-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsearch_hyperparams.py
453 lines (290 loc) · 24.7 KB
/
search_hyperparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
"""Peform hyperparemeters search"""
# Comments
# info : This goes into the name of the batched dataset that we use to train/evaluate/test
# name: this goes into the name of the dir with the results (fpr/trp, evaluate, train log files, etc)
# DON'T CHANGE THE ARCHITECTURE, i.e. recNet.py for a run in between train and evaluate routines!!!
#-------------------------------------------------------------------------------------------------------------
import argparse
import os
from subprocess import check_call
import sys
import numpy as np
import utils
import time
#-------------------------------------------------------------------------------------------------------------
# Global variables
#-----------------------------
#Directory with the input trees
# sample_name='top_qcd_jets_antikt_antikt'
# sample_name='top_qcd_jets_antikt_kt'
# sample_name='top_qcd_jets_antikt_CA'
# New sample
# sample_name='top_qcd_jets_kt'
# sample_name='top_qcd_jets_kt_shift_rot_flip'
jet_algorithm=''
#------------------------------------------------------
#NYU samples
# sample_name='nyu_jets'
# jet_algorithm='antikt-antikt'
#Top tag reference dataset
sample_name='top_tag_reference_dataset'
jet_algorithm='kt'
#----------------
# architecture='gatedRecNN'
# architecture='simpleRecNN'
# architecture = 'leaves_inner_RecNN'
# architecture = 'NiNRecNN'
architecture = 'NiNRecNNReLU'
# architecture = 'NiNRecNN2L3W'
# architecture = 'NiNgatedRecNN'
#-------------------------------------------------------
PREPROCESS=False
# PREPROCESS=True
#-----------
# TRAIN_and_EVALUATE=True
TRAIN_and_EVALUATE=False
load_weights=False
# load_weights=True
#-----------
EVALUATE=True
# EVALUATE=False
# restore_file='last'
restore_file='best'
#-------------------------------------------------------
PYTHON = sys.executable
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', default=2,
help='Select the GPU')
parser.add_argument('--parent_dir', default='experiments/',
help='Directory containing params.json')
parser.add_argument('--data_dir', default='../data/inputTrees/'+sample_name, help="Directory containing the raw datasets")
parser.add_argument('--eval_data_dir', default='../data/preprocessed_trees/', help="Directory containing the input batches")
parser.add_argument('--sample_name', default=sample_name, help="Sample name")
parser.add_argument('--jet_algorithm', default=jet_algorithm, help="jet algorithm")
parser.add_argument('--architecture', default=architecture, help="RecNN architecture")
parser.add_argument('--NrunStart', default=0, help="Initial Model Number for the scan")
parser.add_argument('--NrunFinish', default=1, help="Final Model Number for the scan")
#-------------------------------------------------------------------------------------------------------------
#////////////////////// FUNCTIONS //////////////////////////////////////////////
#-------------------------------------------------------------------------------------------------------------
#------------------------------------------
# PREPROCESSING
def launch_preprocessing_job(parent_dir, data_dir, job_name, params,algo):
start_time = time.time()
print('search_hyperparams.py sample_name=',data_dir)
print('----'*20)
# Create a new folder in parent_dir with unique_name "job_name"
model_dir = os.path.join(parent_dir, job_name)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
print('Model dir=',model_dir)
# Write parameters in json file
json_path = os.path.join(model_dir, 'params.json')
params.save(json_path)
cmd_preprocess = "{python} preprocess_main.py --model_dir={model_dir} --data_dir={data_dir} --jet_algorithm={algo}".format(python=PYTHON, model_dir=model_dir, data_dir=data_dir, algo=algo)
print(cmd_preprocess)
