|
| 1 | +import numpy as np, pandas as pd |
| 2 | +from collections import defaultdict |
| 3 | +import pickle |
| 4 | +from sklearn import preprocessing |
| 5 | +min_max_scaler = preprocessing.MinMaxScaler() |
| 6 | + |
| 7 | + |
| 8 | + |
| 9 | + |
| 10 | +pre_data = np.asarray(pd.read_csv("./data/transcripts.csv" , header=None)) |
| 11 | + |
| 12 | +train = pd.read_csv("./data/text_train.csv", header=None) |
| 13 | +test = pd.read_csv("./data/text_test.csv", header=None) |
| 14 | +train = np.asarray(train) |
| 15 | +test = np.asarray(test) |
| 16 | +train_index = np.asarray(train[:,0], dtype = 'int') |
| 17 | +test_index = np.asarray(test[:,0], dtype = 'int') |
| 18 | + |
| 19 | + |
| 20 | + |
| 21 | +def main(name): |
| 22 | + |
| 23 | + path = "./data/"+name+"/"+name |
| 24 | + print path |
| 25 | + train_video_mapping=defaultdict(list) |
| 26 | + train_video_mapping_index=defaultdict(list) |
| 27 | + test_video_mapping=defaultdict(list) |
| 28 | + test_video_mapping_index=defaultdict(list) |
| 29 | + |
| 30 | + data_train = np.asarray(pd.read_csv(path+"_train0.csv", header=None)) |
| 31 | + data_test = np.asarray(pd.read_csv(path+"_test0.csv", header=None)) |
| 32 | + |
| 33 | + for i in xrange(train_index.shape[0]): |
| 34 | + train_video_mapping[pre_data[train_index[i]][0].rsplit("_",1)[0] ].append(train_index[i]) |
| 35 | + train_video_mapping_index[pre_data[train_index[i]][0].rsplit("_",1)[0] ].append( int(pre_data[train_index[i]][0].rsplit("_",1)[1]) ) |
| 36 | + |
| 37 | + for i in xrange(test_index.shape[0]): |
| 38 | + test_video_mapping[pre_data[test_index[i]][0].rsplit("_",1)[0] ].append(test_index[i]) |
| 39 | + test_video_mapping_index[pre_data[test_index[i]][0].rsplit("_",1)[0] ].append( int(pre_data[test_index[i]][0].rsplit("_",1)[1]) ) |
| 40 | + |
| 41 | + train_indices = dict((c, i) for i, c in enumerate(train_index)) |
| 42 | + test_indices = dict((c, i) for i, c in enumerate(test_index)) |
| 43 | + |
| 44 | + max_len = 0 |
| 45 | + for key,value in train_video_mapping.iteritems(): |
| 46 | + max_len = max(max_len , len(value)) |
| 47 | + for key,value in test_video_mapping.iteritems(): |
| 48 | + max_len = max(max_len, len(value)) |
| 49 | + |
| 50 | + pad = np.asarray([0 for i in xrange(data_train[0][:-1].shape[0])]) |
| 51 | + |
| 52 | + print "Mapping train" |
| 53 | + |
| 54 | + train_data_X =[] |
| 55 | + train_data_Y =[] |
| 56 | + train_length =[] |
| 57 | + for key,value in train_video_mapping.iteritems(): |
| 58 | + |
| 59 | + |
| 60 | + lst = np.column_stack((train_video_mapping_index[key],value) ) |
| 61 | + ind = np.asarray(sorted(lst,key=lambda x: x[0])) |
| 62 | + |
| 63 | + |
| 64 | + lst_X, lst_Y=[],[] |
| 65 | + ctr=0; |
| 66 | + for i in xrange(ind.shape[0]): |
| 67 | + ctr+=1 |
| 68 | + #lst_X.append(preprocessing.scale( min_max_scaler.fit_transform(data_train[train_indices[ind[i,1]]][:-1]))) |
| 69 | + lst_X.append(data_train[train_indices[ind[i,1]]][:-1]) |
| 70 | + lst_Y.append(data_train[train_indices[ind[i,1]]][-1]) |
| 71 | + train_length.append(ctr) |
| 72 | + for i in xrange(ctr, max_len): |
| 73 | + lst_X.append(pad) |
| 74 | + lst_Y.append(0) #dummy label |
| 75 | + |
| 76 | + train_data_X.append(lst_X) |
| 77 | + train_data_Y.append(lst_Y) |
| 78 | + |
| 79 | + |
| 80 | + test_data_X =[] |
| 81 | + test_data_Y =[] |
| 82 | + test_length =[] |
| 83 | + |
| 84 | + print "Mapping test" |
| 85 | + |
| 86 | + for key,value in test_video_mapping.iteritems(): |
| 87 | + |
| 88 | + lst = np.column_stack((test_video_mapping_index[key],value) ) |
| 89 | + ind = np.asarray(sorted(lst,key=lambda x: x[0])) |
| 90 | + |
| 91 | + lst_X, lst_Y=[],[] |
| 92 | + ctr=0 |
| 93 | + for i in xrange(ind.shape[0]): |
| 94 | + ctr+=1 |
| 95 | + #lst_X.append(preprocessing.scale( min_max_scaler.transform(data_test[test_indices[ind[i,1]]][:-1]))) |
| 96 | + lst_X.append(data_test[test_indices[ind[i,1]]][:-1]) |
| 97 | + lst_Y.append(data_test[test_indices[ind[i,1]]][-1]) |
| 98 | + test_length.append(ctr) |
| 99 | + for i in xrange(ctr, max_len): |
| 100 | + lst_X.append(pad) |
| 101 | + lst_Y.append(0) #dummy label |
| 102 | + |
| 103 | + test_data_X.append(np.asarray(lst_X)) |
| 104 | + test_data_Y.append(np.asarray(lst_Y)) |
| 105 | + |
| 106 | + train_data_X = np.asarray(train_data_X) |
| 107 | + test_data_X = np.asarray(test_data_X) |
| 108 | + print train_data_X.shape, test_data_X.shape,len(train_length), len(test_length) |
| 109 | + |
| 110 | + print "Dumping data" |
| 111 | + with open('./input/'+name+'.pickle', 'wb') as handle: |
| 112 | + pickle.dump((train_data_X, np.asarray(train_data_Y), test_data_X, np.asarray(test_data_Y), max_len ,train_length, test_length), handle, protocol=pickle.HIGHEST_PROTOCOL) |
| 113 | + |
| 114 | + |
| 115 | + |
| 116 | + |
| 117 | + |
| 118 | + |
| 119 | +if __name__ == "__main__": |
| 120 | + |
| 121 | + names = ['text','audio','video'] |
| 122 | + for nm in names: |
| 123 | + main(nm) |
0 commit comments