forked from felis/USB_Host_Shield_2.0
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Usb.cpp
849 lines (704 loc) · 35.5 KB
/
Usb.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
/* Copyright (C) 2011 Circuits At Home, LTD. All rights reserved.
This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Circuits At Home, LTD
Web : http://www.circuitsathome.com
e-mail : [email protected]
*/
/* USB functions */
#include "Usb.h"
static uint8_t usb_error = 0;
static uint8_t usb_task_state;
/* constructor */
USB::USB() : bmHubPre(0) {
usb_task_state = USB_DETACHED_SUBSTATE_INITIALIZE; //set up state machine
init();
}
/* Initialize data structures */
void USB::init() {
//devConfigIndex = 0;
bmHubPre = 0;
}
uint8_t USB::getUsbTaskState(void) {
return ( usb_task_state);
}
void USB::setUsbTaskState(uint8_t state) {
usb_task_state = state;
}
EpInfo* USB::getEpInfoEntry(uint8_t addr, uint8_t ep) {
UsbDevice *p = addrPool.GetUsbDevicePtr(addr);
if(!p || !p->epinfo)
return NULL;
EpInfo *pep = p->epinfo;
for(uint8_t i = 0; i < p->epcount; i++) {
if((pep)->epAddr == ep)
return pep;
pep++;
}
return NULL;
}
/* set device table entry */
/* each device is different and has different number of endpoints. This function plugs endpoint record structure, defined in application, to devtable */
uint8_t USB::setEpInfoEntry(uint8_t addr, uint8_t epcount, EpInfo* eprecord_ptr) {
if(!eprecord_ptr)
return USB_ERROR_INVALID_ARGUMENT;
UsbDevice *p = addrPool.GetUsbDevicePtr(addr);
if(!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
p->address.devAddress = addr;
p->epinfo = eprecord_ptr;
p->epcount = epcount;
return 0;
}
uint8_t USB::SetAddress(uint8_t addr, uint8_t ep, EpInfo **ppep, uint16_t *nak_limit) {
UsbDevice *p = addrPool.GetUsbDevicePtr(addr);
if(!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
if(!p->epinfo)
return USB_ERROR_EPINFO_IS_NULL;
*ppep = getEpInfoEntry(addr, ep);
if(!*ppep)
return USB_ERROR_EP_NOT_FOUND_IN_TBL;
*nak_limit = (0x0001UL << (((*ppep)->bmNakPower > USB_NAK_MAX_POWER) ? USB_NAK_MAX_POWER : (*ppep)->bmNakPower));
(*nak_limit)--;
/*
USBTRACE2("\r\nAddress: ", addr);
USBTRACE2(" EP: ", ep);
USBTRACE2(" NAK Power: ",(*ppep)->bmNakPower);
USBTRACE2(" NAK Limit: ", nak_limit);
USBTRACE("\r\n");
*/
regWr(rPERADDR, addr); //set peripheral address
uint8_t mode = regRd(rMODE);
//Serial.print("\r\nMode: ");
//Serial.println( mode, HEX);
//Serial.print("\r\nLS: ");
//Serial.println(p->lowspeed, HEX);
// Set bmLOWSPEED and bmHUBPRE in case of low-speed device, reset them otherwise
regWr(rMODE, (p->lowspeed) ? mode | bmLOWSPEED | bmHubPre : mode & ~(bmHUBPRE | bmLOWSPEED));
return 0;
}
/* Control transfer. Sets address, endpoint, fills control packet with necessary data, dispatches control packet, and initiates bulk IN transfer, */
/* depending on request. Actual requests are defined as inlines */
/* return codes: */
/* 00 = success */
/* 01-0f = non-zero HRSLT */
uint8_t USB::ctrlReq(uint8_t addr, uint8_t ep, uint8_t bmReqType, uint8_t bRequest, uint8_t wValLo, uint8_t wValHi,
uint16_t wInd, uint16_t total, uint16_t nbytes, uint8_t* dataptr, USBReadParser *p) {
bool direction = false; //request direction, IN or OUT
uint8_t rcode;
SETUP_PKT setup_pkt;
EpInfo *pep = NULL;
uint16_t nak_limit = 0;
rcode = SetAddress(addr, ep, &pep, &nak_limit);
if(rcode)
return rcode;
direction = ((bmReqType & 0x80) > 0);