check_call(cmd_preprocess, shell=True)
elapsed_time=time.time()-start_time
print('Preprocessing time (minutes) = ',elapsed_time/60)
#------------------------------------------
# TRAINING
def launch_training_job(parent_dir, data_dir, eval_data_dir, job_name, params, GPU,sample_name, algo):
"""Launch training of the model with a set of hyperparameters in parent_dir/job_name
Args:
model_dir: (string) directory containing config, weights and log
data_dir: (string) directory containing the dataset
params: (dict) containing hyperparameters
"""
start_time = time.time()
print('search_hyperparams.py sample_name=',data_dir)
print('----'*20)
# Create a new folder in parent_dir with unique_name "job_name"
model_dir = os.path.join(parent_dir, job_name)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
print('Model dir=',model_dir)
# Write parameters in json file
json_path = os.path.join(model_dir, 'params.json')
params.save(json_path)
if load_weights==False:
#---------------
# Launch training with this config
cmd_train = "CUDA_VISIBLE_DEVICES={gpu} {python} train.py --model_dir={model_dir} --data_dir={data_dir} --jet_algorithm={algo} --architecture={architecture}".format(gpu=GPU, python=PYTHON, model_dir=model_dir, data_dir=data_dir, algo=algo, architecture=architecture)
print(cmd_train)
check_call(cmd_train, shell=True)
else:
# Launch training with this config and restore previous weights(use --restore_file=best or --restore_file=last)
cmd_train = "CUDA_VISIBLE_DEVICES={gpu} {python} train.py --model_dir={model_dir} --data_dir={data_dir} --restore_file=best --jet_algorithm={algo} --architecture={architecture}".format(gpu=GPU, python=PYTHON, model_dir=model_dir, data_dir=data_dir, algo=algo, architecture=architecture)
print(cmd_train)
check_call(cmd_train, shell=True)
elapsed_time=time.time()
print('Training time (minutes) = ',(elapsed_time-start_time)/60)
#------------------------------------------
# EVALUATION
def launch_evaluation_job(parent_dir, data_dir, eval_data_dir, job_name, params, GPU,sample_name, algo):
"""Launch evaluation of the model with a set of hyperparameters in parent_dir/job_name
Args:
model_dir: (string) directory containing config, weights and log
data_dir: (string) directory containing the dataset
params: (dict) containing hyperparameters
"""
elapsed_time = time.time()
print('Running evaluation of the model')
print('----'*20)
# Create a new folder in parent_dir with unique_name "job_name"
model_dir = os.path.join(parent_dir, job_name)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
print('Model dir=',model_dir)
#--------------
# Launch evaluation with this config
cmd_eval = "CUDA_VISIBLE_DEVICES={gpu} {python} evaluate.py --model_dir={model_dir} --data_dir={data_dir} --sample_name={sample_name} --jet_algorithm={algo} --architecture={architecture} --restore_file={restore_file}".format(gpu=GPU, python=PYTHON, model_dir=model_dir, data_dir=eval_data_dir,sample_name=sample_name, algo=algo, architecture=architecture, restore_file=restore_file)
print(cmd_eval)
check_call(cmd_eval, shell=True)
eval_time=time.time()
print('Evaluation time (minutes) = ',(eval_time-elapsed_time)/60)
#-------------------------------------------------------------------------------------------------------------
###///////////////////////////////////////////////////////////////////////////////////////////////////////////
#-------------------------------------------------------------------------------------------------------------
if __name__ == "__main__":
# Load the "reference" parameters from parent_dir json file
args = parser.parse_args()
json_path = os.path.join(args.parent_dir, 'template_params.json')
assert os.path.isfile(json_path), "No json configuration file found at {}".format(json_path)
params = utils.Params(json_path)
NrunStart= int(args.NrunStart)
NrunFinish= int(args.NrunFinish)
