Skip to content

Files

Latest commit

39f872f · Jun 21, 2021

History

History
525 lines (400 loc) · 15.4 KB

bar-charts.md

File metadata and controls

525 lines (400 loc) · 15.4 KB
jupyter
jupytext kernelspec language_info plotly
notebook_metadata_filter text_representation
all
extension format_name format_version jupytext_version
.md
markdown
1.2
1.4.2
display_name language name
Python 3
python
python3
codemirror_mode file_extension mimetype name nbconvert_exporter pygments_lexer version
name version
ipython
3
.py
text/x-python
python
python
ipython3
3.7.7
description display_as language layout name order page_type permalink thumbnail
How to make Bar Charts in Python with Plotly.
basic
python
base
Bar Charts
3
example_index
python/bar-charts/
thumbnail/bar.jpg

Bar chart with Plotly Express

Plotly Express is the easy-to-use, high-level interface to Plotly, which operates on a variety of types of data and produces easy-to-style figures.

With px.bar, each row of the DataFrame is represented as a rectangular mark.

import plotly.express as px
data_canada = px.data.gapminder().query("country == 'Canada'")
fig = px.bar(data_canada, x='year', y='pop')
fig.show()

Bar charts with Long Format Data

Long-form data has one row per observation, and one column per variable. This is suitable for storing and displaying multivariate data i.e. with dimension greater than 2. This format is sometimes called "tidy".

To learn more about how to provide a specific form of column-oriented data to 2D-Cartesian Plotly Express functions such as px.bar, see the Plotly Express Wide-Form Support in Python documentation.

For detailed column-input-format documentation, see the Plotly Express Arguments documentation.

import plotly.express as px

long_df = px.data.medals_long()

fig = px.bar(long_df, x="nation", y="count", color="medal", title="Long-Form Input")
fig.show()
long_df

Bar charts with Wide Format Data

Wide-form data has one row per value of one of the first variable, and one column per value of the second variable. This is suitable for storing and displaying 2-dimensional data.

import plotly.express as px

wide_df = px.data.medals_wide()

fig = px.bar(wide_df, x="nation", y=["gold", "silver", "bronze"], title="Wide-Form Input")
fig.show()
wide_df

Bar charts in Dash

Dash is the best way to build analytical apps in Python using Plotly figures. To run the app below, run pip install dash, click "Download" to get the code and run python app.py.

Get started with the official Dash docs and learn how to effortlessly style & deploy apps like this with Dash Enterprise.

from IPython.display import IFrame
snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/'
IFrame(snippet_url + 'bar-charts', width='100%', height=630)

Customize bar charts with Plotly Express

The bar plot can be customized using keyword arguments, for example to use continuous color, as below, or discrete color, as above.

import plotly.express as px
data = px.data.gapminder()

data_canada = data[data.country == 'Canada']
fig = px.bar(data_canada, x='year', y='pop',
             hover_data=['lifeExp', 'gdpPercap'], color='lifeExp',
             labels={'pop':'population of Canada'}, height=400)
fig.show()

When several rows share the same value of x (here Female or Male), the rectangles are stacked on top of one another by default.

import plotly.express as px
df = px.data.tips()
fig = px.bar(df, x="sex", y="total_bill", color='time')
fig.show()

The default stacked bar chart behavior can be changed to grouped (also known as clustered) using the barmode argument:

import plotly.express as px
df = px.data.tips()
fig = px.bar(df, x="sex", y="total_bill",
             color='smoker', barmode='group',
             height=400)
fig.show()

New in v5.0

Bar charts afford the use of patterns (also known as hatching or texture) in addition to color:

import plotly.express as px
df = px.data.medals_long()

fig = px.bar(df, x="medal", y="count", color="nation",
             pattern_shape="nation", pattern_shape_sequence=[".", "x", "+"])
fig.show()

Facetted subplots

Use the keyword arguments facet_row (resp. facet_col) to create facetted subplots, where different rows (resp. columns) correspond to different values of the dataframe column specified in facet_row.

import plotly.express as px
df = px.data.tips()
fig = px.bar(df, x="sex", y="total_bill", color="smoker", barmode="group",
             facet_row="time", facet_col="day",
             category_orders={"day": ["Thur", "Fri", "Sat", "Sun"],
                              "time": ["Lunch", "Dinner"]})
fig.show()

To learn more, see the link to px.bar reference page.