/* fill in setup packet */
setup_pkt.ReqType_u.bmRequestType = bmReqType;
setup_pkt.bRequest = bRequest;
setup_pkt.wVal_u.wValueLo = wValLo;
setup_pkt.wVal_u.wValueHi = wValHi;
setup_pkt.wIndex = wInd;
setup_pkt.wLength = total;
bytesWr(rSUDFIFO, 8, (uint8_t*) & setup_pkt); //transfer to setup packet FIFO
rcode = dispatchPkt(tokSETUP, ep, nak_limit); //dispatch packet
if(rcode) //return HRSLT if not zero
return ( rcode);
if(dataptr != NULL) //data stage, if present
{
if(direction) //IN transfer
{
uint16_t left = total;
pep->bmRcvToggle = 1; //bmRCVTOG1;
while(left) {
// Bytes read into buffer
#if defined(ESP8266) || defined(ESP32)
yield(); // needed in order to reset the watchdog timer on the ESP8266
#endif
uint16_t read = nbytes;
//uint16_t read = (left<nbytes) ? left : nbytes;
rcode = InTransfer(pep, nak_limit, &read, dataptr);
if(rcode == hrTOGERR) {
// yes, we flip it wrong here so that next time it is actually correct!
pep->bmRcvToggle = (regRd(rHRSL) & bmSNDTOGRD) ? 0 : 1;
continue;
}
if(rcode)
return rcode;
// Invoke callback function if inTransfer completed successfully and callback function pointer is specified
if(!rcode && p)
((USBReadParser*)p)->Parse(read, dataptr, total - left);
left -= read;
if(read < nbytes)
break;
}
} else //OUT transfer
{
pep->bmSndToggle = 1; //bmSNDTOG1;
rcode = OutTransfer(pep, nak_limit, nbytes, dataptr);
}
if(rcode) //return error
return ( rcode);
}
// Status stage
return dispatchPkt((direction) ? tokOUTHS : tokINHS, ep, nak_limit); //GET if direction
}
/* IN transfer to arbitrary endpoint. Assumes PERADDR is set. Handles multiple packets if necessary. Transfers 'nbytes' bytes. */
/* Keep sending INs and writes data to memory area pointed by 'data' */
/* rcode 0 if no errors. rcode 01-0f is relayed from dispatchPkt(). Rcode f0 means RCVDAVIRQ error,
fe USB xfer timeout */
uint8_t USB::inTransfer(uint8_t addr, uint8_t ep, uint16_t *nbytesptr, uint8_t* data, uint8_t bInterval /*= 0*/) {
EpInfo *pep = NULL;
uint16_t nak_limit = 0;
uint8_t rcode = SetAddress(addr, ep, &pep, &nak_limit);
if(rcode) {
USBTRACE3("(USB::InTransfer) SetAddress Failed ", rcode, 0x81);
USBTRACE3("(USB::InTransfer) addr requested ", addr, 0x81);
USBTRACE3("(USB::InTransfer) ep requested ", ep, 0x81);
return rcode;
}
return InTransfer(pep, nak_limit, nbytesptr, data, bInterval);
}
uint8_t USB::InTransfer(EpInfo *pep, uint16_t nak_limit, uint16_t *nbytesptr, uint8_t* data, uint8_t bInterval /*= 0*/) {
uint8_t rcode = 0;
uint8_t pktsize;
uint16_t nbytes = *nbytesptr;
//printf("Requesting %i bytes ", nbytes);
uint8_t maxpktsize = pep->maxPktSize;
*nbytesptr = 0;
regWr(rHCTL, (pep->bmRcvToggle) ? bmRCVTOG1 : bmRCVTOG0); //set toggle value
// use a 'break' to exit this loop
while(1) {
#if defined(ESP8266) || defined(ESP32)
yield(); // needed in order to reset the watchdog timer on the ESP8266
#endif
rcode = dispatchPkt(tokIN, pep->epAddr, nak_limit); //IN packet to EP-'endpoint'. Function takes care of NAKS.
if(rcode == hrTOGERR) {
// yes, we flip it wrong here so that next time it is actually correct!
pep->bmRcvToggle = (regRd(rHRSL) & bmRCVTOGRD) ? 0 : 1;
regWr(rHCTL, (pep->bmRcvToggle) ? bmRCVTOG1 : bmRCVTOG0); //set toggle value
continue;
}
if(rcode) {
//printf(">>>>>>>> Problem! dispatchPkt %2.2x\r\n", rcode);
break; //should be 0, indicating ACK. Else return error code.
