forked from crypto-agda/crypto-agda
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAdd-Max-Solver.agda
232 lines (186 loc) · 9.07 KB
/
Add-Max-Solver.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
module Add-Max-Solver where
import Algebra
open import Data.Bool using (Bool ; true ; false)
open import Data.Nat.NP
import Data.Nat.Properties as Props
open import Data.Fin using (Fin ; Ordering ; less ; equal ; greater)
import Data.Fin.Props as FP
open import Data.List
open import Data.Vec hiding ([_] ; _++_)
open import Data.Maybe using (Maybe ; just ; nothing)
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Relation.Nullary using (Dec ; yes ; no)
module ℕP = Algebra.CommutativeSemiring Props.commutativeSemiring
module ℕ⊔ = Algebra.CommutativeSemiringWithoutOne Props.⊔-⊓-0-commutativeSemiringWithoutOne
+-distr-⊔ : ∀ a m n → a + (m ⊔ n) ≡ (a + m) ⊔ (a + n)
+-distr-⊔ zero m n = refl
+-distr-⊔ (suc a) m n = cong suc (+-distr-⊔ a m n)
+-distr-⊔' : ∀ m n a → (m ⊔ n) + a ≡ (m + a) ⊔ (n + a)
+-distr-⊔' m n a = trans (ℕP.+-comm (m ⊔ n) a) (trans (+-distr-⊔ a m n)
(cong₂ _⊔_ (ℕP.+-comm a m) (ℕP.+-comm a n)))
⊔-idem : ∀ m → m ⊔ m ≡ m
⊔-idem zero = refl
⊔-idem (suc m) = cong suc (⊔-idem m)
congL : ∀ {A B C : Set} {x x' y} → (f : A → B → C) → x ≡ x' → f x y ≡ f x' y
congL f refl = refl
congR : ∀ {A B C : Set} {x : A}{y y' : B} → (f : A → B → C) → y ≡ y' → f x y ≡ f x y'
congR f refl = refl
module NatSyntax (nrVars : ℕ)(G : Vec ℕ nrVars) where
Env = Vec ℕ nrVars
Var = Fin nrVars
data Syn : Set where
con : ℕ → Syn
var : Var → Syn
_:+_ : Syn → Syn → Syn
_:u_ : Syn → Syn → Syn
infixl 4 _:+_
eval : Syn → ℕ
eval (con x) = x
eval (var x) = lookup x G
eval (syn :+ syn₁) = eval syn + eval syn₁
eval (syn :u syn₁) = eval syn ⊔ eval syn₁
data N1 : Syn → Set where
con_::[] : ∀ x → N1 (con x)
var_::_ : ∀ {S} (i : Var) → N1 S → N1 (var i :+ S)
data N2 : Syn → Set where
lift : ∀ {S} → N1 S → N2 S
max : ∀ {S S'} → N1 S → N2 S' → N2 (S :u S')
record N1Proof S : Set where
constructor _⊢_
field
{S'} : Syn
term : N1 S'
proof : eval S ≡ eval S'
record N2Proof S : Set where
constructor _⊢_
field
{S'} : Syn
term : N2 S'
proof : eval S ≡ eval S'
liftP : ∀ {S} → N1Proof S → N2Proof S
liftP (term ⊢ proof) = (lift term) ⊢ proof
incr : ∀ {S'} S → N1 S' → N1Proof (S :+ S')
incr S con x ::[] = con eval S + x ::[] ⊢ refl
incr {var .i :+ S'} S (var i :: s1) with incr S s1
... | s1' ⊢ p = (var i :: s1') ⊢ trans (sym (ℕP.+-assoc (eval S) (lookup i G) (eval S')))
(trans(congL _+_ (ℕP.+-comm (eval S) (lookup i G)))
(trans (ℕP.+-assoc (lookup i G) (eval S) (eval S'))
(cong (_+_ (lookup i G)) p)))
append : ∀ {S S'} → N1 S → N1 S' → N1Proof (S :+ S')
