|
12 | 12 | },
|
13 | 13 | {
|
14 | 14 | "cell_type": "code",
|
15 |
| - "execution_count": 1, |
| 15 | + "execution_count": 2, |
16 | 16 | "metadata": {},
|
17 | 17 | "outputs": [
|
18 | 18 | {
|
19 | 19 | "name": "stdout",
|
20 | 20 | "output_type": "stream",
|
21 | 21 | "text": [
|
22 |
| - "1.12.0\n" |
| 22 | + "1.15.0\n" |
23 | 23 | ]
|
24 | 24 | }
|
25 | 25 | ],
|
|
28 | 28 | "import matplotlib.pyplot as plt\n",
|
29 | 29 | "%matplotlib inline\n",
|
30 | 30 | "import tensorflow as tf\n",
|
31 |
| - "import tensorflow.contrib.eager as tfe\n", |
32 | 31 | "\n",
|
33 | 32 | "tf.enable_eager_execution()\n",
|
34 | 33 | "tf.set_random_seed(777) # for reproducibility\n",
|
|
47 | 46 | },
|
48 | 47 | {
|
49 | 48 | "cell_type": "code",
|
50 |
| - "execution_count": 2, |
| 49 | + "execution_count": 3, |
51 | 50 | "metadata": {
|
52 | 51 | "scrolled": true
|
53 | 52 | },
|
|
107 | 106 | },
|
108 | 107 | {
|
109 | 108 | "cell_type": "code",
|
110 |
| - "execution_count": 3, |
| 109 | + "execution_count": 4, |
111 | 110 | "metadata": {},
|
112 | 111 | "outputs": [],
|
113 | 112 | "source": [
|
|
124 | 123 | },
|
125 | 124 | {
|
126 | 125 | "cell_type": "code",
|
127 |
| - "execution_count": 4, |
| 126 | + "execution_count": 5, |
128 | 127 | "metadata": {},
|
129 | 128 | "outputs": [],
|
130 | 129 | "source": [
|
|
150 | 149 | },
|
151 | 150 | {
|
152 | 151 | "cell_type": "code",
|
153 |
| - "execution_count": 5, |
| 152 | + "execution_count": 6, |
154 | 153 | "metadata": {},
|
155 | 154 | "outputs": [],
|
156 | 155 | "source": [
|
|
186 | 185 | },
|
187 | 186 | {
|
188 | 187 | "cell_type": "code",
|
189 |
| - "execution_count": 6, |
| 188 | + "execution_count": 7, |
190 | 189 | "metadata": {},
|
191 | 190 | "outputs": [],
|
192 | 191 | "source": [
|
|
208 | 207 | },
|
209 | 208 | {
|
210 | 209 | "cell_type": "code",
|
211 |
| - "execution_count": 7, |
| 210 | + "execution_count": 8, |
212 | 211 | "metadata": {},
|
213 | 212 | "outputs": [],
|
214 | 213 | "source": [
|
|
227 | 226 | },
|
228 | 227 | {
|
229 | 228 | "cell_type": "code",
|
230 |
| - "execution_count": 8, |
| 229 | + "execution_count": 9, |
231 | 230 | "metadata": {},
|
232 | 231 | "outputs": [],
|
233 | 232 | "source": [
|
|
250 | 249 | },
|
251 | 250 | {
|
252 | 251 | "cell_type": "code",
|
253 |
| - "execution_count": 9, |
| 252 | + "execution_count": 10, |
254 | 253 | "metadata": {},
|
255 | 254 | "outputs": [
|
256 | 255 | {
|
257 | 256 | "name": "stdout",
|
258 | 257 | "output_type": "stream",
|
259 | 258 | "text": [
|
| 259 | + "WARNING:tensorflow:From <ipython-input-6-6afa75b867be>:2: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", |
| 260 | + "Instructions for updating:\n", |
| 261 | + "Deprecated in favor of operator or tf.math.divide.\n", |
260 | 262 | "Iter: 0, Loss: 0.6874\n",
|
261 | 263 | "Iter: 100, Loss: 0.5776\n",
|
262 | 264 | "Iter: 200, Loss: 0.5349\n",
|
|
276 | 278 | "EPOCHS = 1001\n",
|
277 | 279 | "\n",
|
278 | 280 | "for step in range(EPOCHS):\n",
|
279 |
| - " for features, labels in tfe.Iterator(dataset):\n", |
| 281 | + " for features, labels in iter(dataset):\n", |
280 | 282 | " grads = grad(logistic_regression(features), features, labels)\n",
|
281 | 283 | " optimizer.apply_gradients(grads_and_vars=zip(grads,[W,b]))\n",
|
282 | 284 | " if step % 100 == 0:\n",
|
|
309 | 311 | "name": "python",
|
310 | 312 | "nbconvert_exporter": "python",
|
311 | 313 | "pygments_lexer": "ipython3",
|
312 |
| - "version": "3.6.5" |
| 314 | + "version": "3.6.7" |
313 | 315 | }
|
314 | 316 | },
|
315 | 317 | "nbformat": 4,
|
|
0 commit comments