}
/* check for RCVDAVIRQ and generate error if not present
* the only case when absence of RCVDAVIRQ makes sense is when toggle error occurred.
* Need to add handling for that
*
* NOTE: I've seen this happen with SPI corruption -- xxxajk
*/
if((regRd(rHIRQ) & bmRCVDAVIRQ) == 0) {
//printf(">>>>>>>> Problem! NO RCVDAVIRQ!\r\n");
rcode = 0xf0; //receive error
break;
}
pktsize = regRd(rRCVBC); //number of received bytes
//printf("Got %i bytes \r\n", pktsize);
// This would be OK, but...
//assert(pktsize <= nbytes);
if(pktsize > nbytes) {
// This can happen. Use of assert on Arduino locks up the Arduino.
// So I will trim the value, and hope for the best.
//printf(">>>>>>>> Problem! Wanted %i bytes but got %i.\r\n", nbytes, pktsize);
pktsize = nbytes;
}
int16_t mem_left = (int16_t)nbytes - *((int16_t*)nbytesptr);
if(mem_left < 0)
mem_left = 0;
data = bytesRd(rRCVFIFO, ((pktsize > mem_left) ? mem_left : pktsize), data);
regWr(rHIRQ, bmRCVDAVIRQ); // Clear the IRQ & free the buffer
*nbytesptr += pktsize; // add this packet's byte count to total transfer length
/* The transfer is complete under two conditions: */
/* 1. The device sent a short packet (L.T. maxPacketSize) */
/* 2. 'nbytes' have been transferred. */
if((pktsize < maxpktsize) || (*nbytesptr >= nbytes)) // have we transferred 'nbytes' bytes?
{
// Save toggle value
pep->bmRcvToggle = ((regRd(rHRSL) & bmRCVTOGRD)) ? 1 : 0;
//printf("\r\n");
rcode = 0;
break;
} else if(bInterval > 0)
delay(bInterval); // Delay according to polling interval
} //while( 1 )
return ( rcode);
}
/* OUT transfer to arbitrary endpoint. Handles multiple packets if necessary. Transfers 'nbytes' bytes. */
/* Handles NAK bug per Maxim Application Note 4000 for single buffer transfer */
/* rcode 0 if no errors. rcode 01-0f is relayed from HRSL */
uint8_t USB::outTransfer(uint8_t addr, uint8_t ep, uint16_t nbytes, uint8_t* data) {
EpInfo *pep = NULL;
uint16_t nak_limit = 0;
uint8_t rcode = SetAddress(addr, ep, &pep, &nak_limit);
if(rcode)
return rcode;
return OutTransfer(pep, nak_limit, nbytes, data);
}
uint8_t USB::OutTransfer(EpInfo *pep, uint16_t nak_limit, uint16_t nbytes, uint8_t *data) {
uint8_t rcode = hrSUCCESS, retry_count;
uint8_t *data_p = data; //local copy of the data pointer
uint16_t bytes_tosend, nak_count;
uint16_t bytes_left = nbytes;
uint8_t maxpktsize = pep->maxPktSize;
if(maxpktsize < 1 || maxpktsize > 64)
return USB_ERROR_INVALID_MAX_PKT_SIZE;
uint32_t timeout = (uint32_t)millis() + USB_XFER_TIMEOUT;
regWr(rHCTL, (pep->bmSndToggle) ? bmSNDTOG1 : bmSNDTOG0); //set toggle value
while(bytes_left) {
#if defined(ESP8266) || defined(ESP32)
yield(); // needed in order to reset the watchdog timer on the ESP8266
#endif
retry_count = 0;
nak_count = 0;
bytes_tosend = (bytes_left >= maxpktsize) ? maxpktsize : bytes_left;
bytesWr(rSNDFIFO, bytes_tosend, data_p); //filling output FIFO
regWr(rSNDBC, bytes_tosend); //set number of bytes
regWr(rHXFR, (tokOUT | pep->epAddr)); //dispatch packet
while(!(regRd(rHIRQ) & bmHXFRDNIRQ)){
#if defined(ESP8266) || defined(ESP32)