# Perform hyperparameters scans
def multi_scan(learning_rates=[2e-3],decays=[0.9], batch_sizes=[128],num_epochs=[25],hidden_dims=[40],jet_numbers=[20000],Nfeatures=7,dir_name=None,name=None, info=None, sample_name=None, Nrun_start=0,Nrun_finish=1):
parent_dir=args.parent_dir+str(dir_name)+'/'
if not os.path.exists(parent_dir):
os.makedirs(parent_dir)
# os.system('mkdir -p '+parent_dir)
#-------------------------------------------------------------
# Loop to scan over the hyperparameter space
for jet_number in jet_numbers:
for hidden_dim in hidden_dims:
for num_epoch in num_epochs:
for batch_size in batch_sizes:
for decay in decays:
for learning_rate in learning_rates:
# Modify the relevant parameter in params
params.learning_rate=0.002
params.decay=0.9
params.batch_size=128
params.num_epochs=25
params.save_summary_steps=params.batch_size
params.hidden=40
params.features=7
params.number_of_labels_types=1
params.myN_jets=20000
params.learning_rate=learning_rate
params.decay=decay
params.batch_size=batch_size
params.num_epochs=num_epoch
params.hidden=hidden_dim
params.features=Nfeatures
# params.number_of_labels_types=1
params.myN_jets=jet_number
params.info=info #This goes into the name of the batched dataset that we use to train/evaluate/test
params.nrun_start=Nrun_start
params.nrun_finish=Nrun_finish
#-----------------------------------------
# Launch job (name has to be unique)
job_name = str(sample_name)+'_'+str(name)+'_lr_'+str(learning_rate)+'_decay_'+str(decay)+'_batch_'+str(batch_size)+'_epochs_'+str(num_epoch)+'_hidden_'+str(hidden_dim)+'_Njets_'+str(jet_number)+'_features_'+str(params.features)
#-----------------------------------------
# Run preprocess, training, evaluation
if PREPROCESS:
launch_preprocessing_job(parent_dir, args.data_dir, job_name, params, jet_algorithm)
if TRAIN_and_EVALUATE:
for n_run in np.arange(Nrun_start,Nrun_finish):
launch_training_job(parent_dir, args.data_dir, args.eval_data_dir, job_name+'/run_'+str(n_run), params, args.gpu, sample_name, jet_algorithm)
launch_evaluation_job(parent_dir, args.data_dir, args.eval_data_dir, job_name+'/run_'+str(n_run), params, args.gpu, sample_name, jet_algorithm)
if EVALUATE:
for n_run in np.arange(Nrun_start,Nrun_finish):
launch_evaluation_job(parent_dir, args.data_dir, args.eval_data_dir, job_name+'/run_'+str(n_run), params, args.gpu, sample_name, jet_algorithm)
#---------------------------------------------------------------------------------------------------------
# SCANS OVER THE HYPERPARAMETER SPACE
#-------------------
##TESTS
# multi_scan(learning_rates=[5e-3],decays=[0.9], batch_sizes=[8],num_epochs=[1],hidden_dims=[50],jet_numbers=[20], Nfeatures=7,dir_name='networkingNet_rnn_top_qcd/kt',name='kt_1layer_4weights', info='kt_1layer_4weights',sample_name=args.sample_name) #gpu0 s
# multi_scan(learning_rates=[5e-3],decays=[0.9], batch_sizes=[128],num_epochs=[5],hidden_dims=[50], jet_numbers=[5000], Nfeatures=7,dir_name='kt/NiN_rnn_top_qcd',name='test', info='permute_nleaves',sample_name=args.sample_name,Nrun_start=1,Nrun_finish=10) #gpu1
# multi_scan(learning_rates=[5e-3],decays=[0.9], batch_sizes=[128],num_epochs=[1],hidden_dims=[50],jet_numbers=[3000], Nfeatures=7,dir_name='networkingNet_rnn_top_qcd/time_test',name='test', info='',sample_name=args.sample_name) #gpu1
# multi_scan(learning_rates=[5e-3],decays=[0.9], batch_sizes=[2],num_epochs=[1],hidden_dims=[50], jet_numbers=[10], Nfeatures=7,dir_name='nyu',name='test', info='',sample_name=args.sample_name,Nrun_start=0,Nrun_finish=1) #gpu1
#---------------------------------------------------------------------
