgJVrguFWo2uTk8PBTZXZiZpjez92FwWLlxI0aZN/FtR+MWDD1LZuzeW6mrm33lnUsYj4kcCYRMdOHCANm3a0KlTJ37yk5+Epn4dOnSIoqKiiGa6JpOJoUOHhnaK3LVrFx6PJ+KcNm3a0KtXr3PuJulyuaioqIj4EEKktjfffDO0q13Q5MmTqampadR1fJ9/TgUwbvnywIYyDejRpigK3333Hek1NbWmLAJ4s7Iw+nwQVS0BWL9+PQMHDmTIkCGsWbMmdDy4VqS5BatBOoejVjUzyKy+QK5phs0oGquoqIjWZnO9VSGlVSsMUS/etGfO4IdaL7jN7dqRA5xOYl/F5nby5EkyodZ61aBgOIveiXXAgAG1Pvr37892dbOVpjhx4gRZgDHGOj9tdjZWlysijAeb0rfq3v3see3ake/z4Yuq5tfXWqNRCgrg5Ek4dgyi1pgCoUDoP368QeuySktLaQUo52gyD0BWFhOGD+fHP/hB6Ha91AqiphGvO6rVQGiObplhMuHWaFAaES7rkuh/p5rLiVhvaqlTaA1t24YO+XNyyAy2u0mwCRMm0GrPHv4NDBs2DNu11wJwrdGYlPGI+JFA2AQDBw7klVde4f333+ell16iqKiIIUOGcObMmdALmvyotS3hawyLioowGo1kRf3jG35OXZ544glsNlvoo32s/0BEixP+5oFIvkmTJiXlcQ+tW8fXwPuffIK3bVvYv/+cX1NcXIxSUxPonxdrW/lgSIyxTurRRx/l/fff54MPPmD79u3MmDEDv9+PM07vVhcVFZGVlobG6azzxWlwLZK7GTajaKxTp06RazTWGwI0NtvZXoUqfVkZNRYLRE2jSuvQAR1wqgG/xwvFyZMnsQG6OpqNp6nr805HbaPvcDjYsmUL27dvD33s2LGD/v37N3kswUBoDXtxHaQvKCBbUSKWclQGxxQ2vdF86aVYgOKo8YZ2KD2fxvQAhYWBQHjkCHToUPv+ggL8Oh2FHk+ogl6fM2fOkE4D1gMCZGWR6ffzzPz5gdvnqhBaLHi12sAbNg3kOXUKp0YTswVGtdHYqHBZl0T/O9UU7733XsTHu+++y/jx43nvvfciT1TfaLCGPRc0BQVk+/0ocVpSVO/rC7+fVidOcMRqpXXr1vQaOZIioHzTJgBef/11rrzySiZPnszKlSvp2LEj/fv35+23347LWEX8yCTfJhgzZkzo8969ezN48GA6d+7MypUrGTRoEECtDQcURalzE4LGnPPQQw8xa9as0O2KigoJhS3IxIkTax1TFCVijerFwOv1psQahFTqC3n06FGKN2+mJj8fS0UFR61WLm1AkPjmm28IxcAYgVAbfPOqpASiqpg6nY5M9QXvs88+y4oVKxg/fjyVcVpzeOLECbrn5cGhQ3UGwtYFBdiBmvNcW9YURUVFZOl09QZCbU4O6T4fLpcLk8mE2+3GWFGBKy+vVq/HTLV3Wun+/aC+836hO3nyJG0INB6PJVv9ns98/XVEs/eFCxficDhqvVE6PxhWmqDo8GHSoNbzGsDUrh25wKETJ8gIrmc7cgS3TocxbAzparXw9H/+Q+HllwPq/9XBqY7nClHnEgyEJhP07Vv7fr0eb5s2dD52jIMHD9I2RrgNF6wQahsSVLOzA9NVg9/LuSqEGg01JlOttZf18Z8+TaXRGLPPaY3ZjKER16pLQ/6dGj16NOvWrTvvx2qqYDuMQYMGharS4e0wQtRAaOvaNXTI2K4desBx7BjpMZ7LDdWk1xfffYfe66VanfI7cOBAdgO9Nm/mtRdf5KmnnuKBBx6gpqaGmTNn0qZNGyZPnszTTz/NuHHjmjxWkXjJf8XVAqSlpdG7d28OHDjAj370IyDwwqEwbIpEcXFxqGpYUFCA2+2mrKws4j+/4uLi0Hb0dTGZTJiieiqJlmPHjh1s2LAh1IMKAv9gT5kyJYmjSow9e/Ywb9487HY7er0ej8dDbm4uCxcupHfv3kkZUyr1hfzd737HYz4f6ZMmMebwYXZv28al+/ad8+vOFQiNwReYMXb769OnT0QT56lTp9KhQwfuvffeJn4X9Tt+/DjdzhEIc3NzOU6g8pBop06dIlNR6g0BhoICsoGSkhLatWvHN998Q46ioI0RkLLUF33lDVwfdiE4efIkPTWa0FrPaK3VgFUR1dtvwoQJMc8fOnRok8diVxvKW2NU3tI6dsQIlHzzDd0vuwwA/alTVNpsZIe9MZuj/ttTvndv6FhFRQXpXi8eiwWDwdDk8QGBQFhaGlgTfNNNMU/Rde9O52PH+Pbbb/n+979f7+XOnDlDBqBvSCDMygpMVS0rC0xBb8COqR6rtVEVQk2wOh5DTVoalmaoEIb/OxUMPQ6Hg/379zNx4sSUeFM1vB3GjBkz6myHoRQXUw0Uqm+cAKSrmxyd2rPnvAJhk15ffPMNABr136rWrVtzxGaj39df88c//hGHw0FmZiYajYaePXtSWVlJVlZWs72h25CquGgeEgibgcvlYu/evXz/+9+nU6dOFBQUsH79eq688koA3G43GzduDPV66du3LwaDgfXr14f+8Tp58iRffPEFTz31VNK+D5F8c+bMIT09ndyo6VbTp09P0ogS57777uO1116LqHgfPXqUSZMm8cknnyRlTPHuC9mYd633bN1Kgd8PffrQv3VrNr/7LjcXF6PxeKCeF6UHDhygR04OnDkTMxBa1Sl8SvH/b+++w5q63jiAfzNIwgx7yRAVFfdW3Ltaq7a2WrVWW1u7HbXr12rV1lbttHbZumcddW/FhaKiiAtlCLL3DoFA5vv7I5ASk7BEAno+z8Ojufck94RLbs57zznvycbD4xMqFhyubMiQIYiuQSBaF2lpaRheEQiaSiojEKCIxzM6xPVxIiKkpqbCTiCoMiC0bNYMjgBuZWTAy8sLUVFRcAEgNDKSw6JicW4TGSSDg4OxdOlSdOrUCaNGjcJnn30GsViM5cuXIzAwsD7eVr1LT0+HI5cLjonzZ1P+91ZSvmyDKQsWLMDRo0dx6tQpo5kMa6K4fDFvjpHn25c3cAvKh4JKJBI4lJZC9VDw6Fi+XFTlpC5ZWVlwAqASi/GI4aA2IAS0i8k/nHilHM/fH23On8fOGixTk52dDV8+H9yaZD91cADu3NEGpGJx1VlJy6ltbWGVl4eysrIaZam0kEqhNPF5UdrZwboelp2ofJ1qrDdVa7ocRllyMrIBvZ5gp/IkR/nR0cDYsXWuQ53aF3FxUAMQd+6s22Q3cCCcDh/G1ePHMfHtt3HgwAG8/PLLCAkJwXPPPYfJkyfXacjow8NniQhffvllrV+HqRsWENbBxx9/jLFjx8LHxwfZ2dn45ptvUFRUhBkzZoDD4WDevHlYtmwZ/P394e/vj2XLlsHKygpTp04FAIjFYrzxxhv46KOP4OTkBEdHR3z88cfo2LEjhg8fbuZ3x5iTqbV7Xn755QauScNTq9UQP3SH2s7OzqxLsdTXupCPOhRYLpdDUZ4BEf7+6OLigu/lcm0AFx8PVEqC8bC4uDh0dHExGRC6eHmhCIBFaiqM38dvOKmpqfCpmDNWRQ+HTCiEVQMv6J6dnQ2pVAprGxugigW8K+YF5sfHAz174t69exjH40H4cNp9AHB0hAaVlqV4yGeffYZ///0XhYWFGDlyJMLCwmBlZYUJEybg/Pnz9fK+6ltSYiIciEwPP7S0RCmHA3kVd/5jY2Oxe9kyDAOwYtky/FzHZQPKKoJOYzdCygO/il7E2NhYNAPAeygg5FhaooDLhbpSAJuZmQlHAJxHHS4KAOXDUAGYHjbcsiWaazSIr0FPcnp6OhwsLHQZQavk4KDtHSwoqPHQV45YDDG0PeDVTVchIliWlkJj4rOssbeHnVIJjUajF8A9isZ+U7ViOYyioiKjN9YqAkL3SomQXDt0AABI67JubSV1aV8oY2KQCqB569a6bd1eew04fBgPDh7E8ePHodFosH37dowbNw65ubkQCATYs2dPretnbFitpB6SDjE1wwLCOkhNTcWUKVOQm5sLFxcX9OnTB6GhofAt/yL59NNPUVpaivfee0+3MP2pU6dgW2neycqVK8Hn8zFp0iTdwvSbNm0CrwZ36BjmSbRixQo899xzEAgEsLOzg0QigUql0vWsN2WPetc6KioKfhWBsb8/uqpU0DUlYmKqDQgniMXalPZGUtG7ubkhG4BjYqJZA0KNRoP09HR4VdSxigaq3MoKtrUYtlYfYmNjwQW0c56qqJtdeS+PpLzxduXKFbxjYWG0lwp8PootLEAmsoyKRCJ4e3vD29sbAQEB8PLyAoBG/T2RnZAAoUZjPIFRuWKBAOoqMqseP3QIQQCaA/hlxw6gjgGhbrkPYwluyusnKR8SFxsbi54AbCo1fCvki0TgVpqzmpmZCSdolw15ZD4+gECgHTJafn4NtGwJK41G20NUjYyMDNhzubULCHNzaxwQch0dYY+aBYRSqRRijQZcEwmGyMkJTtAOwbV/1OQ85ZrKTVVTy2GoMjKQA6BNpYBQ4OICBYCypKSGq2A52Z07eACgZaW1OZuPHAklgKLLl4HZs8HlcvHqq6/ilVdeeaR1Q40Nq7106ZIuiz/zeLGAsA4qpzU2hsPhYMmSJViyZInJMiKRCL/99pvRIVkM8zQaOHAgLly4gNLSUhQWFsLBwaFGQ5Kagke9ax0bGwt/ABqxGFxHR7hxOLBr3RplCQkQRUcDJibvExFiY2PRvHNnwEQyCjc3N6QDsDUxbFEul+PevXvIz8+Ho6MjOnToAMFjSDmem5sLhUIBdw5HuxZbFWnzlba2EDXwkNG4uDjtcgpEVfYQWpQ35HKjo6FWq3H50iU4KpWAieBBamsLQV6e0X3u7u5Qq9Xg8Xg4e/YsAG3CpZosP2AuFcM0qwoISy0ttYGICdn//ovmAAq9vDAmNRUZ6enwMNbDWp3cXMj5fAiNrcnn5AQNgNLyRvb96Gi8AEBYqeFbQWpnB1Gl9fLS09PRmcsFv45DWQ0kJgJVZcQsrxOn4ndbhYyMDDio1caD4Ic5OGiXm7l/33iGUyMsXFwghrbHvCZ1cQQgMPG3L/TwgHV5ufoKCCuTSqV6N+KbhJwcZAMYWPl3xuGgwMICajPMp6O4OMQBGF9pTqPAxgaxAgFw755eWS6XC8+6fE7LGRtWy3oIGw5bdoJhGhm5XI4bN27g9OnTuHHjBhQKhbmr1KAsLS3h4eHxxASDgPau9cPBIFDzu9axsbHoKBCA26aNNvkDgGHDhyOOy61y6Ync3FwUFRXBQ6Mx2fvg7u6ONAAcI2tibd26FUOGDMHmzZsRHByMjRs3YsiQIdi2bVuN6l0baeXDJl3Uau3abFVQOTnBrpZrOD6q2NhYtKtopFXVm1J+ngvi4hAREQGBVAq+Wm18jTkAZQ4OsDWRWGPnzp0GvYF8Ph9BQUG1fwMNQC6XgyrmhFURECrEYohMNPSICL63b6NQLAa+/x7+AK7X8e9NUFiIMlMBAZ+PYhsb8Mob2QmhoRABRjOSKpyc9HqkY2Nj4SEQgFPFjYFa8fDQBX1GtWgBAHAsKNBbJsOY9LQ02CoUNQsIK64JFy6YnL/4MJGrq66HsDoZGRlwBSAyEWzaNm8ORwDJDyUYqq0tW7agY8eO6NatG1asWKHbPn78+Ed6XXOwyM9HAZ8Pm4d6eEusrMCth5tgldfdzMzMrDrgIoJVWhqSLSz0hrACQLaLC+yqmAf8KD2FFcNq161bp3c+mceLBYQM04g0ZAOcqbuGXhcyNjYWHS0sgPJsiADQrVs33JbLoa6U/fBhceXD4RxlMpM9hGKxGJlcLiyM3PH/+++/ERISglWrVmHp0qX47bffEBwcjL/++usR35Gh1NRUANAGetUEhBxPT22vWwP2lMXFxaFTxe+wqkCgfJ8sORkhISFoUZFtz0RAqHZzg4NcDqVSWeO6NIYlWYxJSEioMqNtBZWrK8SlpXqN0wr3799H97IyFPfqBfsxY6ABkHPwYK3rIpVK4ahUQlnFuVK6u8O+uBipqanIv3lTu9FIQCho3hzOcrluGYPo6Gi4AUB99RBWx9oaCmdntIb2d2wKEUGWkQGeRlOzgLDS9cTY+zaG7+4OFw6nRg3+7IQE2AGwqdS7VJm4ZUvwAGQ+4jqcq1evxo0bN3Djxg1YWVnhpZdegkwmMwh+zCkoKAi9e/dG37599UaZjRkzRq+cSCqF3M7OYAkyuVgMwSP2lq1atQodO3bE+PHj8e2332Ls2LEYP3481q5da/wJ2dkQKBTgt2ljUJ+yVq3gLZFAXlZm9AZ2fSRes7OzQ3djS7Ewj0Xj/FZhmKdURQO88lwzlUqFwYMHY9q0aWas2dOpsawLGRUZCT+FAijPNgcA7dq1wzEAVEVAGFueMMMyP99kQMjhcCC1s4N1YSFApOuBBLS9tcHBwRgyZAgA7XsPDg5+LL23aWlp4PP5sCwsNDm8soLQ1xcWAMrS0iBqoHVYY2Nj0b8mPYQCAUqtrYGMDKxatQoTWrUCoqNN9tDyvL3hCW2DtamvKVuRURVAlQEJt1kzeISF6ebhV3bs338xG4DquecAOztkOjvD8tatGq3TW1lSUhK8AJCpeXkAbNq1g09cHP766y9YVfR4GenNcurRA82OHsXlq1fRf9gwPIiKgriszPScv8eAOndGtzNnEB8fj06dOhktk5+fD+uKnvMqAnKdyteEGvYQwt0djkRIKr/ZVJWi8gyuliZem19+fMkjBoRcLle3/MecOXPQrl07jB49GvmVhvlOnz7drOsQLl68GCdPnoRAIMDChQtx6dIlrFq1CrLKQ4XLyiBSKEBGzp3G2Rk2qam1/hxU9s8//yAiIgIymQxt2rRBfHw8LCwsMHDgQMyaNcugvDo6GjwAzQYPNtgn6NoVR4OD8a6TE2xsbcHj8aBSqSCTyeDi4qL3u2eaBhYQMkwj0pAN8KbCnAsK12cK87rOxZPL5ci4eRPWSqXeHf2AgAD8DIBfWKhNCmGkAR4XF4dmHh7gZmRU2XjleHtDEBEBSCR62T23bt2KFStWYOHChVCr1bCwsECPHj0eS491amoqPDw8wMnOBiotymxMRY9DTkREgwRRFXMx/Vu21AbM1fQMCVq1QruEBMTFxWHIc88BDx6YfI6oeXM4A7iVlvZEBIS+lpYgCwtwqlgvV+TnBycAMcnJBgFh7I4d4APglzdCVT17otPx47h//z7aVJE86WF3795FJwC2lXvBHiJs2RL+lpYY8e23WCwUgkQicIzMZfPo3x9cAA9On0a7rl1BGRna4VUNGBAK+vZFzzNnsLWKQCw5ORm6q0BNegg5HO17SE0FeveuWUXc3MAFkF+DIK6g4maVqR7/8vlmpY+4DueYMWN06xBWJGopLS1FcnIyevXqpfv8mhOPx9PNk/z555+xadMmjB8/XtfrDEC3FqxN+RBhved7eMDpxg0UFRUZZOOuKUtLS3A4HFhbW2Py5Mm67x9TIw7yQ0PhBKClkRExLkOG4PNffoGrjQ3up6bqXqPiBnbLqoZAVyM/P1/3PdlYR0M8idhvmmEakYZsgDc2jaU3rrL6SmG+detWrF69Gj179oSdnR0KCwtx48YNvPvuu9X2/N64cQMtKoYTVmrc2tvbo8DFRduIiIkxGRD28fEBMjKqTBph064dEBGhXRC+fP1UQDu/8JdKGR4f5e50dVJTU7VZNOPjq+0hrFgbrjAqCt7PPvtY6lNZdnY2iouL4cvnawO7ahYj5/n6YgiXC9y8iV6urtrhoibS6tu1awchgJyoKKBPnxrVx5w3SaoSGRmJ5+ztwakmkYdr584QAbh7+TK6VRoSplQq4RgTA4VQCEH5OXYZPx4+x49je1BQrQLCiIgIjOFwIDIxXBEA4OMDT5UKHADj/P3BMZHIiF9+3JzQUISHh0MXBjZgQMjp2ROuAPLv3DFZJjk5uUY9tHquXAGEwqqHQVdWHtyV1CDzY0lFoFex1uLDyrerqlmTsjpffPGF7v9SqRQRERHg8/k4evQobty4gYULFzb4MP+HdenSRRe0AtolFnx9ffHuu+/qymjS0sAF4GDkJobIxwdiACkpKXUOCEePHq1LUvXjjz8C0K6T3b78s/aw4ps3IQPgV3lplHLNhw2DEMAQZ2dIpVI4ODjo3cBeuHBhret35swZLFq0CM7OzrrvydwGTh72NGMBIcM0Ig83wAEAcrn2C/sJ1xgXFK6vFOaPMhQ4KCgIXUUikEoFzkN3XYUdOkBz7hy4MTFAv34Gz7116xberLjbXEVj2qlPH2DXLiju3oWgUkBYWV5eHrp3744hQ4Zg/fr19bZuWIXw8HAM6N5d20CtJuOhW/mQueLyIWmPW0XvgptSaXLorR4fH7jHx0MikcBu6lT9uVoPsSlfY0z2UMY+oHHeJKnK9evX8ZGVVbXnT1T+NxkfEgLMnq3bHh0djR5qNWSdO0NQnkzHcuhQAEDB8eNALW7E3L9+HbZEVQdtbdvCQqnEoVWr0HXjRqBjR+PlmjWDkseDIjISYWFhaG1pCZSWNmhAiPLAmcLCTBZJTk6GB58PqFQ1D/Bq+x7KA0J1WpouuDBFmZICFZcLvqk1Ka2sUCoUgpeVVbs6VGHZsmWQSqX4888/sXHhQhQA8PPzq1OAUp+MZZQfMmSI3lqEBbdvwwmAS48eBmXF/v5wABASE4MO5deM2vrss88MtvFVKvTv0AESicQg0NTcv494AAN9fAyeJ7K2xhKRCL+mp+O5557Tu4G9du1auNZhfu2iRYtw4sQJvcywqampTX7kRFPBksowTGO2Zw8gFgOff27umjx2Fb1xvr6+up/mzZs3mgWFH0XFUOAKtRkKfOzYMYzw8gKnVSuDnqlWHTsi3cJCO0ftIYmJiYiKisJgT0+Ax6tyjpBf9+7IA1BgorEZGxuLXr16wTIpCZxNm7Bq+fJq610bubm5uHv3LkZVBK3VDDeydXFBBpcL5SPOPaqpiuQ84uLimjWgfXyApCTY2dpqz02luZ8P45QHRyojQwHDwsLw3Xff4YcfftD7aVVVr5eZFBQUICYmBj4ajfb9V6U8YMy7fl1v86WQEPQDYDls2H8bW7VCkUgEq4qkLzVARMiteO2qGpNdugAAnvPwACcqCjDV0OZyIfHyglt2Nn744QcMad4csLPT/jQUT08U29nB7v59lJnIsJuYmIgOtrbaHvbHsDQMAN3QZxeNRpcIypji4mLYSyQodXLSm5f8sFIHB1hJJFBXrLP6iF544QXExMQgZ+FCxAFI4fOxdc4cdO7cuV5e/3HKv3ULJQBaGEmkYl++PmZGFT3EtVZUhHx/fzz/7rvYY2QOoWVqKjLt7HTzMx9m4eWFBQoFLl26hNDQUFy8eBE/9e6N04MHo7WXF2JqeX3mcrkG2WtZD2HDYQEhwzRWCgUwb562h3DFCsDMcyAet0ddmqEx27p1Kw4ePIh+/fqhT58+GDhwII4cOVLtUGCpVIqwsDCDDKMVAgICcFuphMZIY/nPP/+ESCRCewsLbdr6KoY5tmzZErEAFHfvGt3//vvvw0utxl0rK2wA4LtwIS5fvlxl3Wvj6NGjAIB+FXONajD/JNPGBvwGWqg5NjYW3t7e4GVm1qyHsF07QCoFoqK0w3CrCAhhbw8pnw+OkdT7TekmybVr1wAA4qKi6te08/KCysICFomJesHN5Q0b4AJAOGLEf2U5HOS0bo0WmZk1XoInKSkJrhVJLaronYW7uzbA+fNP7XXWyELhFWwHDkQ3AIWFhXjO2xvo1KnKQOdxUHXrhr4aDUJCQozuDw0NRRc7O+Bx3jAQCKBydIQ3gAdVzP2LjY1FSwBqI/PhKlO7u6OZRoOseuwlPLdxI74DoJkxA/z27bGqsBBLFy2qt9d/XErv30cyAD8jvzNO+TD6vMjIejue5rffIE5PRxaAYQcOQFX580UEx7w8lFZ1vevUCa1kMsgqsp8eOgTulCmYlZyMrwsLsXjx4lrVZ82aNfjoo48QGBiIPn36IDAwEF9++WXt3xhTJywgZJjG6vhxIC0NuHpVO/zHVGpopsHVNoV5xVDgyndSV65cabC208NCQ0NBGg080tKAbt0M9nft2hVXAGhCQ/WWYJDJZPj111/xySefQHj3rrbxWk39Ink8iIzc0S0tLcWFCxfwl4sLeA4O0KxejQkADn7ySY3ee01ULLfiVFgIWFpWu+wEAEhdXSGuwVpo9eHOnTto07q1dgHxmgxf6tlT+++qVdrzYmQIWGWF9vbgGQkIm9JNktDQUHg6OICfl1d9QMjlQuHri5YaDW7dugVAG2hZXb8ODZcLBAbqFecPGoReRIi4caNGdbl06RICoM3MWGVGWAAYPRo4f14bGFaRWEXYpw8683g4dfAgHFNSADP0OIknTUJfABsfnlYAoKSkBNeuXUNrLvfxBoQAuG3bog2A+CrmEcbExKAVAFE1wxs5rVujNbS9m/WBiGD/779QCwTg/vEHBBs2oC0RpJs21VsvZF1Vt8YwJScj18rKeI9c+XVHXl/D5Ikg/fFHbARw7YMP0FypxJ7583W7lUlJEGk0cKjiJon9uHGwAfBg925ArYb6009xhsfD3oED8TqXi/C9e2u1sHxAQAD279+PK1euIDQ0FFeuXMH27dsf4U0ytcECQoZprPbu1fY09OoFTJwI7NqlXRaAMbtHWWPpwYMH2Ld0KeRTpwL//FNl2eDgYPS0twevqMhoY7Vz584I4/HALy7W9kaVO3fuHORyOaZOmgSEhRk0sB/G5XKR6OICp4wMoHLWOwDbt2+Hk1yOtrduAR9/DO5bbyHH2RkDw8KMriNXW0SEq1ev4plnngHu3NH2ptWg50XdogW8ZLLH/pkoKyvD2bNn8XyfPtosrFX19lVwddUGRWvWaIPbagJyRatW8JRIql10vDELDQ3F8xXJJ2oQkIg6dkQAh4Ow8mHKFy9exAAAio4dgYcW5XZ/8UVYAUg6cKBGdQkKCkKgWAyuiWQZej76SFvf774zmfgHADBsGLhqNUbk5mqTOJmYa/s4cZ59FnwAnKNHDYKxy5cvQ6VSwbmw0GgP+8itIxGaGlov9eAGBKCjQFBlQHi/IiCs5hzY9egBfwDRRubQ1kXU7duYUFCArGeeAaytgW7dUNijB96USnGlHkc11FZN1hi2ycpCsalkQK6ukAsEoNhYaOph/VX11asQFxaidPx4TFy1Cvk2NpCtW6dbBiNy714AgP9zz5l8jRYvvQQpgJJ9+4Bdu8CLicFiLhf9N24ErKzwikqFEydOPHJdmYbBAkKGaYwUCuDwYWDCBO3jyZOB5GQgtH6+0JsScy4o3KtXL4Ofnj176obH1VZhYSEmjRqFwEWLgJ07gVdeAY4cMVn+yJEjeLNtW22AVNHrVIlIJIKsc2fIuVxtj3K5Y8eOwc/PD22Ki7XJL2qQvVLarh24RECl9yaXy/HRRx9hdbt22p67mTMBLhdpkydjtFKJzIsXa/kbMJScnIzi4mJtooRr16octlcZr0cPiIlMznusL8HBwZDJZHi2YuFuIxn3jJo7V/vvO+9UG+Ba9emDjgDC6vh3ZW4VQf2IikQSppKzVMLt3h29uFyElV/Tdu/ahaE8HoTDhxuUFQYGopTDgfrMmRrVJejUKfTSaGoWtHXsqB2O/9prVZdr00Z77t94Qxs4jhtX/WvXN19fqPv0wUwLC4MkJcHBwejp5AR+QYHB71+tUSMyJxLHY4+jXrRpg1ZqNS5euGCySMLp07ACqr2BIujYESIAqfUUrMV89x3cAHguWaLbZrd4MXoBuPLTT/VyjLqoSCy2atUqLF26FL/99huCg4Px119/AQDUCgWaSaXgmAqgORwovL3hUVqKyHoYNpr955/IAdB93jzt3/PkyRgnl+PsyZMAgNidOyHlcNDh+edNvobA2hqXPD3R9dQpqN95BwcAOI4aBbcWLcCdOBEzBQKcDgp65LoyDYMFhAzTGJ07BxQWAi++qH3cv782RfeuXWatljk8Sm/co5JKpbh8+TKuXbum+wkLC0NPI8FZdSQSCbp164YX4uLgzOejJRHuenlB/uabBr1ygHbI1e3btzEK0AZJJjL1vf7++zil0UBWPrRGoVDg33//xejRo8HZu7faoXAV+r71FtIA5G3cqNt25swZWBQVYUxSEjjvvKNLouE8dy5yAMiWLavtr8HAvfKegY7e3tpezhoGhA7laeTzyucfPi5Hjx6Fj48PmpeUaBN1VDMnSmfuXG2AW4O5S27DhkEM4Hr5XfnKqhtm1hjExsaioKAAXQBt71Q1y04AAAYMgI1aDUlICPbs2YP727fDQ60Gx9gyIgIBYnx80KoGDeHo6GgIMjLgIJUC5eu51puVKwGRCPjss5ot/P4Y8N59F0OVSlxds0Y3/7KsrAw7d+7ErBYttI37hxYST5OmoaNbRxSUFdRPJbp2hZVajcJLl5CQkGCw+8GDB1BVzHOs7tpTHgCVXb1aL1XzPnoUUU5OEFYaYs999lnkODqi1bFjKC0trZfj1FZ1icUijxyBCECzKpbHsOzQAa05HFx81BtxROAfPIgTQiF6l2endnz/fTgDiP7jD5SUlIB38yZyfX3BrWYdQPm8eSjUaJAulWIegNdff127Y9o0+CgUkLKAsOkgpkmTSCQEgCQSibmrwtSn6dOJ/P2JNJr/ts2ZQ+ThQaRSma9ej1HPnj0Nfnr06EFisdhsddq3bx/l5+cbbD9//nytX+vbb7+l5kIhqYRCov/9j2bOnEnNASoBSPXRRwbl58+fTz5OTqSxsyNassTk65aVldErIhERQMorV6hfv34EgC4cPkzk5EQ0e3aN6ldWVkZ/8PkktbEhKikhmUxGnTt3po2urqSxsSHKztYr/7u7O5XxeES5ubX7RTzkf//7Hzk6OpJ60yYigCglpUbPk0qldBeguP79H+n41Wnbti29/fbbRBMnEvXp83gOkplJBNCCFi30Nm/ZsoUCAwNpzpw5tHDhQvrggw+ob9++tHXr1sdTjzravHkzASBlt25EkybV7EmlpaQUiWgxQAAoyM+PNO7uJq9vwW++SQRQ0unTVb7sTz/9RJ/yeKSxsCAy8tl9ZOa+/ioUVObnR9cA+vnrr0mj0dC7775LAj6fZB07Eg0aZPCUM/FnaOGZhfTqvlfrpw4yGWlEIlpia0sTJ0402L1ixQrayOORum3bGr2c1MmJfgbo+PHjj1StzBMniAC6+N57hvsWLSIlQAd///2RjlFXGRkZNHfuXOrbty/17t2b+vfvT/PmzaOMjAwiItrx0ktEAMkTE02/yJdfUp6FBU1++eVHqktu+e9p24wZ/23UaCjfxYU2AdS+bVvKBCj/nXeqfS2NRkP7Nm+mkf3707179/7boVZTiZMT/Q7Q5cuXa1SvzZs3U4cOHahr1660fPlyImJt3IbEAsImjn1YnkDFxUQ2NkRff62//dIlbYO5DsFIU9C2bVtSKpUG24cPH26G2tSvwsJC8vDwoPOtWxM5OhIVFBAR0dWrV2khQEoulygqSldeJpORg4MD/TtyJBGHQxQfX+Xrv/T88xRvaUm5Xl7UDKAzO3YQPfsskbU1UVpajev5xpAhpAAo/vnnae6cOTRcICA1n0+0aJFB2bXLl1MJQFlz5tT49R8ml8upWbNm9O477xD176/9qYWfbW1JJhAQyWR1rkNV8vPzCQBt2bSJyNmZaOHCx3IcIqJ8T09aC1BeXp5uW79+/UitVuuVUyqV1K9fv8dWj7qYOHEijejYUXt92ry5xs9Tz5pFuTwefejsTBo+n+i770yWLcnLoxwuly76+5t+PbWauvn7U5aVFdHUqbV6D02J5to1KuZwKB6gXwBaAlCyv7/2WmHk+2Ft+FraG7mXxu0YV3+VeP55KnRzIz5AN2/epNLSUlq6dCmFh4dTxxYtqJjPJ1qwoGbvZ8YMShCJ6JmRI+tcHaVSSRe9vSkeoPyHbl4REZFUShIejw77+NT5GI9LVlYWbbKxoUxb26oLHjxIBFAPV1eD60JtXOjdm7I4HIPfk/rbb6mMy6Xx2pnZ2jbHI1B//DEV8Hj0zJAhNSrfp08fUigURES0atUqevHFFykjI4O1cRsICwibOBYQPoG2bycCaFKPHnTy5Mn/tqvVRN7eRO++a766PUb12Rv3OJSVldHV0FBtsFXLL+MFCxbQcEtL7Zfsb7/p7fvuq6/oPkCydu2Iiopo3bp1FBgYSL4WFqR0cSGqwd3gDRs2UCeAsjgc7TEAIjs7olrecd+5cyfNKX9+MkBqDodo8GAiudygbFlZGW2xtqZCS0uiOl5/fv75Z+JyuZS2cKG2zseO1er5C6ZMIQVAqodvntSTo0ePEgBK/ftvbf1CQx/LcYiIit58kzIAWvPHH7ptw4cPp7Nnz+oeazQaOn36NA0bNuyx1aO2zp07R3w+ny4OGUIkEhHl5NT8yamppPH01P5u+/cnKi2tsvihMWOIAIqZNo0oMZFIKiUqLCSKiyO6dInOTZ5MNwBSWVkRxcY+4jtr3LKCgylh0CBKFgopnccjdd++RIcOGS27NHgpXUm5QmP/GVt/FbhxgzR8Pl22tqY3ORx6BqBAgAYDdMTCgtQikfYc1URQEBFAowG6fv16narz59tvkxKgcy++aLJM6EsvkRKgtfPmUVlZWZ2OU58OHTpEdnZ25GhvT/E8HhVUd61PSyMC6MVH6E3Nzc6mFA6HQrp0MdyZk0Mae3vt57F160fvDY+IIAJoHEBpNbgx2bdvX73HQUFBuhEvrI37+LGAsImrKiDUaDT0999/0/Xr12nChAlUWs2XLdMIaDSk6dWLQi0tCeVDqYYNG0bh4eHaL7BPPyWyt9c2gp4GEonRYKQhpaam0ieffEIT3N0psjxYyre1pV87d6boykNkTCgtLaX2np6UYW9P1Lu3wZesTCaj4c7OVMjhUI6TEy0EaKOvL5U6OhJ5edWohy8zM5MAkD1AsUuWEG3bVruGeTmNRkMff/wxDQboB4Dyly8nqqLhtHLuXCoESDF4MFFWVq2OVZCbS6NsbSmsRQttA+SDD2pd31u3btF3AKl5PKK//tIfYv2ISkpKqEOHDtQtIIA0nTtrz109vr6BW7eIAHpNJKKc8nNX3TAzc9NoNNSlUyf60t+fNAKB9vpUW4WF2p6I8p6BqsQ/eEDfAqSsuOnx0I8SoHsuLkTh4XV4N02XvJpr5Jxjc+hB/oP6DQiJiI4eJUW7dqSpfCMK0A5z37u35q+j0ZB68GCScLn0PUB/dO9OZVu3kvroUaKQEKLr17XBxf37RElJ2mtNYaH2BoJcTuE//EAJAKW7ulZ5vVKWlFCalRWFAfTy6NGkeZyf5ypoNBqaP3++9potFtPmAQO0v7uQkOqfGxBAhx0dKTAwkFS1DNg0Gg0t79OHCKCcI0eMFzp/nuiVV7TXo3qg7NiRTnE49PPPP1db9ttvv6WEhATtg7Q0og0bKPTSJRYQNhAWEDZxFQHhm2++SXZ2drR582bi8Xj0559/UnJysi6oAEDz5s2j+fPnU1BQEEkkEvrkk0/ozp07tGLFCoMLS3FxMb366qu0b9++ausgk8no4sWLVFRUpLfdWG/Pk6i4uLjOXyxqtZpOnDhBo0aNIgcHB1repQsRQMMBOnz4MPXp00d3/tq3b0/SmBgioZDos8/q+V00Mrm5pBw/Xtu4EIuJli9v0MAwLS2NIiIiSK1WU//evWkxQCqACtq1o9/796d/yhs+D6ytqfTAAaOvUVZWRlFXr9KKnj0phsMhpVhMFB1ttGxKSgo936YNHQaogM8njZMT0bRpNZ5PR0R06tQp+u2h3se6ys7OpsIa3HRIT0+nsdbWVMjlklIoJBo/XhsUfP+9NkBbu5Zo/XqiP//UDoGeM0c7lK9vX5ILBNpGvJeXtkwdP0MDAgNpR/ldbWWnTkSrVmkbjo/Y2Pvy889pvEBAsoAAIktLops3H+n1akI+YgSlcTi08r33zNZYNam0lCg5mejiRaJNm4gWLaLEHj0ouyIQmDixQT6jMTEx5ArQCwIB/dq3L0UuWUKbp0+n1e+9R5YA/fvvv4+9Dk3NlD1TqKisqP4DwgolJdq/jbt3tUPfaxDcG8jPJ9mMGVRoa2s02K/uJ8bamoorDbs36cYNUlhZURJAtydOpJtLl9Kd1avp3KpVlH31qjbYrLgRWU+fwZSUFIqOjtbOt9uzhz7r1o3+AajEyuq/YHratJq92OLFpLSyIhcOh0aPHk2pqakUFRVFKVV8V6jVakpJSaGJzz1HkQBltW9fL++rRvbtIwLoU2dnXe+vTCajBw8eGC//4AHRBx+QRigkAkhy5gwLCBsIh4gtbNaUFRUVQSwW1/p5QqEQcrlc9/jSpUvIzc1F3759IZVK0aJSJr38/Hyo1WqDBZKJCCkpKdi4cSOWlKd4njt3Lr777jv88ccf+OijjzBv3jx8+eWXcDSxOLBcLkdISAiGDh0KTnlq9uvXr+Onn37CokWLYG1tDS6XCy8vLyxevBgtW7bUZZ0sKSkBh8OBlZWVQb04D6V5l8vlEAqFusdpaWlISkpC37599cpkZmbCt7pFlSsdZ9u2bZg+fTp++OEHfPzxx7p9WVlZICK4ubmBw+FAqVRCoVDA0tISe/fuhbe3N3r27Il58+bh999/BwC87OuLv5OScArApErvb/fu3ViyZAkSExPh5uaG3V26YGBQELB9u3Y5ikcgl8vB5XKNL4Rbg/f/8O+5OhKJBCKRSO9cVMjNzcXZs2dhe+MG+v31F1QSCRYCCHR0xDSJBJw2bYDVq4GBA2td15qKj4/HyZMnsXj+fDQrK8Mrnp54Pj0dLXk8cBYtAr74Atn5+fjjjz8wQCSC4IsvMBBAkasr7Lp0AUQilBYUIOHGDYhKStAc2lTOWe3bw23vXm3qehMUCgUSExPRsmVL8Hi8x/Ye69vWrVsxd/p0vAtgbseOcC0tBXJytGv2VeDxAGdnkLMzEoqKcD09HeFqNWxGj8aXhw9r99fRtm3b8Oqrr2IIgEU2NhhUVgaOSgXY22vT77dqBXh6QuHkhOjMTHTo2RNca2ug4rohl6MoOxsqiQSOZWVQJiYi8t9/4ZOVBQdAm/X0jz+qXVy+XqSnI6ttW9hLpdjL5ULduzfsu3VDvo0NHP384ODjg3PXruHg4cNYvXo1evbsCaVSCZVKhdTUVLi5ucHS0hI8Hg9cDgdUVobzp07B09ERGYmJGNSnDzilpYBUCkVeHgRyOdJjYiDLzoajhQV4MhnsOBxwpFIgNxfIzUVJYiL4EgmESqVeVbP5fESqVCjq1AljV68GJzCwRutH1oc///wT69evR3R0NGQyGbhcLogIkyZNwqZNm3SZGxmtsTvG4tDkQxi3cxwOTzls7upU651Zs3Bw+3aMGTAAl06dwqBevZCbloactDS42NhAJZPBQqOBEIAAgKpNG6y+dg3W5VmQqxUXh3NDh6JXSgqsqyimBqDgcqHgcsGzsoKcy4XawgJSpRIkEEBtYQHX5s2RLZEgvaAADu7uENnbIyEjA0oeDz6tWyM9MxM3wsOhKitDdwcHdC8ogCcAiacnxLNmabOH+/kBw4dXvQ5mhexsoHVrZPv44OWICKSV1xMcDgYNHYqWLVtiQN++uHb5Mg7u3Yu+vXohLysLBTdu4DMLC3TjcMC/ebPmy+c8KiIUTp4M+927cRGAsnVrwMoKt2/dgq1QiH69ekHI4cABgE1GBixiYyG1sMAOjQZvqdV40dUV+7KzIZFIYFfT88vUCQsIm7iKgPBFAHxU6g4EoHnoMYfDgZpIt93NzQ0ZWVl65X18fJCekQG5Uqn3XA9PT2zctAl/rl6N6+HhaO7nh+ycHERERoLD4aC5nx+6dOuGf/fsMTh269atMWLkSNyLjETbdu2QnJICLo+HNm3b4mJICM5fuIDp06fj/dmzkZScjK++/ho3b9+Gvb098gsLYWtnh7Xr1uGlSZNAAE6cOIG//v4be/bvh6+vL8KuX0dKaipOnDyJqa+8gmefew6du3TBrdu38fkXXyAxKQkfffIJOnbsiM1bt+LGzZtY8tVXSEhMxLZt2zB+/Hh88cUX+O2338DhcLBz506sX78e3t7emDNnDkJDQ0FEmDlzJo4ePYrRo0ejrKwM27dvx/vvvw8AcHFxwfbt2xEYGIisrCwEBARAqVSiRYsWmD59Oi5evIiLFy+iRYsWiI6OhlggQP+2bSGNiMCMPn0wlseD86VLyPD1RdjSpbj14AEWL16sd65//fVXzJ07F1wA++3sMK6oCCnduiG5f3/0++ADbTp8Hg8qlQp8I6miExISMH/+fNy5cwcvv/wy2rRpg3fffReurq5YsWIFXnjhBQiFQqSlpeHYsWMYNmwY4uLi0LVrVzg5OUGlUkEgEODOnTv4/vvvYW9vj3PnzmHJkiVYtmwZduzYAW9vb+zevRu+vr4YOnQoCgsLYW1tjfj4eLz44ou4d+8eRo0ahR07dmDZsmXo1KkTLgQHIzMuDvJLl/CqUolpAIIBnHn9dXR69llMmTIFA8RifC+VoodCgciAAISLxSgUCjFs7FiEXbuGSyEh+OCDD7B9yxa42NqiR4cOGNi7NwoyMlCSlwcrPh+nDx+Gq50d7AQCZCYlwdfJCcXp6ejUvDnkeXlQFRQAUinsAFQ0J8sAxLRsic779xtdW+3mjRs49eGHsAoJwfM9esDF1hYXrl9HokSCAgDD3n8fvi+/DJcBA+r0+W4KiAjXr1/HwoULcerUKXh6eqJ3796Ijo6Gj7c3OnbogM5duiDs+nWkpqZi3759ALRrPJ4/fx6WlpaPdHy5XI6lS5fqPq/NxGKc/OILOCQlIXbfPogLCtCMw4GVVAqLar7uZFwu0gDc02hwi8vFlE2b0GbatAYLdADg0qlTOPLMM5jl4ACfggI8/EnWAFBA2wjk8HhQE0Gp0eiuuUIAIg4Hglp8tcsAFAOQVvzL5UJmZQWFrS3uZGQgB4C4RQs4+Ptj95Ur8B85EjZubujVqxemTZsGbk0aso/BvXv3EB4ejhdffBEqlapON0efBmN3jMXhKYfx0u6XsG3CNoj4jTtgJiKUlpbCysoK8fHx8PPzA4fDwa1bt/D9998jMDAQvXv3hkgkgqWlJVq2bFnrv8GioiIcOnAARdHR+GP5crw0ciSy4uKglkrhYmur/Q4oK4OdQICMxESIAN2Pu50dbC0sUFZYCL5aDREAZ2trqEpKIAJgZ2EBnlIJEQAelwu+hQU4PB7SeTzwBg5E6wULtGvD1vW6cvYsMG0akJFRq6cp/P0h2LgRKF9qosEQQbFlCzJ++QV5t27BGgBPKATP0hLZhYVQQHvdiQVwFcABAAMCAnAiKgrTPT2xNT2dBYQNgAWETVxFQCgBwD4qdaPBfwEsOBxoiEwG1QSAx+dDqVZDQwS+hQUsLS1RWFRU5XMIgJWFBQRKJWzx0AKgHI52AeW339YujiwQmKxrTEwM2rZtCwCYJRDgfYUCncv3EYcDmZUV4ktKUMLnw9bVFYlZWVAJhbB0cEBecTHyJBKoy+uorvRT8bhV69aIiY0FhwgcQPcjtrWFVCqFs6MjCvLz9fZV/uEBsCj/6dezJyJv34ZGoYAFtDcsKvYJANgDcCr/qWieyNzdkTN9OmTTpyOgfH2q8+fPY8+ePcjPzYXv6dOYmJeHzuXHqk4ptEGd3Mi/xRwOioggBVAEoITDgW/Hjug2aBD8e/cGWrVChqMj3Fu1qrInVC6XY+bMmfjnn3902w4dOoRu3bqhWbNmNajlkyExMRFTpkxBaPlC4wDg6OgIBwcHPHjwQLete/fu2LNnD9zd3eu9JyczMxPPPvssbt68CR6PBx8fH3Tr1g2nTp1CqUyGFh4eyE1NhSUAKwBWVlZo1b49/AIC4N6iBXYePoy09HQcOnQIPRqiR9CEips60oIClNy/D+fSUqRHRSE9JgY927SBJDsbl0NCkJGWhhKpFG38/ZGekgIrS0s4enjg2u3bSMrKQutOnTB01CgoOBxkSyS4n5SEnOJipBQW4lJEBKQA3vrwQ7z6+uvYuXMnNmzYgAEDBqCwsFC3bppGo0FMTAw8PDwA1G1kAKOVIc3A7OOzsePFHbDg1X5URl1VBISzDs3C0qFL4W7j3mDHbgqSkpLg4+MDAEb/to8cOQJnZ2e0bNkSFy5cwPDhwyEWi5Gfn49Vq1bhpZdeQseOHXHs2DFERUVh/vz5OHXqFMLCwrBgwYLH83lRKoEHD4CsLECj0f1Ii4pwLCgI7s2awc/fHyJra6g5HHh06QJ4edV/PWrpzJkzOHToED7//HM4Oztj69atEIvFSE1Nxblz5/DDDz8gPz8fAY6OsPX3R9GOHRBPmcICwgbAAsImThcQpqfDztZWb1R9cVERlAoFHOzt9ba3DwhAYJ8+WLd2LbKzsiC2s8PRI0ew859/cO3aNYwdMwa//forQIQb4eEQWljg2NGjWL9+PcY99xwWL1oEaysr7QXIyGj+MpkMQoEA0VFRyMrMRJvWrVGQn4+ANm2QnJSEQwcPwoLPx0svvghrKytYCoW4HhaGWzdvwt/fH5KCAoweNQpx9+/Dy8sLQgsL7NyxA0KBANKiIlwLDcXsDz5A+3bt8O/u3di7Zw+6du2Krp06YdOmTejSqRMG9O8PgYUF1Go1rEUiJMTH4+DBg9Co1fBv2RJffP454mJjsfbvv6FQKPDu22/Dx8cHHI0G58+dg4+PDx7ExiIoKAgjhg0DqdU4f/48evXogevXr8PHywvjxo6FV7Nm4HE4yM7KQvyDBygsKACPy8X1a9egUCgw5eWXUZCfD3t7e7Rp1w55CgVsPTxg4eCA41evosv48fAMDASsqxq4oi87OxuRkZEYM2YMvv/+e/z6xRfwLSqCLwC38h9baBu8zV1dIdRowCktBVephKuzM5zs7aEsK0NpcTHEtrYoKiyEsrQUpFJBqVDASiSCyMoKefn5umDW0soKFgIBpMXFUKpU2m2WluALBCiUSODh6QmVSgUOnw8IBIhNTIQKAPh8yDUaWFhbo3e/fuCJRLh64wYKZDL0GjECiUVFaNO3L7guLrDs1Qucjh2rHDZTUFAAV1dX9OnZE/s3bUJabCyEIhFc3dxw+84dtG3fHu7Nm2PQM8/g4tWrmDt3LqZPn474+Hj0798f7777LvLy8nDw4EHY2dlBKpXiwoULcHJyQmBgYJ17OjQaDf755x9YWVnB3d1dbyjy00SpVCI4OBhWVlbIzc3FuHHjAABnz56Fq6srJBIJ2rdvD3t7+8dWB7lcjlWrVsHOzg6vvvoqrK2tUVpaiqysLHh5eUGj0cDCwgJXrlyBj48PvB5qJGk0GrP1eNWXgoICXLlyBaNHjzbZGJXL5SguLoaTk5PJ11GpVNBoNBBUcZOKqbnT8acxde9UHJpyCH28+jTIMYkI43eOx6Eph/Bp0Kd4vcvrCHAJaJBjM0ydSSSAvT2KNm2C+LXXWEDYAFhA2MTpAsJafFg0Gg0AGG30ZGRkwNbWFjY2Ngb7SkpKIBQKjQ5HNKeKO9ZqtRqrVq3ClClTdHezHy63evVqDBkyBAEBAQbPf1h8fDxee+017NmzB87OzoiPj0erVq1w9epVtG/f3ujvqCFV9CLExsaioKAAiYmJ8PDwQP/+/SGTyXDx4kUMGTLE6Hw9Y+RyOY4dO4axY8eCz+cjLi4ONjY2unmQAJCamoqoqCiMGDFCV4f09HTd3dUKK1aswO3bt/HPP/+grKwMAPSGBj5KL8Pu3bvRrVs3tGrVymSZ0NBQREZG4vXXX2e9GQzDNAp/hv2Ji8kX8ULbFzCp/aQGOaZMKcPMgzOx86WdWH5xOQY1H4S+3k/nDSumCSkrAywtUfT33xC//TYLCBsACwibuLoEhAzDMAzDNKwPT3yIDq4dkF+aj0/6fdIgx8wszsSic4uwZuwa/HX9L3jbeWNM6zENcmyGqTONBuDxUPTrrxDPmcPauA2gaY+LYRiGYRiGaQISChMw0HcgkiXJDXbMInkR7ITahrS9yB6FZYUNdmyGqTMuV5tPoVI2fObxYgEhwzAMw9TR+cTz+DToU3NXg2kCVBoVmts3R6o0tcGOKSmTQCzUZl91EDmgoKygwY7NMI9EKGQBYQNiASHDMAzD1NGl5EvYH70fubJcc1eFacSUaiUseBaw4FlAqVZW/4R6UrmH0MHSAQWlLCBkmggWEDYoFhAyDMMwTB1F5kZiWsdpCE8PN3dVmEYsoTABfvZ+DX5cvYCQ9RAyTYlIBCgU5q7FU4MFhAzDMAxTR4VlhRjqNxThGSwgZEyLL4hHC4cWAABboS2kcmmDHNegh5AFhExTIRRqs40yDYIFhAzDMAzzCDq5dcLd7LvmrgbTiOXKcuFq7QoA8LHzQUpRSoMct3JAKBaKWVIZpulgQ0YbFAsIGYZhGKYOpHIpbAW2EIvEKJIXmbs6jJkp1KaHt+XKcuFk6QQA8BH7IKkwqUHqJJFLIBZpk8pY8Cyg1qhr9Ly72Xfx1fmvHmfVGKZqbMhog2IBIcMwDNOonYw7icMxh81dDQPp0nQ0s20GAOBwONCQxsw1YsylVFmKXmt7mdyfK8uFs5UzAMDdxh1ZJVkNUq/KPYQ1pdaoMe/EPFxMvviYasUwNcCGjDYoFhAyDMMwjdrykOX4I+yPRpfJM02ahmZ22oDQx86nQdeXYxqXw/cPIyYvBnKV8SFulQPChsz2WZeAcOOtjXip3UuwFlhDpVE9ppoxTDWEQtZD2IBYQNgI/Pnnn/Dz84NIJEL37t1x8SK7K8cwzOP1v9P/w7HYY+auRrXUGjXEIjHe6PoG9kbuNXd19KQVpel6CH3tfVlA+BQLSwvD4OaDkSQxPhQ0V5YLJyvtkNGGzPZZl4BwT+QevNntTTQXN2+woa0MY0AkYnMIGxALCM1s165dmDdvHhYsWICbN29iwIABGD16NJKTWcOCYZjHQ6aU4eSDkzh6/6i5q1ItiVwCe5E9hrcY3uiGsKVL0+Fp6wlAOy8sRdIwiUKYxieuIA4jWoxAQkGC0f0KtQIivggAYC+yb7AewhJlCawtrHWPeVxelesgFsmLIBaJwefy0cqxFeLy4xqimgxjiA0ZbVAsIDSzn3/+GW+88QbefPNNBAQE4JdffoG3tzdWr15t7qoxDPOEisqJwtjWY5FQaLzx2pgUlBbAQeQAB0uHRpchMVeWCxdrFwCAt513g2WObEokZRK8sOsFTNg1wdxVeayUaiVaO7Wu0WeqIZd/ICJwOBzdY3uRPSRyicny19KuoZendi5kQ851ZBgDbMhog2IBoRkpFAqEh4dj5MiRettHjhyJy5cvm6lWDMM86e5m30UH1w6w4Fk0+jlC+aX5cLR0BAAI+UKUKkvNXKP/5JXm6TJHeou9WQ+hEcFJwRjRYgT4XH6Drb3X0OQqOQQ8Afzs/Uz2EFZmJ7QzW1ZaB1HV8xfv591HW+e2AAA3GzdkFbOAkDETkQgoYOtmNhQWEJpRbm4u1Go13Nzc9La7ubkhMzPT6HPkcjmKior0fpgnm4Y0DTa8iHk6VASEvmLfRj9HqKCsQBcQdnDpgHs598xco/8UlBXAwdIBAOBp64n04nQz16jxCU4MxiDfQQj0CsSV1Cvmrs5j8aDgAVo5toKvvS8SJYkG+4lI7zGXwwWBDMo1hOrmL6ZIUuAt9gYAuFq7Irsku6GqxjD6HB2BO3fMXYunBgsIG4HKwzkAwyEelS1fvhxisVj34+3t3RBVZMwkNi8Wo7aNwpuH3zR3VZgnyP38+/B39Ie/oz9i82PNXZ0q5Zfmw0GkDbq6uHfBrcxb5q1QJWqNGnwuHwDA5/IbfW+rOcTmxyLAJQD9ffojJDnE3NV5LKJzo9HWuS1sBDYoUZQY7K9LYpfHpboMpylFKfC207Yr3Kzd2JBRxny+/RY4fdrctXhqsIDQjJydncHj8Qx6A7Ozsw16DSt8/vnnkEgkup+UFDZE6Um2PWI7FgxYAIVaUeWixwxTGyqNChY8CwS4BCAiK8Lc1alSQel/PYRd3LvgduZtM9eIqQ0CgcvhoqtHV9zMvGnu6jwWFQGhKZWXnGhIxm4uV9dDWFhWCHuRPQDtfMPGNm/3aWHsxsJTx8oK6NnT3LV4arCA0IwEAgG6d++OoKAgve1BQUHo27ev0ecIhULY2dnp/TBPrrD0MPTz6YfhfsNx5P4Rc1eHeQIUlhVCLBQDAAb6DsTphMZ9Bza/NF83LLO5ffNGnQjHkm8JmVJWbbmIrAizzSEzl4qeVA1pzFYHhVrxWOZ53su5hwDnAACAjcAGxYpivf3GAkIOjI8Cqk+lqlJY8i31tlUX5HE4HF0QyeFwIFfLq8xKytS/hIIEBPwRgBUhK8xdFeYpwgJCM5s/fz7WrVuHDRs2ICoqCh9++CGSk5PxzjvvmLtqjJkVyYtgbWENPpePGV1mYPX11WxIGgMAKFYUY+WVlXVqXMflx8Hf0R8AIOAJ0MK+BR7kP6jvKtabynMIKxqq5gwqKjw8LwwozzRag4Bj3sl5TWINyEdVkWylgp+9HxILE81Wn+n7p2Pa/mm4m323Xl+3oPS/uaTGEsvkleYZBIQivuixJ0gyNlS1qiGjGtIYBKojWozAr1d/fWx1ZAyFJIdgxfAVOJ94vlFc65inAwsIzezll1/GL7/8gq+//hpdunTBhQsXcOzYMfj6+pq7aoyZnU88j8HNBwPQ3tWd3H4y/r7+t3krxTQKMw7MQEhKCC4kXaj1c7NLsuFu4657PKrVKJx8cLI+q1evKs8hBIAWDi1qlMnxcTPW2PYWe1e7OH2yJBkKtQKXki89zuo1ChnFGfCw8dA9bufSDpE5kWapS1ROFBwtHfHLM79gw80N9fa6JYoSWAv+W+fPz8HPoBfbWA9hQyxOLymTGAaEVRw3pyQHLlYuetsmtpuI+IL4eqlPTXrPGeBc4jn08+6H9i7tEZUTZe7qME8JFhA2Au+99x4SExMhl8sRHh6OgQMHmrtKTCNwOv40hrcYrns8o8sM7IveZ7Rngnl6pEvTYSe0w6+jfsVXwV/hdHzthnxml2TD1dpV93h4i+HYE7nHYJhbY1E5kycA9PTsidDUUDPWSKvychgVApwDEJVbdQNu251tWDRwEWLyYp74z3JaURo8bT11j9u5tMO9bPNkiT0edxwTAiagi3sX3Mu5V2+/++jcaN1wUcB4D6HRgLCa5C71Ib80X7csSk2Om1KUAi87L71t9ZU9Ny4/Di1WtTDb+W8qUotSUSQvgq+9L4a3GI5DMYfMXSXmKcECQoZphDSkwf28+7qhfYB2Dk4Pjx516hVinhznE89jSPMhaGbXDMemHsOqq6tqNQTu4YDQWmCNqR2nNtohjCqNSjf/DABGthyJEw9OmLFGWpXXIKzQ2b1zlVlQixXFOJtwFkP9hqKja8dGlTH1cbiTdQcdXDvoHrd2am22rLZX066iV7Ne4HA4NQrcaypdmo5mts10j43Nc82V5Rr8rdiL7KvsIayPgDWvNM/gpkVVPYSVl5yoUF9rlW67sw1vdH0Dpx6ceuTXepIdvX8U0zpNAwA80+oZnE08a9abddG50ei0ulOjX56IeXQsIGSYRuZC0gV0Wt0Jnd06G2SImxAwAZP3TkZYWpiZasfUl9SiVKQWpdb6eQdjDuKZls8AACwtLPHjiB+xImQFPgv6DPfz7lf7/IcDQkA7bPSHyz/gWtq1WtenssKyQiw+txi77+3GjogdALQN27+v/42D0Qex4MwC3Mi48UjHcLNxQ64sF2qNWvf64enhuv1EhGOxxx57AyZPlgcnK/1GvruNOzKLja8hCwDHY49jcofJ4HF5mNpxKnbf2/1Y62huYelh6On5X5bA+l7GoFhRrMuSW9V8PIVaoTfEd4DPgHrrZc4oztDrBfUR+xgMGzY5ZNRET92VlCtYdnHZI9fN2N+okC80mbG68pIT9e1yymV8PuBzHI87rvd5ZfRdSL6AAT4DAGjXq3yvx3tYE77GbPU5Hnscs7rNwst7XsaB6APYcHMDtt3Zprv+VrY3ci/yS/PNUEumPrCA8CkkV8lN3n1MLUo1+cVaoihp9BOc72VXPRQoqTCpVnc7zyacrY9q1crp+NN4r+d7+GrIVwb7env1RtCrQVhwdgG6/t0VubJcZEgzkCJJQWZxZqM5P1K5FOnSRx9mJFfJ8cq+VzB5z2SkFaUBAFZeWVntPKQ7WXew/OJyg7+FdGl6vdTr4Tk1cflxGLF1BJ7d/izePvx2je7uf3TqI0zeMxmHYw7jTtadGs2vKSwrhIY0cLP5b1maNs5t0MW9C3o264lPgj6p9jWMBYRedl5YNHAR5p6YiznH59TqjnSeLA9rwtfgXMI5jNg6AomSRByLPYbNtzdjyOYheH7X8yhTleF0/Gn4Ofhh4dmF+OjkRzXOmmssG2Mvz14ISw/DpeRLmHFgBt468hbOJZzDmvA1GLF1BMLSwjD7+Gysv7EeZaoyhKaGIiQ5BGWqMkjKJACAa2nXDBovpcpSROdG1+x9G+khBMoXHTdx/kNTQ9HXW5tBuptHN4RnPL6GcXUJS+QquUEyoYrrY05JDjKkGfj7+t/48fKPda5DZnEmPGz/m0PI4XDqpefreOxxvHPkHby4+0WsDF2JIZuH4KV/X8JrB14zWn5P5B6Maz1O97idS7tq52YREfZE7ql2Tmi6NF0vIDQWcOWVGgZmDpame+rOJZ7DtfRHuzmjO66Rv1FTEgsT0dy+ucF2W4Gt7nNTF1E5UWjj1AY2AhtMCJiA1w++XuXNMLVGjaxi7Y2DyuUKywqx/OJy3Mi4Ua/Drau6iQNobyhUHO/h49ZnPaRyKQrLCvX+Vsa0HoPgpOB6O0aFMlUZrqZexW9XfzP5Hs4nnsfuyN14o9sb+Hfiv5i6dyp23duFUw9OYW/UXr2ytzJv4YfLP2DmwZl16lEmIlxPvw4A+Or8V9hyewv6rOtT+zfG1Bm/+iJMUyBTymBLtno9SiWKEsiUMrhY/zdJXKlW4tuL36KbRzc83/Z5JBUmoZldM4SlheF84nmsv7ken/b7FG91fwuAdriAiC9C0IMg/B3+N97u/jZmdp0JHpdnsi4a0oDL4WobFcUZ8LP3Q35pPnztfVGsKMaJuBNQqBWY3GEyuBztPYnUolSEJIdgoO9ApBWloWeznihRlMDKwgocDgfHY4/DwdIBkjIJ/rn7D/549g/YCGwQlhaGL899iZfbv4zxbcdj6Jah2Dh+I3p69oRYJAYRgUBIKEjA/bz7mHdyHr4f/j0mtp8IhVqBPZF7cD/vPhYMWAALnoWuLi5WLsiV5WLUtlFImJsAlUaF+afm468xf2HqvqmY3Ws2xrUZp/e+y1RlyCnJgaOlI/ZE7gGHw8GUDlOQK8uFjcAGtkJbvfLnE8+jj1cfiPgi3bZSZSkuJl9E0KtBesPkKuvg2gFLhyxFkbwIs4/PRkFpASx4FlCoFShVlmLRoEUokhdhTfgabBy/EWpSQ6aUoVhRjK7uXQ16HQHtxVipUWLh2YVYMngJrCyscOT+ETSzbQYvOy/d39Dd7Ls4EH0Ab3V/CwKeADwOD8fjjmNS+0l6r7fq6iqciDuBdePWIbM4E9YW1ujZTNtTEJMbg8ziTAxqPghKtVL3e69wPf06frryE/JL8yHgCfB+z/fhYeOBV/e/ilc7vYrdkbtxLf0afhzxIx4UPICNwAZedl44n3ge3T26w8nKCWvC14DL4eKNQ28g0CsQ93Lu4eX2L+PXa78iqTAJP4z4AdG50RDyhdgesR0CngCtHFphdu/Z8LDxgJAvBKC9q93No5veOTpy/wjeOPQGzs84jyupV0BE2HVvF9aOXQtfsa/2S/HQTHjbeePLgV+iRFmiW9erQkJBAngcHlaNWoW9UXuxP3o/kiRJcLR0xI8jfoSvvfGkUrczb+v1uFT4uO/HALS9h2lFaWhm18ygTIXK64xVNrbNWHjaemp7ddb2xNjWY/H9iO9Nvs7a8LUIig9CYVkh2ru0x467OxD0ahDsRfYgIkjkEtgKbA2uFY6WjojJjcHue7uhVCvxQsALJo9hyqT2k7Do/CLIlDJ80vcTtHdpj9cOvoZnWj6DjeM3wlvsDbVGjV9Cf8GUvVPQ2a0zrqVdg1gkRkRWBJysnOBi5YKCsgIIeUK0cmwFG4ENrqRegb3IHt09uqNEUYJvh32ru0Y9LE+WhzbObQy2e9h4GARCFaLz/luvjsPhoLVTa8Tkxui9TqmyFDMOzMCm5zeBx+EhqyQLPmIfKNVKZBZnwlvsDQ1pEJoaijtZd5Any8PYNmNRoihBujQdHVw7YMvtLTjx4ARe7/I6JneYjKziLJSpyrA3ai/KVGWIzImETCmDm40bPG080de7Lw7dP4T4gngIeAIIeAK4WLmgV7NeuJV5C6/sewWeNp7wEftgy50tcLdxBxFByBdi+bDlaO3U2uC9EpHR352IL8Kyi8vwxYAvany+K17vRsYNrLq6ClklWVg2dBnshHbwd/pvWP3bh9/Gg/wHaOnYUrdNrVFj/c31ODzlsG5bK8dWVQ5dvZB0AV8Hf42enj2x8dZGHJp8yOR3Xro03ei5rrwGoFKt1Mu2Cmh7CI3d2CIiXEi6UG2jWqaUQcAT6JbSMPa3aKyHsCoPCh6ghUMLg+2d3DrhdtZtDPStW36DPZF78FK7lwAA7/R4B22c2mDTrU1YOHCh0fLfXvwWB6IPoI1zG8TkxqC/T3/EF8SjRFmCub3nYsvtLVh8fjEAbXujlUMrLB2q/U48E38GM7rMMFmXiu+chIIE/HTlJwzwGYDZx2djywtbsPPuTlhZWEGhVsDDxgNKjRKu1q44HnccHHBgLbBGTG4MFg5cCFuBLTKLM/Hbtd/wcvuX8UqnV/Db1d+QXpyOn0f+jJDkEOyN2oufn/kZnrae0JAGaUVp8LLzMvodDADrbqzD611e19sm4Amg1qih1qirbHdV0JAGpx6cQoBzABwsHcDj8KAhjV77Q6lWYtK/k+Bg6YBcWS5crV3R1aOrwed4ZehKHJt6DFYWVrASW+HYK8cwuPlgpBWlYdbhWWjn0g4lihJsvLURyZJkrB+3Hney7uCLM18Y/e4gIiwPWY6DMQdxctpJCHgCzDgwA9YW1kgsTASfy4eGNOjp2RP5pfksCVEDYwHhE+KTU5/gjcA3IBaKcTH5ItKK0uBk5QRJmQQeth7wtPWEkCfEhlsbEJEVgVJlKTq4dkDvdb0xzG8YLiRdAIGweNBirL2xFl3du6KZXTN8Hfw1iuRFUGqU2Pz8Znxw/AOsDF0JT1tP2AhsMLPrTByIPoCVz6yEWCTGz1d+xj8R/6C5fXOoNCokSZJgJ7SDgCeAh40HkiXJkCllUGqUWHtjLQBgVrdZWHtjLZ5t9SxmH5+N7JJsrBi2AjMPzcSsbrOgVCuRJk3DvZx74HK4eK3za3h5z8twEDkgszgTO1/aiZ+v/IxhW4Zhx4s7sPDsQqg0KkjkErhZa3tSeFwewtPDsWH8Bnx36TukSbXJDvZE7kEX9y4Y888YDPIdhAG+A7Dk/BLYi+zhbOWM+YHz8cahN6AmNaZ0mIJua7ph3dh12HlvJ9aEr8Fn/T5DH68+mLZ/GmLzYtHaqTXSpGkoUZQgR5aD8PRw3My8CQdLB3w58EvMPTEX3wz5BkmSJCwPWY6PAz/GrO6zAGi/vAdtGoTlw5abDAYr9PbqDUDbuJfIJXiz25sAtHd4Pz/zOawtrLF0yFK8dvA12Aps4WrtioziDDhZOuGdHu8gOjca+6L2Yd24dXjv6HtILUoFh8NBF7cueGn3SxjeYjiOxR7D9fTr8LLzgrOVM8Qisa7xP3DjQLjbuOPFgBfxd/jfyCzOxOn40+BxeXC3dsf9/PtY+cxKzD4+G/Yie+SU5ODTfp/CzdoNn57+FF52Xth4ayPCM8LRp1kf3M+/j6HNh6KgrACROZHYNmGbQS/Wrpd24UTcCSwZtAQHog9g5qGZGOw7GHdz7uJe9j281/M9TN03FdYW1uju0R0/jPwBYWlhSJemo49XH6y4tAKd3Tpjeqfp+D3sd4xrPQ7X06/j0ORDyCjOQFZxFt4+8jZKlaV4puUzsBXaIjwjHAWlBVg8aDGC4oNwIekCHC0dEfxaMEZsHYH5febDXmSPPZP26Iajfdz3Y/xx7Q/kyHIwac8kFJQW4IW2L2BO7zm6hsCX577ElwO/RIBLALp7dte9x5jcGMw7OQ/7Ju0z2mi4k3UHndw6mfy7mNphKnbc3aELEI3RkMZkg6S7Z3e0c2kHPpePkOQQJBQkwM/BT6/MgegDICIcjDmIdePWwcXKxaChwuFwjAadgHbYM6Bt0I7dMRbPtX7O4KZAhTJVmS44r6y9a3tM7zQd19KuYajfUADA8VeO65XhcXn4qO9H+AgfAdB+vnbc3YHNz29Gnky7DEBiYSJcrF0QmRMJqVyKZcOWgYiwPWI79kfvx9mEs3qJnSoz1fvS0rEl4vLjDIIEpVoJHoenFyS90PYFzD4+Gzte3AEnKyeUKEqw/uZ62IvsMWzLMDhaOsLKwgplqjKUqcpgK7CFUqOEJd8SrtauGNVqFOyEdlgbvhbpxeno5NoJ5xLPoat7V1x78xp23t2J6funw1fsi/yyfHzW7zMA2uQ319KuYVDzQTj14BQyizPxRf8vYGVhZXC+s4qzIFfLUaIoQVRuFE5NO6VL8pNWlIZp+6fpGneVVV4upLJP+n6Cz898rgsIVRoVuByu0eBRpVHhUvIl9PPphy23t2B/9H5M7TAVnd07o51LO4Pyr3d9HYvOL8K2F7bp/sbj8uPQ2a0zrCysdOUseBYoU5UZvSGl0qiw5PwSHJ5yGNYCa6y/sR4Lzi7AlA5T0Nm9s8ExjfW4O1k5aRO6VBGMOVo6Iq80z2D7qqurMKrVKFxKuYQvznyBZcOMDx19/9j7iM2LhUKtgKWFJc7POG/wua5tD6FKozL6Wezq3hU3M24aDQjj8uPwZ9ifSJemo7VTa7R0aIkXAl7Qy24akhKidwNggO8AfH/ZMGA4HnscW+9sBY/Lw66XdsHSwhLuNu64m30XAc4BumvB822f13verru7MGHXBBTJizDQdyCe3f4svh7yNRwtHXUBbnxBPH69+iuup1/H4OaDcSX1CpYNXYbjccfx/YjvdXMcLXgW8BH7IEWSAgFPgGRJMj7o+QF6ePYAQXuTY0fEDhQLtaMoQt8MxeGYw/jmwjcY5jcMdkI7fHFW+15f6fgKvjz7pa4dZCOwQUZxBoQ8IXzFvvhy0Je6jM/ZJdk4fP8wgl7VX5caAJ5r/Rx+vvIzPumnPwIkRZKClKIUyJQyJBQk4EDMARQrirXzWAsSkF2SDQBwtXZFH68+GOY3DDF5MTgYcxDz+8zHmNZjUKosRee/OkMsEmP5sOW6m+m3M2/D285bL6FXRdbzZnbNMLrVaHx/6XvkyHLw/fDv0dy+OWyFtmjv2h57ovboJd1KKkzCvJPzIJVLMarVKHwU+BGe++c5CPlCLBywEFYWVujg2gHWAmu9JVzMMULrqUZMkyaRSAgAtfiuBS27sIzG7RhHbj+4kcePHtTlry7k+ZMntVjVgvx/9aeuf3WlZj81o/Z/tKfAdYE07/g8WnR2EVl8bUFZxVm0KnQV5cnyKD4/njx+9KAea3rQxN0T6dj9YxSWFkZEREq1klRqFZUpyyhVkkrfhXxH3wR/Q99e+Ja23d5GE3dPpItJF+ntw28T/2s+vXbgNUooSKAyZRllSDOIiCi7OJuK5cVERJQiSaGJuydSUVmR7j3turuLmv3UjG5m3KTPT39OK6+sJI1GQ28deot+Df2VNBoNRedE0+67u+lwzGHd81RqFRER7YvcR8mFybQjYgepNWqSlEno89Of0/W066TRaKhUWUorLq6gfuv7UWFpIRERxefH0/KLy2n8jvEklUtpb+ReOnr/KKnUKkqVpFJcXhwRkV49pXIpDdw4kJZdWEYrLq7QHZ+IaMONDfT39b9p0dlFFJ0TTQeiDtAre1+huLw46ru+L80+NptkChmN3zGe5h6fS39c+4O+Ov8V7b67+3H8mejq+8uVX6jX2l707YVv6WLSReq8ujO9fuB1OhxzmPJl+brfxe9Xf6fs4mw6EXuCMqQZpNFodL+rPFkefRb0Ga0NX0uB6wIpVZJK/Tf0p3xZPslVcjoRe4LuZd8jIiKNRkMajYZKFCX0zuF3qO/6vrThxgYiIgpODCZJmYSup12nfFk+HY45TKEpoZQny6v2vZQqS0mhUugepxelExFRYWkhqTXqR/o9qdQqWhW6iv4X9D/SaDR0JOYIvbjrRQpJCtH9DoiICkoLavx680/Mp3/v/UsqtYom7p5In5z6xGT536/+TqO2jaIPT3xosO/Ng29SWlGayecq1UoavGkwlShKjO7XaDQ0ZvuYGtX7ZsZNGr5lOEXnRBMRkUwho1Whq+i1A6/RV+e/ouOxx2v0OlXZGbGTFpxZYHJ/XF4czT42+5GPUxdZxVk0ZNMQSihIMLr/g6MfUHx+vMH2f+/9SxtvbjTYHp4ebvS97ovcRx3+7EDT90+nvuv70vwT80mhUpBGozF6XIVKQbvu7jK5v6Gtv7Ge3jr0FinVSr3tN9Jv0MIzC40+Z+aBmZRWlEbF8mIavGkwTdg1gQpLC6lEUUJKtZJm7J9B7xx+h4ZuHkofnfyIBm4cSON2jDM4hjHfhXxHW25t0T3eG7mX1t9Yb1Buw40N9PvV3/W2aTQa+ur8V7Tyykq9bV+f/5qGbBqi+96qbPS20QbbFp9brPvOJCIa+89YgzJZxVn02oHX9LapNWoaunkoqdQqypfl06hto/S+V5RqJW29vZVWha6iafum6bb/dvU3WnFxhcExJu6eSDKFzGD7uB3jDK6TMoWMJuyaYFCWiCinJIde2fuKwfZSZSkN3TyUwtLCKDw9nAZsGEB/XPuDRmwZQafiThERUaoklV4/8LrBc6fvn667liUVJtGvob/Ss9ufpdyS3Bqd54dpNBrd87KKs+jZ7c/SK3tfoV5re9HQzUNp/I7xdDb+LGk0Gtp6eytFZEXU+hh1lSJJMfhOvJh0kcb+M5a+D/meFp5ZSIM3DTZZJ41GQ89uf1bv7+/Y/WM0bPMwWhq8lBacWUCrw1ZTdnG2br9MIaP4/HgqlhdTVnEWnYo7RSsurqAjMUdIUibRe32ZQkY5JTn03pH3KHBdIM08MJOGbh5KiQWJdXq/+6P209LgpaRUK2lf5D6asGsCRedE6/6WVWoVJRUmVfs6Y/8Zq2vjSiSSasszj4YFhE1cxYdl4bGF5PSdE60NX0ujt42m62nXSalWUstVLenX0F9J9I2IdkbspI9Pfkybb22myOxIXSN+zrE5Bq97LuEcTdg1gY7EHKm2DoWlhfT+0ffp7+t/6zXmD0QdqNN70mg0ugZ+ZelF6Ua/kM0pvSidXtz1oi5grFBx0a+OSq2iTTc30dfnv6YfLv1Qpy/CR1HRAKsLjUZT6+CrsTRiG5pULqWZB2bSoI2DDBqhpiw8s5AORR/S2zZ62+hqf4dn489SjzU9jAaF+bJ8vYZkdVIlqTR081D6K+wv+l/Q/+ib4G+oVFla4+fXxCt7X6HI7Eij+/bc22O0Md9QEgoSaPyO8Ub3Td4zmaRyqcH25MJkmvTvJIPtf1770+B8Emk/E3cy71BiQSLlluQ+cp0bmkajoaXBSw2u9/uj9tPa8LVGn3Mq7hQN2TSE1lxfQxtvbqT9Ufvppd0vUY81PajNb21ow40NFJ8fr2tAKtXKGl9rFCoFDd08VPf3/9X5ryg0JdSgnEqtohFbRujd5AlLC6M3D75p9JoYnBhMgzcN1mvISuVSmrh7okHZTTc36W7uqTVqowGhRqOh5/55Tm/b7czbejeLFp5ZSJeTL+se/3HtD/r45Me0/c52vUBRo9HQ24ffpnMJ5/Re7+HXr/Dqvld1NwArH/t/Qf8zWp6IDILTPFkejdo2ik4/OG1QtqisiPqt70frb6ynzbc207bb2wzK/HvvX/o+5HuKy4ujqXun0tzjcylFkmLy+HXVmL9zlGolrbyykq6mXjV6Lalsf9R+mn1sNqUXpdP0/dNp/on5j6U9pNFoKCIrwuiNhNq8xusHXqfBmwbT6wdep50RO+v0OiwgbFgsIGziKn9YMqWZRKS9UFdcBH+49ANJ5VLdF0NtLo4yhaxRX0wZpqmpTYOnRFFCQzYN0TVs1Rp1jXv3Voetpn/v/Wuw/WbGzSp75Iw5/eA0Tfp3Er2679VaPa+monKi6N0j7xrdt+DMAgpPD38sx62psf+MJblKbrDdVGObiOi9I+/RtdRretum759OWcVZ9V6/xiBPlmcQGH0T/A1dSLxg8jnbbm+jwHWBeg3hTGnmI/fwE2lvJHx9/muKyomiZ7Y+Y7KxffrBafr01Ke6x6/ue5WicqJMvu7NjJv0wdEPdI9DkkLom+BvDMqdTzhP34V8R0Ta3rWHewIrPPx5/unyT3Qi9oTucXRONM06NEuvfjklOUZf60H+A3rr0Ft620z9jc4+Ntugd3v33d206eYmo+WJtMFp5cD601Of0vmE8ybLq9Qq6rW2F43ZPsYg+CTSXt8+PfUpDdw40GyjAJqaHRE7aODGgUaD8MZGo9HUaLRPVcbtGEcFhQUsIGwgLMvoE6Qi86CjpaNuLsHHfT+GjcAGhyZrFzc1NXfIGEsLy1qVZximag8v+lwVKwsrfNjnQ136+Qf5D9DSoWU1z9KaEDDBIAscoJ3L4Ss2nrDGlGEthmHbC9uwYfyGWj2vpto6t0WSxPgSEVG5UUbnijWk3s1640rKlVo9Z8HABfjl6i+6x8WKYmQVZxnMNXtSOFo6olRVCrlKrtt2MfkiAr0DTT7nlU6v4PIbl2EjsNFtc7NxM5nEpzYmBEyATCnDsovL8Hzb5/WOUdmwFsNwP/8+3j3yLuYen4uWDi11SX+M6eLeBRnFGboMpSHJIUbfo5/Df4vTZ0gz4GFjmHQG0GakrZy+/3LKZfT36a973Ma5DTKLMyEpkyAqJwpp0jSD5SsqtHBogURJoi67LFWR/dLYWoTRudFVvvfR/qNxPO6/ebo3M43PKazA4/JwctpJHJ5yWG8eWgUrCyt8N+I7HJlyBN8N/87k6zD/mdxhMoJfC8awFsPMXZVqcTgco3OIa0PIM71EClP/WED4lGCBHcM0PWPbjEVKUQqe2fYMJu2ZhPFtx9foea7WrpApZYjJjdHb/qBAPwNjTVnwLKpNdPQoBDyBXjBRQaFW6GV4NYeXO7yMbXe26W1Ta9RVBi6etp4oKC3QLQPz+sHXdYtNP6mGNh+qCxge5D+Ar9j3sf7NVIXD4WD58OXY8sIWvNPjnSrLbnthG2Z0mYEJAROwePDial/7p5E/YemFpQC0QW8/734GZZrZNkOaVLtMTkax6YDQ284bKUUpALTJnkpVpbAWWOuVeb/n+xi+dTjePPwm5veZX2XdXu30Krbe2QrAdFIfoHzJi4fWQIzOizaaqbRC72a9cTXtKgDg7+t/Y3DzwdW2K+xF9tWWsRXawtLCssoyzNNJyBeiTFVm7mo8NVhAyDAM04htfn4zTrxyAj+M+EGXUbMmfnnmF7x79F29ht/9vPvwd/Sv4lnm0dW9Ky4kXTB3NYxq5dgKeaV5unUwAe26Ze7W7lU+b4DPAPRd3xepRangcXhPfEA4s+tMrL6+WrcMy8T2E81dpRqxFlijj1cfDGo+qEblfe19IRaK8ePlH+Fo6Wg0Cy6Py9PdDMiQZhhdlgLQLiF0N/suAO1afQHOAQZlnmn1DK68cQX7Ju3DmNZjqqzbGP8xOJd4DoB2+SQvW+MjEoz1EJpajqbye3KzdsOXZ79EcFIw/tf/f1XWhWEelZAnhELFeggbCgsIGYZhGjkOh2Ny+QNT/Bz88F7P97Dr3i7dtjRp1WsUmsuc3nPw3aXvdI1oQLtw+sNLGZjL+z3f1/W8AEBKUQq8xd5VPufzAZ/jja5vYPiW4Zjda/bjrqLZiUVijGgxAl+e+xLnEs9hSPMh5q7SY/Pbs78hrSgN8wNN99hxOVxoSFNlD2FHt46IyIoAoO1trDxctDI+l6+bElIVB0sHFJYVAtAuSWDqs+5i7YKckhzdY5lSBkt+9b10b3d/G34Oftg+YXu9DO1lmKoIeULI1YYjR5jHg32iGYZhnlAjWozQreVERNCQplE25OxF9hjeYjhOxp3UbUuTpqGZbeMIXnt79UZ4RrjucVx+HFo5tqr2ebO6z8KeSXvQz8dwWOGT6KPAj9DZrTP+ePaPGi2i3VTxuXysHLUSXdy7mCzjbuOOzOLMKnsIO7p2xNnEs1BpVLiQdMFkQFgbHjYeSJGk4GbmTZP187LzQmpRqu5xRFYEOrp2rPa1A70DMbPrTDYFhWkQIr6IBYQNqPG1DBiGYZh6IRaJIVPKoFQrcS/nXqMcLlphVKtRuJh8Ufc4WZIMH7GPGWv0HxuBDYoVxbpEHTUNCAHtsMCnBYfDwcT2E9HaqbW5q2J2fvbaxDLJRckmk0mJRWLM6DwD7xx5B3K13GTCmNqYEDABeyL34EbGDXR172q0jJedl27uIqBNjtPXu+8jH5th6pOQLzQ6t5x5PMwz45thGIZpEH28+mD9zfW4kHQBc3vPNXd1TApwDkBUbpTucWROpNE5Vebi7+iPmLwYtHVui9j82BoHhMzTyd/JH9G50VCqlVUOfZ7WaRoEPIHJ4K22RrYciZWhK+Fo6WgyWcvDcwivpF6pNvkOwzQ0NmS0YbEeQoZhmCfY5A6TkVmcide7vI7eXr3NXR2ThHz9FOP3su81qt610a1GY0/kHgBAriy3ygQcDDPAZwDOJp6t0dDZSe0nwd+pfnrvBTwB9k7ai+0TtpssU3nIZ64sFxrSGGQ3ZRhzE/FFLKlMA2IBIcMwzBOslWMrLBm8BCNajjB3VarlaOmIPFkeACBJktRohowCwPAWwxFfEI8vznxR4/UgmaeXm40bEgoS4Gfv1+DHthfZV5uQicvhQqVR4a/rf+Ht7m83UM0YpubYshMNiwWEDMMwTKPQ2a0zbmfd1s3Va0zJKyx4Fvj7ub/haOnIUu4zNXLq1VP4esjX5q6GUQHOAdh5dyfOJZ7DyJYjzV0dhjEg5Amh0LAewobC5hAyDMMwjUJnt864nXkb7Vzawc26+jT7Dc2CZ4GP+35s7mowTYSNwMbcVTCpu0d3zD0xFzfevtGobrwwTAWWVKZhsR5ChmEYplHo1awXLiRfaHTzBxnmSTOo+SD8/MzPcLdxN3dVGMYotuxEw2IBIcMwDNMoiEViiIVifBX8FQY1H2Tu6jDME8vV2hWTO0w2dzUYxiQhj/UQNiQ2ZJRhGIZpNDaM3wBAm/SCYRiGeTqxIaMNiwWEDMMwTKPBAkGGYRiGz+Xjw5MfmrsaTw32zcswDMMwDMMwTKPRz7sfbr1zy9zVeGqwgJBhGIZhGIZhmEbDVmgLP4eGX8fzacUCQoZhGIZhGIZhmKcUCwgZhmEYhmEYhmGeUiwgZBiGYRiGYRiGeUqxgJBhGIZhGIZhGOYpxQJChmEYhmEYhmGYpxQLCBmGYRiGYRiGYZ5SLCBkGIZhGIZhGIZ5SrGAsA6aN28ODoej9/O///1Pr0xycjLGjh0La2trODs7Y86cOVAoFHplIiIiMGjQIFhaWqJZs2b4+uuvQUQN+VYYhmEYhmEYhnmK8c1dgabq66+/xqxZs3SPbWxsdP9Xq9UYM2YMXFxcEBISgry8PMyYMQNEhN9++w0AUFRUhBEjRmDIkCEICwvD/fv38dprr8Ha2hofffRRg78fhmEYhmEYhmGePiwgrCNbW1u4u7sb3Xfq1ClERkYiJSUFnp6eAICffvoJr732Gr799lvY2dlh+/btKCsrw6ZNmyAUCtGhQwfcv38fP//8M+bPnw8Oh9OQb4dhGIZhGIZhmKcQGzJaR9999x2cnJzQpUsXfPvtt3rDQa9cuYIOHTrogkEAeOaZZyCXyxEeHq4rM2jQIAiFQr0y6enpSExMbLD3wTAMwzAMwzDM04v1ENbB3Llz0a1bNzg4OODatWv4/PPPkZCQgHXr1gEAMjMz4ebmpvccBwcHCAQCZGZm6so0b95cr0zFczIzM+Hn52f02HK5HHK5XPdYIpEA0A5BZRiGYRiGYZgnQUXbluXXePxYQFhuyZIl+Oqrr6osExYWhh49euDDDz/UbevUqRMcHBzw0ksv6XoNARgd8klEetsfLlPxB1/VcNHly5cbrae3t3eVdWcYhmEYhmGYpkYqlUIsFpu7Gk80FhCW++CDDzB58uQqyzzco1ehT58+AIC4uDg4OTnB3d0dV69e1StTUFAApVKp6wV0d3fX9RZWyM7OBgCD3sXKPv/8c8yfP1/3uLCwEL6+vkhOTmYflidAUVERvL29kZKSAjs7O3NXh3lE7Hw+edg5fbKw8/nkYef0yUFEkEqlelOwmMeDBYTlnJ2d4ezsXKfn3rx5EwDg4eEBAAgMDMS3336LjIwM3bZTp05BKBSie/fuujJffPEFFAoFBAKBroynp6fJwBMAhEKh3rzDCmKxmF34niB2dnbsfD5B2Pl88rBz+mRh5/PJw87pk4F1djQMllSmlq5cuYKVK1fi1q1bSEhIwO7du/H2229j3Lhx8PHxAQCMHDkS7dq1w6uvvoqbN2/izJkz+PjjjzFr1izdxWnq1KkQCoV47bXXcPfuXezfvx/Lli1jGUYZhmEYhmEYhmkwrIewloRCIXbt2oWvvvoKcrkcvr6+mDVrFj799FNdGR6Ph6NHj+K9995Dv379YGlpialTp+LHH3/UlRGLxQgKCsL777+PHj16wMHBAfPnz9cbDsowDMMwDMMwDPM4sYCwlrp164bQ0NBqy/n4+ODIkSNVlunYsSMuXLjwSPURCoVYvHix0WGkTNPDzueThZ3PJw87p08Wdj6fPOycMkztcYjlcmUYhmEYhmEYhnkqsTmEDMMwDMMwDMMwTykWEDIMwzAMwzAMwzylWEDIMAzDMAzDMAzzlGIBIcMwDMMwDMMwzFOKBYRNwIULFzB27Fh4enqCw+HgwIEDevuJCEuWLIGnpycsLS0xePBg3Lt3zzyVZaq1fPly9OzZE7a2tnB1dcXzzz+PmJgYvTLsnDYtq1evRqdOnXQLIQcGBuL48eO6/ex8Nm3Lly8Hh8PBvHnzdNvYOW1alixZAg6Ho/fj7u6u28/OZ9OTlpaGadOmwcnJCVZWVujSpQvCw8N1+9k5ZZiaYwFhE1BSUoLOnTvj999/N7r/+++/x88//4zff/8dYWFhcHd3x4gRIyCVShu4pkxNBAcH4/3330doaCiCgoKgUqkwcuRIlJSU6Mqwc9q0eHl5YcWKFbh+/TquX7+OoUOHYvz48brGBzufTVdYWBjWrFmDTp066W1n57Tpad++PTIyMnQ/ERERun3sfDYtBQUF6NevHywsLHD8+HFERkbip59+gr29va4MO6cMUwvENCkAaP/+/brHGo2G3N3dacWKFbptZWVlJBaL6a+//jJDDZnays7OJgAUHBxMROycPikcHBxo3bp17Hw2YVKplPz9/SkoKIgGDRpEc+fOJSL2GW2KFi9eTJ07dza6j53Ppuezzz6j/v37m9zPzinD1A7rIWziEhISkJmZiZEjR+q2CYVCDBo0CJcvXzZjzZiakkgkAABHR0cA7Jw2dWq1Gjt37kRJSQkCAwPZ+WzC3n//fYwZMwbDhw/X287OadMUGxsLT09P+Pn5YfLkyYiPjwfAzmdTdOjQIfTo0QMTJ06Eq6srunbtirVr1+r2s3PKMLXDAsImLjMzEwDg5uamt93NzU23j2m8iAjz589H//790aFDBwDsnDZVERERsLGxgVAoxDvvvIP9+/ejXbt27Hw2UTt37sSNGzewfPlyg33snDY9vXv3xpYtW3Dy5EmsXbsWmZmZ6Nu3L/Ly8tj5bILi4+OxevVq+Pv74+TJk3jnnXcwZ84cbNmyBQD7jDJMbfHNXQGmfnA4HL3HRGSwjWl8PvjgA9y5cwchISEG+9g5bVratGmDW7duobCwEHv37sWMGTMQHBys28/OZ9ORkpKCuXPn4tSpUxCJRCbLsXPadIwePVr3/44dOyIwMBAtW7bE5s2b0adPHwDsfDYlGo0GPXr0wLJlywAAXbt2xb1797B69WpMnz5dV46dU4apGdZD2MRVZEl7+I5Xdna2wZ0xpnGZPXs2Dh06hHPnzsHLy0u3nZ3TpkkgEKBVq1bo0aMHli9fjs6dO2PVqlXsfDZB4eHhyM7ORvfu3cHn88Hn8xEcHIxff/0VfD5fd97YOW26rK2t0bFjR8TGxrLPaBPk4eGBdu3a6W0LCAhAcnIyAPY9yjC1xQLCJs7Pzw/u7u4ICgrSbVMoFAgODkbfvn3NWDPGFCLCBx98gH379uHs2bPw8/PT28/O6ZOBiCCXy9n5bIKGDRuGiIgI3Lp1S/fTo0cPvPLKK7h16xZatGjBzmkTJ5fLERUVBQ8PD/YZbYL69etnsFzT/fv34evrC4B9jzJMbbEho01AcXEx4uLidI8TEhJw69YtODo6wsfHB/PmzcOyZcvg7+8Pf39/LFu2DFZWVpg6daoZa82Y8v777+Off/7BwYMHYWtrq7uDKRaLYWlpqVvvjJ3TpuOLL77A6NGj4e3tDalUip07d+L8+fM4ceIEO59NkK2trW5ObwVra2s4OTnptrNz2rR8/PHHGDt2LHx8fJCdnY1vvvkGRUVFmDFjBvuMNkEffvgh+vbti2XLlmHSpEm4du0a1qxZgzVr1gAAO6cMU1tmy2/K1Ni5c+cIgMHPjBkziEibXnnx4sXk7u5OQqGQBg4cSBEREeatNGOSsXMJgDZu3Kgrw85p0zJz5kzy9fUlgUBALi4uNGzYMDp16pRuPzufTV/lZSeI2Dltal5++WXy8PAgCwsL8vT0pAkTJtC9e/d0+9n5bHoOHz5MHTp0IKFQSG3btqU1a9bo7WfnlGFqjkNEZKZYlGEYhmEYhmEYhjEjNoeQYRiGYRiGYRjmKcUCQoZhGIZhGIZhmKcUCwgZhmEYhmEYhmGeUiwgZBiGYRiGYRiGeUqxgJBhGIZhGIZhGOYpxQJChmEYhmEYhmGYpxQLCBmGYRiGYRiGYZ5SLCBkGIZhGIZhGIZ5SrGAkGEYhmEYhmEY5inFAkKGYRiGYRiGYZinFAsIGYZhGIZhGIZhnlIsIGQYhmEYhmEYhnlKsYCQYRiGYRiGYRjmKcUCQoZhGIZhGIZhmKcUCwgZhmEYhmEYhmGeUiwgZBiGYRiGYRiGeUqxgJBhGIZhGIZhGOYpxQJChmEYhmEYhmGYpxQLCBmGYRiGYRiGYZ5SLCBkGIZhGIZhGIZ5SrGAkGEYhmEYhmEY5inFAkKGYRiGYRiGYZin1P8BrTFvws8yGcwAAAAASUVORK5CYII=", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pn = PowderPattern()\n", "if not os.path.exists(\"pbso4-n.dat\"):\n", @@ -940,7 +272,7 @@ " backgd=False, verbose=False)\n", "\n", "print(\"Fit result: Rw=%6.2f%% Chi2=%10.2f GoF=%8.2f LLK=%10.3f\" %\n", - " (pn.rw * 100, pn.chi2, pn.chi2/pn.GetNbPointUsed(), pn.llk))" + " (pn.rw * 100, pn.chi2, pn.chi2/pn.GetNbPointUsed(), pn.llk))\n" ] }, { @@ -952,14 +284,14 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "mc = MonteCarlo()\n", "mc.AddRefinableObj(c)\n", "mc.AddRefinableObj(px)\n", - "mc.AddRefinableObj(pn)" + "mc.AddRefinableObj(pn)\n" ] }, { @@ -974,60 +306,9 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "52ff63992bd74a9e9ac8c11c7a0f0f56", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC76klEQVR4nOzdd3hUVf4/8Pek15kkhDQIRZqR3qsU6dIWZNGVIiuLqyhZviCwKGJcVoqrgOCKZV06i4JigwVBNHQJbQlVOgmkkd6TSc7vj/zudXpmJtOSvF/P4yO5czNzJpkk9z2fzzlHIYQQICIiIiIionrHzdkDICIiIiIiIudgICQiIiIiIqqnGAiJiIiIiIjqKQZCIiIiIiKieoqBkIiIiIiIqJ5iICQiIiIiIqqnGAiJiIiIiIjqKQZCIiIiIiKieoqBkIiIiIiIqJ5iICQiIiIiIqqnGAiJiIiIiIjqKQZCIiIionpg8uTJzh4CEbkgD2cPgIiIiIhsZ8GCBXrHhBA4fvy4E0ZDRK6OgZCIiIioDtm2bRu2b9+ud/ynn35ywmiIyNUxEBIRERHVIc8//zxiYmIQFhamdXzatGlOGhERuTKFEEI4exBERERERETkeFxUhoiIiIiIqJ5iICQiIiIiIqqnGAiJiIiIiIjqKQZCIiIiojrkiy++QOfOnTFlyhRs2rQJbdq0Qffu3fHtt986e2hE5IK4qAwRERFRHdKzZ0/89NNPyM/PR6dOnXD16lX4+PhgyJAhOHLkiLOHR0QuhttOEBEREdUhvr6+8PPzg5+fHwYPHgyVSgUA8PDgZR8R6WPLKBEREVEd0qlTJ1RUVAAAtm7dCgAoKytDgwYNnDksInJRbBklIiIiIiKqp1ghJCIiIiIiqqcYCImIiIiIiOopBkIiIiKieiA1NdXZQyAiF8RASERERFQPTJs2zdlDICIXxPWHiYiIiOqQHj166B0TQuD69etOGA0RuToGQiIiIqI6JD8/H4mJiXr7Dg4dOtRJIyIiV8aWUSIiIqI6ZNmyZcjPz9c7vnjxYieMhohcHfchJCIiIiIiqqdYISQiIiIiIqqnGAiJiIiIiIjqKQZCIiIiIiKieoqBkIiIiIiIqJ5iICQiIiIiIqqnGAiJiIiIiIjqKQZCIiIiIiKieoqBkIiIiKiOmzx5srOHQEQuysPZAyAiIiIi21iwYIHeMSEEjh8/7oTREFFtwEBIREREVEds27YN27dv1zv+008/OWE0RFQbMBASERER1RHPP/88YmJiEBYWpnV82rRpThoREbk6hRBCOHsQRERERERE5HhcVIaIiIiIiKieYiAkIiIiIiKqpziHsJarrKzEgwcPEBgYCIVC4ezhEBERERHVmBAC+fn5iIqKgpsba1j2xEBYyz148ADR0dHOHgYRERERkc0lJSWhcePGzh5GncZAWMsFBgYCqPphUSqVTh4NEREROdPQoUOxc+dOeHl54e9//zvKy8uxcuVKjB07Ft9//72zh0dktry8PERHR8vXumRHgmq13NxcAUDk5ubKx1avXi1UKpVQKpUiOjpa3Lp1SwghxPDhw4VKpRJ+fn7id7/7nd59tWjRQvj5+Ql/f3/Rv39/IYQQKpVKpKSkaJ1XXFwsWrRoIZRKpejYsaPe/cyYMUN4enoKlUolmjZtqnf7u+++KwICAoRSqRSBgYEiNzfXqvtcvXq1cHd3F88995w8VqVSKfz8/MTkyZPN+OrZziOPPCLc3NyEEEI899xzolu3biI5OVncvn1bPPXUUxbd14ABA0S/fv1Ev379xB/+8AdRUVFh9NwXXnhBfszExETrn4AB//3vf8Wbb75p9Pb58+cLlUol8vPzbfq4RERkvX79+ml9vGHDBjF69GjRrVs3J42IyDqGrnHJPtiQW8fcvHkTixcvxrlz55Cbm4snn3wSTzzxBADgq6++Qk5ODrKzs/Hf//4XZWVlep+/detW5OTkICEhAQkJCQYf480330RERARyc3NRUlKCjz/+WO+ccePGIScnB3fu3NG7LS4uDhcuXEBubi4uXrwIPz8/q++zU6dO2Lhxo/zxtWvXkJSUhB07dqCoqKiar5bt3Lx5Ez4+PvLHGzZsQKNGjay+v//+9784cuQIfH19ceLECaPnGfo6Oco777yDTp06Oe3xiYhIX6dOnbT+Tk6fPh1z585Ffn6+8wZFRC6NgbCOWblyJYYNG4bmzZsDAD766CMkJyejrKwMfn5+AICcnByoVCp4eXkZvA8PDw80bNgQFy5cAACMGTMGQUFB6NChAwDgp59+wtNPPy3f9t133+ndx7fffguVSoXY2Fi929zd3fHRRx8hLy8PTZo0gYeHR43vU1NISAh8fX1x69Yt+diaNWvQoEEDREZGwtfXF/PmzUNERAT8/f1x6dIlrc+/cuUKwsPDERQUJH8dNe8nNDQUERER8PX1xZdffmlyLIacPn0agwYNwuOPP453333X5LkFBQUIDAxEZWUlhg0bhgEDBmDo0KHIy8sDAHTr1s3o506fPh0zZ87EwIED8dJLL+Fvf/sbBgwYIH/9kpKS8MQTT+Dxxx/HSy+9BKDqtTFs2DCMGDECO3fulO9r48aNePzxx9GnTx8cOnTI4udMRESOsW7dOjRr1kzr2KBBg3D16lXnDIiIXB4DoY7ly5eje/fuCAwMRFhYGH73u9/h2rVrWudMnz4dCoVC679evXppnVNaWorZs2cjNDQU/v7+GDt2LJKTk7XOyc7OxtSpU6FSqaBSqTB16lTk5OTUaPxJSUlo0aKF1jEfHx/8+uuvAKoCRGRkJNq1a2f0PrKyspCWloY+ffoAACZMmICcnBzk5eVh69atyM/PR1hYGACgYcOGyMrK0vr8N954A4WFhbhy5Qr+/e9/4/z581q3f/XVV9i5cycaNGiA9u3bQ61W1/g+NV27dg0lJSV49NFH9W5LSUnB008/jf/85z9ITU3F8OHDsXz5cq1zJk+ejOnTpyMnJwfXr1/Xu4/KykqkpqbizTffxLJly4yOw5iFCxfiq6++wpEjR3Ds2DGkpaXpnTNy5Eh07NgRaWlpaNeuHdzc3PDNN98gPj4eY8aMweeff27WYw0cOBA///wzLl26hI4dOyI+Ph7Hjx9HSUkJVqxYgQULFuDIkSMoKytDfHw8/vWvf2HixInYt28fIiIiAAAPHz7Ef/7zHxw+fBgHDx7E22+/bfFzJiIiIiLXxEVldMTHx+Pll19G9+7doVar8frrr2PYsGG4fPky/P395fNGjBiBDRs2yB/rVtvmzJmD7777Djt27ECDBg0wb948jB49GmfOnIG7uzsA4Nlnn0VycjL27dsHAHjhhRcwdepUg9UxczVt2lSrMgYAJSUlaN26NYCq6lROTg4aNWqEs2fPokuXLlrnTpkyBR4eHnj66acRExMDAJg4cSIAoEuXLkhISIBSqUR6ejoAIC0tDSEhIXpjAICoqCi0bdsWP/74o1Zr4RNPPIFbt25BrVYjJiYGK1eutOo+pa+jpjZt2kChUOCvf/0rPDy0X95Sta9ly5a4ffu2fOzy5cta5yUlJeH5558HAL37AIBHHnkEANChQwd89tlnerdXJzExEePHjwdQ9aZAUlISwsPDtc7573//i4CAALz66qvYtm0bJkyYgD//+c+4d+8ecnJy8NRTT5n1WFJVNyoqSv631Jp78+ZNdO/eHQDQvXt33LhxAzdu3MDMmTMBAD169MC5c+dw69YtXL58GYMGDQIAZGRkWPyciYiI6ouKigqUl5c7exguz9PT0+C1HDkeA6EOKZxJNmzYgLCwMJw5cwb9+/eXj3t7e8sVFF25ubn47LPPsGXLFgwZMgRA1dy86OhoHDx4EMOHD8eVK1ewb98+nDx5Ej179gQAfPrpp+jduzeuXbuGNm3aWDX++fPno1OnTrh79y6aNm2Kl19+GdHR0fDy8kJeXh6USiWUSiU8PDwQHBys9/lbt26Vw4pk9+7dWLBgAc6fP48JEybAx8cHn3/+OWbPno09e/Zg7ty5WucnJyejcePGKCsrw7Vr1+TnJzlw4ACGDh0KDw8PBAUFoaKiAgMHDrT4Pk+fPq03/mvXrhn9vmjS3LNRCKF1W5MmTbBp0yYsW7YMarXaYCg09rnm6NixI3bt2gWVSoWKigqTe+sEBQUhKysL+/btQ1RUFLZu3Yq1a9fqVVCN0Xyeus+5ZcuWSEhIwIgRI5CQkIDnnnsO2dnZOHfuHLp27YrTp0/D3d0djzzyCDp06IDvv/8eCoWCf+SIiGqh/Px8rtZoZ0IIpKam1rjbqz4JCgpCREQE99J2MgbCauTm5gKAXsXq559/RlhYGIKCgjBgwAC8/fbbcsvjmTNnUF5ejmHDhsnnR0VFoV27djh+/DiGDx+OEydOQKVSaYWlXr16QaVS4fjx40YDYWlpKUpLS+WPpblkkhYtWmDp0qXo2LEjhBBQqVSIj48HAPTt2xdJSUmorKzEmDFj9ObHGfPFF1/g7bffRtOmTTFlyhSUlJSgbdu2UKlUaNasGV544QUAQExMDK5cuYKpU6fKC9IMHToU/fr107q/v/zlL7h37548V/Gvf/0rKisrLb5PQ4HQFrZu3YoBAwbgww8/RIMGDXDz5s0a3d+RI0fkNwaGDx+OFStWYMKECaisrISXlxe+/vpr+Pr6an3OyJEj4ebmBi8vL3z++ecoLi7G22+/jSeffBKRkZE22Xty4cKFeO655/D222+jXbt26N+/Pzp06IBJkyZh586diIqKQtOmTREaGopnnnkGAwYMgLu7O9q3b4+1a9fW+PGJiMj2Nm/ejH/84x/w9PTEpEmT8Ne//hVA1cJsnANuX1IYDAsLg5+fH0OOCUIIFBUVyd1hkZGRTh5R/aYQ1pQ46gkhBMaNG4fs7GwcOXJEPv75558jICAATZs2xe3bt/HGG29ArVbjzJkz8Pb2xvbt2/HHP/5RK7gBkBd7+fjjj7Fs2TJs3LhRntsnad26Nf74xz9i0aJFBscUFxeHt956S+94bm5uvduH8F//+hdmz56Np59+WmulUWdo0aIF0tLSUFBQgFdffRUnTpzAF198UaOVRl3dggUL8O233+Ls2bPygkVERORcvXv3xuHDh+Hp6Ym1a9fi8OHD2Lx5M0aNGoWffvrJ2cOrsyoqKvDrr78iLCwMDRo0cPZwao3MzEykp6ejdevWeu2jeXl5UKlU9fIa19FYITThlVdewYULF3D06FGt49JqmADQrl07dOvWDU2bNsWePXswYcIEo/cnhDDawmfsHF2LFi3SaqeUNu2sj/70pz/hT3/6k7OHAQBaVcTqVg6tK9555x288847zh4GERFpcHNzg6enJwAgNjYWjz32GEaOHGn2VAOyjjSdgm+QWkb6epWXl3M+oRNxlVEjZs+ejW+//RY//fQTGjdubPLcyMhING3aVF6RMiIiAmVlZcjOztY6Lz09XV48JCIiwuDqkhkZGXoLjGjy9vaW5wFK/xEREREBwKhRo7T2IRwyZAg+/PDDOt2x4krYJmoZfr1cAwOhDiEEXnnlFXz11Vc4dOiQWfPsMjMzkZSUJPc/d+3aFZ6enjhw4IB8TkpKCi5evChv5dC7d2/k5ubi1KlT8jm//PILcnNz5XOIiIiILPHaa6/p7UPYtm1bvUXziIgkDIQ6Xn75ZWzduhXbt29HYGAgUlNTkZqaiuLiYgDQmiN2584d/PzzzxgzZgxCQ0Pl1TlVKhVmzJiBefPm4ccff8S5c+cwZcoUtG/fXl5cJCYmBiNGjMDMmTNx8uRJnDx5EjNnzsTo0aOtXmGUiIiISNehQ4fw0UcfOXsYVAv9/PPPUCgUXDm1juMcQh3r168HULWht6YNGzZg+vTpcHd3R2JiIjZv3oycnBxERkZi0KBB+Pzzz7WWc169ejU8PDwwadIkFBcXY/Dgwdi4caNWf/S2bdsQGxsrr0Y6duxYfPDBB/Z/kkRERFRvDB48GADw5z//mS16RKSHgVBHdYuu+vr6Yv/+/dXej4+PD9atW4d169YZPSckJARbt261eIxERERElrp58yZatmzp7GEQkYthyygRERFRHda0aVMAsNv+vVS7lZaWIjY2FmFhYfDx8UG/fv3kvZ8lx44dQ8eOHeHj44OePXsiMTFRvu3u3bsYM2YMgoOD4e/vj7Zt22Lv3r2OfhpUAwyERERERHWYWq0GAL3Vz4mAqn2Fv/zyS2zatAlnz55Fy5YtMXz4cK2tSubPn493330XCQkJCAsLw9ixY+WtNl5++WWUlpbi8OHDSExMxMqVKxEQEOCsp0NWYMsoERERUR0lhEB6ejqAqkoQOVZRURGuXr3q8Md99NFHzdoTsbCwEOvXr8fGjRsxcuRIAMCnn36KAwcO4LPPPkP37t0BAG+++SaGDh0KANi0aRMaN26M3bt3Y9KkSbh37x6eeuoptG/fHgDwyCOP2OlZkb0wEBIRERHVUbm5uXIlh4HQ8a5evYquXbs6/HHPnDmDLl26VHvezZs3UV5ejr59+8rHPD090aNHD1y5ckUOhL1795ZvDwkJQZs2bXDlyhUAQGxsLF566SX88MMPGDJkCJ566il06NDBxs+I7ImBkIiIiKiOkqqDAAOhMzz66KM4c+aMUx7XHNJiirqrzwohql2RVrr9T3/6E4YPH449e/bghx9+wPLly/Hee+9h9uzZVoycnIGBkIiIiKiOKiwslP/NQOh4fn5+ZlXqnKVly5bw8vLC0aNH8eyzzwIAysvLcfr0acyZM0c+7+TJk2jSpAmAqrmov/76q1bojI6OxosvvogXX3wRixYtwqeffspAWIswEBIRERHVUZohkIGQdPn7++Oll17C/PnzERISgiZNmuCdd95BUVERZsyYgf/9738AgL/97W9o0KABwsPD8frrryM0NBS/+93vAABz5szByJEj0bp1a2RnZ+PQoUOIiYlx4rMiSzEQEhEREdVRJSUlAKr2UWYgJENWrFiByspKTJ06Ffn5+ejWrRv279+P4OBgrXP+8pe/4Pr16+jYsSO+/fZbeHl5AQAqKirw8ssvIzk5GUqlEiNGjMDq1aud9XTICgyERERERHWUFAKVSiUDIRnk4+ODtWvXYu3atXq3DRw4UJ5nOHr0aIOfv27dOruOj+yP+xASERER1VFShVClUqGsrMzJoyEiV8RASERERFRHsUJIRNVhICQiIiKqoxgIiag6DIREREREdZTUMhoQEMBASEQGMRASERER1VGlpaXw9vaGj48PAyERGcRASERERFRHlZSUwNvbG97e3gyERGQQAyERERFRHVVaWgofHx8GQiIyioGQiIiIqI6qSYXwwYMHdhoVEbkSbkxPREREVEdJcwirC4R79+7V+lgIgbi4OLz11lt48skn7T1MqqXi4uLw9ddf4/z5884eCtUAAyERERFRHSW1jHp5eZncmH769Ono1q0bevXqBSEEACAnJwenT59mICSq49gySkRERFRHmdsyevv2bTz++OO4evUqhg0bhjfffBOtWrXCkiVLHDhaInIGBkIiIiKiOsrcRWX8/f2xaNEifPzxx/jxxx8xadIk5OTkOG6g5DSVlZVYuXIlWrZsCW9vbzRp0gRvv/02AGDhwoVo3bo1/Pz88Mgjj+CNN95AeXm5yfv797//jbZt28Lb2xuRkZF45ZVXHPE0qAbYMkpERERUR1m6qExgYCAWL16MvLw8XL161QEjJGdbtGgRPv30U6xevRr9+vVDSkqK/L0PDAzExo0bERUVhcTERMycOROBgYFYsGCBwftav3495s6dixUrVmDkyJHIzc3FsWPHHPl0yAoMhERERER1lLmLyuhSKpXo0aOHHUdGriA/Px/vv/8+PvjgAzz33HMAgBYtWqBfv34AgMWLF8vnNmvWDPPmzcPnn39uNBD+/e9/x7x58/CXv/xFPta9e3c7PgOyBQZCIiIiojqqpKQEvr6+8PT0RHl5OYQQUCgUzh5W/VFUBDij0vroo4CfX7WnXblyBaWlpRg8eLDB23ft2oU1a9bgxo0bKCgogFqthlKpNHhueno6Hjx4YPS+yHUxEBIRERHVUaWlpQgKCoKnpycAoKKiAh4evPxzmKtXga5dHf+4Z84AXbpUe5qvr6/R206ePIlnnnkGb731FoYPHw6VSoUdO3bgvffes/i+yLXxNwIRERFRHVVeXg4vLy85EJaXl1sUCIcNG4YffvjBXsOr+x59tCqcOeNxzdCqVSv4+vrixx9/xJ/+9Cet244dO4amTZvi9ddfl4/dvXvX6H0FBgaiWbNm+PHHHzFo0CDrxk1OwUBIREREVEdJAVAzEBqq5EyaNEnvmBACiYmJdh9jnebnZ1alzll8fHywcOFCLFiwAF5eXujbty8yMjJw6dIltGzZEvfu3cOOHTvQvXt37NmzB7t37zZ5f3FxcXjxxRcRFhaGkSNHIj8/H8eOHcPs2bMd9IzIGgyERERERHVUeXk5PD09tQKhIQkJCTh06BDc3H7bkUwIgalTpzpknOQ8b7zxBjw8PLBkyRI8ePAAkZGRePHFFzFjxgz83//9H1555RWUlpZi1KhReOONNxAXF2f0vp577jmUlJRg9erVePXVVxEaGoqJEyc67smQVRRCCOHsQZD18vLyoFKpkJuba3SSLxEREdVPHTt2RP/+/TFs2DCMHTsWKSkpiIiI0Dvvww8/xKRJkxAaGqp1/PPPP8fTTz/tqOHWWiUlJbh9+zaaN28OHx8fZw+n1jD1deM1ruOwQkhERERURxlqGTVk1qxZBo8zDBLVfW7Vn0JEREREtZG5LaNEVH8xEBIRERHVUWq1moGQiExiICQiIiKqo6SWUS8vL/ljXfHx8RgyZAhiY2Pxz3/+Ey1btkTXrl1x+PBhRw+XiJyAgZCIiIiojjKnZXThwoUYPXo0Dh8+jAULFmDUqFHo0qULxowZg61btzp6yETkYFxUhoiIiKiOMqdl1MfHB7t27cLZs2cxZMgQvP/++wCAGzdu4KOPPsKUKVMcOubajIv3W4ZfL9fACiERERFRHWXOKqMRERHw8fFBfHw8Dh06JJ+XnZ3NLRTMJH19i4qKnDyS2kX6eklfP3IOVgiJiIiI6ihzWkZ37NiB1NRUrFixAosXL0ZFRQU8PT0xYMAALFq0yNFDrpXc3d0RFBSE9PR0AICfnx8UCoWTR+W6hBAoKipCeno6goKC4O7u7uwh1WsMhERERER1lLmrjEZERGDNmjUOHFndExERAQByKKTqBQUFyV83ch4GQiIiIqI6SAgBtVqt1TJaVlbm5FHVXQqFApGRkQgLC+P2Hmbw9PRkZdBFMBASERER1UFqtRoAuA+hg7m7uzPoUK3CRWWIiIiI6iBzA+GBAwfQs2dP9OnTBzt27JCPjxo1yjEDJSKnYiAkIiIisrFz585h9OjRGD9+PI4fPy4fnzFjhsPGIIW/6lYZffPNN7F//34cPHgQp06dwuzZs1FZWckVM4nqCbaMEhEREdlYbGwsNmzYAA8PD8yfPx8nT57E3LlzcevWLYeNQQp/1VUIpRUyAWDVqlXYuHEjxo0bh4KCAoeNlYichxVCIiIiIhtTKBRo2bIlmjVrhp07dyIvLw8zZ86U2zgdwdyW0U6dOuHOnTvyx9OnT8fcuXORn5/vkHESkXMxEBIRERHZWFhYmFbIiouLw4ABA5CQkOCwMWi2jCoUCnh4eBgMhOvWrUOzZs20jg0aNAhXr151xDCJyMkYCImIiIhsbNeuXXoha8qUKSgpKXHYGDQrhNL/ucooEeliINSxfPlydO/eHYGBgQgLC8Pvfvc7XLt2TescIQTi4uIQFRUFX19fDBw4EJcuXdI6p7S0FLNnz0ZoaCj8/f0xduxYJCcna52TnZ2NqVOnQqVSQaVSYerUqcjJybH3UyQiIqJ6QHMOofR/cwNhYWEhSktL7TY2InIdDIQ64uPj8fLLL+PkyZM4cOAA1Go1hg0bhsLCQvmcd955B6tWrcIHH3yAhIQEREREYOjQoVq99nPmzMHu3buxY8cOHD16FAUFBRg9ejQqKirkc5599lmcP38e+/btw759+3D+/HlMnTrVoc+XiIiI6ibNllHAskDYo0cPNGrUCEIIu42PiFwDVxnVsW/fPq2PN2zYgLCwMJw5cwb9+/eHEAJr1qzB66+/jgkTJgAANm3ahPDwcGzfvh1//vOfkZubi88++wxbtmzBkCFDAABbt25FdHQ0Dh48iOHDh+PKlSvYt28fTp48iZ49ewIAPv30U/Tu3RvXrl1DmzZtHPvEiYiIqE6pScvo5cuXAQCJiYno0KGDfQZIRC6BFcJq5ObmAgBCQkIAALdv30ZqaiqGDRsmn+Pt7Y0BAwbI+wydOXMG5eXlWudERUWhXbt28jknTpyASqWSwyAA9OrVCyqVSmu/Il2lpaXIy8vT+o+IiIhqB81rA3szt2W0R48eev9JeJ1BVPexQmiCEAJz585Fv3790K5dOwBAamoqACA8PFzr3PDwcNy9e1c+x8vLC8HBwXrnSJ+fmpqKsLAwvccMCwuTzzFk+fLleOutt6x/UkRERGR3kyZN0jsmhEBiYqLDxmBuy2h+fj4SExPl84qLi+Hn5wcAnEdIVA8wEJrwyiuv4MKFCzh69KjebQqFQutjIYTeMV265xg6v7r7WbRoEebOnSt/nJeXh+joaJOPS0RERI6VkJCAQ4cOwc3tt2YsIYRD1wowt2V02bJlyM/Pl9/ITk9Pl29z5KqoROQcDIRGzJ49G99++y0OHz6Mxo0by8cjIiIAVFX4IiMj5ePp6ely1TAiIgJlZWXIzs7WqhKmp6ejT58+8jlpaWl6j5uRkaFXfdTk7e0Nb2/vmj05IiIisqv58+cjMDAQoaGhWsdfeeUVh43B3Arh+PHjtT7WvD5hhZCo7uMcQh1CCLzyyiv46quvcOjQITRv3lzr9ubNmyMiIgIHDhyQj5WVlSE+Pl4Oe127doWnp6fWOSkpKbh48aJ8Tu/evZGbm4tTp07J5/zyyy/Izc2VzyEiIqLaadasWXphEACefvpph41Bdw6hh4eHXDU0hRVCovqFFUIdL7/8MrZv345vvvkGgYGB8nw+lUoFX19fKBQKzJkzB8uWLUOrVq3QqlUrLFu2DH5+fnj22Wflc2fMmIF58+ahQYMGCAkJwauvvor27dvLq47GxMRgxIgRmDlzJj7++GMAwAsvvIDRo0dzhVEiIiKqMUMto+YEwszMTPnfrBAS1X0MhDrWr18PABg4cKDW8Q0bNmD69OkAgAULFqC4uBizZs1CdnY2evbsiR9++AGBgYHy+atXr4aHhwcmTZqE4uJiDB48GBs3boS7u7t8zrZt2xAbGyuvODZ27Fh88MEH9n2CREREVC/otox6eHiYte1Efn4+vLy8UFlZyQohUT3AQKjDnA1YFQoF4uLiEBcXZ/QcHx8frFu3DuvWrTN6TkhICLZu3WrNMImIiKgWys/P13oD2Z4MbTthToUwLy8PgYGBKCkpYYWQqB7gHEIiIiIiG9u8eTPat2+PLl26YMWKFfLxcePGOWwMui2j5s4hzM/Ph1KphI+PDyuERPUAAyERERGRja1fvx5nz57F2bNn4efnh4kTJ6KoqMisTiRbqUnLaGBgILy9vVkhJKoH2DJKREREZGNubm5yZS42NhaPPfYYRo4ciaysLIeNwdqWUSkQFhQUsEJIVA+wQkhERERkY6NGjcKdO3fkj4cMGYIPP/wQjRo1ctgY1Go1FAqFvKCdJS2jrBAS1R+sEBIRERHZ2GuvvaZ3rG3btti3b5/DxlBeXi63iwJVgdCcil9+fj6Cg4M5h5ConmCFkIiIiMjOLl68iHfeecehj1leXi63iwKWrzLKCiFR/cBASERERGRnQ4cOxcKFC1FZWemwx1Sr1VqB0NCiMufOncPo0aMxfvx4HD9+HEBVhfDkyZOsEBLVE2wZJSIiIrKz1NRUAEBGRgbCw8Md8piGWkZ1K4SxsbHYsGEDPDw8MH/+fJw8eRL5+flwd3dnhZConmCFkIiIiMhBUlJSHPZY5rSMKhQKtGzZEs2aNcPOnTuRl5eH9PR0KBQKVgiJ6gkGQiIiIiI70mzTfPDggcMe15yW0bCwMK3VUOPi4iCEQHJyMiuERPUEAyERERGRHRUVFcn/dmQgNKdldNeuXWjWrJn8sRAC5eXl+Oc//8kKIVE9wUBIREREZEeaVTZHB0JLVxmVKog+Pj6sEBLVEwyERERERHakGary8vIc9rjmtIzqkiqC3t7erBAS1RMMhERERER2pBkICwsLHfa4ui2j5lQIpQDICiFR/cFASERERGRHUsjy8PDQmk9ob7oto4bmEH7xxRfo3LkzpkyZgk2bNqF3794AqvYnZIWQqH7gPoREREREdiRV2YKDgx1aITSnZfS9997DsWPHkJ+fj06dOmHPnj3o2rUrvvrqK0yaNIkVQqJ6gIGQiIiIyI6kUBUSEuJyLaO+vr7w8/ODn58fBg8eDC8vL/lcVgiJ6ge2jBIRERHZkWaF0NVaRjt16oSKigoAwNatW+UAGBwczDmERPUEAyERERGRHTmrQmhOy+iaNWvg7u4ufyyNdd26dXKFUAjhmAETkVMwEBIRERHZkWYgdHSF0NpVRr29veHt7S3fDxHVXQyERERERHbkzDmElu5DKI3Vx8cHPj4+AMB5hER1HBeVISIiIrIjZ1UI1Wo1AgIC5I89PDwghEBlZSXc3H6rCZSWluLSpUvIysrC5cuXAWhXCDmPkKhuYyAkIiIisiOpwhYUFOT0VUaBqqAorSa6ZcsWrF+/Ht27d4dSqcSpU6cAAF9//TUaN26sNX4iqpsYCImIiIjsqLS0FF5eXvD390dxcbFehc5eDC0qA1QFRSkQfvzxxzh69Kg8ng0bNuCHH37Av//9b7z99tvy+Imo7uIcQiIiIiI7Ki0thbe3N/z9/QEAxcXFDnlc3TmEmhVCia+vL+Lj4+WPi4uL4ebmBl9fX84hJKonWCEkIiIisiMpEPr5+QEACgsL5XBoT7oto9K/NQPhli1bsGLFCixevBgVFRVIT0+Hm5sbtm7dipSUFHn8RFR3sUJIREREZEdSIPT19ZU/dgRTLaOSiIgIrFmzBseOHcPJkyfxwgsvQKlUIiIighVConqCgZCIiIjIjkpLS+Hj4yPP23NUIDSnZVSXNFYAXGWUqJ5gICQiIiKyI6lCKAWssrIyhzyuOS2juqQFcACwQkhUTzAQEhEREdmRFAgdXSE0p2VUV1lZmRxcWSEkqh8YCImIiIjsqKSkRCsQOrJCaGnLaFlZmXweK4RE9QMDIREREZEd6baMOnIOoaGW0eoqhFJwZYWQqH5gICQiIiKyI92WUUdVCI21jJqqEGpuWu/u7i4fI6K6i4GQiIiIyI6cWSG0pmVUCoQKhQJeXl4OC7BE5BwMhERERER25KwKobUto7ohkhVCorqNgZCIiIjIjpy17YRuy6ilFUIArBAS1QMMhERERER25IyN6YUQNZ5DCLBCSFQfMBASERER2ZFUIZTCmSMqblLoq8kqowArhET1AQMhERERkR1J+xBKi7Q4okIoBcKatoyyQkhU9zEQEhEREdmRVCEEHFdxk0KcpS2juovKeHl5MRAS1XEMhERERER2pBkIvb29HVIhlEKcpS2jhuYQsmWUqG5jICQiIiKyI2dUCG3VMsoKIVHdx0BIREREZEfOrBAaahm1ZFEZVgiJ6j4GQiIiIiI7cuYcQkMto5xDSESaGAiJiIiI7KSyshLl5eUOrxAaahl1c3ODm5ubxauMskJIVLcxEBIRERHZiRSmfHx8ADh3lVGgqkpoyaIyrBAS1X0MhAYcPnwYY8aMQVRUFBQKBb7++mut26dPnw6FQqH1X69evbTOKS0txezZsxEaGgp/f3+MHTsWycnJWudkZ2dj6tSpUKlUUKlUmDp1KnJycuz87IiIiMhRpGqgK7SMAlUBkRVCItLEQGhAYWEhOnbsiA8++MDoOSNGjEBKSor83969e7VunzNnDnbv3o0dO3bg6NGjKCgowOjRo1FRUSGf8+yzz+L8+fPYt28f9u3bh/Pnz2Pq1Kl2e15ERETkWCUlJQDgEi2jQFVAtGQOITemJ6r7PKo/pf4ZOXIkRo4cafIcb29vREREGLwtNzcXn332GbZs2YIhQ4YAALZu3Yro6GgcPHgQw4cPx5UrV7Bv3z6cPHkSPXv2BAB8+umn6N27N65du4Y2bdrY9kkRERGRwzm7Qmhpy6ihbSfYvURUt7FCaKWff/4ZYWFhaN26NWbOnIn09HT5tjNnzqC8vBzDhg2Tj0VFRaFdu3Y4fvw4AODEiRNQqVRyGASAXr16QaVSyecYUlpairy8PK3/iIiIyDXpBkJnbkwPmG4ZFUIY3JieFUKiuo2B0AojR47Etm3bcOjQIbz33ntISEjAE088If+CT01NhZeXF4KDg7U+Lzw8HKmpqfI5YWFhevcdFhYmn2PI8uXL5TmHKpUK0dHRNnxmREREZEvOqhBa0zIqHdetEHIOIVHdxpZRKzz99NPyv9u1a4du3bqhadOm2LNnDyZMmGD084QQUCgU8sea/zZ2jq5FixZh7ty58sd5eXkMhURERC7KUIUwMzPT7o9rTcuoFPw4h5CofmGF0AYiIyPRtGlTXL9+HQAQERGBsrIyZGdna52Xnp6O8PBw+Zy0tDS9+8rIyJDPMcTb2xtKpVLrPyIiInJNzp5DaEnLqDQuVgiJ6hcGQhvIzMxEUlISIiMjAQBdu3aFp6cnDhw4IJ+TkpKCixcvok+fPgCA3r17Izc3F6dOnZLP+eWXX5CbmyufQ0RERLWbFAg19yF09iqjxip+0nHOISSqX9gyakBBQQFu3Lghf3z79m2cP38eISEhCAkJQVxcHJ566ilERkbizp07eO211xAaGorx48cDAFQqFWbMmIF58+ahQYMGCAkJwauvvor27dvLq47GxMRgxIgRmDlzJj7++GMAwAsvvIDRo0dzhVEiIqI6wlDLqLNXGa2uQqj5OawQEtV9DIQGnD59GoMGDZI/lubsPffcc1i/fj0SExOxefNm5OTkIDIyEoMGDcLnn3+OwMBA+XNWr14NDw8PTJo0CcXFxRg8eDA2btwId3d3+Zxt27YhNjZWXo107NixJvc+JCIiotpFdx9CRy8qY03LqDRW6XxWCInqNgZCAwYOHAghhNHb9+/fX+19+Pj4YN26dVi3bp3Rc0JCQrB161arxkhERETOER8fj6VLl6JDhw4YMWIEFi5cCJVKheXLl6N3795a5zp72wlrFpXhHEKi+oWBkIiIiMgCCxcuxM6dO5GTk4Nhw4YhISEBfn5+mDBhAn7++Wetc529qIw1LaOcQ0hUvzAQEhEREVnAx8cH0dHRiI6ORkxMDBo3bgwAWtNCJFIglEKWoyqEarUaCoUCbm7a6wdylVEi0sVVRomIiGpo8uTJzh4COVBERAQqKioAAIcOHQJQFcAqKyv1zi0tLYWXl5e8x7AjK4S61UHA8pZRVgiJ6j5WCImIiMy0YMECvWNCCBw/ftwJoyFn2bFjh94xDw8Pre2mJKWlpVqLtDhyDqGhQGhthVAIIYdaIqpbGAiJiMhlnDt3Dm+88QY8PT0xf/58eV/WGTNm4LPPPnPy6KpWh96+fbve8Z9++skJoyFXo7uiJ6AfCB0VsNRqtcHxWDOHEAAqKioM3h8R1X78ySYiIpcRGxuLDRs2wMPDA/Pnz8fJkycxd+5c3Lp1y9lDAwA8//zziImJQVhYmNbxadOmOWlE5OpKS0vlTemB38JWeXm5VvCyNVMto8ZaVo1VCKXbGAiJ6ibOISQiIpehUCjQsmVLNGvWDDt37kReXh5mzpxptKLhaEuXLtULg0BVkKUq586dw+jRozF+/HitVtoZM2Y4cVTOU1JSotcyCsDu8wht1TIq3QfnERLVXQyERETkMsLCwnDnzh3547i4OAwYMAAJCQnOGxRZJDY2FmvWrMHq1auxevVqrFq1CgBcpsprCwcOHEDPnj3Rp08frfmEo0aN0jvXUMuodNyeTLWMGgt3uiuiav6bK40S1V0MhERE5DJ27dqFZs2aaR2bMmUKSkpKnDMgspirV3lt4c0338T+/ftx8OBBnDp1CrNnz0ZlZSWKior0zjW0qAzgvAqhOXMINcfLCiFR3cdASERERDZTH6q87u7uCAoKgp+fH1atWoWuXbti3LhxKCgo0DvXWIXQlVtGNSuLrBAS1X0MhERERGaypFWwvqoPVd5OnTpphd7p06dj7ty5yM/P1zvXWIXQFVtGy8rKtPZMBFghJKoPGAiJiIjMZEmrINVd69at0wu9gwYNwtWrV/XOdbUKYXUto7orn0r3wQohUd3FQEhERC5v2LBhzh4CAMtaBYkA5y0qY23LqG4g1Nwmg4jqJm4oQ0RELmPSpEl6x4QQSExMdMJo9EmtglJ1aPr06WjatCleeukl5w6MXFZpaSlUKpX8saMWlalJy6gmVgiJ6j4GQiIichkJCQk4dOgQ3Nx+a2ARQmDq1KlOHNVv1q1bp3fMWKtgfXXgwAEsXrwY7u7uiI2NxTPPPAOgap7lnj17nDw62yktLcWlS5eQlZWFkJAQtGvXzuBG8yUlJQgPD5c/ZoWQiFwNAyEREbmM+fPnIzAwEKGhoVrHX3nlFSeNiCwlzbP08vLC4sWLcezYMbz//vt1ap7lli1bsH79enTv3h1KpRI5OTk4e/YsXnrpJUyZMkXr3Nq27QQrhET1DwMhERG5jFmzZhk8/vTTTzt4JGQtaZ4lAKxatQobN26sc/MsP/74Yxw9elSrkq1WqzFw4MBqA6Erb0zPCiFR/cRFZYiIiGooNTXV2UNwGZZsyVBb+fr6Ij4+Xv5YCIH4+Hj4+PjonetqFUJLW0ZZISSq+xgIiYiIamjatGnOHoLLsGRLhtpqy5Yt+Oabb9C3b1/06tUL/fv3x/fff4+tW7fqnVvbt51ghZCo7mPLKBERubzU1FREREQ4exjo0aOH3jEhBK5fv+6E0ZCzREREYM2aNWada8nG9MbaPK3BVUaJyFwMhERE5PKmTZuGH374wdnDQH5+PhITE/UutIcOHeqkEdUOkydPxrZt25w9DLvJz8/H6tWrMWPGDDRq1EjrNt1A6O7uDoVCIQesxMRELFy4EDk5OXJYCw0NxbJly9C+fXurx8RVRonIXAyERETkMly9Ards2TLk5+cjODhY6/jixYudNCLXsmDBAr1jQggcP37cZaq89rBkyRKsWbMGR44cwYEDB7Ru0w2ECoUCXl5ecoVw1qxZ2L59O6Kjo+Vz7t27h8mTJ+PIkSNWj8lUy6g1FUIGQqK6i4GQiIhchm4F7saNGwgNDcXvf/97J4+syvjx4w0eHzBggINH4pq2bduG7du36x3/6aefXKbKaw8//fQTAGgtpiMpKSnRW2zG29tbrhBWVFRobVwPAEqlEhUVFTUak6mWUbVaDSEEFAqF1m2GAqG7uzvc3NzYMkpUhzEQEhGRy9CtwLVq1QrR0dHYsmWLk0dm2I0bN1BZWYnWrVs7eygu4fnnn8ecOXP0KlPp6em4ceOGk0ZlfxkZGfD19cXDhw+1jldWVkKtVmtVCAFoVQhXrFiB0aNHw8vLC0qlErm5uVCr1Vi5cmWNxmSqZVQam7u7u9ZtZWVlUCqVBj+HFUKiuouBkIiIXIZmBU6a55SUlISePXs6a0hGJScno1WrVoiMjMSDBw+cPRyXsHTpUuzatQsJCQn1Zp6lEAIPHz5E27Ztce7cOa3KnBT6dAOhZoWwf//+OHz4MIqLi5GTk4Pg4GCD21dYylTLqHS7oUCoWyEEqgIsK4REdRe3nSAiIpeUlJQk/9sVK4Tnz58HAKSkpDh3IC5GqvLqqqvzLPPz81FWVoY2bdoAALKzs+XbjAVCzQqhxNfXF5GRkTYJg4DxllEpJBpaWMZYIGSFkKhuYyAkIiKXdOvWLQDAI488gi+//NLJo9GXkZEh/7ukpMSJI3Et48eP11t0B6i78yylNtFHH31U62PAvAqhvVRXIbQkELJCSFS3MRASEZFLunPnDhQKBfr166dVdXEV6enp8r/v3r3rxJGQM0lvDEiBMDMzU77NkgqhrZnTMqqLFUKi+omBkIiIXFJ2djZUKhXCwsKQk5Pj7OHoycjIkC+eb9++7eTRuLZhw4Y5ewh2o1shNDcQShW3L774Ap07d8aUKVOwadMmtGnTBt27d8e3335bo3FZ2zKqO1bd8dYE59oSuSYuKkNERC6pqKgIfn5+CAoKcslAmJ6eLi8kohkC6rNJkybpHRNCIDEx0QmjcYysrCwAQIsWLbQ+BsxrGX3vvfdw7Ngx5Ofno1OnTrh69Sp8fHwwZMgQjB071upx2bJl1JoK4d69e7U+FkIgLi4Ob731Fp588kmL7ouI7IuBkIiIXFJhYaEcCLOzsw3um+ZMGRkZaNq0KS5cuIC8vDxnD8clJCQk4NChQ3Bz+60BSQiBqVOnOnFU9lVYWAg3Nzf4+/vDy8sLhYWF8m3S3FJTLaO+vr7w8/ODn58fBg8eLO9JaKi6Zwlbt4xaWiGcPn06unXrhl69ekEIAQDIycnB6dOnGQiJXAwDIRERuaSioiL4+/sjKCgI5eXlKC4uhp+fn7OHJcvIyECXLl2gUqmQm5vr7OG4hPnz5yMwMBChoaFax1955RUnjcj+pNepQqGAv7+/ViCUQp+pjek7deqEiooKuLu7Y+vWrQCqglmDBg1qNC5brjLq5eVlcYXw9u3bWLt2LRITEzF79mz07t0bv/zyC5YsWWLR/RCR/TEQEhGRS9KsEAJV1QVXCoTZ2dkICQmBUqlkhfD/mzVrlsHjTz/9tINH4jhSazMAo4HQVIVwzZo1evfp5eWFXbt21Whczq4Q+vv7Y9GiRcjPz8f777+P1atXu2TrNxExEBIRkYuSLrSlLQxycnIQFRXl5FH9JicnB0FBQVCpVAyE9Zg1gdDb29vu4UitVtt02wlrVxkNDAzE4sWLkZeXh6tXr1p1H0RkX1xllIiIXJJmyygAl6ouCCGQm5sLlUoFpVLJltF6rLCwEP7+/gCsqxDagxDC5hvT13SVUaVSiR49etToPojIPhgIiYjIJUkto9IiG64UCIuKilBRUSEHQlYITcvPz3f2EOzG2pbR6gJWamqq1WOSwp4lLaOVlZVQq9U2rxASketjICQiIpckXWgHBAQAgNaFtrNJ4ZQto9o2b96M9u3bo0uXLlixYoV8fNy4cU4clX1Z2zJaXYVw2rRpVo/JVCA0ViGUAp+tK4RZWVm4ceOG1nYcRORaOIeQiIhcktSKJ11sFxUVOXlEv5FaRKUK4ZUrV5w8Itewfv16nD17Fp6enli7di0mTpyIzZs3y9sO1EW6LaOa1dDi4mIoFAq9kKVZITTURimEwPXr160ekxTuDLWMGptDKI3HWIXQ0jc9fvzxRyxZsgShoaFQKpXIyclBdnY23nrrLQwePNii+yIi+2IgJCIilyRVXjw9PeHh4VFrK4Tnzp3DG2+8AU9PT8yfPx99+vQBAMyYMQOfffaZI4brMG5ubnIFKjY2Fo899hhGjhxZp6tDRUVF8jxXf39/rVbP4uJi+Pr66u2fqVkhzM/PR2Jiol54Gzp0qNVjkgKhJS2jpgKhNRXCJUuWYN++fQgMDJSP5eXlYeTIkQyERC6GLaNEROSSdFvxXLVCGBgYaDIQxsbGYs2aNVi9ejVWr16NVatWAQBu3brlkLE60qhRo3Dnzh354yFDhuDDDz9Eo0aNnDcoOzPVMlpSUqK3ByGgXSFctmyZwTmWixcvtnpM1bV/ApZXCC2dQ+jm5oaMjAytYxkZGXBz46UnkathhZCIiFySZiuen5+fSwbCoKAg+Pn5obi42Oi5CoUCLVu2BADs3LkTcXFxmDlzpsFVHmu71157Te9Y27ZtsW/fPieMxjFMrTIqVQh1aVYIx48fb/B+BwwYYPWYpHBnqkKoW/GTxmOrCuEnn3yCefPmITU1FUIIKBQKREZG4pNPPrHofojI/hgIiYjIJZmqvDhbbm4u3Nzc4O/vL49NuujVFRYWhjt37qBZs2YAgLi4OGzduhVbtmxx8Kid47vvvkPr1q3Rpk0bZw/FLky9To0FQnNWGa0JU9U+aYEbS1pGrakQxsTEYPfu3RZ9DhE5B+v2RETkcsrLy6FWq+ULbVerEBYUFCAgIAAKhQJ+fn4QQhhdNXLXrl1yGJRMmTIFJSUlDhipcxUUFGDs2LGYMGGCwx/73LlzGD16NMaPH4/jx4/Lx2fMmGHTx6muZbS6CqE9mGoZlY7pPr6t5xASUe3BCiEREbkc6aLaVVtGpUAIQGsVVEPzxeqzvXv3AoBTvi6xsbHYsGEDPDw8MH/+fJw8eRJz5861+dzN6lpGDT13b29vp1UIpWO6j2/rCiER1R6sEBIRkcuRwp+rtozqhgDpGGmTtuPQ3YfPEaS5m82aNcPOnTuRl5dnl7mbuhVCtVothytTLaNqtRqVlZU2HYvE1BxCd3d3uLu7O61CqLkKKxG5BgZCIiJyOVK4cvWWUQAuuU+iq5Au/lNSUhz+2NLcTUlcXBwGDBiAhIQEmz1GRUUFSktLtQIh8Nvr11TLKKDftmkrpsKd9PjOqhBOmzbNJvdDRLbDQGjA4cOHMWbMGERFRUGhUODrr7/Wul0Igbi4OERFRcHX1xcDBw7EpUuXtM4pLS3F7NmzERoaCn9/f4wdOxbJycla52RnZ2Pq1KlQqVRQqVSYOnWqvLcVEVF9JoWr2tYyasiBAwfQs2dP9OnTBzt27JCPjxo1yv4DdbK0tDQAVYHQ0ZvTO2Lupu7rVDcQGmsZNda2aSum5hBKx+1dIezRo4fef927d8epU6csuh8isj8GQgMKCwvRsWNHfPDBBwZvf+edd7Bq1Sp88MEHSEhIQEREBIYOHaq1j9CcOXOwe/du7NixA0ePHkVBQQFGjx6NiooK+Zxnn30W58+fx759+7Bv3z6cP38eU6dOtfvzIyJydbWpZbS6QPjmm29i//79OHjwIE6dOoXZs2ejsrLSpQKuvaSmpsLPzw+lpaXIzs529nBsztDrFNAOhLWlQigFZWMB1tIKYX5+Po4fP45Tp07J/yUkJKB79+4W3Q8R2R8DoQEjR47E3//+d4OrogkhsGbNGrz++uuYMGEC2rVrh02bNqGoqAjbt28HULUc+WeffYb33nsPQ4YMQefOnbF161YkJibi4MGDAKrmVezbtw//+te/0Lt3b/Tu3Ruffvopvv/+e1y7ds2hz5eI6jZHrbZoS7WpZbS6OYTu7u7yfoWrVq1C165dMW7cOBQUFDhsvM6SlpaGDh06AADS09OdPBrbqy4QGmsZtXeFsLpAaKhCaCoQWlMhXLZsmdYb5ZLFixdbdD9EZH8MhBa6ffs2UlNTMWzYMPmYt7c3BgwYIF9onTlzBuXl5VrnREVFoV27dvI5J06cgEqlQs+ePeVzevXqBZVKpXXBpqu0tBR5eXla/xERmRIbG4s1a9Zg9erVWL16NVatWgUANl9t0ZYMtYy6UoXQkpbRTp06ac1lmz59OubOnWvwYrmuSU1NRUxMDAA4rUKYlZWFGzduICsry+b3rbsarqtVCA0tKgMY3gfR1hXC8ePHIzg4WO/4gAEDLLofIrI/BkILSRPkw8PDtY6Hh4fLt6WmpsLLy0vvF6HuOWFhYXr3HxYWZnIFruXLl8tzDlUqFaKjo2v0fIio7nPUaou2ZKjy4koVQktaRtetW6c3l23QoEG4evWqXcfobAUFBSgqKnJaIPzxxx/Rt29f/PGPf8Rbb72F5557Dv369cOPP/5os8cwp2XU2LYTgPPmEBraB1EKhIZWhPX09IRara7RPNDy8nJMnDgR//73v62+DyKyD+5DaCWFQqH1sRBC75gu3XMMnV/d/SxatAhz586VP87Ly2MoJCKTpNUWpVASFxeHrVu3YsuWLc4dmAnSBbVUXXHlllFpjK5UwXQF0pubjz32GADYpUJnypIlS7Bv3z4EBgbKx/Ly8jBy5EgMHjzYJo9R05ZR3VCmVqvh4VHzSzNzWkYNVQi9vb0NXoNIlcby8nKj91mdnTt34ssvv8T9+/fx/PPPW3UfRGQfrBBaKCIiAoD+Pjrp6ely1TAiIgJlZWV674bqniOtvqYpIyNDr/qoydvbG0qlUus/IiJTHLHaoq0VFRXB29sb7u7uAFxvURnNQKhQKMwKrK5ckbUH6W9c8+bN4ePj4/BA6ObmhoyMDK1jGRkZcHOz3aWPLVpGExMT8eSTT6JPnz544okn0Lt3b4wZMwaJiYlWj6u6llFjFUJD1UzANnMe79+/DwC8biFyQawQWqh58+aIiIjAgQMH0LlzZwBVvyDj4+OxcuVKAEDXrl3h6emJAwcOYNKkSQCqlty+ePEi3nnnHQBA7969kZubi1OnTqFHjx4AgF9++QW5ubno06ePE54ZEZHr0GzJBKoqMGq1GuXl5UYvch3J0PgMBcLExEQsXLgQWVlZKCsrQ0lJCUJDQ7FmzRp06dLFkUN2OM0pFsHBwQ5vGf3kk08wb948pKamyt03kZGR+OSTT2z2GLoVQi8vL7i7u1u07cSrr76K7du3a3X73Lt3D5MnT8aRI0esGldZWRk8PDyMdhwZqxAaC4SaFUJrSW8IPHz40Or7ICL7YCA0oKCgADdu3JA/vn37Ns6fP4+QkBA0adIEc+bMwbJly9CqVSu0atUKy5Ytg5+fH5599lkAgEqlwowZMzBv3jw0aNAAISEhePXVV9G+fXsMGTIEABATE4MRI0Zg5syZ+PjjjwEAL7zwAkaPHo02bdo4/kkTEbmQoqIi+SIb0J6np1KpnDUsAEBlZSUKCwvlCiFgvII5a9YsPPXUU/jiiy/w+OOPQ6lUIikpCQMHDsSHH36IKVOmOHLoDpWamgpPT08EBwcjJCTE4RXCmJgY7N69266PoRsIFQqF/FoQQqCgoECrZVWiWSGsqKjQe00rlUqtbaosVVZWZrK10xkVQgZCItfFQGjA6dOnMWjQIPljac7ec889h40bN2LBggUoLi7GrFmzkJ2djZ49e+KHH37Q+qW/evVqeHh4YNKkSSguLsbgwYOxceNGuf0JALZt24bY2Fh5NdKxY8ca3fuQiKimsrKykJWVhZCQEISEhDh7OCbpBkLNVjxnB8Li4mIIIbQCobEKYUVFBT7//HMcO3ZMblXMycnBtWvX8NFHH9XpQJiWloawsDC4ubk5JRA6QmFhITw9PbWq1lIglEKhoRZJzYC1YsUKjB49Gl5eXlAqlcjNzYVarZa7jqxR3Vw/ayuENQmEmZmZAKDXxktEzsdAaMDAgQNNrqSlUCgQFxeHuLg4o+f4+Phg3bp1WLdundFzQkJCsHXr1poMlYioWj/++COWLFmC0NBQKJVK5OTkIDs7G2+99ZbNFtewtcLCQqMVQmfTnTcGGA+EK1aswLhx49CtWzc0a9YMubm5KC8vx9NPP43vv//eYWN2hvT0dHk1bWe0jDqC7hsXABAQEICCggJ5W5HqKoRPPvkkDh8+jOLiYuTk5CA4ONhoMDOXORVC3TnEpgKhLVZFld4QKC4uNvh1I9c2efJkbNu2zdnDIDthICQiquMcsdqirem22kkXj66wsIy0obw5FcL+/fvjypUr+Pvf/45ffvkFCoUC3t7euHv3bp1/QzA/P1+u5gYGBiI5OdnJI6qSn59vMKRZw1CwUalUyM3NlfcJNlQhNBSwfH19DS5AY42ysjKTc229vLz09jE2FQil4zXZNzErKwstW7bEjRs38PDhQzRp0sTq+yL7WbBggd4xIYTJPbKp9mMgJCKq46TVFjUvgm292qKt5efn683RA1yjQmgoEJpaBTUiIqJeTgfQXIlVqpo50ubNm/GPf/wDnp6emDRpEv76178CAMaNG4dDhw7Z5DF0K9mAfiA0FD6NbTthK7aeQygF2JqsTJyZmYl27drhxo0byMzMZCB0Udu2bcP27dv1jv/0009OGA05CgMhEVEd54jVFm2toKAADRo0kD+urS2j9VlBQYHcMuqMQLh+/XqcPXsWnp6eWLt2LSZOnIjNmzfXaHN1XUVFRVqvAwAICgpCTk6OyZZRewdCW88h1GxxtVZWVpa8/Y30tSHX8/zzzyMmJkb+2ZVMmzbNSSMiR2AgJCKq4xyx2qKt5efna+2dWBtaRk2tnlibFvSxlYKCAjzyyCMAnBMI3dzc5LbJ2NhYPPbYYxg5cqRNF7cx1DIaFBSE5ORkky2jCoUCnp6eKCsrw4EDB7B48WK4u7sjNjYWzzzzDABg1KhR2LNnj1XjsqZCWFpaWm3LqLUVQrVajaKiInlrDd12VXIdS5cuNXg8NjbWwSMhR2IgJCIil6PZbgjU3pbR2rigj61otv06IxCOGjUKd+7ckd9YGDJkCCIjIzFv3jybPYaxOYTVVQiBqpBVUlKCN998E/v374eXlxcWL16MY8eO4f3336/Ra92cOYSGKoSaVXlNNa0QSl+Lxo0bA2AgJHI1DIRERORydBf+kBbbcIVAaEnLaG1c0MdWDM0hlFqWHeG1117TO9a2bVvs27fPrM83Z1XFwsJCoy2jeXl58PT0lMOULikQuru7IygoCACwatUqbNy4EePGjatRgLb1HMKaVgilQBgeHg53d3cGQiIXw0BIRFRPpaamIiIiwtnDMEi3Quju7g4fHx+XaRl1d3fXutA3Fghr44I+tqK5UmxAQAAqKipMtiXa29dff40OHTrIbaySmqyqWFRUhNDQUK1j0qIy0psaxgKwr68vSkpK0KlTJ61K5vTp09G0aVO89NJLZj4zfa42h1CzfVapVDIQErkYBkIionrm2rVriI6OxrRp0/DDDz84ezh6hBAGtwZwlYVbpLCqeaFvrGW0Ni7oYyuaoV6qohUUFDglEN6/fx/jx48HAL1FZWqyqqKxOYQlJSV6bwTo8vHxQXFxscH9igcNGoSrV69W+/jGVNcy6qwKYWBgIAOhAfHx8Vi6dCk6dOiAESNGYOHChVCpVFi+fDl69+7t0LF88cUXWL58Odq2bYuhQ4di2bJlUCqVeOONNzB27FiHjoUch4GQiKiO69Gjh/zviooKnDt3Do0aNXLZlf5KS0uhVqu1KoSAawVC3TZBY2OrjQv62EJZWRnKy8u1WkaBqq+dbkXNEX799Vf538XFxVr7/dVkVUVDLaPS3os3btxAw4YNjX6uVCG0B1PhDrC8QiiFS1YI7WPhwoXYuXMncnJyMGzYMCQkJMDPzw8TJkzAzz//7NCxvPfeezh27Bjy8/PRqVMnXL16FT4+PhgyZAgDYR3GQEhEVMfl5+cjMTERHh4e2LBhA55//nmMHDkSt2/fdvbQDJLmTulWV0zt9edIhYWFRsOqI+fIuTLdhXc0A6Ez3LhxQ/733bt38eijj8of12RVRUMVQikEXrp0CW3atDH6uVKF0B5KS0v1xqXJ0gqhQqGQ5zxagxVC03x8fBAdHY3o6GjExMTIi++4u7s7fCy+vr7w8/ODn58fBg8eLL/B4eHByFCX1f1JDERE9dyyZcvkCzKpNe7WrVtYvHixM4dllLHVGV2pQmgoEAKw2wV+beNqgfD69evyvM27d+/a7H4NBcKoqCgAwM2bN/WqjpqqqxDWpIJfWlpqdDEbwPIKIWA4RJpLCoAMhIZFRESgoqICAHDo0CEAVVt1VFZWOnwsnTp1kseydetWAFUVf2Mr0FLdwEBIRFTHjR8/HsHBwcjKysKhQ4cQGRmJW7duYcCAAc4emkGGtnUAqkKXK1QIDbWMWrothqu269qKqwXCO3fu4PHHH4ebm5tNA6GhltHIyEj536YCoVQh3Lx5M9q3b48uXbpgxYoV8u3jxo2zelzmhLvKykqo1WqzP8fHx6dG2074+vrCw8ODgdCAHTt26FUDPTw8cODAAYePZc2aNXpj8fLywq5duxw+FnIcBkIionri7t27qKysxKhRo3Dv3j2ti0FXYqxC6O/v7xIVQmMto4B+ILTHxX5t4GqBMC0tDY0bN0ZkZCSSk5Ntdr+GKoTe3t7yPElzKoTr16/H2bNncfbsWfj5+WHixIly+7G1zKkQAtCqEpoTIq1tGc3Ly4NSqQQABkILsE2THIWBkIionkhNTQUAdOnSBRUVFcjMzHTyiAwzVSF0hUBoqmVUd3z2uNivDVwtEKanpyMsLAyhoaF6r/svvvgCnTt3xpQpU7Bp0ya0adMG3bt3x7fffmvyPsvLy1FeXm5wrp407yo8PNzo50sVQjc3N3nRltjYWLzwwgvw9/fHtWvXLH2aspKSErMCoVTxU6vVUKvVdmsZ1Vw1mIGQyPXwrQcionpCCoSPPfYYAODhw4cmL1idxVSFMDs72xlD0lJQUIBGjRppHZPaBnVbWnUv9h977DGMHDkSWVlZjhmsk0jfQykI+vj4wM3NzSUC4cOHD7Vus3ZVRSn867aMAkDTpk1x8+ZN+WfNEKlCOGbMGK19CKV9EmvSHl3dfo9SWJQqhFLQq65llBXC+svQVkBUd7BCSERUT6SmpqJBgwbyohe6F8auwtUrhJa0jI4aNQp37tyRPx4yZAg+/PBDvUBZ1+h+DxUKBQICApwSCMvLy5GVlYXw8HA0aNBAr0IoraoYHh4ur6ro7e1dbbue9L02VCHcuHEjzp07hy5duhj9fClgvfbaa3IYLCsrw6BBgwCgRvvPmdsyKgVBKejV1grhuXPnMHr0aIwfPx7Hjx+Xj8+YMcOmj2Mv1lap7aG+trnXd6wQEhHVE6mpqYiIiJDnN2VkZDh5RIbl5+fDy8tLvmiVuEogtKRl9LXXXtP7/LZt22Lfvn32G6ALKCgogJubm9Z+f84KhNLrXKoQ6rZiSqsquru7W7SqoqlAKG0hYIqvr6/eqrSXLl2S5ziWl5eb/HxTqmsZ1a0QmhMIbVkhLCwslL/mthAbG4sNGzbAw8MD8+fPx8mTJzF37lzcunXLJvdvb87Y+0+tVht800Nqc/f09MTatWsxceJEbN68uc63udd3rBASEdUTUiAMCgqCu7u7S1cIdQMX4Dr7EJpaZbS68a1fvx5z586129hchfQ91NyT0VmBMD09HUBVIDRUIbR2VUXpe22oZdQchgLW/fv3AVSFpposflNdy6izK4TSMVtRKBRo2bIlmjVrhp07dyIvLw8zZ8502YWzdFlbpbZUYmIinnzySfTp0wdPPPEEevfujTFjxiAxMVE+R7fN/cUXX8TIkSNd9u8F2QYDIRFRPfHw4UM0bNgQCoXC4FwqV2FsroqrVAgtaRnVVFBQgFmzZmH16tX1YtsJ3a+RswKhNF8zJCTEpq97UxVCcxiqEN6/fx/u7u5YsmQJkpOTra7KuFqFMD8/X6tCCMCmbaNhYWFardlxcXEYMGAAEhISbPYY9uSovf9mzZqFjz/+GMePH8fhw4dx4sQJ/POf/8SsWbPkc+prm3t9x0BIRFRPZGVlISQkBAAQGhrq0i2jrhoIKysrDQZCb29vKBQKk+NLSkqS/33z5k27jdEVuFIglIKHUqlEaGgoSkpKbPI6qmkgNBSwkpOTERERgaZNm6KoqMiqRZQqKytRXl7uUhXCvLw8vQqhLQPhrl275HmYkilTplgdYB3NUXv/VVRUyCvgSpRKpRxGAWjNaZXUhzb3+o5zCImI6gnNQNiwYUOXrRBW1zIqhNBqRXQkYytLKhQK+Pn5mWwZ1Q2EnTp1sssYXYErBUKpGqtUKhEcHAwAyM7O1gpypaWluHTpkvwz0q5dO705rLpq2jJqrELYqFEjNG7cGEBVQJR+Zs0lVf3sUSG0dqsae1cIyTwrVqzA6NGj4eXlBaVSidzcXKjVaqxcudKq+4uPj8fSpUvRoUMHjBgxAgsXLoRKpcLy5ctrtCgSOR4DIRFRPaFbIXTVQGiqQiiEqHZ+lD1JIcBYYDVVebp37x4UCgV8fHxw48YNu43RFRgLhM7Y+zIvLw+enp7w9vbWCoRSC9yWLVuwfv16dO/eHUqlEjk5OTh79ixeeuklTJkyxej92qJCWF5errW4yoMHD/QCYYcOHSy6XyncudIqo/auEJJ5+vfvj8OHD6O4uBg5OTkIDg6u0e/ShQsXYufOncjJycGwYcOQkJAAPz8/TJgwAT///LPtBk52x0BIRFQPlJWVoaCgQCsQuuoKfMYqhNKFd2FhodMCoVThMlQVqq6lNSkpCREREYiOjsbFixftNkZXYCwQ3r171+Fj0VzhMigoCACQk5Mj3/7xxx/j6NGjcHP7bRaNWq3GwIED7RoINeedSmEpPT0dPXv2REREBNzc3KxaWMacPQWtrRBaEwjVajWKi4vl74H0XBkItVlTpbaWr6+v1grA1vLx8ZFX1I2JiZHfyLDV6rHkOJxDSERUD0hzkWrzHEIphDlzHqHUfmjNHMf79++jcePG6NGjB06dOmW3MboCV2sZNRUIfX19ER8fL38shEB8fHy1bzoUFhbC29vb6otfQ6/n9PR0hIWFwcPDA5GRkVYFQntWCK2Zk6f7MyO9Lmy5sJIr7eNnjS1btmDQoEHYtGkT4uPjsWHDBgwaNEheYMZVRUREyPMPIyMjAVS9AVBZWenMYZEVWCEkIqoHNFdaBGrnHEJzVvK0N1OBsLptMdLS0hAREYGePXvigw8+QHZ2ttzCWNfk5+ejSZMmWscCAgKcsrqqZruiFAg1F2vZsmULVqxYgcWLF6OiogKenp7o1q1btRfjRUVFVlcHAf2tSoQQciAEgMaNG9eoQmjrOYTWtoxqzuEEqqpHfn5+Nn0tOGMfP1uytkptC+fOnUPnzp3NPn/BggXyv5s0aYJFixZBCIHjx48DADw8PHDgwAGbj5Psi4GQiKge0A2EoaGhKC4urvFFrT1UVyF05l6ENakQpqamonPnzmjVqhWAqjmFdTUQFhQU6H2NlEql0wKhFEZ8fHzg4+OjVSGMiIjAmjVrLL7fmv7saLZAA0Bubi7Ky8sNBsIHDx4gKirKrPs1p2XUWIXQVIi0dtsJqTVU8/UQGBho02qxtI+fn5+fvI8fAJvv42cvUpV60KBBAMyvUlvqww8/1PpYCIH169dj1qxZWltPmLJt2zZs375d7/hPP/0k/7u2fN3pN2wZJSKqBwwFQgAuWSU0FCYA168QVhcI09LSEB4ejoYNGwJwza+9rRiq8iqVSuTl5Vm9t561NFtGgaoqoWYg1FVZWYnRo0drtZEaUlhYaPUKo4D+GxxSC/fNmzexd+9elJeX4+rVq9izZw/GjRuHvXv3mnW/5oQ7aeNxzQqhl5eXydV7bVUhBGxfLXbUPn72smXLFnzzzTfo27cvevXqhf79++P777+3ecvoP//5T3z//ffw8/ODv78/AgIC4ObmZrAjw5jnn38eMTExGDBggNZ/06ZNs+lYybEY4YmI6gEpEEoVKSkQZmRk6LX2OVt+fr7Lt4waW2XU2EIZQgi5ZVQKhK46h9MWjAXCiooKFBUV1ShIWSovL0/+mgNVgdDU/n5XrlzBnj17sGfPHpPh1VYto9LrOT09HQDwj3/8Az179kRFRQXS0tJw+vRp5OTk4PTp03jyyServV9zWkYVCgW8vLzkcwsKCqr9nti6QmjLQGiowmuPffzsxdoqtaUuXryI//znP9i5cycmTZqEp59+Gp9//rlFYW7p0qUGj8fGxtpqmOQErBASEdUSarXa6s/NyspCQECA3CrmqlWqiooKFBcXu3TLqL+/v9ZcH4mpCmFOTg7KysoQHh6OgIAAeHt717tAKLXxOXp1Sc2WUaDqTRFTFcITJ07I/5YqaIbYeg5hWloaAODs2bN4/PHHUVBQgLKyMvzf//0fWrVqhSVLlph1v9LehtWtIunt7S0/P2NVed3zbVUhtHUgrItyc3PlN/JsRaFQ4Nlnn8WXX34JtVqNsWPH1uhvwIEDB9CzZ0/06dMHO3bskI+PGjXKFsMlB2IgJCJyYYmJiXjyySfRp08fPPHEE+jduzfGjBmDxMREi+5HdwETqZXK1QKhNK/IlSuExi6cTQVC6WI/PDwcCoXCpVd5rany8nKUlpYarBACjg+Eut+z6lpGz549K//7wYMHRs+racuo7hzClJQUeHp6ygt1vPnmmwCASZMmmRyvLnO3w/D29pbDo7GqvCYfHx+o1Wq5NdNc0vdb8/5tPYfQXPHx8RgyZAjmzp2LH374AZ07d8bAgQO13gRwFd26dbNby6ubmxumTp2Kb7/9Fl9//bXV9/Pmm29i//79OHjwIE6dOoXZs2ejsrLSqb+jyTpsGSUicmGzZs3C9u3bER0dLR+7d+8eJk+ejCNHjph9P5qb0gOQF2BwtUBoao6ej48PFAqF0yuEpgKhsbGlpqYCqGoNA1x7ldeakr4GrhIIdSuEQUFBSElJMXr+vXv30KpVK1y/fh1JSUlo1qyZwfMKCwttuqhMSkoKIiIi5Hl8LVq0AFD1O0B63ZjD3ECouQ2IuRVCoKol1ZLnnZ+fDz8/P62FRgICApCZmWn2fVgrNTVV62tXmzZSv3HjBoCq14W0pYOtubm5mb1YkURzgSN3d3d55d5Vq1Zh48aNGDdunFPCPtUMK4RERC6soqJCbrWTSHOxLKEbCAHX3IvQVIVQoVBUu3CLvZkKhP7+/mZVCIGqQOhqX3tbMfY9dGaF0JKW0eTkZPTq1Uv+tzHmhChT3N3d4ePjI79mdC/8pX/n5eWhR48eZt+vuS2jmlU6cyuEACyeR6i57YfmYzuiZVR3bpy0kXr79u3ljdRDQkJcbiN1zX38jh496rRx7N27V+s/3QWOOnXqhDt37gAAhg0bhunTp2Pu3LlsB66FWCEkIpdy7tw5vPHGG/D09MT8+fPRp08fAMCMGTPw2WefOXl0jrdixQqMHj0aXl5eUCqVyM3NhVqtxsqVKy26H0OB0BWrVKYqhED1K3nam7Uto6mpqfD19ZU/t2HDhrh//77dxulM1QXC3Nxch42loqJCL7hV1zKalJSEp59+Gkql0mQgNPVaMJdmVVk3EPr5+UGpVJqsZhpSVFQELy+vakOOZigz57loVggtoRvIdR/bFgwFZiEErl+/rnVM2kjd3d0dhw4dAuCaG6knJSXJ/zbVtmyN0tJSXLp0Sf6b0K5dO3luua7p06ejW7du6NWrl7zA0tWrV7FgwQJs3LgRQNW+hEIIeRrDoEGDcPXqVZuOmeyPgZCIXEpsbCw2bNgADw8PzJ8/HydPnsTcuXNx69YtZw/NKfr374/Dhw+juLgYOTk5CA4OtmpvqqysLL3VRENDQ10uEEphwpq2TEeoyRxCaf4gUBUIz58/b69hOpU1FcL4+HgsXboUHTp0wIgRI7Bw4UKoVCosX74cvXv3rvFYdFtGja0yWlRUhKysLDRu3BjR0dHVVggtWa7fEH9/f61AKFUmgaqf2QYNGuD27dsW3ae5i93otoxKKw8bI/3esTQQGqsQ2rKtMD8/H4mJiXr73w0dOlTrY82FTySuuJH6zZs35X9b+oaAKVu2bMH69evRvXt3KJVK5OTk4OzZs3jppZcwZcoUvfNv376NtWvXIjExEbNnz0bv3r2xcuVKfPfdd1oLawkhMHXqVJuNkxyPgZCIXIpCoUDLli0BADt37kRcXBxmzpxZoxU26wJfX99qW8BMMdYyqvlOtCswta0DYLot0xHy8/ONzufx9/dHcXExKisr9VYhlQKhxBXDuK0Yq/J6eXnBx8fHYIXQXnO7DK1wGRwcjLy8PIPfJ6lq27hxYzRu3Njkz4ctKoSar2epQvjjjz9iyZIlCA0NRWFhIb755htcuHABb731FgYPHlztfZobCHUrhNWFW6lCaGnLqKEKoa33IVy2bBny8/O1Fs4CgMWLF5v1+a62kbr0OuzSpYtNK4Qff/wxjh49qvW6V6vVGDhwoMFA6O/vj0WLFiE/Px/vv/8+Vq9ejYiICAQGBuq9gfDKK6/YbJzkeJxDSEQuJSwsTJ6TAABxcXEYMGAAEhISnDeoOsBQIKxuLpUzSNUj3QtIiau3jAK/zeHSpLu4RcOGDZGZmelyrWq2YGoeaEBAgMEKr73mdhnaAy8oKAhCCIOVSqkiGB0djcaNGzukQlhQUAC1Wo309HRERERgyZIl2LdvH7755hs88cQTaN26Nfbu3WvRthPmBkJrF5WxhKk5hKb2ebTE+PHj9cIgAAwYMMAm9+9oDx48QFBQEFq0aGHTQOjr64v4+Hj5YyEE4uPjq+06CQwMxOLFi/Gvf/0LO3bsMFhNfvrpp+V/cw5h7cNASEQuZdeuXXqr+k2ZMsWqDZGpSkVFBXJycvQCYXVzqZwhMzMTPj4+Rquhmi12zmBOIDQUWHUrhA0bNkRFRYXJDdJrKylkGNqSwVigl+Z2AbDp3C5DbzBIqyIa+tpLAbBRo0YmA2FlZWWNF5UBfqsUZ2RkQAiByMhIuLm5yQsOSfN8MzIyDO59aUhRUZFZ3QSaVTp7LipjbA5hRUUFf68b8eDBAzRq1AhRUVE2bxn95ptv0LdvX/Tq1Qv9+/fH999/j61bt5r1+UqlUmu+5ubNm9G+fXt06dIFK1askI+PGzfOZmMmx2AgJCJyYbbY+Dc3NxdCCL1AqFKpHLrAhzmkeVPGuHKFUHejcU2pqal6gRBAnVxpNDc3F+7u7gYDobFAv2PHDr1qoC3mdhlqGZUCoaE3Q5KSktCgQQP4+vqicePGSE1NRXl5ud550muwphXCsLAwpKWlyRf9kZGR+OSTTzBv3jz07t0bu3fvxrVr1zB//nx88sknZt2nJS2jmquMOrpCCMBlticYNmyYs4egRdraITIy0qYVwoiICKxZswbHjh3DyZMnceTIEbkN1Brr16/H2bNncfbsWfj5+WHixIkoKiqyWeWXHMe1mqaJiEiLtPGvl5cXFi9ejGPHjuH999+3KBRlZWUBgMEKobG5VM6SmZmpN05Nfn5+Tr2ItKZCKISQ2wElUstVXZxHmJubC6VSKS+go8nSQF/TuV2GWkal1kJDgTA5ORmNGzcGUDWPUAiBBw8eoGnTplrnVTfX1Vzh4eE4efKkViBs1KgRdu/eDQD48MMP8Ze//AVffvmlwa+nIZbOIayoqEBRUZFDK4TSY+Xn58tvjjjCpEmT9I5prpDpKu7fv4/WrVsjKioKOTk5KC4urtEcclsTQkChUMDNzQ2ZmZnw9fVFbGwsHnvsMYwcOVL+m0O1h2tcARCRSZMnT3b2EBwuKysLN27cqPd/WKSNf/38/LBq1Sp07drV4o1/jQVClUoFIYRLzfeorkLozJbR6toEjQXC7OxslJeX16sKoe7emRJHf/8MLXBTXcuoFAil75eh71F1q+GaKywsDOnp6UhJSYFCodB6jQBVrxO1Wm3R3o2WrjIq/X4w9XMHmG6JNsVUhdDRv3sSEhKwcuVK/OMf/9D6T1rIzFVILebSBvC2bBu1hKEOlffffx9KpRLjxo2Dn58fhg0bhnHjxuHTTz/FkCFD8OGHH6JRo0ZOGS9ZjxVCIheyYMECvWNCCBw/ftwJo3EOzRX2pGWxs7OzzV5hr66RNv6V5lVOnz4dTZs2xUsvvWT2fZiqEAJVlRJjF/COlpmZ6bIto1KQMRYCpKqH7sV7amoqAGhVCIODg+Hm5lZnK4TGXk+O/v5lZWUhICAAnp6e8jFpbIYqhKmpqejQoQMA06HdVhXCsLAw5Obm4urVq4iKitKriGpWks39GS0uLjbr3MDAQJSUlMhho7pKndQCbGmF3tgcQuk2R5o/f36tWCFTemNMWtH4wYMHeOSRRxw+DkMdKqdOnULXrl2xfft2tGnTBrdu3YKnpyf69++PmTNnom3btti3b5/Dx0o1w0BI5EK2bduG7du36x3/6aefnDAa55BW2NO86M7Ly8PIkSPrZSBct26d3jFLN/41VSEEHLtReHWysrL02vM0OXMfQmPbKUikr69u5SktLQ0AtKo/7u7uCAkJqZOB0NQbDNKqmuYaNmwYfvjhB6vH8vDhQ72Lfw8PDwQGBhoMhJpvSJgKhLasEALAvn370LlzZ/m4tHn4jRs3AFRViFq0aGHWfRYVFRndGkWT9IaQtHl7dYHQ19cXCoXCop8/tVqN4uJil5lDOGvWLIPHNVfIdDZpEbAGDRo4vUIodagAwKpVq7Bx40Zs374djzzyCPz9/fHMM8/Im9q72tYdZBl+94hcyPPPP4+YmBj5IkEybdo0J43I8aQV9jQvICxZYY/0ZWVlwcvLS28OiqnFNZylugqhM/chrC4QSiFINxCmp6cDgN7PdV3di7C6CqEUkDXZa26XoUAIGN+cXvP15+3tjcDAQIOBUPqZMbY9irmaNGkCALh06RImTpwIQHvzcOn33gsvvIDXXnvN4F5xusxtGZVej5cvXwZQfSBUKBQWt/waWtQH0J5DSNqk12VISAhUKhV8fX1turCMJTQ7VI4fP45p06bh+PHj8tYV7777LgCgrKwMbdu2dcoYyTYYCIlcyNKlSw0ej42NdfBInEdaYS81NVWeuC6tvEfWkS6KdRelMNU65yzmLCrjqoHQ3d0dKpVKL2hkZWXB3d1d7/PqciDU3TpGYizQJyQk4NChQ1pv/AghMHXq1BqNxVQg1H3dq9Vq5Obmar0hERoaajAQGqu6W+qxxx6T/y3tmae5eXh5eTnef/99zJkzBx999JFZgbCwsNDgCq+6pIp1YmKiViXIFGneobkMLeoj3Q/AQGiI5pxOhULh1N8TUofKmTNn0LdvX3z88ccG/xZ7eXnhgw8+cPTwyIYYCInIpcTExMgr7FEVqX1M2ly+Xbt2cpuOOTIyMgy+++9qLaPl5eXIy8tz2UVlqguEQFVA0F0IKTs7G8HBwXqBvC4HQlMVQkPfP3vN7Xr48KHBFmRDgdDQ4ioNGzY0GggDAgIs+jk0RKFQ4G9/+xsuXLiAgQMHAvht8/BBgwbB09MTDRs2xPHjx6vdPFySl5dnVuVSCoQXL15EaGioWV0YtqoQenh4wNfX12aB8Ny5c3jjjTfg6emJ+fPno0+fPgCAGTNm4LPPPjNrnDVt/7WVzMxMAL+92RAcHOz0N+3Onj0LADh16hReeOEFp46F7IM9WERELmzLli0YNGgQNm3ahPj4eGzYsAGDBg0yeyNhoCoQGqqS+Pj4wNvb2+KLDXuteqvZKmWMn58fSkpKarxhuTXMCYTBwcF6FUIpEOoyVn2q7axZVGbWrFkGX6M1ndtlrEJo6PskXYibGwhrWh2UvPHGG9i5c6f8hoHu5uGFhYU4e/as2T/zeXl5Zi0qExAQAD8/P1y5csXg18jY51gSCI1VCKVjtppDGBsbizVr1mD16tVYvXo1Vq1aBQC4deuW1nm1YSN13TcmjLU3O1JCQgIA4L///W+dfBOLWCG0SlxcHN566y2tY+Hh4fJKckIIvPXWW/jkk0+QnZ2Nnj174p///KdWf3VpaSleffVV/Oc//0FxcTEGDx6MDz/8UF7umogI0G4fk6jVagwcONCs9jGg6qJYdzl7SVBQkNEKoaNXvTVn+XtpblRxcbFZbXG2JF2UmWqtszQQ1sWLq9zcXKNfI0fPATXVMnrz5k2tY8YCoaEFnGwZCHVJm4dLRo8eDTc3N7M2D1er1SgqKjJ7bmN4eDhu376NNm3amHW+pYsCmXoTJSAgwGYVQoVCIW8dsXPnTsTFxWHmzJlQq9XyJu/Abxupe3p6Yu3atZg4cSI2b97sUhupS78Hpd8ZrlAhPHXqFIYOHYqjR49i48aNmDJlitWb2ZNrYoXQSm3btkVKSor8n+bE93feeQerVq3CBx98gISEBERERGDo0KFav/jmzJmD3bt3Y8eOHTh69CgKCgowevRoVFRUOOPpkIsbNmyYs4fgUKWlpTh79iwOHjyIs2fPoqyszNlDchqpfUwihEB8fLzZ7WOA8ZZRoKpt1NjFxrZt2zBq1Cit/0aPHl3tfmXW0m2VMkQKgc5oG83KyoK/vz+8vb2NnhMSEmJ2IGzYsGGdC4SG5uFpcuQqsZWVlcjMzHT5CmF1oqKizF5UxFiLpjHSG0XdunUz63xLK4S64UZTYGCgzQJhWFgY7ty5g71792Lv3r3o0aMHVCoVTp48iXHjxmHv3r0AqhYtk7YgiY2NxYsvvoiRI0e61M9hRkYG/P395d/xhl6rNaVWq80+t6ioCBcvXsRTTz2F9u3b4+LFi/JCd/Hx8RgyZAjmzp2LH374AZ07d8bAgQNx4sQJm46X7I8VQit5eHgYfHdECIE1a9bg9ddfx4QJEwAAmzZtQnh4OLZv344///nPyM3NxWeffYYtW7ZgyJAhAICtW7ciOjoaBw8exPDhwx36XMh12GulvdpEc4U9aR/Cs2fP4qWXXjK7IlaXbNmyBStWrMDixYtRUVGBvLw8dO3a1eKWUWOB0FSF0NGr3lpSIXTGwjLmhIDg4GC9NrXs7GyDFdrQ0FDk5+ejtLTUZMisTar7Hvr7+8stv+bMWUtNTbW6EpGTk4PKykqDgTAkJEQOgJqP5e7urnW+qUBorzdGdDVq1Ajff/+9WedKLZrmBsKnnnoKJ0+eRJcuXcw639IKYWZmJjw9PQ3u12jLQLhr1y4AQI8ePdCtWzf06tULgYGBWLx4MbZu3YrTp0/jySefxKhRo7T2dR0yZAgiIyMxb948m4zDFtLS0rRe87ZqGU1MTMTChQuRk5MDDw8PlJeXIzQ0FMuWLUP79u0Nfk6PHj1QUFCAiooKrFu3Dmlpabh48aIcqhcuXIidO3ciJycHw4YNQ0JCAvz8/DBhwgT8/PPPNR4zOQ4DoZWuX7+OqKgoeHt7o2fPnli2bBkeeeQR3L59G6mpqVoVHW9vbwwYMADHjx/Hn//8Z5w5cwbl5eVa50RFRaFdu3Y4fvy4yUBYWlqK0tJS+WPdDZCpdrPXSnu1iS1aJOsSzfaxkpIS+Pr64tq1a9iyZYtZn19ZWWm0bQ4wXSF09Kq35lQIa0MgNFQhfPTRR/XOlb4nmZmZcktbbVfd91BzQ3Jz5rlNmzbN6n0IpaqPodd+gwYNkJmZKa9kDADJycmIioqCu7u7fF7Dhg2Rl5eHsrIyrQVksrKyHLZReFRUFNLS0qBWq6vd683SQDh37lw89thjGDp0qFnn+/v7W1RNk7bx0F1QCbDtHELJ7du3sXbtWiQmJmL27Nno3bs3fvnlFyxZsgQA8Nprr+l9jqttpK77JoitWkZnzZqF7du3Izo6Wj527949TJ48GUeOHDH4Ofn5+ViwYAGef/55JCQk4IMPPsBbb72F7t27A6iahx4dHY3o6GjExMSgcePGmDx5stbPENUODIRW6NmzJzZv3ozWrVsjLS0Nf//739GnTx9cunRJnkeo+25weHg47t69C6Dqh93Ly0uvhUJzHqIxy5cv15u/SHWHvVbaq000V9gDrGuRrKv2798PoCrkmVs5efjwISoqKoyea2i1RWfJzMysduVGqWXU0RtaAzULhMbmEAJV36O6FgiNVc80n7NmIOzRo4feuUIIedN0a1QXCNVqNfLz8+XwlJycrDePX6qs636PHN0yWllZifT09GpfJ5YGQjc3Nzz55JNmj8XSllFT+4oGBATYvBXS398fixYtQn5+Pt5//32sXr3aZX6/mUv3d7utKoQVFRV6b8IolUqTU5WWLVuGc+fOISQkBL6+vmjbti0KCwsxc+ZMLFiwAGlpaXj11Vfh5uaGbt26Yf78+Th27BiaN29e4/GSYzEQWmHkyJHyv9u3b4/evXujRYsW2LRpE3r16gUAeu+Gab4LaYw55yxatAhz586VP87Ly9N6t4dqt1mzZhk8XtOV9moT3RZJT09PdOvWzaIWybpICIGVK1eiWbNmuHPnDg4cOGBW5fj+/fsAYHTBKpVKhTt37thyqFarblN64LcFXZxxkWdOCAgJCZFbFd3c3CCEQHp6usFQohmO6gpLAmGLFi3k4/n5+UhMTNSrgJlbuTKkukAIVH1PzQmEGRkZTg2EALQWRzFGCoTmVF+tYU3LqLHXQmBgIO7du2eroend9+LFi5GXl2dwUSBXlpqailatWskfBwcHo6SkBCUlJTV6Y3TFihUYPXo0vLy8oFQqkZubC7VajZUrVxr9nPHjx+PHH39Eo0aNAPy2b2ZgYCC2bduG7du3633OTz/9hAMHDlg9TnIOBkIb8Pf3R/v27XH9+nX87ne/A1D1Ax0ZGSmfk56eLlcNIyIiUFZWpveucXp6urx3jjHe3t51Zq4JkSG6K+xRlW3btuHEiRM4cOAA5s+fj4MHD5oVCJOTkwEYD4Sm5hA6mqm5jhLpd6YzlmHPysoyuKedpuDgYAghkJubi+DgYDx8+BDFxcUGP08KKnVp64nqNmw39pyXLVuG/Px8vUrq4sWLrR6LFAgNBRLpWGZmpjyfLCkpSW8ulWYglEgL5zg6EN6/f7/axV8srRBaSqVSWTRVpbpAaKs5hAcOHMDixYvh7u6O2NhYPPPMMwCAP/zhD9izZ49NHsNRdCuEmq3lUjCzRv/+/XH48GEUFxcjJycHwcHBZgXM+/fvy4/bpEkT+Pn54fLlyybnmFfX2kyuh6uM2kBpaSmuXLmCyMhING/eHBEREVrvjpSVlSE+Pl4Oe127doWnp6fWOSkpKbh48WK1gZCIap9z585h9OjRGD9+vNaWDTNmzDD7Pr799lv07dsXQ4YMQc+ePXHhwgWzPi85ORkeHh56f7QlpuYQHjhwAD179kSfPn2wY8cO+fioUaPMHrclzAmEAQEBcHNzc1ogNNT6qUk3sErVV0OBMDAwEJ6ennWuQqhUKuVFJ3QZq4qOHz/e4Nd2wIABVo8lIyMDwcHBBi9ONQMhUFWBr65CKJF+XhwVCBs2bAgPDw+zVhrNzc2FQqGw25YslrYvVhcIbdX6/eabb2L//v04ePAgTp06hdmzZ6OystIpc41roqKiAg8fPtT6fS29BtPT023yGL6+voiMjDS72qgZCN3c3NC+fXv88ssvWLp0qcG/K/aaY072xUBohVdffRXx8fG4ffs2fvnlF0ycOBF5eXl47rnnoFAoMGfOHCxbtgy7d+/GxYsXMX36dPj5+eHZZ58FUHUBNmPGDMybNw8//vgjzp07hylTpqB9+/byqqNUf3HLhbrH3E2TTfn111/Rrl07AEDLli1x/fp1s/bOun//PiIjI41O8pcu8Azdl6MvsswJhG5ubk6Z9yiEQFpaWrXjk0KCVCmT5o5LVShNCoWizm09YWoBIwByu1p1z3n16tXo3bt3jQKDqbHoBsLc3FwUFhbqBUJp+X/NQGjO4ke25ObmhsjISLMCofSmRXXTT6wVFBSE0tJSlJSUmHV+dXMIbVUhdHd3R1BQEPz8/LBq1Sp07doV48aNc8pc45rIzc3VWxlXCl22CoSW0gyEADBmzBj897//Nfs1QLUDA6EVkpOT8Yc//AFt2rTBhAkT4OXlhZMnT8rvAC9YsABz5szBrFmz0K1bN9y/fx8//PCD1sasq1evxu9+9ztMmjQJffv2hZ+fH7777juuzFTPbdmyBYMGDcKmTZsQHx+PDRs2YNCgQfV+/lxtJ22a3KxZM+zcuRN5eXnypsnmqKysxK+//ipvHt2yZUsUFhYiLS2t2s81VPXQFBISgvLycoMhz9EXWeYEQsA++3JVRwoM1c3Z1q0Q3r17F/7+/iZbKOtSIDRnsSNjWzlIHj58iLlz5+LkyZP44IMPrB6LqUAoBT3pZ0hqrdb9/ioUCoSGhmqNt7q2WHswdy9CY/su2oqlLdvmtIzaYlP4Tp06ac2Fnj59OubOnSsHztqyl6+h15atK4SWUKvVSE1N1QqEw4cPR0FBAS5cuIAvvvgCnTt3xpQpU7Bp0ya0adMG3bt3x7fffuvwsVLNsMnXCpqtU4YoFArExcUhLi7O6Dk+Pj5Yt24d1q1bZ+PRUW3GLRfqJmnTZKlKFBcXh61bt5q9dcT9+/dRXFyM1q1bA4C84MD169ervfg2JxACv226rkm6yJLGPX36dDRt2hQvvfSSWeO21MOHD102EFa3OI9E94L56tWraNWqldGKTX0MhNU955MnTwIA2rRpg6NHj1o9FlOBUKFQoHHjxvL31dRcW90A68qB8OHDh3bdH1FzUSfNdRIMKS8vR15enslAqFarUVpaWuNVpKVrKd29fDt06IDf//73LrmXr6FFggxVn319fREYGGi3ucbDhg0zurVLWloaKisrtQKhtBjU3bt38d577+HYsWPIz89Hp06d8Pnnn6Nnz54YMmQIxo4da5fxkn0wEBK5EG65UDdJmyZrmjJlitkhX2o7lPY9a9myJTw8PHDx4kU8/vjjJj/3/v376NChg9HbNQOMbnXE0BtWgwYNssuqfeXl5cjOzjYrENpqGXZLVLc4j0SpVMLDw0O+eLtw4YLJr39dDIR9+/Y1eU51FcITJ04gPDwcEydOxL/+9S+zVuA25OHDh4iJiTF6e+PGjeXva3JyMtzc3AyGWWOBsLr5pLYUFRVldK84Teas1FsTlqzyK32dTAVCoGohHFv9jXPVvXz37t2r9bEQAnFxcXjrrbe0tv0w9mZDw4YNa1wh1A3L0jhMhWXpDRPNQBgUFASlUont27cjOzsbGzduBFBVXZ81axZmzZrFRWVqIX7HiFwIt1yoYs4GzM40efJkbNu2zWGPJ120Sn+Uvb290bZtW5w5c8bk5wkhkJSUZHJlOt05b84ivTNuboXQ0eNNTk6GQqGotioiVZ6Sk5NRWVmJixcvGrwQk4SGhuLatWu2Hq7TmFshNPWcz507h27duqFbt254++238eDBA6tWV6xuPmPjxo3lNsN79+4hIiLC4GI4DRs2RFJSktb9+vn5wdfX1+IxWSsqKkq+ODclMzNTa8sCW7OkZbS6LUg0F+wxtuiVpVx1L9/p06ejW7du6NWrl9wim5OTg9OnT5sVCMPCwmocCK0Jy4YCoUKhQLNmzRAfHw+lUgkfHx+4u7vj5ZdfxnvvvQcfHx+7vilB9uG6V1xE9VB93nIhMTERCxcuRE5ODjw8PFBeXo7Q0FAsW7ZMbyl4R1mwYIHeMSGE1kqhjpCcnIzAwECtpeS7du1abSDMy8szuFCGJunCwxmrdmqSKjDmBMKQkBDcuHHD3kPSkpycjPDwcHh5eVV7bnR0NJKSknDr1i0UFRXVmwphRUUFMjIyzJpDaKoV9NKlS/jDH/4gb7Fw+vRpuwVCaRy//vqr3JJtaLxnz56VP05KSnL4/r+NGjVCZmYmSktLTW49lZmZKe+HbA+WVAirC4TSVlxpaWlo27atTcanu5dvfn4+AgMDnb6X7+3bt7F27VokJiZi9uzZ6N27N3755RcsWbJE67ysrCz4+PjAz89P67gtAqE1Yfn+/fvw8vLS+5xmzZqhUaNGmDJlCnbu3IlJkybh6aefxueff47nn38ezz//fI3GKklJSbHJ/VD1GAiJXFl2NvCvfwEDBgA9ejh7NHY1a9YsbN++XetC6969e5g8ebJZrVL2YGrjXUe6f/++Xqhr27YtduzYYbKdzpx5b9IFnrGKW2lpKS5duiRvxN2uXTuzQpGlLAmEzghRycnJZoeS6Oho3Lt3T94axJxAaG1bpCvJyMhAZWWlfKFvjKnvX15eHu7du4d27dqhUaNGCA8Px+nTpzFu3DiLxlJeXo6cnByTgbBJkya4f/8+ysrKcO3aNfQw8ju2UaNGuHfvnvw9unv3Lpo0aWLReGpKmmuWkpJicMVaSXUhuKb8/Pzg4eFh1htI1bWMagbCmtq8eTP+8Y9/wNPTE5MmTcJf//pXAMC4ceNw6NChGt9/Tfn7+2PRokXIz8/H+++/j9WrVxsM1dLvWV1hYWH43//+V6Mx6IZliamwfPnyZbRs2VLvd1OzZs1w8OBBPPvss3jmmWewbds2jB07tka/lw211b7xxhtW3x9ZhoGQyFVVVgLjxgFHjgDBwcDDh4Bb3V0YuKKiAiqVSuuYUqlERUWFk0YEkxvv2oKpyfyaDC0M06xZMxQVFZlciEW31dQQd3d3qFQqg4Fwy5YtWL9+Pbp37w6lUomcnBycPXsWL730ks0XObIkEDpjqwZDodyY6OhoHD9+HBcuXEBYWJjJgNSwYUOUlpaisLAQAQEBWrfFx8dj6dKl6NChA0aMGIGFCxdCpVJh+fLl6N27d42ejz1Ic12rC0sNGzZETk4OysvL9Vo0pYvedu3aQaFQmFUJN0R6PZsKR507d0Z5eTkuXLiAX3/91ehruk2bNigsLJRbV+/du4dOnTpZPKaakALhgwcPjAbCiooKZGdn27VdT9oqxZwFTqrbniMgIAC+vr42CYTr16/H2bNn4enpibVr12LixInYvHmzTVYwtaXAwEAsXrwYeXl5BudiZ2ZmGg2Ezlhl9OzZs+jatave8WbNmuHOnTsQQsDNzQ1Tp07F5MmTkZqaavVjGWqrzc3Ntfr+yDIMhESuau/eqjD4178CK1YA168D/3/bgbpoxYoVGD16tLxPWW5uLtRqNVauXOm0MS1dutTgcUs33rVmMr+mW7duoXPnzlrHpIvCO3fuVBsIdVey09WgQQODAcuRq95mZGTAy8tLa3seY0JDQ1FcXIzCwkK7bcCtKzk5Gf379zfr3FatWuHevXv497//bbI6CGhv1K4bCBcuXIidO3ciJycHw4YNQ0JCAvz8/DBhwgT8/PPPVj0Pe5ICobQFkzHSc87MzNRrL/3pp58QFBQkt4l369YN69evt7iCKrWamQrjnTp1goeHB7Zs2YKioiKjbYvSdi/Xrl1Do0aNcPfuXYevoKgZCI3JzMw0q0Jri7GYu+KpSqUyOh9coVAgPDzcJoHQzc1NfnMhNjYWjz32GEaOHCm/MWDO3FZHUiqVBivSycnJBn9fmxvCbUmtVuN///sfnnnmGb3bDL0h6ebmJo/dmq+3obbaY8eOWbRfL1mPgZDIVX30EdCtGzB/flUgPHOmTgfC/v374/DhwyguLkZOTg6Cg4PrzOqqNVn5rqKiApcvX9Y7VwqEd+/eRffu3Q1+7v37982a99akSROtPbwkjlz1VtqD0JyLfs3FKBwZCM2tEE6ZMgXvvvsurl69ihkzZpg8VzMQ6lZ+fHx8EB0djejoaMTExMiP76r71d65cweBgYFyG7Ixmt8/3YvG+Ph4DBgwQH6O3bp1Q0ZGBpKSkixq05QuIqWVeQ3x8fFBly5dsHbtWvj4+BgN/M2bN4eHhweuXr2Knj17IiMjw2Tbpj0EBQXBx8fHZBCTqjP2DoSNGjUyKxCa8zNjq0A4atQorS1yhgwZgsjISMybNw9AVVeHOd0YzpaUlISOHTvqHQ8LC0NRUVGN3wTTfGMlNTUVvr6+ep05kpSUFJSUlMhviGiq7g1Ja77ehtpqWSF0HAZCIleUlwf88APw7rtASAjQrBlw9izw7LPOHpnd+fr6OnT1Pkeoycp3t2/fRklJiV71Ijg4GIGBgQaDnMTceW/NmzfHpUuX9I47ctVbczelB34LFIZClD0UFhYiOzvb7EDo7e2N3/3ud1ixYkW1WzBoBkJdERERqKiogLu7uzwPSq1Wo7Ky0sJn4Bh3795F06ZNqw310vfs5s2begtGXbp0SWufyy5dugAAzp8/b1EgvHnzJgICAqqdTzdo0CCcOnUKw4cP11vIQ+Lp6YkWLVrg2rVr8uqohi6S7UmhUFS70qgUrBxRIZT2ijTl3r171S6+Y6tA+NprrwGAdtWtshJwc0P37t1x/fr1Gj+GIyQlJWH06NF6x6VpC+np6WjevLlV9/3+++/j008/RYsWLdCjRw98/fXX8Pf3x+TJkzFz5ky98w2tMCqRfoafeeYZ+Pr6yiuDS3+7a/L11myrPXPmDJ544gmr74vMx0BI5Ip++AEoLwektqSuXasqhFQrWTOZXyItTNKuXTut49LS39UFQnNCTPPmzfH999/rHddd9TYlJQUNGza0y5YgKSkpZi89L13kO6qFytxN6TW9/vrrCA0NxcCBA02eJ833MvRcduzYoXfMw8MDBw4cMHscjnTr1i2zLlbDw8OhUqn05lDl5uYiLS1Na7XPqKgoBAYG4urVqxa1ad66dQstWrSoNpw+++yzWLNmDf72t7+ZPK9NmzZODYRA1YW51AZuiCMDoTkVwqSkJHmlWGPCw8O1VnCtqfz8fCSeOwf38eNRsX8/5oaHY8XNmxYvSmRrBw4cwOLFi+Hu7o7Y2Fi5DXPUqFHYs2cPgKoFvNLS0gyGaOl3Y1pamtWBcPv27UhMTERRURHatGmDW7duwdPTE/3797c4EAYHByMgIAD37t3Diy++iKCgIK055ps2bbJqjJqUSqXB+YtkH3V3hQqi2uy774B27aoqgwDQpUtVhdBFKwP1zbBhwxz2WL/88gsaNWpkcP+76gKhtEJcdZo3b46MjAwUFBQYPSctLQ1RUVHo16+fXSpUiYmJZi89L1UIHbXIgjWBMCAgAPPmzas2PPv6+sLf39+iRXJcdY/Oy5cv47HHHqv2PIVCgUcffRRXrlzROm4obEnnGlqAw5QbN26YbBeVdOjQASUlJdXO9ZQC4dWrVxEREWG0zc6eWrVqZfLrkJaWhoCAAKOVTluJiopCeno6ysvLTZ7nyAqhZNmyZcjfvBmKffuQJgQWpaZi46efYvHixTZ7DGu8+eab2L9/Pw4ePIhTp05h9uzZqKysRFFRkXyO9HvG0NdMCmXm7EVpjK+vLxQKBfz9/fHMM8/IUwnS0tIMviF1//59eHt7G10UyM3NDb169cLf/vY3LF26FOvWrUN8fDzWr18vV2yp9mAgJHI1FRXAnj3AmDG/HevSpaqN1MTFf13lyPCla9KkSXr//f73vzd7MRhbOHHihNEVJU0FwtTUVNy5c8esPcmkVjxj1YeCggK5mvnLL79g165dZozcfLm5ubh586bZKzdKGx/X5OLIEuas1loTzlg11dby8/Nx7949swIhAMTExOiFG6ltWXdjdWsC4ZUrVxATE2PR55jy6KOP4u7du/jiiy+Mztm1t/bt2+Py5ctGV15OS0uz2QbvpmguHGJMcXExHj58aFYgTE9Pt9lqoOPHj4fX+vX4AcBP8+cjEsDpZcuqbd22N3d3dwQFBcHPzw+rVq1C165dMW7cOK034ZKSkgAYDoQhISHw8fExWSGuzsiRI+XXzrvvvgugamul69evY9WqVXrnP3jwAFFRUUar7AEBAUhPT0dwcDCA3+aY37x5Ey+99JLVv9OysrJw48YNo1shkX245tuMRPXZiRNAZqZ2IJTm2Vy8CJjxrndtVNOVOO2hJovB6LJmP7/KykqcOXMGcXFxBm/XXPpb94+2tAqlOdsTSEHnwYMHePTRR/Vuf/3115GQkID//ve/+PDDDzF79mwMHTpUvhCoKallTHclVVMaN25co4sjSyQnJ6NBgwZ2m9saGhrq8BUEbU2q9plb5X300Ufx5Zdfar12Dx06hM6dO+utNPvoo4/i+++/N3ul0dzcXNy/f9/scGqOwYMHQwiBq1evYvny5Ta7X0u0b98eJSUluH79usGf02vXrqFFixZ2H4fm7wtjgU8KN9XN+wwPD0dZWZm8kFiNZWTA73//wy4PD6xbuhTFX36J/rdu4YsvvsCzTpyD36lTJ61Fb6ZPn46mTZtqzZc1FQgVCgUaN25cozfBFi5cqHfs3//+NwDg3LlzerfdvXvXZFfEjBkzsHz5cvTt21eeYx4dHY20tDSkpaXho48+sqgy++OPP2LJkiUIDQ2Vtzmq7W+U1SYMhESu5rvvgIYNtTeij4oCgoKAxMTf5hXWMbYMX7ZSk8VgNFm7n9+tW7dQVFRkcNU5oKrVs7CwEOnp6XrzhtatW4d+/fqZ1eYotaMau9jYu3cvZsyYgREjRqBDhw5o1qwZNm/ejL/85S/V3rc5fvjhBzRs2NDsMAFUXTRJF1D2Zsmm9NZo0qQJbt++bfb55u5f6UiXL18GAINBxZCYmBjk5+cjJSUFUVFREELgxx9/NPjz8OijjyI7OxsZGRlmVcCkcGrLQNi0aVP069cPJSUlDt9yQtK1a1d4enri4MGDBr/O586dwx/+8Ae7j8OcLTBMhRtNmpvT2yQQ7t0LhRBI69oV3t7ewO9/j3GrV2Pip586NRCuW7dO79igQYO0Kt9JSUkIDg42uoqord8Ey8vLw9GjR/HII4/g559/RkpKitbUhAsXLpicA929e3eo1Wp8/vnn8t+ZMWPG4NFHH0WXLl2wfft2iwLhkiVLsG/fPq03hJKTk6t9DZFtMBASuZrvvgNGjwY0l5ZXKKqqhBcvOm9cdmar8GVLNVkMRpO1+/lJ1VHdlRgl0kXhlStXtAJhdnY2jh8/jo0bN5o1Pj8/PwQFBRm8wMvNzcWNGzfkxSGioqIwatQo7Nq1y2aB8ODBgxg2bJjW16c6jRs3NmulQ1u4dOmSWXMxrdWmTRts27ZN77grVs2NuXz5Mpo1a2b2kviar92oqCikpKQgJSXFYEVbOvfq1atmBcLz58/D3d3d7HBqrh9//BGenp4W7YdoS0FBQRgyZAi++OILvd+LmZmZSEpKsqjKbq0GDRrA09PTZLXq3r17AKqfdyttO5KSkmKT75f4/nuc8/BAu8GDqw48+SSCV65E6YkTKC8vl/cqdEVJSUkmw4+0B6atzJ8/Hx4eHvjmm2/w+OOPY/Xq1XjnnXcAAEVFRbh69Sr+7//+z+jnS9+va9euydXLvXv34qOPPoJSqcT27duRlpZm9iJHbm5uyMjI0AqErBA6DucQErmSGzeAK1e020Ul7dpVVQjrqFmzZhlcIt7S8OWKpP38AKCkpAS3b982az+///3vf2jQoIHRDX5btmwJDw8PvcU5Tp06BQDo06eP2WM0tnKgNG5p+X/p39ICIDUlhMC1a9eMVkGNcVSFUK1WIyEhwazWW2u1bt0a9+7d01pgAqiqmq9cuRL/+Mc/tP6zZzi11uXLly2q8D7yyCPw9PSUKyRSy5qhQNOiRQu4u7ubPY/w9OnTaN++vc1bfL28vJwWBiWTJk3C0aNHkZKSonX8/PnzAGD2PNyakLbAqK5CGBYWVu3vOKml1JIKuVFlZaj873/xlVqNxx9/vOpYnz5QBwRgcGmpTVcztYfqFuFp1aoVrly5YpP5lkIIfPnll5g7dy7atWuH6dOnY+PGjSgrKwNQ9XqqrKw0+Xpq3rw5PD095b8/X331FTw8PPD73/9enrN57Ngxs8f0ySefYN68eejduzd69eqF3r1744033rD+SZJFGAiJXMnu3YCPD2BoIZX27YFr14D//wubao8tW7bgm2++Qd++fdG0aVM88sgjePXVV6vdz+/48ePo1auX0YtQT09PtGzZUm8PwZMnTyIkJMSi4GDs3ecFCxagf//+Whf7rVq1QkZGBnJycsy+f2OysrKQn59v8X6CjRs3RmZmJoqLi2s8BlMuXLiAoqIiuwZCaVXNX3/9Veu4VDVv2rSp/F+zZs2cWjU3xtwVRiUeHh7yBS5QFeJUKhWaNm2qd663tzceeeQRvTc+jElISKh2u4Paaty4cfDw8MCXX36pdfz8+fPw8/PTW5DHXpo2bWpyr7lbt26Z1ern4+ODRo0a4datWzUf1JEjcC8sxF6F4rc3wzw84DZiBMa4uTl9u5bS/x9KDx48iLNnz8rhS3Lp0iWT25l07NgRmZmZem8GWOPOnTvIzMyUf68988wzyMjIkEPz/v37ERwcbDIQenh4oEOHDjhx4gSAqjcPe/bsiaCgIDRu3BjR0dH45ZdfzB5TTEwMdu/ejRMnTuDkyZM4ceKEwc4Jsg8GQiJXsns3MHw4YKjtql07QK2uCoXkVKZW1zNE2s9v4cKFSE9Ph4eHB86fP69XEdJUUVGBEydOoF+/fibve8CAAfj666+1Vh48efIkevbsaVE1o3fv3vj555+1lpK/d+8erl27hjlz5mjdl3TRaYvNnqXKgKV7a0kXm/ZeWObEiRPw9PTUqpDaWrt27aBQKPQWdqgtVfPCwkLcvn3b4jl70kqjFRUV2LRpE0aPHm30NWtoVVJDioqKcOnSpTobCIODg+W2UU3nzp1Dhw4d4K451cCO+vXrh/j4eINb0FRWVmL//v0YMGCAWffVokUL3Lx5s+aD+uYbZPr5AR07QqlUyofdRo9Gl8pKnPjmm5o/hpW2bNmCQYMGYdOmTYiPj8eGDRswaNAg+U3BrKws3Llzx+S+e1IXxf/+978aj0dqt5d+Tjp37gwfHx853O3btw9Dhw6tdoubIUOGYPfu3Xj11Vfx5Zdfon///vJtnTp1sslYyTEYCIlcRUpK1Qqj48cbvr1jx6q5hAkJjh2Xk1kavhxh2rRpFn/OgwcP8Ic//AGNGjXChQsX4OPjg+eff17elFjX8ePHUVBQUO3G5n/84x9x//59HD16FEDVBfGhQ4fM2m5C05gxY5CbmytfEAC/rVQqt1/9f61bt4abm5tN/thbGwiluUmOCISdOnWy2wqjABAYGIiYmBgk1NKfbSmoWdIyClTNQbp06RJWrFiBu3fvYu7cuSbPNScQnj9/HhUVFU7bGsKoI0eAAQOAsDBg6lTA2JL6ajWwbRvw6qvAv/8NlJTonTJhwgQcPXpUrtDn5ubiu+++w6BBg+z4BLQ98cQTyMjIwOnTp/VuO336NFJTUzHe2N8yHS1atDC7+mtUZSXw1Vf4zsMDj2uEEgDAiBFwAxB65gyys7Nr9jhWkuaRv//++1p79n300UcAfltp2VQgbNasGZRKpU1+7+7cuRNdu3aV5/d5eXmhW7du2L9/PzIyMpCQkICRI0dWez/PPvss3Nzc8N5776F58+b485//LN/WsWNHBsJahIGQyFXs2AF4elYtKGOIUlnVNqpxwV4fWBO+bKVHjx56/3Xv3l2eo2eJLVu2AKhqC4qJicHixYsRHx+PZ5991uC+Yt988w0iIiLQQ3O1WQO6desGpVKJY8eOQQiBMWPGoLy8HCNGjLBofJ07d0ZAQIAcCCsrK7F27Vr0799fr0oVGBiIHj16YP/+/RY9hiHnzp1Dw4YNjW5+bIwUCO09jzAhIQE9e/a062MAVd9HQxfXtYHUsmzpoiCPP/44UlNTsXjxYsyePdtkFbZdu3a4e/dutW8AnDp1Cl5eXmjXrp1FY7EbIYC1a4FBg4DSUmDmTGDvXqB7d/1Fwk6eBLp1A6ZMqeoWmTmzapuhjRurAs//N3DgQAgh5J/VpUuXoqyszKGtxAMGDEDz5s2xZs0avdt+/vln+Pv7m/1zM3bsWPzvf//DwYMHrR/QL78A9+/js7w8vTewEB6Osg4dMFIIp7WNas4jB37bs0+aY3n48GGEhISYbPlVKBTo0KEDLly4UKOxZGdnY8+ePXoLmr344ovYv38//vjHP0IIgeHDh1d7Xx06dMC1a9fw8ssv4+TJk1ptwl27dkVqaipDYW0hqFbLzc0VAERubq6zh0I1UVkpRNu2Qvz+96bPe/FFIR57zDFjcrDu3bvr/detWzehUqmcNqZHH31UlJeX6x0fMmSIRfdTWVkpunbtKiZMmKB1/MSJEwKA+Oabb/TOb9GihXjhhRfMuv9hw4aJUaNGiYMHDwoAYteuXRaNTzJw4EB5jJ9++qkAIA4fPmzw3L/97W8iMDBQ5OXlWfVYks6dO4vJkydb9bkNGjQQf//732v0+KaUlJQINzc38fHHH9vtMSTr1q0TXl5eorS0VG8MZ86cEQcOHBBnzpzRu90VvPTSS6J169YWf15ZWZkICgoSAMTt27dNnpuXlycCAwPFkiVLTJ43ePBgMXToUIvHYhd5eUI8+6wQgBDz5gkh/S65dUuIDh2ECAgQ4v33hTh4UIjJk4VQKITo2lWIU6eqzrt+XYhnnqn6/G7dhNi3T4iKClFZWSl/3Z588kkBQLz11ls1H29FhRDx8UL85S9CTJkixDvvCHHvntHT3333XeHt7S2ysrKEEEKkpKQIIYQYOnSoRd+DyspKERMTI/74xz9aP/a5c0WhUincAJGamqp/+1tviXw3N/GClb9raiolJUX85S9/EX369BE9e/YU/fr1E3PmzJG/Zn379tX7+2DIyy+/LB6r4TXAJ598Itzc3OTHllRUVIjWrVsLAGLhwoU1egwhqn6+H3nkETF16lSzzt+0aZNo166d6Ny5s1i+fLkQgte4jsRAWMvxh6WOOHmy6o/+vn1CiKo/kJmZmfrnbd5cdd7//wNcl9gqfNnSV199JV/saPr5558tuh8pqH333XdaxysrK8WQIUNEkyZNhFqtlo+fPHlSABB79uwx6/7j4uJESEiImDp1qmjdurWorKy0aHyS119/XQAQLVu2FO3atRPjx483eu7du3eFu7u7+Oijj6x6LCGEuHLligAg/vOf/1j1+YMGDRJPPvmk1Y9fnQsXLggA4siRI3Z7DIn05sDp06flY5s3bxa9e/cWsbGxYvHixeKVV14Rffr0EVu2bLH7eCzx2GOPiZkzZ1r1uTdv3hT3798369zJkyeLLl26GL393r17wt3dXaxfv96qsVittFSIlBQhLl0S4sgRIXbvFuKvfxUiNLQq9Bl6fefnC/HHPwrh5lb1O71RIyHWrxdC4/eA7MiRqkAICNG6tRBz54qzr70mXhs8WLQCRHNAPPjlFyGSk6tC5NmzVWNYtqwq2HXuXHX/LVsKMWqUEG+9JcT+/VXnp6RU3f9rrwnRrFnVYzRpIkSfPkL4+Ajh4VF1H//7n96wHjx4IDw8PMTUqVPF8uXLBQAxfPhwAcDi1+jChQtFw4YNDf4NqFZhoVAHBYn33d1Fnz59DJ9z546oAMR8pVLrd60zlZeXi++++058+OGHZv8e3LBhg3BzcxPp6elWP+6AAQOMBvbLly+L//znP1b/DRFq9W9vfAghFi1aJBo2bCgqKiqq/dRevXqJsrIyIYQQ77//vnjqqadESkoKr3EdhIGwlmMgrCMmTBCieXP5YuCDDz4QAMTq1au1z7txo+oPtplBoTaxVfiyl+zsbLFjxw6xatUqi/9YTp8+XcTExBj8vGPHjgkAYt++faKyslL8+c9/Fv7+/qJjx45mV4N++OEHAUAAEHFxcRaNTdONGzfk+zHnom7w4MFixIgRVj/eyy+/LMLCwkRJSYlVn79mzRrh5eVV4yqlMZs2bRIADL85Y2NFRUXC19dX/PWvf5WP9e3bV+9Cqry8XPTt29fu4zHX+vXrDVa57WHjxo0CgPjHP/5h8PY5c+aIBg0a/PZ6KC+v+p25b58Q//ynEPPnCxEbK8ScOUK8/roQK1ZUHf/sMyHWrBEiLq7qtuefF2LiRCGGDRNi4EAh+vcXol+/qpDUq5cQPXoI0bGjENHRQvj7V/1O1v2vYcOqjo67d00/qYcPhbh6Vesi2qDKyqrgNn161eMaekzd/4KChOjdW4g//UmIJUuqqpTDhwsRHKx/bkiIEDNnVj2G9HsqL0+I1aurAiIgRPv2VecsXSrExx8L8cUXYvMf/iD6AaIjIFoAIhwQb/zf/4lKC0PX2bNnBQCxfft2y8PI3/4myt3cRJ+oKJO/CzKHDhVJgHhmxIjf/tbk5Qnx888mK6H28ve//13+XTt9+nSznndaWppwc3MTn376qVWPefXqVQFAbNy40arPN2nzZiFUqqo3Et5+W4jKSnHo0CEBQJw/f77aT9cN8wcOHBB9+/blNa6DMBDWctUFwm+++UZcvnxZTJo0yeqLLrKz06er/thu2CCEqKoaNW3aVP5DMW3aNJGRkSH+/41CNG4sxOzZzhtvPZOdnS3efvvt/9fevYdFVa5tAL+HgRlmYEBFERAwUFQIQdNU1Cw1bWsf5a69UVMz0114SM1KP822hzz27azMDttDZZmhW/PUwbRU0jQPKIFaKiohiBIg53GGmXm+P1aMIpDiNmDg/l3XuoZZaw7vzMPMrHu971pL/P397TWZMWOGxMTEyLlz5256f4vFIj4+PvLSSy9VutxqtUpYWJgYDAb7hoCpU6dWGM7zR8q+BwDI6dOnb/l+lfnuu++kTZs24u/vf9Og9a9//UtcXV1v68c6Pz9f3NzcbjoEUDIylN6OkycrLDp//rwAkPXr11f7+W/GbDZLaGio9O7d+44/dlVefvllcXV1ta+sPvjgg7Jr1y77cpvNJt9++6307du3xtp0M+3bt5eYmJg/90lsNpHiYsk7cUL6Nm8uf3FzE/OGDSIffaQElldeEZkwQbZ6ekpSYKASglq3Vnq3ygKPs7NIq1Yi4eEioaFKqGrc+Npt9HoRPz9lWbduIv36KRvqnnhC6SF78kkljD39tBKwxo5VQuWSJUo7tm4V+eEHkZ9/Frl8WRl++We+H1lZIomJyhDP775TQu+XX4rs3q0MOb148Vqwq+z+p06JbNsmsmWLyLFjlfdMljGbRdatU153ZKQSdst6NquaVCqld9THR6lFhw5KqB4wQNk1YtQo5XdsxgylJ3PpUlkQEiJ/A+TVHj2UYHrsmNLjmZkpUlRU8fXYbCJr1ohNrZaFKpUsW7bsj9+38+elxNVVjgKysVUrkR49rtVfrVZq+1/0vFXHzJkzBYBER0fL5s2bqzUUvF+/ftKtW7fbet7HH39cAgICxGg03tb9q/TOO8r7OHSoyPPPK39PmyZXjUbR6XRVbsS53vz58ysMHS8bLcNA+OdjIHRwZSuCBw8elOHDh8uvv/4qzz33nBw8eFCysrLKbe3fsGGD7N+/337fsv1RqlrxXLdunZw5c6amXkrDZDaLdOsmeT4+MmzwYNm2bZssXrxYAMjGjRvF29vbXr8JEyYoWxAnTVJWXG5naI0j2bNHZPp0kVmzauxHujKjRo0SABIeHi4JCQkydOhQe03Gjh170/vPnz9fnJycJCEhocrb5OTk2DcChIWF3dZwnfj4eHnnnXeqfb/KGI3GWxrik56eLjqdTqZPn24f6nOr1qxZIwAkraot8yaTMuzu+pX6OXMqrBR26NBBnnjiiWo99614//33RaVSybFjx+74Y1clMzNTnJ2d7Su2N9vvqLYlJibav6v+kNWqfIaTk0UOHlRCzDffiGzefC3U/fOfSkAYPlwZ1ti9uxLOmjcX0WiqDB42vV4svr5ibtdO9gCSds89SnB74QWRd98V2bFD5OzZqr8vbbb6/136Z7BYRPLzlWGnv/yibNjcs0fkiy+UIbIrVih1ffVVkalTRcaNU0L1Y48pYTsqSulxDApSAqar6017PG03hkxPTxFANrq6yj0REVJYWHjzdickyOV27eQcILl9+4rt3XfFcvSo0kPcuLEyzHft2qrD9H/JaDTaN/zNnz+/6u/6ggLlf/fQoQr/n1u3bhUAsnTp0mo9d1kP+0cffaS8vk8/VWpgMIj07q3U73b83/8pNZo06dr7tmSJMm/hQnnooYfk/vvvv62H5ii4msNA6ODKPiwGQFwA8W7WTACIp6enrF27tlwgNBgMAkDc3Nxk6dKlAkC6d+8uACQ9Pd3+mBaLRV588UUBIIGBgTdtw969e6V3794yd+5c+8qd0WiUmTNnSlFR0W29rsq+JAsKCupcL6fNZpNFixZJcnLy7dxZckeMEDMgXa6rU9mUnp4uqampcs8999jn7d69W6xlPYrr1t35F1QXpKSINTpaBJAsjUbMrq4ivr63/2N1G2bOnCmDBw+WxMREcXJykvnz59v3Ozl8+LCEh4fLiBEjRKVSybx58yqEoby8PFm5cqU9PE6dOvWmz5mRkSFxcXH/1b4htWHatGn274q8vLyb3r6wsFBSUlKkT58+0qVLl8pvdPKkyD33KGFw7lxlpXP2bOX/fsKEcitrs2fPFgDi4uJyx4ZBXbx4Udq3b/+n7p9YlX79+klUVJS8+eabcvny5QrLbTabHD9+/Pb38blNJSUlsnXrVjl37pyc+uUXObJ7t0S3by+PBQaKeds2kTVrlJXqGTOUnpaBA5Ua+vkpvS9/tLKv1yv7uIWHi9x3n8gjj4iMHKkM35wzR+Ttt5XH//JLsf3wg4zp2VO8f//N8/Pzs38/enh43PL+iFQHlZaK7coVaa3TSVtAerq6yv2APAzIEEDGOjvLoaFDZWevXvJVeLh8EBIiQwICxFmtlrNnz1bjaUolKChIQkNDJTg4WNq3by+hoaGycv58yXnwQRFALK1biy02VrJmzJCzc+YoPam7dont8GExJycrQ4GzspR9QS0WKSoqsm9Es1gs5fZTnDNnjowcOVKOHz8uPVq3loGAbAwPF9vQocrBhP75TyWE7t6tDMV9+GERrfba58PbWwnWvw9dt9lsMnHiRAEg48aNk2HDhsmUKVPKhSaj0ShpaWlitVolISHBPvRy5MiRYtmzR6RrV+Wxo6NFFi++to9qTIzIhQu39kbm54s884xyv5dfrhiiZ80SAeTsgw+KD5QDIKWkpMiePXtk9OjREhcXd+2302YTuXRJSnftEsvixfJzRIRcaNFC4jdsYCCsISoRkVs+JCnVOQUFBfD09EQ+AA8AVgBXARivm27lenRMDM5dvIjIqCgUms1Y+NZb9uVvvPsuRKdD6/BwQKcDXF0BnQ4mJyfs3LcPcZs24dO1a6FWqxEZGYm4uDgMHDgQKSkp0Ov1OHToUJXnp/rtt9+watUqTJ482X745VWrVmHMmDHYsmULDAYDNBoNevToAZVKhZ49e2Lv3r0AgNTUVKjV6nKHOQaAwsJC6HQ6+wlVRQS//PILQkND7bc5cOAAjhw5gnHjxtlP5JuZmYnjx4+jX79+t/TeWywWjBkzBqtXr8bjjz+ODRs22JclJCTAZrMhLCwMer0eeXl5yMnJgZ+fH15++WV09PfH0EOH4LJ+PcYBONatG2JjY/HUU0/ZH8Nms0GlUsFsNiM9PR3R0dE4efKk8h64uQGnTwPHjgGenrfU3jIiYj/588WLF6HT6dC4ceNqPQYAlJaWwmazQavVlnvMP3reU6dOwcvLC82aNauw/Pi+fTgfG4u//Pwzcl1cMNlsxl5fX2hycvBLp05wOXgQ5kWLoH3hBQhQ7vnKnv9W24Eb7g8oJ4LftGkTVq1ahe3bt9vne3p6IiMjA25ubtdubLPBmJuLUYMH48CuXRjx2GOYN2MGUFKCnw4cwOxp06AD4OfpiajISPxPnz7QWq1ASQlQXHzt8upV5dySKhXg5FT5pFIph5wXUS6r+rts9cHJCVCrK15WNq/sUqMBtNprl5VNVSzLLi7GX4cNw4nUVEyeMQOvvPoqoFKhpKQEer2+3PtsNpsREhKCtLQ0AMC2bdvwP9efZuXiReUQ/W+8AQQFKedju/68XMuXA88+C8TGAsuWAWo1kpKS7CdsBoBNmzZh0KBBFeqenp6ODz74AC+++CJ0Ol25/5ekpCTk5OTggQceQFpaGu666y4AwBtvvIHJkyf/4f/TnTZ//nzMnDkTgHLesY4dO8JisaBNmzbQarXYvXs3Dhw4gBUrVmDMmDHIzc1FYWEhjh8/jtDQUGi1Wnh4eMBgMMBoNGLRokXw9/dHZmYmXnrpJWi1WqhUKpw7dw6tWrXChv/8BxdOnkSbpk3RDMDdPj7QFhZCfeUKVLm5+P7zz1GSng5dcTEaW63wAtAUgLayxru6KufZ8/UFfHwqTt7egLv7td8RV1fldDraSh+tSiUlJTh37hwWLlyIL774As8++yw0Gg3GjRsHPz+//7ICVNuSkpIQHx+Phx9+GK+88grmzZuHU6dOYe7cuThw4ADc3NzQpk0beHl5wdfXFyNGjLjl3+0yq1evxj/+8Q+UlpZWWNbXyQnDbDZ0BhACwPUWHs8MwKxWw+LignyzGUYALh4eKLHZkF1QAAOAFgB8y+7QtCkQFqZ8d6ekAGXn21WpgJ49gcceAwYMAHJygDVrgA8/VL6rY2KAzp1hNBjw1sqVOHHyJC5nZ9u3JAcEBqJ9+/bY/uWXcAHskxbA8KgoPCQC1Y8/Ah07Aq+/rpwOBVB+O9asUc5/mZOjnDOzdWulPRaLcsoUo1GZrl5VLn/6Sbnf0qXAmDEV3xQRYNUqyMSJkKtXkeHkhGK1Gi5qNYxGI7QAmmi10IlAa7VC/fvpl0oAnAbQAUAXAIehnGvTw8PjFipBt4uB0MGVBcJBUAKhKwDdddP1192dnOBis9mvt/DyQklOTqW3da5mO8xqNaDT4beiogqBUzQa+LVqhYzcXHj5++NSXh5KnZ3hExSEQ8nJSMnIQJdevfDYsGHILizE68uW4VRqKrTu7sguKoIZwNL338eo2FiYAKzftAnvf/gh/rN1K0wA8oqLcaW4GF98+SViYmLg5uaG++67D/v27cOePXtw8OBBTJ06FS1btsSXX36J1NRUPPnkk8jNzcX777+PUaNG4ZVXXsFrr70GANi8eTNee+01tGvXDtOmTcOxY8eQl5eHZ555BocOHcK9994LlUqFNWvW2M+R17ZtW2zduhUhISEoKioq98U1adIkJOzejbykJPTz8kJETg4eBwAnJ0xQqzHxwAFERETA2dkZ6enpEBFcuHABPXr0KPce79+/3z6vW7Nm2GcyobhJExx/9ll0nzZN+eL+A+np6XjxxRfx7bffYuzYsbj77rsxdOhQ+Pn54Z133rGvRNtsNnz++efo0aMHTp8+jV69epVbqf/pp5/w6quvwt3dHZ9++ilWr16NkSNHIjk5Ge3atcOGDRvQokULREVF2Ve4MzIyEBERgdzcXISEhCA5ORmzZ89Gly5dkLRuHQJ/+AGD0tPhCmAxgH97eGDt5s2IjIxEcHAwSo1GzDebMRnArwEB2ObjgzMGA15+6y18tmED3n77baxftw4Tx49HCy8vPDVkCP7ywAO4mpeHopwcuKnVmDN9OkICAuCh1eLEkSPoGhmJ04mJeComBlmpqUj9+Weknz4NPYAOISFootPh15Mn0drfH401GiXElU2VnCy6Snr9tUmnUy7d3JTL3zeClAt4lU1qdfnQeGOALLuuFFCZrFZlKvu7qkurFTCblR98k6n83yaT0rZqsAIwqdUottlgcnaG2mCAzssL2cXFKLFaceHyZZQCaNmqFTp26QI4OwNXrgC//qqcl02vB6ZMAaZPV96vG33wgbLy0aULMGsW0Ls3Dv70Ezw9PfHII4/g8uXLOHjwIAwGA6ZMmYLz58/jb3/7G5YvX46zZ8/aH2b48OHYtGkTDAYDLv2+MtaiRQtkZGTAxcUFDzzwAFavXg1fX9+KbfgTpaSkYPTo0Zg+fTpmzZqFs2fPIjg42H7S+j59+mDXrl0AgAd798apxESY8vKgFYEOgAFAq8aNETt4MLZ+/DE0JSVoDKAxAH+9HnqTCV5qNfRmM5o5O8PdYoG6knaUAMh3dkamxYIcAL7h4TAEB+PH06cR1qsXdAEBaBEZCZ2/v7Jy6+Wl1I7oT2KxWPCf//wHvXv3ho+Pzx15zF9//RV33XUXPvnkExw9ehRXrlxBy5YtYbVaUVRUhMaNGmHh7NkwQFnHMgB4KCoKwX5+OH7oEH67cAFeOh3u79IFB+PjoQPQNSICZ5KSoAMQ7OeHID8/NGnZEimFhQgbOhSGXr2UDV7X/2bn5SmhMCBA+X24UVYW8M47yvkpT55UvrerSby8oOrRAxg5Ehg06NpvxvXy85UNcTt2ABcuKG1Uq+0dAeUu27QBRowAfj8nbJWuXAG2bMGVAwew/qOPYDKb0aNnT7i4u2Pj9u0ohvJ9kwkgQ6fDUaMRM4YMwdy4OPzr0Ufx0pYtDIQ1gIHQwZUFQkA5gfeoUaOwYcMGuLq64vXXXwcA7N27F0lJSWjUqBGGDRtmv+/69esRExNT6eN+t307ukREINjPr9LA6AogpEULxERH46cff0R0v37wbdQIm9auxdkTJyoNpo00GjiZzRWWuTs7w8ViqXyLczWYAZQ6OeGqzQYzANPv8268tADQubnhqsWCYpMJKmdnmCwWWH+fn1dcDCtQbrIA8G3RAukZGbgvKgrnUlKQ+9tvCPTzQ1i7dtizaxfUAPROTtDZbHAH4A7lx8Pn98syaQYDfvT3x/iff0ab7t3xww8/3PJrzM3NhZeXFwCgn7c3FmZloRMAi7c3cM89uODmhjXffgu1vz8e/PvfEbdtG1waN0b7rl3xVXw8du/bZ39Ntutenw1AYy8vTJ48GW8uWYK8K1fgrFIBInAC8PCAATh/9iw6RETgeFISzpw+DScAalzb+tjCywvuLi7IuXQJWgBxH32EhXPmwMPVFVlpaSgtLkYjAF4AAnQ6NDEaEQ5lq2khgL2tW6PVihXwjoyEs7MzDAblXUtKSsKnn36K9PR0mLZuxfNFRSgflW+PCUAxAKNKhRIRlADwaN4cze66C+7NmgF6PUSvh+r6QFfJZNVq8errr+Pr+HgUWq0otNnw0bp16Nm/P7SenjcN6nWayLWtw5WFxbKtxiUlyEpNxeuvvoq8ixehB6CH8pn30mphKSyEGwANgCYGAx7o0UPZGlxaqjx+o0ZAixZAVBTw6KPK9T+yfz8wbpyyhVqlAu66C2jWDGa9HruOHkVGURFsWi1MajW8AwOReOoUCq1WmNVqFFmt5TZY+QUHo0OXLghu0wYffPIJLmVnY93GjQgJC1PCqotL+Utn5/IDHsvepxsnoxEoKgIKC69dFhYCBQXKpcWi3Lesh/j6v0tKlBXE/Hz7pSUnB6bsbLhZLLDl58NWUADnm6wU2gDYPDxQ6u4Ok06HSyYTfistRbbVitPZ2bgC4N5+/RA9YgS+PHAAy+Li0CIyEpctFkCvx44dO6DRaHD+/Hn2vFG9VVxcXH4EyA2OHDkCb29vBAQE4NChQ+jYsSM0Gg1MJhOWLVuGQYMGoVWrVjh48CCSk5MxZswYxMfH4+jRo3j++efvfINtNuW7oaSk/AgRmw3GkhLs3LEDYRER8A8Kgjg7Q+3qCo27e53YYJOQkICNGzfihRdeQJMmTbBz5054e3vj3Llz+OSTT/D2229DrVbD22iEulUrFGzaBM+//pWBsAYwEDq4skCYmZmJpk2b2odJAkqPUHFxMdq2bWufV1RUZF/RFhEcPnwYrVu3xtChQ/HNN98AAIKDg+1b0leuXAmtVot58+bh9OnTcHd3x7FjxxAUFGQfanmj8+fPw8fHB59//jlOnDiB/v374+TJk3jmmWewY8cOjBkzBmq1Gp999hmaNWuGtm3bYvHixdi4fj06tW8Pc1ERFs2Zg13bt6Nrhw5w12gwedw4uNhssJSU4GJqKibFxqJvz554Y/FinEpORiOdDh1CQ5F89Ciae3oiMjQUThYLXFUquKrVOPXTT7D8PkTBQ6/HIwMHIjUlBUmJiVADCG3TBr7e3oDVilMnTqBp48awXL2K3y5fRtPGjWEzm3G1uBiCa0HKPzAQTZo2hZNGgyv5+fg1PR0mmw25FguyTSYUAWgdGYkMiwVu7drhb5Mm4fvcXIRFRaFRo0Z44oknMHbsWPTt27daNf/hhx+wf/9+TJ06FQP694dxxw48BKCbXo9AkwlNrVbUxa9NUamARo1wNi8POSLwu+ceJFosaP/ss7D06oWWbdvCxcXlDx8jJSUFISEhCG3WDJ8vXozLycmAxYIWLVrgTEoKQtq1g3dgIMaMH4+0335DSHg4RvzjH0g6fRr9oqPR/5FHUGA24+jx4/Dx80NOTg7i4uLQrFkzDBkyxL5xpbqMRiMmTJgAPz8/BAYGYvTo0XCqbOtrPZefn48VK1bA1dUVWVlZmDt3LqxWKxYvXozg4GBkZWVh4MCBaN269X//ZCJAUhJw5IgyfDo3F8jLgzk7G6nHjkEPwMfTE86lpbD93rPrVMnwsFqh0SgBs6pQqdcrodjTU7ls1EgZWnn9VDb0sqzXuexvgwHn8/Kwac8eTJg+HRrXyge85eTk4OLFiwgPD7ePALhxyHV+fj6uXr2K5s2b/7nvBxHR9TIzAT8/FKxfD8+YGAbCGsBA6ODs+xBW48Oya9cu+Pj4ICwszD7PbDbDaDTizTffRNeuXfGXv/ylwv1WrlyJdu3aoWfPnnes/dVlNBpx9OhRdOnSBS4uLsjOzsaWLVvw0EMPwWazoWXLlpXu95OdnY20tDR06tQJzz//PJYsWQIRQW5uLo4ePYq+fftWWIF/9913MX78eGzcuBF333033njjDcyaNQtjxozB+PHjMXDgwErbaDKZ8N1338HJyQl9+vSBRqO54++DyWTCZ599hiFDhmDmzJn44osvcPbsWfTp0wdvvfUWziYl4d+LFmH+jBloqtNBZTQi/+JFBAcGwsXJqcJwQltpKS6kpuLfy5dj7Pjx8A8MxCeffgq9uzu6RkUhoGVLwMkJX3z9NeK//x6jRo9Gk6ZNkVdQgO27duG5F16AWq+372vWsm1bmABs+eorXM7Lg7ObGwZGRwMqFVJTU1FQUICIiIhqv24RQWhoKJ566in87//+b5W3mzhxIjZs2ICEhIRyQ/5OnDgBFxcXtGnT5nbednJ0Ntu1/V+un8p6Km+8rOrvynr1bryu1yuhrWwyGJQgZzAogZCIiCqXkwM0bYqCNWvgOXw4A2ENYCB0cLcTCOuzzMxM+Pj4VHlgkezsbHh4eNxSSDMajVi1ahViY2PL9bzSze3YsQMXL14sd5CcO8VqtcLJyekPDx5jNptRWlr6h8OAiIiIqA4qLAQ8PFDwwQfwfPppruPWAAZCB8dASERERET1hskEuLqi4N//huezz3IdtwY0vJ1ciIiIiIiobio7noDZXLvtaEAYCImIiIiIqG5wclKO6MxAWGMYCImIiIiIqO7QaJQDeVGNYCAkIiIiIqK6Q6NhD2ENYiAkIiIiIqK6w8WFgbAGMRASEREREVHdwSGjNYqBkIiIiIiI6g4OGa1RDIRERERERFR3sIewRjEQEhERERFR3cFAWKMYCImIiIiIqO7gkNEaxUBIRERERER1BwNhjWIgJCIiIiKiuoNDRmsUAyEREREREdUd7CGsUQyERERERERUdzAQ1igGwjrg3XffRVBQEFxdXdGpUyfs3bu3tptERERERFQ7GAhrFANhLVu3bh0mT56Ml19+GceOHcN9992HAQMGIC0trbabRkRERERU87gPYY1iIKxlS5YswejRozFmzBiEhobizTffREBAAN57773abhoRERERUc1zcWEPYQ1iIKxFZrMZCQkJ6N+/f7n5/fv3x/79+yu9j8lkQkFBQbmJiIiIiKje0GiAkydruxUNBgNhLcrOzobVakXz5s3LzW/evDkuXbpU6X0WLlwIT09P+xQQEFATTSUiIiIiqhkxMUBUVG23osFgIKwDVCpVuesiUmFemenTpyM/P98+XbhwoSaaSERERERUMx56CFi3rrZb0WA413YDGrKmTZtCrVZX6A3Mysqq0GtYRqvVQqvV1kTziIiIiIionmMPYS3SaDTo1KkTdu7cWW7+zp070b1791pqFRERERERNRTsIaxlU6ZMwYgRI9C5c2dERUVh+fLlSEtLQ2xsbG03jYiIiIiI6jkGwlo2ePBg5OTkYO7cucjMzER4eDi++uortGzZsrabRkRERERE9ZxKRKS2G0G3r6CgAJ6ensjPz4eHh0dtN4eIiIiI6L/Gddyaw30IiYiIiIiIGigGQiIiIiIiogaKgZCIiIiIiKiBYiAkIiIiIiJqoBgIiYiIiIiIGigGQiIiIiIiogaK5yF0cGVnDSkoKKjllhARERER3Rll67Y8Q96fj4HQweXk5AAAAgICarklRERERER3VmFhITw9PWu7GfUaA6GDa9KkCQAgLS2NH5Z6oKCgAAEBAbhw4QJPwloPsJ71D2tav7Ce9Q9rWn+ICAoLC+Hn51fbTan3GAgdnJOTshuop6cnv/jqEQ8PD9azHmE96x/WtH5hPesf1rR+YGdHzeBBZYiIiIiIiBooBkIiIiIiIqIGioHQwWm1WsyaNQtarba2m0J3AOtZv7Ce9Q9rWr+wnvUPa0pUfSrhsVyJiIiIiIgaJPYQEhERERERNVAMhERERERERA0UAyEREREREVEDxUBIRERERETUQDEQOoDvv/8e0dHR8PPzg0qlwubNm8stFxHMnj0bfn5+0Ol0eOCBB3DixInaaSzd1MKFC3HvvffCYDDA29sbgwYNwqlTp8rdhjV1LO+99x4iIiLsJ0KOiorC119/bV/Oejq2hQsXQqVSYfLkyfZ5rKljmT17NlQqVbnJx8fHvpz1dDwZGRkYPnw4vLy8oNfr0aFDByQkJNiXs6ZEt46B0AEUFxcjMjISy5Ytq3T5a6+9hiVLlmDZsmU4fPgwfHx80K9fPxQWFtZwS+lWxMfHY/z48fjxxx+xc+dOWCwW9O/fH8XFxfbbsKaOxd/fH4sWLcKRI0dw5MgR9OnTB48++qh95YP1dFyHDx/G8uXLERERUW4+a+p47r77bmRmZtqn5ORk+zLW07FcuXIFPXr0gIuLC77++mucPHkSr7/+Oho1amS/DWtKVA1CDgWAbNq0yX7dZrOJj4+PLFq0yD7v6tWr4unpKe+//34ttJCqKysrSwBIfHy8iLCm9UXjxo1l5cqVrKcDKywslJCQENm5c6fcf//9MmnSJBHhZ9QRzZo1SyIjIytdxno6nmnTpknPnj2rXM6aElUPewgd3Pnz53Hp0iX079/fPk+r1eL+++/H/v37a7FldKvy8/MBAE2aNAHAmjo6q9WKuLg4FBcXIyoqivV0YOPHj8fDDz+MBx98sNx81tQxnTlzBn5+fggKCsKQIUNw7tw5AKynI9q6dSs6d+6Mv//97/D29kbHjh2xYsUK+3LWlKh6GAgd3KVLlwAAzZs3Lze/efPm9mVUd4kIpkyZgp49eyI8PBwAa+qokpOT4e7uDq1Wi9jYWGzatAlhYWGsp4OKi4vD0aNHsXDhwgrLWFPH07VrV3z88cf45ptvsGLFCly6dAndu3dHTk4O6+mAzp07h/feew8hISH45ptvEBsbi4kTJ+Ljjz8GwM8oUXU513YD6M5QqVTlrotIhXlU90yYMAFJSUnYt29fhWWsqWNp27YtEhMTkZeXh40bN2LkyJGIj4+3L2c9HceFCxcwadIk7NixA66urlXejjV1HAMGDLD/3b59e0RFRaFVq1ZYvXo1unXrBoD1dCQ2mw2dO3fGggULAAAdO3bEiRMn8N577+HJJ5+03441Jbo17CF0cGVHSbtxi1dWVlaFLWNUtzz33HPYunUrdu/eDX9/f/t81tQxaTQatG7dGp07d8bChQsRGRmJt956i/V0QAkJCcjKykKnTp3g7OwMZ2dnxMfHY+nSpXB2drbXjTV1XG5ubmjfvj3OnDnDz6gD8vX1RVhYWLl5oaGhSEtLA8DfUaLqYiB0cEFBQfDx8cHOnTvt88xmM+Lj49G9e/dabBlVRUQwYcIEfP7559i1axeCgoLKLWdN6wcRgclkYj0dUN++fZGcnIzExET71LlzZwwbNgyJiYkIDg5mTR2cyWTCzz//DF9fX35GHVCPHj0qnK7p9OnTaNmyJQD+jhJVF4eMOoCioiKkpKTYr58/fx6JiYlo0qQJAgMDMXnyZCxYsAAhISEICQnBggULoNfr8cQTT9Riq6kq48ePx9q1a7FlyxYYDAb7FkxPT0/odDr7+c5YU8cxY8YMDBgwAAEBASgsLERcXBz27NmD7du3s54OyGAw2PfpLePm5gYvLy/7fNbUsbz44ouIjo5GYGAgsrKyMG/ePBQUFGDkyJH8jDqg559/Ht27d8eCBQsQExODQ4cOYfny5Vi+fDkAsKZE1VVrxzelW7Z7924BUGEaOXKkiCiHV541a5b4+PiIVquVXr16SXJycu02mqpUWS0ByIcffmi/DWvqWJ5++mlp2bKlaDQaadasmfTt21d27NhhX856Or7rTzshwpo6msGDB4uvr6+4uLiIn5+fPPbYY3LixAn7ctbT8Wzbtk3Cw8NFq9VKu3btZPny5eWWs6ZEt04lIlJLWZSIiIiIiIhqEfchJCIiIiIiaqAYCImIiIiIiBooBkIiIiIiIqIGioGQiIiIiIiogWIgJCIiIiIiaqAYCImIiIiIiBooBkIiIiIiIqIGioGQiIiIiIiogWIgJCIiIiIiaqAYCImIiIiIiBooBkIiIiIiIqIGioGQiIiIiIiogWIgJCIiIiIiaqAYCImIiIiIiBooBkIiIiIiIqIGioGQiIiIiIiogWIgJCIiIiIiaqAYCImIiIiIiBooBkIiIiIiIqIGioGQiIiIiIiogWIgJCIiIiIiaqAYCImIiIiIiBqo/wfj0SWeAcghJwAAAABJRU5ErkJggg==", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "6fe905883a134654b5f6d8fdbc6c3bff", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACoG0lEQVR4nOzdd3xT9f4/8Fd22tKGDrqgbISyNxRUQLCAlOG4eC9QRRGcVGQprlv1K6hcAYWfqFxFZMi96MUBWoYKyIYCCshUZEgXdLfpzPn9kZ5jVtukzWxfz8ejDyU5SU7SJD2v8/583h+ZIAgCiIiIiIiIqNGRe3oHiIiIiIiIyDMYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBoppad3gOpOEATk5+ejoKAAgYGBkMlknt4lIiIiIqJ6EwQBBQUFiI6OhlzOGpYrMRD6sIKCAjRt2tTTu0FERERE5BJXr15FixYtPL0bDRoDoQ8LDAzE1atXERMTg6tXryIoKMjTu0REREREVG/5+fmIiYlBYGCgp3elwWMg9GEymUwKgUFBQdL/79q1C//85z8hCAKio6OxcuVKBAcH44033sB3332H4uJiTJ48GbNmzTK7v6lTp+L06dOQy+UYNWoUXnnlFQwdOhRbtmxBkyZNpO0qKirwyCOP4LfffkPv3r3xzjvvmN3PJ598gtdffx3NmzdH8+bNsX79erPrf/jhB7zwwgtQqVSorKzEDz/8AIVC4fB97tq1C4mJiUhOTsa0adMwdOhQVFZWQq/XY8aMGZgxY4azXupaPfDAA/jhhx9w7do1tz0mERERUUPHKVGuxwG5DUx2djaeffZZfPnll9izZw/GjBmDmTNnAgDmzJmD3bt34+DBg1i1ahUqKyutbr969WocOHAAX3/9dbXh5ptvvkGLFi3w008/obi4GPv377fa5umnn8auXbuswiAAvPjii/j222+xZ88efPvtt1CpVHW+z/vvvx/Tpk2T/v3dd9/hp59+wsKFC1FeXl77C+Ykn376KSIjI932eEREREREztDoAuGePXswduxYREdHQyaT4csvv7Ta5syZMxg3bhx0Oh0CAwMxcOBAXLlyRbq+tLQUM2fORFhYGAICAjBu3Dir8JSTk4PExETodDrodDokJiYiNzfXbJsrV65g7NixCAgIQFhYGJKSklBWVlav57dlyxZMmjQJwcHBAIDExEQcOHAAlZWVUKlUAICSkhK0bdsWCoXC5n3I5XJ06tQJf/75JwDglVdewZAhQ6RgeeDAAcTHxwMARo0aZTO8vffee7jtttuwceNGq+tUKhV27dqF0tJS6HQ6yOXyet+nKT8/P0RFRSE7O1u6bNeuXYiPj8f48ePRo0cPfP755xg3bhz69euHzMxMs9tnZWVh7NixGDJkCKZMmWJ23a5duzBq1CiMGzcOPXv2xMmTJ2vcFyIiIiIib9boAmFRURF69OiBFStW2Lz+t99+w6233opOnTph165d+Pnnn/HSSy9Bq9VK28yaNQubN2/Gxo0bsXfvXhQWFiIhIcGs4jZp0iScOHECKSkpSElJwYkTJ5CYmChdX1lZiTFjxqCoqAh79+7Fxo0b8cUXX2DOnDn1en5paWlWE2/Dw8Nx48YNAMYqYYcOHdC/f/9q70Ov1+OXX35B27ZtAQB33nkndu/ejezsbKSmpiI3N1canqrT6cyCFwBMmDABp06dwrfffoslS5YgLS3N7PqPP/4Y//vf/9CpUyc8+eSTMBgM9b5PUzdu3EBGRgaaNWtmdrkgCPjqq6+QlJSE9evX4+uvv8aUKVOsTgosXLgQDz/8MHbv3o1PP/3U6v7Ly8vx9ddfY/HixVi9enW1+0FERERE5O0a3RzC0aNHY/To0dVe/8ILL+Cuu+7CW2+9JV0mBiMAyMvLw0cffYS1a9dixIgRAIB169YhJiYGO3fuxMiRI3HmzBmkpKTg4MGDGDBgAABg1apViIuLw7lz59CxY0ds374dv/76K65evYro6GgAwNtvv42pU6fi9ddfr3ODmOjoaKmyJ8rKykJYWJj0GK+//jpuvfVWTJs2TXps0UMPPQQ/Pz8888wzUqDq06cPAKB///64ePEigoODkZ+fDwDIzc1FSEiI2X2InU8DAwMxbNgwnDlzBlFRUdL17dq1w9q1a2EwGDBt2jTs2LGjTvdpqwXx6NGjIZfL8c4771hd3717dwBA8+bNzf7/t99+M9vu7NmzeOGFFwDA5mP07NkTABATE4OcnByr64mIiKjxqqysdOu0FV+lUqmqHa1G7tXoAmFNDAYDtm7divnz52PkyJE4fvw42rRpgwULFmDChAkAgNTUVJSXl0vDGwFjCOvatSv279+PkSNH4sCBA9DpdFIYBICBAwdCp9Nh//796NixIw4cOICuXbuaBbKRI0eitLQUqampGDZsWJ2ew5gxYzBmzBg88MADaNq0KTZs2IC4uDgoFAqUlpZCo9FAo9HA398ffn5+VrdfvXo1unbtanbZ8ePHMWLECBw9ehSzZs2CWq3G9u3bcfvtt2Pbtm14+OGHzbbPz89HUFAQKisrcejQITz++ONm11+4cAEdOnSAXC5HWFgYDAYDBg4c6PB9/vHHH1b7/91335k1wDFlOinZ9P8FQTDbLjY2Fvv27cP48eNhMBisQmFNtyUiIqLGSRAEpKenW00Rouo1bdoUkZGRbBzjYQyEJjIzM1FYWIg33ngD//d//4c333wTKSkpuOeee/Djjz9iyJAhSE9Ph1qtluboiSIiIpCeng4ASE9PR3h4uNX9h4eHm20TERFhdn1wcDDUarW0jS2lpaUoLS2V/i1W1UQhISFYtGgRxo8fD0EQEBUVhffffx8AMHv2bJw+fRrl5eV44IEHrJ5Ddb777ju8+uqr6NGjB/r06YMePXrgyy+/xG233YZevXohLi4OAPDoo4/igw8+wNKlS/Hdd99BEAT84x//QOvWrc3u7+2338aJEyeg0WjQtm1bxMfHQxAEh+/TViB0hgULFmDq1KlYsmQJWrdujTVr1rjkcYiIiKjhEMNgeHg4/P39GXJqIAgCiouLpT4OpiPJyP1kQiMucchkMmzevFmq/l2/fh3NmzfHP/7xD2zYsEHabty4cQgICMBnn32GDRs24KGHHjILZYBxnl27du3w/vvvY+HChVizZg3OnTtntk2HDh0wbdo0PPfcc5gxYwYuX76Mbdu2mW2jVqvx6aef4u9//7vNfU5OTsYrr7xidXleXl6jW4fw4MGDePTRR5GUlGTWadQTHnjgAZw9exaHDx/26H4QERGR+1VWVuL8+fMIDw9HaGiop3fHZ9y8eROZmZm45ZZbrIaP5ufnQ6fTNcpjXHdrdE1lahIWFgalUonOnTubXR4bGyt1GY2MjERZWZnV3LHMzEyp4hcZGYmMjAyr+8/KyjLbxrISmJOTg/LycqvKoakFCxYgLy9P+rl69arjT7SBGDhwIH7++WePh0HAuOwEwyAREVHjJM4Z9Pf39/Ce+Bbx9eKcS89iIDShVqvRr18/q8re+fPn0apVKwDGBisqlQo7duyQrk9LS8OpU6cwaNAgAEBcXBzy8vLMAsKhQ4eQl5dnts2pU6fMumVu374dGo1GauJii0ajkRahN12MnoiIiIg8i8NEHcPXyzs0ujmEhYWFuHjxovTvS5cu4cSJEwgJCUHLli0xb9483H///bj99tsxbNgwpKSk4JtvvsGuXbsAGJdEmDZtGubMmYPQ0FCEhIRg7ty56Natm9R1NDY2FqNGjcL06dPxwQcfAABmzJiBhIQEdOzYEQAQHx+Pzp07IzExEYsXL0Z2djbmzp2L6dOnM+QREREREZFbNLoK4dGjR9GrVy/06tULgLHRSq9evfDyyy8DAO6++268//77eOutt9CtWzf8+9//xhdffIFbb71Vuo+lS5diwoQJmDhxIgYPHgx/f3988803ZmOf169fj27duiE+Ph7x8fHo3r071q5dK12vUCiwdetWaLVaDB48GBMnTsSECRPwr3/9y02vBBGR52RkZGD+/PkwGAye3hUiIqrGrl27IJPJ2Dm1gWvUTWUaAk64JSJflJiYiHXr1uH8+fPo0KGDp3eHiKheSkpKcOnSJbRp0wZardbTu+M0u3btwrBhw5CTkyOtCe1MNb1uPMZ1n0ZXISQiIs8T1/dkhZCIiMizGAiJiMjtxEBYWVnp4T0hImrcSktLkZSUhPDwcGi1Wtx66604cuSI2Tb79u1Djx49oNVqMWDAAJw8eVK67vLlyxg7diyCg4MREBCALl264Ntvv3X306B6YCAkIiK3E+dcs0JIRORZ8+fPxxdffIE1a9bg2LFjaN++PUaOHIns7Gxpm3nz5uFf//oXjhw5gvDwcIwbN05aKuLJJ59EaWkp9uzZg5MnT+LNN99EkyZNPPV0qA4aXZdRIiLyPFYIiagxKC4uxtmzZ93+uJ06dbJrTcSioiKsXLkSn3zyCUaPHg0AWLVqFXbs2IGPPvoI/fr1AwD885//xJ133gkAWLNmDVq0aIHNmzdj4sSJuHLlCu69915069YNANC2bVsXPStyFQZCIiJyO7FCyEBIRA3Z2bNna1xf2lVSU1PRu3fvWrf77bffUF5ejsGDB0uXqVQq9O/fH2fOnJECYVxcnHR9SEgIOnbsiDNnzgAAkpKS8Pjjj2P79u0YMWIE7r33XnTv3t3Jz4hciYGQiIjcjkNGiagx6NSpE1JTUz3yuPYQFxuwXCBeEIRaF40Xr3/kkUcwcuRIbN26Fdu3b8eiRYvw9ttvY+bMmXXYc/IEBkIiInI7DhklosbA39/frkqdp7Rv3x5qtRp79+7FpEmTAADl5eU4evQoZs2aJW138OBBtGzZEgCQk5OD8+fPm4XOmJgYPPbYY3jsscewYMECrFq1ioHQhzAQEhGR23HZCSIizwsICMDjjz+OefPmISQkBC1btsRbb72F4uJiTJs2DT///DMA4NVXX0VoaCgiIiLwwgsvICwsDBMmTAAAzJo1C6NHj8Ytt9yCnJwc/PDDD4iNjfXgsyJHMRASEZHbcQ4hEZF3eOONN2AwGJCYmIiCggL07dsX27ZtQ3BwsNk2Tz/9NC5cuIAePXrg66+/hlqtBmD8Hn/yySdx7do1BAUFYdSoUVi6dKmnng7VAQMhERG5nRgIKyoqPLwnRESNm1arxbvvvot3333X6rqhQ4dK8wwTEhJs3n758uUu3T9yPa5DSEREbsdASERE5B0YCImIyO3EOYQMhERERJ7FQEhERG4nBsLy8nIP7wkREVHjxkBIRERuxyGjRERE3oGBkIiI3I6BkIiIyDswEBIRkdtxyCgREZF3YCAkIiK3Y4WQiIjIOzAQEhGR27FCSERE5B0YCImIyGNYISQi8l3Jycno2bOnp3eD6omBkIiI3E4QBAAMhERERJ7GQEhERG5nMBgAcMgoERGRpzEQEhGR2zEQEhF5B4PBgDfffBPt27eHRqNBy5Yt8frrrwMAnn32Wdxyyy3w9/dH27Zt8dJLL9X6vf3xxx+jS5cu0Gg0iIqKwlNPPeWOp0H1oPT0DhARUeMjBkLxv0RE5BkLFizAqlWrsHTpUtx6661IS0vD2bNnAQCBgYH45JNPEB0djZMnT2L69OkIDAzE/Pnzbd7XypUrMXv2bLzxxhsYPXo08vLysG/fPnc+HaoDBkIiInI7BkIiIs8rKCjAO++8gxUrVuDBBx8EALRr1w633norAODFF1+Utm3dujXmzJmD//znP9UGwv/7v//DnDlz8PTTT0uX9evXz4XPgJyBgZCIiNxObCrDQEhEDVpxMVBVbXOrTp0Af/9aNztz5gxKS0sxfPhwm9d//vnnWLZsGS5evIjCwkJUVFQgKCjI5raZmZm4fv16tfdF3qvRzSHcs2cPxo4di+joaMhkMnz55ZfVbvvoo49CJpNh2bJlZpeXlpZi5syZCAsLQ0BAAMaNG4dr166ZbZOTk4PExETodDrodDokJiYiNzfXbJsrV65g7NixCAgIQFhYGJKSklBWVuakZ0pE5L1YISSiRuHsWaBPH/f/2BlC/fz8qr3u4MGD+Pvf/47Ro0djy5YtOH78OF544YVqj1Vrui/ybo2uQlhUVIQePXrgoYcewr333lvtdl9++SUOHTqE6Ohoq+tmzZqFb775Bhs3bkRoaCjmzJmDhIQEpKamQqFQAAAmTZqEa9euISUlBQAwY8YMJCYm4ptvvgEAVFZWYsyYMWjWrBn27t2Lmzdv4sEHH4QgCFi+fLkLnjkRkfcQg2BlZaWH94SIyIU6dQJSUz3zuHbo0KED/Pz88P333+ORRx4xu27fvn1o1aoVXnjhBemyy5cvV3tfgYGBaN26Nb7//nsMGzasbvtNHtHoAuHo0aMxevToGrf5888/8dRTT2Hbtm0YM2aM2XV5eXn46KOPsHbtWowYMQIAsG7dOsTExGDnzp0YOXIkzpw5g5SUFBw8eBADBgwAAKxatQpxcXE4d+4cOnbsiO3bt+PXX3/F1atXpdD59ttvY+rUqXj99derLccTETUErBASUaPg7w/07u3pvaiWVqvFs88+i/nz50OtVmPw4MHIysrC6dOn0b59e1y5cgUbN25Ev379sHXrVmzevLnG+0tOTsZjjz2G8PBwjB49GgUFBdi3bx9mzpzppmdEddHohozWxmAwIDExEfPmzUOXLl2srk9NTUV5eTni4+Oly6Kjo9G1a1fs378fAHDgwAHodDopDALAwIEDodPpzLbp2rWrWQVy5MiRKC0tRWoNZ5JKS0uRn59v9kNE5GsYCImIvMNLL72EOXPm4OWXX0ZsbCzuv/9+ZGZmYvz48XjmmWfw1FNPoWfPnti/fz9eeumlGu/rwQcfxLJly/Dee++hS5cuSEhIwIULF9z0TKiuGl2FsDZvvvkmlEolkpKSbF6fnp4OtVqN4OBgs8sjIiKQnp4ubRMeHm512/DwcLNtIiIizK4PDg6GWq2WtrFl0aJFeOWVVxx6TkRE3kZsKsMho0REniWXy/HCCy+YDQ0VvfXWW3jrrbfMLps1a5b0/8nJyUhOTja7/tFHH8Wjjz7qil0lF2GF0ERqaireeecdfPLJJ5DJZA7dVhAEs9vYun1dtrG0YMEC5OXlST9Xr151aD+JiLwBK4RERETegYHQxE8//YTMzEy0bNkSSqUSSqUSly9fxpw5c9C6dWsAQGRkJMrKypCTk2N228zMTKniFxkZiYyMDKv7z8rKMtvGshKYk5OD8vJyq8qhKY1Gg6CgILMfIiJfw0BIRETkHRgITSQmJuKXX37BiRMnpJ/o6GjMmzcP27ZtAwD06dMHKpUKO3bskG6XlpaGU6dOYdCgQQCAuLg45OXl4fDhw9I2hw4dQl5entk2p06dQlpamrTN9u3bodFo0KdPH3c8XSIij2EgJCIi8g6Nbg5hYWEhLl68KP370qVLOHHiBEJCQtCyZUuEhoaaba9SqRAZGYmOHTsCAHQ6HaZNm4Y5c+YgNDQUISEhmDt3Lrp16yZ1HY2NjcWoUaMwffp0fPDBBwCMy04kJCRI9xMfH4/OnTsjMTERixcvRnZ2NubOnYvp06ez6kdEDR6XnSAiIvIOja5CePToUfTq1Qu9evUCAMyePRu9evXCyy+/bPd9LF26FBMmTMDEiRMxePBg+Pv745tvvpHWIASA9evXo1u3boiPj0d8fDy6d++OtWvXStcrFAps3boVWq0WgwcPxsSJEzFhwgT861//ct6TJSLyUmJTGVYIiYiIPKvRVQiHDh0qHYjY448//rC6TKvVYvny5TUuIB8SEoJ169bVeN8tW7bEli1b7N4XIqKGgkNGiaghcuQYk/h6eYtGVyEkIiLP45BRImpIVCoVAKC4uNjDe+JbxNdLfP3IMxpdhZCIqCGpqKjAr7/+iu7du3t6VxzCCiERNSQKhQJNmzZFZmYmAMDf39/hJcwaE0EQUFxcjMzMTDRt2tRs2hW5HwMhEZEPW7x4MZ5//nmkpaUhMjLS07tjN84hJKKGRvwOFkMh1a5p06Y+9beroWIgJCLyYZcuXQJgPADxpT+qrBASUUMjk8kQFRWF8PBwlJeXe3p3vJ5KpWJl0EswEBIR+bDAwEAAQEFBgYf3xDGcQ0hEDZVCoWDQIZ/CpjJERD5MDISFhYUe3hPHsEJIRETkHRgIiYh8WJMmTQAwEBIREVHdMBASEfkwXx0yKjaV4ZBRIiIiz2IgJCLyYVqtFoDvBUJWCImIiLwDAyERkQ8TK216vd7De+IYBkIiIiLvwEBIROTDfDVQMRASERF5BwZCInK6srIyn2ty4qvEQCVWCn0Fl50gIiLyDgyEROR0I0eOlJqdkGv5arASAywrhERERJ7FQEhETrdr1y5P70Kj4avBikNGiYiIvAMDIRGRD/PVYOWrlU0iIqKGhoGQiMiH+Xog9LX9JiIiamgYCInI6TQaDQCgtLTUw3vS8PlqsPLV/SYiImpoGAiJyOkCAgIAAPn5+R7ek4bPV+cQ+up+ExERNTQMhETkdGIgLCgo8PCeNHy+OhfPV/ebiIiooWEgJCKnY4XQfXx16KWv7jcREVFDw0BIRE6nVqsBcA6hO/hqsOKQUSLX+/TTT3lijohqxUBIRE4nk8kAcDigO/h6IOR7hMg18vLy8OCDD+LRRx/19K4QkZdjICQil/G1kOKLfLXS5qv7TeRrLly44OldICIvx0BIRC7D6o/r+WqF0Ff3m8hXiJ+trKwsD+8JEXk7BkIicjpxyCgP9l3PV7t1skJI5FriZ+vGjRse3hMi8naNLhDu2bMHY8eORXR0NGQyGb788kvpuvLycjz77LPo1q0bAgICEB0djQceeADXr183u4/S0lLMnDkTYWFhCAgIwLhx43Dt2jWzbXJycpCYmAidTgedTofExETk5uaabXPlyhWMHTsWAQEBCAsLQ1JSEsrKylz11IncztdCii/y1Uob5xASuZb4nVBcXOzhPSEib9foAmFRURF69OiBFStWWF1XXFyMY8eO4aWXXsKxY8fwv//9D+fPn8e4cePMtps1axY2b96MjRs3Yu/evSgsLERCQoLZgc2kSZNw4sQJpKSkICUlBSdOnEBiYqJ0fWVlJcaMGYOioiLs3bsXGzduxBdffIE5c+a47skTuRkP9l3PVyttvrrfRL6Cny0ispfS0zvgbqNHj8bo0aNtXqfT6bBjxw6zy5YvX47+/fvjypUraNmyJfLy8vDRRx9h7dq1GDFiBABg3bp1iImJwc6dOzFy5EicOXMGKSkpOHjwIAYMGAAAWLVqFeLi4nDu3Dl07NgR27dvx6+//oqrV68iOjoaAPD2229j6tSpeP311xEUFOTCV4HIPXhA4nq+XiH0tf0m8hXiZ4yIqDaNrkLoqLy8PMhkMjRt2hQAkJqaivLycsTHx0vbREdHo2vXrti/fz8A4MCBA9DpdFIYBICBAwdCp9OZbdO1a1cpDALAyJEjUVpaitTU1Gr3p7S0FPn5+WY/RN6Gy064j68GQl+d+0jkK3ztO4GIPIeBsAYlJSV47rnnMGnSJKlil56eDrVajeDgYLNtIyIikJ6eLm0THh5udX/h4eFm20RERJhdHxwcDLVaLW1jy6JFi6R5iTqdDjExMfV6jkSuxAMS1/PVQMgKIZFr8bNFRPZiIKxGeXk5/v73v8NgMOC9996rdXtBEKSqCACz/6/PNpYWLFiAvLw86efq1au17huRp7D643q+2pyFgZDItfjZIiJ7MRDaUF5ejokTJ+LSpUvYsWOH2Xy+yMhIlJWVIScnx+w2mZmZUsUvMjISGRkZVveblZVlto1lJTAnJwfl5eVWlUNTGo0GQUFBZj9E3obLTrgPK4REZAs/W0RkLwZCC2IYvHDhAnbu3InQ0FCz6/v06QOVSmXWfCYtLQ2nTp3CoEGDAABxcXHIy8vD4cOHpW0OHTqEvLw8s21OnTqFtLQ0aZvt27dDo9GgT58+rnyKRG7ja1UrX+SrgZBzCIlcy9e+E4jIcxpdl9HCwkJcvHhR+velS5dw4sQJhISEIDo6Gvfddx+OHTuGLVu2oLKyUqrihYSEQK1WQ6fTYdq0aZgzZw5CQ0MREhKCuXPnolu3blLX0djYWIwaNQrTp0/HBx98AACYMWMGEhIS0LFjRwBAfHw8OnfujMTERCxevBjZ2dmYO3cupk+fzqof+TxWCN3HVwMhK4RErsXPFhHZq9EFwqNHj2LYsGHSv2fPng0AePDBB5GcnIyvv/4aANCzZ0+z2/34448YOnQoAGDp0qVQKpWYOHEi9Ho9hg8fjk8++QQKhULafv369UhKSpK6kY4bN85s7UOFQoGtW7fiiSeewODBg+Hn54dJkybhX//6lyueNpFHsPrjegyERGQLP1tEZK9GFwiHDh1a49o89qzbo9VqsXz5cixfvrzabUJCQrBu3boa76dly5bYsmVLrY9H5KsYCF3PV4OVr+43ka/gZ4uI7MU5hETkdBwy6j6+OhfPV/ebyFdwYXoishcDIRG5DA/2XY9DRonIFn62iMheDIRE5HQ82HcfBkIisoWfLSKyFwMhETkdhwO6j68GK3G/+R4hcg1f+04gIs9hICQip/PVqpUv8tXX2lf3m8hX8LNFRPZiICQip2OF0H18NVj5amWTyFfws0VE9mIgJCKnE4MgA6Hr+Wr4ZiAkci1+tojIXgyEROR0vlq18kW++loLggClUulzQZbIV/jadwIReQ4DIRE5na9WrXyRr1baDAYDlEqlz+03ka/gZ4uI7MVASERO56tVK1/kq6+1IAhQKBQ+t99EvoIL0xORvRgIicjpOIfQfXw5EIoVQh64Ejmfr30nEJHnMBASkdP5akjxRb76WouBUPx/InIuX/tOICLPYSAkIqfjHEL38dUF3g0GAxQKhfT/RORc/FwRkb0YCInI6RgI3ceXK4QMhESuw88VEdmLgZCInM5XQ4ov8tXX2nTIKE8cEDmfr30nEJHnMBASkdOxqYz7NIRA6Gv7TuQLTD9XnKdLRDVhICQip/PVkOKLfHkdQg4ZJXIdBkIishcDIRE5HecQuo+vhm8OGSVyLdMQyM8YEdWEgZCInM5XQ4ov8tXwzaYyRK5l+rnyte8HInIvBkIicjrOIXQfXw3fnENI5Fqmnyt+xoioJgyEROR0vhpSfJGvvtacQ0jkWqwQEpG9GAiJyOl8dRijL6pvU5nff//dmbtjN84hJHItBkIishcDIRE5HQOh+9SnQvj555+jXbt2+Pnnn529W7XiHEIi1+KQUSKyFwMhETmdGAR5EOJ69QmE58+fBwD88ccfztwluzAQErkWK4REZK9GFwj37NmDsWPHIjo6GjKZDF9++aXZ9YIgIDk5GdHR0fDz88PQoUNx+vRps21KS0sxc+ZMhIWFISAgAOPGjcO1a9fMtsnJyUFiYiJ0Oh10Oh0SExORm5trts2VK1cwduxYBAQEICwsDElJSSgrK3PF0yZyK1YI3ac+r7VGowEAj3zvcMgokWsxEBKRvRpdICwqKkKPHj2wYsUKm9e/9dZbWLJkCVasWIEjR44gMjISd955JwoKCqRtZs2ahc2bN2Pjxo3Yu3cvCgsLkZCQYPaFO2nSJJw4cQIpKSlISUnBiRMnkJiYKF1fWVmJMWPGoKioCHv37sXGjRvxxRdfYM6cOa578kRu4quNTnxRfeYQioGwtLTUqftkD4PBwC6jRC7EIaNEZC+lp3fA3UaPHo3Ro0fbvE4QBCxbtgwvvPAC7rnnHgDAmjVrEBERgQ0bNuDRRx9FXl4ePvroI6xduxYjRowAAKxbtw4xMTHYuXMnRo4ciTNnziAlJQUHDx7EgAEDAACrVq1CXFwczp07h44dO2L79u349ddfcfXqVURHRwMA3n77bUydOhWvv/46goKC3PBqEDkfF0N2r/qEb08GQg4ZJXItfhcTkb0aXYWwJpcuXUJ6ejri4+OlyzQaDYYMGYL9+/cDAFJTU1FeXm62TXR0NLp27Sptc+DAAeh0OikMAsDAgQOh0+nMtunatasUBgFg5MiRKC0tRWpqqkufJ5Er8ay0e9UnEKrVagAMhEQNEYeMEpG9Gl2FsCbp6ekAgIiICLPLIyIicPnyZWkbtVqN4OBgq23E26enpyM8PNzq/sPDw822sXyc4OBgqNVqaRtbSktLzQ7e8vPz7X16RG5heuDBgxDXc0aFkHMIiRoenpwjInuxQmiDTCYz+7cgCFaXWbLcxtb2ddnG0qJFi6RGNTqdDjExMTXuF5G78ay0e/lqhZBzCIlci9/FRGQvBkITkZGRAGBVocvMzJSqeZGRkSgrK0NOTk6N22RkZFjdf1ZWltk2lo+Tk5OD8vJyq8qhqQULFiAvL0/6uXr1qoPPksi1eFbavcR5QvU54OOQUaKGh4GQiOzFQGiiTZs2iIyMxI4dO6TLysrKsHv3bgwaNAgA0KdPH6hUKrNt0tLScOrUKWmbuLg45OXl4fDhw9I2hw4dQl5entk2p06dQlpamrTN9u3bodFo0KdPn2r3UaPRICgoyOyHyJvwIMS96lMhFG/DIaNEDQ9PzhGRvRrdHMLCwkJcvHhR+velS5dw4sQJhISEoGXLlpg1axYWLlyIDh06oEOHDli4cCH8/f0xadIkAIBOp8O0adMwZ84chIaGIiQkBHPnzkW3bt2krqOxsbEYNWoUpk+fjg8++AAAMGPGDCQkJKBjx44AgPj4eHTu3BmJiYlYvHgxsrOzMXfuXEyfPp0hj3ya6cE9D0JczxmB0FMVQg4ZJXIdnpwjIns1ukB49OhRDBs2TPr37NmzAQAPPvggPvnkE8yfPx96vR5PPPEEcnJyMGDAAGzfvh2BgYHSbZYuXQqlUomJEydCr9dj+PDh+OSTT6ThTwCwfv16JCUlSd1Ix40bZ7b2oUKhwNatW/HEE09g8ODB8PPzw6RJk/Cvf/3L1S8BkUvxIMS9fDUQGgwGDhklciFWCInIXo0uEA4dOtRsbR5LMpkMycnJSE5OrnYbrVaL5cuXY/ny5dVuExISgnXr1tW4Ly1btsSWLVtq3WciXyIeeMhkMh6EuEF9FqYXA3tN34muwjmERK7FdQiJyF6cQ0hETiUe3CuVSh6EuIEzKoSeCoScQ0jkOhytQUT2YiAkIqcSDzxUKhUPQtxAXL6hLq+1twRCVgiJnI9DRonIXgyERORU4oGHSqXiQYgbiHPxfK1CyDmERK7FCiER2YuBkIicyjQQ8iDE9cRKmyAIDgc7T1cIxUDI9wmR8zEQEpG9GAiJyKlYIXQvccgo4Hiwq8/8w/rikFEi1+KQUSKyFwMhETkVm8q4l8FggEqlkv7f0dsCnqkeMBASuRYrhERkLwZCInIq06YyPNB3PdMKoaOvt/i78lQg5BxCItdhICQiezEQEpFTcQ6he5k2Z3H09fZUhVAc2splJ4hch0NGicheDIRE5FScQ+he9Rl66elAyAohketwYXoishcDIRE5FecQuld9hox6OhByDiGR63DIKBHZi4GQiJxKPPBQq9U8CHEDXwyE4uNy2Qki1+Fan0RkLwZCInIqDhl1L2cEQnf/nlghJHI90w7EPOlCRDVhICQip+KQUfeqzxxCT3UZ5RxCItdjICQiezEQEpFTsULoXqYVQl/tMsr3CZHz1Wf0ABE1LgyERORUpusQ8qy06/nyHEIuO0HkOqwQEpG9GAiJyKlYIXSv+jSO8HSFkENGiVynPqMHiKhxYSAkIqfiHEL34jqERGRLfb4biKhxYSAkIqcyrRAyELqe6bAwXwuEPFglch0OGSUiezEQEpFTmc4h5IG+63EOIRHZwqYyRGQvBkIicipWCN2rPvOEuOwEUcMlzi+WyWT8LiaiGjEQEpFTsamMe/lyUxmZTAaZTMb3CZELGAwGyOVyKBQKBkIiqhEDIRE5FZvKuJcvN5WRyWSQy+V8nxC5gGkg5EkXIqoJAyERORUrhO7ly3MIebBK5DpiIORJFyKqDQMhETkVF6Z3L1/uMipWCBkIiZyPQ0aJyF4MhETkVGwq416+PoeQgZDINQwGA2QyGavwRFQrBkILFRUVePHFF9GmTRv4+fmhbdu2ePXVV82+TAVBQHJyMqKjo+Hn54ehQ4fi9OnTZvdTWlqKmTNnIiwsDAEBARg3bhyuXbtmtk1OTg4SExOh0+mg0+mQmJiI3NxcdzxNIpcxnUPojQch3377rdVn0ZeZziF0NNh5SyDkiQMi5xMEgUNGicguDIQW3nzzTbz//vtYsWIFzpw5g7feeguLFy/G8uXLpW3eeustLFmyBCtWrMCRI0cQGRmJO++8EwUFBdI2s2bNwubNm7Fx40bs3bsXhYWFSEhIMPtSnjRpEk6cOIGUlBSkpKTgxIkTSExMdOvzJXI2MWSo1WpUVFR4eG+sjRkzBjExMZ7eDaepzxxCTy87weoFketwyCgR2Uvp6R3wNgcOHMD48eMxZswYAEDr1q3x2Wef4ejRowCMBzLLli3DCy+8gHvuuQcAsGbNGkRERGDDhg149NFHkZeXh48++ghr167FiBEjAADr1q1DTEwMdu7ciZEjR+LMmTNISUnBwYMHMWDAAADAqlWrEBcXh3PnzqFjx44eePZE9SceeKjVagiCIB2UkGv4clMZhULBIaNELmLaVIafMSKqCY/SLNx66634/vvvcf78eQDAzz//jL179+Kuu+4CAFy6dAnp6emIj4+XbqPRaDBkyBDs378fAJCamory8nKzbaKjo9G1a1dpmwMHDkCn00lhEAAGDhwInU4nbWNLaWkp8vPzzX6IvIl44KHRaAC4P2w0JoIg+OSyE6ZdRjmcjcg1WCEkInuxQmjh2WefRV5eHjp16iR9ib7++uv4xz/+AQBIT08HAERERJjdLiIiApcvX5a2UavVCA4OttpGvH16ejrCw8OtHj88PFzaxpZFixbhlVdeqfsTJHIx0yGjgHFertgFk5xLHHrpq4GQQ0aJXEcMhFqtFiUlJZ7eHSLyYqwQWvjPf/6DdevWYcOGDTh27BjWrFmDf/3rX1izZo3ZdjKZzOzfgiBYXWbJchtb29d2PwsWLEBeXp70c/XqVXueFpHb2AqE5Bq+GgjF/eZwNiLXEQNhSEgIbt686endISIvxgqhhXnz5uG5557D3//+dwBAt27dcPnyZSxatAgPPvggIiMjARgrfFFRUdLtMjMzpaphZGQkysrKkJOTY1YlzMzMxKBBg6RtMjIyrB4/KyvLqvpoSqPRSEPxiLyR6RxCgIHQlUw7ugK+02XUcshoQwqEN27cQH5+Ptq2bevpXaFGTgyEoaGhDIREVCNWCC0UFxdbNcAwHdLUpk0bREZGYseOHdL1ZWVl2L17txT2+vTpA5VKZbZNWloaTp06JW0TFxeHvLw8HD58WNrm0KFDyMvLk7Yh8kWsELqPZSD0lS6jDXkOYefOndGuXTtP7waRtA5hWFgYAyER1YgVQgtjx47F66+/jpYtW6JLly44fvw4lixZgocffhiAcZjnrFmzsHDhQnTo0AEdOnTAwoUL4e/vj0mTJgEAdDodpk2bhjlz5iA0NBQhISGYO3cuunXrJnUdjY2NxahRozB9+nR88MEHAIAZM2YgISGBHUbJp1kGQm862G9IlSjAvFun6b8dvb0nA2FDm0OYlZXl6V0gAmBeIfz5558duu2bb76JFi1aYPLkyS7aOyLyJgyEFpYvX46XXnoJTzzxBDIzMxEdHY1HH30UL7/8srTN/Pnzodfr8cQTTyAnJwcDBgzA9u3bERgYKG2zdOlSKJVKTJw4EXq9HsOHD8cnn3wiHbgBwPr165GUlCR1Ix03bhxWrFjhvidL5ALeXCH0pnDqDL46h7AhDxkl8hbiwvSODhk1GAx47rnnAICBkKiRYCC0EBgYiGXLlmHZsmXVbiOTyZCcnIzk5ORqt9FqtVi+fLnZgvaWQkJCsG7dunrsLZH3YSB0n/oOGfWWQNjQfi9E3kCsEIpDRu1pfgcAV65cAQAEBAS4eheJyEtwDiEROZV4cC8uNeFNgdB0X8Tqmi8Tg5X4WvtiIGxoQ0aJvIXpkNHy8nIUFBTYdbvy8nIAYAM7okaEgZCInMpgMEChUEhVK28KhKbBpyFUpSznEPpal1GZTMYho0QuYhoIAdg9bLQhfDcSkWMYCInIqcSDEG8PhN60X3Xlq3MIuQ4hkesxEBKRvRgIicipvDkQmu6LN+1XXTlr2QlBENw6hLYxzCFsCEOSybeZLkwPANnZ2XbdriF+HomoZgyERORUlZWVXhsIG+qQ0fpWCAH3vh6NYQ6hOA+LyFPEQCg2+LL3PdkQvhuJyDEMhETkVL4yh9Cb9quuGkIgbKhDRktLSz29C9TIiQvTi98P9n7GGQiJGh8GQiJyKg4ZdZ+GEggb4gEoAyF5mrgOoaPfxQ3x80hENWMgJCKn8uZA2NCGjIrz1OrbZbQut62PxjBktKyszNO7QI1cXb+LG8J3IxE5hoGQiJzKm+cQNrQKoeWaj3WpEIoLVbNC6FysEJKniYFQPGHEQEhE1WEgJCKn4hxC96nvwvSVlZVSwwlPBEJxHcKG2JGTgZA8jRVCIrIXAyERORWHjLqPM+YQimHSna9HY1iHkIGQPM3yu5hNZYioOgyERORU3hwIG9qQUV8NhI2hyyjnEJKnid/FcrnxUM/RCmFDrNwTkW0MhETkVN48h5BDRq1v7+lAKJPJGmQg5DqE5GliIBSXnuCQUSKqDgMhETlVXRsZuENDHTJany6jng6EDXUOISuE5GmmTaMUCgUDIRFVi4GQiJzKm5vKNNQhowqFok6VNm8JhA2xQshASJ4mnpwDwAohEdWIgZCInEo8CBGDhjcNnWtoFULxOdQ1WDEQuo43ve+pcRIXpgeMgZBNZYioOgyERORUpkNGZTKZVx0YN9Q5hAqFok7BytPLTjTkQMgKIXkaK4REZC8GQiJyKrGpjEwmg1qt9qoD44Y6ZNRXK4TiOoQMhETOx0BIRPZiICQipxLnEALG7pfedGDc0IaMmgZChULhM4HQdB3Chtpl1Jve99Q4MRASkb0YCInIqUwPQlghdC3LCiG7jHoPbxoqTY0Tu4wSkb0YCInIqSwDoTcdGDfUOYS+OmS0oc0hNA223nQihBon09EarBASUU0YCInIqcQ5hID3VQgb8pBRBkLPM30Nvel9T42T5ZBRR7uMNsTKPRHZxkBIRE5lelba2wJhQxsyWt9lJyorKxkInYiBkLyJ6cm5ulQIG8rnkohqx0BIRE7lzXMIG+qQ0bouO2EwGLjshBOZvobeNFSaGqf6DhltCKMoiMg+DIRE5FS+EggbwsGOr3YZNd3vhtRllBVC8iam38V1aSrTEL4jicg+DIQ2/Pnnn5gyZQpCQ0Ph7++Pnj17IjU1VbpeEAQkJycjOjoafn5+GDp0KE6fPm12H6WlpZg5cybCwsIQEBCAcePG4dq1a2bb5OTkIDExETqdDjqdDomJicjNzXXHUyRyGW+eQ9jQhoz6epdRcR3ChjJXiYGQvEl9l51gICRqPBgILeTk5GDw4MFQqVT47rvv8Ouvv+Ltt99G06ZNpW3eeustLFmyBCtWrMCRI0cQGRmJO++8EwUFBdI2s2bNwubNm7Fx40bs3bsXhYWFSEhIMPuCnTRpEk6cOIGUlBSkpKTgxIkTSExMdOfTJXI6b55D2FCHjNanqYxSqQTguXUIOWSUyDXq21SGgZCo8VB6ege8zZtvvomYmBisXr1auqx169bS/wuCgGXLluGFF17APffcAwBYs2YNIiIisGHDBjz66KPIy8vDRx99hLVr12LEiBEAgHXr1iEmJgY7d+7EyJEjcebMGaSkpODgwYMYMGAAAGDVqlWIi4vDuXPn0LFjR/c9aSInMj0IUalUXnVgbBoCG8LBDruMehdWCMmbVFZW1msOocFggCAI0lqGRNRwsUJo4euvv0bfvn3xt7/9DeHh4ejVqxdWrVolXX/p0iWkp6cjPj5eukyj0WDIkCHYv38/ACA1NRXl5eVm20RHR6Nr167SNgcOHIBOp5PCIAAMHDgQOp1O2saW0tJS5Ofnm/0QeRNvn0OoVCohl8sbRIWwvl1GGQidi4GQvEl9h4yK90FEDR8DoYXff/8dK1euRIcOHbBt2zY89thjSEpKwqeffgoASE9PBwBERESY3S4iIkK6Lj09HWq1GsHBwTVuEx4ebvX44eHh0ja2LFq0SJpzqNPpEBMTU/cnS+QCvhAIHWmw4M3qG6wqKyulLqPuPPBjICRyvfo2lbH8fyJquBgILRgMBvTu3RsLFy5Er1698Oijj2L69OlYuXKl2XaWQyjsGVZhuY2t7Wu7nwULFiAvL0/6uXr1qj1Pi8htvL2pjEKhcGg+jTdzxrITrBA6D+cQkjexDISOziG0/H8iargYCC1ERUWhc+fOZpfFxsbiypUrAIDIyEgAsKriZWZmSlXDyMhIlJWVIScnp8ZtMjIyrB4/KyvLqvpoSqPRICgoyOyHyJt4e1MZMRA2tAqhIwd8prf3dJdRLjtB5BoMhERkLwZCC4MHD8a5c+fMLjt//jxatWoFAGjTpg0iIyOxY8cO6fqysjLs3r0bgwYNAgD06dMHKpXKbJu0tDScOnVK2iYuLg55eXk4fPiwtM2hQ4eQl5cnbUPki3xlyGhDONDx5aYy4nukIS47odFovOp9T42TaVMZR77zGtryPERUO3YZtfDMM89g0KBBWLhwISZOnIjDhw/jww8/xIcffgjAeEZ71qxZWLhwITp06IAOHTpg4cKF8Pf3x6RJkwAAOp0O06ZNw5w5cxAaGoqQkBDMnTsX3bp1k7qOxsbGYtSoUZg+fTo++OADAMCMGTOQkJDADqPk07w5EIpDRhtKUxlfDoTi0PiGNGRUfB5arZZDRsnjLCuEpaWldt2usLBQ+v+GcOKMiGrHQGihX79+2Lx5MxYsWIBXX30Vbdq0wbJlyzB58mRpm/nz50Ov1+OJJ55ATk4OBgwYgO3btyMwMFDaZunSpVAqlZg4cSL0ej2GDx+OTz75RDpbBwDr169HUlKS1I103LhxWLFihfueLJELWM4h9KYDY/GMuSAIDITwXCAUBMGsQthQAqH4Gvr5+XnViRBqnOoyZHTDhg1Yvny59G8GQqLGgYHQhoSEBCQkJFR7vUwmQ3JyMpKTk6vdRqvVYvny5WZfrJZCQkKwbt26+uwqkdcxXezcGyuESqUSgiA0iAMdX152goGQyLXqEgjnzp1r9u+G8D1JRLXjHEIicirLhem96cC4ITeVqe+yEwyEtn377bfIysqya1vxNdRqtV71vqfGybTBl72fs4CAALN/MxASNQ4MhETkVN48h7ChrkOoUCjq3GVUrOZ6KhB6c5dRg8GAMWPGmE0ZqIlphdCbhkpT42Q6fN/e7wfLzuUMhESNAwMhETkV1yF0H2fMIazrkhX14StdRm/evAkAyM3NtWt7Dhklb1KXIaOmvRAABkKixoKBkIicSqzCAd4XCDlk1Pr23hAIvbVCKK43GxwcbNf2DITkTeoSCE0b3wEMhESNBQMhETmV2LgF8M5A2BCHjNYlEAqCIHX7ZCC0LS0tDYDjgZBzCMnTxKq7o4FQ/F58+OGHATAQEjUWDIRE5FSWgdCb5lI11CGjMpmsToEQgMcCoS+sQ5idnQ0AaNKkiV3bcw4heQvT+cXif+0NhA899BCmTZsGgIGQqLFgICQip7JVIfSWOWINbchoZWUlZDJZnQKh6ZIV7g6EvrIOoRjq7N0/Dhklb2H6+QYcC4TiKArT+yFyN3ubeZFzcB1CInIqy0AorvknXuZJ4r7JZLIGEQhN28o7GupMh5u6OxCaNh7y5i6j4nvE3teGQ0bJW5h+vgEGQvJe8+fPt7pMEATs37/fA3vTeHn+CI2IGhTLQAgAZWVlXhEIxQqhXC5vEAc69ZmLJz7/ui5ZUR/i7wHw7i6j4mviaCDkkFHyNAZC8hXr16/Hhg0brC7/8ccfPbA3jZfnj9CIqEExDYQqlQqAMRD6+/t7crcA/NVUpiFVCBtCIPT2CmFpaald25sGQntvQ+QK9ZlDyEBI7vTwww8jNjYW4eHhZpc/8MADHtqjxomBkIicqroKoTcQm8qwQlj/Re3ro6EHQn9/f2nurNg8h8idLCuE9n7OGAjJ3V577TWblyclJSE/P9/Ne9N4sakMETmVGLoA7wuEYhBpSMtO1LdC6Kk5hL4UCEtKSuza3rRCKAhCg3iPkW9iUxkicgQDIRE5lTdXCMUhow1p2QlfHTIqvkd8IRDaWyEUn4efn59DtyNytrrOITQ9aSb+m4gaPg4ZJSKnMj3YF+cQekulxHTIqLfsU32Ydut0NNR5MhCaVpEbUiA0HTIKeM+JEGp8OIeQiBzBCiEROZVphVD8r7eEL9Oz3w3hQMd02QlfnUPoC8tO1DUQskJInsIuo+Qr/vvf/6JXr16YMmUK1qxZg44dO6Jfv374+uuvPb1rjQorhETkVN4eCDUaDeRyOYqLiz29O/Xmy0NGfWHZCQZC8lUMhOQr3n77bezbtw8FBQXo2bMnzp49C61WixEjRmDo0KGe3r1Gg4GQiJzKmwOhtw0Z3bFjB7RaLW677bY63Z5NZVyLgZB8lbOaynjD9yQ1bH5+fvD394e/vz+GDx8OnU4HAF6xdnFjwlebiJzKmwOhtw0ZjY+PB4A6V8hM5xD6WoWwITaVMe0y6sjtiJytvhVC8fPpDd+T1LD17NlT+tu8bt06AMb516GhoR7es8aFcwiJyKm8ORCanv32ln2qj/oEK0/OIWzoTWXEQMimMuQpbCpDvmLZsmXS+02kVqvx+eefe2iPGidWCInIqbw5EIpnIRvKwvSmwcqXuoz62pBRR9YhlMvl0Gg0AFghJM/hHEIicgQDIRE5jcFggMFg8OpAqFQqvWYOYX3Vp0LoLXMIG1qXUYVCwUBIHmcZCO35fhAEQfpOYSAkalw4ZJSInEY8ePDWQChW1LxlDmF9mVZjfW0OoS91GS0vL7frtWUgJG9Rl6Yypt/fDITkaenp6Z7ehUaFgZCInEY8gBYPJrwtEIoH7EqlskEc6NRnLp63rEPoC0NGAfvmA4rPS61W230bIleoyxxC8f3OQEje4IEHHvD0LjQqHDJKRE5jekBh+l9vCoQcMvrXbQHPNZXxpS6jgLHap9Vqa9yeFULyFrbmEAqCAEEQIJPJbN6GgZA8oX///laXCYKACxcueGBvGi9WCGuxaNEiyGQyzJo1S7pMEAQkJycjOjoafn5+GDp0KE6fPm12u9LSUsycORNhYWEICAjAuHHjcO3aNbNtcnJykJiYCJ1OB51Oh8TEROTm5rrhWRG5BoeM2s80BNV1yGR9KoTeNGTUVwJhbSwrhAyE5Cm2AiFQc8AzDYTi7Tz9PUkNX0FBAfbv34/Dhw9LP0eOHEG/fv08vWuNCgNhDY4cOYIPP/wQ3bt3N7v8rbfewpIlS7BixQocOXIEkZGRuPPOO1FQUCBtM2vWLGzevBkbN27E3r17UVhYiISEBLMv10mTJuHEiRNISUlBSkoKTpw4gcTERLc9PyJn84UKoThk1NP7ZNq5Uq/X1+k+LCuEdeky6ummMg0xEKpUKqvbU+NUUlKCn376ye2PW59AqFAoIJPJGkw3ZvJuCxcuNDt+Fr344ose2JvGi4GwGoWFhZg8eTJWrVqF4OBg6XJBELBs2TK88MILuOeee9C1a1esWbMGxcXF2LBhAwAgLy8PH330Ed5++22MGDECvXr1wrp163Dy5Ens3LkTAHDmzBmkpKTg3//+N+Li4hAXF4dVq1Zhy5YtOHfunEeeM1F9eXsgNG2p7ukDHdMQWNdKkunQS4VC4bNzCE33x5tUVFRI1T57lp4Qn5f43LzlfU+eM3v2bNx+++0oLi526+PaaipjenlNtzH9TvH09yQ1fHfffbfZcbZoyJAhHtibxouBsBpPPvkkxowZgxEjRphdfunSJaSnpyM+Pl66TKPRYMiQIdi/fz8AIDU1FeXl5WbbREdHo2vXrtI2Bw4cgE6nw4ABA6RtBg4cCJ1OJ21D5GvEA+C+b7wByGReFwi9qamMaSCsa/ORhjJkFPDeQBgQEADAvtBuMBggl8shq3rve8v7njzn7NmzAICioiK3Pm59h4wCgFar5bBnokaCTWVs2LhxI44dO4YjR45YXSe2wY2IiDC7PCIiApcvX5a2UavVVmc8IiIipNunp6cjPDzc6v7Dw8NrbLVbWlpq9gWdn59v57Micj3xgCJy3z4A8LpKiTc1lTENgXU96HJmUxl3dsQ03W/xPeKtgbBJkybIyclxaMgoYDyoLi8vd/UukpcT39dFRUVo1qyZ2x7XVrXP9HJbLAOhv7+/2yubROQZrBBauHr1Kp5++mmsW7euxo5yll26aurcVd02trav7X4WLVokNaHR6XSIiYmp8TGJ3MkyZMnlcq8IXyKxouYNFULTsNDYKoSW+226P96koqICQUFBAGDXgbFpIFSpVF7zvifPEd/X7q4QWoY7BkIiqgkDoYXU1FRkZmaiT58+UCqVUCqV2L17N959910olUqpMmhZxcvMzJSui4yMRFlZGXJycmrcJiMjw+rxs7KyrKqPphYsWIC8vDzp5+rVq/V6vkTOZOsA2JuGzpnO8fL0PjkjENanQmg6pMyTQ0a9ub19RUUFQkJCANg3GoMVQrIkvq8LCwvd+rjVBcKaviNsBUJ3B1ki8gwGQgvDhw/HyZMnceLECemnb9++mDx5Mk6cOIG2bdsiMjISO3bskG5TVlaG3bt3Y9CgQQCAPn36QKVSmW2TlpaGU6dOSdvExcUhLy8Phw8flrY5dOgQ8vLypG1s0Wg0CAoKMvsh8hZWIauq6Ymnw5dIDFDe0CzBWRXC+nYZ9fQcwoYaCFkhJMB8yKg7mXYMBeyrxLNCSNR4cQ6hhcDAQHTt2tXssoCAAISGhkqXz5o1CwsXLkSHDh3QoUMHLFy4EP7+/pg0aRIAQKfTYdq0aZgzZw5CQ0MREhKCuXPnolu3blKTmtjYWIwaNQrTp0/HBx98AACYMWMGEhIS0LFjRzc+YyLnsToALiz0qkDoTesQOjsQOtpl1NsCobfOIdTpdJDJZKwQUp14asgo5xASkSNYIayD+fPnY9asWXjiiSfQt29f/Pnnn9i+fTsCAwOlbZYuXYoJEyZg4sSJGDx4MPz9/fHNN99IX8oAsH79enTr1g3x8fGIj49H9+7dsXbtWk88JSKnsAp+BQVeFQi9acio6eN7YsiopwOh6X6b7o83qaiogEqlQmBgoM11sixZBkJPv8fI8wRBAOA9Q0a9MRAeP34cCQkJuPvuu826rE+bNs3lj01ERqwQ2mHXrl1m/5bJZEhOTkZycnK1t9FqtVi+fDmWL19e7TYhISFYt26dk/aSyPN8oULY0IaM1repjCfmEJrut7cPGVUqlQgKCuKQUaoTlUoFwHebythzIqS+kpKSsHr1aiiVSsybNw8HDx7E7Nmz8fvvv7v8sal2piNR3Gny5MlYuXKl2x+3sWIgJCKnsTrYYIWwWt7SVMZbhow2tEDIIaME/BWyTNcddefj1icQBgQE2Gx+52wymQzt27cHAGzatAnJycmYPn26x7+jG7OTJ0/i2WefRW5urvRdFhYWhoULF6Jbt25Ofaz58+dbXSYIAtfkdjMGQiJyGqs/4CUlXhcIxXUIBUGwa7kYV3FFUxlfGjLqK3MIlUolAgIC7KrwsEJIlsTPubsXeLdsKlPXQOiOtY7Dw8Pxxx9/oHXr1gCA5ORkrFu3jlNoPOiJJ57Ahg0bzJY2u3LlCiZPnoyffvrJqY+1fv16bNiwweryH3/80amPQzVjICQip/HmQGgwGCAIghSAAPMKm7u5YsioL3YZ9fY5hEqlEhqNxq7fESuEZEn87vNUIKxPhbBTp074+OOPUV5eLg19dYXPP//c6rIpU6ZgypQpLntMqlllZSV0Op3ZZUFBQS75nn744YcRGxuL8PBws8sfeOABpz8WVY+BkIicpqKiAmb1Nr3eawKhZQACPDc3AnD+kFFf7zLqzYFQrVbbdUDPCmHjdfz4cbz00ktQqVSYN2+etHyUuFawuwNhfbqMitv27NkTpaWlOH/+PLp06eLK3SUv88YbbyAhIQFqtRpBQUHIy8tDRUUF3nzzTac/1muvvWbz8qSkJLdUqMmIgZCInKaiogJm55G9qEJoeoDkDSHE001lPLkwvWnFwRt+F9UxDYSsEFJNqmuMIr5vfLFCGBYWBgDIy8tz2X6Sd7r99tuxZ88e6PV65ObmIjg4GFqt1tO7RS7EZSeIyGkqKiqgNr3AiyqEpme/TSuEnuLppjKerBCaBkJxyKg3zyGs65BRb3jfk3uIjVFat26NTZs2IT8/H9OnT5fe154IhDKZTPp82TNX17Kq6OfnBwBci7AR8/PzQ1RUFMNgI8BASEROYxUIvbBCaDmH0FPEQGhv9ckWX112whcrhBwySjURG6OIkpOTMWTIEI9WCE2Hw9szV9fWshOA6zuk7tixAwMGDMCgQYOwceNG6fIxY8a49HGJ6C8MhETkNN4cCE0PdsQDnvru1xdffIFnnnmmTrctLy+HXC6HVqut88FifbuMms7jYyC0xqYyZK/PP/9c6pIpmjJlCkJCQgDUfRRAXZmeLALqNmTUmRXCnTt3Vrum4T//+U9s27YNO3fuxOHDhzFz5kwYDAZWJhsJnhDwDgyEROQ03jxkVDwg02g0TgshSUlJWLZsmVllwF5iKKpPhdByyKgjz8c0THpDIPTmIaP2VggNBoNUiWGFkADPLTth2UG5PoGwvhXC0tJS3HnnnRgwYIDN6xUKBZo2bQp/f38sWbIEffr0wfjx41FYWFivx6W6++9//4tevXphypQpWLNmDTp27Ih+/frh66+/dvpj8YSAd2AgJCKn8eYKoXhAplarpQOe+oagli1bAvirk6AjnBEITasAjnYZtQxlnp5D6M0VQjaVobry5DqE9Q2EKpUKSqWy3gfm4nM/c+aMzet79uxpdlJt6tSpmD17drUVRbLf8ePHkZCQgLvvvttsofdp06bVeLu3334b+/btw9tvv43nnnsOhw8fxt69e7F48WKn7yNPCHgHdhklIqeprKz02kBoWiEUD1Dqu19qtfHZ1uUPlzMCoWWwcjQQivvvaHWxPgRBQGVlpc8MGVUoFHUaMqpSqVw+94q8ny8GQtOhpn5+fvV+H9f22Vm+fLnVZcOGDcPZs2fr9bhUfffb33//vcbb+fn5wd/fH/7+/hg+fLi0JqErlmkSTwiIQ66nTp2KVq1a4fHHH3f6Y1H1WCEkIqepqKiAWS8yLxoy6ooKoRhq6nIm2zQQXr16tU5ncS1DnSOBsKyszCMVQvEAOerKFSAsDMqqf3trIKxrUxlWCD3vt99+Q3p6ulsey9Y8KPHkB+A7gVAul0tVe8DYWMZZFUJyv+q639b2N7lnz57Se2XdunUAjH8zQkNDnb6Py5cvt5p/yxMC7sdASEROU1FRAT/x7LJG47UVQmctOyEGqrpWCMWGJd9//z2WLVuGpUuXYunSpViyZAkA1HoWt6ysrM6B0FNDRsWQFLtrF3DzJrRVB+zeNodQPJjnshO+SRAEtG/fXlog3tVszYMyfc94IhDWpamMZQXIHRVCcp3qut8eOXKkxtstW7bM7P0DGE+mfv75567YTfICDIRE5DRmgVCn88pAqFarnTZMUQw39a0Qigevjp7FNa3y1WfIqKPzD+tDfM0Ejcb42FW/F2+rEJquyVaXOYRsKuNZ4u/r0qVLbnk8W/Og7r77bgCoVyfhuqprhdCbAqG7qrsNWXXdb0tKSjyzQ+S1GAiJyGmsAmEDHzIq3mddKoQVFRVSINRoNHU6i2sr1Nkb7Dw9ZBRVCx2rqg42vS0QmjbYsHfIqOkBNYeMepa7D3htNUYR50AFBQW5vWNiXbuMWlaFPBkIH3jggXo9Lvk2NhVyLzaVISKnqaiogNayQujv7xWB0BVDRsWQUN8K4a233mrzLO6UKVOqvb0gCGbDPsX/VlZWms0Bqu3xAQ8FwqoKobLqtfPmQGjvkFHTgM4KoWe5uyJnqzFKXFwcACAmJqZOnYjroy4VQtP3r6g+Ta9Etf0u+vfvb3WZIAi4cOFCvR6XnC89PR2RkZFOvc9PP/0UixcvhkqlwsSJE/Hcc88BAMaPH48vv/zSqY9F1WOFkIicpqKiAn5iGAkK8qoho66oEIpVCE90GRWDlXgAJz4ne19ry+qixwJh1WvnbXMI61IhNK26skLoWd7QyET8/bdq1QqZmZlufT9YBkLxJFFNnzPT96/IGYHQ9PaCIFhdX1BQgP379+Pw4cPSz5EjR9CvX796Pa4v+/PPP1FUVOTp3bDiiqrtypUrcezYMRw7dgz+/v647777UFxcbPO9Qq7DCiEROU1FRQW0poEwK8trAqErK4R1GZ7mqkBYXl4uLShdE08PGVVW/bFX5ucD8P4KYUVFhdnC87awQmg8uD9+/Dhuv/12j+6HaSA0ndvpTqaBEDBWV2JiYtzy2HWpEJo2qRLZWx2viWVzHa3WrBc1Fi5ciIKCAgQHB5td/uKLL9brcX1ZixYt0K9fPxw+fNgl9x8fH4/t27dXe707q7ZyuVz6W5SUlITOnTtj9OjRyM7OdvpjUfUYCInIacrKysznEF696nWB0JlNZZwVCMX7yc7ORnZ2NkJCQhASElLj7cXnYzlk1JEKoWkgFAQBgiBAJpM5/FwcIQXCqv2Ue+kcQsumMoBx3zVVlU1bWCEEHn30UXz22Wc2q03uZBoIi4uLERgY6JbHPH36tPQZFk/MdOvWDTKZDCkpKZg+fbrL9wOoW5fR6oaM1rfaahoI9Xq9VSAUm+9YGjJkSL0e19fVNofcHhMnTrS6TBAEnDx5ssbbFRQU4OTJk1ZNhu68885675OlMWPGmK1DOGLECERFRWHOnDlOfyyqHgMhETmNXq9HgPgHJDCwwQ8ZdVYgvHz5MgYPHoywsDAEBQUhNzcXOTk5eOWVVzB8+PBqbw84b8goYN2IwhWkQFj1X0XVsChvC4SWQ0YB4++7pkBo+pp6y/ve3cS5cllZWYiOjvbYfpiGmMLCQpcHwrVr12LlypXo16+f9Bnet28fAOCWW25Br169cOTIEbcFQstqn70VQltDRuvbVMb0d8Hulu515MgR/PDDD2YjGwRBQGJiYo23c2fV9vnnn7e6rEuXLkhJSUF+1QgScj0GQiJyGr1ej1CVClAogIAAr+oyWlZWBplMBqVS6XVDRi9evIhr166ZHbTm5+dj9OjR1QZCywqh6ZBRe1gOGQXcHAir9l9e1X3R2+YQmr6+Ygisbeic6WvaWIeMiu/h9PR0rwmE7piL9cEHH2Dv3r1mB96pqano27cvNBoNdDqdW7smWp68qGuFUKPRIC8vr177Yvq5YSB0r3nz5iEwMBBhYWFmlz/11FM13o5V28aHTWWIyGn0ej38lUpjwxA/P6+rEKrVaikUAt5TIRQEAVlZWWbXZ2Vl1ThfzXQILFD/IaOAe6p0YiAU1x+Ue2mF0HTOqWmFsCamr2lDHDJ6/PhxJCQk4O6778b+/fuly6dNmyb9f5MmTQB4fg05ywqhIyZPnuzw4/n5+WH37t3SvwVBwMGDBwEYP6OBgYF1aj5VV3UJhNVVCJ09ZJTqbvfu3RgxYgRmz56N7du3o1evXhg6dCgOHDhgc/snnnjCKgwCwP333+/qXSUfwwohETmNXq83ziFUq43rzHlZhVA8QPK2CmGLFi0wZ84cpKenS/P4oqKi8OGHH9Z4e6B+Q0bFOU6eCIRKLw+EpkOMHakQNuSmMklJSVi9ejWUSiXmzZuHgwcPYvbs2fj999+lbfz9/QEAGRkZntpNAPZVCOfPn291mSAIZmHXXmvXrsUbb7yBF198EZWVlVCpVIiKigJgPKkQGBiIa9euOXy/dVXXIaOuWHaCFULH1DRa4tlnn8WmTZuQm5uL+Ph4HDlyBP7+/rjnnnuwa9cu9+0kNTgMhETkNMXFxcYKoVrtdRVC04MdZwSgiooKVFZW1vkMenl5ObRaLdRqNeRyOTZv3uzQ7Z0xZDQoKAiAZwKhvGr/ZV4aCE0rhOL/13Zg3NArhDKZDO3btwcAbNq0CcnJyZg+fbrZ51s84Pf0otL2VAjXr1+PDRs2WF3+448/Ovx4kZGRWLZsmdll33//PTZt2iRVCN09ZFSs1gLG351MJqvTkFEGQveyXKbDtNGXVqtFTEwMYmJiEBsbixYtWgCAR7roUsPCIaNE5DR6vd64ML1YISwpgVKh8IpAaDqEytFqWnX3BwBNmzb1imUn6jNk1Bmvh73E5yoOGZV56TqEphVCe4eMNvQKYXh4OP744w/p38nJyRgyZIhZN0QxfHm6GYTpZ7K6QPjwww8jNjYWQ4YMMftx1lprpicVmjRp4tE5hEDty8u4asio6e3tHTJal2G7DYXp62X52kdGRkq/wx9++AEApCVxHOHpEzbkfRgILSxatAj9+vVDYGAgwsPDMWHCBJw7d85sG0EQkJycjOjoaPj5+WHo0KE4ffq02TalpaWYOXMmwsLCEBAQgHHjxlkNF8nJyUFiYiJ0Oh10Oh0SExORm5vr6qdI5DJ6vd64ML0YCAUBGpnMKw6MnV0hFP9Q63S6egXCup6Br65CWJcuo45WF+tDfK0UVa+fGAi9rUIo/n41Go3dQ0YbeoXw888/l1rDi6ZMmWIzfHn6gNOeIaOvvfYawsPDrS5PSkpy6j54qkLoaCCsbtkJV1YI58+fb/Uzb968Og3bbShqCtAbN260qgYqlUrs2LHD5n19+umn6NatG3r37o033nhDunz8+PFO3GNqCBgILezevRtPPvkkDh48iB07dqCiogLx8fFmf1DeeustLFmyBCtWrMCRI0cQGRmJO++80+zLftasWdi8eTM2btyIvXv3orCwEAkJCWZfxpMmTcKJEyeQkpKClJQUnDhxotZWwETeTK/XQyuT/TVkFIAW7qk81cY0EDqjqYz4RzsoKMgpFcLS0lIcO3YMO3fuxLFjx+yarwbYXpjeHpYdMR25bX2Ir5tM/K+XDxk1rRDW9DuprKyEwWAw+31UVlZCEATX76wXEf9WeksgVCgUbm3mYsq0QujuQGhrPqA9FUJXDRkVv58svyvXr1+PMWPGmP0kJCQgNDS0Xo/py+qyTEd13aFXrlyJY8eO4dixY/D398d9992H4uLiRve9RLXjHEILKSkpZv9evXo1wsPDkZqaittvvx2CIGDZsmV44YUXcM899wAA1qxZg4iICGzYsAGPPvoo8vLy8NFHH2Ht2rUYMWIEAGDdunWIiYnBzp07MXLkSJw5cwYpKSk4ePAgBgwYAABYtWoV4uLicO7cOXTs2NG9T5zICfR6PTRq9V8VQgAaQfCKSonpGXNnNJUxrRBevnzZ4dubBsKCggIMGzbMbA2zY8eO4fHHH8eUKVNs3r6+C9OXlpZKC0SbLrzuauIBjry0FPD3B6oOkr0tEJpWCMXXuqahc+JrZ/n7cMdSHt7Em+YQqlQqCIKAn376CU888YRH9gEwfr78/PzcOn/OVoWwtnBXVlZmNu8QcF6X0aCgIGRnZ+Pbb7/F+PHjpc+EOGzXslLrrGG7rnD8+HG89NJLUKlUmDdvHgYNGgTA2G33o48+qvf912WIbXXkcrn0XZSUlITOnTtj9OjRyM7Ortf9UsPDCmEtxPV3QkJCAACXLl1Ceno64uPjpW00Gg2GDBkiDXFITU1FeXm52TbR0dHo2rWrtM2BAweg0+mkMAgAAwcOhE6nq3GoRGlpKfLz881+iLyFWYWwKmz4y2ReEQhdOWS0rk1lxECo1+uxd+9evPPOO3jttdewfPly7N69G++//36tjy92CnV0yGhJSYl0wOiJCiH0eiA8HLLCQigVinpXIZzNkQrh8ePHMWHCBADGvxGAe4fhehNvCoQajQYVFRXYuHGjyx/P1ufO9D2k0WhQWVnpthMftgKhVqutMZS6ashoaWmptD7lxx9/jCVLlkjXuXrYriskJSVh2bJlWLp0KZYuXSo9H9Nuu/XhzEA4ZswYs3m/I0aMwHvvvYfmzZvbdXtHTprevHkTM2bMqPe6leQZDIQ1EAQBs2fPxq233oquXbsC+GttpYiICLNtIyIipOvS09OhVqsRHBxc4za2vgTDw8NrXL9p0aJF0pxDnU6HmJiYuj9BIicrLi6GWib7ax1CAH4ymVcc7LuqqUx95hAqlUqo1WoYDAarNcx2794tVfBsER9T3MbRAGJaIXR3INRoNJDp9UCzZoAgIESjqXcVwtlMK4S1NZVJSkrCa6+9BsA4ymTJkiUOV2x9menJT/E18vTJSstAZOt3t2PHDgwYMACDBg0yC41jxoyx6zFOnjyJu+66C4MGDcIdd9yBuLg4jB07FidPnpQeU6VSQSaTSfvirvd5dYGwpoBhq6mMs4aMmu6Lp9eorC+x227r1q2xadMm5OfnW3XbrY+ahow6+p59/vnnreb9dunSxWo0nKna3te25OXl4bHHHsOqVavw+uuv1/T0yEs1nnEsdfDUU0/hl19+wd69e62uM20DDFi3BrbFchtb29d2PwsWLMDs2bOlf+fn5zMUktfQ6/VQA2YVQi1qb8bhDs6uEIp/qHU6HcrLy1FZWelQ62/Lhem//PJLszXM+vbti3Xr1tX6+JaB0NsrhCUlJdBqNMaholUnxUI1Gq9rR29Z3TG9zJJMJpPavz///PM4evQovv32WwANq0I4ceJEq8sEQTA7UBR/j96wDqFGo8FHH32EadOm4ebNm4iOjjbb5p///Ce2bdsGtVqNF198Efv27cM777yD4uJiux7jiSeewIYNG8z+Bl+5cgWTJ0/GTz/9ZBaExP+WlJRIazW6UmlpqVW1r7YKYXXrEDpjyKhpIHTH83clsduuGLSSk5Oxbt06rF27ts73OXnyZKxfvx5AzRXC+r5n7VHb+9qW9evX4/PPPwcA3Lhxw2n7Qu7DQFiNmTNn4uuvv8aePXukP/SAseUvYDzDJS46CwCZmZlS1TAyMhJlZWXIyckxqxJmZmZKY80jIyNt/sHMysqyqj6aMu14R+Rt9Ho91IJg3lRGEKShUp5cK8n0oEQmk0EulzttyKj4b0cOdCoqKqRACABvv/22Q3PNxAO7ui47UVJS4rEKYaBGA+TnS4EwRKXyygqhQqGAQqGodchoeHi4NFxMpVIhOTkZzzzzDL7//vsGVSE8cuQIfvjhB8jlfw0uEgTBrBlaaWkpIiMj3boIuy1iIOzcuTMA40GqZSBUKBRo2rQpAGDJkiX45JNPMH78eLub0FRWVkqff1FQUJD0vWIaysTPmrve55YhTNyHugwZNRgM9fr+tgyapu8fXyQGH1NTpkypdr63qfnz51tdJgiC2VShmgJhfd+z9qjtfW1LZmam9P++XgFurBgILQiCgJkzZ2Lz5s3YtWsX2rRpY3Z9mzZtEBkZiR07dqBXr14AjF92u3fvxptvvgkA6NOnD1QqFXbs2CGdUU1LS8OpU6fw1ltvAQDi4uKQl5eHw4cPo3///gCAQ4cOIS8vTwqNRL6koqLCGHIAqwohYDzY8GQgtDxjXt9lASwDoaNn/k0rhIB5Jz57lJSUSIvaA3UbMuqpOYQ68fdQFQiDlUqvC4SmB7G1Dff7/PPPceHCBQB/BfQ777wTy5Yta1AVwnnz5iEwMBBhYWFmlz/11FPS/5eUlKBbt27Yt28f8vPzERQU5O7dBPDX+1vsVnnz5k2rbXr27GlW6Zk6dSpatWqFxx9/3K7HeOONN5CQkAC1Wo2goCDk5eWhoqJCOhawVSH09JDRmgKhraqiaXVcnK/sKPGzpFQqUVFRYdccs/j4eGzfvr1Oj+fN1q9fjw0bNlhd/uOPP0r/X1MgrO971h61va9tMa0KpqWlOW1fyH0YCC08+eST2LBhA7766isEBgZKZzp0Oh38/Pwgk8kwa9YsLFy4EB06dECHDh2wcOFC+Pv7Y9KkSdK206ZNw5w5cxAaGoqQkBDMnTsX3bp1k7qOxsbGYtSoUZg+fTo++OADAMCMGTOQkJDADqPkk8Q/XCqDAVCpzLqMAsaDgprmxLma2OlOVN+5MbYCoSP0ej38/PzMAqEjgdK0wgc4NmTUYDCY/T7cPWRUCoTNmgEAmnqgQlhRUVFjALfsSiuXy2t8v4i/f8smPw0pEFbXqfP+++8H8Nf7qlOnTti3bx8uXLiAPn36uHMXJeKQaDEQ2uqquHz5cqvLhg0bhrNnz9r1GLfffjv27NkDvV6P3NxcBAcHm30mTQOWOwOhIAhmQ8JFtXU61ev1Vt9BpvNn6xoIxdfht99+w913342cnBzpOnuGITck9nRVrWkOYX3fs/ao7X1t6vr164iOjsbNmzdxxx134Pbbb6+xGRp5LwZCCytXrgQADB061Ozy1atXY+rUqQCMJX+9Xo8nnngCOTk5GDBgALZv3y510QKApUuXQqlUYuLEidDr9Rg+fDg++eQTswrJ+vXrkZSUJE3IHzduHFasWOHaJ0iu89BDQFwcMGOGp/fEI8wCoVYrDRnVGAwAPD+P0PKMeW1ny+25P8B8yKgjLAOho7e3DISODBkVfxeeGjIaJDauqDooaiqXu2UO4cmTJ/Hss88iNzdXqhCHhYVh4cKF6Natm9m2lsPcauu2KL7/xYNm8bX19PvencTnGhcXh/Xr12PPnj0eC4Ti5108CeTKJjd+fn42w5LpZ9SdgbC0tBQGg8FqCYnavvOKi4utnoc9a3DWRvwstWzZElFRUWYVQnuGIXur7OxsZGdnIyQkROpEXxux+ZQl066qzuwyWh+W72txXrRIEAQkJyfjlVdewY0bNxAaGoqoqChkZmZ6fIoIOY6B0II9i3XKZDIkJycjOTm52m20Wi2WL19u82yOKCQkpMamEeRjPvnE+NPYA2F5uTEMigdCXhIILQ/wNfVsZFKfCqEgCNLBV10PuEy7hAKOVaTEffXUkNFAsTJXNV9ap1AgzQ0Hyo40S7CssGhq6YQqvv8zMzORnZ0tHUg5s9mDtzNttNSuXTtpCQ5PEAOhUqmEn5+fR5bBEE/6AH+dIHDHiY+ioiIAQEBAgNnlWq22xvdjcXGxVYWwtoZK9jAdOuvv74/c3FzpOnuGIdtj9+7deO2119C9e3eMio3Fs2++CV2LFli0aBHi4uLqvO+2fP/993j55ZcRFhYmrRubk5ODV155BcOHD6/3/XtLILQ0depU9O3bFwMHDpSOlXNzc3H06FHcvHkTHTp0QFRUFAwGAzIzM836bJD3YyAkonqbPHkyXnzxRQCAUgyEfn6AUglN1R83bwiEzqwQigdW4gR/R+6rrKwMgiDA39+/zoGwuiGjjgRCTw0ZlQJh1UGgTi7HH24IhI40SyguLjY7oK6pQvj9999LZ/hXrlyJ8vJy/Pnnn9L9NHTp6emIjIyUDmS1Wi2Cg4PNDvzdzfSESWBgoEMVQvH52Ku6SpFer/dIhVBsMGIrEFa3ILl4kqqmIaN1ZTr/0M/Pz2yOWW3DkO317LPPYtOmTcjNzUV89+44AsD/8GHcc8892LVrV1133aaXX34ZKSkpZqPC8vPzMXr0aKcGQj8/P5w7dw4XL15E+/btza4/ffq09J7r2rWr1dxPV7h06RLeffddnDx5EjNnzkRcXBwOHTqEl19+Gf/+978RGhpabeNF8n4MhETO0EiGhdXUIU08k6moqDBWB2UyICwMflUHJ54OhJYNE7Rabb0OcoqLi6HVaqUDKEcCoenwQmcGQpmdaz6arrEHuDcQ6vV6RIuB0N8faNIEgTKZWw6UHWmWYBkIa6oQvvzyy3jhhRcwefJkfPjhhwgLC8Mvv/yCHj16OHyG/8iRI3j11Vfx5Zdfmg25Mm1L720eeOABbN++3azyHBwcbDZXzN1Mh4gHBgY6VCEUn09taqsUlZSUSEHInYFQrBDaGjJa3ftR3K/qAmF951uLJ2L8/PxcUvXSarWIiYlBTEwMYgG0AICQEJcMW5TL5cjKyjILhFlZWU7rniquX+nv749ly5ZhzZo1UpBfu3YtVq5ciX79+knvuWPHjuHxxx+3q8upPXbs2IEXX3wRCoUCSUlJ+Pvf/w7AON9z69atKCgowDvvvIOlS5dKJ31u3LiBsLAwKQSmpaVJjRfJNzAQEjmD6YGPwQD4eFvt6tTUIU0KhGVl0vxBhIVBU3Ug5ulAaDp8C6j/kFGxAUNdhoKZBkLxQNHRSpLlkEaZTGb3wZYnK4RFRUVoKu63n58xEKL6A+Xjx4/jpZdegkqlwrx586QuzNOmTcNHH33k0GM70izBslpSU4VQLpdLbdcth4o6+nsdMWIE8vPzkZSUJAVSy7b0niJ2xDYlCILUYdWyQvjbb7+5df9MlZaWSgfsQUFBNiuEtT2f2tRWKTL9zvGWCmF13w/i+9RyDqGzhoyKwdLPz88lVfPIyEhp3toPVZdVlJfDUDVlwZk+/PBDzJkzB+np6dLa0VFRUfjwww9rve1///tfLFq0CF26dMGdd96JhQsXIigoCC+99BLGjRsH4K+TGeL3sumJlQ8++AB79+41C58VFRUYOnSo0wJhbWsdBgYG4sUXX0R+fj7Onj2L4uJi6PV6hIaGSsumcekJ38NASOQMpoGwoACwGJbWUNTUIU080JCXlUnzBxEWBrWXBMKCggKzAzdnDBmtbyBMS0vDG2+8AQB45JFHoNVqq21yYsmyQgjYf/bd1XMIa6pmFRYWQic2lfHzAwIDEVjVFdGWpKQkrF69GkqlEvPmzcPBgwcxe/Zsad2/uqiuCYgpRwLhhx9+iMmTJwMA7rjjDsjlcmlOlKPVEDG4DBw4EC1btpQuN21L7ykFBQU4efKkVXfWO++8E4D5+6pp06YeHzIq/g6qqxDW9nxqU1ulSK/XS1U6e78nzObCjRqFZ599FjqdzqG5cNXNIWzSpIl0nSXxYN9VQ0bF7xp7v6Msv69rs3HjRuP/mDTVUmZnY8f48U4/SRsbG4vNmzfX6bZvv/029u3bh4KCAvTs2RNnz56FVqvFiBEjrAKhrdfJz88Pu3fvxrBhwwAYT2Ds3r3bqR287V3rMCgoCP3798fVq1cBAGFhYVCpVAgLC+PSEz6IgZDIGUwDYX5+gw2ENXVI++KLLwAA8tLSvyqEzZpBXbVAtTcGwvoOGTUNhI7cl3jwtWLFCixbtgzDhg3Du+++i9tuu63aJieWioqKrA7e7D3YEkOH2IGxroHQnkWWLRUVFSFQ/HxUBcKAgoJqXz+ZTCbNn9m0aROSk5Mxffp0ly/4bvn61jRkNDY2FtOmTcMzzzyDQ4cOAfhrkW9HqyEymQyCIKBDhw4YOHCgdLlpW3pPWbhwIQoKChAcHGx2uTh/2DSIeHrIqOn8vaCgIJuBsLbnU5vaKkV6vR7NqpZWsTcQms2Fi4/HkSNH4O/v79BcuOqGjFZXKQVqD4T1+f42Hc1g+R316aefYvHixVCpVJg4cSKee+45AMD48ePxww8/2Ly/GpmGlvHjoTx0CBgxAujatc7770x+fn7w9/eHv78/hg8fLg2lNT0pIb5ept1YxffX2rVr8cYbb+DFF19EZWUlVCoV+vbt69QGhY6udSiu8Sku8RIVFcVA6IMYCImcwfTAJy8PMOli2FhI1QC93mzIqPLUKQCeDYQVFRXQ6/VmgbC+Q0YtA6EjlSBxW0EQpCqGuC/VNTmxVFBQIJ3FFdkbCMUDDfH2MpkMCoXC4UBozyLLloqKitBEbLxRNWS0SX6+1dlnUXh4uNnBSXJyMtatW4e1a9c6tK+OKi4uNut8aM+yE6ZVR5VKBaVS6XCFUHxfWoYp07b0nnL33XfbvHzIkCEA/goi/v7+aNq0qUcDYX5+vnSwHRgYaPMAtbbnU5vaKkWmoVT8b40nCATBfC5cbCxatGgBAA7NhatuyKhOp6t2UXhXDhk1nY/r7+9v9plYuXIljh07BpVKhXfffRf33XcfPv30U7s6vttkGnirTs4gLc1rAmHPnj2loa1iiCsrK5PCFPBXhdD0pJc4RSEyMhLLli1zyr7s2bMHFRUVuOOOO8wur22tQ8smSuKi9OL3ZVRUFIeM+iAGQiJnsAyEjVBubi5CAgMhKygwGzKqrAqKngyEYnXAskJY3fApezhjyOj8+fMxffp0AMb5SG+88Ua1TU4sFRQUmC2fADgeCE07bqpUKocDoT2LLFsqLCxEE4UCUCqNP4GBCJLJpLPMlj7//HOry6ZMmVKn+TLVNUsYM2YMtm7darat5ZBRjUbjUCAEjAe/jlYIxQN/T4apuhKfq1gh1Ov1Vut/ukteXp70/g4KCsL58+fdvg+mTWVkMlnN74fPPwf+9jdE3nPPX3PhqipkFRUVDs2Fy8nJgUKhsAqEQUFBKCsrs/k7qW6YqTOGjJpW2y2/o+RyuTRCISkpCZ07d8bo0aOr7YZaK1vNg65fr9t9OfzQtQ9ztRXm1Gq12fecrd9PYWGhVfW2voYOHQpBEFBYWGj1e7eluiZK4rrdYqiNjIzExYsXnbqv5HoNs/MFkbuZ/vFy4QLI3iwnJwdRYsXKpEKoqDqwdUczhepUFwjrO2TUz88PCoXC4aGB4sHXkCFDsG3bNgDAQw89hK1bt2L37t247bbbar2P/Px8q4MPPz8/u4Jpbm4uVCqV1cL2job21157zSoMAjVXs4qKihAglxs7jAJAYCCaCIJ0ltmVxGYJO3fuxOHDhzFz5kwYDAabvztbcwhrer8UFRWZH1RNmIDVer3DFUKxOlznA2IPshwyCsBj8wjz8vKkIdGOLjvhLJYnCWoMhCtWAAA2/vOfVtVApVKJHTt22P246enpiIiIsOp6KQZkW69FVlYWAEhDXEXOGDJq+lny8/NDeXm5VP0aM2YM/vjjD2nbESNG4L333kPz5s3r9mAWgTAecHog/PTTT9GtWzf07t1bmgMOGIe5OkN1gdCZBEGQqrBXrlyx6zZiE6WvvvoKa9euxTfffINvv/0Wn332GVQqlfT3iENGfRMDIZEz5OQA4nyNRlghjI+PR25uLpqJAUUMGs2aQVZSggCgXtW4+rIVCJ01ZBRwvBJkWqETQ5mfn59DjQFsnY2uqYug5ePrdDrIZDLpMle1g7dUVFQEf5nsr5MGgYHwr6xEUVGRyx9fbJbg7++PJUuWoE+fPjabJUj7aWdTGcA4j0Zag04QgK++wvvl5Q4td1BeXi69JzMyMuy+nbcQP+N+fn7ScGRPVDrLy8tRXFxsViF058L04mNZBsKAgIDqvwfFEwBVc64tWTa+qUlGRobNdRTFgGxr2GhGRgbkcrnZ0EXAeUNGTQMh8Ncoieeff14aDi7q0qULUlJSHHqMiRMnGn+efRYTAUwE8DcAJwGgmtEHwF9B2BHiMNdjx47B398f9913H4qLi+s+zNWCGAgPHDggVRSdHQhNA5vYFKY2giBYvV5ZWVmoqKhAaGio9PdEHDLqrNeD3INDRomcIScHaNECOH++QQfCiRMnWl0mCAJOnjyJZs2aIUIMKCYVQgAIg+2z0u5iKxDWt/15UVGRdDa9LoFQLpdLTR9kMpnD4dRWIHRkyKitBdpdfdBcXl6OsrIy+BsMgLjvTZpAU1UtuHnzpjRnyhUcaZZg+frW1FSmf//+uHjxIiorK41LGVRUQABwAUBrByp9pq//hx9+iC5dutQ4rNXbiFVzuVzu0Qqh+DqaziF0xXv7nnvuwb59+9C8eXObDVEsTyrU+D0hdt6tJhA6QqwQWhJfD1uBMDMzE82aNbOqKto197EG5eXlKC8vl14HsYpeVFTkUBfR2hw5cgQ//PAD5Nu2AXv2AAAEAIlAtaN2zp07h06dOuGrr76SOnzao77DXGtbWF4MhAMHDpRCvLMDoWmws6wQVtfop7Ky0mYTpcGDB+PkyZPS7aOioqDX65GdnW11goG8FwMhkTPk5AAhIUBQUIMeMir90TU5aBAEAYmJicjMzER3MWSI/60KhK38/attZuAO4hpxpsOh6huAsrOz0bFjRwB1C4SmFTp7K3siQRCQn58vHSyI6hMIXXXQbEo8CAkE/qqoBwZCXRW0bty4YXcgjI+Pt2vxcFO1NUsQCYJg9RrVNCy4oKAAXbt2RUxMjHG5jV9/Bbp0wZ0ADA40VxBPmvj7+6NHjx44fPiw1Rpg3sw0AImB0BMVQss5soGBgSgqKpLm5jlDcXGx1FAmIyPDqiGKIAgoKCgw+4zW+D0hfj86KRB27tzZ6nKxamir4UdmZqbN4d8ajQZarbbOwd50XinwV5WyoKDAZhWzrubNm4fAwECEWczjfSokpNqTtGKI2bNnj0OBUBzmKp5YGjFiBKKiojBnzpxab2vPwvJFRUXSyULxv84OhKafy9OnT5tdV12jH39/f5tNlMaPH2+2RE7fvn0BAPv27XPodSXPYiAkcoacHCA42BgIG3CFUPqja9J9EQCeeuopvPbaa7irUyfjBeJBUFUAa+nhQJieng65XG4VCOtTtbx586Z09tPRQJibm2sWNizXRKwt7BQXF8NgMNgMhPacpc7Ly7PqUOrMQFjd/ovDIJsIwl8VwsBAKKtCrK15hDVVpV2luLgYlZWVZr+jmoYYL1y4EM8//zx69uxpvKDqeb4IYJMDgVB8/bt164aff/4ZmzdvxqZNm6od1uptTLtJiu8vT1QILQOhaZXF8kRIXYknmQDAYDBYVYr0ej0qKyvNPqP1GTLqyAmQjIwMaZ06UxEREVAoFLhm4zEyMjJsBkLAGO7rGwjFEwXi6+HsESNPPPGE8X8KCgC1Gqga4np/nz7VnqQ9c+YMAMcXUX/++eetLrN3mKs9C8sXFhZKnx9XBULx78SIESOwbNkyzJ07V5q36WgF9MqVK2ZL5LRt2xbNmjXDiRMnGAh9CAMhkTPk5ACtWxsrYw24Qij90bVw//3348knn0R01ZlBKRBWBabmarVHh4ymp6ejWbNmZtUBsQW7OPTFUaZzxixbqddGDGRi2NHr9fj0009x9OhRu8KOGKwsD+CCgoLw66+/2vX4zqgQOhrWxP02GzIaGAhZ1UGyrUBYU1XaVWx1Ya2pZf/dd9+NJ5544q/hUVXPcwiA72qYv2RJ/IxMmjQJTz/9NPbv31/rGmDexLRCGBAQAKVS6ZEKoeU6m+LQRNOlKCx99tlniIqKkjom1sb0vZqWlobmzZubVYpsDVOv9sRRZSWE3FzIAEz89lvA4nPlyAkQQRCQnp5us/qmUCgQHR1tMxBmZmZW28ilPmtKuisQSgoKjN8t774LbNhgHKVy4YLNTf/8808AcGsDFHsWli8sLJRGSri6Qvjiiy9i586dmDlzJv73v/8BcLwCeuXKFfztb38zuywiIsItjcLIeRgIiZwhOxvo1csYCBtwhbA6ZWVluHnzJiLE4TpiIPTzAwICEKVS4YQHXxdbTRaCgoJQUVFh1hreXiUlJSguLpYCgKPzEcUKoRh2Dhw4gCFDhmD+/Pl2hR0xWFk+p/DwcLuaJOTm5krDXUVBQUEOnyl3NKyJVRVNeTkgViibNIHMYEBTtdrmvtdUla6L2ubvALYDYU0HxYIgmFWMkZEBaLUoEQQ0daCyIoaIcePGYc6cObh48SLuvPNOm8NavZFp5Vsmk3lscXrx9xf+009A06ZmwxSrM2nSJACwuxGG6Xv1zz//lMKUWCm6UBVCLIeM2qwQ5uZCJgj4A8CRrCz88NprkJsEBEdOgBQUFKCkpKTa4ZgtWrSw2UQkMzMTvXr1snmb+vweTdemBNwUCIOCgEmTjD9PP13t32Tx+8ida+bZs7B8YWGhFATVajVUKpVLKoQ6nU5ac3Pz5s0oKSmBVqutsQJq+f3ZqVMnZGdnW81ZDQsLq3YpIfJODIREztBIhoxWRwwoYWo1IJMBpu33w8IQoVB4rP08AJtnzE0PTBwNhOIfuroOGU1LS0NkZCQmTpyIwMBABAYGQqPRoFWrVgBqDzviAYzlH+Hw8HBkZmbWWvWsrkJ4oZoz6dVxNKxdu3YNwcHBUBQXm1UIAaBVSIjNQFhTVdpR9szfAf46WLU3EBYWFqK8vNw8EEZEIAdA62vX7K5Ci48bEhKCNm3aOPz78LScnBxp7iBgHDbqqSGjfgCCp08HwsIQWLWeX3UhxLSDZkVFhV0dPS0rhJbExzKtEDZt2lSqSpkqvHIFTQCsBDDPYEDgwoUIW7PGbBt7T4CIYS8qKsrm9S1atKi2QljdkNH6/B4t52+7rUJYJV0uR6QXBUJ7FpY3DYSAsUro7EB448YNaYTLli1bkJCQgMuXL1udKDRl6/vz0KFDAGD1NyAsLIwVQh/DQEjkDGIg1OkAN/5x8QRbFRbxgChYoTD+MTbtVBcVhRY3b9o8CHGX9PR0dOjQwewy0wMTWx35aiI+X/Ggy9/f36Ez6NeuXUPv3r2lsGPZVKa2sJOeng6FQmHVwS08PBzl5eU25wiashUIdTqdw1UAR8PaH3/8gTZt2pgftFX9t0NkJH7//XeHHt9R9szfAf6aX2P6GjZt2hSFhYU2A4PlCQIxEBY2a4a+ly8jJyfnryUpaiBWsJo0aYKWLVt69DNTFzk5OYiOjpb+7ckKYWulEqioAG7cqLVCaLoOXnp6ul2NjbKysqQTQUuWLMGoUaPM1o4TH8u0QhgWFmbzpEfGmTNoAuA7AF/27o2wn3+22sbeEyCnTp0CYKzo2NKiRQv88ssvZpcVFxfj5s2b1YbIsLAwnD9/3q7Ht2T5XanRaKB25RSCggJk6vUovXoVMTExeODbb7H95k3jUjAWJ2XEzqpZWVl2LSrvLgUFBS4PhOnp6dLvpFu3bgCAS5cu1RgIbX1/njx5Et27d7f6WxQWFuby73NyLq5DSFRfxcWAXm+cL9fAK4Rr167FsGHDsGbNGuzevRurV6/GsGHDsHHjRgCADvirw6ioeXNEGQy4fPmy2/dXZKtCKP4BM20OYS/xQF08cNTpdHYf4AiCgGvXrhlvu2oV8NlnNc5Ps+XSpUto1aqVVYt48TnaqkKISktLcfPmTbNKDgC0bNkSV69elRZGdwVpXkpe3l/DiqsOfHrfcguOHTvmsscG/pq/I7I1fwcALl++DIVCYXaAXNMyClaBMDMTiIiAomdPtAVwzc5KX35+Ppo0aYLy8nKo1WqcOXMGx44dq9cacO5kWSH0VCDMz89HR5PlHgKrRgBUFwhNK0Q1fXZMZWVlITw8HHK5HHv27LHqviiOmjA9UBbDh6Wc334DAJQ1aYL9Wi1w+rTUFMVRv/zyC5o3b15tu39xyKjp0Nhz584BADqJTcGquU1dpKWlQafTmY3CaNq0qd1LNNirf//+xp+vvsJtFy6gVatW6NevHw5fu2b8+2zj+zkrKwu33XYbAGNwF18HT3NHhTAtLU36fmvevDlUKlWtAc7W9+f3338PAFbvt4iICLs/S+QdGAiJ6ksMFBERDX4OoXiG8J133sFrr72G5cuXY/fu3fj6668hl8vhn5cHWM5diY5GSEkJsrKyPLI4fXVNFtq1awcAdRqWd/XqVajVammYjCPDY3JycqDX69EyIgKYMQOYNAkhISEOHSBdvHhR2n9T4pne1NTUam+7fft2lJSUYNSoUWaXt2nTBmVlZbh+/brd++Goixcvom2bNlJgAiBVCDtGR+PChQswGAxWtystLcWxY8ewc+fOegWktWvX4quvvsLgwYMxcOBA3H777diyZYvZ/B0A+P3339GqVSuzSqBY4bM1L0b83UsHRenpQEQEgvr2hRzAjYMH7dq//Px8KBQKDBs2DJmZmfjzzz+lky6W++iNvGXIaG5uLtqZVOsCq76TqztpY/rZ/eKLL+x6jBs3bqBZs2Y4WPW7taygicHM9PVo1qwZCgoKrNazLKw6WXbXlCn48vRpY2WzjgHsl19+Qffu3au9vnPnziguLsZvVSEUAP773/8CAGJjY23eJiYmBtevX0dF1XqhjjANHqKIiAgpMDtLQUEB9u/fj12dO+M1GL/3d+3ahX7ic7IYuVNWVobc3FyzJkK7du1y6j7VhTiv3TIQOntJINO/iQqFAq1atao1ENr6/vyhaji2ZSBs27YtMjIyfGK5HDJiICSqL/EPW3h4g+8yWl2FpbS0FB06dIA8PR0wGTIGAIiORmDVH7Pjx4+7c3cBGCuAxcXFZuskAcZhnjExMXU6K3z58mW0aNFCqtA5EgjF6mJ7k1ATHRhoFjRqm9Ny9uxZqyGwgPEAvHPnzvjpp59qvG1gYKDV0KD6BGRLtva/pKQEf/zxB7q3bAmUlxs/L4AUCKOaNEFFRYVVBaW6qnRdApI4f2ffvn04ePAgfvrpJyxdutTqZMGlS5eMQ1tNiE1DbJ31vnjxIlQqlbHqKwjAuXNAhw4IrWrFfqNqnk1t/vjjD1RWVmLv3r2YMmUKSkpK8O6772L37t14//33HX6+7iYOIxd5qkJ45coVdDSZx6xauhRarbbag+obN25IczwXL16MAwcO1PoYWVlZCAsLQ79+/TBo0CCrz83JkyelEzQicY6eZRjK/+MPlMhkmP3CC7hYWYlSAMe2b8fOHTscOgEiCAJOnDhh9bim+vXrB5lMhtWrV0u3Wb16NR566KFqO7DGxMTAUMdRHu4KhAsXLkRBQQEq09Ig3vOxY8fw4qxZxn906gTs3SttL37PtG/fHitXrkRAQIDLRyjYQ9wv0yWSQkNDnd6g5c8//zQb3t22bdtaA6Gt789Ro0ZBqVTaDISA8buUfAMDIVF9iRXC8PBGMWTUVoUlLCwM/fv3B65fByznoURHQ5mfj1B/f+zbt8/t+1zTcKhevXpJZ/gdceHCBdxyyy3Sv8PCwpCfn2/XgZsYCJubHJz20OvNKoQPPPBAtbe/efMmzpw5Y7buk6nRo0dj69atNittgDHMtmrVyqrJSfv27aHRaJyyvp+t/b948SIEQUBnsfmARSCMqBriZzlvrrqqtCsD0qVLl6QDGpE4PNjWvL5ff/0Vt9xyi7GiePWqcY5k166QhYejXCZDXtV6Z7W5cOECmjRpgt27dyMqKgp6vR55eXk2h7V6m/z8fBQVFVkNs/VEIPztt9/QXqMBevYE+vcHVq5E+4CAaquVYrh78803AcCu9eTECiEA3HLLLVYVwj/++MOqii9+B4nz/ESFFy8iX6tFixYtEDlwIIYCWDN/PnaPGYPVH39s9wmQc+fO4dq1a1LnSFtCQ0PxyCOPYOHChcjIyEBSUhIyMjJqnKM4aNAgqFQqbNmypdZ9sGQrEEZGRjq9kcvdd9+N4OBgKDMzIY5xOH/+PIaYLuFRtawC8NdUgfDwcDz22GO46667cPHiRafuU12Icy5Nw5qzA3R+fj6ys7PNTnp17twZP9uYu2pKEATMnj3b7MTu5cuXERMTY7akE/BXIOQ8Qt/BQEhUX2lpgFyOlKNHsf3QIePcD4shQQ2FrTOEb775Jn799Vf069sXuHwZsGzIUFVZGd2zp0cC4dmzZ6FQKGwOsRwyZAgOHjxoNYSrNpaBUDw7ak+V8OrVq5DL5QjOzER/pRL9FQosSUnB5cuX0b9/f+O8l8OHq739/v37AUCa+2Jp7NixSEtLq/a1PnnypLS+lCmlUokuXbpYNZyoiTRvx+Snuv0Xg3k7cW6XOGQ0IACQyxFWtRCyZXXG3nl/zvT7779bVQi1Wi3CwsJw5coVq+0PHTr016L0P/xgbF7Rty8gl6OgSROU21lZuXjxIiZPnoyvvvoK//d//wcAGD58uM1hrd5GHGpsupadJ4aMCoKACxcuoAUAxMQA27YBMhnua9LE5u8OMFa0w8PDMX/+fIwcObLWA2PAWGERK8sdOnTA+fPnpXl5giCYreMmat26NZo2bWp2QG0wGKC8fh0lVZ+HS1eu4H0A7xQW4rXycix/6CG7ToAYDAaMHDkSAGpdS/HBBx8EYPw+X7FiBQDYXMhe1LRpU8THx+Pzzz+v8X5tsRUIo6Oj6zwnsUalpfArKkJls2Zo2bIlnn76aaT88ANw7BjQpg1gcmJGDKRiqG/Xrp3ZMFpPET9Hpq+ZswOhWOkdtmkT8NBDwC+/IC4uDr///nuNj/Pzzz9j6dKl6N27NzIyMvDf//4XFy5csBp9AxjfW1qtloHQhzAQEtXXb7+honlzjB43DivEgzYPLrHgbqmpqSgrK8OtrVsbu61azl+pOtM5unt3bN++3e3NZc6ePYs2bdqYdQAUDRkyBCUlJThy5Ijd96fX63H+/HmzLn7iQbA9XSEPHz6Mzp07Q37hAgpUKuy/4w583749KisrsXHjRhw5cgT9+vWr9vabN29G8+bNpSUqLA0ePBhdunTBq6++anXdyZMnsWfPHvzjH/+wedsePXrYdTAsEuftHD58WPqpbv/PnDmD4OBg6NLSAKXSeIAGAAoF0LIlgm7cwH333YelS5eaNbaxd96fs9y4cQM5OTk2TyD06dMHP/74o9ll2dnZOHbsGIYPH2684OuvgYEDpQpoRUQE/HNyaj1ZkJ+fj4yMDPTq1QvLli2TmpQsXrzY5rBWbyMOpTUNhMHBwcjLy6u2Wi0yGAxOOxj/888/kZubi8iiIqB1a+N6l+3bo69aXe3B6a+//irNn+vcubNVBc9SRUUFrl69Kp00uOWWW5CbmysN6zt79iwKCgqs3kMymQw9e/Y0C4QXL15EdHk5lFXbNmvWDJ+Y3EbYvt2uEyBr167FlStXcNttt0lr/lVn8ODB+P3337Fw4UIsWrQI586ds1qL09J9992HvXv31jgc3dK1a9dw6dIlq66t3bp1w+XLlx1qpGUXMWQ2b47k5GSUlJRg/vz5xjWC//Y3s0B4/vx5aDQa6f3arl07XLlyxeGTg3V2+jRg8V0CGF8zuVxutgSIWFG1d43M2pw9exYhACI3bwY++QTo0QODq6rXNQ2XFhvIiPt0//33Y/PmzejTp4/VtnK5HG3atGEg9CEMhET1deECMqqGvUnnPD3YUdPd1q5di6ioKPQQJ49bLm4cEwPIZLine3cEBwdj/Pjxbh2a8+uvv1bbPa9nz54ICgoyq0DV5ueff0ZlZaXZH0FHhsfs3r3beDb+3DksHDwYBd27I+LqVfhptVJzhxdffNHmbbOzs7FmzRrMnDmz2nXtlEolZsyYgd27d5sNYztz5ozUbOLee++1eduePXsiNTXV7uYK4rwdS5b7f/LkSbzxxhsYMWIEZKdPA7fcApgegLZvD1y8iLlz5+LSpUtm1RB75/05y7Zt2wDAZqi95557sGvXLrPgv23bNgiCYAyEpaXA9u3A2LHS9UE9eqC9TIa1a9fW+LhiIBLnhopDxlxSSXGBX375BRqNxuzgPyQkBIIg1NrJ95lnnkH79u3rNHzb0tGjR6EA0CQjAxDnyXbvjk5lZThz5ozVQXVFRQV+/vln6QRP37598dtvv9W4z9euXUNlZaUUCMXfmdgU6bHHHkNUVBTuuusuq9v27t0b33zzjVQxP3L4MDoCCK76Ptm0aRM+1GjQPiICA4ODcfvzz2PLwoU1ngDR6/WYNWsWYmNjsXPnTrtepzZt2mDBggV47rnnzEY7VGfChAkICgrCxIkT7Z5n/Morr0Cn01kNIe9V9TdCHO3gLIaqE3t+cXF46KGH8N577+HXX381NjaJjTX+Xa5qbCb+XRCHOrZv316q7LpF167AHXcAFidLDh48iB49epg1tOrYsSOKioqc1gX10KFDGC0GzgkTAADNFy1CixYtagyER48exaBBgzB16lSzwFrdGpk9evSwaz6uTTdvAm+9Bbiw6zVZEMin5eXlCQCEvLw8T+9K49WmjbAtNlZo3769EGRsKSEI69d7eq/c4uzZs4JGoxFeffVVQZgwQRB69rS9YceOgvDUU0JKSooAQAAgfPXVVy7fv1OnTglyuVx49913q90mISFBaNeunXD48GG77jMpKUkICAgQSktLzS4PCQkRBgwYUONt16xZIwAQNm/cKAhqtSC8844gfPWVIADCY2PGCB07dhQMBoPN25aXlwtdunQRAAiXL1+u8XEyMzOFmJgYAYCwfPlyoUWLFtLrHhQUVO3t8vPzhdtvv11o3ry58Pvvv9f4GPYyGAzC3/72N6F169ZCUWGhIHToIAjTpplvNHOmILRpIwgGg9CjRw8BgDB+/HihrKzMKfvgyL62adNG6N69u83fQ2ZmphAUFCRERkYKS5YsEUaPHi0AEOLi4owbbN9u/Pz/8stfN3rtNaFArRYiwsOFtLS0ah/73XffFZRKpdl3edu2bYVZs2Y57fm50rBhw4TRo0ebXZaeni4oFArh//2//1fjbVu3bi0AEMaMGSMUFhbWaz/uvvtuYcIttxh/Dzt3Gi985RWhNChIACDs3r3bbPvvvvtOACAcOXJEEARB+PPPPwUAwn/+859qH+M///mPAEC4evWqIAiCUFhYKH2+lEqlAEB49tlnbd72+vXrQocOHQSZTCakpKQIQyMijPu6bZu0zahRowQAwlszZgiGli0FQaMRhNxcq/syGAxCamqqMH36dAGAcO7cOYdeK0edP39eaNu2raDRaIS7775bmDdvnnDx4kVBEAShsrJSEATjd8jRo0eFe++9VwAgLFmyxOZ+i99P6enpTtu/9LFjhYuA8NNPPwmCIAgXLlwQ5HK58N577wnCwYPG1/nQIaGiokKIiYkRHn30Uem2V65cEQAIn376qdP2p1rZ2cZ9AQRh0yZBqPq9VVZWCtHR0Vaf+eLiYsHf31945ZVXnPLwgwYNEtb26CEI/v6CUFkpCO+/LwiA8GHv3sKtt95qtX1WVpZw/PhxQavVCsnJyYIgCEJFRYVw8eJFYdOmTdU+ztq1awWZTCakpqY6vpNTpwoCIOR9+y2Pcd2EgdDHMRB62NmzggAIDwUHC0899ZTQrl07IS8gQBCqORhoSM6fPy+EhoYKERERQsH69cY/bh9/bHvjadMEoV07QaisFD799FPp4Gnx4sXCzp07hfLycqfvX3FxsRAXFye0a9fOKryZOnv2rBAYGCj4+/vXGoLEQPePf/zD6rp58+YJAISvv/5aqKioMDv4LysrEw4cOCCEhoYKoaGhQtEPPxhfr4MHBeH6dUEAhINz5woAhOeee87sfvV6vXTfAOw+KEhNTZVuA0Do2LGj0LFjR+HQoUM13u7cuXNC06ZNBQDCXXfdJRw5ckTIzMy06zFN5ebmCt98840wYcKEvw4M//c/4/PescN84y1bjJenpgqrVq2S9rlbt27Cl19+KZw4cUL4448/HN4HR7377rsCAOHHH3+sdptDhw6Zva4xMTFCVlaW8cpZswSheXNBMA2TVYG/bdX2c+bMEXKrDu7F98mpU6eEoKAgYcyYMWaP9fe//13o27evs5+m0507d05QKBTGA28LCQkJQufOnYX9+/fbvO3Jkyelz5RCoRDi4uKEiooKh/chNzdX+PjjjwWZTCbsvftu4wkXMVxW/Q7GdeoktGrVSsjIyBAuX74spKenC8OGDRNatmxpdgLglltuEXr37i1cunRJuky8vrS0VIiLixO6detm9vhiwAEgxMbGVntiRxAE4csvv5S2XaNQCCUBAX/tqyAIe/bsETQajQBA6BIcLFQAwoY77hDmzJkjjBo1SnjzzTeFKVOmCFqtVrqf+Ph4h1+zurh586aQlJQkdOrUSXrsLl26CGq1WoiIiDD7bIwfP77a1+Gnn34SVCqV0KlTJ+Gzzz4T9Hp9/XZs716hTKEQFgUEmL1/xo8fL3Tv3l0oyc8XDMHBQvaDDwpfffWVAMDsJKDBYBCGDBkitG/fXiguLq7fvtRG/B40+ck4fFh46qmnBADCgQMHrG7yyCOPCDKZTNi6dWu9HnrdunUCAOH3zp0FYdgw44WlpYJw112CAAg9AWHXrl1CeXm5YDAYhJ9++kn6fYaEhEjfXfYoLy8XunbtKsTFxUknDOzWsaMxEL7wAo9x3UQmCE4alEx19t5772Hx4sVIS0tDly5dsGzZsmobRljKz8+HTqfDHXfcgR49eqCwsBD+/v6IiIjAsWPHMHjwYAwePBgnTpxA7969kZeXhz59+qCgoAC//fYbAgMDUVJSgrS0NNx6660IDQ3F77//jqCgIGlIliAIuH79Opo3bw5BEGwOVTMYDNLlMpkMer0eWq222mFtDUJaGsonTkT2vn1oLQjYvmcP3nnnHTzwww8Yq9NBdvy4cf5KA1BSUgKNRgOZTIYbN27gmWeewYYNG9BNp0PK3/6GyNWrjcPkPv/c2FDD0oEDwKBBwDPPAK+9hrNXr+KOO+6QOqoBxtbm06dPx7Rp0xAWFga9Xo+goCDIZDJpmFdN7ydBEJCXl4cbN27giy++wKJFi5Cfn48ff/yxxq57gHHeUZ8+fZCRkYHAwECUl5cjOjpa6h4aFxcHuVyOjz76CABQVFRkNU+nqKgIw4YNw5EjR+Dn5we9Xo9Ro0YhOjoae/fulYZv7tixAyO2bAHWrzd2ZVWpgJgYCPfeizHnz+O7776DUqlERUWF1YL1S5cuxSyxjbodLl26BIVCgfDwcIeasOTm5mLatGn4n0lXvrFjxyI6OhoGgwGhoaGIjY1FYWEhioqK0KJFC+Tn58NgMGDv3r04c+aM2Typwf37Y89TT0H+5JPA0KHAV1+Zv0/Ky4Fu3QC5HNiyBeUxMfjiiy/w1FNPmbVb79KlCzp16oQ2bdpgwoQJCAkJQWpqKnr06CG12i8vL4dKpUJlZSXkcnmt30Hnz5/H4cOH8fbbb+PEiROYMWMG3n///Rpv98UXXyAzMxMxMTG46667jMuPZGUBnTsDf/87sHz5XxsXFgJhYTh6663oVzUHR6PRICIiArm5udLaeG3atMGRI0fM2rdv2rQJEydOxKJFizBjxgwEBwd7zXeqULW+5/79+zF//nyo1Woc3LoVusJC4+tQNeTt888/x9/+9jcAwJw5c/CPf/wDffr0gV6vx82bN3HvvfdKc8327duHO+64Ay+99BIef/xxREZG4rfffoNCoUCbNm1QXFwMjUaDyspKqNVqXLhwAVu3bkWLFi3w/IIFKL54EUndu2PetWuQjRpl/IwBQHEx0KIFCm65BXceOoSzAPIBKKo+Z3PnzsXixYul5zZt2jR8/PHHAIzfS71798aWLVtwxx134OjRoygoKMCePXsQFxdnPJw3GFBaXIyFr72GXt27Y8yoUVDJ5cCNG8DRo8D588Y5swEBQJMmQFYWco4ehX7TJkSnpQEffghMn272+hYUFGD16tV4+umn8TWAAQD+BeA0gFwAxUol7p08Gd179ULnbt0Q07o1NP7+xjm5CsVfUcNgMP9vdf9vMBg/h4WFQEiIcUi3Vmv8EYcvymR/fW5lMmzZuhWr/v1vpKam4rZbb0VWZiZ++uknyAC8u2wZpk+fDpnxzWLz57tvv8XkyZMhvqMH9OsHjVqN2269FaUlJdixfTsWPPccIiMicOPPP/HHmTPo2LIlim/eBIqLcUuTJjj0n/+g+ZUrGFhYiP0APnvoIfy/qt8dAOk9VVZWhpcAvArgKwAXWrfG3BUrjM2tAgKAgAD8fOECRtx1FyKbN8fQ4cNRVlGBcXffjaYhIWjbrh2ioqKkv0XFxcW4ceMGWrRogdLSUvj7+8NgMCAtLc1sHu22bdug1WoR2KQJVOXl8EtLQ+vXX4e8shLH+vZFh82bobt5E1/4++Op0lI8+9ZbmDV7ttXn7ZdffkGfPn1QUVGBf/zjH8jKysLUqVPRsWNH5ObmIjg4GF26dMGRI0eQkZGBPn36YM+ePZDL5dBqtTh44AA+++gjqPLzMSUmBv93/Tpky5YB4nDPigoIrVvjUHExJufkIFOlQpPQUKSnpyMUQMt27bDqP/+xOV9Qotcbu67HxBi/y2GcIjF06FDExMRAq9VCr9djzJgxkMlkePjhh3H9+nWsXr0aAwYMgFwux8ihQ3HijTcw9csvAQBbY2ORcOYM8vLyEBQUVP1jU70xEHrYf/7zHyQmJuK9997D4MGD8cEHH+Df//43fv31V5udmyyJgXAfgAAABhhP5Zj+19Zl9mwjVyig9fNDQVERKgUBWj8/FOn10Gi1MAgCyioqoAsORtbNm6gUBAgAVGo1dE2b4mZuLtQaDYJDQlBSVgaDIECuUqGwqAg3srMRFRWF6+npiIyKQpOgIISEhaGsvBxpGRkoLCpCQFCQ8fnL5bj655/IyMzEgLg4lJaVQZDLkZubC42fHwKaNEFufj7Ufn5QqVSoMBhQVl6OpiEhqKishFypRGFREeRKJdIzMxHTsiXkSiWaBAbiZm4uYmJioFSrcfXyZaCyEgoAQQEBMJSXQ61QoKS4GEH+/qgoLUV006bIOH0alenpCL9xAxGZmcgB8DcAIxcuxIIFC/Djjz/iiTvuwEEAyoAAXO3aFccKCxHZuzcq1Goc+uUXtI6NRYVCgR9270bnrl0R06oVgpo2RdOQEFy+ehWQy9GrTx9UCgIOHjmC4pIStG/fHhkZGQgJCUG7tm1x7NgxKJVK5GRno2nTpsjPz0fLli2RmZGBsLAwZGRkoKiwEJmZmWjTpg2ysrIQEhwsNUM4d/YsKsrK0KdHD5QUFiI8JASoqMDWb77B7XFxaNeqFTZt3IgWERG4pW1bnDpwAE0BRGo08CstRSsAvbRaxJSUGA8YZs0CXnnFfF6YpWXLgDlzjH98Bw+GEBuLM9nZWLxmDfIBlJr8lACoqHovtu/QAYVFRcjJy0PnLl2QV1AAjVaL4pISZOfk4Hp6uvS+Fb/MZAD+du+9ePjhh9FJnEckftVV89+C/Hw88sgjEAwGqamELjAQzZs3x/U//0R+QQFkAP6zcSM6i4sdiwc3AKBQQFAosPjNN5F1/Tp279wJFQA1gACVCn06dMAjo0cjJjPTeKD6z38CL79svO28ecCKFSh7/HFsz8jAd0ePQtBq0aVPH/xy7hx69u6NKYmJCAwKMv6hFQ/MLH/E6yz3rY7/v3//fnz55ZfYumULmoWFoaiwECUlJZABUADwk8mgFARoAGiqnmuHmBiE+fsj+9w5jOzZE7cIAiKvXIE8Jwe45x5gzRrjQbGlCxeAESOAP/80njzo0QM5ISE4df06LmRk4MDp04BWi59//RUVACqr3iPi/6s0GuirGkKoVSqUlZcDAAb074+8vDxkZGQgNjYWv//+O3JyclBaVoaQ4GBkVy2LMHDAAAwdOhQPTZ0KjVJpXBzc9Ke83PzfxcXGA/6sLODkSSAlxXggfuyYdafdV18F/vlPCAMHIrdLFxy+fh2ply7hwrVruFlYCIWfH977f/8PUcHBxnmIggAoFKiUyfD/3n8f277/HpUAlGo1goKDYTAYEB4WhqY6HcLDwlCq1+P7779H06AgxN5yC2QAoiMjER4WhsuXL6O4oABqpRLRUVG4cO4cwkJDUVFWBn+tFoUFBYiKjERR1Ta52dlo2aIF9MXFOHP6NPz9/BDRrBlkgoCbN25Aq1YjNzsb2TdvGt/bAJrrdJgwaBACdu0yHhT6+Rm7rHbujEq5HMdOnMD+AweggLFxQROtFhVVz1OrVGLknXcitGlToLISJ3/5BRfOnoW86j0m3iZEp0NxQQFgMEAll0OnUkFRWoqAqn0IlMmgFt+/I0caP2Oma6N9+y3w8MPSurEGAGVqNRQqFZQqlTFoV/1UGv5/e/ceG1Wd93H8M5fOpe10eqM3KFilCHJpHsCFsuyCF8gSw4r7x3oLgV3/WFdwS4gxjz5/gIZQ4h8muiQYYqK4G9PoKuo+UZbmUStq2AVMV0RBENSqbadKOzOddmbamfP8cTpDB4q6MnSYzvuVnMyZ35mmvznznTO/7++c8/vFFezvl2EYycnYE/Vx2Gxy2myySeb9TT/mHqfSUmnUtDKSzLotXSr96U/mvWQX4fP5dPzttzXjz3/WpEOHZJugI1j/VJ2Sjkp6QVL+H/+o/9myRZWJEYxH7Nu3T6tWrZIk/V7Sf5eXa3pvryz/wf1piXZSbGSxjCwatX7+crFBOnol3SopMTzP7yQ9nXi9xSIlEnur9dxis8mwWhXs79dAf79kGCn/54fW7TKPz0m//rX04oupv9l//7uM3/5WlnA4+Z5T3oPLlVKflPrF4+Z9f5LZyelwmK+x2xWJxxUKhxWJxczvVzQqu859v0evO0b+55uSbBaLutxu3TEwQEI4DkgIM2zRokWaP3++du3alSybNWuW1qxZo+bm5h/8+0RC2PeHPyh89qxKiosVDYfldrs1HImou7NT8Xhc1ZWV+q6nR4G+PgWDQZUVF8vlcMhqtcqIxeTMy1MwEJARi2lwYED9fr9cLpeMWEz+vj7FhoZUXlqqgVBIxR6PbFarenw+5bvdshiGbFarwgMDcjudigwOajgaNc8ojdwwbbdaZYnH5Xa7FfT7kwcrm9Uqm8UiIxZLOYDZrVYZ8biso8pGP45VNta2Sxk1KXHgTzQ4Q5LOjixfut16a3BQf5P02jvvJM/oGoah9evX663nnlOTpOWSpkkqv4R6XCkCkmKFhYp5PHLPmKH8hgZZli6VVqz48WdCz5yR/vpX6V//Mifv7unJqRFZ5XKZA6rcfbeZHCfmbhoYkB58UHrhBXOfTASlpWbve12dmRz85jdSQ8P3/00oZDbk//EP6fhx6fRpaaRxcsUqLjYnvf7lL6WmpuSouhfYu1f6y1+kf//bTHqvwIZ9TKmdhImOFlmtMiRZbDbFDEOyWhU3DNlcLjlLSpRXUiJLUZH0q19JP/+5dOSIdPCgdOpU8gxUfHhY/v5+DQ4NaSgWU57LJZfbrXyPR67RDWCbTaFwWKc//1xd336rIq9XrsJCfdfbq2HDUGV1tULhsAYlFVZUqKi6Wo6SEk2dPVt506ebMVZbO/YbjEalDz8048rvlwKB1LNliWXUWdhoNCq73a7I0JAsNptcBQXnzsL90FJSYp4traoyP++BAXOOyvJys9H/H39AMamry6y3328m34mk9PxldAfR6E6k71u3283Omt7ec9MnJf7HxTqOEo/nd05JF++4+oHt/aGQ+vr6VFlVpXffe0+FHo+8FRUqrq5WT3+/5HZrzwsvKG/KFM392c80f/58TZo0SSUlJRfddYkrSNxutznidGJfdnebn0tiiURkDA8rFAyqp7tbHZ9/rvcPHFBlebmKi4rkystTOBQy499u13AsJl9Pj8KRiLzFxQr09+vs2bOqr69XsL9fV9XVyWKzKRAI6KqZM/W/7e3qqKqS4XZr8uTJqq6u1j333CO3zyfrkSPm7+FIx4ficbOeifWRJSYpHImot7dX1rw8+QMBdXR0qLCoSLa8PEUiEdmdTl111VXqHxhQkdcru9MpT22tnDU15vFqjKmHJJmf/T//ae6XcNj8TMrKzH3j91+0TpLMY19ZmTl4z/kdarGY+RiPa8gwNBiN6rMvvpDH61XcalXcYlFBUZE+6+qSfdYsVa5Zo/pHHlHgm2/kPXCAhHAckBBmUDQaVX5+vl588UXddtttyfKmpia1t7ePOfJhJBJJGRY5EAiotrb2iv2yGIaRvJzUMIwLJi8d/bpoNKpvvvlGfr9fDQ0N+vrrr1VaWqq8vDyFw2GdOnVKM2fOVCQSSb7Xs2fPyuFw6MSJE5o7d67sdnvykqpwOKyTJ0+qu6tLs2bOlMUwZJVU7PVqKBLR8U8+UaCvTxbDUGl5ua6ZMUOuggL1nD0rw2LRwOCgTp8+rbKyMg0PDyscDisQCGj16tUpI4CNJRAIKD8/Xx999JF5uZ7Vqs8++kiVXq9KXC7Zhoflcjg0FInIZrHo89OnFfT7Na22Vm6nU/+3f78mlZVpUlmZbJK8xcX69NNPVV1drePHj2tSRYWGhoY0e/ZsDcfjCo38COXn58udn6/S0lINDAzIarMpHo/LZrMpPz9fVpvt3CVnNpsGolENSyoqKdGQYSjP7VZ4eFhDhiFPcbHZQBhpJMStVvPSuHSLRs1EIBI5t4TD5o/HxS57+r7LoEY3NsbjMbFPEj94Vuu5HtLRj4WFZgPxhy75CwbNntZw2GyMhcMXNljHasSO3nZ+g+tyrNvt5ntzOCSnM3V99GVmlyoSMfdJIGDui8R+HqvBMUo4HJbVak0Op9/b2/u9DcYUibhPLHl5F5a53WbS+1Pep2GY7yUSOdfwtlrNfed0mvt3dCNqrMZ+ohE/0qiPS7KONFA/Pn5cgf5+/deCBSooLFRcUmRoSLJYNBAOKy5JFosmVVaqLxBQocej4VhMvb29Ki4ultvtlnRurr2LHbcB4LK5/34F9uyRNxi8Ytu4EwkJYQYl7st77733tGTJkmT59u3btWfPnjGHGN66daseeeSRC8r5sgAAAGBCOHBAgeZmed94gzbuOGAewivA+YMEXGzgFkl66KGH5Pf7k0u2zFEFAAAA/Ci/+IXU0pLpWuSMNF3Tg5+ivLxcNptNXV1dKeU+n++Cm6ITnE6nef07AAAAAFwizhBmkMPh0IIFC9Ta2ppS3tramnIJKQAAAABcDpwhzLDNmzdr7dq1WrhwoRobG7V79259+eWXuvfeezNdNQAAAAATHAlhht1+++367rvv9Oijj6qzs1Nz5szR66+/rmnTpmW6agAAAAAmOEYZzXKJeQgZgQkAAAATBW3c8cM9hAAAAACQo0gIAQAAACBHkRACAAAAQI4iIQQAAACAHEVCCAAAAAA5ioQQAAAAAHIU8xBmMcMwFAgEJCn5CAAAAGS7RNuWGfIuP+YhzGI9PT2qqKjIdDUAAACAy6Kjo0NTpkzJdDUmNM4QZjGHwyFJ+vjjj1VTUyOLxZLhGmGiCgQCqq2tVUdHB5PD4rIi1jAeiDOMF2LtpzMMQ8FgUDU1NZmuyoRHQpjFEgng5MmTOchgXBQVFRFrGBfEGsYDcYbxQqz9NF6vN9NVyAkMKgMAAAAAOYqEEAAAAAByFAlhFnM6ndqyZYucTmemq4IJjljDeCHWMB6IM4wXYg3ZgFFGAQAAACBHcYYQAAAAAHIUCSEAAAAA5CgSQgAAAADIUSSEAAAAAJCjSAizwDvvvKPVq1erpqZGFotFr7zySsp2wzC0detW1dTUyO12a/ny5Tp27FhmKous1dzcrOuvv14ej0cVFRVas2aNTpw4kfIaYg3psGvXLs2bNy85UXNjY6PeeOON5HbiDJdDc3OzLBaLNm3alCwj1pAOW7dulcViSVmqqqqS24kzXOlICLNAKBRSQ0ODdu7cOeb2xx57TI8//rh27typQ4cOqaqqSitWrFAwGBznmiKbtbW1acOGDTp48KBaW1s1PDyslStXKhQKJV9DrCEdpkyZoh07dujw4cM6fPiwbrzxRt16663JBhJxhnQ7dOiQdu/erXnz5qWUE2tIl9mzZ6uzszO5HD16NLmNOMMVz0BWkWTs3bs3+TwejxtVVVXGjh07kmXhcNjwer3GU089lYEaYqLw+XyGJKOtrc0wDGINl1dJSYnx9NNPE2dIu2AwaNTX1xutra3GsmXLjKamJsMwOKYhfbZs2WI0NDSMuY04QzbgDGGWO3PmjLq6urRy5cpkmdPp1LJly/T+++9nsGbIdn6/X5JUWloqiVjD5RGLxdTS0qJQKKTGxkbiDGm3YcMG3XLLLbr55ptTyok1pNPJkydVU1Ojuro63XHHHTp9+rQk4gzZwZ7pCuDSdHV1SZIqKytTyisrK/XFF19kokqYAAzD0ObNm7V06VLNmTNHErGG9Dp69KgaGxsVDodVWFiovXv36rrrrks2kIgzpENLS4s++OADHTp06IJtHNOQLosWLdJzzz2nGTNmqLu7W9u2bdOSJUt07Ngx4gxZgYRwgrBYLCnPDcO4oAz4sTZu3KgPP/xQ77777gXbiDWkw7XXXqv29nb19fXppZde0rp169TW1pbcTpzhUnV0dKipqUn79++Xy+W66OuINVyqVatWJdfnzp2rxsZGXXPNNdqzZ48WL14siTjDlY1LRrNcYhSrRA9Ugs/nu6A3Cvgx7r//fr322mt66623NGXKlGQ5sYZ0cjgcmj59uhYuXKjm5mY1NDToiSeeIM6QNkeOHJHP59OCBQtkt9tlt9vV1tamJ598Una7PRlPxBrSraCgQHPnztXJkyc5piErkBBmubq6OlVVVam1tTVZFo1G1dbWpiVLlmSwZsg2hmFo48aNevnll/Xmm2+qrq4uZTuxhsvJMAxFIhHiDGlz00036ejRo2pvb08uCxcu1N1336329nZdffXVxBoui0gkok8++UTV1dUc05AVuGQ0C/T39+vUqVPJ52fOnFF7e7tKS0s1depUbdq0Sdu3b1d9fb3q6+u1fft25efn66677spgrZFtNmzYoOeff16vvvqqPB5PsjfT6/XK7XYn5+8i1nCpHn74Ya1atUq1tbUKBoNqaWnR22+/rX379hFnSBuPx5O8BzqhoKBAZWVlyXJiDenwwAMPaPXq1Zo6dap8Pp+2bdumQCCgdevWcUxDViAhzAKHDx/WDTfckHy+efNmSdK6dev07LPP6sEHH9Tg4KDuu+8+9fb2atGiRdq/f788Hk+mqowstGvXLknS8uXLU8qfeeYZrV+/XpKINaRFd3e31q5dq87OTnm9Xs2bN0/79u3TihUrJBFnGD/EGtLhq6++0p133qlvv/1WkyZN0uLFi3Xw4EFNmzZNEnGGK5/FMAwj05UAAAAAAIw/7iEEAAAAgBxFQggAAAAAOYqEEAAAAAByFAkhAAAAAOQoEkIAAAAAyFEkhAAAAACQo0gIAQAAACBHkRACAAAAQI4iIQQAAACAHEVCCAAAAAA5ioQQAAAAAHIUCSEAAAAA5CgSQgAAAADIUSSEAAAAAJCjSAgBAAAAIEeREAIAAABAjiIhBAAAAIAcRUIIAAAAADmKhBAAAAAAchQJIQAAAADkKBJCAAAAAMhRJIQAAAAAkKP+H525/hPYftm2AAAAAElFTkSuQmCC", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pdiff.SetExtractionMode(False)\n", "pdiffn.SetExtractionMode(False)\n", @@ -1036,7 +317,7 @@ "pn.FitScaleFactorForRw()\n", "\n", "pn.plot(fig=None,diff=False,hkl=True)\n", - "px.plot(fig=None,diff=False,hkl=True)" + "px.plot(fig=None,diff=False,hkl=True)\n" ] }, { @@ -1046,7 +327,7 @@ "### Display the 3D crystal structure\n", "*Note: this requires installing `ipywidgets` and `py3Dmol` (as of 2021/05 the conda-forge version is obsolete, so just install using pip). Otherwise You will just get a warning message*\n", "\n", - "This will be updated live during the optimisation, and also when using `RestoreParamSet()` to restore some specific solutions (and generally everytime the underlying Crystal's `UpdateDisplay()` function is called). Just scroll back to see what is being done in the widget.\n", + "This will be updated live during the optimisation, and also when using `RestoreParamSet()` to restore some specific solutions (and generally every time the underlying Crystal's `UpdateDisplay()` function is called). Just scroll back to see what is being done in the widget.\n", "\n", "The `display()` is only really necessary to make sure the widget appears in the notebook. In fact if `c.widget_3d()` is the *last* command in the notebook cell, the display is done automatically. See the ipywidgets documentation if you want to understand this in more details.\n", "\n", @@ -1055,92 +336,11 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/3dmoljs_load.v0": "
\n

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n
\n", - "text/html": [ - "
\n", - "

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n", - "
\n", - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "79259c7636504fe7baccfa6ee4d2f0f5", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Box(children=(VBox(children=(HBox(children=(VBox(children=(FloatRangeSlider(value=(0.0, 1.0), description='Xra…" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "display(c.widget_3d())" + "display(c.widget_3d())\n" ] }, { @@ -1157,118 +357,9 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LSQ option: Every 150000 trials, and at the end of each run\n" - ] - }, - { - "data": { - "application/3dmoljs_load.v0": "
\n

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n
\n", - "text/html": [ - "
\n", - "

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n", - "
\n", - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "8d18d8c1d9d94a51b12a8d1b9d843bea", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Box(children=(VBox(children=(HBox(children=(VBox(children=(FloatRangeSlider(value=(0.0, 1.0), description='Xra…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "79965d9b2f58431580723d7e13cca396", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Box(children=(HBox(children=(Label(value='MonteCarlo:', layout=Layout(max_width='25%', width='11em')), Text(va…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Final LLK: 2968.07\n" - ] - } - ], + "outputs": [], "source": [ "mc.GetOption(\"Automatic Least Squares Refinement\").SetChoice(2)\n", "print(\"LSQ option: \", mc.GetOption(\"Automatic Least Squares Refinement\").GetChoiceName(2))\n", @@ -1283,7 +374,7 @@ "\n", "# The powder pattern plot a few cells above should also be updated for each run best solution\n", "mc.MultiRunOptimize(nb_run=3, nb_step=1e5)\n", - "print(\"Final LLK: %.2f\" % mc.GetLogLikelihood())" + "print(\"Final LLK: %.2f\" % mc.GetLogLikelihood())\n" ] }, { @@ -1300,26 +391,15 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 0: LLK= 3778.00, name=Best Configuration\n", - " 1: LLK= 3839.00, name=Run #3\n", - " 2: LLK= 3827.00, name=Run #2\n", - " 3: LLK= 3776.00, name=Run #1\n" - ] - } - ], + "outputs": [], "source": [ "for i in range(mc.GetNbParamSet()):\n", " idx = mc.GetParamSetIndex(i)\n", " cost = mc.GetParamSetCost(i)\n", " name = mc.GetFullRefinableObj().GetParamSetName(idx)\n", - " print(\"%3d: LLK=%10.2f, name=%s\"%(idx, cost, name))" + " print(\"%3d: LLK=%10.2f, name=%s\"%(idx, cost, name))\n" ] }, { @@ -1332,64 +412,13 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "26fc02afd8ef4a268848164426b18468", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADK+0lEQVR4nOzdeXhU5dn48e/sS5bJRkgCISC7goIIyFIBQZCKC9Rqq6BWtFUr1IJo3SrWFrXvq9Bia9VaRZbi8hOX0hcF0SibIIggm+wESEhIMpPJMvv5/ZGZMcskmawzSe7PdeWSnDlzzn1IBs99nue5b5WiKApCCCGEEEIIIToddaQDEEIIIYQQQggRGZIQCiGEEEIIIUQnJQmhEEIIIYQQQnRSkhAKIYQQQgghRCclCaEQQgghhBBCdFKSEAohhBBCCCFEJyUJoRBCCCGEEEJ0UpIQCiGEEEIIIUQnJQmhEEIIIYQQQnRSkhAKIYQQQgghRCclCaEQQgghhBBCdFKSEAohhBBCCCGixq233hrpEDoVbaQDEEIIIYQQQnQ+Dz30UK1tiqKwZcuWCETTeUlCKIQQQgghhGhzK1euZNWqVbW2f/bZZxGIpvOShFAIIYQQQgjR5u68804GDhxIampqte233XZbhCLqnFSKoiiRDkIIIYQQQgghRNuTojJCCCGEEEII0UlJQiiEEEIIIYQQnZQkhEIIIYQQQgjRSUlCKIQQQgghhGhzb7/9NkOHDmXmzJksW7aM/v37M3z4cD788MNIh9apSFEZIYQQQgghRJsbOXIkn332GXa7nSFDhnDw4EGMRiOTJk3iyy+/jHR4nYa0nRBCCCGEEEK0OZPJhNlsxmw2M3HiRCwWCwBaraQobUmmjAohhBBCCCHa3JAhQ/B6vQCsWLECAJfLRXJyciTD6nRkyqgQQgghhBBCdFIyQiiEEEIIIYQQnZQkhEIIIYQQQgjRSUlCKIQQQgghhIgaeXl5kQ6hU5GEUAghhBBCCBE1brvttkiH0KlITVchhBBCCCFEmxsxYkStbYqicPjw4QhE03lJQiiEEEIIIYRoc3a7nb1799bqO3jVVVdFKKLOSaaMCiGEEEIIIdrcokWLsNvttbY//vjjEYim85I+hEIIIYQQQgjRSckIoRBCCCGEEEJ0UpIQCiGEEEIIIUQnJQmhEEIIIYQQQnRSkhAKIYQQQgghRCclCaEQQgghhBBCdFKSEAohhBBCCCFEJyUJoRBCCCGEEEJ0UpIQCiGEEEIIIaLGrbfeGukQOhVtpAMQQgghhBBCdD4PPfRQrW2KorBly5YIRNN5SUIohBBCCCGEaHMrV65k1apVtbZ/9tlnEYim85KEUAghhBBCCNHm7rzzTgYOHEhqamq17bfddluEIuqcVIqiKJEOQgghhBBCCCFE25OiMkIIIYQQQgjRSUlCKIQQQgghhBCdlKwhbMcURaGkpAS73U5cXBwqlSrSIQkhhBBCCNFsiqJgt9vJyMhArZYxrNYkCWE7ZrfbSUhIiHQYQgghhBBCtIqcnBy6d+8e6TA6NEkI27G4uDhycnLIzMwkJyeH+Pj4SIckhBBCCCFEWK666ireeecd9Ho9f/zjH3G73Tz33HNcd911rFq1iszMTOLi4iIdZocnCWE7plKpgklgfHx88M9Llixh4cKFKIqCxWIhOzubXr16cdVVV7Ft2zYUReHnP/85r776arXj9enTh9zcXFQqFcOGDSM7O5uEhAQOHjxIWlpacD+Hw8GgQYMoKCigV69e7N69u9px7rrrLt58803MZjMJCQmcOHGi2uvPP/88CxcuRK1WoygKp0+fRq/XN/qYS5Ys4cEHH2TmzJm88cYbJCQkoCgKHo+H6dOns2LFipb5iw5D7969OXHiBF6vt83OKYQQQgjRnun1enr06AHAiy++yBtvvMGsWbOoqKgI3tfKkqjWJxNyO5ijR4/y+OOP880332Cz2fjxj3/MlVdeCcBjjz2G3W4nLy+P5cuX4/P5ar1/xYoVWK1WduzYwY4dO0Ke48knnyQtLQ2bzYbD4eDll1+utc/111+P1WqtlQwCLFy4kD179mCz2fjuu+8wm81NPuaQIUN44403gt8fOnSInJwcVq9eTXl5eQN/Wy3n6NGjGI3GNjufEEIIIUR7N2TIkGr3dXfccQfz5s3DbrdHLqhOSBLCDua5555j8uTJ9OrVC4B//OMfnD59GpfLxfjx4wEwm831Pm3RarV06dKFPXv2AHDttdeSkJDAxRdfDMBnn33GzTffHHzto48+qnWMDz/8EIvFwty5c2u9ptFo+Mc//kFJSQk9evRAq9U2+5hVJSUlYTKZOHbsWHDbkiVLSE5OJj09HZPJxPz580lLSyMmJoZ9+/ZVe/+BAwfo2rUrCQkJwb/HqsdJSUkhLS0Nk8nE//t//6/eWIQQQgghRGhLly6lZ8+e1bZNmDCBgwcPRiagTkoSwg4mJyeH3r17V9tmNBr5/vvvg9/feOON/OhHP6qzYlNRURHnzp1j9OjRAMyYMQOr1UpJSQkrVqzAbreTmpoKQJcuXSgqKqr2/ieeeIKysjIOHDjAv/71r1rTP9977z3eeecdkpOTGTx4MB6Pp9nHrOrQoUM4HA4GDBhQ67Xc3Fxuvvlm/v3vf5OXl8eUKVN45plnqu1z6623cscdd2C1Wjl8+HCtY/h8PvLy8njyySdZtGhRnXEIIYQQQggR7WQNYQ3PPPMM7733HgcPHsRkMjF69Giee+45+vfvH9znjjvuYNmyZdXeN3LkSLZt2xb83ul08uCDD/Lvf/+biooKJk6cyN///vdqVZKKi4uZO3cuH374IQDXXXcdS5cubVbl0KysrGojY1C55q9fv34APPvss2zbto1Tp06FfP/MmTPRarXcfPPNDBw4EKhMIAEuvfRSduzYQXx8PPn5+QCcO3eOpKSkWjEAZGRkcNFFF/Hpp58yZMiQ4OtXXnklx44dw+PxMHDgQJ577rkmHVOj0dSKv3///qhUKn73u9+h1Vb/9Q6M9vXp04fjx48Ht+3fv7/afjk5Odx5550AtY4BcMEFFwBw8cUX89prr9X+SxRCCCFExPl8PlwuV6TDEHXQ6XQh7+VE25OEsIbs7Gx+/etfM3z4cDweD4899hiTJ09m//79xMTEBPe7+uqref3114Pf6/X6asd54IEH+Oijj1i9ejXJycnMnz+fadOmsXPnzuAv/y233MLp06dZt24dAL/85S+ZNWtWyOmS4VqwYAFDhgzh5MmTZGVl8etf/5rMzEz0ej0ffPABzzzzDIcOHQqZ6EDlGsLp06dX27ZmzRoeeughdu/ezYwZMzAajbz11lvMmTOHtWvXMm/evGr7nz59mu7du+NyuTh06BAjR46s9vr69eu56qqr0Gq1JCQk4PV6GT9+fKOP+fXXX9eK/9ChQ9UK4NSl6pRZRVGqvdajRw+WLVvGokWL8Hg8df5dhXqvEEIIISLP5XJx/PjxkPUSRPRISEggLS2t1lImWUPYtiQhrCGQnAW8/vrrpKamsnPnTq644orgdoPBUGfiYbPZeO2111i+fDmTJk0CKhOtzMxMNmzYwJQpUzhw4ADr1q1j27ZtwYTp1VdfZdSoURw6dKjaiGRj9O7dm6effppLLrmkWpVRgNmzZ+N0OoNTKffs2ROs7FSft99+mz/96U9kZWUxc+ZMHA4HF110ERaLhZ49e/LLX/4SgIEDB3LgwAFmzZoVLEhz1VVXMXbs2GrH+81vfsOpU6eCaxV/97vf4fP5Gn3MUAlhS1ixYgXjxo3j73//O8nJyRw9erRVziOEEEKIlqcoCrm5uWg0GjIzM6WpeRRSFIXy8nJOnDjB0qVLWbduHTfddBO/+93vgMpCgu+//35kg+xEVIoMcdTryJEj9O3bl7179zJo0CCgcsro+++/j16vJyEhgXHjxvGnP/0puAZu48aNTJw4kaKiIhITE4PHuuSSS7jhhht46qmn+Ne//sW8efOwWq3VzpeQkMDixYv5xS9+ETIep9OJ0+kMfl9SUkJmZiY2m63T9SH85z//yZw5c7j55purVRqNhN69e3Pu3DlKS0sjGocQQgjR2bndbo4cOUJGRgYWiyXS4Yh67N27F41GQ//+/fnb3/7GF198wZtvvsk111zDBx98gMVi6ZT3uG1NRgjroSgK8+bNY+zYscFkEGDq1Kn89Kc/JSsri+PHj/PEE09w5ZVXsnPnTgwGA3l5eej1+mrJIEDXrl3Jy8sDIC8vL5hAVpWamhrcJ5RnnnmGp556qoWusH276667uOuuuyIdBoCMIgohhBBRItATuOZyHhF9NBoNKpUKt9vN3LlzufDCC5k6dWqt4oKidUlCWI/777+fPXv2sGnTpmrbA+0RAAYNGsRll11GVlYWa9euZcaMGXUeT1GUanOkQ7V+qLlPTY888ki19XWBEUIhhBBCCPEDaWge/WJjY7HZbMHvJ02aRHp6OvPnz49gVJ2PTKquw5w5c/jwww/57LPPqlUGDSU9PZ2srKxgi4K0tDRcLhfFxcXV9svPz6dr167Bfc6dO1frWAUFBcF9QjEYDMTHx1f7EkIIIYQQor1JTU2tVbzvoosuqlXTQ7QuSQhrUBSF+++/n/fee4+NGzfWakweSmFhITk5OaSnpwMwbNgwdDod69evD+6Tm5vLd999F+ztN2rUKGw2G9u3bw/u89VXX2Gz2YL7CCGEEEIIAfD555+jUqlq1Z/oULxevA88AGfPRjqSTkWmjNbw61//mlWrVvHBBx8QFxcXXM9nsVgwmUyUlpaycOFCfvKTn5Cens6JEyd49NFHSUlJCbZrsFgszJ49m/nz55OcnExSUhIPPvgggwcPDlYdHThwIFdffTV33303L7/8MlDZdmLatGlNrjAqhBBCCCFEe2X/9lvi/vIXNttsDP7LXyIdTqchI4Q1vPTSS9hsNsaPH096enrw66233gIqF7/u3buX66+/nn79+nH77bfTr18/tm7dSlxcXPA4ixcv5oYbbuCmm25izJgxmM1mPvroo2oNOFeuXMngwYOZPHkykydP5uKLL2b58uVtfs1CCCGEEEJEWu7WrQDs/+CDCEfSuUhCWIOiKCG/7rjjDgBMJhMff/wx+fn5uFwuTp48yRtvvFGrsIvRaGTp0qUUFhZSXl7ORx99VGufpKQkVqxYQUlJCSUlJaxYsYKEhIQ2ulIhhBBCCBFNnE4nc+fOJTU1FaPRyNixY4N9mAM2b97MJZdcgtFoZOTIkezduzf42smTJ7n22mtJTEwkJiaGiy66iP/+979tfRlNVrJnDwDJxcW4XK4IR9N5SEIohBBCCCFEFHjooYf4f//v/7Fs2TJ27dpFnz59mDJlSrU2DAsWLOB///d/2bFjB6mpqVx33XW43W6gcumT0+nkiy++YO/evTz33HPExsZG6nIazf399wD0pbLQomgbsoZQCCGEEEJ0aOXl5Rw8eLDNzztgwADMZnNY+5aVlfHSSy/xxhtvMHXqVABeffVV1q9fz2uvvcbw4cMBePLJJ7nqqqsAWLZsGd27d2fNmjXcdNNNnDp1ip/85CcMHjwYgAsuuKAVrqr1aHNyAOgNHCgtjWwwnYgkhEIIIYQQokM7ePAgw4YNa/Pz7ty5k0svvTSsfY8ePYrb7WbMmDHBbTqdjhEjRnDgwIFgQjhq1Kjg60lJSfTv358DBw4AMHfuXO69914++eQTJk2axE9+8hMuvvjiFryi1hVz/jw2tRqLz4dLKo22GUkIhRBCCCFEhzZgwAB27twZkfOGS1EUAFQqVa3tNbfVFHj9rrvuYsqUKaxdu5ZPPvmEZ555hueff545c+Y0MvLIiC8vJzcuDovNhrPKNFnRuiQhFEIIIYQQHZrZbA57pC5S+vTpg16vZ9OmTdxyyy0AuN1uvv76ax544IHgftu2baNHjx4AFBcX8/3331dLPDMzM7nnnnu45557eOSRR3j11VfbTUJo8nopsFjAZsPdkfstRhlJCIUQQgghhIiwmJgY7r33XhYsWEBSUhI9evTgz3/+M+Xl5cyePZtvv/0WgD/84Q8kJyfTtWtXHnvsMVJSUrjhhhsAeOCBB5g6dSr9+vWjuLiYjRs3MnDgwAheVePE+Hy4EhPh1CncNlukw+k0JCEUQgghhBAiCjz77LP4fD5mzZqF3W7nsssu4+OPPyYxMbHaPr/5zW84fPgwl1xyCR9++CF6vR4Ar9fLr3/9a06fPk18fDxXX301ixcvjtTlNIricmEEfKmpAHhKSiIbUCciCaEQQgghhBBRwGg08te//pW//vWvtV4bP358cJ3htGnTQr5/6dKlrRpfa3IVFWEAVOnpAHjt9sgG1IlIH0IhhBBCCCFERFXk5wOgdO0KgE9GCNuMJIRCCCGEEEKIiKrwN6JX+aeMKmVlkQynU5GEUAghhBBCCBFRDn9CqE9JoUylkoSwDUlCKIQQQgghhIgoV2EhAIaUFCrUaigvj3BEnYckhEIIIYQQQoiIchcXA5UJoVOrRVVREeGIOg9JCIUQQgghhBAR5fE3ojenpuLUalFLQthmJCEUQgghhBBCRJS3uBg3EJOUhEunQ+10RjqkTkMSQiGEEEIIIURE+ex27EBMbCxunQ6dJIRtRhJCIYQQQggh2rmFCxcyZMiQSIfRdCUllAFarRaPwYDO5Yp0RJ2GJIRCCCGEEEKIiFKVllKm0QDgMRrRud0RjqjzkIRQCCGEEEIIEVGqsjIq/Amhz2hE7/FEOKLOQxJCIYQQQgghooDP5+O5556jT58+GAwGevTowZ/+9CcAHn74Yfr164fZbOaCCy7giSeewN3AKNq//vUvLrroIgwGA+np6dx///1tcRlNoqqowKnVAuAzmTB6vRGOqPPQRjoAIYQQQgghBDzyyCO8+uqrLF68mLFjx5Kbm8vBgwcBiIuL44033iAjI4O9e/dy9913ExcXx0MPPRTyWC+99BLz5s3j2WefZerUqdhsNjZv3tyWl9MoKqcTb5WE0CAJYZuRhFAIIYQQQogIs9vt/OUvf+HFF1/k9ttvB6B3796MHTsWgMcffzy4b8+ePZk/fz5vvfVWnQnhH//4R+bPn89vfvOb4Lbhw4e34hU0j9rlwqPTAaAyGtEpSoQj6jwkIRRCCCGEEB1beTn4R9ra1IABYDaHteuBAwdwOp1MnDgx5OvvvvsuS5Ys4ciRI5SWluLxeIiPjw+5b35+PmfPnq3zWNFI63YHE0KMRgyRDadTkYRQCCGEEEJ0bAcPwrBhbX/enTvh0kvD2tVkMtX52rZt2/jZz37GU089xZQpU7BYLKxevZrnn3++0ceKVlqPB4/RCIDKZEIf4Xg6E0kIhRBCCCFExzZgQGVyFonzhqlv376YTCY+/fRT7rrrrmqvbd68maysLB577LHgtpMnT9Z5rLi4OHr27Mmnn37KhAkTGh93BOjcbrz+EUK1yYQxwvF0JpIQCiGEEEKIjs1sDnukLlKMRiMPP/wwDz30EHq9njFjxlBQUMC+ffvo06cPp06dYvXq1QwfPpy1a9eyZs2aeo+3cOFC7rnnHlJTU5k6dSp2u53NmzczZ86cNrqixtF6vfj0leOCapNJkpQ2JH/XQgghhBBCRIEnnngCrVbL73//e86ePUt6ejr33HMPs2fP5re//S33338/TqeTa665hieeeIKFCxfWeazbb78dh8PB4sWLefDBB0lJSeHGG29su4tpJL3Xi9dQuXJQHea6S9EyVIoiJXzas5KSEiwWCzabrc6FxUIIIYQQnYXD4eD48eP06tULo1EmHkazqj+rirg4Pr/0UqZ/9RXfPvkkvf7wBywg97htQBrTCyGEEEIIISJK7/OBf4RQIyOEbUoSQiGEEEIIIUREGXw+FP+IrjY2NsLRdC6SEAohhBBCCCEix+2uLGzib5ehjYmJaDidjSSEQgghhBBCiMhxuSr/G0gIZYSwTUlCKIQQQgghhIgchwOobEgPoI+Li2Q0nY4khEIIIYQQQnQw5eXlHD58mCNHjlBaWhrcfuLEicgFVRenE6iSEEpV0TYlfQiFEEIIIYToYE6dOkXPnj1RqVScPn2a0tJS0tLScPqTr2ii+EcI1f61gzqZMtqmZIRQCCGEEEKIDshoNGIwGOjduzc+n48TJ04QjS3IPWVlwA8JoUFGCNuUJIRCCCGEEEJ0MDqdrtpoYEZGBnFxcZT5k69oEkgINYGE0GKJZDidjiSEQgghhBBCtHMLFy5kyJAhwe979+6Nwd/oPSA5OZlhw4Y1+RxvvPEGCQkJTX5/XTz+NY4a/1RRlb8foWgbkhAKIYQQQgghIiY4QhhYO1gjkRWtSxLCGp555hmGDx9OXFwcqamp3HDDDRw6dKjaPoqisHDhQjIyMjCZTIwfP559+/ZV28fpdDJnzhxSUlKIiYnhuuuu4/Tp09X2KS4uZtasWVgsFiwWC7NmzcJqtbb2JQohhBBCCBE1vOXlQJX+gyoV0Vf6puOShLCG7Oxsfv3rX7Nt2zbWr1+Px+Nh8uTJ1eZb//nPf+aFF17gxRdfZMeOHaSlpXHVVVdht9uD+zzwwAOsWbOG1atXs2nTJkpLS5k2bRperze4zy233MLu3btZt24d69atY/fu3cyaNatNr1cIIYQQQkQHn8/Hc889R58+fTAYDPTo0YM//elPADz88MP069cPs9nMBRdcwBNPPIHb7a73eP/617+46KKLMBgMpKenc//999e7f3FxMbfddhuJiYmYzWamTp3K4cOHa+33/vvv069fP4xGI1dddRU5OTnB17799lsmTJhAXFwc8fHxDBs2jK+//rr+6/YnhLoqxWQkIWw70naihnXr1lX7/vXXXyc1NZWdO3dyxRVXoCgKS5Ys4bHHHmPGjBkALFu2jK5du7Jq1Sp+9atfYbPZeO2111i+fDmTJk0CYMWKFWRmZrJhwwamTJnCgQMHWLduHdu2bWPkyJEAvPrqq4waNYpDhw7Rv3//tr1wIYQQQggRUY888givvvoqixcvZuzYseTm5nLw4EEA4uLieOONN8jIyGDv3r3cfffdxMXF8dBDD4U81ksvvcS8efN49tlnmTp1Kjabjc2bN/P999/Tr1+/kO+54447OHz4MB9++CHx8fE8/PDD/PjHP2b//v3odDqgsr/hn/70J5YtW4Zer+e+++7jZz/7GZs3bwbg1ltvZejQobz00ktoNBp2794dfG9dPIGEsEq7CY9aDT5f4/4CRZNIQtgAm80GQFJSEgDHjx8nLy+PyZMnB/cxGAyMGzeOLVu28Ktf/YqdO3fidrur7ZORkcGgQYPYsmULU6ZMYevWrVgslmAyCHD55ZdjsVjYsmVLnQmh0+msVjGqpKSkRa9XCCGEEEK0Pbvdzl/+8hdefPFFbr/9dqCyMMzYsWMBePzxx4P79uzZk/nz5/PWW2/VmRA+9dRT3HnnnUybNg2ovJe99tprqzWpryqQCG7evJnRo0cDsHLlSjIzM3n//ff56U9/CoDb7ebFF18M3sMuW7aMgQMHsn37dkaMGMGpU6dYsGABAwYMAKBv374NXrtSUYETMPgb0wO4JSFsMzJltB6KojBv3jzGjh3LoEGDAMjLywOga9eu1fbt2rVr8LW8vDz0ej2JiYn17pOamlrrnKmpqcF9QnnmmWeCaw4tFguZmZlNv0AhhBBCCBEVDhw4gNPpZOLEiSFff/fddxk7dixpaWnExsbyxBNPcOrUqZD75ufnc+7cOa677jq6d+9e7ctgMHDPPfcQGxsb/AqcX6vVVhusSE5Opn///hw4cCC4TavVctlllwW/HzBgAAkJCcF95s2bx1133cWkSZN49tlnOXr0aIPX7nU4KhPCKsVkXGpJU9qKjBDW4/7772fPnj1s2rSp1msqlara94qi1NpWU819Qu3f0HEeeeQR5s2bF/y+pKREkkIhhBBCiAbc+597OWM/02bn6xbXjZemvRT2/qYqo2M1bdu2jZ/97Gc89dRTTJkyBYvFwurVq3n++efrPZZara7VeiI1NZU//OEPPPjgg9W219WwPtS9aah71cC2hQsXcsstt7B27Vr+7//+jyeffJLVq1czffr0Oq/PFyIh9Gg0de4vWpYkhHWYM2cOH374IV988QXdu3cPbk9LSwMqR/jS09OD2/Pz84OjhmlpabhcLoqLi6uNEubn5weH4NPS0jh37lyt8xYUFNQafazKYDDU+mALIYQQQoj6NSY5i4S+fftiMpn49NNPueuuu6q9tnnzZrKysnjssceC206ePFnnseLi4ujZsyfZ2dlcddVV1V4LLIOqOVPtwgsvxOPx8NVXXwXvVwsLC/n+++8ZOHBgcD+Px8PXX3/NiBEjADh06BBWqzU4RRSgX79+9OvXj9/+9rf8/Oc/5/XXX683IVRcLkkII0jGYmtQFIX777+f9957j40bN9KrV69qr/fq1Yu0tDTWr18f3OZyucjOzg5+eIYNG4ZOp6u2T25uLt99911wn1GjRmGz2di+fXtwn6+++gqbzRbcRwghhBBCdA5Go5GHH36Yhx56iDfffJOjR4+ybds2XnvtNfr06cOpU6dYvXo1R48e5a9//Str1qyp93gLFy7k+eef569//SuHDx9m165dLF26tM79+/bty/XXX8/dd9/Npk2b+Pbbb5k5cybdunXj+uuvD+6n0+mYM2cOX331Fbt27eIXv/gFl19+OSNGjKCiooL777+fzz//nJMnT7J582Z27NhRLaEMRXE6ayWEXkkI24yMENbw61//mlWrVvHBBx8QFxcXXM9nsVgwmUyoVCoeeOABFi1aRN++fenbty+LFi3CbDZzyy23BPedPXs28+fPJzk5maSkJB588EEGDx4crDo6cOBArr76au6++25efvllAH75y18ybdo0qTAqhBBCCNEJPfHEE2i1Wn7/+99z9uxZ0tPTueeee5g9eza//e1vuf/++3E6nVxzzTU88cQTLFy4sM5j3X777TgcDhYvXsyDDz5ISkoKN954Y73nf/311/nNb37DtGnTcLlcXHHFFfz3v/+tViXUbDbz8MMPc8stt3D69GnGjh3Lv/71LwA0Gg2FhYXcdtttnDt3jpSUFGbMmMFTTz1V/4WHSAhlhLDtqJS6Jgx3UnWt33v99de54447gMpRxKeeeoqXX36Z4uJiRo4cyd/+9rdg4RkAh8PBggULWLVqFRUVFUycOJG///3v1db7FRUVMXfuXD788EMArrvuOl588UUSEhLCjrekpASLxYLNZiO+Su8WIYQQQojOyOFwcPz4cXr16oXRaIx0OFHH6/WiiZJkK/Cz8i1ciOvttxnsdqPVVo5XbUpN5UcFBXKP2wYkIWznJCEUQgghhPiBJISVzp8/z7lz51CpVCQmJgZrX0RTv+tgQvjoo9jff5/Lq6Ql2d26Mf7sWbnHbQOyhlAIIYQQQogOpqCggIEDB3LhhReiVqs5evQoXq830mGF5nZX9h2sQtHKyra2In/TQgghhBBCdDAqlQq1P8nq2rUrJpOJw4cPR2VSqHK58NRICH2SELYZGSEUQgghhBCig7FYLDidzuD38fHxZGVlVSsQEy1UbjfumusaozDOjkpSbyGEEEIIITqYqv2yAwwGA/369YtANPVTeTy1qooqkhC2GRkhFEIIIYQQHY7UTazO4/Gwa9cuioqKIh1KUOBnpHa5avUdlISw7UhCKIQQQgghOoxASwWXyxXhSKJLaWkpaior1EeL8vJyALQFBXhqrhmUhLDNyJRRIYQQQgjRYWi1WsxmMwUFBeh0umBhlc7OVlTEhUBxaSkOhyOisSiKQnl5Ofn5+SQkJOAuKcFbIyFUqjSpF61LEkIhhBBCCNFhqFQq0tPTOX78OCdPnox0OFGj8OxZyt1ufIA1ShrTJyQkkJaWxlmPB5/ZXO01lV4foag6H0kIhRBCCCFEh6LX6+nbt69MG61i9a238oh//aCybRuqhISIxqPT6YLTezVeL76aU0RlymibkYRQCCGEEEJ0OGq1GqPRGOkwokbcwYMYKyoAKDp6lKQxYyIc0Q+0Xi/eGiOCKvnZtRmZVC2EEEIIIUQHl+V0YvOvyys5dSrC0VSn9XprVRWVKaNtRxJCIYQQQgghOjCXy0Vvn4+z3boBUJGXF+GIqtN6vSgyQhgxkhAKIYQQQgjRgdntdroAjh49AHCeOxfZgGrQ+XxQo6qoJIRtRxJCIYQQQgghOjC73U4ioO3VCw/gLiiIdEg/UBQMilKrzYRGEsI2IwmhEEIIIYQQHVhpURGxgKlbN6yAt7AwwhFV4XYDoKqREKolIWwzkhAKIYQQQgjRgVWcPQuAvmtX7Go1SnFxhCOqwuGo/K+MEEaMJIRCCCGEEEJ0YI7cXAAMaWmU6XRQUhLhiKpwOoHaawY1NRrVi9YjCaEQQgghhBAdmCs/HwBTRgYVej0auz3CEVXhTwjVJlO1zTJC2HYkIRRCCCGEEKID8/qLyJi7dcNhNKIrK4twRFXUMUKolhHCNiMJoRBCCCGEEB2Yz19ERpuaijsmBkNFRYQjqqKOEUJtje9F65GEUAghhBBCiI6sqAgHgMmENzYWkz8Jiwr+WGquGdTJCGGbkYRQCCGEEEKIDkxts1Gi0QCgxMVh9rd6iAbe8nIAtDEx1bZrJSFsM5IQCiGEEEII0YFpSkoo1ekAUMXGYvT5IhzRD9ylpUDtEUJJCNuOJIRCCCGEEEJ0YNrycsqrJIQmRYlwRD8IJIQ1Rwj1cXGRCKdTkoRQCCGEEEKIDkzrcODS64HKhFAPECXTRj3+iqc1E0JZQ9h2JCEUQgghhBCiA9M6nbgNBgDU/pE3j80WyZCCJCGMPEkIhRBCCCGE6MD0Lhdef0Ko8SeEjqKiSIYU5PYnhLrY2Grba/YlFK1HEkIhhBBCCCE6MIPbjdff109rsQDg8PcmjDRvHQkh/jWPovVJQiiEEEIIIUQHZvB48AUSwvh4AJxRMkLoLS/HDRhqThFVS5rSVuRvWgghhBBCiA7M5PWCf42ePjERAGdxcSRDCvJVVOAEDP4praLtSUIohBBCCCFEB2ZSFPBPydQlJADRU1TGV14uCWGESUIohBBCCCFEBxajKKj8xWQMSUkAuK3WCEb0A5/DIQlhhElCKIQQQgghRAflKi1FD6j9awdNyclA9IwQKjJlNOIkIRRCCCGEEKKDKi8oAH4oJmNKSsIHeO32CEb1A0VGCCNOEkIhhBBCCCE6qIrz5wHQ+tcOmsxmygFfaWnkgqrK6ZSEMMIkIRRCCCGEEKKDcvgTwkAxGaPRSDmgRMsIoT8h1EnfwYiRhFAIIYQQQogOKtCAXu8vJqNSqShXqVDKyyMZVpDK6cStUqFSqSIdSqclCaEQQgghhBAdlMvfgD5QXRSgQq1GVVYWqZCqc7lwSxP6iJK/fSGEEEIIITqoQHsJY0pKcJtTo0FVURGhiKpTuVy4NZpIh9GpSUIYwhdffMG1115LRkYGKpWK999/v9rrd9xxByr/0Hbg6/LLL6+2j9PpZM6cOaSkpBATE8N1113H6dOnq+1TXFzMrFmzsFgsWCwWZs2ahTVKesIIIYQQQoj2z+O/tzR16RLc5tRoUEdJQqh2ufDICGFEyd9+CGVlZVxyySW8+OKLde5z9dVXk5ubG/z673//W+31Bx54gDVr1rB69Wo2bdpEaWkp06ZNw+v1Bve55ZZb2L17N+vWrWPdunXs3r2bWbNmtdp1CSGEEEKIzsVbUgJATJWE0K3ToXY6IxVSNSq3G49WG+kwOjX52w9h6tSpTJ06td59DAYDaWlpIV+z2Wy89tprLF++nEmTJgGwYsUKMjMz2bBhA1OmTOHAgQOsW7eObdu2MXLkSABeffVVRo0axaFDh+jfv3/LXpQQQgghhOh0fKWlOACj2Rzc5tbp0ERJQqh2u/FKQhhRMkLYRJ9//jmpqan069ePu+++m/z8/OBrO3fuxO12M3ny5OC2jIwMBg0axJYtWwDYunUrFoslmAwCXH755VgsluA+oTidTkpKSqp9CSGEEEIIEYqqtJSa5WO8Oh0atzsi8dSk8XgkIYwwSQibYOrUqaxcuZKNGzfy/PPPs2PHDq688kqc/icteXl56PV6EhMTq72va9eu5OXlBfdJTU2tdezU1NTgPqE888wzwTWHFouFzMzMFrwyIYQQQgjRoZSVUV5jjZ7XYEDrckUooOo0bjc+SQgjSv72m+Dmm28O/nnQoEFcdtllZGVlsXbtWmbMmFHn+xRFqdZjJVS/lZr71PTII48wb9684PclJSWSFAohhBBCiJDU5eVU1Kji6TMY0Ho8EYqoOo3Xi1ea0keUjBC2gPT0dLKysjh8+DAAaWlpuFwuiouLq+2Xn59P165dg/ucO3eu1rEKCgqC+4RiMBiIj4+v9iWEEEIIIUQoqooKHDUSQsVgQB8lCaHW40GRhDCiJCFsAYWFheTk5JCeng7AsGHD0Ol0rF+/PrhPbm4u3333HaNHjwZg1KhR2Gw2tm/fHtznq6++wmazBfcRQgghhBACIDs7m0mTJjFv3jw++eQThg4dyvjx49m6dWu979NWVOCsMSVTMRrRV6l8H0larxefJIQRJVNGQygtLeXIkSPB748fP87u3btJSkoiKSmJhQsX8pOf/IT09HROnDjBo48+SkpKCtOnTwfAYrEwe/Zs5s+fT3JyMklJSTz44IMMHjw4WHV04MCBXH311dx99928/PLLAPzyl79k2rRpUmFUCCGEiJBbb72VlStXRjoMIWp5+OGHeeedd7BarUyePJkdO3ZgNpuZMWMGn3/+eZ3v0zqdlNVMuEwmDD5f6wYcJp3Ph6LXRzqMTk0SwhC+/vprJkyYEPw+sGbv9ttv56WXXmLv3r28+eabWK1W0tPTmTBhAm+99RZxcXHB9yxevBitVstNN91ERUUFEydO5I033kBTZch+5cqVzJ07N1iN9Lrrrqu396EQQgghWsZDDz1Ua5uiKPVW+hYt75tvvuGJJ55Ap9OxYMGC4Cyp2bNn89prr0U4uuhiNBrJzMwkMzOTgQMH0r17d4Bq95ah6JxO3DUSQpXZHF0JocEQ6TA6NUkIQxg/fjyKotT5+scff9zgMYxGI0uXLmXp0qV17pOUlMSKFSuaFKMQQgghmm7lypWsWrWq1vbPPvssAtF0XnPnzuX1119Hq9WyYMECtm3bxrx58zh27FikQ4s6aWlpeL1eNBoNGzduBMDj8eBrILHTud24Y2OrbVPHxGAE8PlAHcEVZIqCQRLCiJM1hEIIIYRo0DfffMO0adOYPn16tVG02bNnRzCqprvzzjsZOHAg48aNq/Z12223RTq0TkWlUtGnTx969uzJO++8Q0lJCXfffTeeKCl4Ek1Wr15dazRQq9VWq1kRisHlwlMj4VIHEkSHo0VjbDR/L0RJCCNLEkIhhBBCNGju3LksWbKExYsXs3jxYl544QWAdjuS8/TTT4fsBzx37twIRNN5paamcuLEieD3CxcuZNy4cezYsSNyQbUz2gZ6+Ok9HjwmU7Vt6pgYAHxlNVvWtzF/QqoyGiMbRycnCaEQQgghGiQjOaI1vPvuu/Ts2bPatpkzZ+KI9MhVB2LyevHVSLi0/roXjhot0tpc4OcsCWFESUIohBBCiAbJSI4Q7ZPR68VnNlfbFjUJodMJgKrGCKZoW5IQCiGEEKJBMpIjRGStX7+ekSNHMnr0aFavXh3cfs0119T9Jq8Xk6Kg+KeIBuji4wFwWq2tEWr4/P9+qCUhjChJCIUQQgjR6TTp5lqICHryySf5+OOP2bBhA9u3b2fOnDn4fD7Ky8vrflPgtWhPCGuMYIq2JQmhEEIIITqdJt1cixYniXn4NBoNCQkJmM1mXnjhBYYNG8b1119PaWlp3W/yF41R1Wg7YUhIAMAV6YTQP2VUEsLIkoRQCCGEEJ1Ok26uRYuTxDx8Q4YMqbaO94477mDevHnY7fa63+T/fVb71wwGBBJCd0lJS4fZKD7/z1kjCWFESUIohBBCiCabPHlypENokibdXIsWJ4l5+JYuXVprHe+ECRM4ePBgne/x+hM+tX+KaIAxMREAT4R/3z3+n7OmxpRW0bbqb1wihBBCCAHcdNNNtbYpisLevXsjEE3zLV26tNa2hm6uRcsLJOaBROeOO+4gKyuLe++9N7KBdRDOwkLMgNY/IhhgiJKE0F1aih5JCCNNEkIhhBBCNGjHjh1s3LgRtfqHyUWKojBr1qwIRiXaO0nMW5eruLgyIbRYqm03JybiA7wNjMR6PJ4GG983h9ufkGolIYwoSQiFEEII0aAFCxYQFxdHSkpKte33339/hCISovNxOp3s27ePoqIikpKSGDRoEHq9vs793f4+gzVHCE1mMw5CJ4R79+7l4Ycfxmq1otVqcbvdpKSksGjRIgYPHtySlxOcMqqrscZRtC1JCIUQQgjRoPvuuy/k9ptvvrmNI2ldeXl5pKWlRToMIWpZvnw5L730EsOHDyc+Ph6r1cquXbu49957mTlzZsj3ePxVRPX+KaIBarWaCkAJUbznvvvuY9WqVWRmZga3nTp1iltvvZUvv/yyxa4HwOs/v65GFVTRtiQhFEIIIYTwu+222/jkk08iHUanJ4l5bS+//DKbNm2qNm3b4/Ewfvz4OhNCt9WKGzDXGCEEcKpUIRNCr9eLpcYU0/j4eLxeb7PiD8VbVoYbMEiV0YiShFAIIYQQnc6IESNqbVMUhcOHD0cgGlHVrbfeSkFBgSTmNZhMJrKzs5kwYQJQ+fuanZ2N0Wis8z1em40ywBxijZ5TrQ6ZED777LNMmzYNvV5PfHw8NpsNj8fDc88912LXEoyvrAwHYDAYWvzYInySEAohhBCiydrrSI7dbmfv3r21CmZcddVVEYqo83nooYdYvnx5re1FRUWYTKYIRBTdli9fzrPPPsvjjz+O1+tFp9Nx2WWXsWLFijrf4y0poRSICZUQajSoKipqbb/iiiv44osvqKiowGq1kpiYWG/S2Ry+igpJCKOAJIRCCCGEaLL2OsVy0aJF2O12EmusrXr88ccjFFHns3LlSvR6Pf/617+qJebz58+v9XMRkJaWxpIlSxr1HsVupxToEmJKplurReV01vlek8nU6om5r6ICJ5IQRpokhEIIIYRoUEebYjl9+vSQ28eNG9fGkXRed955J7179+bSSy+tlgDedtttXHLJJRGMrH3wer3cc889HDlyhNdee40LLrig1j5KaSllQM8QI4RujQa1w9EGkdZNKS+XEcIoIAmhEEIIIRrUKaZYfvAB9OkDF10U6Ug6haeffjrk9rlz57ZxJO3T8uXLee2114iJieFvf/sbzz//fK19VGVllBI64XLr9ahdrjaItG6Kw4EDiJeEMKLUDe8ihBBCiM4uMMUS4PTp0wwaNIhDhw51nCmWDgfccAMMGgStUE1RiJa2b98+LrjgAkaOHMmpU6dC71RejkOjQaVS1XrJq9OhCZEQvv322wwdOpSZM2eybNky+vfvz/Dhw/nwww9b+hLA4ZApo1FARgiFEEII0aCqUyw/+eQT9u3bx7x581i7dm0Eo2o5uxYv5tLAN59+CpMnRzIcIRp08uRJsrKyyMzM5MCBAyH30ZSX49CGvt336vVo/Q95qnr++efZvHkzdrudIUOGcPDgQYxGI5MmTeK6665r0WvAP0IoCWFkyQihEEIIIRplz549APz3v//l448/jnA0LeP0a69xBvABnDwZ4WiEaFjVhDAnJyfkPhqHA7dOF/I1n8GAzu2utd1kMmE2m+natSsTJ07EYrFgMBhqTRdvEU4nDkCv17f8sUXYJCEUQgghRKPs2rWLn/70p4wdO5b/+Z//iXQ4LSIpP5/tQKFKhZKXF+lwOrXJMjoblqoJYW5uLu4QyZ3W6cRZR7LlMxrReTy1tg8ZMiTYhD7Q0sLlcpGcnNyC0VdSOZ24VCrUaklJIkmmjAohhBCiUXbv3s0z99/PFbt2scFmi3Q4zaYoCl3KyjibkUHe2bMYjx0jLtJBdQI33XRTrW2KorB3794IRNO+OBwOzp07R1ZWFmlpaSiKwtmzZ8nKyqq2n87pxBMbG/ogRiO6EOtlQ7W20Ov1vPvuuy0RejUqlwu3JIMRJwmhEEIIIcLmcDiw2+1c8d13DD56FEuIYhXtjbW4mEyfj7PDh3Pugw9IPnxYEsI2sGPHDjZu3FhtdEhRFGbNmhXBqNqHQBGZS3NzSTp/HoCcnJxaCaHe7cZT1/o8kwmjz9eqcTZE5XLh1mgiGoOQhFAIIYQQjWC1WgHoevo0AF0UhYqyMkwh+py1Fzm7dnExkHH55Xz9wQdcVFAQ6ZA6hQULFhAXF0dKSkq17ffff3+EImo/8vPzAej/6qvoSkrQVtlWlcHtxldXc3mTCUOEE0KNy4VHEsKIkzFaIYQQQoQtkBAmHjtGSd++mICCb7+NaEzNdf7rrwFIHTGCEqMRfVFRhCPqHO67775aySDAzTffHIFo2her1cogwHD8OOrCQibyw2czyOfD4PXiM5tDHkNlNmNUlLDPmdcKa2vVbjee1ihWIxpFEkIhhBBChM1qtZIJ6Gw2yq+9FoCSb76JbFDNVHHoEAAJl1xCRXw8xhCl+OvzzTffMG3aNKZPn86WLVuC22fPnt2icQoRYLPZuApQTCbo3p2pOh3FxcXVd6qoqLzRr2P0Xh0biwlQwhwlvO2225oTckgaSQijgvwEhBBCCBE2q9VKP/+fDTNm4HvhBZz79kU0puZScnKoUKkwJSXhSkwkJj8fXC4IsxT+3Llzef3119FqtSxYsIBt27Yxb948jh071sqRi87KarXSV62G3r0hNZXeRUVsq5kQlpUBoNSREGr8xWacNhvGxMTg9hEjRtTaV1EUDh8+3ELRV4nB48ErPQgjTkYIhRBCCBG2wAghgOXSSyt79x0/HsmQmq+gAKtOByoVdOlSuc1fqCMcKpWKPn360LNnT9555x1KSkq4++678YQo6S8aZm/kCG1nZLVa6avRoOrVC3r0oAchpoyWllb+Ny50iaRAQlhRY4q03W5ny5YtbN++Pfi1Y8cOhg8f3sJXAVqPB28dfRJF25GEUAghhBBhs1qt9FCpUFJTUZtMFOt0KO28CIu2uBi7f52VvmvXyo01R1vqkZqayokTJ4LfL1y4kHHjxrFjx46WDLPDefPNNxk8eDCXXnopzz77bHD79ddfH8Go2gebzUYvgF69ICuLbh5P7Smj/hFCTR0Joda/vWZCuGjRopBJ+eOPP97suGvF4PXik6b0EScJoRBCCCHCZrVauUCvR5VZOU5o1+vRtfNehMaSEhzx8ZV/Tk+v3FhztKUe7777Lj179qy2bebMmTgcjhaKsGN66aWX2LVrF7t27cJsNnPjjTdSXl6O0ohCJ52VtbiYbh4PXHAB9OhBssuFveaotn+EUGOxhDyGzv8776zxuz59+nQSq0whDRg3blzzA68Zg8eDIglhxMkaQiGEEEKEzWq1Mkqthu7dASgzmUgKTE1rp+LKy/H4E7pY/3X5CgvlqXkrU6vV6PzTBefOncuFF17I1KlTKZIqrw1SnTtXWSG0V69g0RhDjbYTSmkpKsCQlBTyGHp/ouhsxGh4S9P5fDJCGAXk3zohhBBChM1ms9FNUcA/QlgRE4O5vDzCUTWdoihY3G5ITQUgrkcPAMrPnIlkWJ3CNddcU22q7aRJk/j73/9Ot27dIhdUO2E4d67yD1lZ4P+djS0srLaPy59YG5KTQx4jkBC6S0paKcoGeDxoFAVFispEnCSEQgghhAib1WolzeMJJoSuuDhi2/HUyOLiYlIBrX+qaEJaGhVARSv0XBPVPfroo7Wm2l500UWsW7cuMgGFIVpajOgCo3ppaeD/3TXWmLrt8CeIxjoSQkNCAgCuSE35djoBUBmNkTm/CJKEUAghhBBhKyssJNbjqbwRBdwWCxaXC9rpuq9zJ04QDxj8Ca7FYsEKuAMjMGFYv349I0eOZPTo0axevTq4/ZprrmnZYDs4t9vN22+/jS/MvniRMHfuXJYsWcLixYtZvHgxL7zwAkCbtxgxlZTgA0hOhpgY3DodZn8RmQBnYSFeIKaOhDDQasITqaqu/gdJKpMpMucXQZIQCiGEECJ8gWlpKSkA+JKSKgsStNNWASVHjwJg9o9UJSQkUAx4GtF24sknn+Tjjz9mw4YNbN++nTlz5uDz+Shvx1NpI+EPf/gDN998M19++WWkQ6lTtLQYMZeVUWE2g1YLKhVOi4Ukr5eKiorgPu7iYsqAOH/xmJqM/rWF7kh9dgMjhJIQRpwkhEIIIYQImzpQ8MOfEKr8/21M375oUnbyJABxvXoBlSOExYDSiMImGo2GhIQEzGYzL7zwAsOGDeP666+ntJ0X22lLiqLw0t//zoXAUX+SHo2ipcVIXEVFsDIugCcxkVSo1nrCbbVSCsTXkRCa/AmhN8IjhGp/yxcROZIQCiGEEM0QLWuK2oo2sN7Inwiq/cVY2msvwoqzZwGIy8oCfpgy2pi2E0OGDKmWJNxxxx3MmzdPGqw3QkFBAT8pKmIf4Pjss0iHU6doaDHicDhI9npx+9cAAvi6dCGV6s3pvTZb5QhhXY3p/dVJvTWmmrYZ/9+ZRhLCiJOEMIQvvviCa6+9loyMDFQqFe+//3611xVFYeHChWRkZGAymRg/fjz79u2rto/T6WTOnDmkpKQQExPDddddx+nTp6vtU1xczKxZs7BYLFgsFmbNmlXtgyyEECL6RcuaorZiDIx6+dcl6f0FLVz+xKq9cfmLx2i6dAFAq9Vi12rRNKLQxtKlS2slCRMmTODgwYMtFmdHd+TwYQJtz+N27YpoLNHOZrPRFfBWWRuo6tq11gih126nlLoTQlQqKgBfpBJC/5TRQGIqIkcSwhDKysq45JJLePHFF0O+/uc//5kXXniBF198kR07dpCWlsZVV11V7UngAw88wJo1a1i9ejWbNm2itLSUadOm4fV6g/vccsst7N69m3Xr1rFu3Tp2797NrFmzWv36hBBCtJxoWVPUFpxOJ/FuNz6NBgKN3P3FZRyNKMISTTwFBXgBqtw0VxgM6GS6Z5s6s2MHmf4/Z506FdFYop3VaiUVgq1SAHQZGbUSQux2yoCYehIuh0qFEuERQq0khBEnCWEIU6dO5Y9//CMzZsyo9ZqiKCxZsoTHHnuMGTNmMGjQIJYtW0Z5eTmrVq0CKp/cvPbaazz//PNMmjSJoUOHsmLFCvbu3cuGDRsAOHDgAOvWreOf//wno0aNYtSoUbz66qv85z//4dChQ216vUIIIZouWtYUtQWbzUYK4IqPB5UKgNiuXfEAjnbapkEpLMSu1YL6h1sil8mEXgrCtKmKr78GYP/w4QwuLUWJ4kqjAEVFRRw5coSiRqw1bSk2m41UQJ2REdxmyMysNWWUsjIcGg0q/2c1FKdaDXX8rrf2Qy3FXwBHGxvbqucRDZOEsJGOHz9OXl4ekydPDm4zGAyMGzcuuHZk586duN3uavtkZGQwaNCg4D5bt27FYrEwcuTI4D6XX345Foul2hqUmpxOJyUlJdW+hBBCRE40rClqK1arlWTAW2XtkiUhASvgaqdFZdQ2G+U1GmN7YmIw+KezhcPj8eB0Otm1axcbNmxg165duFyulg61Q1MdOIBDrcY+ZgyJQFGVhyzR5NNPP2XMmDH84he/4KmnnuL2229n7NixfPrpp20Wg7WoiBR+mK4NoOvWjTjAXmWkXlNWhkOnq/dYLo0mOFIHsHfvXn784x8zevRorrzySkaNGsW1117L3r17W/oycPtH4XV1TWkVbUYb6QDamzz/E9CuXbtW2961a1dO+iuV5eXlodfrSfT3d6m6T+D9eXl5pFYZ6g9ITU0N7hPKM888w1NPPdWsaxBCCCGawmq1kgIoVdYuWSwWbICmnSaEOrsdR42y9764OIxuN/h81UYOq9q7dy8PP/wwVquVwsJCzp49S0pKCpMnT0av17Nr1y7uvfdeZs6c2RaX0e7F5+SQl5hIzIABAJz/5huSL7ggwlHV9vvf/55169ZVW5dXUlLC1KlTmThxYpvEUJabiwYwduv2w0b/GljXmTPBTbqysloPO2pyazSoqiSE9913H6tWrSIzMzO47dSpU9x6660t3g7EVVKCHhkhjAYyQthENYffFUWpd0g+1D6h9m/oOI888gg2my34lZOT08jIhRBCiKYJJIRq/80n/FCV0xeBqXMtwVBejrvGCIUSH195g1TPOsL77ruPl19+mS1bttClSxdsNhvZ2dns37+fpUuXkp2dzT/+8Y/WDb4DSS0uxt69O0mXXAJAyf79EY4oNLVaTUGNiroFBQWo63hw0Bqc/oEDU5Upo4H1hN4qgwqGigoqGujx59ZqUVdJCL1eLxaLpdo+8fHx1WpgtJRA/0O9jBBGnIwQNlKaf/F8Xl4e6VWG6vPz84OjhmlpabhcLoqLi6uNEubn5zN69OjgPudCLMAvKCioNfpYlcFgwNDA0x4hhBBtr6ioiKKiIpKSkkjy9/fqaKxWK70Brf//hVB5s2gDEhtRlTOamB0OvDVugNWBKbElJcHiOTVVvXE2mUxkZ2czdOhQvF4viqKQnZ2N0WhszdA7jOLiYtI8Hip69qTLxRfjAxyHD0c6rJBeeeUV5s+fT15eXvAhfnp6Oq+88kqbxRCojKsO9ACFYEKoqpKsmhwO3FX3CcGt06GuMj362WefZdq0aej1+srPts2Gx+Phueeea8Er8J/b/8DFUOPzJ9qeJISN1KtXL9LS0li/fj1Dhw4FwOVykZ2dHfywDBs2DJ1Ox/r167npppsAyM3N5bvvvuPPf/4zAKNGjcJms7F9+3ZGjBgBwFdffYXNZgsmjUIIIaLfp59+yu9//3tSUlKIj4/HarVSXFzMU0891WZTyNpKYIRQV+WBqFarpVSjQdUO17T7fD7ivV6UKmsiATSBhN5mg+7dQ7636o2zXq/ntttuo6SkhO7du3PFFVdw2WWXsWLFila+go7h6OHDXAzk9e+PzmwmV63GF6WVRgcOHMiaNWsiGoM3kPRVffDkH7XXFBZWfq8oxLjdeBoYffPo9WiqrHe94oor+OKLL6ioqMBqtZKYmNhqDzY8paX4AKNMGY04SQhDKC0t5ciRI8Hvjx8/zu7du0lKSqJHjx488MADLFq0iL59+9K3b18WLVqE2WzmlltuASqnz8yePZv58+eTnJxMUlISDz74IIMHD2bSpElA5T8oV199NXfffTcvv/wyAL/85S+ZNm0a/fv3b/uLFkII0STRsKaorQSKyqiqTBkFKNfr0bbDNg0lJSUkAmU1RnT1geurZ9SzLW+cO7qcb77hMiD54osBKDQa0eTmRjaoKKYEkr6qv7d6PWV6PfpAldHSUjSKgrqB2Qo+vR5tiIc5JpMJUwPTTZvLU1qKAzC28nlEwyQhDOHrr79mwoQJwe/nzZsHwO23384bb7zBQw89REVFBffddx/FxcWMHDmSTz75pNrNwOLFi9Fqtdx0001UVFQwceJE3njjDTQaTXCflStXMnfu3GA10uuuu67O3odCCCGiU2BNUdX/B7T1mqK2UlpQQCwEm9IHOI1GdO2wTUMgwXXUmFZn8CeEis1G/dUB2ubGuaMr2rMHgBj/A/ESiwVTO12T2hZUxcV4AG2N0b9SsxlToCe2PzHU1Xh4U5PPYEAboZ6p3vJyHCCfnyggCWEI48ePR1GUOl9XqVQsXLiQhQsX1rmP0Whk6dKlLF26tM59kpKSZDqJEEK0c9GwpqiteAJr32skUC6zGWM7vIG3FhTQE9BVWRMJYPSv5XecO4fcqrY+b2B6qL9qpttiISlKp4zWxW63V3so1Jo0JSWU6fVYahQhdMbHY87Pr/zGnxAaavxu1+QzGjFEKCH0lZfjRBLCaNDxHl8KIYQQbSiwpmjr1q1s27aNrVu38t577zFw4MBIh9byAq0laiSEnthYTO2w717Z6dMAGGvcNMempVUWNglR/K2mSDYo7yj0+fl4VKofKmUmJBAbpb9Pb775JoMHD+bSSy/l2WefDW6//vrr2ywGXWkp5SGmJ3uTk4l3OPB6vTj9v7vmqpVIQzEaMVSpILp+/XpGjhzJ6NGjWb16dXD7Nddc0zLBV+ErLaUcSQijgSSEQgghhAhPYO1SjYTQFx9feVMZpTfxdXH416mZaxSOsSQmUgI4A6MtIURDg/KOwlhUhNVggMCymuRkEiI0atWQl156iV27drFr1y7MZjM33ngj5eXl9c4sa8itt97aqP2NZWU4zOZa21Vdu5IKnD9/Hrt/hDWuR4/6D2Yyoa+SED755JN8/PHHbNiwge3btzNnzhx8Ph/lrTAlXCkvpxxk7W0UkCmjQgghhAiLNlCwosYaQgJl4222YLXD9sDpTwhjaiSECQkJlACqQAIcQmcqJtTaTHY79pgYAo8Z1F26EAv4HA7UUZYsqNVqdDodAHPnzuXCCy9k6tSpYY0QP/TQQ7W2KYrCli1bGhWD2enEFaKdhDYzk3Tg3LlzWE6fJgWwZGXVeyyV2YzB5wt+r9FoSPBX3X3hhRd44403uP766yltjaJR/oRQRggjTxJCIYQQohXk5eUFe9d2FPqSEjxqda1iFuqqbRraUULo9o8A6mr0/7VYLBQCsfXc5HemYkKtLaasDEeVhwyBNZ0lx4+TEGVTr6+55hpOnDhBz549AZg0aRLp6enMnz+/wfeuXLmSVatW1dr+2WefNSqGGJcLb4j+mKY+fUgE9ubkoM/LowxIaWDKqDomBhPg8XjQarUMGTKk2vXdcccdZGVlce+99zYqxnCo/AlhIMEWkSMJoRBCCNEKbrvtNj755JNIh9GijGVlVJjNxNUoZqEN3MwHRhDbiWA/t8TEatsTEhI4BsTUcz2dqZhQa4t3OnFV6QVp9BeXsZ84EXUJ4aOPPlprW79+/Vi3bl2D773zzjsZOHAgqf61kgG33XZb2Of3er1YQvTOBIgbMAA1UHLoEN4zZygAUhpoTK+Ji8NEZcu1hISEkMUQJ0yYwMGDB8OOMVwqhwOnRoNK1VAtX9HaJCEUQgghmmHEiBG1tvl8vmr9bDsKc0UFzi5dqFlLMVjavp0lhBQX41CpavVBM5lM2FUqCNGfLSAaGpR3FAkeD6VVRgjN/nVvZe2g0ujatWuZNm0as2fP5p///Ge9+z799NMht8+dOzfs85WUlJAE2GpO2wb0F1wAgOPoUTRnz3JGpSIrJqbe42kTEjADhTZbcKpoW1H7E0IReTKvQQghhGgGu93Oli1b2L59O9u3b2fmzJnk5uZy2WWXRTq0FuVyuUjweHCHuGk0+Ec83PWsuYtGaqsVu7b2s3GVSkWFToc60NNNtJqKigpSFKXaVON4/3TFCn8V2Gj22f/9H/8Exr75Jr4qa/Fai9VqJQnQhJqa7R9Z9Z48ie7cOYrM5gZH3/T+0fGywGh5G1I7nbhDfP5E25OEUAghhGiGRYsWYfcnDlarlYULF3L27NlGTQNrD2w2GymAr8b0SgCzf81XoGpne6EtKaHMYAj5mtNoRFtW1sYRdT7F+fmVCU6VdZwJPXviA1zt4Pcp5b//ZTZwh9vNyX37Wv18trw8TNRe9wpAQgIVajXeU6eIKSqiPMQoYk16//rfigYSQnsrPBzROJ149PoWP65oPEkIhRBCiGaYPn06if4k6bnnnsPhcGAA1O2sBUNDrFYrKYAqxJqk+KSkyjYNYfTtiyb6sjIcdVQ4dJlM6CsqGn3M1rhx7sjsx48DYKhS6dUcF4cV8NbT9iMaOJ1Oep48GewJmPvWW61+zvIzZ4A6Gs6rVNjj4lCfPUtieTmKf8SwPgZ/0hhICNuyz6LW5cJbxwMZ0bYkIRRCCCFagM/n48UXX+R/p0/HAQz94x8jHVKLCowQakKMTMTHx2MDXIHG9e2EsbwcV2xsyNe8MTEYnM463xsNDco7grITJwAwZmYGt6lUKqwazQ99L6PU4cOHGe3zUXTddZxWq1Ea6EH59ttvM3ToUGbOnMmyZcvo378/w4cP58MPPwz7nBX+hLBm78yAsu7dubioCIOioPOvKayPyT/11On/u26NPot10blc+CQhjAoycVcIIYRoATk5OZSWlnKDf93TRSdPgtMJHeSGx2q1MhBwpqfXes1isWAFEqL8Br4mk9MZsnw/gC8uDlM9o7yBG2edTsdf//pXbrzxRt58881WuXHuyBw5OQDE1khe7Ho9migvUnR2xw4GAUVTpnBowwaM/mupy/PPP8/mzZux2+0MGTKEgwcPYjQamTRpEtddd11Y53T7R+FjqiTQVXlGjGCof+pq/IUXNng8s3/9byAhrKvP4rFjx3C5XOhbcIqnzuPBF2V9JjsrGSEUQgghWsCRI0cwAGk7d/Jdv36VG3fsiGhMLcl69iwxgCnEyEQgIVTCaM4dTeLc7pDl+wGwWNArCjgcIV+ueeN8zz33MHXqVM63s1HSSHP6H6Ak9O1bbXu50Yiuniqv0cDu/3wnjh2LPSWFxOLievc3mUyYzWa6du3KxIkTsVgsGAwGtI0orBLonakPtYYQiJ8yJfjnxLFjGzxeYA2hx598B/osBkyaNImbb76Z06dP8/rrr4cdZzj0Hg+KNKWPCpIQCiGEEC3g8OHDjFGrUZeVceDGGykBvF98EemwWkzpyZMAGOtICG1Qb5uGaONwOEhQFFR1FN5QBxLFOq4p1I3z3//+d7qFsW5L/MCTm4uDyvYHVTliYjBEeVEfz8GDeABVr164MzNJq6iAekaIhwwZgtfrBWDFihVAZfXe5DCKvwT4Ag8cQhR3Aujy4x8DsP6SS7j48ssbPJ4qrrKJTCAhfPTRR4NN6QFOnDjBp/6psOdaco2womDy+cBsbrljiiaThFAIIYRoAYcPH+bKpCQwGokbNYoDQMW330Y6rBbj8I/kqEKUu9fr9djVajTtKCEsLioiCdDWaBIeoPGPnGCzhXy95o0zwEUXXRRWg3JRRX4+xVot1GiP4I6Px1zH6Gy00J88Sb7ZDDodmj59MCsK3noqoy5ZsgRNjb57er2ed999N/yTFhdTqlaDf3S6JnVcHOTnc9U334Q3vdPfp9BXx2d3xowZvPfeewAcOHAg/Dgb4v/ZqhrokyjahiSEQgghRAs4cuQII/R6GDSIzF69OAF4Dh+OdFgtJtgCIESVUYAKgwFNlI/oVFV85gx6wFDH1Dt9IPGtIyGsKT8/n9/85je88sorLRRh56ApKsIeYp2tNzGRuCiv1GspKMDq/zyYL7oIgMKvv27Vc2rq6J1ZTZcutRLsOmm1OFQqfHVUxy3wVx8dPnw4+1qyrUZ5OQCqOoo6ibYlCaEQQgjRAk6ePMkApxOGDCErK4vjgLYdNNYOly/QAqCOhNBpMqH33+S1B3b/FFhTHVM8AwmhK8yG3cuXL2ftX//KuwsWtEyAnYTeZqMsxCiRKjkZi9db7xTMSEsvK6PCP4U6+bLLALB+802rnlNrt1PWwoVYKjQaCJEQut1u8vLyeOmll5h79dUcOngQt9vdQietbOmi9U9ZFZElCaEQQgjRAnJPnybdaoWLLyY2NpZ8sxlzYSF4PJEOrUWoi4pwq9XBKWY1uc1mjFE+xa+qQD+3mDrK95v9fd7Kw1w3tf+773gf+H8lJeTu3NkSIXYK5vJynCEqvWpSU9EBviitNOp2uejh8+H1V/vsNnAgdqD8yJF63+d0Otm1axcbNmxg165duBo5CmosK6O8hQuxOLRa1CEe5pw6dQqPx8O4gweZ+fTT3O12s3///uDrZ8+ebfpJ/efTSEIYFSQhFEIIIZrJ6XRiKCxE6/VCnz4AONLSUPt80EFGCbVWK2UmU51T0byxsRhdLvD52jiypnH4b2bjsrJCvm72t9dwhJkQJm3ezCBABZR2sB6UrSnO4cAbWK9Zhc4/lbf01Km2DikshceOEQOo/b8/FouFXJUKn/9BQyjLly9nwoQJLFu2jOzsbF5//XUmTJgQLDATDnNFBa4WXnfn0uvRhEgIDx8+jA7o/9prrI2NZRzwxiuv8N///pe1a9dy/fXX89///rdJ51T808u1FkszIhctRfoQCiGEEM109uxZgl3UevX64b/HjsHx41Cj+Eh7ZCgtDTmSE+CzWCqfMtvt0A5u8lz+RE9XR1EZS0oK5YArMFW2Hoqi0PvECYpSUthcWspFrbyOrKNQFIVEj4f8EIWKAu1N7MePE3/JJW0dWoNs+/eTBhj9/RNVKhVFBgOmeh4gvPzyy2zatAm1+ofxGI/Hw/jx45k5c2ZY541xOilp4c+XW69H45/CWdWRI0cYq9GgLi3lF3FxXAb4Nmwgwf+ZsVqtfP311/zYX9m0MZzFxRgBfT3/poi2IyOEQgghRDOdOXOGXoFv/MmfOdCLsJ4Rg/bC5/MR43DgrqtnH6AKvBalU/xq8gbWBtZxTRaLhRLA7W/YXZ+cnBxGuN2UDRmC46KL6HrmDIq/vYCoW5nNRgqg9Y/GVmX2T8Usb6DZe6RU+AtGxQ0YENxmj4lBX08vTpPJRHZ2dvB7RVHIzs7G2Ig1gRaPB189n8Om8JpMaENM9z5y5Ag3JiRAcjLHc3IYodFQfOoUkydP5sknn6Rv3778/ve/b9I5Hf7Plb6Fr0U0jSSEQgghOh1PC6/rO3PmDBcAvvR08N/cpffuXdmsvTnrbKKEzWYjWVFQQkztC1AH+qKFWZUz0pSiIuxqNdRRsTEhIQEb4K3nBj/g4NdfcwlguvJKMqdPJ0ZRONLEqXSdifXoUQB0GRm1Xov3j7RXROkDFdfx4wAkXHhhcFtFYiKxdVTrhMopox988AFjxozh8ssv54orruA///lP2FNGFUUh0eeDej6HTeGLiUHndNbafuTIEcYqCowbR4zFws8GDuSPLhcbNmzgpptuwtqMhz8u/+dK34gejKL1yJRRIYQQncLevXt5+OGHsVqtaLVa3G43KSkpLFq0iMGDBzfr2KdPn6avRoOqd+/gtqysLHIBw7FjtGwJiLZXUFBACqCuY3olgDZQfbSdjBBqrFZK9XrqKmkRHx/PYSA+jOsp/OwzNEDSlClc0rUrPP44Z9aupe+117ZgxB1P2YkTABh79Kj1WkqPHjio0u4kyvhOn+YckFql6q6nSxcSjx2r8z1paWksWbKkyecsKywkFlCHmGLbLDExGENUDz1y+DB9yspg6FAA3BdfzIjvvuPSe+9Fp9dz8ODBJp/S5R8hNNRRtVi0LRkhFEKICPvmm2+YNm0a06dPZ8uWLcHts2fPjmBUHc99993Hyy+/zJYtW/jiiy/YunUrf/vb37jvvvuafewzZ87QT6dD1Ss4cTSYEFb4RxLas0BCqAsxtS8g2M+vnSSE+pKSyiI5ddBoNJRqNKjCGPF0fPMNPkA9cCCmbt0oUqnwfv99C0bbMZX7W3+YQxT2iYmNpRjwhFnUp61pc3PJ1+lQVS2ylJ5OrM8HYfbjXHHPPbw7dixKHU3hawq0StHW0TuzyRISiPP5qrWU8Hq9uI8dw+x0gn8Np3nECCzAqS1biI+PZ8SIEU0+pae4GBdgDswsEBElCaEQQkTY3LlzWbJkCYsXL2bx4sW88MILAByr50mzaDyv14ulRjGG+Ph4vC2w1uvMmTNk+XxwQbC0DFlZWZylciShvTt//jzJ/FDoIxSj/ybVE8aau2hgKivD0UBTbIdej7q0tMFj6Y8e5XxsLPgTzFyzGX2Urn2LJi7/dNC4Kp+bqmw6Hcr5820ZUtgMhYUU1Vj7p/Mntt4wPvNuh4OxL7/MjZs38/3PfhbWOcv8v1OGEFNsm0OVlEQiVJsCmpOTw4WBqfX+hDD1yisBsG7a1Oxzeq1WSoGYFq6YKppGpowKIUSEqVQq+vhbFbzzzjssXLiQu+++u8XXuXV2zz77LNOmTUOv1xMfH4/NZsPj8fDcc881+9jnT50i2eX6ocIo0KVLFwo0GrRhVKmMdkWnT2OGYM+1UOK6dMEBuPPy6pyGGU1iHQ7c9SS4AE6DAW2IcvxVKYpCyvnzlPTuTWBCrTU5mfgwG9p3Zt68PFyApY7fqzKDAXWUjjjH2mycqFEh0+yfMm47cICk/v3rff/eP/+ZS4G9QOLWrWGd0+FPoM0N/N42lrZLFxKBXKuVLv7pqEeOHGEw4I2LQ+P/+cRddBGngJNbtlBUVERSM9Yyemw27FDrIZ2IDBkhFEKICEtNTeWEfy0NwMKFCxk3bhw7duyIXFAd0BVXXMEXX3zBRx99xN/+9jfWrl1LdnY2P/rRj5p9bHWgV1qVhFClUlGRlITJZgNFafY5IqnCP1VN42/WHorFYsFKeG0aokGc2x2y/11VbrMZfYhy/FUVFRXR1+PBG6gqCzi6daNLGCOLnV5+PudVKrQ6XciXnTEx6MKYTpmdnc2kSZOYN28en3zyCUOHDmX8+PFsDTPRaorEsjIqavz+JPoLzNjCWFvn/OADjms0bBk3ju5WK+TlNfwef4GqmHoezDSFvmtXYgFbldHYI0eOMFClQj1wIKhUfPrpp4z50Y+4Q6Ph399+y+23387YsWP59NNPm3ROn9UqCWEUkRFCIYSIsHfffbfWtpkzZ4bdl0o0jslkwlTP2rHG8vl8xASSoJpT39LSMBQUVPbma8f9tlyBKXD1rF0KVOW0tIORMbfbTZLPR1kDBS08MTEYG6gyeuL77xkC5AwaFNym7t2btK1b8ZaVoZEpcXVSFxZSrNVS1wRId3w8iWFU6X344Yd55513sFqtTJ48mR07dmA2m5kxYwaff/55i8YMgNNJgtuNq0Zxl4wBAygHyo4cafAQKUeOcCwtDe3EiZCdjXfTJjQ33ljve1x5efiAhCoPnlqC0f+gp7TKVNcjR44wU69H5W+r8fvf/55169ax69JL6Zqby4CPPqKkpISpU6cyceLERp9TKSmhVKXCYDC0zEWIZpERQiGEEKIZzp8/T6bHg1erhRprewJTrYjSSonh8gXir6fKaGCEMJw2DZFmLSoiGdA0UJxDiYvDFKL6YlXnvv4aDZA4fHhwm+nCC1ED+dKgvl46m42Senrw+RITiQnRDqEmo9FIZmYmgwcPZuDAgXTv3p2kpCQ0Gk1LhvuDQJJaY+pmateunAXc/hH1OpWX06ukhNLBg+k9dizFQGEY6/K8+flYAVMDa18by9ytW2VYVVp8HDl8mN5eL/invqrVagoKCnD06UNWWRl4vRQUFKBWNzGVKC3FWUfLF9H25CchhBBCNEOgKb0rIwNTjZuj2L59K/9w9mzwxqo9UgWmktVT7j4hIYEjQLfi4rYJqhlsJ0/ShfqrpgJgsWD2esHrhTqSi9JvvwUg3l94AyB5yBAAzn/zDenjxrVEyB2SyW6n2Gyu83V1SgrxYaylTktLw+v1otFo2LhxI1DZa9Tn87VYrFUpOTmoAG2N6qhqtZpigwFtAw+Aij/7jETANH48gwYP5gDQbefOhs9bWEiJRkPLdiH8ISF0VqnoWnToEHEeT/DfrVdeeYX58+dzaM8e4gHf0KF079OHV155pUnnVJeX49Trmx27aBkyQiiEEFGiqKiII0eOUNQORljao/Xr1zNy5EhGjx7N6tWrg9uvueaaZh030JReFaJSYmBNkauhEYMopy8uptRgqLOJO1RWbLUCqjBL6EdSqX/Nbn1VUwFUCQmVf6jnmtyHD+MBVFV66WX4y/HbDxxoTpgdXkx5OY64uksQabt2JQFwNLAec/Xq1bVGA7VaLevXr2+BKGsr87cUMVTpOxpgj4tD10Cl3bzsbHxAj8mTSUlJ4ZjBgP7o0QbPqy4uxt4KUyzV/ubwHv/Ud5/Phz7QLsefEA4cOJA1a9aw8p//ZBuw+vbbee+99xg4cGCTzqktL8cl00WjhiSEQggRYZ9++iljxozhF7/4BU899VSzF+uL0J588kk+/vhjNmzYwPbt25kzZw4+n4/yBqpINiQwQqj3r7WpKqVnT0qA0nbek85gs1FWz407VN6Al2m1aOz2Noqq6cr8CXpsz5717qfz3yjXlxDqTp3ivNlcLVmOSU7mvEqFK4yb/M4s3unEXU9REb1/bZutStGtxtC20pTEiiNHKAUSqzwECHAmJxPbwEMR5+7dnAQuuOgiAGzp6STm50MDI5o6u53yFlz/HOTvBej2J4QnT56kl8uFolZDYJaDX9aIERQBZc2cDq11OvG0xrWIJpEpo0IIEWGBxfpxVW64m7NYX4Sm0WhI8I/4vPDCC7zxxhtcf/31lDazGuSZ06fprVKhDjFCmJqaylkgoR2PEHo8HmLLyvCE0fvMaTSiDbMpdySV+/u5JfjbvdRF6y864ysqQh2ieTpA/PnzlCQnU7P+6nmjEVWVNVmiBq8Xi8eDr57CPnr/lN6yU6egStGeSHOfOEER0CXUmtq0NBIPH673/dqjR8kxm+nlnzLp69sX44kTlWuN/dM3QzGWlWFrjeJUMTF4VCrK/Gsj9+/fzwDA06MHuhqjeEnJyWzTaIhr5ui3wenEV88UdNG2ZIRQCCEiLLBYv6pmLdYXIQ0ZMqRae4877riDefPmYW/miJbt2DFiFaV2hVEqexHm0r6b0587d44uioKqgQIsAC6zGUMDbRqigdu/xkvfwBpCg//18jqazPt8PrqUleEK0QbAnpCAqR1UXI2YoiLUgLaen0FgSm95lH1+lNOnOQ2khEhm1d26YfH5oJ7PQcK5cxRX+TzFDh5cedxjx+o9r9nhwN0aCaFKRYXBgMu/hvDAgQNcpNGg9ccV4HQ62bVrF+tiYjhx4gQul6vJpzS63SgtXBxHNJ3cbQghRIQFFuuPGjWKyy+/nFGjRrFgwYImL9YXoS1dupSeNaYITpgwgYNh9AyrjxKYFhiiFHxKSgq5gLpKsYb25vTp06QCujCaYXtiYzE5nVHfd9F77hwlajXU0f8uwOAfFa2oIyE5e/YsvRQFTYiRRmdqKvHtYPpspJT7R81NIaZdBgT67TnDaD0RyuTJk5v0voZo8/I4AyQHphRXofOPJNfZesLlIq2sDE+V9Ydd/BVqbbt313veOLcbpRnN4OvjjItD4y8edeDAAQZpNMGWEwDLly9nwoQJLFu2jG9MJtbabEwYP54VK1Y06XwmrxcamIYu2o5MGRVCiAgLLNYX7ZM+MC0wxAihwWCgUK9H30CRiWh2+vRpfgTEhNP7zGJB6/OBwwFRvD5IVVREiV5PQ2Mtcd274wUq6pj6mbNnD6OAshojKQCqzEy6fvstiqKgUqmaHXNHY/3+e8xAbD2/V3H+BzieBh6o3HTTTbW2KYrC3r17mxNinQyFhRSbTCHXKJr9iZ71wAFiQvxeeL7/Hi2gr/Ja5sCB5APOPXtIqOukikKC14sqRBLaEjxpaSQXFGCz2TiwaxcZLhdUSQhffvllNm3ahFqtZllBAbf/+9943niD8Xfe2fieuR4PRkVBLU3po4YkhEIIIUQzxJ8/j8NoxBioSFlDaVwcMTZb2wbVgs6cOkUKoKpjDV1VmsDNqtUa1QmhzmoNqzhHerduFAGOOkYIC/2FNVL8VUWr0vfuTSJQcOIEXVq4kXhHYPdXsbTUKFpSVWxSEnbAG2h7UocdO3awcePGatPsFUVh1qxZLRJrNT4fsSUlOOpYUxvvr8pZ1wihdds2UoCYYcOC27KysjgEdKln7aGzqAgDoK2nF2hzqLOyyNy7l61bt1K6e3flFMIqCaHJZCI7O5sJEyZgvuwylH//m/UrV2Ksp49knfz/HqpbabRTNJ5MGRVCCNFpBNbAbNiwgV27djVrDQxAeXk5aQ4HZWk1S4r8wJGUhMHthmZMH7z11lub/N7mKj58GDWEtYYwUISFKE+ADaWlOMOYrpaWlkYhdU9ZrNi/HwCTv1pkVXH+liMFu3Y1PdAOzHHqFG4gJUTrhgC1Wo1VrYYGRtgXLFhAXFwcWVlZwa+ePXty//33t3DUwPnzaH0+lDoSwpS+fXEAzjoqo5bt2oUNSL344uC2hIQETut0aE+dqvO0Rf6p7YZ6ptg2R9yAAXQHHnzwQYKNJGpMGf3ggw8YM2YMC197jTHAmo8+atKUUZ//56mVojJRQ0YIhRAiCjidTvbt20dRURFJSUkMGjQIvTTtbVHLly/npZdeYvjw4ZU986xWdu3axb333tv4KU9+p06dohfgq2f0zJuaCocPV1YQbCAJeeihh2ptUxSFLVu2NCm+llAW6EcWRkJoDOxjtbZeQC0gpqICTxgjnjqdjhKdDkMdxWE0J09SqlYTG2KkI9Cc3vrdd/CTnzQr3o7IffYsBUDXBpICm1aLpri43n3uu+++kNtvvvnmpoZXN//0YV0dLUuSU1I4BXjrKkS0fz+HgP41EjtrYiIx9RQhKj54kHTA0q9fE4JumKlvXzKAg/v28Ui/fpWf4Sq/12lpaSxZsgSAvLw8Tqank56YSFo9D8PqYj95EgtgaMJ7ReuQhFAIISKsNRIVUVvVNTABHo+H8ePHN/nv+cSJE/QFDCF6EAYFRhJyc6GBm7mVK1eyatWqWts/++yzJsXXElyB6ZJhTFUz+StGegsL0TSwb6QoikK8y0V5mGuxKkwmjHUkJObcXPJiY+kTYo1gsn+NWEU770HZWpT8fIq1WjI09f+mlOr16KKoOI9y+jQqKkfUQtFoNJzXatHXse7RcOIER7VahteoFupISyNhzx5wu0MWOyr1T0FN9o88t7ju3VEDv7npJm70eKCeabpdu3ZlvVZLjwbaa9SlxJ8QxoXxUEa0DZky2gQLFy5EpVJV+6r6hERRFBYuXEhGRgYmk4nx48ezb9++asdwOp3MmTOHlJQUYmJiuO666zgdZWWVhRBtI5Co/OUvf+Hpp59m6dKlZGdn849//CPSoXUogTUwAYqikJ2d3bQ1MH6njh2jBxBTT480feCmJ4xKiXfeeScDBw5k3Lhx1b5uu+22JsfYXEpeXuUfwhghjPX3UCtrYlXItmCz2UgGNGFcD4ArPh59HQlJUlER1joSS7XJRIFGg68d96BsTdrCQmxhfPYqTCYMzewV2pLKvv8eL/UnZlaTKXQhKUXBkpdHfmJirUJDqgsuqHyIUse00YoTJ/AAya00Qoi/ouvzDzyAYf/+evs+qlQqznfpQmJeXpMqCpcF+oDK2tqoIQlhE1100UXk5uYGv6pWsvrzn//MCy+8wIsvvsiOHTtIS0vjqquuqtbr6oEHHmDNmjWsXr2aTZs2UVpayrRp0/B6vZG4HCFEBLVGoiJqq7oG5vLLL+eKK67gP//5T5PLpgNY9+5FB2jquUnrcsEF2AFfGEnS008/TWqIkbi5c+c2Ocbm8Pl86IqKcOv1EBPT4P7x3brhpu42DdHgzKlTJAGmEL0DQ1ESEzGVl4d8Lb28nIo61pIBFJrNaP09D0V1puJiysJYx+mIja3z778heYGHGS3IfugQeUBmPclMaXx86EJS588T43RSEqL3onFg5cq9unoR+s6e5bxajTpEZdMW0asXaLWwbh0cPAhXXFHv7o5evTC63dCEz7ojNxcXkCIjhFFDEsIm0mq1pKWlBb+6+OfAK4rCkiVLeOyxx5gxYwaDBg1i2bJllJeXB6cB2Ww2XnvtNZ5//nkmTZrE0KFDWbFiBXv37mXDhg2RvCwhRAS0RqLSUXzzzTdMmzaN6dOnV1tHN3v27EYfK7AGZvPmzWzbto1//etfPPXUU01aAxPgC/QwrKdSYkZGBrlARV19yaJYfn4+yT4frsTEsPZPTkmhAHDV0aYhGhQcOIAaiK+nmElVmtRU4kMUH/KWl9PN68VXT2Jgj48nJsrXU0ZKXGkpnjCKijjj44l3OJp0jtYYWXcdPcoZKiuD1sXdpQvxZWW1X/BPH/aF+Pci8ZJL8AGldbTKUOXnY23Nh4SxsTBqFPzhD5XfjxtX7+7qwAjigQONPpUrL49iIFGqjEYNWUPYRIcPHyYjIwODwcDIkSNZtGgRF1xwAcePHycvL69aM1SDwcC4cePYsmULv/rVr9i5cydut7vaPhkZGQwaNIgtW7YwZcqUOs/rdDpxOp3B70tKSlrnAoUQbabqYn1R3dy5c3n99dfRarUsWLCAbdu2MW/ePI7V8RQ9XDabjQVDhvAPn4/4H/8YVq0Cg6HRx9GdOIFbrUZXT+W/bt26cRZIOXmShsfYosvp06dJAwizGmBycjIFgCWKR8Vs/iQ+MURl0FC03bqRqCh4ysvRms3B7UW7dtEF0NazftTRpQvp/kqkogpFIcnl+mF9bT3cyckkut3g84E69DjGiBBtPxRF4XAT17jV6+xZctVqLqvnM6HOyCBh925wOqv9u+LzJ09JIeLN6tuX04B2715CjZvqi4spi41tZvANmDIFvvwSLr0UGnhQlnzppZQD+j170Fa5nw2Ht7AQm0ZD1zp+nqLtyU+iCUaOHMmbb77Jxx9/zKuvvkpeXh6jR4+msLAwOD2ha421CV27dg2+lpeXh16vJ7HGE9eq+9TlmWeewWKxBL8yw5zyIoQQ7ZFKpaJPnz707NmTd955h5KSEu6++248Hk+zjvv3P/2JN8rLyXE44L33oAmzMxRFIS43t3INWT2FMQIjhL4onkZZl9OnT9MN0NRRUbGmQEKo1FMtMdLKjx4FqqztbIDJP5J4/rvvqm237dwJQKy/mmgo3owMUpvZ2qQjcuXnYwIMYfxeGXr0QAso9RQ5sdvtbNmyhe3btwe/duzYwfDhw1ss5mA8BQWUxMVVK05Vax//qLG3xki5bft2TgIDhg6t9Z6ePXtynMrG9aHE2O046+h12mJ+8Qt44AFYu7bBXXv368dBoGz79kafRlVcTLlU0Y4qkhA2wdSpU/nJT37C4MGDmTRpEmv9H5xly5YF96m5WFhRlFrbagpnn0ceeQSbzRb8yqmjrLEQQkRKS/bMS01N5USVfl4LFy5k3Lhx7Nixo8nH/OSTT3D9z/9g1ulYMGAAZ2JjK5PCRjp79iyZTifeBgojdO3alTxAm5/f4DHXr1/PyJEjGT16NKtXrw5uv+aaaxodX0vIycmhh0qF4YILwtrfYDBg0+lQN9A3LpI8gaIdYRaVCTQaL6wxlc++ezcOIOOyy+p8rzori3igohXWsrVn+d9+C0BcGAVS4v37FAemZ4ewaNGianUaAh5//PEmRli32JISnIF+m3UIXFdxjdFhx7ffcojKOhQ1JSYmclqrRVvHg6NEhwMlzN/ZJsvIgMWLGxwdBOjTpw/fAb49exp9Gk1JCRVVRttF5MmU0RYQExPD4MGDOXz4MDfccANQOQqYXmXRcH5+fnDUMC0tDZfLRXFxcbVRwvz8fEaPHl3vuQwGA4YmTGsSQoiW1hY98959991a22bOnNnkNhFnz57lhhtu4FBMDNqf/pSfXnYZq+bMYf5HH6FWFGjgoVxV3377Lf0A0yWX1LufRqPBHh+PMYy1ZE8++SQff/wxer2exx9/nM2bN/OXv/yF8iYW1WiuE8ePkwmoGtEMuzwuDl0Ur5tT5eVh1etJCHOEItA+orTG9EPHd99xUqulfz036Sb/WrGiPXvoJj3Xgor27aM7kBhGC4VANc+CvXtJqqPQyfTp00NuH9fAOrhGKy0l1u3G56+mW5dk//q64v37SZk2Lbhdd/w4J/R6poQoKqNSqbAmJREbYnS93G4nw+fjbJgPZtpCt27d+E6j4efHj4PXW+8siZoMpaU4Wnu0UzSKjBC2AKfTyYEDB0hPT6dXr16kpaWxfv364Osul4vs7Oxgsjds2DB0Ol21fXJzc/nuu+8aTAiFECJarFy5kmuuuaba17Rp00gOs79bJGzcuJGMigoyy8pQX389U6dOZYOioC4ogEOHGnWs73btoicQf+mlDe7rTk7G6HRCqEITVWg0GhISEjCbzbzwwgsMGzaM66+/ntIIld3PP3yYGEUJlqQPhychgZgGrjOSdIWF2BuxFiu5Xz9cgPP48erHOXmSogaKYsT5k5mSGq2nOju7f1pk13qm2wak+/exNaKf4+nTp1mzZg1KE1oi1Mv/O6Dt06fe3dIHDcJFZYuKII+HhMJCSrt1q3M2mDMjg/iKilr/TuR98w1awFxfv9M2plarOd+tGzqXCxpZMCumogKvJIRRRRLCJnjwwQfJzs7m+PHjfPXVV9x4442UlJRw++23o1KpeOCBB1i0aBFr1qzhu+++44477sBsNnPLLbcAYLFYmD17NvPnz+fTTz/lm2++YebMmcEpqEII0R5EY8+8hmzZsoU7U1NBr4dJk+jVqxeHkpLwqlRQpfVHOAq2b0cLqPxTCuujBEYEGii2MmTIkGpTZO+44w7mzZsXcjpcW3AFivd07x7+m7p0IdbprCwCEmV8Ph/G4mK8YRbJAVBrtRRoNHhrTOVLLC7G08DIacrFF+MDHK1R3KQdcx45QpFKRVwYUyCTe/SgBKiokZDX5ezZswwdOpQZM2bwv//7v82MtDqXP8EzN1CQKLlLF06qVHirJkrHj6P1+VD720uEogpMP6/ybwBA4TffAJWVSKOJN1Bp1D8FOFxJLheqMAoKibYjCWETnD59mp///Of079+fGTNmoNfr2bZtW7AE8UMPPcQDDzzAfffdx2WXXcaZM2f45JNPiKvSb2fx4sXccMMN3HTTTYwZMwaz2cxHH32EphFD7kJEi5ZcM9ZZNbdISiREW8+8cGzZsoXrtVqYMAFiY1GpVAwaNYojcXGV1fUawRtGy4mAYBXSBnoRLl26lJ41Cm1MmDCBg/Wsn2pVgXXqjRgh1GZkVDbYLipqlZCa4+TJk6R6vWgbMQUWoNhkqrYGNDcnh0yPh5iLL673fUldu5ILuMNMZjoL1alTnDeZwttXpaJYp8MTZiuTf//739jtdmbOnMn//M//tGh/Z5t/3WgX/zTiuqhUKs7GxaGvUg3Z6x8ljq+n0I3JP6JcsxdhqX8tYmo961Uj4cIrruCMSoVv166w32PLyyOR8AoKibYjawiboOpC/1BUKhULFy5k4cKFde5jNBpZunQpS5cubeHohGg9bbFmrDPZu3cvDz/8MFarFa1Wi9vtJiUlhUWLFjG4gRuOzm7y5Ml88sknjXqP0+nk5N69DFCp4JFHgtvHjBnDhk8+od/WrYS7glBRFIw5Obh1OnRhPOk2B6aYhdGcPlrY7XYS7HZ8KhXqEGue6mLwJ49Kbi6qBopvtLX9+/dzCRBXzyhNKGXx8ZiqJLjbV67keuCCa6+t931qtZrzRiOKFICrxlhQgL0RPehKYmPDKsoE8Pbbb/PjH/+Y+++/nxUrVrB582auaKDJergqDhygCMhqoJAUgL1bN/pUeRBg27gRL5BVz9KglIsvphxQvv2WmCq/W55jx7CpVFgaMbLdFkaNGsVuRSFu82biw3xP3u7dWIDYMAoKibYjCaEQImwrV65k1apVtbZ/9tlnEYim/bvvvvtYtWpVtfYxp06d4tZbb+XLRo5WdVQ33XRTrW2KorC3jubN9Tl8+DBX+nyVo1dVqnZec801LHr0UX597BgUFITVc6+wsJBMh4OyHj1ICKOXVkqvXliB2KNH283/eE+ePElvwJWWhlEbftQx/im0pYcOERdlDzYO7tnDVEDVyLhcWVn0qFJeP+c//wEg4Uc/avC9douF2HPnwjpPdnY2Tz/9NBdffDFXX301Dz/8MBaLhWeeeYZRo0Y1KuZollRSgjWMkfWAspQU4sJ4mJKfn8/27dt58803GT58OOnp6axZs6bFEkLl2DGOA+PDmEKt6t+ftAMHUCoqUJlMOLds4Vvg4sA0yxCyevXiINBj165qPUvVOTnkG41YmnsBLeyyyy7jLyoV4xvx73GRf6Q0Ocw+oKJttJf/LwkhokBgzVjNaYLRvGYsmnm9XiyW6v+Lj4+Pb9EpTu3djh072LhxY7WeX4qiMGvWrEYfa9++fVwDeAYMQFvlCf/gwYM5lZ5eub7vq6+gSlXAuhw+fJjBgBLmTU237t05BvTdty9k0+mqnE4n+/bto6ioiKSkJAYNGoQ+Aj27AglhOFNiq0q88EJ8QMn+/Q1ea1s79/XXlWtlGjldzTB4MJlbt1J45gyJ6el4v/kGW2wsljAKKLnT04kPszn9ww8/zDvvvIPVamXy5Mns2LEDs9nMjBkz+PzzzxsVc7Syl5TQzeultIHCLFV5u3Wji79/ZH0CDycnTpyIWq3mhhtuYM2aNbzwwgsNtvUKh/HMGc6ZTBiNxgb3jRs+HM3773N+2zZSJkwg5uBBDsfFcXU9Mwp69uzJJ0APfwP7gNizZ7GFmJ4faWazmdzUVGLOnYPz5yGMGQGl/nWYXaJsPWRnJ2sIhRBha49rxqLZs88+y7Rp05g0aRIzZsxg4sSJXH/99Tz33HORDq1ZJk+e3GLHWrBgAXFxcWRlZQW/evbsyf3339/oYx3Yt49r1Wq0119fbbtKpaLnuHEU6nSwbVtYx/r+4EEuBmLCHLXJyMjgKOBtoLjI