forked from MILVLG/mmnas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_itm.py
630 lines (520 loc) · 27.2 KB
/
train_itm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
import math, os, json, torch, datetime, random, copy, shutil, torchvision, tqdm
import argparse, yaml
import torch.nn as nn
import torch.optim as Optim
import torch.nn.functional as F
import torch.utils.data as Data
import numpy as np
from collections import namedtuple
from tkinter import _flatten
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from mmnas.loader.load_data_itm import DataSet, DataSet_Neg
from mmnas.loader.filepath_itm import Path
from mmnas.model.full_itm import Net_Full
from mmnas.utils.optimizer import WarmupOptimizer
from mmnas.utils.sampler import SubsetDistributedSampler
from mmnas.utils.itm_loss import BCE_Loss, Margin_Loss
def parse_args():
'''
Parse input arguments
'''
parser = argparse.ArgumentParser(description='MmNas Args')
parser.add_argument('--RUN', dest='RUN_MODE', default='train',
choices=['train', 'val', 'test'],
help='{train, val, test}',
type=str)
parser.add_argument('--DATASET', dest='DATASET', default='flickr',
choices=['coco', 'flickr'],
help='{coco, flickr}',
type=str)
parser.add_argument('--SPLIT', dest='TRAIN_SPLIT', default='train',
choices=['train'],
help="set training split",
type=str)
parser.add_argument('--BS', dest='BATCH_SIZE', default=64,
help='batch size during training',
type=int)
parser.add_argument('--NW', dest='NUM_WORKERS', default=4,
help='fix random seed',
type=int)
parser.add_argument('--GENO_PATH', dest='GENO_PATH', default='./logs/ckpts/arch/train_itm.json',
help='version control',
type=str)
parser.add_argument('--GENO_EPOCH', dest='GENO_EPOCH', default=0,
help='version control',
type=int)
parser.add_argument('--GPU', dest='GPU', default='0, 1, 2, 3',
help="gpu select, eg.'0, 1, 2'",
type=str)
parser.add_argument('--SEED', dest='SEED', default=888,
help='fix random seed',
type=int)
parser.add_argument('--VERSION', dest='VERSION', default='train_itm',
help='version control',
type=str)
parser.add_argument('--RESUME', dest='RESUME', default=False,
help='resume training',
action='store_true')
parser.add_argument('--CKPT_PATH', dest='CKPT_FILE_PATH',
help='load checkpoint path',
type=str)
args = parser.parse_args()
return args
class Cfg(Path):
def __init__(self, rank, world_size, args):
super(Cfg, self).__init__()
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '1242'
# initialize the process group
dist.init_process_group("nccl", rank=rank, world_size=world_size)
# self.DEBUG = True
self.DEBUG = False
# Set Devices
self.WORLD_SIZE = world_size
self.RANK = rank
self.N_GPU = torch.cuda.device_count() // self.WORLD_SIZE
self.DEVICE_IDS = list(range(self.RANK * self.N_GPU, (self.RANK + 1) * self.N_GPU))
# Set Seed For CPU And GPUs
self.SEED = args.SEED
