-
Notifications
You must be signed in to change notification settings - Fork 0
/
mnist_dense_log.txt
1570 lines (1570 loc) · 106 KB
/
mnist_dense_log.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
mnist_dense_log.txt
CNTKCommandTrainInfo: train : 300
CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 300
CNTKCommandTrainBegin: train
Learning rate per 16 samples: 0.001
Minibatch[ 1- 10]: loss = 181.312720 * 160, metric = 0.00% * 160;
Minibatch[ 11- 20]: loss = 181.011963 * 160, metric = 0.00% * 160;
Minibatch[ 21- 30]: loss = 181.035522 * 160, metric = 0.00% * 160;
Minibatch[ 31- 40]: loss = 180.457324 * 160, metric = 0.00% * 160;
Minibatch[ 41- 50]: loss = 179.859424 * 160, metric = 0.00% * 160;
Minibatch[ 51- 60]: loss = 179.952344 * 160, metric = 0.00% * 160;
Minibatch[ 61- 70]: loss = 179.297949 * 160, metric = 0.00% * 160;
Minibatch[ 71- 80]: loss = 178.871387 * 160, metric = 0.00% * 160;
Minibatch[ 81- 90]: loss = 178.129980 * 160, metric = 0.00% * 160;
Minibatch[ 91- 100]: loss = 177.305957 * 160, metric = 0.00% * 160;
Minibatch[ 101- 110]: loss = 176.539844 * 160, metric = 0.00% * 160;
Minibatch[ 111- 120]: loss = 175.428125 * 160, metric = 0.00% * 160;
Minibatch[ 121- 130]: loss = 174.542969 * 160, metric = 0.00% * 160;
Minibatch[ 131- 140]: loss = 173.249023 * 160, metric = 0.00% * 160;
Minibatch[ 141- 150]: loss = 171.627148 * 160, metric = 0.00% * 160;
Minibatch[ 151- 160]: loss = 170.385938 * 160, metric = 0.00% * 160;
Minibatch[ 161- 170]: loss = 169.377539 * 160, metric = 0.00% * 160;
Minibatch[ 171- 180]: loss = 168.468359 * 160, metric = 0.00% * 160;
Minibatch[ 181- 190]: loss = 166.562891 * 160, metric = 0.00% * 160;
Minibatch[ 191- 200]: loss = 166.005859 * 160, metric = 0.00% * 160;
Minibatch[ 201- 210]: loss = 165.719531 * 160, metric = 0.00% * 160;
Minibatch[ 211- 220]: loss = 164.990625 * 160, metric = 0.00% * 160;
Minibatch[ 221- 230]: loss = 162.746094 * 160, metric = 0.00% * 160;
Minibatch[ 231- 240]: loss = 161.558984 * 160, metric = 0.00% * 160;
Minibatch[ 241- 250]: loss = 160.650000 * 160, metric = 0.00% * 160;
Minibatch[ 251- 260]: loss = 160.090234 * 160, metric = 0.00% * 160;
Minibatch[ 261- 270]: loss = 159.083984 * 160, metric = 0.00% * 160;
Minibatch[ 271- 280]: loss = 157.608594 * 160, metric = 0.00% * 160;
Minibatch[ 281- 290]: loss = 157.615234 * 160, metric = 0.00% * 160;
Minibatch[ 291- 300]: loss = 156.424219 * 160, metric = 0.00% * 160;
Minibatch[ 301- 310]: loss = 155.647656 * 160, metric = 0.00% * 160;
Minibatch[ 311- 320]: loss = 154.313672 * 160, metric = 0.00% * 160;
Minibatch[ 321- 330]: loss = 153.213281 * 160, metric = 0.00% * 160;
Minibatch[ 331- 340]: loss = 152.327344 * 160, metric = 0.00% * 160;
Minibatch[ 341- 350]: loss = 151.870313 * 160, metric = 0.00% * 160;
Minibatch[ 351- 360]: loss = 150.720703 * 160, metric = 0.00% * 160;
Minibatch[ 361- 370]: loss = 150.149219 * 160, metric = 0.00% * 160;
Minibatch[ 371- 380]: loss = 150.235547 * 160, metric = 0.00% * 160;
Minibatch[ 381- 390]: loss = 149.653906 * 160, metric = 0.00% * 160;
Minibatch[ 391- 400]: loss = 148.237500 * 160, metric = 0.00% * 160;
Minibatch[ 401- 410]: loss = 146.777344 * 160, metric = 0.00% * 160;
Minibatch[ 411- 420]: loss = 146.197656 * 160, metric = 0.00% * 160;
Minibatch[ 421- 430]: loss = 145.264844 * 160, metric = 0.00% * 160;
Minibatch[ 431- 440]: loss = 144.675781 * 160, metric = 0.00% * 160;
Minibatch[ 441- 450]: loss = 143.203906 * 160, metric = 0.00% * 160;
Minibatch[ 451- 460]: loss = 142.740625 * 160, metric = 0.00% * 160;
Minibatch[ 461- 470]: loss = 141.677344 * 160, metric = 0.00% * 160;
Minibatch[ 471- 480]: loss = 141.511719 * 160, metric = 0.00% * 160;
Minibatch[ 481- 490]: loss = 140.371875 * 160, metric = 0.00% * 160;
Minibatch[ 491- 500]: loss = 141.407031 * 160, metric = 0.00% * 160;
Minibatch[ 501- 510]: loss = 139.924219 * 160, metric = 0.00% * 160;
Minibatch[ 511- 520]: loss = 138.272656 * 160, metric = 0.00% * 160;
Minibatch[ 521- 530]: loss = 139.009375 * 160, metric = 0.00% * 160;
Minibatch[ 531- 540]: loss = 139.860938 * 160, metric = 0.00% * 160;
Minibatch[ 541- 550]: loss = 137.455469 * 160, metric = 0.00% * 160;
Minibatch[ 551- 560]: loss = 136.192969 * 160, metric = 0.00% * 160;
Minibatch[ 561- 570]: loss = 135.207031 * 160, metric = 0.00% * 160;
Minibatch[ 571- 580]: loss = 133.981250 * 160, metric = 0.00% * 160;
Minibatch[ 581- 590]: loss = 134.871094 * 160, metric = 0.00% * 160;
Minibatch[ 591- 600]: loss = 133.913281 * 160, metric = 0.00% * 160;
Minibatch[ 601- 610]: loss = 133.611719 * 160, metric = 0.00% * 160;
Minibatch[ 611- 620]: loss = 131.553125 * 160, metric = 0.00% * 160;
Minibatch[ 621- 630]: loss = 131.585156 * 160, metric = 0.00% * 160;
Minibatch[ 631- 640]: loss = 132.160937 * 160, metric = 0.00% * 160;
Minibatch[ 641- 650]: loss = 133.188281 * 160, metric = 0.00% * 160;
Minibatch[ 651- 660]: loss = 130.828906 * 160, metric = 0.00% * 160;
Minibatch[ 661- 670]: loss = 128.677344 * 160, metric = 0.00% * 160;
Minibatch[ 671- 680]: loss = 128.767188 * 160, metric = 0.00% * 160;
Minibatch[ 681- 690]: loss = 129.566406 * 160, metric = 0.00% * 160;
Minibatch[ 691- 700]: loss = 127.762500 * 160, metric = 0.00% * 160;
Minibatch[ 701- 710]: loss = 127.199219 * 160, metric = 0.00% * 160;
Minibatch[ 711- 720]: loss = 126.539062 * 160, metric = 0.00% * 160;
Minibatch[ 721- 730]: loss = 126.436719 * 160, metric = 0.00% * 160;
Minibatch[ 731- 740]: loss = 125.284375 * 160, metric = 0.00% * 160;
Minibatch[ 741- 750]: loss = 124.900000 * 160, metric = 0.00% * 160;
Minibatch[ 751- 760]: loss = 125.159375 * 160, metric = 0.00% * 160;
Minibatch[ 761- 770]: loss = 124.275000 * 160, metric = 0.00% * 160;
Minibatch[ 771- 780]: loss = 124.206250 * 160, metric = 0.00% * 160;
Minibatch[ 781- 790]: loss = 123.084375 * 160, metric = 0.00% * 160;
Minibatch[ 791- 800]: loss = 122.550000 * 160, metric = 0.00% * 160;
Minibatch[ 801- 810]: loss = 121.849219 * 160, metric = 0.00% * 160;
Minibatch[ 811- 820]: loss = 123.424219 * 160, metric = 0.00% * 160;
Minibatch[ 821- 830]: loss = 122.075781 * 160, metric = 0.00% * 160;
Minibatch[ 831- 840]: loss = 120.635156 * 160, metric = 0.00% * 160;
Minibatch[ 841- 850]: loss = 121.438281 * 160, metric = 0.00% * 160;
Minibatch[ 851- 860]: loss = 118.694531 * 160, metric = 0.00% * 160;
Minibatch[ 861- 870]: loss = 118.492188 * 160, metric = 0.00% * 160;
Minibatch[ 871- 880]: loss = 119.536719 * 160, metric = 0.00% * 160;
Minibatch[ 881- 890]: loss = 121.222656 * 160, metric = 0.00% * 160;
Minibatch[ 891- 900]: loss = 118.854687 * 160, metric = 0.00% * 160;
Minibatch[ 901- 910]: loss = 116.064063 * 160, metric = 0.00% * 160;
Minibatch[ 911- 920]: loss = 117.145313 * 160, metric = 0.00% * 160;
Minibatch[ 921- 930]: loss = 117.657813 * 160, metric = 0.00% * 160;
Minibatch[ 931- 940]: loss = 115.101562 * 160, metric = 0.00% * 160;
Minibatch[ 941- 950]: loss = 114.409375 * 160, metric = 0.00% * 160;
Minibatch[ 951- 960]: loss = 113.246875 * 160, metric = 0.00% * 160;
Minibatch[ 961- 970]: loss = 113.468750 * 160, metric = 0.00% * 160;
Minibatch[ 971- 980]: loss = 113.331250 * 160, metric = 0.00% * 160;
Minibatch[ 981- 990]: loss = 112.617188 * 160, metric = 0.00% * 160;
Minibatch[ 991-1000]: loss = 112.929688 * 160, metric = 0.00% * 160;
Minibatch[1001-1010]: loss = 113.120312 * 160, metric = 0.00% * 160;
Minibatch[1011-1020]: loss = 112.507812 * 160, metric = 0.00% * 160;
Minibatch[1021-1030]: loss = 111.021875 * 160, metric = 0.00% * 160;
Minibatch[1031-1040]: loss = 110.664062 * 160, metric = 0.00% * 160;
Minibatch[1041-1050]: loss = 110.496875 * 160, metric = 0.00% * 160;
Minibatch[1051-1060]: loss = 109.642188 * 160, metric = 0.00% * 160;
Minibatch[1061-1070]: loss = 109.640625 * 160, metric = 0.00% * 160;
Minibatch[1071-1080]: loss = 110.245312 * 160, metric = 0.00% * 160;
Minibatch[1081-1090]: loss = 109.079688 * 160, metric = 0.00% * 160;
Minibatch[1091-1100]: loss = 107.917187 * 160, metric = 0.00% * 160;
Minibatch[1101-1110]: loss = 106.996875 * 160, metric = 0.00% * 160;
Minibatch[1111-1120]: loss = 107.120312 * 160, metric = 0.00% * 160;
Minibatch[1121-1130]: loss = 107.418750 * 160, metric = 0.00% * 160;
Minibatch[1131-1140]: loss = 107.432812 * 160, metric = 0.00% * 160;
Minibatch[1141-1150]: loss = 105.756250 * 160, metric = 0.00% * 160;
Minibatch[1151-1160]: loss = 105.970313 * 160, metric = 0.00% * 160;
Minibatch[1161-1170]: loss = 105.576562 * 160, metric = 0.00% * 160;
Minibatch[1171-1180]: loss = 105.046875 * 160, metric = 0.00% * 160;