8uXLmTBhAsuWLSM7O5vXX3+dCRMmsGLFirDO05JOnDhBX8DQyOmVPfr04RxQ1siqrW2hLFDts5EJYZexY1EDx9evZ+/evfQpL8cd5sMAbc+epLpc+MJ40GM0GsnMzGTw4MEMHDiQ7t27k5SU1KHqCxzZsYNYIL6ekbKadBdcQLrPh724uN79Nm7cyIABA8jwJ13Tp0/n5MmT7N69uxkR+3m9JBYWUhjmtM0e116LB8h56y04fpz4sjKcDaw5TUlJ4VRMDOYTJ8BfIdXj8dDDbscTRvGqSLAFWmHs3BnW/s6TJ3EA2iib/trZyQihEEJEyBVXXMEXX3xBRUUFVquVxMTEsJ48R4uWnM5Zl/vuuy/k9ptvvrnRx3Js2kQXn6/adNGAQYMHs+3dd/nxtm1hrSM8u3Vr5ZqZMIs8dOvWjf8APz55st79Xn75ZTZt2lRtRNTj8TB+/Pgm915sqhPHj3OHSoWqkSOE6enpfKNSVd7URhFFUVACMTWiSA5AtyuvBCBnwwaOnDvHL4CECRPCem9M//7EAqf376d7A1NV09LS8Hq9aDQaNm7cCFT+/H1RWLG1qU5+/jlDgcyxY8N+T8yFF6IFzn79Nf2vuirkPi6XizVr1lT7nIwbN47Y2Fg+/vhjhg4d2rzAT51C7/VSFubvTs/Bg9ltMuFctw5Xnz4oQMx119X7HpVKhXrQIMxffQXnzkFaGsd27qQfUDRiRPPibyW6gQOxbd+O5auvYMqUBvf3nT5NscFAeguM2IqWIwmhEEJEmMlkwhRmxb1o0pLTOVuboiikbt9OudGIOcSo3qBBg/jS42HqV1+hCqPJsifwNLyBJ/4BCQkJnDObMZ0/Dy5XZduLEEwmE9nZ2UzwJxuKopCdnR2RBwXW77+v7EHYu3ej3qfRaCg2mYhtoMVGW8vJySHN6cSRlITRYGjUe/UZGZTq9exZtYr3FIUFAGGOhCf7E5Hcr75qMCEMVbROq9VW61vc3tn8azGNYX524Ie/w8Jdu6COhHDt2rUUFBTwi1/8IrhNr9czbtw4NmzYwO9+97tmRA3KgQOogNhGVPosGTaMizZvpmjpUr4FJv/kJw2+J3HiRPjqKzxbt6KdPp2cjz+mH5BRx3VHWs9evdih0TApzNkVxnPnKLFYCL9MlWgLMmVUCCFEk7TkdM7Wtn//fsaXlWEbNQpCFEgZNGgQ2wB1aSnUWL8TSuKRI9hjYiDMXloqlQp1v36oFaVWj7Gqli9fzgcffMCYMWO4/PLLueKKK/jPf/4TkSmj2kBT7SZMVStLTKxWlTMa7N+/nwsAwqgQWYtKhfmaa7hGo2EC4NXpIMzpwmn+kTBbmFPqQtE2oqhPtFMOHsRqNIIl/BIpXYYNA6DI348vlLVr1zJo0CAGX3ghPPdcZWuZV19l0qRJbNq0iYqKimbFXbx1K+VAX/9ocTiyFi5EpyiknjrF12PG0DuMhysXT5vGWSD//fcrz/vZZ7iBxJEjmxR3a+vZsydfulwoX30VVu/RrlYrZd26tUFkojEkIRRCNFtLrhkT7cd9991HSogiAk2Zzlkfp9PJrl272LBhA7t27cLlcjX6GFvffZdLgaQ6CiD17NmTgzEx+FSqBtcRlpaWMrCkhOL+/aER057iL7+88g+BdWwhpKWlsWTJEjZv3sy2bdv4z3/+w5///GfS0tLCPk9LUBSFhJwcPFpto4vKALjT0kguLQ2ug4oG+/fv5yKVCkMTi1mor7uOyzweXoDK0cEwR20NGRlY1Wo8YRaW6ci8Xi+xZ89S0sjfZ43FwnmDgbJ6kurNmzfzox/9CB5/HB59FDwe+OUvuSEmBqfTyaZNm5oVu23LFg4Cw+rpI1hT1sSJ/H74cGYAs0JU6A7l0mHD+Eqtxrt5MwBJu3dzLDUVGjmq3VZ69uzJJkBVVFTvv20ApXY7vTwekJYTUUcSQiFE2G666aZaXz/96U9bdM2YkAS7qpYqsmJbuRKvSoWhjjU8arWaQZdfzom4uAYTwi8//5wRgGHcuEbF0GfMGAqA8q++Cmv/vLw8+vXrx4UXXsjRMCostqRvv/2W3uXlVPTsGXJEtSFKnz7Eer0QZu+4tnBg3z4GqFSoGlkkJ+jaayE+HjWg+cMfwn+fSkVubCzGBtaPdgbffvstF3g86BtRUCagpFs3zCdPhlxPWVhYyMGDB7kuLQ2efRaeeQays2HcOLKWLiUjLa3Z024Ne/dy0GwmvRE9OQEWff45y6xWevToEdb+er2ekz17knbsGKVHjnCp1UpplI4Ogn92hUqFV6uFBlpQndq+nXjA3Nz1nKLFdZw5CEKIVtee1oy1B21RlKW9a4kiK7m5uVx8+DD5AwaQXk8z7FGjRvHl5s30aqBB/baXX2YqEFujWmlDLr7kEvYAl2zbhrmBfdesWcOvf/1rxuXn87OiIj4eM4af7dlDUhuVnv+///s/JqnVmAOjmo2UcPnl8NZbFG7dSvINN7RscE1UsHs3Jp8PmpoQJifDmTNw9Cg0cpTRmpZG0unTTTsvlQ+JPvnkkya/P1pkb9zILwFDIwrKBOiHDKHvsWN89913XFxj/eGnn34KwPiPPoLBg2HePFCrYdEiVGPG8NC4cSzbsKHpgVdUkFpQgKMJhV3M5oY+7bWVXnstvr/8Bddll5EEZMye3ehjtJWEhAQGjxjBoWPHuPDTT6GequMF/lHPlNGj2yo8ESZJCIUQYQusGas5TTAa14y1Bx01wc7Ly2uxKY4tUWTls7ff5mbAcffd9e43evRoVjoc3L5/f2WFv65da+1z/Phx+PhjnHo9hkY2Cu/bty8bgcsaWKN44MABbrzxRt694AKmA+UXXoh+zx6WDRnC7adOtfp6MkVReO+tt5inUqEZMqRJx+h91VX4gNzs7KhICBVFQXXwYOU3TU0IAWJjG50MAnguuIDM77/H6/Ggqefn19EfEh1Zu7ay4XoTEqvU8eNJe+89Xt24sVZC+PLLLzPnooswfv01fPTRD6Pao0fD6NH8NC+PeYcPY7fbiYtrfHdM25dfYgG6XH11o9/bFLfMnctLf/kLD9hs7Bk4kIsb+fCprU2aNIl3Fy/miQ0bUFVUQB1F0go2bMAJJEdpxdROTRHtms1mUwDFZrNFOhQhRCP97W9/UwoKCmptX716dQSiaTlXXXVVix0rNzdX+c1vfqOMHj1aGTlypDJ27FjlgQceUHJzc8M+xquXXaa4QVHy8+vdr6ioSEmtXPWmKMuXh9xn+vTpylaDQXFdfXWjriPgt126VB6/nlj+9Kc/KfcZDJX7LVmiKIqi5Nx9t+ICZeXChU06b2N8+eWXyvDA38PWrU06htfrVY6pVMq2ceNaNrgmOnHihPIgKG6jUVE8njY//54//lFRQDnwySf17tezZ0/l2LFjyokTJ4Jfx48fV8aOHdtGkbYej8ej/Mpkqvy9slobf4DNmxUFlN/V+PclJydHAZTcAQMU5dJLFcXnq/6+VasUBZQLQfmkgb//uuyeOVMpAyXnyJEmvb8pnnvuOWXJ7bcrnnZwf3fw4EFlgEpV+bN9//2Q+/h8PuW/MTHK9+npYR9X7nHbjiSE7Zx8WIQQkTJ8+PBaX5dddplisVgiHVqQ1+tVsnU65ftevcLaf+DAgcrJlBRF+fnPa71mtVqVbjqd4lWrFeWll5oUz20TJlTeNL37bsjXfT6fMuPii5VyjUZR7rrrhxfKy5V8o1H5NDW1SedtjHnz5ilPJSQoPpNJUZzOJh9nS0KCsisjowUja7olS5Yo/0+lUtxjxkTk/OXff68ooPzfPffUu19HfUikKIqyc+dOZQko5d27N+0AFRWKS6tVfh8Xp/iqJH2vvPKKcmV9yYjTqfjS0pR/GQzKk08+2aRT7+vWTcmOiWla3J3ErFmzlANareK98caQrx86eFA5B8r3N90U9jHlHrftSFEZIYQQTWK329myZQvbt28Pfu3YsYPhjajCF6558+Yx9JJLeHf+fJRPPqmsIBiG7e++yxi3G1WIqXihjBo1io+0WvjwQygrq/baRx99xAy3G5VGAz/9aaOvASBl6FBO1lN84fePPsqDe/bg7dIFFi/+4QWTiV1XX824/Hy8gamPrWTXrl1MNZlQjRhRZ7/EcBT26kWP/PyoqDT69ttv8yODAe2YMRE5v6lPH4q1Wsr9a6jq0laVeyPh888/5wqVCn0T1g8CYDRiGziQoXY7x44dC25e+5//sDQmBoYPh1BFo/R6VPfcw889HnZ//nnjz1tWRu+zZzkvhVDqNW/ePP7m8cCaNXD2bK3Xd77yCqlA93a+JKKjkoRQCNEoLdECQHQMixYtwm6319r++OOPt9g5SkpKWLBgAesXL2blwYPc+MILqKZMqVyDlJfX4PuLn3mGMpWKCx59NKzzTZkyhf/Ny6tMBt97r9pr773zDr81mVBdc01lgZEmGDduHP/xeHC9/TZ4vdVeKysrw/D884xUqYh9773K9WpVmO+7jwLAGua1NIWiKBzatYsh58/Dj3/crGO5hg4l2ePBV+XmPRJycnI4vmULXRyOyqQhElQq8rt3J/bQIbw1fu6dxTcff8xQRUEzdWqTjxFzzTVMALb4C8Rs2bIFw4cfcmFpKfz5z3W3gfnVr9ABA7ZuxRPmw6SAs0uXYlAU4iWRqdeQIUPIGT8eu6Lg/f3va71ueest8o1GTM34+YtWFOkhStE8Mpwu2tKbb76pjBo1Spk7d67y+OOPK/fff78yevRoZXkd661E0zRmfVxH5vV6lSlTpijjtFqlVKtVfIMHK/MuvVT5WWamYouLU8r69lWUev7tKzp6VCkGZdPIkY0654gRI5SvEhIU5aKLguvNDh06pNyu1VZOS9u2rcnX5PF4lJ9kZlYe5+OPq732ydy5iheU4t/8JuR7y8rKlN9pNIpHo1GUnJwmx1Cfo0ePKjMC6wcPH27WsT5euVJRQDn/17+2UHRN88ILLyi/1GoVn0qlKCGmY7aVk7NnK0WgbP7ii4jFECkej0e5O7B+sDn/vh09qnhBeWXUKOXbb79VsiwW5axer/h+/OMG35p39dXKGVC+2bw5/PP5fMqpzEzlM41GqaioaHrcncS+ffuU30DlZ63K9N1tL72kOEDZfsMNjTqe3OO2HUkI2zn5sIi2NGbMGMXr9Vbb5na7lTERWpfTUbVkUZY24/MpyuefK8pDDynK736nKEePNvuQ77//vnJFoBDIuHGKUlKi7N69W7nwwguVC0GxqdWKb9IkRXG5Qr5/6+jRSiko+Xv3Nuq8b775pjIykBQ9+6zy6aefKhdqtUqhSqWUXXNNs6/rT3/8o7JbpVK8w4YFE87j77yj2ED5KiNDUWp8xqq66+abFatarXjrSBqb64UXXlA+VqkU9yWXNPtYhw8fVvaCcmbSpOYH1gzjx49XNqelKcqoURGNw5OdrSig/HXWrHr3czgcys6dO5X169crO3fuVJzNWMcZLXbs2KH8Hyi2Cy9s9rG+799fOQXKVItF+SomRvFaLIpy/HiD73Ps3684QfnvsGFhn8v73nuKAsr/RElxpPbgyvHjlU8sFsWnVivKbbcpBbffrhSrVMr3cXGKt7y8UceSe9y2IwlhOycfFtGWJk2apGzcuDH4vc/nUzZs2KBMnDgxglG1X+2hKEtY8vMVZerUygSqWzdFSUlRlJgYRfnwwyYfsry8XLmtVy+lXK1WlIkTFaWsrNrrmzZtUsaD4larFd/tt9eqLFixbp3iAWXN5Zc3+tw2m00xGo3K1iuvVBRQtul0SqlGo3j79VOU8+ebfE0BBw8eVEaB4lWplNIf/Uhx/upXSgUou00mpfjUqXrf+/XXXysLQXHpdIpy8mSzY6nK5XIp13brVvlzXLGi2cdzu93K02q14jAaFcXhaIEIG6+iokLpotcrLr1eURYtikgMQS6XUqHVKotTUurcpaPOwvjjL36heEFxv/JKs49lP3BAOatWKwoo7vh4Rfnyy7Dfu+XqqxU3KMfDKQr17beKIzZWWQvK5k2bmhFx5/LPf/5T0YCyQK1WDhkMynFQ/p2QoNhOnGj0seQet+1IQtjOyYdFtKXc3Fxl5syZSmZmpjJkyJAmtQAQPxgwYIDidrtrbZ8U4RGVRvnyy8oksEsXRXn/fcXjditKaamiTJ+uKBqNojSxOuLff/YzxQ5KyYgRtZLB/9/efYdHVW0NHP5NSSeNBAIhEELoTYRI702qIGChWuCKFJGLDUURuQgICoooggjSURApoYmhg0CA0ElCCSGk9z6ZzMz+/ojMd3MBpQRiyHqfZ55kTl1nZs+Zvfbec85Ns2bNUoNu9uSNGaNUTo7KyspSRz75RGXa2KjdGo26EhZ2X/vv37+/atK4sdoyYIDaoNGo1FGjlEpJua9t3U7Lli1VT1BnQCWWKaNmajTq2oULd7XuuFdeUbEajTL26HHrJfYfwLzZs9UxUDn+/nfsdb1Xb/yZVJuXLy+S7d2rvXv3qjdAWfR6paKjiyWG/xbVrp26ACrk5Mnbzn8cR2GcOX1abbG1ValOTnf8LN+rnMREZQoKUioj457WM2Znq512dsqo0ajcd99V6tSpgvNVZmZBY8+JEwXnrBEjlMXOTp21sVHPtm9fJDGXFvn5+SooKEh98cUXqkuXLgpQv/76631tS+q4j44khCXc3X5YLBaLteK5e/duZSim1lpRsmVnZ6saNWooQLm7u6sjR46o+Pj44g6rxNqwYYNKuU2SsXfv3mKI5h5ZLErNnq0sOp3Ka9ZMvTdkiGrYsKHS6/Vq4sSJypyXp2506lQwbGjp0nvabs7cuSoP1GVf34LK2h0XtahmzZqpSWXLKrNeryzOzirmz/v37bGxUZsfoFdl3bp1ClCAeuONN+57O3dy5swZ5e3tbd3HsGHD7nrdGzduqL5/9pComTOLJJ7LJ0+qLTqdMup0Sh09WiTbVEqpQ4cOqc2gsry9iywZuFtZWVmqc9OmKlarVZYXX3yk+76TvMBApUAN9PFRWbcp24/bKIzcnBw1y9lZKVCJ33xT3OEopZT6ZNIkNQNU7s3P0O0efn5qV7t2qryzs4p6SL/XLQ3MZrM6c+bMfa8vCeGjIwlhCfffH5bMzEy1ZMkSlZ2drfLy8tSSJUusLY1Lly5VgLpw4YIC1Pfff6/S09Nv+UIy3eUNey0Wizp16lSRH4/458jMzFTr169Xq1evVnl5eSomJkZ9//33ClDHduxQc3191QpQv4PaVKeO+m7u3FtatsVj6to1pZ5+WilQX9rbK/2fDQTDhw9XY8aMUYAKCAhQGlD76tQpqGB99tlf3xDcYlHq8GFlbtdOKVDfarUq6i5+h3jx4kXVsWNHVV2nU9/4+KjPQB2fMkVZHvDm47m5uapv376qcuXKKi4u7oG29Vf279+v5syZc9vk4K8MHTpUzbp58/qxY+/vYil5eUodO6bU+++rFDs7laHRqJw73B/xflksFtWnRg1l0OmU6tdPqXv8DdGDGDZ4sFqn0ymTvX2RD6+9b2azMtSurQ5rNOqDiRNvmR0bG6vefPNN1bJlS9WsWbOSOQrDYik4RyxbpmJ8fQuSwYfQqHK/jEaj+uKLL1QZUL9/8okKmzxZ5S1bVnBv0GPHlEpOVhaLRfn5+akR/30vUPHISUL46EhCWMLd/LDUqF5dNWnSRAGqfv366quvvlKA2rlzp4qLi1PdunVTgBo0aJC1NVqj0aj69eurZ599VkVGRqqvv/5aAWrPnj1q0KBBavLkybfd5+7du9XHH3+sALX/Hq+WdvnyZTV8+HC1YMECtXv37kI3l01MTHykN999HH6obzQa1bJly1RmZmaRbfP69etq6NChys7Oztp7cfNRB9Q6Dw+lHByUxdZWhZcrp34GlQPqPKjvx40rsjhKE6PRqDZv3qxee+01NW3aNJXzCCvN92LvihXqtyeeUCZ7e2WuVEm9VL688vf3V3PmzFFJf/62zmKxqB49eig3Nzf16quvKkDta9GiIHHx9VVq0iSlVqxQatMmpdatU6Yvv1SmV19VGRUqKAXqmqOj6qnTqY23u8H0HeTn56spU6ao559/Xv34448P6ej/WdLT01XdOnXUWFA5Wm1BT2yzZkoNGaLU228r9cknSk2bVvC7ualTlXrnHaVef71gfufOStWsqSy2tkqBMjo7qwWgNsyd+1BinTdvnnoGlEGrVXF2diry7bcf2lVSlSrolTq6YIHa9efvNNWGDQ9tX/dlzx5lBvWdjY26HBqqNm7cePsrWBqNBa/T1asq7tKlf0aDm9msVHKyUuHhSh0+rNTmzSp/3jwVM2yYyu3XT1latVJmT09rT9vvGo2a16tXcUd9C4vForp27Wr9brt5HqtWrZp68sknVc2aNe+rjiOKliSEj45GqX/AHWPFfcvIyMDV1ZVUwB7I12jIB/KUwgjWR/5//X+75xa9nlyTCSNQtUYNLl65gt7JiTcmTOBsaCj5Wi0BLVqQnpPDex99RFZ+Pkag0VNPMWLUKMIiImjZvj06B4eCGxnb2BT8tbVF2dgQfOoUFr2e1evXs2DJEm7eBejTTz9lxIgR/Prrr3z66adERUXxzjvv0K1bNzp27Pi3xx8fH8+iRYt48803cXFxsU43GAz07duXM2fOEBwcDMDGjRsZMmQIrq6ubN26lYEDB3Lp0iW8vLys6x0+fJhatWrhcYd7jCUnJ+Ph4UF+fj56vR7Nn/c8Cg0NpXr16uj1+kLLL126FFtbWwYOHIhW+/+3/czKymLv3r089dRThfZ/L3bv3s3EiRMJDg5m2rRpTJo0qdB8i8XCsmXLeP7558nPz8fBwQE7Ozvi4+OJi4ujYcOGnDlzhm+++YaePXvSp08fjh49ysCBA4mIiMDOzo59+/axdeNGTs+cyUdlyxKQkkK6oyOuEyfCyJFQvjwXLlwg5eBBqn34Ie6JicyuWpXkZ57hq6++uq/jupO8vDzs7OyszxMTE0lMTKRu3bpFsn2lFHFxcVSsWBGA/Px8bGxs7im+/Px8jh079pdl12g0sn37dkJDQzlx4gS9evXis88+48KFC1SvXp2oqCiGDBnCokWL0Gg0xMbGUrFiRWtZ+9+4bt5TS6/XY7FYsFgst5TDv2I0GrH975uPm0yQlQXx8RAVRfTRo+QeOwYHD1I9JYUMYKGNDbufeop9ISGcO3eOatWqFdqmwWDAYDDg6urKhAkT+Oqrr2ikFD82aULDyEhISvr//QNXdDoOmM1sdXIivk4d3n7vPQYMGHDXx1BanTlzhh49elAO6Jqby6edO6OLiYG4ODTZ2Zjz89ECGp0OnJ3//1G+PLE2NszdvJlQBwd2paTQsn17du7ceU9l524ZDAaqVKlC2cREpjk48GxuLjpAVauG5oknoG5dqFIFfHzA2xtcXcHFha0HDhBx4wZjx44F/v8cYMjNRW+xoMvNZW9gIHapqTTz8UEXHU3awYOkbdlCVaORCI2Gytu2oe/WrciP6UElT5+O66RJXAOCgEx3d5o0akR2eDhVLRYq5ORQNjMTrcViXSfJxQWPXr3QtGlDftOmnM3NpU7jxvz000907twZBwcHoqKiqFevHjY2NiilOHf2LOvWrKFl48ZcDAmhQ/PmNKpRA1NqKtrsbHISEsiOi8PLyYmEK1cIP3mSMkB5R0cMiYn4eXiQFx+PXVYWJCejSUmB/4oJCuoTN4BovZ5Ii4VLFgvHgeNA95dfZtGiRfd0Ln1UDAYDS5YsoXbt2owYMYKIiAgGDBiAXq/HxsaGESNG0LZt2+IOs1S7WcdNT08vVMcTRU8SwhLu5oflt4ED2bRmDb26dMG7XDnWrV6NLWAL2Gu16C0WbP587qTXozGZ8HJ3Jys11bpcFS8v9EqRmpBgnWYL2AB2Gg1ONjZojEa0dwrmHpm0WgwWyx2T1Gq1ahGXkkJ6Tg52zs44e3pyLToaV09PsLPD3tmZ0xcvkpCWhruXF1169MDB1ZXYlBQyc3NZuW4dRqBm/fqEXrlCem4unhUq8Pb777Pm55/Ze+gQ/xo9mlZt2/LpZ5+RazJx8uxZ6jVsyNKVK7FxcGD/4cOcOn+el0eM4Mjx4zw/aBCz5s7ly/nzadGmDe+9/z5BQUGMHj2adu3a4erqyvr16/nll1/YsWMHy5YtA+Dbb79l1KhRhIeH88knn7B161bS09Px9/dn//79vPzyy8TGxtK9e3emTp3K2rVrOXDgAP/+97+pU6cOK1asoHv37nh5eRETE0N4eDj9+/enatWqxMfH4+joyIIFC/Dz88PDw4PLly+TmppKly5dGD16NOvXr8fX15fZs2fz7LPPkpqaSo8ePThw4ACZmZlotVqGDh3Kpk2b8K9WjXXz5lH2wgVcQ0JQ69ejSUyEgAAOBQRQ66OP8PT2vuX9NKSmcrRpU9pdvswG4BNg4IwZ/Pvf/+abb74hPT2dyZMno9PprOsYjUZsbGysyc7tbNiwgR9//JEdO3bQqVMnevXqhYuLC8OGDQNg2LBhvPrqqzRu3Jgyf97IOzQ0lL1791KpUiVat25NUFAQHTt2xNHRsaBCaTDg6OgIwMyZM0lJSaFy5cqMGzeOSZMm0apVK/r168fatWvp3bs3aWlpBAYGEh0dzcSJE9FoNKSlpaHVanF2dmb37t0MHjyYxMRELBYLW7ZsoXPnzsyZM4fz58/z+uuvM23aNMp5enI1JIT0ixfxBmqXKYNLVhYBFSrQvkYN3HNySImL40p0NElaLUk2NkTm5aHKl6dBly5ovLz4+ptvGD9uHBW9vEhKSGDp99/j5+3NGyNGsHLxYtITEgioV48K7u40b9QIS04O0VeuoDeZcLG15VpYGNfDw6np44OHjQ3XL1zA29kZe5MJfW4uDrd5DyKAC05OpLZuTa9Fixg/eTI7d+5k8eLF9OzZ828/62azmcmTJzN9+nTGjBnDZx99xI3wcMa++SYXYmPJzs3lww8/5O233/7bbYlbXblyhbp166LX62ndujXnzp3jgw8+YOzYsTRv3hw/Pz/c3Nx46aWXmD17NpUqVSIoKIjY2Fhyc3Pp06cPK1aseCjJ4E3Xr18nOTkZNzc3/jN+PDmbNzO0Vi06e3mhv3QJTVwc2ttUR/IBC6A0GixKobe1RWM0crv0wqDVchEId3EhvkUL3Pr3Z9jw4Q/tmB7UzOefp+3ZszQymTBFRpJrMpHh5MR1GxsumUyEZGaS7uKCf+3aGCIiqJSYSFutlkYWCzffqUQgA0CrxWyxoAOcbWxwtbPDnJ2NnVLo7hjB/7NoNGQoRfaffzOBrD8fqUCmrS0JZjM5Dg6Uq1OH7cHBJAMtevWiXocOPNG4MfPnz6d+/frUr18fe3t76tSpg7+//0N45Yqe0WgkMzPzjo3BonhIQvjoSEJYwt38sFy9epVOnTqxfv16nnzySb744gsaNWpEeHg4jRo1olWrVuzcuRMPDw88PDxYuXIlb731Fi1btuT8+fPk5+cTFBREpUqVrCfxypUrs2fPnkL78/T0ZM/vv1Pb3x9zbi6N69dHb7HgX6UKZ0+etCaRDWvVIiU+njr+/mA08lzfvthYLAQfPsxzffvi5uBATloau7Zt4+yJE3i5u2On0RATGYkN4OboiCknBwetlhpVq5KTnk5mcvL/J6oaDTZK4Wpvj3e5cqTGx8OflYT/ToRtAN3/tGYWJTNg+vOR/+dfnZ0d2Xl5YGODo7MzuSYTyRkZ6OzsMJhM5CuFWaOhep06XAwPx2A2YzSbcXZxITUjAzt7e7IMBmzt7TFZLJT38uJaVBRuZctSs04dDv/xB/kWC45OTjz34oukZWTw8/r1mJRCZ2OD0mrJzcvDQkFFSguUc3cnOysLS34+PhUq0LBBA/YFBaEFXujTh/jwcKLOn6c8UM/REV1OTsEBVq8OvXvDyy9Dw4Z39Zpkf/89Ca+9hh9wCQhzceFcRgZxwPMvvYRRq6V+QAAaBwfefPttbO3syMvP59333uPb777jWmQk1apXx9fPD3sHB9Zv2FBQIQTq1KpFWFgYGqBDu3bs27cPDaD58zgb1q+PX9WqBAYGWqdXrlSJ6OhoHOzsKFOmDE729kRHR1OpYkWe6dWL5UuWoMxmdFDooaegMcRep0NjNlufP92xI+Xc3Njz22+YjUZ8K1bkRmQk3p6eONnZkRIfj71ej51Wiyk3FxelcAU89XpczGYc/ueUa/HwQOPjg6ZSJahUCeztib12jeyrV7FLScEtLw+7lBRsuXs5gAGwc3EhNTeXzPx8DH9OMwCOZcsSnZJCJpAJaJ2dydJqsS1bljMREWQCaba2pDg40GHIEAYPH06tWrWsSfT9UErxzTffMGHCBEwmEze/enbt2kW7du3+kT0IJcnu3buZNWsWO3fuxMXFhYyMDAB69+5NZmYmly5dIjo6GicnJ7Kzs63rtGrV6m8bZR6G5cuXW8tCbm4uZeztefP553FMT+f0gQNkx8XRr3Nn0qOjSUtNxaNsWS6FhWE2m3EtV446AQFEJifTuW9ftBUr8suxY/y8axcBTz3FokWLrI1DJZVSinPnzuHv74+joyNKKYKCgjhx4gRXzpzBOTycAQEBGK9coZyDA4nx8TiXKYObuztbfv+d2LQ0vP38aNO1K/UaNyYhIwM7V1dOhYZyNSEBrasroTdukG6x8PvRo0QlJvL6qFHMnj0bjUbD3r172b9/PydPnmTo0KEcPnyYypUrEx8fz5IlS6hUqRJHjx6VSrp4qCQhfHQkISzh7vbDEh8ff8ehiYsXL+btt98mNjYWBwcHcnNzycvLw83NjV9++YUlS5ag1WoJDAzkhx9+4NVXX7Wue/z4cWxtbdFqtbz//vsEBgby9NNPs337dvLz8wsPRbsDi8WCUgqdTsfBgwdJSEigT58+hISE4O7ubm1h/PHHH8nMzCQiIoLRo0fj4+ODnZ0dGo2G3D97GHx9fWnWrBmHDx+mW7du1K5dm1MnT1LR05MKZcuSk5HB5zNnkpeVxdCBA5nxn/9w5uRJpn/yCd27dAGTiTUrVvDNV1/h4uDAK0OHUr9WLd576y3sdDo+nzmT61eu4OHqijEnBz3goNfjYGPDDwsXUsHDg8irVynv7s4bo0ahMZlIio/n9+3bsRiNONrY0KNrV3RKobNYyE5P59rly5R1d6di+fIE7dpFfl4eNf39qezjw/FjxzDm5uLn60tsdDQWk4nynp5U9PLCwcYGjVJgsZBvNGLKyyMzPR2dRoO9rS2J8fE42NmRYzBQyccHpdWSmpGBZ/ny6G1tsWg0mJTCtkwZcHUlxWQiUSlqdetWkAg2bw5/Dp+8V6kJCbgePMiWceMon5DAk+XKQVwcthZLkfUwP2xKp8Oi1WLWakGvR+n15Obnk56TQz6gtbVF7+BAcno6XpUqUdHXF41eT57FwrGTJ8HGhkZPPUWOrS1pFgv+TZqg9fTE7OWFTZUqBUPjKlYEe/u/jeXqlSs0qV6dhl5ebA0MJCsnh9y8PLJycqj/xBNciYkhPj0d31q18PHzQwENGjTg/Pnz1KtXjx9++AEXFxfr0Oa6devStGlT0tPT2bx5s3XYrcViITg4mIiICFq0aIGvr2+Rv67BwcEEBwdTr149nJycCAgIKPJ9lFZ5eXkcOHCAJ598kvXr19OzZ098fHwAyMzMJCgoiGbNmpGSkoJer6dWrVrFGm9sbCzz5s2jYsWKDBw4kHLlygEFyVBkZCRVqlTBYrGg1WrRarUYDAaCg4N58sknS3zC9zClpqZy+PBhunfvXuinCndisVgwGo3Y38W5SIhHSRLCR0cSwhKuKD4sZrOZ1NRUPD0977iMyWQiKCiIzp07Fxry97+uXbtG+fLlH6gn4Z8gJSUFR0dH6xfk7NmzcXFxYeTIkX+5Xk5ODuPGjWPgwIF06tSp0Dyz2Qzwl6/f3LlzmTBhAhkZGTg7OxMdHU1sbCwBAQFcunSJkydP8vzzz99Va77ZbEar1WI2mx/qULC/kpubi8lksh7Lju3bqennx76dO6lcrhxd2rfHu2JFUpOT2bZ1K40bNaJO7doFv1H5M9m1/rVYQKP5/4dWW/i5RsOWwEDcy5alddu2oNFgyMtjS2AgvXr3xsbWFr2NjXW9jMxMFi1ezJCXXsLTywudrS0avZ7zoaE4u7lR5TbJ0JUrV6hevToTJ05k+vTpQMHvuBo2bFjoPfnf35gWhS+++IJWrVrRvHnzu1o+MDCQjRs3MmfOnNueG/Lz89HpdHdVYRRCCCEeNUkIHx1JCEs4+bA8XpRSmEwmGT73D5aWloabm1txhyGEEEI81qSO++hI07AQ/yAajUaSwX84SQaFEEII8TiRhFAIIYQQQgghSilJCIUQQgghhBCilJKEUAghhBBCCCFKKUkIhRBCCCGEEKKUkoRQCCGEEEIIIUopSQiFEEIIIYQQopSShFAIIYQQQgghSilJCIUQQgghhBCilJKEUAghhBBCCCFKKUkIhRBCCCGEEKKUkoRQCCGEEEIIIUopSQj/Ab799lv8/Pywt7enSZMmHDhwoLhDEkIIIYQQQpQCkhAWs59++onx48czadIkQkJCaNOmDd27d+f69evFHZoQQgghhBDiMadRSqniDqI0a9asGY0bN2bBggXWaXXq1KFv377MmDHjb9fPyMjA1dWV9PR0XFxcHmaoQgghhBBCPBJSx310pIewGBmNRk6cOEHXrl0LTe/atSuHDx++7Tp5eXlkZGQUegghhBBCCCHE/ZCEsBglJSVhNpvx8vIqNN3Ly4u4uLjbrjNjxgxcXV2tj8qVKz+KUIUQQgghhBCPIUkI/wE0Gk2h50qpW6bd9P7775Oenm59REVFPYoQhRBCCCGEEI8hfXEHUJp5enqi0+lu6Q1MSEi4pdfwJjs7O+zs7B5FeEIIIYQQQojHnPQQFiNbW1uaNGnCrl27Ck3ftWsXLVu2LKaohBBCCCGEePgMJgPrL6xn+6XtxR1KqSY9hMVswoQJDB06lICAAFq0aMGiRYu4fv06r7/+enGHJoQQQgghxEMz48AMHGwcOHD9AA28GuDj4lPcIZVKkhAWsxdeeIHk5GSmTp1KbGws9evXZ9u2bfj6+hZ3aEIIIYQQQjwUZouZQ1GH2DV0FwHeASw7tYxJbScVd1ilkgwZ/QcYPXo0165dIy8vjxMnTtC2bdviDkkIIYQotc7En+GTvZ8gt2oWJd319OvkmfKKO4zbCooIonO1zmg0GjpU7cCR6CPFHVKpJQmhEEKIIqWUwqIsxR3GPUszpBGaFEpufm6RbC8uK45/7/g3BpOBPFMe2cbsItnuP1F0RjTPrXuO939/nxsZN4o7nAeSZkjj3V3vkmvKZeGJhcUdjhD37UbGDQb9MogB6wY81P18dvAzUnJT7nm9ZaeXMeyJYQDotDqUUtIIU0wkIRRCCFGkPgj6gBGbRxR3GHdtT8QeBvw8gL5r+7L45GL6/9wfk8XEmrNryMnPue/tTgqahK3OluaLm9N1ZVeeXPgkJ2NPPpYVnjd3vMkn7T+hT+0+vLzx5X9sj8TdGPTLID5o8wGfdvyU9RfWczX1anGHJP5hrqdfZ/6x+cUdxt/6NvhbPu/6OeUdyxOTGVNo3um405yNP/tA24/PiufojaMERQTxyqZX7mnd5JxkDCYD3s7e1ml+bn5EpEU8UEzi/khCKDBZTJyKO/WXyyil2Htt711tSwjx+MvJz7EmNiaLiSspV5h/bD7Dfh2Gvd4eB70Dh64fumW9kNgQVp1ZxeWUy0RnRD/qsG9hNBv5z/7/8F6r91jdfzWfd/2ctr5tab2kNReTLvLqplfve9sxWTFM7zSdj9t9zL6X97FjyA4G/DyA3mt6P5SkMCMvg7l/zCU2M5aZB2cWarFPzklm6r6pHLlxhFmHZjHx94lFFkNKbgp6rZ665erS3Kc5Lzd6me9Pfl8k237UYjJjKOdUjra+bdFpdSx+ZjGvbHrlsUziRUEPmlKKLw5/QY9VPVgaspQxW8fQe01vBvw84JY6ze6I3SwJWcLE3yeyJGQJZov5nvYXkxnDq5teveWKmkopUnNTScxO5Pl1zxdJI4RSiuCYYJpVakarKq1uOR/PPzaf0dtGYzQb72v7v135jcEbBtP/5/580OYD6nrWJTA8EOCutrnq7CqGNBhSaNqTFQsazcSjJwnhY+SXC78UqqAB1mFbK06vuO068VnxnIo7xWtbXis07VraNQCCo4MZs3UMH+7+kHHbxxGeHF5o/eiMaOKz4jGYDHwb/C1tlrZhzdk1D3Qc/8Qv3tCkUOtr8nci0yLvOzE2WUxcSLxwX+uKR+Nq6tViKaO7ruwiPiv+rpc/EXOCgb8MJCMv47bzzyWcu2NDkMFk+Mtj/PXir3Rb2Y1uq7qx7vw6OizrwLyj8yjnWI4P2nzAx+0/5j8d/8OE3ybw9MqnGfDzAPZe28vgDYOZe2QueeY8vj76NYM2DCI6I5qwpDBrxSolN+UvPz9phjSG/jqUjaEbORZ9jC1hW/h0/6csDVlKcHTwPb83K06vYEjDITxV6SlrS/XE1hM59OohpnaYShnbMrec9+5GQnYC5RzLodPqeLbOswBUc6/GziE7CfAOoN2P7eiwrAN/RP3BO7+9Q1JO0l1t92LiRdacXcOm0E1MPzCdsdvGkm3M5tVNr9JnbR9C4kLotqob7vbuvLj+RXqu7knvNb0ZtnEYTSs15Zvgb1BK4aB34KfzP/Hi+hd5b9d7d73/29lxeQfdqnezPh9YfyCB4YGEJYXx9dGvWX12Na9seoVlp5ZZl8k2ZrPs1DK6rOjCWzvfIjE78b73f5NFWR74s7k1fCu9avSyPq/qVpVGXo3uqQzk5OeUqCHTZosZg8lw2+lZxiwAsoxZ5ObnEpUexajAUUw/MP2W5f/3tb+bZOlM/Jk7DtE+dP0QR24c4WrqVTaGbryLI7l7SimmH5jOqK2j6LS8U8GtD55fD8CrT77KloFb6FC1A0tClljPR3FZcUw/MB0NGp6p9Qx9a/flUFThJCsyLZKFx28/zPjLI18yMnAkw58cztwjc61JU745n26rujFuxzjG7xxP75q9Gb55OCdiTjzQMW64uIHWlVuj0WhoVbkVB68fLHT81zOu07FqR07Hnb7nbZ+MPcmiE4v4tue3nBx5kna+7ZjUdhIrz6zk9cDXqT2/tvW78nadCUopAsMD6VmzZ6Hpnfw6sSV8yz3HIx6cRv0Ta9/irmVkZODq6kpcUhx+3/lxfvR5fFx8aLyoMdM7TmfOkTks7LWQOt/UIXRMKPOPzWdcs3GM2zGOdc+to9fqXlR0rsjvV38nfGw4Wo2Wzis6U9OjJkazkTPxZ/B09MTJxokp7acw5485zOw8Ez83PzQaDUM2DMFoNtK5WmdCk0LpX6c/H+z+gM5+nYnKiKKhV0MARjQegY3WhtPxp2lcsbE1/pz8HI7HHKeMbRn0Wj0RqREFFZrq3Vh9djX1y9fntSavkZSTxKf7P8XJ1olDUYeY0WkGALU9a+Nm70ZOfg7jd4zH29mbdr7t2B+5n5EBI/Fy8uJcwjl83XxxsXNBKcV3x78jIy+D8c3HM3nPZE7GnWTJM0uo7FoZKEj+xm4bS1mHskzrOA1/d3+eXvk0TrZObHxhI0azEb1Wj06rK/RebAzdSE2Pmjyz5hmmdpjKoAaDrPPOxp/FYDLgYONA/fL17/h+bru0jTHbxhA+NhwbnQ1n489yNuEsgxoMsg7LeK/Ve7fs+3YSsxPxcPQgJTcFT0fPuy9UfyE8OZwaZWug0Wis03678hthSWG80ewN67SE7AQ8HT25lnaNhOwEmvs0JyMvg/UX1tOmShsCwwPxdfOlq39XytiWwWQxsT9yP00qNsHV3vW+4zsddxo3ezd83Qqu0quU4lj0MZr5NLtlWYuysPjkYoY0HIKdzg6tRotGo+FKyhXK2JbBq4zXLesYTAZqz6/Nv5v/mxGNR+Bg48CWsC08U+uZQq/JtbRr2OnsqOhc8b6P5b8ppWiztA1V3aqyst9Ka2UzNTcVD0cPYjNjicuKo7JrZet7PXzTcDr4dWDpqaWMbDISs8XMqbhT1PKsxbAnhtF9VXfsdHZMajOJGxk3yDXlUs29GlP3TcXBxoFsYzY6rY7u1btToUwFanrUxNnWGXu9Pa8FvsbmFzcTkxnDqrOreK3Ja7ctY9EZ0VR0rsj5hPNsDN3IwAYDqV62unV+WFIYr299nTRDGtXcq2FRFkwWE9nGbDr5dbrt1eY+O/gZ1ctWZ92FdbjYueDl5EXTSk3JNGZyNv4sV1KvsKb/GladXUVUehQjA0besfwrpXh65dMEDgrEVmd722VCYkP4IeQH5ve4t+Fhm0I3EZsVy+sBt7+FkEVZ2BS6iTHbxvB196/ZGLaRb3t8i7Od8x23aVEWOi/vzJCGQ4jNjKWNbxsSsxP5ZN8nvNbkNcY2HYvJYiIpJ4kKZSqw8/JO2ldtj53e7pZt5eTnMGHnBJpVakZF54rMPDiTwEGBlLEtc0/HCTBkwxC+6PpFoc9MbGYsA38ZiKu9KwEVAxjYYCCjt45mRqcZfHf8O66mXWVQ/UEMbjiYkNgQPtzzIb1q9MLD0YOD1w9yJfUK87rNIzEnkfiseCo6VyQzL5PP//icN5q+QaMKjTgWfYzeNXuTnZ/N0pClbLu8jTK2Zfio7UeEJ4dT27M2TSs1vadj6bO2DyufXVnofdgStoXI9EjGNh1baNl8cz4rz6zklScLD5Ubvmk4jSs2ZkzTMQCkG9JxsXMpdI4A2B+5H09HT+qWqwtAZl4mZWzLcDX1KkduHGFxyGIqOVeiQfkGtK/ani/++II8cx7u9u74uPgwqc0kbHQ26DQ6zMqMXltw4fi159ay8MRCPm73Me2rti+0z+iMaELiQrDV2XIs+hgWZeFi0kXSDGnUL1efj9t/TFxWHGvPreVyymWupl7F1d6VbGM2tjpbPB09Gdt0LAtPLMTVzhWLsuDr6ouPiw/fBH+Do40jNjob6/70Wj2fd/kc/7L+t7zW/9n3Hw5cP0Cvmr0Y12xcoXnJOcm8sP4FNBoN1d2rcyr+FH8M/8M6Xyl1y+t5tzaGbmTynsk09GrIyn4r77hcbn4uk/dM5kzCGXycfbicepmFvRZS27M2UNA4823wt3zd42ugoJHt3zv/TRnbMjQo34DjMcdpVbkVTbyb8OWRL2nh04LJ7Saj0WjYEraFuUfmsrDXQjaFbcLDwaNQOYpKj2LqvqnU9qzNWy3fsk4PTQrF392/0Gt8O6m5qTy//nm2DtqKrc4WpRRdVnRh66CtaDQaWv7QkkENBlHNvRoJ2Qm81uS1v9zef7uRcYNhvw5jaZ+l1u/am5RSbLi4gfrl6zN1/1TCksIAmPv0XNr4trEudyLmBGvOreHzrp/fsv1+P/WjXrl6TO0wlczMTFxdXUlPT8fFxeWuYxT3ThLCEu5mQjju13EEJwfzr8b/IiojipOxJzmXcI7GFRsTmhRK3XJ1yTXl4ungiZ3ejpC4EBqUb8DhqMNcSLzAx+0+poxtGbydvckyZrHuwjrK2JZhfo/57InYg8Fk4NUnX2XbpW18fexr4rPjmddtHgtPLKRV5VZsvbSVDS9swFZnS1R6FMExwXg5eZGUk0ROfg6LQxYDBV94Pw34CT93Py6nXKbHqh7U8qxFTGYMl1Mu06xSM1INqXg6evJVt69Yfno5IXEheDp60qN6D1adXUW36t0IiQ3Bx8WHvZF7efmJl/nx9I982OZDLMrCgesH8Hf351LKpYLLGJ8uaJX+tse3jNsxjna+7TgTfwZHG0eql61OmypteO/396hQpgKtKrfip/M/sfzZ5ViUheGbh2NRFkY2GcnFxIvkmnLZF7mPyi6Vic+Ox15vj1aj5bXGrzH016HU9KjJ6v6r+deWfzGx1UTa+LbhWto1Bm8YTB3POiTnJjP2qbE42TrRuVpnfr/6O9P2T6ND1Q5MbjeZlze9jJ+bH3mmPP7V5F+M2DwCf3d/3OzdOJd4jmdrP8vOKzvpX6c/7au2t/ZonIw9ydXUq2wK24St1pZWVVrx6YFPGRUwihkHZ3Bq5KmC1s2D01naZylu9m5cSr5EmiGNpyo9BcDC4ws5HnOc75+5daiX0WxEKUW1edVY99w6WlZuSUxmDH3X9gWgvFN56pWrx5HoI3g5eVkbBw5FHcJGZ8Obzd7kQOQBXOxcOBR1iAF1B5CZl8m2y9uo5laN2KxYfF19CU8JZ1TAKALDA0nKScJkMVGhTAVmdZmFg94BjUbDxcSLaDQaanvWJio9iuz8bGuiOWXfFLQaLTM6zaBRhUZ8uv9T1l1YRye/TqQYUqjuXp08cx6tq7RmU+gmbHW2JOQkYKO1QaPRsLzvcgasG0BGXgYbnt9AYHggkemReDl54eHoQURqBG72biRkJ7Dzyk7c7N1QKOp41mFi64m42LlwPf06r2x6BZ1GZz3OvZF7mdB8AheTLpJtzLZ+weeZ8jibcJaGXg2x19tbX+vxO8ZzLe0aNjobulTrwrmEc5R1KItFWUjJTSEiLQJ7vT355nyaVmrKgesHaFulLfuv78dB7wBATY+afNntS1JzU1l3YR1ONk7ULVeX/ZH7WXV2FeOajaNztc50XNaRMU+NwdXeld+v/s7nXT/H09GTdEM6znbOLA1ZSqYxk8i0SCLTI0k1pLKg5wJrpehBRaZF4mrvSmRaJDU9auJgUxD/O7+9g4ejB+OajcNB70CWMYu4rDjGbh/L9sHb0WpuP8Dl66Nf88vFX3ih3gtUdavK0lNLsdHZML/7fNwd3K3LKaU4cP0AgeGBzOoy6y9j7P9zfz7r/BlKKWp41Lir45qydwo9a/S0fr5ux6IsXEy8SL3y9Vh2ahnbL2/HXm/PB20+oHrZ6tZjPHrjKO/+/i5+bn7U8azDe63fK7SdB6kc37QnYg9f/PEF3/T45pZK3l8xWUz0XtOb7YNvvan05ZTL6LV6qrpVBQoqs1P3TWV88/FUca1ChTIVrMvmmfLYHbGb9Lx0Wvi0wE5vxwvrXwCgeaXmWJSFmKwYFvVaxJhtBYlWC58WrL+4HjudHWObjqVppaaYLCam7puKwWQgJjOGLQO33FUDGsCpuFPM+WMOy59dXmh6ljGLUVtHYbKYWPLMEmsZnRQ0iU1hm9j04iZrwpNvzqfn6p7WC2Q0qtCILeFbaFKxCTn5OXzd/WssykI5p3J0W1nQqzoqYBRrz69Fg4ZUQyr+7v60qtyKXjV7YbKYCE0KZc6ROUxsNZGmlZqSZkjj4PWDzDo8C2fbgsQ105hZkIxpbahXrh7vt3mfT/d/ypmEM9T1rEtocihKKez19vSo0YN0QzpPVnySPFNeQa/7E0PZEraFJaeW4F3Gm6erP02WMYtBDQaRkZeBi13hynhcVhxhSWFUca1CZHokV1Ov0qFqB/zc/QotF5kWySubXqFl5ZaMfmq09Ttrc9hmtl3axvwe82n5Q0v8y/qzpn/B6KLYzFheWP8C87rPIyE7gSEbhtCnVh8qOldkUptJXEq5xMjAkVRxrcLSPkut5867MXzTcIwWI3O6zsFWZ3vXDZBR6VF4Onpa3/ubuqzows4hO1FK0W1VN1b1W0VGXgbfn/ie6Z2m88vFX9gSvoUFPRfc0tgSkxnDiM0j8HT05Me+P95yTlNKMTJwJIk5idQsW5MzCWew09lhspjYMnDLX37mJ/4+ka7+Xeno19E67fsT3+No40hl18ocvH6QD9p8QGRaJDMPzmRBrwV39Toopei9pjezusyyNmT83fJphjTe2P4GsVmxDGkwhDRDGvsi9/F5188LNRDeFJ0RzftB7/Nuq3epYl9FEsJHRBLCEu5mQvj25rd5vvHzPPvTs7zS6BXebvk21b+uTuxbsei1eoKuBtFrTS8uvXGJWvNrsazvMtZfWE/Lyi0JSwpjZueZfBP8DbMPz+b86PN8deQr/Mv6M6LxrReGmPvHXGIyY1h6aim/Df2tUI/fnSilUCgOXT/E5398jq+rL8ExwSzvu5waHjUIjg4mNiuWyXsmM7vLbKqXrX7LF8vN7fz3STAhO4HJeyYzq8usQl9YN1vDcvJz2DFkBwevH+TrY18zrcM0mng34Y+oP+i2qhsxE2JwsnUiJDYED0cP3vv9PV5p9Apd/bsCBRW2m63TBpOBwRsGs7j3YhaeWEibKm1oVaUVkWmRdFnRhe96fcfllMu81uQ1LiReIOhqEIGXAtGgYV73edT0qEmaIY05f8whNCmUau7VuJh0kbX91/JB0AecSzxHS5+WTGk/hRVnVhAYHsiMTjOo5l6Nb4O/ZVCDQbg7uFuH+i0+uZjAQYFk5mUy5Nch9K/TnyYVm+Dh6MGh64doXaU1DRY04OvuX7Py7Epsdba80/IdPj/8OZ2rdebg9YNkGbP4rtd3TN4zGT83P2KyYhjSYAidqnXCoixoNVrCksLovKIzT1Z4kjqedcjJz2Fut7n0WduHL7p+QRXXKuSb87mQeIFmPs1YdGIRno6eRKRG0L5qexp4NWD8jvEYTAaW9lla6P3bE7EHO70dRrOR9lXbczjqMCdjT9K0UlOquVfD0caRafunsTlsM21925JvzicyPRJHG0drcnwu4Rw9avTAXm/PM7WewdfVlw93f0hYchhPVniSMU3H8M6udxjcYDBONk642bsRHBNMk4pNaO7TnLd+e4uMvAyaVGzCHzf+wNnWmWdqPcOYbWMY0XgEbX3bFvxwPvooyTnJfNfrO3RaHdfTr2M0G/F392f9hfXMD55PmiENJxsnfnjmB2p41GBpyFJuZNzgzeZv8tnBz6hfvj555jzWnFuDwWRAq9HSzrcdf9z4g6beTWnr25YNFzfQ1b8r/er0I9eUy6bQTTT0akgNjxoopVh2ehmvNXkNrUaLUoptl7ZRvWx1annWIjojmlRD6l/2Qj+ookg+7ka+OZ+159ay9vxaPB09CU0KxcnGiZX9Vha6CMHdOB5znHd3vYteq2d6p+kEeAcwZe8UQuJCmNN1zm17L/7btbRrjN46mkxjJtM7TsfFzoVZh2exoOeCWyrKN/X/uT8rn115SwXy7ywIXsCqs6sY2WQkSTlJXEy6SGR6JGv7r+V6+nVqe9a+bY9fUQhPDmf8jvG8WP9F65X//s7ea3vZH7mfye0mF3k8NxsBbldpvBvrzq/j+5PfU798feY8PafQvP2R+wmJLWhsbOLdhOWnl3Mj4wYftf3ojkn/j6d+JCMvgzK2ZWhZuSUf7/2Yd1u+y9jtY/Fz86NRhUbU9KjJpeRLvNPqHaCgp9jP3Y/QpFBqedTiwz0fotfqic+K56O2HxHgHcDKMyvpW7vvbb/z7kZIbAj1y9dHr9VjNBsLlQ+LshASG8ITFZ4gzZBGWYeyd2xMeVguJl7kSuoVvjzyJYGDArmWdo0JOyew8cWN2OpsSc5J5o3tb/Bi/RdxtXPl4PWDPFXpKbr6d8WiLARdDaJppaYsPrkYG50NQRFBfNfzO07Hn+aTfZ9Qx7MOUztM/dsbml9IvMCXR75kUe9FRXZsq86sYu35tXg4eNClWhcGNxxcZNu+KSMvg7PxZ2laqSk2OhtmHZqFTqPjjWZv3HZkw42MG7yx/Q1+feHXQtPjsuJ4P+h9KrtUplfNXjSt1BSlFJ1XdGbnkJ3WHua/MvePgqGu/9sodTfyTHm89dtbNKrQCFc7V56r99wdlw0MD2R3xG7qu9ZneIvhkhA+CkqUaOnp6QpQ6enpSimlotKjrPMiUiOs/6fkpKgX17+olFKqzvw6Kio9SmXlZanc/NxC24vLjFNKKZVjzFEms+mO+zVbzGr2odn3HK/FYlGbQzery8mXb9m32WJWFxMv3vM27yTdkK7Ck8JvO89sMaut4VuLbF9mi/m200NiQ9TJmJO3TDeajCroapDKMGTc9z73RuxVHX7soPqs6aMCwwJvu8xXR75SZotZhSWFqcTsRKWUUufiz6l159epfHO+upBwQfX7qZ/aeXmnUkqp5JxkNXLLSPX0iqdVwKIAtfPyTtVzVU91Ju6MikqPUhaLRQ34eYDqvrK7Wnd+3X3Hfi+MJqPKystSS0OWqvCkcJVvzlcms0nNODBDfXbwM5WZl6ksFst9bz/HmKPSDekq35yvfjj5g8oz5SmllPoj6o972k5abprKzMtUOy7tuKvlzRazyjZmW/8Pjg5Wcw7PKdJy+TgISwpTh68fVumGdJWZl/lA24rJiFEvrn9RRaRGqOd+fu6e188wZKiOyzqqjss6ql8v/qqG/TpMXU6+rFJzU29ZtseqHvcdpyHfoDov76wWHl+ogqODb7v9h8VsMatuK7upbGO2upBwQeWb8++4rMViUb1W91IxGTGPLL778dzPz6nYzFjr8++Cv1OjAkepwLBAtfjEYtXou0Z39X1myDco7y+81fjt41X/n/qrKylXrPOiM6LVrIOzVPV51R+4nD6uNoVuUi1/aKm6rexW6P1QSqnlp5aral9VU6MDR6s+a/rc9jvVZDapkVtGqm+PfWudZrFY1MmYk2rQL4P+9nvgtc2vqXPx54rmYP5LXGac+u3yb0W+3TvJzc9V47ePV8tPLb/t/MG/DFanYk/ddl63ld1U5+WdC9Xvfjr3k7U8G/INd9xvXGac6ru27wN9396ttNw0VX52eTV49eBCdVzx8EgPYQl3s4fwXlpPwpLCqOVZ6yFHJh4Fo9nI7EOzea/1e3fVune3QpNC0Wl0bArbRKvKrWhRuYV1nsFkIDItUsqQKJGG/TqMpJwkprSfcs+/L4OCYZAaNPiX9Wfa/mkERQSh1WgJHBho7Q08n3Ce2Ydn82PfH4s4+kdjQfACdl/bzeWUy4x9aizDGw8HCnqHw5LDrMOFI1Ij+OzQZ3zX67viDPdvHY85ztu/vU2mMZOVz65k7Pax/DbkN+tQ0jxT3l33uqYb0u84zFApRUxmDJVcKhVZ7I8bk8WETqO7ZZRBljGLsKQwmng3ua/tfhv8LQeuH7AOO/1fcVlxjNo66pZes5LqYuJFfgj54Zbf4B29cZSfzv90S4/4TYN+GYSvqy8zOs8oNH312dWsObeG6u7Vmdtt7i3rbQrdRExmDDY6m9uOHHsYcvNzyc/NlyGjj4gkhCXc/SSEQghRWuXk57DyzMp7uojCnag/h8L/dO4nEnMSGddsHEopuq7syspnV972wkQlQUpuCr9c+IWXGr1Et5Xd2PDCBj47+BkXki5wOu40R0YcoUKZCre9oNQ/VWZeJmmGNEZtHcXA+gMfytA+Ubze3P4mLzV66ZafsZgtZvr93I//dPiP9UJ3JZ3JYqLfT/3YPHBzoenT9k+jfdX2tK7S+rbrHblxBF9X3zte8GzM1jH0rd2Xhl4NMSuzdXh+p+WdOB5znCPDj1CnXJ2iPZi/IHXcR0cSwhJOPixCCFG8zBYzXVd2ZdugbVxPv85XR7+656uS/lMdiz7GhJ0T6FenHx2qdiDfks/y08uZ32M+3xz7hmru1eheo3txhykEV1Ov8uqmV1nYa2GhESxT9k7B19X3lqvBlnQ9V/dk66Cthab1WduHnwf8fN+/M87Jz+FfW/5FtjEbJ1sn3OzcmNttLs/+9Cyudq6s7Lfykf4GVeq4j07RjTETQgghSiGdVsewhsP4eG/B1Zqf9n+6uEMqMk0rNeXgqwcLTfvq6FdcSbnCpZRLPF398TlWUbJVc6/G0j5L+XDPh6zqtwqA36/+TnRGNFPaTyne4B4C7zLeXEu7Zr2K7817ST7IRaccbRytrx3A8tPL6bu2Lw3KN+CzLp89ULzin00SQiGEEOIBDX1iKKvPruZk7MlCl3p/HD1f93mCIoIKVUaF+Cfwc/fDVmfL+YTz1PCowYyDM9gy8PG80Xm/Ov1Yf2E9Ad4BZBmz0Gl0tPdtX6T7GPbEMMo6lKWSs/wu9nEnQ0ZLOOlOF0II8ShdTrnM/GPzCU8OZ9vgbcUdjhCFXE+/zssbX6a8U3lerP8ifWv3Le6QHop8cz4dlnXARmeDrc6Wyi6Veb/1+397G52SROq4j470EAohhBDirvm5+bE/cv9d3YNWiEetimsVFvZaSHZ+No0qNCrucB4aG50NK/utJCI1gjPxZ0gzpD1WyaB4tCQhFEIIIcRd02l1WJSFTn6dijsUIW6rhkeN4g7hkajqVpWqblXp4NehuEMRJdyju1SQEEIIIR4LvWr2eux/KymEEKWF9BAKIYQQ4p5M6zituEMQQghRRKSHUAghhBBCCCFKKUkIhRBCCCGEEKKUkoRQCCGEEEIIIUopSQiFEEIIIYQQopSShFAIIYQQQgghSilJCIUQQgghhBCilJKEUAghhBBCCCFKKUkIhRBCCCGEEKKUkoRQCCGEEEIIIUopSQiFEEIIIYQQopSShFAIIYQQQgghSilJCIUQQgghhBCilJKEUAghhBBCCCFKKUkIhRBCCCGEEKKUkoRQCCGEEEIIIUopSQiFEEIIIYQQopSShFAIIYQQQgghSilJCIUQQgghhBCilJKEUAghhBBCCCFKKUkIhRBCCCGEEKKUkoRQCCGEEEIIIUopSQiFEEIIIYQQopTSF3cA4v4ppcjIyACw/hVCCCGEEKKku1m3VUoVcySPP42SV7nESkxMpHz58sUdhhBCCCGEEA9FVFQUPj4+xR3GY016CEswW1tbAC5cuIC3tzcajaaYIxKPq4yMDCpXrkxUVBQuLi7FHY54jElZE4+ClDPxqEhZu39KKTIzM/H29i7uUB57khCWYDcTwEqVKslJRjwSLi4uUtbEIyFlTTwKUs7EoyJl7f64uroWdwilglxURgghhBBCCCFKKUkIhRBCCCGEEKKUkoSwBLOzs+Pjjz/Gzs6uuEMRjzkpa+JRkbImHgUpZ+JRkbImSgK5yqgQQgghhBBClFLSQyiEEEIIIYQQpZQkhEIIIYQQQghRSklCKIQQQgghhBCllCSEQgghhBBCCFFKSUJYAuzfv5/evXvj7e2NRqNh48aNheYrpZgyZQre3t44ODjQvn17zp8/XzzBihJrxowZPPXUUzg7O1O+fHn69u1LWFhYoWWkrImisGDBAho2bGi9UXOLFi3Yvn27db6UM/EwzJgxA41Gw/jx463TpKyJojBlyhQ0Gk2hR4UKFazzpZyJfzpJCEuA7OxsnnjiCebPn3/b+bNmzWLOnDnMnz+f4OBgKlSoQJcuXcjMzHzEkYqSbN++fYwZM4YjR46wa9cuTCYTXbt2JTs727qMlDVRFHx8fJg5cybHjx/n+PHjdOzYkT59+lgrSFLORFELDg5m0aJFNGzYsNB0KWuiqNSrV4/Y2Fjr4+zZs9Z5Us7EP54SJQqgfv31V+tzi8WiKlSooGbOnGmdZjAYlKurq/ruu++KIULxuEhISFCA2rdvn1JKypp4uNzd3dXixYulnIkil5mZqWrUqKF27dql2rVrp958802llJzTRNH5+OOP1RNPPHHbeVLOREkgPYQlXEREBHFxcXTt2tU6zc7Ojnbt2nH48OFijEyUdOnp6QCULVsWkLImHg6z2czatWvJzs6mRYsWUs5EkRszZgw9e/akc+fOhaZLWRNF6dKlS3h7e+Pn58eLL77I1atXASlnomTQF3cA4sHExcUB4OXlVWi6l5cXkZGRxRGSeAwopZgwYQKtW7emfv36gJQ1UbTOnj1LixYtMBgMlClThl9//ZW6detaK0hSzkRRWLt2LSdPniQ4OPiWeXJOE0WlWbNmLF++nJo1axIfH8+0adNo2bIl58+fl3ImSgRJCB8TGo2m0HOl1C3ThLhbY8eO5cyZMxw8ePCWeVLWRFGoVasWp06dIi0tjV9++YWXXnqJffv2WedLORMPKioqijfffJPffvsNe3v7Oy4nZU08qO7du1v/b9CgAS1atMDf359ly5bRvHlzQMqZ+GeTIaMl3M2rWN1sgbopISHhltYoIe7GG2+8webNm9mzZw8+Pj7W6VLWRFGytbWlevXqBAQEMGPGDJ544gm++uorKWeiyJw4cYKEhASaNGmCXq9Hr9ezb98+5s2bh16vt5YnKWuiqDk5OdGgQQMuXbok5zRRIkhCWML5+flRoUIFdu3aZZ1mNBrZt28fLVu2LMbIREmjlGLs2LFs2LCB3bt34+fnV2i+lDXxMCmlyMvLk3ImikynTp04e/Ysp06dsj4CAgIYPHgwp06dolq1alLWxEORl5fHxYsXqVixopzTRIkgQ0ZLgKysLC5fvmx9HhERwalTpyhbtixVqlRh/PjxTJ8+nRo1alCjRg2mT5+Oo6MjgwYNKsaoRUkzZswYVq9ezaZNm3B2dra2Zrq6uuLg4GC9f5eUNfGgPvjgA7p3707lypXJzMxk7dq17N27lx07dkg5E0XG2dnZ+hvom5ycnPDw8LBOl7ImisLbb79N7969qVKlCgkJCUybNo2MjAxeeuklOaeJEkESwhLg+PHjdOjQwfp8woQJALz00kv8+OOPvPvuu+Tm5jJ69GhSU1Np1qwZv/32G87OzsUVsiiBFixYAED79u0LTV+6dCkvv/wygJQ1USTi4+MZOnQosbGxuLq60rBhQ3bs2EGXLl0AKWfi0ZGyJorCjRs3GDhwIElJSZQrV47mzZtz5MgRfH19ASln4p9Po5RSxR2EEEIIIYQQQohHT35DKIQQQgghhBCllCSEQgghhBBCCFFKSUIohBBCCCGEEKWUJIRCCCGEEEIIUUpJQiiEEEIIIYQQpZQkhEIIIYQQQghRSklCKIQQQgghhBCllCSEQgghhBBCCFFKSUIohBBCCCGEEKWUJIRCCCGEEEIIUUpJQiiEEEIIIYQQpZQkhEIIIYQQQghRSklCKIQQQgghhBCllCSEQgghhBBCCFFKSUIohBBCCCGEEKWUJIRCCCGEEEIIUUpJQiiEEEIIIYQQpZQkhEIIIYQQQghRSklCKIQQQgghhBCllCSEQgghhBBCCFFKSUIohBBCCCGEEKWUJIRCCCGEEEIIUUr9HzAy0nyg2JOpAAAAAElFTkSuQmCC", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "75ce021dae3d45469c8ed911c3e2f017", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADrtklEQVR4nOzdeXwU9f348dfslYschBgCGsGTpoKiKJetQFGQglC0BcuhVMXWg9QviFQFjLUi1iooVmqtRQxQqvZnq8Ui4IEFRBCwjYoWFQSUCEIuSLLXzO+PnRl2N9fuZq8k7+fjkQdkMjv72c3uZt7zfn/eH0XTNA0hhBBCCCGEEB2OJdEDEEIIIYQQQgiRGBIQCiGEEEIIIUQHJQGhEEIIIYQQQnRQEhAKIYQQQgghRAclAaEQQgghhBBCdFASEAohhBBCCCFEByUBoRBCCCGEEEJ0UBIQCiGEEEIIIUQHJQGhEEIIIYQQQnRQEhAKIYQQQgghRAclAaEQQgghhBBCdFASEAohhBBCCCFEByUBoRBCCCGEEEJ0UBIQCiGEEEIIIUQHJQGhEEIIIYQQQnRQEhAKIYQQQgghRAclAaEQQgghhBBCdFASEAohhBBCCCFEByUBoRBCCCGEEEJ0UBIQCiGEEEIIIUQHJQGhEEIIIYQQQnRQEhAKIYQQQgghRAclAaEQQgghhBBCdFASEAohhBBCCCFEByUBoRBCCCGEEEJ0UBIQCiGEEEIIIUQHJQGhEEIIIYQQQnRQEhAKIYQQQgghRAclAaEQQgghhBBCdFASEAohhBBCCCFEByUBoRBCCCGEEEJ0UBIQCiGEEEIIIUQHJQGhEEIIIYQQQnRQEhAKIYQQQgghRAclAaEQQgghhBBCdFASEAohhBBCCCFEByUBoRBCCCGEEEJ0UBIQCiGEEEIIIUQHJQGhEEIIIYQQQnRQEhAKIYQQQgghRAclAaEQQgghhBBCdFASEAohhBBCCCFEByUBoRBCCCGEEEJ0UBIQCiGEEEIIIUQHJQGhEEIIIYQQQnRQEhAKIYQQQgghRAdlS/QAROQ0TaO6upqamhoyMzNRFCXRQxJCCCGEEKLVNE2jpqaG7t27Y7FIDiuWJCBsw2pqasjJyUn0MIQQQgghhIiJAwcOcNpppyV6GO2aBIRtWGZmJgcOHKCwsJADBw6QlZWV6CEJIYQQQgjRatXV1RQWFpKZmZnoobR7EhC2YYqimEFgVlaW+f/FixdTUlKCpmlkZ2ezceNGzjjjDK644gq2bt2Kpmn89Kc/5Zlnngk43tlnn82hQ4dQFIV+/fqxceNGcnJy+OSTTygoKDD3q6+vp3fv3hw5coQzzjiDDz74IOA4N910E88//zzp6enk5OSwb9++gJ8/+uijlJSUYLFY0DSNgwcP4nA4wj7m4sWLufPOO5kyZQrPPfccOTk5aJqGx+Nh/PjxrFixIjpPdAjOOuss9u3bh9frjdt9CiGEEEK0dzIlKvakILed+fzzz5k7dy67du2iqqqKH/7wh/zgBz8A4N5776Wmpoby8nJKS0tRVbXB7VesWEFlZSXbt29n+/btjd7HfffdR0FBAVVVVdTX1/P000832GfcuHFUVlY2CAYBSkpK+O9//0tVVRUffvgh6enpER+zb9++PPfcc+b3n376KQcOHGD16tXU1ta28GxFz+eff05qamrc7k8IIYQQQohokICwnXn44YcZMWIEZ5xxBgB/+MMfOHjwIC6Xi6FDhwKQnp7e7NUWm83GKaecwn//+18ArrrqKnJycjj//PMBeOutt5g4caL5s1dffbXBMV555RWys7MpLi5u8DOr1cof/vAHqqurOf3007HZbK0+pr/c3FzS0tL44osvzG2LFy+mS5cudOvWjbS0NGbNmkVBQQEZGRl89NFHAbffvXs3Xbt2JScnx3we/Y+Tl5dHQUEBaWlp/O1vf2t2LEIIIYQQQiQzCQjbmQMHDnDWWWcFbEtNTeV///uf+f2Pf/xjvv/97zfZsenYsWN88803DB48GICrr76ayspKqqurWbFiBTU1NeTn5wNwyimncOzYsYDbz5s3jxMnTrB7927+/Oc/Nyj//H//7//x4osv0qVLF/r06YPH42n1Mf19+umn1NfX853vfKfBzw4dOsTEiRP5y1/+Qnl5OSNHjuShhx4K2Gfy5MlMmzaNyspK9uzZ0+AYqqpSXl7Offfdx4IFC5ochxBCCCGEEMlO5hC2Mz169AjIjIFvzt+5554LwMKFC9m6dSv79+9v9PZTpkzBZrMxceJEioqKAF8ACXDRRRexfft2srKyOHz4MADffPMNubm5DcYA0L17d8477zzeeOMN+vbta/78Bz/4AV988QUej4eioiIefvjhiI5ptVobjL9Xr14oisKvfvUrbLbAl7eR7Tv77LPZu3evue3jjz8O2O/AgQPccMMNAA2OAXDmmWcCcP755/Pss882fBKFEEIIkXCqquJyuRI9DNEEu93e6LmciD8JCNuZ2bNn07dvX7788kt69OjBbbfdRmFhIQ6Hg3/84x889NBDfPrpp40GOuCbQzh+/PiAbS+//DJ33XUXH3zwAVdffTWpqan89a9/ZcaMGaxZs4aZM2cG7H/w4EFOO+00XC4Xn376KQMGDAj4+fr167niiiuw2Wzk5OTg9XoZOnRo2Md8//33G4z/008/DWiA0xT/kllN0wJ+dvrpp7N8+XIWLFiAx+Np8rlq7LZCCCGESDyXy8XevXsb7ZcgkkdOTg4FBQXSOCbBJCBsZ8466yweeOABLrjggoAuowA33ngjTqfTLKX873//y+mnn97iMV944QUefPBBevTowZQpU6ivr+e8884jOzubnj17cvPNNwNQVFTE7t27mTp1qtmQ5oorruB73/tewPF++ctfsn//fnOu4q9+9StUVQ37mI0FhNGwYsUKhgwZwlNPPUWXLl34/PPPY3I/QgghhIg+TdM4dOgQVquVwsJCWdQ8CWmaRm1trVkd1q1btwSPqGNTNElxtGnV1dVkZ2dTVVXV4dYh/NOf/sSMGTOYOHFiQKfRRDjrrLP45ptvOH78eELHIYQQQnR0brebzz77jO7du5OdnZ3o4YhmHD16lMOHD3Puuec2KB/tyOe48SYZQtFm3XTTTdx0002JHgaAZBGFEEKIJGGsCexwOBI8EtGS9PR0wBfEy3zCxJEcuhBCCCGEaHdkXlryk99RcpCAUAghRMzt2rWLMWPGMH78eLZs2WJuv/HGGxM4KiGEEEJIyagQQoiYKy4uZtmyZdhsNmbPns369es5ceJEg2VyhBBCNO7tt99m2LBhVFRUkJOTk+jhiHZEAkIhhBAxpygKZ599NgAvvvgi559/PmVlZfTr1y/BIxNCCCE6NikZFUIIEXP5+fns27fP/P7H3bvzJ6CsrCxhYxJCCCGEBIRCCCHi4KWXXqJnz57m91fs2cONwId//3uihiSEEEnH6XRSXFxMfn4+qampfO973zPXYTZs3ryZCy64gNTUVAYMGBBwYe3LL7/kqquuonPnzmRkZHDeeefx2muvxfthiDZGAkIhhBDxp3eW87rdCR6IEEIkj7vuuou//e1vLF++nJ07d3L22WczcuRIjh07Zu4ze/Zsfve737F9+3by8/MZO3Ysbv2z9LbbbsPpdPLOO+9QVlbGww8/TKdOnRL1cEQbIXMIhRBCxJ/Fdz1SU9UED0QI0RHU1tbyySefxP1+v/Od75hr7bXkxIkTLF26lOeee45Ro0YB8Mwzz7B+/XqeffZZLrnkEgDuu+8+rrjiCgCWL1/Oaaedxssvv8yECRPYv38/11xzDX369AHgzDPPjMGjEu2NBIRCCCHiTw8IVY8nwQMRQnQEn3zySUKaWO3YsYOLLroopH0///xz3G43l156qbnNbrfTv39/du/ebQaEgwYNMn+em5tLr1692L17N+Dr6HzLLbewbt06Lr/8cq655hrOP//8KD4i0R5JQCiEECL+9IBw+q9/zZYf/zjBgxFCtHff+c532LFjR0LuN1SapgENF2vXNK3FBdyNn990002MHDmSNWvWsG7dOh566CEeffRRZsyYEebIRUfS4QLCd955h0ceeYQdO3Zw6NAhXn75ZX70ox+ZP582bRrLly8PuM2AAQPYunWr+b3T6eTOO+/kL3/5C3V1dQwfPpynnnqK0047zdynoqKC4uJiXnnlFQDGjh3LkiVLAtaN2b9/P7fddhtvvvkmaWlpTJo0id/97nc4HI7YPHghhEiQCRMmBHx/9KuvyAX27N+fmAEJITqU9PT0kDN1iXL22WfjcDjYtGkTkyZNAsDtdvP+++9zxx13mPtt3bqV008/HfCdb/7vf/8LCDwLCwv5xS9+wS9+8QvuvvtunnnmGQkIRbM6XEB44sQJLrjgAn72s59xzTXXNLrPlVdeybJly8zvgwO0O+64g1dffZXVq1fTpUsXZs2axZgxY9ixYwdWqxWASZMmcfDgQdauXQvAzTffzNSpU3n11VcB8Hq9jB49mlNOOYVNmzZx9OhRrr/+ejRNY8mSJbF46EIIkTDbt2/nzTffxKJnBnf85z9cVF3N+Pz8BI9MCCGSQ0ZGBrfccguzZ88mNzeX008/nd/+9rfU1tZy44038p///AeAX//613Tp0oWuXbty7733kpeXZyY37rjjDkaNGsW5555LRUUFb775JkVFRQl8VKIt6HAB4ahRo8yJuk1JSUmhoKCg0Z9VVVXx7LPPUlpayuWXXw7AihUrKCwsZMOGDYwcOZLdu3ezdu1atm7dyoABAwDfpOBBgwbx6aef0qtXL9atW8fHH3/MgQMH6N69OwCPPvoo06ZN48EHHyQrKyuKj1oIIRJr9uzZZGZmkpeXB8DXaWn0BH4ybFhCxyWEEMlk4cKFqKrK1KlTqamp4eKLL+b111+nc+fOAfv88pe/ZM+ePVxwwQW88sorZvLC6/Vy2223cfDgQbKysrjyyitZtGhRoh6OaCM6XEAYirfffpv8/HxycnIYMmQIDz74IPn6VewdO3bgdrsZMWKEuX/37t3p3bs3W7ZsYeTIkbz77rtkZ2ebwSDAwIEDyc7OZsuWLfTq1Yt3332X3r17m8EgwMiRI3E6nezYsYNhTZwkOZ1OnE6n+X11dXW0H74QQkTdrbfeGvC9Md/lBxdckIjhCCFEUkpNTeWJJ57giSeeaPCzoUOHmvMMx4wZ0+jtpcpMRELWIQwyatQoVq5cyZtvvsmjjz7K9u3b+cEPfmAGYeXl5TgcjoArNQBdu3alvLzc3Ce/kTKo/Pz8gH26du0a8PPOnTvjcDjMfRrz0EMPkZ2dbX4VFha26vEKIURC6KWjsg6hEEIIkViSIQwyceJE8/+9e/fm4osvpkePHqxZs4arr766ydsFd4BqrBtUJPsEu/vuu5k5c6b5fXV1tQSFQog2RzECQr+KByGEEELEn2QIW9CtWzd69OjBnj17ACgoKMDlclFRURGw3+HDh82MX0FBAd98802DYx05ciRgn+BMYEVFBW63u0Hm0F9KSgpZWVkBX0II0eboAeGRo0cTPBAhhBCiY5OAsAVHjx7lwIEDdOvWDYB+/fpht9tZv369uc+hQ4f48MMPGTx4MOBbMLSqqopt27aZ+7z33ntUVVUF7PPhhx9y6NAhc59169aRkpKSkIVThRAinowM4YKXXkrwSIQQQoiOrcOVjB4/fpzPPvvM/H7v3r188MEH5ObmkpubS0lJCddccw3dunVj37593HPPPeTl5TF+/HgAsrOzufHGG5k1axZdunQhNzeXO++8kz59+phdR4uKirjyyiuZPn06Tz/9NOBbdmLMmDH06tULgBEjRvDd736XqVOn8sgjj3Ds2DHuvPNOpk+fLlk/IUS7079//4DvT+zeTTrw6VdfJWZAQgghhAA6YED4/vvvB3TwNObjXX/99SxdupSysjKef/55Kisr6datG8OGDeOvf/0rmZmZ5m0WLVqEzWZjwoQJ5sL0zz33nLkGIcDKlSspLi42u5GOHTuWJ5980vy51WplzZo13HrrrVx66aUBC9MLIUR7U1NTQ1lZGTab78/Otu9/n/6bNnFRMyXyQgghhIg9RTP614o2qbq6muzsbKqqqiSzKJKCx+MxT/qFMLz88ssMHTrU7NC8bcgQ+r/zDg//6EfMefnlBI9OCNGe1NfXs3fvXs444wxSU1MTPRzRjOZ+V3KOGz9y1iaEaLWysjLmzJlDZWUlNpsNt9tNXl4eCxYsoE+fPokenkgCRtm9QdX/Pa+RJXqEEEIIET/SVEYI0Wq33norTz/9NFu2bOGdd97h3Xff5fe//32DxchF6+3atYsxY8Ywfvx4tmzZYm6/8cYbEziq8BkBoepyJXQcQgjRXpSUlNC3b99ED0O0QZIhFEK0mtfrJTs7O2BbVlYWXq83QSNqv4qLi1m2bBk2m43Zs2ezdetWZs6cyRdffJHooYXFmKugysL0QgghREJJQCiEaLWFCxcyZswYHA4HWVlZVFVV4fF4ePjhhxM9tHZHURTOPvtsAF588UVKSkqYPn06Ho8nwSMLj6pPX1fkooEQMTd58mRWrlyZ6GEIIZKUBIRCiFa77LLLeOedd6irq6OyspLOnTvLRP4Yyc/PZ9++ffTs2RPwlQitWLGC0tLSxA4sTEbJKBIQChE1d911V4NtmqYFlJeL5KaqKo888gjPPPMMBw4coGvXrvz85z/n3nvvZc6cObz88sscPHiQgoICJk+ezPz587Hb7U0e789//jOPPvoon332Gbm5uVxzzTUBXe+FAAkIhRBRlJaWRlpaWqKH0a691MhC7lOmTGHKlCkJGE3kzPbWbSyzKUQyW7lyJatWrWqw/a233krAaEQk7r77bp555hkWLVrE9773PQ4dOsQnn3wCQGZmJs899xzdu3enrKyM6dOnk5mZ2eiFAIClS5cyc+ZMFi5cyKhRo6iqqmLz5s3xfDiijZCAUAghRNxJhlCI6LvhhhsoKioiP6h773XXXZegEYlw1NTU8Pjjj/Pkk09y/fXXA3DWWWfxve99D4C5c+ea+/bs2ZNZs2bx17/+tcmA8De/+Q2zZs3il7/8pbntkksuieEjEG2VBIRCCCHizlwCVwJCIaLmgQceaHR7cXFxnEeShGprQc+0xdV3vgPp6SHtunv3bpxOJ8OHD2/05y+99BKLFy/ms88+4/jx43g8nibX5zt8+DBff/11k8cSwp8EhEKImBkxYgTr1q1L9DDapWPHjnHs2DFyc3PJzc1N9HDCp+o5QikZFULEwyefQL9+8b/fHTvgootC2rW5KRdbt27l2muv5f7772fkyJFkZ2ezevVqHn300bCPJUQwCQiFEK02YcKEBts0TaOsrCwBo2nf3njjDebPn09eXh5ZWVlUVlZSUVHB/fff37auBOsBoXQZFULExXe+4wvOEnG/ITrnnHNIS0vjjTfe4Kabbgr42ebNm+nRowf33nuvue3LL79s8liZmZn07NmTN954g2HDhoU/btGhSEAohGi17du38+abb2KxWMxtmqYxderUBI6qfZo/fz5r164lMzPT3FZdXc2oUaPaVECoybITQoh4Sk8POVOXKKmpqcyZM4e77roLh8PBpZdeypEjR/joo484++yz2b9/P6tXr+aSSy5hzZo1vPzyy80er6SkhF/84hfk5+czatQoampq2Lx5MzNmzIjTIxJthaXlXYQQonmzZ88mMzOTHj16mF89e/bk9ttvT/TQ2h2LxcKRI0cCth05ciQgGG8LFKNkVAJCIaJm/fr1DBgwgMGDB7N69Wpz++jRoxM4KhGOefPmMWvWLObPn09RURETJ07k8OHDjBs3jv/7v//j9ttvp2/fvmzZsoV58+Y1e6zrr7+exYsX89RTT3HeeecxZswY9uzZE6dHItoSRTNn9ou2qLq6muzsbKqqqpqcWCyEaD92797NPffcQ3l5OZqmoSgK3bp148EHH6SoqCjRwwvZGxdfzPAdO3j10ku5atOmRA9HiHZh8ODBvPbaazgcDubOnYv7P//h8ZdeYvjVV3eopSfq6+vZu3cvZ5xxhqyJm+Sa+13JOW78SMmoEEK0IUVFRS2WCbUJxhxCVW1hRyFEqKxWKzk5OQA8du+9PJeXx7g+fTjerVtiByaESGptq8ZICCFE+6AHgpoEhEJETd++fdm3b5/vG4uFacDMbt2oqalJ4KiEEMlOAkIhRMyUl5cneggiWUlTGSGibsmSJfTs2TNg27DMTD5JxPp7Qog2QwJCIUTMXHfddYkeQrvncrl4++2321zwbZaKSoZQiNgw3ltOZ2LHIYRIejKHUAjRav3792+wTdM06WYWBw888AC/+c1v+P73v88777yT6OGETrqMChFbRs9ACQiFEC2QgFAI0Wo1NTWUlZVhswV+pFxxxRUJGlH7FRx8G/OFdu3alYDRtIJRMioZQiFiw3hvuVzU1NQErF0qhBD+pGRUCNFqCxYsaLRpwdy5cxMwmvatpqaGLVu2sG3bNrZt28bPfvYzAHr16pXgkYVHSkaFiL7nn3+ePn36cNFFF7Hw8cd9G10uxo0bl9iBCSGSmgSEQohWGz9+PJ07d26wfciQIQkYTfsWHHwbazNdc801iRpSZCRDKETULV26lJ07d7Jz507SU1P5MVBbV4csOS2EaI4EhEKI6Pv4Y1i7NtGjaJeCg28jIOzRo0eihhQZyRAKEXUWiwW73Q5A8Q038AtgVHk53377bWIHJoRIahIQCiGi77zzYNSoRI+iQ+jUqRMA1dXVCR5JeBTJEAoRdaNHjz65DqGqcjnwVFoap556aiKHJeKkpKSEvn37xvQ+nnvuOXJycmJ6HyL+pKmMEEK0YYqiALS9haf1QFACQiGi55577jn5jf7eOs/rZa1UbAghmiEZQiGEaMOy9+9nG6C43YkeSlgkQyhEjMk6hEKIEElAKIQQbVifNWu4BMiorEz0UMIjAaEQsWU0kvF4EjsOERZVVXn44Yc5++yzSUlJ4fTTT+fBBx8EYM6cOZx77rmkp6dz5plnMm/ePNwtXAz885//zHnnnUdKSgrdunXj9ttvb3b/iooKrrvuOjp37kx6ejqjRo1qdE3hv//975x77rmkpqZyxRVXcODAAfNn//nPfxg2bBiZmZlkZWXRr18/3n///QieDREvEhAKIUQb5rVagTaYITQCQel+KERsGO8xvaxctA133303Dz/8MPPmzePjjz9m1apVdO3aFYDMzEyee+45Pv74Yx5//HGeeeYZFi1a1OSxli5dym233cbNN99MWVkZr7zyCmeffXaz9z9t2jTef/99XnnlFd599100TeOHP/xhQOBZW1vLgw8+yPLly9m8eTPV1dVce+215s8nT57Maaedxvbt29mxYwe/+tWvzGZHIjnJHEIhhGjDVONkr61lAYwModeb4IEI0U5J9r3Nqamp4fHHH+fJJ5/k+uuvB+Css87ie9/7HhC4tm/Pnj2ZNWsWf/3rX7nrrrsaPd5vfvMbZs2axS9/+Utz2yWXXNLk/e/Zs4dXXnmFzZs3M3jwYABWrlxJYWEhf//73/nJT34CgNvt5sknn2TAgAEALF++nKKiIrZt20b//v3Zv38/s2fP5jvf+Q4A55xzTqRPiYgTyRAKIUQbplr0j/E2FhCacwglQyhEbEgWvs3ZvXs3TqeT4cOHN/rzl156ie9973sUFBTQqVMn5s2bx/79+xvd9/Dhw3z99ddNHusXv/gFnTp1Mr+M+7fZbGagB9ClSxd69erF7t27zW02m42LL77Y/P473/kOOTk55j4zZ87kpptu4vLLL2fhwoV8/vnn4T0RIu46XIbwnXfe4ZFHHmHHjh0cOnSIl19+mR/96EeA74rH3Llzee211/jiiy/Izs42X8zdu3c3jzF06FA2btwYcNyJEyeyevVq8/uKigqKi4t55ZVXABg7dixLliwJaNW7f/9+brvtNt58803S0tKYNGkSv/vd73A4HLF7AoSII6/Xi1UvaRSx4W2jGUJFuowKEVsSCDZwyz9v4auar+J2f6dmnsrSMUtD3j8tLa3Jn23dupVrr72W+++/n5EjR5Kdnc3q1at59NFHwz4WwK9//WvuvPPOgG1aE68ZTdPMjtaG4O/9t5WUlDBp0iTWrFnDv/71L+677z5Wr17N+PHjmx2TSJwOFxCeOHGCCy64gJ/97Gdcc801AT+rra1l586dzJs3jwsuuICKigruuOMOxo4d22Ay7PTp0/n1r39tfh/8xps0aRIHDx40Wz3ffPPNTJ06lVdffRXwnSiPHj2aU045hU2bNnH06FGuv/56NE1jyZIlsXjoQsRdTU2NrFcUY962niGUgFCI2JD3VgPhBGeJcM4555CWlsYbb7zBTTfdFPCzzZs306NHD+69915z25dfftnksTIzM+nZsydvvPEGw4YNa/Dz/Px88vPzA7Z997vfxePx8N5775klo0ePHuV///sfRUVF5n4ej4f333+f/v37A/Dpp59SWVlplogCnHvuuZx77rn83//9Hz/96U9ZtmyZBIRJrMMFhKNGjWJUEwtmZ2dns379+oBtS5YsMeuhTz/9dHN7eno6BQUFjR5n9+7drF27lq1bt5pp92eeeYZBgwbx6aef0qtXL9atW8fHH3/MgQMHzOzjo48+yrRp03jwwQfJysqKxsMVIqGqKislIIwxIyBU2lhAaGQvLJLFECI2JCBsc1JTU5kzZw533XUXDoeDSy+9lCNHjvDRRx9x9tlns3//flavXs0ll1zCmjVrePnll5s9XklJCb/4xS/Iz89n1KhR1NTUsHnzZmbMmNHo/ueccw7jxo1j+vTpPP3002RmZvKrX/2KU089lXHjxpn72e12ZsyYwRNPPIHdbuf2229n4MCB9O/fn7q6OmbPns2Pf/xjzjjjDA4ePMj27dsbJGFEcpE5hC2oqqpCUZQGJ7UrV64kLy+P8847jzvvvDNgUeh3332X7OzsgBrsgQMHkp2dzZYtW8x9evfuHVCKOnLkSJxOJzt27GhyPE6nk+rq6oAvIZJV9dGjiR5Cu2cGhG2ty6gRCMpJqxCxIe+tNmnevHnMmjWL+fPnU1RUxMSJEzl8+DDjxo3j//7v/7j99tvp27cvW7ZsYd68ec0e6/rrr2fx4sU89dRTnHfeeYwZM6bRJST8LVu2jH79+jFmzBgGDRqEpmm89tprAV1C09PTmTNnDpMmTWLQoEGkpaWZ06asVitHjx7luuuu49xzz2XChAmMGjWK+++/v/VPjoiZDpchDEd9fT2/+tWvmDRpUkDGbvLkyZxxxhkUFBTw4Ycfcvfdd/Of//zHzC6Wl5c3SMODLz1fXl5u7mO0ETZ07twZh8Nh7tOYhx56SN5Uos2o97tQImLD6DJqaWMZQkUyhELEljSVaZMsFgv33ntvQGmo4be//S2//e1vA7bdcccd5v9LSkooKSkJ+PnPf/5zfv7zn4d8/507d+b5559v8ufTpk1j2rRpAFx99dUNfu5wOPjLX/4S8v2J5CABYRPcbjfXXnstqqry1FNPBfxs+vTp5v979+7NOeecw8UXX8zOnTu56KKLgMYn2wZPyg1ln2B33303M2fONL+vrq6msLAw9AcmRBypTmeih9DuGU1lLG00QyhdRoWIjZrqajITPQghRJsgJaONcLvdTJgwgb1797J+/foW5/NddNFF2O12Mw1fUFDAN99802C/I0eOmFnBgoKCBpnAiooK3G53g8yhv5SUFLKysgK+hEhWmsuV6CG0ex69ZLTNBoRS1iZETMjFFiFEqCQgDGIEg3v27GHDhg106dKlxdt89NFHuN1uunXrBsCgQYOoqqpi27Zt5j7vvfceVVVVZtemQYMG8eGHH3Lo0CFzn3Xr1pGSkkK/fv2i/KiESAzJEMaet42XjMpJqxCx4W1jF4mEEInT4UpGjx8/zmeffWZ+v3fvXj744ANyc3Pp3r07P/7xj9m5cyf//Oc/8Xq9ZhYvNzcXh8PB559/zsqVK/nhD39IXl4eH3/8MbNmzeLCCy/k0ksvBaCoqIgrr7zS7NIEvmUnxowZQ69evQAYMWIE3/3ud5k6dSqPPPIIx44d484772T69OmS9RPthmQIY09t4yWjModQiNjQvN5ED0EI0UZ0uAzh+++/z4UXXsiFF14IwMyZM7nwwguZP38+Bw8e5JVXXuHgwYP07duXbt26mV9Gd1CHw8Ebb7zByJEj6dWrF8XFxYwYMYINGzYELMC9cuVK+vTpw4gRIxgxYgTnn38+paWl5s+tVitr1qwhNTWVSy+9lAkTJvCjH/2I3/3ud/F9QoSIIQkIY0/TSy6tbezkTzKEQsSW2sY+E4QQidPhMoRDhw5Fa+YEpLmfARQWFrJx48YW7yc3N5cVK1Y0u8/pp5/OP//5zxaPJURbJQFhHBgBYVsrGdX/tcgcQiFiQjKELZ/TicST31Fy6HAZQiFE/EhAGHtGU5a2tjC9mSFM8DiEaK86ckBoVGy55G9Q0qutrQUIWOdQxF+HyxAKIeJHAsI4MDJsbSzTZs4hbGPjFqKtUNvYRaJostlspKenc+TIEex2OxaL5D+SjaZp1NbWcvjwYXJycgKmXYn4k4BQCBEzWhtrdNImtdWAUP9XmsoIERtaG/tMiCZFUejWrRt79+7lyy+/TPRwRDNycnIoKChI9DA6PAkIhRAxo3XgK9RxY5SMtrHyMCkZFSK2OnLJKPiaAJ5zzjlSNprE7Ha7ZAaThASEQoiYkQxhHOgnfW1tgXdZdkKI2OroASGAxWIhNTU10cMQIulJUbUQImZUCQhjz8gQtrGA0CIBoRAx1ZHnEAohwiMBoRAiduSEJPaM0ss2FhBKhlCI2JJ1CIUQoZKAUAgROxIQxp40lRFCNEJKRoUQoZKAUAgRM9JUJvaUtl4ymuBxCNFeSUAohAiV/C0WQsSMNJWJg7aaIZSSUSFiSgJCIUSoJCAUQsSMZAhjz8gMtrUF3s2S0YSOQoj2SwJCIUSo5G+xECJ2JCCMvbZeMioZQiFioiMvTC+ECI8EhEKImJEMYRy00S6jBvkjJERsSIZQCBEq+VsshIgZRU5IYs5sKtPGMm1GZtDaxsYtRFvhHxBOnjw5gSMRQiQ7W6IHIIRovyRDGHtttcuozCEUIvruuusu8/8V775LZ0ADtmzZkrAxCSGSnwSEQojo8s/4SEAYe220qYwsOyFE9K1cuZJVq1YBcODbbynctAmAt7p0SeSwhBBJTv4WCyGiyz8wkZLRmFOiMIcwEeVkRobQGvd7FqL9uuGGGygqKmLIkCFcfPrpDAGGANddd12ihyaESGKSIRRCRJd/YCIZwpgLZw6hfzmZQdO0hJSTKZqGG19AqGkaiqK0dBMhRAseeOCBk9/4XZArLi5OwGiEEG2FBIRCiOiSDGF8GRnCEAJC/3Iyf2+99VbUh9USC+DW//V6vdhs8udIiGiSLqNCiFDJX2AhRHRJhjCuwlmY3igny8/PD9ieiHIyi6bhVRSsmobaxuY/CtEWyDqEQohQSUAohIgu/5MQOSGJvTAyhAHlZH4SUU6mAB5FIVXT8EomQ4ioC8gQahpIWbYQognSVEYIEV1+JyGKZAhjztJWu4wCXk6WjAohWu+FF17gwgsvZMqUKfy9rIxewCXAP/7xj0QPTQiRxCRDKISILr/ARBamjwNj+Ya2tsC7UTIKONtYMCtEsnr00UfZvHkzNTU19D7zTD4DUoHhjzzCuB/9KMGjE0IkK8kQCiGiS5rKxJU5h7CNBYQWwGOxYEMyhEJES1paGunp6XTt2pUBhYVkAymAzSoLvAghmiYBoRAiuiQgjCsljDmE69evZ8CAAQwePJjVq1eb20ePHh2z8TXFgm8OIYAqrxMhoqJv377mBZYFw4cD4AI65+QkblBCiKQnAaEQIrqkZDS+wigZve+++3j99dfZsGED27ZtY8aMGaiqSm1tbaxH2YCiaah6QOh1ueJ+/0K0R4sXL8ZqZAP1z2IHUPqnPyVuUEKIpCcBoRAiuiQgjCtLGAvTW61WcnJySE9P57HHHqNfv36MGTOG48ePx3qYDRglowCq2x33+xeivfPPvHvlPSaEaIYEhEKI6PIPCKVZSMwpYWQI+/bty759+8zvu3Xrxr/+9S+OHj0aq+E1yQJ49YBQTlaFiAG/z195jwkhmiNdRoUQ0SUZwvgKIyBcsmRJwPc7duwAfGVm8WYBVD0g1GR5EiGizn8dwkOHDpHbs2fiBiOESGodLkP4zjvvcNVVV9G9e3cUReHvf/97wM81TaOkpITu3buTlpbG0KFD+eijjwL2cTqdzJgxg7y8PDIyMhg7diwHDx4M2KeiooKpU6eSnZ1NdnY2U6dOpbKyMmCf/fv3c9VVV5GRkUFeXh7FxcW4ZC6NaOtkYfq4CidDGCw1NRWA+vr6qI4pFIqmncwQyueeENHn9/l72513JnAgQohk1+ECwhMnTnDBBRfw5JNPNvrz3/72tzz22GM8+eSTbN++nYKCAq644gpqamrMfe644w5efvllVq9ezaZNmzh+/DhjxowJaJ0+adIkPvjgA9auXcvatWv54IMPmDp1qvlzr9fL6NGjOXHiBJs2bWL16tX87W9/Y9asWbF78ELEgf9VaYtkCGPO0oplJ/KrqzkEqN9+G+VRtcy/ZFSVDKEQUdG/f3/za+qaNfTHtzD9rrKyRA9NCJHEOlzJ6KhRoxg1alSjP9M0jcWLF3Pvvfdy9dVXA7B8+XK6du3KqlWr+PnPf05VVRXPPvsspaWlXH755QCsWLGCwsJCNmzYwMiRI9m9ezdr165l69atDBgwAIBnnnmGQYMG8emnn9KrVy/WrVvHxx9/zIEDB+jevTvgW1B22rRpPPjgg2RlZcXh2RAi+jSvF8X4RjKEMWdkCK0hBoROp5OPPvqIY8eOobz9NrlAzu7dMRxh4/xLRqWpjBDRUVNTQ1lZGTabjZ2TJnHRX/4CwGXf/W6CRyaESGYdLkPYnL1791JeXs6IESPMbSkpKQwZMoQtW7YAvjk3brc7YJ/u3bvTu3dvc593332X7OxsMxgEGDhwINnZ2QH79O7d2wwGAUaOHInT6TTn9TTG6XRSXV0d8CVEMvEv/5MMYeyZJaMh7FtaWsqwYcNYvnw5Gzdu5NWvvmIYsCEB2QMLoElAKERULViwwKxo0vwuyN0+bVqCRiSEaAs6XIawOeXl5QB07do1YHvXrl358ssvzX0cDgedO3dusI9x+/LycvLz8xscPz8/P2Cf4Pvp3LkzDofD3KcxDz30EPfff3+Yj0yI+DFKRr0kd5fRyZMns3LlykQPo9XCmUP49NNPs2nTJix6IPbB/v30/uwzzv/4Y34X01E2pABefb00TS4cCBEV48ePP/mN3+fvJX36JGA0Qoi2QgLCRiiKEvC9pmkNtgUL3qex/SPZJ9jdd9/NzJkzze+rq6spLCxsdmxCxJPR3txNcgSEd911V4NtmqaZ2fq2zhJGyWhaWhobN25k2LBhAGh2OxsBeywH2AQrJzOE0lRGiOjzzxDKPF0hRHMkIPRTUFAA+LJ33bp1M7cfPnzYzOYVFBTgcrmoqKgIyBIePnyYwYMHm/t88803DY5/5MiRgOO89957AT+vqKjA7XY3yBz6S0lJISUlJcJHKETsGdkeFycbniTSypUrWbVqVYPtb731VgJGE31GhrD5S1Y+paWlLFy4kLlz5+L1enF++SVDgV+ef34sh9iQPmbVyBDKyaoQ0eeXeZeybCFEc2QOoZ8zzjiDgoIC1q9fb25zuVxs3LjRDPb69euH3W4P2OfQoUN8+OGH5j6DBg2iqqqKbdu2mfu89957VFVVBezz4YcfcujQIXOfdevWkZKSQr9+/WL6OIWIJSND6CI5MoQ33HADRUVFDBkyJODruuuuS/TQoiKcktGCggIWL17M5s2b2bp1K3+4+moWATktVEBEnf66MAJCyV4IEX2aLEwvhAhRh8sQHj9+nM8++8z8fu/evXzwwQfk5uZy+umnc8cdd7BgwQLOOecczjnnHBYsWEB6ejqTJk0CIDs7mxtvvJFZs2bRpUsXcnNzufPOO+nTp4/ZdbSoqIgrr7yS6dOn8/TTTwNw8803M2bMGHr16gXAiBEj+O53v8vUqVN55JFHOHbsGHfeeSfTp0+XDqOiTTMyhG6SI0P4wAMPNLq9uLg4ziOJDSOUs0ZwW68eCKrxLtnUXxeaZAiFiB3/klEpyxZCNKPDBYTvv/++OX8GMOfjXX/99Tz33HPcdddd1NXVceutt1JRUcGAAQNYt24dmZmZ5m0WLVqEzWZjwoQJ1NXVMXz4cJ577jms1pOnZCtXrqS4uNjsRjp27NiAtQ+tVitr1qzh1ltv5dJLLyUtLY1Jkybxu9/Fu7WDENGVbBnC9i6cOYTBVD0gtMY7IDMyhDbfnyApZxMiBmQOoRAiRB0uIBw6dChaMydOiqJQUlJCSUlJk/ukpqayZMkSlixZ0uQ+ubm5rFixotmxnH766fzzn/9sccxCtCVGhtADWCUgjLlwlp0IZmTmrPHu8hmcIZQuo0JEnX/JqCYZQiFEM2QOoRAiqowr0W6LRTKEcWAuTB/BbY1ALGEBoWQIhYgd/wyhvMeEEM2QgFAIEVVGQOhRlJAanSSKUc7d1hkf4pEEhEhAKET7JQGhECJEHa5kVAgRW8kWEE6YMKHBNk3TKCsrS8Boos8/QxjKmqn+jJJRS4ICQqRkVIjY8S8ZlYBQCNEMCQiFEFGl+ZWMpiVByej27dt58803sVhOFkRomsbUqVMTOKrosfjNIfR6vdhsYXysG4FYvH9PxoUCyRAKETv+AaE0lRFCNEMCQiFEVJkZQoslKTKEs2fPJjMzk7y8vIDtt99+e4JGFF0WTcONL0OohhvY6QFh3Od6BpWMIhlCIaLOv4GeZAiFEM2RgFAIEVVG+Z9qsSRFl9Fbb7210e0TJ06M80hiQ8FXnmvVNLzhBlbG/nEOyDSv17d+opEhlOyFENGnqnjwnehJFl4I0RxpKiOEiCozQ2i1mvPbROy0JkNotKVXEhAQAmC3+76XgFCI6PN6McJAyRAKIZojAaEQIqoCMoQSEMacBT1DSAQlo3ogFu+SUTMjKAGhELGjqicDQnmPCSGaIQGhECKqjIDQa7UmxRzCppSXlyd6CFGhaBpeRcEGEZeMxrvLqPEaMeYQSpdRIWLAPyCMIEP49ddfR3c8QoikJXMIhRBRZWR/VKs1qTOE1113HevWrUv0MFrNgq+BD15v2HPxlASXjCqSIRQidvRycmj5Pfbaa68F3VSjpKSE+++/nx/+8IcxGqAQIllIQCiEiCr/DGEyBIT9+/dvsE3TNPbs2ZOA0USfomm49bUHvS5XWLc1flcWKRkVov1RVd9ng6a1mCGcNm0aF198MQMHDjS7k1ZWVvL+++9LQChEByABoRAiqswMoc2WFCWjNTU1lJWVNVif74orrkjQiKLLCtTpayyG20lQSVBAaCw7YWYIpWRUiOhTVTxGQNjCRZe9e/fyxBNPUFZWxowZMxg0aBDvvfce8+fPj9NghRCJJAGhECKqzKYyNhu2JAgIFyxYQE1NDZ07dw7YPnfu3ASNKLosmobXCAjDzLRpCVqHULqMChEH+vxiaPk9lpGRwd13301NTQ2PP/44ixYtorKyMg6DFEIkAwkIhRBRZQQlms2WFF2rxo8f3+j2IUOGxHkksaHAyYAw3AyhkamLd8lo8BxCyRAKEX2qas4vJsSLLpmZmcydO5fq6mo++eSTGA9QCJEskuF8TQjRnhgZQrs9KeYQNvDhh7ByZaJHETUWfEt8QASLTyeoZNTMTDocvu8lQyhE9Gmar2SU8N9jWVlZjc6/FkK0T5IhFEJElZkhtNuxJngsjerTx/fv5MmJHUeUWP1LRsMNCPVAMGEBoZ4hRDKEQkSdYmQIIeQMoRCiY5IMoRAiqszyP5stOTOE7YyCr6MrhJ8FMJrKWBOdIZSAUIjoU1U0RUFFsvBCiOZJQCiEiCpz0fFkzRC2MxZ8az5C+MtOmCWjcQ7c/S8aBHwvhIgaTdPQFAUvNJkh3LhxI5dffjkzZ85k3bp1XHjhhQwdOpR3330XgBEjRsRvwEKIhJGAUAgRVf4dJKUmPfb85xCGnQXQA8FElYxqxlIg7SR74Wknj0O0D4qqouoBYVMXXebMmcOyZcv46KOPGDduHKeddho5OTmMGzeOn/zkJ5SVlcV30EKIhJDzNSFEVJknHg6HL0OoaaA3NhDRZ8G3xAe0vZJR2kGX0bKyMubMmUNlZSU2mw23201eXh4LFiygjzFfVYhE0DOEHmjyoktqaiqFhYX873//o2/fvjz55JMA/PSnP+WRRx5h6tSp8RuvECJhJCAUQkRV8Mk+Xq9ZGiiiz4pfyWikTWUSXDLalpvK3HrrraxatYrCwkJz2/79+5k8eTL//ve/Ezgy0dEpqgotlIwWFBTg9XqZPXs2EyZMIC8vD4/HQ0pKCj179uT222+P65iFEIkhZ2lCiKgyT/ZTUnz/SkAYU/4BYdgZwgQHhFo7CAi9Xi/Z2dkB27KysvC24cck2gljDqGiNPkeW716NeC7sGGw2WysX78egIkTJ8Z+nEKIhJOzNCFEVDVYUsDjORkciujSAzkjsAp7YXqjZDTeAaFRomq1+jogtuHgaeHChYwZMwaHw0FWVhZVVVV4PB4efvjhRA9NdHSahgZkahoFBw6EdVObXMQTokORd7wQIqqMk3uLHgSqLheWjIxEDqlx7WFuox5Yaa3MEMY9INTHaWkHAeFll13GO++8Q11dHZWVlXTu3JnU1NRED0sIFH3ZCTvwnY8+SvRwhBBJTAJCIURUaaqKF7DpAaHH6cSR2CE1TlXB2rYXxtA8HhRA1bOxYS9MrweCicoQKlYrXk5mKtuytLQ00tLSEj0MIU4KvuhVUwOZmU3u7nQ6+eijjzj27bfkrllD73nzcOTlxWGgQohEk2UnhBDR5fGgAlYjIKyvT+x4mtIOlggInosXcZfROAeEqj5OIyBsyxlCIZKWPofwJ6ed5vt+794Gu6xfv54BAwZwzjnn0KdPH5YvX87Gf/yDq594gmHf+Q4rVqyI86CFEIkgAaEQIqo0rxcvJwPCsBdLj5d2EBAagVXEAWGiMoTGPFOrFa2ZhhdtybFjx/jss884duxYoociBHCyZFQtKPBtOHSowT733Xcfr7/+OqeccgqjR49GVVXuv/12zgA2pqTwhz/8Ib6DFkIkhJSMCiGiSvN6UfErGZUMYcwYASFtLEPoHxB6oU0HhG+88Qbz588nLy+PrKwsduzYwTfffMMLL7zA8OHDEz080ZFpGprFQnaXLr7vG/l8sFqt5OTkkJGRwdixY/nyyy8Zd8st1AAbXS6ZDytEByEBoRAiulTVFxDqJxIepzOx4/GjaRrmjJr2EBAacwaNBd4jzBDG+w+B2XjIZkNVFLM5Tls0f/581q5dS6Y+N0vR52zNnz9fAkKRUIpeMpqbn+/b0MjnQ9++fdm3bx+lpaUsXLiQ7du3U3HoEPuAf9TWSsmoEB2ElIwG6dmzJ4qiNPi67bbbAJg2bVqDnw0cODDgGE6nkxkzZpCXl2dedTt48GDAPhUVFUydOpXs7Gyys7OZOnUqlZWV8XqYQsRMMmcIA9aGaw8BofEYjKYybWQdQv85hCq06QyhxWLhyJEjjW4XIpGMhek7G41hGnmfLVmyhJ49e1JQUMDixYvZvHkzH730ErXArNpaCoxyUyFEuyYZwiDbt28POGn88MMPueKKK/jJT35ibrvyyitZtmyZ+b3DEdhD8Y477uDVV19l9erVdOnShVmzZjFmzBh27NiBVe9qOGnSJA4ePMjatWsBuPnmm5k6dSqvvvpqLB+eEDGnBWUIk2kOocfjOfmh14aDEIM5hzDSDKEeEMb7D0FAQKgo5jjaoj/+8Y/MmjWL8vJyNL/A+o9//GMCRyUEZpfRLl27+r7VuxK35PDXX9MViO9lIiFEIklAGOSUU04J+H7hwoWcddZZDBkyxNyWkpLS5FWzqqoqnn32WUpLS7n88ssBWLFiBYWFhWzYsIGRI0eye/du1q5dy9atWxkwYAAAzzzzDIMGDeLTTz+lV69eMXp0QsSBniG06hdK1CQKCL1+AZPmdod0cpTMzLl4xhzCMIPcZCgZbetdRouKinj55ZfN742S0aKiokQNSQhALxm1WOiil4zWHz9OKAujuOrqfLeXLLcQHYa825vhcrlYsWIFN9xwg/lHHuDtt98mPz+fc889l+nTp3P48GHzZzt27MDtdjNixAhzW/fu3enduzdbtmwB4N133yU7O9sMBgEGDhxIdna2uU9TnE4n1dXVAV9CJBMjQ2jRA8JkmkPo8QtOk6mUNVLmHEL9uW4rGUL/gFBr4xlCIZKVERDm6RnC6oqKkG7ndTopRzKEQnQkEhA24+9//zuVlZVMmzbN3DZq1ChWrlzJm2++yaOPPsr27dv5wQ9+gFM/6S0vL8fhcNC5c+eAY3Xt2pXy8nJzn3xjkref/Px8c5+mPPTQQ+a8w+zsbAoLC1v5KIWIMiNDaCw7kUwBod9YkmlckQqeQxhups3iHxDGcR6hmdm0WHxNZdpwhlCIpBVUMloTYp8C1e3mOiQgFKIjkZLRZjz77LOMGjWK7t27m9smTpxo/r93795cfPHF9OjRgzVr1nD11Vc3eSxN0wKyjP7/b2qfxtx9993MnDnT/L66ulqCQpFUjAyhUTKaVHMI21lAaGbaIs0Q+gWBqtttHifWND0QVWw2X1OZdpghrKqqIjs7O9HDEB2Y0WXUaCpTd/x4g3369+/fYFv94cPsRwJCIToSyRA24csvv2TDhg3cdNNNze7XrVs3evTowZ49ewAoKCjA5XJREVSacfjwYbrqV+kKCgr45ptvGhzryJEj5j5NSUlJISsrK+BLiGSxa9cu7ty2jZ8B//niC8A3h/DGG29M7MB0/vMZ20NAGK0MIcT3+TADWb2pTFsOCJ9//nn69OnDRRddxMKFC83t48aNS+CohMDMENpTUlDxzZsOVlNTw5YtW9i2bZv59bfZs7kECQiF6EgkIGzCsmXLyM/PZ/To0c3ud/ToUQ4cOEC3bt0A6NevH3a7nfXr15v7HDp0iA8//JDBgwcDMGjQIKqqqti2bZu5z3vvvUdVVZW5jxBtUXFxMXecey73Ac//6188hi9D+IUeHCaaZAgDKZqGcYqYiIDQ7DLahktGly5dys6dO9m5cyfp6enmdm8bfkyifTDmENr05k2NNfhasGABNTU1AdtUl4u5SEAoREciAWEjVFVl2bJlXH/99dhsJ6tqjx8/zp133sm7777Lvn37ePvtt7nqqqvIy8tj/PjxAGRnZ3PjjTcya9Ys3njjDXbt2sWUKVPo06eP2XW0qKiIK6+8kunTp7N161a2bt3K9OnTGTNmjHQYFW2aoiicmprKqYrCU/PnUw3c9/zzeJJkzT9ve8sQBi9MH0GXUeNZiGfzn/a0ML3FYsGuP//FxcXm9m+//TZRQxIC8L2/FUUxA8LGLhiNHz++Qc8DzeNhSIM9hRDtmQSEjdiwYQP79+/nhhtuCNhutVopKytj3LhxnHvuuVx//fWce+65vPvuu2RmZpr7LVq0iB/96EdMmDCBSy+9lPT0dF599VVzDUKAlStX0qdPH0aMGMGIESM4//zzKS0tjdtjFCIW8vPzOXTiBKqiYEtNpQS4qEcPtm/fnuihAUEBYRLNbYyUGVjpDXzCbc5iUVUzIIzn8iD+GcK23mV09OjR7Nu3r8H2xhqHCRFPxhxCu92Oh9ArCIzSUskQCtFxSFOZRowYMSJggWFDWloar7/+eou3T01NZcmSJSxZsqTJfXJzc1mxYkWrxilEsnnppZfYMmQIKmDXg5Qr+/Rh7urViR2YTvWbQ9MeMoRe/fEYAWEkJaPGs5CQOYR6hrAtB4T33HNPwPezgcFAkSxMLxJM0TTQS0braXwOYWPUEPcTQrQfEhAKIaJLVdEUBZsepCTTwvT+ZZHJNK5INZhDGG6GUNNwKwpoWsLmEGptvGQ02G/1f//TDta5FG2bkSG02Wx4CD3QkwyhEB2PlIwKIaJLVdE4uQ5hMl1t9i8TbRcBoZ4RtKSmBnwfKoum4dKXuklEyWh7yBA2xdUOXl+ibTMyhBaLBS9AiJ8PRvdiCQiF6DgkQyiEiC5V5RhQfegQCskVeLW3ZSeCS0bDzbRZVJV6iwVUNSEZQqvdjltRAtZDbC+c7eD1JdoBRUFRlCabyjTKyBC2sC6yEKL9kIBQCBE1b7zxBv/34Yecoqrk//73HAe+XLWKRaNGMXz48EQPLyBbmUyBaqSCS0bDbSqjgK9klAQvOyEZQiGizlh2AsCrKCEHhMbnZGO9FIQQ7ZOUjAohomb+/Pk8es45PGWz8dwf/8irwMOjRjF//vxEDw1ofyWjRmmX0oo5hB79hDGuz4ceAFraQZfRpkiGUCSaRV+YHggrQxhu6bkQou2TgFAIETUWi4UKlwtVUbCnpQFwrKYGiyU5PmoCMoRJNLcxUuYcwggzhBZNw60vhxPP50MzAkKbDdViaZclo5IhFIlmzCEEX4Yw1DmExn7WFnYTQrQfUjIqhIiaP/7xj/xi4ECq3G5Shw1DAWxbt/LHEJZriYf2liE0M4I2GyqRZQi9CcgQdoSmMu66ukQPQXRwCpglo2oYAaHRZVRmEArRcUhAKISImqKiIh7q0YPs//2P8957D5eisOmSSygqKkr00ID2N4fQKBm16AFhJBlCj833ZyAhAaHV6mt60Q4zhO7jxxM9BNHBKZqG4h8Qhvj5oEmGUIgOJznquIQQ7YemoeonIU6AJFqPzT/oCXWR5mTmn2kLq4ugzqJpeIyS0TjPIVTxBYSqxYKlHWYI1draRA9BdHDGOoQQXlMZI5MoJ4hCdBzyfhdCRJe+DiFAvcWCkkwBYTubQ2g8BsVq9WUIw112AvAmICDUvF5fQGix+DIX7SRDqPo9/xIQikSzgDmHUDKEQojmSMmoECKq3B4PH2sahzdswA3YkujE2D8I1NpByaiZIbTbfQtPRzKHUC8ZjWvG1MgQWiygKO0mQ+j1es2rrN4TJxI6FiEsmgbGBR+LJfTPByND2E4u1AghWiYZQiFE1JSWlnL7/v284vGwceNG/gLMLCtjxYoViR4aEFhS2d5KRlVFCT9DqGl47XYgvhlC1T9D2I66jHr1xwWSIRSJ599lVFUUlFBKRl95hTO3bQPkBFGIjkTe70KIqHn66af5w6mnMjs1lQceeIBfORws6dmTP/zhD4keGhCUIWwHAaG5DqFRMhpmhtAKaEZTmXg+H34BodaOmsp4vV6M34AEhCLRLH4BoRZqyei4ceR+/TUA1nbyvhRCtEwCQiFE1KSlpbGrrs5sZOCyWCirqiI1NTXBI/MJCAjbweLLWlCX0UiWnVATWDJqtVrR2lFTmYAMoSxMLxJMgZPrEIZTMup/eyFEhyABoRAiakpLS/n38eP8rLaWgQMHMs3pZEt1ddKUjCZTQOiJwv23dj0/K6Dqi9rHMyDUvF409AxhGygZnTx5ckj7eTweMyDUJCAUCRaQIbRYUIICwl27djFmzBjGjx/Pli1bzO036v9KUxkhOg5pKiOEiJqCggL+r3NnbIrCxVu3siUvj5TUVAoKChI9NCAo6ElAyWhZWRlz5syhsrISm82G2+0mLy+PBQsW0KdPn7CP16CpTJgBoaJpaMYcwngGhJoW0FQmWQLCu+66q8E2TdMCTpabE5AhTKLuuqJjUvCVk4MeEAZ9PhQXF7Ns2TJsNhuzZ89m69atzAS+0H9uwff6VxTJFQrR3klAKISIKkXT0PSr0h6bjYwkmqtnZAXdJGYO4a233sqqVasoLCw0t+3fv5/Jkyfz73//O+zj+WcIQ54j5McKaHqGMK4BclBTmWQpGV25ciWrVq1qsP2tt94K6fb+AaFkCEWiWf0+ixv7fFAUhbPPPhuAF198kZKSEqYDRu2CFd9SKlar5AqFaO8kIBRCRJeqmnMIPXZ7Ui07YQSETjBbq8eT1+slOzs7YFtWVhbeMAM5gxo0h7A1AWGilp3QLJakaW9/ww03UFRURH5+fsD26667LqTb+5eMSoZQJFpLGcL8/Hz27dtHz549ASgpKWHFAw9Qqu9nwfeZJQGhEO2fBIRCiKhSNA30gFC12bBEGOzEglEWmaiAcOHChYwZMwaHw0FWVhZVVVV4PB4efvjhyA7olyH0hLvshKb5SsJSUnzfxrNkNGgdwmQpGX3ggQca3V5cXBzS7f0zhLSDdS5F2+a/MH1jzZteeumlBreZkpLClLo6wHfByOPx4DCqCIQQ7ZYEhEKIqFJUFa8eEGp2O9YkCgiNDKFLURISEF522WW888471NXVUVlZSefOnVvVgVX1m0MY9jqE+m0VfQ5hXDOEelMZRVGSKkPYWl79cQESEIqEs2haQIaQUN5ntpOnhRbAnUSf30KI2JEuo0KI6PKbt4LNlrQBYSLXIUxLS6Nbt26tX47DCOoiWYfQL5j0QHwDZFU11+tL+oBw7Vr49tuQdpWAUCQT/2UnCLULsV9AaIWIy9mFEG2LBIRCiKhSVNUsGdXsdqxJ0jAEMIMeVwQNWJKR0VTGqmcIw1p2wpgnpAeEajwDQr8F3JN+2YlRo2DChJB29Xg8J9duk4BQJJgFwC9DGErzJjUoIIzG8jhCiOQnAaEQIqoUTTObyigOB7YkCgjNLqMJKhmNtoCF6RUltJIwgxFMOhy+DGECuoxCcmUI169fz4ABAxg8eDCrV68GvTHM6G3bQrq91+s9OQ8jibrrio7JCgEBYfDnwwsvvMCFF17IlClTWL58Ob169aLft9/yit8+XnkdC9EhSEAohIgu/8WQ7XasSXKyD34BocWSkAxhg4BDN3r06MgOqAfbVocDTVEaLDzdrESWjHq9vgAWPSCM3z0367777uP1119nw4YNbNu2jRm33YYKhNon1z8gVOREWiSYBVCMktFGMoSPPvoomzdv5tFHH+VXv/oV27Zt4yVF4RG/fTyS6RaiQ0iWv8NCiHbC4rfsRNJlCPVSRa+ioCQgQ9gg4JgxA1VVqY1waQ7/dQgjbipjs+HhZLAcF35zCEmiklGr1UpOTg7p6ek89thjXHTOOYwDjoa4pqAEhCKZWKDZpjJpaWmkp6fTtWtXhg8fTnZ2Ng6bLaDboFcCQiE6BAkIhRBR5b8wPQ4HtiQ52QfA4/EFhBZLeNm0KAkOOPr168e4ceM4fvx4RMdrsDB9KwLCeGYIFVU1m68kU8lo37592bdvn/n9+EsuYSZQHeJrxePxnAwI20FJsmjb/APCxjKEffv2NZvGrFixAgAV6OK3jyoXNoToECQgFEJElaKqaPpJiCUlBXuSnOyDLwumKoqvAUsCTtiDA45p06Yxc+ZMampqIjugMQ9QzxCG1VTGr0OphzgHMF6vuTQJSRQQLlmyxFykG+DoF18wDPhbbm5It/e63eYfVYsEhCKR9HVGzTmEVmuDTPzixYsbLDqfpij4r07oCTE7LoRo22QdQiFEVFlU1TwJUVJSSKoljfVARLVYwsumRcmSJUsabBs2bBiffPJJRMczSmAtVqtvDmEYj0nzen0dMfVgMt4lowFNZeJ3z2Gp3L/f958QlwdR/crrrBIQigRSvd4GGcJQSrODu0KrUjIqRIeQrH+HhRBtlOLXVMYMCJMkA4SRIUxQyWi0aXq3TovFEnaG0CgFU2w2vMQ3Q6ioqtlUJpkyhMHqjx0DfAF3KLx+2RTJEIpEMks9m2kq0xiLpvHeGWfw2b33AoGvaSFE+yUBYZCSkhIURQn4KigoMH+uaRolJSV0796dtLQ0hg4dykcffRRwDKfTyYwZM8jLyyMjI4OxY8dy8ODBgH0qKiqYOnUq2dnZZGdnM3XqVCorK+PxEIWIKcUvQ2hJSQGS6CqzHkCF3ZEzWfln2sJcdsIMCK1WPPFelzG4y2iSBoSa/hx9G2Jw5/86t7WH15dos7x+F3yg8ZJR8J2v7Ny5kw0bNrBz5048qsrB/HxUvUxa5hAK0TFIQNiI8847j0OHDplfZWVl5s9++9vf8thjj/Hkk0+yfft2CgoKuOKKKwLmAN1xxx28/PLLrF69mk2bNnH8+HHGjBljTt4GmDRpEh988AFr165l7dq1fPDBB0ydOjWuj1OIWFA07WRAqJfauSPsohl1eiCiWq0JKRmFhidgrlYEy5rHExAQhhPkmid6VqtvPl+CSkZJ4pJR4zmaf/RoaPv7/S5TJUMoEkjVX38By04EBYSlpaUMGzaM5cuXs3HjRpYtW8ZVqsrGY8ewOHzF/klzMU+0GZMnT070EEQEZA5hI2w2W0BW0KBpGosXL+bee+/l6quvBmD58uV07dqVVatW8fOf/5yqqiqeffZZSktLufzyywFf967CwkI2bNjAyJEj2b17N2vXrmXr1q0MGDAAgGeeeYZBgwbx6aef0qtXr/g9WCGizOIXEFr1gNBZU0NK586JHBagl1jqJaOWBGRwSktLWbp0KZdccglZWVlUVlayc+dObrnlFqZMmRL+Af0CKzXM5Rs8Ticp+NYh9CYgQ2gsTYLVmjQZwv79+wd8X/P553QCPg3xpFjzy6akdpAM4a5du5g3bx52u53Zs2czePBgAG688UaeffbZBI+u4/L6VQAAjQaETz/9NJs2bcJiOXlJpubJJ+n/zTf80m73HUdKRkUT7rrrrgbbNE1jy5YtCRiNaC0JCBuxZ88eunfvTkpKCgMGDGDBggWceeaZ7N27l/LyckaMGGHum5KSwpAhQ9iyZQs///nP2bFjB263O2Cf7t2707t3b7Zs2cLIkSN59913yc7ONoNBgIEDB5Kdnc2WLVuaDQidTidOvw/o6urqKD96IVonoGQ0yTKEih4QahZLeB05o6SxEzCPx8PQoUMjCgiNpjJA2E1ljOyXxWaL/7qM/nMIrdakyRDW1NRQVlaGTS+z2zhhAkNefJFBttD+VBonz26brcNkCIuLi1m2bBk2m43Zs2ezdetWZs6cyRdffJHooXVoRoYQ47XbSMloWloaGzduZNiwYYDvZH4zYLdasegBoSYlo6IJK1euZNWqVQ22v/XWWwkYjWitZPk7nDQGDBjA888/z+uvv84zzzxDeXk5gwcP5ujRo5SXlwPQtWvXgNt07drV/Fl5eTkOh4POQdmQ4H3y8/Mb3Hd+fr65T1Meeughc95hdnY2hYWFET9WIWLBomnmVWkjQ+iKcJ29qPN6US2WhAWExgmYQdM0Nm7cSGqIXSwbaM0cQqOkzAgIE5UhTKI5hAsWLAgo/zdOhm/VT45bYuzvTEsjHV+w394pisLZZ59Nz549efHFF6murmb69Okd4rE3ZteuXYwZM4bx48cHZEpuvPHGuI7DeH+bDZEaufBSWlrKP/7xDy699FIGDhzIZZddxr+AX/bta5aMysL0oik33HADRUVFDBkyJODruuuuS/TQRAQkQxhk1KhR5v/79OnDoEGDOOuss1i+fDkDBw4EfH8A/Wma1mBbsOB9Gts/lOPcfffdzJw50/y+urpagkKRVCyaZl6VtqWnA0mYIbRasSTgyndpaSkLFy5k7ty5eL1e7HY7F198sbkodNiCF3gPI8g1TvSMgDCuJaOq6lv6A9+4Q+vhGXvjx48P3KC/Rga18LlsMAJCd3o6GTU1OJ1OM9vYXuXn57Nv3z5z/caSkhJWrFhBaWlpYgeWIMmSMVWDS0YbyRAWFBSwePFivxv5qjtezsiQOYSiRQ888ECj24uLi+M8EhENkiFsQUZGBn369GHPnj3mvMLgLN7hw4fNrGFBQQEul4uKiopm9/nmm28a3NeRI0caZB+DpaSkkJWVFfAlRDLxzxAaXUY9SRIQJjpDaJyAbd68ma1bt/Lvf/+bRYsWNTpnORSaf7fOSEtG7fb4d131G3cylYwGM9ZmDLVjqHHy7MnIIAOor6+P1dCSxksvvWQGg4YpU6Z0iMfemGTJmJoVAMaasKFk4vXXuWKzmQGhlIyKUEkzmbYtWf8OJw2n08nu3bvp1q0bZ5xxBgUFBaxfv978ucvlYuPGjeZE+n79+mG32wP2OXToEB9++KG5z6BBg6iqqmLbtm3mPu+99x5VVVXmPkK0Vf4ZQmMOoZosjQn8uoyGk00zRL0c7OBBaKFMvFmqenIOYZhNZQLWIYx3kx1VhSQsGW1Af47sIb5WND0gVPWA0Jksr3sRN0bG1FBSUsKQIUPYvn17XMcRHBBitWJt6X1m3MZuN+cQSsmoCHbXXXc1+Jo9e7Y0k2nj2nctSwTuvPNOrrrqKk4//XQOHz7Mb37zG6qrq7n++utRFIU77riDBQsWcM4553DOOeewYMEC0tPTmTRpEgDZ2dnceOONzJo1iy5dupCbm8udd95Jnz59zK6jRUVFXHnllUyfPp2nn34agJtvvpkxY8ZIh1HR5lkbmUOoJkm2QFFVNIsl5EWag0W9HMwo9440IPIL4jRFCesx+WcI1TiXjCp6phbwnajG7Z7DZASEIT43RjZFzcoiAziWJK97ET8vvfRSg21TpkyJrItwK5hNZfxLRlu6kZEhtNslQyia1FwzmV27dnHhhRcmYFSitSQgDHLw4EF++tOf8u2333LKKacwcOBAtm7dSo8ePQDflZG6ujpuvfVWKioqGDBgAOvWrSMzM9M8xqJFi7DZbEyYMIG6ujqGDx/Oc889h9V68rRn5cqVFBcXm91Ix44dy5NPPhnfBytEDFg4uRiykSH01tUlcER+VBXNmEMYQUBolIMBvPjii5SUlCS2gYbX61tUnsgzhBa7HU+8S2j13wOQ1CWjxgmyI8Tn1Tx5zs4mHTgkGUKRIF6/LsLgyxS2mIn3yxBaZQ6haILRTOall15iz549/Otf/+LUU08lLS2NwYMHU1hYyPLlyxk0aFCihyrCIAFhkNWrVzf7c0VRKCkpoaSkpMl9UlNTWbJkCUuWLGlyn9zc3MgbSQiRxCyaZgaE1iQrGTUzUxGufZdsDTSU4DmEEXQZtdhscV+X0czUAiRRU5kG9JNqR4jBsnHyrGRl4QDqk2XubAytX7+euXPnYrVaKS4u5tprrwVg9OjRrFmzJsGj67g0I9vXTJfRBozPBLsdqz7/WzKEIpjRTOb3v/89X331FfPmzaOuro7f/e539OzZkxkzZnD33Xfz9ttvJ3agIixJe2FWCNE2WTmZIbSmpQHJkyE0ApFIM4TJ1kBD83hOBoRhZvmCS0bj2lSmsQxhEs4jNNZmTAlxf+Pk2aJXjLj8lrBor+677z5ef/11NmzYwLZt25gxYwaqqlLbAYLhZBbcZVQJcw6hGRB20OVDRMs+/PBDunfvzqZNmzjrrLO46KKLOOOMM7j11lsDKuJE2yABoRAiajRNazQg1JKk7MjiHxAmYQASNq/Xt2QE+rITEZaMqnEuGVVUFfzmEPoGFP+ury3Sg2QrmCfLzTIyLHpA6O4AAaHVaiUnJ4f09HQee+wx+vXrx7hx4zieLGuPJgljeki8NNZUpqUTPiP4szgcsuxEnG3cuJHLL7+cmTNnsm7dOi688EKGDh3Ku+++m+ihNUlRFM4//3xeeOEFPB4P6enpfPvtt3g8HtRk/DwXzZKSUSFE1Hi93sCAMMmayqCqaDZbaB33Yi0a9x+UIQznmJpfeVikXVcj5rcOoRkYer0ng8MkofgFgVp9PUqnTs3ub2QIrdnZQMcICPv27RtQRj1t2jR69OjBLbfcktiBJciECRMCN9TVoX3xBWXHjsV1HKrf+xv0pSRauo3L5fv89ptDGNKFENFqc+bM4cUXX6SyspIRI0awfft20tPTufrqq5O69NKYZjV16lQmT55MeXk5NpstoNO+aBskIBRCRI3b7Q4ICI2F6ZNmDqGqolmtYLMlPkN44kTrj+G/np+iRJwh1BQl7nMIG2QI41myGiL/gNBZVUVqqAFhTg4A7g6QJWtsrvywYcP45JNPEjCaxNu+fTtvvvkmFuP1fc01aB9/zNQ4LynV6LITLdzGU1+PlcA5hKrMIYyL1NRUCgsLKSwspKioiNNOOw2gTZVeXnnllaxbtw4Am03Ci7ZGfmNCiKjxeDzYOHlV2sgQaskUEOpNZaKZIRwxYoT5hzBk0cge+TeVCXMpjeCSUUscT/wUVUXTXyPJXDLqP6/SWV1N6qmnNn8DYyF7PUPo6QABoQg0e/ZsMjMzycvL8234+msAbr/ppriOw2gqY3QZtegZQlVVTwarQTz19aTgKxmVpjLxVVBQ4KuwsVp58803AZK29LJBFhzfdJGysrIEjEZEiwSEQoio8Xg8pHAyQ2jPyACScA6hzRZRQBjNP4TeEyfMK/bGiUC4Atbzs1haXmfMj5FBsNrtaFYrShyDdkXTzC6jSjJnCP3GFEqDGOPk2QgIVWms0uHceuutgRsOHQJg4lVXxXUcTWUIvV5v0wGh/hlgcTjMi3pSMhofjXW4j3XppcfjiSiT558Fdzqd7Nmzh4qKCj777DNcLhcOo9xYtCkSEAohosYoGTVOJmxGU5kkyhBisURcMtqgHAxfQDh16tSwj1VXXY1RgHjixAmysrLCPkaDDGGkcwjDzC62VsCyE0keELoAByEGhEaQrQeEWpJ0102E8vJyCgoKEj2MpKHW18e1i5/mt6wM6F1G8QWEdiPYC+L1CwgVfR/JECZWtEsvy8rKmDNnDpWVldhsNtxuN3l5eSxYsIA+ffqEdAwjC/6vf/2LBx54gIqKCvO9np2dTbdu3Vi8eDFjx46N6thFbElAKISIGk9QQGh3OHCTPBlCRdN82bAIS0YblIPpbr/99rCPVe8XELrq6yGSgNCvOUtrFqZX49x1VdE0lKCAUPV4kq7ttcXr5TiQS4gNYiQgNF133XXhl1G3YzXHjpGtzwuLh+AMoaJ3GXU1c+HFCAitDgfogYjMIWxfbr31VlatWkVhYaG5bf/+/UyePJl///vfIR8D4Omnn6Zz58588MEH1NTU0LdvXw4ePMhVV13FI488IgFhGyMBoRAiatz6CYVxddlms+EkeTKEVr+mMpFM1W9QDqabOHFi2Mdy+zWVcVZXQ35+2MdQvN6T6/lFmCG0OhwRr8sYKf8MoXHC6nW5ki4gVLxeai0WclU1rIAQo/lMkrzuY6l///4Ntmmaxp49exIwmuR15NAhss8/P27311iXUSvgbaYE1D9DaFyocXfgixrtkdfrJVu/YGXIysrCG0GFRlpaGsePHyc9PZ309HSGDx/OBx98QHp6ekTHE4klAaEQImo8eibQop9MWCwWXABJcpXZYmQII5xDGE0ev/ll7urqiI6heL1mYKVZrWFlCAMCwniXjGqa2WXUmG/qdblovJAtcSyqygmbDVwunJWVLe6vBAWEWrIstxJDNTU1lJWVNShtu+KKKxI0osR6/vnneeSRR7Db7UyYMIFf6dun3nUX744cGbdxeI2Ot34BIfiqOJq8jf75bU1JMTOE0QwIv/76a7p37x6147UnL7zwAg899BDnnXceV1xxBQsWLCArK4t58+ZFNdO2cOFCxowZg8PhICsri6qqKjweDw8//HDYxyotLWXUqFEMHjwYVVWx2+3885//5M9//jMzZ86M2phFfEhAKISIGvOEQp9UrigKboAkKRm1GusQ2mwJ//Dz+gULkQaEwev5RTqHUIvzuowWI1PLyRNVNQmbV1i8XupTUnwB4dGjLe5vzrfSmykpHSC7smDBAmpqaujcuXPA9rlz5yZoRIm1dOlSdu7cid1u54knnuDHwPOcDNDixfws1gNCi9+FlyZvY5SMpqSAxYIKuCO8qPHaa68FfK9pGiUlJdx///388Ic/jOiY7dmjjz7K5s2bzdLLTz75hNTUVC6//PKoBoSXXXYZ77zzDnV1dVRWVtK5c2dS9W7g4dA0jYKCAnbt2kV5eTlpaWkBmceXXnopamMW8ZHocyIhRDtinDxY/JoWJFNAaNE0XymUUTKqaaCE05sTnE4nH330EceOHSM3N5fevXtH1FUtIEMY4RIU/hnCcANCVS/pserlYXFdmN4vQxjKiWqiKKqKKy0Namqor6hoeX+vFy8nl1tJltd9LI0fP77R7UOGDInzSJKDxWIxm7YUFxfz3V/+klHAsaqqZm8XacfHphhz/4zlI5RQAkKjwkMfv1dR8ER4UWPatGlcfPHFDBw4EE3/XKqsrOT9999PaEC4ceNGHnjgAc4//3yuvPJK5syZQ3Z2Ng899BCDBg1K2LjS0tICSi+N4CpW6/mlpaWRpjd9C9fjjz/OM888w1lnnUX//v35+9//TkZGBpMnT2b69OlRHqmIFwkIhRBRE3xCAeBWlKRpXW41SkaN8Xm9ZmlUKEpLS1m6dCmXXHIJWVlZVFZWsnPnTm655RamTJkS1li8fvPLvBGuV9cgIAzjtlrQshNxzRBqmjl30Dz5TMLgyaqquNLTAXCHEBDi8eBVFDMrkyzNlDqKXbt2MW/ePOx2O7Nnz2awvhj8jTfeyLPPPhuXMYwePZp9+/bRs2dPAC4HugE3GPNK/USj42NTArJ9nJyr21wmXtVvY9MvaDgtFohw6ZS9e/fyxBNPUFZWxowZMxg0aBDvvfce8+fPj+h40TJnzhxefPFFKisrGTFiBNu3byc9PZ2rr76at99+O2Hj6tu3r7n80IoVKwBwuVx06dIlYWNqyqpVqygrK6O2tpZevXrxxRdfYLfbueyyyyQgbMMkIBRCRE1TAaGSJCfGVk0Dm828Wh5uQPj000+zadOmgGUnPB4PQ4cODTsgVP2uvEe6gLmiqqj6+LUwO4UGB4Tx7DJq8V+H0MhcJMk8U38WVUW126kH3CHOIfQADosFDyTN3NmOori4mGXLlmGz2Zg9ezZbt25l5syZfPHFF3Ebwz333NNg23nAgz/5SYPt0ej42BRV/8w1gjvjM9nTTKOjgDmEwAmHA7tf86twZGRkcPfdd1NTU8Pjjz/OokWLqAzhPRRrqampFBYWUlhYSFFREafpnV8jWQc2mhYvXtxgm8PhiEvp5a5du7jwwgtD3j8tLQ1FUcjIyODaa681K2T8s5my7EzbIwGhECJq/Bc2NrclWYYQm+1khtDjAf3kJxRpaWls3LiRYcOGAb55FBs3boxoDobqNzcn0gyhxX89vzCXncDj8ZU32mxocW6yoxilu5wsGU3G9vYWVUW1Wqm3WPCG2GXUq5cgexSlQ5SMJhNFUTj77LMBePHFFykpKWH69Ol4kuDzx9nI6yeaHR+DacElo/pnXnPvMzUoIKxLScERYYbQkJmZydy5c6muruaTTz5p1bGioaCgwMzEvfnmm4Dvop4az5L5BHrqqacCvtc0jaVLl3Lrrbc22UU72KhRo8zn8He/+x3gy2aed9555j6y7EzbIwGhECJqgpvKAHgslqTNEGpuN+HMICwtLWXhwoXMnTvXXOD54osvNkt8wuHfVMYb4VV4RVXNuXhYLGEtpaEZAaHVCgkoGSW4qUwSBoRWVQWbjXqrFTWEoF3xegMDwiR8TO1Zfn5+QLlmSUkJK1asoLS0NLEDI3DOsCGaHR+DBQd3ZkDYTIbQzCoaAWFqKmlR6pSb9eqr9K+ogEaWKWmtcEqFV69e3eD2NpuN9evXR31cyej3v/89PXr0YMKECSj6Z5XFYqFTIyXNTZkzZ475/6KiIr7++muzqUxGRgZWq9WcNyraDgkIhRBRE9zZDnwnxkoSXKHXNA0boPllCFW3O6wgqqCgoGFpTwSNaSDwxExtRUCoGqVOESw74cYXECZiDmGDgDAJXiPBrJqGZrPhtFqxhtBcwz8gdEtAGHeNlddNmTIl7HLuWPA2ElhFq+NjY4JLRo3PPG8IAaERRKqZmVj374/KeDB+B7ffHp3j+YlGqXCsmreEI1oNy5rz4Ycf8pe//IUXX3yRCRMmMHHiRP76179y3XXXhXwM/+VD9u3bx8cff8zx48cZMWIEn376Kenp6Zx11llRHbeIvWRbB1gI0YaZJaP+AaHFkhQBoaqq2PAFIJYQTo5C8uyzvgzdgQNh39R/jTo1wrIs/+Ubws0Q4nLhQc8Qxrlk1KJpKG2gy6iRIXTabNhCea14PHj1x+VVFBQJCIVObSbTlpaWRrdu3aIWDEIjAaEeWKjNvM+MLL1xm06FhQx3Ovnq008jHsexY8f47LPPOBbxEVpmlAr37NmTF198kerq6qQpFQ5VaWkpw4YNY/ny5WzcuJFly5YxbNiwiKpPmqMoCpMmTeJvf/sbHo+HsWPH8u233za5/2uvvRbwtWbNGsaNG2cuK3LWWWeRk5NDnz59zDmZubm5nHHGGVEdt4i9xF8SEUK0G8FXmMEXEDqS4A+zx+PBBnj8MoQep5NWXX9dvtz37/794NcYIhSq04mK76qcFmFA6L/Ae7gZQvQMYbrNFvcMoZF5g5MXD5KyZFQfp8dqDSnbF1AymiQXQkQC+b2nGssQxvSug4I7SygBYdDnt+OCC+DNN6nYtIlTe/UK6/7feOMN5s+fT15enq8jM1AB3P/GGwwfPjy8B9OCZC4VDlU0G5aFwmKxMHXqVCZPnkx5eXmT+7W0fEjv3r3JysoCCJiTGTw3ViQ/yRAKIaLGKIO0+l3p9ibJibERECp+AWGrM4SGCE72NKeTWsBD5AFhqzKEekdMI0Nog4AT2FiyaZqZsUj2klHFZsNrs2EJJSBUVVT/gDAJg9yOwMxKHYtlXioEfq9pLVqfNSEyAkIjEDTL5JsJCIODSLe+XqCrujrs+58/fz5r167lH//4B6WlpbwKvKZvj7aXXnrJDAYNU6ZMoT6Mz+URI0ZEeVThMRqWGVrTsCwcFovFLP9szN69e/n+97/PJ598wogRI7jvvvs455xzzN/j6tWrG3Ro7UhzMtsTyRAKIaLG20RAaEmCk30jICSaJaPG3MEIFm/WnE7MU7MIF3/2n4uH1RreFT63Gw++E4JIl+GIlE3TQD9RTeYuo0aGULXZsIbwGrZ4vSdLRi0WlCh0ixSha5CVqqykoqKC+++/P+pZqZD4vaYbCwhfeOEFHnroIc477zyuuOIKFixYQFZWFvPmzWPs2LGtumsj8DMCwXAyhHb98zu1c2cAXFVVYd+/xWLhyJEjZGZm+j5XgCP69kSaMGFCg22aplFWVpaA0ZwUzYZl0RTp8iHJMCdThEd+Y0KIqNEaCwit1qQICN1uty9DaLefzBC2ct5a+aFDFODL8IXbVkZzuXABmqJAhIGpRZ/j5vvGEt5agnrJKHDyGHEKCK2advJE1VjEPQleI8Fs+jhVmw1LKEG712tmCJMlM96RGFmpzMxMc1t1dTWjRo1KfEDYSLbq0UcfZfPmzdTU1NC3b18++eQTUlNTufzyy1sdEJrvJ6M0O8Q5hF7Apr8n0/VF0T2hLLkS5I9//COzZs2ivLwczetFAbrp2xNp+/btvPnmmwGBqaZpTJ06NYGjaqRh2csv+6YkxGAtv0ia1yTb8iEi+iQgFEJEjZkh9JtD6LVYsCRBpsSpzxe0pqRELUO478svKQC+/uILTg33xnpTF1VRGj1ZDEVwt85wS0aN+W7GfL5w12WMlJ2TTS7MOYRJGDwZGWXVbscSwrITARnCJLkQ0pEEZKV0R44cSVxWyi8gtDTyWZOWlkZ6ejrp6ekMHz7cnHcVleyKEfgZzZtCCAg1vWrArr8n03JzgcgCwqKiIl5++WUA6r7+mrRTTzV+EPaxomn27NlkZmaSl5cXsP32GHQ/bZWf/MTMrEZTaWkpS5cu5ZJLLjGz6Dt37uSWW24Jaa5iVlYW/WOwdIhIPAkIhRBRoxlNCfwzhDZb0gSE6fhOjIyTo9ZmCNNSUsDl4viRI2HfVnO7cSsKFkVBiTRDqGnmHEItzJJRze02A0LFPyCMAzsnT1CTvWQUux3NZsPWwmt4165dlJSXk+12c/+WLXTRS6UbWwtNxEZAVkrTUBSFbt26JS4r1UJA2LdvX3OBb6M00OVy0UXPzLWKXgFgN97j+vtNa+Z9ZgSEKfp70pqRAUS+TqrBdfw4aa06QvPCKb1tavH1iRMnxnCEEYjR38xoN69Zv349c+fOxWq1UlxczLXXXgvA6NGjWbNmTdTGLWJPAkIhRNQYAaEt7eSff9ViwZoESwo4nU5s6BnCEK6WhyJVL9GMpOkCLpdv8XKLpVUBoRFQKeE2lXG7ffcPJ8tE4xAQeo3mPsEZwiQMCI0SY9XhwNrCCVpxcTG3ZGdzem0tixYt4gyXixEpKWGthSZaxz8rlRT8Pl8sjXzWNFjTFHA4HI2upxguM9tn3H+ITWW8cLJJiNWKC1BDyI43x9XK27cklqW37Y3RvGbYsGFA65vX3Hfffbz++us4HA7mzp3L5s2befzxx6mNsFGaSBzpMiqEiBqjy6jiNx9BtdlaPJmOB/+A0GpkCFtZMmoEhO4ISqoUlwu3xYLLakWJMDC1qKo5Fy/cpjKa241qXCWOY0Do1ufiWYIDwiR4jQSzozflsNuxtzA+RVE41WKhu93Oiy++yHFgUWVlm1oLrT3RNI0bxoyhJAZdLUPlv9SELc4XxTT/Cz6cLONvLkOI240b32vZUK8oEa+Tah7WLyAsP3iwVcdqjFF627VrV7P0NiUlpX00Nony52JpaSn/+Mc/uPTSSxk4cCCXXXYZ//znP5tsXrN+/XoGDBjA4MGDWb16tbl99OjRgO/iQU5ODunp6Tz22GP069ePcePGcTzGFwFE9ElAKISIGiNDiN/C9KrVmlwBYWpq1JrK2FXVd5wIAkLcbjwWC26rtdHsQSgs+rIIAFitvgyhPqZQ7t9ogGIGlXEIXlx6+ZlFP0E1MpzNnqgmgKqqJzOZDodvkfpm5Ofnc9jlMoPsX+Tk0NdqZfv27XEYrQjmcbv585o1ZD/wQOLG4NeIKO5VEn5zhCH0OYTB70KnxRLxsjgGt1/J6XXXX9+qYzXGKL0FIi69rYnkMzweovy6MZrXbN68ma1bt/Lvf/+bRYsWUdBE8xojA7hhwwa2bdvGjBkzUFXVzAD27duXffv2mftPmzaNmTNnJu/zKZokAaEQImrMk3q/K7OqzdbiyXQ8OOvrseNrqW5kCFtbpujQT0K8EVwNVfQ5fJ5WBoRGhs0IwkMOrDweswFKPOcQGifJRkBo/C6Srcuo2+nEgh4sp6SYwX9TXnrpJborCpr+nKpWK1fabGGthSaix6mXcf8fiTvZd+snzccBaxifNc0tFB4qzePB/zJcKBlCRZ/X7M9ltUa0LE7//v3Nr7EzZtAfuATY9v77YR+rJYsXL26wFl5TpbfPP/88ffr04aKLLmLhwoXm9nHjxkV9XFGR4OkWLWUAlyxZ0mANyGHDhkkn0jZIAkIhRNQ0miFMkoCwXj85C5hD2MqSUaOMUI2g6YLiduOxWn0BYQSBqaZpvpJG/UTPKNP1hHry5vGY2ay4Zgj130NwhjDZuowaz6Nit4PDgT2EJT0Ur9ds8pMsr/tEmDx5ckLu1/9k/7cPP2xuT9TJvvEaqrXZIIws23XXXdfq+1aayBA221TGmNfsx2WxRHTBqqamhi1btrBt2zZWz5vHNmA7cMkFF4R9rGhaunQpO3fuZOfOnaSnp/PjH/+Y2tpatHCW7Imn1q6V20qSAew42kGBdXQ99NBD/L//9//45JNPSEtLY/DgwTz88MP06tXL3GfatGksX7484HYDBgxg69at5vdOp5M777yTv/zlL9TV1TF8+HCeeuopTjvtNHOfiooKiouLeeWVVwAYO3YsS5YsIScnJ7YPUohYMU42/AJCLUlOjI25a7bUVPNqeWszhCn649IiuIKueL24LRa8NhuOCMbh8XhwcDIgNAIsd20t9lA+QzweVGPJCuP3FYfSXuMk2fgdJOs6hMbrRXE4UFJSQg8IjRLYJHndx9Jdd93VYJumaWzZsiUBozl5sm+323lg9mx+DDyvjykRjNe6OzUV5fhxXC5XwHpvjbXv1zSNPXv2ROHOT1YAQGgBIS5XQBAJ4LbZIgoIFyxYQE1NDZ07d8bjFwzf20SXz3ixWCzmshrFxcV897vfZdSoURw7diyh42pSggPCJUuWNNgmGcD2STKEQTZu3Mhtt93G1q1bWb9+PR6PhxEjRnAiKANw5ZVXcujQIfPrtddeC/j5HXfcwcsvv8zq1avZtGkTx48fZ8yYMWadO8CkSZP44IMPWLt2LWvXruWDDz5I+OKoQrSG1kRAaEuCE2MjM2VLSztZMtqachxNM5vKRNIl1KI3dfHa7dgiCIaMdRWDM4TeEEsUlQRlCJsqGU22LqNGwyGLw4GSmooD37zC5lhU1VwXMpSlKsD3N+fyyy9n5syZrFu3jgsvvJChQ4fy7rvvtvoxxNrKlSsZPXp0wNfgrl3JOHIk9LmsUeR/sj919Gh+AYzCtxZhIhjvRW+nTpwCHPj884Cf+2fRjK/t27dzySWXtP7OgzKENr2LpNbcZ54+rzngMVitKBG8N8ePH0/nzp19Q/ELCAfGcR3CxkpvR48eHZDxuvzyy3nqqac41VgnMdkkQYfuSEgGse2RDGGQtWvXBny/bNky8vPz2bFjB5dddpm5PSUlpclJuFVVVTz77LOUlpZy+eWXA76JzoWFhWzYsIGRI0eye/du1q5dy9atWxkwYAAAzzzzDIMGDeLTTz8NyEgK0VaoRjDiHxDa7S3Ov4oHI+NjT009uQ5ha4IQvyAwkoYRFo8Hr9WK12bDGkHTBpfLRRpg0U/0/DOEoVD8MoTGnE/V5Yr5VUJjfMZaldYkXZjeGKdFzxCm4AvC09IaX1Ft/fr1/PLECexuN3evXs1ZNhs2TWtxPa45c+bw4osvUllZyYgRI9i+fTvp6elcffXVvP322zF4ZNFzww03UFRURH5+vrntX5Mnc/OJEzjfeIOUK66I63iMk/2ePXvirq7mcqAb8Msm/lbHmnHxIz07m4vLy/n3rbdy1ltvmT/3z6L5mzt3bhTuvImS0ebeZ1EMCAOO4VdBUV9VRWQLHITvuuuuY926dQHb7rnnngb7nXfeeQ3O/ZJGgjOELXn++ed55JFHsNvtTJgwgV/96leAr0z7zTffTPDoRDgkQ9iCqqoqAHJzcwO2v/322+Tn53Puuecyffp0Dh8+bP5sx44duN1uRowYYW7r3r07vXv3Nktp3n33XbKzs81gEGDgwIFkZ2c3W27jdDqprq4O+BIiWXiMgNCvqYxms/kW+E4w4wTf5tdUptmr5S3xy8RFEhAqXi9emw3V4QgpkxTM5XL5MoRBAWGocwgVr7dByWhru66GwqOf4FiTvKmM128JFYueIXQ2c3J23333schu5489erBt2zYeOXQIxettcT2u1NRUCgsL6dOnD0VFRZx22mnk5uY2aJKRjB544IGAYBDgYEoKxUDVtm1xH88999xjNrhw6RmK8/Bd2E0E4yLUMX3Bb9v+/QE/98+i+RsyZEir71vzqwCAk+83Wlh2whsUEGpWK5ZWvjf9A0JnDM5Z/BvYGF+XXHIJ2xLwGoy6JA0Ijexrm5uTKZokGcJmaJrGzJkz+d73vkfv3r3N7aNGjeInP/kJPXr0YO/evcybN48f/OAH7Nixg5SUFMrLy3E4HA0+6Lt27Wq+icrLyxv8IQVf6/LmOow99NBD3H///VF6hEJEl7e+Hg9g87syrdntIc2/ijWjbMmalhadOYT6SU414XUQNFj1DJ1qt2OPpGS0thYrDTOEIZeMer1meaPFr9zU3tyNosATlCFM2jmExgWElBRIS8MBVDdzcma1WsnWNFJTUnjssceY949/cMeRIy2ux1VQUIDX68VqtZpX1D0eT4vlqcmqk34xqPqbb2j4Fy5+PH4la4kqXzNe684BA9iVmxuXCy4Gze02O97Cyfdbc+8zxX9tUp0a4RxCf16/iyKuGPwuampqKCsra7Du4BVxzlDHRIxeMx6Pp1XrNBrZ1zY3J1M0SQLCZtx+++3897//ZdOmTQHbJ06caP6/d+/eXHzxxfTo0YM1a9Zw9dVXN3k8TdMCFnxVgiZvN7ZPsLvvvpuZM2ea31dXV1NYWBjS4xEi1rz19XgtloAPFs1ux6ZpoGnQzGs75mMzrlKnpIS2SHNL9MCrAiIK6CxeL6rDgepwRFRSa6ztZY0wQ2jxetH0P+RGhrBVcypDZASsNr300igZ1ZJgrUp/xnqJ1owMSEvDCjib6Sbbt29fDr/7Lqfrj2dM9+702ruX37RwAuy/2LPBZrOxfv36yAefQEZAeOKbbxI6Do9fIF6ToEoa473oyMjAlZKCJZ5LkLjdJ0vC8ZtD2NyyE3oZuz/VZsMSQdOsgGP4Pe5YBIQxLb1NAM3jwfxLGcUMYVlZGXPmzKGyshKbzYbb7SYvL48FCxbQp0+fRm/TUuMj/zJtvvqKy+fNo9ujjzLr17+O2rhFfEhA2IQZM2bwyiuv8M477wR0Bm1Mt27d6NGjh/kGKSgowOVyUVFREfABdfjwYQYPHmzu800jfzCPHDlC165dm7yvlJQUUozSDyGSjOp0NuhSh93uq033egNKSePNXBzZ4fBlfWhdAKSeOIEFX0CYGkFAaPV6UW02tBDWuGtMcEBo/OsNo2TU6IhpiWdAaJSMGuNO0pJRtx5Q2NPTUfXg1dnMyeySJUv471NPoRqPx+HgUoi4G19rrt4nUor+e3QneDqDf0B4IkHZCqOE3p6ejpqaijWC5WkipQQFhBabDRWaLRltNCC027G08mKNf9WCO4I1W1syfvz4RrdHo/Q2ETx1dWalhlZfT7Quo956662sWrUqIImwf/9+Jk+ezL///e9Gb9NS9jVgTuZf/wpbt3Le3r3JOydTNEnmEAbRNI3bb7+d//f//h9vvvkmZ5xxRou3OXr0KAcOHKBbt24A9OvXD7vdHnCF99ChQ3z44YdmQDho0CCqqqoCatzfe+89qqqqzH2EaGu8TmeDEwqMNusJ7iJpBkoOx8l1CFsxJpd+wltjs5kL1IfDqgdkWkoKjggCQv8SWDhZOhpyyaiqngwIjZLROMxXMUoxHenpgF9AmGQZQiPgtmdkYNXH6mrhZNamaWj641HsdhxJUCodb0p9PSMANcFdBr1+wVdtlALCcDvCev0yhFp6OvY4fgZa3W489sACcA8020k4oNGUwW7H2sr3puYfEEr3yRbV+11M8UTQcKwpXq+X7OzsgG1ZWVkB3e+DGdnXYI1mX43ljvx6aoi2o21egoyh2267jVWrVvGPf/yDzMxMcz5fdnY2aWlpHD9+nJKSEq655hq6devGvn37uOeee8jLyzOvUmVnZ3PjjTcya9YsunTpQm5uLnfeeSd9+vQxu44WFRVx5ZVXMn36dJ5++mkAbr75ZsaMGSMdRkWbpTqdDeagmB1HXS5ookNjPKh+AaGRIWzNMgsuvVveiZQUHBEEUlZVRbXZIMKA0AhOjIDQGmZAaPWbQ2iU0MalqYz+e0jp1Ml330k6h9A4EbPpJ/PQcnbDrmk4jdeW3d7u/8BOmDChwbbyb75hD6DFIBMUDtUvIKyLUkAYbkdYIyBMycxESU+PaL3RSFk9HrxB1UQtBYRWjwdXUCZIs9sjanrlz79k1BPHLGlb5Tx+nEz9/66amqjN6164cCFjxozB4XCQlZVFVVUVHo+Hhx9+uMnbhJx93b4dbrzR9/9Dh6I0YhFP7f3vVdiWLl0KwNChQwO2L1u2jGnTpmG1WikrK+P555+nsrKSbt26MWzYMP7617+SmZlp7r9o0SJsNhsTJkwwF6Z/7rnnAjrHrVy5kuLiYrMb6dixY3nyySdj/yCFiBHN5Wp4hTlJMoTmSUlKSkjzaVpiXOmuT03FEcEcG6uqgt3uyxBGkEkyF3g3Mm3hBoSqiqoHY8bzEdcMYUaGbxx2O25I+OsjmMcvQ6jpQbe7mZNZr9eLBnxSV8fRDRv46sQJetLyvPCmjBgxokHL/GSzfft23nzzTSx+F4E2r13LUqcTopjZiITqd//OysqoHNPoCFtYWGh2hAWa7Ajrra9HBVIzMlAyMpqsJGhtg4/G2NxuvH7nJAAuaPZ95j+v2ORw+D6rWkFzOjkBZCABYSj8S9Odx4+TEaXjXnbZZbzzzjvU1dVRWVlJ586dSU2N0iIg99138v/S/b5NkoAwSEutctPS0nj99ddbPE5qaipLlixhyZIlTe6Tm5vLihUrwh6jEMnK6nI1KFMyFkxP9AK7ZkDocGCLQsmoMUfK1akTqRFkIGx6QGgseo5fxi4URgbLHhQQqiEGdXavF/QMghEQeuLQ9MLI3KTo5UVWq5UT+EoNk4nx/DoyM1H14LW58q3nnnuOPwDnfP01Z23cyKcHD7IU+MXy5UybNq3J2zWWZdM0jbKystYMPy5mz55NZmYmeXl55rYDmsbt0OpGJK3lHxD+9c9/Zsr8+a0+ZrgdYVWnEze+uf9KRgapmmZeIIikwUc47HrTKn9ORWk2UPefV3zyQHbfZ1UraE4ndYpCmqZRUVpKZUkJOaec0qpjtmcuv6DZE4NMe1paWpPrqUasd2/41798/5ey4DZJAkIhRNRYXC68eoBibjOuQCZLhtDhwGa346F1GULjD7U3M5PUCDJ8dlXF63CY3TZxOiHouWuOUTLq0EsvjeOEmiF0qCqa/ruJZ4bQq4/bpmcvFEWhnsB5RsnAaJXv6NQJrxEQNpPd+NOf/sS/gK8HDOD8Bx5g+/79fHfPHq744x+bDQgby7JpmsbUqVOj8jhi6dZbb22wze7xMBHYmeDfp+YXkNZ8+WXImdrJkyezcuXKRn8WbkdYIyDMsNshPZ10fAGk3W6PqMFHOOxerzmf1eCyWALWTw1mNLoKkJLi6xLdGi4XbosFi9fLiJoa3rrqKoZt3dq6Y7Zj/nOVW5q3nIyqDhwgu+XdRJKRgFAIETU2t7vBVWkjc5XoDKFmBDspKVitVl/5VCvGZKxzpmZn40BvFR5G2ZdDVdEcDhQjIKyvDysgNMoXgwPCkDOEqmouam83gsk4BISaHmgpfo/VpSjNnqgmgnEBwdGpk1l611yG0OFwsA0oNF7vDgdb9e3NaSzLBr5lj9oioyzSnujfZ309TiAFyMe3RJN/Q4277rqrwU00TWPLli1h31VT5Z5ePSBUFAUlI4N0oL6+HrvdHlGDj3A4vN6T81l1LQaEetWCPyXCZXECOJ14LBZfFQRwxoEDrTtekF27djFv3jzsdjuzZ882G/PdeOONPPvss1G9r3hw+33OtJUS228++4yvgI+B/p99JgFhGyQBoRAiamweD1rQSYjR9ERzOqPWPjsSml+G0GKxUA8orQgIvSdOoAKKvrSMu6YGR9A6WM1xaBpqSgoWI5Crqwur7bMREKbowYq58HSIjylF0yABGUKtthaVk51NwXeimnQZQqNDZGYmnhAyhIsXL+bPF13EptdeI2XgQJz79zMU+P0TTzR7P41l2SBwvdu2JFU/6c9KcMko9fUctVopUBRO8Xg4cuRIQAC2cuVKVq1a1eBmb731VtSGoDmdePSspBEQHqmtJTMzM6IGH+Gwq2qDgNBttTa7rp21kTmESkoKdiKfCwuAy+ULCHWRLNPTnOLiYpYtW4bNZmP27Nls3bqVmTNn8sUXX0T1fuLFf65yNLuMNiUa85WP7NtHDVAD2BL93hcRkYBQiChrruSoPVNVFYfXixo0Sd0IVPzXVkoII1ByOFAUBaf/tgh4T5ygnpNz4eorKkIPCDXNN5/I4cBidLCsqSGcFUbNOYR6sBJuhjBF08zspD2OASF1ddQrCul+J5duiyWqCzBHg9GVVklJMZ/j5k7OsjMzWQJ8/NOf8t3HHmPXrFlc+NhjHNIzuB1FiqZxBMj3enG7XNhbyJDGilJfj9NiwZudzc++/ZYjR45w9tlnmz+/4YYbKCoqIj8/P+B21113XdTGoLlcZkBo0V8Hzqoq6No1tg0+gBRVpSboeB6rFaWZ95lNVRsNCB2Ay+WKeA1kxe0OCAidYcyVDun4imL+bl988UVKSkqYPn06niTrXBwq/zmEZz39NKxfD/o6160R0/nK1dUcB6pJguoAEREJCIWIUDRLjtqD+vp6UsHMOhmMDKHr+PGEBoRmyah+gupSlFYFIaoeEKbpQWB9RQVZod5YD0Qt6elmQOiqrg4vIDROGvTHE05AqKkqafr9g1/JaBzKejUjIPTb5rZYmj1RTQT/Oad2/WTe28yV73q9hNgIHo1y3Hhc4U+U559/nkceeQS73c6ECROYM2cOqZrGj6xWNnu9fPbf/3L2xRcnZGyK04nbakU7/XQu/vZb/qEvIWV44IEHGr1dcXFxk8dcv349c+fOxWq1UlxczLXXXgvA6NGjWbNmTYP9/QNCq57Jd1ZUBOwTkwYf+CoQgj+LPTYblmbeZyleb4OlgSx6QOh0OlsVEPqvTxvtQC0/P599+/bRs2dPAEpKSlixYgWlpaVRvZ948f/MUFQVPvssKseN5Xxl5cQJbDk5FJ17Lqnvv9/q44n4k4XphYjQypUrGT16dMDXmDFj6NKlS6KHlhAnTpwgDU7OidPZjAxYok+MjWBHvwLuVpRWlSlqtbXUAal6QOisqgr9xvr9Wv0WPW9pjbsG9290ctMDECMQ0UIIrIxGBWZAaHQojUNAqNTXN8gQuK3WhM8xDaY5nb5126xWFP1EWG0mIKzTf/9G8GiU4TpD+L06nU527tzJhg0b2LlzJ64key6asnTpUnbu3MnOnTtJT0/nmmuuAcCrP/b/vvRSo7cLd4H3SCguF26rFeXuuwGo37+/1ce87777eP3119mwYQPbtm1jxowZqKpKbVOfbfX1vuw3YMvyXS5yh/M5ESGXy0UqYA3KTnvsdizNNNJKUVXz88Rg0bsgO1txwcYMCPXOrLYoX/x56aWXzGDQMGXKFOrbaKaq0b+VrW3sw8n5yj169DC/evbsGZX5yrbaWiw5OWSdeSa5qtqqDt4iMSRDKESE4lFy1JbU1tb6AsKgEwojc5XoTIniduO2WLDrV+zdLTRYaIlWV0c9kK5fAHCHsfaSVleHgm/Rc5t+0uYOt1W3kSHUb29PTfU1ygnhMdVVVJCCLyAFcKSk4CE+JaOW+npfcws/XqsVS5IFQWpdHW5F8f2RNJYpaea5deq/f6PJj/FvfQu/19LSUpYuXcoll1xCVlYWlZWV7Ny5k1tuuYUpU6a0/oHEkMViwa5fYCkuLqZHjx5MfPlljtrtnLBYsDfRLTPcBd4jGpvLhdtmw37GGQCoBw+2+phWq5UcvUT8scce47nnnmPcuHEcbyLoV+rrfRc7iCwg/Prrr+nevXvY46ypqSEV3+eLP6/djrWZE/U0TQto9gRgSUsjBahoxWel4vH4AsJhw3i5Vy8GRCE4D0ekz2OiePXP9uOAGdLX1YXVdKwxDeYrX3UVnHoqE//wh1YdFyCzvh5P585knnkmVuDw7t3kn39+q48r4kcCQiEiFEnJUXtWW1tLKphNUgxGhtCT4InmisuF12o1y1ZdLcynaYl64gR1QKa+npYrjBM9ozzU1qmTGZSFu96UUluLF7Dq2Su73c5xfXuL968HKWZA6HDgoXXrMobK4nTiCurK6LHZki4g9NbV4VIU0sBcr7HZgFB/Ts2AUH9unS0EhE8//TSbNm0KKONyu90MGzYs6QPC0aNHB5TqDbj4Yv4A3JyVxVduN2lHjjR6u3AXeI+E1eXCY7PBqacCYPn661Yfs2/fvgGPd9q0afTo0YNbbrml0f0VpxO3/lq36w1tjIAwuPw0Sw8Y77vvPu6//340TaOkpIT777+fH/7wh2GNs6aqis6APSuwiF2123E08Tmser1kAJagxeyVjAzshJbpborF4zGXs1DT0kiJ4dy+1157LeD71jyPiWIseVOtKHQyMoPHjrU6IGzgn//0/RtiQNhkfwRNo7PbDfn5ZH/nOwB8W1YWlYDw0KFDrT6GCI0EhEKIqKitrSWDhmVK9hA6NMaDze32nSDqPC103GuJpmeQsvSMQTgZPiNDZ8/MNDOE4T4/yokT1FksdDLmKFmt1EKzC08b6isrgZPljXZ9XcZQG9K0hv9JssFrs+FIshIjta7uZCMMPUPYXIlxcEDo32yoOWlpaWzcuJFhw4YBsPzZZ5l/002cpX+fzO65556A751VVZwH/GHyZGr/9CdSmnhPhLvAeySsbjdemw30km712LGAn7/wwgs89NBDnHfeeVxxxRUsWLCArKws5s2bx9ixYxs95pIlSxpsGzZsGJ988kmj+1ucTtx6BtUICL36c2KUnzocDubOncsf/vAHhgwZwrfffsv27dsBqKys5P333w87kKk9fBgLYA9aykRNScHWRDBWV1FBBifXBzUfg1HBEEYFRDCLx2MuR6Slp/vmKsbItGnTuPjiixk4cCCaHkxF+jzGWlOZS2Npnhq/pTqoqAD9wklUNFOCGm5/BK2mhjRNw9KtG1169waguon3RHMaC+bnzZsX9nFEZCQgFEJExYkTJ8jjZNbJYASI3gQvsGutr8ft1/HQa7WitCII0erqcFmtOPQTPU8YAaEx39CemXmyYUmYAaGlro56q9UsKVIUhTpFQQvhOEbwavPLEDoJfcmK1rDV1eEN6jzpdTiabXaRCFp9ve+iAZgZQprJchuZn5TcXABS9VJilx58N6W0tJSFCxcyd+5cvF4v5du2cTVw/dy5rRp/IhgNU2yZmZzIzCS9iQxhuAu8R8Lm8VCfng4pKbgVBTUooHn00UfZvHkzNTU19O3bl08++YTU1FQuv/zyJgPCcFlcLjx6QOgICgiDy0979erF4sWLqa6uZsSIEQwaNIj33nuP+fPnh32/dXoDHbtevWDQmgkIa7/91hcQBmUVjWY4rZn7aPV4UI2/C+nppKmqLyCJdBmLIP7Z1t/+9rccOnSIsrIy9u3bx5YtWyJ+HqMpnMylqgeEx/2fnxYuLIXKXD7k6FHKgTRosGZguEuyHP/8czIBR2Eheb16AVATQVlwY8F8VRzm3AofCQiFEFFx/PhxMgGrfkJsMK6Mq+HOkYsymz7HweC12bC1JgCqr8dts5FinOiFEfAaAaEjKwu7seh5mAGzpb6e+qBMW73VihJCaW6dni1x6Cd/DoeDKojL4vCpTif1QQtyq3Y7tgRfMAhmqas7WdqqKNQqCpZmnh+PHvgZS48YAaGnhYCwoKCAxYsXm98/b7FwHfC/KJQ4xpuRebZlZeHJySE3zHl7TS3wHgmbx2NeeKizWiHo8yctLY309HTS09MZPny4uUZhVMfgdqPqJfQp+uvCuHAUXH7685//nHPPPZef//znvPHGGyxatIjKFl47TXF+843vPoPmtysZGU2Wa9YdPeobcxMBoacVGUKr14umP69KRgZW8DWRirBrabDgbKvb7Wbp0qX07duXCRMmRPw8RlNYmcu6OjyA2z9jHoUpF48//jjPPPMMZ511Fv3PPJO/AxnA5GeeYfr06eZ+4fZHOLFuHRmA48ILsaSnU68o1Efw+bV3716eeOIJysrKmDFjBoMGDWLz5s1tdj3JtkYCQiGiLBqLvLZFx779lmzA261bwPaUjAycJDYg1DQNu8uF6jcHw2u3t6pM0VJfj8duN7uMhhPQGQ1IUnNyzIAy3JJRS20trqA1w5whBoS1egahk16uZLVaffMP4zDPM93ppCYoi+xJSUm6klFbfT0uv0xmvdXabEDo1X+nin4CbWQKPWFe4a5WFNA03B9/HO6QE87IEKZ27oyam0t2An+nDpcLTQ/G6h0OrEHvz759+5plqytWrAB83Tlb6hLtdDr56KOPOHbsGLm5ufTu3RtHE2st2txu6vT3d6r+ejBeJ02Vn/7vf/8DoLq6uslS1Ja49MxsWkFB4A9ycshsolzT+N059Kyl+Rj0ANHbis9vi8eDpgd/5hzFEyeiFhA21uxnypQp5OXl8ac//an559HpjNo4mtNYsNNU5lKrq8OpKL5Mqs5TXd3qE/ZVq1ZRVlZGbW0tvc48ky8AO3DZ888HBITh9kfQ3nuPj4DOenbwuM2G+/DhsMeXkZHB3XffTU1NDY8//jiLFi2SDGEcSUAoRIRiushrG3S8vBwrYA26quhwODgBaAnMAJ04cYIMfPNXDF67HWtrOue5XHjtdtL0E71wAl6jAU1KdjZpmZmohB8QWuvq8ASdyDhtNlJCeExO/Y91pt+clBOKgjUOnWA7ud1UBM1T0rKzSUuyq8A2pxO33/PrbCEgNJcB0UuAjRNfb5iZlVSLBVQVde/eMEeceGZAmJuLrUsXOmmaGXTFm8PjMYNzZ0pKg9e2f1bWvI3DwUtNLJUB4XeEtXs81BpNn4zXQ4ifg1lZWfTv3z+kfYMZAWFG0Pw0S24u2ZqGx+NpkAltKiAMnvsYCavXi9cICI055rW1EFRNEqnmmv00+zx+/jmcfTZs2ADDh0dlLE1pLNhpMnNZX49LUajzm+dXf+wYnRrfO2RpaWkoikJGRgbX/uAHOPTS7da+Pz1HjnAE6KOXKNelpaEFzdkNR2ZmJnPnzqW6upodO3bwgx/8oFXjE6GRgFCICMVykde2qM7oBhZ0QpGSksIJOLlMQgJUVVWRQeCSGJrdjrUVJzl2pxOPw4EjNdUX8IZxLI9+8pWSl0daejr1+LqWhsNRX4/brwQWwG23kx5CQGicMHbSOzAC1CoKWXHIEGZ5vahBJaO2Ll3oFMPOg5Gwu1x4/QJXp9WKtZl5juYcNeM1ZqwLGeaFkDz9JNDy1Vdh3S4ZuPSyw7T8fFJyc8kAjh49Spegi0RNiWZ1RarXe7LcMTUVWxQ+fxrrCOvxeBg6dGiTAaFmLA5vsVBLfColavVyveCmMrZTTiEVOPbNN+T6vfcBqvXXW3bQ9mgEhA6vl3r9ebDqGUe1piZqC2GH2+zHtHu3798tW2IeEBr8g50mx1dfj8tq5ahfhjAaAeGoUaPMCzSPXH89rF6NCygM+p2H7dgxKoFcPcB3d+qEpRUlxoasrCz69evX6uOI0EhAKESEjEVe84L+6EZjkde2yJi3QlCQkpGRQTmgJLBktLq62hcQ+s2PUR0ObK3odudwOnHpV7tPKApqGCf+rm+/BXwnXylpadRystV4qLKcTlxB8308dntIiz57jh7FzckOsOCbZ5UT6wyhppGtaWhBrxHHKaeQpWk46+tJMU6gE8zhdqP6jcVlszX73LqMpg9GFtrhwEV4GUKPx0Nn/TVp08t62xJjvmTaKaeQqmcLKr/6qkFAGOvqCq/XS7qmYTWCmfR0HFFoyhHcEVbTNDZu3EhqE69Zh6qC3zI89RZLi58TX375JW63m9zcXPMEO1yer7+m1mIhPWiZAof+e6g5cKBBQHhCbwLSRS/7M5hzwFtR4ZHh9VKvB+dGCaqzooK05m4UD8bnXVDpfTw0l7lUnE5cFgud77gD9Ex2OMsaNWXOnDnm/6u+/pocwAHcPH58q45rqa6mLjXVzDSqublkl5efbGAj2gQJCIWIUINFXnUTJ06M80iSg9voKBiUIczKyuJzID0KVwwjVVlZSScCGyZ409JIa8Ucp1S3G49+wlVrsaCEExAePUotkNm5M4qiUIFvmYNwZLvdVAU9166UFBwhZELUykpqLBZy/f5YuxwOLDEOCF3ffIMDUIIuoqR364YNKN+3j9P0dawSzeHxoPkFzC67HVszrxd3RQV1VitpftmjeqsVbxgnctXV1Rh9ITP0iwZtifFYrdnZZHTtCkDlwYNw4YUB+8W6uqKqspIsTjb4UTt1IrWRBlLhzAeEhh1hT3z8MX0cDlZ8+GGj+zu83oCF3p0WixmEPP/88zzyyCPY7XYmTJjAJf/9L/PfeIP/qSpXXnkllZWVVFRUcP/99zM8zOyV9fBhKlJTSQ86GU/V53fXHDgAAwcG/Kz+4EFUwBb03jTnPkZ4Qc/tdtMJOBo0t7b2yJG4BoSNZZ+/+eADugK7//tfiuI4lpZYnE7cViuDFy3i45tuomvv3q3q8tqY6kOHyNH/71q/Hr7/fdDfs+EuyWKvqTEvjgJ4zjiDH3z4IccfeohOQUvThOLYsWPmezKaTZ5E8+SZFkJEhdcoGQ06obBYLDitVlITOIewvLycXpzs/AhAdjbprShTTHO7sehXz+ut1pDW/zN4Kys5riik6yfETkVBCyMg1DSNLqpKRVADjNqMDDL1sr1mVVVRa7fjn39wp6S0ak5lKI6VlVEApJx5ZsD2DD1bcWzv3qQICFVVJdXjCVik222342imK623qgqX3R5wkuu02xssd9CcyspK8oADikL3ykrfayrai1HHkBn8ZmSYAWFNI90GY11dUfHNN+QCDiPD1qkTGaqK2+3GrmeDwp0PCIEdYWtqatielUUPfXswTdPopGlY/C5COW0283Ni6dKl7Ny5E7vdzhNPPMHEv/yFj4BrL7uM0tJSwHeBYNSoUWEHhKnHjnEiqHoAIPeccwCo1BvX+FMPH6bKaqVz0HyyFGP5lAgvUJw4cYJMMD8r0/Xfee2339J8+57I+GefjbmSTWWfv/3oI7oCh3fvTqqAEL1hGUBmVha1tG7Zj8bU+i0JM/yPf4TXXoMDB4Dwl2RJqavD5tdMLm/MGHj1VU6sWhVWQPjGG28wf/588vLyzPfkt23wwlhbJQGhECIqHIcP47LZzKvy/lwOByQwIPzqq68YDKQWFprblJwcOkW6ELamke71Ytcfq9NmC6shi1pZSa3flU+XooTVVrzq6FE6Axb9pNtQ36kTWSEspeGoquJEUEMab1paVOZZNadq924KgKyiwNOvrB49fD9PkkYqx48fJwMCSnI9KSnYmjkps9TU4AoqHaxNTcUWRkBYVVFBD2DtaadReOAAR9av55Rx48IdfuLU1FCrKKRbrWTpQf4Jo5TcT6yrK2r0cts0PfiwZGeTiS/AMrqIhjsfMFh5eTmFwOmAq7YWR1DgfryykmzA4hf0umw2FP2ii8ViMYPT4uJinvnlL7mKk2sIAhw5ciRgfKHKOn4c19lnN9iep2dqjzcyd007epTjqak0+PS22ahSFNQIT8yPHztGDmDVqxk66WWrdVE80ffPtu7bt48dO3ZgsVj46U9/yl/+8pcms8/H9QDIGspFtFbyXyuxuLiYa6+9FoDRo0ezZs2agH0VpxNVf21kZWXxDdFvylZ/9ChOwPwr4LdETFhLsmgaGS4XKX4XRfKmT2frjBl0qa+na8NbNGn+/PmsXbuWTL8LcQcPHqTQ7++2iJ1ozekVokNyOp3s3LmTDRs2sHPnTlxxWNg7GWmaRnpFBSc6d250seG6lBTsCQwIvz54kDwCAyhrbi5pgBpBVkyrr8eOrykM+MoJreGUfNbUUO83b8VttaKFsTD7kQ8+wAKk6Vf8zXF16UK619vieoKZNTVUdwpsUeDJyCAtxovD1/7vf6hAXp8+AdtzvvtdAOo+/zym9x+qiooKcvA1uzFoGRk4mnl+Op040WB9xbrMTDLCeN2fOHgQK3DG1KmowP7XXw9v4AmmHT/uW/OPk5ml2gjaz7eWGRDq8xgtnTuTSeAi18Z8QMOfevbkiTPPbHI+YLBvyss5DV/b/q/ee6/hGPRgw+43f9Jtt5udakePHs2+fft8P9A0XgAygQNffcXAgQMZNGgQs2fP5o9//GNI4zF4PB5Oc7lwN3ISrXTqRIXFgreRCy9pFRXUdmq8bUmV3Y4lwqCpTs9EWfWLZ5l64FAfpYXW4WS2defOnQwfPpzi4mJOOeUUUlJS6NGjBz179mw8+2x0Vo3DdAZjrcQNGzawbds2ZsyYgaqq1DZyITGlvh6XPve0U6dOvmZEUf776aqo4BjguuQSc5umXyA1lmQBWlySRaupwQZk+L/eFIXPc3JCq1bxY7FYOOKXuQQkQxhHkiEUIkKRlBy1V1VVVXTzeHA10U3wREYG6QlsKlO1d69vMeRTTjG3GXNljn/1FVlnnRXe8Q4cIAdI0wNMl8MRVjClHD8esKRBndUaVnau+oMPAMjq2zdgu8NoFHHkCDRzVTX3xAkOBpW51WVnk7NnD2hao0F9VPzvf3wJ9Ahqh+/4/+3dd3zV1f348dfn7pGbvQeEvQSUjVgRFbd19mfVWm0dxYli+7WiVdxWba11g1ass2oVhSqCIFOQFSBsAtl73z0/5/dHbq5JSCBASEDO8/G4jySfee7NuZ/PeX/O6t0bFQgVFh6b8x6m+qoqegP2FgNvqLGx2Dp44BMIBIj1+wm2KTD54+KwHcbgML7wU/q0ceMo1GgIbN16+InvQWpjI97mWoRwcHGkTQ2PhjtcK9ncbFUfF0cUUNAiIGzbH1BfWMgY4L3Fizt1joa8vEjz4IacHAgPNNOsufapZc1JyGCINMue2aIpnVpXxxBgCVD46KP0/tOfOv9m26gsLCQLaGgzOEyzGqsVQzsj2CY7HDg7aK7tNJkOWjt+MM5wV4Lmh2cxKSmogP8opiVoq2Vt66effsp3H37IhRdcQF2LoLO92ufmUaat3TDdTntzJV522WU42wn0LD4fgXATTK1Wi0ejwdDF989QXR1OrZa0lSt5ftgw/rRvH7X5+ST263dYU7K4S0uxApY213R/TAzmw7yez549m/vvv5+KFgPStG1WLh07MiCUpCN0tE2Ofk5KS0sZDKhtaqyaBePisPZATUEzT/ONqUXAagwHh46SksMOCGv37SOWnyZ295tMxB7GE1xDY2Or4MFuMJByGAGhb8cOVCB5zJhWy43h9+HbuxdjRwGhECT5/eS1udEGEhIwCgGNjQcMDNRV9Pv3U2Sx0KdtMzi9nlqtFhEe6bCnucL5pdVnmJREXCjU7sh5tbW1pABKmya8mrQ04rduxev1dqrmKRAuPFuzs8mLikLbohnXiUDjdOJrftAR7r8XbPPE/2AqKira7Y93uALhfovWcFNkQ0JCUw1hi3nfWvYHrCwvJyX8XbZXV0MHwVRLnhb98Oo2bDhwfTjoMrUsKFssKO18HmUbN9I8I2hdbi69D3n2jhUtXkwGEDd+fLvra1JSSGnu7x2mhkL08vvZ08E1w2O1YjzCgKQ2XAuaGJ4jMNInrqM5+I5Ac21rdnY2qCrnXn89KRddxJ8O0f/WEG7VMTAQQJx/PsqHH0I7tWBd4WBzJbYVFQhgb9Fs0qnXk9DFAaGoq2uaI9No5KqZM+Hmmylcv57Ew7wXNuTnNwWEbUatVRISiNq7F1QVOtnseciQIXzxxRetltnt9kiTVenYkk1GJekItW1ydKghyH/OSgsLGQQY29RYNTNkZhIdCDTdHHqA0jywRYvCZvMNzN7cbOsw1GzfDvzU9NEXFYX1MJqe2txu1BbBg8tkwnQYAaF2+3b2a7WY2twoLSNGANDYTgG1mVpeToyq4mlT+DOECyqinUFAukpieTm1LWppW6qLi0NznPQhrA33sYprERhoU1KIB+ztNHWrrq4mDdC2KRQZ+/WjF1DUyfcVCtdsGdLTccfFYenCQnN3sDideJqbHRqNuLVaNIdRE/Tb3/62S9IRCtfKasPfMVNSEjrA0UFwWpqTE/m9duPGzp0j/D91Aud89BHr//WvVuubA0JrZmZkmRITg7Gd60RNi5rg0957D9oZ9KWz6hcvRgUyL7mk3fXO/v3p73JBixYNhatWkQCY2zxgauZPTCT2CAMSx969AMSEHxZqNJqmPold2G9v5syZkUBLDV+/hn/9NQsXLjzofmafD7+ioAeURYtwhCdqPxZefvnlSBqbdTRXYtu5Wl0GQ5d3uVAaGgiER1FOD9+3KzrTIuH99+GJJyJ/Nobvn839wJvpkpObWuX04Oji0uGRAaEkHaH33nuPL7/8kkmTJjFhwgTOPPNMFixYEGlzfzJx//gjJsD2i1+0uz6qb1+0gL+Hajxiq6sJabXQ4qaVefrpANS2KAx2VmO4wJYSDgjVhARiOtlk1OFwkBwKoWsRkPmjo7EcRrOlmP37KWxnjrKho0dTCNStXt3hvls/+ACAzAsvbLU8KVwoaNiypdPpOCw1NaS63TR2UPvi69ePtNpaRHhi9p5UFw74zS3yiyEjAw1Ql5d3wPb1+/eTAhiGDWu13DZuHGagfO3azp24uhoVID6eQHIyscd4kJ+uZnO78beoXXYajejaCWrHjRt3wGvs2LGsW7euaxJSXU0QIjXdzU27PR0033Xu2BH5vaGdZnHtUUpK8CkKy8I1PL4PP2y1vjYnhwCQ0uIhmZqWRkowSKDN9CX28PXkoyFD2AQsvPXWI+6Tbtq0iQKLpdXopq1MnYoFqPnPfyKLct94A4CMq69udxe1Xz96+3yoRzBvqz8cOCstHpbUGY1ojlGLkaoWeajl51fR5n8fCASICYWoaVGDu6+TzYWPJVVViRWi1Xy+brP5sB4Ydobe5SIUDjqbB1ur3737oPs47Ha44QZ45JGf0hZ+8BHXZuTouHBNo/8EnE/1ZCUDQkk6Qs1NjlavXs3atWtZuXIlL774Ypc0eTrRqMuW4QP0Eye2uz4lHCjmLVjQjalqUl1dTW+vF1dKCrQYJS0mOxunouA4gsmw3fn5+AFduLZLm5JCjKpCJwpMhXl5JALWFk1zQvHx2Dpbw+hy0a+2luqBAw9YlZ6ezi6rFc369R2nffFi6oAxbfrUZJ5+Ok6gbuXKzqXjMAXChS3DWWe1u1495RQGC0HNcdCPUOza1TTya4ugPS48MmptuP9mSzXhzyxu0qRWy5PD77Xy++87dV5vSQl2rRa0WpTMTJKCQcQRFMJ7SmwgQKhFkzuPxYKxnZoNh8PBDz/8wLp16yKv9evXM7bFABdHI1BWRqNeH2mqZujVC4BQBw+kfOEgfzlw2qpV7Joz55DnMFZWUmsycclrr7E6NpboNjU9gZ07qTKbUVoMHqXNziaDpiaqLbn37uVN4DmDgf9TFL5Zt4533nmHKVOmHNYDRhEMMrS4mOKDNHkdfu217AGK/v73pn2EQDdvHvtiYkg65ZR299EPH04UULJmTafTElFaSqNOBy1azrisVvRd2IewpeoW175NLa5lbWufq0pLSQTsLab08O7ceUzSdDiqCguxAsYW0zgEbDbMhzlP7aGYPB6U5u9qQgIurRYlnIf//e9/M3z4cEaNGsWzzz4b2eeyiy766QDhKZu8eXn4gMQ296PU8EBhZUdwf5V6hgwIJamrrF0Lx0kfqO6WmZPDnrQ0MLc/1fCwyy4jABQdognPsbB9+3YmAGLUqNYrFIUamw1/i9qBzvIXFNBgMkUGX9Gnp6MBfJ1oblm7di0aIKZFetTU1KYpMDox8l7Dp5+iFwJLB9MReMeNo1d5OcEOBvNI27KFTdHRKG3mGxs0ZAg7FIXgkRT6OsH1/vtsA7LPPLPd9boLL8QINHz55TE5/+GIKimhKi4OWnxGyeF0u9tpUihWr8ajKBjCTXabaXr1wq3V4tm0qXMnLimJ9B0y9euHAbDv339kb6KbNTY2kqSq6FvUuPhstnYH7Hj66adxtNME8eGHH+6StOjKynC2rCELB4RKBwGhKCrCDeTOnEkD4Hr11UOeI6q+nsbwOVwZGcS2+b7FVVTQ2KZ5dNJpp2EAdrZ5QODfvZs5Wi0bN23ijjPO4K8+Hy//4x8sX76cN8K1d51RMHs2qaEQuhZTLDy27LFWte6paWlsHTuWEVu2kPP668yYNInzvV78B2muOyh8vNxOfC5tWaqqqG/RHw7AGxeH5Rg1JbzmjTcYB4wDbr/4YsYNH95u7XPtjh1oAN2YMTB3LjsTEzEc437unRmVvCY8Yq2lxUjMSlISUX5/l3W5aGxsJDYU+mkgGI2Goqws0sPXmpajtlosFq6++mrcbjei5Xd57VrYtAl1/37K9Hp0BkOrc2SGmx9XtvMArSMdBaJS95ABoSR1hWAQJk5s1STxZOHatIlxDgc155/f4TY6s5n8mBj07QzPfqzl/fgjowBry6ebYd6hQ+lVUYH9MAsnsWVl1LfoA9g8mEt9J25+nnDzwfgWoxI2zxkmOhGcel58kU3A2A4GLur1xz+iB3L+/OcD1oVyc+lTVUVuO6MJ6nQ6cjMyyNy+Hbp6+pTaWmyLF/MuMCzcrFJ5rPXALBlTplAI1PRwk2shBIPq6mjo06fVclNKCqUaDbTTpDZ961b2p6VBm7kdURRqk5OxdCKoE0Jgq63FG25hEB3+H1UfRoGqJ5Xm5BAHmFrUMnlSUkhrp+b7iiuuIK7lfKVuN7z3HpPb1LAeiVAoRGp9Pc6W1+LkZAKKQqCDaU00xcVUGo3c9dRTbMjKwtaJPp+xDge+8CBVmoEDSfX5EOGmoGogwAink8ZwLUkkGeHaqIpvvoksCwQCWCsrMYb7pCdPnoxJCMrWrDmsPulej4f9d97JZmBMi4FKlhYsxR1oHZQPfO01chSF4XfcwXNr1vAjMOAgBfCYAQPYFxeHbcGCw27S3beujuoW/SgBgpmZpLtcTSMadzG3x8MnWi3rgByfj/mNje3WPteHm4XHDB4MN95Ifb9+xBzDkbDfe+89pkyZwrvvvsvy5cs7rAF2hb/vCS0HBcrKQidEq7kCj8b+HTtIB6wtm7hPmsRpXi8F+/cfMEfmtGnTuPDCCyltef5f/AJGjyZt+3bq2gT8AMkjRuABnNu2dTpdHQWiUveQAaEkdYE9774b+b2uk4MS/FzU3H8/lUDGjBkH3c579tmMrari+26uAbIuWIAC6K644oB18VdcwQjgx08/7fTxqquqGOB2I1oU9hLDTWIbDtJ3r5l+2TIKzWa0LWoPep93Hn4g/5NPDrqvWLGCtK1b+bhXL9JaNClq6dQLL2RdUhKp770HLZrriVCIsl/9ikJg9FNPtbtvzRlnYA0EULu4L4149llCqsrClJTI0OsAgdBPfani4uMpGDWKQRs3Un4Ug2ocrcJVqxihqgTbadqal51NVk5OZL4ugKJFixjvduO98sp2jxcYNYoxHg+5hxiwoaqqisxgEE24L05CuLaxIVxwPd415/3YM86ILPP16kU/VSVwiAcM9X/5C/z2twRee+2o07Fn2zaGqSrG0aN/WqjRUBkTg62DAaSii4qoDT/g8Q0dSm+7HXGQNLtdLgb4/YTCTTOjxo3DAFSEa/7WP/MMcYDxl79stZ/Spw+1RiOmFSsiyzbn5DBYVXnlggv48ssvmTF/PhOAC37968Pqk/7FeedxDvDDJZdgbBFE2n12nP7WzXZHjBnDqY2N7Jw2jfx77mFYaSm6Q4zI6bjpJs50Opl7332dSg/Aj198wWC/v9VcdwCWM84gVgjKV63q9LE66y69np0JCTSOHAmAEu7j1rb2uXnwoMRwH09j//6khULYj9FATs2jkr/00ks88cQTvPzyy+3WAKvr1lENJISbqAMo4XtNsIuaX+5bvBgNkNziAUzmNdcQC2z+4IPWc2QC5557Lq+99hoJPh97gJb1lAM8HvztDCanaDRUGo2EwoMKdUZ7gejVHfRrlY4BIZ3QGhsbBSAaGxt7OikntR/OOEO4m553im0zZvR0crqN+sknQoB4pm/fQ29bUiL8iiIeBDF9+vRjnzghhL+6WpTpdGJN797tb2C3C4eiiPmnntrpYy5+8UUhQFS89VZkmc/nE7tArB816qD71u/eLZwglk+Z0mp5KBQS35tMYn9iohCq2v7O+/cLZ3y8WA3ii88+O+h5Fr32mnCAKOzdWwS/+06U//e/YnOfPiIE4mwQagfnmP/VV2IDiMLkZCGCwYOeo9O+/VaENBrxIIiXX345sphZiFp3batNK9avFz4QL0dHi40bN3bN+Q/TtyNHCjuIhuLiA9atfe45IUCsvu46IYQQrpISsS82VuwDYa+ubvd4gQULhADxyHnndfi5CyHE0i+/FAEQZbNmNe3n9QoXiOW//GUXvKtjb+HYsaJOUUTI54ss2/T0003XxE8/Pei+O202IUA44uKEyMk5qnR8/vvfCwHCvnJlq+WbJ0wQeYoinA5Hq+XlpaWiEsS6Cy8UQgixMfz93nWQNG+bN6/pfT3/vBBCiILt24UfxMKLLhKFubkiB8QOq1WoodAB+26YOlU4QHz46KNCCCGev/FGIUD4581r2kBVRZ1GI74cNky4XK5Dv2GfT9ROny6CIJaecsoBq/u91E/k1eYd+jiHEHA6RX5UlNgN4rHf/15s3bpV1NTUdLj99m3bxIdWq3BqNCLYZruqPXuEF8QHI0ce9DtxuOpqa0U1iB/OP1+IQECs+dOfhACxZ+nSA7b9rF8/UWE0Rv7e/corQoDYcoi8eqTOPfdcsbRFOlRVFd99950455xzRIuFIt9qFUtTU1vtm7Nhg6gDsffXv+6StLx++ulCgBBVVT8tdDpFAMS/Jk48cIe9e4XqdIo8s1kszsoS9ZmZQoAoSEgQAoRr7dp2z5MzcKBYr9cLr9fbqXQ99dRTIj8/v9WytWvXyjJuN5EB4XHg1VdfFdnZ2cJoNIpRo0aJFStWdHpfGRAeB1RVFJrNYmFWltig0YhthxFcnLD8fqE++6wIaDTiQxBLvvuuU7t5pk0TPhAXgujbt6/weDxdWiBoxW4XeQMHikYQWxcs6HCztaefLtwg/nzuuYdMi7OhQSwymUSFTidEm5vc7IQEUQ/CtWdP+zs3NorcpCRRDSL3++8PWP3ODTcIAaLkiiuEsNt/WlFWJpyPPircJpPYC2J4XJzweDwHTaeqquL5K64Q+8IPKQSIMhCXgbj11lsPuu+Hd97ZVLjs1Uvkbd160G0PyuMR6l//KkI6nfhaoxFXXnppq9XMQuyv23/Abh8MGSJCIG4F8eYbbxy7/NGOgtmzRQDEt5Mmtbs+EAiIr/v3FwLEJhB1IOpBvP/HP3Z80GBQ1Kalic0gbrjsMrG1nc80EAiIR0eMEAJEaPv2yPKc6GixJiPjqN/XseYvKxOVGo1Y3SYgCdjtwqko4usRIzr8Pzry8kQIxJMg9imKsMfHC3GI/N2Rur17xU6dTuxt58FK0fvvCwHiP20KvJ/edVdTABm+RnirqoQPxHcXX9zheZZOmCCcILzhhwChUEh8AqIRRHn454Y5c9rdV7XbRVlMjKgG8SqIrSCqjEYh3O7INj+ccoqoBfEQiG/nzBELv/5aOJ1OYbfbxZfz5omydevE5r/+VSwbO1ZUGwwiAOJZk0m42gS7QgiR9FySyCnP6dTndyj+HTtEXWyscIJ4CcS5IC6dMEH8+913xV/+8hfx5JNPir88+KAYCWJO+LpTGn7A0dbifv2EA8SXDz98yOtZZ302a5YQIGrfe08IIYS7qEiEQLzd5n++f+9esR3E7tGjI8sc+flCgJgzYUKXpKWt8vJyMX36dHH66aeL8ePHizPOOEPce++9ory8PLJN4cyZQoCYd++9rfZVVVX8Ny5OVBsMwtfOg6rDUVZSIpaAKEhLO2Dd/rQ0sdhgEPX19ZFlnjVrmh5YhP+fm2fNEqKmRoiVK0XQ7RbOXbs6PFfxU0+JEIjXb775iNMry7jdRwaEPezjjz8Wer1ezJkzR+zYsUNMnz5dWK1WUVhY2Kn9m78ss2fPFnv27BH/+9//xNq1a8X69evFN998I/bt2ydUVRX79u0TgUAgcuFVVbXV62BP+qSOhUIh8dyVVwoBYv6dd4oPMjNFjdHYcS3PiayxUYjly4WYOVO4kpJECMRfQTz8wAOdP4bPJ9SLL2666YUDlCgQF198sXj77bdFSUnJ0aXR7xdi40Zhf+ABUW+xCAeIt6655qC7qC6XKMnIEC4QL+p04u9XXSVeeOwx8dxzz4m//e1v4tFHHxVfzp4t1s+cKVaCCIDY/PjjBxxn96pVoghEqUYj/jN6tHhg5Eix6oknxJY//1l8d+qpohyEHcSrHTzlLS0tFfcajcIHIqgootxkEg0mkxDhc74OYsqIEa1u1gfjdrvFPXfeKR676irxyu9/L7767DOxf/9+EQgEDrpfMBgUC667TnjChdvnQfw+KUl8/MQT4suPPhLr168XK1asEJWVlWLXrl2ivLxcFOfni8KtW0XVkiVixR13iA2jR4tKEKHw/hatVuTlta6lYBZic/nmA85fUlQkNk+aJASI5SD+H4iBiiKsWq145JFHxP/+9z+xa9euSIBRWVkp/H5/pz6T9qihkKhculSsGTdO+EEss1hEXcsn5234PB7x6MCBYg6Il2JjxdcdFPxb2bpVOLRakQ/iPhDTzzxTzLznHvHHGTPEiKws8SurVeSDqB48uNW1Y8nUqcIDYscnnxzx+zumAgHR8OmnojAmRlSA2Pq//x2wyfIpU0QIxD+iosT2efNEY0NDZJ0aConvRo8WXhBbly0Tf7z0UhEAsX/atMg2oVBIhNqpaWtWvmuXaPj2WzFv/HhRoiiiWlFE3ldftbvtxilThACRo9eLz1NSxML0dFENYk90dKsa8SWpqaIWxDOxseLLm28WK2fOFLMvukis+81vRE5WlhAgvj/jjFbH/v7TT8U/QPwNxIJ//vOgH1vtzp3i2759xU6dTuzu3Vu4V61qtd5fUiJ2DRsmwr3shAvEXhBFIJwtH/IoivgiJUX88eKLxddff93uuUxPmsTKwpXtrjsidXXCed99wh0XF0mHC0Rl+BUML6vXaETBQw91fByHQ+QlJIggiK9BzOnXT3z6m9+ID+65R+R88YXYvGaNeGzWrMg9wel0ioKCAuHz+URZWZloaGgQAZ9PrFy8WHz12mvim/vuE+sNBlFjMLR6WLdv0CBRBOLZPn3EjfHx4o+JieKH6GgRBOFuU3NYMHSoKATx5kUXibVffy02btgg6urqhN1uP2gePJiKigphb/GAL9icz0IhUb1zp9j28cdi3d13ix979256YJGU1Gr7Zp/9/e+iHEShRiM2XX+9+N9f/iIad+8WIhQSfr9fuMMPFLxer3A6nUJVVVFeXi7cbrewl5eLbfPmiVfOOkt8bzCIIIjcF1444BxVf/ubECD+Gxcn/jlunPjX1Klig6IIAcIHIj8tTYhD3D9a8flESXq6aACxaMwYMeeaa8SsG24Q33/zjVi1apXw+/2ivr5eLFmyROzfv1+sW7dO+Hw+sWfPHrFkyRLx0ksviY8++kgGhN1EEeI4mPTpJDZ+/HhGjRrF66+/Hlk2ZMgQLr/8cp555plD7m+324mJieE1wAgImtp3ixa/KxoNQVVFE/6pArboaBrsdnQ6Hf5gEJWmidZtMTFUVVcTCIXonZ1NVHQ0DqeTyupqevXqRUVVFQmJiYSEAI2GmNhYyisq8Pp8ON1uUtLSSExMpLS8HFt0NBlZWbjcbnx+PzqDgUa7ne07dzJu/HgKCgvJ7NWL6JgYUtLT8fv9eH0+6hoa0Gi1DBg8mEAgwP6CApwuF6PHjMHj86FoNNTW12M0m4mLi6Oqpoak5GTcHg9CUVCFwBYTgwBiYmNxeTwEgkEKioro268fgWCQ6NhYAsEgaRkZaLRaCgoLCYRCoNEQGxdHIBgkymYjEAphMBrxejz0792b3bm5lObnI3w+NqxcSfmqVdwNmK1W0mtq+ObBB/nlP/7BnMxMBt15J7H9+pGzaxf9Bg4kNjGRjZs3k56VhT8U4ptvv+XMyZPJyMzEbLGQmJjIlq1bMRiNjB03jrq6OoqKi3E4nWRmZeFyuUhITKRf//6sWbsWq9VKQUEB8eH56FJTUyksLCQlJYWSkhL8LheN+/Zxxrhx7N62DYtej+rzUVFcTEl+PiGvl1HDh+NtaCBWp0Pr87Hmu+8Yf8oppMXEsH3FCrJNJjK0WpTiYtLDw0zXaTR8oaq8ZbEwY+5crr76ahRFOSBvdkhV4cMPcT/yCJbw4A2FwD6ghqa5yxoAdzCI3mqlz+DBuPx+PB4PWamp+N1uTDodqteLxukkUF5OoqKQ4HDQH9ADdmChXk/J7bdzz9/+hq7FdBPtcrvZfcMNJH/+Oc1DXXjCryigefy09cDaK67g7s8/b/cwO779lqKrr2ay00nL8VbLgHmAd/p07nruOQxtRmRrtmXLFh6/5RbiN2ygr6IQnZTEiqoqFgN3/eUv/PGPfyS6o/nFutj+RYvY+Yc/cFpBAektlnsBPxAAFGgaIr3NvnuABcCn8fHYRo/m//7v/zj33HNbbaM8prD8puWc2bv9UUdZuJCau+8mscW8fxU05ZWi8M8KwAcIvZ7Mfv1o9HjAYCDWZmPrpk1kJSczZvhwAnY70Xo9JlXFXVODzuUi2uMhRQhi7HaShKAe+DQri8lff82gDobfPxr2nByc995LyqpVaNsZLbCmXz8SlyxpNTBVzf79VA4ZQl+/nx+tVkoTEgglJtKo0WBNSSEqNpao2Fg8wSBLli0jOT2dXtnZRNtspCQnYzIaKSwowO1yodfpyM7OZteOHSQlJhIKf599Xi9pyck46upIiI6msqSE9IQEfC4XVcXF4PcTFxWFNhTCXVNDXCgEtbVQUsIwRcEqBJuB6hdeYOr99x/wvqorK/nP0KHcXFeHmaa8YzeZCKoq1kAAmxCsufhiJi5YQCAQ4PPMTK6pqiJfp8NhNlPv9aLVaEhJTMTlcKBRVaJUlRjA4PFgCxdhnMD69HRS5sxhaDsDSAGooRCvnHsuqStWMEBV0ZvNlPXuzYC5c+nTYhCP5Z9/TulVV3E50LJnnR/YqCjsOfNMbliyBE2bkXq7mre4mK8ffZSd8+eTHAySkJVFxtChbHG7YdAgbn7mGbQHubb5Q36MTxr55vpvuKD/BV2bOCFg1y58mzdTsHIlmXFx6LValu/YgX7YMCbPnInSdpClNlSvl3mXX07st98yVqPB1s73IgQEW7xUmq7HBpqu9S0V6nTU/v3vjLr77p/OkZ/PvjPPpF9JSWTQjFyNhvLbb+e8V15pnZ78fComTya9uBhourbU0nQfCCkKerOZQLjsowqB1+vFYrGgAGaLBY/bjcPpRFEUYmNiUDQa6uvqMNJ0jTSF020EzG3SvwUov+oqfjF3LtaoqAM/K1Xlm1dfxTJrFhPr6mg51JA3nMagTkcwGGwaPVVRUITAROs8vN9kQv/ii2RNm3bAORCC/OnTscyZQ0p4MKgyo5FtDz7IkGuvJatv31ZTN3WGv6aGVWeeyWm7dhHXItzwhdPsDf8OoKVpYBMtoAun+3fAf2gaGbW77n0nKxkQ9iC/34/FYuHTTz/lihYDXkyfPp3NmzezfPnyQx6jOSAsGDQIjduN1WIhGAhg0GoJBYN4PR4QAqvFgtftxuf1EgoEMBmNaDUatIoCqoqiKKiBAAhBKBgkFAig1WpRVJVAIIAGMOh0hEIhDDodCjRtEw4EtIqCUNWmv4VAoemL3fKnQtMX/eckAFRlZ5M4bx7GkSMJBgJ8lpHBr6qru+29Nj8AgJ8eBMBPF9bD4QPc4VctUG8wUOT3UwpsB7QjRxIYPJhRY8dy7bXXkp6efrDDHVpeHsHly6lavpyqdevQ2+3o7XaiAgGE348eMGk0GIQARSEgBEFFIQgIjYbaYJBqmgLJYsCelkb8mWdSN2AAd82Y0Xokw06oKC4msaKCze+/T4yqkmSzYUtLo8TvpyozE7V3b8aNH3/QAFgIgQgEKFi9mtL8fHzR0fQ57TSys7PRdrIAGQqF8Hg8RLVTMOhuQlWhqIiy1asRxcXkrliBTgjioqKIjo5mT1kZ9T4fDYEAAydP5rQbbiC2Tx8URYkMEHDAMYVA87iG+dfO55KBlxw8AcXFsHcvFBXh3b2b/BUr0BQVEWO3Y3U60asqBxuHMQh4FAW3EHgBt6LgVBSqNRrc0dH44uNxjRzJlS++SGKLeQePGbcbcnII5edTk5+Pz2JBO2QIGRdeGJnGpCVPRQWbpk0jfssW4kpLsQUCWI99KoGm60Fz8B9QFAI6HVWqitNopFwIvH37Yrv0Ukb8/vf0HzDgoMfa9eOP/HfGDCxVVcT6fETbbJiTk4maOpUzZ86MbBfwevnhvvuoWrAAR0kJKVYrRrOZusZGQkBicjI1gQANqoohKYkGqxXzyJGcP2MG/dqM6nk0VFUl6POx4ZtvMOn1FFdUoEtN5bwLLugwXx9vat21pLyQwkdXfcSvhv2qp5NzcEIgKipQy8vJWbgQ+969xFks7N6+HavJhM1sRgeIYBB3MMjanBx0FgvCYCBl8GD6nnceZ0+bhqJpf6zE0vx8Nn//PaPOPJO08KjOHaXDuWkTue+/T2VuLmpVFbtzc4mLiiIpLg6TVksgEGgq72i1hEIhGhsb8fp8WC0WQqEQLrebpMTEnwJGoxGPECRnZvLj5s1gNKKJiqLI7yf11FOZcMMNDJg4kf4HS1cL2zZsoOjbb/Hv24fN66WioIC6khIy4uNRNBoa7HaiYmKIS0ggpNejTUnBFxPD8Ouuo1cn5/oUTieEQijR0e1elw6X3+vFs20bxspKdixahL2sDEd1NRZFob6igiibDZPFQlVtLW6vl34DBzJx2zYqRo4ka/58GRB2AxkQ9qCysjIyMjJYvXo1p59+emT5008/zbvvvsvu3bsP2Mfn8+Hz+SJ/2+12srKyjumXJRQKtVuQFUK0KhgHg8GmGke/H71ej6IoNDQ0NAWbqkooFCIxMRF7YyNGg6Fp5EetlqDfT3FREV63m4L8fOyNjVx95ZX8uHYtifHxmE0mGurrqaqooFdWFo7GRpKTkhCqSnVlJUaDgfx9+xg4YAA6rRZUFZ1WS2N9PTt37MDn9dI3OxuhqqjBIOlpaQQDAXbu2IHf60Wn0WA2mcju3RtUFY/bjcflQqfVUl5WhlGvx+P1YrTZaPR4OH3yZFKystBaLGizsjBYrQd8LrmrV2OorKQsNxebXo/NYqGuqgqDVku0xYJOUbCazbicTvQ6HRUVFfi8XnplZaHVaNiwYQOpKSmYTSZ8Xi9xcXHsy8sjMSGBqsrKpkBBCPpkZ+Pxegn4fLicToQQRNtsxERH4wkE0PfuTUVdHVFxcUQnJqIYDMQlJ6MzmwlpNFTV1+MMhUjo1Ys6r5c+AwZQUVFBTU0NI0eORK/XU19fj8lkwufztRohsju0zWPtLW/+PRAInDAFtZOdN+jF/JSZj676iF+f8uujP6AQTVO/+Hzg9+MNBiksLyc2KYm4xES0Wi3r1q1jwoQJqOGC3IlINHXzQBMIgNOJCAZRQiEIBmmsrUUEAjgaG9m4aRNen49BgwczaPDgppYXdXWEVBVVCDxeL16fj2GnnEJFZSVevx9bQgJl1dX0HzqUkFaL0+Ohtq6OoUOHEhMTA3B4LQG6gM/nQ6/Xo+mgkC8dXHFjMePeGsfTZz/N7077XU8n52et+T4U+Y7KPHv0fvc77F9+SUx9vQwIu8Hh1f1Kx0Tbm2xHhWCAZ555hscee6w7khXRUeGpbRqbm+W1bA7XXgARHS5cNDMYDJEnu8PCk5kCnNGi2U9Hs/s1Lx/ewfqRHSwH6Lpnya0pisKI8NDrg6+6qlP7tK2XyGhnm849Ozz0sZvpgV4t/m6eVS87O5vs7OzI8uZaNnMHk84fSx19D1oub/5dBoMnDpffhVVvxRf0HXrjzlAU0OubXjQ1zRoUniOu2cSJE4GOr2cnAkVRmvK70QhGIy2/HTHhyddjgaypU1vtZwHiOzhmTIsJsPt2ZWK7gPEQTQ6lg3MH3MSZ4vAGD5wLUupazfehyHf0KNW6a/nvzv9y2+jbjvpYJ6xbboH6eujmqapOVvIRRg9KDD+5rqioaLW8qqqKlBaTXrf04IMP0tjYGHkVh9u6S5IknSjcATexplj8oYPPTydJ0pHzBD3Em+MPKyDMrcxlU/mmY5gqqTO2V2/nDwv+0NPJ6FmTJsG//93TqThpyICwBxkMBkaPHs3iNpNAL168uFUT0paMRiPR0dGtXpIkSUdi1rJZPVJ74A64iTPH4Qt1UQ2hJEkH8AQ8xJkPr4Zw5tKZPPL9I8cwVVJn6DWyxYvUvWRA2MNmzJjBW2+9xb/+9S927tzJfffdR1FREdPaGwFKkiSpCy3Ys4Dixu5vZdDclE3WEErSseMJeg67yajD58BmtB3DVEmdIR+WSd1NBoQ97JprruEf//gHjz/+OKeeeiorVqzg66+/pnfvjnrNSdLxL6gGezoJHcqtzOXiDy/u6WQcF4rtxRQ2Fnb7eSM1hF3Vh1CSjlOBUABVHDidQnfwBH4KCC/84MJO7RNUg+g0cniJnubyu3o6CdJJRgaEx4E77riDgoICfD4fGzdu5MwzO5iXS5JOAIFQAP0T+uO29sfpd/L13q+75FhjZo+hylXVJcfqbr6gD7vPTlFjUbefW9YQSieLyz6+jGdWHnpO4WOh+cGLO+BmYd7CTgWmceY4cspzmP7N9C5NS4m9hJ3VO7v0mD9nrsBPAeG60nU9mBLpZCEDQkmSulSjrxGA7VXbASh3lHPzlzf3ZJJaaW4+tbvmwGldDtfG8o0UNBQc9XF6Qq2nlqzoLOw+e7efu3lQGdksSvq521q5FU/Q0yPnbh5UZndt07XO4XMcch8FhWp3Nf9c988uTcvqotUs2LOgS4/5c9ZcQyiEYPxb4zkWM8R9n/99lwfpf/7uz116PKn7yIBQkqQuVe+pJ9mazM6aphvN0vyl/GvzvwiEAj2csibugJubT7uZdza/c9THARj/1vgj2n9P7R5e/vHlo0oDwMg3Rh5Rk7QGbwPptvTI++jOZm2ugEvWEEonBavBGvmOdbfmJqPND63qvfWH3EcgiDY2DVYXUkNdlpZaT+0J25qiJ7gCLpIsSWyvbnqwWuOu6fJznP3vs/lu/3ddcixVqHgCHv66+q/Hzb1eOjwyIJQkqUvVe+sZlTaK/Pp8ADZXbOacPudQbD8+pkhxB9z8otcvyK3KParj5NXlMSpt1BHvP2fjHJ5e9fRRpQGaaiAKGw6/H2C9p550WzqeQFPtRfxf49laufWo09MZkRrCE6AP4bF4Mi+dPLKisyixl/TIuT3BplFGS+wlpFhTqPccPCD0BDyYdCaijdHYDLYubf1Q666lyl2FL+iTD4I6weV3MSBhAD8U/4BZZya/Ib/Lz6GgYNAaDr1hC2WOMjaUbWi1bE3xGmYumclpb54GwK6aXV2WRqn7yIBQkqQuVe+pJ8OWEWmaWeGqYFLWpEiA2NPcATdWgxWdRndUBZO9tXu5a+xdXDbosiN6kp7fkM+wpGFd8hR+W9U2oKnQ1dnCZ8saQiEEdp+d7/O/P+q0dCQQCtDgbQB+6tt0IhQMpy+cToWz4tAbShEfb/v4uB5YqjtZ9JZONY3+357/8fG2j7v03M19dT1BD/3j+x+yhrDKVUWyJRmbwcbYjLGRpqZdoc5TR5WrigeXPMiV/7myy457tF744YWeTkK7XAEXA+IHsK1qG2f3OfuAIKwrRBujsfvs5JTnUOms7NQ+83bN46Pcj1ot21Wzi0+2f8Lu2t1cPOBiihqL2F61nb+v+XuXp1k6dmRAKElSl6r31pMalYov5EMIQb2nnvGZ49lRvaOnkwY0FZIsegvDkoZF+jkeiT21exiYMBCrwcq/cv512Pv7Qj5OSz2N33/1e0578zTu//b+Tu3XsjlO8+/NgdZ1n1/HjfNu7HDfMkdZq32aA8KX173MpYMuZWXRykPWIhyujWUb2VS+iSdXPBlJW9s+hAvzFh63tYVbKrd0ez/RNza8cUyD82Pt+R+eP6Ja658bb9CLUWfsVC3zt/u+5YHvHujSeUHrPfUkWBIAGJgw8JDNDvfX76dvXF+ijdFd3r+41lOLw+fArDOzsXxjlx33aATVII98/8hxOaJnnaeO4cnD2Va1jauGXMX3BV17PXD4HGREZ2D32flo20d8u+/bTu33Q/EPB4xMvb9+P/kN+Tx+1uPcOupWSh2lfLbjM55a+VSXplk6tmRAKB1XfEEfTr8TAH/I3+pG2lFtghCiw5toSA0dtIArhEAVaodPs9veyDtqG1/YUMgHWz/gzQ1vsrVya48NM94VXH4XxY3FCCEQQrC2ZC0rClcwZ+Mc5mycw8wlM5m2YBq3fHULv/vyd9w478ZW/RDsPjvJ1mS8QS+zN87mf3v/x7iMcawrO3YjpQkhyCnPobixmN01u1lesJwadw3LCpYd8D/zBD1Y9BbGpI/hh+IfDjjOwfxY8mPk9z11exiQMID8+nxuW3Ab4+aMY33pekJqKPLZhdQQ/pAfh8+BN+hl0b5F5NfnE1SDKCiMShvFv7f8mxJ7CWtL1/Lyjy/zl6V/4YOtH7CycCW7anbxTs47PLniSS758BLOf/980v6WxiUfXsLumt3UuGsiQZ3dZyfGGEOf2D7sqN7B7prdPL3yaX4s+RGn38m3ed+S8fcMDE8aUB5T2FG9g7SoNJwBJ9MXTifFmoJAMOHtCZQ7yo/q/+H0O1lZuJKX1r7EHxb8gQeXPEi9t55x6eO4b+F9uPyt+xC+uv5VluYvZX3perxBb5cEE83/h2btPQEPqkFCagin34kQgp3VOwmqwVbBaUFDARPfnthqv311+wiEAniDXmrcNUf9ebX1/tb3eWTZI5Fr4ZE4kprnttetBm9Dh9+JOk8dqlDxh/xUuaoi/0shBHtq95BXlxfZNr8+HyEEDp+DOk/dAYObOHwOLnj/Aq757Bo+3/l55Jq+qXxT5Lj1nvrI/8Xpd1LprPypFYKz4oB0Ov1O/rPtPwek2xf0tdunr85Tx6R/TWJZwTKcfiebKzZH3o8QAn/IT5mjDHfA3Sp/1LprKWwo5O6v72ZP7Z7Idx6a+n0lmhMjxzmYwsZCBiYMxPyUmU+2fxJZ3nwdaanUXhrJc76gjzc2vMHXe7+m3FHeqrleraeWBHNTQDguYxxvbnwTl9/FJ9s/YX3p+sjxm6+R++r30T++PzajjdSo1CMKlHxBX7vvtd5b39R81VFCv7h+nQ42O8rHJfYSSu2lB9y7G7wNnDX3LDaWbeTNDW+2Ok9zmaL5/7OzeicBNcCe2j2c/vbpHX7ffEEf3qA3kpaQGmp1X/EGveyv348n4MHhc1DtqiYQCkT+Ry3LGDXuGgoaCsiry6PGXcPmis04fA6cfidBNcjGso14g14qXZWcmnoq26q2kR2bjSfgYWHeQqDpuqUKtdXn3PL39sofbf8npY5SBicOptHXSFFjUaSVSXv7zVwykxJ7Cb6gj3JnOZ6gh/e2vMdvv/gtALlVuTx37nP8+Yw/kxWTxR8W/IFdtbsYnDi43WNKxyc52czPxIqCFeS58xiePJxSRylJliQ0ioadNTsjNTSbKzbjCXhYXric8RnjyYzORKvREggFSI1KZVvVNoJqELPeTFFjEQJBg7eBSmclGdEZkeAp3hyPVW9lS+UWogxRGLQGMqMzKWosQq/V0+BtIMGcQK2nFo2iQRUqZp0ZVaj0junNj6U/EmeOQ4imzusOvwNVqPiCPuo8ddh9dib1mkSVqwq9Rk9IhKh2VWMz2jDrzE2FaUXBqDXiDXpx+p24Ai7SbeloFA0hNYTVYMXldxFUg9R56kiwJFDnqSPRkohJZ0Kn0VHtqsaoM6JRNE3vW2dGo2gQNN0wjFojNe4aYkwxeINeEswJbK/eTnZsNjHGGBx+BzHGGMakj+Gvq//Kb0f8lnpvPR9v/5hdNbsYljQMV8CFRW8h1hRLtasas95MvDmekBoiwZyAM+BEr9FT4azAF/LRJ7YPWkXLtuptxJpiiTJEUe+pJ9GSSKWrErPOjMPvQKfREVSDTMiYQI27Bl+o6bMz680YtUYybBkUNhZi1psjhbUYYwy+kA+bwdZ0XG89Dp+DBm8DFr2FgNpUwLUZbGTHZvND8Q9kRmcyIXMCORU5RBujuXzQ5fxy0C/xBX1kRmfiC/kwao08tPQhDFoDZ/Y+E5ffRbI1me3B7VS5qhgQP4BESyLljnI+3f4pVw65Eo2iobCxkBJ7CTuqd+AL+qj11EbynTvgxhv0sq9uH9mx2SRZk7DoLJQ4SgiqQYQQ6DQ66r31uANuVKESbYwmMzoTo9ZIZnQmb2x8g4HxA7nnm3t4bupzXND/AuCnGsLxGeO5+MOLsRqsrCleQ5otjS92fcGlAy9lYd5Czu5zNlnRWcSaYvkm7xvqvfUszV9KsjWZ6eOnU+4oJ8mSxOTek7lowEWMShvFxLcnMj5zPGadmVhTLJWuSvQaPQJBXl0ep2edzuqi1dw48kaGJQ1jQMIAesX0YvXvVwPwUe5HTOo1iX11+1hbshZVqIxJH0NQDXLvhHsZmDAQk85EnaeOGYtm8PTZT5Mdm4074I4M5nP/xPs5+99nE22M5oysM/jP9v+w8buNZMdm0ye2D+9d8R5nvHMGL/34Etvu2MbzPzwPQEAN8O7l77KycCV3fXMXdp+dek9Tba874CYlKoU4Uxxf7v6S7NhsUqNSiTXGsrt2N4qiUO+pJysmCwCNoiEQCnDRgIv49jffRmopAG6bfxu5VbncMuqWSA2hy+/ihTUvsDR/KdHGaIYkDuHPZ/wZjaLB7rMzIH4ABq0Bs97MmuI1QNNotsWNxQxMGEiUIYpaTy2bKzZj0pkoc5Sxung1UYYohiUNw6gzsq50HQMTBuINelFQEAiseit2nz3ShDjZmszakrVY9VY23rYRf8gfaYIbUkNc+99r2Va1jShDFJWuSjSKJnLd+eTqT0izpbV7ffaH/CzYs4A1xWu48dQb2VC2Aa2iZXPFZsqcZdS4a3h08qMMTRpKvDmeWFMs1w2/jms+u4agGiSoBkm0JOLyu3D4HfSL60dQDeIKuAipISx6C9XuahQUAmqAEnsJBq2BtKg0EiwJhNQQtZ5aDFoDjd6mUYAFggxbBvXe+laFZJ1GR5QhCnfAzZ7aPZj1ZgYlDEJRFIQQketvg7eBKEMUFr0Fm8FGlauKiZkTuX3s7aRGpfLq+ld5b+t77KrZRUANoFW01HpqGZgwkCRLEg6/IxL4GbQGHvrFQ/SP78/czXO56MOLaPQ20iumF/kN+dgMNmJMMZQ7yok2RqMKlZSoFKpd1ZQ5yhiSNIRqV3Xkfd1y2i3UemqZvnA615xyTeR/MOPbGawrXYdeq4/cf4rtxZzf73yK7cX8ZvhvuP1/t6OgsLNmJ2PSxxBSQ9iMNnbX7GZi1kQ8AQ9ajZZkazKXDLiEqz+9mhhjDH8Y/QcGvTIIgBRrCrWeWi4bdBlj0sdQ6ihl2GvDeOmCl0i3pfPGhjfYXLmZSmclZ/Y+k1/0+gU6jY4npjzBzafdzFMrn+KLXV/QL64f/97yb+o8dfSL7wfAyJSRlDpKsegtOP1O4s3xTMiYwAs/vMD3Bd9zTp9zuHLIldwx9g7qPHXEmePYf89+dBodt//vdi756JLIA5B0WzoA8/fMJys6i3EZ43jx/BdZmLewKSAMuHhs2WP8/rTfc+fXd5JkSWJEyghiTDEMShiEP+Rnd+1ucspzOLfvuTj9Tu7+5m4cfgcPTHqAGGMML659kQ23bUAIwaCEQXy15yvmXjaX898/n8zoTPbW7kUVKiNTR+L0O0mPSie/IZ9GXyP94vqxt24vNoMNjaLBarDi9DtRUFhftp6RKSNZVrCMvnF9iTPHodfo0Wq0XD/8eh5b/hibKzYzd8tcJmVNYtG+ReRW5XJOn3ModZRy/fDrsRlsXDLwEp5d/SyNvkaGvDqE3536u6b5WRsK0Wv11HnqaPA2kGxNJsoQFQnEQiKEJ+Ah2hhNSITIsGVQYi+h3FlOrCmWeHM8McYYihqLCKgBXH4XabY0lhcs5/z+55NgTmBV0SqGJA2h0duIWW9GCMFpqaexa8UuVKHSL74f1e5q4sxxPDHlCV5e9zJPrXwKm8HG/vr9pNnSsBls2H12Sh2l9Ivrh9PvpMHbQKwpljRbGpXOSow6I7XuWpKsSeg1enZU7+AvZ/6F8RlNLXcafY3sqd2DN+jlvS3vsbZkLRa9hSp3FbXuWix6C7/5/DcoisLtY25nwZ4F/OPHf7Czeid7avcwJXsKf5r0JwCGJA5hWNIwVhetZnzmeN7f+j6f7vgUf8iPL+hjat+prC5ejV6rp8pVRYwxhoAawB1wkxmdSbmjHJPOhFFnZED8AO477b6jKBlLh0MRssf8Cc1utxMTE8P/zf8/hmYOJacih/7x/fEGvdh9dvrE9qF/fH82lm/ktNTTqPXUMjptNPXeevbX78eoNRISIfLr8zmj1xmY9WZK7CXEmeJIjUqNFHB+KP6BMeljqHHXoNPo8AQ8pNvSI4XyfXX7iDfHE2WIItbUVEjsG9cXm8EWSYtOo8MVcOH0OxmYMBC7z45G0WAz2NBr9UD4aaUaoN5TT0pUCtBUgNdpdOg0OjRKU6W2KlQCoQBGnTEykW5IDUXWK4oS+YyEECiKQq27tlXBtCV/yI9Oo0MIgVaj7fDzVoWKKtTIU+DdtbtZUbiCG0fe2OrYQggEAgWFem89Bq0Bi95Cqb0Ug9aASWdiYd5CxmeOR6/RE2OKwaq3sq9+H1pFS5+4Pk1PCZ2VBNQACeYEXAEXCeYEzHozeXV5xJvjyavLI8Xa9DklWhKpcFYQY4qhoKGAdFs6ZY4yTk09FU/Ag6I0dSCvdddS760npIYYlDgIBQW9Vk9QDVLrriXOHBfpaN782R0yH/rs3DTvJj6/5nOeXPEko9NG8/H2j1GFyksXvES8OZ5ady1vbXqL2ZtmE2uKBeCMrDPYVr2NKwdfiTfopVdML05NPRW9Vk+Zo4yhSUOx6C3UuGuoddcyNGloJAgNiVCnOsSX2kt5aOlDzL18LgAzl8zkuuHXcUryKawpXsNXu7/i6qFXs6tmFxf0v4DNFZuxGW3UuGtw+BzUuGuY2m8qAxMG4gv6qHHX8NDShwAix2yrwdvA6qLVXDzw4lZ5QlEUQmqIsXPGMvfyuWRFZ/HLj3/Jyt+tPOT7aOvGeTcyte9Uvsn7hqGJQ7lk4CV8sv0TnjrnqUihpaO8vKZ4DU+tfIr5184n6fkkaj21XHvKtXx41YeRbapcVUQZoih3lLO1ciuTek2i0llJZnQmZY4yMqMzIyPh+UN+jDpjpya0fnfzu9z05U2EHglx2ceXMf/a+fzyo18yLGkYBY0FPH320ywrWMaWyi1k2DIw6ozsqd3D3rq9DIgfwID4AWgUDUnWJLSKlmUFyxiVNoqsmKymgTO89WTHZtPobcRmtJFhy4g0Ue1MXg6EAjy76lnGpI/hkWWPMLXvVMocZZzT5xzWla7j5YsOHBl2V80uZi2bxcdXt+4DFlSD3PX1Xeyq2cXY9LFY9BYavA2MzxyPJ+AhMzqTVUWruGjARczbNY9lhcsYkzaGBl8DH1z5QeQ4QohIAGXSmSh1lGLSmbDqrUQZopoentTvw6QzRR4G6rX6yHcnqAaxGWxYDVaqXdUkWBIIqsHIdc+kMxFSQ2g1WrxBLyadCWi63nmDXix6yyE/N4AbvriBs7PPpsZdQ6WrklJHKQ//4mEGJgxkXek6RqWNijyE6yyHz9Fq5MuONE8Ar9PouP7z61ldvJpTU0/l1YtepVdML+ZunkuVq4o7xt6BVW+l1lNLtDEab9DLv3L+xbxd81h0wyIMWgNCCEodpQBk2DKAphq87NjsyPn++eM/eWz5Yyy/aTmZ0ZmRwn+cOY6gGmRp/lLmbJrDm5e8yfSF0/lq91e8/cu3eW/re0wbPY0JmRNIs6Xx6fZPeXndy7x3xXsMSBgANDXBc/qdlNhLIgFMsjU50txyWNIwrAZrq/ff4G2gzlNHZnQmv/r0V1w5+Eo+2/kZ86+dDzQ90Dj3vXP5f0P/H9PGTENRFBq9jWwo20C5s5zdNbsJqAGePfdZNpVvosHbwLd53/LCmheY3Hsy9024D4ffEbnPbqvaRq2nllNTT2Vy78l8sesLUqNSGZ48nE+2f8L4zPFY9BY2lW+i1F6KJ+jh6qFX8+LaF/n+xu8JqSEW7VvEOX3PodJZiSfooVdML8ocZWRFZ9HgbWBXzS7GpI/BrDdH7k/J1mQ8wabBbzSKhgZvAyE1RJw5Dm/Qy+J9i7l00KVoH9ey685d7K7dTbw5PlJ+WVW0iquHXs07Oe/wxsY3eO2i15jw9gRyb8/l7HfP5qULXuKs7LOIN8dT464h3hyPJ9gU+HXm+qYKtVX+LrGXRMpFzTV3zeubH7CoQsWoM0b2ueWrW1hftp51t6zD9JSJ8vvLSY1KbXUeu8/eajRYgYg8KG5+YFrlqiLJ2nQ9EEKwpXILA+IHMGfTHB5e+jCLb1jMJR9dwjXDruH1Da/TN64vt426jetHXE+Zo4z+8f0JqSGSrEl4Ah5cAReJlkTy6/PZULYBk86EL+TjqiFXtbq2bijbwII9C7hn/D3M3z2f8ZnjGZw4mDpPHUvzl3Jev/Nw+BxNg5oFPWyp2EJGdAb1nnpOST6FSlclDd4GHvjuAW4bdhu/HPlLGhsbiY4++DVAOkpCOqE1NjYKQDQ2NvZ0UqST3IXvXyhUVRV/Xvxn8WPJj+KaT68RF39w8QHb2b12UdRQJLwBb7el7YL3LxDBUFAIIcTdX98t9tft77ZzH8qRpuWVH18R1/33OvHQkofEg989KFJfSBXPrXrusI/DLASzENPmTzuidByuUnupYFbTreeSDy8RQghx6YeXdsu5O6vGVSPOmnuWyPhbhiioLxAvrX1JjHh9hMgpz+lwn4s+uEioqtpq2Vsb3xIvrX3pgOUd2VG1Q+gf14uHljx0NMnvMVsqtoi+L/UV83fP79F0eANewSzEh1s/FHNz5gohmq5PLr+ry84RCAXEZ9s/69T/9qIPLhKxz8aKEa+PEO/kvNNlaehIjatGjJk9Rlzw/gVHfIzN5ZvFpLcniX4v9Yt8X4+EqqrC9KRJPLfqOeEJeA76HepKG8s2dnpbp895DFNy+ObmzBUT35oohBDH7POqclYJVVUFsxBbKraIF9e8KNx+9zE515H6es/X4jcf/kaWcbuJ7EMoSVKXGJQwiD21e3AFXMSb4zvs12kz2siKyWr1RPRYG5E8IjKfU/NT0+NFn7g+R7TfyNSRLNm/JNJktMJZgc1oO6JjfXL1J+3WfB0L6bZ0dtxxfAww1JEESwJpUWlcN/w6esf2ZmLmRLZWbmV48vAO90mPSm81KqMQgne3vMsfRv+hUzWTAEOShjB9/HT6x/c/6vfQE0akjGDrtK1c2P/CHk2HUWck8JcAgxMHc9OXN6E8pmDSmTpd09kZOo2Oq4Ze1an/bYWzgtNST2Nr5VYuHnDxIbc/WgmWBK4cfCUxxpgjPobVYCWnIodZZ81qVVt9uBRFYc9de7h97O2YdCZOTT31iI91OA5nSqC2ta097bcjfxvpRnCsPq8kaxKKouB9yMuIlBHcO+FezHrzMTnXkTo963TZD7EbyT6EkiR1idOzTueH4h9w+V1EG6PZUb2jxwuGzcZnjufHkh8ZkTICV8BFlCGqp5N01AYnDqbSVUn/+P6sK20asOdIJ8COMcV0qjlUVxmSNCTye25l7mE1IewuH1z5QaSwPyptFBtv23jQ5uR/mvQn/rrqr7x92dtA04AefeP6HvaDj+fPe/7IE30cOF4K1zqNjozojMjfPTnQV4m9hItHX8wDkx7otodRt42+jWp39RHvb9VbcQfcjE4b3er7eiSa+xZLndPZB0hdoTsfzB6uGFMMd4+/m4d5uKeTclI4/u7CkiSdkCIBYcCFVW9lb91ezut3Xk8nC4DxGeMjQdPPRaIlkT6xfTgt9bTIcPJW/eEXxhdev5Ax6WO6OnmdNuKNEYfsH9YTWhbKtBrtIWscBiYMpMheFBnVML8+n75xfY9pGqWDS7QkNvVf/r9aZl86u8fSUeWqYmjSUM7vf363nTPBknBUtSvNgX3zYDaSJP28yYBQkqQukRGdQZmzDE/QE2l6crwUiDOiMyKDRPyc7J++H4veQrG9mFtH3cpto2877GOc3/984s3xxyB1ndc8yNCJ7ldDf8W3ed8SCAV4fMXjTO07taeTdFLTKBqmjZ5GvDmeZGtyj6ZlRMqIHj3/4bLoLfSN69upgbskSTrxySajkiR1GV/Qx6bqTZEmgB0Nw98TrAYr9Z76bm0a2R30Wj2VzkqSrcnd2tSoKzTP5XU0fZ2OJ5nRmRQ2FFJsL6ZPbB8mZk089E7SMfXUOT0/Obb/YX9kJO0ThU6jY989+3o6GZIkdRNZQyhJUpdxBVyc2/fcyN/HU0F/RPIIvi/4niTL8TOgTFdxBVzHZbPLQ2nu8/hzqSFMtCRS466hylUVmQ5Gkk60YFCSpJPPz+tRuSRJPWr171e3GiDkeKqxyorJYmPZxp9lQb15TroTTfNAHz+3gLDaVX1cjWQrSZIkSQcjawglSeoyLYNB8ajowZQcKMOWQU5FDilRP7+A0KK3HDejOx6OD6/6kPsm3EeM6fipST4aCeYE5m6ZS7G9uMf7rEmSJElSZ8mAUJKkk0JGdAbf5H3DOX3O6emkdDmL3tKlc6x1l14xvZiSPYUB8QN6OildItoYzZj0Mby16a0Tdi5BSZIk6eQjm4xKknRSGJgwkNzbc496Tq3jkUVvOSGbjAJcOujSnk5Cl1EUhWfPeZb5e+ZzSvIpPZ0cSZIkSeoUGRBKknRS0Gl0P9tCulVvPSGbjP4cjc0Yy9iMsT2dDEmSJEnqNNlkVJIk6QR3ItcQSpIkSZLUs2RAKEmSdII7UQeVkSRJkiSp58mAUJIk6QQnawglSZIkSTpSMiCUJEk6wT0w6QEyozN7OhmSJEmSJJ2A5KAykiRJJ7hBiYN6OgmSJEmSJJ2gZA2hJEmSJEmSJEnSSUoGhJIkSZIkSZIkSScpGRBKkiRJkiRJkiSdpGRAKEmSJEmSJEmSdJKSAWELBQUF3HzzzfTp0wez2Uy/fv149NFH8fv9rbZTFOWA1xtvvNFqm9zcXCZPnozZbCYjI4PHH38cIUSrbZYvX87o0aMxmUz07dv3gGNIkiRJkiRJkiQdS3KU0RZ27dqFqqq8+eab9O/fn23btnHrrbficrl44YUXWm37zjvvcMEFF0T+jomJifxut9uZOnUqU6ZMYf369ezZs4ebbroJq9XK/fffD0B+fj4XXXQRt956K++//z6rV6/mjjvuICkpiauuuqp73rAkSZIkSZIkSSc1RbSttpJaef7553n99dfZv39/ZJmiKHzxxRdcfvnl7e7z+uuv8+CDD1JZWYnRaATg2Wef5eWXX6akpARFUXjggQf46quv2LlzZ2S/adOmsWXLFtasWdPp9NntdmJiYmhsbCQ6OvrI3qQkSZIkSZIkHUdkGbf7yCajh9DY2Eh8fPwBy++66y4SExMZO3Ysb7zxBqqqRtatWbOGyZMnR4JBgPPPP5+ysjIKCgoi25x33nmtjnn++eezYcMGAoHAsXkzkiRJkiRJkiRJLcgmowexb98+Xn75Zf72t7+1Wv7EE09wzjnnYDabWbJkCffffz81NTU8/PDDAFRUVJCdnd1qn5SUlMi6Pn36UFFREVnWcptgMEhNTQ1paWntpsnn8+Hz+SJ/2+32o32bkiRJkiRJkiSdpE6KGsJZs2a1OxBMy9eGDRta7VNWVsYFF1zAr371K2655ZZW6x5++GEmTpzIqaeeyv3338/jjz/O888/32obRVFa/d3cMrfl8s5s09YzzzxDTExM5JWVldXJT0GSJEmSJEmSJKm1k6KG8K677uLXv/71QbdpWaNXVlbGlClTmDhxIrNnzz7k8SdMmIDdbqeyspKUlBRSU1OpqKhotU1VVRXwU01hR9vodDoSEhI6PNeDDz7IjBkzIn/b7XYZFEqSJEmSJEmSdEROioAwMTGRxMTETm1bWlrKlClTGD16NO+88w4azaErUXNycjCZTMTGxgIwceJEZs6cid/vx2AwALBo0SLS09MjgefEiROZP39+q+MsWrSIMWPGoNfrOzyX0WiM9E0UQkSajMqmo5IkSZIkSdLPRXPZVo5/2Q2EFFFaWir69+8vzj77bFFSUiLKy8sjr2ZfffWVmD17tsjNzRV5eXlizpw5Ijo6Wtxzzz2RbRoaGkRKSoq49tprRW5urvj8889FdHS0eOGFFyLb7N+/X1gsFnHfffeJHTt2iLffflvo9Xrx2WefdTq9VVVVApAv+ZIv+ZIv+ZIv+ZIv+fpZvoqLi7umoC91SE470cLcuXP53e9+1+665o9p4cKFPPjgg+Tl5aGqKn379uWWW27hzjvvRKf7qcI1NzeXO++8k3Xr1hEXF8e0adN45JFHWvUPXL58Offddx/bt28nPT2dBx54gGnTpnU6vY2NjcTGxrJjxw7S09MP2vdQko5Gc9Pk4uJiOfSzdEzJvCZ1B5nPpO4i89qRE0LgcDhIT0/vVIs96cjJgPAEJudnkbqLzGtSd5F5TeoOMp9J3UXmNelEIMNtSZIkSZIkSZKkk5QMCCVJkiRJkiRJkk5SMiA8gRmNRh599NHIqKOSdKzIvCZ1F5nXpO4g85nUXWRek04Esg+hJEmSJEmSJEnSSUrWEEqSJEmSJEmSJJ2kZEAoSZIkSZIkSZJ0kpIBoSRJkiRJkiRJ0klKBoSSJEmSJEmSJEknKRkQngBWrFjBpZdeSnp6OoqiMG/evFbrhRDMmjWL9PR0zGYzZ511Ftu3b++ZxEonrGeeeYaxY8dis9lITk7m8ssvZ/fu3a22kXlN6gqvv/46I0aMIDo6mujoaCZOnMg333wTWS/zmXQsPPPMMyiKwr333htZJvOa1BVmzZqFoiitXqmpqZH1Mp9JxzsZEJ4AXC4XI0eO5JVXXml3/XPPPcff//53XnnlFdavX09qaipTp07F4XB0c0qlE9ny5cu58847Wbt2LYsXLyYYDHLeeefhcrki28i8JnWFzMxMnn32WTZs2MCGDRs4++yzueyyyyIFJJnPpK62fv16Zs+ezYgRI1otl3lN6irDhg2jvLw88srNzY2sk/lMOu4J6YQCiC+++CLyt6qqIjU1VTz77LORZV6vV8TExIg33nijB1Io/VxUVVUJQCxfvlwIIfOadGzFxcWJt956S+Yzqcs5HA4xYMAAsXjxYjF58mQxffp0IYS8pkld59FHHxUjR45sd53MZ9KJQNYQnuDy8/OpqKjgvPPOiywzGo1MnjyZH374oQdTJp3oGhsbAYiPjwdkXpOOjVAoxMcff4zL5WLixIkyn0ld7s477+Tiiy/m3HPPbbVc5jWpK+3du5f09HT69OnDr3/9a/bv3w/IfCadGHQ9nQDp6FRUVACQkpLSanlKSgqFhYU9kSTpZ0AIwYwZMzjjjDM45ZRTAJnXpK6Vm5vLxIkT8Xq9REVF8cUXXzB06NBIAUnmM6krfPzxx2zatIn169cfsE5e06SuMn78eP79738zcOBAKisrefLJJzn99NPZvn27zGfSCUEGhD8TiqK0+lsIccAySeqsu+66i61bt7Jq1aoD1sm8JnWFQYMGsXnzZhoaGvjvf//LjTfeyPLlyyPrZT6TjlZxcTHTp09n0aJFmEymDreTeU06WhdeeGHk9+HDhzNx4kT69evHu+++y4QJEwCZz6Tjm2wyeoJrHsWq+QlUs6qqqgOeRklSZ9x999189dVXfP/992RmZkaWy7wmdSWDwUD//v0ZM2YMzzzzDCNHjuSll16S+UzqMhs3bqSqqorRo0ej0+nQ6XQsX76cf/7zn+h0ukh+knlN6mpWq5Xhw4ezd+9eeU2TTggyIDzB9enTh9TUVBYvXhxZ5vf7Wb58OaeffnoPpkw60QghuOuuu/j8889ZunQpffr0abVe5jXpWBJC4PP5ZD6Tusw555xDbm4umzdvjrzGjBnD9ddfz+bNm+nbt6/Ma9Ix4fP52LlzJ2lpafKaJp0QZJPRE4DT6SQvLy/yd35+Pps3byY+Pp5evXpx77338vTTTzNgwAAGDBjA008/jcVi4brrruvBVEsnmjvvvJMPP/yQL7/8EpvNFnmaGRMTg9lsjszfJfOadLRmzpzJhRdeSFZWFg6Hg48//phly5axcOFCmc+kLmOz2SJ9oJtZrVYSEhIiy2Vek7rCH//4Ry699FJ69epFVVUVTz75JHa7nRtvvFFe06QTggwITwAbNmxgypQpkb9nzJgBwI033sjcuXP5v//7PzweD3fccQf19fWMHz+eRYsWYbPZeirJ0gno9ddfB+Css85qtfydd97hpptuApB5TeoSlZWV3HDDDZSXlxMTE8OIESNYuHAhU6dOBWQ+k7qPzGtSVygpKeHaa6+lpqaGpKQkJkyYwNq1a+nduzcg85l0/FOEEKKnEyFJkiRJkiRJkiR1P9mHUJIkSZIkSZIk6SQlA0JJkiRJkiRJkqSTlAwIJUmSJEmSJEmSTlIyIJQkSZIkSZIkSTpJyYBQkiRJkiRJkiTpJCUDQkmSJEmSJEmSpJOUDAglSZIkSZIkSZJOUjIglCRJkiRJkiRJOknJgFCSJEmSJEmSJOkkJQNCSZIkSZIkSZKkk5QMCCVJkiRJkiRJkk5SMiCUJEmSJEmSJEk6ScmAUJIkSZIkSZIk6SQlA0JJkiRJkiRJkqSTlAwIJUmSJEmSJEmSTlIyIJQkSZIkSZIkSTpJyYBQkiRJkiRJkiTpJCUDQkmSJEmSJEmSpJOUDAglSZIkSZIkSZJOUjIglCRJkiRJkiRJOknJgFCSJEmSJEmSJOkkJQNCSZIkSZIkSZKkk9T/B88dyZMGmEJZAAAAAElFTkSuQmCC", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pn.plot(fig=None, diff=True)\n", "px.plot(fig=None, diff=True)\n", - "mc.RestoreParamSet(3, update_display=True)" + "mc.RestoreParamSet(3, update_display=True)\n" ] }, { @@ -1401,7 +430,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": { "tags": [] }, @@ -1410,7 +439,7 @@ "# Save result so it can be opened by Fox\n", "xml_cryst_file_save_global('result-pbso4.xmlgz')\n", "# Also export to the CIF format\n", - "c.CIFOutput(\"result-pbso4.cif\")" + "c.CIFOutput(\"result-pbso4.cif\")\n" ] }, { @@ -1423,7 +452,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "objcryst", "language": "python", "name": "python3" }, @@ -1437,1466 +466,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "state": { - "00eaf61720014df896bc641802b04946": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "0495e49e6e0e4a8b8559285baac68113": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "LabelStyleModel", - "state": { - "description_width": "", - "font_family": null, - "font_size": null, - "font_style": null, - "font_variant": null, - "font_weight": null, - "text_color": null, - "text_decoration": null - } - }, - "052c9fcf0466424f89e70ab56b1ba04e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "0b565d28f35d41829424bc135c3ada98": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "ToolbarModel", - "state": { - "_model_module_version": "^0.11", - "_view_module_version": "^0.11", - "collapsed": true, - "layout": "IPY_MODEL_0cfb1f371f2249a6aabefd7234527296", - "orientation": "vertical", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "0b6b7c6da8374d51858014a5007ed74c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "0cfb1f371f2249a6aabefd7234527296": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "10689d3795154357b394411e725adca9": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_28188eda6206475bae8e071d8a3da906", - "outputs": [ - { - "data": { - "application/3dmoljs_load.v0": "", - "text/html": "" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "10b85b79060f44dda7efc39a17d81acf": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "12b76e5952bf470fb5313325228333c7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "1e36803b619a49e8a0cb07e14932afd0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "1eb7beebb72c48b5a3a8a23bad63e31c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "extra dist", - "layout": "IPY_MODEL_e8e4671905f846749ac9eca5483872f7", - "max": 10, - "readout_format": ".1f", - "step": 0.5, - "style": "IPY_MODEL_e40113cd66ef463c8c9d6e436835bdfd", - "tooltip": "Extra distance (A) with semi-transparent display", - "value": 2 - } - }, - "21318bc0690c43349106e866f635ef68": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "220b1d52d1754ddc8d6209607d62d637": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "fullMol opac", - "layout": "IPY_MODEL_a93a12ad870a4e4aa0277ac6bc9424c0", - "max": 1, - "readout_format": ".01f", - "step": 0.1, - "style": "IPY_MODEL_12b76e5952bf470fb5313325228333c7", - "tooltip": "Opacity to display fully molecules\nwhich have at least one atom inside the limits", - "value": 0.5 - } - }, - "222afec0ff0d4378acecef72118b93d7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "max_width": "25%", - "width": "11em" - } - }, - "24d01c655ef34f899fb164756e6fb72c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Xrange", - "layout": "IPY_MODEL_00eaf61720014df896bc641802b04946", - "max": 1.5, - "min": -0.5, - "step": 0.09090909090909091, - "style": "IPY_MODEL_3666a876565b490484e4b71af85f7edc", - "value": [ - -0.045454545454545414, - 1.0454545454545456 - ] - } - }, - "26fc02afd8ef4a268848164426b18468": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "MPLCanvasModel", - "state": { - "_cursor": "default", - "_data_url": "", - "_figure_label": "Figure 8", - "_image_mode": "diff", - "_model_module_version": "^0.11", - "_size": [ - 900, - 400 - ], - "_view_module_version": "^0.11", - "layout": "IPY_MODEL_aa1a86eca1494a07bd5f8e6596a5c35a", - "toolbar": "IPY_MODEL_c6a82d9176b340ee8ea6f29f4519045f", - "toolbar_position": "left" - } - }, - "28188eda6206475bae8e071d8a3da906": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "284f4e9448354ad3939b2e9fd74df854": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Yrange", - "layout": "IPY_MODEL_c5b6632c164c4d68bbc325efde6a9c99", - "max": 1.5, - "min": -0.5, - "step": 0.07142857142857142, - "style": "IPY_MODEL_8e7950cd11584233b3c2f03ff6871d4b", - "value": [ - 0, - 1 - ] - } - }, - "286640c0bf39426a80f443c1333499e6": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "MPLCanvasModel", - "state": { - "_cursor": "default", - "_data_url": "", - "_figure_label": "Figure 3", - "_image_mode": "diff", - "_model_module_version": "^0.11", - "_size": [ - 900, - 400 - ], - "_view_module_version": "^0.11", - "layout": "IPY_MODEL_ff3a688ce673446bb68592d211035390", - "toolbar": "IPY_MODEL_ce6fafe5ce1240c5a05d408c83b616cb", - "toolbar_position": "left" - } - }, - "2b523dcf54c8416ba7728c0d4be21d96": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Zrange", - "layout": "IPY_MODEL_10b85b79060f44dda7efc39a17d81acf", - "max": 1.5, - "min": -0.5, - "step": 0.058823529411764705, - "style": "IPY_MODEL_481817bad0fc4419ab12f53e471c841c", - "value": [ - 0.02941176470588236, - 1.0294117647058822 - ] - } - }, - "2c1cf7cee2f746a18afb9803d93d739b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "2f6c7a475345472b8cadc25454ad2ec0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "3115968ff7c74370abf416b2716cf6d7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "31afd8393d17463e8dbd2f498574f003": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "ToolbarModel", - "state": { - "_model_module_version": "^0.11", - "_view_module_version": "^0.11", - "collapsed": true, - "layout": "IPY_MODEL_7005a3e2a9884e1aa8d0ad144653d488", - "orientation": "vertical", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "3376c0fb8be1491db70b0b916cca8047": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "3666a876565b490484e4b71af85f7edc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "36d2fc7bf4c141eeb4178ab1efaa27f9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "38e638f5224f434880b8a9d76af0ae67": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "41b2183e23d24bef8a796e9c46a28b2d": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "MPLCanvasModel", - "state": { - "_cursor": "default", - "_data_url": "", - "_figure_label": "Figure 4", - "_image_mode": "diff", - "_model_module_version": "^0.11", - "_size": [ - 900, - 400 - ], - "_view_module_version": "^0.11", - "layout": "IPY_MODEL_b196b30410c84a5eb65c8849163f8f4c", - "toolbar": "IPY_MODEL_63ea1550325d47698266026a72267e76", - "toolbar_position": "left" - } - }, - "45a7f5a2c1344edbadc4a86871656c36": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "481817bad0fc4419ab12f53e471c841c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "49c1ee4d797b43e5b70c748ea9793f00": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4c1578ba0c5d4662a8ae44aeed1def67": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4dab9349f99849f2822256d59f06f777": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_512f51d09ba9491593a247c46ae27dda", - "IPY_MODEL_603cd15746f84b9e984e9bdf5e10d2ff" - ], - "layout": "IPY_MODEL_66d4d118953c4675b90d4984b8faa6bb" - } - }, - "4f519d6521644854a4ac515d05555ac2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "50ec4c68bf28420cb5542356f51974ff": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "512f51d09ba9491593a247c46ae27dda": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "LabelModel", - "state": { - "layout": "IPY_MODEL_222afec0ff0d4378acecef72118b93d7", - "style": "IPY_MODEL_0495e49e6e0e4a8b8559285baac68113", - "value": "MonteCarlo:" - } - }, - "51ac207626824a568f4b7ebb47df1fa0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "52ff63992bd74a9e9ac8c11c7a0f0f56": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "MPLCanvasModel", - "state": { - "_cursor": "default", - "_data_url": "", - "_figure_label": "Figure 6", - "_image_mode": "diff", - "_model_module_version": "^0.11", - "_size": [ - 900, - 400 - ], - "_view_module_version": "^0.11", - "layout": "IPY_MODEL_93538cfcf70d424f881d54f4ff88ab74", - "toolbar": "IPY_MODEL_bab241dee1224efd9fe00fa0f4bc2b94", - "toolbar_position": "left" - } - }, - "56e04f0c6af14ba5a5125dac01b3d6a7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "603cd15746f84b9e984e9bdf5e10d2ff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextModel", - "state": { - "disabled": true, - "layout": "IPY_MODEL_b98200d1ee444845ad5c0839d12980cf", - "style": "IPY_MODEL_790ec6b844d640268e95787db04b8f68", - "value": "LLK= 2968.07 " - } - }, - "635916476a354fe2a32e0891bc70cfc0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "63ea1550325d47698266026a72267e76": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "ToolbarModel", - "state": { - "_model_module_version": "^0.11", - "_view_module_version": "^0.11", - "collapsed": true, - "layout": "IPY_MODEL_97754a0f682940f3a20eba45c0a995b4", - "orientation": "vertical", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "66d4d118953c4675b90d4984b8faa6bb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "6fe905883a134654b5f6d8fdbc6c3bff": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "MPLCanvasModel", - "state": { - "_cursor": "default", - "_data_url": "", - "_figure_label": "Figure 7", - "_image_mode": "diff", - "_model_module_version": "^0.11", - "_size": [ - 900, - 400 - ], - "_view_module_version": "^0.11", - "layout": "IPY_MODEL_49c1ee4d797b43e5b70c748ea9793f00", - "toolbar": "IPY_MODEL_31afd8393d17463e8dbd2f498574f003", - "toolbar_position": "left" - } - }, - "7005a3e2a9884e1aa8d0ad144653d488": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "752c8e13ba1e446491d3a5abee4328ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_e12de330dfdc4f97a3d0e6ad5752fbb2", - "IPY_MODEL_d8080aed98834c4a8629085cbd9ca248" - ], - "layout": "IPY_MODEL_f18a443125594637a95f35331695a4b5" - } - }, - "75ce021dae3d45469c8ed911c3e2f017": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "MPLCanvasModel", - "state": { - "_cursor": "default", - "_data_url": "", - "_figure_label": "Figure 9", - "_image_mode": "diff", - "_model_module_version": "^0.11", - "_size": [ - 900, - 400 - ], - "_view_module_version": "^0.11", - "layout": "IPY_MODEL_3115968ff7c74370abf416b2716cf6d7", - "toolbar": "IPY_MODEL_a523347e6aa3465e9798a8c436fc240e", - "toolbar_position": "left" - } - }, - "787040eb6b8e4ebeaeb69f0917088853": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_e13fd36aea0c4ed4be8280202e13ddf8", - "IPY_MODEL_10689d3795154357b394411e725adca9" - ], - "layout": "IPY_MODEL_a275e9cc903a4cde873fb45b89859fb7" - } - }, - "790ec6b844d640268e95787db04b8f68": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TextStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "79259c7636504fe7baccfa6ee4d2f0f5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "BoxModel", - "state": { - "children": [ - "IPY_MODEL_787040eb6b8e4ebeaeb69f0917088853" - ], - "layout": "IPY_MODEL_bf9bec96616c45b9a72403718b4d9645" - } - }, - "79965d9b2f58431580723d7e13cca396": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "BoxModel", - "state": { - "children": [ - "IPY_MODEL_4dab9349f99849f2822256d59f06f777" - ], - "layout": "IPY_MODEL_9f5c33f717bb4ec1b1584f0b8f343d3f" - } - }, - "82100fdd54b845cbb2b74ddc15119179": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "8d18d8c1d9d94a51b12a8d1b9d843bea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "BoxModel", - "state": { - "children": [ - "IPY_MODEL_752c8e13ba1e446491d3a5abee4328ef" - ], - "layout": "IPY_MODEL_21318bc0690c43349106e866f635ef68" - } - }, - "8e7950cd11584233b3c2f03ff6871d4b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "8f9db8afa75e4d27b9bfbd99bf903a39": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "91f6361f684f4a7a87e39dbeee5eb805": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "ToolbarModel", - "state": { - "_model_module_version": "^0.11", - "_view_module_version": "^0.11", - "collapsed": true, - "layout": "IPY_MODEL_a1f532a83ee549daa387864c1f587224", - "orientation": "vertical", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "93538cfcf70d424f881d54f4ff88ab74": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "93ebe40b69054fe0b529511c4c53dc9d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Zrange", - "layout": "IPY_MODEL_50ec4c68bf28420cb5542356f51974ff", - "max": 1.5, - "min": -0.5, - "step": 0.058823529411764705, - "style": "IPY_MODEL_51ac207626824a568f4b7ebb47df1fa0", - "value": [ - 0.02941176470588236, - 1.0294117647058822 - ] - } - }, - "97754a0f682940f3a20eba45c0a995b4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "9889904b8d3d420583cbd39730f77213": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_d4fd79f612e241e28b76464d6a5ce976", - "IPY_MODEL_284f4e9448354ad3939b2e9fd74df854", - "IPY_MODEL_93ebe40b69054fe0b529511c4c53dc9d" - ], - "layout": "IPY_MODEL_36d2fc7bf4c141eeb4178ab1efaa27f9" - } - }, - "988f855b8ee047b68016b83e8064829b": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "ToolbarModel", - "state": { - "_model_module_version": "^0.11", - "_view_module_version": "^0.11", - "collapsed": true, - "layout": "IPY_MODEL_2f6c7a475345472b8cadc25454ad2ec0", - "orientation": "vertical", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "9891994771884d8aaff0f83c43e05ffc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_24d01c655ef34f899fb164756e6fb72c", - "IPY_MODEL_e45a4441a0ef462399b08d685c98c1bc", - "IPY_MODEL_2b523dcf54c8416ba7728c0d4be21d96" - ], - "layout": "IPY_MODEL_4f519d6521644854a4ac515d05555ac2" - } - }, - "9f5c33f717bb4ec1b1584f0b8f343d3f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "a1f532a83ee549daa387864c1f587224": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "a275e9cc903a4cde873fb45b89859fb7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "a30e04847ce24f578378a88e7f067ff1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "extra dist", - "layout": "IPY_MODEL_45a7f5a2c1344edbadc4a86871656c36", - "max": 10, - "readout_format": ".1f", - "step": 0.5, - "style": "IPY_MODEL_b84bcf6d75264fd2b40b439c7bbbe1e3", - "tooltip": "Extra distance (A) with semi-transparent display", - "value": 2 - } - }, - "a4509bc59ef74c63b49811c2ccab661b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "a523347e6aa3465e9798a8c436fc240e": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "ToolbarModel", - "state": { - "_model_module_version": "^0.11", - "_view_module_version": "^0.11", - "collapsed": true, - "layout": "IPY_MODEL_e013364b181b422fbd352c603b6e21c0", - "orientation": "vertical", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "a880651c85ea49fc82b3d7f4bb9ff812": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "fullMol opac", - "layout": "IPY_MODEL_a4509bc59ef74c63b49811c2ccab661b", - "max": 1, - "readout_format": ".01f", - "step": 0.1, - "style": "IPY_MODEL_bc27902e09b54162b4d179e781e37797", - "tooltip": "Opacity to display fully molecules\nwhich have at least one atom inside the limits", - "value": 0.5 - } - }, - "a93a12ad870a4e4aa0277ac6bc9424c0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "aa1a86eca1494a07bd5f8e6596a5c35a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "ad60336fcd1546e282bd8d16021ef0fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "b0aa788d822e4eff81235b3c472361c4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "b196b30410c84a5eb65c8849163f8f4c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "b294cb148fbd42c991da279f33ad318f": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "MPLCanvasModel", - "state": { - "_cursor": "default", - "_data_url": "", - "_figure_label": "Figure 5", - "_image_mode": "diff", - "_model_module_version": "^0.11", - "_size": [ - 900, - 400 - ], - "_view_module_version": "^0.11", - "layout": "IPY_MODEL_d242510866ac48f3bca6790320e4e690", - "toolbar": "IPY_MODEL_91f6361f684f4a7a87e39dbeee5eb805", - "toolbar_position": "left" - } - }, - "b6316e4843fb46de8b20b4e4b8f30e3c": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "MPLCanvasModel", - "state": { - "_cursor": "default", - "_data_url": "", - "_figure_label": "Figure 2", - "_image_mode": "diff", - "_model_module_version": "^0.11", - "_size": [ - 900, - 400 - ], - "_view_module_version": "^0.11", - "layout": "IPY_MODEL_f6f397e97c544246995e00ec745f84a4", - "toolbar": "IPY_MODEL_0b565d28f35d41829424bc135c3ada98", - "toolbar_position": "left" - } - }, - "b84bcf6d75264fd2b40b439c7bbbe1e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "b98200d1ee444845ad5c0839d12980cf": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "max_width": "50%", - "width": "40em" - } - }, - "bab241dee1224efd9fe00fa0f4bc2b94": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "ToolbarModel", - "state": { - "_model_module_version": "^0.11", - "_view_module_version": "^0.11", - "collapsed": true, - "layout": "IPY_MODEL_c772c45ecfb04831bf88aa7cf637d44c", - "orientation": "vertical", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "bc27902e09b54162b4d179e781e37797": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "bf9bec96616c45b9a72403718b4d9645": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "c5b6632c164c4d68bbc325efde6a9c99": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "c6a82d9176b340ee8ea6f29f4519045f": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "ToolbarModel", - "state": { - "_model_module_version": "^0.11", - "_view_module_version": "^0.11", - "collapsed": true, - "layout": "IPY_MODEL_8f9db8afa75e4d27b9bfbd99bf903a39", - "orientation": "vertical", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "c772c45ecfb04831bf88aa7cf637d44c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "ce6fafe5ce1240c5a05d408c83b616cb": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "ToolbarModel", - "state": { - "_model_module_version": "^0.11", - "_view_module_version": "^0.11", - "collapsed": true, - "layout": "IPY_MODEL_56e04f0c6af14ba5a5125dac01b3d6a7", - "orientation": "vertical", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "cf4154132eda430299d4553e4ab22dcd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "extra opac.", - "layout": "IPY_MODEL_0b6b7c6da8374d51858014a5007ed74c", - "max": 1, - "readout_format": ".01f", - "step": 0.1, - "style": "IPY_MODEL_ad60336fcd1546e282bd8d16021ef0fc", - "tooltip": "Opacity for extra distance display", - "value": 0.5 - } - }, - "d242510866ac48f3bca6790320e4e690": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "d4fd79f612e241e28b76464d6a5ce976": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Xrange", - "layout": "IPY_MODEL_052c9fcf0466424f89e70ab56b1ba04e", - "max": 1.5, - "min": -0.5, - "step": 0.09090909090909091, - "style": "IPY_MODEL_fd96c963ced042ba8a3ef66acfba134a", - "value": [ - -0.045454545454545414, - 1.0454545454545456 - ] - } - }, - "d8080aed98834c4a8629085cbd9ca248": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_3376c0fb8be1491db70b0b916cca8047", - "outputs": [ - { - "data": { - "application/3dmoljs_load.v0": "", - "text/html": "" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "dbbba91d199d47f79d8ad33d2fe200d7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatSliderModel", - "state": { - "behavior": "drag-tap", - "description": "extra opac.", - "layout": "IPY_MODEL_b0aa788d822e4eff81235b3c472361c4", - "max": 1, - "readout_format": ".01f", - "step": 0.1, - "style": "IPY_MODEL_2c1cf7cee2f746a18afb9803d93d739b", - "tooltip": "Opacity for extra distance display", - "value": 0.5 - } - }, - "de50c16f3c2141349fbdf896c271d3ef": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "e013364b181b422fbd352c603b6e21c0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "e12de330dfdc4f97a3d0e6ad5752fbb2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_9889904b8d3d420583cbd39730f77213", - "IPY_MODEL_e6a470a592fa42d0ab3da35ba887172e" - ], - "layout": "IPY_MODEL_f78e21a3234c4c90866200ae39b2543d" - } - }, - "e13fd36aea0c4ed4be8280202e13ddf8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_9891994771884d8aaff0f83c43e05ffc", - "IPY_MODEL_eca133ff47774924bf0c6b3ce24c2960" - ], - "layout": "IPY_MODEL_38e638f5224f434880b8a9d76af0ae67" - } - }, - "e40113cd66ef463c8c9d6e436835bdfd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "e45a4441a0ef462399b08d685c98c1bc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatRangeSliderModel", - "state": { - "_model_name": "FloatRangeSliderModel", - "_view_name": "FloatRangeSliderView", - "behavior": "drag-tap", - "description": "Yrange", - "layout": "IPY_MODEL_4c1578ba0c5d4662a8ae44aeed1def67", - "max": 1.5, - "min": -0.5, - "step": 0.07142857142857142, - "style": "IPY_MODEL_635916476a354fe2a32e0891bc70cfc0", - "value": [ - 0, - 1 - ] - } - }, - "e6a470a592fa42d0ab3da35ba887172e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_1eb7beebb72c48b5a3a8a23bad63e31c", - "IPY_MODEL_dbbba91d199d47f79d8ad33d2fe200d7", - "IPY_MODEL_a880651c85ea49fc82b3d7f4bb9ff812" - ], - "layout": "IPY_MODEL_de50c16f3c2141349fbdf896c271d3ef" - } - }, - "e8e4671905f846749ac9eca5483872f7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "eca133ff47774924bf0c6b3ce24c2960": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_a30e04847ce24f578378a88e7f067ff1", - "IPY_MODEL_cf4154132eda430299d4553e4ab22dcd", - "IPY_MODEL_220b1d52d1754ddc8d6209607d62d637" - ], - "layout": "IPY_MODEL_1e36803b619a49e8a0cb07e14932afd0" - } - }, - "f18a443125594637a95f35331695a4b5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "f6f397e97c544246995e00ec745f84a4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "f7376c77ccf8409ca67e032eccf72af9": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.11", - "model_name": "MPLCanvasModel", - "state": { - "_cursor": "default", - "_data_url": "", - "_figure_label": "Figure 1", - "_image_mode": "diff", - "_model_module_version": "^0.11", - "_size": [ - 900, - 400 - ], - "_view_module_version": "^0.11", - "layout": "IPY_MODEL_82100fdd54b845cbb2b74ddc15119179", - "toolbar": "IPY_MODEL_988f855b8ee047b68016b83e8064829b", - "toolbar_position": "left" - } - }, - "f78e21a3234c4c90866200ae39b2543d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "fd96c963ced042ba8a3ef66acfba134a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "SliderStyleModel", - "state": { - "description_width": "" - } - }, - "ff3a688ce673446bb68592d211035390": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - } - }, - "version_major": 2, - "version_minor": 0 - } + "version": "3.13.5" } }, "nbformat": 4, diff --git a/news/TEMPLATE.rst b/news/TEMPLATE.rst new file mode 100644 index 0000000..790d30b --- /dev/null +++ b/news/TEMPLATE.rst @@ -0,0 +1,23 @@ +**Added:** + +* + +**Changed:** + +* + +**Deprecated:** + +* + +**Removed:** + +* + +**Fixed:** + +* + +**Security:** + +* diff --git a/pyproject.toml b/pyproject.toml index ecb23a9..b7c8bc8 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -3,40 +3,41 @@ requires = ["setuptools>=62.0", "setuptools-git-versioning>=2.0", "numpy"] build-backend = "setuptools.build_meta" [project] -name="pyobjcryst" +name = "pyobjcryst" dynamic=['version', 'dependencies'] authors = [ - { name="Simon J.L. Billinge group", email="simon.billinge@gmail.com" }, + { name="Simon J.L. Billinge group", email="sb2896@columbia.edu" }, ] maintainers = [ - { name="Simon J.L. Billinge group", email="simon.billinge@gmail.com" }, - { name="Vincent-Favre-Nicolin", email="favre@esrf.fr" }, + { name="Simon J.L. Billinge group", email="sb2896@columbia.edu" }, + { name="Vincent-Favre-Nicolin", email="favre@esrf.fr" }, ] -description="Python bindings to the ObjCryst++ library." -keywords=["objcryst", "atom structure", "crystallography", "powder diffraction"] +description = "Python bindings to the ObjCryst++ library." +keywords = ['objcryst', 'atom structure crystallography', 'powder diffraction'] readme = "README.rst" requires-python = ">=3.11, <3.14" -classifiers=[ - 'Development Status :: 5 - Production/Stable', - 'Environment :: Console', - 'Intended Audience :: Developers', - 'Intended Audience :: Education', - 'Intended Audience :: Science/Research', - 'License :: OSI Approved :: BSD License', - 'Operating System :: MacOS :: MacOS X', - 'Operating System :: POSIX', - 'Operating System :: Unix', - 'Programming Language :: C++', - 'Programming Language :: Python :: 3.11', - 'Programming Language :: Python :: 3.12', - 'Programming Language :: Python :: 3.13', - 'Topic :: Scientific/Engineering :: Chemistry', - 'Topic :: Scientific/Engineering :: Physics', - 'Topic :: Software Development :: Libraries', +classifiers = [ + 'Development Status :: 5 - Production/Stable', + 'Environment :: Console', + 'Intended Audience :: Developers', + 'Intended Audience :: Education', + 'Intended Audience :: Science/Research', + 'License :: OSI Approved :: BSD License', + 'Operating System :: MacOS :: MacOS X', + 'Operating System :: Microsoft :: Windows', + 'Operating System :: POSIX', + 'Operating System :: Unix', + 'Programming Language :: C++', + 'Programming Language :: Python :: 3.11', + 'Programming Language :: Python :: 3.12', + 'Programming Language :: Python :: 3.13', + 'Topic :: Scientific/Engineering :: Physics', + 'Topic :: Scientific/Engineering :: Chemistry', + 'Topic :: Software Development :: Libraries', ] [project.urls] -Homepage = "https://github.com/diffpy/pyobjcryst" +Homepage = "https://github.com/diffpy/pyobjcryst/" Issues = "https://github.com/diffpy/pyobjcryst/issues/" [tool.setuptools-git-versioning] @@ -54,16 +55,24 @@ include = ["*"] # package names should match these glob patterns (["*"] by defa exclude = [] # exclude packages matching these glob patterns (empty by default) namespaces = false # to disable scanning PEP 420 namespaces (true by default) +[project.scripts] +pyobjcryst = "pyobjcryst.app:main" + [tool.setuptools.dynamic] dependencies = {file = ["requirements/pip.txt"]} -# [tool.codespell] -# exclude-file = ".codespell/ignore_lines.txt" -# ignore-words = ".codespell/ignore_words.txt" -# skip = "*.cif,*.dat,*.cc,*.h" +[tool.codespell] +exclude-file = ".codespell/ignore_lines.txt" +ignore-words = ".codespell/ignore_words.txt" +skip = "*.cif,*.dat" + +[tool.docformatter] +recursive = true +wrap-summaries = 72 +wrap-descriptions = 72 [tool.black] -line-length = 115 +line-length = 79 include = '\.pyi?$' exclude = ''' /( diff --git a/requirements/build.txt b/requirements/build.txt index 49fe098..e69de29 100644 --- a/requirements/build.txt +++ b/requirements/build.txt @@ -1 +0,0 @@ -setuptools diff --git a/requirements/docs.txt b/requirements/docs.txt index ab17b1c..5f34c6e 100644 --- a/requirements/docs.txt +++ b/requirements/docs.txt @@ -1,4 +1,5 @@ sphinx sphinx_rtd_theme +sphinx-copybutton doctr m2r diff --git a/requirements/test.txt b/requirements/tests.txt similarity index 100% rename from requirements/test.txt rename to requirements/tests.txt diff --git a/setup.py b/setup.py index 6cf36ee..988becd 100644 --- a/setup.py +++ b/setup.py @@ -10,19 +10,21 @@ import glob import os from pathlib import Path -import numpy as np +import numpy as np from setuptools import Extension, setup # Helper functions ----------------------------------------------------------- + def check_boost_libraries(lib_dir): pattern = "libboost_python*.