@@ -193,12 +193,6 @@ funcy: tuple (function, dict)
193193funcx: tuple (function, dict)
194194 Apply a function to the x-axis of the (two-column) data.
195195
196- This morph works fundamentally differently from the other grid morphs
197- (e.g. stretch and squeeze) as it directly modifies the grid of the
198- morph function.
199- The other morphs maintain the original grid and apply the morphs by interpolating
200- the function ***.
201-
202196 This morph applies the function funcx[0] with parameters given in funcx[1].
203197 The function funcx[0] take in as parameters both the abscissa and ordinate
204198 (i.e. take in at least two inputs with as many additional parameters as needed).
@@ -403,137 +397,4 @@ how much the
403397MorphFuncxy:
404398^^^^^^^^^^^^
405399The ``MorphFuncxy `` morph allows users to apply a custom Python function
406- to a dataset that modifies both the ``x `` and ``y `` column values.
407- This is equivalent to applying a ``MorphFuncx `` and ``MorphFuncy ``
408- simultaneously.
409-
410- This morph is useful when you want to apply operations that modify both
411- the grid and function value. A PDF-specific example includes computing
412- PDFs from 1D diffraction data (see paragraph at the end of this section).
413-
414- For this tutorial, we will go through two examples. One simple one
415- involving shifting a function in the ``x `` and ``y `` directions, and
416- another involving a Fourier transform.
417-
418- 1. Let's start by taking a simple ``sine `` function.
419-
420- .. code-block :: python
421-
422- import numpy as np
423- morph_x = np.linspace(0 , 10 , 101 )
424- morph_y = np.sin(morph_x)
425- morph_table = np.array([morph_x, morph_y]).T
426-
427- 2. Then, let our target function be that same ``sine `` function shifted
428- to the right by ``0.3 `` and up by ``0.7 ``.
429-
430- .. code-block :: python
431-
432- target_x = morph_x + 0.3
433- target_y = morph_y + 0.7
434- target_table = np.array([target_x, target_y]).T
435-
436- 3. While we could use the ``hshift `` and ``vshift `` morphs,
437- this would require us to refine over two separate morph
438- operations. We can instead perform these morphs simultaneously
439- by defining a function:
440-
441- .. code-block :: python
442-
443- def shift (x , y , hshift , vshift ):
444- return x + hshift, y + vshift
445-
446- 4. Now, let's try finding the optimal shift parameters using the ``MorphFuncxy `` morph.
447- We can try an initial guess of ``hshift=0.0 `` and ``vshift=0.0 ``.
448-
449- .. code-block :: python
450-
451- from diffpy.morph.morphpy import morph_arrays
452- initial_guesses = {" hshift" : 0.0 , " vshift" : 0.0 }
453- info, table = morph_arrays(morph_table, target_table, funcxy = (shift, initial_guesses))
454-
455- 5. Finally, to see the refined ``hshift `` and ``vshift `` parameters, we extract them from ``info ``.
456-
457- .. code-block :: python
458-
459- print (f " Refined hshift: { info[" funcxy" ][" hshift" ]} " )
460- print (f " Refined vshift: { info[" funcxy" ][" vshift" ]} " )
461-
462- Now for an example involving a Fourier transform.
463-
464- 1. Let's say you measured a signal of the form :math: `f(x)=\exp \{\cos (\pi x)\}`.
465- Unfortunately, your measurement was taken against a noisy sinusoidal
466- background of the form :math: `n(x)=A\sin (Bx)`, where ``A ``, ``B `` are unknown.
467- For our example, let's say (unknown to us) that ``A=2 `` and ``B=1.7 ``.
468-
469- .. code-block :: python
470-
471- import numpy as np
472- n = 201
473- dx = 0.01
474- measured_x = np.linspace(0 , 2 , n)
475-
476- def signal (x ):
477- return np.exp(np.cos(np.pi * x))
478-
479- def noise (x , A , B ):
480- return A * np.sin(B * x)
481-
482- measured_f = signal(measured_x) + noise(measured_x, 2 , 1.7 )
483- morph_table = np.array([measured_x, measured_f]).T
484-
485- 2. Your colleague remembers they previously computed the Fourier transform
486- of the function and has sent that to you.
487-
488- .. code-block :: python
489-
490- # We only consider the region where the grid is positive for simplicity
491- target_x = np.fft.fftfreq(n, dx)[:n// 2 ]
492- target_f = np.real(np.fft.fft(signal(measured_x))[:n// 2 ])
493- target_table = np.array([target_x, target_f]).T
494-
495- 3. We can now write a noise subtraction function that takes in our measured
496- signal and guesses for parameters ``A ``, ``B ``, and computes the Fourier
497- transform post-noise-subtraction.
498-
499- .. code-block :: python
500-
501- def noise_subtracted_ft (x , y , A , B ):
502- n = 201
503- dx = 0.01
504- background_subtracted_y = y - noise(x, A, B)
505-
506- ft_x = np.fft.fftfreq(n, dx)[:n// 2 ]
507- ft_f = np.real(np.fft.fft(background_subtracted_y)[:n// 2 ])
508-
509- return ft_x, ft_f
510-
511- 4. Finally, we can provide initial guesses of ``A=0 `` and ``B=1 `` to the
512- ``MorphFuncxy `` morph and see what refined values we get.
513-
514- .. code-block :: python
515-
516- from diffpy.morph.morphpy import morph_arrays
517- initial_guesses = {" A" : 0 , " B" : 1 }
518- info, table = morph_arrays(morph_table, target_table, funcxy = (background_subtracted_ft, initial_guesses))
519-
520- 5. Print these values to see if they match with the true values of
521- of ``A=2.0 `` and ``B=1.7 ``!
522-
523- .. code-block :: python
524-
525- print (f " Refined A: { info[" funcxy" ][" A" ]} " )
526- print (f " Refined B: { info[" funcxy" ][" B" ]} " )
527-
528- You can also use this morph to help find optimal parameters
529- (e.g. ``rpoly ``, ``qmin ``, ``qmax ``, ``bgscale ``) for computing
530- PDFs of materials with known structures.
531- One does this by setting the ``MorphFuncxy `` function to a PDF
532- computing function such as
533- `PDFgetx3 <https://www.diffpy.org/products/pdfgetx.html >`_.
534- The input (morphed) 1D function should be the 1D diffraction data
535- one wishes to compute the PDF of and the target 1D function
536- can be the PDF of a target material with similar geometry.
537- More information about this will be released in the ``diffpy.morph ``
538- manuscript, and we plan to integrate this feature automatically into
539- ``PDFgetx3 `` soon.
400+ to a dataset, ***.
0 commit comments