# Full dataset scans
# multi_scan(learning_rates=[5e-3],decays=[0.9], batch_sizes=[128],num_epochs=[45],hidden_dims=[50],jet_numbers=[600000], Nfeatures=7,dir_name='networkingNet_rnn_top_qcd/kt_dec13',name='2layer_3W_inner_outer_NoReLU_NoRoot_orthogonal_uk', info='',sample_name=args.sample_name) #gpu0
# multi_scan(learning_rates=[5e-3],decays=[0.9], batch_sizes=[128],num_epochs=[45],hidden_dims=[50],jet_numbers=[100000], Nfeatures=7,dir_name='networkingNet_rnn_top_qcd/kt_feb1',name='2layer_3W_inner_outer_NoRoot_orthogonal_uk', info='',sample_name=args.sample_name) #gpu1
# multi_scan(learning_rates=[5e-3],decays=[0.9], batch_sizes=[128],num_epochs=[45],hidden_dims=[50],jet_numbers=[100000], Nfeatures=7,dir_name='networkingNet_rnn_top_qcd/kt_feb1',name='uk_inner_outer_2layer_3W_inner_outer_NoRoot_orthogonal', info='',sample_name=args.sample_name) #gpu1
# multi_scan(learning_rates=[5e-3],decays=[0.9], batch_sizes=[128],num_epochs=[45],hidden_dims=[50],jet_numbers=[600000], Nfeatures=7,dir_name='gated_rnn_top_qcd/kt',name='kt', info='kt',sample_name=args.sample_name) #gpu2
#-------------------------------------------------------------------------------------------------
# NYU samples - validation of the code
#Simple RecNN- antikt - particles
# multi_scan(learning_rates=[5e-4],decays=[0.9], batch_sizes=[64],num_epochs=[25],hidden_dims=[40], jet_numbers=[100000], Nfeatures=7,dir_name='nyu_jet',name='antikt-antikt', info='',sample_name=args.sample_name,Nrun_start=25,Nrun_finish=30) #gpu1
#Gated RecNN -antikt - particles
# multi_scan(learning_rates=[5e-4],decays=[0.9], batch_sizes=[64],num_epochs=[25],hidden_dims=[40], jet_numbers=[100000], Nfeatures=7,dir_name='nyu_jet',name=architecture+'_antikt-antikt', info='',sample_name=args.sample_name,Nrun_start=29,Nrun_finish=30) #gpu1
#-------------------------------------------------------------------------------------------------
#Gated RecNN -antikt - particles
# multi_scan(learning_rates=[5e-4],decays=[0.9], batch_sizes=[64],num_epochs=[25],hidden_dims=[40], jet_numbers=[100000], Nfeatures=7,dir_name='test_nworker15',name=architecture+'_antikt-antikt', info='',sample_name=args.sample_name,Nrun_start=2,Nrun_finish=3) #gpu1
# Simple (run 0-10)/Gated RecNN - Top tag Reference Dataset. (Don't run more than 3 at the same time)
# multi_scan(learning_rates=[5e-4],decays=[0.9], batch_sizes=[64],num_epochs=[25],hidden_dims=[40], jet_numbers=[1200000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt', info='',sample_name=args.sample_name,Nrun_start=7,Nrun_finish=10) #gpu1
# Simple (run 0-10)/Gated RecNN - Top tag Reference Dataset. (Don't run more than 3 at the same time)
# multi_scan(learning_rates=[5e-4],decays=[0.9], batch_sizes=[64],num_epochs=[30],hidden_dims=[40], jet_numbers=[1200000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt', info='',sample_name=args.sample_name,Nrun_start=7,Nrun_finish=10) #gpu1
# multi_scan(learning_rates=[5e-3],decays=[0.9], batch_sizes=[128],num_epochs=[40],hidden_dims=[40], jet_numbers=[1200000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt', info='',sample_name=args.sample_name,Nrun_start=6,Nrun_finish=9) #gpu1
# multi_scan(learning_rates=[2e-3],decays=[0.9], batch_sizes=[128],num_epochs=[40],hidden_dims=[50], jet_numbers=[1200000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt_2L4WleavesInnerNiNuk', info='',sample_name=args.sample_name,Nrun_start=6,Nrun_finish=9) #gpu1
# multi_scan(learning_rates=[0.0000295],decays=[0.9], batch_sizes=[128],num_epochs=[40],hidden_dims=[50], jet_numbers=[1200000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt_2L4WleavesInnerNiNuk_80epochs', info='',sample_name=args.sample_name,Nrun_start=0,Nrun_finish=3) #gpu1
# multi_scan(learning_rates=[0.0000295],decays=[0.86], batch_sizes=[128],num_epochs=[40],hidden_dims=[50], jet_numbers=[1200000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt_2L4WleavesInnerNiNuk_80epochs', info='',sample_name=args.sample_name,Nrun_start=1,Nrun_finish=3) #gpu1
# multi_scan(learning_rates=[2e-3],decays=[0.86], batch_sizes=[128],num_epochs=[40],hidden_dims=[50], jet_numbers=[1200000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt_2L3WleavesInnerNiNuk', info='',sample_name=args.sample_name,Nrun_start=0,Nrun_finish=1) #gpu2