Basic Bar Chart with plotly.graph_objects

If Plotly Express does not provide a good starting point, it is also possible to use the more generic go.Bar class from plotly.graph_objects.

import plotly.graph_objects as go
animals=['giraffes', 'orangutans', 'monkeys']

fig = go.Figure([go.Bar(x=animals, y=[20, 14, 23])])
fig.show()

Grouped Bar Chart

Customize the figure using fig.update.

import plotly.graph_objects as go
animals=['giraffes', 'orangutans', 'monkeys']

fig = go.Figure(data=[
    go.Bar(name='SF Zoo', x=animals, y=[20, 14, 23]),
    go.Bar(name='LA Zoo', x=animals, y=[12, 18, 29])
])
# Change the bar mode
fig.update_layout(barmode='group')
fig.show()

Stacked Bar Chart

import plotly.graph_objects as go
animals=['giraffes', 'orangutans', 'monkeys']

fig = go.Figure(data=[
    go.Bar(name='SF Zoo', x=animals, y=[20, 14, 23]),
    go.Bar(name='LA Zoo', x=animals, y=[12, 18, 29])
])
# Change the bar mode
fig.update_layout(barmode='stack')
fig.show()

Bar Chart with Hover Text

import plotly.graph_objects as go

x = ['Product A', 'Product B', 'Product C']
y = [20, 14, 23]

# Use the hovertext kw argument for hover text
fig = go.Figure(data=[go.Bar(x=x, y=y,
            hovertext=['27% market share', '24% market share', '19% market share'])])
# Customize aspect
fig.update_traces(marker_color='rgb(158,202,225)', marker_line_color='rgb(8,48,107)',
                  marker_line_width=1.5, opacity=0.6)
fig.update_layout(title_text='January 2013 Sales Report')
fig.show()

Bar Chart with Direct Labels

import plotly.graph_objects as go

x = ['Product A', 'Product B', 'Product C']
y = [20, 14, 23]

# Use textposition='auto' for direct text
fig = go.Figure(data=[go.Bar(
            x=x, y=y,
            text=y,
            textposition='auto',
        )])

fig.show()

Controlling text fontsize with uniformtext

If you want all the text labels to have the same size, you can use the uniformtext layout parameter. The minsize attribute sets the font size, and the mode attribute sets what happens for labels which cannot fit with the desired fontsize: either hide them or show them with overflow. In the example below we also force the text to be outside of bars with textposition.

import plotly.express as px

df = px.data.gapminder().query("continent == 'Europe' and year == 2007 and pop > 2.e6")
fig = px.bar(df, y='pop', x='country', text='pop')
fig.update_traces(texttemplate='%{text:.2s}', textposition='outside')
fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide')
fig.show()

Rotated Bar Chart Labels

import plotly.graph_objects as go

months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
          'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']

fig = go.Figure()
fig.add_trace(go.Bar(
    x=months,
    y=[20, 14, 25, 16, 18, 22, 19, 15, 12, 16, 14, 17],
    name='Primary Product',
    marker_color='indianred'
))
fig.add_trace(go.Bar(
    x=months,
    y=[19, 14, 22, 14, 16, 19, 15, 14, 10, 12, 12, 16],
    name='Secondary Product',
    marker_color='lightsalmon'
))

# Here we modify the tickangle of the xaxis, resulting in rotated labels.
fig.update_layout(barmode='group', xaxis_tickangle=-45)
fig.show()

Customizing Individual Bar Colors

import plotly.graph_objects as go

colors = ['lightslategray',] * 5
colors[1] = 'crimson'

fig = go.Figure(data=[go.Bar(
    x=['Feature A', 'Feature B', 'Feature C',
       'Feature D', 'Feature E'],
    y=[20, 14, 23, 25, 22],
    marker_color=colors # marker color can be a single color value or an iterable
)])
fig.update_layout(title_text='Least Used Feature')

Customizing Individual Bar Widths

import plotly.graph_objects as go

fig = go.Figure(data=[go.Bar(
    x=[1, 2, 3, 5.5, 10],
    y=[10, 8, 6, 4, 2],
    width=[0.8, 0.8, 0.8, 3.5, 4] # customize width here
)])

fig.show()

Bar charts with custom widths can be used to make mekko charts (also known as marimekko charts, mosaic plots, or variwide charts).

import plotly.graph_objects as go
import numpy as np

labels = ["apples","oranges","pears","bananas"]
widths = np.array([10,20,20,50])

data = {
    "South": [50,80,60,70],
    "North": [50,20,40,30]
}

fig = go.Figure()
for key in data:
    fig.add_trace(go.Bar(
        name=key,
        y=data[key],
        x=np.cumsum(widths)-widths,
        width=widths,
        offset=0,
        customdata=np.transpose([labels, widths*data[key]]),
        texttemplate="%{y} x %{width} =<br>%{customdata[1]}",
        textposition="inside",
        textangle=0,
        textfont_color="white",
        hovertemplate="<br>".join([
            "label: %{customdata[0]}",
            "width: %{width}",
            "height: %{y}",
            "area: %{customdata[1]}",
        ])
    ))

fig.update_xaxes(
    tickvals=np.cumsum(widths)-widths/2,
    ticktext= ["%s<br>%d" % (l, w) for l, w in zip(labels, widths)]
)

fig.update_xaxes(range=[0,100])
fig.update_yaxes(range=[0,100])

fig.update_layout(
    title_text="Marimekko Chart",
    barmode="stack",
    uniformtext=dict(mode="hide", minsize=10),
)

Customizing Individual Bar Base

import plotly.graph_objects as go

years = ['2016','2017','2018']

fig = go.Figure()
fig.add_trace(go.Bar(x=years, y=[500, 600, 700],
                base=[-500,-600,-700],
                marker_color='crimson',
                name='expenses'))
fig.add_trace(go.Bar(x=years, y=[300, 400, 700],
                base=0,
                marker_color='lightslategrey',
                name='revenue'
                ))

fig.show()