append con x ::[] s2 = incr _ s2
append (var i :: s1) s2 with append s1 s2
... | s3 ⊢ proof = var i :: s3 ⊢ trans (ℕP.+-assoc (lookup i G) _ _) (cong (_+_ (lookup i G)) proof)
insert : ∀ {S} i → N1 S → N1Proof (var i :+ S)
insert i con x ::[] = (var i :: con x ::[]) ⊢ refl
insert {var .j :+ S} i (var j :: s1) with Data.Fin.toℕ i ≤? Data.Fin.toℕ j
... | yes _ = var i :: var j :: s1 ⊢ refl
... | no _ with insert i s1
... | t ⊢ proof = var j :: t ⊢ trans (sym (ℕP.+-assoc (lookup i G) (lookup j G) (eval S)))
(trans
(congL _+_ (ℕP.+-comm (lookup i G) (lookup j G))
)
(trans (ℕP.+-assoc (lookup j G) _ _) (cong (_+_ (lookup j G)) proof)))
merge : ∀ {S S'} → N1 S → N1 S' → N1Proof (S :+ S')
merge con x ::[] s2 = incr _ s2
merge (var i :: s1) s2 with merge s1 s2
... | t1 ⊢ p1 with insert i t1
... | t2 ⊢ p2 = t2 ⊢ trans (trans (ℕP.+-assoc (lookup i G) _ _) (cong (_+_ (lookup i G)) p1)) p2
mapN1-N2 : ∀ {S S'} → N1 S → N2 S' → N2Proof (S :+ S')
mapN1-N2 s1 (lift x) = liftP (merge s1 x)
mapN1-N2 {S} s1 (max x s2) with merge s1 x | mapN1-N2 s1 s2
... | t1 ⊢ p1 | t2 ⊢ p2 = (max t1 t2) ⊢ trans (+-distr-⊔ (eval S) _ _) (cong₂ _⊔_ p1 p2)
u-merge : ∀ {S S'} → N2 S → N2 S' → N2Proof (S :u S')
u-merge (lift x) s2 = max x s2 ⊢ refl
u-merge {S :u S'} (max x s1) s2 with u-merge s1 s2
... | t ⊢ p = (max x t) ⊢ trans (ℕ⊔.+-assoc (eval S) _ _) (cong (_⊔_ (eval S)) p)
+-merge : ∀ {S S'} → N2 S → N2 S' → N2Proof (S :+ S')
+-merge (lift x) s2 = mapN1-N2 x s2
+-merge {S :u S'} (max x s1) s2 with mapN1-N2 x s2 | +-merge s1 s2
... | tx ⊢ px | ts ⊢ ps with u-merge tx ts
... | t ⊢ p = t ⊢ trans (trans (+-distr-⊔' (eval S) _ _) (cong₂ _⊔_ px ps)) p
_≤ℕ_ : ℕ → ℕ → Bool
m ≤ℕ n with m ≤? n
... | yes _ = true
... | no _ = false
_≤1_ : ∀ {S S'} → N1 S → N1 S' → Bool
con x ::[] ≤1 con x₁ ::[] = x ≤ℕ x₁
con x ::[] ≤1 (var i :: ys) = true
(var i :: xs) ≤1 con x ::[] = false
(var i :: xs) ≤1 (var j :: ys) with Data.Fin.compare i j
(var .(Data.Fin.inject least) :: xs) ≤1 (var j :: ys) | less .j least = true
(var .j :: xs) ≤1 (var j :: ys) | equal .j = xs ≤1 ys
(var i :: xs) ≤1 (var .(Data.Fin.inject least) :: ys) | greater .i least = false
_≡1_ : ∀ {S S'} → N1 S → N1 S' → Maybe (eval S ≡ eval S')
con x ::[] ≡1 con x₁ ::[] with x ≟ x₁
... | yes p = just p
... | no _ = nothing
con x ::[] ≡1 (var i :: s2) = nothing
(var i :: s1) ≡1 con x ::[] = nothing
(var i :: s1) ≡1 (var i₁ :: s2) with i FP.≟ i₁ | s1 ≡1 s2
... | yes p | just p2 = just (cong₂ _+_ (cong₂ lookup p (refl {x = G})) p2)
... | yes p | nothing = nothing
... | no _ | m = nothing
where open import Data.Fin.Props
N2-insert : ∀ {S S'} → N1 S → N2 S' → N2Proof (S :u S')
N2-insert {S} x (lift x₁) with x ≤1 x₁