torch.manual_seed(self.SEED)
torch.cuda.manual_seed(self.SEED)
torch.cuda.manual_seed_all(self.SEED)
np.random.seed(self.SEED)
random.seed(self.SEED)
# torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
# Version Control
self.VERSION = args.VERSION + '-full'
self.RESUME = args.RESUME
self.CKPT_FILE_PATH = args.CKPT_FILE_PATH
self.DATASET = args.DATASET
self.SPLIT = {
'train': args.TRAIN_SPLIT,
# 'train': 'train+val',
# 'train': 'train+val+vg',
'val': 'dev',
'test': 'test',
}
self.EVAL_EVERY_EPOCH = True
if self.SPLIT['val'] in self.SPLIT['train'].split('+') or args.RUN_MODE not in ['train']:
self.EVAL_EVERY_EPOCH = False
print('Eval after every epoch: ', self.EVAL_EVERY_EPOCH)
self.NUM_WORKERS = args.NUM_WORKERS
self.BATCH_SIZE = args.BATCH_SIZE
self.EVAL_BATCH_SIZE = self.BATCH_SIZE * 2
self.NEG_BATCHSIZE = 50
self.NEG_RANDSIZE = 64
self.NEG_HARDSIZE = 5
self.NEG_NEPOCH = 1
self.NEG_START_EPOCH = 0
self.BBOX_FEATURE = False
self.FRCNFEAT_LEN = 36
self.FRCNFEAT_SIZE = 2048
self.BBOXFEAT_EMB_SIZE = 2048
self.GLOVE_FEATURE = True
self.WORD_EMBED_SIZE = 300
self.REL_SIZE = 64
self.MAX_TOKEN = 50
# Network Params
self.LAYERS = 1
self.HSIZE = 512
# self.HBASE = 64
self.DROPOUT_R = 0.1
self.OPS_RESIDUAL = True
self.OPS_NORM = True
self.ATTFLAT_GLIMPSES = 1
self.ATTFLAT_OUT_SIZE = self.HSIZE * 2
self.ATTFLAT_MLP_SIZE = 512
self.SCORES_LOSS = 'bce'
# self.SCORES_LOSS = 'margin'
# self.MAX_VIOLATION = True
# self.MAX_VIOLATION = False
# Optimizer Params
# self.NET_OPTIM = 'sgd'
self.NET_OPTIM = 'wadam'
self.REDUCTION = 'sum'
# self.REDUCTION = 'mean'
if self.NET_OPTIM == 'sgd':
self.NET_LR_BASE = 0.01
self.NET_LR_MIN = 0.004
self.NET_MOMENTUM = 0.9
# self.NET_WEIGHT_DECAY = 3e-5
self.NET_WEIGHT_DECAY = 0
# self.NET_GRAD_CLIP = 1. # GRAD_CLIP = -1: means not use grad_norm_clip
self.NET_GRAD_CLIP = -1 # GRAD_CLIP = -1: means not use grad_norm_clip
self.MAX_EPOCH = 20
else:
self.NET_OPTIM_WARMUP = True
self.NET_LR_BASE = 0.00015
# self.NET_WEIGHT_DECAY = 3e-5
self.NET_WEIGHT_DECAY = 0
self.NET_GRAD_CLIP = 1. # GRAD_CLIP = -1: means not use grad_norm_clip
# self.NET_GRAD_CLIP = -1 # GRAD_CLIP = -1: means not use grad_norm_clip
self.NET_LR_DECAY_R = 0.2
self.NET_LR_DECAY_LIST = [36]
self.OPT_BETAS = (0.9, 0.98)
self.OPT_EPS = 1e-9
self.MAX_EPOCH = 100
self.GENOTYPE = json.load(open(args.GENO_PATH, 'r+'))['epoch' + str(args.GENO_EPOCH)]
self.REDUMP_EVAL = False
if self.RANK == 0:
print('Use the GENOTYPE PATH:', args.GENO_PATH)
print('Use the GENOTYPE EPOCH:', args.GENO_EPOCH)
print(self.GENOTYPE)
class Execution:
def __init__(self, __C):
self.__C = __C
def get_optim(self, net, search=False, epoch_steps=None):
net_optim = None
alpha_optim = None
if self.__C.NET_OPTIM == 'sgd':
net_optim = torch.optim.SGD(net.module.net_parameters() if search else net.parameters(), self.__C.NET_LR_BASE, momentum=self.__C.NET_MOMENTUM,
