-
Notifications
You must be signed in to change notification settings - Fork 4
/
common.py
121 lines (90 loc) · 3.72 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import argparse
import os
import random
import numpy as np
import torch
from tasks import task_mapper
from utils.logger import tabular_pretty_print, fmt_float
def setup_plain_seed(SEED):
os.environ["PYTHONHASHSEED"] = str(SEED)
random.seed(SEED)
np.random.seed(SEED)
def setup_seed(SEED):
setup_plain_seed(SEED)
torch.manual_seed(SEED)
torch.random.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def setup_gpu(gpu_s):
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_s)
def setup_env(gpu_s, seed):
os.environ["BITSANDBYTES_NOWELCOME"] = "1"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
setup_gpu(gpu_s)
setup_seed(seed)
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
def mk_parser():
psr = argparse.ArgumentParser(add_help=False)
psr.add_argument("--seed", type=int, default=42)
psr.add_argument("--prompt_version", type=str, default="v1")
psr.add_argument("--dataset", type=str, choices=task_mapper.keys())
psr.add_argument("--data_file", type=str)
psr.add_argument("--model_type", type=str, choices=["opt", "gpt2", "e-gpt", "bloom", "falcon", "llama"])
psr.add_argument("--model_size", type=str)
psr.add_argument("--gpus", type=str, default="0")
psr.add_argument("--batch_size", type=int, default=0) # 0 for auto-detect, -1 for FORCE auto-detect
psr.add_argument("--in_8bit", type=str2bool, default=False)
psr.add_argument("--no_console", action="store_true", default=False)
psr.add_argument("--exemplar_method", type=str, default="random", choices=["random", "written", "stratified"])
# if `num_base_shot` is set, `num_k_shot * num_base_shot` is the number of exemplars to be sampled
psr.add_argument("--num_k_shots", type=int, default=1)
psr.add_argument("--alpha", type=float, default=0.8)
psr.add_argument("--rank", type=int, default=1)
return psr
def mk_parser_openai():
psr = argparse.ArgumentParser(add_help=False)
psr.add_argument("--prompt_version", type=str, default="v1")
psr.add_argument("--dataset", type=str, choices=["numersense", "piqa"])
psr.add_argument("--data_file", type=str)
psr.add_argument("--engine", type=str, choices=["text", "codex"])
psr.add_argument("--batch_size", type=int, default=4)
psr.add_argument("--top_p", type=float, default=1.0)
psr.add_argument("--temperature", type=float, default=1.0)
return psr
class GridMetric:
def __init__(self, grid_size, decimal=1):
self.data = np.zeros((grid_size, grid_size), dtype=float)
self.format_f = np.vectorize(lambda x: fmt_float(x, decimal))
def submit(self, i, j, metric):
# i, j starts from 0
# 0 <= i,j < grid_size
self.data[i][j] = metric
def pretty_print(self):
for line in tabular_pretty_print(self.format_f(self.data).tolist()):
yield line
class AdvantageLogger:
def __init__(self, direction="up"):
self.log = []
self.cur_best = 0.0
self.is_better = np.greater_equal if direction == "up" else np.less
def submit(self, idx, value):
value = float(value)
if self.is_better(value, self.cur_best):
self.cur_best = value
self.log.append((value, idx))
return True
return False
def pretty_print(self):
table = [["At", "Metric"]]
for v, idx in self.log:
table.append([str(idx), str(v)])
for line in tabular_pretty_print(table):
yield line