-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
152 lines (112 loc) · 5.11 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
# Input data files are available in the "../input/" directory.
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory
import os
# for dirname, _, filenames in os.walk('/kaggle/input'):
# for filename in filenames:
# print(os.path.join(dirname, filename))
# Any results you write to the current directory are saved as output.
import cv2
import torch
import torch.nn as nn
from torch.utils.data import Dataset,DataLoader
from torchvision import transforms,models
from tqdm import tqdm_notebook as tqdm
import re
import math
import collections
from functools import partial
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils import model_zoo
from data import load_feather_data, GraphemeDataset
from NET.efficientnet import EfficientNet
from metric import macro_recall_multi
import numpy as np
def evaluate(model, criterion, valid_loader):
# for i in range(len(models)):
# models[i].eval()
losses = []
accs = []
recalls = []
acc = 0.0
total = 0.0
# print('epochs {}/{} '.format(epoch+1,epochs))
running_loss = 0.0
running_acc = 0.0
running_recall = 0.0
with torch.no_grad():
for idx, (inputs, labels1, labels2, labels3) in enumerate(tqdm(valid_loader)):
inputs = inputs.cuda() # to(device)
labels1 = labels1.cuda() # to(device)
labels2 = labels2.cuda() # to(device)
labels3 = labels3.cuda() # to(device)
total += len(inputs)
outputs1, outputs2, outputs3 = model(inputs.unsqueeze(1).float())
loss1 = criterion(outputs1, labels1)
loss2 = 2 * criterion(outputs2, labels2)
loss3 = criterion(outputs3, labels3)
running_loss += loss1.item() + loss2.item() + loss3.item()
running_recall += macro_recall_multi(outputs2, labels2, outputs1, labels1, outputs3, labels3)
running_acc += (outputs1.argmax(1) == labels1).float().mean()
running_acc += (outputs2.argmax(1) == labels2).float().mean()
running_acc += (outputs3.argmax(1) == labels3).float().mean()
acc = running_acc / total
# scheduler.step()
losses.append(running_loss / len(valid_loader))
accs.append(running_acc / (len(valid_loader) * 3))
recalls.append(running_recall / len(valid_loader))
total_recall = running_recall / len(valid_loader) ## No its not Arnold Schwarzenegger movie
print('val acc : {:.2f}%\n'.format(running_acc / (len(valid_loader) * 3)))
print('loss : {:.4f}\n'.format(running_loss / len(valid_loader)))
print('recall: {:.4f}\n'.format(running_recall / len(valid_loader)))
return total_recall
if __name__ == '__main__':
gpu_ids = '2,5'
import os
os.environ['CUDA_VISIBLE_DEVICES'] = gpu_ids
batch_size = 2048
csv_path = 'BengaliData'
feather_path = 'BengaliData/feather128'
criterion = nn.CrossEntropyLoss()
#train, data_full = load_feather_data(csv_path, feather_path)
#dataset = GraphemeDataset(data_full, train, transform=False)
#dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=8, shuffle=False)
model_name = 'efficientnet-b0'
ckpts = ['eff0_cv5_cos_norm_adam/Fold_0_global_max_recall.pth',
'eff0_cv5_cos_norm_adam/Fold_1_global_max_recall.pth',
'eff0_cv5_cos_norm_adam/Fold_2_global_max_recall.pth',
'eff0_cv5_cos_norm_adam/Fold_3_global_max_recall.pth',
'eff0_cv5_cos_norm_adam/Fold_4_global_max_recall.pth',
]
models = []
nfold = 5
seed = 42
train_df, data_full = load_feather_data(csv_path, feather_path)
train_df['id'] = train_df['image_id'].apply(lambda x: int(x.split('_')[1]))
X, y = train_df[['id', 'grapheme_root', 'vowel_diacritic', 'consonant_diacritic']] \
.values[:, 0], train_df.values[:, 1:]
train_df['fold'] = np.nan
# split data
from iterstrat.ml_stratifiers import MultilabelStratifiedKFold
mskf = MultilabelStratifiedKFold(n_splits=nfold, random_state=seed)
for i, (_, test_index) in enumerate(mskf.split(X, y)):
train_df.iloc[test_index, -1] = i
train_df['fold'] = train_df['fold'].astype('int')
recall_final = 0
for fold in range(nfold):
print('#################FOLD:%d##################\n' % fold)
val_csv = train_df[train_df['fold'] == fold]
val_data = data_full[train_df['fold'] == fold]
valid_dataset = GraphemeDataset(val_data, val_csv, transform=False)
valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=batch_size,
num_workers=8,
shuffle=False)
ckpt = ckpts[fold]
model = EfficientNet.from_pretrained(model_name).cuda()
model = nn.DataParallel(model)
model.load_state_dict(torch.load(ckpt))
model.eval()
recall_final += evaluate(model, criterion, valid_loader)
print('recall_final:', recall_final/nfold)