weight_decay=self.__C.NET_WEIGHT_DECAY)
else:
net_optim = WarmupOptimizer(
self.__C.NET_LR_BASE,
Optim.Adam(
# filter(lambda p: p.requires_grad, net.parameters()),
net.module.net_parameters() if search else net.parameters(),
lr=0,
betas=self.__C.OPT_BETAS,
eps=self.__C.OPT_EPS,
weight_decay=self.__C.NET_WEIGHT_DECAY,
),
epoch_steps,
warmup=self.__C.NET_OPTIM_WARMUP,
)
return net_optim, alpha_optim
def train(self, train_loader, eval_loader, neg_caps_loader, neg_imgs_loader):
# data_size = train_loader.sampler.total_size
init_dict = {
'token_size': train_loader.dataset.token_size,
'pretrained_emb': train_loader.dataset.pretrained_emb,
}
net = Net_Full(self.__C, init_dict)
net.to(self.__C.DEVICE_IDS[0])
net = DDP(net, device_ids=self.__C.DEVICE_IDS)
# loss_fn = torch.nn.BCEWithLogitsLoss(reduction=self.__C.REDUCTION)
if self.__C.SCORES_LOSS in ['bce']:
loss_fn = BCE_Loss(self.__C)
else:
loss_fn = Margin_Loss(self.__C)
if self.__C.RESUME:
print(' ========== Resume training')
path = self.__C.CKPT_FILE_PATH
print('Loading the {}'.format(path))
rank0_devices = [x - self.__C.RANK * len(self.__C.DEVICE_IDS) for x in self.__C.DEVICE_IDS]
device_pairs = zip(rank0_devices, self.__C.DEVICE_IDS)
map_location = {'cuda:%d' % x: 'cuda:%d' % y for x, y in device_pairs}
ckpt = torch.load(path, map_location=map_location)
print('Finish loading ckpt !!!')
net.load_state_dict(ckpt['state_dict'])
lr_scheduler = None
start_epoch = ckpt['epoch']
net_optim, _ = self.get_optim(net, search=False, epoch_steps=len(train_loader))
if self.__C.NET_OPTIM == 'sgd':
net_optim.load_state_dict(ckpt['net_optim'])
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
net_optim, self.__C.MAX_EPOCH, last_epoch=start_epoch)
else:
net_optim.optimizer.load_state_dict(ckpt['net_optim'])
net_optim.set_start_step(start_epoch * len(train_loader))
else:
net_optim, _ = self.get_optim(net, search=False, epoch_steps=len(train_loader))
start_epoch = 0
lr_scheduler = None
if self.__C.NET_OPTIM == 'sgd':
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
net_optim, self.__C.MAX_EPOCH)
loss_sum = 0
named_params = list(net.named_parameters())
grad_norm = np.zeros(len(named_params))
print('loading all images ...')
all_frcn_feat_iter_list, all_bbox_feat_iter_list, all_rel_img_iter_list = neg_imgs_loader.dataset.get_all_imgs()
print('loading finished')
for epoch in range(start_epoch, self.__C.MAX_EPOCH):
if self.__C.RANK == 0:
logfile = open('./logs/log/log_' + self.__C.VERSION + '.txt', 'a+')
logfile.write('nowTime: ' + datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') + '\n')
logfile.close()
if epoch % self.__C.NEG_NEPOCH == 0 and epoch >= self.__C.NEG_START_EPOCH:
net.eval()
with torch.no_grad():
# neg_caps_idx_dict
dist.barrier()
print('reset negative captions ...')