Minibatch[1181-1190]: loss = 104.675000 * 160, metric = 0.00% * 160;
Minibatch[1191-1200]: loss = 103.610938 * 160, metric = 0.00% * 160;
Minibatch[1201-1210]: loss = 106.698437 * 160, metric = 0.00% * 160;
Minibatch[1211-1220]: loss = 107.078125 * 160, metric = 0.00% * 160;
Minibatch[1221-1230]: loss = 106.323437 * 160, metric = 0.00% * 160;
Minibatch[1231-1240]: loss = 105.417187 * 160, metric = 0.00% * 160;
Minibatch[1241-1250]: loss = 106.603125 * 160, metric = 0.00% * 160;
Minibatch[1251-1260]: loss = 105.039062 * 160, metric = 0.00% * 160;
Minibatch[1261-1270]: loss = 102.334375 * 160, metric = 0.00% * 160;
Minibatch[1271-1280]: loss = 102.195312 * 160, metric = 0.00% * 160;
Minibatch[1281-1290]: loss = 102.554688 * 160, metric = 0.00% * 160;
Minibatch[1291-1300]: loss = 101.684375 * 160, metric = 0.00% * 160;
Minibatch[1301-1310]: loss = 101.909375 * 160, metric = 0.00% * 160;
Minibatch[1311-1320]: loss = 100.621875 * 160, metric = 0.00% * 160;
Minibatch[1321-1330]: loss = 100.878125 * 160, metric = 0.00% * 160;
Minibatch[1331-1340]: loss = 101.331250 * 160, metric = 0.00% * 160;
Minibatch[1341-1350]: loss = 100.551563 * 160, metric = 0.00% * 160;
Minibatch[1351-1360]: loss = 97.551563 * 160, metric = 0.00% * 160;
Minibatch[1361-1370]: loss = 102.921875 * 160, metric = 0.00% * 160;
Minibatch[1371-1380]: loss = 101.756250 * 160, metric = 0.00% * 160;
Minibatch[1381-1390]: loss = 99.667187 * 160, metric = 0.00% * 160;
Minibatch[1391-1400]: loss = 97.585938 * 160, metric = 0.00% * 160;
Minibatch[1401-1410]: loss = 98.029687 * 160, metric = 0.00% * 160;
Minibatch[1411-1420]: loss = 100.782813 * 160, metric = 0.00% * 160;
Minibatch[1421-1430]: loss = 100.203125 * 160, metric = 0.00% * 160;
Minibatch[1431-1440]: loss = 100.032813 * 160, metric = 0.00% * 160;
Minibatch[1441-1450]: loss = 99.346875 * 160, metric = 0.00% * 160;
Minibatch[1451-1460]: loss = 98.171875 * 160, metric = 0.00% * 160;
Minibatch[1461-1470]: loss = 97.073437 * 160, metric = 0.00% * 160;
Minibatch[1471-1480]: loss = 94.642188 * 160, metric = 0.00% * 160;
Minibatch[1481-1490]: loss = 95.629688 * 160, metric = 0.00% * 160;
Minibatch[1491-1500]: loss = 95.578125 * 160, metric = 0.00% * 160;
Minibatch[1501-1510]: loss = 94.934375 * 160, metric = 0.00% * 160;
Minibatch[1511-1520]: loss = 94.712500 * 160, metric = 0.00% * 160;
Minibatch[1521-1530]: loss = 96.057812 * 160, metric = 0.00% * 160;
Minibatch[1531-1540]: loss = 95.201562 * 160, metric = 0.00% * 160;
Minibatch[1541-1550]: loss = 94.371875 * 160, metric = 0.00% * 160;
Minibatch[1551-1560]: loss = 92.178125 * 160, metric = 0.00% * 160;
Minibatch[1561-1570]: loss = 93.010937 * 160, metric = 0.00% * 160;
Minibatch[1571-1580]: loss = 92.378125 * 160, metric = 0.00% * 160;
Minibatch[1581-1590]: loss = 98.756250 * 160, metric = 0.00% * 160;
Minibatch[1591-1600]: loss = 93.370312 * 160, metric = 0.00% * 160;
Minibatch[1601-1610]: loss = 93.570312 * 160, metric = 0.00% * 160;
Minibatch[1611-1620]: loss = 89.556250 * 160, metric = 0.00% * 160;
Minibatch[1621-1630]: loss = 92.101562 * 160, metric = 0.00% * 160;
Minibatch[1631-1640]: loss = 91.450000 * 160, metric = 0.00% * 160;
Minibatch[1641-1650]: loss = 90.079688 * 160, metric = 0.00% * 160;
Minibatch[1651-1660]: loss = 90.051563 * 160, metric = 0.00% * 160;
Minibatch[1661-1670]: loss = 90.293750 * 160, metric = 0.00% * 160;
Minibatch[1671-1680]: loss = 91.368750 * 160, metric = 0.00% * 160;
Minibatch[1681-1690]: loss = 88.932812 * 160, metric = 0.00% * 160;
Minibatch[1691-1700]: loss = 92.715625 * 160, metric = 0.00% * 160;
Minibatch[1701-1710]: loss = 92.135937 * 160, metric = 0.00% * 160;
Minibatch[1711-1720]: loss = 90.679688 * 160, metric = 0.00% * 160;
Minibatch[1721-1730]: loss = 88.754688 * 160, metric = 0.00% * 160;
Minibatch[1731-1740]: loss = 87.565625 * 160, metric = 0.00% * 160;
Minibatch[1741-1750]: loss = 90.089062 * 160, metric = 0.00% * 160;
Minibatch[1751-1760]: loss = 90.796875 * 160, metric = 0.00% * 160;
Minibatch[1761-1770]: loss = 91.414062 * 160, metric = 0.00% * 160;
Minibatch[1771-1780]: loss = 92.164062 * 160, metric = 0.00% * 160;
Minibatch[1781-1790]: loss = 90.585938 * 160, metric = 0.00% * 160;
Minibatch[1791-1800]: loss = 88.195312 * 160, metric = 0.00% * 160;
Minibatch[1801-1810]: loss = 90.317188 * 160, metric = 0.00% * 160;
Minibatch[1811-1820]: loss = 86.809375 * 160, metric = 0.00% * 160;
Minibatch[1821-1830]: loss = 86.995312 * 160, metric = 0.00% * 160;
Minibatch[1831-1840]: loss = 90.492188 * 160, metric = 0.00% * 160;
Minibatch[1841-1850]: loss = 87.239063 * 160, metric = 0.00% * 160;
Minibatch[1851-1860]: loss = 85.115625 * 160, metric = 0.00% * 160;
Minibatch[1861-1870]: loss = 84.421875 * 160, metric = 0.00% * 160;
Minibatch[1871-1880]: loss = 84.410938 * 160, metric = 0.00% * 160;
Minibatch[1881-1890]: loss = 86.757812 * 160, metric = 0.00% * 160;
Minibatch[1891-1900]: loss = 86.193750 * 160, metric = 0.00% * 160;
Minibatch[1901-1910]: loss = 86.164062 * 160, metric = 0.00% * 160;
Minibatch[1911-1920]: loss = 82.089062 * 160, metric = 0.00% * 160;
Minibatch[1921-1930]: loss = 83.659375 * 160, metric = 0.00% * 160;
Minibatch[1931-1940]: loss = 83.489063 * 160, metric = 0.00% * 160;
Minibatch[1941-1950]: loss = 84.540625 * 160, metric = 0.00% * 160;
Minibatch[1951-1960]: loss = 83.529687 * 160, metric = 0.00% * 160;
Minibatch[1961-1970]: loss = 83.362500 * 160, metric = 0.00% * 160;
Minibatch[1971-1980]: loss = 81.326562 * 160, metric = 0.00% * 160;
Minibatch[1981-1990]: loss = 83.770313 * 160, metric = 0.00% * 160;
Minibatch[1991-2000]: loss = 83.439063 * 160, metric = 0.00% * 160;
Minibatch[2001-2010]: loss = 84.434375 * 160, metric = 0.00% * 160;
Minibatch[2011-2020]: loss = 84.276562 * 160, metric = 0.00% * 160;
Minibatch[2021-2030]: loss = 87.037500 * 160, metric = 0.00% * 160;
Minibatch[2031-2040]: loss = 83.937500 * 160, metric = 0.00% * 160;
Minibatch[2041-2050]: loss = 81.617188 * 160, metric = 0.00% * 160;
Minibatch[2051-2060]: loss = 82.371875 * 160, metric = 0.00% * 160;
Minibatch[2061-2070]: loss = 84.776562 * 160, metric = 0.00% * 160;
Minibatch[2071-2080]: loss = 83.300000 * 160, metric = 0.00% * 160;
Minibatch[2081-2090]: loss = 82.750000 * 160, metric = 0.00% * 160;
Minibatch[2091-2100]: loss = 80.121875 * 160, metric = 0.00% * 160;
Minibatch[2101-2110]: loss = 80.109375 * 160, metric = 0.00% * 160;
Minibatch[2111-2120]: loss = 82.376563 * 160, metric = 0.00% * 160;
Minibatch[2121-2130]: loss = 80.062500 * 160, metric = 0.00% * 160;
Minibatch[2131-2140]: loss = 81.226562 * 160, metric = 0.00% * 160;
Minibatch[2141-2150]: loss = 81.151562 * 160, metric = 0.00% * 160;
Minibatch[2151-2160]: loss = 82.646875 * 160, metric = 0.00% * 160;
Minibatch[2161-2170]: loss = 82.062500 * 160, metric = 0.00% * 160;
Minibatch[2171-2180]: loss = 81.265625 * 160, metric = 0.00% * 160;
Minibatch[2181-2190]: loss = 80.617188 * 160, metric = 0.00% * 160;
Minibatch[2191-2200]: loss = 79.820312 * 160, metric = 0.00% * 160;
Minibatch[2201-2210]: loss = 79.353125 * 160, metric = 0.00% * 160;
Minibatch[2211-2220]: loss = 82.665625 * 160, metric = 0.00% * 160;
Minibatch[2221-2230]: loss = 79.321875 * 160, metric = 0.00% * 160;
Minibatch[2231-2240]: loss = 80.325000 * 160, metric = 0.00% * 160;
Minibatch[2241-2250]: loss = 77.798438 * 160, metric = 0.00% * 160;
Minibatch[2251-2260]: loss = 78.107812 * 160, metric = 0.00% * 160;
Minibatch[2261-2270]: loss = 85.926563 * 160, metric = 0.00% * 160;
Minibatch[2271-2280]: loss = 79.865625 * 160, metric = 0.00% * 160;
Minibatch[2281-2290]: loss = 81.712500 * 160, metric = 0.00% * 160;
Minibatch[2291-2300]: loss = 83.775000 * 160, metric = 0.00% * 160;
Minibatch[2301-2310]: loss = 79.225000 * 160, metric = 0.00% * 160;
Minibatch[2311-2320]: loss = 79.487500 * 160, metric = 0.00% * 160;
Minibatch[2321-2330]: loss = 82.531250 * 160, metric = 0.00% * 160;
Minibatch[2331-2340]: loss = 79.571875 * 160, metric = 0.00% * 160;
Minibatch[2341-2350]: loss = 77.243750 * 160, metric = 0.00% * 160;
Minibatch[2351-2360]: loss = 78.640625 * 160, metric = 0.00% * 160;
Minibatch[2361-2370]: loss = 80.175000 * 160, metric = 0.00% * 160;
Minibatch[2371-2380]: loss = 75.643750 * 160, metric = 0.00% * 160;
Minibatch[2381-2390]: loss = 79.587500 * 160, metric = 0.00% * 160;
Minibatch[2391-2400]: loss = 76.662500 * 160, metric = 0.00% * 160;
Minibatch[2401-2410]: loss = 76.437500 * 160, metric = 0.00% * 160;
Minibatch[2411-2420]: loss = 79.481250 * 160, metric = 0.00% * 160;
Minibatch[2421-2430]: loss = 77.412500 * 160, metric = 0.00% * 160;
