jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
To plot on Mapbox maps with Plotly you may need a Mapbox account and a public Mapbox Access Token. See our Mapbox Map Layers documentation for more information.
Plotly Express is the easy-to-use, high-level interface to Plotly, which operates on a variety of types of data and produces easy-to-style figures.
With px.density_mapbox
, each row of the DataFrame is represented as a point smoothed with a given radius of influence.
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/earthquakes-23k.csv')
import plotly.express as px
fig = px.density_mapbox(df, lat='Latitude', lon='Longitude', z='Magnitude', radius=10,
center=dict(lat=0, lon=180), zoom=0,
mapbox_style="stamen-terrain")
fig.show()
If Plotly Express does not provide a good starting point, it is also possible to use the more generic go.Densitymapbox
class from plotly.graph_objects
.
import pandas as pd
quakes = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/earthquakes-23k.csv')
import plotly.graph_objects as go
fig = go.Figure(go.Densitymapbox(lat=quakes.Latitude, lon=quakes.Longitude, z=quakes.Magnitude,
radius=10))
fig.update_layout(mapbox_style="stamen-terrain", mapbox_center_lon=180)
fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
fig.show()
See function reference for px.(density_mapbox)
or https://plotly.com/python/reference/densitymapbox/ for more information about mapbox and their attribute options.