forked from crypto-agda/crypto-agda
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRand.agda
84 lines (67 loc) · 2.7 KB
/
Rand.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
{- This file illustrate that if we were given a (non-indexed)
monad to write randomized programs then we could embed
randomized programs modeled as deterministic programs taking
their randomness as an extra argument. -}
open import Type
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Inverse using (_↔_; module Inverse; sym)
open import Function.Related.TypeIsomorphisms.NP
open import Data.Product
open import Data.Bits
open import Data.Fin using (Fin; zero; suc)
open import Data.Sum
open import Data.Nat using (ℕ; zero; suc)
open import Data.Vec using (Vec; []; _∷_)
open import Data.Nat.Positive
open import Data.Unit
open import Data.Maybe.NP
open import Relation.Binary.PropositionalEquality as ≡ using (→-to-⟶)
module Rand
(M : ★ → ★)
(]0,1[ : ★)
(_/num+_ : ℕ⁺ → ℕ⁺ → ]0,1[)
(unit : ∀ {A} → A → M A)
(_>>=_ : ∀ {A B} → M A → (A → M B) → M B)
(map : ∀ {A B} → (A → B) → M A → M B)
(choose : ∀ {A} → ]0,1[ → M A → M A → M A)
where
Cardinality = ℕ⁺
Rand : ★ → ★
Rand A = Cardinality × M A
embed : ∀ {R A B : ★} → Rand R → (R → A → B) → A → M B
embed (_ , randᴿ) f x = randᴿ >>= λ r → unit (f r x)
1/2 : ]0,1[
1/2 = [ 1 ] /num+ [ 1 ]
rand⊤ : Rand ⊤
rand⊤ = [ 1 ] , unit _
randBit : Rand Bit
randBit = [ 2 ] , choose 1/2 (unit false) (unit true)
_×Rand_ : ∀ {A B} → Rand A → Rand B → Rand (A × B)
(cᴬ , mᴬ) ×Rand (cᴮ , mᴮ) = cᴬˣᴮ , mᴬˣᴮ
where
cᴬˣᴮ = cᴬ * cᴮ
mᴬˣᴮ = mᴬ >>= λ x → mᴮ >>= λ y → unit (x , y)
_⊎Rand_ : ∀ {A B} → Rand A → Rand B → Rand (A ⊎ B)
(cᴬ , mᴬ) ⊎Rand (cᴮ , mᴮ) = cᴬ⁺ᴮ , mᴬ⁺ᴮ
where
cᴬ⁺ᴮ = cᴬ + cᴮ
cᴬ/cᴬ⁺ᴮ = cᴬ /num+ cᴮ
mᴬ⁺ᴮ = choose cᴬ/cᴬ⁺ᴮ (map inj₁ mᴬ) (map inj₂ mᴮ)
mapRand : ∀ {A B} → A ↔ B → Rand A → Rand B
mapRand f (cᴬ , mᴬ) = cᴬ , map f′ mᴬ
where f′ = _⟨$⟩_ (Inverse.to f)
rand^ : ∀ {A} → Rand A → (n : ℕ) → Rand (A ^ n)
rand^ randᴬ zero = rand⊤
rand^ randᴬ (suc n) = randᴬ ×Rand (rand^ randᴬ n)
randVec : ∀ {A} → Rand A → (n : ℕ) → Rand (Vec A n)
randVec randᴬ n = mapRand (^↔Vec n) (rand^ randᴬ n)
randBits : ∀ n → Rand (Bits n)
randBits = randVec randBit
randMaybe : ∀ {A} → Rand A → Rand (Maybe A)
randMaybe randᴬ = mapRand (sym Maybe↔⊤⊎) (rand⊤ ⊎Rand randᴬ)
randMaybe^ : ∀ n → Rand (Maybe^ n ⊤)
randMaybe^ zero = rand⊤
randMaybe^ (suc n) = randMaybe (randMaybe^ n)
randFin1+ : ∀ n → Rand (Fin (suc n))
randFin1+ n = mapRand (Maybe^⊤↔Fin1+ n) (randMaybe^ n)