*" if os.name != "nt" else "boost_python*.lib" found = list(lib_dir.glob(pattern)) if not found: raise EnvironmentError( - f"No boost_python libraries found in conda environment at {lib_dir}. " - "Please install libboost_python in your conda environment." + f"No boost_python libraries found in conda environment" + f" at {lib_dir}. Please install libboost_python in your " + f"conda environment." ) # convert into linker names @@ -34,6 +36,7 @@ def check_boost_libraries(lib_dir): lib.append(name) return lib + def get_env_config(): conda_prefix = os.environ.get("CONDA_PREFIX") if not conda_prefix: @@ -68,9 +71,17 @@ def create_extensions(): define_macros = [] if os.name == "nt": - extra_compile_args = ['-DBOOST_ERROR_CODE_HEADER_ONLY', '-DREAL=double'] + extra_compile_args = [ + "-DBOOST_ERROR_CODE_HEADER_ONLY", + "-DREAL=double", + ] else: - extra_compile_args = ['-std=c++11', '-DBOOST_ERROR_CODE_HEADER_ONLY', '-DREAL=double', '-fno-strict-aliasing'] + extra_compile_args = [ + "-std=c++11", + "-DBOOST_ERROR_CODE_HEADER_ONLY", + "-DREAL=double", + "-fno-strict-aliasing", + ] ext_kws = { "include_dirs": include_dirs, @@ -81,7 +92,9 @@ def create_extensions(): "extra_link_args": extra_link_args, "extra_objects": extra_objects, } - ext = Extension('pyobjcryst._pyobjcryst', glob.glob("src/extensions/*.cpp"), **ext_kws) + ext = Extension( + "pyobjcryst._pyobjcryst", glob.glob("src/extensions/*.cpp"), **ext_kws + ) return [ext] diff --git a/src/extensions/SConscript b/src/extensions/SConscript index bc328be..8f78fc0 100644 --- a/src/extensions/SConscript +++ b/src/extensions/SConscript @@ -21,9 +21,9 @@ else: # python extension module module_nodes = env.SharedLibrary( - '_pyobjcryst', + '_pyobjcryst', Glob('*.cpp'), - SHLIBPREFIX='', + SHLIBPREFIX='', SHLIBSUFFIX = '.pyd' if env['PLATFORM']=='win32' else '.so') ext_module = module_nodes[0] @@ -37,7 +37,7 @@ AlwaysBuild(dev) # run `scons test` to run the tests env['ENV']['PYTHONPATH'] = Dir('#').abspath + os.sep + 'src' test = env.Alias( - 'test', + 'test', ['dev'], Action('python -m pyobjcryst.tests.run') ) diff --git a/src/extensions/crystal_ext.cpp b/src/extensions/crystal_ext.cpp index 9bcb998..9176b0c 100644 --- a/src/extensions/crystal_ext.cpp +++ b/src/extensions/crystal_ext.cpp @@ -22,7 +22,7 @@ * - GetScatteringComponentList returns an actual list. * * Other Changes -* - CreateCrystalFromCIF is placed here instead of in a seperate CIF module. This +* - CreateCrystalFromCIF is placed here instead of in a separate CIF module. This * method accepts a python file rather than a CIF object. * *****************************************************************************/ @@ -58,7 +58,7 @@ void _AddScatterer(Crystal& crystal, Scatterer* scatt) if(NULL == scatt) { PyErr_SetString(PyExc_ValueError, - "Cannot add nonexistant Scatterer"); + "Cannot add nonexistent Scatterer"); throw_error_already_set(); } // Make sure the associated ScatteringPower exists in the Crystal @@ -94,7 +94,7 @@ void _RemoveScatterer(Crystal& crystal, Scatterer* scatt) if(NULL == scatt) { PyErr_SetString(PyExc_ValueError, - "Cannot remove nonexistant Scatterer"); + "Cannot remove nonexistent Scatterer"); throw_error_already_set(); } @@ -138,7 +138,7 @@ void _AddScatteringPower(Crystal& crystal, ScatteringPower* scattpow) if(NULL == scattpow) { PyErr_SetString(PyExc_ValueError, - "Cannot add nonexistant ScatteringPower"); + "Cannot add nonexistent ScatteringPower"); throw_error_already_set(); } crystal.AddScatteringPower(scattpow); @@ -152,7 +152,7 @@ void _RemoveScatteringPower(Crystal& crystal, ScatteringPower* scattpow) if(NULL == scattpow) { PyErr_SetString(PyExc_ValueError, - "Cannot remove nonexistant ScatteringPower"); + "Cannot remove nonexistent ScatteringPower"); throw_error_already_set(); } crystal.RemoveScatteringPower(scattpow, false); diff --git a/src/extensions/refinableobjclock_ext.cpp b/src/extensions/refinableobjclock_ext.cpp index d636d41..bcc5763 100644 --- a/src/extensions/refinableobjclock_ext.cpp +++ b/src/extensions/refinableobjclock_ext.cpp @@ -40,7 +40,7 @@ precise enough (and is architecture-dependant), we use a custom time,\n\ which records the number of events in the program which uses the library.\n\ This is purely internal, so don't worry about it...\n\ \n\ -The clock values have nothing to do with 'time' as any normal person undertands it."; +The clock values have nothing to do with 'time' as any normal person understands it."; const char* addchilddoc = "Add a 'child' clock. Whenever a child clock is clicked, it will also click its parent.\n\ diff --git a/src/extensions/refinablepar_ext.cpp b/src/extensions/refinablepar_ext.cpp index 0f34d67..d439abf 100644 --- a/src/extensions/refinablepar_ext.cpp +++ b/src/extensions/refinablepar_ext.cpp @@ -26,7 +26,7 @@ * instances of _RefinablePar, which is a python wrapper around * ObjCryst::RefinablePar. The RefinablePar python class is a wrapper around * the C++ class PyRefinablePar, which manages its own double*. These python -* classes are interchangable once instantiated, so users should not notice. +* classes are interchangeable once instantiated, so users should not notice. * - XML input/output are not exposed. * *****************************************************************************/ diff --git a/src/pyobjcryst/__init__.py b/src/pyobjcryst/__init__.py index 3065744..4a52838 100644 --- a/src/pyobjcryst/__init__.py +++ b/src/pyobjcryst/__init__.py @@ -1,18 +1,17 @@ #!/usr/bin/env python ############################################################################## # -# pyobjcryst by DANSE Diffraction group -# Simon J. L. Billinge -# (c) 2009 The Trustees of Columbia University -# in the City of New York. All rights reserved. +# (c) 2025 The Trustees of Columbia University in the City of New York. +# All rights reserved. # -# File coded by: Chris Farrow +# File coded by: Chris Farrow and Billinge Group members. # -# See AUTHORS.txt for a list of people who contributed. -# See LICENSE_DANSE.txt for license information. +# See GitHub contributions for a more detailed list of contributors. +# https://github.com/diffpy/pyobjcryst/graphs/contributors +# +# See LICENSE.rst and LICENSE_DANSE.rst for license information. # ############################################################################## - """Python wrapping of ObjCryst++. Objects are wrapped according to their header file in the ObjCryst source. @@ -50,11 +49,6 @@ """ import warnings -# Let's put this on the package level -from pyobjcryst.general import ObjCrystException - -# version data -from pyobjcryst.version import __version__ # import submodules that only import from _pyobjcryst import pyobjcryst.atom @@ -78,9 +72,14 @@ import pyobjcryst.spacegroup import pyobjcryst.unitcell import pyobjcryst.zscatterer - from pyobjcryst._pyobjcryst import gTopRefinableObjRegistry +# Let's put this on the package level +from pyobjcryst.general import ObjCrystException + +# version data +from pyobjcryst.version import __version__ + def loadCrystal(filename): """Load pyobjcryst Crystal object from a CIF file. @@ -94,11 +93,14 @@ def loadCrystal(filename): which has more options when importing a CIF, including using an URL instead of a file. """ - warnings.warn("loadCrystal is deprecated. Please use " - "pyobjcryst.crystal.create_crystal_from_cif() instead", - DeprecationWarning) + warnings.warn( + "loadCrystal is deprecated. Please use " + "pyobjcryst.crystal.create_crystal_from_cif() instead", + DeprecationWarning, + ) from pyobjcryst.crystal import CreateCrystalFromCIF - with open(filename, 'rb') as fp: + + with open(filename, "rb") as fp: rv = CreateCrystalFromCIF(fp) return rv @@ -107,3 +109,5 @@ def loadCrystal(filename): assert ObjCrystException is not None assert __version__ or True assert pyobjcryst.zscatterer + +# End of file diff --git a/src/pyobjcryst/atom.py b/src/pyobjcryst/atom.py index 7d480a1..be4d771 100644 --- a/src/pyobjcryst/atom.py +++ b/src/pyobjcryst/atom.py @@ -12,8 +12,7 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## - -"""Python wrapping of Atom.h +"""Python wrapping of Atom.h. See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). diff --git a/src/pyobjcryst/crystal.py b/src/pyobjcryst/crystal.py index a2864d6..3bf7628 100644 --- a/src/pyobjcryst/crystal.py +++ b/src/pyobjcryst/crystal.py @@ -12,7 +12,6 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## - """Python wrapping of Crystal.h. See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). @@ -25,21 +24,30 @@ Other Changes -- CreateCrystalFromCIF is placed here instead of in a seperate CIF module. This +- CreateCrystalFromCIF is placed here instead of in a separate CIF module. This method accepts a python file or a filename rather than a CIF object. """ -__all__ = ["Crystal", "BumpMergePar", "CreateCrystalFromCIF", - "create_crystal_from_cif"] +__all__ = [ + "Crystal", + "BumpMergePar", + "CreateCrystalFromCIF", + "create_crystal_from_cif", +] import warnings +from multiprocessing import current_process from types import MethodType from urllib.request import urlopen -from multiprocessing import current_process + import numpy as np -from pyobjcryst._pyobjcryst import Crystal as Crystal_orig + from pyobjcryst._pyobjcryst import BumpMergePar -from pyobjcryst._pyobjcryst import CreateCrystalFromCIF as CreateCrystalFromCIF_orig +from pyobjcryst._pyobjcryst import ( + CreateCrystalFromCIF as CreateCrystalFromCIF_orig, +) +from pyobjcryst._pyobjcryst import Crystal as Crystal_orig + from .refinableobj import wrap_boost_refinableobjregistry try: @@ -56,10 +64,10 @@ class Crystal(Crystal_orig): def CIFOutput(self, file, mindist=0): - """ - Save the crystal structure to a CIF file. + """Save the crystal structure to a CIF file. - :param file: either a filename, or a python file object opened in write mode + :param file: either a filename, or a python file object opened + in write mode """ if isinstance(file, str): super().CIFOutput(open(file, "w"), mindist) @@ -83,29 +91,42 @@ def UpdateDisplay(self): pass def disable_display_update(self): - """ Disable display (useful for multiprocessing)""" + """Disable display (useful for multiprocessing)""" self._display_update_disabled = True def enable_display_update(self): - """ Enable display""" + """Enable display.""" self._display_update_disabled = False - def _display_cif(self, xmin=0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=1, enantiomer=False, - full_molecule=True, only_independent_atoms=False): - """ - Create a CIF with the full list of atoms, including those deduced by symmetry - or translation up to neighbouring unit cells - - :param xmin, xmax, ymin, ymax, zmin, zmax: the view limits in fractional coordinates. - :param enantiomer: if True, will mirror the structure along the x axis - :param full_molecule: if True, a Molecule (or Scatterer) which has at least - one atom inside the view limits is entirely shown. - :param only_independent_atoms: if True, only show the independent atoms, no symmetry - or translation is applied + def _display_cif( + self, + xmin=0, + xmax=1, + ymin=0, + ymax=1, + zmin=0, + zmax=1, + enantiomer=False, + full_molecule=True, + only_independent_atoms=False, + ): + """Create a CIF with the full list of atoms, including those + deduced by symmetry or translation up to neighbouring unit + cells. + + :param xmin, xmax, ymin, ymax, zmin, zmax: the view limits in + fractional coordinates. + :param enantiomer: if True, will mirror the structure along the + x axis + :param full_molecule: if True, a Molecule (or Scatterer) which + has at least one atom inside the view limits is entirely + shown. + :param only_independent_atoms: if True, only show the + independent atoms, no symmetry or translation is applied :return : the CIF as a string """ cif = "data_crystal_for3d\n\n" - cif += "_computing_structure_solution 'FOX http://objcryst.sourceforge.net'\n\n"; + cif += "_computing_structure_solution 'FOX http://objcryst.sourceforge.net'\n\n" cif += "_cell_length_a %8.3f\n" % self.a cif += "_cell_length_b %8.3f\n" % self.b cif += "_cell_length_c %8.3f\n" % self.c @@ -140,7 +161,14 @@ def _display_cif(self, xmin=0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=1, enantiome x, y, z = s.X % 1, s.Y % 1, s.Z % 1 if enantiomer: x = -x % 1 - cif += " %12s %4s %8.4f %8.4f %8.4f %6.4f\n" % (name, symbol, x, y, z, occ) + cif += " %12s %4s %8.4f %8.4f %8.4f %6.4f\n" % ( + name, + symbol, + x, + y, + z, + occ, + ) else: # Generate all symmetrics to enable full molecule display nsym = spg.GetNbSymmetrics() @@ -157,9 +185,9 @@ def _display_cif(self, xmin=0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=1, enantiome for k in range(nsym): xc, yc, zc = vxyz[k].mean(axis=0) - vxyz[k, :, 0] -= (xc - xc % 1) - vxyz[k, :, 1] -= (yc - yc % 1) - vxyz[k, :, 2] -= (zc - zc % 1) + vxyz[k, :, 0] -= xc - xc % 1 + vxyz[k, :, 1] -= yc - yc % 1 + vxyz[k, :, 2] -= zc - zc % 1 # print(vxyz, vxyz.shape) @@ -176,34 +204,81 @@ def _display_cif(self, xmin=0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=1, enantiome for dx in (-1, 0, 1): for dy in (-1, 0, 1): for dz in (-1, 0, 1): - x, y, z = vxyz[k, j] + np.array((dx, dy, dz)) + x, y, z = vxyz[k, j] + np.array( + (dx, dy, dz) + ) # print(" %12s %4s %8.4f %8.4f %8.4f %6.4f" % \ # (name, symbol, x, y, z, occ)) if full_molecule: # If any atom is within limits, display all - vx, vy, vz = vxyz[k, :, 0] + dx, vxyz[k, :, 1] + dy, vxyz[k, :, 2] + dz - tmp = (vx >= xmin) * (vx <= xmax) * (vy >= ymin) * \ - (vy <= ymax) * (vz >= zmin) * (vz <= zmax) + vx, vy, vz = ( + vxyz[k, :, 0] + dx, + vxyz[k, :, 1] + dy, + vxyz[k, :, 2] + dz, + ) + tmp = ( + (vx >= xmin) + * (vx <= xmax) + * (vy >= ymin) + * (vy <= ymax) + * (vz >= zmin) + * (vz <= zmax) + ) if tmp.sum(): - cif += " %12s %4s %8.4f %8.4f %8.4f %6.4f\n" % \ - (name, symbol, x, y, z, occ) + cif += ( + " %12s %4s %8.4f %8.4f %8.4f %6.4f\n" + % ( + name, + symbol, + x, + y, + z, + occ, + ) + ) else: - if xmin <= x <= xmax and ymin <= y <= ymax and zmin <= z <= zmax: - cif += " %12s %4s %8.4f %8.4f %8.4f %6.4f\n" % \ - (name, symbol, x, y, z, occ) + if ( + xmin <= x <= xmax + and ymin <= y <= ymax + and zmin <= z <= zmax + ): + cif += ( + " %12s %4s %8.4f %8.4f %8.4f %6.4f\n" + % ( + name, + symbol, + x, + y, + z, + occ, + ) + ) return cif - def _display_list(self, xmin=0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=1, enantiomer=False, - full_molecule=True, only_independent_atoms=False): - """ - Create a list of atoms to be displayed, so it can be supplied to py3Dmol - - :param xmin, xmax, ymin, ymax, zmin, zmax: the view limits in fractional coordinates. - :param enantiomer: if True, will mirror the structure along the x axis - :param full_molecule: if True, a Molecule (or Scatterer) which has at least - one atom inside the view limits is entirely shown. - :param only_independent_atoms: if True, only show the independent atoms, no symmetry - or translation is applied + def _display_list( + self, + xmin=0, + xmax=1, + ymin=0, + ymax=1, + zmin=0, + zmax=1, + enantiomer=False, + full_molecule=True, + only_independent_atoms=False, + ): + """Create a list of atoms to be displayed, so it can be supplied + to py3Dmol. + + :param xmin, xmax, ymin, ymax, zmin, zmax: the view limits in + fractional coordinates. + :param enantiomer: if True, will mirror the structure along the + x axis + :param full_molecule: if True, a Molecule (or Scatterer) which + has at least one atom inside the view limits is entirely + shown. + :param only_independent_atoms: if True, only show the + independent atoms, no symmetry or translation is applied :return : the list of atoms and bonds to be displayed for 3dmol """ @@ -229,28 +304,46 @@ def _display_list(self, xmin=0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=1, enantiom x, y, z = s.X, s.Y, s.Z if enantiomer: x = -x - atoms[a.int_ptr()] = {'x': x, 'y': y, 'z': z, 'name': name, 'j': j, - 'symbol': symbol, 'bonds': [], 'bondOrder': []} + atoms[a.int_ptr()] = { + "x": x, + "y": y, + "z": z, + "name": name, + "j": j, + "symbol": symbol, + "bonds": [], + "bondOrder": [], + } for bond in scatt.IterBond(): o = bond.BondOrder if o < 1: o = 1 i1 = bond.GetAtom1().int_ptr() i2 = bond.GetAtom2().int_ptr() - atoms[i1]['bonds'].append(i2) - atoms[i2]['bonds'].append(i1) - atoms[i1]['bondOrder'].append(o) - atoms[i2]['bondOrder'].append(o) + atoms[i1]["bonds"].append(i2) + atoms[i2]["bonds"].append(i1) + atoms[i1]["bondOrder"].append(o) + atoms[i2]["bondOrder"].append(o) if only_independent_atoms: # Generate the index for the atoms for a in atoms.values(): - a['idx'] = idx + a["idx"] = idx idx += 1 for a in atoms.values(): - vb = [atoms[int_ptr]['idx'] for int_ptr in a['bonds']] - x, y, z = self.FractionalToOrthonormalCoords(a['x'], a['y'], a['z']) - vv.append({'elem': a['symbol'], 'x': x, 'y': y, 'z': z, - 'bonds': vb, 'bondOrder': a['bondOrder']}) + vb = [atoms[int_ptr]["idx"] for int_ptr in a["bonds"]] + x, y, z = self.FractionalToOrthonormalCoords( + a["x"], a["y"], a["z"] + ) + vv.append( + { + "elem": a["symbol"], + "x": x, + "y": y, + "z": z, + "bonds": vb, + "bondOrder": a["bondOrder"], + } + ) else: # Generate all symmetrics to enable full molecule display nsym = spg.GetNbSymmetrics() @@ -266,62 +359,117 @@ def _display_list(self, xmin=0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=1, enantiom for k in range(nsym): xc, yc, zc = vxyz[k].mean(axis=0) - vxyz[k, :, 0] -= (xc - xc % 1) - vxyz[k, :, 1] -= (yc - yc % 1) - vxyz[k, :, 2] -= (zc - zc % 1) + vxyz[k, :, 0] -= xc - xc % 1 + vxyz[k, :, 1] -= yc - yc % 1 + vxyz[k, :, 2] -= zc - zc % 1 if full_molecule: for k in range(nsym): for dx in (-1, 0, 1): for dy in (-1, 0, 1): for dz in (-1, 0, 1): - vx, vy, vz = vxyz[k, :, 0] + dx, vxyz[k, :, 1] + dy, vxyz[k, :, 2] + dz + vx, vy, vz = ( + vxyz[k, :, 0] + dx, + vxyz[k, :, 1] + dy, + vxyz[k, :, 2] + dz, + ) # Is at least one atom inside the limits ? - tmp = (vx >= xmin) * (vx <= xmax) * (vy >= ymin) * (vy <= ymax) * ( - vz >= zmin) * (vz <= zmax) + tmp = ( + (vx >= xmin) + * (vx <= xmax) + * (vy >= ymin) + * (vy <= ymax) + * (vz >= zmin) + * (vz <= zmax) + ) if tmp.sum(): for a in atoms.values(): - a['idx'] = idx + a["idx"] = idx idx += 1 for a in atoms.values(): - j = a['j'] - vb = [atoms[int_ptr]['idx'] for int_ptr in a['bonds']] - x, y, z = vxyz[k, j] + np.array((dx, dy, dz)) - x, y, z = self.FractionalToOrthonormalCoords(x, y, z) - vv.append({'elem': a['symbol'], 'x': x, 'y': y, 'z': z, - 'bonds': vb, 'bondOrder': a['bondOrder']}) + j = a["j"] + vb = [ + atoms[int_ptr]["idx"] + for int_ptr in a["bonds"] + ] + x, y, z = vxyz[ + k, j + ] + np.array((dx, dy, dz)) + x, y, z = ( + self.FractionalToOrthonormalCoords( + x, y, z + ) + ) + vv.append( + { + "elem": a["symbol"], + "x": x, + "y": y, + "z": z, + "bonds": vb, + "bondOrder": a[ + "bondOrder" + ], + } + ) else: - # TODO add 'visible' value in dictionnary to determine which atoms are shown, + # TODO add 'visible' value in dictionary to determine which atoms are shown, # then update the bond and bondOrder lists for k in range(nsym): for dx in (-1, 0, 1): for dy in (-1, 0, 1): for dz in (-1, 0, 1): - vx, vy, vz = vxyz[k, :, 0] + dx, vxyz[k, :, 1] + dy, vxyz[k, :, 2] + dz + vx, vy, vz = ( + vxyz[k, :, 0] + dx, + vxyz[k, :, 1] + dy, + vxyz[k, :, 2] + dz, + ) for a in atoms.values(): - j = a['j'] + j = a["j"] x, y, z = vx[j], vy[j], vz[j] - if xmin <= x <= xmax and ymin <= y <= ymax and zmin <= z <= zmax: - a['idx'] = idx - a['visible'] = True + if ( + xmin <= x <= xmax + and ymin <= y <= ymax + and zmin <= z <= zmax + ): + a["idx"] = idx + a["visible"] = True idx += 1 else: - a['visible'] = False + a["visible"] = False for a in atoms.values(): - if not a['visible']: + if not a["visible"]: continue - j = a['j'] + j = a["j"] vb = [] vo = [] - for l in range(len(a['bonds'])): - int_ptr = a['bonds'][l] - if atoms[int_ptr]['visible']: - vb.append(atoms[int_ptr]['idx']) - vo.append(a['bondOrder'][l]) - x, y, z = vxyz[k, j] + np.array((dx, dy, dz)) - x, y, z = self.FractionalToOrthonormalCoords(x, y, z) - vv.append({'elem': a['symbol'], 'x': x, 'y': y, 'z': z, - 'bonds': vb, 'bondOrder': vo}) + for l in range(len(a["bonds"])): + int_ptr = a["bonds"][l] + if atoms[int_ptr]["visible"]: + vb.append( + atoms[int_ptr]["idx"] + ) + vo.append( + a["bondOrder"][l] + ) + x, y, z = vxyz[k, j] + np.array( + (dx, dy, dz) + ) + x, y, z = ( + self.FractionalToOrthonormalCoords( + x, y, z + ) + ) + vv.append( + { + "elem": a["symbol"], + "x": x, + "y": y, + "z": z, + "bonds": vb, + "bondOrder": vo, + } + ) else: if only_independent_atoms: for j in range(len(v)): @@ -336,7 +484,7 @@ def _display_list(self, xmin=0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=1, enantiom if enantiomer: x = -x x, y, z = self.FractionalToOrthonormalCoords(x, y, z) - vv.append({'elem': symbol, 'x': x, 'y': y, 'z': z}) + vv.append({"elem": symbol, "x": x, "y": y, "z": z}) else: # Generate all symmetrics to enable full molecule display nsym = spg.GetNbSymmetrics() @@ -353,9 +501,9 @@ def _display_list(self, xmin=0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=1, enantiom for k in range(nsym): xc, yc, zc = vxyz[k].mean(axis=0) - vxyz[k, :, 0] -= (xc - xc % 1) - vxyz[k, :, 1] -= (yc - yc % 1) - vxyz[k, :, 2] -= (zc - zc % 1) + vxyz[k, :, 0] -= xc - xc % 1 + vxyz[k, :, 1] -= yc - yc % 1 + vxyz[k, :, 2] -= zc - zc % 1 # print(vxyz, vxyz.shape) @@ -372,86 +520,209 @@ def _display_list(self, xmin=0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=1, enantiom for dx in (-1, 0, 1): for dy in (-1, 0, 1): for dz in (-1, 0, 1): - x, y, z = vxyz[k, j] + np.array((dx, dy, dz)) - if xmin <= x <= xmax and ymin <= y <= ymax and zmin <= z <= zmax: - x, y, z = self.FractionalToOrthonormalCoords(x, y, z) - vv.append({'elem': symbol, 'x': x, 'y': y, 'z': z}) + x, y, z = vxyz[k, j] + np.array( + (dx, dy, dz) + ) + if ( + xmin <= x <= xmax + and ymin <= y <= ymax + and zmin <= z <= zmax + ): + x, y, z = ( + self.FractionalToOrthonormalCoords( + x, y, z + ) + ) + vv.append( + { + "elem": symbol, + "x": x, + "y": y, + "z": z, + } + ) return vv - def display_3d(self, xmin=0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=1, enantiomer=False, - full_molecule_opacity=0.5, extra_dist=2, extra_opacity=0.5): - """ - This will return a 3D view of the Crystal structure which can be displayed - in a notebook. This cannot be automatically updated, but will remain in the - notebook as a static javascript object, so it can still be useful. - - :param xmin, xmax, ymin, ymax, zmin, zmax: the view limits in fractional coordinates. - :param enantiomer: if True, will mirror the structure along the x axis - :param full_molecule_opacity: if >0, a Molecule (or Scatterer) which has at least - one atom inside the view limits is entirely shown, with the given opacity (0-1) - :param extra_dist: extra distance (in Angstroms) beyond the view limits, where - atoms & bonds are still displayed semi-transparently - :param extra_opacity: the opacity (0-1) to display the atoms within the extra distance. + def display_3d( + self, + xmin=0, + xmax=1, + ymin=0, + ymax=1, + zmin=0, + zmax=1, + enantiomer=False, + full_molecule_opacity=0.5, + extra_dist=2, + extra_opacity=0.5, + ): + """This will return a 3D view of the Crystal structure which can + be displayed in a notebook. This cannot be automatically + updated, but will remain in the notebook as a static javascript + object, so it can still be useful. + + :param xmin, xmax, ymin, ymax, zmin, zmax: the view limits in + fractional coordinates. + :param enantiomer: if True, will mirror the structure along the + x axis + :param full_molecule_opacity: if >0, a Molecule (or Scatterer) + which has at least one atom inside the view limits is + entirely shown, with the given opacity (0-1) + :param extra_dist: extra distance (in Angstroms) beyond the view + limits, where atoms & bonds are still displayed semi- + transparently + :param extra_opacity: the opacity (0-1) to display the atoms + within the extra distance. """ if py3Dmol is None: - warnings.warn("Yout need to install py3Dmol>=0.9 to use Crystal.display_3d()") + warnings.warn( + "Yout need to install py3Dmol>=0.9 to use Crystal.display_3d()" + ) return v = py3Dmol.view() if full_molecule_opacity > 0: v.addModel() m = v.getModel() - atoms = self._display_list(xmin, xmax, ymin, ymax, zmin, zmax, full_molecule=True, - only_independent_atoms=False, enantiomer=enantiomer) + atoms = self._display_list( + xmin, + xmax, + ymin, + ymax, + zmin, + zmax, + full_molecule=True, + only_independent_atoms=False, + enantiomer=enantiomer, + ) m.addAtoms(atoms) - m.setStyle({'stick': {'radius': 0.2, 'opacity': full_molecule_opacity}, - 'sphere': {'scale': 0.3, 'colorscheme': 'jmol', 'opacity': full_molecule_opacity}}) + m.setStyle( + { + "stick": {"radius": 0.2, "opacity": full_molecule_opacity}, + "sphere": { + "scale": 0.3, + "colorscheme": "jmol", + "opacity": full_molecule_opacity, + }, + } + ) if extra_opacity > 0 and extra_dist > 0: - dx, dy, dz = extra_dist / self.a, extra_dist / self.b, extra_dist / self.c + dx, dy, dz = ( + extra_dist / self.a, + extra_dist / self.b, + extra_dist / self.c, + ) v.addModel() m = v.getModel() - atoms = self._display_list(xmin - dx, xmax + dx, ymin - dy, ymax + dy, zmin - dz, zmax + dz, - full_molecule=False, - only_independent_atoms=False, enantiomer=enantiomer) + atoms = self._display_list( + xmin - dx, + xmax + dx, + ymin - dy, + ymax + dy, + zmin - dz, + zmax + dz, + full_molecule=False, + only_independent_atoms=False, + enantiomer=enantiomer, + ) m.addAtoms(atoms) - m.setStyle({'stick': {'radius': 0.2, 'opacity': extra_opacity}, - 'sphere': {'scale': 0.3, 'colorscheme': 'jmol', 'opacity': extra_opacity}}) + m.setStyle( + { + "stick": {"radius": 0.2, "opacity": extra_opacity}, + "sphere": { + "scale": 0.3, + "colorscheme": "jmol", + "opacity": extra_opacity, + }, + } + ) v.addModel() m = v.getModel() - m.setCrystData(self.a, self.b, self.c, np.rad2deg(self.alpha), np.rad2deg(self.beta), np.rad2deg(self.gamma)) - v.addUnitCell({'box': {'color': 'purple'}, 'alabel': 'X', 'blabel': 'Y', 'clabel': 'Z', - 'alabelstyle': {'fontColor': 'black', 'backgroundColor': 'white', 'inFront': True, - 'fontSize': 40}, - 'astyle': {'color': 'darkred', 'radius': 5, 'midpos': -10}}) - - atoms = self._display_list(xmin, xmax, ymin, ymax, zmin, zmax, full_molecule=False, - only_independent_atoms=False, enantiomer=enantiomer) + m.setCrystData( + self.a, + self.b, + self.c, + np.rad2deg(self.alpha), + np.rad2deg(self.beta), + np.rad2deg(self.gamma), + ) + v.addUnitCell( + { + "box": {"color": "purple"}, + "alabel": "X", + "blabel": "Y", + "clabel": "Z", + "alabelstyle": { + "fontColor": "black", + "backgroundColor": "white", + "inFront": True, + "fontSize": 40, + }, + "astyle": {"color": "darkred", "radius": 5, "midpos": -10}, + } + ) + + atoms = self._display_list( + xmin, + xmax, + ymin, + ymax, + zmin, + zmax, + full_molecule=False, + only_independent_atoms=False, + enantiomer=enantiomer, + ) m.addAtoms(atoms) - m.setStyle({'stick': {'radius': 0.2, 'opacity': 1}, - 'sphere': {'scale': 0.3, 'colorscheme': 'jmol', 'opacity': 1}}) + m.setStyle( + { + "stick": {"radius": 0.2, "opacity": 1}, + "sphere": {"scale": 0.3, "colorscheme": "jmol", "opacity": 1}, + } + ) v.zoomTo() return v - def widget_3d(self, xmin=0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=1, enantiomer=False, - full_molecule_opacity=0.5, extra_dist=2, extra_opacity=0.5, width=640, height=480): - """ - This will return a 3D view of the Crystal structure which can be displayed - in a notebook, along with controls for the display. This can be live-updated. - - :param xmin, xmax, ymin, ymax, zmin, zmax: the view limits in fractional coordinates. - :param enantiomer: if True, will mirror the structure along the x axis - :param full_molecule_opacity: if >0, a Molecule (or Scatterer) which has at least - one atom inside the view limits is entirely shown, with the given opacity (0-1) - :param extra_dist: extra distance (in Angstroms) beyond the view limits, where - atoms & bonds are still displayed semi-transparently - :param extra_opacity: the opacity (0-1) to display the atoms within the extra distance. - :param width, height: the width and height of the 3D view + def widget_3d( + self, + xmin=0, + xmax=1, + ymin=0, + ymax=1, + zmin=0, + zmax=1, + enantiomer=False, + full_molecule_opacity=0.5, + extra_dist=2, + extra_opacity=0.5, + width=640, + height=480, + ): + """This will return a 3D view of the Crystal structure which can + be displayed in a notebook, along with controls for the display. + This can be live-updated. + + :param xmin, xmax, ymin, ymax, zmin, zmax: the view limits in + fractional coordinates. + :param enantiomer: if True, will mirror the structure along the + x axis + :param full_molecule_opacity: if >0, a Molecule (or Scatterer) + which has at least one atom inside the view limits is + entirely shown, with the given opacity (0-1) + :param extra_dist: extra distance (in Angstroms) beyond the view + limits, where atoms & bonds are still displayed semi- + transparently + :param extra_opacity: the opacity (0-1) to display the atoms + within the extra distance. :param width, height: the width + and height of the 3D view """ if widgets is None or py3Dmol is None: - warnings.warn("You need to install py3Dmol>=0.9 and ipywidgets to use Crystal.widget_3d()") + warnings.warn( + "You need to install py3Dmol>=0.9 and ipywidgets to use Crystal.widget_3d()" + ) return self._3d_widget = widgets.Box() @@ -459,49 +730,95 @@ def widget_3d(self, xmin=0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=1, enantiomer=F # Use a step of ~0.5 Angstroem xstep = 0.5 / self.a - # Adapt step so we can keep orginal values as integral number steps + # Adapt step so we can keep original values as integral number steps xstep = (xmax - xmin) / np.ceil((xmax - xmin) / xstep) - self.xrange = widgets.FloatRangeSlider(value=[xmin, xmax], min=xmin - 0.5, max=xmax + 0.5, - step=xstep, description='Xrange', - disabled=False, continuous_update=True, orientation='horizontal', - readout=True) + self.xrange = widgets.FloatRangeSlider( + value=[xmin, xmax], + min=xmin - 0.5, + max=xmax + 0.5, + step=xstep, + description="Xrange", + disabled=False, + continuous_update=True, + orientation="horizontal", + readout=True, + ) ystep = 0.5 / self.b ystep = (ymax - ymin) / np.ceil((ymax - ymin) / ystep) - self.yrange = widgets.FloatRangeSlider(value=[ymin, ymax], min=ymin - 0.5, max=ymax + 0.5, - step=ystep, description='Yrange', - disabled=False, continuous_update=True, orientation='horizontal', - readout=True) + self.yrange = widgets.FloatRangeSlider( + value=[ymin, ymax], + min=ymin - 0.5, + max=ymax + 0.5, + step=ystep, + description="Yrange", + disabled=False, + continuous_update=True, + orientation="horizontal", + readout=True, + ) zstep = 0.5 / self.c zstep = (zmax - zmin) / np.ceil((zmax - zmin) / zstep) - self.zrange = widgets.FloatRangeSlider(value=[zmin, zmax], min=zmin - 0.5, max=zmax + 0.5, - step=zstep, description='Zrange', - disabled=False, continuous_update=True, orientation='horizontal', - readout=True) + self.zrange = widgets.FloatRangeSlider( + value=[zmin, zmax], + min=zmin - 0.5, + max=zmax + 0.5, + step=zstep, + description="Zrange", + disabled=False, + continuous_update=True, + orientation="horizontal", + readout=True, + ) self.vbox_range = widgets.VBox([self.xrange, self.yrange, self.zrange]) - self.extra_dist = widgets.FloatSlider(value=extra_dist, min=0, max=10, step=0.5, - description='extra dist', - tooltip='Extra distance (A) with semi-transparent display', - disabled=False, continuous_update=True, orientation='horizontal', - readout=True, readout_format='.1f') - - self.extra_opacity = widgets.FloatSlider(value=extra_opacity, min=0, max=1, step=0.1, - description='extra opac.', - tooltip='Opacity for extra distance display', - disabled=False, continuous_update=True, orientation='horizontal', - readout=True, readout_format='.01f') - - self.full_molecule_opacity = widgets.FloatSlider(value=full_molecule_opacity, min=0, max=1, step=0.1, - description='fullMol opac', - tooltip='Opacity to display fully molecules\n' - 'which have at least one atom inside the limits', - disabled=False, continuous_update=True, - orientation='horizontal', - readout=True, readout_format='.01f') - - self.vbox_options = widgets.VBox([self.extra_dist, self.extra_opacity, self.full_molecule_opacity]) + self.extra_dist = widgets.FloatSlider( + value=extra_dist, + min=0, + max=10, + step=0.5, + description="extra dist", + tooltip="Extra distance (A) with semi-transparent display", + disabled=False, + continuous_update=True, + orientation="horizontal", + readout=True, + readout_format=".1f", + ) + + self.extra_opacity = widgets.FloatSlider( + value=extra_opacity, + min=0, + max=1, + step=0.1, + description="extra opac.", + tooltip="Opacity for extra distance display", + disabled=False, + continuous_update=True, + orientation="horizontal", + readout=True, + readout_format=".01f", + ) + + self.full_molecule_opacity = widgets.FloatSlider( + value=full_molecule_opacity, + min=0, + max=1, + step=0.1, + description="fullMol opac", + tooltip="Opacity to display fully molecules\n" + "which have at least one atom inside the limits", + disabled=False, + continuous_update=True, + orientation="horizontal", + readout=True, + readout_format=".01f", + ) + + self.vbox_options = widgets.VBox( + [self.extra_dist, self.extra_opacity, self.full_molecule_opacity] + ) self.hbox_options = widgets.HBox([self.vbox_range, self.vbox_options]) @@ -536,34 +853,100 @@ def _widget_update(self, show=False, zoom=False): if full_molecule_opacity > 0: v.addModel() m = v.getModel() - atoms = self._display_list(xmin, xmax, ymin, ymax, zmin, zmax, full_molecule=True, - only_independent_atoms=False) + atoms = self._display_list( + xmin, + xmax, + ymin, + ymax, + zmin, + zmax, + full_molecule=True, + only_independent_atoms=False, + ) m.addAtoms(atoms) - m.setStyle({'stick': {'radius': 0.2, 'opacity': full_molecule_opacity}, - 'sphere': {'scale': 0.3, 'colorscheme': 'jmol', 'opacity': full_molecule_opacity}}) + m.setStyle( + { + "stick": {"radius": 0.2, "opacity": full_molecule_opacity}, + "sphere": { + "scale": 0.3, + "colorscheme": "jmol", + "opacity": full_molecule_opacity, + }, + } + ) if extra_opacity > 0 and extra_dist > 0: - dx, dy, dz = extra_dist / self.a, extra_dist / self.b, extra_dist / self.c + dx, dy, dz = ( + extra_dist / self.a, + extra_dist / self.b, + extra_dist / self.c, + ) v.addModel() m = v.getModel() - atoms = self._display_list(xmin - dx, xmax + dx, ymin - dy, ymax + dy, zmin - dz, zmax + dz, - full_molecule=False, only_independent_atoms=False) + atoms = self._display_list( + xmin - dx, + xmax + dx, + ymin - dy, + ymax + dy, + zmin - dz, + zmax + dz, + full_molecule=False, + only_independent_atoms=False, + ) m.addAtoms(atoms) - m.setStyle({'stick': {'radius': 0.2, 'opacity': extra_opacity}, - 'sphere': {'scale': 0.3, 'colorscheme': 'jmol', 'opacity': extra_opacity}}) + m.setStyle( + { + "stick": {"radius": 0.2, "opacity": extra_opacity}, + "sphere": { + "scale": 0.3, + "colorscheme": "jmol", + "opacity": extra_opacity, + }, + } + ) v.addModel() m = v.getModel() - m.setCrystData(self.a, self.b, self.c, np.rad2deg(self.alpha), np.rad2deg(self.beta), np.rad2deg(self.gamma)) - v.addUnitCell({'box': {'color': 'purple'}, 'alabel': 'X', 'blabel': 'Y', 'clabel': 'Z', - 'alabelstyle': {'fontColor': 'black', 'backgroundColor': 'white', 'inFront': True, - 'fontSize': 40}, - 'astyle': {'color': 'darkred', 'radius': 5, 'midpos': -10}}) - atoms = self._display_list(xmin, xmax, ymin, ymax, zmin, zmax, full_molecule=False, - only_independent_atoms=False) + m.setCrystData( + self.a, + self.b, + self.c, + np.rad2deg(self.alpha), + np.rad2deg(self.beta), + np.rad2deg(self.gamma), + ) + v.addUnitCell( + { + "box": {"color": "purple"}, + "alabel": "X", + "blabel": "Y", + "clabel": "Z", + "alabelstyle": { + "fontColor": "black", + "backgroundColor": "white", + "inFront": True, + "fontSize": 40, + }, + "astyle": {"color": "darkred", "radius": 5, "midpos": -10}, + } + ) + atoms = self._display_list( + xmin, + xmax, + ymin, + ymax, + zmin, + zmax, + full_molecule=False, + only_independent_atoms=False, + ) m.addAtoms(atoms) - m.setStyle({'stick': {'radius': 0.2, 'opacity': 1}, - 'sphere': {'scale': 0.3, 'colorscheme': 'jmol', 'opacity': 1}}) + m.setStyle( + { + "stick": {"radius": 0.2, "opacity": 1}, + "sphere": {"scale": 0.3, "colorscheme": "jmol", "opacity": 1}, + } + ) if zoom: v.zoomTo() @@ -571,7 +954,7 @@ def _widget_update(self, show=False, zoom=False): if show: v.show() else: - # This avoids adding extra lines in the javascript output everytime + # This avoids adding extra lines in the javascript output every time # the model is update. Only a flicker (line removed/added) remains. self.output_view.clear_output() with self.output_view: @@ -579,15 +962,18 @@ def _widget_update(self, show=False, zoom=False): def _widget_on_change_parameter(self, v): if v is not None: - if v['name'] != 'value': + if v["name"] != "value": return self._widget_update(zoom=True) -def create_crystal_from_cif(file, oneScatteringPowerPerElement=False, - connectAtoms=False, multiple=False): - """ - Create a crystal object from a CIF file or URL +def create_crystal_from_cif( + file, + oneScatteringPowerPerElement=False, + connectAtoms=False, + multiple=False, +): + """Create a crystal object from a CIF file or URL. Example: create_crystal_from_cif('http://www.crystallography.net/cod/2201530.cif') @@ -601,7 +987,7 @@ def create_crystal_from_cif(file, oneScatteringPowerPerElement=False, :param connectAtoms: if True, call Crystal::ConnectAtoms to try to create as many Molecules as possible from the list of imported atoms. :param multiple: if True, all structures from the CIF will be imported, but - the returned Crystal object and those created in the globa registry + the returned Crystal object and those created in the global registry will not have been created in python, and so will miss the derived functions for display & widget. :return: the imported Crystal structure @@ -610,38 +996,66 @@ def create_crystal_from_cif(file, oneScatteringPowerPerElement=False, if multiple: if isinstance(file, str): if len(file) > 4: - if file[:4].lower() == 'http': - return CreateCrystalFromCIF_orig(urlopen(file), - oneScatteringPowerPerElement, connectAtoms) - with open(file, 'rb') as cif: # Make sure file object is closed afterwards - c = CreateCrystalFromCIF_orig(cif, oneScatteringPowerPerElement, connectAtoms) + if file[:4].lower() == "http": + return CreateCrystalFromCIF_orig( + urlopen(file), + oneScatteringPowerPerElement, + connectAtoms, + ) + with open( + file, "rb" + ) as cif: # Make sure file object is closed afterwards + c = CreateCrystalFromCIF_orig( + cif, oneScatteringPowerPerElement, connectAtoms + ) else: - c = CreateCrystalFromCIF_orig(file, oneScatteringPowerPerElement, connectAtoms) + c = CreateCrystalFromCIF_orig( + file, oneScatteringPowerPerElement, connectAtoms + ) else: c = Crystal() if isinstance(file, str): if len(file) > 4: - if file[:4].lower() == 'http': - c.ImportCrystalFromCIF(urlopen(file), - oneScatteringPowerPerElement, connectAtoms) + if file[:4].lower() == "http": + c.ImportCrystalFromCIF( + urlopen(file), + oneScatteringPowerPerElement, + connectAtoms, + ) return c - with open(file, 'rb') as cif: # Make sure file object is closed afterwards - c.ImportCrystalFromCIF(cif, oneScatteringPowerPerElement, connectAtoms) + with open( + file, "rb" + ) as cif: # Make sure file object is closed afterwards + c.ImportCrystalFromCIF( + cif, oneScatteringPowerPerElement, connectAtoms + ) else: - c.ImportCrystalFromCIF(file, oneScatteringPowerPerElement, connectAtoms) + c.ImportCrystalFromCIF( + file, oneScatteringPowerPerElement, connectAtoms + ) return c def wrap_boost_crystal(c: Crystal): - """ - This function is used to wrap a C++ Object by adding the python methods to it. + """This function is used to wrap a C++ Object by adding the python + methods to it. - :param c: the C++ created object to which the python function must be added. + :param c: the C++ created object to which the python function must + be added. """ - if '_display_cif' not in dir(c): - for func in ['CIFOutput', 'UpdateDisplay', 'disable_display_update', 'enable_display_update', - '_display_cif', '_display_list', 'display_3d', 'widget_3d', '_widget_update', - '_widget_on_change_parameter']: + if "_display_cif" not in dir(c): + for func in [ + "CIFOutput", + "UpdateDisplay", + "disable_display_update", + "enable_display_update", + "_display_cif", + "_display_list", + "display_3d", + "widget_3d", + "_widget_update", + "_widget_on_change_parameter", + ]: exec("c.%s = MethodType(Crystal.%s, c)" % (func, func)) diff --git a/src/pyobjcryst/diffractiondatasinglecrystal.py b/src/pyobjcryst/diffractiondatasinglecrystal.py index 011302c..59e23c1 100644 --- a/src/pyobjcryst/diffractiondatasinglecrystal.py +++ b/src/pyobjcryst/diffractiondatasinglecrystal.py @@ -12,8 +12,7 @@ # See LICENSE.txt for license information. # ############################################################################## - -"""Python wrapping of DiffractionDataSingleCrystal.h +"""Python wrapping of DiffractionDataSingleCrystal.h. See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). @@ -21,13 +20,20 @@ In development ! """ -__all__ = ["DiffractionDataSingleCrystal", "gDiffractionDataSingleCrystalRegistry", - "create_singlecrystaldata_from_cif"] +__all__ = [ + "DiffractionDataSingleCrystal", + "gDiffractionDataSingleCrystalRegistry", + "create_singlecrystaldata_from_cif", +] from urllib.request import urlopen -from pyobjcryst._pyobjcryst import DiffractionDataSingleCrystal -from pyobjcryst._pyobjcryst import gDiffractionDataSingleCrystalRegistry + from pyobjcryst._pyobjcryst import CreateSingleCrystalDataFromCIF as crcif +from pyobjcryst._pyobjcryst import ( + DiffractionDataSingleCrystal, + gDiffractionDataSingleCrystalRegistry, +) + def create_singlecrystaldata_from_cif(file, crystal): """ @@ -46,9 +52,9 @@ def create_singlecrystaldata_from_cif(file, crystal): """ if isinstance(file, str): if len(file) > 4: - if file[:4].lower() == 'http': + if file[:4].lower() == "http": return crcif(urlopen(file), crystal) - with open(file, 'rb') as cif: # Make sure file object is closed + with open(file, "rb") as cif: # Make sure file object is closed c = crcif(cif, crystal) else: c = crcif(file, crystal) diff --git a/src/pyobjcryst/fourier.py b/src/pyobjcryst/fourier.py index 515a590..19be096 100644 --- a/src/pyobjcryst/fourier.py +++ b/src/pyobjcryst/fourier.py @@ -10,23 +10,26 @@ ############################################################################## import numpy as np + from .scatteringdata import ScatteringData -def calc_fourier_map(data: ScatteringData, map_type="obs", sharpen=True, resolution=0.3): - """ - Compute a 3D Fourier map given a ScatteringData object - :param data: a ScatteringData object with observed data, either - q DiffractionDataSingleCrystal or PowderPatternDiffraction after - extraction of intensities (profile fitting) - :param map_type: either "obs" (the default), "diff" (difference) - or "calc" - :param sharpen: if True, normalise the structure factor Fourier coefficients - by the average atomic scattering factor to sharpen the Fourier maps. - :param resolution: approximate desired resolution for the map, in Angstroems - :return: the 3D Fourier map, computed over one unit cell, with a resolution - dictated by the largest HKL values. The map's origin is at the corner - of the unit cell. +def calc_fourier_map( + data: ScatteringData, map_type="obs", sharpen=True, resolution=0.3 +): + """Compute a 3D Fourier map given a ScatteringData object :param + data: a ScatteringData object with observed data, either q + DiffractionDataSingleCrystal or PowderPatternDiffraction after + extraction of intensities (profile fitting) :param map_type: either + "obs" (the default), "diff" (difference) or "calc" :param sharpen: + if True, normalise the structure factor Fourier coefficients by the + average atomic scattering factor to sharpen the Fourier maps. + + :param resolution: approximate desired resolution for the map, in + Angstroems + :return: the 3D Fourier map, computed over one unit cell, with a + resolution dictated by the largest HKL values. The map's origin + is at the corner of the unit cell. """ if "calc" not in map_type: obs2 = data.GetFhklObsSq() @@ -44,9 +47,19 @@ def calc_fourier_map(data: ScatteringData, map_type="obs", sharpen=True, resolut norm_sf = np.zeros(nb) norm0 = 0 for sc in c.GetScatteringComponentList(): - norm_sf += sc.mOccupancy * sc.mDynPopCorr * vsf[sc.mpScattPow.int_ptr()][:nb] ** 2 - norm0 += sc.mOccupancy * sc.mDynPopCorr * \ - sc.mpScattPow.GetForwardScatteringFactor(data.GetRadiationType()) ** 2 + norm_sf += ( + sc.mOccupancy + * sc.mDynPopCorr + * vsf[sc.mpScattPow.int_ptr()][:nb] ** 2 + ) + norm0 += ( + sc.mOccupancy + * sc.mDynPopCorr + * sc.mpScattPow.GetForwardScatteringFactor( + data.GetRadiationType() + ) + ** 2 + ) norm_sf = np.sqrt(norm_sf / norm0) # Scale obs and calc if "calc" not in map_type: @@ -68,8 +81,15 @@ def calc_fourier_map(data: ScatteringData, map_type="obs", sharpen=True, resolut if "calc" not in map_type: obs = scale_fobs * np.sqrt(obs2[i]) acalc = np.abs(calc[i]) - for h0, k0, l0, fr, fi in spg.GetAllEquivRefl(h[i], k[i], l[i], False, data.IsIgnoringImagScattFact(), - calc.real[i], calc.imag[i]): + for h0, k0, l0, fr, fi in spg.GetAllEquivRefl( + h[i], + k[i], + l[i], + False, + data.IsIgnoringImagScattFact(), + calc.real[i], + calc.imag[i], + ): if abs(2 * h0) < nx and abs(2 * k0) < ny and abs(2 * l0) < nz: # Integer indices ih = int(np.round(h0)) @@ -78,9 +98,17 @@ def calc_fourier_map(data: ScatteringData, map_type="obs", sharpen=True, resolut if "calc" in map_type.lower(): rhof[il, ik, ih] = (fr + 1j * fi) * norm / vol elif "obs" in map_type.lower(): - rhof[il, ik, ih] = (fr + 1j * fi) * obs / max(acalc, 1e-6) * norm / vol + rhof[il, ik, ih] = ( + (fr + 1j * fi) * obs / max(acalc, 1e-6) * norm / vol + ) else: - rhof[il, ik, ih] = (fr + 1j * fi) * (obs - acalc) / max(acalc, 1e-6) * norm / vol + rhof[il, ik, ih] = ( + (fr + 1j * fi) + * (obs - acalc) + / max(acalc, 1e-6) + * norm + / vol + ) # if (i<5): # print(int(h0)," ",int(k0)," ",int(l0),"(",spg.IsReflCentric(h0,k0,l0),"):" # ,fr+1j*fi," :",rhof[il, ik, ih]) @@ -89,7 +117,12 @@ def calc_fourier_map(data: ScatteringData, map_type="obs", sharpen=True, resolut nbsym = spg.GetNbSymmetrics(False, False) for sc in c.GetScatteringComponentList(): sp = sc.mpScattPow - rhof[0, 0, 0] += sp.GetForwardScatteringFactor(data.GetRadiationType()) * \ - sc.mOccupancy * sc.mDynPopCorr * nbsym / vol + rhof[0, 0, 0] += ( + sp.GetForwardScatteringFactor(data.GetRadiationType()) + * sc.mOccupancy + * sc.mDynPopCorr + * nbsym + / vol + ) # print("F000 =", rhof[0, 0, 0]) return np.fft.fftn(rhof) # , norm="backward" diff --git a/src/pyobjcryst/general.py b/src/pyobjcryst/general.py index d5d50b6..478d867 100644 --- a/src/pyobjcryst/general.py +++ b/src/pyobjcryst/general.py @@ -12,13 +12,16 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## - """Python wrapping of things from General.h. -See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). +See the online ObjCryst++ documentation ( +https://objcryst.readthedocs.io). """ __all__ = ["RadiationType", "ObjCrystException", "WavelengthType"] -from pyobjcryst._pyobjcryst import RadiationType, WavelengthType -from pyobjcryst._pyobjcryst import ObjCrystException +from pyobjcryst._pyobjcryst import ( + ObjCrystException, + RadiationType, + WavelengthType, +) diff --git a/src/pyobjcryst/globaloptim.py b/src/pyobjcryst/globaloptim.py index a37894a..3d2918f 100644 --- a/src/pyobjcryst/globaloptim.py +++ b/src/pyobjcryst/globaloptim.py @@ -9,14 +9,12 @@ # See LICENSE.txt for license information. # ############################################################################## - -"""Python wrapping of GlobalOptimObj.h +"""Python wrapping of GlobalOptimObj.h. See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). Changes from ObjCryst::MonteCarloObj:: In development ! - """ __all__ = ["MonteCarlo", "AnnealingSchedule", "GlobalOptimType"] @@ -27,8 +25,10 @@ import ipywidgets as widgets except ImportError: widgets = None -from pyobjcryst._pyobjcryst import MonteCarlo as MonteCarlo_orig, AnnealingSchedule, \ - GlobalOptimType, OptimizationObjRegistry +from pyobjcryst._pyobjcryst import AnnealingSchedule, GlobalOptimType +from pyobjcryst._pyobjcryst import MonteCarlo as MonteCarlo_orig +from pyobjcryst._pyobjcryst import OptimizationObjRegistry + from .refinableobj import * @@ -41,26 +41,40 @@ def Optimize(self, nb_step: int, final_cost=0, max_time=-1): else: super().Optimize(int(nb_step), True, final_cost, max_time) - def MultiRunOptimize(self, nb_run: int, nb_step: int, final_cost=0, max_time=-1): + def MultiRunOptimize( + self, nb_run: int, nb_step: int, final_cost=0, max_time=-1 + ): self._fix_parameters_for_global_optim() if type(self) == MonteCarlo_orig: - self._MultiRunOptimize(int(nb_run), int(nb_step), True, final_cost, max_time) + self._MultiRunOptimize( + int(nb_run), int(nb_step), True, final_cost, max_time + ) else: - super().MultiRunOptimize(int(nb_run), int(nb_step), True, final_cost, max_time) + super().MultiRunOptimize( + int(nb_run), int(nb_step), True, final_cost, max_time + ) def RunSimulatedAnnealing(self, nb_step: int, final_cost=0, max_time=-1): self._fix_parameters_for_global_optim() if type(self) == MonteCarlo_orig: - self._RunSimulatedAnnealing(int(nb_step), True, final_cost, max_time) + self._RunSimulatedAnnealing( + int(nb_step), True, final_cost, max_time + ) else: - super().RunSimulatedAnnealing(int(nb_step), True, final_cost, max_time) + super().RunSimulatedAnnealing( + int(nb_step), True, final_cost, max_time + ) def RunParallelTempering(self, nb_step: int, final_cost=0, max_time=-1): self._fix_parameters_for_global_optim() if type(self) == MonteCarlo_orig: - self._RunParallelTempering(int(nb_step), True, final_cost, max_time) + self._RunParallelTempering( + int(nb_step), True, final_cost, max_time + ) else: - super().RunParallelTempering(int(nb_step), True, final_cost, max_time) + super().RunParallelTempering( + int(nb_step), True, final_cost, max_time + ) def _fix_parameters_for_global_optim(self): # Fix parameters that should not be optimised in a MonterCarlo run @@ -72,18 +86,29 @@ def _fix_parameters_for_global_optim(self): self.SetParIsFixed(refpartype_scattdata_radiation, True) def widget(self): - """ - Display a simple widget for this MonteCarlo, which only updates the current - cost (log-likelihood). Requires ipywidgets + """Display a simple widget for this MonteCarlo, which only + updates the current cost (log-likelihood). + + Requires ipywidgets """ if widgets is None: - warnings.warn("You need to install ipywidgets to use MonteCarlo.widget()") + warnings.warn( + "You need to install ipywidgets to use MonteCarlo.widget()" + ) return self._widget = widgets.Box() # See https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20Styling.html - self._widget_label = widgets.Label("", layout=widgets.Layout(max_width='25%', width='20em')) - self._widget_llk = widgets.Text("", disabled=True, layout=widgets.Layout(max_width='50%', width='30em')) - self._widget.children = [widgets.HBox([self._widget_label, self._widget_llk])] + self._widget_label = widgets.Label( + "", layout=widgets.Layout(max_width="25%", width="20em") + ) + self._widget_llk = widgets.Text( + "", + disabled=True, + layout=widgets.Layout(max_width="50%", width="30em"), + ) + self._widget.children = [ + widgets.HBox([self._widget_label, self._widget_llk]) + ] self._widget_update() return self._widget @@ -101,44 +126,68 @@ def UpdateDisplay(self): pass def disable_display_update(self): - """ Disable display (useful for multiprocessing)""" + """Disable display (useful for multiprocessing)""" self._display_update_disabled = True def enable_display_update(self): - """ Enable display""" + """Enable display.""" self._display_update_disabled = False def _widget_update(self): self._widget_label.value = "MonteCarlo:%s" % self.GetName() - self._widget_label.layout.width = '%dem' % len(self._widget_label.value) + self._widget_label.layout.width = "%dem" % len( + self._widget_label.value + ) if self.IsOptimizing(): - self._widget_llk.value = "LLK=%12.2f Run %2d Trial %8d" % (self.llk, self.run, self.trial) + self._widget_llk.value = "LLK=%12.2f Run %2d Trial %8d" % ( + self.llk, + self.run, + self.trial, + ) else: - self._widget_llk.value = "LLK=%12.2f " % self.llk - self._widget_llk.layout.width = '%dem' % len(self._widget_llk.value) + self._widget_llk.value = ( + "LLK=%12.2f " % self.llk + ) + self._widget_llk.layout.width = "%dem" % len(self._widget_llk.value) def wrap_boost_montecarlo(c: MonteCarlo): - """ - This function is used to wrap a C++ Object by adding the python methods to it. + """This function is used to wrap a C++ Object by adding the python + methods to it. - :param c: the C++ created object to which the python function must be added. + :param c: the C++ created object to which the python function must + be added. """ - if 'widget' not in dir(c): - for func in ['Optimize', 'MultiRunOptimize', 'RunSimulatedAnnealing', 'RunParallelTempering']: + if "widget" not in dir(c): + for func in [ + "Optimize", + "MultiRunOptimize", + "RunSimulatedAnnealing", + "RunParallelTempering", + ]: # We keep access to the original functions... Yes, it's a kludge... exec("c._%s = c.%s" % (func, func)) - for func in ['Optimize', 'MultiRunOptimize', 'RunSimulatedAnnealing', 'RunParallelTempering', - '_fix_parameters_for_global_optim', 'widget', 'UpdateDisplay', - 'disable_display_update', 'enable_display_update', '_widget_update']: + for func in [ + "Optimize", + "MultiRunOptimize", + "RunSimulatedAnnealing", + "RunParallelTempering", + "_fix_parameters_for_global_optim", + "widget", + "UpdateDisplay", + "disable_display_update", + "enable_display_update", + "_widget_update", + ]: exec("c.%s = MethodType(MonteCarlo.%s, c)" % (func, func)) class OptimizationObjRegistryWrapper(OptimizationObjRegistry): - """ - Wrapper class with a GetObj() method which can correctly wrap C++ objects with - the python methods. This is only needed when the objects have been created - from C++, e.g. when loading an XML file. + """Wrapper class with a GetObj() method which can correctly wrap C++ + objects with the python methods. + + This is only needed when the objects have been created from C++, + e.g. when loading an XML file. """ def GetObj(self, i): @@ -153,12 +202,13 @@ def GetObj(self, i): def wrap_boost_optimizationobjregistry(o): - """ - This function is used to wrap a C++ Object by adding the python methods to it. + """This function is used to wrap a C++ Object by adding the python + methods to it. - :param c: the C++ created object to which the python function must be added. + :param c: the C++ created object to which the python function must + be added. """ # TODO: moving the original function is not very pretty. Is there a better way ? - if '_GetObj' not in dir(o): + if "_GetObj" not in dir(o): o._GetObj = o.GetObj o.GetObj = MethodType(OptimizationObjRegistryWrapper.GetObj, o) diff --git a/src/pyobjcryst/globals.py b/src/pyobjcryst/globals.py index ee4d5b3..51b59b7 100644 --- a/src/pyobjcryst/globals.py +++ b/src/pyobjcryst/globals.py @@ -9,23 +9,34 @@ # See LICENSE.txt for license information. # ############################################################################## +"""Global objects are exposed here. -""" Global objects are exposed here. These are the main objects registries, -which are tweaked to wrap pure C++ objects with the python methods. +These are the main objects registries, which are tweaked to wrap pure +C++ objects with the python methods. """ -__all__ = ["gCrystalRegistry","gPowderPatternRegistry", "gRefinableObjRegistry", "gScattererRegistry", - "gOptimizationObjRegistry", "gTopRefinableObjRegistry", "gDiffractionDataSingleCrystalRegistry"] +__all__ = [ + "gCrystalRegistry", + "gPowderPatternRegistry", + "gRefinableObjRegistry", + "gScattererRegistry", + "gOptimizationObjRegistry", + "gTopRefinableObjRegistry", + "gDiffractionDataSingleCrystalRegistry", +] + +from pyobjcryst._pyobjcryst import ( + gCrystalRegistry, + gDiffractionDataSingleCrystalRegistry, + gOptimizationObjRegistry, + gPowderPatternRegistry, + gRefinableObjRegistry, + gScattererRegistry, + gTopRefinableObjRegistry, +) -from .refinableobj import wrap_boost_refinableobjregistry from .globaloptim import wrap_boost_optimizationobjregistry -from pyobjcryst._pyobjcryst import gCrystalRegistry -from pyobjcryst._pyobjcryst import gOptimizationObjRegistry -from pyobjcryst._pyobjcryst import gPowderPatternRegistry -from pyobjcryst._pyobjcryst import gRefinableObjRegistry -from pyobjcryst._pyobjcryst import gScattererRegistry -from pyobjcryst._pyobjcryst import gTopRefinableObjRegistry -from pyobjcryst._pyobjcryst import gDiffractionDataSingleCrystalRegistry +from .refinableobj import wrap_boost_refinableobjregistry # Wrap registries with python methods wrap_boost_refinableobjregistry(gCrystalRegistry) diff --git a/src/pyobjcryst/indexing.py b/src/pyobjcryst/indexing.py index 47138e7..1e3251f 100644 --- a/src/pyobjcryst/indexing.py +++ b/src/pyobjcryst/indexing.py @@ -12,32 +12,62 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## +"""Python wrapping of UnitCell.h. -"""Python wrapping of UnitCell.h - -See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). +See the online ObjCryst++ documentation ( +https://objcryst.readthedocs.io). """ -__all__ = ["CrystalSystem", "CrystalCentering", "EstimateCellVolume", - "RecUnitCell", "PeakList_hkl", "PeakList_hkl0", "PeakList", - "CellExplorer", "quick_index"] +__all__ = [ + "CrystalSystem", + "CrystalCentering", + "EstimateCellVolume", + "RecUnitCell", + "PeakList_hkl", + "PeakList_hkl0", + "PeakList", + "CellExplorer", + "quick_index", +] import time + from numpy import deg2rad -from pyobjcryst._pyobjcryst import CrystalSystem, CrystalCentering, \ - EstimateCellVolume, RecUnitCell, PeakList_hkl, PeakList_hkl0, PeakList,\ - CellExplorer + +from pyobjcryst._pyobjcryst import ( + CellExplorer, + CrystalCentering, + CrystalSystem, + EstimateCellVolume, + PeakList, + PeakList_hkl, + PeakList_hkl0, + RecUnitCell, +) -def quick_index(pl, min_obs_ratio=0.3, max_obs_ratio=1.5, nb_refl=20, try_centered_lattice=True, - continue_on_sol=False, max_nb_spurious=0, verbose=True): +def quick_index( + pl, + min_obs_ratio=0.3, + max_obs_ratio=1.5, + nb_refl=20, + try_centered_lattice=True, + continue_on_sol=False, + max_nb_spurious=0, + verbose=True, +): if len(pl) > nb_refl: pl.resize(nb_refl) nb = len(pl) dmin = pl.GetPeakList()[nb - 1].dobs - dmax = pl.GetPeakList()[0].dobs / 10 # assume there are no peaks at lower resolution + dmax = ( + pl.GetPeakList()[0].dobs / 10 + ) # assume there are no peaks at lower resolution if verbose: - print("Predicting volumes from %2u peaks between d=%6.3f and d=%6.3f\n" % (nb, 1 / dmax, 1 / dmin)) + print( + "Predicting volumes from %2u peaks between d=%6.3f and d=%6.3f\n" + % (nb, 1 / dmax, 1 / dmin) + ) print("Starting indexing using %2u peaks" % nb) ex = CellExplorer(pl, CrystalSystem.CUBIC, 0) ex.SetLengthMinMax(3, 25) @@ -49,10 +79,20 @@ def quick_index(pl, min_obs_ratio=0.3, max_obs_ratio=1.5, nb_refl=20, try_center report_depth = 4 for nb_spurious in range(0, max_nb_spurious + 1): ex.SetNbSpurious(nb_spurious) - for csys in [CrystalSystem.CUBIC, CrystalSystem.TETRAGONAL, CrystalSystem.RHOMBOEDRAL, CrystalSystem.HEXAGONAL, - CrystalSystem.ORTHOROMBIC, CrystalSystem.MONOCLINIC]: + for csys in [ + CrystalSystem.CUBIC, + CrystalSystem.TETRAGONAL, + CrystalSystem.RHOMBOEDRAL, + CrystalSystem.HEXAGONAL, + CrystalSystem.ORTHOROMBIC, + CrystalSystem.MONOCLINIC, + ]: if csys == CrystalSystem.CUBIC: - vcen = [CrystalCentering.LATTICE_P, CrystalCentering.LATTICE_I, CrystalCentering.LATTICE_F] + vcen = [ + CrystalCentering.LATTICE_P, + CrystalCentering.LATTICE_I, + CrystalCentering.LATTICE_F, + ] elif csys == CrystalSystem.TETRAGONAL: vcen = [CrystalCentering.LATTICE_P, CrystalCentering.LATTICE_I] elif csys == CrystalSystem.RHOMBOEDRAL: @@ -60,42 +100,70 @@ def quick_index(pl, min_obs_ratio=0.3, max_obs_ratio=1.5, nb_refl=20, try_center elif csys == CrystalSystem.HEXAGONAL: vcen = [CrystalCentering.LATTICE_P] elif csys == CrystalSystem.ORTHOROMBIC: - vcen = [CrystalCentering.LATTICE_P, CrystalCentering.LATTICE_A, CrystalCentering.LATTICE_B, - CrystalCentering.LATTICE_C, CrystalCentering.LATTICE_I, CrystalCentering.LATTICE_F] + vcen = [ + CrystalCentering.LATTICE_P, + CrystalCentering.LATTICE_A, + CrystalCentering.LATTICE_B, + CrystalCentering.LATTICE_C, + CrystalCentering.LATTICE_I, + CrystalCentering.LATTICE_F, + ] elif csys == CrystalSystem.MONOCLINIC: - vcen = [CrystalCentering.LATTICE_P, CrystalCentering.LATTICE_A,CrystalCentering.LATTICE_C, - CrystalCentering.LATTICE_I] + vcen = [ + CrystalCentering.LATTICE_P, + CrystalCentering.LATTICE_A, + CrystalCentering.LATTICE_C, + CrystalCentering.LATTICE_I, + ] for cent in vcen: - centc = 'P' + centc = "P" if cent == CrystalCentering.LATTICE_I: - centc = 'I' + centc = "I" elif cent == CrystalCentering.LATTICE_A: - centc = 'A' + centc = "A" elif cent == CrystalCentering.LATTICE_B: - centc = 'B' + centc = "B" if cent == CrystalCentering.LATTICE_C: - centc = 'C' + centc = "C" elif cent == CrystalCentering.LATTICE_F: - centc = 'F' + centc = "F" - minv = EstimateCellVolume(dmin, dmax, nb, csys, cent, max_obs_ratio) - maxv = EstimateCellVolume(dmin, dmax, nb, csys, cent, min_obs_ratio) + minv = EstimateCellVolume( + dmin, dmax, nb, csys, cent, max_obs_ratio + ) + maxv = EstimateCellVolume( + dmin, dmax, nb, csys, cent, min_obs_ratio + ) ex.SetVolumeMinMax(minv, maxv) - lengthmax = 3 * maxv ** (1 / 3.) + lengthmax = 3 * maxv ** (1 / 3.0) if lengthmax < 25: lengthmax = 25 ex.SetLengthMinMax(3, lengthmax) ex.SetCrystalSystem(csys) ex.SetCrystalCentering(cent) if verbose: - print("%11s %c : V= %6.0f -> %6.0f A^3, max length=%6.2fA" % - (csys.name, centc, minv, maxv, lengthmax)) + print( + "%11s %c : V= %6.0f -> %6.0f A^3, max length=%6.2fA" + % (csys.name, centc, minv, maxv, lengthmax) + ) t0 = time.time() - ex.DicVol(report_score, report_depth, stop_score, stop_depth, verbose=False) + ex.DicVol( + report_score, + report_depth, + stop_score, + stop_depth, + verbose=False, + ) if verbose: - print(" -> %3u sols in %6.2fs, best score=%6.1f\n" % - (len(ex.GetSolutions()), time.time() - t0, ex.GetBestScore())) + print( + " -> %3u sols in %6.2fs, best score=%6.1f\n" + % ( + len(ex.GetSolutions()), + time.time() - t0, + ex.GetBestScore(), + ) + ) if try_centered_lattice: break return ex diff --git a/src/pyobjcryst/io.py b/src/pyobjcryst/io.py index 2b34b62..34997c9 100644 --- a/src/pyobjcryst/io.py +++ b/src/pyobjcryst/io.py @@ -12,8 +12,7 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## - -"""Python wrapping of IO.h +"""Python wrapping of IO.h. See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). @@ -26,13 +25,23 @@ files ('.xmlgz) """ -__all__ = ["XMLCrystTag", "xml_cryst_file_load_all_object", "xml_cryst_file_save_global"] +__all__ = [ + "XMLCrystTag", + "xml_cryst_file_load_all_object", + "xml_cryst_file_save_global", +] import gzip import os -from pyobjcryst._pyobjcryst import XMLCrystTag, \ - XMLCrystFileLoadAllObject as XMLCrystFileLoadAllObject_orig, \ - XMLCrystFileSaveGlobal as XMLCrystFileSaveGlobal_orig + +from pyobjcryst._pyobjcryst import ( + XMLCrystFileLoadAllObject as XMLCrystFileLoadAllObject_orig, +) +from pyobjcryst._pyobjcryst import ( + XMLCrystFileSaveGlobal as XMLCrystFileSaveGlobal_orig, +) +from pyobjcryst._pyobjcryst import XMLCrystTag + from .globals import gTopRefinableObjRegistry @@ -46,11 +55,11 @@ def xml_cryst_file_load_all_object(file, verbose=False): """ nb0 = len(gTopRefinableObjRegistry) if isinstance(file, str): - if os.path.splitext(file)[-1] == '.xmlgz': - o = gzip.open(file, mode='rb') + if os.path.splitext(file)[-1] == ".xmlgz": + o = gzip.open(file, mode="rb") XMLCrystFileLoadAllObject_orig(o, verbose=verbose) else: - XMLCrystFileLoadAllObject_orig(open(file, 'rb'), verbose=verbose) + XMLCrystFileLoadAllObject_orig(open(file, "rb"), verbose=verbose) else: XMLCrystFileLoadAllObject_orig(file, verbose=verbose) return gTopRefinableObjRegistry[nb0:] @@ -65,11 +74,17 @@ def xml_cryst_file_save_global(file): :return: nothing """ if isinstance(file, str): - if os.path.splitext(file)[-1] == '.xmlgz': - o = gzip.open(file, mode='wt', compresslevel=9, encoding=None, - errors=None, newline=None) + if os.path.splitext(file)[-1] == ".xmlgz": + o = gzip.open( + file, + mode="wt", + compresslevel=9, + encoding=None, + errors=None, + newline=None, + ) XMLCrystFileSaveGlobal_orig(o) else: - XMLCrystFileSaveGlobal_orig(open(file, 'w')) + XMLCrystFileSaveGlobal_orig(open(file, "w")) else: XMLCrystFileSaveGlobal_orig(file) diff --git a/src/pyobjcryst/lsq.py b/src/pyobjcryst/lsq.py index c95b882..f878dd2 100644 --- a/src/pyobjcryst/lsq.py +++ b/src/pyobjcryst/lsq.py @@ -9,14 +9,12 @@ # See LICENSE.txt for license information. # ############################################################################## - -"""Python wrapping of LSQNumObj.h +"""Python wrapping of LSQNumObj.h. See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). Changes from ObjCryst::LSQNumObj:: In development ! - """ from pyobjcryst._pyobjcryst import LSQ diff --git a/src/pyobjcryst/molecule.py b/src/pyobjcryst/molecule.py index 5151c86..7d1ba73 100644 --- a/src/pyobjcryst/molecule.py +++ b/src/pyobjcryst/molecule.py @@ -12,8 +12,7 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## - -"""Python wrapping of Molecule.h +"""Python wrapping of Molecule.h. See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). @@ -82,39 +81,55 @@ methods. """ -__all__ = ["Molecule", "GetBondLength", "GetBondAngle", - "GetDihedralAngle", "MolAtom", "MolBond", - "MolBondAngle", "MolDihedralAngle", "Quaternion", - "RigidGroup", "StretchMode", "StretchModeBondLength", - "StretchModeBondAngle", "StretchModeTorsion", "StretchModeTwist", - "ZScatterer2Molecule", "ImportFenskeHallZMatrix"] +__all__ = [ + "Molecule", + "GetBondLength", + "GetBondAngle", + "GetDihedralAngle", + "MolAtom", + "MolBond", + "MolBondAngle", + "MolDihedralAngle", + "Quaternion", + "RigidGroup", + "StretchMode", + "StretchModeBondLength", + "StretchModeBondAngle", + "StretchModeTorsion", + "StretchModeTwist", + "ZScatterer2Molecule", + "ImportFenskeHallZMatrix", +] # TODO - MolRing -from pyobjcryst._pyobjcryst import Molecule -from pyobjcryst._pyobjcryst import GetBondLength -from pyobjcryst._pyobjcryst import GetBondAngle -from pyobjcryst._pyobjcryst import GetDihedralAngle -from pyobjcryst._pyobjcryst import MolAtom -from pyobjcryst._pyobjcryst import MolBond -from pyobjcryst._pyobjcryst import MolBondAngle -from pyobjcryst._pyobjcryst import MolDihedralAngle -from pyobjcryst._pyobjcryst import Quaternion -from pyobjcryst._pyobjcryst import RigidGroup -from pyobjcryst._pyobjcryst import StretchMode -from pyobjcryst._pyobjcryst import StretchModeBondLength -from pyobjcryst._pyobjcryst import StretchModeBondAngle -from pyobjcryst._pyobjcryst import StretchModeTorsion -from pyobjcryst._pyobjcryst import StretchModeTwist -from pyobjcryst._pyobjcryst import ZScatterer2Molecule +from pyobjcryst._pyobjcryst import ( + GetBondAngle, + GetBondLength, + GetDihedralAngle, + MolAtom, + MolBond, + MolBondAngle, + MolDihedralAngle, + Molecule, + Quaternion, + RigidGroup, + StretchMode, + StretchModeBondAngle, + StretchModeBondLength, + StretchModeTorsion, + StretchModeTwist, + ZScatterer2Molecule, +) + from .zscatterer import ZScatterer def ImportFenskeHallZMatrix(cryst, src, named=False): - """ - Create a Molecule from a Fenske-Hall z-matrix. This is cleaner than importing - the Z-matrix into a ZScatterer object and then using ZScatterer2Molecule, - as it takes care of keeping only the created Molecule inside the Crystal. + """Create a Molecule from a Fenske-Hall z-matrix. This is cleaner + than importing the Z-matrix into a ZScatterer object and then using + ZScatterer2Molecule, as it takes care of keeping only the created + Molecule inside the Crystal. :param cryst: a Crystal object to which will belong the created Molecule :param src: either a python filed (opened in 'rb' mode), or @@ -124,7 +139,7 @@ def ImportFenskeHallZMatrix(cryst, src, named=False): different fields instead of a strict number of characters. """ z = ZScatterer("", cryst) - z.ImportFenskeHallZMatrix(src,named) + z.ImportFenskeHallZMatrix(src, named) m = ZScatterer2Molecule(z) cryst.RemoveScatterer(z) cryst.AddScatterer(m) diff --git a/src/pyobjcryst/polyhedron.py b/src/pyobjcryst/polyhedron.py index 9a703b0..fffc13e 100644 --- a/src/pyobjcryst/polyhedron.py +++ b/src/pyobjcryst/polyhedron.py @@ -12,21 +12,30 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## +"""Python wrapping of Polyhedron.h. -"""Python wrapping of Polyhedron.h - -See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). +See the online ObjCryst++ documentation ( +https://objcryst.readthedocs.io). """ -__all__ = ["MakeTetrahedron", "MakeOctahedron", "MakeSquarePlane", - "MakeCube", "MakeAntiPrismTetragonal", "MakePrismTrigonal", - "MakeIcosahedron", "MakeTriangle"] +__all__ = [ + "MakeTetrahedron", + "MakeOctahedron", + "MakeSquarePlane", + "MakeCube", + "MakeAntiPrismTetragonal", + "MakePrismTrigonal", + "MakeIcosahedron", + "MakeTriangle", +] -from pyobjcryst._pyobjcryst import MakeTetrahedron -from pyobjcryst._pyobjcryst import MakeOctahedron -from pyobjcryst._pyobjcryst import MakeSquarePlane -from pyobjcryst._pyobjcryst import MakeCube -from pyobjcryst._pyobjcryst import MakeAntiPrismTetragonal -from pyobjcryst._pyobjcryst import MakePrismTrigonal -from pyobjcryst._pyobjcryst import MakeIcosahedron -from pyobjcryst._pyobjcryst import MakeTriangle +from pyobjcryst._pyobjcryst import ( + MakeAntiPrismTetragonal, + MakeCube, + MakeIcosahedron, + MakeOctahedron, + MakePrismTrigonal, + MakeSquarePlane, + MakeTetrahedron, + MakeTriangle, +) diff --git a/src/pyobjcryst/powderpattern.py b/src/pyobjcryst/powderpattern.py index 51e045f..3367916 100644 --- a/src/pyobjcryst/powderpattern.py +++ b/src/pyobjcryst/powderpattern.py @@ -9,8 +9,7 @@ # See LICENSE.txt for license information. # ############################################################################## - -"""Python wrapping of PowderPattern.h +"""Python wrapping of PowderPattern.h. See the online ObjCryst++ documentation (https://objcryst.readthedocs.io/en/latest/). @@ -18,27 +17,38 @@ Additional functions for plotting, basic QPA and profile fitting. """ -from urllib.request import urlopen -from packaging.version import parse as version_parse from multiprocessing import current_process +from urllib.request import urlopen + import numpy as np +from packaging.version import parse as version_parse -__all__ = ["PowderPattern", "CreatePowderPatternFromCIF", - "PowderPatternBackground", "PowderPatternComponent", - "PowderPatternDiffraction", "ReflectionProfileType", - "SpaceGroupExplorer"] +__all__ = [ + "PowderPattern", + "CreatePowderPatternFromCIF", + "PowderPatternBackground", + "PowderPatternComponent", + "PowderPatternDiffraction", + "ReflectionProfileType", + "SpaceGroupExplorer", +] from types import MethodType -from pyobjcryst._pyobjcryst import PowderPattern as PowderPattern_objcryst -from pyobjcryst._pyobjcryst import CreatePowderPatternFromCIF as CreatePowderPatternFromCIF_orig -from pyobjcryst._pyobjcryst import PowderPatternBackground -from pyobjcryst._pyobjcryst import PowderPatternComponent -from pyobjcryst._pyobjcryst import PowderPatternDiffraction -from pyobjcryst._pyobjcryst import ReflectionProfileType + +from pyobjcryst.general import ObjCrystException from pyobjcryst._pyobjcryst import LSQ +from pyobjcryst._pyobjcryst import ( + CreatePowderPatternFromCIF as CreatePowderPatternFromCIF_orig, +) +from pyobjcryst._pyobjcryst import PowderPattern as PowderPattern_objcryst +from pyobjcryst._pyobjcryst import ( + PowderPatternBackground, + PowderPatternComponent, + PowderPatternDiffraction, + ReflectionProfileType, + SpaceGroupExplorer, +) from pyobjcryst.refinableobj import refpartype_scattdata_background -from pyobjcryst._pyobjcryst import SpaceGroupExplorer -from pyobjcryst import ObjCrystException class PowderPattern(PowderPattern_objcryst): @@ -55,8 +65,18 @@ def __init__(self): # xlim last time hkl were plotted self._last_hkl_plot_xlim = None self.evts = [] - self._colour_phases = ["black", "blue", "green", "red", "brown", "olive", - "cyan", "purple", "magenta", "salmon"] + self._colour_phases = [ + "black", + "blue", + "green", + "red", + "brown", + "olive", + "cyan", + "purple", + "magenta", + "salmon", + ] def UpdateDisplay(self): try: @@ -69,8 +89,7 @@ def UpdateDisplay(self): self.plot() def update_display(self, return_figure=False): - """ - Update the plotted figure (if it exists) + """Update the plotted figure (if it exists) :param return_figure: if True, returns the figure :return: the figure if return_figure is True @@ -80,27 +99,35 @@ def update_display(self, return_figure=False): return self.figure def disable_display_update(self): - """ Disable display (useful for multiprocessing)""" + """Disable display (useful for multiprocessing)""" self._display_update_disabled = True def enable_display_update(self): - """ Enable display""" + """Enable display.""" self._display_update_disabled = False - def plot(self, diff=None, hkl=None, figsize=(9, 4), fontsize_hkl=6, reset=False, **kwargs): - """ - Show the powder pattern in a plot using matplotlib - :param diff: if True, also show the difference plot - :param hkl: if True, print the hkl values - :param figsize: the figure size passed to matplotlib - :param fontsize_hkl: fontsize for hkl coordinates - :param reset: if True, will reset the x and y limits, and remove the flags to plot - the difference and hkl unless the options are set at the same time. - :param kwargs: additional keyword arguments: - fig=None will force creating a new figure - fig=fig1 will plot in the given matplotlib figure + def plot( + self, + diff=None, + hkl=None, + figsize=(9, 4), + fontsize_hkl=6, + reset=False, + **kwargs, + ): + """Show the powder pattern in a plot using matplotlib :param diff: if + True, also show the difference plot :param hkl: if True, print the hkl + values :param figsize: the figure size passed to matplotlib :param + fontsize_hkl: fontsize for hkl coordinates :param reset: if True, will + reset the x and y limits, and remove the flags to plot the difference + and hkl unless the options are set at the same time. + + :param kwargs: additional keyword arguments: fig=None will force + creating a new figure fig=fig1 will plot in the given + matplotlib figure """ import matplotlib.pyplot as plt + obs = self.GetPowderPatternObs() try: calc = self.GetPowderPatternCalc() @@ -115,8 +142,8 @@ def plot(self, diff=None, hkl=None, figsize=(9, 4), fontsize_hkl=6, reset=False, self._plot_xlim = None self._plot_hkl = False self._plot_diff = False - if 'fig' in kwargs: - self._plot_fig = kwargs['fig'] + if "fig" in kwargs: + self._plot_fig = kwargs["fig"] if diff is not None: self._plot_diff = diff @@ -127,23 +154,26 @@ def plot(self, diff=None, hkl=None, figsize=(9, 4), fontsize_hkl=6, reset=False, # TODO: handle other coordinates than angles (TOF) x = np.rad2deg(self.GetPowderPatternX()) - if self._plot_fig is None or 'inline' in plt.get_backend(): + if self._plot_fig is None or "inline" in plt.get_backend(): self._plot_fig = plt.figure(figsize=figsize) else: self._plot_fig.clear() - ax = self._plot_fig.axes[0] if len(self._plot_fig.axes) else self._plot_fig.subplots() - ax.plot(x, obs, 'k', label='obs', linewidth=1) - ax.plot(x, calc, 'r', label='calc', linewidth=1) + ax = ( + self._plot_fig.axes[0] + if len(self._plot_fig.axes) + else self._plot_fig.subplots() + ) + ax.plot(x, obs, "k", label="obs", linewidth=1) + ax.plot(x, calc, "r", label="calc", linewidth=1) m = min(1, self.GetMaxSinThetaOvLambda() * self.GetWavelength()) mtth = np.rad2deg(np.arcsin(m)) * 2 if plot_diff: diff = calc - obs - obs.max() / 20 # Mask difference above max sin(theta)/lambda diff = np.ma.masked_array(diff, x > mtth) - ax.plot(x, diff, 'g', label='calc-obs', - linewidth=0.5) + ax.plot(x, diff, "g", label="calc-obs", linewidth=0.5) - ax.legend(loc='upper right') + ax.legend(loc="upper right") if self.GetName() != "": self._plot_fig.suptitle("PowderPattern: %s" % self.GetName()) @@ -176,27 +206,40 @@ def plot(self, diff=None, hkl=None, figsize=(9, 4), fontsize_hkl=6, reset=False, if comp.GetExtractionMode(): s += "[Le Bail mode]" self._plot_phase_labels.append(s) - ax.text(0.005, 0.995, "\n" * iphase + s, horizontalalignment="left", verticalalignment="top", - transform=ax.transAxes, fontsize=6, color=self._colour_phases[iphase]) + ax.text( + 0.005, + 0.995, + "\n" * iphase + s, + horizontalalignment="left", + verticalalignment="top", + transform=ax.transAxes, + fontsize=6, + color=self._colour_phases[iphase], + ) iphase += 1 - if 'inline' not in plt.get_backend(): + if "inline" not in plt.get_backend(): try: # Force immediate display. Not supported on all backends (e.g. nbagg) ax.draw() self._plot_fig.canvas.draw() - if 'ipympl' not in plt.get_backend(): - plt.pause(.001) + if "ipympl" not in plt.get_backend(): + plt.pause(0.001) except: pass # plt.gca().callbacks.connect('xlim_changed', self._on_xlims_change) # plt.gca().callbacks.connect('ylim_changed', self._on_ylims_change) - self._plot_fig.canvas.mpl_connect('button_press_event', self._on_mouse_event) - self._plot_fig.canvas.mpl_connect('draw_event', self._on_draw_event) + self._plot_fig.canvas.mpl_connect( + "button_press_event", self._on_mouse_event + ) + self._plot_fig.canvas.mpl_connect( + "draw_event", self._on_draw_event + ) def _do_plot_hkl(self, nb_max=100, fontsize_hkl=None): import matplotlib.pyplot as plt from matplotlib import __version__ as mpl_version + if fontsize_hkl is None: fontsize_hkl = self._plot_hkl_fontsize else: @@ -225,7 +268,7 @@ def _do_plot_hkl(self, nb_max=100, fontsize_hkl=None): vl = np.round(c.GetL()).astype(np.int16) stol = c.GetSinThetaOverLambda() - if 'inline' not in plt.get_backend(): + if "inline" not in plt.get_backend(): # 'inline' backend triggers a delayed exception (?) try: # need the renderer to avoid text overlap @@ -234,8 +277,8 @@ def _do_plot_hkl(self, nb_max=100, fontsize_hkl=None): # Force immediate display. Not supported on all backends (e.g. nbagg) ax.draw() self._plot_fig.canvas.draw() - if 'ipympl' not in plt.get_backend(): - plt.pause(.001) + if "ipympl" not in plt.get_backend(): + plt.pause(0.001) try: renderer = self._plot_fig.canvas.get_renderer() except: @@ -243,7 +286,7 @@ def _do_plot_hkl(self, nb_max=100, fontsize_hkl=None): else: renderer = None - props = {'ha': 'center', 'va': 'bottom'} + props = {"ha": "center", "va": "bottom"} ct = 0 last_bbox = None tdi = ax.transData.inverted() @@ -261,8 +304,16 @@ def _do_plot_hkl(self, nb_max=100, fontsize_hkl=None): ihkl = max(calc[idxhkl], obs[idxhkl]) s = " %d %d %d" % (vh[i], vk[i], vl[i]) - t = ax.text(xhkl, ihkl, s, props, rotation=90, fontsize=fontsize_hkl, - fontweight='light', color=self._colour_phases[iphase]) + t = ax.text( + xhkl, + ihkl, + s, + props, + rotation=90, + fontsize=fontsize_hkl, + fontweight="light", + color=self._colour_phases[iphase], + ) if renderer is not None: # Check for overlap with previous bbox = t.get_window_extent(renderer) @@ -277,8 +328,16 @@ def _do_plot_hkl(self, nb_max=100, fontsize_hkl=None): if self._plot_phase_labels is not None: for iphase in range(len(self._plot_phase_labels)): s = self._plot_phase_labels[iphase] - ax.text(0.005, 0.995, "\n" * iphase + s, horizontalalignment="left", verticalalignment="top", - transform=ax.transAxes, fontsize=6, color=self._colour_phases[iphase]) + ax.text( + 0.005, + 0.995, + "\n" * iphase + s, + horizontalalignment="left", + verticalalignment="top", + transform=ax.transAxes, + fontsize=6, + color=self._colour_phases[iphase], + ) @property def figure(self): @@ -290,16 +349,32 @@ def figure(self): """ return self._plot_fig - def quick_fit_profile(self, pdiff=None, auto_background=True, init_profile=True, plot=True, - zero=True, constant_width=True, width=True, eta=True, backgd=True, cell=True, - anisotropic=False, asym=False, displ_transl=False, verbose=True): + def quick_fit_profile( + self, + pdiff=None, + auto_background=True, + init_profile=True, + plot=True, + zero=True, + constant_width=True, + width=True, + eta=True, + backgd=True, + cell=True, + anisotropic=False, + asym=False, + displ_transl=False, + verbose=True, + ): if plot: self.plot() if auto_background: # Add background if necessary need_background = True for i in range(self.GetNbPowderPatternComponent()): - if isinstance(self.GetPowderPatternComponent(i), PowderPatternBackground): + if isinstance( + self.GetPowderPatternComponent(i), PowderPatternBackground + ): need_background = False break if need_background: @@ -316,14 +391,22 @@ def quick_fit_profile(self, pdiff=None, auto_background=True, init_profile=True, if pdiff is None: # Probably just one diffraction phase, select it for i in range(self.GetNbPowderPatternComponent()): - if isinstance(self.GetPowderPatternComponent(i), PowderPatternDiffraction): + if isinstance( + self.GetPowderPatternComponent(i), PowderPatternDiffraction + ): pdiff = self.GetPowderPatternComponent(i) break if verbose: - print("Selected PowderPatternDiffraction: ", pdiff.GetName(), - " with Crystal: ", pdiff.GetCrystal().GetName()) + print( + "Selected PowderPatternDiffraction: ", + pdiff.GetName(), + " with Crystal: ", + pdiff.GetCrystal().GetName(), + ) if init_profile: - pdiff.SetReflectionProfilePar(ReflectionProfileType.PROFILE_PSEUDO_VOIGT, 0.0000001) + pdiff.SetReflectionProfilePar( + ReflectionProfileType.PROFILE_PSEUDO_VOIGT, 0.0000001 + ) pdiff.SetExtractionMode(True, True) pdiff.ExtractLeBail(10) @@ -406,36 +489,46 @@ def quick_fit_profile(self, pdiff=None, auto_background=True, init_profile=True, self.UpdateDisplay() if backgd: for i in range(self.GetNbPowderPatternComponent()): - if isinstance(self.GetPowderPatternComponent(i), PowderPatternBackground): + if isinstance( + self.GetPowderPatternComponent(i), PowderPatternBackground + ): b = self.GetPowderPatternComponent(i) lsq.SetParIsFixed(refpartype_scattdata_background, False) b.FixParametersBeyondMaxresolution(lsqr) # lsqr.Print() - lsq.SafeRefine(nbCycle=10, useLevenbergMarquardt=True, silent=True) + lsq.SafeRefine( + nbCycle=10, useLevenbergMarquardt=True, silent=True + ) break if verbose: - print("Profile fitting finished.\n" - "Remember to use SetExtractionMode(False) on the PowderPatternDiffraction object\n" - "to disable profile fitting and optimise the structure.") + print( + "Profile fitting finished.\n" + "Remember to use SetExtractionMode(False) on the PowderPatternDiffraction object\n" + "to disable profile fitting and optimise the structure." + ) def get_background(self): - """ - Access the background component. + """Access the background component. - :return: the PowderPatternBackground for this powder pattern, or None + :return: the PowderPatternBackground for this powder pattern, or + None """ for i in range(self.GetNbPowderPatternComponent()): - if self.GetPowderPatternComponent(i).GetClassName() == "PowderPatternBackground": + if ( + self.GetPowderPatternComponent(i).GetClassName() + == "PowderPatternBackground" + ): return self.GetPowderPatternComponent(i) def get_crystalline_components(self): - """ - Get the crystalline phase for this powder pattern - :return: a list of the PowderPatternDiffraction components - """ + """Get the crystalline phase for this powder pattern :return: a + list of the PowderPatternDiffraction components.""" vc = [] for i in range(self.GetNbPowderPatternComponent()): - if self.GetPowderPatternComponent(i).GetClassName() == "PowderPatternDiffraction": + if ( + self.GetPowderPatternComponent(i).GetClassName() + == "PowderPatternDiffraction" + ): vc.append(self.GetPowderPatternComponent(i)) return vc @@ -447,23 +540,29 @@ def _on_mouse_event(self, event): self.plot() def _on_draw_event(self, event): - if self._plot_hkl and self._last_hkl_plot_xlim is not None and len(self._plot_fig.axes): + if ( + self._plot_hkl + and self._last_hkl_plot_xlim is not None + and len(self._plot_fig.axes) + ): ax = self._plot_fig.axes[0] self._plot_xlim = ax.get_xlim() dx1 = abs(self._last_hkl_plot_xlim[0] - self._plot_xlim[0]) dx2 = abs(self._last_hkl_plot_xlim[1] - self._plot_xlim[1]) - if max(dx1, dx2) > 0.1 * (self._last_hkl_plot_xlim[1] - self._last_hkl_plot_xlim[0]): + if max(dx1, dx2) > 0.1 * ( + self._last_hkl_plot_xlim[1] - self._last_hkl_plot_xlim[0] + ): # Need to update the hkl list self._do_plot_hkl() def qpa(self, verbose=False): - """ - Get the quantitative phase analysis for the current powder pattern, - when multiple crystalline phases are present. + """Get the quantitative phase analysis for the current powder + pattern, when multiple crystalline phases are present. - :param verbose: if True, print the Crystal names and their weight percentage. - :return: a dictionary with the PowderPatternDiffraction object as key, and - the weight percentages as value. + :param verbose: if True, print the Crystal names and their + weight percentage. + :return: a dictionary with the PowderPatternDiffraction object + as key, and the weight percentages as value. """ res = {} szmv_sum = 0 @@ -484,7 +583,9 @@ def qpa(self, verbose=False): for k, v in res.items(): res[k] = v / szmv_sum if verbose: - print("%25s: %6.2f%%" % (k.GetCrystal().GetName(), res[k] * 100)) + print( + "%25s: %6.2f%%" % (k.GetCrystal().GetName(), res[k] * 100) + ) return res @@ -505,20 +606,21 @@ def create_powderpattern_from_cif(file): p = PowderPattern() if isinstance(file, str): if len(file) > 4: - if file[:4].lower() == 'http': + if file[:4].lower() == "http": return CreatePowderPatternFromCIF_orig(urlopen(file), p) - with open(file, 'rb') as cif: # Make sure file object is closed + with open(file, "rb") as cif: # Make sure file object is closed return CreatePowderPatternFromCIF_orig(cif, p) return CreatePowderPatternFromCIF_orig(file, p) def wrap_boost_powderpattern(c: PowderPattern): - """ - This function is used to wrap a C++ Object by adding the python methods to it. + """This function is used to wrap a C++ Object by adding the python + methods to it. - :param c: the C++ created object to which the python function must be added. + :param c: the C++ created object to which the python function must + be added. """ - if '_plot_fig' not in dir(c): + if "_plot_fig" not in dir(c): # Add attributes c._plot_fig = None c._plot_xlim = None @@ -529,11 +631,31 @@ def wrap_boost_powderpattern(c: PowderPattern): c._plot_phase_labels = None c._last_hkl_plot_xlim = None c.evts = [] - c._colour_phases = ["black", "blue", "green", "red", "brown", "olive", - "cyan", "purple", "magenta", "salmon"] - for func in ['UpdateDisplay', 'disable_display_update', 'enable_display_update', 'plot', - '_do_plot_hkl', 'quick_fit_profile', 'get_background', 'get_crystalline_components', - '_on_mouse_event', '_on_draw_event', 'qpa']: + c._colour_phases = [ + "black", + "blue", + "green", + "red", + "brown", + "olive", + "cyan", + "purple", + "magenta", + "salmon", + ] + for func in [ + "UpdateDisplay", + "disable_display_update", + "enable_display_update", + "plot", + "_do_plot_hkl", + "quick_fit_profile", + "get_background", + "get_crystalline_components", + "_on_mouse_event", + "_on_draw_event", + "qpa", + ]: exec("c.%s = MethodType(PowderPattern.%s, c)" % (func, func)) diff --git a/src/pyobjcryst/pyobjcryst_app.py b/src/pyobjcryst/pyobjcryst_app.py new file mode 100644 index 0000000..1ca2d76 --- /dev/null +++ b/src/pyobjcryst/pyobjcryst_app.py @@ -0,0 +1,33 @@ +import argparse + +from pyobjcryst.version import __version__ # noqa + + +def main(): + parser = argparse.ArgumentParser( + prog="pyobjcryst", + description=( + "Python bindings to the ObjCryst++ library.\n\n" + "For more information, visit: " + "https://github.com/diffpy/pyobjcryst/" + ), + formatter_class=argparse.RawDescriptionHelpFormatter, + ) + + parser.add_argument( + "--version", + action="store_true", + help="Show the program's version number and exit", + ) + + args = parser.parse_args() + + if args.version: + print(f"pyobjcryst {__version__}") + else: + # Default behavior when no arguments are given + parser.print_help() + + +if __name__ == "__main__": + main() diff --git a/src/pyobjcryst/radiation.py b/src/pyobjcryst/radiation.py index bcf6d7b..c17ba06 100644 --- a/src/pyobjcryst/radiation.py +++ b/src/pyobjcryst/radiation.py @@ -9,8 +9,7 @@ # See LICENSE.txt for license information. # ############################################################################## - -"""Python wrapping of Radiation from ScatteringData.h +"""Python wrapping of Radiation from ScatteringData.h. See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). @@ -21,4 +20,3 @@ __all__ = ["Radiation", "RadiationType", "WavelengthType"] from pyobjcryst._pyobjcryst import Radiation, RadiationType, WavelengthType - diff --git a/src/pyobjcryst/refinableobj.py b/src/pyobjcryst/refinableobj.py index 41fdbe5..a4ad41a 100644 --- a/src/pyobjcryst/refinableobj.py +++ b/src/pyobjcryst/refinableobj.py @@ -12,8 +12,7 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## - -"""Python wrapping of RefinableObj.h +"""Python wrapping of RefinableObj.h. See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). @@ -41,7 +40,7 @@ instances of _RefinablePar, which is a python wrapper around ObjCryst::RefinablePar. The RefinablePar python class is a wrapper around the C++ class PyRefinablePar, which manages its own double*. These python - classes are interchangable once instantiated, so users should not notice. + classes are interchangeable once instantiated, so users should not notice. - XML input/output are not exposed. Changes from ObjCryst::RefinableObjClock @@ -62,100 +61,134 @@ - XML input/output are not exposed. """ -__all__ = ["RefinableObjClock", "RefinableObj", "RefObjOpt", - "RefinableObjRegistry", "RefParType", "RefParDerivStepModel", - "RefinablePar", "Restraint", "ScattererRegistry", - "ScatteringPowerRegistry", "ZAtomRegistry", - "refpartype_crystal", "refpartype_objcryst", "refpartype_scatt", - "refpartype_scatt_transl", "refpartype_scatt_transl_x", - "refpartype_scatt_transl_y", "refpartype_scatt_transl_z", - "refpartype_scatt_orient", "refpartype_scatt_conform", - "refpartype_scatt_conform_bondlength", "refpartype_scatt_conform_bondangle", - "refpartype_scatt_conform_dihedangle", "refpartype_scatt_conform_x", - "refpartype_scatt_conform_y", "refpartype_scatt_conform_z", - "refpartype_scatt_occup", "refpartype_scattdata", "refpartype_scattdata_background", - "refpartype_scattdata_scale", "refpartype_scattdata_profile", - "refpartype_scattdata_profile_type", "refpartype_scattdata_profile_width", - "refpartype_scattdata_profile_asym", "refpartype_scattdata_corr", - "refpartype_scattdata_corr_pos", "refpartype_scattdata_radiation", - "refpartype_scattdata_radiation_wavelength", "refpartype_scattpow", - "refpartype_scattpow_temperature", "refpartype_unitcell", - "refpartype_unitcell_length", "refpartype_unitcell_angle"] +__all__ = [ + "RefinableObjClock", + "RefinableObj", + "RefObjOpt", + "RefinableObjRegistry", + "RefParType", + "RefParDerivStepModel", + "RefinablePar", + "Restraint", + "ScattererRegistry", + "ScatteringPowerRegistry", + "ZAtomRegistry", + "refpartype_crystal", + "refpartype_objcryst", + "refpartype_scatt", + "refpartype_scatt_transl", + "refpartype_scatt_transl_x", + "refpartype_scatt_transl_y", + "refpartype_scatt_transl_z", + "refpartype_scatt_orient", + "refpartype_scatt_conform", + "refpartype_scatt_conform_bondlength", + "refpartype_scatt_conform_bondangle", + "refpartype_scatt_conform_dihedangle", + "refpartype_scatt_conform_x", + "refpartype_scatt_conform_y", + "refpartype_scatt_conform_z", + "refpartype_scatt_occup", + "refpartype_scattdata", + "refpartype_scattdata_background", + "refpartype_scattdata_scale", + "refpartype_scattdata_profile", + "refpartype_scattdata_profile_type", + "refpartype_scattdata_profile_width", + "refpartype_scattdata_profile_asym", + "refpartype_scattdata_corr", + "refpartype_scattdata_corr_pos", + "refpartype_scattdata_radiation", + "refpartype_scattdata_radiation_wavelength", + "refpartype_scattpow", + "refpartype_scattpow_temperature", + "refpartype_unitcell", + "refpartype_unitcell_length", + "refpartype_unitcell_angle", +] from types import MethodType -from pyobjcryst._pyobjcryst import RefinableObjClock -from pyobjcryst._pyobjcryst import RefinableObj -from pyobjcryst._pyobjcryst import RefObjOpt -from pyobjcryst._pyobjcryst import RefinableObjRegistry -from pyobjcryst._pyobjcryst import RefParType -from pyobjcryst._pyobjcryst import RefParDerivStepModel -from pyobjcryst._pyobjcryst import RefinablePar -from pyobjcryst._pyobjcryst import Restraint -from pyobjcryst._pyobjcryst import ScattererRegistry -from pyobjcryst._pyobjcryst import ScatteringPowerRegistry -from pyobjcryst._pyobjcryst import ZAtomRegistry -from pyobjcryst._pyobjcryst import refpartype_crystal -from pyobjcryst._pyobjcryst import refpartype_objcryst -from pyobjcryst._pyobjcryst import refpartype_scatt -from pyobjcryst._pyobjcryst import refpartype_scatt_transl -from pyobjcryst._pyobjcryst import refpartype_scatt_transl_x -from pyobjcryst._pyobjcryst import refpartype_scatt_transl_y -from pyobjcryst._pyobjcryst import refpartype_scatt_transl_z -from pyobjcryst._pyobjcryst import refpartype_scatt_orient -from pyobjcryst._pyobjcryst import refpartype_scatt_conform -from pyobjcryst._pyobjcryst import refpartype_scatt_conform_bondlength -from pyobjcryst._pyobjcryst import refpartype_scatt_conform_bondangle -from pyobjcryst._pyobjcryst import refpartype_scatt_conform_dihedangle -from pyobjcryst._pyobjcryst import refpartype_scatt_conform_x -from pyobjcryst._pyobjcryst import refpartype_scatt_conform_y -from pyobjcryst._pyobjcryst import refpartype_scatt_conform_z -from pyobjcryst._pyobjcryst import refpartype_scatt_occup -from pyobjcryst._pyobjcryst import refpartype_scattdata -from pyobjcryst._pyobjcryst import refpartype_scattdata_scale -from pyobjcryst._pyobjcryst import refpartype_scattdata_profile -from pyobjcryst._pyobjcryst import refpartype_scattdata_profile_type -from pyobjcryst._pyobjcryst import refpartype_scattdata_profile_width -from pyobjcryst._pyobjcryst import refpartype_scattdata_profile_asym -from pyobjcryst._pyobjcryst import refpartype_scattdata_corr -from pyobjcryst._pyobjcryst import refpartype_scattdata_corr_pos -from pyobjcryst._pyobjcryst import refpartype_scattdata_radiation -from pyobjcryst._pyobjcryst import refpartype_scattdata_radiation_wavelength -from pyobjcryst._pyobjcryst import refpartype_scattdata_background -from pyobjcryst._pyobjcryst import refpartype_scattpow -from pyobjcryst._pyobjcryst import refpartype_scattpow_temperature -from pyobjcryst._pyobjcryst import refpartype_unitcell -from pyobjcryst._pyobjcryst import refpartype_unitcell_length -from pyobjcryst._pyobjcryst import refpartype_unitcell_angle + +from pyobjcryst._pyobjcryst import ( + RefinableObj, + RefinableObjClock, + RefinableObjRegistry, + RefinablePar, + RefObjOpt, + RefParDerivStepModel, + RefParType, + Restraint, + ScattererRegistry, + ScatteringPowerRegistry, + ZAtomRegistry, + refpartype_crystal, + refpartype_objcryst, + refpartype_scatt, + refpartype_scatt_conform, + refpartype_scatt_conform_bondangle, + refpartype_scatt_conform_bondlength, + refpartype_scatt_conform_dihedangle, + refpartype_scatt_conform_x, + refpartype_scatt_conform_y, + refpartype_scatt_conform_z, + refpartype_scatt_occup, + refpartype_scatt_orient, + refpartype_scatt_transl, + refpartype_scatt_transl_x, + refpartype_scatt_transl_y, + refpartype_scatt_transl_z, + refpartype_scattdata, + refpartype_scattdata_background, + refpartype_scattdata_corr, + refpartype_scattdata_corr_pos, + refpartype_scattdata_profile, + refpartype_scattdata_profile_asym, + refpartype_scattdata_profile_type, + refpartype_scattdata_profile_width, + refpartype_scattdata_radiation, + refpartype_scattdata_radiation_wavelength, + refpartype_scattdata_scale, + refpartype_scattpow, + refpartype_scattpow_temperature, + refpartype_unitcell, + refpartype_unitcell_angle, + refpartype_unitcell_length, +) class ObjRegistryWrapper(RefinableObjRegistry): - """ - Wrapper class with a GetObj() method which can correctly wrap C++ objects with - the python methods. This is only needed when the objects have been created - from C++, e.g. when loading an XML file. + """Wrapper class with a GetObj() method which can correctly wrap C++ + objects with the python methods. + + This is only needed when the objects have been created from C++, + e.g. when loading an XML file. """ def GetObj(self, i): o = self._GetObj(i) - if o.GetClassName() == 'Crystal': + if o.GetClassName() == "Crystal": from .crystal import wrap_boost_crystal + wrap_boost_crystal(o) - elif o.GetClassName() == 'PowderPattern': + elif o.GetClassName() == "PowderPattern": from .powderpattern import wrap_boost_powderpattern + wrap_boost_powderpattern(o) - elif o.GetClassName() == 'MonteCarloObj': + elif o.GetClassName() == "MonteCarloObj": from .globaloptim import wrap_boost_montecarlo + wrap_boost_montecarlo(o) return o def wrap_boost_refinableobjregistry(o): - """ - This function is used to wrap a C++ Object by adding the python methods to it. + """This function is used to wrap a C++ Object by adding the python + methods to it. - :param c: the C++ created object to which the python function must be added. + :param c: the C++ created object to which the python function must + be added. """ # TODO: moving the original function is not very pretty. Is there a better way ? - if '_GetObj' not in dir(o): + if "_GetObj" not in dir(o): o._GetObj = o.GetObj o.GetObj = MethodType(ObjRegistryWrapper.GetObj, o) diff --git a/src/pyobjcryst/reflectionprofile.py b/src/pyobjcryst/reflectionprofile.py index 76e1f65..6d68f97 100644 --- a/src/pyobjcryst/reflectionprofile.py +++ b/src/pyobjcryst/reflectionprofile.py @@ -9,8 +9,7 @@ # See LICENSE.txt for license information. # ############################################################################## - -"""Python wrapping of PowderPattern.h +"""Python wrapping of PowderPattern.h. See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). @@ -20,5 +19,4 @@ __all__ = ["ReflectionProfile", "ReflectionProfileType"] -from pyobjcryst._pyobjcryst import ReflectionProfile -from pyobjcryst._pyobjcryst import ReflectionProfileType +from pyobjcryst._pyobjcryst import ReflectionProfile, ReflectionProfileType diff --git a/src/pyobjcryst/scatterer.py b/src/pyobjcryst/scatterer.py index 4de18e4..89202e3 100644 --- a/src/pyobjcryst/scatterer.py +++ b/src/pyobjcryst/scatterer.py @@ -12,8 +12,7 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## - -"""Python wrapping of Scatterer.h +"""Python wrapping of Scatterer.h. See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). diff --git a/src/pyobjcryst/scatteringdata.py b/src/pyobjcryst/scatteringdata.py index 5714b62..aa933ee 100644 --- a/src/pyobjcryst/scatteringdata.py +++ b/src/pyobjcryst/scatteringdata.py @@ -12,10 +12,10 @@ # See LICENSE.txt for license information. # ############################################################################## - """Python wrapping of ScatteringData class. -See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). +See the online ObjCryst++ documentation ( +https://objcryst.readthedocs.io). """ __all__ = ["ScatteringData"] diff --git a/src/pyobjcryst/scatteringpower.py b/src/pyobjcryst/scatteringpower.py index fddb1d0..d8defac 100644 --- a/src/pyobjcryst/scatteringpower.py +++ b/src/pyobjcryst/scatteringpower.py @@ -12,8 +12,7 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## - -"""Python wrapping of ScatteringPower.h +"""Python wrapping of ScatteringPower.h. See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). @@ -24,12 +23,18 @@ - Wrapped as a to-python converter only (no constructor) """ -__all__ = ["ScatteringPower", "ScatteringComponent", - "ScatteringPowerAtom", "ScatteringComponentList", - "gScatteringPowerRegistry"] +__all__ = [ + "ScatteringPower", + "ScatteringComponent", + "ScatteringPowerAtom", + "ScatteringComponentList", + "gScatteringPowerRegistry", +] -from pyobjcryst._pyobjcryst import ScatteringPower -from pyobjcryst._pyobjcryst import ScatteringComponent -from pyobjcryst._pyobjcryst import ScatteringPowerAtom -from pyobjcryst._pyobjcryst import ScatteringComponentList -from pyobjcryst._pyobjcryst import gScatteringPowerRegistry +from pyobjcryst._pyobjcryst import ( + ScatteringComponent, + ScatteringComponentList, + ScatteringPower, + ScatteringPowerAtom, + gScatteringPowerRegistry, +) diff --git a/src/pyobjcryst/scatteringpowersphere.py b/src/pyobjcryst/scatteringpowersphere.py index ef81449..5eae023 100644 --- a/src/pyobjcryst/scatteringpowersphere.py +++ b/src/pyobjcryst/scatteringpowersphere.py @@ -12,10 +12,10 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## +"""Python wrapping of ScatteringPowerSphere.h. -"""Python wrapping of ScatteringPowerSphere.h - -See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). +See the online ObjCryst++ documentation ( +https://objcryst.readthedocs.io). """ __all__ = ["ScatteringPowerSphere"] diff --git a/src/pyobjcryst/spacegroup.py b/src/pyobjcryst/spacegroup.py index 72063dc..b79b606 100644 --- a/src/pyobjcryst/spacegroup.py +++ b/src/pyobjcryst/spacegroup.py @@ -12,13 +12,12 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## - """Python wrapping of SpaceGroup.h. -See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). +See the online ObjCryst++ documentation ( +https://objcryst.readthedocs.io). """ __all__ = ["SpaceGroup", "AsymmetricUnit"] -from pyobjcryst._pyobjcryst import SpaceGroup -from pyobjcryst._pyobjcryst import AsymmetricUnit +from pyobjcryst._pyobjcryst import AsymmetricUnit, SpaceGroup diff --git a/src/pyobjcryst/tests/__init__.py b/src/pyobjcryst/tests/__init__.py deleted file mode 100644 index c6b167b..0000000 --- a/src/pyobjcryst/tests/__init__.py +++ /dev/null @@ -1,76 +0,0 @@ -#!/usr/bin/env python -############################################################################## -# -# pyobjcryst Complex Modeling Initiative -# (c) 2013 Brookhaven Science Associates, -# Brookhaven National Laboratory. -# All rights reserved. -# -# File coded by: Pavol Juhas -# -# See AUTHORS.txt for a list of people who contributed. -# See LICENSE.txt for license information. -# -############################################################################## - -"""Unit tests for pyobjcryst. -""" - -import unittest - - -def testsuite(pattern=''): - '''Create a unit tests suite for the pyobjcryst package. - - Parameters - ---------- - pattern : str, optional - Regular expression pattern for selecting test cases. - Select all tests when empty. Ignore the pattern when - any of unit test modules fails to import. - - Returns - ------- - suite : `unittest.TestSuite` - The TestSuite object containing the matching tests. - ''' - import re - from os.path import dirname - from itertools import chain - from importlib.resources import files - loader = unittest.defaultTestLoader - thisdir = files(__name__) - depth = __name__.count('.') + 1 - topdir = thisdir - for i in range(depth): - topdir = dirname(topdir) - suite_all = loader.discover(thisdir, top_level_dir=topdir) - # always filter the suite by pattern to test-cover the selection code. - suite = unittest.TestSuite() - rx = re.compile(pattern) - tsuites = list(chain.from_iterable(suite_all)) - tsok = all(isinstance(ts, unittest.TestSuite) for ts in tsuites) - if not tsok: # pragma: no cover - return suite_all - tcases = chain.from_iterable(tsuites) - for tc in tcases: - tcwords = tc.id().split('.') - shortname = '.'.join(tcwords[-3:]) - if rx.search(shortname): - suite.addTest(tc) - # verify all tests are found for an empty pattern. - assert pattern or suite_all.countTestCases() == suite.countTestCases() - return suite - - -def test(verbosity=1): - '''Execute all unit tests for the pyobjcryst package. - - Returns - ------- - result : `unittest.TestResult` - ''' - suite = testsuite() - runner = unittest.TextTestRunner(verbosity=verbosity) - result = runner.run(suite) - return result diff --git a/src/pyobjcryst/tests/debug.py b/src/pyobjcryst/tests/debug.py deleted file mode 100644 index 79c252a..0000000 --- a/src/pyobjcryst/tests/debug.py +++ /dev/null @@ -1,30 +0,0 @@ -#!/usr/bin/env python -############################################################################## -# -# pyobjcryst Complex Modeling Initiative -# (c) 2016 Brookhaven Science Associates, -# Brookhaven National Laboratory. -# All rights reserved. -# -# File coded by: Pavol Juhas -# -# See AUTHORS.txt for a list of people who contributed. -# See LICENSE.txt for license information. -# -############################################################################## - -""" -Convenience module for debugging the unit tests using - -python -m pyobjcryst.tests.debug - -Exceptions raised by failed tests or other errors are not caught. -""" - - -if __name__ == '__main__': - import sys - from pyobjcryst.tests import testsuite - pattern = sys.argv[1] if len(sys.argv) > 1 else '' - suite = testsuite(pattern) - suite.debug() diff --git a/src/pyobjcryst/tests/run.py b/src/pyobjcryst/tests/run.py deleted file mode 100644 index 89398ec..0000000 --- a/src/pyobjcryst/tests/run.py +++ /dev/null @@ -1,31 +0,0 @@ -#!/usr/bin/env python -############################################################################## -# -# pyobjcryst Complex Modeling Initiative -# (c) 2013 Brookhaven Science Associates, -# Brookhaven National Laboratory. -# All rights reserved. -# -# File coded by: Pavol Juhas -# -# See AUTHORS.txt for a list of people who contributed. -# See LICENSE.txt for license information. -# -############################################################################## - -"""Convenience module for executing all unit tests with - -python -m pyobjcryst.tests.run -""" - -if __name__ == '__main__': - import sys - # show warnings by default - if not sys.warnoptions: - import os, warnings - warnings.simplefilter("default") - # also affect subprocesses - os.environ["PYTHONWARNINGS"] = "default" - from pyobjcryst.tests import test - # produce zero exit code for a successful test - sys.exit(not test().wasSuccessful()) diff --git a/src/pyobjcryst/unitcell.py b/src/pyobjcryst/unitcell.py index 416d4fa..01cdd56 100644 --- a/src/pyobjcryst/unitcell.py +++ b/src/pyobjcryst/unitcell.py @@ -12,10 +12,10 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## +"""Python wrapping of UnitCell.h. -"""Python wrapping of UnitCell.h - -See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). +See the online ObjCryst++ documentation ( +https://objcryst.readthedocs.io). """ __all__ = ["UnitCell"] diff --git a/src/pyobjcryst/utils.py b/src/pyobjcryst/utils.py index 369f79b..5133a10 100644 --- a/src/pyobjcryst/utils.py +++ b/src/pyobjcryst/utils.py @@ -12,13 +12,13 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## - """Utilities for crystals.""" # FIXME: check if this function does any meaningful job. -def putAtomsInMolecule(crystal, alist = None, name = None): + +def putAtomsInMolecule(crystal, alist=None, name=None): """Place atoms from a crystal into a molecule inside the crystal. Selected atoms are put into a new Molecule object, which is then placed @@ -34,7 +34,6 @@ def putAtomsInMolecule(crystal, alist = None, name = None): crystal's name. Raises TypeError if idxlist identifies a non-atom. - """ c = crystal @@ -44,8 +43,9 @@ def putAtomsInMolecule(crystal, alist = None, name = None): if alist is None: alist = range(c.GetNbScatterer()) - from pyobjcryst.molecule import Molecule from pyobjcryst.atom import Atom + from pyobjcryst.molecule import Molecule + m = Molecule(c, name) # center of mass @@ -53,6 +53,7 @@ def putAtomsInMolecule(crystal, alist = None, name = None): # mapping fractional coords back into [0, 1) from math import floor + f = lambda v: v - floor(v) scat = [] @@ -91,7 +92,8 @@ def putAtomsInMolecule(crystal, alist = None, name = None): def _xyztostring(crystal): - """Helper function to write xyz coordinates of a crystal to a string.""" + """Helper function to write xyz coordinates of a crystal to a + string.""" nsc = 0 out = "" @@ -108,9 +110,9 @@ def _xyztostring(crystal): xyz = [s.X, s.Y, s.Z] xyz = crystal.FractionalToOrthonormalCoords(*xyz) x, y, z = xyz - out += "%s %f %f %f\n"%(el, x, y, z) + out += "%s %f %f %f\n" % (el, x, y, z) - out = "%i\n"%nsc + out + out = "%i\n" % nsc + out return out @@ -122,7 +124,7 @@ def printxyz(crystal): def writexyz(crystal, filename): """Write a crystal to an xyz file.""" - f = open(filename, 'w') + f = open(filename, "w") out = _xyztostring(crystal) f.write(out) f.close() diff --git a/src/pyobjcryst/version.py b/src/pyobjcryst/version.py index 89f99ae..5192a4f 100644 --- a/src/pyobjcryst/version.py +++ b/src/pyobjcryst/version.py @@ -1,10 +1,10 @@ #!/usr/bin/env python ############################################################################## # -# (c) 2024-2025 The Trustees of Columbia University in the City of New York. +# (c) 2025 The Trustees of Columbia University in the City of New York. # All rights reserved. # -# File coded by: Chris Farrow, Billinge Group members. +# File coded by: Billinge Group members. # # See GitHub contributions for a more detailed list of contributors. # https://github.com/diffpy/pyobjcryst/graphs/contributors # noqa: E501 @@ -18,7 +18,7 @@ # __all__ = ["__date__", "__git_commit__", "__timestamp__", "__version__"] # obtain version information -from importlib.metadata import version, PackageNotFoundError +from importlib.metadata import PackageNotFoundError, version FALLBACK_VERSION = "2024.2.1" diff --git a/src/pyobjcryst/zscatterer.py b/src/pyobjcryst/zscatterer.py index e8935ea..97b271c 100644 --- a/src/pyobjcryst/zscatterer.py +++ b/src/pyobjcryst/zscatterer.py @@ -12,7 +12,6 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## - """Python wrapping of Zscatterer. See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). @@ -24,24 +23,31 @@ - XMLOutput and Input are not wrapped. """ -__all__ = ["ZScatterer", "ZAtom", "ZPolyhedron", - "RegularPolyhedraType", "GlobalScatteringPower"] +__all__ = [ + "ZScatterer", + "ZAtom", + "ZPolyhedron", + "RegularPolyhedraType", + "GlobalScatteringPower", +] from urllib.request import urlopen +from pyobjcryst._pyobjcryst import ( + GlobalScatteringPower, + RegularPolyhedraType, + ZAtom, + ZPolyhedron, +) from pyobjcryst._pyobjcryst import ZScatterer as ZScatterer_orig -from pyobjcryst._pyobjcryst import ZAtom -from pyobjcryst._pyobjcryst import ZPolyhedron -from pyobjcryst._pyobjcryst import RegularPolyhedraType -from pyobjcryst._pyobjcryst import GlobalScatteringPower class ZScatterer(ZScatterer_orig): def ImportFenskeHallZMatrix(self, src, named=False): - """ - Import atoms from a Fenske-Hall z-matrix - :param src: either a python filed (opened in 'rb' mode), or + """Import atoms from a Fenske-Hall z-matrix :param src: either a + python filed (opened in 'rb' mode), or. + a filename, or an url ("http://...") to a text file with the z-matrix :param named: if True, allows to read a named Z-matrix - the formatting is similar to a Fenske-Hall z-matrix but only relies on spaces between the @@ -49,9 +55,9 @@ def ImportFenskeHallZMatrix(self, src, named=False): """ if isinstance(src, str): if len(src) > 4: - if src[:4].lower() == 'http': + if src[:4].lower() == "http": return super().ImportFenskeHallZMatrix(urlopen(src), named) - with open(src, 'rb') as fhz: # Make sure file object is closed + with open(src, "rb") as fhz: # Make sure file object is closed super().ImportFenskeHallZMatrix(fhz, named) else: super().ImportFenskeHallZMatrix(src, named) diff --git a/tests/conftest.py b/tests/conftest.py new file mode 100644 index 0000000..e3b6313 --- /dev/null +++ b/tests/conftest.py @@ -0,0 +1,19 @@ +import json +from pathlib import Path + +import pytest + + +@pytest.fixture +def user_filesystem(tmp_path): + base_dir = Path(tmp_path) + home_dir = base_dir / "home_dir" + home_dir.mkdir(parents=True, exist_ok=True) + cwd_dir = base_dir / "cwd_dir" + cwd_dir.mkdir(parents=True, exist_ok=True) + + home_config_data = {"username": "home_username", "email": "home@email.com"} + with open(home_dir / "diffpyconfig.json", "w") as f: + json.dump(home_config_data, f) + + yield tmp_path diff --git a/src/pyobjcryst/tests/pyobjcrysttest.py b/tests/pyobjcryst_test_mem.py similarity index 89% rename from src/pyobjcryst/tests/pyobjcrysttest.py rename to tests/pyobjcryst_test_mem.py index 8479d98..197758d 100644 --- a/src/pyobjcryst/tests/pyobjcrysttest.py +++ b/tests/pyobjcryst_test_mem.py @@ -12,39 +12,42 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## +"""Small tests for pyobjcryst. Not run by pytest, for memory leak +checks. -"""Small tests for pyobjcryst. - -To check for memory leaks, run -valgrind --tool=memcheck --leak-check=full /usr/bin/python ./pyobjcrysttest.py +To check for memory leaks, run valgrind --tool=memcheck --leak- +check=full python ./pyobjcrysttest.py """ from __future__ import print_function +from numpy import pi + from pyobjcryst.atom import Atom from pyobjcryst.crystal import Crystal -from pyobjcryst.refinableobj import RefParType, RefinablePar +from pyobjcryst.refinableobj import RefinablePar, RefParType from pyobjcryst.scatteringpower import ScatteringPowerAtom -from numpy import pi def makeScatterer(): sp = ScatteringPowerAtom("Ni", "Ni") - sp.SetBiso(8*pi*pi*0.003) - sp.B11 = 8*pi*pi*0.003 - sp.SetBij(2, 2, 8*pi*pi*0.003) - sp.SetBij(3, 3, 8*pi*pi*0.003) + sp.SetBiso(8 * pi * pi * 0.003) + sp.B11 = 8 * pi * pi * 0.003 + sp.SetBij(2, 2, 8 * pi * pi * 0.003) + sp.SetBij(3, 3, 8 * pi * pi * 0.003) atom = Atom(0, 0, 0, "Ni", sp) print(sp.B11) return sp, atom + def makeCrystal(sp, atom): c = Crystal(3.52, 3.52, 3.52, "225") c.AddScatterer(atom) c.AddScatteringPower(sp) return c + def getScatterer(): """Make a crystal and return scatterer from GetScatt.""" sp, atom = makeScatterer() @@ -53,8 +56,10 @@ def getScatterer(): sp2 = c.GetScatt(sp.GetName()) return sp2 + def testCrystalScope(): - """Test to see if the the crystal survives after it is out of scope.""" + """Test to see if the the crystal survives after it is out of + scope.""" sp, atom = makeScatterer() makeCrystal(sp, atom) # The crystal is out of scope. Since the lifetime of the atom and scatterer @@ -64,6 +69,7 @@ def testCrystalScope(): print(repr(atom.GetCrystal())) return + def testMultiAdd(): """Test exception for multi-crystal additions.""" sp, atom = makeScatterer() @@ -79,6 +85,7 @@ def testMultiAdd(): print("Exception:", e) return + def testScattererScope(): """Test when atoms go out of scope before crystal.""" c = makeCrystal(*makeScatterer()) @@ -87,6 +94,7 @@ def testScattererScope(): print(sp2) return + def testRemoveFunctions(): """Test the RemoveScatterer and RemoveScatteringPower method.""" print("Making Crystal") @@ -128,6 +136,7 @@ def testRemoveFunctions(): return + def parTest(): rpt = RefParType("default") testpar = RefinablePar("test", 3.0, 0, 10, rpt) @@ -137,7 +146,7 @@ def parTest(): par = c.GetPar(0) print(par.__class__, par) - c.AddPar(testpar); + c.AddPar(testpar) testpar2 = c.GetPar("test") print(testpar2.__class__, testpar2) @@ -147,6 +156,7 @@ def parTest(): print(testpar.__class__, testpar) return + def test1(): """Run some tests.""" testCrystalScope() @@ -155,5 +165,6 @@ def test1(): testRemoveFunctions() return + if __name__ == "__main__": test1() diff --git a/src/pyobjcryst/tests/testcif.py b/tests/test_cif.py similarity index 70% rename from src/pyobjcryst/tests/testcif.py rename to tests/test_cif.py index d42962a..b01b237 100644 --- a/src/pyobjcryst/tests/testcif.py +++ b/tests/test_cif.py @@ -12,64 +12,58 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## - """Tests for crystal module.""" -import unittest import gc +import unittest + +from numpy import pi +from utils import datafile, loadcifdata from pyobjcryst.crystal import CreateCrystalFromCIF +from pyobjcryst.diffractiondatasinglecrystal import ( + create_singlecrystaldata_from_cif, +) from pyobjcryst.globals import gCrystalRegistry -from pyobjcryst.diffractiondatasinglecrystal import create_singlecrystaldata_from_cif -from numpy import pi -from pyobjcryst.tests.pyobjcrysttestutils import loadcifdata, datafile + class TestCif(unittest.TestCase): def test_Ag_silver_cif(self): - '''Check loading of Ag_silver.cif - ''' - c = loadcifdata('Ag_silver.cif') + """Check loading of Ag_silver.cif.""" + c = loadcifdata("Ag_silver.cif") self.assertTrue(c is not None) return - def test_BaTiO3_cif(self): - '''Check loading of BaTiO3.cif - ''' - c = loadcifdata('BaTiO3.cif') + """Check loading of BaTiO3.cif.""" + c = loadcifdata("BaTiO3.cif") self.assertTrue(c is not None) return - def test_C_graphite_hex_cif(self): - '''Check loading of C_graphite_hex.cif - ''' - c = loadcifdata('C_graphite_hex.cif') + """Check loading of C_graphite_hex.cif.""" + c = loadcifdata("C_graphite_hex.cif") self.assertTrue(c is not None) return - def test_CaF2_fluorite_cif(self): - '''Check loading of CaF2_fluorite.cif - ''' - c = loadcifdata('CaF2_fluorite.cif') + """Check loading of CaF2_fluorite.cif.""" + c = loadcifdata("CaF2_fluorite.cif") self.assertTrue(c is not None) return - def test_caffeine_cif(self): - '''Check loading of caffeine.cif and the data inside. - ''' - c = loadcifdata('caffeine.cif') + """Check loading of caffeine.cif and the data inside.""" + c = loadcifdata("caffeine.cif") self.assertTrue(c is not None) self.assertEqual(24, c.GetNbScatterer()) self.assertAlmostEqual(14.9372, c.a, 6) self.assertAlmostEqual(14.9372, c.b, 6) self.assertAlmostEqual(6.8980, c.c, 6) - self.assertAlmostEqual(pi/2, c.alpha, 6) - self.assertAlmostEqual(pi/2, c.beta, 6) - self.assertAlmostEqual(2*pi/3, c.gamma, 6) + self.assertAlmostEqual(pi / 2, c.alpha, 6) + self.assertAlmostEqual(pi / 2, c.beta, 6) + self.assertAlmostEqual(2 * pi / 3, c.gamma, 6) cifdata = """ C5 -0.06613 -0.06314 0.09562 0.00000 Uiso 1.00000 C C4 0.02779 -0.05534 0.10000 0.00000 Uiso 1.00000 C @@ -96,8 +90,7 @@ def test_caffeine_cif(self): H10b -0.07008 0.19602 0.03170 0.00000 Uiso 1.00000 H H10c 0.03791 0.26293 0.13930 0.00000 Uiso 1.00000 H """ - lines = filter(None, - (line.strip() for line in cifdata.split('\n'))) + lines = filter(None, (line.strip() for line in cifdata.split("\n"))) for i, line in enumerate(lines): name, x, y, z, U, junk, occ, element = line.split() s = c.GetScatt(i) @@ -108,11 +101,9 @@ def test_caffeine_cif(self): self.assertAlmostEqual(float(occ), s.Occupancy, 6) return - def test_CaTiO3_cif(self): - '''Check loading of CaTiO3.cif and its ADPs. - ''' - c = loadcifdata('CaTiO3.cif') + """Check loading of CaTiO3.cif and its ADPs.""" + c = loadcifdata("CaTiO3.cif") self.assertTrue(c is not None) s = c.GetScatt(3) name = s.GetName() @@ -132,107 +123,81 @@ def test_CaTiO3_cif(self): self.assertAlmostEqual(1, s.Occupancy) return - def test_CdSe_cadmoselite_cif(self): - '''Check loading of CdSe_cadmoselite.cif - ''' - c = loadcifdata('CdSe_cadmoselite.cif') + """Check loading of CdSe_cadmoselite.cif.""" + c = loadcifdata("CdSe_cadmoselite.cif") self.assertTrue(c is not None) return - def test_CeO2_cif(self): - '''Check loading of CeO2.cif - ''' - c = loadcifdata('CeO2.cif') + """Check loading of CeO2.cif.""" + c = loadcifdata("CeO2.cif") self.assertTrue(c is not None) return - def test_lidocainementhol_cif(self): - '''Check loading of lidocainementhol.cif - ''' - c = loadcifdata('lidocainementhol.cif') + """Check loading of lidocainementhol.cif.""" + c = loadcifdata("lidocainementhol.cif") self.assertTrue(c is not None) return - def test_NaCl_cif(self): - '''Check loading of NaCl.cif - ''' - c = loadcifdata('NaCl.cif') + """Check loading of NaCl.cif.""" + c = loadcifdata("NaCl.cif") self.assertTrue(c is not None) return - def test_Ni_cif(self): - '''Check loading of Ni.cif - ''' - c = loadcifdata('Ni.cif') + """Check loading of Ni.cif.""" + c = loadcifdata("Ni.cif") self.assertTrue(c is not None) return - def test_paracetamol_cif(self): - '''Check loading of paracetamol.cif - ''' - c = loadcifdata('paracetamol.cif') + """Check loading of paracetamol.cif.""" + c = loadcifdata("paracetamol.cif") self.assertTrue(c is not None) return - def test_PbS_galena_cif(self): - '''Check loading of PbS_galena.cif - ''' - c = loadcifdata('PbS_galena.cif') + """Check loading of PbS_galena.cif.""" + c = loadcifdata("PbS_galena.cif") self.assertTrue(c is not None) return - def test_PbTe_cif(self): - '''Check loading of PbTe.cif - ''' - c = loadcifdata('PbTe.cif') + """Check loading of PbTe.cif.""" + c = loadcifdata("PbTe.cif") self.assertTrue(c is not None) return - def test_Si_cif(self): - '''Check loading of Si.cif - ''' - c = loadcifdata('Si.cif') + """Check loading of Si.cif.""" + c = loadcifdata("Si.cif") self.assertTrue(c is not None) return - def test_Si_setting2_cif(self): - '''Check loading of Si_setting2.cif - ''' - c = loadcifdata('Si_setting2.cif') + """Check loading of Si_setting2.cif.""" + c = loadcifdata("Si_setting2.cif") self.assertTrue(c is not None) return - def test_SrTiO3_tausonite_cif(self): - '''Check loading of SrTiO3_tausonite.cif - ''' - c = loadcifdata('SrTiO3_tausonite.cif') + """Check loading of SrTiO3_tausonite.cif.""" + c = loadcifdata("SrTiO3_tausonite.cif") self.assertTrue(c is not None) return - def test_TiO2_anatase_cif(self): - '''Check loading of TiO2_anatase.cif - ''' - c = loadcifdata('TiO2_anatase.cif') + """Check loading of TiO2_anatase.cif.""" + c = loadcifdata("TiO2_anatase.cif") self.assertTrue(c is not None) return - def test_TiO2_rutile_cif(self): - '''Check loading of TiO2_rutile.cif and its ADP data - ''' - c = loadcifdata('TiO2_rutile.cif') + """Check loading of TiO2_rutile.cif and its ADP data.""" + c = loadcifdata("TiO2_rutile.cif") self.assertTrue(c is not None) s = c.GetScatt(0) name = s.GetName() @@ -243,62 +208,56 @@ def test_TiO2_rutile_cif(self): self.assertAlmostEqual(utob * 0.00532, sp.Biso, 5) return - def test_Zn_zinc_cif(self): - '''Check loading of Zn_zinc.cif - ''' - c = loadcifdata('Zn_zinc.cif') + """Check loading of Zn_zinc.cif.""" + c = loadcifdata("Zn_zinc.cif") self.assertTrue(c is not None) return - def test_ZnS_sphalerite_cif(self): - '''Check loading of ZnS_sphalerite.cif - ''' - c = loadcifdata('ZnS_sphalerite.cif') + """Check loading of ZnS_sphalerite.cif.""" + c = loadcifdata("ZnS_sphalerite.cif") self.assertTrue(c is not None) return - def test_ZnS_wurtzite_cif(self): - '''Check loading of ZnS_wurtzite.cif - ''' - c = loadcifdata('ZnS_wurtzite.cif') + """Check loading of ZnS_wurtzite.cif.""" + c = loadcifdata("ZnS_wurtzite.cif") self.assertTrue(c is not None) return - def testBadCif(self): """Make sure we can read all cif files.""" from pyobjcryst import ObjCrystException - fname = datafile('ni.stru') - infile = open(fname, 'rb') + + fname = datafile("ni.stru") + infile = open(fname, "rb") self.assertRaises(ObjCrystException, CreateCrystalFromCIF, infile) infile.close() return - def test_paracetamol_monomethanolate(self): - """ Test loading crystal and diffraction data - """ + """Test loading crystal and diffraction data.""" c = loadcifdata("paracetamol_monomethanolate.cif") d = create_singlecrystaldata_from_cif( - datafile("paracetamol_monomethanolate_data_single_crystal.cif"), c) + datafile("paracetamol_monomethanolate_data_single_crystal.cif"), c + ) self.assertTrue(d is not None) def test_paracetamol_monomethanolate_ward(self): - """ Test loading crystal and diffraction data, - make sure custodian & ward works - """ + """Test loading crystal and diffraction data, make sure + custodian & ward works.""" c = loadcifdata("paracetamol_monomethanolate.cif") d = create_singlecrystaldata_from_cif( - datafile("paracetamol_monomethanolate_data_single_crystal.cif"), c) + datafile("paracetamol_monomethanolate_data_single_crystal.cif"), c + ) n = d.GetCrystal().GetName() # Replace c by another Crystal object - c = loadcifdata('ZnS_sphalerite.cif') + c = loadcifdata("ZnS_sphalerite.cif") gc.collect() self.assertTrue(gCrystalRegistry.GetObj(n) is not None) + # End of class TestCif diff --git a/src/pyobjcryst/tests/testclocks.py b/tests/test_clocks.py similarity index 71% rename from src/pyobjcryst/tests/testclocks.py rename to tests/test_clocks.py index f6de747..8a46bc0 100644 --- a/src/pyobjcryst/tests/testclocks.py +++ b/tests/test_clocks.py @@ -12,15 +12,12 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## - """Tests for crystal module.""" import unittest -from pyobjcryst.tests.pyobjcrysttestutils import makeC60 - from pyobjcryst.refinableobj import RefinableObjClock - +from utils import makeC60 class TestClocks(unittest.TestCase): @@ -33,29 +30,29 @@ def testClockIncrement(self): ref = RefinableObjClock() mclock = m.GetClockScatterer() - self.assertTrue( mclock > ref ) + self.assertTrue(mclock > ref) ref.Click() - self.assertFalse( mclock > ref ) + self.assertFalse(mclock > ref) m[0].X = 0.01 - self.assertTrue( mclock > ref ) + self.assertTrue(mclock > ref) ref.Click() - self.assertFalse( mclock > ref ) + self.assertFalse(mclock > ref) m[1].X = 0.01 - self.assertTrue( mclock > ref ) + self.assertTrue(mclock > ref) ref.Click() - self.assertFalse( mclock > ref ) + self.assertFalse(mclock > ref) m[1].Y = 0.01 - self.assertTrue( mclock > ref ) + self.assertTrue(mclock > ref) ref.Click() - self.assertFalse( mclock > ref ) + self.assertFalse(mclock > ref) m.Q0 = 1.001 - self.assertTrue( mclock > ref ) + self.assertTrue(mclock > ref) ref.Click() - self.assertFalse( mclock > ref ) + self.assertFalse(mclock > ref) if __name__ == "__main__": diff --git a/src/pyobjcryst/tests/testconverters.py b/tests/test_converters.py similarity index 84% rename from src/pyobjcryst/tests/testconverters.py rename to tests/test_converters.py index eecb683..76748ab 100644 --- a/src/pyobjcryst/tests/testconverters.py +++ b/tests/test_converters.py @@ -12,28 +12,31 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## - """Test the converters. -This verifies results from tests built into the _registerconverters module. +This verifies results from tests built into the _registerconverters +module. """ import unittest -from pyobjcryst._pyobjcryst import getTestVector, getTestMatrix + import numpy +from pyobjcryst._pyobjcryst import getTestMatrix, getTestVector + + class TestConverters(unittest.TestCase): def testVector(self): tv = numpy.arange(3, dtype=float) v = getTestVector() - self.assertTrue( numpy.array_equal(tv, v) ) + self.assertTrue(numpy.array_equal(tv, v)) return def testMatrix(self): tm = numpy.arange(6, dtype=float).reshape(3, 2) m = getTestMatrix() - self.assertTrue( numpy.array_equal(tm, m) ) + self.assertTrue(numpy.array_equal(tm, m)) return diff --git a/src/pyobjcryst/tests/testcrystal.py b/tests/test_crystal.py similarity index 95% rename from src/pyobjcryst/tests/testcrystal.py rename to tests/test_crystal.py index 409d413..a543b6c 100644 --- a/src/pyobjcryst/tests/testcrystal.py +++ b/tests/test_crystal.py @@ -12,20 +12,24 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## - """Tests for crystal module.""" import unittest -from pyobjcryst.tests.pyobjcrysttestutils import ( - makeScatterer, makeCrystal, getScatterer, makeScattererAnisotropic) from pyobjcryst.atom import Atom +from utils import ( + getScatterer, + makeCrystal, + makeScatterer, + makeScattererAnisotropic, +) class TestCrystal(unittest.TestCase): def testCrystalScope(self): - """Test to see if the the crystal survives after it is out of scope.""" + """Test to see if the the crystal survives after it is out of + scope.""" sp, atom = makeScatterer() makeCrystal(sp, atom) @@ -50,8 +54,10 @@ def testScattererB(self): return def testNullData(self): - """Make sure we get an error when trying to add or remove Null.""" + """Make sure we get an error when trying to add or remove + Null.""" from pyobjcryst.crystal import Crystal + c = Crystal() self.assertRaises(ValueError, c.AddScatterer, None) self.assertRaises(ValueError, c.RemoveScatterer, None) @@ -117,7 +123,7 @@ def testGetScatterer(self): self.assertEqual(a.X, ani.X) aneg = fget(-1) self.assertEqual(a.X, aneg.X) - self.assertRaises(ValueError, fget, 'invalid') + self.assertRaises(ValueError, fget, "invalid") self.assertRaises(IndexError, fget, 10) self.assertRaises(IndexError, fget, -2) return @@ -155,7 +161,7 @@ def __init__(self, level1): return def test_display_list(self): - """Test the creation of a atoms list for display using 3dmol""" + """Test the creation of a atoms list for display using 3dmol.""" c = makeCrystal(*makeScatterer()) s = c._display_list() s = c._display_list(full_molecule=True) diff --git a/src/pyobjcryst/tests/testglobaloptim.py b/tests/test_globaloptim.py similarity index 86% rename from src/pyobjcryst/tests/testglobaloptim.py rename to tests/test_globaloptim.py index 0891f6b..d414994 100644 --- a/src/pyobjcryst/tests/testglobaloptim.py +++ b/tests/test_globaloptim.py @@ -7,21 +7,26 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## - """Tests for MonteCarlo module.""" import unittest -from pyobjcryst.tests.pyobjcrysttestutils import loadcifdata -from pyobjcryst.diffractiondatasinglecrystal import DiffractionDataSingleCrystal -from pyobjcryst.globaloptim import MonteCarlo, AnnealingSchedule, GlobalOptimType from pyobjcryst import refinableobj +from pyobjcryst.diffractiondatasinglecrystal import ( + DiffractionDataSingleCrystal, +) +from pyobjcryst.globaloptim import ( + AnnealingSchedule, + GlobalOptimType, + MonteCarlo, +) +from utils import loadcifdata class TestGlobalOptim(unittest.TestCase): def setUp(self): - self.c = loadcifdata('caffeine.cif') + self.c = loadcifdata("caffeine.cif") self.d = DiffractionDataSingleCrystal(self.c) self.d.GenHKLFullSpace2(0.4, True) self.d.SetIobsToIcalc() @@ -31,24 +36,21 @@ def tearDown(self): del self.d def test_mc_create(self): - """Check Creating a basic Monte-Carlo object - """ + """Check Creating a basic Monte-Carlo object.""" mc = MonteCarlo() mc.AddRefinableObj(self.c) mc.AddRefinableObj(self.d) def test_mc_name(self): - """Check Creating a basic Monte-Carlo object - """ + """Check Creating a basic Monte-Carlo object.""" mc = MonteCarlo() mc.AddRefinableObj(self.c) mc.AddRefinableObj(self.d) - mc.SetName('caffeine') - self.assertEqual(mc.GetName(), 'caffeine') + mc.SetName("caffeine") + self.assertEqual(mc.GetName(), "caffeine") def test_mc_llk(self): - """Check Creating a basic Monte-Carlo object - """ + """Check Creating a basic Monte-Carlo object.""" mc = MonteCarlo() mc.AddRefinableObj(self.c) mc.AddRefinableObj(self.d) diff --git a/src/pyobjcryst/tests/testindexing.py b/tests/test_indexing.py similarity index 52% rename from src/pyobjcryst/tests/testindexing.py rename to tests/test_indexing.py index e34fb89..1998ba3 100644 --- a/src/pyobjcryst/tests/testindexing.py +++ b/tests/test_indexing.py @@ -7,14 +7,21 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## - """Tests for indexing module.""" import unittest + from numpy import pi -from pyobjcryst.indexing import CrystalSystem, CrystalCentering, \ - EstimateCellVolume, RecUnitCell, PeakList, CellExplorer, quick_index +from pyobjcryst.indexing import ( + CellExplorer, + CrystalCentering, + CrystalSystem, + EstimateCellVolume, + PeakList, + RecUnitCell, + quick_index, +) class TestIndexing(unittest.TestCase): @@ -26,25 +33,58 @@ def tearDown(self): pass def test_estimate_cell_volume(self): - """Check EstimateCellVolume - """ + """Check EstimateCellVolume.""" # 20 reflections observed from d=47.326A to 1.537A - v = EstimateCellVolume(1 / 1.537, 1 / 47.326, 20, CrystalSystem.CUBIC, - CrystalCentering.LATTICE_P, 1.2) + v = EstimateCellVolume( + 1 / 1.537, + 1 / 47.326, + 20, + CrystalSystem.CUBIC, + CrystalCentering.LATTICE_P, + 1.2, + ) self.assertAlmostEqual(v, 309, delta=2) - v = EstimateCellVolume(1 / 1.537, 1 / 47.326, 20, CrystalSystem.CUBIC, - CrystalCentering.LATTICE_P, 0.3) + v = EstimateCellVolume( + 1 / 1.537, + 1 / 47.326, + 20, + CrystalSystem.CUBIC, + CrystalCentering.LATTICE_P, + 0.3, + ) self.assertAlmostEqual(v, 2475, delta=2) - v = EstimateCellVolume(1 / 1.537, 1 / 47.326, 20, CrystalSystem.ORTHOROMBIC, - CrystalCentering.LATTICE_F, 1.2) + v = EstimateCellVolume( + 1 / 1.537, + 1 / 47.326, + 20, + CrystalSystem.ORTHOROMBIC, + CrystalCentering.LATTICE_F, + 1.2, + ) self.assertAlmostEqual(v, 308, delta=2) - v = EstimateCellVolume(1 / 1.537, 1 / 47.326, 20, CrystalSystem.ORTHOROMBIC, - CrystalCentering.LATTICE_I, 0.3) + v = EstimateCellVolume( + 1 / 1.537, + 1 / 47.326, + 20, + CrystalSystem.ORTHOROMBIC, + CrystalCentering.LATTICE_I, + 0.3, + ) self.assertAlmostEqual(v, 666, delta=2) def test_recunitcell(self): - r = RecUnitCell(0, 0.1, 0, 0, 0, 0, 0, CrystalSystem.CUBIC, - CrystalCentering.LATTICE_P, 0) + r = RecUnitCell( + 0, + 0.1, + 0, + 0, + 0, + 0, + 0, + CrystalSystem.CUBIC, + CrystalCentering.LATTICE_P, + 0, + ) d = r.hkl2d(1, 1, 1, None, 0) self.assertAlmostEqual(d, 0.03, 5) u = r.DirectUnitCell() @@ -53,11 +93,28 @@ def test_recunitcell(self): def test_quick_index(self): # Try to index cimetidine powder pattern from experimental list of points - v = [0.106317, 0.113542, 0.146200, 0.152765, - 0.161769, 0.166021, 0.186157, 0.188394, - 0.189835, 0.200636, 0.207603, 0.211856, - 0.212616, 0.215067, 0.220722, 0.221532, - 0.223939, 0.227054, 0.231044, 0.235053] + v = [ + 0.106317, + 0.113542, + 0.146200, + 0.152765, + 0.161769, + 0.166021, + 0.186157, + 0.188394, + 0.189835, + 0.200636, + 0.207603, + 0.211856, + 0.212616, + 0.215067, + 0.220722, + 0.221532, + 0.223939, + 0.227054, + 0.231044, + 0.235053, + ] pl = PeakList() pl.set_dobs_list(v) ex = quick_index(pl, verbose=False, continue_on_sol=False) diff --git a/src/pyobjcryst/tests/testlsq.py b/tests/test_lsq.py similarity index 89% rename from src/pyobjcryst/tests/testlsq.py rename to tests/test_lsq.py index ba6f24c..7e68ade 100644 --- a/src/pyobjcryst/tests/testlsq.py +++ b/tests/test_lsq.py @@ -7,21 +7,22 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## - """Tests for LSQ module.""" import unittest -from pyobjcryst.tests.pyobjcrysttestutils import loadcifdata -from pyobjcryst.diffractiondatasinglecrystal import DiffractionDataSingleCrystal -from pyobjcryst.lsq import LSQ from pyobjcryst import refinableobj +from pyobjcryst.diffractiondatasinglecrystal import ( + DiffractionDataSingleCrystal, +) +from pyobjcryst.lsq import LSQ +from utils import loadcifdata class TestGlobalOptim(unittest.TestCase): def setUp(self): - self.c = loadcifdata('caffeine.cif') + self.c = loadcifdata("caffeine.cif") self.d = DiffractionDataSingleCrystal(self.c) self.d.GenHKLFullSpace2(0.4, True) self.d.SetIobsToIcalc() @@ -31,29 +32,25 @@ def tearDown(self): del self.d def test_lsq_create(self): - """Check Creating a basic LSQ object - """ + """Check Creating a basic LSQ object.""" lsq = LSQ() lsq.SetRefinedObj(self.d) def test_lsq_get_obs_calc(self): - """Check Creating a basic LSQ object & get obs&calc arrays - """ + """Check Creating a basic LSQ object & get obs&calc arrays.""" lsq = LSQ() lsq.SetRefinedObj(self.d, 0, True, True) junk = lsq.GetLSQObs(), lsq.GetLSQCalc(), lsq.ChiSquare() def test_lsq_get_refined_obj(self): - """Check Creating a basic LSQ object & get obs&calc arrays - """ + """Check Creating a basic LSQ object & get obs&calc arrays.""" lsq = LSQ() lsq.SetRefinedObj(self.d, 0, True, True) lsq.PrepareRefParList() # print(lsq.GetCompiledRefinedObj()) def test_lsq_set_pr_fixed(self): - """Check Creating a basic LSQ object & get obs&calc arrays - """ + """Check Creating a basic LSQ object & get obs&calc arrays.""" lsq = LSQ() lsq.SetRefinedObj(self.d, 0, True, True) lsq.PrepareRefParList() diff --git a/src/pyobjcryst/tests/testmolecule.py b/tests/test_molecule.py similarity index 93% rename from src/pyobjcryst/tests/testmolecule.py rename to tests/test_molecule.py index 42fe539..293b097 100644 --- a/src/pyobjcryst/tests/testmolecule.py +++ b/tests/test_molecule.py @@ -12,22 +12,27 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## - """Tests for molecule module.""" import io import unittest from importlib.resources import files + +from numpy import pi + from pyobjcryst import ObjCrystException from pyobjcryst.crystal import Crystal from pyobjcryst.molecule import ( - GetBondLength, StretchModeBondLength, - GetBondAngle, StretchModeBondAngle, - GetDihedralAngle, StretchModeTorsion, ImportFenskeHallZMatrix) -from pyobjcryst.refinableobj import RefParType, RefinablePar -from pyobjcryst.tests.pyobjcrysttestutils import makeC60, makeMnO6 - -from numpy import pi + GetBondAngle, + GetBondLength, + GetDihedralAngle, + ImportFenskeHallZMatrix, + StretchModeBondAngle, + StretchModeBondLength, + StretchModeTorsion, +) +from pyobjcryst.refinableobj import RefinablePar, RefParType +from utils import makeC60, makeMnO6 numplaces = 6 @@ -56,10 +61,9 @@ def testProperties(self): self.m.Occupancy *= 1.001 return - def testContainment(self): - """Make sure we can still use the molecule if the crystal is out of - scope.""" + """Make sure we can still use the molecule if the crystal is out + of scope.""" c = makeC60() m = self.c.GetScatterer("c60") self.assertEqual("c60", m.GetName()) @@ -68,7 +72,8 @@ def testContainment(self): return def testAddPar(self): - """See if we crash if we add a parameter and delete the molecule.""" + """See if we crash if we add a parameter and delete the + molecule.""" c = makeC60() m = self.c.GetScatterer("c60") rpt = RefParType("test") @@ -84,13 +89,12 @@ def testAddPar(self): def testAtoms(self): """Make sure the atoms are there. - This tests AddAtom by association. - This tests GetAtom. + This tests AddAtom by association. This tests GetAtom. """ self.assertEqual(60, self.m.GetNbAtoms()) for i in range(60): a1 = self.m.GetAtom(i) - self.assertEqual(a1.GetName(), "C%i"%i) + self.assertEqual(a1.GetName(), "C%i" % i) a = self.m.GetAtom(0) x = a.X @@ -129,7 +133,6 @@ def testAtoms(self): return - def testGetAtom(self): "check Molecule.GetAtom." m = self.m @@ -146,7 +149,6 @@ def testGetAtom(self): self.assertRaises(ValueError, m.GetAtom, "invalid") return - def testFindAtom(self): "check Molecule.FindAtom." m = self.m @@ -158,7 +160,6 @@ def testFindAtom(self): self.assertIs(None, m.FindAtom("invalid")) return - def testBonds(self): """Test the Bond methods.""" @@ -220,7 +221,7 @@ def testBonds(self): bonds = self.m.GetBondList() self.assertEqual(1, len(bonds)) self.m.RemoveBond(bonds[0]) - # is the bond still in existance? + # is the bond still in existence? self.assertEqual(name, bond8.GetName()) # Can we get it from the engine? self.assertRaises(IndexError, self.m.GetBond, 0) @@ -259,13 +260,11 @@ def testBondAngles(self): # Try some bad bond angles self.assertTrue(ba3 is None) - # Remove an atom, the bondangle should disappear as well. self.m.RemoveAtom(a1) ba4 = self.m.FindBondAngle(a2, a1, a3) self.assertTrue(ba4 is None) - # Try to find a bondangle from an atom outside of the molecule. m = makeC60().GetScatterer("c60") b1 = m.GetAtom(0) @@ -293,7 +292,7 @@ def testBondAngles(self): angles = self.m.GetBondAngleList() self.assertEqual(1, len(angles)) self.m.RemoveBondAngle(angles[0]) - # is the object still in existance? + # is the object still in existence? self.assertEqual(name, ba8.GetName()) # Can we get it from the engine? self.assertRaises(IndexError, self.m.GetBondAngle, 0) @@ -328,7 +327,6 @@ def testDihedralAngles(self): self.assertTrue(da1 is not None) self.assertEqual(da1.GetName(), da2.GetName()) - # Remove an atom, the dihedral angle should disappear as well. self.m.RemoveAtom(a1) da4 = self.m.FindDihedralAngle(a2, a1, a3, a4) @@ -362,7 +360,7 @@ def testDihedralAngles(self): angles = self.m.GetDihedralAngleList() self.assertEqual(1, len(angles)) self.m.RemoveDihedralAngle(angles[0]) - # is