neg_caps_idx_list = []
for step, (frcn_feat_iter_list, bbox_feat_iter_list, rel_img_iter_list, cap_ix_iter_list, rel_cap_iter_list, neg_idx_list) in enumerate(tqdm.tqdm(neg_caps_loader)):
frcn_feat_iter_list = frcn_feat_iter_list.view(-1, self.__C.FRCNFEAT_LEN, self.__C.FRCNFEAT_SIZE)
bbox_feat_iter_list = bbox_feat_iter_list.view(-1, self.__C.FRCNFEAT_LEN, 5)
rel_img_iter_list = rel_img_iter_list.view(-1, self.__C.FRCNFEAT_LEN, self.__C.FRCNFEAT_LEN, 4)
cap_ix_iter_list = cap_ix_iter_list.view(-1, neg_caps_loader.dataset.max_token)
rel_cap_iter_list = rel_cap_iter_list.view(-1, neg_caps_loader.dataset.max_token, neg_caps_loader.dataset.max_token, 3)
input = (frcn_feat_iter_list, bbox_feat_iter_list, rel_img_iter_list, cap_ix_iter_list, rel_cap_iter_list)
scores = net(input)
scores = scores.view(-1, self.__C.NEG_RANDSIZE)
arg_scores = torch.argsort(scores, dim=-1, descending=True)[:, :self.__C.NEG_HARDSIZE]
arg_scores_bi = torch.arange(arg_scores.size(0)).unsqueeze(1).expand_as(arg_scores)
scores_ind = neg_idx_list[arg_scores_bi, arg_scores].to(scores.device)
neg_caps_idx_list.append(scores_ind)
neg_caps_idx_list = torch.cat(neg_caps_idx_list, dim=0)
neg_caps_idx_list_gather = [torch.zeros_like(neg_caps_idx_list.unsqueeze(1)) for _ in range(self.__C.WORLD_SIZE)]
dist.all_gather(neg_caps_idx_list_gather, neg_caps_idx_list.unsqueeze(1))
neg_caps_idx_list_gather = torch.cat(neg_caps_idx_list_gather, dim=1).view(-1, self.__C.NEG_HARDSIZE).cpu() # torch.Size([29000, 20])
rest_caps_num = neg_caps_loader.sampler.rest_data_num
if rest_caps_num:
neg_caps_idx_list_gather = neg_caps_idx_list_gather[: -rest_caps_num]
train_loader.dataset.neg_caps_idx_tensor = neg_caps_idx_list_gather
# neg_imgs_idx_dict
dist.barrier()
print('reset negative images ...')
neg_imgs_idx_list = []
for step, (frcn_feat_iter_list, bbox_feat_iter_list, rel_img_iter_list, cap_ix_iter_list, rel_cap_iter_list, neg_idx_list) in enumerate(tqdm.tqdm(neg_imgs_loader)):
frcn_feat_iter_list = all_frcn_feat_iter_list[neg_idx_list, :]
bbox_feat_iter_list = all_bbox_feat_iter_list[neg_idx_list, :]
rel_img_iter_list = all_rel_img_iter_list[neg_idx_list, :]
frcn_feat_iter_list = frcn_feat_iter_list.view(-1, self.__C.FRCNFEAT_LEN, self.__C.FRCNFEAT_SIZE)
bbox_feat_iter_list = bbox_feat_iter_list.view(-1, self.__C.FRCNFEAT_LEN, 5)
rel_img_iter_list = rel_img_iter_list.view(-1, self.__C.FRCNFEAT_LEN, self.__C.FRCNFEAT_LEN, 4)
cap_ix_iter_list = cap_ix_iter_list.view(-1, neg_caps_loader.dataset.max_token)
rel_cap_iter_list = rel_cap_iter_list.view(-1, neg_caps_loader.dataset.max_token, neg_caps_loader.dataset.max_token, 3)
input = (frcn_feat_iter_list, bbox_feat_iter_list, rel_img_iter_list, cap_ix_iter_list, rel_cap_iter_list)
scores = net(input)
scores = scores.view(-1, self.__C.NEG_RANDSIZE)
arg_scores = torch.argsort(scores, dim=-1, descending=True)[:, :self.__C.NEG_HARDSIZE]
arg_scores_bi = torch.arange(arg_scores.size(0)).unsqueeze(1).expand_as(arg_scores)
scores_ind = neg_idx_list[arg_scores_bi, arg_scores].to(scores.device)
