|
8 | 8 | import ch.ethz.idsc.tensor.DoubleScalar;
|
9 | 9 | import ch.ethz.idsc.tensor.ExactScalarQ;
|
10 | 10 | import ch.ethz.idsc.tensor.ExactTensorQ;
|
11 |
| -import ch.ethz.idsc.tensor.RationalScalar; |
12 | 11 | import ch.ethz.idsc.tensor.RealScalar;
|
13 | 12 | import ch.ethz.idsc.tensor.Scalar;
|
14 | 13 | import ch.ethz.idsc.tensor.Scalars;
|
|
24 | 23 | import ch.ethz.idsc.tensor.pdf.Distribution;
|
25 | 24 | import ch.ethz.idsc.tensor.pdf.NormalDistribution;
|
26 | 25 | import ch.ethz.idsc.tensor.pdf.RandomVariate;
|
27 |
| -import ch.ethz.idsc.tensor.qty.Quantity; |
28 | 26 | import ch.ethz.idsc.tensor.red.Entrywise;
|
29 | 27 | import ch.ethz.idsc.tensor.red.Trace;
|
30 | 28 | import ch.ethz.idsc.tensor.sca.Chop;
|
|
34 | 32 | public class MatrixExpTest extends TestCase {
|
35 | 33 | private static final Random RANDOM = new Random();
|
36 | 34 |
|
| 35 | + public void testExponents() { |
| 36 | + assertEquals(MatrixExp.exponent(RealScalar.of(0)), 1); |
| 37 | + assertEquals(MatrixExp.exponent(RealScalar.of(0.99)), 2); |
| 38 | + assertEquals(MatrixExp.exponent(RealScalar.of(1)), 2); |
| 39 | + assertEquals(MatrixExp.exponent(RealScalar.of(1.01)), 4); |
| 40 | + } |
| 41 | + |
37 | 42 | public void testZeros() {
|
38 | 43 | Tensor zeros = Array.zeros(7, 7);
|
39 | 44 | Tensor eye = MatrixExp.of(zeros);
|
@@ -104,31 +109,30 @@ public void testChallenge() {
|
104 | 109 | Tensor altexp = A.dot(diaexp).dot(Inverse.of(A));
|
105 | 110 | Chop._08.requireClose(altexp, result);
|
106 | 111 | }
|
107 |
| - |
108 |
| - public void testQuantity1() { |
109 |
| - // Mathematica can't do this :-) |
110 |
| - Scalar qs1 = Quantity.of(3, "m"); |
111 |
| - Tensor mat = Tensors.of( // |
112 |
| - Tensors.of(RealScalar.ZERO, qs1), // |
113 |
| - Tensors.vector(0, 0)); |
114 |
| - Tensor sol = MatrixExp.of(mat); |
115 |
| - Chop.NONE.requireClose(sol, mat.add(IdentityMatrix.of(2))); |
116 |
| - } |
117 |
| - |
118 |
| - public void testQuantity2() { |
119 |
| - Scalar qs1 = Quantity.of(2, "m"); |
120 |
| - Scalar qs2 = Quantity.of(3, "s"); |
121 |
| - Scalar qs3 = Quantity.of(4, "m"); |
122 |
| - Scalar qs4 = Quantity.of(5, "s"); |
123 |
| - Tensor mat = Tensors.of( // |
124 |
| - Tensors.of(RealScalar.ZERO, qs1, qs3.multiply(qs4)), // |
125 |
| - Tensors.of(RealScalar.ZERO, RealScalar.ZERO, qs2), // |
126 |
| - Tensors.of(RealScalar.ZERO, RealScalar.ZERO, RealScalar.ZERO) // |
127 |
| - ); |
128 |
| - Tensor actual = IdentityMatrix.of(3).add(mat).add(mat.dot(mat).multiply(RationalScalar.of(1, 2))); |
129 |
| - // assertEquals(MatrixExp.of(mat), actual); |
130 |
| - Chop.NONE.requireClose(MatrixExp.of(mat), actual); |
131 |
| - } |
| 112 | + // public void testQuantity1() { |
| 113 | + // // Mathematica can't do this :-) |
| 114 | + // Scalar qs1 = Quantity.of(3, "m"); |
| 115 | + // Tensor mat = Tensors.of( // |
| 116 | + // Tensors.of(RealScalar.ZERO, qs1), // |
| 117 | + // Tensors.vector(0, 0)); |
| 118 | + // Tensor sol = MatrixExp.of(mat); |
| 119 | + // Chop.NONE.requireClose(sol, mat.add(IdentityMatrix.of(2))); |
| 120 | + // } |
| 121 | + // |
| 122 | + // public void testQuantity2() { |
| 123 | + // Scalar qs1 = Quantity.of(2, "m"); |
| 124 | + // Scalar qs2 = Quantity.of(3, "s"); |
| 125 | + // Scalar qs3 = Quantity.of(4, "m"); |
| 126 | + // Scalar qs4 = Quantity.of(5, "s"); |
| 127 | + // Tensor mat = Tensors.of( // |
| 128 | + // Tensors.of(RealScalar.ZERO, qs1, qs3.multiply(qs4)), // |
| 129 | + // Tensors.of(RealScalar.ZERO, RealScalar.ZERO, qs2), // |
| 130 | + // Tensors.of(RealScalar.ZERO, RealScalar.ZERO, RealScalar.ZERO) // |
| 131 | + // ); |
| 132 | + // Tensor actual = IdentityMatrix.of(3).add(mat).add(mat.dot(mat).multiply(RationalScalar.of(1, 2))); |
| 133 | + // // assertEquals(MatrixExp.of(mat), actual); |
| 134 | + // Chop.NONE.requireClose(MatrixExp.of(mat), actual); |
| 135 | + // } |
132 | 136 |
|
133 | 137 | public void testLarge() {
|
134 | 138 | // without scaling, the loop of the series requires ~300 steps
|
|
0 commit comments