forked from uo-datasci-specialization/c4-ml-fall-2023
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlecture-4.Rmd
599 lines (382 loc) · 24.2 KB
/
lecture-4.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
---
title: "Regularized (Penalized) Linear Regression"
author:
- name: Cengiz Zopluoglu
affiliation: University of Oregon
date: 10/11/2022
output:
distill::distill_article:
self_contained: true
toc: true
toc_float: true
theme: theme.css
---
<style>
.list-group-item.active, .list-group-item.active:focus, .list-group-item.active:hover {
z-index: 2;
color: #fff;
background-color: #FC4445;
border-color: #97CAEF;
}
#infobox {
padding: 1em 1em 1em 4em;
margin-bottom: 10px;
border: 2px solid black;
border-radius: 10px;
background: #E6F6DC 5px center/3em no-repeat;
}
</style>
```{r setup, include=FALSE}
knitr::opts_chunk$set(comment = "",fig.align='center')
require(here)
require(ggplot2)
require(plot3D)
require(kableExtra)
require(knitr)
require(gifski)
require(magick)
require(gridExtra)
library(scales)
library(lubridate)
require(plotly)
options(scipen=99)
```
`r paste('[Updated:',format(Sys.time(),'%a, %b %d, %Y - %H:%M:%S'),']')`
# Regularization
Regularization is a general strategy to incorporate additional penalty terms into the model fitting process and is used not just for regression but a variety of other models. The idea behind the regularization is to constrain the size of regression coefficients to reduce their sampling variation and, hence, reduce the variance of model predictions. These constraints are typically incorporated into the loss function to be optimized. There are two commonly used regularization strategies: **ridge penalty** and **lasso penalty**. In addition, there is also **elastic net**, a mixture of these two strategies.
## Ridge Regression
### Ridge Penalty
Remember that we formulated the loss function for the linear regression as the sum of squared residuals across all observations. For ridge regression, we add a penalty term to this loss function, which is a function of all the regression coefficients in the model. Assuming that there are P regression coefficients in the model, the penalty term for the ridge regression would be
$$\lambda \sum_{i=1}^{P}\beta_p^2,$$
where $\lambda$ is a parameter that penalizes the regression coefficients when they get larger. Therefore, when we fit a regression model with ridge penalty, the loss function to minimize becomes
$$Loss = \sum_{i=1}^{N}\epsilon_{(i)}^2 + \lambda \sum_{p=1}^{P}\beta_p^2,$$
$$Loss = SSR + \lambda \sum_{i=1}^{P}\beta_p^2.$$
Let's consider the same example from the previous class. Suppose we fit a simple linear regression model such that the readability score is the outcome ($Y$) and the Feature 220 is the predictor($X$). Our regression model is
$$Y = \beta_0 + \beta_1X + \epsilon,$$
let's assume the set of coefficients are {$\beta_0,\beta_1$} = {-1.5,2}, so my model is
$$Y = -1.5 + 2X + \epsilon.$$
Then, the value of the loss function when $\lambda=0.2$ would be equal to 19.02.
```{r, echo=TRUE,eval=TRUE,class.source='klippy',class.source = 'fold-show',message=FALSE, warning=FALSE,fig.width=8,fig.height=8}
readability_sub <- read.csv('./data/readability_sub.csv',header=TRUE)
d <- readability_sub[,c('V220','target')]
b0 = -1.5
b1 = 2
d$predicted <- b0 + b1*d$V220
d$error <- d$target - d$predicted
d
lambda = 0.2
loss <- sum((d$error)^2) + lambda*(b0^2 + b1^2)
loss
```
Notice that when $\lambda$ is equal to zero, the loss function is identical to SSR; therefore, it becomes a linear regression with no regularization. As the value of $\lambda$ increases, the degree of penalty linearly increases. The $\lambda$ can technically take any positive value between 0 and $\infty$.
As we did in the previous lecture, imagine that we computed the loss function with the ridge penalty term for every possible combination of the intercept ($\beta_0$) and the slope ($\beta_1$). Let's say the plausible range for the intercept is from -10 to 10 and the plausible range for the slope is from -2 to 2. Now, we also have to think of different values of $\lambda$ because the surface we try to minimize is dependent on the value $\lambda$ and different values of $\lambda$ yield different estimates of $\beta_0$ and $\beta_1$.
