-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathTestFP.cxx
294 lines (237 loc) · 7.96 KB
/
TestFP.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
/*
* TestFP.cxx
*
* Created on: Oct 9, 2021
* Author: <a href="mailto:[email protected]">Damir Ljubic</a>
*/
#include <string>
#include <vector>
#include <algorithm>
#include <numeric>
#include <iostream>
#include <iterator>
#include <future>
#include <thread>
#include <chrono>
#include "TestFP.hxx"
namespace test::fp
{
using gender_t = enum class Gender
{
female,
male
};
class Person
{
public:
Person(std::string name, int age, gender_t gender):
m_name(name),
m_age(age),
m_gender(gender)
{}
std::string getName() const { return m_name;}
int getAge() const { return m_age;}
gender_t getGender() const { return m_gender;}
private:
std::string m_name;
int m_age;
gender_t m_gender;
};
using persons_t = std::vector<Person>;
/*
* Imperative way
*
* This is actually kind of lifting the generic filter function to
* be used by the higher-order namesOf function, without having any
* side-effects: changing the input data
* So, it's more functional approach, but it uses loop instead of std algorithm, and
* it's less composable as the genuine functional approach
*/
template <typename FilterFunc>
std::vector<std::string> namesOf(const persons_t& persons, FilterFunc filter)
{
std::vector<std::string> names;
names.reserve(persons.size());
for (const auto& person : persons)
{
if (filter(person))
{
names.push_back(std::move(person.getName()));
}
}
return names;
}
/*
* Declarative way using std algorithms
*
* Pros:
* - more expressive code
* - reusable code
* - no side effects (immutable input data)
* Cons:
* - suboptimal in terms of both performance and memory space
*
* One of the crucial problem with std algorithms is that they are not
* composable. The reason for that is that they accept range of iterators as arguments,
* rather then iterable collection itself. Therefore, to overcome this limitation, the auxiliary
* memory space is required
*/
template <typename UnaryPredicate>
persons_t filterPersons(const persons_t& persons, UnaryPredicate func)
{
persons_t filteredPersons; //auxiliary memory space
filteredPersons.reserve(persons.size());
/*
* std library provides different kind of
* filter algorithms on iterable types, like
* std::count_if, or any std::*_if candidate,
* depends on the concrete task
*/
std::copy_if(persons.cbegin(), persons.cend()
, std::back_inserter(filteredPersons)
, func);
return filteredPersons;
}
/*
* Erase-Remove idiom
*
* @note Since C++20 there is std::erase_if
*
* This violate the FP principle of having "pure" function
* In mathematical sense, that always produce
* the same result, for the same given arguments, without having
* any side effects - without changing the state of the captured
* objects
*
*
*/
template <typename UnaryPredicate>
void filterPersons(persons_t& persons, UnaryPredicate func)
{
persons.erase(std::remove_if(persons.begin(), persons.end(), func), persons.end());
}
// Different kind of filters, as pure functions: which makes them easy-safe to compose
persons_t filterByAge(const persons_t& persons, int age)
{
return filterPersons(persons, [age](const Person& person){//unary predicate
return person.getAge() >= age;
});
}
persons_t filterByGender(const persons_t& persons, gender_t gender)
{
return filterPersons(persons, [gender](const Person& person){//unary predicate
return person.getGender() == gender;
});
}
/*
* Compose two functions in most generic way,
* returning their composition in form of the reusable
* closure - lambda instance.
*
* Precondition:
* f1: T1->T2
* f2: T2->T3
*
*/
template <typename Func1, typename Func2>
auto compose(Func1 f1, Func2 f2)
{
return [=](const auto& value)
{
return f2(f1(value));
};
}
template <typename MapFunc, typename R = std::invoke_result_t<MapFunc, const Person&>>
auto mapPersons(const persons_t& persons, MapFunc func)
{
std::vector<R> result; // result of transformation
result.reserve(persons.size());
std::transform(persons.cbegin(), persons.cend(), std::back_inserter(result), func);
return result;
}
std::vector<std::string> personsNames(const persons_t& persons)
{
return mapPersons(persons, [](const Person& person){
return person.getName();
});
}
void print(const std::vector<std::string>& items)
{
using namespace std;
for (const auto& item : items){
cout << item << '\n';
}
}
void testComposable(const persons_t& persons)
{
constexpr int adults = 18;
const auto adultPersons = std::bind(filterByAge, std::placeholders::_1, adults);
const auto malePersons = std::bind(filterByGender, std::placeholders::_1, gender_t::male);
const auto femalePersons = std::bind(filterByGender, std::placeholders::_1, gender_t::female);
std::cout << "\nAdults:\n";
print(personsNames(adultPersons(persons)));
std::cout << "\nMales:\n";
print(personsNames(malePersons(persons)));
std::cout << "\nFemales:\n";
print(personsNames(femalePersons(persons)));
// Combining two filters into single one
std::cout << "\nMale adults:\n";
const auto maleAdultsFilter = compose(malePersons, adultPersons);
print(personsNames(maleAdultsFilter(persons)));
// Explicit filter composition
std::cout << "\nFemale adults:\n";
print(personsNames(femalePersons(adultPersons(persons))));
}
/*
* std::future<T> as monad.
*
* To compose the futures (or better say, asynchronous tasks),
* one needs to convert the blocking std::future::get call into
* non-blocking, by spawning another asynchronous task that will wait
* on previous one being signaled - result being returned
*/
template <typename T, typename Func>
auto then(std::future<T>&& f, Func func)
{
return std::async(std::launch::async, [f = std::move(f), func]() mutable
{
return func(f.get());
});
}
auto testFuturesAsMonads(const persons_t& persons)
{
auto f = std::async(std::launch::async, [p = persons]{
using namespace std::chrono_literals;
std::this_thread::yield();
std::this_thread::sleep_for(1s); // simulates background work
return filterByGender(p, gender_t::female);
});
// This express intention: what to do with the result when it becomes available
return then(then(std::move(f), personsNames), print);
}
/*
* Call in your main.cpp as
* #include TestFP.hxx
*
* int main()
* {
* return test::fp::testFP();
* }
*/
int testFP()
{
const std::vector<Person> persons =
{
Person("Alex", 7, gender_t::male),
Person("John", 45, gender_t::male),
Person("Marry", 47, gender_t::female),
Person("Suzanne", 14, gender_t::female)
};
std::cout << "Test std::future<T> as monad...\n";
auto f = testFuturesAsMonads(persons);
f.wait();
std::cout << "\nTest functions composition\n";
testComposable(persons);
return 0;
}
}