yield(); // needed in order to reset the watchdog timer on the ESP8266
#endif
} //wait for the completion IRQ
regWr(rHIRQ, bmHXFRDNIRQ); //clear IRQ
rcode = (regRd(rHRSL) & 0x0f);
while(rcode && ((int32_t)((uint32_t)millis() - timeout) < 0L)) {
#if defined(ESP8266) || defined(ESP32)
yield(); // needed in order to reset the watchdog timer on the ESP8266
#endif
switch(rcode) {
case hrNAK:
nak_count++;
if(nak_limit && (nak_count == nak_limit))
goto breakout;
//return ( rcode);
break;
case hrTIMEOUT:
retry_count++;
if(retry_count == USB_RETRY_LIMIT)
goto breakout;
//return ( rcode);
break;
case hrTOGERR:
// yes, we flip it wrong here so that next time it is actually correct!
pep->bmSndToggle = (regRd(rHRSL) & bmSNDTOGRD) ? 0 : 1;
regWr(rHCTL, (pep->bmSndToggle) ? bmSNDTOG1 : bmSNDTOG0); //set toggle value
break;
default:
goto breakout;
}//switch( rcode
/* process NAK according to Host out NAK bug */
regWr(rSNDBC, 0);
regWr(rSNDFIFO, *data_p);
regWr(rSNDBC, bytes_tosend);
regWr(rHXFR, (tokOUT | pep->epAddr)); //dispatch packet
while(!(regRd(rHIRQ) & bmHXFRDNIRQ)){
#if defined(ESP8266) || defined(ESP32)
yield(); // needed in order to reset the watchdog timer on the ESP8266
#endif
} //wait for the completion IRQ
regWr(rHIRQ, bmHXFRDNIRQ); //clear IRQ
rcode = (regRd(rHRSL) & 0x0f);
}//while( rcode && ....
bytes_left -= bytes_tosend;
data_p += bytes_tosend;
}//while( bytes_left...
breakout:
/* If rcode(=rHRSL) is non-zero, untransmitted data remains in the SNDFIFO. */
if(rcode != 0) {
//Switch the FIFO containing the OUT data back under microcontroller control and reset pointer.
regWr(rSNDBC, 0);
}
pep->bmSndToggle = (regRd(rHRSL) & bmSNDTOGRD) ? 1 : 0; //bmSNDTOG1 : bmSNDTOG0; //update toggle
return ( rcode); //should be 0 in all cases
}
/* dispatch USB packet. Assumes peripheral address is set and relevant buffer is loaded/empty */
/* If NAK, tries to re-send up to nak_limit times */
/* If nak_limit == 0, do not count NAKs, exit after timeout */
/* If bus timeout, re-sends up to USB_RETRY_LIMIT times */
/* return codes 0x00-0x0f are HRSLT( 0x00 being success ), 0xff means timeout */
uint8_t USB::dispatchPkt(uint8_t token, uint8_t ep, uint16_t nak_limit) {
uint32_t timeout = (uint32_t)millis() + USB_XFER_TIMEOUT;
uint8_t tmpdata;
uint8_t rcode = hrSUCCESS;
uint8_t retry_count = 0;
uint16_t nak_count = 0;
while((int32_t)((uint32_t)millis() - timeout) < 0L) {
#if defined(ESP8266) || defined(ESP32)
yield(); // needed in order to reset the watchdog timer on the ESP8266
#endif
regWr(rHXFR, (token | ep)); //launch the transfer
rcode = USB_ERROR_TRANSFER_TIMEOUT;
while((int32_t)((uint32_t)millis() - timeout) < 0L) //wait for transfer completion
{
#if defined(ESP8266) || defined(ESP32)
yield(); // needed in order to reset the watchdog timer on the ESP8266
#endif
tmpdata = regRd(rHIRQ);
if(tmpdata & bmHXFRDNIRQ) {
regWr(rHIRQ, bmHXFRDNIRQ); //clear the interrupt
rcode = 0x00;
break;
}//if( tmpdata & bmHXFRDNIRQ
}//while ( millis() < timeout
//if (rcode != 0x00) //exit if timeout
// return ( rcode);
rcode = (regRd(rHRSL) & 0x0f); //analyze transfer result
switch(rcode) {
case hrNAK:
nak_count++;
if(nak_limit && (nak_count == nak_limit))
return (rcode);
break;
case hrTIMEOUT:
retry_count++;
if(retry_count == USB_RETRY_LIMIT)
return (rcode);
break;
default:
return (rcode);
}//switch( rcode
}//while( timeout > millis()
return ( rcode);
}
/* USB main task. Performs enumeration/cleanup */
void USB::Task(void) //USB state machine
{
uint8_t rcode;
uint8_t tmpdata;
static uint32_t delay = 0;
//USB_DEVICE_DESCRIPTOR buf;
bool lowspeed = false;
MAX3421E::Task();
tmpdata = getVbusState();
/* modify USB task state if Vbus changed */
switch(tmpdata) {
case SE1: //illegal state
usb_task_state = USB_DETACHED_SUBSTATE_ILLEGAL;
lowspeed = false;
break;
case SE0: //disconnected
if((usb_task_state & USB_STATE_MASK) != USB_STATE_DETACHED)
usb_task_state = USB_DETACHED_SUBSTATE_INITIALIZE;
lowspeed = false;
break;
case LSHOST:
lowspeed = true;
//intentional fallthrough
case FSHOST: //attached
if((usb_task_state & USB_STATE_MASK) == USB_STATE_DETACHED) {
delay = (uint32_t)millis() + USB_SETTLE_DELAY;
usb_task_state = USB_ATTACHED_SUBSTATE_SETTLE;
}
break;
}// switch( tmpdata
for(uint8_t i = 0; i < USB_NUMDEVICES; i++)
if(devConfig[i])
rcode = devConfig[i]->Poll();
switch(usb_task_state) {
case USB_DETACHED_SUBSTATE_INITIALIZE:
init();
for(uint8_t i = 0; i < USB_NUMDEVICES; i++)
if(devConfig[i])
rcode = devConfig[i]->Release();
usb_task_state = USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE;
break;
case USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE: //just sit here
break;
case USB_DETACHED_SUBSTATE_ILLEGAL: //just sit here
break;
case USB_ATTACHED_SUBSTATE_SETTLE: //settle time for just attached device
if((int32_t)((uint32_t)millis() - delay) >= 0L)
usb_task_state = USB_ATTACHED_SUBSTATE_RESET_DEVICE;
else break; // don't fall through
case USB_ATTACHED_SUBSTATE_RESET_DEVICE:
regWr(rHCTL, bmBUSRST); //issue bus reset
usb_task_state = USB_ATTACHED_SUBSTATE_WAIT_RESET_COMPLETE;
break;
case USB_ATTACHED_SUBSTATE_WAIT_RESET_COMPLETE:
if((regRd(rHCTL) & bmBUSRST) == 0) {
tmpdata = regRd(rMODE) | bmSOFKAENAB; //start SOF generation
regWr(rMODE, tmpdata);
usb_task_state = USB_ATTACHED_SUBSTATE_WAIT_SOF;
//delay = (uint32_t)millis() + 20; //20ms wait after reset per USB spec
}
break;
case USB_ATTACHED_SUBSTATE_WAIT_SOF: //todo: change check order
if(regRd(rHIRQ) & bmFRAMEIRQ) {
//when first SOF received _and_ 20ms has passed we can continue
/*
if (delay < (uint32_t)millis()) //20ms passed
usb_task_state = USB_STATE_CONFIGURING;
*/
usb_task_state = USB_ATTACHED_SUBSTATE_WAIT_RESET;
delay = (uint32_t)millis() + 20;
}
break;
case USB_ATTACHED_SUBSTATE_WAIT_RESET:
if((int32_t)((uint32_t)millis() - delay) >= 0L) usb_task_state = USB_STATE_CONFIGURING;
else break; // don't fall through
case USB_STATE_CONFIGURING:
//Serial.print("\r\nConf.LS: ");
//Serial.println(lowspeed, HEX);
rcode = Configuring(0, 0, lowspeed);
if(rcode) {
if(rcode != USB_DEV_CONFIG_ERROR_DEVICE_INIT_INCOMPLETE) {
usb_error = rcode;
usb_task_state = USB_STATE_ERROR;
}
} else
usb_task_state = USB_STATE_RUNNING;
break;
case USB_STATE_RUNNING:
break;