Minibatch[2431-2440]: loss = 76.084375 * 160, metric = 0.00% * 160;
Minibatch[2441-2450]: loss = 78.759375 * 160, metric = 0.00% * 160;
Minibatch[2451-2460]: loss = 79.062500 * 160, metric = 0.00% * 160;
Minibatch[2461-2470]: loss = 78.978125 * 160, metric = 0.00% * 160;
Minibatch[2471-2480]: loss = 77.259375 * 160, metric = 0.00% * 160;
Minibatch[2481-2490]: loss = 74.168750 * 160, metric = 0.00% * 160;
Minibatch[2491-2500]: loss = 75.409375 * 160, metric = 0.00% * 160;
Minibatch[2501-2510]: loss = 76.050000 * 160, metric = 0.00% * 160;
Minibatch[2511-2520]: loss = 75.887500 * 160, metric = 0.00% * 160;
Minibatch[2521-2530]: loss = 78.265625 * 160, metric = 0.00% * 160;
Minibatch[2531-2540]: loss = 78.478125 * 160, metric = 0.00% * 160;
Minibatch[2541-2550]: loss = 74.006250 * 160, metric = 0.00% * 160;
Minibatch[2551-2560]: loss = 75.396875 * 160, metric = 0.00% * 160;
Minibatch[2561-2570]: loss = 74.828125 * 160, metric = 0.00% * 160;
Minibatch[2571-2580]: loss = 74.971875 * 160, metric = 0.00% * 160;
Minibatch[2581-2590]: loss = 77.518750 * 160, metric = 0.00% * 160;
Minibatch[2591-2600]: loss = 75.440625 * 160, metric = 0.00% * 160;
Minibatch[2601-2610]: loss = 72.190625 * 160, metric = 0.00% * 160;
Minibatch[2611-2620]: loss = 73.225000 * 160, metric = 0.00% * 160;
Minibatch[2621-2630]: loss = 76.393750 * 160, metric = 0.00% * 160;
Minibatch[2631-2640]: loss = 75.621875 * 160, metric = 0.00% * 160;
Minibatch[2641-2650]: loss = 76.434375 * 160, metric = 0.00% * 160;
Minibatch[2651-2660]: loss = 73.700000 * 160, metric = 0.00% * 160;
Minibatch[2661-2670]: loss = 78.150000 * 160, metric = 0.00% * 160;
Minibatch[2671-2680]: loss = 76.215625 * 160, metric = 0.00% * 160;
Minibatch[2681-2690]: loss = 72.181250 * 160, metric = 0.00% * 160;
Minibatch[2691-2700]: loss = 72.431250 * 160, metric = 0.00% * 160;
Minibatch[2701-2710]: loss = 73.950000 * 160, metric = 0.00% * 160;
Minibatch[2711-2720]: loss = 74.646875 * 160, metric = 0.00% * 160;
Minibatch[2721-2730]: loss = 73.321875 * 160, metric = 0.00% * 160;
Minibatch[2731-2740]: loss = 72.018750 * 160, metric = 0.00% * 160;
Minibatch[2741-2750]: loss = 70.109375 * 160, metric = 0.00% * 160;
Minibatch[2751-2760]: loss = 72.259375 * 160, metric = 0.00% * 160;
Minibatch[2761-2770]: loss = 72.806250 * 160, metric = 0.00% * 160;
Minibatch[2771-2780]: loss = 73.437500 * 160, metric = 0.00% * 160;
Minibatch[2781-2790]: loss = 72.787500 * 160, metric = 0.00% * 160;
Minibatch[2791-2800]: loss = 71.806250 * 160, metric = 0.00% * 160;
Minibatch[2801-2810]: loss = 72.212500 * 160, metric = 0.00% * 160;
Minibatch[2811-2820]: loss = 72.346875 * 160, metric = 0.00% * 160;
Minibatch[2821-2830]: loss = 74.628125 * 160, metric = 0.00% * 160;
Minibatch[2831-2840]: loss = 71.984375 * 160, metric = 0.00% * 160;
Minibatch[2841-2850]: loss = 70.846875 * 160, metric = 0.00% * 160;
Minibatch[2851-2860]: loss = 72.128125 * 160, metric = 0.00% * 160;
Minibatch[2861-2870]: loss = 71.181250 * 160, metric = 0.00% * 160;
Minibatch[2871-2880]: loss = 67.893750 * 160, metric = 0.00% * 160;
Minibatch[2881-2890]: loss = 69.240625 * 160, metric = 0.00% * 160;
Minibatch[2891-2900]: loss = 71.931250 * 160, metric = 0.00% * 160;
Minibatch[2901-2910]: loss = 72.071875 * 160, metric = 0.00% * 160;
Minibatch[2911-2920]: loss = 72.984375 * 160, metric = 0.00% * 160;
Minibatch[2921-2930]: loss = 73.165625 * 160, metric = 0.00% * 160;
Minibatch[2931-2940]: loss = 72.465625 * 160, metric = 0.00% * 160;
Minibatch[2941-2950]: loss = 71.496875 * 160, metric = 0.00% * 160;
Minibatch[2951-2960]: loss = 67.671875 * 160, metric = 0.00% * 160;
Minibatch[2961-2970]: loss = 72.628125 * 160, metric = 0.00% * 160;
Minibatch[2971-2980]: loss = 76.303125 * 160, metric = 0.00% * 160;
Minibatch[2981-2990]: loss = 74.793750 * 160, metric = 0.00% * 160;
Minibatch[2991-3000]: loss = 70.975000 * 160, metric = 0.00% * 160;
Minibatch[3001-3010]: loss = 73.418750 * 160, metric = 0.00% * 160;
Minibatch[3011-3020]: loss = 75.034375 * 160, metric = 0.00% * 160;
Minibatch[3021-3030]: loss = 73.800000 * 160, metric = 0.00% * 160;
Minibatch[3031-3040]: loss = 72.653125 * 160, metric = 0.00% * 160;
Minibatch[3041-3050]: loss = 72.993750 * 160, metric = 0.00% * 160;
Minibatch[3051-3060]: loss = 69.234375 * 160, metric = 0.00% * 160;
Minibatch[3061-3070]: loss = 69.375000 * 160, metric = 0.00% * 160;
Minibatch[3071-3080]: loss = 72.290625 * 160, metric = 0.00% * 160;
Minibatch[3081-3090]: loss = 70.462500 * 160, metric = 0.00% * 160;
Minibatch[3091-3100]: loss = 71.125000 * 160, metric = 0.00% * 160;
Minibatch[3101-3110]: loss = 68.150000 * 160, metric = 0.00% * 160;
Minibatch[3111-3120]: loss = 70.459375 * 160, metric = 0.00% * 160;
Finished Epoch[1]: loss = 104.266700 * 50000, metric = 0.00% * 50000 6.955s (7189.1 samples/s);
Minibatch[ 1- 10]: loss = 68.614117 * 160, metric = 0.00% * 160;
Minibatch[ 11- 20]: loss = 69.597626 * 160, metric = 0.00% * 160;
Minibatch[ 21- 30]: loss = 68.489209 * 160, metric = 0.00% * 160;
Minibatch[ 31- 40]: loss = 68.188940 * 160, metric = 0.00% * 160;
Minibatch[ 41- 50]: loss = 70.285889 * 160, metric = 0.00% * 160;
Minibatch[ 51- 60]: loss = 70.519727 * 160, metric = 0.00% * 160;
Minibatch[ 61- 70]: loss = 67.385205 * 160, metric = 0.00% * 160;
Minibatch[ 71- 80]: loss = 70.648584 * 160, metric = 0.00% * 160;
Minibatch[ 81- 90]: loss = 72.797998 * 160, metric = 0.00% * 160;
Minibatch[ 91- 100]: loss = 68.772998 * 160, metric = 0.00% * 160;
Minibatch[ 101- 110]: loss = 67.634766 * 160, metric = 0.00% * 160;
Minibatch[ 111- 120]: loss = 68.460742 * 160, metric = 0.00% * 160;
Minibatch[ 121- 130]: loss = 71.664941 * 160, metric = 0.00% * 160;
Minibatch[ 131- 140]: loss = 68.530273 * 160, metric = 0.00% * 160;
Minibatch[ 141- 150]: loss = 69.353418 * 160, metric = 0.00% * 160;
Minibatch[ 151- 160]: loss = 69.137402 * 160, metric = 0.00% * 160;
Minibatch[ 161- 170]: loss = 68.648340 * 160, metric = 0.00% * 160;
Minibatch[ 171- 180]: loss = 71.374023 * 160, metric = 0.00% * 160;
Minibatch[ 181- 190]: loss = 67.422266 * 160, metric = 0.00% * 160;
Minibatch[ 191- 200]: loss = 65.056250 * 160, metric = 0.00% * 160;
Minibatch[ 201- 210]: loss = 65.495508 * 160, metric = 0.00% * 160;
Minibatch[ 211- 220]: loss = 66.326465 * 160, metric = 0.00% * 160;
Minibatch[ 221- 230]: loss = 71.034766 * 160, metric = 0.00% * 160;
Minibatch[ 231- 240]: loss = 69.620312 * 160, metric = 0.00% * 160;
Minibatch[ 241- 250]: loss = 65.961133 * 160, metric = 0.00% * 160;
Minibatch[ 251- 260]: loss = 68.289062 * 160, metric = 0.00% * 160;
Minibatch[ 261- 270]: loss = 67.893359 * 160, metric = 0.00% * 160;
Minibatch[ 271- 280]: loss = 66.203516 * 160, metric = 0.00% * 160;
Minibatch[ 281- 290]: loss = 70.560352 * 160, metric = 0.00% * 160;
Minibatch[ 291- 300]: loss = 72.923438 * 160, metric = 0.00% * 160;
Minibatch[ 301- 310]: loss = 71.371094 * 160, metric = 0.00% * 160;
Minibatch[ 311- 320]: loss = 67.463477 * 160, metric = 0.00% * 160;
Minibatch[ 321- 330]: loss = 69.280078 * 160, metric = 0.00% * 160;
Minibatch[ 331- 340]: loss = 70.504688 * 160, metric = 0.00% * 160;
Minibatch[ 341- 350]: loss = 69.278125 * 160, metric = 0.00% * 160;
Minibatch[ 351- 360]: loss = 68.450000 * 160, metric = 0.00% * 160;
Minibatch[ 361- 370]: loss = 65.310547 * 160, metric = 0.00% * 160;
Minibatch[ 371- 380]: loss = 72.064258 * 160, metric = 0.00% * 160;
Minibatch[ 381- 390]: loss = 72.213672 * 160, metric = 0.00% * 160;
Minibatch[ 391- 400]: loss = 68.189453 * 160, metric = 0.00% * 160;
Minibatch[ 401- 410]: loss = 66.746484 * 160, metric = 0.00% * 160;
Minibatch[ 411- 420]: loss = 64.665039 * 160, metric = 0.00% * 160;
Minibatch[ 421- 430]: loss = 62.637695 * 160, metric = 0.00% * 160;
Minibatch[ 431- 440]: loss = 68.210547 * 160, metric = 0.00% * 160;
Minibatch[ 441- 450]: loss = 63.878320 * 160, metric = 0.00% * 160;
Minibatch[ 451- 460]: loss = 62.001953 * 160, metric = 0.00% * 160;
Minibatch[ 461- 470]: loss = 62.596094 * 160, metric = 0.00% * 160;
Minibatch[ 471- 480]: loss = 65.075586 * 160, metric = 0.00% * 160;
Minibatch[ 481- 490]: loss = 65.317188 * 160, metric = 0.00% * 160;
Minibatch[ 491- 500]: loss = 71.325391 * 160, metric = 0.00% * 160;
Minibatch[ 501- 510]: loss = 68.262500 * 160, metric = 0.00% * 160;
Minibatch[ 511- 520]: loss = 64.909375 * 160, metric = 0.00% * 160;
Minibatch[ 521- 530]: loss = 67.987891 * 160, metric = 0.00% * 160;
Minibatch[ 531- 540]: loss = 71.819531 * 160, metric = 0.00% * 160;
Minibatch[ 541- 550]: loss = 68.544141 * 160, metric = 0.00% * 160;
Minibatch[ 551- 560]: loss = 65.880469 * 160, metric = 0.00% * 160;