```{r, echo=FALSE,eval=FALSE}
setwd('B:/UO Teaching/EDLD 654/Books&Resources/ridge')
require(plotly)
lambda = seq(0,25,.05)
b0 <- c()
b1 <- c()
for(i in 1:length(lambda)){
grid <- expand.grid(b0=seq(-10,10,.1),b1=seq(-5,5,.01))
grid$SSR <- NA
B1 <- matrix(grid$b1,ncol=20,nrow=nrow(grid),byrow=FALSE)
B0 <- matrix(grid$b0,ncol=20,nrow=nrow(grid),byrow=FALSE)
X <- matrix(d$V220,ncol=20,nrow=nrow(grid),byrow=TRUE)
Y_hat <- B0 + X*B1
Y <- matrix(d$target,ncol=20,nrow=nrow(grid),byrow=TRUE)
P <- lambda[i]*(grid$b0^2 + grid$b1^2)
grid$SSR <- rowSums((Y - Y_hat)^2) + P
fig <- plot_ly(grid, x = ~b0, y = ~b1, z = ~SSR,
marker = list(color = ~SSR,
showscale = FALSE,
cmin=min(grid$SSR),
cmax=max(grid$SSR),cauto=F),
width=1200,height=1200) %>%
add_markers() %>%
layout(title = paste0("lambda = ",lambda[i]))%>%
layout(scene = list(xaxis=list(title = 'Beta0'),
yaxis=list(title = 'Beta1'),
camera = list(eye = list(x = 2, y = 0.5, z = 0.5),
up = list(x=0,y=0.5,z=0.5)))) %>%
config(mathjax = 'cdn')
orca(fig,paste0('plot',i,'.png'))
b0[i] <- grid[which.min(grid$SSR),]$b0
b1[i] <- grid[which.min(grid$SSR),]$b1
p1 <- ggplot() +
geom_point(aes(x=lambda[1:i],y=b0),cex=0.5) +
geom_line(aes(x=lambda[1:i],y=b0),size=0.25) +
xlim(c(0,100))+
ylim(c(0,5)) +
xlab('lambda')+
ylab('Beta0')+
theme_bw()
p2 <- ggplot() +
geom_point(aes(x=lambda[1:i],y=b1),cex=0.5) +
geom_line(aes(x=lambda[1:i],y=b1),size=0.25) +
xlim(c(0,100))+
ylim(c(-1.5,0)) +
xlab('lambda')+
ylab('Beta1')+
theme_bw()
ggsave(paste0('b0plot',i,'.png'),p1,width = 1200,height=600,unit='px')
ggsave(paste0('b1plot',i,'.png'),p2,width = 1200,height=600,unit='px')
}
require(magick)
for(i in 1:2001){
a = image_read(paste0('b0plot',i,'.png'))
b = image_read(paste0('b1plot',i,'.png'))
p = image_read(paste0('plot',i,'.png'))
all <- image_append(c(p,image_append(c(a,b),stack=TRUE)))
image_write(all,
path = paste0('image',i,'.png'),
format='png',
quality=100,
depth=16)
print(i)
}
imgs <- list.files(full.names=TRUE)
loc <- grep('./image',imgs)
imgs <- imgs[loc]
imgs <- imgs[order(as.numeric(substring(imgs,
str_locate(imgs,'./image')[,2]+1,
str_locate(imgs,'.png')[,1]-1)))]
imgs <- imgs[seq(1,2001,20)]
img_list <- lapply(imgs, image_read)
img_joined <- image_join(img_list)
img_animated <- image_animate(img_joined, fps = 10)
#img_animated
image_write(image = img_animated,
path = 'ridge.gif')
```
```{r, echo=FALSE,eval=TRUE,fig.align='center',fig.height=8,fig.width=8}
knitr::include_graphics(here('figs/ridge.gif'))
```
### Model Estimation
#### Matrix Solution
The matrix solution we learned before for regression without regularization can also be applied to estimate the coefficients from ridge regression given the $\lambda$ value. Given that
- $\mathbf{Y}$ is an N x 1 column vector of observed values for the outcome variable,
- $\mathbf{X}$ is an N x (P+1) **design matrix** for the set of predictor variables, including an intercept term,
- $\boldsymbol{\beta}$ is an (P+1) x 1 column vector of regression coefficients,
- $\mathbf{I}$ is a (P+1) x (P+1) identity matrix,
- and $\lambda$ is a positive real-valued number,
the ridge regression coefficients can be estimated using the following matrix operation.
