-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtensorflow_cumulative_object_counting.py
206 lines (163 loc) · 7.93 KB
/
tensorflow_cumulative_object_counting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import dlib
from object_detection.utils import ops as utils_ops
from trackable_object import TrackableObject
from centroidtracker import CentroidTracker
import tensorflow as tf
import cv2
import time
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
import numpy as np
from PIL import Image
import warnings
warnings.filterwarnings('ignore')
# patch tf1 into `utils.ops`
utils_ops.tf = tf.compat.v1
# Patch the location of gfile
tf.gfile = tf.io.gfile
# ------------------------------------------------------------------
def load_model(model_path):
tf.keras.backend.clear_session()
model = tf.saved_model.load(model_path)
return model
def run_inference_for_single_image(model, image):
image = np.asarray(image)
# The input needs to be a tensor, convert it using `tf.convert_to_tensor`.
input_tensor = tf.convert_to_tensor(image)
# The model expects a batch of images, so add an axis with `tf.newaxis`.
input_tensor = input_tensor[tf.newaxis, ...]
# Run inference
output_dict = model(input_tensor)
# All outputs are batches tensors.
# Convert to numpy arrays, and take index [0] to remove the batch dimension.
# We're only interested in the first num_detections.
num_detections = int(output_dict.pop('num_detections'))
output_dict = {key: value[0, :num_detections].numpy()
for key, value in output_dict.items()}
output_dict['num_detections'] = num_detections
# detection_classes should be ints.
output_dict['detection_classes'] = output_dict['detection_classes'].astype(
np.int64)
# Handle models with masks:
if 'detection_masks' in output_dict:
# Reframe the the bbox mask to the image size.
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
output_dict['detection_masks'], output_dict['detection_boxes'],
image.shape[0], image.shape[1])
detection_masks_reframed = tf.cast(
detection_masks_reframed > 0.5, tf.uint8)
output_dict['detection_masks_reframed'] = detection_masks_reframed.numpy()
return output_dict
# This method takes a video file & runs the model on each frame. Outputs a new video file showing the detections.
def run_inference(model, category_index, cap, labels, roi_position=0.6, threshold=0.5, x_axis=True, skip_frames=20,
save_path='', show=True):
print("NOTE : Please wait it may take few minutes to process the video (if video path is given)."
"Longer videos may take more time. On Completion you'll see the path where the processed video is saved.")
counter = [0, 0, 0, 0] # left, right, up, down
total_frames = 0
ct = CentroidTracker(maxDisappeared=40, maxDistance=50)
trackers = []
trackableObjects = {}
# Check if results should be saved
if save_path:
width = int(cap.get(3))
height = int(cap.get(4))
fps = cap.get(cv2.CAP_PROP_FPS)
out = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(
'M', 'J', 'P', 'G'), fps, (width, height))
while cap.isOpened():
ret, image_np = cap.read()
if not ret:
break
height, width, _ = image_np.shape
rgb = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
status = "Waiting"
rects = []
if total_frames % skip_frames == 0:
print("Frames Processed : " + str(total_frames))
status = "Detecting"
trackers = []
# Actual detection.
output_dict = run_inference_for_single_image(model, image_np)
for i, (y_min, x_min, y_max, x_max) in enumerate(output_dict['detection_boxes']):
if output_dict['detection_scores'][i] > threshold and (
labels == None or category_index[output_dict['detection_classes'][i]]['name'] in labels):
tracker = dlib.correlation_tracker()
rect = dlib.rectangle(
int(x_min * width), int(y_min * height), int(x_max * width), int(y_max * height))
tracker.start_track(rgb, rect)
trackers.append(tracker)
else:
status = "Tracking"
for tracker in trackers:
# update the tracker and grab the updated position
tracker.update(rgb)
pos = tracker.get_position()
# unpack the position object
x_min, y_min, x_max, y_max = int(pos.left()), int(
pos.top()), int(pos.right()), int(pos.bottom())
# add the bounding box coordinates to the rectangles list
rects.append((x_min, y_min, x_max, y_max))
objects = ct.update(rects)
for (objectID, centroid) in objects.items():
to = trackableObjects.get(objectID, None)
if to is None:
to = TrackableObject(objectID, centroid)
else:
if x_axis and not to.counted:
x = [c[0] for c in to.centroids]
direction = centroid[0] - np.mean(x)
if centroid[0] > roi_position * width and direction > 0 and np.mean(x) < roi_position * width:
counter[1] += 1
to.counted = True
elif centroid[0] < roi_position * width and direction < 0 and np.mean(
x) > roi_position * width:
counter[0] += 1
to.counted = True
elif not x_axis and not to.counted:
y = [c[1] for c in to.centroids]
direction = centroid[1] - np.mean(y)
if centroid[1] > roi_position * height and direction > 0 and np.mean(
y) < roi_position * height:
counter[3] += 1
to.counted = True
elif centroid[1] < roi_position * height and direction < 0 and np.mean(
y) > roi_position * height:
counter[2] += 1
to.counted = True
to.centroids.append(centroid)
trackableObjects[objectID] = to
text = "ID {}".format(objectID)
cv2.putText(image_np, text, (centroid[0] - 10, centroid[1] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
cv2.circle(
image_np, (centroid[0], centroid[1]), 4, (255, 255, 255), -1)
# Draw ROI line
if x_axis:
cv2.line(image_np, (int(roi_position * width), 0),
(int(roi_position * width), height), (0xFF, 0, 0), 5)
else:
cv2.line(image_np, (0, int(roi_position * height)),
(width, int(roi_position * height)), (0xFF, 0, 0), 5)
# display count and status
font = cv2.FONT_HERSHEY_SIMPLEX
if x_axis:
cv2.putText(image_np, f'Left: {counter[0]}; Right: {counter[1]}', (
10, 35), font, 0.8, (0, 0xFF, 0xFF), 2, cv2.FONT_HERSHEY_SIMPLEX)
else:
cv2.putText(image_np, f'Up: {counter[2]}; Down: {counter[3]}', (
10, 35), font, 0.8, (0, 0xFF, 0xFF), 2, cv2.FONT_HERSHEY_SIMPLEX)
cv2.putText(image_np, 'Status: ' + status, (10, 70), font,
0.8, (0, 0xFF, 0xFF), 2, cv2.FONT_HERSHEY_SIMPLEX)
if show:
cv2.imshow('cumulative_object_counting', image_np)
if cv2.waitKey(25) & 0xFF == ord('q'):
break
if save_path:
out.write(image_np)
total_frames += 1
cap.release()
if save_path:
out.release()
print("OUTPUT VIDEO SAVED AT : " + save_path)
cv2.destroyAllWindows()