Minibatch[ 561- 570]: loss = 65.011719 * 160, metric = 0.00% * 160;
Minibatch[ 571- 580]: loss = 62.269141 * 160, metric = 0.00% * 160;
Minibatch[ 581- 590]: loss = 68.585156 * 160, metric = 0.00% * 160;
Minibatch[ 591- 600]: loss = 67.317969 * 160, metric = 0.00% * 160;
Minibatch[ 601- 610]: loss = 67.877344 * 160, metric = 0.00% * 160;
Minibatch[ 611- 620]: loss = 65.387500 * 160, metric = 0.00% * 160;
Minibatch[ 621- 630]: loss = 66.193359 * 160, metric = 0.00% * 160;
Minibatch[ 631- 640]: loss = 67.505469 * 160, metric = 0.00% * 160;
Minibatch[ 641- 650]: loss = 72.622656 * 160, metric = 0.00% * 160;
Minibatch[ 651- 660]: loss = 68.627344 * 160, metric = 0.00% * 160;
Minibatch[ 661- 670]: loss = 63.460547 * 160, metric = 0.00% * 160;
Minibatch[ 671- 680]: loss = 66.073828 * 160, metric = 0.00% * 160;
Minibatch[ 681- 690]: loss = 68.313281 * 160, metric = 0.00% * 160;
Minibatch[ 691- 700]: loss = 65.152344 * 160, metric = 0.00% * 160;
Minibatch[ 701- 710]: loss = 65.145313 * 160, metric = 0.00% * 160;
Minibatch[ 711- 720]: loss = 64.286719 * 160, metric = 0.00% * 160;
Minibatch[ 721- 730]: loss = 65.232422 * 160, metric = 0.00% * 160;
Minibatch[ 731- 740]: loss = 63.798047 * 160, metric = 0.00% * 160;
Minibatch[ 741- 750]: loss = 64.219531 * 160, metric = 0.00% * 160;
Minibatch[ 751- 760]: loss = 66.020703 * 160, metric = 0.00% * 160;
Minibatch[ 761- 770]: loss = 67.082031 * 160, metric = 0.00% * 160;
Minibatch[ 771- 780]: loss = 67.651172 * 160, metric = 0.00% * 160;
Minibatch[ 781- 790]: loss = 67.176953 * 160, metric = 0.00% * 160;
Minibatch[ 791- 800]: loss = 66.096875 * 160, metric = 0.00% * 160;
Minibatch[ 801- 810]: loss = 64.553516 * 160, metric = 0.00% * 160;
Minibatch[ 811- 820]: loss = 70.426172 * 160, metric = 0.00% * 160;
Minibatch[ 821- 830]: loss = 68.287891 * 160, metric = 0.00% * 160;
Minibatch[ 831- 840]: loss = 66.159766 * 160, metric = 0.00% * 160;
Minibatch[ 841- 850]: loss = 68.597266 * 160, metric = 0.00% * 160;
Minibatch[ 851- 860]: loss = 62.367188 * 160, metric = 0.00% * 160;
Minibatch[ 861- 870]: loss = 64.387500 * 160, metric = 0.00% * 160;
Minibatch[ 871- 880]: loss = 66.757812 * 160, metric = 0.00% * 160;
Minibatch[ 881- 890]: loss = 71.131250 * 160, metric = 0.00% * 160;
Minibatch[ 891- 900]: loss = 67.645313 * 160, metric = 0.00% * 160;
Minibatch[ 901- 910]: loss = 63.061328 * 160, metric = 0.00% * 160;
Minibatch[ 911- 920]: loss = 65.575781 * 160, metric = 0.00% * 160;
Minibatch[ 921- 930]: loss = 66.848047 * 160, metric = 0.00% * 160;
Minibatch[ 931- 940]: loss = 61.876953 * 160, metric = 0.00% * 160;
Minibatch[ 941- 950]: loss = 62.681641 * 160, metric = 0.00% * 160;
Minibatch[ 951- 960]: loss = 61.311719 * 160, metric = 0.00% * 160;
Minibatch[ 961- 970]: loss = 62.069141 * 160, metric = 0.00% * 160;
Minibatch[ 971- 980]: loss = 63.216797 * 160, metric = 0.00% * 160;
Minibatch[ 981- 990]: loss = 63.632031 * 160, metric = 0.00% * 160;
Minibatch[ 991-1000]: loss = 63.071875 * 160, metric = 0.00% * 160;
Minibatch[1001-1010]: loss = 64.404687 * 160, metric = 0.00% * 160;
Minibatch[1011-1020]: loss = 63.850000 * 160, metric = 0.00% * 160;
Minibatch[1021-1030]: loss = 62.193750 * 160, metric = 0.00% * 160;
Minibatch[1031-1040]: loss = 63.017187 * 160, metric = 0.00% * 160;
Minibatch[1041-1050]: loss = 62.996094 * 160, metric = 0.00% * 160;
Minibatch[1051-1060]: loss = 62.289844 * 160, metric = 0.00% * 160;
Minibatch[1061-1070]: loss = 62.157031 * 160, metric = 0.00% * 160;
Minibatch[1071-1080]: loss = 65.648438 * 160, metric = 0.00% * 160;
Minibatch[1081-1090]: loss = 63.943750 * 160, metric = 0.00% * 160;
Minibatch[1091-1100]: loss = 62.294531 * 160, metric = 0.00% * 160;
Minibatch[1101-1110]: loss = 60.344531 * 160, metric = 0.00% * 160;
Minibatch[1111-1120]: loss = 60.082031 * 160, metric = 0.00% * 160;
Minibatch[1121-1130]: loss = 62.429688 * 160, metric = 0.00% * 160;
Minibatch[1131-1140]: loss = 62.737500 * 160, metric = 0.00% * 160;
Minibatch[1141-1150]: loss = 60.112500 * 160, metric = 0.00% * 160;
Minibatch[1151-1160]: loss = 61.415625 * 160, metric = 0.00% * 160;
Minibatch[1161-1170]: loss = 63.232813 * 160, metric = 0.00% * 160;
Minibatch[1171-1180]: loss = 61.833594 * 160, metric = 0.00% * 160;
Minibatch[1181-1190]: loss = 61.814844 * 160, metric = 0.00% * 160;
Minibatch[1191-1200]: loss = 60.501562 * 160, metric = 0.00% * 160;
Minibatch[1201-1210]: loss = 66.882031 * 160, metric = 0.00% * 160;
Minibatch[1211-1220]: loss = 67.521875 * 160, metric = 0.00% * 160;
Minibatch[1221-1230]: loss = 66.280469 * 160, metric = 0.00% * 160;
Minibatch[1231-1240]: loss = 66.473438 * 160, metric = 0.00% * 160;
Minibatch[1241-1250]: loss = 69.314063 * 160, metric = 0.00% * 160;
Minibatch[1251-1260]: loss = 66.760937 * 160, metric = 0.00% * 160;
Minibatch[1261-1270]: loss = 62.173437 * 160, metric = 0.00% * 160;
Minibatch[1271-1280]: loss = 62.596094 * 160, metric = 0.00% * 160;
Minibatch[1281-1290]: loss = 63.786719 * 160, metric = 0.00% * 160;
Minibatch[1291-1300]: loss = 62.220312 * 160, metric = 0.00% * 160;
Minibatch[1301-1310]: loss = 63.516406 * 160, metric = 0.00% * 160;
Minibatch[1311-1320]: loss = 61.607031 * 160, metric = 0.00% * 160;
Minibatch[1321-1330]: loss = 63.130469 * 160, metric = 0.00% * 160;
Minibatch[1331-1340]: loss = 64.798438 * 160, metric = 0.00% * 160;
Minibatch[1341-1350]: loss = 63.447656 * 160, metric = 0.00% * 160;
Minibatch[1351-1360]: loss = 58.617188 * 160, metric = 0.00% * 160;
Minibatch[1361-1370]: loss = 67.915625 * 160, metric = 0.00% * 160;
Minibatch[1371-1380]: loss = 66.928906 * 160, metric = 0.00% * 160;
Minibatch[1381-1390]: loss = 64.746875 * 160, metric = 0.00% * 160;
Minibatch[1391-1400]: loss = 60.804688 * 160, metric = 0.00% * 160;
Minibatch[1401-1410]: loss = 61.756250 * 160, metric = 0.00% * 160;
Minibatch[1411-1420]: loss = 66.377344 * 160, metric = 0.00% * 160;
Minibatch[1421-1430]: loss = 65.669531 * 160, metric = 0.00% * 160;
Minibatch[1431-1440]: loss = 66.542969 * 160, metric = 0.00% * 160;
Minibatch[1441-1450]: loss = 65.722656 * 160, metric = 0.00% * 160;
Minibatch[1451-1460]: loss = 63.726562 * 160, metric = 0.00% * 160;
Minibatch[1461-1470]: loss = 62.758594 * 160, metric = 0.00% * 160;
Minibatch[1471-1480]: loss = 59.872656 * 160, metric = 0.00% * 160;
Minibatch[1481-1490]: loss = 62.305469 * 160, metric = 0.00% * 160;
Minibatch[1491-1500]: loss = 62.038281 * 160, metric = 0.00% * 160;
Minibatch[1501-1510]: loss = 60.406250 * 160, metric = 0.00% * 160;
Minibatch[1511-1520]: loss = 60.796875 * 160, metric = 0.00% * 160;
Minibatch[1521-1530]: loss = 63.576563 * 160, metric = 0.00% * 160;
Minibatch[1531-1540]: loss = 62.977344 * 160, metric = 0.00% * 160;
Minibatch[1541-1550]: loss = 61.305469 * 160, metric = 0.00% * 160;
Minibatch[1551-1560]: loss = 58.103125 * 160, metric = 0.00% * 160;
Minibatch[1561-1570]: loss = 60.350781 * 160, metric = 0.00% * 160;
Minibatch[1571-1580]: loss = 60.403125 * 160, metric = 0.00% * 160;
Minibatch[1581-1590]: loss = 69.775781 * 160, metric = 0.00% * 160;
Minibatch[1591-1600]: loss = 61.815625 * 160, metric = 0.00% * 160;
Minibatch[1601-1610]: loss = 62.892969 * 160, metric = 0.00% * 160;
Minibatch[1611-1620]: loss = 56.400000 * 160, metric = 0.00% * 160;
Minibatch[1621-1630]: loss = 61.365625 * 160, metric = 0.00% * 160;
Minibatch[1631-1640]: loss = 60.246875 * 160, metric = 0.00% * 160;
Minibatch[1641-1650]: loss = 58.835156 * 160, metric = 0.00% * 160;
Minibatch[1651-1660]: loss = 59.078906 * 160, metric = 0.00% * 160;
Minibatch[1661-1670]: loss = 59.947656 * 160, metric = 0.00% * 160;
Minibatch[1671-1680]: loss = 61.624219 * 160, metric = 0.00% * 160;
Minibatch[1681-1690]: loss = 58.449219 * 160, metric = 0.00% * 160;
Minibatch[1691-1700]: loss = 65.393750 * 160, metric = 0.00% * 160;
Minibatch[1701-1710]: loss = 64.509375 * 160, metric = 0.00% * 160;
Minibatch[1711-1720]: loss = 62.760156 * 160, metric = 0.00% * 160;
Minibatch[1721-1730]: loss = 59.616406 * 160, metric = 0.00% * 160;
Minibatch[1731-1740]: loss = 58.371875 * 160, metric = 0.00% * 160;
Minibatch[1741-1750]: loss = 62.186719 * 160, metric = 0.00% * 160;
Minibatch[1751-1760]: loss = 63.057031 * 160, metric = 0.00% * 160;
Minibatch[1761-1770]: loss = 64.885156 * 160, metric = 0.00% * 160;
Minibatch[1771-1780]: loss = 65.713281 * 160, metric = 0.00% * 160;
Minibatch[1781-1790]: loss = 63.520313 * 160, metric = 0.00% * 160;
Minibatch[1791-1800]: loss = 60.827344 * 160, metric = 0.00% * 160;
Minibatch[1801-1810]: loss = 64.572656 * 160, metric = 0.00% * 160;