neg_imgs_idx_list.append(scores_ind)
neg_imgs_idx_list = torch.cat(neg_imgs_idx_list, dim=0)
neg_imgs_idx_list_gather = [torch.zeros_like(neg_imgs_idx_list.unsqueeze(1)) for _ in range(self.__C.WORLD_SIZE)]
dist.all_gather(neg_imgs_idx_list_gather, neg_imgs_idx_list.unsqueeze(1))
neg_imgs_idx_list_gather = torch.cat(neg_imgs_idx_list_gather, dim=1).view(-1, self.__C.NEG_HARDSIZE).cpu() # torch.Size([145000, 20])
rest_imgs_num = neg_imgs_loader.sampler.rest_data_num
if rest_imgs_num:
neg_imgs_idx_list_gather = neg_imgs_idx_list_gather[: -rest_imgs_num]
train_loader.dataset.neg_imgs_idx_tensor = neg_imgs_idx_list_gather
elif epoch < self.__C.NEG_START_EPOCH:
print('shuffle neg idx')
train_loader.dataset.shuffle_neg_idx()
print('Training Epoch:', epoch)
train_loader.sampler.set_epoch(epoch)
net.train()
if self.__C.NET_OPTIM == 'sgd':
lr_scheduler.step()
else:
if epoch in self.__C.NET_LR_DECAY_LIST:
net_optim.decay(self.__C.NET_LR_DECAY_R)
for step, (train_frcn_feat, train_bbox_feat, train_rel_img_iter, train_cap_ix, train_rel_cap_iter,
train_neg_frcn_feat, train_neg_bbox_feat, train_neg_rel_img_iter, train_neg_cap_ix, train_neg_rel_cap_iter) in enumerate(tqdm.tqdm(train_loader)):
train_input_pos = (train_frcn_feat, train_bbox_feat, train_rel_img_iter, train_cap_ix, train_rel_cap_iter)
train_input_negc = (train_frcn_feat, train_bbox_feat, train_rel_img_iter, train_neg_cap_ix, train_neg_rel_cap_iter)
train_input_negi = (train_neg_frcn_feat, train_neg_bbox_feat, train_neg_rel_img_iter, train_cap_ix, train_rel_cap_iter)
# network step
net_optim.zero_grad()
scores_pos = net(train_input_pos)
scores_negc = net(train_input_negc)
scores_negi = net(train_input_negi)
loss = loss_fn(scores_pos, scores_negc, scores_negi)
loss.backward()
loss_sum += loss.item()
# gradient clipping
if self.__C.NET_GRAD_CLIP > 0:
nn.utils.clip_grad_norm_(net.parameters(), self.__C.NET_GRAD_CLIP)
net_optim.step()
epoch_finish = epoch + 1
if self.__C.RANK == 0:
state = {
'state_dict': net.state_dict(),
'net_optim': net_optim.state_dict() if self.__C.NET_OPTIM == 'sgd' else net_optim.optimizer.state_dict(),
'epoch': epoch_finish,
}
torch.save(state, self.__C.CKPT_PATH + self.__C.VERSION + '_epoch' + str(epoch_finish) + '.pkl')
if self.__C.NET_OPTIM == 'sgd':
lr_cur = lr_scheduler.get_lr()[0]
else:
lr_cur = net_optim._rate
logfile = open('./logs/log/log_' + self.__C.VERSION + '.txt', 'a+')
# logfile.write('epoch = ' + str(epoch_finish) + ' loss = ' + str(loss_sum / data_size) + '\n' +
# 'lr = ' + str(optim._rate) + '\n')
if self.__C.REDUCTION == 'sum':
logfile.write('epoch = ' + str(epoch_finish) + ' loss = ' +
str(loss_sum / len(train_loader) / self.__C.BATCH_SIZE) +
'\n' + 'lr = ' + str(lr_cur) + '\n')
else:
logfile.write('epoch = ' + str(epoch_finish) + ' loss = ' + str(loss_sum / len(train_loader)) +
'\n' + 'lr = ' + str(lr_cur) + '\n')
logfile.close()
dist.barrier()
if eval_loader is not None:
self.eval(
eval_loader,
net=net,
valid=True,
)
loss_sum = 0
def eval(self, eval_loader, net=None, valid=False, redump=False):
init_dict = {
