@@ -23483,7 +23483,7 @@ \section*{Appendix: Algorithmic Subtyping}
23483
23483
then \SubtypeNE{T_0}{T_1} if{}f \SubtypeNE{S_i}{T_1} for some $i$.
23484
23484
\item
23485
23485
\textbf{Positional Function Types:}
23486
- $T_0$ is
23486
+ If $T_0$ is
23487
23487
23488
23488
\code{$U_0$ \FUNCTION<%
23489
23489
$X_0$\,\EXTENDS\,$B_{00}$, \ldots, $X_k$\,\EXTENDS\,$B_{0k}$>(%
@@ -23497,7 +23497,7 @@ \section*{Appendix: Algorithmic Subtyping}
23497
23497
$S_0$\,$y_0$, \ldots, $S_p$\,$y_p$, %
23498
23498
[$S_{p+1}$\,$y_{p+1}$, \ldots, $S_q$\,$y_q$])}
23499
23499
23500
- such that each of the following criteria is satisfied,
23500
+ then \SubtypeNE{T_0}{T_1} if{}f each of the following criteria is satisfied,
23501
23501
where the $Z_i$ are fresh type variables with bounds
23502
23502
$B_{0i}[Z_0/X_0, \ldots, Z_k/X_k]$:
23503
23503
@@ -23512,7 +23512,7 @@ \section*{Appendix: Algorithmic Subtyping}
23512
23512
\end{itemize}
23513
23513
\item
23514
23514
\textbf{Named Function Types:}
23515
- $T_0$ is
23515
+ If $T_0$ is
23516
23516
23517
23517
\code{%
23518
23518
$U_0$ \FUNCTION<$X_0$\,\EXTENDS\,$B_{00}$, \ldots, %
@@ -23530,7 +23530,7 @@ \section*{Appendix: Algorithmic Subtyping}
23530
23530
\{$r_{1,n+1}$\,$S_{n+1}$\,$y_{n+1}$, \ldots, $r_{1q}$\,$S_q$\,$y_q$\})}
23531
23531
23532
23532
where $r_{1j}$ is empty or \REQUIRED{} for $j \in n+1 .. q$
23533
- and the following criteria are all satisfied,
23533
+ then \SubtypeNE{T_0}{T_1} if{}f the following criteria are all satisfied,
23534
23534
where \List{Z}{1}{k} are fresh type variables with bounds
23535
23535
$B_{0i}[Z_0/X_0, \ldots, Z_k/X_k]$:
23536
23536
0 commit comments