case USB_STATE_ERROR:
//MAX3421E::Init();
break;
} // switch( usb_task_state )
}
uint8_t USB::DefaultAddressing(uint8_t parent, uint8_t port, bool lowspeed) {
//uint8_t buf[12];
uint8_t rcode;
UsbDevice *p0 = NULL, *p = NULL;
// Get pointer to pseudo device with address 0 assigned
p0 = addrPool.GetUsbDevicePtr(0);
if(!p0)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
if(!p0->epinfo)
return USB_ERROR_EPINFO_IS_NULL;
p0->lowspeed = (lowspeed) ? true : false;
// Allocate new address according to device class
uint8_t bAddress = addrPool.AllocAddress(parent, false, port);
if(!bAddress)
return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;
p = addrPool.GetUsbDevicePtr(bAddress);
if(!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
p->lowspeed = lowspeed;
// Assign new address to the device
rcode = setAddr(0, 0, bAddress);
if(rcode) {
addrPool.FreeAddress(bAddress);
bAddress = 0;
return rcode;
}
return 0;
};
uint8_t USB::AttemptConfig(uint8_t driver, uint8_t parent, uint8_t port, bool lowspeed) {
//printf("AttemptConfig: parent = %i, port = %i\r\n", parent, port);
uint8_t retries = 0;
again:
uint8_t rcode = devConfig[driver]->ConfigureDevice(parent, port, lowspeed);
if(rcode == USB_ERROR_CONFIG_REQUIRES_ADDITIONAL_RESET) {
if(parent == 0) {
// Send a bus reset on the root interface.
regWr(rHCTL, bmBUSRST); //issue bus reset
delay(102); // delay 102ms, compensate for clock inaccuracy.
} else {
// reset parent port
devConfig[parent]->ResetHubPort(port);
}
} else if(rcode == hrJERR && retries < 3) { // Some devices returns this when plugged in - trying to initialize the device again usually works
delay(100);
retries++;
goto again;
} else if(rcode)
return rcode;
rcode = devConfig[driver]->Init(parent, port, lowspeed);
if(rcode == hrJERR && retries < 3) { // Some devices returns this when plugged in - trying to initialize the device again usually works
delay(100);
retries++;
goto again;
}
if(rcode) {
// Issue a bus reset, because the device may be in a limbo state
if(parent == 0) {
// Send a bus reset on the root interface.
regWr(rHCTL, bmBUSRST); //issue bus reset
delay(102); // delay 102ms, compensate for clock inaccuracy.
} else {
// reset parent port
devConfig[parent]->ResetHubPort(port);
}
}
return rcode;
}
/*
* This is broken. We need to enumerate differently.
* It causes major problems with several devices if detected in an unexpected order.
*
*
* Oleg - I wouldn't do anything before the newly connected device is considered sane.
* i.e.(delays are not indicated for brevity):
* 1. reset
* 2. GetDevDescr();
* 3a. If ACK, continue with allocating address, addressing, etc.
* 3b. Else reset again, count resets, stop at some number (5?).
* 4. When max.number of resets is reached, toggle power/fail
* If desired, this could be modified by performing two resets with GetDevDescr() in the middle - however, from my experience, if a device answers to GDD()
* it doesn't need to be reset again
* New steps proposal:
* 1: get address pool instance. exit on fail
* 2: pUsb->getDevDescr(0, 0, constBufSize, (uint8_t*)buf). exit on fail.