Minibatch[1811-1820]: loss = 59.594531 * 160, metric = 0.00% * 160;
Minibatch[1821-1830]: loss = 60.419531 * 160, metric = 0.00% * 160;
Minibatch[1831-1840]: loss = 64.859375 * 160, metric = 0.00% * 160;
Minibatch[1841-1850]: loss = 60.541406 * 160, metric = 0.00% * 160;
Minibatch[1851-1860]: loss = 58.028125 * 160, metric = 0.00% * 160;
Minibatch[1861-1870]: loss = 57.185156 * 160, metric = 0.00% * 160;
Minibatch[1871-1880]: loss = 57.971094 * 160, metric = 0.00% * 160;
Minibatch[1881-1890]: loss = 61.284375 * 160, metric = 0.00% * 160;
Minibatch[1891-1900]: loss = 60.862500 * 160, metric = 0.00% * 160;
Minibatch[1901-1910]: loss = 60.820312 * 160, metric = 0.00% * 160;
Minibatch[1911-1920]: loss = 55.803125 * 160, metric = 0.00% * 160;
Minibatch[1921-1930]: loss = 57.910156 * 160, metric = 0.00% * 160;
Minibatch[1931-1940]: loss = 57.552344 * 160, metric = 0.00% * 160;
Minibatch[1941-1950]: loss = 60.064844 * 160, metric = 0.00% * 160;
Minibatch[1951-1960]: loss = 58.595312 * 160, metric = 0.00% * 160;
Minibatch[1961-1970]: loss = 58.759375 * 160, metric = 0.00% * 160;
Minibatch[1971-1980]: loss = 56.205469 * 160, metric = 0.00% * 160;
Minibatch[1981-1990]: loss = 59.861719 * 160, metric = 0.00% * 160;
Minibatch[1991-2000]: loss = 59.379688 * 160, metric = 0.00% * 160;
Minibatch[2001-2010]: loss = 60.854687 * 160, metric = 0.00% * 160;
Minibatch[2011-2020]: loss = 60.861719 * 160, metric = 0.00% * 160;
Minibatch[2021-2030]: loss = 64.382812 * 160, metric = 0.00% * 160;
Minibatch[2031-2040]: loss = 61.171875 * 160, metric = 0.00% * 160;
Minibatch[2041-2050]: loss = 58.265625 * 160, metric = 0.00% * 160;
Minibatch[2051-2060]: loss = 59.195312 * 160, metric = 0.00% * 160;
Minibatch[2061-2070]: loss = 62.759375 * 160, metric = 0.00% * 160;
Minibatch[2071-2080]: loss = 60.918750 * 160, metric = 0.00% * 160;
Minibatch[2081-2090]: loss = 60.600000 * 160, metric = 0.00% * 160;
Minibatch[2091-2100]: loss = 57.346875 * 160, metric = 0.00% * 160;
Minibatch[2101-2110]: loss = 57.184375 * 160, metric = 0.00% * 160;
Minibatch[2111-2120]: loss = 59.937500 * 160, metric = 0.00% * 160;
Minibatch[2121-2130]: loss = 57.514063 * 160, metric = 0.00% * 160;
Minibatch[2131-2140]: loss = 59.468750 * 160, metric = 0.00% * 160;
Minibatch[2141-2150]: loss = 59.365625 * 160, metric = 0.00% * 160;
Minibatch[2151-2160]: loss = 61.790625 * 160, metric = 0.00% * 160;
Minibatch[2161-2170]: loss = 61.214062 * 160, metric = 0.00% * 160;
Minibatch[2171-2180]: loss = 60.189062 * 160, metric = 0.00% * 160;
Minibatch[2181-2190]: loss = 59.153125 * 160, metric = 0.00% * 160;
Minibatch[2191-2200]: loss = 58.762500 * 160, metric = 0.00% * 160;
Minibatch[2201-2210]: loss = 58.114063 * 160, metric = 0.00% * 160;
Minibatch[2211-2220]: loss = 62.850000 * 160, metric = 0.00% * 160;
Minibatch[2221-2230]: loss = 58.903125 * 160, metric = 0.00% * 160;
Minibatch[2231-2240]: loss = 60.118750 * 160, metric = 0.00% * 160;
Minibatch[2241-2250]: loss = 57.282812 * 160, metric = 0.00% * 160;
Minibatch[2251-2260]: loss = 57.662500 * 160, metric = 0.00% * 160;
Minibatch[2261-2270]: loss = 67.871875 * 160, metric = 0.00% * 160;
Minibatch[2271-2280]: loss = 60.500000 * 160, metric = 0.00% * 160;
Minibatch[2281-2290]: loss = 62.595312 * 160, metric = 0.00% * 160;
Minibatch[2291-2300]: loss = 65.065625 * 160, metric = 0.00% * 160;
Minibatch[2301-2310]: loss = 59.778125 * 160, metric = 0.00% * 160;
Minibatch[2311-2320]: loss = 59.945312 * 160, metric = 0.00% * 160;
Minibatch[2321-2330]: loss = 63.753125 * 160, metric = 0.00% * 160;
Minibatch[2331-2340]: loss = 60.710938 * 160, metric = 0.00% * 160;
Minibatch[2341-2350]: loss = 58.153125 * 160, metric = 0.00% * 160;
Minibatch[2351-2360]: loss = 60.156250 * 160, metric = 0.00% * 160;
Minibatch[2361-2370]: loss = 62.250000 * 160, metric = 0.00% * 160;
Minibatch[2371-2380]: loss = 56.253125 * 160, metric = 0.00% * 160;
Minibatch[2381-2390]: loss = 61.682812 * 160, metric = 0.00% * 160;
Minibatch[2391-2400]: loss = 57.985937 * 160, metric = 0.00% * 160;
Minibatch[2401-2410]: loss = 57.710938 * 160, metric = 0.00% * 160;
Minibatch[2411-2420]: loss = 62.007812 * 160, metric = 0.00% * 160;
Minibatch[2421-2430]: loss = 59.420313 * 160, metric = 0.00% * 160;
Minibatch[2431-2440]: loss = 57.976562 * 160, metric = 0.00% * 160;
Minibatch[2441-2450]: loss = 60.956250 * 160, metric = 0.00% * 160;
Minibatch[2451-2460]: loss = 61.687500 * 160, metric = 0.00% * 160;
Minibatch[2461-2470]: loss = 61.442188 * 160, metric = 0.00% * 160;
Minibatch[2471-2480]: loss = 59.421875 * 160, metric = 0.00% * 160;
Minibatch[2481-2490]: loss = 56.450000 * 160, metric = 0.00% * 160;
Minibatch[2491-2500]: loss = 58.090625 * 160, metric = 0.00% * 160;
Minibatch[2501-2510]: loss = 58.695312 * 160, metric = 0.00% * 160;
Minibatch[2511-2520]: loss = 58.929688 * 160, metric = 0.00% * 160;
Minibatch[2521-2530]: loss = 61.956250 * 160, metric = 0.00% * 160;
Minibatch[2531-2540]: loss = 62.203125 * 160, metric = 0.00% * 160;
Minibatch[2541-2550]: loss = 56.842188 * 160, metric = 0.00% * 160;
Minibatch[2551-2560]: loss = 58.810938 * 160, metric = 0.00% * 160;
Minibatch[2561-2570]: loss = 58.042187 * 160, metric = 0.00% * 160;
Minibatch[2571-2580]: loss = 58.528125 * 160, metric = 0.00% * 160;
Minibatch[2581-2590]: loss = 62.100000 * 160, metric = 0.00% * 160;
Minibatch[2591-2600]: loss = 59.025000 * 160, metric = 0.00% * 160;
Minibatch[2601-2610]: loss = 55.285938 * 160, metric = 0.00% * 160;
Minibatch[2611-2620]: loss = 56.568750 * 160, metric = 0.00% * 160;
Minibatch[2621-2630]: loss = 60.571875 * 160, metric = 0.00% * 160;
Minibatch[2631-2640]: loss = 59.471875 * 160, metric = 0.00% * 160;
Minibatch[2641-2650]: loss = 61.190625 * 160, metric = 0.00% * 160;
Minibatch[2651-2660]: loss = 58.004688 * 160, metric = 0.00% * 160;
Minibatch[2661-2670]: loss = 63.340625 * 160, metric = 0.00% * 160;
Minibatch[2671-2680]: loss = 61.118750 * 160, metric = 0.00% * 160;
Minibatch[2681-2690]: loss = 56.235937 * 160, metric = 0.00% * 160;
Minibatch[2691-2700]: loss = 56.581250 * 160, metric = 0.00% * 160;
Minibatch[2701-2710]: loss = 58.637500 * 160, metric = 0.00% * 160;
Minibatch[2711-2720]: loss = 59.810938 * 160, metric = 0.00% * 160;
Minibatch[2721-2730]: loss = 58.251562 * 160, metric = 0.00% * 160;
Minibatch[2731-2740]: loss = 56.540625 * 160, metric = 0.00% * 160;
Minibatch[2741-2750]: loss = 54.529688 * 160, metric = 0.00% * 160;
Minibatch[2751-2760]: loss = 57.520313 * 160, metric = 0.00% * 160;
Minibatch[2761-2770]: loss = 58.262500 * 160, metric = 0.00% * 160;
Minibatch[2771-2780]: loss = 59.107813 * 160, metric = 0.00% * 160;
Minibatch[2781-2790]: loss = 58.225000 * 160, metric = 0.00% * 160;
Minibatch[2791-2800]: loss = 57.270313 * 160, metric = 0.00% * 160;
Minibatch[2801-2810]: loss = 57.853125 * 160, metric = 0.00% * 160;
Minibatch[2811-2820]: loss = 57.871875 * 160, metric = 0.00% * 160;
Minibatch[2821-2830]: loss = 61.231250 * 160, metric = 0.00% * 160;
Minibatch[2831-2840]: loss = 58.032812 * 160, metric = 0.00% * 160;
Minibatch[2841-2850]: loss = 56.678125 * 160, metric = 0.00% * 160;
Minibatch[2851-2860]: loss = 58.243750 * 160, metric = 0.00% * 160;
Minibatch[2861-2870]: loss = 57.184375 * 160, metric = 0.00% * 160;
Minibatch[2871-2880]: loss = 53.492188 * 160, metric = 0.00% * 160;
Minibatch[2881-2890]: loss = 54.992188 * 160, metric = 0.00% * 160;
Minibatch[2891-2900]: loss = 58.437500 * 160, metric = 0.00% * 160;
Minibatch[2901-2910]: loss = 58.629688 * 160, metric = 0.00% * 160;
Minibatch[2911-2920]: loss = 59.907812 * 160, metric = 0.00% * 160;
Minibatch[2921-2930]: loss = 60.070312 * 160, metric = 0.00% * 160;
Minibatch[2931-2940]: loss = 59.273438 * 160, metric = 0.00% * 160;
Minibatch[2941-2950]: loss = 58.300000 * 160, metric = 0.00% * 160;
Minibatch[2951-2960]: loss = 53.832813 * 160, metric = 0.00% * 160;
Minibatch[2961-2970]: loss = 59.781250 * 160, metric = 0.00% * 160;
Minibatch[2971-2980]: loss = 64.315625 * 160, metric = 0.00% * 160;
Minibatch[2981-2990]: loss = 62.618750 * 160, metric = 0.00% * 160;
Minibatch[2991-3000]: loss = 57.765625 * 160, metric = 0.00% * 160;
Minibatch[3001-3010]: loss = 60.728125 * 160, metric = 0.00% * 160;
Minibatch[3011-3020]: loss = 62.898438 * 160, metric = 0.00% * 160;
Minibatch[3021-3030]: loss = 61.657812 * 160, metric = 0.00% * 160;
Minibatch[3031-3040]: loss = 60.429688 * 160, metric = 0.00% * 160;
Minibatch[3041-3050]: loss = 60.953125 * 160, metric = 0.00% * 160;
Minibatch[3051-3060]: loss = 56.382812 * 160, metric = 0.00% * 160;