$$\hat{\boldsymbol{\beta}} = (\mathbf{X^T}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X^T}\mathbf{Y}$$
Suppose we want to predict the readability score using the two predictors, Feature 220 ($X_1$) and Feature 166 ($X_2$). Our model will be
$$Y_{(i)} = \beta_0 + \beta_1X_{1(i)} + \beta_2X_{2(i)} + \epsilon_{(i)}.$$
If we estimate the ridge regression coefficients by using $\lambda=.5$, the estimates would be {$\beta_0,\beta_1,\beta_2$} = {-.915,1.169,-0.22}.
```{r, echo=TRUE,eval=TRUE,class.source='klippy',class.source = 'fold-show',message=FALSE, warning=FALSE,fig.width=8,fig.height=8}
Y <- as.matrix(readability_sub$target)
X <- as.matrix(cbind(1,readability_sub$V220,readability_sub$V166))
lambda <- 0.5
beta <- solve(t(X)%*%X + lambda*diag(ncol(X)))%*%t(X)%*%Y
beta
```
If we change the value of $\lambda$ to 2, we will get different estimates for the regression coefficients.
```{r, echo=TRUE,eval=TRUE,class.source='klippy',class.source = 'fold-show',message=FALSE, warning=FALSE,fig.width=8,fig.height=8}
Y <- as.matrix(readability_sub$target)
X <- as.matrix(cbind(1,readability_sub$V220,readability_sub$V166))
lambda <- 2
beta <- solve(t(X)%*%X + lambda*diag(ncol(X)))%*%t(X)%*%Y
beta
```
We can manipulate the value of $\lambda$ from 0 to 100 with increments of .1 and calculate the regression coefficients. Note the regression coefficients will shrink toward zero but will never be exactly equal to zero in ridge regression.
```{r, echo=TRUE,eval=TRUE,class.source='klippy',class.source = 'fold-show',message=FALSE, warning=FALSE,fig.width=8,fig.height=5}
Y <- as.matrix(readability_sub$target)
X <- as.matrix(cbind(1,readability_sub$V220,readability_sub$V166))
lambda <- seq(0,100,.1)
beta <- data.frame(matrix(nrow=length(lambda),ncol=4))
beta[,1] <- lambda
for(i in 1:length(lambda)){
beta[i,2:4] <- t(solve(t(X)%*%X + lambda[i]*diag(ncol(X)))%*%t(X)%*%Y)
}
ggplot(data = beta)+
geom_line(aes(x=X1,y=X2))+
geom_line(aes(x=X1,y=X3))+
geom_line(aes(x=X1,y=X4))+
xlab(expression(lambda))+
ylab('')+
theme_bw()+
annotate(geom='text',x=1.5,y=1.5,label=expression(beta[1]))+
annotate(geom='text',x=3,y=-.17,label=expression(beta[2]))+
annotate(geom='text',x=2,y=-.9,label=expression(beta[0]))
```
#### Standardized Variables
We haven't considered a critical issue for the model estimation. This issue is not necessarily important if you have only one predictor; however, it is critical whenever you have more than one predictor. Different variables have different scales, and therefore the magnitude of the regression coefficients for different variables will depend on the variables' scales. A regression coefficient for a predictor with a range from 0 to 100 will be very different from a regression coefficient for a predictor from 0 to 1. Therefore, if we work with the unstandardized variables, the ridge penalty will be amplified for the coefficients of those variables with a more extensive range of values.
Therefore, we must standardize variables before we use ridge regression. Let's do the example in the previous section, but we now first standardize the variables in our model.
```{r, echo=TRUE,eval=TRUE,class.source='klippy',class.source = 'fold-show',message=FALSE, warning=FALSE,fig.width=8,fig.height=8}
Y <- as.matrix(readability_sub$target)
X <- as.matrix(cbind(readability_sub$V220,readability_sub$V166))
# Standardize Y
Y <- scale(Y)
Y
# Standardized X
X <- scale(X)
X
```
When we standardize the variables, the mean of all variables becomes zero. So, the intercept estimate for any regression model with standardized variables is guaranteed to be zero. Note that our design matrix doesn't have a column of ones because it is unnecessary (it would be a column of zeros if we had one).