* 3: bus reset, 100ms delay
* 4: set address
* 5: pUsb->setEpInfoEntry(bAddress, 1, epInfo), exit on fail
* 6: while (configurations) {
* for(each configuration) {
* for (each driver) {
* 6a: Ask device if it likes configuration. Returns 0 on OK.
* If successful, the driver configured device.
* The driver now owns the endpoints, and takes over managing them.
* The following will need codes:
* Everything went well, instance consumed, exit with success.
* Instance already in use, ignore it, try next driver.
* Not a supported device, ignore it, try next driver.
* Not a supported configuration for this device, ignore it, try next driver.
* Could not configure device, fatal, exit with fail.
* }
* }
* }
* 7: for(each driver) {
* 7a: Ask device if it knows this VID/PID. Acts exactly like 6a, but using VID/PID
* 8: if we get here, no driver likes the device plugged in, so exit failure.
*
*/
uint8_t USB::Configuring(uint8_t parent, uint8_t port, bool lowspeed) {
//uint8_t bAddress = 0;
//printf("Configuring: parent = %i, port = %i\r\n", parent, port);
uint8_t devConfigIndex;
uint8_t rcode = 0;
uint8_t buf[sizeof (USB_DEVICE_DESCRIPTOR)];
USB_DEVICE_DESCRIPTOR *udd = reinterpret_cast<USB_DEVICE_DESCRIPTOR *>(buf);
UsbDevice *p = NULL;
EpInfo *oldep_ptr = NULL;
EpInfo epInfo;
epInfo.epAddr = 0;
epInfo.maxPktSize = 8;
epInfo.bmSndToggle = 0;
epInfo.bmRcvToggle = 0;
epInfo.bmNakPower = USB_NAK_MAX_POWER;
//delay(2000);
AddressPool &addrPool = GetAddressPool();
// Get pointer to pseudo device with address 0 assigned
p = addrPool.GetUsbDevicePtr(0);
if(!p) {
//printf("Configuring error: USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL\r\n");
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
}
// Save old pointer to EP_RECORD of address 0
oldep_ptr = p->epinfo;
// Temporary assign new pointer to epInfo to p->epinfo in order to
// avoid toggle inconsistence
p->epinfo = &epInfo;
p->lowspeed = lowspeed;
// Get device descriptor
rcode = getDevDescr(0, 0, sizeof (USB_DEVICE_DESCRIPTOR), (uint8_t*)buf);
// Restore p->epinfo
p->epinfo = oldep_ptr;
if(rcode) {
//printf("Configuring error: Can't get USB_DEVICE_DESCRIPTOR\r\n");
return rcode;
}
// to-do?
// Allocate new address according to device class
//bAddress = addrPool.AllocAddress(parent, false, port);
uint16_t vid = udd->idVendor;
uint16_t pid = udd->idProduct;
uint8_t klass = udd->bDeviceClass;
uint8_t subklass = udd->bDeviceSubClass;
// Attempt to configure if VID/PID or device class matches with a driver
// Qualify with subclass too.
//
// VID/PID & class tests default to false for drivers not yet ported
// subclass defaults to true, so you don't have to define it if you don't have to.