'token_size': eval_loader.dataset.token_size,
'pretrained_emb': eval_loader.dataset.pretrained_emb,
}
if net is None:
rank0_devices = [x - self.__C.RANK * len(self.__C.DEVICE_IDS) for x in self.__C.DEVICE_IDS]
device_pairs = zip(rank0_devices, self.__C.DEVICE_IDS)
map_location = {'cuda:%d' % x: 'cuda:%d' % y for x, y in device_pairs}
state_dict = torch.load(
self.__C.CKPT_FILE_PATH,
map_location=map_location)['state_dict']
net = Net_Full(self.__C, init_dict)
net.to(self.__C.DEVICE_IDS[0])
net = DDP(net, device_ids=self.__C.DEVICE_IDS)
net.load_state_dict(state_dict)
net.eval()
rest_data_num = eval_loader.sampler.rest_data_num
ans_ix_list = []
eval_loader.sampler.set_shuffle(False)
with torch.no_grad():
cap_ix_iter_list, rel_cap_iter_list = eval_loader.dataset.get_all_caps()
frcn_feat_iter_list, bbox_feat_iter_list, rel_img_iter_list = eval_loader.dataset.get_all_imgs()
bs_x = self.__C.EVAL_BATCH_SIZE
total_size_x = cap_ix_iter_list.size(0)
col_x = math.ceil(total_size_x / bs_x)
total_end_x = total_size_x
total_size_y = frcn_feat_iter_list.size(0)
row_y = math.ceil(total_size_y / self.__C.WORLD_SIZE)
base_y = row_y * self.__C.RANK
total_end_y = min(row_y * (self.__C.RANK + 1), total_size_y)
scores_mat = torch.zeros(total_size_y, total_size_x).cuda(self.__C.RANK)
for step_y in tqdm.tqdm(range(row_y)):
start_y = base_y + step_y
end_y = start_y + 1
if end_y > total_end_y:
break
frcn_feat_iter_ = frcn_feat_iter_list[start_y: end_y]
bbox_feat_iter_ = bbox_feat_iter_list[start_y: end_y]
rel_img_iter_ = rel_img_iter_list[start_y: end_y]
for step_x in range(col_x):
start_x = step_x * bs_x
end_x = min((step_x + 1) * bs_x, total_end_x)
cap_ix_iter = cap_ix_iter_list[start_x: end_x]
rel_cap_iter = rel_cap_iter_list[start_x: end_x]
n_batches = cap_ix_iter.size(0)
frcn_feat_iter = frcn_feat_iter_.repeat(n_batches, 1, 1)
bbox_feat_iter = bbox_feat_iter_.repeat(n_batches, 1, 1)
rel_img_iter = rel_img_iter_.repeat(n_batches, 1, 1, 1)
eval_input_pos = (frcn_feat_iter, bbox_feat_iter, rel_img_iter, cap_ix_iter, rel_cap_iter)
scores_pos = net(eval_input_pos)
scores_mat[start_y, start_x: end_x] = scores_pos
dist.all_reduce(scores_mat)
if self.__C.RANK == 0:
score_matrix = scores_mat.cpu().data.numpy()
print(score_matrix.shape)
npts = score_matrix.shape[0]
# i2t
stat_num = 0
minnum_rank_image = np.array([1e7] * npts)
for i in range(npts):
cur_rank = np.argsort(score_matrix[i])[::-1]
for index, j in enumerate(cur_rank):
if j in range(5 * i, 5 * i + 5):
stat_num += 1
minnum_rank_image[i] = index
break
print("i2t stat num:", stat_num)
i2t_r1 = 100.0 * len(np.where(minnum_rank_image < 1)[0]) / len(minnum_rank_image)
i2t_r5 = 100.0 * len(np.where(minnum_rank_image < 5)[0]) / len(minnum_rank_image)
i2t_r10 = 100.0 * len(np.where(minnum_rank_image < 10)[0]) / len(minnum_rank_image)
i2t_medr = np.floor(np.median(minnum_rank_image)) + 1
i2t_meanr = minnum_rank_image.mean() + 1
print("i2t results: %.02f %.02f %.02f %.02f %.02f\n" % (i2t_r1, i2t_r5, i2t_r10, i2t_medr, i2t_meanr))
# t2i
stat_num = 0
score_matrix = score_matrix.transpose()