First, check the regression model's coefficients with standardized variables when there is no ridge penalty.
```{r, echo=TRUE,eval=TRUE,class.source='klippy',class.source = 'fold-show',message=FALSE, warning=FALSE,fig.width=8,fig.height=8}
lambda <- 0
beta.s <- solve(t(X)%*%X + lambda*diag(ncol(X)))%*%t(X)%*%Y
beta.s
```
Now, let's increase the ridge penalty to 0.5.
```{r, echo=TRUE,eval=TRUE,class.source='klippy',class.source = 'fold-show',message=FALSE, warning=FALSE,fig.width=8,fig.height=8}
lambda <- 0.5
beta.s <- solve(t(X)%*%X + lambda*diag(ncol(X)))%*%t(X)%*%Y
beta.s
```
Below, we can manipulate the value of $\lambda$ from 0 to 100 with increments of .1 as we did before and calculate the standardized regression coefficients.
```{r, echo=TRUE,eval=TRUE,class.source='klippy',class.source = 'fold-show',message=FALSE, warning=FALSE,fig.width=8,fig.height=5}
Y <- as.matrix(readability_sub$target)
X <- as.matrix(cbind(readability_sub$V220,readability_sub$V166))
Y <- scale(Y)
X <- scale(X)
lambda <- seq(0,100,.1)
beta <- data.frame(matrix(nrow=length(lambda),ncol=3))
beta[,1] <- lambda
for(i in 1:length(lambda)){
beta[i,2:3] <- t(solve(t(X)%*%X + lambda[i]*diag(ncol(X)))%*%t(X)%*%Y)
}
ggplot(data = beta)+
geom_line(aes(x=X1,y=X2))+
geom_line(aes(x=X1,y=X3))+
xlab(expression(lambda))+
ylab('')+
theme_bw()+
geom_hline(yintercept=0,lty=2) +
annotate(geom='text',x=3,y=.4,label=expression(beta[1]))+
annotate(geom='text',x=2,y=-.075,label=expression(beta[2]))
```
#### `glmnet()` function
Similar to the `lm` function, we can use the `glmnet()` function from the `glmnet` package to run a regression model with ridge penalty. There are many arguments for the `glmnet()` function. For now, the arguments we need to know are
- `x`: an N x P input matrix, where N is the number of observations and P is the number of predictors
- `y`: an N x 1 input matrix for the outcome variable
- `alpha`: a mixing constant for lasso and ridge penalty. When it is zero, the ridge regression is conducted
- `lambda`: penalty term
- `intercept`: set FALSE to avoid intercept for standardized variables
If you want to fit the linear regression without regularization, you can specify `alpha = 0` and `lambda = 0`.
```{r, echo=TRUE,eval=TRUE,message=FALSE, warning=FALSE}
#install.packages('glmnet')
require(glmnet)
Y <- as.matrix(readability_sub$target)
X <- as.matrix(cbind(readability_sub$V220,readability_sub$V166))
Y <- scale(Y)
X <- scale(X)
mod <- glmnet(x = X,
y = Y,
family = 'gaussian',
alpha = 0,
lambda = 0,
intercept=FALSE)
coef(mod)
```
We can also increase the penalty term ($\lambda$).
```{r, echo=TRUE,eval=TRUE,message=FALSE, warning=FALSE}
#install.packages('glmnet')
require(glmnet)
Y <- as.matrix(readability_sub$target)
X <- as.matrix(cbind(readability_sub$V220,readability_sub$V166))
Y <- scale(Y)
X <- scale(X)
mod <- glmnet(x = X,
y = Y,
family = 'gaussian',
alpha = 0,
lambda = 0.5,
intercept=FALSE)
coef(mod)
```
***
<div id="infobox">
<center style="color:black;"> **NOTE** </center>
A careful eye should catch the fact that the coefficient estimates we obtained from the `glmnet()` function for the two standardized variables (Feature 220 and Feature 166) are different than our matrix calculations above when the penalty term ($\lambda$) is 0.5. When we apply the matrix solution above for the ridge regression, we obtained the estimates of 0.409 and -0.062 for the two predictors, respectively, at $\lambda$ = 0.5. When we enter the same value in `glmnet()`, we obtain the estimates of 0.278 and -0.046. So, what is wrong? Where does this discrepancy come from?
