forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsynthetic_model.py
74 lines (59 loc) · 1.86 KB
/
synthetic_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Binary code sample generator."""
import numpy as np
_CRC_LINE = [
[0, 1, 0],
[1, 1, 0],
[1, 0, 0]
]
_CRC_DEPTH = [1, 1, 0, 1]
def ComputeLineCrc(code, width, y, x, d):
crc = 0
for dy in xrange(len(_CRC_LINE)):
i = y - 1 - dy
if i < 0:
continue
for dx in xrange(len(_CRC_LINE[dy])):
j = x - 2 + dx
if j < 0 or j >= width:
continue
crc += 1 if (code[i, j, d] != _CRC_LINE[dy][dx]) else 0
return crc
def ComputeDepthCrc(code, y, x, d):
crc = 0
for delta in xrange(len(_CRC_DEPTH)):
k = d - 1 - delta
if k < 0:
continue
crc += 1 if (code[y, x, k] != _CRC_DEPTH[delta]) else 0
return crc
def GenerateSingleCode(code_shape):
code = np.zeros(code_shape, dtype=np.int)
keep_value_proba = 0.8
height = code_shape[0]
width = code_shape[1]
depth = code_shape[2]
for d in xrange(depth):
for y in xrange(height):
for x in xrange(width):
v1 = ComputeLineCrc(code, width, y, x, d)
v2 = ComputeDepthCrc(code, y, x, d)
v = 1 if (v1 + v2 >= 6) else 0
if np.random.rand() < keep_value_proba:
code[y, x, d] = v
else:
code[y, x, d] = 1 - v
return code