//
for(devConfigIndex = 0; devConfigIndex < USB_NUMDEVICES; devConfigIndex++) {
if(!devConfig[devConfigIndex]) continue; // no driver
if(devConfig[devConfigIndex]->GetAddress()) continue; // consumed
if(devConfig[devConfigIndex]->DEVSUBCLASSOK(subklass) && (devConfig[devConfigIndex]->VIDPIDOK(vid, pid) || devConfig[devConfigIndex]->DEVCLASSOK(klass))) {
rcode = AttemptConfig(devConfigIndex, parent, port, lowspeed);
if(rcode != USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED)
break;
}
}
if(devConfigIndex < USB_NUMDEVICES) {
return rcode;
}
// blindly attempt to configure
for(devConfigIndex = 0; devConfigIndex < USB_NUMDEVICES; devConfigIndex++) {
if(!devConfig[devConfigIndex]) continue;
if(devConfig[devConfigIndex]->GetAddress()) continue; // consumed
if(devConfig[devConfigIndex]->DEVSUBCLASSOK(subklass) && (devConfig[devConfigIndex]->VIDPIDOK(vid, pid) || devConfig[devConfigIndex]->DEVCLASSOK(klass))) continue; // If this is true it means it must have returned USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED above
rcode = AttemptConfig(devConfigIndex, parent, port, lowspeed);
//printf("ERROR ENUMERATING %2.2x\r\n", rcode);
if(!(rcode == USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED || rcode == USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE)) {
// in case of an error dev_index should be reset to 0
// in order to start from the very beginning the
// next time the program gets here
//if (rcode != USB_DEV_CONFIG_ERROR_DEVICE_INIT_INCOMPLETE)
// devConfigIndex = 0;
return rcode;
}
}
// if we get here that means that the device class is not supported by any of registered classes
rcode = DefaultAddressing(parent, port, lowspeed);
return rcode;
}
uint8_t USB::ReleaseDevice(uint8_t addr) {
if(!addr)
return 0;
for(uint8_t i = 0; i < USB_NUMDEVICES; i++) {
if(!devConfig[i]) continue;
if(devConfig[i]->GetAddress() == addr)
return devConfig[i]->Release();
}
return 0;
}
#if 1 //!defined(USB_METHODS_INLINE)
//get device descriptor
uint8_t USB::getDevDescr(uint8_t addr, uint8_t ep, uint16_t nbytes, uint8_t* dataptr) {
return ( ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, 0x00, USB_DESCRIPTOR_DEVICE, 0x0000, nbytes, nbytes, dataptr, NULL));
}
//get configuration descriptor
uint8_t USB::getConfDescr(uint8_t addr, uint8_t ep, uint16_t nbytes, uint8_t conf, uint8_t* dataptr) {
return ( ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, conf, USB_DESCRIPTOR_CONFIGURATION, 0x0000, nbytes, nbytes, dataptr, NULL));
}
/* Requests Configuration Descriptor. Sends two Get Conf Descr requests. The first one gets the total length of all descriptors, then the second one requests this
total length. The length of the first request can be shorter ( 4 bytes ), however, there are devices which won't work unless this length is set to 9 */
uint8_t USB::getConfDescr(uint8_t addr, uint8_t ep, uint8_t conf, USBReadParser *p) {
const uint8_t bufSize = 64;
uint8_t buf[bufSize];
USB_CONFIGURATION_DESCRIPTOR *ucd = reinterpret_cast<USB_CONFIGURATION_DESCRIPTOR *>(buf);
uint8_t ret = getConfDescr(addr, ep, 9, conf, buf);
if(ret)
return ret;
uint16_t total = ucd->wTotalLength;
//USBTRACE2("\r\ntotal conf.size:", total);
return ( ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, conf, USB_DESCRIPTOR_CONFIGURATION, 0x0000, total, bufSize, buf, p));
}
//get string descriptor
uint8_t USB::getStrDescr(uint8_t addr, uint8_t ep, uint16_t ns, uint8_t index, uint16_t langid, uint8_t* dataptr) {
return ( ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, index, USB_DESCRIPTOR_STRING, langid, ns, ns, dataptr, NULL));
}
//set address
uint8_t USB::setAddr(uint8_t oldaddr, uint8_t ep, uint8_t newaddr) {
uint8_t rcode = ctrlReq(oldaddr, ep, bmREQ_SET, USB_REQUEST_SET_ADDRESS, newaddr, 0x00, 0x0000, 0x0000, 0x0000, NULL, NULL);
//delay(2); //per USB 2.0 sect.9.2.6.3
delay(300); // Older spec says you should wait at least 200ms
return rcode;
//return ( ctrlReq(oldaddr, ep, bmREQ_SET, USB_REQUEST_SET_ADDRESS, newaddr, 0x00, 0x0000, 0x0000, 0x0000, NULL, NULL));
}
//set configuration
uint8_t USB::setConf(uint8_t addr, uint8_t ep, uint8_t conf_value) {
return ( ctrlReq(addr, ep, bmREQ_SET, USB_REQUEST_SET_CONFIGURATION, conf_value, 0x00, 0x0000, 0x0000, 0x0000, NULL, NULL));
}
#endif // defined(USB_METHODS_INLINE)