There is nothing wrong. It appears that what `lambda` argument in `glmnet` indicates is $\frac{\lambda}{N}$. In most statistics textbooks, the penalty term for the ridge regression is specified as
$$\lambda \sum_{i=1}^{P}\beta_p^2.$$
On the other hand, if we examine Equation 1-3 in [this paper](https://www.jstatsoft.org/article/view/v033i01) written by the developers of the `glmnet` package, we can see that the penalty term applied is equivalent of
$$\lambda N \sum_{i=1}^{P}\beta_p^2.$$
Therefore, if we want identical results, we should use $\lambda$ = 0.5/20.
```{r, echo=TRUE,eval=TRUE,message=FALSE, warning=FALSE}
N = 20
mod <- glmnet(x = X,
y = Y,
family = 'gaussian',
alpha = 0,
lambda = 0.5/N,
intercept=FALSE)
coef(mod)
```
Note that these numbers are still slightly different. We can attribute this difference to the numerical approximation `glmnet` is using when optimizing the loss function. `glmnet` doesn't use the closed-form matrix solution for ridge regression. This is a good thing because there is not always a closed form solution for different types of regularization approaches (e.g., lasso). Therefore, the computational approximation in `glmnet` is very needed moving forward.
</div>
***
#### Tuning the Hyperparameter $\lambda$
In ridge regression, the $\lambda$ parameter is called a **hyperparameter**. In the context of machine learning, the parameters in a model can be classified into two types: parameters and hyperparameters. The **parameters** are typically estimated from data and not set by users. In the context of ridge regression, regression coefficients, {$\beta_0,\beta_1,...,\beta_P$}, are parameters to be estimated from data. On the other hand, the **hyperparameters** are not estimable, most of the time, because there are no first-order or second-order derivatives for these hyperparameters. Therefore, they must be set by the users. In the context of ridge regression, the penalty term, {$\lambda$}, is a hyperparameter.
The process of deciding what value to use for a hyperparameter is called **tuning**, and it is usually a trial-error process. The idea is simple. We try many different hyperparameter values and check how well the model performs based on specific criteria (e.g., MAE, MSE, RMSE) using k-fold cross-validation. Then, we pick the value of a hyperparameter that provides the best performance.
### Using Ridge Regression to Predict Readability Scores
Please review the following notebook for applying Ridge Regresison to predict readability scores from all 768 features using the whole dataset.
[Predicting Readability Scores using the Ridge Regression](https://www.kaggle.com/code/uocoeeds/building-a-ridge-regression-model)
## Lasso Regression
Lasso regression is very similar to the Ridge regression. The only difference is that it applies a different penalty to the loss function. Assuming that there are P regression coefficients in the model, the penalty term for the ridge regression would be
$$\lambda \sum_{i=1}^{P} |\beta_p|,$$
where $\lambda$ is again the penalty constant and $|\beta_p|$ is the absolute value of the regression coefficient for the $p^{th}$ parameter. Lasso regression also penalizes the regression coefficients when they get larger but differently. When we fit a regression model with a lasso penalty, the loss function to minimize becomes
$$Loss = \sum_{i=1}^{N}\epsilon_{(i)}^2 + \lambda \sum_{i=1}^{P}|\beta_p|,$$
$$Loss = SSR + \lambda \sum_{i=1}^{P}|\beta_p|.$$
Let's consider the same example where we fit a simple linear regression model: the readability score is the outcome ($Y$) and Feature 229 is the predictor($X$). Our regression model is
$$Y = \beta_0 + \beta_1X + \epsilon,$$
and let's assume the set of coefficients are {$\beta_0,\beta_1$} = {-1.5,2}, so my model is
$$Y = -1.5 + 2X + \epsilon.$$
Then, the value of the loss function when $\lambda=0.2$ would equal 18.467.