... | true = max x (lift x₁) ⊢ refl
... | false = max x₁ (lift x) ⊢ ℕ⊔.+-comm (eval S) _
N2-insert {S} {S' :u S''} x (max x₁ s) with x ≤1 x₁
... | true = (max x (max x₁ s)) ⊢ refl
... | false with N2-insert x s
... | t ⊢ p = (max x₁ t) ⊢ trans (trans (sym (ℕ⊔.+-assoc (eval S) (eval S') (eval S'')))
(trans (congL _⊔_ (ℕ⊔.+-comm (eval S) _))
(ℕ⊔.+-assoc (eval S') _ _))) (cong (_⊔_ (eval S')) p)
Tran = ∀ {S} → N2 S → N2Proof S
sort : Tran
sort (lift x) = lift x ⊢ refl
sort {S :u S'} (max x s1) with sort s1
... | s2 ⊢ p2 with N2-insert x s2
... | s3 ⊢ p3 = s3 ⊢ (trans (cong (_⊔_ (eval S)) p2) p3)
nub : Tran
nub (lift x) = lift x ⊢ refl
nub {S :u S'} (max x (lift x₁)) with x ≡1 x₁
... | just p = (lift x) ⊢ trans (cong (_⊔_ (eval S)) (sym p)) (⊔-idem (eval S))
... | nothing = max x (lift x₁) ⊢ refl
nub {S :u (S' :u S'')} (max x (max x₁ x₂)) with nub (max x₁ x₂) | x ≡1 x₁
... | t2 ⊢ p2 | just p = t2 ⊢ trans (trans (sym (ℕ⊔.+-assoc (eval S) (eval S') (eval S'')))
(congL _⊔_ (trans (congL _⊔_ p) (⊔-idem (eval S'))))) p2
... | t2 ⊢ p2 | nothing = max x t2 ⊢ cong (_⊔_ (eval S)) p2
norm2 : (x : Syn) → N2Proof x
norm2 (con x) = (lift con x ::[]) ⊢ refl
norm2 (var x) = lift (var x :: con 0 ::[]) ⊢ ℕP.+-comm 0 (lookup x G)
norm2 (x :+ x₁) with norm2 x | norm2 x₁
... | s1 ⊢ p1 | s2 ⊢ p2 with +-merge s1 s2
... | s3 ⊢ p3 = s3 ⊢ (trans (cong₂ _+_ p1 p2) p3)
norm2 (x :u x₁) with norm2 x | norm2 x₁
... | s1 ⊢ p1 | s2 ⊢ p2 with u-merge s1 s2
... | s3 ⊢ p3 = s3 ⊢ trans (cong₂ _⊔_ p1 p2) p3
_∘S_ : Tran → Tran → Tran
(f ∘S g) x = (N2Proof.term (f (N2Proof.term (g x)))) ⊢ trans (N2Proof.proof (g x)) (N2Proof.proof (f (N2Proof.term (g x))))
norm : (x : Syn) → N2Proof x
norm x with norm2 x
... | t1 ⊢ p1 with (nub ∘S sort) t1
... | t2 ⊢ p2 = t2 ⊢ trans p1 p2
proof : (x y : Syn) → eval (N2Proof.S' (norm x)) ≡ eval (N2Proof.S' (norm y))
→ eval x ≡ eval y
proof x y eq = trans (N2Proof.proof (norm x)) (trans eq (sym (N2Proof.proof (norm y))))
test : ∀ (x y : ℕ) → 5 + x + (9 + y + 10) ≡ 12 + y + x + 12
test x y = proof (con 5 :+ x' :+ (con 9 :+ y' :+ con 10)) (con 12 :+ y' :+ x' :+ con 12) refl where
open NatSyntax 2 (x ∷ y ∷ [])
x' = var Data.Fin.zero
y' = var (Data.Fin.suc Data.Fin.zero)
test' : ∀ (x y : ℕ) → ((x + 3) ⊔ (2 + y)) + 7 ≡ (2 + y + 7) ⊔ (5 + x + 5)
test' x y = proof LHS RHS refl where
open NatSyntax 2 (x ∷ y ∷ [])
#_ = con
x' = var Data.Fin.zero
y' = var (Data.Fin.suc Data.Fin.zero)
LHS = ((x' :+ # 3) :u (# 2 :+ y')) :+ # 7
RHS = (# 2 :+ y' :+ # 7) :u (# 5 :+ x' :+ # 5)
test3 : ∀ x → 1 + (x ⊔ x + 0) ≡ 1 + x
test3 x = proof LHS RHS refl where
open NatSyntax 1 (x ∷ [])
#_ = con
x' = var Data.Fin.zero
LHS = # 1 :+ (x' :u x' :+ # 0)
RHS = # 1 :+ x'