Minibatch[3061-3070]: loss = 56.909375 * 160, metric = 0.00% * 160;
Minibatch[3071-3080]: loss = 60.553125 * 160, metric = 0.00% * 160;
Minibatch[3081-3090]: loss = 58.443750 * 160, metric = 0.00% * 160;
Minibatch[3091-3100]: loss = 59.242188 * 160, metric = 0.00% * 160;
Minibatch[3101-3110]: loss = 55.751562 * 160, metric = 0.00% * 160;
Minibatch[3111-3120]: loss = 58.642187 * 160, metric = 0.00% * 160;
Finished Epoch[2]: loss = 62.743100 * 50000, metric = 0.00% * 50000 7.348s (6804.6 samples/s);
Minibatch[ 1- 10]: loss = 56.411627 * 160, metric = 0.00% * 160;
Minibatch[ 11- 20]: loss = 57.754059 * 160, metric = 0.00% * 160;
Minibatch[ 21- 30]: loss = 56.472314 * 160, metric = 0.00% * 160;
Minibatch[ 31- 40]: loss = 56.285266 * 160, metric = 0.00% * 160;
Minibatch[ 41- 50]: loss = 58.714868 * 160, metric = 0.00% * 160;
Minibatch[ 51- 60]: loss = 59.060107 * 160, metric = 0.00% * 160;
Minibatch[ 61- 70]: loss = 55.552588 * 160, metric = 0.00% * 160;
Minibatch[ 71- 80]: loss = 59.100049 * 160, metric = 0.00% * 160;
Minibatch[ 81- 90]: loss = 61.639063 * 160, metric = 0.00% * 160;
Minibatch[ 91- 100]: loss = 57.425635 * 160, metric = 0.00% * 160;
Minibatch[ 101- 110]: loss = 56.149170 * 160, metric = 0.00% * 160;
Minibatch[ 111- 120]: loss = 57.043994 * 160, metric = 0.00% * 160;
Minibatch[ 121- 130]: loss = 60.615039 * 160, metric = 0.00% * 160;
Minibatch[ 131- 140]: loss = 57.214160 * 160, metric = 0.00% * 160;
Minibatch[ 141- 150]: loss = 58.527490 * 160, metric = 0.00% * 160;
Minibatch[ 151- 160]: loss = 58.312988 * 160, metric = 0.00% * 160;
Minibatch[ 161- 170]: loss = 57.593262 * 160, metric = 0.00% * 160;
Minibatch[ 171- 180]: loss = 61.126367 * 160, metric = 0.00% * 160;
Minibatch[ 181- 190]: loss = 56.542383 * 160, metric = 0.00% * 160;
Minibatch[ 191- 200]: loss = 53.869336 * 160, metric = 0.00% * 160;
Minibatch[ 201- 210]: loss = 54.225977 * 160, metric = 0.00% * 160;
Minibatch[ 211- 220]: loss = 55.370312 * 160, metric = 0.00% * 160;
Minibatch[ 221- 230]: loss = 61.115918 * 160, metric = 0.00% * 160;
Minibatch[ 231- 240]: loss = 59.565625 * 160, metric = 0.00% * 160;
Minibatch[ 241- 250]: loss = 55.178320 * 160, metric = 0.00% * 160;
Minibatch[ 251- 260]: loss = 57.799512 * 160, metric = 0.00% * 160;
Minibatch[ 261- 270]: loss = 57.554102 * 160, metric = 0.00% * 160;
Minibatch[ 271- 280]: loss = 55.848047 * 160, metric = 0.00% * 160;
Minibatch[ 281- 290]: loss = 60.592578 * 160, metric = 0.00% * 160;
Minibatch[ 291- 300]: loss = 63.702930 * 160, metric = 0.00% * 160;
Minibatch[ 301- 310]: loss = 61.987500 * 160, metric = 0.00% * 160;
Minibatch[ 311- 320]: loss = 57.256250 * 160, metric = 0.00% * 160;
Minibatch[ 321- 330]: loss = 59.511523 * 160, metric = 0.00% * 160;
Minibatch[ 331- 340]: loss = 60.971484 * 160, metric = 0.00% * 160;
Minibatch[ 341- 350]: loss = 59.447266 * 160, metric = 0.00% * 160;
Minibatch[ 351- 360]: loss = 58.732813 * 160, metric = 0.00% * 160;
Minibatch[ 361- 370]: loss = 55.097461 * 160, metric = 0.00% * 160;
Minibatch[ 371- 380]: loss = 62.731055 * 160, metric = 0.00% * 160;
Minibatch[ 381- 390]: loss = 62.929102 * 160, metric = 0.00% * 160;
Minibatch[ 391- 400]: loss = 58.242383 * 160, metric = 0.00% * 160;
Minibatch[ 401- 410]: loss = 57.064844 * 160, metric = 0.00% * 160;
Minibatch[ 411- 420]: loss = 54.702148 * 160, metric = 0.00% * 160;
Minibatch[ 421- 430]: loss = 52.511133 * 160, metric = 0.00% * 160;
Minibatch[ 431- 440]: loss = 58.808398 * 160, metric = 0.00% * 160;
Minibatch[ 441- 450]: loss = 54.159961 * 160, metric = 0.00% * 160;
Minibatch[ 451- 460]: loss = 52.031445 * 160, metric = 0.00% * 160;
Minibatch[ 461- 470]: loss = 52.713867 * 160, metric = 0.00% * 160;
Minibatch[ 471- 480]: loss = 55.606445 * 160, metric = 0.00% * 160;
Minibatch[ 481- 490]: loss = 55.939648 * 160, metric = 0.00% * 160;
Minibatch[ 491- 500]: loss = 62.736328 * 160, metric = 0.00% * 160;
Minibatch[ 501- 510]: loss = 59.317969 * 160, metric = 0.00% * 160;
Minibatch[ 511- 520]: loss = 55.698047 * 160, metric = 0.00% * 160;
Minibatch[ 521- 530]: loss = 58.911523 * 160, metric = 0.00% * 160;
Minibatch[ 531- 540]: loss = 63.169531 * 160, metric = 0.00% * 160;
Minibatch[ 541- 550]: loss = 59.753125 * 160, metric = 0.00% * 160;
Minibatch[ 551- 560]: loss = 56.899023 * 160, metric = 0.00% * 160;
Minibatch[ 561- 570]: loss = 56.018750 * 160, metric = 0.00% * 160;
Minibatch[ 571- 580]: loss = 53.093359 * 160, metric = 0.00% * 160;
Minibatch[ 581- 590]: loss = 60.233594 * 160, metric = 0.00% * 160;
Minibatch[ 591- 600]: loss = 58.860547 * 160, metric = 0.00% * 160;
Minibatch[ 601- 610]: loss = 59.460938 * 160, metric = 0.00% * 160;
Minibatch[ 611- 620]: loss = 56.873828 * 160, metric = 0.00% * 160;
Minibatch[ 621- 630]: loss = 57.743750 * 160, metric = 0.00% * 160;
Minibatch[ 631- 640]: loss = 58.991406 * 160, metric = 0.00% * 160;
Minibatch[ 641- 650]: loss = 64.674609 * 160, metric = 0.00% * 160;
Minibatch[ 651- 660]: loss = 60.421094 * 160, metric = 0.00% * 160;
Minibatch[ 661- 670]: loss = 54.779688 * 160, metric = 0.00% * 160;
Minibatch[ 671- 680]: loss = 57.669531 * 160, metric = 0.00% * 160;
Minibatch[ 681- 690]: loss = 60.069141 * 160, metric = 0.00% * 160;
Minibatch[ 691- 700]: loss = 56.723047 * 160, metric = 0.00% * 160;
Minibatch[ 701- 710]: loss = 56.845703 * 160, metric = 0.00% * 160;
Minibatch[ 711- 720]: loss = 55.811719 * 160, metric = 0.00% * 160;
Minibatch[ 721- 730]: loss = 56.958203 * 160, metric = 0.00% * 160;
Minibatch[ 731- 740]: loss = 55.350781 * 160, metric = 0.00% * 160;
Minibatch[ 741- 750]: loss = 55.848828 * 160, metric = 0.00% * 160;
Minibatch[ 751- 760]: loss = 57.885937 * 160, metric = 0.00% * 160;
Minibatch[ 761- 770]: loss = 59.285156 * 160, metric = 0.00% * 160;
Minibatch[ 771- 780]: loss = 59.997656 * 160, metric = 0.00% * 160;
Minibatch[ 781- 790]: loss = 59.573828 * 160, metric = 0.00% * 160;
Minibatch[ 791- 800]: loss = 58.517187 * 160, metric = 0.00% * 160;
Minibatch[ 801- 810]: loss = 56.632422 * 160, metric = 0.00% * 160;
Minibatch[ 811- 820]: loss = 63.154297 * 160, metric = 0.00% * 160;
Minibatch[ 821- 830]: loss = 60.932422 * 160, metric = 0.00% * 160;
Minibatch[ 831- 840]: loss = 58.603125 * 160, metric = 0.00% * 160;
Minibatch[ 841- 850]: loss = 61.228516 * 160, metric = 0.00% * 160;
Minibatch[ 851- 860]: loss = 54.508984 * 160, metric = 0.00% * 160;
Minibatch[ 861- 870]: loss = 56.882031 * 160, metric = 0.00% * 160;
Minibatch[ 871- 880]: loss = 59.410547 * 160, metric = 0.00% * 160;
Minibatch[ 881- 890]: loss = 64.251953 * 160, metric = 0.00% * 160;
Minibatch[ 891- 900]: loss = 60.467969 * 160, metric = 0.00% * 160;
Minibatch[ 901- 910]: loss = 55.572656 * 160, metric = 0.00% * 160;
Minibatch[ 911- 920]: loss = 58.400781 * 160, metric = 0.00% * 160;
Minibatch[ 921- 930]: loss = 59.847656 * 160, metric = 0.00% * 160;
Minibatch[ 931- 940]: loss = 54.133203 * 160, metric = 0.00% * 160;
Minibatch[ 941- 950]: loss = 55.237891 * 160, metric = 0.00% * 160;
Minibatch[ 951- 960]: loss = 53.725781 * 160, metric = 0.00% * 160;
Minibatch[ 961- 970]: loss = 54.565625 * 160, metric = 0.00% * 160;
Minibatch[ 971- 980]: loss = 55.954687 * 160, metric = 0.00% * 160;
Minibatch[ 981- 990]: loss = 56.575781 * 160, metric = 0.00% * 160;
Minibatch[ 991-1000]: loss = 55.667969 * 160, metric = 0.00% * 160;
Minibatch[1001-1010]: loss = 57.137891 * 160, metric = 0.00% * 160;
Minibatch[1011-1020]: loss = 56.567578 * 160, metric = 0.00% * 160;
Minibatch[1021-1030]: loss = 54.864453 * 160, metric = 0.00% * 160;
Minibatch[1031-1040]: loss = 55.930859 * 160, metric = 0.00% * 160;
Minibatch[1041-1050]: loss = 55.961328 * 160, metric = 0.00% * 160;
Minibatch[1051-1060]: loss = 55.325000 * 160, metric = 0.00% * 160;
Minibatch[1061-1070]: loss = 54.993750 * 160, metric = 0.00% * 160;
Minibatch[1071-1080]: loss = 58.999609 * 160, metric = 0.00% * 160;
Minibatch[1081-1090]: loss = 57.203906 * 160, metric = 0.00% * 160;
Minibatch[1091-1100]: loss = 55.494531 * 160, metric = 0.00% * 160;
Minibatch[1101-1110]: loss = 53.267187 * 160, metric = 0.00% * 160;
Minibatch[1111-1120]: loss = 52.837109 * 160, metric = 0.00% * 160;
Minibatch[1121-1130]: loss = 55.527344 * 160, metric = 0.00% * 160;
Minibatch[1131-1140]: loss = 55.803516 * 160, metric = 0.00% * 160;
Minibatch[1141-1150]: loss = 52.928125 * 160, metric = 0.00% * 160;
Minibatch[1151-1160]: loss = 54.457031 * 160, metric = 0.00% * 160;
Minibatch[1161-1170]: loss = 56.773438 * 160, metric = 0.00% * 160;
Minibatch[1171-1180]: loss = 55.178906 * 160, metric = 0.00% * 160;