minnum_rank_caption = np.array([1e7] * npts * 5)
for i in range(5 * npts):
img_id = i // 5
cur_rank = np.argsort(score_matrix[i])[::-1]
for index, j in enumerate(cur_rank):
if j == img_id:
stat_num += 1
minnum_rank_caption[i] = index
break
print("t2i stat num:", stat_num)
t2i_r1 = 100.0 * len(np.where(minnum_rank_caption < 1)[0]) / len(minnum_rank_caption)
t2i_r5 = 100.0 * len(np.where(minnum_rank_caption < 5)[0]) / len(minnum_rank_caption)
t2i_r10 = 100.0 * len(np.where(minnum_rank_caption < 10)[0]) / len(minnum_rank_caption)
t2i_medr = np.floor(np.median(minnum_rank_caption)) + 1
t2i_meanr = minnum_rank_caption.mean() + 1
print("t2i results: %.02f %.02f %.02f %.02f %.02f\n" % (t2i_r1, t2i_r5, t2i_r10, t2i_medr, t2i_meanr))
logfile = open('./logs/log/log_' + self.__C.VERSION + '.txt', 'a+')
logfile.write(
"i2t results: %.02f %.02f %.02f %.02f %.02f\n" % (i2t_r1, i2t_r5, i2t_r10, i2t_medr, i2t_meanr))
logfile.write(
"t2i results: %.02f %.02f %.02f %.02f %.02f\n" % (t2i_r1, t2i_r5, t2i_r10, t2i_medr, t2i_meanr))
logfile.write("\n")
logfile.close()
def run(self, args):
if args.RUN_MODE in ['train']:
train_dataset = DataSet(self.__C, args.RUN_MODE)
train_sampler = SubsetDistributedSampler(train_dataset, shuffle=True)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=self.__C.BATCH_SIZE,
sampler=train_sampler,
num_workers=self.__C.NUM_WORKERS,
drop_last=True
)
eval_loader = None
if self.__C.EVAL_EVERY_EPOCH:
eval_dataset = DataSet(self.__C, 'val')
eval_sampler = SubsetDistributedSampler(eval_dataset, shuffle=False)
eval_loader = torch.utils.data.DataLoader(
eval_dataset,
batch_size=self.__C.EVAL_BATCH_SIZE,
sampler=eval_sampler,
num_workers=self.__C.NUM_WORKERS
)
neg_caps_dataset = DataSet_Neg(self.__C, keep='imgs')
neg_caps_sampler = SubsetDistributedSampler(neg_caps_dataset, shuffle=False)
neg_caps_loader = torch.utils.data.DataLoader(
neg_caps_dataset,
batch_size=self.__C.NEG_BATCHSIZE,
sampler=neg_caps_sampler,
num_workers=self.__C.NUM_WORKERS
)
neg_imgs_dataset = DataSet_Neg(self.__C, keep='caps')
neg_imgs_sampler = SubsetDistributedSampler(neg_imgs_dataset, shuffle=False)
neg_imgs_loader = torch.utils.data.DataLoader(
neg_imgs_dataset,
batch_size=self.__C.NEG_BATCHSIZE,
sampler=neg_imgs_sampler,
num_workers=self.__C.NUM_WORKERS
)
self.train(train_loader, eval_loader, neg_caps_loader, neg_imgs_loader)
elif args.RUN_MODE in ['val', 'test']:
eval_dataset = DataSet(self.__C, args.RUN_MODE)
eval_sampler = SubsetDistributedSampler(eval_dataset, shuffle=False)
eval_loader = torch.utils.data.DataLoader(
eval_dataset,
batch_size=self.__C.EVAL_BATCH_SIZE,
sampler=eval_sampler,
num_workers=self.__C.NUM_WORKERS
)
self.eval(eval_loader, valid=args.RUN_MODE in ['val'])
else:
exit(-1)
def mp_entrance(rank, world_size, args):
__C = Cfg(rank, world_size, args)
exec = Execution(__C)
exec.run(args)
if __name__ == '__main__':
args = parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.GPU
WORLD_SIZE = len(args.GPU.split(','))
mp.spawn(
mp_entrance,
args=(WORLD_SIZE, args),
nprocs=WORLD_SIZE,
join=True
)