# multi_scan(learning_rates=[2e-3],decays=[0.86], batch_sizes=[128],num_epochs=[45],hidden_dims=[50], jet_numbers=[1200000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt_2L3WleavesInnerNiNuk_loss', info='',sample_name=args.sample_name,Nrun_start=6,Nrun_finish=9) #gpu2
# multi_scan(learning_rates=[2e-3],decays=[0.9], batch_sizes=[128],num_epochs=[45],hidden_dims=[50], jet_numbers=[1200000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt_2L6WleavesInnerNiN_ukh', info='',sample_name=args.sample_name,Nrun_start=3,Nrun_finish=6) #gpu1
# multi_scan(learning_rates=[2e-3],decays=[0.9], batch_sizes=[128],num_epochs=[45],hidden_dims=[50], jet_numbers=[1200000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt_2L6WleavesInnerNiN_ukh', info='',sample_name=args.sample_name,Nrun_start=0,Nrun_finish=3) #gpu1
# multi_scan(learning_rates=[2e-2],decays=[0.845], batch_sizes=[128],num_epochs=[45],hidden_dims=[40], jet_numbers=[1200000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt_2L4WleavesInnerNiNuk', info='',sample_name=args.sample_name,Nrun_start=0,Nrun_finish=3) #gpu1
# multi_scan(learning_rates=[2e-3],decays=[0.9], batch_sizes=[128],num_epochs=[45],hidden_dims=[50], jet_numbers=[1200000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt_2L4WleavesInnerNiNuk_tanh', info='',sample_name=args.sample_name,Nrun_start=3,Nrun_finish=6) #gpu1
# multi_scan(learning_rates=[2e-3],decays=[0.9], batch_sizes=[128],num_epochs=[45],hidden_dims=[40], jet_numbers=[1200000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt_2L4WleavesInnerNiNuk', info='',sample_name=args.sample_name,Nrun_start=9,Nrun_finish=12) #gpu1
# multi_scan(learning_rates=[2e-3],decays=[0.9], batch_sizes=[128],num_epochs=[50],hidden_dims=[50], jet_numbers=[1200000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt_2L4WleavesInnerNiNuk_bgRejectionbest', info='',sample_name=args.sample_name,Nrun_start=15,Nrun_finish=18) #gpu1
# multi_scan(learning_rates=[2e-3],decays=[0.9], batch_sizes=[128],num_epochs=[50],hidden_dims=[50], jet_numbers=[1200000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt_2L4WleavesInnerNiNuk_bgRejectionbest', info='',sample_name=args.sample_name,Nrun_start=6,Nrun_finish=9) #gpu1
# multi_scan(learning_rates=[2e-3],decays=[0.9], batch_sizes=[128],num_epochs=[40],hidden_dims=[50], jet_numbers=[1200000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt_2L4WleavesInnerNiNuk', info='',sample_name=args.sample_name,Nrun_start=6,Nrun_finish=9) #gpu1
##########################################################
# Best performing model with architecture = 'NiNRecNN'. Note: This is the same architecture as NiNRecNNReLU but here we initialize some weights that are not used. We need to load this one for testing even thought there are extra weights (Because the saved weight include these extra weights).
# top_tag_reference_dataset_NiNRecNN_kt_full_test_2L4WleavesInnerNiNuk_lr_0.002_decay_09_batch_400_epochs_40_hidden_50_Njets_1200000_features_7
multi_scan(learning_rates=[2e-3],decays=[0.9], batch_sizes=[400],num_epochs=[40],hidden_dims=[50], jet_numbers=[1200000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_last_kt_full_test_2L4WleavesInnerNiNuk', info='',sample_name=args.sample_name,Nrun_start=NrunStart,Nrun_finish=NrunFinish) #gpu1
# multi_scan(learning_rates=[2e-3],decays=[0.9], batch_sizes=[400],num_epochs=[40],hidden_dims=[50], jet_numbers=[1200000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt_full_test_2L4WleavesInnerNiNuk', info='',sample_name=args.sample_name,Nrun_start=0,Nrun_finish=1) #gpu1
###########################################################
#-------------------------------
# NYU PREPROCESSING - rot_boost_rot_flip
#Simple