Minibatch[1181-1190]: loss = 55.134375 * 160, metric = 0.00% * 160;
Minibatch[1191-1200]: loss = 53.784375 * 160, metric = 0.00% * 160;
Minibatch[1201-1210]: loss = 60.717188 * 160, metric = 0.00% * 160;
Minibatch[1211-1220]: loss = 61.330469 * 160, metric = 0.00% * 160;
Minibatch[1221-1230]: loss = 59.882812 * 160, metric = 0.00% * 160;
Minibatch[1231-1240]: loss = 60.421094 * 160, metric = 0.00% * 160;
Minibatch[1241-1250]: loss = 63.757031 * 160, metric = 0.00% * 160;
Minibatch[1251-1260]: loss = 60.940625 * 160, metric = 0.00% * 160;
Minibatch[1261-1270]: loss = 55.809375 * 160, metric = 0.00% * 160;
Minibatch[1271-1280]: loss = 56.267969 * 160, metric = 0.00% * 160;
Minibatch[1281-1290]: loss = 57.530469 * 160, metric = 0.00% * 160;
Minibatch[1291-1300]: loss = 55.799219 * 160, metric = 0.00% * 160;
Minibatch[1301-1310]: loss = 57.310938 * 160, metric = 0.00% * 160;
Minibatch[1311-1320]: loss = 55.314844 * 160, metric = 0.00% * 160;
Minibatch[1321-1330]: loss = 57.128125 * 160, metric = 0.00% * 160;
Minibatch[1331-1340]: loss = 59.012500 * 160, metric = 0.00% * 160;
Minibatch[1341-1350]: loss = 57.450000 * 160, metric = 0.00% * 160;
Minibatch[1351-1360]: loss = 52.231250 * 160, metric = 0.00% * 160;
Minibatch[1361-1370]: loss = 62.156250 * 160, metric = 0.00% * 160;
Minibatch[1371-1380]: loss = 61.315625 * 160, metric = 0.00% * 160;
Minibatch[1381-1390]: loss = 59.282031 * 160, metric = 0.00% * 160;
Minibatch[1391-1400]: loss = 54.720312 * 160, metric = 0.00% * 160;
Minibatch[1401-1410]: loss = 55.754688 * 160, metric = 0.00% * 160;
Minibatch[1411-1420]: loss = 60.648438 * 160, metric = 0.00% * 160;
Minibatch[1421-1430]: loss = 59.880469 * 160, metric = 0.00% * 160;
Minibatch[1431-1440]: loss = 61.043750 * 160, metric = 0.00% * 160;
Minibatch[1441-1450]: loss = 60.146875 * 160, metric = 0.00% * 160;
Minibatch[1451-1460]: loss = 57.971875 * 160, metric = 0.00% * 160;
Minibatch[1461-1470]: loss = 56.993750 * 160, metric = 0.00% * 160;
Minibatch[1471-1480]: loss = 53.994531 * 160, metric = 0.00% * 160;
Minibatch[1481-1490]: loss = 56.764844 * 160, metric = 0.00% * 160;
Minibatch[1491-1500]: loss = 56.353906 * 160, metric = 0.00% * 160;
Minibatch[1501-1510]: loss = 54.370312 * 160, metric = 0.00% * 160;
Minibatch[1511-1520]: loss = 54.925000 * 160, metric = 0.00% * 160;
Minibatch[1521-1530]: loss = 58.061719 * 160, metric = 0.00% * 160;
Minibatch[1531-1540]: loss = 57.540625 * 160, metric = 0.00% * 160;
Minibatch[1541-1550]: loss = 55.464062 * 160, metric = 0.00% * 160;
Minibatch[1551-1560]: loss = 52.111719 * 160, metric = 0.00% * 160;
Minibatch[1561-1570]: loss = 54.695312 * 160, metric = 0.00% * 160;
Minibatch[1571-1580]: loss = 54.814844 * 160, metric = 0.00% * 160;
Minibatch[1581-1590]: loss = 64.785938 * 160, metric = 0.00% * 160;
Minibatch[1591-1600]: loss = 56.278125 * 160, metric = 0.00% * 160;
Minibatch[1601-1610]: loss = 57.560938 * 160, metric = 0.00% * 160;
Minibatch[1611-1620]: loss = 50.489063 * 160, metric = 0.00% * 160;
Minibatch[1621-1630]: loss = 55.973438 * 160, metric = 0.00% * 160;
Minibatch[1631-1640]: loss = 54.658594 * 160, metric = 0.00% * 160;
Minibatch[1641-1650]: loss = 53.257031 * 160, metric = 0.00% * 160;
Minibatch[1651-1660]: loss = 53.610937 * 160, metric = 0.00% * 160;
Minibatch[1661-1670]: loss = 54.521094 * 160, metric = 0.00% * 160;
Minibatch[1671-1680]: loss = 56.248438 * 160, metric = 0.00% * 160;
Minibatch[1681-1690]: loss = 52.943750 * 160, metric = 0.00% * 160;
Minibatch[1691-1700]: loss = 60.610937 * 160, metric = 0.00% * 160;
Minibatch[1701-1710]: loss = 59.639844 * 160, metric = 0.00% * 160;
Minibatch[1711-1720]: loss = 57.871875 * 160, metric = 0.00% * 160;
Minibatch[1721-1730]: loss = 54.291406 * 160, metric = 0.00% * 160;
Minibatch[1731-1740]: loss = 53.094531 * 160, metric = 0.00% * 160;
Minibatch[1741-1750]: loss = 57.100000 * 160, metric = 0.00% * 160;
Minibatch[1751-1760]: loss = 57.999219 * 160, metric = 0.00% * 160;
Minibatch[1761-1770]: loss = 60.071094 * 160, metric = 0.00% * 160;
Minibatch[1771-1780]: loss = 60.878125 * 160, metric = 0.00% * 160;
Minibatch[1781-1790]: loss = 58.542187 * 160, metric = 0.00% * 160;
Minibatch[1791-1800]: loss = 55.750781 * 160, metric = 0.00% * 160;
Minibatch[1801-1810]: loss = 59.907812 * 160, metric = 0.00% * 160;
Minibatch[1811-1820]: loss = 54.553125 * 160, metric = 0.00% * 160;
Minibatch[1821-1830]: loss = 55.514063 * 160, metric = 0.00% * 160;
Minibatch[1831-1840]: loss = 60.069531 * 160, metric = 0.00% * 160;
Minibatch[1841-1850]: loss = 55.467969 * 160, metric = 0.00% * 160;
Minibatch[1851-1860]: loss = 52.922656 * 160, metric = 0.00% * 160;
Minibatch[1861-1870]: loss = 52.050781 * 160, metric = 0.00% * 160;
Minibatch[1871-1880]: loss = 53.039844 * 160, metric = 0.00% * 160;
Minibatch[1881-1890]: loss = 56.530469 * 160, metric = 0.00% * 160;
Minibatch[1891-1900]: loss = 56.039062 * 160, metric = 0.00% * 160;
Minibatch[1901-1910]: loss = 55.987500 * 160, metric = 0.00% * 160;
Minibatch[1911-1920]: loss = 50.814844 * 160, metric = 0.00% * 160;
Minibatch[1921-1930]: loss = 52.962500 * 160, metric = 0.00% * 160;
Minibatch[1931-1940]: loss = 52.478125 * 160, metric = 0.00% * 160;
Minibatch[1941-1950]: loss = 55.443750 * 160, metric = 0.00% * 160;
Minibatch[1951-1960]: loss = 53.821875 * 160, metric = 0.00% * 160;
Minibatch[1961-1970]: loss = 54.060938 * 160, metric = 0.00% * 160;
Minibatch[1971-1980]: loss = 51.372656 * 160, metric = 0.00% * 160;
Minibatch[1981-1990]: loss = 55.279688 * 160, metric = 0.00% * 160;
Minibatch[1991-2000]: loss = 54.750781 * 160, metric = 0.00% * 160;
Minibatch[2001-2010]: loss = 56.213281 * 160, metric = 0.00% * 160;
Minibatch[2011-2020]: loss = 56.285938 * 160, metric = 0.00% * 160;
Minibatch[2021-2030]: loss = 59.938281 * 160, metric = 0.00% * 160;
Minibatch[2031-2040]: loss = 56.749219 * 160, metric = 0.00% * 160;
Minibatch[2041-2050]: loss = 53.639844 * 160, metric = 0.00% * 160;
Minibatch[2051-2060]: loss = 54.572656 * 160, metric = 0.00% * 160;
Minibatch[2061-2070]: loss = 58.426563 * 160, metric = 0.00% * 160;
Minibatch[2071-2080]: loss = 56.483594 * 160, metric = 0.00% * 160;
Minibatch[2081-2090]: loss = 56.260937 * 160, metric = 0.00% * 160;
Minibatch[2091-2100]: loss = 52.841406 * 160, metric = 0.00% * 160;
Minibatch[2101-2110]: loss = 52.563281 * 160, metric = 0.00% * 160;
Minibatch[2111-2120]: loss = 55.320312 * 160, metric = 0.00% * 160;
Minibatch[2121-2130]: loss = 52.949219 * 160, metric = 0.00% * 160;
Minibatch[2131-2140]: loss = 55.096875 * 160, metric = 0.00% * 160;
Minibatch[2141-2150]: loss = 54.937500 * 160, metric = 0.00% * 160;
Minibatch[2151-2160]: loss = 57.588281 * 160, metric = 0.00% * 160;
Minibatch[2161-2170]: loss = 57.021875 * 160, metric = 0.00% * 160;
Minibatch[2171-2180]: loss = 55.917969 * 160, metric = 0.00% * 160;
Minibatch[2181-2190]: loss = 54.732031 * 160, metric = 0.00% * 160;
Minibatch[2191-2200]: loss = 54.442188 * 160, metric = 0.00% * 160;
Minibatch[2201-2210]: loss = 53.738281 * 160, metric = 0.00% * 160;
Minibatch[2211-2220]: loss = 58.837500 * 160, metric = 0.00% * 160;
Minibatch[2221-2230]: loss = 54.764844 * 160, metric = 0.00% * 160;
Minibatch[2231-2240]: loss = 55.934375 * 160, metric = 0.00% * 160;
Minibatch[2241-2250]: loss = 53.096094 * 160, metric = 0.00% * 160;
Minibatch[2251-2260]: loss = 53.480469 * 160, metric = 0.00% * 160;
Minibatch[2261-2270]: loss = 64.183594 * 160, metric = 0.00% * 160;
Minibatch[2271-2280]: loss = 56.512500 * 160, metric = 0.00% * 160;
Minibatch[2281-2290]: loss = 58.585156 * 160, metric = 0.00% * 160;
Minibatch[2291-2300]: loss = 61.078906 * 160, metric = 0.00% * 160;
Minibatch[2301-2310]: loss = 55.668750 * 160, metric = 0.00% * 160;
Minibatch[2311-2320]: loss = 55.800000 * 160, metric = 0.00% * 160;
Minibatch[2321-2330]: loss = 59.715625 * 160, metric = 0.00% * 160;
Minibatch[2331-2340]: loss = 56.739063 * 160, metric = 0.00% * 160;
Minibatch[2341-2350]: loss = 54.148438 * 160, metric = 0.00% * 160;
Minibatch[2351-2360]: loss = 56.303125 * 160, metric = 0.00% * 160;
Minibatch[2361-2370]: loss = 58.473438 * 160, metric = 0.00% * 160;
Minibatch[2371-2380]: loss = 52.107813 * 160, metric = 0.00% * 160;
Minibatch[2381-2390]: loss = 57.867188 * 160, metric = 0.00% * 160;
Minibatch[2391-2400]: loss = 53.982813 * 160, metric = 0.00% * 160;
Minibatch[2401-2410]: loss = 53.665625 * 160, metric = 0.00% * 160;
Minibatch[2411-2420]: loss = 58.292187 * 160, metric = 0.00% * 160;
Minibatch[2421-2430]: loss = 55.540625 * 160, metric = 0.00% * 160;
Minibatch[2431-2440]: loss = 54.085938 * 160, metric = 0.00% * 160;