Colored and Styled Bar Chart

In this example several parameters of the layout as customized, hence it is convenient to use directly the go.Layout(...) constructor instead of calling fig.update.

import plotly.graph_objects as go

years = [1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
         2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012]

fig = go.Figure()
fig.add_trace(go.Bar(x=years,
                y=[219, 146, 112, 127, 124, 180, 236, 207, 236, 263,
                   350, 430, 474, 526, 488, 537, 500, 439],
                name='Rest of world',
                marker_color='rgb(55, 83, 109)'
                ))
fig.add_trace(go.Bar(x=years,
                y=[16, 13, 10, 11, 28, 37, 43, 55, 56, 88, 105, 156, 270,
                   299, 340, 403, 549, 499],
                name='China',
                marker_color='rgb(26, 118, 255)'
                ))

fig.update_layout(
    title='US Export of Plastic Scrap',
    xaxis_tickfont_size=14,
    yaxis=dict(
        title='USD (millions)',
        titlefont_size=16,
        tickfont_size=14,
    ),
    legend=dict(
        x=0,
        y=1.0,
        bgcolor='rgba(255, 255, 255, 0)',
        bordercolor='rgba(255, 255, 255, 0)'
    ),
    barmode='group',
    bargap=0.15, # gap between bars of adjacent location coordinates.
    bargroupgap=0.1 # gap between bars of the same location coordinate.
)
fig.show()

Bar Chart with Relative Barmode

With "relative" barmode, the bars are stacked on top of one another, with negative values below the axis, positive values above.

import plotly.graph_objects as go
x = [1, 2, 3, 4]

fig = go.Figure()
fig.add_trace(go.Bar(x=x, y=[1, 4, 9, 16]))
fig.add_trace(go.Bar(x=x, y=[6, -8, -4.5, 8]))
fig.add_trace(go.Bar(x=x, y=[-15, -3, 4.5, -8]))
fig.add_trace(go.Bar(x=x, y=[-1, 3, -3, -4]))

fig.update_layout(barmode='relative', title_text='Relative Barmode')
fig.show()

Bar Chart with Sorted or Ordered Categories

Set categoryorder to "category ascending" or "category descending" for the alphanumerical order of the category names or "total ascending" or "total descending" for numerical order of values. categoryorder for more information. Note that sorting the bars by a particular trace isn't possible right now - it's only possible to sort by the total values. Of course, you can always sort your data before plotting it if you need more customization.

This example orders the bar chart alphabetically with categoryorder: 'category ascending'

import plotly.graph_objects as go

x=['b', 'a', 'c', 'd']
fig = go.Figure(go.Bar(x=x, y=[2,5,1,9], name='Montreal'))
fig.add_trace(go.Bar(x=x, y=[1, 4, 9, 16], name='Ottawa'))
fig.add_trace(go.Bar(x=x, y=[6, 8, 4.5, 8], name='Toronto'))

fig.update_layout(barmode='stack', xaxis={'categoryorder':'category ascending'})
fig.show()

This example shows how to customise sort ordering by defining categoryorder to "array" to derive the ordering from the attribute categoryarray.

import plotly.graph_objects as go

x=['b', 'a', 'c', 'd']
fig = go.Figure(go.Bar(x=x, y=[2,5,1,9], name='Montreal'))
fig.add_trace(go.Bar(x=x, y=[1, 4, 9, 16], name='Ottawa'))
fig.add_trace(go.Bar(x=x, y=[6, 8, 4.5, 8], name='Toronto'))

fig.update_layout(barmode='stack', xaxis={'categoryorder':'array', 'categoryarray':['d','a','c','b']})
fig.show()

This example orders the bar chart by descending value with categoryorder: 'total descending'

import plotly.graph_objects as go

x=['b', 'a', 'c', 'd']
fig = go.Figure(go.Bar(x=x, y=[2,5,1,9], name='Montreal'))
fig.add_trace(go.Bar(x=x, y=[1, 4, 9, 16], name='Ottawa'))
fig.add_trace(go.Bar(x=x, y=[6, 8, 4.5, 8], name='Toronto'))

fig.update_layout(barmode='stack', xaxis={'categoryorder':'total descending'})
fig.show()

Horizontal Bar Charts

See examples of horizontal bar charts here.

Bar Charts With Multicategory Axis Type

If your traces have arrays for x or y, then the axis type is automatically inferred to be multicategory.

import plotly.graph_objects as go
x = [
    ["BB+", "BB+", "BB+", "BB", "BB", "BB"],
    [16, 17, 18, 16, 17, 18,]
]
fig = go.Figure()
fig.add_bar(x=x,y=[1,2,3,4,5,6])
fig.add_bar(x=x,y=[6,5,4,3,2,1])
fig.update_layout(barmode="relative")
fig.show()

Reference

See function reference for px.bar() or https://plotly.com/python/reference/bar/ for more information and chart attribute options!