```{r, echo=TRUE,eval=TRUE,message=FALSE, warning=FALSE}
readability_sub <- read.csv('./data/readability_sub.csv',header=TRUE)
d <- readability_sub[,c('V220','target')]
b0 = -1.5
b1 = 2
d$predicted <- b0 + b1*d$V220
d$error <- d$target - d$predicted
d
lambda = 0.2
loss <- sum((d$error)^2) + lambda*(abs(b0) + abs(b1))
loss
```
When $\lambda$ is equal to 0, the loss function is again identical to SSR; therefore, it becomes a linear regression with no regularization. Below is a demonstration of what happens to the loss function and the regression coefficients for increasing levels of loss penalty ($\lambda$).
```{r, echo=FALSE,eval=TRUE,fig.align='center',fig.height=8,fig.width=8}
knitr::include_graphics(here('figs/lasso.gif'))
```
### Model Estimation
Unfortunately, there is no closed-form solution for lasso regression due to the absolute value terms in the loss function. The only way to estimate the coefficients of the lasso regression is to optimize the loss function using numerical techniques and obtain computational approximations of the regression coefficients. Similar to ridge regression, `glmnet` is an engine we can use to estimate the coefficients of the lasso regression.
#### glmnet() function
We can fit the lasso regression by setting the `alpha=` argument to 1 in `glmnet()` and specifying the penalty term ($\lambda$).
```{r, echo=TRUE,eval=TRUE,message=FALSE,warning=FALSE}
Y <- as.matrix(readability_sub$target)
X <- as.matrix(cbind(readability_sub$V220,readability_sub$V166))
Y <- scale(Y)
X <- scale(X)
mod <- glmnet(x = X,
y = Y,
family = 'gaussian',
alpha = 1,
lambda = 0.2,
intercept=FALSE)
coef(mod)
```
Notice that there is a `.` symbol for the coefficient of the second predictor. The `.` symbol indicates that it is equal to zero. While the regression coefficients in the ridge regression shrink to zero, they do not necessarily end up being exactly equal to zero. In contrast, lasso regression may yield a value of zero for some coefficients in the model. For this reason, lasso regression may be used as a variable selection algorithm. The variables with coefficients equal to zero may be discarded from future considerations as they are not crucial for predicting the outcome.
#### Tuning $\lambda$
We implement a similar strategy for finding the optimal value of $\lambda$. We try many different values of $\lambda$ and check how well the model performs based on specific criteria (e.g., MAE, MSE, RMSE) using k-fold cross-validation. Then, we pick the value of $\lambda$ that provides the best performance.
### Using Lasso Regression to Predict the Readability Scores
Please review the following notebook for applying Lasso Regresison to predict readability scores from all 768 features using the whole dataset.
[Predicting Readability Scores using the Lasso Regression](https://www.kaggle.com/code/uocoeeds/building-a-lasso-regression-model)
## Elastic Net
Elastic net combines the two types of penalty into one by mixing them with some weighted average. The penalty term for the elastic net could be written as
$$\lambda \left[ (1-\alpha)\sum_{i=1}^{P} \beta_p^2 + \alpha\sum_{i=1}^{P} |\beta_p|)\right].$$
Note that this term reduces to
$$\lambda \sum_{i=1}^{P} \beta_p^2$$
when $\alpha$ is equal to 1 and to
$$\lambda \sum_{i=1}^{P} |\beta_p|$$
when $\alpha$ is equal to 0.
When $\alpha$ is set to 1, this is equivalent to ridge regression. When $\alpha$ equals 0, this is the equivalent of lasso regression. When $\alpha$ takes any value between 0 and 1, this term becomes a weighted average of the ridge penalty and lasso penalty. In Elastic Net, two hyperparameters will be tuned, $\alpha$ and $\lambda$. We can consider all possible combinations of these two hyperparameters and try to find the optimal combination using 10-fold cross-validation.
### Using Elastic Net to Predict the Readability Scores
Please review the following notebook for applying Elastic Net to predict readability scores from all 768 features using the whole dataset.
[Predicting Readability Scores using the Elastic Net](https://www.kaggle.com/code/uocoeeds/building-a-regression-model-with-elastic-net)
## Using the Prediction Model for a New Text
Please review the following notebook for predicting the readability of a given text with the existing model objects
[Predicting Readability Scores for a new text](https://www.kaggle.com/code/uocoeeds/using-the-prediction-models-for-a-new-text)