the object still in existance? + # is the object still in existence? self.assertEqual(name, da8.GetName()) # Can we get it from the engine? self.assertRaises(IndexError, self.m.GetDihedralAngle, 0) @@ -418,7 +416,7 @@ def testManipulation(self): self.assertAlmostEqual(x, a0.X) self.assertAlmostEqual(y, a0.Y) - self.assertAlmostEqual(z+0.5, a0.Z) + self.assertAlmostEqual(z + 0.5, a0.Z) # Move them back self.m.TranslateAtomGroup(self.m.GetAtomList(), 0, 0, -0.5) @@ -429,10 +427,12 @@ def testManipulation(self): # Rotate the atoms import numpy + xyz = [numpy.array([a.X, a.Y, a.Z]) for a in self.m] - self.m.RotateAtomGroup((0,0,0), (0,0,1), - self.m.GetAtomList(), pi/2) + self.m.RotateAtomGroup( + (0, 0, 0), (0, 0, 1), self.m.GetAtomList(), pi / 2 + ) rm = numpy.array([[0, -1, 0], [1, 0, 0], [0, 0, 1]]) for i in range(len(self.m)): @@ -445,14 +445,16 @@ def testManipulation(self): return def testZMatrix(self): - """Test creating a Molecule from a z-matrix""" + """Test creating a Molecule from a z-matrix.""" fname = str(files(__name__).joinpath("testdata", "cime.fhz")) - c= Crystal() + c = Crystal() m = ImportFenskeHallZMatrix(c, fname) assert m.GetNbAtoms() == 17 + # Test how changing a name to one that is already taken messes things up. + class TestMolAtom(unittest.TestCase): def setUp(self): @@ -518,8 +520,10 @@ def testAccessors(self): return + # End class TestMolAtom + class TestMolBond(unittest.TestCase): def setUp(self): @@ -572,14 +576,16 @@ def testAccessors(self): # Check the log likelihood of the bond and the containing molecule b.Length0 = 4 - ll = ((b.Length - (b.Length0-b.LengthDelta))/b.LengthSigma)**2 + ll = ((b.Length - (b.Length0 - b.LengthDelta)) / b.LengthSigma) ** 2 self.assertAlmostEqual(ll, b.GetLogLikelihood(), numplaces) self.assertAlmostEqual(ll, m.GetLogLikelihood(), numplaces) return + # End class TestMolBond + class TestMolBondAngle(unittest.TestCase): def setUp(self): @@ -634,14 +640,16 @@ def testAccessors(self): # Check the log likelihood of the bond and the containing molecule ba.Angle0 = 4 - ll = ((ba.Angle - (ba.Angle0-ba.AngleDelta))/ba.AngleSigma)**2 + ll = ((ba.Angle - (ba.Angle0 - ba.AngleDelta)) / ba.AngleSigma) ** 2 self.assertAlmostEqual(ll, ba.GetLogLikelihood(), numplaces) self.assertAlmostEqual(ll, m.GetLogLikelihood(), numplaces) return + # End class TestMolBondAngle + class TestMolDihedralAngle(unittest.TestCase): def setUp(self): @@ -654,8 +662,9 @@ def setUp(self): self.a3 = self.m.GetAtom(2) self.a4 = self.m.GetAtom(3) - self.da = self.m.AddDihedralAngle(self.a1, self.a2, self.a3, self.a4, - 5, 1, 2) + self.da = self.m.AddDihedralAngle( + self.a1, self.a2, self.a3, self.a4, 5, 1, 2 + ) return def tearDown(self): @@ -689,11 +698,11 @@ def testAccessors(self): self.assertEqual(at3.GetName(), a3.GetName()) self.assertEqual(at4.GetName(), a4.GetName()) - # Data # Note that the angle is in [-pi, pi] from math import pi - self.assertAlmostEqual(5-2*pi, da.Angle0, numplaces) + + self.assertAlmostEqual(5 - 2 * pi, da.Angle0, numplaces) self.assertAlmostEqual(1, da.AngleSigma, numplaces) self.assertAlmostEqual(2, da.AngleDelta, numplaces) da.Angle0 = 1.2 @@ -704,11 +713,11 @@ def testAccessors(self): self.assertAlmostEqual(1, da.AngleDelta, numplaces) # Check the log likelihood of the bond and the containing molecule - da.Angle0 = pi-0.2 + da.Angle0 = pi - 0.2 da.AngleDelta = 0 da.AngleSigma = 0.1 - angle = da.Angle + (da.Angle0-da.AngleDelta) - 2*pi - ll = (angle/da.AngleSigma)**2 + angle = da.Angle + (da.Angle0 - da.AngleDelta) - 2 * pi + ll = (angle / da.AngleSigma) ** 2 # For some reason these are not very close in value. self.assertAlmostEqual(ll, da.GetLogLikelihood(), 2) @@ -716,8 +725,10 @@ def testAccessors(self): return + # End class TestMolDihedralAngle + class TestStretchModeBondLength(unittest.TestCase): def setUp(self): @@ -755,7 +766,7 @@ def testStretchModeBondLength(self): # Make sure this does what we expected d1 = GetBondLength(atop, abot) - self.assertAlmostEqual(d0+delta, d1, 6) + self.assertAlmostEqual(d0 + delta, d1, 6) # Note that only the second atom has moved dc1 = GetBondLength(ac, atop) @@ -763,8 +774,10 @@ def testStretchModeBondLength(self): return + # End class TestStretchModeBondLength + class TestStretchModeBondAngle(unittest.TestCase): def setUp(self): @@ -795,19 +808,20 @@ def testStretchModeBondAngle(self): self.assertEqual(sm.mpAtom1.GetName(), ac.GetName()) self.assertEqual(sm.mpAtom2.GetName(), a2.GetName()) - # Stretch the angle by 5% delta = 0.05 * angle0 sm.Stretch(delta) # Make sure this does what we expected angle1 = GetBondAngle(a1, ac, a2) - self.assertAlmostEqual(angle0+delta, angle1, 6) + self.assertAlmostEqual(angle0 + delta, angle1, 6) return + # End class TestStretchModeBondAngle + class TestStretchModeTorsion(unittest.TestCase): def setUp(self): @@ -845,7 +859,7 @@ def testStretchModeTorsion(self): # Make sure this does what we expected angle1 = GetDihedralAngle(a1, ac0, ac1, a2) - self.assertAlmostEqual(angle0+delta, angle1, 6) + self.assertAlmostEqual(angle0 + delta, angle1, 6) return @@ -859,15 +873,16 @@ def testDummy(self): self.assertTrue(sp is None) sm = self.m.xml() - self.assertEqual(8, sm.count('Atom Name')) + self.assertEqual(8, sm.count("Atom Name")) sc = str(self.c) sclines = sc.splitlines() - self.assertTrue(sclines[2].endswith(' 8')) - self.assertTrue('ScattPow: dummy' in sc) + self.assertTrue(sclines[2].endswith(" 8")) + self.assertTrue("ScattPow: dummy" in sc) return + # End class TestStretchTorsion if __name__ == "__main__": diff --git a/src/pyobjcryst/tests/testpowderpattern.py b/tests/test_powderpattern.py similarity index 92% rename from src/pyobjcryst/tests/testpowderpattern.py rename to tests/test_powderpattern.py index 419865b..1ffb413 100644 --- a/src/pyobjcryst/tests/testpowderpattern.py +++ b/tests/test_powderpattern.py @@ -12,24 +12,23 @@ # See LICENSE.txt for license information. # ############################################################################## - -"""Unit tests for pyobjcryst.powderpattern (with indexing & -""" +"""Unit tests for pyobjcryst.powderpattern (with indexing &""" import unittest + import numpy as np from pyobjcryst import ObjCrystException +from pyobjcryst.crystal import * +from pyobjcryst.indexing import * from pyobjcryst.powderpattern import PowderPattern, SpaceGroupExplorer from pyobjcryst.radiation import RadiationType, WavelengthType -from pyobjcryst.crystal import * from pyobjcryst.reflectionprofile import ReflectionProfileType -from pyobjcryst.indexing import * -from pyobjcryst.tests.pyobjcrysttestutils import loadcifdata, datafile - +from utils import datafile, loadcifdata # ---------------------------------------------------------------------------- + class TestRoutines(unittest.TestCase): pass # def test_CreatePowderPatternFromCIF(self): assert False @@ -39,6 +38,7 @@ class TestRoutines(unittest.TestCase): # ---------------------------------------------------------------------------- + class TestPowderPattern(unittest.TestCase): def setUp(self): @@ -137,7 +137,10 @@ def test_SetWavelengthXrayTube(self): w = pp.GetWavelength() pp.SetWavelength("Cu") self.assertAlmostEqual(pp.GetWavelength(), 1.5418, places=4) - self.assertEqual(pp.GetRadiation().GetWavelengthType(), WavelengthType.WAVELENGTH_ALPHA12) + self.assertEqual( + pp.GetRadiation().GetWavelengthType(), + WavelengthType.WAVELENGTH_ALPHA12, + ) pp.GetRadiation().SetWavelengthType(t) pp.SetWavelength(w) @@ -156,10 +159,14 @@ def test_quick_fit(self): p.SetPowderPatternX(np.deg2rad(x)) p.SetPowderPatternObs(np.ones_like(x)) pd = p.AddPowderPatternDiffraction(c) - pd.SetReflectionProfilePar(ReflectionProfileType.PROFILE_PSEUDO_VOIGT, 1e-6) + pd.SetReflectionProfilePar( + ReflectionProfileType.PROFILE_PSEUDO_VOIGT, 1e-6 + ) # p.plot(hkl=True) calc = p.GetPowderPatternCalc() - obs = np.random.poisson(calc * 1e5 / calc.max() + 50).astype(np.float64) + obs = np.random.poisson(calc * 1e5 / calc.max() + 50).astype( + np.float64 + ) p.SetPowderPatternObs(obs) p.SetMaxSinThetaOvLambda(0.3) p.quick_fit_profile(auto_background=True, verbose=False, plot=False) @@ -172,10 +179,14 @@ def test_peaklist_index(self): p.SetPowderPatternX(np.deg2rad(x)) p.SetPowderPatternObs(np.ones_like(x)) pd = p.AddPowderPatternDiffraction(c) - pd.SetReflectionProfilePar(ReflectionProfileType.PROFILE_PSEUDO_VOIGT, 1e-7) + pd.SetReflectionProfilePar( + ReflectionProfileType.PROFILE_PSEUDO_VOIGT, 1e-7 + ) # p.plot(hkl=True) calc = p.GetPowderPatternCalc() - obs = np.random.poisson(calc * 1e6 / calc.max() + 50).astype(np.float64) + obs = np.random.poisson(calc * 1e6 / calc.max() + 50).astype( + np.float64 + ) p.SetPowderPatternObs(obs) p.SetMaxSinThetaOvLambda(0.2) p.FitScaleFactorForIntegratedRw() @@ -188,7 +199,9 @@ def test_peaklist_index(self): self.assertEqual(ruc.centering, CrystalCentering.LATTICE_P) self.assertEqual(ruc.lattice, CrystalSystem.MONOCLINIC) # Cell volume - self.assertAlmostEqual(ruc.DirectUnitCell()[-1], c.GetVolume(), delta=5) + self.assertAlmostEqual( + ruc.DirectUnitCell()[-1], c.GetVolume(), delta=5 + ) def test_spacegroup_explorer(self): c = loadcifdata("paracetamol.cif") @@ -198,17 +211,23 @@ def test_spacegroup_explorer(self): p.SetPowderPatternX(np.deg2rad(x)) p.SetPowderPatternObs(np.ones_like(x)) pd = p.AddPowderPatternDiffraction(c) - pd.SetReflectionProfilePar(ReflectionProfileType.PROFILE_PSEUDO_VOIGT, 1e-6, 0, 0, 0, 0) + pd.SetReflectionProfilePar( + ReflectionProfileType.PROFILE_PSEUDO_VOIGT, 1e-6, 0, 0, 0, 0 + ) # p.plot(hkl=True) calc = p.GetPowderPatternCalc() - obs = np.random.poisson(calc * 1e6 / calc.max() + 50).astype(np.float64) + obs = np.random.poisson(calc * 1e6 / calc.max() + 50).astype( + np.float64 + ) p.SetPowderPatternObs(obs) # NB: with max(stol)=0.2 this fails and best result is P1 p.SetMaxSinThetaOvLambda(0.3) # Do the profile optimisation in P1 pd.GetCrystal().GetSpaceGroup().ChangeSpaceGroup("P1") p.FitScaleFactorForIntegratedRw() - p.quick_fit_profile(auto_background=True, init_profile=False, verbose=False, plot=False) + p.quick_fit_profile( + auto_background=True, init_profile=False, verbose=False, plot=False + ) spgex = SpaceGroupExplorer(pd) spgex.Run("P 1 21/c 1") @@ -249,6 +268,7 @@ def test_update_nbrefl(self): # ---------------------------------------------------------------------------- + class TestPowderPatternComponent(unittest.TestCase): pass # def test___init__(self): assert False @@ -259,6 +279,7 @@ class TestPowderPatternComponent(unittest.TestCase): # ---------------------------------------------------------------------------- + class TestPowderPatternBackground(unittest.TestCase): pass # def test___init__(self): assert False @@ -273,6 +294,7 @@ class TestPowderPatternBackground(unittest.TestCase): # ---------------------------------------------------------------------------- + class TestPowderPatternDiffraction(unittest.TestCase): pass # def test___init__(self): assert False @@ -290,5 +312,5 @@ class TestPowderPatternDiffraction(unittest.TestCase): # ---------------------------------------------------------------------------- -if __name__ == '__main__': +if __name__ == "__main__": unittest.main() diff --git a/src/pyobjcryst/tests/testradiation.py b/tests/test_radiation.py similarity index 72% rename from src/pyobjcryst/tests/testradiation.py rename to tests/test_radiation.py index f2e18c5..23ccb04 100644 --- a/src/pyobjcryst/tests/testradiation.py +++ b/tests/test_radiation.py @@ -7,40 +7,45 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## - """Tests for Radiation module.""" import unittest -from pyobjcryst.radiation import Radiation, RadiationType, WavelengthType -from pyobjcryst.diffractiondatasinglecrystal import DiffractionDataSingleCrystal +from pyobjcryst.diffractiondatasinglecrystal import ( + DiffractionDataSingleCrystal, +) from pyobjcryst.powderpattern import PowderPattern +from pyobjcryst.radiation import Radiation, RadiationType, WavelengthType class TestRadiation(unittest.TestCase): def testRadiation(self): - """Test Radiation creation""" + """Test Radiation creation.""" r = Radiation() return def testWavelength(self): - """Test setting & reading wavelength""" + """Test setting & reading wavelength.""" r = Radiation() r.SetWavelength(1.24) self.assertAlmostEqual(r.GetWavelength(), 1.24, places=3) return def testType(self): - """Test setting & reading X-ray Tube wavelength""" + """Test setting & reading X-ray Tube wavelength.""" r = Radiation() r.SetWavelengthType(WavelengthType.WAVELENGTH_ALPHA12) - self.assertEqual(r.GetWavelengthType(), WavelengthType.WAVELENGTH_ALPHA12) + self.assertEqual( + r.GetWavelengthType(), WavelengthType.WAVELENGTH_ALPHA12 + ) r.SetRadiationType(RadiationType.RAD_NEUTRON) self.assertEqual(r.GetRadiationType(), RadiationType.RAD_NEUTRON) r.SetWavelength("Cu") self.assertAlmostEqual(r.GetWavelength(), 1.5418, places=4) - self.assertEqual(r.GetWavelengthType(), WavelengthType.WAVELENGTH_ALPHA12) + self.assertEqual( + r.GetWavelengthType(), WavelengthType.WAVELENGTH_ALPHA12 + ) return diff --git a/src/pyobjcryst/tests/testrefinableobj.py b/tests/test_refinableobj.py similarity index 91% rename from src/pyobjcryst/tests/testrefinableobj.py rename to tests/test_refinableobj.py index 4c1b7d0..697641a 100644 --- a/src/pyobjcryst/tests/testrefinableobj.py +++ b/tests/test_refinableobj.py @@ -12,17 +12,21 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## - """Tests for refinableobj module.""" -from pyobjcryst.refinableobj import RefinableObjClock, RefParType, Restraint -from pyobjcryst.refinableobj import RefinablePar, RefinableObj -from pyobjcryst import ObjCrystException - import unittest + import numpy -from pyobjcryst.tests.pyobjcrysttestutils import makeScatterer, makeCrystal +from pyobjcryst import ObjCrystException +from pyobjcryst.refinableobj import ( + RefinableObj, + RefinableObjClock, + RefinablePar, + RefParType, + Restraint, +) +from utils import makeCrystal, makeScatterer class TestRefinableObjClock(unittest.TestCase): @@ -30,16 +34,17 @@ class TestRefinableObjClock(unittest.TestCase): def testRelations(self): """Test clicking! - Chances are that someone will someday read this code for an example on - how to use clocks. If not, then I've wasted my time writing this. - Anyway, clocks are more complex then they appear. This is because - ObjCryst++ has an internal clock that gets incremented whenever any - clock is Clicked. So, one cannot trust that a clock will increment by - only one value when it is clicked. Furthermore, clocks only alert their - parents to a change. So, it is possible to decrease the value of a - parent clock with SetEqual below the values of its children clocks. - Callling Click on the parent or child will restore the proper parent > - child relationship. + Chances are that someone will someday read this code for an + example on how to use clocks. If not, then I've wasted my time + writing this. Anyway, clocks are more complex then they appear. + This is because ObjCryst++ has an internal clock that gets + incremented whenever any clock is Clicked. So, one cannot trust + that a clock will increment by only one value when it is + clicked. Furthermore, clocks only alert their parents to a + change. So, it is possible to decrease the value of a parent + clock with SetEqual below the values of its children clocks. + Calling Click on the parent or child will restore the proper + parent > child relationship. """ c1 = RefinableObjClock() c2 = RefinableObjClock() @@ -180,8 +185,8 @@ def setUp(self): return def testToFromPython(self): - """See if refinable parameters can be created from within python and - within c++.""" + """See if refinable parameters can be created from within python + and within c++.""" c = makeCrystal(*makeScatterer()) # Get a parameter created from c++ @@ -189,7 +194,7 @@ def testToFromPython(self): self.assertAlmostEqual(3.52, par.GetValue()) # pass a parameter and pass it into c++ - c.AddPar(self.testpar); + c.AddPar(self.testpar) # get it back testpar2 = c.GetPar("test") @@ -202,7 +207,8 @@ def testToFromPython(self): return def testGetType(self): - """See if we can get the proper RefParType from a RefinablePar.""" + """See if we can get the proper RefParType from a + RefinablePar.""" rpt2 = self.testpar.GetType() self.assertEqual(rpt2, self.rpt) return @@ -311,8 +317,9 @@ def testAddParRefinableObj(self): def testAddParTwice(self): """Try to add the same parameter twice. - We could stop this in the bindings, but since RefinableObj doesn't - delete its parameters in the destructor, it shouldn't lead to trouble. + We could stop this in the bindings, but since RefinableObj + doesn't delete its parameters in the destructor, it shouldn't + lead to trouble. """ p3 = RefinablePar("p3", 3, 0, 10, self.rpt) self.r.AddPar(p3) @@ -413,7 +420,7 @@ def testOptimStep(self): return def test_xml(self): - """Test xml() function""" + """Test xml() function.""" x = self.r.xml() diff --git a/src/pyobjcryst/tests/test_single_crystal_data.py b/tests/test_single_crystal_data.py similarity index 89% rename from src/pyobjcryst/tests/test_single_crystal_data.py rename to tests/test_single_crystal_data.py index 35998c3..bf74b72 100644 --- a/src/pyobjcryst/tests/test_single_crystal_data.py +++ b/tests/test_single_crystal_data.py @@ -3,12 +3,10 @@ """Tests for diffractiondatasinglecrystal module.""" import unittest -import gc import numpy as np -from pyobjcryst.crystal import CreateCrystalFromCIF, Crystal -from pyobjcryst.diffractiondatasinglecrystal import * -from pyobjcryst.tests.pyobjcrysttestutils import loadcifdata, datafile +from pyobjcryst.crystal import Crystal +from pyobjcryst.diffractiondatasinglecrystal import DiffractionDataSingleCrystal class test_single_crystal_data(unittest.TestCase): diff --git a/src/pyobjcryst/tests/testspacegroup.py b/tests/test_spacegroup.py similarity index 95% rename from src/pyobjcryst/tests/testspacegroup.py rename to tests/test_spacegroup.py index cbddf30..278523f 100644 --- a/src/pyobjcryst/tests/testspacegroup.py +++ b/tests/test_spacegroup.py @@ -12,9 +12,7 @@ # See LICENSE.txt for license information. # ############################################################################## - -"""Unit tests for pyobjcryst.spacegroup -""" +"""Unit tests for pyobjcryst.spacegroup.""" import unittest @@ -23,12 +21,12 @@ # ---------------------------------------------------------------------------- + class TestSpaceGroup(unittest.TestCase): def setUp(self): return - def test___init__(self): "check SpaceGroup.__init__()" sg = SpaceGroup() @@ -40,7 +38,6 @@ def test___init__(self): self.assertEqual(3, sg3.GetSpaceGroupNumber()) return - def test_ChangeSpaceGroup(self): "check SpaceGroup.ChangeSpaceGroup()" sg = SpaceGroup("F m -3 m") @@ -56,5 +53,5 @@ def test_ChangeSpaceGroup(self): # ---------------------------------------------------------------------------- -if __name__ == '__main__': +if __name__ == "__main__": unittest.main() diff --git a/src/pyobjcryst/tests/testutils.py b/tests/test_utils.py similarity index 83% rename from src/pyobjcryst/tests/testutils.py rename to tests/test_utils.py index f015e32..9a26733 100644 --- a/src/pyobjcryst/tests/testutils.py +++ b/tests/test_utils.py @@ -12,28 +12,27 @@ # See LICENSE_DANSE.txt for license information. # ############################################################################## - """Tests for crystal module.""" import unittest + import numpy -from pyobjcryst.tests.pyobjcrysttestutils import loadcifdata +from utils import loadcifdata from pyobjcryst.utils import putAtomsInMolecule class TestPutAtomsInMolecule(unittest.TestCase): def test_caffeine(self): - """Check molecule conversion for caffeine. - """ - c = loadcifdata('caffeine.cif') + """Check molecule conversion for caffeine.""" + c = loadcifdata("caffeine.cif") xyz0 = [(sc.X, sc.Y, sc.Z) for sc in c.GetScatteringComponentList()] self.assertEqual(24, c.GetNbScatterer()) - putAtomsInMolecule(c, name='espresso') + putAtomsInMolecule(c, name="espresso") self.assertEqual(1, c.GetNbScatterer()) mol = c.GetScatterer(0) - self.assertEqual('espresso', mol.GetName()) + self.assertEqual("espresso", mol.GetName()) self.assertEqual(24, mol.GetNbAtoms()) xyz1 = [(sc.X, sc.Y, sc.Z) for sc in c.GetScatteringComponentList()] uc0 = numpy.array(xyz0) - numpy.floor(xyz0) @@ -41,6 +40,7 @@ def test_caffeine(self): self.assertTrue(numpy.allclose(uc0, uc1)) return + # End of class TestPutAtomsInMolecule if __name__ == "__main__": diff --git a/tests/test_version.py b/tests/test_version.py new file mode 100644 index 0000000..c763b2f --- /dev/null +++ b/tests/test_version.py @@ -0,0 +1,15 @@ +"""Unit tests for __version__.py.""" + +import pyobjcryst # noqa + + +def test_package_version(): + """Ensure the package version is defined and not set to the initial + placeholder.""" + assert hasattr(pyobjcryst, "__version__") + assert pyobjcryst.__version__ != "0.0.0" + + +def test_init_api(): + # Remove this if gTopRefinableObjRegistry import is removed from __init__.py + assert pyobjcryst.gTopRefinableObjRegistry is not None diff --git a/src/pyobjcryst/tests/testdata/Ag_silver.cif b/tests/testdata/Ag_silver.cif similarity index 100% rename from src/pyobjcryst/tests/testdata/Ag_silver.cif rename to tests/testdata/Ag_silver.cif diff --git a/src/pyobjcryst/tests/testdata/BaTiO3.cif b/tests/testdata/BaTiO3.cif similarity index 99% rename from src/pyobjcryst/tests/testdata/BaTiO3.cif rename to tests/testdata/BaTiO3.cif index 06375a2..bc95d25 100644 --- a/src/pyobjcryst/tests/testdata/BaTiO3.cif +++ b/tests/testdata/BaTiO3.cif @@ -46,8 +46,8 @@ _chemical_formula_moiety 'Ba O3 Ti' _chemical_formula_sum 'Ba O3 Ti' _chemical_formula_weight 233.24 _chemical_name_systematic -; - ? +; + ? ; _space_group_IT_number 99 _symmetry_cell_setting tetragonal @@ -139,7 +139,7 @@ according to /home/saulius/struct/CIF-dictionaries/cif_core.dic dictionary named 'cif_core.dic' version 2.4.2 from 2011-04-26. Automatic conversion script -Id: cif_fix_values 1891 2012-01-12 08:04:46Z andrius +Id: cif_fix_values 1891 2012-01-12 08:04:46Z andrius ; _cod_database_code 1513252 loop_ diff --git a/src/pyobjcryst/tests/testdata/C_graphite_hex.cif b/tests/testdata/C_graphite_hex.cif similarity index 100% rename from src/pyobjcryst/tests/testdata/C_graphite_hex.cif rename to tests/testdata/C_graphite_hex.cif diff --git a/src/pyobjcryst/tests/testdata/CaF2_fluorite.cif b/tests/testdata/CaF2_fluorite.cif similarity index 100% rename from src/pyobjcryst/tests/testdata/CaF2_fluorite.cif rename to tests/testdata/CaF2_fluorite.cif diff --git a/src/pyobjcryst/tests/testdata/CaTiO3.cif b/tests/testdata/CaTiO3.cif similarity index 100% rename from src/pyobjcryst/tests/testdata/CaTiO3.cif rename to tests/testdata/CaTiO3.cif diff --git a/src/pyobjcryst/tests/testdata/CdSe_cadmoselite.cif b/tests/testdata/CdSe_cadmoselite.cif similarity index 100% rename from src/pyobjcryst/tests/testdata/CdSe_cadmoselite.cif rename to tests/testdata/CdSe_cadmoselite.cif diff --git a/src/pyobjcryst/tests/testdata/CeO2.cif b/tests/testdata/CeO2.cif similarity index 100% rename from src/pyobjcryst/tests/testdata/CeO2.cif rename to tests/testdata/CeO2.cif diff --git a/src/pyobjcryst/tests/testdata/NaCl.cif b/tests/testdata/NaCl.cif similarity index 100% rename from src/pyobjcryst/tests/testdata/NaCl.cif rename to tests/testdata/NaCl.cif diff --git a/src/pyobjcryst/tests/testdata/Ni.cif b/tests/testdata/Ni.cif similarity index 100% rename from src/pyobjcryst/tests/testdata/Ni.cif rename to tests/testdata/Ni.cif diff --git a/src/pyobjcryst/tests/testdata/PbS_galena.cif b/tests/testdata/PbS_galena.cif similarity index 100% rename from src/pyobjcryst/tests/testdata/PbS_galena.cif rename to tests/testdata/PbS_galena.cif diff --git a/src/pyobjcryst/tests/testdata/PbTe.cif b/tests/testdata/PbTe.cif similarity index 100% rename from src/pyobjcryst/tests/testdata/PbTe.cif rename to tests/testdata/PbTe.cif diff --git a/src/pyobjcryst/tests/testdata/Si.cif b/tests/testdata/Si.cif similarity index 100% rename from src/pyobjcryst/tests/testdata/Si.cif rename to tests/testdata/Si.cif diff --git a/src/pyobjcryst/tests/testdata/Si_setting2.cif b/tests/testdata/Si_setting2.cif similarity index 100% rename from src/pyobjcryst/tests/testdata/Si_setting2.cif rename to tests/testdata/Si_setting2.cif diff --git a/src/pyobjcryst/tests/testdata/SrTiO3_tausonite.cif b/tests/testdata/SrTiO3_tausonite.cif similarity index 100% rename from src/pyobjcryst/tests/testdata/SrTiO3_tausonite.cif rename to tests/testdata/SrTiO3_tausonite.cif diff --git a/src/pyobjcryst/tests/testdata/TiO2_anatase.cif b/tests/testdata/TiO2_anatase.cif similarity index 100% rename from src/pyobjcryst/tests/testdata/TiO2_anatase.cif rename to tests/testdata/TiO2_anatase.cif diff --git a/src/pyobjcryst/tests/testdata/TiO2_rutile.cif b/tests/testdata/TiO2_rutile.cif similarity index 100% rename from src/pyobjcryst/tests/testdata/TiO2_rutile.cif rename to tests/testdata/TiO2_rutile.cif diff --git a/src/pyobjcryst/tests/testdata/ZnS_sphalerite.cif b/tests/testdata/ZnS_sphalerite.cif similarity index 100% rename from src/pyobjcryst/tests/testdata/ZnS_sphalerite.cif rename to tests/testdata/ZnS_sphalerite.cif diff --git a/src/pyobjcryst/tests/testdata/ZnS_wurtzite.cif b/tests/testdata/ZnS_wurtzite.cif similarity index 100% rename from src/pyobjcryst/tests/testdata/ZnS_wurtzite.cif rename to tests/testdata/ZnS_wurtzite.cif diff --git a/src/pyobjcryst/tests/testdata/Zn_zinc.cif b/tests/testdata/Zn_zinc.cif similarity index 100% rename from src/pyobjcryst/tests/testdata/Zn_zinc.cif rename to tests/testdata/Zn_zinc.cif diff --git a/src/pyobjcryst/tests/testdata/caffeine.cif b/tests/testdata/caffeine.cif similarity index 100% rename from src/pyobjcryst/tests/testdata/caffeine.cif rename to tests/testdata/caffeine.cif diff --git a/src/pyobjcryst/tests/testdata/cime.fhz b/tests/testdata/cime.fhz similarity index 100% rename from src/pyobjcryst/tests/testdata/cime.fhz rename to tests/testdata/cime.fhz diff --git a/src/pyobjcryst/tests/testdata/lidocainementhol.cif b/tests/testdata/lidocainementhol.cif similarity index 99% rename from src/pyobjcryst/tests/testdata/lidocainementhol.cif rename to tests/testdata/lidocainementhol.cif index 80721db..993f1a8 100644 --- a/src/pyobjcryst/tests/testdata/lidocainementhol.cif +++ b/tests/testdata/lidocainementhol.cif @@ -34,8 +34,8 @@ _chemical_absolute_configuration ad _chemical_formula_sum 'C24 H42 N2 O2' _chemical_formula_weight 390.60 _chemical_name_systematic -; - ? +; + ? ; _space_group_IT_number 19 _symmetry_cell_setting orthorhombic diff --git a/src/pyobjcryst/tests/testdata/ni.stru b/tests/testdata/ni.stru similarity index 100% rename from src/pyobjcryst/tests/testdata/ni.stru rename to tests/testdata/ni.stru diff --git a/src/pyobjcryst/tests/testdata/paracetamol.cif b/tests/testdata/paracetamol.cif similarity index 99% rename from src/pyobjcryst/tests/testdata/paracetamol.cif rename to tests/testdata/paracetamol.cif index c5b03ca..10da0d5 100644 --- a/src/pyobjcryst/tests/testdata/paracetamol.cif +++ b/tests/testdata/paracetamol.cif @@ -169,7 +169,7 @@ according to '/home/saulius/struct/CIF-dictionaries/cif_core.dic' dictionary named 'cif_core.dic' version 2.4.1 from 2010-06-29. Automatic conversion script -Id: cif_fix_enum 1527 2010-12-29 10:47:43Z saulius +Id: cif_fix_enum 1527 2010-12-29 10:47:43Z saulius ; _cod_database_code 7103910 loop_ diff --git a/src/pyobjcryst/tests/testdata/paracetamol_monomethanolate.cif b/tests/testdata/paracetamol_monomethanolate.cif similarity index 99% rename from src/pyobjcryst/tests/testdata/paracetamol_monomethanolate.cif rename to tests/testdata/paracetamol_monomethanolate.cif index 726f631..0dc8ac0 100644 --- a/src/pyobjcryst/tests/testdata/paracetamol_monomethanolate.cif +++ b/tests/testdata/paracetamol_monomethanolate.cif @@ -139,7 +139,7 @@ The following automatic conversions were performed: 'mixed'. Automatic conversion script -Id: cif_fix_values 6452 2018-10-05 10:23:21Z andrius +Id: cif_fix_values 6452 2018-10-05 10:23:21Z andrius ; _cod_original_cell_volume 804.18(19) _cod_original_sg_symbol_Hall '-P 2yn ' diff --git a/src/pyobjcryst/tests/testdata/paracetamol_monomethanolate_data_single_crystal.cif b/tests/testdata/paracetamol_monomethanolate_data_single_crystal.cif similarity index 100% rename from src/pyobjcryst/tests/testdata/paracetamol_monomethanolate_data_single_crystal.cif rename to tests/testdata/paracetamol_monomethanolate_data_single_crystal.cif diff --git a/src/pyobjcryst/tests/pyobjcrysttestutils.py b/tests/utils.py similarity index 86% rename from src/pyobjcryst/tests/pyobjcrysttestutils.py rename to tests/utils.py index 3e2759a..91e7139 100644 --- a/src/pyobjcryst/tests/pyobjcrysttestutils.py +++ b/tests/utils.py @@ -1,47 +1,50 @@ #!/usr/bin/env python ############################################################################## # -# pyobjcryst by DANSE Diffraction group -# Simon J. L. Billinge -# (c) 2009 The Trustees of Columbia University -# in the City of New York. All rights reserved. +# (c) 2025 The Trustees of Columbia University in the City of New York. +# All rights reserved. # -# File coded by: Chris Farrow +# File coded by: Chris Farrow and Billinge Group members. # -# See AUTHORS.txt for a list of people who contributed. -# See LICENSE_DANSE.txt for license information. +# See GitHub contributions for a more detailed list of contributors. +# https://github.com/diffpy/pyobjcryst/graphs/contributors +# +# See LICENSE.rst and LICENSE_DANSE.rst for license information. # ############################################################################## - """Utilities for tests.""" +from numpy import pi + from pyobjcryst.atom import Atom +from pyobjcryst.crystal import Crystal, create_crystal_from_cif from pyobjcryst.molecule import Molecule from pyobjcryst.polyhedron import MakeOctahedron -from pyobjcryst.crystal import Crystal, create_crystal_from_cif from pyobjcryst.scatteringpower import ScatteringPowerAtom -from numpy import pi def makeScatterer(): sp = ScatteringPowerAtom("Ni", "Ni") - sp.SetBiso(8*pi*pi*0.003) + sp.SetBiso(8 * pi * pi * 0.003) atom = Atom(0, 0, 0, "Ni", sp) return sp, atom + def makeScattererAnisotropic(): sp = ScatteringPowerAtom("Ni", "Ni") - sp.B11 = sp.B22 = sp.B33 = 8*pi*pi*0.003 + sp.B11 = sp.B22 = sp.B33 = 8 * pi * pi * 0.003 sp.B12 = sp.B13 = sp.B23 = 0 atom = Atom(0, 0, 0, "Ni", sp) return sp, atom + def makeCrystal(sp, atom): c = Crystal(3.52, 3.52, 3.52, "225") c.AddScatteringPower(sp) c.AddScatterer(atom) return c + def getScatterer(): """Make a crystal and return scatterer from GetScatt.""" sp, atom = makeScatterer() @@ -50,8 +53,8 @@ def getScatterer(): sp2 = c.GetScatt(sp.GetName()) return sp2 -c60xyz = \ -""" + +c60xyz = """ 3.451266498 0.685000000 0.000000000 3.451266498 -0.685000000 0.000000000 -3.451266498 0.685000000 0.000000000 @@ -114,6 +117,7 @@ def getScatterer(): -2.279809890 -2.580456608 -0.724000000 """ + def makeC60(): c = Crystal(100, 100, 100, "P1") c.SetName("c60frame") @@ -121,12 +125,12 @@ def makeC60(): c.AddScatterer(m) sp = ScatteringPowerAtom("C", "C") - sp.SetBiso(8*pi*pi*0.003) + sp.SetBiso(8 * pi * pi * 0.003) c.AddScatteringPower(sp) for i, l in enumerate(c60xyz.strip().splitlines()): x, y, z = map(float, l.split()) - m.AddAtom(x, y, z, sp, "C%i"%i) + m.AddAtom(x, y, z, sp, "C%i" % i) return c @@ -135,13 +139,13 @@ def makeMnO6(): a = 5.6 crystal = Crystal(a, a, a, "P1") sp1 = ScatteringPowerAtom("Mn", "Mn") - sp1.SetBiso(8*pi*pi*0.003) + sp1.SetBiso(8 * pi * pi * 0.003) sp2 = ScatteringPowerAtom("O", "O") - sp2.SetBiso(8*pi*pi*0.003) + sp2.SetBiso(8 * pi * pi * 0.003) crystal.AddScatteringPower(sp1) crystal.AddScatteringPower(sp2) - m = MakeOctahedron(crystal, "MnO6", sp1, sp2, 0.5*a) + m = MakeOctahedron(crystal, "MnO6", sp1, sp2, 0.5 * a) crystal.AddScatterer(m) @@ -150,6 +154,7 @@ def makeMnO6(): def datafile(filename): from importlib.resources import files + rv = str(files(__name__).joinpath("testdata", filename)) return rv From a807844c62bb22867cd47969b1ad73d9c273657d Mon Sep 17 00:00:00 2001 From: Tieqiong Zhang Date: Sat, 19 Jul 2025 18:01:08 -0400 Subject: [PATCH 4/8] fixing flake8: __init__: noqa: F401 on gTopRefinableObjRegistry import. Removing it will cause potential api breakage on downstream users. Also Exist at pyobjcryst.globals crystal.py: Add except type (AttributeError) at UpdateDisplay(self) to avoid E722. fourier.py: noqa E741 on ambigous variable name 'l'. (hkl) globaloptim.py: clarify refinableobj imports lsq.py: Expose LSQ from c++ extension powderpattern.py: Add except type (AttributeError) at UpdateDisplay(self) to avoid E722. Add except type (AttributeError, RuntimeError, ValueError) at plot() (Force immediate display) with warning messages "Plot refresh failed..." Add except type (AttributeError, RuntimeError) at _do_plot_hkl (Force immediate display). Nested utils.py: change lambda function to def --- src/pyobjcryst/__init__.py | 4 +++- src/pyobjcryst/crystal.py | 22 +++++++++------------- src/pyobjcryst/fourier.py | 2 +- src/pyobjcryst/globaloptim.py | 19 +++++++++++++------ src/pyobjcryst/lsq.py | 2 ++ src/pyobjcryst/powderpattern.py | 26 +++++++++++++++++--------- src/pyobjcryst/utils.py | 3 ++- 7 files changed, 47 insertions(+), 31 deletions(-) diff --git a/src/pyobjcryst/__init__.py b/src/pyobjcryst/__init__.py index 4a52838..d1dd81f 100644 --- a/src/pyobjcryst/__init__.py +++ b/src/pyobjcryst/__init__.py @@ -72,7 +72,9 @@ import pyobjcryst.spacegroup import pyobjcryst.unitcell import pyobjcryst.zscatterer -from pyobjcryst._pyobjcryst import gTopRefinableObjRegistry + +# could be api breaking if removed +from pyobjcryst._pyobjcryst import gTopRefinableObjRegistry # noqa: F401 # Let's put this on the package level from pyobjcryst.general import ObjCrystException diff --git a/src/pyobjcryst/crystal.py b/src/pyobjcryst/crystal.py index 3bf7628..cc77ea2 100644 --- a/src/pyobjcryst/crystal.py +++ b/src/pyobjcryst/crystal.py @@ -36,8 +36,6 @@ ] import warnings -from multiprocessing import current_process -from types import MethodType from urllib.request import urlopen import numpy as np @@ -48,8 +46,6 @@ ) from pyobjcryst._pyobjcryst import Crystal as Crystal_orig -from .refinableobj import wrap_boost_refinableobjregistry - try: import py3Dmol except ImportError: @@ -78,7 +74,7 @@ def UpdateDisplay(self): try: if self._display_update_disabled: return - except: + except AttributeError: pass # test for _3d_widget is a bit ugly, but to correctly implement this we'd need an # __init__ function which overrides the 3 different Crystal constructors which @@ -300,7 +296,7 @@ def _display_list( name = scatt.GetComponentName(j) name = name.replace("'", "_") symbol = s.mpScattPow.GetSymbol() - occ = s.Occupancy + # occ = s.Occupancy x, y, z = s.X, s.Y, s.Z if enantiomer: x = -x @@ -413,8 +409,8 @@ def _display_list( } ) else: - # TODO add 'visible' value in dictionary to determine which atoms are shown, - # then update the bond and bondOrder lists + # TODO add 'visible' value in dictionary to determine which atoms + # are shown, then update the bond and bondOrder lists for k in range(nsym): for dx in (-1, 0, 1): for dy in (-1, 0, 1): @@ -443,14 +439,14 @@ def _display_list( j = a["j"] vb = [] vo = [] - for l in range(len(a["bonds"])): - int_ptr = a["bonds"][l] + for i in range(len(a["bonds"])): + int_ptr = a["bonds"][i] if atoms[int_ptr]["visible"]: vb.append( atoms[int_ptr]["idx"] ) vo.append( - a["bondOrder"][l] + a["bondOrder"][i] ) x, y, z = vxyz[k, j] + np.array( (dx, dy, dz) @@ -479,7 +475,7 @@ def _display_list( # 3dmol.js does not like ' in names, # despite https://www.iucr.org/resources/cif/spec/version1.1/cifsyntax#bnf name = name.replace("'", "_") - occ = s.Occupancy + # occ = s.Occupancy x, y, z = s.X, s.Y, s.Z if enantiomer: x = -x @@ -514,7 +510,7 @@ def _display_list( # 3dmol.js does not like ' in names, # despite https://www.iucr.org/resources/cif/spec/version1.1/cifsyntax#bnf name = name.replace("'", "_") - occ = s.Occupancy + # occ = s.Occupancy for k in range(nsym): for dx in (-1, 0, 1): diff --git a/src/pyobjcryst/fourier.py b/src/pyobjcryst/fourier.py index 19be096..f005504 100644 --- a/src/pyobjcryst/fourier.py +++ b/src/pyobjcryst/fourier.py @@ -67,7 +67,7 @@ def calc_fourier_map( # print(" Fourier map obs scale factor:", scale_fobs) vol = c.GetVolume() spg = c.GetSpaceGroup() - h, k, l = data.GetH()[:nb], data.GetK()[:nb], data.GetL()[:nb] + h, k, l = data.GetH()[:nb], data.GetK()[:nb], data.GetL()[:nb] # noqa E741 # Map size to achieve resolution nx = int(np.ceil(c.a / resolution)) ny = int(np.ceil(c.b / resolution)) diff --git a/src/pyobjcryst/globaloptim.py b/src/pyobjcryst/globaloptim.py index 3d2918f..2567535 100644 --- a/src/pyobjcryst/globaloptim.py +++ b/src/pyobjcryst/globaloptim.py @@ -29,14 +29,21 @@ from pyobjcryst._pyobjcryst import MonteCarlo as MonteCarlo_orig from pyobjcryst._pyobjcryst import OptimizationObjRegistry -from .refinableobj import * +from .refinableobj import ( + refpartype_scattdata_background, + refpartype_scattdata_corr, + refpartype_scattdata_profile, + refpartype_scattdata_radiation, + refpartype_scattdata_scale, + refpartype_unitcell, +) class MonteCarlo(MonteCarlo_orig): def Optimize(self, nb_step: int, final_cost=0, max_time=-1): self._fix_parameters_for_global_optim() - if type(self) == MonteCarlo_orig: + if type(self) is MonteCarlo_orig: self._Optimize(int(nb_step), True, final_cost, max_time) else: super().Optimize(int(nb_step), True, final_cost, max_time) @@ -45,7 +52,7 @@ def MultiRunOptimize( self, nb_run: int, nb_step: int, final_cost=0, max_time=-1 ): self._fix_parameters_for_global_optim() - if type(self) == MonteCarlo_orig: + if type(self) is MonteCarlo_orig: self._MultiRunOptimize( int(nb_run), int(nb_step), True, final_cost, max_time ) @@ -56,7 +63,7 @@ def MultiRunOptimize( def RunSimulatedAnnealing(self, nb_step: int, final_cost=0, max_time=-1): self._fix_parameters_for_global_optim() - if type(self) == MonteCarlo_orig: + if type(self) is MonteCarlo_orig: self._RunSimulatedAnnealing( int(nb_step), True, final_cost, max_time ) @@ -67,7 +74,7 @@ def RunSimulatedAnnealing(self, nb_step: int, final_cost=0, max_time=-1): def RunParallelTempering(self, nb_step: int, final_cost=0, max_time=-1): self._fix_parameters_for_global_optim() - if type(self) == MonteCarlo_orig: + if type(self) is MonteCarlo_orig: self._RunParallelTempering( int(nb_step), True, final_cost, max_time ) @@ -116,7 +123,7 @@ def UpdateDisplay(self): try: if self._display_update_disabled: return - except: + except AttributeError: pass try: if self._widget is not None: diff --git a/src/pyobjcryst/lsq.py b/src/pyobjcryst/lsq.py index f878dd2..f0fb1db 100644 --- a/src/pyobjcryst/lsq.py +++ b/src/pyobjcryst/lsq.py @@ -17,4 +17,6 @@ In development ! """ +__all__ = ["LSQ"] + from pyobjcryst._pyobjcryst import LSQ diff --git a/src/pyobjcryst/powderpattern.py b/src/pyobjcryst/powderpattern.py index 3367916..27f5413 100644 --- a/src/pyobjcryst/powderpattern.py +++ b/src/pyobjcryst/powderpattern.py @@ -17,7 +17,8 @@ Additional functions for plotting, basic QPA and profile fitting. """ -from multiprocessing import current_process +import inspect +import warnings from urllib.request import urlopen import numpy as np @@ -33,9 +34,6 @@ "SpaceGroupExplorer", ] -from types import MethodType - -from pyobjcryst.general import ObjCrystException from pyobjcryst._pyobjcryst import LSQ from pyobjcryst._pyobjcryst import ( CreatePowderPatternFromCIF as CreatePowderPatternFromCIF_orig, @@ -48,6 +46,7 @@ ReflectionProfileType, SpaceGroupExplorer, ) +from pyobjcryst.general import ObjCrystException from pyobjcryst.refinableobj import refpartype_scattdata_background @@ -82,7 +81,7 @@ def UpdateDisplay(self): try: if self._display_update_disabled: return - except: + except AttributeError: pass if self._plot_fig is not None: if self._plot_fig is not None: @@ -225,8 +224,17 @@ def plot( self._plot_fig.canvas.draw() if "ipympl" not in plt.get_backend(): plt.pause(0.001) - except: - pass + except (AttributeError, RuntimeError, ValueError) as e: + cls_name = type(self).__name__ + func_name = inspect.currentframe().f_code.co_name + backend = plt.get_backend() + fig_id = getattr(self._plot_fig, "number", None) + warnings.warn( + f"[{cls_name}.{func_name}] " + f"Plot refresh failed ({type(e).__name__}): {e}. " + f"Matplotlib backend={backend}, figure id={fig_id}", + stacklevel=2, + ) # plt.gca().callbacks.connect('xlim_changed', self._on_xlims_change) # plt.gca().callbacks.connect('ylim_changed', self._on_ylims_change) self._plot_fig.canvas.mpl_connect( @@ -273,7 +281,7 @@ def _do_plot_hkl(self, nb_max=100, fontsize_hkl=None): try: # need the renderer to avoid text overlap renderer = plt.gcf().canvas.get_renderer() - except: + except (AttributeError, RuntimeError): # Force immediate display. Not supported on all backends (e.g. nbagg) ax.draw() self._plot_fig.canvas.draw() @@ -281,7 +289,7 @@ def _do_plot_hkl(self, nb_max=100, fontsize_hkl=None): plt.pause(0.001) try: renderer = self._plot_fig.canvas.get_renderer() - except: + except (AttributeError, RuntimeError): renderer = None else: renderer = None diff --git a/src/pyobjcryst/utils.py b/src/pyobjcryst/utils.py index 5133a10..d696bed 100644 --- a/src/pyobjcryst/utils.py +++ b/src/pyobjcryst/utils.py @@ -54,7 +54,8 @@ def putAtomsInMolecule(crystal, alist=None, name=None): # mapping fractional coords back into [0, 1) from math import floor - f = lambda v: v - floor(v) + def f(v): + return v - floor(v) scat = [] for idx in alist: From 318e9a719b76fd97d410fcff40f3f0adc716e48c Mon Sep 17 00:00:00 2001 From: Tieqiong Zhang Date: Sat, 19 Jul 2025 18:41:28 -0400 Subject: [PATCH 5/8] update scons test and documentations --- README.rst | 7 +++++-- src/extensions/SConscript | 7 ++----- 2 files changed, 7 insertions(+), 7 deletions(-) diff --git a/README.rst b/README.rst index 221ada4..82b2d82 100644 --- a/README.rst +++ b/README.rst @@ -87,9 +87,12 @@ An alternative way of installing pyobjcryst is to use the SCons tool, which can speed up the process by compiling C++ files in several parallel jobs (-j4):: - scons -j4 dev + conda install scons + conda install --file requirements/conda.txt + scons -j4 dev -See ``scons -h`` for description of build targets and options. +See ``scons -h`` for description of build targets and options. Need to install test dependencies +(``requirements/test.txt``) to run SCons test mode. Optional graphical dependencies for jupyter notebooks ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ diff --git a/src/extensions/SConscript b/src/extensions/SConscript index 8f78fc0..ca5077b 100644 --- a/src/extensions/SConscript +++ b/src/extensions/SConscript @@ -39,7 +39,7 @@ env['ENV']['PYTHONPATH'] = Dir('#').abspath + os.sep + 'src' test = env.Alias( 'test', ['dev'], - Action('python -m pyobjcryst.tests.run') + Action('pytest') ) AlwaysBuild(test) @@ -47,9 +47,6 @@ AlwaysBuild(test) Default(module_nodes) # clean up the build artifacts -Clean(None, ['.sconsign.dblite', 'config.log']) -Clean(None, Dir('.sconf_temp')) -Clean(None, Dir('build')) -Clean(None, installed) +Clean(module_nodes, installed) # vim: ft=python From 7780bc3ae2909757ba8f2961bba9ac758050c738 Mon Sep 17 00:00:00 2001 From: Tieqiong Zhang Date: Sat, 19 Jul 2025 19:31:47 -0400 Subject: [PATCH 6/8] update find boost_python for linux --- setup.py | 32 +++++++++++++------------------- 1 file changed, 13 insertions(+), 19 deletions(-) diff --git a/setup.py b/setup.py index 988becd..cec2b8a 100644 --- a/setup.py +++ b/setup.py @@ -9,6 +9,8 @@ import glob import os +import sys +from ctypes.util import find_library from pathlib import Path import numpy as np @@ -17,24 +19,16 @@ # Helper functions ----------------------------------------------------------- -def check_boost_libraries(lib_dir): - pattern = "libboost_python*.*" if os.name != "nt" else "boost_python*.lib" - found = list(lib_dir.glob(pattern)) - if not found: - raise EnvironmentError( - f"No boost_python libraries found in conda environment" - f" at {lib_dir}. Please install libboost_python in your " - f"conda environment." - ) - - # convert into linker names - lib = [] - for libpath in found: - name = libpath.stem - if name.startswith("lib"): - name = name[3:] - lib.append(name) - return lib +def get_boost_libraries(): + base_lib = "boost_python" + major, minor = str(sys.version_info[0]), str(sys.version_info[1]) + tags = [f"{major}{minor}", major, ""] + mttags = ["", "-mt"] + candidates = [base_lib + tag for tag in tags for mt in mttags] + [base_lib] + for lib in candidates: + if find_library(lib): + return [lib] + raise RuntimeError("Cannot find a suitable Boost.Python library.") def get_env_config(): @@ -63,7 +57,7 @@ def create_extensions(): else: objcryst_lib = "ObjCryst" - libraries = [objcryst_lib] + check_boost_libraries(Path(library_dirs[0])) + libraries = [objcryst_lib] + get_boost_libraries() extra_objects = [] extra_compile_args = [] extra_link_args = [] From be15d50448df385b7b97247c8ab8151406f6aec5 Mon Sep 17 00:00:00 2001 From: Tieqiong Zhang Date: Sat, 19 Jul 2025 19:50:22 -0400 Subject: [PATCH 7/8] pcmt on tests --- tests/test_clocks.py | 3 ++- tests/test_crystal.py | 11 ++++++----- tests/test_globaloptim.py | 16 +++++++--------- tests/test_indexing.py | 1 - tests/test_lsq.py | 7 +++++-- tests/test_molecule.py | 5 ++--- tests/test_powderpattern.py | 7 +++---- tests/test_radiation.py | 6 +----- tests/test_refinableobj.py | 4 ++-- tests/test_single_crystal_data.py | 22 +++++++++++++--------- tests/test_utils.py | 2 +- 11 files changed, 42 insertions(+), 42 deletions(-) diff --git a/tests/test_clocks.py b/tests/test_clocks.py index 8a46bc0..4875594 100644 --- a/tests/test_clocks.py +++ b/tests/test_clocks.py @@ -16,9 +16,10 @@ import unittest -from pyobjcryst.refinableobj import RefinableObjClock from utils import makeC60 +from pyobjcryst.refinableobj import RefinableObjClock + class TestClocks(unittest.TestCase): diff --git a/tests/test_crystal.py b/tests/test_crystal.py index a543b6c..ab1866f 100644 --- a/tests/test_crystal.py +++ b/tests/test_crystal.py @@ -16,7 +16,6 @@ import unittest -from pyobjcryst.atom import Atom from utils import ( getScatterer, makeCrystal, @@ -24,6 +23,8 @@ makeScattererAnisotropic, ) +from pyobjcryst.atom import Atom + class TestCrystal(unittest.TestCase): @@ -163,10 +164,10 @@ def __init__(self, level1): def test_display_list(self): """Test the creation of a atoms list for display using 3dmol.""" c = makeCrystal(*makeScatterer()) - s = c._display_list() - s = c._display_list(full_molecule=True) - s = c._display_list(enantiomer=True) - s = c._display_list(only_independent_atoms=True) + c._display_list() + c._display_list(full_molecule=True) + c._display_list(enantiomer=True) + c._display_list(only_independent_atoms=True) if __name__ == "__main__": diff --git a/tests/test_globaloptim.py b/tests/test_globaloptim.py index d414994..0341f6d 100644 --- a/tests/test_globaloptim.py +++ b/tests/test_globaloptim.py @@ -11,16 +11,13 @@ import unittest +from utils import loadcifdata + from pyobjcryst import refinableobj from pyobjcryst.diffractiondatasinglecrystal import ( DiffractionDataSingleCrystal, ) -from pyobjcryst.globaloptim import ( - AnnealingSchedule, - GlobalOptimType, - MonteCarlo, -) -from utils import loadcifdata +from pyobjcryst.globaloptim import AnnealingSchedule, MonteCarlo class TestGlobalOptim(unittest.TestCase): @@ -54,13 +51,13 @@ def test_mc_llk(self): mc = MonteCarlo() mc.AddRefinableObj(self.c) mc.AddRefinableObj(self.d) - junk = mc.GetLogLikelihood() + mc.GetLogLikelihood() def test_mc_fix_use_pars(self): mc = MonteCarlo() mc.AddRefinableObj(self.c) mc.AddRefinableObj(self.d) - junk = mc.GetLogLikelihood() + mc.GetLogLikelihood() mc.FixAllPar() mc.SetParIsUsed("Scale factor", False) mc.SetParIsUsed("Scale factor", True) @@ -99,7 +96,8 @@ def test_mc_pt(self): mc.RandomizeStartingConfig() mc.RunParallelTempering(nb_step=1000) - # TODO: this is experimental and leads to segfault if testcrystal:testDummyAtom() has been run before (?!) + # TODO: this is experimental and leads to segfault if + # testcrystal:testDummyAtom() has been run before (?!) # def test_mc_lsq(self): # mc = MonteCarlo() # mc.AddRefinableObj(self.c) diff --git a/tests/test_indexing.py b/tests/test_indexing.py index 1998ba3..6f54fe9 100644 --- a/tests/test_indexing.py +++ b/tests/test_indexing.py @@ -14,7 +14,6 @@ from numpy import pi from pyobjcryst.indexing import ( - CellExplorer, CrystalCentering, CrystalSystem, EstimateCellVolume, diff --git a/tests/test_lsq.py b/tests/test_lsq.py index 7e68ade..fac5bb3 100644 --- a/tests/test_lsq.py +++ b/tests/test_lsq.py @@ -11,12 +11,13 @@ import unittest +from utils import loadcifdata + from pyobjcryst import refinableobj from pyobjcryst.diffractiondatasinglecrystal import ( DiffractionDataSingleCrystal, ) from pyobjcryst.lsq import LSQ -from utils import loadcifdata class TestGlobalOptim(unittest.TestCase): @@ -40,7 +41,9 @@ def test_lsq_get_obs_calc(self): """Check Creating a basic LSQ object & get obs&calc arrays.""" lsq = LSQ() lsq.SetRefinedObj(self.d, 0, True, True) - junk = lsq.GetLSQObs(), lsq.GetLSQCalc(), lsq.ChiSquare() + lsq.GetLSQObs() + lsq.GetLSQCalc() + lsq.ChiSquare() def test_lsq_get_refined_obj(self): """Check Creating a basic LSQ object & get obs&calc arrays.""" diff --git a/tests/test_molecule.py b/tests/test_molecule.py index 293b097..e606ccf 100644 --- a/tests/test_molecule.py +++ b/tests/test_molecule.py @@ -14,11 +14,11 @@ ############################################################################## """Tests for molecule module.""" -import io import unittest from importlib.resources import files from numpy import pi +from utils import makeC60, makeMnO6 from pyobjcryst import ObjCrystException from pyobjcryst.crystal import Crystal @@ -32,7 +32,6 @@ StretchModeTorsion, ) from pyobjcryst.refinableobj import RefinablePar, RefParType -from utils import makeC60, makeMnO6 numplaces = 6 @@ -117,7 +116,7 @@ def testAtoms(self): # First, try the same atom again. This will throw an objcryst error. self.assertRaises(ObjCrystException, self.m.RemoveAtom, a) - ## Try to remove an atom from another molecule + # Try to remove an atom from another molecule c = makeC60() m = c.GetScatterer("c60") self.assertRaises(ObjCrystException, self.m.RemoveAtom, m.GetAtom(1)) diff --git a/tests/test_powderpattern.py b/tests/test_powderpattern.py index 1ffb413..86aecd4 100644 --- a/tests/test_powderpattern.py +++ b/tests/test_powderpattern.py @@ -17,14 +17,13 @@ import unittest import numpy as np +from utils import loadcifdata from pyobjcryst import ObjCrystException -from pyobjcryst.crystal import * -from pyobjcryst.indexing import * +from pyobjcryst.indexing import CrystalCentering, CrystalSystem, quick_index from pyobjcryst.powderpattern import PowderPattern, SpaceGroupExplorer from pyobjcryst.radiation import RadiationType, WavelengthType from pyobjcryst.reflectionprofile import ReflectionProfileType -from utils import datafile, loadcifdata # ---------------------------------------------------------------------------- @@ -232,7 +231,7 @@ def test_spacegroup_explorer(self): spgex = SpaceGroupExplorer(pd) spgex.Run("P 1 21/c 1") spgex.RunAll(verbose=False) - spg = spgex.GetScores()[0] + spg = spgex.GetScores()[0] # noqa F841 # This fails about XX% of the time (fit not converging well enough ?) # self.assertEqual(spg.hermann_mauguin, 'P 1 21/c 1') # if True: #spg.hermann_mauguin != 'P 1 21/c 1': diff --git a/tests/test_radiation.py b/tests/test_radiation.py index 23ccb04..1740de9 100644 --- a/tests/test_radiation.py +++ b/tests/test_radiation.py @@ -11,10 +11,6 @@ import unittest -from pyobjcryst.diffractiondatasinglecrystal import ( - DiffractionDataSingleCrystal, -) -from pyobjcryst.powderpattern import PowderPattern from pyobjcryst.radiation import Radiation, RadiationType, WavelengthType @@ -22,7 +18,7 @@ class TestRadiation(unittest.TestCase): def testRadiation(self): """Test Radiation creation.""" - r = Radiation() + Radiation() return def testWavelength(self): diff --git a/tests/test_refinableobj.py b/tests/test_refinableobj.py index 697641a..a89cd10 100644 --- a/tests/test_refinableobj.py +++ b/tests/test_refinableobj.py @@ -17,6 +17,7 @@ import unittest import numpy +from utils import makeCrystal, makeScatterer from pyobjcryst import ObjCrystException from pyobjcryst.refinableobj import ( @@ -26,7 +27,6 @@ RefParType, Restraint, ) -from utils import makeCrystal, makeScatterer class TestRefinableObjClock(unittest.TestCase): @@ -421,7 +421,7 @@ def testOptimStep(self): def test_xml(self): """Test xml() function.""" - x = self.r.xml() + self.r.xml() if __name__ == "__main__": diff --git a/tests/test_single_crystal_data.py b/tests/test_single_crystal_data.py index bf74b72..61253fd 100644 --- a/tests/test_single_crystal_data.py +++ b/tests/test_single_crystal_data.py @@ -3,43 +3,46 @@ """Tests for diffractiondatasinglecrystal module.""" import unittest + import numpy as np from pyobjcryst.crystal import Crystal -from pyobjcryst.diffractiondatasinglecrystal import DiffractionDataSingleCrystal +from pyobjcryst.diffractiondatasinglecrystal import ( + DiffractionDataSingleCrystal, +) class test_single_crystal_data(unittest.TestCase): def test_create(self): - """Test creating a DiffractionDataSingleCrystal object""" + """Test creating a DiffractionDataSingleCrystal object.""" c = Crystal(3.52, 3.52, 3.52, "225") - d = DiffractionDataSingleCrystal(c) + DiffractionDataSingleCrystal(c) def test_create_set_hkliobs(self): - """test SetHklIobs, SetIobs and SetSigma""" + """Test SetHklIobs, SetIobs and SetSigma.""" c = Crystal(3.1, 3.2, 3.3, "Pmmm") d = DiffractionDataSingleCrystal(c) n0 = 5 - nb = n0 ** 3 + nb = n0**3 r = np.arange(1, nb + 1, dtype=np.float64) h = r % n0 - l = r // n0 ** 2 - k = (r - l * n0 ** 2) // n0 + l = r // n0**2 # noqa: E741 + k = (r - l * n0**2) // n0 iobs = np.random.uniform(0, 100, nb) sigma = np.sqrt(iobs) d.SetHklIobs(h, k, l, iobs, sigma) # SetHklIobs sorts reflecions by sin(theta)/lambda, so do the same for comparison - s = np.sqrt(h ** 2 / 3.1 ** 2 + k ** 2 / 3.2 ** 2 + l ** 2 / 3.3 ** 2) / 2 + s = np.sqrt(h**2 / 3.1**2 + k**2 / 3.2**2 + l**2 / 3.3**2) / 2 idx = np.argsort(s) iobs = np.take(iobs, idx) sigma = np.take(sigma, idx) h = np.take(h, idx) k = np.take(k, idx) - l = np.take(l, idx) + l = np.take(l, idx) # noqa: E741 self.assertTrue(np.all(iobs == d.GetIobs())) self.assertTrue(np.all(sigma == d.GetSigma())) self.assertTrue(np.all(h == d.GetH())) @@ -55,5 +58,6 @@ def test_create_set_hkliobs(self): d.SetSigma(sigma) self.assertTrue(np.all(sigma == d.GetSigma())) + if __name__ == "__main__": unittest.main() diff --git a/tests/test_utils.py b/tests/test_utils.py index 9a26733..10236d3 100644 --- a/tests/test_utils.py +++ b/tests/test_utils.py @@ -17,8 +17,8 @@ import unittest import numpy - from utils import loadcifdata + from pyobjcryst.utils import putAtomsInMolecule From c19f1b7d58fd4b2fd21d3ae245a8e106bccdb795 Mon Sep 17 00:00:00 2001 From: Tieqiong Zhang Date: Sat, 19 Jul 2025 20:41:05 -0400 Subject: [PATCH 8/8] fix pytest fixture for 3.11 pcmt on tests --- tests/conftest.py | 22 ++++++++++ tests/test_cif.py | 69 ++++++++++++++++++-------------- tests/test_clocks.py | 2 +- tests/test_crystal.py | 2 +- tests/test_globaloptim.py | 8 +++- tests/test_lsq.py | 8 +++- tests/test_molecule.py | 10 +++-- tests/test_powderpattern.py | 14 ++++--- tests/test_refinableobj.py | 2 +- tests/test_utils.py | 8 +++- tests/{utils.py => testutils.py} | 15 +------ 11 files changed, 100 insertions(+), 60 deletions(-) rename tests/{utils.py => testutils.py} (93%) diff --git a/tests/conftest.py b/tests/conftest.py index e3b6313..6d66a6e 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -3,6 +3,8 @@ import pytest +from pyobjcryst.crystal import create_crystal_from_cif + @pytest.fixture def user_filesystem(tmp_path): @@ -17,3 +19,23 @@ def user_filesystem(tmp_path): json.dump(home_config_data, f) yield tmp_path + + +@pytest.fixture +def datafile(): + """Fixture to dynamically load any test file.""" + + def _load(filename): + return "tests/testdata/" + filename + + return _load + + +@pytest.fixture +def loadcifdata(): + """Fixture to load CIF data files for testing.""" + + def _load(filename): + return create_crystal_from_cif("tests/testdata/" + filename) + + return _load diff --git a/tests/test_cif.py b/tests/test_cif.py index b01b237..6c35fa7 100644 --- a/tests/test_cif.py +++ b/tests/test_cif.py @@ -17,8 +17,8 @@ import gc import unittest +import pytest from numpy import pi -from utils import datafile, loadcifdata from pyobjcryst.crystal import CreateCrystalFromCIF from pyobjcryst.diffractiondatasinglecrystal import ( @@ -29,33 +29,38 @@ class TestCif(unittest.TestCase): + @pytest.fixture(autouse=True) + def prepare_fixture(self, loadcifdata, datafile): + self.loadcifdata = loadcifdata + self.datafile = datafile + def test_Ag_silver_cif(self): """Check loading of Ag_silver.cif.""" - c = loadcifdata("Ag_silver.cif") + c = self.loadcifdata("Ag_silver.cif") self.assertTrue(c is not None) return def test_BaTiO3_cif(self): """Check loading of BaTiO3.cif.""" - c = loadcifdata("BaTiO3.cif") + c = self.loadcifdata("BaTiO3.cif") self.assertTrue(c is not None) return def test_C_graphite_hex_cif(self): """Check loading of C_graphite_hex.cif.""" - c = loadcifdata("C_graphite_hex.cif") + c = self.loadcifdata("C_graphite_hex.cif") self.assertTrue(c is not None) return def test_CaF2_fluorite_cif(self): """Check loading of CaF2_fluorite.cif.""" - c = loadcifdata("CaF2_fluorite.cif") + c = self.loadcifdata("CaF2_fluorite.cif") self.assertTrue(c is not None) return def test_caffeine_cif(self): """Check loading of caffeine.cif and the data inside.""" - c = loadcifdata("caffeine.cif") + c = self.loadcifdata("caffeine.cif") self.assertTrue(c is not None) self.assertEqual(24, c.GetNbScatterer()) self.assertAlmostEqual(14.9372, c.a, 6) @@ -103,7 +108,7 @@ def test_caffeine_cif(self): def test_CaTiO3_cif(self): """Check loading of CaTiO3.cif and its ADPs.""" - c = loadcifdata("CaTiO3.cif") + c = self.loadcifdata("CaTiO3.cif") self.assertTrue(c is not None) s = c.GetScatt(3) name = s.GetName() @@ -125,79 +130,79 @@ def test_CaTiO3_cif(self): def test_CdSe_cadmoselite_cif(self): """Check loading of CdSe_cadmoselite.cif.""" - c = loadcifdata("CdSe_cadmoselite.cif") + c = self.loadcifdata("CdSe_cadmoselite.cif") self.assertTrue(c is not None) return def test_CeO2_cif(self): """Check loading of CeO2.cif.""" - c = loadcifdata("CeO2.cif") + c = self.loadcifdata("CeO2.cif") self.assertTrue(c is not None) return def test_lidocainementhol_cif(self): """Check loading of lidocainementhol.cif.""" - c = loadcifdata("lidocainementhol.cif") + c = self.loadcifdata("lidocainementhol.cif") self.assertTrue(c is not None) return def test_NaCl_cif(self): """Check loading of NaCl.cif.""" - c = loadcifdata("NaCl.cif") + c = self.loadcifdata("NaCl.cif") self.assertTrue(c is not None) return def test_Ni_cif(self): """Check loading of Ni.cif.""" - c = loadcifdata("Ni.cif") + c = self.loadcifdata("Ni.cif") self.assertTrue(c is not None) return def test_paracetamol_cif(self): """Check loading of paracetamol.cif.""" - c = loadcifdata("paracetamol.cif") + c = self.loadcifdata("paracetamol.cif") self.assertTrue(c is not None) return def test_PbS_galena_cif(self): """Check loading of PbS_galena.cif.""" - c = loadcifdata("PbS_galena.cif") + c = self.loadcifdata("PbS_galena.cif") self.assertTrue(c is not None) return def test_PbTe_cif(self): """Check loading of PbTe.cif.""" - c = loadcifdata("PbTe.cif") + c = self.loadcifdata("PbTe.cif") self.assertTrue(c is not None) return def test_Si_cif(self): """Check loading of Si.cif.""" - c = loadcifdata("Si.cif") + c = self.loadcifdata("Si.cif") self.assertTrue(c is not None) return def test_Si_setting2_cif(self): """Check loading of Si_setting2.cif.""" - c = loadcifdata("Si_setting2.cif") + c = self.loadcifdata("Si_setting2.cif") self.assertTrue(c is not None) return def test_SrTiO3_tausonite_cif(self): """Check loading of SrTiO3_tausonite.cif.""" - c = loadcifdata("SrTiO3_tausonite.cif") + c = self.loadcifdata("SrTiO3_tausonite.cif") self.assertTrue(c is not None) return def test_TiO2_anatase_cif(self): """Check loading of TiO2_anatase.cif.""" - c = loadcifdata("TiO2_anatase.cif") + c = self.loadcifdata("TiO2_anatase.cif") self.assertTrue(c is not None) return def test_TiO2_rutile_cif(self): """Check loading of TiO2_rutile.cif and its ADP data.""" - c = loadcifdata("TiO2_rutile.cif") + c = self.loadcifdata("TiO2_rutile.cif") self.assertTrue(c is not None) s = c.GetScatt(0) name = s.GetName() @@ -210,19 +215,19 @@ def test_TiO2_rutile_cif(self): def test_Zn_zinc_cif(self): """Check loading of Zn_zinc.cif.""" - c = loadcifdata("Zn_zinc.cif") + c = self.loadcifdata("Zn_zinc.cif") self.assertTrue(c is not None) return def test_ZnS_sphalerite_cif(self): """Check loading of ZnS_sphalerite.cif.""" - c = loadcifdata("ZnS_sphalerite.cif") + c = self.loadcifdata("ZnS_sphalerite.cif") self.assertTrue(c is not None) return def test_ZnS_wurtzite_cif(self): """Check loading of ZnS_wurtzite.cif.""" - c = loadcifdata("ZnS_wurtzite.cif") + c = self.loadcifdata("ZnS_wurtzite.cif") self.assertTrue(c is not None) return @@ -230,7 +235,7 @@ def testBadCif(self): """Make sure we can read all cif files.""" from pyobjcryst import ObjCrystException - fname = datafile("ni.stru") + fname = self.datafile("ni.stru") infile = open(fname, "rb") self.assertRaises(ObjCrystException, CreateCrystalFromCIF, infile) infile.close() @@ -238,22 +243,28 @@ def testBadCif(self): def test_paracetamol_monomethanolate(self): """Test loading crystal and diffraction data.""" - c = loadcifdata("paracetamol_monomethanolate.cif") + c = self.loadcifdata("paracetamol_monomethanolate.cif") d = create_singlecrystaldata_from_cif( - datafile("paracetamol_monomethanolate_data_single_crystal.cif"), c + self.datafile( + "paracetamol_monomethanolate_data_single_crystal.cif" + ), + c, ) self.assertTrue(d is not None) def test_paracetamol_monomethanolate_ward(self): """Test loading crystal and diffraction data, make sure custodian & ward works.""" - c = loadcifdata("paracetamol_monomethanolate.cif") + c = self.loadcifdata("paracetamol_monomethanolate.cif") d = create_singlecrystaldata_from_cif( - datafile("paracetamol_monomethanolate_data_single_crystal.cif"), c + self.datafile( + "paracetamol_monomethanolate_data_single_crystal.cif" + ), + c, ) n = d.GetCrystal().GetName() # Replace c by another Crystal object - c = loadcifdata("ZnS_sphalerite.cif") + c = self.loadcifdata("ZnS_sphalerite.cif") gc.collect() self.assertTrue(gCrystalRegistry.GetObj(n) is not None) diff --git a/tests/test_clocks.py b/tests/test_clocks.py index 4875594..1cbdd80 100644 --- a/tests/test_clocks.py +++ b/tests/test_clocks.py @@ -16,7 +16,7 @@ import unittest -from utils import makeC60 +from testutils import makeC60 from pyobjcryst.refinableobj import RefinableObjClock diff --git a/tests/test_crystal.py b/tests/test_crystal.py index ab1866f..6a25942 100644 --- a/tests/test_crystal.py +++ b/tests/test_crystal.py @@ -16,7 +16,7 @@ import unittest -from utils import ( +from testutils import ( getScatterer, makeCrystal, makeScatterer, diff --git a/tests/test_globaloptim.py b/tests/test_globaloptim.py index 0341f6d..eaaf592 100644 --- a/tests/test_globaloptim.py +++ b/tests/test_globaloptim.py @@ -11,7 +11,7 @@ import unittest -from utils import loadcifdata +import pytest from pyobjcryst import refinableobj from pyobjcryst.diffractiondatasinglecrystal import ( @@ -22,8 +22,12 @@ class TestGlobalOptim(unittest.TestCase): + @pytest.fixture(autouse=True) + def prepare_fixture(self, loadcifdata): + self.loadcifdata = loadcifdata + def setUp(self): - self.c = loadcifdata("caffeine.cif") + self.c = self.loadcifdata("caffeine.cif") self.d = DiffractionDataSingleCrystal(self.c) self.d.GenHKLFullSpace2(0.4, True) self.d.SetIobsToIcalc() diff --git a/tests/test_lsq.py b/tests/test_lsq.py index fac5bb3..412daaf 100644 --- a/tests/test_lsq.py +++ b/tests/test_lsq.py @@ -11,7 +11,7 @@ import unittest -from utils import loadcifdata +import pytest from pyobjcryst import refinableobj from pyobjcryst.diffractiondatasinglecrystal import ( @@ -22,8 +22,12 @@ class TestGlobalOptim(unittest.TestCase): + @pytest.fixture(autouse=True) + def prepare_fixture(self, loadcifdata): + self.loadcifdata = loadcifdata + def setUp(self): - self.c = loadcifdata("caffeine.cif") + self.c = self.loadcifdata("caffeine.cif") self.d = DiffractionDataSingleCrystal(self.c) self.d.GenHKLFullSpace2(0.4, True) self.d.SetIobsToIcalc() diff --git a/tests/test_molecule.py b/tests/test_molecule.py index e606ccf..651ddce 100644 --- a/tests/test_molecule.py +++ b/tests/test_molecule.py @@ -15,10 +15,10 @@ """Tests for molecule module.""" import unittest -from importlib.resources import files +import pytest from numpy import pi -from utils import makeC60, makeMnO6 +from testutils import makeC60, makeMnO6 from pyobjcryst import ObjCrystException from pyobjcryst.crystal import Crystal @@ -38,6 +38,10 @@ class TestMolecule(unittest.TestCase): + @pytest.fixture(autouse=True) + def prepare_fixture(self, datafile): + self.datafile = datafile + def setUp(self): self.c = makeC60() self.m = self.c.GetScatterer("c60") @@ -445,7 +449,7 @@ def testManipulation(self): def testZMatrix(self): """Test creating a Molecule from a z-matrix.""" - fname = str(files(__name__).joinpath("testdata", "cime.fhz")) + fname = self.datafile("cime.fhz") c = Crystal() m = ImportFenskeHallZMatrix(c, fname) assert m.GetNbAtoms() == 17 diff --git a/tests/test_powderpattern.py b/tests/test_powderpattern.py index 86aecd4..48c6837 100644 --- a/tests/test_powderpattern.py +++ b/tests/test_powderpattern.py @@ -17,7 +17,7 @@ import unittest import numpy as np -from utils import loadcifdata +import pytest from pyobjcryst import ObjCrystException from pyobjcryst.indexing import CrystalCentering, CrystalSystem, quick_index @@ -40,6 +40,10 @@ class TestRoutines(unittest.TestCase): class TestPowderPattern(unittest.TestCase): + @pytest.fixture(autouse=True) + def prepare_fixture(self, loadcifdata): + self.loadcifdata = loadcifdata + def setUp(self): self.pp = PowderPattern() return @@ -151,7 +155,7 @@ def test_SetRadiationType(self): pp.SetRadiationType(t) def test_quick_fit(self): - c = loadcifdata("paracetamol.cif") + c = self.loadcifdata("paracetamol.cif") p = PowderPattern() p.SetWavelength(0.7) x = np.linspace(0, 40, 8001) @@ -171,7 +175,7 @@ def test_quick_fit(self): p.quick_fit_profile(auto_background=True, verbose=False, plot=False) def test_peaklist_index(self): - c = loadcifdata("paracetamol.cif") + c = self.loadcifdata("paracetamol.cif") p = PowderPattern() p.SetWavelength(0.7) x = np.linspace(0, 40, 16001) @@ -203,7 +207,7 @@ def test_peaklist_index(self): ) def test_spacegroup_explorer(self): - c = loadcifdata("paracetamol.cif") + c = self.loadcifdata("paracetamol.cif") p = PowderPattern() p.SetWavelength(0.7) x = np.linspace(0, 40, 8001) @@ -240,7 +244,7 @@ def test_spacegroup_explorer(self): # print(s) def test_update_nbrefl(self): - c = loadcifdata("paracetamol.cif") + c = self.loadcifdata("paracetamol.cif") p = PowderPattern() p.SetWavelength(1.5) x = np.linspace(0, 40, 4000) diff --git a/tests/test_refinableobj.py b/tests/test_refinableobj.py index a89cd10..3c73d69 100644 --- a/tests/test_refinableobj.py +++ b/tests/test_refinableobj.py @@ -17,7 +17,7 @@ import unittest import numpy -from utils import makeCrystal, makeScatterer +from testutils import makeCrystal, makeScatterer from pyobjcryst import ObjCrystException from pyobjcryst.refinableobj import ( diff --git a/tests/test_utils.py b/tests/test_utils.py index 10236d3..e076deb 100644 --- a/tests/test_utils.py +++ b/tests/test_utils.py @@ -17,16 +17,20 @@ import unittest import numpy -from utils import loadcifdata +import pytest from pyobjcryst.utils import putAtomsInMolecule class TestPutAtomsInMolecule(unittest.TestCase): + @pytest.fixture(autouse=True) + def prepare_fixture(self, loadcifdata): + self.loadcifdata = loadcifdata + def test_caffeine(self): """Check molecule conversion for caffeine.""" - c = loadcifdata("caffeine.cif") + c = self.loadcifdata("caffeine.cif") xyz0 = [(sc.X, sc.Y, sc.Z) for sc in c.GetScatteringComponentList()] self.assertEqual(24, c.GetNbScatterer()) putAtomsInMolecule(c, name="espresso") diff --git a/tests/utils.py b/tests/testutils.py similarity index 93% rename from tests/utils.py rename to tests/testutils.py index 91e7139..25684c5 100644 --- a/tests/utils.py +++ b/tests/testutils.py @@ -17,7 +17,7 @@ from numpy import pi from pyobjcryst.atom import Atom -from pyobjcryst.crystal import Crystal, create_crystal_from_cif +from pyobjcryst.crystal import Crystal from pyobjcryst.molecule import Molecule from pyobjcryst.polyhedron import MakeOctahedron from pyobjcryst.scatteringpower import ScatteringPowerAtom @@ -150,16 +150,3 @@ def makeMnO6(): crystal.AddScatterer(m) return crystal - - -def datafile(filename): - from importlib.resources import files - - rv = str(files(__name__).joinpath("testdata", filename)) - return rv - - -def loadcifdata(filename): - fullpath = datafile(filename) - crst = create_crystal_from_cif(fullpath) - return crst