# multi_scan(learning_rates=[5e-3],decays=[0.9], batch_sizes=[128], num_epochs=[40], hidden_dims=[40], jet_numbers=[1200000], Nfeatures=7, dir_name='top_tag_reference_dataset', name=architecture+'_kt_R_0.3_rot_boost_rot_flip', info='R_0.3_rot_boost_rot_flip', sample_name=args.sample_name, Nrun_start=6, Nrun_finish=9) #gpu1
#-------------
# NiNRelu
# multi_scan(learning_rates=[2e-3],decays=[0.9], batch_sizes=[128], num_epochs=[45], hidden_dims=[50], jet_numbers=[1200000], Nfeatures=7, dir_name='top_tag_reference_dataset', name=architecture+'_kt_R_0.3_rot_boost_rot_flip', info='R_0.3_rot_boost_rot_flip', sample_name=args.sample_name, Nrun_start=6, Nrun_finish=9) #gpu1
# Evaluate on last weights
# multi_scan(learning_rates=[2e-3],decays=[0.9], batch_sizes=[128], num_epochs=[45], hidden_dims=[50], jet_numbers=[1200000], Nfeatures=7, dir_name='top_tag_reference_dataset', name=architecture+'_kt_R_0.3_rot_boost_rot_flip_last', info='R_0.3_rot_boost_rot_flip', sample_name=args.sample_name, Nrun_start=7, Nrun_finish=9) #gpu1
# multi_scan(learning_rates=[5e-4],decays=[0.92], batch_sizes=[64], num_epochs=[40], hidden_dims=[40], jet_numbers=[1200000], Nfeatures=7, dir_name='top_tag_reference_dataset', name=architecture+'_kt_R_0.3_rot_boost_rot_flip', info='R_0.3_rot_boost_rot_flip', sample_name=args.sample_name, Nrun_start=6, Nrun_finish=9) #gpu1
#----------------------------------------------------------
# Smaller dataset - tests NiN, etc. We have 120k total training, 40k val and 40 test
# multi_scan(learning_rates=[5e-4],decays=[0.9], batch_sizes=[64],num_epochs=[10],hidden_dims=[40], jet_numbers=[120000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt_test', info='',sample_name=args.sample_name,Nrun_start=0,Nrun_finish=1) #gpu1
# Smaller dataset - tests NiN, etc. We have 120k total training, 40k val and 40 test
# multi_scan(learning_rates=[5e-3],decays=[0.9], batch_sizes=[128],num_epochs=[40],hidden_dims=[50], jet_numbers=[120000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt_2L3WleavesInnerNiN', info='',sample_name=args.sample_name,Nrun_start=9,Nrun_finish=12) #gpu1
# multi_scan(learning_rates=[5e-3],decays=[0.9], batch_sizes=[128],num_epochs=[40],hidden_dims=[50], jet_numbers=[120000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt_2L4WleavesInnerNiN', info='',sample_name=args.sample_name,Nrun_start=9,Nrun_finish=12) #gpu1
# multi_scan(learning_rates=[5e-3],decays=[0.9], batch_sizes=[128],num_epochs=[40],hidden_dims=[50], jet_numbers=[120000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt', info='',sample_name=args.sample_name,Nrun_start=0,Nrun_finish=4) #gpu1
# Smaller dataset - tests NiN, etc. We have 120k total training, 40k val and 40 test
# multi_scan(learning_rates=[5e-3],decays=[0.9], batch_sizes=[128],num_epochs=[40],hidden_dims=[50], jet_numbers=[120000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt_2L3WleavesInnerNiN_tanh', info='',sample_name=args.sample_name,Nrun_start=9,Nrun_finish=10) #gpu1
# multi_scan(learning_rates=[5e-3],decays=[0.9], batch_sizes=[128],num_epochs=[40],hidden_dims=[50], jet_numbers=[120000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt_2L4WleavesInnerNiNuk', info='',sample_name=args.sample_name,Nrun_start=10,Nrun_finish=11) #gpu1
# multi_scan(learning_rates=[5e-3],decays=[0.9], batch_sizes=[128],num_epochs=[5],hidden_dims=[50], jet_numbers=[120000], Nfeatures=7,dir_name='top_tag_reference_dataset',name=architecture+'_kt_test', info='',sample_name=args.sample_name,Nrun_start=0,Nrun_finish=1) #gpu1
'''
antikt_antikt
learning_rates=[1e-2, 5e-3,2e-3,5e-4]
decays=[0.9,0.8,0.7]
batch_sizes=[64,128,256,512,1024]
num_epochs=[30]
hidden_dims=[20,40,80,160,320,640]
jet_numbers = [40000,80000,160000]
-----------------------------------
antikt_kt
learning_rates=[1e-2, 5e-3,2e-3,1e-3]
decays=[0.9,0.8,0.7]
batch_sizes=[64,128,256,512,1024]
num_epochs=[35]
hidden_dims=[20,40,80,160,320,640]
jet_numbers = [40000,80000,160000]
'''