Minibatch[2441-2450]: loss = 57.048437 * 160, metric = 0.00% * 160;
Minibatch[2451-2460]: loss = 57.906250 * 160, metric = 0.00% * 160;
Minibatch[2461-2470]: loss = 57.571875 * 160, metric = 0.00% * 160;
Minibatch[2471-2480]: loss = 55.489063 * 160, metric = 0.00% * 160;
Minibatch[2481-2490]: loss = 52.610937 * 160, metric = 0.00% * 160;
Minibatch[2491-2500]: loss = 54.318750 * 160, metric = 0.00% * 160;
Minibatch[2501-2510]: loss = 54.859375 * 160, metric = 0.00% * 160;
Minibatch[2511-2520]: loss = 55.231250 * 160, metric = 0.00% * 160;
Minibatch[2521-2530]: loss = 58.407812 * 160, metric = 0.00% * 160;
Minibatch[2531-2540]: loss = 58.634375 * 160, metric = 0.00% * 160;
Minibatch[2541-2550]: loss = 53.034375 * 160, metric = 0.00% * 160;
Minibatch[2551-2560]: loss = 55.168750 * 160, metric = 0.00% * 160;
Minibatch[2561-2570]: loss = 54.296875 * 160, metric = 0.00% * 160;
Minibatch[2571-2580]: loss = 54.867188 * 160, metric = 0.00% * 160;
Minibatch[2581-2590]: loss = 58.739063 * 160, metric = 0.00% * 160;
Minibatch[2591-2600]: loss = 55.335938 * 160, metric = 0.00% * 160;
Minibatch[2601-2610]: loss = 51.465625 * 160, metric = 0.00% * 160;
Minibatch[2611-2620]: loss = 52.807812 * 160, metric = 0.00% * 160;
Minibatch[2621-2630]: loss = 56.973438 * 160, metric = 0.00% * 160;
Minibatch[2631-2640]: loss = 55.760937 * 160, metric = 0.00% * 160;
Minibatch[2641-2650]: loss = 57.792187 * 160, metric = 0.00% * 160;
Minibatch[2651-2660]: loss = 54.465625 * 160, metric = 0.00% * 160;
Minibatch[2661-2670]: loss = 59.975000 * 160, metric = 0.00% * 160;
Minibatch[2671-2680]: loss = 57.667187 * 160, metric = 0.00% * 160;
Minibatch[2681-2690]: loss = 52.554688 * 160, metric = 0.00% * 160;
Minibatch[2691-2700]: loss = 52.912500 * 160, metric = 0.00% * 160;
Minibatch[2701-2710]: loss = 55.100000 * 160, metric = 0.00% * 160;
Minibatch[2711-2720]: loss = 56.393750 * 160, metric = 0.00% * 160;
Minibatch[2721-2730]: loss = 54.771875 * 160, metric = 0.00% * 160;
Minibatch[2731-2740]: loss = 52.928125 * 160, metric = 0.00% * 160;
Minibatch[2741-2750]: loss = 50.903125 * 160, metric = 0.00% * 160;
Minibatch[2751-2760]: loss = 54.125000 * 160, metric = 0.00% * 160;
Minibatch[2761-2770]: loss = 54.910938 * 160, metric = 0.00% * 160;
Minibatch[2771-2780]: loss = 55.806250 * 160, metric = 0.00% * 160;
Minibatch[2781-2790]: loss = 54.820312 * 160, metric = 0.00% * 160;
Minibatch[2791-2800]: loss = 53.851562 * 160, metric = 0.00% * 160;
Minibatch[2801-2810]: loss = 54.487500 * 160, metric = 0.00% * 160;
Minibatch[2811-2820]: loss = 54.459375 * 160, metric = 0.00% * 160;
Minibatch[2821-2830]: loss = 58.146875 * 160, metric = 0.00% * 160;
Minibatch[2831-2840]: loss = 54.750000 * 160, metric = 0.00% * 160;
Minibatch[2841-2850]: loss = 53.339062 * 160, metric = 0.00% * 160;
Minibatch[2851-2860]: loss = 54.956250 * 160, metric = 0.00% * 160;
Minibatch[2861-2870]: loss = 53.834375 * 160, metric = 0.00% * 160;
Minibatch[2871-2880]: loss = 50.092188 * 160, metric = 0.00% * 160;
Minibatch[2881-2890]: loss = 51.587500 * 160, metric = 0.00% * 160;
Minibatch[2891-2900]: loss = 55.212500 * 160, metric = 0.00% * 160;
Minibatch[2901-2910]: loss = 55.415625 * 160, metric = 0.00% * 160;
Minibatch[2911-2920]: loss = 56.782812 * 160, metric = 0.00% * 160;
Minibatch[2921-2930]: loss = 56.890625 * 160, metric = 0.00% * 160;
Minibatch[2931-2940]: loss = 56.079687 * 160, metric = 0.00% * 160;
Minibatch[2941-2950]: loss = 55.096875 * 160, metric = 0.00% * 160;
Minibatch[2951-2960]: loss = 50.482813 * 160, metric = 0.00% * 160;
Minibatch[2961-2970]: loss = 56.664062 * 160, metric = 0.00% * 160;
Minibatch[2971-2980]: loss = 61.457813 * 160, metric = 0.00% * 160;
Minibatch[2981-2990]: loss = 59.684375 * 160, metric = 0.00% * 160;
Minibatch[2991-3000]: loss = 54.496875 * 160, metric = 0.00% * 160;
Minibatch[3001-3010]: loss = 57.596875 * 160, metric = 0.00% * 160;
Minibatch[3011-3020]: loss = 59.928125 * 160, metric = 0.00% * 160;
Minibatch[3021-3030]: loss = 58.689062 * 160, metric = 0.00% * 160;
Minibatch[3031-3040]: loss = 57.437500 * 160, metric = 0.00% * 160;
Minibatch[3041-3050]: loss = 57.979687 * 160, metric = 0.00% * 160;
Minibatch[3051-3060]: loss = 53.182812 * 160, metric = 0.00% * 160;
Minibatch[3061-3070]: loss = 53.846875 * 160, metric = 0.00% * 160;
Minibatch[3071-3080]: loss = 57.675000 * 160, metric = 0.00% * 160;
Minibatch[3081-3090]: loss = 55.490625 * 160, metric = 0.00% * 160;
Minibatch[3091-3100]: loss = 56.300000 * 160, metric = 0.00% * 160;
Minibatch[3101-3110]: loss = 52.643750 * 160, metric = 0.00% * 160;
Minibatch[3111-3120]: loss = 55.703125 * 160, metric = 0.00% * 160;
Finished Epoch[3]: loss = 56.604865 * 50000, metric = 0.00% * 50000 6.870s (7278.0 samples/s);
Minibatch[ 1- 10]: loss = 53.336053 * 160, metric = 0.00% * 160;
Minibatch[ 11- 20]: loss = 54.782281 * 160, metric = 0.00% * 160;
Minibatch[ 21- 30]: loss = 53.444873 * 160, metric = 0.00% * 160;
Minibatch[ 31- 40]: loss = 53.285718 * 160, metric = 0.00% * 160;
Minibatch[ 41- 50]: loss = 55.782764 * 160, metric = 0.00% * 160;
Minibatch[ 51- 60]: loss = 56.156567 * 160, metric = 0.00% * 160;
Minibatch[ 61- 70]: loss = 52.548389 * 160, metric = 0.00% * 160;
Minibatch[ 71- 80]: loss = 56.122729 * 160, metric = 0.00% * 160;
Minibatch[ 81- 90]: loss = 58.763281 * 160, metric = 0.00% * 160;
Minibatch[ 91- 100]: loss = 54.542920 * 160, metric = 0.00% * 160;
Minibatch[ 101- 110]: loss = 53.204102 * 160, metric = 0.00% * 160;
Minibatch[ 111- 120]: loss = 54.098291 * 160, metric = 0.00% * 160;
Minibatch[ 121- 130]: loss = 57.751318 * 160, metric = 0.00% * 160;
Minibatch[ 131- 140]: loss = 54.264990 * 160, metric = 0.00% * 160;
Minibatch[ 141- 150]: loss = 55.755762 * 160, metric = 0.00% * 160;
Minibatch[ 151- 160]: loss = 55.535059 * 160, metric = 0.00% * 160;
Minibatch[ 161- 170]: loss = 54.688672 * 160, metric = 0.00% * 160;
Minibatch[ 171- 180]: loss = 58.516211 * 160, metric = 0.00% * 160;
Minibatch[ 181- 190]: loss = 53.706738 * 160, metric = 0.00% * 160;
Minibatch[ 191- 200]: loss = 50.943359 * 160, metric = 0.00% * 160;
Minibatch[ 201- 210]: loss = 51.258398 * 160, metric = 0.00% * 160;
Minibatch[ 211- 220]: loss = 52.520605 * 160, metric = 0.00% * 160;
Minibatch[ 221- 230]: loss = 58.569336 * 160, metric = 0.00% * 160;
Minibatch[ 231- 240]: loss = 56.955273 * 160, metric = 0.00% * 160;
Minibatch[ 241- 250]: loss = 52.322852 * 160, metric = 0.00% * 160;
Minibatch[ 251- 260]: loss = 55.010742 * 160, metric = 0.00% * 160;
Minibatch[ 261- 270]: loss = 54.831641 * 160, metric = 0.00% * 160;
Minibatch[ 271- 280]: loss = 53.129785 * 160, metric = 0.00% * 160;
Minibatch[ 281- 290]: loss = 57.946191 * 160, metric = 0.00% * 160;
Minibatch[ 291- 300]: loss = 61.330957 * 160, metric = 0.00% * 160;
Minibatch[ 301- 310]: loss = 59.558008 * 160, metric = 0.00% * 160;
Minibatch[ 311- 320]: loss = 54.511133 * 160, metric = 0.00% * 160;
Minibatch[ 321- 330]: loss = 56.906445 * 160, metric = 0.00% * 160;
Minibatch[ 331- 340]: loss = 58.436328 * 160, metric = 0.00% * 160;
Minibatch[ 341- 350]: loss = 56.789062 * 160, metric = 0.00% * 160;
Minibatch[ 351- 360]: loss = 56.125781 * 160, metric = 0.00% * 160;
Minibatch[ 361- 370]: loss = 52.338867 * 160, metric = 0.00% * 160;
Minibatch[ 371- 380]: loss = 60.203711 * 160, metric = 0.00% * 160;
Minibatch[ 381- 390]: loss = 60.411914 * 160, metric = 0.00% * 160;
Minibatch[ 391- 400]: loss = 55.493164 * 160, metric = 0.00% * 160;
Minibatch[ 401- 410]: loss = 54.444336 * 160, metric = 0.00% * 160;
Minibatch[ 411- 420]: loss = 51.979297 * 160, metric = 0.00% * 160;
Minibatch[ 421- 430]: loss = 49.741016 * 160, metric = 0.00% * 160;
Minibatch[ 431- 440]: loss = 56.230078 * 160, metric = 0.00% * 160;
Minibatch[ 441- 450]: loss = 51.516211 * 160, metric = 0.00% * 160;
Minibatch[ 451- 460]: loss = 49.310547 * 160, metric = 0.00% * 160;
Minibatch[ 461- 470]: loss = 49.986523 * 160, metric = 0.00% * 160;
Minibatch[ 471- 480]: loss = 53.012891 * 160, metric = 0.00% * 160;
Minibatch[ 481- 490]: loss = 53.364648 * 160, metric = 0.00% * 160;
Minibatch[ 491- 500]: loss = 60.394922 * 160, metric = 0.00% * 160;
Minibatch[ 501- 510]: loss = 56.852734 * 160, metric = 0.00% * 160;
Minibatch[ 511- 520]: loss = 53.157617 * 160, metric = 0.00% * 160;
Minibatch[ 521- 530]: loss = 56.374414 * 160, metric = 0.00% * 160;
Minibatch[ 531- 540]: loss = 60.762305 * 160, metric = 0.00% * 160;
Minibatch[ 541- 550]: loss = 57.307617 * 160, metric = 0.00% * 160;
Minibatch[ 551- 560]: loss = 54.411133 * 160, metric = 0.00% * 160;